M38034M4H-XXXSP [MITSUBISHI]

Microcontroller, 8-Bit, MROM, MELPS740 CPU, 16.8MHz, CMOS, PDIP64, 0.750 INCH, PLASTIC, SDIP-64;
M38034M4H-XXXSP
型号: M38034M4H-XXXSP
厂家: Mitsubishi Group    Mitsubishi Group
描述:

Microcontroller, 8-Bit, MROM, MELPS740 CPU, 16.8MHz, CMOS, PDIP64, 0.750 INCH, PLASTIC, SDIP-64

时钟 微控制器 光电二极管 外围集成电路
文件: 总83页 (文件大小:1009K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Power source voltage  
DESCRIPTION  
The 3803 group (Spec. H) is the 8-bit microcomputer based on the  
In high-speed mode  
At 16.8 MHz oscillation frequency ............................ 4.5 to 5.5 V  
At 12.5 MHz oscillation frequency ............................ 4.0 to 5.5 V  
At 8.4 MHz oscillation frequency) ............................. 2.7 to 5.5 V  
At 4.2 MHz oscillation frequency .............................. 2.2 to 5.5 V  
At 2.1 MHz oscillation frequency) ............................. 2.0 to 5.5 V  
In middle-speed mode  
740 family core technology.  
The 3803 group (Spec. H) is designed for household products, of-  
fice automation equipment, and controlling systems that require  
analog signal processing, including the A-D converter and D-A  
converters.  
At 16.8 MHz oscillation frequency ............................ 4.5 to 5.5 V  
At 12.5 MHz oscillation frequency ............................ 2.7 to 5.5 V  
At 8.4 MHz oscillation frequency) ............................. 2.2 to 5.5 V  
At 6.3 MHz oscillation frequency) ............................. 1.8 to 5.5 V  
In low-speed mode  
FEATURES  
Basic machine-language instructions ...................................... 71  
Minimum instruction execution time ................................ 0.24 µs  
(at 16.8 MHz oscillation frequency)  
Memory size  
At 32 kHz oscillation frequency................................. 1.8 to 5.5 V  
Power dissipation  
ROM ............................................................... 16 K to 32 K bytes  
RAM ................................................................. 640 to 1024 bytes  
Programmable input/output ports ............................................ 56  
Software pull-up resistors ................................................. Built-in  
Interrupts  
In high-speed mode ................................................ 40 mW (typ.)  
(at 16.8 MHz oscillation frequency, at 5 V power source voltage)  
In low-speed mode ................................................... 45 µW (typ.)  
(at 32 kHz oscillation frequency, at 3 V power source voltage)  
Operating temperature range....................................20 to 85°C  
Packages  
21 sources, 16 vectors .................................................................  
(external 8, internal 12, software 1)  
Timers ........................................................................... 16-bit 1  
8-bit 4  
SP .................................................. 64P4B (64-pin 750 mil SDIP)  
FP ....................................... 64P6N-A (64-pin 14 14 mm QFP)  
HP ..................................... 64P6Q-A (64-pin 10 10 mm LQFP)  
KP ............................... 64P6U-A () (64-pin 14 14 mm LQFP)  
(with 8-bit prescaler)  
Watchdog timer ............................................................ 16-bit 1  
Serial I/O...................... 8-bit 2 (UART or Clock-synchronized)  
8-bit 1 (Clock-synchronized)  
PWM ............................................8-bit 1 (with 8-bit prescaler)  
A-D converter ............................................. 10-bit 16 channels  
(8-bit reading enabled)  
D-A converter ................................................. 8-bit 2 channels  
LED direct drive port .................................................................. 8  
Clock generating circuit..................................... Built-in 2 circuits  
(connect to external ceramic resonator or quartz-crystal oscillator)  
Currently support products are listed below.  
Table 1 Support products  
ROM size (bytes)  
Product name  
RAM size (bytes)  
640  
Package  
Remarks  
ROM size for User in (  
)
M38034M4H-XXXSP  
M38034M4H-XXXFP  
M38034M4H-XXXHP  
M38034M4H-XXXKP*  
M38037M6H-XXXSP  
M38037M6H-XXXFP  
M38037M6H-XXXHP  
M38037M6H-XXXKP*  
M38037M8H-XXXSP  
M38037M8H-XXXFP  
M38037M8H-XXXHP  
M38037M8H-XXXKP*  
64P4B  
64P6N-A  
64P6Q-A  
64P6U-A  
64P4B  
16384  
(16254)  
Mask ROM version  
24576  
(24446)  
64P6N-A  
64P6Q-A  
64P6U-A  
64P4B  
1024  
1024  
Mask ROM version  
Mask ROM version  
32768  
(32638)  
64P6N-A  
64P6Q-A  
64P6U-A  
*: KP package is under development.  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PIN CONFIGURATION (TOP VIEW)  
32  
49  
P20(LED0)  
P3  
7
/SRDY3  
/SCLK3  
31  
30  
29  
28  
P3  
6
P21(LED1)  
P22(LED2)  
P23(LED3)  
P24(LED4)  
P25(LED5)  
P26(LED6)  
50  
51  
52  
53  
54  
55  
56  
P3  
5
/T  
X
D
3
3
P3  
4
/R  
X
D
P3  
3
2
2
P3  
27  
26  
25  
24  
P3  
1
/DA  
M38034M4H-XXXFP/HP/KP (*)  
P3  
0/DA1  
P27(LED7)  
VCC  
57 M38037M6H-XXXFP/HP/KP (*)  
V
SS  
23  
22  
21  
V
REF  
58  
X
OUT  
M38037M8H-XXXFP/HP/KP (*)  
AVSS  
/AN  
XIN  
59  
60  
61  
62  
P6  
7
7
P4  
P4  
0
/INT40/XCOUT  
20  
19  
18  
17  
P6  
P6  
P6  
6/AN  
5/AN  
4
/AN  
6
5
4
1/INT00/XCIN  
RESET  
CNVSS  
63  
64  
P63/AN3  
P42/INT1  
Package type : 64P6N-A/64P6Q-A/64P6U-A (*)  
Fig. 1 3803 group (Spec. H) pin configuration  
Table 2 List of package (Spec. H)  
ROM size (bytes)  
ROM size for User in (  
16384 (16254)  
24576 (24446)  
32768 (32638)  
16384 (16254)  
24576 (24446)  
32768 (32638)  
16384 (16254)  
24576 (24446)  
32768 (32638)  
Product name  
Package  
Remarks  
RAM size (bytes)  
)
M38034M4H-XXXFP  
640  
1024  
1024  
640  
Mask ROM version  
M38037M6H-XXXFP  
64P6N-A  
M38037M8H-XXXFP  
M38034M4H-XXXHP  
M38037M6H-XXXHP  
64P6Q-A  
1024  
1024  
640  
Mask ROM version  
Mask ROM version  
M38037M8H-XXXHP  
M38034M4H-XXXKP  
64P6U-A (*)  
M38037M6H-XXXKP  
M38037M8H-XXXKP  
1024  
1024  
*: KP package is under development.  
2
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PIN CONFIGURATION (TOP VIEW)  
1
2
3
4
5
6
7
8
9
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VCC  
VREF  
AVSS  
P30/DA1  
P31/DA2  
P32  
P67/AN7  
P66/AN6  
P65/AN5  
P64/AN4  
P63/AN3  
P62/AN2  
P61/AN1  
P60/AN0  
P57/INT3  
P56/PWM  
P55/CNTR1  
P54/CNTR0  
P53/SRDY2  
P52/SCLK2  
P51/SOUT2  
P50/SIN2  
P33  
P34/RXD3  
P35/TXD3  
P36/SCLK3  
P37/SRDY3  
P00/AN8  
P01/AN9  
P02/AN10  
P03/AN11  
P04/AN12  
P05/AN13  
P06/AN14  
P07/AN15  
P10/INT41  
P11/INT01  
P12  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
P13  
P14  
P15  
P16  
P47/SRDY1/CNTR2  
P46/SCLK1  
P45/TXD1  
P44/RXD1  
P43/INT2  
P42/INT1  
CNVSS  
RESET  
P41/INT00/XCIN  
P40/INT40/XCOUT  
XIN  
P17  
P20(LED0)  
P21(LED1)  
P22(LED2)  
P23(LED3)  
P24(LED4)  
P25(LED5)  
P26(LED6)  
P27(LED7)  
XOUT  
VSS  
Package type : 64P4B  
Fig. 2 3803 group (Spec. H) pin configuration  
Table 3 List of package (Spec. H)  
ROM size (bytes)  
Product name  
Package  
Remarks  
RAM size (bytes)  
ROM size for User in (  
16384 (16254)  
24576 (24446)  
32768 (32638)  
)
M38034M4H-XXXSP  
640  
1024  
1024  
Mask ROM version  
M38037M6H-XXXSP  
64P4B  
M38037M8H-XXXSP  
3
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
FUNCTIONAL BLOCK  
Fig. 3 Functional block diagram  
4
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PIN DESCRIPTION  
Table 4 Pin description  
Functions  
Pin  
Name  
Function except a port function  
•Apply voltage of 2.7 V – 5.5 V to Vcc, and 0 V to Vss.  
•This pin controls the operation mode of the chip.  
•Normally connected to VSS.  
Power source  
CNVSS input  
VCC, VSS  
CNVSS  
Reference voltage  
•Reference voltage input pin for A-D and D-A converters.  
•Analog power source input pin for A-D and D-A converters.  
•Connect to VSS.  
VREF  
AVSS  
Analog power source  
Reset input  
Clock input  
•Reset input pin for active “L”.  
RESET  
XIN  
•Input and output pins for the clock generating circuit.  
•Connect a ceramic resonator or quartz-crystal oscillator between the XIN and XOUT pins to set  
the oscillation frequency.  
XOUT  
Clock output  
I/O port P0  
•When an external clock is used, connect the clock source to the XIN pin and leave the XOUT  
pin open.  
•8-bit CMOS I/O port.  
P00/AN8–  
P07/AN15  
•A-D converter input pin  
•I/O direction register allows each pin to be individually  
programmed as either input or output.  
•Interrupt input pin  
P10/INT01 I/O port P1  
P11/INT41  
•CMOS compatible input level.  
•CMOS 3-state output structure.  
•Pull-up control is enabled in a bit unit.  
P12–P17  
P20–P27  
I/O port P2  
I/O port P3  
•P20–P27 are enabled to output large current for LED drive.  
P3  
P3  
0
1
/DA  
/DA  
1
2
•8-bit CMOS I/O port.  
•D-A converter input pin  
•I/O direction register allows each pin to be individually  
programmed as either input or output.  
P32, P33  
P34/RxD3  
P35/TxD3  
P36/SCLK3  
P37/SRDY3  
•P30, P31, P34–P37 are CMOS 3-state output structure.  
•P32, P33 are N-channel open-drain output structure.  
•Serial I/O3 function pin  
•Pull-up control of P30, P31, P34–P37 is enabled in a bit  
unit.  
•Interrupt input pin  
•8-bit CMOS I/O port.  
P40/INT40/  
XCOUT  
I/O port P4  
•Sub-clock generating I/O pin  
(resonator connected)  
•I/O direction register allows each pin to be individually  
programmed as either input or output.  
P41/INT00/  
XCIN  
•CMOS compatible input level.  
•Interrupt input pin  
P42/INT1  
P43/INT2  
P44/RxD1  
P45/TxD1  
P46/SCLK1  
•CMOS 3-state output structure.  
•Pull-up control is enabled in a bit unit.  
•Serial I/O1 function pin  
P47/SRDY1  
/CNTR2  
•Serial I/O1, timer Z function pin  
•Serial I/O2 function pin  
I/O port P5  
•8-bit CMOS I/O port.  
P50/SIN2  
•I/O direction register allows each pin to be individually  
programmed as either input or output.  
P51/SOUT2  
P52/SCLK2  
__________  
•CMOS compatible input level.  
P53/SRDY2  
P54/CNTR0  
P55/CNTR1  
P56/PWM  
P57/INT3  
•CMOS 3-state output structure.  
•Pull-up control is enabled in a bit unit.  
•Timer X function pin  
•Timer Y function pin  
•PWM output pin  
•Interrupt input pin  
P60/AN0–  
P67/AN7  
I/O port P6  
•A-D converter input pin  
5
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PART NUMBERING  
Product name  
M3803 7  
M
8
H XXX SP  
Package type  
SP : 64P4B  
FP : 64P6N-A  
HP : 64P6Q-A  
KP : 64P6U-A (*)  
ROM number  
: standard  
Omitted in the flash memory version.  
H: Minner spec. change product  
ROM size  
: 4096 bytes  
: 8192 bytes  
: 12288 bytes  
: 16384 bytes  
: 20480 bytes  
: 24576 bytes  
: 28672 bytes  
: 32768 bytes  
9: 36864 bytes  
A: 40960 bytes  
B: 45056 bytes  
C: 49152 bytes  
D: 53248 bytes  
E: 57344 bytes  
F: 61440 bytes  
1
2
3
4
5
6
7
8
The first 128 bytes and the last 2 bytes of ROM are reserved areas ; they  
cannot be used as a users ROM area.  
However, they can be programmed or erased in the flash memory version,  
so that the users can use them.  
Memory type  
M : Mask ROM version  
F : Flash memory version  
RAM size  
0: 192 bytes  
1: 256 bytes  
2: 384 bytes  
3: 512 bytes  
4: 640 bytes  
5 : 768 bytes  
6 : 896 bytes  
7 : 1024 bytes  
8 : 1536 bytes  
9 : 2048 bytes  
Fig. 4 Part numbering  
*: KP package is under development.  
6
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
GROUP EXPANSION  
Packages  
64P4B ......................................... 64-pin shrink plastic-molded DIP  
64P6N-A .................................... 0.8 mm-pitch plastic molded QFP  
64P6Q-A .................................. 0.5 mm-pitch plastic molded LQFP  
64P6U-A ............................. 0.8 mm-pitch plastic molded LQFP (*)  
GROUP EXPANSION  
Mitsubishi plans to expand the 3803 group (Spec. H) as follows.  
Memory Type  
Support for mask ROM version.  
Memory Size  
Mask ROM size ................................................. 16 K to 32 K bytes  
RAM size ............................................................ 640 to 1024 bytes  
Memory Expansion Plan  
As of Dec. 2002  
M38039MF  
ROM size (bytes)  
: Under development  
: Mass production  
ROM  
exteranal  
M38039FF  
60K  
M38039FFH  
48K  
32K  
28K  
24K  
20K  
M38039MC  
M38037M8H  
M38037M6H  
M38034M4H  
16K  
12K  
8K  
384  
512  
640  
768  
896  
1024  
1152  
1280  
1408  
1536  
2048  
3072  
4032  
RAM size (bytes)  
Note 1: Products under development or planning: the development schedule and specification may be revised  
without notice. The development of planning products may be stopped.  
Note 2: See the 3803/3804 group data sheet about 3803 group products other than 3803 group (spec. H) because  
there are electrical characteristics differences and so on.  
Fig. 5 Memory expansion plan  
*: KP(64P6U-A) package is under development.  
7
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
FUNCTIONAL DESCRIPTION  
[Stack Pointer (S)]  
CENTRAL PROCESSING UNIT (CPU)  
The 3803 group (Spec. H) uses the standard 740 Family instruc-  
tion set. Refer to the table of 740 Family addressing modes and  
machine instructions or the 740 Family Software Manual for de-  
tails on the instruction set.  
The stack pointer is an 8-bit register used during subroutine calls  
and interrupts. This register indicates start address of stored area  
(stack) for storing registers during subroutine calls and interrupts.  
The low-order 8 bits of the stack address are determined by the  
contents of the stack pointer. The high-order 8 bits of the stack ad-  
dress are determined by the stack page selection bit. If the stack  
page selection bit is 0, the high-order 8 bits becomes 0016. If  
the stack page selection bit is 1, the high-order 8 bits becomes  
0116.  
Machine-resident 740 Family instructions are as follows:  
The FST and SLW instructions cannot be used.  
The STP, WIT, MUL, and DIV instructions can be used.  
[Accumulator (A)]  
The operations of pushing register contents onto the stack and  
popping them from the stack are shown in Figure 10.  
Store registers other than those described in Figure 10 with pro-  
gram when the user needs them during interrupts or subroutine  
calls.  
The accumulator is an 8-bit register. Data operations such as data  
transfer, etc., are executed mainly through the accumulator.  
[Index Register X (X)]  
The index register X is an 8-bit register. In the index addressing  
modes, the value of the OPERAND is added to the contents of  
register X and specifies the real address.  
[Program Counter (PC)]  
The program counter is a 16-bit counter consisting of two 8-bit  
registers PCH and PCL. It is used to indicate the address of the  
next instruction to be executed.  
[Index Register Y (Y)]  
The index register Y is an 8-bit register. In partial instruction, the  
value of the OPERAND is added to the contents of register Y and  
specifies the real address.  
b0  
b7  
A
Accumulator  
b0  
b7  
X
Index register X  
b7  
b0  
Y
Index register Y  
b7  
b0  
S
Stack pointer  
b15  
b7  
b7  
b0  
PCH  
PCL  
Program counter  
b0  
N V T B D I Z C  
Processor status register (PS)  
Carry flag  
Zero flag  
Interrupt disable flag  
Decimal mode flag  
Break flag  
Index X mode flag  
Overflow flag  
Negative flag  
Fig.6 740 Family CPU register structure  
8
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
On-going Routine  
Execute JSR  
Interrupt request  
(Note)  
M (S) (PCH)  
(S) (S) 1  
Push return address  
on stack  
M (S) (PCH)  
(S) (S) 1  
M (S) (PCL)  
(S) (S)1  
Subroutine  
M (S) (PCL)  
(S) (S) 1  
Push return address  
on stack  
Push contents of processor  
status register on stack  
M (S) (PS)  
(S) (S) 1  
Interrupt  
Service Routine  
I Flag is set from 0to 1”  
Execute RTS  
(S) (S) + 1  
Fetch the jump vector  
Execute RTI  
(S) (S) + 1  
POP return  
address from stack  
POP contents of  
processor status  
register from stack  
(PCL) M (S)  
(S) (S) + 1  
(PCH) M (S)  
(PS)  
M (S)  
(S) (S) + 1  
(PCL) M (S)  
(S) (S) + 1  
(PCH) M (S)  
POP return  
address  
from stack  
Note: Condition for acceptance of an interrupt  
Interrupt enable flag is 1”  
Interrupt disable flag is 0”  
Fig. 7 Register push and pop at interrupt generation and subroutine call  
Table 5 Push and pop instructions of accumulator or processor status register  
Push instruction to stack  
Pop instruction from stack  
Accumulator  
PHA  
PHP  
PLA  
PLP  
Processor status register  
9
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Bit 4: Break flag (B)  
[Processor status register (PS)]  
The B flag is used to indicate that the current interrupt was  
generated by the BRK instruction. The BRK flag in the processor  
status register is always 0. When the BRK instruction is used to  
generate an interrupt, the processor status register is pushed  
onto the stack with the break flag set to 1.  
The processor status register is an 8-bit register consisting of 5  
flags which indicate the status of the processor after an arithmetic  
operation and 3 flags which decide MCU operation. Branch opera-  
tions can be performed by testing the Carry (C) flag , Zero (Z) flag,  
Overflow (V) flag, or the Negative (N) flag. In decimal mode, the Z,  
V, N flags are not valid.  
Bit 5: Index X mode flag (T)  
When the T flag is 0, arithmetic operations are performed  
between accumulator and memory. When the T flag is 1, direct  
arithmetic operations and direct data transfers are enabled  
between memory locations.  
Bit 0: Carry flag (C)  
The C flag contains a carry or borrow generated by the arithmetic  
logic unit (ALU) immediately after an arithmetic operation. It can  
also be changed by a shift or rotate instruction.  
Bit 1: Zero flag (Z)  
Bit 6: Overflow flag (V)  
The V flag is used during the addition or subtraction of one byte  
of signed data. It is set if the result exceeds +127 to -128. When  
the BIT instruction is executed, bit 6 of the memory location  
operated on by the BIT instruction is stored in the overflow flag.  
Bit 7: Negative flag (N)  
The Z flag is set if the result of an immediate arithmetic operation  
or a data transfer is 0, and cleared if the result is anything other  
than 0.  
Bit 2: Interrupt disable flag (I)  
The N flag is set if the result of an arithmetic operation or data  
transfer is negative. When the BIT instruction is executed, bit 7 of  
the memory location operated on by the BIT instruction is stored  
in the negative flag.  
The I flag disables all interrupts except for the interrupt  
generated by the BRK instruction.  
Interrupts are disabled when the I flag is 1.  
Bit 3: Decimal mode flag (D)  
The D flag determines whether additions and subtractions are  
executed in binary or decimal. Binary arithmetic is executed when  
this flag is 0; decimal arithmetic is executed when it is 1.  
Decimal correction is automatic in decimal mode. Only the ADC  
and SBC instructions can execute decimal arithmetic.  
Table 6 Set and clear instructions of each bit of processor status register  
N flag  
C flag  
SEC  
CLC  
Z flag  
I flag  
SEI  
D flag  
SED  
CLD  
B flag  
T flag  
SET  
CLT  
V flag  
Set instruction  
CLI  
CLV  
Clear instruction  
10  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
[CPU Mode Register (CPUM)] 003B16  
The CPU mode register contains the stack page selection bit, etc.  
The CPU mode register is allocated at address 003B16.  
b7  
b0  
CPU mode register  
1
(
CPUM : address 003B16)  
Processor mode bits  
b1 b0  
0
0
1
1
0 : Single-chip mode  
1 :  
0 : Not available  
1 :  
Stack page selection bit  
0 : 0 page  
1 : 1 page  
Fix this bit to “1”.  
Port XC switch bit  
0 : I/O port function (stop oscillating)  
1 : XCIN–XCOUT oscillating function  
Main clock (XIN–XOUT) stop bit  
0 : Oscillating  
1 : Stopped  
Main clock division ratio selection bits  
b7 b6  
0
0
1
1
0 : φ = f(XIN)/2 (high-speed mode)  
1 : φ = f(XIN)/8 (middle-speed mode)  
0 : φ = f(XCIN)/2 (low-speed mode)  
1 : Not available  
Fig.8 Structure of CPU mode register  
11  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
MISRG  
Middle-speed mode automatic switch by program  
(1) Bit 0 of address 001016: Oscillation stabilizing time set af-  
The middle-speed mode can also be automatically switched by  
program while operating in low-speed mode. By setting the  
middle-speed automatic switch start bit (bit 3) of MISRG (address  
001016) to 1in the condition that the middle-speed mode auto-  
matic switch set bit is 1while operating in low-speed mode, the  
MCU will automatically switch to middle-speed mode. In this case,  
the oscillation stabilizing time of the main clock can be selected by  
the middle-speed automatic switch wait time set bit (bit 2) of  
MISRG (address 001016).  
ter STP instruction released bit  
When the MCU stops the clock oscillation by the STP instruction  
and the STP instruction has been released by an external interrupt  
source, usually, the fixed values of Timer 1 and Prescaler 12  
(Timer 1 = 0116, Prescaler 12 = FF16) are automatically reloaded  
in order for the oscillation to stabilize. The user can inhibit the au-  
tomatic setting by setting 1to bit 0 of MISRG (address 001016).  
