LX3301AQPW [MICROSEMI]

Inductive Sensor Interface IC with Embedded MCU;
LX3301AQPW
型号: LX3301AQPW
厂家: Microsemi    Microsemi
描述:

Inductive Sensor Interface IC with Embedded MCU

文件: 总21页 (文件大小:996K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Preliminary Datasheet  
LX3301A  
Inductive Sensor Interface IC with Embedded MCU  
Features  
. Built-in Oscillator for Driving Primary Coil  
Description  
The LX3301A is a highly integrated programmable data  
conversion IC designed for interfacing to and managing of  
inductive sensors. The device includes an integrated  
oscillator circuit for driving the primary coil of an inductive  
sensor, along with two independent analog conversion  
paths for conditioning, converting, and processing of sine  
and cosine analog signals from the secondary coils of the  
sensor. Each path includes an EMI filter, demodulator,  
anti-alias filter, programmable amplifier, and a 13-bit  
sigma-delta analog-to-digital converter.  
. Two Independent Analog Channels With  
Demodulation  
. 32-Bit RISC MCU with 12k Bytes of  
Program Memory  
. 128 Bytes SRAM  
. 32 Bytes EEPROM  
. Two Programmable Gain Amplifiers  
. Two Anti-alias Filters  
. Two 13-bit ADCs  
. Selection of SINC and FIR Digital Filters  
. One 12-bit DAC  
Each analog signal path includes digital calibration  
capability which allows the complete analog path (including  
the external sensors) to be calibrated during the system  
manufacturing process. The calibration information is  
written to internal EEPROM resulting in improved  
production yields, and in-line system upgrades.  
. One 16-bit PWM  
. Multiple Faults Detection and Protection  
. Reverse Power Protection  
. Digital Calibration with Non-volatile  
Configuration Storage (EEPROM)  
The LX3301A integrates a 32-bit RISC processor which  
provides programmable digital filtering and signal  
processing functions. The MCU resources include 12 kilo  
bytes of program memory, 128 bytes of SRAM, and 32  
bytes of user programmable EEPROM. The program  
memory is available as mask-programmed ROM.  
. Protected Watchdog Timer  
. Low Temperature Drift  
. -40°C to 125°C Operation  
. TD, PWM(push-pull), PWM (OD) Output  
. Excellent Long Term Stability  
. AEC-Q100 Certification  
System interfaces include programmable PWM output and  
a 12-bit digital-to-analog converter analog buffed output.  
. ISO26262 Compliant  
The LX3301A is offered in TSSOP14, the device is  
specified over a temperature range of -40°C to +125°C  
making it suitable for a wide range of commercial,  
industrial, medical, and/or automotive sensor applications.  
Applications  
. Automotive Control  
. Medical Equipment  
. ATE Equipment  
. Industrial Process Control  
. Smart Energy Saving Control  
July 2015 Rev. 0.1  
www.microsemi.com  
© 2015 Microsemi Corporation- Analog Mixed Signal  
1
LX3301A Inductive Sensor Interface IC with Embedded MCU  
Typical Application  
Power from Host  
System  
VIN  
OSC1  
OSC2  
CL1  
DOUT  
AOUT  
Host  
System  
LX3301A  
GNDCL  
CL2  
EEWR  
VDD  
GND  
Figure 1 · Typical Application System Diagram: LX3301AQPW  
Block Diagram  
Clock/  
Watchdog  
LDO  
EEPROM  
ROM  
OSC1  
OSC  
OSC2  
TD or PWM  
(OD)  
DOUT  
AOUT  
TD or PWM  
(PP)  
EMI  
Filter  
CL1  
Demod  
AAF  
AAF  
ADC  
ADC  
Filter  
Filter  
32-Bit  
MCU  
GNDCL  
DAC  
EMI  
Filter  
Demod  
CL2  
SUB  
SRAM  
Figure 2 · LX3301A Block Diagram  
2
LX3301A Rev. 0.1  
Pin Configuration  
Pin Configuration  
1
2
3
14  
13  
12  
GND  
SUB  
DOUT  
OSC1  
OSC2  
AOUT  
VIN  
VDD  
NC  
4
5
6
11  
10  
9
EEWR  
CL2  
GNDCL  
CL1  
8
7
NC  
14-Pin TSSOP  
Figure 3 · Pinout (Top View)  
Matte Tin Lead Finish / MSL 1  
YYWWA = Year/ Week/Lot Code  
Ordering Information  
Ambient  
Type  
Package  
Part Number  
Packaging Type  
Temperature  
LX3301AQPW  
Bulk / Tube  
RoHS2 compliant,  
-40°C to 125°C  
Pb-free  
14-TSSOP  
LX3301AQPW-TR  
Tape and Reel  
Thermal Data  
Parameter  
Value  
103.7  
Units  
Thermal Resistance-Junction to Ambient, θJA  
°C/W  
Note: The JA numbers assume no forced airflow. Junction Temperature is calculated using TJ = TA + (PD x JA). In  
particular, θJA is a function of the PCB construction. The stated number above is for a four-layer board in  
accordance with JESD-51 (JEDEC).  
LX3301A Rev. 0.1  
3
LX3301A Inductive Sensor Interface IC with Embedded MCU  
Pin Description  
PIN#  
Pin Designator  
Description  
Analog and digital power ground  
1
GND  
Digital Out. This pin can be programmed to Open-drain PWM with current  
limit, or the threshold detector output.  
2
3
DOUT  
AOUT  
Analog Out. This pin can be programmed to provide an analog output  
(DAC), TD or a PWM output. PWM will be push-pull operation. This pin  
can be used as address pin for EEMODE  
Power supply and internal EEPROM program pin. DC input power is  
applied to this pin for normal operation. Also used for EEPROM  
programming (refer to application information). Bypass this pin to GND pin  
with a low ESR capacitor of 100nF. Note that larger capacitance will affect  
the EEPROM programming.  
4
VIN  
Regulator output. This is the output of the internal voltage regulator  
providing power to the analog and digital blocks. Bypass this pin to GND  
pin with a low ESR capacitor of not less than 1µF.  
5
6
VDD  
NC  
NC  
Reserved for factory testing. Connect it to GND  
Reserved for factory testing. Connect it to GND  
Sensor signal from secondary coil 1 of inductive sensor.  
7
8
CL1  
Reference ground for CL1 and CL2. Connect CL1 & CL2 coil to GNDCL  
and connect the GNDCL to GND directly.  
9
GNDCL  
CL2  
10  
11  
12  
Sensor signal from secondary coil 2 of inductive sensor.  
EEWR is active low. When EEWR is low, it prohibits change to the internal  
EEPROM contents.  
EEWR  
OSC2  
Oscillator pin 2. Connects to the second side of the primary inductor coil.  
An external capacitor is connected between this pin and GND as part of  
the LC tank circuit.  
13  
14  
OSC1  
SUB  
Oscillator pin 1. Connects to the first side of the primary inductor coil. An  
external capacitor is connected between this pin and GND to as part of the  
LC tank circuit.  
Substrate pin it is used for ground failure protection. It should not be  
connected to GND, for normal application, leave this pin open  
4
LX3301A Rev. 0.1  
Absolute Maximum Ratings  
Absolute Maximum Ratings  
Parameter  
Value  
-7 to 20  
-1 to 15  
-0.3 to 16  
-0.5 to 3.6  
-0.5 to 16  
0 to 95  
-40 to 125  
-40 to 150  
300  
Units  
Supply Input Voltage (VIN)  
V
mA  
V
Load Current on VDD  
Voltage on OSC1, OSC2  
Voltage on CL1, CL2, EEWR  
V
Voltage on AOUT, DOUT  
V
Operating Humidity (non-condensing)  
Operating Temperature  
%
C  
C  
C  
°C  
kV  
V
Storage Temperature  
Lead Temperature (Soldering 10 seconds)  
Package Peak Temp. for Solder Reflow (40 seconds exposure)  
ESD, Human Body Model (HBM) AEC-Q100-002D  
ESD, Charge Device Model (CDM) AEC-Q100-011  
260  
±2  
750  
Note: Stresses in excess of these absolute ratings may cause permanent damage. The device is not implied to be  
functional under these conditions. All voltages are with respect to GND.  
Recommended Operating Range  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
5.6  
17  
Units  
Supply Voltage  
VIN  
For normal operating  
4.4  
5
V
V
EEPROM Program High VIN_PH  
For normal operating, excluding  
oscillator tail current  
Supply Current  
I_IN  
10  
mA  
Output Current  
Output Current  
Output Current  
IAOUT0  
IAOUT5  
IDOUT0  
AOUT = 0V  
AOUT = 5V  
DOUT = 0V  
-15  
6
-8  
15  
mA  
mA  
mA  
MHz  
°C  
28  
Internal Clock Frequency FOSC  
8.0  
-40  
8.2  
8.4  
125  
Operating Temperature  
TOP  
LX3301A Rev. 0.1  
5
LX3301A Inductive Sensor Interface IC with Embedded MCU  
Electrical Characteristics  
Unless otherwise defined, the following specifications apply over the operating temperature range of -40C ≤ TA ≤ 125°C,  
and the following test conditions: VIN = 5V, VDD=3.5V, IDD=5mA, II/O=0mA Typical values are at 25 °C.  
Parameter  
POWER  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
Supply Voltage  
VIN  
IIN  
For normal operating  
4.4  
5
8
5.6  
10  
V
For normal operating , excluding  
oscillator tail current ,IDD = 0mA,  
II/O = 0mA, f = 8.2MHz  
Supply Current  
mA  
VIN UVLO High Threshold VIN_UVLO_HI  
4.1  
3.6  
4.3  
4.1  
V
V
VIN UVLO Low Threshold VIN_UVLO_LO AOUT goes low  
3.75  
3.5  
VOLTAGE REFERENCE  
Output Voltage  
VDD UVLO  
VDD  
IDD = 10mA, Trimmed  
Rising edge  
3.45  
2.9  
3.55  
3.4  
V
V
VDD_UVLO  
Additional current sourced to  
external load(s)  
Output Current  
IDD  
10  
mA  
OSCILLATOR  
Middle Tap Voltage  
VTAP  
ITK  
5
V
mA  
Vpp  
MHz  
%
Total Tank DC Driving  
Current  
VTAP = 5V  
VTAP = 5V  
VTAP = 5V  
VTAP = 5V  
0
3
10  
9.5  
5
Swing Voltage of OSC1&2 VOSC  
Reference Frequency  
FOSC  
1
Range  
Frequency Variation  
Reference Inductance  
FOSCTOL  
LOSC  
-5  
5
VTAP= 5V, Inductor connected to  
OSC1,2 pins  
6
µH  
Tank Circuit Quality Factor QOSC  
VTAP = 5V  
15  
25  
Harmonics  
HOSC  
VTAP = 5V, GBNT  
2
%
Resistance between OSC1  
& VIN  
VIN = 5V, OSC1 = GND, Measure  
Current from OSC1 to GND  
ROSC1_VIN  
1
1
MΩ  
Resistance between OSC2  
& VIN  
VIN = 5V, OSC2 = GND, Measure  
Current from OSC2 to GND  
ROSC2_VIN  
ROSC1_GND  
ROSC2_GND  
MΩ  
MΩ  
MΩ  
kΩ  
Resistance between OSC1  
& GND  
VIN = 0V, OSC1 = 5V, Measure  
Current from OSC1 to 5V  
1
Resistance between OSC2  
& GND  
VIN = 0V, OSC2 = 5V, Measure  
Current from OSC2 to 5V  
1
Resistance Between  
OSC1&OSC2  
ROSC1&2_HI OSC1 = 1Vpp, OSC2 = GND  
500  
CL1 & CL2  
Peak to Peak Sensor Signal Vpp_CL  
VTAP = 5V,  
GBNT  
50  
100  
150  
mV  
EMI FILTER 1 & 2  
Cut-off Frequency  
EF01  
13.5  
MHz  
DEMODULATOR AND FRONT-END AMPLIFIER 1, 2  
Demodulator Gain  
DAA01  
DAA02  
DAA03  
GBNT  
7
3.125  
3
V/V  
V/V  
%
GBNT, Front End = 0000b to  
1111b  
Front-End Gain Range  
2.375  
3.781  
Front End Gain Step  
ANTI ALIAS FILTER 1 & 2  
6
LX3301A Rev. 0.1  
Electrical Characteristics  
Parameter  
Cut-off Frequency  
Attenuation  
ADC1 & 2  
Symbol  
AAF01  
AAF02  
Test Condition  
GBNT  
Min  
Typ  
24  
Max  
Units  
kHz  
GBNT  
-60  
dB/dec  
ADC Resolution  
Offset Drift  
ADC01  
ADC02  
ADC03  
ADC04  
13  
-5  
-1  
bits  
mV  
GBNT  
GBNT  
GBNT  
0
5
1
8
Integral Non-Linearity  
Absolute Offset Error  
SINC, SINC+FIR Filter 1 & 2  
Pass band  
LSB  
mV  
PB00  
REFRESH=00,(SINC,SINC+FIR)  
REFRESH=01, (SINC,SINC+FIR)  
REFRESH=10, (SINC,SINC+FIR)  
REFRESH=11, (SINC,SINC+FIR)  
REFRESH=00, FILTER=0  
REFRESH=01, FILTER=0  
REFRESH=10, FILTER=0  
REFRESH=11, FILTER=0  
REFRESH=00, FILTER=1  
REFRESH=01, FILTER=1  
REFRESH=10, FILTER=1  
REFRESH=11, FILTER=1  
Stop band  
1
kHz  
Hz  
Pass band  
PB01  
500  
250  
125  
2
Pass band  
PB03  
Hz  
Pass band  
PB04  
Hz  
Stop band  
SB000  
kHz  
kHz  
Hz  
Stop band  
SB001  
1
Stop band  
SB002  
500  
250  
1.4  
700  
350  
175  
Stop band  
SB003  
Hz  
Stop band  
SB100  
kHz  
Hz  
Stop band  
SB101  
Stop band  
SB102  
Hz  
Stop band  
SB103  
Hz  
Stop Band Attenuation  
Delay  
SBA  
1
%
Delay000  
Delay001  
Delay002  
Delay003  
Delay100  
Delay101  
Delay102  
Delay103  
DUR00  
DUR01  
DUR02  
DUR03  
REFRESH=00, FILTER=0  
REFRESH=01, FILTER=0  
REFRESH=10, FILTER=0  
REFRESH=11, FILTER=0  
REFRESH=00, FILTER=1  
REFRESH=01, FILTER=1  
REFRESH=10, FILTER=1  
REFRESH=11, FILTER=1  
REFRESH=00,(SINC,SINC+FIR)  
REFRESH=01, (SINC,SINC+FIR)  
REFRESH=10, (SINC,SINC+FIR)  
REFRESH=11, (SINC,SINC+FIR)  
GBNT  
0.25  
0.5  
1
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
kHz  
kHz  
Hz  
Delay  
Delay  
Delay  
2
Delay  
0.5  
1
Delay  
Delay  
2
Delay  
4
Data Update Rate  
Data Update Rate  
Data Update Rate  
Data Update Rate  
2
1
500  
250  
-86  
-44  
-86  
Hz  
Filter SNR  
FLTRSNR  
CTR  
-73  
dB  
Cross Talk Rejection  
GBNT  
dB  
Power supply rejection ratio PSRR  
GNBT  
dB  
Internal Clock  
Clock Frequency  
Processing Resources  
MCU Data bus  
FCLK  
After Trimming  
8
8.2  
32  
8.4  
32  
MHz  
MCU01  
MCU02  
MCU03  
MCU04  
bit  
bit  
MCU Instruction size  
ROM Size  
16  
32-bit words  
12  
KB  
byte  
SRAM Size  
Application data, 32-bit words  
128  
LX3301A Rev. 0.1  
7
LX3301A Inductive Sensor Interface IC with Embedded MCU  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
cycles  
words  
EEPROM Write Endurance MCU05  
10000  
EEPROM Size  
MCU06  
(16-bit words)  
16  
Watchdog Timer  
Timer for Power Up Self- test  
(PUST)  
Watchdog time, PUST  
Watch dog time,  
TPUST  
TOP  
16.3  
10  
ms  
ms  
Timer after completion PUST  
Timer for EE Mode, after receiving  
command and matching address  
bits  
Watchdog time, EEMode  
TEE  
100  
ms  
DOUT (PWM, OPEN DRAIN)  
Refresh= 2kHz, after trimming,  
25°C  
Frequency  
DOUT01  
DOUT02  
1.945  
2
2.055  
kHz  
%
HCLMP=1023, LCLMP=0,  
ORIGIN=0, frequency = 2kHz  
Minimum PWM duty  
0.125  
Maximum PWM duty  
PWM Jitter  
DOUT03  
DOUT04  
DOUT05  
No Clamped Output  
100  
28  
%
0.2  
%D  
mA  
Max Sink Current  
DOUT = OD PWM, or TD  
-27  
2.0  
AOUT ( AS ADDRESS SELECTION )  
Hi-level Input Voltage  
Low-level Input Voltage  
AOUT ( ANALOG OUTPUT )  
AOUT Analog Range  
AOUT Low Voltage  
AOUT_VIH  
V
V
AOUT_VLO  
0.3  
AOUT_R  
VAOUT_LO  
VAOUT_HI  
RL_AOUT  
IAOUT0  
0
VIN  
4
V
RL_AOUT = 10kΩ to VIN  
RL_AOUT = 10kΩ to GND  
%VIN  
%VIN  
kΩ  
AOUT High Voltage  
AOUT Output load  
96  
1
10  
AOUT Sink current  
AOUT = 0V  
AOUT = 5V  
CLOAD = 22nF  
CLOAD = 100nF  
-15  
6
-10  
15  
mA  
AOUT Source Current  
AOUT Slew Rate  
IAOUT5  
mA  
AOUTSR1  
AOUTSR2  
VRatioErr  
0.2  
0.1  
0
V/µs  
V/µs  
%VIN  
%VIN  
%VIN  
%VIN  
%VIN  
AOUT Slew Rate  
Ratiometric Error  
-0.2  
0.2  
1
FAULT Output Low Level  
FAULT Output Low Level  
FAULT Output High Level  
FAULT Output High Level  
VAOUT_FL10K RL_AOUT = 10kΩ to VIN  
VAOUT_FL1K RL_AOUT = 1kΩ to VIN  
VAOUT_FH10K RL_AOUT = 10kΩ to GND  
VAOUT_FH1K RL_AOUT = 1kΩ to GND  
1.5  
98  
97  
Ground Off Output low  
Level  
Broken GND, RL_AOUT ≤ 10kΩ  
VAOUT_GF10K  
to GND  
4
1
%VIN  
%VIN  
%VIN  
Ground Off Output High  
Level  
Broken GND, RL_AOUT ≥ 1kΩ to  
VAOUT_GF1K  
VIN  
99  
100  
0
Broken VIN, RL_AOUT 1kΩ to  
GND  
VIN Open output Low Level VAO_VIN1K  
AOUT (PWM Output)  
Duty =50%, 10kΩ Pull-down to  
GND  
High level output voltage  
VOH  
95  
0
100  
200  
%VIN  
Low level output voltage  
Rise time  
VOL  
Duty=50%, 10kPull Up to VIN  
Duty=50%  
mV  
µs  
AOUT_TR  
AOUT_TF  
10  
10  
Fall time  
Duty=50%  
µs  
8
LX3301A Rev. 0.1  
Electrical Characteristics  
Parameter  
Symbol  
Test Condition  
PWM(PP)  
Min  
Typ  
Max  
Units  
%
Min Duty  
Dmin_Aout  
Dmax_Aout  
IAOUTP  
4
Max Duty  
PWM(PP)  
94  
%
Max Drive/Sink Current  
Output CLAMP  
AOUT=PWM  
-25  
25  
mA  
Clamp High Output Level HCLMP  
Clamp High Output Level LCLMP  
EEPROM Programming  
Pull Output up to VIN  
Pull Output up to VIN  
0
0
100  
100  
%VIN  
%VIN  
Program Low  
Program Idle  
Program High  
Duration time  
VIN_PL  
VIN_PI  
VIN_PH  
td  
For EEPROM programming mode  
9.5  
10  
13  
16  
10.5  
13.5  
17  
V
V
For EEPROM programming mode 11.75  
For EEPROM programming mode 14.75  
V
Duration time each voltage state  
10  
µs  
LX3301A Rev. 0.1  
9
LX3301A Inductive Sensor Interface IC with Embedded MCU  
Configuration EEPROM  
The LX3301A integrates a 16 Words X 16bits (256bits), user programmable EEPROM for storing calibration and  
configuration parameters. The calibration parameters enable the production sensor assembly to be customer-factory  
calibrated assuring consistent unit to unit performance. The following FIG1 shows LX3301AQPW EEPROM  
configuration map and table 1 itemizes the LX3301A configuration EEPROM contents:  
Name  
Description  
Size  
(bit)  
Word & Bits  
(MSB:LSB)  
Sign  
Min  
Value  
Max  
Value  
Default  
Value  
ID  
Customer Part ID  
18  
2
W0[15:0]W1[15:14]  
W1[13:12]  
No  
No  
No  
0
0
3FFFF  
3
REFRESH Refresh rate  
0
FACTORY Microsemi Factory  
programming  
12  
W1[11:0]  
CHKSUM  
S5  
4bit checksum value  
Slope of 6th segment  
Output Set up  
4
W2[15:12]  
W2[11:0]  
W3[15:12]  
W3[11:0]  
No  
No  
No  
No  
No  
0
0
12  
4
4095  
511  
1011B  
511  
OUTSEL  
S0  
Slope of 1st segment  
12  
12  
0
0
4095  
4095  
ORIGIN  
Origin  
W4[15:12]W5[15:12]  
W6[15:12]  
0
Y5  
X5  
12  
12  
12  
8
W4[11:0]  
No  
No  
No  
No  
0
0
0
0
4095  
4095  
4095  
255  
3413  
3413  
2047  
255  
W5[11:0]  
Y3  
W6[11:0]  
OSCOMP  
OSC voltage  
W7[15:12]W8[15:12]  
Compensation  
X3  
Y1  
12  
12  
1
W7[11:0]  
W8[11:0]  
W9[15]  
No  
No  
No  
No  
0
0
0
0
4095  
4095  
1
2047  
683  
1
FILTER  
TDHYST  
Select digital filter  
Threshold Detect  
hysteresis  
3
W9[14:12]  
112  
111B  
X1  
TD  
12  
12  
W9[11:0]  
No  
No  
0
0
4095  
4095  
683  
Threshold Detect  
W10[15:10]W11[15:  
10]  
3685  
LCLMP  
HCLMP  
Y2  
Low Clamp  
10  
10  
6
W10[9:0]  
W11[9:0]  
W12[15:10]  
W12[9:0]  
W13[15:10]  
W13[9:0]  
W14[15:14]  
W14[13]  
No  
No  
0
0
1023  
1023  
31  
511  
31  
511  
3
0
High Clamp  
1023  
Y2 with Sign  
Yes  
Yes  
Yes  
Yes  
No  
-31  
-511  
-31  
-511  
0
0
0
0
0
0
0
0
0
0
DSIN  
Dynamic Sine Offset  
Y4 with Sign  
10  
6
Y4  
SSIN  
Static Sine Offset  
Osc current Source  
Debug  
10  
2
IOSC  
DEBUG  
TDPOL  
CLSEL  
EELOCK  
1
No  
0
1
TD Polarity  
1
W14[12]  
No  
0
1
CL1,2 input select  
1
W14[11]  
No  
0
1
EEPROM Write  
Protection  
1
W14[10]  
No  
0
1
DCOS  
Dynamic Cosine  
Offset correction  
10  
W14[9:0]  
Yes  
-511  
511  
0
GMTCH  
SCOS  
Gain Match  
6
W15[15:10]  
W15[9:0]  
Yes  
Yes  
-12.09%  
-511  
12.09%  
511  
0
0
Static Cosine offset  
Correction  
10  
Table 1 - LX3301AQPW Configuration EEPROM  
10  
LX3301A Rev. 0.1  
Configuration EEPROM  
MSB  
LSB  
LSB  
MSB  
15  
15  
14  
14  
13  
13  
12  
12  
11  
11  
10  
10  
9
9
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
WORD0  
WORD0  
ID[17..2  
WORD1  
WORD1  
ID[1..0]  
REFRESH  
FACTORY[11..0]  
S5[11..0]  
S0[11..0]  
Y5[11..0]  
X5[11..0]  
Y3[11..0]  
X3[11..0]  
Y1[11..0]  
X1[11..0]  
WORD2  
WORD2  
CHKSUM[3..0]  
OUTSEL[3..0]  
ORIGIN[11..8]  
ORIGIN[7..4]  
ORIGIN[3..0]  
OSCOMP[7..4]  
OSCOMP[3..0]  
TDHYST[2..0]  
TD[11..6  
WORD3  
WORD3  
WORD4  
WORD4  
WORD5  
WORD5  
WORD6  
WORD6  
WORD7  
WORD7  
WORD8  
WORD8  
FILTER  
WORD9  
WORD9  
WORD10  
WORD10  
LCLMP[9..0]  
HCLMP[9..0]  
DSIN[9..0]  
SSIN[9..0]  
WORD11  
WORD11  
TD[5..0]  
WORD12  
WORD12  
Y2[5..0]  
WORD13  
WORD13  
Y4[5..0]  
EELOCK  
TDPOL  
WORD14  
WORD14  
IOSC[1..0] FMSK  
CLSEL  
DCOS[9..0]  
SCOS[9:0]  
WORD15  
WORD15  
GMTCH[5..0]  
FIG. 1 - LX3301AQPW Configuration EEPROM MAP  
ID  
This is ID field. The Customer Part ID is a 18-bit field containing customer part identification information.  
CHKSUM  
This 4bit value is a 4bit CRC(cyclic redundancy check) to check the rest of content reliability through lifetime. The  
CRC calculation is based on the following code:  
#define GENPOLY 0x0013U /* x^4 + x + 1 */  
uint32_t makecrc4(uint32_t b);  
uint32_t makecrc4(uint32_t b)  
/*  
* Takes b as input, which should be the information vector  
* already multiplied by x^4 (ie. shifted over 4 bits), and  
* returns the crc for this input based on the defined generator  
* polynomial GENPOLY  
*/  
{
uint32_t i;  
i=1U;  
while (b>=16U) { /* >= 2^4, so degree(b) >= degree(genpoly) */  
if ((((b >> (20U-i))) & 0x1U) == 1U)  
{
b ^= GENPOLY << (16U-i); /* reduce with GENPOLY */  
}
LX3301A Rev. 0.1  
11  
LX3301A Inductive Sensor Interface IC with Embedded MCU  
i++;  
}
return b;  
}
/* Cacluate EEPROM checksum */  
sum1=0U;  
for(counter=1U; counter<=16U; counter++)  
{
if (counter!=3U)  
{
sum1+=*EEPROM_address;  
}
else  
{
sum1+=*EEPROM_address&0x0FFFU;  
}
current_address+=4U;  
EEPROM_address=current_address;  
}
sum2 = makecrc4(((sum1 >> 16)^(sum1&0xFFFFU)) << 4);  
FACTORY  
This parameter is used to trim the VDD, internal clock frequency and analog front-end amplifier gain. The FACTORY  
bits contain factory trimmed information. Recommend not to change. Always read first and preserve these factory  
values for future reuse.  
Oscillator Trim  
The Bit W1[11:7] of the EEPROM is used to set internal clock frequency. This is factory trimmed. Please keep  
this value as original value before writing the EEPROM.  
VDD Trim  
The Bit W1[2:0] of the EEPROM is used to set VDD voltage. This is factory trimmed. Please keep this value as  
original value before writing the EEPROM.  
Front-End Gain AMPLIFIER  
The Bit W1[6:3] of the EEPROM is used to adjust the FRONT-END GAIN AMPLIFIER gain. The bit W1 [6] is  
polarity bit, rest three bits(5:3) adjust gains. Default gain [00000b] is 3.125. Each step changes approximately 3%  
gain. Smallest number is 1000, largest number is 0111.  
TD ,TDHYST and TDPOL  
The TD output is enabled using “OUTSEL. Output polarity of TD is set by “TDPOL”. When TDPOL is set to 1, then  
the output pin goes low when the input signal exceeds the 2*TD value, and output pin goes high when the input signal  
exceeds the (2*TD-16*TDHYST) value. If TDPOL is set to 0, then the output pin goes high when the input signal  
exceeds the 2*TD value and output pin goes low when the input signal lower than the (2*TD-16*TDHYST) value.  
TDHYST is used to set the hysteresis value of TD level.  
OUTPUT  
OUTPUT  
TDPOL(W1[12])=0  
TDPOL(W1[12])=1  
Calculated  
Input data  
Calculated  
Input data  
2*TD - 16*TDHYST 2*TD  
2*TD -16*TDHYST  
2*TD  
12  
LX3301A Rev. 0.1  
Configuration EEPROM  
FILTER  
This bit selects the digital filter type. If the bit =0, then SINC and if the bit =1 then SINC+FIR.  
Filter Bit  
Filter Type  
SINC  
SINC+FIR  
0
1
Table 2 - Filter Configuration  
REFRESH  
This parameter sets the value of the refresh rate of ADC update. If the PWM output is selected the PWM frequency is  
always equal to the ADC update rate.  
Bit Value  
Refresh Rate  
2kHz  
0
1
2
3
1kHz  
500Hz  
250Hz  
Table 3 - Refresh Bits Configuration  
IOSC  
These two bits set the Oscillator Tail Current value.  
IOSC Bits  
Tail Current  
Full Range  
1/2  
Feedback  
Enabled  
Enabled  
Enabled  
Enabled  
0
1
2
3
1/4  
1/8  
Table 4 - IOSC Bits Configuration  
EELOCK  
There are two control signals, one is from the EEWR pin (Active Low disable to Write EEPROM at EEMODE), and  
other is the EELOCK bits on the configuration EEPROM( W14[10]). If the EELOCK bit is set to 1 and EEWR pin is  
pulled to low, then EEPROM cannot be written. Default value of W14[10] is 0.  
OUTSEL  
The OUTSEL bits provide the various output selection option. Table 5 shows the OUTSEL bits versus output option.  
Output Configuration  
Remarks  
Bit 1, Bit 0  
AOUT  
TD  
PWMB(PP)  
PWM(PP)  
Analog  
Bit 3, Bit 2  
DOUT  
TD  
OD_PWMB  
OD_PWM  
Reserved  
00  
01  
10  
11  
00  
01  
10  
11  
Inverted PWM  
PP=Push Pull, OD=Open Drain  
Table 5 - OUTSEL Bits Configuration  
SCOS  
Static Offset Correction of CL1 input channel used in inputs correction calculation.  
DCOS  
Dynamic Offset Correction of CL1 input channel used in inputs correction calculation.  
SSIN  
Offset Correction of CL2 input channel used in inputs correction calculation.  
DSIN  
Dynamic Offset Correction of CL2 input channel used in inputs correction calculation.  
GMTCH  
Value of the input channel gain mismatch correction gain used in inputs correction calculation.  
LX3301A Rev. 0.1  
13  
LX3301A Inductive Sensor Interface IC with Embedded MCU  
OSCOMP  
Maximum amplitude of the oscillator swing used in the inputs correction calculation. The maximum value of the  
OSCOMP is 255, step 1. Multiplied by 4 to convert as internal OSCOMP data.  
ORIGIN  
Offset value of the system origin relative to fore-and-after position. This is not a DC output offset adjustment. Verify  
LCLMP and HCLMP parameters are not limiting the output range. Multiplied by 2 to convert as internal ORIGIN data.  
HCLMP  
This parameter is set to high clamp level of output. Output will be clamped at this value if output swing can go above  
this level. The HCLMP value used in calculation is 8*value on W11[9:0]. It reduces the maximum output swing.  
Maximum level is achieved with HP = 1023.  
LCLMP  
This parameter sets the low clamp level of output. The output is clamped at this level if output swing can go below this  
level. The LCLMP value raises the minimum output value from zero. The LCLMP value used in calculation is 8*value  
on W10[9:0]. An output value of “zero” is achieved with LCLMP = 0. LCLMP setting value will overrides the HCLMP  
setting if both setting are crossed over.  
S0  
Slope of first linearization segment.  
X1 and Y1  
Value of the X and Y coordinates for the first linearization point. Multiplied by 2 to convert as internal data.  
X3 and Y3  
Value of the X and Y coordinates for the third linearization point. Multiplied by 2 to convert as internal data.  
X5 and Y5  
Value of the X and Y coordinates for the fifth (and last) linearization point. Multiplied by 2 to convert as internal data.  
S5  
Slope of the last linearization segment.  
Y2  
Value of the X2 is calculated by X1, X3 parameters as X2= (X1+X3)/2. Y2 value is the value that can adjust the  
coordinates for the second linearization point. Y2 value has polarity and calculated value of second coordinate (y) at  
X2 is y= ( Y1+Y3)/2 + Y2. Multiplied by 2 to convert as internal data.  
Y4  
Value of the X4 is calculated by X3, X5 parameters as X4= (X3+X5)/2. Y4 value is the value that can adjust the  
coordinates for the fourth linearization point. Y4 value has polarity and calculated value of fourth coordinate (y) at X4 is  
y= ( Y3+Y5)/2 + Y4. Multiplied by 2 to convert as internal data.  
CLSEL  
CLSEL bit selects CL1 or CL2 inputs as sine or cosine input. When CLSEL set to 1, then CL1 input is selected as sine  
value and CL2 input is selected as cosine input. When CLSEL=0, then CL1 input is selected as cosine value and CL2  
input is selected as sine value.  
14  
LX3301A Rev. 0.1  
Theory of Operation  
Theory of Operation  
Oscillator  
The on-chip oscillator provides a carrier signal for driving the primary coil of the inductive sensor via pins OSC1  
and OSC2. The carrier signal is generated by an internal current source which resonates with the primary inductors  
and external capacitors (which forms a tank circuit). The oscillator operates over a frequency range from 1MHz to  
5MHz according to the following equation:  
    
ꢆꢇꢇꢇꢇꢈꢉꢊꢋꢊꢇꢄꢇ  ꢇꢌꢍꢎꢏꢐꢑꢒꢍꢐꢊꢇꢓꢔꢇꢐꢓꢕꢖꢆ ꢅꢇ  ꢇꢗꢒꢍꢘꢕꢍꢙꢇꢐꢒꢚꢒꢐꢕꢑꢒꢍꢐꢊ  
ꢂꢃ ꢄꢅ  
The value of the inductor L is the most critical element in cross-coupled LC tank oscillator. Because the  
inductance is relatively small, the parasitic resistance of L can dominate and impact the ability to maintain oscillation.  
As such, the value of inductor L should be as large as possible and with a high Q factor.  
In most applications, the inductor L is implemented as traces on a printed circuit board. Depending upon the  
processing of the PCB, the height and width of the trace will vary, resulting in a variation of the inductance L and the  
parasitic resistance. Because these variations will change from PCB to PCB, it is necessary to calibrate each sensor  
PCB independently. Care should be taken to select a PCB source which can achieve manufacturing tolerances  
required by a given set of system requirements.  
The amplitude of the carrier signal is a function of the primary coil tank circuit configuration and feedback of the  
secondary coil signals from the CL1 and CL2 inputs. The shoulder signals of the tank circuit are detected by an  
internal circuit. It will distort the sinusoidal waveform if the tank circuit and secondary coil feedback signal is not  
within design limits.  
In order to detect system faults, the IC monitors the amplitude of the carrier signal on pin OSC1. When the  
amplitude is above, or below the specified amplitude (reference electrical spec ‘OSCILLATOR: VOS, Swing Voltage of  
OSC1&2’) the AOUT output pin will be forced to 0V. This output level indicates a system fault. When initially  
calibrating a sensor, the voltage on OSC1 should be monitored in order to verify that the amplitude is within the  
specified range. If the OSC1 voltage is too high, this indicates that the signal levels at CL1 and CL2 may be too low.  
If the OSC1 voltage is too low, this indicates that the signal levels at CL1 and CL2 may be too high.  
An internal feedback circuit adjusts the current drive of the oscillator in order to maintain the signal relationship  
a2 sin2 b2 cos2 k2  
; wherein 'k' is the function of the current source amplitude and coefficients 'a' and 'b' are  
a2 sin2  
b2 cos2  
the relative areas of the two secondary coils whose signals are applied to CL1 and CL2. The  
and  
are obtained by squaring the two input signals CL1 and CL2. In order to reduce the computation complexity, a and b  
are typically designed to be matched/equal. When the secondary coils are designed to be equal, the equation  
becomes a2 sin2   a2 cos2   a2  
. The letter 'a' in the equation is the fixed amplitude of the sensor signals. In  
another words, the oscillator circuit adjusts that carrier amplitude such that the input signals into CL1 and CL2 are  
maximized. This effectively cancels out non-linearity and variations in the sensor design.  
Input Amplifier and Signal Conditioning  
Pins CL1 and CL2 are the inputs to two analog signal processing paths. The initial block in each path is a first-  
order EMI filter which has a low pass cut-off frequency of 13.5MHz. Following the EMI filter is a demodulator circuit  
which removes the carrier such that the relative amplitudes of the CL1 and CL2 signals may be measured. In  
addition to demodulation, the circuit includes a phase detector which determines the phase of the input signal relative  
to the oscillator signal. This phase detection effectively generates a sign bit which allows for full 360° resolution in  
angular measurement applications.  
LX3301A Rev. 0.1  
15  
LX3301A Inductive Sensor Interface IC with Embedded MCU  
The output of demodulator is fed to the programmable front-end gain amplifier that can be controlled by “Front-End  
Gain AMPLIFIER Gain” in the configuration EEPROM. The amplifier can be programmable with 4 bits, where the  
0000b is default gain value that is 3.125. Bit value percentage changes can be done as shown:  
Bit  
Function  
BIT0  
BIT1  
BIT2  
BIT3  
Amplification: +3%  
Amplification: +6%  
Amplification: +12%  
Amplification: -24%  
The output of the FRONT-END GAIN AMPLIFIER is then passed through an anti-aliasing filter prior to input to the  
sigma-delta ADC.  
Sigma-Delta ADC with Digital Filters  
Each analog path includes a 4th-order 13-bit sigma-delta analog-to-digital converter (ADC) with precision internal  
voltage reference which produces true 12-bit measurement results. The sampling frequency for the ADC is derived  
from the main clock and selected by “Refresh” in the configuration EEPROM. The sampling clock for the ADC is  
derived from the main clock and selected as following table:  
Refresh  
00  
Function  
ADC clock=Main clock /8  
ADC clock=Main clock /16  
ADC clock=Main clock /32  
ADC clock=Main clock /64  
01  
10  
11  
The ADC decimation filter includes a SINC filter and a half-band FIR filter. The SINC filter provides -40dB of stop-  
band attenuation. Because the SINC filter does not provide the same sharp response as a finite/infinite filter  
response, a half-band FIR filter is also provided. The drawback of the FIR filter is that it adds delay to the input signal  
and this delay depends upon the number of coefficients and the output data rate. The filter can be selected by “Filter”  
in the configuration EEPROM.  
Embedded MCU  
The LX3301 includes an embedded 32-bit microcontroller core which is used to perform filtering and math  
functions on the digitized samples from the ADC. The device includes a set of pre-programmed filtering and math  
functions which can be selected by setting the appropriate bits in the on-chip configuration EEPROM. Also included  
in the on-chip configuration EEPROM are system calibration and linearization coefficient bits.  
Configuration EEPROM  
The LX3301A includes a user programmable 16 x 16bits EEPROM for storing configuration parameters into non-  
volatile memory. The device is placed into EEPROM programming mode (EEMode) by increasing the voltage on the  
VIN pin to 13V. Note that a delay of 10ms from power-on must be observed before EEPROM programming mode  
can be entered. Data is represented by one of two voltage levels on the VIN pin: a '1' is represented by increasing  
the VIN voltage to 16V, while a '0' is represented by decreasing the VIN voltage to 10V. The voltage for a given bit  
must be held for a minimum duration of 10µsec and between each bit the voltage must return to 13V for a minimum  
of 20µsec (see diagram below):  
16  
LX3301A Rev. 0.1  
Theory of Operation  
16V  
13V  
10V  
> 20µsec  
1
0
> 20µsec  
The first 3bits sent in EEMode are the command followed by the address bit which is corresponds to the logic level  
of AOUT. The programming commands are only executed if the address bit and the AOUT logic level match.  
For detailed programming, refer to AN-S1410 Application Note for LX3301AQPW EEPROM Programming Guide.  
PWM Controller  
A 16-bit digital PWM controller is implemented on chip. It can generate a pulse width modulated signal of varying  
period and duty cycle. The PWM module has a 2 bit pre-scalar to divide down the MCU clock signal. PWM frequency  
is selected by Refreshon configuration EEPROM. PWM mode can be set by OUTSEL”. When the DOUT PWM is  
selected, the pull up resistor between DOUT and VIN or VDD is needed, 10kis recommended. PWM frequency is  
trimmed at factory.  
AOUT  
AOUT has three functions that it can be programmed to provide either an analog output (amplified from DAC  
output), TD or a PWM output. PWM will be push pull operation. Also it is used as address pin for EEMODE. For  
analog output, a 12-bit digital to analog converter is implemented on the chip. The internal DAC supply voltage is  
VDD. The AOUT is amplified from DAC output and its supply voltage is from VIN. Therefore, AOUT output range is  
limited by the VIN voltage.  
Protection  
A versatile set of system diagnostic and protection functions are incorporated on the LX3301A to provide reliable  
protection of the device and the system. Key fault conditions and outputs status are shown as below table.  
Fault condition  
Outputs  
Status  
Remarks  
VIN under voltage  
Tristate  
UVLO  
VDD under voltage  
Forced low UVLO  
VDD unstable or oscillating  
CL1,2 disconnected  
Forced low VDD noise or improper decoupling  
Forced low  
CL1,2 signal over voltage  
CL1,2 signal too low  
Forced low Re-acquire inputs values at next refresh cycle  
Forced low Re-acquire inputs values at next refresh cycle  
Forced low  
OSC1 connection fail  
OSC1 over voltage  
Forced low  
OSC1 under voltage  
Forced low  
ROM or RAM test failure at startup  
EEPROM reading error or RAM writing failure  
Periodic ROM checksum failure  
Software does not follow intended execution flow  
CPU test vector failure  
Forced low Restart by µP  
Forced low Restart by µP  
Forced low Restart by µP  
Forced low Restart by µP  
Forced low Restart by µP  
Reverse Power & GROUND OFF Protection  
The LX3301A implements the reverse power protection feature when VIN and GND connections are reversed.  
When the power is connection are reversed, then internal circuits are disconnected from the supply and the outputs  
are pulled to ground. Also LX3301A implements the ground off protection feature when the ground is disconnected.  
LX3301A Rev. 0.1  
17  
LX3301A Inductive Sensor Interface IC with Embedded MCU  
High Voltage LDO  
A high voltage, low temperature drift, low-dropout, precision voltage regulator is implemented on chip. The  
regulator provides the internal power to the chip and also provides power for external components such as pull-up  
resistors. Decoupling caps is required to ensure high performance analog measurements; recommended value is  
1µF. VDD is pre-trimmed at factory.  
18  
LX3301A Rev. 0.1  
Reference Schematics  
Reference Schematics  
VIN  
PCB inductor(coils)  
coupled OSC &  
Sensor  
Coupler Board  
(Movable) Air coupled to  
Sensor Board  
VIN  
VIN  
Cc  
U1  
LX3301AQPW  
2.2nF *2  
R4  
10K  
R1  
10K  
25V  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
GND  
DOUT  
AOUT  
VIN  
SUB  
C1  
C2  
680pF *1  
OSC1  
OSC2  
EEWR  
CL2  
DOUT  
AOUT  
680pF *1  
R2  
VDD  
VIN  
NU  
VDD  
R3  
VDD  
NC  
C3  
C6  
C4  
10K  
GNDCL  
CL1  
1nF 100nF 1uF  
25V  
50V  
50V  
8
NC  
Note *1: Cap value is reference only. Need to select it to set desired  
oscillation frequency.  
*2: Cap value is reference only. Need to select it to resonate at  
oscillation frequency of sensor board.  
Figure 4 · LX3301A 14-Pin Reference Schematic  
LX3301A Rev. 0.1  
19  
LX3301A Inductive Sensor Interface IC with Embedded MCU  
Package Outline Dimensions  
Controlling dimensions are in millimeters, inches equivalents are shown for general information.  
MILLIMETERS  
Dim  
INCHES  
MIN  
MIN  
MAX  
1.10  
0.15  
0.95  
0.30  
0.20  
5.10  
MAX  
0.043  
0.006  
0.037  
0.012  
0.008  
0.201  
A
A1  
A2  
b
0.05  
0.85  
0.19  
0.09  
4.90  
0.002  
0.033  
0.007  
0.004  
0.193  
E
E1  
1 2 3  
e
c
D
D
E
6.4 BSC  
0.252  
E1  
e
4.30  
4.50  
0.169  
0.177  
A2  
A
0.65 BSC  
0.026 BSC  
SEATING PLANE  
L
b
c
L
0.45  
0°  
0.75  
8°  
0.017  
0°  
0.030  
8°  
A1  
θ
Θ
*Lead Coplanarity  
Note:  
1.Dimensions do not include mold flash or protrusions;  
these shall not exceed 0.155mm (.006”) on any side.  
Lead dimension shall not include solder coverage  
Figure 6 · PW 14-Pin TSSOP Package Dimensions  
PRELIMINARY DATA Information contained in this document is pre-production  
data and is proprietary to Microsemi. It may not be modified in any way without the  
express written consent of Microsemi. Product referred to herein is offered in pre-  
production form only and may not have completed Microsemi’s Quality Assurance  
process for Release to Production. Microsemi reserves the right to change or  
discontinue this proposed product at any time.  
20  
LX3301A Rev. 0.1  
Preliminary Datasheet  
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor  
and system solutions for communications, defense & security, aerospace and industrial  
markets. Products include high-performance and radiation-hardened analog mixed-signal  
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and  
synchronization devices and precise time solutions, setting the world’s standard for time; voice  
processing devices; RF solutions; discrete components; security technologies and scalable  
anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design  
capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has  
approximately 3,400 employees globally. Learn more at www.microsemi.com.  
Microsemi Corporate Headquarters  
One Enterprise, Aliso Viejo,  
CA 92656 USA  
Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or  
the suitability of its products and services for any particular purpose, nor does Microsemi assume any  
liability whatsoever arising out of the application or use of any product or circuit. The products sold  
hereunder and any other products sold by Microsemi have been subject to limited testing and should not  
be used in conjunction with mission-critical equipment or applications. Any performance specifications are  
believed to be reliable but are not verified, and Buyer must conduct and complete all performance and  
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not  
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s  
responsibility to independently determine suitability of any products and to test and verify the same. The  
information provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the  
Within the USA: +1 (800) 713-4113  
Outside the USA: +1 (949) 380-6100  
Sales: +1 (949) 380-6136  
Fax: +1 (949) 215-4996  
E-mail: sales.support@microsemi.com  
©
2015 Microsemi Corporation. All entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly  
rights reserved. Microsemi and the  
Microsemi logo are trademarks of  
Microsemi Corporation. All other  
trademarks and service marks are the  
property of their respective owners.  
or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such  
information itself or anything described by such information. Information provided in this document is  
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this  
document or to any products and services at any time without notice.  
LX3301A 0.1/07.15  

相关型号:

LX3301AQPW-TR

Inductive Sensor Interface IC with Embedded MCU
MICROSEMI

LX350

Flexible single and multiple outputs
ARTESYN

LX350-7617

Flexible single and multiple outputs
ARTESYN

LX350-7617-C

Flexible single and multiple outputs
ARTESYN

LX350-7617-C-S

Flexible single and multiple outputs
ARTESYN

LX350-7617-S

Flexible single and multiple outputs
ARTESYN

LX350-7620

Flexible single and multiple outputs
ARTESYN

LX350-7620-C

Flexible single and multiple outputs
ARTESYN

LX350-7620-C-S

Flexible single and multiple outputs
ARTESYN

LX350-7620-S

Flexible single and multiple outputs
ARTESYN

LX350-7624

Flexible single and multiple outputs
ARTESYN

LX350-7624-C

Flexible single and multiple outputs
ARTESYN