APT40N60LCFG [MICROSEMI]

Super Junction FREDFET; 超级结FREDFET
APT40N60LCFG
型号: APT40N60LCFG
厂家: Microsemi    Microsemi
描述:

Super Junction FREDFET
超级结FREDFET

晶体 晶体管 功率场效应晶体管 开关 脉冲 局域网
文件: 总5页 (文件大小:317K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
600V 40A 0.110  
APT40N60B2CF  
APT40N60LCF  
APT40N60B2CFG* APT40N60LCFG*  
*G Denotes RoHS Compliant, Pb Free Terminal Finish.  
Super Junction FREDFET  
COOLMOS  
T-MaxTM  
Power Semiconductors  
TO-264  
• Ultra Low R  
DS(ON)  
• Intrinsic Fast-Recovery Body Diode  
• Extreme Low Reverse Recovery Charge  
• Ideal For ZVS Applications  
• Low Miller Capacitance  
• Ultra Low Gate Charge, Q  
• Avalanche Energy Rated  
g
• Popular T-MAX™ or TO-264 Package  
dv  
• Extreme  
/
Rated  
dt  
D
S
Unless stated otherwise, Microsemi discrete FREDFETs contain a single FREDFET die. This device is made with two  
parallel FREDFET die. It is intended for switch-mode operation. It is not suitable for linear mode operation.  
G
MAXIMUM RATINGS  
All Ratings: T = 25°C unless otherwise specified.  
C
Symbol Parameter  
APT40N60B2CF(G)_LCF(G)  
UNIT  
VDSS  
Volts  
Drain-Source Voltage  
600  
40  
Continuous Drain Current @ TC = 25°C  
Continuous Drain Current @ TC = 100°C  
ID  
Amps  
26  
1
IDM  
Pulsed Drain Current  
80  
VGS  
Volts  
Watts  
W/°C  
Gate-Source Voltage Continuous  
±30  
417  
Total Power Dissipation @ TC = 25°C  
PD  
Linear Derating Factor  
3.33  
TJ,TSTG  
TL  
Operating and Storage Junction Temperature Range  
Lead Temperature: 0.063" from Case for 10 Sec.  
Drain-Source Voltage slope (VDS = 480V, ID = 40A, TJ = 125°C)  
-55 to 150  
260  
°C  
dv  
/
V/ns  
80  
20  
1
dt  
7
IAR  
EAR  
EAS  
Avalanche Current  
Amps  
7
Repetitive Avalanche Energy  
mJ  
4
690  
Single Pulse Avalanche Energy  
STATIC ELECTRICAL CHARACTERISTICS  
Symbol Characteristic / Test Conditions  
MIN  
TYP  
MAX  
UNIT  
BVDSS  
RDS(on)  
Drain-Source Breakdown Voltage (VGS = 0V, ID = 500µA)  
Volts  
600  
2
Drain-Source On-State Resistance  
(VGS = 10V, ID = 20A)  
0.110 Ohms  
Zero Gate Voltage Drain Current (VDS = 600V, VGS = 0V)  
Zero Gate Voltage Drain Current (VDS = 600V, VGS = 0V, TC = 150°C)  
Gate-Source Leakage Current (VGS = ±20V, VDS = 0V)  
Gate Threshold Voltage (VDS = VGS, ID = 2mA)  
4.2  
µA  
3400  
IDSS  
IGSS  
nA  
±100  
5
VGS(th)  
3
4
Volts  
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.  
Microsemi Website - http://www.microsemi.com  
"COOLMOS™ comprise a new family of transistors developed by Infineon Technologies AG. "COOLMOS" is a trade-  
mark of Infineon Technologies AG."  
APT40N60B2CF(G)_LCF(G)  
DYNAMIC CHARACTERISTICS  
Symbol  
Ciss  
MIN  
TYP  
MAX  
Characteristic  
UNIT  
Test Conditions  
Input Capacitance  
V
= 0V  
5040  
1365  
80  
GS  
Coss  
Crss  
V
= 25V  
pF  
Output Capacitance  
DS  
f = 1 MHz  
Reverse Transfer Capacitance  
Qg  
3
185  
36  
V
= 10V  
Total Gate Charge  
GS  
Qgs  
Qgd  
td(on)  
tr  
V
= 300V  
nC  
ns  
Gate-Source Charge  
Gate-Drain ("Miller") Charge  
Turn-on Delay Time  
Rise Time  
DD  
I
= 40A @ 25°C  
D
115  
12  
RESISTIVE SWITCHING  
V
= 15V  
GS  
15  
V
= 380V  
DD  
td(off)  
60  
Turn-off Delay Time  
Fall Time  
I
= 40A @ 25°C  
D
tf  
R
= 1.8  
6.4  
G
INDUCTIVE SWITCHING @ 25°C  
Eon  
Eoff  
6
725  
365  
Turn-on Switching Energy  
V
= 400V, V = 15V  
DD  
GS  
I
= 40A, R = 5Ω  
Turn-off Switching Energy  
D
G
µJ  
INDUCTIVE SWITCHING @ 125°C  
6
Eon  
Eoff  
1195  
440  
Turn-on Switching Energy  
V
= 400V, V = 15V  
DD  
GS  
I
= 40A, R = 5Ω  
Turn-off Switching Energy  
D
G
SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS  
Symbol Characteristic / Test Conditions  
MIN  
TYP  
MAX  
40  
UNIT  
IS  
Continuous Source Current (Body Diode)  
Amps  
1
ISM  
VSD  
Pulsed Source Current (Body Diode)  
80  
2
Diode Forward Voltage  
Peak Diode Recovery dv  
Reverse Recovery Time  
(VGS = 0V, IS = -40A)  
5
Volts  
V/ns  
2.4  
40  
dv  
/
/
dt  
dt  
T
j = 25°C  
195  
290  
1.8  
3.5  
trr  
ns  
(IS = -40A, di  
Reverse Recovery Charge  
(IS = -40A, di  
dt = 100A/µs)  
Peak Recovery Current  
(IS = -40A, di  
dt = 100A/µs)  
/dt = 100A/µs)  
T
T
T
T
T
j = 125°C  
j = 25°C  
j = 125°C  
j = 25°C  
j = 125°C  
Qrr  
µC  
/
17  
22  
IRRM  
Amps  
/
THERMAL CHARACTERISTICS  
Symbol Characteristic  
UNIT  
MIN  
TYP  
MAX  
0.30  
31  
RθJC  
RθJA  
Junction to Case  
°C/W  
Junction to Ambient  
1 Repetitive Rating: Pulse width limited by maximum junction  
temperature  
2 Pulse Test: Pulse width < 380 µs, Duty Cycle < 2%  
3 See MIL-STD-750 Method 3471  
4 Starting T = +25°C, L = 13.80mH, R = 25, Peak I = 10A  
j
G
L
dv  
5
/
numbers reflect the limitations of the test circuit rather than the  
dt  
di  
device itself. I ≤ -I 40A  
/
≤ 700A/µs  
V
R 480V T 125°C  
J
S
D
dt  
6 Eon includes diode reverse recovery. See figures 18, 20.  
7 Repetitive avalanche causes additional power losses that can be calcu-  
lated as PAV = E *f  
AR  
Microsemi reserves the right to change, without notice, the specifications and information contained herein.  
0.35  
0.30  
0.9  
0.25  
0.7  
0.20  
0.5  
0.15  
0.10  
Note:  
t
1
0.3  
t
2
t
1
0.05  
0
t
/
2
Duty Factor D =  
Peak T = P x Z  
0.1  
0.05  
SINGLE PULSE  
10-3  
+ T  
C
J
DM  
θJC  
10-5  
10-4  
10-2  
10-1  
1.0  
RECTANGULAR PULSE DURATION (SECONDS)  
FIGURE 1, MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs PULSE DURATION  
Typical Performance Curves  
APT40N60B2CF(G)_LCF(G)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
VGS = 15 &10 V  
8V  
TJ (°C)  
TC (°C)  
7.5V  
0.0136  
0.0289  
0.0988  
0.158  
Dissipated Power  
(Watts)  
7V  
0.00308  
0.00145  
0.00948  
0.231  
6.5V  
ZEXT are the external thermal  
impedances: Case to sink,  
sink to ambient, etc. Set to  
zero when modeling only  
the case to junction.  
10  
0
6V  
5.5V  
0
V
5
10  
15  
20  
, DRAIN-TO-SOURCE VOLTAGE (VOLTS)  
DS  
FIGURE 2, TRANSIENT THERMAL IMPEDANCE MODEL  
FIGURE 3, LOW VOLTAGE OUTPUT CHARACTERISTICS  
120  
1.40  
NORMALIZED TO  
VDS> ID(ON)  
x RDS(ON) MAX.  
250µSEC. PULSE TEST  
@ <0.5 % DUTY CYCLE  
V
= 10V  
@
20A  
GS  
100  
80  
60  
40  
20  
0
1.30  
1.20  
1.10  
1.00  
VGS=10V  
TJ = -55°C  
TJ = +25°C  
TJ = +125°C  
VGS=20V  
0.90  
0.80  
0
V
2
4
6
8
10  
0
10 20 30 40 50  
60 70 80  
, GATE-TO-SOURCE VOLTAGE (VOLTS)  
I , DRAIN CURRENT (AMPERES)  
GS  
D
FIGURE 4, TRANSFER CHARACTERISTICS  
FIGURE 5, R (ON) vs DRAIN CURRENT  
DS  
1.15  
1.10  
1.05  
1.00  
40  
35  
30  
25  
20  
15  
10  
0.95  
0.90  
5
0
25  
50  
75  
100  
125  
150  
-50  
0
50  
100  
150  
T , CASE TEMPERATURE (°C)  
T , JUNCTION TEMPERATURE (°C)  
C
J
FIGURE 6, MAXIMUM DRAIN CURRENT vs CASE TEMPERATURE  
FIGURE 7, BREAKDOWN VOLTAGE vs TEMPERATURE  
3.0  
1.2  
I
= 20A  
= 10V  
D
V
GS  
2.5  
2.0  
1.5  
1.0  
1.1  
1.0  
0.9  
0.8  
0.5  
0
0.7  
0.6  
-50 -25  
0
25 50  
75 100 125 150  
-50 -25  
0
25 50 75 100 125 150  
T , JUNCTION TEMPERATURE (°C)  
T , CASE TEMPERATURE (°C)  
J
C
FIGURE 8, ON-RESISTANCE vs. TEMPERATURE  
FIGURE 9, THRESHOLD VOLTAGE vs TEMPERATURE  
APT40N60B2CF(G)_LCF(G)  
30,000  
10,000  
Ciss  
1,000  
100  
10  
Coss  
Graph removed  
Crss  
0
V
10  
, DRAIN-TO-SOURCE VOLTAGE (VOLTS)  
DS  
20  
30  
40  
50  
V
, DRAIN-TO-SOURCE VOLTAGE (VOLTS)  
DS  
FIGURE 10, MAXIMUM SAFE OPERATING AREA  
FIGURE 11, CAPACITANCE vs DRAIN-TO-SOURCE VOLTAGE  
200  
16  
I
= 40A  
D
100  
12  
TJ =+150°C  
TJ =+25°C  
VDS=120V  
VDS=300V  
8
VDS=480V  
10  
4
0
1
0
50  
100  
150  
200  
250  
300  
0.3  
V
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
Q , TOTAL GATE CHARGE (nC)  
, SOURCE-TO-DRAIN VOLTAGE (VOLTS)  
g
SD  
FIGURE 12, GATE CHARGE vs GATE-TO-SOURCE VOLTAGE  
FIGURE 13, SOURCE-DRAIN DIODE FORWARD VOLTAGE  
180  
80  
V
= 400V  
DD  
= 5  
160  
R
T
70  
60  
50  
40  
30  
20  
10  
0
G
td(off)  
= 125°C  
J
140  
120  
L = 100µH  
V
= 400V  
DD  
= 5Ω  
R
T
tf  
G
100  
80  
60  
40  
20  
0
= 125°C  
J
L = 100µH  
tr  
td(on)  
0
10  
20  
30  
I
40  
(A)  
50  
60  
70  
0
10  
20  
30  
40  
(A)  
50  
60  
70  
I
D
D
FIGURE 14, DELAY TIMES vs CURRENT  
FIGURE 15, RISE AND FALL TIMES vs CURRENT  
2500  
2000  
1500  
1000  
500  
2500  
V
= 400V  
DD  
= 5Ω  
R
T
G
= 125°C  
J
2000  
L = 100µH  
includes  
E
on  
diode reverse recovery.  
Eon  
1500  
Eoff  
Eon  
1000  
V
I
= 400V  
DD  
= 40A  
D
T
= 125°C  
500  
0
J
L = 100µH  
includes  
Eoff  
E
on  
diode reverse recovery.  
0
0
10  
20  
30  
I
40  
(A)  
50  
60  
70  
0
10  
20  
30  
40  
50  
R , GATE RESISTANCE (Ohms)  
D
G
FIGURE 16, SWITCHING ENERGY vs CURRENT  
FIGURE 17, SWITCHING ENERGY VS. GATE RESISTANCE  
APT40N60B2CF(G)_LCF(G)  
90%  
Gate Voltage  
10%  
Gate Voltage  
T 125°C  
J
T 125°C  
J
td(off)  
td(on)  
tf  
tr  
Drain Voltage  
Drain Current  
90%  
90%  
5%  
10%  
5%  
Drain Current  
10%  
Drain Voltage  
0
Switching Energy  
Switching Energy  
Figure 19, Turn-off Switching Waveforms and Definitions  
Figure 18, Turn-on Switching Waveforms and Definitions  
APT30DQ60  
V
V
I
DS  
DD  
D
G
D.U.T.  
Figure 20, Inductive Switching Test Circuit  
T-MAXTM (B2) Package Outline (B2CF)  
TO-264 (L) Package Outline (LCF)  
SAC: Tin, Silver, Copper  
SAC: Tin, Silver, Copper  
e1  
e1  
4.69 (.185)  
4.60 (.181)  
5.21 (.205)  
5.31 (.209)  
15.49 (.610)  
16.26 (.640)  
19.51 (.768)  
20.50 (.807)  
1.49 (.059)  
2.49 (.098)  
1.80 (.071)  
2.01 (.079)  
3.10 (.122)  
3.48 (.137)  
5.38 (.212)  
6.20 (.244)  
5.79 (.228)  
6.20 (.244)  
20.80 (.819)  
21.46 (.845)  
25.48 (1.003)  
26.49 (1.043)  
2.87 (.113)  
3.12 (.123)  
4.50 (.177) Max.  
2.29 (.090)  
2.69 (.106)  
2.29 (.090)  
2.69 (.106)  
1.65 (.065)  
2.13 (.084)  
0.40 (.016)  
0.79 (.031)  
19.81 (.780)  
20.32 (.800)  
19.81 (.780)  
21.39 (.842)  
Gate  
Drain  
Source  
Gate  
Drain  
Source  
1.01 (.040)  
1.40 (.055)  
0.48 (.019)  
0.84 (.033)  
2.59 (.102)  
3.00 (.118)  
0.76 (.030)  
1.30 (.051)  
2.79 (.110)  
3.18 (.125)  
2.21 (.087)  
2.59 (.102)  
5.45 (.215) BSC  
2-Plcs.  
5.45 (.215) BSC  
2-Plcs.  
Dimensions in Millimeters and (Inches)  
These dimensions are equal to the TO-247 without the mounting hole.  
Dimensions in Millimeters and (Inches)  
Microsemi’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786  
5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.  

相关型号:

APT40SM120J

Power Field-Effect Transistor,
MICROSEMI

APT41F100J

N-Channel FREDFET
MICROSEMI

APT41F100J_10

N-Channel FREDFET
MICROSEMI

APT41H50B

N-Channel Ultrafast Recovery FREDFET
MICROSEMI

APT41H50S

N-Channel Ultrafast Recovery FREDFET
MICROSEMI

APT41M80B2

N-Channel MOSFET
MICROSEMI

APT41M80B2_09

N-Channel MOSFET
MICROSEMI

APT41M80L

N-Channel MOSFET
MICROSEMI

APT42F50B

N-Channel FREDFET
MICROSEMI

APT42F50B_09

N-Channel FREDFET
MICROSEMI

APT42F50S

N-Channel FREDFET
MICROSEMI

APT43F60B2

N-Channel FREDFET
MICROSEMI