M30620FCMFP [MITSUBISHI]

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER; 单芯片16位CMOS微机
M30620FCMFP
型号: M30620FCMFP
厂家: Mitsubishi Group    Mitsubishi Group
描述:

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
单芯片16位CMOS微机

计算机
文件: 总33页 (文件大小:412K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Description  
Description  
The M16C/62M group of single-chip microcomputers are built using the high-performance silicon gate  
CMOS process using a M16C/60 Series CPU core and are packaged in a 100-pin plastic molded QFP.  
These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruc-  
tion efficiency. With 1M bytes of address space, low voltage (2.2V to 3.6V), they are capable of executing  
instructions at high speed. They also feature a built-in multiplier and DMAC, making them ideal for control-  
ling office, communications, industrial equipment, and other high-speed processing applications.  
The M16C/62M group includes a wide range of products with different internal memory types and sizes and  
various package types.  
Features  
• Memory capacity..................................ROM (See Figure 1.1.4. ROM Expansion)  
RAM 10K to 20K bytes  
• Shortest instruction execution time ......100ns (f(XIN)=10MHZ, VCC=2.7V to 3.6V)  
142.9ns (f(XIN)=7MHZ, VCC=2.2V to 3.6V with software one-wait)  
• Supply voltage .....................................2.7V to 3.6V (f(XIN)=10MHZ, without software wait)  
2.4V to 2.7V (f(XIN)=7MHZ, without software wait)  
2.2V to 2.4V (f(XIN)=7MHZ with software one-wait)  
• Low power consumption ......................28.5mW (VCC = 3V, f(XIN)=10MHZ, without software wait)  
• Interrupts..............................................25 internal and 8 external interrupt sources, 4 software  
interrupt sources; 7 levels (including key input interrupt)  
• Multifunction 16-bit timer......................5 output timers + 6 input timers  
• Serial I/O ..............................................5 channels  
(3 for UART or clock synchronous, 2 for clock synchronous)  
• DMAC ..................................................2 channels (trigger: 24 sources)  
• A-D converter.......................................10 bits X 8 channels (Expandable up to 10 channels)  
• D-A converter.......................................8 bits X 2 channels  
• CRC calculation circuit.........................1 circuit  
• Watchdog timer....................................1 line  
• Programmable I/O ...............................87 lines  
_______  
• Input port..............................................1 line (P85 shared with NMI pin)  
• Memory expansion ..............................Available (to a maximum of 1M bytes)  
• Chip select output ................................4 lines  
• Clock generating circuit .......................2 built-in clock generation circuits  
(built-in feedback resistor, and external ceramic or quartz oscillator)  
Applications  
Audio, cameras, office equipment, communications equipment, portable equipment  
1
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Description  
Pin Configuration  
Figures 1.1.1 and 1.1.2 show the pin configurations (top view).  
PIN CONFIGURATION (top view)  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51  
P4  
4
/CS0  
/CS1  
/CS2  
/CS3  
/WRL/WR  
/WRH/BHE  
/RD  
P0  
7
/D  
7
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
P4  
5
P06  
/D  
/D  
/D  
6
5
4
P4  
P4  
6
7
P0  
P0  
P0  
5
4
3
P5  
P5  
P5  
0
/D  
/D  
/D  
/D  
3
1
2
P0  
P0  
P0  
/AN  
/AN  
/AN  
/AN4/KI  
/AN  
2
2
1
1
0
0
3
P5  
P5  
P5  
P5  
3
/BCLK  
/HLDA  
/HOLD  
/ALE  
P10  
P10  
7
7
/KI  
/KI  
/KI  
4
5
6
6
6
2
P10  
5
5
1
0
3
M16C/62 Group  
P57/RDY/CLKOUT  
P10  
4
P60  
/CTS  
/CLK  
/RxD  
3
0
/RTS  
0
P10  
3
P6  
1
0
P10  
P10  
2
/AN  
/AN  
2
1
P62  
0
1
P6  
P6  
P6  
/T  
XD0  
AVSS  
4
/CTS  
5
1
1
1
/RTS  
1
/CLKS1  
P10  
0/AN  
0
/CLK  
/RxD  
V
REF  
P6  
P6  
6
AVcc  
/ADTRG/SIN  
7
/TXD1  
P9  
7
4
1
2
3
4
5
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
Package: 100P6S-A  
Figure 1.1.1. Pin configuration (top view)  
2
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Description  
PIN CONFIGURATION (top view)  
75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51  
P12/D10  
P11/D9  
P10/D8  
P07/D7  
P06/D6  
P05/D5  
P04/D4  
P03/D3  
P02/D2  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
P42/A18  
P43/A19  
P44/CS0  
P45/CS1  
P46/CS2  
P47/CS3  
P50/WRL/WR  
P51/WRH/BHE  
P52/RD  
P53/BCLK  
P01/D1  
P00/D0  
P107/AN7/KI3  
P106/AN6/KI2  
P105/AN5/KI1  
P104/AN4/KI0  
P103/AN3  
P54/HLDA  
P55/HOLD  
P56/ALE  
M16C/62 Group  
P57/RDY/CLKOUT  
P60/CTS0/RTS0  
P61/CLK0  
P62/RxD0  
P63/TXD0  
P64/CTS1/RTS1/CLKS1  
P65/CLK1  
P66/RxD1  
P67/TXD1  
P70/TXD2/SDA/TA0OUT  
P71/RxD2/SCL/TA0IN/TB5IN  
P72/CLK2/TA1OUT/V  
P102/AN2  
P101/AN1  
AVSS  
P100/AN0  
VREF  
AVcc  
P97/ADTRG/SIN4  
P96/ANEX1/SOUT4  
P95/ANEX0/CLK4  
1
2
3
4
5
6
7
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  
Package: 100P6Q-A  
Figure 1.1.2. Pin configuration (top view)  
3
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Description  
Block Diagram  
Figure 1.1.3 is a block diagram of the M16C/62M group.  
Block diagram of the M16C/62M group  
8
8
Port P2  
8
8
8
8
8
I/O ports  
Port P0  
Port P1  
Port P3  
Port P4  
Port P5  
Port P6  
Internal peripheral functions  
Timer  
System clock generator  
IN-XOUT  
CIN-XCOUT  
A-D converter  
(10 bits  
X 8 channels  
X
X
Expandable up to 10 channels)  
Timer TA0 (16 bits)  
Timer TA1 (16 bits)  
Timer TA2 (16 bits)  
Timer TA3 (16 bits)  
Timer TA4 (16 bits)  
Timer TB0 (16 bits)  
Timer TB1 (16 bits)  
Timer TB2 (16 bits)  
Timer TB3 (16 bits)  
Timer TB4 (16 bits)  
Timer TB5 (16 bits)  
UART/clock synchronous SI/O  
Clock synchronous SI/O  
(8 bits  
X
3 channels)  
(8 bits  
X
2 channels)  
CRC arithmetic circuit (CCITT )  
(Polynomial : X16+X12+X5+1)  
M16C/60 series16-bit CPU core  
Memory  
ROM  
(Note 1)  
Registers  
Program counter  
R0H  
R0H  
R1H  
R2  
R3  
A0  
A1  
FB  
R0L  
R0L  
R1L  
PC  
Watchdog timer  
(15 bits)  
RAM  
(Note 2)  
Vector table  
INTB  
DMAC  
(2 channels)  
Stack pointer  
ISP  
USP  
D-A converter  
(8 bits X 2 channels)  
Multiplier  
Flag register  
FLG  
SB  
Note 1: ROM size depends on MCU type.  
Note 2: RAM size depends on MCU type.  
Figure 1.1.3. Block diagram of M16C/62M group  
4
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Description  
Performance Outline  
Table 1.1.1 is a performance outline of M16C/62M group.  
Table 1.1.1. Performance outline of M16C/62M group  
Item  
Performance  
Number of basic instructions  
91 instructions  
100ns(f(XIN)=10MHZ, VCC=2.7V to 3.6V)  
Shortest instruction execution time  
142.9ns (f(XIN)=7MHZ, VCC=2.2V to 3.6V with software one-wait)  
(See the figure 1.1.4. ROM Expansion)  
10K to 20K bytes  
Memory  
capacity  
I/O port  
ROM  
RAM  
P0 to P10 (except P85)  
P85  
8 bits x 10, 7 bits x 1  
Input port  
1 bit x 1  
Multifunction TA0, TA1, TA2, TA3, TA4  
16 bits x 5  
timer  
TB0, TB1, TB2, TB3, TB4, TB5 16 bits x 6  
Serial I/O  
UART0, UART1, UART2  
SI/O3, SI/O4  
(UART or clock synchronous) x 3  
(Clock synchronous) x 2  
A-D converter  
D-A converter  
DMAC  
