M52348SP [MITSUBISHI]

WIDE FREQUENCY BAND ANALOG SWITCH; 宽频带模拟开关
M52348SP
型号: M52348SP
厂家: Mitsubishi Group    Mitsubishi Group
描述:

WIDE FREQUENCY BAND ANALOG SWITCH
宽频带模拟开关

复用器 开关 复用器或开关 信号电路 光电二极管
文件: 总10页 (文件大小:70K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MITSUBISHI ICs (Monitor)  
M52348SP  
WIDE FREQUENCY BAND ANALOG SWITCH  
DESCRIPTION  
PIN CONFIGURATION (TOP VIEW)  
The M52348SP is an semiconductor IC for RGBHV interface that  
switches signals input from two types of image source and outputs  
them to CRT display etc. The synchronous signal meets the  
frequency band of 10 kHz to 200 kHz and is output with TTL. The  
IC adopts 250 MHz for the frequency band width of video signal,  
providing high resolution images. It is optimum as an IC for  
interface with various types of new media including high resolution  
CRT.  
VCC1(R)  
1
2
3
4
5
32 VCC2(R)  
INPUT1(R)  
VCC1(G)  
31  
30  
29  
28  
27  
OUTPUT(R)  
GND  
INPUT1(G)  
VCC1(B)  
VCC2(G)  
OUTPUT(G)  
GND  
INPUT1(B)  
INPUT1(H)  
INPUT1(V)  
6
7
26 VCC2(B)  
FEATURES  
OUTPUT(B)  
8
25  
24  
23  
22  
21  
20  
19  
Frequency band : RGB..................................................250MHz  
GND  
GND  
INPUT2(V)  
GND  
9
HV.........................................10Hz to 200kHz  
OUTPUT  
10  
11  
12  
13  
14  
15  
16  
(for Sync on G)  
Input level :  
RGB..........................................0.7 VP-P (typ.)  
HV TTL IN PUT  
NC  
3 to 5 Vo-p (bipolar)  
INPUT2(G)  
VCC  
Only the G channel is equipped with output for sync-on-video.  
HV output adopts TTL format.  
GND  
OUTPUT(H)  
OUTPUT(V)  
INPUT2(B)  
APPLICATION  
CRT display, TV, VCR, etc.  
INPUT2(H)  
INPUT2(V)  
18 GND  
17  
SWITCH  
Outline 32P4B  
RECOMMENDED OPERATING CONDITION  
Supply voltage range.....................................................4.5V to 5.5V  
Rated supply voltage..................................................................5.0V  
NC:NO CONNECTION  
BLOCK DIAGRAM  
OUTPUT  
(B)  
OUTPUT  
(for sync on G)  
OUTPUT  
(V)  
OUTPUT  
OUTPUT(R)  
VCC 2(G)  
OUTPUT  
GND  
27  
VCC  
21  
SWITCH  
(G)  
VCC2(R)  
32  
GND  
30  
VCC 2(B)  
26  
GND  
NC  
22  
(H)  
GND  
18  
31  
29  
28  
25  
24  
23  
20  
19  
17  
6
7
8
9
1
2
3
4
5
10  
11  
12  
13  
14  
15  
16  
INPUT2(V)  
INPUT1(R)  
INPUT1(G)  
INPUT1(B)  
INPUT1(V)  
INPUT2(R)  
INPUT2(G)  
INPUT2(B)  
VCC1(G)  
VCC1(B)  
INPUT1(H)  
GND  
GND  
GND  
INPUT2(H)  
VCC1(R)  
1
MITSUBISHI ICs (Monitor)  
M52348SP  
WIDE FREQUENCY BAND ANALOG SWITCH  
ABSOLUTE MAXIMUM RATINGS (Ta=25˚C)  
Symbol  
VCC  
Parameter  
Ratings  
Unit  
V
Supply voltage  
7.0  
1603  
Pd  
Power dissipation  
mW  
˚C  
˚C  
V
Topr  
Operating temperature  
-20 to +85  
-40 to +150  
5.0  
Tstg  
Storage temperature  
Vopr  
Recommended operating supply voltage  
Recommended operating supply voltage range  
Electrostatic discharge  
Vopr’  
Sarge  
4.5 to 5.5  
±200  
V
V
ELECTRICAL CHARACTERISTICS (VCC=5V,Ta=25˚C)  
Power  
Test conditions  
SW  
Limits  
supply  
Test  
point  
Symbol  
Parameter  
Unit  
SW2 SW4 SW6 SW7 SW8 SW10 SW12 SW14 SW15 SW16  
Rin1 Gin1 Bin1 Hin1 Vin1 Rin2 Gin2 Bin2 Hin2 Vin2  
SW17  
Swich  
Vcc  
5
Min. Typ. Max.  
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
GND  
Circuit current 1  
(no signal)  
ICC1  
ICC1  
A
46  
46  
66  
66  
86  
86  
mA  
mA  
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