However, by setting this bit to 1, the previous values, set just be-  
fore the STP instruction was executed, will remain in Timer 1 and  
Prescaler 12. Therefore, you will need to set an appropriate value  
to each register, in accordance with the oscillation stabilizing time,  
before executing the STP instruction.  
Figure 9 shows the structure of MISRG.  
(2) Bits 1, 2, 3 of address 001016: Middle-speed Mode Auto-  
matic Switch Function  
In order to switch the clock mode of an MCU which has a sub-  
clock, the following procedure is necessary:  
set CPU mode register (003B16) --> start main clock oscillation -->  
wait for oscillation stabilization --> switch to middle-speed mode  
(or high-speed mode).  
However, the 3803 group (Spec. H) has the built-in function which  
automatically switches from low to middle-speed mode by pro-  
gram.  
b7  
b0  
MISRG  
(MISRG : address 001016  
)
Oscillation stabilizing time set after STP instruction  
released bit  
0: Automatically set 0116to Timer 1, FF16to  
Prescaler 12  
1: Automatically set disabled  
Middle-speed mode automatic switch set bit  
0: Not set automatically  
1: Automatic switching enabled (Note)  
Middle-speed mode automatic switch wait time set bit  
0: 4.5 to 5.5 machine cycles  
1: 6.5 to 7.5 machine cycles  
Middle-speed mode automatic switch start bit  
(Depending on program)  
0: Invalid  
1: Automatic switch start (Note)  
Not used (return 0when read)  
(Do not write 1to this bit)  
Note: When automatic switch to middle-speed mode from low-speed mode occurs,  
the values of CPU mode register (3B16) change.  
Fig. 9 Structure of MISRG  
12  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
MEMORY  
Zero Page  
Special Function Register (SFR) Area  
The Special Function Register area in the zero page contains con-  
trol registers such as I/O ports and timers.  
Access to this area with only 2 bytes is possible in the zero page  
addressing mode.  
Special Page  
RAM  
Access to this area with only 2 bytes is possible in the special  
RAM is used for data storage and for stack area of subroutine  
page addressing mode.  
calls and interrupts.  
ROM  
The first 128 bytes and the last 2 bytes of ROM are reserved for  
device testing and the rest is a user area for storing programs.  
Interrupt Vector Area  
The interrupt vector area contains reset and interrupt vectors.  
RAM area  
RAM size  
(bytes)  
Address  
XXXX16  
000016  
SFR area  
192  
256  
384  
512  
640  
768  
896  
1024  
1536  
2048  
00FF16  
013F16  
01BF16  
023F16  
02BF16  
033F16  
03BF16  
043F16  
063F16  
083F16  
Zero page  
004016  
010016  
RAM  
XXXX16  
Not used  
0FF016  
SFR area  
0FFF16  
Not used  
YYYY16  
ROM area  
Reserved ROM area  
(128 bytes)  
ROM size  
(bytes)  
Address  
YYYY16  
Address  
ZZZZ16  
ZZZZ16  
4096  
8192  
F00016  
E00016  
D00016  
C00016  
B00016  
A00016  
900016  
800016  
700016  
600016  
500016  
400016  
300016  
200016  
100016  
F08016  
E08016  
D08016  
C08016  
B08016  
A08016  
908016  
808016  
708016  
608016  
508016  
408016  
308016  
208016  
108016  
12288  
16384  
20480  
24576  
28672  
32768  
36864  
40960  
45056  
49152  
53248  
57344  
61440  
ROM  
FF0016  
FFDC16  
Special page  
Interrupt vector area  
FFFE16  
Reserved ROM area  
FFFF16  
Fig. 10 Memory map diagram  
13  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Prescaler 12 (PRE12)  
Timer 1 (T1)  
Port P0 (P0)  
000016  
000116  
000216  
002016  
002116  
002216  
Port P0 direction register (P0D)  
Port P1 (P1)  
Timer 2 (T2)  
Port P1 direction register (P1D)  
000316  
000416  
000516  
002316 Timer XY mode register (TM)  
Prescaler X (PREX)  
002416  
Port P2 (P2)  
Port P2 direction register (P2D)  
Port P3 (P3)  
002516  
Timer X (TX)  
Prescaler Y (PREY)  
000616  
000716  
000816  
000916  
002616  
002716  
002816  
002916  
Port P3 direction register (P3D)  
Timer Y (TY)  
Port P4 (P4)  
Timer Z low-order (TZL)  
Port P4 direction register (P4D)  
Port P5 (P5)  
Timer Z high-order (TZH)  
000A16  
000B16  
000C16  
000D16  
002A16 Timer Z mode register (TZM)  
Port P5 direction register (P5D)  
002B16  
002C16  
PWM control register (PWMCON)  
PWM prescaler (PREPWM)  
Port P6 (P6)  
Port P6 direction register (P6D)  
002D16 PWM register (PWM)  
002E16  
Timer 12, X count source selection register (T12XCSS)  
Timer Y, Z count source selection register (TYZCSS)  
000E16  
000F16  
002F16  
003016  
003116  
Baud rate generator 3 (BRG3)  
Transmit/Receive buffer register 3 (TB3/RB3)  
001016 MISRG  
001116  
Serial I/O3 status register (SIO3STS)  
Serial I/O3 control register (SIO3CON)  
Reserved  
001216  
001316  
001416  
001516  
003216  
Reserved ✽  
Reserved ✽  
Reserved ✽  
Reserved ✽  
Reserved ✽  
Reserved ✽  
003316 UART3 control register (UART3CON)  
AD/DA control register (ADCON)  
003516 A-D conversion register 1 (AD1)  
003416  
D-A1 conversion register (DA1)  
D-A2 conversion register (DA2)  
A-D conversion register 2 (AD2)  
001616  
001716  
003616  
003716  
003816  
001816 Transmit/Receive buffer register 1 (TB1/RB1)  
001916 Serial I/O1 status register (SIO1STS)  
003916 Interrupt source selection register (INTSEL)  
003A16 Interrupt edge selection register (INTEDGE)  
Serial I/O1 control register (SIO1CON)  
UART1 control register (UART1CON)  
001A16  
001B16  
CPU mode register (CPUM)  
003B16  
003C16  
Interrupt request register 1 (IREQ1)  
Interrupt request register 2 (IREQ2)  
001C16 Baud rate generator (BRG1)  
001D16 Serial I/O2 control register (SIO2CON)  
001E16 Watchdog timer control register (WDTCON)  
003D16  
003E16 Interrupt control register 1 (ICON1)  
001F16  
003F16  
Interrupt control register 2 (ICON2)  
Serial I/O2 register (SIO2)  
Port P0 pull-up control register (PULL0)  
Port P1 pull-up control register (PULL1)  
0FF016  
0FF116  
0FF216 Port P2 pull-up control register (PULL2)  
0FF316  
Port P3 pull-up control register (PULL3)  
Port P4 pull-up control register (PULL4)  
Port P5 pull-up control register (PULL5)  
Port P6 pull-up control register (PULL6)  
0FF416  
0FF516  
0FF616  
Reserved area: Do not write any data to these addresses,  
because these areas are reserved.  
Fig. 11 Memory map of special function register (SFR)  
14  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
I/O PORTS  
comes an input pin. When 1is written to that bit, that pin be-  
comes an output pin.  
The I/O ports have direction registers which determine the input/  
output direction of each individual pin. Each bit in a direction reg-  
ister corresponds to one pin, and each pin can be set to be input  
port or output port.  
If data is read from a pin which is set to output, the value of the  
port output latch is read, not the value of the pin itself. Pins set to  
input are floating. If a pin set to input is written to, only the port  
output latch is written to and the pin remains floating.  
When 0is written to the bit corresponding to a pin, that pin be-  
Table 7 I/O port function  
Related SFRs  
Ref.No.  
(1)  
Name  
I/O Structure  
CMOS compatible input level  
CMOS 3-state output  
Non-Port Function  
A-D converter input  
External interrupt input  
Pin  
P00/AN8P07/AN15  
P10/INT41  
AD/DA control register  
Port P0  
Port P1  
Interrupt edge selection  
register  
(2)  
P11/INT01  
P12P17  
(3)  
Port P2  
Port P3  
P20/LED0–  
P27/LED7  
CMOS compatible input level  
CMOS 3-state output  
D-A converter output  
Serial I/O3 function I/O  
External interrupt input  
AD/DA control register  
(4)  
(5)  
P30/DA1  
P31/DA2  
CMOS compatible input level  
N-channel open-drain output  
CMOS compatible input level  
CMOS 3-state output  
P32  
P33  
Serial I/O3 control  
register  
(6)  
(7)  
P34/RxD3  
P35/TxD3  
P36/SCLK3  
P37/SRDY3  
P40/INT00/XCIN  
P41/INT40/XCOUT  
UART3 control register  
(8)  
(9)  
Interrupt edge selection  
register  
(10)  
(11)  
CMOS compatible input level  
CMOS 3-state output  
Port P4  
Sub-clock generating  
circuit  
CPU mode register  
Interrupt edge selection  
register  
(2)  
P42/INT1  
External interrupt input  
P43/INT2  
(6)  
(7)  
Serial I/O1 control  
register  
P44/RxD1  
Serial I/O1 function I/O  
P45/TxD1  
UART1 control register  
(8)  
P46/SCLK1  
P47/SRDY1/CNTR2  
(12)  
Serial I/O1 function I/O  
Timer Z function I/O  
Serial I/O1 control  
register  
Timer Z mode register  
Serial I/O2 control  
register  
P50/SIN2  
Port P5  
Serial I/O2 function I/O  
(13)  
(14)  
(15)  
(16)  
(17)  
CMOS compatible input level  
CMOS 3-state output  
P51/SOUT2  
P52/SCLK2  
P53/SRDY2  
P54/CNTR0  
P55/CNTR1  
P56/PWM  
P57/INT3  
Timer X, Y function I/O  
Timer XY mode register  
PWM control register  
PWM output  
(18)  
(2)  
External interrupt input  
Interrupt edge selection  
register  
P60/AN0P67/AN7  
A-D converter input  
AD/DA control register  
(1)  
Port P6  
CMOS compatible input level  
CMOS 3-state output  
Notes 1: Refer to the applicable sections how to use double-function ports as function I/O ports.  
2: Make sure that the input level at each pin is either 0 V or VCC during execution of the STP instruction.  
When an input level is at an intermediate potential, a current will flow from VCC to VSS through the input-stage gate.  
15  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(1) Ports P0, P6  
(2) Ports P10, P11, P42, P43, P57  
Pull-up control bit  
Pull-up control bit  
Direction  
register  
Direction  
register  
Data bus  
Port latch  
Data bus  
Port latch  
A-D converter input  
Analog input pin  
selection bit  
Interrupt input  
(3) Ports P1  
2
to P1  
7
, P2  
(4) Ports P30, P31  
Pull-up control bit  
Pull-up control bit  
Direction  
register  
Direction  
register  
Data bus  
Port latch  
Data bus  
Port latch  
D-A converter output  
DA  
DA  
1
2
output enable (P3  
0
)
)
output enable (P3  
1
(6) Ports P34, P44  
(5) Ports P32, P33  
Pull-up control bit  
Serial I/O enable bit  
Receive enable bit  
Direction  
register  
Direction  
register  
Data bus  
Port latch  
Data bus  
Port latch  
Serial I/O input  
(7) Ports P3  
5
, P4  
5
(8) Ports P36, P46  
Pull-up control bit  
Serial I/O synchronous clock  
selection bit  
Pull-up control bit  
Serial I/O enable bit  
P-channel output  
disable bit  
Serial I/O mode selection bit  
Serial I/O enable bit  
Serial I/O enable bit  
Transmit enable bit  
Direction  
register  
Direction  
register  
Data bus  
Port latch  
Data bus  
Port latch  
Serial I/O clock output  
Serial I/O output  
Serial I/O external clock input  
Fig. 12 Port block diagram (1)  
16  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(9) Port P3  
7
(10) Port P40  
Pull-up control bit  
Pull-up control bit  
Serial I/O3 mode  
selection bit  
Serial I/O3 enable bit  
Port X  
C
switch bit  
S
RDY3 output enable bit  
Direction  
register  
Direction  
register  
Data bus  
Port latch  
Port latch  
Data bus  
INT40 interrupt input  
Serial I/O3 ready output  
Oscillator  
Port P4  
1
Port XC switch bit  
(11) Port P4  
1
(12) Port P47  
Timer Z operating  
mode bits  
Bit 2  
Pull-up control bit  
Pull-up control bit  
Bit 1  
Bit 0  
Port X  
C
switch bit  
Serial I/O1 mode selection bit  
Serial I/O1 enable bit  
Direction  
register  
SRDY1 output enable bit  
Direction  
register  
Data bus  
Port latch  
Data bus  
Port latch  
INT00 interrupt input  
Sub-clock generating circuit input  
Timer output  
Serial I/O1 ready output  
CNTR2 interrupt input  
(13) Port P5  
0
(14) Port P51  
Pull-up control bit  
Pull-up control bit  
Serial I/O2 transmit completion signal  
Serial I/O2 port selection bit  
P-channel output  
disable bit  
Direction  
register  
Direction  
register  
Port latch  
Data bus  
Data bus  
Port latch  
Serial I/O2 input  
Serial I/O2 output  
Fig. 13 Port block diagram (2)  
17  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(15) Port P5  
2
(16) Port P53  
Pull-up control bit  
Pull-up control bit  
Serial I/O2 synchronous clock  
selection bit  
Serial I/O2 port selection bit  
S
RDY2 enable bit  
Direction  
register  
Direction  
register  
Port latch  
Data bus  
Data bus  
Port latch  
Serial I/O2 ready output  
Serial I/O2 clock output  
Serial I/O2 external clock input  
(17) Ports P5  
4
, P5  
5
(18) Port P56  
Pull-up control bit  
Pull-up control bit  
PWM output enable bit  
Direction  
register  
Direction  
register  
Data bus  
Port latch  
Data bus  
Port latch  
Pulse output mode  
Timer output  
PWM output  
CNTR interrupt input  
Fig. 14 Port block diagram (3)  
18  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b7  
b0  
Port P0 pull-up control register  
(PULL0: address 0FF016  
)
P00 pull-up control bit  
0: No pull-up  
1: Pull-up  
P01 pull-up control bit  
0: No pull-up  
1: Pull-up  
P02 pull-up control bit  
0: No pull-up  
1: Pull-up  
P03 pull-up control bit  
0: No pull-up  
1: Pull-up  
P04 pull-up control bit  
0: No pull-up  
1: Pull-up  
P05 pull-up control bit  
0: No pull-up  
1: Pull-up  
P06 pull-up control bit  
0: No pull-up  
1: Pull-up  
P07 pull-up control bit  
Note: Pull-up control is valid when the corresponding bit  
of the port direction register is 0(input).  
When that bit is 1(output), pull-up cannot be set  
to the port of which pull-up is selected.  
0: No pull-up  
1: Pull-up  
b7  
b0  
Port P1 pull-up control register  
(PULL1: address 0FF116  
)
P10 pull-up control bit  
0: No pull-up  
1: Pull-up  
P11 pull-up control bit  
0: No pull-up  
1: Pull-up  
P12 pull-up control bit  
0: No pull-up  
1: Pull-up  
P13 pull-up control bit  
0: No pull-up  
1: Pull-up  
P14 pull-up control bit  
0: No pull-up  
1: Pull-up  
P15 pull-up control bit  
0: No pull-up  
1: Pull-up  
P16 pull-up control bit  
0: No pull-up  
1: Pull-up  
P17 pull-up control bit  
Note: Pull-up control is valid when the corresponding bit  
of the port direction register is 0(input).  
When that bit is 1(output), pull-up cannot be set  
to the port of which pull-up is selected.  
0: No pull-up  
1: Pull-up  
Fig. 15 Structure of port pull-up control register (1)  
19  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b7  
b0  
Port P2 pull-up control register  
(PULL2: address 0FF216  
)
P20 pull-up control bit  
0: No pull-up  
1: Pull-up  
P21 pull-up control bit  
0: No pull-up  
1: Pull-up  
P22 pull-up control bit  
0: No pull-up  
1: Pull-up  
P23 pull-up control bit  
0: No pull-up  
1: Pull-up  
P24 pull-up control bit  
0: No pull-up  
1: Pull-up  
P25 pull-up control bit  
0: No pull-up  
1: Pull-up  
P26 pull-up control bit  
0: No pull-up  
1: Pull-up  
P27 pull-up control bit  
Note: Pull-up control is valid when the corresponding bit  
of the port direction register is 0(input).  
When that bit is 1(output), pull-up cannot be set  
to the port of which pull-up is selected.  
0: No pull-up  
1: Pull-up  
b7  
b0  
Port P3 pull-up control register  
(PULL3: address 0FF316  
)
P30 pull-up control bit  
0: No pull-up  
1: Pull-up  
P31 pull-up control bit  
0: No pull-up  
1: Pull-up  
Not used  
(return 0when read)  
P34 pull-up control bit  
0: No pull-up  
1: Pull-up  
P35 pull-up control bit  
0: No pull-up  
1: Pull-up  
P36 pull-up control bit  
0: No pull-up  
1: Pull-up  
P37 pull-up control bit  
0: No pull-up  
1: Pull-up  
Note: Pull-up control is valid when the corresponding bit  
of the port direction register is 0(input).  
When that bit is 1(output), pull-up cannot be set  
to the port of which pull-up is selected.  
Fig. 16 Structure of port pull-up control register (2)  
20  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b7  
b0  
Port P4 pull-up control register  
(PULL4: address 0FF416  
)
P40 pull-up control bit  
0: No pull-up  
1: Pull-up  
P41 pull-up control bit  
0: No pull-up  
1: Pull-up  
P42 pull-up control bit  
0: No pull-up  
1: Pull-up  
P43 pull-up control bit  
0: No pull-up  
1: Pull-up  
P44 pull-up control bit  
0: No pull-up  
1: Pull-up  
P45 pull-up control bit  
0: No pull-up  
1: Pull-up  
P46 pull-up control bit  
0: No pull-up  
1: Pull-up  
P47 pull-up control bit  
Note: Pull-up control is valid when the corresponding bit  
of the port direction register is 0(input).  
When that bit is 1(output), pull-up cannot be set  
to the port of which pull-up is selected.  
0: No pull-up  
1: Pull-up  
b7  
b0  
Port P5 pull-up control register  
(PULL5: address 0FF516  
)
P50 pull-up control bit  
0: No pull-up  
1: Pull-up  
P51 pull-up control bit  
0: No pull-up  
1: Pull-up  
P52 pull-up control bit  
0: No pull-up  
1: Pull-up  
P53 pull-up control bit  
0: No pull-up  
1: Pull-up  
P54 pull-up control bit  
0: No pull-up  
1: Pull-up  
P55 pull-up control bit  
0: No pull-up  
1: Pull-up  
P56 pull-up control bit  
0: No pull-up  
1: Pull-up  
P57 pull-up control bit  
Note: Pull-up control is valid when the corresponding bit  
of the port direction register is 0(input).  
When that bit is 1(output), pull-up cannot be set  
to the port of which pull-up is selected.  
0: No pull-up  
1: Pull-up  
Fig. 17 Structure of port pull-up control register (3)  
21  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b7  
b0  
Port P6 pull-up control register  
(PULL6: address 0FF616  
)
P60 pull-up control bit  
0: No pull-up  
1: Pull-up  
P61 pull-up control bit  
0: No pull-up  
1: Pull-up  
P62 pull-up control bit  
0: No pull-up  
1: Pull-up  
P63 pull-up control bit  
0: No pull-up  
1: Pull-up  
P64 pull-up control bit  
0: No pull-up  
1: Pull-up  
P65 pull-up control bit  
0: No pull-up  
1: Pull-up  
P66 pull-up control bit  
0: No pull-up  
1: Pull-up  
P67 pull-up control bit  
Note: Pull-up control is valid when the corresponding bit  
of the port direction register is 0(input).  
When that bit is 1(output), pull-up cannot be set  
to the port of which pull-up is selected.  
0: No pull-up  
1: Pull-up  
Fig. 18 Structure of port pull-up control register (4)  
22  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
INTERRUPTS  
The 3803 group (Spaec. H)s interrupts are a type of vector and  
occur by 16 sources among 21 sources: eight external, twelve in-  
ternal, and one software.  
Notes  
When setting the followings, the interrupt request bit may be set to  
1.  
When setting external interrupt active edge  
Related register: Interrupt edge selection register (address 3A16)  
Timer XY mode register (address 2316)  
Interrupt Control  
Each interrupt is controlled by an interrupt request bit, an interrupt  
enable bit, and the interrupt disable flag except for the software in-  
terrupt set by the BRK instruction. An interrupt occurs if the  
corresponding interrupt request and enable bits are 1and the in-  
terrupt disable flag is 0.  
Timer Z mode register (address 2A16)  
When switching interrupt sources of an interrupt vector address  
where two or more interrupt sources are allocated  
Related register: Interrupt source selection register  
(address 3916)  
Interrupt enable bits can be set or cleared by software.  
Interrupt request bits can be cleared by software, but cannot be  
set by software.  
When not requiring for the interrupt occurrence synchronized with  
these setting, take the following sequence.  
Set the corresponding interrupt enable bit to 0(disabled).  
Set the interrupt edge select bit or the interrupt source select bit  
to 1.  
The reset and the BRK instruction cannot be disabled with any  
flag or bit. The I (interrupt disable) flag disables all interrupts ex-  
cept the reset and the BRK instruction interrupt.  
When several interrupt requests occur at the same time, the inter-  
rupts are received according to priority.  
Set the corresponding interrupt request bit to 0after 1 or more  
instructions have been executed.  
Set the corresponding interrupt enable bit to 1(enabled).  
Interrupt Operation  
By acceptance of an interrupt, the following operations are auto-  
matically performed:  
1. The contents of the program counter and the processor status  
register are automatically pushed onto the stack.  
2. The interrupt disable flag is set and the corresponding interrupt  
request bit is cleared.  
3. The interrupt jump destination address is read from the vector  
table into the program counter.  
Interrupt Source Selection  
Which of each combination of the following interrupt sources can  
be selected by the interrupt source selection register (address  
003916).  
1. INT0 or Timer Z  
2. CNTR1 or Serial I/O3 reception  
3. Serial I/O2 or Timer Z  
7. INT4 or CNTR2  
8. A-D converter or serial I/O3 transmission  
External Interrupt Pin Selection  
The occurrence sources of the external interrupt INT0 and INT4  
can be selected from either input from INT00 and INT40 pin, or in-  
put from INT01 and INT41 pin by the INT0, INT4 interrupt switch bit  
of interrupt edge selection register (bit 6 of address 003A16).  
23  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 8 Interrupt vector addresses and priority  
Vector Addresses (Note 1)  
Interrupt Request  
Generating Conditions  
Remarks  
Non-maskable  
Interrupt Source  
Priority  
High  
Low  
1
2
FFFD16  
FFFB16  
FFFC16  
FFFA16  
Reset (Note 2)  
INT0  
At reset  
At detection of either rising or  
falling edge of INT0 input  
External interrupt  
(active edge selectable)  
Timer Z  
INT1  
At timer Z underflow  
FFF916  
FFF716  
FFF516  
FFF816  
FFF616  
FFF416  
3
4
5
External interrupt  
(active edge selectable)  
At detection of either rising or  
falling edge of INT1 input  
Serial I/O1  
reception  
Valid when serial I/O1 is selected  
At completion of serial I/O1 data  
reception  
Serial I/O1  
transmission  
Valid when serial I/O1 is selected  
At completion of serial I/O1  
transmission shift or when  
transmission buffer is empty  
Timer X  
Timer Y  
Timer 1  
Timer 2  
CNTR0  
6
7
FFF316  
FFF116  
FFEF16  
FFED16  
FFEB16  
FFF216  
FFF016  
FFEE16  
FFEC16  
FFEA16  
At timer X underflow  
At timer Y underflow  
At timer 1 underflow  
At timer 2 underflow  
8
STP release timer underflow  
9
10  
At detection of either rising or  
falling edge of CNTR0 input  
External interrupt  
(active edge selectable)  
CNTR1  
At detection of either rising or External interrupt  
11  
12  
FFE816  
FFE916  
falling edge of CNTR1 input  
(active edge selectable)  
Serial I/O3  
reception  
At completion of serial I/O3 data Valid when serial I/O3 is selected  
reception  
Serial I/O2  
FFE716  
FFE616  
At completion of serial I/O2 data Valid when serial I/O2 is selected  
transmission or reception  
Timer Z  
INT2  
At timer Z underflow  
13  
14  
15  
External interrupt  
(active edge selectable)  
At detection of either rising or  
falling edge of INT2 input  
FFE516  
FFE316  
FFE116  
FFE416  
FFE216  
FFE016  
INT3  
INT4  
External interrupt  
(active edge selectable)  
At detection of either rising or  
falling edge of INT3 input  
External interrupt  
(active edge selectable)  
At detection of either rising or  
falling edge of INT4 input  
External interrupt  
(active edge selectable)  
At detection of either rising or  
falling edge of CNTR2 input  
CNTR2  
16  
17  
At completion of A-D conversion  
FFDF16  
FFDD16  
FFDE16  
FFDC16  
A-D converter  
Valid when serial I/O3 is selected  
Non-maskable software interrupt  
At completion of serial I/O3  
transmission shift or when  
transmission buffer is empty  
Serial I/O3  
transmission  
At BRK instruction execution  
BRK instruction  
Notes 1: Vector addresses contain interrupt jump destination addresses.  
2: Reset function in the same way as an interrupt with the highest priority.  
24  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Interrupt request bit  
Interrupt enable bit  
Interrupt disable flag (I)  
BRK instruction  
Reset  
Interrupt request  
Fig. 19 Interrupt control  
25  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b7  
b0  
Interrupt edge selection register  
(INTEDGE : address 003A16  
)
0 : Falling edge active  
1 : Rising edge active  
INT  
INT  
0
1
active edge selection bit  
active edge selection bit  
Not used (returns 0when read)  
INT  
INT  
INT  
INT  
2
3
4
0
active edge selection bit  
active edge selection bit  
active edge selection bit  
0 : Falling edge active  
1 : Rising edge active  
, INT4 interrupt switch bit  
0 : INT00, INT40 interrupt  
1 : INT01, INT41 interrupt  
Not used (returns 0when read)  
b7  
b0  
b7  
b0  
Interrupt request register 1  
Interrupt request register 2  
(IREQ2 : address 003D16  
)
(IREQ1 : address 003C16  
)
INT  
INT  
0
1
/Timer Z interrupt request bit  
interrupt request bit  
CNTR  
CNTR  
0
interrupt request bit  
1
/Serial I/O3 receive interrupt  
Serial I/O1 receive interrupt request bit  
Serial I/O1 transmit interrupt request bit  
Timer X interrupt request bit  
request bit  
Serial I/O2/Timer Z interrupt request bit  
INT  
INT  
INT  
2 interrupt request bit  
3 interrupt request bit  
4/CNTR2 interrupt request bit  
Timer Y interrupt request bit  
Timer 1 interrupt request bit  
Timer 2 interrupt request bit  
AD converter/Serial I/O3 transmit  
interrupt request bit  
Not used (returns 0when read)  
0 : No interrupt request issued  
1 : Interrupt request issued  
b7  
b0  
b7  
b0  
Interrupt control register 2  
Interrupt control register 1  
(ICON2 : address 003F16  
)
(ICON1 : address 003E16  
)
INT  
INT  
0
1
/Timer Z interrupt enable bit  
interrupt enable bit  
CNTR  
CNTR  
0
1
interrupt enable bit  
/Serial I/O3 receive interrupt  
Serial I/O1 receive interrupt enable bit  
Serial I/O1 transmit interrupt enable bit  
Timer X interrupt enable bit  
enable bit  
Serial I/O2/Timer Z interrupt enable bit  
INT  
INT  
INT  
2 interrupt enable bit  
3 interrupt enable bit  
4/CNTR2 interrupt enable bit  
Timer Y interrupt enable bit  
Timer 1 interrupt enable bit  
Timer 2 interrupt enable bit  
AD converter/Serial I/O3 transmit  
interrupt enable bit  
Not used (returns 0when read)  
0 : Interrupts disabled  
1 : Interrupts enabled  
b0  
b7  
Interrupt source selection register  
(INTSEL: address 003916  
)
INT /Timer Z interrupt source selection bit  
0
0 : INT interrupt  
0
1 : Timer Z interrupt  
Serial I/O2/Timer Z interrupt source selection bit  
0 : Serial I/O2 interrupt  
1 : Timer Z interrupt  
Not used  
(Do not write 1to these bits.)  
(Do not write 1to these bits simultaneously.)  
INT  
4
/CNTR  
2 interrupt source selection bit  
0 : INT  
4
interrupt  
1 : CNTR  
Not used  
(Do not write 1to this bit.)  
2 interrupt  
CNTR  
0 : CNTR  
1 : Serial I/O3 receive interrupt  
1
/Serial I/O3 receive interrupt source selection bit  
1
interrupt  
AD converter/Serial I/O3 transmit interrupt source selection bit  
0 : A-D converter interrupt  
1 : Serial I/O3 transmit interrupt  
Fig. 20 Structure of interrupt-related registers  
26  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
TIMERS  
Timer X and Timer Y  
8-bit Timers  
The timer X and timer Y can each select one of four operating  
The 3803 group (Spec. H) has four 8-bit timers: timer 1, timer 2,  
modes by setting the timer XY mode register (address 002316).  
timer X, and timer Y.  
The timer 1 and timer 2 use one prescaler in common, and the  
timer X and timer Y use each prescaler. Those are 8-bit  
prescalers. Each of the timers and prescalers has a timer latch or  
a prescaler latch.  
(1) Timer mode  
Mode selection  
This mode can be selected by setting 00to the timer X operating  
mode bits (bits 1 and 0) and the timer Y operating mode bits (bits  
5 and 4) of the timer XY mode register (address 002316).  
The division ratio of each timer or prescaler is given by 1/(n + 1),  
where n is the value in the corresponding timer or prescaler latch.  
All timers are down-counters. When the timer reaches 0016, an  
underflow occurs at the next count pulse and the contents of the  
corresponding timer latch are reloaded into the timer and the  
count is continued. When the timer underflows, the interrupt re-  
quest bit corresponding to that timer is set to 1.  
Explanation of operation  
The timer count operation is started by setting 0to the timer X  
count stop bit (bit 3) and the timer Y count stop bit (bit 7) of the  
timer XY mode register (address 002316).  
When the timer reaches 0016, an underflow occurs at the next  
count pulse and the contents of timer latch are reloaded into the  
timer and the count is continued.  
Timer divider  
The divider count source is switched by the main clock division  
ratio selection bits of CPU mode register (bits 7 and 6 at address  
003B16). When these bits are 00(high-speed mode) or 01”  
(middle-speed mode), XIN is selected. When these bits are10”  
(low-speed mode), XCIN is selected.  
(2) Pulse output mode  
Mode selection  
This mode can be selected by setting 01to the timer X operating  
mode bits (bits 1 and 0) and the timer Y operating mode bits (bits  
5 and 4) of the timer XY mode register (address 002316).  
Explanation of operation  
Prescaler 12  
The prescaler 12 counts the output of the timer divider. The count  
source is selected by the timer 12, X count source selection  
register among 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512,  
1/1024 of f(XIN) or f(XCIN).  
The operation is the same as the timer modes. Moreover the  
pulse which is inverted each time the timer underflows is output  
from CNTR0/CNTR1 pin. Regardless of the timer counting or not  
the output of CNTR0/CNTR1 pin is initialized to the level of speci-  
fied by their active edge switch bits when writing to the timer.  
When the CNTR0 active edge switch bit (bit 2) and the CNTR1 ac-  
tive edge switch bit (bit 6) of the timer XY mode register (address  
002316) is 0, the output starts with Hlevel. When it is 1, the  
output starts with Llevel.  
Timer 1 and Timer 2  
The timer 1 and timer 2 counts the output of prescaler 12 and pe-  
riodically set the interrupt request bit.  
Prescaler X and prescaler Y  
Switching the CNTR0 or CNTR1 active edge switch bit will reverse  
the output level of the corresponding CNTR0 or CNTR1 pin.  
Precautions  
The prescaler X and prescaler Y count the output of the timer  
divider or f(XCIN). The count source is selected by the timer 12, X  
count source selection register (address 000E16) and the timer Y,  
Z count source selection register (address 000F16) among 1/2,  
1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, and 1/1024 of f(XIN)  
or f(XCIN); and f(XCIN).  
Set the double-function port of CNTR0/CNTR1 pin and port P54/  
P55 to output in this mode.  
27  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(3) Event counter mode  
Mode selection  
This mode can be selected by setting 10to the timer X operating  
mode bits (bits 1 and 0) and the timer Y operating mode bits (bits  
5 and 4) of the timer XY mode register (address 002316).  
Explanation of operation  
The operation is the same as the timer modes except that the  
timer counts signals input from the CNTR0 or CNTR1 pin. The  
valid edge for the count operation depends on the CNTR0 active  
edge switch bit (bit 2) or the CNTR1 active edge switch bit (bit 6)  
of the timer XY mode register (address 002316). When it is 0, the  
rising edge is valid. When it is 1, the falling edge is valid.  
Precautions  
Set the double-function port of CNTR0/CNTR1 pin and port P54/  
P55 to input in this mode.  
(4) Pulse width measurement mode  
Mode selection  
This mode can be selected by setting 11to the timer X operating  
mode bits (bits 1 and 0) and the timer Y operating mode bits (bits  
5 and 4) of the timer XY mode register (address 002316).  
Explanation of operation  
When the CNTR0 active edge switch bit (bit 2) or the CNTR1 ac-  
tive edge switch bit (bit 6) of the timer XY mode register (address  
002316) is 1, the timer counts during the term of one falling edge  
of CNTR0/CNTR1 pin input until the next rising edge of input (L”  
term). When it is 0, the timer counts during the term of one rising  
edge input until the next falling edge input (Hterm).  
Precautions  
Set the double-function port of CNTR0/CNTR1 pin and port P54/  
P55 to input in this mode.  
The count operation can be stopped by setting 1to the timer X  
count stop bit (bit 3) and the timer Y count stop bit (bit 7) of the  
timer XY mode register (address 002316). The interrupt request bit  
is set to 1each time the timer underflows.  
•Precautions when switching count source  
When switching the count source by the timer 12, X and Y count  
source selection bits, the value of timer count is altered in incon-  
siderable amount owing to generating of thin pulses on the count  
input signals.  
Therefore, select the timer count source before setting the value  
to the prescaler and the timer.  
28  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
X
IN  
00”  
01”  
(1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024)  
Divider  
Count source  
selection bit  
10”  
X
CIN  
Data bus  
Main clock  
division ratio  
selection bits  
Prescaler X latch (8)  
Timer X latch (8)  
f(XCIN  
)
Pulse width  
Timer mode  
Pulse output mode  
measurement  
mode  
To timer X interrupt  
request bit  
Prescaler X (8)  
Timer X (8)  
CNTR  
switch bit  
0 active edge  
Event  
counter  
mode  
Timer X count stop bit  
P5  
4
/CNTR  
0
0”  
1”  
To CNTR  
0 interrupt  
request bit  
CNTR  
edge switch bit  
0
active  
1”  
Q
Q
T
Toggle flip-flop  
R
0”  
Port P5  
latch  
4
Timer X latch write pulse  
Pulse output mode  
Port P5  
4
direction register  
Pulse output mode  
Data bus  
Count source selection bit  
Clock for timer Y  
f(XCIN  
Timer Y latch (8)  
Timer Y (8)  
Prescaler Y latch (8)  
Pulse width  
measurement  
mode  
)
Timer mode  
Pulse output mode  
To timer Y interrupt  
request bit  
Prescaler Y (8)  
CNTR  
switch bit  
1
active edge  
Event  
counter  
mode  
Timer Y count stop bit  
P55/CNTR1  
0”  
1”  
To CNTR  
1 interrupt  
request bit  
CNTR  
edge switch bit  
1
active  
1”  
Q
Q
T
Toggle flip-flop  
R
0”  
Port P5  
latch  
5
Timer Y latch write pulse  
Pulse output mode  
Port P5  
direction register  
5
Pulse output mode  
Data bus  
Timer 1 latch (8)  
Timer 1 (8)  
Timer 2 latch (8)  
Timer 2 (8)  
Prescaler 12 latch (8)  
Prescaler 12 (8)  
To timer 2 interrupt  
request bit  
Clock for timer 12  
To timer 1 interrupt  
request bit  
Fig. 21 Block diagram of timer X, timer Y, timer 1, and timer 2  
29  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b7  
b0  
Timer XY mode register  
(TM : address 002316  
)
Timer X operating mode bits  
b1 b0  
0
0
1
1
0 : Timer mode  
1 : Pulse output mode  
0 : Event counter mode  
1 : Pulse width measurement mode  
CNTR0 active edge switch bit  
0 : Interrupt at falling edge  
Count at rising edge in event counter mode  
1 : Interrupt at rising edge  
Count at falling edge in event counter mode  
Timer X count stop bit  
0 : Count start  
1 : Count stop  
Timer Y operating mode bits  
b5 b4  
0
0
1
1
0 : Timer mode  
1 : Pulse output mode  
0 : Event counter mode  
1 : Pulse width measurement mode  
CNTR1 active edge switch bit  
0 : Interrupt at falling edge  
Count at rising edge in event counter mode  
1 : Interrupt at rising edge  
Count at falling edge in event counter mode  
Timer Y count stop bit  
0 : Count start  
1 : Count stop  
Fig. 22 Structure of timer XY mode register  
30  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b7  
b0  
Timer 12, X count source selection register  
(T12XCSS : address 000E16  
)
Timer 12 count source selection bits  
b3b2b1b0  
1010 :  
1011 :  
1100 :  
1101 :  
1110 :  
1111 :  
0 0 0 0 : f(X )/2 or f(X )/2  
0 0 0 1 : f(XIN)/4 or f(XCIN)/4  
0 0 1 0 : f(XIN)/8 or f(XCCIINN)/8  
0 0 1 1 : f(XIN)/16 or f(X )/16  
0 1 0 0 : f(XIN)/32 or f(XCIN)/32  
0 1 0 1 : f(XIN)/64 or f(XCCIINN)/64  
0 1 1 0 : f(XIN)/128 or f(X )/128  
0 1 1 1 : f(XIN)/256 or f(XCIN)/256  
1 0 0 0 : f(XIN)/512 or f(XCCIINN)/512  
1 0 0 1 : f(XIINN)/1024 or f(XCIN)/1024  
Not used  
Timer X count source selection bits  
b7b6b5b4  
0 0 0 0 : f(X )/2 or f(X )/2  
0 0 0 1 : f(XIN)/4 or f(XCIN)/4  
0 0 1 0 : f(XIN)/8 or f(XCCIINN)/8  
0 0 1 1 : f(XIN)/16 or f(X )/16  
0 1 0 0 : f(XIN)/32 or f(XCIN)/32  
0 1 0 1 : f(XIN)/64 or f(XCCIINN)/64  
0 1 1 0 : f(XIN)/128 or f(X )/128  
0 1 1 1 : f(XIN)/256 or f(XCIN)/256  
1 0 0 0 : f(XIN)/512 or f(XCCIINN)/512  
1 0 0 1 : f(XIN)/1024 or f(XCIN)/1024  
1011 :  
1100 :  
1101 : Not used  
1110 :  
1111 :  
1 0 1 0 : f(XCININ  
)
b7  
b0  
Timer Y, Z count source selection register  
(TYZCSS : address 000F16  
)
Timer Y count source selection bits  
b3b2b1b0  
0 0 0 0 : f(X )/2 or f(X )/2  
0 0 0 1 : f(XIN)/4 or f(XCIN)/4  
0 0 1 0 : f(XIN)/8 or f(XCCIINN)/8  
0 0 1 1 : f(XIN)/16 or f(X )/16  
0 1 0 0 : f(XIN)/32 or f(XCIN)/32  
0 1 0 1 : f(XIN)/64 or f(XCCIINN)/64  
0 1 1 0 : f(XIN)/128 or f(X )/128  
0 1 1 1 : f(XIN)/256 or f(XCIN)/256  
1 0 0 0 : f(XIN)/512 or f(XCCIINN)/512  
1 0 0 1 : f(XIN)/1024 or f(XCIN)/1024  
1011 :  
1100 :  
1101 :  
1110 :  
1111 :  
Not used  
1 0 1 0 : f(XCININ  
)
Timer Z count source selection bits  
b7b6b5b4  
0 0 0 0 : f(X )/2 or f(X )/2  
0 0 0 1 : f(XIN)/4 or f(XCIN)/4  
0 0 1 0 : f(XIN)/8 or f(XCCIINN)/8  
0 0 1 1 : f(XIN)/16 or f(X )/16  
0 1 0 0 : f(XIN)/32 or f(XCIN)/32  
0 1 0 1 : f(XIN)/64 or f(XCCIINN)/64  
0 1 1 0 : f(XIN)/128 or f(X )/128  
0 1 1 1 : f(XIN)/256 or f(XCIN)/256  
1 0 0 0 : f(XIN)/512 or f(XCCIINN)/512  
1 0 0 1 : f(XIN)/1024 or f(XCIN)/1024  
1011 :  
1100 :  
1101 : Not used  
1110 :  
1111 :  
1 0 1 0 : f(XCININ  
)
Fig. 23 Structure of timer 12, X and timer Y, Z count source selection registers  
31  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
16-bit Timer  
(2) Event counter mode  
The timer Z is a 16-bit timer. When the timer reaches “000016”, an  
underflow occurs at the next count pulse and the corresponding  
timer latch is reloaded into the timer and the count is continued.  
When the timer underflows, the interrupt request bit corresponding  
to the timer Z is set to “1”.  
Mode selection  
This mode can be selected by setting “000” to the timer Z operat-  
ing mode bits (bits 2 to 0) and setting “1” to the timer/event  
counter mode switch bit (bit 7) of the timer Z mode register (ad-  
dress 002A16).  
When reading/writing to the timer Z, perform reading/writing to  
both the high-order byte and the low-order byte. When reading the  
timer Z, read from the high-order byte first, followed by the low-or-  
der byte. Do not perform the writing to the timer Z between read  
operation of the high-order byte and read operation of the low-or-  
der byte. When writing to the timer Z, write to the low-order byte  
first, followed by the high-order byte. Do not perform the reading  
to the timer Z between write operation of the low-order byte and  
write operation of the high-order byte.  
The valid edge for the count operation depends on the CNTR2 ac-  
tive edge switch bit (bit 5) of the timer Z mode register (address  
002A16). When it is “0”, the rising edge is valid. When it is “1”, the  
falling edge is valid.  
Interrupt  
The interrupt at an underflow is the same as the timer mode’s.  
Explanation of operation  
The operation is the same as the timer mode’s.  
Set the double-function port of CNTR2 pin and port P47 to input in  
this mode.  
The timer Z can select the count source by the timer Z count  
source selection bits of timer Y, Z count source selection register  
(bits 7 to 4 at address 000F16).  
Figure 26 shows the timing chart of the timer/event counter mode.  
Timer Z can select one of seven operating modes by setting the  
timer Z mode register (address 002A16).  
(3) Pulse output mode  
Mode selection  
This mode can be selected by setting “001” to the timer Z operat-  
ing mode bits (bits 2 to 0) and setting “0” to the timer/event  
counter mode switch bit (b7) of the timer Z mode register (address  
002A16).  
(1) Timer mode  
Mode selection  
This mode can be selected by setting “000” to the timer Z operat-  
ing mode bits (bits 2 to 0) and setting “0” to the timer/event  
counter mode switch bit (b7) of the timer Z mode register (address  
002A16).  
Count source selection  
In high- or middle-speed mode, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/  
128, 1/256, 1/512 or 1/1024 of f(XIN); or f(XCIN) can be selected as  
the count source.  
Count source selection  
In high- or middle-speed mode, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/  
128, 1/256, 1/512 or 1/1024 of f(XIN); or f(XCIN) can be selected as  
the count source.  
In low-speed mode, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/  
512 or 1/1024 of f(XCIN); or f(XCIN) can be selected as the count  
source.  
In low-speed mode, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/  
512 or 1/1024 of f(XCIN); or f(XCIN) can be selected as the count  
source.  
Interrupt  
The interrupt at an underflow is the same as the timer mode’s.  
Explanation of operation  
Interrupt  
The operation is the same as the timer mode’s. Moreover the  
pulse which is inverted each time the timer underflows is output  
from CNTR2 pin. When the CNTR2 active edge switch bit (bit 5) of  
the timer Z mode register (address 002A16) is “0”, the output starts  
with “H” level. When it is “1”, the output starts with “L” level.  
Precautions  
When an underflow occurs, the INT0/timer Z interrupt request bit  
(bit 0) of the interrupt request register 1 (address 003C16) is set to  
“1”.  
Explanation of operation  
During timer stop, usually write data to a latch and a timer at the  
same time to set the timer value.  
Set the double-function port of CNTR2 pin and port P47 to output  
in this mode.  
The timer count operation is started by setting “0” to the timer Z  
count stop bit (bit 6) of the timer Z mode register (address  
002A16).  
The output from CNTR2 pin is initialized to the level depending on  
CNTR2 active edge switch bit by writing to the timer.  
When the value of the CNTR2 active edge switch bit is changed,  
the output level of CNTR2 pin is inverted.  