10 bits x (8 + 2) channels  
8 bits x 2  
2 channels (trigger: 24 sources)  
CRC-CCITT  
CRC calculation circuit  
Watchdog timer  
15 bits x 1 (with prescaler)  
Interrupt  
25 internal and 8 external sources, 4 software sources, 7 levels  
2 built-in clock generation circuits  
(built-in feedback resistor, and external ceramic or quartz oscillator)  
2.7V to 3.6V (f(XIN)=10MHZ, without software wait)  
2.4V to 2.7V (f(XIN)=7MHZ, without software wait)  
2.2V to 2.4V (f(XIN)=7MHZ with software one-wait)  
28.5mW (f(XIN) =10MHZ, VCC=3V without software wait)  
3V  
Clock generating circuit  
Supply voltage  
Power consumption  
I/O  
I/O withstand voltage  
characteristics Output current  
Memory expansion  
Device configuration  
Package  
1mA  
Available (to a maximum of 1M bytes)  
CMOS high performance silicon gate  
100-pin plastic mold QFP  
5
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Description  
Mitsubishi plans to release the following products in the M16C/62M group:  
(1) Support for mask ROM version and Flash memory version  
(2) ROM capacity  
(3) Package  
100P6S-A : Plastic molded QFP (mask ROM and flash memory versions)  
100P6Q-A : Plastic molded QFP (mask ROM and flash memory versions)  
ROM Size  
(Byte)  
External  
ROM  
256K  
128K  
96K  
M30624MGM-XXXFP/GP M30624FGMFP/GP  
M30620MCM-XXXFP/GP M30620FCMFP/GP  
64K  
32K  
Mask ROM version  
Flash memory version  
Figure 1.1.4. ROM expansion  
The M16C/62M group products currently supported are listed in Table 1.1.2.  
Table 1.1.2. M16C/62M group  
June, 2000  
Remarks  
Type No  
ROM capacity  
RAM capacity  
10K byte  
Package type  
M30620MCM-XXXFP  
M30620MCM-XXXGP  
M30624MGM-XXXFP  
M30624MGM-XXXGP  
M30620FCMFP  
100P6S-A  
100P6Q-A  
100P6S-A  
100P6Q-A  
100P6S-A  
100P6Q-A  
100P6S-A  
128K byte  
mask ROM version  
256K byte  
128K byte  
256K byte  
20K byte  
10K byte  
20K byte  
M30620FCMGP  
Flash memory  
3V version  
M30624FGMFP  
M30624FGMGP  
100P6Q-A  
6
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Description  
Type No. M 3 0 6 2 0 M C M – X X X F P  
Package type:  
FP : Package  
GP  
100P6S-A  
100P6Q-A  
:
ROM No.  
Omitted for blank flash memory version  
ROM capacity:  
C : 128K bytes  
G : 256K bytes  
Memory type:  
M : Mask ROM version  
F : Flash memory version  
Shows RAM capacity, pin count, etc  
(The value itself has no specific meaning)  
M16C/62 Group  
M16C Family  
Figure 1.1.5. Type No., memory size, and package  
7
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Electrical characteristics  
Table 1.26.1. Absolute maximum ratings  
Symbol  
Parameter  
Condition  
Rated value  
- 0.3 to 4.6  
Unit  
V
Supply voltage  
Analog supply voltage  
Vcc  
AVcc  
V
CC=AVCC  
CC=AVCC  
V
- 0.3 to 4.6  
V
CNVSS, BYTE,  
RESET,  
P0 to P0  
P3 to P3  
P6  
P9  
Input  
voltage  
0
7
, P1  
0
to P1  
7
, P2  
, P5  
, P8  
0 to P27,  
0
7
,P4  
0
to P4  
7
0
to P5  
7,  
VI  
- 0.3 to Vcc + 0.3  
V
0
to P6  
7
, P7  
2
to P7  
7
0
to P87,  
0
to P9  
7
, P10  
0
to P10  
7,  
V
REF, XIN  
V
V
P7  
0
, P7  
to P0  
to P3  
to P6  
, P8 , P9  
1
- 0.3 to 4.6  
Output  
voltage  
P00  
7
, P1  
0
to P1  
to P4  
to P7  
to P9 , P10  
7
, P2  
0
to P2  
to P57  
7
,
P30  
7
, P4  
0
7, P5  
0
,
- 0.3 to Vcc + 0.3  
V
O
d
P6  
0
6
7
, P7  
2
7, P8  
0
to P84,  
to P107,  
P8  
7
0
7
0
XOUT  
P7  
0
, P7  
1
- 0.3 to 4.6  
300  
V
mW  
C
P
Power dissipation  
C
Ta=25  
Operating ambient temperature  
Storage temperature  
- 20 to 85 / -40 to 85 (Note)  
- 65 to 150  
T
opr  
stg  
T
C
Note : Specify a product of -40°C to 85°C to use it.  
8
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Electrical characteristics  
Table 1.26.2. Recommended operating conditions (referenced to VCC = 2.2V to 3.6V at Ta = – 20°C  
o
o
to 85 C / – 40°C to 85 C(Note3) unless otherwise specified)  
Standard  
Typ.  
Parameter  
Unit  
Symbol  
Max.  
Min.  
Supply voltage  
Vcc  
V
2.2  
3.0  
Vcc  
0
3.6  
AVcc  
Vss  
Analog supply voltage  
Supply voltage  
V
V
AVss  
Analog supply voltage  
0
V
P3  
P7  
IN, RESET, CNVSS, BYTE  
P7 , P7  
1
to P3  
to P7  
7
, P4  
, P8  
0
to P4  
to P8  
7
, P5  
, P9  
0
to P57, P6  
0
to P6  
7,  
HIGH input  
voltage  
2
7
0
7
0
to P9 , P10  
7
0
to P10  
7
,
0.8Vcc  
Vcc  
V
X
V
IH  
0.8Vcc  
0.8Vcc  
V
V
0
1
4.6  
P0 to P0  
P0 to P0  
(data input function during memory expansion and microprocessor modes)  
P3 to P3 , P4 to P4 , P5 to P57, P6 to P6  
P7 to P7 , P8 to P8 , P9 to P9 , P10 to P10  
IN, RESET, CNVSS, BYTE  
0
7, P1  
0
to P1  
7, P2  
0
to P2  
7
, P3  
0 (during single-chip mode)  
Vcc  
0
7, P1  
0
to P1  
7, P2  
0
to P2  
7
, P3  
0
0.5Vcc  
Vcc  
V
1
7
0
7
0
0
7,  
LOW input  
voltage  
0
7
0
7
0
7
0
7,  
0
0.2Vcc  
V
X
VIL  
P0  
0
to P0  
7
, P1  
0
to P1  
7
, P2  
0
to P2  
7
, P3  
0
(during single-chip mode)  
0
0
0.2Vcc  
V
V
P0  
0
to P0  
7, P1  
0
to P1  
7, P2  
0
to P2  
7, P3  
0
0.16Vcc  
(data input function during memory expansion and microprocessor modes)  
P0  
P4  
P8  
0
0
to P0  
to P4  
to P8  
7
, P1  
0
0
6
to P1  
to P5  
7
, P2  
, P6  
0
0
to P2  
to P6  
7
, P3  
, P7  
0
2
to P3  
to P7  
7
7
,
,
HIGH peak output  
current  
IOH (peak)  
- 10.0  
- 5.0  
10.0  
7, P5  
7
7
mA  
mA  
0
4
, P8  
, P8  
7
, P9  
0
to P9  
7, P10  
0
to P10  
7
P0  
P4  
P8  
0
to P0  
to P4  
to P8  
7
, P1  
, P5  
, P8  
0
0
6
to P1  
to P5  
7
, P2  
, P6  
0
0
to P2  
to P6  
7
, P3  
, P7  
0
to P3  
7
,
,
HIGH average output  
current  
IOH (avg)  
0
0
7
4
7
7
2
to P77  
, P8  
to P1  
to P5  
, P8 , P9  
to P1 , P2  
to P5  
, P8 , P9  
7
, P9  
, P2  
, P6  
to P9  
0
to P9  
7
, P10  
0
to P10  
to P3  
to P7  
to P10  
to P3  
to P7  
to P10  
7
P0  
P4  
P8  
P0  
P4  
P8  
0
to P0  
to P4  
to P8  
to P0  
to P4  
to P8  
7
, P1  
0
7
0
to P2  
7
, P3  
, P7  
0
0
7,  
7,  
7
LOW peak output  
current  
mA  
mA  
IOL (peak)  
0
0
7
4
, P5  
0
7
0
to P6  
7
0
, P8  
6
7
0
7, P10  
0
7
, P1  
0
7
0
0
to P2  
to P6  
7
, P3  
, P7  
0
0
7
,
,
LOW average  
output current  
IOL (avg)  
5.0  
10  
0
7
, P5  
, P8  
0
7
, P6  
7
0
7
0
4
6
7
0
to P9  
7, P10  
7
0
0
0
0
0
MHz  
MHz  
MHz  
MHz  
MHz  
Vcc=2.7V to 3.6V  
No wait  
10 X Vcc  
- 17  
Vcc=2.4V to 2.7V  
Vcc=2.2V to 2.4V  
Vcc=2.7V to 3.6V  
Vcc=2.2V to 2.7V  
f (XIN  
)
Main clock input  
oscillation  
frequency  
17.5 X Vcc  
- 35  
10  
with wait  
6 X Vcc  
- 6.2  
Subclock oscillation frequency  
Note 1: The mean output current is the mean value within 100ms.  
f (XcIN  
)
32.768  
50  
kHz  
Note 2: The total IOL (peak) for ports P0, P1, P2, P86, P87, P9, and P10 must be 80mA max. The total IOH (peak) for ports P0, P1,  
P2, P86, P87, P9, and P10 must be 80mA max. The total IOL (peak) for ports P3, P4, P5, P6, P7, and P80 to P84 must be  
80mA max. The total IOH (peak) for ports P3, P4, P5, P6, P72 to P77, and P80 to P84 must be 80mA max.  
Note 3: Specify a product of -40°C to 85°C to use it.  
Note 4: Relationship between main clock oscillation frequency and supply voltage.  
Main clock input oscillation frequency  
(No wait)  
Main clock input oscillation frequency  
(With wait)  
Flash memory version program voltage and read  
operation voltage characteristics  
10.0  
7.0  