a
Circuit current 2  
(no signal)  
A
5
OPEN  
RGB SW block  
T.P.31  
T.P.28  
T.P.25  
Output DC  
voltage 1  
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
GND  
VDC1  
VDC2  
5
5
1.8  
1.8  
2.2  
2.2  
2.6  
2.6  
V
V
T.P.31  
T.P.28  
T.P.25  
Output DC  
voltage 2  
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
a
OPEN  
Output DC  
voltage 3  
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
GND  
T.P.23  
T.P.23  
VDC3  
VDC4  
5
5
1.1  
1.1  
1.5  
1.5  
1.9  
1.9  
V
V
Output DC  
voltage 4  
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
a
OPEN  
T.P.2  
T.P.4  
T.P.6  
abb bab bba  
SG1 SG1 SG1  
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
GND  
Maximum allow-  
able input 1  
Vimax1  
Vimax2  
5
5
5
1.4  
1.4  
1.6  
1.6  
-
-
VP-P  
VP-P  
T.P.10  
T.P.12  
T.P.14  
b
-
b
-
b
-
b
-
b
-
abb bab bba  
SG1 SG1 SG1  
b
-
b
-
a
Maximum allow-  
able input 2  
OPEN  
T.P.31  
T.P.28  
T.P.25  
abb bab bba  
SG2 SG2 SG2  
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
GND  
GV1  
Voltage gain 1  
-0.5  
-0.6  
-0.5  
0.1  
0
0.7  
0.6  
0.7  
dB  
dB  
dB  
Relative voltage  
gain 1  
GV1  
GV2  
Takes ratio of the values above  
T.P.31  
T.P.28  
T.P.25  
b
-
b
-
b
-
b
-
b
-
abb bab bba  
SG2 SG2 SG2  
b
-
b
-
a
Voltage gain 2  
5
0.1  
OPEN  
Relative voltage  
gain 2  
GV2  
GV3  
Takes ratio of the values above.  
-0.6  
-0.4  
-0.4  
0
0.6  
0.8  
0.8  
dB  
dB  
dB  
b
-
a
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
GND  
T.P.23  
T.P.23  
Voltage gain 3  
Voltage gain 4  
5
5
0.2  
0.2  
SG2  
b
-
b
-
b
-
b
-
b
-
b
-
a
SG2  
b
-
b
-
b
-
a
GV4  
OPEN  
Frequency character-  
istics 1  
(100MHz)  
T.P.31  
T.P.28  
T.P.25  
abb bab bba  
SG4 SG4 SG4  
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
GND  
FC1  
5
-0.1  
-0.1  
-0.1  
-0.1  
-3.0  
-3.0  
0
0
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
dB  
dB  
dB  
dB  
dB  
dB  
Relative frequency  
characteristics 1  
(100MHz)  
FC1  
FC2  
Takes ratio of the values above  
Frequency character-  
istics 2  
(100MHz)  
T.P.31  
T.P.28  
T.P.25  
b
-
b
-
b
-
b
-
b
-
abb bab bba  
SG4 SG4 SG4  
b
-
b
-
a
5
0
OPEN  
Relative frequency  
characteristics 2  
(100MHz)  
FC2  
FC3  
Takes ratio of the values above  
0
Frequency character-  
istics 3  
(100MHz)  
T.P.31  
T.P.28  
T.P.25  
abb bab bba  
SG5 SG5 SG5  
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
GND  
5
5
1.5  
1.5  
Relative frequency  
characteristics 4  
(250MHz)  
T.P.31  
T.P.28  
T.P.25  
b
-
b
-
b
-
b
-
b
-
abb bab bba  
SG5 SG5 SG5  
b
-
b
-
a
FC4  
OPEN  
2
MITSUBISHI ICs (Monitor)  
M52348SP  
WIDE FREQUENCY BAND ANALOG SWITCH  
ELECTRICAL CHARACTERISTICS (cont.)  
Power  
Test conditions  
SW  
Limits  
supply  
Test  
point  
Symbol  
Parameter  
Crosstalk 1  
Unit  
SW2 SW4 SW6 SW7 SW8 SW10 SW12 SW14 SW15 SW16  
Rin1 Gin1 Bin1 Hin1 Vin1 Rin2 Gin2 Bin2 Hin2 Vin2  
SW17  
Swich  
Vcc  
5
Min. Typ. Max.  
GND  
T.P.31  
T.P.28  
T.P.25  
abb bab bba  
SG3 SG3 SG3  
b
-
b
-
b
-
b
-
b
-
b
-
b
-
between 2 inputs  
(10MHz)  
C.T.I.1  
C.T.I.2  
C.T.I.3  
C.T.I.4  
C.T.C.1  
C.T.C.2  
C.T.C.3  
C.T.C.4  
-
-
-
-
-
-
-
-
-60  
-60  
-40  
-40  
-50  
-50  
-30  
-30  
-50  
-50  
-35  
-35  
-40  
-40  
-25  
-25  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
OPEN  
OPEN  
Crosstalk 2  
between 2 inputs  
(10MHz)  
