MT3271BE [MITEL]

Wide Dynamic Range DTMF Receiver; 宽动态范围的DTMF接收器
MT3271BE
型号: MT3271BE
厂家: MITEL NETWORKS CORPORATION    MITEL NETWORKS CORPORATION
描述:

Wide Dynamic Range DTMF Receiver
宽动态范围的DTMF接收器

文件: 总8页 (文件大小:94K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MT3170B/71B, MT3270B/71B, MT3370B/71B  
Wide Dynamic Range DTMF Receiver  
ISSUE 2  
May 1995  
Features  
Wide dynamic range (50dB) DTMF Receiver  
Ordering Information  
Call progress (CP) detection via cadence  
indication  
MT3170/71BE  
8 Pin Plastic DIP  
8 Pin Plastic DIP  
18 Pin SOIC  
MT3270/71BE  
MT3370/71BS  
MT3370/71BN  
4-bit synchronous serial data output  
20 Pin SSOP  
Software controlled guard time for MT3x70B  
Internal guard time circuitry for MT3x71B  
Powerdown option (MT317xB & MT337xB)  
-40 °C to +85 °C  
signalling. The MT3x70B provides an early steering  
(ESt) logic output to indicate the detection of a DTMF  
signal and requires external software guard time to  
validate the DTMF digit. The MT3x71B, with preset  
internal guard times, uses a delay steering (DStD)  
logic output to indicate the detection of a valid DTMF  
digit. The 4-bit DTMF binary digit can be clocked out  
synchronously at the serial data (SD) output. The  
SD pin is multiplexed with call progress detector  
output. In the presence of supervisory tones, the  
call progress detector circuit indicates the cadence  
(i.e., envelope) of the tone burst. The cadence  
information can then be processed by an external  
microcontroller to identify specific call progress  
signals. The MT327xB and MT337xB can be used  
with a crystal or a ceramic resonator without  
additional components. A power-down option is  
provided for the MT317xB and MT337xB.  
4.194304MHz crystal or ceramic resonator  
(MT337xB and MT327xB)  
External clock input (MT317xB)  
Guarantees non-detection of spurious tones  
Applications  
Integrated telephone answering machine  
End-to-end signalling  
Fax Machines  
Description  
The MT3x7xB is a family of high performance DTMF  
receivers which decode all 16 tone pairs into a 4-bit  
binary code. These devices incorporate an AGC for  
wide dynamic range and are suitable for end-to-end  
PWDN  
Steering  
Digital  
Circuit  
ESt  
or  
DStD  
VDD  
Guard  
Voltage  
Bias Circuit  
Time  
High  
Group  
Filter  
VSS  
Parallel to  
Serial  
Converter  
& Latch  
ACK  
Dial  
Tone  
Filter  
Code  
Converter  
and  
Anti-  
alias  
Filter  
Digital  
INPUT  
AGC  
Detector  
Algorithm  
Latch  
Low  
Group  
Filter  
Mux  
SD  
Oscillator  
OSC2  
and  
Clock  
Circuit  
Energy  
Detection  
OSC1  
(CLK)  
To All Chip Clocks  
MT3170B/71B and MT337xB only.  
MT3270B/71B and MT337xB only.  
MT3x71B only.  
Figure 1 - Functional Block Diagram  
4-3  
MT3170B/71B, MT3270B/71B, MT3370B/71B  
MT3370B/71B  
MT3170B/71B  
MT3270B/71B  
MT3370B/71B  
20  
1
2
3
4
5
6
7
8
NC  
NC  
VDD  
NC  
ESt/DStD  
NC  
ACK  
SD  
NC  
NC  
NC  
NC  
INPUT  
PWDN  
NC  
OSC2  
OSC1  
VSS  
NC  
18  
17  
16  
15  
14  
13  
12  
11  
10  
1
2
3
4
5
6
7
8
9
NC  
INPUT  
PWDN  
OSC2  
NC  
VDD  
NC  
NC  
ESt/DStD  
NC  
ACK  
NC  
19  
18  
17  
16  
15  
14  
13  
12  
11  
INPUT  
PWDN  
CLK  
VDD INPUT  
VDD  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
ESt/  
ESt/  
DStD  
OSC2  
DStD  
OSC1  
VSS  
ACK  
SD  
ACK  
OSC1  
NC  
VSS  
SD  
NC  
SD  
NC  
9
10  
VSS  
NC  
8 PIN PLASTIC DIP  
18 PIN PLASTIC SOIC  
20 PIN SSOP  
Figure 2 - Pin Connections  
Pin Description  
Pin #  
Name  
Description  
337xB  
327xB  
317xB  
2
4
6
1
2
3
1
-
INPUT DTMF/CP Input. Input signal must be AC coupled via capacitor.  
OSC2 Oscillator Output.  
3
OSC1 Oscillator/Clock Input. This pin can either be driven by:  
(CLK) 1) an external digital clock with defined input logic levels. OSC2  
should be left open.  
2) connecting a crystal or ceramic resonator between OSC1 and  
OSC2 pins.  
9
4
5
4
5
VSS  
SD  
Ground. (0V)  
11  
Serial Data/Call Progress Output. This pin serves the dual function  
of being the serial data output when clock pulses are applied after  
validation of DTMF signal, and also indicates the cadence of call  
progress input. As DTMF signal lies in the same frequency band as  
call progress signal, this pin may toggle for DTMF input. The SD pin  
is at logic low in powerdown state.  
13  
15  
18  
6
7
6
7
ACK  
Acknowledge Pulse Input. After ESt or DStD is high, applying a  
sequence of four pulses on this pin will then shift out four bits on the  
SD pin, representing the decoded DTMF digit. The rising edge of the  
first clock is used to latch the 4-bit data prior to shifting. This pin is  
pulled down internally. The idle state of the ACK signal should be  
low.  
ESt  
(MT3x70B)  
Early Steering Output. A logic high on ESt indicates that a DTMF  
signal is present. ESt is at logic low in powerdown state.  
Delayed Steering Output. A logic high on DStD indicates that a  
valid DTMF digit has been detected. DStD is at logic low in  
powerdown state.  
DStD  
(MT3x71B)  
8
-
8
-
VDD  
NC  
Positive Power Supply (5V Typ.) Performance of the device can be  
optimized by minimizing noise on the supply rails. Decoupling  
capacitors across VDD and VSS are therefore recommended.  
1,5,7,8,  
10, 12,  
14,16,  
17  
No Connection. Pin is unconnected internally.  
3
-
2
PWDN Power Down Input. A logic high on this pin will power down the  
device to reduce power consumption. This pin is pulled down  
internally and can be left open if not used. ACK pin should be at logic  
’0’ to power down device.  
4-4  
MT3170B/71B, MT3270B/71B, MT3370B/71B  
Summary of MT3x70/71B Product Family  
Device  
Type  
2 Pin  
OSC  
Ext  
CLK  
8 Pin  
18 Pin  
20 Pin  
PWDN  
ESt  
DStD  
MT3170B  
MT3171B  
MT3270B  
MT3271B  
MT3370B  
MT3371B  
resulting squarewave signals are applied to a digital  
detection circuit where an averaging algorithm is  
employed to determine the valid DTMF signal. For  
MT3x70B, upon recognition of a valid frequency from  
each tone group, the early steering (ESt) output will  
go high, indicating that a DTMF tone has been  
detected. Any subsequent loss of DTMF signal  
condition will cause the ESt pin to go low. For  
MT3x71B, an internal delayed steering counter  
Functional Description  
The MT3x7xBs are high performance and low power  
consumption DTMF receivers. These devices  
provide wide dynamic range DTMF detection and a  
serial decoded data output. These devices also  
incorporate an energy detection circuit. An input  
voiceband signal is applied to the devices via a  
series decoupling capacitor. Following the unity gain  
buffering, the signal enters the AGC circuit followed  
by an anti-aliasing filter. The bandlimited output is  
routed to a dial tone filter stage and to the input of  
the energy detection circuit. A bandsplit filter is then  
used to separate the input DTMF signal into high  
and low group tones. The high group and low group  
tones are then verified and decoded by the internal  
frequency counting and DTMF detection circuitry.  
Following the detection stage, the valid DTMF digit is  
translated to a 4-bit binary code (via an internal look-  
up ROM). Data bits can then be shifted out serially  
by applying external clock pulses.  
validates the early steering signal after  
a
predetermined guard time which requires no external  