10.0  
7.0  
10 X VCC –17MHZ  
6 X VCC –6.2MHZ  
Flash program voltage  
Flash read operation voltage  
VCC=2.7V to 3.6V  
VCC=2.7V to 3.4V  
VCC=2.4V to 3.6V  
VCC=2.2V to 2.4V  
17.5 X VCC  
35MHZ  
3.5  
0.0  
0.0  
2.2  
2.4  
2.7  
3.6  
2.2  
2.4  
2.7  
3.6  
Supply voltage[V]  
Supply voltage[V]  
(BCLK: no division)  
(BCLK: no division)  
Note 5: Execute case without wait, program / erase of flash memory by VCC=2.7V to 3.6V and f(BCLK) 6.25 MHz. Execute case  
with wait, program / erase of flash memory by VCC=2.7V to 3.6V and f(BCLK) 10.0 MHz.  
9
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Electrical characteristics  
o
Table 1.26.3. Electrical characteristics (referenced to VCC = 2.7V to 3.6V, VSS = 0V at Ta = – 20 C to  
o
o
o
85 C / – 40 C to 85 C (Note1), f(XIN) = 10MH  
Z
without wait unless otherwise specified)  
Standard  
Min Typ. Max.  
Measuring condition  
Unit  
Symbol  
Parameter  
P0  
P4  
P8  
0
0
0
to P0  
to P4  
to P8  
7
7
4
, P1  
, P5  
, P8  
0
0
6
to P1  
7
, P2  
, P6  
0
0
to P2  
to P6  
7
, P3  
, P7  
0
2
to P3  
to P7  
7
7
7
,
HIGH output  
voltage  
to P5  
7
7
,
I
OH=–1mA  
2.5  
V
V
OH  
,P8  
7, P9  
0
to P9  
7, P10  
0
to P10  
I
I
OH=–0.1mA  
2.5  
2.5  
3.0  
1.6  
HIGHPOWER  
LOWPOWER  
HIGH output  
voltage  
X
OUT  
V
V
OH=–50µA  
V
OH  
With no load applied  
With no load applied  
HIGHPOWER  
LOWPOWER  
HIGH output  
voltage  
X
COUT  
P0  
P4  
P8  
0
0
0
to P0  
to P4  
to P8  
7
7
4
, P1  
, P5  
, P8  
0
0
6
to P1  
7
, P2  
, P6  
0
0
to P2  
to P6  
7
, P3  
, P7  
0
0
to P3  
to P7  
7
7
7
,
LOW output  
voltage  
to P5  
7
7
,
I
OL=1mA  
0.5  
V
V
V
OL  
OL  
,P87, P90 to P97, P100 to P10  
I
I
OL=0.1mA  
HIGHPOWER  
LOWPOWER  
0.5  
LOW output  
voltage  
XOUT  
V
V
OL=50µA  
0.5  
With no load applied  
With no load applied  
0
0
HIGHPOWER  
LOWPOWER  
LOW output  
voltage  
XCOUT  
HOLD, RDY, TA0IN to TA4IN, TB0IN to TB5IN  
INT to INT , NMI, ADTRG, CTS to CTS , SCL,  
SDA, CLK to CLK , TA2OUT to TA4OUT  
KI to KI , RxD to RxD , SIN3, SIN4  
,
Hysteresis  
0
5
0
2
0.2  
0.2  
0.8  
V
V
V
T
T
+–V  
T
0
4
,
0
3
0
2
Hysteresis  
RESET  
1.8  
4.0  
V
+–VT  
P0  
P4  
P8  
0
0
0
to P0  
to P4  
to P8  
7
7
7
, P1  
, P5  
, P9  
0
to P1  
to P5  
to P9  
7
7
7
, P2  
, P6  
, P100 to P107,  
0
0
to P2  
to P6  
7
, P3  
, P7  
0
0
to P3  
to P7  
7
,
,
HIGH input  
current  
0
0
7
7
I
IH  
V
I=3V  
µA  
X
IN, RESET, CNVss, BYTE  
P0  
P4  
P8  
0
0
0
to P0  
to P4  
to P8  
7
7
7
, P1  
, P5  
, P9  
0
0
0
to P1  
to P5  
to P9  
7
7
7
, P2  
, P6  
, P100 to P107,  
0
0
to P2  
to P6  
7
, P3  
, P7  
0
0
to P3  
to P7  
7
,
,
LOW input  
current  
7
7
I
IL  
V
V
I
=0V  
=0V  
–4.0  
330  
µA  
XIN, RESET, CNVss, BYTE  
P0  
P4  
P8  
0
0
0
to P0  
to P4  
to P8  
7, P1  
7, P5  
4, P8  
0
0
6
to P1  
7
, P2  
, P6  
0
0
to P2  
to P6  
7
, P3  
, P7  
0
2
to P3  
to P7  
7
7
7
,
,
Pull-up  
resistance  
R
PULLUP  
to P5  
7
7
I
20  
75  
k
,P87, P90 to P97, P100 to P10  
Feedback resistance  
Feedback resistance  
X
X
IN  
CIN  
RfXIN  
3.0  
M
M
RfXCIN  
10.0  
RAM retention voltage  
When clock is stopped  
2.0  
V
V
RAM  
f(XIN)=10MHz  
Square wave,  
no division  
Mask ROM version  
9.5  
21.25  
21.25  
mA  
mA  
In single-chip mode, the output pins  
are open and other pins are VSS  
f(XIN)=10MHz  
Square wave,  
no division  
Flash memory  
3V version  
12.0  
Mask ROM version,  
flash memory  
3V version  
f(XCIN)=32kHz  
Square wave  
µA  
45.0  
f(XIN)=10MHz  
Square wave,  
division by 2  
Flash memory  
3V version  
program  
mA  
14.0  
17.0  
f(XIN)=10MHz  
Flash memory  
3V version  
erase  
Square wave,  
division by 2  
mA  
Power supply current  
I
CC  
f(XCIN)=32kHz  
When a WAIT instruction  
is executed.  
Oscillation capacity High  
(Note2)  
Mask ROM version,  
flash memory  
3V version  
2.8  
0.9  
µA  
f(XCIN)=32kHz  
When a WAIT instruction  
is executed.  
Oscillation capacity Low  
(Note2)  
µA  
µA  
When clock is stopped  
1.0  
Ta=25°C  
When clock is stopped  
20.0  
Ta=85°C  
Note 1: Specify a product of -40°C to 85°C to use it.  
Note 2: With one timer operated using fC32.  
10  
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Electrical characteristics  
Table 1.26.4. A-D conversion characteristics (referenced to VCC = AVCC = VREF = 2.4V to 3.6V, VSS = AVSS  
= 0V, at Ta = – 20oC to 85oC / – 40oC to 85oC (Note2), f(XIN)=10MHZ unless otherwise specified)  
Standard  
Symbol  
Parameter  
Measuring condition  
Unit  
Min. Typ. Max  
10  
Bits  
LSB  
k  
Resolution  
V
V
V
REF =VCC  
Absolute accuracy Sample & hold function not available (8 bit)  
±2  
REF =VCC=3V, fAD=fAD/2  
REF =VCC  
R
LADDER  
10  
40  
Ladder resistance  
t
CONV  
Conversion  
time(8bit)  
9.8  
µs  
2.4  
0
V
CC  
V
V
V
V
REF  
IA  
Reference voltage  
V
REF  
Analog input voltage  
Note 1: Connect AVCC pin to VCC pin and apply the same electric potential.  
Note 2: Specify a product of –40°C to 85°C to use it.  
Table 1.26.5. D-A conversion characteristics (referenced to VCC = 2.4V to 3.6V, VSS = AVSS = 0V, VREF=3V,  
at Ta = – 20oC to 85oC / – 40oC to 85oC (Note2), f(XIN)=10MHZ unless otherwise specified)  
Standard  
Symbol  
Parameter  
Measuring condition  
Unit  
Min. Typ. Max  
8
1.0  
3
Resolution  
Bits  
%
Absolute accuracy  
t
su  
µs  
Setup time  
RO  
4
10  
20  
kΩ  
Output resistance  
I
VREF  
1.0  
mA  
Reference power supply input current  
(Note1)  
Note 1: This applies when using one D-A converter, with the D-A register for the unused D-A converter set to “0016”.  
The A-D converter's ladder resistance is not included.  
Also, when DA register contents are not “00”, the current IVREF always flows even though Vref may have been  
set to be “unconnected” by the A-D control register.  
Note 2: Specify a product of –40°C to 85°C to use it.  
Table 1.26.6. Flash memory version electrical characteristics  
(referenced to VCC = 2.7V to 3.6V, at Ta =0oC to 60oC unless otherwise specified)  
Standard  
Parameter  
Unit  
Min.  
Typ.  
Max  
120  
Page program time  
Block erase time  
6
ms  
ms  
ms  
ms  
50  
600  
Erase all unlocked blocks time  
Lock bit program time  
50 X n (Note)  
6
600 X n (Note)  
120  
Note : n denotes the number of block erases.  
Table 1.26.7. Flash memory version program voltage and read operation voltage characteristics  
(Ta =0oC to 60oC)  
Flash program voltage  
Flash read operation voltage  
V
CC=2.7V to 3.6V  
CC=2.7V to 3.4V  
V
V
CC=2.4V to 3.6V  
CC=2.2V to 2.4V  
V
11  
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timing  
Timing requirements  
o
o
o
o
(referenced to VCC = 3V, VSS = 0V, at Ta = – 20 C to 85 C / – 40 C to 85 C (*) unless otherwise specified)  
* : Specify a product of -40°C to 85°C to use it.  
Table 1.26.8. External clock input  
Standard  
Parameter  
Symbol  
Unit  
Min.  
100  
40  
Max.  
t
c
External clock input cycle time  
ns  
ns  
ns  
ns  
t
w(H)  
External clock input HIGH pulse width  
External clock input LOW pulse width  
t
w(L)  
40  
t
r
External clock rise time  
External clock fall time  
18  
18  
t
f
ns  
Table 1.26.9. Memory expansion and microprocessor modes  
Standard  
Symbol  
Parameter  
Unit  
Min.  
Max.  
(Note)  
(Note)  
t
ac1(RD-DB)  