T.P.31  
T.P.28  
T.P.25  
b
-
b
-
b
-
b
-
b
-
abb bab bba  
SG3 SG3 SG3  
b
-
b
-
5
5
5
5
5
5
5
GND  
GND  
Crosstalk 3  
between 2 inputs  
(100MHz)  
T.P.31  
T.P.28  
T.P.25  
abb bab bba  
SG4 SG4 SG4  
b
-
b
-
b
-
b
-
b
-
b
-
b
-
OPEN  
OPEN  
Crosstalk 4  
between 2 inputs  
(100MHz)  
T.P.31  
T.P.28  
T.P.25  
b
-
b
-
b
-
b
-
b
-
abb bab bba  
SG4 SG4 SG4  
b
-
b
-
GND  
Crosstalk 1  
between channels  
(10MHz)  
T.P.31  
T.P.28  
T.P.25  
abb bab bba  
SG3 SG3 SG3  
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
GND  
Crosstalk 2  
between channels  
(10MHz)  
T.P.31  
T.P.28  
T.P.25  
b
-
b
-
b
-
b
-
b
-
abb bab bba  
SG3 SG3 SG3  
b
-
b
-
a
OPEN  
Crosstalk 3  
between channels  
(100MHz)  
T.P.31  
T.P.28  
T.P.25  
abb bab bba  
SG4 SG4 SG4  
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
GND  
Crosstalk 4  
between channels  
(100MHz)  
T.P.31  
T.P.28  
T.P.25  
b
-
b
-
b
-
b
-
b
-
abb bab bba  
SG4 SG4 SG4  
b
-
b
-
a
OPEN  
T.P.31  
T.P.28  
T.P.25  
a
a
a
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
GND  
Tr1  
Tf1  
Tr2  
Tf2  
5
5
5
5
-
-
-
-
1.6  
1.6  
1.6  
1.6  
2.5 nsec  
2.5 nsec  
2.5 nsec  
2.5 nsec  
SG6 SG6 SG6  
Pulse characteris-  
tics 1  
T.P.31  
T.P.28  
T.P.25  
a
a
a
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
GND  
SG6 SG6 SG6  
T.P.31  
T.P.28  
T.P.25  
b
-
b
-
b
-
b
-
b
-
a
a
a
b
-
b
-
a
SG6 SG6 SG6  
OPEN  
Pulse characteris-  
tics 2  
T.P.31  
T.P.28  
T.P.25  
b
-
b
-
b
-
b
-
b
-
a
a
a
b
-
b
-
a
SG6 SG6 SG6  
OPEN  
HV SW portion  
b
-
b
-
b
-
c
c
b
-
b
-
b
-
b
-
b
-
b
GND  
High-level output  
T.P.19  
T.P.20  
VOH1  
VOH2  
VOL1  
VOL2  
5
5
5
5
4.5  
4.5  
-
5.0  
5.0  
0.2  
0.2  
-
V
V
V
V
voltage 1  
5.0V 5.0V  
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
c
c
a
High-level output  
voltage 2  
T.P.19  
T.P.20  
-
5.0V 5.0V OPEN  
b
-
b
-
b
-
c
c
b
-
b
-
b
-
b
-
b
-
b
GND  
Low-level output  
voltage 1  
T.P.19  
T.P.20  
5.0  
5.0  
0V 0V  
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
c
c
a
Low level output  
voltage 2  
T.P.19  
T.P.20  
-
0V 0V OPEN  
b
-
b
-
b
-
c
c
b
-
b
-
b
-
b
-
b
-
b
GND  
Input threshold  
voltage 1  
T.P.7  
T.P.8  
Vith1  
5
2.0  
2.5  
3.0  
3.0  
V
V
Vari- Vari-  
able  
able  
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
c
c
Vari-  
a
Input threshold  
voltage 2  
T.P.15  
T.P.16  
Vith2  
Trd1  
5
5
5
5
5
5
5
2.0  
2.5  
100  
100  
50  
Vari-  
OPEN  
able able  
b
-
b
-
b
-
a
a
b
-
b
-
b
-
b
-
b
-
b
GND  
T.P.19  
T.P.20  
Rising delay time 1  
Rising delay time 2  
-
-
150 nsec  
150 nsec  
100 nsec  
100 nsec  
SG7 SG7  
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
a
a
a
T.P.19  
T.P.20  
Trd2  
SG7 SG7 OPEN  
Falling delay  
time 1  
b
-
b
-
b
-
a
a
b
-
b
-
b
-
b
-
b
-
b
GND  
T.P.19  
T.P.20  
Tfd1  
Tfd2  
Vsth1  
Vsth2  
-
SG7 SG7  
Falling delay  
time 2  
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
a
a
a
T.P.19  
T.P.20  
-
50  
SG7 SG7 OPEN  
a
a
a
a
a
b
-
b
-
b
-
b
-
b
-
Switching thresh-  
old voltage 1  
T.P.17  
T.P.17  
c
c
0.5  
0.5  
1.5  
1.5  
2.0  
2.0  
V
V
SG1 SG1 SG1 SG7 SG7  
b
-
b
-
b
-
b
-
b
-
a
a
a
a
a
Switching thresh-  
old voltage 2  
SG1 SG1 SG1 SG7 SG7  
3
MITSUBISHI ICs (Monitor)  
M52348SP  
WIDE FREQUENCY BAND ANALOG SWITCH  
2. When this is the case, measure the output amplitude of T.P.23.  
ELECTRICAL CHARACTERISTICS TEST  
METHOD  
