M30612M4-155FP [MITSUBISHI]

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER; 单芯片16位CMOS微机
M30612M4-155FP
型号: M30612M4-155FP
厂家: Mitsubishi Group    Mitsubishi Group
描述:

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
单芯片16位CMOS微机

计算机
文件: 总197页 (文件大小:2650K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Mitsubishi microcomputers  
M16C / 61 Group  
Description  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Description  
The M16C/61 group of single-chip microcomputers are built using the high-performance silicon gate  
CMOS process using a M16C/60 Series CPU core and are packaged in a 100-pin plastic molded QFP.  
These single-chip microcomputers operate using sophisticated instructions featuring a high level of in-  
struction efficiency. With 1M bytes of address space, they are capable of executing instructions at high  
speed. They also feature a built-in multiplier and DMAC, making them ideal for controlling office, communi-  
cations, industrial equipment, and other high-speed processing applications.  
The M16C/61 group includes a wide range of products with different internal memory types and sizes and  
various package types.  
Features  
• Memory capacity............................................ ROM (See Figure 1.1.4. ROM Expansion)  
RAM 4K to 10K bytes  
• Shortest instruction execution time ................ 100ns (f(XIN)=10MHZ)  
• Supply voltage ............................................... 4.0 to 5.5V (f(XIN)=10MHZ)  
2.7 to 5.5V (f(XIN)=7MHZ with software one-wait)  
• Low power consumption ................................ 18mW ( f(XIN)=7MHZ, with software one-wait, VCC = 3V)  
• Interrupts........................................................ 20 internal and 5 external interrupt sources, 4 software  
interrupt sources; 7 levels (including key input interrupt)  
• Multifunction 16-bit timer................................ 5 output timers + 3 input timers  
• Serial I/O (UART or clock synchronous)........ 3 channels  
• DMAC ............................................................ 2 channels (trigger: 16 sources)  
• A-D converter................................................. 10 bits X 8 channels  
(Expandable up to 10 channels)  
• D-A converter................................................. 8 bits X 2 channels  
• CRC calculation circuit................................... 1 circuit  
• Watchdog timer.............................................. 1 line  
• Programmable I/O ......................................... 87 lines  
_______  
• Input port........................................................ 1 line (P85 shared with NMI pin)  
• Memory expansion ........................................ Available (to a maximum of 1M bytes)  
• Chip select output .......................................... 4 lines  
• Clock generating circuit ................................. 2 built-in clock generation circuits  
(built-in feedback resistor, and external ceramic or quartz oscillator)  
Applications  
Audio, cameras, office equipment, communications equipment, portable equipment  
------Table of Contents------  
Timer ............................................................. 70  
Serial I/O ....................................................... 87  
A-D Converter ............................................. 114  
D-A Converter ............................................. 124  
CRC Calculation Circuit .............................. 126  
Programmable I/O Ports ............................. 128  
Electrical Characteristics............................. 142  
Central Processing Unit (CPU) ..................... 11  
Reset............................................................. 14  
Processor Mode ............................................ 19  
Clock Generating Circuit ............................... 30  
Protection ...................................................... 39  
Interrupts ....................................................... 40  
Watchdog Timer............................................ 59  
DMAC ........................................................... 61  
1
Mitsubishi microcomputers  
M16C / 61 Group  
Description  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Pin Configuration  
Figures 1.1.1 and 1.1.2 show the pin configurations (top view).  
PIN CONFIGURATION (top view)  
P07/D7  
81  
P44/CS0  
P45/CS1  
P46/CS2  
P47/CS3  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
P06/D6  
82  
P05/D5  
83  
P04/D4  
84  
P03/D3  
P02/D2  
P01/D1  
85  
86  
87  
88  
89  
P50/WRL/WR  
P51/WRH/BHE  
P52/RD  
P53/BCLK  
P54/HLDA  
P55/HOLD  
P56/ALE  
P57/RDY/CLKOUT  
P60/CTS0/RTS0  
P61/CLK0  
P62/RxD0  
P63/TXD0  
P64/CTS1/RTS1/CTS0/CLKS1  
P65/CLK1  
P66/RxD1  
P67/TXD1  
P00/D0  
P107/AN7/KI3  
P106/AN6/KI2  
P105/AN5/KI1  
P104/AN4/KI0  
P103/AN3  
P102/AN2  
P101/AN1  
AVSS  
P100/AN0  
VREF  
AVcc  
P97/ADTRG  
90  
91  
92  
M16C/61 Group  
93  
94  
95  
96  
97  
98  
99  
100  
Package: 100P6S-A  
Note: P70 and P71 are N channel open-drain output pin.  
Figure 1.1.1. Pin configuration (top view)  
2
Mitsubishi microcomputers  
M16C / 61 Group  
Description  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
PIN CONFIGURATION (top view)  
P1  
P1  
P1  
P0  
P0  
P0  
2/D10  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
P4  
P4  
P4  
P4  
P4  
P4  
P5  
P5  
2
3
4
5
6
7
0
1
/A18  
/A19  
1
/D  
/D  
/D  
9
0
8
/CS0  
/CS1  
/CS2  
/CS3  
/WRL/WR  
/WRH/BHE  
/RD  
7
7
6
5
/D  
/D  
6
5
P0  
P0  
4
3
/D  
/D  
4
3
P0  
P0  
2
1
/D  
/D  
2
1
P5  
2
P53  
P54  
P55  
P56  
/BCLK  
P0  
/AN  
/AN  
/AN  
/AN4/KI  
0
/D  
/KI  
/KI  
/KI  
0
/HLDA  
/HOLD  
/ALE  
P10  
P10  
P10  
7
7
3
6
6
2
M16C/61 Group  
5
5
1
P57/RDY/CLKOUT  
P6  
P6  
P6  
P6  
0
/CTS  
/CLK  
/RxD  
0
0
0
/RTS0  
P10  
4
0
1
2
3
P10  
3
/AN  
3
2
1
P10  
2
/AN  
/AN  
/TXD0  
P10  
1
P64/CTS1/RTS1/CTS0/CLKS1  
AVSS  
/AN  
P6  
P6  
P6  
P7  
P7  
P7  
5
6
7
0
/CLK  
/RxD  
1
P10  
0
0
1
V
AVcc  
7/ADTRG  
/ANEX1  
REF  
/T  
X
D
1
/TxD  
/RxD  
/CLK  
2
/TA0OUT(Note)  
P9  
P9  
P9  
1
2
2
/TA0IN(Note)  
/TA1OUT  
6
2
5
/ANEX0  
Package: 100P6Q-A  
Note: P70 and P71 are N channel open-drain output pin.  
Figure 1.1.2. Pin configuration (top view)  
3
Mitsubishi microcomputers  
M16C / 61 Group  
Description  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Block Diagram  
Figure 1.1.3 is a block diagram of the M16C/61 group.  
Block diagram of the M16C/61 group  
8
8
Port P2  
8
8
8
8
8
I/O ports  
Port P0  
Port P1  
Port P3  
Port P4  
Port P5  
Port P6  
Internal peripheral functions  
Timer  
System clock generator  
IN-XOUT  
CIN-XCOUT  
A-D converter  
(10 bits  
X 8 channels  
X
X
Expandable up to 10 channels)  
Timer TA0 (16 bits)  
Timer TA1 (16 bits)  
Timer TA2 (16 bits)  
Timer TA3 (16 bits)  
Timer TA4 (16 bits)  
Timer TB0 (16 bits)  
Timer TB1 (16 bits)  
Timer TB2 (16 bits)  
UART/clock synchronous SI/O  
(8 bits X 3channels) (Note 3)  
CRC arithmetic circuit (CCITT )  
(Polynomial : X16+X12+X5+1)  
M16C/60 series16-bit CPU core  
Memory  
ROM  
(Note 1)  
Registers  
Program counter  
Watchdog timer  
(15 bits)  
R0H  
R0H  
R1H  
R2  
R3  
A0  
A1  
FB  
R0L  
R0L  
R1L  
PC  
RAM  
(Note 2)  
Vector table  
INTB  
DMAC  
(2 channels)  
Stack pointer  
ISP  
D-A converter  
(8 bits X 2 channels)  
USP  
Multiplier  
SB  
FLG  
Note 1: ROM size depends on MCU type.  
Note 2: RAM size depends on MCU type.  
Note 3: One of serial I/O can use for SIM interface.  
Figure 1.1.3. Block diagram of M16C/61 group  
4
Mitsubishi microcomputers  
M16C / 61 Group  
Description  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Performance Outline  
Table 1.1.1 is a performance outline of M16C/61 group.  
Table 1.1.1. Performance outline of M16C/61 group  
Item  
Performance  
Number of basic instructions  
91 instructions  
100ns(f(XIN)=10MHZ)  
Shortest instruction execution time  
Memory  
ROM  
(See the Figure 4. ROM Expansion)  
4K to 10K bytes  
capacity  
RAM  
I/O port  
P0 to P10 (except P85)  
P85  
8 bits x 10, 7 bits x 1  
Input port  
Multifunction  
timer  
1 bit x 1  
TA0, TA1, TA2, TA3, TA4  
TB0, TB1, TB2  
UART0, UART1, UART2  
16 bits x 5  
16 bits x 3  
Serial I/O  
A-D converter  
D-A converter  
DMAC  
(UART or clock synchronous) x 3  
10 bits x (8 + 2) channels  
8 bits x 2  
2 channels (trigger: 16 sources)  
CRC - CCITT  
CRC calculation circuit  
Watchdog timer  
15 bits x 1 (with prescaler)  
20 internal and 5 external sources, 4 software sources, 7 levels  
2 built-in clock generation circuits  
(built-in feedback resistor, and external ceramic or quartz oscillator)  
4.0 to 5.5V (f(XIN ) = 10MHZ)  
2.7 to 5.5V(f(XIN)=7MHZ with software one-wait)  
18mW (f(XIN) = 7MHZ with software one-wait,VCC = 3V)  
5V  
Interrupt  
Clock generating circuit  
Supply voltage  
Power consumption  
I/O  
I/O withstand voltage  
Output current  
characteristics  
Memory expansion  
Device configuration  
Package  
5mA  
Available (to a maximum of 1M bytes)  
CMOS silicon gate  
100-pin plastic mold QFP  
5
Mitsubishi microcomputers  
M16C / 61 Group  
Description  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Mitsubishi plans to release the following products in the M16C/61 group:  
(1) Support for mask ROM version, external ROM version, one-time PROM version, and EPROM version  
(2) ROM capacity  
(3) Package  
100P6S-A : Plastic molded QFP (mask ROM version and one-time PROM version)  
100P6Q-A : Plastic molded QFP (mask ROM version and one-time PROM version)  
100D0  
: Ceramic LCC (EPROM version)  
ROM  
Size(Byte)  
External  
ROM  
M30612SAFP/GP  
M30610SAFP/GP  
M30610MCA-XXXFP/GP  
M30610ECFP/GP  
M30610ECFS  
128 K  
96 K  
M30612MCA-XXXFP/GP  
M30610MAA-XXXFP/GP  
M30612MAA-XXXFP/GP  
M30610M8A-XXXFP/GP  
M30612M8A-XXXFP/GP  
64 K  
32 K  
M30612M4A-XXXFP/GP  
M30612E4FP/GP  
Mask ROM version  
One-time PROM version  
EPROM version  
External ROM version  
Figure 1.1.4. ROM expansion  
The M16C/61 group products currently supported are listed in Table 2.  
Table 1.1.2. M16C/61 group  
Apr. 1999  
Type No  
ROM capacity  
RAM capacity  
4K byte  
Package type  
100P6S-A  
100P6Q-A  
100P6S-A  
100P6Q-A  
100P6S-A  
100P6Q-A  
100P6S-A  
100P6Q-A  
100P6S-A  
100P6Q-A  
100P6S-A  
100P6Q-A  
100P6S-A  
100P6Q-A  
100P6S-A  
100P6Q-A  
100P6S-A  
100P6Q-A  
100D0  
Remarks  
M30612M4A-XXXFP  
M30612M4A-XXXGP  
M30610M8A-XXXFP  
32K byte  
10K byte  
4K byte  
M30610M8A-XXXGP  
M30612M8A-XXXFP  
M30612M8A-XXXGP  
M30610MAA-XXXFP  
M30610MAA-XXXGP  
M30612MAA-XXXFP  
M30612MAA-XXXGP  
M30610MCA-XXXFP  
M30610MCA-XXXGP  
M30612MCA-XXXFP  
M30612MCA-XXXGP  
M30612E4FP  
64K byte  
96K byte  
10K byte  
Mask ROM version  
4K byte  
10K byte  
128K byte  
32K byte  
5K byte  
4K byte  
M30612E4GP  
One-time PROM version  
EPROM version (Note)  
M30610ECFP  
128K byte  
128K byte  
10K byte  
10K byte  
10K byte  
M30610ECGP  
M30610ECFS  
M30610SAFP  
100P6S-A  
100P6Q-A  
100P6S-A  
100P6Q-A  
M30610SAGP  
External ROM version  
M30612SAFP  
4K byte  
M30612SAGP  
Note: Do not use the EPROM version for mass production, because it is a tool for program development  
(for evaluation).  
6
Mitsubishi microcomputers  
M16C / 61 Group  
Description  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Type No.  
M 3 0 6 1 2 M 4 – X X X F P  
Package type:  
FP : Package 100P6S-A  
GP :  
FS  
100P6Q-A  
100D0  
:
ROM No.  
Omitted for blank one-time PROM version  
and EPROM version  
ROM capacity:  
4 : 32K bytes  
8 : 64K bytes  
A : 96K bytes  
C : 128K bytes  
Memory type:  
M : Mask ROM version  
E : EPROM or one-time PROM version  
S : External ROM version  
Shows RAM capacity, pin count, etc  
(The value itself has no specific meaning)  
M16C/61 Group  
M16C Family  
Figure 1.1.5. Type No., memory size, and package  
7
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Pin Description  
Pin Description  
Pin name  
VCC, VSS  
Signal name  
I/O type  
Function  
Power supply  
input  
Supply 2.7 to 5.5 V to the VCC pin. Supply 0 V to the VSS pin.  
CNVSS  
RESET  
CNVSS  
Input  
This pin switches between processor modes. Connect it to the  
VSS pin when operating in single-chip or memory expansion mode.  
Connect it to the VCC pin when in microprocessor mode.  
Reset input  
Input  
A “L” on this input resets the microcomputer.  
XIN  
Clock input  
Input  
These pins are provided for the main clock generating circuit.Connect  
a ceramic resonator or crystal between the XIN and the XOUT pins. To  
use an externally derived clock, input it to the XIN pin and leave the  
XOUT pin open.  
XOUT  
Clock output  
Output  
This pin selects the width of an external data bus. A 16-bit width is  
selected when this input is “L”; an 8-bit width is selected when this  
input is “H”. This input must be fixed to either “H” or “L”. When  
operating in single-chip mode,connect this pin to VSS.  
BYTE  
External data Input  
bus width  
select input  
AVCC  
AVSS  
Analog power  
supply input  
This pin is a power supply input for the A-D converter. Connect this  
pin to VCC.  
Analog power  
supply input  
This pin is a power supply input for the A-D converter. Connect this  
pin to VSS.  
VREF  
Input  
Reference  
voltage input  
This pin is a reference voltage input for the A-D converter.  
This is an 8-bit CMOS I/O port. It has an input/output port direction  
register that allows the user to set each pin for input or output  
individually. When used for input in single-chip mode, the port can be  
set to have or not have a pull-up resistor in units of four bits by  
software. In memory expansion and microprocessor modes, selection  
of the internal pull-resistor is not available.  
P00 to P07  
I/O port P0  
Input/output  
D0 to D7  
Input/output When set as a separate bus, these pins input and output data (D0–D7).  
Input/output This is an 8-bit I/O port equivalent to P0.  
P10 to P17  
I/O port P1  
I/O port P2  
D8 to D15  
Input/output When set as a separate bus, these pins input and output data (D  
8–D15).  
P20 to P27  
A0 to A7  
Input/output This is an 8-bit I/O port equivalent to P0.  
Output  
These pins output 8 low-order address bits (A0–A7).  
Input/output If the external bus is set as an 8-bit wide multiplexed bus, these pins  
input and output data (D0–D7) and output 8 low-order address bits  
(A0–A7) separated in time by multiplexing.  
A0/D0 to  
A7/D7  
Output  
Input/output  
If the external bus is set as a 16-bit wide multiplexed bus, these pins  
input and output data (D0–D6) and output address (A1–A7) separated  
in time by multiplexing. They also output address (A0).  
A0, A1/D0  
to A7/D6  
P30 to P37  
A8 to A15  
I/O port P3  
I/O port P4  
Input/output This is an 8-bit I/O port equivalent to P0.  
Output  
These pins output 8 middle-order address bits (A8–A15).  
Input/output If the external bus is set as a 16-bit wide multiplexed bus, these pins  
A8/D7,  
A9 to A15  
Output  
input and output data (D7) and output address (A8) separated in time  
by multiplexing. They also output address (A9–A15).  
P40 to P47  
Input/output This is an 8-bit I/O port equivalent to P0.  
Output  
Output  
These pins output CS0–CS3 signals and A16–A19. CS0–CS3 are chip  
select signals used to specify an access space. A16–A19 are 4 high-  
order address bits.  
CS0 to CS3,  
A16 to A19  
8
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Pin Description  
Pin Description  
Pin name  
Signal name  
I/O port P5  
I/O type  
Function  
This is an 8-bit I/O port equivalent to P0. In single-chip mode, P57 in  
this port outputs a divide-by-8 or divide-by-32 clock of XIN or a clock of  
the same frequency as XCIN as selected by software.  
P50 to P57  
Input/output  
Output  
Output  
Output  
Output  
Output  
Input  
Output WRL, WRH (WR and BHE), RD, BCLK, HLDA, and ALE  
signals. WRL and WRH, and BHE and WR can be switched using  
software control.  
WRL / WR,  
WRH / BHE,  
RD,  
BCLK,  
HLDA,  
WRL, WRH, and RD selected  
With a 16-bit external data bus, data is written to even addresses  
when the WRL signal is “L” and to the odd addresses when the WRH  
signal is “L”. Data is read when RD is “L”.  
HOLD,  
ALE,  
RDY  
Output  
Input  
WR, BHE, and RD selected  
Data is written when WR is “L”. Data is read when RD is “L”. Odd  
addresses are accessed when BHE is “L”. Use this mode when using  
an 8-bit external data bus.  
While the input level at the HOLD pin is “L”, the microcomputer is  
placed in the hold state. While in the hold state, HLDA outputs a “L”  
level. ALE is used to latch the address. While the input level of the  
RDY pin is “L”, the microcomputer is in the ready state.  
This is an 8-bit I/O port equivalent to P0. When used for input in single-  
chip, memory expansion, and microprocessor modes, the port can be  
set to have or not have a pull-up resistor in units of four bits by  
software. Pins in this port also function as UART0 and UART1 I/O pins  
as selected by software.  
P60 to P67  
P70 to P77  
I/O port P6  
Input/output  
Input/output  
This is an 8-bit I/O port equivalent to P6 (P70 and P71 are N channel  
open-drain output). Pins in this port also function as timer A0–A3 or  
UART2 I/O pins as selected by software.  
I/O port P7  
I/O port P8  
I/O port P85  
P80 to P84, P86, and P87 are I/O ports with the same functions as P6.  
Using software, they can be made to function as the I/O pins for timer  
A4 and the input pins for external interrupts. P86 and P87 can be set  
using software to function as the I/O pins for a sub clock generation  
circuit. In this case, connect a quartz oscillator between P86 (XCOUT  
pin) and P87 (XCIN pin). P85 is an input-only port that also functions  
for NMI. The NMI interrupt is generated when the input at this pin  
changes from “H” to “L”. The NMI function cannot be cancelled using  
software. The pull-up cannot be set for this pin.  
P80 to P84,  
P86,  
Input/output  
Input/output  
P87,  
P85  
Input/output  
Input  
P90 to P97  
I/O port P9  
Input/output  
Input/output  
This is an 8-bit I/O port equivalent to P6. Pins in this port also function  
as Timer B0–B2 input pins, D-A converter output pins, A-D converter  
extended input pins, or A-D trigger input pins as selected by software.  
P100 to P107 I/O port P10  
This is an 8-bit I/O port equivalent to P6. Pins in this port also function  
as A-D converter input pins. Furthermore, P104–P107 also function as  
input pins for the key input interrupt function.  
9
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Memory  
Operation of Functional Blocks  
The M16C/61 group accommodates certain units in a single chip. These units include ROM and RAM to  
store instructions and data and the central processing unit (CPU) to execute arithmetic/logic operations.  
Also included are peripheral units such as timers, serial I/O, D-A converter, DMAC, CRC calculation circuit,  
A-D converter, and I/O ports.  
The following explains each unit.  
Memory  
Figure 1.4.1 is a memory map of the M16C/61 group. The address space extends the 1M bytes from  
address 0000016 to FFFFF16. From FFFFF16 down is ROM. For example, in the M30612M4A-XXXFP,  
there is 32K bytes of internal ROM from F800016 to FFFFF16. The vector table for fixed interrupts such as  
_______  
the reset and NMI are mapped to FFFDC16 to FFFFF16. The starting address of the interrupt routine is  
stored here. The address of the vector table for timer interrupts, etc., can be set as desired using the  
internal register (INTB). See the section on interrupts for details.  
From 0040016 up is RAM. For example, in the M30612M4A-XXXFP, 4K bytes of internal RAM is mapped  
to the space from 0040016 to 013FF16. In addition to storing data, the RAM also stores the stack used when  
calling subroutines and when interrupts are generated.  
The SFR area is mapped to 0000016 to 003FF16. This area accommodates the control registers for periph-  
eral devices such as I/O ports, A-D converter, serial I/O, and timers, etc. Any part of the SFR area that is not  
occupied is reserved and cannot be used for other purposes.  
The special page vector table is mapped to FFE0016 to FFFDB16. If the starting addresses of subroutines  
or the destination addresses of jumps are stored here, subroutine call instructions and jump instructions  
can be used as 2-byte instructions, reducing the number of program steps.  
In memory expansion mode and microprocessor mode, a part of the spaces are reserved and cannot be  
used. For example, in the M30612M4A-XXXFP, the following spaces cannot be used.  
• The space between 0140016 and 03FFF16  
• The space between D000016 and F7FFF16 (When external area do not expand in memory expansion  
mode)  
Do not expand the external area in single chip mode. A part of internal memory cannot be used depending  
on MCU.  
0000016  
SFR area  
For details, see Figure  
1.7.1 and Figure 1.7.2  
FFE0016  
0040016  
Internal RAM area  
Special page  
vector table  
XXXXX16  
Internal reserved  
area (Note 1)  
0400016  
FFFDC16  
Undefined instruction  
External area  
Overflow  
Type No.  
Address XXXXX16 Address YYYYY16  
BRK instruction  
Address match  
Single step  
M30610M8A  
M30610MAA  
M30610MCA/EC  
M30612M4A/E4  
M30612M8A  
M30612MAA  
M30612MCA  
02BFF16  
02BFF16  
02BFF16  
013FF16  
013FF16  
013FF16  
017FF16  
F000016  
E800016  
E000016  
F800016  
F000016  
E800016  
E000016  
Internal reserved  
area (Note 2)  
D000016  
Watchdog timer  
YYYYY16  
DBC  
NMI  
Reset  
Internal ROM area  
FFFFF16  
FFFFF16  
Note 1: During memory expansion and microprocessor modes, can not be used.  
Note 2: When external area do not expand in memory expansion mode.  
Figure 1.4.1. Memory map  
10  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
CPU  
Central Processing Unit (CPU)  
The CPU has a total of 13 registers shown in Figure 1.5.1. Seven of these registers (R0, R1, R2, R3, A0,  
A1, and FB) come in two sets; therefore, these have two register banks.  
b15  
b15  
b15  
b15  
b15  
b15  
b15  
b8 b7  
b8 b7  
b0  
b0  
b0  
b0  
b0  
b0  
b0  
R0(Note)  
R1(Note)  
R2(Note)  
R3(Note)  
A0(Note)  
A1(Note)  
FB(Note)  
L
L
H
H
b19  
b19  
b0  
PC  
Program counter  
Data  
registers  
b0  
b0  
Interrupt table  
register  
INTB  
H
L
b15  
b15  
b15  
b15  
User stack pointer  
USP  
ISP  
SB  
b0  
b0  
b0  
Interrupt stack  
pointer  
Address  
registers  
Static base  
register  
FLG  
Frame base  
registers  
Flag register  
IPL  
U
I O B S Z D C  
Note: These registers consist of two register banks.  
Figure 1.5.1. Central processing unit register  
(1) Data registers (R0, R0H, R0L, R1, R1H, R1L, R2, and R3)  
Data registers (R0, R1, R2, and R3) are configured with 16 bits, and are used primarily for transfer and  
arithmetic/logic operations.  
Registers R0 and R1 each can be used as separate 8-bit data registers, high-order bits as (R0H/R1H),  
and low-order bits as (R0L/R1L). In some instructions, registers R2 and R0, as well as R3 and R1 can  
use as 32-bit data registers (R2R0/R3R1).  
(2) Address registers (A0 and A1)  
Address registers (A0 and A1) are configured with 16 bits, and have functions equivalent to those of data  
registers. These registers can also be used for address register indirect addressing and address register  
relative addressing.  
In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).  
11  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
CPU  
(3) Frame base register (FB)  
Frame base register (FB) is configured with 16 bits, and is used for FB relative addressing.  
(4) Program counter (PC)  
Program counter (PC) is configured with 20 bits, indicating the address of an instruction to be executed.  
(5) Interrupt table register (INTB)  
Interrupt table register (INTB) is configured with 20 bits, indicating the start address of an interrupt vector  
table.  
(6) Stack pointer (USP/ISP)  
Stack pointer comes in two types: user stack pointer (USP) and interrupt stack pointer (ISP), each config-  
ured with 16 bits.  
Your desired type of stack pointer (USP or ISP) can be selected by a stack pointer select flag (U flag).  
This flag is located at the position of bit 7 in the flag register (FLG).  
(7) Static base register (SB)  
Static base register (SB) is configured with 16 bits, and is used for SB relative addressing.  
(8) Flag register (FLG)  
Flag register (FLG) is configured with 11 bits, each bit is used as a flag. Figure 1.5.2 shows the flag  
register (FLG). The following explains the function of each flag:  
• Bit 0: Carry flag (C flag)  
This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.  
• Bit 1: Debug flag (D flag)  
This flag enables a single-step interrupt.  
When this flag is “1”, a single-step interrupt is generated after instruction execution. This flag is  
cleared to “0” when the interrupt is acknowledged.  
• Bit 2: Zero flag (Z flag)  
This flag is set to “1” when an arithmetic operation resulted in 0; otherwise, cleared to “0”.  
• Bit 3: Sign flag (S flag)  
This flag is set to “1” when an arithmetic operation resulted in a negative value; otherwise, cleared to “0”  
.
• Bit 4: Register bank select flag (B flag)  
This flag chooses a register bank. Register bank 0 is selected when this flag is “0” ; register bank 1 is  
selected when this flag is “1”.  
• Bit 5: Overflow flag (O flag)  
This flag is set to “1” when an arithmetic operation resulted in overflow; otherwise, cleared to “0”.  
• Bit 6: Interrupt enable flag (I flag)  
This flag enables a maskable interrupt.  
An interrupt is disabled when this flag is “0”, and is enabled when this flag is “1”. This flag is cleared to  
“0” when the interrupt is acknowledged.  
12  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
CPU  
• Bit 7: Stack pointer select flag (U flag)  
Interrupt stack pointer (ISP) is selected when this flag is “0” ; user stack pointer (USP) is selected  
when this flag is “1”.  
This flag is cleared to “0” when a hardware interrupt is acknowledged or an INT instruction of software  
interrupt Nos. 0 to 31 is executed.  
• Bits 8 to 11: Reserved area  
• Bits 12 to 14: Processor interrupt priority level (IPL)  
Processor interrupt priority level (IPL) is configured with three bits, for specification of up to eight  
processor interrupt priority levels from level 0 to level 7.  
If a requested interrupt has priority greater than the processor interrupt priority level (IPL), the interrupt  
is enabled.  
• Bit 15: Reserved area  
The C, Z, S, and O flags are changed when instructions are executed. See the software manual for  
details.  
b15  
b0  
IPL  
Flag register (FLG)  
U
I
O B S Z D C  
Carry flag  
Debug flag  
Zero flag  
Sign flag  
Register bank select flag  
Overflow flag  
Interrupt enable flag  
Stack pointer select flag  
Reserved area  
Processor interrupt priority level  
Reserved area  
Figure 1.5.2. Flag register (FLG)  
13  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Reset  
Reset  
There are two kinds of resets; hardware and software. In both cases, operation is the same after the reset.  
(See “Software Reset” for details of software resets.) This section explains on hardware resets.  
When the supply voltage is in the range where operation is guaranteed, a reset is effected by holding the  
reset pin level “L” (0.2VCC max.) for at least 20 cycles. When the reset pin level is then returned to the “H”  
level while main clock is stable, the reset status is cancelled and program execution resumes from the  
address in the reset vector table.  
Figure 1.6.1 shows the example reset circuit. Figure 1.6.2 shows the reset sequence.  
5V  
4.0V  
V
CC  
0V  
5V  
VCC  
RESET  
RESET  
0V  
0.8V  
Example when VCC = 5V  
.
Figure 1.6.1. Example reset circuit  
X
IN  
More than 20 cycles are needed  
BCLK 24cycles  
Microprocessor  
mode BYTE = “H”  
RESET  
BCLK  
Address  
RD  
Content of reset vector  
FFFFC16  
FFFFD16  
FFFFE16  
WR  
CS0  
Microprocessor  
mode BYTE = “L”  
Content of reset vector  
FFFFC16  
FFFFE16  
Address  
RD  
WR  
CS0  
Single chip  
mode  
FFFFC16  
Content of reset vector  
Address  
FFFFE16  
Figure 1.6.2. Reset sequence  
14  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Reset  
____________  
Table 1.6.1 shows the statuses of the other pins while the RESET pin level is “L”. Figure 1.6.3 shows the  
internal status of the microcomputer immediately after the reset is cancelled.  
____________  
Table 1.6.1. Pin status when RESET pin level is “L”  
Status  
CNVSS = VCC  
Pin name  
CNVSS = VSS  
BYTE = VSS  
Data input (floating)  
BYTE = VCC  
Data input (floating)  
P0  
P1  
Input port (floating)  
Input port (floating)  
Data input (floating)  
Input port (floating)  
P2, P3, P40 to P43 Input port (floating)  
Address output (undefined)  
Address output (undefined)  
P44  
Input port (floating)  
Input port (floating)  
Input port (floating)  
Input port (floating)  
Input port (floating)  
Input port (floating)  
CS0 output (“H” level is output) CS0 output (“H” level is output)  
Input port (floating) Input port (floating)  
WR output (“H” level is output) WR output (“H” level is output)  
BHE output (undefined) BHE output (undefined)  
RD output (“H” level is output) RD output (“H” level is output)  
BCLK output BCLK output  
P45 to P47  
P50  
P51  
P52  
P53  
HLDA output (The output value HLDA output (The output value  
P54  
Input port (floating)  
depends on the input to the  
HOLD pin)  
depends on the input to the  
HOLD pin)  
P55  
P56  
P57  
Input port (floating)  
Input port (floating)  
Input port (floating)  
HOLD input (floating)  
HOLD input (floating)  
ALE output (“L” level is output) ALE output (“L” level is output)  
RDY input (floating)  
Input port (floating)  
RDY input (floating)  
Input port (floating)  
P6, P7, P80 to P84,  
P86, P87, P9, P10  
Input port (floating)  
15  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Reset  
(1) Processor mode register 0 (Note)  
(2) Processor mode register 1  
(000416)···  
(000516)···  
(000616)···  
(000716)···  
(000816)···  
(000916)···  
(000A16)···  
(000F16)···  
(001016)···  
(001116)···  
(001216)···  
(001416)···  
(001516)···  
(001616)···  
(002C16)···  
(003C16)···  
(004A16)···  
(004B16)···  
(004C16)···  
(004D16)···  
(004E16)···  
(004F16)···  
(005016)···  
(005116)···  
(005216)···  
(005316)···  
(005416)···  
(005516)···  
(005616)···  
(005716)···  
(005816)···  
(005916)···  
(005A16)···  
(005B16)···  
(005C16)···  
(005D16)···  
(005E16)···  
(005F16)···  
(037816)···  
(037C16)···  
(037D16)···  
(038016)···  
(038116)···  
(038216)···  
(038316)···  
(038416)···  
(43)Timer A0 mode register  
(44)Timer A1 mode register  
(45)Timer A2 mode register  
(46)Timer A3 mode register  
(47)Timer A4 mode register  
(48)Timer B0 mode register  
(49)Timer B1 mode register  
(50)Timer B2 mode register  
(51)UART0 transmit/receive mode register  
(039616)···  
(039716)···  
(039816)···  
(039916)···  
(039A16)···  
(039B16)···  
(039C16)···  
(039D16)···  
(03A016)···  
0016  
0016  
0016  
0016  
0016  
0016  
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
?
(3) System clock control register 0  
(4) System clock control register 1  
(5) Chip select control register  
(6) Address match interrupt enable register  
(7) Protect register  
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
?
0
0
0
0
0
0
?
?
?
0
0
0
0
0
0
0
0
0
0
0
?
(8) Watchdog timer control register  
(9) Address match interrupt register 0  
0
0
0
?
?
0
0016  
0016  
0
0016  
(52)UART0 transmit/receive control register 0 (03A416)···  
(53)UART0 transmit/receive control register 1 (03A516)···  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
(10)Address match interrupt register 1  
0016  
0016  
0
(54)UART1 transmit/receive mode register  
(03A816)···  
0016  
(55)UART1 transmit/receive control register 0 (03AC16)···  
(56)UART1 transmit/receive control register 1 (03AD16)···  
(57)UART transmit/receive control register 2 (03B016)···  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
?
?
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(11)DMA0 control register  
(12)DMA1 control register  
0
0
0
0
0
0
0
0
0
0
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
(58)DMA0 cause select register  
(59)DMA1 cause select register  
(60) A-D control register 2  
(03B816)···  
(03BA16)···  
(03D416)···  
(03D616)···  
(03D716)···  
(03DC16)···  
(03E216)···  
(03E316)···  
(03E616)···  
(03E716)···  
(03EA16)···  
(03EB16)···  
(03EE16)···  
(03EF16)···  
(03F216)···  
(03F316)···  
(03F616)···  
(03FC16)···  
(03FD16)···  
(03FE16)···  
0016  
0016  
0
Bus collision detection interrupt control  
register  
(13)  
(14)DMA0 interrupt control register  
(15)DMA1 interrupt control register  
(16)Key input interrupt control register  
(17)A-D conversion interrupt control register  
(18)UART2 transmit interrupt control register  
(19)UART2 receive interrupt control register  
(20)UART0 transmit interrupt control register  
(21)UART0 receive interrupt control register  
(22)UART1 transmit interrupt control register  
(23)UART1 receive interrupt control register  
(24)Timer A0 interrupt control register  
(25)Timer A1 interrupt control register  
(26)Timer A2 interrupt control register  
(27)Timer A3 interrupt control register  
(28)Timer A4 interrupt control register  
(29)Timer B0 interrupt control register  
(30)Timer B1 interrupt control register  
(31)Timer B2 interrupt control register  
(32)INT0 interrupt control register  
(33)INT1 interrupt control register  
(34)INT2 interrupt control register  
(35)UART2 transmit/receive mode register  
(36)UART2 transmit/receive control register 0  
(37)UART2 transmit/receive control register 1  
(38)Count start flag  
0
0
0
0
0
0
0
?
(61) A-D control register 0  
0
0 ? ?  
(62) A-D control register 1  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
0016  
(63)D-A control register  
(64)Port P0 direction register  
(65)Port P1 direction register  
(66)Port P2 direction register  
(67)Port P3 direction register  
(68)Port P4 direction register  
(69)Port P5 direction register  
(70)Port P6 direction register  
(71)Port P7 direction register  
(72)Port P8 direction register  
(73)Port P9 direction register  
(74)Port P10 direction register  
(75)Pull-up control register 0  
(76)Pull-up control register 1  
(77)Pull-up control register 2  
(78)Data registers (R0/R1/R2/R3)  
(79)Address registers (A0/A1)  
(80)Frame base register (FB)  
(81)Interrupt table register (INTB)  
(82)User stack pointer (USP)  
(83)Interrupt stack pointer (ISP)  
(84)Static base register (SB)  
(85)Flag register (FLG)  
0
0
0
0
0
0
0
0016  
0016  
0016  
0016  
0016  
0
0
0
0
0
0
000016  
000016  
000016  
0000016  
000016  
000016  
000016  
000016  
0016  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0016  
(39)Clock prescaler reset flag  
0
0
(40)One-shot start flag  
0
0
0
0
0
0
x : Nothing is mapped to this bit  
? : Undefined  
(41)Trigger select flag  
0016  
0016  
(42)Up-down flag  
The content of other registers and RAM is undefined when the microcomputer is reset. The initial values  
must therefore be set.  
Note: When the VCC level is applied to the CNVSS pin, it is 0316 at a reset.  
Figure 1.6.3. Device's internal status after a reset is cleared  
16  
Mitsubishi microcomputers  
M16C / 61 Group  
SFR  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
000016  
000116  
000216  
000316  
000416  
000516  
000616  
000716  
000816  
000916  
000A16  
000B16  
000C16  
000D16  
000E16  
000F16  
001016  
001116  
001216  
001316  
001416  
001516  
001616  
001716  
001816  
001916  
001A16  
001B16  
001C16  
001D16  
001E16  
001F16  
004016  
004116  
004216  
004316  
004416  
004516  
004616  
004716  
004816  
004916  
004A16  
004B16  
004C16  
004D16  
004E16  
004F16  
005016  
005116  
005216  
005316  
005416  
005516  
005616  
005716  
005816  
005916  
005A16  
005B16  
005C16  
005D16  
005E16  
005F16  
Processor mode register 0 (PM0)  
Processor mode register 1(PM1)  
System clock control register 0 (CM0)  
System clock control register 1 (CM1)  
Chip select control register (CSR)  
Address match interrupt enable register (AIER)  
Protect register (PRCR)  
Bus collision detection interrupt control register (BCNIC)  
DMA0 interrupt control register (DM0IC)  
DMA1 interrupt control register (DM1IC)  
Key input interrupt control register (KUPIC)  
A-D conversion interrupt control register (ADIC)  
UART2 transmit interrupt control register (S2TIC)  
UART2 receive interrupt control register (S2RIC)  
UART0 transmit interrupt control register (S0TIC)  
UART0 receive interrupt control register (S0RIC)  
UART1 transmit interrupt control register (S1TIC)  
UART1 receive interrupt control register (S1RIC)  
Timer A0 interrupt control register (TA0IC)  
Timer A1 interrupt control register (TA1IC)  
Timer A2 interrupt control register (TA2IC)  
Timer A3 interrupt control register (TA3IC)  
Timer A4 interrupt control register (TA4IC)  
Timer B0 interrupt control register (TB0IC)  
Timer B1 interrupt control register (TB1IC)  
Timer B2 interrupt control register (TB2IC)  
INT0 interrupt control register (INT0IC)  
INT1 interrupt control register (INT1IC)  
INT2 interrupt control register (INT2IC)  
Watchdog timer start register (WDTS)  
Watchdog timer control register (WDC)  
Address match interrupt register 0 (RMAD0)  
Address match interrupt register 1 (RMAD1)  
002016  
002116  
002216  
002316  
002416  
002516  
002616  
002716  
002816  
002916  
002A16  
002B16  
002C16  
002D16  
002E16  
002F16  
003016  
003116  
003216  
003316  
003416  
003516  
003616  
003716  
003816  
003916  
003A16  
003B16  
003C16  
003D16  
003E16  
003F16  
DMA0 source pointer (SAR0)  
036316  
036416  
036516  
036616  
036716  
036816  
036916  
036A16  
036B16  
036C16  
036D16  
036E16  
036F16  
037016  
037116  
037216  
037316  
037416  
037516  
037616  
037716  
037816  
037916  
037A16  
037B16  
037C16  
037D16  
037E16  
037F16  
DMA0 destination pointer (DAR0)  
DMA0 transfer counter (TCR0)  
DMA0 control register (DM0CON)  
DMA1 source pointer (SAR1)  
DMA1 destination pointer (DAR1)  
UART2 transmit/receive mode register (U2MR)  
UART2 bit rate generator (U2BRG)  
DMA1 transfer counter (TCR1)  
DMA1 control register (DM1CON)  
UART2 transmit buffer register (U2TB)  
UART2 transmit/receive control register 0 (U2C0)  
UART2 transmit/receive control register 1 (U2C1)  
UART2 receive buffer register (U2RB)  
Figure 1.7.1. Location of peripheral unit control registers  
17  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
SFR  
038016  
03C016  
03C116  
03C216  
03C316  
03C416  
03C516  
03C616  
03C716  
03C816  
03C916  
03CA16  
03CB16  
03CC16  
03CD16  
03CE16  
03CF16  
03D016  
03D116  
03D216  
03D316  
03D416  
03D516  
03D616  
03D716  
03D816  
03D916  
03DA16  
03DB16  
03DC16  
03DD16  
03DE16  
03DF16  
03E016  
03E116  
03E216  
03E316  
03E416  
03E516  
03E616  
03E716  
03E816  
03E916  
03EA16  
03EB16  
03EC16  
03ED16  
03EE16  
03EF16  
03F016  
03F116  
03F216  
03F316  
03F416  
03F516  
03F616  
03F716  
03F816  
03F916  
03FA16  
03FB16  
03FC16  
03FD16  
03FE16  
03FF16  
Count start flag (TABSR)  
A-D register 0 (AD0)  
038116  
038216  
038316  
038416  
038516  
038616  
038716  
038816  
038916  
038A16  
038B16  
038C16  
038D16  
038E16  
038F16  
039016  
039116  
039216  
039316  
039416  
039516  
039616  
039716  
039816  
039916  
039A16  
039B16  
039C16  
039D16  
039E16  
039F16  
03A016  
03A116  
03A216  
03A316  
03A416  
03A516  
03A616  
03A716  
03A816  
03A916  
03AA16  
03AB16  
03AC16  
03AD16  
03AE16  
03AF16  
03B016  
03B116  
03B216  
03B316  
03B416  
03B516  
03B616  
03B716  
03B816  
03B916  
03BA16  
03BB16  
03BC16  
03BD16  
03BE16  
03BF16  
Clock prescaler reset flag (CPSRF)  
One-shot start flag (ONSF)  
Trigger select register (TRGSR)  
Up-down flag (UDF)  
A-D register 1 (AD1)  
A-D register 2 (AD2)  
A-D register 3 (AD3)  
A-D register 4 (AD4)  
A-D register 5 (AD5)  
Timer A0 (TA0)  
Timer A1 (TA1)  
Timer A2 (TA2)  
Timer A3 (TA3)  
Timer A4 (TA4)  
Timer B0 (TB0)  
Timer B1 (TB1)  
Timer B2 (TB2)  
A-D register 6 (AD6)  
A-D register 7 (AD7)  
A-D control register 2 (ADCON2)  
A-D control register 0 (ADCON0)  
A-D control register 1 (ADCON1)  
D-A register 0 (DA0)  
Timer A0 mode register (TA0MR)  
Timer A1 mode register (TA1MR)  
Timer A2 mode register (TA2MR)  
Timer A3 mode register (TA3MR)  
Timer A4 mode register (TA4MR)  
Timer B0 mode register (TB0MR)  
Timer B1 mode register (TB1MR)  
Timer B2 mode register (TB2MR)  
D-A register 1 (DA1)  
D-A control register (DACON)  
Port P0 (P0)  
Port P1 (P1)  
Port P0 direction register (PD0)  
Port P1 direction register (PD1)  
Port P2 (P2)  
UART0 transmit/receive mode register (U0MR)  
UART0 bit rate generator (U0BRG)  
UART0 transmit buffer register (U0TB)  
UART0 transmit/receive control register 0 (U0C0)  
UART0 transmit/receive control register 1 (U0C1)  
Port P3 (P3)  
Port P2 direction register (PD2)  
Port P3 direction register (PD3)  
Port P4 (P4)  
UART0 receive buffer register (U0RB)  
UART1 transmit/receive mode register (U1MR)  
UART1 bit rate generator (U1BRG)  
Port P5 (P5)  
Port P4 direction register (PD4)  
Port P5 direction register (PD5)  
Port P6 (P6)  
UART1 transmit buffer register (U1TB)  
UART1 transmit/receive control register 0 (U1C0)  
UART1 transmit/receive control register 1 (U1C1)  
Port P7 (P7)  
Port P6 direction register (PD6)  
Port P7 direction register (PD7)  
Port P8 (P8)  
UART1 receive buffer register (U1RB)  
UART transmit/receive control register 2 (UCON)  
Port P9 (P9)  
Port P8 direction register (PD8)  
Port P9 direction register (PD9)  
Port P10 (P10)  
Port P10 direction register (PD10)  
DMA0 cause select register (DM0SL)  
DMA1 cause select register (DM1SL)  
Pull-up control register 0 (PUR0)  
Pull-up control register 1 (PUR1)  
Pull-up control register 2 (PUR2)  
CRC data register (CRCD)  
CRC input register (CRCIN)  
Figure 1.7.2. Location of peripheral unit control registers  
18  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Software Reset  
Software Reset  
Writing “1” to bit 3 of the processor mode register 0 (address 000416) applies a (software) reset to the  
microcomputer. A software reset has almost the same effect as a hardware reset. The contents of internal  
RAM are preserved.  
Processor Mode  
(1) Types of Processor Mode  
One of three processor modes can be selected: single-chip mode, memory expansion mode, and micro-  
processor mode. The functions of some pins, the memory map, and the access space differ according to  
the selected processor mode.  
• Single-chip mode  
In single-chip mode, only internal memory space (SFR, internal RAM, and internal ROM) can be  
accessed. Ports P0 to P10 can be used as programmable I/O ports or as I/O ports for the internal  
peripheral functions.  
• Memory expansion mode  
In memory expansion mode, external memory can be accessed in addition to the internal memory  
space (SFR, internal RAM, and internal ROM).  
In this mode, some of the pins function as the address bus, the data bus, and as control signals. The  
number of pins assigned to these functions depends on the bus and register settings. (See “Bus  
Settings” for details.)  
• Microprocessor mode  
In microprocessor mode, the SFR, internal RAM, and external memory space can be accessed. The  
internal ROM area cannot be accessed.  
In this mode, some of the pins function as the address bus, the data bus, and as control signals. The  
number of pins assigned to these functions depends on the bus and register settings. (See “Bus  
Settings” for details.)  
(2) Setting Processor Modes  
The processor mode is set using the CNVSS pin and the processor mode bits (bits 1 and 0 at address  
000416). Do not set the processor mode bits to “102”.  
Regardless of the level of the CNVSS pin, changing the processor mode bits selects the mode. Therefore,  
never change the processor mode bits when changing the contents of other bits. Also do not attempt to  
shift to or from the microprocessor mode within the program stored in the internal ROM area.  
• Applying VSS to CNVSS pin  
The microcomputer begins operation in single-chip mode after being reset. Memory expansion mode  
is selected by writing “012” to the processor mode is selected bits.  
• Applying VCC to CNVSS pin  
The microcomputer starts to operate in microprocessor mode after being reset.  
Figure 1.8.1 shows the processor mode register 0 and 1. Figure 1.9.1 shows the memory maps appli-  
cable for each of the modes.  
19  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Processor Mode  
Processor mode register 0 (Note 1)  
Symbol  
PM0  
Address  
000416  
When reset  
0016 (Note 2)  
b7 b6 b5 b4 b3 b2 b1 b0  
R W  
Bit symbol  
Bit name  
Function  
b1 b0  
PM00  
Processor mode bit  
0 0: Single-chip mode  
0 1: Memory expansion mode  
1 0: Inhibited  
1 1: Microprocessor mode  
PM01  
PM02  
0 : RD,BHE,WR  
1 : RD,WRH,WRL  
R/W mode select bit  
Software reset bit  
PM03  
PM04  
The device is reset when this bit is set  
to “1”. The value of this bit is “0” when  
read.  
b5 b4  
Multiplexed bus space  
select bit  
0 0 : Multiplexed bus is not used  
0 1 : Allocated to CS2 space  
1 0 : Allocated to CS1 space  
1 1 : Allocated to entire space (Note4)  
PM05  
PM06  
0 : Address output  
1 : Port function  
(Address is not output)  
Port P40 to P43 function  
select bit (Note 3)  
0 : BCLK is output  
1 : BCLK is not output  
(Pin is left floating)  
PM07  
BCLK output disable bit  
Note 1: Set bit 1 of the protect register (address 000A16) to “1” when writing new  
values to this register.  
Note 2: If the VCC voltage is applied to the CNVSS, the value of this register when  
reset is 0316. (PM00 and PM01 both are set to “1”.)  
Note 3: Valid in microprocessor and memory expansion modes.  
Note 4: If the entire space is of multiplexed bus in memory expansion mode, choose  
an 8-bit width.The processor operates using the separate bus after reset is  
revoked, so the entire space multiplexed bus cannot be chosen in microprocessor  
mode.  
The higher-order address becomes a port if the entire space multiplexed  
bus is chosen, so only 256 bytes can be used in each chip select.  
Processor mode register 1 (Note 1)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
PM1  
Address  
000516  
When reset  
00XXXXX0  
2
0
0
0
0
R W  
Bit symbol  
Reserved bit  
Bit name  
Function  
Must always be set to “0”  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to be  
indeterminate.  
Must always be set to “0”  
Reserved bit  
PM16  
External memory area  
expansion bit (Note 2)  
0 : Do not expand  
1 : Expand  
PM17  
0 : No wait state  
1 : Wait state inserted  
Wait bit  
Note 1: Set bit 1 of the protect register (address 000A16) to “1” when writing  
new values to this register.  
Note 2: When this bit is set to “1” in memory expansion mode, M30612M4A/E4  
provides the means of using part of internal reserved area as an external  
area. Set this bit to “0” except M30612M4A/E4. Set this bit to “0” in single  
chip mode.  
Figure 1.8.1. Processor mode register 0 and 1  
20  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Processor Mode  
Single-chip mode  
SFR area  
Memory expansion mode  
SFR area  
Microprocessor mode  
SFR area  
0000016  
0040016  
Internal RAM  
area  
Internal RAM  
area  
Internal RAM  
area  
XXXXX16  
0400016  
Internally  
reserved area  
Internally  
reserved area  
Inhibited  
External area  
D000016  
External area  
Internally reserved  
area (Note 1)  
YYYYY16  
Internal ROM  
area (Note 2)  
Internal ROM  
area  
FFFFF16  
Type No.  
Address  
XXXXX16  
Address  
YYYYY16  
External area : Accessing this area allows the user to  
access a device connected externally  
to the microcomputer.  
M30610M8A  
M30610MAA  
02BFF16  
02BFF16  
F000016  
E800016  
E000016  
F800016  
F000016  
E800016  
E000016  
M30610MCA/EC  
M30612M4A/E4  
M30612M8A  
02BFF16  
013FF16  
013FF16  
013FF16  
017FF16  
Note 1: This area becomes external area when PM16 (external  
memory area expansion bit ) = “1” in M30612M4A/E4.  
Set “0” except M30612M4A/E4.  
Note 2: Set “0” to PM16 (external memory area expansion bit)  
in single chip mode.  
M30612MAA  
M30612MCA  
Figure 1.9.1. Memory maps in each processor mode  
21  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Bus Settings  