Data input access time (no wait)  
ns  
ns  
t
ac2(RD-DB)  
ac3(RD-DB)  
Data input access time (with wait)  
t
ns  
ns  
Data input access time (when accessing multiplex bus area)  
Data input setup time  
(Note)  
t
t
su(DB-RD)  
80  
60  
80  
0
su(RDY-BCLK )  
ns  
ns  
ns  
ns  
ns  
RDY input setup time  
HOLD input setup time  
Data input hold time  
RDY input hold time  
HOLD input hold time  
t
t
su(HOLD-BCLK )  
h(RD-DB)  
t
h(BCLK -RDY)  
0
0
t
h(BCLK-HOLD )  
ns  
t
d(BCLK-HLDA)  
HLDA output delay time  
100  
Note: Calculated according to the BCLK frequency as follows:  
109  
f(BCLK) X 2  
– 90  
tac1(RD – DB) =  
tac2(RD – DB) =  
t
ac3(RD – DB) =  
[ns]  
3 X 10 9  
f(BCLK) X 2  
– 90  
– 90  
[ns]  
[ns]  
3 X 10 9  
f(BCLK) X 2  
12  
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timing  
Timing requirements  
o
o
o
o
(referenced to VCC = 3V, VSS = 0V, at Ta = – 20 C to 85 C / – 40 C to 85 C (*) unless otherwise specified)  
* : Specify a product of –40°C to 85°C to use it.  
Table 1.26.10. Timer A input (counter input in event counter mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
150  
60  
Max.  
t
c(TA)  
TAiIN input cycle time  
ns  
ns  
ns  
t
w(TAH)  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
t
w(TAL)  
60  
Table 1.26.11. Timer A input (gating input in timer mode)  
Standard  
Min. Max.  
600  
Symbol  
Parameter  
Unit  
ns  
t
c(TA)  
TAiIN input cycle time  
t
w(TAH)  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
300  
300  
ns  
ns  
t
w(TAL)  
Table 1.26.12. Timer A input (external trigger input in one-shot timer mode)  
Standard  
Symbol  
Parameter  
Unit  
ns  
Min.  
300  
Max.  
t
c(TA)  
TAiIN input cycle time  
t
w(TAH)  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
150  
150  
ns  
ns  
t
w(TAL)  
Table 1.26.13. Timer A input (external trigger input in pulse width modulation mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
150  
Max.  
t
w(TAH)  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
ns  
ns  
t
w(TAL)  
150  
Table 1.26.14. Timer A input (up/down input in event counter mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
Max.  
t
c(UP)  
TAiOUT input cycle time  
3000  
ns  
ns  
ns  
ns  
ns  
t
w(UPH)  
w(UPL)  
TAiOUT input HIGH pulse width  
TAiOUT input LOW pulse width  
TAiOUT input setup time  
1500  
1500  
600  
t
t
su(UP-TIN  
)
t
h(TIN-UP)  
TAiOUT input hold time  
600  
13  
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timing  
Timing requirements  
o
o
o
o
(referenced to VCC = 3V, VSS = 0V, at Ta = – 20 C to 85 C / – 40 C to 85 C (*) unless otherwise specified)  
* : Specify a product of –40°C to 85°C to use it.  
Table 1.26.15. Timer B input (counter input in event counter mode)  
Standard  
Parameter  
Unit  
Symbol  
Max.  
Min.  
150  
60  
TBiIN input cycle time (counted on one edge)  
t
c(TB)  
ns  
ns  
ns  
t
w(TBH)  
TBiIN input HIGH pulse width (counted on one edge)  
TBiIN input LOW pulse width (counted on one edge)  
TBiIN input cycle time (counted on both edges)  
TBiIN input HIGH pulse width (counted on both edges)  
TBiIN input LOW pulse width (counted on both edges)  
t
w(TBL)  
60  
t
c(TB)  
w(TBH)  
w(TBL)  
300  
160  
160  
ns  
ns  
ns  
t
t
Table 1.26.16. Timer B input (pulse period measurement mode)  
Standard  
Parameter  
Symbol  
Unit  
Min.  
600  
300  
300  
Max.  
t
c(TB)  
TBiIN input cycle time  
ns  
ns  
ns  
t
w(TBH)  
TBiIN input HIGH pulse width  
TBiIN input LOW pulse width  
t
w(TBL)  
Table 1.26.17. Timer B input (pulse width measurement mode)  
Standard  
Parameter  
Symbol  
Unit  
Min.  
Max.  
TBiIN input cycle time  
t
t
c(TB)  
600  
300  
300  
ns  
ns  
ns  
w(TBH)  
TBiIN input HIGH pulse width  
TBiIN input LOW pulse width  
t
w(TBL)  
Table 1.26.18. A-D trigger input  
Standard  
Symbol  
Parameter  
Unit  
Min.  
Max.  
t
c(AD)  
w(ADL)  
ADTRG input cycle time (trigger able minimum)  
ADTRG input LOW pulse width  
1500  
200  
ns  
ns  
t
Table 1.26.19. Serial I/O  
Standard  
Symbol  
Parameter  
Unit  
Max.  
Min.  
300  
150  
t
c(CK)  
CLKi input cycle time  
ns  
ns  
t
w(CKH)  
CLKi input HIGH pulse width  
t
w(CKL)  
CLKi input LOW pulse width  
TxDi output delay time  
150  
ns  
ns  
t
t
d(C-Q)  
h(C-Q)  
160  
TxDi hold time  
0
50  
90  
ns  
ns  
ns  
t
su(D-C)  
RxDi input setup time  
RxDi input hold time  
t
h(C-D)  
_______  
Table 1.26.20. External interrupt INTi inputs  
Standard  
Symbol  
Parameter  
Unit  
Min.  
380  
Max.  
t
w(INH)  
w(INL)  
ns  
ns  
INTi input HIGH pulse width  
INTi input LOW pulse width  
t
380  
14  
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timing  
o
o
o
o
Switching characteristics (referenced to VCC = 3V, VSS = 0V at Ta = – 20 C to 85 C / – 40 C to 85 C  
(Note 3), CM15 = “1” unless otherwise specified)  
Table 1.26.21. Memory expansion and microprocessor modes (with no wait)  
Standard  
Measuring condition  
Symbol  
Parameter  
Address output delay time  
Unit  
Min.  
Max.  
60  
t
t
d(BCLK-AD)  
h(BCLK-AD)  
ns  
ns  
Address output hold time (BCLK standard)  
4
0
0
t
t
t
t
h(RD-AD)  
Address output hold time (RD standard)  
Address output hold time (WR standard)  
Chip select output delay time  
ns  
ns  
ns  
ns  
h(WR-AD)  
d(BCLK-CS)  
60  
60  
60  
h(BCLK-CS)  
Chip select output hold time (BCLK standard)  
4
t
t
d(BCLK-ALE)  
h(BCLK-ALE)  
ALE signal output delay time  
ALE signal output hold time  
RD signal output delay time  
RD signal output hold time  
ns  
ns  
ns  
ns  
4  
Figure 1.26.1  
t
t
d(BCLK-RD)  
h(BCLK-RD)  
0
t
t
t
t
d(BCLK-WR)  
WR signal output delay time  
WR signal output hold time  
Data output delay time (BCLK standard)  
Data output hold time (BCLK standard)  
60  
80  
ns  
ns  
ns  
ns  
h(BCLK-WR)  
d(BCLK-DB)  
0
h(BCLK-DB)  
4
(Note1)  
0
t
t
d(DB-WR)  
h(WR-DB)  
Data output delay time (WR standard)  
Data output hold time (WR standard)(Note2)  
ns  
ns  
Note 1: Calculated according to the BCLK frequency as follows:  
10 9  
td(DB – WR) =  
– 80  
[ns]  
f(BCLK) X 2  
Note 2: This is standard value shows the timing when the output is off,  
and doesn't show hold time of data bus.  
Hold time of data bus is different by capacitor volume and pull-up  
(pull-down) resistance value.  
Hold time of data bus is expressed in  
R
C
DBi  
t = –CR X ln (1 – VOL / VCC  
)
by a circuit of the right figure.  
For example, when VOL = 0.2VCC, C = 30pF, R = 1k, hold time  
of output “L” level is  
t = – 30pF X 1kX ln (1 – 0.2VCC / VCC  
)
= 6.7ns.  
Note 3: Specify a product of –40°C to 85°C to use it.  
P0  
P1  
P2  
P3  
30pF  
P4  
P5  
P6  
P7  
P8  
P9  
P10  
Figure 1.26.1. Port P0 to P10 measurement circuit  
15  
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timing  
o
o
o
o
Switching characteristics (referenced to VCC = 3V, VSS = 0V at Ta = – 20 C to 85 C / – 40 C to 85 C  
(Note 3), CM15 = “1” unless otherwise specified)  
Table 1.26.22. Memory expansion and microprocessor modes  
(when accessing external memory area with wait)  
Standard  
Measuring condition  
Symbol  
Parameter  
Unit  
ns  
Min.  
Max.  
60  
t
d(BCLK-AD)  
h(BCLK-AD)  
Address output delay time  
t
t
Address output hold time (BCLK standard)  