3. As in the case of GV1, GV1, GV2 and GV2, find GV3 and GV4.  
Note) Omitted because the signal input pins and SW No. have been  
described in the Electrical Characteristics Table. SWA shall take  
side a unless otherwise noted.  
FC1, FC1 frequency characteristics 1, relative frequency  
characteristics 1 (100 MHz)  
FC2, FC2 frequency characteristics 2, relative frequency  
characteristics 2 (100 MHz)  
ICC1, ICC2 Circuit current 1, circuit current 2 (no signal)  
The conditions shall be as provided in the Electrical Characteristics  
Table. When SW17 is assigned to GND (or OPEN), and SWA is  
placed on side b, take measurements in ampere meter A and  
specify the value to be Icc1 (or ICC2).  
1. The conditions shall be as provided in the Electrical  
Characteristics Table. This measurement shall use active probe.  
2. Assign SW17 to GND and input SG2 into pin 2 only. When this is  
the case, specify the output amplitude of T.P.31 to be VOR1.  
In the same manner, specify the output to be VOR2 with SG4  
input.  
VDC1, VDC2 Output DC voltage 1, output DC voltage 2  
When SW17 is assigned to GND (or OPEN), and no signal is input,  
measure T.P.31 (T.P.28, T.P.25) output DC voltage. Specify the  
voltage to be VDC1 (or VDC2).  
3. In this case, calculate frequency characteristics FC1 by the  
following formula:  
VOR2  
VOR1  
[VP-P]  
[VP-P]  
(dB)  
FC1 = 20LOG  
VDC3, VDC4, Output DC voltage 3, output DC voltage 4  
Measure the output DC voltage of T.P.23 in the same manner as in  
VDC1 and VDC2, and specify the voltage to be VDC3 (VDC4).  
4
6
4. In response to inputs into pin  
and pin  
only, nd frequency  
characteristics Fc1 in the same manner.  
5. Calculate the difference in frequency characteristics between  
channels to find relative frequency characteristicsFc1.  
Vimax1, Vimax2, maximum allowable input 1, maximum  
allowable input 2  
6. Assign SW17 to OPEN. In the same manner, find FC2 and FC2.  
2
Assign SW17 to GND and input SG1 into pin  
only. Gradually  
increasing the SG1 amplitude, read the amplitude of the input  
signal when the output waveform of T.P.31 is strained. The value is  
specified to be Vimax1. In the same manner, measure Vimax 1 in  
FC3, FC4 Frequency characteristics 3, frequency  
characteristics 4 (250 MHz)  
In the same manner as finding FC1, FC1, FC2 andFC2, find FC3  
and FC4 in response to input signal SG5.  
C.T.I.1 Crosstalk 1 between 2 inputs  
C.T.I.2 Crosstalk 2 between 2 inputs (10 MHz)  
1. The conditions shall be as provided in the Electrical  
Characteristics Table. This measurement shall take active  
probe.  
4
6
response to inputs into pin  
and pin  
only.  
Then assign SW17 to OPEN, measure the values at inputs into pins  
10  
12  
14  
,
, and  
only. Then specify the values to be Vimax2.  
GV1,GV1, voltage gain 1, relative voltage gain 1  
GV2, GV2, voltage gain 2, relative voltage gain 2  
1. The conditions shall be as provided in the Electrical  
Characteristics Table.  
2
2. Assign SW17 to GND and input SG3 into pin  
only. Measure  
the output amplitude of T.P.31 at that time and specify the value  
to be VOR3.  
2. Assign SW17 to GND and input SG2 into pin 2 only. When this is  
the case, read the amplitude of T.P.31 output and specify the  
value as VOR1.  
3. Assign SW17 to ONPEN, measure the output amplitude of T.P.31  
at that time and specify the value to be VOR3'.  
4. When this is the case, calculate crosstalk C.T.L1 between 2  
inputs by the following formula:  
3. Calculate voltage gain GV1 by the following formula:  
VOR1  
[VP-P]  
[VP-P]  
(dB)  
GV1=20LOG  
0.7  
VOR3’  
VOR3  
[VP-P]  
[VP-P]  
(dB)  
C.T.I.1 = 20LOG  
4. In the same manner, find voltage gain GV1 in response to inputs  
5. In the same manner, find crosstalk between 2 inputs in response  
4
6
into pin  
and pin  
only.  
4
6
to inputs into pin  
and pin  
only.  
5. Calculate the difference in voltage gain between channels to find  
relative voltage gain GV1.  
10  
6. Assign SW17 to OPEN and then input SG3 into pin  
only.  
6. In the same manner, find GV2 and GV2.  
Measure the output amplitude of T.P.31 at that time and specify  
the value to be VOR4'.  
GV3, GV4 Voltage gain 3, voltage gain 4  
1. The conditions shall be as provided in the Electrical  
Characteristics Table.  
7. Assign SW17 to GND and then measure the output amplitude of  
T.P.31 at that time. Specify the value to be VOR4'.  
4
MITSUBISHI ICs (Monitor)  
M52348SP  
WIDE FREQUENCY BAND ANALOG SWITCH  
8. When this is the case, calculate crosstalk C.T.I.2 between 2  
inputs by the following formula:  
2. With active probe, measure rising Tri and falling Tfi for 10% to  
90% of the input pulse.  
3. With active probe, measure rising Tro and falling Tfo for 10% to  
90% of the output pulse.  
VOR4’  
VOR4  
[VP-P]  
[VP-P]  
(dB)  
C.T.I.2 = 20LOG  
4. The pulse characteristics Tr1 and Tf1 (Tr2 and Tf2) are as follows:  
9. As in the same manner, find crosstalk between 2 pints in  
100%  
90%  
12  
14  
response to input into pin  
and pin  
only.  
10%  
0%  
C.T.I.3 Crosstalk 3 between 2 inputs  
Tr  
Tf  
C.T.I.4 Crosstalk 4 between 2 inputs (100 MHz)  
Specify input signal to be SG4. In the same manner as in C.T.I.1  
and C.T.I.2, find crosstalk C.T.I.3/C.T.I.4 between 2 inputs.  
2
2
(nsec)  
(nsec)  
Tr1(Tr2) =  
Tf1(Tf2) =  
(Tro) - (Tri)  
2
2
(Tfo) - (Tfi)  
C.T.C.1 Crosstalk 1 between channels  
C.T.C.2 Crosstalk 2 between channels (10 MHz)  
VOH1, VOH2 High-level output voltage 1 and high-level output  
1. The conditions shall be as provided in the Electrical  
voltage 2  
Characteristics Table. This measurement shall take active  
The conditions shall be as provided in the Electrical Characteristics  
probe.  
Table. Assign SW17 to GND (or OPEN), apply 5V to the input pin  
and measure the output voltage. Specify the value to be VOH1  
(VOH2).  
2
2. Assign SW17 to GND and input signal SG3 into pin  
only.  
Specify the output amplitude of T.P.31 to be VOR5 at that time.  
3. In the same status, measure the output amplitude of T.P.28 and  
T.P.25and specify the values to be VOG5 and VOB5.  
VOL1, VOL2 Low-level output voltage 1 and low-level output  
4. When this is the case, calculate crosstalk C.T.C1 between  
channels by the following formula:  
voltage 2  
The conditions shall be as provided in the Electrical Characteristics  
Table. Assign SW17 to GND (or OPEN), apply 0V to the input pin  
and measure the output voltage. Specify the value to be VOL1  
(VOL2).  
VOG5 or VOB5 [VP-P]  
(dB)  
C.T.C.1 = 20LOG  
VOR5  
[VP-P]  
5. In the same manner, find crosstalk between channels in  
Vith1 Input threshold voltage 1  
4
6
response to inputs into pin  
and pin  
only.  
Vith2 Input threshold voltage 2  
10  
6. Assign SW17 to OPEN and then input signal SG3 into pin  
The conditions shall be as provided in the Electrical Characteristics  
Table. Assign SW17 to GND (or OPEN). Gradually increasing the  
voltage of input pin from 0V, measure the input voltage when the  
output voltage is Hi (4.5V or more). Specify the value to be Vith1  
(Vith2).  
only. Specify the output amplitude of T.P.31 to be VOR6 at that  
time.  
7. In the same status, measure the output amplitude of T.P.28 and  
T.P.25. Specify the values to be VOG6 and VOB6.  
8. When this is the case, calculate crosstalk C.T.C.2 between  
channels by the following formula:  
Trd1,Trd2 Rising delay time 1 and rising delay time 2  
Tfd1,Tfd2 Falling delay time 1 and falling delay time 2  
The conditions shall be as provided in the Electrical Characteristics  
Table. Assign SW17 to GND (or OPEN), input SG7 into the input  
pin and measure the output waveform.  
VOG6 or VOB6 [VP-P]  
(dB)  
C.T.C.2 = 20LOG  
VOR6  
[VP-P]  
9. As in the same manner, find crosstalk between channels in  
12  
14  
response to inputs into pin  
and pin  
only.  
Rising delay time Trd1 (Trd2) and falling delay time Tfd1 (Tfd2) shall  
be found according to the following diagram.  
C.T.C.3 Crosstalk 3 between channels  
C.T.C.4 Crosstalk 4 between channels (100 MHz)  
Specify input signal to be SG4. In the same manner as in C.T.C.1  
and C.T.C.2, find crosstalk C.T.C.3/C.T.C.4 between 2 channels.  
50%  
SG7  
Tfd  
Trd  
Tr1,Tf1,Tr2,Tf2 Pulse characteristics 1  
50%  
and pulse characteristics 2  
OOO  
1. The conditions shall be as provided in the Electrical  
Characteristics Table. Assign SW17 to GND (or OPEN).  
5
MITSUBISHI ICs (Monitor)  
M52348SP  
WIDE FREQUENCY BAND ANALOG SWITCH  
Vsth1 Switching threshold voltage 1  
TYPICAL CHARACTERISTICS  
Vsth2 Switching threshold voltage 2  
THERMAL DERATING (MAXIMUM RATING)  
1. The conditions shall be as provided in the Electrical  
2000  
2
4
6
Characteristics Table. Input SG7 into pins  
,
and . Input  
7
8
SG7 into pins  
and . Do not input signal into other pins.  
1603  
1600  
17  
2. Apply a voltage of 0V to pin  
and check each of TP19, TP20,  
TP23, TP25, TP28 and TP31 for output of signal.  
1200  
17  
3. Gradually increasing the voltage at pin , specify the output at  
17  
pin  
to be Vsth1 when the signal is not output from the above  
800  
400  
pins.  
10  
12  
14  
4. As in the same manner, input SG1 into pins  
,
and  
and  
15  
16  
input SG7 into pins  
pins.  
and  
.
Do not input signal into other  
17  
5. Apply a voltage of 5V to pin  
and check each of TP19, TP20,  
-20  
0
25  
50  
75 85 100  
125  
150  
TP23, TP25, TP28 and TP31 for output of signal.  
AMBIENT TEMPERATURE Ta (˚C)  
17  
6. Gradually decreasing the voltage at pin , specify the output at  
17  
pin  
to be Vsth2 when the signal is not output from the above  
pins.  
INPUT SIGNAL  
SG No.  
signals  
Sine wave (f=60 kHz, 0.7VP-P, amplitude variable)  
SG1  
0.7VP-P  
(Amplitude variable)  
SG2  
SG3  
SG4  
SG5  
Sine wave (f=1 MHz, amplitude 0.7VP-P)  
Sine wave (f=10 MHz, amplitude 0.7VP-P)  
Sine wave (f=100 MHz, amplitude 0.7VP-P)  
Sine wave (f=250 MHz, amplitude 0.7VP-P)  
Pulse of 0.7VP-P in amplitude  
(f=60kHz, duty 80%)  
SG6  
SG7  
0.7VP-P  
Square wave  
(Amplitude 5.0 VO-P TTL, f=60 kHz, duty = 50%)  
5V  
0V  
6
MITSUBISHI ICs (Monitor)  
M52348SP  
WIDE FREQUENCY BAND ANALOG SWITCH  
TEST CIRCUIT  
TP6  
0.01µ  
TP4  
0.01µ  
0.01µ  
0.01µ  
TP2  
0.01µ  
Units Reslstance : Ω  
Capacitance : F  
7
MITSUBISHI ICs (Monitor)  
M52348SP  
WIDE FREQUENCY BAND ANALOG SWITCH  
DESCRIPTION OF PIN  
DC voltage  
Pin No.  
Name  
Peripheral circuit of pins  
Description of function  
(V)  
1
3
5
VCC1(R)  
VCC1(G)  
VCC1(B)  
5.0  
Input at low impedance.  
2
4
6
INPUT1(R)  
INPUT1(G)  
INPUT1(B)  
2.0  
1.0mA  
Input pulse of 3V or more and 5V or less.  
7
8
INPUT1(H)  
INPUT1(V)  
-
3 to 5V  
0V  
0.2mA  
9
18  
11 24  
13 27  
30  
GND  
GND  
Input at low impedance.  
10  
12  
14  
INPUT2(R)  
INPUT2(G)  
INPUT2(B)  
2.0  
1.0mA  
8
MITSUBISHI ICs (Monitor)  
M52348SP  
WIDE FREQUENCY BAND ANALOG SWITCH  
DESCRIPTION OF PIN (cont.)  
DC voltage  
Pin No.  
Name  
Peripheral circuit of pins  
Description of function  
(V)  
Input pulse of 3V or more and 5V or less.  
3 to 5V  
15  
16  
INPUT2(H)  
INPUT2(V)  
-
0V  
0.2mA  
Enables switching between OPEN and  
GND.  
7.3kΩ  
17  
SWITCH  
2.6  
2.3V  
Contains output resistance.  
19  
20  
OUTPUT(V)  
OUTPUT(H)  
-
VCC1(R)  
(H,V,SWITCH)  
Apply the same voltage.  
21  
22  
5.0  
-
NC  
Contains output resistance.  
23  
OUTPUT  
(SYNC ONG)  
OUTPUT(B)  
OUTPUT(G)  
OUTPUT(R)  
1.5  
2.2  
25  
28  
31  
50Ω  
50Ω  
23  
430  
31  
25 28  
,
,
500Ω  
26  
29  
32  
VCC2(B)  
VCC2(G)  
VCC2(R)  
5.0  
9
MITSUBISHI ICs (Monitor)  
M52348SP  
WIDE FREQUENCY BAND ANALOG SWITCH  
CAUTIONS FOR MANUFACTURING BOARDS  
Built-in wide band analog switch may cause oscillation due to the  
CAUTIONS FOR USING THE IC  
1. Standard video inputs for R, G and B are specified to be 0.7 VP-P.  
2. The H and V inputs are specified to be 5.0 VTTL.  
3. Input signals into input pins at fully lowered impedance.  
wiring shape on the board. Be careful for the following points.  
When inserting an output pull-down resistance, make wire  
between the output pin and the resistance as short as possible.  
Make the load capacitance of output pins as small as possible.  
19  
20  
4. The H and V output pins (pins  
and ) are as shown in Figure  
1. Resistance can be inserted into a portion between power  
supplies to improve the rising speed. However, set the R value  
to limit the current to 7.5 mA or less. In Figure 1, R is 2 kor  
more.  
Install the Vcc-GND bus controller capacitance near the pin.  
Vcc shall use a stable power supply. (Individual Vcc should use  
an independent power supply.)  
Insertion of a resistance of several tens of between the output  
pin and the circuit at the next stage makes oscillation harder.  
GND should be as wide as possible. Basically, solid earth should  
5V  
5V  
R
be used.  
1kΩ  
I=7.5 mA or less  
Fig. 1  
25 28  
,
31  
5. The R, G and B output pins (pins  
and ) are as shown in  
Figure 2. Pull-down resistance can be added to between GNDs  
according to the driving capability. However, set the R value to  
limit current I to 10 mA or less. In Figure 2, R is 500or more.  
5V  
I=10 mA or less  
50Ω  
430kΩ  
R
Fig. 2  
17  
6. The switch (pin ) can be switched with GND and OPEN.  
GND: Outputs signal from the INPUT 1 side.  
OPEN: Outputs signal from the INPUT 2 side.  
For switching by applying voltage as shown in Figure 3;  
0 to 0.5V: Outputs signal from INPUT 1 side.  
2 to 5V: Outputs signal from INPUT 2 side.  
The applied voltage shall be less than Vcc.  
17  
Fig. 3  
10  