components. The delayed steering (DStD) will go  
high only when the validation period has elapsed.  
Once the DStD output is high, the subsequent loss of  
early steering signal due to DTMF signal dropout will  
activate the internal counter for a validation of tone  
absent guard time. The DStD output will go low only  
after this validation period.  
Energy Detection  
The output signal from the AGC circuit is also  
applied to the energy detection circuit. The detection  
circuit consists of a threshold comparator and an  
active integrator. When the signal level is above the  
threshold of the internal comparator (-35dBm), the  
energy detector produces an energy present  
indication on the SD output. The integrator ensures  
the SD output will remain at high even though the  
input signal is changing. When the input signal is  
removed, the SD output will go low following the  
integrator decay time. Short decay time enables the  
signal envelope (or cadence) to be generated at the  
SD output. An external microcontroller can monitor  
this output for specific call progress signals. Since  
presence of speech and DTMF signals (above the  
threshold limit) can cause the SD output to toggle,  
both ESt (DStD) and SD outputs should be  
monitored to ensure correct signal identification. As  
the energy detector is multiplexed with the digital  
serial data output at the SD pin, the detector output  
is selected at all times except during the time  
between the rising edge of the first pulse and the  
falling edge of the fourth pulse applied at the ACK  
pin.  
Automatic Gain Control (AGC) Circuit  
As the device operates on a single power supply, the  
input signal is biased internally at approximately  
VDD/2. With large input signal amplitude (between 0  
and approximately -30dBm for each tone of the  
composite signal), the AGC is activated to prevent  
the input signal from being clipped. At low input  
level, the AGC remains inactive and the input signal  
is passed directly to the hardware DTMF detection  
algorithm and to the energy detection circuit.  
Filter and Decoder Section  
The signal entering the DTMF detection circuitry is  
filtered by a notch filter at 350 and 440 Hz for dial  
tone rejection. The composite dual-tone signal is  
further split into its individual high and low frequency  
th  
components by two 6 order switched capacitor  
bandpass filters. The high group and low group  
tones are then smoothed by separate output filters  
and squared by high gain limiting comparators. The  
4-5  
MT3170B/71B, MT3270B/71B, MT3370B/71B  
Serial Data (SD) Output  
FLOW  
FHIGH  
1209  
1336  
1477  
1209  
1336  
1477  
1209  
1336  
1477  
1336  
1209  
1477  
1633  
1633  
1633  
1633  
DIGIT  
1
b3  
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
b2  
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
b1  
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
b0  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
697  
697  
697  
770  
770  
770  
852  
852  
852  
941  
941  
941  
697  
770  
852  
941  
When a valid DTMF signal burst is present, ESt or  
DStD will go high. The application of four clock  
pulses on the ACK pin will provide a 4-bit serial  
binary code representing the decoded DTMF digit on  
the SD pin output. The rising edge of the first pulse  
applied on the ACK pin latches and shifts the least  
significant bit of the decoded digit on the SD pin.  
The next three pulses on ACK pin will shift the  
remaining latched bits in a serial format (see Figure  
5). If less than four pulses are applied to the ACK  
pin, new data cannot be latched even though ESt/  
DStD can be valid. Clock pulses should be applied  
to clock out any remaining data bits to resume  
normal operation. Any transitions in excess of four  
pulses will be ignored until the next rising edge of the  
ESt/DStD. ACK should idle at logic low. The 4-bit  
binary representing all 16 standard DTMF digits are  
shown in Table 1.  
2
3
4
5
6
7
8
9
0
*
#
A
B
C
D
Powerdown Mode (MT317xB/337xB)  
0= LOGIC LOW, 1= LOGIC HIGH  
The MT317xB/337xB devices offer a powerdown  
function to preserve power consumption when the  
device is not in use. A logic high can be applied at  
the PWDN pin to place the device in powerdown  
mode. The ACK pin should be kept at logic low to  
avoid undefined ESt/DStD and SD outputs (see  
Table 2).  
Table 1. Serial Decode Bit Table  
Note: b0=LSB of decoded DTMF digit and shifted out first.  
MT317xB/337xB  
ACK (input)  
PWDN (input)  
ESt/DStD (output)  
SD (output)  
status  
low  
low  
Refer to Fig. 4 for  
timing waveforms  
Refer to Fig. 4 for  
timing waveforms  
normal operation  
+
low  
high  
high  
high  
low  
low  
low  
powerdown mode  
undefined  
low  
undefined  
undefined  
high  
undefined  
undefined  
Table 2. Powerdown Mode  
+ =enters powerdown mode on the rising edge.  
Frequency 1 (Hz)  
Frequency 2 (Hz)  
On/Off  
Description  
350  
425  
400  
480  
440  
480  
440  
480  
440  
---  
continuous  
continuous  
continuous  
0.5s/0.5s  
North American Dial Tones  
European Dial Tones  
---  
Far East Dial Tones  
620  
---  
North American Line Busy  
Japanese Line Busy  
0.5s/0.5s  
620  
480  
620  
0.25s/0.25s  
2.0s/4.0s  
North American Reorder Tones  
North American Audible Ringing  
North American Reorder Tones  
0.25s/0.25s  
Table 3. Call Progress Tones  
4-6  
MT3170B/71B, MT3270B/71B, MT3370B/71B  
be driven by an 4.194304 MHz external clock applied  
on pin OSC 1. The OSC2 pin should be left open.  
Parameter  
Unit  
Resonator  
Crystal  
R1  
L1  
Ohms  
mH  
pF  
pF  
-
6.580  
0.359  
4.441  
34.890  
25  
For MT317xB devices , the CLK input is driven  
directly by an 4.194304 MHz external digital clock.  
95.355  
15.1E-03  
12.0  
C1  
C0  
Qm  
f  
Applications  
1.299E+03 101.2E+ 03  
±0.2% ±0.01%  
%
The circuit shown in Figure 3 illustrates the use of a  
MT327xB in a typical receiver application. It requires  
only a coupling capacitor (C1) and a crystal or  
ceramic resonator (X1) to complete the circuit.  
Table 4. Recommended Resonator and Crystal  
Specifications  
Note:  
Qm=quality factor of RLC model, i.e., 1/2ΠƒR1C1.  
The MT3x70B is designed for user who wishes to  
tailor the guard time for specific applications. When  
a DTMF signal is present, the ESt pin will go high.  
An external microcontroller monitors ESt in real time  
for a period of time set by the user. A guard time  
algorithm must be implemented such that DTMF  
signals not meeting the timing requirements are  
rejected. The MT3x71B uses an internal counter to  
provide a preset DTMF validation period. It requires  
no external components. The DStD output high  
indicates that a valid DTMF digit has been detected.  
L1  
C1  
R1  
C0  
R1 = Equivalent resistor.  
L1 = Equivalent inductance.  
C1 = Equivalent compliance.  
C0 = Capacitance between electrode.  
Resonator and Crystal Electric Equivalent Circuit  
Oscillator  
The 4.194304 MHz frequency has a secondary  
advantage in some applications where a real time  
The MT327xB/337xB can be used in both external  
clock or two pin oscillator mode. In two pin oscillator  
mode, the oscillator circuit is completed by  
connecting either a 4.194304 MHz crystal or ceramic  
resonator across OSC1 and OSC2 pins.  
Specifications of the ceramic resonator and crystal  
are tabulated in Table 4. It is also possible to  
configure a number of these devices employing only  
a single oscillator crystal. The OSC2 output of the  
first device in the chain is connected to the OSC1  
input of the next device. Subsequent devices are  
connected similarily. The oscillator circuit can also  
clock is required.  
4,194,304 cycles to provide a one second time base.  
A 22-bit counter will count  
VDD  
C1  
8
1
VDD  
DTMF/CP Input  
INPUT  
MT327xB  
7
6
2
3
OSC2  
ESt/DStD  
ACK  
X1  
To microprocessor or  
microcontroller  
OSC1  
VSS  
5
4
SD  
COMPONENTS LIST:  
C1 = 0.1 µF ± 10 %  
X1 = Crystal or Resonator (4.194304 MHz)  
Figure 3 - Application Circuit for MT327xB  
4-7  
MT3170B/71B, MT3270B/71B, MT3370B/71B  
Absolute Maximum Ratings- Voltages are with respect to VSS=0V unless otherwise stated.  
Parameter  
DC Power Supply Voltage  
Symbol  
Min  
Max  
Units  
1
2
3
4
5
VDD-VSS  
VI/O  
II/O  
6
V
V
Voltage on any pin (other than supply)  
Current at any pin (other than supply)  
Storage temperature  
-0.3  
-65  
6.3  
10  
mA  
°C  
TS  
150  
500  
Package power dissipation  
PD  
mW  
† Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.  
Recommended Operating Conditions - Voltages are with respect to VSS=0V unless otherwise stated  
Parameter  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
1
2
3
4
Positive Power Supply  
VDD  
fOSC  
fOSC  
Td  
4.75  
5.0  
5.25  
V
MHz  
%
4.194304  
Oscillator Clock Frequency  
Oscillator Frequency Tolerance  
Operating Temperature  
±0.1  
85  
-40  
25  
°C  
‡ Typical figures are at 25°C and are for design aid only: not guaranteed and not subject to production testing.  
DC Electrical Characteristics - Voltages are with respect to VDD=5V±5%,VSS=0V, and temperature -40 to 85°C, unless  
otherwise stated.  
Characteristics  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions  
1
2
Operating supply current  
Standby supply current  
IDD  
3
8
mA  
µA  
IDDQ  
30  
100  
PWDN=5V, ACK=0V  
ESt/DStD = SD = 0V  
3a  
3b  
Input logic 1  
VIH  
VIH  
4.0  
3.5  
V
V
Input logic 1  
(for OSC1 input only)  
MT327xB/MT337xB  
MT327xB/MT337xB  
4a  
4b  
Input logic 0  
VIL  
VIL  
1.0  
1.5  
V
V
Input logic 0  
(for OSC1 input only)  
5
6
Input impedance (pin 1)  
RIN  
IPD  
50  
kΩ  
Pull-down Current  
(PWDN, ACK pins)  
25  
µA  
with internal pull-down  
resistor of approx.  
200k. PWDN/ACK = 5V  
7
8
Output high (source) current  
Output low (sink) current  
IOH  
IOL  
0.4  
1.0  
4.0  
9.0  
mA  
mA  
VOUT=VDD-0.4V  
VOUT=VSS+0.4V  
‡ Typical figures are at 25°C and are for design aid only: not guaranteed and not subject to production testing  
4-8  
MT3170B/71B, MT3270B/71B, MT3370B/71B  
AC Electrical Characteristics - voltages are with respect to VDD=5V±5%, VSS=0V and temperature -40 to +85°C unless  
otherwise stated.  
Characteristics  
Sym  
Min  
Typ  
Max  
Units  
Test Conditions*  
1
Valid input signal level  
-50  
0
dBm  
1,2,3,5,6,12  
(each tone of composite signal)  
2.45  
775  
mVRMS  
2
3
4
5
6
7
8
9
Positive twist accept  
Negative twist accept  
Frequency deviation accept  
Frequency deviation reject  
Third tone tolerance  
Noise tolerance  
8
8
dB  
dB  
1,2,3,4,11,12,15  
1,2,3,4,11,12,15  
1,2,3,5,12  
1,2,3,5,12,15  
1,2,3,4,5,12  
7,9,12  
±1.52Hz  
±3.5%  
-16  
-12  
+15  
dB  
dB  
Dial tone tolerance  
dB  
8,10,12  
Supervisory tones detect level  
(Total power)  
-35  
3
dBm  
16  
10 Supervisory tones reject level  
11 Energy detector attack time  
12 Energy detector decay time  
-50  
6.5  
25  
dBm  
ms  
16  
16  
16  
tSA  
tSD  
1.0  
ms  
13a Powerdown time  
13b Powerup time  
10  
30  
50  
ms  
ms  
ms  
IDDQ 100µA  
MT3170B/3370B  
MT3171B/3371B  
Note 14  
14 Tone present detect time (ESt  
logic output)  
tDP  
tDA  
3
13  
3
20  
15  
40  
ms  
ms  
ms  
ms  
ms  
ms  
MT3x70B  
MT3x70B  
MT3x71B  
MT3x71B  
MT3x71B  
MT3x71B  
13,15  
15 Tone absent detect time (ESt  
logic output)  
16 Tone duration accept  
(DStD logic output)  
tREC  
tREC  
tID  
17 Tone duration reject  
(DStD logic output)  
20  
20  
18 Interdigit pause accept (DStD  
logic output)  
40  
19 Interdigit pause reject (DStD  
logic output)  
tDO  
20 Data shift rate 40-60% duty cycle fACK  
1.0  
3.0  
MHz  
ns  
21 Propagation delay  
(ACK to Data Bit)  
tPAD  
100  
140  
1MHz fACK  
13,15  
,
22 Data hold time (ACK to SD)  
tDH  
30  
50  
ns  
13,15  
‡ Typical figures are at 25 °C and are for design aid only: not guaranteed and not subject to production testing  
* Test Conditions  
1. dBm refers to a reference power of 1 mW delivered into a 600 ohms load.  
2. Data sequence consists of all DTMF digits.  
3. Tone on = 40 ms, tone off = 40 ms.  
4. Signal condition consists of nominal DTMF frequencies.  
5. Both tones in composite signal have an equal amplitude.  
6. Tone pair is deviated by ±1.5%± 2 Hz.  
7. Bandwidth limited (0-3 kHz) Gaussian noise.  
8. Precise dial tone frequencies are 350 Hz and 440 Hz (± 2%).  
9. Referenced to lowest level frequency component in DTMF signal.  
10. Referenced to the minimum valid accept level.  
11. Both tones must be within valid input signal range.  
12. External guard time for MT3x70B = 20ms.  
13. Timing parameters are measured with 70pF load at SD output.  
14. Time duration between PWDN pin changes from ‘1‘ to ‘0‘ and ESt/DStD becomes active.  
15. Guaranteed by design and characterization. Not subject to production testing.  
16. Value measured with an applied tone of 450 Hz.  
4-9  
MT3170B/71B, MT3270B/71B, MT3370B/71B  
tDO  
tREC  
DTMF  
Tone  
#n + 1  
DTMF  
Tone #n  
DTMF  
Tone #n + 1  
Input  
Signal  
INPUT  
tDA  
tDP  
ESt  
(MT3x70B)  
tID  
tREC  
DStD  
(MT3x71B)  
ACK  
SD  
tSA  
tSD  
LSB  
LSB  
MSB  
MSB  
Input  
Signal  
Envelope  
b0b1b2b3  
b0b1b2b3  
tDO  
tID  
- maximum allowable dropout during valid DTMF signals. (MT3x7xB).  
- minimum time between valid DTMF signals (MT3x71B).  
t
t
REC - maximum DTMF signal duration not detected as valid (MT3x7xB).  
REC - minimum DTMF signal duration required for valid recognition (MT3x71B).  
tDA  
tDP  
tSA  
tSD  
- time to detect the absence of valid DTMF signals (MT3x70B).  
- time to detect the presence of valid DTMF signals (MT3x70B).  
- supervisory tone integrator attack time (MT3x7xB).  
- supervisory tone integrator decay time (MT3x7xB).  
Figure 4 - Timing Diagram  
ESt/DStD  
1/fACK  
VIH  
ACK  
VIL  
tPAD  
tDH  
VIH  
DTMF Energy  
Detect  
DTMF Energy  
Detect  
SD  
b0  
b1  
b2  
b3  
MSB  
VIL  
LSB  
Figure 5 - ACK to SD Timing  
4-10  

相关型号:

MT3271BE1

Wide Dynamic Range DTMF Receiver
ZARLINK

MT3271BE1

DTMF Signaling Circuit, PDIP8, LEAD FREE, PLASTIC, MS-001BA, DIP-8
MICROSEMI

MT328024

Multimode Relay
TE

MT328115

Multimode Relay
TE

MT328230

Multimode Relay
TE

MT32B102A100CG

A wide selection of sizes is available
WALSIN

MT32B102A100CT

A wide selection of sizes is available
WALSIN

MT32B102A101CT

A wide selection of sizes is available
WALSIN

MT32B102A102CT

A wide selection of sizes is available
WALSIN

MT32B102A160CG

A wide selection of sizes is available
WALSIN

MT32B102A160CT

A wide selection of sizes is available
WALSIN

MT32B102A201CT

A wide selection of sizes is available
WALSIN