Address output hold time (RD standard)  
4
0
0
ns  
ns  
h(RD-AD)  
t
t
t
t
h(WR-AD)  
Address output hold time (WR standard)  
Chip select output delay time  
Chip select output hold time (BCLK standard)  
ALE signal output delay time  
ns  
ns  
ns  
ns  
d(BCLK-CS)  
60  
60  
h(BCLK-CS)  
4
Figure 1.26.1  
d(BCLK-ALE)  
ALE signal output hold time  
t
h(BCLK-ALE)  
ns  
ns  
ns  
ns  
– 4  
0
td(BCLK-RD)  
RD signal output delay time  
RD signal output hold time  
WR signal output delay time  
60  
60  
th(BCLK-RD)  
td(BCLK-WR)  
t
t
t
h(BCLK-WR)  
WR signal output hold time  
0
ns  
ns  
ns  
ns  
d(BCLK-DB)  
h(BCLK-DB)  
Data output delay time (BCLK standard)  
Data output hold time (BCLK standard)  
Data output delay time (WR standard)  
80  
4
(Note1)  
0
t
d(DB-WR)  
h(WR-DB)  
Data output hold time (WR standard)(Note2)  
t
ns  
Note 1: Calculated according to the BCLK frequency as follows:  
10 9  
td(DB – WR) =  
– 80  
[ns]  
f(BCLK)  
Note 2: This is standard value shows the timing when the output is off,  
and doesn't show hold time of data bus.  
Hold time of data bus is different by capacitor volume and pull-up  
(pull-down) resistance value.  
Hold time of data bus is expressed in  
R
C
DBi  
t = –CR X ln (1 – VOL / VCC  
)
by a circuit of the right figure.  
For example, when VOL = 0.2VCC, C = 30pF, R = 1k, hold time  
of output “L” level is  
t = – 30pF X 1kX ln (1 – 0.2VCC / VCC  
)
= 6.7ns.  
Note 3: Specify a product of –40°C to 85°C to use it.  
16  
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timing  
o
o
o
o
Switching characteristics (referenced to VCC = 3V, VSS = 0V at Ta = – 20 C to 85 C / – 40 C to 85 C  
(Note 2), CM15 = “1” unless otherwise specified)  
Table 1.26.23. Memory expansion and microprocessor modes  
(when accessing external memory area with wait, and select multiplexed bus)  
Standard  
Measuring condition  
Symbol  
Parameter  
Address output delay time  
Unit  
Min.  
Max.  
60  
t
d(BCLK-AD)  
h(BCLK-AD)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
4
Address output hold time (BCLK standard)  
Address output hold time (RD standard)  
t
h(RD-AD)  
(Note 1)  
(Note 1)  
t
t
t
h(WR-AD)  
Address output hold time (WR standard)  
Chip select output delay time  
d(BCLK-CS)  
h(BCLK-CS)  
60  
4
Chip select output hold time (BCLK standard)  
Chip select output hold time (RD standard)  
Chip select output hold time (WR standard)  
RD signal output delay time  
t
h(RD-CS)  
(Note 1)  
(Note 1)  
t
h(WR-CS)  
t
d(BCLK-RD)  
h(BCLK-RD)  
60  
60  
80  
t
RD signal output hold time  
0
0
t
t
t
t
t
t
d(BCLK-WR)  
h(BCLK-WR)  
d(BCLK-DB)  
h(BCLK-DB)  
d(DB-WR)  
WR signal output delay time  
Figure 1.26.1  
WR signal output hold time  
Data output delay time (BCLK standard)  
Data output hold time (BCLK standard)  
Data output delay time (WR standard)  
Data output hold time (WR standard)  
ALE signal output delay time (BCLK standard)  
ALE signal output hold time (BCLK standard)  
ALE signal output delay time (Address standard)  
ALE signal output hold time(Address standard)  
Post-address RD signal output delay time  
Post-address WR signal output delay time  
Address output floating start time  
4
(Note 1)  
(Note 1)  
h(WR-DB)  
t
d(BCLK-ALE)  
h(BCLK-ALE)  
60  
t
– 4  
t
d(AD-ALE)  
h(ALE-AD)  
(Note 1)  
t
40  
0
t
d(AD-RD)  
t
d(AD-WR)  
0
t
dZ(RD-AD)  
8
Note 1: Calculated according to the BCLK frequency as follows:  
10 9  
th(RD – AD) =  
[ns]  
f(BCLK) X 2  
10 9  
th(WR – AD) =  
[ns]  
[ns]  
[ns]  
[ns]  
[ns]  
[ns]  
f(BCLK) X 2  
10 9  
th(RD – CS) =  
f(BCLK) X 2  
10 9  
th(WR – CS) =  
td(DB – WR) =  
f(BCLK) X 2  
10 9 X 3  
– 80  
– 45  
f(BCLK) X 2  
10 9  
th(WR – DB) =  
td(AD – ALE) =  
f(BCLK) X 2  
10 9  
f(BCLK) X 2  
Note 2: Specify a product of –40°C to 85°C to use it.  
17  
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timing  
VCC = 3V  
tc(TA)  
t
w(TAH)  
TAiIN input  
t
w(TAL)  
t
c(UP)  
t
w(UPH)  
TAiOUT input  
t
w(UPL)  
TAiOUT input  
(Up/down input)  
During event counter mode  
TAiIN input  
tsu(UP–TIN)  
t
h(TIN–UP)  
(When count on falling  
edge is selected)  
TAiIN input  
(When count on rising  
edge is selected)  
t
c(TB)  
tw(TBH)  
TBiIN input  
t
w(TBL)  
t
c(AD)  
t
w(ADL)  
ADTRG input  
t
c(CK)  
tw(CKH)  
CLKi  
TxDi  
t
w(CKL)  
th(C–Q)  
t
su(D–C)  
t
d(C–Q)  
t
h(C–D)  
RxDi  
t
w(INL)  
INTi input  
t
w(INH)  
Figure 1.26.2. VCC=3V timing diagram (1)  
18  
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timing  
VCC = 3V  
Memory Expansion Mode and Microprocessor Mode  
(Valid only with wait)  
BCLK  
RD  
(Separate bus)  
WR, WRL, WRH  
(Separate bus)  
RD  
(Multiplexed bus)  
WR, WRL, WRH  
(Multiplexed bus)  
RDY input  
th(BCLK–RDY)  
tsu(RDY–BCLK)  
(Valid with or without wait)  
BCLK  
tsu(HOLD–BCLK)  
th(BCLK–HOLD)  
HOLD input  
HLDA output  
td(BCLK–HLDA)  
td(BCLK–HLDA)  
P0, P1, P2,  
P3, P4,  
Hi–Z  
P50 to P52  
Note: The above pins are set to high-impedance regardless of the input level of the  
BYTE pin and bit (PM06) of processor mode register 0 selects the function of  
ports P40 to P43.  
Measuring conditions :  
• VCC=3V  
• Input timing voltage : Determined with VIL=0.6V, VIH=2.4V  
• Output timing voltage : Determined with VOL=1.5V, VOH=1.5V  
Figure 1.26.3. VCC=3V timing diagram (2)  
19  
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timing  
VCC = 3V  
Memory Expansion Mode and Microprocessor Mode  
(With no wait)  
Read timing  
BCLK  
CSi  
th(BCLK–CS)  
4ns.min  
td(BCLK–CS)  
60ns.max  
tcyc  
th(RD–CS)  
0ns.min  
td(BCLK–AD)  
60ns.max  
th(BCLK–AD)  
4ns.min  
ADi  
BHE  
0ns.min  
th(RD–AD)  
td(BCLK–ALE)  
th(BCLK–ALE)  
–4ns.min  
60ns.max  
ALE  
RD  
DB  
th(BCLK–RD)  
0ns.min  
td(BCLK–RD)  
60ns.max  
tac1(RD–DB)  
Hi–Z  
th(RD–DB)  
0ns.min  
tSU(DB–RD)  
80ns.min  
Write timing  
BCLK  
td(BCLK–CS)  
th(BCLK–CS)  
4ns.min  
60ns.max  
CSi  
th(WR–CS)  
0ns.min  
tcyc  
td(BCLK–AD)  
60ns.max  
th(BCLK–AD)  
4ns.min  
ADi  
BHE  
th(WR–AD)  
0ns.min  
th(BCLK–ALE)  
td(BCLK–ALE)  
60ns.max  
–4ns.min  
ALE  
th(BCLK–WR)  
0ns.min  
td(BCLK–WR)  
60ns.max  
WR,WRL,  
WRH  
td(BCLK–DB)  
80ns.max  
Hi–Z  
th(BCLK–DB)  
4ns.min  
DB  
th(WR–DB)  
0ns.min  
td(DB–WR)  
(tcyc/2–80)ns.min  
Figure 1.26.4. VCC=3V timing diagram (3)  
20  
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timing  
VCC = 3V  
Memory Expansion Mode and Microprocessor Mode  
(When accessing external memory area with wait)  
Read timing  
BCLK  
t
h(BCLK–CS)  
4ns.min  
t
d(BCLK–CS)  
60ns.max  
CSi  
t
h(RD–CS)  
0ns.min  
tcyc  
t
h(BCLK–AD)  
4ns.min  
t
d(BCLK–AD)  
60ns.max  
ADi  
BHE  
t
d(BCLK–ALE)  
60ns.max  
t
h(RD–AD)  
0ns.min  
t
h(BCLK–ALE)  
–4ns.min  
ALE  
RD  
DB  
t
d(BCLK–RD)  
60ns.max  
0ns.min  
h(BCLK–RD)  
t
t
ac2(RD–DB)  
Hi–Z  
t
h(RD–DB)  
0ns.min  
t
SU(DB–RD)  
80ns.min  
Write timing  
BCLK  
t
h(BCLK–CS)  
t
d(BCLK–CS)  
60ns.max  
4ns.min  
CSi  
t
h(WR–CS)  
0ns.min  
tcyc  
t
d(BCLK–AD)  
60ns.max  
t
h(BCLK–AD)  
4ns.min  
ADi  
BHE  
t
h(WR–AD)  
0ns.min  
t
d(BCLK–ALE)  
60ns.max  
t
h(BCLK–ALE)  
–4ns.min  
ALE  
t
h(BCLK–WR)  
t
d(BCLK–WR)  
60ns.max  
0ns.min  
WR,WRL,  
WRH  
t
h(BCLK–DB)  
4ns.min  
t
d(BCLK–DB)  
80ns.max  
DBi  
t
h(WR–DB)  
0ns.min  
t
d(DB–WR)  
(tcyc–80)ns.min  
Measuring conditions :  
• VCC=3V  
• Input timing voltage : Determined with VIL=0.48V, VIH=1.5V  
• Output timing voltage : Determined with VOL=1.5V, VOH=1.5V  
Figure 1.26.5. VCC=3V timing diagram (4)  
21  
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timing  
VCC = 3V  
Memory Expansion Mode and Microprocessor Mode  
(When accessing external memory area with wait, and select multiplexed bus)  
Read timing  
BCLK  
tcyc  
t
h(BCLK–CS)  
4ns.min  
t
d(BCLK–CS)  
60ns.max  
t
h(RD–CS)  
(tcyc/2)ns.min  
CSi  
(tcyc/2–45)ns.min  
Address  
t
d(AD–ALE)  
t
dz(RD–AD)  
8ns.max  
ADi  
Data input  
Address  
/DBi  
t
h(RD–DB)  
0ns.min  
tac3(RD–DB)  
t
h(ALE–AD)  
40ns.min  
t
SU(DB–RD)  
80ns.min  
t
d(AD–RD)  
0ns.min  
t
d(BCLK–AD)  
60ns.max  
t
h(BCLK–AD)  
4ns.min  
ADi  
BHE  
t
d(BCLK–ALE)  
t
h(BCLK–ALE)  
–4ns.min  
t
h(RD–AD)  
(tcyc/2)ns.min  
60ns.max  
ALE  
RD  
t
h(BCLK–RD)  
0ns.min  
t
d(BCLK–RD)  
60ns.max  
Write timing  
BCLK  
tcyc  
t
h(BCLK–CS)  
4ns.min  
t
d(BCLK–CS)  
60ns.max  
t
h(WR–CS)  
(tcyc/2)ns.min  
CSi  
t
h(BCLK–DB)  
4ns.min  
t
d(BCLK–DB)  
80ns.max  
ADi  
Address  
Address  
Data output  
/DBi  
t
d(DB–WR)  
t
h(WR–DB)  
t
d(AD–ALE)  
(tcyc*3/2–80)ns.min  
(tcyc/2)ns.min  
(tcyc/2–60)ns.min  
t
h(BCLK–AD)  
4ns.min  
td(BCLK–AD)  
60ns.max  
ADi  
BHE  
td(BCLK–ALE)  
th(BCLK–ALE)  
t
h(WR–AD)  
(tcyc/2)ns.min  
t
d(AD–WR)  
0ns.min  
60ns.max  
–4ns.min  
ALE  
t
d(BCLK–WR)  
60ns.max  
t
h(BCLK–WR)  
0ns.min  
WR,WRL,  
WRH  
Measuring conditions :  
• VCC=3V  
• Input timing voltage : Determined with VIL=0.48V,VIH=1.5V  
• Output timing voltage : Determined with VOL=1.5V,VOH=1.5V  
Figure 1.26.6. VCC=3V timing diagram (5)  
22  
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Usage precaution  
Usage Precaution  
Timer A (timer mode)  
(1) Reading the timer Ai register while a count is in progress allows reading, with arbitrary timing, the  
value of the counter. Reading the timer Ai register with the reload timing gets “FFFF16”. Reading the  
timer Ai register after setting a value in the timer Ai register with a count halted but before the counter  
starts counting gets a proper value.  
Timer A (event counter mode)  
(1) Reading the timer Ai register while a count is in progress allows reading, with arbitrary timing, the  
value of the counter. Reading the timer Ai register with the reload timing gets “FFFF16” by underflow  
or “000016” by overflow. Reading the timer Ai register after setting a value in the timer Ai register with  
a count halted but before the counter starts counting gets a proper value.  
(2) When stop counting in free run type, set timer again.  
Timer A (one-shot timer mode)  
(1) Setting the count start flag to “0” while a count is in progress causes as follows:  
• The counter stops counting and a content of reload register is reloaded.  
• The TAiOUT pin outputs “L” level.  
• The interrupt request generated and the timer Ai interrupt request bit goes to “1”.  
(2) The timer Ai interrupt request bit goes to “1” if the timer's operation mode is set using any of the  
following procedures:  
• Selecting one-shot timer mode after reset.  
• Changing operation mode from timer mode to one-shot timer mode.  
• Changing operation mode from event counter mode to one-shot timer mode.  
Therefore, to use timer Ai interrupt (interrupt request bit), set timer Ai interrupt request bit to “0”  
after the above listed changes have been made.  
Timer A (pulse width modulation mode)  
(1) The timer Ai interrupt request bit becomes “1” if setting operation mode of the timer in compliance with  
any of the following procedures:  
• Selecting PWM mode after reset.  
• Changing operation mode from timer mode to PWM mode.  
• Changing operation mode from event counter mode to PWM mode.  
Therefore, to use timer Ai interrupt (interrupt request bit), set timer Ai interrupt request bit to “0”  
after the above listed changes have been made.  
(2) Setting the count start flag to “0” while PWM pulses are being output causes the counter to stop  
counting. If the TAiOUT pin is outputting an “H” level in this instance, the output level goes to “L”, and  
the timer Ai interrupt request bit goes to “1”. If the TAiOUT pin is outputting an “L” level in this instance,  
the level does not change, and the timer Ai interrupt request bit does not becomes “1”.  
Timer B (timer mode, event counter mode)  
(1) Reading the timer Bi register while a count is in progress allows reading , with arbitrary timing, the  
value of the counter. Reading the timer Bi register with the reload timing gets “FFFF16”. Reading the  
timer Bi register after setting a value in the timer Bi register with a count halted but before the counter  
starts counting gets a proper value.  
23  
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Usage precaution  
Timer B (pulse period/pulse width measurement mode)  
(1) If changing the measurement mode select bit is set after a count is started, the timer Bi interrupt  
request bit goes to “1”.  
(2) When the first effective edge is input after a count is started, an indeterminate value is transferred to  
the reload register. At this time, timer Bi interrupt request is not generated.  
A-D Converter  
(1) Write to each bit (except bit 6) of A-D control register 0, to each bit of A-D control register 1, and to bit  
0 of A-D control register 2 when A-D conversion is stopped (before a trigger occurs).  
In particular, when the Vref connection bit is changed from “0” to “1”, start A-D conversion after an  
elapse of 1 µs or longer.  
(2) When changing A-D operation mode, select analog input pin again.  
(3) Using one-shot mode or single sweep mode  
Read the correspondence A-D register after confirming A-D conversion is finished. (It is known by A-  
D conversion interrupt request bit.)  
(4) Using repeat mode, repeat sweep mode 0 or repeat sweep mode 1  
Use the undivided main clock as the internal CPU clock.  
Stop Mode and Wait Mode  
____________  
(1) When returning from stop mode by hardware reset, RESET pin must be set to “L” level until main clock  
oscillation is stabilized.  
(2) When switching to either wait mode or stop mode, instructions occupying four bytes either from the  
WAIT instruction or from the instruction that sets the every-clock stop bit to “1” within the instruction  
queue are prefetched and then the program stops. So put at least four NOPs in succession either to  
the WAIT instruction or to the instruction that sets the every-clock stop bit to “1”.  
Interrupts  
(1) Reading address 0000016  
• When maskable interrupt is occurred, CPU read the interrupt information (the interrupt number  
and interrupt request level) in the interrupt sequence.  
The interrupt request bit of the certain interrupt written in address 0000016 will then be set to “0”.  
Reading address 0000016 by software sets enabled highest priority interrupt source request bit to “0”.  
Though the interrupt is generated, the interrupt routine may not be executed.  
Do not read address 0000016 by software.  
(2) Setting the stack pointer  
• The value of the stack pointer immediately after reset is initialized to 000016. Accepting an  
interrupt before setting a value in the stack pointer may become a factor of runaway. Be sure to  
set a value in the stack pointer before accepting an interrupt.  
_______  
When using the NMI interrupt, initialize the stack point at the beginning of a program. Concerning  
_______  
the first instruction immediately after reset, generating any interrupts including the NMI interrupt is  
prohibited.  
_______  
(3) The NMI interrupt  
_______  
_______  
• The NMI interrupt can not be disabled. Be sure to connect NMI pin to Vcc via a pull-up resistor if  
unused.  
_______  
• Do not get either into stop mode with the NMI pin set to “L”.  
24  
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Usage precaution  
(4) External interrupt  
_______  
_______  
• When the polarity of the INT0 to INT5 pins is changed, the interrupt request bit is sometimes set  
to "1". After changing the polarity, set the interrupt request bit to "0".  
(5) Rewrite the interrupt control register  
• To rewrite the interrupt control register, do so at a point that does not generate the interrupt  
request for that register. If there is possibility of the interrupt request occur, rewrite the interrupt  
control register after the interrupt is disabled. The program examples are described as follow:  
Example 1:  
INT_SWITCH1:  
FCLR  
I
; Disable interrupts.  
AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.  
NOP  
NOP  
FSET  
; Four NOP instructions are required when using HOLD function.  
; Enable interrupts.  
I
Example 2:  
INT_SWITCH2:  
FCLR  
I
; Disable interrupts.  
AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.  
MOV.W MEM, R0  
; Dummy read.  
; Enable interrupts.  
FSET  
I
Example 3:  
INT_SWITCH3:  
PUSHC FLG  
; Push Flag register onto stack  
; Disable interrupts.  
FCLR  
I
AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.  
POPC FLG ; Enable interrupts.  
The reason why two NOP instructions (four when using the HOLD function) or dummy read are inserted  
before FSET I in Examples 1 and 2 is to prevent the interrupt enable flag I from being set before the  
interrupt control register is rewritten due to effects of the instruction queue.  
• When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled,  
the interrupt request bit is not set sometimes even if the interrupt request for that register has  
been generated. This will depend on the instruction. If this creates problems, use the below in-  
structions to change the register.  
Instructions : AND, OR, BCLR, BSET  
Noise  
(1) Insert bypass capacitor between VCC and VSS pin for noise and latch up countermeasure.  
• Insert bypass capacitor (about 0.1 µF) and connect short and wide line between VCC and VSS  
lines.  
25  
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Usage precaution  
Notes on the microprocessor mode and transition after shifting from the micropro-  
cessor mode to the memory expansion mode  
• Microprocessor mode  
In microprocessor mode, the SFR, internal RAM, and external memory space can be accessed.  
For that reason, the internal ROM area cannot be accessed.  
• Memory expansion mode  
In memory expansion mode, external memory can be accessed in addition to the internal memory  
space (SFR, internal RAM, and internal ROM).  
However, after the reset has been released and the operation of shifting from the microprocessor  
mode has started (“H” applied to the CNVSS pin), the internal ROM area cannot be accessed even if  
the CPU shifts to the memory expansion mode.  
26  
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ-SH13-95B<02A0>  
Mask ROM number  
Date :  
Section head Supervisor  
MITSUBISHI ELECTRIC-CHIP 16-BIT  
signature  
signature  
MICROCOMPUTER M30620MCM-XXXFP/GP  
MASK ROM CONFIRMATION FORM  
Note : Please complete all items marked .  
Submitted by Supervisor  
Company  
name  
TEL  
(
)
Customer  
Date  
Date :  
issued  
1. Check sheet  
Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on  
the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that  
there is any discrepancy between the contents of these mask files and the ROM data to be burned into  
products we produce. Check thoroughly the contents of the mask files you give in.  
Prepare 3.5 inches 2HD (IBM format) floppy disks. And store only one mask file in a floppy disk.  
Microcomputer type No. :  
File code :  
M30620MCM-XXXFP  
M30620MCM-XXXGP  
(hex)  
Mask file name :  
.MSK (alpha-numeric 8-digit)  
2. Mark specification  
The mark specification differs according to the type of package. After entering the mark specification on  
the separate mark specification sheet (for each package), attach that sheet to this masking check sheet  
for submission to Mitsubishi.  
For the M30620MCM-XXXFP, submit the 100P6S mark specification sheet. For the M30620MCM-XXXGP,  
submit the 100P6Q mark specification sheet.  
3. Usage Conditions  
For our reference when of testing our products, please reply to the following questions about the usage  
of the products you ordered.  
(1) Which kind of XIN-XOUT oscillation circuit is used?  
Ceramic resonator  
External clock input  
What frequency do not use?  
f(XIN) =  
Quartz-crystal oscillator  
Other (  
)
MHZ  
27  
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ-SH13-95B<02A0>  
Mask ROM number  
MITSUBISHI ELECTRIC-CHIP 16-BIT  
MICROCOMPUTER M30620MCM-XXXFP/GP  
MASK ROM CONFIRMATION FORM  
(2) Which kind of XCIN-XCOUT oscillation circuit is used?  
Ceramic resonator  
External clock input  
What frequency do not use?  
f(XCIN) =  
Quartz-crystal oscillator  
Other (  
)
kHZ  
(3) Which operation mode do you use?  
Single-chip mode  
Memory expansion mode  
Microprocessor mode  
(4) Which operating supply voltage do you use?  
(Circle the operating voltage range of use)  
2.2 2.4 2.6  
2.7  
2.8  
2.9 3.0 3.1  
3.2 3.3  
3.4 3.5  
3.6  
3.7 3.8  
(V)  
(5) Which operating ambient temperature do you use?  
(Circle the operating temperature range of use)  
-50 -40 -30 -20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
(°C)  
2
(6) Do you use I C (Inter IC) bus function?  
Not use  
Use  
(7) Do you use IE (Inter Equipment) bus function?  
Not use  
Use  
Thank you cooperation.  
4. Special item (Indicate none if there is not specified item)  
28  
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ-SH13-48B<98A1>  
Mask ROM number  
Date :  
Section head Supervisor  
MITSUBISHI ELECTRIC-CHIP 16-BIT  
signature  
signature  
MICROCOMPUTER M30624MGM-XXXFP/GP  
MASK ROM CONFIRMATION FORM  
Note : Please complete all items marked .  
Submitted by Supervisor  
Company  
name  
TEL  
(
)
Customer  
Date  
Date :  
issued  
1. Check sheet  
Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on  
the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that  
there is any discrepancy between the contents of these mask files and the ROM data to be burned into  
products we produce. Check thoroughly the contents of the mask files you give in.  
Prepare 3.5 inches 2HD (IBM format) floppy disks. And store only one mask file in a floppy disk.  
Microcomputer type No. :  
File code :  
M30624MGM-XXXFP  
M30624MGM-XXXGP  
(hex)  
Mask file name :  
.MSK (alpha-numeric 8-digit)  
2. Mark specification  
The mark specification differs according to the type of package. After entering the mark specification on  
the separate mark specification sheet (for each package), attach that sheet to this masking check sheet  
for submission to Mitsubishi.  
For the M30624MGM-XXXFP, submit the 100P6S mark specification sheet. For the M30624MGM-  
XXXGP, submit the 100P6Q mark specification sheet.  
3. Usage Conditions  
For our reference when of testing our products, please reply to the following questions about the usage  
of the products you ordered.  
(1) Which kind of XIN-XOUT oscillation circuit is used?  
Ceramic resonator  
External clock input  
What frequency do not use?  
f(XIN) =  
Quartz-crystal oscillator  
Other (  
)
MHZ  
29  
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ-SH13-48B<98A1>  
Mask ROM number  
MITSUBISHI ELECTRIC-CHIP 16-BIT  
MICROCOMPUTER M30624MGM-XXXFP/GP  
MASK ROM CONFIRMATION FORM  
(2) Which kind of XCIN-XCOUT oscillation circuit is used?  
Ceramic resonator  
External clock input  
What frequency do not use?  
f(XCIN) =  
Quartz-crystal oscillator  
Other (  
)
kHZ  
(3) Which operation mode do you use?  
Single-chip mode  
Memory expansion mode  
Microprocessor mode  
(4) Which operating supply voltage do you use?  
(Circle the operating voltage range of use)  
2.2 2.4 2.6  
2.7  
2.8  
2.9 3.0 3.1  
3.2 3.3  
3.4 3.5  
3.6  
3.7 3.8  
(V)  
(5) Which operating ambient temperature do you use?  
(Circle the operating temperature range of use)  
-50 -40 -30 -20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
(°C)  
2
(6) Do you use I C (Inter IC) bus function?  
Not use  
Use  
(7) Do you use IE (Inter Equipment) bus function?  
Not use  
Use  
Thank you cooperation.  
4. Special item (Indicate none if there is not specified item)  
30  
Mitsubishi microcomputers  
M16C / 62M Group  
(Low voltage version)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Differences between M16C/62M (Low voltage version) and M30624FGLFP/GP  
Item  
M16C/62M (Low voltage version)  
1 Mbyte fixed  
M30624FGLFP/GP  
Memory expansion  
Memory area  
1.2 Mbytes mode  
4 Mbytes mode  
No CTS/RTS separate function  
CTS/RTS separate function  
Serial I/O  
Only analog delay is selected as  
SDA delay  
Analog or digital delay is selected as  
SDA delay  
IIC bus mode  
Memory version  
Mask ROM version  
Flash memory version  
Flash memory version only  
Clock synchronized only  
Standard serial I/O  
mode  
Clock synchronized  
Clock asynchronized  
(Flash memory version)  
31  
Keep safety first in your circuit designs!  
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor  
products better and more reliable, but there is always the possibility that trouble may  
occur with them. Trouble with semiconductors may lead to personal injury, fire or  
property damage. Remember to give due consideration to safety when making your  
circuit designs, with appropriate measures such as (i) placement of substitutive,  
auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any  
malfunction or mishap.  
Notes regarding these materials  
These materials are intended as a reference to assist our customers in the selection  
of the Mitsubishi semiconductor product best suited to the customer's application;  
they do not convey any license under any intellectual property rights, or any other  
rights, belonging to Mitsubishi Electric Corporation or a third party.  
Mitsubishi Electric Corporation assumes no responsibility for any damage, or  
infringement of any third-party's rights, originating in the use of any product data,  
diagrams, charts, programs, algorithms, or circuit application examples contained in  
these materials.  
All information contained in these materials, including product data, diagrams, charts,  
programs and algorithms represents information on products at the time of publication  
of these materials, and are subject to change by Mitsubishi Electric Corporation  
without notice due to product improvements or other reasons. It is therefore  
recommended that customers contact Mitsubishi Electric Corporation or an authorized  
Mitsubishi Semiconductor product distributor for the latest product information before  
purchasing a product listed herein.  
The information described here may contain technical inaccuracies or typographical  
errors. Mitsubishi Electric Corporation assumes no responsibility for any damage,  
liability, or other loss rising from these inaccuracies or errors.  
Please also pay attention to information published by Mitsubishi Electric Corporation  
by various means, including the Mitsubishi Semiconductor home page (http://  
www.mitsubishichips.com).  
When using any or all of the information contained in these materials, including  
product data, diagrams, charts, programs, and algorithms, please be sure to evaluate  
all information as a total system before making a final decision on the applicability of  
the information and products. Mitsubishi Electric Corporation assumes no  
responsibility for any damage, liability or other loss resulting from the information  
contained herein.  
Mitsubishi Electric Corporation semiconductors are not designed or manufactured  
for use in a device or system that is used under circumstances in which human life is  
potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized  
Mitsubishi Semiconductor product distributor when considering the use of a product  
contained herein for any specific purposes, such as apparatus or systems for  
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.  
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint  
or reproduce in whole or in part these materials.  
If these products or technologies are subject to the Japanese export control  
restrictions, they must be exported under a license from the Japanese government  
and cannot be imported into a country other than the approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan  
and/or the country of destination is prohibited.  
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semicon  
ductor product distributor for further details on these materials or the products con  
tained therein.  
MITSUBISHI SEMICONDUCTORS  
M16C/62M Group (Low voltage version)  
Specifications REV.B  
Jun. First Edition 2000  
Edition by  
Committee of editing of Mitsubishi Semiconductor  
Published by  
Mitsubishi Electric Corp., Kitaitami Works  
This book, or parts thereof, may not be reproduced in any form without  
permission of Mitsubishi Electric Corporation.  
©2000 MITSUBISHI ELECTRIC CORPORATION  

相关型号:

M30620FCMGP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
MITSUBISHI

M30620FCNFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
MITSUBISHI

M30620FCNGP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
MITSUBISHI

M30620FCPFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
RENESAS

M30620FCPFP#D3C

M30620FCPFP#D3C
RENESAS

M30620FCPFP#D5C

M30620FCPFP#D5C
RENESAS

M30620FCPFP#D7C

M30620FCPFP#D7C
RENESAS

M30620FCPFP#D9C

M30620FCPFP#D9C
RENESAS

M30620FCPFP#U3C

M30620FCPFP#U3C
RENESAS

M30620FCPFP#U5C

M30620FCPFP#U5C
RENESAS

M30620FCPFP#U7C

M30620FCPFP#U7C
RENESAS

M30620FCPFP#U9C

M30620FCPFP#U9C
RENESAS