MT8965AE [MITEL]

Integrated PCM Filter Codec; 综合PCM编解码器过滤
MT8965AE
型号: MT8965AE
厂家: MITEL NETWORKS CORPORATION    MITEL NETWORKS CORPORATION
描述:

Integrated PCM Filter Codec
综合PCM编解码器过滤

解码器 编解码器 电信集成电路 光电二极管 PC
文件: 总22页 (文件大小:327K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISO2-CMOS  
MT8960/61/62/63/64/65/66/67  
Integrated PCM Filter Codec  
ISSUE 10  
May 1995  
Features  
ST-BUS compatible  
Ordering Information  
Transmit/Receive filters & PCM Codec in one  
I.C  
MT8964/65AC  
MT8960/61/64/65AE  
MT8962/63AE  
18 Pin Ceramic DIP  
18 Pin Plastic DIP  
20 Pin Plastic DIP  
20 Pin SOIC  
Meets AT&T D3/D4 and CCITT G711 and G712  
µ-Law: MT8960/62/64/67  
A-Law: MT8961/63/65/67  
Low power consumption:  
MT8962/63/66/67AS  
0°C to+70°C  
Op.: 30 mW typ.  
Stby.: 2.5 mW typ.  
Description  
Digital Coding Options:  
2
Manufactured in ISO -CMOS, these integrated filter/  
codecs are designed to meet the demanding  
performance needs of the digital telecommunications  
industry, e.g., PABX, Central Office, Digital  
telephones.  
MT8964/65/66/67 CCITT Code  
MT8960/61/62/63 Alternative Code  
Digitally controlled gain adjust of both filters  
Analog and digital loopback  
Filters and codec independently user  
accessible for testing  
Powerdown mode available  
2.048 MHz master clock input  
Up to six uncommitted control outputs  
±5V ±5% power supply  
ANUL  
Analog to  
Digital PCM  
Encoder  
Output  
Register  
Transmit  
Filter  
V
DSTo  
X
SD0  
SD1  
SD2  
SD3  
SD4  
SD5  
CSTi  
CA  
A Register  
8-Bits  
Output  
Register  
Control  
Logic  
F1i  
C2i  
B-Register  
8-Bits  
PCM Digital  
to Analog  
Decoder  
Input  
Register  
Receive  
Filter  
DSTi  
V
R
V
GNDA GNDD  
V
V
EE  
Ref  
DD  
Figure 1 - Functional Block Diagram  
6-19  
MT8960/61/62/63/64/65/66/67 ISO2-CMOS  
MT8962/63/66/67  
MT8960/61/64/65  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
8
CSTi  
DSTi  
C2i  
DSTo  
VDD  
SD5  
SD4  
F1i  
GNDD  
VRef  
GNDA  
VR  
ANUL  
VX  
VEE  
SD0  
SD1  
SD2  
18  
17  
16  
15  
14  
13  
12  
11  
10  
1
2
3
4
5
6
7
8
9
CSTi  
DSTi  
C2i  
DSTo  
VDD  
F1i  
CA  
SD3  
SD2  
GNDD  
VRef  
GNDA  
VR  
ANUL  
VX  
VEE  
SD0  
SD1  
CA  
SD3  
9
10  
18 PIN CERDIP/PDIP  
20 PIN PDIP/SOIC  
Figure 2 - Pin Connections  
Description  
Pin Description  
Pin Name  
CSTi  
Control ST-BUS In is a TTL-compatible digital input used to control the function of the filter/codec.  
Three modes of operation may be effected by applying to this input a logic high (VDD), logic low  
(GNDD), or an 8-bit serial word, depending on the logic states of CA and F1i.  
Functions controlled are: powerdown, filter gain adjust, loopback, chip testing, SD outputs.  
DSTi  
C2i  
Data ST-BUS In accepts the incoming 8-bit PCM word. Input is TTL-compatible.  
Clock Input is a TTL-compatible 2.048 MHz clock.  
DSTo Data ST-BUS Out is a three-state digital output driving the PCM bus with the outgoing 8-bit PCM  
word.  
VDD  
F1i  
Positive power Supply (+5V).  
Synchronization Input is an active low digital input enabling (in conjunction with CA) the PCM input,  
PCM output and digital control input. It is internally sampled on every positive edge of the clock, C2i,  
and provides frame and channel synchronization.  
CA  
Control Address is a three-level digital input which enables PCM input and output and determines  
into which control register (A or B) the serial data, presented to CSTi, is stored.  
SD3  
System Drive Output is an open drain output of an N-channel transistor which has its source tied to  
GNDA. Inactive state is open circuit.  
SD4-5 System Drive Outputs are open drain outputs of N-channel transistors which have their source tied  
to GNDD. Inactive state is open circuit.  
SD0-2 System Drive Outputs are “Totempole“ CMOS outputs switching between GNDD and V . Inactive  
DD  
state is logic low.  
VEE  
VX  
Negative power supply (-5V).  
Voice Transmit is the analog input to the transmit filter.  
ANUL Auto Null is used to integrate an internal auto-null signal. A 0.1µF capacitor must be connected  
between this pin and GNDA.  
VR  
GNDA Analog ground (0V).  
Voice Receive is the analog output of the receive filter.  
VRef  
Voltage Reference input to D to A converter.  
GNDD Digital ground (0V).  
6-20  
ISO2-CMOS MT8960/61/62/63/64/65/66/67  
MT8960/62  
MT8964/66  
Digital Output  
Digital Output  
11111111  
11110000  
11100000  
11010000  
11000000  
10110000  
10100000  
10010000  
10000000  
10001111  
10011111  
10101111  
10111111  
11001111  
11011111  
11101111  
10000000  
00000000  
00010000  
11111111  
01111111  
01101111  
00100000  
00110000  
01000000  
01010000  
01100000  
01110000  
01111111  
01011111  
01001111  
00111111  
00101111  
00011111  
00001111  
00000000  
-2.415V -1.207V  
0V  
+1.207V +2.415V  
Analog Input Voltage (V  
)
Bit 7...  
MSB  
0
IN  
LSB  
Figure 3 - µ-Law Encoder Transfer Characteristic  
MT8961/63  
MT8965/67  
Digital Output  
Digital Output  
11111111  
11110000  
11100000  
11010000  
11000000  
10110000  
10100000  
10101010  
10100101  
10110101  
10000101  
10010101  
11100101  
11110101  
10010000  
10000000  
00000000  
00010000  
11000101  
11010101  
01010101  
01000101  
00100000  
00110000  
01000000  
01010000  
01100000  
01110000  
01111111  
01110101  
01100101  
00010101  
00000101  
00110101  
00100101  
00101010  
-2.5V  
-1.25V  
0V  
+2.5V  
+1.25V  
Analog Input Voltage (V  
)
Bit 7...  
MSB  
0
IN  
LSB  
Figure 4 - A-Law Encoder Transfer Characteristic  
6-21  
MT8960/61/62/63/64/65/66/67 ISO2-CMOS  
are 30 dB for 0-60 Hz and 35 dB for 4.6 kHz and  
above.  
Functional Description  
Figure 1 shows the functional block diagram of the  
MT8960-67. These devices provide the conversion  
interface between the voiceband analog signals of a  
telephone subscriber loop and the digital signals  
required in a digital PCM (pulse code modulation)  
switching system. Analog (voiceband) signals in the  
The filter output signal is an 8 kHz staircase  
waveform which is fed into the codec capacitor array,  
or alternatively, into an external capacitive load of  
250 pF when the chip is in the test mode. The digital  
encoder generates an eight-bit digital word  
representation of the 8 kHz sampled analog signal.  
The first bit of serial data stream is bit 7 (MSB) and  
represents the sign of the analog signal. Bits 4-6  
represent the chord which contains the analog  
sample value. Bits 0-3 represent the step value of  
the analog sample within the selected chord. The  
MT8960-63 provide a sign plus magnitude PCM  
output code format. The MT8964/66 PCM output  
code conforms to the AT &T D3 specification, i.e.,  
true sign bit and inverted magnitude bits. The  
MT8965/67 PCM output code conforms to the CCITT  
specifications with alternate digit inversion (even bits  
inverted). See Figs. 3 and 4 for the digital output  
transmit path enter the chip at V , are sampled at  
X
8kHz, and the samples quantized and assigned 8-bit  
digital values defined by logarithmic PCM encoding  
laws. Analog signals in the receive path leave the  
chip at V after reconstruction from digital 8-bit  
R
words.  
Separate switched capacitor filter sections are used  
for bandlimiting prior to digital encoding in the  
transmit path and after digital decoding in the receive  
path. All filter clocks are derived from the 2.048 MHz  
master clock input, C2i. Chip size is minimized by  
the use of common circuitry performing the A to D  
and D to A conversion. A successive approximation  
technique is used with capacitor arrays to define the  
16 steps and 8 chords in the signal conversion  
process. Eight-bit PCM encoded digital data enters  
and leaves the chip serially on DSTi and DSTo pins,  
respectively.  
code corresponding to the analog voltage, V , at V  
IN  
X
input.  
The eight-bit digital word is output at DSTo at a  
nominal rate of 2.048 MHz, via the output buffer as  
the first 8-bits of the 125 µs sampling frame.  
Receive Path  
Transmit Path  
An eight-bit PCM encoded digital word is received on  
DSTi input once during the 125 µs period and is  
loaded into the input register. A charge proportional  
to the received PCM word appears on the capacitor  
array and an 8 kHz sample and hold circuit  
integrates this charge and holds it for the rest of the  
sampling period.  
Analog signals at the input (Vx) are firstly  
bandlimited to 508 kHz by an RC lowpass filter  
section. This performs the necessary anti-aliasing  
for the following first-order sampled data lowpass  
pre-filter which is clocked at 512 kHz. This further  
bandlimits the signal to 124 kHz before a fifth-order  
elliptic lowpass filter, clocked at 128 kHz, provides  
the 3.4 kHz bandwidth required by the encoder  
section. A 50/60 Hz third-order highpass notch filter  
clocked at 8 kHz completes the transmit filter path.  
Accumulated DC offset is cancelled in this last  
section by a switched-capacitor auto-zero loop which  
integrates the sign bit of the encoded PCM word, fed  
back from the codec and injects this voltage level  
into the non-inverting input of the comparator. An  
integrating capacitor (of value between 0.1 and 1 µF)  
must be externally connected from this point (ANUL)  
to the Analog Ground (GNDA).  
The receive (D/A) filter provides interpolation filtering  
on the 8 kHz sample and hold signal from the codec.  
The filter consists of a 3.4 kHz lowpass fifth-order  
elliptic section clocked at 128 kHz and performs  
bandlimiting and smoothing of the 8 kHz "staircase"  
waveform. In addition, sinx/x gain correction is  
applied to the signal to compensate for the  
attenuation of higher frequencies caused by the  
capacitive sample and hold circuit. The absolute  
gain of the receive filter can be adjusted from 0 dB to  
-7 dB in 1 dB steps by means of three binary  
controlled gain pads.  
characteristics, with the limits shown in Figure 11,  
meet the CCITT and AT  
specifications.  
The resulting lowpass  
The absolute gain of the transmit filter (nominally 0  
dB at 1 kHz) can be adjusted from 0 dB to 7 dB in 1  
dB steps by means of three binary controlled gain  
pads.  
& T recommended  
Typical attenuation at 4.6 kHz and above is 30 dB.  
The filter is followed by a buffer amplifier which  
will drive 5V peak/peak into a 10k ohm load, suitable  
for driving electronic 2-4 wire circuits.  
The resulting bandpass characteristics with the limits  
shown in Figure 10 meet the CCITT and AT&T  
recommended specifications. Typical atttenuations  
6-22  
ISO2-CMOS MT8960/61/62/63/64/65/66/67  
driving a large number of codecs due to the high  
V
Ref  
input impedance of the VRef input.  
Normal  
precautions should be taken in PCB layout design to  
minimize noise coupling to this pin. A 0.1 µF  
capacitor connected from VRef to ground and located  
as close as possible to the codec is recommended to  
minimize noise entering through VRef. This capacitor  
should have good high frequency characteristics.  
An external voltage must be supplied to the VRef pin  
which provides the reference voltage for the digital  
encoding and decoding of the analog signal. For  
VRef = 2.5V, the digital encode decision value for  
overload (maximum analog signal detect level) is  
equal to an analog input VIN = 2.415V (µ-Law  
version) or 2.5V (A-Law version) and is equivalent to  
a
signal level of 3.17 dBm0 or 3.14 dBm0  
Timing  
respectively, at the codec.  
The codec operates in a synchronous manner (see  
Figure 9a). The codec is activated on the first  
positive edge of C2i after F1i has gone low. The  
digital output at DSTo (which is a three-state output  
driver) will then change from a high impedance state  
to the sign bit of the encoded PCM word to be  
output. This will remain valid until the next positive  
edge, when the next most significant bit will be  
output.  
The analog output voltage from the decoder at V is  
defined as:  
R
µ-Law:  
C
-0.5  
2
16.5 + S  
V
X
V
±
+
[( 128 ) (128 )( 33 )]  
Ref  
OFFSET  
A-Law:  
C+1  
2
0.5 + S  
V
X
V
±
[(128 )( 32 )] OFFSETC=0  
Ref  
Ref  
On the first negative clock edge (after F1i signal has  
been internally synchronized and CA is at GNDD or  
VEE) the logic signal present at DSTi will be clocked  
into the input shift register as the sign bit of the  
incoming PCM word.  
C
2
16.5 + S  
V
X
V
±
[(128 )( 32 )] OFFSETC0  
where C = chord number (0-7)  
The eight-bit word is thus input at DSTi on negative  
edges of C2i and output at DSTo on positive edges  
of C2i.  
S = step number (0-15)  
VRef is a high impedance input with a varying  
capacitive load of up to 40 pF.  
F1i must return to a high level after the eighth  
clock pulse causing DSTo to enter high impedance  
and preventing further input data to DSTi. F1i will  
continue to be sampled on every positive edge of  
C2i. (Note: F1i may subsequently be taken low  
during the same sampling frame to enable entry of  
serial data into CSTi. This occurs usually mid-frame,  
in conjunction with CA=VDD, in order to enter an 8-bit  
control word into Register B. In this case, PCM input  
and output are inhibited by CA at VDD.)  
The recommended reference voltage for the MT8960  
series of codecs is 2.5V ±0.5%. The output voltage  
from the reference source should have a maximum  
temperature coefficient of 100 ppm/C°. This voltage  
should have a total regulation tolerance of ±0.5%  
both for changes in the input voltage and output  
loading of the voltage reference source. A voltage  
reference circuit capable of meeting these  
specifications is shown in Figure 5. Analog Devices  
’AD1403A voltage reference circuit is capable of  
NC  
8
NC  
7
NC  
6
NC  
5
V
Ref  
0.1 µF  
AD1403A  
MT8960-67  
FILTER/CODEC  
1
2
3
4
NC  
+5V  
2.5V  
Figure 5 - Typical Voltage Reference Circuit  
6-23  
MT8960/61/62/63/64/65/66/67 ISO2-CMOS  
Internally the codec will then perform a decode cycle  
on the newly input PCM word. The sampled and  
held analog signal thus decoded will be updated 25  
µs from the start of the cycle. After this the analog  
input from the filter is sampled for 18 µs, after which  
digital conversion takes place during the remaining  
82 µs of the sampling cycle.  
Mode 2  
CA= -5V (VEE); CSTi receives an eight-bit control  
word  
CSTi accepts a serial data stream synchronously  
with DSTi (i.e., it accepts an eight-bit serial word in a  
3.9 µs timeslot, updated every 125 µs, and is  
specified  
considerations).  
entered into Control Register  
programming of the following functions: transmit and  
receive gain, powerdown, loopback. Register B is  
reset to zero and the SD outputs assume their  
inactive state. Test modes cannot be entered.  
Since a single clock frequency of 2.048 MHz is  
required, all digital data is input and output at this  
rate. DSTo, therefore, assumes a high impedance  
state for all but 3.9 µs of the 125 µs frame. Similarly,  
DSTi input data is valid for only 3.9 µs.  
identically  
This eight-bit control word is  
and enables  
to  
DSTi  
for  
timing  
A
Digital Control Functions  
CSTi is a digital input (levels GNDD to V ) which is  
Mode 3  
DD  
used to control the function of the filter/codec. It  
operates in three different modes depending on the  
logic levels applied to the Control Address input  
(CA) and chip enable input (F1i) (see Table 1).  
CA=0V (GNDD); CSTi receives an eight-bit control  
word  
As in Mode 2, the control word enters Register A and  
the aforementioned functions are controlled. In this  
mode, however, Register B is not reset, thus not  
affecting the states of the SD outputs.  
Mode 1  
CA=-5V (VEE); CSTi=0V (GNDD)  
The filter/codec is in normal operation with nominal  
transmit and receive gain of 0dB. The SD outputs  
are in their active states and the test modes cannot  
be entered.  
CA=+5V (VDD); CSTi receives an 8-bit control word  
In this case the control word is transferred into  
Register B. Register A is unaffected. The input and  
output of PCM data is inhibited.  
CA = -5V (VEE); CSTi = +5V (VDD  
)
The contents of Register  
B controls the six  
A state of powerdown is forced upon the chip  
whereby DSTo becomes high impedance, VR is  
connected to GNDA and all analog sections have  
power removed.  
uncommitted outputs SD0-SD5 (four outputs, SD0-  
SD3, on MT8960/61/64/65 versions of chip) and also  
provide entry into one of the three test modes of the  
chip.  
MODE  
CA  
CSTi  
FUNCTION  
1
VEE  
GNDD  
VDD  
Normal chip operation.  
(Note 1)  
Powerdown.  
2
VEE  
GNDD  
VDD  
Serial  
Data  
Eight-bit control word into Register A. Register B is reset.  
3
Serial  
Data  
Eight-bit control word into register A. Register B is unaffected.  
Eight-bit control word into register A. Register B is unaffected.  
(Note 2)  
Serial  
Data  
Note 1:  
Note 2:  
When operating in Mode 1, there should be only one frame pulse (F1i) per 125µs frame  
When operating in Mode 3, PCM input and output is inhibited by CA=VDD  
.
Table 1. Digital Control Modes  
6-24  
ISO2-CMOS MT8960/61/62/63/64/65/66/67  
Note: For Modes 1 and 2, F1i must be at logic low  
for one period of 3.9 µs, in each 125 µs cycle, when  
PCM data is being input and output, and the control  
word at CSTi enters Register A. For Mode 3, F1i  
must be at a logic low for two periods of 3.9 µs, in  
each 125 µs cycle. In the first period, CA must be at  
GNDD or VEE, and in the second period CA must be  
TRANSMIT (A/D)  
FILTER GAIN (dB)  
BIT 2  
BIT 1  
BIT 0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
+ 1  
+ 2  
+ 3  
+ 4  
+ 5  
+ 6  
+ 7  
high (VDD)  
.
Control Registers A, B  
The contents of these registers control the filter/  
codec functions as described in Tables 2 and 3.  
Bit 7 of the registers is the MSB and is defined as the  
first bit of the serial data stream input (corresponding  
to the sign bit of the PCM word).  
RECEIVE (D/A)  
FILTER GAIN (dB)  
BIT 5  
BIT 4  
BIT 3  
On initial power-up these registers are set to the  
powerdown condition for a maximum of 25 clock  
cycles. During this time it is impossible to change  
the data in these registers.  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
- 1  
- 2  
- 3  
- 4  
- 5  
- 6  
- 7  
Chip Testing  
By enabling Register B with valid data (eight-bit  
control word input to CSTi when F1i=GNDD and CA=  
VCC) the chip testing mode can be entered. Bits 6  
and 7 (most sign bits) define states for testing the  
transmit filter, receive filter and the codec function.  
The input in each case is VX input and the output in  
each case is VR output. (See Table 3 for details.)  
BIT 7  
BIT 6  
FUNCTION CONTROL  
0
0
1
1
0
1
0
1
Normal operation  
Digital Loopback  
Analog Loopback  
Powerdown  
Loopback  
Loopback of the filter/codec is controlled by the  
control word entered into Register A. Bits 6 and 7  
(most sign bits) provide either a digital or analog  
loopback condition. Digital loopback is defined as  
follows:  
Table 2. Control States - Register A  
PCM input data at DSTi is latched into the PCM  
input register and the output of this register is  
connected to the input of the 3-state PCM  
output register.  
Analog output buffer at VR has its input shorted  
to GNDA and disconnected from the receive  
filter output.  
Analog input at VX is disconnected from the  
transmit filter input.  
The digital input to the PCM digital-to-analog  
decoder is disconnected, forced to zero (0).  
The receive filter output is connected to the  
transmit filter input. Thus the decode signal is  
fed back through the receive path and encoded  
in the normal way. The analog output buffer at  
The output of the PCM encoder is disabled and  
thus the encoded data is lost. The PCM output  
at DSTo is determined by the PCM input data.  
V is not tested by this configuration.  
R
Analog loopback is defined as follows:  
PCM input data is latched, decoded and filtered  
as normal but not output at VR.  
In both cases of loopback, DSTi is the input  
and DSTo is the output.  
6-25  
MT8960/61/62/63/64/65/66/67 ISO2-CMOS  
Logic Control Outputs SD0-5  
These outputs are directly controlled by the logic  
states of bits 0-5 in Register B. A logic low (GNDD)  
in Register B causes the SD outputs to assume an  
inactive state. A logic high (VDD) in Register B  
causes the SD outputs to assume an active state  
(see Table 3). SD0-2 switch between GNDD and VDD  
Telephone Set  
2 Wire  
Analog  
and may be used to control external logic or  
transistor circuitry, for example, that employed on the  
line card for performing such functions as relay drive  
PCM Highway  
Supervision  
for application of ringing to line, message waiting  
Protection  
indication, etc.  
MT8960/61  
MT8962/63  
MT8964/65  
MT8966/67  
Battery  
Feed  
2W/4W  
Converter  
SD3-5 are used primarily to drive external analog  
Ringing  
circuitry. Examples may include the switching in or  
out of gain sections or filter sections (eg., ring trip  
filter) (Figure 7).  
MT8962/63/66/67 provides all six SD outputs.  
MT8960/61/64/65 each packaged in an 18-pin DIP  
provide only four control outputs, SD0-3.  
Figure 6 - Typical Line Termination  
BITS 0-2  
LOGIC CONTROL OUTPUTS SD0-SD2  
Inactive state - logic low (GNDD).  
0
1
Active state - logic high (V ).  
DD  
BIT 3  
LOGIC CONTROL OUTPUT SD  
3
0
1
Inactive state - High Impedance.  
Active state - GNDA.  
BITS 4,5  
LOGIC CONTROL OUTPUTS SD , SD  
4 5  
0
1
Inactive state - High Impedance.  
Active state - GNDD.  
BIT 7 BIT 6  
CHIP TESTING CONTROLS  
0
0
0
1
Normal operation.  
Transmit filter testing, i.e.:  
Transmit filter input connected to VX input  
Receive filter and Buffer disconnected from VR  
1
1
0
1
Receive filter testing, i.e.:  
Receive filter input connected to VX input  
Receive filter input disconnected from codec  
Codec testing i.e.:  
Codec analog input connected to VX  
Codec analog input disconnected from transmit filter output  
Codec analog output connected to VR  
VR disconnected from receive filter output  
Table 3. Control States - Register B  
6-26  
ISO2-CMOS MT8960/61/62/63/64/65/66/67  
External Control:  
Powerdown  
1)  
Register A. Powerdown is controlled by bits 6  
and 7 ( when both at logic high) of Register A  
which in turn receives its control word input  
via CSTi, when F1i is low and CA input is  
either at VEE or GNDD. Power is removed  
from the filters and analog sections of the chip.  
The analog ouput buffer at VR will be  
connected to GNDA. DSTo becomes high  
impedance and the clocks to the majority of the  
logic are stopped. SD outputs are unaffected  
and may be updated as normal.  
Powerdown of the chip is achieved in several ways:  
Internal Control:  
1)  
Initial Power-up. Initial application of VDD and  
EE causes powerdown for a period of 25 clock  
V
cycles and during this period the chip will  
accept input only from C2i. The B-register is  
reset to zero forcing SD0-5 to be inactive. Bits  
0-5 of Register A (gain adjust bits) are forced  
to zero and bits 6 and 7 of Register A become  
logic high thus reinforcing the powerdown.  
2)  
CSTi Input. With CA at VEE and CSTi held at  
continuous logic high the chip assumes the  
same state as described in External Control  
(1) above.  
2)  
Loss of C2i. Powerdown is entered 10 to 40  
µs after C2i has assumed a continuous logic  
high (VDD). In this condition the chip will be in  
the same state as in (1) above.  
Note: If C2i stops at a continuous logic low  
(GNDD), the digital data and status is  
indeterminate.  
Message  
Waiting  
-100V DC  
MT8960/61/64/65  
(With Relay  
Drive)  
From ST-BUS  
From ST-BUS  
Master Clock  
to ST-BUS  
5V  
CSTi  
DSTi  
C2i  
GNDD  
V
2.5V  
-5V  
Ref  
GNDA  
DSTo  
V
R
2/4 Wire  
Converter  
Telephone  
Line  
0.1µF  
Ring Trip  
Filter  
(With Relay  
Drive)  
V
ANUL  
DD  
Gain  
Section  
Alignment  
F1i  
V
X
Register Select  
CA  
V
EE  
SD3  
SD2  
SD0  
SD1  
Ring Feed  
-48V DC  
-48V DC  
(With Relay  
Drive)  
90V  
RMS  
Figure 7 - Typical Use of the Special Drive Outputs  
6-27  
MT8960/61/62/63/64/65/66/67 ISO2-CMOS  
DSTi  
DSTo  
CDTi  
V
V
X
Line  
Interface  
&
Monitoring  
Circuitry  
R
SD0  
.
.
.
SDn  
Line 1  
Speech  
Switch  
-
MT8960-67  
8980  
8
8
Repeated for Lines  
2 to 255  
Repeated for Lines  
2 to 255  
Controlling  
Micro-  
Processor  
8
8
Control &  
Signalling  
-
8980  
DSTi  
DSTo  
CDTi  
V
X
Line  
Interface  
&
Monitoring  
Circuitry  
V
R
SD0  
.
.
.
SDn  
Line 256  
MT8960-67  
Figure 8 - Example Architecture of a Simple Digital Switching System Using the MT8960-67  
6-28  
ISO2-CMOS MT8960/61/62/63/64/65/66/67  
Absolute Maximum Ratings*  
Parameter  
Symbol  
Min  
Max  
Units  
1
DC Supply Voltages  
VDD-GNDD  
VEE-GNDD  
VRef  
-0.3  
-6.0  
+6.0  
+0.3  
VDD  
V
V
2
3
4
Reference Voltage  
Analog Input  
GNDA  
V
VX  
VEE  
VDD  
V
Digital Inputs  
Except CA  
CA  
GNDD-0.3  
VEE-0.3  
GNDD-0.3  
VEE-0.3  
VEE-0.3  
V
DD+0.3  
V
VDD+0.3  
VDD+0.3  
VDD+0.3  
VDD+0.3  
20  
V
5
Output Voltage  
SD0-2  
SD3  
V
V
SD4-5  
V
6
7
8
Current On Any Pin  
I
mA  
°C  
mW  
I
Storage Temperature  
TS  
-55  
+125  
Power Dissipation at 25°C (Derate 16 mW/°C above 75°C)  
PDiss  
500  
* Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.  
Recommended Operating Conditions - Voltages are with respect to GNDD unless otherwise stated  
Characteristics  
Supply Voltage  
Sym  
Min  
Typ*  
Max  
Units  
Comments  
1
2
VDD  
VEE  
4.75  
5.0  
-5.0  
2.5  
0.0  
0.0  
5.25  
V
V
-5.25  
-4.75  
VRef  
V
See Note 1  
Ref. to GNDA  
VGNDD  
Voltage On Digital Ground  
Operating Temperature  
-0.1  
-0.4  
+0.1  
+0.4  
Vdc  
Vac  
Ref. to GNDA 400ns max.  
duration in 125µs cycle  
3
4
TO  
0
+70  
°C  
Operating Current  
VDD  
VEE  
IDD  
IEE  
3.0  
3.0  
4.0  
4.0  
mA  
mA  
All digital inputs at VDD  
or GNDD (or VEE for CA)  
VRef  
IRef  
2.0  
µA  
Mean current  
5
Standby Current  
VDD  
VEE  
IDDO  
IEEO  
0.25  
0.25  
1.0  
1.0  
mA  
mA  
All digital inputs at VDD  
or GNDD (or VEE for CA)  
Note 1: Temperature coefficient of VRef should be better than 100 ppm/°C.  
DC Electrical Characteristics - Voltages are with respect to GNDD unless otherwise stated.  
T =0 to 70°C, V =5V±5%, V =-5V±5%, V =2.5V±0.5%, GNDA=GNDD=0V,Clock Frequency =2.048MHz. Outputs unloaded unless  
A
DD  
EE  
Ref  
otherwise specified.  
Characteristics  
Sym  
Min  
Typ*  
Max  
Units  
Test Conditions  
1
2
Input Current  
Except CA  
CA  
II  
10.0  
10.0  
0.8  
µA  
µA  
V
VIN = GNDD to VDD  
VIN = VEE to VDD  
IIC  
D
I
Input Low  
Except CA  
CA  
VIL  
VILC  
0.0  
VEE  
2.4  
0.0  
V
+1.2  
G Voltage  
I
V
EE  
3
4
Input High Voltage All Inputs  
V
5.0  
V
IH  
T
A
L
Input Intermediate CA  
Voltage  
VIIC  
0.8  
V
5
Output Leakage  
Current (Tristate) SD3-5  
DSTo  
I0Z  
±0.1  
µA  
µA  
Output High Impedance  
10.0  
* Typical figures are at 25°C with nominal ±5V supplies. For design aid only: not guaranteed and not subject to production testing.  
6-29  
MT8960/61/62/63/64/65/66/67 ISO2-CMOS  
DC Electrical Characteristics (cont’d)  
Characteristics  
Output Low  
Sym  
Min  
Typ*  
Max  
Units  
Test Conditions  
IOUT =1.6 mA  
6
7
DSTo  
SD0-2  
DSTo  
SD0-2  
SD3-5  
VOL  
VOL  
VOH  
VOH  
ROUT  
COUT  
IIN  
0.4  
1.0  
V
V
D
I
G
I
T
A
L
Voltage  
IOUT =1 mA  
Output High  
Voltage  
4.0  
4.0  
V
IOUT =-100µA  
IOUT =-1mA  
V
8
Output Resistance  
1.0  
4.0  
2.0  
KΩ  
pF  
µA  
MΩ  
pF  
mV  
VOUT =+1V  
9
Output Capacitance DSTo  
Output High Impedance  
10  
11  
12  
13  
14  
15  
Input Current  
VX  
VX  
VX  
10.0  
VEE VIN VCC  
A
N
A
L
O
G
Input Resistance  
Input Capacitance  
RIN  
10.0  
30.0  
+1.0  
C
fIN = 0 - 4 kHz  
See Note 2  
IN  
Input Offset Voltage VX  
Output Resistance VR  
Output Offset Voltage VR  
VOSIN  
ROUT  
100  
100  
VOSOUT  
mV  
Digital Input= +0  
Note 2: VOSIN specifies the DC component of the digitally encoded PCM word.  
AC Electrical Characteristics - Voltages are with respect to GNDD unless otherwise stated.  
TA=0 to 70°C, VDD=5V±5%, VEE=-5V±5%, VRef=2.5V±0.5%, GNDA=GNDD=0V, Clock Frequency=2.048 MHz. Outputs unloaded unless  
otherwise specified.  
Characteristics  
Clock Frequency  
Sym  
Min  
Typ*  
Max  
Units  
Test Conditions  
1
2
C2i  
C2i  
C2i  
C2i  
fC  
2.046 2.048  
2.05  
50  
MHz  
ns  
ns  
%
See Note 3  
Clock Rise Time  
Clock Fall Time  
Clock Duty Cycle  
tCR  
tCF  
3
50  
4
40  
50  
60  
5
Chip Enable Rise Time F1i  
Chip Enable Fall Time F1i  
Chip Enable Setup Time F1i  
Chip Enable Hold Time F1i  
tER  
tEF  
tES  
tEH  
tOR  
tOF  
100  
100  
ns  
ns  
ns  
ns  
ns  
ns  
6
7
50  
25  
See Note 4  
See Note 4  
8
D
I
9
Output Rise Time  
Output Fall Time  
DSTo  
DSTo  
100  
100  
G
I
10  
11  
Propagation Delay Clock DSTo  
to Output Enable  
tPZL  
tPZH  
122  
122  
ns  
ns  
T
A
L
RL=10Kto VCC  
12  
13  
14  
15  
16  
Propagation Delay  
Clock to Output  
DSTo  
tPLH  
tPHL  
100  
100  
ns  
ns  
C =100 pF  
L
Input Rise Time  
Input Fall Time  
Input Setup Time  
Input Hold Time  
CSTi  
DSTi  
tIR  
100  
100  
ns  
ns  
CSTi  
DSTi  
tIF  
100  
100  
ns  
ns  
CSTi  
DSTi  
tISH  
tISL  
25  
0
ns  
ns  
CSTi  
DSTi  
tIH  
60  
60  
ns  
ns  
* Typical figures are at 25°C with nominal ±5V supplies. For design aid only: not guaranteed and not subject to production testing.  
6-30  
ISO2-CMOS MT8960/61/62/63/64/65/66/67  
AC Electrical Characteristics (cont’d)  
Characteristics  
Sym  
Min  
Typ*  
Max  
Units  
Test Conditions  
CL = 100 pF  
17  
Propagation Delay  
SD  
tPCS  
400  
ns  
D
I
Clock to SD Output  
SD Output Fall Time  
SD Output Rise Time  
G
I
T
A
L
18  
19  
20  
SD  
SD  
tSF  
tSR  
tDL  
200  
400  
122  
ns  
ns  
ns  
CL = 20 pF  
Digital Loopback  
Time DSTi to DSTo  
(See Figures 9a, 9b, 9c)  
Note 3:  
The filter characteristics are totally dependent upon the accuracy of the clock frequency providing F1i is synchronized to  
C2i. The A/D and D/A functions are unaffected by changes in clock frequency.  
Note 4:  
This gives a 75 ns period, 50 ns before and 25 ns after the 50% point of C2i rising edge, when change in F1i will give an  
undetermined state to to the internally synchronized enable signal.  
AC Electrical Characteristics - Transmit (A/D) Path - Voltages are with respect to GNDD unless otherwise stated.  
TA=0 to 70°C, VDD=5V±5%, VEE=-5V±5%, VRef=2.5V±0.5%, GNDA=GNDD=0V, Clock Frequency = 2.048MHz,  
Filter Gain Setting = 0dB. Outputs unloaded unless otherwise specified.  
Characteristics  
Sym  
Min  
Typ*  
Max  
Units  
Test Conditions  
1
Analog Input at VX equivalent to  
the overload decision level at  
the codec  
V
Level at codec:  
µ-Law: 3.17 dBm0  
A-Law: 3.14 dBm0  
See Note 6  
IN  
4.829  
5.000  
VPP  
VPP  
2
3
Absolute Gain (0dB setting)  
GAX  
-0.25  
-0.35  
+0.25  
+0.35  
dB  
dB  
0 dBm0 @ 1004 Hz  
Absolute Gain (+1dB to +7dB  
settings)  
from nominal,  
@ 1004 Hz  
4
5
Gain Variation  
With Temp  
GAXT  
0.01  
0.04  
dB  
T =0°C to 70°C  
A
With Supplies  
G
dB/V  
AXS  
A
N
A
L
O
G
Gain Tracking  
(See Figure 12) CCITT G712  
(Method 1)  
GTX1  
Sinusoidal Level:  
+3 to -20 dBm0  
Noise Signal Level:  
-10 to -55 dBm0  
-55 to -60 dBm0  
-0.25  
+0.25  
dB  
-0.25  
-0.50  
+0.25  
+0.50  
dB  
dB  
CCITT G712  
(Method 2)  
AT&T  
GTX2  
Sinusoidal Level:  
+3 to -40 dBm0  
-40 to -50 dBm0  
-50 to -55 dBm0  
-0.25  
-0.50  
-1.50  
+0.25  
+0.50  
+1.50  
dB  
dB  
dB  
6
Quantization  
Distortion  
(See Figure 13) CCITT G712  
(Method 1)  
DQX1  
Noise Signal Level:  
-3 dBm0  
-6 to -27 dBm0  
-34 dBm0  
-40 dBm0  
-55 dBm0  
28.00  
35.60  
33.90  
29.30  
14.20  
dB  
dB  
dB  
dB  
dB  
* Typical figures are at 25°C with nominal ±5V supplies. For design aid only: not guaranteed and not subject to production testing.  
6-31  
MT8960/61/62/63/64/65/66/67 ISO2-CMOS  
Transmit (A/D) Path (cont’d)  
Characteristics  
Sym  
Min Typ* Max  
Units  
Test Conditions  
Quantization  
Distortion  
(cont’d)  
(See Figure 13)  
CCITT G712  
(Method 2)  
AT&T  
DQX2  
Sinusoidal Input Level:  
0 to -30 dBm0  
-40 dBm0  
35.30  
29.30  
24.30  
dB  
dB  
dB  
-45 dBm0  
7
Idle Channel  
Noise  
C-message  
N
N
18  
-67  
-56  
-46  
dBrnC0 µ-Law Only  
dBm0p CCITT G712  
dBm0 CCITT G712  
CX  
Psophometric  
PX  
8
9
Single Frequency Noise  
NSFX  
Harmonic Distortion  
dB  
Input Signal:  
(2nd or 3rd Harmonic)  
0 dBm0 @ 1.02 kHz  
10  
11  
Envelope Delay  
DAX  
DDX  
270  
µs  
@ 1004 Hz  
Envelope Delay 1000-2600 Hz  
Variation With  
Frequency  
60  
150  
250  
µs  
µs  
µs  
Input Signal:  
400-3200 Hz Sinewave  
at 0 dBm0  
600-3000 Hz  
400-3200 Hz  
12  
Intermodulation CCITT G712  
IMDX1  
IMDX2  
-55  
-41  
dB  
50/60 Hz @ -23 dBm0  
and any signal within  
300-3400 Hz at -9 dBm0  
Distortion  
50/60 Hz  
A
N
A
L
O
G
CCITT G712  
2 tone  
dB  
740 Hz and 1255 Hz  
@ -4 to -21 dBm0.  
Equal Input Levels  
AT&T  
IMDX3  
IMDX4  
GRX  
-47  
-49  
dB  
dB  
2nd order products  
3rd order products  
0 dBm0 Input Signal  
4 tone  
13  
Gain Relative to 50 Hz  
Gain @ 1004 Hz 60 Hz  
(See Figure 10) 200 Hz  
-25  
-30  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
-1.8  
0.00  
0.125  
0.125  
0.030  
-0.100  
-14  
Transmit  
Filter  
Response  
300-3000 Hz  
-0.125  
-0.275  
-0.350  
-0.80  
3200 Hz  
3300 Hz  
3400 Hz  
4000 Hz  
4600 Hz  
-32  
14  
15  
16  
Crosstalk D/A to A/D  
CTRT  
-70  
dB  
0 dBm0 @ 1.02 kHz  
in D/A  
Power Supply  
Rejection  
VDD  
VEE  
PSSR1  
PSSR  
33  
35  
dB  
dB  
Input 50 mVRMS at  
1.02 kHz  
2
Overload Distortion (See Fig.15)  
Input frequency=1.02kHz  
* Typical figures are at 25°C with nominal ±5V supplies. For design aid only: not guaranteed and not subject to production testing.  
Note 6:  
0dBm0=1.185 VRMS for the µ-Law codec.  
0dBm0=1.231 VRMS for the A-Law codec.  
6-32  
ISO2-CMOS MT8960/61/62/63/64/65/66/67  
AC Electrical Characteristics - Receive (D/A) Path - Voltages are with respect to GNDD unless otherwise stated.  
TA=0 to 70°C, VDD=5V±5%, VEE=-5V±5%, VRef=2.5V±0.5%, GNDA=GNDD=0V, Clock Frequency = 2.048MHz,  
Filter Gain Setting = 0dB. Outputs unloaded unless otherwise specified.  
Characteristics  
Analog output at VR  
equivalent to the overload  
decision level at codec  
Sym  
Min  
Typ*  
Max  
Units  
Test Conditions  
1
VOUT  
Level at codec:  
µ-Law: 3.17 dBm0  
A-Law: 3.14 dBm0  
RL=10 KΩ  
4.829  
5.000  
Vpp  
Vpp  
See Note 7  
2
3
Absolute Gain (0dB setting)  
GAR  
-0.25  
-0.35  
+0.25  
+0.35  
dB  
dB  
0 dBm0 @ 1004Hz  
Absolute Attenuation (-1dB  
to -7dB settings)  
From nominal,  
@ 1004Hz  
4
5
Gain Variation  
With Temp.  
GART  
GARS  
GTR1  
0.01  
0.04  
dB  
TA=0°C to 70°C  
With Supplies  
CCITT G712  
dB/V  
Gain Tracking  
(See Figure 12) (Method 1)  
Sinusoidal Level:  
+3 to -10 dBm0  
Noise Signal Level:  
-10 to -55 dBm0  
-55 to -60 dBm0  
-0.25  
+0.25  
dB  
-0.25  
-0.50  
+0.25  
+0.50  
dB  
dB  
CCITT G712  
(Method 2)  
AT & T  
GTR2  
Sinusoidal Level:  
+3 to -40 dBm0  
-40 to -50 dBm0  
-50 to -55 dBm0  
-0.25  
-0.50  
-1.50  
+0.25  
+0.50  
+1.50  
dB  
dB  
dB  
A
N
A
L
O
G
6
Quantization  
Distortion  
(See Fig. 13)  
CCITT G712  
(Method 1)  
DQR1  
Noise Signal Level:  
-3 dBm0  
-6 to -27 dBm0  
-34 dBm0  
-40 dBm0  
-55 dBm0  
28.00  
35.60  
33.90  
29.30  
14.30  
dB  
dB  
dB  
dB  
dB  
DQR2  
Sinusoidal Input Level:  
0 to -30 dBm0  
-40 dBm0  
CCITT G712  
(Method 2)  
AT & T  
36.40  
30.40  
25.40  
dB  
dB  
dB  
-45 dBm0  
7
Idle Channel  
Noise  
C-message  
NCR  
NPR  
12  
-75  
-56  
-46  
dBrnC0 µ-Law Only  
dBm0p CCITT G712  
dBm0 CCITT G712  
Psophometric  
8
9
Single Frequency Noise  
NSFR  
Harmonic Distortion  
dB  
Input Signal 0 dBm0  
(2nd or 3rd Harmonic)  
at 1.02 kHz  
10  
Intermodulation CCITT G712  
IMDR2  
-41  
dB  
Distortion  
2 tone  
AT & T  
4 tone  
IMDR3  
IMDR4  
-47  
-49  
dB  
dB  
2nd order products  
3rd order products  
* Typical figures are at 25°C with nominal ±5V supplies. For design aid only: not guaranteed and not subject to production testing.  
6-33  
MT8960/61/62/63/64/65/66/67 ISO2-CMOS  
Receive (D/A) Path (cont’d)  
Characteristics  
Envelope Delay  
Envelope Delay 1000-2600 Hz  
Sym  
Min  
Typ*  
Max  
Units  
Test Conditions  
@ 1004 Hz  
11  
12  
DAR  
DDR  
210  
µs  
90  
170  
265  
µs  
µs  
µs  
Input Signal:  
400 - 3200 Hz digital  
sinewave at 0 dBm0  
Variation with  
Frequency  
600-3000 Hz  
400-3200 Hz  
13  
Gain Relative to <200 Hz  
Gain @ 1004 Hz 200 Hz  
GRR  
0.125  
0.125  
0.125  
0.030  
-0.100  
-14.0  
-28.0  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
0 dBm0 Input Signal  
-0.5  
A
N
A
L
O
G
(See Figure 11)  
300-3000 Hz  
-0.125  
-0.350  
-0.80  
Receive  
Filter  
Response  
3300 Hz  
3400 Hz  
4000 Hz  
4600 Hz  
14  
15  
16  
Crosstalk A/D to D/A  
CTTR  
-70  
dB  
0 dBm0 @ 1.02 kHz  
in A/D  
Power Supply  
Rejection  
VDD  
VEE  
PSRR3  
PSRR4  
33  
35  
dB  
dB  
Input 50 mVRMS at  
1.02 kHz  
Overload Distortion  
(See Fig. 15)  
Input frequency=1.02 kHz  
* Typical figures are at 25°C with nominal ±5V supplies. For design aid only: not guaranteed and not subject to production testing.  
Note 7: 0dBm0=1.185 VRMS for µ-Law codec and 0dBm0=1.231 VRMS for A-Law codec.  
125 µs  
C2i  
INPUT  
F1i  
INTERNAL  
ENABLE  
DSTo  
OUTPUT  
HIGH IMPEDANCE  
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
7
7
DSTi  
INPUT  
6
5V  
CA  
(Mode 3)  
0V  
CSTi  
INPUT  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
LOAD  
A-REGISTER  
LOAD  
B-REGISTER  
Figure 9a - Timing Diagram - 125µs Frame Period  
6-34  
ISO2-CMOS MT8960/61/62/63/64/65/66/67  
8 CLOCK CYCLES  
(See Note)  
90%  
50%  
10%  
C2i  
Input  
t
t
CF  
CR  
t
t
EF  
ER  
90%  
10%  
F1i  
Input  
t
t
t
t
t
t
EH  
ES  
EH  
ES  
EH  
ES  
DSTo  
Output  
high  
impedance  
high-Z  
t
t
PZL  
PZH  
t
t
PZL  
PZH  
Figure 9b - Timing Diagram - Output Enable  
Note:  
In typical applications, F1i will remain low for 8 cycles of C2i. However, the device will function normally as long as t  
EH  
and  
ES  
t
are met at each positive edge of C2i.  
90%  
50%  
10%  
C2i  
Input  
t
t
CF  
CR  
90%  
50%  
10%  
DSTo  
Output  
t
OR  
t
OF  
t
PLH  
t
PLH  
90%  
50%  
10%  
DSTi, CSTi  
Input  
t
IF  
t
IR  
t
IH  
t
ISL  
t
ISH  
Figure 9c - Timing Diagram - Input/Output  
6-35  
MT8960/61/62/63/64/65/66/67 ISO2-CMOS  
SCALE B  
SCALE A  
PASSBAND ATTENUATION  
SCALE A SCALE B  
-0.125  
STOPBAND ATTENUATION  
0
-0.125  
0.35  
0.125  
0.35  
(4000-F)  
1200  
SIN  
-14  
- 1  
1
10  
14  
10  
1
(4000-F)  
-18 SIN  
Attenuation  
Relative To  
Attenuation  
At 1 kHz (dB)  
-7/9  
1200  
20  
Note: Above function  
crossover occurs  
at 4000Hz.  
20  
25  
30  
2
2
3
4
30  
32  
3
4
40  
40  
0
5060 100  
200  
300  
3000  
3200 3300 3400  
4000  
4600  
5000  
10000  
FREQUENCY (Hz)  
Figure 10 - Attenuation vs Frequency for Transmit (A/D) Filter  
SCALE A  
-0.125  
SCALE B  
SCALE A  
PASSBAND ATTENUATION  
STOPBAND ATTENUATION  
0
1
0.125  
0.35  
(4000-F)  
1200  
SIN  
-14  
- 1  
10  
14  
1
2
3
4
Attenuation  
Relative To  
Attenuation  
At 1 kHz (dB)  
20  
2
3
4
28  
30  
40  
0
100  
200  
300  
3000  
3200 3300 3400  
4000  
4600  
5000  
10000  
FREQUENCY (Hz)  
Figure 11 - Attenuation vs Frequency for Receive (D/A) Filter  
6-36  
ISO2-CMOS MT8960/61/62/63/64/65/66/67  
5a. CCITT Method 1  
CCITT End-To-End Spec  
+1.0  
+1.0  
+0.5  
+0.25  
0
+0.5  
+0.25  
0
1
2
Channel Spec  
Input Level  
(dBm0)  
-60 -55 -50  
-40  
-30  
-20  
-10  
-10  
0 -3  
-0.25  
-0.5  
-0.25  
-0.5  
-1.0  
-1.0  
Bandlimited White Noise Test Signal  
Sinusiodal Test Signal  
5b. CCITT Method 2  
+1.5  
+1.0  
+0.5  
CCITT End-To-End Spec  
1
2
Channel Spec  
+0.25  
0
Input Level  
(dBm0)  
-60  
-50  
-40  
-30  
-20  
-10  
0 +3  
-0.25  
-0.5  
-1.0  
-1.5  
Sinusoidal Test Signal  
Figure 12 - Variation of Gain With Input Level  
6-37  
MT8960/61/62/63/64/65/66/67 ISO2-CMOS  
6a. CCITT Method 1  
40  
1
2
Channel Spec  
35.6  
33.9  
33.9  
30  
20  
10  
0
32.2  
29.3  
28.0  
27.6  
26.3  
CCITT End-To-End  
Spec  
14.3  
12.6  
-20  
-10  
-6  
-3  
0
+3  
-60  
-55  
-50  
-40  
-34  
-30 -27  
Input Level (dBm0)  
6b. CCITT Method 2  
40  
30  
20  
10  
0
1
2
Channel Spec  
D/A  
Channel Spec  
A/D  
36.4  
36.4  
35.3  
33.0  
1
2
35.3  
33.0  
30.4  
22.0  
CCITT  
29.3  
27.0  
End-To-End  
Spec  
25.4  
24.3  
-60  
-50  
-40  
-30  
-20  
-10  
0
Input Level (dBm0)  
Figure 13 - Signal to Total Distortion Ratio vs Input Level  
6-38  
ISO2-CMOS MT8960/61/62/63/64/65/66/67  
1000  
750  
CCITT  
Channel Spec  
½
(2800Hz)  
500  
370  
250  
125  
0
(600Hz)  
(2600Hz)  
2500  
500  
1000  
1500  
2000  
3000  
Figure 14 - Envelope Delay Variation Frequency  
5
4.5  
4
3
3
4
5
6
7
8
9
Input Level (dBm0)  
*Relative to Fundamental Output power level with +3dBm0 input signal level at a frequency of 1.02kHz.  
Figure 15 - Overload Distortion (End-to-End)  
6-39  
MT8960/61/62/63/64/65/66/67 ISO2-CMOS  
NOTES:  
6-40  

相关型号:

MT8965AE1

PCM Codec, A-Law, 1-Func, CMOS, PDIP18, LEAD FREE, PLASTIC, DIP-18
MICROSEMI

MT8966

Integrated PCM Filter Codec
ZARLINK

MT8966

Integrated PCM Filter Codec
MITEL

MT8966AS

Integrated PCM Filter Codec
MITEL

MT8966AS1

PCM Codec, 1-Func, CMOS, PDSO20, LEAD FREE, SOIC-20
MICROSEMI

MT8966AS1

PCM Codec, 1-Func, CMOS, PDSO20, LEAD FREE, SOIC-20
ZARLINK

MT8966ASR

PCM Codec, 1-Func, CMOS, PDSO20, SOIC-20
ZARLINK

MT8966ASR1

PCM Codec, MU-Law, 1-Func, CMOS, PDSO20, 0.300 INCH, LEAD FREE, MS-013AC, SOIC-20
MICROSEMI

MT8966AY

IC,PCM CODEC,SINGLE,CMOS,LLCC,24PIN,PLASTIC
MICROSEMI

MT8967

Integrated PCM Filter Codec
ZARLINK

MT8967

Integrated PCM Filter Codec
MITEL

MT8967AS

Integrated PCM Filter Codec
ZARLINK