相关型号:

M5234FP

QUAD COMPARATOR
MITSUBISHI

M5234P

QUAD COMPARATOR
MITSUBISHI

M52350FP

Consumer Circuit, PQFP56, 10 X 14 MM, 0.80 MM PITCH, PLASTIC, QFP-56
MITSUBISHI

M52350GP

Consumer Circuit, PQFP48, 48P6S
MITSUBISHI

M52352FP

Color Signal Converter, Bipolar, PDSO32, 0.375 INCH, EIAJ, PLASTIC, SSOP-32
MITSUBISHI

M52356GP

Consumer Circuit, Bipolar, PQFP56, 10 X 10 MM, 0.65 MM PITCH, PLASTIC, QFP-56
MITSUBISHI

M52357SP

Consumer Circuit, Bipolar, PDIP20, 0.300 INCH, PLASTIC, SDIP-20
MITSUBISHI

M52358VP

The M52358VP was developed for use with PAL-system VCRs
MITSUBISHI

M52359FP

Video Preamplifier, 1 Func, PQFP48, 7 X 10 MM, PLASTIC, QFP-48
MITSUBISHI

M52363FP

Consumer Circuit, Bipolar, PDSO20, 0.300 INCH, PLASTIC, SOP-20
MITSUBISHI

M52363SP

Consumer Circuit, Bipolar, PDIP20, 0.300 INCH, PLASTIC, SDIP-20
MITSUBISHI

M52363VP

Consumer Circuit, Bipolar, PDSO20, 0.225 INCH, PLASTIC, SSOP-20
MITSUBISHI