When the timer reaches “000016”, an underflow occurs at the next  
count pulse and the contents of timer latch are reloaded into the  
timer and the count is continued.  
Figure 27 shows the timing chart of the pulse output mode.  
When writing data to the timer during operation, the data is written  
only into the latch. Then the new latch value is reloaded into the  
timer at the next underflow.  
32  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(4) Pulse period measurement mode  
Mode selection  
(5) Pulse width measurement mode  
Mode selection  
This mode can be selected by setting 010to the timer Z operat-  
ing mode bits (bits 2 to 0) and setting 0to the timer/event  
counter mode switch bit (b7) of the timer Z mode register (address  
002A16).  
This mode can be selected by setting 011to the timer Z operat-  
ing mode bits (bits 2 to 0) and setting 0to the timer/event  
counter mode switch bit (b7) of the timer Z mode register (address  
002A16).  
Count source selection  
Count source selection  
In high- or middle-speed mode, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64,  
1/128, 1/256, 1/512 or 1/1024 of f(XIN); or f(XCIN) can be selected  
as the count source.  
In high- or middle-speed mode, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64,  
1/128, 1/256, 1/512 or 1/1024 of f(XIN); or f(XCIN) can be selected  
as the count source.  
In low-speed mode, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256,  
1/512 or 1/1024 of f(XCIN); or f(XCIN) can be selected as the count  
source.  
In low-speed mode, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256,  
1/512 or 1/1024 of f(XCIN); or f(XCIN) can be selected as the count  
source.  
Interrupt  
Interrupt  
The interrupt at an underflow is the same as the timer modes.  
When the pulse period measurement is completed, the INT4/  
CNTR2 interrupt request bit (bit 5) of the interrupt request register  
2 (address 003D16) is set to 1.  
The interrupt at an underflow is the same as the timer modes.  
When the pulse widths measurement is completed, the INT4/  
CNTR2 interrupt request bit (bit 5) of the interrupt request register  
2 (address 003D16) is set to 1.  
Explanation of operation  
Explanation of operation  
The cycle of the pulse which is input from the CNTR2 pin is mea-  
sured. When the CNTR2 active edge switch bit (bit 5) of the timer  
Z mode register (address 002A16) is 0, the timer counts during  
the term from one falling edge of CNTR2 pin input to the next fall-  
ing edge. When it is 1, the timer counts during the term from one  
rising edge input to the next rising edge input.  
When the valid edge of measurement completion/start is detected,  
the 1s complement of the timer value is written to the timer latch  
and FFFF16is set to the timer.  
The pulse width which is input from the CNTR2 pin is measured.  
When the CNTR2 active edge switch bit (bit 5) of the timer Z mode  
register (address 002A16) is 0, the timer counts during the term  
from one rising edge input to the next falling edge input (Hterm).  
When it is 1, the timer counts during the term from one falling  
edge of CNTR2 pin input to the next rising edge of input (Lterm).  
When the valid edge of measurement completion is detected, the  
1s complement of the timer value is written to the timer latch and  
FFFF16is set to the timer.  
Furthermore when the timer underflows, the timer Z interrupt re-  
quest occurs and FFFF16is set to the timer. When reading the  
timer Z, the value of the timer latch (measured value) is read. The  
measured value is retained until the next measurement comple-  
tion.  
When the timer Z underflows, the timer Z interrupt occurs and  
FFFF16is set to the timer Z. When reading the timer Z, the value  
of the timer latch (measured value) is read. The measured value is  
retained until the next measurement completion.  
Precautions  
Precautions  
Set the double-function port of CNTR2 pin and port P47 to input in  
this mode.  
Set the double-function port of CNTR2 pin and port P47 to input in  
this mode.  
A read-out of timer value is impossible in this mode. The timer can  
be written to only during timer stop (no measurement of pulse  
widths).  
A read-out of timer value is impossible in this mode. The timer can  
be written to only during timer stop (no measurement of pulse pe-  
riod).  
Since the timer latch in this mode is specialized for the read-out of  
measured values, do not perform any write operation during mea-  
surement.  
Since the timer latch in this mode is specialized for the read-out of  
measured values, do not perform any write operation during mea-  
surement.  
FFFF16is set to the timer when the timer underflows or when the  
valid edge of measurement start/completion is detected. Conse-  
quently, the timer value at start of pulse width measurement  
depends on the timer value just before measurement start.  
Figure 29 shows the timing chart of the pulse width measurement  
mode.  
FFFF16is set to the timer when the timer underflows or when the  
valid edge of measurement start/completion is detected. Conse-  
quently, the timer value at start of pulse period measurement  
depends on the timer value just before measurement start.  
Figure 28 shows the timing chart of the pulse period measurement  
mode.  
33  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(6) Programmable waveform generating mode  
Mode selection  
though His output from the CNTR2 pin, Houtput state contin-  
ues because an underflow does not occur.  
This mode can be selected by setting 100to the timer Z operat-  
ing mode bits (bits 2 to 0) and setting 0to the timer/event  
counter mode switch bit (b7) of the timer Z mode register (address  
002A16).  
•“Lone-shot pulse; Bit 5 of timer Z mode register = 1”  
The output level of the CNTR2 pin is initialized to Hat mode se-  
lection. When trigger generation (input signal to INT1 pin) is  
detected, Lis output from the CNTR2 pin. When an underflow  
occurs, His output. The Lone-shot pulse width is set by the  
setting value to the timer Z low-order and high-order. When trigger  
generating is detected during timer count stop, although Lis out-  
put from the CNTR2 pin, Loutput state continues because an  
underflow does not occur.  
Count source selection  
In high- or middle-speed mode, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64,  
1/128, 1/256, 1/512 or 1/1024 of f(XIN); or f(XCIN) can be selected  
as the count source.  
In low-speed mode, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/  
512 or 1/1024 of f(XCIN); or f(XCIN) can be selected as the count  
source.  
Precautions  
Set the double-function port of CNTR2 pin and port P47 to output,  
and of INT1 pin and port P42 to input in this mode.  
This mode cannot be used in low-speed mode.  
Interrupt  
The interrupt at an underflow is the same as the timer modes.  
Explanation of operation  
If the value of the CNTR2 active edge switch bit is changed during  
one-shot generating enabled or generating one-shot pulse, then  
the output level from CNTR2 pin changes.  
The operation is the same as the timer modes. Moreover the  
timer outputs the data set in the output level latch (bit 4) of the  
timer Z mode register (address 002A16) from the CNTR2 pin each  
time the timer underflows.  
Figure 31 shows the timing chart of the programmable one-shot  
generating mode.  
Changing the value of the output level latch and the timer latch af-  
ter an underflow makes it possible to output an optional waveform  
from the CNTR2 pin.  
Notes regarding all modes  
Timer Z write control  
Precautions  
Which write control can be selected by the timer Z write control bit  
(bit 3) of the timer Z mode register (address 002A16), writing data  
to both the latch and the timer at the same time or writing data  
only to the latch.  
Set the double-function port of CNTR2 pin and port P47 to output  
in this mode.  
Figure 30 shows the timing chart of the programmable waveform  
generating mode.  
When the operation writing data only to the latchis selected, the  
value is set to the timer latch by writing data to the address of  
timer Z and the timer is updated at next underflow. After reset re-  
lease, the operation writing data to both the latch and the timer at  
the same timeis selected, and the value is set to both the latch  
and the timer at the same time by writing data to the address of  
timer Z.  
(7) Programmable one-shot generating mode  
Mode selection  
This mode can be selected by setting 101to the timer Z operat-  
ing mode bits (bits 2 to 0) and setting 0to the timer/event  
counter mode switch bit (b7) of the timer Z mode register (address  
002A16).  
In the case of writing data only to the latch, if writing data to the  
latch and an underflow are performed almost at the same time,  
the timer value may become undefined.  
Count source selection  
In high- or middle-speed mode, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/  
128, 1/256, 1/512 or 1/1024 of f(XIN); or f(XCIN) can be selected as  
the count source.  
Timer Z read control  
A read-out of timer value is impossible in pulse period measure-  
ment mode and pulse width measurement mode. In the other  
modes, a read-out of timer value is possible regardless of count  
operating or stopped.  
Interrupt  
The interrupt at an underflow is the same as the timer modes.  
The trigger to generate one-shot pulse can be selected by the  
INT1 active edge selection bit (bit 1) of the interrupt edge selection  
register (address 003A16). When it is 0, the falling edge active is  
selected; when it is 1, the rising edge active is selected.  
When the valid edge of the INT1 pin is detected, the INT1 interrupt  
request bit (bit 1) of the interrupt request register 1 (address  
003C16) is set to 1.  
However, a read-out of timer latch value is impossible.  
Switch of interrupt active edge of CNTR2 and INT1  
Each interrupt active edge depends on setting of the CNTR2 ac-  
tive edge switch bit and the INT1 active edge selection bit.  
Switch of count source  
When switching the count source by the timer Z count source se-  
lection bits, the value of timer count is altered in inconsiderable  
amount owing to generating of thin pulses on the count input sig-  
nals.  
Explanation of operation  
•“Hone-shot pulse; Bit 5 of timer Z mode register = 0”  
The output level of the CNTR2 pin is initialized to Lat mode se-  
lection. When trigger generation (input signal to INT1 pin) is  
detected, His output from the CNTR2 pin. When an underflow  
occurs, Lis output. The Hone-shot pulse width is set by the  
setting value to the timer Z register low-order and high-order.  
When trigger generating is detected during timer count stop, al-  
Therefore, select the timer count source before setting the value  
to the prescaler and the timer.  
Usage of CNTR2 pin as normal I/O port  
To use the CNTR2 pin as normal I/O port P47, set timer Z operat-  
ing mode bits (b2, b1, b0) of timer Z mode register (address  
002A16) to 000.  
34  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
CNTR2 active edge  
Data bus  
switch bit  
Programmable one-shot  
generating mode  
1”  
P42/INT1  
Programmable one-shot  
generating circuit  
Programmable one-shot  
generating mode  
0”  
To INT1 interrupt  
request bit  
Programmable waveform  
generating mode  
D
Q
Output level latch  
T
Pulse output mode  
CNTR2 active edge  
switch bit  
S
0”  
Q
Q
T
1”  
Pulse output mode  
001”  
100”  
101”  
Timer Z operating  
mode bits  
Timer Z low-order latch Timer Z high-order latch  
Timer Z low-order Timer Z high-order  
To timer Z interrupt  
request bit  
Port P47  
latch  
Port P47  
direction register  
Pulse period measurement mode  
Pulse width measurement mode  
Edge detection circuit  
To CNTR2 interrupt  
request bit  
1”  
1”  
f(XCIN  
)
P47/CNTR2  
0”  
0”  
CNTR2 active edge  
Timer Z count stop bit  
Timer/Event  
counter mode  
switch bit  
switch bit  
X
IN  
Count source  
selection bit  
Divider  
(1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024)  
X
CIN  
Fig. 24 Block diagram of timer Z  
35  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b7  
b0  
Timer Z mode register  
(TZM : address 002A16  
)
Timer Z operating mode bits  
b2b1b0  
0 0 0 : Timer/Event counter mode  
0 0 1 : Pulse output mode  
0 1 0 : Pulse period measurement mode  
0 1 1 : Pulse width measurement mode  
1 0 0 : Programmable waveform generating mode  
1 0 1 : Programmable one-shot generating mode  
1 1 0 : Not available  
1 1 1 : Not available  
Timer Z write control bit  
0 : Writing data to both latch and timer simultaneously  
1 : Writing data only to latch  
Output level latch  
0 : Loutput  
1 : Houtput  
CNTR active edge switch bit  
2
0 : Event counter mode: Count at rising edge  
Pulse output mode: Start outputting H”  
Pulse period measurement mode: Measurement  
between two falling edges  
Pulse width measurement mode: Measurement of  
Hterm  
Programmable one-shot generating mode: After  
start outputting L, Hone-shot pulse generated  
Interrupt at falling edge  
1 : Event counter mode: Count at falling edge  
Pulse output mode: Start outputting L”  
Pulse period measurement mode: Measurement  
between two rising edges  
Pulse width measurement mode: Measurement of  
Lterm  
Programmable one-shot generating mode: After  
start outputting H, Lone-shot pulse generated  
Interrupt at rising edge  
Timer Z count stop bit  
0 : Count start  
1 : Count stop  
Timer/Event counter mode switch bit (Note)  
0 : Timer mode  
1 : Event counter mode  
Note: When selecting the modes except the timer/event  
counter mode, set 0to this bit.  
Fig. 25 Structure of timer Z mode register  
36  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
FFFF16  
TL  
000016  
TR  
TR  
TR  
TL : Value set to timer latch  
TR : Timer interrupt request  
Fig. 26 Timing chart of timer/event counter mode  
FFFF16  
TL  
000016  
TR  
TR  
TR  
TR  
Waveform output  
from CNTR pin  
2
CNTR  
2
CNTR  
2
TL : Value set to timer latch  
TR : Timer interrupt request  
CNTR  
2
: CNTR  
2 interrupt request  
(CNTR  
2
active edge switch bit = 0; Falling edge active)  
Fig. 27 Timing chart of pulse output mode  
37  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
000016  
T3  
T2  
T1  
FFFF16  
TR  
TR  
T2  
T3  
FFFF16 + T1  
FFFF16  
Signal input from  
CNTR pin  
2
CNTR  
2
CNTR  
2
CNTR  
2
CNTR2  
CNTR  
TR : Timer interrupt request  
CNTR : CNTR interrupt request  
2 of rising edge active  
2
2
Fig. 28 Timing chart of pulse period measurement mode (Measuring term between two rising edges)  
000016  
T3  
T2  
T1  
FFFF16  
TR  
T1  
FFFF16 + T2  
T3  
Signal input from  
CNTR pin  
2
CNTR  
2
CNTR  
interrupt of rising edge active; Measurement of Lwidth  
TR : Timer interrupt request  
CNTR : CNTR interrupt request  
2
CNTR2  
CNTR  
2
2
2
Fig. 29 Timing chart of pulse width measurement mode (Measuring Lterm)  
38  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
FFFF16  
T3  
L
T2  
T1  
000016  
Signal output  
from CNTR2 pin  
L
T3  
T1  
TR  
CNTR2  
L : Timer initial value  
T2  
TR  
TR  
TR  
CNTR2  
TR : Timer interrupt request  
CNTR2 : CNTR2 interrupt request  
(CNTR2 active edge switch bit = 0; Falling edge active)  
Fig. 30 Timing chart of programmable waveform generating mode  
FFFF16  
L
TR  
TR  
TR  
Signal input from  
INT pin  
1
Signal output  
from CNTR pin  
L
L
L
2
CNTR  
2
CNTR2  
L : One-shot pulse width  
TR : Timer interrupt request  
CNTR : CNTR interrupt request  
(CNTR active edge switch bit = 0; Falling edge active)  
2
2
2
Fig. 31 Timing chart of programmable one-shot generating mode (Hone-shot pulse generating)  
39  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(1) Clock Synchronous Serial I/O Mode  
Clock synchronous serial I/O1 mode can be selected by setting  
the serial I/O1 mode selection bit of the serial I/O1 control register  
(bit 6 of address 001A16) to 1.  
SERIAL I/O  
Serial I/O1  
Serial I/O1 can be used as either clock synchronous or asynchro-  
nous (UART) serial I/O. A dedicated timer is also provided for  
baud rate generation.  
For clock synchronous serial I/O, the transmitter and the receiver  
must use the same clock. If an internal clock is used, transfer is  
started by a write signal to the transmit/receive buffer register.  
Data bus  
Serial I/O1 control register  
Receive buffer full flag (RBF)  
Address 001A16  
Address 001816  
Receive buffer register 1  
Receive shift register 1  
Receive interrupt request (RI)  
P44/RXD1  
Shift clock  
Clock control circuit  
P46/SCLK1  
Serial I/O1 synchronous  
clock selection bit  
Frequency division ratio 1/(n+1)  
BRG count source selection bit  
(f(XCIN) in low-speed mode)  
f(XIN  
)
Baud rate generator 1  
Address 001C16  
1/4  
1/4  
Clock control circuit  
Falling-edge detector  
P47/SRDY1  
F/F  
Shift clock  
Transmit shift completion flag (TSC)  
Transmit interrupt source selection bit  
P4  
5/T  
XD1  
Transmit shift register 1  
Transmit buffer register 1  
Transmit interrupt request (TI)  
Transmit buffer empty flag (TBE)  
Serial I/O1 status register  
Address 001916  
Address 001816  
Data bus  
Fig. 32 Block diagram of clock synchronous serial I/O1  
Transfer shift clock  
(1/2 to 1/2048 of the internal  
clock, or an external clock)  
Serial output TxD  
Serial input RxD  
1
1
D
0
0
D
1
1
D
2
2
D
3
3
D
4
4
D
5
5
D
6
6
D
7
7
D
D
D
D
D
D
D
D
Receive enable signal SRDY1  
Write pulse to receive/transmit  
buffer register (address 001816  
)
RBF = 1  
TSC = 1  
TBE = 0  
TBE = 1  
TSC = 0  
Overrun error (OE)  
detection  
Notes  
1: As the transmit interrupt (TI), which can be selected, either when the transmit buffer has emptied (TBE=1) or after the  
transmit shift operation has ended (TSC=1), by setting the transmit interrupt source selection bit (TIC) of the serial I/O1  
control register.  
2: If data is written to the transmit buffer register when TSC=0, the transmit clock is generated continuously and serial data  
is output continuously from the TxD pin.  
3: The receive interrupt (RI) is set when the receive buffer full flag (RBF) becomes 1.  
Fig. 33 Operation of clock synchronous serial I/O1  
40  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(2) Asynchronous Serial I/O (UART) Mode  
Clock asynchronous serial I/O mode (UART) can be selected by  
clearing the serial I/O1 mode selection bit of the serial I/O1 control  
register to 0.  
two buffers have the same address in a memory. Since the shift  
register cannot be written to or read from directly, transmit data is  
written to the transmit buffer register, and receive data is read  
from the receive buffer register.  
Eight serial data transfer formats can be selected, and the transfer  
formats used by a transmitter and receiver must be identical.  
The transmit and receive shift registers each have a buffer, but the  
The transmit buffer register can also hold the next data to be  
transmitted, and the receive buffer register can hold a character  
while the next character is being received.  
Data bus  
Address 001816  
Serial I/O1 control register Address 001A16  
Receive buffer register 1  
Receive buffer full flag (RBF)  
Receive interrupt request (RI)  
OE  
Character length selection bit  
P44/RXD1  
ST detector  
7 bits  
8 bits  
Receive shift register 1  
1/16  
UART control register  
PE FE SP detector  
Address 001B16  
Clock control circuit  
Serial I/O1 synchronous clock selection bit  
P46/SCLK1  
Frequency division ratio 1/(n+1)  
BRG count source selection bit  
f(XIN  
)
Baud rate generator  
Address 001C16  
(f(XCIN) in low-speed mode)  
1/4  
ST/SP/PA generator  
1/16  
Transmit shift completion flag (TSC)  
Transmit interrupt source selection bit  
Transmit shift register 1  
P45/TXD1  
Transmit interrupt request (TI)  
Character length selection bit  
Transmit buffer empty flag (TBE)  
Transmit buffer register 1  
Address 001816  
Address 001916  
Serial I/O1 status register  
Data bus  
Fig. 34 Block diagram of UART serial I/O1  
Transmit or receive clock  
Transmit buffer write  
signal  
TBE=0  
TSC=0  
TBE=1  
TBE=0  
TSC=1]  
SP  
TBE=1  
Serial output TXD1  
ST  
D0  
D1  
ST  
D0  
D1  
SP  
]
1 start bit  
7 or 8 data bit  
Generated at 2nd bit in 2-stop-bit mode  
1 or 0 parity bit  
1 or 2 stop bit (s)  
Receive buffer read  
signal  
RBF=0  
RBF=1  
SP  
RBF=1  
SP  
ST  
Serial input RXD1  
D0  
D1  
ST  
D0  
D1  
Notes 1: Error flag detection occurs at the same time that the RBF flag becomes 1(at 1st stop bit, during reception).  
2: As the transmit interrupt (TI), when either the TBE or TSC flag becomes 1,can be selected to occur depending on the setting of the transmit  
interrupt source selection bit (TIC) of the serial I/O1 control register.  
3: The receive interrupt (RI) is set when the RBF flag becomes 1.”  
4: After data is written to the transmit buffer when TSC=1, 0.5 to 1.5 cycles of the data shift cycle are necessary until changing to TSC=0.  
Fig. 35 Operation of UART serial I/O1  
41  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
[Serial I/O1 Control Register (SIO1CON)]  
001A16  
The serial I/O1 control register consists of eight control bits for the  
serial I/O1 function.  
[UART1 Control Register (UART1CON)]  
001B16  
The UART control register consists of four control bits (bits 0 to 3)  
which are valid when asynchronous serial I/O is selected and set  
the data format of an data transfer, and one bit (bit 4) which is al-  
ways valid and sets the output structure of the P45/TXD1 pin.  
[Serial I/O1 Status Register (SIO1STS)]  
001916  
The read-only serial I/O1 status register consists of seven flags  
(bits 0 to 6) which indicate the operating status of the serial I/O1  
function and various errors.  
Three of the flags (bits 4 to 6) are valid only in UART mode.  
The receive buffer full flag (bit 1) is cleared to 0when the receive  
buffer register is read.  
If there is an error, it is detected at the same time that data is  
transferred from the receive shift register to the receive buffer reg-  
ister, and the receive buffer full flag is set. A write to the serial I/O1  
status register clears all the error flags OE, PE, FE, and SE (bit 3  
to bit 6, respectively). Writing 0to the serial I/O1 enable bit SIOE  
(bit 7 of the serial I/O1 control register) also clears all the status  
flags, including the error flags.  
Bits 0 to 6 of the serial I/O1 status register are initialized to 0at  
reset, but if the transmit enable bit (bit 4) of the serial I/O1 control  
register has been set to 1, the transmit shift completion flag (bit  
2) and the transmit buffer empty flag (bit 0) become 1.  
[Transmit Buffer Register 1/Receive Buffer  
Register 1 (TB1/RB1)] 001816  
The transmit buffer register 1 and the receive buffer register 1 are  
located at the same address. The transmit buffer is write-only and  
the receive buffer is read-only. If a character bit length is 7 bits, the  
MSB of data stored in the receive buffer is 0.  
[Baud Rate Generator 1 (BRG1)] 001C16  
The baud rate generator determines the baud rate for serial trans-  
fer.  
The baud rate generator divides the frequency of the count source  
by 1/(n + 1), where n is the value written to the baud rate genera-  
tor.  
42  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b7  
b0  
b0  
b7  
Serial I/O1 status register  
(SIO1STS : address 001916  
Serial I/O1 control register  
(SIO1CON : address 001A16  
)
)
BRG count source selection bit (CSS)  
0: f(XIN) (f(XCIN) in low-speed mode)  
1: f(XIN)/4 (f(XCIN)/4 in low-speed mode)  
Transmit buffer empty flag (TBE)  
0: Buffer full  
1: Buffer empty  
Serial I/O1 synchronous clock selection bit (SCS)  
0: BRG output divided by 4 when clock synchronous  
serial I/O is selected, BRG output divided by 16  
when UART is selected.  
Receive buffer full flag (RBF)  
0: Buffer empty  
1: Buffer full  
1: External clock input when clock synchronous serial  
I/O is selected, external clock input divided by 16  
when UART is selected.  
Transmit shift completion flag (TSC)  
0: Transmit shift in progress  
1: Transmit shift completed  
S
0: P4  
1: P4  
RDY1 output enable bit (SRDY)  
Overrun error flag (OE)  
0: No error  
1: Overrun error  
7
pin operates as normal I/O pin  
pin operates as SRDY1 output pin  
7
Transmit interrupt source selection bit (TIC)  
0: Interrupt when transmit buffer has emptied  
1: Interrupt when transmit shift operation is completed  
Parity error flag (PE)  
0: No error  
1: Parity error  
Transmit enable bit (TE)  
0: Transmit disabled  
1: Transmit enabled  
Framing error flag (FE)  
0: No error  
1: Framing error  
Receive enable bit (RE)  
0: Receive disabled  
1: Receive enabled  
Summing error flag (SE)  
0: (OE) U (PE) U (FE)=0  
1: (OE) U (PE) U (FE)=1  
Serial I/O1 mode selection bit (SIOM)  
0: Clock asynchronous (UART) serial I/O  
1: Clock synchronous serial I/O  
Not used (returns 1when read)  
Serial I/O1 enable bit (SIOE)  
0: Serial I/O1 disabled  
(pins P4  
1: Serial I/O1 enabled  
(pins P4 to P4 operate as serial I/O pins)  
4 to P47 operate as normal I/O pins)  
4
7
b7  
b0  
UART1 control register  
(UARTCON : address 001B16  
)
Character length selection bit (CHAS)  
0: 8 bits  
1: 7 bits  
Parity enable bit (PARE)  
0: Parity checking disabled  
1: Parity checking enabled  
Parity selection bit (PARS)  
0: Even parity  
1: Odd parity  
Stop bit length selection bit (STPS)  
0: 1 stop bit  
1: 2 stop bits  
P45/TXD1 P-channel output disable bit (POFF)  
0: CMOS output (in output mode)  
1: N-channel open drain output (in output mode)  
Not used (return 1when read)  
Fig. 36 Structure of serial I/O1 control registers  
43  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Notes concerning serial I/O1  
1. Notes when selecting clock synchronous serial I/O  
1.1 Stop of transmission operation  
2. Notes when selecting clock asynchronous serial I/O  
2.1 Stop of transmission operation  
Note  
Note  
Clear the transmit enable bit to 0(transmit disabled). The trans-  
mission operation does not stop by clearing the serial I/O1 enable  
bit to 0.  
Clear the serial I/O1 enable bit and the transmit enable bit to 0”  
(serial I/O and transmit disabled).  
Reason  
Reason  
Since transmission is not stopped and the transmission circuit is  
not initialized even if only the serial I/O1 enable bit is cleared to 0”  
(serial I/O disabled), the internal transmission is running (in this  
case, since pins TxD1, RxD1, SCLK1, and SRDY1 function as I/O  
ports, the transmission data is not output). When data is written to  
the transmit buffer register in this state, data starts to be shifted to  
the transmit shift register. When the serial I/O1 enable bit is set to  
1at this time, the data during internally shifting is output to the  
TxD1 pin and an operation failure occurs.  
Since transmission is not stopped and the transmission circuit is  
not initialized even if only the serial I/O1 enable bit is cleared to 0”  
(serial I/O disabled), the internal transmission is running (in this  
case, since pins TxD1, RxD1, SCLK1, and SRDY1 function as I/O  
ports, the transmission data is not output). When data is written to  
the transmit buffer register in this state, data starts to be shifted to  
the transmit shift register. When the serial I/O1 enable bit is set to  
1at this time, the data during internally shifting is output to the  
TxD1 pin and an operation failure occurs.  
1.2 Stop of receive operation  
2.2 Stop of receive operation  
Note  
Note  
Clear the receive enable bit to 0(receive disabled), or clear the  
serial I/O1 enable bit to 0(serial I/O disabled).  
Clear the receive enable bit to 0(receive disabled).  
2.3 Stop of transmit/receive operation  
1.3 Stop of transmit/receive operation  
Note  
Note 1 (only transmission operation is stopped)  
Clear the transmit enable bit to 0(transmit disabled). The trans-  
mission operation does not stop by clearing the serial I/O1 enable  
bit to 0.  
Clear both the transmit enable bit and receive enable bit to 0”  
(transmit and receive disabled).  
(when data is transmitted and received in the clock synchronous  
serial I/O mode, any one of data transmission and reception can-  
not be stopped.)  
Reason  
Since transmission is not stopped and the transmission circuit is  
not initialized even if only the serial I/O1 enable bit is cleared to 0”  
(serial I/O disabled), the internal transmission is running (in this  
case, since pins TxD1, RxD1, SCLK1, and SRDY1 function as I/O  
ports, the transmission data is not output). When data is written to  
the transmit buffer register in this state, data starts to be shifted to  
the transmit shift register. When the serial I/O1 enable bit is set to  
1at this time, the data during internally shifting is output to the  
TxD1 pin and an operation failure occurs.  
Reason  
In the clock synchronous serial I/O mode, the same clock is used  
for transmission and reception. If any one of transmission and re-  
ception is disabled, a bit error occurs because transmission and  
reception cannot be synchronized.  
In this mode, the clock circuit of the transmission circuit also oper-  
ates for data reception. Accordingly, the transmission circuit does  
not stop by clearing only the transmit enable bit to 0(transmit  
disabled). Also, the transmission circuit is not initialized by clear-  
ing the serial I/O1 enable bit to 0(serial I/O disabled) (refer to  
1.1).  
Note 2 (only receive operation is stopped)  
Clear the receive enable bit to 0(receive disabled).  
44  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
3. SRDY1 output of reception side  
7. Transmit interrupt request when transmit enable bit is set  
Note  
Note  
When signals are output from the SRDY1 pin on the reception side  
by using an external clock in the clock synchronous serial I/O  
mode, set all of the receive enable bit, the SRDY1 output enable  
bit, and the transmit enable bit to 1(transmit enabled).  
When using the transmit interrupt, take the following sequence.  
Set the serial I/O1 transmit interrupt enable bit to 0(disabled).  
Set the transmit enable bit to 1.  
Set the serial I/O1 transmit interrupt request bit to 0after 1 or  
more instruction has executed.  
4. Setting serial I/O1 control register again  
Note  
Set the serial I/O1 transmit interrupt enable bit to 1(enabled).  
Reason  
Set the serial I/O1 control register again after the transmission and  
the reception circuits are reset by clearing both the transmit en-  
able bit and the receive enable bit to 0.”  
When the transmit enable bit is set to 1, the transmit buffer  
empty flag and the transmit shift register shift completion flag are  
also set to 1. Therefore, regardless of selecting which timing for  
the generating of transmit interrupts, the interrupt request is gener-  
ated and the transmit interrupt request bit is set at this point.  
Clear both the transmit enable bit  
(TE) and the receive enable bit  
(RE) to 0”  
Set the bits 0 to 3 and bit 6 of the  
serial I/O control register  
Can be set with the  
LDM instruction at the  
same time  
Set both the transmit enable bit  
(TE) and the receive enable bit  
(RE), or one of them to 1”  
5. Data transmission control with referring to transmit shift  
register completion flag  
Note  
After the transmit data is written to the transmit buffer register, the  
transmit shift register completion flag changes from 1to 0with  
a delay of 0.5 to 1.5 shift clocks. When data transmission is con-  
trolled with referring to the flag after writing the data to the transmit  
buffer register, note the delay.  
6. Transmission control when external clock is selected  
Note  
When an external clock is used as the synchronous clock for data  
transmission, set the transmit enable bit to 1at Hof the SCLK1  
input level. Also, write data to the transmit buffer register at Hof  
the SCLK1 input level.  
45  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b7  
Serial I/O2  
b0  
Serial I/O2 control register  
(SIO2CON : address 001D16)  
The serial I/O2 function can be used only for clock synchronous  
serial I/O.  
Internal synchronous clock selection bits  
b2 b1 b0  
For clock synchronous serial I/O2, the transmitter and the receiver  
must use the same clock. If the internal clock is used, transfer is  
started by a write signal to the serial I/O2 register.  
0 0 0: f(XIN)/8 (f(XCIN)/8 in low-speed mode)  
0 0 1: f(XIN)/16 (f(XCIN)/16 in low-speed mode)  
0 1 0: f(XIN)/32 (f(XCIN)/32 in low-speed mode)  
0 1 1: f(XIN)/64 (f(XCIN)/64 in low-speed mode)  
1 1 0: f(XIN)/128 (f(XCIN)/128 in low-speed mode)  
1 1 1: f(XIN)/256 (f(XCIN)/256 in low-speed mode)  
[Serial I/O2 Control Register (SIO2CON)]  
001D16  
Serial I/O2 port selection bit  
0: I/O port  
1: SOUT2,SCLK2 signal output  
The serial I/O2 control register contains eight bits which control  
various serial I/O2 functions.  
SRDY2 output enable bit  
0: I/O port  
1: SRDY2 signal output  
Transfer direction selection bit  
0: LSB first  
1: MSB first  
Serial I/O2 synchronous clock selection bit  
0: External clock  
1: Internal clock  
P51/SOUT2 P-channel output disable bit  
0: CMOS output (in output mode)  
1: N-channel open drain output (in output mode)  
Fig. 37 Structure of serial I/O2 control register  
Internal synchronous  
clock selection bits  
1/8  
1/16  
Data bus  
1/32  
f(XIN  
)
1/64  
(f(XCIN) in low-speed mode)  
1/128  
1/256  
P53 latch  
Serial I/O2 synchronous  
clock selection bit  
0”  
1”  
P53/SRDY2  
S
RDY2  
Synchronization  
circuit  
1”  
SRDY2 output enable bit  
0”  
External clock  
P52 latch  
0”  
P52/SCLK2  
Serial I/O2  
interrupt request  
Serial I/O counter 2 (3)  
1”  
Serial I/O2 port selection bit  
P51 latch  
0”  
P51/SOUT2  
1”  
Serial I/O2 port selection bit  
Serial I/O2 register (8)  
P50/SIN2  
Address 001F16  
Fig. 38 Block diagram of serial I/O2  
46  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Transfer clock (Note 1)  
Serial I/O2 register  
write signal  
(Note 2)  
Serial I/O2 output  
SOUT2  
D2  
D0  
D1  
D3  
D4  
D5  
D6  
D7  
Serial I/O2 input SIN2  
Receive enable signal SRDY2  
Serial I/O2 interrupt request bit set  
Notes 1: When the internal clock is selected as the transfer clock, the divide ratio of f(XIN), or f(XCIN) in low-speed mode, can be  
selected by setting bits 0 to 2 of the serial I/O2 control register.  
2: When the internal clock is selected as the transfer clock, the SOUT2 pin goes to high impedance after transfer completion.  
Fig. 39 Timing of serial I/O2  
47  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Serial I/O3  
(1) Clock Synchronous Serial I/O Mode  
Clock synchronous serial I/O3 mode can be selected by setting  
the serial I/O3 mode selection bit of the serial I/O3 control register  
(bit 6 of address 003216) to 1.  
Serial I/O3 can be used as either clock synchronous or asynchro-  
nous (UART) serial I/O. A dedicated timer is also provided for  
baud rate generation.  
For clock synchronous serial I/O, the transmitter and the receiver  
must use the same clock. If an internal clock is used, transfer is  
started by a write signal to the transmit/receive buffer register.  
Data bus  
Serial I/O3 control register  
Receive buffer full flag (RBF)  
Address 003216  
Address 003016  
Receive buffer register 3  
Receive shift register 3  
Receive interrupt request (RI)  
P34/RXD3  
Shift clock  
Clock control circuit  
P36/SCLK3  
Serial I/O3 synchronous  
clock selection bit  
Frequency division ratio 1/(n+1)  
BRG count source selection bit  
(f(XCIN) in low-speed mode)  
f(XIN  
)
Baud rate generator 3  
Address 002F16  
1/4  
1/4  
Clock control circuit  
Falling-edge detector  
P37/SRDY3  
F/F  
Shift clock  
Transmit shift completion flag (TSC)  
Transmit interrupt source selection bit  
P3  
5/T  
XD3  
Transmit shift register 3  
Transmit buffer register 3  
Transmit interrupt request (TI)  
Transmit buffer empty flag (TBE)  
Serial I/O3 status register  
Address 003116  
Address 003016  
Data bus  
Fig. 40 Block diagram of clock synchronous serial I/O3  
Transfer shift clock  
(1/2 to 1/2048 of the internal  
clock, or an external clock)  
Serial output TxD  
Serial input RxD  
3
3
D
0
0
D
1
D
2
2
D
3
3
D
4
4
D
5
5
D
6
6
D
7
7
D
D1  
D
D
D
D
D
D
Receive enable signal SRDY3  
Write pulse to receive/transmit  
buffer register (address 003016  
)
RBF = 1  
TSC = 1  
TBE = 0  
TBE = 1  
TSC = 0  
Overrun error (OE)  
detection  
Notes  
1: As the transmit interrupt (TI), which can be selected, either when the transmit buffer has emptied (TBE=1) or after the  
transmit shift operation has ended (TSC=1), by setting the transmit interrupt source selection bit (TIC) of the serial I/O3  
control register.  
2: If data is written to the transmit buffer register when TSC=0, the transmit clock is generated continuously and serial data  
is output continuously from the TxD pin.  
3: The receive interrupt (RI) is set when the receive buffer full flag (RBF) becomes 1.  
Fig. 41 Operation of clock synchronous serial I/O3  
48  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
(2) Asynchronous Serial I/O (UART) Mode  
Clock asynchronous serial I/O mode (UART) can be selected by  
clearing the serial I/O3 mode selection bit of the serial I/O3 control  
register to 0.  
two buffers have the same address in a memory. Since the shift  
register cannot be written to or read from directly, transmit data is  
written to the transmit buffer register, and receive data is read  
from the receive buffer register.  
Eight serial data transfer formats can be selected, and the transfer  
formats used by a transmitter and receiver must be identical.  
The transmit and receive shift registers each have a buffer, but the  
The transmit buffer register can also hold the next data to be  
transmitted, and the receive buffer register can hold a character  
while the next character is being received.  
Data bus  
Serial I/O3 control register Address 003216  
Address 003016  
Receive buffer register 3  
Receive buffer full flag (RBF)  
Receive interrupt request (RI)  
OE  
Character length selection bit  
P34/RXD3  
ST detector  
7 bits  
8 bits  
Receive shift register 3  
1/16  
UART3 control register  
PE FE SP detector  
Address 003316  
Clock control circuit  
Serial I/O3 synchronous clock selection bit  
P36/SCLK3  
f(XIN)  
Frequency division ratio 1/(n+1)  
BRG count source selection bit  
Baud rate generator 3  
Address 002F16  
(f(XCIN) in low-speed mode)  
1/4  
ST/SP/PA generator  
1/16  
Transmit shift completion flag (TSC)  
Transmit interrupt source selection bit  
Transmit shift register 3  
P35/TXD3  
Transmit interrupt request (TI)  
Character length selection bit  
Transmit buffer empty flag (TBE)  
Transmit buffer register 3  
Address 003016  
Address 003116  
Serial I/O3 status register  
Data bus  
Fig. 42 Block diagram of UART serial I/O3  
Transmit or receive clock  
Transmit buffer write  
signal  
TBE=0  
TSC=0  
TBE=1  
TBE=0  
TSC=1]  
SP  
TBE=1  
Serial output TXD3  
ST  
D0  
D1  
ST  
D0  
D1  
SP  
]
1 start bit  
7 or 8 data bit  
Generated at 2nd bit in 2-stop-bit mode  
1 or 0 parity bit  
1 or 2 stop bit (s)  
Receive buffer read  
signal  
RBF=0  
RBF=1  
SP  
RBF=1  
SP  
ST  
Serial input RXD3  
D0  
D1  
ST  
D0  
D1  
Notes 1: Error flag detection occurs at the same time that the RBF flag becomes 1(at 1st stop bit, during reception).  
2: As the transmit interrupt (TI), when either the TBE or TSC flag becomes 1,can be selected to occur depending on the setting of the transmit  
interrupt source selection bit (TIC) of the serial I/O3 control register.  
3: The receive interrupt (RI) is set when the RBF flag becomes 1.”  
4: After data is written to the transmit buffer when TSC=1, 0.5 to 1.5 cycles of the data shift cycle are necessary until changing to TSC=0.  
Fig. 43 Operation of UART serial I/O3  
49  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
[Serial I/O3 Control Register (SIO3CON)]  
003216  
The serial I/O3 control register consists of eight control bits for the  
serial I/O3 function.  
[UART3 Control Register (UART3CON)]  
003316  
The UART control register consists of four control bits (bits 0 to 3)  
which are valid when asynchronous serial I/O is selected and set  
the data format of an data transfer, and one bit (bit 4) which is al-  
ways valid and sets the output structure of the P35/TXD3 pin.  
[Serial I/O3 Status Register (SIO3STS)] 003116  
The read-only serial I/O3 status register consists of seven flags  
(bits 0 to 6) which indicate the operating status of the serial I/O3  
function and various errors.  
Three of the flags (bits 4 to 6) are valid only in UART mode.  
The receive buffer full flag (bit 1) is cleared to 0when the receive  
buffer register is read.  
If there is an error, it is detected at the same time that data is  
transferred from the receive shift register to the receive buffer reg-  
ister, and the receive buffer full flag is set. A write to the serial I/O3  
status register clears all the error flags OE, PE, FE, and SE (bit 3  
to bit 6, respectively). Writing 0to the serial I/O3 enable bit SIOE  
(bit 7 of the serial I/O3 control register) also clears all the status  
flags, including the error flags.  
Bits 0 to 6 of the serial I/O3 status register are initialized to 0at  
reset, but if the transmit enable bit (bit 4) of the serial I/O3 control  
register has been set to 1, the transmit shift completion flag (bit  
2) and the transmit buffer empty flag (bit 0) become 1.  
[Transmit Buffer Register 3/Receive Buffer  
Register 3 (TB3/RB3)] 003016  
The transmit buffer register 3 and the receive buffer register 3 are  
located at the same address. The transmit buffer is write-only and  
the receive buffer is read-only. If a character bit length is 7 bits, the  
MSB of data stored in the receive buffer is 0.  
[Baud Rate Generator 3 (BRG3)] 002F16  
The baud rate generator determines the baud rate for serial trans-  
fer.  
The baud rate generator divides the frequency of the count source  
by 1/(n + 1), where n is the value written to the baud rate genera-  
tor.  
50  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b7  
b0  
b0  
b7  
Serial I/O3 status register  
(SIO3STS : address 003116  
Serial I/O3 control register  
(SIO3CON : address 003216  
)
)
BRG count source selection bit (CSS)  
0: f(XIN) (f(XCIN) in low-speed mode)  
1: f(XIN)/4 (f(XCIN)/4 in low-speed mode)  
Transmit buffer empty flag (TBE)  
0: Buffer full  
1: Buffer empty  
Serial I/O3 synchronous clock selection bit (SCS)  
0: BRG output divided by 4 when clock synchronous  
serial I/O is selected, BRG output divided by 16  
when UART is selected.  
Receive buffer full flag (RBF)  
0: Buffer empty  
1: Buffer full  
1: External clock input when clock synchronous serial  
I/O is selected, external clock input divided by 16  
when UART is selected.  
Transmit shift completion flag (TSC)  
0: Transmit shift in progress  
1: Transmit shift completed  
S
0: P3  
1: P3  
RDY3 output enable bit (SRDY)  
Overrun error flag (OE)  
0: No error  
1: Overrun error  
7
pin operates as normal I/O pin  
pin operates as SRDY3 output pin  
7
Transmit interrupt source selection bit (TIC)  
0: Interrupt when transmit buffer has emptied  
1: Interrupt when transmit shift operation is completed  
Parity error flag (PE)  
0: No error  
1: Parity error  
Transmit enable bit (TE)  
0: Transmit disabled  
1: Transmit enabled  
Framing error flag (FE)  
0: No error  
1: Framing error  
Receive enable bit (RE)  
0: Receive disabled  
1: Receive enabled  
Summing error flag (SE)  
0: (OE) U (PE) U (FE)=0  
1: (OE) U (PE) U (FE)=1  
Serial I/O3 mode selection bit (SIOM)  
0: Clock asynchronous (UART) serial I/O  
1: Clock synchronous serial I/O  
Not used (returns 1when read)  
Serial I/O3 enable bit (SIOE)  
0: Serial I/O disabled  
(pins P3  
1: Serial I/O enabled  
(pins P3 to P3 operate as serial I/O pins)  
4 to P37 operate as normal I/O pins)  
4
7
b7  
b0  
UART3 control register  
(UART3CON : address 003316  
)
Character length selection bit (CHAS)  
0: 8 bits  
1: 7 bits  
Parity enable bit (PARE)  
0: Parity checking disabled  
1: Parity checking enabled  
Parity selection bit (PARS)  
0: Even parity  
1: Odd parity  
Stop bit length selection bit (STPS)  
0: 1 stop bit  
1: 2 stop bits  
P35/TXD3 P-channel output disable bit (POFF)  
0: CMOS output (in output mode)  
1: N-channel open drain output (in output mode)  
Not used (return 1when read)  
Fig. 44 Structure of serial I/O3 control registers  
51  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Notes concerning serial I/O3  
1. Notes when selecting clock synchronous serial I/O  
1.1 Stop of transmission operation  
2. Notes when selecting clock asynchronous serial I/O  
2.1 Stop of transmission operation  
Note  
Note  
Clear the transmit enable bit to 0(transmit disabled). The trans-  
mission operation does not stop by clearing the serial I/O3 enable  
bit to 0.  
Clear the serial I/O3 enable bit and the transmit enable bit to 0”  
(serial I/O and transmit disabled).  
Reason  
Reason  
Since transmission is not stopped and the transmission circuit is  
not initialized even if only the serial I/O3 enable bit is cleared to 0”  
(serial I/O disabled), the internal transmission is running (in this  
case, since pins TxD3, RxD3, SCLK3, and SRDY3 function as I/O  
ports, the transmission data is not output). When data is written to  
the transmit buffer register in this state, data starts to be shifted to  
the transmit shift register. When the serial I/O enable bit is set to  
1at this time, the data during internally shifting is output to the  
TxD3 pin and an operation failure occurs.  
Since transmission is not stopped and the transmission circuit is  
not initialized even if only the serial I/O3 enable bit is cleared to 0”  
(serial I/O disabled), the internal transmission is running (in this  
case, since pins TxD3, RxD3, SCLK3, and SRDY3 function as I/O  
ports, the transmission data is not output). When data is written to  
the transmit buffer register in this state, data starts to be shifted to  
the transmit shift register. When the serial I/O3 enable bit is set to  
1at this time, the data during internally shifting is output to the  
TxD3 pin and an operation failure occurs.  
1.2 Stop of receive operation  
2.2 Stop of receive operation  
Note  
Note  
Clear the receive enable bit to 0(receive disabled), or clear the  
serial I/O3 enable bit to 0(serial I/O disabled).  
Clear the receive enable bit to 0(receive disabled).  
2.3 Stop of transmit/receive operation  
1.3 Stop of transmit/receive operation  
Note  
Note 1 (only transmission operation is stopped)  
Clear the transmit enable bit to 0(transmit disabled). The trans-  
mission operation does not stop by clearing the serial I/O3 enable  
bit to 0.  
Clear both the transmit enable bit and receive enable bit to 0”  
(transmit and receive disabled).  
(when data is transmitted and received in the clock synchronous  
serial I/O mode, any one of data transmission and reception can-  
not be stopped.)  
Reason  
Since transmission is not stopped and the transmission circuit is  
not initialized even if only the serial I/O3 enable bit is cleared to 0”  
(serial I/O disabled), the internal transmission is running (in this  
case, since pins TxD3, RxD3, SCLK3, and SRDY3 function as I/O  
ports, the transmission data is not output). When data is written to  
the transmit buffer register in this state, data starts to be shifted to  
the transmit shift register. When the serial I/O3 enable bit is set to  
1at this time, the data during internally shifting is output to the  
TxD3 pin and an operation failure occurs.  
Reason  
In the clock synchronous serial I/O mode, the same clock is used  
for transmission and reception. If any one of transmission and re-  
ception is disabled, a bit error occurs because transmission and  
reception cannot be synchronized.  
In this mode, the clock circuit of the transmission circuit also oper-  
ates for data reception. Accordingly, the transmission circuit does  
not stop by clearing only the transmit enable bit to 0(transmit  
disabled). Also, the transmission circuit is not initialized by clear-  
ing the serial I/O3 enable bit to 0(serial I/O disabled) (refer to  
1.1).  
Note 2 (only receive operation is stopped)  
Clear the receive enable bit to 0(receive disabled).  
52  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
3. SRDY3 output of reception side  
7. Transmit interrupt request when transmit enable bit is set  
Note  
Note  
When signals are output from the SRDY3 pin on the reception side  
by using an external clock in the clock synchronous serial I/O  
mode, set all of the receive enable bit, the SRDY3 output enable  
bit, and the transmit enable bit to 1(transmit enabled).  
When using the transmit interrupt, take the following sequence.  
Set the serial I/O3 transmit interrupt enable bit to 0(disabled).  
Set the transmit enable bit to 1.  
Set the serial I/O3 transmit interrupt request bit to 0after 1 or  
more instruction has executed.  
4. Setting serial I/O3 control register again  
Note  
Set the serial I/O3 transmit interrupt enable bit to 1(enabled).  
Reason  
Set the serial I/O3 control register again after the transmission and  
the reception circuits are reset by clearing both the transmit en-  
able bit and the receive enable bit to 0.”  
When the transmit enable bit is set to 1, the transmit buffer  
empty flag and the transmit shift register shift completion flag are  
also set to 1. Therefore, regardless of selecting which timing for  
the generating of transmit interrupts, the interrupt request is gener-  
ated and the transmit interrupt request bit is set at this point.  
Clear both the transmit enable bit  
(TE) and the receive enable bit  
(RE) to 0”  
Set the bits 0 to 3 and bit 6 of the  
serial I/O3 control register  
Can be set with the  
LDM instruction at the  
same time  
Set both the transmit enable bit  
(TE) and the receive enable bit  
(RE), or one of them to 1”  
5. Data transmission control with referring to transmit shift  
register completion flag  
Note  
After the transmit data is written to the transmit buffer register, the  
transmit shift register completion flag changes from 1to 0with  
a delay of 0.5 to 1.5 shift clocks. When data transmission is con-  
trolled with referring to the flag after writing the data to the transmit  
buffer register, note the delay.  
6. Transmission control when external clock is selected  
Note  
When an external clock is used as the synchronous clock for data  
transmission, set the transmit enable bit to 1at Hof the SCLK3  
input level. Also, write data to the transmit buffer register at Hof  
the SCLK input level.  
53  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PULSE WIDTH MODULATION (PWM)  
The 3803 group (Spec. H) has PWM functions with an 8-bit reso-  
lution, based on a signal that is the clock input XIN or that clock  
input divided by 2 or the clock input XCIN or that clock input di-  
vided by 2 in low-speed mode.  
PWM Operation  
When bit 0 (PWM enable bit) of the PWM control register is set to  
1, operation starts by initializing the PWM output circuit, and  
pulses are output starting at an H.  
If the PWM register or PWM prescaler is updated during PWM  
output, the pulses will change in the cycle after the one in which  
the change was made.  
Data Setting  
The PWM output pin also functions as port P56. Set the PWM pe-  
riod by the PWM prescaler, and set the Hterm of output pulse by  
the PWM register.  
31.875 m (n+1)  
µs  
If the value in the PWM prescaler is n and the value in the PWM  
register is m (where n = 0 to 255 and m = 0 to 255) :  
PWM period = 255 (n+1) / f(XIN)  
255  
PWM output  
= 31.875 (n+1) µs (when f(XIN) = 8 MHz)  
Output pulse Hterm = PWM period m / 255  
= 0.125 (n+1) m µs  
T = [31.875 (n+1)] µs  
(when f(XIN) = 8 MHz)  
m: Contents of PWM register  
n : Contents of PWM prescaler  
T : PWM period (when f(XIN) = 8 MHz, count source  
is f(XIN))  
Fig. 45 Timing of PWM period  
Data bus  
PWM  
prescaler pre-latch  
PWM  
register pre-latch  
Transfer control circuit  
PWM  
prescaler latch  
PWM  
register latch  
Count source  
selection bit  
Port P5  
6
0”  
X
IN  
or  
CIN  
PWM register  
PWM prescaler  
X
1”  
1/2  
Port P56 latch  
PWM enable bit  
Fig. 46 Block diagram of PWM function  
54  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
b7  
b0  
PWM control register  
(PWMCON : address 002B16)  
PWM function enable bit  
0: PWM disabled  
1: PWM enabled  
Count source selection bit  
0: f(XIN)  
1: f(XIN)/2  
Not used (return 0when read)  
Fig. 47 Structure of PWM control register  
B
T
C
T2  
=
A
B
C
PWM output  
T
T
T2  
PWM register  
write signal  
(Changes Hterm from Ato B.)  
PWM prescaler  
write signal  
(Changes PWM period from Tto T2.)  
When the contents of the PWM register or PWM prescaler have changed, the PWM  
output will change from the next period after the change.  
Fig. 48 PWM output timing when PWM register or PWM prescaler is changed  
55  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
A-D CONVERTER  
[A-D Conversion Register 1, 2 (AD1, AD2)]  
003516, 003816  
Channel Selector  
The channel selector selects one of ports P67/AN7 to P60/AN0 or  
P07/AN15 to P00/AN8, and inputs the voltage to the comparator.  
The A-D conversion register is a read-only register that stores the  
result of an A-D conversion. When reading this register during an  
A-D conversion, the previous conversion result is read.  
Bit 7 of the A-D conversion register 2 is the conversion mode se-  
lection bit. When this bit is set to 0,the A-D converter becomes  
the 10-bit A-D mode. When this bit is set to 1,that becomes the  
8-bit A-D mode. The conversion result of the 8-bit A-D mode is  
stored in the A-D conversion register 1. As for 10-bit A-D mode,  
not only 10-bit reading but also only high-order 8-bit reading of  
conversion result can be performed by selecting the reading pro-  
cedure of the A-D conversion registers 1, 2 after A-D conversion is  
completed (in Figure 50).  
Comparator and Control Circuit  
The comparator and control circuit compares an analog input volt-  
age with the comparison voltage, and then stores the result in the  
A-D conversion registers 1, 2. When an A-D conversion is com-  
pleted, the control circuit sets the AD conversion completion bit  
and the AD interrupt request bit to 1.  
Note that because the comparator consists of a capacitor cou-  
pling, set f(XIN) to 500 kHz or more during an A-D conversion.  
b7  
b0  
AD/DA control register  
(ADCON : address 003416  
As for 10-bit A-D mode, the 8-bit reading inclined to MSB is per-  
formed when reading the A-D converter register 1 after A-D  
conversion is started; and when the A-D converter register 1 is  
read after reading the A-D converter register 2, the 8-bit reading  
inclined to LSB is performed.  
)
Analog input pin selection bits 1  
b2 b1 b0  
0 0 0: P6  
0 0 1: P6  
0 1 0: P6  
0 1 1: P6  
1 0 0: P6  
1 0 1: P6  
1 1 0: P6  
1 1 1: P6  
0
1
2
3
4
5
6
7
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
/AN  
0
1
2
3
4
5
6
7
or P0  
or P0  
or P0  
or P0  
or P0  
or P0  
or P0  
or P0  
0
1
2
3
4
5
6
7
/AN  
/AN  
8
9
/AN10  
/AN11  
/AN12  
/AN13  
/AN14  
/AN15  
[AD/DA Control Register (ADCON)] 003416  
The AD/DA control register controls the A-D conversion process.  
Bits 0 to 2 and bit 4 select a specific analog input pin. Bit 3 signals  
the completion of an A-D conversion. The value of this bit remains  
at 0during an A-D conversion, and changes to 1when an A-D  
conversion ends. Writing 0to this bit starts the A-D conversion.  
AD conversion completion bit  
0: Conversion in progress  
1: Conversion completed  
Analog input pin selection bit 2  
0: AN  
1: AN  
0
to AN  
to AN15 side  
7 side  
8
Comparison Voltage Generator  
The comparison voltage generator divides the voltage between  
VREF and AVSS into 1024, and that outputs the comparison voltage  
in the 10-bit A-D mode (256 division in 8-bit A-D mode).  
The A-D converter successively compares the comparison voltage  
Vref in each mode, dividing the VREF voltage (see below), with the  
input voltage.  
Not used (returns 0when read)  
DA  
1
output enable bit  
0: DA  
1
output disabled  
output enabled  
1: DA  
1
DA  
2
output enable bit  
0: DA  
2
output disabled  
output enabled  
1: DA  
2
10-bit A-D mode (10-bit reading)  
VREF  
Vref =n (n = 01023)  
Fig. 49 Structure of AD/DA control register  
1024  
10-bit A-D mode (8-bit reading)  
VREF  
Vref =n (n = 0255)  
10-bit reading  
256  
(Read address 003816 before 003516  
)
8-bit A-D mode  
b0  
b9 b8  
b0  
b7  
VREF  
Vref =(n0.5) (n = 1255)  
A-D conversion register 2  
256  
0
(AD2: address 003816  
)
=0  
(n = 0)  
b7  
A-D conversion register 1  
(AD1: address 003516  
b7 b6 b5 b4 b3 b2 b1 b0  
)
Note : Bits 2 to 6 of address 003816 become 0”  
at reading.  
8-bit reading  
(Read only address 003516  
A-D conversion register 1  
)
b7  
b9 b8 b7 b6 b5 b4 b3 b2  
b0  
(AD1: address 003516  
)
Fig. 50 Structure of 10-bit A-D mode reading  
56  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Data bus  
b7  
4
b0  
AD/DA control register  
(Address 003416  
)
AD converter interrupt request  
A-D control circuit  
P6  
P6  
0
/AN  
0
1
/AN  
1
P6  
P6  
2
3
/AN  
/AN  
2
3
(Address 003816  
(Address 003516  
)
)
A-D conversion register 2  
Comparator  
A-D conversion register 1  
10  
P6  
P6  
P6  
4
/AN  
/AN  
/AN  
4
5
5
6
6
Resistor ladder  
P6  
P0  
P0  
7
0
1
/AN  
/AN  
/AN  
7
8
9
P0  
P0  
P0  
2
/AN10  
/AN11  
/AN12  
3
V
REF AVSS  
4
P0  
P0  
P0  
5/AN13  
6/AN14  
7/AN15  
Fig. 51 Block diagram of A-D converter  
57  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
D-A CONVERTER  
The 3803 group (Spec. H) has two internal D-A converters (DA1  
and DA2) with 8-bit resolution.  
The D-A conversion is performed by setting the value in each D-A  
conversion register. The result of D-A conversion is output from  
the DA1 or DA2 pin by setting the DA output enable bit to 1.  
When using the D-A converter, the corresponding port direction  
register bit (P30/DA1 or P31/DA2) must be set to 0(input status).  
The output analog voltage V is determined by the value n (decimal  
notation) in the D-A conversion register as follows:  
D-A1 conversion register (8)  
DA  
1
output enable bit  
P3 /DA  
R-2R resistor ladder  
0
1
V = VREF n/256 (n = 0 to 255)  
Where VREF is the reference voltage.  
D-A2 conversion register (8)  
DA  
At reset, the D-A conversion registers are cleared to 0016, and  
the DA output enable bits are cleared to 0, and the P30/DA1 and  
P31/DA2 pins become high impedance.  
2
output enable bit  
P3 /DA  
R-2R resistor ladder  
1
2
The DA output does not have buffers. Accordingly, connect an ex-  
ternal buffer when driving a low-impedance load.  
Fig. 52 Block diagram of D-A converter  
DA1  
output enable bit  
R
0”  
R
2R  
R
R
R
R
R
P30/DA1  
1”  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
LSB  
MSB  
D-A1 conversion register  
0”  
1”  
AVSS  
VREF  
Fig. 53 Equivalent connection circuit of D-A converter (DA1)  
58  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
WATCHDOG TIMER  
When bit 6 of the watchdog timer control register is kept at 0, the  
STP instruction is enabled. When that is executed, both the clock  
and the watchdog timer stop. Count re-starts at the same time as  
the release of stop mode (Note). The watchdog timer does not  
stop while a WIT instruction is executed. In addition, the STP in-  
struction is disabled by writing 1to this bit again. When the STP  
instruction is executed at this time, it is processed as an undefined  
instruction, and an internal reset occurs. Once a 1is written to  
this bit, it cannot be programmed to 0again.  
The watchdog timer gives a mean of returning to the reset status  
when a program cannot run on a normal loop (for example, be-  
cause of a software run-away). The watchdog timer consists of an  
8-bit watchdog timer L and an 8-bit watchdog timer H.  
Watchdog Timer Initial Value  
Watchdog timer L is set to FF16and watchdog timer H is set to  
FF16by writing to the watchdog timer control register (address  
001E16) or at a reset. Any write instruction that causes a write sig-  
nal can be used, such as the STA, LDM, CLB, etc. Data can only  
be written to bits 6 and 7 of the watchdog timer control register.  
Regardless of the value written to bits 0 to 5, the above-mentioned  
value will be set to each timer.  
The following shows the period between the write execution to the  
watchdog timer control register and the underflow of watchdog  
timer H.  
Bit 7 of the watchdog timer control register is 0:  
when XCIN = 32.768 kHz; 32 s  
Watchdog Timer Operations  
when XIN = 16 MHz; 65.536 ms  
The watchdog timer stops at reset and a countdown is started by  
the writing to the watchdog timer control register. An internal reset  
occurs when watchdog timer H underflows. The reset is released  
after its release time. After the release, the program is restarted  
from the reset vector address. Usually, write to the watchdog timer  
control register by software before an underflow of the watchdog  
timer H. The watchdog timer does not function if the watchdog  
timer control register is not written to at least once.  
Bit 7 of the watchdog timer control register is 1:  
when XCIN = 32.768 kHz; 125 ms  
when XIN = 16 MHz; 256 µs  
Note: The watchdog timer continues to count even while waiting for a stop  
release. Therefore, make sure that watchdog timer H does not un-  
derflow during this period.  
FF16is set when  
Data bus  
watchdog timer  
control register is  
written to.  
FF16is set when  
watchdog timer  
control register is  
written to.  
XCIN  
0”  
1”  
10”  
Watchdog timer L (8)  
Main clock division  
ratio selection bits  
(Note)  
Watchdog timer H (8)  
1/16  
00”  
01”  
Watchdog timer H count  
source selection bit  
XIN  
STP instruction disable bit  
STP instruction  
Reset  
circuit  
Internal reset  
RESET  
Reset release time waiting  
Note: Either high-speed, middle-speed or low-speed mode is selected by bits 7 and 6 of the CPU mode register.  
Fig. 54 Block diagram of Watchdog timer  
b0  
b7  
Watchdog timer control register  
(WDTCON : address 001E16  
)
Watchdog timer H (for read-out of high-order 6 bit)  
STP instruction disable bit  
0: STP instruction enabled  
1: STP instruction disabled  
Watchdog timer H count source selection bit  
0: Watchdog timer L underflow  
1: f(XIN)/16 or f(XCIN)/16  
Fig. 55 Structure of Watchdog timer control register  
59  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
RESET CIRCUIT  
Poweron  
To reset the microcomputer, RESET pin should be held at an "L"  
level for 16 cycles or more of XIN. Then the RESET pin is returned  
to an "H" level (the power source voltage should be between 1.8 V  
and 5.5 V, and the oscillation should be stable), reset is released.  
After the reset is completed, the program starts from the address  
contained in address FFFD16 (high-order byte) and address  
FFFC16 (low-order byte). Make sure that the reset input voltage is  
less than 0.36 V for VCC of 1.8 V.  
(Note)  
Power source  
voltage  
0V  
RESET  
VCC  
Reset input  
voltage  
0V  
0.2VCC  
Note : Reset release voltage ; Vcc=2.7 V  
RESET  
VCC  
Power source  
voltage detection  
circuit  
Fig. 56 Reset circuit example  
XIN  
φ
RESET  
Internal  
reset  
Address  
AD  
H L  
,
?
?
?
?
FFFC  
FFFD  
Reset address from the vector table.  
Data  
ADH  
?
?
?
ADL  
?
SYNC  
XIN: 10.5 to 18.5 clock cycles  
Notes  
1: The frequency relation of f(XIN) and f(φ) is f(XIN)=8 f(φ).  
2: The question marks (?) indicate an undefined state that depends on the previous state.  
Fig. 57 Reset sequence  
60  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Address  
Register contents  
Address Register contents  
0016  
(1)  
Port P0 (P0)  
FF16  
FF16  
0016  
0016  
(34)Timer Z (low-order) (TZL)  
000016  
000116  
000216  
000316  
000416  
000516  
000616  
000716  
000816  
000916  
000A16  
000B16  
000C16  
000D16  
000E16  
000F16  
001016  
001816  
001916  
001A16  
001B16  
001C16  
001D16  
001E16  
001F16  
002016  
002116  
002216  
002316  
002416  
002516  
002616  
002716  
002816  
002916  
002A16  
002B16  
002C16  
002D16  
002F16  
003016  
003116  
003216  
003316  
003416  
003516  
003616  
003716  
003816  
003916  
003A16  
003B16  
003C16  
003D16  
003E16  
003F16  
0FF016  
0FF116  
0FF216  
0FF316  
0FF416  
0FF516  
0FF616  
(PS)  
0016  
(2)  
Port P0 direction register (P0D)  
Port P1 (P1)  
(35)Timer Z (high-order) (TZH)  
0016  
(3)  
(36)Timer Z mode register (TZM)  
(37)PWM control register (PWMCON)  
(38)PWM prescaler (PREPWM)  
(39)PWM register (PWM)  
0016  
(4)  
Port P1 direction register (P1D)  
Port P2 (P2)  
0016  
(5)  
X X X X X X X X  
X X X X X X X X  
X X X X X X X X  
0016  
(6)  
Port P2 direction register (P2D)  
Port P3 (P3)  
0016  
(7)  
(40)Baud rate generator 3 (BRG3)  
(41)Transmit/Receive buffer register 3 (TB3/RB3)  
(42)Serial I/O3 status register (SIO3STS)  
(43)Serial I/O3 control register (SIO3CON)  
(44)UART3 control register (SIO3CON)  
(45)AD/DA control register (ADCON)  
(46)A-D conversion register 1 (AD1)  
(47)D-A1 conversion register (DA1)  
(48)D-A2 conversion register (DA2)  
(49)A-D conversion register 2 (AD2)  
(50)Interrupt source selection register (INTSEL)  
(51)Interrupt edge selection register (INTEDGE)  
(52)CPU mode register (CPUM)  
(53)Interrupt request register 1 (IREQ1)  
(54)Interrupt request register 2 (IREQ2)  
(55)Interrupt control register 1 (ICON1)  
(56)Interrupt control register 2 (ICON2)  
(57)Port P0 pull-up control register (PULL0)  
(58)Port P1 pull-up control register (PULL1)  
(59)Port P2 pull-up control register (PULL2)  
(60)Port P3 pull-up control register (PULL3)  
(61)Port P4 pull-up control register (PULL4)  
(62)Port P5 pull-up control register (PULL5)  
(63)Port P6 pull-up control register (PULL6)  
(64)Processor status register  
(8)  
0016  
Port P3 direction register (P3D)  
Port P4 (P4)  
X X X X X X X X  
1 0 0 0 0 0 0 0  
0016  
(9)  
0016  
(10)  
(11)  
(12)  
(13)  
(14)  
(15)  
(16)  
(17)  
(18)  
(19)  
(20)  
(21)  
(22)  
(23)  
(24)  
(25)  
(26)  
(27)  
(28)  
(29)  
(30)  
(31)  
(32)  
(33)  
0016  
Port P4 direction register (P4D)  
Port P5 (P5)  
0016  
1 1 1 0 0 0 0 0  
0016  
0016  
Port P5 direction register (P5D)  
Port P6 (P6)  
0 0 0 0 1 0 0 0  
X X X X X X X X  
0016  
Port P6 direction register (P6D)  
Timer 12, X count source selection register (T12XCSS)  
Timer Y, Z count source selection register (TYZCSS)  
MISRG  
0016  
0 0 1 1 0 0 1 1  
0 0 1 1 0 0 1 1  
0016  
0016  
0 0 0 0 0 0 X X  
0016  
Transmit/Receive buffer register 1 (TB1/RB1)  
Serial I/O1 status register (SIO1STS)  
Serial I/O1 control register (SIO1CON)  
UART1 control register (UART1CON)  
Baud rate generator 1 (BRG1)  
Serial I/O2 control register (SIO2CON)  
Watchdog timer control register (WDTCON)  
Serial I/O2 register (SIO2)  
Prescaler 12 (PRE12)  
0016  
X X X X X X X X  
1 0 0 0 0 0 0 0  
0016  
0 1 0 0 1 0 0 0  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
1 1 1 0 0 0 0 0  
X X X X X X X X  
0016  
0 0 1 1 1 1 1 1  
X X X X X X X X  
FF16  
0116  
FF16  
0016  
FF16  
FF16  
FF16  
FF16  
Timer 1 (T1)  
Timer 2 (T2)  
Timer XY mode register (TM)  
Prescaler X (PREX)  
Timer X (TX)  
X X X X X 1 X X  
Prescaler Y (PREY)  
(65)Program counter  
(PCH)  
FFFD16 contents  
FFFC16 contents  
Timer Y (TY)  
(PCL)  
Note : X : Not fixed  
Since the initial values for other than above mentioned registers and  
RAM contents are indefinite at reset, they must be set.  
Fig. 58 Internal status at reset  
61  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
CLOCK GENERATING CIRCUIT  
Oscillation Control  
The 3803 group (Spec. H) has two built-in oscillation circuits: main  
clock XIN-XOUT oscillation circuit and sub clock XCIN-XCOUT oscil-  
lation circuit. An oscillation circuit can be formed by connecting a  
resonator between XIN and XOUT (XCIN and XCOUT). Use the cir-  
cuit constants in accordance with the resonator manufacturer’s  
recommended values. No external resistor is needed between XIN  
and XOUT since a feed-back resistor exists on-chip. However, an  
external feed-back resistor is needed between XCIN and XCOUT.  
Immediately after power on, only the XIN oscillation circuit starts  
oscillating, and XCIN and XCOUT pins function as I/O ports.  
(1) Stop mode  
If the STP instruction is executed, the internal clock φ stops at an  
“H” level, and XIN and XCIN oscillators stop. When the oscillation  
stabilizing time set after STP instruction released bit is “0,” the  
prescaler 12 is set to “FF16” and timer 1 is set to “0116.” When the  
oscillation stabilizing time set after STP instruction released bit is  
“1,” set the sufficient time for oscillation of used oscillator to stabi-  
lize since nothing is set to the prescaler 12 and timer 1.  
After STP instruction is released, the input of the prescaler 12 is  
connected to count source which had set at executing the STP in-  
struction, and the output of the prescaler 12 is connected to timer  
1. Set the timer 1 interrupt enable bit to disabled (“0”) before ex-  
ecuting the STP instruction. Oscillator restarts when an external  
interrupt is received, but the internal clock φ is not supplied to the  
CPU (remains at “H”) until timer 1 underflows. The internal clock φ  
is supplied for the first time, when timer 1 underflows. Therefore  
make sure not to set the timer 1 interrupt request bit to “1” before  
the STP instruction stops the oscillator. When the oscillator is re-  
started by reset, apply “L” level to the RESET pin until the  
oscillation is stable since a wait time will not be generated.  
Frequency Control  
(1) Middle-speed mode  
The internal clock φ is the frequency of XIN divided by 8. After re-  
set is released, this mode is selected.  
(2) High-speed mode  
The internal clock φ is half the frequency of XIN.  
(3) Low-speed mode  
The internal clock φ is half the frequency of XCIN.  
(2) Wait mode  
(4) Low power dissipation mode  
If the WIT instruction is executed, the internal clock φ stops at an  
“H” level, but the oscillator does not stop. The internal clock φ re-  
starts when an interrupt is received. Since the oscillator does not  
stop, normal operation can be started immediately after the clock  
is restarted.  
The low power consumption operation can be realized by stopping  
the main clock XIN in low-speed mode. To stop the main clock, set  
bit 5 of the CPU mode register to “1.” When the main clock XIN is  
restarted (by setting the main clock stop bit to “0”), set sufficient  
time for oscillation to stabilize.  
Note  
•If you switch the mode between middle/high-speed and low-  
speed, stabilize both XIN and XCIN oscillations. The sufficient time  
is required for the sub clock to stabilize, especially immediately  
after power on and at returning from stop mode. When switching  
the mode between middle/high-speed and low-speed, set the fre-  
quency on condition that f(XIN) > 3f(XCIN).  
•When using the quartz-crystal oscillator of high frequency, such  
as 16 MHz etc., it may be necessary to select a specific oscillator  
with the specification demanded.  
62  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
X
CIN  
X
COUT  
X
IN  
XOUT  
Rf  
Rd  
COUT  
CCOUT  
CIN  
C
CIN  
Fig. 59 Ceramic resonator circuit  
X
CIN  
X
COUT  
XIN  
XOUT  
Open  
Open  
External oscillation  
circuit  
External oscillation  
circuit  
V
CC  
SS  
V
CC  
SS  
V
V
Fig. 60 External clock input circuit  
63  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
X
COUT  
XCIN  
0”  
1”  
Port X  
C
switch bit  
Main clock division ratio  
selection bits (Note 1)  
Low-speed  
X
OUT  
X
IN  
Divider  
mode  
Prescaler 12  
(Note 3)  
Timer 1  
0116  
1/2  
1/4  
High-speed or  
middle-speed  
mode  
Reset or  
STP instruction  
(Note 2)  
FF16  
Main clock division ratio  
selection bits (Note 1)  
Middle-speed mode  
Timing φ (internal clock)  
High-speed or  
low-speed mode  
Main clock stop bit  
Q
S
R
S
R
Q
Q
S
R
STP instruction  
STP instruction  
WIT instruction  
Reset  
Interrupt disable flag l  
Interrupt request  
Notes 1: Either high-speed, middle-speed or low-speed mode is selected by bits 7 and 6 of the CPU mode register.  
When low-speed mode is selected, set port Xc switch bit (b4) to 1.  
2: f(XIN)/16 is supplied as the count source to the prescaler 12 at reset. The count source before executing the STP  
instruction is supplied as the count source at executing STP instruction.  
3: When bit 0 of MISRG is 0, timer 1 is set 0116and prescaler 12 is set FF16automatically. When bit 0 of MISRG is  
1, set the appropriate value to them in accordance with oscillation stablizing time required by the using oscillator  
because nothing is automatically set into timer 1 and prescaler 12.  
Fig. 61 System clock generating circuit block diagram  
64  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Reset  
High-speed mode  
Middle-speed mode  
(f(φ)=4 MHz)  
(f(φ)=1 MHz)  
CM  
6
1←→0”  
CM  
CM  
CM  
CM  
7
6
5
4
=0  
=1  
CM  
CM  
CM  
CM  
7
=0  
6
5
4
=0  
=0(8 MHz oscillating)  
=0(32 kHz stopped)  
=0(8 MHz oscillating)  
=0(32 kHz stopped)  
C
M
4
0
0
C
4
M
M
6
C
1
0
1
1
6
M
C
0
1
Middle-speed mode  
(f(φ)=1 MHz)  
High-speed mode  
(f(φ)=4 MHz)  
CM  
6
1←→0”  
CM  
CM  
CM  
CM  
7
=0  
CM  
CM  
CM  
CM  
7
=0  
6=1  
6
5
4
=0  
5
=0(8 MHz oscillating)  
=1(32 kHz oscillating)  
=0(8 MHz oscillating)  
=1(32 kHz oscillating)  
4
C
M
7
0
C
M
6
1
1
0
Low-speed mode  
(f(φ)=16 kHz)  
CM  
CM  
CM  
CM  
7
=1  
6
5
4
=0  
b7  
b4  
=0(8 MHz oscillating)  
=1(32 kHz oscillating)  
CPU mode register  
(CPUM : address 003B16  
)
CM  
CM  
CM  
4
5
7
: Port Xc switch bit  
0 : I/O port function (stop oscillating)  
1 : XCIN-XCOUT oscillating function  
: Main clock (XIN- XOUT) stop bit  
0 : Operating  
1 : Stopped  
, CM  
6: Main clock division ratio selection bit  
Low-speed mode  
(f(φ)=16 kHz)  
b7 b6  
0
0
1
1
0 : φ = f(XIN)/2 ( High-speed mode)  
1 : φ = f(XIN)/8 (Middle-speed mode)  
0 : φ = f(XCIN)/2 (Low-speed mode)  
1 : Not available  
CM  
CM  
CM  
CM  
7
=1  
=0  
6
5
4
=1(8 MHz stopped)  
=1(32 kHz oscillating)  
Notes  
1 : Switch the mode by the allows shown between the mode blocks. (Do not switch between the modes directly without an allow.)  
2 : The all modes can be switched to the stop mode or the wait mode and return to the source mode when the stop mode or the wait mode is  
ended.  
3 : Timer operates in the wait mode.  
4 : When the stop mode is ended, a delay of approximately 1 ms occurs by connecting prescaler 12 and Timer 1 in middle/high-speed mode.  
5 : When the stop mode is ended, a delay of approximately 0.25 s occurs by Timer 1 and Timer 2 in low-speed mode.  
6 : Wait until oscillation stabilizes after oscillating the main clock XIN before the switching from the low-speed mode to middle/high-speed  
mode.  
7 : The example assumes that 8 MHz is being applied to the XIN pin and 32 kHz to the XCIN pin. φ indicates the internal clock.  
Fig. 62 State transitions of system clock  
65  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
NOTES ON USAGE  
Handling of Power Source Pins  
In order to avoid a latch-up occurrence, connect a capacitor suit-  
able for high frequencies as bypass capacitor between power  
source pin (VCC pin) and GND pin (VSS pin), and between power  
source pin (VCC pin) and analog power source input pin (AVSS  
pin). Besides, connect the capacitor to as close as possible. For  
bypass capacitor which should not be located too far from the pins  
to be connected, a ceramic capacitor of 0.01 µF0.1 µF is recom-  
mended.  
66  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
ELECTRICAL CHARACTERISTICS  
Absolute maximum ratings  
Table 9 Absolute maximum ratings  
Symbol  
Parameter  
Power source voltageS  
Conditions  
Ratings  
Unit  
V
VCC  
0.3 to 6.5  
VI  
Input voltage P00P07, P10P17, P20P27,  
P30, P31, P34P37, P40P47,  
0.3 to VCC +0.3  
V
P50P57, P60P67, VREF  
VI  
Input voltage P32, P33  
Input voltage RESET, XIN  
Input voltage CNVSS  
0.3 to 5.8  
V
V
V
All voltages are based on VSS.  
Output transistors are cut off.  
VI  
0.3 to VCC +0.3  
0.3 to VCC +0.3  
VI  
VO  
Output voltage P00P07, P10P17, P20P27,  
P30, P31, P34P37, P40P47,  
0.3 to VCC +0.3  
V
P50P57, P60P67, XOUT  
VO  
Output voltage P32, P33  
Power dissipation  
0.3 to 5.8  
1000 (Note)  
20 to 85  
V
mW  
°C  
Pd  
Ta = 25 °C  
Topr  
Tstg  
Operating temperature  
Storage temperature  
65 to 125  
°C  
Note: In flat package, this value is 300 mW.  
67  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Recommended operating conditions  
Table 10 Recommended operating conditions  
(VCC = 1.8 to 5.5 V, VSS = 0V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Power source voltage  
Conditions  
When start oscillating (Note 2)  
Unit  
Min.  
2.2  
2.0  
2.2  
2.7  
4.0  
4.5  
1.8  
2.2  
2.7  
4.5  
Typ.  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
5.0  
0
Max.  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
V
V
V
V
V
V
V
V
V
V
V
V
VCC  
High-speed mode  
f(XIN) 2.1 MHz  
f(XIN) 4.2 MHz  
f(XIN) 8.4 MHz  
f(XIN) 12.5 MHz  
f(XIN) 16.8 MHz  
f(XIN) 6.3 MHz  
f(XIN) 8.4 MHz  
f(XIN) 12.5 MHz  
f(XIN) 16.8 MHz  
(Note 1)  
f(φ) = f(XIN)/2  
Middle-speed mode  
f(φ) = f(XIN)/8  
VSS  
VIH  
Power source voltage  
Hinput voltage  
1.8 VCC < 2.7 V  
2.7 VCC 5.5 V  
0.85VCC  
0.8VCC  
VCC  
VCC  
P00P07, P10P17, P20P27,  
P30, P31, P34P37, P40P47,  
P50P57, P60P67  
Hinput voltage  
V
1.8 VCC < 2.7 V  
2.7 VCC 5.5 V  
1.8 VCC < 2.7 V  
2.7 VCC 5.5 V  
1.8 VCC < 2.7 V  
VIH  
VIH  
VIL  
0.85VCC  
0.8VCC  
0.85VCC  
0.8VCC  
0
5.5  
5.5  
V
V
V
V
V
P32, P33  
Hinput voltage  
VCC  
____________  
RESET, XIN, XCIN, CNVSS  
Linput voltage  
VCC  
0.16VCC  
P00P07, P10P17, P20P27,  
P30P37,P40P47,  
2.7 VCC 5.5 V  
0
0.2VCC  
V
P50P57, P60P67  
Linput voltage  
1.8 VCC < 2.7 V  
2.7 VCC 5.5 V  
1.8 VCC 5.5 V  
0
0
0.16VCC  
0.2VCC  
0.16VCC  
VIL  
VIL  
V
V
V
____________  
RESET, CNVSS  
Linput voltage  
XIN, XCIN  
Notes 1: When using A-D converter, see A-D converter recommended operating conditions.  
2: The start voltage and the start time for oscillation depend on the using oscillator, oscillation circuit constant value and operating  
temperature range, etc.. Particularly a high-frequency oscillator might require some notes in the low voltage operation.  
68  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 11 Recommended operating conditions  
(VCC = 1.8 to 5.5 V, VSS = 0V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Conditions  
Main clock input oscillation High-speed mode  
Symbol  
f(XIN)  
Parameter  
Unit  
Min.  
Typ.  
Max.  
(20VCC-36)1.05  
MHz  
MHz  
MHz  
MHz  
2.0 VCC < 2.2 V  
2.2 VCC < 2.7 V  
2.2 VCC < 4.0 V  
4.0 VCC < 4.5 V  
2
frequency (Note 1)  
f(φ) = f(XIN)/2  
(24VCC-40.8)1.05  
3
(9VCC-0.3)1.05  
3
(24VCC-60)1.05  
3
16.8  
MHz  
MHz  
4.5 VCC 5.5 V  
1.8 VCC < 2.2 V  
(15VCC-9)1.05  
Middle-speed mode  
3
f(φ) = f(XIN)/8  
(24VCC-28.8)1.05  
MHz  
MHz  
2.2 VCC < 2.7 V  
2.7 VCC < 4.5 V  
4.5 VCC 5.5 V  
3
(15VCC+39)1.1  
7
16.8  
50  
MHz  
kHz  
Sub-clock input oscillation  
32.768  
f(XCIN)  
frequency (Notes 1, 2)  
Notes 1: When the oscillation frequency has a duty cycle of 50%.  
2: When using the microcomputer in low-speed mode, set the sub-clock input oscillation frequency on condition that  
f(XCIN) < f(XIN)/3.  
69  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 12 Recommended operating conditions  
(VCC = 1.8 to 5.5 V, VSS = 0V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
P0 , P1 P1  
Min.  
Typ.  
Max.  
80  
80  
80  
ΣIOH(peak)  
ΣIOH(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOL(peak)  
ΣIOH(avg)  
ΣIOH(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
ΣIOL(avg)  
Htotal peak output current  
Htotal peak output current  
Ltotal peak output current  
Ltotal peak output current  
Ltotal peak output current  
P0  
P40P47, P50P57, P60P67 (Note 1)  
P0 P0 , P1 P1 , P3 P3 (Note 1)  
P20P27 (Note 1)  
P40P47,P50P57, P60P67 (Note 1)  
P0 , P1 P1 , P2 P2 , P3 , P3 , P3  
Htotal average output current P40P47,P50P57, P60P67 (Note 1)  
Ltotal average output current P0 P0 , P1 P1 , P3 P3 (Note 1)  
Ltotal average output current P20P27 (Note 1)  
Ltotal average output current P40P47,P50P57, P60P67 (Note 1)  
0
7
0
7
, P2  
0
P2  
7
, P3  
0
, P3  
1
, P3  
4
P3  
7
7
(Note 1)  
(Note 1)  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
0
7
0
7
0
7
80  
80  
Htotal average output current P0  
0
7
0
7
0
7
0
1
4
P3  
40  
40  
40  
0
7
0
7
0
7
40  
40  
Hpeak output current  
P00P07, P10P17, P20P27, P30, P31, P34P37,  
P40P47, P50P57, P60P67 (Note 2)  
IOH(peak)  
10  
mA  
Lpeak output current  
P00P07, P10P17, P30P37, P40P47, P50P57,  
P60P67 (Note 2)  
IOL(peak)  
IOL(peak)  
IOH(avg)  
10  
20  
5  
mA  
mA  
mA  
Lpeak output current  
P20P27 (Note 2)  
Haverage output current  
P00P07, P10P17, P20P27, P30, P31, P34P37,  
P40P47, P50P57, P60P67 (Note 3)  
Laverage output current  
Laverage output current  
P00P07, P10P17, P30P37, P40P47, P50P57,  
P60P67 (Note 3)  
IOL(avg)  
IOL(avg)  
5
mA  
mA  
P20P27 (Note 3)  
10  
Notes 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an aver-  
age value measured over 100 ms. The total peak current is the peak value of all the currents.  
2: The peak output current is the peak current flowing in each port.  
3: The average output current IOL(avg), IOH(avg) are average value measured over 100 ms.  
70  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Electrical characteristics  
Table 13 Electrical characteristics (1)  
(VCC = 1.8 to 5.5 V, VSS = 0V, Ta = –20 to 85 °C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
“H” output voltage  
P00–P07, P10–P17, P20–P27,  
P30, P31, P34–P37, P40–P47,  
P50–P57, P60–P67 (Note 1)  
Unit  
Test conditions  
IOH = –10 mA  
VCC = 4.0–5.5 V  
IOH = –1.0 mA  
VCC = 1.8–5.5 V  
Min.  
Max.  
V
V
VCC–2.0  
VCC–1.0  
VOH  
VOL  
“L” output voltage  
IOL = 10 mA  
VCC = 4.0–5.5 V  
IOL = 1.6 mA  
2.0  
1.0  
V
V
P00–P07, P10–P17, P20–P27,  
P30–P37, P40–P47, P50–P57,  
P60–P67  
VCC = 1.8–5.5 V  
Hysteresis  
CNTR0, CNTR1, CNTR2,  
INT0–INT4  
VT+–VT–  
V
0.4  
Hysteresis  
RxD1, SCLK1, SIN2, SCLK2, RxD3,  
SCLK3  
V
V
VT+–VT–  
VT+–VT–  
0.5  
0.5  
Hysteresis RESET  
“H” input current  
VI = VCC  
P00–P07, P10–P17, P20–P27,  
P30–P37, P40–P47, P50–P57,  
P60–P67  
(Pin floating. Pull-up  
transistors “off”)  
IIH  
µA  
5.0  
5.0  
IIH  
IIH  
“H” input current RESET, CNVSS  
“H” input current XIN  
VI = VCC  
VI = VCC  
µA  
µA  
4.0  
“L” input current  
VI = VSS  
P00–P07, P10–P17, P20–P27,  
P30–P37, P40–P47, P50–P57,  
P60–P67  
(Pin floating. Pull-up  
transistors “off”)  
µA  
IIL  
–5.0  
–5.0  
IIL  
IIL  
µA  
µA  
“L” input current RESET,CNVSS  
VI = VSS  
VI = VSS  
–4.0  
–210  
–70  
“L” input current  
XIN  
“L” input current (at Pull-up)  
P00–P07, P10–P17, P20–P27,  
P30, P31, P34–P37, P40–P47,  
P50–P57, P60–P67  
VI = VSS  
VCC = 5.0 V  
VI = VSS  
µA  
–80  
–420  
IIL  
µA  
–30  
1.8  
–140  
VCC  
VCC = 3.0 V  
VRAM  
V
RAM hold voltage  
When clock stopped  
Note 1: P35 is measured when the P35/TxD3 P-channel output disable bit of the UART3 control register (bit 4 of address 003316) is “0”.  
P45 is measured when the P45/TxD1 P-channel output disable bit of the UART1 control register (bit 4 of address 001B16) is “0”.  
71  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 14 Electrical characteristics (2)  
(VCC = 1.8 to 5.5 V, Ta = 20 to 85 °C, f(XCIN)=32.768kHZ (Stoped in middle-speed mode), Output transistors off,  
AD converter not operated)  
Limits  
Unit  
Symbol  
ICC  
Test conditions  
VCC = 5V  
Parameter  
Max.  
15.0  
12.0  
9.0  
5.0  
3.6  
3.8  
2.0  
1.2  
7.0  
6.0  
5.0  
3.3  
3.0  
2.4  
2.0  
200  
70  
Typ.  
8.0  
6.5  
5.0  
2.5  
2.0  
1.9  
1.0  
0.6  
4.0  
3.0  
2.5  
1.8  
1.5  
1.2  
1.0  
55  
Min.  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
f(XIN) = 16.8 MHz  
f(XIN) = 12.5 MHz  
f(XIN) = 8.4 MHz  
f(XIN) = 4.2 MHz  
f(XIN) = 16.8 MHz (in WIT state)  
f(XIN) = 8.4 MHz  
f(XIN) = 4.2 MHz  
f(XIN) = 2.1 MHz  
f(XIN) = 16.8 MHz  
f(XIN) = 12.5 MHz  
f(XIN) = 8.4 MHz  
f(XIN) = 16.8 MHz (in WIT state)  
f(XIN) = 12.5 MHz  
f(XIN) = 8.4 MHz  
f(XIN) = 6.3 MHz  
f(XIN) = stopped  
In WIT state  
Power source  
current  
High-speed  
mode  
VCC = 3V  
VCC = 5V  
Middle-speed  
mode  
VCC = 3V  
VCC = 5V  
VCC = 3V  
VCC = 2V  
Low-speed  
mode  
µA  
40  
µA  
15  
40  
f(XIN) = stopped  
In WIT state  
µA  
8
15  
µA  
6
15  
f(XIN) = stopped  
In WIT state  
µA  
3
6
µA  
0.1  
In STP state  
1.0  
10  
Ta = 25 °C  
Ta = 85 °C  
µA  
(All oscillation stopped)  
µA  
Increment when A-D conversion  
is executed  
500  
f(XIN) = 16.8 MHz, VCC = 5V  
In Middle-, high-speed mode  
72  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
A-D converter characteristics  
Table 15 A-D converter recommended operating conditions  
(VCC = 2.0 to 5.5 V, VSS = AVSS = 0 V,Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Conditions  
8-bit A-D mode (Note 1)  
Symbol  
VCC  
Parameter  
Max.  
Min.  
Typ.  
5.0  
5.0  
V
Power source voltage  
2.0  
2.2  
2.0  
5.0  
5.0  
(When A-D converter is used)  
Analog reference voltage  
Analog power source voltage  
Analog input voltage  
10-bit A-D mode (Note 2)  
V
V
VREF  
AVSS  
VIA  
VCC  
0
V
0
VCC  
High-speed mode  
f(φ) = f(XIN)/2  
MHZ  
Main clock oscillation frequency  
f(XIN)  
2.0 VCC < 2.2 V  
2.2 VCC < 2.7V  
2.7 VCC < 4.0 V  
4.0 VCC < 4.5 V  
0.5  
(20VCC-36)1.05  
2
(When A-D converter is used)  
0.5  
0.5  
0.5  
(24VCC-40.8)1.05  
3
(9VCC-0.3)1.05  
3
(24VCC-60)1.05  
3
4.5 VCC 5.5 V  
2.0 VCC < 2.2 V  
0.5  
2.0  
16.8  
Middle-speed mode  
(15VCC-9)1.05  
f(φ) = f(XIN)/8  
3
2.2 VCC < 2.7V  
2.7 VCC < 4.5 V  
4.5 VCC 5.5 V  
2.0  
2.0  
2.0  
(24VCC-28.8)1.05  
3
(15VCC+39)1.1  
7
16.8  
Note 1: 8-bit A-D mode: When the conversion mode selection bit (bit 7 of address 003816) is 1.  
2: 10-bit A-D mode: When the conversion mode selection bit (bit 7 of address 003816) is 0.  
Table 16 A-D converter characteristics  
(VCC = 2.0 to 5.5 V, VSS = AVSS = 0 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Unit  
Parameter  
Test conditions  
8-bit A-D mode (Note 1)  
Typ.  
Max.  
8
Min.  
Resolution  
bits  
10-bit A-D mode (Note 2)  
8-bit A-D mode (Note 1)  
10  
±3  
±2  
±5  
±4  
50  
61  
100  
200  
5
Absolute accuracy  
2.0 VCC < 2.2 V  
2.2 VCC 5.5 V  
2.2 VCC < 2.7 V  
2.7 VCC < 5.5V  
LSB  
(excluding quantization error)  
10-bit A-D mode (Note 2)  
8-bit A-D mode (Note 1)  
10-bit A-D mode (Note 2)  
tCONV  
Conversion time  
2tc(XIN)  
35  
RLADDER Ladder resistor  
12  
50  
kΩ  
µA  
µA  
µA  
VREF = 5.0 V  
VREF = 5.0 V  
150  
IVREF  
Reference power  
at A-D converter operated  
at A-D converter stopped  
source input current  
A-D port inout current  
5
II(AD)  
Note 1: 8-bit A-D mode: When the conversion mode selection bit (bit 7 of address 003816) is 1.  
2: 10-bit A-D mode: When the conversion mode selection bit (bit 7 of address 003816) is 0.  
73  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
D-A converter characteristics  
Table 17 D-A converter characteristics  
(VCC = 2.7 to 5.5 V, VREF = 2.7 V to VCC, VSS = AVSS = 0 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Typ.  
Symbol  
Parameter  
Test conditions  
Unit  
Min.  
Max.  
8
Resolution  
Bits  
%
VCC = 4.05.5 V  
VCC = 2.74.0 V  
1.0  
2.5  
3
Absolute accuracy  
%
tsu  
Setting time  
µs  
RO  
Output resistor  
2
3.5  
5
kΩ  
mA  
IVREF  
Reference power source input current (Note 1)  
3.2  
Note 1: Using one D-A converter, with the value in the D-A conversion register of the other D-A converter being 0016.  
74  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Timing requirements and switching characteristics  
Table 18 Timing requirements (1) (In high-speed mode)  
(VCC = 2.0 to 5.5 V, VSS = 0 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Typ.  
Max.  
Min.  
16  
Reset input Lpulse width  
tW(RESET)  
tC(XIN)  
XIN cycle  
Main clock XIN input cycle time  
4.5VCC5.5 V  
4.0VCC<4.5 V  
2.7VCC<4.0 V  
2.2VCC<2.7 V  
2.0VCC<2.2V  
4.5VCC5.5 V  
4.0VCC<4.5 V  
2.7VCC<4.0 V  
2.2VCC<2.7 V  
2.0VCC<2.2V  
4.5VCC5.5 V  
4.0VCC<4.5 V  
2.7VCC<4.0 V  
2.2VCC<2.7 V  
2.0VCC<2.2V  
59.5  
10000/(86VCC-219)  
2.6103/(82VCC-3)  
ns  
10000/(84VCC-143)  
10000/(105VCC-189)  
25  
Main clock XIN input Hpulse width  
Main clock XIN input Lpulse width  
tWH(XIN)  
tWL(XIN)  
4000/(86VCC-219)  
10000/(82VCC-3)  
ns  
ns  
4000/(84VCC-143)  
4000/(105VCC-189)  
25  
4000/(86VCC-219)  
10000/(82VCC-3)  
4000/(84VCC-143)  
4000/(105VCC-189)  
20  
5
Sub-clock XCIN input cycle time  
Sub-clock input Hpulse width  
Sub-clock input Lpulse width  
CNTR0CNTR2 input cycle time  
tC(XCIN)  
µs  
µs  
µs  
tWH(XCIN)  
tWL(XCIN)  
tC(CNTR)  
5
120  
160  
250  
500  
1000  
48  
4.5VCC5.5 V  
4.0VCC<4.5 V  
2.7VCC<4.0 V  
2.2VCC<2.7 V  
2.0VCC<2.2V  
4.5VCC5.5 V  
4.0VCC<4.5 V  
2.7VCC<4.0 V  
2.2VCC<2.7 V  
2.0VCC<2.2V  
4.5VCC5.5 V  
4.0VCC<4.5 V  
2.7VCC<4.0 V  
2.2VCC<2.7 V  
2.0VCC<2.2V  
4.5VCC5.5 V  
4.0VCC<4.5 V  
2.7VCC<4.0 V  
2.2VCC<2.7 V  
2.0VCC<2.2V  
4.5VCC5.5 V  
4.0VCC<4.5 V  
2.7VCC<4.0 V  
2.2VCC<2.7 V  
2.0VCC<2.2V  
ns  
ns  
ns  
ns  
ns  
CNTR0CNTR2 input Hpulse width  
CNTR0CNTR2 input Lpulse width  
tWH(CNTR)  
tWL(CNTR)  
tWH(INT)  
64  
115  
230  
460  
48  
64  
115  
230  
460  
48  
INT00, INT01, INT1, INT2, INT3, INT40, INT41  
64  
input Hpulse width  
115  
230  
460  
48  
INT00, INT01, INT1, INT2, INT3, INT40, INT41  
tWL(INT)  
64  
input Lpulse width  
115  
230  
460  
75  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 19 Timing requirements (2) (In high-speed mode)  
(VCC = 2.0 to 5.5 V, VSS = 0 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Typ.  
Min.  
250  
320  
500  
1000  
2000  
120  
150  
240  
480  
950  
120  
150  
240  
480  
950  
70  
Max.  
Serial I/O1, serial I/O3  
4.5VCC5.5 V  
4.0VCC<4.5 V  
2.7VCC<4.0 V  
2.2VCC<2.7 V  
2.0VCC<2.2V  
4.5VCC5.5 V  
4.0VCC<4.5 V  
2.7VCC<4.0 V  
2.2VCC<2.7 V  
2.0VCC<2.2V  
4.5VCC5.5 V  
4.0VCC<4.5 V  
2.7VCC<4.0 V  
2.2VCC<2.7 V  
2.0VCC<2.2V  
4.5VCC5.5 V  
4.0VCC<4.5 V  
2.7VCC<4.0 V  
2.2VCC<2.7 V  
2.0VCC<2.2V  
4.5VCC5.5 V  
4.0VCC<4.5 V  
2.7VCC<4.0 V  
2.2VCC<2.7 V  
2.0VCC<2.2V  
4.5VCC5.5 V  
4.0VCC<4.5 V  
2.7VCC<4.0 V  
2.2VCC<2.7 V  
2.0VCC<2.2V  
4.5VCC5.5 V  
4.0VCC<4.5 V  
2.7VCC<4.0 V  
2.2VCC<2.7 V  
2.0VCC<2.2V  
4.5VCC5.5 V  
4.0VCC<4.5 V  
2.7VCC<4.0 V  
2.2VCC<2.7 V  
2.0VCC<2.2V  
4.5VCC5.5 V  
4.0VCC<4.5 V  
2.7VCC<4.0 V  
2.2VCC<2.7 V  
2.0VCC<2.2V  
4.5VCC5.5 V  
4.0VCC<4.5 V  
2.7VCC<4.0 V  
2.2VCC<2.7 V  
2.0VCC<2.2V  
t
t
t
C(SCLK1), tC(SCLK3)  
clock input cycle time (Note)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial I/O1, serial I/O3  
WH(SCLK1), tWH(SCLK3  
)
clock input Hpulse width (Note)  
Serial I/O1, serial I/O3  
WL(SCLK1), tWL(SCLK3  
)
clock input Lpulse width (Note)  
Serial I/O1, serial I/O3  
clock input setup time  
tsu(RxD1-SCLK1),  
tsu(RxD3-SCLK3)  
90  
100  
200  
400  
32  
Serial I/O1, serial I/O3  
clock input hold time  
th(SCLK1-RxD1),  
th(SCLK3-RxD3)  
40  
50  
100  
200  
500  
650  
1000  
2000  
4000  
200  
260  
400  
950  
2000  
200  
260  
400  
950  
2000  
100  
130  
200  
400  
800  
100  
130  
150  
300  
600  
Serial I/O2 clock input cycle time  
Serial I/O2 clock input Hpulse width  
Serial I/O2 clock input Lpulse width  
Serial I/O2 clock input setup time  
Serial I/O2 clock input hold time  
tC(SCLK2)  
tWH(SCLK2)  
tCL(SCLK2)  
tsu(SIN2-SCLK2)  
th(SCLK2-SIN2)  
Note : When bit 6 of address 001A16 and bit 6 of address 003216 are 1(clock synchronous).  
Divide this value by four when bit 6 of address 001A16 and bit 6 of address 003216 are 0(UART).  
76  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 20 Timing requirements (3) (In middle-speed mode)  
(VCC = 1.8 to 5.5 V, VSS = 0 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Symbol  
Parameter  
Unit  
Typ.  
Max.  
Min.  
Reset input Lpulse width  
tW(RESET)  
tC(XIN)  
XIN cycle  
16  
Main clock XIN Input cycle time  
4.5VCC5.5 V  
2.7VCC<4.5 V  
2.2VCC<2.7 V  
1.8VCC<2.2V  
4.5VCC5.5 V  
2.7VCC<4.5 V  
2.2VCC<2.7 V  
1.8VCC<2.2V  
4.5VCC5.5 V  
2.7VCC<4.5 V  
2.2VCC<2.7 V  
1.8VCC<2.2V  
59.5  
ns  
10000/(24VCC+61)  
10000/(82VCC-96)  
10000/(52VCC-31)  
Main clock XIN input Hpulse width  
Main clock XIN input Lpulse width  
tWH(XIN)  
tWL(XIN)  
25  
ns  
ns  
4000/(24VCC+61)  
4000/(82VCC-96)  
4000/(52VCC-31)  
25  
4000/(24VCC+61)  
4000/(82VCC-96)  
4000/(52VCC-31)  
Sub-clock XCIN input cycle time  
Sub-clock input Hpulse width  
Sub-clock input Lpulse width  
CNTR0CNTR2 input cycle time  
tC(XCIN)  
µs  
µs  
µs  
20  
5
tWH(XCIN)  
tWL(XCIN)  
tC(CNTR)  
5
4.5VCC5.5 V  
2.7VCC<4.5 V  
2.2VCC<2.7 V  
1.8VCC<2.2V  
4.5VCC5.5 V  
2.7VCC<4.5 V  
2.2VCC<2.7 V  
1.8VCC<2.2V  
4.5VCC5.5 V  
2.7VCC<4.5 V  
2.2VCC<2.7 V  
1.8VCC<2.2V  
4.5VCC5.5 V  
2.7VCC<4.5 V  
2.2VCC<2.7 V  
1.8VCC<2.2V  
4.5VCC5.5 V  
2.7VCC<4.5 V  
2.2VCC<2.7 V  
1.8VCC<2.2V  
120  
160  
250  
320  
48  
ns  
ns  
ns  
ns  
ns  
CNTR0CNTR2 input Hpulse width  
CNTR0CNTR2 input Lpulse width  
tWH(CNTR)  
tWL(CNTR)  
tWH(INT)  
64  
115  
150  
48  
64  
115  
150  
48  
INT00, INT01, INT1, INT2, INT3, INT40, INT41  
input Hpulse width  
64  
115  
150  
48  
INT00, INT01, INT1, INT2, INT3, INT40, INT41  
tWL(INT)  
input Lpulse width  
64  
115  
150  
77  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Table 21 Timing requirements (4) (In middle-speed mode)  
(VCC = 1.8 to 5.5 V, VSS = 0 V, Ta = 20 to 85 °C, unless otherwise noted)  
Limits  
Unit  
Symbol  
Parameter  
Typ.  
Min.  
250  
320  
500  
650  
120  
150  
240  
310  
120  
150  
240  
310  
70  
Max.  
Serial I/O1, serial I/O3  
4.5VCC5.5 V  
2.7VCC<4.5 V  
2.2VCC<2.7 V  
1.8VCC<2.2V  
4.5VCC5.5 V  
2.7VCC<4.5 V  
2.2VCC<2.7 V  
1.8VCC<2.2V  
4.5VCC5.5 V  
2.7VCC<4.5 V  
2.2VCC<2.7 V  
1.8VCC<2.2V  
4.5VCC5.5 V  
2.7VCC<4.5 V  
2.2VCC<2.7 V  
1.8VCC<2.2V  
4.5VCC5.5 V  
2.7VCC<4.5 V  
2.2VCC<2.7 V  
1.8VCC<2.2V  
4.5VCC5.5 V  
2.7VCC<4.5 V  
2.2VCC<2.7 V  
1.8VCC<2.2V  
4.5VCC5.5 V  
2.7VCC<4.5 V  
2.2VCC<2.7 V  
1.8VCC<2.2V  
4.5VCC5.5 V  
2.7VCC<4.5 V  
2.2VCC<2.7 V  
1.8VCC<2.2V  
4.5VCC5.5 V  
2.7VCC<4.5 V  
2.2VCC<2.7 V  
1.8VCC<2.2V  
4.5VCC5.5 V  
2.7VCC<4.5 V  
2.2VCC<2.7 V  
1.8VCC<2.2V  
t
t
t
C(SCLK1), tC(SCLK3)  
ns  
ns  
ns  
ns  
ns  
ns  
clock input cycle time (Note)  
Serial I/O1, serial I/O3  
WH(SCLK1), tWH(SCLK3  
)
clock input Hpulse width (Note)  
Serial I/O1, serial I/O3  
WL(SCLK1), tWL(SCLK3  
)
clock input Lpulse width (Note)  
Serial I/O1, serial I/O3  
clock input setup time  
tsu(RxD1-SCLK1),  
tsu(RxD3-SCLK3)  
90  
100  
130  
32  
Serial I/O1, serial I/O3  
clock input hold time  
th(SCLK1-RxD1),  
th(SCLK3-RxD3)  
40  
50  
65  
Serial I/O2 clock input cycle time  
Serial I/O2 clock input Hpulse width  
Serial I/O2 clock input Lpulse width  
Serial I/O2 clock input setup time  
Serial I/O2 clock input hold time  
500  
650  
1000  
1300  
200  
260  
400  
520  
200  
260  
400  
520  
100  
130  
200  
260  
100  
130  
150  
200  
tC(SCLK2)  
tWH(SCLK2)  
tCL(SCLK2)  
ns  
ns  
tsu(SIN2-SCLK2)  
th(SCLK2-SIN2)  
ns  
ns  
Note : When bit 6 of address 001A16 and bit 6 of address 003216 are 1(clock synchronous).  
Divide this value by four when bit 6 of address 001A16 and bit 6 of address 003216 are 0(UART).  
78  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
Timing diagram in single-chip mode  
t
C(CNTR)  
t
WL(CNTR)  
t
WH(CNTR)  
0.8VCC  
CNTR  
0
, CNTR  
1
, CNTR  
2
0.2VCC  
0.2VCC  
t
WL(INT)  
t
WH(INT)  
INT  
1
, INT  
2, INT  
3
INT00, INT40  
INT01, INT41  
0.8VCC  
t
W(RESET)  
0.8VCC  
RESET  
0.2VCC  
t
t
C(XIN)  
t
t
WL(XIN)  
t
WH(XIN)  
0.8VCC  
X
IN  
0.2VCC  
0.2VCC  
C(XCIN  
)
WL(XCIN  
)
t
WH(XCIN)  
0.8VCC  
XCIN  
t
C(SCLK1),  
t
C(SCLK2),  
t
C(SCLK3  
)
t
r
tWH(SCLK1),  
t
f
t
WL(SCLK1),  
t
WL(SCLK2),  
t
WL(SCLK3  
)
tWH(SCLK2), tWH(SCLK3)  
SCLK1  
SCLK2  
SCLK3  
0.8VCC  
0.2VCC  
t
t
t
h(SCLK1-  
h(SCLK2-  
h(SCLK3-  
R
x
D1),  
IN2),  
D3)  
t
t
t
su(R  
su(SIN2-  
su(R D3  
x
D1  
-
S
CLK1),  
CLK2),  
CLK3  
S
S
R
x
x
-
S
)
R
R
X
X
S
D1  
D3  
0.8V  
0.2VCCCC  
IN2  
t
t
t
v(SCLK1-T  
v(SCLK2-  
v(SCLK3-T  
X
D1),  
OUT2),  
D3)  
S
t
d(SCLK1-TXD1),td(SCLK2-SOUT2),td(SCLK3-TXD3)  
X
T
T
X
X
OUT2  
D1  
D3  
S
Fig. 63 Timing diagram (in single-chip mode)  
79  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
PACKAGE OUTLINE  
64P6N-A  
Plastic 64pin 1414mm body QFP  
EIAJ Package Code  
QFP64-P-1414-0.80  
JEDEC Code  
Weight(g)  
1.11  
Lead Material  
Alloy 42  
MD  
HD  
D
64  
49  
1
48  
I2  
Recommended Mount Pad  
Dimension in Millimeters  
Symbol  
Min  
0
0.3  
0.13  
13.8  
13.8  
16.5  
16.5  
0.4  
Nom  
Max  
3.05  
0.2  
0.45  
0.2  
14.2  
14.2  
17.1  
17.1  
0.8  
0.1  
10°  
A
A1  
A2  
b
c
D
0.1  
2.8  
0.35  
0.15  
14.0  
14.0  
0.8  
16.8  
16.8  
0.6  
1.4  
0.5  
14.6  
14.6  
16  
33  
A
E
e
17  
32  
L1  
HD  
HE  
L
L1  
y
0°  
1.3  
F
e
b
b2  
I2  
MD  
ME  
L
y
Detail F  
64P4B  
Plastic 64pin 750mil SDIP  
EIAJ Package Code  
SDIP64-P-750-1.78  
JEDEC Code  
Weight(g)  
7.9  
Lead Material  
Alloy 42  
64  
33  
1
32  
Dimension in Millimeters  
Symbol  
Min  
0.38  
Nom  
Max  
5.08  
D
A
A1  
A2  
b
b1  
b2  
c
D
E
e
e1  
3.8  
0.4  
0.9  
0.65  
0.2  
56.2  
16.85  
2.8  
0°  
0.5  
1.0  
0.6  
1.3  
1.05  
0.32  
56.6  
17.15  
15°  
0.75  
0.25  
56.4  
17.0  
1.778  
19.05  
e
b1  
b
b2  
SEATING PLANE  
L
80  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
MMP  
EIAJ Package Code  
LQFP64-P-1010-0.50  
64P6Q-A  
Plastic 64pin 1010mm body LQFP  
Weight(g)  
Lead Material  
Cu Alloy  
JEDEC Code  
MD  
HD  
D
64  
49  
I2  
Recommended Mount Pad  
1
48  
Dimension in Millimeters  
Symbol  
Min  
0
Nom  
0.1  
Max  
1.7  
0.2  
0.28  
0.175  
10.1  
10.1  
A
A1  
A2  
b
c
D
1.4  
0.13  
0.105  
9.9  
9.9  
0.18  
0.125  
10.0  
10.0  
0.5  
16  
33  
E
e
17  
32  
A
HD  
HE  
L
L1  
Lp  
A3  
x
11.8  
11.8  
0.3  
0.45  
0°  
12.0  
12.0  
0.5  
1.0  
0.6  
0.25  
12.2  
12.2  
0.7  
0.75  
0.08  
0.1  
10°  
F
e
L1  
y
y
L
b
b2  
I2  
MD  
ME  
0.225  
10.4  
10.4  
x
M
Lp  
1.0  
Detail F  
MMP  
64P6U-A  
Plastic 64pin 1414mm body LQFP  
EIAJ Package Code  
LQFP64-P-1414-0.8  
JEDEC Code  
Weight(g)  
Lead Material  
Cu Alloy  
MD  
HD  
D
64  
49  
l2  
1
48  
Recommended Mount Pad  
Dimension in Millimeters  
Symbol  
Min  
0
Nom  
0.1  
Max  
1.7  
0.2  
0.45  
0.175  
14.1  
14.1  
A
A1  
A2  
b
c
D
1.4  
0.32  
0.105  
13.9  
13.9  
0.37  
0.125  
14.0  
14.0  
0.8  
16  
33  
E
e
17  
32  
A
16.0  
16.0  
0.5  
1.0  
0.6  
0.25  
HD  
HE  
L
L1  
Lp  
A3  
x
15.8  
15.8  
0.3  
0.45  
0°  
16.2  
16.2  
0.7  
0.75  
0.2  
0.1  
8°  
L1  
F
e
L
b
y
y
M
x
Lp  
b2  
I2  
MD  
ME  
0.225  
14.4  
14.4  
0.95  
Detail F  
81  
MITSUBISHI MICROCOMPUTERS  
3803 Group (Spec. H)  
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER  
HEAD OFFICE: 2-2-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN  
Keep safety first in your circuit designs!  
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to  
personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable  
material or (iii) prevention against any malfunction or mishap.  
Notes regarding these materials  
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any intellectual property  
rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.  
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples  
contained in these materials.  
All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by  
Mitsubishi Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product  
distributor for the latest product information before purchasing a product listed herein.  
The information described here may contain technical inaccuracies or typographical errors. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.  
Please also pay attention to information published by Mitsubishi Electric Corporation by various means, including the Mitsubishi Semiconductor home page (http://www.mitsubishichips.com).  
When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision  
on the applicability of the information and products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.  
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric  
Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical,  
aerospace, nuclear, or undersea repeater use.  
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.  
If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved  
destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.  
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.  
© 2003 MITSUBISHI ELECTRIC CORP.  
New publication, effective Jan. 2003.  
Specifications subject to change without notice.  
REVISION HISTORY  
3803 GROUP (Spec. H) DATA SHEET  
Rev.  
1.0  
Date  
Description  
Summary  
Page  
01/09/03  
First Edition  
(1/1)  

相关型号:

M38034M4L-XXXHP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38034M4L-XXXKP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38034M4L-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38034M4L-XXXWG

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38034M5-XXXHP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38034M5-XXXKP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38034M5-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38034M5-XXXWG

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38034M5L-XXXHP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38034M5L-XXXKP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38034M5L-XXXSP

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS

M38034M5L-XXXWG

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
RENESAS