A54SX08PLG84 [MICROSEMI]

FPGA, 768 CLBS, 8000 GATES, PQCC84, PLASTIC, MS-007AE, LCC-84;
A54SX08PLG84
型号: A54SX08PLG84
厂家: Microsemi    Microsemi
描述:

FPGA, 768 CLBS, 8000 GATES, PQCC84, PLASTIC, MS-007AE, LCC-84

可编程逻辑
文件: 总57页 (文件大小:415K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
v 3 . 1  
54SX Family FPGAs  
L e a d i n g E d g e P e r f o r m a n c e  
• 320 MHz Internal Performance  
• 3.7 ns Clock-to-Out (Pin-to-Pin)  
• 0.1 ns Input Set-Up  
F e a t u r e s  
• 66 MHz PCI  
CPLD and FPGA Integration  
• Single Chip Solution  
• 0.25 ns Clock Skew  
• 100% Resource Utilization with 100% Pin Locking  
• 3.3V Operation with 5.0V Input Tolerance  
Very Low Power Consumption  
Deterministic, User-Controllable Timing  
S p e c i f i c a t i o n s  
• 12,000 to 48,000 System Gates  
Up to 249 User-Programmable I/O Pins  
Up to 1080 Flip-Flops  
Unique In-System Diagnostic and Debug capability with  
Silicon Explorer II  
• 0.35µ CMOS  
Boundary Scan Testing in Compliance with IEEE Standard  
1149.1 (JTAG)  
• Secure Programming Technology Prevents Reverse  
Engineering and Design Theft  
S X P r o d u c t P r o f i l e  
A54SX08  
A54SX16  
A54SX16P  
A54SX32  
Capacity  
Typical Gates  
System Gates  
8,000  
12,000  
16,000  
24,000  
16,000  
24,000  
32,000  
48,000  
Logic Modules  
Combinatorial Cells  
768  
512  
1,452  
924  
1,452  
924  
2,880  
1800  
Register Cells (Dedicated Flip-Flops)  
Maximum User I/Os  
Clocks  
256  
130  
528  
175  
528  
175  
1,080  
249  
3
3
3
3
JTAG  
Yes  
Yes  
Yes  
Yes  
PCI  
Yes  
Clock-to-Out  
3.7 ns  
0.8 ns  
Std, –1, –2, –3  
C, I, M  
3.9 ns  
0.5 ns  
Std, –1, –2, –3  
C, I, M  
4.4 ns  
0.5 ns  
Std, –1, –2, –3  
C, I, M  
4.6 ns  
0.1 ns  
Std, –1, –2, –3  
C, I, M  
Input Set-Up (External)  
Speed Grades  
Temperature Grades  
Packages (by pin count)  
PLCC  
PQFP  
VQFP  
TQFP  
PBGA  
FBGA  
84  
208  
100  
208  
100  
176  
208  
100  
208  
144, 176  
144, 176  
144, 176  
313, 329  
144  
J u n e 2 0 0 3  
1
© 2003 Actel Corporation  
5 4 S X F a m i l y F P G A s  
G e n e r a l D e s c r i p t i o n  
Actels SX family of FPGAs features a sea-of-modules  
architecture that delivers device performance and  
machines, and datapath logic. The general system of  
segmented routing tracks allows any logic module in the  
integration levels not currently achieved by any other FPGA array to be connected to any other logic or I/O module.  
architecture. SX devices greatly simplify design time, enable  
dramatic reductions in design costs and power  
consumption, and further decrease time to market for  
performance-intensive applications.  
Within this system, propagation delay is minimized by  
limiting the number of antifuse interconnect elements to  
five (90 percent of connections typically use only three  
antifuses). The unique local and general routing structure  
featured in SX devices gives fast and predictable  
performance, allows 100 percent pin-locking with full logic  
utilization, enables concurrent PCB development, reduces  
design time, and allows designers to achieve performance  
goals with minimum effort.  
Actels SX architecture features two types of logic modules,  
the combinatorial cell (C-cell) and the register cell (R-cell),  
each optimized for fast and efficient mapping of synthesized  
logic functions. The routing and interconnect resources are  
in the metal layers above the logic modules, providing  
optimal use of silicon. This enables the entire floor of the  
device to be spanned with an uninterrupted grid of  
fine-grained, synthesis-friendly logic modules (or  
“sea-of-modules”), which reduces the distance signals have  
to travel between logic modules. To minimize signal  
propagation delay, SX devices employ both local and general  
routing resources. The high-speed local routing resources  
(DirectConnect and FastConnect) enable very fast local  
signal propagation that is optimal for fast counters, state  
Further complementing SX’s flexible routing structure is a  
hard-wired, constantly loaded clock network that has been  
tuned to provide fast clock propagation with minimal clock  
skew. Additionally, the high performance of the internal  
logic has eliminated the need to embed latches or flip-flops  
in the I/O cells to achieve fast clock-to-out or fast input  
set-up times. SX devices have easy-to-use I/O cells that do  
not require HDL instantiation, facilitating design re-use and  
reducing design and verification time.  
O r d e r i n g I n f o r m a t i o n  
A54SX16  
P
2
PQ  
208  
Application (Temperature Range)  
Blank = Commercial (0 to +70°C)  
I = Industrial (–40 to +85°C)  
M = Military (–55 to +125°C)  
PP = Pre-production  
Package Lead Count  
Package Type  
BG = Ball Grid Array  
PL = Plastic Leaded Chip Carrier  
PQ = Plastic Quad Flat Pack  
TQ = Thin (1.4 mm) Quad Flat Pack  
VQ = Very Thin (1.0 mm) Quad Flat Pack  
FG = Fine Pitch Ball Grid Array (1.0 mm)  
Speed Grade  
Blank = Standard Speed  
–1 = Approximately 15% Faster than Standard  
–2 = Approximately 25% Faster than Standard  
–3 = Approximately 35% Faster than Standard  
Blank = Not PCI Compliant  
P = PCI Compliant  
Part Number  
A54SX08 = 12,000 System Gates  
A54SX16 = 24,000 System Gates  
A54SX16P = 24,000 System Gates  
A54SX32 = 48,000 System Gates  
2
v3 .1  
5 4 S X F a m i l y F P G A s  
P r o d u c t P l a n  
Speed Grade*  
–1  
Application  
I†  
Std  
–2  
–3  
C
M•  
A54SX08 Device  
84-Pin Plastic Leaded Chip Carrier (PLCC)  
100-Pin Very Thin Plastic Quad Flat Pack (VQFP)  
144-Pin Thin Quad Flat Pack (TQFP)  
144-Pin Fine Pitch Ball Grid Array (FBGA)  
176-Pin Thin Quad Flat Pack (TQFP)  
208-Pin Plastic Quad Flat Pack (PQFP)  
A54SX16 Device  
100-Pin Very Thin Plastic Quad Flat Pack (VQFP)  
176-Pin Thin Quad Flat Pack (TQFP)  
208-Pin Plastic Quad Flat Pack (PQFP)  
A54SX16P Device  
P
P
P
100-Pin Very Thin Plastic Quad Flat Pack (VQFP)  
144-Pin Thin Quad Flat Pack (TQFP)  
176-Pin Thin Quad Flat Pack (TQFP)  
208-Pin Plastic Quad Flat Pack (PQFP)  
A54SX32 Device  
144-Pin Thin Quad Flat Pack (TQFP)  
176-Pin Thin Quad Flat Pack (TQFP)  
208-Pin Plastic Quad Flat Pack (PQFP)  
313-Pin Plastic Ball Grid Array (PBGA)  
329-Pin Plastic Ball Grid Array (PBGA)  
P
P
P
Contact your Actel sales representative for product availability.  
Applications:C = CommercialAvailability:✔  
=
=
=
Available*Speed Grade:–1  
=
=
=
Approx. 15% faster than Standard  
Approx. 25% faster than Standard  
Approx. 35% faster than Standard  
I
= Industrial  
= Military  
P
Planned  
–2  
–3  
M
Not Planned  
Only Std, –1, –2 Speed Grade  
Only Std, –1 Speed Grade  
P l a s t i c D e v i c e R e s o u r c e s  
User I/Os (including clock buffers)  
PLCC  
VQFP  
PQFP  
TQFP  
TQFP  
PBGA  
PBGA  
FBGA  
Device  
A54SX08  
84-Pin  
100-Pin  
208-Pin  
144-Pin  
176-Pin  
313-Pin  
329-Pin  
144-Pin  
69  
81  
81  
81  
130  
175  
175  
174  
113  
128  
147  
147  
147  
111  
A54SX16  
A54SX16P  
A54SX32  
113  
113  
249  
249  
Package Definitions (Consult your local Actel sales representative for product availability.)  
PLCC = Plastic Leaded Chip Carrier, PQFP = Plastic Quad Flat Pack, TQFP = Thin Quad Flat Pack, VQFP = Very Thin Quad Flat Pack,  
PBGA = Plastic Ball Grid Array, FBGA = Fine Pitch (1.0 mm) Ball Grid Array  
v3 .1  
3
5 4 S X F a m i l y F P G A s  
S X F a m i l y A r c h i t e c t u r e  
The SX family architecture was designed to satisfy antifuse interconnect elements, which are embedded  
next-generation performance and integration requirements  
for production-volume designs in a broad range of  
applications.  
between the M2 and M3 layers. The antifuses are normally  
open circuit and, when programmed, form a permanent  
low-impedance connection.  
The extremely small size of these interconnect elements  
gives the SX family abundant routing resources and provides  
excellent protection against design pirating. Reverse  
engineering is virtually impossible because it is extremely  
difficult to distinguish between programmed and  
unprogrammed antifuses, and there is no configuration  
bitstream to intercept.  
P r o g r a m m a b l e I n t e r c o n n e c t E l e m e n t  
The SX family provides efficient use of silicon by locating the  
routing interconnect resources between the Metal 2 (M2)  
and Metal 3 (M3) layers (Figure 1). This completely  
eliminates the channels of routing and interconnect  
resources between logic modules (as implemented on SRAM  
FPGAs and previous generations of antifuse FPGAs), and  
enables the entire floor of the device to be spanned with an  
uninterrupted grid of logic modules.  
Additionally, the interconnect (i.e., the antifuses and metal  
tracks) have lower capacitance and lower resistance than  
any other device of similar capacity, leading to the fastest  
signal propagation in the industry.  
Interconnection between these logic modules is achieved  
using Actels patented metal-to-metal programmable  
Routing Tracks  
Metal 3  
Amorphous Silicon/  
Dielectric Antifuse  
Tungsten Plug Via  
Tungsten Plug Via  
Metal 2  
Metal 1  
Tungsten Plug  
Contact  
Silicon Substrate  
Figure 1 SX Family Interconnect Elements  
L o g i c M o d u l e D e s i g n  
The R-cell contains a flip-flop featuring asynchronous clear,  
asynchronous preset, and clock enable (using the S0 and S1  
lines) control signals (Figure 2 on page 5). The R-cell  
registers feature programmable clock polarity selectable on  
a register-by-register basis. This provides additional  
flexibility while allowing mapping of synthesized functions  
into the SX FPGA. The clock source for the R-cell can be  
chosen from either the hard-wired clock or the routed clock.  
The SX family architecture is described as  
a
“sea-of-modules” architecture because the entire floor of  
the device is covered with a grid of logic modules with  
virtually no chip area lost to interconnect elements or  
routing. Actels SX family provides two types of logic  
modules, the register cell (R-cell) and the combinatorial  
cell (C-cell).  
4
v3 .1  
5 4 S X F a m i l y F P G A s  
The C-cell implements a range of combinatorial functions  
up to 5-inputs (Figure 3). Inclusion of the DB input and its  
associated inverter function dramatically increases the  
number of combinatorial functions that can be  
implemented in a single module from 800 options in  
previous architectures to more than 4,000 in the SX  
architecture. An example of the improved flexibility  
enabled by the inversion capability is the ability to integrate  
a 3-input exclusive-OR function into a single C-cell. This  
facilitates construction of 9-bit parity-tree functions with 2  
ns propagation delays. At the same time, the C-cell  
structure is extremely synthesis friendly, simplifying the  
overall design and reducing synthesis time.  
Routed  
Data Input  
S1  
S0  
PSETB  
Direct  
Connect  
Input  
D
Q
Y
HCLK  
CLKA,  
CLKB,  
CLRB  
Internal Logic  
CKS  
CKP  
Figure 2 R-Cell  
D0  
D1  
Y
D2  
D3  
Sa  
Sb  
DB  
A0 B0  
A1 B1  
Figure 3 C-Cell  
C h i p A r c h i t e c t u r e  
Type 2 contains one C-cell and two R-cells.  
The SX family’s chip architecture provides a unique  
approach to module organization and chip routing that  
delivers the best register/logic mix for a wide variety of new  
and emerging applications.  
To increase design efficiency and device performance, Actel  
has further organized these modules into SuperClusters  
(Figure 4 on page 6). SuperCluster 1 is a two-wide grouping  
of Type 1 clusters. SuperCluster 2 is a two-wide group  
containing one Type 1 cluster and one Type 2 cluster. SX  
devices feature more SuperCluster 1 modules than  
SuperCluster 2 modules because designers typically require  
significantly more combinatorial logic than flip-flops.  
M o d u l e O r g a n i z a t i o n  
Actel has arranged all C-cell and R-cell logic modules into  
horizontal banks called Clusters. There are two types of  
Clusters: Type 1 contains two C-cells and one R-cell, while  
v3 .1  
5
5 4 S X F a m i l y F P G A s  
R-Cell  
C-Cell  
D0  
D1  
Routed  
Data Input  
S1  
S0  
PSETB  
Y
D2  
D3  
Direct  
Connect  
Input  
D
Q
Y
Sa  
Sb  
HCLK  
CLKA,  
CLKB,  
Internal Logic  
CLRB  
DB  
CKS  
CKP  
A0 B0  
A1 B1  
Cluster 1  
Cluster 2  
Cluster 2  
Cluster 1  
Type 1 SuperCluster  
Figure 4 Cluster Organization  
Type 2 SuperCluster  
R o u t i n g R e s o u r c e s  
Clusters and SuperClusters can be connected through the  
use of two innovative local routing resources called  
In addition to DirectConnect and FastConnect, the  
architecture makes use of two globally oriented routing  
FastConnect and DirectConnect, which enable extremely resources known as segmented routing and high-drive  
fast and predictable interconnection of modules within  
Clusters and SuperClusters (Figure 5 and Figure 6 on  
page 7). This routing architecture also dramatically reduces  
the number of antifuses required to complete a circuit,  
ensuring the highest possible performance.  
routing. Actels segmented routing structure provides a  
variety of track lengths for extremely fast routing between  
SuperClusters. The exact combination of track lengths and  
antifuses within each path is chosen by the 100 percent  
automatic place and route software to minimize signal  
propagation delays.  
