M38193MA-XXXFP [MITSUBISHI]

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER; 单片8位CMOS微机
M38193MA-XXXFP
型号: M38193MA-XXXFP
厂家: Mitsubishi Group    Mitsubishi Group
描述:

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
单片8位CMOS微机

计算机
文件: 总60页 (文件大小:659K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT MICROCOMPUTER  
D-A converter ................................................. 8-bit 1 channels  
Zero cross detection input............................................ 1 channel  
Fluorescent display function  
DESCRIPTION  
The 3819 group is a 8-bit microcomputer based on the 740 family  
core technology.  
Segments ........................................................................ 16 to 42  
Digits.................................................................................. 6 to 16  
2 Clock generating circuit  
The 3819 group has a flourescent display automatic display circuit  
and an 16-channel 8-bit A-D converter as additional functions.  
The various microcomputers in the 3819 group include variations  
of internal memory size and packaging. For details, refer to the  
section on part numbering.  
Clock (XIN-XOUT) ................................. Internal feedback resistor  
Sub-clock (XCIN-XCOUT) .........Without internal feedback resistor  
(connect to external ceramic resonator or quartz-crystal oscil-  
lator)  
For details on availability of microcomputers in the 3819 group, re-  
fer to the section on group expansion.  
Power source voltage  
In high-speed mode .................................................. 4.0 to 5.5 V  
(at 8.4 MHz oscillation frequency and high-speed selected)  
In middle-speed mode............................................... 2.8 to 5.5 V  
(at 8.4 MHz oscillation frequency)  
FEATURES  
Basic machine-language instructions ...................................... 71  
The minimum instruction execution time ......................... 0.48 µs  
(at 8.4 MHz oscillation frequency)  
In low-speed mode .................................................... 2.8 to 5.5 V  
(at 32 kHz oscillation frequency)  
Memory size .................................................................................  
ROM ............................................. 4K to 60 K bytes  
Power dissipation  
RAM ........................................... 192 to 2048 bytes  
In high-speed mode ..........................................................35 mW  
(at 8.4 MHz oscillation frequency)  
Programmable input/output ports ............................................ 54  
High-breakdown-voltage output ports ...................................... 52  
Interrupts ................................................. 20 sources, 16 vectors  
Timers ............................................................................. 8-bit 6  
Serial I/O (Serial I/O1 has an automatic transfer function)  
...................................................... 8-bit 3(clock-synchronized)  
PWM output circuit ............... 8-bit 1(also functions as timer 6)  
A-D converter ............................................... 8-bit 16 channels  
In low-speed mode ............................................................ 60 µW  
(at 3 V power source voltage and 32 kHz oscillation frequency )  
Operating temperature range .................................... –10 to 85°C  
APPLICATION  
Musical Instruments, household appliance, etc.  
PIN CONFIGURATION (TOP VIEW)  
81  
50  
P8  
P8  
P8  
P8  
P8  
P8  
P8  
P8  
PA  
PA  
7
6
5
4
3
2
/SEG15  
/SEG14  
/SEG13  
/SEG12  
/SEG11  
/SEG10  
P1  
P1  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
P2  
6
7
0
1
2
3
4
5
6
7
/DIG14  
/DIG15  
/DIG16  
/DIG17  
/DIG18  
/DIG19  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
1
0
7
6
/SEG  
/SEG  
/SEG  
/SEG  
9
8
7
6
M38197MA-XXXFP  
V
CC  
V
X
X
SS  
PA  
PA  
PA  
PA  
PA  
PA  
5
4
3
2
1
0
/SEG  
/SEG  
/SEG  
/SEG  
/SEG  
/SEG  
5
4
3
2
1
0
OUT  
IN  
PB  
0
1
/XCOUT  
/XCIN  
PB  
RESET  
P40  
P41  
P42  
P43  
/INT  
0
V
EE  
AVSS  
/INT  
/INT  
2
3
VREF  
Package type : 100P6S-A  
100-pin plastic-molded QFP  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
2
I N T  
0
I N T  
c i r c u i t  
d e t e r m i n a t i o n  
I n t e r r u p t i n t e r v a l  
4
, 3 I N T I N T  
d e t e c t i o n c i r c u i t  
Z e r o c r o s s  
/ Z 1 C R I N T  
2
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PIN DESCRIPTION  
Pin  
VCC, VSS  
VEE  
Name  
Function  
Function except a port function  
Power source  
•Apply voltage of 4.0 to 5.5 V to VCC, and 0 V to VSS.  
Pull-down  
Power source  
•Applies voltage supplied to pull-down resistors of ports P0, P1, P20–P23, P3, and P9.  
Analog reference  
voltage  
VREF  
•Reference voltage input pin for A-D converter and D-A converter  
•GND input pin for A-D converter and D-A converter  
•Connect AVSS to VSS.  
Analog power source  
Reset input  
AVSS  
•Reset input pin for active “L”  
RESET  
•Input and output pins for the main clock generating circuit  
•Feedback resistor is built in between XIN pin and XOUT pin.  
•Connect a ceramic resonator or a quartz-crystal oscillator between the XIN pin and XOUT pin to  
set oscillation frequency.  
XIN  
Clock input  
•If an external clock is used, connect the clock source to the XIN pin and leave the XOUT pin  
open.  
Clock output  
XOUT  
•This clock is used as the oscillating source of system clock.  
•8-bit output port  
•This port builds in pull-down resistor between  
port P0 and the VEE pin.  
•At reset this port is set to VEE level.  
•The high-breakdown-voltage P-channel  
open-drain  
P00/SEG32/  
DIG0–P07/  
SEG39/DIG7  
Output port P0  
FLD automatic display pins  
P10/SEG40/  
DIG8–P17/  
DIG15  
•8-bit output port with the same function as  
FLD automatic display pins  
port P0  
Output port P1  
Output port P2  
•4-bit output port with the same function as  
FLD automatic display pins  
port P0  
P20/DIG16–  
P23/DIG19  
•4-bit I/O port  
•I/O direction register allows each pin to be individually programmed as either input or output.  
•At reset this port is set to input mode.  
•TTL input level  
I/O port P2  
P24–P27  
•CMOS 3-state output  
•8-bit output port with the same function as  
P30/SEG24–  
P37/SEG31  
Output port P3  
Input port P4  
FLD automatic display pins  
port P0  
P40/INT0,  
P45/INT1/  
ZCR  
•2-bit input port  
•CMOS compatible input level  
External interrupt input pins  
A zero cross detection circuit input pin (P45)  
P42/INT2–  
P44/INT4  
•6-bit CMOS I/O port with the same function  
as ports P24–P27  
•CMOS compatible input level  
•CMOS 3-state output  
P41  
I/O port P4  
P46/T1OUT,  
P47/T3OUT  
Timer output pins  
3
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PIN DESCRIPTION (Continued)  
Pin  
Name  
Function  
Function except a port function  
P50/SIN2/AN8,  
Serial I/O2 function pins  
A-D conversion input pins  
P51/SOUT2/AN9,  
P52/SCLK2/AN10,  
P53/SRDY2/AN11  
•8-bit CMOS I/O port with the same function  
as ports P24–P27  
•CMOS compatible input level  
•CMOS 3-state output  
I/O port P5  
P54/SIN3/AN12,  
P55/SOUT3/AN13,  
P56/SCLK3/AN14,  
P57/SRDY3/AN15  
Serial I/O3 function pins  
A-D conversion input pins  
P60  
P61/PWM  
PWM output pin (Timer output pin)  
Timer input pins  
•8-bit CMOS I/O port with the same function  
as ports P24–P47  
•CMOS compatible input level  
•CMOS 3-state output  
P62/CNTR0,  
P63/CNTR1  
I/O port P6  
P64/SIN1,  
P65/SOUT1,  
P66/SCLK11,  
P67/SRDY1/CS/  
SCLK12  
Serial I/O1 function pins  
•8-bit CMOS I/O port with the same function  
as ports P24–P27  
•CMOS compatible input level  
•CMOS 3-state output  
P70/AN0–  
P77/AN7  
I/O port P7  
A-D conversion input pins  
•8-bit I/O port with the same function as ports  
P24–P27  
•CMOS compatible input level  
•The high-breakdown-voltage P-channel  
open-drain  
P80/SEG8–  
P87/SEG15  
I/O port P8  
•8-bit output port with the same function as  
port P0  
P90/SEG16–  
P97/SEG23  
Output port P9  
I/O port PA  
FLD automatic display pins  
•8-bit I/O port with the same function as ports  
P24–P27  
•CMOS compatible input level  
•The high-breakdown voltage P-channel open-  
drain  
PA0/SEG0–  
PA7/SEG7  
I/O pins for sub-clock generating circuit (con-  
nect a ceramic resonator or a quarts-crystal  
oscillator)  
PB0/XCOUT,  
PB1/XCIN  
•4-bit CMOS I/O port with the same function  
as ports P24–P27  
•CMOS compatible input level  
•CMOS 3-state output  
I/O port PB  
PB2/DA  
PB3  
D-A conversion output pin  
4
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PART NUMBERING  
Product  
M3819  
7
M
A
XXX FP  
Package type  
FP : 100P6S-A package  
FS : 100D0 package  
ROM number  
Omitted in some types.  
ROM/PROM size  
: 4096 bytes  
1
2 : 8192 bytes  
: 12288 bytes  
: 16384 bytes  
3
4
5 : 20480 bytes  
: 24576 bytes  
: 28672 bytes  
6
7
8 : 32768 bytes  
: 36864 bytes  
: 40960 bytes  
9
A
B : 45056 bytes  
: 49152 bytes  
: 53248 bytes  
C
D
E : 57344 bytes  
: 61440 bytes  
F
The first 128 bytes and the last 2 bytes of ROM are reserved areas ; they cannot be used.  
Memory type  
M
E
: Mask ROM version  
: EPROM or One Time PROM version  
RAM size  
0 : 192 bytes  
1 : 256 bytes  
2 : 384 bytes  
3 : 512 bytes  
4 : 640 bytes  
5 : 768 bytes  
6 : 896 bytes  
7 : 1024 bytes  
8 : 1536 bytes  
9 : 2048 bytes  
5
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(2) Packages  
GROUP EXPANSION  
100P6S-A........................... 0.65 mm-pitch plastic molded QFP  
100D0........................... Ceramic LCC(built-in EPROM version)  
Mitsubishi plans to expand the 3819 group as follows:  
(1) Support for mask ROM, One Time PROM, and EPROM ver-  
sions  
ROM/PROM capacity .................................. 40 K to 60 K bytes  
RAM capacity .............................................. 1024 to 2048 bytes  
Memory Expansion Plan  
Under development  
M38199MF/EF  
ROM size (bytes)  
60K  
56K  
52K  
48K  
Mass product  
M38198MC/EC  
44K  
Mass product  
40K  
36K  
32K  
28K  
24K  
20K  
16K  
12K  
8K  
M38197MA  
4K  
256  
512  
768  
1,024  
1,536  
2,048  
RAM size (bytes)  
Products under development : the development schedule and specifications may be revised without notice.  
Currently supported products are listed below.  
(P) ROM size (bytes)  
As of May 1996  
Product  
RAM size (bytes)  
1024  
Package  
Remarks  
ROM size for User in (  
)
Mask ROM version  
M38197MA-XXXFP  
M38197MA-XXXKP  
M38198MC-XXXKP  
M38199MF-XXXKP  
M38198MC-XXXFP  
M38198EC-XXXFP  
M38198ECFP  
100P6S-A  
40960  
Mask ROM version  
Mask ROM version  
Mask ROM version  
Mask ROM version  
One Time PROM version  
(40830)  
100P6P-E  
49152  
100P6S-A  
100D0  
1536  
2048  
(49022)  
One Time PROM version (blank)  
EPROM version  
M38198ECFS  
Mask ROM version  
M38199MF-XXXFP  
M38199EF-XXXFP  
M38199EFFP  
61440  
One Time PROM version  
One Time PROM version (blank)  
EPROM version  
100P6S-A  
100D0  
(61310)  
M38199EFFS  
6
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
FUNCTIONAL DESCRIPTION  
CPU Mode Register  
Central Processing Unit (CPU)  
The CPU mode register is allocated at address 003B16. The CPU  
mode register contains the stack page selection bit and the inter-  
nal system clock selection bit.  
The 3819 group uses the standard 740 family instruction set. Re-  
fer to the table of 740 family addressing modes and machine  
instructions or the 740 Family Software Manual for details on the  
instruction set.  
Machine-resident 740 family instructions are as follows:  
The FST, SLW instruction cannot be used.  
The MUL, DIV, WIT and STP instruction can be used.  
b7  
b0  
CPU mode register  
(CPUM (CM) : address 003B16  
)
Processor mode bits  
b1 b0  
0
0
1
1
0 : Single-chip mode  
1 :  
0 : Not available  
1 :  
Stack page selection bit  
0 : RAM in the zero page is used as stack area  
1 : RAM in page 1 is used as stack area  
X
COUT drivability selection bit  
0 : Low drive  
1 : High drive  
Port XC switch bit  
0 : I/O port function  
1 : XCIN-XCOUT oscillating function  
Main clock (XIN-XOUT) stop bit  
0 : Oscillating  
1 : Stopped  
Main clock division ratio selection bit  
0 : f(XIN)/2 (high-speed mode)  
1 : f(XIN)/8 (middle-speed mode)  
Internal system clock selection bit  
0 : XIN-XOUT selected (middle/high-speed mode)  
1 : XCIN-XCOUT selected (low-speed mode)  
Fig. BA-1 Structure of CPU mode register  
7
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Memory  
Zero page  
Special function register (SFR) area  
The special function register (SFR) area in the zero page contains  
control registers such as I/O ports and timers.  
The 256 bytes from addresses 000016 to 00FF16 are called the  
zero page area. The internal RAM and the special function regis-  
ters (SFR) are allocated to this area.  
The zero page addressing mode can be used to specify memory  
and register addresses in the zero page area. Access to this area  
with only 2 bytes is possible in the zero page addressing mode.  
RAM  
RAM is used for data storage and for stack area of subroutine  
calls and interrupts.  
Special page  
ROM  
The 256 bytes from addresses FF0016 to FFFF16 are called the  
special page area. The special page addressing mode can be  
used to specify memory addresses in the special page area. Ac-  
cess to this area with only 2 bytes is possible in the special page  
addressing mode.  
The first 128 bytes and the last 2 bytes of ROM are reserved for  
device testing and the reset is user area for storing programs.  
Interrupt vector area  
The interrupt vector area contains reset and interrupt vectors.  
000016  
RAM area  
SFR area  
Zero  
RAM capacity  
Address XXXX16  
(bytes)  
004016  
010016  
page  
192  
256  
00FF16  
013F16  
01BF16  
023F16  
02BF16  
033F16  
03BF16  
043F16  
063F16  
083F16  
RAM  
384  
512  
640  
XXXX16  
768  
896  
Reserved area  
1024  
1536  
2048  
044016  
Not used  
RAM area for serial I/O automatic transfer  
Not used  
0F0016  
0F1F16  
ROM area  
0F8016  
0FDF16  
RAM area for FLD automatic display  
Not used  
ROM capacity  
(bytes)  
Address YYYY16  
Address ZZZZ16  
4096  
8192  
F00016  
E00016  
D00016  
C00016  
B00016  
A00016  
900016  
800016  
700016  
600016  
500016  
400016  
300016  
200016  
100016  
F08016  
E08016  
D08016  
C08016  
B08016  
A08016  
908016  
808016  
708016  
608016  
508016  
408016  
308016  
208016  
108016  
YYYY16  
ZZZZ16  
Reserved ROM area  
(common ROM area,128 bytes)  
12288  
16384  
20480  
24576  
28672  
32768  
36864  
40960  
45056  
49152  
53248  
57344  
61440  
RO  
M
FF0016  
FFDC16  
Special  
page  
Interrupt vector area  
Reserved ROM area  
FFFE16  
FFFF16  
Fig. CA-1 Memory map  
8
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
000016 Port P0 (P0)  
002016 Timer 1 (T1)  
000116  
000216 Port P1 (P1)  
002116 Timer 2 (T2)  
002216 Timer 3 (T3)  
000316  
000416 Port P2 (P2)  
000516 Port P2 direction register (P2D)  
002316 Timer 4 (T4)  
002416 Timer 5 (T5)  
002516 Timer 6 (T6)  
000616 Port P3 (P3)  
000716  
002616 Serial I/O3 register (SIO3)  
002716 Timer 6 PWM register (T6PWM)  
000816 Port P4 (P4)  
000916 Port P4 direction register (P4D)  
000A16 Port P5 (P5)  
002816 Timer 12 mode register (T12M)  
002916 Timer 34 mode register (T34M)  
002A16  
Timer 56 mode register (T56M)  
000B16 Port P5 direction register (P5D)  
000C16 Port P6 (P6)  
002B16  
002C16  
D-A conversion register (DA)  
AD-DA control register (ADCON)  
000D16 Port P6 direction register (P6D)  
002D16  
A-D conversion register (AD)  
000E16 Port P7 (P7)  
000F16 Port P7 direction register (P7D)  
002E16  
002F16  
001016 Port P8 (P8)  
003016 Interrupt interval determination register (IID)  
Interrupt interval determination control register (IIDCON)  
001116 Port P8 direction register (P8D)  
003116  
001216  
003216 Port P0 segment/digit switch register (P0SDR)  
Port P9 (P9)  
001316  
001416  
003316 Port P2 digit/port switch register (P2DPR)  
003416 Port P8 segment/port switch register (P8SPR)  
Port PA (PA)  
001516  
003516  
Port PA direction register (PAD)  
Port PB (PB)  
Port PA segment/port switch register (PASPR)  
FLDC mode register 1 (FLDM1)  
001616  
001716  
003616  
003716 FLDC mode register 2 (FLDM2)  
Port PB direction register (PBD)  
Serial I/O automatic transfer data pointer (SIODP)  
001816  
003816  
003916  
FLD data pointer (FLDDP)  
Zero cross detection control register (ZCRCON)  
001916 Serial I/O1 control register (SIO1CON)  
001A16 Serial I/O automatic transfer control register (SIOAC)  
003A16 Interrupt edge selection register (INTEDGE)  
001B16 Serial I/O1 register (SIO1)  
003B16 CPU mode register (CPUM)  
Serial I/O automatic transfer interval register (SIOAI)  
001C16  
003C16 Interrupt request register 1 (IREQ1)  
001D16  
003D16 Interrupt request register 2 (IREQ2)  
Serial I/O2 control register (SIO2CON)  
001E16 Serial I/O3 control register (SIO3CON)  
001F16  
003E16 Interrupt control register 1 (ICON1)  
003F16 Interrupt control register 2 (ICON2)  
Serial I/O2 register (SIO2)  
Fig. CA-2 Memory map of special function register (SFR)  
9
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
I/O PORTS  
High-Breakdown-Voltage Output Ports  
The 3819 group microprocessors have 7 ports with high-break-  
down-voltage pins (ports P0, P1, P20–P23, P3, P8, P9, PA). The  
high-breakdown-voltage ports have P-channel open-drain output  
with VCC –40 V of breakdown voltage.  