Bus Settings  
The BYTE pin and bits 4 to 6 of the processor mode register 0 (address 000416) are used to change the bus  
settings.  
Table 1.10.1 shows the factors used to change the bus settings.  
Table 1.10.1. Factors for switching bus settings  
Bus setting  
Switching factor  
Bit 6 of processor mode register 0  
BYTE pin  
Switching external address bus width  
Switching external data bus width  
Switching between separate and multiplex bus  
Bits 4 and 5 of processor mode register 0  
(1) Selecting external address bus width  
The address bus width for external output in the 1M bytes of address space can be set to 16 bits (64K  
bytes address space) or 20 bits (1M bytes address space). When bit 6 of the processor mode register 0  
is set to “1”, the external address bus width is set to 16 bits, and P2 and P3 become part of the address  
bus. P40 to P43 can be used as programmable I/O ports. When bit 6 of processor mode register 0 is set  
to “0”, the external address bus width is set to 20 bits, and P2, P3, and P40 to P43 become part of the  
address bus.  
(2) Selecting external data bus width  
The external data bus width can be set to 8 or 16 bits. (Note, however, that only the separate bus can be  
set.) When the BYTE pin is “L”, the bus width is set to 16 bits; when “H”, it is set to 8 bits. (The internal bus  
width is permanently set to 16 bits.) While operating, fix the BYTE pin either to “H” or to “L”.  
(3) Selecting separate/multiplex bus  
The bus format can be set to multiplex or separate bus using bits 4 and 5 of the processor mode register 0.  
• Separate bus  
In this mode, the data and address are input and output separately. The data bus can be set using the  
BYTE pin to be 8 or 16 bits. When the BYTE pin is “H”, the data bus is set to 8 bits and P0 functions as  
the data bus and P1 as a programmable I/O port. When the BYTE pin is “L”, the data bus is set to 16  
bits and P0 and P1 are both used for the data bus.  
When the separate bus is used for access, a software wait can be selected.  
• Multiplex bus  
In this mode, data and address I/O are time multiplexed. With an 8-bit data bus selected (BYTE pin =  
“H”), the 8 bits from D0 to D7 are multiplexed with A0 to A7.  
With a 16-bit data bus selected (BYTE pin = “L”), the 8 bits from D0 to D7 are multiplexed with A1 to A8.  
D8 to D15 are not multiplexed. In this case, the external devices connected to the multiplexed bus are  
mapped to the microcomputer’s even addresses (every 2nd address). To access these external de-  
vices, access the even addresses as bytes.  
The ALE signal latches the address. It is output from P56.  
Before using the multiplex bus for access, be sure to insert a software wait.  
If the entire space is of multiplexed bus in memory expansion mode, choose an 8-bit width.  
The processor operates using the separate bus after reset is revoked, so the entire space multiplexed  
bus cannot be chosen in microprocessor mode.  
The higher-order address becomes a port if the entire space multiplexed bus is chosen, so only 256  
bytes can be used in each chip select.  
22  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Bus Settings  
Table 1.10.2. Pin functions for each processor mode  
Single-chip  
Memory  
expansion mode  
Processor mode  
Memory expansion mode/microprocessor modes  
mode  
“01”, “10”  
“00”  
“11” (Note 1)  
multiplexed  
bus for the  
entire  
Multiplexed bus  
space select bit  
Either CS1 or CS2 is for  
multiplexed bus and others  
are for separate bus  
(separate bus)  
space  
8 bits  
“H”  
Data bus width  
BYTE pin level  
16 bits  
“L”  
8 bits  
“H”  
16 bits  
“L”  
8 bit  
“H”  
P0  
0
to P0  
7
I/O port  
Data bus  
Data bus  
Data bus  
Data bus  
I/O port  
P1  
0
to P1  
7
I/O port  
I/O port  
I/O port  
I/O port  
I/O port  
I/O port  
I/O port  
Data bus  
I/O port  
Data bus  
I/O port  
P2  
0
Address bus  
/data bus(Note 2)  
Address bus  
Address bus  
Address bus  
Address bus  
Address bus  
/O port  
Address bus  
Address bus  
Address bus  
Address bus  
I/O port  
Address bus  
/data bus  
P2  
1
0
to P2  
7
Address bus  
/data bus(Note 2) /data bus(Note 2)  
Address bus  
Address bus  
/data bus  
P3  
Address bus  
/data bus(Note 2)  
Address bus  
Address bus  
I/O port  
A8/D7  
P3  
1
to P3  
to P4  
7
Address bus  
I/O port  
I/O port  
I/O port  
P4  
Port P4  
0
3
0
to P43  
function select bit = 1  
P4  
Port P4  
0
to P4  
3
I/O port  
Address bus  
Address bus  
Address bus  
Address bus  
I/O port  
0
to P43  
function select bit = 0  
CS (chip select) or programmable I/O port  
(For details, refer to “Bus control”)  
P4  
P5  
P5  
P5  
4
0
4
5
to P4  
7
I/O port  
I/O port  
I/O port  
I/O port  
I/O port  
I/O port  
Outputs RD, WRL, WRH, and BCLK or RD, BHE, WR, and BCLK  
(For details, refer to “Bus control”)  
to P5  
3
HLDA  
HOLD  
ALE  
HLDA  
HOLD  
ALE  
HLDA  
HOLD  
ALE  
HLDA  
HOLD  
ALE  
HLDA  
HOLD  
ALE  
P5  
6
7
P5  
RDY  
RDY  
RDY  
RDY  
RDY  
Note 1: If the entire space is of multiplexed bus in memory expansion mode, choose an 8-bit width.  
The processor operates using the separate bus after reset is revoked, so the entire space multiplexed bus cannot be  
chosen in microprocessor mode.  
The higher-order address becomes a port if the entire space multiplexed bus is chosen, so only 256 bytes can be used  
in each chip select.  
Note 2: Address bus when in separate bus mode.  
23  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Bus Control  
Bus Control  
The following explains the signals required for accessing external devices and software waits. The signals  
required for accessing the external devices are valid when the processor mode is set to memory expansion  
mode and microprocessor mode. The software waits are valid in all processor modes.  
(1) Address bus/data bus  
The address bus consists of the 20 pins A0 to A19 for accessing the 1M bytes of address space.  
The data bus consists of the pins for data I/O. When the BYTE pin is “H”, the 8 ports D0 to D7 function as  
the data bus. When BYTE is “L”, the 16 ports D0 to D15 function as the data bus.  
Both the address and data bus retain their previous states when internal ROM or RAM is accessed. Also,  
when a change is made from single-chip mode to memory expansion mode, the value of the address bus  
is undefined until external memory is accessed.  
(2) Chip select signal  
The chip select signal is output using the same pins as P44 to P47. Bits 0 to 3 of the chip select control  
register (address 000816) set each pin to function as a port or to output the chip select signal. The chip  
select control register is valid in memory expansion mode and microprocessor mode. In single-chip  
mode, P44 to P47 function as programmable I/O ports regardless of the value in the chip select control  
register.  
_______  
In microprocessor mode, only CS0 outputs the chip select signal after the reset state has been cancelled.  
_______  
_______  
_______  
_______  
CS1 to CS3 function as input ports. Therefore, when using CS1 to CS3, external pull-up resistors are  
required. Figure 1.11.1 shows the chip select control register.  
The chip select signal can be used to split the external area into as many as four blocks. Table 1.11.1  
shows the external memory areas specified using the chip select signal.  
Table 1.11.1. External areas specified by the chip select signals  
Specified address range  
Chip select  
Memory expansion mode  
Microprocessor mode  
3000016 to CFFFF16 (640K)  
3000016 to FFFFF16 (832K)  
CS0  
3000016 to F7FFF16  
2800016 to 2FFFF16  
(Note)  
(800K)  
(32K)  
2800016 to 2FFFF16 (32K)  
0800016 to 27FFF16 (128K)  
0400016 to 07FFF16 (16K)  
CS1  
CS2  
CS3  
0800016 to 27FFF16 (128K)  
0400016 to 07FFF16 (16K)  
Note: When PM16 (External memory area expansion bit) = “1”. (Only M30612M4A/E4 is valid.)  
Chip select control register  
Symbol  
CSR  
Address  
000816  
When reset  
0116  
b7 b6 b5 b4 b3 b2 b1 b0  
R W  
Bit symbol  
Bit name  
Function  
CS0  
CS0 output enable bit  
CS1 output enable bit  
CS2 output enable bit  
CS3 output enable bit  
0 : Chip select output disabled  
(Normal port pin)  
1 : Chip select output enabled  
CS1  
CS2  
CS3  
CS0W  
CS1W  
CS2W  
CS3W  
CS0 wait bit  
CS1 wait bit  
CS2 wait bit  
CS3 wait bit  
0 : Wait state inserted  
1 : No wait state  
Figure 1.11.1. Chip select control register  
24  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Bus Control  
(3) Read/write signals  
With a 16-bit data bus (BYTE pin =“L”), bit 2 of the processor mode register 0 (address 000416) select the  
_____ ________  
______  
_____ ________  
_________  
combinations of RD, BHE, and WR signals or RD, WRL, and WRH signals. With an 8-bit data bus (BYTE  
_____ ______  
_______  
pin = “H”), use the combination of RD, WR, and BHE signals. (Set bit 2 of the processor mode register 0  
(address 000416) to “0”.) Tables 1.11.2 and 1.11.3 show the operation of these signals.  
_____ ______  
________  
After a reset has been cancelled, the combination of RD, WR, and BHE signals is automatically selected.  
_____ _________  
_________  
When switching to the RD, WRL, and WRH combination, do not write to external memory until bit 2 of the  
processor mode register 0 (address 000416) has been set (Note).  
Note: Before attempting to change the contents of the processor mode register 0, set bit 1 of the protect  
register (address 000A16) to “1”.  
_____ ________  
_________  
Table 1.11.2. Operation of RD, WRL, and WRH signals  
Data bus width  
Status of external data bus  
RD  
L
WRL  
H
L
WRH  
H
H
L
Read data  
H
Write 1 byte of data to even address  
Write 1 byte of data to odd address  
Write data to both even and odd addresses  
16-bit  
(BYTE = “L”)  
H
H
L
H
L
_____ ______  
________  
Table 1.11.3. Operation of RD, WR, and BHE signals  
Data bus width  
A0  
H
Status of external data bus  
Write 1 byte of data to odd address  
Read 1 byte of data from odd address  
Write 1 byte of data to even address  
Read 1 byte of data from even address  
Write data to both even and odd addresses  
Read data from both even and odd addresses  
Write 1 byte of data  
RD  
H
L
WR  
L
BHE  
L
H
L
L
H
16-bit  
(BYTE = “L”)  
H
L
H
L
H
L
H
L
H
L
L
L
H
L
L
L
H
L
Not used  
Not used  
H / L  
H / L  
8-bit  
(BYTE = “H”)  
H
Read 1 byte of data  
(4) ALE signal  
The ALE signal latches the address when accessing the multiplex bus space. Latch the address when the  
ALE signal falls.  
When BYTE pin = “L”  
ALE  
When BYTE pin = “H”  
ALE  
A
0
Address  
Data (Note 1)  
Address  
Data (Note 1)  
D0/A0 to D7/A7  
D0/A1 to D7/A8  
Address  
A8 to A19  
Address (Note 2)  
A9 to A19  
Address  
Note 1: Floating when reading.  
Note 2: When multiplexed bus for the entire space is selected, these are I/O ports.  
Figure 1.11.2. ALE signal and address/data bus  
25  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Bus Control  
(5) The _R__D___Y__ signal  
________  
RDY is a signal that facilitates access to an external device that requires long access time. As shown in  
________  
Figure 1.11.3, if an “L” is being input to the RDY at the BCLK falling edge, the bus turns to the wait state.  
________  
If an “H” is being input to the RDY pin at the BCLK falling edge, the bus cancels the wait state. Table  
1.11.4 shows the state of the microcomputer with the bus in the wait state, and Figure 1.11.3 shows an  
____  
________  
example in which the RD signal is prolonged by the RDY signal.  
________  
The RDY signal is valid when accessing the external area during the bus cycle in which bits 4 to 7 of the  
________  
chip select control register (address 000816) are set to “0”. The RDY signal is invalid when setting “1” to all  
________  
bits 4 to 7 of the chip select control register (address 000816), but the RDY pin should be treated as  
properly as in non-using.  
Table 1.11.4. Microcomputer status in ready state (Note)  
Item  
Status  
Oscillation  
On  
___  
_____  
________  
R/W signal, address bus, data bus, CS  
Maintain status when RDY signal received  
__________  
ALE signal, HLDA, programmable I/O ports  
Internal peripheral circuits  
On  
________  
Note: The RDY signal cannot be received immediately prior to a software wait.  
In an instance of separate bus  
BCLK  
RD  
CS  
i
(i=0 to 3)  
RDY  
tsu(RDY - BCLK)  
Accept timing of RDY signal  
In an instance of multiplexed bus  
BCLK  
RD  
CS  
i
(i=0 to 3)  
RDY  
tsu(RDY - BCLK)  
Accept timing of RDY signal  
: Wait using RDY signal  
: Wait using software  
_____  
________  
Figure 1.11.3. Example of RD signal extended by RDY signal  
26  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Bus Control  
(6) Hold signal  
The hold signal is used to transfer the bus privileges from the CPU to the external circuits. Inputting “L” to  
__________  
the HOLD pin places the microcomputer in the hold state at the end of the current bus access. This status  
__________  
__________  
is maintained and “L” is output from the HLDA pin as long as “L” is input to the HOLD pin. Table 1.11.5  
shows the microcomputer status in the hold state.  
__________  
Bus-using priorities are given to HOLD, DMAC, and CPU in order of decreasing precedence.  
__________  
HOLD > DMAC > CPU  
Figure 1.11.4. Bus-using priorities  
Table 1.11.5. Microcomputer status in hold state  
Item  
Status  
Oscillation  
ON  
___  
_____ _______  
R/W signal, address bus, data bus, CS, BHE  
Floating  
Floating  
Programmable I/O ports  
P0, P1, P2, P3, P4, P5  
P6, P7, P8, P9, P10  
Maintains status when hold signal is received  
Output “L”  
__________  
HLDA  
Internal peripheral circuits  
ALE signal  
ON (but watchdog timer stops)  
Undefined  
(7) External bus status when the internal area is accessed  
Table 1.11.6 shows the external bus status when the internal area is accessed.  
Table 1.11.6. External bus status when the internal area is accessed  
Item  
SFR accessed  
Address output  
Internal ROM/RAM accessed  
Maintain status before accessed  
address of external area  
Floating  
Address bus  
Data bus  
When read  
When write  
Floating  
Output data  
Undefined  
RD, WR, WRL, WRH  
BHE  
RD, WR, WRL, WRH output  
BHE output  
Output "H"  
Maintain status before accessed  
status of external area  
Output "H"  
CS  
Output "H"  
Output "L"  
ALE  
Output "L"  
27  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Bus Control  
(8) BCLK output  
The user can choose the BCLK output by use of bit 7 of processor mode register 0 (000416) (Note).  
When set to “1”, the output floating.  
Note: Before attempting to change the contents of the processor mode register 0, set bit 1 of the protect  
register (address 000A16) to “1”.  
(9) Software wait  
A software wait can be inserted by setting the wait bit (bit 7) of the processor mode register 1 (address  
000516) (Note) and bits 4 to 7 of the chip select control register (address 000816).  
A software wait is inserted in the internal ROM/RAM area and in the external memory area by setting the  
wait bit of the processor mode register 1. When set to “0”, each bus cycle is executed in one BCLK cycle.  
When set to “1”, each bus cycle is executed in two or three BCLK cycles. After the microcomputer has been  
reset, this bit defaults to “0”. When set to “1”, a wait is applied to all memory areas (two or three BCLK  
cycles), regardless of the contents of bits 4 to 7 of the chip select control register. Set this bit after referring  
to the recommended operating conditions (main clock input oscillation frequency) of the electric character-  
________  
istics. However, when the user is using the RDY signal, the relevant bit in the chip select control register’s  
bits 4 to 7 must be set to “0”.  
When the wait bit of the processor mode register 1 is “0”, software waits can be set independently for  
each of the 4 areas selected using the chip select signal. Bits 4 to 7 of the chip select control register  
_______  
_______  
correspond to chip selects CS0 to CS3. When one of these bits is set to “1”, the bus cycle is executed in  
one BCLK cycle. When set to “0”, the bus cycle is executed in two or three BCLK cycles. These bits  
default to “0” after the microcomputer has been reset.  
The SFR area is always accessed in two BCLK cycles regardless of the setting of these control bits. Also,  
insert a software wait if using the multiplex bus to access the external memory area.  
Table 1.11.7 shows the software wait and bus cycles. Figure 1.11.5 shows example bus timing when  
using software waits.  
Note: Before attempting to change the contents of the processor mode register 1, set bit 1 of the protect  
register (address 000A16) to “1”.  
Table 1.11.7. Software waits and bus cycles  
Bits 4 to 7 of chip select  
Bus cycle  
2 BCLK cycles  
Area  
SFR  
Bus status  
Wait bit  
control register  
Invalid  
0
Invalid  
Invalid  
1 BCLK cycle  
Internal  
ROM/RAM  
1
0
0
Invalid  
2 BCLK cycles  
1 BCLK cycle  
2 BCLK cycles  
Separate bus  
Separate bus  
Separate bus  
1
0
External  
memory  
area  
1
0
1
0 (Note)  
0
2 BCLK cycles  
3 BCLK cycles  
3 BCLK cycles  
Multiplex bus  
Multiplex bus  
0 (Note)  
Note: When using the RDY signal, always set to “0”.  
28  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Bus Control  
< Separate bus (no wait) >  
Bus cycle  
BCLK  
Write signal  
Read signal  
Data bus  
Output  
Input  
Address bus  
Chip select  
Address  
Address  
< Separate bus (with wait) >  
Bus cycle  
BCLK  
Write signal  
Read signal  
Input  
Output  
Data bus  
Address  
Address bus  
Address  
Chip select  
< Multiplexed bus >  
Bus cycle  
BCLK  
Write signal  
Read signal  
ALE  
Address bus  
Address bus/  
Address  
Address  
Address  
Input  
Data output  
Address  
Data bus  
Chip select  
Figure 1.11.5. Typical bus timings using software wait  
29  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Clock Generating Circuit  
Clock Generating Circuit  
The clock generating circuit contains two oscillator circuits that supply the operating clock sources to the  
CPU and internal peripheral units.  
Table 1.12.1. Main clock and sub-clock generating circuits  
Main clock generating circuit  
• CPU’s operating clock source  
• Internal peripheral units’  
operating clock source  
Ceramic or crystal oscillator  
XIN, XOUT  
Sub-clock generating circuit  
• CPU’s operating clock source  
• Timer A/B’s count clock  
source  
Use of clock  
Usable oscillator  
Crystal oscillator  
XCIN, XCOUT  
Pins to connect oscillator  
Oscillation stop/restart function  
Oscillator status immediately after reset  
Other  
Available  
Available  
Oscillating  
Stopped  
Externally derived clock can be input  
Example of oscillator circuit  
Figure 1.12.1 shows some examples of the main clock circuit, one using an oscillator connected to the  
circuit, and the other one using an externally derived clock for input. Figure 1.12.2 shows some examples  
of sub-clock circuits, one using an oscillator connected to the circuit, and the other one using an externally  
derived clock for input. Circuit constants in Figures 1.12.1 and 1.12.2 vary with each oscillator used. Use  
the values recommended by the manufacturer of your oscillator.  
Microcomputer  
(Built-in feedback resistor)  
Microcomputer  
(Built-in feedback resistor)  
XIN  
XOUT  
XIN  
XOUT  
Open  
(Note)  
Rd  
Externally derived clock  
Vcc  
Vss  
CIN  
C
OUT  
Note: Insert a damping resistor if required. The resistance will vary depending on the oscillator and the oscillation drive  
capacity setting. Use the value recommended by the maker of the oscillator.  
When the oscillation drive capacity is set to low, check that oscillation is stable. Also, if the oscillator manufacturer's  
data sheet specifies that a feedback resistor be added external to the chip, insert a feedback resistor between XIN  
and XOUT following the instruction.  
Figure 1.12.1. Examples of main clock  
Microcomputer  
(Built-in feedback resistor)  
Microcomputer  
(Built-in feedback resistor)  
X
CIN  
XCOUT  
X
CIN  
XCOUT  
Open  
(Note)  
RCd  
Externally derived clock  
CCIN  
CCOUT  
Vcc  
Vss  
Note: Insert a damping resistor if required. The resistance will vary depending on the oscillator and the oscillation drive  
capacity setting. Use the value recommended by the maker of the oscillator.  
When the oscillation drive capacity is set to low, check that oscillation is stable. Also, if the oscillator manufacturer's  
data sheet specifies that a feedback resistor be added external to the chip, insert a feedback resistor between XCIN  
and XCOUT following the instruction.  
Figure 1.12.2. Examples of sub-clock  
30  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Clock Generating Circuit  
Clock Control  
Figure 1.12.3 shows the block diagram of the clock generating circuit.  
XCIN  
X
COUT  
fC32  
1/32  
f1  
CM04  
f1SIO2  
fAD  
fC  
f8SIO2  
f8  
Sub clock  
f
32SIO2  
CM10 “1”  
Write signal  
f
32  
S
R
Q
X
IN  
X
OUT  
b
c
CM07=0  
a
d
Divider  
RESET  
Software reset  
NMI  
BCLK  
f
C
Main clock  
CM02  
CM07=1  
CM05  
Interrupt request  
level judgment  
output  
S Q  
R
WAIT instruction  
c
b
1/2  
1/2  
1/2  
1/2  
1/2  
a
CM06=0  
CM17,CM16=11  
CM06=1  
CM06=0  
CM17,CM16=10  
d
CM06=0  
CM17,CM16=01  
CM06=0  
CM17,CM16=00  
CM0i : Bit i at address 000616  
CM1i : Bit i at address 000716  
WDCi : Bit i at address 000F16  
Details of divider  
Figure 1.12.3. Clock generating circuit  
31  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Clock Generating Circuit  
The following paragraphs describes the clocks generated by the clock generating circuit.  
(1) Main clock  
The main clock is generated by the main clock oscillation circuit. After a reset, the clock is divided by 8 to  
the BCLK. The clock can be stopped using the main clock stop bit (bit 5 at address 000616). Stopping the  
clock, after switching the operating clock source of CPU to the sub-clock, reduces the power dissipation.  
After the oscillation of the main clock oscillation circuit has stabilized, the drive capacity of the main clock  
oscillation circuit can be reduced using the XIN-XOUT drive capacity select bit (bit 5 at address 000716).  
Reducing the drive capacity of the main clock oscillation circuit reduces the power dissipation. This bit  
changes to “1” when shifting from high-speed/medium-speed mode to stop mode and at a reset. When  
shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is re-  
tained.  
(2) Sub-clock  
The sub-clock is generated by the sub-clock oscillation circuit. No sub-clock is generated after a reset.  
After oscillation is started using the port Xc select bit (bit 4 at address 000616), the sub-clock can be  
selected as the BCLK by using the system clock select bit (bit 7 at address 000616). However, be sure  
that the sub-clock oscillation has fully stabilized before switching.  
After the oscillation of the sub-clock oscillation circuit has stabilized, the drive capacity of the sub-clock  
oscillation circuit can be reduced using the XCIN-XCOUT drive capacity select bit (bit 3 at address 000616).  
Reducing the drive capacity of the sub-clock oscillation circuit reduces the power dissipation. This bit  
changes to “1” when shifting to stop mode and at a reset.  
(3) BCLK  
The BCLK is the clock that drives the CPU, and is fc or the clock is derived by dividing the main clock by  
1, 2, 4, 8, or 16. The BCLK is derived by dividing the main clock by 8 after a reset. The BCLK signal can  
be output from BCLK pin by the BCLK output disable bit (bit 7 at address 000416) in the memory expan-  
sion and the microprocessor modes.  
The main clock division select bit 0(bit 6 at address 000616) changes to “1” when shifting from high-  
speed/medium-speed to stop mode and at reset. When shifting from low-speed/low power dissipation  
mode to stop mode, the value before stop mode is retained.  
(4) Peripheral function clock(f1, f8, f32, f1SIO2, f8SIO2,f32SIO2,fAD)  
The clock for the peripheral devices is derived from the main clock or by dividing it by 1, 8, or 32. The  
peripheral function clock is stopped by stopping the main clock or by setting the WAIT peripheral function  
clock stop bit (bit 2 at 000616) to “1” and then executing a WAIT instruction.  
(5) fC32  
This clock is derived by dividing the sub-clock by 32. It is used for the timer A and timer B counts.  
(6) fC  
This clock has the same frequency as the sub-clock. It is used for the BCLK and for the watchdog timer.  
32  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Clock Generating Circuit  
Figure 1.12.4 shows the system clock control registers 0 and 1.  
System clock control register 0 (Note 1)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
CM0  
Address  
000616  
When reset  
4816  
Bit symbol  
CM00  
Bit name  
Function  
R W  
b1 b0  
Clock output function  
select bit  
(Valid only in single-chip  
mode)  
0 0 : I/O port P5  
0 1 : f  
1 0 : f  
1 1 : f32 output  
7
C
output  
output  
8
CM01  
CM02  
CM03  
WAIT peripheral function  
clock stop bit  
0 : Do not stop peripheral function clock in wait mode  
1 : Stop peripheral function clock in wait mode (Note 8)  
X
CIN-XCOUT drive capacity 0 : LOW  
select bit (Note 2)  
1 : HIGH  
Port X  
C
select bit  
0 : I/O port  
1 : XCIN-XCOUT generation  
CM04  
CM05  
Main clock (XIN-XOUT  
stop bit (Note 3, 4, 5)  
)
0 : On  
1 : Off  
Main clock division select 0 : CM16 and CM17 valid  
CM06  
CM07  
bit 0 (Note 7)  
1 : Division by 8 mode  
System clock select bit  
(Note 6)  
0 : XIN, XOUT  
1 : XCIN, XCOUT  
Note 1: Set bit 0 of the protect register (address 000A16) to “1” before writing to this register.  
Note 2: Changes to “1” when shiffing to stop mode and at a reset.  
Note 3: When entering power saving mode, main clock stops using this bit. When returning from stop mode and  
operating with XIN, set this bit to “0”. When main clock oscillation is operating by itself, set system clock select  
bit (CM07) to “1” before setting this bit to “1”.  
Note 4: When inputting external clock, only clock oscillation buffer is stopped and clock input is acceptable.  
Note 5: If this bit is set to “1”, XOUT turns “H”. The built-in feedback resistor remains being connected, so XIN turns  
pulled up to XOUT (“H”) via the feedback resistor.  
Note 6: Set port Xc select bit (CM04) to “1” and stabilize the sub-clock oscillating before setting to this bit from “0” to “1”.  
Do not write to both bits at the same time. And also, set the main clock stop bit (CM05) to “0” and stabilize the  
main clock oscillating before setting this bit from “1” to “0”.  
Note 7: This bit changes to “1” when shifting from high-speed/medium-speed mode to stop mode and at a reset. When  
shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.  
Note 8: fC32 is not included.  
System clock control register 1 (Note 1)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
CM1  
Address  
000716  
When reset  
2016  
0
0
0
0
Bit symbol  
CM10  
Bit name  
Function  
R W  
All clock stop control bit  
(Note4)  
0 : Clock on  
1 : All clocks off (stop mode)  
Reserved bit  
Always set to “0”  
Reserved bit  
Reserved bit  
Reserved bit  
Always set to “0”  
Always set to “0”  
Always set to “0”  
X
IN-XOUT drive capacity  
0 : LOW  
1 : HIGH  
CM15  
select bit (Note 2)  
b7 b6  
Main clock division  
select bit 1 (Note 3)  
0 0 : No division mode  
0 1 : Division by 2 mode  
1 0 : Division by 4 mode  
1 1 : Division by 16 mode  
CM16  
CM17  
Note 1: Set bit 0 of the protect register (address 000A16) to “1” before writing to this register.  
Note 2: This bit changes to “1” when shifting from high-speed/medium-speed mode to stop mode and at a reset. When  
shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.  
Note 3: Can be selected when bit 6 of the system clock control register 0 (address 000616) is “0”. If “1”, division mode is  
fixed at 8.  
Note 4: If this bit is set to “1”, XOUT turns “H”, and the built-in feedback resistor is cut off. XCIN and XCOUT turn high-  
impedance state.  
Figure 1.12.4. Clock control registers 0 and 1  
33  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Clock Generating Circuit  
Clock Output  
In single-chip mode, the clock output function select bits (bits 0 and 1 at address 000616) enable f8, f32, or  
fC to be output from the P57/CLKOUT pin. When the WAIT peripheral function clock stop bit (bit 2 at address  
000616) is set to “1”, the output of f8 and f32 stops when a WAIT instruction is executed.  
Stop Mode  
Writing “1” to the all-clock stop control bit (bit 0 at address 000716) stops all oscillation and the microcom-  
puter enters stop mode. In stop mode, the content of the internal RAM is retained provided that VCC re-  
mains above 2V.  
Because the oscillation, BCLK, f1 to f32, f1SIO2 to f32SIO2, fC, fC32, and fAD stops in stop mode, peripheral  
functions such as the A-D converter and watchdog timer do not function. However, timer A and timer B  
operate provided that the event counter mode is set to an external pulse, and UARTi(i = 0 to 2) functions  
provided an external clock is selected. Table 1.12.2 shows the status of the ports in stop mode.  
Stop mode is cancelled by a hardware reset or interrupt. If an interrupt is to be used to cancel stop mode,  
that interrupt must first have been enabled.  
When shifting from high-speed/medium-speed mode to stop mode and at a reset, the main clock division  
select bit 0 (bit 6 at address 000616) is set to “1”. When shifting from low-speed/low power dissipation mode  
to stop mode, the value before stop mode is retained.  
Table 1.12.2. Port status during stop mode  
Pin  
Memory expansion mode  
Microprocessor mode  
Single-chip mode  
_______  
_______  
Address bus, data bus, CS0 to CS3  
_____ ______ ________ ________ _________  
RD, WR, BHE, WRL, WRH  
__________  
Retains status before stop mode  
“H”  
HLDA, BCLK  
“H”  
“H”  
ALE  
Port  
Retains status before stop mode Retains status before stop mode  
Valid only in single-chip mode “H”  
CLKOUT  
When fC selected  
When f8, f32 selected  
Valid only in single-chip mode Retains status before stop mode  
34  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Wait Mode  
Wait Mode  
When a WAIT instruction is executed, BCLK stops and the microcomputer enters the wait mode. In this  
mode, oscillation continues but BCLK and watchdog timer stop. Writing “1” to the WAIT peripheral function  
clock stop bit and executing a WAIT instruction stops the clock being supplied to the internal peripheral  
functions, allowing power dissipation to be reduced. Table 1.12.3 shows the status of the ports in wait  
mode.  
Wait mode is cancelled by a hardware reset or an interrupt. If an interrupt is used to cancel wait mode, the  
microcomputer restarts from the interrupt routine using as BCLK, the clock that had been selected when the  
WAIT instruction was executed.  
Table 1.12.3. Port status during wait mode  
Pin  
Memory expansion mode  
Microprocessor mode  
Single-chip mode  
_______  
_______  
Address bus, data bus, CS0 to CS3  
_____ ______ ________ ________ _________  
RD, WR, BHE, WRL, WRH  
__________  
Retains status before wait mode  
“H”  
HLDA,BCLK  
“H”  
ALE  
Port  
“H”  
Retains status before wait mode  
Retains status before wait mode  
CLKOUT  
When fC selected  
Valid only in single-chip mode Does not stop  
When f8, f32 selected Valid only in single-chip mode Does not stop when the WAIT  
peripheral function clock stop  
bit is “0”.  
When the WAIT peripheral  
function clock stop bit is “1”,  
the status immediately prior  
to entering wait mode is main-  
tained.  
35  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Status Transition Of BCLK  
Status Transition Of BCLK  
Power dissipation can be reduced and low-voltage operation achieved by changing the count source for  
BCLK. Table 1.13.4 shows the operating modes corresponding to the settings of system clock control  
registers 0 and 1.  
When reset, the device starts in division by 8 mode. The main clock division select bit 0(bit 6 at address  
000616) changes to “1” when shifting from high-speed/medium-speed to stop mode and at a reset. When  
shifting from low-speed/low power dissipation mode to stop mode, the value before stop mode is retained.  
The following shows the operational modes of BCLK.  
(1) Division by 2 mode  
The main clock is divided by 2 to obtain the BCLK.  
(2) Division by 4 mode  
The main clock is divided by 4 to obtain the BCLK.  
(3) Division by 8 mode  
The main clock is divided by 8 to obtain the BCLK. When reset, the device starts operating from this  
mode. Before the user can go from this mode to no division mode, division by 2 mode, or division by 4  
mode, the main clock must be oscillating stably. When going to low-speed or lower power consumption  
mode, make sure the sub-clock is oscillating stably.  
(4) Division by 16 mode  
The main clock is divided by 16 to obtain the BCLK.  
(5) No-division mode  
The main clock is divided by 1 to obtain the BCLK.  
(6) Low-speed mode  
fC is used as the BCLK. Note that oscillation of both the main and sub-clocks must have stabilized before  
transferring from this mode to another or vice versa. At least 2 to 3 seconds are required after the sub-  
clock starts. Therefore, the program must be written to wait until this clock has stabilized immediately  
after powering up and after stop mode is cancelled.  
(7) Low power dissipation mode  
fC is the BCLK and the main clock is stopped.  
Note : Before the count source for BCLK can be changed from XIN to XCIN or vice versa, the clock to which  
the count source is going to be switched must be oscillating stably. Allow a wait time in software for  
the oscillation to stabilize before switching over the clock.  
Table 1.12.4. Operating modes dictated by settings of system clock control registers 0 and 1  
CM17  
CM16  
CM07  
CM06  
CM05  
CM04  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
1
Operating mode of BCLK  
Division by 2 mode  
0
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
0
Division by 4 mode  
Invalid  
1
Invalid  
1
1
0
Division by 8 mode  
Division by 16 mode  
No-division mode  
0
0
0
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Low-speed mode  
1
Low power dissipation mode  
36  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Power control  
Power control  
The following is a description of the three available power control modes:  
Modes  
Power control is available in three modes.  
(a) Normal operation mode  
• High-speed mode  
Divide-by-1 frequency of the main clock becomes the BCLK. The CPU operates with the internal  
clock selected. Each peripheral function operates according to its assigned clock.  
• Medium-speed mode  
Divide-by-2, divide-by-4, divide-by-8, or divide-by-16 frequency of the main clock becomes the  
BCLK. The CPU operates according to the internal clock selected. Each peripheral function oper-  
ates according to its assigned clock.  
• Low-speed mode  
fC becomes the BCLK. The CPU operates according to the fc clock. The fc clock is supplied by the  
secondary clock. Each peripheral function operates according to its assigned clock.  
• Low power consumption mode  
The main clock operating in low-speed mode is stopped. The CPU operates according to the fC  
clock. The fC clock is supplied by the secondary clock. The only peripheral functions that operate  
are those with the sub-clock selected as the count source.  
(b) Wait mode  
The CPU operation is stopped. The oscillators do not stop.  
(c) Stop mode  
All oscillators stop. The CPU and all built-in peripheral functions stop. This mode, among the three  
modes listed here, is the most effective in decreasing power consumption.  
Figure 1.12.5 is the state transition diagram of the above modes.  
37  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Power control  
Transition of stop mode, wait mode  
Reset  
All oscillators stopped  
CPU operation stopped  
WAIT  
instruction  
CM10 = “1”  
Interrupt  
Medium-speed mode  
(divided-by-8 mode)  
Stop mode  
Wait mode  
Interrupt  
Interrupt  
WAIT  
instruction  
All oscillators stopped  
CPU operation stopped  
High-speed/medium-  
speed mode  
CM10 = “1”  
Stop mode  
Wait mode  
Interrupt  
WAIT  
instruction  
All oscillators stopped  
CPU operation stopped  
CM10 = “1”  
Interrupt  
Low-speed/low power  
dissipation mode  
Stop mode  
Wait mode  
Interrupt  
Normal mode  
(Refer to the following for the transition of normal mode.)  
Transition of normal mode  
Main clock is oscillating  
Sub clock is stopped  
Medium-speed mode  
(divided-by-8 mode)  
CM06 = “1”  
BCLK : f(XIN)/8  
CM07 = “0” CM06 = “1”  
CM07 = “0” (Note 1)  
CM06 = “1”  
CM04 = “0”  
CM04 = “1”  
(Notes 1, 3)  
Main clock is oscillating  
Sub clock is oscillating  
CM04 = “0”  
Medium-speed mode  
(divided-by-2 mode)  
High-speed mode  
Main clock is oscillating  
Sub clock is oscillating  
BCLK : f(XIN  
CM07 = “0” CM06 = “0”  
CM17 = “0” CM16 = “0”  
)
BCLK : f(XIN)/2  
CM07 = “0” CM06 = “0”  
CM17 = “0” CM16 = “1”  
Medium-speed mode  
(divided-by-8 mode)  
Low-speed mode  
CM07 = “0”  
(Note 1, 3)  
BCLK : f(XIN)/8  
CM07 = “0”  
CM06 = “1”  
BCLK : f(XCIN  
CM07 = “1”  
)
Medium-speed mode  
(divided-by-4 mode)  
Medium-speed mode  
(divided-by-16 mode)  
CM07 = “1”  
(Note 2)  
BCLK : f(XIN)/4  
CM07 = “0” CM06 = “0”  
CM17 = “1” CM16 = “0”  
BCLK : f(XIN)/16  
CM07 = “0” CM06 = “0”  
CM17 = “1” CM16 = “1”  
CM05 = “0”  
CM05 = “1”  
CM04 = “0”  
CM04 = “1”  
Main clock is oscillating  
Sub clock is stopped  
Main clock is stopped  
Sub clock is oscillating  
Low power dissipation mode  
Medium-speed mode  
(divided-by-2 mode)  
High-speed mode  
CM07 = “1” (Note 2)  
CM05 = “1”  
BCLK : f(XIN  
CM07 = “0” CM06 = “0”  
CM17 = “0” CM16 = “0”  
)
BCLK : f(XIN)/2  
CM07 = “0” CM06 = “0”  
CM17 = “0” CM16 = “1”  
BCLK : f(XCIN  
CM07 = “1”  
)
CM07 = “0” (Note 1)  
CM06 = “0” (Note 3)  
CM04 = “1”  
Medium-speed mode  
(divided-by-4 mode)  
Medium-speed mode  
(divided-by-16 mode)  
CM06 = “0”  
(Notes 1,3)  
BCLK : f(XIN)/4  
BCLK : f(XIN)/16  
CM07 = “0” CM06 = “0”  
CM17 = “1” CM16 = “0”  
CM07 = “0” CM06 = “0”  
CM17 = “1” CM16 = “1”  
Note 1: Switch clock after oscillation of main clock is sufficiently stable.  
Note 2: Switch clock after oscillation of sub clock is sufficiently stable.  
Note 3: Change CM06 after changing CM17 and CM16.  
Note 4: Transit in accordance with arrow.  
Figure 1.12.5. State transition diagram of Power control mode  
38  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Protection  
Protection  
The protection function is provided so that the values in important registers cannot be changed in the event  
that the program runs out of control. Figure 1.12.6 shows the protect register. The values in the processor  
mode register 0 (address 000416), processor mode register 1 (address 000516), system clock control reg-  
ister 0 (address 000616), system clock control register 1 (address 000716) and port P9 direction register  
(address 03F316) can only be changed when the respective bit in the protect register is set to “1”. There-  
fore, important outputs can be allocated to port P9.  
If, after “1” (write-enabled) has been written to the port P9 direction register write-enable bit (bit 2 at address  
000A16), a value is written to any address, the bit automatically reverts to “0” (write-inhibited). However, the  
system clock control registers 0 and 1 write-enable bit (bit 0 at 000A16) and processor mode register 0 and  
1 write-enable bit (bit 1 at 000A16) do not automatically return to “0” after a value has been written to an  
address. The program must therefore be written to return these bits to “0”.  
Protect register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
PRCR  
Address  
000A16  
When reset  
XXXXX0002  
Bit symbol  
PRC0  
Bit name  
Function  
0 : Write-inhibited  
R W  
Enables writing to system clock  
control registers 0 and 1 (addresses  
1 : Write-enabled  
000616 and 000716  
)
Enables writing to processor mode  
registers 0 and 1 (addresses 000416  
0 : Write-inhibited  
1 : Write-enabled  
PRC1  
PRC2  
and 000516  
)
Enables writing to port P9 direction  
register (address 03F316) (Note)  
0 : Write-inhibited  
1 : Write-enabled  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to be  
indeterminate.  
Note: Writing a value to an address after “1” is written to this bit returns the bit  
to “0” . Other bits do not automatically return to “0” and they must therefore  
be reset by the program.  
Figure 1.12.6. Protect register  
39  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Interrupt  
Overview of Interrupt  
Type of Interrupts  
Figure 1.13.1 lists the types of interrupts.  
Undefined instruction (UND instruction)  
Overflow (INTO instruction)  
BRK instruction  
Software  
INT instruction  
Interrupt  
Reset  
_______  
NMI  
________  
DBC  
Special  
Watchdog timer  
Single step  
Hardware  
Address matched  
Peripheral I/O (Note)  
Note: Peripheral I/O interrupts are generated by the peripheral functions built into the microcomputer system.  
Figure 1.13.1. Classification of interrupts  
• Maskable interrupt :  
An interrupt which can be enabled (disabled) by the interrupt enable flag  
(I flag) or whose interrupt priority can be changed by priority level.  
• Non-maskable interrupt : An interrupt which cannot be enabled (disabled) by the interrupt enable flag  
(I flag) or whose interrupt priority cannot be changed by priority level.  
40  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Interrupt  
Software Interrupts  
A software interrupt occurs when executing certain instructions. Software interrupts are non-maskable  
interrupts.  
• Undefined instruction interrupt  
An undefined instruction interrupt occurs when executing the UND instruction.  
• Overflow interrupt  
An overflow interrupt occurs when executing the INTO instruction with the overflow flag (O flag) set to  
“1”. The following are instructions whose O flag changes by arithmetic:  
ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, SUB  
• BRK interrupt  
A BRK interrupt occurs when executing the BRK instruction.  
• INT interrupt  
An INT interrupt occurs when assiging one of software interrupt numbers 0 through 63 and executing  
the INT instruction. Software interrupt numbers 0 through 31 are assigned to peripheral I/O interrupts,  
so executing the INT instruction allows executing the same interrupt routine that a peripheral I/O  
interrupt does.  
The stack pointer (SP) used for the INT interrupt is dependent on which software interrupt number is  
involved.  
So far as software interrupt numbers 0 through 31 are concerned, the microcomputer saves the stack  
pointer assignment flag (U flag) when it accepts an interrupt request. If change the U flag to “0” and  
select the interrupt stack pointer (ISP), and then execute an interrupt sequence. When returning from  
the interrupt routine, the U flag is returned to the state it was before the acceptance of interrupt re-  
quest. So far as software numbers 32 through 63 are concerned, the stack pointer does not make a  
shift.  
41  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Interrupt  
Hardware Interrupts  
Hardware interrupts are classified into two types — special interrupts and peripheral I/O interrupts.  
(1) Special interrupts  
Special interrupts are non-maskable interrupts.  
• Reset  
____________  
Reset occurs if an “L” is input to the RESET pin.  
_______  
• NMI interrupt  
_______  
_______  
An NMI interrupt occurs if an “L” is input to the NMI pin.  
________  
• DBC interrupt  
This interrupt is exclusively for the debugger, do not use it in other circumstances.  
• Watchdog timer interrupt  
Generated by the watchdog timer.  
• Single-step interrupt  
This interrupt is exclusively for the debugger, do not use it in other circumstances. With the debug  
flag (D flag) set to “1”, a single-step interrupt occurs after one instruction is executed.  
• Address match interrupt  
An address match interrupt occurs immediately before the instruction held in the address indicated by  
the address match interrupt register is executed with the address match interrupt enable bit set to “1”.  
If an address other than the first address of the instruction in the address match interrupt register is set,  
no address match interrupt occurs. For address match interrupt, see 2.11 Address match Interrupt.  
(2) Peripheral I/O interrupts  
A peripheral I/O interrupt is generated by one of built-in peripheral functions. Built-in peripheral func-  
tions are dependent on classes of products, so the interrupt factors too are dependent on classes of  
products. The interrupt vector table is the same as the one for software interrupt numbers 0 through  
31 the INT instruction uses. Peripheral I/O interrupts are maskable interrupts.  
• Bus collision detection interrupt  
This is an interrupt that the serial I/O bus collision detection generates.  
• DMA0 interrupt, DMA1 interrupt  
These are interrupts that DMA generates.  
• Key-input interrupt  
___  
A key-input interrupt occurs if an “L” is input to the KI pin.  
• A-D conversion interrupt  
This is an interrupt that the A-D converter generates.  
• UART0, UART1 and UART2 transmission interrupt  
These are interrupts that the serial I/O transmission generates.  
• UART0, UART1 and UART2 reception interrupt  
These are interrupts that the serial I/O reception generates.  
• Timer A0 interrupt through timer A4 interrupt  
These are interrupts that timer A generates  
• Timer B0 interrupt through timer B2 interrupt  
These are interrupts that timer B generates.  
________  
________  
• INT0 interrupt through INT2 interrupt  
______  
______  
An INT interrupt occurs if either a rising edge or a falling edge is input to the INT pin.  
42  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Interrupt  
Interrupts and Interrupt Vector Tables  
If an interrupt request is accepted, a program branches to the interrupt routine set in the interrupt vector  
table. Set the first address of the interrupt routine in each vector table. Figure 1.13.2 shows the format for  
specifying the address.  
Two types of interrupt vector tables are available — fixed vector table in which addresses are fixed and  
variable vector table in which addresses can be varied by the setting.  
MSB  
LSB  
Low address  
Mid address  
Vector address + 0  
Vector address + 1  
Vector address + 2  
Vector address + 3  
0 0 0 0  
0 0 0 0  
High address  
0 0 0 0  
Figure 1.13.2. Format for specifying interrupt vector addresses  
• Fixed vector tables  
The fixed vector table is a table in which addresses are fixed. The vector tables are located in an area  
extending from FFFDC16 to FFFFF16. One vector table comprises four bytes. Set the first address of  
interrupt routine in each vector table. Table 1.13.1 shows the interrupts assigned to the fixed vector  
tables and addresses of vector tables.  
Table 1.13.1. Interrupts assigned to the fixed vector tables and addresses of vector tables  
Interrupt source  
Vector table addresses  
Address (L) to address (H)  
FFFDC16 to FFFDF16  
FFFE016 to FFFE316  
FFFE416 to FFFE716  
Remarks  
Undefined instruction  
Overflow  
Interrupt on UND instruction  
Interrupt on INTO instruction  
BRK instruction  
If the vector contains FF16, program execution starts from  
the address shown by the vector in the variable vector table  
There is an address-matching interrupt enable bit  
Do not use  
Address match  
FFFE816 to FFFEB16  
FFFEC16 to FFFEF16  
FFFF016 to FFFF316  
FFFF416 to FFFF716  
FFFF816 to FFFFB16  
FFFFC16 to FFFFF16  
Single step (Note)  
Watchdog timer  
________  
DBC (Note)  
NMI  
Do not use  
_______  
External interrupt by input to NMI pin  
Reset  
Note: Interrupts used for debugging purposes only.  
43  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Interrupt  
• Variable vector tables  
The addresses in the variable vector table can be modified, according to the user’s settings. Indicate  
the first address using the interrupt table register (INTB). The 256-byte area subsequent to the ad-  
dress the INTB indicates becomes the area for the variable vector tables. One vector table comprises  
four bytes. Set the first address of the interrupt routine in each vector table. Table 1.13.2 shows the  
interrupts assigned to the variable vector tables and addresses of vector tables.  
Table 1.13.2. Interrupts assigned to the variable vector tables and addresses of vector tables  
Vector table address  
Software interrupt number  
Software interrupt number 0  
Interrupt source  
BRK instruction  
Remarks  
Address (L) to address (H)  
+0 to +3 (Note)  
Cannot be masked I flag  
Software interrupt number 10  
Software interrupt number 11  
+40 to +43 (Note)  
+44 to +47 (Note)  
Bus collision detection  
DMA0  
Software interrupt number 12  
Software interrupt number 13  
Software interrupt number 14  
Software interrupt number 15  
Software interrupt number 16  
Software interrupt number 17  
Software interrupt number 18  
Software interrupt number 19  
Software interrupt number 20  
Software interrupt number 21  
Software interrupt number 22  
Software interrupt number 23  
Software interrupt number 24  
Software interrupt number 25  
Software interrupt number 26  
Software interrupt number 27  
Software interrupt number 28  
Software interrupt number 29  
Software interrupt number 30  
Software interrupt number 31  
+48 to +51 (Note)  
+52 to +55 (Note)  
+56 to +59 (Note)  
+60 to +63 (Note)  
+64 to +67 (Note)  
+68 to +71 (Note)  
+72 to +75 (Note)  
+76 to +79 (Note)  
+80 to +83 (Note)  
+84 to +87 (Note)  
+88 to +91 (Note)  
+92 to +95 (Note)  
+96 to +99 (Note)  
+100 to +103 (Note)  
+104 to +107 (Note)  
+108 to +111 (Note)  
+112 to +115 (Note)  
+116 to +119 (Note)  
+120 to +123 (Note)  
+124 to +127 (Note)  
DMA1  
Key input interrupt  
A-D  
UART2 transmit  
UART2 receive  
UART0 transmit  
UART0 receive  
UART1 transmit  
UART1 receive  
Timer A0  
Timer A1  
Timer A2  
Timer A3  
Timer A4  
Timer B0  
Timer B1  
Timer B2  
INT0  
INT1  
INT2  
Software interrupt number 32  
to  
+128 to +131 (Note)  
to  
Software interrupt  
Cannot be masked I flag  
Software interrupt number 63  
+252 to +255 (Note)  
Note: Address relative to address in interrupt table register (INTB)  
44  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Interrupt  
Interrupt Control  
Descriptions are given here regarding how to enable or disable maskable interrupts and how to set the  
priority to be accepted. What is described here does not apply to non-maskable interrupts.  
Enable or disable a non-maskable interrupt using the interrupt enable flag (I flag), interrupt priority level  
selection bit, or processor interrupt priority level (IPL). Whether an interrupt request is present or absent is  
indicated by the interrupt request bit. The interrupt request bit and the interrupt priority level selection bit  
are located in the interrupt control register of each interrupt. Also, the interrupt enable flag (I flag) and the  
IPL are located in the flag register (FLG).  
Figure 1.13.3 shows the memory map of the interrupt control registers.  
45  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Interrupt  
Interrupt control register  
Symbol  
BCNIC  
DMiIC(i=0, 1)  
KUPIC  
ADIC  
SiTIC(i=0 to 2)  
SiRIC(i=0 to 2)  
TAiIC(i=0 to 4)  
TBiIC(i=0 to 2)  
Address  
When reset  
004A16  
XXXXX000  
XXXXX000  
XXXXX000  
XXXXX000  
XXXXX000  
XXXXX000  
XXXXX000  
XXXXX000  
2
2
2
2
2
2
2
2
004B16, 004C16  
004D16  
004E16  
005116, 005316, 004F16  
005216, 005416, 005016  
005516 to 005916  
005A16 to 005C16  
b7 b6 b5 b4 b3 b2 b1 b0  
R
W
Bit symbol  
Bit name  
Function  
Interrupt priority level  
select bit  
ILVL0  
b2 b1 b0  
0 0 0 : Level 0 (interrupt disabled)  
0 0 1 : Level 1  
0 1 0 : Level 2  
0 1 1 : Level 3  
ILVL1  
1 0 0 : Level 4  
1 0 1 : Level 5  
1 1 0 : Level 6  
1 1 1 : Level 7  
ILVL2  
IR  
Interrupt request bit  
0 : Interrupt not requested  
1 : Interrupt requested  
(Note 1)  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to  
be indeterminate.  
Note 1: This bit can only be accessed for reset (= 0), but cannot be accessed for set (= 1).  
Note 2: To rewrite the interrupt control register, do so at a point that dose not generate the  
interrupt request for that register. For details, see the precautions for interrupts.  
Symbol  
Address  
When reset  
XX00X000  
b7 b6 b5 b4 b3 b2 b1 b0  
INTiIC(i=0 to 2) 005D16 to 005F16  
2
0
R
W
Bit symbol  
Bit name  
Function  
Interrupt priority level  
select bit  
ILVL0  
ILVL1  
ILVL2  
b2 b1 b0  
0 0 0 : Level 0 (interrupt disabled)  
0 0 1 : Level 1  
0 1 0 : Level 2  
0 1 1 : Level 3  
1 0 0 : Level 4  
1 0 1 : Level 5  
1 1 0 : Level 6  
1 1 1 : Level 7  
Interrupt request bit  
Polarity select bit  
IR  
0: Interrupt not requested  
1: Interrupt requested  
(Note 1)  
POL  
0 : Selects falling edge  
1 : Selects rising edge  
Reserved bit  
Always set to “0”  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to  
be indeterminate.  
Note 1: This bit can only be accessed for reset (= 0), but cannot be accessed for set (= 1).  
Note 2: To rewrite the interrupt control register, do so at a point that dose not generate the  
interrupt request for that register. For details, see the precautions for interrupts.  
Figure 1.13.3. Interrupt control registers  
46  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Interrupt  
Interrupt Enable Flag (I flag)  
The interrupt enable flag (I flag) controls the enabling and disabling of maskable interrupts. Setting this  
flag to “1” enables all maskable interrupts; setting it to “0” disables all maskable interrupts. This flag is set  
to “0” after reset.  
Interrupt Request Bit  
The interrupt request bit is set to "1" by hardware when an interrupt is requested. After the interrupt is  
accepted and jumps to the corresponding interrupt vector, the request bit is set to "0" by hardware. The  
interrupt request bit can also be set to "0" by software. (Do not set this bit to "1").  
Interrupt Priority Level Select Bit and Processor Interrupt Priority Level (IPL)  
Set the interrupt priority level using the interrupt priority level select bit, which is one of the component bits  
of the interrupt control register. When an interrupt request occurs, the interrupt priority level is compared  
with the IPL. The interrupt is enabled only when the priority level of the interrupt is higher than the IPL.  
Therefore, setting the interrupt priority level to “0” disables the interrupt.  
Table 1.13.3 shows the settings of interrupt priority levels and Table 1.13.4 shows the interrupt levels  
enabled, according to the consist of the IPL.  
The following are conditions under which an interrupt is accepted:  
· interrupt enable flag (I flag) = 1  
· interrupt request bit = 1  
· interrupt priority level > IPL  
The interrupt enable flag (I flag), the interrupt request bit, the interrupt priority select bit, and the IPL are  
independent, and they are not affected by one another.  
Table 1.13.4. Interrupt levels enabled according  
to the contents of the IPL  
Table 1.13.3. Settings of interrupt priority levels  
Interrupt priority  
level select bit  
Interrupt priority  
level  
Priority  
order  
IPL  
Enabled interrupt priority levels  
b2 b1 b0  
IPL2  
IPL1  
IPL0  
Level 0 (interrupt disabled)  
0
0
0
Interrupt levels 1 and above are enabled  
Interrupt levels 2 and above are enabled  
Interrupt levels 3 and above are enabled  
Interrupt levels 4 and above are enabled  
Interrupt levels 5 and above are enabled  
Interrupt levels 6 and above are enabled  
Interrupt levels 7 and above are enabled  
All maskable interrupts are disabled  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Level 1  
Level 2  
Level 3  
Level 4  
Level 5  
Level 6  
Level 7  
0
0
0
1
1
0
Low  
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
High  
47  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Interrupt  
Rewrite the interrupt control register  
To rewrite the interrupt control register, do so at a point that does not generate the interrupt request for  
that register. If there is possibility of the interrupt request occur, rewrite the interrupt control register after  
the interrupt is disabled. The program examples are described as follow:  
Example 1:  
INT_SWITCH1:  
FCLR  
I
; Disable interrupts.  
AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.  
NOP  
NOP  
FSET  
; Four NOP instructions are required when using HOLD function.  
; Enable interrupts.  
I
Example 2:  
INT_SWITCH2:  
FCLR  
I
; Disable interrupts.  
AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.  
MOV.W MEM, R0  
; Dummy read.  
; Enable interrupts.  
FSET  
I
Example 3:  
INT_SWITCH3:  
PUSHC FLG  
; Push Flag register onto stack  
; Disable interrupts.  
FCLR  
I
AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.  
POPC FLG ; Enable interrupts.  
The reason why two NOP instructions (four when using the HOLD function) or dummy read are inserted  
before FSET I in Examples 1 and 2 is to prevent the interrupt enable flag I from being set before the  
interrupt control register is rewritten due to effects of the instruction queue.  
When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the  
interrupt request bit is not set sometimes even if the interrupt request for that register has been gener-  
ated. This will depend on the instruction. If this creates problems, use the below instructions to change  
the register.  
Instructions : AND, OR, BCLR, BSET  
48  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Interrupt  
Interrupt Sequence  
An interrupt sequence — what are performed over a period from the instant an interrupt is accepted to the  
instant the interrupt routine is executed — is described here.  
If an interrupt occurs during execution of an instruction, the processor determines its priority when the  
execution of the instruction is completed, and transfers control to the interrupt sequence from the next  
cycle. If an interrupt occurs during execution of either the SMOVB, SMOVF, SSTR or RMPA instruction,  
the processor temporarily suspends the instruction being executed, and transfers control to the interrupt  
sequence.  
In the interrupt sequence, the processor carries out the following in sequence given:  
(1) CPU gets the interrupt information (the interrupt number and interrupt request level) by reading ad-  
dress 0000016.  
(2) Saves the content of the flag register (FLG) as it was immediately before the start of interrupt sequence  
in the temporary register (Note) within the CPU.  
(3) Sets the interrupt enable flag (I flag), the debug flag (D flag), and the stack pointer select flag (U flag) to  
“0” (the U flag, however does not change if the INT instruction, in software interrupt numbers 32  
through 63, is executed)  
(4) Saves the content of the temporary register (Note 1) within the CPU in the stack area.  
(5) Saves the content of the program counter (PC) in the stack area.  
(6) Sets the interrupt priority level of the accepted instruction in the IPL.  
After the interrupt sequence is completed, the processor resumes executing instructions from the first  
address of the interrupt routine.  
Note: This register cannot be utilized by the user.  
Interrupt Response Time  
'Interrupt response time' is the period between the instant an interrupt occurs and the instant the first  
instruction within the interrupt routine has been executed. This time comprises the period from the  
occurrence of an interrupt to the completion of the instruction under execution at that moment (a) and the  
time required for executing the interrupt sequence (b). Figure 1.13.4 shows the interrupt response time.  
Interrupt request generated  
Interrupt request acknowledged  
Time  
Instruction in  
interrupt routine  
Instruction  
(a)  
Interrupt sequence  
(b)  
Interrupt response time  
Figure 1.13.4. Interrupt response time  
49  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Interrupt  
Time (a) is dependent on the instruction under execution. Thirty cycles is the maximum required for the  
DIVX instruction (without wait).  
Time (b) is as shown in Table 1.13.5.  
Table 1.13.5. Time required for executing the interrupt sequence  
Interrupt vector address Stack pointer (SP) value  
16-Bit bus, without wait  
8-Bit bus, without wait  
Even  
Even  
Odd  
18 cycles (Note 1)  
19 cycles (Note 1)  
19 cycles (Note 1)  
20 cycles (Note 1)  
20 cycles (Note 1)  
20 cycles (Note 1)  
20 cycles (Note 1)  
20 cycles (Note 1)  
Even  
Odd (Note 2)  
Odd (Note 2)  
Even  
Odd  
________  
Note 1: Add 2 cycles in the case of a DBC interrupt; add 1 cycle in the case either of an address coincidence  
interrupt or of a single-step interrupt.  
Note 2: Locate an interrupt vector address in an even address, if possible.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
BCLK  
Address  
0000  
Address bus  
Data bus  
Indeterminate  
Indeterminate  
SP-2  
SP-4  
vec  
vec+2  
PC  
Interrupt  
information  
SP-2  
SP-4  
vec  
vec+2  
contents contents contents contents  
R
Indeterminate  
W
The indeterminate segment is dependent on the queue buffer.  
If the queue buffer is ready to take an instruction, a read cycle occurs.  
Figure 1.13.5. Time required for executing the interrupt sequence  
Variation of IPL when Interrupt Request is Accepted  
If an interrupt request is accepted, the interrupt priority level of the accepted interrupt is set in the IPL.  
If an interrupt request, that does not have an interrupt priority level, is accepted, one of the values shown  
in Table 1.13.6 is set in the IPL.  
Table 1.13.6. Relationship between interrupts without interrupt priority levels and IPL  
Value set in the IPL  
Interrupt sources without priority levels  
_______  
Watchdog timer, NMI  
7
0
Reset  
Other  
Not changed  
50  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Interrupt  
Saving Registers  
In the interrupt sequence, only the contents of the flag register (FLG) and that of the program counter  
(PC) are saved in the stack area.  
First, the processor saves the four higher-order bits of the program counter, and 4 upper-order bits and 8  
lower-order bits of the FLG register, 16 bits in total, in the stack area, then saves 16 lower-order bits of the  
program counter. Figure 1.13.6 shows the state of the stack as it was before the acceptance of the  
interrupt request, and the state the stack after the acceptance of the interrupt request.  
Save other necessary registers at the beginning of the interrupt routine using software. Using the  
PUSHM instruction alone can save all the registers except the stack pointer (SP).  
Stack area  
Stack area  
Address  
MSB  
Address  
MSB  
LSB  
LSB  
[SP]  
New stack  
pointer value  
m – 4  
m – 3  
m – 2  
m – 1  
m
m – 4  
m – 3  
m – 2  
m – 1  
m
Program counter (PC  
Program counter (PC  
L
)
M
)
Flag register (FLG )  
L
Flag register  
(FLG  
Program  
counter (PC )  
H
)
H
[SP]  
Stack pointer  
value before  
interrupt occurs  
Content of previous stack  
Content of previous stack  
Content of previous stack  
Content of previous stack  
m + 1  
m + 1  
Stack status before interrupt request  
is acknowledged  
Stack status after interrupt request  
is acknowledged  
Figure 1.13.6. State of stack before and after acceptance of interrupt request  
51  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Interrupt  
The operation of saving registers carried out in the interrupt sequence is dependent on whether the  
content of the stack pointer, at the time of acceptance of an interrupt request, is even or odd. If the  
content of the stack pointer (Note) is even, the content of the flag register (FLG) and the content of the  
program counter (PC) are saved, 16 bits at a time. If odd, their contents are saved in two steps, 8 bits at  
a time. Figure 1.13.7 shows the operation of the saving registers.  
Note: Stack pointer indicated by U flag.  
(1) Stack pointer (SP) contains even number  
Sequence in which order  
registers are saved  
Address  
Stack area  
[SP] – 5 (Odd)  
[SP] – 4 (Even)  
[SP] – 3(Odd)  
[SP] – 2 (Even)  
[SP] – 1(Odd)  
Program counter (PC )  
L
(2) Saved simultaneously,  
all 16 bits  
Program counter (PC  
Flag register (FLG  
M
)
L
)
(1) Saved simultaneously,  
all 16 bits  
Flag register  
(FLG  
Program  
counter (PC )  
H
)
H
[SP]  
(Even)  
Finished saving registers  
in two operations.  
(2) Stack pointer (SP) contains odd number  
Address  
Stack area  
Sequence in which order  
registers are saved  
[SP] – 5 (Even)  
[SP] – 4(Odd)  
[SP] – 3 (Even)  
[SP] – 2(Odd)  
[SP] – 1 (Even)  
Program counter (PC )  
L
(3)  
(4)  
Program counter (PC  
Flag register (FLG  
M
)
Saved simultaneously,  
all 8 bits  
L
)
(1)  
(2)  
Program  
counter (PC )  
Flag register  
(FLG  
H
H
)
[SP]  
(Odd)  
Finished saving registers  
in four operations.  
Note: [SP] denotes the initial value of the stack pointer (SP) when interrupt request is acknowledged.  
After registers are saved, the SP content is [SP] minus 4.  
Figure 1.13.7. Operation of saving registers  
52  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Interrupt  
Returning from an Interrupt Routine  
Executing the REIT instruction at the end of an interrupt routine returns the contents of the flag register  
(FLG) as it was immediately before the start of interrupt sequence and the contents of the program counter  
(PC), both of which have been saved in the stack area. Then control returns to the program that was being  
executed before the acceptance of the interrupt request, so that the suspended process resumes.  
Return the other registers saved by software within the interrupt routine using the POPM or similar instruc-  
tion before executing the REIT instruction.  
Interrupt Priority  
If there are two or more interrupt requests occurring at a point in time within a single sampling (checking  
whether interrupt requests are made), the interrupt assigned a higher priority is accepted.  
Assign an arbitrary priority to maskable interrupts (peripheral I/O interrupts) using the interrupt priority level  
select bit. If the same interrupt priority level is assigned, however, the interrupt assigned a higher hardware  
priority is accepted.  
Priorities of the special interrupts, such as Reset (dealt with as an interrupt assigned the highest priority),  
watchdog timer interrupt, etc. are regulated by hardware.  
Figure 1.13.8 shows the priorities of hardware interrupts.  
Software interrupts are not affected by the interrupt priority. If an instruction is executed, control branches  
invariably to the interrupt routine.  
Reset > _N__M___I_ > _D__B___C__ > Watchdog timer > Peripheral I/O > Single step > Address match  
Figure 1.13.8. Hardware interrupts priorities  
Interrupt resolution circuit  
When two or more interrupts are generated simultaneously, this circuit selects the interrupt with the highest  
priority level. Figure 1.13.9 shows the circuit that judges the interrupt priority level.  
53  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Interrupt  
Priority level of each interrupt  
INT1  
Level 0 (initial value)  
High  
Timer B2  
Timer B0  
Timer A3  
Timer A1  
INT2  
INT0  
Timer B1  
Timer A4  
Timer A2  
UART1 reception  
UART0 reception  
Priority of peripheral I/O interrupts  
(if priority levels are same)  
UART2 reception  
A-D conversion  
DMA1  
Bus collision detection  
Timer A0  
UART1 transmission  
UART0 transmission  
UART2 transmission  
Key input interrupt  
DMA0  
Low  
Processor interrupt priority level (IPL)  
Interrupt  
request  
Interrupt enable flag (I flag)  
accepted  
Address match  
Watchdog timer  
DBC  
NMI  
Reset  
Figure 1.13.9. Maskable interrupts priorities (peripheral I/O interrupts)  
54  
Mitsubishi microcomputers  
M16C / 61 Group  
_N___M___I_ Interrupt  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
______  
INT Interrupt  
________  
________  
INT0 to INT2 are triggered by the edges of external inputs. The edge polarity is selected using the polarity  
select bit.  
______  
NMI Interrupt  
______  
______  
______  
An NMI interrupt is generated when the input to the P85/NMI pin changes from “H” to “L”. The NMI interrupt  
is a non-maskable external interrupt. The pin level can be checked in the port P85 register (bit 5 at address  
03F016).  
This pin cannot be used as a normal port input.  
Key Input Interrupt  
If the direction register of any of P104 to P107 is set for input and a falling edge is input to that port, a key  
input interrupt is generated. A key input interrupt can also be used as a key-on wakeup function for cancel-  
ling the wait mode or stop mode. However, if you intend to use the key input interrupt, do not use P104 to  
P107 as A-D input ports. Figure 1.13.10 shows the block diagram of the key input interrupt. Note that if an  
“L” level is input to any pin that has not been disabled for input, inputs to the other pins are not detected as  
an interrupt.  
Port P10  
4-P107 pull-up  
select bit  
Pull-up  
Key input interrupt control register  
(address 004D16  
)
transistor  
Port P10  
register  
7 direction  
Port P10  
7
direction register  
P10  
7
/KI  
3
2
Port P10  
register  
6 direction  
Pull-up  
transistor  
Key input interrupt  
request  
Interrupt control circuit  
P10  
6
/KI  
Pull-up  
transistor  
Port P10  
register  
5
direction  
direction  
P105/KI1  
Port P10  
register  
4
Pull-up  
transistor  
P104/KI0  
Figure 1.13.10. Block diagram of key input interrupt  
55  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Address Match Interrupt  
Address Match Interrupt  
An address match interrupt is generated when the address match interrupt address register contents match  
the program counter value. Two address match interrupts can be set, each of which can be enabled and  
disabled by an address match interrupt enable bit. Address match interrupts are not affected by the inter-  
rupt enable flag (I flag) and processor interrupt priority level (IPL). The value of the program counter (PC)  
for an address match interrupt varies depending on the instruction being executed.  
Figure 1.13.11 shows the address match interrupt-related registers.  
Address match interrupt enable register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
AIER  
Address  
000916  
When reset  
XXXXXX002  
Bit symbol  
AIER0  
Bit name  
Function  
R W  
Address match interrupt 0  
enable bit  
0 : Interrupt disabled  
1 : Interrupt enabled  
Address match interrupt 1  
enable bit  
AIER1  
0 : Interrupt disabled  
1 : Interrupt enabled  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to  
be indeterminated.  
Address match interrupt register i (i = 0, 1)  
(b19)  
b3  
(b16)(b15)  
b0 b7  
(b8)  
b0 b7  
(b23)  
b7  
Symbol  
RMAD0  
RMAD1  
Address  
001216 to 001016  
001616 to 001416  
When reset  
X0000016  
X0000016  
b0  
Function  
Values that can be set  
R W  
Address setting register for address match interrupt  
0000016 to FFFFF16  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to  
be indeterminated.  
Figure 1.13.11. Address match interrupt-related registers  
56  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Precautions for Interrupts  
Precautions for Interrupts  
(1) Reading address 0000016  
• When maskable interrupt is occurred, CPU read the interrupt information (the interrupt number and  
interrupt request level) in the interrupt sequence.  
The interrupt request bit of the certain interrupt written in address 0000016 will then be set to “0”.  
Reading address 0000016 by software sets enabled highest priority interrupt source request bit to “0”.  
Though the interrupt is generated, the interrupt routine may not be executed.  
Do not read address 0000016 by software.  
(2) Setting the stack pointer  
• The value of the stack pointer immediately after reset is initialized to 000016. Accepting an interrupt  
before setting a value in the stack pointer may become a factor of runaway. Be sure to set a value in  
_______  
the stack pointer before accepting an interrupt. When using the NMI interrupt, initialize the stack point  
at the beginning of a program. Concerning the first instruction immediately after reset, generating any  
_______  
interrupts including the NMI interrupt is prohibited.  
(3) The _N__M___I_ interrupt  
_______  
• As for the NMI interrupt pin, an interrupt cannot be disabled. Connect it to the VCC pin via a resistor  
(pull-up) if unused. Be sure to work on it.  
_______  
• The NMI pin also serves as P85, which is exclusively input. Reading the contents of the P8 register  
allows reading the pin value. Use the reading of this pin only for establishing the pin level at the time  
_______  
when the NMI interrupt is input.  
_______  
• Do not reset the CPU with the input to the NMI pin being in the “L” state.  
_______  
• Do not attempt to go into stop mode with the input to the NMI pin being in the “L” state. With the input to  
_______  
the NMI being in the “L” state, the CM10 is fixed to “0”, so attempting to go into stop mode is turned  
down.  
_______  
• Do not attempt to go into wait mode with the input to the NMI pin being in the “L” state. With the input to  
_______  
the NMI pin being in the “L” state, the CPU stops but the oscillation does not stop, so no power is saved.  
In this instance, the CPU is returned to the normal state by a later interrupt.  
_______  
• Signals input to the NMI pin require an "L" level of 1 clock or more, from the operation clock of the CPU.  
(4) External interrupt  
________  
• Either an “L” level or an “H” level of at least 250 ns width is necessary for the signal input to pins INT0  
________  
through INT2 regardless of the CPU operation clock.  
________  
________  
• When the polarity of the INT0 to INT2 pins is changed, the interrupt request bit is sometimes set to "1".  
After changing the polarity, set the interrupt request bit to "0". Figure 1.13.12 shows the procedure for  
______  
changing the INT interrupt generate factor.  
57  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Precautions for Interrupts  
Clear the interrupt enable flag to “0”  
(Disable interrupt)  
Set the interrupt priority level to level 0  
(Disable INTi interrupt)  
Set the polarity select bit  
Clear the interrupt request bit to “0”  
Set the interrupt priority level to level 1 to 7  
(Enable the accepting of INTi interrupt request)  
Set the interrupt enable flag to “1”  
(Enable interrupt)  
______  
Figure 1.13.12. Switching condition of INT interrupt request  
(5) Rewrite the interrupt control register  
• To rewrite the interrupt control register, do so at a point that does not generate the interrupt request for  
that register. If there is possibility of the interrupt request occur, rewrite the interrupt control register after  
the interrupt is disabled. The program examples are described as follow:  
Example 1:  
INT_SWITCH1:  
FCLR  
I
; Disable interrupts.  
AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.  
NOP  
NOP  
FSET  
; Four NOP instructions are required when using HOLD function.  
; Enable interrupts.  
I
Example 2:  
INT_SWITCH2:  
FCLR  
I
; Disable interrupts.  
AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.  
MOV.W MEM, R0  
; Dummy read.  
; Enable interrupts.  
FSET  
I
Example 3:  
INT_SWITCH3:  
PUSHC FLG  
; Push Flag register onto stack  
; Disable interrupts.  
FCLR  
I
AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.  
POPC FLG ; Enable interrupts.  
The reason why two NOP instructions (four when using the HOLD function) or dummy read are inserted  
before FSET I in Examples 1 and 2 is to prevent the interrupt enable flag I from being set before the  
interrupt control register is rewritten due to effects of the instruction queue.  
• When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the  
interrupt request bit is not set sometimes even if the interrupt request for that register has been gener-  
ated. This will depend on the instruction. If this creates problems, use the below instructions to change  
the register.  
Instructions : AND, OR, BCLR, BSET  
58  
Mitsubishi microcomputers  
M16C / 61 Group  
Watchdog Timer  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Watchdog Timer  
The watchdog timer has the function of detecting when the program is out of control. The watchdog timer is  
a 15-bit counter which down-counts the clock derived by dividing the BCLK using the prescaler. A watchdog  
timer interrupt is generated when an underflow occurs in the watchdog timer. When XIN is selected for the  
BCLK, bit 7 of the watchdog timer control register (address 000F16) selects the prescaler division ratio (by  
16 or by 128). When XCIN is selected as the BCLK, the prescaler is set for division by 2 regardless of bit 7  
of the watchdog timer control register (address 000F16). Thus the watchdog timer's period can be calcu-  
lated as given below. The watchdog timer's period is, however, subject to an error due to the pre-scaler.  
With XIN chosen for BCLK  
pre-scaler dividing ratio (16 or 128) X watchdog timer count (32768)  
Watchdog timer period =  
BCLK  
With XCIN chosen for BCLK  
pre-scaler dividing ratio (2) X watchdog timer count (32768)  
Watchdog timer period =  
BCLK  
For example, suppose that BCLK runs at 10 MHZ and that 16 has been chosen for the dividing ratio of the  
pre-scaler, then the watchdog timer's period becomes approximately 52.4 ms.  
The watchdog timer is initialized by writing to the watchdog timer start register (address 000E16) and when  
a watchdog timer interrupt request is generated. The prescaler is initialized only when the microcomputer is  
reset. After a reset is cancelled, the watchdog timer and prescaler are both stopped. The count is started by  
writing to the watchdog timer start register (address 000E16).  
Figure 1.14.1 shows the block diagram of the watchdog timer. Figure 1.14.2 shows the watchdog timer-  
related registers.  
Prescaler  
“CM07 = 0”  
“WDC7 = 0”  
1/16  
“CM07 = 0”  
“WDC7 = 1”  
BCLK  
HOLD  
Watchdog timer  
interrupt request  
1/128  
1/2  
Watchdog timer  
“CM07 = 1”  
Write to the watchdog timer  
start register  
Set to  
“7FFF16  
(address 000E16  
)
RESET  
Figure 1.14.1. Block diagram of watchdog timer  
59  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Watchdog Timer  
Watchdog timer control register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
WDC  
Address  
000F16  
When reset  
000XXXXX  
0
0
2
Bit symbol  
Bit name  
Function  
R W  
High-order bit of watchdog timer  
Reserved bit  
Must always be set to “0”  
Must always be set to “0”  
Reserved bit  
WDC7  
Prescaler select bit  
0 : Divided by 16  
1 : Divided by 128  
Watchdog timer start register  
b7  
b0  
Symbol  
WDTS  
Address  
000E16  
When reset  
Indeterminate  
Function  
The watchdog timer is initialized and starts counting after a write instruction to  
R W  
this register. The watchdog timer value is always initialized to “7FFF16  
regardless of whatever value is written.  
Figure 1.14.2. Watchdog timer control and start registers  
60  
Mitsubishi microcomputers  
M16C / 61 Group  
DMAC  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
DMAC  
This microcomputer has two DMAC (direct memory access controller) channels that allow data to be sent to  
memory without using the CPU. DMAC shares the same data bus with the CPU. The DMAC is given a  
higher right of using the bus than the CPU, which leads to working the cycle stealing method. On this  
account, the operation from the occurrence of DMA transfer request signal to the completion of 1-word (16-  
bit) or 1-byte (8-bit) data transfer can be performed at high speed. Figure 1.15.1 shows the block diagram  
of the DMAC. Table 1.15.1 shows the DMAC specifications. Figure 1.15.2 to Figure 1.15.3 show the regis-  
ters used by the DMAC.  
Address bus  
DMA0 source pointer SAR0(20)  
(addresses 002216 to 002016  
DMA0 destination pointer DAR0 (20)  
)
(addresses 002616 to 002416)  
DMA0 forward address pointer (20) (Note)  
DMA0 transfer counter reload register TCR0 (16)  
DMA1 source pointer SAR1 (20)  
(addresses 003216 to 003016  
DMA1 destination pointer DAR1 (20)  
(addresses 002916, 002816  
)
)
DMA0 transfer counter TCR0 (16)  
(addresses 003616 to 003416)  
DMA1 forward address pointer (20) (Note)  
DMA1 transfer counter reload register TCR1 (16)  
(addresses 003916, 003816  
)
DMA latch high-order bits DMA latch low-order bits  
DMA1 transfer counter TCR1 (16)  
Data bus low-order bits  
Data bus high-order bits  
Note: Pointer is incremented by a DMA request.  
Figure 1.15.1. Block diagram of DMAC  
Either a write signal to the software DMA request bit or an interrupt request signal is used as a DMA transfer  
request signal. But the DMA transfer is affected neither by the interrupt enable flag (I flag) nor by the  
interrupt priority level. The DMA transfer doesn't affect any interrupts either.  
If the DMAC is active (the DMA enable bit is set to 1), data transfer starts every time a DMA transfer request  
signal occurs. If the cycle of the occurrences of DMA transfer request signals is higher than the DMA  
transfer cycle, there can be instances in which the number of transfer requests doesn't agree with the  
number of transfers. For details, see the description of the DMA request bit.  
61  
Mitsubishi microcomputers  
M16C / 61 Group  
DMAC  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Table 1.15.1. DMAC specifications  
Item  
No. of channels  
Transfer memory space  
Specification  
2 (cycle steal method)  
• From any address in the 1M bytes space to a fixed address  
• From a fixed address to any address in the 1M bytes space  
• From a fixed address to a fixed address  
(Note that DMA-related registers [002016 to 003F16] cannot be accessed)  
Maximum No. of bytes transferred 128K bytes (with 16-bit transfers) or 64K bytes (with 8-bit transfers)  
________  
________ ________  
________  
DMA request factors (Note)  
Falling edge of INT0 or INT1 (INT0 can be selected by DMA0, INT1 by DMA1)  
Timer A0 to timer A4 interrupt requests  
Timer B0 to timer B2 interrupt requests  
UART0 transmission and reception interrupt requests  
UART1 transmission and reception interrupt requests (UART1 trans-  
mission can be selected by DMA0, UART1 reception by DMA1)  
UART2 transmission and reception interrupt requests  
A-D conversion interrupt requests  
Software triggers  
Channel priority  
DMA0 takes precedence if DMA0 and DMA1 requests are generated simultaneously  
8 bits or 16 bits  
Transfer unit  
Transfer address direction  
forward/fixed (forward direction cannot be specified for both source and  
destination simultaneously)  
Transfer mode  
• Single transfer mode  
After the transfer counter underflows, the DMA enable bit turns to  
“0”, and the DMAC turns inactive  
• Repeat transfer mode  
After the transfer counter underflows, the value of the transfer counter  
reload register is reloaded to the transfer counter.  
The DMAC remains active unless a “0” is written to the DMA enable bit.  
DMA interrupt request generation timing When an underflow occurs in the transfer counter  
Active  
When the DMA enable bit is set to “1”, the DMAC is active.  
When the DMAC is active, data transfer starts every time a DMA  
transfer request signal occurs.  
Inactive  
• When the DMA enable bit is set to “0”, the DMAC is inactive.  
• After the transfer counter underflows in single transfer mode  
At the time of starting data transfer immediately after turning the DMAC active, re  
the value of one of source pointer and destination pointer - the one specified for the  
forward direction - is reloaded to the forward direction address pointer,and the value  
of the transfer counter reload register is reloaded to the transfer counter.  
Registers specified for forward direction transfer are always write enabled.  
Registers specified for fixed address transfer are write-enabled when  
the DMA enable bit is “0”.  
Forward address pointer and  
load timing for transfer  
counter  
Writing to register  
Reading the register  
Can be read at any time.  
However, when the DMA enable bit is “1”, reading the register set up as the  
forward register is the same as reading the value of the forward address pointer.  
Note: DMA transfer is not effective to any interrupt. DMA transfer is affected neither by the interrupt enable  
flag (I flag) nor by the interrupt priority level.  
62  
Mitsubishi microcomputers  
M16C / 61 Group  
DMAC  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
DMAi request cause select register  
Symbol  
DMiSL(i=0,1)  
Address  
03B816,03BA16  
When reset  
0016  
b7 b6 b5 b4 b3 b2 b1 b0  
Function  
Bit symbol  
DSEL0  
Bit name  
R
W
b3 b2 b1 b0  
DMA request cause  
select bit  
0 0 0 0 : Falling edge of INT0 / INT1  
pin (Note 1)  
0 0 0 1 : Software trigger  
0 0 1 0 : Timer A0  
0 0 1 1 : Timer A1  
0 1 0 0 : Timer A2  
0 1 0 1 : Timer A3  
0 1 1 0 : Timer A4  
0 1 1 1 : Timer B0  
1 0 0 0 : Timer B1  
1 0 0 1 : Timer B2  
DSEL1  
DSEL2  
1 0 1 0 : UART0 transmit  
1 0 1 1 : UART0 receive  
1 1 0 0 : UART2 transmit  
1 1 0 1 : UART2 receive  
1 1 1 0 : A-D conversion  
1 1 1 1 : UART1 transmit / UART1  
receive (Note 2)  
DSEL3  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to be “0”.  
If software trigger is selected, a  
DMA request is generated by  
setting this bit to “1” (When read,  
the value of this bit is always “0”)  
Software DMA request bit  
DSR  
Note 1: Address 03B816 is for INT0 ; address 03BA16 is for INT1.  
Note 2: Address 03B816 is for UART1 transmit ; address 03BA16 is for UART1 receive.  
DMAi control register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
DMiCON(i=0,1)  
Address  
002C16, 003C16  
When reset  
00000X00  
2
Bit symbol  
DMBIT  
Bit name  
Function  
R
W
Transfer unit bit select bit 0 : 16 bits  
1 : 8 bits  
Repeat transfer mode  
select bit  
0 : Single transfer  
1 : Repeat transfer  
DMASL  
DMAS  
DMAE  
0 : DMA not requested  
1 : DMA requested  
DMA request bit (Note 1)  
DMA enable bit  
(Note 2)  
0 : Disabled  
1 : Enabled  
Source address direction  
select bit (Note 3)  
0 : Fixed  
1 : Forward  
DSD  
DAD  
Destination address  
direction select bit (Note 3)  
0 : Fixed  
1 : Forward  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to be “0”.  
Note 1: DMA request can be cleared by resetting the bit.  
Note 2: This bit can only be set to “0”.  
Note 3: Source address direction select bit and destination address direction select bit  
cannot be set to “1” simultaneously.  
Figure 1.15.2. DMAC register (1)  
63  
Mitsubishi microcomputers  
M16C / 61 Group  
DMAC  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
DMAi source pointer (i = 0, 1)  
(b19)  
b3  
(b16)(b15)  
b0 b7  
(b8)  
b0 b7  
(b23)  
b7  
b0  
Symbol  
SAR0  
SAR1  
Address  
002216 to 002016  
003216 to 003016  
When reset  
Indeterminate  
Indeterminate  
Transfer count  
specification  
Function  
R W  
• Source pointer  
Stores the source address  
0000016 to FFFFF16  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to be “0”.  
DMAi destination pointer (i = 0, 1)  
(b19)  
b3  
(b16)(b15)  
b0 b7  
(b8)  
b0 b7  
(b23)  
b7  
b0  
Symbol  
DAR0  
DAR1  
Address  
002616 to 002416  
003616 to 003416  
When reset  
Indeterminate  
Indeterminate  
Transfer count  
specification  
Function  
R W  
• Destination pointer  
Stores the destination address  
0000016 to FFFFF16  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to be “0”.  
DMAi transfer counter (i = 0, 1)  
(b15)  
b7  
(b8)  
b0 b7  
b0  
Symbol  
TCR0  
TCR1  
Address  
002916, 002816  
003916, 003816  
When reset  
Indeterminate  
Indeterminate  
Transfer count  
specification  
Function  
R W  
• Transfer counter  
Set a value one less than the transfer count  
000016 to FFFF16  
Figure 1.15.3. DMAC register (2)  
64  
Mitsubishi microcomputers  
M16C / 61 Group  
DMAC  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(1) Transfer cycle  
The transfer cycle consists of the bus cycle in which data is read from memory or from the SFR area  
(source read) and the bus cycle in which the data is written to memory or to the SFR area (destination  
write). The number of read and write bus cycles depends on the source and destination addresses. In  
memory expansion mode and microprocessor mode, the number of read and write bus cycles also de-  
pends on the level of the BYTE pin. Also, the bus cycle itself is longer when software waits are inserted.  
(a) Effect of source and destination addresses  
When 16-bit data is transferred on a 16-bit data bus, and the source and destination both start at odd  
addresses, there are one more source read cycle and destination write cycle than when the source  
and destination both start at even addresses.  
(b) Effect of BYTE pin level  
When transferring 16-bit data over an 8-bit data bus (BYTE pin = “H”) in memory expansion mode and  
microprocessor mode, the 16 bits of data are sent in two 8-bit blocks. Therefore, two bus cycles are  
required for reading the data and two are required for writing the data. Also, in contrast to when the  
CPU accesses internal memory, when the DMAC accesses internal memory (internal ROM, internal  
RAM, and SFR), these areas are accessed using the data size selected by the BYTE pin.  
(c) Effect of software wait  
When the SFR area or a memory area with a software wait is accessed, the number of cycles is  
increased for the wait by 1 bus cycle. The length of the cycle is determined by BCLK.  
Figure 1.15.4 shows the example of the transfer cycles for a source read. For convenience, the destina-  
tion write cycle is shown as one cycle and the source read cycles for the different conditions are shown.  
In reality, the destination write cycle is subject to the same conditions as the source read cycle, with the  
transfer cycle changing accordingly. When calculating the transfer cycle, remember to apply the respec-  
tive conditions to both the destination write cycle and the source read cycle. For example (2) in Figure 36,  
if data is being transferred in 16-bit units on an 8-bit bus, two bus cycles are required for both the source  
read cycle and the destination write cycle.  
65  
Mitsubishi microcomputers  
M16C / 61 Group  
DMAC  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(1) 8-bit transfers  
16-bit transfers from even address and the source address is even.  
BCLK  
Address  
bus  
Dummy  
cycle  
CPU use  
Source  
Destination  
CPU use  
RD signal  
WR signal  
Data  
bus  
Dummy  
cycle  
CPU use  
Source  
Destination  
CPU use  
(2) 16-bit transfers and the source address is odd  
Transferring 16-bit data on an 8-bit data bus (In this case, there are also two destination write cycles).  
BCLK  
Address  
bus  
Dummy  
cycle  
CPU use  
Source  
Source + 1 Destination  
CPU use  
RD signal  
WR signal  
Data  
bus  
Dummy  
cycle  
CPU use  
Source + 1  
Source  
CPU use  
Destination  
(3) One wait is inserted into the source read under the conditions in (1)  
BCLK  
Address  
bus  
Dummy  
cycle  
CPU use  
Source  
Destination  
CPU use  
RD signal  
WR signal  
Data  
bus  
Dummy  
cycle  
CPU use  
Source  
Destination  
CPU use  
(4) One wait is inserted into the source read under the conditions in (2)  
(When 16-bit data is transferred on an 8-bit data bus, there are two destination write cycles).  
BCLK  
Address  
bus  
Dummy  
cycle  
CPU use  
Source  
Source + 1  
Destination  
CPU use  
RD signal  
WR signal  
Data  
bus  
Dummy  
cycle  
CPU use  
Source  
Source + 1  
Destination  
CPU use  
Note: The same timing changes occur with the respective conditions at the destination as at the source.  
Figure 1.15.4. Example of the transfer cycles for a source read  
66  
Mitsubishi microcomputers  
M16C / 61 Group  
DMAC  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(2) DMAC transfer cycles  
Any combination of even or odd transfer read and write addresses is possible. Table 1.15.2 shows the  
number of DMAC transfer cycles.  
The number of DMAC transfer cycles can be calculated as follows:  
No. of transfer cycles per transfer unit = No. of read cycles x j + No. of write cycles x k  
Table 1.15.2. No. of DMAC transfer cycles  
Single-chip mode  
Memory expansion mode  
Microprocessor mode  
Transfer unit  
Bus width  
Access address  
No. of read No. of write No. of read No. of write  
cycles  
cycles  
cycles  
cycles  
16-bit  
(BYTE= “L”)  
8-bit  
Even  
Odd  
1
1
1
1
1
1
1
1
1
2
2
2
1
1
1
1
1
2
2
2
8-bit transfers  
(DMBIT= “1”)  
Even  
Odd  
1
1
(BYTE = “H”)  
16-bit  
Even  
Odd  
16-bit transfers  
(DMBIT= “0”)  
(BYTE = “L”)  
8-bit  
2
2
Even  
Odd  
(BYTE = “H”)  
Coefficient j, k  
Internal memory  
External memory  
Internal ROM/RAM Internal ROM/RAM SFR area Separate bus Separate bus  
Multiplex  
No wait  
1
With wait  
2
No wait  
1
With wait  
2
bus  
3
2
67  
Mitsubishi microcomputers  
M16C / 61 Group  
DMAC  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
DMA enable bit  
Setting the DMA enable bit to 1 makes the DMAC active. The DMAC carries out the following operations at  
the time data transfer starts immediately after DMAC is turned active.  
(1) Reloads the value of one of the source pointer and the destination pointer - the one specified for the  
forward direction - to the forward direction address pointer.  
(2) Reloads the value of the transfer counter reload register to the transfer counter.  
Thus overwriting 1 to the DMA enable bit with the DMAC being active carries out the operations given  
above, so the DMAC operates again from the initial state at the instant 1 is overwritten to the DMA enable  
bit.  
DMA request bit  
The DMAC can generate a DMA transfer request signal triggered by a factor chosen in advance out of DMA  
request factors for each channel.  
DMA request factors include the following.  
* Factors effected by using the interrupt request signals from the built-in peripheral functions and software  
DMA factors (internal factors) effected by a program.  
* External factors effected by utilizing the input from external interrupt signals.  
For the selection of DMA request factors, see the descriptions of the DMAi factor selection register.  
The DMA request bit turns to 1 if the DMA transfer request signal occurs regardless of the DMAC's state  
(regardless of whether the DMA enable bit is set 1 or to 0). It turns to 0 immediately before data transfer  
starts.  
In addition, it can be set to 0 by use of a program, but cannot be set to 1.  
There can be instances in which a change in DMA request factor selection bit causes the DMA request bit  
to turn to 1. So be sure to set the DMA request bit to 0 after the DMA request factor selection bit is changed.  
The DMA request bit turns to 1 if a DMA transfer request signal occurs, and turns to 0 immediately before  
data transfer starts. If the DMAC is active, data transfer starts immediately, so the value of the DMA request  
bit, if read by use of a program, turns out to be 0 in most cases. To examine whether the DMAC is active,  
read the DMA enable bit.  
Here follows the timing of changes in the DMA request bit.  
(1) Internal factors  
Except the DMA request factors triggered by software, the timing for the DMA request bit to turn to 1 due  
to an internal factor is the same as the timing for the interrupt request bit of the interrupt control register to  
turn to 1 due to several factors.  
Turning the DMA request bit to 1 due to an internal factor is timed to be effected immediately before the  
transfer starts.  
(2) External factors  
An external factor is a factor caused to occur by the leading edge of input from the INTi pin (i depends on  
which DMAC channel is used).  
Selecting the INTi pins as external factors using the DMA request factor selection bit causes input from  
these pins to become the DMA transfer request signals.  
The timing for the DMA request bit to turn to 1 when an external factor is selected synchronizes with the  
signal's edge applicable to the function specified by the DMA request factor selection bit (synchronizes  
with the trailing edge of the input signal to each INTi pin, for example).  
With an external factor selected, the DMA request bit is timed to turn to 0 immediately before data transfer  
starts similarly to the state in which an internal factor is selected.  
68  
Mitsubishi microcomputers  
M16C / 61 Group  
DMAC  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(3) The priorities of channels and DMA transfer timing  
If a DMA transfer request signal falls on a single sampling cycle (a sampling cycle means one period from  
the leading edge to the trailing edge of BCLK), the DMA request bits of applicable channels concurrently  
turn to 1. If the channels are active at that moment, DMA0 is given a high priority to start data transfer.  
When DMA0 finishes data transfer, it gives the bus right to the CPU. When the CPU finishes single bus  
access, then DMA1 starts data transfer and gives the bus right to the CPU.  
An example in which DMA transfer is carried out in minimum cycles at the time when DMA transfer  
request signals due to external factors concurrently occur.  
Figure 1.15.5 An example of DMA transfer effected by external factors.  
An example in which DMA transmission is carried out in minimum  
cycles at the time when DMA transmission request signals due to  
external factors concurrently occur.  
BCLK  
DMA0  
Obtainm  
ent of the  
bus right  
DMA1  
CPU  
INT0  
DMA0  
request bit  
INT1  
DMA1  
request bit  
Figure 1.15.5. An example of DMA transfer effected by external factors  
69  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer  
Timer  
There are eight 16-bit timers. These timers can be classified by function into timers A (five) and timers B  
(three). All these timers function independently. Figure 1.16.1 shows the block diagram of timers.  
Clock prescaler  
f
1
8
fC32  
XIN  
1/32  
Reset  
X
CIN  
f
1/8  
Clock prescaler reset flag (bit 7  
at address 038116) set to “1”  
f
32  
1/4  
f1 f8 f32 fC32  
• Timer mode  
• One-shot mode  
• PWM mode  
Timer A0 interrupt  
Timer A1 interrupt  
Timer A2 interrupt  
Timer A3 interrupt  
Timer A4 interrupt  
Timer A0  
Noise  
filter  
TA0IN  
TA1IN  
TA2IN  
TA3IN  
• Event counter mode  
• Timer mode  
• One-shot mode  
• PWM mode  
Timer A1  
Noise  
filter  
• Event counter mode  
• Timer mode  
• One-shot mode  
• PWM mode  
Timer A2  
Timer A3  
Timer A4  
Noise  
filter  
• Event counter mode  
• Timer mode  
• One-shot mode  
• PWM mode  
Noise  
filter  
• Event counter mode  
• Timer mode  
• One-shot mode  
• PWM mode  
Noise  
filter  
TA4IN  
TB0IN  
• Event counter mode  
• Timer mode  
• Pulse width measuring mode  
Timer B0 interrupt  
Timer B1 interrupt  
Noise  
filter  
Timer B0  
• Event counter mode  
• Timer mode  
• Pulse width measuring mode  
Noise  
filter  
TB1IN  
TB2IN  
Timer B1  
• Event counter mode  
• Timer mode  
• Pulse width measuring mode  
Timer B2 interrupt  
Noise  
filter  
Timer B2  
• Event counter mode  
Figure 1.16.1. Block diagram of timer  
70  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer A  
Timer A  
Figure 1.16.2 shows the block diagram of timer A. Figures 1.16.3 to 1.16.5 show the timer A-related  
registers.  
Except in event counter mode, timers A0 through A4 all have the same function. Use the timer Ai mode  
register (i = 0 to 4) bits 0 and 1 to choose the desired mode.  
Timer A has the four operation modes listed as follows:  
• Timer mode: The timer counts an internal count source.  
• Event counter mode: The timer counts pulses from an external source or a timer over flow.  
• One-shot timer mode: The timer stops counting when the count reaches “000016”.  
• Pulse width modulation (PWM) mode: The timer outputs pulses of a given width.  
Data bus high-order bits  
Clock source  
selection  
Data bus low-order bits  
• Timer  
• One shot  
• PWM  
f
1
Low-order  
8 bits  
High-order  
8 bits  
f8  
• Timer  
(gate function)  
f
32  
Reload register (16)  
f
C32  
• Event counter  
Clock selection  
Counter (16)  
Polarity  
selection  
Up count/down count  
TAiIN  
Always down count except  
in event counter mode  
(i = 0 to 4)  
Count start flag  
(Address 038016  
)
TAi  
Addresses  
TAj  
TAk  
Down count  
Timer A0 038716 038616  
Timer A1 038916 038816  
Timer A2 038B16 038A16 Timer A1 Timer A3  
Timer A3 038D16 038C16 Timer A2 Timer A4  
Timer A4 038F16 038E16 Timer A3 Timer A0  
Timer A4 Timer A1  
Timer A0 Timer A2  
TB2 overflow  
External  
trigger  
Up/down flag  
TAj overflow  
(j = i – 1. Note, however, that j = 4 when i = 0)  
(Address 038416  
)
TAk overflow  
(k = i + 1. Note, however, that k = 0 when i = 4)  
Pulse output  
TAiOUT  
(i = 0 to 4)  
Toggle flip-flop  
Figure 1.16.2. Block diagram of timer A  
Timer Ai mode register  
Symbol  
Address  
When reset  
0016  
b7 b6 b5 b4 b3 b2 b1 b0  
TAiMR(i=0 to 4) 039616 to 039A16  
R W  
Bit symbol  
TMOD0  
Bit name  
Function  
b1 b0  
Operation mode select bit  
0 0 : Timer mode  
0 1 : Event counter mode  
1 0 : One-shot timer mode  
1 1 : Pulse width modulation  
(PWM) mode  
TMOD1  
MR0  
MR1  
MR2  
MR3  
TCK0  
TCK1  
Function varies with each operation mode  
Count source select bit  
(Function varies with each operation mode)  
Figure 1.16.3. Timer A-related registers (1)  
71  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer A  
Timer Ai register (Note)  
Symbol  
TA0  
TA1  
TA2  
TA3  
Address  
When reset  
Indeterminate  
Indeterminate  
Indeterminate  
Indeterminate  
Indeterminate  
(b15)  
(b8)  
b0 b7  
038716,038616  
038916,038816  
038B16,038A16  
038D16,038C16  
038F16,038E16  
b7  
b0  
TA4  
Values that can be set  
000016 to FFFF16  
Function  
R W  
• Timer mode  
Counts an internal count source  
• Event counter mode  
Counts pulses from an external source or timer overflow  
000016 to FFFF16  
000016 to FFFF16  
• One-shot timer mode  
Counts a one shot width  
• Pulse width modulation mode (16-bit PWM)  
Functions as a 16-bit pulse width modulator  
000016 to FFFE16  
• Pulse width modulation mode (8-bit PWM)  
Timer low-order address functions as an 8-bit  
prescaler and high-order address functions as an 8-bit  
pulse width modulator  
0016 to FE16  
(Both high-order  
and low-order  
addresses)  
Note: Read and write data in 16-bit units.  
Count start flag  
Symbol  
TABSR  
Address  
038016  
When reset  
0016  
b7 b6 b5 b4 b3 b2 b1 b0  
Bit symbol  
TA0S  
TA1S  
TA2S  
TA3S  
TA4S  
TB0S  
TB1S  
TB2S  
Bit name  
Function  
R W  
Timer A0 count start flag  
Timer A1 count start flag  
Timer A2 count start flag  
Timer A3 count start flag  
Timer A4 count start flag  
Timer B0 count start flag  
Timer B1 count start flag  
Timer B2 count start flag  
0 : Stops counting  
1 : Starts counting  
Up/down flag  
Symbol  
UDF  
Address  
038416  
When reset  
0016  
b7 b6 b5 b4 b3 b2 b1 b0  
R W  
Bit symbol  
TA0UD  
Bit name  
Function  
Timer A0 up/down flag  
0 : Down count  
1 : Up count  
TA1UD  
TA2UD  
TA3UD  
TA4UD  
TA2P  
Timer A1 up/down flag  
Timer A2 up/down flag  
This specification becomes valid  
when the up/down flag content is  
selected for up/down switching  
cause  
Timer A3 up/down flag  
Timer A4 up/down flag  
0 : two-phase pulse signal  
processing disabled  
1 : two-phase pulse signal  
processing enabled  
Timer A2 two-phase pulse  
signal processing select bit  
TA3P  
TA4P  
Timer A3 two-phase pulse  
signal processing select bit  
When not using the two-phase  
pulse signal processing function,  
set the select bit to “0”  
Timer A4 two-phase pulse  
signal processing select bit  
Figure 1.16.4. Timer A-related registers (2)  
72  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer A  
One-shot start flag  
Symbol  
ONSF  
Address  
038216  
When reset  
b7 b6 b5 b4 b3 b2 b1 b0  
00X00000  
2
R W  
Bit symbol  
Bit name  
Function  
Timer A0 one-shot start flag  
Timer A1 one-shot start flag  
Timer A2 one-shot start flag  
Timer A3 one-shot start flag  
Timer A4 one-shot start flag  
TA0OS  
TA1OS  
TA2OS  
TA3OS  
TA4OS  
1 : Timer start  
When read, the value is “0”  
Nothing is assigned.  
In an attempt to write to this bit, write “0”. The value, if read, turns out to be indeterminate.  
b7 b6  
TA0TGL  
Timer A0 event/trigger  
select bit  
0 0 : Input on TA0IN is selected (Note)  
0 1 : TB2 overflow is selected  
1 0 : TA4 overflow is selected  
1 1 : TA1 overflow is selected  
TA0TGH  
Note: Set the corresponding port direction register to “0”.  
Trigger select register  
Symbol  
TRGSR  
Address  
038316  
When reset  
0016  
b7 b6 b5 b4 b3 b2 b1 b0  
Bit symbol  
TA1TGL  
Bit name  
Function  
R W  
b1 b0  
Timer A1 event/trigger  
select bit  
0 0 : Input on TA1IN is selected (Note)  
0 1 : TB2 overflow is selected  
1 0 : TA0 overflow is selected  
1 1 : TA2 overflow is selected  
TA1TGH  
TA2TGL  
b3 b2  
Timer A2 event/trigger  
select bit  
0 0 : Input on TA2IN is selected (Note)  
0 1 : TB2 overflow is selected  
1 0 : TA1 overflow is selected  
1 1 : TA3 overflow is selected  
TA2TGH  
TA3TGL  
TA3TGH  
b5 b4  
Timer A3 event/trigger  
select bit  
0 0 : Input on TA3IN is selected (Note)  
0 1 : TB2 overflow is selected  
1 0 : TA2 overflow is selected  
1 1 : TA4 overflow is selected  
b7 b6  
Timer A4 event/trigger  
select bit  
TA4TGL  
TA4TGH  
0 0 : Input on TA4IN is selected (Note)  
0 1 : TB2 overflow is selected  
1 0 : TA3 overflow is selected  
1 1 : TA0 overflow is selected  
Note: Set the corresponding port direction register to “0”.  
Clock prescaler reset flag  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
CPSRF  
Address  
038116  
When reset  
0XXXXXXX  
2
Bit symbol  
Bit name  
Function  
R W  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to be  
indeterminate.  
0 : No effect  
1 : Prescaler is reset  
CPSR  
Clock prescaler reset flag  
(When read, the value is “0”)  
Figure 1.16.5. Timer A-related registers (3)  
73  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer A  
(1) Timer mode  
In this mode, the timer counts an internally generated count source. (See Table 1.16.1.) Figure 1.16.6  
shows the timer Ai mode register in timer mode.  
Table 1.16.1. Specifications of timer mode  
Item  
Count source  
Count operation  
Specification  
f1, f8, f32, fC32  
• Down count  
When the timer underflows, it reloads the reload register contents before continuing counting  
Divide ratio  
1/(n+1) n : Set value  
Count start condition  
Count stop condition  
Count start flag is set (= 1)  
Count start flag is reset (= 0)  
Interrupt request generation timing When the timer underflows  
TAiIN pin function  
TAiOUT pin function  
Read from timer  
Write to timer  
Programmable I/O port or gate input  
Programmable I/O port or pulse output  
Count value can be read out by reading timer Ai register  
• When counting stopped  
When a value is written to timer Ai register, it is written to both reload register and counter  
• When counting in progress  
When a value is written to timer Ai register, it is written to only reload register  
(Transferred to counter at next reload time)  
• Gate function  
Select function  
Counting can be started and stopped by the TAiIN pin’s input signal  
• Pulse output function  
Each time the timer underflows, the TAiOUT pin’s polarity is reversed  
Timer Ai mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
When reset  
0016  
TAiMR(i=0 to 4) 039616 to 039A16  
0
0 0  
Bit symbol  
Bit name  
Function  
R W  
b1 b0  
Operation mode  
select bit  
TMOD0  
TMOD1  
MR0  
0 0 : Timer mode  
Pulse output function  
select bit  
0 : Pulse is not output  
(TAiOUT pin is a normal port pin)  
1 : Pulse is output (Note 1)  
(TAiOUT pin is a pulse output pin)  
b4 b3  
Gate function select bit  
MR1  
MR2  
0 X (Note 2): Gate function not available  
(TAiIN pin is a normal port pin)  
1 0 : Timer counts only when TAiIN pin is  
held “L” (Note 3)  
1 1 : Timer counts only when TAiIN pin is  
held “H” (Note 3)  
MR3  
0 (Must always be fixed to “0” in timer mode)  
b7 b6  
TCK0  
Count source select bit  
0 0 : f  
1
8
0 1 : f  
TCK1  
1 0 : f32  
1 1 : fC32  
Note 1: The settings of the corresponding port register and port direction register  
are invalid.  
Note 2: The bit can be “0” or “1”.  
Note 3: Set the corresponding port direction register to “0”.  
Figure 1.16.6. Timer Ai mode register in timer mode  
74  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer A  
(2) Event counter mode  
In this mode, the timer counts an external signal or an internal timer’s overflow. Timers A0 and A1 can  
count a single-phase external signal. Timers A2, A3, and A4 can count a single-phase and a two-phase  
external signal. Table 1.16.2 lists timer specifications when counting a single-phase external signal.  
Figure 1.16.7 shows the timer Ai mode register in event counter mode.  
Table 1.16.3 lists timer specifications when counting a two-phase external signal. Figure 1.16.8 shows  
the timer Ai mode register in event counter mode.  
Table 1.16.2. Timer specifications in event counter mode (when not processing two-phase pulse signal)  
Item  
Specification  
Count source  
External signals input to TAiIN pin (effective edge can be selected by software)  
• TB2 overflow, TAj overflow  
Count operation  
• Up count or down count can be selected by external signal or software  
• When the timer overflows or underflows, it reloads the reload register con  
tents before continuing counting (Note)  
1/ (FFFF16 - n + 1) for up count  
Divide ratio  
1/ (n + 1) for down count  
Count start flag is set (= 1)  
Count start flag is reset (= 0)  
n : Set value  
Count start condition  
Count stop condition  
Interrupt request generation timing The timer overflows or underflows  
TAiIN pin function  
TAiOUT pin function  
Read from timer  
Write to timer  
Programmable I/O port or count source input  
Programmable I/O port, pulse output, or up/down count select input  
Count value can be read out by reading timer Ai register  
• When counting stopped  
When a value is written to timer Ai register, it is written to both reload register and counter  
• When counting in progress  
When a value is written to timer Ai register, it is written to only reload register  
(Transferred to counter at next reload time)  
Select function  
• Free-run count function  
Even when the timer overflows or underflows, the reload register content is not reloaded to it  
• Pulse output function  
Each time the timer overflows or underflows, the TAiOUT pin’s polarity is reversed  
Note: This does not apply when the free-run function is selected.  
Timer Ai mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
TAiMR(i = 0, 1)  
Address  
039616, 039716  
When reset  
0016  
0
0 1  
Bit symbol  
Bit name  
Function  
R W  
b1 b0  
TMOD0  
TMOD1  
MR0  
Operation mode select bit  
0 1 : Event counter mode (Note 1)  
0 : Pulse is not output  
Pulse output function  
select bit  
(TAiOUT pin is a normal port pin)  
1 : Pulse is output (Note 2)  
(TAiOUT pin is a pulse output pin)  
MR1  
MR2  
Count polarity  
select bit (Note 3)  
0 : Counts external signal's falling edge  
1 : Counts external signal's rising edge  
Up/down switching  
cause select bit  
0 : Up/down flag's content  
1 : TAiOUT pin's input signal (Note 4)  
MR3  
0 (Must always be fixed to “0” in event counter mode)  
TCK0  
Count operation type  
select bit  
0 : Reload type  
1 : Free-run type  
Invalid in event counter mode  
Can be “0” or “1”  
TCK1  
Note 1: In event counter mode, the count source is selected by the event / trigger select bit  
(addresses 038216 and 038316).  
Note 2: The settings of the corresponding port register and port direction register are invalid.  
Note 3: Valid only when counting an external signal.  
Note 4: When an “L” signal is input to the TAiOUT pin, the downcount is activated. When “H”,  
the upcount is activated. Set the corresponding port direction register to “0”.  
Figure 1.16.7. Timer Ai mode register in event counter mode  
75  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer A  
Table 1.16.3. Timer specifications in event counter mode (when processing two-phase pulse  
signal with timers A2, A3, and A4)  
Item  
Count source  
Count operation  
Specification  
• Two-phase pulse signals input to TAiIN or TAiOUT pin  
• Up count or down count can be selected by two-phase pulse signal  
• When the timer overflows or underflows, the reload register content is  
reloaded and the timer starts over again (Note)  
Divide ratio  
1/ (FFFF16 - n + 1) for up count  
1/ (n + 1) for down count  
Count start flag is set (= 1)  
Count start flag is reset (= 0)  
n : Set value  
Count start condition  
Count stop condition  
Interrupt request generation timing Timer overflows or underflows  
TAiIN pin function  
TAiOUT pin function  
Read from timer  
Write to timer  
Two-phase pulse input  
Two-phase pulse input  
Count value can be read out by reading timer A2, A3, or A4 register  
• When counting stopped  
When a value is written to timer A2, A3, or A4 register, it is written to both  
reload register and counter  
• When counting in progress  
When a value is written to timer A2, A3, or A4 register, it is written to only  
reload register. (Transferred to counter at next reload time.)  
• Normal processing operation  
Select function  
The timer counts up rising edges or counts down falling edges on the TAiIN  
pin when input signal on the TAiOUT pin is “H”  
TAiOUT  
TAiIN  
(i=2,3)  
Up  
count  
Up  
count  
Up  
Down  
Down  
count  
Down  
count  
count count  
• Multiply-by-4 processing operation  
If the phase relationship is such that the TAiIN pin goes “H” when the input  
signal on the TAiOUT pin is “H”, the timer counts up rising and falling edges  
on the TAiOUT and TAiIN pins. If the phase relationship is such that the  
TAiIN pin goes “L” when the input signal on the TAiOUT pin is “H”, the timer  
counts down rising and falling edges on the TAiOUT and TAiIN pins.  
TAiOUT  
Count down all edges  
Count down all edges  
Count up all edges  
TAiIN  
(i=3,4)  
Count up all edges  
Note: This does not apply when the free-run function is selected.  
76  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer A  
Timer Ai mode register  
(When not using two-phase pulse signal processing)  
Symbol  
Address  
When reset  
0016  
b7 b6 b5 b4 b3 b2 b1 b0  
TAiMR(i = 2 to 4) 039816 to 039A16  
0
0 1  
R W  
Bit symbol  
Bit name  
Function  
b1 b0  
TMOD0  
TMOD1  
Operation mode select bit  
0 1 : Event counter mode  
Pulse output function  
select bit  
0 : Pulse is not output  
MR0  
(TAiOUT pin is a normal port pin)  
1 : Pulse is output (Note 1)  
(TAiOUT pin is a pulse output pin)  
Count polarity  
select bit (Note 2)  
0 : Counts external signal's falling edges  
1 : Counts external signal's rising edges  
MR1  
MR2  
0 : Up/down flag's content  
1 : TAiOUT pin's input signal (Note 3)  
Up/down switching  
cause select bit  
0 : (Must always be “0” in event counter mode)  
MR3  
TCK0  
0 : Reload type  
1 : Free-run type  
Count operation type  
select bit  
Two-phase pulse signal  
processing operation  
select bit (Note 4)(Note 5)  
TCK1  
0 : Normal processing operation  
1 : Multiply-by-4 processing operation  
Note 1: The settings of the corresponding port register and port direction register are invalid.  
Note 2: This bit is valid when only counting an external signal.  
Note 3: Set the corresponding port direction register to “0”.  
Note 4: This bit is valid for the timer A3 mode register.  
For timer A2 and A4 mode registers, this bit can be “0 ”or “1”.  
Note 5: When performing two-phase pulse signal processing, make sure the two-phase pulse  
signal processing operation select bit (address 038416) is set to “1”. Also, always be  
sure to set the event/trigger select bit (addresses 038216 and 038316) to “00”.  
Timer Ai mode register  
(When using two-phase pulse signal processing)  
Symbol  
Address  
When reset  
0016  
b7 b6 b5 b4 b3 b2 b1 b0  
TAiMR(i = 2 to 4) 039816 to 039A16  
0
1 0 0 0 1  
Bit symbol  
Bit name  
Function  
R W  
b1 b0  
TMOD0  
TMOD1  
Operation mode select bit  
0 1 : Event counter mode  
0 (Must always be “0” when using two-phase pulse signal  
processing)  
MR0  
MR1  
MR2  
0 (Must always be “0” when using two-phase pulse signal  
processing)  
1 (Must always be “1” when using two-phase pulse signal  
processing)  
0 (Must always be “0” when using two-phase pulse signal  
processing)  
MR3  
Count operation type  
select bit  
0 : Reload type  
1 : Free-run type  
TCK0  
Two-phase pulse  
processing operation  
select bit (Note 1)(Note 2)  
TCK1  
0 : Normal processing operation  
1 : Multiply-by-4 processing operation  
Note 1: This bit is valid for timer A3 mode register.  
For timer A2 and A4 mode registers, this bit can be “0” or “1”.  
Note 2: When performing two-phase pulse signal processing, make sure the two-phase pulse  
signal processing operation select bit (address 038416) is set to “1”. Also, always be  
sure to set the event/trigger select bit (addresses 038216 and 038316) to “00”.  
Figure 1.16.8. Timer Ai mode register in event counter mode  
77  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer A  
(3) One-shot timer mode  
In this mode, the timer operates only once. (See Table 1.16.4.) When a trigger occurs, the timer starts up  
and continues operating for a given period. Figure 1.16.9 shows the timer Ai mode register in one-shot  
timer mode.  
Table 1.16.4. Timer specifications in one-shot timer mode  
Item  
Count source  
Count operation  
Specification  
f1, f8, f32, fC32  
• The timer counts down  
• When the count reaches 000016, the timer stops counting after reloading a new count  
• If a trigger occurs when counting, the timer reloads a new count and restarts counting  
Divide ratio  
1/n  
n : Set value  
Count start condition  
• An external trigger is input  
• The timer overflows  
• The one-shot start flag is set (= 1)  
• A new count is reloaded after the count has reached 000016  
• The count start flag is reset (= 0)  
Count stop condition  
Interrupt request generation timing The count reaches 000016  
TAiIN pin function  
TAiOUT pin function  
Read from timer  
Write to timer  
Programmable I/O port or trigger input  
Programmable I/O port or pulse output  
When timer Ai register is read, it indicates an indeterminate value  
• When counting stopped  
When a value is written to timer Ai register, it is written to both reload  
register and counter  
• When counting in progress  
When a value is written to timer Ai register, it is written to only reload register  
(Transferred to counter at next reload time)  
Timer Ai mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
When reset  
0016  
TAiMR(i = 0 to 4) 039616 to 039A16  
0
1 0  
Bit symbol  
Bit name  
R W  
Function  
b1 b0  
TMOD0  
TMOD1  
MR0  
Operation mode select bit  
1 0 : One-shot timer mode  
Pulse output function  
select bit  
0 : Pulse is not output  
(TAiOUT pin is a normal port pin)  
1 : Pulse is output (Note 1)  
(TAiOUT pin is a pulse output pin)  
MR1  
MR2  
0 : Falling edge of TAiIN pin's input signal (Note 3)  
1 : Rising edge of TAiIN pin's input signal (Note 3)  
External trigger select  
bit (Note 2)  
0 : One-shot start flag is valid  
1 : Selected by event/trigger select  
register  
Trigger select bit  
MR3  
0 (Must always be “0” in one-shot timer mode)  
b7 b6  
TCK0  
Count source select bit  
0 0 : f  
1
8
0 1 : f  
TCK1  
1 0 : f32  
1 1 : fC32  
Note 1: The settings of the corresponding port register and port direction register are invalid.  
Note 2: Valid only when the TAiIN pin is selected by the event/trigger select bit  
(addresses 038216 and 038316). If timer overflow is selected, this bit can be “1” or “0”.  
Note 3: Set the corresponding port direction register to “0”.  
Figure 1.16.9. Timer Ai mode register in one-shot timer mode  
78  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer A  
(4) Pulse width modulation (PWM) mode  
In this mode, the timer outputs pulses of a given width in succession. (See Table 1.16.5.) In this mode, the counter functions  
as either a 16-bit pulse width modulator or an 8-bit pulse width modulator. Figure 1.16.10 shows the configuration of the  
timer Ai mode register in pulse width modulation mode. Figure 1.16.11 shows an example of how a 16-bit pulse width  
modulator operates. Figure 1.16.12 shows an example of how an 8-bit pulse width modulator operates.  
Table 1.16.5. Timer specifications in pulse width modulation mode  
Item  
Count source  
Count operation  
Specification  
f1, f8, f32, fC32  
• The timer counts down (operating as an 8-bit or a 16-bit pulse width modulator)  
The timer reloads a new count at a rising edge of PWM pulse and continues counting  
• The timer is not affected by a trigger that occurs when counting  
16-bit PWM  
• High level width  
n / fi n : Set value  
- 1) / fi fixed  
16  
• Cycle time  
(2  
8-bit PWM  
High level width n X (m+1) / fi n : values set to timer Ai register’s high-order address  
Cycle time (28 - 1) X (m +1) / fim : values set to timer Ai register’s low-order address  
Count start condition  
• External trigger is input  
• The timer overflows  
• The count start flag is set (= 1)  
• The count start flag is reset (= 0)  
Count stop condition  
Interrupt request generation timing PWM pulse goes “L”  
TAiIN pin function  
TAiOUT pin function  
Read from timer  
Write to timer  
Programmable I/O port or trigger input  
Pulse output  
When timer Ai register is read, it indicates an indeterminate value  
• When counting stopped  
When a value is written to timer Ai register, it is written to both reload  
register and counter  
• When counting in progress  
When a value is written to timer Ai register, it is written to only reload register  
(Transferred to counter at next reload time)  
Timer Ai mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
When reset  
0016  
1
1 1  
TAiMR(i=0 to 4) 039616 to 039A16  
R W  
Bit symbol  
Bit name  
Function  
b1 b0  
TMOD0  
TMOD1  
MR0  
Operation mode  
select bit  
1 1 : PWM mode  
1 (Must always be fixed to “1” in PWM mode)  
External trigger select  
MR1  
0: Falling edge of TAiIN pin's input signal (Note 2)  
bit (Note 1)  
1: Rising edge of TAiIN pin's input signal (Note 2)  
MR2  
Trigger select bit  
0: Count start flag is valid  
1: Selected by event/trigger select register  
0: Functions as a 16-bit pulse width modulator  
1: Functions as an 8-bit pulse width modulator  
16/8-bit PWM mode  
select bit  
MR3  
b7 b6  
TCK0  
TCK1  
Count source select bit  
0 0 : f  
0 1 : f  
1 0 : f32  
1 1 : fC32  
1
8
Note 1: Valid only when the TAiIN pin is selected by the event/trigger select bit  
(addresses 038216 and 038316). If timer overflow is selected, this bit can be “1” or “0  
Note 2: Set the corresponding port direction register to “0”.  
Figure 1.16.10. Configuration of timer Ai mode register in pulse width modulation mode  
79  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer A  
Condition : Reload register = 000316, when external trigger  
(rising edge of TAiIN pin input signal) is selected  
1 / fi X  
(216 – 1)  
Count source  
“H”  
“L”  
TAiIN pin  
input signal  
Trigger is not generated by this signal  
1 / f  
i
X n  
“H”  
“L”  
PWM pulse output  
from TAiOUT pin  
“1”  
“0”  
Timer Ai interrupt  
request bit  
fi  
: Frequency of count source  
(f , f , f32, fC32  
1
8
)
Cleared to “0” when interrupt request is accepted, or cleared by software  
Note: n = 000016 to FFFE16  
.
Figure 1.16.11. Example of how a 16-bit pulse width modulator operates  
Condition : Reload register high-order 8 bits = 0216  
Reload register low-order 8 bits = 0216  
External trigger (falling edge of TAiIN pin input signal) is selected  
1 / fi  
X (m + 1) X (28 – 1)  
Count source (Note1)  
TAiIN pin input signal  
“H”  
“L”  
1 / fi X (m + 1)  
“H”  
“L”  
Underflow signal of  
8-bit prescaler (Note2)  
1 / fi X (m + 1) X n  
“H”  
“L”  
PWM pulse output  
from TAiOUT pin  
“1”  
“0”  
Timer Ai interrupt  
request bit  
f
i
: Frequency of count source  
(f , f , f32, fC32  
Cleared to “0” when interrupt request is accepted, or cleaerd by software  
1
8
)
Note 1: The 8-bit prescaler counts the count source.  
Note 2: The 8-bit pulse width modulator counts the 8-bit prescaler's underflow signal.  
Note 3: m = 0016 to FE16; n = 0016 to FE16  
.
Figure 1.16.12. Example of how an 8-bit pulse width modulator operates  
80  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer B  
Timer B  
Figure 1.16.13 shows the block diagram of timer B. Figures 1.16.14 and 1.16.15 show the timer B-related  
registers.  
Use the timer Bi mode register (i = 0 to 2) bits 0 and 1 to choose the desired mode.  
Timer B has three operation modes listed as follows:  
• Timer mode: The timer counts an internal count source.  
• Event counter mode: The timer counts pulses from an external source or a timer overflow.  
• Pulse period/pulse width measuring mode: The timer measures an external signal's pulse period or  
pulse width.  
Data bus high-order bits  
Data bus low-order bits  
Clock source selection  
High-order 8 bits  
Low-order 8 bits  
f
1
• Timer  
Reload register (16)  
• Pulse period/pulse width measurement  
f
f
8
32  
fC32  
Counter (16)  
• Event counter  
Count start flag  
Polarity switching  
and edge pulse  
TBiIN  
(i = 0 to 2)  
(address 038016  
)
Counter reset circuit  
Can be selected in only  
event counter mode  
TBi  
Address  
TBj  
TBj overflow  
(j = i – 1. Note, however,  
j = 2 when i = 0)  
Timer B0 039116 039016 Timer B2  
Timer B1 039316 039216 Timer B0  
Timer B2 039516 039416 Timer B1  
Figure 1.16.13. Block diagram of timer B  
Timer Bi mode register  
Symbol  
Address  
When reset  
00XX00002  
b7 b6 b5 b4 b3 b2 b1 b0  
TBiMR(i = 0 to 2) 039B16 to 039D16  
R
W
Bit symbol  
Function  
Bit name  
b1 b0  
TMOD0  
Operation mode select bit  
0 0 : Timer mode  
0 1 : Event counter mode  
1 0 : Pulse period/pulse width  
measurement mode  
1 1 : Inhibited  
TMOD1  
MR0  
MR1  
MR2  
Function varies with each operation mode  
(Note 1)  
(Note 2)  
MR3  
TCK0  
TCK1  
Count source select bit  
(Function varies with each operation mode)  
Note 1: Timer B0.  
Note 2: Timer B1, timer B2.  
Figure 1.16.14. Timer B-related registers (1)  
81  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer B  
Timer Bi register (Note)  
Symbol  
TB0  
TB1  
Address  
When reset  
(b15)  
(b8)  
039116, 039016 Indeterminate  
039316, 039216 Indeterminate  
039516, 039416 Indeterminate  
b7  
b0 b7  
b0  
TB2  
Values that can be set  
000016 to FFFF16  
Function  
R W  
• Timer mode  
Counts the timer's period  
• Event counter mode  
000016 to FFFF16  
Counts external pulses input or a timer overflow  
• Pulse period / pulse width measurement mode  
Measures a pulse period or width  
Note: Read and write data in 16-bit units.  
Count start flag  
Symbol  
TABSR  
Address  
038016  
When reset  
0016  
b7 b6 b5 b4 b3 b2 b1 b0  
Bit symbol  
TA0S  
TA1S  
TA2S  
TA3S  
TA4S  
TB0S  
TB1S  
TB2S  
R W  
Bit name  
Function  
Timer A0 count start flag  
Timer A1 count start flag  
Timer A2 count start flag  
Timer A3 count start flag  
Timer A4 count start flag  
Timer B0 count start flag  
Timer B1 count start flag  
Timer B2 count start flag  
0 : Stops counting  
1 : Starts counting  
Clock prescaler reset flag  
Symbol  
CPSRF  
Address  
038116  
When reset  
0XXXXXXX  
b7 b6 b5 b4 b3 b2 b1 b0  
2
Bit symbol  
Bit name  
Function  
R W  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to be  
indeterminate.  
0 : No effect  
1 : Prescaler is reset  
(When read, the value is “0”)  
CPSR  
Clock prescaler reset flag  
Figure 1.16.15. Timer B-related registers (2)  
82  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer B  
(1) Timer mode  
In this mode, the timer counts an internally generated count source. (See Table 1.16.6.) Figure 1.16.16  
shows the timer Bi mode register in timer mode.  
Table 1.16.6. Timer specifications in timer mode  
Item  
Count source  
Count operation  
Specification  
f1, f8, f32, fC32  
• Counts down  
• When the timer underflows, it reloads the reload register contents before  
continuing counting  
Divide ratio  
1/(n+1) n : Set value  
Count start condition  
Count stop condition  
Count start flag is set (= 1)  
Count start flag is reset (= 0)  
Interrupt request generation timing The timer underflows  
TBiIN pin function  
Read from timer  
Write to timer  
Programmable I/O port  
Count value is read out by reading timer Bi register  
• When counting stopped  
When a value is written to timer Bi register, it is written to both reload register and counter  
• When counting in progress  
When a value is written to timer Bi register, it is written to only reload register  
(Transferred to counter at next reload time)  
Timer Bi mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
When reset  
00XX0000  
TBiMR(i=0 to 2) 039B16 to 039D16  
2
0
0
Bit symbol  
R
W
Bit name  
Function  
0 0 : Timer mode  
b1 b0  
TMOD0  
TMOD1  
MR0  
Operation mode select bit  
Invalid in timer mode  
Can be “0” or “1”  
MR1  
MR2  
0 (Fixed to “0” in timer mode ; i = 0)  
(Note 1)  
(Note 2)  
Nothing is assiigned (i = 1,2).  
In an attempt to write to this bit, write “0” . The value, if read, turns out  
to be indeterminate.  
Invalid in timer mode.  
MR3  
In an attempt to write to this bit, write “0” . The value, if read in  
timer mode, turns out to be indeterminate.  
b7 b6  
Count source select bit  
TCK0  
TCK1  
0 0 : f  
0 1 : f  
1
8
1 0 : f32  
1 1 : fC32  
Note 1: Timer B0.  
Note 2: Timer B1, timer B2.  
Figure 1.16.16. Timer Bi mode register in timer mode  
83  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer B  
(2) Event counter mode  
In this mode, the timer counts an external signal or an internal timer's overflow. (See Table 1.16.7.)  
Figure 1.16.17 shows the timer Bi mode register in event counter mode.  
Table 1.16.7. Timer specifications in event counter mode  
Item  
Specification  
• External signals input to TBiIN pin  
Count source  
• Effective edge of count source can be a rising edge, a falling edge, or falling  
and rising edges as selected by software  
Count operation  
• Counts down  
• When the timer underflows, it reloads the reload register contents before  
continuing counting  
Divide ratio  
1/(n+1)  
n : Set value  
Count start condition  
Count stop condition  
Count start flag is set (= 1)  
Count start flag is reset (= 0)  
Interrupt request generation timing The timer underflows  
TBiIN pin function  
Read from timer  
Write to timer  
Count source input  
Count value can be read out by reading timer Bi register  
• When counting stopped  
When a value is written to timer Bi register, it is written to both reload register and counter  
• When counting in progress  
When a value is written to timer Bi register, it is written to only reload register  
(Transferred to counter at next reload time)  
Timer Bi mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
When reset  
00XX00002  
TBiMR(i=0 to 2) 039B16 to 039D16  
0
1
R
W
Bit symbol  
Bit name  
Function  
b1 b0  
TMOD0  
TMOD1  
MR0  
Operation mode select bit  
0 1 : Event counter mode  
b3 b2  
Count polarity select  
bit (Note 1)  
0 0 : Counts external signal's  
falling edges  
0 1 : Counts external signal's  
rising edges  
MR1  
1 0 : Counts external signal's  
falling and rising edges  
1 1 : Inhibited  
0 (Fixed to “0” in event counter mode; i = 0)  
MR2  
MR3  
(Note 2)  
(Note 3)  
Nothing is assigned (i = 1, 2).  
In an attempt to write to this bit, write “0” . The value, if read,  
turns out to be indeterminate.  
Invalid in event counter mode.  
In an attempt to write to this bit, write “0” . The value, if read  
in event counter mode, turns out to be indeterminate.  
Invalid in event counter mode.  
Can be “0” or “1”.  
TCK0  
TCK1  
0 : Input from TBiIN pin (Note 4)  
1 : TBj overflow  
Event clock select  
(j = i – 1; however, j = 2 when i = 0)  
Note 1: Valid only when input from the TBiIN pin is selected as the event clock.  
If timer's overflow is selected, this bit can be “0” or “1”.  
Note 2: Timer B0.  
Note 3: Timer B1, timer B2.  
Note 4: Set the corresponding port direction register to “0”.  
Figure 1.16.17. Timer Bi mode register in event counter mode  
84  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer B  
(3) Pulse period/pulse width measurement mode  
In this mode, the timer measures the pulse period or pulse width of an external signal. (See Table 1.16.8.)  
Figure 1.16.18 shows the timer Bi mode register in pulse period/pulse width measurement mode. Figure  
1.16.19 shows the operation timing when measuring a pulse period. Figure 1.16.20 shows the operation  
timing when measuring a pulse width.  
Table 1.16.8. Timer specifications in pulse period/pulse width measurement mode  
Item  
Count source  
Count operation  
Specification  
f1, f8, f32, fC32  
• Up count  
• Counter value “000016” is transferred to reload register at measurement  
pulse's effective edge and the timer continues counting  
Count start flag is set (= 1)  
Count start condition  
Count stop condition  
Count start flag is reset (= 0)  
Interrupt request generation timing • When measurement pulse's effective edge is input (Note 1)  
• When an overflow occurs. (Simultaneously, the timer Bi overflow flag  
changes to “1”. The timer Bi overflow flag changes to “0” when the count  
start flag is “1” and a value is written to the timer Bi mode register.)  
TBiIN pin function  
Read from timer  
Measurement pulse input  
When timer Bi register is read, it indicates the reload register’s content  
(measurement result) (Note 2)  
Write to timer  
Cannot be written to  
Note 1: An interrupt request is not generated when the first effective edge is input after the timer has started counting.  
Note 2: The value read out from the timer Bi register is indeterminate until the second effective edge is input after the timer.  
Timer Bi mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
Address  
When reset  
00XX0000  
TBiMR(i=0 to 2) 039B16 to 039D16  
2
1
0
R
W
Bit symbol  
Bit name  
Function  
b1 b0  
TMOD0  
TMOD1  
Operation mode  
select bit  
1 0 : Pulse period / pulse width  
measurement mode  
b3 b2  
MR0  
MR1  
Measurement mode  
select bit  
0 0 : Pulse period measurement (Interval between  
measurement pulse's falling edge to falling edge)  
0 1 : Pulse period measurement (Interval between  
measurement pulse's rising edge to rising edge)  
1 0 : Pulse width measurement (Interval between  
measurement pulse's falling edge to rising edge,  
and between rising edge to falling edge)  
1 1 : Inhibited  
MR2  
0 (Fixed to “0” in pulse period/pulse width measurement mode; i = 0)  
(Note 2)  
(Note 3)  
Nothing is assigned (i = 1, 2).  
In an attempt to write to this bit, write “0” . The value, if read, turns out to be  
indeterminate.  
Timer Bi overflow  
flag ( Note 1)  
0 : Timer did not overflow  
1 : Timer has overflowed  
MR3  
b7 b6  
TCK0  
TCK1  
Count source  
select bit  
0 0 : f  
0 1 : f  
1 0 : f32  
1 1 : fC32  
1
8
Note 1: The timer Bi overflow flag changes to “0” when the count start flag is “1” and a value is written to the  
timer Bi mode register. This flag cannot be set to “1” by software.  
Note 2: Timer B0.  
Note 3: Timer B1, timer B2.  
Figure 1.16.18. Timer Bi mode register in pulse period/pulse width measurement mode  
85  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timer B  
When measuring measurement pulse time interval from falling edge to falling edge  
Count source  
“H”  
“L”  
Measurement pulse  
Transfer  
Transfer  
(indeterminate value)  
(measured value)  
Reload register counter  
transfer timing  
(Note 1)  
(Note 1)  
(Note 2)  
Timing at which counter  
reaches “000016  
“1”  
“0”  
Count start flag  
“1”  
“0”  
Timer Bi interrupt  
request bit  
Cleared to “0” when interrupt request is accepted, or cleared by software.  
“1”  
“0”  
Timer Bi overflow flag  
Note 1: Counter is initialized at completion of measurement.  
Note 2: Timer has overflowed.  
Figure 1.16.19. Operation timing when measuring a pulse period  
Count source  
“H”  
Measurement pulse  
“L”  
Transfer  
(measured value)  
Transfer  
(measured value)  
Transfer  
(indeterminate  
value)  
Transfer  
(measured  
value)  
Reload register counter  
transfer timing  
(Note 1)  
(Note 1)  
(Note 1) (Note 1)  
(Note 2)  
Timing at which counter  
reaches “000016  
“1”  
“0”  
Count start flag  
“1”  
“0”  
Timer Bi interrupt  
request bit  
Cleared to “0” when interrupt request is accepted, or cleared by software.  
“1”  
“0”  
Timer Bi overflow flag  
Note 1: Counter is initialized at completion of measurement.  
Note 2: Timer has overflowed.  
Figure 1.16.20. Operation timing when measuring a pulse width  
86  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Serial I/O  
Serial I/O  
Serial I/O is configured as three channels: UART0, UART1 and UART2. UART0, UART1 and UART2 each  
have an exclusive timer to generate a transfer clock, so they operate independently of each other.  
Figure 1.17.1 shows the block diagram of UART0, UART1 and UART2. Figure 1.17.2 and figure 1.17.3  
show the block diagram of the transmit/receive unit.  
UARTi (i = 0 to 2) has two operation modes: a clock synchronous serial I/O mode and a clock asynchronous  
serial I/O mode (UART mode). The contents of the serial I/O mode select bits (bits 0 to 2 at addresses  
03A016, 03A816 and 037816) determine whether UARTi is used as a clock synchronous serial I/O or as a  
UART.  
UART0 through UART2 are almost equal in their functions with minor exceptions. UART2, in particular, is  
compliant with the SIM interface with some extra settings added in clock-asynchronous serial I/O mode  
(Note). It also has the bus collision detection function that generates an interrupt request if the TXD pin and  
the RXD pin are different in level.  
Note: SIM : Subscriber Identity Module  
Table 1.17.1 shows the comparison of functions of UART0 through UART2, and Figures 1.17.4 through  
1.17.8 show the registers related to UARTi.  
Table 1.17.1. Comparison of functions of UART0 through UART2  
Function  
UART0  
UART1  
UART2  
Possible  
CLK polarity selection  
Possible  
Possible  
(Note 1) Possible (Note 1)  
(Note 1) Possible (Note 1)  
(Note 1) Possible (Note 1)  
Possible (Note 1)  
(Note 1)  
(Note 2)  
(Note 1)  
LSB first / MSB first selection  
Possible  
Continuous receive mode selection  
Possible  
Possible  
Transfer clock output from multiple  
pins selection  
Impossible  
Possible  
Impossible  
Impossible  
Possible  
Separate CTS/RTS pins  
Serial data logic switch  
Sleep mode selection  
Impossible  
Impossible  
Possible  
Impossible  
(Note 4)  
(Note 3) Possible (Note 3)  
Impossible  
Impossible  
Possible  
TxD, RxD I/O polarity switch  
TxD, RxD port output format  
Parity error signal output  
Bus collision detection  
Impossible  
N-channel open-drain  
output  
CMOS output  
Impossible  
Impossible  
CMOS output  
Impossible  
Impossible  
Possible  
Possible  
(Note 4)  
Note 1: Only when clock synchronous serial I/O mode.  
Note 2: Only when clock synchronous serial I/O mode and 8-bit UART mode.  
Note 3: Only when UART mode.  
Note 4: Using for SIM interface.  
87  
Mitsubishi microcomputers  
M16C / 61 Group  
Serial I/O  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(UART0)  
RxD  
0
TxD  
0
UART reception  
Receive  
clock  
1/16  
Reception  
control circuit  
Transmit/  
receive  
unit  
Clock source selection  
Clock synchronous type  
Bit rate generator  
f
f
f
1
Internal  
(address 03A116  
)
8
Transmit  
clock  
UART transmission  
32  
1/16  
1 / (n0+1)  
Transmission  
control circuit  
Clock synchronous type  
External  
Clock synchronous type  
(when internal clock is selected)  
1/2  
Clock synchronous type  
(when internal clock is selected)  
Clock synchronous type  
(when external clock is  
selected)  
CLK  
polarity  
reversing  
circuit  
CLK0  
CTS/RTS disabled  
CTS/RTS selected  
RTS  
0
CTS0 / RTS0  
Vcc  
CTS/RTS disabled  
CTS/RTS separated  
CTS  
0
CTS0 from UART1  
(UART1)  
RxD1  
TxD  
1
UART reception  
Receive  
clock  
1/16  
Transmit/  
receive  
unit  
Reception  
control circuit  
Clock source selection  
Bit rate generator  
(address 03A916  
Clock synchronous type  
f1  
)
Internal  
f
8
UART transmission  
1/16  
Transmit  
clock  
1 / (n1+1)  
f32  
Transmission  
control circuit  
Clock synchronous type  
Clock synchronous type  
(when internal clock is selected)  
1/2  
External  
Clock synchronous type  
(when internal clock is selected)  
Clock synchronous type  
(when external clock is  
selected)  
CLK  
polarity  
reversing  
circuit  
CLK1  
CTS/RTS disabled  
CTS/RTS separated  
RTS  
1
CTS  
CTS  
1
0
/ RTS1  
V
CC  
/ CLKS  
1
Clock output pin  
select switch  
CTS/RTS disabled  
CTS  
1
CTS  
0
CTS0 to UART0  
(UART2)  
TxD  
RxD polarity  
reversing circuit  
polarity  
reversing  
circuit  
RxD  
2
TxD2  
UART reception  
Receive  
clock  
1/16  
Reception  
control circuit  
Transmit/  
receive  
unit  
Clock source selection  
Clock synchronous type  
Bit rate generator  
(address 037916  
f
f
f
1
Internal  
)
8
UART transmission  
1/16  
Transmit  
clock  
32  
1 / (n2+1)  
Transmission  
control circuit  
Clock synchronous type  
Clock synchronous type  
External  
(when internal clock is selected)  
1/2  
Clock synchronous type  
(when external clock is  
selected)  
Clock synchronous type  
(when internal clock is selected)  
CLK  
polarity  
reversing  
circuit  
CLK2  
CTS/RTS  
selected  
CTS/RTS disabled  
RTS  
2
CTS  
2
/ RTS  
2
Vcc  
CTS/RTS disabled  
CTS  
2
n0 : Values set to UART0 bit rate generator (BRG0)  
n1 : Values set to UART1 bit rate generator (BRG1)  
n2 : Values set to UART2 bit rate generator (BRG2)  
Figure 1.17.1. Block diagram of UARTi (i = 0 to 2)  
88  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Serial I/O  
Clock  
synchronous type  
UART (7 bits)  
UART (8 bits)  
Clock  
UARTi receive register  
synchronous  
type  
UART (7 bits)  
PAR  
disabled  
1SP  
2SP  
SP  
SP  
PAR  
RxDi  
PAR  
enabled  
UART  
UART (9 bits)  
Clock  
synchronous type  
UART (8 bits)  
UART (9 bits)  
UARTi receive  
buffer register  
0
0
0
0
0
0
0
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D0  
Address 03A616  
Address 03A716  
Address 03AE16  
Address 03AF16  
MSB/LSB conversion circuit  
Data bus high-order bits  
Data bus low-order bits  
MSB/LSB conversion circuit  
UARTi transmit  
buffer register  
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D0  
D
8
Address 03A216  
Address 03A316  
Address 03AA16  
Address 03AB16  
UART (8 bits)  
UART (9 bits)  
Clock synchronous  
type  
UART (9 bits)  
PAR  
enabled  
UART  
2SP  
1SP  
SP  
SP  
PAR  
TxDi  
Clock  
synchronous  
type  
PAR  
disabled  
UART (7 bits)  
UARTi transmit register  
UART (7 bits)  
UART (8 bits)  
SP: Stop bit  
PAR: Parity bit  
“0”  
Clock synchronous  
type  
Figure 1.17.2. Block diagram of UARTi (i = 0, 1) transmit/receive unit  
89  
Mitsubishi microcomputers  
M16C / 61 Group  
Serial I/O  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
No reverse  
Reverse  
RxD data  
reverse circuit  
RxD2  
Clock  
synchronous type  
UART  
(7 bits)  
UART  
(8 bits)  
Clock  
synchronous  
type  
UART2 receive register  
PAR  
disabled  
UART(7 bits)  
1SP  
SP  
PAR  
SP  
2SP  
Clock  
synchronous type  
PAR  
enabled  
UART  
UART  
(9 bits)  
UART  
(8 bits)  
UART  
(9 bits)  
UART2 receive  
buffer register  
0
0
0
0
0
0
0
D
8
D7  
D6  
D5  
D
4
D3  
D2  
D
1
D0  
Address 037E16  
Address 037F16  
Logic reverse circuit + MSB/LSB conversion circuit  
Data bus high-order bits  
Data bus low-order bits  
Logic reverse circuit + MSB/LSB conversion circuit  
UART2 transmit  
buffer register  
D7  
D6  
D
5
D
4
D3  
D
2
D
1
D
0
D8  
Address 037A16  
Address 037B16  
UART  
(8 bits)  
UART  
(9 bits)  
UART  
(9 bits)  
Clock  
synchronous type  
PAR  
enabled  
UART  
2SP  
SP  
SP  
PAR  
1SP  
Clock  
synchronous  
type  
PAR  
disabled  
UART  
(7 bits)  
UART  
(8 bits)  
UART(7 bits)  
UART2 transmit register  
“0”  
Clock  
synchronous type  
Error signal output  
disable  
No reverse  
TxD data  
reverse circuit  
Error signal  
output circuit  
TxD2  
Reverse  
Error signal output  
enable  
SP: Stop bit  
PAR: Parity bit  
Figure 1.17.3. Block diagram of UART2 transmit/receive unit  
90  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Serial I/O  
UARTi transmit buffer register  
Symbol  
U0TB  
U1TB  
U2TB  
Address  
When reset  
(b15)  
b7  
(b8)  
03A316, 03A216  
03AB16, 03AA16  
037B16, 037A16  
Indeterminate  
Indeterminate  
Indeterminate  
b0 b7  
b0  
Function  
R W  
Transmit data  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to be indeterminate.  
UARTi receive buffer register  
(b15)  
b7  
(b8)  
b0 b7  
Symbol  
U0RB  
U1RB  
U2RB  
Address  
When reset  
Indeterminate  
Indeterminate  
Indeterminate  
b0  
03A716, 03A616  
03AF16, 03AE16  
037F16, 037E16  
Function  
(During clock synchronous  
serial I/O mode)  
Bit  
symbol  
Function  
(During UART mode)  
Bit name  
R W  
Receive data  
Receive data  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to be indeterminate.  
OER  
Overrun error flag (Note)  
0 : No overrun error  
0 : No overrun error  
1 : Overrun error found  
1 : Overrun error found  
FER  
Framing error flag (Note)  
Invalid  
0 : No framing error  
1 : Framing error found  
PER  
SUM  
Parity error flag (Note)  
Error sum flag (Note)  
Invalid  
Invalid  
0 : No parity error  
1 : Parity error found  
0 : No error  
1 : Error found  
Note: Bits 15 through 12 are set to “0” when the serial I/O mode select bit (bits 2 to 0 at addresses 03A016  
,
03A816 and 037816) are set to “000 ” or the receive enable bit is set to “0”.  
2
(Bit 15 is set to “0” when bits 14 to 12 all are set to “0”.) Bits 14 and 13 are also set to “0” when the  
lower byte of the UARTi receive buffer register (addresses 03A616, 03AE16 and 037E16) is read out.  
UARTi bit rate generator  
Symbol  
U0BRG  
U1BRG  
U2BRG  
Address  
03A116  
03A916  
037916  
When reset  
Indeterminate  
Indeterminate  
Indeterminate  
b7  
b0  
R W  
Function  
Values that can be set  
0016 to FF16  
Assuming that set value = n, BRGi divides the count source by  
n + 1  
Figure 1.17.4. Serial I/O-related registers (1)  
91  
Mitsubishi microcomputers  
M16C / 61 Group  
Serial I/O  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
UARTi transmit/receive mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
UiMR(i=0,1)  
Address  
03A016, 03A816  
When reset  
0016  
Function  
(During clock synchronous  
serial I/O mode)  
Bit  
symbol  
Function  
(During UART mode)  
Bit name  
R W  
b2 b1 b0  
Must be fixed to 001  
b2 b1 b0  
SMD0  
Serial I/O mode select bit  
1 0 0 : Transfer data 7 bits long  
1 0 1 : Transfer data 8 bits long  
1 1 0 : Transfer data 9 bits long  
0 0 0 : Serial I/O invalid  
0 1 0 : Inhibited  
0 0 0 : Serial I/O invalid  
0 1 0 : Inhibited  
0 1 1 : Inhibited  
1 1 1 : Inhibited  
SMD1  
SMD2  
0 1 1 : Inhibited  
1 1 1 : Inhibited  
CKDIR  
STPS  
PRY  
Internal/external clock  
select bit  
0 : Internal clock  
1 : External clock  
0 : Internal clock  
1 : External clock  
0 : One stop bit  
1 : Two stop bits  
Stop bit length select bit  
Invalid  
Valid when bit 6 = “1”  
0 : Odd parity  
Odd/even parity select bit Invalid  
1 : Even parity  
0 : Parity disabled  
1 : Parity enabled  
PRYE  
SLEP  
Parity enable bit  
Sleep select bit  
Invalid  
0 : Sleep mode deselected  
1 : Sleep mode selected  
Must always be “0”  
UART2 transmit/receive mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
U2MR  
Address  
037816  
When reset  
0016  
Function  
(During clock synchronous  
serial I/O mode)  
Bit  
symbol  
Function  
(During UART mode)  
Bit name  
R W  
b2 b1 b0  
SMD0  
Must be fixed to 001  
b2 b1 b0  
Serial I/O mode select bit  
1 0 0 : Transfer data 7 bits long  
1 0 1 : Transfer data 8 bits long  
1 1 0 : Transfer data 9 bits long  
0 0 0 : Serial I/O invalid  
0 1 0 : Inhibited  
0 0 0 : Serial I/O invalid  
0 1 0 : Inhibited  
0 1 1 : Inhibited  
SMD1  
SMD2  
1 1 1 : Inhibited  
0 1 1 : Inhibited  
1 1 1 : Inhibited  
CKDIR  
STPS  
PRY  
Internal/external clock  
select bit  
0 : Internal clock  
1 : External clock  
Must always be “0”  
0 : One stop bit  
1 : Two stop bits  
Stop bit length select bit  
Invalid  
Valid when bit 6 = “1”  
0 : Odd parity  
Odd/even parity select bit Invalid  
1 : Even parity  
0 : Parity disabled  
1 : Parity enabled  
PRYE  
Parity enable bit  
Invalid  
TxD, RxD I/O polarity  
reverse bit  
0 : No reverse  
1 : Reverse  
0 : No reverse  
1 : Reverse  
IOPOL  
Usually set to “0”  
Usually set to “0”  
Figure 1.17.5. Serial I/O-related registers (2)  
92  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Serial I/O  
UARTi transmit/receive control register 0  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
UiC0(i=0,1)  
Address  
03A416, 03AC16  
When reset  
0816  
Function  
(During clock synchronous  
serial I/O mode)  
Bit  
symbol  
Function  
(During UART mode)  
R W  
Bit name  
b1 b0  
b1 b0  
CLK0 BRG count source  
select bit  
0 0 : f1 is selected  
0 1 : f8 is selected  
1 0 : f32 is selected  
1 1 : Inhibited  
0 0 : f1 is selected  
0 1 : f8 is selected  
1 0 : f32 is selected  
1 1 : Inhibited  
CLK1  
Valid when bit 4 = “0”  
0 : CTS function is selected (Note 1)  
1 : RTS function is selected (Note 2)  
Valid when bit 4 = “0”  
0 : CTS function is selected (Note 1)  
1 : RTS function is selected (Note 2)  
CRS  
CTS/RTS function  
select bit  
0 : Data present in transmit  
register (during transmission)  
1 : No data present in transmit  
register (transmission  
0 : Data present in transmit register  
(during transmission)  
1 : No data present in transmit  
register (transmission completed)  
TXEPT Transmit register empty  
flag  
completed)  
0 : CTS/RTS function enabled  
1 : CTS/RTS function disabled  
(P60 and P64 function as  
programmable I/O port)  
0 : CTS/RTS function enabled  
1 : CTS/RTS function disabled  
(P60 and P64 function as  
programmable I/O port)  
CRD  
NCH  
CTS/RTS disable bit  
Data output select bit  
0 : TXDi pin is CMOS output  
1 : TXDi pin is N-channel  
open-drain output  
0: TXDi pin is CMOS output  
1: TXDi pin is N-channel  
open-drain output  
0 : Transmit data is output at  
falling edge of transfer clock  
and receive data is input at  
rising edge  
Must always be “0”  
CKPOL CLK polarity select bit  
1 : Transmit data is output at  
rising edge of transfer clock  
and receive data is input at  
falling edge  
0 : LSB first  
1 : MSB first  
UFORM Transfer format select bit  
Must always be “0”  
Note 1: Set the corresponding port direction register to “0”.  
Note 2: The settings of the corresponding port register and port direction register are invalid.  
UART2 transmit/receive control register 0  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
U2C0  
Address  
037C16  
When reset  
0816  
Function  
(During clock synchronous  
serial I/O mode)  
Bit  
symbol  
Function  
(During UART mode)  
R W  
Bit name  
b1 b0  
b1 b0  
CLK0  
CLK1  
BRG count source  
select bit  
0 0 : f1 is selected  
0 1 : f8 is selected  
1 0 : f32 is selected  
1 1 : Inhibited  
0 0 : f1 is selected  
0 1 : f8 is selected  
1 0 : f32 is selected  
1 1 : Inhibited  
Valid when bit 4 = “0”  
0 : CTS function is selected (Note 1)  
1 : RTS function is selected (Note 2)  
Valid when bit 4 = “0”  
0 : CTS function is selected (Note 1)  
1 : RTS function is selected (Note 2)  
CRS  
CTS/RTS function  
select bit  
0 : Data present in transmit  
register (during transmission)  
1 : No data present in transmit  
register (transmission  
0 : Data present in transmit register  
(during transmission)  
1 : No data present in transmit  
register (transmission completed)  
TXEPT Transmit register empty  
flag  
completed)  
0 : CTS/RTS function enabled  
1 : CTS/RTS function disabled  
(P73 functions  
0 : CTS/RTS function enabled  
1 : CTS/RTS function disabled  
(P73 functions programmable  
I/O port)  
CRD  
CTS/RTS disable bit  
programmable I/O port)  
Nothing is assigned.  
In an attempt to write to this bit, write “0”. The value, if read, turns out to be “0”.  
0 : Transmit data is output at  
falling edge of transfer clock  
and receive data is input at  
rising edge  
Must always be “0”  
CKPOL CLK polarity select bit  
1 : Transmit data is output at  
rising edge of transfer clock  
and receive data is input at  
falling edge  
0 : LSB first  
1 : MSB first  
0 : LSB first  
1 : MSB first  
Transfer format select bit  
(Note 3)  
UFORM  
Note 1: Set the corresponding port direction register to “0”.  
Note 2: The settings of the corresponding port register and port direction register are invalid.  
Note 3: Only clock synchronous serial I/O mode and 8-bit UART mode are valid.  
Figure 1.17.6. Serial I/O-related registers (3)  
93  
Mitsubishi microcomputers  
M16C / 61 Group  
Serial I/O  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
UARTi transmit/receive control register 1  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
UiC1(i=0,1)  
Address  
03A516,03AD16  
When reset  
0216  
Function  
(During clock synchronous  
serial I/O mode)  
Bit  
symbol  
Function  
(During UART mode)  
Bit name  
R W  
TE  
Transmit enable bit  
0 : Transmission disabled  
1 : Transmission enabled  
0 : Transmission disabled  
1 : Transmission enabled  
TI  
Transmit buffer  
empty flag  
0 : Data present in  
0 : Data present in  
transmit buffer register  
1 : No data present in  
transmit buffer register  
transmit buffer register  
1 : No data present in  
transmit buffer register  
RE  
RI  
Receive enable bit  
0 : Reception disabled  
1 : Reception enabled  
0 : Reception disabled  
1 : Reception enabled  
Receive complete flag  
0 : No data present in  
receive buffer register  
1 : Data present in  
0 : No data present in  
receive buffer register  
1 : Data present in  
receive buffer register  
receive buffer register  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to be “0”.  
UART2 transmit/receive control register 1  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
U2C1  
Address  
037D16  
When reset  
0216  
Function  
(During clock synchronous  
serial I/O mode)  
Bit  
Function  
(During UART mode)  
Bit name  
symbol  
R W  
TE  
TI  
Transmit enable bit  
0 : Transmission disabled  
1 : Transmission enabled  
0 : Transmission disabled  
1 : Transmission enabled  
Transmit buffer  
empty flag  
0 : Data present in  
0 : Data present in  
transmit buffer register  
1 : No data present in  
transmit buffer register  
transmit buffer register  
1 : No data present in  
transmit buffer register  
RE  
RI  
Receive enable bit  
0 : Reception disabled  
1 : Reception enabled  
0 : Reception disabled  
1 : Reception enabled  
Receive complete flag  
0 : No data present in  
receive buffer register  
1 : Data present in  
0 : No data present in  
receive buffer register  
1 : Data present in  
receive buffer register  
receive buffer register  
U2IRS UART2 transmit interrupt 0 : Transmit buffer empty  
0 : Transmit buffer empty  
(TI = 1)  
cause select bit  
(TI = 1)  
1 : Transmit is completed  
(TXEPT = 1)  
1 : Transmit is completed  
(TXEPT = 1)  
U2RRM UART2 continuous  
receive mode enable bit  
0 : Continuous receive  
mode disabled  
1 : Continuous receive  
mode enabled  
Invalid  
U2LCH Data logic select bit  
0 : No reverse  
1 : Reverse  
0 : No reverse  
1 : Reverse  
U2ERE Error signal output  
enable bit  
Must be fixed to “0”  
0 : Output disabled  
1 : Output enabled  
Figure 1.17.7. Serial I/O-related registers (4)  
94  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Serial I/O  
UART transmit/receive control register 2  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
UCON  
Address  
03B016  
When reset  
X0000000  
2
Function  
(During clock synchronous  
serial I/O mode)  
Bit  
symbol  
Function  
(During UART mode)  
Bit name  
R W  
0 : Transmit buffer empty (Tl = 1)  
1 : Transmission completed  
(TXEPT = 1)  
0 : Transmit buffer empty (Tl = 1)  
1 : Transmission completed  
(TXEPT = 1)  
U0IRS UART0 transmit  
interrupt cause select bit  
0 : Transmit buffer empty (Tl = 1)  
1 : Transmission completed  
(TXEPT = 1)  
0 : Transmit buffer empty (Tl = 1)  
1 : Transmission completed  
(TXEPT = 1)  
U1IRS UART1 transmit  
interrupt cause select bit  
U0RRM UART0 continuous  
receive mode enable bit  
0 : Continuous receive  
mode disabled  
1 : Continuous receive  
mode enable  
Invalid  
U1RRM UART1 continuous  
receive mode enable bit  
0 : Continuous receive  
mode disabled  
1 : Continuous receive  
mode enabled  
Invalid  
CLKMD0 CLK/CLKS select bit 0  
Valid when bit 5 = “1”  
0 : Clock output to CLK1  
1 : Clock output to CLKS1  
Invalid  
CLKMD1 CLK/CLKS select  
bit 1 (Note)  
0 : Normal mode  
Must always be “0”  
(CLK output is CLK1 only)  
1 : Transfer clock output  
from multiple pins  
function selected  
0 : CTS/RTS shared pin  
1 : CTS/RTS separated  
Separate CTS/RTS bit  
RCSP  
0 : CTS/RTS shared pin  
1 : CTS/RTS separated  
Nothing is assigned.  
In an attempt to write to this bit, write “0”. The value, if read, turns out to be indeterminate.  
Note: When using multiple pins to output the transfer clock, the following requirements must be met:  
• UART1 internal/external clock select bit (bit 3 at address 03A816) = “0”.  
Figure 1.17.8. Serial I/O-related registers (5)  
95  
Mitsubishi microcomputers  
M16C / 61 Group  
Clock synchronous serial I/O mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(1) Clock synchronous serial I/O mode  
The clock synchronous serial I/O mode uses a transfer clock to transmit and receive data. Table 1.17.2  
and table 1.17.3 list the specifications of the clock synchronous serial I/O mode. Figure 1.17.9 shows the  
UARTi transmit/receive mode register.  
Table 1.17.2. Specifications of clock synchronous serial I/O mode (1)  
Item  
Specification  
Transfer data format  
Transfer clock  
• Transfer data length: 8 bits  
• When internal clock is selected (bit 3 at addresses 03A016, 03A816, 037816  
= “0”) : fi/ 2(n+1) (Note 1) fi = f1, f8, f32  
• When external clock is selected (bit 3 at addresses 03A016, 03A816, 037816  
= “1”) : Input from CLKi pin  
_______  
_______  
_______ _______  
Transmission/reception control CTS function/RTS function/CTS, RTS function chosen to be invalid  
Transmission start condition • To start transmission, the following requirements must be met:  
_
Transmit enable bit (bit 0 at addresses 03A516, 03AD16, 037D16) = “1”  
_
Transmit buffer empty flag (bit 1 at addresses 03A516, 03AD16, 037D16) = “0”  
_______  
_______  
_
When CTS function selected, CTS input level = “L”  
Furthermore, if external clock is selected, the following requirements must also be met:  
CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) = “0”:  
CLKi input level = “H”  
_
_
CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) = “1”:  
CLKi input level = “L”  
Reception start condition • To start reception, the following requirements must be met:  
_
Receive enable bit (bit 2 at addresses 03A516, 03AD16, 037D16) = “1”  
_
Transmit enable bit (bit 0 at addresses 03A516, 03AD16, 037D16) = “1”  
_
Transmit buffer empty flag (bit 1 at addresses 03A516, 03AD16, 037D16) = “0”  
• Furthermore, if external clock is selected, the following requirements must  
also be met:  
_
CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) = “0”:  
CLKi input level = “H”  
_
CLKi polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16) = “1”:  
CLKi input level = “L”  
• When transmitting  
Interrupt request  
generation timing  
_
Transmit interrupt cause select bit (bits 0, 1 at address 03B016, bit 4 at  
address 037D16) = “0”: Interrupts requested when data transfer from UARTi  
transfer buffer register to UARTi transmit register is completed  
_
Transmit interrupt cause select bit (bits 0, 1 at address 03B016, bit 4 at  
address 037D16) = “1”: Interrupts requested when data transmission from  
UARTi transfer register is completed  
• When receiving  
_
Interrupts requested when data transfer from UARTi receive register to  
UARTi receive buffer register is completed  
• Overrun error (Note 2)  
Error detection  
This error occurs when the next data is ready before contents of UARTi  
receive buffer register are read out  
Note 1: “n” denotes the value 0016 to FF16 that is set to the UART bit rate generator.  
Note 2: If an overrun error occurs, the UARTi receive buffer will have the next data written in. Note also that  
the UARTi receive interrupt request bit is not set to “1”.  
96  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Clock synchronous serial I/O mode  
Table 1.17.3. Specifications of clock synchronous serial I/O mode (2)  
Item  
Specification  
Select function  
• CLK polarity selection  
Whether transmit data is output/input at the rising edge or falling edge of the  
transfer clock can be selected  
• LSB first/MSB first selection  
Whether transmission/reception begins with bit 0 or bit 7 can be selected  
• Continuous receive mode selection  
Reception is enabled simultaneously by a read from the receive buffer register  
• Transfer clock output from multiple pins selection (UART1) (Note)  
UART1 transfer clock can be chosen by software to be output from one of  
the two pins set  
_______ _______  
• Separate CTS/RTS pins (UART0) (Note)  
_______  
_______  
UART0 CTS and RTS pins each can be assigned to separate pins  
• Switching serial data logic (UART2)  
Whether to reverse data in writing to the transmission buffer register or  
reading the reception buffer register can be selected.  
• TXD, RXD I/O polarity reverse (UART2)  
This function is reversing TXD port output and RXD port input. All I/O data  
level is reversed.  
_______ _______  
Note: The transfer clock output from multiple pins and the separate CTS/RTS pins functions cannot be  
selected simultaneously.  
97  
Mitsubishi microcomputers  
M16C / 61 Group  
Clock synchronous serial I/O mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
UARTi transmit/receive mode registers  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
UiMR(i=0,1)  
Address  
03A016, 03A816  
When reset  
0016  
0
0 0 1  
Bit symbol  
Bit name  
Function  
R W  
b2 b1 b0  
SMD0  
SMD1  
SMD2  
CKDIR  
Serial I/O mode select bit  
0 0 1 : Clock synchronous serial  
I/O mode  
Internal/external clock  
select bit  
0 : Internal clock  
1 : External clock  
STPS  
PRY  
Invalid in clock synchronous serial I/O mode  
PRYE  
SLEP  
0 (Must always be “0” in clock synchronous serial I/O mode)  
UART2 transmit/receive mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
U2MR  
Address  
037816  
When reset  
0016  
0
0 0 1  
Bit symbol  
Bit name  
Function  
R W  
b2 b1 b0  
SMD0  
SMD1  
SMD2  
CKDIR  
Serial I/O mode select bit  
0 0 1 : Clock synchronous serial  
I/O mode  
Internal/external clock  
select bit  
0 : Internal clock  
1 : External clock  
STPS  
PRY  
Invalid in clock synchronous serial I/O mode  
PRYE  
IOPOL  
TxD, RxD I/O polarity  
reverse bit (Note)  
0 : No reverse  
1 : Reverse  
Note: Usually set to “0”.  
Figure 1.17.9. UARTi transmit/receive mode register in clock synchronous serial I/O mode  
98  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Clock synchronous serial I/O mode  
Table 1.17.4 lists the functions of the input/output pins during clock synchronous serial I/O mode. This  
_______  
table shows the pin functions when the transfer clock output from multiple pins and the separate CTS/  
_______  
RTS pins functions are not selected. Note that for a period from when the UARTi operation mode is  
selected to when transfer starts, the TXDi pin outputs a “H”. (If the N-channel open-drain is selected, this  
pin is in floating state.)  
Table 1.17.4. Input/output pin functions in clock synchronous serial I/O mode  
Pin name  
TxDi  
(P6 , P67, P70)  
Function  
Method of selection  
Serial data output  
(Outputs dummy data when performing reception only)  
3
Serial data input  
RxDi  
(P6 , P6  
Port P62, P66 and P71 direction register (bits 2 and 6 at address 03EE16,  
bit 1 at address 03EF16)= “0”  
(Can be used as an input port when performing transmission only)  
2
6
, P7  
1
)
)
CLKi  
(P6 , P6  
Transfer clock output  
Transfer clock input  
Internal/external clock select bit (bit 3 at address 03A016, 03A816, 037816) = “0”  
Internal/external clock select bit (bit 3 at address 03A016, 03A816, 037816) = “1”  
1
5
, P7  
2
Port P61, P65 and P72 direction register (bits 1 and 5 at address 03EE16,  
bit 2 at address 03EF16) = “0”  
CTSi/RTSi  
(P6 , P6 , P73)  
CTS input  
CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) =“0”  
0
4
CTS/RTS function select bit (bit 2 at address 03A416, 03AC16, 037C16) = “0”  
Port P6 , P6 and P7 direction register (bits 0 and 4 at address 03EE16  
0
4
3
,
bit 3 at address 03EF16) = “0”  
RTS output  
CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) = “0”  
CTS/RTS function select bit (bit 2 at address 03A416, 03AC16, 037C16) = “1”  
Programmable I/O port  
CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) = “1”  
_______ _______  
(when transfer clock output from multiple pins and separate CTS/RTS pins functions are not selected)  
99  
Mitsubishi microcomputers  
M16C / 61 Group  
Clock synchronous serial I/O mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
• Example of transmit timing (when internal clock is selected)  
Tc  
Transfer clock  
“1”  
Transmit enable  
“0”  
“1”  
“0”  
“H”  
Data is set in UARTi transmit buffer register  
bit (TE)  
Transmit buffer  
empty flag (Tl)  
Transferred from UARTi transmit buffer register to UARTi transmit register  
CTSi  
CLKi  
T
CLK  
“L”  
Stopped pulsing because CTS = “H”  
Stopped pulsing because transfer enable bit = “0”  
TxDi  
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
D
0
D
1
D
2
D
3
D
4
D
5
D6  
D7  
Transmit  
register empty  
flag (TXEPT)  
“1”  
“0”  
“1”  
“0”  
Transmit interrupt  
request bit (IR)  
Cleared to “0” when interrupt request is accepted, or cleared by software  
Tc = TCLK = 2(n + 1) / fi  
Shown in ( ) are bit symbols.  
The above timing applies to the following settings:  
• Internal clock is selected.  
• CTS function is selected.  
fi: frequency of BRGi count source (f  
n: value set to BRGi  
1, f8, f32)  
• CLK polarity select bit = “0”.  
• Transmit interrupt cause select bit = “0”.  
• Example of receive timing (when external clock is selected)  
“1”  
Receive enable  
bit (RE)  
“0”  
“1”  
Transmit enable  
bit (TE)  
“0”  
“1”  
“0”  
“H”  
Dummy data is set in UARTi transmit buffer register  
Transmit buffer  
empty flag (Tl)  
Transferred from UARTi transmit buffer register to UARTi transmit register  
RTSi  
CLKi  
RxDi  
“L”  
1 / fEXT  
Receive data is taken in  
D
0
D1  
D
2
D3  
D
4
D5  
D6  
D0  
D
1
D
2
D4  
D5  
D
7
D3  
Transferred from UARTi receive register  
to UARTi receive buffer register  
Read out from UARTi receive buffer register  
“1”  
“0”  
Receive complete  
flag (Rl)  
“1”  
“0”  
Receive interrupt  
request bit (IR)  
Cleared to “0” when interrupt request is accepted, or cleared by software  
Shown in ( ) are bit symbols.  
Meet the following conditions are met when the CLK  
input before data reception = “H”  
• Transmit enable bit “1”  
• Receive enable bit “1”  
• Dummy data write to UARTi transmit buffer register  
The above timing applies to the following settings:  
• External clock is selected.  
• RTS function is selected.  
• CLK polarity select bit = “0”.  
fEXT: frequency of external clock  
Figure 1.17.10. Typical transmit/receive timings in clock synchronous serial I/O mode  
100  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Clock synchronous serial I/O mode  
(a) Polarity select function  
As shown in Figure 1.17.11, the CLK polarity select bit (bit 6 at addresses 03A416, 03AC16, 037C16)  
allows selection of the polarity of the transfer clock.  
• When CLK polarity select bit = “0”  
CLK  
i
Note 1: The CLK pin level when not  
transferring data is “H”.  
D0  
D
1
D
2
D
3
3
D
4
D
5
5
D
6
6
D
7
7
TXDi  
D0  
D
1
D
2
D
D4  
D
D
D
RXDi  
• When CLK polarity select bit = “1”  
CLK  
i
Note 2: The CLK pin level when not  
transferring data is “L”.  
D
0
D
1
D
2
D
3
D
4
4
D
5
D
6
D7  
TXDi  
D
0
D
1
D
2
D
3
D
D
5
D
6
D7  
RXDi  
Figure 1.17.11. Polarity of transfer clock  
(b) LSB first/MSB first select function  
As shown in Figure 1.17.12, when the transfer format select bit (bit 7 at addresses 03A416, 03AC16,  
037C16) = “0”, the transfer format is “LSB first”; when the bit = “1”, the transfer format is “MSB first”.  
• When transfer format select bit = “0”  
CLK  
i
D0  
D
1
D
2
D
3
D
D
4
4
D
5
D
6
D7  
TXDi  
LSB first  
D
1
D
2
D
3
D
5
D
6
D7  
D
0
RXDi  
• When transfer format select bit = “1”  
CLK  
i
D
D
7
7
D
6
D
5
D
4
D
D
3
3
D
2
D
1
D0  
TXDi  
MSB first  
D
6
D
5
D
4
D
2
D
1
D0  
RXDi  
Note: This applies when the CLK polarity select bit = “0”.  
Figure 1.17.12. Transfer format  
101  
Mitsubishi microcomputers  
M16C / 61 Group  
Clock synchronous serial I/O mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(c) Transfer clock output from multiple pins function (UART1)  
This function allows the setting two transfer clock output pins and choosing one of the two to output a  
clock by using the CLK and CLKS select bit (bits 4 and 5 at address 03B016). (See Figure 1.17.13.)  
The multiple pins function is valid only when the internal clock is selected for UART1. Note that when  
_______ _______  
this function is selected, UART1 CTS/RTS function cannot be used.  
Microcomputer  
T
XD1  
(P6  
7)  
CLKS  
1
1
(P6  
4
)
)
CLK  
(P65  
IN  
IN  
CLK  
CLK  
Note: This applies when the internal clock is selected and transmission  
is performed only in clock synchronous serial I/O mode.  
Figure 1.17.13. The transfer clock output from the multiple pins function usage  
(d) Continuous receive mode  
If the continuous receive mode enable bit (bits 2 and 3 at address 03B016, bit 5 at address 037D16) is  
set to “1”, the unit is placed in continuous receive mode. In this mode, when the receive buffer register  
is read out, the unit simultaneously goes to a receive enable state without having to set dummy data to  
the transmit buffer register back again.  
_______ _______  
(e) Separate CTS/RTS pins function (UART0)  
This function works the same way as in the clock asynchronous serial I/O (UART) mode. The method  
of setting and the input/output pin functions are both the same, so refer to select function in the next  
section, “(2) Clock asynchronous serial I/O (UART) mode.” Note that this function is invalid if the  
transfer clock output from the multiple pins function is selected.  
(f) Serial data logic switch function (UART2)  
When the data logic select bit (bit6 at address 037D16) = “1”, and writing to transmit buffer register or  
reading from receive buffer register, data is reversed. Figure 1.17.14 shows the example of serial data  
logic switch timing.  
•When LSB first  
“H”  
Transfer clock  
“L”  
“H”  
TxD2  
D0  
D0  
D1  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
D5  
D5  
D6  
D6  
D7  
D7  
(no reverse)  
“L”  
“H”  
“L”  
TxD2  
(reverse)  
Figure 1.17.14. Serial data logic switch timing  
102  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Clock asynchronous serial I/O (UART) mode  
(2) Clock asynchronous serial I/O (UART) mode  
The UART mode allows transmitting and receiving data after setting the desired transfer rate and transfer  
data format. Table 1.17.5 and table 1.17.6 list the specifications of the UART mode. Figure 1.17.15  
shows the UARTi transmit/receive mode register.  
Table 1.17.5. Specifications of UART Mode (1)  
Item  
Specification  
• Character bit (transfer data): 7 bits, 8 bits, or 9 bits as selected  
• Start bit: 1 bit  
Transfer data format  
• Parity bit: Odd, even, or nothing as selected  
• Stop bit: 1 bit or 2 bits as selected  
Transfer clock  
When internal clock is selected (bit 3 at addresses 03A016, 03A816, 037816 = “0”) :  
fi/16(n+1) (Note 1) fi = f1, f8, f32  
When external clock is selected (bit 3 at addresses 03A016, 03A816 =“1”) :  
fEXT/16(n+1) (Note 1) (Note 2) (Do not set external clock for UART2)  
_______  
_______  
_______ _______  
Transmission/reception control • CTS function/RTS function/CTS, RTS function chosen to be invalid  
Transmission start condition • To start transmission, the following requirements must be met:  
- Transmit enable bit (bit 0 at addresses 03A516, 03AD16, 037D16) = “1”  
-
Transmit buffer empty flag (bit 1 at addresses 03A516, 03AD16, 037D16) = “0”  
_______ _______  
- When CTS function selected, CTS input level = “L”  
Reception start condition • To start reception, the following requirements must be met:  
- Receive enable bit (bit 2 at addresses 03A516, 03AD16, 037D16) = “1”  
- Start bit detection  
Interrupt request  
generation timing  
• When transmitting  
- Transmit interrupt cause select bits (bits 0,1 at address 03B016, bit4 at  
address 037D16) = “0”: Interrupts requested when data transfer from UARTi  
transfer buffer register to UARTi transmit register is completed  
- Transmit interrupt cause select bits (bits 0, 1 at address 03B016, bit4 at  
address 037D16) = “1”: Interrupts requested when data transmission from  
UARTi transfer register is completed  
When receiving  
- Interrupts requested when data transfer from UARTi receive register to  
UARTi receive buffer register is completed  
Error detection  
• Overrun error (Note 3)  
This error occurs when the next data is ready before contents of UARTi  
receive buffer register are read out  
• Framing error  
This error occurs when the number of stop bits set is not detected  
• Parity error  
This error occurs when if parity is enabled, the number of 1’s in parity and  
character bits does not match the number of 1’s set  
• Error sum flag  
This flag is set (= 1) when any of the overrun, framing, and parity errors is  
encountered  
Note 1: ‘n’ denotes the value 0016 to FF16 that is set to the UARTi bit rate generator.  
Note 2: fEXT is input from the CLKi pin.  
Note 3: If an overrun error occurs, the UARTi receive buffer will have the next data written in. Note also that  
the UARTi receive interrupt request bit is not set to “1”.  
103  
Mitsubishi microcomputers  
M16C / 61 Group  
Clock asynchronous serial I/O (UART) mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Table 1.17.6. Specifications of UART Mode (2)  
Item  
Specification  
_______ _______  
Select function  
• Separate CTS/RTS pins (UART0)  
_______ _______  
UART0 CTS and RTS pins each can be assigned to separate pins  
• Sleep mode selection (UART0, UART1)  
This mode is used to transfer data to and from one of multiple slave micro-  
computers  
• Serial data logic switch (UART2)  
This function is reversing logic value of transferring data. Start bit, parity bit  
and stop bit are not reversed.  
• TXD, RXD I/O polarity switch  
This function is reversing TXD port output and RXD port input. All I/O data  
level is reversed.  
104  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Clock asynchronous serial I/O (UART) mode  
UARTi transmit / receive mode registers  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
UiMR(i=0,1)  
Address  
03A016, 03A816  
When reset  
0016  
R W  
Bit symbol  
Bit name  
Function  
b2 b1 b0  
SMD0  
SMD1  
SMD2  
Serial I/O mode select bit  
1 0 0 : Transfer data 7 bits long  
1 0 1 : Transfer data 8 bits long  
1 1 0 : Transfer data 9 bits long  
CKDIR  
STPS  
PRY  
Internal / external clock  
select bit  
0 : Internal clock  
1 : External clock  
Stop bit length select bit  
0 : One stop bit  
1 : Two stop bits  
Odd / even parity  
select bit  
Valid when bit 6 = “1”  
0 : Odd parity  
1 : Even parity  
PRYE  
SLEP  
Parity enable bit  
Sleep select bit  
0 : Parity disabled  
1 : Parity enabled  
0 : Sleep mode deselected  
1 : Sleep mode selected  
UART2 transmit / receive mode register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
U2MR  
Address  
037816  
When reset  
0016  
0
R W  
Bit symbol  
Bit name  
Function  
b2 b1 b0  
SMD0  
SMD1  
SMD2  
Serial I/O mode select bit  
1 0 0 : Transfer data 7 bits long  
1 0 1 : Transfer data 8 bits long  
1 1 0 : Transfer data 9 bits long  
CKDIR  
STPS  
PRY  
Internal / external clock  
select bit  
Must always be “0”  
Stop bit length select bit  
0 : One stop bit  
1 : Two stop bits  
Odd / even parity  
select bit  
Valid when bit 6 = “1”  
0 : Odd parity  
1 : Even parity  
PRYE  
Parity enable bit  
0 : Parity disabled  
1 : Parity enabled  
IOPOL  
TxD, RxD I/O polarity  
reverse bit (Note)  
0 : No reverse  
1 : Reverse  
Note: Usually set to “0”.  
Figure 1.17.15. UARTi transmit/receive mode register in UART mode  
105  
Mitsubishi microcomputers  
M16C / 61 Group  
Clock asynchronous serial I/O (UART) mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Table 1.17.7 lists the functions of the input/output pins during UART mode. This table shows the pin  
_______ _______  
functions when the separate CTS/RTS pins function is not selected. Note that for a period from when the  
UARTi operation mode is selected to when transfer starts, the TXDi pin outputs a “H”. (If the N-channel  
open-drain is selected, this pin is in floating state.)  
Table 1.17.7. Input/output pin functions in UART mode  
Pin name  
TxDi  
(P6 , P67, P70)  
Function  
Method of selection  
Serial data output  
3
RxDi  
(P6 , P6  
Serial data input  
Port P6  
bit 1 at address 03EF16)= “0”  
(Can be used as an input port when performing transmission only)  
2
, P6  
6
and P7  
1
direction register (bits 2 and 6 at address 03EE16,  
2
6
, P7  
1
)
)
CLKi  
(P6 , P6  
Programmable I/O port  
Transfer clock input  
Internal/external clock select bit (bit 3 at address 03A016, 03A816, 037816) = “0”  
Internal/external clock select bit (bit 3 at address 03A016, 03A816) = “1”  
1
5
, P7  
2
Port P61, P65 direction register (bits 1 and 5 at address 03EE16) = “0”  
(Do not set external clock for UART2)  
CTSi/RTSi  
(P6 , P6 , P73)  
CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) =“0”  
CTS/RTS function select bit (bit 2 at address 03A416, 03AC16, 037C16) = “0”  
CTS input  
0
4
Port P60, P64 and P73 direction register (bits 0 and 4 at address 03EE16,  
bit 3 at address 03EF16) = “0”  
CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) = “0”  
CTS/RTS function select bit (bit 2 at address 03A416, 03AC16, 037C16) = “1”  
RTS output  
Programmable I/O port  
________ _______  
CTS/RTS disable bit (bit 4 at address 03A416, 03AC16, 037C16) = “1”  
(when separate CTS/RTS pins function is not selected)  
106  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Clock asynchronous serial I/O (UART) mode  
• Example of transmit timing when transfer data is 8 bits long (parity enabled, one stop bit)  
The transfer clock stops momentarily as CTS is “H” when the stop bit is checked.  
The transfer clock starts as the transfer starts immediately CTS changes to “L”.  
Tc  
Transfer clock  
“1”  
Transmit enable  
bit(TE)  
“0”  
“1”  
“0”  
Data is set in UARTi transmit buffer register.  
Transmit buffer  
empty flag(TI)  
Transferred from UARTi transmit buffer register to UARTi transmit register  
“H”  
“L”  
CTSi  
Stopped pulsing because transmit enable bit = “0”  
Start  
bit  
Parity Stop  
bit bit  
TxDi  
ST  
D0 D1  
ST D0 D1 D2 D3 D4 D5 D6 D7  
P
SP  
ST D0 D1 D2 D3 D4 D5  
D7  
P
D6  
SP  
“1”  
“0”  
Transmit register  
empty flag (TXEPT)  
“1”  
“0”  
Transmit interrupt  
request bit (IR)  
Cleared to “0” when interrupt request is accepted, or cleared by software  
Shown in ( ) are bit symbols.  
Tc = 16 (n + 1) / fi or 16 (n + 1) / fEXT  
fi : frequency of BRGi count source (f1, f8, f32)  
fEXT : frequency of BRGi count source (external clock)  
n : value set to BRGi  
The above timing applies to the following settings :  
• Parity is enabled.  
• One stop bit.  
• CTS function is selected.  
• Transmit interrupt cause select bit = “1”.  
• Example of transmit timing when transfer data is 9 bits long (parity disabled, two stop bits)  
Tc  
Transfer clock  
“1”  
Transmit enable  
bit(TE)  
Data is set in UARTi transmit buffer register  
“0”  
“1”  
Transmit buffer  
empty flag(TI)  
“0”  
Transferred from UARTi transmit buffer register to UARTi transmit register  
Stop Stop  
Start  
bit  
bit  
bit  
TxDi  
ST  
D0 D1  
ST D0 D1 D2 D3 D4 D5 D6 D7 D8  
ST D0 D1 D2 D3 D4 D5  
D7 D8  
SPSP  
SP SP  
D6  
“1”  
“0”  
Transmit register  
empty flag (TXEPT)  
“1”  
“0”  
Transmit interrupt  
request bit (IR)  
Cleared to “0” when interrupt request is accepted, or cleared by software  
Shown in ( ) are bit symbols.  
The above timing applies to the following settings :  
• Parity is disabled.  
Tc = 16 (n + 1) / fi or 16 (n + 1) / fEXT  
fi : frequency of BRGi count source (f1, f8, f32)  
• Two stop bits.  
• CTS function is disabled.  
fEXT : frequency of BRGi count source (external clock)  
n : value set to BRGi  
• Transmit interrupt cause select bit = “0”.  
Figure 1.17.16. Typical transmit timings in UART mode (UART0, UART1)  
107  
Mitsubishi microcomputers  
M16C / 61 Group  
Clock asynchronous serial I/O (UART) mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Tc  
Transfer clock  
“1”  
Transmit enable  
bit(TE)  
Data is set in UART2 transmit buffer register  
“0”  
“1”  
Note  
Transmit buffer  
empty flag(TI)  
“0”  
Transferred from UART2 transmit buffer register to UARTi transmit register  
Stop  
Parity  
bit  
Start  
bit  
bit  
TxD2  
ST  
D0  
D1  
D2  
D3  
D4  
D5  
D7  
P
SP  
ST  
D0  
D1  
D2  
D3  
D4  
D5  
D7  
P
SP  
D6  
D6  
“1”  
“0”  
Transmit register  
empty flag (TXEPT)  
“1”  
“0”  
Transmit interrupt  
request bit (IR)  
Cleared to “0” when interrupt request is accepted, or cleared by software  
Shown in ( ) are bit symbols.  
The above timing applies to the following settings :  
• Parity is enabled.  
• One stop bit.  
Tc = 16 (n + 1) / fi  
fi : frequency of BRG2 count source (f1, f8, f32)  
n : value set to BRG2  
• Transmit interrupt cause select bit = “1”.  
Note: The transmit is started with overflow timing of BRG after having written in a value at the transmit buffer in the above timing.  
Figure 1.17.17. Typical transmit timings in UART mode (UART2)  
108  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Clock asynchronous serial I/O (UART) mode  
• Example of receive timing when transfer data is 8 bits long (parity disabled, one stop bit)  
BRGi count  
source  
“1”  
Receive enable bit  
“0”  
Stop bit  
Start bit  
D1  
D7  
RxDi  
D0  
Sampled “L”  
Receive data taken in  
Transfer clock  
Transferred from UARTi receive register to  
UARTi receive buffer register  
Reception triggered when transfer clock  
“1” is generated by falling edge of start bit  
Receive  
complete flag  
“0”  
“H”  
“L”  
RTSi  
Receive interrupt  
request bit  
“1”  
“0”  
Cleared to “0” when interrupt request is accepted, or cleared by software  
The above timing applies to the following settings :  
•Parity is disabled.  
•One stop bit.  
•RTS function is selected.  
Figure 1.17.18. Typical receive timing in UART mode  
_______ _______  
(a) Separate CTS/RTS pins function (UART0)  
_______ _______  
_______  
Setting the CTS/RTS separate bit (bit 6 of address 03B016) to "1" inputs/outputs the CTS signal and  
_______  
_______  
_______  
_______ _______  
RTS signal from different pins. Choose which to use, CTS or RTS, by use of the CTS/RTS function  
select bit (bit 2 of address 03A416). This function is effective in UART0 only. With this function chosen,  
_______ _______  
_______ _______  
the user cannot use the CTS/RTS function. Set "0" both to the CTS/RTS function select bit (bit 2 of  
_______ _______  
address 03AC16) and to the CTS/RTS disable bit (bit 4 of address 03AC16).  
Microcomputer  
IC  
TXD  
0
(P6  
3
)
IN  
R
XD0  
(P6  
2)  
OUT  
RTS0 (P6  
CTS0 (P6  
0
)
)
CTS  
RTS  
4
Note : The user cannot use CTS and RTS at the same time.  
_______ _______  
Figure 1.17.19. The separate CTS/RTS pins function usage  
(b) Sleep mode (UART0, UART1)  
This mode is used to transfer data between specific microcomputers among multiple microcomputers  
connected using UARTi. The sleep mode is selected when the sleep select bit (bit 7 at addresses  
03A016, 03A816) is set to “1” during reception. In this mode, the unit performs receive operation when  
the MSB of the received data = “1” and does not perform receive operation when the MSB = “0”.  
109  
Mitsubishi microcomputers  
M16C / 61 Group  
Clock asynchronous serial I/O (UART) mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(c) Function for switching serial data logic (UART2)  
When the data logic select bit (bit 6 of address 037D16) is assigned 1, data is inverted in writing to the  
transmission buffer register or reading the reception buffer register. Figure 1.17.20 shows the ex-  
ample of timing for switching serial data logic.  
• When LSB first, parity enabled, one stop bit  
“H”  
Transfer clock  
“L”  
“H”  
TxD  
2
ST  
ST  
D0  
D0  
D1  
D1  
D2  
D2  
D3  
D3  
D4  
D4  
D5  
D5  
D6  
D6  
D7  
D7  
P
P
SP  
SP  
(no reverse)  
“L”  
“H”  
“L”  
TxD  
(reverse)  
2
ST : Start bit  
P : Even parity  
SP : Stop bit  
Figure 1.17.20. Timing for switching serial data logic  
(d) TxD, RxD I/O polarity reverse function (UART2)  
This function is to reverse TXD pin output and RXD pin input. The level of any data to be input or output  
(including the start bit, stop bit(s), and parity bit) is reversed. Set this function to “0” (not to reverse) for  
usual use.  
(e) Bus collision detection function (UART2)  
This function is to sample the output level of the TXD pin and the input level of the RXD pin at the rising  
edge of the transfer clock; if their values are different, then an interrupt request occurs. Figure 1.17.21  
shows the example of detection timing of a buss collision (in UART mode).  
“H”  
Transfer clock  
“L”  
“H”  
TxD  
RxD  
2
2
ST  
ST  
SP  
SP  
“L”  
“H”  
“L”  
Bus collision detection  
interrupt request signal  
“1”  
“0”  
Bus collision detection  
interrupt request bit  
“1”  
“0”  
ST : Start bit  
SP : Stop bit  
Figure 1.17.21. Detection timing of a bus collision (in UART mode)  
110  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Clock asynchronous serial I/O (UART) mode  
(3) Clock-asynchronous serial I/O mode (compliant with the SIM interface)  
The SIM interface is used for connecting the microcomputer with a memory card or the like; adding some  
extra settings in UART2 clock-asynchronous serial I/O mode allows the user to effect this function. Table  
1.17.8 shows the specifications of clock-asynchronous serial I/O mode (compliant with the SIM interface).  
Table 1.17.8. Specifications of clock-asynchronous serial I/O mode (compliant with the SIM interface)  
Item  
Specification  
Transfer data format  
• Transfer data 8-bit UART mode (bit 2 through bit 0 of address 037816 = “1012”)  
• One stop bit (bit 4 of address 037816 = “0”)  
• With the direct format chosen  
Set parity to “even” (bit 5 and bit 6 of address 037816 = “1” and “1” respectively)  
Set data logic to “direct” (bit 6 of address 037D16 = “0”).  
Set transfer format to LSB (bit 7 of address 037C16 = “0”).  
• With the inverse format chosen  
Set parity to “odd” (bit 5 and bit 6 of address 037816 = “0” and “1” respectively)  
Set data logic to “inverse” (bit 6 of address 037D16 = “1”)  
Set transfer format to MSB (bit 7 of address 037C16 = “1”)  
Transfer clock  
With the internal clock chosen (bit 3 of address 037816 = “0”) : fi / 16 (n + 1) (Note 1) : fi=f1, f8, f32  
(Do not set external clock)  
_______  
_______  
Transmission / reception control • Disable the CTS and RTS function (bit 4 of address 037C16 = “1”)  
Other settings • The sleep mode select function is not available for UART2  
Set transmission interrupt factor to “transmission completed” (bit 4 of address 037D16 = “1”)  
Transmission start condition • To start transmission, the following requirements must be met:  
- Transmit enable bit (bit 0 of address 037D16) = “1”  
- Transmit buffer empty flag (bit 1 of address 037D16) = “0”  
Reception start condition  
• To start reception, the following requirements must be met:  
- Reception enable bit (bit 2 of address 037D16) = “1”  
- Detection of a start bit  
Interrupt request  
generation timing  
• When transmitting  
When data transmission from the UART2 transfer register is completed  
(bit 4 of address 037D16 = “1”)  
• When receiving  
When data transfer from the UART2 receive register to the UART2 receive  
buffer register is completed  
Error detection  
Overrun error (see the specifications of clock-asynchronous serial I/O) (Note 3)  
• Framing error (see the specifications of clock-asynchronous serial I/O)  
• Parity error (see the specifications of clock-asynchronous serial I/O)  
- On the reception side, an “L” level is output from the TXD2 pin by use of the parity error  
signal output function (bit 7 of address 037D16 = “1”) when a parity error is detected  
- On the transmission side, a parity error is detected by the level of input to  
the RXD2 pin when a transmission interrupt occurs  
• The error sum flag (see the specifications of clock-asynchronous serial I/O)  
Note 1: ‘n’ denotes the value 0016 to FF16 that is set to the UARTi bit rate generator.  
Note 2: fEXT is input from the CLK2 pin.  
Note 3: If an overrun error occurs, the UART2 receive buffer will have the next data written in. Note also  
that the UARTi receive interrupt request bit is not set to “1”.  
111  
Mitsubishi microcomputers  
M16C / 61 Group  
Clock asynchronous serial I/O (UART) mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Tc  
Transfer clock  
“1”  
Transmit enable  
bit(TE)  
“0”  
“1”  
Note  
Data is set in UART2 transmit buffer register  
Transmit buffer  
empty flag(TI)  
“0”  
Transferred from UART2 transmit buffer register to UART2 transmit register  
Start  
bit  
Parity  
bit  
Stop  
bit  
TxD  
2
ST  
D
0
D
1
D
2
D
3
D
4
D
5
D
7
P
P
D
6
ST  
D
0
D
1
D
2
D
3
D
4
D
5
D
7
P
D
6
SP  
SP  
SP  
RxD  
2
A “L” level returns from TxD  
the occurrence of a parity error.  
2 due to  
Signal conductor level  
(Note 1)  
ST  
D
0
D
1
D
2
D
3
D
4
D
5
D
7
P
The level is  
D
6
SP  
ST  
D
0
D1  
D2  
D3  
D4  
D5  
D7  
D
6
detected by the  
interrupt routine.  
The level is detected by the  
interrupt routine.  
“1”  
Transmit register  
empty flag (TXEPT)  
“0”  
“1”  
“0”  
Transmit interrupt  
request bit (IR)  
Cleared to “0” when interrupt request is accepted, or cleared by software  
Tc = 16 (n + 1) / fi  
Shown in ( ) are bit symbols.  
The above timing applies to the following settings :  
• Parity is enabled.  
• One stop bit.  
fi : frequency of BRG2 count source (f  
n : value set to BRG2  
1, f8, f32)  
• Transmit interrupt cause select bit = “1”.  
Note: The transmit is started with overflow timing of BRG after having written in a value at the transmit buffer in the above timing.  
Tc  
Transfer clock  
“1”  
Receive enable  
bit (RE)  
“0”  
Parity  
bit  
Stop  
bit  
Start  
bit  
SP  
RxD  
2
ST  
D
0
D
1
D
D
2
D
D
3
D
D
4
D
D
5
D
7
P
ST  
ST  
D
0
D
1
D
2
D
3
D
4
D
5
D
7
P
P
D
D
6
SP  
D6  
TxD  
2
A “L” level returns from TxD  
the occurrence of a parity error.  
2 due to  
Signal conductor level  
(Note 1)  
SP  
ST  
D
0
D
1
2
3
4
5
D
7
P
D
0
D
1
D
2
D
3
D
4
D
5
D7  
6
SP  
D6  
“1”  
Receive complete  
flag (RI)  
“0”  
Read to receive buffer  
Read to receive buffer  
“1”  
“0”  
Receive interrupt  
request bit (IR)  
Cleared to “0” when interrupt request is accepted, or cleared by software  
Shown in ( ) are bit symbols.  
The above timing applies to the following settings :  
• Parity is enabled.  
• One stop bit.  
Tc = 16 (n + 1) / fi  
fi : frequency of BRG2 count source (f  
n : value set to BRG2  
1, f8, f32)  
• Transmit interrupt cause select bit = “0”  
Figure 1.17.22. Typical transmit/receive timing in UART mode (compliant with the SIM interface)  
112  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Clock asynchronous serial I/O (UART) mode  
(a) Function for outputting a parity error signal  
With the error signal output enable bit (bit 7 of address 037D16) assigned “1”, you can output an “L”  
level from the TXD2 pin when a parity error is detected. In step with this function, the generation timing  
of a transmission completion interrupt changes to the detection timing of a parity error signal. Figure  
1.17.23 shows the output timing of the parity error signal.  
• LSB first  
“H”  
Transfer  
“L”  
clock  
“H”  
ST  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
P
SP  
RxD  
2
“L”  
“H”  
“L”  
Hi-Z  
TxD  
2
“1”  
“0”  
Receive  
complete flag  
ST : Start bit  
P : Even Parity  
SP : Stop bit  
Figure 1.17.23. Output timing of the parity error signal  
(b) Direct format/inverse format  
Connecting the SIM card allows you to switch between direct format and inverse format. If you choose  
the direct format, D0 data is output from TXD2. If you choose the inverse format, D7 data is inverted  
and output from TXD2.  
Figure 1.17.24 shows the SIM interface format.  
Transfer  
clcck  
TxD2  
(direct)  
D0  
D7  
D1  
D6  
D2  
D5  
D3  
D4  
D4  
D3  
D5  
D2  
D6  
D1  
D7  
D0  
P
P
TxD2  
(inverse)  
P : Even parity  
Figure 1.17.24. SIM interface format  
113  
Mitsubishi microcomputers  
M16C / 61 Group  
Clock asynchronous serial I/O (UART) mode  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Figure 1.17.25 shows the example of connecting the SIM interface. Connect TXD2 and RXD2 and apply pull-  
up.  
Microcomputer  
SIM card  
TxD  
2
2
RxD  
Figure 1.17.25. Connecting the SIM interface  
114  
Mitsubishi microcomputers  
M16C / 61 Group  
A-D Converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
A-D Converter  
The A-D converter consists of one 10-bit successive approximation A-D converter circuit with a capacitive coupling  
amplifier. Pins P10 to P10 , P9 , and P9 also function as the analog signal input pins. The direction registers of  
0
7
5
6
these pins for A-D conversion must therefore be set to input. The Vref connect bit (bit 5 at address 03D716) can be  
used to isolate the resistance ladder of the A-D converter from the reference voltage input pin (VREF) when the A-D  
converter is not used. Doing so stops any current flowing into the resistance ladder from VREF, reducing the power  
dissipation. When using the A-D converter, start A-D conversion only after setting bit 5 of 03D716 to connect VREF  
.
The result of A-D conversion is stored in the A-D registers of the selected pins. When set to 10-bit precision, the low  
8 bits are stored in the even addresses and the high 2 bits in the odd addresses. When set to 8-bit precision, the low  
8 bits are stored in the even addresses.  
Table 1.18.1 shows the performance of the A-D converter. Figure 1.18.1 shows the block diagram of the A-  
D converter, and Figures 1.18.2 and 1.18.3 show the A-D converter-related registers.  
Table 1.18.1. Performance of A-D converter  
Item  
Performance  
Method of A-D conversion Successive approximation (capacitive coupling amplifier)  
Analog input voltage (Note 1) 0V to AVCC (VCC)  
Operating clock φAD (Note 2) VCC = 5V  
fAD/divide-by-2 of fAD/divide-by-4 of fAD, fAD=f(XIN)  
divide-by-2 of fAD/divide-by-4 of fAD, fAD=f(XIN)  
VCC = 3V  
Resolution  
8-bit or 10-bit (selectable)  
Absolute precision  
VCC = 5V  
• Without sample and hold function  
±3LSB  
• With sample and hold function (8-bit resolution)  
±2LSB  
• With sample and hold function (10-bit resolution)  
AN0 to AN7 input : ±3LSB  
ANEX0 and ANEX1 input (including mode in which external  
operation amp is connected) : ±7LSB  
• Without sample and hold function (8-bit resolution)  
±2LSB  
VCC = 3V  
Operating modes  
Analog input pins  
One-shot mode, repeat mode, single sweep mode, repeat sweep mode 0,  
and repeat sweep mode 1  
8pins (AN0 to AN7) + 2pins (ANEX0 and ANEX1)  
A-D conversion start condition • Software trigger  
A-D conversion starts when the A-D conversion start flag changes to “1”  
• External trigger (can be retriggered)  
A-D conversion starts when the A-D conversion start flag is “1” and the  
___________  
ADTRG/P97 input changes from “H” to “L”  
Conversion speed per pin • Without sample and hold function  
8-bit resolution: 49 AD cycles 10-bit resolution: 59  
• With sample and hold function  
8-bit resolution: 28 AD cycles  
Note 1: Does not depend on use of sample and hold function.  
Note 2: Without sample and hold function, set the AD frequency to 250kHz min.  
With the sample and hold function, set the AD frequency to 1MHz min.  
φ
,
φAD cycles  
φ
, 10-bit resolution: 33 φAD cycles  
φ
φ
115  
Mitsubishi microcomputers  
M16C / 61 Group  
A-D Converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
CKS1=1  
CKS1=0  
CKS0=1  
CKS0=0  
φ
AD  
fAD  
1/2  
1/2  
A-D conversion rate  
selection  
VREF  
VCUT=0  
Resistor ladder  
AVSS  
VCUT=1  
Successive conversion register  
A-D control register 1 (address 03D716)  
A-D control register 0 (address 03D616)  
Addresses  
(03C116, 03C016  
)
)
)
A-D register 0(16)  
(03C316, 03C216  
(03C516, 03C416  
A-D register 1(16)  
A-D register 2(16)  
A-D register 3(16)  
Vref  
VIN  
(03C716, 03C616  
(03C916, 03C816  
(03CB16, 03CA16  
(03CD16, 03CC16  
(03CF16, 03CE16  
)
Decoder  
)
A-D register 4(16)  
)
A-D register 5(16)  
A-D register 6(16)  
Comparator  
)
)
A-D register 7(16)  
Data bus high-order  
Data bus low-order  
CH2,CH1,CH0=000  
CH2,CH1,CH0=001  
CH2,CH1,CH0=010  
CH2,CH1,CH0=011  
CH2,CH1,CH0=100  
CH2,CH1,CH0=101  
CH2,CH1,CH0=110  
CH2,CH1,CH0=111  
AN0  
AN1  
AN2  
AN3  
AN4  
AN5  
AN6  
AN7  
OPA1,OPA0=0,0  
OPA1, OPA0  
0
0
1
1
0 : Normal operation  
1 : ANEX0  
0 : ANEX1  
1 : External op-amp mode  
OPA1,OPA0=1,1  
OPA0=1  
OPA1=1  
ANEX0  
ANEX1  
OPA1,OPA0=0,1  
Figure 1.18.1. Block diagram of A-D converter  
116  
Mitsubishi microcomputers  
M16C / 61 Group  
A-D Converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
A-D control register 0 (Note)  
Symbol  
ADCON0  
Address  
03D616  
When reset  
b7 b6 b5 b4 b3 b2 b1 b0  
00000XXX  
2
R W  
Bit symbol  
Bit name  
Function  
is selected  
is selected  
is selected  
is selected  
is selected  
is selected  
is selected  
is selected  
b2 b1 b0  
CH0  
0 0 0 : AN  
0 0 1 : AN  
0 1 0 : AN  
0 1 1 : AN  
1 0 0 : AN  
1 0 1 : AN  
1 1 0 : AN  
1 1 1 : AN  
b4 b3  
0
1
2
3
4
5
6
7
Analog input pin select bit  
CH1  
CH2  
MD0  
MD1  
A-D operation mode  
select bit 0  
0 0 : One-shot mode  
0 1 : Repeat mode  
1 0 : Single sweep mode  
1 1 : Repeat sweep mode 0  
Repeat sweep mode 1  
Trigger select bit  
0 : Software trigger  
1 : ADTRG trigger  
TRG  
ADST  
CKS0  
A-D conversion start flag  
Frequency select bit 0  
0 : A-D conversion disabled  
1 : A-D conversion started  
0 : fAD/4 is selected  
1 : fAD/2 is selected  
Note: If the A-D control register is rewritten during A-D conversion, the conversion result is  
indeterminate.  
A-D control register 1 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON1  
Address  
03D716  
When reset  
0016  
Bit symbol  
Bit name  
Function  
R W  
When single sweep and repeat sweep  
A-D sweep pin select bit  
mode 0 are selected  
b1 b0  
SCAN0  
0 0 : AN  
0 1 : AN  
1 0 : AN  
1 1 : AN  
0
0
0
0
, AN1 (2 pins)  
to AN  
to AN  
to AN  
3
5
7
(4 pins)  
(6 pins)  
(8 pins)  
When repeat sweep mode 1 is selected  
b1 b0  
SCAN1  
MD2  
0 0 : AN  
0 1 : AN  
1 0 : AN  
1 1 : AN  
0
0
0
0
(1 pin)  
, AN  
1
(2 pins)  
to AN  
to AN  
2
3
(3 pins)  
(4 pins)  
A-D operation mode  
select bit 1  
0 : Any mode other than repeat sweep  
mode 1  
1 : Repeat sweep mode 1  
8/10-bit mode select bit  
Frequency select bit 1  
Vref connect bit  
0 : 8-bit mode  
1 : 10-bit mode  
BITS  
0 : fAD/2 or fAD/4 is selected  
1 : fAD is selected  
CKS1  
0 : Vref not connected  
1 : Vref connected  
VCUT  
OPA0  
OPA1  
b7 b6  
External op-amp  
connection mode bit  
0 0 : ANEX0 and ANEX1 are not used  
0 1 : ANEX0 input is A-D converted  
1 0 : ANEX1 input is A-D converted  
1 1 : External op-amp connection mode  
Note: If the A-D control register is rewritten during A-D conversion, the conversion result is  
indeterminate.  
Figure 1.18.2. A-D converter-related registers (1)  
117  
Mitsubishi microcomputers  
M16C / 61 Group  
A-D Converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
A-D control register 2 (Note)  
Symbol  
ADCON2  
Address  
03D416  
When reset  
0000XXX0  
b7 b6 b5 b4 b3 b2 b1 b0  
2
0
0 0  
Bit symbol  
SMP  
Bit name  
Function  
R W  
0 : Without sample and hold  
1 : With sample and hold  
A-D conversion method  
select bit  
Always set to “0”  
Reserved bit  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out  
to be “0”.  
Note: If the A-D control register is rewritten during A-D conversion, the conversion  
result is indeterminate.  
Symbol  
ADi(i=0 to 7)  
Address  
When reset  
A-D register i  
(b15)  
b7  
03C016 to 03CF16 Indeterminate  
(b8)  
b0 b7  
b0  
Function  
R W  
Eight low-order bits of A-D conversion result  
• During 10-bit mode  
Two high-order bits of A-D conversion result  
• During 8-bit mode  
When read, the content is indeterminate  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if  
read, turns out to be “0”.  
Figure 1.18.3. A-D converter-related registers (2)  
118  
Mitsubishi microcomputers  
M16C / 61 Group  
A-D Converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(1) One-shot mode  
In one-shot mode, the pin selected using the analog input pin select bit is used for one-shot A-D conver-  
sion. Table 1.18.2 shows the specifications of one-shot mode. Figure 1.18.4 shows the A-D control regis-  
ter in one-shot mode.  
Table 1.18.2. One-shot mode specifications  
Item  
Specification  
Function  
The pin selected by the analog input pin select bit is used for one A-D conversion  
Writing “1” to A-D conversion start flag  
Start condition  
Stop condition  
End of A-D conversion (A-D conversion start flag changes to “0”, except  
when external trigger is selected)  
• Writing “0” to A-D conversion start flag  
Interrupt request generation timing End of A-D conversion  
Input pin  
One of AN0 to AN7, as selected  
Read A-D register corresponding to selected pin  
Reading of result of A-D converter  
A-D control register 0 (Note 1)  
Symbol  
ADCON0  
Address  
03D616  
When reset  
b7 b6 b5 b4 b3 b2 b1 b0  
00000XXX  
2
0
0
Bit symbol  
Bit name  
Function  
R W  
b2 b1 b0  
Analog input pin select  
bit  
CH0  
CH1  
CH2  
0 0 0 : AN  
0 0 1 : AN  
0 1 0 : AN  
0 1 1 : AN  
1 0 0 : AN  
1 0 1 : AN  
1 1 0 : AN  
1 1 1 : AN  
0
1
2
3
4
5
6
7
is selected  
is selected  
is selected  
is selected  
is selected  
is selected  
is selected  
is selected  
(Note 2)  
(Note 2)  
b4 b3  
MD0  
MD1  
A-D operation mode  
select bit 0  
0 0 : One-shot mode  
0 : Software trigger  
1 : ADTRG trigger  
Trigger select bit  
TRG  
ADST  
CKS0  
A-D conversion start flag 0 : A-D conversion disabled  
1 : A-D conversion started  
0: fAD/4 is selected  
1: fAD/2 is selected  
Frequency select bit 0  
Note 1: If the A-D control register is rewritten during A-D conversion, the conversion  
result is indeterminate.  
Note 2: When changing A-D operation mode, set analog input pin again.  
A-D control register 1 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON1  
Address  
03D716  
When reset  
0016  
1
0
Bit symbol  
Bit name  
A-D sweep pin  
Function  
R W  
Invalid in one-shot mode  
SCAN0  
SCAN1  
select bit  
A-D operation mode  
select bit 1  
0 : Any mode other than repeat sweep  
mode 1  
MD2  
BITS  
CKS1  
8/10-bit mode select bit 0 : 8-bit mode  
1 : 10-bit mode  
0 : fAD/2 or fAD/4 is selected  
1 : fAD is selected  
Frequency select bit1  
Vref connect bit  
1 : Vref connected  
VCUT  
OPA0  
b7 b6  
External op-amp  
connection mode bit  
0 0 : ANEX0 and ANEX1 are not used  
0 1 : ANEX0 input is A-D converted  
1 0 : ANEX1 input is A-D converted  
1 1 : External op-amp connection mode  
OPA1  
Note: If the A-D control register is rewritten during A-D conversion, the conversion  
result is indeterminate.  
Figure 1.18.4. A-D conversion register in one-shot mode  
119  
Mitsubishi microcomputers  
M16C / 61 Group  
A-D Converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(2) Repeat mode  
I
n repeat mode, the pin selected using the analog input pin select bit is used for repeated A-D conversion.  
Table 1.18.3 shows the specifications of repeat mode. Figure 1.18.5 shows the A-D control register in  
repeat mode.  
Table 1.18.3. Repeat mode specifications  
Item  
Specification  
Function  
The pin selected by the analog input pin select bit is used for repeated A-D conversion  
Writing “1” to A-D conversion start flag  
Star condition  
Stop condition  
Writing “0” to A-D conversion start flag  
Interrupt request generation timing None generated  
Input pin  
One of AN0 to AN7, as selected  
Read A-D register corresponding to selected pin  
Reading of result of A-D converter  
A-D control register 0 (Note 1)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON0  
Address  
03D616  
When reset  
00000XXX2  
0
1
Bit symbol  
Bit name  
Function  
is selected  
is selected  
is selected  
is selected  
is selected  
is selected  
is selected  
is selected  
R W  
b2 b1 b0  
Analog input pin  
select bit  
CH0  
0 0 0 : AN  
0 0 1 : AN  
0 1 0 : AN  
0 1 1 : AN  
1 0 0 : AN  
1 0 1 : AN  
1 1 0 : AN  
1 1 1 : AN  
0
1
2
3
4
5
6
7
CH1  
CH2  
(Note 2)  
(Note 2)  
b4 b3  
MD0  
MD1  
A-D operation mode  
select bit 0  
0 1 : Repeat mode  
Trigger select bit  
0 : Software trigger  
1 : ADTRG trigger  
TRG  
A-D conversion start flag 0 : A-D conversion disabled  
1 : A-D conversion started  
ADST  
0 : fAD/4 is selected  
1 : fAD/2 is selected  
CKS0  
Frequency select bit 0  
Note 1: If the A-D control register is rewritten during A-D conversion, the conversion  
result is indeterminate.  
Note 2: When changing A-D operation mode, set analog input pin again.  
A-D control register 1 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON1  
Address  
03D716  
When reset  
0016  
1
0
Bit symbol  
Bit name  
A-D sweep pin  
Function  
R W  
Invalid in repeat mode  
SCAN0  
SCAN1  
select bit  
A-D operation mode  
select bit 1  
0 : Any mode other than repeat sweep mode 1  
MD2  
8/10-bit mode select bit 0 : 8-bit mode  
1 : 10-bit mode  
BITS  
0 : fAD/2 or fAD/4 is selected  
1 : fAD is selected  
CKS1  
Frequency select bit 1  
Vref connect bit  
VCUT  
OPA0  
1 : Vref connected  
b7 b6  
External op-amp  
connection mode bit  
0 0 : ANEX0 and ANEX1 are not used  
0 1 : ANEX0 input is A-D converted  
1 0 : ANEX1 input is A-D converted  
1 1 : External op-amp connection mode  
OPA1  
Note: If the A-D control register is rewritten during A-D conversion, the conversion  
result is indeterminate.  
Figure 1.18.5. A-D conversion register in repeat mode  
120  
Mitsubishi microcomputers  
M16C / 61 Group  
A-D Converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(3) Single sweep mode  
I
n single sweep mode, the pins selected using the A-D sweep pin select bit are used for one-by-one A-D  
conversion. Table 1.18.4 shows the specifications of single sweep mode. Figure 1.18.6 shows the A-D  
control register in single sweep mode.  
Table 1.18.4. Single sweep mode specifications  
Item  
Specification  
Function  
The pins selected by the A-D sweep pin select bit are used for one-by-one A-D conversion  
Writing “1” to A-D converter start flag  
Start condition  
Stop condition  
• End of A-D conversion (A-D conversion start flag changes to “0”, except  
when external trigger is selected)  
• Writing “0” to A-D conversion start flag  
Interrupt request generation timing End of A-D conversion  
Input pin  
AN0 and AN1 (2 pins), AN0 to AN3 (4 pins), AN0 to AN5 (6 pins), or AN0 to AN7 (8 pins)  
Reading of result of A-D converter  
Read A-D register corresponding to selected pin  
A-D control register 0 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON0  
Address  
03D616  
When reset  
00000XXX  
0
1
2
Bit symbol  
Bit name  
Function  
R W  
Analog input pin  
select bit  
Invalid in single sweep mode  
CH0  
CH1  
CH2  
b4 b3  
MD0  
MD1  
A-D operation mode  
select bit 0  
1 0 : Single sweep mode  
Trigger select bit  
0 : Software trigger  
1 : ADTRG trigger  
TRG  
A-D conversion start flag 0 : A-D conversion disabled  
1 : A-D conversion started  
ADST  
CKS0  
Frequency select bit 0  
0 : fAD/4 is selected  
1 : fAD/2 is selected  
Note: If the A-D control register is rewritten during A-D conversion, the conversion result  
is indeterminate.  
A-D control register 1 (Note 1)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON1  
Address  
03D716  
When reset  
0016  
1
0
Bit symbol  
Bit name  
Function  
R W  
A-D sweep pin select bit When single sweep and repeat sweep mode 0  
SCAN0  
SCAN1  
are selected  
b1 b0  
0 0 : AN  
0 1 : AN  
1 0 : AN  
1 1 : AN  
0
0
0
0
, AN1 (2 pins)  
to AN  
to AN  
to AN  
3
5
7
(4 pins)  
(6 pins)  
(8 pins)  
A-D operation mode  
select bit 1  
0 : Any mode other than repeat sweep mode 1  
MD2  
BITS  
8/10-bit mode select bit  
Frequency select bit 1  
Vref connect bit  
0 : 8-bit mode  
1 : 10-bit mode  
0 : fAD/2 or fAD/4 is selected  
1 : fAD is selected  
CKS1  
VCUT  
OPA0  
1 : Vref connected  
b7 b6  
External op-amp  
connection mode  
bit (Note 2)  
0 0 : ANEX0 and ANEX1 are not used  
0 1 : ANEX0 input is A-D converted  
1 0 : ANEX1 input is A-D converted  
1 1 : External op-amp connection mode  
OPA1  
Note 1: If the A-D control register is rewritten during A-D conversion, the conversion result  
is indeterminate.  
Note 2: Neither ‘01’ nor ‘10’ can be selected with the external op-amp connection mode bit.  
Figure 1.18.6. A-D conversion register in single sweep mode  
121  
Mitsubishi microcomputers  
M16C / 61 Group  
A-D Converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(4) Repeat sweep mode 0  
In repeat sweep mode 0, the pins selected using the A-D sweep pin select bit are used for repeat sweep  
A-D conversion. Table 1.18.5 shows the specifications of repeat sweep mode 0. Figure 1.18.7 shows the  
A-D control register in repeat sweep mode 0.  
Table 1.18.5. Repeat sweep mode 0 specifications  
Item  
Specification  
Function  
The pins selected by the A-D sweep pin select bit are used for repeat sweep A-D conversion  
Writing “1” to A-D conversion start flag  
Start condition  
Stop condition  
Writing “0” to A-D conversion start flag  
Interrupt request generation timing None generated  
Input pin  
AN0 and AN1 (2 pins), AN0 to AN3 (4 pins), AN0 to AN5 (6 pins), or AN0 to AN7 (8 pins)  
Reading of result of A-D converter  
Read A-D register corresponding to selected pin (at any time)  
A-D control register 0 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON0  
Address  
03D616  
When reset  
00000XXX2  
1
1
Bit symbol  
Bit name  
Function  
R W  
Analog input pin  
select bit  
Invalid in repeat sweep mode 0  
CH0  
CH1  
CH2  
b4 b3  
MD0  
MD1  
A-D operation mode  
select bit 0  
1 1 : Repeat sweep mode 0  
Trigger select bit  
0 : Software trigger  
1 : ADTRG trigger  
TRG  
A-D conversion start flag 0 : A-D conversion disabled  
1 : A-D conversion started  
ADST  
CKS0  
Frequency select bit 0  
0 : fAD/4 is selected  
1 : fAD/2 is selected  
Note: If the A-D control register is rewritten during A-D conversion, the conversion result  
is indeterminate.  
A-D control register 1 (Note 1)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON1  
Address  
03D716  
When reset  
0016  
1
0
Bit symbol  
SCAN0  
Bit name  
Function  
R W  
A-D sweep pin select bit When single sweep and repeat sweep mode 0  
are selected  
b1 b0  
0 0 : AN0, AN1 (2 pins)  
0 1 : AN0 to AN3 (4 pins)  
1 0 : AN0 to AN5 (6 pins)  
1 1 : AN0 to AN7 (8 pins)  
SCAN1  
A-D operation mode  
select bit 1  
0 : Any mode other than repeat sweep mode 1  
MD2  
BITS  
CKS1  
8/10-bit mode select bit  
0 : 8-bit mode  
1 : 10-bit mode  
0 : fAD/2 or fAD/4 is selected  
1 : fAD is selected  
Frequency select bit 1  
Vref connect bit  
VCUT  
OPA0  
1 : Vref connected  
b7 b6  
External op-amp  
connection mode  
bit (Note 2)  
0 0 : ANEX0 and ANEX1 are not used  
0 1 : ANEX0 input is A-D converted  
1 0 : ANEX1 input is A-D converted  
1 1 : External op-amp connection mode  
OPA1  
Note 1: If the A-D control register is rewritten during A-D conversion, the conversion result  
is indeterminate.  
Note 2: Neither “01” nor “10” can be selected with the external op-amp connection mode bit.  
Figure 1.18.7. A-D conversion register in repeat sweep mode 0  
122  
Mitsubishi microcomputers  
M16C / 61 Group  
A-D Converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(5) Repeat sweep mode 1  
In repeat sweep mode 1, all pins are used for A-D conversion with emphasis on the pin or pins selected  
using the A-D sweep pin select bit. Table 1.18.6 shows the specifications of repeat sweep mode 1. Figure  
1.18.8 shows the A-D control register in repeat sweep mode 1.  
Table 1.18.6. Repeat sweep mode 1 specifications  
Item  
Specification  
Function  
All pins perform repeat sweep A-D conversion, with emphasis on the pin or  
pins selected by the A-D sweep pin select bit  
Example : AN0 selected AN0  
AN1  
AN0  
AN2  
AN0  
AN3, etc  
Start condition  
Stop condition  
Writing “1” to A-D conversion start flag  
Writing “0” to A-D conversion start flag  
Interrupt request generation timing None generated  
Input pin  
AN0 (1 pin), AN0 and AN1 (2 pins), AN0 to AN2 (3 pins), AN0 to AN3 (4 pins)  
Read A-D register corresponding to selected pin (at any time)  
Reading of result of A-D converter  
A-D control register 0 (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON0  
Address  
03D616  
When reset  
00000XXX  
1
1
2
Bit symbol  
Bit name  
Function  
R W  
Analog input pin  
select bit  
Invalid in repeat sweep mode 1  
CH0  
CH1  
CH2  
b4 b3  
MD0  
MD1  
A-D operation mode  
select bit 0  
1 1 : Repeat sweep mode 1  
Trigger select bit  
0 : Software trigger  
1 : ADTRG trigger  
TRG  
A-D conversion start flag 0 : A-D conversion disabled  
1 : A-D conversion started  
ADST  
CKS0  
0 : fAD/4 is selected  
1 : fAD/2 is selected  
Frequency select bit 0  
Note: If the A-D control register is rewritten during A-D conversion, the conversion result  
is indeterminate.  
A-D control register 1 (Note 1)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
ADCON1  
Address  
03D716  
When reset  
0016  
1
1
Bit symbol  
SCAN0  
Bit name  
Function  
R W  
A-D sweep pin select bit When repeat sweep mode 1 is selected  
b1 b0  
0 0 : AN  
0 1 : AN  
1 0 : AN  
1 1 : AN  
0
0
0
0
(1 pin)  
, AN (2 pins)  
1
SCAN1  
to AN  
to AN  
2
3
(3 pins)  
(4 pins)  
A-D operation mode  
select bit 1  
1 : Repeat sweep mode 1  
MD2  
BITS  
CKS1  
8/10-bit mode select bit  
Frequency select bit 1  
Vref connect bit  
0 : 8-bit mode  
1 : 10-bit mode  
0 : fAD/2 or fAD/4 is selected  
1 : fAD is selected  
VCUT  
OPA0  
1 : Vref connected  
b7 b6  
External op-amp  
connection mode  
bit (Note 2)  
0 0 : ANEX0 and ANEX1 are not used  
0 1 : ANEX0 input is A-D converted  
1 0 : ANEX1 input is A-D converted  
1 1 : External op-amp connection mode  
OPA1  
Note 1: If the A-D control register is rewritten during A-D conversion, the conversion result  
is indeterminate.  
Note 2: Neither ‘01’ nor ‘10’ can be selected with the external op-amp connection mode bit.  
Figure 1.18.8. A-D conversion register in repeat sweep mode 1  
123  
Mitsubishi microcomputers  
M16C / 61 Group  
A-D Converter  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
(a) Sample and hold  
Sample and hold is selected by setting bit 0 of the A-D control register 2 (address 03D416) to “1”. When  
sample and hold is selected, the rate of conversion of each pin increases. As a result, a 28 AD cycle is  
achieved with 8-bit resolution and 33 AD with 10-bit resolution. Sample and hold can be selected in all  
φ
φ
modes. However, in all modes, be sure to specify before starting A-D conversion whether sample and  
hold is to be used.  
(b) Extended analog input pins  
In one-shot mode and repeat mode, the input via the extended analog input pins ANEX0 and ANEX1 can  
also be converted from analog to digital.  
When bit 6 of the A-D control register 1 (address 03D716) is “1” and bit 7 is “0”, input via ANEX0 is  
converted from analog to digital. The result of conversion is stored in A-D register 0.  
When bit 6 of the A-D control register 1 (address 03D716) is “0” and bit 7 is “1”, input via ANEX1 is  
converted from analog to digital. The result of conversion is stored in A-D register 1.  
(c) External operation amp connection mode  
In this mode, multiple external analog inputs via the extended analog input pins, ANEX0 and ANEX1, can  
be amplified together by just one operation amp and used as the input for A-D conversion.  
When bit 6 of the A-D control register 1 (address 03D716) is “1” and bit 7 is “1”, input via AN0 to AN7 is  
output from ANEX0. The input from ANEX1 is converted from analog to digital and the result stored in the  
corresponding A-D register. The speed of A-D conversion depends on the response of the external op-  
eration amp. Do not connect the ANEX0 and ANEX1 pins directly. Figure 1.18.9 is an example of how to  
connect the pins in external operation amp mode.  
Resistor ladder  
Successive conversion register  
AN  
AN  
AN  
AN  
AN  
AN  
AN  
0
1
2
3
4
5
6
Analog  
input  
AN7  
ANEX0  
ANEX1  
Comparator  
External op-amp  
Figure 1.18.9. Example of external op-amp connection mode  
124  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
D-A Converter  
D-A Converter  
This is an 8-bit, R-2R type D-A converter. The microcomputer contains two independent D-A converters of  
this type.  
D-A conversion is performed when a value is written to the corresponding D-A register. Bits 0 and 1 (D-A  
output enable bits) of the D-A control register decide if the result of conversion is to be output. Do not set the  
target port to output mode if D-A conversion is to be performed.  
Output analog voltage (V) is determined by a set value (n : decimal) in the D-A register.  
V = VREF X n/ 256 (n = 0 to 255)  
VREF : reference voltage  
Table 1.19.1 lists the performance of the D-A converter. Figure 1.19.1 shows the block diagram of the D-A  
converter. Figure 1.19.2 shows the D-A control register. Figure 1.19.3 shows the D-A converter equivalent  
circuit.  
Table 1.19.1. Performance of D-A converter  
Item  
Conversion method  
Resolution  
Performance  
R-2R method  
8 bits  
Analog output pin  
2 channels  
Data bus low-order bits  
D-A register0 (8)  
(Address 03D816  
)
D-A0 output enable bit  
P9 /DA  
3
0
R-2R resistor ladder  
D-A register1 (8)  
(Address 03DA16  
D-A1 output enable bit  
P9 /DA  
)
4
1
R-2R resistor ladder  
Figure 1.19.1. Block diagram of D-A converter  
125  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
D-A Converter  
D-A control register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
DACON  
Address  
03DC16  
When reset  
0016  
Bit symbol  
DA0E  
Bit name  
Function  
R W  
0 : Output disabled  
1 : Output enabled  
D-A0 output enable bit  
D-A1 output enable bit  
0 : Output disabled  
1 : Output enabled  
DA1E  
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to be “0”.  
D-A register  
b7  
Symbol  
DAi (i = 0,1)  
Address  
03D816, 03DA16  
When reset  
Indeterminate  
b0  
Function  
R W  
Output value of D-A conversion  
Figure 1.19.2. D-A control register  
D-A0 output enable bit  
"0"  
R
R
R
R
R
R
R
2R  
DA0  
"1"  
2R  
MSB  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
LSB  
D-A0 register0  
AVSS  
REF  
V
Note 1: The above diagram shows an instance in which the D-A register is assigned 2A16  
.
Note 2: The same circuit as this is also used for D-A1.  
Note 3: To reduce the current consumption when the D-A converter is not used, set the D-A output enable bit to 0 and set the D-A register to  
0016 so that no current flows in the resistors Rs and 2Rs.  
Figure 1.19.3. D-A converter equivalent circuit  
126  
Mitsubishi microcomputers  
M16C / 61 Group  
CRC  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
CRC Calculation Circuit  
The Cyclic Redundancy Check (CRC) calculation circuit detects an error in data blocks. The microcom-  
16  
12  
5
puter uses a generator polynomial of CRC_CCITT (X + X + X + 1) to generate CRC code.  
The CRC code is a 16-bit code generated for a block of a given data length in multiples of 8 bits. The CRC  
code is set in a CRC data register each time one byte of data is transferred to a CRC input register after  
writing an initial value into the CRC data register. Generation of CRC code for one byte of data is com-  
pleted in two machine cycles.  
Figure 1.20.1 shows the block diagram of the CRC circuit. Figure 1.20.2 shows the CRC-related registers.  
Figure 1.20.3 shows the calculation example using the CRC calculation circuit  
Data bus high-order bits  
Data bus low-order bits  
Eight low-order bits  
Eight high-order bits  
CRC data register (16)  
(Addresses 03BD16, 03BC16  
)
CRC code generating circuit  
16  
12  
5
x
+ x + x + 1  
CRC input register (8) (Address 03BE16  
)
Figure 1.20.1. Block diagram of CRC circuit  
CRC data register  
(b15)  
b7  
(b8)  
b0 b7  
Symbol  
CRCD  
Address  
03BD16, 03BC16  
When reset  
Indeterminate  
b0  
Values that  
can be set  
Function  
R W  
CRC calculation result output register  
000016 to FFFF16  
CRC input register  
b7  
b0  
Symbo  
CRCIN  
Address  
03BE16  
When reset  
Indeterminate  
Values that  
can be set  
Function  
R W  
Data input register  
0016 to FF16  
Figure 1.20.2. CRC-related registers  
127  
Mitsubishi microcomputers  
M16C / 61 Group  
CRC  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
b15  
b0  
b0  
CRC data register CRCD  
(1) Setting 000016  
(2) Setting 0116  
[03BD16, 03BC16]  
b7  
CRC input register  
2 cycles  
CRCIN  
[03BE16]  
After CRC calculation is complete  
b15  
b0  
CRC data register  
Stores CRC code  
CRCD  
[03BD16, 03BC16]  
118916  
The code resulting from sending 0116 in LSB first mode is (1000 0000). Thus the CRC code in the generating polynomial,  
16  
12  
5
16  
(X + X + X + 1), becomes the remainder resulting from dividing (1000 0000) X by (1 0001 0000 0010 0001) in  
conformity with the modulo-2 operation.  
LSB  
MSB  
Modulo-2 operation is  
operation that complies  
with the law given below.  
1000 1000  
1 0001 0000 0010 0001  
1000 0000 0000 0000 0000 0000  
1000 1000 0001 0000 1  
1000 0001 0000 1000 0  
1000 1000 0001 0000 1  
1001 0001 1000 1000  
LSB  
0 + 0 = 0  
0 + 1 = 1  
1 + 0 = 1  
1 + 1 = 0  
-1 = 1  
MSB  
9
8
1
1
Thus the CRC code becomes (1001 0001 1000 1000). Since the operation is in LSB first mode, the (1001 0001 1000 1000)  
corresponds to 118916 in hexadecimal notation. If the CRC operation in MSB first mode is necessary in the CRC operation  
circuit built in the M16C, switch between the LSB side and the MSB side of the input-holding bits, and carry out the CRC  
operation. Also switch between the MSB and LSB of the result as stored in CRC data.  
b7  
b0  
CRC input register  
CRCIN  
[03BE16]  
(3) Setting 2316  
After CRC calculation is complete  
b15  
b0  
CRC data register  
Stores CRC code  
CRCD  
[03BD16, 03BC16]  
0A4116  
Figure 1.20.3. Calculation example using the CRC calculation circuit  
128  
Mitsubishi microcomputers  
M16C / 61 Group  
Programmable I/O Port  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Programmable I/O Ports  
There are 87 programmable I/O ports: P0 to P10 (excluding P85). Each port can be set independently for  
input or output using the direction register. A pull-up resistance for each block of 4 ports can be set. P85 is  
an input-only port and has no built-in pull-up resistance.  
Figures 1.21.1 to 1.21.4 show the programmable I/O ports. Figure 1.21.5 shows the I/O pins.  
Each pin functions as a programmable I/O port and as the I/O for the built-in peripheral devices.  
To use the pins as the inputs for the built-in peripheral devices, set the direction register of each pin to input  
mode. When the pins are used as the outputs for the built-in peripheral devices (other than the D-A con-  
verter), they function as outputs regardless of the contents of the direction registers. When pins are to be  
used as the outputs for the D-A converter, do not set the direction registers to output mode. See the  
descriptions of the respective functions for how to set up the built-in peripheral devices.  
(1) Direction registers  
Figure 1.21.6 shows the direction registers.  
These registers are used to choose the direction of the programmable I/O ports. Each bit in these regis-  
ters corresponds one for one to each I/O pin.  
Note: There is no direction register bit for P85.  
(2) Port registers  
Figure 1.21.7 shows the port registers.  
These registers are used to write and read data for input and output to and from an external device. A  
port register consists of a port latch to hold output data and a circuit to read the status of a pin. Each bit  
in port registers corresponds one for one to each I/O pin.  
(3) Pull-up control registers  
Figure 1.21.8 shows the pull-up control registers.  
The pull-up control register can be set to apply a pull-up resistance to each block of 4 ports. When ports  
are set to have a pull-up resistance, the pull-up resistance is connected only when the direction register is  
set for input.  
However, in memory expansion mode and microprocessor mode, the pull-up control register of P0 to P5  
is invalid.  
129  
Mitsubishi microcomputers  
M16C / 61 Group  
Programmable I/O Port  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Pull-up selection  
Direction register  
P0  
P2  
P4  
P5  
0
0
0
6
to P0  
to P2  
to P4  
7, P1  
7, P3  
7, P5  
0
0
0
to P1  
to P3  
to P5  
7,  
7,  
4,  
Data bus  
Port latch  
(Note)  
Pull-up selection  
P5  
P8  
P9  
5
1
7
, P6  
2
, P6  
6
, P7  
5
, P7  
7
,
,
Direction register  
to P8  
4
, P9  
0
to P9  
2
Data bus  
Port latch  
(Note)  
Input to respective peripheral functions  
Pull-up selection  
Direction register  
P63, P6  
7
“1”  
Output  
Data bus  
Port latch  
(Note)  
Pull-up selection  
P5  
7
, P6  
0
, P6  
1
, P6  
4
, P65,  
Direction register  
P72  
to P7  
4
, P76, P80  
“1”  
Output  
Data bus  
Port latch  
(Note)  
Input to respective peripheral functions  
Note :  
symbolizes a parasitic diode.  
Do not apply a voltage higher than VCC to each port.  
Figure 1.21.1. Programmable I/O ports (1)  
130  
Mitsubishi microcomputers  
M16C / 61 Group  
Programmable I/O Port  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Pull-up selection  
Direction register  
P82 to P84  
Port latch  
Data bus  
(Note 1)  
Input to respective peripheral functions  
Direction register  
“1”  
P7  
0
output  
Port latch  
Data bus  
(Note 2)  
Direction register  
Port latch  
P7  
1
Data bus  
(Note 2)  
Input to respective peripheral functions  
P85  
Data bus  
(Note 1)  
NMI interrupt input  
Note 1 :  
symbolizes a parasitic diode.  
Do not apply a voltage higher than VCC to each port.  
Note 2 :  
symbolizes a parasitic diode.  
Figure 1.21.2. Programmable I/O ports (2)  
131  
Mitsubishi microcomputers  
M16C / 61 Group  
Programmable I/O Port  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Pull-up selection  
Direction register  
P95, P96, P100 to P103  
(inside dotted-line not included)  
P104 to P107  
(inside dotted-line included)  
Data bus  
Port latch  
(Note)  
Analog input  
Pull-up selection  
D-A output enabled  
Direction register  
P93, P94  
Data bus  
Port latch  
(Note)  
Analog input  
D-A output enabled  
Note :  
symbolizes a parasitic diode.  
Do not apply a voltage higher than VCC to each port.  
Figure 1.21.3. Programmable I/O ports (3)  
132  
Mitsubishi microcomputers  
M16C / 61 Group  
Programmable I/O Port  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Pull-up selection  
Direction register  
P87  
Data bus  
Port latch  
(Note)  
fc  
Input to respective peripheral functions  
Pull-up selection  
Rf  
Rd  
Direction register  
“1”  
P86  
output  
Data bus  
Port latch  
(Note)  
Note :  
symbolizes a parasitic diode.  
Do not apply a voltage higher than VCC to each port.  
Figure 1.21.4. Programmable I/O ports (4)  
(Note 2)  
(Note 1)  
BYTE  
BYTE signal input  
(Note 2)  
(Note 1)  
CNVSS  
CNVSS signal input  
RESET  
RESET signal input  
(Note 1)  
Note 1 :  
symbolizes a parasitic diode.  
Do not apply a voltage higher than Vcc to each pin.  
Note 2 : A parasitic diode on the VCC side is added to the mask ROM version.  
Do not apply a voltage higher than Vcc to each pin.  
Figure 1.21.5. I/O pins  
133  
Mitsubishi microcomputers  
M16C / 61 Group  
Programmable I/O Port  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Port Pi direction register (Note)  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
PDi (i = 0 to 10, except 8)  
Address  
When reset  
0016  
03E216, 03E316, 03E616, 03E716, 03EA16  
03EB16, 03EE16, 03EF16, 03F316, 03F616  
Bit symbol  
PDi_0  
Bit name  
direction register  
Function  
R W  
Port Pi  
Port Pi  
Port Pi  
Port Pi  
Port Pi  
0
0 : Input mode  
(Functions as an input port)  
1 : Output mode  
PDi_1  
PDi_2  
PDi_3  
PDi_4  
PDi_5  
PDi_6  
1
direction register  
direction register  
direction register  
direction register  
direction register  
direction register  
2
(Functions as an output port)  
3
(i = 0 to 10 except 8)  
4
Port Pi  
Port Pi  
Port Pi  
5
6
7
PDi_7  
direction register  
Note: Set bit 2 of protect register (address 000A16) to “1” before rewriting to  
the port P9 direction register.  
Port P8 direction register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
PD8  
Address  
03F216  
When reset  
00X00000  
2
Bit symbol  
PD8_0  
Bit name  
Function  
0 : Input mode  
(Functions as an input port)  
1 : Output mode  
R W  
Port P8  
Port P8  
Port P8  
0
direction register  
direction register  
direction register  
direction register  
direction register  
PD8_1  
PD8_2  
PD8_3  
PD8_4  
1
2
(Functions as an output port)  
Port P8  
Port P8  
3
4
Nothing is assigned.  
In an attempt to write to this bit, write “0”. The value, if read, turns out to be  
indeterminate.  
0 : Input mode  
(Functions as an input port)  
1 : Output mode  
PD8_6  
PD8_7  
Port P8  
Port P8  
6
7
direction register  
direction register  
(Functions as an output port)  
Figure 1.21.6. Direction register  
134  
Mitsubishi microcomputers  
M16C / 61 Group  
Programmable I/O Port  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Port Pi register  
Symbol  
Pi (i = 0 to 10, except 8)  
Address  
When reset  
03E016, 03E116, 03E416, 03E516, 03E816 Indeterminate  
03E916, 03EC16, 03ED16, 03F116, 03F416 Indeterminate  
b7 b6 b5 b4 b3 b2 b1 b0  
Bit symbol  
Pi_0  
Bit name  
Function  
R W  
Port Pi  
Port Pi  
Port Pi  
Port Pi  
Port Pi  
0
1
2
3
4
register  
register  
register  
register  
register  
Data is input and output to and from  
each pin by reading and writing to  
and from each corresponding bit  
0 : “L” level data  
Pi_1  
Pi_2  
Pi_3  
1 : “H” level data (Note)  
Pi_4  
(i = 0 to 10 except 8)  
Pi_5  
Port Pi  
Port Pi  
Port Pi  
5
6
7
register  
register  
register  
Pi_6  
Pi_7  
Note : Since P70 and P71 are N-channel open drain ports, the data is high-impedance.  
Port P8 register  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
P8  
Address  
03F016  
When reset  
Indeterminate  
Bit symbol  
P8_0  
Bit name  
Function  
R W  
Port P80 register  
Port P81 register  
Port P82 register  
Port P83 register  
Port P84 register  
Port P85 register  
Port P86 register  
Port P87 register  
Data is input and output to and from  
each pin by reading and writing to  
and from each corresponding bit  
(except for P85)  
0 : “L” level data  
1 : “H” level data  
P8_1  
P8_2  
P8_3  
P8_4  
P8_5  
P8_6  
P8_7  
Figure 1.21.7. Port register  
135  
Mitsubishi microcomputers  
M16C / 61 Group  
Programmable I/O Port  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Pull-up control register 0  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
PUR0  
Address  
03FC16  
When reset  
0016  
Bit symbol  
PU00  
Bit name  
Function  
R W  
P0  
P0  
P1  
P1  
P2  
P2  
P3  
P3  
0
to P0  
to P0  
to P1  
to P1  
to P2  
to P2  
to P3  
to P3  
3
pull-up  
pull-up  
pull-up  
pull-up  
pull-up  
pull-up  
pull-up  
pull-up  
The corresponding port is pulled  
high with a pull-up resistor  
0 : Not pulled high  
PU01  
PU02  
PU03  
PU04  
PU05  
PU06  
PU07  
4
0
4
0
4
0
4
7
3
7
3
7
3
7
1 : Pulled high  
Pull-up control register 1  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
PUR1  
Address  
03FD16  
When reset  
0016  
Bit symbol  
PU10  
Bit name  
Function  
R W  
P4  
0
4
to P4  
3
pull-up  
The corresponding port is pulled  
high with a pull-up resistor  
0 : Not pulled high  
PU11  
P4  
to P4  
7
pull-up  
PU12  
PU13  
P5  
P5  
0
4
to P5  
to P5  
3
7
pull-up  
pull-up  
1 : Pulled high  
PU14  
PU15  
PU16  
P60  
P64  
P70  
to P6  
to P6  
to P7  
3
7
3
pull-up  
pull-up  
pull-up (Note)  
PU17  
P7  
4
to P7  
7
pull-up  
Note: Since P7  
0
and P71 are N-channel open drain ports, pull-up is not available for them.  
Pull-up control register 2  
b7 b6 b5 b4 b3 b2 b1 b0  
Symbol  
PUR2  
Address  
03FE16  
When reset  
0016  
Bit symbol  
PU20  
Bit name  
Function  
R W  
P8  
0
4
to P8  
3
pull-up  
The corresponding port is pulled  
high with a pull-up resistor  
0 : Not pulled high  
PU21  
P8  
to P8  
7
pull-up  
5)  
(Except P8  
P9 to P9  
P9 to P9  
P10  
P10  
1 : Pulled high  
PU22  
0
3
pull-up  
PU23  
PU24  
4
7 pull-up  
0
to P10  
3
pull-up  
pull-up  
PU25  
4
to P10  
7
Nothing is assigned.  
In an attempt to write to these bits, write “0”. The value, if read, turns out to be “0”.  
Figure 1.21.8. Pull-up control register  
136  
Mitsubishi microcomputers  
M16C / 61 Group  
Programmable I/O Port  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Table 1.21.1. Example connection of unused pins in single-chip mode  
Pin name  
Connection  
Ports P0 to P10  
After setting for input mode, connect every pin to VSS via a resistor; or  
after setting for output mode, leave these pins open.  
(excluding P8  
5)  
XOUT (Note)  
Open  
Connect via resistor to VCC (pull-up)  
Connect to VCC  
NMI  
AVCC  
AVSS, VREF, BYTE  
CNVSS  
Connect to VSS  
Connect via resistor to VSS (pull-down)  
Note: With external clock input to XIN pin.  
Table 1.21.2. Example connection of unused pins in memory expansion mode and microprocessor mode  
Pin name  
Connection  
Ports P6 to P10  
(excluding P85)  
After setting for input mode, connect every pin to VSS or VCC via a resistor; or  
after setting for output mode, leave these pins open.  
Open  
BHE, ALE, HLDA,  
OUT(Note), BCLK  
X
Connect via resistor to VCC (pull-up)  
Connect to VCC  
HOLD, RDY, NMI  
AVCC  
AVSS, VREF  
CNVSS  
Connect to VSS  
Connect via resistor to VSS (pull-down) in the memory expansion mode  
Connect via resistor to VCC (pull-up) in the microprocessor mode  
Note: With external clock input to XIN pin.  
Microcomputer  
Microcomputer  
Port P6 to P10 (except for P85)  
Port P0 to P10 (except for P85)  
(Input mode)  
(Input mode)  
·
·
·
·
·
·
·
·
·
·
·
·
(Input mode)  
(Input mode)  
(Output mode)  
(Output mode)  
Open  
Open  
NMI  
NMI  
BHE  
HLDA  
ALE  
XOUT  
BCLK  
XOUT  
Open  
VCC  
Open  
VCC  
AVCC  
0.47µs  
HOLD  
RDY  
BYTE  
AVSS  
0.47µs  
CNVSS(microprocessor mode)  
VREF  
AVCC  
AVSS  
CNVSS  
VREF  
CNVSS(memory expansion mode)  
VSS  
VSS  
In single-chip mode  
In memory expansion mode or  
in microprocessor mode  
Figure 1.21.9. Example connection of unused pins  
137  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Usage precaution  
Usage Precaution  
Timer A (timer mode)  
(1) Reading the timer Ai register while a count is in progress allows reading, with arbitrary timing, the  
value of the counter. Reading the timer Ai register with the reload timing gets “FFFF16”. Reading the  
timer Ai register after setting a value in the timer Ai register with a count halted but before the counter  
starts counting gets a proper value.  
Timer A (event counter mode)  
(1) Reading the timer Ai register while a count is in progress allows reading, with arbitrary timing, the  
value of the counter. Reading the timer Ai register with the reload timing gets “FFFF16” by underflow  
or “000016” by overflow. Reading the timer Ai register after setting a value in the timer Ai register with  
a count halted but before the counter starts counting gets a proper value.  
(2) When stop counting in free run type, set timer again.  
Timer A (one-shot timer mode)  
(1) Setting the count start flag to “0” while a count is in progress causes as follows:  
• The counter stops counting and a content of reload register is reloaded.  
• The TAiOUT pin outputs “L” level.  
• The interrupt request generated and the timer Ai interrupt request bit goes to “1”.  
(2) The timer Ai interrupt request bit goes to “1” if the timer's operation mode is set using any of the  
following procedures:  
• Selecting one-shot timer mode after reset.  
• Changing operation mode from timer mode to one-shot timer mode.  
• Changing operation mode from event counter mode to one-shot timer mode.  
Therefore, to use timer Ai interrupt (interrupt request bit), set timer Ai interrupt request bit to “0”  
after the above listed changes have been made.  
Timer A (pulse width modulation mode)  
(1) The timer Ai interrupt request bit becomes “1” if setting operation mode of the timer in compliance with  
any of the following procedures:  
• Selecting PWM mode after reset.  
• Changing operation mode from timer mode to PWM mode.  
• Changing operation mode from event counter mode to PWM mode.  
Therefore, to use timer Ai interrupt (interrupt request bit), set timer Ai interrupt request bit to “0”  
after the above listed changes have been made.  
(2) Setting the count start flag to “0” while PWM pulses are being output causes the counter to stop  
counting. If the TAiOUT pin is outputting an “H” level in this instance, the output level goes to “L”, and  
the timer Ai interrupt request bit goes to “1”. If the TAiOUT pin is outputting an “L” level in this instance,  
the level does not change, and the timer Ai interrupt request bit does not becomes “1”.  
Timer B (timer mode, event counter mode)  
(1) Reading the timer Bi register while a count is in progress allows reading , with arbitrary timing, the  
value of the counter. Reading the timer Bi register with the reload timing gets “FFFF16”. Reading the  
timer Bi register after setting a value in the timer Bi register with a count halted but before the counter  
starts counting gets a proper value.  
138  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Usage precaution  
Timer B (pulse period/pulse width measurement mode)  
(1) If changing the measurement mode select bit is set after a count is started, the timer Bi interrupt  
request bit goes to “1”.  
(2) When the first effective edge is input after a count is started, an indeterminate value is transferred to  
the reload register. At this time, timer Bi interrupt request is not generated.  
A-D Converter  
(1) Write to each bit (except bit 6) of A-D control register 0, to each bit of A-D control register 1, and to bit  
0 of A-D control register 2 when A-D conversion is stopped (before a trigger occurs).  
In particular, when the Vref connection bit is changed from “0” to “1”, start A-D conversion after an  
elapse of 1 µs or longer.  
(2) When changing A-D operation mode, select analog input pin again.  
(3) Using one-shot mode or single sweep mode  
Read the correspondence A-D register after confirming A-D conversion is finished. (It is known by A-  
D conversion interrupt request bit.)  
(4) Using repeat mode, repeat sweep mode 0 or repeat sweep mode 1  
Use the undivided main clock as the internal CPU clock.  
Stop Mode and Wait Mode  
____________  
(1) When returning from stop mode by hardware reset, RESET pin must be set to “L” level until main clock  
oscillation is stabilized.  
(2) When switching to either wait mode or stop mode, instructions occupying four bytes either from the  
WAIT instruction or from the instruction that sets the every-clock stop bit to “1” within the instruction  
queue are prefetched and then the program stops. So put at least four NOPs in succession either to  
the WAIT instruction or to the instruction that sets the every-clock stop bit to 1.  
Interrupts  
(1) Reading address 0000016  
• When maskable interrupt is occurred, CPU read the interrupt information (the interrupt number  
and interrupt request level) in the interrupt sequence.  
The interrupt request bit of the certain interrupt written in address 0000016 will then be set to “0”.  
Reading address 0000016 by software sets enabled highest priority interrupt source request bit to “0”.  
Though the interrupt is generated, the interrupt routine may not be executed.  
Do not read address 0000016 by software.  
(2) Setting the stack pointer  
• The value of the stack pointer immediately after reset is initialized to 000016. Accepting an  
interrupt before setting a value in the stack pointer may become a factor of runaway. Be sure to  
set a value in the stack pointer before accepting an interrupt.  
_______  
When using the NMI interrupt, initialize the stack point at the beginning of a program. Concerning  
_______  
the first instruction immediately after reset, generating any interrupts including the NMI interrupt is  
prohibited.  
139  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Usage precaution  
_______  
(3) The NMI interrupt  
_______  
• As for the NMI interrupt pin, an interrupt cannot be disabled. Connect it to the VCC pin via a  
resistor (pull-up) if unused. Be sure to work on it.  
_______  
• Do not get either into stop mode or into wait mode with the NMI pin set to “L”.  
(4) External interrupt  
________  
________  
• When the polarity of the INT0 to INT2 pins is changed, the interrupt request bit is sometimes set to  
"1". After changing the polarity, set the interrupt request bit to "0".  
(5) Rewrite the interrupt control register  
• To rewrite the interrupt control register, do so at a point that does not generate the interrupt  
request for that register. If there is possibility of the interrupt request occur, rewrite the interrupt  
control register after the interrupt is disabled. The program examples are described as follow:  
Example 1:  
INT_SWITCH1:  
FCLR  
I
; Disable interrupts.  
AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.  
NOP  
NOP  
FSET  
; Four NOP instructions are required when using HOLD function.  
; Enable interrupts.  
I
Example 2:  
INT_SWITCH2:  
FCLR  
I
; Disable interrupts.  
AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.  
MOV.W MEM, R0  
; Dummy read.  
; Enable interrupts.  
FSET  
I
Example 3:  
INT_SWITCH3:  
PUSHC FLG  
; Push Flag register onto stack  
; Disable interrupts.  
FCLR  
I
AND.B #00h, 0055h ; Clear TA0IC int. priority level and int. request bit.  
POPC FLG ; Enable interrupts.  
The reason why two NOP instructions (four when using the HOLD function) or dummy read are inserted  
before FSET I in Examples 1 and 2 is to prevent the interrupt enable flag I from being set before the  
interrupt control register is rewritten due to effects of the instruction queue.  
• When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled,  
the interrupt request bit is not set sometimes even if the interrupt request for that register has  
been generated. This will depend on the instruction. If this creates problems, use the below  
instructions to change the register.  
Instructions : AND, OR, BCLR, BSET  
140  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Usage precaution  
External ROM version  
The external ROM version is operated only in microprocessor mode, so be sure to perform the following:  
• Connect CNVSS pin to VCC.  
• Fix the processor mode bit to “112”  
Built-in PROM version  
(1) All built-in PROM versions  
High voltage is required to program to the built-in PROM. Be careful not to apply excessive voltage.  
Be especially careful during power-on.  
(2) One Time PROM version  
One Time PROM versions shipped in blank (M30612E4FP, M30612E4GP, M30610ECFP,  
M30610ECGP), of which built-in PROMs are programmed by users, are also provided. For these  
microcomputers, a programming test and screening are not performed in the assembly process and  
the following processes. Therefore ROM write defectiveness occurs around 5 %. To improve their  
reliability after programming, we recommend to program and test as flow shown in Figure 1.22.1  
before use.  
Programming with PROM programmer  
Screening (Note)  
(Leave at 150˚C for 40 hours)  
Verify test PROM programmer  
Function check in target device  
Note: Never expose to 150˚C exceeding 100 hours.  
Figure 1.22.1. Programming and test flow for One Time PROM version  
(3) EPROM version  
• Cover the transparent glass window with a shield or others during the read mode because exposing  
to sun light or fluorescent lamp can cause erasing the information.  
A shield to cover the transparent window is available from Mitsubishi Electric Corp. Be careful that  
the shield does not touch the EPROM lead pins.  
• Clean the transparent glass before erasing. Fingers’ flat and paste disturb the passage of ultraviolet  
rays and may affect badly the erasure capability.  
• The EPROM version is a tool only for program development (for evaluation), and do not use it for the  
mass product run.  
141  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Items to be submitted when ordering masked ROM version  
Please submit the following when ordering masked ROM products:  
(1) Mask ROM confirmation form  
(2) Mark specification sheet  
(3) ROM data : EPROMs or floppy disks  
*: In the case of EPROMs, there sets of EPROMs are required per pattern.  
*: In the case of floppy disks, 3.5-inch double-sided high-density disk (IBM format) is required per pattern.  
142  
Mitsubishi microcomputers  
M16C / 61 Group  
Electrical characteristics  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Table 1.24.1. Absolute maximum ratings  
Symbol  
Vcc  
Parameter  
Condition  
CC = AVCC  
Rated value  
–0.3 to 6.5  
Unit  
V
Supply voltage  
V
(Note 3)  
(Note 3)  
AVcc  
–0.3 to 6.5  
V
Analog supply voltage  
V
CC = AVCC  
V
I
P0  
P3  
0
0
to P0  
to P3  
7
, P1  
, P4  
0
0
to P17, P2  
to P47, P5  
0
0
to P2  
to P5  
7
,
,
Input voltage  
7
7
P6  
P9  
RESET, VREF, XIN  
P7 , P7 , CNVss, BYTE  
0
to P6  
to P9  
7
, P7  
, P10  
2
to P77, P8  
0 to P107,  
0 to P87,  
V
V
–0.3 to Vcc+0.3  
–0.3 to 6.5  
0
7
VI  
(Note 1, Note 3)  
Input voltage  
0
1
Output voltage P0  
0
to P0  
to P3  
7
, P1  
, P4  
0
0
to P17, P2  
to P47, P5  
0
to P2  
to P57,  
to P84,  
7,  
V
O
O
P30  
7
0
V
P6  
P8  
0
6
to P6  
7
, P7  
2
to P77, P8  
0
–0.3 to Vcc+0.3  
,P8  
7, P9  
0
to P97, P10  
0 to P107,  
X
OUT  
–0.3 to 6.5  
300  
(Note 3)  
(Note 2)  
V
mW  
C
V
Output voltage  
P7  
0
, P7  
1
P
T
T
d
Power dissipation  
Ta=25 C  
opr  
stg  
Operating ambient temperature  
Storage temperature  
–20 to 85 / –40 to 85  
–65 to 150  
C
Note 1: When writing to EPROM ,only CNVSS is –0.3 to 13 (V) .  
Note 2: Specify a product of –40 to 85°C to use it.  
Note 3: –0.3V to 6.5V for M30610M8A, M30610MAA, M30610MCA, M30612M4A, M30612M8A, M30612MAA, M30612MCA,  
M30610SA and M30612SA.  
Otherwise, –0.3V to 7.0V is used.  
143  
Mitsubishi microcomputers  
M16C / 61 Group  
Electrical characteristics (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Table 1.24.2. Recommended operating conditions (referenced to VCC = 2.7V to 5.5V at Ta = –20 to  
o
o
85 C / –40 to 85 C (Note 3) unless otherwise specified)  
Standard  
Unit  
Symbol  
Parameter  
Min  
2.7  
Typ.  
5.0  
Vcc  
0
Max.  
5.5  
Supply voltage  
Vcc  
V
V
V
V
AVcc  
Vss  
Analog supply voltage  
Supply voltage  
AVss  
Analog supply voltage  
0
P3  
P7  
1
2
to P3  
to P7  
7
, P4  
, P8  
0
0
to P4  
to P8  
7
, P5  
, P9  
0
0
to P57, P6  
to P97, P10  
0
to P67,  
0 to P107,  
V
IH  
HIGH input voltage  
7
7
0.8Vcc  
Vcc  
V
X
IN, RESET, CNVSS, BYTE  
P7 , P7  
P0 to P0  
0
1
0.8Vcc  
0.8Vcc  
6.5  
V
V
0
7
, P1  
0
to P1  
7, P2  
0
to P2  
7
, P3  
0
0
Vcc  
(during single-chip mode)  
P00 to P07, P10 to P17, P2  
0
to P2  
7
, P3  
(data input function during memory expansion  
and microprocessor modes)  
0.5Vcc  
Vcc  
V
P3  
P7  
IN, RESET, CNVSS, BYTE  
1
to P3  
to P7  
7
, P4  
, P8  
0
to P4  
to P8  
7
, P5  
, P9  
0
to P57, P6  
0
to P6  
0
7,  
, P10 to P107,  
VIL  
LOW input voltage  
0
0
0
0.2Vcc  
0.2Vcc  
0.16Vcc  
V
V
V
0
7
0
7
0
to P9  
7
X
P0  
0
to P0  
7
, P1  
0
to P1  
7, P2  
(during single-chip mode)  
0
to P2  
7, P30  
P00 to P07, P10 to P17, P2  
0
to P2  
7
, P3  
0
(data input function during memory expansion  
and microprocessor modes)  
P00 to P07, P10 to P17, P20 to P2  
7
,P3  
,P7  
to P10  
0
to P3  
to P77,  
7,  
HIGH peak output  
current  
IOH (peak)  
-10.0  
mA  
P4 to P4 , P5 to P5 , P6 to P6  
to P84,P86,P87,P9 to P97,P10  
to P0 , P1 to P1 , P2 to P2 ,P3  
to P4 , P5 to P5 , P6 to P6 ,P7  
to P84,P86,P87,P9 to P97,P10 to P10  
to P0 , P1 to P1 , P2 to P2 ,P3  
to P4 , P5 to P5 , P6 to P6 ,P7  
to P84,P86,P87,P9 to P97,P10 to P10  
to P0 , P1 to P1 , P2 to P2 ,P3  
to P4 , P5 to P5 , P6 to P6 ,P7  
to P84,P86,P87,P9 to P97,P10 to P10  
0
7
0
7
0
7
2
P8  
0
0
0
0
7
P0  
7
0
7
0
7
0
to P37,  
IOH (avg)  
HIGH average output  
current  
P4  
P8  
P0  
P4  
P8  
P0  
P4  
P8  
0
7
0
7
0
7
2 to P77,  
-5.0  
mA  
mA  
0
0
0
7
0
7
0
7
0
7
0
to P37,  
LOW peak output  
current  
IOL (peak)  
10.0  
0
0
7
0
7
0
7
0
to P7  
7
,
0
0
7
0
7
0
7
0
7
0
to P37  
,
IOL (avg)  
LOW average output  
current  
0
0
7
0
7
0
7
0 to P77,  
5.0  
10  
mA  
0
0
7
VCC =4.0V to 5.5V  
VCC =2.7V to 4.0V  
VCC =4.0V to 5.5V  
0
0
0
0
MHz  
MHz  
MHz  
MHz  
kHz  
f (XIN  
)
Main clock input oscillation  
frequency  
No wait  
5 X VCC  
–10.000  
10  
With wait  
2.31 X VCC  
+0.760  
V
CC =2.7V to 4.0V  
32.768  
50  
f (XcIN  
)
Subclock oscillation frequency  
Note 1: The mean output current is the mean value within 100ms.  
Note 2: The total IOL (peak) for ports P0, P1, P2, P86, P87, P9, and P10 must be 80mA max. The total IOH (peak) for ports P0, P1,  
P2, P86, P87, P9, and P10 must be 80mA max. The total IOL (peak) for ports P3, P4, P5, P6, P7, and P80 to P84 must be  
80mA max. The total IOH (peak) for ports P3, P4, P5, P6, P72 to P77, and P80 to P84 must be 80mA max.  
Note 3: Specify a product of –40 to 85°C to use it.  
Note 4: The relationship between main clock input frequency and power supply voltage is as below.  
Main clock input oscillation frequency  
(No wait)  
Main clock input oscillation frequency  
(With wait)  
10.0  
10.0  
7.0  
5 X VCC –10.000MH  
Z
2.31 X VCC –0.760MHZ  
3.5  
0.0  
0.0  
2.7  
4.2  
5.5  
2.7  
4.2  
5.5  
Supply voltage[V]  
Supply voltage[V]  
(BCLK: no division)  
(BCLK: no division)  
144  
Mitsubishi microcomputers  
M16C / 61 Group  
Electrical characteristics (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
o
Table 1.24.3. Electrical characteristics (referenced to VCC = 5V, VSS = 0V at Ta = 25 C, f(XIN) =  
10MH  
Z
unless otherwise specified)  
Standard  
Parameter  
Unit  
Symbol  
Measuring condition  
Typ. Max.  
Min  
HIGH output  
voltage  
P0  
P3  
P6  
0
0
0
to P0  
to P3  
to P6  
7
7
7
, P1  
, P4  
, P7  
0
0
2
to P1  
to P4  
to P7  
7
7
7
, P2  
, P5  
, P8  
0
0
0
to P2  
to P5  
to P8  
7
7
4
,
,
,
V
OH  
OH  
OH  
I
OH=-5mA  
3.0  
V
P8  
6
, P8  
7
, P9  
0
to P9  
7
, P10  
0
to P10  
7
P00  
P30  
P60  
to P0  
to P3  
to P6  
7, P1  
7, P4  
7, P7  
0
0
2
to P1  
to P4  
to P7  
7
7
7
, P2  
, P5  
, P8  
0
to P2  
to P5  
to P8  
7
,
,
,
HIGH output  
voltage  
0
0
7
4
V
V
IOH=-200µA  
4.7  
V
P8  
6
, P8  
7
, P9  
0
to P9  
7
, P10  
0
to P10  
7
HIGHPOWER  
I
I
OH=-1mA  
3.0  
3.0  
HIGH output  
voltage  
X
OUT  
V
V
LOWPOWER  
OH=-0.5mA  
HIGH output  
voltage  
3.0  
1.6  
With no load applied  
With no load applied  
HIGHPOWER  
LOWPOWER  
X
COUT  
LOW output  
voltage  
P0  
0
to P0  
to P3  
to P6  
7
, P1  
0
0
to P1  
to P4  
to P7  
7
7
, P2  
, P5  
, P8  
0
0
to P2  
to P5  
to P8  
7
7
,
,
,
P30  
7, P4  
I
OL=5mA  
V
V
OL  
OL  
2.0  
V
V
P6  
0
7, P7  
0
7
0
4
P86  
, P8  
7, P9  
0
to P9  
7
, P10  
0
to P10  
to P2  
7
P00  
to P0  
7
, P1  
0
to P1  
7
, P2  
0
7
,
LOW output  
voltage  
P3  
P6  
0
0
to P3  
to P6  
7
7
, P4  
, P7  
0
0
to P4  
to P7  
7
, P5  
, P8  
0
0
to P5  
to P8  
7
,
,
IOL=200µA  
0.45  
7
4
P86  
, P8  
7, P9  
0
to P9  
7
, P10  
0
to P107  
I
OL=1mA  
2.0  
HIGHPOWER  
LOWPOWER  
LOW output  
voltage  
X
OUT  
V
V
I
OL=0.5mA  
2.0  
V
OL  
0
0
With no load applied  
With no load applied  
HIGHPOWER  
LOWPOWER  
LOW output  
voltage  
X
COUT  
HOLD, RDY, TA0IN to TA4IN  
TB0IN to TB2IN, INT to INT  
ADTRG, CTS to CTS2, CLK  
CLK  
KI to KI  
,
Hysteresis  
0
2
,
0
0
to  
V
T+-  
V
T-  
0.2  
0.2  
0.8  
V
2
,TA2OUT to TA4OUT,NMI,  
0
3, RxD0 to RxD2  
Hysteresis  
V
T+-VT-  
RESET  
1.8  
5.0  
V
P0  
P3  
P6  
P9  
0
0
0
0
to P0  
to P3  
to P6  
to P9  
7
7
7
7
, P1  
, P4  
, P7  
0
0
0
to P1  
to P4  
to P7  
7
7
7
, P2  
, P5  
, P8  
0
0
0
to P2  
to P5  
to P8  
7,  
HIGH input  
current  
7
,
,
µA  
IIH  
7
V
V
I
=5V  
=0V  
, P100 to P107,  
X
IN, RESET, CNVss, BYTE  
P00  
P30  
P60  
P90  
to P0  
to P3  
to P6  
to P9  
7
7
7
7
, P1  
, P4  
, P7  
0
0
0
to P1  
to P4  
to P7  
7
7
7
, P2  
, P5  
, P8  
0
0
0
to P2  
to P5  
to P8  
7
,
,
,
LOW input  
current  
7
7
µA  
IIL  
I
-5.0  
, P100 to P107,  
X
IN, RESET, CNVss, BYTE  
RPULLUP  
Pull-up  
resistance  
P00  
P30  
P60  
P86  
to P0  
to P3  
to P6  
7
7
7
, P1  
, P4  
, P7  
0
0
2
to P1  
to P4  
to P7  
7
7
7
, P2  
, P5  
, P8  
0
0
0
to P2  
to P5  
to P8  
7
,
7
4
,
,
k  
V
I
=0V  
30.0  
2.0  
50.0 167.0  
, P8  
7, P9  
0
to P9  
7
, P10  
0
to P10  
7
MΩ  
RfXIN  
Feedback resistance  
Feedback resistance  
X
X
IN  
CIN  
1.0  
6.0  
MΩ  
RfXCIN  
RAM retention voltage  
Power supply current  
V
V
When clock is stopped  
RAM  
f(XIN)=10MHz  
Square wave, no division  
In single-chip  
mode, the  
output pins  
are open  
and other  
pins are VSS  
19.0  
90.0  
38.0  
mA  
f(XCIN)=32kHz  
Square wave  
µA  
µA  
Icc  
f(XCIN)=32kHz  
4.0  
When a WAIT instruction is  
executed(Note)  
Ta=25°C  
when clock is stopped  
1.0  
µA  
Ta=85°C  
when clock is stopped  
20.0  
Note: With one timer operated using fc32.  
145  
Mitsubishi microcomputers  
M16C / 61 Group  
Electrical characteristics (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
Table 1.24.4. A-D conversion characteristics (referenced to VCC = AVCC = VREF = 5V, VSS = AVSS  
=
o
0V at Ta = 25 C, f(XIN) = 10MHZ unless otherwise specified)  
Standard  
Symbol  
Parameter Measuring condition  
Unit  
Min. Typ. Max.  
V
REF  
REF = VCC = 5V  
AN  
=
V
CC  
10 Bits  
Resolution  
Sample & hold function not available  
Absolute  
accuracy  
V
LSB  
LSB  
±3  
±3  
0
to AN7 input  
Sample & hold function available(10bit)  
V
REF =VCC  
ANEX0, ANEX1 input,  
External op-amp connection mode  
LSB  
±7  
= 5V  
V
REF = VCC = 5V  
Sample & hold function available(8bit)  
LSB  
±2  
40  
R
LADDER  
kΩ  
V
REF  
=
V
CC  
10  
3.3  
Ladder resistance  
Conversion time(10bit)  
Conversion time(8bit)  
Sampling time  
t
CONV  
µs  
t
CONV  
2.8  
0.3  
2
µs  
µs  
V
t
SAMP  
V
CC  
V
REF  
IA  
Reference voltage  
V
0
V
REF  
V
Analog input voltage  
Table 1.24.5. D-A conversion characteristics (referenced to VCC = 5V, VSS = AVSS = 0V, VREF = 5V  
o
at Ta = 25 C, f(XIN) = 10MHZ unless otherwise specified)  
Standard  
Min. Typ. Max.  
Symbol  
Parameter  
Measuring condition  
Unit  
Resolution  
Absolute accuracy  
Setup time  
Bits  
%
8
1.0  
3
tsu  
µs  
RO  
Output resistance  
kΩ  
4
10  
20  
IVREF  
Reference power supply input current  
1.5  
mA  
(
Note)  
Note: This applies when using one D-A converter, with the D-A register for the unused D-A converter set to “0016”.  
The A-D converter's ladder resistance is not included.  
Also, when the Vref is unconnected at the A-D control register, IVREF is sent.  
146  
Mitsubishi microcomputers  
M16C / 61 Group  
Timing (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
o
Timing requirements (referenced to VCC = 5V, VSS = 0V at Ta = 25 C unless otherwise specified)  
Table 1.24.6. External clock input  
Standard  
Symbol  
Parameter  
External clock input cycle time  
External clock input HIGH pulse width  
External clock input LOW pulse width  
External clock rise time  
Unit  
Min.  
100  
40  
Max.  
t
c
ns  
ns  
ns  
ns  
ns  
t
w(H  
)
t
w(L)  
40  
t
r
15  
15  
t
f
External clock fall time  
Table 1.24.7. Memory expansion and microprocessor modes  
Standard  
Symbol  
Parameter  
Data input access time (no wait)  
Unit  
Min.  
Max.  
t
ac1(RD-DB)  
ns  
ns  
ns  
(Note)  
t
ac2(RD-DB)  
ac3(RD-DB)  
(Note)  
(Note)  
Data input access time (with wait)  
Data input access time (when accessing multiplex bus area)  
Data input setup time  
t
t
t
su(DB-RD)  
40  
30  
40  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
su(RDY-BCLK )  
RDY input setup time  
HOLD input setup time  
Data input hold time  
t
su(HOLD-BCLK )  
h(RD-DB)  
h(BCLK -RDY)  
t
t
0
RDY input hold time  
t
h(BCLK-HOLD )  
d(BCLK-HLDA )  
0
HOLD input hold time  
HLDA output delay time  
t
40  
Note: Calculated according to the BCLK frequency as follows:  
109  
f(BCLK) X 2  
– 45  
t
t
t
ac1(RD – DB) =  
ac2(RD – DB) =  
ac3(RD – DB) =  
[ns]  
3 X 109  
f(BCLK) X 2  
– 45  
– 45  
[ns]  
[ns]  
3 X 109  
f(BCLK) X 2  
147  
Mitsubishi microcomputers  
M16C / 61 Group  
Timing (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
o
Timing requirements (referenced to VCC = 5V, VSS = 0V at Ta = 25 C unless otherwise specified)  
Table 1.24.8. Timer A input (counter input in event counter mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
100  
40  
Max.  
ns  
ns  
ns  
t
c(TA)  
TAiIN input cycle time  
t
w(TAH)  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
t
w(TAL)  
40  
Table 1.24.9. Timer A input (gating input in timer mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
400  
Max.  
ns  
ns  
ns  
t
c(TA)  
TAiIN input cycle time  
t
w(TAH)  
200  
200  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
t
w(TAL)  
Table 1.24.10. Timer A input (external trigger input in one-shot timer mode)  
Standard  
Min. Max.  
200  
Symbol  
Parameter  
Unit  
ns  
ns  
ns  
t
c(TA)  
TAiIN input cycle time  
t
w(TAH)  
100  
100  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
t
w(TAL)  
Table 1.24.11. Timer A input (external trigger input in pulse width modulation mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
100  
100  
Max.  
t
w(TAH)  
ns  
ns  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
t
w(TAL)  
Table 1.24.12. Timer A input (up/down input in event counter mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
2000  
1000  
1000  
400  
Max.  
t
c(UP)  
ns  
ns  
ns  
ns  
ns  
TAiOUT input cycle time  
t
w(UPH)  
w(UPL)  
TAiOUT input HIGH pulse width  
t
TAiOUT input LOW pulse width  
TAiOUT input setup time  
TAiOUT input hold time  
t
su(UP-TIN)  
t
h(TIN-UP)  
400  
148  
Mitsubishi microcomputers  
M16C / 61 Group  
Timing (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
o
Timing requirements (referenced to VCC = 5V, VSS = 0V at Ta = 25 C unless otherwise specified)  
Table 1.24.13. Timer B input (counter input in event counter mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
100  
Max.  
tc(TB)  
ns  
ns  
ns  
ns  
ns  
ns  
TBiIN input cycle time (counted on one edge)  
tw(TBH)  
tw(TBL)  
tc(TB)  
TBiIN input HIGH pulse width (counted on one edge)  
TBiIN input LOW pulse width (counted on one edge)  
TBiIN input cycle time (counted on both edges)  
TBiIN input HIGH pulse width (counted on both edges)  
TBiIN input LOW pulse width (counted on both edges)  
40  
40  
200  
80  
tw(TBH)  
tw(TBL)  
80  
Table 1.24.14. Timer B input (pulse period measurement mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
400  
200  
200  
Max.  
tc(TB)  
TBiIN input cycle time  
ns  
ns  
ns  
tw(TBH)  
tw(TBL)  
TBiIN input HIGH pulse width  
TBiIN input LOW pulse width  
Table 1.24.15. Timer B input (pulse width measurement mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
400  
200  
200  
Max.  
tc(TB)  
ns  
ns  
ns  
TBiIN input cycle time  
tw(TBH)  
tw(TBL)  
TBiIN input HIGH pulse width  
TBiIN input LOW pulse width  
Table 1.24.16. A-D trigger input  
Standard  
Symbol  
Parameter  
Unit  
Min.  
1000  
125  
Max.  
tc(AD)  
ns  
ns  
ADTRG input cycle time (trigger able minimum)  
ADTRG input LOW pulse width  
tw(ADL)  
Table 1.24.17. Serial I/O  
Standard  
Symbol  
Parameter  
Unit  
Min.  
200  
100  
100  
Max.  
tc(CK)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLKi input cycle time  
tw(CKH)  
tw(CKL)  
td(C-Q)  
th(C-Q)  
tsu(D-C)  
th(C-D)  
CLKi input HIGH pulse width  
CLKi input LOW pulse width  
TxDi output delay time  
TxDi hold time  
80  
0
30  
90  
RxDi input setup time  
RxDi input hold time  
_______  
Table 1.24.18. External interrupt INTi inputs  
Standard  
Symbol  
Parameter  
Unit  
Min.  
250  
250  
Max.  
tw(INH)  
tw(INL)  
ns  
ns  
INTi input HIGH pulse width  
INTi input LOW pulse width  
149  
Mitsubishi microcomputers  
M16C / 61 Group  
Timing (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
o
Switching characteristics (referenced to VCC = 5V, VSS = 0V at Ta = 25 C, CM15 = “1” unless  
otherwise specified)  
Table 1.24.19. Memory expansion mode and microprocessor mode (no wait)  
Standard  
Measuring condition  
Symbol  
Parameter  
Unit  
ns  
Min.  
Max.  
25  
td(BCLK-AD)  
Address output delay time  
th(BCLK-AD)  
th(RD-AD)  
Address output hold time (BCLK standard)  
Address output hold time (RD standard)  
4
0
0
ns  
ns  
th(WR-AD)  
td(BCLK-CS)  
Address output hold time (WR standard)  
Chip select output delay time  
ns  
ns  
25  
25  
th(BCLK-CS)  
td(BCLK-ALE)  
Chip select output hold time (BCLK standard)  
ALE signal output delay time  
4
– 4  
0
ns  
ns  
th(BCLK-ALE)  
ALE signal output hold time  
ns  
Figure 1.24.1  
td(BCLK-RD)  
th(BCLK-RD)  
td(BCLK-WR)  
th(BCLK-WR)  
td(BCLK-DB)  
th(BCLK-DB)  
td(DB-WR)  
th(WR-DB)  
RD signal output delay time  
RD signal output hold time  
25  
25  
40  
ns  
ns  
WR signal output delay time  
WR signal output hold time  
ns  
ns  
0
Data output delay time (BCLK standard)  
Data output hold time (BCLK standard)  
ns  
ns  
4
(Note1)  
Data output delay time (WR standard)  
ns  
ns  
Data output hold time (WR standard)(Note2)  
0
Note 1: Calculated according to the BCLK frequency as follows:  
10 9  
td(DB – WR) =  
– 40  
[ns]  
f(BCLK) X 2  
Note 2: This is standard value shows the timing when the output is off,  
and doesn't show hold time of data bus.  
Hold time of data bus is different by capacitor volume and pull-up  
(pull-down) resistance value.  
R
C
DBi  
Hold time of data bus is expressed in  
t = –CR X ln (1 – VOL / VCC)  
by a circuit of the right figure.  
For example, when VOL = 0.2VCC, C = 30pF, R = 1k, hold time  
of output “L” level is  
t = – 30pF X 1kX ln (1 – 0.2VCC / VCC)  
= 6.7ns.  
150  
Mitsubishi microcomputers  
M16C / 61 Group  
Timing (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
o
Switching characteristics (referenced to VCC = 5V, VSS = 0V at Ta = 25 C, CM15 = “1” unless  
otherwise specified)  
Table 1.24.20. Memory expansion mode and microprocessor mode  
(with wait, accessing external memory)  
Standard  
Measuring condition  
Symbol  
Parameter  
Address output delay time  
Unit  
Min.  
Max.  
25  
t
t
d(BCLK-AD)  
h(BCLK-AD)  
ns  
ns  
Address output hold time (BCLK standard)  
4
0
0
t
t
h(RD-AD)  
Address output hold time (RD standard)  
Address output hold time (WR standard)  
ns  
ns  
h(WR-AD)  
t
t
d(BCLK-CS)  
h(BCLK-CS)  
Chip select output delay time  
Chip select output hold time (BCLK standard)  
25  
25  
25  
25  
ns  
ns  
4
– 4  
0
ns  
t
t
d(BCLK-ALE)  
ALE signal output delay time  
ALE signal output hold time  
RD signal output delay time  
h(BCLK-ALE)  
ns  
ns  
Figure 1.24.1  
t
d(BCLK-RD)  
h(BCLK-RD)  
t
t
RD signal output hold time  
WR signal output delay time  
ns  
ns  
d(BCLK-WR)  
t
t
h(BCLK-WR)  
d(BCLK-DB)  
WR signal output hold time  
Data output delay time (BCLK standard)  
0
ns  
ns  
40  
4
t
t
t
h(BCLK-DB)  
Data output hold time (BCLK standard)  
Data output delay time (WR standard)  
Data output hold time (WR standard)(Note2)  
ns  
ns  
ns  
(Note1)  
d(DB-WR)  
h(WR-DB)  
0
Note 1: Calculated according to the BCLK frequency as follows:  
10 9  
td(DB – WR) =  
– 40  
[ns]  
f(BCLK)  
Note 2: This is standard value shows the timing when the output is off,  
and doesn't show hold time of data bus.  
Hold time of data bus is different by capacitor volume and pull-up  
(pull-down) resistance value.  
Hold time of data bus is expressed in  
R
C
DBi  
t = –CR X ln (1 – VOL / VCC  
)
by a circuit of the right figure.  
For example, when VOL = 0.2VCC, C = 30pF, R = 1k, hold time  
of output “L” level is  
t = – 30pF X 1kX ln (1 – 0.2VCC / VCC  
)
= 6.7ns.  
151  
Mitsubishi microcomputers  
M16C / 61 Group  
Timing (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
o
Switching characteristics (referenced to VCC = 5V, VSS = 0V at Ta = 25 C, CM15 = “1” unless  
otherwise specified)  
Table 1.24.21. Memory expansion mode and microprocessor mode  
(with wait, accessing external memory, multiplex bus area selected)  
Standard  
Measuring condition  
Symbol  
Parameter  
Address output delay time  
Unit  
Min.  
Max.  
25  
t
d(BCLK-AD)  
h(BCLK-AD)  
ns  
ns  
ns  
t
Address output hold time (BCLK standard)  
Address output hold time (RD standard)  
4
(Note)  
t
h(RD-AD)  
(Note)  
th(WR-AD)  
Address output hold time (WR standard)  
ns  
t
d(BCLK-CS)  
h(BCLK-CS)  
Chip select output delay time  
25  
25  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip select output hold time (BCLK standard)  
Chip select output hold time (RD standard)  
Chip select output hold time (WR standard)  
RD signal output delay time  
4
(Note)  
th(RD-CS)  
(Note)  
t
h(WR-CS)  
t
d(BCLK-RD)  
h(BCLK-RD)  
t
RD signal output hold time  
0
0
t
t
t
d(BCLK-WR)  
WR signal output delay time  
25  
40  
ns  
ns  
ns  
h(BCLK-WR)  
d(BCLK-DB)  
WR signal output hold time  
Data output delay time (BCLK standard)  
Figure 1.24.1  
t
h(BCLK-DB)  
Data output hold time (BCLK standard)  
Data output delay time (WR standard)  
4
ns  
ns  
(Note)  
t
d(DB-WR)  
h(WR-DB)  
(Note)  
t
Data output hold time (WR standard)  
ns  
ns  
ns  
ns  
t
d(BCLK-ALE)  
h(BCLK-ALE)  
ALE signal output delay time (BCLK standard)  
ALE signal output hold time (BCLK standard)  
ALE signal output delay time (Address standard)  
25  
t
– 4  
(Note)  
t
d(AD-ALE)  
h(ALE-AD)  
t
ALE signal output hold time (Adderss standard)  
Post-address RD signal output delay time  
50  
0
ns  
ns  
td(AD-RD)  
t
d(AD-WR)  
Post-address WR signal output delay time  
Address output floating start time  
0
ns  
ns  
t
dZ(RD-AD)  
8
Note: Calculated according to the BCLK frequency as follows:  
109  
th(RD – AD) =  
[ns]  
f(BCLK) X 2  
109  
th(WR – AD) =  
th(RD – CS) =  
[ns]  
[ns]  
f(BCLK) X 2  
109  
f(BCLK) X 2  
109  
th(WR – CS) =  
td(DB – WR) =  
[ns]  
[ns]  
f(BCLK) X 2  
9 X 3  
10  
f(BCLK) X 2  
– 40  
– 25  
109  
th(WR – DB) =  
td(AD – ALE) =  
[ns]  
[ns]  
f(BCLK) X 2  
109  
f(BCLK) X 2  
152  
Mitsubishi microcomputers  
M16C / 61 Group  
Timing (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
P0  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
P8  
P9  
P10  
30pF  
Figure 1.24.1. Port P0 to P10 measurement circuit  
153  
Mitsubishi microcomputers  
M16C / 61 Group  
Timing (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
tc(TA)  
t
w(TAH)  
TAiIN input  
t
w(TAL)  
tc(UP)  
t
w(UPH)  
TAiOUT input  
t
w(UPL)  
TAiOUT input  
(Up/down input)  
During event counter mode  
TAiIN input  
(When count on falling  
edge is selected)  
t
h(TIN–UP)  
t
su(UP–TIN)  
TAiIN input  
(When count on rising  
edge is selected)  
t
c(TB)  
t
w(TBH)  
TBiIN input  
t
w(TBL)  
t
t
c(AD)  
tw(ADL)  
ADTRG input  
c(CK)  
t
w(CKH)  
CLKi  
t
w(CKL)  
t
h(C–Q)  
TxDi  
RxDi  
t
su(D–C)  
t
d(C–Q)  
t
h(C–D)  
t
w(INL)  
INTi input  
t
w(INH)  
Figure 1.24.2. VCC=5V timing diagram (1)  
154  
Mitsubishi microcomputers  
M16C / 61 Group  
Timing (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
Memory Expansion Mode and Microprocessor Mode  
(Valid only with wait)  
BCLK  
RD  
(Separate bus)  
WR, WRL, WRH  
(Separate bus)  
RD  
(Multiplexed bus)  
WR, WRL, WRH  
(Multiplexed bus)  
RDY input  
tsu(RDY–BCLK)  
th(BCLK–RDY)  
(Valid with or without wait)  
BCLK  
tsu(HOLD–BCLK)  
th(BCLK–HOLD)  
HOLD input  
HLDA output  
td(BCLK–HLDA)  
td(BCLK–HLDA)  
P0, P1, P2,  
P3, P4,  
Hi–Z  
P50 to P52  
Note: The above pins are set to high-impedance regardless of the input level of the  
BYTE pin and bit (PM06) of processor mode register 0 selects the function of  
ports P40 to P43.  
Measuring conditions :  
• VCC=5V  
• Input timing voltage : Determined with VIL=1.0V, VIH=4.0V  
• Output timing voltage : Determined with VOL=2.5V, VOH=2.5V  
Figure 1.24.3. VCC=5V timing diagram (2)  
155  
Mitsubishi microcomputers  
M16C / 61 Group  
Timing (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
Memory Expansion Mode and Microprocessor Mode  
(With no wait)  
Read timing  
BCLK  
t
d(BCLK–CS)  
25ns.max  
t
h(BCLK–CS)  
4ns.min  
CSi  
t
h(RD–CS)  
0ns.min  
tcyc  
t
d(BCLK–AD)  
25ns.max  
t
h(BCLK–AD)  
4ns.min  
ADi  
BHE  
t
d(BCLK–ALE)  
t
h(BCLK–ALE)  
t
h(RD–AD)  
0ns.min  
–4ns.min  
25ns.max  
ALE  
RD  
DB  
t
h(BCLK–RD)  
0ns.min  
t
d(BCLK–RD)  
25ns.max  
t
ac1(RD–DB)  
Hi–Z  
t
SU(DB–RD)  
40ns.min  
t
h(RD–DB)  
0ns.min  
Write timing  
BCLK  
t
h(BCLK–CS)  
t
d(BCLK–CS)  
25ns.max  
4ns.min  
CSi  
t
h(WR–CS)  
0ns.min  
tcyc  
t
d(BCLK–AD)  
25ns.max  
t
h(BCLK-AD)  
4ns.min  
ADi  
BHE  
0ns.min  
th(WR–AD)  
t
h(BCLK–ALE)  
–4ns.min  
t
d(BCLK–ALE)  
25ns.max  
ALE  
t
h(BCLK–WR)  
0ns.min  
t
d(BCLK–WR)  
25ns.max  
WR,WRL,  
WRH  
t
d(BCLK–DB)  
40ns.max  
Hi-Z  
t
h(BCLK–DB)  
4ns.min  
DB  
t
h(WR–DB)  
0ns.min  
t
d(DB–WR)  
(tcyc/2–40)ns.min  
Figure 1.24.4. VCC=5V timing diagram (3)  
156  
Mitsubishi microcomputers  
M16C / 61 Group  
Timing (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
Memory Expansion Mode and Microprocessor Mode  
(When accessing external memory area with wait)  
Read timing  
BCLK  
th(BCLK–CS)  
4ns.min  
td(BCLK–CS)  
25ns.max  
CSi  
th(RD–CS)  
tcyc  
0ns.min  
td(BCLK–AD)  
25ns.max  
th(BCLK–AD)  
4ns.min  
ADi  
BHE  
25ns.max  
td(BCLK–ALE)  
th(BCLK–ALE)  
–4ns.min  
th(RD–AD)  
0ns.min  
ALE  
RD  
DB  
th(BCLK–RD)  
0ns.min  
td(BCLK–RD)  
25ns.max  
tac2(RD–DB)  
Hi–Z  
th(RD–DB)  
0ns.min  
tSU(DB–RD)  
40ns.min  
Write timing  
BCLK  
td(BCLK–CS)  
25ns.max  
th(BCLK–CS)  
4ns.min  
CSi  
th(WR–CS)  
0ns.min  
tcyc  
td(BCLK–AD)  
25ns.max  
th(BCLK–AD)  
4ns.min  
ADi  
BHE  
td(BCLK–ALE)  
25ns.max  
th(WR–AD)  
0ns.min  
th(BCLK–ALE)  
–4ns.min  
ALE  
th(BCLK–WR)  
0ns.min  
td(BCLK–WR)  
25ns.max  
WR,WRL,  
WRH  
td(BCLK–DB)  
40ns.max  
th(BCLK–DB)  
4ns.min  
DBi  
th(WR–DB)  
0ns.min  
td(DB–WR)  
(tcyc–40)ns.min  
Measuring conditions :  
• VCC=5V  
• Input timing voltage : Determined with: VIL=0.8V, VIH=2.5V  
• Output timing voltage : Determined with: VOL=0.8V, VOH=2.0V  
Figure 1.24.5. VCC=5V timing diagram (4)  
157  
Mitsubishi microcomputers  
M16C / 61 Group  
Timing (Vcc = 5V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 5V  
Memory Expansion Mode and Microprocessor Mode  
(When accessing external memory area with wait, and select multiplexed bus)  
Read timing  
BCLK  
tcyc  
t
h(BCLK–CS)  
4ns.min  
t
d(BCLK–CS)  
25ns.max  
t
h(RD–CS)  
(tcyc/2)ns.min  
CSi  
t
d(AD–ALE)  
(tcyc/2-25)ns.min  
t
h(ALE–AD)  
50ns.min  
ADi  
Address  
Data input  
Address  
t
h(RD–DB)  
0ns.min  
/DBi  
t
dz(RD–AD)  
8ns.max  
tac3(RD–DB)  
t
SU(DB–RD)  
40ns.min  
t
d(AD–RD)  
0ns.min  
t
d(BCLK–AD)  
25ns.max  
t
h(BCLK–AD)  
4ns.min  
ADi  
BHE  
t
d(BCLK–ALE)  
t
h(BCLK–ALE)  
–4ns.min  
t
h(RD–AD)  
(tcyc/2)ns.min  
25ns.max  
ALE  
RD  
t
h(BCLK–RD)  
0ns.min  
t
d(BCLK–RD)  
25ns.max  
Write timing  
BCLK  
t
h(BCLK–CS)  
tcyc  
t
d(BCLK–CS)  
25ns.max  
4ns.min  
t
h(WR–CS)  
(tcyc/2)ns.min  
CSi  
t
h(BCLK–DB)  
4ns.min  
t
d(BCLK–DB)  
40ns.max  
Data output  
ADi  
Address  
Address  
/DBi  
t
d(DB–WR)  
t
h(WR–DB)  
t
d(AD–ALE)  
(tcyc/2–25)ns.min  
(tcyc*3/2–40)ns.min  
(tcyc/2)ns.min  
t
d(BCLK–AD)  
25ns.max  
t
h(BCLK–AD)  
4ns.min  
ADi  
BHE  
t
h(BCLK–ALE)  
–4ns.min  
t
d(AD–WR)  
0ns.min  
t
d(BCLK–ALE)  
25ns.max  
t
h(WR–AD)  
(tcyc/2)ns.min  
ALE  
t
h(BCLK–WR)  
0ns.min  
t
d(BCLK–WR)  
25ns.max  
WR,WRL,  
WRH  
Measuring conditions :  
• VCC=5V  
• Input timing voltage : Determined with VIL=0.8V, VIH=2.5V  
• Output timing voltage : Determined with VOL=0.8V, VOH=2.0V  
Figure 1.24.6. VCC=5V timing diagram (5)  
158  
Mitsubishi microcomputers  
M16C / 61 Group  
Electrical characteristics (Vcc = 3V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 3V  
o
Table 1.24.22. Electrical characteristics (referenced to VCC = 3V, VSS = 0V at Ta = 25 C, f(XIN) =  
7MHZ, with wait)  
Standard  
Min Typ. Max.  
Unit  
Measuring condition  
Symbol  
Parameter  
HIGH output  
voltage  
P0  
P3  
P6  
0
0
0
to P0  
to P3  
to P6  
7
7
7
,P1  
,P4  
,P7  
0
0
2
to P1  
to P4  
to P7  
7
7
7
,P2  
,P5  
,P8  
0
0
0
to P2  
to P5  
to P8  
7,  
7,  
4,  
7
V
OH  
V
I
OH=-1mA  
2.5  
P8  
6
,P8  
7
,P9  
0
to P9  
7
,P10  
0
to P10  
HIGHPOWER  
LOWPOWER  
I
I
OH=-0.1mA  
2.5  
2.5  
X
X
OUT  
HIGH output voltage  
HIGH output voltage  
V
OH  
V
V
OH=-50µA  
HIGHPOWER  
LOWPOWER  
With no load applied  
With no load applied  
3.0  
1.6  
COUT  
LOW output  
voltage  
P0  
P3  
0
0
to P0  
to P3  
7
7
,P1  
,P4  
0
0
to P1  
to P4  
7
7
,P2  
,P5  
0
0
to P2  
to P5  
7
7
,
,
V
V
OL  
OL  
0.5  
V
I
OL=1mA  
P6  
0
to P6  
7
,P7  
0
to P7  
7
,P8  
0
to P8  
4,  
P8  
6
,P8 ,P9  
7
0
to P9  
7
,P10  
0
to P10  
7
0.5  
I
OL=0.1mA  
HIGHPOWER  
LOWPOWER  
LOW output voltage  
X
OUT  
V
V
I
OL=50µA  
0.5  
With no load applied  
With no load applied  
0
0
HIGHPOWER  
LOWPOWER  
LOW output voltage  
Hysteresis  
XCOUT  
HOLD, RDY, TA0IN to TA4IN  
to INT  
to CTS , CLK  
,TA2OUT to TA4OUT,NMI,  
to KI , RxD to RxD  
,
2,  
0 to  
TB0IN to TB2IN, INT  
ADTRG, CTS  
CLK  
KI  
0
V
V
T+-  
T+-  
V
T-  
T-  
0
2
0.2  
0.2  
0.8  
V
2
0
3
0
2
V
Hysteresis  
RESET  
1.8  
4.0  
V
P0  
P3  
P6  
P9  
0
0
0
0
to P0  
to P3  
to P6  
to P9  
7
7
7
7
,P1  
,P4  
,P7  
0
0
0
to P1  
to P4  
to P7  
7
7
7
,P2  
,P5  
,P8  
0
0
0
to P2  
to P5  
to P8  
7
7
7
,
,
,
HIGH input  
current  
I
IH  
µA  
V
I
I
=3V  
=0V  
,P100 to P107,  
X
IN, RESET, CNVss, BYTE  
LOW input  
current  
P0  
P3  
P6  
P9  
0
0
0
0
to P0  
to P3  
to P6  
to P9  
7
7
7
7
,P1  
,P4  
,P7  
0
0
0
to P1  
to P4  
to P7  
7
7
7
,P2  
,P5  
,P8  
0
0
0
to P2  
to P5  
to P8  
7
7
7
,
,
I IL  
-4.0  
µA  
, V  
,P100 to P107,  
X
IN, RESET, CNVss, BYTE  
R PULLUP  
Pull-up  
resistance  
P00  
P30  
P60  
P86  
to P0  
to P3  
to P6  
7
7
7
,P1  
,P4  
,P7  
0
0
2
to P1  
to P4  
to P7  
7
7
7
,P2  
,P5  
,P8  
0
0
0
to P2  
to P5  
to P8  
7,  
7,  
4,  
7
kΩ  
V
I
=0V  
66.0  
2.0  
120.0 500.0  
,P87,P90 to P97,P100 to P10  
MΩ  
R fXIN  
R fXCIN  
V RAM  
Feedback resistance  
Feedback resistance  
RAM retention voltage  
X
IN  
CIN  
3.0  
MΩ  
X
10.0  
V
When clock is stopped  
f(XIN)=7MHz  
Square wave, no division  
6.0  
15.0  
mA  
f(XCIN)=32kHz  
Square wave  
40.0  
µA  
µA  
In single-chip  
mode, the  
output pins  
are open  
and other  
pins are VSS  
f(XCIN)=32kHz  
When a WAITinstruction is  
executed.  
Oscillation capacity High  
(Note)  
2.8  
0.9  
Icc  
Power supply current  
f(XCIN)=32kHz  
When a WAIT instruction is  
executed.  
Oscillation capacity Low  
(Note)  
µA  
µA  
Ta=25°C  
when clock is stopped  
1.0  
Ta=85°C  
when clock is stopped  
20.0  
Note: With one timer operated using fc32.  
159  
Mitsubishi microcomputers  
M16C / 61 Group  
Timing (Vcc = 3V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 3V  
Table 1.24.23. A-D conversion characteristics (referenced to VCC = AVCC = VREF = 3V, VSS = AVSS  
=
o
0V at Ta = 25 C, f(XIN) = 7MHZ unless otherwise specified)  
Standard  
Min. Typ. Max  
Symbol  
Parameter  
Measuring condition  
Unit  
Resolution  
VREF = VCC  
10  
±2  
Bits  
Absolute accuracy Sample & hold function not available (8 bit)  
LSB  
VREF = VCC = 3V, φAD = f(XIN)/2  
kΩ  
RLADDER  
VREF = VCC  
Ladder resistance  
Conversion time(8bit)  
Reference voltage  
Analog input voltage  
40  
10  
14.0  
2.7  
tCONV  
VREF  
µs  
V
VCC  
VIA  
0
VREF  
V
Table 1.24.24. D-A conversion characteristics (referenced to VCC = 3V, VSS = AVSS = 0V, VREF = 3V  
o
at Ta = 25 C, f(XIN) = 7MHZ unless otherwise specified)  
Standard  
Min. Typ. Max  
8
Symbol  
Parameter  
Measuring condition  
Unit  
Bits  
Resolution  
Absolute accuracy  
Setup time  
1.0  
3
%
µs  
tsu  
RO  
kΩ  
Output resistance  
4
10  
20  
Reference power supply input current  
(Note)  
1.0  
IVREF  
mA  
Note: This applies when using one D-A converter, with the D-A register for the unused D-A converter set to “0016”.  
The A-D converter's ladder resistance is not included.  
Also, when the Vref is unconnected at the A-D control register, IVREF is sent.  
160  
Mitsubishi microcomputers  
M16C / 61 Group  
Timing (Vcc = 3V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 3V  
o
Timing requirements (referenced to VCC = 3V, VSS = 0V at Ta = 25 C unless otherwise specified)  
Table 1.24.25. External clock input  
Standard  
Symbol  
Parameter  
Unit  
Min.  
143  
60  
Max.  
ns  
ns  
ns  
ns  
ns  
t
c
External clock input cycle time  
t
w(H  
)
External clock input HIGH pulse width  
External clock input LOW pulse width  
External clock rise time  
t
w(L)  
60  
t
r
18  
18  
t
f
External clock fall time  
Table 1.24.26. Memory expansion and microprocessor modes  
Standard  
Symbol  
Parameter  
Unit  
Min.  
Max.  
(Note)  
t
ac1(RD-DB)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data input access time (no wait)  
Data input access time (with wait)  
t
ac2(RD-DB)  
ac3(RD-DB)  
su(DB-RD)  
(Note)  
(Note)  
t
t
Data input access time (when accessing multiplex bus area)  
Data input setup time  
80  
60  
80  
0
t
su(RDY-BCLK )  
RDY input setup time  
t
su(HOLD-BCLK )  
HOLD input setup time  
Data input hold time  
t
h(RD-DB)  
h(BCLK -RDY)  
h(BCLK-HOLD )  
t
0
RDY input hold time  
HOLD input hold time  
HLDA output delay time  
t
0
t
d(BCLK-HLDA)  
100  
Note: Calculated according to the BCLK frequency as follows:  
109  
f(BCLK) X 2  
– 90  
t
ac1(RD – DB) =  
[ns]  
3 X 109  
f(BCLK) X 2  
– 90  
– 90  
t
ac2(RD – DB) =  
ac3(RD – DB) =  
[ns]  
[ns]  
3 X 109  
f(BCLK) X 2  
t
161  
Mitsubishi microcomputers  
M16C / 61 Group  
Timing (Vcc = 3V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 3V  
o
Timing requirements (referenced to VCC = 3V, VSS = 0V at Ta = 25 C unless otherwise specified)  
Table 1.24.27. Timer A input (counter input in event counter mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
150  
60  
Max.  
t
c(TA)  
TAiIN input cycle time  
ns  
ns  
ns  
t
w(TAH)  
w(TAL)  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
t
60  
Table 1.24.28. Timer A input (gating input in timer mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
600  
300  
300  
Max.  
t
c(TA)  
TAiIN input cycle time  
ns  
ns  
ns  
t
w(TAH)  
w(TAL)  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
t
Table 1.24.29. Timer A input (external trigger input in one-shot timer mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
300  
150  
150  
Max.  
t
c(TA)  
TAiIN input cycle time  
ns  
ns  
ns  
t
w(TAH)  
w(TAL)  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
t
Table 1.24.30. Timer A input (external trigger input in pulse width modulation mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
150  
150  
Max.  
t
w(TAH)  
TAiIN input HIGH pulse width  
TAiIN input LOW pulse width  
ns  
ns  
t
w(TAL)  
Table 1.24.31. Timer A input (up/down input in event counter mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
3000  
1500  
1500  
600  
Max.  
t
c(UP)  
TAiOUT input cycle time  
ns  
ns  
ns  
ns  
ns  
t
w(UPH)  
TAiOUT input HIGH pulse width  
TAiOUT input LOW pulse width  
TAiOUT input setup time  
t
w(UPL)  
t
su(UP-TIN)  
t
h(TIN-UP)  
TAiOUT input hold time  
600  
162  
Mitsubishi microcomputers  
M16C / 61 Group  
Timing (Vcc = 3V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 3V  
o
Timing requirements (referenced to VCC = 3V, VSS = 0V at Ta = 25 C unless otherwise specified)  
Table 1.24.32. Timer B input (counter input in event counter mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
150  
60  
Max.  
t
c(TB)  
TBiIN input cycle time (counted on one edge)  
ns  
ns  
ns  
ns  
ns  
ns  
t
w(TBH)  
w(TBL)  
c(TB)  
w(TBH)  
w(TBL)  
TBiIN input HIGH pulse width (counted on one edge)  
TBiIN input LOW pulse width (counted on one edge)  
TBiIN input cycle time (counted on both edges)  
TBiIN input HIGH pulse width (counted on both edges)  
TBiIN input LOW pulse width (counted on both edges)  
t
60  
t
300  
160  
160  
t
t
Table 1.24.33. Timer B input (pulse period measurement mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
600  
300  
300  
Max.  
t
c(TB)  
TBiIN input cycle time  
ns  
ns  
ns  
t
w(TBH)  
w(TBL)  
TBiIN input HIGH pulse width  
TBiIN input LOW pulse width  
t
Table 1.24.34. Timer B input (pulse width measurement mode)  
Standard  
Symbol  
Parameter  
Unit  
Min.  
600  
300  
300  
Max.  
t
c(TB)  
TBiIN input cycle time  
ns  
ns  
ns  
t
w(TBH)  
w(TBL)  
TBiIN input HIGH pulse width  
TBiIN input LOW pulse width  
t
Table 1.24.35. A-D trigger input  
Standard  
Symbol  
Parameter  
Unit  
Min.  
1500  
200  
Max.  
t
c(AD)  
w(ADL)  
ADTRG input cycle time (trigger able minimum)  
ADTRG input LOW pulse width  
ns  
ns  
t
Table 1.24.36. Serial I/O  
Standard  
Symbol  
Parameter  
Unit  
Min.  
300  
150  
150  
Max.  
t
c(CK)  
w(CKH)  
w(CKL)  
CLKi input cycle time  
CLKi input HIGH pulse width  
CLKi input LOW pulse width  
TxDi output delay time  
TxDi hold time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
d(C-Q)  
h(C-Q)  
su(D-C)  
160  
t
0
50  
90  
t
RxDi input setup time  
RxDi input hold time  
t
h(C-D)  
_______  
Table 1.24.37. External interrupt INTi inputs  
Standard  
Symbol  
Parameter  
Unit  
Min.  
380  
380  
Max.  
t
w(INH)  
INTi input HIGH pulse width  
INTi input LOW pulse width  
ns  
ns  
t
w(INL)  
163  
Mitsubishi microcomputers  
M16C / 61 Group  
Timing (Vcc = 3V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 3V  
o
Switching characteristics (referenced to VCC = 3V, VSS = 0V at Ta = 25 C, CM15 = “1” unless  
otherwise specified)  
Table 1.24.38. Memory expansion and microprocessor modes (with no wait)  
Standard  
Measuring condition  
Symbol  
Parameter  
Unit  
Min.  
Max.  
t
t
d(BCLK-AD)  
h(BCLK-AD)  
Address output delay time  
Address output hold time (BCLK standard)  
Address output hold time (RD standard)  
60  
ns  
ns  
ns  
4
0
0
t
h(RD-AD)  
t
t
t
h(WR-AD)  
Address output hold time (WR standard)  
Chip select output delay time  
Chip select output hold time (BCLK standard)  
ns  
ns  
ns  
d(BCLK-CS)  
60  
60  
60  
h(BCLK-CS)  
4
t
t
d(BCLK-ALE)  
h(BCLK-ALE)  
ALE signal output delay time  
ALE signal output hold time  
RD signal output delay time  
RD signal output hold time  
ns  
ns  
ns  
ns  
4  
Figure 1.24.1  
t
t
d(BCLK-RD)  
h(BCLK-RD)  
0
t
t
t
t
d(BCLK-WR)  
WR signal output delay time  
WR signal output hold time  
Data output delay time (BCLK standard)  
Data output hold time (BCLK standard)  
Data output delay time (WR standard)  
60  
80  
ns  
ns  
ns  
ns  
ns  
h(BCLK-WR)  
d(BCLK-DB)  
0
h(BCLK-DB)  
4
(Note1)  
0
t
d(DB-WR)  
h(WR-DB)  
Data output hold time (WR standard)(Note2)  
t
ns  
Note 1: Calculated according to the BCLK frequency as follows:  
10 9  
td(DB – WR) =  
– 80  
[ns]  
f(BCLK) X 2  
Note 2: This is standard value shows the timing when the output is off,  
and doesn't show hold time of data bus.  
Hold time of data bus is different by capacitor volume and pull-up  
(pull-down) resistance value.  
Hold time of data bus is expressed in  
R
C
DBi  
t = –CR X ln (1 – VOL / VCC  
)
by a circuit of the right figure.  
For example, when VOL = 0.2VCC, C = 30pF, R = 1k, hold time  
of output “L” level is  
t = – 30pF X 1kX ln (1 – 0.2VCC / VCC  
)
= 6.7ns.  
164  
Mitsubishi microcomputers  
M16C / 61 Group  
Timing (Vcc = 3V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 3V  
o
Switching characteristics (referenced to VCC = 3V, VSS = 0V at Ta = 25 C, CM15 = “1” unless  
otherwise specified)  
Table 1.24.39. Memory expansion and microprocessor modes  
(when accessing external memory area with wait)  
Standard  
Measuring condition  
Symbol  
Parameter  
Unit  
ns  
Min.  
Max.  
60  
t
d(BCLK-AD)  
h(BCLK-AD)  
Address output delay time  
t
t
Address output hold time (BCLK standard)  
Address output hold time (RD standard)  
4
0
0
ns  
ns  
h(RD-AD)  
t
h(WR-AD)  
Address output hold time (WR standard)  
Chip select output delay time  
Chip select output hold time (BCLK standard)  
ns  
ns  
ns  
t
t
t
t
t
t
d(BCLK-CS)  
60  
60  
60  
h(BCLK-CS)  
d(BCLK-ALE)  
h(BCLK-ALE)  
4
ALE signal output delay time  
ALE signal output hold time  
RD signal output delay time  
RD signal output hold time  
ns  
ns  
ns  
ns  
– 4  
0
Figure 1.24.1  
d(BCLK-RD)  
h(BCLK-RD)  
t
t
t
t
d(BCLK-WR)  
WR signal output delay time  
WR signal output hold time  
Data output delay time (BCLK standard)  
Data output hold time (BCLK standard)  
60  
80  
ns  
ns  
ns  
ns  
h(BCLK-WR)  
d(BCLK-DB)  
0
h(BCLK-DB)  
4
(Note1)  
0
t
d(DB-WR)  
h(WR-DB)  
Data output delay time (WR standard)  
ns  
ns  
Data output hold time (WR standard)(Note2)  
t
Note 1: Calculated according to the BCLK frequency as follows:  
109  
td(DB – WR) =  
– 80  
[ns]  
f(BCLK)  
Note 2: This is standard value shows the timing when the output is off,  
and doesn't show hold time of data bus.  
Hold time of data bus is different by capacitor volume and pull-up  
(pull-down) resistance value.  
Hold time of data bus is expressed in  
R
C
DBi  
t = –CR X ln (1 – VOL / VCC  
by a circuit of the right figure.  
)
For example, when VOL = 0.2VCC, C = 30pF, R = 1k, hold time  
of output “L” level is  
t = – 30pF X 1kX ln (1 – 0.2VCC / VCC  
)
= 6.7ns.  
165  
Mitsubishi microcomputers  
M16C / 61 Group  
Timing (Vcc = 3V)  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
VCC = 3V  
o
Switching characteristics (referenced to VCC = 3V, VSS = 0V at Ta = 25 C, CM15 = “1” unless  
otherwise specified)  
Table 1.24.40. Memory expansion and microprocessor modes  
(when accessing external memory area with wait, and select multiplexed bus)  
Standard  
Measuring condition  
Symbol  
Parameter  
Address output delay time  
Unit  
Min.  
Max.  
60  
t
t
d(BCLK-AD)  
h(BCLK-AD)  
ns  
ns  
Address output hold time (BCLK standard)  
4
t
h(RD-AD)  
Address output hold time (RD standard)  
Address output hold time (WR standard)  
(Note)  
(Note)  
ns  
ns  
t
h(WR-AD)  
t
t
d(BCLK-CS)  
h(BCLK-CS)  
Chip select output delay time  
Chip select output hold time (BCLK standard)  
60  
ns  
ns  
4
t
h(RD-CS)  
Chip select output hold time (RD standard)  
Chip select output hold time (WR standard)  
RD signal output delay time  
(Note)  
(Note)  
ns  
ns  
ns  
t
h(WR-CS)  
t
d(BCLK-RD)  
h(BCLK-RD)  
60  
60  
80  
t
RD signal output hold time  
WR signal output delay time  
0
0
ns  
ns  
Figure 1.24.1  
t
d(BCLK-WR)  
t
t
h(BCLK-WR)  
d(BCLK-DB)  
WR signal output hold time  
Data output delay time (BCLK standard)  
ns  
ns  
t
h(BCLK-DB)  
Data output hold time (BCLK standard)  
Data output delay time (WR standard)  
Data output hold time (WR standard)  
4
ns  
ns  
ns  
t
t
d(DB-WR)  
(Note)  
(Note)  
h(WR-DB)  
t
t
d(BCLK-ALE)  
h(BCLK-ALE)  
ALE signal output delay time (BCLK standard)  
ALE signal output hold time (BCLK standard)  
60  
ns  
ns  
– 4  
t
t
d(AD-ALE)  
h(ALE-AD)  
ALE signal output delay time (Address standard)  
ALE signal output hold time(Address standard)  
(Note)  
50  
ns  
ns  
t
d(AD-RD)  
d(AD-WR)  
dZ(RD-AD)  
Post-address RD signal output delay time  
Post-address WR signal output delay time  
Address output floating start time  
0
0
ns  
ns  
ns  
t
t
8
Note: Calculated according to the BCLK frequency as follows:  
10 9  
th(RD – AD) =  
[ns]  
[ns]  
f(BCLK) X 2  
10 9  
th(WR – AD) =  
f(BCLK) X 2  
10 9  
th(RD – CS) =  
th(WR – CS) =  
[ns]  
[ns]  
f(BCLK) X 2  
10 9  
f(BCLK) X 2  
10 9 X 3  
– 80  
– 60  
td(DB – WR) =  
th(WR – DB) =  
td(AD – ALE) =  
[ns]  
[ns]  
[ns]  
f(BCLK) X 2  
10 9  
f(BCLK) X 2  
10 9  
f(BCLK) X 2  
166  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timing (Vcc = 3V)  
VCC = 3V  
tc(TA)  
tw(TAH)  
TAiIN input  
tw(TAL)  
tc(UP)  
tw(UPH)  
TAiOUT input  
tw(UPL)  
TAiOUT input  
(Up/down input)  
During event counter mode  
TAiIN input  
(When count on falling  
edge is selected)  
th(TIN–UP)  
tsu(UP–TIN)  
TAiIN input  
(When count on rising  
edge is selected)  
tc(TB)  
tw(TBH)  
TBiIN input  
tw(TBL)  
tc(AD)  
tw(ADL)  
ADTRG input  
tc(CK)  
tw(CKH)  
CLKi  
tw(CKL)  
t
h(C–Q)  
TxDi  
RxDi  
td(C–Q)  
tsu(D–C)  
th(C–D)  
tw(INL)  
INTi input  
tw(INH)  
Figure 1.24.7. VCC=3V timing diagram (1)  
167  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timing (Vcc = 3V)  
VCC = 3V  
Memory Expansion Mode and Microprocessor Mode  
(Valid only with wait)  
BCLK  
RD  
(Separate bus)  
WR, WRL, WRH  
(Separate bus)  
RD  
(Multiplexed bus)  
WR, WRL, WRH  
(Multiplexed bus)  
RDY input  
tsu(RDY–BCLK)  
th(BCLK–RDY)  
(Valid with or without wait)  
BCLK  
tsu(HOLD–BCLK)  
th(BCLK–HOLD)  
HOLD input  
HLDA output  
td(BCLK–HLDA)  
td(BCLK–HLDA)  
P0, P1, P2,  
P3, P4,  
Hi–Z  
P50 to P52  
Note: The above pins are set to high-impedance regardless of the input level of the  
BYTE pin and bit (PM06) of processor mode register 0 selects the function of  
ports P40 to P43.  
Measuring conditions :  
• VCC=3V  
• Input timing voltage : Determined with VIL=0.6V, VIH=2.4V  
• Output timing voltage : Determined with VOL=1.5V, VOH=1.5V  
Figure 1.24.8. VCC=3V timing diagram (2)  
168  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timing (Vcc = 3V)  
VCC = 3V  
Memory Expansion Mode and Microprocessor Mode  
(With no wait)  
Read timing  
BCLK  
CSi  
t
h(BCLK–CS)  
4ns.min  
t
d(BCLK–CS)  
60ns.max  
t
h(RD–CS)  
tcyc  
0ns.min  
t
d(BCLK–AD)  
60ns.max  
t
h(BCLK–AD)  
4ns.min  
ADi  
BHE  
t
h(BCLK–ALE)  
0ns.min  
h(RD–AD)  
t
d(BCLK–ALE)  
t
–4ns.min  
60ns.max  
ALE  
RD  
DB  
t
d(BCLK–RD)  
60ns.max  
t
h(BCLK–RD)  
0ns.min  
t
ac1(RD–DB)  
Hi–Z  
t
h(RD–DB)  
0ns.min  
t
SU(DB–RD)  
80ns.min  
Write timing  
BCLK  
t
d(BCLK–CS)  
t
h(BCLK–CS)  
4ns.min  
60ns.max  
CSi  
t
h(WR–CS)  
0ns.min  
tcyc  
t
d(BCLK–AD)  
t
h(BCLK–AD)  
4ns.min  
60ns.max  
ADi  
BHE  
t
d(BCLK–ALE)  
t
h(BCLK–ALE)  
–4ns.min  
t
h(WR–AD)  
0ns.min  
60ns.max  
ALE  
t
h(BCLK–WR)  
0ns.min  
t
d(BCLK–WR)  
60ns.max  
WR,WRL,  
WRH  
t
d(BCLK–DB)  
t
h(BCLK–DB)  
4ns.min  
80ns.max  
Hi–Z  
DB  
t
h(WR–DB)  
0ns.min  
t
d(DB–WR)  
(tcyc/2–80)ns.min  
Figure 1.24.9. VCC=3V timing diagram (3)  
169  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timing (Vcc = 3V)  
VCC = 3V  
Memory Expansion Mode and Microprocessor Mode  
(When accessing external memory area with wait)  
Read timing  
BCLK  
t
h(BCLK–CS)  
t
d(BCLK–CS)  
60ns.max  
4ns.min  
CSi  
tcyc  
t
h(RD–CS)  
0ns.min  
t
d(BCLK–AD)  
60ns.max  
t
h(BCLK–AD)  
4ns.min  
ADi  
BHE  
t
d(BCLK–ALE)  
60ns.max  
t
h(RD–AD)  
0ns.min  
t
h(BCLK–ALE)  
–4ns.min  
ALE  
RD  
DB  
0ns.min  
t
d(BCLK–RD)  
60ns.max  
t
h(BCLK–RD)  
t
ac2(RD–DB)  
Hi–Z  
0ns.min  
th(RD–DB)  
t
SU(DB–RD)  
80ns.min  
Write timing  
BCLK  
CSi  
t
d(BCLK–CS)  
t
h(BCLK–CS)  
60ns.max  
4ns.min  
tcyc  
t
h(WR–CS)  
0ns.min  
t
d(BCLK–AD)  
60ns.max  
t
h(BCLK–AD)  
4ns.min  
ADi  
BHE  
t
h(BCLK–ALE)  
–4ns.min  
t
d(BCLK–ALE)  
t
h(WR–AD)  
0ns.min  
60ns.max  
ALE  
t
d(BCLK–WR)  
60ns.max  
t
h(BCLK–WR)  
0ns.min  
WR,WRL,  
WRH  
t
h(BCLK–DB)  
4ns.min  
t
d(BCLK–DB)  
80ns.max  
DBi  
t
h(WR–DB)  
0ns.min  
t
d(DB–WR)  
(tcyc–80)ns.min  
Measuring conditions :  
• VCC=3V  
• Input timing voltage : Determined with VIL=0.48V, VIH=1.5V  
• Output timing voltage : Determined with VOL=1.5V, VOH=1.5V  
Figure 1.24.10. VCC=3V timing diagram (4)  
170  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Timing (Vcc = 3V)  
VCC = 3V  
Memory Expansion Mode and Microprocessor Mode  
(When accessing external memory area with wait, and select multiplexed bus)  
Read timing  
BCLK  
t
h(BCLK–CS)  
4ns.min  
tcyc  
t
d(BCLK–CS)  
60ns.max  
t
h(RD–CS)  
(tcyc/2)ns.min  
CSi  
(tcyc/2–60)ns.min  
td(AD–ALE)  
t
dz(RD–AD)  
8ns.max  
ADi  
/DBi  
Address  
h(ALE–AD)  
Data input  
Address  
t
h(RD–DB)  
0ns.min  
t
t
tac3(RD–DB)  
t
SU(DB–RD)  
80ns.min  
50ns.min  
t
d(AD–RD)  
0ns.min  
t
h(BCLK–AD)  
4ns.min  
d(BCLK–AD)  
60ns.max  
ADi  
BHE  
t
h(BCLK–ALE)  
–4ns.min  
t
d(BCLK–ALE)  
t
h(RD–AD)  
(tcyc/2)ns.min  
60ns.max  
ALE  
RD  
t
h(BCLK–RD)  
0ns.min  
t
d(BCLK–RD)  
60ns.max  
Write timing  
BCLK  
t
h(BCLK–CS)  
4ns.min  
tcyc  
t
d(BCLK–CS)  
60ns.max  
t
h(WR–CS)  
(tcyc/2)ns.min  
CSi  
t
d(BCLK–DB)  
80ns.max  
t
h(BCLK–DB)  
4ns.min  
ADi  
Address  
Data output  
Address  
/DBi  
t
d(DB–WR)  
t
d(AD–ALE)  
t
h(WR–DB)  
(tcyc*3/2–80)ns.min  
(tcyc/2–60)ns.min  
(tcyc/2)ns.min  
t
h(BCLK–AD)  
4ns.min  
t
d(BCLK–AD)  
60ns.max  
ADi  
BHE  
t
d(BCLK–ALE)  
t
h(BCLK–ALE)  
–4ns.min  
t
d(AD–WR)  
0ns.min  
t
h(WR–AD)  
(tcyc/2)ns.min  
60ns.max  
ALE  
t
h(BCLK–WR)  
0ns.min  
t
d(BCLK–WR)  
60ns.max  
WR,WRL,  
WRH  
Measuring conditions :  
• VCC=3V  
• Input timing voltage : Determined with VIL=0.48V,VIH=1.5V  
• Output timing voltage : Determined with VOL=1.5V,VOH=1.5V  
Figure 1.24.11. VCC=3V timing diagram (5)  
171  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ SH11 53B <71A1>  
Mask ROM number  
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT  
MICROCOMPUTER M30610M8A-XXXFP/GP  
Date :  
MASK ROM CONFIRMATION FORM  
Section head Supervisor  
signature  
signature  
Note : Please complete all items marked  
Submitted by Supervisor  
.
TEL  
(
Company  
name  
)
Customer  
Date  
Date :  
issued  
1. Check sheet  
Name the product you order, and choose which to give in, EPROMs or floppy disks.  
If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by  
means of floppy disks, one floppy disk is required per pattern.  
In the case of EPROMs  
Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the  
same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any  
discrepancy between the data on the EPROM sets and the ROM data written to the product.  
Please carefully check the data on the EPROMs being submitted to Mitsubishi.  
Microcomputer type No. :  
M30610M8A-XXXFP  
Checksum code for total EPROM area :  
EPROM type :  
M30610M8A-XXXGP  
(hex)  
27C201  
27C401  
Address  
Address  
0000016  
0000016  
Product : Area  
Product : Area  
containing ASCII  
code for M30610M8A -  
containing ASCII  
code for M30610M8A -  
0000F16  
0001016  
0000F16  
0001016  
2FFFF16  
3000016  
6FFFF16  
7000016  
ROM(64K)  
ROM(64K)  
3FFFF16  
7FFFF16  
Address  
Address  
0000016  
0000116  
(1) Write “FF16” to the lined area.  
(2) The area from 0000016 to 0000F16 is for storing  
data on the product type name.  
0000816  
'M '  
'3 '  
'0 '  
'6 '  
'1 '  
'0 '  
'M '  
'8 '  
= 4D16  
= 3316  
= 3016  
= 3616  
= 3116  
= 3016  
= 4D16  
= 3816  
' A ' = 4116  
' ' = 2D16  
FF16  
0000916  
0000A16  
0000B16  
0000216  
0000316  
0000416  
The ASCII code for 'M30610M8A-' is shown at right.  
The data in this table must be written to address  
0000016 to 0000F16.  
FF16  
0000C16  
0000D16  
0000E16  
FF16  
FF16  
FF16  
0000516  
0000616  
0000716  
Both address and data are shown in hex.  
0000F16  
FF16  
172  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ SH11 53B <71A1>  
Mask ROM number  
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT  
MICROCOMPUTER M30610M8A-XXXFP/GP  
MASK ROM CONFIRMATION FORM  
The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the  
pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the  
assembler source program.  
27C201  
EPROM type  
27C401  
.SECTION ASCIICODE, ROM DATA  
.ORG 0C0000H  
.SECTION ASCIICODE, ROM DATA  
.ORG 080000H  
Code entered in  
source program  
.BYTE  
' M30610M8A- '  
.BYTE  
' M30610M8A- '  
The ROM cannot be processed if the type No. written to the EPROM does not match the type No.  
in the check sheet.  
Note:  
In the case of floppy disks  
Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on  
the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that  
there is any discrepancy between the contents of these mask files and the ROM data to be burned into  
products we produce. Check thoroughly the contents of the mask files you give in.  
Prepare 3.5 inches 2HD(IBM format) floppy disks. And store only one mask file in a floppy disk.  
Microcomputer type No. :  
File code :  
M30610M8A-XXXFP  
M30610M8A-XXXGP  
(hex)  
Mask file name :  
.MSK (alpha-numeric 8-digit)  
2. Mark specification  
The mark specification differs according to the type of package. After entering the mark specification on  
the separate mark specification sheet (for each package), attach that sheet to this masking check sheet  
for submission to Mitsubishi.  
For the M30610M8A-XXXFP, submit the 100P6S mark specification sheet. For the M30610M8A-XXXGP,  
submit the 100P6Q mark specification sheet.  
3. Usage Conditions  
For our reference when of testing our products, please reply to the following questions about the usage of  
the products you ordered.  
(1) Which kind of XIN-XOUT oscillation circuit is used?  
Ceramic resonator  
External clock input  
Quartz-crystal oscillator  
Other (  
)
What frequency do you use?  
f(XIN) =  
MHZ  
173  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ SH11 53B <71A1>  
Mask ROM number  
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT  
MICROCOMPUTER M30610M8A-XXXFP/GP  
MASK ROM CONFIRMATION FORM  
(2) Which kind of XCIN-XCOUT oscillation circuit is used?  
Ceramic resonator  
External clock input  
Quartz-crystal oscillator  
Other (  
)
What frequency do you use?  
f(XCIN) =  
kHZ  
(3) Which operation mode do you use?  
Single-chip mode  
Memory expansion mode  
Microprocessor mode  
(4) Which operating ambient temperature do you use?  
–10 °C to 75 °C  
–10 °C to 85 °C  
–20 °C to 75 °C  
–20 °C to 85 °C  
–40 °C to 75 °C  
–40 °C to 85 °C  
(5) Which operating supply voltage do you use?  
2.7V to 3.2V  
4.2V to 4.7V  
3.2V to 3.7V  
4.7V to 5.2V  
3.7V to 4.2V  
5.2V to 5.5V  
Thank you cooperation.  
4. Special item (Indicate none if there is no specified item)  
174  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ SH11 52B <71A1>  
Mask ROM number  
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT  
MICROCOMPUTER M30610MAA-XXXFP/GP  
Date :  
MASK ROM CONFIRMATION FORM  
Section head Supervisor  
signature  
signature  
Note : Please complete all items marked  
Submitted by Supervisor  
.
TEL  
(
Company  
name  
)
Customer  
Date  
Date :  
issued  
1. Check sheet  
Name the product you order, and choose which to give in, EPROMs or floppy disks.  
If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by  
means of floppy disks, one floppy disk is required per pattern.  
In the case of EPROMs  
Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the  
same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any  
discrepancy between the data on the EPROM sets and the ROM data written to the product.  
Please carefully check the data on the EPROMs being submitted to Mitsubishi.  
Microcomputer type No. :  
Checksum code for total EPROM area :  
EPROM type :  
M30610MAA-XXXFP  
M30610MAA-XXXGP  
(hex)  
27C201  
27C401  
Address  
Address  
0000016  
0000016  
Product : Area  
Product : Area  
containing ASCII  
code for M30610MAA -  
containing ASCII  
code for M30610MAA -  
0000F16  
0001016  
0000F16  
0001016  
27FFF16  
2800016  
67FFF16  
6800016  
ROM(96K)  
ROM(96K)  
3FFFF16  
7FFFF16  
Address  
Address  
0000016  
0000116  
(1) Write “FF16” to the lined area.  
(2) The area from 0000016 to 0000F16 is for storing  
data on the product type name.  
0000816  
'
'
M
3
0
6
1
0
M
A
'
'
'
'
'
'
= 4D16  
= 3316  
= 3016  
= 3616  
= 3116  
= 3016  
= 4D16  
= 4116  
'
'
A
'  
'
= 4116  
= 2D16  
FF16  
0000916  
0000A16  
0000B16  
'
'
'
'
'
'
0000216  
0000316  
0000416  
The ASCII code for 'M30610MAA-' is shown at right.  
The data in this table must be written to address  
FF16  
0000C16  
0000D16  
0000E16  
FF16  
FF16  
FF16  
0000016 to 0000F16  
.
0000516  
0000616  
0000716  
Both address and data are shown in hex.  
'
'
0000F16  
FF16  
175  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ SH11 52B <71A1>  
Mask ROM number  
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT  
MICROCOMPUTER M30610MAA-XXXFP/GP  
MASK ROM CONFIRMATION FORM  
The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the  
pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the  
assembler source program.  
27C201  
EPROM type  
27C401  
.SECTION ASCIICODE, ROM DATA  
.ORG 0C0000H  
.SECTION ASCIICODE, ROM DATA  
.ORG 080000H  
Code entered in  
source program  
.BYTE  
' M30610MAA- '  
.BYTE  
' M30610MAA- '  
Note:  
The ROM cannot be processed if the type No. written to the EPROM does not match the type No.  
in the check sheet.  
In the case of floppy disks  
Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on  
the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that  
there is any discrepancy between the contents of these mask files and the ROM data to be burned into  
products we produce. Check thoroughly the contents of the mask files you give in.  
Prepare 3.5 inches 2HD(IBM format) floppy disks. And store only one mask file in a floppy disk.  
Microcomputer type No. :  
File code :  
M30610MAA-XXXFP  
M30610MAA-XXXGP  
(hex)  
Mask file name :  
.MSK (alpha-numeric 8-digit)  
2. Mark specification  
The mark specification differs according to the type of package. After entering the mark specification on  
the separate mark specification sheet (for each package), attach that sheet to this masking check sheet  
for submission to Mitsubishi.  
For the M30610MAA-XXXFP, submit the 100P6S mark specification sheet. For the M30610MAA-XXXGP,  
submit the 100P6Q mark specification sheet.  
3. Usage Conditions  
For our reference when of testing our products, please reply to the following questions about the usage of  
the products you ordered.  
(1) Which kind of XIN-XOUT oscillation circuit is used?  
Ceramic resonator  
External clock input  
Quartz-crystal oscillator  
Other (  
)
What frequency do you use?  
f(XIN) =  
MHZ  
176  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ SH11 52B <71A1>  
Mask ROM number  
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT  
MICROCOMPUTER M30610MAA-XXXFP/GP  
MASK ROM CONFIRMATION FORM  
(2) Which kind of XCIN-XCOUT oscillation circuit is used?  
Ceramic resonator  
External clock input  
Quartz-crystal oscillator  
Other (  
)
What frequency do you use?  
f(XCIN) =  
kHZ  
(3) Which operation mode do you use?  
Single-chip mode  
Memory expansion mode  
Microprocessor mode  
(4) Which operating ambient temperature do you use?  
–10 °C to 75 °C  
–10 °C to 85 °C  
–20 °C to 75 °C  
–20 °C to 85 °C  
–40 °C to 75 °C  
–40 °C to 85 °C  
(5) Which operating supply voltage do you use?  
2.7V to 3.2V  
4.2V to 4.7V  
3.2V to 3.7V  
4.7V to 5.2V  
3.7V to 4.2V  
5.2V to 5.5V  
Thank you cooperation.  
4. Special item (Indicate none if there is no specified item)  
177  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ SH11 51B <71A1>  
Mask ROM number  
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT  
MICROCOMPUTER M30610MCA-XXXFP/GP  
Date :  
MASK ROM CONFIRMATION FORM  
Section head Supervisor  
signature  
signature  
Note : Please complete all items marked  
Submitted by Supervisor  
.
TEL  
(
Company  
name  
)
Customer  
Date  
Date :  
issued  
1. Check sheet  
Name the product you order, and choose which to give in, EPROMs or floppy disks.  
If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by  
means of floppy disks, one floppy disk is required per pattern.  
In the case of EPROMs  
Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the  
same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any  
discrepancy between the data on the EPROM sets and the ROM data written to the product.  
Please carefully check the data on the EPROMs being submitted to Mitsubishi.  
Microcomputer type No. :  
M30610MCA-XXXFP  
Checksum code for total EPROM area :  
EPROM type :  
M30610MCA-XXXGP  
(hex)  
27C201  
27C401  
Address  
Address  
0000016  
0000016  
Product : Area  
Product : Area  
containing ASCII  
code for M30610MCA -  
containing ASCII  
code for M30610MCA -  
0000F16  
0001016  
0000F16  
0001016  
1FFFF16  
2000016  
5FFFF16  
6000016  
ROM(128K)  
ROM(128K)  
3FFFF16  
7FFFF16  
Address  
Address  
0000016  
0000116  
(1) Write “FF16” to the lined area.  
(2) The area from 0000016 to 0000F16 is for storing  
data on the product type name.  
0000816  
'
'
M
3
0
6
1
0
M
C
'
'
'
'
'
'
= 4D16  
= 3316  
= 3016  
= 3616  
= 3116  
= 3016  
= 4D16  
= 4316  
'
'
A
'  
'
= 4116  
= 2D16  
FF16  
0000916  
0000A16  
0000B16  
'
'
'
'
'
0000216  
0000316  
0000416  
The ASCII code for 'M30610MCA-' is shown at right.  
The data in this table must be written to address  
FF16  
0000C16  
0000D16  
0000E16  
FF16  
FF16  
FF16  
0000016 to 0000F16  
.
0000516  
0000616  
0000716  
Both address and data are shown in hex.  
'
'
0000F16  
FF16  
'
178  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ SH11 51B <71A1>  
Mask ROM number  
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT  
MICROCOMPUTER M30610MCA-XXXFP/GP  
MASK ROM CONFIRMATION FORM  
The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the  
pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the  
assembler source program.  
27C201  
EPROM type  
27C401  
.SECTION ASCIICODE, ROM DATA  
.ORG 0C0000H  
.SECTION ASCIICODE, ROM DATA  
.ORG 080000H  
Code entered in  
source program  
.BYTE  
' M30610MCA- '  
.BYTE  
' M30610MCA- '  
Note:  
The ROM cannot be processed if the type No. written to the EPROM does not match the type No.  
in the check sheet.  
In the case of floppy disks  
Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on  
the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that  
there is any discrepancy between the contents of these mask files and the ROM data to be burned into  
products we produce. Check thoroughly the contents of the mask files you give in.  
Prepare 3.5 inches 2HD(IBM format) floppy disks. And store only one mask file in a floppy disk.  
Microcomputer type No. :  
File code :  
M30610MCA-XXXFP  
M30610MCA-XXXGP  
(hex)  
Mask file name :  
.MSK (alpha-numeric 8-digit)  
2. Mark specification  
The mark specification differs according to the type of package. After entering the mark specification on  
the separate mark specification sheet (for each package), attach that sheet to this masking check sheet  
for submission to Mitsubishi.  
For the M30610MCA-XXXFP, submit the 100P6S mark specification sheet. For the M30610MCA-XXXGP,  
submit the 100P6Q mark specification sheet.  
3. Usage Conditions  
For our reference when of testing our products, please reply to the following questions about the usage of  
the products you ordered.  
(1) Which kind of XIN-XOUT oscillation circuit is used?  
Ceramic resonator  
External clock input  
Quartz-crystal oscillator  
Other (  
)
What frequency do you use?  
f(XIN) =  
MHZ  
179  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ SH11 51B <71A1>  
Mask ROM number  
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT  
MICROCOMPUTER M30610MCA-XXXFP/GP  
MASK ROM CONFIRMATION FORM  
(2) Which kind of XCIN-XCOUT oscillation circuit is used?  
Ceramic resonator  
External clock input  
Quartz-crystal oscillator  
Other (  
)
What frequency do you use?  
f(XCIN) =  
kHZ  
(3) Which operation mode do you use?  
Single-chip mode  
Memory expansion mode  
Microprocessor mode  
(4) Which operating ambient temperature do you use?  
–10 °C to 75 °C  
–10 °C to 85 °C  
–20 °C to 75 °C  
–20 °C to 85 °C  
–40 °C to 75 °C  
–40 °C to 85 °C  
(5) Which operating supply voltage do you use?  
2.7V to 3.2V  
4.2V to 4.7V  
3.2V to 3.7V  
4.7V to 5.2V  
3.7V to 4.2V  
5.2V to 5.5V  
Thank you cooperation.  
4. Special item (Indicate none if there is no specified item)  
180  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ SH12 35B <79A1>  
Mask ROM number  
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT  
MICROCOMPUTER M30612M4A-XXXFP/GP  
Date :  
MASK ROM CONFIRMATION FORM  
Section head Supervisor  
signature  
signature  
Note : Please complete all items marked  
Submitted by Supervisor  
.
TEL  
(
Company  
name  
)
Customer  
Date  
Date :  
issued  
1. Check sheet  
Name the product you order, and choose which to give in, EPROMs or floppy disks.  
If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by  
means of floppy disks, one floppy disk is required per pattern.  
In the case of EPROMs  
Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the  
same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any  
discrepancy between the data on the EPROM sets and the ROM data written to the product.  
Please carefully check the data on the EPROMs being submitted to Mitsubishi.  
Microcomputer type No. :  
M30612M4A-XXXFP  
Checksum code for total EPROM area :  
EPROM type :  
M30612M4A-XXXGP  
(hex)  
27C201  
27C401  
Address  
Address  
0000016  
0000016  
Product : Area  
Product : Area  
containing ASCII  
code for M30612M4A -  
containing ASCII  
code for M30612M4A -  
0000F16  
0001016  
0000F16  
0001016  
37FFF16  
3800016  
77FFF16  
7800016  
ROM(32K)  
ROM(32K)  
3FFFF16  
7FFFF16  
Address  
Address  
0000016  
0000116  
(1) Write “FF16” to the lined area.  
(2) The area from 0000016 to 0000F16 is for storing  
data on the product type name.  
0000816  
'
'
M
3
0
6
1
2
M
4
'
'
'
'
'
'
= 4D16  
= 3316  
= 3016  
= 3616  
= 3116  
= 3216  
= 4D16  
= 3416  
'
'
A
'  
'
= 4116  
= 2D16  
FF16  
0000916  
0000A16  
0000B16  
'
'
'
'
'
'
0000216  
0000316  
0000416  
The ASCII code for 'M30612M4A-' is shown at right.  
The data in this table must be written to address  
FF16  
0000C16  
0000D16  
0000E16  
FF16  
FF16  
FF16  
0000016 to 0000F16  
.
0000516  
0000616  
0000716  
Both address and data are shown in hex.  
'
'
0000F16  
FF16  
181  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ SH12 35B <79A1>  
Mask ROM number  
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT  
MICROCOMPUTER M30612M4A-XXXFP/GP  
MASK ROM CONFIRMATION FORM  
The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the  
pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the  
assembler source program.  
27C201  
EPROM type  
27C401  
.SECTION ASCIICODE, ROM DATA  
.ORG 0C0000H  
.SECTION ASCIICODE, ROM DATA  
.ORG 080000H  
Code entered in  
source program  
.BYTE  
' M30612M4A- '  
.BYTE  
' M30612M4A- '  
The ROM cannot be processed if the type No. written to the EPROM does not match the type No.  
in the check sheet.  
Note:  
In the case of floppy disks  
Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on  
the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that  
there is any discrepancy between the contents of these mask files and the ROM data to be burned into  
products we produce. Check thoroughly the contents of the mask files you give in.  
Prepare 3.5 inches 2HD(IBM format) floppy disks. And store only one mask file in a floppy disk.  
Microcomputer type No. :  
File code :  
M30612M4A-XXXFP  
M30612M4A-XXXGP  
(hex)  
Mask file name :  
.MSK (alpha-numeric 8-digit)  
2. Mark specification  
The mark specification differs according to the type of package. After entering the mark specification on  
the separate mark specification sheet (for each package), attach that sheet to this masking check sheet  
for submission to Mitsubishi.  
For the M30612M4A-XXXFP, submit the 100P6S mark specification sheet. For the M30612M4A-XXXGP,  
submit the 100P6Q mark specification sheet.  
3. Usage Conditions  
For our reference when of testing our products, please reply to the following questions about the usage of  
the products you ordered.  
(1) Which kind of XIN-XOUT oscillation circuit is used?  
Ceramic resonator  
External clock input  
Quartz-crystal oscillator  
Other (  
)
What frequency do you use?  
f(XIN) =  
MHZ  
182  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ SH12 35B <79A1>  
Mask ROM number  
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT  
MICROCOMPUTER M30612M4A-XXXFP/GP  
MASK ROM CONFIRMATION FORM  
(2) Which kind of XCIN-XCOUT oscillation circuit is used?  
Ceramic resonator  
External clock input  
Quartz-crystal oscillator  
Other (  
)
What frequency do you use?  
f(XCIN) =  
kHZ  
(3) Which operation mode do you use?  
Single-chip mode  
Memory expansion mode  
Microprocessor mode  
(4) Which operating ambient temperature do you use?  
–10 °C to 75 °C  
–10 °C to 85 °C  
–20 °C to 75 °C  
–20 °C to 85 °C  
–40 °C to 75 °C  
–40 °C to 85 °C  
(5) Which operating supply voltage do you use?  
2.7V to 3.2V  
4.2V to 4.7V  
3.2V to 3.7V  
4.7V to 5.2V  
3.7V to 4.2V  
5.2V to 5.5V  
Thank you cooperation.  
4. Special item (Indicate none if there is no specified item)  
183  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ SH12 34B <79A1>  
Mask ROM number  
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT  
MICROCOMPUTER M30612M8A-XXXFP/GP  
Date :  
MASK ROM CONFIRMATION FORM  
Section head Supervisor  
signature  
signature  
Note : Please complete all items marked  
Submitted by Supervisor  
.
TEL  
(
Company  
name  
)
Customer  
Date  
Date :  
issued  
1. Check sheet  
Name the product you order, and choose which to give in, EPROMs or floppy disks.  
If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by  
means of floppy disks, one floppy disk is required per pattern.  
In the case of EPROMs  
Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the  
same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any  
discrepancy between the data on the EPROM sets and the ROM data written to the product.  
Please carefully check the data on the EPROMs being submitted to Mitsubishi.  
Microcomputer type No. :  
M30612M8A-XXXFP  
Checksum code for total EPROM area :  
EPROM type :  
M30612M8A-XXXGP  
(hex)  
27C201  
27C401  
Address  
Address  
0000016  
0000016  
Product : Area  
Product : Area  
containing ASCII  
code for M30612M8A -  
containing ASCII  
code for M30612M8A -  
0000F16  
0001016  
0000F16  
0001016  
2FFFF16  
3000016  
6FFFF16  
7000016  
ROM(64K)  
ROM(64K)  
3FFFF16  
7FFFF16  
Address  
Address  
0000016  
0000116  
(1) Write “FF16” to the lined area.  
(2) The area from 0000016 to 0000F16 is for storing  
data on the product type name.  
0000816  
'
'
M
3
0
6
1
2
M
8
'
'
'
'
'
'
= 4D16  
= 3316  
= 3016  
= 3616  
= 3116  
= 3216  
= 4D16  
= 3816  
'
'
A
'  
'
= 4116  
= 2D16  
FF16  
0000916  
0000A16  
0000B16  
'
'
'
'
'
0000216  
0000316  
0000416  
The ASCII code for 'M30612M8A-' is shown at right.  
The data in this table must be written to address  
FF16  
0000C16  
0000D16  
0000E16  
FF16  
FF16  
FF16  
0000016 to 0000F16  
.
0000516  
0000616  
0000716  
Both address and data are shown in hex.  
'
0000F16  
FF16  
'
'
184  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ SH12 34B <79A1>  
Mask ROM number  
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT  
MICROCOMPUTER M30612M8A-XXXFP/GP  
MASK ROM CONFIRMATION FORM  
The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the  
pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the  
assembler source program.  
27C201  
EPROM type  
27C401  
.SECTION ASCIICODE, ROM DATA  
.ORG 0C0000H  
.SECTION ASCIICODE, ROM DATA  
.ORG 080000H  
Code entered in  
source program  
.BYTE  
' M30612M8A- '  
.BYTE  
' M30612M8A- '  
The ROM cannot be processed if the type No. written to the EPROM does not match the type No.  
in the check sheet.  
Note:  
In the case of floppy disks  
Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on  
the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that  
there is any discrepancy between the contents of these mask files and the ROM data to be burned into  
products we produce. Check thoroughly the contents of the mask files you give in.  
Prepare 3.5 inches 2HD(IBM format) floppy disks. And store only one mask file in a floppy disk.  
Microcomputer type No. :  
File code :  
M30612M8A-XXXFP  
M30612M8A-XXXGP  
(hex)  
Mask file name :  
.MSK (alpha-numeric 8-digit)  
2. Mark specification  
The mark specification differs according to the type of package. After entering the mark specification on  
the separate mark specification sheet (for each package), attach that sheet to this masking check sheet  
for submission to Mitsubishi.  
For the M30612M8A-XXXFP, submit the 100P6S mark specification sheet. For the M30612M8A-XXXGP,  
submit the 100P6Q mark specification sheet.  
3. Usage Conditions  
For our reference when of testing our products, please reply to the following questions about the usage of  
the products you ordered.  
(1) Which kind of XIN-XOUT oscillation circuit is used?  
Ceramic resonator  
External clock input  
Quartz-crystal oscillator  
Other (  
)
What frequency do you use?  
f(XIN) =  
MHZ  
185  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ SH12 34B <79A1>  
Mask ROM number  
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT  
MICROCOMPUTER M30612M8A-XXXFP/GP  
MASK ROM CONFIRMATION FORM  
(2) Which kind of XCIN-XCOUT oscillation circuit is used?  
Ceramic resonator  
External clock input  
Quartz-crystal oscillator  
Other (  
)
What frequency do you use?  
f(XCIN) =  
kHZ  
(3) Which operation mode do you use?  
Single-chip mode  
Memory expansion mode  
Microprocessor mode  
(4) Which operating ambient temperature do you use?  
–10 °C to 75 °C  
–10 °C to 85 °C  
–20 °C to 75 °C  
–20 °C to 85 °C  
–40 °C to 75 °C  
–40 °C to 85 °C  
(5) Which operating supply voltage do you use?  
2.7V to 3.2V  
4.2V to 4.7V  
3.2V to 3.7V  
4.7V to 5.2V  
3.7V to 4.2V  
5.2V to 5.5V  
Thank you cooperation.  
4. Special item (Indicate none if there is no specified item)  
186  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ SH12 55B <71A1>  
Mask ROM number  
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT  
MICROCOMPUTER M30612MAA-XXXFP/GP  
Date :  
MASK ROM CONFIRMATION FORM  
Section head Supervisor  
signature  
signature  
Note : Please complete all items marked  
Submitted by Supervisor  
.
TEL  
(
Company  
name  
)
Customer  
Date  
Date :  
issued  
1. Check sheet  
Name the product you order, and choose which to give in, EPROMs or floppy disks.  
If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by  
means of floppy disks, one floppy disk is required per pattern.  
In the case of EPROMs  
Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the  
same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any  
discrepancy between the data on the EPROM sets and the ROM data written to the product.  
Please carefully check the data on the EPROMs being submitted to Mitsubishi.  
Microcomputer type No. :  
M30612MAA-XXXFP  
Checksum code for total EPROM area :  
EPROM type :  
M30612MAA-XXXGP  
(hex)  
27C201  
27C401  
Address  
Address  
0000016  
0000016  
Product : Area  
Product : Area  
containing ASCII  
code for M30612MAA -  
containing ASCII  
code for M30612MAA -  
0000F16  
0001016  
0000F16  
0001016  
27FFF16  
2800016  
67FFF16  
6800016  
ROM(96K)  
ROM(96K)  
3FFFF16  
7FFFF16  
Address  
Address  
0000016  
0000116  
(1) Write “FF16” to the lined area.  
(2) The area from 0000016 to 0000F16 is for storing  
data on the product type name.  
0000816  
'
'
M
3
0
6
1
2
M
A
'
'
'
'
'
'
= 4D16  
= 3316  
= 3016  
= 3616  
= 3116  
= 3216  
= 4D16  
= 4116  
'
'
A
'  
'
= 4116  
= 2D16  
FF16  
0000916  
0000A16  
0000B16  
'
'
'
'
'
0000216  
0000316  
0000416  
The ASCII code for 'M30612MAA-' is shown at right.  
The data in this table must be written to address  
FF16  
0000C16  
0000D16  
0000E16  
FF16  
FF16  
FF16  
0000016 to 0000F16  
.
0000516  
0000616  
0000716  
Both address and data are shown in hex.  
'
'
0000F16  
FF16  
'
187  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ SH11 55B <71A1>  
Mask ROM number  
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT  
MICROCOMPUTER M30612MAA-XXXFP/GP  
MASK ROM CONFIRMATION FORM  
The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the  
pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the  
assembler source program.  
27C201  
EPROM type  
27C401  
.SECTION ASCIICODE, ROM DATA  
.ORG 0C0000H  
.SECTION ASCIICODE, ROM DATA  
.ORG 080000H  
Code entered in  
source program  
.BYTE  
' M30612MAA- '  
.BYTE  
' M30612MAA- '  
Note:  
The ROM cannot be processed if the type No. written to the EPROM does not match the type No.  
in the check sheet.  
In the case of floppy disks  
Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on  
the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that  
there is any discrepancy between the contents of these mask files and the ROM data to be burned into  
products we produce. Check thoroughly the contents of the mask files you give in.  
Prepare 3.5 inches 2HD(IBM format) floppy disks. And store only one mask file in a floppy disk.  
Microcomputer type No. :  
File code :  
M30612MAA-XXXFP  
M30612MAA-XXXGP  
(hex)  
Mask file name :  
.MSK (alpha-numeric 8-digit)  
2. Mark specification  
The mark specification differs according to the type of package. After entering the mark specification on  
the separate mark specification sheet (for each package), attach that sheet to this masking check sheet  
for submission to Mitsubishi.  
For the M30612MAA-XXXFP, submit the 100P6S mark specification sheet. For the M30612MAA-XXXGP,  
submit the 100P6Q mark specification sheet.  
3. Usage Conditions  
For our reference when of testing our products, please reply to the following questions about the usage of  
the products you ordered.  
(1) Which kind of XIN-XOUT oscillation circuit is used?  
Ceramic resonator  
External clock input  
Quartz-crystal oscillator  
Other (  
)
What frequency do you use?  
f(XIN) =  
MHZ  
188  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ SH11 55B <71A1>  
Mask ROM number  
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT  
MICROCOMPUTER M30612MAA-XXXFP/GP  
MASK ROM CONFIRMATION FORM  
(2) Which kind of XCIN-XCOUT oscillation circuit is used?  
Ceramic resonator  
External clock input  
Quartz-crystal oscillator  
Other (  
)
What frequency do you use?  
f(XCIN) =  
kHZ  
(3) Which operation mode do you use?  
Single-chip mode  
Memory expansion mode  
Microprocessor mode  
(4) Which operating ambient temperature do you use?  
–10 °C to 75 °C  
–10 °C to 85 °C  
–20 °C to 75 °C  
–20 °C to 85 °C  
–40 °C to 75 °C  
–40 °C to 85 °C  
(5) Which operating supply voltage do you use?  
2.7V to 3.2V  
4.2V to 4.7V  
3.2V to 3.7V  
4.7V to 5.2V  
3.7V to 4.2V  
5.2V to 5.5V  
Thank you cooperation.  
4. Special item (Indicate none if there is no specified item)  
189  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ SH11 54B <71A1>  
Mask ROM number  
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT  
MICROCOMPUTER M30612MCA-XXXFP/GP  
Date :  
MASK ROM CONFIRMATION FORM  
Section head Supervisor  
signature  
signature  
Note : Please complete all items marked  
Submitted by Supervisor  
.
TEL  
(
Company  
name  
)
Customer  
Date  
Date :  
issued  
1. Check sheet  
Name the product you order, and choose which to give in, EPROMs or floppy disks.  
If you order by means of EPROMs, three sets of EPROMs are required per pattern. If you order by  
means of floppy disks, one floppy disk is required per pattern.  
In the case of EPROMs  
Mitsubishi will create the mask using the data on the EPROMs supplied, providing the data is the  
same on at least two of those sets. Mitsubishi will, therefore, only accept liability if there is any  
discrepancy between the data on the EPROM sets and the ROM data written to the product.  
Please carefully check the data on the EPROMs being submitted to Mitsubishi.  
Microcomputer type No. :  
M30612MCA-XXXFP  
Checksum code for total EPROM area :  
EPROM type :  
M30612MCA-XXXGP  
(hex)  
27C201  
27C401  
Address  
Address  
0000016  
0000016  
Product : Area  
Product : Area  
containing ASCII  
code for M30612MCA -  
containing ASCII  
code for M30612MCA -  
0000F16  
0001016  
0000F16  
0001016  
1FFFF16  
2000016  
5FFFF16  
6000016  
ROM(128K)  
ROM(128K)  
3FFFF16  
7FFFF16  
Address  
Address  
0000016  
0000116  
(1) Write “FF16” to the lined area.  
(2) The area from 0000016 to 0000F16 is for storing  
data on the product type name.  
0000816  
'M '  
'3 '  
'0 '  
'6 '  
'1 '  
'2 '  
'M '  
'C '  
= 4D16  
= 3316  
= 3016  
= 3616  
= 3116  
= 3216  
= 4D16  
= 4316  
' A ' = 4116  
' ' = 2D16  
FF16  
0000916  
0000A16  
0000B16  
0000216  
0000316  
0000416  
The ASCII code for 'M30612MCA-' is shown at right.  
The data in this table must be written to address  
FF16  
0000C16  
0000D16  
0000E16  
FF16  
FF16  
FF16  
0000016 to 0000F16  
.
0000516  
0000616  
0000716  
Both address and data are shown in hex.  
0000F16  
FF16  
190  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ SH11 54B <71A1>  
Mask ROM number  
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT  
MICROCOMPUTER M30612MCA-XXXFP/GP  
MASK ROM CONFIRMATION FORM  
The ASCII code for the type No. can be written to EPROM addresses 0000016 to 0000F16 by specifying the  
pseudo-instructions for the respective EPROM type shown in the following table at the beginning of the  
assembler source program.  
27C201  
EPROM type  
27C401  
.SECTION ASCIICODE, ROM DATA  
.ORG 0C0000H  
.SECTION ASCIICODE, ROM DATA  
.ORG 080000H  
Code entered in  
source program  
.BYTE  
' M30612MCA- '  
.BYTE  
' M30612MCA- '  
Note:  
The ROM cannot be processed if the type No. written to the EPROM does not match the type No.  
in the check sheet.  
In the case of floppy disks  
Mitsubishi processes the mask files generated by the mask file generation utilities out of those held on  
the floppy disks you give in to us, and forms them into masks. Hence, we assume liability provided that  
there is any discrepancy between the contents of these mask files and the ROM data to be burned into  
products we produce. Check thoroughly the contents of the mask files you give in.  
Prepare 3.5 inches 2HD(IBM format) floppy disks. And store only one mask file in a floppy disk.  
Microcomputer type No. :  
File code :  
M30612MCA-XXXFP  
M30612MCA-XXXGP  
(hex)  
Mask file name :  
.MSK (alpha-numeric 8-digit)  
2. Mark specification  
The mark specification differs according to the type of package. After entering the mark specification on  
the separate mark specification sheet (for each package), attach that sheet to this masking check sheet  
for submission to Mitsubishi.  
For the M30612MCA-XXXFP, submit the 100P6S mark specification sheet. For the M30612MCA-XXXGP,  
submit the 100P6Q mark specification sheet.  
3. Usage Conditions  
For our reference when of testing our products, please reply to the following questions about the usage of  
the products you ordered.  
(1) Which kind of XIN-XOUT oscillation circuit is used?  
Ceramic resonator  
External clock input  
Quartz-crystal oscillator  
Other (  
)
What frequency do you use?  
f(XIN) =  
MHZ  
191  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
GZZ SH11 54B <71A1>  
Mask ROM number  
MITSUBISHI ELECTRIC SINGLE-CHIP 16-BIT  
MICROCOMPUTER M30612MCA-XXXFP/GP  
MASK ROM CONFIRMATION FORM  
(2) Which kind of XCIN-XCOUT oscillation circuit is used?  
Ceramic resonator  
External clock input  
Quartz-crystal oscillator  
Other (  
)
What frequency do you use?  
f(XCIN) =  
kHZ  
(3) Which operation mode do you use?  
Single-chip mode  
Memory expansion mode  
Microprocessor mode  
(4) Which operating ambient temperature do you use?  
–10 °C to 75 °C  
–10 °C to 85 °C  
–20 °C to 75 °C  
–20 °C to 85 °C  
–40 °C to 75 °C  
–40 °C to 85 °C  
(5) Which operating supply voltage do you use?  
2.7V to 3.2V  
4.2V to 4.7V  
3.2V to 3.7V  
4.7V to 5.2V  
3.7V to 4.2V  
5.2V to 5.5V  
Thank you cooperation.  
4. Special item (Indicate none if there is no specified item)  
192  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
100P6S-A  
Plastic 100pin 1420mm body QFP  
EIAJ Package Code  
QFP100-P-1420-0.65  
JEDEC Code  
Weight(g)  
1.58  
Lead Material  
Alloy 42  
MD  
HD  
D
100  
81  
1
80  
I
2
Recommended Mount Pad  
Dimension in Millimeters  
Symbol  
Min  
0
Nom  
0.1  
Max  
3.05  
0.2  
A
A
A
1
2
2.8  
b
0.25  
0.13  
13.8  
19.8  
16.5  
22.5  
0.4  
0.3  
0.4  
0.2  
14.2  
20.2  
17.1  
23.1  
0.8  
0.15  
14.0  
20.0  
0.65  
16.8  
22.8  
0.6  
c
D
E
e
30  
51  
31  
50  
A
L1  
H
H
D
E
L
1.4  
L1  
y
0°  
1.3  
0.1  
10°  
F
b2  
0.35  
14.6  
20.6  
e
b
L
I
2
Detail F  
y
M
M
D
E
100P6Q-A  
Plastic 100pin 1414mm body LQFP  
EIAJ Package Code  
JEDEC Code  
Weight(g)  
Lead Material  
Cu Alloy  
MD  
LQFP100-P-1414-0.50  
HD  
D
100  
76  
I2  
1
75  
Recommended Mount Pad  
Dimension in Millimeters  
Symbol  
A
Min  
Nom  
Max  
1.7  
0.2  
A
A
1
0
0.1  
2
1.4  
b
0.13  
0.105  
13.9  
13.9  
0.18  
0.125  
14.0  
14.0  
0.5  
0.28  
0.175  
14.1  
14.1  
25  
51  
c
D
E
e
26  
50  
A
H
H
L
D
E
15.8  
15.8  
0.3  
0°  
1.0  
16.0  
16.0  
0.5  
1.0  
16.2  
16.2  
0.7  
0.1  
10°  
L1  
F
e
L1  
y
b
y
b2  
0.225  
14.4  
14.4  
L
I
2
Detail F  
M
M
D
E
193  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
Differences between M16C/61 group and M30600M8  
M30600M8  
Type name  
M16C/61 group  
See Figure 4. ROM Expansion  
4 K to 10 K bytes  
ROM  
RAM  
64 K bytes  
10 K bytes  
Internal memory  
size  
Chip select  
CS0 3000016 to FFFFF16  
(besides internal area)  
CS0 9000016 to FFFFF16  
(besides internal area)  
CS1 2800016 to 2FFFF16  
CS2 0800016 to 27FFF16  
CS3 0400016 to 07FFF16  
CS1 1000016 to 8FFFF16  
CS2 0800016 to 0FFFF16  
CS3 0400016 to 07FFF16  
SFR area 0000016 to 003FF16  
RAM area 0040016 to 03FFF16  
ROM area D000016 to FFFFF16  
(PM16=0)  
SFR area 0000016 to 003FF16  
RAM area 0040016 to 03FFF16  
ROM area D000016 to FFFFF16  
(FIX)  
Internal area on memory  
expansion mode  
ROM area F800016 to FFFFF16  
(PM16=1) (Note)  
2 channel  
(clocked SIO / UART)  
3 channel  
(clocked SIO / UART) :2 channel  
(clocked SIO / UART / SIM)  
Serial I/O  
Port P7  
function  
0 to P73  
Port P7  
Port P7  
Port P7  
Port P7  
0
1
2
3
T
R
CLK  
CTS  
X
D
D
2
/ TA0OUT  
/ TA0IN  
/ TA1OUT  
Port P7  
Port P7  
Port P7  
Port P7  
0
1
2
3
TA0OUT  
TA0IN  
TA1OUT  
TA1IN  
X
2
2
2
/ RTS  
2
/ TA1IN  
Port output  
style  
Port P7  
open drain  
0
and Port P7  
1
are N-channel  
All Ports are CMOS  
Others are CMOS  
Port P93 and P94  
pull-up set up condition  
All of the following:  
• Pull-up is selected.  
• DA output is enabled.  
• Input port is selected.  
Both of the following:  
• Pull-up is selected.  
• Input port is selected.  
Interrupt  
sources  
Internal 20 sources  
External 5 sources  
Software 4 sources  
Internal 17 sources  
External  
5 sources  
Software 4 sources  
Add 3 sources -trans., recv. and  
arbit. for UART2  
DMA request  
DMA0  
DMA1  
DMA0  
DMA1  
1100 UART2 trans. UART2 trans.  
1101 UART2 recv. UART2 recv.  
1100 UART1 trans. UART1 trans.  
1101 UART1 recv. UART1 recv.  
1110 A-D  
A-D  
1110 A-D  
A-D  
prohibited  
1111 UART1 trans. UART1 recv.  
1111 prohibited  
Note: M30612M4A/E4 only.  
194  
Mitsubishi microcomputers  
M16C / 61 Group  
SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER  
195  
Keep safety first in your circuit designs!  
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor  
products better and more reliable, but there is always the possibility that trouble may  
occur with them. Trouble with semiconductors may lead to personal injury, fire or  
property damage. Remember to give due consideration to safety when making your  
circuit designs, with appropriate measures such as (i) placement of substitutive,  
auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any  
malfunction or mishap.  
Notes regarding these materials  
These materials are intended as a reference to assist our customers in the selection  
of the Mitsubishi semiconductor product best suited to the customer's application;  
they do not convey any license under any intellectual property rights, or any other  
rights, belonging to Mitsubishi Electric Corporation or a third party.  
Mitsubishi Electric Corporation assumes no responsibility for any damage, or  
infringement of any third-party's rights, originating in the use of any product data,  
diagrams, charts, programs, algorithms, or circuit application examples contained in  
these materials.  
All information contained in these materials, including product data, diagrams, charts,  
programs and algorithms represents information on products at the time of publication  
of these materials, and are subject to change by Mitsubishi Electric Corporation  
without notice due to product improvements or other reasons. It is therefore  
recommended that customers contact Mitsubishi Electric Corporation or an authorized  
Mitsubishi Semiconductor product distributor for the latest product information before  
purchasing a product listed herein.  
The information described here may contain technical inaccuracies or typographical  
errors. Mitsubishi Electric Corporation assumes no responsibility for any damage,  
liability, or other loss rising from these inaccuracies or errors.  
Please also pay attention to information published by Mitsubishi Electric Corporation  
by various means, including the Mitsubishi Semiconductor home page (http://  
www.mitsubishichips.com).  
When using any or all of the information contained in these materials, including  
product data, diagrams, charts, programs, and algorithms, please be sure to evaluate  
all information as a total system before making a final decision on the applicability of  
the information and products. Mitsubishi Electric Corporation assumes no  
responsibility for any damage, liability or other loss resulting from the information  
contained herein.  
Mitsubishi Electric Corporation semiconductors are not designed or manufactured  
for use in a device or system that is used under circumstances in which human life is  
potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized  
Mitsubishi Semiconductor product distributor when considering the use of a product  
contained herein for any specific purposes, such as apparatus or systems for  
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.  
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint  
or reproduce in whole or in part these materials.  
If these products or technologies are subject to the Japanese export control  
restrictions, they must be exported under a license from the Japanese government  
and cannot be imported into a country other than the approved destination.  
Any diversion or reexport contrary to the export control laws and regulations of Japan  
and/or the country of destination is prohibited.  
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semicon  
ductor product distributor for further details on these materials or the products con  
tained therein.  
MITSUBISHI SEMICONDUCTORS  
M16C/61 Group Specification REV.E  
Apr. First Edition 1999  
Editioned by  
Committee of editing of Mitsubishi Semiconductor  
Published by  
Mitsubishi Electric Corp., Kitaitami Works  
This book, or parts thereof, may not be reproduced in any form without  
permission of Mitsubishi Electric Corporation.  
©1999 MITSUBISHI ELECTRIC CORPORATION  

相关型号:

M30612M4-XXXFP

Microcontroller, 16-Bit, OTPROM, M16C CPU, 10MHz, CMOS, PQFP100, 14 X 20 MM, 0.65 MM PITCH, QFP-100
MITSUBISHI

M30612M4-XXXGP

Microcontroller, 16-Bit, OTPROM, M16C CPU, 10MHz, CMOS, PQFP100, 14 X 14 MM, 0.50 MM PITCH, LQFP-100
MITSUBISHI

M30612M4A

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
MITSUBISHI

M30612M4A-417GP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
MITSUBISHI

M30612M4A-422GP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
MITSUBISHI

M30612M4A-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
MITSUBISHI

M30612M4A-XXXGP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
MITSUBISHI

M30612M8-121FP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
MITSUBISHI

M30612M8-XXXGP

Microcontroller, 16-Bit, OTPROM, M16C CPU, 10MHz, CMOS, PQFP100, 14 X 14 MM, 0.50 MM PITCH, LQFP-100
MITSUBISHI

M30612M8A

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
MITSUBISHI

M30612M8A-402FP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
MITSUBISHI

M30612M8A-XXXFP

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER
MITSUBISHI