DirectConnect is a horizontal routing resource that provides  
connections from a C-cell to its neighboring R-cell in a given  
SuperCluster. DirectConnect uses a hard-wired signal path  
requiring no programmable interconnection to achieve its  
fast signal propagation time of less than 0.1 ns.  
Actels high-drive routing structure provides three clock  
networks. The first clock, called HCLK, is hard wired from  
the HCLK buffer to the clock select MUX in each R-cell. This  
provides a fast propagation path for the clock signal,  
enabling the 3.7 ns clock-to-out (pin-to-pin) performance of  
the SX devices. The hard-wired clock is tuned to provide  
clock skew as low as 0.25 ns. The remaining two clocks  
(CLKA, CLKB) are global clocks that can be sourced from  
external pins or from internal logic signals within the SX  
device.  
FastConnect enables horizontal routing between any two  
logic modules within a given SuperCluster and vertical  
routing with the SuperCluster immediately below it. Only  
one programmable connection is used in a FastConnect  
path, delivering maximum pin-to-pin propagation of 0.4 ns.  
6
v3 .1  
5 4 S X F a m i l y F P G A s  
O t h e r A r c h i t e c t u r a l F e a t u r e s  
T e c h n o lo g y  
Actels SX family is implemented on a high-voltage twin-well  
CMOS process using 0.35µ design rules. The metal-to-metal  
antifuse is made up of a combination of amorphous silicon  
and dielectric material with barrier metals and has a  
programmed (“on” state) resistance of 25with  
capacitance of 1.0 fF for low signal impedance.  
Direct Connect  
• No antifuses  
• 0.1 ns routing delay  
Fast Connect  
• One antifuse  
• 0.4 ns routing delay  
Routing Segments  
Typically 2 antifuses  
• Max. 5 antifuses  
Figure 5 DirectConnect and FastConnect for Type 1 SuperClusters  
Direct Connect  
• No antifuses  
• 0.1 ns routing delay  
Fast Connect  
• One antifuse  
• 0.4 ns routing delay  
Routing Segments  
Typically 2 antifuses  
• Max. 5 antifuses  
T
y
pe 2 SuperClusters  
Figure 6 DirectConnect and FastConnect for Type 2 SuperClusters  
v3 .1  
7
5 4 S X F a m i l y F P G A s  
P e r f o r m a n c e  
B o u n d a r y S c a n T e s t i n g ( B S T )  
The combination of architectural features described above  
enables SX devices to operate with internal clock  
frequencies exceeding 300 MHz, enabling very fast  
All SX devices are IEEE 1149.1 compliant. SX devices offer  
superior diagnostic and testing capabilities by providing  
Boundary Scan Testing (BST) and probing capabilities.  
execution of even complex logic functions. Thus, the SX These functions are controlled through the special test pins  
family is an optimal platform upon which to integrate the  
functionality previously contained in multiple CPLDs. In  
addition, designs that previously would have required a gate  
array to meet performance goals can now be integrated into  
an SX device with dramatic improvements in cost and time  
to market. Using timing-driven place and route tools,  
designers can achieve highly deterministic device  
performance. With SX devices, designers do not need to use  
complicated performance-enhancing design techniques  
such as the use of redundant logic to reduce fanout on  
critical nets or the instantiation of macros in HDL code to  
achieve high performance.  
in conjunction with the program fuse. The functionality of  
each pin is described in Table 2.In the dedicated test mode,  
TCK, TDI and TDO are dedicated pins and cannot be used as  
regular I/Os. In flexible mode, TMS should be set HIGH  
through a pull-up resistor of 10k. TMS can be pulled LOW  
to initiate the test sequence.  
The program fuse determines whether the device is in  
dedicated or flexible mode. The default (fuse not blown) is  
flexible mode. .  
Table 2 Boundary Scan Pin Functionality  
Program Fuse Blown  
(Dedicated Test Mode)  
Program Fuse Not Blown  
(Flexible Mode)  
I /O M o d u l e s  
TCK, TDI, TDO are  
dedicated BST pins  
TCK, TDI, TDO are flexible  
and may be used as I/Os  
Each I/O on an SX device can be configured as an input, an  
output, a tristate output, or a bidirectional pin. Even without  
the inclusion of dedicated I/O registers, these I/Os, in  
combination with array registers, can achieve clock-to-out  
(pad-to-pad) timing as fast as 3.7 ns. I/O cells that have  
embedded latches and flip-flops require instantiation in  
HDL code; this is a design complication not encountered in  
SX FPGAs. Fast pin-to-pin timing ensures that the device  
will have little trouble interfacing with any other device in  
the system, which in turn enables parallel design of system  
components and reduces overall design time.  
No need for pull-up resistor Use a pull-up resistor of 10k  
for TMS on TMS  
D e v e l o p m e n t T o o l S u p p o r t  
The SX devices are fully supported by Actels line of FPGA  
development tools, including the Actel DeskTOP series and  
Designer Advantage tools. The Actel DeskTOP series is an  
integrated design environment for PCs that includes design  
entry, simulation, synthesis, and place and route tools.  
Designer Advantage, Actels suite of FPGA development  
point tools for PCs and Workstations, includes the ACTgen  
Macro Builder, Designer with DirectTime timing driven  
place and route and analysis tools, and device programming  
software.  
P o w e r R e q u i r e m e n t s  
The SX family supports 3.3V operation and is designed to  
tolerate 5.0V inputs. (Table 1). Power consumption is  
extremely low due to the very short distances signals are  
required to travel to complete a circuit. Power requirements  
are further reduced because of the small number of  
low-resistance antifuses in the path. The antifuse  
architecture does not require active circuitry to hold a  
charge (as do SRAM or EPROM), making it the lowest-power  
architecture on the market.  
In addition, the SX devices contain ActionProbe circuitry  
that provides built-in access to every node in a design,  
enabling 100-percent real-time observation and analysis of a  
device's internal logic nodes without design iteration. The  
probe circuitry is accessed by Silicon Explorer II, an  
easy-to-use integrated verification and logic analysis tool  
that can sample data at 100 MHz (asynchronous) or 66 MHz  
(synchronous). Silicon Explorer II attaches to a PC’s  
standard COM port, turning the PC into a fully functional  
18-channel logic analyzer. Silicon Explorer II allows  
designers to complete the design verification process at  
their desks and reduces verification time from several hours  
per cycle to only a few seconds.  
Table 1 Supply Voltages  
Maximum Maximum  
Input  
Output  
Drive  
VCCA VCCI VCCR Tolerance  
A54SX08  
A54SX16  
A54SX32  
3.3V 3.3V 5.0V  
3.3V 3.3V 3.3V  
5.0V  
3.3V  
3.3V  
5.0V  
5.0V  
3.3V  
3.3V  
5.0V  
A54SX16-P 3.3V 3.3V 5.0V  
3.3V 5.0V 5.0V  
Note: A54SX16-P has three different entries because it is capable of  
both a 3.3V and a 5V drive.  
8
v3 .1  
5 4 S X F a m i l y F P G A s  
S X P r o b e C i r c u i t C o n t r o l P i n s  
recommended that the TRST pin be left floating.  
The Silicon Explorer II tool uses the boundary scan ports  
(TDI, TCK, TMS and TDO) to select the desired nets for  
verification. The selected internal nets are assigned to the  
PRA/PRB pins for observation. Figure 7 illustrates the  
interconnection between Silicon Explorer II and the FPGA  
to perform in-circuit verification. The TRST pin is equipped  
with a pull-up resistor. To remove the boundary scan state  
machine from the reset state during probing, it is  
D e s i g n C o n s i d e r a t i o n s  
The TDI, TCK, TDO, PRA, and PRB pins should not be used  
as input or bidirectional ports. Because these pins are  
active during probing, critical signals input through these  
pins are not available while probing. In addition, the  
Security Fuse should not be programmed because doing so  
disables the Probe Circuitry.  
SX FPGA  
TDI  
TCK  
TMS  
Silicon Explorer II  
Serial Connection  
TDO  
PRA  
PRB  
Figure 7 Probe Setup  
v3 .1  
9
5 4 S X F a m i l y F P G A s  
3 . 3 V /5 V O p e r a t i n g C o n d i t i o n s  
1
A b s o l u t e M a x i m u m R a t i n g s  
R e c o m m e n d e d O p e r a t i n g C o n d i t i o n s  
Symbol  
Parameter  
Limits  
Units  
Commer  
Parameter  
cial  
Industrial  
Military  
Units  
2
VCCR  
DC Supply Voltage3  
DC Supply Voltage  
DC Supply Voltage  
(A54SX08,A54SX16, –0.3 to +4.0  
A54SX32)  
–0.3 to +6.0  
–0.3 to +4.0  
V
V
Temperature  
Range1  
2
0 to+70 –40 to +85 –55 to +125  
°C  
VCCA  
3.3V Power  
Supply  
Tolerance  
2
%VC  
VCCI  
V
±10  
±5  
±10  
±10  
±10  
±10  
C
DC Supply Voltage  
–0.3 to +6.0  
2
5.0V Power  
Supply  
Tolerance  
VCCI  
V
%VC  
(A54SX16P)  
C
VI  
Input Voltage  
–0.5 to +5.5  
–0.5 to +3.6  
V
V
VO  
Output Voltage  
I/O Source Sink  
Current3  
Note:  
1. Ambient temperature (TA) is used for commercial and  
industrial; case temperature (TC) is used for military.  
IIO  
–30 to +5.0  
–65 to +150  
mA  
°C  
TSTG  
Storage Temperature  
Notes:  
1. Stresses beyond those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device.  
Exposure to absolute maximum rated conditions for extended  
periods may affect device reliability. Device should not be  
operated outside the Recommended Operating Conditions.  
2.  
VCCR in the A54SX16P must be greater than or equal to V  
during power-up and power-down sequences and duriCnCgI  
normal operation.  
3. Device inputs are normally high impedance and draw  
extremely low current. However, when input voltage is greater  
than V + 0.5V or less than GND – 0.5V, the internal protection  
diodesCwCill forward-bias and can draw excessive current.  
E l e c t r i c a l S p e c i f i c a t i o n s  
Commercial  
Industrial  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Units  
(IOH = -20uA) (CMOS)  
(IOH = -8mA) (TTL)  
(IOH = -6mA) (TTL)  
(IOL= 20uA) (CMOS)  
(IOL = 12mA) (TTL)  
(IOL = 8mA) (TTL)  
(VCCI – 0.1)  
2.4  
VCCI  
VCCI  
(VCCI – 0.1)  
VCCI  
VOH  
V
2.4  
VCCI  
0.10  
0.50  
VOL  
V
0.50  
0.8  
VIL  
0.8  
V
V
VIH  
2.0  
2.0  
tR, tF  
CIO  
Input Transition Time tR, tF  
CIO I/O Capacitance  
50  
10  
50  
10  
ns  
pF  
mA  
ICC  
Standby Current, ICC  
4.0  
4.0  
ICC(D)  
ICC(D) Dynamic  
I
VCC Supply Current  
See “Evaluating Power in 54SX Devices” on page 18  
1 0  
v3 .1  
5 4 S X F a m i l y F P G A s  
P C I C o m p l i a n c e f o r t h e 5 4 S X F a m i l y  
The 54SX family supports 3.3V and 5V PCI and is compliant with the PCI Local Bus Specification Rev. 2.1.  
A5 4 S X1 6 P DC S p e c ific a t io n s (5 . 0 V P C I O p e r a t io n )  
Symbol  
Parameter  
Condition  
Min.  
Max.  
Units  
VCCA  
VCCR  
VCCI  
VIH  
Supply Voltage for Array  
Supply Voltage required for Internal Biasing  
Supply Voltage for IOs  
Input High Voltage1  
3.0  
4.75  
4.75  
2.0  
3.6  
5.25  
V
V
5.25  
V
VCC + 0.5  
0.8  
V
VIL  
Input Low Voltage1  
–0.5  
V
IIH  
Input High Leakage Current  
Input Low Leakage Current  
Output High Voltage  
Output Low Voltage2  
Input Pin Capacitance3  
VIN = 2.7  
70  
µA  
µA  
V
IIL  
VIN = 0.5  
–70  
VOH  
VOL  
CIN  
IOUT = –2 mA  
IOUT = 3 mA, 6 mA  
2.4  
5
0.55  
10  
12  
8
V
pF  
pF  
pF  
CCLK  
CIDSEL  
Notes:  
CLK Pin Capacitance  
IDSEL Pin Capacitance4  
1. Input leakage currents include hi-Z output leakage for all bi-directional buffers with tri-state outputs.  
2. Signals without pull-up resistors must have 3 mA low output current. Signals requiring pull up must have 6 mA; the latter include,  
FRAME#, IRDY#, TRDY#, DEVSEL#, STOP#, SERR#, PERR#, LOCK#, and, when used AD[63::32], C/BE[7::4]#, PAR64, REQ64#, and ACK64#.  
3. Absolute maximum pin capacitance for a PCI input is 10 pF (except for CLK).  
4. Lower capacitance on this input-only pin allows for non-resistive coupling to AD[xx].  
v3 .1  
1 1  
5 4 S X F a m i l y F P G A s  
A5 4 S X1 6 P AC S p e c ific a t io n s fo r (P C I O p e r a t io n )  
Symbol  
Parameter  
Condition  
Min.  
Max.  
Units  
0 < VOUT 1.41  
1.4 VOUT < 2.41, 2  
–44  
mA  
mA  
–44 + (VOUT – 1.4)/0.024  
IOH(AC)  
Switching Current High  
(Test Point)  
Equation A: on  
page 13  
1, 3  
3.1 < VOUT < VCC  
VOUT = 3.13  
–142  
mA  
mA  
V
OUT 2.21  
95  
2.2 > VOUT > 0.551  
VOUT/0.023  
IOL(AC)  
Switching Current High  
Equation B: on  
page 13  
0.71 > VOUT > 01, 3  
mA  
(Test Point)  
VOUT = 0.713  
206  
mA  
mA  
ICL  
Low Clamp Current  
Output Rise Slew Rate  
Output Fall Slew Rate  
–5 < VIN –1  
–25 + (VIN + 1)/0.015  
slewR  
slewF  
Notes:  
0.4V to 2.4V load4  
2.4V to 0.4V load4  
1
1
5
5
V/ns  
V/ns  
1. Refer to the V/I curves in Figure 8. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here;  
i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST# which are system outputs.  
“Switching Current High” specification are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD# which are open drain outputs.  
2. Note that this segment of the minimum current curve is drawn from the AC drive point directly to the DC drive point rather than toward  
the voltage rail (as is done in the pull-down curve). This difference is intended to allow for an optional N-channel pull-up.  
3. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (A and B)  
are provided with the respective diagrams in Figure 8. The equation defined maxima should be met by design. In order to facilitate  
component testing, a maximum current test point is defined for each side of the output driver.  
4. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point  
within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an  
unloaded output per revision 2.0 of the PCI Local Bus Specification. However, adherence to both maximum and minimum parameters is  
now required (the maximum is no longer simply a guideline). Since adherence to the maximum slew rate was not required prior to  
revision 2.1 of the specification, there may be components in the market for some time that have faster edge rates; therefore, motherboard  
designers must bear in mind that rise and fall times faster than this specification could occur, and should ensure that signal integrity  
modeling accounts for this. Rise slew rate does not apply to open drain outputs.  
pin  
1/2 in. max.  
output  
buffer  
VCC  
10 pF  
1kΩ  
1kΩ  
1 2  
v3 .1  
5 4 S X F a m i l y F P G A s  
Figure 8 shows the 5.0V PCI V/I curve and the minimum and maximum PCI drive characteristics of the A54SX16P family.  
0.50  
0.45  
0.40  
PCI I  
Maximum  
OL  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
SX PCI I  
OL  
PCI I  
4
Mininum  
OL  
1
2
3
5
6
–0.05  
–0.10  
–0.15  
–0.20  
PCI I  
Mininum  
OH  
SX PCI I  
OH  
PCI I  
Maximum  
OH  
Voltage Out  
Figure 8 5.0V PCI Curve for A54SX16P Family  
Equation A:  
Equation B:  
IOH = 11.9 * (VOUT – 5.25) * (VOUT + 2.45)  
IOL = 78.5 * V  
* (4.4 – V  
)
OUT  
OUT  
for V > VOUT > 3.1V  
for 0V < VOUT < 0.71V  
CC  
v3 .1  
1 3  
5 4 S X F a m i l y F P G A s  
A 5 4 S X 1 6 P D C S p e c i f i c a t i o n s ( 3 . 3 V P C I O p e r a t i o n )  
Symbol  
Parameter  
Condition  
Min.  
Max.  
Units  
VCCA  
VCCR  
VCCI  
VIH  
Supply Voltage for Array  
Supply Voltage required for Internal Biasing  
Supply Voltage for IOs  
Input High Voltage  
3.0  
3.0  
3.0  
3.6  
3.6  
3.6  
V
V
V
0.5VCC VCC + 0.5  
V
VIL  
Input Low Voltage  
–0.5  
0.3VCC  
V
IIPU  
Input Pull-up Voltage1  
Input Leakage Current2  
Output High Voltage  
0.7VCC  
V
IIL  
0 < VIN < VCC  
IOUT = –500 µA  
IOUT = 1500 µA  
±10  
µA  
V
VOH  
VOL  
0.9VCC  
Output Low Voltage  
0.1VCC  
V
CIN  
Input Pin Capacitance3  
CLK Pin Capacitance  
IDSEL Pin Capacitance4  
10  
12  
8
pF  
pF  
pF  
CCLK  
CIDSEL  
Notes:  
5
1. This specification should be guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated  
network. Applications sensitive to static power utilization should assure that the input buffer is conducting minimum current at this  
input voltage.  
2. Input leakage currents include hi-Z output leakage for all bi-directional buffers with tri-state outputs.  
3. Absolute maximum pin capacitance for a PCI input is 10pF (except for CLK).  
4. Lower capacitance on this input-only pin allows for non-resistive coupling to AD[xx].  
1 4  
v3 .1  
5 4 S X F a m i l y F P G A s  
A 5 4 S X1 6 P AC S p e c ific a t io n s (3 .3 V P CI Op e ra t io n )  
Symbol Parameter  
Condition  
Min.  
Max.  
Units  
1
0 < VOUT 0.3VCC  
mA  
mA  
1
0.3VCC VOUT < 0.9VCC  
–12VCC  
Switching Current High  
Equation C: on  
page 16  
1, 2  
IOH(AC)  
0.7VCC < VOUT < VCC  
–17.1 + (VCC – VOUT)  
2
(Test Point)  
V
OUT = 0.7VCC  
–32VCC  
mA  
mA  
mA  
mA  
1
V
CC > VOUT 0.6VCC  
1
Switching Current High 0.6VCC > VOUT > 0.1VCC  
16VCC  
IOL(AC)  
0.18VCC > VOUT > 01, 2  
26.7VOUT  
on page 16  
2
(Test Point)  
VOUT = 0.18VCC  
–3 < VIN –1  
–3 < VIN –1  
38VCC  
ICL  
Low Clamp Current  
–25 + (VIN + 1)/0.015  
mA  
mA  
ICH  
High Clamp Current  
25 + (VIN – VOUT – 1)/0.015  
slewR  
slewF  
Notes:  
Output Rise Slew Rate3 0.2VCC to 0.6VCC load  
Output Fall Slew Rate3  
0.6VCC to 0.2VCC load  
1
1
4
4
V/ns  
V/ns  
1. Refer to the V/I curves in Figure 9. Switching current characteristics for REQ# and GNT# are permitted to be one half of that specified here;  
i.e., half size output drivers may be used on these signals. This specification does not apply to CLK and RST# which are system outputs.  
“Switching Current High” specification are not relevant to SERR#, INTA#, INTB#, INTC#, and INTD# which are open drain outputs.  
2. Maximum current requirements must be met as drivers pull beyond the last step voltage. Equations defining these maximums (C and D)  
are provided with the respective diagrams in Figure 9. The equation defined maxima should be met by design. In order to facilitate  
component testing, a maximum current test point is defined for each side of the output driver.  
3. This parameter is to be interpreted as the cumulative edge rate across the specified range, rather than the instantaneous rate at any point  
within the transition range. The specified load (diagram below) is optional; i.e., the designer may elect to meet this parameter with an  
unloaded output per the latest revision of the PCI Local Bus Specification. However, adherence to both maximum and minimum  
parameters is required (the maximum is no longer simply a guideline). Rise slew rate does not apply to open drain outputs.  
pin  
1/2 in. max.  
output  
buffer  
VCC  
10 pF  
1kΩ  
1kΩ  
v3 .1  
1 5  
5 4 S X F a m i l y F P G A s  
Figure 9 shows the 3.3V PCI V/I curve and the minimum and maximum PCI drive characteristics of the A54SX16P family.  
0.50  
0.45  
0.40  
PCI I  
Maximum  
OL  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
SX PCI I  
OL  
PCI I  
Minimum  
OL  
SX PCI I  
OH  
5
1
2
3
4
6
–0.05  
–0.10  
–0.15  
–0.20  
PCI I  
Minimum  
OH  
PCI I  
Maximum  
OH  
Voltage Out  
Figure 9 3.3V PCI Curve for A54SX16P Family  
Equation C:  
Equation D:  
OL = (256/V ) * V  
IOH = (98.0/V ) * (VOUT – V ) * (VOUT + 0.4V )  
I
* (V – V  
)
CC  
CC  
CC  
CC  
OUT  
CC  
OUT  
for V > VOUT > 0.7 V  
for 0V < VOUT < 0.18 V  
CC  
CC  
CC  
1 6  
v3 .1  
5 4 S X F a m i l y F P G A s  
P o w e r -U p S e q u e n c i n g  
VCCA  
VCCR  
VCCI  
Power-Up Sequence  
Comments  
A54SX08, A54SX16, A54SX32  
5.0V First  
3.3V Second  
No possible damage to device.  
Possible damage to device.  
3.3V  
5.0V  
3.3V  
3.3V First  
5.0V Second  
A54SX16P  
3.3V  
3.3V  
3.3V  
5.0V  
3.3V  
3.3V  
3.3V Only  
No possible damage to device.  
No possible damage to device.  
5.0V First  
3.3V Second  
3.3V First  
5.0V Second  
Possible damage to device.  
No possible damage to device.  
No possible damage to device.  
5.0V First  
3.3V Second  
3.3V  
5.0V  
5.0V  
3.3V First  
5.0V Second  
P o w e r -D o w n S e q u e n c i n g  
VCCA  
VCCR  
VCCI  
Power-Down Sequence  
Comments  
A54SX08, A54SX16, A54SX32  
5.0V First  
3.3V Second  
No possible damage to device.  
Possible damage to device.  
3.3V  
5.0V  
3.3V  
3.3V First  
5.0V Second  
A54SX16P  
3.3V  
3.3V  
3.3V  
5.0V  
3.3V  
3.3V  
3.3V Only  
No possible damage to device.  
Possible damage to device.  
5.0V First  
3.3V Second  
3.3V First  
5.0V Second  
No possible damage to device.  
No possible damage to device.  
No possible damage to device.  
5.0V First  
3.3V Second  
3.3V  
5.0V  
5.0V  
3.3V First  
5.0V Second  
v3 .1  
1 7  
5 4 S X F a m i l y F P G A s  
E v a l u a t i n g P o w e r i n 5 4 S X D e v i c e s  
A critical element of system reliability is the ability of  
electronic devices to safely dissipate the heat generated  
during operation. The thermal characteristics of a circuit  
depend on the device and package used, the operating  
temperature, the operating current, and the system's ability  
to dissipate heat.  
dissipation is defined as follows:  
PAC = PModule + PRCLKA Net + PRCLKB Net + PHCLK Net  
POutput Buffer + PInput Buffer  
PAC = V 2 * [(m * CEQM * fm)Module  
+
(3)  
+
CCA  
(n * CEQI * fn)Input Buffer+ (p * (CEQO + CL) * fp)Output Buffer  
(0.5 * (q1 * CEQCR * fq1) + (r1 * fq1))RCLKA  
(0.5 * (q2 * CEQCR * fq2)+ (r2 * fq2))RCLKB  
(0.5 * (s1 * CEQHV * fs1) + (CEQHF * fs1))HCLK  
+
+
+
You should complete a power evaluation early in the design  
process to help identify potential heat-related problems in  
the system and to prevent the system from exceeding the  
devices maximum allowed junction temperature.  
]
(4)  
D e f i n i t i o n o f T e r m s U s e d i n F o r m u l a  
m
n
= Number of logic modules switching at fm  
= Number of input buffers switching at fn  
= Number of output buffers switching at fp  
The actual power dissipated by most applications is  
significantly lower than the power the package can  
dissipate. However, a thermal analysis should be performed  
for all projects. To perform a power evaluation, follow these  
steps:  
p
q1  
= Number of clock loads on the first routed array  
clock  
q2  
= Number of clock loads on the second routed  
array clock  
• Estimate the power consumption of the application.  
x
= Number of I/Os at logic low  
= Number of I/Os at logic high  
Calculate the maximum power allowed for the device and  
package.  
y
r1  
= Fixed capacitance due to first routed array  
clock  
Compare the estimated power and maximum power  
values.  
r2  
s1  
= Fixed capacitance due to second routed array  
clock  
E s t i m a t i n g P o w e r C o n s u m p t i o n  
= Number of clock loads on the dedicated array  
clock  
The total power dissipation for the 54SX family is the sum of  
the DC power dissipation and the AC power dissipation. Use  
Equation 1 to calculate the estimated power consumption of  
your application.  
CEQM = Equivalent capacitance of logic modules in pF  
CEQI = Equivalent capacitance of input buffers in pF  
PTotal = PDC + PAC  
(1)  
CEQO = Equivalent capacitance of output buffers in pF  
CEQCR = Equivalent capacitance of routed array clock in  
pF  
D C P o w e r D i s s i p a t i o n  
The power due to standby current is typically a small  
component of the overall power. The Standby power is  
shown below for commercial, worst case conditions (70°C).  
CEQHV = Variable capacitance of dedicated array clock  
CEQHF = Fixed capacitance of dedicated array clock  
CL  
fm  
fn  
= Output lead capacitance in pF  
Table 3 •  
= Average logic module switching rate in MHz  
= Average input buffer switching rate in MHz  
= Average output buffer switching rate in MHz  
= Average first routed array clock rate in MHz  
= Average second routed array clock rate in MHz  
= Average dedicated array clock rate in MHz  
ICC  
VCC  
Power  
fp  
4mA  
3.6V  
14.4mW  
fq1  
fq2  
fs1  
The DC power dissipation is defined in Equation 2 as  
follows:  
PDC = (Istandby)*VCCA + (Istandby)*V  
+
CCR  
A54SX08 A54SX16 A54SX16P A54SX32  
(Istandby)*VCCI + x*V *IOL + y*(VCCI – V )*V  
(2)  
OL  
OH  
OH  
CEQM (pF) 4.0  
EQI (pF) 3.4  
4.0  
4.0  
4.0  
A C P o w e r D i s s i p a t i o n  
C
3.4  
3.4  
3.4  
The power dissipation of the 54SX Family is usually  
dominated by the dynamic power dissipation. Dynamic  
power dissipation is a function of frequency, equivalent  
capacitance and power supply voltage. The AC power  
CEQO (pF) 4.7  
CEQCR (pF) 1.6  
4.7  
4.7  
4.7  
1.6  
1.6  
1.6  
CEQHV  
CEQHF  
r1 (pF)  
r2 (pF)  
0.615  
0.615  
96  
0.615  
96  
0.615  
140  
171  
171  
60  
87  
87  
138  
138  
138  
138  
1 8  
v3 .1  
5 4 S X F a m i l y F P G A s  
G u i d e l i n e s f o r C a l c u l a t i n g P o w e r  
C o n s u m p t i o n  
A C P o w e r D i s s i p a t i o n  
PAC = PModule + PRCLKA Net + PRCLKB Net + PHCLK Net  
POutput Buffer + PInput Buffer  
PAC = V 2 * [(m * CEQM * fm)Module  
+
The following guidelines are meant to represent worst-case  
scenarios so that they can be generally used to predict the  
upper limits of power dissipation. These guidelines are as  
follow:  
(6)  
(7)  
+
CCA  
(n * CEQI * fn)Input Buffer+ (p * (CEQO + CL) * fp)Output  
+
Buffer  
(0.5 * (q1 * CEQCR * fq1) + (r1 * fq1))RCLKA  
(0.5 * (q2 * CEQCR * fq2)+ (r2 * fq2))RCLKB  
(0.5 * (s1 * CEQHV * fs1) + (CEQHF * fs1))HCLK  
+
+
Logic Modules (m)  
Inputs Switching (n)  
Outputs Switching (p)  
= 20% of modules  
= # inputs/4  
]
= # output/4  
Step #1: Define Terms Used in Formula  
First Routed Array Clock Loads (q1) = 20% of register  
cells  
V
3.3  
CCA  
Module  
Second Routed Array Clock Loads (q2) = 20% of register  
cells  
Number of logic modules switching at fm  
(Used 50%)  
m
264  
20  
Load Capacitance (CL)  
= 35 pF  
Average logic modules switching rate  
fm (MHz) (Guidelines: f/10)  
fm  
Average Logic Module Switching Rate= f/10  
(fm)  
Module capacitance CEQM (pF)  
Input Buffer  
CEQM 4.0  
Average Input Switching Rate (fn)  
Average Output Switching Rate (fp)  
= f/5  
= f/10  
Number of input buffers switching at fn  
Average input switching rate fn (MHz)  
(Guidelines: f/5)  
n
1
Average First Routed Array Clock Rate= f/2  
(fq1)  
Average Second Routed Array Clock= f/2  
Rate (fq2)  
Average Dedicated Array Clock Rate = f  
(fs1)  
fn  
40  
Input buffer capacitance CEQI (pF)  
Output Buffer  
CEQI 3.4  
Number of output buffers switching at fp  
p
1
Dedicated Clock Array clock loads (s1) = 20% of regular  
modules  
Average output buffers switching rate  
fp(MHz) (Guidelines: f/10)  
fp  
20  
Output buffers buffer Capacitance CEQO (pF) CEQO 4.7  
S a m p l e P o w e r C a l c u l a t i o n  
Output Load capacitance CL (pF)  
RCLKA  
CL  
35  
One of the designs used to characterize the A54SX family  
was a 528 bit serial in serial out shift register. The design  
utilized 100% of the dedicated flip-flops of an A54SX16P  
device. A pattern of 0101… was clocked into the device at  
frequencies ranging from 1 MHz to 200 MHz. Shifting in a  
series of 0101… caused 50% of the flip-flops to toggle from  
low to high at every clock cycle.  
Number of Clock loads q1  
Capacitance of routed array clock (pF)  
Average clock rate (MHz)  
Fixed capacitance (pF)  
RCLKB  
q1  
528  
CEQCR 1.6  
fq1  
r1  
200  
138  
Number of Clock loads q2  
Capacitance of routed array clock (pF)  
Average clock rate (MHz)  
Fixed capacitance (pF)  
HCLK  
q2  
0
Follow the steps below to estimate power consumption. The  
values provided for the sample calculation below are for the  
shift register design above. This method for estimating  
power consumption is conservative and the actual power  
consumption of your design may be less than the estimated  
power consumption.  
CEQCR 1.6  
fq2  
r2  
0
138  
Number of Clock loads  
s1  
0
The total power dissipation for the 54SX family is the sum of  
the AC power dissipation and the DC power dissipation.  
Variable capacitance of dedicated  
array clock (pF)  
CEQHV 0.615  
PTotal = PAC (dynamic power) + PDC (static power)  
(5)  
Fixed capacitance of dedicated  
array clock (pF)  
CEQHF 96  
Average clock rate (MHz)  
fs1  
0
v3 .1  
1 9  
5 4 S X F a m i l y F P G A s  
Step #2: Calculate Dynamic Power Consumption  
CCA*V  
m*fm*CEQM  
n*fn*CEQI  
p*fp*(CEQO+CL)  
0.5*(q1*CEQCR*fq1)+(r1*fq1)  
0.5*(q2*CEQCR*fq2)+(r2*fq2)  
0.5 *(s1 * CEQHV * fs1)+(CEQHF*fs1)  
PAC = 1.461W  
P
DC = (Istandby)*V  
CCA  
V
10.89  
0.02112  
0.000136  
0.000794  
0.11208  
0
PDC = .55mA*3.3V  
PDC = 0.001815W  
CCA  
Step #4: Calculate Total Power Consumption  
PTotal = PAC + PDC  
PTotal = 1.461 + 0.001815  
PTotal = 1.4628W  
0
Step #5: Compare Estimated Power Consumption against  
Characterized Power Consumption  
Step #3: Calculate DC Power Dissipation  
DC Power Dissipation  
The estimated total power consumption for this design is  
1.46W. The characterized power consumption for this design  
at 200 MHz is 1.0164W. Figure 10 shows the characterized  
power dissipation numbers for the shift register design  
using frequencies ranging from 1 MHz to 200 MHz.  
PDC = (Istandby)*VCCA + (Istandby)*VCCR + (Istandby)*V  
+
CCI  
X*V *IOL + Y*(VCCI – V )*V  
OL  
OH  
OH  
(8)  
For a rough estimate of DC Power Dissipation, only use  
PDC = (Istandby)*VCCA. The rest of the formula provides a  
very small number that can be considered negligible.  
1200  
1000  
800  
600  
400  
200  
0
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
Frequency MHz  
Figure 10 Power Dissipation  
2 0  
v3 .1  
5 4 S X F a m i l y F P G A s  
J u n c t i o n T e m p e r a t u r e ( T )  
P = Power calculated from Estimating Power Consumption  
section  
J
The temperature that you select in Designer Series software  
is the junction temperature, not ambient temperature. This  
is an important distinction because the heat generated from  
dynamic power consumption is usually hotter than the  
ambient temperature. Use the equation below to calculate  
junction temperature.  
θ
= Junction to ambient of package. θ numbers are  
ja  
ja  
located in Package Thermal Characteristics section.  
P a c k a g e T h e r m a l C h a r a c t e r i s t i c s  
The device junction to case thermal characteristic is θjc,  
and the junction to ambient air characteristic is θja. The  
thermal characteristics for θja are shown with two different  
air flow rates.  
Junction Temperature = T + T  
a
Where:  
T = Ambient Temperature  
a
The maximum junction temperature is 150°C.  
T = Temperature gradient between junction (silicon) and  
ambient  
A sample calculation of the absolute maximum power  
dissipation allowed for a TQFP 176-pin package at  
commercial temperature and still air is as follows:  
T = θ * P  
ja  
Max. junction temp. (°C) – Max. ambient temp. (°C)  
150°C – 70°C  
Maximum Power Allowed = ------------------------------------------------------------------------------------------------------------------------------ = --------------------------------- = 2.86W  
θja (°C/W)  
28°C/W  
θja  
θja  
Package Type  
Pin Count  
θjc  
Still Air  
300 ft/min  
Units  
Plastic Leaded Chip Carrier (PLCC)  
Thin Quad Flat Pack (TQFP)  
84  
12  
11  
11  
10  
8
32  
32  
22  
24  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
144  
176  
100  
208  
208  
272  
313  
329  
144  
Thin Quad Flat Pack (TQFP)  
28  
21  
Very Thin Quad Flatpack (VQFP)  
Plastic Quad Flat Pack (PQFP) without Heat Spreader  
Plastic Quad Flat Pack (PQFP) with Heat Spreader  
Plastic Ball Grid Array (PBGA)  
38  
32  
30  
23  
3.8  
3
20  
17  
20  
14.5  
17  
Plastic Ball Grid Array (PBGA)  
3
23  
Plastic Ball Grid Array (PBGA)  
3
18  
13.5  
26.7  
Fine Pitch Ball Grid Array (FBGA)  
3.8  
38.8  
Note:  
SX08 does not have a heat spreader.  
v3 .1  
2 1  
5 4 S X F a m i l y F P G A s  
5 4 S X T i m i n g M o d e l *  
Input Delays  
Internal Delays  
Predicted  
Routing  
Delays  
Output Delays  
Combinatorial  
Cell  
I/O Module  
I/O Module  
tINY = 1.5 ns  
t
IRD2 = 0.6 ns  
tDHL = 1.6 ns  
tRD1 = 0.3 ns  
tRD4 = 1.0 ns  
tRD8 = 1.9 ns  
tPD =0.6 ns  
I/O Module  
tDHL = 1.6 ns  
Register  
Cell  
Register  
Cell  
D
D
Q
Q
tRD1 = 0.3 ns  
tRD1 = 0.3 ns  
t
ENZH = 2.3 ns  
tSUD = 0.5 ns  
HD = 0.0 ns  
t
t
RCO = 0.8 ns  
tRCO = 0.8 ns  
Routed  
Clock  
tRCKH = 1.5 ns (100% Load)  
FMAX = 250 MHz  
Hard-Wired  
Clock  
tHCKH = 1.0 ns  
FHMAX = 320 MHz  
*Values shown for A54SX08-3, worst-case commercial conditions.  
H a r d -W i r e d C l o c k  
R o u t e d C l o c k  
External Set-Up = tINY + tIRD1 + tSUD – tHCKH  
= 1.5 + 0.3 + 0.5 – 1.0 = 1.3 ns  
Clock-to-Out (Pin-to-Pin)  
External Set-Up = tINY + tIRD1 + tSUD – tRCKH  
= 1.5 + 0.3 + 0.5 – 1.5 = 0.8 ns  
Clock-to-Out (Pin-to-Pin)  
= tHCKH + tRCO + tRD1 + tDHL  
= 1.0 + 0.8 + 0.3 + 1.6 = 3.7 ns  
= tRCKH + tRCO + tRD1 + tDHL  
= 1.52+ 0.8 + 0.3 + 1.6 = 4.2 ns  
2 2  
v3 .1  
5 4 S X F a m i l y F P G A s  
O u t p u t B u f f e r D e l a y s  
E
D
To AC test loads (shown below)  
PAD  
TRIBUFF  
VCC  
VCC  
VCC  
In  
GND  
1.5V  
50%  
VOH  
En  
Out  
GND  
10%  
50%  
En  
GND  
90%  
50%  
50%  
VCC  
50%  
VOH  
50%  
1.5V  
VOL  
Out  
VOL  
Out  
GND  
1.5V  
1.5V  
tDLH  
tDHL  
tENZL  
tENLZ  
tENZH  
tENHZ  
A C T e s t L o a d s  
Load 2  
(Used to measure enable delays)  
Load 3  
(Used to measure disable delays)  
Load 1  
(Used to measure  
propagation delay)  
VCC  
VCC  
GND  
GND  
To the output  
under test  
35 pF  
R to VCC for tPZL  
R to GND for tPZH  
R = 1 kΩ  
R to VCC for tPLZ  
R to GND for tPHZ  
R = 1 kΩ  
To the output  
under test  
To the output  
under test  
35 pF  
5 pF  
I n p u t B u f f e r D e l a y s  
C -C e l l D e l a y s  
S
A
B
Y
Y
PAD  
INBUF  
VCC  
GND  
S, A or B  
50% 50%  
VCC  
3V  
In  
0V  
1.5V  
VCC  
1.5V  
50%  
Out  
50%  
GND  
tPD  
tPD  
50%  
Out  
GND  
50%  
VCC  
50%  
Out  
GND  
tPD  
50%  
tPD  
tINY  
tINY  
v3 .1  
2 3  
5 4 S X F a m i l y F P G A s  
R e g i s t e r C e l l T i m i n g C h a r a c t e r i s t i c s  
F l i p -F l o p s  
D
Q
PRESET  
CLR  
CLK  
(Positive edge triggered)  
tHD  
D
tHP  
tHPWH  
tRPWH  
,
tSUD  
CLK  
tHPWL  
,
tRPWL  
tRCO  
Q
CLR  
tCLR  
tPRESET  
tWASYN  
PRESET  
L o n g T r a c k s  
T i m i n g C h a r a c t e r i s t i c s  
Timing characteristics for 54SX devices fall into three  
categories: family-dependent, device-dependent, and  
design-dependent. The input and output buffer  
characteristics are common to all 54SX family members.  
Internal routing delays are device dependent. Design  
dependency means actual delays are not determined until  
after placement and routing of the users design is complete.  
Delay values may then be determined by using the  
DirectTime Analyzer utility or performing simulation with  
post-layout delays.  
Some nets in the design use long tracks. Long tracks are  
special routing resources that span multiple rows, columns,  
or modules. Long tracks employ three and sometimes five  
antifuse connections. This increases capacitance and  
resistance, resulting in longer net delays for macros  
connected to long tracks. Typically up to 6% of nets in a fully  
utilized device require long tracks. Long tracks contribute  
approximately 4 ns to 8.4 ns delay. This additional delay is  
represented statistically in higher fanout (FO=24) routing  
delays in the data sheet specifications section.  
C r i t i c a l N e t s a n d T y p i c a l N e t s  
T i m i n g D e r a t i n g  
Propagation delays are expressed only for typical nets,  
which are used for initial design performance evaluation.  
Critical net delays can then be applied to the most  
time-critical paths. Critical nets are determined by net  
property assignment prior to placement and routing. Up to  
6% of the nets in a design may be designated as critical,  
while 90% of the nets in a design are typical.  
54SX devices are manufactured in a CMOS process.  
Therefore, device performance varies according to  
temperature, voltage, and process variations. Minimum  
timing parameters reflect maximum operating voltage,  
minimum operating temperature, and best-case processing.  
Maximum timing parameters reflect minimum operating  
voltage, maximum operating temperature, and worst-case  
processing.  
T e m p e r a t u r e a n d V o l t a g e D e r a t i n g F a c t o r s  
(N o r m a liz e d t o Wo r s t -C a s e C o m m e r c ia l, T = 7 0 °C , V  
= 3 . 0 V)  
C C A  
J
Junction Temperature (TJ)  
25  
VCCA  
3.0  
–55  
0.75  
0.70  
0.66  
–40  
0.78  
0.73  
0.69  
0
70  
85  
125  
1.16  
1.08  
1.02  
0.87  
0.82  
0.77  
0.89  
0.83  
0.78  
1.00  
0.93  
0.87  
1.04  
0.97  
0.92  
3.3  
3.6  
2 4  
v3 .1  
5 4 S X F a m i l y F P G A s  
A 5 4 S X 0 8 T i m i n g C h a r a c t e r i s t i c s  
(Wo r s t -C a s e C o m m e r c ia l C o n d it io n s , V  
= 4 . 7 5 V, V  
V
= 3 . 0 V, T = 7 0 °C )  
C C R  
C C A, C C I J  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed  
‘Std’ Speed  
Parameter Description  
C-Cell Propagation Delays1  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
tPD  
Internal Array Module  
0.6  
0.7  
0.8  
0.9  
ns  
Predicted Routing Delays2  
FO=1 Routing Delay, Direct  
Connect  
tDC  
0.1  
0.1  
0.1  
0.1  
ns  
tFC  
FO=1 Routing Delay, Fast Connect  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
0.3  
0.3  
0.6  
0.8  
1.0  
1.9  
2.8  
0.4  
0.4  
0.7  
0.9  
1.2  
2.2  
3.2  
0.4  
0.4  
0.8  
1.0  
1.4  
2.5  
3.7  
0.5  
0.5  
0.9  
1.2  
1.6  
2.9  
4.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
tRD12  
R-Cell Timing  
tRCO  
Sequential Clock-to-Q  
0.8  
0.5  
0.7  
1.1  
0.6  
0.8  
1.2  
0.7  
0.9  
1.4  
0.8  
1.0  
ns  
ns  
ns  
ns  
ns  
ns  
tCLR  
Asynchronous Clear-to-Q  
Asynchronous Preset-to-Q  
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
tPRESET  
tSUD  
0.5  
0.0  
1.4  
0.5  
0.0  
1.6  
0.7  
0.0  
1.8  
0.8  
0.0  
2.1  
tHD  
tWASYN  
Input Module Propagation Delays  
tINYH  
tINYL  
Input Data Pad-to-Y HIGH  
Input Data Pad-to-Y LOW  
1.5  
1.5  
1.7  
1.7  
1.9  
1.9  
2.2  
2.2  
ns  
ns  
Input Module Predicted Routing Delays2  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
tIRD12  
Notes:  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
0.3  
0.6  
0.8  
1.0  
1.9  
2.8  
0.4  
0.7  
0.9  
1.2  
2.2  
3.2  
0.4  
0.8  
1.0  
1.4  
2.5  
3.7  
0.5  
0.9  
1.2  
1.6  
2.9  
4.3  
ns  
ns  
ns  
ns  
ns  
ns  
1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is  
based on actual routing delay measurements performed on the device prior to shipment.  
v3 .1  
2 5  
5 4 S X F a m i l y F P G A s  
A 5 4 S X 0 8 T i m i n g C h a r a c t e r i s t i c s (c o n t in u e d )  
(Wo r s t -C a s e C o m m e r c ia l C o n d it io n s )  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed  
‘Std’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
Dedicated (Hard-Wired) Array Clock Network  
tHCKH  
Input LOW to HIGH  
(Pad to R-Cell Input)  
1.0  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
ns  
ns  
tHCKL  
Input HIGH to LOW  
(Pad to R-Cell Input)  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
ns  
ns  
0.1  
0.2  
0.2  
0.2  
ns  
Minimum Period  
2.7  
3.1  
3.6  
4.2  
ns  
fHMAX  
Maximum Frequency  
350  
320  
280  
240  
MHz  
Routed Array Clock Networks  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input)  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
1.3  
1.4  
1.4  
1.5  
1.5  
1.5  
1.5  
1.6  
1.7  
1.7  
1.7  
1.8  
1.7  
1.8  
1.9  
2.0  
1.9  
2.0  
2.0  
2.1  
2.2  
2.3  
2.2  
2.3  
ns  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input)  
tRPWH  
Min. Pulse Width HIGH  
2.1  
2.1  
2.4  
2.4  
2.7  
2.7  
3.2  
3.2  
ns  
ns  
ns  
ns  
ns  
tRPWL  
Min. Pulse Width LOW  
tRCKSW  
tRCKSW  
tRCKSW  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
0.1  
0.3  
0.3  
0.2  
0.3  
0.3  
0.2  
0.4  
0.4  
0.2  
0.4  
0.4  
TTL Output Module Timing1  
tDLH  
Data-to-Pad LOW to HIGH  
1.6  
1.6  
2.1  
2.3  
1.4  
1.3  
1.9  
1.9  
2.4  
2.7  
1.7  
1.5  
2.1  
2.1  
2.8  
3.1  
1.9  
1.7  
2.5  
2.5  
3.2  
3.6  
2.2  
2.0  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
Data-to-Pad HIGH to LOW  
Enable-to-Pad, Z to L  
Enable-to-Pad, Z to H  
Enable-to-Pad, L to Z  
Enable-to-Pad, H to Z  
tENZL  
tENZH  
tENLZ  
tENHZ  
Note:  
1. Delays based on 35 pF loading, except tENZL and tENZH . For tENZL and tENZH the loading is 5 pF.  
2 6  
v3 .1  
5 4 S X F a m i l y F P G A s  
A 5 4 S X 1 6 T i m i n g C h a r a c t e r i s t i c s  
(Wo r s t -C a s e C o m m e r c ia l C o n d it io n s , V  
= 4 . 7 5 V, V  
V
= 3 . 0 V, T = 7 0 °C )  
C C R  
C C A, C C I J  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed  
‘Std’ Speed  
Parameter Description  
C-Cell Propagation Delays1  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
tPD  
Internal Array Module  
0.6  
0.7  
0.8  
0.9  
ns  
Predicted Routing Delays2  
FO=1 Routing Delay, Direct  
Connect  
tDC  
0.1  
0.1  
0.1  
0.1  
ns  
tFC  
FO=1 Routing Delay, Fast Connect  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
0.3  
0.3  
0.6  
0.8  
1.0  
1.9  
2.8  
0.4  
0.4  
0.7  
0.9  
1.2  
2.2  
3.2  
0.4  
0.4  
0.8  
1.0  
1.4  
2.5  
3.7  
0.5  
0.5  
0.9  
1.2  
1.6  
2.9  
4.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
tRD12  
R-Cell Timing  
tRCO  
Sequential Clock-to-Q  
0.8  
0.5  
0.7  
1.1  
0.6  
0.8  
1.2  
0.7  
0.9  
1.4  
0.8  
1.0  
ns  
ns  
ns  
ns  
ns  
ns  
tCLR  
Asynchronous Clear-to-Q  
Asynchronous Preset-to-Q  
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
tPRESET  
tSUD  
0.5  
0.0  
1.4  
0.5  
0.0  
1.6  
0.7  
0.0  
1.8  
0.8  
0.0  
2.1  
tHD  
tWASYN  
Input Module Propagation Delays  
tINYH  
tINYL  
Input Data Pad-to-Y HIGH  
Input Data Pad-to-Y LOW  
1.5  
1.5  
1.7  
1.7  
1.9  
1.9  
2.2  
2.2  
ns  
ns  
Predicted Input Routing Delays2  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
tIRD12  
Notes:  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
0.3  
0.6  
0.8  
1.0  
1.9  
2.8  
0.4  
0.7  
0.9  
1.2  
2.2  
3.2  
0.4  
0.8  
1.0  
1.4  
2.5  
3.7  
0.5  
0.9  
1.2  
1.6  
2.9  
4.3  
ns  
ns  
ns  
ns  
ns  
ns  
1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is  
based on actual routing delay measurements performed on the device prior to shipment.  
v3 .1  
2 7  
5 4 S X F a m i l y F P G A s  
A 5 4 S X 1 6 T i m i n g C h a r a c t e r i s t i c s (c o n t in u e d )  
(Wo r s t -C a s e C o m m e r c ia l C o n d it io n s )  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed  
‘Std’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
Dedicated (Hard-Wired) Array Clock Network  
tHCKH  
Input LOW to HIGH  
(Pad to R-Cell Input)  
1.2  
1.2  
1.4  
1.4  
1.5  
1.6  
1.8  
1.9  
ns  
ns  
tHCKL  
Input HIGH to LOW  
(Pad to R-Cell Input)  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
ns  
ns  
0.2  
0.2  
0.3  
0.3  
ns  
Minimum Period  
2.7  
3.1  
3.6  
4.2  
ns  
fHMAX  
Maximum Frequency  
350  
320  
280  
240  
MHz  
Routed Array Clock Networks  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input)  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
1.6  
1.8  
1.8  
2.0  
1.8  
2.0  
1.8  
2.0  
2.1  
2.2  
2.1  
2.2  
2.1  
2.3  
2.5  
2.5  
2.4  
2.5  
2.5  
2.7  
2.8  
3.0  
2.8  
3.0  
ns  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input)  
tRPWH  
Min. Pulse Width HIGH  
2.1  
2.1  
2.4  
2.4  
2.7  
2.7  
3.2  
3.2  
ns  
ns  
ns  
ns  
ns  
tRPWL  
Min. Pulse Width LOW  
tRCKSW  
tRCKSW  
tRCKSW  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
0.5  
0.5  
0.5  
0.5  
0.6  
0.6  
0.5  
0.7  
0.7  
0.7  
0.8  
0.8  
TTL Output ModuleTiming1  
tDLH  
Data-to-Pad LOW to HIGH  
1.6  
1.6  
2.1  
2.3  
1.4  
1.3  
1.9  
1.9  
2.4  
2.7  
1.7  
1.5  
2.1  
2.1  
2.8  
3.1  
1.9  
1.7  
2.5  
2.5  
3.2  
3.6  
2.2  
2.0  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
Data-to-Pad HIGH to LOW  
Enable-to-Pad, Z to L  
Enable-to-Pad, Z to H  
Enable-to-Pad, L to Z  
Enable-to-Pad, H to Z  
tENZL  
tENZH  
tENLZ  
tENHZ  
Note:  
1. Delays based on 35 pF loading, except tENZL and tENZH . For tENZL and tENZH the loading is 5 pF.  
2 8  
v3 .1  
5 4 S X F a m i l y F P G A s  
A 5 4 S X 1 6 P T i m i n g C h a r a c t e r i s t i c s  
(Wo r s t -C a s e C o m m e r c ia l C o n d it io n s , V  
= 4 . 7 5 V, V  
V
= 3 . 0 V, T = 7 0 °C )  
C C R  
C C A, C C I J  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed  
‘Std’ Speed  
Parameter Description  
C-Cell Propagation Delays1  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
tPD  
Internal Array Module  
0.6  
0.7  
0.8  
0.9  
ns  
Predicted Routing Delays2  
FO=1 Routing Delay, Direct  
Connect  
tDC  
0.1  
0.1  
0.1  
0.1  
ns  
tFC  
FO=1 Routing Delay, Fast Connect  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
0.3  
0.3  
0.6  
0.8  
1.0  
1.9  
2.8  
0.4  
0.4  
0.7  
0.9  
1.2  
2.2  
3.2  
0.4  
0.4  
0.8  
1.0  
1.4  
2.5  
3.7  
0.5  
0.5  
0.9  
1.2  
1.6  
2.9  
4.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tRD1  
tRD2  
tRD3  
tRD4  
tRD8  
tRD12  
R-Cell Timing  
tRCO  
Sequential Clock-to-Q  
0.9  
0.5  
0.7  
1.1  
0.6  
0.8  
1.3  
0.7  
0.9  
1.4  
0.8  
1.0  
ns  
ns  
ns  
ns  
ns  
ns  
tCLR  
Asynchronous Clear-to-Q  
Asynchronous Preset-to-Q  
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
tPRESET  
tSUD  
0.5  
0.0  
1.4  
0.5  
0.0  
1.6  
0.7  
0.0  
1.8  
0.8  
0.0  
2.1  
tHD  
tWASYN  
Input Module Propagation Delays  
tINYH  
tINYL  
Input Data Pad-to-Y HIGH  
Input Data Pad-to-Y LOW  
1.5  
1.5  
1.7  
1.7  
1.9  
1.9  
2.2  
2.2  
ns  
ns  
Predicted Input Routing Delays2  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
tIRD12  
Notes:  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
0.3  
0.6  
0.8  
1.0  
1.9  
2.8  
0.4  
0.7  
0.9  
1.2  
2.2  
3.2  
0.4  
0.8  
1.0  
1.4  
2.5  
3.7  
0.5  
0.9  
1.2  
1.6  
2.9  
4.3  
ns  
ns  
ns  
ns  
ns  
ns  
1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is  
based on actual routing delay measurements performed on the device prior to shipment.  
v3 .1  
2 9  
5 4 S X F a m i l y F P G A s  
A 5 4 S X 1 6 P T i m i n g C h a r a c t e r i s t i c s (c o n t in u e d )  
(Wo r s t -C a s e C o m m e r c ia l C o n d it io n s , V  
= 4 . 7 5 V, V  
V
= 3 . 0 V, T = 7 0 °C )  
C C R  
C C A, C C I  
J
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed  
‘Std’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
Dedicated (Hard-Wired) Array Clock Network  
tHCKH  
Input LOW to HIGH  
(Pad to R-Cell Input)  
1.2  
1.2  
1.4  
1.4  
1.5  
1.6  
1.8  
1.9  
ns  
ns  
tHCKL  
Input HIGH to LOW  
(Pad to R-Cell Input)  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
ns  
ns  
0.2  
0.2  
0.3  
0.3  
ns  
Minimum Period  
2.7  
3.1  
3.6  
4.2  
ns  
fHMAX  
Maximum Frequency  
350  
320  
280  
240  
MHz  
Routed Array Clock Networks  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input)  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
1.6  
1.8  
1.8  
2.0  
1.8  
2.0  
1.8  
2.0  
2.1  
2.2  
2.1  
2.2  
2.1  
2.3  
2.5  
2.5  
2.4  
2.5  
2.5  
2.7  
2.8  
3.0  
2.8  
3.0  
ns  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input)  
tRPWH  
Min. Pulse Width HIGH  
2.1  
2.1  
2.4  
2.4  
2.7  
2.7  
3.2  
3.2  
ns  
ns  
ns  
ns  
ns  
tRPWL  
Min. Pulse Width LOW  
tRCKSW  
tRCKSW  
tRCKSW  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
0.5  
0.5  
0.5  
0.5  
0.6  
0.6  
0.5  
0.7  
0.7  
0.7  
0.8  
0.8  
TTL Output Module Timing  
tDLH  
Data-to-Pad LOW to HIGH  
2.4  
2.3  
3.0  
3.3  
2.3  
2.8  
2.8  
2.9  
3.4  
3.8  
2.7  
3.2  
3.1  
3.2  
3.9  
4.3  
3.0  
3.7  
3.7  
3.8  
4.6  
5.0  
3.5  
4.3  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
Data-to-Pad HIGH to LOW  
Enable-to-Pad, Z to L  
Enable-to-Pad, Z to H  
Enable-to-Pad, L to Z  
Enable-to-Pad, H to Z  
tENZL  
tENZH  
tENLZ  
tENHZ  
TTL/PCI Output Module Timing  
tDLH  
Data-to-Pad LOW to HIGH  
1.5  
1.9  
2.3  
1.5  
2.7  
2.9  
1.7  
2.2  
2.6  
1.7  
3.1  
3.3  
2.0  
2.4  
3.0  
1.9  
3.5  
3.7  
2.3  
2.9  
3.5  
2.3  
4.1  
4.4  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
Data-to-Pad HIGH to LOW  
Enable-to-Pad, Z to L  
Enable-to-Pad, Z to H  
Enable-to-Pad, L to Z  
Enable-to-Pad, H to Z  
tENZL  
tENZH  
tENLZ  
tENHZ  
3 0  
v3 .1  
5 4 S X F a m i l y F P G A s  
A 5 4 S X 1 6 P T i m i n g C h a r a c t e r i s t i c s (c o n t in u e d )  
(Wo r s t -C a s e C o m m e r c ia l C o n d it io n s V  
= 3 . 0 V, V  
, V  
= 3 . 0 V, T = 7 0 °C )  
C C I J  
C C R  
C C A  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed  
‘Std’ Speed  
Parameter Description  
PCI Output Module Timing1  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
tDLH  
Data-to-Pad LOW to HIGH  
Data-to-Pad HIGH to LOW  
Enable-to-Pad, Z to L  
Enable-to-Pad, Z to H  
Enable-to-Pad, L to Z  
Enable-to-Pad, H to Z  
1.8  
1.7  
0.8  
1.2  
1.0  
1.1  
2.0  
2.0  
1.0  
1.2  
1.1  
1.3  
2.3  
2.2  
1.1  
1.5  
1.3  
1.5  
2.7  
2.6  
1.3  
1.8  
1.5  
1.7  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
tENZL  
tENZH  
tENLZ  
tENHZ  
TTL Output Module Timing  
tDLH  
Data-to-Pad LOW to HIGH  
2.1  
2.0  
2.5  
3.0  
2.3  
2.9  
2.5  
2.3  
2.9  
3.5  
2.7  
3.3  
2.8  
2.6  
3.2  
3.9  
3.1  
3.7  
3.3  
3.1  
3.8  
4.6  
3.6  
4.4  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
Data-to-Pad HIGH to LOW  
Enable-to-Pad, Z to L  
Enable-to-Pad, Z to H  
Enable-to-Pad, L to Z  
Enable-to-Pad, H to Z  
tENZL  
tENZH  
tENLZ  
tENHZ  
Note:  
1. Delays based on 10 pF loading.  
v3 .1  
3 1  
5 4 S X F a m i l y F P G A s  
A 5 4 S X 3 2 T i m i n g C h a r a c t e r i s t i c s  
(Wo r s t -C a s e C o m m e r c ia l C o n d it io n s , V  
= 4 . 7 5 V, V  
V
= 3 . 0 V, T = 7 0 °C )  
C C R  
C C A, C C I  
J
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed  
‘Std’ Speed  
Parameter Description  
C-Cell Propagation Delays1  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
tPD  
Internal Array Module  
0.6  
0.7  
0.8  
0.9  
ns  
Predicted Routing Delays2  
tDC  
FO=1 Routing Delay, Direct Connect  
0.1  
0.3  
0.3  
0.7  
1.0  
1.4  
2.7  
4.0  
0.1  
0.4  
0.4  
0.8  
1.2  
1.6  
3.1  
4.7  
0.1  
0.4  
0.4  
0.9  
1.4  
1.8  
3.5  
5.3  
0.1  
0.5  
0.5  
1.0  
1.6  
2.1  
4.1  
6.2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tFC  
FO=1 Routing Delay, Fast Connect  
FO=1 Routing Delay  
tRD1  
tRD2  
FO=2 Routing Delay  
tRD3  
FO=3 Routing Delay  
tRD4  
FO=4 Routing Delay  
tRD8  
FO=8 Routing Delay  
tRD12  
FO=12 Routing Delay  
R-Cell Timing  
tRCO  
Sequential Clock-to-Q  
0.8  
0.5  
0.7  
1.1  
0.6  
0.8  
1.3  
0.7  
0.9  
1.4  
0.8  
1.0  
ns  
ns  
ns  
ns  
ns  
ns  
tCLR  
Asynchronous Clear-to-Q  
Asynchronous Preset-to-Q  
Flip-Flop Data Input Set-Up  
Flip-Flop Data Input Hold  
Asynchronous Pulse Width  
tPRESET  
tSUD  
0.5  
0.0  
1.4  
0.6  
0.0  
1.6  
0.7  
0.0  
1.8  
0.8  
0.0  
2.1  
tHD  
tWASYN  
Input Module Propagation Delays  
tINYH  
tINYL  
Input Data Pad-to-Y HIGH  
Input Data Pad-to-Y LOW  
1.5  
1.5  
1.7  
1.7  
1.9  
1.9  
2.2  
2.2  
ns  
ns  
Predicted Input Routing Delays2  
tIRD1  
tIRD2  
tIRD3  
tIRD4  
tIRD8  
tIRD12  
Notes:  
FO=1 Routing Delay  
FO=2 Routing Delay  
FO=3 Routing Delay  
FO=4 Routing Delay  
FO=8 Routing Delay  
FO=12 Routing Delay  
0.3  
0.7  
1.0  
1.4  
2.7  
4.0  
0.4  
0.8  
1.2  
1.6  
3.1  
4.7  
0.4  
0.9  
1.4  
1.8  
3.5  
5.3  
0.5  
1.0  
1.6  
2.1  
4.1  
6.2  
ns  
ns  
ns  
ns  
ns  
ns  
1. For dual-module macros, use tPD + tRD1 + tPDn , tRCO + tRD1 + tPDn or tPD1 + tRD1 + tSUD , whichever is appropriate.  
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device  
performance. Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is  
based on actual routing delay measurements performed on the device prior to shipment.  
3 2  
v3 .1  
5 4 S X F a m i l y F P G A s  
A 5 4 S X 3 2 T i m i n g C h a r a c t e r i s t i c s (c o n t in u e d )  
(Wo r s t -C a s e C o m m e r c ia l C o n d it io n s )  
‘–3’ Speed  
‘–2’ Speed  
‘–1’ Speed  
‘Std’ Speed  
Parameter Description  
Min. Max. Min. Max. Min. Max. Min. Max. Units  
Dedicated (Hard-Wired) Array Clock Network  
tHCKH  
Input LOW to HIGH  
(Pad to R-Cell Input)  
1.9  
1.9  
2.1  
2.1  
2.4  
2.4  
2.8  
2.8  
ns  
ns  
tHCKL  
Input HIGH to LOW  
(Pad to R-Cell Input)  
tHPWH  
tHPWL  
tHCKSW  
tHP  
Minimum Pulse Width HIGH  
Minimum Pulse Width LOW  
Maximum Skew  
1.4  
1.4  
1.6  
1.6  
1.8  
1.8  
2.1  
2.1  
ns  
ns  
0.3  
0.4  
0.4  
0.5  
ns  
Minimum Period  
2.7  
3.1  
3.6  
4.2  
ns  
fHMAX  
Maximum Frequency  
350  
320  
280  
240  
MHz  
Routed Array Clock Networks  
Input LOW to HIGH (Light Load)  
(Pad to R-Cell Input)  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
tRCKH  
tRCKL  
2.4  
2.4  
2.7  
2.7  
2.7  
2.8  
2.7  
2.7  
3.0  
3.1  
3.1  
3.2  
3.0  
3.1  
3.5  
3.6  
3.5  
3.6  
3.5  
3.6  
4.1  
4.2  
4.1  
4.3  
ns  
ns  
ns  
ns  
ns  
ns  
Input HIGH to LOW (Light Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (50% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (50% Load)  
(Pad to R-Cell Input)  
Input LOW to HIGH (100% Load)  
(Pad to R-Cell Input)  
Input HIGH to LOW (100% Load)  
(Pad to R-Cell Input)  
tRPWH  
Min. Pulse Width HIGH  
2.1  
2.1  
2.4  
2.4  
2.7  
2.7  
3.2  
3.2  
ns  
ns  
ns  
ns  
ns  
tRPWL  
Min. Pulse Width LOW  
tRCKSW  
tRCKSW  
tRCKSW  
Maximum Skew (Light Load)  
Maximum Skew (50% Load)  
Maximum Skew (100% Load)  
0.85  
1.23  
1.30  
0.98  
1.4  
1.1  
1.6  
1.7  
1.3  
1.9  
2.0  
1.5  
TTL Output Module Timing1  
tDLH  
Data-to-Pad LOW to HIGH  
1.6  
1.6  
2.1  
2.3  
1.4  
1.3  
1.9  
1.9  
2.4  
2.7  
1.7  
1.5  
2.1  
2.1  
2.8  
3.1  
1.9  
1.7  
2.5  
2.5  
3.2  
3.6  
2.2  
2.0  
ns  
ns  
ns  
ns  
ns  
ns  
tDHL  
Data-to-Pad HIGH to LOW  
Enable-to-Pad, Z to L  
Enable-to-Pad, Z to H  
Enable-to-Pad, L to Z  
Enable-to-Pad, H to Z  
tENZL  
tENZH  
tENLZ  
tENHZ  
Note:  
1. Delays based on 35pF loading, except tENZL and tENZH . For tENZL and tENZH the loading is 5pF.  
v3 .1  
3 3  
5 4 S X F a m i l y F P G A s  
P i n D e s c r i p t i o n  
C LK A/B  
C lo c k A a n d B  
T C K  
Te s t C lo c k  
These pins are 3.3V/5.0V PCI/TTL clock inputs for clock  
distribution networks. The clock input is buffered prior to  
clocking the R-cells. If not used, this pin must be set LOW or  
HIGH on the board. It must not be left floating. (For  
A54SX72A, these clocks can be configured as bidirectional.)  
Test clock input for diagnostic probe and device  
programming. In flexible mode, TCK becomes active when  
the TMS pin is set LOW (refer to Table 2 on page 8). This pin  
functions as an I/O when the boundary scan state machine  
reaches the logic reset” state.  
G N D  
G r o u n d  
T DI  
Te s t Da t a In p u t  
LOW supply voltage.  
Serial input for boundary scan testing and diagnostic probe.  
In flexible mode, TDI is active when the TMS pin is set LOW  
(refer to Table 2 on page 8). This pin functions as an I/O  
when the boundary scan state machine reaches the “logic  
reset” state.  
H C LK  
De d ic a t e d (H a r d -w ir e d )  
Ar r a y C lo c k  
This pin is the 3.3V/5.0V PCI/TTL clock input for sequential  
modules. This input is directly wired to each R-cell and  
offers clock speeds independent of the number of R-cells  
T DO  
Te s t Da t a O u t p u t  
being driven. If not used, this pin must be set LOW or HIGH Serial output for boundary scan testing. In flexible mode,  
on the board. It must not be left floating.  
TDO is active when the TMS pin is set LOW (refer to Table 2  
on page 8). This pin functions as an I/O when the boundary  
scan state machine reaches the “logic reset” state.  
I/O  
In p u t /O u t p u t  
The I/O pin functions as an input, output, tristate, or  
bidirectional buffer. Based on certain configurations, input  
and output levels are compatible with standard TTL, LVTTL,  
3.3V PCI or 5.0V PCI specifications. Unused I/O pins are  
automatically tristated by the Designer Series software.  
T MS  
Te s t Mo d e S e le c t  
The TMS pin controls the use of the IEEE 1149.1 Boundary  
Scan pins (TCK, TDI, TDO). In flexible mode when the TMS  
pin is set LOW, the TCK, TDI, and TDO pins are boundary  
scan pins (refer to Table 2 on page 8). Once the boundary  
scan pins are in test mode, they will remain in that mode  
until the internal boundary scan state machine reaches the  
“logic reset” state. At this point, the boundary scan pins will  
be released and will function as regular I/O pins. The “logic  
reset” state is reached 5 TCK cycles after the TMS pin is set  
HIGH. In dedicated test mode, TMS functions as specified in  
the IEEE 1149.1 specifications.  
N C  
N o C o n n e c t io n  
This pin is not connected to circuitry within the device.  
P R A, I/O  
P r o b e A  
The Probe A pin is used to output data from any  
user-defined design node within the device. This  
independent diagnostic pin can be used in conjunction with  
the Probe B pin to allow real-time diagnostic output of any  
signal path within the device. The Probe A pin can be used  
as a user-defined I/O when verification has been completed.  
The pins probe capabilities can be permanently disabled to  
protect programmed design confidentiality.  
V
S u p p ly Vo lt a g e  
C C I  
Supply voltage for I/Os. See Table 1 on page 8.  
V
S u p p ly Vo lt a g e  
C C A  
Supply voltage for Array. See Table 1 on page 8.  
P R B , I/O  
P r o b e B  
V
S u p p ly Vo lt a g e  
The Probe B pin is used to output data from any node within  
the device. This diagnostic pin can be used in conjunction  
with the Probe A pin to allow real-time diagnostic output of  
any signal path within the device. The Probe B pin can be  
used as a user-defined I/O when verification has been  
completed. The pins probe capabilities can be permanently  
disabled to protect programmed design confidentiality.  
C C R  
Supply voltage for input tolerance (required for internal  
biasing) See Table 1 on page 8.  
3 4  
v3 .1  
5 4 S X F a m i l y F P G A s  
P a c k a g e P i n A s s i g n m e n t s  
8 4 -P i n P L C C ( T o p V i e w )  
1
84  
84-Pin  
PLCC  
v3 .1  
3 5  
5 4 S X F a m i l y F P G A s  
8 4 -P i n P L C C P a c k a g e  
Pin  
Number  
A54SX08  
Function  
Pin  
Number  
A54SX08  
Function  
1
VCCR  
GND  
VCCA  
PRA, I/O  
I/O  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
VCCR  
I/O  
2
3
HCLK  
I/O  
4
5
I/O  
6
I/O  
I/O  
7
VCCI  
I/O  
I/O  
8
I/O  
9
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
I/O  
TDO, I/O  
I/O  
TCK, I/O  
TDI, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TMS  
I/O  
I/O  
VCCA  
VCCI  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
GND  
I/O  
GND  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
VCCA  
GND  
I/O  
CLKA  
CLKB  
3 6  
v3 .1  
5 4 S X F a m i l y F P G A s  
P a c k a g e P i n A s s i g n m e n t s (c o n t in u e d )  
2 0 8 -P i n P Q F P ( T o p V i e w )  
208  
1
208-Pin PQFP  
v3 .1  
3 7  
5 4 S X F a m i l y F P G A s  
2 0 8 -P i n P Q F P  
A54SX16,  
A54SX16P  
Function  
A54SX16,  
A54SX16P  
Function  
A54SX08  
Function  
A54SX32  
Function  
A54SX08  
Function  
A54SX32  
Function  
Pin Number  
Pin Number  
1
2
3
4
5
6
7
8
GND  
TDI, I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
GND  
TDI, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
TDI, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65*  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V
V
V
CCI  
I/O  
I/O  
CCI  
CCI  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
I/O  
TMS  
I/O  
TMS  
I/O  
TMS  
V
CCI  
I/O  
I/O  
NC*  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V
V
CCI  
CCI  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
GND  
PRB, I/O  
GND  
PRB, I/O  
GND  
V
V
V
V
V
V
CCA  
GND  
CCR  
CCR  
CCR  
CCA  
CCA  
GND  
GND  
GND  
GND  
GND  
V
V
V
V
V
V
CCR  
CCA  
CCA  
CCA  
CCR  
CCR  
GND  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
NC  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
HCLK  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
HCLK  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
HCLK  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
V
V
V
I/O  
CCI  
CCI  
CCI  
V
V
V
NC  
I/O  
CCA  
CCA  
CCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
NC  
V
V
V
CCI  
CCI  
CCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
GND  
NC  
GND  
I/O  
GND  
I/O  
* Please note that Pin 65 in the A54SX32—PQ208 is a no connect (NC).  
3 8  
v3 .1  
5 4 S X F a m i l y F P G A s  
2 0 8 -P i n P Q F P ( C o n t i n u e d )  
A54SX16,  
A54SX16P  
Function  
A54SX16,  
A54SX16P  
Function  
A54SX08  
Function  
A54SX32  
Function  
A54SX08  
Function  
A54SX32  
Function  
Pin Number  
Pin Number  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V
V
V
CCI  
CCI  
CCI  
V
V
V
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CCA  
CCA  
CCA  
V
V
V
CCI  
CCI  
CCI  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
CLKA  
CLKB  
CLKA  
CLKB  
CLKA  
CLKB  
V
V
V
CCA  
CCA  
CCA  
GND  
GND  
GND  
V
V
V
CCR  
CCR  
CCR  
V
V
V
GND  
GND  
GND  
CCR  
CCR  
CCR  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V
V
V
CCA  
CCA  
CCA  
GND  
PRA, I/O  
I/O  
GND  
PRA, I/O  
I/O  
GND  
PRA, I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
V
V
V
I/O  
I/O  
I/O  
CCA  
CCA  
CCA  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
V
V
V
I/O  
I/O  
I/O  
CCI  
CCI  
CCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
V
V
V
CCI  
CCI  
CCI  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
NC  
NC  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
GND  
TCK, I/O  
TCK, I/O  
TCK, I/O  
* Please note that Pin 65 in the A54SX32—PQ208 is a no connect (NC).  
v3 .1  
3 9  
5 4 S X F a m i l y F P G A s  
P a c k a g e P i n A s s i g n m e n t s (c o n t in u e d )  
1 4 4 -P i n T Q F P ( T o p V i e w )  
144  
1
144-Pin  
TQFP  
4 0  
v3 .1  
5 4 S X F a m i l y F P G A s  
1 4 4 -P in T Q F P  
A54SX08  
Function  
A54SX16P  
Function  
A54SX32  
Function  
A54SX08  
Function  
A54SX16P  
Function  
A54SX32  
Function  
Pin Number  
Pin Number  
1
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2
3
I/O  
I/O  
I/O  
4
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
5
I/O  
I/O  
I/O  
6
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
7
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
8
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
9
TMS  
VCCI  
GND  
I/O  
TMS  
VCCI  
GND  
I/O  
TMS  
VCCI  
GND  
I/O  
I/O  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
I/O  
PRB, I/O  
I/O  
PRB, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
GND  
VCCR  
I/O  
VCCA  
GND  
VCCR  
I/O  
VCCA  
GND  
VCCR  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCR  
VCCA  
I/O  
VCCR  
VCCA  
I/O  
VCCR  
VCCA  
I/O  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
VCCI  
VCCA  
I/O  
GND  
VCCI  
VCCA  
I/O  
GND  
VCCI  
VCCA  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
VCCI  
VCCA  
VCCI  
VCCA  
VCCI  
I/O  
I/O  
I/O  
v3 .1  
4 1  
5 4 S X F a m i l y F P G A s  
1 4 4 -P in T Q F P (C o n t in u e d )  
A54SX08  
Function  
A54SX16P  
Function  
A54SX32  
Function  
A54SX08  
Function  
A54SX16P  
Function  
A54SX32  
Function  
Pin Number  
Pin Number  
81  
82  
GND  
I/O  
GND  
I/O  
GND  
I/O  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
83  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
84  
I/O  
I/O  
I/O  
85  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
86  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
87  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
88  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
89  
VCCA  
VCCR  
I/O  
VCCA  
VCCR  
I/O  
VCCA  
VCCR  
I/O  
I/O  
I/O  
I/O  
90  
I/O  
I/O  
I/O  
91  
I/O  
I/O  
I/O  
92  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
93  
I/O  
I/O  
I/O  
CLKA  
CLKB  
VCCR  
GND  
VCCA  
I/O  
CLKA  
CLKB  
VCCR  
GND  
VCCA  
I/O  
CLKA  
CLKB  
VCCR  
GND  
VCCA  
I/O  
94  
I/O  
I/O  
I/O  
95  
I/O  
I/O  
I/O  
96  
I/O  
I/O  
I/O  
97  
I/O  
I/O  
I/O  
98  
VCCA  
GND  
I/O  
VCCA  
GND  
I/O  
VCCA  
GND  
I/O  
99  
PRA, I/O  
I/O  
PRA, I/O  
I/O  
PRA, I/O  
I/O  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
GND  
VCCI  
I/O  
GND  
VCCI  
I/O  
GND  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TCK, I/O  
TCK, I/O  
TCK, I/O  
I/O  
I/O  
I/O  
4 2  
v3 .1  
5 4 S X F a m i l y F P G A s  
P a c k a g e P i n A s s i g n m e n t s (c o n t in u e d )  
1 7 6 -P i n T Q F P ( T o p V i e w )  
176  
1
176-Pin  
TQFP  
v3 .1  
4 3  
5 4 S X F a m i l y F P G A s  
1 7 6 -P i n T Q F P  
A54SX16,  
A54SX16P  
Function  
A54SX16,  
A54SX16P  
Function  
A54SX08  
Function  
A54SX32  
Function  
A54SX08  
Function  
A54SX32  
Function  
Pin Number  
Pin Number  
1
GND  
TDI, I/O  
NC  
I/O  
GND  
TDI, I/O  
I/O  
GND  
TDI, I/O  
I/O  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
2
3
I/O  
I/O  
I/O  
4
I/O  
I/O  
I/O  
I/O  
I/O  
5
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
6
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
7
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
8
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
9
I/O  
I/O  
I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
TMS  
VCCI  
NC  
I/O  
TMS  
VCCI  
I/O  
TMS  
VCCI  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
GND  
VCCA  
VCCR  
I/O  
PRB, I/O  
GND  
VCCA  
VCCR  
I/O  
PRB, I/O  
GND  
VCCA  
VCCR  
I/O  
GND  
VCCA  
GND  
I/O  
GND  
VCCA  
GND  
I/O  
GND  
VCCA  
GND  
I/O  
I/O  
I/O  
I/O  
HCLK  
I/O  
HCLK  
I/O  
HCLK  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
VCCA  
I/O  
VCCI  
VCCA  
I/O  
VCCI  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
TDO, I/O  
I/O  
GND  
GND  
GND  
4 4  
v3 .1  
5 4 S X F a m i l y F P G A s  
1 7 6 -P i n T Q F P ( C o n t i n u e d )  
A54SX16,  
A54SX16P  
Function  
A54SX16,  
A54SX16P  
Function  
A54SX08  
Function  
A54SX32  
Function  
A54SX08  
Function  
A54SX32  
Function  
Pin Number  
Pin Number  
89  
90  
GND  
NC  
NC  
I/O  
GND  
I/O  
GND  
I/O  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
GND  
I/O  
GND  
I/O  
GND  
I/O  
91  
I/O  
I/O  
I/O  
I/O  
I/O  
92  
I/O  
I/O  
I/O  
I/O  
I/O  
93  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
94  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
95  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
96  
I/O  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
97  
I/O  
I/O  
I/O  
98  
VCCA  
VCCI  
I/O  
VCCA  
VCCI  
I/O  
VCCA  
VCCI  
I/O  
I/O  
I/O  
I/O  
99  
I/O  
I/O  
I/O  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
VCCA  
GND  
I/O  
GND  
VCCA  
GND  
I/O  
GND  
VCCA  
GND  
I/O  
CLKA  
CLKB  
VCCR  
GND  
VCCA  
PRA, I/O  
I/O  
CLKA  
CLKB  
VCCR  
GND  
VCCA  
PRA, I/O  
I/O  
CLKA  
CLKB  
VCCR  
GND  
VCCA  
PRA, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
VCCA  
GND  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
GND  
VCCI  
I/O  
VCCA  
GND  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
VCCI  
I/O  
VCCI  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TCK, I/O  
TCK, I/O  
TCK, I/O  
v3 .1  
4 5  
5 4 S X F a m i l y F P G A s  
P a c k a g e P i n A s s i g n m e n t s (c o n t in u e d )  
1 0 0 -P i n V Q F P ( T o p V i e w )  
100  
1
100-Pin  
VQFP  
4 6  
v3 .1  
5 4 S X F a m i l y F P G A s  
1 0 0 -V Q F P  
A54SX16,  
A54SX16P  
Function  
A54SX16  
A54SX16P  
Function  
A54SX08  
Function  
A54SX08  
Function  
Pin Number  
Pin Number  
1
2
3
4
5
6
7
8
GND  
TDI, I/O  
I/O  
I/O  
I/O  
GND  
TDI, I/O  
I/O  
I/O  
I/O  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
GND  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TMS  
VCCI  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
VCCA  
GND  
VCCR  
I/O  
HCLK  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
TMS  
VCCI  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PRB, I/O  
VCCA  
GND  
VCCR  
I/O  
HCLK  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
VCCA  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
I/O  
I/O  
VCCA  
GND  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
VCCA  
GND  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
CLKA  
CLKB  
VCCR  
VCCA  
GND  
PRA, I/O  
I/O  
CLKA  
CLKB  
VCCR  
VCCA  
GND  
PRA, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
I/O  
I/O  
I/O  
TDO, I/O  
I/O  
TCK, I/O  
TCK, I/O  
v3 .1  
4 7  
5 4 S X F a m i l y F P G A s  
P a c k a g e P i n A s s i g n m e n t s (c o n t in u e d )  
3 1 3 -P in P B G A (T o p Vie w )  
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  
A
B
C
D
E
F
A
B
C
D
E
F
G
G
H
J
H
J
K
L
K
L
M
N
P
R
M
N
P
R
T
T
U
U
V
V
W
W
Y
Y
AA  
AA  
AB  
AC  
AB  
AC  
AD  
AE  
AD  
AE  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25  
4 8  
v3 .1  
5 4 S X F a m i l y F P G A s  
3 1 3 -P i n P B G A  
A54SX32  
Pin Number Function  
A54SX32  
Pin Number Function  
A54SX32  
Pin Number Function  
A54SX32  
Pin Number Function  
A1  
A3  
GND  
NC  
I/O  
I/O  
I/O  
I/O  
VCCR  
I/O  
I/O  
I/O  
I/O  
NC  
GND  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCR  
AC15  
AC17  
AC19  
AC21  
AC23  
AC25  
AD2  
AD4  
AD6  
AD8  
AD10  
AD12  
AD14  
AD16  
AD18  
AD20  
AD22  
AD24  
AE1  
AE3  
AE5  
AE7  
AE9  
AE11  
AE13  
AE15  
AE17  
AE19  
AE21  
AE23  
AE25  
B2  
I/O  
I/O  
C5  
C7  
NC  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
VCCI  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
I/O  
NC  
I/O  
F20  
F22  
F24  
G1  
I/O  
I/O  
A5  
I/O  
C9  
I/O  
A7  
I/O  
C11  
C13  
C15  
C17  
C19  
C21  
C23  
C25  
D2  
I/O  
A9  
I/O  
G3  
TMS  
I/O  
A11  
NC  
G5  
A13  
GND  
I/O  
G7  
I/O  
A15  
G9  
VCCI  
I/O  
A17  
VCCI  
I/O  
G11  
G13  
G15  
G17  
G19  
G21  
G23  
G25  
H2  
A19  
CLKB  
I/O  
A21  
I/O  
A23  
PRB, I/O  
I/O  
I/O  
A25  
D4  
I/O  
AA1  
AA3  
AA5  
AA7  
AA9  
AA11  
AA13  
AA15  
AA17  
AA19  
AA21  
AA23  
AA25  
AB2  
AB4  
AB6  
AB8  
AB10  
AB12  
AB14  
AB16  
AB18  
AB20  
AB22  
AB24  
AC1  
AC3  
AC5  
AC7  
AC9  
AC11  
AC13  
I/O  
D6  
I/O  
I/O  
D8  
I/O  
I/O  
D10  
D12  
D14  
D16  
D18  
D20  
D22  
D24  
E1  
I/O  
NC  
I/O  
I/O  
H4  
I/O  
NC  
H6  
I/O  
I/O  
H8  
I/O  
I/O  
H10  
H12  
H14  
H16  
H18  
H20  
H22  
H24  
J1  
I/O  
I/O  
PRA, I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
E3  
NC  
I/O  
E5  
I/O  
E7  
VCCI  
I/O  
I/O  
E9  
I/O  
E11  
E13  
E15  
E17  
E19  
E21  
E23  
E25  
F2  
I/O  
TDO, I/O  
GND  
TCK, I/O  
I/O  
J3  
I/O  
J5  
I/O  
J7  
NC  
I/O  
B4  
J9  
B6  
I/O  
J11  
J13  
J15  
J17  
J19  
J21  
J23  
J25  
K2  
I/O  
B8  
I/O  
CLKA  
I/O  
B10  
I/O  
B12  
I/O  
I/O  
B14  
I/O  
F4  
I/O  
B16  
I/O  
F6  
GND  
I/O  
B18  
I/O  
F8  
B20  
I/O  
F10  
F12  
F14  
F16  
F18  
I/O  
B22  
I/O  
I/O  
B24  
I/O  
K4  
I/O  
C1  
TDI, I/O  
I/O  
K6  
I/O  
C3  
K8  
VCCI  
v3 .1  
4 9  
5 4 S X F a m i l y F P G A s  
3 1 3 -P i n P B G A ( C o n t i n u e d )  
A54SX32  
Pin Number Function  
A54SX32  
Pin Number Function  
A54SX32  
Pin Number Function  
A54SX32  
Pin Number Function  
K10  
K12  
K14  
K16  
K18  
K20  
K22  
K24  
L1  
I/O  
I/O  
N3  
N5  
VCCA  
VCCR  
I/O  
R21  
R23  
R25  
T2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
HCLK  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
V18  
V20  
V22  
V24  
W1  
I/O  
I/O  
VCCA  
VCCI  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
NC  
I/O  
N7  
I/O  
N9  
VCCI  
GND  
GND  
GND  
I/O  
I/O  
N11  
N13  
N15  
N17  
N19  
N21  
N23  
N25  
P2  
T4  
VCCA  
I/O  
T6  
W3  
T8  
W5  
I/O  
T10  
T12  
T14  
T16  
T18  
T20  
T22  
T24  
U1  
W7  
I/O  
I/O  
W9  
L3  
I/O  
I/O  
W11  
W13  
W15  
W17  
W19  
W21  
W23  
W25  
Y2  
L5  
I/O  
VCCR  
VCCA  
I/O  
L7  
I/O  
L9  
I/O  
L11  
L13  
L15  
L17  
L19  
L21  
L23  
L25  
M2  
I/O  
P4  
I/O  
GND  
I/O  
P6  
I/O  
P8  
I/O  
I/O  
P10  
P12  
P14  
P16  
P18  
P20  
P22  
P24  
R1  
I/O  
U3  
I/O  
GND  
GND  
I/O  
U5  
I/O  
U7  
Y4  
I/O  
U9  
Y6  
I/O  
I/O  
U15  
U17  
U19  
U21  
U23  
U25  
V2  
Y8  
I/O  
NC  
Y10  
Y12  
Y14  
Y16  
Y18  
Y20  
Y22  
Y24  
M4  
I/O  
I/O  
M6  
I/O  
I/O  
M8  
I/O  
I/O  
M10  
M12  
M14  
M16  
M18  
M20  
M22  
M24  
N1  
I/O  
R3  
I/O  
GND  
GND  
VCCI  
I/O  
R5  
I/O  
R7  
I/O  
V4  
R9  
I/O  
V6  
R11  
R13  
R15  
R17  
R19  
I/O  
V8  
I/O  
GND  
I/O  
V10  
V12  
V14  
V16  
I/O  
I/O  
I/O  
I/O  
I/O  
5 0  
v3 .1  
5 4 S X F a m i l y F P G A s  
P a c k a g e P i n A s s i g n m e n t s (c o n t in u e d )  
3 2 9 -P in P B G A (T o p Vie w )  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
AC  
v3 .1  
5 1  
5 4 S X F a m i l y F P G A s  
3 2 9 -P i n P B G A  
A54SX32  
A54SX32  
Pin Number Function  
A54SX32  
Pin Number Function  
A54SX32  
Pin Number Function  
Pin Number Function  
A1  
A2  
GND  
GND  
VCCI  
NC  
AA23  
AB1  
VCCI  
I/O  
AC22  
AC23  
B1  
VCCI  
GND  
VCCI  
GND  
I/O  
C21  
C22  
C23  
D1  
VCCI  
GND  
NC  
I/O  
A3  
AB2  
GND  
I/O  
A4  
AB3  
B2  
A5  
I/O  
AB4  
I/O  
B3  
D2  
I/O  
A6  
I/O  
AB5  
I/O  
B4  
I/O  
D3  
I/O  
A7  
VCCI  
NC  
AB6  
I/O  
B5  
I/O  
D4  
TCK, I/O  
I/O  
A8  
AB7  
I/O  
B6  
I/O  
D5  
A9  
I/O  
AB8  
I/O  
B7  
I/O  
D6  
I/O  
A10  
A11  
I/O  
AB9  
I/O  
B8  
I/O  
D7  
I/O  
I/O  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AC1  
I/O  
B9  
I/O  
D8  
I/O  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
I/O  
PRB, I/O  
I/O  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
C1  
I/O  
D9  
I/O  
CLKB  
I/O  
I/O  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
E1  
I/O  
HCLK  
I/O  
PRA, I/O  
CLKA  
I/O  
VCCA  
VCCR  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
I/O  
I/O  
VCCI  
GND  
VCCI  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
GND  
VCCI  
NC  
I/O  
GND  
VCCI  
NC  
I/O  
I/O  
GND  
I/O  
AC2  
I/O  
AC3  
C2  
TDI, I/O  
GND  
I/O  
VCCI  
I/O  
I/O  
AC4  
C3  
E2  
I/O  
AC5  
I/O  
C4  
E3  
I/O  
I/O  
AC6  
I/O  
C5  
I/O  
E4  
I/O  
I/O  
AC7  
I/O  
C6  
I/O  
E20  
E21  
E22  
E23  
F1  
I/O  
I/O  
AC8  
I/O  
C7  
I/O  
I/O  
I/O  
AC9  
VCCI  
I/O  
C8  
I/O  
I/O  
I/O  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AC21  
C9  
I/O  
I/O  
I/O  
I/O  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
I/O  
I/O  
I/O  
I/O  
I/O  
F2  
TMS  
I/O  
I/O  
I/O  
I/O  
F3  
I/O  
I/O  
I/O  
F4  
I/O  
I/O  
NC  
I/O  
I/O  
F20  
F21  
F22  
F23  
G1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
G2  
I/O  
NC  
I/O  
G3  
I/O  
5 2  
v3 .1  
5 4 S X F a m i l y F P G A s  
3 2 9 -P i n P B G A  
A54SX32  
Pin Number Function  
A54SX32  
Pin Number Function  
A54SX32  
Pin Number Function  
A54SX32  
Pin Number Function  
G4  
G20  
G21  
G22  
G23  
H1  
I/O  
I/O  
L22  
L23  
M1  
I/O  
NC  
R20  
R21  
R22  
R23  
T1  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
VCCA  
I/O  
I/O  
VCCI  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NC  
NC  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
Y23  
I/O  
I/O  
I/O  
I/O  
VCCA  
VCCR  
I/O  
I/O  
M2  
I/O  
GND  
I/O  
M3  
I/O  
M4  
VCCA  
GND  
GND  
GND  
GND  
GND  
VCCA  
I/O  
T2  
I/O  
H2  
I/O  
M10  
M11  
M12  
M13  
M14  
M20  
M21  
M22  
M23  
N1  
T3  
I/O  
H3  
I/O  
T4  
I/O  
H4  
I/O  
T20  
T21  
T22  
T23  
U1  
I/O  
H20  
H21  
H22  
H23  
J1  
VCCA  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
NC  
I/O  
U2  
I/O  
J2  
I/O  
VCCI  
I/O  
U3  
J3  
I/O  
U4  
J4  
I/O  
N2  
I/O  
U20  
U21  
U22  
U23  
V1  
J20  
J21  
J22  
J23  
K1  
I/O  
N3  
I/O  
I/O  
N4  
I/O  
I/O  
N10  
N11  
N12  
N13  
N14  
N20  
N21  
N22  
N23  
P1  
GND  
GND  
GND  
GND  
GND  
NC  
I/O  
I/O  
V2  
K2  
I/O  
V3  
K3  
I/O  
V4  
K4  
I/O  
V20  
V21  
V22  
V23  
W1  
W2  
W3  
W4  
W20  
W21  
W22  
W23  
Y1  
K10  
K11  
K12  
K13  
K14  
K20  
K21  
K22  
K23  
L1  
GND  
GND  
GND  
GND  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
P2  
I/O  
P3  
I/O  
I/O  
P4  
I/O  
I/O  
P10  
P11  
P12  
P13  
P14  
P20  
P21  
P22  
P23  
R1  
GND  
GND  
GND  
GND  
GND  
I/O  
I/O  
I/O  
L2  
I/O  
L3  
I/O  
L4  
VCCR  
GND  
GND  
GND  
GND  
GND  
VCCR  
I/O  
Y2  
L10  
L11  
L12  
L13  
L14  
L20  
L21  
I/O  
Y3  
I/O  
Y4  
I/O  
Y5  
I/O  
Y6  
R2  
I/O  
Y7  
R3  
I/O  
Y8  
R4  
I/O  
Y9  
v3 .1  
5 3  
5 4 S X F a m i l y F P G A s  
P a c k a g e P i n A s s i g n m e n t s (C o n t in u e d )  
1 4 4 -P in F B G A (To p Vie w )  
4
1
2
3
5
6
7
8
10 11 12  
9
A
B
C
D
E
F
G
H
J
K
L
M
5 4  
v3 .1  
5 4 S X F a m i l y F P G A s  
1 4 4 -P i n F B G A  
A54SX08  
Function  
A54SX08  
Function  
A54SX08  
Function  
Pin Number  
Pin Number  
Pin Number  
A1  
A2  
I/O  
I/O  
E1  
E2  
I/O  
I/O  
J1  
J2  
I/O  
I/O  
A3  
I/O  
E3  
I/O  
J3  
I/O  
A4  
I/O  
E4  
I/O  
J4  
I/O  
A5  
VCCA  
GND  
CLKA  
I/O  
E5  
TMS  
VCCI  
VCCI  
VCCI  
VCCA  
I/O  
J5  
I/O  
A6  
E6  
J6  
PRB, I/O  
I/O  
A7  
E7  
J7  
A8  
E8  
J8  
I/O  
A9  
I/O  
E9  
J9  
I/O  
A10  
A11  
A12  
B1  
I/O  
E10  
E11  
E12  
F1  
J10  
J11  
J12  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
K12  
L1  
I/O  
I/O  
GND  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
I/O  
B2  
GND  
I/O  
F2  
I/O  
I/O  
B3  
F3  
VCCR  
I/O  
I/O  
B4  
I/O  
F4  
I/O  
B5  
I/O  
F5  
GND  
GND  
GND  
VCCI  
I/O  
I/O  
B6  
I/O  
F6  
I/O  
B7  
CLKB  
I/O  
F7  
GND  
I/O  
B8  
F8  
B9  
I/O  
F9  
I/O  
B10  
B11  
B12  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
C12  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
I/O  
F10  
F11  
F12  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
GND  
I/O  
GND  
I/O  
GND  
I/O  
I/O  
I/O  
I/O  
I/O  
GND  
I/O  
I/O  
GND  
I/O  
L2  
TCK, I/O  
I/O  
L3  
I/O  
I/O  
L4  
I/O  
I/O  
GND  
GND  
GND  
VCCI  
I/O  
L5  
I/O  
PRA, I/O  
I/O  
L6  
I/O  
L7  
HCLK  
I/O  
I/O  
L8  
I/O  
L9  
I/O  
I/O  
I/O  
L10  
L11  
L12  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCI  
TDI, I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
VCCA  
VCCI  
VCCI  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
VCCA  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TDO, I/O  
I/O  
I/O  
VCCR  
v3 .1  
5 5  
5 4 S X F a m i l y F P G A s  
L i s t o f C h a n g e s  
The following table lists critical changes that were made in the current version of the document.  
Previous version  
Changes in current version (v3.1)  
Page  
The storage temperature in the “Absolute Maximum Ratings1” table on page 10 was  
updated.  
page 10  
page 8  
v3.0.1  
Table 1 on page 8 was updated.  
D a t a s h e e t C a t e g o r i e s  
In order to provide the latest information to designers, some datasheets are published before data has been fully  
characterized. Datasheets are designated as Product Brief,” “Advanced,” “Production.” The definition of these categories  
are as follows:  
P r o d u c t B r i e f  
The product brief is a modified version of an advanced datasheet containing general product information. This brief  
summarizes specific device and family information for unreleased products.  
A d v a n c e d  
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades.  
This information can be used as estimates but not for production.  
U n m a r k e d ( p r o d u c t i o n )  
This datasheet version contains information that is considered to be final.  
5 6  
v3 .1  
Actel and the Actel logo are registered trademarks of Actel Corporation.  
All other trademarks are the property of their owners.  
http://www.actel.com  
Actel Corporation  
955 East Arques Avenue  
Sunnyvale, California 94086  
USA  
Actel Europe Ltd.  
Actel Japan  
Actel Hong Kong  
39th Floor  
One Pacific Place  
88 Queensway  
Dunlop House, Riverside Way  
Camberley, Surrey GU15 3YL  
United Kingdom  
EXOS Ebisu Bldg. 4F  
1-24-14 Ebisu Shibuya-ku  
Tokyo 150 Japan  
Tel: (408) 739-1010  
Fax: (408) 739-1540  
Tel: +44 (0)1276 401450  
Fax: +44 (0)1276 401490  
Tel: +81 03-3445-7671  
Fax: +81 03-3445-7668  
Admiralty, Hong Kong  
Tel: 852-22735712  
572137-4/6.03  

相关型号:

A54SX08PLG84I

FPGA, 768 CLBS, 8000 GATES, PQCC84, PLASTIC, MS-007AE, LCC-84
MICROSEMI

A54SX08PLG84PP

Field Programmable Gate Array, 768 CLBs, 8000 Gates, CMOS, PQCC84, PLASTIC, LCC-84
ACTEL

A54SX08PQ208

Field Programmable Gate Array, 768 CLBs, 8000 Gates, 240MHz, CMOS, PQFP208, PLASTIC, MO-143, QFP-208
ACTEL

A54SX08PQ208

Field Programmable Gate Array, 768 CLBs, 8000 Gates, 240MHz, CMOS, PQFP208, PLASTIC, MO-143, QFP-208
MICROSEMI

A54SX08PQ208I

FPGA, 768 CLBS, 8000 GATES, 240MHz, PQFP208, PLASTIC, MO-143, QFP-208
MICROSEMI

A54SX08TQ144

Field Programmable Gate Array, 768 CLBs, 8000 Gates, 240MHz, CMOS, PQFP144, 1.40 MM HEIGHT, MO-136, TQFP-144
MICROSEMI

A54SX08TQ144I

Field Programmable Gate Array, 768 CLBs, 8000 Gates, 240MHz, CMOS, PQFP144, 1.40 MM HEIGHT, MO-136, TQFP-144
MICROSEMI

A54SX08TQ144PP

Field Programmable Gate Array, 768 CLBs, 8000 Gates, CMOS, PQFP144, 1.40 MM HEIGHT, MO-136, TQFP-144
ACTEL

A54SX08TQ176

Field Programmable Gate Array, 768 CLBs, 8000 Gates, 240MHz, CMOS, PQFP176, 1.40 MM HEIGHT, MO-136, TQFP-176
MICROSEMI

A54SX08TQ176I

Field Programmable Gate Array, 768 CLBs, 8000 Gates, 240MHz, CMOS, PQFP176, 1.40 MM HEIGHT, MO-136, TQFP-176
MICROSEMI

A54SX08TQG144I

FPGA, 768 CLBS, 8000 GATES, PQFP144, 1.40 MM HEIGHT, MO-136, TQFP-144
MICROSEMI

A54SX08TQG144PP

Field Programmable Gate Array, 768 CLBs, 8000 Gates, CMOS, PQFP144, 1.40 MM HEIGHT, MO-136, TQFP-144
ACTEL