Direction Registers  
The 3819 group has 54 programmable I/O pins arranged in 8 I/O  
ports (ports P24–P27, P41–P44, P46, P47, P5–P8, PA, and PB).  
The I/O ports have direction registers which determine the input/  
output direction of each individual pin. Each bit in a direction reg-  
ister corresponds to one pin, each pin can be set to be input or  
output.  
Each pin in ports P0, P1, P20–P23, P3, and P9 has an internal  
pull-down resistor connected to VEE. Ports P8 and PA have no in-  
ternal pull-down resistors, so that connect an external resistor to  
each port. At reset, the P-channel output transistor of each port  
latch is turned off, so it becomes VEE level (“L”) by the pull-down  
resistor.  
When “0” is written to the bit corresponding to a pin, that pin be-  
comes an input pin. When “1” is written to that bit, that pin  
becomes an output pin.  
If data is read from a pin which is set for output, the value of the  
port latch is read, not the value of the pin itself. A pin which is set  
for input the value of the pin itself is read because the pin is in  
floating state. If a pin set for input is written to, only the port latch  
is written to and the pin remains floating.  
Writing “1” (weak drivability) to bit 7 of the FLDC mode register 1  
(address 003616) shows the rising transition of the output transis-  
tors for reducing transient noise. At reset, bit 7 of the FLDC mode  
register 1 is set to “0” (strong drivability).  
Diagram  
No.  
Pin  
Name  
Input/Output  
I/O Format  
Non-Port Function  
Related SFRS  
FLDC mode register 1  
FLDC mode register 2  
Port P0  
High-breakdown-  
voltage P-channel  
open-drain output  
with pull-down  
resistor  
P00/SEG32/  
DIG0–  
FLD automatic dis-  
play function  
(1)  
Output  
Port P0  
P07/SEG39/  
DIG7  
segment/digit  
switch register  
High-breakdown-  
voltage P-channel  
open-drain output  
with pull-down  
resistor  
P10/SEG40/  
DIG8–  
FLDC mode register 1  
FLDC mode register 2  
FLD automatic dis-  
play function  
(1)  
(2)  
Output  
Output  
Port P1  
Port P2  
Port P3  
P17/DIG15  
High-breakdown-  
voltage P-channel  
open-drain output  
with pull-down  
resistor  
FLDC mode register 1  
FLDC mode register 2  
P20/DIG16–  
P23/DIG19  
FLD automatic dis-  
play function  
(3)  
(4)  
Port P2 digit/port  
switch register  
Input/output,  
individual bits  
TTL level input  
CMOS 3-state output  
High-breakdown-  
voltage P-channel  
open-drain output  
with pull-down  
resistor  
P24–P27  
P30/SEG24–  
P37/SEG31  
FLD automatic dis- FLDC mode register 1  
Output  
Input  
(5)  
(6)  
play function  
FLDC mode register 2  
P40/INT0  
P45/INT1/  
ZCR  
External interrupt  
Interrupt edge  
CMOS compatible  
input level  
input  
selection register  
Zero cross detec-  
Zero cross detection  
tion circuit input  
control register  
P42/INT2–  
P44/INT4  
P41  
Port P4  
(7)  
(4)  
(8)  
(P45)  
CMOS compatible  
input level  
Input/output,  
individual bits  
CMOS 3-state output  
Timer 12 mode register  
Timer output  
P46/T1OUT,  
P47/T3OUT  
Timer 34 mode register  
10  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Diagram  
Pin  
Name  
Input/Output  
I/O Format  
Non-Port Function  
Related SFRS  
No.  
(9)  
P50/SIN2/  
AN8  
Serial I/O2 control  
register  
P51/SOUT2/  
AN9,  
Serial I/O2 func-  
tion I/O  
(10)  
AD/DA control regis-  
ter  
A-D conversion in-  
put  
P52/SCLK2/  
AN10  
P53/SRDY2/  
AN11  
CMOS compatible  
input level  
(11)  
(9)  
Port P5  
CMOS 3-state output  
P54/SIN3/  
AN12  
P55/SOUT3/  
AN13,  
Serial I/O3 control  
register  
Serial I/O3 func-  
tion I/O  
(10)  
AD/DA control regis-  
ter  
A-D conversion in-  
put  
P56/SCLK3/  
AN14  
P57/SRDY3/  
AN15  
(11)  
(4)  
Input/output,  
individual bits  
P60  
Timer 56 mode regis-  
ter  
PWM (timer) out-  
put  
P61/PWM  
(8)  
P62/CNTR0,  
P63/CNTR1  
P64/SIN1  
Interrupt edge selec-  
tion register  
Timer input  
(7)  
CMOS compatible  
input level  
Port P6  
(9)  
CMOS 3-state output  
Serial I/O1 control  
register  
P65/SOUT1,  
P66/SCLK11  
P67/SRDY1/  
CS/SCLK12  
(10)  
Serial I/O1 func-  
tion I/O  
Serial I/O automatic  
transfer control regis-  
ter  
(11)  
(12)  
CMOS compatible  
input level  
P70/AN0–  
P77/AN7  
AD/DA control regis-  
ter  
A-D conversion in-  
put  
Port P7  
Port P8  
CMOS 3-state output  
CMOS compatible  
input level  
FLDC mode register  
Segment/port switch  
register  
High-breakdown-  
voltage P-channel  
open-drain output  
with pull-down  
resistor  
P80/SEG8–  
P87/SEG15  
(13)  
FLD automatic  
display function  
High-breakdown-  
voltage P-channel  
open-drain output  
with pull-down  
resistor  
P90/SEG16–  
P97/SEG23  
Output  
FLDC mode register  
Port P9  
Port PA  
(5)  
CMOS compatible  
input level  
FLDC mode register  
Segment/port switch  
register  
PA0/SEG0–  
PA7/SEG7  
Input/output,  
individual bits  
(13)  
High-breakdown-  
voltage P-channel  
open-drain output  
PB0/XCOUT,  
PB1/XCIN  
I/O for sub-clock  
generating circuit  
(14)  
(15)  
CPU mode register  
CMOS compatible  
input level  
Input/output,  
individual bits  
Port PB  
D-A conversion AD/DA control regis-  
output ter  
(16)  
(4)  
PB2/DA  
PB3  
CMOS 3-state output  
Note : Make sure that the input level at each pin is either 0 V or VCC during execution of the STP instruction. When an input level is at an intermediate poten-  
tial, a current will flow from VCC to VSS through the input-stage gate.  
11  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(1) Ports P0, P1  
0
, P1  
1
Shift signal from previous stage  
S/D switch register  
Blanking signal  
for key-scan  
Dimmer signal  
(Note)  
Data bus  
Port latch  
Local data bus  
V
EE  
Shift signal to next stage  
(2) Ports P12–P17  
Shift signal from previous stage  
Dimmer signal  
(Note)  
Port latch  
Data bus  
VEE  
Shift signal to next stage  
(3) Ports P20–P23  
Shift signal from previous stage  
D/P switch register  
Dimmer signal  
(Note)  
Port latch  
Data bus  
Blanking signal  
for key-scan  
V
EE  
Shift signal to next stage  
(4) Ports P24–P27, P41, P60, PB3  
Direction  
register  
Data bus  
Port latch  
: High-breakdown-voltage P-channel transistor  
Note: The dimmer signal sets the Toff timing.  
Fig. UA-2 Port block diagram (1)  
12  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(5) Ports P3, P9  
Dimmer signal  
(Note)  
Local data bus  
Data bus  
Port latch  
VEE  
(6) Ports P40, P45  
Data bus  
INT  
0
, INT  
1
interrupt input  
Zero cross  
detection  
circuit  
input  
(only P4  
5)  
(7) Ports P42–P44, P62, P63  
Direction  
register  
Data bus  
Port latch  
INT  
2
–INT  
4
interrupt input  
CNTR0,CNTR1 input  
(8) Ports P46, P47, P61  
Timer 1 output selection bit  
Timer 3 output selection bit  
Timer 6 output selection bit  
Direction  
register  
Data bus  
Port latch  
Timer 1 output  
Timer 3 output  
Timer 6 output  
: High-breakdown-voltage P-channel transistor  
Note: The dimmer signal sets the Toff timing.  
Fig. UA-3 Port block diagram (2)  
13  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(9) Ports P50, P54, P64  
Direction  
register  
Data bus  
Port latch  
Serial I/O input  
A-D conversion input  
Analog input pin selection bit  
(10) Ports P51, P52, P55, P56, P65, P66  
P-channel output disable signal  
Output OFF control signal  
Serial I/O port selection bit  
Direction  
register  
Data bus  
Port latch  
SOUT or SCLK  
Serial clock input  
(only P5  
A-D conversion input  
Analog input pin selection bit  
2, P56, P66)  
(11) Ports P53, P57, P67  
S
RDY output enable bit  
Direction  
register  
Data bus  
Port latch  
Serial ready output  
or SCLK  
CS input  
(only P6  
A-D conversion input  
7
)
Analog input pin selection bit  
(12) Port P7  
Direction  
register  
Data bus  
Port latch  
A-D conversion input  
Analog input pin selection bit  
Fig. UA-4 Port block diagram (3)  
14  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(13) Ports P8, PA  
S/P switch register  
Dimmer signal  
(Note)  
Directionregister  
Local  
data bus  
Port latch  
Data bus  
rea  
d
(14) Port PB0  
Port XC switch  
bit  
Direction  
register  
Data bus  
Port latch  
Oscillation circuit  
Port PB1  
Port XC switch bit  
(15) Port PB1  
Port XC switch  
bit  
Direction  
register  
Data bus  
Port latch  
Sub-clock generating circuit input  
(16) Port PB2  
Direction  
register  
Port latch  
Data bus  
D-A conversion output  
D-A output enable bit  
: High-breakdown-voltage P-channel transistor  
Note: The dimmer signal sets the Toff timing.  
Fig. UA-5 Port block diagram (4)  
15  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
INTERRUPTS  
Interrupt Operation  
Interrupts occur by 20 sources: 5 external, 14 internal, and 1 soft-  
When an interrupt is received, the contents of the program counter  
and processor status register are automatically stored into the  
stack. The interrupt disable flag is set to inhibit other interrupts  
from interfering. The corresponding interrupt request bit is cleared  
and the interrupt jump destination address is read from the vector  
table into the program counter.  
ware.  
Interrupt Control  
Each interrupt is controlled by an interrupt request bit, an interrupt  
enable bit, and the interrupt disable flag except for the software in-  
terrupt set by the BRK instruction. An interrupt occurs if the  
corresponding interrupt request and enable bits are “1” and the in-  
terrupt disable flag is “0”.  
Notes on Use  
When the active edge of an external interrupt (INT0 to INT4) is  
changed or when switching interrupt sources in the same vector  
address, the corresponding interrupt request bit may also be set.  
Therefore, please take following sequence;  
Interrupt enable bits can be set or cleared by software.  
Interrupt request bits can be cleared by software, but cannot be  
set by software.  
The BRK instruction cannot be disabled with any flag or bit.  
The I (interrupt disable) flag disables all interrupts except the BRK  
instruction interrupt.  
(1) Disable the external interrupt which is selected.  
(2) Change the active edge.  
(3) Clear the interrupt request bit which is selected to “0”.  
(4) Enable the external interrupt which is selected.  
Table 1. Interrupt vector addresses and priority  
Vector Addresses (Note 1)  
Interrupt Request  
Remarks  
Interrupt Source  
Priority  
Generating Conditions  
High  
Low  
FFFD16  
FFFC16  
At reset  
Reset (Note 2)  
INT0  
1
2
Non-maskable  
At detection of either rising or  
falling edge of INT0 input  
External interrupt (active edge  
selectable)  
FFFB16  
FFF916  
FFFA16  
FFF816  
At detection of either rising or  
falling edge of INT1/ZCR input  
External interrupt (active edge  
selectable)  
INT1/ZCR  
INT2  
3
4
At detection of either rising or  
falling edge of INT2 input  
External interrupt (active edge  
selectable)  
FFF716  
FFF516  
FFF616  
FFF416  
Valid when interrupt interval  
determination is operating  
Remote control/  
counter overflow  
At 8-bit counter overflow  
Valid when serial I/O ordinary  
mode is selected  
At completion of data transfer  
Serial I/O1  
5
Valid when serial I/O automatic  
transfer mode is selected  
Serial I/O  
automatic transfer  
At completion of the last data  
transfer  
Valid when serial I/O2 is se-  
lected  
At completion of data transfer  
At completion of data transfer  
6
7
FFF316  
FFF116  
FFF216  
FFF016  
Serial I/O2  
Serial I/O3  
Valid when serial I/O3 is se-  
lected  
FFEE16  
FFEC16  
FFEA16  
FFE816  
FFE616  
FFE416  
At timer 1 underflow  
At timer 2 underflow  
At timer 3 underflow  
At timer 4 underflow  
At timer 5 underflow  
At timer 6 underflow  
STP release timer underflow  
Timer 1  
Timer 2  
Timer 3  
Timer 4  
Timer 5  
Timer 6  
8
FFEF16  
FFED16  
FFEB16  
FFE916  
FFE716  
FFE516  
9
10  
11  
12  
13  
At detection of either rising or External interrupt (active edge  
INT3  
14  
FFE316  
FFE216  
falling edge of INT3 input  
selectable)  
Valid when INT4 interrupt is  
selected  
External interrupt (active  
edge selectable)  
At detection of either rising or  
falling edge of INT4 input  
INT4  
15  
FFE116  
FFE016  
At completion of A-D conver-  
sion  
Valid when A-D conversion in-  
terrupt is selected  
A-D conversion  
FLD blanking  
At falling edge of the last digit  
immediately before blanking  
period starts  
Valid when FLD blanking in-  
terrupt is selected  
16  
17  
FFDF16  
FFDD16  
FFDE16  
FFDC16  
Valid when FLD digit interrupt  
is selected  
At rising edge of each digit  
At BRK instruction execution  
FLD digit  
Non-maskable software inter-  
rupt  
BRK instruction  
Notes 1 : Vector addresses contain interrupt jump destination addresses.  
2 : Reset function in the same way as an interrupt with the highest priority.  
16  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Interrupt request bit  
Interrupt enable bit  
Interrupt disable flag (I)  
BRK instruction  
Reset  
Interrupt request  
Fig. DD-1 Interrupt control  
b7  
b0  
Interrupt edge selection register  
(INTEDGE : address 003A16  
)
INT  
INT  
INT  
INT  
INT  
0
1
2
3
4
interrupt edge selection bit  
/ZCR interrupt edge selection bit  
interrupt edge selection bit  
interrupt edge selection bit  
interrupt edge selection bit  
0 : Falling edge active  
1 : Rising edge active  
0 : INT4 interrupt  
INT  
4
/AD conversion interrupt switch bit  
1 : A-D conversion interrupt  
CNTR  
CNTR  
0
1
pin active edge switch bit  
pin active edge switch bit  
0 : Rising edge count  
1 : Falling edge count  
b7  
b0  
b7  
b0  
Interrupt request register 1  
(IREQ1 : address 003C16  
Interrupt request register 2  
(IREQ2 : address 003D16  
)
)
INT  
INT  
INT  
0
1
2
interrupt request bit  
/ZCR interrupt request bit  
interrupt request bit  
Timer 3 interrupt request bit  
Timer 4 interrupt request bit  
Timer 5 interrupt request bit  
Timer 6 interrupt request bit  
Remote control/counter overflow  
interrupt request bit  
Serial I/O1 interrupt request bit  
Serial I/O automatic transfer  
interrupt request bit  
Serial I/O2 interrupt request bit  
Serial I/O3 interrupt request bit  
Timer 1 interrupt request bit  
Timer 2 interrupt request bit  
INT  
INT  
3
interrupt request bit  
interrupt request bit  
4
AD conversion interrupt request bit  
FLD blanking interrupt request bit  
FLD digit interrupt request bit  
Not used (returns “0” when read)  
0 : No interrupt request issued  
1 : Interrupt request issued  
b7  
b0  
b7  
b0  
Interrupt control register 1  
Interrupt control register 2  
(ICON2 : address 003F16)  
(ICON1 : address 003E16  
)
INT  
INT  
INT  
0
1
2
interrupt enable bit  
/ZCR interrupt enable bit  
interrupt enable bit  
Timer 3 interrupt enable bit  
Timer 4 interrupt enable bit  
Timer 5 interrupt enable bit  
Timer 6 interrupt enable bit  
Remote control/counter overflow  
interrupt enable bit  
Serial I/O1 interrupt enable bit  
Serial I/O automatic transfer  
interrupt enable bit  
Serial I/O2 interrupt enable bit  
Serial I/O3 interrupt enable bit  
Timer 1 interrupt enable bit  
Timer 2 interrupt enable bit  
INT  
INT  
3
interrupt enable bit  
interrupt enable bit  
4
AD conversion interrupt enable bit  
FLD blanking interrupt enable bit  
FLD digit interrupt enable bit  
Not used (returns “0” when read)  
(do not write “1” to this bit)  
0 : Interrupts disabled  
1 : Interrupts enabled  
Fig. DD-2 Structure of interrupt-related registers  
17  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMERS  
The 3819 group has 6 built-in timers: timer 1, timer 2, timer 3,  
timer 4, timer 5, and timer 6.  
Each timer has the 8-bit timer latch. The timers count down.  
Once a timer reaches 0016, at the next count pulse the contents of  
each timer latch is loaded into the corresponding timer, and sets  
the corresponding interrupt request bit to “1”.  
The count can be stopped by setting the stop bit of each timer to  
“1”. The internal clock φ can be set to either the high-speed mode  
or low-speed mode with the CPU mode register. At the same time,  
timer internal count source is switched to either f(XIN) or f(XCIN).  
Timer 1 and Timer 2  
The count sources of timer 1 and timer 2 can be selected by set-  
ting the timer 12 mode register. A rectangular waveform of timer 1  
underflow signal divided by 2 is output from the P46/T1OUT pin.  
The waveform polarity changes each time timer 1 overflows. The  
active edge of the external clock CNTR0 can be switched with the  
bit 6 of the interrupt edge selection register.  
At reset or when executing the STP instruction, all bits of the timer  
12 mode register are cleared to “0”, timer 1 is set to “FF16”, and  
timer 2 is set to “0116”.  
Timer 3 and Timer 4  
The count sources of timer 3 and timer 4 can be selected by set-  
ting the timer 34 mode register. A rectangular waveform of timer 3  
underflow signal divided by 2 is output from the P47/T3OUT pin.  
The waveform polarity changes each time timer 3 overflows.  
The active edge of the external clock CNTR1 can be switched with  
the bit 7 of the interrupt edge selection register.  
Timer 5 and Timer 6  
The count sources of timer 5 and timer 6 can be selected by set-  
ting the timer 56 mode register.  
A rectangular waveform of timer 6 underflow signal divided by 2 is  
output from the P61/PWM pin. The waveform polarity changes  
each time timer 6 overflows.  
Timer 6 PWM Mode  
Timer 6 can output a rectangular waveform with duty cycle n/(n +  
m) from the P61/PWM pin by setting the timer 56 mode register  
(refer to fig. FB-3). The n is the value set in timer 6 latch (address  
002516) and m is the value in the timer 6 PWM register (address  
002716). If n is “0”, the PWM output is “L”, if m is “0”, the PWM out-  
put is “H”(n=0 is prior than m=0). In the PWM mode, interrupts  
occur at the rising edge of the PWM output.  
18  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Data bus  
Timer 1  
count  
XCIN  
Timer 1 latch (8)  
RESET  
Internal system  
clock selection  
bit  
source  
selection bit  
“1”  
“0”  
FF16  
STP instruction  
Timer 1 interrupt request  
“1”  
“0”  
Timer 1 (8)  
1/16  
XIN  
Timer 1  
count stop  
bit  
P46/T1OUT  
P46 latch  
1/2  
Timer 1 output  
selection bit  
Timer 2  
count  
Timer 2 latch (8)  
source  
selection bit  
“00”  
“01”  
P46 direction register  
0116  
Timer 2 (8)  
Timer 2 interrupt request  
Timer 2  
“10”  
count stop  
bit  
Rising/falling  
edge switch  
P62/CNTR0  
Timer 3  
count  
Timer 3 latch (8)  
Timer 3 (8)  
source  
selection bit  
“1”  
“0”  
Timer 3 interrupt request  
P47/T3OUT  
P47 latch  
1/2  
Timer 3  
count stop bit  
Timer 3 output  
selection bit  
Timer 4  
count  
Timer 4 latch (8)  
Timer 4 (8)  
source  
selection bit  
“01”  
Timer 4 interrupt request  
P47 direction register  
“00”  
“10”  
Timer 4  
count stop  
bit  
Rising/falling  
edge switch  
P63/CNTR1  
Timer 5  
count  
Timer 5 latch (8)  
Timer 5 (8)  
source  
selection bit  
“1”  
“0”  
Timer 5 interrupt request  
Timer 5  
count stop bit  
Timer 6  
count  
Timer 6 latch (8)  
Timer 6 (8)  
source  
selection bit  
“01”  
Timer 6 interrupt request  
“00”  
“10” Timer 6  
count stop  
bit  
Timer 6 PWM register (8)  
P61 latch  
P61/PWM  
PWM  
“1”  
“0”  
1/2  
Timer 6 output  
selection bit  
Timer 6 operating  
mode selection bit  
P61 direction register  
Fig. FB-1 Timer block diagram  
19  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b7  
b0  
b7  
b0  
Timer 12 mode register  
(T12M : address 002816  
Timer 34 mode register  
(T34M : address 002916)  
)
Timer 1 count stop bit  
0 : Operating  
Timer 3 count stop bit  
0 : Operating  
1 : Stopped  
1 : Stopped  
Timer 2 count stop bit  
0 : Operating  
Timer 4 count stop bit  
0 : Operating  
1 : Stopped  
1 : Stopped  
Timer 1 count source selection bit  
0 : f(XIN)/16 or f(XCIN)/16  
Timer 3 count source selection bit  
0 : f(XIN)/16 or f(XCIN)/16  
1 : Timer 2 underflow  
1 : f(XCIN  
)
Not used (returns “0” when read)  
Timer 2 count source selection bits  
b5 b4  
Not used (returns “0” when read)  
Timer 4 count source selection bits  
b5 b4  
0
0
1
1
0 : Timer 1 underflow  
1 : f(XCIN  
0 : External count input CNTR  
1 : Not available  
0
0
1
1
0 : f(XIN)/16 or f(XCIN)/16  
1 : Timer 3 underflow  
0 : External count input CNTR  
1 : Not available  
)
0
1
Timer 1 output selection bit (P4  
0 : I/O port  
6
)
Timer 3 output selection bit (P4  
0 : I/O port  
7)  
1 : Timer 1 output  
1 : Timer 3 output  
Not used (returns “0” when read)  
Not used (returns “0” when read)  
b7  
b0  
Timer 56 mode register  
(T56M : address 002A16  
)
Timer 5 count stop bit  
0 : Operating  
1 : Stopped  
Timer 6 count stop bit  
0 : Operating  
1 : Stopped  
Timer 5 count source selection bit  
0 : f(XIN)/16 or f(XCIN)/16  
1 : Timer 4 underflow  
Timer 6 operation mode selection bit  
0 : Timer mode  
1 : PWM mode  
Timer 6 count source selection bits  
b5 b4  
0
0
1
1
0 : f(XIN)/16 or f(XCIN)/16  
1 : Timer 5 underflow  
0 : Timer 4 underflow  
1 : Not available  
Timer 6 (PWM) output selection bit (P61)  
0 : I/O port  
1 : Timer 6 output  
Not used (returns “0” when read)  
(do not write “1”)  
Fig. FB-2 Structure of timer-related registers  
20  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ts  
Timer 6  
count  
source  
Timer 6  
PWM output  
n ts  
m ts  
(n + m) ts  
Timer 6 interrupt request  
Timer 6 interrupt request  
Note: If the value set in timer 6 is n and the value set in the timer 6 PWM register is m, a PWM waveform with  
duty cycle n/(n + m) and period (n + m) 5 ts (ts : the frequency of the timer 6 count source) is output.  
Fig. FB-3 Timing in timer 6 PWM mode  
21  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
SERIAL I/O  
The 3819 group has built-in 8-bit clock synchronized serial I/O 3  
channels (serial I/O1, serial I/O2, and serial I/O3).  
Serial I/O1 builds in the automatic transfer function. The function  
can be switched to the serial I/O ordinary mode with the serial I/O  
automatic transfer control register (address 001A16).  
Serial I/O2 and Serial I/O3 can be used only in the serial I/O ordi-  
nary mode.  
The I/O pins of the serial I/O function are also used as I/O ports  
P5 and P64–P67, and their operation is selected with the serial I/O  
control registers (addresses 001916, 001D16, and 001E16).  
Serial I/O Control Registers  
(SIO1CON, SIO2CON, SIO3CON)  
001916, 001D16, 001E16  
Each of the serial I/O control registers (addresses 001916,  
001D16, and 001E16) consists of 8 selection bits which control the  
serial I/O function.  
22  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Main  
Local  
Main data Local data  
SI/O automatic  
transfer RAM  
address bus address bus  
bus  
bus  
(0F0016 to 0F1F16)  
SI/O automatic  
transfer data  
pointer  
Address decorder  
SI/O automatic  
transfer  
Serial I/O automatic  
transfer interrupt request  
controller  
SI/O automatic transfer  
interval register  
1/8  
XCIN  
XIN  
Internal  
1/16  
1/32  
1/64  
1/128  
1/256  
system clock  
selection bit  
“1”  
“0”  
Synchronous  
clock selection  
bit  
P67 latch  
“1”  
(Note)  
P67/SRDY1/  
CS/SCLK12  
SRDY1  
Synchronization  
circuit  
Internal synchronous  
clock selection bit  
“0”  
CS  
External clock  
P66 latch  
“0”  
P66/SCLK11  
Serial I/O1  
Serial I/O counter 1(3)  
“1”  
interrupt request  
Serial I/O1 port selection bit  
“0”  
P65 latch  
P65/SOUT1  
“1”  
Serial I/O1 port selection bit  
P64/SIN1  
Serial I/O shift register 1(8)  
1/8  
1/16  
1/32  
1/64  
1/128  
1/256  
Synchronous  
P53 latch  
“0”  
clock selection  
bit  
“1”  
P53/SRDY2  
P52/SCLK2  
SRDY2  
Synchronization  
circuit  
Internal synchronous  
clock selection bit  
“1”  
SRDY2 output selection bit  
External clock “0”  
“0”  
“1”  
P52 latch  
Serial I/O2  
Serial I/O counter 2(3)  
interrupt request  
Serial I/O2 port selection bit  
“0”  
P51 latch  
P51/SOUT2  
P50/SIN2  
“1”  
Serial I/O2 port selection bit  
Serial I/O shift register 2(8)  
1/8  
1/16  
1/32  
1/64  
1/128  
P57 latch  
“0”  
1/256  
“1”  
P57/SRDY3  
P56/SCLK3  
SRDY3  
Synchronization  
circuit  
Internal synchronous  
clock selection bit  
“1”  
SRDY2 output selection bit  
External clock “0”  
“0”  
“1”  
P56 latch  
Serial I/O3  
Serial I/O counter 3(3)  
interrupt request  
Serial I/O3 port selection bit  
“0”  
P55 latch  
P55/SOUT3  
P54/SIN3  
“1”  
Serial I/O3 port selection bit  
Serial I/O shift register 3(8)  
Note:  
Selected with the synchronous clock selection bit, SRDY1 output selection bit, serial I/O1 port selection bit (these 3 bits are of the serial  
I/O1 control register), automatic transfer control bit, and synchronous clock output pin selection bit (these 2 bits are ofthe serial I/O  
automatic transfer register).  
Fig. GA-1 Serial I/O block diagram  
23  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b7  
b0  
b7  
b0  
Serial I/O1 control register  
Serial I/O2 control register  
(SIO1CON(SC1) : address 001916  
)
(SIO2CON(SC2) : address 001D16)  
Internal synchronous clock selection bits  
b2 b1 b0  
Internal synchronous clock selection bits  
b2 b1 b0  
0
0
0
0
1
1
0
0
1
1
1
1
0 : f(XIN)/8 or f(XCIN)/8  
0
0
0
0
1
1
0
0
1
1
1
1
0 : f(XIN)/8 or f(XCIN)/8  
1 : f(XIN)/16 or f(XCIN)/16  
0 : f(XIN)/32 or f(XCIN)/32  
1 : f(XIN)/64 or f(XCIN)/64  
0 : f(XIN)/128 or f(XCIN)/128  
1 : f(XIN)/256 or f(XCIN)/256  
1 : f(XIN)/16 or f(XCIN)/16  
0 : f(XIN)/32 or f(XCIN)/32  
1 : f(XIN)/64 or f(XCIN)/64  
0 : f(XIN)/128 or f(XCIN)/128  
1 : f(XIN)/256 or f(XCIN)/256  
Serial I/O1 port selection bit (P6  
0 : I/O port  
1 : SOUT1,SCLK11,and SCLK12 output pins  
5
, P66, and P6  
7
)
Serial I/O2 port selection bit (P5  
0 : I/O port  
1 : SOUT2 and SCLK2 output pins  
1, and P52)  
SRDY1 output selection bit (P6  
7
)
SRDY2 output selection bit (P5  
3)  
0 : I/O port  
1 : SRDY1/CS output pin (Note)  
0 : I/O port  
1 : SRDY2 output pin  
Transfer direction selection bit  
0 : LSB first  
Transfer direction selection bit  
0 : LSB first  
1 : MSB first  
1 : MSB first  
Synchronous clock selection bit  
0 : External clock  
Synchronous clock selection bit  
0 : External clock  
1 : Internal clock  
1 : Internal clock  
P65  
/SOUT1 P-channel output disable bit  
P51/SOUT2 P-channel output disable bit  
0 : CMOS output (in output mode)  
1 : N-channel open-drain output  
(in output mode)  
0 : CMOS output (in output mode)  
1 : N-channel open-drain output  
(in output mode)  
b7  
b0  
Serial I/O3 control register  
(SIO3CON(SC3) : address 001E16  
)
Internal synchronous clock selection bits  
b2 b1 b0  
0
0
0
0
1
1
0
0
1
1
1
1
0 : f(XIN)/8 or f(XCIN)/8  
1 : f(XIN)/16 or f(XCIN)/16  
0 : f(XIN)/32 or f(XCIN)/32  
1 : f(XIN)/64 or f(XCIN)/64  
0 : f(XIN)/128 or f(XCIN)/128  
1 : f(XIN)/256 or f(XCIN)/256  
Serial I/O3 port selection bit (P5  
0 : I/O port  
5 and P56)  
1 : SOUT3 and SCLK3 output pins  
SRDY3 output selection bit (P5  
7)  
0 : I/O port  
1 : SRDY3 and SCLK3 output pins  
Transfer direction selection bit  
0 : LSB first  
1 : MSB first  
Synchronous clock selection bit  
0 : External clock  
1 : Internal clock  
P55/SOUT3 P-channel output disable bit  
0 : CMOS output (in output mode)  
1 : N-channel open-drain output  
(in output mode)  
: Valid only in serial I/O automatic transfer mode.  
Note: When the external clock is selected in the serial I/O1 automatic transfer mode, the SRDY1 signal pin becomes the CS signal input pin.  
Fig. GA-2 Structure of serial I/O control registers  
24  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
If external clock is selected, control the clock externally be-  
cause the contents of the serial I/O register continue to shift  
during inputting the transfer clock. In this case, note that the  
SOUT pin does not go to high impedance state at the comple-  
tion of data transfer.  
(1) Serial I/O Ordinary Mode  
Either an internal clock or an external clock can be selected  
as the synchronous clock for serial I/O transfer. A dedicated  
divider is built in as the internal clock for selecting of 6 clocks.  
If internal clock is selected, transfer starts with a write signal  
to a serial I/O register (addresses 001B16, 001F16, or  
002616). After 8 bits have been transferred, the SOUT pin goes  
to high impedance state.  
The interrupt request bit is set at the completion of the trans-  
fer of 8 bits, regardless of whether the internal or external  
clock is selected.  
Synchronous  
clock  
Transfer clock  
Serial I/O register  
write signal  
(Note)  
Serial I/O output  
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D7  
S
OUT  
Serial I/O input  
S
IN  
Receive enable  
signal  
S
RDY  
Interrupt request bit set  
Note : If internal clock is selected, the SOUT pin goes to high impedance state  
at the completion of data transfer.  
Fig. GA-3 Serial I/O timing in the serial I/O ordinary mode (for LSB first)  
(2) Serial I/O Automatic Transfer Mode  
The serial I/O1 has the automatic transfer function. For auto-  
b7  
b0  
matic transfer, switch to the automatic transfer mode by  
Serial I/O automatic transfer control register  
(SIOAC : address 001A16  
)
setting the serial I/O automatic transfer control register (ad-  
dress 001A16).  
Automatic transfer control bit  
0 : Serial I/O ordinary mode  
(serial I/O1 interrupt)  
The following memory spaces and registers used to enable  
automatic transfer mode:  
1 : Automatic transfer mode  
(serial I/O1 automatic transfer interrupt)  
Automatic transfer start bit  
0 : Transfer completion  
1 : Transferring(starts by writing “1”)  
Transfer mode switch bit  
0 : Fullduplex(transmit and receive)  
mode  
1 : Transmit-only mode  
Synchronous clock output  
pin selection bit  
0 : SCLK11  
1 : SCLK12  
• 32-byte serial I/O automatic transfer RAM  
• A serial I/O automatic transfer control register  
• A serial I/O automatic transfer interval register  
• A serial I/O automatic transfer data pointer  
When using serial I/O automatic transfer, set the serial I/O1  
control register (address 001916) in the same way as the se-  
rial I/O ordinary mode. However, note that when external  
clock is selected, port P67 becomes the CS input pin by set-  
ting the bit 4 (the SRDY1 output selection bit ) of the serial I/O1  
control register to “1”.  
Not used (return “0” when read)  
Serial I/O Automatic Transfer Control Register  
(SIOAC) 001A16  
Fig. GA-4 Structure of serial I/O automatic transfer control register  
The serial I/O automatic transfer control register (address 001A16)  
consists of 4 bits which control automatic transfer.  
25  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Serial I/O Automatic Transfer Data Pointer  
(SIODP) 001816  
Setting of Serial I/O Automatic Transfer  
Data  
The serial I/O automatic transfer data pointer (address 001816)  
consists of 5 bits which indicate addresses in serial I/O automatic  
transfer RAM (the value which adds 0F0016 to the serial I/O auto-  
matic transfer data pointer is actual address in memory).  
Set the value (the number of transfer data-1) to the serial I/O au-  
tomatic transfer data pointer for specifying the storage address of  
first data.  
When data is stored in the serial I/O automatic transfer RAM,  
store the first data at the address set with the serial I/O auto-  
matic transfer data pointer so that the last data can be stored  
at address 0F0016.  
Serial I/O Automatic Transfer Interval Register  
(SIOAI) 001C16  
The serial I/O automatic transfer interval register (address  
001C16) consists of a 5-bit counter that determines the transfer in-  
terval Ti during automatic transfer.  
Serial I/O Automatic Transfer RAM  
The serial I/O automatic transfer RAM is the 32 bytes from ad-  
dress 0F0016 to address 0F1F16.  
When writing the value n to the serial I/O automatic transfer inter-  
val register, Ti=(n+2) Tc (Tc: the length of one bit of the transfer  
clock) occurs. However, note that this transfer interval setting is  
valid only when selecting the internal clock as the clock source.  
Bit  
5
4
3
2
1
0
7
6
Address  
0F0016  
0F0116  
0F0216  
0F1D16  
0F1E16  
0F1F16  
Fig. GA-5 Bit allocation of serial I/O automatic transfer RAM  
Transfer clock  
Serial I/O output  
DO  
0
DO  
1
DO  
2
DO  
3
DO  
4
DO5  
DO  
6
DO7  
S
OUT  
Serial I/O input  
DI  
0
DI  
1
DI  
2
DI  
3
DI  
4
DI  
5
DI  
6
DI7  
S
IN  
T
C
1-byte data  
T
i
Fig. GA-6 Serial I/O automatic transfer interval timing  
26  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Setting of Serial I/O Automatic Transfer  
Timing  
(2.1) Operation in Full Duplex Mode  
In full duplex mode, data can be transmitted and received at the  
same time. Data in the automatic transfer RAM is transmitted in  
sequence in accordance with the serial I/O automatic transfer data  
pointer and simultaneously reception data is written to the auto-  
matic transfer RAM.  
The timing of serial I/O automatic transfer is set with the serial  
I/O1 control register (address 001916) and the serial I/O auto-  
matic transfer interval register (address 001C16).  
The serial I/O1 control register sets the transfer clock speed,  
and the serial I/O automatic transfer interval register sets the  
serial I/O automatic transfer interval. This setting of transfer in-  
terval is valid only when selecting the internal clock as the  
clock source.  
The transfer timing of each bit is the same as that in ordinary op-  
eration mode, and the transfer clock stops at “H” after eight  
transfer clocks are counted.  
When selecting the internal clock, the transfer clock remains at “H”  
for the time set with the serial I/O automatic transfer interval regis-  
ter, then the data at the next address (the address is indicated with  
the serial I/O automatic transfer data pointer) are transferred.  
If when selecting the external clock, the setting of the automatic  
transfer interval register is invalid, so control the transfer clock ex-  
ternally.  
Start of Serial I/O Automatic Transfer  
Automatic transfer mode is set by writing “1” to the bit 0 of the  
serial I/O automatic transfer control register (address 001A16),  
then automatic transfer starts by writing “1” to the bit 1.  
The bit 1 of the serial I/O automatic transfer control register is  
always “1” during automatic transfer; writing “0” can complete  
the serial I/O automatic transfer.  
The last data transfer completes when the contents of the serial  
I/O automatic transfer pointer reach “0016”. At that point, the serial  
I/O automatic transfer interrupt request bit is set to “1” and the bit  
1 of the serial I/O automatic transfer control register is cleared to  
“0” to complete the serial I/O automatic transfer.  
Operation in Serial I/O Automatic Transfer  
Modes  
There are two modes for serial I/O automatic transfer: full du-  
plex mode and transmit-only mode. Either internal or external  
clock can be selected for each of these modes.  
(2.2) Operation in Transmit-Only Mode  
The operation in transmit-only mode is the same as that in full du-  
plex mode, except for that data is not transferred from the serial  
I/O1 register to the serial I/O automatic transfer RAM.  
Transfer direction selection bit  
LSB first (SC1  
MSB first (SC1  
5
5
= “0” ) : MSB  
= “1” ) : LSB  
LSB  
MSB  
DO  
7
DO  
6
DO  
5 DO4  
DO  
3
DO  
2
DO  
1
2
DO  
DO  
DO  
0
S
IN  
SOUT  
DO  
7
DI  
DI  
DI  
0
DO  
DO  
6
DO  
DO  
5
DO  
4
DO  
DO  
3
DO  
1
2
7
6
DO5  
4
DO  
3
4
1
2
DI  
DI  
0
1
6
DI  
0
DO7  
DO6  
DO  
5
DO  
DO  
3
DI  
5
DI  
4
DI  
3
DI  
2
DI  
1
DI0  
DI  
7
DI  
Transfer clock  
Serial I/O1 register  
Fig. GA-7 Serial I/O1 register transfer operation in full duplex mode  
27  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
When using both the SCLK11 and SCKL12 by switching, switch the  
P67/SRDY1/CS/SCLK12 to the P67 (SC14=0) and set the P67 direc-  
tion register to input mode. Note that switch SIOAC3 during “H” of  
transfer clock at the completion of automatic transfer.  
(2.3) When Selecting the Internal Clock  
When selecting the internal clock, the P67/SRDY1/CS/SCLK12 pin  
can be used as the SRDY1 pin by setting SC14 to “1”.  
When selecting the internal clock, the P67 pin can be used as the  
synchronous clock output pin SCLK12 by setting SIOAC3 to “1”. In  
this case, the SCLK11 pin goes to high impedance state.  
Select the function of the P67/SRDY1/CS/SCLK12 and P66/SCLK11  
with the following registers (refer to Table GA-1):  
Table GA-1. SCLK11 and SCLK12 selection  
SC16  
SC14  
SC33  
SIOAC3 P66/SCLK11 P67/SCLK12  
0
SCLK11  
P67  
1
0
1
High  
impedance  
the bit 3 (SC13), the bit 4(SC14), and the bit 6(SC16) of the se-  
rial I/O1 control register  
1
SCLK12  
Note : SC13: Serial I/O1 port selection bit  
the bit 3 (SIOAC3) of the serial I/O automatic transfer control  
register  
SC14: SRDY1 output selection bit  
SC16: Synchronous clock selection bit  
SIOAC3: Synchronous clock output pin selection bit  
Bit 1 write signal of serial I/O  
automatic transfer control  
register  
Bit 1 of serial I/O automatic  
transfer control register  
Write signal from RAM to  
serial I/O1 register  
Write signal from serial I/O1  
register to RAM  
Data pointer  
n
0
n-1  
Transfer clock  
(internal or SCLK output)  
Receive  
enabled signal  
S
RDY  
Serial I/O output  
DO  
0
DO  
1
DO  
2
DO  
3
DO  
4
DO  
5
DO  
6
DO  
7
DO  
0
DO6 DO7  
S
out  
Serial I/O input  
DI  
0
DI  
1
DI  
2
DI  
3
DI  
4
DI  
5
DI  
6
DI  
7
DI  
0
DI  
6
DI7  
S
IN  
Transfer interval  
Fig. GA-8 Timing diagram during serial I/O automatic transfer (internal clock selected, SRDY used)  
Bit 1 write signal of serial I/O  
automatic transfer control  
register  
Bit 1 of serial I/O automatic  
transfer control register  
Write signal from RAM to  
serial I/O1 register  
Write signal from serial I/O1  
register to RAM  
Data pointer  
m-1  
0
m
n
Bit 3 of serial I/O automatic  
transfer control register  
Transfer clock  
(internal)  
S
CLK11 output  
CLK12 output  
S
Serial I/O output  
DO0 DO1 DO2 DO3 DO4 DO5 DO6 DO7  
DO0  
DI0  
DO6 DO7  
DO0 DO1 DO2 DO3  
S
out  
Serial I/O input  
DI7  
DI0  
DI1 DI2 DI3  
DI4 DI5  
DI6  
DI  
DI6  
DI0  
DI1 DI2  
DI  
3
7
S
IN  
Transfer interval  
Fig. GA-9 Timing during serial I/O automatic transfer (internal clock selected, SCLK11 and SCLK12 used)  
28  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
When not using the CS input, note that the SOUT pin will not go to  
high impedance state, even after transfer is completed.  
(2.4) When Selecting the External Clock  
When selecting the external clock, the internal clock and the set-  
ting of transfer interval with the serial I/O automatic transfer  
interval register are invalid, but the serial I/O output pin SOUT1 and  
the internal transfer clock can be controlled from the outside by  
setting the SRDY1 pin to the CS (input) pin.  
When not using the CS input, or when CS is “L”, control the exter-  
nal clock because the data in the serial I/O register will continue to  
shift while the external clock is input, even after the completion of  
automatic transfer (Note that the automatic transfer interrupt re-  
quest bit is set and the bit 1 of the serial I/O automatic transfer  
register is cleared at the point when the specified number of bytes  
of data have been transferred.)  
When the CS input is “L”, the SOUT1 pin and the internal transfer  
clock are enabled.  
When the CS input is “H”, the SOUT1 pin goes to high impedance  
state and the internal transfer clock goes to “H”.  
Select the function of the P67/SRDY1/CS/SCLK12 with the following  
registers (refer to Table GA-2):  
Table GA-2. P67/SRDY1/CS selection  
SC16  
SC14  
0
SIOAC0  
P67/SRDY1/CS  
the bit 4 (SC14) and the bit 6 (SC16) of the serial I/O1 control  
register  
0
P67  
SRDY1  
CS  
0
the bit 0 (SIOAC0) of the serial I/O automatic transfer control  
register  
1
1
Note : SC14: SRDY1 output selection bit  
SC16: Synchronous clock selection bit  
SIOAC0: Automatic transfer control bit  
Switch the CS pin from “L” to “H” or from “H” to “L” during “H” of the  
transfer clock (SCLK11 input) after transferring 1-byte data.  
When selecting the external clock, set the external clock to “L” af-  
ter 9 cycles or more of the internal clock φ after setting the start  
bit. After transferring 1-byte data, leave 11 cycles or more of the  
internal clock φ free for the transfer interval.  
Bit 1 write signal of serial I/O  
automatic transfer control  
register  
Bit 1 of serial I/O automatic  
transfer control register  
Write signal from RAM to  
serial I/O1 register  
Write signal from serial I/O1  
register to RAM  
n-1  
Data pointer  
n
External input  
CS  
Transfer clock  
SCLK input  
Transfer clock  
(internal)  
Serial I/O output  
X
DO0 DO1 DO2 DO3 DO4 DO5 DO6 DO7  
S
OUT  
Serial I/O input  
DI  
0
DI1  
DI  
2
DI  
3
DI4  
DI  
5
DI  
6
DI  
7
X
X
X
X
X
SIN  
Note: Data marked with X is invalid.  
Fig. GA-10 Timing during serial I/O automatic transfer (external clock selected)  
29  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
A-D CONVERTER  
The functional blocks of the A-D converter are described below.  
b7  
b0  
AD/DA control register  
(ADCON : address 002C16  
)
A-D Conversion Register (AD) 002D16  
The A-D conversion register is a read-only register that stores the  
result of an A-D conversion. This register should not be read dur-  
ing A-D conversion.  
Analog input pin selection bits  
b3 b2 b1 b0  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0 : P7  
0
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
0
1
2
3
4
5
6
7
1 : P7  
0 : P7  
1 : P7  
0 : P7  
1 : P7  
0 : P7  
1 : P7  
0 : P5  
1 : P5  
0 : P5  
1 : P5  
0 : P5  
1 : P5  
0 : P5  
1 : P5  
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
AD/DA Control Register (ADCON) 002C16  
The AD/DA control register controls the A-D and the D-A conver-  
sion process. Bits 0 to 3 of this register select analog input pins.  
Bit 4 is the AD conversion completion bit. The value of this bit re-  
mains at “0” during an A-D conversion, then changes to “1” when  
the A-D conversion is completed.  
/SIN2/AN  
/SOUT2/AN  
8
9
/SCLK2/AN10  
/SRDY2/AN11  
/SIN3/AN12  
/SOUT3/AN13  
/SCLK3/AN14  
/SRDY3/AN15  
The A-D conversion starts by writing “0” to this bit. Bit 6 controls  
the output of D-A converter.  
AD conversion completion bit  
0 : Conversion in progress  
1 : Conversion completed  
Comparison Voltage Generator  
The comparison voltage generator divides the voltage between  
Not used (returns “0” when read)  
DA output enable bit  
0 : Disable  
AVSS and VREF by 256, and outputs the divided voltages.  
1 : Enable  
Not used (returns “0” when read)  
Channel Selector  
The channel selector selects one of the input ports P77/AN7–P70/  
AN0, P57/SRDY3/AN15–P50/SIN2/AN8, and inputs to the compara-  
tor.  
Fig. JA-1 Structure of A-D control register  
Comparator and Control Circuit  
The comparator and control circuit compares an analog input volt-  
age with the comparison voltage and stores the result in the A-D  
conversion register. When an A-D conversion is completed, the  
control circuit sets the AD conversion completion bit and the AD  
conversion interrupt request bit to “1”.  
Note that the comparator is constructed linked to a capacitor, so  
set f(XIN) to 500 kHz or more during A-D conversion.  
Note : When using the A-D conversion interrupt, set the INT4/AD conver-  
sion interrupt switch bit (the bit 5 of the interrupt selection register)  
to “1”.  
30  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Data bus  
b7  
b0  
AD-DA control register  
(address 002C16  
)
4
A-D control circuit  
A-D conversion interrupt request  
P7  
P7  
P7  
P7  
P7  
P7  
P7  
P7  
0
1
2
3
4
5
6
7
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
0
1
2
3
4
5
6
7
8
9
Comparator  
A-D conversion register  
(Address 002D16  
8
)
P5  
P5  
P5  
P5  
P5  
P5  
P5  
P5  
0
1
/SIN2/AN  
/Sout2/AN  
2
3
/SCLK2/AN10  
/SRDY2/AN11  
/SIN3/AN12  
Resistor ladder  
4
5
6
/SOUT3/AN13  
/SCLK3/AN14  
7
/SRDY3/AN15  
V
REF  
AVSS  
Fig. JA-2 A-D converter block diagram  
D-A CONVERTER  
The 3819 group has internal D-A converter with 8-bit resolutions ✕  
1 channel.  
D-A conversion is performed by setting the value in the D-A con-  
version register. The result of D-A conversion is output from the  
DA pin by setting the DA output enable bit to “1” . At this time, the  
corresponding bit (PB2/DA) of the port PB direction register should  
be set to “0” (input status).  
D-A conversion register (8)  
R-2R resistor ladder  
The output analog voltage V is determined with the value n  
(n: decimal number) in the D-A conversion register as follows:  
DA output enable bit  
PB /DA  
2
V=VREF n/256 (n=0 to 255)  
VREF: the reference voltage  
At reset, the D-A conversion register is cleared to “0016”, the DA  
output enable bits are cleared to “0”, and the PB2/DA pin goes to  
high impedance state. The D-A output does not build in a buffer, so  
connect an external buffer when driving a low-impedance load.  
Set VCC to 3.0 V or more when using the D-A converter.  
Fig. JB-1 D-A converter block diagram  
"0"  
DA output enable bit  
2R  
R
R
R
R
R
R
R
PB2/DA  
"1"  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
LSB  
MSB  
"0"  
D-A conversion  
register  
"1"  
AVSS  
V
REF  
Fig. JB-2 Equivalent connection circuit of D-A converter  
31  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
• Port P0 segment/digit switch register  
FLD CONTROLLER  
The 3819 group has fluorescent display (FLD) drive and control  
circuits.  
• Port P2 digit/port switch register  
• Port PA segment/port switch register  
• Port P8 segment/port switch register  
The FLD controller consists of the following components:  
• 42 pins for segments  
• 96-byte FLD automatic display RAM  
The segment pins can be used from 16 up to 42 pins (maximum)  
and the digit pins can be used from 6 up to 16 pins (maximum).  
The segment and the digit pins can be used up to 52 pins (maxi-  
mum) in total.  
• 20 pins for digits  
• FLDC mode register 1  
• FLDC mode register 2  
• FLD data pointer  
In the FLD automatic display mode ports P12 to P17 become digit  
pins DIG10 to DIG15 automatically.  
• FLD data pointer reload register  
Main  
address bus  
FLD automatic  
display RAM  
Main  
data bus  
Local  
data bus  
S/P PA  
S/P PA  
S/P PA  
S/P PA  
S/P PA  
S/P PA  
S/P PA  
S/P PA  
0
1
2
3
4
5
6
7
/SEG  
/SEG  
/SEG  
/SEG  
/SEG  
/SEG  
/SEG  
/SEG  
0
1
2
3
4
5
6
7
G1 (SEG PA)  
G2 (SEG PA)  
0F8016  
8
G15 (SEG PA)  
G16 (SEG PA)  
G1 (SEG P8)  
G2 (SEG P8)  
0F8F16  
0F9016  
003516  
001416  
Local  
S/P P8  
S/P P8  
S/P P8  
S/P P8  
S/P P8  
S/P P8  
S/P P8  
S/P P8  
0
1
2
3
4
5
6
7
/SEG  
/SEG  
8
address bus  
9
/SEG10  
/SEG11  
/SEG12  
/SEG13  
/SEG14  
/SEG15  
G15 (SEG P8)  
G16 (SEG P8)  
G1 (SEG P9)  
G2 (SEG P9)  
8
8
8
0F9F16  
0FA016  
003416  
001016  
G15 (SEG P9)  
G16 (SEG P9)  
G1 (SEG P3)  
G2 (SEG P3)  
P9  
P9  
P9  
P9  
P9  
P9  
P9  
P9  
0
/SEG16  
/SEG17  
/SEG18  
/SEG19  
/SEG20  
/SEG21  
/SEG22  
/SEG23  
0FAF16  
0FB016  
1
2
3
4
5
6
7
G15 (SEG P3)  
G16 (SEG P3)  
G1 (SEG P0)  
G2 (SEG P0)  
0FBF16  
0FC016  
001216  
P3  
P3  
P3  
P3  
P3  
P3  
P3  
P3  
0
/SEG24  
/SEG25  
/SEG26  
/SEG27  
/SEG28  
/SEG29  
/SEG30  
/SEG31  
1
2
3
4
5
6
7
G15 (SEG P0)  
G16 (SEG P0)  
G1 (SEG P1)  
G2 (SEG P1)  
0FCF16  
0FD016  
000616  
S/D P0  
S/D P0  
S/D P0  
S/D P0  
S/D P0  
S/D P0  
S/D P0  
S/D P0  
0
1
2
3
4
5
6
7
/SEG32/DIG  
/SEG33/DIG  
/SEG34/DIG  
/SEG35/DIG  
/SEG36/DIG  
/SEG37/DIG  
/SEG38/DIG  
/SEG39/DIG  
0
1
2
3
4
5
6
7
G15 (SEG P1)  
G16 (SEG P1)  
8
0FDF16  
003216  
000016  
FLD data pointer  
reload register  
S/D P1  
S/D P1  
P1  
0
1
2
3
4
5
6
7
/SEG40/DIG  
/SEG41/DIG  
/DIG10  
/DIG11  
/DIG12  
/DIG13  
/DIG14  
/DIG15  
8
9
(address 003816  
)
8
P1  
P1  
P1  
P1  
Address  
decoder  
FLD data pointer  
(address 003816  
)
P1  
FLDC mode  
register 1  
(address 003616  
003716  
000216  
)
D/P P2  
D/P P2  
D/P P2  
D/P P2  
0
/DIG16  
/DIG17  
/DIG18  
/DIG19  
4
1
2
3
003316  
000416  
Timing  
generator  
FLD blanking interrupt  
FLD digit interrupt  
Fig. KA-1 FLD control circuit block diagram  
32  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
register respectively which are used to control the FLD automatic  
display and set the blanking time Tscan for key-scan.  
FLDC Mode Registers (FLDM 1, FLDM 2)  
003616, 003716  
The FLDC mode register 1 (address 003616) and FLDC mode reg-  
ister 2 (address 003716) are a seven bit register and an eight bit  
b7  
b0  
FLDC mode register 1  
(FLDM 1 : address 003616  
)
T
scan control bits  
b1 b0  
0 0 : 0 FLD digit interrupt (at rising edge of each digit)  
0 1 : 1 Tdisp  
1 0 : 2 Tdisp  
1 1 : 3 Tdisp  
FLD blanking interrupt  
(at falling edge of the last digit)  
T
off control bits  
(Setting of digit/segment OFF time)  
b5 b4 b3 b2  
0 0 0 0 : 1/16 Tdisp  
0 0 0 1 : 2/16 Tdisp  
0 0 1 0 : 3/16 Tdisp  
0 0 1 1 : 4/16 Tdisp  
0 1 0 0 : 5/16 Tdisp  
0 1 0 1 : 6/16 Tdisp  
0 1 1 0 : 7/16 Tdisp  
0 1 1 1 : 8/16 Tdisp  
1 0 0 0 : 9/16 Tdisp  
1 0 0 1 : 10/16 Tdisp  
1 0 1 0 : 11/16 Tdisp  
1 0 1 1 : 12/16 Tdisp  
1 1 0 0 : 13/16 Tdisp  
1 1 0 1 : 14/16 Tdisp  
1 1 1 0 : 15/16 Tdisp  
1 1 1 1 : 16/16 Tdisp  
Not used (returns “0” when read)  
High-breakdown-voltage drivability selection bit  
0 : Strong drivability  
1 : Weak drivability  
Fig. KA-2 Structure of FLDC mode register 1  
b7  
b0  
FLDC mode register 2  
(FLDM 2 : address 003716  
)
Automatic display control bit(P0, P1, P2  
0 : Ordinary mode  
0–P23, P3, P8, P9, PA)  
1 : Automatic display mode  
Display start bit  
0 : Display stopped  
1 : Display in progress  
(display starts by writing “1” to this bit which is set to “0”)  
T
disp control bits  
(digit time setting, at 8 MHz oscillation frequency)  
b5 b4 b3 b2  
0 0 0 0 : 128 µs  
0 0 0 1 : 256 µs  
0 0 1 0 : 384 µs  
0 0 1 1 : 512 µs  
0 1 0 0 : 640 µs  
0 1 0 1 : 768 µs  
0 1 1 0 : 896 µs  
0 1 1 1 : 1024 µs  
1 0 0 0 : 1152 µs  
1 0 0 1 : 1280 µs  
1 0 1 0  
Not available  
1 1 1 1  
Pl  
Pl  
0 segment/digit switch bit  
0 : Digit  
1 : Segment  
1
segment/digit switch bit  
0 : Digit  
1 : Segment  
Fig. KA-3 Structure of FLDC mode register 2  
33  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
When using the FLD automatic display mode, set the number  
of segments and digits for each port.  
Pins for FLD Automatic Display  
Ports P0, P1, P20–P23, P3, P8, P9, and PA is selected for the  
FLD automatic display function by setting the automatic display  
control bit of the FLDC mode register 2 (address 003716) to  
“1”.  
Table L-1. Pins in FLD automatic display mode  
Port Name  
Automatic Display Pins  
SEG0–SEG7  
or  
Setting Method  
The individual bits of the segment/port switch register (address 003516) can be set each pin  
to either segment (“1”) or general-purpose I/O port (“0”).  
PA0–PA7  
PA0–PA7  
SEG8–SEG15  
or  
The individual bits of the segment/port switch register (address 003416) can be used to set  
each pin to either segment (“1”) or general-purpose I/O port (“0”).  
P80–P87  
P80–P87  
P90–P97  
P30–P37  
SEG16–SEG23  
SEG24–SEG31  
SEG32–SEG41  
or  
None (segment only)  
None (segment only)  
P00–P07  
P10, P11  
The individual bits of the segment/digit switch register (address 003216) and the bit 6, 7 of  
the FLDC mode register 2 can be used to set each pin to segment (“1”) or digit (“0”). (Note)  
DIG0–DIG9  
DIG10–DIG15  
DIG16–DIG19  
or  
P12–P17  
P20–P23  
None (digit only)  
The individual bits of the digit/port switch register (address 003316) can be used to set each  
pin to digit (“1”) or general-purpose output port (“0”). (Note)  
P20–P23  
Note : Be sure to set digits in sequence.  
Number of segments  
Number of segments  
Number of digits  
Number of digits  
24  
8
0 PA  
PA  
0 PA  
PA  
0 PA  
PA  
0 PA  
0 PA  
30  
10  
0 PA  
PA  
0 PA  
PA  
0 PA  
PA  
0 PA  
0 PA  
36  
16  
1 SEG  
SEG  
1 SEG  
SEG  
1 SEG  
SEG  
1 SEG  
1 SEG  
24  
30  
36  
8
10  
16  
Port PA  
(has the segment/port  
switch register)  
Port P3  
(segment only)  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
0
0
1
0
0
1
0
0
1
Port P8  
(has the segment/port  
switch register)  
Port P0  
(has the segment/digit  
switch register)  
0 P8  
0 P8  
0 P8  
0 P8  
0
0 P8  
0 P8  
0 P8  
0 P8  
0
1 SEG  
1 SEG  
1 SEG10  
1 SEG11  
8
9
1 SEG32  
1 SEG33  
1 SEG34  
1 SEG35  
1 SEG32  
1 SEG33  
1 SEG34  
1 SEG35  
1 SEG32  
1 SEG33  
1 SEG34  
1 SEG35  
1
1
2
3
4
5
6
7
2
3
0
1
1
1
1
0
P8  
0 P8  
SEG12  
SEG12  
1 SEG13  
SEG36  
1 SEG37  
SEG36  
1 SEG37  
DIG  
0 DIG  
4
5
6
7
G
G
G
G
16  
15  
14  
13  
1 SEG13  
0
1
1
1
1
0
P8  
0 P8  
SEG14  
SEG14  
SEG38  
1 SEG39  
SEG38  
DIG  
1 SEG15  
1 SEG15  
1 SEG39  
0 DIG  
Port P9  
(segment only)  
Port P1  
(has the segment/digit  
switch register)  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
0 DIG  
0 DIG  
8
9
G
G
G
G
G
G
G
G
8
7
6
5
4
3
2
1
1 SEG40  
1 SEG41  
DIG10  
DIG11  
DIG12  
DIG13  
DIG14  
DIG15  
0 DIG  
0 DIG  
8
9
G
G
G
G
G
G
G
G
12  
11  
10  
9
DIG10  
DIG11  
DIG12  
DIG13  
DIG14  
DIG15  
G
G
G
G
G
G
10  
9
DIG10  
DIG11  
DIG12  
DIG13  
DIG14  
DIG15  
8
8
7
7
6
6
5
5
Port P2  
(has the digit/port  
switch register)  
0 P2  
0
1
2
3
1 DIG16  
G
G3  
G2  
G1  
4
1 DIG16  
G
G
G
G
4
3
2
1
0
0
1
1
1
1
P2  
P2  
DIG17  
DIG18  
DIG17  
DIG18  
0 P2  
1 DIG19  
1 DIG19  
Fig. KA-4 Segment/digit setting example  
34  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
The FLD data pointer indicates the data address in the FLD auto-  
matic display RAM to be transferred to a segment. The FLD data  
pointer reload register indicates the first digit address of the most  
significant segment.  
FLD Automatic Display RAM  
The FLD automatic display RAM area is the 96 bytes from ad-  
dresses 0F8016 to 0FDF16. The FLD automatic display RAM  
area can store 6-byte segment data up to 16 digits (maximum).  
Addresses 0F8016 to 0F8F16 are used for PA segment data,  
addresses 0F9016 to 0F9F16 are used for P8 segment data,  
addresses 0FA016 to 0FAF16 are used for P9 segment data,  
addresses 0FB016 to 0FBF16 are used for P3 segment data,  
addresses 0FC016 to 0FCF16 are used for P0 segment data,  
and addresses 0FD0 to 0FDF16 are used for P1 segment data.  
The value which adds 0F8016 to these data is actual address in  
memory.  
The contents of the FLD data pointer indicate the first address of  
segment P1(the contents of the FLD data pointer reload register)  
at the start of automatic display. The FLDC data pointer content  
changes repeatedly as follows: when transferring the segment P1  
data to the segment, the content decreases by –16; when transfer-  
ring the segment P0 data, it decreases by –16; when transferring  
the segment P3 data, it decreases by –16; when transferring the  
segment P9 data, it decreases by –16; when transferring the seg-  
ment P8 data, it decreases by –16; when transferring the segment  
PA data, it increases by +79. Once it reaches “00”, at the next tim-  
ing the value in the FLD data pointer reload register is transferred  
to the FLD data pointer. In this way, the 6-byte data of P1, P0, P3,  
P9, P8 and PA segments for 1 digit are transferred.  
FLD Data Pointer and FLD Data Pointer  
Reload Register  
(FLDDP) 003816  
Both the FLD data pointer and FLD data pointer reload register  
are 7-bit registers allocated at address 003816. When writing data  
to this address, the data is written to the FLD data pointer reload  
register, when reading data from this address, the value in the  
FLD data pointer is read.  
35  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Bit  
7
6
5
4
3
2
1
0
Address  
0F8016  
The last digit  
(The last data of segment PA)  
SEG  
SEG  
7
7
SEG  
6
6
SEG  
SEG  
5
5
SEG  
4
4
SEG  
SEG  
3
3
SEG  
2
2
SEG  
SEG  
1
1
SEG  
SEG  
0
0
0F8116  
SEG  
SEG  
SEG  
Segment PA  
data area  
0F8E16  
0F8F16  
0F9016  
0F9116  
SEG  
SEG  
7
7
SEG  
6
6
SEG  
SEG  
5
5
SEG  
4
4
SEG  
SEG  
3
3
SEG  
2
2
SEG  
SEG  
SEG  
SEG  
1
1
9
9
SEG  
SEG  
SEG  
SEG  
0
0
8
8
SEG  
SEG  
SEG  
The last digit  
(The last data of segment P8)  
SEG15  
SEG15  
SEG14  
SEG14  
SEG13  
SEG13  
SEG12  
SEG12  
SEG11  
SEG11  
SEG10  
SEG10  
Segment P8  
data area  
0F9E16  
0F9F16  
0FA016  
0FA116  
SEG15  
SEG15  
SEG23  
SEG23  
SEG14  
SEG14  
SEG22  
SEG22  
SEG13  
SEG13  
SEG21  
SEG21  
SEG12  
SEG12  
SEG20  
SEG20  
SEG11  
SEG11  
SEG19  
SEG19  
SEG10  
SEG10  
SEG18  
SEG18  
SEG  
SEG  
9
9
SEG  
SEG  
8
8
The last digit  
(The last data of segment P9)  
SEG17  
SEG17  
SEG16  
SEG16  
Segment P9  
data area  
0FAE16  
0FAF16  
0FB016  
0FB116  
SEG23  
SEG23  
SEG31  
SEG31  
SEG22  
SEG22  
SEG30  
SEG30  
SEG21  
SEG21  
SEG29  
SEG29  
SEG20  
SEG20  
SEG28  
SEG28  
SEG19  
SEG19  
SEG27  
SEG27  
SEG18  
SEG18  
SEG26  
SEG26  
SEG17  
SEG17  
SEG25  
SEG25  
SEG16  
SEG16  
SEG24  
SEG24  
The last digit  
(The last data of segment P3)  
Segment P3  
data area  
0FBE16  
0FBF16  
0FC016  
0FC116  
SEG31  
SEG31  
SEG39  
SEG39  
SEG30  
SEG30  
SEG38  
SEG38  
SEG29  
SEG29  
SEG37  
SEG37  
SEG28  
SEG28  
SEG36  
SEG36  
SEG27  
SEG27  
SEG35  
SEG35  
SEG26  
SEG26  
SEG34  
SEG34  
SEG25  
SEG25  
SEG33  
SEG33  
SEG24  
SEG24  
SEG32  
SEG32  
The last digit  
(The last data of segment P0)  
Segment P0  
data area  
0FCE16  
0FCF16  
0FD016  
0FD116  
SEG39  
SEG39  
SEG38  
SEG38  
SEG37  
SEG37  
SEG36  
SEG36  
SEG35  
SEG35  
SEG34  
SEG34  
SEG33  
SEG33  
SEG41  
SEG41  
SEG32  
SEG32  
SEG40  
SEG40  
The last digit  
(The last data of segment P1)  
Segment P1  
data area  
0FDE16  
0FDF16  
SEG41  
SEG41  
SEG40  
SEG40  
Fig. KA-5 FLD automatic display RAM and bit allocation  
36  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
quence from the last data respectively. The first data of the  
segment PA, P8, P9, P3, P0, and P1 is stored at an address  
which adds the value of (the digit number–1) to the corre-  
sponding address 0F8016, 0F9016, 0FA016, 0FB016, 0FC016,  
and 0FD016.  
Data Setup  
When data is stored in the FLD automatic display RAM, the  
last data of segment PA is stored at address 0F8016, the last  
data of segment P8 is stored at address 0F9016, the last data  
of segment P9 is stored at address 0FA016, the last data of  
segment P3 is stored at address 0FB016, the last data of seg-  
ment P0 is stored at address 0FC016, and the last data of  
segment P1 is stored at address 0FD016 to allocate in se-  
Set the low-order 4 bits of the FLD data pointer reload register  
to the value given by the number of digits–1. “1” is always writ-  
ten to bit 6 and bit 4, and “0” is always written to bit 5. Note that  
“0” is always read from bits 6, 5 and 4 when reading.  
For 30 segments and 15 digits  
For 30 segments and 15 digits  
(FLD data pointer reload register = 14)  
(FLD data pointer reload register = 14)  
Bit  
Bit  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Address  
0F8016  
0F8116  
0F8216  
0F8316  
0F8416  
0F8516  
0F8616  
0F8716  
0F8816  
0F8916  
0F8A16  
0F8B16  
0F8C16  
0F8D16  
0F8E16  
0F8F16  
0F9016  
0F9116  
0F9216  
0F9316  
0F9416  
0F9516  
0F9616  
0F9716  
0F9816  
0F9916  
0F9A16  
0F9B16  
0F9C16  
0F9D16  
0F9E16  
0F9F16  
0FA016  
0FA116  
0FA216  
0FA316  
0FA416  
0FA516  
0FA616  
0FA716  
0FA816  
0FA916  
0FAA16  
0FAB16  
0FAC16  
0FAD16  
0FAE16  
0FAF16  
Address  
0FB016  
0FB116  
0FB216  
0FB316  
0FB416  
0FB516  
0FB616  
0FB716  
0FB816  
0FB916  
0FBA16  
0FBB16  
0FBC16  
0FBD16  
0FBE16  
0FBF16  
0FC016  
0FC116  
0FC216  
0FC316  
0FC416  
0FC516  
0FC616  
0FC716  
0FC816  
0FC916  
0FCA16  
0FCB16  
0FCC16  
0FCD16  
0FCE16  
0FCF16  
0FD016  
0FD116  
0FD216  
0FD316  
0FD416  
0FD516  
0FD616  
0FD716  
0FD816  
0FD916  
0FDA16  
0FDB16  
0FDC16  
0FDD16  
0FDE16  
0FDF16  
Note :  
Shaded areas are used.  
Fig. KA-6 Example of using the FLD automatic display RAM (1)  
37  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
For 42 segments and 8 digits  
For 42 segments and 8 digits  
(FLD data pointer reload register = 7)  
(FLD data pointer reload register = 7)  
Bit  
Bit  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Address  
0F8016  
0F8116  
0F8216  
0F8316  
0F8416  
0F8516  
0F8616  
0F8716  
0F8816  
0F8916  
0F8A16  
0F8B16  
0F8C16  
0F8D16  
0F8E16  
0F8F16  
0F9016  
0F9116  
0F9216  
0F9316  
0F9416  
0F9516  
0F9616  
0F9716  
0F9816  
0F9916  
0F9A16  
0F9B16  
0F9C16  
0F9D16  
0F9E16  
0F9F16  
0FA016  
0FA116  
0FA216  
0FA316  
0FA416  
0FA516  
0FA616  
0FA716  
0FA816  
0FA916  
0FAA16  
0FAB16  
0FAC16  
0FAD16  
0FAE16  
0FAF16  
Address  
0FB016  
0FB116  
0FB216  
0FB316  
0FB416  
0FB516  
0FB616  
0FB716  
0FB816  
0FB916  
0FBA16  
0FBB16  
0FBC16  
0FBD16  
0FBE16  
0FBF16  
0FC016  
0FC116  
0FC216  
0FC316  
0FC416  
0FC516  
0FC616  
0FC716  
0FC816  
0FC916  
0FCA16  
0FCB16  
0FCC16  
0FCD16  
0FCE16  
0FCF16  
0FD016  
0FD116  
0FD216  
0FD316  
0FD416  
0FD516  
0FD616  
0FD716  
0FD816  
0FD916  
0FDA16  
0FDB16  
0FDC16  
0FDD16  
0FDE16  
0FDF16  
Note :  
Shaded areas are used.  
Fig. KA-6 Example of using the FLD automatic display RAM (2) (continued)  
38  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
During automatic display bit 1 of the FLDC mode register 2 al-  
ways keeps “1”, automatic display can be interrupted by writing  
“0” to the bit 1.  
Timing Setting  
The digit time (Tdisp) can be set with the FLDC mode register 2  
(address 003716). The Tscan and digit/segment OFF time (Toff)  
can be set with the FLDC mode register 1 (address 003616).  
Note that flickering will occur if the repetition frequency (1/  
(Tdisp number of digits + Tscan)) is an integral multiple of the  
digit timing Tdisp.  
Key-scan  
If key-scan is performed with the segment during the key-scan  
blanking period Tscan, take the following sequence:  
1. Write “0” to the bit 0 (automatic display control bit) of the  
FLDC mode register 2 (address 003716).  
2. Set the port corresponding to the segment for key-scan to  
the output port.  
FLD Automatic Display Start  
To perform FLD automatic display, set the following registers.  
• Port P0 segment/digit switch register  
• Port P2 digit/port switch register  
• Port P8 segment/port switch register  
• Port PA segment/port switch register  
• FLDC mode register 1  
3. Perform the key-scan.  
4. After the key-scan is performed, write “1” (automatic display  
mode) to the bit 0 of FLDC mode register 2 (address  
003716).  
• FLDC mode register 2  
Note on performance of key-scan in the above 1 to 4 sequence.  
1. Do not write “0” to the bit 1 of FLDC mode register 2 (ad-  
dress 003716).  
• FLD data pointer  
Automatic display mode is selected by writing “1” to the bit 0 of  
the FLDC mode register 2 (address 003716), and the auto-  
matic display is started by writing “1” to the bit 1.  
2. Do not write “1” to the port corresponding to the digit.  
Tdisp  
Tscan  
G n  
G n-1  
G n-2  
G 1  
Segment  
output  
Segment setting by software  
FLD digit interrupt occurs  
FLD blanking interrupt occurs  
at the falling edge of the last digit  
at the rising edge of each digit  
Digit  
Segment  
Toff  
Tdisp  
Fig. KA-7 FLDC timing  
39  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
determination register (address 003016), and the remote control  
interrupt request occurs. Immediately after that, the 8-bit binary  
up counter is cleared to “0016”. The 8-bit binary up counter con-  
tinues to count up again from “0016”.  
INTERRUPT INTERVAL DETERMINATION  
FUNCTION  
The 3819 group builds in an interrupt interval determination circuit.  
This interrupt interval determination circuit has an 8-bit binary up  
counter. Using this counter, it determines a duration of time from  
the rising transition (falling transition) of an input signal pulse on  
the P42/INT2 pin to the rising transition (falling transition) of the  
signal pulse that is input next.  
When count value reaches “FF16”, the 8-bit binary up counter  
stops counting up. Then, simultaneously when the next counter  
sampling clock is input, the counter sets value “FF16” to the in-  
terrupt interval determination register to generate the counter  
overflow interrupt request.  
How to determine the interrupt interval is described below.  
Enable the INT2 interrupt by setting the bit 2 of the interrupt con-  
trol register 1 (address 003E16). Select the rising interval or  
falling interval by setting the bit 2 of the interrupt edge selection  
register (address 003A16).  
Noise filter  
The P42/INT2 pin builds in the noise filter.  
The noise filter operation is described below.  
Select the sampling clock of the input signal with the bits 2 and  
3 of the interrupt interval determination control register. When  
not using the noise filter, set “002”.  
Set the bit 0 of the interrupt interval determination control regis-  
ter (address 003116) to “1” (interrupt interval determination  
operating).  
The P42/INT2 input signal is sampled in synchronization with the  
selected clock. When sampling the same level signal in series,  
the signal is recognized as the interrupt signal, and the interrupt  
request occurs.  
Select the sampling clock of 8-bit binary up counter by setting  
the bit 1 of the interrupt interval determination control register.  
When writing “0”, f(XIN)/256 is selected (the sampling interval:  
32 µs at f(XIN) = 8.38 MHz) ; when “1”, f(XIN)/512 is selected (the  
sampling interval: 64 µs at f(XIN) = 8.38 MHz).  
When setting the bit 4 of interrupt interval determination control  
register to “1”, the interrupt request can occur at both rising and  
falling edges.  
When the signal of polarity which is set on the INT2 pin (rising or  
falling transition) is input, the 8-bit binary up counter starts  
counting up of the selected counter sampling clock.  
When using the noise filter, set the minimum pulse width of the  
INT2 input signal to 2 cycles or more.  
Note : In the low-speed mode (CM7=1), the interrupt interval determination  
function can not operate.  
When the signal of polarity above is input again, the value of  
the 8-bit binary up counter is transferred to the interrupt interval  
The counter  
f(XIN)/256  
sampling clock  
The counter overflow  
f(XIN)/512  
8-bit binary up counter  
interrupt request or  
selection bit  
remote control interrupt request  
Noise filter  
INT2 interrupt input  
Interrupt interval  
determination register  
address 003016  
One-sided/both-sided  
detection selection bit  
Noise filter sampling  
clock selection bit  
1/256  
1/128  
1/64  
Data bus  
Divider  
f(XIN)  
Fig. DE-1 Block diagram of interrupt interval datermination circuit  
40  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b7  
b0  
Interrupt interval determination control register  
(IIDCON : address 003116  
)
Interrupt interval determination circuit operating selection bit  
0 : Stopped  
1 : Operating  
Counter sampling clock selection bit  
0 : f(XIN)/256  
1 : f(XIN)/512  
Noise filter sampling clock selection bits(INT  
2)  
0 0 : Filter stop  
0 1 : f(XIN)/64  
1 0 : f(XIN)/128  
1 1 : f(XIN)/256  
One-sided/both-sided edge detection selection bit  
0 : One-sided edge detection  
1 : Both-sided edge detection  
Not used (return “0” when read)  
Fig. DE-2 Structure of interrupt interval determination control register  
(When IIDCON4 = “0”)  
Noise filter  
Sampling clock  
INT2 pin  
Acceptance  
of interrupt  
Counter  
sampling clock  
FF  
FE  
N
6
5
4
8-bit binary  
3
3
2
2
1
1
1
up counter value  
0
0
0
0
6
3
FF  
Interrupt interval  
determination  
register value  
N
6
3
FF  
Remote control  
interrupt request  
Remote control  
interrupt request  
Remote control  
interrupt request  
Counter overflow  
interrupt request  
Fig. DE-3 Interrupt interval determination operation example (at rising edge active)  
41  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(When IIDCON4 = “1”)  
Noise filter  
Sampling clock  
INT2 pin  
Acceptance  
of interrupt  
Counter  
sampling clock  
FF  
FE  
N
4
3
8-bit binary  
up counter value  
2
1
1
1
1
1
1
0
0
0
0
0
0
0
N
1
4
1
1
1
FF  
Interrupt interval  
determination  
register value  
N
4
1
1
1
FF  
Remote Remote  
control control  
interrupt interrupt  
request request  
Remote Remote Remote Remote  
control control control control  
interrupt interrupt interrupt interrupt  
request request request request  
Counter  
overflow  
interrupt  
request  
Fig. DE-4 Interrupt interval determination operation example (at both-sided edge active)  
42  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ZERO CROSS DETECTION CIRCUIT  
The zero cross detection circuit compares the voltage applied to  
P45/INT1/ZCR pin and VSS. The result can be read from the zero  
cross detection circuit input bit (bit 7) of the zero cross detection  
control register. It is set to “1” when the input voltage is higher than  
VSS and to “0” when it is lower than VSS. The input signal to P45/  
INT1/ZCR pin can select to either pass through the zero cross de-  
tection comparator or not to do.  
V
CC  
100V AC  
R
1
R2  
P45/INT1/ZCR  
When using 100 V AC as input signal, insert an external circuit be-  
tween it and P45/INT1/ZCR pin. Set the input current limiting  
resistors used in the external circuit to a value which satisfies the  
absolute maximum rating of port P45.  
VSS  
Fig. JE-1 External circuit example for zero cross detection  
b7  
b0  
Zero cross detection control register  
(ZCRCON : address 003916  
)
Zero cross detection ON/OFF selection bit  
0 : Without passing through zero cross detection comparator  
1 : Passing through zero cross detection comparator  
Not used (returns “0” when read)  
Noise filter sampling clock selection bits (INT  
1)  
b3 b2  
0 0 : Not use noise filter  
0 1 : f(XIN)/64 or f(XCIN)/64  
1 0 : f(XIN)/128 or f(XCIN)/128  
1 1 : f(XIN)/256 or f(XCIN)/256  
One-sided/both-sided edge detection selection bit  
0 : One-sided edge detection  
1 : Both-sided edge detection  
Not used (return “0” when read)  
Zero cross detection circuit input bit (read only)  
0 : Less than 0 V  
1 : 0 V or more  
Fig. JE-2 Structure of zero cross detection control register  
P45/INT1/ZCR  
Zero cross detection  
ON/OFF selection bit  
When not using  
the filter  
“0”  
“1”  
INT  
1/ZCR  
Rising/falling  
edge switch  
When using  
the filter  
interrupt request  
Zero cross detection  
circuit input bit  
Noise filter  
Zero cross detection comparator  
One-sided/both-sided edge  
detection selection bit  
Noise filter sampling clock  
selection bit  
1/256  
1/28  
1/64  
f(XCIN  
f(XIN  
)
)
Divider  
Fig. JE-3 Block diagram of zero cross detection circuit  
43  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
the noise filter. When passing through the noise filter, either both-  
sided edge detection or one-sided edge detection can be selected  
as the interrupt request generating source. The zero cross detec-  
tion control register is used for this selection. Furthermore, switch  
between rising edge and falling edge is performed with the bit 1 of  
the interrupt edge selection register (address 003A16).  
NOISE FILTER  
The noise filter uses a sampling clock to remove the noise compo-  
nent digitally from the input signal of P45/INT1/ZCR pin. The  
sampling clock can be selected from 8 µs, 16 µs, or 32 µs (at  
f(XIN)= 8.38 MHz) and this is used to change the noise component  
to be removed. It is also possible to generate an internal trigger  
and INT1/ZCR interrupt request directly without passing through  
One-sided/both-sided edge  
detection selection bit  
(bit 4 of ZCRCON)  
“0”  
INT  
1/ZCR  
C
“1”  
Input signal from  
P4 /INT /ZCR pin  
A
B
interrupt request  
D
Q
S
R
Q
D
Q
D
Q
5
1
C
C
C
R
R
R
Sampling clock  
RESET  
Fig. JE-4 Noise filter circuit diagram  
RESET  
Sampling clock  
P4 /INT /ZCR  
Input signal from  
5
1
0 V  
(Note 1)  
P4  
5/INT  
1
/ZCR pin  
A
B
C
(Note 2)  
Switched with  
bit 4 of ZCRCON  
(one-sided edge)  
(both-sided edge)  
INT  
1/ZCR  
interrupt request  
Notes 1  
2
: Ignored this because of treating this as noise  
: INT /ZCR interrupt request occurs  
1
Fig. JE-5 Timing of noise filter circuit  
44  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
RESET CIRCUIT  
Poweron  
To reset the microcomputer, RESET pin should be held at an “L”  
level for 2 µs or more. Then the RESET pin is returned to an “H”  
level (the power source voltage should be between 2.8 V and 5.5  
V, and XIN oscillation is stable), reset is released. In order to give  
the XIN clock time to stabilize, internal operation does not begin  
until after about 4000 XIN clock cycles (256 cycles of f(XIN)/16) are  
completed. After the reset is completed, the program starts from  
the address contained in address FFFD16 (high-order) and ad-  
dress FFFC16 (low-order). Make sure that the reset input voltage  
is 0.5 V or less for 2.8 V of VCC.  
Power source  
(Note)  
voltage  
RESET  
VCC  
0 V  
Reset input  
voltage  
0.2VCC  
0 V  
Note : Reset release voltage : VCC = 2.8 V  
RESET  
VCC  
Power source voltage  
detection circuit  
Fig. VB-2 Example of reset circuit  
X
IN  
φ
RESET  
Internal reset  
Address  
?
?
?
?
FFFC  
FFFD  
ADH, ADL  
Reset address from  
vector table  
?
?
?
?
AD  
L
ADH  
Data  
SYNC  
Notes 1 : f(XIN) and f(φ) are in the relationship : f(XIN) = 8  
f(φ)  
about 4000  
IN clock cycles  
2 : A question mark (?) indicates an undefined state that depends on the previous state.  
X
Fig. VB-2 Reset sequence  
45  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Address  
Register contents  
0016  
Address  
Register contents  
(1) Port P0  
(000016  
(000216  
(000416  
(000516  
(000616  
(000816  
(000916  
)
• • •  
• • •  
• • •  
• • •  
• • •  
• • •  
• • •  
• • •  
• • •  
• • •  
• • •  
• • •  
• • •  
• • •  
• • •  
• • •  
• • •  
• • •  
• • •  
• • •  
• • •  
• • •  
(31) Timer 6  
(002516  
(002816  
(002916  
)
• • •  
• • •  
• • •  
• • •  
• • •  
• • •  
• • •  
FF16  
0016  
0016  
0016  
0016  
1016  
0016  
(2) Port P1  
)
)
)
)
)
)
(32) Timer 12 mode register  
(33) Timer 34 mode register  
(34) Timer 56 mode register  
(35) D-A conversion register  
(36) AD/DA control register  
(37) Interrupt interval determination  
control register  
)
)
0016  
(3) Port P2  
0016  
(4) Port P2 direction register  
(5) Port P3  
(002A16  
(002B16  
(002C16  
)
)
)
0F16  
0016  
(6) Port P4  
0016  
(7) Port P4 direction register  
(8) Port P5  
(003116  
(003216  
(003316  
(003416  
)
0016  
(000A16  
(000B16  
)
)
0016  
(9) Port P5 direction register  
(10) Port P6  
(38) Port P0 segment/digit  
switch register  
)
• • •  
• • •  
• • •  
0016  
0016  
0016  
0016  
(000C16  
(000D16  
)
)
0016  
(11) Port P6 direction register  
(12) Port P7  
(39) Port P2 digit/port switching  
register  
)
)
0016  
(000E16  
(000F16  
)
0016  
(13) Port P7 direction register  
(14) Port P8  
)
(40) Port P8 segment/port  
switch register  
0016  
(001016  
(001116  
(001216  
(001416  
(001516  
(001616  
(001716  
(001916  
)
)
)
)
)
)
)
)
0016  
(15) Port P8 direction register  
(16) Port P9  
(41) Port PA segment/port switch  
(42) FLDC mode register 1  
(43) FLDC mode register 2  
(44) Zero cross detection control  
register  
(003516  
(003616  
(003716  
(003916  
)
)
)
)
• • •  
• • •  
• • •  
• • •  
0016  
0016  
0016  
0016  
0016  
0016  
(17) Port PA  
0016  
(18) Port PA direction register  
(19) Port PB  
0016  
0016  
(20) Port PB direction register  
(21) Serial I/O1 control register  
(45) Interrupt edge selection register (003A16  
)
)
)
)
)
• • •  
• • •  
• • •  
• • •  
• • •  
• • •  
0016  
0016  
(46) CPU mode register  
(003B16  
(003C16  
(003D16  
(003E16  
0016  
0 1 0 0 1 0 0 0  
(22) Serial I/O automatic transfer (001A16  
control register  
)
(47) Interrupt request register 1  
(48) Interrupt request register 2  
(49) Interrupt control register 1  
(50) Interrupt control register 2  
(51) Processor status register  
(52) Program counter  
0016  
0016  
0016  
0016  
0016  
(23) Serial I/O automatic transfer (001C16  
interval register  
)
)
• • •  
0016  
(003F16  
)
(24) Serial I/O2 control register  
(25) Serial I/O3 control register  
(26) Timer 1  
(001D16  
(001E16  
• • •  
• • •  
• • •  
• • •  
• • •  
• • •  
• • •  
(PS) • • •  
✕ ✕ ✕ ✕ ✕  
0016  
0016  
FF16  
0116  
FF16  
FF16  
FF16  
1 ✕ ✕  
)
(PC  
H
)
)
• • •  
• • •  
Contents of address FFFD16  
Contents of address FFFC16  
(002016  
(002116  
(002216  
(002316  
(002416  
)
(PC  
L
(27) Timer 2  
)
(28) Timer 3  
)
)
)
(29) Timer 4  
(30) Timer 5  
Note : : Undefined  
The contents of all other registers and RAM are undefined at reset, so set their initial values.  
Fig. VB-3 Internal status at reset  
46  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Oscillation Control  
CLOCK GENERATING CIRCUIT  
Stop mode  
The 3819 group has two built-in oscillation circuits. An oscillation  
circuit can be formed by connecting a resonator between XIN and  
XOUT (XCIN and XCOUT). Use the circuit constants in accordance  
with the resonator manufacturer's recommended values. No exter-  
nal resistor is needed between XIN and XOUT since a feed-back  
resistor exists on-chip. However, an external feed-back resistor is  
needed between XCIN and XCOUT.  
If the STP instruction is executed, the internal clock φ stops at an  
“H” level, and XIN and XCIN oscillators stop. Timer 1 is set to “FF16”  
and timer 2 is set to “0116”. Either XIN or XCIN divided by 16 is in-  
put to timer 1, and the output of timer 1 is connected to timer 2.  
The bits of the timer 12 mode register are cleared to “0”. Set the  
timer 1 and timer 2 interrupt enable bits to disabled (“0”) before ex-  
ecuting the STP instruction.  
Immediately after poweron, only the XIN oscillation circuit starts  
oscillation, and XCIN and XCOUT pins function as I/O ports.  
Oscillator restarts at reset or when an external interrupt is re-  
ceived, but the internal clock φ is not supplied to the CPU until  
timer 1 underflows. When using an external resonator, it is neces-  
sary for oscillating to stabilize.  
Frequency Control  
Middle-speed mode  
The internal clock φ is the frequency of XIN divided by 8. After re-  
set, this mode is selected.  
Wait mode  
If the WIT instruction is executed, the internal clock φ stops at an  
“H” level. The states of XIN and XCIN are the same as the state be-  
fore executing the WIT instruction. The internal clock restarts at  
reset or when an interrupt is received. Since the oscillator does  
not stop, normal operation can be started immediately after the  
clock is restarted.  
High-speed mode  
The internal clock φ is half the frequency of XIN.  
Low-speed mode  
The internal clock φ is half the frequency of XCIN.  
Note : If you switch the mode between middle/high-speed and low-speed,  
stabilize both XIN and XCIN oscillations. The sufficient time is re-  
quired for the XCIN oscillation to stabilize, especially immediately  
after poweron and at returning from stop mode. When switching the  
mode between middle/high-speed and low-speed, set the frequency  
on condition that f(XIN) > 3·f(XCIN).  
XCIN  
XCOUT  
X
IN  
XOUT  
Low-power dissipation mode  
When stopping the main clock XIN in the low-speed mode, the low-  
power dissipation operation starts. To stop the main clock, set the  
bit 5 of the CPU mode register to “1”. When the main clock XIN is  
restarted, set enough time for oscillation to stabilize by program-  
ming.  
R
f
R
d
C
CIN  
C
COUT  
C
IN  
COUT  
The low-power dissipation operation 200 µA or less (at f(XIN) = 32  
kHz) can be realized by reducing the XCIN–XCOUT drivability. To re-  
duce the XCIN–XCOUT drivability, clear the bit 3 of the CPU mode  
register to “0”. At reset or when executing the STP instruction, this  
bit is set to “1” and strong drivability is selected to help the oscilla-  
tion to start.  
Fig. WA-1 Ceramic resonator external circuit  
XCIN  
XCOUT  
XIN  
XOUT  
Open  
Open  
External oscillation External oscillation  
circuit or pulse circuit  
V
V
CC  
SS  
V
CC  
SS  
V
Fig. WA-2 External clock input circuit  
47  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
XCIN  
XCOUT  
“0”  
“1”  
Port XC switch bit (Note 3)  
Timer 1 count  
source selection  
bit (Note 2)  
Internal system clock selection bit  
(Note 1, 3)  
X
IN  
X
OUT  
Low-speed mode  
“1”  
“1”  
Timer 1  
“0”  
1/2  
1/4  
1/2  
“0”  
Middle/  
High-speed mode  
Main clock division ratio selection bit (Note 3)  
Middle-speed mode  
Timing φ  
(Internal clock)  
High-speed mode  
or Low-speed mode  
Main clock stop bit (Note 3)  
Q
S
R
S
R
Q
Q
S
R
WIT  
instruction  
STP instruction  
STP instruction  
Reset  
Interrupt disable flag I  
Interrupt request  
Notes 1 : When selecting the low-speed mode, set the port X  
2 : Refer to the structure of timer 12 mode register.  
C
switch bit to “1”.  
3 : Refer to the structure of CPU mode register (next page).  
Fig. WA-3 Clock generating circuit block diagram  
48  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Reset  
Middle-speed mode (φ =1 MHz)  
CM7 = 0 (8 MHz selected)  
CM6 = 1 (Middle-speed)  
CM5 = 0 (XIN oscillating)  
CM4 = 0 (32 kHz stopped)  
High-speed mode (φ = 4 MHz)  
CM7 = 0 (8 MHz selected)  
CM6 = 0 (High-speed)  
CM5 = 0 (XIN oscillating)  
CM4 = 0 (32 kHz stopped)  
CM6  
CM6  
CM6  
CM6  
“1”  
“1”  
“1”  
“1”  
“0”  
“0”  
“0”  
“0”  
Middle-speed mode (φ =1 MHz)  
CM7 = 0 (8 MHz selected)  
CM6 = 1 (Middle-speed)  
CM5 = 0 (XIN oscillating)  
CM4 = 1 (32 kHz oscillating)  
High-speed mode (φ = 4 MHz)  
CM7 = 0 (8 MHz selected)  
CM6 = 0 (High-speed)  
CM5 = 0 (XIN oscillating)  
CM4 = 1 (32 kHz oscillating)  
Low-speed mode (φ =16 kHz)  
CM7 = 1 (32 kHz selected)  
CM6 = 1 (Middle-speed)  
CM5 = 0 (XIN oscillating)  
CM4 = 1 (32 kHz oscillating)  
Low-speed mode (φ = 16 kHz)  
CM7 = 1 (32 kHz selected)  
CM6 = 0 (High-speed)  
CM5 = 0 (XIN oscillating)  
CM4 = 1 (32 kHz oscillating)  
b7  
b0  
CPU mode register  
(CPUM (CM) : address 003B16)  
CM4 : Port XC switch bit  
0 : I/O port function  
1 : XCIN-XCOUT oscillating function  
CM5 : Main clock (XIN-XOUT) stop bit  
0 : Oscillating  
1 : Stopped  
CM6 : Main clock division ratio selection bit  
0 : f(XIN)/2 (high-speed mode)  
1 : f(XIN)/8 (middle-speed mode)  
Low power dissipation mode (φ =16 kHz)  
CM7 = 1 (32 kHz selected)  
CM6 = 1 (Middle-speed)  
Low power dissipation mode (φ =16 kHz)  
CM7 = 1 (32 kHz selected)  
CM6 = 0 (High-speed)  
CM7 : Internal system clock selection bit  
0 : XIN-XOUT selected  
(middle/high-speed mode)  
1 : XCIN-XCOUT selected  
CM5 = 1 (XIN stopped)  
CM4 = 1 (32 kHz oscillating)  
CM5 = 1 (XIN stopped)  
CM4 = 1 (32 kHz oscillating)  
(low-speed mode)  
Notes 1 : Switch the mode by the allows shown between the mode blocks. (Do not switch between the mode directly without an allow.)  
2 : The all modes can be switched to the stop mode or the wait mode and return to the source mode when the stop mode or the wait mode  
is ended.  
Timer operates in the wait mode.  
3 : When the stop mode is released in middle/high-speed mode, a delay of approximately 0.5 ms occurs automatically by timer 1.  
4 : When the stop mode is released in low-speed mode, a delay of approximately 0.125 s occurs automatically by timer 1.  
5 : The example assumes that 8 MHz is being applied to the XIN pin and 32 kHz to the XCIN pin. φ indicates the internal clock.  
Fig. WA-4 State transitions of system clock  
49  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
NOTES ON PROGRAMMING  
Serial I/O  
Processor Status Register  
When using an external clock, input “H” to the external clock input  
pin and clear the serial I/O interrupt request bit before executing  
serial I/O transfer and serial I/O automatic transfer.  
The contents of the processor status register (PS) after a reset are  
undefined, except for the interrupt disable flag (I) which is “1”. Af-  
ter a reset, initialize flags which affect program execution. In  
particular, it is essential to initialize the index X mode (T) and the  
decimal mode (D) flags because of their effect on calculations.  
When using the internal clock, set the synchronous clock to inter-  
nal clock, then clear the serial I/O interrupt request bit before  
executing a serial I/O transfer and serial I/O automatic transfer.  
Interrupts  
A-D Converter  
The contents of the interrupt request bits do not change immedi-  
ately after they have been written. After writing to an interrupt  
request register, execute at least one instruction before performing  
a BBC or BBS instruction.  
The comparator uses internal capacitors whose charge will be lost  
if the clock frequency is too low.  
Make sure that f(XIN) is 500 kHz or more during an A-D conver-  
sion.  
Do not execute the STP or WIT instruction during an A-D conver-  
sion.  
Decimal Calculations  
• To calculate in decimal notation, set the decimal mode flag (D)  
to “1”, then execute an ADC or SBC instruction. Only the ADC  
and SBC instructions yield proper decimal results. After execut-  
ing an ADC or SBC instruction, execute at least one instruction  
before executing a SEC, CLC, or CLD instruction.  
• In decimal mode, the values of the negative (N), overflow (V),  
and zero (Z) flag are invalid.  
Instruction Execution Time  
The instruction execution time is obtained by multiplying the fre-  
quency of the internal clock φ by the number of cycles needed to  
execute an instruction.  
The number of cycles required to execute an instruction is shown  
in the list of machine instructions. The frequency of the internal  
clock φ is half of the XIN or XCIN frequency.  
The carry flag can be used to indicate whether a carry or borrow  
has occurred. Initialize the carry flag before each calculation.  
Clear the carry flag before an ADC and set the flag before an  
SBC.  
At the STP Instruction Release  
At the STP instruction release, all bits of the timer 12 mode regis-  
ter are cleared.  
Timers  
The XCOUT drivability selection bit (the CPU mode register) is set  
to “1” (high drive) in order to start oscillating.  
If a value n (between 0 and 255) is written to a timer latch, the fre-  
quency division ratio is 1/(n+1).  
Multiplication and Division Instructions  
• The index X mode (T) and the decimal mode (D) flags do not af-  
fect the MUL and DIV instruction.  
• The execution of these instructions does not change the con-  
tents of the processor status register.  
Ports  
The contents of the port direction registers cannot be read. The  
following cannot be used:  
• the data transfer instruction (LDA, etc.)  
• the operation instruction when the index X mode flag (T) is “1”  
• the addressing mode which uses the value of a direction register  
as an index  
• the bit-test instruction (BBC or BBS, etc.) to a direction register  
• the read-modify-write instructions (ROR, CLB, or SEB, etc.) to a  
direction register.  
Use instructions such as LDM and STA, etc., to set the port direc-  
tion registers.  
50  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
DATA REQUIRED FOR MASK ORDERS  
The following are necessary when ordering a mask ROM produc-  
tion:  
PROM PROGRAMMING METHOD  
The built-in PROM of the blank One Time PROM version and built-  
in EPROM version can be read or programmed with a general-  
purpose PROM programmer using a special programming  
adapter.  
(1) Mask ROM Order Confirmation Form  
(2) Mark Specification Form  
(3) Data to be written to ROM, in EPROM form (three identical  
copies)  
Package  
100P6S-A  
100D0  
Name of Programming Adapter  
PCA4738F-100A  
PCA4738L-100A  
Set the address of PROM programmer in the user ROM area.  
The PROM of the blank One Time PROM version is not tested or  
screened in the assembly process and following processes. To en-  
sure proper operation after writing, the procedure shown in Figure  
XC-1 is recommended to verify programming.  
Programming with  
PROM Programmer  
Screening (Caution)  
(150°C for 40 hours)  
Verification with  
PROM Programmer  
Functional check in target device  
Caution : The screening temperature is far higher than  
the storage temperature. Never expose to  
150°C exceeding 100 hours.  
Fig. XC-1 Programming and testing of One Time PROM version  
51  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Symbol  
Conditions  
Ratings  
Unit  
V
VCC  
VEE  
Power source voltage  
–0.3 to 7.0  
Pull-down power source voltage  
Input voltage P24–P27, P41–P44, P46, P47,  
V
CC –40 to VCC +0.3  
–0.3 to VCC +0.3  
–0.3 to VCC +0.3  
V
VI  
V
P50–P57, P60–P67, P70–P77, PB0–PB3  
VI  
VI  
VI  
VI  
Input voltage P40, P45  
V
V
V
V
Input voltage P80–P87, PA0–PA7  
V
CC –40 to VCC +0.3  
–0.3 to VCC +0.3  
–0.3 to VCC +0.3  
All voltages are based on VSS.  
Output transistors are cut off.  
Input voltage RESET, XIN  
Input voltage XCIN  
Output voltage P00–P07, P10–P17, P20–P23,  
P30–P37, P80–P87, P90–P97, PA0–PA7  
Output voltage P24–P27, P41–P44, P46, P47, P50–P57,  
P60–P67, P70–P77, PB0–PB3, XOUT,  
XCOUT  
VO  
V
CC –40 to VCC +0.3  
V
VO  
–0.3 to VCC  
600  
+0.3  
V
Ta = 25°C  
Pd  
Power dissipation  
mW  
°C  
Topr  
Tstg  
Operating temperature  
–10 to 85  
–40 to 125  
Storage temperature  
°C  
RECOMMENDED OPERATING CONDITIONS (Vcc = 4.0 to 5.5 V, Ta = –10 to 85°C, unless otherwise noted)  
Limits  
Symbol  
VCC  
Unit  
Parameter  
Min.  
4.0  
Typ.  
5.0  
5.0  
0
Max.  
5.5  
High-speed mode  
V
V
V
V
V
V
V
V
Power source voltage  
Power source voltage  
Middle/Low-speed mode  
2.8  
5.5  
VSS  
VEE  
VCC–38  
2.0  
VCC  
VCC  
VCC  
Pull-down power source voltage  
Analog reference voltage (when using A-D converter)  
Analog reference voltage (when using D-A converter)  
Analog power source voltage  
VREF  
3.0  
AVSS  
VIA  
0
0
VCC  
VCC  
Analog input voltage AN0–AN15  
“H” input voltage  
P40–P47, P50–P57, P60–P67,  
P70–P77, PB0–PB3  
P24–P27  
VIH  
0.75VCC  
V
“H” input voltage  
“H” input voltage  
“H” input voltage  
“H” input voltage  
“L” input voltage  
VIH  
VIH  
VIH  
VIH  
0.4VCC  
0.8VCC  
0.8VCC  
0.8VCC  
VCC  
VCC  
VCC  
VCC  
V
V
V
V
P80–P87, PA0–PA7  
RESET  
XIN, XCIN  
P40–P47, P50–P57, P60–P67,  
P70–P77, PB0–PB3  
P24–P27  
VIL  
0
0.25VCC  
V
“L” input voltage  
“L” input voltage  
“L” input voltage  
“L” input voltage  
VIL  
VIL  
VIL  
VIL  
0
0
0
0
0.16VCC  
0.2VCC  
0.2VCC  
0.2VCC  
V
V
V
V
P80–P87, PA0–PA7  
RESET  
XIN, XCIN  
52  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
RECOMMENDED OPERATING CONDITIONS (Vcc = 4.0 to 5.5 V, Ta = –10 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
mA  
mA  
Min.  
Typ.  
Max.  
–240  
“H” total peak output current P00–P07, P10–P17, P20–P27,  
P30–P37, P80–P87, P90–P97,  
(Note 1)  
PA6, PA7  
ΣIOH(peak)  
ΣIOL(peak)  
“H” total peak output current P41–P44, P46, P47, P50–P57,  
P60–P67, P70–P77, PA0–PA5,  
–60  
(Note 1)  
PB0–PB3  
“L” total peak output current P24–P27, P41–P44, P46, P47,  
P50–P57, P60–P67, P70–P77,  
100  
–120  
–30  
mA  
mA  
mA  
(Note 1)  
PB0–PB3  
“H” total average output current P00–P07, P10–P17, P20–P27,  
P30–P37, P80–P87, P90–P97,  
(Note 1)  
PA6, PA7  
ΣIOH(avg)  
ΣIOL(avg)  
“H” total average output current P41–P44, P46, P47, P50–P57,  
P60–P67, P70–P77, PA0–PA5,  
(Note 1)  
PB0–PB3  
“L” total average output current P24–P27, P41–P44, P46, P47,  
P50–P57, P60–P67, P70–P77,  
50  
mA  
mA  
mA  
(Note 1)  
“H” peak output current  
PB0–PB3  
P00–P07, P10–P17, P20–P23,  
IOH(peak)  
IOH(peak)  
IOL(peak)  
P30–P37, P80–P87, P90–P97,  
–40  
–10  
(Note 2)  
“H” peak output current  
PA0–PA7  
P24–P27, P41–P44, P46, P47,  
P50–P57, P60–P67, P70–P77,  
(Note 2)  
“L” peak output current  
PB0–PB3  
P24–P27, P41–P44, P46, P47,  
P50–P57, P60–P67, P70–P77,  
10  
mA  
mA  
mA  
(Note 3)  
PB0–PB3  
“H” average output current  
P00–P07, P10–P17, P20–P23,  
IOH(avg)  
IOH(avg)  
IOL(avg)  
P30–P37, P80–P87, P90–P97,  
–18  
–5.0  
(Note 3)  
PA0–PA7  
“H” average output current  
P24–P27, P41–P44, P46, P47,  
P50–P57, P60–P67, P70–P77,  
(Note 3)  
PB0–PB3  
“L” average output current  
P24–P27, P41–P44, P46, P47,  
P50–P57, P60–P67, P70–P77,  
5.0  
mA  
(Note 3)  
PB0–PB3  
f(CNTR0)  
f(CNTR1)  
f(XIN)  
Clock input frequency for timers 2 and 4  
250  
kHz  
(duty cycle 50%)  
8.4  
50  
MHz  
kHz  
Main clock input oscillation frequency (Note 4)  
Sub-clock input oscillation frequency (Note 4, 5)  
f(XCIN)  
32.768  
Notes 1 : The total output current is the sum of all the currents flowing through all the applicable ports.The total average  
current is an average value measured over 100 ms. The total peak current is the peak value of all the currents.  
2 : The peak output current is the peak current flowing in each port.  
3 : The average output current in an average value measured over 100 ms.  
4 : When the oscillation frequency has a 50% duty cycle.  
5 : When using the microcomputer in low-speed operation mode, set the sub-clock input oscillation frequency on  
condition that f(XCIN) < f(XIN)/3.  
53  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS (Vcc = 4.0 to 5.5 V, Ta = –10 to 85°C, unless otherwise noted)  
Limits  
Typ.  
Unit  
V
Symbol  
Parameter  
Test conditions  
Min.  
Max.  
“H” output voltage P00–P07, P10–P17, P20–P23,  
P30–P37, P80–P87, P90–P97,  
PA0–PA7  
VOH  
IOH=–18 mA  
VCC–2.0  
“H” output voltage P24–P27, P41–P44, P46, P47,  
P50–P57, P60–P67, P70–P77,  
PB0–PB3  
V
VOH  
IOH=–10 mA  
IOL=10 mA  
VCC–2.0  
“L” output voltage P24–P27, P41–P44, P46, P47,  
P50–P57, P60–P67, P70–P77,  
PB0–PB3  
V
V
VOL  
2.0  
5.0  
When using a non-port  
function  
Hysteresis INT0–INT4, SIN1, SIN2, SIN3, SCLK11,  
SCLK2, SCLK3, CS, CNTR0, CNTR1  
VT+–VT–  
0.4  
VT+–VT–  
VT+–VT–  
0.5  
0.5  
Hysteresis RESET, XIN  
Hysteresis XCIN  
“H” input current P24–P27, P40–P47, P50–P57,  
V
V
VI=VCC  
IH  
µA  
P60–P67, P70–P77, PB0–PB3  
µA  
µA  
µA  
“H” input current P80–P87, PA0–PA7 (Note)  
IH  
5.0  
5.0  
VI=VCC  
VI=VCC  
VI=VCC  
“H” input current RESET, XCIN  
“H” input current XIN  
IH  
IH  
4.0  
“L” input current P24–P27, P40–P47, P50–P57,  
VI=VSS  
–5.0  
µA  
IL  
IL  
P60–P67, P70–P77, PB0–PB3  
“L” input current P80–P87, PA0–PA7 (Note)  
µA  
µA  
µA  
VI=VSS  
VI=VSS  
VI=VSS  
–5.0  
–5.0  
“L” input current RESET, XCIN  
“L” input current XIN  
IL  
IL  
–4.0  
500  
Output load current P00–P07, P10–P17, P20–P23,  
P30–P37, P90–P97  
VEE=VCC–36 V, VOL=VCC,  
Output transistors “off”  
µA  
µA  
V
150  
900  
–10  
ILOAD  
ILEAK  
VRAM  
Output leakage current P00–P07, P10–P17,  
P20–P23, P30–P37,  
VEE=VCC–38 V,  
VOL=VCC–38 V,  
P80–P87, P90–P97,  
Output transistors “off”  
PA0–PA7  
When clock is stopped  
RAM hold voltage  
2
5.5  
Note : Except when reading ports P8 or PA.  
54  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS (VCC = 4.0 to 5.5 V, Ta = –10 to 85°C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
mA  
Min.  
Max.  
15  
• High-speed mode  
f(XIN) = 8.4 MHz  
7.5  
1
f(XCIN) = 32 kHz  
Output transistors “off”  
• High-speed mode  
f(XIN) = 8.4 MHz (in WIT state)  
f(XCIN) = 32 kHz  
mA  
mA  
mA  
Output transistors “off”  
• Middle-speed mode  
f(XIN) = 8.4 MHz  
3
f(XCIN) = stopped  
Output transistors “off”  
• Middle-speed mode  
f(XIN) = 8.4 MHz (in WIT state)  
f(XCIN) = stopped  
1
Output transistors “off”  
Power source current  
ICC  
• Low-speed mode  
f(XIN) = stopped, f(XCIN) = 32 kHz  
Low-power dissipation mode set  
(CM3) = 0  
60  
200  
µA  
µA  
Output transistors “off”  
• Low-speed mode  
f(XIN) = stopped  
(in WIT state)  
f(XCIN) = 32 kHz  
20  
40  
Low-power dissipation mode set  
(CM3) = 0  
Output transistors “off”  
Increase at A-D converter operating  
f(XIN) = 8.4 MHz  
mA  
mA  
0.6  
Increase at zero cross detection  
(P45 = VCC)  
1
All oscillation stopped  
Ta = 25°C  
0.1  
1
µA  
(in STP state)  
Ta = 85°C  
10  
Output transistors “off”  
55  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ZERO CROSS DETECTION INPUT CHARACTERISTICS  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –10 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
50, 60 1000  
100  
Max.  
fZCR  
VT  
Input frequency of zero cross detection  
Hz  
Voltage error of zero cross detection distinction  
50 Hz or 60 Hz  
mV  
–100  
0
1/fZCR  
100V AC  
P45/INT1/ZCR  
clamp correction  
input waveform  
5.7 V  
0 V  
VI  
VT  
– 0.7 V  
Zero cross detection  
comparator output  
Fig. ZA-1 Zero cross detection input characteristics  
A-D CONVERTER CHARACTERISTICS  
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –10 to 85°C, high-speed operation mode f(XIN) = 500 kHz to 8.4 MHz, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
±1  
Max.  
8
Resolution  
Bits  
LSB  
tc (φ)  
µA  
Absolute accuracy (excluding quantization error)  
Conversion time  
VCC = VREF = 5.12 V  
VREF = 5 V  
±2.5  
50  
TCONV  
49  
50  
IVREF  
IIA  
Reference power source input current  
Analog port input current  
150  
0.5  
35  
200  
5.0  
µA  
RLADDER  
Ladder resistor  
kΩ  
D-A CONVERTER CHARACTERISTICS  
(VCC = 4.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 3.0 to VCC, Ta = –10 to 85°C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Typ.  
2.5  
Max.  
8
Resolution  
Bits  
%
1.0  
2.5  
3
VCC = 4.0 to 5.5 V  
VCC = 3.0 to 5.5 V  
Absolute accuracy  
%
Tsu  
Setting time  
µs  
RO  
Output resistor  
kΩ  
mA  
1
4
IVREF  
Reference power source input current (Note)  
3.2  
Note : Exclude currents flowing through the A-D converter ladder resistor  
56  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMING REQUIREMENTS (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –10 to 85°C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Unit  
Min.  
2.0  
119  
30  
Max.  
tW(RESET)  
tC(XIN)  
Reset input “L” pulse width  
µs  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
Main clock input cycle time (XIN input)  
Main clock input “H” pulse width  
Main clock input “L” pulse width  
Sub-clock input cycle time (XCIN input)  
Sub-clock input “H” pulse width  
Sub-clock input “L” pulse width  
CNTR0, CNTR1 input cycle time  
CNTR0, CNTR1 input “H” pulse width  
CNTR0, CNTR1 input “L” pulse width  
INT0–INT4 input “H” pulse width  
INT0–INT4 input “L” pulse width  
Serial I/O clock input cycle time  
Serial I/O clock input “H” pulse width  
Serial I/O clock input “L” pulse width  
Serial I/O input setup time  
tWH(XIN)  
tWL(XIN)  
30  
tC(XcIN)  
20  
tWH(XcIN)  
tWL(XcIN)  
tC(CNTR)  
tWH(CNTR)  
tWL(CNTR)  
tWH(INT)  
tWL(INT)  
5.0  
5.0  
4.0  
1.6  
1.6  
80  
80  
tC(SCLK)  
1.0  
400  
400  
200  
200  
tWH(SCLK)  
tWL(SCLK)  
tsu(SCLK–SIN)  
th(SCLK–SIN)  
Serial I/O input hold time  
SWITCHING CHARACTERISTICS (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –10 to 85°C, unless otherwise noted)  
Limits  
Symbol  
tWH(SCLK)  
tWL(SCLK)  
Parameter  
Test conditions  
CL = 100 pF  
Unit  
Min.  
Typ.  
Max.  
tc(SCLK)  
/2–160  
ns  
ns  
Serial I/O clock output “H” pulse width  
Serial I/O clock output “L” pulse width  
tc(SCLK)  
/2–160  
CL = 100 pF  
td(SCLK–SOUT)  
tv(SCLK–SOUT)  
tr(SCLK)  
Serial I/O output delay time  
ns  
ns  
ns  
ns  
0.2tc(SCLK  
)
Serial I/O output hold time  
0
Serial I/O clock output rising time  
Serial I/O clock output falling time  
CL = 100 pF  
CL = 100 pF  
40  
40  
tf(SCLK)  
High-breakdown-voltage P-channel open-  
drain output rising time (Note 1)  
CL = 100 pF  
VEE = VCC –36 V  
tr(Pch–strg)  
ns  
55  
High-breakdown-voltage P-channel open-  
drain output falling time (Note 2)  
CL = 100 pF  
VEE = VCC –36 V  
tf(Pch–weak)  
µs  
1.8  
Notes 1: When the bit 7 of the FLDC mode register 1 (address 003616) is at “0”.  
2: When the bit 7 of the FLDC mode register 1 (address 003616) is at “1”.  
P0, P1, P2  
0–P23,  
P56  
P52  
P66  
/SCLK3  
/SCLK2  
,
,
High-breakdown-voltage  
P-channel open-drain  
output port  
P3, P8, P9, PA  
Serial clock output port  
/SCLK11  
C
L
CL  
(Note)  
V
EE  
Note : Ports P8 and PA need external resistors.  
Fig. ZA-2 Circuit for measuring output switching characteristics  
57  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMING DIAGRAM  
tC(CNTR)  
t
WH(CNTR)  
tWL(CNTR)  
0.8VCC  
CNTR  
CNTR  
0
1
0.2VCC  
tWH(INT)  
tWL(INT)  
0.8VCC  
0.2VCC  
INT  
INT  
0
4
-
tW(RESET)  
RESET  
0.8VCC  
0.2VCC  
tC(XIN)  
t
WH(XIN  
)
tWL(XIN)  
0.8VCC  
X
IN  
0.2VCC  
t
C(XCIN)  
t
WH(XCIN  
)
tWL(XCIN)  
0.8VCC  
X
CIN  
0.2VCC  
t
C(SCLK)  
t
f
t
r
t
WL(SCLK  
)
tWH(SCLK)  
0.8VCC  
SCLK  
0.2VCC  
tsu(SIN-S  
CLK  
)
th(SCLK-SIN)  
0.8VCC  
0.2VCC  
S
IN  
t
d(SCLK  
-SOUT)  
tv(SCLK-SOUT)  
S
OUT  
58  
MITSUBISHI MICROCOMPUTERS  
3819 Group  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Keep safety first in your circuit designs!  
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with  
semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of  
substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any  
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.  
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples  
contained in these materials.  
All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi  
Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor  
product distributor for the latest product information before purchasing a product listed herein.  
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact  
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for  
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.  
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.  
If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the  
approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.  
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.  
© 1998 MITSUBISHI ELECTRIC CORP.  
New publication, effective Jan. 1998.  
Specifications subject to change without notice.  
REVISION DESCRIPTION LIST  
3819 GROUP DATA SHEET  
Rev.  
Rev.  
date  
Revision Description  
No.  
1.0 First Edition  
980109  
(1/1)  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY