A54SX16A-2PQ208 [MICROSEMI]

Field Programmable Gate Array, 1452 CLBs, 24000 Gates, 294MHz, 1452-Cell, CMOS, PQFP208, PLASTIC, QFP-208;
A54SX16A-2PQ208
型号: A54SX16A-2PQ208
厂家: Microsemi    Microsemi
描述:

Field Programmable Gate Array, 1452 CLBs, 24000 Gates, 294MHz, 1452-Cell, CMOS, PQFP208, PLASTIC, QFP-208

时钟 栅 可编程逻辑
文件: 总108页 (文件大小:716K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
v5.3  
SX-A Family FPGAs  
u
e
Configurable I/O Support for 3.3 V / 5 V PCI, 5 V  
TTL, 3.3 V LVTTL, 2.5 V LVCMOS2  
2.5 V, 3.3 V, and 5 V Mixed-Voltage Operation with  
5 V Input Tolerance and 5 V Drive Strength  
Devices Support Multiple Temperature Grades  
Configurable Weak-Resistor Pull-Up or Pull-Down  
for I/O at Power-Up  
Individual Output Slew Rate Control  
Up to 100% Resource Utilization and 100% Pin  
Locking  
Deterministic, User-Controllable Timing  
Unique In-System Diagnostic and Verification  
Capability with Silicon Explorer II  
Leading-Edge Performance  
250 MHz System Performance  
350 MHz Internal Performance  
Specifications  
12,000 to 108,000 Available System Gates  
Up to 360 User-Programmable I/O Pins  
Up to 2,012 Dedicated Flip-Flops  
0.22 μ / 0.25 μ CMOS Process Technology  
Features  
Boundary-Scan Testing in Compliance with IEEE  
Standard 1149.1 (JTAG)  
Actel Secure Programming Technology with  
FuseLock™ Prevents Reverse Engineering and  
Design Theft  
Hot-Swap Compliant I/Os  
Power-Up/Down Friendly (No Sequencing Required  
for Supply Voltages)  
66 MHz PCI Compliant  
Nonvolatile, Single-Chip Solution  
Table 1 SX-A Product Profile  
Device  
A54SX08A  
A54SX16A  
A54SX32A  
A54SX72A  
Capacity  
Typical Gates  
System Gates  
8,000  
12,000  
16,000  
24,000  
32,000  
48,000  
72,000  
108,000  
Logic Modules  
768  
512  
1,452  
924  
528  
2,880  
1,800  
1,080  
1,980  
6,036  
4,024  
2,012  
4,024  
Combinatorial Cells  
Dedicated Flip-Flops  
Maximum Flip-Flops  
256  
512 1  
990  
Maximum User I/Os  
Global Clocks  
130  
180  
249  
360  
3
3
3
3
Quadrant Clocks  
Boundary Scan Testing  
3.3 V / 5 V PCI  
0
Yes  
0
Yes  
0
Yes  
4
Yes  
Yes  
Yes  
Yes  
Yes  
Input Set-Up (External)  
Speed Grades2  
0 ns  
0 ns  
0 ns  
0 ns  
F, Std, –1, –2  
C, I, A, M  
F, Std, –1, –2, –3  
C, I, A, M  
F, Std, –1, –2, –3  
C, I, A, M  
F, Std, –1, –2, –3  
C, I, A, M  
Temperature Grades  
Package (by pin count)  
PQFP  
TQFP  
PBGA  
FBGA  
CQFP  
208  
208  
208  
100, 144, 176  
329  
144, 256, 484  
208, 256  
208  
100, 144  
100, 144  
144  
144, 256  
256, 484  
208, 256  
Notes:  
1. A maximum of 512 registers is possible if all 512 C cells are used to build an additional 256 registers.  
2. All –3 speed grades have been discontinued.  
February 2007  
i
© 2007 Actel Corporation  
See the Actel website for the latest version of the datasheet.  
 
 
SX-A Family FPGAs  
Ordering Information  
A54SX16A  
2
PQ  
208  
G
Application (Temperature Range)  
Blank = Commercial (0 to +70°)  
I
= Industrial (-40 to +85°C)  
A
= Automotive (-40 to +125°C)  
M = Military (-55 to +125°C)  
= MIL-STD-883 Class B  
B
Package Lead Count  
Lead-Free Packaging  
Blank = Standard Packaging  
G = RoHS Compliant Packaging  
Package Type  
BG = 1.27 mm Plastic Ball Grid Array  
FG = 1.0 mm Fine Pitch Ball Grid Array  
PQ = Plastic Quad Flat Pack  
TQ = Thin (1.4 mm) Quad Flat Pack  
CQ = Ceramic Quad Flat Pack1  
Speed Grade  
Blank = Standard Speed  
–1 = Approximately 15% Faster than Standard  
–2 = Approximately 25% Faster than Standard  
–3 = Approximately 35% Faster than Standard2  
–F = Approximately 40% Slower than Standard  
Part Number  
A54SX08A = 12,000 System Gates  
A54SX16A = 24,000 System Gates  
A54SX32A = 48,000 System Gates  
A54SX72A = 108,000 System Gates  
Notes:  
1. For more information about the CQFP package options, refer to the HiRel SX-A datasheet.  
2. All –3 speed grades have been discontinued.  
Device Resources  
User I/Os (Including Clock Buffers)  
208-Pin  
PQFP  
100-Pin  
TQFP  
144-Pin  
TQFP  
176-Pin  
TQFP  
329-Pin  
PBGA  
144-Pin  
FBGA  
256-Pin  
FBGA  
484-Pin  
FBGA  
Device  
A54SX08A  
A54SX16A  
A54SX32A  
A54SX72A  
130  
175  
174  
171  
81  
81  
81  
113  
113  
113  
111  
111  
111  
180  
203  
203  
147  
249  
249  
360  
Notes: Package Definitions: PQFP = Plastic Quad Flat Pack, TQFP = Thin Quad Flat Pack, PBGA = Plastic Ball Grid Array,  
FBGA = Fine Pitch Ball Grid Array  
ii  
v5.3  
 
SX-A Family FPGAs  
Temperature Grade Offering  
Package  
PQ208  
TQ100  
TQ144  
TQ176  
BG329  
FG144  
FG256  
FG484  
CQ208  
CQ256  
A54SX08A  
C,I,A,M  
A54SX16A  
C,I,A,M  
A54SX32A  
C,I,A,M  
C,I,A,M  
C,I,A,M  
C,I,M  
A54SX72A  
C,I,A,M  
C,I,A,M  
C,I,A,M  
C,I,A,M  
C,I,A,M  
C,I,M  
C,I,A,M  
C,I,A,M  
C,I,A,M  
C,I,A,M  
C,I,A,M  
C,I,M  
C,I,A,M  
C,I,A,M  
C,M,B  
C,M,B  
C,M,B  
C,M,B  
Notes:  
1. C = Commercial  
2. I = Industrial  
3. A = Automotive  
4. M = Military  
5. B = MIL-STD-883 Class B  
6. For more information regarding automotive products, refer to the SX-A Automotive Family FPGAs datasheet.  
7. For more information regarding Mil-Temp and ceramic packages, refer to the HiRel SX-A Family FPGAs datasheet.  
Speed Grade and Temperature Grade Matrix  
F
Std  
–1  
–2  
–3  
Commercial  
Industrial  
Discontinued  
Discontinued  
Automotive  
Military  
MIL-STD-883B  
Notes:  
1. For more information regarding automotive products, refer to the SX-A Automotive Family FPGAs datasheet.  
2. For more information regarding Mil-Temp and ceramic packages, refer to the HiRel SX-A Family FPGAs datasheet.  
Contact your Actel Sales representative for more information on availability.  
v5.3  
iii  
 
 
SX-A Family FPGAs  
Table of Contents  
General Description  
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
SX-A Family Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
Other Architectural Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7  
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15  
Detailed Specifications  
Operating Conditions  
Typical SX-A Standby Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
PCI Compliance for the SX-A Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11  
SX-A Timing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14  
Sample Path Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14  
Output Buffer Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15  
AC Test Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15  
Input Buffer Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16  
C-Cell Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16  
Cell Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16  
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17  
Temperature and Voltage Derating Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17  
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18  
Package Pin Assignments  
208-Pin PQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
100-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5  
144-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8  
176-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11  
329-Pin PBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14  
144-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-18  
256-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-21  
484-Pin FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26  
Datasheet Information  
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3  
International Traffic in Arms Regulations (ITAR) and Export Administration  
Regulations (EAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3  
iv  
v5.3  
SX-A Family FPGAs  
General Description  
Introduction  
SX-A Family Architecture  
The SX-A family’s device architecture provides a unique  
approach to module organization and chip routing that  
satisfies performance requirements and delivers the most  
The Actel SX-A family of FPGAs offers a cost-effective,  
single-chip solution for low-power, high-performance  
designs. Fabricated on 0.22 μm / 0.25 μm CMOS  
antifuse technology and with the support of 2.5 V,  
3.3 V and 5 V I/Os, the SX-A is a versatile platform to  
integrate designs while significantly reducing time-  
to-market.  
optimal register/logic mix for  
applications.  
a wide variety of  
Interconnection between these logic modules is achieved  
using Actel’s patented metal-to-metal programmable  
antifuse interconnect elements (Figure 1-1). The  
antifuses are normally open circuit and, when  
programmed, form  
connection.  
a
permanent low-impedance  
Routing Tracks  
Amorphous Silicon/  
Dielectric Antifuse  
Tungsten Plug Via  
Metal 4  
Metal 3  
Tungsten Plug Via  
Metal 2  
Metal 1  
Tungsten Plug Contact  
Silicon Substrate  
Note: The A54SX72A device has four layers of metal with the antifuse between Metal 3 and Metal 4. The A54SX08A, A54SX16A, and  
A54SX32A devices have three layers of metal with the antifuse between Metal 2 and Metal 3.  
Figure 1-1 SX-A Family Interconnect Elements  
v5.3  
1-1  
 
 
 
SX-A Family FPGAs  
different combinatorial functions to be implemented in a  
single module. An example of the flexibility enabled by  
the inversion capability is the ability to integrate a 3-input  
exclusive-OR function into a single C-cell. This facilitates  
construction of 9-bit parity-tree functions with 1.9 ns  
propagation delays.  
Logic Module Design  
The SX-A family architecture is described as a “sea-of-  
modules” architecture because the entire floor of the  
device is covered with a grid of logic modules with  
virtually no chip area lost to interconnect elements or  
routing. The Actel SX-A family provides two types of  
logic modules: the register cell (R-cell) and the  
combinatorial cell (C-cell).  
Module Organization  
The R-cell contains a flip-flop featuring asynchronous clear,  
asynchronous preset, and clock enable, using the S0 and S1  
lines control signals (Figure 1-2). The R-cell registers feature  
programmable clock polarity selectable on a register-by-  
register basis. This provides additional flexibility while  
allowing mapping of synthesized functions into the SX-A  
FPGA. The clock source for the R-cell can be chosen from  
either the hardwired clock, the routed clocks, or internal  
logic.  
All C-cell and R-cell logic modules are arranged into  
horizontal banks called Clusters. There are two types of  
Clusters: Type 1 contains two C-cells and one R-cell, while  
Type 2 contains one C-cell and two R-cells.  
Clusters are grouped together into SuperClusters  
(Figure 1-4 on page 1-3). SuperCluster 1 is a two-wide  
grouping of Type 1 Clusters. SuperCluster 2 is a two-wide  
group containing one Type 1 Cluster and one Type 2  
Cluster. SX-A devices feature more SuperCluster 1  
modules than SuperCluster 2 modules because designers  
typically require significantly more combinatorial logic  
than flip-flops.  
The C-cell implements a range of combinatorial functions  
of up to five inputs (Figure 1-3). Inclusion of the DB input  
and its associated inverter function allows up to 4,000  
Routed  
Data Input  
S1  
S0  
PRE  
DirectConnect  
Input  
D
Q
Y
HCLK  
CLKA,  
CLR  
CLKB,  
Internal Logic  
CKS  
CKP  
Figure 1-2 R-Cell  
D0  
D1  
Y
D2  
D3  
Sa  
Sb  
DB  
B1  
A1  
A0 B0  
Figure 1-3 C-Cell  
1-2  
v5.3  
 
 
SX-A Family FPGAs  
Routing Resources  
The routing and interconnect resources of SX-A devices  
are in the top two metal layers above the logic modules  
(Figure 1-1 on page 1-1), providing optimal use of silicon,  
thus enabling the entire floor of the device to be  
spanned with an uninterrupted grid of logic modules.  
Interconnection between these logic modules is achieved  
using the Actel patented metal-to-metal programmable  
antifuse interconnect elements. The antifuses are  
normally open circuits and, when programmed, form a  
permanent low-impedance connection.  
interconnection to achieve its fast signal propagation  
time of less than 0.1 ns.  
FastConnect enables horizontal routing between any  
two logic modules within a given SuperCluster, and  
vertical routing with the SuperCluster immediately  
below it. Only one programmable connection is used in a  
FastConnect path, delivering a maximum pin-to-pin  
propagation time of 0.3 ns.  
In addition to DirectConnect and FastConnect, the  
architecture makes use of two globally oriented routing  
resources known as segmented routing and high-drive  
routing. The Actel segmented routing structure provides  
a variety of track lengths for extremely fast routing  
between SuperClusters. The exact combination of track  
lengths and antifuses within each path is chosen by the  
100% automatic place-and-route software to minimize  
signal propagation delays.  
The general system of routing tracks allows any logic  
module in the array to be connected to any other logic  
or I/O module. Within this system, most connections  
typically require three or fewer antifuses, resulting in  
fast and predictable performance.  
The unique local and general routing structure featured  
in SX-A devices allows 100% pin-locking with full logic  
utilization, enables concurrent printed circuit board  
(PCB) development, reduces design time, and allows  
designers to achieve performance goals with minimum  
effort.  
Clusters and SuperClusters can be connected through the  
use of two innovative local routing resources called  
FastConnect and DirectConnect, which enable extremely  
fast and predictable interconnection of modules within  
Clusters and SuperClusters (Figure 1-5 on page 1-4 and  
Figure 1-6 on page 1-4). This routing architecture also  
dramatically reduces the number of antifuses required to  
complete  
a circuit, ensuring the highest possible  
performance, which is often required in applications such  
as fast counters, state machines, and data path logic. The  
interconnect elements (i.e., the antifuses and metal  
tracks) have lower capacitance and lower resistance than  
any other device of similar capacity, leading to the fastest  
signal propagation in the industry.  
DirectConnect is a horizontal routing resource that  
provides connections from a C-cell to its neighboring  
R-Cell in a given SuperCluster. DirectConnect uses a  
hardwired signal path requiring no programmable  
R-Cell  
C-Cell  
D0  
D1  
Routed  
S1  
Data Input  
S0  
PRE  
Y
D2  
D3  
DirectConnect  
D
Q
Y
Input  
Sb  
Sa  
HCLK  
CLKA,  
CLKB,  
Internal Logic  
CLR  
DB  
CKS  
CKP  
A0 B0  
A1 B1  
Cluster 1  
Cluster 1  
Cluster 2  
Cluster 1  
Type 1 SuperCluster  
Type 2 SuperCluster  
Figure 1-4 Cluster Organization  
v5.3  
1-3  
SX-A Family FPGAs  
DirectConnect  
• No Antifuses  
• 0.1 ns Maximum Routing Delay  
FastConnect  
• One Antifuse  
• 0.3 ns Maximum Routing Delay  
Routing Segments  
• Typically Two Antifuses  
• Max. Five Antifuses  
Figure 1-5 DirectConnect and FastConnect for Type 1 SuperClusters  
DirectConnect  
• No Antifuses  
• 0.1 ns Maximum Routing Delay  
FastConnect  
• One Antifuse  
• 0.3 ns Maximum Routing Delay  
Routing Segments  
• Typically Two Antifuses  
• Max. Five Antifuses  
Figure 1-6 DirectConnect and FastConnect for Type 2 SuperClusters  
1-4  
v5.3  
SX-A Family FPGAs  
Clock Resources  
Actel’s high-drive routing structure provides three clock  
networks (Table 1-1). The first clock, called HCLK, is  
hardwired from the HCLK buffer to the clock select  
multiplexor (MUX) in each R-cell. HCLK cannot be  
connected to combinatorial logic. This provides a fast  
propagation path for the clock signal. If not used, this  
pin must be set as Low or High on the board. It must not  
be left floating. Figure 1-7 describes the clock circuit  
used for the constant load HCLK and the macros  
supported.  
and CLKB circuit used and the macros supported in SX-A  
devices with the exception of A54SX72A.  
In addition, the A54SX72A device provides four  
quadrant clocks (QCLKA, QCLKB, QCLKC, and QCLKD—  
corresponding to bottom-left, bottom-right, top-left,  
and top-right locations on the die, respectively), which  
can be sourced from external pins or from internal logic  
signals within the device. Each of these clocks can  
individually drive up to an entire quadrant of the chip,  
or they can be grouped together to drive multiple  
quadrants (Figure 1-9 on page 1-6). QCLK pins can  
function as user I/O pins. If not used, the QCLK pins  
must be tied Low or High on the board and must not be  
left floating.  
HCLK does not function until the fourth clock cycle each  
time the device is powered up to prevent false output  
levels due to any possible slow power-on-reset signal and  
fast start-up clock circuit. To activate HCLK from the first  
cycle, the TRST pin must be reserved in the Design  
software and the pin must be tied to GND on the board.  
For more information on how to use quadrant clocks in  
the A54SX72A device, refer to the Global Clock Networks  
in Actel’s Antifuse Devices and Using A54SX72A and  
RT54SX72S Quadrant Clocks application notes.  
Two additional clocks (CLKA, CLKB) are global clocks that  
can be sourced from external pins or from internal logic  
signals within the SX-A device. CLKA and CLKB may be  
connected to sequential cells or to combinational logic. If  
CLKA or CLKB pins are not used or sourced from signals,  
these pins must be set as Low or High on the board. They  
must not be left floating. Figure 1-8 describes the CLKA  
The CLKA, CLKB, and QCLK circuits for A54SX72A as well  
as the macros supported are shown in Figure 1-10 on  
page 1-6. Note that bidirectional clock buffers are only  
available in A54SX72A. For more information, refer to  
the "Pin Description" section on page 1-15.  
Table 1-1 SX-A Clock Resources  
A54SX08A  
A54SX16A  
A54SX32A  
A54SX72A  
Routed Clocks (CLKA, CLKB)  
2
1
0
2
1
0
2
1
0
2
1
4
Hardwired Clocks (HCLK)  
Quadrant Clocks (QCLKA, QCLKB, QCLKC, QCLKD)  
Constant Load  
Clock Network  
HCLKBUF  
Figure 1-7 SX-A HCLK Clock Buffer  
Clock Network  
From Internal Logic  
CLKBUF  
CLKBUFI  
CLKINT  
CLKINTI  
Figure 1-8 SX-A Routed Clock Buffer  
v5.3  
1-5  
 
 
 
 
 
SX-A Family FPGAs  
4 QCLKBUFS  
4
Quadrant 2  
Quadrant 3  
5:1  
5:1  
QCLKINT (to array)  
Quadrant 0  
QCLKINT (to array)  
4
Quadrant 1  
5:1  
5:1  
QCLKINT (to array)  
QCLKINT (to array)  
Figure 1-9 SX-A QCLK Architecture  
OE  
From Internal Logic  
Clock Network  
From Internal Logic  
CLKBUF  
CLKBUFI  
CLKINT  
CLKINTI  
CLKBIBUF  
CLKBIBUFI  
QCLKBUF  
QCLKBUFI  
QCLKINT  
QCLKINTI  
QCLKBIBUF  
QCLKBIBUFI  
Figure 1-10 A54SX72A Routed Clock and QCLK Buffer  
1-6  
v5.3  
SX-A Family FPGAs  
I/O Modules  
For a simplified I/O schematic, refer to Figure 1 in the  
Other Architectural Features  
application note, Actel eX, SX-A, and RTSX-S I/Os.  
Technology  
Each user I/O on an SX-A device can be configured as an  
input, an output, a tristate output, or a bidirectional pin.  
Mixed I/O standards can be set for individual pins,  
though this is only allowed with the same voltage as the  
input. These I/Os, combined with array registers, can  
achieve clock-to-output-pad timing as fast as 3.8 ns, even  
without the dedicated I/O registers. In most FPGAs, I/O  
cells that have embedded latches and flip-flops,  
requiring instantiation in HDL code; this is a design  
complication not encountered in SX-A FPGAs. Fast pin-  
to-pin timing ensures that the device is able to interface  
with any other device in the system, which in turn  
enables parallel design of system components and  
reduces overall design time. All unused I/Os are  
configured as tristate outputs by the Actel Designer  
software, for maximum flexibility when designing new  
boards or migrating existing designs.  
SX-A I/Os should be driven by high-speed push-pull  
devices with a low-resistance pull-up device when being  
configured as tristate output buffers. If the I/O is driven  
by a voltage level greater than VCCI and a fast push-pull  
device is NOT used, the high-resistance pull-up of the  
driver and the internal circuitry of the SX-A I/O may  
create a voltage divider. This voltage divider could pull  
the input voltage below specification for some devices  
connected to the driver. A logic '1' may not be correctly  
presented in this case. For example, if an open drain  
driver is used with a pull-up resistor to 5 V to provide the  
logic '1' input, and VCCI is set to 3.3 V on the SX-A device,  
the input signal may be pulled down by the SX-A input.  
The Actel SX-A family is implemented on a high-voltage,  
twin-well CMOS process using 0.22 μ / 0.25 μ design  
rules. The metal-to-metal antifuse is comprised of a  
combination of amorphous silicon and dielectric material  
with barrier metals and has a programmed ('on' state)  
resistance of 25 Ω with capacitance of 1.0 fF for low  
signal impedance.  
Performance  
The unique architectural features of the SX-A family  
enable the devices to operate with internal clock  
frequencies of 350 MHz, causing very fast execution of  
even complex logic functions. The SX-A family is an  
optimal platform upon which to integrate the  
functionality previously contained in multiple complex  
programmable logic devices (CPLDs). In addition, designs  
that previously would have required a gate array to meet  
performance goals can be integrated into an SX-A device  
with dramatic improvements in cost and time-to-market.  
Using timing-driven place-and-route tools, designers can  
achieve highly deterministic device performance.  
User Security  
Reverse engineering is virtually impossible in SX-A  
devices because it is extremely difficult to distinguish  
between programmed and unprogrammed antifuses. In  
addition, since SX-A is a nonvolatile, single-chip solution,  
there is no configuration bitstream to intercept at device  
power-up.  
Each I/O module has an available power-up resistor of  
approximately 50 kΩ that can configure the I/O in a  
known state during power-up. For nominal pull-up and  
pull-down resistor values, refer to Table 1-4 on page 1-8  
of the application note Actel eX, SX-A, and RTSX-S I/Os.  
Just slightly before VCCA reaches 2.5 V, the resistors are  
disabled, so the I/Os will be controlled by user logic. See  
Table 1-2 on page 1-8 and Table 1-3 on page 1-8 for  
more information concerning available I/O features.  
The Actel FuseLock advantage ensures that unauthorized  
users will not be able to read back the contents of an  
Actel antifuse FPGA. In addition to the inherent  
strengths of the architecture, special security fuses that  
prevent internal probing and overwriting are hidden  
throughout the fabric of the device. They are located  
where they cannot be accessed or bypassed without  
destroying access to the rest of the device, making both  
invasive and more-subtle noninvasive attacks ineffective  
against Actel antifuse FPGAs.  
Look for this symbol to ensure your valuable IP is secure  
(Figure 1-11).  
u
e
Figure 1-11 FuseLock  
For more information, refer to Actel’s Implementation of  
Security in Actel Antifuse FPGAs application note.  
v5.3  
1-7  
 
 
 
SX-A Family FPGAs  
Power-Up/Down and Hot Swapping  
SX-A I/Os are configured to be hot-swappable, with the  
exception of 3.3 V PCI. During power-up/down (or partial  
up/down), all I/Os are tristated. VCCA and VCCI do not  
have to be stable during power-up/down, and can be  
powered up/down in any order. When the SX-A device is  
plugged into an electrically active system, the device will  
not degrade the reliability of or cause damage to the  
host system. The device’s output pins are driven to a high  
impedance state until normal chip operating conditions  
are reached. Table 1-4 summarizes the VCCA voltage at  
which the I/Os behave according to the user’s design for  
an SX-A device at room temperature for various ramp-up  
rates. The data reported assumes a linear ramp-up  
profile to 2.5 V. For more information on power-up and  
hot-swapping, refer to the application note, Actel SX-A  
and RT54SX-S Devices in Hot-Swap and Cold-Sparing  
Applications.  
Table 1-2 I/O Features  
Function  
Description  
Input Buffer Threshold Selections  
5 V: PCI, TTL  
3.3 V: PCI, LVTTL  
2.5 V: LVCMOS2 (commercial only)  
Flexible Output Driver  
Output Buffer  
5 V: PCI, TTL  
3.3 V: PCI, LVTTL  
2.5 V: LVCMOS2 (commercial only)  
“Hot-Swap” Capability (3.3 V PCI is not hot swappable)  
I/O on an unpowered device does not sink current  
Can be used for “cold-sparing”  
Selectable on an individual I/O basis  
Individually selectable slew rate; high slew or low slew (The default is high slew rate).  
The slew is only affected on the falling edge of an output. Rising edges of outputs are  
not affected.  
Power-Up  
Individually selectable pull-ups and pull-downs during power-up (default is to power-up  
in tristate)  
Enables deterministic power-up of device  
VCCA and VCCI can be powered in any order  
Table 1-3 I/O Characteristics for All I/O Configurations  
Hot Swappable  
Slew Rate Control  
Power-Up Resistor  
Pull-up or pull-down  
Pull-up or pull-down  
Pull-up or pull-down  
TTL, LVTTL, LVCMOS2  
3.3 V PCI  
Yes  
No  
Yes  
Yes. Only affects falling edges of outputs  
No. High slew rate only  
5 V PCI  
No. High slew rate only  
Table 1-4 Power-Up Time at which I/Os Become Active  
Supply Ramp Rate 0.25 V/μs 0.025 V/μs 5 V/ms  
2.5 V/ms  
ms  
0.5 V/ms 0.25 V/ms 0.1 V/ms 0.025 V/ms  
Units  
μs  
10  
10  
10  
10  
μs  
96  
ms  
ms  
2.7  
2.5  
2.8  
2.6  
ms  
5.4  
4.7  
5.2  
5.0  
ms  
12.9  
11.0  
12.1  
12.1  
ms  
50.8  
41.6  
47.2  
47.2  
A54SX08A  
A54SX16A  
A54SX32A  
A54SX72A  
0.34  
0.36  
0.46  
0.41  
0.65  
100  
100  
100  
0.62  
0.74  
0.67  
1-8  
v5.3  
 
 
 
 
 
SX-A Family FPGAs  
Flexible Mode  
Boundary-Scan Testing (BST)  
In Flexible mode, TDI, TCK, and TDO may be employed as  
either user I/Os or as JTAG input pins. The internal  
resistors on the TMS and TDI pins are not present in  
flexible JTAG mode.  
All SX-A devices are IEEE 1149.1 compliant and offer  
superior diagnostic and testing capabilities by providing  
Boundary Scan Testing (BST) and probing capabilities.  
The BST function is controlled through the special JTAG  
pins (TMS, TDI, TCK, TDO, and TRST). The functionality of  
the JTAG pins is defined by two available modes:  
Dedicated and Flexible. TMS cannot be employed as a  
user I/O in either mode.  
To select the Flexible mode, uncheck the Reserve JTAG  
box in the Device Selection Wizard dialog in the Actel  
Designer software. In Flexible mode, TDI, TCK, and TDO  
pins may function as user I/Os or BST pins. The  
functionality is controlled by the BST Test Access Port  
(TAP) controller. The TAP controller receives two control  
inputs, TMS and TCK. Upon power-up, the TAP controller  
enters the Test-Logic-Reset state. In this state, TDI, TCK,  
and TDO function as user I/Os. The TDI, TCK, and TDO are  
transformed from user I/Os into BST pins when a rising  
edge on TCK is detected while TMS is at logic low. To  
return to Test-Logic Reset state, TMS must be high for at  
least five TCK cycles. An external 10 k pull-up resistor  
to VCCI should be placed on the TMS pin to pull it  
High by default.  
Dedicated Mode  
In Dedicated mode, all JTAG pins are reserved for BST;  
designers cannot use them as regular I/Os. An internal  
pull-up resistor is automatically enabled on both TMS  
and TDI pins, and the TMS pin will function as defined in  
the IEEE 1149.1 (JTAG) specification.  
To select Dedicated mode, the user must reserve the  
JTAG pins in Actel’s Designer software. Reserve the JTAG  
pins by checking the Reserve JTAG box in the Device  
Selection Wizard (Figure 1-12).  
Table 1-6  
describes  
the  
different  
configuration  
The default for the software is Flexible mode; all boxes  
are unchecked. Table 1-5 lists the definitions of the  
options in the Device Selection Wizard.  
requirements of BST pins and their functionality in  
different modes.  
Table 1-6 Boundary-Scan Pin Configurations and  
Functions  
Designer  
"Reserve JTAG"  
Selection  
TAP Controller  
State  
Mode  
Dedicated (JTAG)  
Flexible (User I/O)  
Flexible (JTAG)  
Checked  
Unchecked  
Unchecked  
Any  
Test-Logic-Reset  
Any EXCEPT Test-  
Logic-Reset  
TRST Pin  
Figure 1-12 Device Selection Wizard  
Table 1-5 Reserve Pin Definitions  
The TRST pin functions as a dedicated Boundary-Scan  
Reset pin when the Reserve JTAG Test Reset option is  
selected as shown in Figure 1-12. An internal pull-up  
resistor is permanently enabled on the TRST pin in this  
mode. Actel recommends connecting this pin to ground  
in normal operation to keep the JTAG state controller in  
the Test-Logic-Reset state. When JTAG is being used, it  
can be left floating or can be driven high.  
Pin  
Function  
Reserve JTAG  
Keeps pins from being used and  
changes the behavior of JTAG pins (no  
pull-up on TMS)  
Reserve JTAG Test Regular I/O or JTAG reset with an  
When the Reserve JTAG Test Reset option is not  
selected, this pin will function as a regular I/O. If unused  
as an I/O in the design, it will be configured as a tristated  
output.  
Reset  
internal pull-up  
Reserve Probe  
Keeps pins from being used or regular  
I/O  
v5.3  
1-9  
 
 
 
 
 
 
 
SX-A Family FPGAs  
JTAG Instructions  
Table 1-7 lists the supported instructions with the corresponding IR codes for SX-A devices.  
Table 1-8 lists the codes returned after executing the IDCODE instruction for SX-A devices. Note that bit 0 is always '1'.  
Bits 11-1 are always '02F', which is the Actel manufacturer code.  
Table 1-7 JTAG Instruction Code  
Instructions (IR4:IR0)  
EXTEST  
Binary Code  
00000  
SAMPLE/PRELOAD  
INTEST  
00001  
00010  
USERCODE  
IDCODE  
00011  
00100  
HighZ  
01110  
CLAMP  
01111  
Diagnostic  
BYPASS  
10000  
11111  
Reserved  
All others  
Table 1-8 JTAG Instruction Code  
Device  
Process  
Revision  
Bits 31-28  
Bits 27-12  
40B4, 42B4  
40B4, 42B4  
40B8, 42B8  
40B8, 42B8  
22B8  
A54SX08A  
0.22 µ  
0
1
0
1
1
0
1
1
0
1
1
8, 9  
A, B  
9
A54SX16A  
A54SX32A  
A54SX72A  
0.22 µ  
B
0.25 µ  
0.2 2µ  
B
9
40BD, 42BD  
40BD, 42BD  
22BD  
B
0.25 µ  
0.22 µ  
B
9
40B2, 42B2  
40B2, 42B2  
22B2  
B
0.25 µ  
B
1-10  
v5.3  
 
 
 
SX-A Family FPGAs  
Probing Capabilities  
SX-A devices also provide an internal probing capability  
that is accessed with the JTAG pins. The Silicon Explorer II  
diagnostic hardware is used to control the TDI, TCK, TMS,  
and TDO pins to select the desired nets for debugging.  
The user assigns the selected internal nets in Actel Silicon  
Explorer II software to the PRA/PRB output pins for  
observation. Silicon Explorer II automatically places the  
device into JTAG mode. However, probing functionality is  
only activated when the TRST pin is driven high or left  
floating, allowing the internal pull-up resistor to pull  
TRST High. If the TRST pin is held Low, the TAP controller  
remains in the Test-Logic-Reset state so no probing can  
be performed. However, the user must drive the TRST pin  
High or allow the internal pull-up resistor to pull TRST  
High.  
When selecting the Reserve Probe Pin box as shown in  
Figure 1-12 on page 1-9, direct the layout tool to reserve  
the PRA and PRB pins as dedicated outputs for probing.  
This Reserve option is merely a guideline. If the designer  
assigns user I/Os to the PRA and PRB pins and selects the  
Reserve Probe Pin option, Designer Layout will  
override the Reserve Probe Pin option and place the  
user I/Os on those pins.  
To allow probing capabilities, the security fuse must not  
be programmed. Programming the security fuse disables  
the JTAG and probe circuitry. Table 1-9 summarizes the  
possible device configurations for probing once the  
device leaves the Test-Logic-Reset JTAG state.  
Table 1-9 Device Configuration Options for Probe Capability (TRST Pin Reserved)  
JTAG Mode  
TRST1  
Security Fuse Programmed  
PRA, PRB2  
User I/O3  
TDI, TCK, TDO2  
JTAG Disabled  
JTAG I/O  
Dedicated  
Low  
No  
No  
No  
No  
Yes  
High  
Low  
Probe Circuit Outputs  
User I/O3  
Flexible  
User I/O3  
High  
Probe Circuit Outputs  
Probe Circuit Secured  
JTAG I/O  
Probe Circuit Secured  
Notes:  
1. If the TRST pin is not reserved, the device behaves according to TRST = High as described in the table.  
2. Avoid using the TDI, TCK, TDO, PRA, and PRB pins as input or bidirectional ports. Since these pins are active during probing, input  
signals will not pass through these pins and may cause contention.  
3. If no user signal is assigned to these pins, they will behave as unused I/Os in this mode. Unused pins are automatically tristated by  
the Designer software.  
v5.3  
1-11  
 
 
SX-A Family FPGAs  
PRA/PRB pins for observation. Figure 1-13 illustrates the  
interconnection between Silicon Explorer II and the FPGA  
to perform in-circuit verification.  
SX-A Probe Circuit Control Pins  
SX-A devices contain internal probing circuitry that  
provides built-in access to every node in a design,  
enabling 100% real-time observation and analysis of a  
device's internal logic nodes without design iteration.  
The probe circuitry is accessed by Silicon Explorer II, an  
easy to use, integrated verification and logic analysis tool  
that can sample data at 100 MHz (asynchronous) or  
66 MHz (synchronous). Silicon Explorer II attaches to a  
PC’s standard COM port, turning the PC into a fully  
functional 18-channel logic analyzer. Silicon Explorer II  
allows designers to complete the design verification  
process at their desks and reduces verification time from  
several hours per cycle to a few seconds.  
Design Considerations  
In order to preserve device probing capabilities, users  
should avoid using the TDI, TCK, TDO, PRA, and PRB pins  
as input or bidirectional ports. Since these pins are active  
during probing, critical input signals through these pins  
are not available. In addition, the security fuse must not  
be programmed to preserve probing capabilities. Actel  
recommends that you use a 70 Ω series termination  
resistor on every probe connector (TDI, TCK, TMS, TDO,  
PRA, PRB). The 70 Ω series termination is used to prevent  
data transmission corruption during probing and  
reading back the checksum.  
The Silicon Explorer II tool uses the boundary-scan ports  
(TDI, TCK, TMS, and TDO) to select the desired nets for  
verification. The selected internal nets are assigned to the  
SX-A FPGA  
70 Ω  
70 Ω  
70 Ω  
TDI  
TCK  
TMS  
Silicon Explorer II  
Serial Connection  
70 Ω  
TDO  
70 Ω  
70 Ω  
PRA  
PRB  
Figure 1-13 Probe Setup  
1-12  
v5.3  
 
 
 
 
SX-A Family FPGAs  
Design Environment  
The SX-A family of FPGAs is fully supported by both Actel  
Libero® Integrated Design Environment (IDE) and  
Designer FPGA development software. Actel Libero IDE is  
Programming  
Device programming is supported through Silicon  
Sculptor series of programmers. In particular, Silicon  
Sculptor is compact, robust, single-site and multi-site  
device programmer for the PC.  
a
design management environment, seamlessly  
integrating design tools while guiding the user through  
the design flow, managing all design and log files, and  
passing necessary design data among tools. Additionally,  
Libero IDE allows users to integrate both schematic and  
HDL synthesis into a single flow and verify the entire  
design in a single environment. Libero IDE includes  
Synplify® for Actel from Synplicity®, ViewDraw® for  
Actel from Mentor Graphics®, ModelSim® HDL Simulator  
from Mentor Graphics, WaveFormer Lite™ from  
SynaptiCAD™, and Designer software from Actel. Refer  
to the Libero IDE flow diagram for more information  
(located on the Actel website).  
With standalone software, Silicon Sculptor  
allows  
concurrent programming of multiple units from the  
same PC, ensuring the fastest programming times  
possible. Each fuse is subsequently verified by Silicon  
Sculptor II to insure correct programming. In addition,  
integrity tests ensure that no extra fuses are  
programmed. Silicon Sculptor also provides extensive  
hardware self-testing capability.  
The procedure for programming an SX-A device using  
Silicon Sculptor is as follows:  
1. Load the .AFM file  
Actel Designer software is a place-and-route tool and  
provides a comprehensive suite of backend support tools  
for FPGA development. The Designer software includes  
2. Select the device to be programmed  
3. Begin programming  
When the design is ready to go to production, Actel  
offers device volume-programming services either  
through distribution partners or via in-house  
programming from the factory.  
timing-driven place-and-route, and  
a
world-class  
integrated static timing analyzer and constraints editor.  
With the Designer software, a user can select and lock  
package pins while only minimally impacting the results  
of place-and-route. Additionally, the back-annotation  
flow is compatible with all the major simulators and the  
simulation results can be cross-probed with Silicon  
Explorer II, Actel’s integrated verification and logic  
analysis tool. Another tool included in the Designer  
software is the SmarGen core generator, which easily  
creates popular and commonly used logic functions for  
implementation in your schematic or HDL design. Actel's  
Designer software is compatible with the most popular  
FPGA design entry and verification tools from companies  
such as Mentor Graphics, Synplicity, Synopsys, and  
Cadence Design Systems. The Designer software is  
available for both the Windows and UNIX operating  
systems.  
For detailed information on programming, read the  
following documents Programming Antifuse Devices and  
Silicon Sculptor User’s Guide.  
v5.3  
1-13  
 
 
SX-A Family FPGAs  
Related Documents  
Application Notes  
Global Clock Networks in Actel’s Antifuse Devices  
http://www.actel.com/documents/GlobalClk_AN.pdf  
Using A54SX72A and RT54SX72S Quadrant Clocks  
http://www.actel.com/documents/QCLK_AN.pdf  
Implementation of Security in Actel Antifuse FPGAs  
http://www.actel.com/documents/Antifuse_Security_AN.pdf  
Actel eX, SX-A, and RTSX-S I/Os  
http://www.actel.com/documents/AntifuseIO_AN.pdf  
Actel SX-A and RT54SX-S Devices in Hot-Swap and Cold-Sparing Applications  
http://www.actel.com/documents/HotSwapColdSparing_AN.pdf  
Programming Antifuse Devices  
http://www.actel.com/documents/AntifuseProgram_AN.pdf  
Datasheets  
HiRel SX-A Family FPGAs  
http://www.actel.com/documents/HRSXA_DS.pdf  
SX-A Automotive Family FPGAs  
http://www.actel.com/documents/SXA_Auto_DS.pdf  
User’s Guides  
Silicon Sculptor User’s Guide  
http://www.actel.com/documents/SiliSculptII_Sculpt3_ug.pdf  
1-14  
v5.3  
SX-A Family FPGAs  
PRA/B, I/O  
Probe A/B  
Pin Description  
The Probe pin is used to output data from any user-  
defined design node within the device. This independent  
diagnostic pin can be used in conjunction with the other  
probe pin to allow real-time diagnostic output of any  
signal path within the device. The Probe pin can be used  
as a user-defined I/O when verification has been  
completed. The pin’s probe capabilities can be  
permanently disabled to protect programmed design  
confidentiality.  
CLKA/B, I/O  
Clock A and B  
These pins are clock inputs for clock distribution  
networks. Input levels are compatible with standard TTL,  
LVTTL, LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. The  
clock input is buffered prior to clocking the R-cells. When  
not used, this pin must be tied Low or High (NOT left  
floating) on the board to avoid unwanted power  
consumption.  
TCK, I/O  
Test Clock  
For A54SX72A, these pins can also be configured as user  
I/Os. When employed as user I/Os, these pins offer built-  
in programmable pull-up or pull-down resistors active  
during power-up only. When not used, these pins must  
be tied Low or High (NOT left floating).  
Test clock input for diagnostic probe and device  
programming. In Flexible mode, TCK becomes active  
when the TMS pin is set Low (refer to Table 1-6 on  
page 1-9). This pin functions as an I/O when the  
boundary scan state machine reaches the "logic reset"  
state.  
QCLKA/B/C/D, I/O Quadrant Clock A, B, C, and D  
These four pins are the quadrant clock inputs and are  
only used for A54SX72A with A, B, C, and  
D
TDI, I/O  
Test Data Input  
corresponding to bottom-left, bottom-right, top-left,  
and top-right quadrants, respectively. They are clock  
inputs for clock distribution networks. Input levels are  
compatible with standard TTL, LVTTL, LVCMOS2, 3.3 V  
PCI, or 5 V PCI specifications. Each of these clock inputs  
can drive up to a quarter of the chip, or they can be  
grouped together to drive multiple quadrants. The clock  
input is buffered prior to clocking the R-cells. When not  
used, these pins must be tied Low or High on the board  
(NOT left floating).  
These pins can also be configured as user I/Os. When  
employed as user I/Os, these pins offer built-in  
programmable pull-up or pull-down resistors active  
during power-up only.  
Serial input for boundary scan testing and diagnostic  
probe. In Flexible mode, TDI is active when the TMS pin is  
set Low (refer to Table 1-6 on page 1-9). This pin  
functions as an I/O when the boundary scan state  
machine reaches the “logic reset” state.  
TDO, I/O  
Test Data Output  
Serial output for boundary scan testing. In flexible mode,  
TDO is active when the TMS pin is set Low (refer to  
Table 1-6 on page 1-9). This pin functions as an I/O when  
the boundary scan state machine reaches the "logic  
reset" state. When Silicon Explorer II is being used, TDO  
will act as an output when the checksum command is  
run. It will return to user /IO when checksum is complete.  
GND  
Ground  
TMS  
Test Mode Select  
Low supply voltage.  
The TMS pin controls the use of the IEEE 1149.1  
Boundary Scan pins (TCK, TDI, TDO, TRST). In flexible  
mode when the TMS pin is set Low, the TCK, TDI, and  
TDO pins are boundary scan pins (refer to Table 1-6 on  
page 1-9). Once the boundary scan pins are in test mode,  
they will remain in that mode until the internal  
boundary scan state machine reaches the logic reset  
state. At this point, the boundary scan pins will be  
released and will function as regular I/O pins. The logic  
reset state is reached five TCK cycles after the TMS pin is  
set High. In dedicated test mode, TMS functions as  
specified in the IEEE 1149.1 specifications.  
HCLK  
Dedicated (Hardwired)  
Array Clock  
This pin is the clock input for sequential modules. Input  
levels are compatible with standard TTL, LVTTL,  
LVCMOS2, 3.3 V PCI, or 5 V PCI specifications. This input is  
directly wired to each R-cell and offers clock speeds  
independent of the number of R-cells being driven.  
When not used, HCLK must be tied Low or High on the  
board (NOT left floating). When used, this pin should be  
held Low or High during power-up to avoid unwanted  
static power consumption.  
TRST, I/O  
Boundary Scan Reset Pin  
I/O  
Input/Output  
The I/O pin functions as an input, output, tristate, or  
bidirectional buffer. Based on certain configurations,  
input and output levels are compatible with standard  
TTL, LVTTL, LVCMOS2, 3.3 V PCI or 5 V PCI specifications.  
Unused I/O pins are automatically tristated by the  
Designer software.  
Once it is configured as the JTAG Reset pin, the TRST pin  
functions as an active low input to asynchronously  
initialize or reset the boundary scan circuit. The TRST pin  
is equipped with an internal pull-up resistor. This pin  
functions as an I/O when the Reserve JTAG Reset Pin is  
not selected in Designer.  
NC  
No Connection  
V
Supply Voltage  
CCI  
This pin is not connected to circuitry within the device  
and can be driven to any voltage or be left floating with  
no effect on the operation of the device.  
Supply voltage for I/Os. See Table 2-2 on page 2-1. All  
V
CCI power pins in the device should be connected.  
V
Supply Voltage  
CCA  
Supply voltage for array. See Table 2-2 on page 2-1. All  
CCA power pins in the device should be connected.  
V
v5.3  
1-15  
 
SX-A Family FPGAs  
Detailed Specifications  
Operating Conditions  
Table 2-1 Absolute Maximum Ratings  
Symbol  
Parameter  
DC Supply Voltage for I/Os  
Limits  
–0.3 to +6.0  
Units  
VCCI  
VCCA  
VI  
V
V
DC Supply Voltage for Arrays  
Input Voltage  
–0.3 to +3.0  
–0.5 to +5.75  
–0.5 to + VCCI + 0.5  
–65 to +150  
V
VO  
Output Voltage  
V
TSTG  
Storage Temperature  
°C  
Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to  
absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the  
"Recommended Operating Conditions".  
Table 2-2 Recommended Operating Conditions  
Parameter  
Commercial  
0 to +70  
Industrial  
–40 to +85  
2.25 to 2.75  
3.0 to 3.6  
Units  
Temperature Range  
2.5 V Power Supply Range (VCCA and VCCI  
3.3 V Power Supply Range (VCCI  
5 V Power Supply Range (VCCI  
°C  
V
)
2.25 to 2.75  
3.0 to 3.6  
)
V
)
4.75 to 5.25  
4.75 to 5.25  
V
Typical SX-A Standby Current  
Table 2-3 Typical Standby Current for SX-A at 25°C with VCCA = 2.5 V  
Product  
V
CCI = 2.5 V  
0.8 mA  
VCCI = 3.3 V  
1.0 mA  
VCCI = 5 V  
A54SX08A  
A54SX16A  
A54SX32A  
A54SX72A  
2.9 mA  
2.9 mA  
3.0 mA  
4.5 mA  
0.8 mA  
1.0 mA  
0.9 mA  
1.0 mA  
3.6 mA  
3.8 mA  
Table 2-4 Supply Voltages  
VCCA  
2. 5 V  
2.5 V  
2.5 V  
VCCI  
*
Maximum Input Tolerance  
Maximum Output Drive  
2.5 V  
3.3 V  
5 V  
5.75 V  
5.75 V  
5.75 V  
2.7 V  
3.6 V  
5.25 V  
Note: *3.3 V PCI is not 5 V tolerant due to the clamp diode, but instead is 3.3 V tolerant.  
v5.3  
2-1  
 
 
 
 
 
 
SX-A Family FPGAs  
Electrical Specifications  
Table 2-5 3.3 V LVTTL and 5 V TTL Electrical Specifications  
Commercial  
Industrial  
Symbol  
Parameter  
Min.  
(IOH = –1 mA) 0.9 VCCI  
Max.  
Min.  
Max.  
Units  
VOH  
VCCI = Minimum  
VI = VIH or VIL  
0.9 VCCI  
V
VCCI = Minimum  
VI = VIH or VIL  
(IOH = –8 mA)  
(IOL= 1 mA)  
(IOL= 12 mA)  
2.4  
2.4  
V
V
V
VOL  
VCCI = Minimum  
VI = VIH or VIL  
0.4  
0.4  
0.4  
0.4  
VCCI = Minimum  
VI = VIH or VIL  
VIL  
Input Low Voltage  
Input High Voltage  
0.8  
5.75  
10  
0.8  
5.75  
10  
V
V
VIH  
2.0  
–10  
–10  
2.0  
–10  
–10  
IIL/IIH  
IOZ  
Input Leakage Current, VIN = VCCI or GND  
Tristate Output Leakage Current  
Input Transition Time tR, tF  
I/O Capacitance  
µA  
µA  
ns  
10  
10  
tR, tF  
CIO  
ICC  
10  
10  
10  
10  
pF  
mA  
Standby Current  
10  
20  
IV Curve* Can be derived from the IBIS model on the web.  
Note: *The IBIS model can be found at http://www.actel.com/download/ibis/default.aspx.  
Table 2-6 2.5 V LVCMOS2 Electrical Specifications  
Commercial  
Industrial  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Units  
VOH  
VDD = MIN,  
VI = VIH or VIL  
(IOH = –100 μA)  
(IOH = –1 mA)  
(IOH =–-2 mA)  
(IOL= 100 μA)  
(IOL= 1 mA)  
2.1  
2.1  
V
VDD = MIN,  
VI = VIH or VIL  
2.0  
1.7  
2.0  
1.7  
V
V
V
V
V
VDD = MIN,  
VI = VIH or VIL  
VOL  
VDD = MIN,  
VI = VIH or VIL  
0.2  
0.4  
0.7  
0.2  
0.4  
0.7  
VDD = MIN,  
VI = VIH or VIL  
VDD = MIN,  
(IOL= 2 mA)  
VI = VIH or VIL  
VIL  
Input Low Voltage, VOUT VVOL(max)  
Input High Voltage, VOUT VVOH(min)  
Input Leakage Current, VIN = VCCI or GND  
Tristate Output Leakage Current, VOUT = VCCI or GND  
Input Transition Time tR, tF  
-0.3  
1.7  
0.7  
5.75  
10  
-0.3  
1.7  
0.7  
5.75  
10  
V
V
VIH  
IIL/IIH  
IOZ  
–10  
–10  
–10  
–10  
µA  
µA  
ns  
10  
10  
tR, tF  
CIO  
ICC  
10  
10  
I/O Capacitance  
10  
10  
pF  
mA  
Standby Current  
10  
20  
IV Curve* Can be derived from the IBIS model on the web.  
Note: *The IBIS model can be found at http://www.actel.com/download/ibis/default.aspx.  
2-2  
v5.3  
 
 
SX-A Family FPGAs  
PCI Compliance for the SX-A Family  
The SX-A family supports 3.3 V and 5 V PCI and is compliant with the PCI Local Bus Specification Rev. 2.1.  
Table 2-7 DC Specifications (5 V PCI Operation)  
Symbol  
VCCA  
VCCI  
VIH  
Parameter  
Supply Voltage for Array  
Condition  
Min.  
2.25  
4.75  
2.0  
–0.5  
Max.  
2.75  
5.25  
5.75  
0.8  
Units  
V
Supply Voltage for I/Os  
Input High Voltage  
V
V
VIL  
Input Low Voltage  
V
IIH  
Input High Leakage Current1  
Input Low Leakage Current1  
Output High Voltage  
Output Low Voltage2  
Input Pin Capacitance3  
CLK Pin Capacitance  
VIN = 2.7  
70  
µA  
µA  
V
IIL  
VIN = 0.5  
–70  
VOH  
VOL  
IOUT = –2 mA  
IOUT = 3 mA, 6 mA  
2.4  
0.55  
10  
V
CIN  
pF  
pF  
CCLK  
Notes:  
5
12  
1. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.  
2. Signals without pull-up resistors must have 3 mA low output current. Signals requiring pull-up must have 6 mA; the latter includes  
FRAME#, IRDY#, TRDY#, DEVSEL#, STOP#, SERR#, PERR#, LOCK#, and, when used AD[63::32], C/BE[7::4]#, PAR64, REQ64#, and  
ACK64#.  
3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).  
v5.3  
2-3  
SX-A Family FPGAs  
Table 2-8 AC Specifications (5 V PCI Operation)  
Symbol  
Parameter  
Condition  
0 < VOUT 1.4 1  
1.4 VOUT < 2.4 1, 2  
Min.  
Max.  
Units  
mA  
mA  
IOH(AC)  
Switching Current High  
–44  
(–44 + (VOUT – 1.4)/0.024)  
1, 3  
3.1 < VOUT < VCCI  
EQ 2-1 on  
page 2-5  
(Test Point)  
V
OUT = 3.1 3  
–142  
mA  
mA  
mA  
IOL(AC)  
Switching Current Low  
VOUT 2.2 1  
95  
2.2 > VOUT > 0.55 1  
0.71 > VOUT > 0 1, 3  
(VOUT/0.023)  
EQ 2-2 on  
page 2-5  
(Test Point)  
VOUT = 0.71 3  
206  
mA  
mA  
ICL  
Low Clamp Current  
Output Rise Slew Rate  
Output Fall Slew Rate  
–5 < VIN –1  
–25 + (VIN + 1)/0.015  
slewR  
slewF  
Notes:  
0.4 V to 2.4 V load 4  
2.4 V to 0.4 V load 4  
1
1
5
V/ns  
V/ns  
5
1. Refer to the V/I curves in Figure 2-1 on page 2-5. Switching current characteristics for REQ# and GNT# are permitted to be one half  
of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#,  
which are system outputs. “Switching Current High” specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#,  
which are open drain outputs.  
2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than  
toward the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.  
3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A  
and B) are provided with the respective diagrams in Figure 2-1 on page 2-5. The equation defined maximum should be met by  
design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.  
4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any  
point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter  
with an unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum  
parameters is now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not  
required prior to revision 2.1 of the specification, there may be components in the market for some time that have faster edge  
rates; therefore, motherboard designers must bear in mind that rise and fall times faster than this specification could occur and  
should ensure that signal integrity modeling accounts for this. Rise slew rate does not apply to open drain outputs.  
Pin  
1/2 in. max.  
Output  
Buffer  
50 pF  
2-4  
v5.3  
SX-A Family FPGAs  
Figure 2-1 shows the 5 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the SX-A family.  
200.0  
I
MAX Spec  
OL  
I
OL  
150.0  
100.0  
50.0  
I
MIN Spec  
3.5  
OL  
0.0  
0
0.5  
1
1.5  
2
2.5  
3
4
4.5  
I
5
5.5  
6
–50.0  
–100.0  
–150.0  
–200.0  
I
MIN Spec  
OH  
MAX Spec  
OH  
I
OH  
Voltage Out (V)  
Figure 2-1 5 V PCI V/I Curve for SX-A Family  
OH = 11.9 * (VOUT – 5.25) * (VOUT + 2.45)  
I
IOL = 78.5 * VOUT * (4.4 – VOUT  
for 0V < VOUT < 0.71V  
)
for VCCI > VOUT > 3.1V  
EQ 2-1  
EQ 2-2  
Table 2-9 DC Specifications (3.3 V PCI Operation)  
Symbol  
VCCA  
VCCI  
VIH  
Parameter  
Condition  
Min.  
Max.  
Units  
V
Supply Voltage for Array  
Supply Voltage for I/Os  
Input High Voltage  
Input Low Voltage  
Input Pull-up Voltage1  
Input Leakage Current2  
Output High Voltage  
Output Low Voltage  
Input Pin Capacitance3  
CLK Pin Capacitance  
2.25  
3.0  
2.75  
3.6  
V
0.5VCCI  
–0.5  
VCCI + 0.5  
0.3VCCI  
V
VIL  
V
IIPU  
0.7VCCI  
–10  
V
IIL  
0 < VIN < VCCI  
IOUT = –500 µA  
IOUT = 1,500 µA  
+10  
μA  
V
VOH  
VOL  
0.9VCCI  
0.1VCCI  
10  
V
CIN  
pF  
pF  
CCLK  
Notes:  
5
12  
1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a  
floated network. Designers should ensure that the input buffer is conducting minimum current at this input voltage in applications  
sensitive to static power utilization.  
2. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.  
3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).  
v5.3  
2-5  
 
SX-A Family FPGAs  
Table 2-10 AC Specifications (3.3 V PCI Operation)  
Symbol  
Parameter  
Condition  
Min.  
Max.  
Units  
mA  
mA  
1
IOH(AC)  
Switching Current High  
0 < VOUT 0.3VCCI  
–12VCCI  
1
0.3VCCI VOUT < 0.9VCCI  
(–17.1(VCCI – VOUT))  
1, 2  
0.7VCCI < VOUT < VCCI  
EQ 2-3 on  
page 2-7  
2
(Test Point)  
V
OUT = 0.7VCC  
–32VCCI  
mA  
mA  
mA  
1
IOL(AC)  
Switching Current Low  
VCCI > VOUT 0.6VCCI  
16VCCI  
1
0.6VCCI > VOUT > 0.1VCCI  
0.18VCCI > VOUT > 0 1, 2  
(26.7VOUT  
)
EQ 2-4 on  
page 2-7  
2
(Test Point)  
VOUT = 0.18VCC  
38VCCI  
mA  
mA  
ICL  
Low Clamp Current  
High Clamp Current  
Output Rise Slew Rate  
Output Fall Slew Rate  
–3 < VIN –1  
–25 + (VIN + 1)/0.015  
4
4
ICH  
VCCI + 4 > VIN VCCI + 1  
0.2VCCI - 0.6VCCI load 3  
0.6VCCI - 0.2VCCI load 3  
25 + (VIN – VCCI – 1)/0.015  
mA  
slewR  
slewF  
Notes:  
1
1
V/ns  
V/ns  
1. Refer to the V/I curves in Figure 2-2 on page 2-7. Switching current characteristics for REQ# and GNT# are permitted to be one half  
of that specified here; i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST#,  
which are system outputs. “Switching Current High” specifications are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD#,  
which are open drain outputs.  
2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (C  
and D) are provided with the respective diagrams in Figure 2-2 on page 2-7. The equation defined maximum should be met by  
design. In order to facilitate component testing, a maximum current test point is defined for each side of the output driver.  
3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any  
point within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter  
with an unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and  
minimum parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain  
outputs.  
Pin  
1/2 in. max.  
Output  
Buffer  
10 pF  
1 k/25 Ω  
Pin  
1 k/25 Ω  
Output  
Buffer  
10 pF  
2-6  
v5.3  
SX-A Family FPGAs  
Figure 2-2 shows the 3.3 V PCI V/I curve and the minimum and maximum PCI drive characteristics of the SX-A family.  
150.0  
I
MAX Spec  
OL  
I
OL  
100.0  
50.0  
I
MIN Spec  
2.5  
OL  
0.0  
0
0.5  
MIN Spec  
1
1.5  
2
3
3.5  
4
–50.0  
–100.0  
–150.0  
I
OH  
I
MAX Spec  
I
OH  
OH  
Voltage Out (V)  
Figure 2-2 3.3 V PCI V/I Curve for SX-A Family  
IOH = (98.0/VCCI) * (VOUT – VCCI) * (VOUT + 0.4VCCI  
)
IOL = (256/VCCI) * VOUT * (VCCI – VOUT  
)
for 0.7 VCCI < VOUT < VCCI  
for 0V < VOUT < 0.18 VCCI  
EQ 2-3  
EQ 2-4  
v5.3  
2-7  
 
SX-A Family FPGAs  
Power Dissipation  
A critical element of system reliability is the ability of electronic devices to safely dissipate the heat generated during  
operation. The thermal characteristics of a circuit depend on the device and package used, the operating temperature,  
the operating current, and the system's ability to dissipate heat.  
A complete power evaluation should be performed early in the design process to help identify potential heat-related  
problems in the system and to prevent the system from exceeding the device’s maximum allowed junction  
temperature.  
The actual power dissipated by most applications is significantly lower than the power the package can dissipate.  
However, a thermal analysis should be performed for all projects. To perform a power evaluation, follow these steps:  
1. Estimate the power consumption of the application.  
2. Calculate the maximum power allowed for the device and package.  
3. Compare the estimated power and maximum power values.  
Estimating Power Dissipation  
The total power dissipation for the SX-A family is the sum of the DC power dissipation and the AC power dissipation:  
P
Total = PDC + PAC  
EQ 2-5  
DC Power Dissipation  
The power due to standby current is typically a small component of the overall power. An estimation of DC power  
dissipation under typical conditions is given by:  
PDC = IStandby * VCCA  
EQ 2-6  
Note: For other combinations of temperature and voltage settings, refer to the eX, SX-A and RT54SX-S Power  
Calculator.  
AC Power Dissipation  
The power dissipation of the SX-A family is usually dominated by the dynamic power dissipation. Dynamic power  
dissipation is a function of frequency, equivalent capacitance, and power supply voltage. The AC power dissipation is  
defined as follows:  
PAC = PC-cells + PR-cells + PCLKA + PCLKB + PHCLK + POutput Buffer + PInput Buffer  
EQ 2-7  
or:  
VCCA2 * [(m * CEQCM * fm)C-cells + (m * CEQSM * fm)R-cells + (n * CEQI * fn)Input Buffer + (p * (CEQO + CL) * fp)Output Buffer  
PAC  
=
+ (0.5 * (q1 * CEQCR * fq1) + (r1 * fq1))CLKA + (0.5 * (q2 * CEQCR * fq2)+ (r2 * fq2))CLKB + (0.5 * (s1 * CEQHV * fs1) +  
(CEQHF * fs1))HCLK  
]
EQ 2-8  
2-8  
v5.3  
 
SX-A Family FPGAs  
Where:  
CEQCM = Equivalent capacitance of combinatorial modules  
(C-cells) in pF  
CEQSM = Equivalent capacitance of sequential modules (R-Cells) in pF  
CEQI = Equivalent capacitance of input buffers in pF  
CEQO = Equivalent capacitance of output buffers in pF  
CEQCR = Equivalent capacitance of CLKA/B in pF  
CEQHV = Variable capacitance of HCLK in pF  
CEQHF = Fixed capacitance of HCLK in pF  
CL = Output lead capacitance in pF  
fm = Average logic module switching rate in MHz  
fn = Average input buffer switching rate in MHz  
fp = Average output buffer switching rate in MHz  
fq1 = Average CLKA rate in MHz  
f
q2 = Average CLKB rate in MHz  
fs1 = Average HCLK rate in MHz  
m = Number of logic modules switching at fm  
n = Number of input buffers switching at fn  
p = Number of output buffers switching at fp  
q1 = Number of clock loads on CLKA  
q2 = Number of clock loads on CLKB  
r1 = Fixed capacitance due to CLKA  
r2 = Fixed capacitance due to CLKB  
s1 = Number of clock loads on HCLK  
x = Number of I/Os at logic low  
y = Number of I/Os at logic high  
Table 2-11 CEQ Values for SX-A Devices  
A54SX08A  
1.70 pF  
1.50 pF  
1.30 pF  
7.40 pF  
1.05 pF  
0.85 pF  
A54SX16A  
2.00 pF  
1.50 pF  
1.30 pF  
7.40 pF  
1.05 pF  
0.85 pF  
A54SX32A  
2.00 pF  
1.30 pF  
1.30 pF  
7.40 pF  
1.05 pF  
0.85 pF  
A54SX72A  
1.80 pF  
1.50 pF  
1.30 pF  
7.40 pF  
1.05 pF  
0.85 pF  
Combinatorial modules (CEQCM  
Sequential modules (CEQCM  
Input buffers (CEQI  
Output buffers (CEQO  
)
)
)
)
Routed array clocks (CEQCR  
)
Dedicated array clocks  
variable  
(CEQHV  
Dedicated array clocks – fixed (CEQHF  
Routed array clock A (r1)  
)
)
30.00 pF  
35.00 pF  
55.00 pF  
50.00 pF  
110.00 pF  
90.00 pF  
240.00 pF  
310.00 pF  
v5.3  
2-9  
 
SX-A Family FPGAs  
Guidelines for Estimating Power  
The following guidelines are meant to represent worst-case scenarios; they can be generally used to predict the upper  
limits of power dissipation:  
Logic Modules (m) = 20% of modules  
Inputs Switching (n) = Number inputs/4  
Outputs Switching (p) = Number of outputs/4  
CLKA Loads (q1) = 20% of R-cells  
CLKB Loads (q2) = 20% of R-cells  
Load Capacitance (CL) = 35 pF  
Average Logic Module Switching Rate (fm) = f/10  
Average Input Switching Rate (fn) =f/5  
Average Output Switching Rate (fp) = f/10  
Average CLKA Rate (fq1) = f/2  
Average CLKB Rate (fq2) = f/2  
Average HCLK Rate (fs1) = f  
HCLK loads (s1) = 20% of R-cells  
To assist customers in estimating the power dissipations of their designs, Actel has published the eX, SX-A and RT54SX-S  
Power Calculator worksheet.  
2-10  
v5.3  
SX-A Family FPGAs  
Thermal Characteristics  
Introduction  
The temperature variable in Actel Designer software refers to the junction temperature, not the ambient, case, or  
board temperatures. This is an important distinction because dynamic and static power consumption will cause the  
chip's junction to be higher than the ambient, case, or board temperatures. EQ 2-9 and EQ 2-10 give the relationship  
between thermal resistance, temperature gradient and power.  
TJ TA  
θJA = ----------------  
P
EQ 2-9  
TC TA  
θJA = -----------------  
P
EQ 2-10  
Where:  
θ
θ
=
=
Junction-to-air thermal resistance  
Junction-to-case thermal resistance  
JA  
JC  
TJ = Junction temperature  
TA = Ambient temperature  
TC = Ambient temperature  
P
= total power dissipated by the device  
Table 2-12 Package Thermal Characteristics  
θJA  
Pin  
1.0 m/s  
2.5 m/s  
Package Type  
Count  
θJC  
14  
11  
11  
8
Still Air 200 ft./min. 500 ft./min.  
Units  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Thin Quad Flat Pack (TQFP)  
100  
144  
176  
208  
208  
329  
144  
256  
484  
33.5  
33.5  
24.7  
26.1  
16.2  
17.1  
26.9  
26.6  
18  
27.4  
28  
25  
Thin Quad Flat Pack (TQFP)  
25.7  
18  
Thin Quad Flat Pack (TQFP)  
19.9  
22.5  
13.3  
13.8  
22.9  
22.8  
14.7  
Plastic Quad Flat Pack (PQFP)1  
Plastic Quad Flat Pack (PQFP) with Heat Spreader2  
Plastic Ball Grid Array (PBGA)  
Fine Pitch Ball Grid Array (FBGA)  
Fine Pitch Ball Grid Array (FBGA)  
Fine Pitch Ball Grid Array (FBGA)  
20.8  
11.9  
12.8  
21.5  
21.5  
13.6  
3.8  
3
3.8  
3.8  
3.2  
Notes:  
1. The A54SX08A PQ208 has no heat spreader.  
2. The SX-A PQ208 package has a heat spreader for A54SX16A, A54SX32A, and A54SX72A.  
v5.3  
2-11  
 
 
SX-A Family FPGAs  
Theta-JA  
Junction-to-ambient thermal resistance (θ ) is determined under standard conditions specified by JESD-51 series but  
JA  
has little relevance in actual performance of the product in real application. It should be employed with caution but is  
useful for comparing the thermal performance of one package to another.  
A sample calculation to estimate the absolute maximum power dissipation allowed (worst case) for a 329-pin PBGA  
package at still air is as follows. i.e.:  
θJA = 17.1°C/W is taken from Table 2-12 on page 2-11  
TA = 125°C is the maximum limit of ambient (from the datasheet)  
Max Junction Temp Max. Ambient Temp  
150°C 125°C  
Max. Allowed Power = ----------------------------------------------------------------------------------------------------------- = --------------------------------------- = 1.46 W  
θJA 17.1°C/W  
EQ 2-11  
The device's power consumption must be lower than the calculated maximum power dissipation by the package.  
The power consumption of a device can be calculated using the Actel power calculator. If the power consumption is  
higher than the device's maximum allowable power dissipation, then a heat sink can be attached on top of the case or  
the airflow inside the system must be increased.  
Theta-JC  
Junction-to-case thermal resistance (θ ) measures the ability of a device to dissipate heat from the surface of the chip  
JC  
to the top or bottom surface of the package. It is applicable for packages used with external heat sinks and only  
applies to situations where all or nearly all of the heat is dissipated through the surface in consideration. If the power  
consumption is higher than the calculated maximum power dissipation of the package, then a heat sink is required.  
Calculation for Heat Sink  
For example, in a design implemented in a FG484 package, the power consumption value using the power calculator is  
3.00 W. The user-dependent data TJ and TA are given as follows:  
=
=
TJ  
110°C  
70°C  
TA  
From the datasheet:  
θ
θ
=
=
18.0°C/W  
3.2 °C/W  
JA  
JC  
Max Junction Temp Max. Ambient Temp  
110°C 70°C  
P = ----------------------------------------------------------------------------------------------------------- = ------------------------------------ = 2.22 W  
θJA 18.0°C/W  
EQ 2-12  
The 2.22 W power is less than then required 3.00 W; therefore, the design requires a heat sink or the airflow where the  
device is mounted should be increased. The design's junction-to-air thermal resistance requirement can be estimated  
by:  
Max Junction Temp Max. Ambient Temp  
110°C 70°C  
3.00 W  
θJA = ----------------------------------------------------------------------------------------------------------- = ------------------------------------ = 13.33°C/W  
P
EQ 2-13  
2-12  
v5.3  
SX-A Family FPGAs  
To determine the heat sink's thermal performance, use the following equation:  
θJA(TOTAL) = θJC + θCS + θSA  
EQ 2-14  
where:  
θCS  
=
=
0.37°C/W  
thermal resistance of the interface material between the case and the heat  
sink, usually provided by the thermal interface manufacturer  
θSA  
=
thermal resistance of the heat sink in °C/W  
θSA = θJA(TOTAL) θJC θCS  
EQ 2-15  
θSA = 13.33°C/W 3.20°C/W 0.37°C/W  
θSA = 9.76°C/W  
A heat sink with a thermal resistance of 9.76°C/W or better should be used. Thermal resistance of heat sinks is a  
function of airflow. The heat sink performance can be significantly improved with the presence of airflow.  
Carefully estimating thermal resistance is important in the long-term reliability of an Actel FPGA. Design engineers  
should always correlate the power consumption of the device with the maximum allowable power dissipation of the  
package selected for that device, using the provided thermal resistance data.  
Note: The values may vary depending on the application.  
v5.3  
2-13  
SX-A Family FPGAs  
SX-A Timing Model  
Input Delays  
Internal Delays  
Predicted  
Routing  
Delays  
Output Delays  
Combinatorial  
Cell  
t
t
= 0.3 ns  
= 0.5 ns  
I/O Module  
I/O Module  
RD1  
RD2  
t
= 0.6 ns  
INYH  
t
= 3.9 ns  
DHL  
t
= 1.1 ns  
PD  
t
t
t
= 0.3 ns  
RD1  
= 0.9 ns  
RD4  
= 1.5 ns  
RD8  
I/O Module  
t
t
t
t
= 3.9 ns  
Register  
Cell  
DHL  
D
Q
t
t
RD1  
= 0.8 ns  
= 0.0 ns  
= 0.3 ns  
SUD  
HD  
t
= 1.5 ns  
ENZL  
Routed  
Clock  
t
= 3.0 ns  
RCKH  
t
= 0.8 ns  
(100% Load)  
RCO  
I/O Module  
= 3.9 ns  
DHL  
Register  
Cell  
I/O Module  
t
= 0.6 ns  
INYH  
D
Q
t
t
t
RD1  
= 0.8 ns  
= 0.0 ns  
= 0.3 ns  
SUD  
= 1.5 ns  
ENZL  
HD  
Hardwired  
Clock  
t
t
RCO  
= 1.8 ns  
= 0.8 ns  
HCKH  
Note: *Values shown for A54SX72A, –2, worst-case commercial conditions at 5 V PCI with standard place-and-route.  
Figure 2-3 SX-A Timing Model  
Sample Path Calculations  
Hardwired Clock  
Routed Clock  
External Setup  
= (tINYH + tRD1 + tSUD) – tHCKH  
= 0.6 + 0.3 + 0.8 - 1.8 = – 0.1 ns  
External Setup  
= (tINYH + tRD1 + tSUD) – tRCKH  
= 0.6 + 0.3 + 0.8 - 3.0 = –1.3 ns  
Clock-to-Out (Pad-to-Pad) = tHCKH + tRCO + tRD1 + tDHL  
= 1.8 + 0.8 + 0.3 + 3.9 = 6.8 ns  
Clock-to-Out (Pad-to-Pad) = tRCKH + tRCO + tRD1 + tDHL  
= 3.0 + 0.8 + 0.3 + 3.9 = 8.0 ns  
2-14  
v5.3  
 
 
SX-A Family FPGAs  
Output Buffer Delays  
E
D
PAD To AC Test Loads (shown below)  
TRIBUFF  
VCC  
VCC  
VCC  
In  
50% 50%  
VOH  
En  
GND  
1.5 V  
En  
Out  
50%  
GND  
90%  
GND  
10%  
50%  
VCC  
50%  
50%  
1.5 V  
VOL  
Out  
1.5 V  
Out  
GND  
1.5 V  
VOL  
tDLH  
tENHZ  
tENZH  
tENZL  
tENLZ  
Figure 2-4 Output Buffer Delays  
AC Test Loads  
Load 1  
(Used to measure  
propagation delay)  
Load 3  
(Used to measure disable delays)  
Load 2  
(Used to measure enable delays)  
VCC  
VCC  
GND  
GND  
To the Output  
Under Test  
t
t
R to VCC for  
R to VCC for PZL  
R to GND forPtZPLZH  
R to GND for PZH  
R = 1 kΩ  
t
35 pF  
To the Output  
Under Test  
To the Output  
Under Test  
R = 1 kΩ  
35 pF  
5 pF  
Figure 2-5 AC Test Loads  
v5.3  
2-15  
SX-A Family FPGAs  
Input Buffer Delays  
C-Cell Delays  
S
A
B
Y
Y
PAD  
INBUF  
VCC  
GND  
50%  
VCC  
S, A, or B 50%  
3 V  
50%  
Out  
GND  
tPD  
50%  
In  
1.5 V 1.5 V  
VCC  
0 V  
tPD  
VCC  
50%  
50%  
Out  
GND  
50%  
Out  
GND  
tPD  
50%  
tPD  
tINY  
tINY  
Figure 2-6 Input Buffer Delays  
Figure 2-7 C-Cell Delays  
Cell Timing Characteristics  
D
Q
PRESET  
CLR  
CLK  
(Positive Edge Triggered)  
tHD  
D
tSUD  
CLK  
tHP  
tHPWH  
tRPWH  
tHPWL  
tRPWL  
tRCO  
Q
tCLR  
tWASYN  
tPRESET  
CLR  
PRESET  
Figure 2-8 Flip-Flops  
2-16  
v5.3  
SX-A Family FPGAs  
Long Tracks  
Timing Characteristics  
Some nets in the design use long tracks. Long tracks are  
special routing resources that span multiple rows,  
columns, or modules. Long tracks employ three to five  
antifuse connections. This increases capacitance and  
resistance, resulting in longer net delays for macros  
connected to long tracks. Typically, up to 6 percent of  
nets in a fully utilized device require long tracks. Long  
tracks contribute approximately 4 ns to 8.4 ns delay. This  
additional delay is represented statistically in higher  
fanout routing delays.  
Timing characteristics for SX-A devices fall into three  
categories: family-dependent, device-dependent, and  
design-dependent. The input and output buffer  
characteristics are common to all SX-A family members.  
Internal routing delays are device-dependent. Design  
dependency means actual delays are not determined  
until after placement and routing of the user’s design are  
complete. The timing characteristics listed in this  
datasheet represent sample timing numbers of the SX-A  
devices. Design-specific delay values may be determined  
by using Timer or performing simulation after successful  
place-and-route with the Designer software.  
Timing Derating  
SX-A devices are manufactured with a CMOS process.  
Therefore, device performance varies according to  
temperature, voltage, and process changes. Minimum  
timing parameters reflect maximum operating voltage,  
minimum operating temperature, and best-case  
processing. Maximum timing parameters reflect  
minimum operating voltage, maximum operating  
temperature, and worst-case processing.  
Critical Nets and Typical Nets  
Propagation delays are expressed only for typical nets,  
which are used for initial design performance evaluation.  
Critical net delays can then be applied to the most  
timing-critical paths. Critical nets are determined by net  
property assignment prior to placement and routing. Up  
to 6 percent of the nets in a design may be designated as  
critical, while 90 percent of the nets in a design are  
typical.  
Temperature and Voltage Derating Factors  
Table 2-13 Temperature and Voltage Derating Factors  
(Normalized to Worst-Case Commercial, TJ = 70°C, VCCA = 2.25 V)  
Junction Temperature (TJ)  
VCCA  
–55°C  
0.79  
–40°C  
0.80  
0°C  
0.87  
0.82  
0.75  
25°C  
0.89  
0.83  
0.77  
70°C  
1.00  
0.94  
0.87  
85°C  
1.04  
0.97  
0.90  
125°C  
1.14  
2.250 V  
2.500 V  
2.750 V  
0.74  
0.75  
1.07  
0.68  
0.69  
0.99  
v5.3  
2-17  
 
SX-A Family FPGAs  
Timing Characteristics  
Table 2-14 A54SX08A Timing Characteristics  
(Worst-Case Commercial Conditions, VCCA = 2.25 V VCCI = 3.0 V, TJ = 70°C)  
,
–2 Speed  
–1 Speed  
Std. Speed  
–F Speed  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
C-Cell Propagation Delays1  
tPD  
Internal Array Module  
0.9  
1.1  
1.2  
1.7  
ns  
Predicted Routing Delays2  
tDC  
FO = 1 Routing Delay, Direct Connect  
FO = 1 Routing Delay, Fast Connect  
FO = 1 Routing Delay  
0.1  
0.3  
0.3  
0.5  
0.6  
0.8  
1.4  
2
0.1  
0.3  
0.4  
0.5  
0.7  
0.9  
1.5  
2.2  
0.1  
0.4  
0.5  
0.6  
0.8  
1
0.1  
0.6  
0.6  
0.8  
1.1  
1.4  
2.5  
3.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tFC  
tRD1  
tRD2  
FO = 2 Routing Delay  
tRD3  
FO = 3 Routing Delay  
tRD4  
FO = 4 Routing Delay  
tRD8  
FO = 8 Routing Delay  
1.8  
2.6  
tRD12  
R-Cell Timing  
tRCO  
FO = 12 Routing Delay  
Sequential Clock-to-Q  
0.7  
0.6  
0.7  
0.8  
0.6  
0.7  
0.9  
0.8  
0.9  
1.3  
1.0  
1.2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCLR  
Asynchronous Clear-to-Q  
Asynchronous Preset-to-Q  
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
Asynchronous Recovery Time  
Asynchronous Hold Time  
Clock Pulse Width  
tPRESET  
tSUD  
0.7  
0.0  
1.4  
0.4  
0.3  
1.6  
0.8  
0.0  
1.5  
0.4  
0.3  
1.8  
0.9  
0.0  
1.8  
0.5  
0.4  
2.1  
1.2  
0.0  
2.5  
0.7  
0.6  
2.9  
tHD  
tWASYN  
tRECASYN  
tHASYN  
tMPW  
Input Module Propagation Delays  
tINYH Input Data Pad to Y High 2.5 V LVCMOS  
tINYL  
tINYH  
tINYL  
tINYH  
tINYL  
0.8  
1.0  
0.6  
0.7  
0.7  
1.0  
0.9  
1.2  
0.6  
0.8  
0.7  
1.1  
1.0  
1.4  
0.7  
0.9  
0.9  
1.3  
1.4  
1.9  
1.0  
1.3  
1.2  
1.8  
ns  
ns  
ns  
ns  
ns  
ns  
Input Data Pad to Y Low 2.5 V LVCMOS  
Input Data Pad to Y High 3.3 V PCI  
Input Data Pad to Y Low 3.3 V PCI  
Input Data Pad to Y High 3.3 V LVTTL  
Input Data Pad to Y Low 3.3 V LVTTL  
Notes:  
1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
2-18  
v5.3  
 
SX-A Family FPGAs  
–F Speed  
Table 2-14 A54SX08A Timing Characteristics (Continued)  
(Worst-Case Commercial Conditions, VCCA = 2.25 V VCCI = 3.0 V, TJ = 70°C)  
,
–2 Speed  
–1 Speed  
Std. Speed  
Parameter  
tINYH  
Description  
Input Data Pad to Y High 5 V PCI  
Input Data Pad to Y Low 5 V PCI  
Input Data Pad to Y High 5 V TTL  
Input Data Pad to Y Low 5 V TTL  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
0.5  
0.8  
0.5  
0.8  
0.6  
0.9  
0.6  
0.9  
0.7  
1.1  
0.7  
1.1  
0.9  
1.5  
0.9  
1.5  
ns  
ns  
ns  
ns  
tINYL  
tINYH  
tINYL  
Input Module Predicted Routing Delays2  
tIRD1  
FO = 1 Routing Delay  
FO = 2 Routing Delay  
FO = 3 Routing Delay  
FO = 4 Routing Delay  
FO = 8 Routing Delay  
FO = 12 Routing Delay  
0.3  
0.5  
0.6  
0.8  
1.4  
2
0.3  
0.5  
0.7  
0.9  
1.5  
2.2  
0.4  
0.6  
0.8  
1
0.6  
0.8  
1.1  
1.4  
2.5  
3.6  
ns  
ns  
ns  
ns  
ns  
ns  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
1.8  
2.6  
tIRD12  
Notes:  
1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
v5.3  
2-19  
SX-A Family FPGAs  
Table 2-15 A54SX08A Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 2.25 V, TJ = 70°C)  
–2 Speed –1 Speed Std. Speed  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
–F Speed  
Parameter  
Description  
Dedicated (Hardwired) Array Clock Networks  
tHCKH  
tHCKL  
Input Low to High  
(Pad to R-cell Input)  
1.4  
1.3  
1.6  
1.5  
1.8  
1.7  
2.6  
2.4  
ns  
ns  
Input High to Low  
(Pad to R-cell Input)  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
2.9  
2.9  
ns  
ns  
0.4  
0.4  
0.5  
0.7  
ns  
Minimum Period  
3.2  
3.6  
4.2  
5.8  
ns  
fHMAX  
Maximum Frequency  
313  
278  
238  
172  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input Low to High (Light Load)  
(Pad to R-cell Input)  
1.0  
1.1  
1.0  
1.1  
1.1  
1.3  
1.1  
1.2  
1.1  
1.2  
1.2  
1.5  
1.3  
1.4  
1.3  
1.4  
1.4  
1.7  
1.8  
2.0  
1.8  
2.0  
2.0  
2.4  
ns  
ns  
ns  
ns  
ns  
ns  
Input High to Low (Light Load)  
(Pad to R-cell Input)  
Input Low to High (50% Load)  
(Pad to R-cell Input)  
Input High to Low (50% Load)  
(Pad to R-cell Input)  
Input Low to High (100% Load)  
(Pad to R-cell Input)  
Input High to Low (100% Load)  
(Pad to R-cell Input)  
tRPWH  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
2.9  
2.9  
ns  
ns  
ns  
ns  
ns  
tRPWL  
tRCKSW  
tRCKSW  
tRCKSW  
0.7  
0.7  
0.9  
0.8  
0.8  
1.0  
0.9  
0.9  
1.2  
1.3  
1.3  
1.7  
2-20  
v5.3  
SX-A Family FPGAs  
–F Speed  
Table 2-16 A54SX08A Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C)  
–2 Speed –1 Speed  
Std. Speed  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
Dedicated (Hardwired) Array Clock Networks  
tHCKH  
tHCKL  
Input Low to High  
(Pad to R-cell Input)  
1.3  
1.1  
1.5  
1.3  
1.7  
1.5  
2.6  
2.2  
ns  
ns  
Input High to Low  
(Pad to R-cell Input)  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
2.9  
2.9  
ns  
ns  
0.4  
0.5  
0.5  
0.8  
ns  
Minimum Period  
3.2  
3.6  
4.2  
5.8  
ns  
fHMAX  
Maximum Frequency  
313  
278  
238  
172  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input Low to High (Light Load)  
(Pad to R-cell Input)  
0.8  
1.1  
0.8  
1.1  
1.1  
1.2  
0.9  
1.2  
0.9  
1.2  
1.2  
1.3  
1.1  
1.4  
1.1  
1.4  
1.4  
1.6  
1.5  
2
ns  
ns  
ns  
ns  
ns  
ns  
Input High to Low (Light Load)  
(Pad to R-cell Input)  
Input Low to High (50% Load)  
(Pad to R-cell Input)  
1.5  
2
Input High to Low (50% Load)  
(Pad to R-cell Input)  
Input Low to High (100% Load)  
(Pad to R-cell Input)  
1.9  
2.2  
Input High to Low (100% Load)  
(Pad to R-cell Input)  
tRPWH  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
2.9  
2.9  
ns  
ns  
ns  
ns  
ns  
tRPWL  
tRCKSW  
tRCKSW  
tRCKSW  
0.7  
0.7  
0.8  
0.8  
0.8  
0.9  
0.9  
0.9  
1.1  
1.3  
1.3  
1.5  
v5.3  
2-21  
SX-A Family FPGAs  
Table 2-17 A54SX08A Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 4.75 V, TJ = 70°C)  
–2 Speed –1 Speed Std. Speed  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
–F Speed  
Parameter  
Description  
Dedicated (Hardwired) Array Clock Networks  
tHCKH  
tHCKL  
Input Low to High  
(Pad to R-cell Input)  
1.2  
1.0  
1.3  
1.2  
1.5  
1.4  
2.3  
2.0  
ns  
ns  
Input High to Low  
(Pad to R-cell Input)  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
2.9  
2.9  
ns  
ns  
0.4  
0.4  
0.5  
0.8  
ns  
Minimum Period  
3.2  
3.6  
4.2  
5.8  
ns  
fHMAX  
Maximum Frequency  
313  
278  
238  
172  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input Low to High (Light Load)  
(Pad to R-cell Input)  
0.9  
1.5  
0.9  
1.5  
1.1  
1.6  
1.0  
1.7  
1.0  
1.7  
1.3  
1.8  
1.2  
2.0  
1.2  
2.0  
1.5  
2.1  
1.7  
2.7  
1.7  
2.7  
2.1  
2.9  
ns  
ns  
ns  
ns  
ns  
ns  
Input High to Low (Light Load)  
(Pad to R-cell Input)  
Input Low to High (50% Load)  
(Pad to R-cell Input)  
Input High to Low (50% Load)  
(Pad to R-cell Input)  
Input Low to High (100% Load)  
(Pad to R-cell Input)  
Input High to Low (100% Load)  
(Pad to R-cell Input)  
tRPWH  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
2.9  
2.9  
ns  
ns  
ns  
ns  
ns  
tRPWL  
tRCKSW  
tRCKSW  
tRCKSW  
0.8  
0.8  
0.9  
0.9  
1.0  
1.0  
1.1  
1.1  
1.2  
1.5  
1.5  
1.7  
2-22  
v5.3  
SX-A Family FPGAs  
–F Speed  
Table 2-18 A54SX08A Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 2.3 V, TJ = 70°C)  
–2 Speed –1 Speed  
Std. Speed  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
2.5 V LVCMOS Output Module Timing1,2  
tDLH  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Data-to-Pad High to Low—low slew  
Enable-to-Pad, Z to L  
3.9  
3.0  
4.4  
3.4  
5.2  
3.9  
7.2  
5.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
13.3  
2.8  
15.1  
3.2  
17.7  
3.7  
24.8  
5.2  
Data-to-Pad, Z to L—low slew  
Enable-to-Pad, Z to H  
13.7  
3.9  
15.5  
4.4  
18.2  
5.2  
25.5  
7.2  
Enable-to-Pad, L to Z  
2.5  
2.8  
3.3  
4.7  
Enable-to-Pad, H to Z  
3.0  
3.4  
3.9  
5.5  
3
dTLH  
Delta Low to High  
0.037  
0.017  
0.06  
0.043  
0.023  
0.071  
0.051  
0.023  
0.086  
0.071 ns/pF  
0.037 ns/pF  
0.117 ns/pF  
3
dTHL  
Delta High to Low  
3
dTHLS  
Delta High to Low—low slew  
Note:  
1. Delays based on 35 pF loading.  
2. The equivalent I/O Attribute Editor settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.  
3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:  
Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS]  
where Cload is the load capacitance driven by the I/O in pF  
)
dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF.  
v5.3  
2-23  
SX-A Family FPGAs  
Table 2-19 A54SX08A Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C)  
–2 Speed –1 Speed  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
Std. Speed  
–F Speed  
Parameter  
Description  
3.3 V PCI Output Module Timing1  
tDLH  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Enable-to-Pad, Z to L  
Enable-to-Pad, Z to H  
Enable-to-Pad, L to Z  
Enable-to-Pad, H to Z  
Delta Low to High  
2.2  
2.3  
2.4  
2.6  
2.9  
3.1  
4.0  
4.3  
3.1  
4.0  
5.3  
4.3  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tENZL  
tENZH  
tENLZ  
tENHZ  
1.7  
1.9  
2.2  
2.2  
2.4  
2.9  
2.8  
3.2  
3.8  
2.3  
2.6  
3.1  
2
dTLH  
0.03  
0.015  
0.03  
0.015  
0.04  
0.015  
0.045 ns/pF  
0.025 ns/pF  
2
dTHL  
Delta High to Low  
3.3 V LVTTL Output Module Timing3  
tDLH  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Data-to-Pad High to Low—low slew  
Enable-to-Pad, Z to L  
3.0  
3.0  
3.4  
3.3  
4.0  
3.9  
5.6  
5.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
10.4  
2.6  
11.8  
2.9  
13.8  
3.4  
19.3  
4.8  
Enable-to-Pad, Z to L—low slew  
Enable-to-Pad, Z to H  
18.9  
3
21.3  
3.4  
25.4  
4
34.9  
5.6  
Enable-to-Pad, L to Z  
3.3  
3.7  
4.4  
6.2  
Enable-to-Pad, H to Z  
3
3.3  
3.9  
5.5  
2
dTLH  
Delta Low to High  
0.03  
0.015  
0.053  
0.03  
0.015  
0.067  
0.04  
0.015  
0.073  
0.045 ns/pF  
0.025 ns/pF  
0.107 ns/pF  
2
dTHL  
Delta High to Low  
2
dTHLS  
Delta High to Low—low slew  
Notes:  
1. Delays based on 10 pF loading and 25 Ω resistance.  
2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:  
Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS]  
where Cload is the load capacitance driven by the I/O in pF  
)
dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF.  
3. Delays based on 35 pF loading.  
2-24  
v5.3  
SX-A Family FPGAs  
–F Speed  
Table 2-20 A54SX08A Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 4.75 V, TJ = 70°C)  
–2 Speed –1 Speed Std. Speed  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
5 V PCI Output Module Timing1  
tDLH  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Enable-to-Pad, Z to L  
Enable-to-Pad, Z to H  
Enable-to-Pad, L to Z  
Enable-to-Pad, H to Z  
Delta Low to High  
2.4  
3.2  
2.8  
3.6  
3.2  
4.2  
4.5  
5.9  
2.8  
4.5  
6.4  
5.9  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tENZL  
tENZH  
tENLZ  
tENHZ  
1.5  
1.7  
2.0  
2.4  
2.8  
3.2  
3.5  
3.9  
4.6  
3.2  
3.6  
4.2  
2
dTLH  
0.016  
0.03  
0.02  
0.032  
0.022  
0.04  
0.032 ns/pF  
0.052 ns/pF  
2
dTHL  
Delta High to Low  
5 V TTL Output Module Timing3  
tDLH  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Data-to-Pad High to Low—low slew  
Enable-to-Pad, Z to L  
2.4  
3.2  
2.8  
3.6  
3.2  
4.2  
4.5  
5.9  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
dTLH  
7.6  
8.6  
10.1  
3.2  
14.2  
4.5  
2.4  
2.7  
Enable-to-Pad, Z to L—low slew  
Enable-to-Pad, Z to H  
8.4  
9.5  
11.0  
3.2  
15.4  
4.5  
2.4  
2.8  
Enable-to-Pad, L to Z  
4.2  
4.7  
5.6  
7.8  
Enable-to-Pad, H to Z  
3.2  
3.6  
4.2  
5.9  
Delta Low to High  
0.017  
0.029  
0.046  
0.017  
0.031  
0.057  
0.023  
0.037  
0.066  
0.031 ns/pF  
0.051 ns/pF  
0.089 ns/pF  
dTHL  
Delta High to Low  
dTHLS  
Notes:  
Delta High to Low—low slew  
1. Delays based on 50 pF loading.  
2. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:  
Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS]  
where Cload is the load capacitance driven by the I/O in pF  
)
dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF.  
3. Delays based on 35 pF loading.  
v5.3  
2-25  
SX-A Family FPGAs  
Table 2-21 A54SX16A Timing Characteristics  
(Worst-Case Commercial Conditions, VCCA = 2.25 V VCCI = 3.0 V, TJ = 70°C)  
,
–3 Speed1  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
–2 Speed  
–1 Speed  
Std. Speed  
–F Speed  
Parameter  
C-Cell Propagation Delays2  
tPD Internal Array Module  
Predicted Routing Delays3  
Description  
0.9  
0.1  
1.0  
0.1  
1.2  
0.1  
1.4  
0.1  
1.9  
0.1  
ns  
ns  
tDC  
FO  
= 1 Routing Delay, Direct  
Connect  
tFC  
FO = 1 Routing Delay, Fast Connect  
FO = 1 Routing Delay  
0.3  
0.3  
0.4  
0.5  
0.7  
1.2  
1.7  
0.3  
0.3  
0.5  
0.6  
0.8  
1.4  
2
0.3  
0.4  
0.5  
0.7  
0.9  
1.5  
2.2  
0.4  
0.5  
0.6  
0.8  
1
0.6  
0.6  
0.8  
1.1  
1.4  
2.5  
3.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
tRD12  
FO = 2 Routing Delay  
FO = 3 Routing Delay  
FO = 4 Routing Delay  
FO = 8 Routing Delay  
1.8  
2.6  
FO = 12 Routing Delay  
R-Cell Timing  
tRCO  
Sequential Clock-to-Q  
0.6  
0.5  
0.7  
0.7  
0.6  
0.8  
0.8  
0.6  
0.8  
0.9  
0.8  
1.0  
1.3  
1.0  
1.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCLR  
Asynchronous Clear-to-Q  
Asynchronous Preset-to-Q  
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
Asynchronous Recovery Time  
Asynchronous Removal Time  
Clock Minimum Pulse Width  
tPRESET  
tSUD  
0.7  
0.0  
1.3  
0.3  
0.3  
1.4  
0.8  
0.0  
1.5  
0.4  
0.3  
1.7  
0.9  
0.0  
1.6  
0.4  
0.3  
1.9  
1.0  
0.0  
1.9  
0.5  
0.4  
2.2  
1.4  
0.0  
2.7  
0.7  
0.6  
3.0  
tHD  
tWASYN  
tRECASYN  
tHASYN  
tMPW  
Input Module Propagation Delays  
tINYH Input Data Pad to Y High 2.5 V  
0.5  
0.8  
0.6  
0.9  
0.7  
1.0  
0.8  
1.1  
1.1  
1.6  
ns  
ns  
LVCMOS  
tINYL  
Input Data Pad to Y Low 2.5 V  
LVCMOS  
tINYH  
tINYL  
tINYH  
Input Data Pad to Y High 3.3 V PCI  
Input Data Pad to Y Low 3.3 V PCI  
0.5  
0.7  
0.7  
0.6  
0.8  
0.7  
0.6  
0.9  
0.8  
0.7  
1.0  
1.0  
1.0  
1.4  
1.4  
ns  
ns  
ns  
Input Data Pad to Y High 3.3 V  
LVTTL  
tINYL  
Input Data Pad to Y Low 3.3 V LVTTL  
0.9  
1.1  
1.2  
1.4  
2.0  
ns  
Notes:  
1. All –3 speed grades have been discontinued.  
2. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.  
3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
2-26  
v5.3  
SX-A Family FPGAs  
Std. Speed –F Speed  
Table 2-21 A54SX16A Timing Characteristics (Continued)  
(Worst-Case Commercial Conditions, VCCA = 2.25 V VCCI = 3.0 V, TJ = 70°C)  
,
–3 Speed1  
–2 Speed  
–1 Speed  
Parameter  
tINYH  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Input Data Pad to Y High 5 V PCI  
Input Data Pad to Y Low 5 V PCI  
Input Data Pad to Y High 5 V TTL  
Input Data Pad to Y Low 5 V TTL  
0.5  
0.7  
0.5  
0.7  
0.5  
0.8  
0.5  
0.8  
0.6  
0.9  
0.6  
0.9  
0.7  
1.1  
0.7  
1.1  
0.9  
1.5  
0.9  
1.5  
ns  
ns  
ns  
ns  
tINYL  
tINYH  
tINYL  
Input Module Predicted Routing Delays2  
tIRD1  
FO = 1 Routing Delay  
FO = 2 Routing Delay  
FO = 3 Routing Delay  
FO = 4 Routing Delay  
FO = 8 Routing Delay  
FO = 12 Routing Delay  
0.3  
0.4  
0.5  
0.7  
1.2  
1.7  
0.3  
0.5  
0.6  
0.8  
1.4  
2.0  
0.3  
0.5  
0.7  
0.9  
1.5  
2.2  
0.4  
0.6  
0.8  
1.0  
0.8  
2.6  
0.6  
0.8  
1.1  
1.4  
2.5  
3.6  
ns  
ns  
ns  
ns  
ns  
ns  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
tIRD12  
Notes:  
1. All –3 speed grades have been discontinued.  
2. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.  
3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
v5.3  
2-27  
SX-A Family FPGAs  
Table 2-22 A54SX16A Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 2.25 V, TJ = 70°C)  
–3 Speed* –2 Speed –1 Speed Std. Speed –F Speed  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Dedicated (Hardwired) Array Clock Networks  
Parameter  
Description  
tHCKH  
Input Low to High  
(Pad to R-cell Input)  
1.2  
1.4  
1.6  
1.8  
2.8  
ns  
tHCKL  
Input High to Low  
(Pad to R-cell Input)  
1.0  
1.1  
1.2  
1.5  
2.2  
ns  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
1.4  
1.4  
1.7  
1.7  
1.9  
1.9  
2.2  
2.2  
3.0  
3.0  
ns  
ns  
0.3  
0.3  
0.4  
0.4  
0.7  
ns  
Minimum Period  
2.8  
3.4  
3.8  
4.4  
6.0  
ns  
fHMAX  
Maximum Frequency  
357  
294  
263  
227  
167  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input Low to High (Light Load)  
(Pad to R-cell Input)  
1.0  
1.1  
1.1  
1.1  
1.3  
1.3  
1.2  
1.3  
1.3  
1.3  
1.5  
1.5  
1.3  
1.5  
1.5  
1.5  
1.7  
1.7  
1.6  
1.7  
1.7  
1.7  
2.0  
2.0  
2.2  
2.4  
2.4  
2.4  
2.8  
2.8  
ns  
ns  
ns  
ns  
ns  
ns  
Input High to Low (Light Load)  
(Pad to R-cell Input)  
Input Low to High (50% Load)  
(Pad to R-cell Input)  
Input High to Low (50% Load)  
(Pad to R-cell Input)  
Input Low to High (100% Load)  
(Pad to R-cell Input)  
Input High to Low (100% Load)  
(Pad to R-cell Input)  
tRPWH  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
1.4  
1.4  
1.7  
1.7  
1.9  
1.9  
2.2  
2.2  
3.0  
3.0  
ns  
ns  
ns  
ns  
ns  
tRPWL  
tRCKSW  
tRCKSW  
tRCKSW  
0.8  
0.8  
1.0  
0.9  
0.9  
1.1  
1.0  
1.0  
1.3  
1.2  
1.2  
1.5  
1.7  
1.7  
2.1  
Note: *All –3 speed grades have been discontinued.  
2-28  
v5.3  
SX-A Family FPGAs  
Table 2-23 A54SX16A Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C)  
–3 Speed* –2 Speed –1 Speed Std. Speed –F Speed  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Dedicated (Hardwired) Array Clock Networks  
Parameter  
Description  
tHCKH  
Input Low to High  
(Pad to R-cell Input)  
1.2  
1.4  
1.6  
1.8  
2.8  
ns  
tHCKL  
Input High to Low  
(Pad to R-cell Input)  
1.0  
1.1  
1.3  
1.5  
2.2  
ns  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
1.4  
1.4  
1.7  
1.7  
1.9  
1.9  
2.2  
2.2  
3.0  
3.0  
ns  
ns  
0.3  
0.3  
0.4  
0.4  
0.6  
ns  
Minimum Period  
2.8  
3.4  
3.8  
4.4  
6.0  
ns  
fHMAX  
Maximum Frequency  
357  
294  
263  
227  
167  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input Low to High (Light Load)  
(Pad to R-cell Input)  
1.0  
1.1  
1.1  
1.1  
1.3  
1.3  
1.2  
1.3  
1.3  
1.3  
1.5  
1.5  
1.3  
1.5  
1.4  
1.5  
1.7  
1.7  
1.5  
1.7  
1.7  
1.7  
2.0  
2.0  
2.1  
2.4  
2.3  
2.4  
2.7  
2.8  
ns  
ns  
ns  
ns  
ns  
ns  
Input High to Low (Light Load)  
(Pad to R-cell Input)  
Input Low to High (50% Load)  
(Pad to R-cell Input)  
Input High to Low (50% Load)  
(Pad to R-cell Input)  
Input Low to High (100% Load)  
(Pad to R-cell Input)  
Input High to Low (100% Load)  
(Pad to R-cell Input)  
tRPWH  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
1.4  
1.4  
1.7  
1.7  
1.9  
1.9  
2.2  
2.2  
3.0  
3.0  
ns  
ns  
ns  
ns  
ns  
tRPWL  
tRCKSW  
tRCKSW  
tRCKSW  
0.8  
0.8  
1.0  
0.9  
0.9  
1.1  
1.0  
1.0  
1.3  
1.2  
1.2  
1.5  
1.7  
1.7  
2.1  
Note: *All –3 speed grades have been discontinued.  
v5.3  
2-29  
SX-A Family FPGAs  
Table 2-24 A54SX16A Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI =4.75 V, TJ = 70°C)  
–3 Speed* –2 Speed –1 Speed Std. Speed –F Speed  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Dedicated (Hardwired) Array Clock Networks  
Parameter  
Description  
tHCKH  
Input Low to High  
(Pad to R-cell Input)  
1.2  
1.4  
1.6  
1.8  
2.8  
ns  
tHCKL  
Input High to Low  
(Pad to R-cell Input)  
1.0  
1.1  
1.2  
1.5  
2.2  
ns  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
1.4  
1.4  
1.7  
1.7  
1.9  
1.9  
2.2  
2.2  
3.0  
3.0  
ns  
ns  
0.3  
0.3  
0.4  
0.4  
0.7  
ns  
Minimum Period  
2.8  
3.4  
3.8  
4.4  
6.0  
ns  
fHMAX  
Maximum Frequency  
357  
294  
263  
227  
167  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input Low to High (Light Load)  
(Pad to R-cell Input)  
1.0  
1.1  
1.1  
1.1  
1.3  
1.3  
1.2  
1.3  
1.3  
1.3  
1.5  
1.5  
1.3  
1.5  
1.5  
1.5  
1.7  
1.7  
1.6  
1.7  
1.7  
1.7  
2.0  
2.0  
2.2  
2.4  
2.4  
2.4  
2.8  
2.8  
ns  
ns  
ns  
ns  
ns  
ns  
Input High to Low (Light Load)  
(Pad to R-cell Input)  
Input Low to High (50% Load)  
(Pad to R-cell Input)  
Input High to Low (50% Load)  
(Pad to R-cell Input)  
Input Low to High (100% Load)  
(Pad to R-cell Input)  
Input High to Low (100% Load)  
(Pad to R-cell Input)  
tRPWH  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
1.4  
1.4  
1.7  
1.7  
1.9  
1.9  
2.2  
2.2  
3.0  
3.0  
ns  
ns  
ns  
ns  
ns  
tRPWL  
tRCKSW  
tRCKSW  
tRCKSW  
0.8  
0.8  
1.0  
0.9  
0.9  
1.1  
1.0  
1.0  
1.3  
1.2  
1.2  
1.5  
1.7  
1.7  
2.1  
Note: *All –3 speed grades have been discontinued.  
2-30  
v5.3  
SX-A Family FPGAs  
Table 2-25 A54SX16A Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 2.25 V, TJ = 70°C)  
–3 Speed1  
–2 Speed –1 Speed Std. Speed –F Speed  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
2.5 V LVCMOS Output Module Timing 2, 3  
tDLH  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Data-to-Pad High to Low—low slew  
Enable-to-Pad, Z to L  
3.4  
2.6  
3.9  
3.0  
4.5  
3.3  
5.2  
3.9  
7.3  
5.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
11.6  
2.4  
13.4  
2.8  
15.2  
3.2  
17.9  
3.7  
25.0  
5.2  
Data-to-Pad, Z to L—low slew  
Enable-to-Pad, Z to H  
11.8  
3.4  
13.7  
3.9  
15.5  
4.5  
18.2  
5.2  
25.5  
7.3  
Enable-to-Pad, L to Z  
2.1  
2.5  
2.8  
3.3  
4.7  
Enable-to-Pad, H to Z  
2.6  
3.0  
3.3  
3.9  
5.5  
4
dTLH  
Delta Low to High  
0.031  
0.017  
0.057  
0.037  
0.017  
0.06  
0.043  
0.023  
0.071  
0.051  
0.023  
0.086  
0.071 ns/pF  
0.037 ns/pF  
0.117 ns/pF  
4
dTHL  
Delta High to Low  
4
dTHLS  
Delta High to Low—low slew  
Note:  
1. All –3 speed grades have been discontinued.  
2. Delays based on 35 pF loading.  
3. The equivalent IO Attribute settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.  
4. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:  
Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS]  
where Cload is the load capacitance driven by the I/O in pF  
)
dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF.  
v5.3  
2-31  
SX-A Family FPGAs  
Table 2-26 A54SX16A Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C)  
–3 Speed1  
–2 Speed –1 Speed Std. Speed –F Speed  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Parameter  
Description  
3.3 V PCI Output Module Timing2  
tDLH  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Enable-to-Pad, Z to L  
Enable-to-Pad, Z to H  
Enable-to-Pad, L to Z  
Enable-to-Pad, H to Z  
Delta Low to High  
2.0  
2.2  
2.3  
2.5  
2.6  
2.8  
3.1  
3.3  
4.3  
4.6  
3.1  
4.3  
5.3  
4.6  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tENZL  
tENZH  
tENLZ  
tENHZ  
1.4  
1.7  
1.9  
2.2  
2.0  
2.3  
2.6  
3.1  
2.5  
2.8  
3.2  
3.8  
2.2  
2.5  
2.8  
3.3  
3
dTLH  
0.025  
0.015  
0.03  
0.015  
0.03  
0.015  
0.04  
0.015  
0.045 ns/pF  
0.025 ns/pF  
3
dTHL  
Delta High to Low  
3.3 V LVTTL Output Module Timing4  
tDLH  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Data-to-Pad High to Low—low slew  
Enable-to-Pad, Z to L  
2.8  
2.7  
3.2  
3.1  
3.6  
3.5  
4.3  
4.1  
6.0  
5.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
9.5  
10.9  
2.6  
12.4  
2.9  
14.6  
3.4  
20.4  
4.8  
2.2  
Enable-to-Pad, Z to L—low slew  
Enable-to-Pad, Z to H  
15.8  
2.8  
18.9  
3.2  
21.3  
3.6  
25.4  
4.3  
34.9  
6.0  
Enable-to-Pad, L to Z  
2.9  
3.3  
3.7  
4.4  
6.2  
Enable-to-Pad, H to Z  
2.7  
3.1  
3.5  
4.1  
5.7  
3
dTLH  
Delta Low to High  
0.025  
0.015  
0.053  
0.03  
0.015  
0.053  
0.03  
0.015  
0.067  
0.04  
0.015  
0.073  
0.045 ns/pF  
0.025 ns/pF  
0.107 ns/pF  
3
dTHL  
Delta High to Low  
3
dTHLS  
Delta High to Low—low slew  
Notes:  
1. All –3 speed grades have been discontinued.  
2. Delays based on 10 pF loading and 25 Ω resistance.  
3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:  
Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS]  
where Cload is the load capacitance driven by the I/O in pF  
)
dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF.  
4. Delays based on 35 pF loading.  
2-32  
v5.3  
SX-A Family FPGAs  
Table 2-27 A54SX16A Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 4.75 V, TJ = 70°C)  
–3 Speed1  
–2 Speed –1 Speed Std. Speed –F Speed  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
5 V PCI Output Module Timing2  
tDLH  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Enable-to-Pad, Z to L  
Enable-to-Pad, Z to H  
Enable-to-Pad, L to Z  
Enable-to-Pad, H to Z  
Delta Low to High  
2.2  
2.8  
2.5  
3.2  
2.8  
3.6  
3.3  
4.2  
4.6  
5.9  
2.8  
4.6  
6.4  
5.9  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tENZL  
tENZH  
tENLZ  
tENHZ  
1.3  
1.5  
1.7  
2.0  
2.2  
2.5  
2.8  
3.3  
3.0  
3.5  
3.9  
4.6  
2.8  
3.2  
3.6  
4.2  
3
dTLH  
0.016  
0.026  
0.016  
0.03  
0.02  
0.032  
0.022  
0.04  
0.032 ns/pF  
0.052 ns/pF  
3
dTHL  
Delta High to Low  
5 V TTL Output Module Timing4  
tDLH  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Data-to-Pad High to Low—low slew  
Enable-to-Pad, Z to L  
2.2  
2.8  
2.5  
3.2  
2.8  
3.6  
3.3  
4.2  
4.6  
5.9  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
6.7  
7.7  
8.7  
10.2  
3.2  
14.3  
4.5  
2.1  
2.4  
2.7  
Enable-to-Pad, Z to L—low slew  
Enable-to-Pad, Z to H  
7.4  
8.4  
9.5  
11.0  
2.9  
15.4  
4.1  
1.9  
2.2  
2.5  
Enable-to-Pad, L to Z  
3.6  
4.2  
4.7  
5.6  
7.8  
Enable-to-Pad, H to Z  
2.5  
2.9  
3.3  
3.9  
5.4  
3
dTLH  
Delta Low to High  
0.014  
0.023  
0.043  
0.017  
0.029  
0.046  
0.017  
0.031  
0.057  
0.023  
0.037  
0.066  
0.031 ns/pF  
0.051 ns/pF  
0.089 ns/pF  
3
dTHL  
Delta High to Low  
3
dTHLS  
Delta High to Low—low slew  
Notes:  
1. All –3 speed grades have been discontinued.  
2. Delays based on 50 pF loading.  
3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:  
Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS]  
where Cload is the load capacitance driven by the I/O in pF  
)
dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF.  
4. Delays based on 35 pF loading.  
v5.3  
2-33  
SX-A Family FPGAs  
Table 2-28 A54SX32A Timing Characteristics  
(Worst-Case Commercial Conditions, VCCA = 2.25 V VCCI = 3.0 V, TJ = 70°C)  
,
–3 Speed1  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
–2 Speed  
–1 Speed  
Std. Speed  
–F Speed  
Parameter  
C-Cell Propagation Delays2  
tPD Internal Array Module  
Predicted Routing Delays3  
Description  
0.8  
0.1  
0.9  
0.1  
1.1  
0.1  
1.2  
0.1  
1.7  
0.1  
ns  
ns  
tDC  
FO  
= 1 Routing Delay, Direct  
Connect  
tFC  
FO = 1 Routing Delay, Fast Connect  
FO = 1 Routing Delay  
0.3  
0.3  
0.4  
0.5  
0.7  
1.2  
1.7  
0.3  
0.3  
0.5  
0.6  
0.8  
1.4  
2.0  
0.3  
0.4  
0.5  
0.7  
0.9  
1.5  
2.2  
0.4  
0.5  
0.6  
0.8  
1.0  
1.8  
2.6  
0.6  
0.6  
0.8  
1.1  
1.4  
2.5  
3.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
tRD12  
FO = 2 Routing Delay  
FO = 3 Routing Delay  
FO = 4 Routing Delay  
FO = 8 Routing Delay  
FO = 12 Routing Delay  
R-Cell Timing  
tRCO  
Sequential Clock-to-Q  
0.6  
0.5  
0.6  
0.7  
0.6  
0.7  
0.8  
0.6  
0.7  
0.9  
0.8  
0.9  
1.3  
1.0  
1.2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCLR  
Asynchronous Clear-to-Q  
Asynchronous Preset-to-Q  
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
Asynchronous Recovery Time  
Asynchronous Removal Time  
Clock Pulse Width  
tPRESET  
tSUD  
0.6  
0.0  
1.2  
0.3  
0.3  
1.4  
0.7  
0.0  
1.4  
0.4  
0.3  
1.6  
0.8  
0.0  
1.5  
0.4  
0.3  
1.8  
0.9  
0.0  
1.8  
0.5  
0.4  
2.1  
1.2  
0.0  
2.5  
0.7  
0.6  
2.9  
tHD  
tWASYN  
tRECASYN  
tHASYN  
tMPW  
Input Module Propagation Delays  
tINYH Input Data Pad to Y High 2.5 V  
0.6  
1.2  
0.7  
1.3  
0.8  
1.5  
0.9  
1.8  
1.2  
2.5  
ns  
ns  
LVCMOS  
tINYL  
Input Data Pad to Y Low 2.5 V  
LVCMOS  
tINYH  
tINYL  
tINYH  
Input Data Pad to Y High 3.3 V PCI  
Input Data Pad to Y Low 3.3 V PCI  
0.5  
0.6  
0.8  
0.6  
0.7  
0.9  
0.6  
0.8  
1.0  
0.7  
0.9  
1.2  
1.0  
1.3  
1.6  
ns  
ns  
ns  
Input Data Pad to Y High 3.3 V  
LVTTL  
tINYL  
Input Data Pad to Y Low 3.3 V LVTTL  
1.4  
1.6  
1.8  
2.2  
3.0  
ns  
Notes:  
1. All –3 speed grades have been discontinued.  
2. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.  
3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
2-34  
v5.3  
SX-A Family FPGAs  
Std. Speed –F Speed  
Table 2-28 A54SX32A Timing Characteristics (Continued)  
(Worst-Case Commercial Conditions, VCCA = 2.25 V VCCI = 3.0 V, TJ = 70°C)  
,
–3 Speed1  
–2 Speed  
–1 Speed  
Parameter  
tINYH  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Input Data Pad to Y High 5 V PCI  
Input Data Pad to Y Low 5 V PCI  
Input Data Pad to Y High 5 V TTL  
Input Data Pad to Y Low 5 V TTL  
0.7  
0.9  
0.9  
1.4  
0.8  
1.1  
1.1  
1.6  
0.9  
1.2  
1.2  
1.8  
1.0  
1.4  
1.4  
2.1  
1.4  
1.9  
1.9  
2.9  
ns  
ns  
ns  
ns  
tINYL  
tINYH  
tINYL  
Input Module Predicted Routing Delays3  
tIRD1  
FO = 1 Routing Delay  
FO = 2 Routing Delay  
FO = 3 Routing Delay  
FO = 4 Routing Delay  
FO = 8 Routing Delay  
FO = 12 Routing Delay  
0.3  
0.4  
0.5  
0.7  
1.2  
1.7  
0.3  
0.5  
0.6  
0.8  
1.4  
2
0.3  
0.5  
0.7  
0.9  
1.5  
2.2  
0.4  
0.6  
0.8  
1
0.6  
0.8  
1.1  
1.4  
2.5  
3.6  
ns  
ns  
ns  
ns  
ns  
ns  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
1.8  
2.6  
tIRD12  
Notes:  
1. All –3 speed grades have been discontinued.  
2. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.  
3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
v5.3  
2-35  
SX-A Family FPGAs  
Table 2-29 A54SX32A Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 2.25 V, TJ = 70°C)  
–3 Speed* –2 Speed –1 Speed Std. Speed –F Speed  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Dedicated (Hardwired) Array Clock Networks  
Parameter  
Description  
tHCKH  
Input Low to High  
(Pad to R-cell Input)  
1.7  
2.0  
2.2  
2.6  
4.0  
ns  
tHCKL  
Input High to Low  
(Pad to R-cell Input)  
1.7  
2.0  
2.2  
2.6  
4.0  
ns  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
2.9  
2.9  
ns  
ns  
0.6  
0.6  
0.7  
0.8  
1.3  
ns  
Minimum Period  
2.8  
3.2  
3.6  
4.2  
5.8  
ns  
fHMAX  
Maximum Frequency  
357  
313  
278  
238  
172  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input Low to High (Light Load)  
(Pad to R-cell Input)  
2.2  
2.1  
2.4  
2.2  
2.5  
2.4  
2.5  
2.4  
2.7  
2.5  
2.9  
2.7  
2.9  
2.7  
3.1  
2.8  
3.2  
3.1  
3.4  
3.2  
3.6  
3.3  
3.8  
3.6  
4.7  
4.4  
5.1  
4.6  
5.3  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
Input High to Low (Light Load)  
(Pad to R-cell Input)  
Input Low to High (50% Load)  
(Pad to R-cell Input)  
Input High to Low (50% Load)  
(Pad to R-cell Input)  
Input Low to High (100% Load)  
(Pad to R-cell Input)  
Input High to Low (100% Load)  
(Pad to R-cell Input)  
tRPWH  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
2.9  
2.9  
ns  
ns  
ns  
ns  
ns  
tRPWL  
tRCKSW  
tRCKSW  
tRCKSW  
1.0  
0.9  
0.9  
1.1  
1.0  
1.0  
1.3  
1.2  
1.2  
1.5  
1.4  
1.4  
2.1  
1.9  
1.9  
Note: *All –3 speed grades have been discontinued.  
2-36  
v5.3  
SX-A Family FPGAs  
Table 2-30 A54SX32A Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C)  
–3 Speed* –2 Speed –1 Speed Std. Speed –F Speed  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Dedicated (Hardwired) Array Clock Networks  
Parameter  
Description  
tHCKH  
Input Low to High  
(Pad to R-cell Input)  
1.7  
2.0  
2.2  
2.6  
4.0  
ns  
tHCKL  
Input High to Low  
(Pad to R-cell Input)  
1.7  
2.0  
2.2  
2.6  
4.0  
ns  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
2.9  
2.9  
ns  
ns  
0.6  
0.6  
0.7  
0.8  
1.3  
ns  
Minimum Period  
2.8  
3.2  
3.6  
4.2  
5.8  
ns  
fHMAX  
Maximum Frequency  
357  
313  
278  
238  
172  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input Low to High (Light Load)  
(Pad to R-cell Input)  
2.2  
2.1  
2.3  
2.2  
2.4  
2.4  
2.5  
2.4  
2.7  
2.5  
2.8  
2.8  
2.8  
2.7  
3.1  
2.9  
3.2  
3.1  
3.3  
3.2  
3.6  
3.4  
3.7  
3.7  
4.6  
4.5  
5
ns  
ns  
ns  
ns  
ns  
ns  
Input High to Low (Light Load)  
(Pad to R-cell Input)  
Input Low to High (50% Load)  
(Pad to R-cell Input)  
Input High to Low (50% Load)  
(Pad to R-cell Input)  
4.7  
5.2  
5.1  
Input Low to High (100% Load)  
(Pad to R-cell Input)  
Input High to Low (100% Load)  
(Pad to R-cell Input)  
tRPWH  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
2.9  
2.9  
ns  
ns  
ns  
ns  
ns  
tRPWL  
tRCKSW  
tRCKSW  
tRCKSW  
1.0  
0.9  
0.9  
1.1  
1.0  
1.0  
1.3  
1.2  
1.2  
1.5  
1.4  
1.4  
2.1  
1.9  
1.9  
Note: *All –3 speed grades have been discontinued.  
v5.3  
2-37  
SX-A Family FPGAs  
Table 2-31 A54SX32A Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 4.75 V, TJ = 70°C)  
–3 Speed* –2 Speed –1 Speed Std. Speed –F Speed  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Dedicated (Hardwired) Array Clock Networks  
Parameter  
Description  
tHCKH  
Input Low to High  
(Pad to R-cell Input)  
1.7  
1.9  
2.2  
2.6  
4.0  
ns  
tHCKL  
Input High to Low  
(Pad to R-cell Input)  
1.7  
2.0  
2.2  
2.6  
4.0  
ns  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
2.9  
2.9  
ns  
ns  
0.6  
0.6  
0.7  
0.8  
1.3  
ns  
Minimum Period  
2.8  
3.2  
3.6  
4.2  
5.8  
ns  
fHMAX  
Maximum Frequency  
357  
313  
278  
238  
172  
MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input Low to High (Light Load)  
(Pad to R-cell Input)  
2.2  
2.1  
2.4  
2.2  
2.5  
2.4  
2.5  
2.5  
2.7  
2.6  
2.8  
2.8  
2.8  
2.8  
3.1  
2.9  
3.2  
3.1  
3.3  
3.3  
3.6  
3.4  
3.8  
3.7  
4.7  
4.5  
5.1  
4.7  
5.3  
5.2  
ns  
ns  
ns  
ns  
ns  
ns  
Input High to Low (Light Load)  
(Pad to R-cell Input)  
Input Low to High (50% Load)  
(Pad to R-cell Input)  
Input High to Low (50% Load)  
(Pad to R-cell Input)  
Input Low to High (100% Load)  
(Pad to R-cell Input)  
Input High to Low (100% Load)  
(Pad to R-cell Input)  
tRPWH  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
2.9  
2.9  
ns  
ns  
ns  
ns  
ns  
tRPWL  
tRCKSW  
tRCKSW  
tRCKSW  
1.0  
1.0  
1.0  
1.1  
1.1  
1.1  
1.3  
1.3  
1.3  
1.5  
1.5  
1.5  
2.1  
2.1  
2.1  
Note: *All –3 speed grades have been discontinued.  
2-38  
v5.3  
SX-A Family FPGAs  
Table 2-32 A54SX32A Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 2.3 V, TJ = 70°C)  
–3 Speed1  
–2 Speed –1 Speed Std. Speed –F Speed  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
2.5 V LVCMOS Output Module Timing 2,3  
tDLH  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Data-to-Pad High to Low—low slew  
Enable-to-Pad, Z to L  
3.3  
2.5  
3.8  
2.9  
4.2  
3.2  
5.0  
3.8  
7.0  
5.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
11.1  
2.4  
12.8  
2.8  
14.5  
3.2  
17.0  
3.7  
23.8  
5.2  
Data-to-Pad, Z to L—low slew  
Enable-to-Pad, Z to H  
11.8  
3.3  
13.7  
3.8  
15.5  
4.2  
18.2  
5.0  
25.5  
7.0  
Enable-to-Pad, L to Z  
2.1  
2.5  
2.8  
3.3  
4.7  
Enable-to-Pad, H to Z  
2.5  
2.9  
3.2  
3.8  
5.3  
4
dTLH  
Delta Low to High  
0.031  
0.017  
0.057  
0.037  
0.017  
0.06  
0.043  
0.023  
0.071  
0.051  
0.023  
0.086  
0.071 ns/pF  
0.037 ns/pF  
0.117 ns/pF  
4
dTHL  
Delta High to Low  
4
dTHLS  
Delta High to Low—low slew  
Note:  
1. All –3 speed grades have been discontinued.  
2. Delays based on 35 pF loading.  
3. The equivalent IO Attribute settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.  
4. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:  
Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS]  
where Cload is the load capacitance driven by the I/O in pF  
)
dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF.  
v5.3  
2-39  
SX-A Family FPGAs  
Table 2-33 A54SX32A Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C)  
–3 Speed1  
–2 Speed –1 Speed Std. Speed –F Speed  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Parameter  
Description  
3.3 V PCI Output Module Timing2  
tDLH  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Enable-to-Pad, Z to L  
Enable-to-Pad, Z to H  
Enable-to-Pad, L to Z  
Enable-to-Pad, H to Z  
Delta Low to High  
1.9  
2.0  
2.2  
2.3  
2.4  
2.6  
2.9  
3.1  
4.0  
4.3  
3.1  
4.0  
5.3  
4.3  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tENZL  
tENZH  
tENLZ  
tENHZ  
1.4  
1.7  
1.9  
2.2  
1.9  
2.2  
2.4  
2.9  
2.5  
2.8  
3.2  
3.8  
2.0  
2.3  
2.6  
3.1  
3
dTLH  
0.025  
0.015  
0.03  
0.015  
0.03  
0.015  
0.04  
0.015  
0.045 ns/pF  
0.025 ns/pF  
3
dTHL  
Delta High to Low  
3.3 V LVTTL Output Module Timing4  
tDLH  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Data-to-Pad High to Low—low slew  
Enable-to-Pad, Z to L  
2.6  
2.6  
3.0  
3.0  
3.4  
3.3  
4.0  
3.9  
5.6  
5.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
9.0  
10.4  
2.6  
11.8  
2.9  
13.8  
3.4  
19.3  
4.8  
2.2  
Enable-to-Pad, Z to L—low slew  
Enable-to-Pad, Z to H  
15.8  
2.6  
18.9  
3.0  
21.3  
3.4  
25.4  
4.0  
34.9  
5.6  
Enable-to-Pad, L to Z  
2.9  
3.3  
3.7  
4.4  
6.2  
Enable-to-Pad, H to Z  
2.6  
3.0  
3.3  
3.9  
5.5  
3
dTLH  
Delta Low to High  
0.025  
0.015  
0.053  
0.03  
0.015  
0.053  
0.03  
0.015  
0.067  
0.04  
0.015  
0.073  
0.045 ns/pF  
0.025 ns/pF  
0.107 ns/pF  
3
dTHL  
Delta High to Low  
3
dTHLS  
Delta High to Low—low slew  
Notes:  
1. All –3 speed grades have been discontinued.  
2. Delays based on 10 pF loading and 25 Ω resistance.  
3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:  
Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS]  
where Cload is the load capacitance driven by the I/O in pF  
)
dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF.  
4. Delays based on 35 pF loading.  
2-40  
v5.3  
SX-A Family FPGAs  
Table 2-34 A54SX32A Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 4.75 V, TJ = 70°C)  
–3 Speed1  
–2 Speed –1 Speed Std. Speed –F Speed  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
5 V PCI Output Module Timing2  
tDLH  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Enable-to-Pad, Z to L  
Enable-to-Pad, Z to H  
Enable-to-Pad, L to Z  
Enable-to-Pad, H to Z  
Delta Low to High  
2.1  
2.8  
2.4  
3.2  
2.8  
3.6  
3.2  
4.2  
4.5  
5.9  
2.8  
4.5  
6.4  
5.9  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tENZL  
tENZH  
tENLZ  
tENHZ  
1.3  
1.5  
1.7  
2.0  
2.1  
2.4  
2.8  
3.2  
3.0  
3.5  
3.9  
4.6  
2.8  
3.2  
3.6  
4.2  
3
dTLH  
0.016  
0.026  
0.016  
0.03  
0.02  
0.032  
0.022  
0.04  
0.032 ns/pF  
0.052 ns/pF  
3
dTHL  
Delta High to Low  
5 V TTL Output Module Timing4  
tDLH  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Data-to-Pad High to Low—low slew  
Enable-to-Pad, Z to L  
1.9  
2.5  
2.2  
2.9  
2.5  
3.3  
2.9  
3.9  
4.1  
5.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
6.6  
7.6  
8.6  
10.1  
3.2  
14.2  
4.5  
2.1  
2.4  
2.7  
Enable-to-Pad, Z to L—low slew  
Enable-to-Pad, Z to H  
7.4  
8.4  
9.5  
11.0  
2.9  
15.4  
4.1  
1.9  
2.2  
2.5  
Enable-to-Pad, L to Z  
3.6  
4.2  
4.7  
5.6  
7.8  
Enable-to-Pad, H to Z  
2.5  
2.9  
3.3  
3.9  
5.4  
3
dTLH  
Delta Low to High  
0.014  
0.023  
0.043  
0.017  
0.029  
0.046  
0.017  
0.031  
0.057  
0.023  
0.037  
0.066  
0.031 ns/pF  
0.051 ns/pF  
0.089 ns/pF  
3
dTHL  
Delta High to Low  
3
dTHLS  
Delta High to Low—low slew  
Notes:  
1. All –3 speed grades have been discontinued.  
2. Delays based on 50 pF loading.  
3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:  
Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS]  
where Cload is the load capacitance driven by the I/O in pF  
)
dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF.  
4. Delays based on 35 pF loading.  
v5.3  
2-41  
SX-A Family FPGAs  
Table 2-35 A54SX72A Timing Characteristics  
(Worst-Case Commercial Conditions, VCCA = 2.25 V VCCI = 3.0 V, TJ = 70°C)  
,
–3 Speed1  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
–2 Speed  
–1 Speed  
Std. Speed  
–F Speed  
Parameter  
C-Cell Propagation Delays2  
tPD Internal Array Module  
Predicted Routing Delays3  
Description  
1.0  
0.1  
1.1  
0.1  
1.3  
0.1  
1.5  
0.1  
2.0  
0.1  
ns  
ns  
tDC  
FO  
= 1 Routing Delay, Direct  
Connect  
tFC  
FO = 1 Routing Delay, Fast Connect  
FO = 1 Routing Delay  
0.3  
0.3  
0.4  
0.5  
0.7  
1.2  
1.7  
0.3  
0.3  
0.5  
0.7  
0.9  
1.5  
2.2  
0.3  
0.4  
0.6  
0.8  
1
0.4  
0.5  
0.7  
0.9  
1.1  
2.1  
3
0.6  
0.7  
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
tRD12  
FO = 2 Routing Delay  
FO = 3 Routing Delay  
1.3  
1.5  
2.9  
4.2  
FO = 4 Routing Delay  
FO = 8 Routing Delay  
1.7  
2.5  
FO = 12 Routing Delay  
R-Cell Timing  
tRCO  
Sequential Clock-to-Q  
0.7  
0.6  
0.7  
0.8  
0.7  
0.8  
0.9  
0.7  
0.8  
1.1  
0.9  
1.0  
1.5  
1.2  
1.4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCLR  
Asynchronous Clear-to-Q  
Asynchronous Preset-to-Q  
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
Asynchronous Recovery Time  
Asynchronous Hold Time  
Clock Minimum Pulse Width  
tPRESET  
tSUD  
0.7  
0.0  
1.3  
0.3  
0.3  
1.5  
0.8  
0.0  
1.5  
0.4  
0.3  
1.7  
0.9  
0.0  
1.7  
0.4  
0.3  
2.0  
1.0  
0.0  
2.0  
0.5  
0.4  
2.3  
1.4  
0.0  
2.8  
0.7  
0.6  
3.2  
tHD  
tWASYN  
tRECASYN  
tHASYN  
tMPW  
Input Module Propagation Delays  
tINYH Input Data Pad to Y High 2.5 V  
0.6  
0.8  
0.7  
1.0  
0.8  
1.1  
0.9  
1.3  
1.3  
1.7  
ns  
ns  
LVCMOS  
tINYL  
Input Data Pad to Y Low 2.5 V  
LVCMOS  
tINYH  
tINYL  
tINYH  
Input Data Pad to Y High 3.3 V PCI  
Input Data Pad to Y Low 3.3 V PCI  
0.6  
0.7  
0.7  
0.7  
0.8  
0.7  
0.7  
0.9  
0.8  
0.9  
1.0  
1.0  
1.2  
1.4  
1.4  
ns  
ns  
ns  
Input Data Pad to Y High 3.3 V  
LVTTL  
tINYL  
Input Data Pad to Y Low 3.3 V LVTTL  
1.0  
1.2  
1.3  
1.5  
2.1  
ns  
Notes:  
1. All –3 speed grades have been discontinued.  
2. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.  
3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
2-42  
v5.3  
SX-A Family FPGAs  
Std. Speed –F Speed  
Table 2-35 A54SX72A Timing Characteristics (Continued)  
(Worst-Case Commercial Conditions, VCCA = 2.25 V VCCI = 3.0 V, TJ = 70°C)  
,
–3 Speed1  
–2 Speed  
–1 Speed  
Parameter  
tINYH  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Input Data Pad to Y High 5 V PCI  
Input Data Pad to Y Low 5 V PCI  
Input Data Pad to Y High 5 V TTL  
Input Data Pad to Y Low 5 V TTL  
0.5  
0.8  
0.7  
0.9  
0.6  
0.9  
0.8  
1.1  
0.7  
1.0  
0.9  
1.2  
0.8  
1.2  
1.0  
1.4  
1.1  
1.6  
1.4  
1.9  
ns  
ns  
ns  
ns  
tINYL  
tINYH  
tINYL  
Input Module Predicted Routing Delays3  
tIRD1  
FO = 1 Routing Delay  
FO = 2 Routing Delay  
FO = 3 Routing Delay  
FO = 4 Routing Delay  
FO = 8 Routing Delay  
FO = 12 Routing Delay  
0.3  
0.4  
0.5  
0.7  
1.2  
1.7  
0.3  
0.5  
0.7  
0.9  
1.5  
2.2  
0.4  
0.6  
0.8  
1
0.5  
0.7  
0.9  
1.1  
2.1  
3
0.7  
1
ns  
ns  
ns  
ns  
ns  
ns  
tIRD2  
tIRD3  
1.3  
1.5  
2.9  
4.2  
tIRD4  
tIRD8  
1.7  
2.5  
tIRD12  
Notes:  
1. All –3 speed grades have been discontinued.  
2. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn , or tPD1 + tRD1 + tSUD , whichever is appropriate.  
3. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual performance.  
v5.3  
2-43  
SX-A Family FPGAs  
Table 2-36 A54SX72A Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 2.25 V, TJ = 70°C)  
–3 Speed* –2 Speed –1 Speed  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Dedicated (Hardwired) Array Clock Networks  
Std. Speed  
–F Speed  
Parameter  
Description  
tHCKH  
Input Low to High  
(Pad to R-cell Input)  
1.6  
1.9  
2.1  
2.5  
3.8  
ns  
tHCKL  
Input High to Low  
(Pad to R-cell Input)  
1.6  
1.9  
2.1  
2.5  
3.8  
ns  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
1.5  
1.5  
1.7  
1.7  
2.0  
2.0  
2.3  
2.3  
3.2  
3.2  
ns  
ns  
ns  
ns  
1.4  
1.6  
1.8  
2.1  
3.3  
Minimum Period  
3.0  
3.4  
4.0  
4.6  
6.4  
fHMAX  
Maximum Frequency  
333  
294  
250  
217  
156 MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input Low to High (Light Load)  
(Pad to R-cell Input)  
2.3  
2.8  
2.4  
2.9  
2.6  
3.1  
2.6  
3.2  
2.8  
3.3  
3.0  
3.6  
2.9  
3.7  
3.2  
3.8  
3.4  
4.0  
3.4  
4.3  
3.7  
4.5  
4.0  
4.7  
4.8  
6.0  
5.2  
6.2  
5.6  
6.6  
ns  
ns  
ns  
ns  
ns  
ns  
Input High to Low (Light Load)  
(Pad to R-cell Input)  
Input Low to High (50% Load)  
(Pad to R-cell Input)  
Input High to Low (50% Load)  
(Pad to R-cell Input)  
Input Low to High (100% Load)  
(Pad to R-cell Input)  
Input High to Low (100% Load)  
(Pad to R-cell Input)  
tRPWH  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
1.5  
1.5  
1.7  
1.7  
2.0  
2.0  
2.3  
2.3  
3.2  
3.2  
ns  
ns  
ns  
ns  
ns  
tRPWL  
tRCKSW  
tRCKSW  
tRCKSW  
1.9  
1.8  
1.8  
2.2  
2.1  
2.1  
2.5  
2.4  
2.4  
3.0  
2.8  
2.8  
4.1  
3.9  
3.9  
Quadrant Array Clock Networks  
tQCKH  
tQCHKL  
tQCKH  
tQCHKL  
Input Low to High (Light Load)  
(Pad to R-cell Input)  
2.6  
2.6  
2.8  
2.8  
3.0  
3.0  
3.2  
3.2  
3.4  
3.3  
3.6  
3.6  
4.0  
3.9  
4.3  
4.2  
5.6  
5.5  
6.0  
5.9  
ns  
ns  
ns  
ns  
Input High to Low (Light Load)  
(Pad to R-cell Input)  
Input Low to High (50% Load)  
(Pad to R-cell Input)  
Input High to Low (50% Load)  
(Pad to R-cell Input)  
Note: *All –3 speed grades have been discontinued.  
2-44  
v5.3  
SX-A Family FPGAs  
Std. Speed –F Speed  
Table 2-36 A54SX72A Timing Characteristics (Continued)  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 2.25 V, TJ = 70°C)  
–3 Speed*  
–2 Speed  
–1 Speed  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
tQCKH  
Input Low to High (100% Load)  
(Pad to R-cell Input)  
3.0  
3.4  
3.9  
4.6  
6.4  
ns  
tQCHKL  
Input High to Low (100% Load)  
(Pad to R-cell Input)  
2.9  
3.4  
3.8  
4.5  
6.3  
ns  
tQPWH  
tQPWL  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
1.5  
1.5  
1.7  
1.7  
2.0  
2.0  
2.3  
2.3  
3.2  
3.2  
ns  
ns  
ns  
ns  
ns  
tQCKSW  
tQCKSW  
tQCKSW  
0.2  
0.4  
0.4  
0.3  
0.5  
0.5  
0.3  
0.5  
0.5  
0.3  
0.6  
0.6  
0.5  
0.9  
0.9  
Note: *All –3 speed grades have been discontinued.  
v5.3  
2-45  
SX-A Family FPGAs  
Table 2-37 A54SX72A Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C)  
–3 Speed* –2 Speed –1 Speed  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Dedicated (Hardwired) Array Clock Networks  
Std. Speed  
–F Speed  
Parameter  
Description  
tHCKH  
Input Low to High  
(Pad to R-cell Input)  
1.6  
1.9  
2.1  
2.5  
3.8  
ns  
tHCKL  
Input High to Low  
(Pad to R-cell Input)  
1.7  
1.9  
2.1  
2.5  
3.8  
ns  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
1.5  
1.5  
1.7  
1.7  
2.0  
2.0  
2.3  
2.3  
3.2  
3.2  
ns  
ns  
ns  
ns  
1.4  
1.6  
1.8  
2.1  
3.3  
Minimum Period  
3.0  
3.4  
4.0  
4.6  
6.4  
fHMAX  
Maximum Frequency  
333  
294  
250  
217  
156 MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input Low to High (Light Load)  
(Pad to R-cell Input)  
2.2  
2.8  
2.4  
2.9  
2.6  
3.1  
2.6  
3.3  
2.8  
3.4  
3.0  
3.6  
2.9  
3.7  
3.2  
3.8  
3.4  
4.1  
3.4  
4.3  
3.7  
4.5  
4.0  
4.8  
4.8  
6.0  
5.2  
6.2  
5.6  
6.7  
ns  
ns  
ns  
ns  
ns  
ns  
Input High to Low (Light Load)  
(Pad to R-cell Input)  
Input Low to High (50% Load)  
(Pad to R-cell Input)  
Input High to Low (50% Load)  
(Pad to R-cell Input)  
Input Low to High (100% Load)  
(Pad to R-cell Input)  
Input High to Low (100% Load)  
(Pad to R-cell Input)  
tRPWH  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
1.5  
1.5  
1.7  
1.7  
2.0  
2.0  
2.3  
2.3  
3.2  
3.2  
ns  
ns  
ns  
ns  
ns  
tRPWL  
tRCKSW  
tRCKSW  
tRCKSW  
1.9  
1.9  
1.9  
2.2  
2.1  
2.1  
2.5  
2.4  
2.4  
3
4.1  
3.9  
3.9  
2.8  
2.8  
Quadrant Array Clock Networks  
tQCKH  
tQCHKL  
tQCKH  
tQCHKL  
Input Low to High (Light Load)  
(Pad to R-cell Input)  
1.3  
1.3  
1.5  
1.5  
1.5  
1.5  
1.7  
1.8  
1.7  
1.7  
1.9  
2
1.9  
2
2.7  
2.8  
3.1  
3.2  
ns  
ns  
ns  
ns  
Input High to Low (Light Load)  
(Pad to R-cell Input)  
Input Low to High (50% Load)  
(Pad to R-cell Input)  
2.2  
2.3  
Input High to Low (50% Load)  
(Pad to R-cell Input)  
Note: *All –3 speed grades have been discontinued.  
2-46  
v5.3  
SX-A Family FPGAs  
Std. Speed –F Speed  
Table 2-37 A54SX72A Timing Characteristics (Continued)  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C)  
–3 Speed*  
–2 Speed  
–1 Speed  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
tQCKH  
Input Low to High (100% Load)  
(Pad to R-cell Input)  
1.7  
1.9  
2.2  
2.5  
3.5  
ns  
tQCHKL  
Input High to Low (100% Load)  
(Pad to R-cell Input)  
1.7  
2
2.2  
2.6  
3.6  
ns  
tQPWH  
tQPWL  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
1.5  
1.5  
1.7  
1.7  
2.0  
2.0  
2.3  
2.3  
3.2  
3.2  
ns  
ns  
ns  
ns  
ns  
tQCKSW  
tQCKSW  
tQCKSW  
0.2  
0.4  
0.4  
0.3  
0.5  
0.5  
0.3  
0.5  
0.5  
0.3  
0.6  
0.6  
0.5  
0.9  
0.9  
Note: *All –3 speed grades have been discontinued.  
v5.3  
2-47  
SX-A Family FPGAs  
Table 2-38 A54SX72A Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 4.75 V, TJ = 70°C)  
–3 Speed* –2 Speed –1 Speed  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Dedicated (Hardwired) Array Clock Networks  
Std. Speed  
–F Speed  
Parameter  
Description  
tHCKH  
Input Low to High  
(Pad to R-cell Input)  
1.6  
1.8  
2.1  
2.4  
3.8  
ns  
tHCKL  
Input High to Low  
(Pad to R-cell Input)  
1.6  
1.9  
2.1  
2.5  
3.8  
ns  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew  
1.5  
1.5  
1.7  
1.7  
2.0  
2.0  
2.3  
2.3  
3.2  
3.2  
ns  
ns  
ns  
ns  
1.4  
1.6  
1.8  
2.1  
3.3  
Minimum Period  
3.0  
3.4  
4.0  
4.6  
6.4  
fHMAX  
Maximum Frequency  
333  
294  
250  
217  
156 MHz  
Routed Array Clock Networks  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
Input Low to High (Light Load)  
(Pad to R-cell Input)  
2.3  
2.8  
2.5  
3.0  
2.6  
3.2  
2.6  
3.2  
2.9  
3.4  
3.0  
3.6  
3.0  
3.6  
3.2  
3.9  
3.4  
4.1  
3.5  
4.3  
3.8  
4.6  
3.9  
4.8  
4.9  
6.0  
5.3  
6.4  
5.5  
6.8  
ns  
ns  
ns  
ns  
ns  
ns  
Input High to Low (Light Load)  
(Pad to R-cell Input)  
Input Low to High (50% Load)  
(Pad to R-cell Input)  
Input High to Low (50% Load)  
(Pad to R-cell Input)  
Input Low to High (100% Load)  
(Pad to R-cell Input)  
Input High to Low (100% Load)  
(Pad to R-cell Input)  
tRPWH  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
1.5  
1.5  
1.7  
1.7  
2.0  
2.0  
2.3  
2.3  
3.2  
3.2  
ns  
ns  
ns  
ns  
ns  
tRPWL  
tRCKSW  
tRCKSW  
tRCKSW  
1.9  
1.9  
1.9  
2.2  
2.2  
2.2  
2.5  
2.5  
2.5  
3.0  
3.0  
3.0  
4.1  
4.1  
4.1  
Quadrant Array Clock Networks  
tQCKH  
tQCHKL  
tQCKH  
tQCHKL  
Input Low to High (Light Load)  
(Pad to R-cell Input)  
1.2  
1.3  
1.4  
1.4  
1.4  
1.4  
1.6  
1.7  
1.6  
1.6  
1.8  
1.9  
1.8  
1.9  
2.1  
2.2  
2.6  
2.7  
3.0  
3.1  
ns  
ns  
ns  
ns  
Input High to Low (Light Load)  
(Pad to R-cell Input)  
Input Low to High (50% Load)  
(Pad to R-cell Input)  
Input High to Low (50% Load)  
(Pad to R-cell Input)  
Note: *All –3 speed grades have been discontinued.  
2-48  
v5.3  
SX-A Family FPGAs  
Std. Speed –F Speed  
Table 2-38 A54SX72A Timing Characteristics (Continued)  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 4.75 V, TJ = 70°C)  
–3 Speed*  
–2 Speed  
–1 Speed  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
tQCKH  
Input Low to High (100% Load)  
(Pad to R-cell Input)  
1.6  
1.8  
2.1  
2.4  
3.4  
ns  
tQCHKL  
Input High to Low (100% Load)  
(Pad to R-cell Input)  
1.6  
1.9  
2.1  
2.5  
3.5  
ns  
tQPWH  
tQPWL  
Minimum Pulse Width High  
Minimum Pulse Width Low  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
1.5  
1.5  
1.7  
1.7  
2.0  
2.0  
2.3  
2.3  
3.2  
3.2  
ns  
ns  
ns  
ns  
ns  
tQCKSW  
tQCKSW  
tQCKSW  
0.2  
0.4  
0.4  
0.3  
0.5  
0.5  
0.3  
0.5  
0.5  
0.3  
0.6  
0.6  
0.5  
0.9  
0.9  
Note: *All –3 speed grades have been discontinued.  
v5.3  
2-49  
SX-A Family FPGAs  
Table 2-39 A54SX72A Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 2.3 V, TJ = 70°C)  
–3 Speed1  
–2 Speed –1 Speed Std. Speed –F Speed  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Parameter  
Description  
2.5 V LVCMOS Output Module Timing2, 3  
tDLH  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Data-to-Pad High to Low—low slew  
Enable-to-Pad, Z to L  
3.9  
3.1  
4.5  
3.6  
5.1  
4.1  
6.0  
4.8  
8.4  
6.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
12.7  
2.4  
14.6  
2.8  
16.5  
3.2  
19.4  
3.7  
27.2  
5.2  
Data-to-Pad, Z to L—low slew  
Enable-to-Pad, Z to H  
11.8  
3.9  
13.7  
4.5  
15.5  
5.1  
18.2  
6.0  
25.5  
8.4  
Enable-to-Pad, L to Z  
2.1  
2.5  
2.8  
3.3  
4.7  
Enable-to-Pad, H to Z  
3.1  
3.6  
4.1  
4.8  
6.7  
4
dTLH  
Delta Low to High  
0.031  
0.017  
0.057  
0.037  
0.017  
0.06  
0.043  
0.023  
0.071  
0.051  
0.023  
0.086  
0.071 ns/pF  
0.037 ns/pF  
0.117 ns/pF  
4
dTHL  
Delta High to Low  
4
dTHLS  
Delta High to Low—low slew  
Note:  
1. All –3 speed grades have been discontinued.  
2. Delays based on 35 pF loading.  
3. The equivalent IO Attribute settings for 2.5 V LVCMOS is 2.5 V LVTTL in the software.  
4. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:  
Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS]  
where Cload is the load capacitance driven by the I/O in pF  
)
dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF.  
2-50  
v5.3  
SX-A Family FPGAs  
Table 2-40 A54SX72A Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 3.0 V, TJ = 70°C)  
–3 Speed1  
–2 Speed –1 Speed Std. Speed –F Speed  
Parameter  
Description  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
3.3 V PCI Output Module Timing2  
tDLH  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Enable-to-Pad, Z to L  
Enable-to-Pad, Z to H  
Enable-to-Pad, L to Z  
Enable-to-Pad, H to Z  
Delta Low to High  
2.3  
2.5  
2.7  
2.9  
3.0  
3.2  
3.6  
3.8  
5.0  
5.3  
3.1  
5.0  
5.3  
5.3  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tENZL  
tENZH  
tENLZ  
tENHZ  
1.4  
1.7  
1.9  
2.2  
2.3  
2.7  
3.0  
3.6  
2.5  
2.8  
3.2  
3.8  
2.5  
2.9  
3.2  
3.8  
3
dTLH  
0.025  
0.015  
0.03  
0.015  
0.03  
0.015  
0.04  
0.015  
0.045 ns/pF  
0.025 ns/pF  
3
dTHL  
Delta High to Low  
3.3 V LVTTL Output Module Timing4  
tDLH  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Data-to-Pad High to Low—low slew  
Enable-to-Pad, Z to L  
3.2  
3.2  
3.7  
3.7  
4.2  
4.2  
5.0  
4.9  
6.9  
6.9  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
10.3  
2.2  
11.9  
2.6  
13.5  
2.9  
15.8  
3.4  
22.2  
4.8  
Enable-to-Pad, Z to L—low slew  
Enable-to-Pad, Z to H  
15.8  
3.2  
18.9  
3.7  
21.3  
4.2  
25.4  
5.0  
34.9  
6.9  
Enable-to-Pad, L to Z  
2.9  
3.3  
3.7  
4.4  
6.2  
Enable-to-Pad, H to Z  
3.2  
3.7  
4.2  
4.9  
6.9  
3
dTLH  
Delta Low to High  
0.025  
0.015  
0.053  
0.03  
0.015  
0.053  
0.03  
0.015  
0.067  
0.04  
0.015  
0.073  
0.045 ns/pF  
0.025 ns/pF  
0.107 ns/pF  
3
dTHL  
Delta High to Low  
3
dTHLS  
Delta High to Low—low slew  
Notes:  
1. All –3 speed grades have been discontinued.  
2. Delays based on 10 pF loading and 25 Ω resistance.  
3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:  
Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS]  
where Cload is the load capacitance driven by the I/O in pF  
)
dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF.  
4. Delays based on 35 pF loading.  
v5.3  
2-51  
SX-A Family FPGAs  
Table 2-41 A54SX72A Timing Characteristics  
(Worst-Case Commercial Conditions VCCA = 2.25 V, VCCI = 4.75 V, TJ = 70°C)  
–3 Speed1  
–2 Speed –1 Speed Std. Speed –F Speed  
Min. Max. Min. Max. Min. Max. Min. Max. Min. Max. Units  
Parameter  
Description  
5 V PCI Output Module Timing2  
tDLH  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Enable-to-Pad, Z to L  
Enable-to-Pad, Z to H  
Enable-to-Pad, L to Z  
Enable-to-Pad, H to Z  
Delta Low to High  
2.7  
3.4  
3.1  
3.9  
3.5  
4.4  
4.1  
5.1  
5.7  
7.2  
2.8  
5.7  
6.4  
7.2  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tENZL  
tENZH  
tENLZ  
tENHZ  
1.3  
1.5  
1.7  
2.0  
2.7  
3.1  
3.5  
4.1  
3.0  
3.5  
3.9  
4.6  
3.4  
3.9  
4.4  
5.1  
3
dTLH  
0.016  
0.026  
0.016  
0.03  
0.02  
0.032  
0.022  
0.04  
0.032 ns/pF  
0.052 ns/pF  
3
dTHL  
Delta High to Low  
5 V TTL Output Module Timing4  
tDLH  
Data-to-Pad Low to High  
Data-to-Pad High to Low  
Data-to-Pad High to Low—low slew  
Enable-to-Pad, Z to L  
2.4  
3.1  
2.8  
3.5  
3.1  
4.0  
3.7  
4.7  
5.1  
6.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tDHLS  
tENZL  
tENZLS  
tENZH  
tENLZ  
tENHZ  
7.4  
8.5  
9.7  
11.4  
3.2  
15.9  
4.5  
2.1  
2.4  
2.7  
Enable-to-Pad, Z to L—low slew  
Enable-to-Pad, Z to H  
7.4  
8.4  
9.5  
11.0  
3.7  
15.4  
5.1  
2.4  
2.8  
3.1  
Enable-to-Pad, L to Z  
3.6  
4.2  
4.7  
5.6  
7.8  
Enable-to-Pad, H to Z  
3.1  
3.5  
4.0  
4.7  
6.6  
3
dTLH  
Delta Low to High  
0.014  
0.023  
0.043  
0.017  
0.029  
0.046  
0.017  
0.031  
0.057  
0.023  
0.037  
0.066  
0.031 ns/pF  
0.051 ns/pF  
0.089 ns/pF  
3
dTHL  
Delta High to Low  
3
dTHLS  
Delta High to Low—low slew  
Notes:  
1. All –3 speed grades have been discontinued.  
2. Delays based on 50 pF loading.  
3. To obtain the slew rate, substitute the appropriate Delta value, load capacitance, and the VCCI value into the following equation:  
Slew Rate [V/ns] = (0.1*VCCI – 0.9*VCCI)/ (Cload * dT[LH|HL|HLS]  
where Cload is the load capacitance driven by the I/O in pF  
)
dT[LH|HL|HLS] is the worst case delta value from the datasheet in ns/pF.  
4. Delays based on 35 pF loading.  
2-52  
v5.3  
 
SX-A Family FPGAs  
Package Pin Assignments  
208-Pin PQFP  
208  
1
208-Pin  
PQFP  
Figure 3-1 208-Pin PQFP (Top View)  
Note  
For Package Manufacturing and Environmental information, visit Resource center at  
http://www.actel.com/products/rescenter/package/index.html.  
v5.3  
3-1  
SX-A Family FPGAs  
208-Pin PQFP  
A54SX08A A54SX16A A54SX32A A54SX72A  
208-Pin PQFP  
Pin  
Number Function Function Function Function  
Pin  
A54SX08A A54SX16A A54SX32A A54SX72A  
Number Function Function Function Function  
1
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2
3
I/O  
4
NC  
I/O  
I/O  
I/O  
NC  
VCCI  
VCCA  
I/O  
5
I/O  
I/O  
I/O  
I/O  
6
NC  
I/O  
I/O  
I/O  
7
I/O  
I/O  
I/O  
I/O  
8
I/O  
I/O  
I/O  
I/O  
I/O  
9
I/O  
I/O  
I/O  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
I/O  
I/O  
I/O  
I/O  
I/O  
TMS  
VCCI  
I/O  
TMS  
VCCI  
I/O  
TMS  
VCCI  
I/O  
TMS  
VCCI  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
GND  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
NC  
I/O  
VCCI  
NC  
I/O  
GND  
VCCA  
GND  
I/O  
GND  
VCCA  
GND  
I/O  
GND  
VCCA  
GND  
I/O  
GND  
VCCA  
GND  
I/O  
I/O  
NC  
I/O  
TRST, I/O  
NC  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
NC  
3-2  
v5.3  
SX-A Family FPGAs  
208-Pin PQFP  
208-Pin PQFP  
A54SX08A A54SX16A A54SX32A A54SX72A  
Pin  
A54SX08A A54SX16A A54SX32A A54SX72A  
Number Function Function Function Function  
Pin  
Number Function Function Function Function  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
QCLKA  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
GND  
VCCA  
GND  
NC  
PRB, I/O  
GND  
VCCA  
GND  
NC  
PRB, I/O  
GND  
VCCA  
GND  
NC  
PRB,I/O  
GND  
VCCA  
GND  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
VCCI  
NC  
I/O  
VCCA  
VCCI  
I/O  
VCCA  
VCCI  
I/O  
VCCA  
VCCI  
GND  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
VCCI  
QCLKB  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
GND  
VCCA  
GND  
NC  
I/O  
GND  
VCCA  
GND  
NC  
I/O  
GND  
VCCA  
GND  
NC  
I/O  
GND  
VCCA  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
GND  
GND  
I/O  
I/O  
I/O  
I/O  
v5.3  
3-3  
SX-A Family FPGAs  
208-Pin PQFP  
A54SX08A A54SX16A A54SX32A A54SX72A  
208-Pin PQFP  
Pin  
Number Function Function Function Function  
Pin  
A54SX08A A54SX16A A54SX32A A54SX72A  
Number Function Function Function Function  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
QCLKD  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
GND  
I/O  
VCCA  
GND  
I/O  
VCCA  
GND  
I/O  
VCCA  
GND  
I/O  
CLKA  
CLKB  
NC  
CLKA  
CLKB  
NC  
CLKA  
CLKB  
NC  
CLKA  
CLKB  
NC  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
GND  
VCCA  
GND  
PRA, I/O  
I/O  
GND  
VCCA  
GND  
PRA, I/O  
I/O  
GND  
VCCA  
GND  
PRA, I/O  
I/O  
GND  
VCCA  
GND  
PRA, I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
NC  
NC  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
QCLKC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
NC  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
TCK, I/O  
TCK, I/O  
TCK, I/O  
TCK, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
3-4  
v5.3  
SX-A Family FPGAs  
100-Pin TQFP  
100  
1
100-Pin  
TQFP  
Figure 3-2 100-Pin TQFP  
Note  
For Package Manufacturing and Environmental information, visit Resource center at  
http://www.actel.com/products/rescenter/package/index.html.  
v5.3  
3-5  
SX-A Family FPGAs  
100-TQFP  
A54SX08A A54SX16A  
100-TQFP  
A54SX32A  
Function  
A54SX08A  
A54SX16A  
Function  
A54SX32A  
Function  
Pin Number  
Function  
GND  
TDI, I/O  
I/O  
Function  
GND  
TDI, I/O  
I/O  
Pin Number  
Function  
GND  
NC  
1
GND  
TDI, I/O  
I/O  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
GND  
NC  
GND  
NC  
2
3
I/O  
I/O  
I/O  
4
I/O  
I/O  
I/O  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
I/O  
5
I/O  
I/O  
I/O  
6
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
7
TMS  
VCCI  
GND  
I/O  
TMS  
VCCI  
GND  
I/O  
TMS  
VCCI  
GND  
I/O  
I/O  
I/O  
I/O  
8
I/O  
I/O  
I/O  
9
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
I/O  
I/O  
I/O  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
VCCI  
I/O  
VCCA  
VCCI  
I/O  
VCCA  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
GND  
GND  
I/O  
VCCA  
GND  
GND  
I/O  
VCCA  
GND  
GND  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
VCCA  
PRB, I/O  
VCCA  
PRB, I/O  
VCCA  
3-6  
v5.3  
SX-A Family FPGAs  
100-TQFP  
A54SX08A  
Function  
A54SX16A  
Function  
A54SX32A  
Function  
Pin Number  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CLKA  
CLKB  
NC  
CLKA  
CLKB  
NC  
CLKA  
CLKB  
NC  
VCCA  
GND  
PRA, I/O  
I/O  
VCCA  
GND  
PRA, I/O  
I/O  
VCCA  
GND  
PRA, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TCK, I/O  
TCK, I/O  
TCK, I/O  
v5.3  
3-7  
SX-A Family FPGAs  
144-Pin TQFP  
144  
1
144-Pin  
TQFP  
Figure 3-3 144-Pin TQFP (Top View)  
Note  
For Package Manufacturing and Environmental information, visit Resource center at  
http://www.actel.com/products/rescenter/package/index.html.  
3-8  
v5.3  
SX-A Family FPGAs  
144-Pin TQFP  
144-Pin TQFP  
A54SX08A A54SX16A  
A54SX08A  
A54SX16A  
Function  
A54SX32A  
Function  
A54SX32A  
Function  
Pin Number  
Function  
GND  
TDI, I/O  
I/O  
Pin Number  
38  
Function  
Function  
1
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2
39  
I/O  
I/O  
3
40  
I/O  
I/O  
I/O  
4
I/O  
I/O  
I/O  
41  
I/O  
I/O  
I/O  
5
I/O  
I/O  
I/O  
42  
I/O  
I/O  
I/O  
6
I/O  
I/O  
I/O  
43  
I/O  
I/O  
I/O  
7
I/O  
I/O  
I/O  
44  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
8
I/O  
I/O  
I/O  
45  
9
TMS  
VCCI  
GND  
I/O  
TMS  
VCCI  
GND  
I/O  
TMS  
VCCI  
GND  
I/O  
46  
I/O  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
47  
I/O  
I/O  
I/O  
48  
I/O  
I/O  
I/O  
49  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
50  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
51  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
52  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
53  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
54  
PRB, I/O  
I/O  
PRB, I/O  
I/O  
PRB, I/O  
I/O  
I/O  
I/O  
I/O  
55  
NC  
NC  
NC  
56  
VCCA  
GND  
NC  
VCCA  
GND  
NC  
VCCA  
GND  
NC  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
I/O  
57  
58  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
59  
I/O  
I/O  
I/O  
60  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
I/O  
I/O  
I/O  
I/O  
61  
I/O  
I/O  
I/O  
62  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
63  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
64  
I/O  
I/O  
I/O  
GND  
VCCI  
VCCA  
I/O  
GND  
VCCI  
VCCA  
I/O  
GND  
VCCI  
VCCA  
I/O  
65  
I/O  
I/O  
I/O  
66  
I/O  
I/O  
I/O  
67  
I/O  
I/O  
I/O  
68  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
69  
I/O  
I/O  
I/O  
70  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
71  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
I/O  
I/O  
I/O  
72  
GND  
I/O  
GND  
I/O  
GND  
I/O  
73  
GND  
I/O  
GND  
I/O  
GND  
I/O  
74  
v5.3  
3-9  
SX-A Family FPGAs  
144-Pin TQFP  
A54SX08A A54SX16A  
144-Pin TQFP  
A54SX32A  
Function  
A54SX08A  
A54SX16A  
Function  
A54SX32A  
Function  
Pin Number  
75  
Function  
Function  
Pin Number  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
Function  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
76  
I/O  
I/O  
I/O  
77  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
78  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
79  
VCCA  
VCCI  
GND  
I/O  
VCCA  
VCCI  
GND  
I/O  
VCCA  
VCCI  
GND  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
80  
81  
I/O  
I/O  
I/O  
82  
I/O  
I/O  
I/O  
83  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
84  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
85  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
86  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
87  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
88  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
89  
VCCA  
NC  
VCCA  
NC  
VCCA  
NC  
I/O  
CLKA  
CLKB  
NC  
CLKA  
CLKB  
NC  
CLKA  
CLKB  
NC  
90  
91  
I/O  
I/O  
92  
I/O  
I/O  
I/O  
GND  
VCCA  
I/O  
GND  
VCCA  
I/O  
GND  
VCCA  
I/O  
93  
I/O  
I/O  
I/O  
94  
I/O  
I/O  
I/O  
95  
I/O  
I/O  
I/O  
PRA, I/O  
I/O  
PRA, I/O  
I/O  
PRA, I/O  
I/O  
96  
I/O  
I/O  
I/O  
97  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
98  
VCCA  
GND  
I/O  
VCCA  
GND  
I/O  
VCCA  
GND  
I/O  
I/O  
I/O  
I/O  
99  
I/O  
I/O  
I/O  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
I/O  
I/O  
I/O  
GND  
VCCI  
I/O  
GND  
VCCI  
I/O  
GND  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TCK, I/O  
TCK, I/O  
TCK, I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
3-10  
v5.3  
SX-A Family FPGAs  
176-Pin TQFP  
176  
1
176-Pin  
TQFP  
Figure 3-4 176-Pin TQFP (Top View)  
Note  
For Package Manufacturing and Environmental information, visit Resource center at  
http://www.actel.com/products/rescenter/package/index.html.  
v5.3  
3-11  
 
SX-A Family FPGAs  
176-Pin TQFP  
176-Pin TQFP  
176-Pin TQFP  
176-Pin TQFP  
Pin  
Number  
A54SX32A  
Pin  
A54SX32A  
Function  
Pin  
Number  
A54SX32A  
Function  
Pin  
A54SX32A  
Function  
Function  
GND  
TDI, I/O  
I/O  
Number  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
Number  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
1
I/O  
I/O  
73  
I/O  
I/O  
VCCA  
GND  
I/O  
2
74  
3
I/O  
75  
I/O  
4
I/O  
I/O  
76  
I/O  
I/O  
5
I/O  
I/O  
77  
I/O  
I/O  
6
I/O  
I/O  
78  
I/O  
I/O  
7
I/O  
I/O  
79  
I/O  
I/O  
8
I/O  
GND  
I/O  
80  
I/O  
I/O  
9
I/O  
81  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
TMS  
VCCI  
I/O  
I/O  
82  
VCCI  
I/O  
I/O  
I/O  
83  
I/O  
I/O  
84  
I/O  
I/O  
I/O  
I/O  
85  
I/O  
I/O  
I/O  
I/O  
86  
I/O  
VCCA  
GND  
VCCI  
I/O  
I/O  
I/O  
87  
TDO, I/O  
I/O  
I/O  
VCCI  
I/O  
88  
I/O  
89  
GND  
I/O  
I/O  
I/O  
90  
I/O  
I/O  
I/O  
91  
I/O  
I/O  
I/O  
I/O  
92  
I/O  
I/O  
GND  
VCCA  
GND  
I/O  
I/O  
93  
I/O  
I/O  
I/O  
94  
I/O  
I/O  
I/O  
95  
I/O  
I/O  
I/O  
96  
I/O  
I/O  
TRST, I/O  
I/O  
I/O  
97  
I/O  
GND  
I/O  
I/O  
98  
VCCA  
VCCI  
I/O  
I/O  
I/O  
99  
I/O  
I/O  
PRB, I/O  
GND  
VCCA  
NC  
I/O  
100  
101  
102  
103  
104  
105  
106  
107  
108  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
VCCA  
I/O  
I/O  
VCCI  
I/O  
HCLK  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
3-12  
v5.3  
SX-A Family FPGAs  
176-Pin TQFP  
Pin  
A54SX32A  
Function  
Number  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CLKA  
CLKB  
NC  
GND  
VCCA  
PRA, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TCK, I/O  
v5.3  
3-13  
SX-A Family FPGAs  
329-Pin PBGA  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
AC  
Figure 3-5 329-Pin PBGA (Top View)  
Note  
For Package Manufacturing and Environmental information, visit Resource center at  
http://www.actel.com/products/rescenter/package/index.html.  
3-14  
v5.3  
SX-A Family FPGAs  
329-Pin PBGA  
329-Pin PBGA  
329-Pin PBGA  
329-Pin PBGA  
Pin  
Number  
A54SX32A  
Function  
Pin  
A54SX32A  
Function  
Pin  
A54SX32A  
Function  
Pin  
A54SX32A  
Function  
Number  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
AB1  
Number  
AC6  
AC7  
AC8  
AC9  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
B1  
Number  
B20  
B21  
B22  
B23  
C1  
A1  
GND  
GND  
VCCI  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A2  
A3  
I/O  
I/O  
GND  
VCCI  
NC  
A4  
I/O  
VCCI  
I/O  
A5  
I/O  
A6  
I/O  
TDO, I/O  
VCCI  
I/O  
I/O  
C2  
TDI, I/O  
GND  
I/O  
A7  
VCCI  
NC  
I/O  
I/O  
C3  
A8  
I/O  
C4  
A9  
VCCI  
I/O  
I/O  
C5  
I/O  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
I/O  
NC  
I/O  
C6  
I/O  
I/O  
AB2  
GND  
I/O  
C7  
I/O  
I/O  
AB3  
I/O  
C8  
I/O  
CLKB  
I/O  
AB4  
I/O  
I/O  
C9  
I/O  
AB5  
I/O  
I/O  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
D1  
I/O  
I/O  
AB6  
I/O  
I/O  
I/O  
I/O  
AB7  
I/O  
NC  
VCCI  
GND  
VCCI  
GND  
I/O  
I/O  
I/O  
AB8  
I/O  
I/O  
I/O  
AB9  
I/O  
I/O  
I/O  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AC1  
I/O  
I/O  
I/O  
PRB, I/O  
I/O  
B2  
I/O  
NC  
VCCI  
GND  
VCCI  
I/O  
B3  
I/O  
HCLK  
I/O  
B4  
I/O  
I/O  
B5  
I/O  
I/O  
I/O  
B6  
I/O  
I/O  
I/O  
B7  
I/O  
VCCI  
GND  
NC  
GND  
I/O  
I/O  
B8  
I/O  
I/O  
B9  
I/O  
I/O  
I/O  
B10  
I/O  
I/O  
I/O  
I/O  
B11  
I/O  
D2  
I/O  
I/O  
I/O  
B12  
PRA, I/O  
CLKA  
I/O  
D3  
I/O  
I/O  
GND  
I/O  
B13  
D4  
TCK, I/O  
I/O  
I/O  
B14  
D5  
I/O  
GND  
VCCI  
NC  
B15  
I/O  
D6  
I/O  
I/O  
AC2  
B16  
I/O  
D7  
I/O  
I/O  
AC3  
B17  
I/O  
D8  
I/O  
I/O  
AC4  
I/O  
B18  
I/O  
D9  
I/O  
I/O  
AC5  
I/O  
B19  
I/O  
D10  
I/O  
v5.3  
3-15  
SX-A Family FPGAs  
329-Pin PBGA  
329-Pin PBGA  
329-Pin PBGA  
329-Pin PBGA  
Pin  
Number  
A54SX32A  
Pin  
Number  
A54SX32A  
Function  
Pin  
A54SX32A  
Function  
Pin  
A54SX32A  
Function  
Function  
VCCA  
NC  
I/O  
Number  
L14  
L20  
L21  
L22  
L23  
M1  
Number  
P12  
P13  
P14  
P20  
P21  
P22  
P23  
R1  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
E1  
H1  
I/O  
I/O  
GND  
NC  
GND  
GND  
GND  
I/O  
H2  
H3  
I/O  
I/O  
I/O  
H4  
I/O  
I/O  
I/O  
H20  
H21  
H22  
H23  
J1  
VCCA  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
M2  
I/O  
I/O  
I/O  
I/O  
M3  
I/O  
I/O  
I/O  
NC  
M4  
VCCA  
GND  
GND  
GND  
GND  
GND  
VCCA  
I/O  
R2  
I/O  
I/O  
J2  
I/O  
M10  
M11  
M12  
M13  
M14  
M20  
M21  
M22  
M23  
N1  
R3  
I/O  
I/O  
J3  
I/O  
R4  
I/O  
I/O  
J4  
I/O  
R20  
R21  
R22  
R23  
T1  
I/O  
I/O  
J20  
J21  
J22  
J23  
K1  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
E2  
I/O  
I/O  
E3  
I/O  
I/O  
I/O  
E4  
I/O  
I/O  
I/O  
T2  
I/O  
E20  
E21  
E22  
E23  
F1  
I/O  
K2  
I/O  
VCCI  
I/O  
T3  
I/O  
I/O  
K3  
I/O  
T4  
I/O  
I/O  
K4  
I/O  
N2  
TRST, I/O  
I/O  
T20  
T21  
T22  
T23  
U1  
I/O  
I/O  
K10  
K11  
K12  
K13  
K14  
K20  
K21  
K22  
K23  
L1  
GND  
GND  
GND  
GND  
GND  
I/O  
N3  
I/O  
I/O  
N4  
I/O  
I/O  
F2  
TMS  
I/O  
N10  
N11  
N12  
N13  
N14  
N20  
N21  
N22  
N23  
P1  
GND  
GND  
GND  
GND  
GND  
NC  
I/O  
F3  
I/O  
F4  
I/O  
U2  
I/O  
F20  
F21  
F22  
F23  
G1  
I/O  
U3  
VCCA  
I/O  
I/O  
I/O  
U4  
I/O  
I/O  
U20  
U21  
U22  
U23  
V1  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
G2  
I/O  
L2  
I/O  
I/O  
I/O  
G3  
I/O  
L3  
I/O  
I/O  
VCCI  
I/O  
G4  
I/O  
L4  
NC  
P2  
I/O  
V2  
G20  
G21  
G22  
G23  
I/O  
L10  
L11  
L12  
L13  
GND  
GND  
GND  
GND  
P3  
I/O  
V3  
I/O  
I/O  
P4  
I/O  
V4  
I/O  
I/O  
P10  
P11  
GND  
GND  
V20  
V21  
I/O  
GND  
I/O  
3-16  
v5.3  
SX-A Family FPGAs  
329-Pin PBGA  
Pin  
A54SX32A  
Function  
Number  
V22  
V23  
W1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
W2  
W3  
W4  
W20  
W21  
W22  
W23  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y8  
Y9  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
Y23  
v5.3  
3-17  
SX-A Family FPGAs  
144-Pin FBGA  
4
1
2
3
5
6
7
8
10 11 12  
9
A
B
C
D
E
F
G
H
J
K
L
M
Figure 3-6 144-Pin FBGA (Top View)  
Note  
For Package Manufacturing and Environmental information, visit Resource center at  
http://www.actel.com/products/rescenter/package/index.html.  
3-18  
v5.3  
SX-A Family FPGAs  
144-Pin FBGA  
144-Pin FBGA  
A54SX08A A54SX16A  
A54SX08A  
Function  
A54SX16A  
Function  
A54SX32A  
Function  
A54SX32A  
Function  
Pin Number  
A1  
Pin Number  
D1  
Function  
Function  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
TDI, I/O  
I/O  
A2  
I/O  
D2  
VCCI  
TDI, I/O  
I/O  
VCCI  
TDI, I/O  
I/O  
A3  
I/O  
I/O  
I/O  
D3  
A4  
I/O  
I/O  
I/O  
D4  
A5  
VCCA  
GND  
CLKA  
I/O  
VCCA  
GND  
CLKA  
I/O  
VCCA  
GND  
CLKA  
I/O  
D5  
I/O  
I/O  
I/O  
A6  
D6  
I/O  
I/O  
I/O  
A7  
D7  
I/O  
I/O  
I/O  
A8  
D8  
I/O  
I/O  
I/O  
A9  
I/O  
I/O  
I/O  
D9  
I/O  
I/O  
I/O  
A10  
A11  
A12  
B1  
I/O  
I/O  
I/O  
D10  
D11  
D12  
E1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
B2  
GND  
I/O  
GND  
I/O  
GND  
I/O  
E2  
I/O  
I/O  
I/O  
B3  
E3  
I/O  
I/O  
I/O  
B4  
I/O  
I/O  
I/O  
E4  
I/O  
I/O  
I/O  
B5  
I/O  
I/O  
I/O  
E5  
TMS  
VCCI  
VCCI  
VCCI  
VCCA  
I/O  
TMS  
VCCI  
VCCI  
VCCI  
VCCA  
I/O  
TMS  
VCCI  
VCCI  
VCCI  
VCCA  
I/O  
B6  
I/O  
I/O  
I/O  
E6  
B7  
CLKB  
I/O  
CLKB  
I/O  
CLKB  
I/O  
E7  
B8  
E8  
B9  
I/O  
I/O  
I/O  
E9  
B10  
B11  
B12  
C1  
I/O  
I/O  
I/O  
E10  
E11  
E12  
F1  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
C2  
I/O  
I/O  
I/O  
F2  
I/O  
I/O  
I/O  
C3  
TCK, I/O  
I/O  
TCK, I/O  
I/O  
TCK, I/O  
I/O  
F3  
NC  
NC  
NC  
C4  
F4  
I/O  
I/O  
I/O  
C5  
I/O  
I/O  
I/O  
F5  
GND  
GND  
GND  
VCCI  
I/O  
GND  
GND  
GND  
VCCI  
I/O  
GND  
GND  
GND  
VCCI  
I/O  
C6  
PRA, I/O  
I/O  
PRA, I/O  
I/O  
PRA, I/O  
I/O  
F6  
C7  
F7  
C8  
I/O  
I/O  
I/O  
F8  
C9  
I/O  
I/O  
I/O  
F9  
C10  
C11  
C12  
I/O  
I/O  
I/O  
F10  
F11  
F12  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
v5.3  
3-19  
SX-A Family FPGAs  
144-Pin FBGA  
A54SX08A A54SX16A  
144-Pin FBGA  
A54SX32A  
Function  
A54SX08A  
Function  
A54SX16A  
Function  
A54SX32A  
Function  
Pin Number  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
H1  
Function  
Function  
Pin Number  
K1  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
K2  
I/O  
K3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
K4  
I/O  
I/O  
I/O  
GND  
GND  
GND  
VCCI  
I/O  
GND  
GND  
GND  
VCCI  
I/O  
GND  
GND  
GND  
VCCI  
I/O  
K5  
I/O  
I/O  
I/O  
K6  
I/O  
I/O  
I/O  
K7  
GND  
I/O  
GND  
I/O  
GND  
I/O  
K8  
K9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
K10  
K11  
K12  
L1  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
TRST, I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
H2  
L2  
H3  
I/O  
I/O  
I/O  
L3  
I/O  
I/O  
I/O  
H4  
I/O  
I/O  
I/O  
L4  
I/O  
I/O  
I/O  
H5  
VCCA  
VCCA  
VCCI  
VCCI  
VCCA  
I/O  
VCCA  
VCCA  
VCCI  
VCCI  
VCCA  
I/O  
VCCA  
VCCA  
VCCI  
VCCI  
VCCA  
I/O  
L5  
I/O  
I/O  
I/O  
H6  
L6  
I/O  
I/O  
I/O  
H7  
L7  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
I/O  
H8  
L8  
H9  
L9  
I/O  
I/O  
I/O  
H10  
H11  
H12  
J1  
L10  
L11  
L12  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
J2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
J3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
J4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
J5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
J6  
PRB, I/O  
I/O  
PRB, I/O  
I/O  
PRB, I/O  
I/O  
I/O  
I/O  
I/O  
J7  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
I/O  
J8  
I/O  
I/O  
I/O  
J9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
J10  
J11  
J12  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
VCCA  
VCCA  
VCCA  
3-20  
v5.3  
SX-A Family FPGAs  
256-Pin FBGA  
1
2
3
4
6
7
8
9 10 11 12  
13 14  
5
15 16  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
Figure 3-7 256-Pin FBGA (Top View)  
Note  
For Package Manufacturing and Environmental information, visit Resource center at  
http://www.actel.com/products/rescenter/package/index.html.  
v5.3  
3-21  
SX-A Family FPGAs  
256-Pin FBGA  
A54SX16A A54SX32A  
256-Pin FBGA  
A54SX72A  
Function  
A54SX16A  
Function  
A54SX32A  
Function  
A54SX72A  
Function  
Pin Number  
A1  
Function  
GND  
TCK, I/O  
I/O  
Function  
GND  
TCK, I/O  
I/O  
Pin Number  
C6  
GND  
TCK, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A2  
C7  
I/O  
A3  
C8  
I/O  
I/O  
I/O  
A4  
I/O  
I/O  
I/O  
C9  
CLKA  
I/O  
CLKA  
I/O  
CLKA  
I/O  
A5  
I/O  
I/O  
I/O  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
D1  
A6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A7  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A8  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
A9  
CLKB  
I/O  
CLKB  
I/O  
CLKB  
I/O  
I/O  
I/O  
I/O  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
D2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
D3  
I/O  
I/O  
I/O  
GND  
GND  
I/O  
GND  
GND  
I/O  
GND  
GND  
I/O  
D4  
I/O  
I/O  
I/O  
D5  
I/O  
I/O  
I/O  
D6  
I/O  
I/O  
I/O  
B2  
GND  
I/O  
GND  
I/O  
GND  
I/O  
D7  
I/O  
I/O  
I/O  
B3  
D8  
PRA, I/O  
I/O  
PRA, I/O  
I/O  
PRA, I/O  
QCLKD  
I/O  
B4  
I/O  
I/O  
I/O  
D9  
B5  
I/O  
I/O  
I/O  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
E1  
I/O  
I/O  
B6  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
B7  
I/O  
I/O  
I/O  
I/O  
I/O  
B8  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
B9  
I/O  
I/O  
I/O  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
C1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
E2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
E3  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
E4  
I/O  
I/O  
I/O  
E5  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
E6  
I/O  
I/O  
I/O  
C2  
TDI, I/O  
GND  
I/O  
TDI, I/O  
GND  
I/O  
TDI, I/O  
GND  
I/O  
E7  
I/O  
I/O  
I/O  
QCLKC  
I/O  
C3  
E8  
I/O  
C4  
E9  
I/O  
I/O  
I/O  
C5  
NC  
I/O  
I/O  
E10  
I/O  
I/O  
I/O  
3-22  
v5.3  
SX-A Family FPGAs  
256-Pin FBGA  
256-Pin FBGA  
A54SX16A A54SX32A  
A54SX16A  
Function  
A54SX32A  
Function  
A54SX72A  
Function  
A54SX72A  
Function  
Pin Number  
E11  
E12  
E13  
E14  
E15  
E16  
F1  
Pin Number  
G16  
H1  
Function  
Function  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
H2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
H3  
VCCA  
TRST, I/O  
I/O  
VCCA  
TRST, I/O  
I/O  
VCCA  
TRST, I/O  
I/O  
I/O  
I/O  
I/O  
H4  
I/O  
I/O  
I/O  
H5  
I/O  
I/O  
I/O  
H6  
VCCI  
GND  
GND  
GND  
GND  
VCCI  
I/O  
VCCI  
GND  
GND  
GND  
GND  
VCCI  
I/O  
VCCI  
GND  
GND  
GND  
GND  
VCCI  
I/O  
F2  
I/O  
I/O  
I/O  
H7  
F3  
I/O  
I/O  
I/O  
H8  
F4  
TMS  
I/O  
TMS  
I/O  
TMS  
I/O  
H9  
F5  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
J1  
F6  
I/O  
I/O  
I/O  
F7  
VCCI  
VCCI  
VCCI  
VCCI  
I/O  
VCCI  
VCCI  
VCCI  
VCCI  
I/O  
VCCI  
VCCI  
VCCI  
VCCI  
I/O  
F8  
I/O  
I/O  
I/O  
F9  
I/O  
I/O  
I/O  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
G1  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
I/O  
NC  
I/O  
I/O  
J2  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
J3  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
J4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
J5  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
J6  
VCCI  
GND  
GND  
GND  
GND  
VCCI  
I/O  
VCCI  
GND  
GND  
GND  
GND  
VCCI  
I/O  
VCCI  
GND  
GND  
GND  
GND  
VCCI  
I/O  
G2  
I/O  
I/O  
I/O  
J7  
G3  
NC  
I/O  
I/O  
J8  
G4  
I/O  
I/O  
I/O  
J9  
G5  
I/O  
I/O  
I/O  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
K1  
G6  
VCCI  
GND  
GND  
GND  
GND  
VCCI  
I/O  
VCCI  
GND  
GND  
GND  
GND  
VCCI  
I/O  
VCCI  
GND  
GND  
GND  
GND  
VCCI  
I/O  
G7  
G8  
I/O  
I/O  
I/O  
G9  
I/O  
I/O  
I/O  
G10  
G11  
G12  
G13  
G14  
G15  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
NC  
GND  
I/O  
GND  
I/O  
K2  
I/O  
I/O  
I/O  
K3  
NC  
I/O  
I/O  
VCCA  
VCCA  
VCCA  
K4  
VCCA  
VCCA  
VCCA  
v5.3  
3-23  
SX-A Family FPGAs  
256-Pin FBGA  
A54SX16A A54SX32A  
256-Pin FBGA  
A54SX72A  
Function  
A54SX16A  
Function  
A54SX32A  
Function  
A54SX72A  
Function  
Pin Number  
K5  
Function  
Function  
Pin Number  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
N1  
I/O  
I/O  
I/O  
VCCI  
GND  
GND  
GND  
GND  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
K6  
VCCI  
GND  
GND  
GND  
GND  
VCCI  
I/O  
VCCI  
GND  
GND  
GND  
GND  
VCCI  
I/O  
I/O  
K7  
NC  
I/O  
K8  
K9  
NC  
I/O  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
L1  
I/O  
I/O  
I/O  
I/O  
I/O  
N2  
I/O  
I/O  
I/O  
I/O  
N3  
I/O  
NC  
I/O  
I/O  
N4  
I/O  
I/O  
I/O  
I/O  
N5  
I/O  
I/O  
I/O  
I/O  
N6  
I/O  
L2  
I/O  
I/O  
I/O  
N7  
I/O  
L3  
I/O  
I/O  
I/O  
N8  
I/O  
L4  
I/O  
I/O  
I/O  
N9  
I/O  
L5  
I/O  
I/O  
I/O  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
P1  
I/O  
L6  
I/O  
I/O  
I/O  
I/O  
L7  
VCCI  
VCCI  
VCCI  
VCCI  
I/O  
VCCI  
VCCI  
VCCI  
VCCI  
I/O  
VCCI  
VCCI  
VCCI  
VCCI  
I/O  
I/O  
L8  
I/O  
L9  
I/O  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P2  
GND  
I/O  
I/O  
I/O  
I/O  
P3  
I/O  
I/O  
I/O  
P4  
I/O  
NC  
I/O  
I/O  
P5  
NC  
I/O  
I/O  
I/O  
I/O  
P6  
I/O  
I/O  
I/O  
P7  
I/O  
I/O  
I/O  
I/O  
P8  
I/O  
I/O  
I/O  
I/O  
P9  
I/O  
I/O  
I/O  
I/O  
P10  
P11  
P12  
P13  
P14  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
QCLKA  
PRB, I/O  
I/O  
I/O  
PRB, I/O  
I/O  
PRB, I/O  
I/O  
VCCA  
I/O  
3-24  
v5.3  
SX-A Family FPGAs  
256-Pin FBGA  
A54SX16A  
Function  
A54SX32A  
Function  
A54SX72A  
Function  
Pin Number  
P15  
P16  
R1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
R2  
GND  
I/O  
GND  
I/O  
GND  
I/O  
R3  
R4  
NC  
I/O  
I/O  
R5  
I/O  
I/O  
I/O  
R6  
I/O  
I/O  
I/O  
R7  
I/O  
I/O  
I/O  
R8  
I/O  
I/O  
I/O  
R9  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
QCLKB  
I/O  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
T1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
GND  
I/O  
GND  
GND  
GND  
I/O  
GND  
GND  
GND  
I/O  
T2  
T3  
I/O  
I/O  
I/O  
T4  
NC  
I/O  
I/O  
T5  
I/O  
I/O  
I/O  
T6  
I/O  
I/O  
I/O  
T7  
I/O  
I/O  
I/O  
T8  
I/O  
I/O  
I/O  
T9  
VCCA  
I/O  
VCCA  
I/O  
VCCA  
I/O  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
GND  
TDO, I/O  
GND  
TDO, I/O  
GND  
v5.3  
3-25  
SX-A Family FPGAs  
484-Pin FBGA  
1
3 4 5 6 7 8 9 10 11121314 15161718 19 20212223 242526  
2
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
AC  
AD  
AE  
AF  
Figure 3-8 484-Pin FBGA (Top View)  
Note  
For Package Manufacturing and Environmental information, visit Resource center at  
http://www.actel.com/products/rescenter/package/index.html.  
3-26  
v5.3  
 
SX-A Family FPGAs  
484-Pin FBGA  
484-Pin FBGA  
484-Pin FBGA  
A54SX32A A54SX72A  
Pin  
A54SX32A A54SX72A  
Pin  
A54SX32A A54SX72A  
Pin  
Number  
Function  
NC*  
NC*  
NC*  
NC*  
NC*  
I/O  
Function  
NC  
NC  
I/O  
Number  
Function  
NC*  
NC*  
VCCI  
I/O  
Function  
Number  
Function  
Function  
A1  
A2  
AA26  
AB1  
I/O  
AC9  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
AC22  
AC23  
AC24  
AC25  
AC26  
AD1  
I/O  
I/O  
NC  
I/O  
I/O  
A3  
AB2  
VCCI  
I/O  
I/O  
I/O  
A4  
I/O  
AB3  
I/O  
QCLKA  
I/O  
A5  
I/O  
AB4  
I/O  
I/O  
I/O  
A6  
I/O  
AB5  
NC*  
I/O  
I/O  
I/O  
I/O  
A7  
I/O  
I/O  
AB6  
I/O  
I/O  
I/O  
A8  
I/O  
I/O  
AB7  
I/O  
I/O  
I/O  
I/O  
A9  
I/O  
I/O  
AB8  
I/O  
I/O  
I/O  
I/O  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
AA1  
AA2  
AA3  
AA4  
AA5  
AA22  
AA23  
AA24  
AA25  
I/O  
I/O  
AB9  
I/O  
I/O  
I/O  
I/O  
NC*  
NC*  
I/O  
I/O  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AB24  
AB25  
AB26  
AC1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
PRB, I/O  
VCCA  
I/O  
PRB, I/O  
VCCA  
I/O  
NC*  
NC*  
NC*  
I/O  
NC  
I/O  
I/O  
I/O  
NC*  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC*  
NC*  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
AD2  
I/O  
I/O  
NC*  
NC*  
NC*  
NC*  
NC*  
NC*  
NC*  
NC*  
VCCA  
I/O  
I/O  
TDO, I/O  
GND  
NC*  
I/O  
TDO, I/O  
GND  
I/O  
AD3  
GND  
I/O  
GND  
I/O  
I/O  
AD4  
I/O  
AD5  
I/O  
I/O  
I/O  
I/O  
AD6  
I/O  
I/O  
NC  
NC  
I/O  
I/O  
I/O  
AD7  
I/O  
I/O  
NC*  
NC*  
I/O  
I/O  
AD8  
I/O  
I/O  
I/O  
AD9  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
VCCA  
I/O  
AC2  
I/O  
I/O  
I/O  
I/O  
AC3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
AC4  
NC*  
VCCI  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
AC5  
VCCI  
I/O  
I/O  
I/O  
AC6  
I/O  
I/O  
I/O  
I/O  
AC7  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
NC*  
I/O  
AC8  
VCCI  
VCCI  
Note: *These pins must be left floating on the A54SX32A device.  
v5.3  
3-27  
SX-A Family FPGAs  
484-Pin FBGA  
A54SX32A A54SX72A  
484-Pin FBGA  
484-Pin FBGA  
Pin  
Pin  
A54SX32A A54SX72A  
Pin  
A54SX32A A54SX72A  
Number  
Function  
Function  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
Number  
Function  
NC*  
NC*  
NC  
Function  
NC  
NC  
I/O  
Number  
Function  
Function  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
AD26  
AE1  
I/O  
AF1  
AF2  
AF3  
AF4  
AF5  
AF6  
AF7  
AF8  
AF9  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
AF23  
AF24  
AF25  
AF26  
B1  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
C1  
I/O  
I/O  
I/O  
NC*  
NC*  
VCCI  
CLKA  
NC*  
NC*  
I/O  
I/O  
I/O  
I/O  
I/O  
NC*  
NC*  
NC*  
I/O  
I/O  
VCCI  
CLKA  
I/O  
I/O  
I/O  
VCCI  
NC*  
NC*  
NC*  
NC*  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
AE2  
NC*  
NC*  
HCLK  
I/O  
I/O  
I/O  
I/O  
AE3  
NC*  
NC*  
NC*  
NC*  
I/O  
NC  
HCLK  
QCLKB  
I/O  
NC*  
NC*  
NC*  
NC*  
I/O  
I/O  
AE4  
I/O  
AE5  
I/O  
AE6  
NC*  
NC*  
I/O  
I/O  
AE7  
I/O  
I/O  
AE8  
I/O  
I/O  
NC*  
NC*  
NC*  
NC*  
NC*  
I/O  
NC  
AE9  
I/O  
I/O  
I/O  
I/O  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
I/O  
I/O  
I/O  
C2  
I/O  
NC*  
I/O  
NC*  
NC*  
NC*  
NC*  
NC*  
NC*  
NC*  
NC*  
NC*  
NC*  
NC*  
NC*  
I/O  
I/O  
C3  
I/O  
I/O  
C4  
I/O  
I/O  
I/O  
C5  
I/O  
I/O  
I/O  
C6  
VCCI  
I/O  
VCCI  
I/O  
NC*  
NC*  
I/O  
I/O  
C7  
NC  
NC  
NC  
NC  
I/O  
C8  
I/O  
I/O  
C9  
VCCI  
I/O  
VCCI  
I/O  
I/O  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
I/O  
B2  
I/O  
I/O  
I/O  
B3  
I/O  
I/O  
NC*  
NC*  
NC*  
NC*  
NC*  
NC*  
B4  
I/O  
PRA, I/O  
I/O  
PRA, I/O  
I/O  
B5  
I/O  
B6  
I/O  
I/O  
QCLKD  
I/O  
B7  
I/O  
I/O  
I/O  
B8  
I/O  
I/O  
I/O  
I/O  
B9  
I/O  
I/O  
I/O  
I/O  
Note: *These pins must be left floating on the A54SX32A device.  
3-28  
v5.3  
SX-A Family FPGAs  
484-Pin FBGA  
484-Pin FBGA  
484-Pin FBGA  
A54SX32A A54SX72A  
Pin  
A54SX32A A54SX72A  
Pin  
A54SX32A A54SX72A  
Pin  
Number  
Function  
Function  
Number  
Function  
NC*  
I/O  
Function  
Number  
Function  
NC*  
NC*  
NC*  
I/O  
Function  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
D1  
I/O  
I/O  
E2  
E3  
I/O  
G1  
G2  
G3  
G4  
G5  
G22  
G23  
G24  
G25  
G26  
H1  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
E4  
I/O  
I/O  
I/O  
I/O  
I/O  
E5  
GND  
TDI, IO  
I/O  
GND  
TDI, IO  
I/O  
I/O  
I/O  
I/O  
E6  
I/O  
I/O  
I/O  
I/O  
E7  
I/O  
I/O  
NC*  
NC*  
NC*  
TMS  
I/O  
I/O  
E8  
I/O  
I/O  
VCCA  
I/O  
VCCA  
I/O  
I/O  
E9  
I/O  
I/O  
I/O  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
F1  
I/O  
I/O  
NC*  
NC*  
NC*  
NC*  
I/O  
I/O  
D2  
TMS  
I/O  
I/O  
I/O  
I/O  
D3  
I/O  
I/O  
I/O  
D4  
VCCI  
NC*  
TCK, I/O  
I/O  
VCCI  
I/O  
VCCA  
CLKB  
I/O  
VCCA  
CLKB  
I/O  
H2  
I/O  
D5  
H3  
I/O  
D6  
TCK, I/O  
I/O  
H4  
I/O  
I/O  
D7  
I/O  
I/O  
H5  
I/O  
I/O  
D8  
I/O  
I/O  
I/O  
I/O  
H22  
H23  
H24  
H25  
H26  
J1  
I/O  
I/O  
D9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
E1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC*  
NC*  
NC*  
NC*  
I/O  
I/O  
I/O  
QCLKC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
J2  
I/O  
I/O  
I/O  
I/O  
I/O  
J3  
I/O  
I/O  
I/O  
VCCI  
GND  
VCCI  
NC*  
NC*  
I/O  
VCCI  
GND  
VCCI  
I/O  
J4  
I/O  
I/O  
I/O  
I/O  
J5  
I/O  
I/O  
I/O  
I/O  
J22  
J23  
J24  
J25  
J26  
K1  
I/O  
I/O  
I/O  
I/O  
F2  
I/O  
I/O  
I/O  
I/O  
F3  
I/O  
I/O  
I/O  
VCCI  
GND  
I/O  
VCCI  
GND  
I/O  
F4  
I/O  
VCCI  
NC*  
I/O  
VCCI  
I/O  
F5  
I/O  
I/O  
F22  
F23  
F24  
F25  
F26  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
K2  
VCCI  
I/O  
VCCI  
I/O  
NC*  
NC*  
NC*  
I/O  
I/O  
I/O  
K3  
I/O  
I/O  
I/O  
K4  
I/O  
I/O  
I/O  
NC*  
I/O  
K5  
VCCA  
VCCA  
Note: *These pins must be left floating on the A54SX32A device.  
v5.3  
3-29  
SX-A Family FPGAs  
484-Pin FBGA  
A54SX32A A54SX72A  
484-Pin FBGA  
484-Pin FBGA  
Pin  
Pin  
A54SX32A A54SX72A  
Pin  
A54SX32A A54SX72A  
Number  
Function  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
Function  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
Number  
Function  
Function  
Number  
Function  
Function  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K22  
K23  
K24  
K25  
K26  
L1  
M5  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M22  
M23  
M24  
M25  
M26  
N1  
I/O  
I/O  
P4  
I/O  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
P5  
VCCA  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
VCCA  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P22  
P23  
P24  
P25  
P26  
R1  
I/O  
I/O  
NC*  
NC*  
NC*  
NC*  
NC*  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC*  
NC*  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
L2  
I/O  
I/O  
I/O  
I/O  
L3  
I/O  
N2  
VCCI  
I/O  
VCCI  
I/O  
NC*  
NC*  
I/O  
I/O  
L4  
I/O  
I/O  
N3  
R2  
I/O  
L5  
I/O  
I/O  
N4  
I/O  
I/O  
R3  
I/O  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L22  
L23  
L24  
L25  
L26  
M1  
M2  
M3  
M4  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
N5  
I/O  
I/O  
R4  
I/O  
I/O  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N22  
N23  
N24  
N25  
N26  
P1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCCA  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCCA  
I/O  
R5  
TRST, I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
TRST, I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R22  
R23  
R24  
R25  
R26  
T1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC*  
I/O  
NC  
NC*  
NC*  
NC*  
I/O  
NC  
NC*  
NC*  
NC*  
NC*  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P2  
I/O  
I/O  
I/O  
I/O  
P3  
I/O  
T2  
I/O  
Note: *These pins must be left floating on the A54SX32A device.  
3-30  
v5.3  
SX-A Family FPGAs  
484-Pin FBGA  
484-Pin FBGA  
Pin  
A54SX32A A54SX72A  
Pin  
A54SX32A A54SX72A  
Number  
Function  
Function  
Number  
Function  
NC*  
I/O  
Function  
T3  
I/O  
I/O  
V2  
V3  
I/O  
T4  
I/O  
I/O  
I/O  
T5  
I/O  
I/O  
V4  
I/O  
I/O  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T22  
T23  
T24  
T25  
T26  
U1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
V5  
I/O  
I/O  
V22  
V23  
V24  
V25  
V26  
W1  
W2  
W3  
W4  
W5  
W22  
W23  
W24  
W25  
W26  
Y1  
VCCA  
I/O  
VCCA  
I/O  
I/O  
I/O  
NC*  
NC*  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC*  
NC*  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
VCCA  
I/O  
I/O  
U2  
VCCI  
I/O  
VCCI  
I/O  
NC*  
NC*  
NC*  
NC*  
I/O  
I/O  
U3  
I/O  
U4  
I/O  
I/O  
I/O  
U5  
I/O  
I/O  
Y2  
I/O  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U22  
U23  
U24  
U25  
U26  
V1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
I/O  
Y3  
I/O  
Y4  
I/O  
I/O  
Y5  
NC*  
I/O  
I/O  
Y22  
Y23  
Y24  
Y25  
Y26  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
NC*  
I/O  
Note: *These pins must be left floating on the A54SX32A device.  
v5.3  
3-31  
SX-A Family FPGAs  
Datasheet Information  
List of Changes  
The following table lists critical changes that were made in the current version of the document.  
Previous Version Changes in Current Version (v5.3)  
Page  
N/A  
2-14  
ii  
v5.2  
–3 speed grades have been discontinued.  
(June 2006)  
The "SX-A Timing Model" was updated with –2 data.  
RoHS information was added to the "Ordering Information".  
The "Programming" section was updated.  
v5.1  
February 2005  
v5.0  
1-13  
Revised Table 1 and the timing data to reflect the phase out of the –3 speed grade for the  
A54SX08A device.  
i
The "Thermal Characteristics" section was updated.  
The "176-Pin TQFP" was updated to add pins 81 to 90.  
The "484-Pin FBGA" was updated to add pins R4 to Y26  
The "Temperature Grade Offering" is new.  
The "Speed Grade and Temperature Grade Matrix" is new.  
"SX-A Family Architecture" was updated.  
"Clock Resources" was updated.  
"User Security" was updated.  
2-11  
3-11  
3-26  
1-iii  
1-iii  
1-1  
v4.0  
1-5  
1-7  
"Power-Up/Down and Hot Swapping" was updated.  
"Dedicated Mode" is new  
1-7  
1-9  
Table 1-5 is new.  
1-9  
"JTAG Instructions" is new  
1-10  
1-12  
1-13  
1-13  
1-15  
2-1  
"Design Considerations" was updated.  
The "Programming" section is new.  
"Design Environment" was updated.  
"Pin Description" was updated.  
Table 2-1 was updated.  
Table 2-2 was updated.  
2-1  
Table 2-3 is new.  
2-1  
Table 2-4 is new.  
2-1  
Table 2-5 was updated.  
2-2  
Table 2-6 was updated.  
2-2  
"Power Dissipation" is new.  
2-8  
Table 2-11 was updated.  
2-9  
v5.3  
4-1  
SX-A Family FPGAs  
Previous Version Changes in Current Version (v5.3)  
Page  
2-11  
2-14  
2-14  
2-17  
2-17  
v4.0  
Table 2-12 was updated.  
(continued)  
The was updated.  
The "Sample Path Calculations" were updated.  
Table 2-13 was updated.  
Table 2-13 was updated.  
All timing tables were updated.  
2-18 to  
2-52  
v3.0  
The "Actel Secure Programming Technology with FuseLock™ Prevents Reverse Engineering and 1-i  
Design Theft" section was updated.  
The "Ordering Information" section was updated.  
1-ii  
The "Temperature Grade Offering" section was updated.  
The Figure 1-1 • SX-A Family Interconnect Elements was updated.  
The “"Clock Resources" section“was updated  
1-iii  
1-1  
1-5  
The Table 1-1 • SX-A Clock Resources is new.  
1-5  
The "User Security" section is new.  
1-7  
The "I/O Modules" section was updated.  
1-7  
The Table 1-2 • I/O Features was updated.  
1-8  
The Table 1-3 • I/O Characteristics for All I/O Configurations is new.  
The Table 1-4 • Power-Up Time at which I/Os Become Active is new  
The Figure 1-12 • Device Selection Wizard is new.  
1-8  
1-8  
1-9  
The "Boundary-Scan Pin Configurations and Functions" section is new.  
The Table 1-9 • Device Configuration Options for Probe Capability (TRST Pin Reserved) is new.  
The "SX-A Probe Circuit Control Pins" section was updated.  
The "Design Considerations" section was updated.  
1-9  
1-11  
1-12  
1-12  
1-12  
1-13  
1-11  
1-12  
1-12  
1-12  
1-13  
1-23  
1-15  
1-13  
1-8  
The Figure 1-13 • Probe Setup was updated.  
The Design Environment was updated.  
The Figure 1-13 • Design Flow is new.  
The "Absolute Maximum Ratings*" section was updated.  
The "Recommended Operating Conditions" section was updated.  
The "Electrical Specifications" section was updated.  
The "2.5V LVCMOS2 Electrical Specifications" section was updated.  
The "SX-A Timing Model" and "Sample Path Calculations" equations were updated.  
The "Pin Description" section was updated.  
v2.0.1  
The "Design Environment" section has been updated.  
The "I/O Modules" section, and Table 1-2 • I/O Features have been updated.  
The "SX-A Timing Model" section and the "Timing Characteristics" section have new timing 1-23  
numbers.  
4-2  
v5.3  
SX-A Family FPGAs  
Datasheet Categories  
In order to provide the latest information to designers, some datasheets are published before data has been fully  
characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Datasheet  
Supplement." The definitions of these categories are as follows:  
Product Brief  
The product brief is a summarized version of a datasheet (advanced or production) containing general product  
information. This brief gives an overview of specific device and family information.  
Advanced  
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed  
grades. This information can be used as estimates, but not for production.  
Unmarked (production)  
This datasheet version contains information that is considered to be final.  
Datasheet Supplement  
The datasheet supplement gives specific device information for a derivative family that differs from the general family  
datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and  
for specifications that do not differ between the two families.  
International Traffic in Arms Regulations (ITAR) and Export  
Administration Regulations (EAR)  
The products described in this datasheet are subject to the International Traffic in Arms Regulations (ITAR) or the  
Export Administration Regulations (EAR). They may require an approved export license prior to their export. An export  
can include a release or disclosure to a foreign national inside or outside the United States.  
v5.3  
4-3  
Actel and the Actel logo are registered trademarks of Actel Corporation.  
All other trademarks are the property of their owners.  
www.actel.com  
Actel Corporation  
Actel Europe Ltd.  
Actel Hong Kong  
Actel Japan  
2061 Stierlin Court  
Mountain View, CA  
94043-4655 USA  
River Court, Meadows Business Park  
Station Approach, Blackwater  
Camberley, Surrey GU17 9AB  
United Kingdom  
Suite 2114, Two Pacific Place  
88 Queensway, Admiralty  
Hong Kong  
EXOS Ebisu Bldg. 4F  
1-24-14 Ebisu Shibuya-ku  
Tokyo 150 Japan  
Phone 650.318.4200  
Fax 650.318.4600  
Phone +852 2185 6460  
Fax +852 2185 6488  
www.actel.com.cn  
Phone +81.03.3445.7671  
Fax +81.03.3445.7668  
www.jp.actel.com  
Phone +44 (0) 1276 609 300  
Fax +44 (0) 1276 607 540  
5172147-10/2.07  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY