A3P1000-FGG484YM [MICROSEMI]

Field Programmable Gate Array,;
A3P1000-FGG484YM
型号: A3P1000-FGG484YM
厂家: Microsemi    Microsemi
描述:

Field Programmable Gate Array,

栅 可编程逻辑
文件: 总216页 (文件大小:11023K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
with Flash*Freeze Technology  
Architecture Supports Ultra-High Utilization  
Features and Benefits  
Advanced and Pro (Professional) I/Os††  
Military Temperature Tested and Qualified  
700 Mbps DDR, LVDS-Capable I/Os  
1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V Mixed-Voltage Operation  
Bank-Selectable I/O Voltages—up to 8 Banks per Chip  
Each Device Tested from –55°C to 125°C  
Firm-Error Immune  
Single-Ended I/O Standards: LVTTL, LVCMOS 3.3 V /  
2.5 V / 1.8 V / 1.5 V / 1.2 V, 3.3 V PCI / 3.3 V PCI-X, and  
Not Susceptible to Neutron-Induced Configuration Loss  
Low Power  
LVCMOS 2.5 V / 5.0 V Input  
Dramatic Reduction in Dynamic and Static Power  
1.2 V to 1.5 V Core and I/O Voltage Support for Low Power  
Differential I/O Standards: LVPECL, LVDS, BLVDS, and M-LVDS  
Voltage-Referenced I/O Standards: GTL+ 2.5 V / 3.3 V, GTL  
2.5 V / 3.3 V, HSTL Class I and II, SSTL2 Class I and II, SSTL3  
Class I and II (A3PE3000L only)  
Low Power Consumption in Flash*Freeze Mode Allows for  
Instantaneous Entry To / Exit From Low-Power Flash*Freeze  
ƒ
Mode  
I/O Registers on Input, Output, and Enable Paths  
Hot-Swappable and Cold-Sparing I/Os  
Programmable Output Slew Rate and Drive Strength  
Programmable Input Delay (A3PE3000L only)  
Schmitt Trigger Option on Single-Ended Inputs (A3PE3000L)  
Weak Pull-Up/-Down  
Supports Single-Voltage System Operation  
Low-Impedance Switches  
High Capacity  
250K to 3M System Gates  
Up to 504 Kbits of True Dual-Port SRAM  
Up to 620 User I/Os  
IEEE 1149.1 (JTAG) Boundary Scan Test  
Pin-Compatible Packages across the Military ProASIC 3EL Family  
®
Reprogrammable Flash Technology  
Clock Conditioning Circuit (CCC) and PLL  
130-nm, 7-Layer Metal (6 Copper), Flash-Based CMOS Process  
Live-at-Power-Up (LAPU) Level 0 Support  
Single-Chip Solution  
Six CCC Blocks—One Block with Integrated PLL in ProASIC3  
and All Blocks with Integrated PLL in ProASIC3EL  
Configurable Phase Shift, Multiply/Divide, Delay Capabilities,  
and External Feedback  
Wide Input Frequency Range 1.5 MHz to 250 MHz (1.2 V  
systems) and 350 MHz (1.5 V systems)  
Retains Programmed Design when Powered Off  
High Performance  
350 MHz (1.5 V systems) and 250 MHz (1.2 V systems) System  
Performance  
3.3 V, 66 MHz, 64-Bit PCI (1.5 V systems) and 66 MHz, 32-Bit  
PCI (1.2 V systems)  
SRAMs and FIFOs  
Variable-Aspect-Ratio 4,608-Bit RAM Blocks (×1, ×2, ×4, ×9,  
and ×18 organizations available)  
True Dual-Port SRAM (except ×18)  
24 SRAM and FIFO Configurations with Synchronous  
Operation:  
– 250 MHz: For 1.2 V Systems  
– 350 MHz: For 1.5 V Systems  
In-System Programming (ISP) and Security  
Secure ISP Using On-Chip 128-Bit Advanced Encryption  
Standard (AES) Decryption via JTAG (IEEE 1532–compliant)  
®
FlashLock to Secure FPGA Contents  
High-Performance Routing Hierarchy  
ARM® Processor Support in ProASIC3/EL FPGAs  
Segmented, Hierarchical Routing and Clock Structure  
High-Performance, Low-Skew Global Network  
ARM Cortex™-M1 Soft Processor Available with or without  
Debug  
Table 1 • Military ProASIC3/EL Low-Power Devices  
ProASIC3/EL Devices  
ARM Cortex-M1 Devices  
System Gates  
A3P250  
A3PE600L  
A3P1000  
A3PE3000L  
1
M1A3P1000  
M1A3PE3000L  
250,000  
600,000  
13,824  
108  
24  
1M  
24,576  
144  
32  
3M  
75,264  
504  
112  
1
VersaTiles (D-flip-flops)  
RAM kbits (1,024 bits)  
4,608-Bit Blocks  
6,144  
36  
8
FlashROM Kbits  
1
1
1
2
Secure (AES) ISP  
Yes  
1
Yes  
6
Yes  
1
Yes  
6
Integrated PLL in CCCs  
VersaNet Globals  
I/O Banks  
18  
4
18  
18  
18  
8
4
8
Maximum User I/Os  
68  
270  
154  
620  
Package Pins  
VQFP  
VQ100  
PQFP  
PQ208  
FG144, FG256, FG484  
FBGA  
FG484  
FG484, FG896  
Notes:  
1. Refer to the Cortex-M1 product brief for more information.  
2. AES is not available for ARM-enabled ProASIC3/EL devices.  
† A3P250 and A3P1000 support only 1.5 V core operation.  
ƒ Flash*Freeze technology is not available for A3P250 or A3P1000.  
††Pro I/Os are not available on A3P250 or A3P1000.  
September 2014  
I
© 2014 Microsemi Corporation  
Military ProASIC3/EL Low Power Flash FPGAs  
1
I/Os Per Package  
ProASIC3/EL  
Low Power Devices  
A3P250  
A3PE600L  
A3P1000  
A3PE3000L  
ARM  
Cortex-M1 Devices  
M1A3P1000  
M1A3PE3000L  
Single-  
Differential  
Single-  
Differential  
I/O Pairs  
Single-  
Differential  
Single- Differential  
Ended I/O2 I/O Pairs Ended I/O2  
Ended I/O2  
I/O Pairs Ended I/O2 I/O Pairs  
Package  
VQ100  
PQ208  
FG144  
FG256  
FG484  
FG896  
Notes:  
68  
13  
154  
97  
35  
25  
44  
74  
177  
300  
270  
135  
341  
620  
168  
310  
1. When considering migrating your design to a lower- or higher-density device, refer to the packaging section of the datasheet to  
ensure you are complying with design and board migration requirements.  
2. Each used differential I/O pair reduces the number of single-ended I/Os available by two.  
3. "G" indicates RoHS-compliant packages. Refer to "Military ProASIC3/EL Ordering Information" on page III for the location of the  
"G" in the part number.  
4. For A3PE3000L devices, the usage of certain I/O standards is limited as follows:  
– SSTL3(I) and (II): up to 40 I/Os per north or south bank  
– LVPECL / GTL+ 3.3 V / GTL 3.3 V: up to 48 I/Os per north or south bank  
– SSTL2(I) and (II) / GTL+ 2.5 V/ GTL 2.5 V: up to 72 I/Os per north or south bank  
5. When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not as a regular I/O, the number of single-ended  
user I/Os available is reduced by one.  
Military ProASIC3/EL Device Status  
Military ProASIC3/EL Devices  
Status  
M1 Military ProASIC3/EL Devices  
Status  
A3P250  
Production  
Production  
Production  
Production  
A3PE600L  
A3P1000  
M1A3P1000  
Production  
Production  
A3PE3000L  
M1A3PE3000L  
II  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Military ProASIC3/EL Ordering Information  
_
A3P1000  
1
FG  
G
144  
Y
M
Application (Temperature Range)  
M = Military ( 55°C to 125°C Junction Temperature)  
Security Feature  
Y = Device Includes License to Implement IP Based on the  
Cryptography Research, Inc. (CRI) Patent Portfolio  
Package Lead Count  
Lead-Free Packaging  
Blank = Standard Packaging  
G = RoHS-Compliant (Green) Packaging  
Package Type  
=
VQ Very Thin Quad Flat Pack (0.5 mm pitch)  
=
FG  
Fine Pitch Ball Grid Array (1.0 mm pitch)  
=
PQ Plastic Quad Flat Pack (0.5 mm pitch)  
Speed Grade  
Blank = Standard  
1 = 15% Faster than Standard  
2 = 25% Faster than Standard  
Note: Speed Grade 2 is available only for A3P1000 device in FG256 and FG484 packages  
Part Number  
Military ProASIC3/EL Devices  
A3P250 = 250,000 System Gates  
A3PE600L= 600,000 System Gates  
A3P1000 1,000,000 System Gates  
=
A3PE3000L= 3,000,000 System Gates  
Military ProASIC3/EL Devices with ARM Cortex-M1  
M1A3P1000 = 1,000,000 System Gates  
M1A3PE3000L = 3,000,000 System Gates  
Temperature Grade Offerings  
Package  
ARM Cortex-M1 Devices  
VQ100  
A3P250  
A3PE600L  
A3P1000  
A3PE3000L  
M1A3P1000  
M1A3PE3000L  
M
M
M
M
M
PQ208  
FG144  
FG256  
FG484  
M
M
M
FG896  
Note: M = Military temperature range: –55°C to 125°C junction temperature  
Revision 5  
III  
Temperature Grade Offerings  
Speed Grade and Temperature Grade Matrix  
Temperature Grade  
Std.  
–1  
–21  
M
Notes:  
1. M1 devices are not available in -2 speed grade  
2. M = Military temperature range: –55°C to 125°C junction temperature  
Contact your local Microsemi SoC Products Group (formerly Actel) representative for device availability:  
http://www.microsemi.com/contact/default.aspx.  
IV  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table of Contents  
Military ProASIC3/EL Device Family Overview  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
Military ProASIC3/EL DC and Switching Characteristics  
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
Calculating Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7  
User I/O Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18  
VersaTile Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-108  
Global Resource Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-117  
Clock Conditioning Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-121  
Embedded SRAM and FIFO Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-123  
Embedded FlashROM Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-144  
JTAG 1532 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-145  
Pin Descriptions and Packaging  
Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
User-Defined Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
User Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4  
Special Function Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5  
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5  
Package Pin Assignments  
VQ100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1  
PQ208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3  
FG144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6  
FG256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9  
FG484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13  
FG896 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29  
Datasheet Information  
List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1  
Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6  
Safety Critical, Life Support, and High-Reliability Applications Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6  
Revision 5  
V
1 – Military ProASIC3/EL Device Family Overview  
General Description  
The military ProASIC3/EL family of flash FPGAs dramatically reduces dynamic power consumption by  
40% and static power by 50%. These power savings are coupled with performance, density, true single  
chip, 1.2 V to 1.5 V core and I/O operation, reprogrammability, and advanced features.  
Microsemi’s proven Flash*Freeze technology enables military ProASIC3EL device users to shut off  
dynamic power instantaneously and switch the device to static mode without the need to switch off clocks  
or power supplies, and retaining internal states of the device. This greatly simplifies power management.  
In addition, optimized software tools using power-driven layout provide instant push-button power  
reduction.  
Nonvolatile flash technology gives military ProASIC3/EL devices the advantage of being a secure, low-  
power, single-chip solution that is live at power-up (LAPU). Military ProASIC3/EL devices offer dramatic  
dynamic power savings, giving FPGA users flexibility to combine low power with high performance.  
These features enable designers to create high-density systems using existing ASIC or FPGA design  
flows and tools.  
Military ProASIC3/EL devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as  
well as clock conditioning circuitry (CCC) based on an integrated phase-locked loop (PLL). Military  
ProASIC3/EL devices support devices from 250K system gates to 3 million system gates with up to 504  
kbits of true dual-port SRAM and 620 user I/Os.  
M1 military ProASIC3/EL devices support the high-performance, 32-bit Cortex-M1 processor developed  
by ARM for implementation in FPGAs. ARM Cortex-M1 is a soft processor that is fully implemented in the  
FPGA fabric. It has a three-stage pipeline that offers a good balance between low-power consumption  
and speed when implemented in an M1 military ProASIC3/EL device. The processor runs the ARMv6-M  
instruction set, has a configurable nested interrupt controller, and can be implemented with or without the  
debug block. ARM Cortex-M1 is available at no cost from Microsemi for use in M1 military ProASIC3/EL  
FPGAs.  
The ARM-enabled devices have ordering numbers that begin with M1 and do not support AES  
decryption.  
Flash*Freeze Technology  
Military ProASIC3EL devices offer Flash*Freeze technology, which allows instantaneous switching from  
an active state to a static state. When Flash*Freeze mode is activated, military ProASIC3EL devices  
enter a static state while retaining the contents of registers and SRAM. Power is conserved without the  
need for additional external components to turn off I/Os or clocks. Flash*Freeze technology is combined  
with in-system programmability, which enables users to quickly and easily upgrade and update their  
designs in the final stages of manufacturing or in the field. The ability of military ProASIC3EL devices to  
support a 1.2 V core voltage allows for an even greater reduction in power consumption, which enables  
low total system power.  
When the military ProASIC3EL device enters Flash*Freeze mode, the device automatically shuts off the  
clocks and inputs to the FPGA core; when the device exits Flash*Freeze mode, all activity resumes and  
data is retained.  
The availability of low-power modes, combined with a reprogrammable, single-chip, single-voltage  
solution, make military ProASIC3EL devices suitable for low-power data transfer and manipulation in  
military-temperature applications where available power may be limited (e.g., in battery-powered  
equipment); or where heat dissipation may be limited (e.g., in enclosures with no forced cooling).  
† Flash*Freeze technology is not supported on A3P1000.  
Revision 5  
1-1  
Military ProASIC3/EL Device Family Overview  
Flash Advantages  
ƒ
Low Power  
The military ProASIC3EL family of flash-based FPGAs provides a low-power advantage, and when  
coupled with high performance, enables designers to make power-smart choices using a single-chip,  
reprogrammable, and live-at-power-up device.  
Military ProASIC3EL devices offer 40% dynamic power and 50% static power savings by reducing the  
core operating voltage to 1.2 V. In addition, the power-driven layout (PDL) feature in Libero®SoC offers  
up to 30% additional power reduction. With Flash*Freeze technology, military ProASIC3EL device is able  
to retain device SRAM and logic while dynamic power is reduced to a minimum, without the need to stop  
clock or power supplies. Combining these features provides a low-power, feature-rich, and high-  
performance solution.  
Security  
Nonvolatile, flash-based military ProASIC3/EL devices do not require a boot PROM, so there is no  
vulnerable external bitstream that can be easily copied. Military ProASIC3/EL devices incorporate  
FlashLock, which provides a unique combination of reprogrammability and design security without  
external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.  
Military ProASIC3/EL devices utilize a 128-bit flash-based lock and a separate AES key to secure  
programmed intellectual property and configuration data. In addition, all FlashROM data in military  
ProASIC3/EL devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192)  
bit block cipher encryption standard. AES was adopted by the National Institute of Standards and  
Technology (NIST) in 2000 and replaces the 1977 DES standard. Military ProASIC3/EL devices have a  
built-in AES decryption engine and a flash-based AES key that make them the most comprehensive  
programmable logic device security solution available today. Military ProASIC3/EL devices with AES-  
based security allow for secure, remote field updates over public networks such as the Internet, and  
ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.  
Security, built into the FPGA fabric, is an inherent component of the military ProASIC3/EL family. The  
flash cells are located beneath seven metal layers, and many device design and layout techniques have  
been used to make invasive attacks extremely difficult. The military ProASIC3/EL family, with FlashLock  
and AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your  
valuable IP is protected and secure, making remote ISP possible. A military ProASIC3/EL device  
provides the most impenetrable security for programmable logic designs.  
Single Chip  
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the  
configuration data is an inherent part of the FPGA structure, and no external configuration data needs to  
be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based military  
ProASIC3/EL FPGAs do not require system configuration components such as EEPROMs or  
microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area,  
and increases security and system reliability.  
Live at Power-Up  
Flash-based military ProASIC3/EL devices support Level 0 of the LAPU classification standard. This  
feature helps in system component initialization, execution of critical tasks before the processor wakes  
up, setup and configuration of memory blocks, clock generation, and bus activity management. The  
LAPU feature of flash-based military ProASIC3/EL devices greatly simplifies total system design and  
reduces total system cost, often eliminating the need for CPLDs and clock generation PLLs. In addition,  
glitches and brownouts in system power will not corrupt the military ProASIC3/EL device's flash  
configuration, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system  
power is restored. This enables the reduction or complete removal of the configuration PROM, expensive  
voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based  
military ProASIC3/EL devices simplify total system design and reduce cost and design risk while  
increasing system reliability and improving system initialization time.  
ƒ A3P1000 only supports 1.5 V core operation.  
1-2  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Reduced Cost of Ownership  
Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAM-  
based FPGAs, flash-based military ProASIC3/EL devices allow all functionality to be live at power-up; no  
external boot PROM is required. On-board security mechanisms prevent access to all the programming  
information and enable secure remote updates of the FPGA logic. Designers can perform secure remote  
in-system reprogramming to support future design iterations and field upgrades with confidence that  
valuable intellectual property cannot be compromised or copied. Secure ISP can be performed using the  
industry-standard AES algorithm. The military ProASIC3/EL family device architecture mitigates the need  
for ASIC migration at higher volumes. This makes the military ProASIC3/EL family a cost-effective ASIC  
replacement.  
Firm-Error Immunity  
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike  
a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the  
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These  
errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a  
complete system failure. Firm errors do not exist in the configuration memory of military ProASIC3/EL  
flash-based FPGAs. Once it is programmed, the flash cell configuration element of military ProASIC3/EL  
FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or  
soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using  
error detection and correction (EDAC) circuitry built into the FPGA fabric.  
Advanced Flash Technology  
The military ProASIC3/EL family offers many benefits, including nonvolatility and reprogrammability,  
through an advanced flash-based, 130-nm LVCMOS process with 7 layers of metal. Standard CMOS  
design techniques are used to implement logic and control functions. The combination of fine granularity,  
enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization  
without compromising device routability or performance. Logic functions within the device are  
interconnected through a four-level routing hierarchy.  
Advanced Architecture  
The proprietary military ProASIC3/EL architecture provides granularity comparable to standard-cell  
ASICs. The military ProASIC3/EL device consists of five distinct and programmable architectural  
features (Figure 1-1 on page 1-4 and Figure 1-2 on page 1-4):  
FPGA VersaTiles  
Dedicated FlashROM  
Dedicated SRAM/FIFO memory  
Extensive CCCs and PLLs  
I/O structure  
The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic  
function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch  
interconnections. The versatility of the military ProASIC3/EL core tile, as either a three-input lookup table  
(LUT) equivalent or a D-flip-flop/latch with enable, allows for efficient use of the FPGA fabric. The  
VersaTile capability is unique to the ProASIC family of third-generation-architecture flash FPGAs.  
VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed  
throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core  
utilization is possible for virtually any design.  
Revision 5  
1-3  
Military ProASIC3/EL Device Family Overview  
Bank 0  
CCC  
RAM Block  
4,608-Bit Dual-Port  
SRAM or FIFO Block  
I/Os  
VersaTile  
RAM Block  
4,608-Bit Dual-Port  
SRAM or FIFO Block  
ISP AES  
Decryption  
User Nonvolatile  
FlashROM  
Charge Pumps  
Bank 2  
Figure 1-1 • Military ProASIC3 Device Architecture Overview with Four I/O Banks (A3P250 and A3P1000)  
CCC  
RAM Block  
4,608-Bit Dual-Port SRAM  
or FIFO Block  
Pro I/Os  
VersaTile  
RAM Block  
4,608-Bit Dual-Port SRAM  
or FIFO Block  
ISP AES  
Decryption*  
User Nonvolatile  
FlashRom  
Flash*Freeze  
Technology  
Charge  
Pumps  
Figure 1-2 • Military ProASIC3EL Device Architecture Overview (A3PE600L and A3PE3000L)  
1-4  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
††  
Flash*Freeze Technology  
Military ProASIC3EL devices offer proven Flash*Freeze technology, which enables designers to  
instantaneously shut off dynamic power consumption while retaining all SRAM and register information.  
Flash*Freeze technology enables the user to quickly (within 1 µs) enter and exit Flash*Freeze mode by  
activating the Flash*Freeze (FF) pin while all power supplies are kept at their original values. In addition,  
I/Os and global I/Os can still be driven and can be toggling without impact on power consumption; clocks  
can still be driven or can be toggling without impact on power consumption; all core registers and SRAM  
cells retain their states. I/Os are tristated during Flash*Freeze mode or can be set to a certain state using  
weak pull-up or pull-down I/O attribute configuration. No power is consumed by the I/O banks, clocks,  
JTAG pins, or PLLs. Flash*Freeze technology allows the user to switch to active mode on demand, thus  
simplifying the power management of the device.  
The FF pin (active low) can be routed internally to the core to allow the user's logic to decide when it is  
safe to transition to this mode. It is also possible to use the FF pin as a regular I/O if Flash*Freeze mode  
usage is not planned, which is advantageous because of the inherent low-power static and dynamic  
capabilities of the military ProASIC3EL device. Refer to Figure 1-3 for an illustration of entering/exiting  
Flash*Freeze mode.  
Microsemi ProASIC3EL  
FPGA  
Flash*Freeze  
Mode Control  
Flash*Freeze Pin  
Figure 1-3 • Military ProASIC3EL Flash*Freeze Mode  
VersaTiles  
The military ProASIC3/EL core consists of VersaTiles, which have been enhanced beyond the  
ProASICPLUS® core tiles. The military ProASIC3/EL VersaTile supports the following:  
All 3-input logic functions—LUT-3 equivalent  
Latch with clear or set  
D-flip-flop with clear or set  
Enable D-flip-flop with clear or set  
Refer to Figure 1-4 for VersaTile configurations.  
Enable D-Flip-Flop with Clear or Set  
D-Flip-Flop with Clear or Set  
LUT-3 Equivalent  
X1  
Data  
Y
Data  
CLK  
CLR  
Y
X2  
X3  
LUT-3  
Y
D-FF  
CLK  
D-FF  
Enable  
CLR  
Figure 1-4 • VersaTile Configurations  
††Flash*Freeze technology is not supported for A3P1000.  
Revision 5  
1-5  
Military ProASIC3/EL Device Family Overview  
User Nonvolatile FlashROM  
Military ProASIC3/EL devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The  
FlashROM can be used in diverse system applications:  
Internet protocol addressing (wireless or fixed)  
System calibration settings  
Device serialization and/or inventory control  
Subscription-based business models (for example, set-top boxes)  
Secure key storage for secure communications algorithms  
Asset management/tracking  
Date stamping  
Version management  
FlashROM is written using the standard military ProASIC3/EL IEEE 1532 JTAG programming interface.  
The core can be individually programmed (erased and written), and on-chip AES decryption can be used  
selectively to securely load data over public networks, as in security keys stored in the FlashROM for a  
user design.  
FlashROM can be programmed via the JTAG programming interface, and its contents can be read back  
either through the JTAG programming interface or via direct FPGA core addressing. Note that the  
FlashROM can only be programmed from the JTAG interface and cannot be programmed from the  
internal logic array.  
FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis  
using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and  
which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the  
FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM  
address define the byte.  
Microsemi military ProASIC3/EL development software solutions, Libero SoC has extensive support for  
the FlashROM. One such feature is auto-generation of sequential programming files for applications  
requiring a unique serial number in each part. Another feature allows the inclusion of static data for  
system version control. Data for the FlashROM can be generated quickly and easily using the Libero  
SoC software tools. Comprehensive programming file support is also included to allow for easy  
programming of large numbers of parts with differing FlashROM contents.  
SRAM and FIFO  
Military ProASIC3/EL devices have embedded SRAM blocks along their north and south sides. Each  
variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18,  
512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can  
be configured with different bit widths on each port. For example, data can be sent through a 4-bit port  
and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port  
(ROM emulation mode) using the UJTAG macro.  
In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM  
block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width  
and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and  
Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control  
unit contains the counters necessary for generation of the read and write address pointers. The  
embedded SRAM/FIFO blocks can be cascaded to create larger configurations.  
PLL and CCC  
Military ProASIC3 devices provide designers with flexible clock conditioning circuit (CCC) capabilities.  
Each member of the military ProASIC3 family contains six CCCs, located at the four corners and the  
centers of the east and west sides. One CCC (center west side) has a PLL. All six CCC blocks are  
usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock  
spine access.  
Military ProASIC3EL devices also contain six CCCs; however, all six are equipped with a PLL.  
The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs  
located near the CCC that have dedicated connections to the CCC block.  
1-6  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
The CCC block has these key features:  
Wide input frequency range (fIN_CCC) = 1.5 MHz up to 250 MHz  
Output frequency range (fOUT_CCC) = 0.75 MHz up to 250 MHz  
2 programmable delay types for clock skew minimization  
Clock frequency synthesis  
Additional CCC specifications:  
Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider  
configuration.  
Output duty cycle = 50% ± 1.5% or better  
Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global  
network used  
Maximum acquisition time is 300 µs  
Exceptional tolerance to input period jitter—allowable input jitter is up to 1.5 ns  
Four precise phases; maximum misalignment between adjacent phases of 40 ps × 250 MHz /  
fOUT_CCC  
Global Clocking  
Military ProASIC3/EL devices have extensive support for multiple clocking domains. In addition to the  
CCC and PLL support described above, there is a comprehensive global clock distribution network.  
Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant  
global networks. The VersaNets can be driven by the CCC or directly accessed from the core via  
multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid  
distribution of high-fanout nets.  
I/Os with Advanced I/O Standards  
The military ProASIC3/EL family of FPGAs features a flexible I/O structure, supporting a range of  
voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V). In addition, 1.2 V I/O operation is supported for military  
ProASIC3EL devices. Military ProASIC3/EL FPGAs support different I/O standards, including single-  
ended, differential, and voltage-referenced (military ProASIC3EL). The I/Os are organized into banks,  
with two, four, or eight (military ProASIC3EL only) banks per device. The configuration of these banks  
determines the I/O standards supported. For military ProASIC3EL, each I/O bank is subdivided into VREF  
minibanks, which are used by voltage-referenced I/Os. VREF minibanks contain 8 to 18 I/Os. All the I/Os  
in a given minibank share a common VREF line. Therefore, if any I/O in a given VREF minibank is  
configured as a VREF pin, the remaining I/Os in that minibank will be able to use that reference voltage.  
Each I/O module contains several input, output, and enable registers. These registers allow the  
implementation of the following:  
Single-data-rate applications (e.g., PCI 66 MHz, bidirectional SSTL 2 and 3, Class I and II)  
Double-data-Rate applications (e.g., DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point  
communications, and DDR 200 MHz SRAM using bidirectional HSTL Class II).  
Military ProASIC3EL banks support LVPECL, LVDS, B-LVDS, and M-LVDS. B-LVDS and M-LVDS can  
support up to 20 loads.  
Revision 5  
1-7  
2 – Military ProASIC3/EL DC and Switching  
Characteristics  
General Specifications  
Operating Conditions  
Stresses beyond those listed in Table 2-1 may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
absolute maximum ratings are stress ratings only; functional operation of the device at these or any other  
conditions beyond those listed under the Recommended Operating Conditions specified in Table 2-2 on  
page 2-2 is not implied.  
Table 2-1 • Absolute Maximum Ratings1  
Symbol  
VCC  
Parameter  
DC core supply voltage  
JTAG DC voltage  
Limits  
Units  
–0.3 to 1.65  
–0.3 to 3.75  
–0.3 to 3.75  
–0.3 to 1.65  
–0.3 to 3.75  
V
V
V
V
V
VJTAG  
VPUMP Programming voltage  
VCCPLL Analog power supply (PLL)  
VCCI  
DC I/O buffer supply voltage for  
A3PE600/3000L  
DC output buffer supply voltage for  
A3P250/A3P1000  
VMV  
VI  
DC input buffer supply voltage for  
A3P250/A3P1000  
–0.3 to 3.75  
V
V
I/O input voltage  
–0.3 V to 3.6 V (when I/O hot insertion mode is enabled)  
–0.3 V to (VCCI + 1 V) or 3.6 V, whichever voltage is  
lower (when I/O hot-insertion mode is disabled)  
2
TSTG  
Storage temperature  
Junction temperature  
–65 to +150  
+150  
°C  
°C  
2
TJ  
Notes:  
1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may  
undershoot or overshoot according to the limits shown in Table 2-4 on page 2-3.  
2. For flash programming and retention maximum limits, refer to Table 2-4 on page 2-3, and for recommended operating  
limits, refer to Table 2-2 on page 2-2.  
Revision 5  
2-1  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-2 • Recommended Operating Conditions 1  
Symbol  
TJ  
Parameter  
Military  
Units  
°C  
V
Junction temperature  
1.5 V DC core supply voltage3  
–55 to 125 2  
1.425 to 1.575  
1.14 to 1.575  
VCC  
1.2 V – 1.5 V wide range DC core  
supply voltage 4  
V
VJTAG  
JTAG DC voltage  
1.4 to 3.6  
3.15 to 3.45  
0 to 3.6  
V
V
V
V
V
VPUMP5  
Programming voltage  
Programming mode  
Operation6  
VCCPLL5  
Analog power supply (PLL)  
1.5 V DC core supply voltage3  
1.425 to 1.575  
1.2 V – 1.5 V DC core supply 1.14 to 1.575  
voltage4  
VCCI and VMV5 1.2 V DC supply voltage4  
1.2 V wide range DC supply voltage4  
1.14 to 1.26  
1.14 to 1.575  
1.425 to 1.575  
1.7 to 1.9  
V
V
V
V
V
V
V
V
V
1.5 V DC supply voltage  
1.8 V DC supply voltage  
2.5 V DC supply voltage  
3.0 V DC supply voltage7  
3.3 V DC supply voltage  
LVDS differential I/O  
2.3 to 2.7  
2.7 to 3.6  
3.0 to 3.6  
2.375 to 2.625  
3.0 to 3.6  
LVPECL differential I/O  
Notes:  
1. All parameters representing voltages are measured with respect to GND unless otherwise specified.  
2. Default Junction Temperature Range in the Libero SoC software is set from 0°C to +70°C for commercial, and -40°C to  
+85°C for industrial. To ensure targeted reliability standards are met across the full range of junction temperatures,  
Microsemi recommends using custom settings for temperature range before running timing and power analysis tools.  
For more information regarding custom settings, refer to the New Project Dialog Box in the Libero SoC Online Help.  
3. For A3P250 and A3P1000  
4. For A3PE600L and A3PE3000L devices only, operating at VCCI VCC.  
5. See the "Pin Descriptions and Packaging" section on page 3-1 for instructions and recommendations on tie-off and  
supply grouping.  
6. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O  
standard are given in Table 2-25 on page 2-22. VCCI should be at the same voltage within a given I/O bank.  
7. 3.3 V wide range is compliant to the JESD8-B specification and supports 3.0 V VCCI operation.  
8. To ensure targeted reliability standards are met across ambient and junction operating temperatures, Microsemi  
recommends that the user follow best design practices using Microsemi’s timing and power simulation tools.  
2-2  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-3 • Flash Programming Limits – Retention, Storage and Operating Temperature1  
Product  
Grade  
Programming Program Retention  
Maximum Storage  
Maximum Operating  
Cycles  
(biased/unbiased) Temperature TSTG (°C) 2 Junction Temperature TJ (°C) 2  
Commercial  
Industrial  
Notes:  
500  
20 years  
20 years  
110  
110  
100  
100  
500  
1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.  
2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 for device operating  
conditions and absolute limits.  
Table 2-4 • Overshoot and Undershoot Limits1  
Average VCCI–GND Overshoot or Undershoot  
Duration as a Percentage of Clock Cycle2  
Maximum Overshoot/  
Undershoot (125°C)2  
VCCI and VMV  
2.7 V or less  
10%  
5%  
0.72 V  
0.82 V  
0.72 V  
0.82 V  
0.69 V  
0.79 V  
N/A  
3 V  
10%  
5%  
3.3 V  
3.6 V  
Notes:  
10%  
5%  
10%  
5%  
N/A  
1. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the  
maximum overshoot/undershoot has to be reduced by 0.15 V.  
2. This table does not provide PCI overshoot/undershoot limits.  
I/O Power-Up and Supply Voltage Thresholds for Power-On Reset  
(Military)  
Sophisticated power-up management circuitry is designed into every ProASIC®3 device. These circuits  
ensure easy transition from the powered-off state to the powered-up state of the device. The many  
different supplies can power up in any sequence with minimized current spikes or surges. In addition, the  
I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1  
on page 2-4 and Figure 2-2 on page 2-5.  
There are five regions to consider during power-up.  
Military ProASIC3 I/Os are activated only if ALL of the following three conditions are met:  
1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 on page 2-4 and  
Figure 2-2 on page 2-5).  
2. VCCI > VCC – 0.75 V (typical)  
3. Chip is in the operating mode.  
VCCI Trip Point:  
Ramping up: 0.6 V < trip_point_up < 1.2 V  
Ramping down: 0.5 V < trip_point_down < 1.1 V  
VCC Trip Point:  
Ramping up: 0.6 V < trip_point_up < 1.1 V  
Ramping down: 0.5 V < trip_point_down < 1 V  
VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically  
built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:  
During programming, I/Os become tristated and weakly pulled up to VCCI.  
Revision 5  
2-3  
Military ProASIC3/EL DC and Switching Characteristics  
JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O  
behavior.  
PLL Behavior at Brownout Condition  
Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper power-  
up behavior. Power ramp-up should be monotonic, at least until VCC and VCCPLX exceed brownout  
activation levels. The VCC activation level is specified as 1.1 V worst-case (see Figure 2-1 and Figure 2-  
2 on page 2-5 for more details).  
When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V  
± 0.25 V), the PLL output lock signal goes low and/or the output clock is lost. Refer to the "Power-Up/-  
Down Behavior of Low-Power Flash Devices" chapter of the Military ProASIC3/EL FPGA Fabric User’s  
Guide for information on clock and lock recovery.  
Internal Power-Up Activation Sequence  
1. Core  
2. Input buffers  
Output buffers, after 200 ns delay from input buffer activation.  
VCC = VCCI + VT  
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)  
VCC  
VCC = 1.575 V  
Region 5: I/O buffers are ON  
and power supplies are within  
specification.  
Region 4: I/O  
buffers are ON.  
I/Os are functional  
Region 1: I/O Buffers are OFF  
I/Os meet the entire datasheet  
(except differential  
and timer specifications for  
speed, VIH / VIL, VOH / VOL,  
etc.  
but slower because VCCI  
is below specification. For the  
same reason, input buffers do not  
meet VIH / VIL levels, and output  
buffers do not meet VOH / VOL levels.  
VCC = 1.425 V  
Region 2: I/O buffers are ON.  
Region 3: I/O buffers are ON.  
I/Os are functional; I/O DC  
specifications are met,  
but I/Os are slower because  
the VCC is below specification.  
I/Os are functional (except differential inputs)  
but slower because VCCI / VCC are below  
specification. For the same reason, input  
buffers do not meet VIH / VIL levels, and  
output buffers do not meet VOH / VOL levels.  
Activation trip point:  
Va = 0.85 V ± 0.25 V  
Deactivation trip point:  
Region 1: I/O buffers are OFF  
Vd = 0.75 V ± 0.25 V  
VCCI  
Activation trip point:  
a = 0.9 V ± 0.3 V  
Deactivation trip point:  
Min VCCI datasheet specification  
V
voltage at a selected I/O  
standard; i.e., 1.425 V or 1.7 V  
or 2.3 V or 3.0 V  
Vd = 0.8 V ± 0.3 V  
Figure 2-1 • Devices Operating at 1.5 V Core – I/O State as a Function of VCCI and VCC Voltage Levels  
2-4  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
VCC = VCCI + VT  
where VT can be from 0.58 V to 0.9 V (typically 0.75 V)  
VCC  
VCC = 1.575 V  
Region 5: I/O buffers are ON  
and power supplies are within  
specification.  
Region 4: I/O  
buffers are ON.  
I/Os are functional  
(except differential inputs)  
Region 1: I/O Buffers are OFF  
I/Os meet the entire datasheet  
and timer specifications for  
speed, VIH / VIL , VOH / VOL , etc.  
but slower because VCCI is  
below specification. For the  
same reason, input buffers do not  
meet VIH / VIL levels, and output  
buffers do not meet VOH / VOL levels.  
VCC = 1.14 V  
Region 2: I/O buffers are ON.  
Region 3: I/O buffers are ON.  
I/Os are functional; I/O DC  
specifications are met,  
but I/Os are slower because  
the VCC is below specification.  
I/Os are functional (except differential inputs)  
but slower because VCCI/VCC are below  
specification. For the same reason, input  
buffers do not meet VIH/VIL levels, and  
output buffers do not meet VOH/VOL levels.  
Activation trip point:  
Va = 0.85 V ± 0.2 V  
Deactivation trip point:  
Region 1: I/O buffers are OFF  
Vd = 0.75 V ± 0.2 V  
VCCI  
Activation trip point:  
a = 0.9 V ± 0.15 V  
Deactivation trip point:  
Min VCCI datasheet specification  
voltage at a selected I/O  
standard; i.e., 1.14 V,1.425 V, 1.7 V,  
2.3 V, or 3.0 V  
V
Vd = 0.8 V ± 0.15 V  
Figure 2-2 • Device Operating at 1.2 V Core Voltage – I/O State as a Function of VCCI and VCC Voltage  
Levels; Only A3PE600L and A3PE3000L Devices Operate at 1.2 V Core Voltage  
Thermal Characteristics  
Introduction  
The temperature variable in the Designer software refers to the junction temperature, not the ambient  
temperature. This is an important distinction because dynamic and static power consumption cause the  
chip junction temperature to be higher than the ambient temperature.  
EQ 1 can be used to calculate junction temperature.  
TJ = Junction Temperature = T + TA  
EQ 1  
where:  
TA = Ambient Temperature  
T = Temperature gradient between junction (silicon) and ambient T = ja * P  
ja = Junction-to-ambient of the package. ja numbers are located in Table 2-5.  
P = Power dissipation  
Package Thermal Characteristics  
The device junction-to-case thermal resistivity is jc and the junction-to-ambient air thermal resistivity is  
ja. The thermal characteristics for ja are shown for two air flow rates. The recommended maximum  
junction temperature is 125°C. EQ 2 shows a sample calculation of the recommended maximum power  
dissipation allowed for a 484-pin FBGA package at military temperature and in still air.  
Max. junction temp. (C) – Max. ambient temp. (C) 125C – 70C  
Maximum Power Allowed = --------------------------------------------------------------------------------------------------------------------------------- = ---------------------------------- = 2.670  
ja(C/W)  
20.6C/W  
Revision 5  
2-5  
Military ProASIC3/EL DC and Switching Characteristics  
EQ 2  
Table 2-5 • Package Thermal Resistivities  
ja  
Pin Count jc Still Air 200 ft./min. 500 ft./min. Units  
Package Type  
Device  
A3P250  
Very Thin Quad Flat Pack (VQ100)  
Plastic Quad Flat Pack (PQ208)*  
Fine Pitch Ball Grid Array (FBGA)  
100  
208  
144  
256  
484  
484  
484  
896  
10.0  
3.8  
6.3  
6.6  
8.0  
9.5  
4.7  
2.4  
35.3  
16.2  
31.6  
28.1  
23.3  
27.5  
20.6  
13.6  
29.4  
13.3  
26.2  
24.4  
19.0  
21.9  
15.7  
10.4  
27.1  
11.9  
24.2  
22.7  
16.7  
20.2  
14.0  
9.4  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
A3P1000  
A3P1000  
A3P1000  
A3P1000  
A3PE600L  
A3PE3000L  
A3PE3000L  
* Embedded heatspreader  
Temperature and Voltage Derating Factors  
Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays  
(normalized to TJ = 125°C, VCC = 1.14 V)  
Applicable to A3PE600L and A3PE3000L Only  
Junction Temperature  
Array Voltage VCC (V)  
–55°C  
0.85  
0.82  
0.79  
0.77  
0.74  
0.72  
0.71  
0.67  
0.65  
–40°C  
0.86  
0.83  
0.80  
0.78  
0.75  
0.73  
0.71  
0.68  
0.66  
0°C  
0.89  
0.86  
0.83  
0.81  
0.78  
0.75  
0.74  
0.70  
0.68  
25°C  
0.92  
0.88  
0.85  
0.83  
0.80  
0.77  
0.76  
0.72  
0.70  
70°C  
85°C  
0.97  
0.93  
0.90  
0.88  
0.85  
0.82  
0.80  
0.76  
0.74  
125°C  
1.14  
1.2  
0.96  
0.92  
0.89  
0.86  
0.84  
0.81  
0.79  
0.75  
0.73  
1.00  
0.96  
0.93  
0.90  
0.88  
0.85  
0.83  
0.79  
0.76  
1.26  
1.30  
1.35  
1.40  
1.425  
1.5  
1.575  
Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays  
(normalized to TJ = 125°C, VCC = 1.425 V)  
Applicable to A3P250 and A3P1000 Devices Only  
Junction Temperature  
Array Voltage VCC (V)  
–55°C  
0.80  
–40°C  
0.82  
0°C  
25°C  
0.89  
0.84  
0.82  
70°C  
85°C  
0.96  
0.91  
0.87  
125°C  
1.00  
1.425  
1.5  
0.87  
0.82  
0.79  
0.94  
0.89  
0.86  
0.76  
0.78  
0.95  
1.575  
0.73  
0.75  
0.91  
2-6  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Calculating Power Dissipation  
Quiescent Supply Current  
Table 2-8 • Power Supply State Per Mode  
Power Supply Configurations  
VCCPLL VCCI VJTAG  
On On  
Modes/Power Supplies  
Flash*Freeze  
Sleep  
VCC  
On  
VPUMP  
On/off/floating  
Off  
On  
Off  
Off  
On  
Off  
On  
Off  
On  
Off  
Off  
On  
Shutdown  
Off  
Off  
Static and Active  
On  
On/off/floating  
Table 2-9 • Quiescent Supply Current (IDD) Characteristics, Flash*Freeze Mode*  
Core Voltage  
1.2 V  
A3PE600L  
A3PE3000L  
Units  
mA  
mA  
mA  
mA  
mA  
mA  
Nominal (25°C)  
0.55  
0.83  
9
2.75  
4.2  
17  
1.5 V  
Typical maximum (25ºC)  
Military maximum (125ºC)  
1.2 V  
1.5 V  
12  
20  
1.2 V  
65  
165  
185  
1.5 V  
85  
Note: *IDD includes VCC, VPUMP, VCCI, VJTAG, and VCCPLL currents. Values do not include I/O static contribution  
(PDC6 and PDC7).  
Table 2-10 • Quiescent Supply Current (IDD) Characteristics, Sleep Mode (VCC = 0 V)*  
Core Voltage  
A3PE600L  
A3PE3000L  
Units  
VCCI / VJTAG = 1.2 V (per bank)  
Typical (25°C)  
1.2 V  
1.7  
1.7  
µA  
VCCI / VJTAG = 1.5 V (per bank)  
Typical (25°C)  
1.2 V / 1.5 V  
1.2 V / 1.5 V  
1.2 V / 1.5 V  
1.2 V / 1.5 V  
1.8  
1.9  
2.2  
2.5  
1.8  
1.9  
2.2  
2.5  
µA  
µA  
µA  
µA  
VCCI / VJTAG = 1.8 V (per bank)  
Typical (25°C)  
VCCI / VJTAG = 2.5 V (per bank)  
Typical (25°C)  
VCCI / VJTAG = 3.3 V (per bank)  
Typical (25°C)  
Note: *IDD = N  
× ICCI. Values do not include I/O static contribution, which is shown in Table 2-22 on page 2-14 (PDC6  
BANKS  
and PDC7).  
Table 2-11 • Quiescent Supply Current (IDD) Characteristics, Shutdown Mode*  
Core Voltage  
1.2 V / 1.5 V  
1.2 V / 1.5 V  
A3P250  
A3P1000  
A3PE600L  
A3PE3000L  
Units  
µA  
Nominal (25°C)  
Military (125ºC)  
N/A  
N/A  
0
0
µA  
Note: *This is applicable to A3PE600L and A3PE3000L only for cold-sparable I/O devices. Not available on A3P250 or  
A3P1000.  
Revision 5  
2-7  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-12 • Quiescent Supply Current (IDD), Static Mode and Active Mode 1  
Core Voltage  
A3PE600L  
A3PE3000L  
Units  
ICCA Current2  
Nominal (25°C)  
1.2 V  
1.5 V  
1.2 V  
1.5 V  
1.2 V  
1.5 V  
0.55  
0.83  
9
2.75  
4.2  
17  
mA  
mA  
mA  
mA  
mA  
mA  
Typical maximum (25°C)  
Military maximum (125°C)  
ICCI or IJTAG Current3  
12  
20  
65  
165  
185  
85  
VCCI / VJTAG = 1.2 V (per bank)  
Typical (25°C)  
1.2 V  
1.7  
1.8  
1.9  
2.2  
2.5  
1.7  
1.8  
1.9  
2.2  
2.5  
µA  
µA  
µA  
µA  
µA  
VCCI / VJTAG = 1.5 V (per bank)  
Typical (25°C)  
1.2 V / 1.5 V  
1.2 V / 1.5 V  
1.2 V / 1.5 V  
1.2 V / 1.5 V  
VCCI / VJTAG = 1.8 V (per bank)  
Typical (25°C)  
VCCI / VJTAG = 2.5 V (per bank)  
Typical (25°C)  
VCCI / VJTAG = 3.3 V (per bank)  
Typical (25°C)  
Notes:  
1. IDD = N  
× ICCI + ICCA. JTAG counts as one bank when powered.  
BANKS  
2. Includes VCC , VCCPLL, and VPUMP currents.  
3. Values do not include I/O static contribution (PDC6 and PDC7).  
Table 2-13 • Quiescent Supply Current (IDD) Characteristics for A3P250 and A3P1000  
Core Voltage  
1.5 V  
A3P250  
A3P1000  
Units  
mA  
Nominal (25°C)  
3
8
Typical maximum (25°C)  
Military maximum (125°C)  
1.5 V  
15  
65  
30  
mA  
1.5 V  
150  
mA  
Note: IDD includes VCC, VPUMP, VCCI, and VMV currents. Values do not include I/O static contribution (PDC6 and PDC7),  
which is shown in Table 2-22 on page 2-14.  
2-8  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Power per I/O Pin  
Table 2-14 • Summary of I/O Input Buffer Power (Per Pin) – Default I/O Software Settings  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Static Power PDC6  
Dynamic Power  
PAC9 (µW/MHz)2  
VCCI (V)  
(mW)1  
Single-Ended  
3.3 V LVTTL/LVCMOS  
3.3 V LVTTL/LVCMOS – Schmitt trigger  
3.3 V LVCMOS Wide Range  
3.3 V LVCMOS – Schmitt trigger Wide Range  
2.5 V LVCMOS  
3.3  
3.3  
3.3  
3.3  
2.5  
2.5  
1.8  
1.8  
1.5  
1.5  
1.2  
1.2  
1.2  
1.2  
3.3  
3.3  
3.3  
3.3  
16.34  
24.49  
16.34  
24.49  
4.71  
2.5 V LVCMOS – Schmitt trigger  
1.8 V LVCMOS  
6.13  
1.66  
1.8 V LVCMOS – Schmitt trigger  
1.5 V LVCMOS (JESD8-11)  
1.5 V LVCMOS (JESD8-11) – Schmitt trigger  
1.2 V LVCMOS  
1.78  
1.01  
0.97  
0.60  
1.2 V LVCMOS (JESD8-11) – Schmitt trigger  
1.2 V LVCMOS Wide Range  
1.2 V LVCMOS Schmitt trigger Wide Range  
3.3 V PCI  
0.53  
0.60  
0.53  
17.76  
19.10  
17.76  
19.10  
3.3 V PCI – Schmitt trigger  
3.3 V PCI-X  
3.3 V PCI-X – Schmitt trigger  
Voltage-Referenced  
3.3 V GTL  
3.3  
2.5  
3.3  
2.5  
1.5  
1.5  
2.5  
2.5  
3.3  
3.3  
2.90  
2.13  
2.81  
2.57  
0.17  
0.17  
1.38  
1.38  
3.21  
3.21  
7.14  
3.54  
2.91  
2.61  
0.79  
0.79  
3.26  
3.26  
7.97  
7.97  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
Differential  
LVDS  
2.5  
3.3  
2.26  
5.71  
0.89  
1.94  
LVPECL  
Notes:  
1. PDC6 is the static power (where applicable) measured on VCCI.  
2. PAC9 is the total dynamic power measured on VCCI.  
Revision 5  
2-9  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-15 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings  
Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only  
Static Power  
PDC6 (mW)1  
Dynamic Power  
VMV (V)  
PAC9 (µW/MHz)2  
Single-Ended  
3.3 V LVTTL / 3.3 V LVCMOS  
3.3 V LVCMOS – Wide Range  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS (JESD8-11)  
3.3 V PCI  
3.3  
3.3  
2.5  
1.8  
1.5  
3.3  
3.3  
16.22  
16.22  
4.65  
1.65  
0.98  
17.64  
17.64  
3.3 V PCI-X  
Differential  
LVDS  
2.5  
3.3  
2.26  
5.72  
0.83  
1.81  
LVPECL  
Notes:  
1. PDC6 is the static power (where applicable) measured on VMV.  
2. PAC9 is the total dynamic power measured on VMV.  
Table 2-16 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings  
Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only  
Static Power  
PDC6 (mW) 1  
Dynamic Power  
VMV (V)  
PAC9 (µW/MHz) 2  
Single-Ended  
3.3 V LVTTL / 3.3 V LVCMOS  
3.3 V LVCMOS – Wide Range  
2.5 V LVCMOS  
3.3  
3.3  
2.5  
1.8  
1.5  
3.3  
3.3  
16.23  
16.23  
4.66  
1.8 V LVCMOS  
1.64  
1.5 V LVCMOS (JESD8-11)  
3.3 V PCI  
0.99  
17.64  
17.64  
3.3 V PCI-X  
Notes:  
1. PDC6 is the static power (where applicable) measured on VMV.  
2. PAC9 is the total dynamic power measured on VMV.  
2-10  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-17 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings 1  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Static Power  
PDC7 (mW)2  
Dynamic Power  
CLOAD (pF)  
VCCI (V)  
PAC10 (µW/MHz)3  
Single-Ended  
3.3 V LVTTL/LVCMOS  
3.3 V LVCMOS Wide Range  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS (JESD8-11)  
1.2 V LVCMOS  
1.2 V LVCMOS Wide Range  
3.3 V PCI  
5
5
3.3  
3.3  
2.5  
1.8  
1.5  
1.2  
1.2  
3.3  
3.3  
148.00  
148.00  
83.23  
54.58  
37.05  
17.94  
17.94  
204.61  
204.61  
5
5
5
5
5
10  
10  
3.3 V PCI-X  
Voltage-Referenced  
3.3 V GTL  
10  
10  
10  
10  
20  
20  
30  
30  
30  
30  
3.3  
2.5  
3.3  
2.5  
1.5  
1.5  
2.5  
2.5  
3.3  
3.3  
24.08  
13.52  
24.10  
13.54  
26.22  
27.18  
105.56  
116.48  
114.67  
131.69  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
7.08  
13.88  
16.69  
25.91  
26.02  
42.21  
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
Differential  
LVDS  
2.5  
3.3  
7.70  
89.58  
LVPECL  
19.42  
167.86  
Notes:  
1. Dynamic power consumption is given for standard load and software default drive strength and output slew.  
2. PDC7 is the static power (where applicable) measured on VCCI.  
3. PAC10 is the total dynamic power measured on VCCI.  
Revision 5  
2-11  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-18 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings 1  
Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only  
Static Power PDC7  
Dynamic Power  
CLOAD (pF)  
VCCI (V)  
(mW) 2  
PAC10 (µW/MHz) 3  
Single-Ended  
3.3 V LVTTL /  
5
3.3  
141.97  
3.3 V LVCMOS  
3.3 V LVCMOS Wide Range  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS (JESD8-11)  
3.3 V PCI  
5
5
3.3  
2.5  
1.8  
1.5  
3.3  
3.3  
141.97  
79.98  
5
52.26  
5
35.62  
10  
10  
201.02  
201.02  
3.3 V PCI-X  
Differential  
LVDS  
2.5  
3.3  
7.74  
89.82  
LVPECL  
19.54  
167.55  
Notes:  
1. Dynamic Power consumption is given for software default drive strength and output slew. Output load is lower than the  
software default.  
2. PDC7 is the static power (where applicable) measured on VCCI.  
3. PAC10 is the total dynamic power measured on VCCI.  
Table 2-19 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings  
Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only  
Static Power  
PDC7 (mW) 2  
Dynamic Power  
CLOAD (pF)  
VCCI (V)  
PAC10 (µW/MHz) 3  
Single-Ended  
3.3 V LVTTL /  
5
3.3  
125.97  
3.3 V LVCMOS  
3.3 V LVCMOS – Wide Range  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS (JESD8-11)  
3.3 V PCI  
5
5
3.3  
2.5  
1.8  
1.5  
3.3  
3.3  
125.97  
70.82  
5
36.39  
5
25.34  
10  
10  
184.92  
184.92  
3.3 V PCI-X  
Notes:  
1. Dynamic Power consumption is given for software default drive strength and output slew. Output load is lower than the  
software default.  
2. PDC7 is the static power (where applicable) measured on VCCI.  
3. PAC10 is the total dynamic power measured on VCCI.  
2-12  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Power Consumption of Various Internal Resources  
Table 2-20 • Different Components Contributing to Dynamic Power Consumption in Military ProASIC3/EL  
Devices Operating at 1.2 V VCC  
Device-Specific Dynamic Power  
(µW/MHz)  
Parameter  
PAC1  
Definition  
Clock contribution of a Global Rib  
Clock contribution of a Global Spine  
Clock contribution of a VersaTile row  
A3PE3000L  
8.34  
A3PE600L  
3.99  
PAC2  
4.28  
2.22  
PAC3  
0.94  
0.94  
PAC4  
Clock contribution of a VersaTile used as a sequential  
module  
0.08  
0.08  
PAC5  
PAC6  
First contribution of a VersaTile used as a sequential module  
0.05  
0.19  
Second contribution of a VersaTile used as a sequential  
module  
PAC7  
PAC8  
PAC9  
Contribution of a VersaTile used as a combinatorial module  
Average contribution of a routing net  
0.11  
0.45  
Contribution of an I/O input pin (standard-dependent)  
See Table 2-14 on page 2-9  
through Table 2-16 on page 2-10.  
PAC10  
Contribution of an I/O output pin (standard-dependent)  
See Table 2-17 on page 2-11  
through Table 2-19 on page 2-12.  
PAC11  
PAC12  
PAC13  
Average contribution of a RAM block during a read operation  
Average contribution of a RAM block during a write operation  
Dynamic contribution for PLL  
25.00  
30.00  
1.74  
Revision 5  
2-13  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-21 • Different Components Contributing to Dynamic Power Consumption in Military ProASIC3 and  
ProASIC3/EL Devices at 1.5 V VCC  
Device-Specific Dynamic Power (µW/MHz)  
Parameter  
PAC1  
Definition  
A3PE3000L A3PE600L A3P1000  
A3P250  
11.00  
1.58  
Clock contribution of a Global Rib  
Clock contribution of a Global Spine  
Clock contribution of a VersaTile row  
13.03  
6.69  
1.46  
0.13  
6.24  
3.47  
1.46  
0.13  
14.50  
2.48  
0.81  
0.12  
PAC2  
PAC3  
0.81  
PAC4  
Clock contribution of a VersaTile used as a  
sequential module  
0.12  
PAC5  
PAC6  
PAC7  
First contribution of a VersaTile used as a  
sequential module  
0.07  
0.29  
0.29  
0.70  
Second contribution of a VersaTile used as a  
sequential module  
Contribution of  
a
VersaTile used as  
a
combinatorial Module  
PAC8  
PAC9  
Average contribution of a routing net  
Contribution of an I/O input pin (standard- See Table 2-14 on page 2-9 through Table 2-16 on  
dependent) page 2-10.  
PAC10  
PAC11  
PAC12  
PAC13  
Contribution of an I/O output pin (standard- See Table 2-17 on page 2-11 through Table 2-19 on  
dependent)  
page 2-12.  
Average contribution of a RAM block during a  
read operation  
25.00  
Average contribution of a RAM block during a  
write operation  
30.00  
2.60  
Dynamic contribution for PLL  
Table 2-22 • Different Components Contributing to the Static Power Consumption in Military ProASIC3/EL  
Devices  
Device-Specific Dynamic Power (µW)  
Parameter  
PDC0  
Definition  
A3PE3000L A3PE600L A3P1000 A3P250  
0 mW 0 mW N/A N/A  
Array static power in Sleep mode  
Array static power in Active mode  
Array static power in Static (Idle) mode  
Array static power in Flash*Freeze mode  
PDC1  
See Table 2-12 on page 2-8.  
See Table 2-12 on page 2-8.  
See Table 2-9 on page 2-7.  
PDC2  
PDC3  
PDC4  
Static PLL contribution at 1.2 V operating core  
voltage (for A3PE600L and A3PE3000L only)  
1.42 mW  
N/A  
Static PLL contribution 1.5 V operating core  
voltage  
2.55 mW  
PDC5  
PDC6  
PDC7  
Bank quiescent power (VCCI-dependent)  
See Table 2-9 on page 2-7, Table 2-10 on page 2-7,  
Table 2-12 on page 2-8.  
I/O input pin static power (standard-dependent)  
I/O output pin static power (standard-dependent)  
See Table 2-14 on page 2-9. through Table 2-16 on  
page 2-10.  
See Table 2-17 on page 2-11 through Table 2-19 on  
page 2-12.  
Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi  
power spreadsheet calculator or SmartPower tool in the Libero SoC.  
2-14  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Power Calculation Methodology  
This section describes a simplified method to estimate power consumption of an application. For more  
accurate and detailed power estimations, use the SmartPower tool in the Libero SoC software.  
The power calculation methodology described below uses the following variables:  
The number of PLLs as well as the number and the frequency of each output clock generated  
The number of combinatorial and sequential cells used in the design  
The internal clock frequencies  
The number and the standard of I/O pins used in the design  
The number of RAM blocks used in the design  
Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-23 on  
page 2-17.  
Enable rates of output buffers—guidelines are provided for typical applications in Table 2-24 on  
page 2-17.  
Read rate and write rate to the memory—guidelines are provided for typical applications in  
Table 2-24 on page 2-17. The calculation should be repeated for each clock domain defined in the  
design.  
Methodology  
Total Power Consumption—P  
TOTAL  
PTOTAL = PSTAT + PDYN  
PSTAT is the total static power consumption.  
DYN is the total dynamic power consumption.  
Total Static Power Consumption—P  
P
STAT  
PSTAT = (PDC0 or PDC1 or PDC2 or PDC3) + NBANKS* PDC5 + NINPUTS* PDC6 + NOUTPUTS* PDC7  
NINPUTS is the number of I/O input buffers used in the design.  
N
OUTPUTS is the number of I/O output buffers used in the design.  
BANKS is the number of I/O banks powered in the design.  
N
Total Dynamic Power Consumption—P  
DYN  
PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL  
Global Clock Contribution—P  
CLOCK  
PCLOCK = (PAC1 + NSPINE * PAC2 + NROW * PAC3 + NS-CELL* PAC4) * FCLK  
NSPINE is the number of global spines used in the user design—guidelines are provided in  
Table 2-23 on page 2-17.  
NROW is the number of VersaTile rows used in the design—guidelines are provided in  
Table 2-23 on page 2-17.  
F
CLK is the global clock signal frequency.  
S-CELL is the number of VersaTiles used as sequential modules in the design.  
PAC1, PAC2, PAC3, and PAC4 are device-dependent.  
Sequential Cells Contribution—P  
N
S-CELL  
PS-CELL = NS-CELL * (PAC5 + 1 / 2 * PAC6) * FCLK  
NS-CELL is the number of VersaTiles used as sequential modules in the design. When a  
multi-tile sequential cell is used, it should be accounted for as 1.  
1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-23 on  
page 2-17.  
FCLK is the global clock signal frequency.  
Revision 5  
2-15  
Military ProASIC3/EL DC and Switching Characteristics  
Combinatorial Cells Contribution—P  
C-CELL  
PC-CELL = NC-CELL* 1 / 2 * PAC7 * FCLK  
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.  
1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-23 on  
page 2-17.  
FCLK is the global clock signal frequency.  
Routing Net Contribution—P  
NET  
PNET = (NS-CELL + NC-CELL) * 1 / 2 * PAC8 * FCLK  
NS-CELL is the number of VersaTiles used as sequential modules in the design.  
NC-CELL is the number of VersaTiles used as combinatorial modules in the design.  
1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-23 on  
page 2-17.  
F
CLK is the global clock signal frequency.  
I/O Input Buffer Contribution—P  
INPUTS  
PINPUTS = NINPUTS * 2 / 2 * PAC9 * FCLK  
NINPUTS is the number of I/O input buffers used in the design.  
2 is the I/O buffer toggle rate—guidelines are provided in Table 2-23 on page 2-17.  
F
CLK is the global clock signal frequency.  
I/O Output Buffer Contribution—P  
OUTPUTS  
POUTPUTS = NOUTPUTS * 2 / 2 * 1 * PAC10 * FCLK  
NOUTPUTS is the number of I/O output buffers used in the design.  
2 is the I/O buffer toggle rate—guidelines are provided in Table 2-23 on page 2-17.  
1 is the I/O buffer enable rate—guidelines are provided in Table 2-24 on page 2-17.  
F
CLK is the global clock signal frequency.  
RAM Contribution—P  
MEMORY  
PMEMORY = PAC11 * NBLOCKS * FREAD-CLOCK * 2 + PAC12 * NBLOCK * FWRITE-CLOCK * 3  
NBLOCKS is the number of RAM blocks used in the design.  
F
READ-CLOCK is the memory read clock frequency.  
2 is the RAM enable rate for read operations.  
WRITE-CLOCK is the memory write clock frequency.  
F
3 is the RAM enable rate for write operations—guidelines are provided in Table 2-24 on  
page 2-17.  
PLL Contribution—P  
PLL  
PPLL = PDC4 + PAC13 * FCLKOUT  
FCLKOUT is the output clock frequency.1  
1. If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding  
contribution (PAC13* FCLKOUT product) to the total PLL contribution.  
2-16  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Guidelines  
Toggle Rate Definition  
A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the  
toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are  
some examples:  
The average toggle rate of a shift register is 100% because all flip-flop outputs toggle at half of the  
clock frequency.  
The average toggle rate of an 8-bit counter is 25%:  
Bit 0 (LSB) = 100%  
Bit 1  
Bit 2  
= 50%  
= 25%  
Bit 7 (MSB) = 0.78125%  
Average toggle rate = (100% + 50% + 25% + 12.5% + . . . + 0.78125%) / 8  
Enable Rate Definition  
Output enable rate is the average percentage of time during which tristate outputs are enabled. When  
nontristate output buffers are used, the enable rate should be 100%.  
Table 2-23 • Toggle Rate Guidelines Recommended for Power Calculation  
Component  
Definition  
Toggle rate of VersaTile outputs  
I/O buffer toggle rate  
Guideline  
10%  
1  
2  
10%  
Table 2-24 • Enable Rate Guidelines Recommended for Power Calculation  
Component  
Definition  
I/O output buffer enable rate  
Guideline  
100%  
1  
2  
3  
RAM enable rate for read operations  
RAM enable rate for write operations  
12.5%  
12.5%  
Revision 5  
2-17  
Military ProASIC3/EL DC and Switching Characteristics  
User I/O Characteristics  
Timing Model  
I/O Module  
(Non-Registered)  
Combinational Cell  
Y
Combinational Cell  
Y
LVPECL  
t
= 0.78 ns  
t
= 0.67 ns  
PD  
PD  
t
= 1.51 ns  
DP  
I/O Module  
(Non-Registered)  
Combinational Cell  
Y
LVTTL Output Drive Strength = 12 mA  
High Slew Rate  
t
= 2.09 ns  
DP  
t
= 1.21 ns  
PD  
I/O Module  
(Non-Registered)  
Combinational Cell  
Y
I/O Module  
(Registered)  
Output Drive Strength = 8 mA  
High Slew Rate  
LVTTL  
t
= 1.84 ns  
PY  
t
= 2.38 ns  
DP  
LVPECL  
t
= 0.70 ns  
PD  
I/O Module  
(Non-Registered)  
D
Q
Combinational Cell  
Y
LVCMOS 1.5 V  
Output Drive Strength = 4 mA  
High Slew Rate  
t
t
= 0.33 ns  
= 0.36 ns  
ICLKQ  
ISUD  
t
= 2.84 ns  
DP  
t
= 0.65 ns  
PD  
Input LVTTL  
Clock  
I/O Module  
Register Cell  
(Registered)  
Register Cell  
Combinational Cell  
Y
t
= 1.49 ns  
PY  
D
Q
D
Q
D
t
Q
LVTTL 3.3 V Output Drive  
Strength = 12 mA  
I/O Module  
t
= 0.65 ns  
PD  
t
= 2.09 ns  
High Slew Rate  
(Non-Registered)  
DP  
t
t
= 0.76 ns  
= 0.59 ns  
CLKQ  
= 0.81 ns  
= 0.43 ns  
t
t
= 0.76 ns  
= 0.9 ns  
OCLKQ  
CLKQ  
LVDS,  
B-LVDS,  
M-LVDS  
SUD  
t
OSUD  
SUD  
Input LVTTL  
Clock  
Input LVTTL  
Clock  
t
= 2.11 ns  
PY  
t
= 1.49 ns  
t
= 1.49 ns  
PY  
PY  
Figure 2-3 • Timing Model  
Operating Conditions: –1 Speed, Military Temperature Range (TJ = 125°C), Worst-Case  
VCC = 1.14 V (example for A3PE3000L and A3PE600L)  
2-18  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
tPY  
tDIN  
D
Q
PAD  
DIN  
Y
CLK  
To Array  
I/O Interface  
t
t
PY = MAX(tPY(R), tPY(F))  
DIN = MAX(tDIN(R), tDIN(F))  
VIH  
Vtrip  
Vtrip  
VIL  
PAD  
VCC  
50%  
50%  
Y
GND  
tPY  
(R)  
tPY  
(F)  
VCC  
50%  
50%  
DIN  
tDIN  
(R)  
GND  
tDIN  
(F)  
Figure 2-4 • Input Buffer Timing Model and Delays (Example)  
Revision 5  
2-19  
Military ProASIC3/EL DC and Switching Characteristics  
tDOUT  
D Q  
tDP  
PAD  
DOUT  
CLK  
Std  
Load  
D
From Array  
tDP = MAX(tDP(R), tDP(F))  
tDOUT = MAX(tDOUT(R), tDOUT(F))  
I/O Interface  
tDOUT  
(R)  
tDOUT  
(F)  
VCC  
50%  
VCC  
50%  
50%  
D
0 V  
50%  
DOUT  
PAD  
0 V  
VOH  
Vtrip  
VOL  
Vtrip  
tDP  
(R)  
tDP  
(F)  
Figure 2-5 • Output Buffer Model and Delays (example)  
2-20  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
t
EOUT  
D
Q
CLK  
t
, t , t , t , t , t  
E
ZL ZH HZ LZ ZLS ZHS  
EOUT  
D
Q
PAD  
DOUT  
CLK  
D
t
= MAX(t  
(r), t (f))  
EOUT  
I/O Interface  
EOUT  
EOUT  
VCC  
D
E
VCC  
50%  
t
50%  
t
EOUT (F)  
EOUT (R)  
VCC  
50%  
50%  
50%  
ZH  
50%  
t
LZ  
EOUT  
PAD  
t
t
t
ZL  
HZ  
VCCI  
90% VCCI  
Vtrip  
Vtrip  
VOL  
10% V  
CCI  
VCC  
D
E
VCC  
50%  
50%  
50%  
t
t
EOUT (F)  
EOUT (R)  
VCC  
50%  
EOUT  
PAD  
50%  
VOH  
t
ZHS  
t
ZLS  
Vtrip  
Vtrip  
VOL  
Figure 2-6 • Tristate Output Buffer Timing Model and Delays (example)  
Revision 5  
2-21  
Military ProASIC3/EL DC and Switching Characteristics  
Overview of I/O Performance  
Summary of I/O DC Input and Output Levels – Default I/O Software  
Settings  
Table 2-25 • Summary of Maximum and Minimum DC Input and Output Levels  
Applicable to Military Conditions—Software Default Settings  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
2
2
Equiv.  
Software  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
Default  
Drive  
Drive Strength Slew Min.  
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
I/O Standard  
Strength Option1 Rate  
V
mA mA  
3.3 V LVTTL / 3.3 12 mA 12 mA High –0.3  
V LVCMOS  
0.8  
2
3.6  
3.6  
3.6  
0.4  
2.4  
12 12  
3.3 V LVCMOS  
Wide Range1,3  
100 µA 12 mA High –0.3  
0.8  
0.7  
2
0.2  
VCCI – 0.2 0.1 0.1  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
12 mA 12mA High –0.3  
1.7  
0.7  
1.7  
12 12  
12 mA 12 mA High –0.3 0.35 * VCCI 0.65 * VCCI 3.6  
0.45  
VCCI – 0.45 12 12  
12 mA 12 mA High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 12 12  
2 mA High –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI  
1.2 V LVCMOS4,5 2 mA  
2
2
1.2 V LVCMOS  
Wide Range1,4,5  
100 µA  
2 mA High –0.3 0.3 * VCCI 0.7 * VCCI 3.6  
0.1  
VCCI – 0.1 0.1 0.1  
3.3 V PCI  
3.3 V PCI-X  
3.3 V GTL  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
Per PCI Specification  
Per PCI-X Specification  
20 mA6 20 mA High –0.3 VREF – 0.05 VREF + 0.05 3.6  
20 mA6 20 mA High –0.3 VREF – 0.05 VREF + 0.05 3.6  
35 mA 35 mA High –0.3 VREF – 0.1 VREF + 0.1 3.6  
33 mA 33 mA High –0.3 VREF – 0.1 VREF + 0.1 3.6  
0.4  
0.4  
20 20  
20 20  
35 35  
33 33  
0.6  
0.6  
8 mA  
8 mA High –0.3 VREF – 0.1 VREF + 0.1 3.6  
0.4  
0.4  
VCCI – 0.4  
8
8
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
Notes:  
15 mA6 15 mA6 High –0.3 VREF – 0.1 VREF + 0.1 3.6  
15 mA 15 mA High –0.3 VREF – 0.2 VREF + 0.2 3.6  
18 mA 18 mA High –0.3 VREF – 0.2 VREF + 0.2 3.6  
14 mA 14 mA High –0.3 VREF – 0.2 VREF + 0.2 3.6  
21 mA 21 mA High –0.3 VREF – 0.2 VREF + 0.2 3.6  
VCCI – 0.4 15 15  
VCCI – 0.62 15 15  
VCCI – 0.43 18 18  
VCCI – 1.1 14 14  
VCCI – 0.9 21 21  
0.54  
0.35  
0.7  
0.5  
1. Note that 1.2 V LVCMOS and 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration  
will not operate at the equivalent software default drive strength These values are for normal ranges only.  
2. Currents are measured at 125°C junction temperature.  
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.  
4. Applicable to A3PE600L and A3PE3000L devices operating at VCCI VCC.  
5. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.  
6. Output drive strength is below JEDEC specification.  
7. Output slew rate can be extracted using the IBIS Models.  
2-22  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-26 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Military  
Conditions—Software Default Settings  
Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only  
2
2
Equiv.  
Software  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
Default  
Drive  
Drive Strength Slew Min.  
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
I/O Standard Strength Option1 Rate  
V
mA mA  
3.3 V LVTTL /  
3.3 V LVCMOS  
12 mA 12 mA High –0.3  
0.8  
2
3.6  
3.6  
2.7  
0.4  
2.4  
12 12  
3.3 VLVCMOS 100 µA 12 mA High –0.3  
Wide Range1,3  
0.8  
2
0.2  
VCCI – 0.2 0.1 0.1  
2.5 V LVCMOS 12 mA 12 mA High –0.3  
0.7  
1.7  
0.7  
1.7  
12 12  
1.8 V LVCMOS 12 mA  
1.5 V LVCMOS 12 mA  
3.3 V PCI  
12 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.9  
0.45  
VCCI – 0.45 12 12  
12 mA High –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12 12  
Per PCI specifications  
3.3 V PCI-X  
Per PCI-X specifications  
Notes:  
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the  
equivalent software default drive strength. These values are for normal ranges only.  
2. Currents are measured at 125°C junction temperature.  
3. Output slew rate can be extracted using the IBIS Models.  
4. Output drive strength is below JEDEC specification.  
5. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.  
Table 2-27 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Military  
Conditions—Software Default Settings  
Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only  
2
2
Equiv.  
Software  
VIL  
VIH  
VOL  
VOH  
IOL IOH  
Default  
Drive  
Drive Strength Slew Min.  
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
I/O Standard Strength Option1 Rate  
V
mA mA  
3.3 V LVTTL /  
3.3 V LVCMOS  
12 mA  
12 mA High –0.3  
0.8  
2
3.6  
3.6  
2.7  
0.4  
2.4  
12 12  
3.3 V LVCMOS 100 µA 12 mA High –0.3  
Wide Range1,3  
0.8  
0.7  
2
0.2  
VCCI – 0.2 0.1 0.1  
2.5 V LVCMOS 12 mA  
1.8 V LVCMOS 8 mA  
1.5 V LVCMOS 4 mA  
3.3 V PCI  
12 mA High –0.3  
1.7  
0.7  
1.7  
12 12  
8 mA  
4 mA  
High –0.3 0.35 * VCCI 0.65 * VCCI 1.9  
0.45  
VCCI – 0.45  
8
4
8
4
High –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI  
Per PCI specifications  
3.3 V PCI-X  
Per PCI-X specifications  
Notes:  
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the  
equivalent software default drive strength. These values are for normal ranges only.  
2. Currents are measured at 125°C junction temperature.  
3. Output slew rate can be extracted using the IBIS Models.  
4. Output drive strength is below JEDEC specification.  
5. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.  
Revision 5  
2-23  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-28 • Summary of Maximum and Minimum DC Input Levels  
Applicable to Military Conditions  
Military1  
2
3
IIL  
IIH  
DC I/O Standard  
3.3 V LVTTL / 3.3 V LVCMOS  
3.3 V LVCMOS Wide Range  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
1.2 V LVCMOS4  
1.2 V LVCMOS Wide Range4  
3.3 V PCI  
µA  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
µA  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
3.3 V PCI-X  
3.3 V GTL  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
Notes:  
1. Military temperature range: –55°C to 125°C.  
2.  
I
I
is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
IL  
3.  
is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
IH  
larger when operating outside recommended ranges.  
4. Applicable to Military A3PE600L and A3PE3000L devices operating at VCCI VCC.  
2-24  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Summary of I/O Timing Characteristics – Default I/O Software Settings  
Table 2-29 • Summary of AC Measuring Points  
Input/Output  
Input Reference  
Board Termination  
Measuring Trip  
Point (Vtrip)  
Standard  
Supply Voltage Voltage (VREF_TYP) Voltage (VTT_REF)  
3.3 V LVTTL /  
3.30 V  
1.4 V  
3.3 V LVCMOS  
3.3 V LVCMOS Wide Range  
2.5 V LVCMOS  
3.30 V  
2.50 V  
2.50 V  
1.80 V  
1.50 V  
1.20 V  
1.20 V  
3.30 V  
3.30 V  
3.30 V  
2.50 V  
3.30 V  
2.50 V  
1.50 V  
1.50 V  
3.30 V  
3.30 V  
2.50 V  
2.50 V  
2.50 V  
3.30 V  
1.4 V  
1.2 V  
1.8 V LVCMOS  
0.90 V  
1.5 V LVCMOS  
0.75 V  
1.2 V LVCMOS*  
0.6 V  
1.2 V LVCMOS Wide Range*  
3.3 V PCI  
0.6 V  
0.285 * VCCI (RR)  
0.615 * VCCI (FF))  
0.285 * VCCI (RR)  
0.615 * VCCI (FF)  
VREF  
3.3 V PCI-X  
3.3 V GTL  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
0.8 V  
0.8 V  
1.0 V  
1.0 V  
0.75 V  
0.75 V  
1.25 V  
1.25 V  
1.5 V  
1.5 V  
1.2 V  
1.2 V  
1.5 V  
1.5 V  
0.75 V  
0.75 V  
1.25 V  
1.25 V  
1.485 V  
1.485 V  
VREF  
VREF  
VREF  
VREF  
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
LVDS  
VREF  
VREF  
VREF  
VREF  
VREF  
Cross point  
Cross point  
LVPECL  
Note: *Applicable to A3PE600L and A3PE3000L devices operating at 1.2 V core regions only.  
Table 2-30 • I/O AC Parameter Definitions  
Parameter  
tDP  
Parameter Definition  
Data to Pad delay through the Output Buffer  
tPY  
Pad to Data delay through the Input Buffer  
tDOUT  
tEOUT  
tDIN  
Data to Output Buffer delay through the I/O interface  
Enable to Output Buffer Tristate Control delay through the I/O interface  
Input Buffer to Data delay through the I/O interface  
tHZ  
Enable to Pad delay through the Output Buffer—High to Z  
Enable to Pad delay through the Output Buffer—Z to High  
Enable to Pad delay through the Output Buffer—Low to Z  
Enable to Pad delay through the Output Buffer—Z to Low  
Enable to Pad delay through the Output Buffer with delayed enable—Z to High  
Enable to Pad delay through the Output Buffer with delayed enable—Z to Low  
tZH  
tLZ  
tZL  
tZHS  
tZLS  
Revision 5  
2-25  
Military ProASIC3/EL DC and Switching Characteristics  
1.2 V Core Operating Voltage  
Table 2-31 • Summary of I/O Timing Characteristics—Software Default Settings  
–1 Speed Grade, Military-Case Conditions: TJ = 125°C, Worst Case VCC = 1.14 V, Worst Case  
VCCI  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Standard  
3.3 V LVTTL /  
3.3 V LVCMOS  
12 mA 12 mA High  
5
5
0.68 2.09 0.05 1.49 2.03 0.44 2.12 1.56 2.76 3.06 3.99 3.43  
0.68 3.01 0.04 1.86 2.69 0.44 3.01 2.22 4.03 4.42 4.89 4.09  
3.3 V LVCMOS 100 µA 12 mA High  
Wide Range3  
2.5 V LVCMOS 12 mA 12 mA High  
1.8 V LVCMOS 12 mA 12 mA High  
1.5 V LVCMOS 12 mA 12 mA High  
5
5
5
5
5
0.68 2.12 0.04 1.73 2.17 0.44 2.15 1.74 2.84 2.95 4.03 3.62  
0.68 2.36 0.05 1.70 2.40 0.44 2.40 1.94 3.16 3.58 4.27 3.81  
0.68 2.71 0.04 1.86 2.61 0.44 2.76 2.24 3.34 3.69 4.63 4.12  
0.68 4.39 0.04 2.25 3.19 0.44 4.24 3.74 4.34 4.09 6.11 5.61  
0.68 4.39 0.04 2.25 3.19 0.44 4.24 3.74 4.34 4.09 6.11 5.61  
1.2 V LVCMOS  
2 mA  
2 mA High  
2 mA High  
1.2 V LVCOMS 100 µA  
Wide Range4  
3.3 V PCI  
Per PCI  
spec  
High 10 255 0.68 2.37 0.04 2.31 3.13 0.44 2.40 1.68 2.77 3.06 4.28 3.56  
High 10 255 0.68 2.37 0.04 2.31 3.13 0.44 2.40 1.68 2.77 3.06 4.28 3.56  
3.3 V PCI-X  
Per PCI-X  
spec  
3.3 V GTL  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
20 mA6 20 mA6 High 10 25 0.68 1.75 0.05 1.99  
20 mA6 20 mA6 High 10 25 0.68 1.79 0.05 1.93  
35 mA 35 mA High 10 25 0.68 1.74 0.05 1.99  
33 mA 33 mA High 10 25 0.68 1.86 0.05 1.93  
0.44 1.71 1.75  
0.44 1.82 1.79  
0.44 1.76 1.73  
0.44 1.89 1.77  
0.44 2.73 2.65  
0.44 2.59 2.28  
0.44 1.82 1.55  
0.44 1.86 1.49  
0.44 1.98 1.55  
0.44 1.77 1.41  
3.59 3.62  
3.70 3.67  
3.64 3.61  
3.77 3.64  
4.60 4.52  
4.47 4.16  
1.82 1.55  
1.86 1.49  
1.98 1.55  
1.77 1.41  
8 mA  
8 mA High 20 25 0.68 2.68 0.05 2.34  
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
LVDS  
15 mA6 15 mA6 High 20 50 0.68 2.55 0.05 2.34  
15 mA 15 mA High 30 25 0.68 1.80 0.05 1.78  
15 mA 15 mA High 30 50 0.68 1.83 0.05 1.78  
14 mA 14 mA High 30 25 0.68 1.95 0.05 1.71  
21 mA 21 mA High 30 50 0.68 1.75 0.05 1.71  
24 mA  
24 mA  
High  
High  
0.68 1.59 0.05 2.11  
0.68 1.51 0.05 1.84  
LVPECL  
Notes:  
1. Note that 1.2 V LVCMOS and 3.3 V LVCMOS wide range are applicable to 100 µA drive strength only. The configuration  
will not operate at the equivalent software default drive strength. These values are for normal ranges only.  
2. Output delays provided in this table were extracted with an output load indicated in the Capacitive Load column. For a  
specific output load, refer to Designer software.  
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.  
4. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.  
5. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-14 on page 2-71 for  
connectivity. This resistor is not required during normal operation.  
6. Output drive strength is below JEDEC specification.  
7. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-26  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
1.5 V Core Voltage  
Table 2-32 • Summary of I/O Timing Characteristics—Software Default Settings  
–1 Speed Grade, Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst Case VCCI  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Standard  
3.3 V LVTTL / 12 mA 12 mA High  
3.3 V LVCMOS  
5
5
0.52 1.97 0.03 1.23 1.78 0.34 1.99 1.46 2.63 2.89 3.23 2.71  
0.52 2.89 0.03 1.61 2.44 0.34 2.88 2.12 3.89 4.25 4.12 3.36  
3.3 V LVCOMS 100 µA 12 mA High  
Wide Range3  
2.5 V LVCMOS 12 mA 12 mA High  
1.8 V LVCMOS 12 mA 12 mA High  
1.5 V LVCMOS 12 mA 12 mA High  
5
5
5
0.52 2.01 0.03 1.49 1.93 0.34 2.02 1.65 2.71 2.78 3.27 2.89  
0.52 2.24 0.03 1.44 2.14 0.34 2.26 1.84 3.02 3.41 3.51 3.08  
0.52 2.60 0.03 1.60 2.35 0.34 2.62 2.14 3.21 3.52 3.87 3.39  
3.3 V PCI  
Per PCI  
spec  
High 10 254 0.52 2.25 0.03 2.03 2.88 0.34 2.27 1.58 2.64 2.89 3.52 2.83  
3.3 V PCI-X  
Per PCI-X  
spec  
High 10 254 0.52 2.25 0.03 2.03 2.88 0.34 2.27 1.58 2.64 2.89 3.52 2.83  
3.3 V GTL  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
20 mA5 20 mA5 High 10 25 0.52 1.68 0.03 1.79  
20 mA5 20 mA5 High 10 25 0.52 1.72 0.03 1.73  
35 mA 35 mA High 10 25 0.52 1.66 0.03 1.79  
33 mA 33 mA High 10 25 0.52 1.75 0.03 1.73  
0.34 1.58 1.68  
0.34 1.69 1.72  
0.34 1.63 1.66  
0.34 1.76 1.69  
0.34 2.59 2.55  
0.34 2.46 2.19  
034 1.69 1.46  
0.34 1.73 1.39  
0.34 1.84 1.45  
0.34 1.64 1.31  
2.83 2.92  
2.93 2.97  
2.88 2.90  
3.00 2.94  
3.84 3.79  
3.71 3.43  
1.69 1.46  
1.73 1.39  
1.84 1.45  
1.64 1.31  
8 mA  
8 mA High 20 25 0.52 2.57 0.03 2.14  
HSTL (II)  
SSTL2 (I)  
SSTL2 (II)  
SSTL3 (I)  
SSTL3 (II)  
LVDS  
15 mA5 15 mA5 High 20 50 0.52 2.44 0.03 2.14  
15 mA 15 mA High 30 25 0.52 1.68 0.03 1.58  
18 mA 18 mA High 30 50 0.52 1.72 0.03 1.58  
14 mA 14 mA High 30 25 0.52 1.83 0.03 1.51  
21 mA 21 mA High 30 50 0.52 1.63 0.03 1.51  
24 mA  
24 mA  
High  
High  
0.52 1.48 0.03 1.86  
0.52 1.40 0.03 1.61  
LVPECL  
Notes:  
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the  
equivalent software default drive strength. These values are for normal ranges only.  
2. Output delays provided in this table were extracted with an output load indicated in the Capacitive Load column. For a  
specific output load, refer to Designer software.  
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.  
4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-14 on page 2-71 for  
connectivity. This resistor is not required during normal operation.  
5. Output drive strength is below JEDEC specification.  
6. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 5  
2-27  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-33 • Summary of I/O Timing Characteristics—Software Default Settings  
–1 Speed Grade, Military-Case Conditions: TJ = 125°C, Worst Case VCC = 1.425 V,  
Worst Case VCCI  
Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only  
I/O Standard  
3.3 V LVTTL /  
3.3 V LVCMOS  
12 mA  
12 mA High  
12 mA High  
5
5
0.54 2.24 0.04 0.95 0.39 2.28 1.70 3.00 3.35 4.38 3.79  
0.54 3.47 0.04 1.44 0.39 3.47 2.57 4.65 5.18 6.64 5.75  
3.3 V LVCMOS 100 µA  
Wide Range3  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
3.3 V PCI  
12 mA  
12 mA  
12 mA  
12 mA High  
12 mA High  
12 mA High  
5
5
5
0.54 2.26 0.04 1.23 0.39 2.30 1.89 3.09 3.22 4.39 3.99  
0.54 2.49 0.04 1.14 0.39 2.54 2.12 3.46 3.82 4.63 4.21  
0.54 2.85 0.04 1.35 0.39 2.90 2.45 3.69 3.93 4.99 4.55  
Per PCI  
spec.  
High 10 254 0.54 2.51 0.04 0.81 0.39 2.55 1.83 3.00 3.35 4.65 3.92  
3.3 V PCI-X  
Per PCI-X  
spec.  
High 10 25 4 0.54 2.51 0.04 0.78 0.39 2.55 1.83 3.00 3.35 4.65 3.92  
LVDS  
24 mA  
24 mA  
High  
High  
0.54 1.76 0.04 1.55  
0.54 1.68 0.04 1.31  
LVPECL  
Notes:  
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the  
equivalent software default drive strength. These values are for normal ranges only.  
2. Output delays provided in this table were extracted with an output load indicated in the Capacitive Load column. For a  
specific output load, refer to Designer software. Software default load is higher.  
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.  
4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-14 on page 2-71 for  
connectivity. This resistor is not required during normal operation.  
5. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
2-28  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-34 • Summary of I/O Timing Characteristics—Software Default Settings  
–1 Speed Grade, Military-Case Conditions: TJ = 125°C, Worst Case VCC = 1.425 V,  
Worst Case VCCI  
Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only  
I/O Standard  
3.3 V LVTTL /  
3.3 V LVCMOS  
12 mA  
12 mA High  
12 mA High  
5
5
0.54 1.90 0.04 0.94 0.39 1.94 1.47 2.61 3.01 4.03 3.56  
0.54 2.94 0.04 1.42 0.39 2.94 2.22 4.03 4.66 6.12 5.40  
3.3 V LVCMOS  
Wide Range3  
100 µA  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
3.3 V PCI  
12 mA  
8 mA  
4 mA  
12 mA High  
8 mA High  
4 mA High  
5
5
5
0.54 1.94 0.04 1.21 0.39 1.97 1.62 2.64 2.91 4.07 3.71  
0.54 1.94 0.04 1.21 0.39 1.97 1.62 2.64 2.91 4.07 3.71  
0.54 2.62 0.04 1.33 0.39 2.67 2.23 2.84 2.93 4.77 4.32  
Per PCI  
spec.  
High 10 25 4 0.54 2.16 0.04 0.80 0.39 2.20 1.60 2.61 3.01 4.29 3.69  
3.3 V PCI-X  
Per PCI-X  
spec.  
High 10 25 4 0.54 2.16 0.04 0.78 0.39 2.20 1.60 2.61 3.01 4.29 3.69  
Notes:  
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the  
equivalent software default drive strength. These values are for normal ranges only.  
2. Output delays provided in this table were extracted with an output load indicated in the Capacitive Load column. For a  
specific output load, refer to Designer software. Software default load is higher.  
3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-B specification.  
4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-14 on page 2-71 for  
connectivity. This resistor is not required during normal operation.  
5. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
Detailed I/O DC Characteristics  
Table 2-35 • Input Capacitance  
Symbol  
CIN  
Definition  
Conditions  
Min.  
Max.  
Units  
pF  
Input capacitance  
Input capacitance on the clock pin  
VIN = 0, f = 1.0 MHz  
VIN = 0, f = 1.0 MHz  
8
8
CINCLK  
pF  
Revision 5  
2-29  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-36 • I/O Output Buffer Maximum Resistances 1  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Standard  
Drive Strength  
4 mA  
RPULL-DOWN () 2  
RPULL-UP () 3  
3.3 V LVTTL / 3.3 V LVCMOS  
100  
50  
25  
17  
11  
300  
150  
75  
8 mA  
12 mA  
16 mA  
24 mA  
100 µA  
4 mA  
50  
33  
3.3 V LVCMOS Wide Range  
2.5 V LVCMOS  
Same as regular 3.3 V LVCMOS  
100  
50  
200  
100  
50  
40  
22  
225  
112  
56  
56  
22  
22  
224  
112  
75  
37  
37  
158  
158  
75  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
25  
20  
11  
1.8 V LVCMOS  
200  
100  
50  
4 mA  
6 mA  
8 mA  
50  
12 mA  
16 mA  
2 mA  
20  
20  
1.5 V LVCMOS  
200  
100  
67  
4 mA  
6 mA  
8 mA  
33  
12 mA  
2 mA  
33  
1.2 V LVCMOS4  
1.2 V LVCMOS Wide Range4  
3.3 V PCI/PCI-X  
3.3 V GTL  
158  
158  
25  
100 µA  
Per PCI/PCI-X specification  
20 mA5  
20 mA5  
35 mA  
33 mA  
8 mA  
11  
2.5 V GTL  
14  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
12  
15  
50  
50  
25  
31  
15  
69  
32  
HSTL (II)  
15 mA5  
15 mA  
18 mA  
14 mA  
21 mA  
25  
SSTL2 (I)  
27  
SSTL2 (II)  
13  
SSTL3 (I)  
44  
SSTL3 (II)  
18  
Notes:  
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend  
on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer  
resistances, use the corresponding IBIS models located at http://www.microsemi.com/products/fpga-soc/design-  
resources/ibis-models.  
2.  
3.  
R
R
= (VOLspec) / I  
.
OLspec  
(PULL-DOWN-MAX)  
= (VCCImax – VOHspec) / I  
(PULL-UP-MAX)  
OHspec.  
4. Applicable to A3PE600L and A3PE3000L devices operating in the 1.2 V core range only.  
5. Output drive strength is below JEDEC specification.  
2-30  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-37 • I/O Output Buffer Maximum Resistances 1  
Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only  
RPULL-DOWN  
RPULL-UP  
Standard  
Drive Strength  
() 2  
100  
100  
50  
() 3  
3.3 V LVTTL / 3.3 V LVCMOS  
2 mA  
300  
300  
150  
150  
75  
4 mA  
6 mA  
8 mA  
50  
12 mA  
25  
16 mA  
17  
50  
24 mA  
11  
33  
3.3 V LVCMOS Wide Range  
2.5 V LVCMOS  
100 µA  
Same as regular 3.3 V LVCMOS  
2 mA  
100  
100  
50  
300  
300  
150  
150  
75  
4 mA  
6 mA  
8 mA  
50  
12 mA  
25  
16 mA  
17  
50  
24 mA  
11  
33  
1.8 V LVCMOS  
2 mA  
100  
100  
50  
200  
200  
100  
100  
50  
4 mA  
6 mA  
8 mA  
50  
12 mA  
25  
16 mA  
20  
40  
1.5 V LVCMOS  
2 mA  
200  
100  
67  
224  
112  
75  
4 mA  
6 mA  
8 mA  
33  
37  
12 mA  
33  
37  
3.3 V PCI/PCI-X  
Per PCI/PCI-X specification  
25  
75  
Notes:  
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend  
on V , drive strength selection, temperature, and process. For board design considerations and detailed output buffer  
CCI  
resistances, use the corresponding IBIS models located at http://www.microsemi.com/products/fpga-soc/design-  
resources/ibis-models.  
2.  
3.  
R
= (VOLspec) / I  
(PULL-DOWN-MAX) OLspec  
R
= (VCCImax – VOHspec) / I  
(PULL-UP-MAX)  
OHspec  
Revision 5  
2-31  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-38 • I/O Output Buffer Maximum Resistances 1  
Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only  
RPULL-DOWN  
RPULL-UP  
Standard  
Drive Strength  
() 2  
100  
100  
50  
() 3  
3.3 V LVTTL / 3.3 V LVCMOS  
2 mA  
300  
300  
150  
150  
75  
4 mA  
6 mA  
8 mA  
50  
12 mA  
25  
16 mA  
25  
75  
3.3 V LVCMOS Wide Range  
2.5 V LVCMOS  
100 µA  
Same as regular 3.3 V LVCMOS  
2 mA  
100  
100  
50  
200  
200  
100  
100  
50  
4 mA  
6 mA  
8 mA  
50  
12 mA  
25  
1.8 V LVCMOS  
1.5 V LVCMOS  
2 mA  
200  
100  
50  
225  
112  
56  
4 mA  
6 mA  
8 mA  
50  
56  
2 mA  
4 mA  
200  
100  
25  
224  
112  
75  
3.3 V PCI/PCI-X  
Per PCI/PCI-X specification  
Notes:  
1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend  
on V , drive strength selection, temperature, and process. For board design considerations and detailed output buffer  
CCI  
resistances, use the corresponding IBIS models located at http://www.microsemi.com/products/fpga-soc/design-  
resources/ibis-models.  
2.  
3.  
R
= (VOLspec) / IOLs  
(PULL-DOWN-MAX) pec  
R
= (VCCImax – VOHspec) / I  
(PULL-UP-MAX)  
OHspec  
Table 2-39 • I/O Weak Pull-Up/Pull-Down Resistances  
Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values  
1
2
R(WEAK PULL-UP)  
R(WEAK PULL-DOWN)  
()  
()  
VCCI  
Min.  
10 k  
10 k  
11 k  
19 k  
20 k  
30 k  
20 k  
Max.  
95 k  
Min.  
13 k  
13 k  
17 k  
23 k  
17 k  
25 k  
17 k  
Max.  
45 k  
3.3 V  
3.3 V (wide range I/Os)  
95 k  
45 k  
2.5 V  
100 k  
85 k  
74 k  
1.8 V  
110 k  
156 k  
300 k  
300 k  
1.5 V  
120 k  
450 k  
450 k  
1.2 V  
1.2 V (wide range I/Os)  
Notes:  
1.  
2.  
R
R
= (VCCImax – VOHspec) / I  
(WEAK PULL-UP-MAX) (WEAK PULL-UP-MIN)  
= (VOLspec) / I  
(WEAK PULL-DOWN-MAX)  
(WEAK PULL-UP-MIN)  
2-32  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-40 • I/O Short Currents IOSH/IOSL  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Drive Strength  
4 mA  
I
OSL (mA)1  
25  
IOSH (mA)1  
3.3 V LVTTL / 3.3 V LVCMOS  
27  
54  
8 mA  
51  
12 mA  
16 mA  
24 mA  
100 µA  
4 mA  
103  
109  
127  
181  
132  
268  
3.3 V LVCMOS Wide Range  
2.5 V LVCMOS  
Same specification as regular LVCMOS 3.3 V  
16  
32  
18  
37  
8 mA  
12 mA  
16 mA  
24 mA  
2 mA  
65  
74  
83  
87  
169  
9
124  
11  
1.8 V LVCMOS  
4 mA  
17  
22  
6 mA  
35  
44  
8 mA  
45  
51  
12 mA  
16 mA  
2 mA  
91  
74  
91  
74  
1.5 V LVCMOS  
13  
16  
4 mA  
25  
33  
6 mA  
32  
39  
8 mA  
66  
55  
12 mA  
2 mA  
66  
55  
1.2 V LVCMOS  
1.2 V LVCMOS Wide Range  
3.3 V PCI/PCIX  
3.3 V GTL  
TBD  
TBD  
TBD  
TBD  
100 µA  
Per PCI/PCI-X specification  
20 mA2  
20 mA2  
35 mA  
33 mA  
8 mA  
Per PCI Curves  
268  
169  
268  
169  
32  
181  
124  
181  
124  
39  
2.5 V GTL  
3.3 V GTL+  
2.5 V GTL+  
HSTL (I)  
HSTL (II)  
15 mA2  
15 mA  
18 mA  
14 mA  
21 mA  
66  
55  
SSTL2 (I)  
83  
87  
SSTL2 (II)  
169  
51  
124  
54  
SSTL3 (I)  
SSTL3 (II)  
103  
109  
Notes:  
1. TJ = 100°C  
2. Output drive strength is below JEDEC specification.  
Revision 5  
2-33  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-41 • I/O Short Currents IOSH/IOSL  
Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only  
Drive Strength  
2 mA  
I
OSL (mA)*  
25  
IOSH (mA)*  
3.3 V LVTTL / 3.3V LVCMOS  
27  
27  
4 mA  
25  
6 mA  
51  
54  
8 mA  
51  
54  
12 mA  
103  
132  
268  
109  
127  
181  
16 mA  
24 mA  
3.3 V LVCMOS Wide Range  
2.5 V LVCMOS  
100 µA  
Same specification as regular LVCMOS 3.3 V  
2 mA  
16  
16  
32  
32  
65  
83  
169  
9
18  
18  
37  
37  
74  
87  
124  
11  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
24 mA  
1.8 V LVCMOS  
2 mA  
4 mA  
17  
35  
45  
91  
91  
13  
25  
32  
66  
66  
103  
22  
44  
51  
74  
74  
16  
33  
39  
55  
55  
109  
6 mA  
8 mA  
12 mA  
16 mA  
1.5 V LVCMOS  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
3.3 V PCI/PCI-X  
Per PCI/PCI-X specification  
Note: *T = 100°C  
J
2-34  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-42 • I/O Short Currents IOSH/IOSL  
Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only  
Drive Strength  
IOSL (mA)*  
IOSH (mA)*  
3.3 V LVTTL / 3.3V LVCMOS  
2mA  
25  
25  
27  
27  
4mA  
6mA  
51  
54  
8mA  
51  
54  
12mA  
103  
103  
109  
109  
16mA  
3.3 V LVCMOS Wide Range  
100 µA  
Same specification as regular LVCMOS 3.3 V  
2.5 V LVCMOS  
2mA  
16  
16  
32  
32  
65  
9
18  
18  
37  
37  
74  
11  
4mA  
6mA  
8mA  
12mA  
1.8 V LVCMOS  
2mA  
4mA  
17  
35  
35  
13  
25  
103  
22  
44  
44  
16  
33  
109  
6mA  
8mA  
1.5V LVCMOS  
2mA  
4mA  
3.3 V PCI/PCI-X  
Per PCI/PCI-X specification  
Note: *T = 100°C  
J
Table 2-43 • Schmitt Trigger Input Hysteresis, Hysteresis Voltage Value (typical) for Schmitt Mode Input  
Buffers Applicable to A3PE600L and A3PE3000L Only  
Input Buffer Configuration  
Hysteresis Value (typical)  
3.3 V LVTTL/LVCMOS/PCI/PCI-X (Schmitt trigger mode)  
2.5 V LVCMOS (Schmitt trigger mode)  
1.8 V LVCMOS (Schmitt trigger mode)  
1.5 V LVCMOS (Schmitt trigger mode)  
1.2 V LVCMOS (Schmitt trigger mode)  
240 mV  
140 mV  
80 mV  
60 mV  
40 mV  
The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The  
reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of  
analysis.  
Revision 5  
2-35  
Military ProASIC3/EL DC and Switching Characteristics  
For example, at 110°C, the short current condition would have to be sustained for more than three  
months to cause a reliability concern. The I/O design does not contain any short circuit protection, but  
such protection would only be needed in extremely prolonged stress conditions.  
Table 2-44 • Duration of Short Circuit Event before Failure  
Temperature  
–50ºC  
–40°C  
0°C  
Time before Failure  
> 20 years  
> 20 years  
> 20 years  
> 20 years  
5 years  
25°C  
70°C  
85°C  
2 years  
100°C  
110°C  
125°C  
6 months  
3 months  
1 month  
Table 2-45 • I/O Input Rise Time, Fall Time, and Related I/O Reliability  
Input Buffer  
Input Rise/Fall Time (min.)  
No requirement  
Input Rise/Fall Time (max.)  
Reliability  
LVTTL/LVCMOS  
10 ns *  
10 ns *  
20 years (110°C)  
10 years (100°C)  
LVDS/B-LVDS/  
No requirement  
M-LVDS/LVPECL  
Note: *The maximum input rise/fall time is related to the noise induced in the input buffer trace. If the noise is low, the rise  
time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more  
susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization  
of the system to ensure that there is no excessive noise coupling into input signals.  
2-36  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Single-Ended I/O Characteristics  
3.3 V LVTTL / 3.3 V LVCMOS  
Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V  
applications. It uses an LVTTL input buffer and push-pull output buffer.  
Table 2-46 • Minimum and Maximum DC Input and Output Levels  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
3.3 V LVTTL /  
3.3 V LVCMOS  
VIL  
VIH  
VOL  
VOH IOL IOH  
Min.  
IOSL  
IOSH  
IIL1 IIH2  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Max.  
mA3  
Max.  
mA3  
Drive Strength  
4 mA  
V
mA mA  
µA4 µA4  
15 15  
15 15  
15 15  
15 15  
15 15  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.8  
0.8  
0.8  
2
2
2
2
2
3.6  
3.6  
3.6  
3.6  
3.6  
0.4  
0.4  
0.4  
0.4  
0.4  
2.4  
2.4  
2.4  
2.4  
2.4  
4
8
4
8
25  
51  
27  
54  
8 mA  
12 mA  
12 12  
16 16  
24 24  
103  
132  
268  
109  
127  
181  
16 mA  
24 mA  
Notes:  
1.  
2.  
I
I
is the input leakage current per I/O pin over recommended operation conditions where –0.3V < VIN < VIL.  
is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
IL  
IH  
larger when operating outside.  
3. Currents are measured at 100°C junction temperature and maximum voltage.  
4. Currents are measured at 125°C junction temperature.  
5. Software default selection highlighted in gray.  
Table 2-47 • Minimum and Maximum DC Input and Output Levels  
Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only  
3.3 V LVTTL /  
3.3 V LVCMOS  
1
2
VIL  
VIH  
VOL  
VOH IOL IOH  
Min.  
IOSL  
IOSH  
IIL IIH  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Max.  
mA3  
Max.  
mA3  
Drive Strength  
2 mA  
V
mA mA  
µA4 µA4  
15 15  
15 15  
15 15  
15 15  
15 15  
15 15  
15 15  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
2
2
2
2
2
2
2
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2
4
6
8
2
4
6
8
25  
25  
27  
27  
4 mA  
6 mA  
51  
54  
8 mA  
51  
54  
12 mA  
16 mA  
24 mA  
Notes:  
12 12  
16 16  
24 24  
103  
132  
268  
109  
127  
181  
1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3V < VIN < VIL.  
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
larger when operating outside.  
3. Currents are measured at 100°C junction temperature and maximum voltage.  
4. Currents are measured at 125°C junction temperature.  
5. Software default selection highlighted in gray.  
Revision 5  
2-37  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-48 • Minimum and Maximum DC Input and Output Levels  
Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only  
3.3 V LVTTL /  
3.3 V LVCMOS  
1
2
VIL  
VIH  
VOL  
VOH IOL IOH  
Min.  
IOSL  
IOSH  
IIL IIH  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Max.  
mA3  
Max.  
mA3  
Drive Strength  
2 mA  
V
mA mA  
µA4 µA4  
15 15  
15 15  
15 15  
15 15  
15 15  
15 15  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
2
2
2
2
2
2
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
0.4  
0.4  
0.4  
0.4  
0.4  
0.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2
4
6
8
2
4
6
8
25  
25  
27  
27  
4 mA  
6 mA  
51  
54  
8 mA  
51  
54  
12 mA  
16 mA  
Notes:  
12 12  
16 16  
103  
103  
109  
109  
1.  
2.  
I
I
is the input leakage current per I/O pin over recommended operation conditions where –0.3V < VIN < VIL.  
is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
IL  
IH  
larger when operating outside.  
3. Currents are measured at 100°C junction temperature and maximum voltage.  
4. Currents are measured at 125°C junction temperature.  
5. Software default selection highlighted in gray.  
R to VCCI for tLZ / tZL / tZLS  
R to GND for tHZ / tZH / tZHS  
R = 1 k  
Test Point  
Enable Path  
Test Point  
Datapath  
5 pF  
5 pF for tZH / tZHS / tZL / tZLS  
5 pF for tHZ / tLZ  
Figure 2-7 • AC Loading  
Table 2-49 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (Typ) (V)  
C
LOAD (pF)  
0
3.3  
1.4  
5
Note: *Measuring point = V  
See Table 2-29 on page 2-25 for a complete table of trip points.  
trip.  
2-38  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Timing Characteristics  
1.2 V DC Core Voltage  
Table 2-50 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
–1  
0.80 6.04 0.05 1.75 2.38 0.52 6.14 4.84 2.68 2.43 8.35  
7.05  
6.00  
6.34  
5.40  
5.81  
4.95  
5.70  
4.85  
5.71  
4.86  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.68 5.13 0.05 1.49 2.03 0.44 5.22 4.12 2.28 2.07 7.10  
0.80 4.93 0.05 1.75 2.38 0.52 5.02 4.14 3.02 3.05 7.22  
0.68 4.20 0.05 1.49 2.03 0.44 4.27 3.52 2.57 2.59 6.14  
0.80 4.15 0.05 1.75 2.38 0.52 4.22 3.61 3.25 3.43 6.43  
0.68 3.53 0.05 1.49 2.03 0.44 3.59 3.07 2.76 2.92 5.47  
0.80 3.93 0.05 1.75 2.38 0.52 3.99 3.49 3.29 3.54 6.20  
0.68 3.34 0.05 1.49 2.03 0.44 3.40 2.97 2.80 3.01 5.27  
0.80 3.81 0.05 1.75 2.38 0.52 3.87 3.51 3.36 3.94 6.08  
0.68 3.24 0.05 1.49 2.03 0.44 3.30 2.98 2.86 3.35 5.17  
8 mA  
Std.  
–1  
12 mA  
16 mA  
24 mA  
Std.  
–1  
Std.  
–1  
Std.  
–1  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-51 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
–1  
0.80 3.40 0.05 1.75 2.38 0.52 3.45 2.60 2.68 2.58 5.66  
4.81  
4.09  
4.29  
3.65  
4.04  
3.43  
3.99  
3.40  
3.93  
3.34  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.68 2.89 0.05 1.49 2.03 0.44 2.94 2.21 2.28 2.19 4.81  
0.80 2.79 0.05 1.75 2.38 0.52 2.84 2.08 3.02 3.19 5.04  
0.68 2.38 0.05 1.49 2.03 0.44 2.41 1.77 2.57 2.72 4.29  
0.80 2.45 0.05 1.75 2.38 0.52 2.49 1.83 3.25 3.59 4.70  
0.68 2.09 0.05 1.49 2.03 0.44 2.12 1.56 2.76 3.06 3.99  
0.80 2.40 0.05 1.75 2.38 0.52 2.43 1.79 3.30 3.70 4.64  
0.68 2.04 0.05 1.49 2.03 0.44 2.07 1.52 2.81 3.15 3.95  
0.80 2.42 0.05 1.75 2.38 0.52 2.46 1.72 3.37 4.10 4.66  
0.68 2.06 0.05 1.49 2.03 0.44 2.09 1.47 2.86 3.49 3.97  
8 mA  
Std.  
–1  
12 mA  
16 mA  
24 mA  
Notes:  
Std.  
–1  
Std.  
–1  
Std.  
–1  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 5  
2-39  
Military ProASIC3/EL DC and Switching Characteristics  
1.5 V DC Core Voltage  
Table 2-52 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
–1  
0.61 5.90 0.04 1.45 2.09 0.40 5.98 4.73 2.52 2.24 7.45  
6.19  
5.27  
5.49  
4.67  
4.96  
4.22  
4.84  
4.12  
4.86  
4.13  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.52 5.02 0.03 1.23 1.78 0.34 5.09 4.02 2.15 1.90 6.34  
0.61 4.80 0.04 1.45 2.09 0.40 4.86 4.02 2.87 2.85 6.32  
0.52 4.08 0.03 1.23 1.78 0.34 4.13 3.42 2.44 2.43 5.38  
0.61 4.02 0.04 1.45 2.09 0.40 4.06 3.49 3.09 3.23 5.53  
0.52 3.42 0.03 1.23 1.78 0.34 3.46 2.97 2.63 2.75 4.70  
0.61 3.79 0.04 1.45 2.09 0.40 3.84 3.38 3.14 3.34 5.30  
0.52 3.23 0.03 1.23 1.78 0.34 3.26 2.87 2.67 2.84 4.51  
0.61 3.67 0.04 1.45 2.09 0.40 3.72 3.39 3.20 3.74 5.18  
0.52 3.13 0.03 1.23 1.78 0.34 3.16 2.88 2.72 3.18 4.41  
8 mA  
Std.  
–1  
12 mA  
16 mA  
24 mA  
Std.  
–1  
Std.  
–1  
Std.  
–1  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-53 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
–1  
0.61 3.26 0.04 1.45 2.09 0.40 3.30 2.48 2.52 2.38 4.76  
3.95  
3.36  
3.43  
2.92  
3.18  
2.71  
3.14  
2.67  
3.07  
2.61  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.52 2.77 0.03 1.23 1.78 0.34 2.80 2.11 2.15 2.03 4.05  
0.61 2.66 0.04 1.45 2.09 0.40 2.68 1.97 2.87 3.00 4.15  
0.52 2.26 0.03 1.23 1.78 0.34 2.28 1.67 2.44 2.55 3.53  
0.61 2.32 0.04 1.45 2.09 0.40 2.33 1.72 3.09 3.40 3.80  
0.52 1.97 0.03 1.23 1.78 0.34 1.99 1.46 2.63 2.89 3.23  
0.61 2.26 0.04 1.45 2.09 0.40 2.28 1.67 3.15 3.51 3.74  
0.52 1.92 0.03 1.23 1.78 0.34 1.94 1.42 2.68 2.98 3.18  
0.61 2.28 0.04 1.45 2.09 0.40 2.30 1.61 3.21 3.90 3.77  
0.52 1.94 0.03 1.23 1.78 0.34 1.96 1.37 2.73 3.32 3.20  
8 mA  
Std.  
–1  
12 mA  
16 mA  
24 mA  
Notes:  
Std.  
–1  
Std.  
–1  
Std.  
–1  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-40  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-54 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
8.83  
7.51  
7.81  
6.65  
7.81  
6.65  
7.05  
5.99  
6.81  
5.79  
6.68  
5.68  
tZHS  
7.75  
6.59  
7.04  
5.99  
7.04  
5.99  
6.51  
5.54  
6.39  
5.43  
6.43  
5.47  
Units  
ns  
4 mA  
Std.  
–1  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
6.25 0.05 1.12  
5.32 0.04 0.95  
5.25 0.05 1.12  
4.47 0.04 0.95  
5.25 0.05 1.12  
4.47 0.04 0.95  
4.50 0.05 1.12  
3.83 0.04 0.95  
4.27 0.05 1.12  
3.63 0.04 0.95  
4.14 0.05 1.12  
3.53 0.04 0.95  
6.37 5.29 2.91 2.70  
5.42 4.50 2.47 2.30  
5.35 4.58 3.28 3.34  
4.55 3.90 2.79 2.85  
5.35 4.58 3.28 3.34  
4.55 3.90 2.79 2.85  
4.59 4.05 3.53 3.76  
3.90 3.45 3.00 3.20  
4.35 3.93 3.58 3.86  
3.70 3.34 3.05 3.29  
4.22 3.97 3.65 4.27  
3.59 3.38 3.10 3.63  
ns  
6 mA  
Std.  
–1  
ns  
ns  
8 mA  
Std.  
–1  
ns  
ns  
12 mA  
16 mA  
24 mA  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
Table 2-55 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
6.07  
5.17  
5.46  
4.65  
5.46  
4.65  
5.14  
4.38  
5.09  
4.33  
5.12  
4.35  
tZHS  
5.25  
4.46  
4.71  
4.01  
4.71  
4.01  
4.45  
3.79  
4.41  
3.75  
4.35  
3.70  
Units  
ns  
4 mA  
Std.  
–1  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
3.55 0.05 1.12  
3.02 0.04 0.95  
2.95 0.05 1.12  
2.51 0.04 0.95  
2.95 0.05 1.12  
2.51 0.04 0.95  
2.64 0.05 1.12  
2.24 0.04 0.95  
2.58 0.05 1.12  
2.20 0.04 0.95  
2.61 0.05 1.12  
2.22 0.04 0.95  
3.62 2.79 2.91 2.87  
3.08 2.37 2.48 2.44  
3.00 2.25 3.28 3.52  
2.55 1.91 2.79 3.00  
3.00 2.25 3.28 3.52  
2.55 1.91 2.79 3.00  
2.68 1.99 3.53 3.94  
2.28 1.70 3.00 3.35  
2.63 1.95 3.59 4.05  
2.24 1.66 3.05 3.44  
2.66 1.89 3.66 4.46  
2.26 1.61 3.11 3.80  
ns  
6 mA  
Std.  
–1  
ns  
ns  
8 mA  
Std.  
–1  
ns  
ns  
12 mA  
16 mA  
24 mA  
Notes:  
Std.  
–-1  
Std.  
–-1  
Std.  
–1  
ns  
ns  
ns  
ns  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
Revision 5  
2-41  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-56 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
8.20  
6.98  
7.19  
6.11  
7.19  
6.11  
6.47  
5.51  
6.47  
5.51  
tZHS  
7.24  
6.16  
6.62  
5.63  
6.62  
5.63  
6.13  
5.21  
6.13  
5.21  
Units  
ns  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
Std.  
–1  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
5.64 0.05 1.10  
4.79 0.04 0.94  
4.64 0.05 1.10  
3.95 0.04 0.94  
4.64 0.05 1.10  
3.95 0.04 0.94  
3.94 0.05 1.10  
3.35 0.04 0.94  
3.94 0.05 1.10  
3.35 0.04 0.94  
5.74 4.78 2.50 2.43  
4.88 4.06 2.13 2.07  
4.73 4.16 2.84 3.01  
4.02 3.54 2.42 2.56  
4.73 4.16 2.84 3.01  
4.02 3.54 2.42 2.56  
4.01 3.67 3.07 3.39  
3.41 3.12 2.61 2.88  
4.01 3.67 3.07 3.39  
3.41 3.12 2.61 2.88  
ns  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
Table 2-57 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
5.59  
4.75  
5.01  
4.26  
5.01  
4.26  
4.74  
4.03  
4.74  
4.03  
tZHS  
4.91  
4.18  
4.43  
3.76  
4.43  
3.76  
4.18  
3.56  
4.18  
3.56  
Units  
ns  
4 mA  
Std.  
–1  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
3.07 0.05 1.10  
2.61 0.04 0.94  
2.51 0.05 1.10  
2.13 0.04 0.94  
2.51 0.05 1.10  
2.13 0.04 0.94  
2.24 0.05 1.10  
1.90 0.04 0.94  
2.24 0.05 1.10  
1.90 0.04 0.94  
3.13 2.46 2.50 2.57  
2.66 2.09 2.13 2.19  
2.55 1.97 2.84 3.16  
2.17 1.67 2.41 2.69  
2.55 1.97 2.84 3.16  
2.17 1.67 2.41 2.69  
2.28 1.72 3.07 3.54  
1.94 1.47 2.61 3.01  
2.28 1.72 3.07 3.54  
1.94 1.47 2.61 3.01  
ns  
6 mA  
Std.  
–1  
ns  
ns  
8 mA  
Std.  
–1  
ns  
ns  
12 mA  
16 mA  
Notes:  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
2-42  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
3.3 V LVCMOS Wide Range  
Table 2-58 • Minimum and Maximum DC Input and Output Levels  
Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only  
3.3 V  
Equiv.  
LVCMOS  
Wide Range Default  
Drive  
Drive  
Strength  
Software  
VIL  
VIH  
Max.  
VOL  
VOH  
IOL IOH IOSL  
Max.  
IOSH IIL2 IIH3  
Strength Min.  
Max.  
V
Min.  
V
Max.  
V
Min.  
V
Max.  
Option1  
2 mA  
V
V
µA µA  
mA4  
25  
mA4 µA5 µA5  
100 µA  
100 µA  
100 µA  
100 µA  
100 µA  
100 µA  
Notes:  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
2
2
2
2
2
2
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
0.2 VCCI – 0.2 100 100  
0.2 VCCI – 0.2 100 100  
0.2 VCCI – 0.2 100 100  
0.2 VCCI – 0.2 100 100  
0.2 VCCI – 0.2 100 100  
0.2 VCCI – 0.2 100 100  
27  
27  
15 15  
15 15  
15 15  
15 15  
15 15  
15 15  
4 mA  
25  
6 mA  
51  
54  
12 mA  
16 mA  
24 mA  
103  
132  
268  
109  
127  
181  
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the  
equivalent software default drive strength. These values are for normal ranges only.  
2.  
I
is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
IL  
3.  
I
is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
IH  
larger when operating outside recommended ranges  
4. Currents are measured at 125°C junction temperature.  
5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-A specification.  
6. Software default selection highlighted in gray.  
Table 2-59 • Minimum and Maximum DC Input and Output Levels  
Applicable to Advanced I/O Banks  
3.3 V LVCMOS  
Wide Range  
Equiv.  
Software  
Default  
Drive  
VIL  
VIH  
VOL  
VOH  
IOL IOH IOSL  
IOSH IIL2 IIH3  
Strength Min. Max. Min. Max. Max.  
Min.  
V
Max.  
Max.  
Drive Strength Option1  
V
V
V
2
2
2
2
2
2
V
V
µA µA mA4  
mA4 µA5 µA5  
100 µA  
100 µA  
100 µA  
100 µA  
100 µA  
100 A  
Notes:  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
VCCI – 0.2 100 100  
VCCI – 0.2 100 100  
VCCI – 0.2 100 100  
VCCI – 0.2 100 100  
25  
25  
51  
51  
27  
27  
15 15  
15 15  
15 15  
15 15  
15 15  
15 15  
54  
54  
VCCI – 0.2 100 100 103  
VCCI – 0.2 100 100 132  
109  
127  
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will NOT operate at  
the equivalent software default drive strength. These values are for Normal Ranges ONLY.  
2.  
I
is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
IL  
3.  
I
is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
IH  
larger when operating outside recommended ranges  
4. Currents are measured at 125°C junction temperature.  
5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-A specification.  
6. Software default selection highlighted in gray.  
Revision 5  
2-43  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-60 • Minimum and Maximum DC Input and Output Levels  
Applicable to Standard Plus I/O Banks  
3.3 V  
Equiv.  
LVCMOS  
Wide Range Default  
Drive  
Drive  
Strength  
Software  
VIL  
VIH  
VOL  
VOH  
IOL IOH IOSL  
Max.  
IOSH IIL2 IIH3  
Strength Min. Max. Min. Max. Max.  
Min.  
V
Max.  
mA4  
µA µA  
Option1  
2 mA  
V
V
V
2
2
2
2
2
2
V
V
µA µA  
mA4  
25  
5
5
100 µA  
100 µA  
100 µA  
100 µA  
100 µA  
100 µA  
Notes:  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.8  
0.8  
0.8  
0.8  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
VCCI – 0.2 100 100  
VCCI – 0.2 100 100  
VCCI – 0.2 100 100  
VCCI – 0.2 100 100  
VCCI – 0.2 100 100  
VCCI – 0.2 100 100  
27  
27  
15 15  
15 15  
15 15  
15 15  
15 15  
15 15  
4 mA  
25  
6 mA  
51  
54  
8 mA  
51  
54  
12 mA  
16 mA  
103  
132  
109  
127  
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the  
equivalent software default drive strength. These values are for normal ranges only.  
2.  
I
is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
IL  
3.  
I
is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
IH  
larger when operating outside recommended ranges  
4. Currents are measured at 125°C junction temperature.  
5. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD8-A specification.  
6. Software default selection highlighted in gray.  
R to VCCI for tLZ / tZL / tZLS  
R = 1 k  
Test Point  
Datapath  
R to GND for tHZ / tZH / tZHS  
Test Point  
5 pF  
Enable Path  
5 pF for tZH / tZHS / tZL / tZLS  
5 pF for tHZ / tLZ  
Figure 2-8 • AC Loading  
Table 2-61 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (Typ) (V)  
CLOAD (pF)  
0
3.3  
1.4  
5
Note: *Measuring point = V  
See Table 2-29 on page 2-25 for a complete table of trip points.  
trip.  
2-44  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Timing Characteristics  
1.2 V DC Core Voltage  
Table 2-62 • 3.3 V LVCMOS Wide Range Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Equiv.  
Software  
Default  
Drive  
Drive  
Strength Speed  
Strength Option1 Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units  
100 µA  
100 µA  
100 µA  
100 µA  
100 µA  
Notes:  
4 mA  
8 mA  
Std.  
–1  
0.80 9.08 0.05 2.18 3.16 0.52 9.08 7.17 3.85 3.40 11.28 9.38 ns  
0.68 7.72 0.05 1.86 2.69 0.44 7.72 6.10 3.28 2.89 9.60 7.98 ns  
0.80 7.37 0.05 2.18 3.16 0.52 7.37 6.10 4.38 4.35 9.58 8.31 ns  
0.68 6.27 0.05 1.86 2.69 0.44 6.27 5.19 3.73 3.70 8.15 7.07 ns  
0.80 6.17 0.05 2.18 3.16 0.52 6.17 5.30 4.73 4.94 8.37 7.51 ns  
0.68 5.24 0.05 1.86 2.69 0.44 5.24 4.51 4.03 4.20 7.12 6.38 ns  
0.80 5.82 0.05 2.18 3.16 0.52 5.82 5.12 4.80 5.11 8.03 7.33 ns  
0.68 4.95 0.05 1.86 2.69 0.44 4.95 4.36 4.09 4.34 6.83 6.23 ns  
0.80 5.64 0.05 2.18 3.16 0.52 5.64 5.14 4.90 5.72 7.85 7.35 ns  
0.68 4.80 0.05 1.86 2.69 0.44 4.80 4.38 4.17 4.87 6.67 6.25 ns  
Std.  
–1  
12 mA  
16 mA  
24 mA  
Std.  
–1  
Std.  
–1  
Std.  
–1  
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the  
equivalent software default drive strength. These values are for normal ranges ONLY.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-63 • 3.3 V LVCMOS Wide Range High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V  
Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only  
Equiv.  
Software  
Default  
Drive  
Drive  
Strength Speed  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
Strength Option1  
tZH tLZ tHZ tZLS tZHS Units  
0.80 5.00 0.05 2.18 3.16 0.52 5.00 3.77 3.85 3.62 7.21 5.97 ns  
100 µA  
100 µA  
100 µA  
100 µA  
100 µA  
Notes:  
4 mA  
Std.  
–1  
0.68 4.25 0.05 1.86 2.69 0.44 4.25 3.21 3.28 3.08 6.13 5.08 ns  
0.80 4.07 0.05 2.18 3.16 0.52 4.07 2.98 4.38 4.57 6.27 5.19 ns  
0.68 3.46 0.05 1.86 2.69 0.44 3.46 2.54 3.73 3.89 5.33 4.41 ns  
0.80 3.54 0.05 2.18 3.16 0.52 3.54 2.60 4.73 5.19 5.74 4.81 ns  
0.68 3.01 0.05 1.86 2.69 0.44 3.01 2.22 4.03 4.42 4.89 4.09 ns  
0.80 3.45 0.05 2.18 3.16 0.52 3.45 2.54 4.82 5.36 5.66 4.74 ns  
0.68 2.94 0.05 1.86 2.69 0.44 2.94 2.16 4.10 4.56 4.81 4.03 ns  
0.80 3.49 0.05 2.18 3.16 0.52 3.49 2.44 4.91 5.98 5.69 4.64 ns  
0.68 2.97 0.05 1.86 2.69 0.44 2.97 2.07 4.18 5.08 4.84 3.95 ns  
8 mA  
Std.  
–1  
12 mA  
16 mA  
24 mA  
Std.  
–1  
Std.  
–1  
Std.  
–1  
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the  
equivalent software default drive strength. These values are for normal ranges only.  
2. For specific junction temperature and voltage supply levels, refer to the Table 2-6 on page 2-6 for derating values.  
3. Software default selection highlighted in gray.  
Revision 5  
2-45  
Military ProASIC3/EL DC and Switching Characteristics  
1.5 V DC Core Voltage  
Table 2-64 • 3.3 V LVCMOS Wide Range Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Equiv.  
Software  
Default  
Drive  
Drive  
Strength Speed  
Strength Option1 Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units  
100 µA  
100 µA  
100 µA  
100 µA  
100 µA  
Notes:  
4 mA  
8 mA  
Std.  
–1  
0.61 8.94 0.04 1.90 2.87 0.40 8.92 7.06 3.69 3.20 10.39 8.53 ns  
0.52 7.61 0.03 1.61 2.44 0.34 7.59 6.01 3.14 2.72 8.84 7.25 ns  
0.61 7.24 0.04 1.90 2.87 0.40 7.22 5.99 4.23 4.15 8.68 7.45 ns  
0.52 6.16 003 1.61 2.44 0.34 6.14 5.10 3.60 3.53 7.39 6.34 ns  
0.61 6.03 0.04 1.90 2.87 0.40 6.01 5.19 4.58 4.74 7.47 6.65 ns  
0.52 5.13 0.03 1.61 2.44 0.34 5.11 4.41 3.89 4.03 6.36 5.66 ns  
0.61 5.68 0.04 1.90 2.87 0.40 5.66 5.01 4.65 4.91 7.13 6.47 ns  
0.52 4.83 0.03 1.61 2.44 0.34 4.82 4.26 3.95 4.18 6.06 5.51 ns  
0.61 5.50 0.04 1.90 2.87 0.40 5.48 5.03 4.74 5.53 6.95 6.49 ns  
0.52 4.68 0.03 1.61 2.44 0.34 4.66 4.28 4.04 4.70 5.91 5.52 ns  
Std.  
–1  
12 mA  
16 mA  
24 mA  
Std.  
–1  
Std.  
–1  
Std.  
–1  
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the  
equivalent software default drive strength. These values are for normal ranges ONLY.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-65 • 3.3 V LVCMOS Wide Range High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V  
Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only  
Equiv.  
Software  
Default  
Drive  
Drive  
Strength Speed  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
Strength Option1  
tZH tLZ tHZ tZLS tZHS Units  
0.61 4.86 0.04 1.90 2.87 0.40 4.84 3.65 3.69 3.43 6.31 5.12 ns  
100 µA  
100 µA  
100 µA  
100 µA  
100 µA  
Notes:  
4 mA  
Std.  
–1  
0.52 4.14 0.03 1.61 2.44 0.34 4.12 3.11 3.14 2.91 5.37 4.35 ns  
0.61 3.93 0.04 1.90 2.87 0.40 3.91 2.87 4.23 4.38 5.37 4.33 ns  
0.52 3.34 0.03 1.61 2.44 0.34 3.33 2.44 3.60 3.72 4.57 3.68 ns  
0.61 3.40 0.04 1.90 2.87 0.40 3.38 2.49 4.58 4.99 4.85 3.95 ns  
0.52 2.89 0.03 1.61 2.44 0.34 2.88 2.12 3.89 4.25 4.12 3.36 ns  
0.61 3.31 0.04 1.90 2.87 0.40 3.29 2.42 4.66 5.16 4.76 3.89 ns  
0.52 2.82 0.03 1.61 2.44 0.34 2.80 2.06 3.96 4.39 4.05 3.31 ns  
0.61 3.35 0.04 1.90 2.87 0.40 3.33 2.32 4.76 5.78 4.80 3.79 ns  
0.52 2.85 0.03 1.61 2.44 0.34 2.83 1.98 4.05 4.92 4.08 3.22 ns  
8 mA  
Std.  
–1  
12 mA  
16 mA  
24 mA  
Std.  
–1  
Std.  
–1  
Std.  
–1  
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the  
equivalent software default drive strength. These values are for normal ranges only.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-46  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-66 • 3.3 V LVCMOS Wide Range Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V  
Applicable to Advanced I/O Banks  
Equiv.  
Software  
Default  
Drive  
Drive  
Strength  
Strength Speed  
Option1  
Grade tDOUT tDP tDIN tPY tEOUT tZL  
tZH  
tLZ  
tHZ tZLS tZHS Units  
100 µA  
100 µA  
100 µA  
100 µA  
100 µA  
Notes:  
4 mA  
Std.  
–1  
0.63 9.67 0.05 1.70 0.45 9.67 8.03 4.50 4.18 13.40 11.77  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.54 8.22 0.04 1.44 0.39 8.22 6.83 3.83 3.55 11.40 10.01  
0.63 8.13 0.05 1.70 0.45 8.13 6.95 5.07 5.17 11.86 10.69  
0.54 6.91 0.04 1.44 0.39 6.91 5.92 4.31 4.40 10.09 9.09  
0.63 8.13 0.05 1.70 0.45 8.13 6.95 5.07 5.17 11.86 10.69  
0.54 6.91 0.04 1.44 0.39 6.91 5.92 4.31 4.40 10.09 9.09  
0.63 6.96 0.05 1.70 0.45 6.96 6.15 5.45 5.81 10.70 9.89  
0.54 5.92 0.04 1.44 0.39 5.92 5.24 4.64 4.94 9.10 8.41  
0.63 6.61 0.05 1.70 0.45 6.61 5.96 5.54 5.97 10.34 9.70  
0.54 5.62 0.04 1.44 0.39 5.62 5.07 4.71 5.08 8.80 8.25  
6mA  
8 mA  
Std.  
–1  
Std.  
–1  
12 mA  
16 mA  
Std.  
–1  
Std.  
–1  
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the  
equivalent software default drive strength. These values are for normal ranges ONLY.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-67 • 3.3 V LVCMOS Wide Range High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V  
Applicable to Advanced I/O Banks  
Equiv.  
Software  
Default  
Drive  
Drive  
Strength  
Strength  
Speed  
Option1  
Grade tDOUT tDP tDIN tPY tEOUT tZL  
tZH  
tLZ tHZ tZLS tZHS Units  
100 µA  
100 µA  
100 µA  
100 µA  
100 µA  
Notes:  
4 mA  
6 mA  
Std.  
–1  
0.63 5.49 0.05 1.70 0.45 5.49 4.23 4.51 4.44 9.22 7.97  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.54 4.67 0.04 1.44 0.39 4.57 3.60 3.83 3.78 7.84 6.78  
0.63 4.56 0.05 1.70 0.45 4.56 3.42 5.08 5.45 8.29 7.15  
0.54 3.88 0.04 1.44 0.39 3.88 2.91 4.32 4.64 7.05 6.08  
0.63 4.56 0.05 1.70 0.45 4.56 3.42 5.08 5.45 8.29 7.15  
0.54 3.88 0.04 1.44 0.39 3.88 2.91 4.32 4.64 7.05 6.08  
0.63 4.08 0.05 1.70 0.45 4.08 3.03 5.46 6.09 7.81 6.76  
0.54 3.47 0.04 1.44 0.39 3.47 2.57 4.65 5.18 6.64 5.75  
0.63 4.00 0.05 1.70 0.45 4.00 2.96 5.55 6.26 7.73 6.69  
0.54 3.40 0.04 1.44 0.39 3.40 2.51 4.72 5.32 6.58 5.69  
Std.  
–1  
8 mA  
Std.  
–1  
12 mA  
16 mA  
Std.  
–1  
Std.  
–1  
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the  
equivalent software default drive strength. These values are for normal ranges only.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 5  
2-47  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-68 • 3.3 V LVCMOS Wide Range Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V  
Applicable to Standard Plus I/O Banks  
Equiv.  
Software  
Default  
Drive  
Drive  
Strength  
Strength  
Speed  
Option1  
Grade tDOUT tDP tDIN tPY tEOUT tZL  
tZH  
tLZ  
tHZ tZLS tZHS Units  
100 µA  
100 µA  
100 µA  
100 µA  
100 µA  
Notes:  
4 mA  
6 mA  
Std.  
–1  
0.63 8.71 0.05 1.67 0.45 8.71 7.25 3.87 3.76 12.45 10.99 ns  
0.54 7.41 0.04 1.42 0.39 7.41 6.17 3.29 3.19 10.59 9.35 ns  
0.63 7.17 0.05 1.67 0.45 7.17 6.31 4.39 4.66 10.91 10.04 ns  
0.54 6.10 0.04 1.42 0.39 6.10 5.37 3.73 3.96 9.28 8.54 ns  
0.63 7.17 0.05 1.67 0.45 7.17 6.31 4.39 4.66 10.91 10.04 ns  
Std.  
–1  
8 mA  
Std.  
–1  
0.54 6.10 0.04 1.42 0.39 6.10 5.37 3.73 3.96 9.28 8.54  
0.63 6.09 0.05 1.67 0.45 6.09 5.57 4.75 5.24 9.83 9.31  
0.54 5.18 0.04 1.42 0.39 5.18 4.74 4.04 4.46 8.36 7.92  
0.63 6.09 0.05 1.67 0.45 6.09 5.57 4.75 5.24 9.83 9.31  
0.54 5.18 0.04 1.42 0.39 5.18 4.74 4.04 4.46 8.36 7.92  
ns  
ns  
ns  
ns  
ns  
12 mA  
16 mA  
Std.  
–1  
Std.  
–1  
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the  
equivalent software default drive strength. These values are for normal ranges ONLY.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-69 • 3.3 V LVCMOS Wide Range High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V  
Applicable to Standard Plus I/O Banks  
Equiv.  
Software  
Default  
Drive  
Drive  
Strength  
Strength  
Speed  
Option1  
Grade tDOUT tDP tDIN tPY tEOUT tZL  
tZH  
tLZ tHZ tZLS tZHS Units  
100 µA  
100 µA  
100 µA  
100 µA  
100 µA  
Notes:  
4 mA  
6 mA  
Std.  
–1  
0.63 4.75 0.05 1.67 0.45 4.75 3.73 3.87 3.97 8.48 7.46  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.54 4.04 0.04 1.42 0.39 4.04 3.17 3.29 3.38 7.21 6.35  
0.63 3.87 0.05 1.67 0.45 3.87 2.98 4.38 4.89 7.61 6.72  
0.54 3.30 0.04 1.42 0.39 3.30 2.54 3.73 4.16 6.47 5.72  
0.63 3.87 0.05 1.67 0.45 3.87 2.98 4.38 4.89 7.61 6.72  
0.54 3.30 0.04 1.42 0.39 3.30 2.54 3.73 4.16 6.47 5.72  
0.63 3.46 0.05 1.67 0.45 3.46 2.61 4.74 5.48 7.19 6.35  
Std.  
–1  
8 mA  
Std.  
–1  
12 mA  
16 mA  
Std.  
–1  
0.54 2.94 0.04 1.42 0.3  
2.94 2.22 4.03 4.66 6.12 5.40  
Std.  
–1  
0.63 3.46 0.05 1.67 0.45 3.46 2.61 4.74 5.48 7.19 6.35  
0.54 2.94 0.04 1.42 0.39 2.94 2.22 4.03 4.66 6.12 5.40  
1. Note that 3.3 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the  
equivalent software default drive strength. These values are for normal ranges only.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-48  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
2.5 V LVCMOS  
Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-  
purpose 2.5 V applications.  
Table 2-70 • Minimum and Maximum DC Input and Output Levels  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
1
2
2.5 V LVCMOS  
VIL  
VIH  
VOL  
VOH IOL IOH  
IOSL  
IOSH  
IIL IIH  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
mA3  
Max.  
mA3  
Drive Strength  
4 mA  
mA mA  
µA4 µA4  
15 15  
15 15  
15 15  
15 15  
15 15  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.7  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
1.7  
3.6  
3.6  
3.6  
3.6  
3.6  
0.7  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
1.7  
4
8
4
8
16  
32  
18  
37  
8 mA  
12 mA  
12 12  
16 16  
24 24  
65  
74  
16 mA  
83  
87  
24 mA  
169  
124  
Notes:  
1.  
2.  
I
I
is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
IL  
IH  
larger when operating outside recommended ranges  
3. Currents are measured at 100°C junction temperature and maximum voltage.  
4. Currents are measured at 125°C junction temperature.  
5. Software default selection highlighted in gray.  
Table 2-71 • Minimum and Maximum DC Input and Output Levels  
Applicable to Advanced I/O Banks  
1
2
2.5 V LVCMOS  
VIL  
VIH  
VOL  
VOH IOL IOH  
Min.  
IOSL  
IOSH  
IIL IIH  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Max.  
mA3  
Max.  
mA3  
Drive Strength  
2 mA  
V
mA mA  
µA4 µA4  
15 15  
15 15  
15 15  
15 15  
15 15  
15 15  
15 15  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
2.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
1.7  
2
4
6
8
2
4
6
8
16  
16  
18  
18  
4 mA  
6 mA  
32  
37  
8 mA  
32  
37  
12 mA  
16 mA  
24 mA  
Notes:  
12 12  
16 16  
24 24  
65  
74  
83  
87  
169  
124  
1.  
2.  
I
I
is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
IL  
IH  
larger when operating outside recommended ranges  
3. Currents are measured at 100°C junction temperature and maximum voltage.  
4. Currents are measured at 125°C junction temperature.  
5. Software default selection highlighted in gray.  
Revision 5  
2-49  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-72 • Minimum and Maximum DC Input and Output Levels  
Applicable to Standard Plus I/O Banks for A3P250 and A3P1000 Only  
2.5 V  
LVCMOS  
1
2
VIL  
VIH  
VOL  
VOH  
IOL IOH  
IOSL  
IOSH  
IIL IIH  
Drive  
Strength  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
mA3  
Max.  
mA3  
mA mA  
µA4 µA5  
15 15  
15 15  
15 15  
15 15  
15 15  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Notes:  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
0.7  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
1.7  
2.7  
2.7  
2.7  
2.7  
2.7  
0.7  
0.7  
0.7  
0.7  
0.7  
1.7  
1.7  
1.7  
1.7  
1.7  
2
4
6
8
2
4
6
8
16  
16  
32  
32  
65  
18  
18  
37  
37  
74  
12 12  
1.  
2.  
I
I
is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
IL  
IH  
larger when operating outside recommended ranges  
3. Currents are measured at 100°C junction temperature and maximum voltage.  
4. Currents are measured at 125°C junction temperature.  
5. Software default selection highlighted in gray.  
R to VCCI for tLZ / tZL / tZLS  
R to GND for tHZ / tZH / tZHS  
R = 1 k  
Test Point  
Enable Path  
Test Point  
Datapath  
5 pF  
5 pF for tZH / tZHS / tZL / tZLS  
5 pF for tHZ / tLZ  
Figure 2-9 • AC Loading  
Table 2-73 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (Typ) (V)  
CLOAD (pF)  
0
2.5  
1.2  
5
Note: *Measuring point = V  
See Table 2-29 on page 2-25 for a complete table of trip points.  
trip.  
2-50  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Timing Characteristics  
1.2 V DC Core Voltage  
Table 2-74 • 2.5 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
–1  
0.80 6.87 0.05 2.04 2.56 0.52 6.99 5.83 2.70 2.19 9.20  
8.03  
6.83  
7.14  
6.08  
6.50  
5.53  
6.36  
5.41  
6.38  
5.43  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.68 5.84 0.05 1.73 2.17 0.44 5.95 4.96 2.29 1.86 7.82  
0.80 5.62 0.05 2.04 2.56 0.52 5.72 4.94 3.08 2.90 7.92  
8 mA  
Std.  
–1  
0.68 4.78 0.05 1.73 2.17  
044  
4.86 4.20 2.62 2.47 6.74  
12 mA  
16 mA  
24 mA  
Std.  
–1  
0.80 4.73 0.05 2.04 2.56 0.52 4.81 4.30 3.34 3.38 7.01  
0.68 4.02 0.05 1.73 2.17 0.44 4.09 3.65 2.84 2.87 5.97  
0.80 4.46 0.05 2.04 2.56 0.52 4.53 4.16 3.39 3.50 6.74  
0.68 3.79 0.05 1.73 2.17 0.44 3.86 3.54 2.89 2.98 5.73  
0.80 4.34 0.05 2.04 2.56 0.52 4.41 4.17 3.47 3.96 6.62  
0.68 3.69 0.05 1.73 2.17 0.44 3.75 3.55 2.95 3.96 5.63  
Std.  
–1  
Std.  
–1  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-75 • 2.5 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
–1  
0.80 3.51 0.05 2.04 2.56 0.52 3.56 3.13 2.70 2.27 5.77  
5.33  
4.53  
4.61  
3.92  
4.25  
3.62  
4.19  
3.56  
4.10  
3.49  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.68 2.98 0.05 1.73 2.17 0.44 3.03 2.66 2.29 1.93 4.91  
0.80 2.87 0.05 2.04 2.56 0.52 2.92 2.40 3.08 3.01 5.12  
0.68 2.44 0.05 1.73 2.17 0.44 2.48 2.05 2.62 2.56 4.36  
0.80 2.50 0.05 2.04 2.56 0.52 2.53 2.05 3.34 3.47 4.74  
0.68 2.12 0.05 1.73 2.17 0.44 2.15 1.74 2.84 2.95 4.03  
0.80 2.43 0.05 2.04 2.56 0.52 2.47 1.98 3.39 3.59 4.67  
0.68 2.07 0.05 1.73 2.17 0.44 2.10 1.69 2.89 3.06 3.97  
0.80 2.44 0.05 2.04 2.56 0.52 2.48 1.90 3.47 4.08 4.68  
0.68 2.08 0.05 1.73 2.17 0.44 2.11 1.61 2.95 3.47 3.98  
8 mA  
Std.  
–1  
12 mA  
16 mA  
24 mA  
Notes:  
Std.  
–1  
Std.  
–1  
Std.  
–1  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 5  
2-51  
Military ProASIC3/EL DC and Switching Characteristics  
1.5 V DC Core Voltage  
Table 2-76 • 2.5 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
–1  
0.61 6.73 0.04 1.75 2.26 0.40 6.83 5.71 2.54 1.99 8.30  
7.18  
6.10  
6.29  
5.35  
5.65  
4.80  
5.51  
4.69  
5.52  
4.70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.52 5.73 0.03 1.49 1.93 0.34 5.81 4.86 2.16 1.69 7.06  
0.61 5.48 0.04 1.75 2.26 0.40 5.56 4.82 2.92 2.71 7.02  
0.52 4.66 0.03 1.49 1.93 0.34 4.73 4.10 2.48 2.30 5.98  
0.61 4.59 0.04 1.75 2.26 0.40 4.65 4.18 3.18 3.18 6.12  
0.52 3.91 0.03 1.49 1.93 0.34 3.96 3.56 2.71 2.70 5.20  
0.61 4.32 0.04 1.75 2.26 0.40 4.38 4.04 3.24 3.31 5.84  
0.52 3.68 0.03 1.49 1.93 0.34 3.72 3.44 2.75 2.81 4.97  
0.61 4.20 0.04 1.75 2.26 0.40 4.26 4.06 3.31 3.76 5.72  
0.52 3.58 0.03 1.49 1.93 0.34 3.62 3.45 2.82 3.20 4.87  
8 mA  
Std.  
–1  
12 mA  
16 mA  
24 mA  
Std.  
–1  
Std.  
–1  
Std.  
–1  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-77 • 2.5 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
4 mA  
Std.  
–1  
0.61 3.37 0.04 1.75 2.26 0.40 3.41 3.01 2.54 2.08 4.87  
4.48  
3.81  
3.75  
3.19  
3.40  
2.89  
3.33  
2.84  
3.25  
2.76  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.52 2.87 0.03 1.49 1.93 0.34 2.90 2.56 2.16 1.77 4.14  
0.61 2.74 0.04 1.75 2.26 0.40 2.76 2.29 2.92 2.82 4.23  
0.52 2.33 0.03 1.49 1.93 0.34 2.35 1.95 2.48 2.40 3.60  
0.61 2.36 0.04 1.75 2.26 0.40 2.38 1.93 3.18 3.27 3.84  
0.52 2.01 0.03 1.49 1.93 0.34 2.02 1.65 2.71 2.78 3.27  
0.61 2.29 0.04 1.75 2.26 0.40 2.31 1.87 3.24 3.40 3.77  
0.52 1.95 0.03 1.49 1.93 0.34 1.96 1.59 2.75 2.89 3.21  
0.61 2.31 0.04 1.75 2.26 0.40 2.32 1.78 3.31 3.89 3.79  
0.52 1.96 0.03 1.49 1.93 0.34 1.98 1.52 2.82 3.31 3.22  
8 mA  
Std.  
–1  
12 mA  
16 mA  
24 mA  
Notes:  
Std.  
–1  
Std.  
–1  
Std.  
–1  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-52  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-78 • 2.5 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
9.66  
8.22  
8.48  
7.21  
8.48  
7.21  
7.61  
6.47  
7.32  
6.23  
7.19  
6.12  
tZHS  
8.78  
7.47  
7.88  
6.70  
7.88  
6.70  
7.25  
6.17  
7.10  
6.04  
7.17  
6.10  
Units  
ns  
4 mA  
Std.  
–1  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
7.07 0.05 1.44  
6.02 0.04 1.23  
5.91 0.05 1.44  
5.03 0.04 1.23  
5.91 0.05 1.44  
5.03 0.04 1.23  
5.05 0.05 1.44  
4.30 0.04 1.23  
4.78 0.05 1.44  
4.06 0.04 1.23  
4.71 0.05 1.44  
4.01 0.04 1.23  
7.20 6.32 2.95 2.43  
6.13 5.38 2.51 2.06  
6.02 5.42 3.35 3.18  
5.12 4.61 2.85 2.70  
6.02 5.42 3.35 3.18  
5.12 4.61 2.85 2.70  
5.15 4.79 3.63 3.66  
4.38 4.07 3.09 3.11  
4.86 4.65 3.70 3.78  
4.14 3.95 3.14 3.22  
4.73 4.71 3.78 4.26  
4.03 4.01 3.21 3.62  
ns  
6 mA  
Std.  
–1  
ns  
ns  
8 mA  
Std.  
–1  
ns  
ns  
12 mA  
16 mA  
24 mA  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
Table 2-79 • 2.5 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
6.16  
5.24  
5.50  
4.68  
5.50  
4.68  
5.16  
4.39  
5.10  
4.34  
5.12  
4.35  
tZHS  
5.80  
4.94  
5.05  
4.30  
5.05  
4.30  
4.69  
3.99  
4.62  
3.93  
4.54  
3.87  
Units  
ns  
4 mA  
Std.  
–1  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
3.63 0.05 1.44  
3.09 0.04 1.23  
2.99 0.05 1.44  
2.54 0.04 1.23  
2.99 0.05 1.44  
2.54 0.04 1.23  
2.65 0.05 1.44  
2.26 0.04 1.23  
2.59 0.05 1.44  
2.21 0.04 1.23  
2.61 0.05 1.44  
2.22 0.04 1.23  
3.70 3.34 2.94 2.53  
3.15 2.84 2.51 2.16  
3.04 2.59 3.35 3.30  
2.59 2.20 2.85 2.81  
3.04 2.59 3.35 3.30  
2.59 2.20 2.85 2.81  
2.70 2.23 3.63 3.78  
2.30 1.89 3.09 3.22  
2.64 2.16 3.70 3.90  
2.25 1.83 3.15 3.32  
2.66 2.08 3.78 4.40  
2.26 1.77 3.22 3.74  
ns  
6 mA  
Std.  
–1  
ns  
ns  
8 mA  
Std.  
–1  
ns  
ns  
12 mA  
16 mA  
24 mA  
Notes:  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
Revision 5  
2-53  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-80 • 2.5 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
9.02  
7.68  
7.84  
6.67  
7.84  
6.67  
7.02  
5.97  
tZHS  
8.17  
6.95  
7.38  
6.28  
7.38  
6.28  
6.81  
5.79  
Units  
ns  
4 mA  
6 mA  
8 mA  
12 mA  
Std.  
–1  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
6.45 0.05 1.43  
5.48 0.04 1.21  
5.28 0.05 1.43  
4.50 0.04 1.21  
5.28 0.05 1.43  
4.50 0.04 1.21  
4.48 0.05 1.43  
3.81 0.04 1.21  
6.56 5.71 2.48 2.19  
5.58 4.86 2.11 1.86  
5.38 4.92 2.85 2.88  
4.58 4.19 2.42 2.45  
5.38 4.92 2.85 2.88  
4.58 4.19 2.42 2.45  
4.56 4.35 3.11 3.31  
3.88 3.70 2.65 2.82  
ns  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
Table 2-81 • 2.5 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
5.69  
4.84  
5.08  
4.32  
5.08  
4.32  
4.78  
4.07  
tZHS  
5.38  
4.58  
4.70  
4.00  
4.70  
4.00  
4.36  
3.71  
Units  
ns  
4 mA  
6 mA  
8 mA  
12 mA  
Notes:  
Std.  
–1  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
3.18 0.05 1.43  
2.70 0.04 1.21  
2.57 0.05 1.43  
2.19 0.04 1.21  
2.57 0.05 1.43  
2.19 0.04 1.21  
2.28 0.05 1.43  
1.94 0.04 1.21  
3.23 2.92 2.48 2.28  
2.75 2.48 2.11 1.94  
2.62 2.24 2.84 2.98  
2.23 1.90 2.42 2.54  
2.62 2.24 2.84 2.98  
2.23 1.90 2.42 2.54  
2.32 1.90 3.11 3.42  
1.97 1.62 2.64 2.91  
ns  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
2-54  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
1.8 V LVCMOS  
Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-  
purpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.  
Table 2-82 • Minimum and Maximum DC Input and Output Levels  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
1.8 V  
LVCMOS  
1
2
VIL  
Max.  
VIH  
VOL  
VOH  
IOL IOH  
IOSL  
IOSH  
IIL IIH  
Drive  
Strength  
Min.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
mA3  
Max.  
mA3  
V
mA mA  
µA4 µA4  
15 15  
15 15  
15 15  
15 15  
15 15  
15 15  
2 mA  
–0.3 0.35 * VCCI 0.65 * VCCI 3.6  
–0.3 0.35 * VCCI 0.65 * VCCI 3.6  
–0.3 0.35 * VCCI 0.65 * VCCI 3.6  
–0.3 0.35 * VCCI 0.65 * VCCI 3.6  
–0.3 0.35 * VCCI 0.65 * VCCI 3.6  
–0.3 0.35 * VCCI 0.65 * VCCI 3.6  
0.45 VCCI – 0.45  
0.45 VCCI – 0.45  
0.45 VCCI – 0.45  
0.45 VCCI – 0.45  
2
4
6
8
2
4
6
8
9
11  
22  
44  
51  
74  
74  
4 mA  
17  
35  
45  
91  
91  
6 mA  
8 mA  
12 mA  
16 mA  
Notes:  
0.45 VCCI – 0.45 12 12  
0.45 VCCI – 0.45 16 16  
1.  
2.  
I
I
is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
IL  
IH  
larger when operating outside recommended ranges  
3. Currents are measured at 100°C junction temperature and maximum voltage.  
4. Currents are measured at 125°C junction temperature.  
5. Software default selection highlighted in gray.  
Table 2-83 • Minimum and Maximum DC Input and Output Levels  
Applicable to Advanced I/O Banks  
1.8 V  
LVCMOS  
1
2
VIL  
Max.  
VIH  
VOL  
VOH  
IOL IOH IOSL  
IOSH IIL IIH  
Drive  
Strength  
Min.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
Max.  
V
mA mA mA3  
mA3 µA4 µA4  
2 mA  
–0.3  
0.35 * VCCI 0.65 * VCCI  
1.9  
1.9  
1.9  
1.9  
1.9  
1.9  
0.45 VCCI – 0.45  
0.45 VCCI – 0.45  
0.45 VCCI – 0.45  
0.45 VCCI – 0.45  
2
4
6
8
2
4
6
8
9
11  
22  
44  
51  
74  
74  
15 15  
15 15  
15 15  
15 15  
15 15  
15 15  
4 mA  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
17  
35  
45  
91  
91  
6 mA  
8 mA  
12 mA  
16 mA  
Notes:  
0.45 VCCI – 0.45 12 12  
0.45 VCCI – 0.45 16 16  
1.  
2.  
I
I
is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
IL  
IH  
larger when operating outside recommended ranges  
3. Currents are measured at 100°C junction temperature and maximum voltage.  
4. Currents are measured at 125°C junction temperature.  
5. Software default selection highlighted in gray.  
Revision 5  
2-55  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-84 • Minimum and Maximum DC Input and Output Levels  
Applicable to Standard Plus I/O I/O Banks  
1.8 V  
LVCMOS  
1
2
VIL  
Max.  
VIH  
VOL  
VOH  
IOL IOH IOSL  
IOSH IIL IIH  
Drive  
Strength  
Min.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max. Max.  
V
mA mA mA3 mA3 µA4 µA4  
2 mA  
4 mA  
6 mA  
8 mA  
Notes:  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
1.9  
1.9  
1.9  
1.9  
0.45  
0.45  
0.45  
0.45  
VCCI – 0.45  
VCCI – 0.45  
VCCI – 0.45  
VCCI – 0.45  
2
4
6
8
2
4
6
8
9
11  
22  
44  
44  
15 15  
15 15  
15 15  
15 15  
17  
35  
35  
1.  
2.  
I
I
is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
IL  
IH  
larger when operating outside recommended ranges  
3. Currents are measured at 100°C junction temperature and maximum voltage.  
4. Currents are measured at 125°C junction temperature.  
5. Software default selection highlighted in gray.  
R to VCCI for tLZ / tZL / tZLS  
R to GND for tHZ / tZH / tZHS  
R = 1 k  
Test Point  
Enable Path  
Test Point  
Datapath  
5 pF  
5 pF for tZH / tZHS / tZL / tZLS  
5 pF for tHZ / tLZ  
Figure 2-10 • AC Loading  
Table 2-85 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (Typ) (V)  
C
LOAD (pF)  
0
1.8  
0.9  
5
Note: *Measuring point = V  
See Table 2-29 on page 2-25 for a complete table of trip points.  
trip.  
2-56  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Timing Characteristics  
1.2 V DC Core Voltage  
Table 2-86 • 1.8 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
Std.  
–1  
0.80 9.16 0.05 2.00 2.82 0.52 9.32 7.69 2.77 1.20 11.53 9.89  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.68 7.79 0.05 1.70 2.40 0.44 7.93 6.54 2.36 1.02 9.81  
0.80 7.55 0.05 2.00 2.82 0.52 7.68 6.48 3.23 2.76 9.88  
0.68 6.42 0.05 1.70 2.40 0.44 6.53 5.51 2.75 2.35 8.41  
0.80 6.40 0.05 2.00 2.82 0.52 6.51 5.65 3.54 3.34 8.71  
0.68 5.44 0.05 1.70 2.40 0.44 5.54 4.80 3.01 2.84 7.41  
0.80 6.01 0.05 2.00 2.82 0.52 6.12 5.48 3.61 3.50 8.32  
8.42  
8.68  
7.38  
7.85  
6.68  
7.69  
6.54  
7.70  
6.55  
7.70  
6.55  
Std.  
–1  
Std.  
–1  
Std.  
–1  
0.68  
5.11 0.05 1.70 2.40 0.44 5.20 4.66 3.07 2.98 7.08  
Std.  
–1  
0.80 5.90 0.05 2.00 2.82 0.52 6.00 5.49 3.71 4.08 8.21  
0.68 5.02 0.05 1.70 2.40 0.44 5.11 4.67 3.16 3.47 6.98  
0.80 5.90 0.05 2.00 2.82 0.52 6.00 5.49 3.71 4.08 8.21  
0.68 5.02 0.05 1.70 2.40 0.44 5.11 4.67 3.16 3.47 6.98  
Std.  
–1  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-87 • 1.8 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
Std.  
–1  
0.80 4.14 0.05 2.00 2.82 0.52 4.21 4.05 2.76 1.23 6.42  
6.26  
5.32  
5.21  
4.43  
4.70  
3.99  
4.60  
3.91  
4.48  
3.81  
4.48  
3.81  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.68 3.52 0.05 1.70 2.40 0.44 3.58 3.45 2.35 1.04 5.46  
0.80 3.36 0.05 2.00 2.82 0.52 3.41 3.01 3.22 2.85 5.62  
0.68 2.86 0.05 1.70 2.40 0.44 2.90 2.56 2.74 2.42 4.78  
0.80 2.88 0.05 2.00 2.82 0.52 2.93 2.49 3.54 3.43 5.13  
0.68 2.45 0.05 1.70 2.40 0.44 2.49 2.12 3.01 2.92 4.36  
0.80 2.79 0.05 2.00 2.82 0.52 2.83 2.40 3.60 3.59 5.04  
0.68 2.37 0.05 1.70 2.40 0.44 2.41 2.04 3.06 3.05 4.29  
0.80 2.78 0.05 2.00 2.82 0.52 2.82 2.28 3.71 4.21 5.02  
0.68 2.36 0.05 1.70 2.40 0.44 2.40 1.94 3.16 3.58 4.27  
0.80 2.78 0.05 2.00 2.82 0.52 2.82 2.28 3.71 4.21 5.02  
0.68 2.36 0.05 1.70 2.40 0.44 2.40 1.94 3.16 3.58 4.27  
4 mA  
Std.  
–1  
6 mA  
Std.  
–1  
8 mA  
Std.  
–1  
12 mA  
16 mA  
Notes:  
Std.  
–1  
Std.  
–1  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 5  
2-57  
Military ProASIC3/EL DC and Switching Characteristics  
1.5 V DC Core Voltage  
Table 2-88 • 1.8 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.7 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
Std.  
–1  
0.61 9.02 0.04 1.69 2.52 0.40 9.17 7.57 2.61 1.01 10.63 9.04  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.52 7.68 0.03 1.44 2.14 0.34 7.80 6.44 2.22 0.86 9.04  
0.61 7.41 0.04 1.69 2.52 0.40 7.52 6.36 3.07 2.56 8.99  
0.52 6.30 0.03 1.44 2.14 0.34 6.40 5.41 2.62 2.18 7.64  
0.61 6.26 0.04 1.69 2.52 0.40 6.35 5.53 3.38 3.14 7.82  
0.52 5.33 0.03 1.44 2.14 0.34 5.40 4.71 2.88 2.67 6.65  
0.61 5.88 0.04 1.69 2.52 0.40 5.96 5.37 3.45 3.30 7.42  
0.52 5.00 0.03 1.44 2.14 0.34 5.07 4.57 2.94 2.81 6.32  
0.61 5.76 0.04 1.69 2.52 0.40 5.85 5.38 3.55 3.88 7.31  
0.52 4.90 0.03 1.44 2.14 0.34 4.97 4.57 3.02 3.30 6.22  
0.61 5.76 0.04 1.69 2.52 0.40 5.85 5.38 3.55 3.88 7.31  
0.52 4.90 0.03 1.44 2.14 0.34 4.97 4.57 3.02 3.30 6.22  
7.69  
7.83  
6.66  
7.00  
5.95  
6.83  
5.81  
6.84  
5.82  
6.84  
5.82  
Std.  
–1  
Std.  
–1  
Std.  
–1  
Std.  
–1  
Std.  
–1  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-89 • 1.8 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.7 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
Std.  
–1  
0.61 4.01 0.04 1.69 2.52 0.40 4.06 3.94 2.60 1.03 5.52  
5.40  
4.60  
4.36  
3.71  
3.84  
3.27  
3.75  
3.19  
3.63  
3.08  
3.63  
3.08  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.52 3.41 0.03 1.44 2.14 0.34 3.45 3.35 2.21 0.88 4.70  
0.61 3.22 0.04 1.69 2.52 0.40 3.26 2.89 3.07 2.65 4.72  
0.52 2.74 0.03 1.44 2.14 0.34 2.77 2.46 2.61 2.26 4.02  
0.61 2.74 0.04 1.69 2.52 0.40 2.77 2.38 3.38 3.23 4.23  
0.52 2.33 0.03 1.44 2.14 0.34 2.36 2.02 2.88 2.75 3.60  
0.61 2.65 0.04 1.69 2.52 0.40 2.68 2.28 3.45 3.40 4.14  
0.52 2.26 0.03 1.44 2.14 0.34 2.28 1.94 2.93 2.89 3.52  
0.61 2.64 0.04 1.69 2.52 0.40 2.66 2.16 3.55 4.01 4.13  
0.52 2.24 0.03 1.44 2.14 0.34 2.26 1.84 3.02 3.41 3.51  
0.61 2.64 0.04 1.69 2.52 0.40 2.66 2.16 3.55 4.01 4.13  
4 mA  
Std.  
–1  
6 mA  
Std.  
–1  
8 mA  
Std.  
–1  
12 mA  
16 mA  
Notes:  
Std.  
–1  
Std.  
–1  
0.52 2.24 0.03 1.44 2.14  
034  
2.26 1.84 3.02 3.41 3.51  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-58  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-90 • 1.8 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
16 mA  
Std.  
–1  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
9.50 0.05 1.44  
8.08 0.04 1.23  
7.80 0.05 1.44  
6.64 0.04 1.23  
6.70 0.05 1.44  
5.70 0.04 1.23  
6.31 0.05 1.44  
5.37 0.04 1.23  
6.18 0.05 1.44  
5.26 0.04 1.23  
6.18 0.05 1.44  
5.26 0.04 1.23  
9.68 8.31 3.06 1.76 12.14 10.77  
8.23 7.07 2.60 1.50 10.32  
7.95 7.06 3.55 3.01 10.41  
9.16  
9.52  
8.10  
8.70  
7.40  
8.53  
7.26  
8.61  
7.32  
8.61  
7.32  
ns  
Std.  
–1  
ns  
6.76 6.00 3.02 2.56  
6.82 6.25 3.89 3.60  
5.80 5.31 3.31 3.06  
6.43 6.07 3.97 3.75  
5.47 5.17 3.37 3.19  
6.30 6.15 4.08 4.34  
5.36 5.23 3.47 3.70  
6.30 6.15 4.08 4.34  
5.36 5.23 3.47 3.70  
8.85  
9.28  
7.90  
8.89  
7.56  
8.76  
7.45  
8.76  
7.45  
ns  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
Table 2-91 • 1.8 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
6.94  
5.90  
5.96  
5.07  
5.53  
4.71  
5.45  
4.64  
5.44  
4.63  
5.44  
4.63  
tZHS  
6.76  
5.75  
5.69  
4.84  
5.16  
4.39  
5.06  
4.31  
4.95  
4.21  
4.95  
4.21  
Units  
ns  
2 mA  
Std.  
–1  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
4.40 0.05 1.34  
3.74 0.04 1.14  
3.44 0.05 1.34  
2.92 0.04 1.14  
3.02 0.05 1.34  
2.57 0.04 1.14  
2.94 0.05 1.34  
2.50 0.04 1.14  
2.93 0.05 1.34  
2.49 0.04 1.14  
2.93 0.05 1.34  
2.49 0.04 1.14  
4.48 4.30 3.05 1.82  
3.81 3.66 2.59 1.55  
3.50 3.23 3.54 3.12  
2.98 2.75 3.01 2.66  
3.07 2.70 3.88 3.72  
2.61 2.30 3.30 3.16  
2.99 2.60 3.96 3.87  
2.54 2.21 3.37 3.30  
2.98 2.49 4.07 4.49  
2.54 2.12 3.46 3.82  
2.98 2.49 4.07 4.49  
2.54 2.12 3.46 3.82  
ns  
4 mA  
Std.  
–1  
ns  
ns  
6 mA  
Std.  
–1  
ns  
ns  
8 mA  
Std.  
–1  
ns  
ns  
12 mA  
16 mA  
Notes:  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
Revision 5  
2-59  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-92 • 1.8 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
9.97  
8.48  
8.89  
7.56  
8.14  
6.93  
8.14  
6.93  
Units  
ns  
2 mA  
4 mA  
6 mA  
8 mA  
Std.  
–1  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
8.81 0.05 1.43  
7.50 0.04 1.21  
7.10 0.05 1.43  
6.04 0.04 1.21  
6.06 0.05 1.43  
5.16 0.04 1.21  
6.06 0.05 1.43  
5.16 0.04 1.21  
8.98 7.51 2.48 1.61 11.44  
7.64 6.39 2.11 1.37  
7.23 6.43 2.92 2.75  
6.15 5.47 2.48 2.34  
6.17 5.68 3.23 3.29  
5.25 4.84 2.75 2.80  
6.17 5.68 3.23 3.29  
5.25 4.84 2.75 2.80  
9.73  
9.69  
8.24  
8.63  
7.34  
8.63  
7.34  
ns  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
Table 2-93 • 1.8 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
6.47  
5.51  
5.55  
4.72  
5.16  
4.39  
5.16  
4.39  
tZHS  
6.18  
5.26  
5.21  
4.43  
4.73  
4.02  
4.73  
4.02  
Units  
ns  
2 mA  
4 mA  
6 mA  
8 mA  
Notes:  
Std.  
–1  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
3.94 0.05 1.32  
3.35 0.04 1.12  
3.03 0.05 1.32  
2.58 0.04 1.12  
2.65 0.05 1.32  
2.26 0.04 1.12  
2.65 0.05 1.32  
2.26 0.04 1.12  
4.01 3.72 2.47 1.67  
3.41 3.16 2.10 1.42  
3.09 2.75 2.91 2.86  
2.63 2.34 2.48 2.44  
2.70 2.27 3.22 3.41  
2.30 1.93 2.74 2.90  
2.70 2.27 3.22 3.41  
2.30 1.93 2.74 2.90  
ns  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
2-60  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
1.5 V LVCMOS (JESD8-11)  
Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-  
purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.  
Table 2-94 • Minimum and Maximum DC Input and Output Levels  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
1.5 V  
LVCMOS  
1
2
VIL  
Max.  
VIH  
VOL  
VOH  
IOL IOH IOSL  
IOSH IIL IIH  
Drive  
Strength  
Min.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
Max.  
V
mA mA mA3  
mA3 µA4 µA4  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Notes:  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI  
3.6  
3.6  
3.6  
3.6  
3.6  
0.25 * VCCI 0.75 * VCCI  
0.25 * VCCI 0.75 * VCCI  
0.25 * VCCI 0.75 * VCCI  
0.25 * VCCI 0.75 * VCCI  
2
4
6
8
2
4
6
8
13  
25  
32  
66  
66  
16  
33  
39  
55  
55  
15 15  
15 15  
15 15  
15 15  
15 15  
0.25 * VCCI 0.75 * VCCI 12 12  
1.  
2.  
I
I
is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
IL  
IH  
larger when operating outside recommended ranges  
3. Currents are measured at 100°C junction temperature and maximum voltage.  
4. Currents are measured at 125°C junction temperature.  
5. Software default selection highlighted in gray.  
Table 2-95 • Minimum and Maximum DC Input and Output Levels  
Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only  
1.5 V  
LVCMOS  
1
2
VIL  
VIH  
VOL  
VOH  
IOL IOH IOSL  
IOSH IIL IIH  
Drive  
Strength  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
Max.  
mA mA mA3  
mA3 µA4 µA4  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Notes:  
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 2  
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 4  
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 6  
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 8  
2
4
6
8
13  
25  
32  
66  
66  
16  
33  
39  
55  
55  
15 15  
15 15  
15 15  
15 15  
15 15  
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12 12  
1.  
2.  
I
I
is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
IL  
IH  
larger when operating outside recommended ranges  
3. Currents are measured at 100°C junction temperature and maximum voltage.  
4. Currents are measured at 125°C junction temperature.  
5. Software default selection highlighted in gray.  
Revision 5  
2-61  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-96 • Minimum and Maximum DC Input and Output Levels  
Applicable to Standard Plus I/O Banks  
1.5 V  
LVCMOS  
1
2
VIL  
Max.  
VIH  
VOL  
VOH  
IOL IOH IOSL  
IOSH IIL IIH  
Drive  
Strength  
Min.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
Max.  
V
mA mA mA3  
mA3 µA4 µA4  
2 mA  
4 mA  
Notes:  
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI  
–0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI  
2
4
2
4
13  
25  
16  
33  
15 15  
15 15  
1.  
2.  
I
I
is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
IL  
IH  
larger when operating outside recommended ranges  
3. Currents are measured at 100°C junction temperature and maximum voltage.  
4. Currents are measured at 125°C junction temperature.  
5. Software default selection highlighted in gray.  
R to VCCI for tLZ / tZL / tZLS  
R to GND for tHZ / tZH / tZHS  
R = 1 k  
Test Point  
Enable Path  
Test Point  
Datapath  
5 pF  
5 pF for tZH / tZHS / tZL / tZLS  
5 pF for tHZ / tLZ  
Figure 2-11 • AC Loading  
Table 2-97 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (Typ) (V)  
CLOAD (pF)  
0
1.5  
0.75  
5
Note: *Measuring point = V  
See Table 2-29 on page 2-25 for a complete table of trip points.  
trip.  
2-62  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Timing Characteristics  
1.2 V DC Core Voltage  
Table 2-98 • 1.5 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Std.  
–1  
0.80 9.53 0.05 2.19 3.06 0.52 9.69 7.88 3.38 2.67 11.90 10.09  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.68 8.10 0.05 1.86 2.61 0.44 8.25 6.71 2.87 2.27 10.12 8.58  
0.80 8.14 0.05 2.19 3.06 0.52 8.28 6.89 3.74 3.34 10.49 9.09  
Std.  
–1  
0.68 6.93 0.05 1.86 2.61 0.44 7.05 5.86 3.18 2.84 8.92  
0.80 7.64 0.05 2.19 3.06 0.52 7.78 6.70 3.82 3.52 9.98  
0.68 6.50 0.05 1.86 2.61 0.44 6.61 5.70 3.25 2.99 8.49  
0.80 7.55 0.05 2.19 3.06 0.52 7.68 6.71 3.41 4.19 9.88  
0.68 6.42 0.05 1.86 2.61 0.44 6.53 5.71 2.90 3.56 8.41  
0.80 7.55 0.05 2.19 3.06 0.52 7.68 6.71 3.41 4.19 9.88  
0.68 6.42 0.05 1.86 2.61 0.44 6.53 5.71 2.90 3.56 8.41  
7.74  
8.91  
7.58  
8.91  
7.58  
8.91  
7.58  
Std.  
–1  
Std.  
–1  
Std.  
–1  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-99 • 1.5 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Notes:  
Std.  
–1  
0.80 3.91 0.05 2.19 3.06 0.52 3.98 3.54 3.37 2.78 6.18  
5.75  
4.89  
5.11  
4.35  
4.99  
4.24  
4.84  
4.12  
4.84  
4.12  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.68 3.33 0.05 1.86 2.61 0.44 3.38 3.01 2.86 2.36 5.26  
0.80 3.34 0.05 2.19 3.06 0.52 3.39 2.90 3.73 3.45 5.60  
0.68 2.84 0.05 1.86 2.61 0.44 2.88 2.47 3.17 2.93 4.76  
0.80 3.23 0.05 2.19 3.06 0.52 3.28 2.78 3.81 3.64 5.48  
0.68 2.74 0.05 1.86 2.61 0.44 2.79 2.37 3.24 3.09 4.66  
0.80 3.19 0.05 2.19 3.06 0.52 3.24 2.63 3.93 4.33 5.45  
0.68 2.71 0.05 1.86 2.61 0.44 2.76 2.24 3.34 3.69 4.63  
0.80 3.19 0.05 2.19 3.06 0.52 3.24 2.63 3.93 4.33 5.45  
0.68 2.71 0.05 1.86 2.61 0.44 2.76 2.24 3.34 3.69 4.63  
Std.  
–1  
Std.  
–1  
Std.  
–1  
Std.  
–1  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 5  
2-63  
Military ProASIC3/EL DC and Switching Characteristics  
1.5 V DC Core Voltage  
Table 2-100 • 1.5 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.4 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Std.  
–1  
0.61 9.39 0.04 1.88 2.77 0.40 9.54 7.77 3.22 2.47 11.00 9.24  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.52 7.99 0.03 1.60 2.35 0.34 8.11 6.61 2.74 2.10 9.36  
0.61 8.01 0.04 1.88 2.77 0.40 8.13 6.77 3.58 3.14 9.59  
0.52 6.81 0.03 1.60 2.35 0.34 6.91 5.76 3.05 2.67 8.16  
0.61 7.51 0.04 1.88 2.77 0.40 7.62 6.59 3.66 3.32 9.09  
0.52 6.39 0.03 1.60 2.35 0.34 6.48 5.60 3.12 2.83 7.73  
0.61 7.41 0.04 1.88 2.77 0.40 7.52 6.59 3.41 3.99 8.99  
0.52 6.30 0.03 1.60 2.35 0.34 6.40 5.61 2.90 3.40 7.64  
0.61 7.41 0.04 1.88 2.77 0.40 7.52 6.59 3.41 3.99 8.99  
0.52 6.30 0.03 1.60 2.35 0.34 6.40 5.61 2.90 3.40 7.64  
7.86  
8.24  
7.01  
8.05  
6.85  
8.06  
6.85  
8.06  
6.85  
Std.  
–1  
Std.  
–1  
Std.  
–1  
Std.  
–1  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-101 • 1.5 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 1.4 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Drive  
Speed  
Strength  
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Notes:  
Std.  
–1  
0.61 3.78 0.04 1.88 2.77 0.40 3.82 3.43 3.21‘ 2.58 5.29  
4.89  
4.16  
4.25  
3.62  
4.13  
3.52  
3.98  
3.39  
3.98  
3.39  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.52 3.21 0.03 1.60 2.35 0.34 3.25 2.92 2.73 2.20 4.50  
0.61 3.20 0.04 1.88 2.77 0.40 3.23 2.79 3.57 3.25 4.70  
0.52 2.72 0.03 1.60 2.35 0.34 2.75 2.37 3.04 2.77 4.00  
0.61 3.09 0.04 1.88 2.77 0.40 3.12 2.67 3.65 3.44 4.59  
0.52 2.63 0.03 1.60 2.35 0.34 2.65 2.27 3.11 2.93 3.90  
0.61 3.05 0.04 1.88 2.77 0.40 3.09 2.52 3.77 4.14 4.55  
0.52 2.60 0.03 1.60 2.35 0.34 2.62 2.14 3.21 3.52 3.87  
0.61 3.05 0.04 1.88 2.77 0.40 3.09 2.52 3.77 4.14 4.55  
0.52 2.60 0.03 1.60 2.35 0.34 2.62 2.14 3.21 3.52 3.87  
Std.  
–1  
Std.  
–1  
Std.  
–1  
Std.  
–1  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-64  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-102 • 1.5 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
tZL  
9.96 8.57 3.74 2.91 12.42 11.03  
8.47 7.29 3.18 2.47 10.56 9.38  
8.60 7.59 4.12 3.60 11.06 10.05  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Std.  
–1  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
9.78 0.05 1.44  
8.32 0.04 1.23  
8.44 0.05 1.44  
7.18 0.04 1.23  
7.95 0.05 1.44  
6.77 0.04 1.23  
7.84 0.05 1.44  
6.67 0.04 1.23  
7.84 0.05 1.44  
6.67 0.04 1.23  
ns  
Std.  
–1  
ns  
7.32 6.46 3.51 3.06  
8.10 7.39 4.21 3.78 10.56  
6.89 6.29 3.58 3.21 8.98  
7.98 7.47 4.35 4.45 10.44  
6.79 6.35 3.70 3.79 8.88  
7.98 7.47 4.35 4.45 10.44  
6.79 6.35 3.70 3.79 8.88  
9.41  
8.55  
9.85  
8.38  
9.92  
8.44  
9.92  
8.44  
ns  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
Table 2-103 • 1.5 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V  
Applicable to Advanced I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
0.45  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
6.52  
5.54  
5.99  
5.10  
5.89  
5.01  
5.87  
4.99  
5.87  
4.99  
tZHS  
6.26  
5.32  
5.61  
4.77  
5.48  
4.66  
5.34  
4.55  
5.34  
4.55  
Units  
ns  
2 mA  
4 mA  
6 mA  
8 mA  
12 mA  
Notes:  
Std.  
–1  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
0.63  
0.54  
3.98 0.05 1.58  
3.39 0.04 1.35  
3.47 0.05 1.58  
2.95 0.04 1.35  
3.37 0.05 1.58  
2.87 0.04 1.35  
3.35 0.05 1.58  
2.85 0.04 1.35  
3.35 0.05 1.58  
2.85 0.04 1.35  
4.06 3.80 3.73 3.04  
3.45 3.23 3.17 2.59  
3.53 3.15 4.11 3.74  
3.01 2.68 3.50 3.18  
3.43 3.02 4.20 3.92  
2.92 2.57 3.57 3.33  
3.41 2.88 4.34 4.62  
2.90 2.45 3.69 3.93  
3.41 2.88 4.34 4.62  
2.90 2.45 3.69 3.93  
ns  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
Std.  
–1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
Revision 5  
2-65  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-104 • 1.5 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.39  
0.45  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
Units  
ns  
2 mA  
4 mA  
Std.  
–1  
0.63  
0.54  
0.63  
0.54  
8.94 0.05 1.43  
7.61 0.04 1.21  
7.68 0.05 1.43  
6.54 0.04 1.21  
9.11 7.80 2.99 2.67 11.57 10.26  
7.75 6.64 2.54 2.27  
7.83 6.91 3.34 3.30 10.29  
6.66 5.88 2.84 2.80 8.75  
9.84  
8.73  
9.37  
7.97  
ns  
Std.  
–1  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
Table 2-105 • 1.5 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V  
Applicable to Standard Plus I/O Banks  
Drive  
Speed  
Strength  
Grade tDOUT  
tDP  
tDIN  
tPY  
tEOUT  
0.45  
0.39  
0.45  
0.39  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
6.07  
5.16  
5.60  
4.77  
tZHS  
5.68  
4.83  
5.08  
4.32  
Units  
ns  
2 mA  
4 mA  
Notes:  
Std.  
–1  
0.63  
0.54  
0.63  
0.54  
3.55 0.05 1.56  
3.02 0.04 1.33  
3.09 0.05 1.56  
2.62 0.04 1.33  
3.61 3.22 2.98 2.80  
3.07 2.74 2.54 2.39  
3.14 2.62 3.34 3.44  
2.67 2.23 2.84 2.93  
ns  
Std.  
–1  
ns  
ns  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
2-66  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
1.2 V LVCMOS (JESD8-12A)  
Low-Voltage CMOS for 1.2 V complies with the LVCMOS standard JESD8-12A for general purpose 1.2 V  
applications. It uses a 1.2 V input buffer and a push-pull output buffer.  
Table 2-106 • Minimum and Maximum DC Input and Output Levels  
Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only  
1.2 V  
LVCMOS1  
VIL  
Max.  
VIH  
Min.  
VOL  
VOH  
IOL IOH IOSH  
Max.4 Max.4  
mA mA mA  
mA µA5 µA5  
TBD TBD 15 15  
IOSL IIL IIH  
2
3
Drive  
Strength  
Min.  
V
Max.  
V
Max.  
V
Min.  
V
V
V
2 mA  
–0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI  
2
2
Notes:  
1. Applicable to A3PE600L and A3PE3000L devices only.  
2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
larger when operating outside recommended ranges  
4. Currents are measured at 100°C junction temperature and maximum voltage.  
5. Currents are measured at 125°C junction temperature.  
6. Software default selection highlighted in gray.  
R to VCCI for tLZ / tZL / tZLS  
R = 1 k  
R to GND for tHZ / tZH / tZHS  
Test Point  
Datapath  
Test Point  
5 pF  
Enable Path  
5 pF for tZH / tZHS / tZL / tZLS  
5 pF for tHZ / tLZ  
Figure 2-12 • AC Loading  
Table 2-107 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (Typ) (V)  
CLOAD (pF)  
0
1.2  
0.6  
5
Note: *Measuring point = V  
See Table 2-29 on page 2-25 for a complete table of trip points.  
trip.  
Revision 5  
2-67  
Military ProASIC3/EL DC and Switching Characteristics  
Timing Characteristics  
1.2 V DC Core Voltage  
Table 2-108 • 1.2 V LVCMOS Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V  
Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only  
Drive  
Speed  
Strength Grade tDOUT tDP  
tDIN tPY tPYS tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
2 mA  
Std.  
–1  
0.80 12.61 0.05 2.65 3.75 0.52 12.10 9.50 5.11 4.66 14.31 11.71  
0.68 10.72 0.05 2.25 3.19 0.44 10.30 8.08 4.35 3.97 12.17 9.96  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-109 • 1.2 V LVCMOS High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V  
Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only  
Drive  
Strength  
Speed  
Grade tDOUT tDP  
Unit  
s
tDIN tPY tPYS tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
6.60  
5.61  
2 mA  
Std.  
–1  
0.80  
0.68  
5.16 0.05 2.65 3.75 0.52  
4.39 0.05 2.25 3.19 0.44  
4.98 4.39 5.10 4.81 7.19  
4.24 3.74 4.34 4.09 6.11  
ns  
ns  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-68  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
1.2 V LVCMOS Wide Range  
Table 2-110 • Minimum and Maximum DC Input and Output Levels  
Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Operating at 1.2 V Core Voltage  
1.2 V  
Equiv.  
LVCMOS  
Software  
3
4
Wide Range1 Default  
Drive  
VIL  
Max.  
VIH  
Min.  
VOL  
VOH  
IOL IOH IOSH IOSL IIL IIH  
Drive  
Strength  
Strength Min.  
Max.  
V
Max.  
V
Min.  
V
Max. Max.  
µA µA mA5 mA5 µA6 µA6  
Option2  
V
V
V
100 µA  
2 mA  
–0.3 0.3 * VCCI 0.7 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 100 100 TBD TBD 15 15  
Notes:  
1. Applicable to A3PE600L and A3PE3000L devices only.  
2. Note that 1.2 V LVCMOS wide range is applicable to 100 µA drive strength only. The configuration will not operate at the  
equivalent software default drive strength. These values are for normal ranges only.  
3.  
4.  
I
I
is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
IL  
is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
IH  
larger when operating outside recommended ranges  
5. Currents are measured at 100°C junction temperature and maximum voltage.  
6. Currents are measured at 125°C junction temperature.  
7. Software default selection highlighted in gray.  
R to VCCI for tLZ / tZL / tZLS  
R to GND for tHZ / tZH / tZHS  
R = 1 k  
Test Point  
Enable Path  
Test Point  
Datapath  
5 pF  
5 pF for tZH / tZHS / tZL / tZLS  
5 pF for tHZ / tLZ  
Figure 2-13 • AC Loading  
Table 2-111 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (Typ) (V)  
C
LOAD (pF)  
0
1.2  
0.6  
5
Note: *Measuring point = V  
See Table 2-29 on page 2-25 for a complete table of trip points.  
trip.  
Revision 5  
2-69  
Military ProASIC3/EL DC and Switching Characteristics  
Timing Characteristics  
Table 2-112 • 1.2 V LVCMOS Wide Range Low Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V  
Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only  
Drive  
Speed  
Strength Grade tDOUT tDP  
tDIN tPY tPYS tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
100 µA  
Std.  
–1  
0.80 12.61 0.05 2.65 3.75 0.52 12.10 9.50 5.11 4.66 14.31 11.71  
0.68 10.72 0.05 2.25 3.19 0.44 10.30 8.08 4.35 3.97 12.17 9.96  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-113 • 1.2 V LVCMOS Wide Range High Slew  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V  
Applicable to Pro I/O Banks for A3PE600L and A3PE3000L Only  
Drive  
Strength  
Speed  
Grade tDOUT tDP  
Unit  
s
tDIN tPY tPYS tEOUT  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS  
6.60  
5.61  
100 µA  
Std.  
–1  
0.80  
0.68  
5.16 0.05 2.65 3.75 0.52  
4.39 0.05 2.25 3.19 0.44  
4.98 4.39 5.10 4.81 7.19  
4.24 3.74 4.34 4.09 6.11  
ns  
ns  
Notes:  
1. Software default selection highlighted in gray.  
2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-70  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
3.3 V PCI, 3.3 V PCI-X  
Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus  
applications.  
Table 2-114 • Minimum and Maximum DC Input and Output Levels  
1
2
3.3 V PCI/PCI-X  
VIL  
VIH  
Max.  
VOL  
VOH IOL IOH  
Min.  
IOSL  
IOSH  
IIL IIH  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
mA3  
Max.  
mA3  
Drive Strength  
Per PCI specification  
Notes:  
V
V
mA mA  
µA4 µA4  
Per PCI curves  
15 15  
1.  
2.  
I
I
is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.  
is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
IL  
IH  
larger when operating outside recommended ranges  
3. Currents are measured at 100°C junction temperature and maximum voltage.  
4. Currents are measured at 125°C junction temperature.  
AC loadings are defined per the PCI/PCI-X specifications for the database; Microsemi loadings for  
enable path characterization are described in Figure 2-14.  
R to VCCI for tLZ / tZL / tZLS  
R to GND for tHZ / tZH / tZHS  
R to VCCI for tDP (F)  
R to GND for tDP (R)  
R = 25  
Test Point  
Datapath  
R = 1 k  
Test Point  
Enable Path  
10 pF  
10 pF for tZH / tZHS / tZL / tZLS  
5 pF for tHZ / tLZ  
Figure 2-14 • AC Loading  
AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is  
described in Table 2-115.  
Table 2-115 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
Input High (V)  
Measuring Point* (V)  
VREF (Typ) (V)  
CLOAD (pF)  
0
3.3  
0.285 * VCCI for tDP(R)  
0.615 * VCCI for tDP(F)  
10  
Note: *Measuring point = V  
See Table 2-29 on page 2-25 for a complete table of trip points.  
trip.  
Revision 5  
2-71  
Military ProASIC3/EL DC and Switching Characteristics  
Timing Characteristics  
1.2 V DC Core Voltage  
Table 2-116 • 3.3 V PCI/PCI-X  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed Grade tDOUT tDP  
tDIN  
tPY  
tPYS tEOUT  
3.68 0.52  
3.13 0.44  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
Std.  
–1  
0.80 2.78  
0.68 2.37  
0.05 2.71  
0.05 2.31  
2.83 1.97  
2.40 1.68  
3.26 3.59  
2.77 3.06  
5.03 4.18  
4.28 3.56  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
1.5 V DC Core Voltage  
Table 2-117 • 3.3 V PCI/PCI-X  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed Grade tDOUT tDP  
tDIN  
tPY  
tPYS tEOUT  
3.38 0.40  
2.88 0.34  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
tZHS Units  
Std.  
–1  
0.61 2.65  
0.52 2.25  
0.04 2.39  
0.03 2.03  
2.67 1.86  
2.27 1.58  
3.10 3.40  
2.64 2.89  
4.14 3.33  
3.52 2.83  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-118 • 3.3 V PCI/PCI-X  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/O Banks  
Speed Grade  
tDOUT  
0.63  
tDP  
2.95  
2.51  
tDIN  
0.05  
0.04  
tPY  
tEOUT  
0.45  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
5.46  
4.65  
tZHS Units  
Std.  
–1  
0.95  
0.81  
3.00  
2.55  
2.15  
1.83  
3.53  
3.00  
3.94  
3.35  
4.61  
3.92  
ns  
ns  
0.54  
0.39  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
Table 2-119 • 3.3 V PCI/PCI-X  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Standard Plus I/O Banks  
Speed Grade  
tDOUT  
0.63  
tDP  
2.54  
2.16  
tDIN  
0.05  
0.04  
tPY  
tEOUT  
0.45  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
5.04  
4.29  
tZHS Units  
Std.  
–1  
0.94  
0.80  
2.59  
2.20  
1.87  
1.60  
3.07  
2.61  
3.54  
3.01  
4.33  
3.69  
ns  
ns  
0.54  
0.39  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
2-72  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Voltage-Referenced I/O Characteristics  
3.3 V GTL  
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier input  
buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.  
Table 2-120 • Minimum and Maximum DC Input and Output Levels  
1
2
3.3 V GTL  
VIL  
Max.  
VIH  
VOL  
VOH IOL IOH  
Min.  
V
IOSL  
IOSH  
IIL IIH  
Drive  
Strength  
Min.  
V
Min.  
V
Max.  
V
Max.  
V
Max.  
Max.  
V
mA mA mA3  
mA3 µA4 µA4  
20 mA5  
–0.3 VREF – 0.05 VREF + 0.05  
3.6  
0.4  
20 20  
268  
181  
15 15  
Notes:  
1.  
I is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.  
IL  
2. II is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
H
larger when operating outside recommended ranges.  
3. Currents are measured at 100°C junction temperature and maximum voltage.  
4. Currents are measured at 125°C junction temperature.  
5. Output drive strength is below JEDEC specification.  
VTT  
GTL  
25  
Test Point  
10 pF  
Figure 2-15 • AC Loading  
Table 2-121 • AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
C
LOAD (pF)  
VREF – 0.05  
VREF + 0.05  
0.8  
0.8  
1.2  
10  
Note: *Measuring point = V . See Table 2-29 on page 2-25 for a complete table of trip points.  
trip  
Timing Characteristics  
Table 2-122 • 3.3 V GTL  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,  
Worst-Case VCCI = 3.0 V, VREF = 0.8 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed  
Grade  
tDOUT  
0.80  
tDP  
2.05  
1.75  
tDIN  
0.05  
0.05  
tPY  
tEOUT  
0.52  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.22  
3.59  
tZHS  
4.26  
3.62  
Units  
ns  
Std.  
2.34  
1.99  
2.01  
1.71  
2.05  
1.75  
–1  
0.68  
0.44  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 5  
2-73  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-123 • 3.3 V GTL  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V, VREF = 0.8 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed  
Grade  
tDOUT  
0.61  
tDP  
1.97  
1.68  
tDIN  
0.04  
0.03  
tPY  
2.11  
1.79  
tEOUT  
0.40  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
3.32  
2.83  
tZHS  
3.43  
2.92  
Units  
ns  
Std.  
–1  
1.86  
1.58  
1.97  
1.68  
0.52  
0.34  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-74  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
2.5 V GTL  
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier  
input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.  
Table 2-124 • Minimum and Maximum DC Input and Output Levels  
1
2
2.5 V GTL  
VIL  
VIH  
VOL  
VOH IOL IOH  
Min.  
IOSL  
IOSH  
IIL IIH  
Drive  
Strength  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Max.  
mA3  
Max.  
mA3  
V
mA mA  
µA4 µA4  
20 mA5  
–0.3 VREF – 0.05 VREF + 0.05  
3.6  
0.4  
20 20  
169  
124  
15 15  
Notes:  
1.  
I is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.  
IL  
2. II is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
H
larger when operating outside recommended ranges.  
3. Currents are measured at 100°C junction temperature and maximum voltage.  
4. Currents are measured at 125°C junction temperature.  
5. Output drive strength is below JEDEC specification.  
VTT  
GTL  
25  
Test Point  
10 pF  
Figure 2-16 • AC Loading  
Table 2-125 • AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
CLOAD (pF)  
VREF – 0.05  
VREF + 0.05  
0.8  
0.8  
1.2  
10  
Note: *Measuring point = V . See Table 2-29 on page 2-25 for a complete table of trip points.  
trip  
Timing Characteristics  
Table 2-126 • 2.5 V GTL  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,  
Worst-Case VCCI = 3.0 V, VREF = 0.8 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed  
Grade  
tDOUT  
0.80  
tDP  
2.11  
1.79  
tDIN  
0.05  
0.05  
tPY  
tEOUT  
0.52  
tZL  
tZH  
2.11  
1.79  
tLZ  
tHZ  
tZLS  
4.34  
3.70  
tZHS  
4.31  
3.68  
Units  
Std.  
2.26  
1.93  
2.14  
1.82  
ns  
ns  
–1  
0.68  
0.44  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-127 • 2.5 V GTL  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V, VREF = 0.8 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed  
Grade  
tDOUT  
0.61  
tDP  
2.02  
1.72  
tDIN  
0.04  
0.03  
tPY  
tEOUT  
0.40  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
3.45  
2.93  
tZHS  
3.49  
2.97  
Units  
ns  
Std.  
2.04  
1.73  
1.98  
1.69  
2.02  
1.72  
–1  
0.52  
0.34  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 5  
2-75  
Military ProASIC3/EL DC and Switching Characteristics  
3.3 V GTL+  
Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential  
amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.  
Table 2-128 • Minimum and Maximum DC Input and Output Levels  
1
2
3.3 V GTL+  
VIL  
Max.  
VIH  
VOL  
VOH IOL IOH  
Min.  
IOSL  
IOSH  
IIL IIH  
Drive  
Strength  
Min.  
V
Min.  
V
Max.  
V
Max.  
V
Max.  
mA3  
Max.  
mA3  
V
V
mA mA  
µA4 µA4  
35 mA  
–0.3 VREF – 0.1 VREF + 0.1  
3.6  
0.6  
35 35  
268  
181  
15 15  
Notes:  
1.  
I is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.  
IL  
2. II is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
H
larger when operating outside recommended ranges.  
3. Currents are measured at 100°C junction temperature and maximum voltage.  
4. Currents are measured at 125°C junction temperature.  
VTT  
GTL+  
25  
Test Point  
10 pF  
Figure 2-17 • AC Loading  
Table 2-129 • AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
CLOAD (pF)  
VREF – 0.1  
VREF + 0.1  
1.0  
1.0  
1.5  
10  
Note: *Measuring point = V . See Table 2-29 on page 2-25 for a complete table of trip points.  
trip  
Timing Characteristics  
Table 2-130 • 3.3 V GTL+  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,  
Worst-Case VCCI = 3.0 V, VREF = 1.0 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed  
Grade  
tDOUT  
0.80  
tDP  
2.04  
1.74  
tDIN  
0.05  
0.05  
tPY  
tEOUT  
0.52  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.28  
3.64  
tZHS  
4.24  
3.61  
Units  
Std.  
2.34  
1.99  
2.07  
1.76  
2.03  
1.73  
ns  
ns  
–1  
0.68  
0.44  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-131 • 3.3 V GTL+  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V, VREF = 1.0 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed  
Grade  
tDOUT  
0.61  
tDP  
1.95  
1.66  
tDIN  
0.04  
0.03  
tPY  
2.11  
1.79  
tEOUT  
0.40  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
3.38  
2.88  
tZHS  
3.41  
2.90  
Units  
ns  
Std.  
1.92  
1.63  
1.95  
1.66  
–1  
0.52  
0.34  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-76  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
2.5 V GTL+  
Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential  
amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.  
Table 2-132 • Minimum and Maximum DC Input and Output Levels  
1
2
2.5 V GTL+  
VIL  
Max.  
VIH  
VOL  
VOH IOL IOH  
Min.  
V
IOSL  
IOSH  
IIL IIH  
Drive  
Strength  
Min.  
V
Min.  
V
Max.  
V
Max.  
V
Max.  
Max.  
V
mA mA mA3  
mA3 µA4 µA4  
33 mA  
–0.3 VREF – 0.1 VREF + 0.1  
3.6  
0.6  
33 33  
169  
124  
15 15  
Notes:  
1.  
I is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.  
IL  
2. II is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
H
larger when operating outside recommended ranges.  
3. Currents are measured at 100°C junction temperature and maximum voltage.  
4. Currents are measured at 125°C junction temperature.  
VTT  
GTL+  
25  
Test Point  
10 pF  
Figure 2-18 • AC Loading  
Table 2-133 • AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
C
LOAD (pF)  
VREF – 0.1  
VREF + 0.1  
1.0  
1.0  
1.5  
10  
Note: *Measuring point = V . See Table 2-29 on page 2-25 for a complete table of trip points.  
trip  
Timing Characteristics  
Table 2-134 • 2.5 V GTL+  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,  
Worst-Case VCCI = 2.3 V, VREF = 1.0 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed  
Grade  
tDOUT  
0.80  
tDP  
2.19  
1.86  
tDIN  
0.05  
0.05  
tPY  
tEOUT  
0.52  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.43  
3.77  
tZHS  
4.28  
3.64  
Units  
ns  
Std.  
2.27  
1.93  
2.22  
1.89  
2.08  
1.77  
–1  
0.68  
0.44  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-135 • 2.5 V GTL+  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,  
Worst-Case VCCI = 2.3 V, VREF = 1.0 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed  
Grade  
tDOUT  
0.61  
tDP  
2.05  
1.75  
tDIN  
0.04  
0.03  
tPY  
tEOUT  
0.40  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
3.53  
3.00  
tZHS  
3.46  
2.94  
Units  
ns  
Std.  
2.04  
1.73  
2.07  
1.76  
1.99  
1.69  
–1  
0.52  
0.34  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 5  
2-77  
Military ProASIC3/EL DC and Switching Characteristics  
HSTL Class I  
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6).  
Military ProASIC3E devices support Class I. This provides a differential amplifier input buffer and a push-  
pull output buffer.  
Table 2-136 • Minimum and Maximum DC Input and Output Levels  
1
2
HSTL Class I  
VIL  
Max.  
VIH  
VOL  
VOH  
IOL IOH IOSL  
IOSH  
IIL IIH  
Drive  
Strength  
Min.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
Max.  
V
mA mA mA3  
mA3 µA4 µA4  
8 mA  
–0.3 VREF – 0.1 VREF + 0.1  
3.6  
0.4  
VCCI – 0.4  
8
8
32  
39  
15 15  
Notes:  
1.  
I is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.  
IL  
2. II is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
H
larger when operating outside recommended ranges.  
3. Currents are measured at 100°C junction temperature and maximum voltage.  
4. Currents are measured at 125°C junction temperature.  
VTT  
HSTL  
Class I  
50  
Test Point  
20 pF  
Figure 2-19 • AC Loading  
Table 2-137 • AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring Point*  
Input Low (V)  
Input High (V)  
(V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
CLOAD (pF)  
VREF – 0.1  
VREF + 0.1  
0.75  
0.75  
0.75  
20  
Note: *Measuring point = V . See Table 2-29 on page 2-25 for a complete table of trip points.  
trip  
Timing Characteristics  
Table 2-138 • HSTL Class I  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,  
Worst-Case VCCI = 1.4 V, VREF = 0.75 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed  
Grade  
tDOUT  
0.80  
tDP  
3.15  
2.68  
tDIN  
0.05  
0.05  
tPY  
tEOUT  
0.52  
tZL  
tZH  
3.11  
2.65  
tLZ  
tHZ  
tZLS  
5.41  
4.60  
tZHS  
5.32  
4.52  
Units  
Std.  
2.76  
2.34  
3.20  
2.73  
ns  
ns  
–1  
0.68  
0.44  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-78  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-139 • HSTL Class I  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,  
Worst-Case VCCI = 1.4 V, VREF = 0.75 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed  
Grade  
tDOUT  
0.61  
tDP  
3.02  
2.57  
tDIN  
0.04  
0.03  
tPY  
tEOUT  
0.40  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.51  
3.84  
tZHS  
4.46  
3.79  
Units  
ns  
Std.  
–1  
2.52  
2.14  
3.05  
2.59  
3.00  
2.55  
0.52  
0.34  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 5  
2-79  
Military ProASIC3/EL DC and Switching Characteristics  
HSTL Class II  
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6).  
Military ProASIC3E devices support Class II. This provides a differential amplifier input buffer and a  
push-pull output buffer.  
Table 2-140 • Minimum and Maximum DC Input and Output Levels  
1
2
HSTL Class II  
VIL  
Max.  
VIH  
VOL  
VOH  
IOL IOH IOSL  
IOSH IIL IIH  
Drive  
Strength  
Min.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
Max.  
V
mA mA mA3  
mA3 µA4 µA4  
15 mA5  
–0.3 VREF – 0.1 VREF + 0.1  
3.6  
0.4  
VCCI – 0.4 15 15  
66  
55  
15 15  
Notes:  
1.  
I is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.  
IL  
2. II is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
H
larger when operating outside recommended ranges.  
3. Currents are measured at 100°C junction temperature and maximum voltage.  
4. Currents are measured at 125°C junction temperature.  
5. Output drive strength is below JEDEC specification.  
VTT  
HSTL  
Class II  
25  
Test Point  
20 pF  
Figure 2-20 • AC Loading  
Table 2-141 • AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
CLOAD (pF)  
VREF – 0.1  
VREF + 0.1  
0.75  
0.75  
0.75  
20  
Note: *Measuring point = Vtrip. See Table 2-29 on page 2-25 for a complete table of trip points.  
Timing Characteristics  
Table 2-142 • HSTL Class II  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,  
Worst-Case VCCI = 1.4 V, VREF = 0.75 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed  
Grade  
tDOUT  
0.80  
tDP  
3.00  
2.55  
tDIN  
0.05  
0.05  
tPY  
tEOUT  
0.52  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
5.25  
4.47  
tZHS  
4.89  
4.16  
Units  
Std.  
2.76  
2.34  
3.05  
2.59  
2.69  
2.28  
ns  
ns  
–1  
0.68  
0.44  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-80  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-143 • HSTL Class II  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,  
Worst-Case VCCI = 1.4 V, VREF = 0.75 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed  
Grade  
tDOUT  
0.61  
tDP  
2.86  
2.44  
tDIN  
0.04  
0.03  
tPY  
tEOUT  
0.40  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
4.36  
3.71  
tZHS  
4.04  
3.43  
Units  
ns  
Std.  
–1  
2.52  
2.14  
2.89  
2.46  
2.57  
2.19  
0.52  
0.34  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
SSTL2 Class I  
Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Military ProASIC3E devices  
support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.  
Table 2-144 • Minimum and Maximum DC Input and Output Levels  
1
2
SSTL2 Class I  
VIL  
Max.  
VIH  
VOL  
VOH  
IOL IOH IOSL  
IOSH IIL IIH  
Drive  
Strength  
Min.  
V
Min.  
V
Max. Max.  
Min.  
V
Max.  
Max.  
V
V
V
mA mA mA3  
mA3 µA4 µA4  
15 mA  
–0.3 VREF – 0.2 VREF + 0.2 3.6  
0.54 VCCI – 0.62 15 15  
83  
87  
15 15  
Notes:  
1.  
I is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.  
IL  
2. II is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
H
larger when operating outside recommended ranges.  
3. Currents are measured at 100°C junction temperature and maximum voltage.  
4. Currents are measured at 125°C junction temperature.  
VTT  
SSTL2  
Class I  
50  
Test Point  
25  
30 pF  
Figure 2-21 • AC Loading  
Table 2-145 • AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
CLOAD (pF)  
VREF – 0.2  
VREF + 0.2  
1.25  
1.25  
1.25  
30  
Note: *Measuring point = Vtrip. See Table 2-29 on page 2-25 for a complete table of trip points.  
Timing Characteristics  
Table 2-146 • SSTL2 Class I  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,  
Worst-Case VCCI = 2.3 V, VREF = 1.25 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed  
Grade  
tDOUT  
0.80  
tDP  
2.11  
1.80  
tDIN  
0.05  
0.05  
tPY  
tEOUT  
0.52  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
2.14  
1.82  
tZHS  
1.83  
1.55  
Units  
Std.  
2.09  
1.78  
2.14  
1.82  
1.83  
1.55  
ns  
ns  
–1  
0.68  
0.44  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 5  
2-81  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-147 • SSTL2 Class I  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,  
Worst-Case VCCI = 2.3 V, VREF = 1.25 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed  
Grade  
tDOUT  
0.61  
tDP  
1.98  
1.68  
tDIN  
0.04  
0.03  
tPY  
tEOUT  
0.40  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
1.99  
1.69  
tZHS  
1.71  
1.46  
Units  
ns  
Std.  
–1  
1.85  
1.58  
1.99  
1.69  
1.71  
1.46  
0.52  
0.34  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
SSTL2 Class II  
Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Military ProASIC3E devices  
support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.  
Table 2-148 • Minimum and Maximum DC Input and Output Levels  
1
2
SSTL2 Class II  
VIL  
VIH  
VOL  
VOH  
IOL IOH IOSL  
mA mA mA3  
IOSH IIL IIH  
Drive  
Strength  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max. Max.  
mA3 µA4 µA4  
124 15 15  
18 mA  
–0.3 VREF – 0.2 VREF + 0.2  
3.6  
0.35 VCCI – 0.43 18 18 169  
Notes:  
1.  
I is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.  
IL  
2. II is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
H
larger when operating outside recommended ranges.  
3. Currents are measured at 100°C junction temperature and maximum voltage.  
4. Currents are measured at 125°C junction temperature.  
VTT  
SSTL2  
Class II  
25  
Test Point  
25  
30 pF  
Figure 2-22 • AC Loading  
Table 2-149 • AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
CLOAD (pF)  
VREF – 0.2  
VREF + 0.2  
1.25  
1.25  
1.25  
30  
Note: *Measuring point = V . See Table 2-29 on page 2-25 for a complete table of trip points.  
trip  
Timing Characteristics  
Table 2-150 • SSTL2 Class II  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,  
Worst-Case VCCI = 2.3 V, VREF = 1.25 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed  
Grade  
tDOUT  
0.80  
tDP  
2.15  
1.83  
tDIN  
0.05  
0.05  
tPY  
tEOUT  
0.52  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
2.18  
1.86  
tZHS  
1.75  
1.49  
Units  
Std.  
2.09  
1.78  
2.18  
1.86  
1.75  
1.49  
ns  
ns  
–1  
0.68  
0.44  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-82  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-151 • SSTL2 Class II  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,  
Worst-Case VCCI = 2.3 V, VREF = 1.25 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed  
Grade  
tDOUT  
0.61  
tDP  
2.02  
1.72  
tDIN  
0.04  
0.03  
tPY  
tEOUT  
0.40  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
2.03  
1.73  
tZHS  
1.64  
1.39  
Units  
ns  
Std.  
–1  
1.85  
1.58  
2.03  
1.73  
1.64  
1.39  
0.52  
0.34  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
SSTL3 Class I  
Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). Military ProASIC3E devices  
support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.  
Table 2-152 • Minimum and Maximum DC Input and Output Levels  
1
2
SSTL3 Class I  
VIL  
VIH  
VOL  
VOH  
IOL IOH IOSL  
IOSH IIL IIH  
Drive  
Strength  
Min.  
V
Max.  
V
Min.  
V
Max.  
V
Max.  
V
Min.  
V
Max.  
Max.  
mA mA mA3  
mA3 µA4 µA4  
14 mA  
–0.3 VREF – 0.2 VREF + 0.2  
3.6  
0.7 VCCI – 1.1 14 14  
51  
54  
15 15  
Notes:  
1.  
I is the input leakage current per I/O pin over recommended operating conditions where –0.3 V < VIN < VIL.  
IL  
2. II is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is  
H
larger when operating outside recommended ranges.  
3. Currents are measured at 100°C junction temperature and maximum voltage.  
4. Currents are measured at 125°C junction temperature.  
VTT  
SSTL3  
Class I  
50  
Test Point  
25  
30 pF  
Figure 2-23 • AC Loading  
Table 2-153 • AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
CLOAD (pF)  
VREF – 0.2  
VREF + 0.2  
1.5  
1.5  
1.485  
30  
Note: *Measuring point = V . See Table 2-29 on page 2-25 for a complete table of trip points.  
trip  
Timing Characteristics  
Table 2-154 • SSTL3 Class I  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,  
Worst-Case VCCI = 3.0 V, VREF = 1.5 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed  
Grade  
tDOUT  
0.80  
tDP  
2.29  
1.95  
tDIN  
0.05  
0.05  
tPY  
tEOUT  
0.52  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
2.32  
1.98  
tZHS  
1.82  
1.55  
Units  
Std.  
2.00  
1.71  
2.32  
1.98  
1.82  
1.55  
ns  
ns  
–1  
0.68  
0.44  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 5  
2-83  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-155 • SSTL3 Class I  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V, VREF = 1.5 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed  
Grade  
tDOUT  
0.61  
tDP  
2.15  
1.83  
tDIN  
0.04  
0.03  
tPY  
tEOUT  
0.40  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
2.17  
1.84  
tZHS  
1.70  
1.45  
Units  
ns  
Std.  
–1  
1.77  
1.51  
2.17  
1.84  
1.70  
1.45  
0.52  
0.34  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
SSTL3 Class II  
Stub-Speed Terminated Logic for 3.3 V memory bus standard (JESD8-8). Military ProASIC3E devices  
support Class II. This provides a differential amplifier input buffer and a push-pull output buffer.  
Table 2-156 • Minimum and Maximum DC Input and Output Levels  
SSTL3 Class II  
VIL  
Max.  
VIH  
Min.  
V
VOL  
VOH  
IOL IOH IOSL IOSH IIL IIH  
Drive  
Strength  
Min.  
V
Max. Max.  
Min.  
V
Max. Max.  
V
V
V
mA mA mA1 mA1 µA2 µA2  
21 mA  
–0.3 VREF – 0.2 VREF + 0.2 3.6  
0.5  
VCCI – 0.9 21 21 103  
109  
15 15  
Notes:  
1. Currents are measured at 100°C junction temperature and maximum voltage.  
2. Currents are measured at 125°C junction temperature.  
VTT  
SSTL3  
Class II  
25  
Test Point  
25  
30 pF  
Figure 2-24 • AC Loading  
Table 2-157 • AC Waveforms, Measuring Points, and Capacitive Loads  
Measuring  
Input Low (V)  
Input High (V)  
Point* (V)  
VREF (typ.) (V)  
VTT (typ.) (V)  
C
LOAD (pF)  
30  
VREF – 0.2  
VREF + 0.2  
1.5  
1.5  
1.485  
Note: *Measuring point = V . See Table 2-29 on page 2-25 for a complete table of trip points.  
trip  
Timing Characteristics  
Table 2-158 • SSTL3 Class II  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V,  
Worst-Case VCCI = 3.0 V, VREF = 1.5 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed  
Grade  
tDOUT  
0.80  
tDP  
2.05  
1.75  
tDIN  
0.05  
0.05  
tPY  
tEOUT  
0.52  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
2.08  
1.77  
tZHS  
1.65  
1.41  
Units  
ns  
Std.  
2.00  
1.71  
2.08  
1.77  
1.65  
1.41  
–1  
0.68  
0.44  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-84  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-159 • SSTL3 Class II  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V,  
Worst-Case VCCI = 3.0 V, VREF = 1.5 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed  
Grade  
tDOUT  
0.61  
tDP  
1.91  
1.63  
tDIN  
0.04  
0.03  
tPY  
tEOUT  
0.40  
tZL  
tZH  
tLZ  
tHZ  
tZLS  
1.92  
1.64  
tZHS  
1.54  
1.31  
Units  
ns  
Std.  
–1  
1.77  
1.51  
1.92  
1.64  
1.54  
1.31  
0.52  
0.34  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Differential I/O Characteristics  
Physical Implementation  
Configuration of the I/O modules as a differential pair is handled by Designer software when the user  
instantiates a differential I/O macro in the design.  
Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output  
Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no  
support for bidirectional I/Os or tristates with the LVPECL standards.  
LVDS  
Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It  
requires that one data bit be carried through two signal lines, so two pins are needed. It also requires  
external resistor termination.  
The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-25. The  
building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three  
board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver  
resistors are different from those used in the LVPECL implementation because the output standard  
specifications are different.  
Along with LVDS I/O, military ProASIC3 also supports Bus LVDS structure and Multipoint LVDS (M-  
LVDS) configuration (up to 40 nodes).  
Bourns Part Number: CAT16-LV4F12  
FPGA  
FPGA  
OUTBUF_LVDS  
P
N
P
N
165  
165   
Z0 = 50   
140   
Z0 = 50   
INBUF_LVDS  
+
100   
Figure 2-25 • LVDS Circuit Diagram and Board-Level Implementation  
Revision 5  
2-85  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-160 • Minimum and Maximum DC Input and Output Levels  
DC Parameter  
VCCI  
Description  
Supply Voltage  
Min.  
2.375  
0.9  
Typ.  
2.5  
Max.  
2.625  
1.25  
1.6  
Units  
V
Output Low Voltage  
VOL  
1.075  
1.425  
0.91  
0.91  
V
Output High Voltage  
VOH  
1.25  
0.65  
0.65  
0
V
IOL1  
1.16  
1.16  
2.925  
10  
mA  
mA  
V
Output Lower Current  
Output High Current  
IOH1  
Input Voltage  
VI  
IIH 2,3  
IIL 2,4  
µA  
µA  
mV  
V
Input High Leakage Current  
Input Low Leakage Current  
Differential Output Voltage  
Output Common Mode Voltage  
Input Common Mode Voltage  
Input Differential Voltage  
10  
VODIFF  
VOCM  
VICM  
250  
1.125  
0.05  
100  
350  
1.25  
1.25  
350  
450  
1.375  
2.35  
V
VIDIFF  
Notes:  
mV  
1. IOL/IOH is defined by VODIFF/(Resistor Network).  
2. Currents are measured at 125°C junction temperature.  
3. IIH is the input leakage current per IO pin over recommended operating conditions VIH < VIN < VCCI.  
Input current is larger when operating outside recommended ranges.  
4. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN <  
VIL.  
Table 2-161 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
1.075  
Input High (V)  
Measuring Point* (V)  
1.325  
Cross point  
Note: *Measuring point = V  
See Table 2-29 on page 2-25 for a complete table of trip points.  
trip.  
2-86  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Timing Characteristics  
1.2 V DC Core Voltage  
Table 2-162 • LVDS  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed Grade  
tDOUT  
0.80  
tDP  
1.87  
1.59  
tDIN  
0.05  
0.05  
tPY  
2.48  
2.11  
Units  
ns  
Std.  
–1  
0.68  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
1.5 V DC Core Voltage  
Table 2-163 • LVDS  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed Grade  
tDOUT  
0.61  
tDP  
1.75  
1.48  
tDIN  
0.04  
0.03  
tPY  
Units  
ns  
Std.  
–1  
2.18  
1.86  
0.52  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-164 • LVDS  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V  
Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only  
Speed Grade  
tDOUT  
0.63  
tDP  
2.07  
1.76  
tDIN  
0.05  
0.04  
tPY  
Units  
ns  
Std.  
–1  
1.82  
1.55  
0.54  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
Revision 5  
2-87  
Military ProASIC3/EL DC and Switching Characteristics  
B-LVDS/M-LVDS  
Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to  
high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain  
any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive  
current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series  
terminations for better signal quality and to control voltage swing. Termination is also required at both  
ends of the bus since the driver can be located anywhere on the bus. These configurations can be  
implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations.  
Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20  
loads. A sample application is given in Figure 2-26. The input and output buffer delays are available in  
the LVDS section in Table 2-160 on page 2-86.  
Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required  
differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: RS = 60 and  
RT = 70 , given Z0 = 50 (2") and Zstub = 50 (~1.5").  
Receiver  
Transceiver  
Driver  
D
Receiver  
Transceiver  
EN  
EN  
EN  
EN  
EN  
BIBUF_LVDS  
R
T
R
T
+
-
+
-
+
-
+
-
+
-
RS RS  
RS RS  
RS RS  
Zstub  
RS RS  
RS RS  
Zstub  
Z0  
Zstub  
Zstub  
Z0  
Zstub  
Zstub  
Z0  
Zstub  
Z0  
Zstub  
...  
Z0  
Z0  
Z0  
Z0  
RT  
RT  
Z0  
Z0  
Z0  
Z0  
Figure 2-26 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers  
2-88  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
LVPECL  
Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires  
that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires  
external resistor termination.  
The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-27. The  
building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three  
board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver  
resistors are different from those used in the LVDS implementation because the output standard  
specifications are different.  
Bourns Part Number: CAT16-PC4F12  
FPGA  
FPGA  
P
P
N
OUTBUF_LVPECL  
100  
100   
Z0 = 50   
187 W  
INBUF_LVPECL  
+
100   
Z0 = 50   
N
Figure 2-27 • LVPECL Circuit Diagram and Board-Level Implementation  
Table 2-165 • Minimum and Maximum DC Input and Output Levels  
DC Parameter  
VCCI  
Description  
Supply Voltage  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Units  
V
3.0  
3.3  
3.6  
VOL  
Output Low Voltage  
0.96  
1.8  
1.27  
2.11  
3.3  
1.06  
1.92  
0
1.43  
2.28  
3.6  
1.30  
2.13  
0
1.57  
2.41  
3.9  
V
VOH  
Output High Voltage  
V
VIL, VIH  
VODIFF  
VOCM  
Input Low, Input High Voltages  
Differential Output Voltage  
Output Common-Mode Voltage  
Input Common-Mode Voltage  
Input Differential Voltage  
0
V
0.625  
1.762  
1.01  
300  
0.97 0.625  
1.98 1.762  
0.97  
1.98  
2.57  
0.625  
1.762  
1.01  
300  
0.97  
1.98  
2.57  
V
V
VICM  
2.57  
1.01  
300  
V
VIDIFF  
mV  
Table 2-166 • AC Waveforms, Measuring Points, and Capacitive Loads  
Input Low (V)  
1.64  
Input High (V)  
Measuring Point* (V)  
1.94  
Cross point  
Note: *Measuring point = V  
See Table 2-29 on page 2-25 for a complete table of trip points.  
trip.  
Revision 5  
2-89  
Military ProASIC3/EL DC and Switching Characteristics  
Timing Characteristics  
1.2 V DC Core Voltage  
Table 2-167 • LVPECL  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed Grade  
tDOUT  
0.80  
tDP  
1.78  
1.51  
tDIN  
0.05  
0.05  
tPY  
Units  
ns  
Std.  
–1  
2.16  
1.84  
0.68  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
1.5 V DC Core Voltage  
Table 2-168 • LVPECL  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Pro I/Os for A3PE600L and A3PE3000L Only  
Speed Grade  
tDOUT  
0.61  
tDP  
1.65  
1.40  
tDIN  
0.04  
0.03  
tPY  
Units  
ns  
Std.  
–1  
1.89  
1.61  
0.52  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-169 • LVPECL  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V  
Applicable to Advanced I/O Banks for A3P250 and A3P1000 Only  
Speed Grade  
tDOUT  
0.63  
tDP  
1.98  
1.68  
tDIN  
0.05  
0.04  
tPY  
Units  
ns  
Std.  
–1  
1.54  
1.31  
0.54  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
2-90  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
I/O Register Specifications  
Fully Registered I/O Buffers with Synchronous Enable and  
Asynchronous Preset  
Preset  
L
D
DOUT  
Data_out  
PRE  
F
PRE  
Y
E
Core  
Array  
Data  
Enable  
CLK  
D
Q
D
Q
C
DFN1E1P1  
DFN1E1P1  
G
E
E
EOUT  
B
A
H
I
PRE  
J
D
Q
DFN1E1P1  
K
Data Input I/O Register with:  
Active High Enable  
E
Active High Preset  
Positive-Edge Triggered  
Data Output Register and  
Enable Output Register with:  
Active High Enable  
Active High Preset  
INBUF  
INBUF  
CLKBUF  
Postive-Edge Triggered  
Figure 2-28 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset  
Revision 5  
2-91  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-170 • Parameter Definition and Measuring Nodes  
Measuring Nodes  
(from, to)*  
Parameter Name  
tOCLKQ  
tOSUD  
Parameter Definition  
Clock-to-Q of the Output Data Register  
H, DOUT  
F, H  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
F, H  
tOSUE  
Enable Setup Time for the Output Data Register  
Enable Hold Time for the Output Data Register  
G, H  
tOHE  
G, H  
tOPRE2Q  
tOREMPRE  
tORECPRE  
tOECLKQ  
tOESUD  
tOEHD  
Asynchronous Preset-to-Q of the Output Data Register  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Clock-to-Q of the Output Enable Register  
L, DOUT  
L, H  
L, H  
H, EOUT  
J, H  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
J, H  
tOESUE  
tOEHE  
Enable Setup Time for the Output Enable Register  
Enable Hold Time for the Output Enable Register  
Asynchronous Preset-to-Q of the Output Enable Register  
Asynchronous Preset Removal Time for the Output Enable Register  
Asynchronous Preset Recovery Time for the Output Enable Register  
Clock-to-Q of the Input Data Register  
K, H  
K, H  
tOEPRE2Q  
tOEREMPRE  
tOERECPRE  
tICLKQ  
I, EOUT  
I, H  
I, H  
A, E  
tISUD  
Data Setup Time for the Input Data Register  
C, A  
tIHD  
Data Hold Time for the Input Data Register  
C, A  
tISUE  
Enable Setup Time for the Input Data Register  
B, A  
tIHE  
Enable Hold Time for the Input Data Register  
B, A  
tIPRE2Q  
tIREMPRE  
tIRECPRE  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
D, E  
D, A  
D, A  
* See Figure 2-28 on page 2-91 for more information.  
2-92  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Fully Registered I/O Buffers with Synchronous Enable and  
Asynchronous Clear  
DOUT  
FF  
Data_out  
Y
Core  
D
Q
D
Q
Data  
Array  
CC  
EE  
DFN1E1C1  
DFN1E1C1  
GG  
EOUT  
E
E
Enable  
CLK  
CLR  
BB  
AA  
DD  
CLR  
LL  
HH  
JJ  
D
Q
CLR  
DFN1E1C1  
KK  
E
Data Input I/O Register with  
Active High Enable  
CLR  
Active High Clear  
Positive-Edge Triggered  
Data Output Register and  
Enable Output Register with  
Active High Enable  
Active High Clear  
Positive-Edge Triggered  
INBUF  
INBUF  
CLKBUF  
Figure 2-29 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear  
Revision 5  
2-93  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-171 • Parameter Definition and Measuring Nodes  
Measuring Nodes  
(from, to)*  
Parameter Name  
tOCLKQ  
tOSUD  
Parameter Definition  
Clock-to-Q of the Output Data Register  
HH, DOUT  
FF, HH  
FF, HH  
GG, HH  
GG, HH  
LL, DOUT  
LL, HH  
LL, HH  
HH, EOUT  
JJ, HH  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
tOSUE  
Enable Setup Time for the Output Data Register  
Enable Hold Time for the Output Data Register  
Asynchronous Clear-to-Q of the Output Data Register  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Clock-to-Q of the Output Enable Register  
tOHE  
tOCLR2Q  
tOREMCLR  
tORECCLR  
tOECLKQ  
tOESUD  
tOEHD  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
Enable Setup Time for the Output Enable Register  
Enable Hold Time for the Output Enable Register  
Asynchronous Clear-to-Q of the Output Enable Register  
Asynchronous Clear Removal Time for the Output Enable Register  
Asynchronous Clear Recovery Time for the Output Enable Register  
Clock-to-Q of the Input Data Register  
JJ, HH  
tOESUE  
tOEHE  
KK, HH  
KK, HH  
II, EOUT  
II, HH  
tOECLR2Q  
tOEREMCLR  
tOERECCLR  
tICLKQ  
II, HH  
AA, EE  
CC, AA  
CC, AA  
BB, AA  
BB, AA  
DD, EE  
DD, AA  
DD, AA  
tISUD  
Data Setup Time for the Input Data Register  
tIHD  
Data Hold Time for the Input Data Register  
tISUE  
Enable Setup Time for the Input Data Register  
tIHE  
Enable Hold Time for the Input Data Register  
tICLR2Q  
tIREMCLR  
tIRECCLR  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
* See Figure 2-29 on page 2-93 for more information.  
2-94  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Input Register  
tICKMPWH tICKMPWL  
50%  
tISUD  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
Data  
tIHD  
50%  
50%  
1
0
tIREMPRE  
tIRECPRE  
tIWPRE  
Enable  
Preset  
50%  
tIHE  
tISUE  
50%  
50%  
50%  
tIWCLR  
tIRECCLR  
50%  
tIREMCLR  
50%  
50%  
Clear  
tIPRE2Q  
50%  
50%  
tICLKQ  
50%  
Out_1  
tICLR2Q  
Figure 2-30 • Input Register Timing Diagram  
Revision 5  
2-95  
Military ProASIC3/EL DC and Switching Characteristics  
Timing Characteristics  
Table 2-172 • Input Data Register Propagation Delays  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L  
Description  
Clock-to-Q of the Input Data Register  
Parameter  
tICLKQ  
–1 Std. Units  
0.33 0.39 ns  
0.36 0.43 ns  
0.00 0.00 ns  
0.51 0.60 ns  
0.00 0.00 ns  
0.63 0.74 ns  
0.63 0.74 ns  
0.00 0.00 ns  
0.31 0.36 ns  
0.00 0.00 ns  
0.31 0.36 ns  
0.19 0.22 ns  
0.19 0.22 ns  
0.31 0.36 ns  
0.28 0.32 ns  
tISUD  
Data Setup Time for the Input Data Register  
tIHD  
Data Hold Time for the Input Data Register  
tISUE  
Enable Setup Time for the Input Data Register  
tIHE  
Enable Hold Time for the Input Data Register  
tICLR2Q  
tIPRE2Q  
tIREMCLR  
tIRECCLR  
tIREMPRE  
tIRECPRE  
tIWCLR  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
Asynchronous Clear Minimum Pulse Width for the Input Data Register  
Asynchronous Preset Minimum Pulse Width for the Input Data Register  
Clock Minimum Pulse Width HIGH for the Input Data Register  
Clock Minimum Pulse Width LOW for the Input Data Register  
tIWPRE  
tICKMPWH  
tICKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-173 • Input Data Register Propagation Delays  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L  
Parameter  
tICLKQ  
Description  
Clock-to-Q of the Input Data Register  
–1 Std. Units  
0.25 0.30 ns  
0.28 0.33 ns  
0.00 0.00 ns  
0.39 0.46 ns  
0.00 0.00 ns  
0.48 0.56 ns  
0.48 0.56 ns  
0.00 0.00 ns  
0.24 0.28 ns  
0.00 0.00 ns  
0.24 0.28 ns  
0.19 0.22 ns  
0.19 0.22 ns  
0.31 0.36 ns  
0.28 0.32 ns  
tISUD  
Data Setup Time for the Input Data Register  
tIHD  
Data Hold Time for the Input Data Register  
tISUE  
Enable Setup Time for the Input Data Register  
tIHE  
Enable Hold Time for the Input Data Register  
tICLR2Q  
tIPRE2Q  
tIREMCLR  
tIRECCLR  
tIREMPRE  
tIRECPRE  
tIWCLR  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
Asynchronous Clear Minimum Pulse Width for the Input Data Register  
Asynchronous Preset Minimum Pulse Width for the Input Data Register  
Clock Minimum Pulse Width HIGH for the Input Data Register  
Clock Minimum Pulse Width LOW for the Input Data Register  
tIWPRE  
tICKMPWH  
tICKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-96  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-174 • Input Data Register Propagation Delays  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000  
Parameter  
tICLKQ  
Description –1 Std. Units  
Clock-to-Q of the Input Data Register  
0.29 0.34 ns  
0.32 0.37 ns  
0.00 0.00 ns  
0.45 0.53 ns  
0.00 0.00 ns  
0.55 0.64 ns  
0.55 0.64 ns  
0.00 0.00 ns  
0.27 0.31 ns  
0.00 0.00 ns  
0.27 0.31 ns  
0.25 0.30 ns  
0.25 0.30 ns  
0.41 0.48 ns  
0.37 0.43 ns  
tISUD  
Data Setup Time for the Input Data Register  
tIHD  
Data Hold Time for the Input Data Register  
tISUE  
Enable Setup Time for the Input Data Register  
tIHE  
Enable Hold Time for the Input Data Register  
tICLR2Q  
tIPRE2Q  
tIREMCLR  
tIRECCLR  
tIREMPRE  
tIRECPRE  
tIWCLR  
Asynchronous Clear-to-Q of the Input Data Register  
Asynchronous Preset-to-Q of the Input Data Register  
Asynchronous Clear Removal Time for the Input Data Register  
Asynchronous Clear Recovery Time for the Input Data Register  
Asynchronous Preset Removal Time for the Input Data Register  
Asynchronous Preset Recovery Time for the Input Data Register  
Asynchronous Clear Minimum Pulse Width for the Input Data Register  
Asynchronous Preset Minimum Pulse Width for the Input Data Register  
Clock Minimum Pulse Width HIGH for the Input Data Register  
Clock Minimum Pulse Width LOW for the Input Data Register  
tIWPRE  
tICKMPWH  
tICKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
Revision 5  
2-97  
Military ProASIC3/EL DC and Switching Characteristics  
Output Register  
tOCKMPWH tOCKMPWL  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
1
CLK  
tOSUD tOHD  
50%  
50%  
0
Data_out  
tOREMPRE  
Enable  
Preset  
50%  
tOWPRE tORECPRE  
tOHE  
50%  
50%  
50%  
tOSUE  
tOREMCLR  
50%  
tORECCLR  
50%  
tOWCLR  
50%  
Clear  
tOPRE2Q  
50%  
50%  
tOCLKQ  
50%  
DOUT  
tOCLR2Q  
Figure 2-31 • Output Register Timing Diagram  
2-98  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Timing Characteristics  
Table 2-175 • Output Data Register Propagation Delays  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L  
Description –1 Std. Units  
Clock-to-Q of the Output Data Register  
Parameter  
tOCLKQ  
0.81 0.96  
0.43 0.51  
0.00 0.00  
0.61 0.71  
0.00 0.00  
1.11 1.31  
1.11 1.31  
0.00 0.00  
0.31 0.36  
0.00 0.00  
0.31 0.36  
0.19 0.22  
0.19 0.22  
0.31 0.36  
0.28 0.32  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOSUD  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
tOSUE  
Enable Setup Time for the Output Data Register  
tOHE  
Enable Hold Time for the Output Data Register  
tOCLR2Q  
tOPRE2Q  
tOREMCLR  
tORECCLR  
tOREMPRE  
tORECPRE  
tOWCLR  
tOWPRE  
Asynchronous Clear-to-Q of the Output Data Register  
Asynchronous Preset-to-Q of the Output Data Register  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Asynchronous Clear Minimum Pulse Width for the Output Data Register  
Asynchronous Preset Minimum Pulse Width for the Output Data Register  
tOCKMPWH Clock Minimum Pulse Width HIGH for the Output Data Register  
tOCKMPWL Clock Minimum Pulse Width LOW for the Output Data Register  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-176 • Output Data Register Propagation Delays  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L  
Parameter  
tOCLKQ  
Description  
Clock-to-Q of the Output Data Register  
–1 Std. Units  
0.62 0.73  
0.33 0.39  
0.00 0.00  
0.46 0.55  
0.00 0.00  
0.85 1.00  
0.85 1.00  
0.00 0.00  
0.24 0.28  
0.00 0.00  
0.24 0.28  
0.19 0.22  
0.19 0.22  
0.31 0.36  
0.28 0.32  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOSUD  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
tOSUE  
Enable Setup Time for the Output Data Register  
tOHE  
Enable Hold Time for the Output Data Register  
tOCLR2Q  
tOPRE2Q  
tOREMCLR  
tORECCLR  
tOREMPRE  
tORECPRE  
tOWCLR  
tOWPRE  
Asynchronous Clear-to-Q of the Output Data Register  
Asynchronous Preset-to-Q of the Output Data Register  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Asynchronous Clear Minimum Pulse Width for the Output Data Register  
Asynchronous Preset Minimum Pulse Width for the Output Data Register  
tOCKMPWH Clock Minimum Pulse Width HIGH for the Output Data Register  
tOCKMPWL Clock Minimum Pulse Width LOW for the Output Data Register  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 5  
2-99  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-177 • Output Data Register Propagation Delays  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000  
Parameter  
tOCLKQ  
Description  
Clock-to-Q of the Output Data Register  
–1 Std. Units  
0.71 0.83  
0.38 0.44  
0.00 0.00  
0.53 0.62  
0.00 0.00  
0.97 1.14  
0.97 1.14  
0.00 0.00  
0.27 0.31  
0.00 0.00  
0.27 0.31  
0.25 0.30  
0.25 0.30  
0.41 0.48  
0.37 0.43  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tOSUD  
Data Setup Time for the Output Data Register  
tOHD  
Data Hold Time for the Output Data Register  
tOSUE  
Enable Setup Time for the Output Data Register  
tOHE  
Enable Hold Time for the Output Data Register  
tOCLR2Q  
tOPRE2Q  
tOREMCLR  
tORECCLR  
tOREMPRE  
tORECPRE  
tOWCLR  
tOWPRE  
Asynchronous Clear-to-Q of the Output Data Register  
Asynchronous Preset-to-Q of the Output Data Register  
Asynchronous Clear Removal Time for the Output Data Register  
Asynchronous Clear Recovery Time for the Output Data Register  
Asynchronous Preset Removal Time for the Output Data Register  
Asynchronous Preset Recovery Time for the Output Data Register  
Asynchronous Clear Minimum Pulse Width for the Output Data Register  
Asynchronous Preset Minimum Pulse Width for the Output Data Register  
tOCKMPWH Clock Minimum Pulse Width HIGH for the Output Data Register  
tOCKMPWL Clock Minimum Pulse Width LOW for the Output Data Register  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
2-100  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Output Enable Register  
tOECKMPWH tOECKMPWL  
50%  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
tOESUD OEHD  
t
50% 50%  
1
0
D_Enable  
50%  
Enable  
Preset  
tOEWPRE  
50%  
tOEREMPRE  
50%  
tOERECPRE  
50%  
tOESUEOEHE  
t
tOEREMCLR  
50%  
tOEWCLR tOERECCLR  
50%  
50%  
Clear  
tOECLR2Q  
50%  
tOEPRE2Q  
50%  
50%  
tOECLKQ  
EOUT  
Figure 2-32 • Output Enable Register Timing Diagram  
Revision 5  
2-101  
Military ProASIC3/EL DC and Switching Characteristics  
Timing Characteristics  
Table 2-178 • Output Enable Register Propagation Delays  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L  
Parameter  
tOECLKQ  
tOESUD  
Description  
Clock-to-Q of the Output Enable Register  
–1 Std. Units  
0.62 0.72  
0.43 0.51  
0.00 0.00  
0.60 0.71  
0.00 0.00  
0.92 1.08  
0.92 1.08  
0.00 0.00  
0.31 0.36  
0.00 0.00  
0.31 0.36  
0.19 0.22  
0.19 0.22  
0.31 0.36  
0.28 0.32  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
Enable Setup Time for the Output Enable Register  
Enable Hold Time for the Output Enable Register  
Asynchronous Clear-to-Q of the Output Enable Register  
Asynchronous Preset-to-Q of the Output Enable Register  
tOEHD  
tOESUE  
tOEHE  
tOECLR2Q  
tOEPRE2Q  
tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register  
tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register  
tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register  
tOERECPRE Asynchronous Preset Recovery Time for the Output Enable Register  
tOEWCLR  
tOEWPRE  
Asynchronous Clear Minimum Pulse Width for the Output Enable Register  
Asynchronous Preset Minimum Pulse Width for the Output Enable Register  
tOECKMPWH Clock Minimum Pulse Width HIGH for the Output Enable Register  
tOECKMPWL Clock Minimum Pulse Width LOW for the Output Enable Register  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-179 • Output Enable Register Propagation Delays  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L  
Parameter  
tOECLKQ  
tOESUD  
Description  
Clock-to-Q of the Output Enable Register  
–1 Std. Units  
0.47 0.55  
0.33 0.39  
0.00 0.00  
0.46 0.54  
0.00 0.00  
0.70 0.83  
0.70 0.83  
0.00 0.00  
0.24 0.28  
0.00 0.00  
0.24 0.28  
0.19 0.22  
0.19 0.22  
0.31 0.36  
0.28 0.32  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
Enable Setup Time for the Output Enable Register  
Enable Hold Time for the Output Enable Register  
Asynchronous Clear-to-Q of the Output Enable Register  
Asynchronous Preset-to-Q of the Output Enable Register  
tOEHD  
tOESUE  
tOEHE  
tOECLR2Q  
tOEPRE2Q  
tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register  
tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register  
tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register  
tOERECPRE Asynchronous Preset Recovery Time for the Output Enable Register  
tOEWCLR  
tOEWPRE  
Asynchronous Clear Minimum Pulse Width for the Output Enable Register  
Asynchronous Preset Minimum Pulse Width for the Output Enable Register  
tOECKMPWH Clock Minimum Pulse Width HIGH for the Output Enable Register  
tOECKMPWL Clock Minimum Pulse Width LOW for the Output Enable Register  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-102  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-180 • Output Enable Register Propagation Delays  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000  
Parameter  
tOECLKQ  
tOESUD  
Description –1 Std. Units  
Clock-to-Q of the Output Enable Register  
0.54 0.63  
0.38 0.44  
0.00 0.00  
0.52 0.62  
0.00 0.00  
0.80 0.94  
0.80 0.94  
0.00 0.00  
0.27 0.31  
0.00 0.00  
0.27 0.31  
0.25 0.30  
0.25 0.30  
0.41 0.48  
0.37 0.43  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data Setup Time for the Output Enable Register  
Data Hold Time for the Output Enable Register  
Enable Setup Time for the Output Enable Register  
Enable Hold Time for the Output Enable Register  
Asynchronous Clear-to-Q of the Output Enable Register  
Asynchronous Preset-to-Q of the Output Enable Register  
tOEHD  
tOESUE  
tOEHE  
tOECLR2Q  
tOEPRE2Q  
tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register  
tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register  
tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register  
tOERECPRE Asynchronous Preset Recovery Time for the Output Enable Register  
tOEWCLR  
tOEWPRE  
Asynchronous Clear Minimum Pulse Width for the Output Enable Register  
Asynchronous Preset Minimum Pulse Width for the Output Enable Register  
tOECKMPWH Clock Minimum Pulse Width HIGH for the Output Enable Register  
tOECKMPWL Clock Minimum Pulse Width LOW for the Output Enable Register  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
Revision 5  
2-103  
Military ProASIC3/EL DC and Switching Characteristics  
DDR Module Specifications  
Input DDR Module  
Input DDR  
INBUF  
A
D
Out_QF  
(to core)  
Data  
FF1  
B
E
Out_QR  
(to core)  
CLK  
CLKBUF  
FF2  
C
CLR  
INBUF  
DDR_IN  
Figure 2-33 • Input DDR Timing Model  
Table 2-181 • Parameter Definitions  
Parameter Name  
tDDRICLKQ1  
tDDRICLKQ2  
tDDRISUD  
Parameter Definition  
Measuring Nodes (from, to)  
Clock-to-Out Out_QR  
Clock-to-Out Out_QF  
B, D  
B, E  
A, B  
A, B  
C, D  
C, E  
C, B  
C, B  
Data Setup Time of DDR input  
Data Hold Time of DDR input  
Clear-to-Out Out_QR  
Clear-to-Out Out_QF  
Clear Removal  
tDDRIHD  
tDDRICLR2Q1  
tDDRICLR2Q2  
tDDRIREMCLR  
tDDRIRECCLR  
Clear Recovery  
2-104  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
CLK  
tDDRISUD  
6
tDDRIHD  
8
Data  
CLR  
1
2
3
4
5
7
9
tDDRIRECCLR  
tDDRIREMCLR  
tDDRICLKQ1  
tDDRICLR2Q1  
Out_QF  
Out_QR  
6
2
4
tDDRICLKQ2  
tDDRICLR2Q2  
7
3
5
Figure 2-34 • Input DDR Timing Diagram  
Timing Characteristics  
Table 2-182 • Input DDR Propagation Delays  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L  
Description –1 Std. Units  
Clock-to-Out Out_QR for Input DDR  
Parameter  
tDDRICLKQ1  
tDDRICLKQ2  
tDDRISUD1  
0.38 0.45  
0.54 0.63  
0.39 0.46  
0.34 0.40  
0.00 0.00  
0.00 0.00  
0.64 0.75  
0.79 0.93  
0.00 0.00  
0.31 0.36  
0.19 0.22  
0.31 0.36  
0.28 0.32  
ns  
ns  
Clock-to-Out Out_QF for Input DDR  
Data Setup for Input DDR (fall)  
ns  
tDDRISUD2  
Data Setup for Input DDR (rise)  
ns  
tDDRIHD1  
Data Hold for Input DDR (fall)  
ns  
tDDRIHD2  
Data Hold for Input DDR (rise)  
ns  
tDDRICLR2Q1  
tDDRICLR2Q2  
tDDRIREMCLR  
tDDRIRECCLR  
tDDRIWCLR  
tDDRICKMPWH  
tDDRICKMPWL  
FDDRIMAX  
Asynchronous Clear-to-Out Out_QR for Input DDR  
Asynchronous Clear-to-Out Out_QF for Input DDR  
Asynchronous Clear Removal Time for Input DDR  
Asynchronous Clear Recovery Time for Input DDR  
Asynchronous Clear Minimum Pulse Width for Input DDR  
Clock Minimum Pulse Width HIGH for Input DDR  
Clock Minimum Pulse Width LOW for Input DDR  
Maximum Frequency for Input DDR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
160  
160  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 5  
2-105  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-183 • Input DDR Propagation Delays  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for any A3PE600L/A3PE3000L  
Description –1  
Clock-to-Out Out_QR for Input DDR  
Parameter  
tDDRICLKQ1  
tDDRICLKQ2  
tDDRISUD1  
Std. Units  
0.29 0.34  
0.41 0.48  
0.30 0.35  
0.26 0.31  
0.00 0.00  
0.00 0.00  
0.49 0.58  
0.60 0.71  
0.00 0.00  
0.24 0.28  
0.19 0.22  
0.31 0.36  
0.28 0.32  
ns  
ns  
Clock-to-Out Out_QF for Input DDR  
Data Setup for Input DDR (fall)  
ns  
tDDRISUD2  
Data Setup for Input DDR (rise)  
ns  
tDDRIHD1  
Data Hold for Input DDR (fall)  
ns  
tDDRIHD2  
Data Hold for Input DDR (rise)  
ns  
tDDRICLR2Q1  
tDDRICLR2Q2  
tDDRIREMCLR  
tDDRIRECCLR  
tDDRIWCLR  
tDDRICKMPWH  
tDDRICKMPWL  
FDDRIMAX  
Asynchronous Clear-to-Out Out_QR for Input DDR  
Asynchronous Clear-to-Out Out_QF for Input DDR  
Asynchronous Clear Removal Time for Input DDR  
Asynchronous Clear Recovery Time for Input DDR  
Asynchronous Clear Minimum Pulse Width for Input DDR  
Clock Minimum Pulse Width HIGH for Input DDR  
Clock Minimum Pulse Width LOW for Input DDR  
Maximum Frequency for Input DDR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
250  
250  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-184 • Input DDR Propagation Delays  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000  
Parameter  
tDDRICLKQ1  
tDDRICLKQ2  
tDDRISUD1  
Description  
Clock-to-Out Out_QR for Input DDR  
–1  
Std. Units  
0.33 0.39  
0.47 0.55  
0.30 0.35  
0.30 0.35  
0.00 0.00  
0.00 0.00  
0.56 0.65  
0.69 0.81  
0.00 0.00  
0.27 0.31  
0.25 0.30  
0.41 0.48  
0.37 0.43  
ns  
ns  
Clock-to-Out Out_QF for Input DDR  
Data Setup for Input DDR (fall)  
ns  
tDDRISUD2  
Data Setup for Input DDR (rise)  
ns  
tDDRIHD1  
Data Hold for Input DDR (fall)  
ns  
tDDRIHD2  
Data Hold for Input DDR (rise)  
ns  
tDDRICLR2Q1  
tDDRICLR2Q2  
tDDRIREMCLR  
tDDRIRECCLR  
tDDRIWCLR  
tDDRICKMPWH  
tDDRICKMPWL  
FDDRIMAX  
Asynchronous Clear-to-Out Out_QR for Input DDR  
Asynchronous Clear-to-Out Out_QF for Input DDR  
Asynchronous Clear Removal Time for Input DDR  
Asynchronous Clear Recovery Time for Input DDR  
Asynchronous Clear Minimum Pulse Width for Input DDR  
Clock Minimum Pulse Width HIGH for Input DDR  
Clock Minimum Pulse Width LOW for Input DDR  
Maximum Frequency for Input DDR  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
309  
263  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
2-106  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Output DDR Module  
Output DDR  
A
B
Data_F  
(from core)  
X
X
FF1  
Out  
0
1
CLK  
E
X
CLKBUF  
C
X
OUTBUF  
D
Data_R  
(from core)  
X
FF2  
B
X
CLR  
INBUF  
C
X
DDR_OUT  
Figure 2-35 • Output DDR Timing Model  
Table 2-185 • Parameter Definitions  
Parameter Name  
tDDROCLKQ  
Parameter Definition  
Measuring Nodes (from, to)  
Clock-to-Out  
B, E  
C, E  
C, B  
C, B  
A, B  
D, B  
A, B  
D, B  
tDDROCLR2Q  
tDDROREMCLR  
tDDRORECCLR  
tDDROSUD1  
Asynchronous Clear-to-Out  
Clear Removal  
Clear Recovery  
Data Setup Data_F  
Data Setup Data_R  
Data Hold Data_F  
Data Hold Data_R  
tDDROSUD2  
tDDROHD1  
tDDROHD2  
Revision 5  
2-107  
Military ProASIC3/EL DC and Switching Characteristics  
CLK  
t
t
DDROHD2  
DDROSUD2  
4
9
5
Data_F  
1
2
3
t
t
DDROHD1  
DDROREMCLR  
Data_R 6  
CLR  
7
8
10  
11  
t
DDRORECCLR  
t
DDROREMCLR  
t
t
DDROCLKQ  
DDROCLR2Q  
Out  
7
2
8
3
9
4
10  
Figure 2-36 • Output DDR Timing Diagram  
Timing Characteristics  
Table 2-186 • Output DDR Propagation Delays  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L  
Description –1 Std. Units  
Clock-to-Out of DDR for Output DDR  
Parameter  
tDDROCLKQ  
tDDRISUD1  
0.97 1.14  
0.52 0.62  
0.52 0.62  
0.00 0.00  
0.00 0.00  
1.11 1.30  
0.00 0.00  
0.31 0.36  
0.19 0.22  
0.31 0.36  
0.28 0.32  
ns  
ns  
Data_F Data Setup for Output DDR  
tDDROSUD2  
tDDROHD1  
Data_R Data Setup for Output DDR  
ns  
Data_F Data Hold for Output DDR  
ns  
tDDROHD2  
Data_R Data Hold for Output DDR  
ns  
tDDROCLR2Q  
tDDROREMCLR  
tDDRORECCLR  
tDDROWCLR1  
tDDROCKMPWH  
tDDROCKMPWL  
FDDROMAX  
Asynchronous Clear-to-Out for Output DDR  
Asynchronous Clear Removal Time for Output DDR  
Asynchronous Clear Recovery Time for Output DDR  
Asynchronous Clear Minimum Pulse Width for Output DDR  
Clock Minimum Pulse Width HIGH for the Output DDR  
Clock Minimum Pulse Width LOW for the Output DDR  
Maximum Frequency for the Output DDR  
ns  
ns  
ns  
ns  
ns  
ns  
160  
160  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-108  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-187 • Output DDR Propagation Delays  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L  
Parameter  
tDDROCLKQ  
tDDRISUD1  
Description –1  
Clock-to-Out of DDR for Output DDR  
Std. Units  
0.74 0.87  
0.40 0.47  
0.40 0.47  
0.00 0.00  
0.00 0.00  
0.85 1.00  
0.00 0.00  
0.24 0.28  
0.19 0.22  
0.31 0.36  
0.28 0.32  
ns  
ns  
Data_F Data Setup for Output DDR  
tDDROSUD2  
tDDROHD1  
Data_R Data Setup for Output DDR  
ns  
Data_F Data Hold for Output DDR  
ns  
tDDROHD2  
Data_R Data Hold for Output DDR  
ns  
tDDROCLR2Q  
tDDROREMCLR  
tDDRORECCLR  
tDDROWCLR1  
tDDROCKMPWH  
tDDROCKMPWL  
FDDROMAX  
Asynchronous Clear-to-Out for Output DDR  
Asynchronous Clear Removal Time for Output DDR  
Asynchronous Clear Recovery Time for Output DDR  
Asynchronous Clear Minimum Pulse Width for Output DDR  
Clock Minimum Pulse Width HIGH for the Output DDR  
Clock Minimum Pulse Width LOW for the Output DDR  
Maximum Frequency for the Output DDR  
ns  
ns  
ns  
ns  
ns  
ns  
250  
250  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-188 • Output DDR Propagation Delays  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000  
Parameter  
tDDROCLKQ  
tDDRISUD1  
Description  
Clock-to-Out of DDR for Output DDR  
–1  
Std. Units  
0.84 0.99  
0.46 0.54  
0.46 0.54  
0.00 0.00  
0.00 0.00  
0.96 1.13  
0.00 0.00  
0.27 0.31  
0.25 0.30  
0.41 0.48  
0.37 0.43  
ns  
ns  
Data_F Data Setup for Output DDR  
tDDROSUD2  
tDDROHD1  
Data_R Data Setup for Output DDR  
ns  
Data_F Data Hold for Output DDR  
ns  
tDDROHD2  
Data_R Data Hold for Output DDR  
ns  
tDDROCLR2Q  
tDDROREMCLR  
tDDRORECCLR  
tDDROWCLR1  
tDDROCKMPWH  
tDDROCKMPWL  
FDDROMAX  
Asynchronous Clear-to-Out for Output DDR  
Asynchronous Clear Removal Time for Output DDR  
Asynchronous Clear Recovery Time for Output DDR  
Asynchronous Clear Minimum Pulse Width for Output DDR  
Clock Minimum Pulse Width HIGH for the Output DDR  
Clock Minimum Pulse Width LOW for the Output DDR  
Maximum Frequency for the Output DDR  
ns  
ns  
ns  
ns  
ns  
ns  
309  
263  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
Revision 5  
2-109  
Military ProASIC3/EL DC and Switching Characteristics  
VersaTile Characteristics  
VersaTile Specifications as a Combinatorial Module  
The military ProASIC3 library offers all combinations of LUT-3 combinatorial functions. In this section,  
timing characteristics are presented for a sample of the library. For more details, refer to the IGLOO,  
Fusion, and ProASIC3 Macro Library Guide.  
A
Y
Y
INV  
A
A
B
NOR2  
OR2  
Y
B
A
B
A
B
Y
AND2  
Y
NAND2  
A
B
C
A
B
Y
XOR3  
XOR2  
Y
A
B
C
A
MAJ3  
0
Y
A
B
C
MUX2  
Y
B
S
NAND3  
1
Figure 2-37 • Sample of Combinatorial Cells  
2-110  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
tPD  
A
B
NAND2 or  
Any Combinatorial  
Logic  
Y
tPD = MAX(tPD(RR), tPD(RF), tPD(FF), tPD(FR)  
)
where edges are applicable for the particular  
combinatorial cell  
VCC  
50%  
50%  
A, B, C  
GND  
50%  
VCC  
50%  
OUT  
OUT  
GND  
VCC  
tPD  
tPD  
(RR)  
(FF)  
tPD  
(FR)  
50%  
50%  
tPD  
GND  
(RF)  
Figure 2-38 • Timing Model and Waveforms  
Revision 5  
2-111  
Military ProASIC3/EL DC and Switching Characteristics  
Timing Characteristics  
Table 2-189 • Combinatorial Cell Propagation Delays  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and  
A3PE3000L  
Combinatorial Cell  
Equation  
Y = !A  
Parameter  
tPD  
–1  
Std.  
0.65  
0.77  
0.77  
0.79  
0.79  
1.20  
1.14  
1.42  
0.82  
0.91  
Units  
ns  
INV  
0.56  
0.65  
0.65  
0.67  
0.67  
1.02  
0.97  
1.21  
0.70  
0.78  
AND2  
NAND2  
OR2  
Y = A · B  
tPD  
ns  
Y = !(A · B)  
Y = A + B  
tPD  
ns  
tPD  
ns  
NOR2  
XOR2  
MAJ3  
XOR3  
MUX2  
AND3  
Y = !(A + B)  
Y = A B  
Y = MAJ(A , B, C)  
Y = A B C  
Y = A !S + B S  
Y = A · B · C  
tPD  
ns  
tPD  
ns  
tPD  
ns  
tPD  
ns  
tPD  
ns  
tPD  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-190 • Combinatorial Cell Propagation Delays  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for any A3PE600L/A3PE3000L  
Combinatorial Cell  
INV  
Equation  
Y = !A  
Parameter  
tPD  
–1  
Std.  
0.50  
0.59  
0.59  
0.61  
0.61  
0.92  
0.87  
1.09  
0.63  
0.70  
Units  
ns  
0.43  
0.50  
0.50  
0.51  
0.51  
0.78  
0.74  
0.93  
0.54  
0.59  
AND2  
Y = A · B  
tPD  
ns  
NAND2  
OR2  
Y = !(A · B)  
Y = A + B  
tPD  
ns  
tPD  
ns  
NOR2  
Y = !(A + B)  
Y = A B  
Y = MAJ(A , B, C)  
Y = A B C  
Y = A !S + B S  
Y = A · B · C  
tPD  
ns  
XOR2  
tPD  
ns  
MAJ3  
tPD  
ns  
XOR3  
tPD  
ns  
MUX2  
tPD  
ns  
AND3  
tPD  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
2-112  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-191 • Combinatorial Cell Propagation Delays  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and  
A3P1000  
Combinatorial Cell  
INV  
Equation  
Y = !A  
Parameter  
tPD  
–1  
Std.  
0.57  
0.67  
0.67  
0.69  
0.69  
1.04  
0.99  
1.24  
0.72  
0.79  
Units  
ns  
0.48  
0.57  
0.57  
0.59  
0.59  
0.89  
0.84  
1.05  
0.61  
0.68  
AND2  
Y = A · B  
tPD  
ns  
NAND2  
OR2  
Y = !(A · B)  
Y = A + B  
tPD  
ns  
tPD  
ns  
NOR2  
Y = !(A + B)  
Y = A B  
Y = MAJ(A , B, C)  
Y = A B C  
Y = A !S + B S  
Y = A · B · C  
tPD  
ns  
XOR2  
tPD  
ns  
MAJ3  
tPD  
ns  
XOR3  
tPD  
ns  
MUX2  
tPD  
ns  
AND3  
tPD  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating  
values.  
Revision 5  
2-113  
Military ProASIC3/EL DC and Switching Characteristics  
VersaTile Specifications as a Sequential Module  
The military ProASIC3 library offers a wide variety of sequential cells, including flip-flops and latches.  
Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are  
presented for a representative sample from the library. For more details, refer to the IGLOO, Fusion, and  
ProASIC3 Macro Library Guide.  
Data  
CLK  
Out  
Data  
Out  
D
Q
D
Q
En  
DFN1  
DFN1E1  
CLK  
PRE  
Data  
Data  
Out  
Out  
Q
D
D
Q
En  
DFN1C1  
DFI1E1P1  
CLK  
CLK  
CLR  
Figure 2-39 • Sample of Sequential Cells  
2-114  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
tCKMPWH CKMPWL  
t
50%  
tSUD  
50%  
50%  
50%  
50%  
50%  
50%  
CLK  
tHD  
50%  
50%  
Data  
EN  
0
50%  
tRECPRE  
50%  
tWPRE  
tREMPRE  
50%  
tHE  
50%  
tSUE  
PRE  
CLR  
Out  
tREMCLR  
50%  
tRECCLR  
50%  
tWCLR  
50%  
tPRE2Q  
50%  
tCLR2Q  
50%  
50%  
tCLKQ  
Figure 2-40 • Timing Model and Waveforms  
Revision 5  
2-115  
Military ProASIC3/EL DC and Switching Characteristics  
Timing Characteristics  
Table 2-192 • Register Delays  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L  
Parameter  
tCLKQ  
Description –1 Std. Units  
Clock-to-Q of the Core Register  
0.76 0.90  
0.59 0.70  
0.00 0.00  
0.63 0.74  
0.00 0.00  
0.55 0.65  
0.55 0.65  
0.00 0.00  
0.31 0.36  
0.00 0.00  
0.31 0.36  
0.30 0.34  
0.30 0.34  
0.56 0.64  
0.56 0.64  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSUD  
Data Setup Time for the Core Register  
tHD  
Data Hold Time for the Core Register  
tSUE  
Enable Setup Time for the Core Register  
tHE  
Enable Hold Time for the Core Register  
tCLR2Q  
tPRE2Q  
tREMCLR  
tRECCLR  
tREMPRE  
tRECPRE  
tWCLR  
Asynchronous Clear-to-Q of the Core Register  
Asynchronous Preset-to-Q of the Core Register  
Asynchronous Clear Removal Time for the Core Register  
Asynchronous Clear Recovery Time for the Core Register  
Asynchronous Preset Removal Time for the Core Register  
Asynchronous Preset Recovery Time for the Core Register  
Asynchronous Clear Minimum Pulse Width for the Core Register  
Asynchronous Preset Minimum Pulse Width for the Core Register  
Clock Minimum Pulse Width HIGH for the Core Register  
Clock Minimum Pulse Width LOW for the Core Register  
tWPRE  
tCKMPWH  
tCKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-116  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-193 • Register Delays  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L  
Parameter  
tCLKQ  
Description –1  
Std. Units  
Clock-to-Q of the Core Register  
0.58 0.69  
0.45 0.53  
0.00 0.00  
0.48 0.57  
0.00 0.00  
0.42 0.50  
0.42 0.50  
0.00 0.00  
0.24 0.28  
0.00 0.00  
0.24 0.28  
0.30 0.34  
0.30 0.34  
0.56 0.64  
0.56 0.64  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSUD  
Data Setup Time for the Core Register  
tHD  
Data Hold Time for the Core Register  
tSUE  
Enable Setup Time for the Core Register  
tHE  
Enable Hold Time for the Core Register  
tCLR2Q  
tPRE2Q  
tREMCLR  
tRECCLR  
tREMPRE  
tRECPRE  
tWCLR  
Asynchronous Clear-to-Q of the Core Register  
Asynchronous Preset-to-Q of the Core Register  
Asynchronous Clear Removal Time for the Core Register  
Asynchronous Clear Recovery Time for the Core Register  
Asynchronous Preset Removal Time for the Core Register  
Asynchronous Preset Recovery Time for the Core Register  
Asynchronous Clear Minimum Pulse Width for the Core Register  
Asynchronous Preset Minimum Pulse Width for the Core Register  
Clock Minimum Pulse Width HIGH for the Core Register  
Clock Minimum Pulse Width LOW for the Core Register  
tWPRE  
tCKMPWH  
tCKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 5  
2-117  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-194 • Register Delays  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000  
Parameter  
tCLKQ  
Description –1 Std. Units  
Clock-to-Q of the Core Register  
0.66 0.78  
0.52 0.61  
0.00 0.00  
0.55 0.64  
0.00 0.00  
0.48 0.56  
0.48 0.56  
0.00 0.00  
0.27 0.31  
0.00 0.00  
0.27 0.31  
0.25 0.30  
0.25 0.30  
0.41 0.48  
0.37 0.43  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSUD  
Data Setup Time for the Core Register  
tHD  
Data Hold Time for the Core Register  
tSUE  
Enable Setup Time for the Core Register  
tHE  
Enable Hold Time for the Core Register  
tCLR2Q  
tPRE2Q  
tREMCLR  
tRECCLR  
tREMPRE  
tRECPRE  
tWCLR  
Asynchronous Clear-to-Q of the Core Register  
Asynchronous Preset-to-Q of the Core Register  
Asynchronous Clear Removal Time for the Core Register  
Asynchronous Clear Recovery Time for the Core Register  
Asynchronous Preset Removal Time for the Core Register  
Asynchronous Preset Recovery Time for the Core Register  
Asynchronous Clear Minimum Pulse Width for the Core Register  
Asynchronous Preset Minimum Pulse Width for the Core Register  
Clock Minimum Pulse Width HIGH for the Core Register  
Clock Minimum Pulse Width LOW for the Core Register  
tWPRE  
tCKMPWH  
tCKMPWL  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
2-118  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Global Resource Characteristics  
A3P1000 Clock Tree Topology  
Clock delays are device-specific. Figure 2-41 is an example of a global tree used for clock routing. The  
global tree presented in Figure 2-41 is driven by a CCC located on the west side of the A3P1000 device.  
It is used to drive all D-flip-flops in the device.  
Central  
Global Rib  
CCC  
VersaTile  
Rows  
Global Spine  
Figure 2-41 • Example of Global Tree Use in an A3P1000 Device for Clock Routing  
Revision 5  
2-119  
Military ProASIC3/EL DC and Switching Characteristics  
Global Tree Timing Characteristics  
Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not  
include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven  
and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer  
to the "Clock Conditioning Circuits" section on page 2-123. Table 2-195 to Table 2-198 on page 2-121  
present minimum and maximum global clock delays within each device. Minimum and maximum delays  
are measured with minimum and maximum loading.  
Timing Characteristics  
1.2 V DC Core Voltage  
Table 2-195 • A3PE600L Global Resource  
Military-Case Conditions: TJ = 125°C, VCC = 1.14 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Input HIGH Delay for Global Clock  
Min.1 Max.2 Min.1 Max.2 Units  
0.95 1.23 1.12 1.44  
0.94 1.26 1.10 1.48  
ns  
ns  
tRCKH  
tRCKMPWH Minimum Pulse Width HIGH for Global Clock  
tRCKMPWL Minimum Pulse Width LOW for Global Clock  
ns  
ns  
tRCKSW  
FRMAX  
Notes:  
Maximum Skew for Global Clock  
0.32  
0.38  
ns  
Maximum Frequency for Global Clock  
MHz  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-196 • A3PE3000L Global Resource  
Military-Case Conditions: TJ = 125°C, VCC = 1.14 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input LOW Delay for Global Clock  
Input HIGH Delay for Global Clock  
Min.1 Max.2 Min.1 Max.2 Units  
1.81 2.09 2.13 2.42  
1.80 2.13 2.12 2.45  
ns  
ns  
tRCKH  
tRCKMPWH Minimum Pulse Width HIGH for Global Clock  
tRCKMPWL Minimum Pulse Width LOW for Global Clock  
ns  
ns  
tRCKSW  
FRMAX  
Notes:  
Maximum Skew for Global Clock  
0.32  
0.38  
ns  
Maximum Frequency for Global Clock  
MHz  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
2-120  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
1.5 V DC Core Voltage  
Table 2-197 • A3PE600L Global Resource  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Min.1 Max.2 Min.1 Max.2 Units  
Input Low Delay for Global Clock  
Input High Delay for Global Clock  
0.82 1.07 0.97 1.26  
0.81 1.10 0.95 1.30  
ns  
ns  
tRCKH  
tRCKMPWH Minimum Pulse Width High for Global Clock  
tRCKMPWL Minimum Pulse Width Low for Global Clock  
ns  
ns  
tRCKSW  
FRMAX  
Notes:  
Maximum Skew for Global Clock  
0.30  
0.35  
ns  
Maximum Frequency for Global Clock  
MHz  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Table 2-198 • A3PE3000L Global Resource  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Input High Delay for Global Clock  
Min.1 Max.2 Min.1 Max.2 Units  
1.62 1.87 1.90 2.20  
1.61 1.90 1.89 2.24  
ns  
ns  
tRCKH  
tRCKMPWH Minimum Pulse Width High for Global Clock  
tRCKMPWL Minimum Pulse Width Low for Global Clock  
ns  
ns  
tRCKSW  
FRMAX  
Notes:  
Maximum Skew for Global Clock  
0.30  
0.35  
ns  
Maximum Frequency for Global Clock  
MHz  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating  
values.  
Revision 5  
2-121  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-199 • A3P250 Global Resource  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Input High Delay for Global Clock  
Min.1 Max.2 Min.1 Max.2 Units  
0.97 1.24 1.14 1.46  
0.94 1.27 1.11 1.49  
ns  
ns  
tRCKH  
tRCKMPWH Minimum Pulse Width High for Global Clock  
tRCKMPWL Minimum Pulse Width Low for Global Clock  
ns  
ns  
tRCKSW  
FRMAX  
Notes:  
Maximum Skew for Global Clock  
0.32  
0.38  
ns  
Maximum Frequency for Global Clock  
MHz  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating  
values.  
Table 2-200 • A3P1000 Global Resource  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V  
–1  
Std.  
Parameter  
tRCKL  
Description  
Input Low Delay for Global Clock  
Input High Delay for Global Clock  
Min.1 Max.2 Min.1 Max.2 Units  
1.18 1.44 1.39 1.70  
1.17 1.48 1.37 1.74  
ns  
ns  
tRCKH  
tRCKMPWH Minimum Pulse Width High for Global Clock  
tRCKMPWL Minimum Pulse Width Low for Global Clock  
ns  
ns  
tRCKSW  
FRMAX  
Notes:  
Maximum Skew for Global Clock  
0.32  
0.37  
ns  
Maximum Frequency for Global Clock  
MHz  
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential  
element, located in a lightly loaded row (single element is connected to the global net).  
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element,  
located in a fully loaded row (all available flip-flops are connected to the global net in the row).  
3. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating  
values.  
2-122  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Clock Conditioning Circuits  
CCC Electrical Specifications  
Timing Characteristics  
Table 2-201 • Military ProASIC3/EL CCC/PLL Specification  
For Devices Operating at 1.2 V DC Core Voltage: Applicable to A3PE600L and A3PE3000L Only  
Parameter  
Min.  
Typ.  
Max.  
Units  
Clock Conditioning Circuitry Input Frequency  
fIN_CCC  
1.5  
250  
MHz  
Clock Conditioning Circuitry Output Frequency fOUT_CCC  
Delay Increments in Programmable Delay Blocks 1, 2.3  
Number of Programmable Values in Each Programmable Delay Block  
Serial Clock (SCLK) for Dynamic PLL4  
Input cycle-to-cycle jitter (peak magnitude)  
Acquisition Time  
0.75  
250  
MHz  
ps  
360  
32  
100  
1
MHz  
ns  
LockControl = 0  
300  
6.0  
µs  
LockControl = 1  
ms  
Tracking Jitter5  
LockControl = 0  
25  
ns  
ns  
%
LockControl = 1  
1.5  
Output Duty Cycle  
48.5  
1.2  
51.5  
15.65  
15.65  
Delay Range in Block: Programmable Delay 1 1,2  
Delay Range in Block: Programmable Delay 2 1,2  
Delay Range in Block: Fixed Delay 1,2  
CCC Output Peak-to-Peak Period Jitter FCCC_OUT  
ns  
ns  
ns  
0.025  
3.5  
Max. Peak-to-Peak Period Jitter6,7  
SSO 2 SSO 4 SSO 8 SSO 16  
0.75 MHz to 50 MHz  
50 MHz to 160 MHz  
Notes:  
0.50%  
2.50%  
0.60%  
4.00%  
0.80%  
6.00%  
1.60%  
12.00%  
1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 for deratings.  
2. T = 25°C, VCC = 1.2 V.  
J
3. When the CCC/PLL core is generated by Mircosemi core generator software, not all delay values of the specified delay  
increments are available. Refer to the Libero online help associated with the core for more information.  
4. Maximum value obtained for a –1 speed grade device in worst-case military conditions. For specific junction  
temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge.  
Tracking jitter does not measure the variation in PLL output period, which is covered by period jitter parameter.  
6. Measurements done with LVTTL 3.3 V, 8 mA I/O drive strength and high slew rate. VCC/VCCPLL = 1.14V, VQ/PQ/TQ  
type of packages, 20 pF load.  
7. Switching I/Os are placed outside of the PLL bank.  
Revision 5  
2-123  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-202 • Military ProASIC3/EL CCC/PLL Specification  
For Devices Operating at 1.5 V DC Core Voltage  
Parameter  
Min.  
1.5  
Typ.  
Max.  
350  
Units  
MHz  
MHz  
ps  
Clock Conditioning Circuitry Input Frequency fIN_CCC  
Clock Conditioning Circuitry Output Frequency fOUT_CCC  
Delay Increments in Programmable Delay Blocks 1, 2,3  
Number of Programmable Values in Each Programmable Delay Block  
Serial Clock (SCLK) for Dynamic PLL4  
Input cycle-to-cycle jitter (peak magnitude)  
Acquisition Time  
0.75  
350  
160  
32  
110  
1.5  
MHz  
ns  
LockControl = 0  
300  
6.0  
µs  
LockControl = 1  
ms  
Tracking Jitter5  
LockControl = 0  
1.6  
0.8  
ns  
ns  
%
LockControl = 1  
Output Duty Cycle  
48.5  
0.6  
51.5  
5.56  
5.56  
Delay Range in Block: Programmable Delay 1 1,2  
Delay Range in Block: Programmable Delay 2 1,2  
Delay Range in Block: Fixed Delay 1,2  
CCC Output Peak-to-Peak Period Jitter FCCC_OUT  
ns  
ns  
ns  
0.025  
2.2  
Max. Peak-to-Peak Period Jitter 6,7  
SSO 2 SSO 4 SSO 8 SSO 16  
0.75 MHz to 50 MHz  
50 MHz to 250 MHz  
250 MHz to 350 MHz  
Notes:  
0.50%  
1.00%  
2.50%  
0.50%  
3.00%  
4.00%  
0.70%  
5.00%  
6.00%  
1.00%  
9.00%  
12.00%  
1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-6 for deratings.  
2. T = 25°C, VCC = 1.5 V.  
J
3. When the CCC/PLL core is generated by Mircosemi core generator software, not all delay values of the specified delay  
increments are available. Refer to the Libero online help associated with the core for more information.  
4. Maximum value obtained for a -1 speed grade device in worst-case military conditions. For specific junction temperature  
and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
5. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to PLL input clock edge.  
Tracking jitter does not measure the variation in PLL output period, which is covered by period jitter parameter.  
6. Measurements done with LVTTL 3.3 V, 8 mA I/O drive strength and high slew rate. VCC/VCCPLL = 1.425 V,  
VQ/PQ/TQ type of packages, 20 pF load.  
7. Switching I/Os are placed outside of the PLL bank.  
Output Signal  
Tperiod_max  
Tperiod_min  
Note: Peak-to-peak jitter measurements are defined by T  
= T  
– T  
.
peak-to-peak  
period_max  
period_min  
Figure 2-42 • Peak-to-Peak Jitter Definition  
2-124  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Embedded SRAM and FIFO Characteristics  
SRAM  
RAM4K9  
RAM512X18  
RADDR8  
RD17  
RD16  
ADDRA11 DOUTA8  
RADDR7  
DOUTA7  
DOUTA0  
ADDRA10  
ADDRA0  
DINA8  
RADDR0  
RD0  
DINA7  
RW1  
RW0  
DINA0  
WIDTHA1  
WIDTHA0  
PIPEA  
PIPE  
WMODEA  
BLKA  
WENA  
REN  
RCLK  
CLKA  
ADDRB11 DOUTB8  
ADDRB10 DOUTB7  
WADDR8  
WADDR7  
ADDRB0  
DOUTB0  
WADDR0  
WD17  
WD16  
DINB8  
DINB7  
WD0  
DINB0  
WW1  
WW0  
WIDTHB1  
WIDTHB0  
PIPEB  
WMODEB  
BLKB  
WEN  
WCLK  
WENB  
CLKB  
RESET  
RESET  
Figure 2-43 • RAM Models  
Revision 5  
2-125  
Military ProASIC3/EL DC and Switching Characteristics  
Timing Waveforms  
tCYC  
tCKH  
tCKL  
CLK  
ADD  
BLK  
WEN  
RD  
tAS tAH  
A0  
A1  
A2  
tBKS  
tBKH  
tENS  
tENH  
tCKQ1  
Dn  
D0  
D1  
D2  
tDOH1  
Figure 2-44 • RAM Read for Pass-Through Output  
tCYC  
tCKH  
tCKL  
CLK  
ADD  
BLK  
WEN  
RD  
tAS tAH  
A0  
A1  
A2  
tBKS  
tBKH  
tENH  
tENS  
tCKQ2  
Dn  
D0  
D1  
tDOH2  
Figure 2-45 • RAM Read for Pipelined Output  
2-126  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
t
CYC  
t
t
CKL  
CKH  
CLK  
t
t
AH  
AS  
A
A
A
ADD  
BLK  
0
1
2
t
BKS  
ENS  
t
BKH  
t
t
ENH  
WEN  
t
t
DH  
DS  
WD  
WD  
WD  
RD  
0
1
D
D
n
2
Figure 2-46 • RAM Write, Output Retained (WMODE = 0)  
t
CYC  
t
t
CKH  
CKL  
CLK  
t
t
AH  
AS  
A
A
A
2
ADD  
BLK  
0
1
t
t
BKS  
t
BKH  
ENS  
WEN  
WD  
t
t
DH  
DS  
WD  
WD  
WD  
2
0
1
RD  
D
WD  
WD  
1
n
0
(pass-through)  
RD  
WD  
D
WD  
1
0
n
(pipelined)  
Figure 2-47 • RAM Write, Output as Write Data (WMODE = 1)  
Revision 5  
2-127  
Military ProASIC3/EL DC and Switching Characteristics  
tCYC  
tCKH  
tCKL  
CLK  
RESET  
tRSTBQ  
Dm  
Dn  
RD  
Figure 2-48 • RAM Reset  
2-128  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Timing Characteristics  
Table 2-203 • RAM4K9  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L  
Parameter  
tAS  
Description  
–1 Std. Units  
0.35 0.41 ns  
0.00 0.00 ns  
0.20 0.23 ns  
0.13 0.16 ns  
0.32 0.38 ns  
0.03 0.03 ns  
0.25 0.30 ns  
0.00 0.00 ns  
3.26 3.84 ns  
2.47 2.91 ns  
1.24 1.46 ns  
Address setup time  
Address hold time  
tAH  
tENS  
tENH  
tBKS  
tBKH  
tDS  
REN, WEN setup time  
REN, WEN hold time  
BLK setup time  
BLK hold time  
Input data (DIN) setup time  
Input data (DIN) hold time  
tDH  
tCKQ1  
Clock High to new data valid on DOUT (output retained, WMODE = 0)  
Clock High to new data valid on DOUT (flow-through, WMODE = 1)  
Clock High to new data valid on DOUT (pipelined)  
tCKQ2  
tC2CWWL  
Address collision clk-to-clk delay for reliable write after write on same address – 0.25 0.30 ns  
applicable to closing edge  
tC2CRWH  
tC2CRWH  
tRSTBQ  
Address collision clk-to-clk delay for reliable read access after write on same 0.27 0.32 ns  
address – applicable to opening edge  
Address collision clk-to-clk delay for reliable write access after read on same 0.37 0.44 ns  
address – applicable to opening edge  
RESET Low to data out Low on DOUT (flow-through)  
RESET Low to data out Low on DOUT (pipelined)  
1.28 1.50 ns  
1.28 1.50 ns  
0.40 0.47 ns  
2.08 2.44 ns  
0.66 0.76 ns  
6.08 6.99 ns  
164 143 MHz  
tREMRSTB RESET removal  
tRECRSTB RESET recovery  
tMPWRSTB RESET minimum pulse width  
tCYC  
Clock cycle time  
FMAX  
Maximum frequency  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 5  
2-129  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-204 • RAM4K9  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L  
Parameter  
tAS  
Description  
–1 Std. Units  
0.26 0.31 ns  
0.00 0.00 ns  
0.15 0.18 ns  
0.10 0.12 ns  
0.25 0.29 ns  
0.02 0.02 ns  
0.19 0.23 ns  
0.00 0.00 ns  
2.50 2.93 ns  
1.89 2.22 ns  
0.95 1.11 ns  
Address setup time  
Address hold time  
tAH  
tENS  
tENH  
tBKS  
tBKH  
tDS  
REN, WEN setup time  
REN, WEN hold time  
BLK setup time  
BLK hold time  
Input data (DIN) setup time  
Input data (DIN) hold time  
tDH  
tCKQ1  
Clock HIGH to new data valid on DOUT (output retained, WMODE = 0)  
Clock HIGH to new data valid on DOUT (flow-through, WMODE = 1)  
Clock HIGH to new data valid on DOUT (pipelined)  
tCKQ2  
tC2CWWL  
Address collision clk-to-clk delay for reliable write after write on same address – 0.24 0.29 ns  
applicable to closing edge  
tC2CRWH  
tC2CRWH  
tRSTBQ  
Address collision clk-to-clk delay for reliable read access after write on same 0.20 0.24 ns  
address – applicable to opening edge  
Address collision clk-to-clk delay for reliable write access after read on same 0.25 0.30 ns  
address – applicable to opening edge  
RESET Low to data out Low on DOUT (flow-through)  
RESET Low to data out Low on DOUT (pipelined)  
0.98 1.15 ns  
0.98 1.15 ns  
0.30 0.36 ns  
1.59 1.87 ns  
0.59 0.67 ns  
5.39 6.20 ns  
185 161 MHz  
tREMRSTB RESET removal  
tRECRSTB RESET recovery  
tMPWRSTB RESET minimum pulse width  
tCYC  
Clock cycle time  
FMAX  
Maximum frequency  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-130  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-205 • RAM4K9  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000  
Parameter  
tAS  
Description –1 Std. Units  
Address setup time  
Address hold time  
0.30 0.35 ns  
0.00 0.00 ns  
0.17 0.20 ns  
0.12 0.14 ns  
0.28 0.33 ns  
0.02 0.03 ns  
0.22 0.26 ns  
0.00 0.00 ns  
2.84 2.53 ns  
2.15 3.33 ns  
1.08 1.27 ns  
tAH  
tENS  
tENH  
tBKS  
tBKH  
tDS  
REN, WEN setup time  
REN, WEN hold time  
BLK setup time  
BLK hold time  
Input data (DIN) setup time  
Input data (DIN) hold time  
tDH  
tCKQ1  
Clock High to new data valid on DOUT (output retained, WMODE = 0)  
Clock High to new data valid on DOUT (flow-through, WMODE = 1)  
Clock High to new data valid on DOUT (pipelined)  
tCKQ2  
tC2CWWL  
Address collision clk-to-clk delay for reliable write after write on same address – 0.28 0.33 ns  
applicable to closing edge  
tC2CWWH  
tC2CRWH  
tC2CWRH  
tRSTBQ  
Address collision clk-to-clk delay for reliable write after write on same address – 0.26 0.30 ns  
applicable to rising edge  
Address collision clk-to-clk delay for reliable read access after write on same 0.38 0.45 ns  
address – applicable to opening edge  
Address collision clk-to-clk delay for reliable write access after read on same 0.42 0.49 ns  
address – applicable to opening edge  
RESET Low to data out Low on DOUT (flow-through)  
RESET Low to data out Low on DOUT (pipelined)  
1.11 1.31 ns  
1.11 1.31 ns  
0.34 0.40 ns  
1.81 2.12 ns  
0.26 0.30 ns  
3.89 4.57 ns  
257 219 MHz  
tREMRSTB RESET removal  
tRECRSTB RESET recovery  
tMPWRSTB RESET minimum pulse width  
tCYC  
Clock cycle time  
FMAX  
Maximum frequency  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
Revision 5  
2-131  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-206 • RAM512X18  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L  
Parameter  
tAS  
Description  
–1 Std. Units  
0.35 0.41 ns  
0.00 0.00 ns  
0.13 0.15 ns  
0.08 0.09 ns  
0.25 0.30 ns  
0.00 0.00 ns  
2.99 3.52 ns  
1.24 1.46 ns  
Address setup time  
tAH  
Address hold time  
tENS  
REN, WEN setup time  
REN, WEN hold time  
Input data (WD) setup time  
Input data (WD) hold time  
tENH  
tDS  
tDH  
tCKQ1  
tCKQ2  
tC2CRWH  
Clock High to new data valid on RD (output retained, WMODE = 0)  
Clock High to new data valid on RD (pipelined)  
Address collision clk-to-clk delay for reliable read access after write on same 0.25 0.29 ns  
address – applicable to opening edge  
tC2CWRH  
tRSTBQ  
Address collision clk-to-clk delay for reliable write access after read on same 0.31 0.36 ns  
address – applicable to opening edge  
RESET Low to data out Low on RD (flow through)  
RESET Low to data out Low on RD (pipelined)  
1.28 1.50 ns  
1.28 1.50 ns  
0.40 0.47 ns  
2.08 2.44 ns  
0.66 0.76 ns  
6.08 6.99 ns  
164 143 MHz  
tREMRSTB RESET removal  
tRECRSTB RESET recovery  
tMPWRSTB RESET minimum pulse width  
tCYC  
Clock cycle time  
FMAX  
Maximum frequency  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-132  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-207 • RAM512X18  
Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L  
Parameter  
Description  
–1 Std. Units  
0.26 0.31 ns  
0.00 0.00 ns  
0.10 0.11 ns  
0.06 0.07 ns  
0.19 0.23 ns  
0.00 0.00 ns  
2.29 2.69 ns  
0.95 1.12 ns  
tAS  
Address setup time  
tAH  
Address hold time  
tENS  
tENH  
tDS  
REN, WEN setup time  
REN, WEN hold time  
Input data (WD) setup time  
Input data (WD) hold time  
tDH  
tCKQ1  
tCKQ2  
tC2CRWH  
Clock High to new data valid on RD (output retained, WMODE = 0)  
Clock High to new data valid on RD (pipelined)  
Address collision clk-to-clk delay for reliable read access after write on same 0.18 0.21 ns  
address – applicable to opening edge  
tC2CWRH  
tRSTBQ  
Address collision clk-to-clk delay for reliable write access after read on same 0.21 0.25 ns  
address – applicable to opening edge  
RESET Low to data out Low on RD (flow through)  
RESET Low to data out Low on RD (pipelined)  
0.98 1.15 ns  
0.98 1.15 ns  
0.30 0.36 ns  
1.59 1.87 ns  
0.59 0.67 ns  
5.39 6.20 ns  
185 161 MHz  
tREMRSTB RESET removal  
tRECRSTB RESET recovery  
tMPWRSTB RESET minimum pulse width  
tCYC  
Clock cycle time  
FMAX  
Maximum frequency  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 5  
2-133  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-208 • RAM512X18  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for A3P250 and A3P1000  
Parameter  
tAS  
Description  
–1 Std. Units  
0.30 0.35 ns  
0.00 0.00 ns  
0.11 0.13 ns  
0.07 0.08 ns  
0.22 0.26 ns  
0.00 0.00 ns  
2.60 3.06 ns  
1.08 1.27 ns  
Address setup time  
tAH  
Address hold time  
tENS  
REN, WEN setup time  
REN, WEN hold time  
Input data (WD) setup time  
Input data (WD) hold time  
tENH  
tDS  
tDH  
tCKQ1  
tCKQ2  
tC2CRWH  
Clock High to new data valid on RD (output retained, WMODE = 0)  
Clock High to new data valid on RD (pipelined)  
Address collision clk-to-clk delay for reliable read access after write on same 0.43 0.50 ns  
address – applicable to opening edge  
tC2CWRH  
tRSTBQ  
Address collision clk-to-clk delay for reliable write access after read on same 0.50 0.59 ns  
address – applicable to opening edge  
RESET Low to data out Low on RD (flow through)  
RESET Low to data out Low on RD (pipelined)  
1.11 1.31 ns  
1.11 1.31 ns  
0.34 0.40 ns  
1.81 2.12 ns  
0.26 0.30 ns  
3.89 4.57 ns  
257 219 MHz  
tREMRSTB RESET removal  
tRECRSTB RESET recovery  
tMPWRSTB RESET minimum pulse width  
tCYC  
Clock cycle time  
FMAX  
Maximum frequency  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
2-134  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
FIFO  
FIFO4K18  
RW2  
RW1  
RW0  
RD17  
RD16  
WW2  
WW1  
WW0  
RD0  
ESTOP  
FSTOP  
FULL  
AFULL  
EMPTY  
AEVAL11  
AEVAL10  
AEMPTY  
AEVAL0  
AFVAL11  
AFVAL10  
AFVAL0  
REN  
RBLK  
RCLK  
WD17  
WD16  
WD0  
WEN  
WBLK  
WCLK  
RPIPE  
RESET  
Figure 2-49 • FIFO Model  
Revision 5  
2-135  
Military ProASIC3/EL DC and Switching Characteristics  
Timing Waveforms  
RCLK/  
WCLK  
t
t
RSTCK  
MPWRSTB  
RESET  
t
RSTFG  
EMPTY  
t
RSTAF  
AEMPTY  
t
RSTFG  
FULL  
t
RSTAF  
AFULL  
WA/RA  
MATCH (A )  
(Address Counter)  
0
Figure 2-50 • FIFO Reset  
t
CYC  
RCLK  
t
RCKEF  
EMPTY  
t
CKAF  
AEMPTY  
WA/RA  
NO MATCH  
NO MATCH  
Dist = AEF_TH  
MATCH (EMPTY)  
(Address Counter)  
Figure 2-51 • FIFO EMPTY Flag and AEMPTY Flag Assertion  
2-136  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
tCYC  
WCLK  
FULL  
tWCKFF  
tCKAF  
AFULL  
WA/RA  
NO MATCH  
NO MATCH  
Dist = AFF_TH  
MATCH (FULL)  
(Address Counter)  
Figure 2-52 • FIFO FULL Flag and AFULL Flag Assertion  
WCLK  
MATCH  
WA/RA  
NO MATCH  
NO MATCH  
2nd Rising  
Edge  
After 1st  
Write  
NO MATCH  
NO MATCH  
Dist = AEF_TH + 1  
(Address Counter)  
(EMPTY)  
1st Rising  
Edge  
After 1st  
Write  
RCLK  
EMPTY  
t
RCKEF  
t
CKAF  
AEMPTY  
Figure 2-53 • FIFO EMPTY Flag and AEMPTY Flag Deassertion  
RCLK  
WA/RA  
(Address Counter)  
Dist = AFF_TH – 1  
MATCH (FULL)  
1st Rising  
NO MATCH  
NO MATCH  
1st Rising  
Edge  
After 2nd  
Read  
NO MATCH  
NO MATCH  
Edge  
After 1st  
Read  
WCLK  
FULL  
t
WCKF  
t
CKAF  
AFULL  
Figure 2-54 • FIFO FULL Flag and AFULL Flag Deassertion  
Revision 5  
2-137  
Military ProASIC3/EL DC and Switching Characteristics  
Timing Characteristics  
Table 2-209 • FIFO Worst Military-Case Conditions: TJ = 125°C, VCC = 1.14 V for A3PE600L and A3PE3000L  
Parameter  
tENS  
Description  
–1  
Std.  
2.24  
0.03  
0.47  
0.00  
0.30  
0.00  
3.84  
1.46  
2.80  
2.66  
Units  
ns  
REN, WEN Setup Time  
REN, WEN Hold Time  
BLK Setup Time  
1.91  
0.03  
0.40  
0.00  
0.25  
0.00  
3.26  
1.24  
2.38  
2.26  
tENH  
ns  
tBKS  
ns  
tBKH  
BLK Hold Time  
ns  
tDS  
Input Data (WD) Setup Time  
Input Data (WD) Hold Time  
ns  
tDH  
ns  
tCKQ1  
tCKQ2  
tRCKEF  
tWCKFF  
tCKAF  
tRSTFG  
tRSTAF  
tRSTBQ  
Clock HIGH to New Data Valid on RD (flow-through)  
Clock HIGH to New Data Valid on RD (pipelined)  
RCLK HIGH to Empty Flag Valid  
ns  
ns  
ns  
WCLK HIGH to Full Flag Valid  
ns  
Clock HIGH to Almost Empty/Full Flag Valid  
RESET LOW to Empty/Full Flag Valid  
RESET LOW to Almost Empty/Full Flag Valid  
RESET LOW to Data Out LOW on RD (flow-through)  
RESET LOW to Data Out LOW on RD (pipelined)  
RESET Removal  
8.57 10.08  
ns  
2.34  
8.48  
1.28  
1.28  
0.40  
2.08  
0.66  
6.08  
164  
2.76  
9.97  
1.50  
1.50  
0.47  
2.44  
0.76  
6.99  
143  
ns  
ns  
ns  
ns  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
ns  
RESET Recovery  
ns  
RESET Minimum Pulse Width  
ns  
Clock Cycle Time  
ns  
FMAX  
Maximum Frequency for FIFO  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
2-138  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-210 • FIFO Worst Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3PE600L and A3PE3000L  
Parameter  
tENS  
Description  
–1  
Std.  
1.71  
0.02  
0.47  
0.00  
0.23  
0.00  
2.93  
1.11  
2.14  
2.03  
7.71  
2.11  
7.63  
1.15  
1.15  
0.36  
1.87  
0.67  
6.20  
161  
Units  
ns  
REN, WEN Setup Time  
REN, WEN Hold Time  
BLK Setup Time  
1.46  
0.02  
0.40  
0.00  
0.19  
0.00  
2.50  
0.95  
1.82  
1.73  
6.56  
1.79  
6.49  
0.98  
0.98  
0.30  
1.59  
0.59  
5.39  
185  
tENH  
ns  
tBKS  
ns  
tBKH  
BLK Hold Time  
ns  
tDS  
Input Data (WD) Setup Time  
Input Data (WD) Hold Time  
ns  
tDH  
ns  
tCKQ1  
tCKQ2  
tRCKEF  
tWCKFF  
tCKAF  
tRSTFG  
tRSTAF  
tRSTBQ  
Clock HIGH to New Data Valid on RD (flow-through)  
Clock HIGH to New Data Valid on RD (pipelined)  
RCLK HIGH to Empty Flag Valid  
ns  
ns  
ns  
WCLK HIGH to Full Flag Valid  
ns  
Clock HIGH to Almost Empty/Full Flag Valid  
RESET LOW to Empty/Full Flag Valid  
RESET LOW to Almost Empty/Full Flag Valid  
RESET LOW to Data Out LOW on RD (flow-through)  
RESET LOW to Data Out LOW on RD (pipelined)  
RESET Removal  
ns  
ns  
ns  
ns  
ns  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
ns  
RESET Recovery  
ns  
RESET Minimum Pulse Width  
ns  
Clock Cycle Time  
ns  
FMAX  
Maximum Frequency for FIFO  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 5  
2-139  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-211 • FIFO Worst Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3P1000  
Parameter  
tENS  
Description  
–1  
Std.  
1.95  
0.00  
1.95  
0.00  
0.26  
0.00  
3.33  
1.27  
2.43  
2.31  
8.76  
2.40  
8.67  
1.31  
1.31  
0.40  
2.12  
0.30  
4.57  
219  
Units  
ns  
REN, WEN Setup Time  
REN, WEN Hold Time  
BLK Setup Time  
1.66  
0.00  
1.66  
0.00  
0.22  
0.00  
2.84  
1.08  
2.07  
1.96  
7.45  
2.04  
7.38  
1.11  
1.11  
0.34  
1.81  
0.26  
3.89  
257  
tENH  
ns  
tBKS  
ns  
tBKH  
BLK Hold Time  
ns  
tDS  
Input Data (WD) Setup Time  
Input Data (WD) Hold Time  
ns  
tDH  
ns  
tCKQ1  
tCKQ2  
tRCKEF  
tWCKFF  
tCKAF  
tRSTFG  
tRSTAF  
tRSTBQ  
Clock HIGH to New Data Valid on RD (flow-through)  
Clock HIGH to New Data Valid on RD (pipelined)  
RCLK HIGH to Empty Flag Valid  
ns  
ns  
ns  
WCLK HIGH to Full Flag Valid  
ns  
Clock HIGH to Almost Empty/Full Flag Valid  
RESET LOW to Empty/Full Flag Valid  
RESET LOW to Almost Empty/Full Flag Valid  
RESET LOW to Data Out LOW on RD (flow-through)  
RESET LOW to Data Out LOW on RD (pipelined)  
RESET Removal  
ns  
ns  
ns  
ns  
ns  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
ns  
RESET Recovery  
ns  
RESET Minimum Pulse Width  
ns  
Clock Cycle Time  
ns  
FMAX  
Maximum Frequency for FIFO  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
2-140  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-212 • FIFO Worst Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3P250 (256×16)  
Parameter  
tENS  
Description  
–1  
Std.  
4.61  
0.00  
1.95  
0.00  
0.26  
0.00  
3.06  
1.34  
2.43  
2.31  
8.76  
2.40  
8.67  
1.31  
1.31  
0.40  
2.12  
0.30  
4.57  
219  
Units  
ns  
REN, WEN Setup Time  
REN, WEN Hold Time  
BLK Setup Time  
3.92  
0.00  
1.66  
0.00  
0.22  
0.00  
2.61  
1.14  
2.07  
1.96  
7.45  
2.04  
7.38  
1.11  
1.11  
0.34  
1.81  
0.26  
3.89  
257  
tENH  
ns  
tBKS  
ns  
tBKH  
BLK Hold Time  
ns  
tDS  
Input Data (WD) Setup Time  
Input Data (WD) Hold Time  
ns  
tDH  
ns  
tCKQ1  
tCKQ2  
tRCKEF  
tWCKFF  
tCKAF  
tRSTFG  
tRSTAF  
tRSTBQ  
Clock HIGH to New Data Valid on RD (flow-through)  
Clock HIGH to New Data Valid on RD (pipelined)  
RCLK HIGH to Empty Flag Valid  
ns  
ns  
ns  
WCLK HIGH to Full Flag Valid  
ns  
Clock HIGH to Almost Empty/Full Flag Valid  
RESET LOW to Empty/Full Flag Valid  
RESET LOW to Almost Empty/Full Flag Valid  
RESET LOW to Data Out LOW on RD (flow-through)  
RESET LOW to Data Out LOW on RD (pipelined)  
RESET Removal  
ns  
ns  
ns  
ns  
ns  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
ns  
RESET Recovery  
ns  
RESET Minimum Pulse Width  
ns  
Clock Cycle Time  
ns  
FMAX  
Maximum Frequency for FIFO  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
Revision 5  
2-141  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-213 • FIFO Worst Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3P250 (512×8)  
Parameter  
tENS  
Description  
–1  
Std.  
5.31  
0.00  
1.95  
0.00  
0.26  
0.00  
3.06  
1.34  
2.43  
2.31  
8.76  
2.40  
8.67  
1.31  
1.31  
0.40  
2.12  
0.30  
4.57  
219  
Units  
ns  
REN, WEN Setup Time  
REN, WEN Hold Time  
BLK Setup Time  
4.52  
0.00  
1.66  
0.00  
0.22  
0.00  
2.61  
1.14  
2.07  
1.96  
7.45  
2.04  
7.38  
1.11  
1.11  
0.34  
1.81  
0.26  
3.89  
257  
tENH  
ns  
tBKS  
ns  
tBKH  
BLK Hold Time  
ns  
tDS  
Input Data (WD) Setup Time  
Input Data (WD) Hold Time  
ns  
tDH  
ns  
tCKQ1  
tCKQ2  
tRCKEF  
tWCKFF  
tCKAF  
tRSTFG  
tRSTAF  
tRSTBQ  
Clock HIGH to New Data Valid on RD (flow-through)  
Clock HIGH to New Data Valid on RD (pipelined)  
RCLK HIGH to Empty Flag Valid  
ns  
ns  
ns  
WCLK HIGH to Full Flag Valid  
ns  
Clock HIGH to Almost Empty/Full Flag Valid  
RESET LOW to Empty/Full Flag Valid  
RESET LOW to Almost Empty/Full Flag Valid  
RESET LOW to Data Out LOW on RD (flow-through)  
RESET LOW to Data Out LOW on RD (pipelined)  
RESET Removal  
ns  
ns  
ns  
ns  
ns  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
ns  
RESET Recovery  
ns  
RESET Minimum Pulse Width  
ns  
Clock Cycle Time  
ns  
FMAX  
Maximum Frequency for FIFO  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
2-142  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-214 • FIFO Worst Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3P250 (1k×4)  
Parameter  
tENS  
Description  
–1  
Std.  
5.73  
0.00  
1.95  
0.00  
0.26  
0.00  
3.33  
1.27  
2.43  
2.31  
8.76  
2.40  
8.67  
1.31  
1.31  
0.40  
2.12  
0.30  
4.57  
219  
Units  
ns  
REN, WEN Setup Time  
REN, WEN Hold Time  
BLK Setup Time  
4.88  
0.00  
1.66  
0.00  
0.22  
0.00  
2.84  
1.08  
2.07  
1.96  
7.45  
2.04  
7.38  
1.11  
1.11  
0.34  
1.81  
0.26  
3.89  
257  
tENH  
ns  
tBKS  
ns  
tBKH  
BLK Hold Time  
ns  
tDS  
Input Data (WD) Setup Time  
Input Data (WD) Hold Time  
ns  
tDH  
ns  
tCKQ1  
tCKQ2  
tRCKEF  
tWCKFF  
tCKAF  
tRSTFG  
tRSTAF  
tRSTBQ  
Clock HIGH to New Data Valid on RD (flow-through)  
Clock HIGH to New Data Valid on RD (pipelined)  
RCLK HIGH to Empty Flag Valid  
ns  
ns  
ns  
WCLK HIGH to Full Flag Valid  
ns  
Clock HIGH to Almost Empty/Full Flag Valid  
RESET LOW to Empty/Full Flag Valid  
RESET LOW to Almost Empty/Full Flag Valid  
RESET LOW to Data Out LOW on RD (flow-through)  
RESET LOW to Data Out LOW on RD (pipelined)  
RESET Removal  
ns  
ns  
ns  
ns  
ns  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
ns  
RESET Recovery  
ns  
RESET Minimum Pulse Width  
ns  
Clock Cycle Time  
ns  
FMAX  
Maximum Frequency for FIFO  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
Revision 5  
2-143  
Military ProASIC3/EL DC and Switching Characteristics  
Table 2-215 • FIFO Worst Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3P250 (2k×2)  
Parameter  
tENS  
Description  
–1  
Std.  
6.21  
0.00  
1.95  
0.00  
0.26  
0.00  
3.33  
1.27  
2.43  
2.31  
8.76  
2.40  
8.67  
1.31  
1.31  
0.40  
2.12  
0.30  
4.57  
219  
Units  
ns  
REN, WEN Setup Time  
REN, WEN Hold Time  
BLK Setup Time  
5.28  
0.00  
1.66  
0.00  
0.22  
0.00  
2.84  
1.08  
2.07  
1.96  
7.45  
2.04  
7.38  
1.11  
1.11  
0.34  
1.81  
0.26  
3.89  
257  
tENH  
ns  
tBKS  
ns  
tBKH  
BLK Hold Time  
ns  
tDS  
Input Data (WD) Setup Time  
Input Data (WD) Hold Time  
ns  
tDH  
ns  
tCKQ1  
tCKQ2  
tRCKEF  
tWCKFF  
tCKAF  
tRSTFG  
tRSTAF  
tRSTBQ  
Clock HIGH to New Data Valid on RD (flow-through)  
Clock HIGH to New Data Valid on RD (pipelined)  
RCLK HIGH to Empty Flag Valid  
ns  
ns  
ns  
WCLK HIGH to Full Flag Valid  
ns  
Clock HIGH to Almost Empty/Full Flag Valid  
RESET LOW to Empty/Full Flag Valid  
RESET LOW to Almost Empty/Full Flag Valid  
RESET LOW to Data Out LOW on RD (flow-through)  
RESET LOW to Data Out LOW on RD (pipelined)  
RESET Removal  
ns  
ns  
ns  
ns  
ns  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
ns  
RESET Recovery  
ns  
RESET Minimum Pulse Width  
ns  
Clock Cycle Time  
ns  
FMAX  
Maximum Frequency for FIFO  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
2-144  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Table 2-216 • FIFO Worst Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for A3P250 (4k×1)  
Parameter  
tENS  
Description  
–1  
Std.  
6.87  
0.00  
1.95  
0.00  
0.26  
0.00  
3.33  
1.27  
2.43  
2.31  
8.76  
2.40  
8.67  
1.31  
1.31  
0.40  
2.12  
0.30  
4.57  
219  
Units  
ns  
REN, WEN Setup Time  
REN, WEN Hold Time  
BLK Setup Time  
5.85  
0.00  
1.66  
0.00  
0.22  
0.00  
2.84  
1.08  
2.07  
1.96  
7.45  
2.04  
7.38  
1.11  
1.11  
0.34  
1.81  
0.26  
3.89  
257  
tENH  
ns  
tBKS  
ns  
tBKH  
BLK Hold Time  
ns  
tDS  
Input Data (WD) Setup Time  
Input Data (WD) Hold Time  
ns  
tDH  
ns  
tCKQ1  
tCKQ2  
tRCKEF  
tWCKFF  
tCKAF  
tRSTFG  
tRSTAF  
tRSTBQ  
Clock HIGH to New Data Valid on RD (flow-through)  
Clock HIGH to New Data Valid on RD (pipelined)  
RCLK HIGH to Empty Flag Valid  
ns  
ns  
ns  
WCLK HIGH to Full Flag Valid  
ns  
Clock HIGH to Almost Empty/Full Flag Valid  
RESET LOW to Empty/Full Flag Valid  
RESET LOW to Almost Empty/Full Flag Valid  
RESET LOW to Data Out LOW on RD (flow-through)  
RESET LOW to Data Out LOW on RD (pipelined)  
RESET Removal  
ns  
ns  
ns  
ns  
ns  
tREMRSTB  
tRECRSTB  
tMPWRSTB  
tCYC  
ns  
RESET Recovery  
ns  
RESET Minimum Pulse Width  
ns  
Clock Cycle Time  
ns  
FMAX  
Maximum Frequency for FIFO  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
Revision 5  
2-145  
Military ProASIC3/EL DC and Switching Characteristics  
Embedded FlashROM Characteristics  
tSU  
tSU  
tSU  
CLK  
tHOLD  
tHOLD  
tHOLD  
Address  
A0  
A1  
tCKQ2  
D0  
tCKQ2  
tCKQ2  
D1  
D0  
Data  
Figure 2-55 • Timing Diagram  
Timing Characteristics  
Table 2-217 • Embedded FlashROM Access Time Military-Case Conditions: TJ = 125°C, Worst-Case  
VCC = 1.14 V for A3PE600L and A3PE3000L  
Parameter  
tSU  
Description  
Address Setup Time  
–1  
0.74  
0.00  
16.18  
15  
Std.  
0.87  
0.00  
19.02  
15  
Units  
ns  
tHOLD  
tCK2Q  
Address Hold Time  
Clock to Out  
ns  
ns  
FMAX  
Maximum Clock Frequency  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-218 • Embedded FlashROM Access Time Military-Case Conditions: TJ = 125°C, VCC = 1.425 V for  
A3PE600L and A3PE3000L  
Parameter  
tSU  
Description  
Address Setup Time  
–1  
0.58  
0.00  
12.77  
15  
Std.  
0.68  
0.00  
15.01  
15  
Units  
ns  
tHOLD  
tCK2Q  
Address Hold Time  
Clock to Out  
ns  
ns  
FMAX  
Maximum Clock Frequency  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-219 • Embedded FlashROM Access Time Military-Case Conditions: TJ = 125°C, Worst-Case  
VCC = 1.425 V for A3P250 and A3P1000  
Parameter  
tSU  
Description  
Address Setup Time  
–1  
0.64  
0.00  
19.54  
15  
Std.  
0.75  
0.00  
22.97  
15  
Units  
ns  
tHOLD  
tCK2Q  
Address Hold Time  
Clock to Out  
ns  
ns  
FMAX  
Maximum Clock Frequency  
MHz  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-6 for derating values.  
2-146  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
JTAG 1532 Characteristics  
JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to  
the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O  
Characteristics" section on page 2-18 for more details.  
Timing Characteristics  
Table 2-220 • JTAG 1532  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.14 V for A3PE600L and A3PE3000L  
Parameter  
tDISU  
Description  
Test Data Input Setup Time  
–1  
Std.  
0.94  
1.88  
0.94  
1.88  
7.52  
31.33  
15.90  
0.56  
0.00  
TBD  
Units  
ns  
0.80  
1.60  
0.80  
1.60  
6.39  
26.63  
18.70  
0.48  
0.00  
TBD  
tDIHD  
Test Data Input Hold Time  
Test Mode Select Setup Time  
Test Mode Select Hold Time  
Clock to Q (data out)  
ns  
tTMSSU  
ns  
tTMDHD  
ns  
tTCK2Q  
ns  
tRSTB2Q  
FTCKMAX  
tTRSTREM  
tTRSTREC  
tTRSTMPW  
Reset to Q (data out)  
ns  
TCK Maximum Frequency  
ResetB Removal Time  
ResetB Recovery Time  
ResetB Minimum Pulse  
MHz  
ns  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Table 2-221 • JTAG 1532  
Military-Case Conditions: TJ = 125°C, Worst-Case VCC = 1.425 V for All Dies  
Parameter  
tDISU  
Description  
Test Data Input Setup Time  
–1  
Std.  
0.71  
1.42  
0.71  
1.42  
7.10  
28.41  
19.00  
0.00  
0.28  
TBD  
Units  
ns  
0.60  
1.21  
0.60  
1.21  
6.04  
24.15  
22.00  
0.00  
0.24  
TBD  
tDIHD  
Test Data Input Hold Time  
Test Mode Select Setup Time  
Test Mode Select Hold Time  
Clock to Q (data out)  
ns  
tTMSSU  
ns  
tTMDHD  
ns  
tTCK2Q  
ns  
tRSTB2Q  
FTCKMAX  
tTRSTREM  
tTRSTREC  
tTRSTMPW  
Reset to Q (data out)  
ns  
TCK Maximum Frequency  
ResetB Removal Time  
ResetB Recovery Time  
ResetB Minimum Pulse  
MHz  
ns  
ns  
ns  
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-6 for derating values.  
Revision 5  
2-147  
3 – Pin Descriptions and Packaging  
Supply Pins  
GND  
Ground supply voltage to the core, I/O outputs, and I/O logic.  
GNDQ Ground (quiet)  
Ground  
Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is  
decoupled from the simultaneous switching noise originated from the output buffer ground domain. This  
minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always  
be connected to GND on the board.  
VCC  
Core Supply Voltage  
Supply voltage to the FPGA core, nominally 1.5 V for A3P250 and A3P100 devices and 1.2 V or 1.5 V for  
A3PE600L and A3PE3000L devices. VCC is required for powering the JTAG state machine in addition to  
VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC  
and VJTAG must remain powered to allow JTAG signals to pass through the device.  
For A3PE600L and A3PE3000L devices, VCC can be switched dynamically from 1.2 V to 1.5 V or vice  
versa. This allows in-system programming (ISP) when VCC is at 1.5 V and the benefit of low power  
operation when VCC is at 1.2 V.  
VCCIBx  
I/O Supply Voltage  
Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to  
eight I/O banks on low power flash devices plus a dedicated VJTAG bank. Each bank can have a  
separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.5 V,  
1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCI pins tied  
to GND.  
VMVx  
I/O Supply Voltage (quiet)  
Quiet supply voltage to the input buffers of each I/O bank. x is the bank number. Within each I/O bank,  
the VMV and VCCI are connected to each other to improve the ESD discharge path for any I/O pin  
against its VMV pin. Each bank must have at least one VMV connection, and no VMV should be left  
unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply  
voltage to the input buffers of each I/O bank. VMVx can be 1.2 V (A3PE600L and A3PE3000L only),  
1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins  
tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must  
be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to  
VCCIB1, etc.).  
VCCPLA/B/C/D/E/F  
PLL Supply Voltage  
Supply voltage to analog PLL, nominally 1.5 V or 1.2 V, depending on the device.  
1.5 V for A3P250 and A3P1000 devices  
1.2 V or 1.5 V for A3PE600L or A3PE3000L devices  
When the PLLs are not used, the Microsemi Designer place-and-route tool automatically disables the  
unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to  
ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple  
VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning  
Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the Miliary ProASIC3/EL  
Device Family User’s Guide for a complete board solution for the PLL analog power supply and ground.  
There is one VCCPLF pin on A3P250 and A3P1000 devices.  
There are six VCCPLX pins on A3PE600L and A3PE3000L devices.  
Revision 5  
3-1  
Pin Descriptions and Packaging  
VCOMPLA/B/C/D/E/F  
PLL Ground  
Ground to analog PLL power supplies. When the PLLs are not used, the Microsemi Designer place-and-  
route tool automatically disables the unused PLLs to lower power consumption. The user should tie  
unused VCCPLx and VCOMPLx pins to ground.  
There is one VCOMPLF pin on A3P250 and A3P1000 devices.  
There are six VCOMPL pins (PLL ground) on A3PE600L and A3PE3000L devices.  
VJTAG  
JTAG Supply Voltage  
Military ProASIC3/EL devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be  
run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank  
gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG  
interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to  
GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is  
insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can  
be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals  
will not be able to transition the device, even in bypass mode.  
Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent  
filtering capacitors rather than supplying them from a common rail.  
VPUMP  
Programming Supply Voltage  
A3P250 and A3P1000 devices support single-voltage ISP of the configuration flash and FlashROM. For  
programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left  
floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming  
power supply voltage (VPUMP) range is listed in Table 2-2 on page 2-2.  
When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of  
oscillation from the charge pump circuitry.  
For proper programming, 0.01 µF and 0.33 µF capacitors (both rated at 16 V) are to be connected in  
parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.  
Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent  
filtering capacitors rather than supplying them from a common rail.  
User-Defined Supply Pins  
VREF  
I/O Voltage Reference  
Reference voltage for I/O minibanks in A3PE600L and A3PE3000L devices. VREF pins are configured  
by the user from regular I/Os, and any I/O in a bank, except JTAG I/Os, can be designated the voltage  
reference I/O. Only certain I/O standards require a voltage reference—HSTL (I) and (II), SSTL2 (I) and  
(II), SSTL3 (I) and (II), and GTL/GTL+. One VREF pin can support the number of I/Os available in its  
minibank.  
User Pins  
I/O  
User Input/Output  
The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are  
compatible with the I/O standard selected.  
During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC  
supplies continuously powered up, when the device transitions from programming to operating mode, the  
I/Os are instantly configured to the desired user configuration.  
Unused I/Os are configured as follows:  
Output buffer is disabled (with tristate value of high impedance)  
Input buffer is disabled (with tristate value of high impedance)  
Weak pull-up is programmed  
3-2  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
GL  
Globals  
GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the  
global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have  
identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.  
See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power  
Flash Devices and Mixed Signal FPGAs " chapter of the Military ProASIC3/EL FPGA Fabric User’s  
Guide. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used  
for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled  
GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals.  
The inputs to the global network are multiplexed, and only one input can be used as a global input.  
Refer to the "I/O Structures in IGLOO and ProASIC3 Devices" chapter (for A3P250 and A3P1000) or "I/O  
Structures in IGLOOe and ProASIC3E Devices" (for A3PE600L and A3PE3000L) of the Military  
ProASIC3/EL FPGA Fabric User’s Guide for an explanation of the naming of global pins.  
FF  
Flash*Freeze Mode Activation Pin  
Flash*Freeze is available on A3PE600L and A3PE3000L devices. The FF pin is a dedicated input pin  
used to enter and exit Flash*Freeze mode. The FF pin is active low, has the same characteristics as a  
single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze mode is not used  
in the design, the FF pin is available as a regular I/O. The FF pin can be configured as a Schmitt trigger  
input.  
When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering  
Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.  
The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in  
which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin  
should be treated as a sensitive asynchronous signal. When defining pin placement and board layout,  
simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be  
considered.  
Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both  
Flash*Freeze mode and normal operation mode. No user intervention is required.  
Table 3-1 shows the Flash*Freeze pin location on the available packages for Military ProASIC3/EL  
devices. The Flash*Freeze pin location is independent of device, allowing migration to larger or smaller  
devices while maintaining the same pin location on the board. Refer to the "Flash*Freeze Technology  
and Low Power Modes" chapter of the Military ProASIC3/EL FPGA Fabric User Guide for more  
information on I/O states during Flash*Freeze mode.  
Table 3-1 • Flash*Freeze Pin Location in Military ProASIC3/EL Packages (device-independent)  
Military ProASIC3/EL Packages  
Flash*Freeze Pin  
FG484  
FG896  
W6  
AH4  
Revision 5  
3-3  
Pin Descriptions and Packaging  
JTAG Pins  
Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run  
at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to  
operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the  
part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a  
separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB  
design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST  
pin could be tied to GND.  
TCK  
Test Clock  
Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-  
up/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor  
placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.  
Note that to operate at all VJTAG voltages, 500 to 1 kwill satisfy the requirements. Refer to Table 3-2  
for more information.  
Table 3-2 • Recommended Tie-Off Values for the TCK and TRST Pins  
VJTAG  
Tie-Off Resistance  
200 to 1 k  
200 to 1 k  
500 to 1 k  
500 to 1 k  
VJTAG at 3.3 V  
VJTAG at 2.5 V  
VJTAG at 1.8 V  
VJTAG at 1.5 V  
Notes:  
1. Equivalent parallel resistance if more than one device is on the JTAG chain  
2. The TCK pin can be pulled up/down.  
3. The TRST pin is pulled down.  
TDI  
Test Data Input  
Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor  
on the TDI pin.  
TDO  
Serial output for JTAG boundary scan, ISP, and UJTAG usage.  
TMS Test Mode Select  
Test Data Output  
The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an  
internal weak pull-up resistor on the TMS pin.  
TRST  
Boundary Scan Reset Pin  
The TRST pin functions as an active low input to asynchronously initialize (or reset) the boundary scan  
circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-  
down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor  
values must be chosen from Table 3-2 and must satisfy the parallel resistance value requirement. The  
values in Table 3-2 correspond to the resistor recommended when a single device is used, and the  
equivalent parallel resistor when multiple devices are connected via a JTAG chain.  
In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In  
such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA  
pin.  
Note that to operate at all VJTAG voltages, 500 to 1 kwill satisfy the requirements.  
3-4  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Special Function Pins  
NC  
No Connect  
This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be  
left floating with no effect on the operation of the device.  
DC  
Do Not Connect  
This pin should not be connected to any signals on the PCB. These pins should be left unconnected.  
Packaging  
Semiconductor technology is constantly shrinking in size while growing in capability and functional  
integration. To enable next-generation silicon technologies, semiconductor packages have also evolved  
to provide improved performance and flexibility.  
Microsemi consistently delivers packages that provide the necessary mechanical and environmental  
protection to ensure consistent reliability and performance. Microsemi IC packaging technology  
efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible  
enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition,  
Microsemi offers a variety of packages designed to meet your most demanding application and economic  
requirements for today's embedded and mobile systems.  
Related Documents  
User’s Guides  
Military ProASIC3/EL Device Family User’s Guide  
http://www.microsemi.com/document-portal/doc_view/130864-military-proasic3-el-fpga-fabric-user-s-  
guide  
Packaging  
The following documents provide packaging information and device selection for low power flash  
devices.  
Product Catalog  
http://www.microsemi.com/documents/ProdCat_PIB.pdf  
Lists devices currently recommended for new designs and the packages available for each member of  
the family. Use this document or the datasheet tables to determine the best package for your design, and  
which package drawing to use.  
Package Mechanical Drawings  
http://www.microsemi.com/document-portal/doc_view/131095-package-mechanical-drawings  
This document contains the package mechanical drawings for all packages currently or previously  
supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings.  
Additional packaging materials are at http://www.microsemi.com/products/fpga-soc/solutions.  
Revision 5  
3-5  
4 – Package Pin Assignments  
VQ100  
100  
1
Note: This is the top view of the package.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/products/fpga-soc/solutions.  
Revision 5  
4-1  
Package Pin Assignments  
VQ100  
VQ100  
A3P250 Function  
VQ100  
A3P250 Function  
Pin Number  
A3P250 Function  
Pin Number  
37  
Pin Number  
73  
1
GND  
VCC  
GND  
GBA2/IO41PDB1  
VMV1  
2
GAA2/IO118UDB3  
IO118VDB3  
38  
74  
3
39  
VCCIB2  
75  
GNDQ  
4
GAB2/IO117UDB3  
IO117VDB3  
40  
IO77RSB2  
IO74RSB2  
IO71RSB2  
GDC2/IO63RSB2  
GDB2/IO62RSB2  
GDA2/IO61RSB2  
GNDQ  
76  
GBA1/IO40RSB0  
GBA0/IO39RSB0  
GBB1/IO38RSB0  
GBB0/IO37RSB0  
GBC1/IO36RSB0  
GBC0/IO35RSB0  
IO29RSB0  
5
41  
77  
6
GAC2/IO116UDB3  
IO116VDB3  
42  
78  
7
43  
79  
8
IO112PSB3  
44  
80  
9
GND  
45  
81  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
GFB1/IO109PDB3  
GFB0/IO109NDB3  
VCOMPLF  
46  
82  
47  
TCK  
83  
IO27RSB0  
48  
TDI  
84  
IO25RSB0  
GFA0/IO108NPB3  
VCCPLF  
49  
TMS  
85  
IO23RSB0  
50  
VMV2  
86  
IO21RSB0  
GFA1/IO108PPB3  
GFA2/IO107PSB3  
VCC  
51  
GND  
87  
VCCIB0  
52  
VPUMP  
88  
GND  
53  
NC  
89  
VCC  
VCCIB3  
54  
TDO  
90  
IO15RSB0  
GFC2/IO105PSB3  
GEC1/IO100PDB3  
GEC0/IO100NDB3  
GEA1/IO98PDB3  
GEA0/IO98NDB3  
VMV3  
55  
TRST  
91  
IO13RSB0  
56  
VJTAG  
92  
IO11RSB0  
57  
GDA1/IO60USB1  
GDC0/IO58VDB1  
GDC1/IO58UDB1  
IO52NDB1  
GCB2/IO52PDB1  
GCA1/IO50PDB1  
GCA0/IO50NDB1  
GCC0/IO48NDB1  
GCC1/IO48PDB1  
VCCIB1  
93  
GAC1/IO05RSB0  
GAC0/IO04RSB0  
GAB1/IO03RSB0  
GAB0/IO02RSB0  
GAA1/IO01RSB0  
GAA0/IO00RSB0  
GNDQ  
58  
94  
59  
95  
60  
96  
GNDQ  
61  
97  
GEA2/IO97RSB2  
GEB2/IO96RSB2  
GEC2/IO95RSB2  
IO93RSB2  
62  
98  
63  
99  
64  
100  
VMV0  
65  
IO92RSB2  
66  
IO91RSB2  
67  
GND  
IO90RSB2  
68  
VCC  
IO88RSB2  
69  
IO43NDB1  
GBC2/IO43PDB1  
GBB2/IO42PSB1  
IO41NDB1  
IO86RSB2  
70  
IO85RSB2  
71  
IO84RSB2  
72  
4-2  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
PQ208  
208  
1
208-Pin PQFP  
Note: This is the top view of the package.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/products/fpga-soc/solutions.  
Revision 5  
4-3  
Package Pin Assignments  
PQ208  
PQ208  
PQ208  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
1
GND  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
IO199PDB3  
IO199NDB3  
IO197PSB3  
VCCIB3  
73  
74  
IO162RSB2  
IO160RSB2  
IO158RSB2  
IO156RSB2  
IO154RSB2  
IO152RSB2  
IO150RSB2  
IO148RSB2  
GND  
2
GAA2/IO225PDB3  
IO225NDB3  
GAB2/IO224PDB3  
IO224NDB3  
GAC2/IO223PDB3  
IO223NDB3  
IO222PDB3  
3
75  
4
76  
5
GND  
77  
6
IO191PDB3  
IO191NDB3  
GEC1/IO190PDB3  
GEC0/IO190NDB3  
GEB1/IO189PDB3  
GEB0/IO189NDB3  
GEA1/IO188PDB3  
GEA0/IO188NDB3  
VMV3  
78  
7
79  
8
80  
9
IO222NDB3  
IO220PDB3  
81  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
82  
IO143RSB2  
IO141RSB2  
IO139RSB2  
IO137RSB2  
IO135RSB2  
IO133RSB2  
VCC  
IO220NDB3  
IO218PDB3  
83  
84  
IO218NDB3  
IO216PDB3  
85  
86  
IO216NDB3  
VCC  
GNDQ  
87  
GND  
88  
GND  
VMV2  
89  
VCCIB2  
VCCIB3  
GEA2/IO187RSB2  
GEB2/IO186RSB2  
GEC2/IO185RSB2  
IO184RSB2  
IO183RSB2  
IO182RSB2  
IO181RSB2  
IO180RSB2  
VCCIB2  
90  
IO128RSB2  
IO126RSB2  
IO124RSB2  
IO122RSB2  
IO120RSB2  
IO118RSB2  
GDC2/IO116RSB2  
GND  
IO212PDB3  
91  
IO212NDB3  
GFC1/IO209PDB3  
GFC0/IO209NDB3  
GFB1/IO208PDB3  
GFB0/IO208NDB3  
VCOMPLF  
92  
93  
94  
95  
96  
97  
GFA0/IO207NPB3  
VCCPLF  
98  
GDB2/IO115RSB2  
GDA2/IO114RSB2  
GNDQ  
IO178RSB2  
IO176RSB2  
GND  
99  
GFA1/IO207PPB3  
GND  
100  
101  
102  
103  
104  
105  
106  
107  
108  
TCK  
GFA2/IO206PDB3  
IO206NDB3  
GFB2/IO205PDB3  
IO205NDB3  
GFC2/IO204PDB3  
IO204NDB3  
VCC  
IO174RSB2  
IO172RSB2  
IO170RSB2  
IO168RSB2  
IO166RSB2  
VCC  
TDI  
TMS  
VMV2  
GND  
VPUMP  
GNDQ  
VCCIB2  
TDO  
4-4  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
PQ208  
PQ208  
Pin Number A3P1000 Function  
PQ208  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
TRST  
VJTAG  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
IO84PDB1  
IO82NDB1  
IO82PDB1  
IO80NDB1  
GBC2/IO80PDB1  
IO79NDB1  
GBB2/IO79PDB1  
IO78NDB1  
GBA2/IO78PDB1  
VMV1  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
IO33RSB0  
IO31RSB0  
IO29RSB0  
IO27RSB0  
IO25RSB0  
VCCIB0  
GDA0/IO113NDB1  
GDA1/IO113PDB1  
GDB0/IO112NDB1  
GDB1/IO112PDB1  
GDC0/IO111NDB1  
GDC1/IO111PDB1  
IO109NDB1  
IO109PDB1  
IO106NDB1  
IO106PDB1  
IO104PSB1  
GND  
VCC  
IO22RSB0  
IO20RSB0  
IO18RSB0  
IO16RSB0  
IO15RSB0  
IO14RSB0  
IO13RSB0  
GND  
GNDQ  
GND  
VMV0  
GBA1/IO77RSB0  
GBA0/IO76RSB0  
GBB1/IO75RSB0  
GBB0/IO74RSB0  
GND  
VCCIB1  
IO99NDB1  
IO12RSB0  
IO11RSB0  
IO10RSB0  
IO09RSB0  
VCCIB0  
IO99PDB1  
NC  
IO96NDB1  
GBC1/IO73RSB0  
GBC0/IO72RSB0  
IO70RSB0  
IO67RSB0  
IO63RSB0  
IO60RSB0  
IO57RSB0  
VCCIB0  
GCC2/IO96PDB1  
GCB2/IO95PSB1  
GND  
GAC1/IO05RSB0  
GAC0/IO04RSB0  
GAB1/IO03RSB0  
GAB0/IO02RSB0  
GAA1/IO01RSB0  
GAA0/IO00RSB0  
GNDQ  
GCA2/IO94PSB1  
GCA1/IO93PDB1  
GCA0/IO93NDB1  
GCB0/IO92NDB1  
GCB1/IO92PDB1  
GCC0/IO91NDB1  
GCC1/IO91PDB1  
IO88NDB1  
VCC  
IO54RSB0  
IO51RSB0  
IO48RSB0  
IO45RSB0  
IO42RSB0  
IO40RSB0  
GND  
VMV0  
IO88PDB1  
VCCIB1  
GND  
VCC  
IO86PSB1  
IO38RSB0  
IO35RSB0  
IO84NDB1  
Revision 5  
4-5  
Package Pin Assignments  
FG144  
A1 Ball Pad Corner  
12 11 10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
Note: This is the bottom view of the package.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/products/fpga-soc/solutions.  
4-6  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
FG144  
FG144  
Pin Number A3P1000 Function  
FG144  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
A1  
A2  
GNDQ  
VMV0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
E1  
IO213PDB3  
IO213NDB3  
IO223NDB3  
GAA2/IO225PPB3  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
GBC0/IO72RSB0  
GBC1/IO73RSB0  
GBB2/IO79PDB1  
IO79NDB1  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
J1  
GFA1/IO207PPB3  
GND  
A3  
GAB0/IO02RSB0  
GAB1/IO03RSB0  
IO10RSB0  
VCCPLF  
A4  
GFA0/IO207NPB3  
GND  
A5  
A6  
GND  
GND  
A7  
IO44RSB0  
GND  
A8  
VCC  
GDC1/IO111PPB1  
IO96NDB1  
A9  
IO69RSB0  
A10  
A11  
A12  
B1  
GBA0/IO76RSB0  
GBA1/IO77RSB0  
GNDQ  
GCC2/IO96PDB1  
IO95NDB1  
IO80NPB1  
GCB1/IO92PPB1  
VCC  
GCB2/IO95PDB1  
VCC  
GAB2/IO224PDB3  
GND  
B2  
E2  
GFC0/IO209NDB3  
GFC1/IO209PDB3  
VCCIB3  
GFB2/IO205PDB3  
GFC2/IO204PSB3  
GEC1/IO190PDB3  
VCC  
B3  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
IO13RSB0  
E3  
B4  
E4  
B5  
E5  
IO225NPB3  
VCCIB0  
B6  
IO26RSB0  
E6  
IO105PDB1  
IO105NDB1  
GDB2/IO115RSB2  
GDC0/IO111NPB1  
VCCIB1  
B7  
IO35RSB0  
E7  
VCCIB0  
B8  
IO60RSB0  
E8  
GCC1/IO91PDB1  
VCCIB1  
B9  
GBB0/IO74RSB0  
GBB1/IO75RSB0  
GND  
E9  
B10  
B11  
B12  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
C12  
E10  
E11  
E12  
F1  
VCC  
GCA0/IO93NDB1  
IO94NDB1  
IO101PSB1  
VCC  
VMV1  
IO224NDB3  
GFA2/IO206PPB3  
GAC2/IO223PDB3  
VCC  
GFB0/IO208NPB3  
VCOMPLF  
GEB1/IO189PDB3  
IO205NDB3  
VCCIB3  
F2  
J2  
F3  
GFB1/IO208PPB3  
IO206NPB3  
GND  
J3  
F4  
J4  
GEC0/IO190NDB3  
IO160RSB2  
IO157RSB2  
VCC  
IO16RSB0  
F5  
J5  
IO29RSB0  
F6  
GND  
J6  
IO32RSB0  
F7  
GND  
J7  
IO63RSB0  
F8  
GCC0/IO91NDB1  
GCB0/IO92NPB1  
GND  
J8  
TCK  
IO66RSB0  
F9  
J9  
GDA2/IO114RSB2  
TDO  
GBA2/IO78PDB1  
IO78NDB1  
F10  
F11  
F12  
J10  
J11  
J12  
GCA1/IO93PDB1  
GCA2/IO94PDB1  
GDA1/IO113PDB1  
GDB1/IO112PDB1  
GBC2/IO80PPB1  
Revision 5  
4-7  
Package Pin Assignments  
FG144  
Pin Number A3P1000 Function  
K1  
K2  
GEB0/IO189NDB3  
GEA1/IO188PDB3  
GEA0/IO188NDB3  
GEA2/IO187RSB2  
IO169RSB2  
IO152RSB2  
GND  
K3  
K4  
K5  
K6  
K7  
K8  
IO117RSB2  
GDC2/IO116RSB2  
GND  
K9  
K10  
K11  
K12  
L1  
GDA0/IO113NDB1  
GDB0/IO112NDB1  
GND  
L2  
VMV3  
L3  
GEB2/IO186RSB2  
IO172RSB2  
VCCIB2  
L4  
L5  
L6  
IO153RSB2  
IO144RSB2  
IO140RSB2  
TMS  
L7  
L8  
L9  
L10  
L11  
L12  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
VJTAG  
VMV2  
TRST  
GNDQ  
GEC2/IO185RSB2  
IO173RSB2  
IO168RSB2  
IO161RSB2  
IO156RSB2  
IO145RSB2  
IO141RSB2  
TDI  
VCCIB2  
VPUMP  
GNDQ  
4-8  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
FG256  
A1 Ball Pad Corner  
16 15 14 13 12 11 10 9  
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
Note: This is the bottom view of the package.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/products/fpga-soc/solutions.  
Revision 5  
4-9  
Package Pin Assignments  
FG256  
FG256  
FG256  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
A1  
A2  
GND  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
GAB0/IO02RSB0  
IO16RSB0  
C7  
C8  
IO25RSB0  
IO36RSB0  
IO42RSB0  
IO49RSB0  
IO56RSB0  
GBC0/IO72RSB0  
IO62RSB0  
VMV0  
E13  
E14  
E15  
E16  
F1  
GBC2/IO80PDB1  
IO83PPB1  
IO86PPB1  
IO87PDB1  
IO217NDB3  
IO218NDB3  
IO216PDB3  
IO216NDB3  
VCCIB3  
A3  
C9  
A4  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
D1  
A5  
A6  
IO22RSB0  
F2  
A7  
IO28RSB0  
F3  
A8  
IO35RSB0  
F4  
A9  
IO45RSB0  
IO78NDB1  
IO81NDB1  
IO222NDB3  
IO222PDB3  
GAC2/IO223PDB3  
IO223NDB3  
GNDQ  
F5  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
B1  
IO50RSB0  
F6  
GND  
IO55RSB0  
F7  
VCC  
IO61RSB0  
D2  
F8  
VCC  
GBB1/IO75RSB0  
GBA0/IO76RSB0  
GBA1/IO77RSB0  
GND  
D3  
F9  
VCC  
D4  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
G1  
VCC  
D5  
GND  
D6  
IO23RSB0  
IO29RSB0  
IO33RSB0  
IO46RSB0  
IO52RSB0  
IO60RSB0  
GNDQ  
VCCIB1  
GAB2/IO224PDB3  
GAA2/IO225PDB3  
GNDQ  
D7  
IO83NPB1  
IO86NPB1  
IO90PPB1  
IO87NDB1  
IO210PSB3  
IO213NDB3  
IO213PDB3  
GFC1/IO209PPB3  
VCCIB3  
B2  
D8  
B3  
D9  
B4  
GAB1/IO03RSB0  
IO17RSB0  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
E1  
B5  
B6  
IO21RSB0  
G2  
B7  
IO27RSB0  
IO80NDB1  
GBB2/IO79PDB1  
IO79NDB1  
IO82NSB1  
IO217PDB3  
IO218PDB3  
IO221NDB3  
IO221PDB3  
VMV0  
G3  
B8  
IO34RSB0  
G4  
B9  
IO44RSB0  
G5  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
C1  
IO51RSB0  
G6  
VCC  
IO57RSB0  
G7  
GND  
GBC1/IO73RSB0  
GBB0/IO74RSB0  
IO71RSB0  
E2  
G8  
GND  
E3  
G9  
GND  
E4  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
H1  
GND  
GBA2/IO78PDB1  
IO81PDB1  
E5  
VCC  
E6  
VCCIB0  
VCCIB1  
IO224NDB3  
IO225NDB3  
VMV3  
E7  
VCCIB0  
GCC1/IO91PPB1  
IO90NPB1  
IO88PDB1  
IO88NDB1  
GFB0/IO208NPB3  
GFA0/IO207NDB3  
C2  
E8  
IO38RSB0  
IO47RSB0  
VCCIB0  
C3  
E9  
C4  
IO11RSB0  
E10  
E11  
E12  
C5  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
VCCIB0  
C6  
VMV1  
H2  
4-10  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
FG256  
FG256  
Pin Number A3P1000 Function  
FG256  
Pin Number A3P1000 Function  
Pin Number A3P1000 Function  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
J1  
GFB1/IO208PPB3  
VCOMPLF  
GFC0/IO209NPB3  
VCC  
K9  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
L1  
GND  
GND  
M15  
M16  
N1  
GDC1/IO111PDB1  
IO107NDB1  
IO194PSB3  
IO192PPB3  
GEC1/IO190PPB3  
IO192NPB3  
GNDQ  
VCC  
VCCIB1  
N2  
GND  
IO95NPB1  
IO100NPB1  
IO102NDB1  
IO102PDB1  
IO202NDB3  
IO202PDB3  
IO196PPB3  
IO193PPB3  
VCCIB3  
N3  
GND  
N4  
GND  
N5  
GND  
N6  
GEA2/IO187RSB2  
IO161RSB2  
IO155RSB2  
IO141RSB2  
IO129RSB2  
IO124RSB2  
GNDQ  
VCC  
N7  
GCC0/IO91NPB1  
GCB1/IO92PPB1  
GCA0/IO93NPB1  
IO96NPB1  
GCB0/IO92NPB1  
GFA2/IO206PSB3  
GFA1/IO207PDB3  
VCCPLF  
L2  
N8  
L3  
N9  
L4  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
P1  
L5  
L6  
GND  
L7  
VCC  
IO110PDB1  
VJTAG  
J2  
L8  
VCC  
J3  
L9  
VCC  
GDC0/IO111NDB1  
GDA1/IO113PDB1  
GEB1/IO189PDB3  
GEB0/IO189NDB3  
VMV2  
J4  
IO205NDB3  
GFB2/IO205PDB3  
VCC  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
VCC  
J5  
GND  
J6  
VCCIB1  
P2  
J7  
GND  
GDB0/IO112NPB1  
IO106NDB1  
IO106PDB1  
IO107PDB1  
IO197NSB3  
IO196NPB3  
IO193NPB3  
GEC0/IO190NPB3  
VMV3  
P3  
J8  
GND  
P4  
IO179RSB2  
IO171RSB2  
IO165RSB2  
IO159RSB2  
IO151RSB2  
IO137RSB2  
IO134RSB2  
IO128RSB2  
VMV1  
J9  
GND  
P5  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
K1  
GND  
P6  
VCC  
P7  
GCB2/IO95PPB1  
GCA1/IO93PPB1  
GCC2/IO96PPB1  
IO100PPB1  
GCA2/IO94PSB1  
GFC2/IO204PDB3  
IO204NDB3  
IO203NDB3  
IO203PDB3  
VCCIB3  
P8  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
R1  
VCCIB2  
VCCIB2  
TCK  
K2  
IO147RSB2  
IO136RSB2  
VCCIB2  
VPUMP  
K3  
TRST  
K4  
GDA0/IO113NDB1  
GEA1/IO188PDB3  
GEA0/IO188NDB3  
IO184RSB2  
GEC2/IO185RSB2  
K5  
VCCIB2  
K6  
VCC  
VMV2  
R2  
K7  
GND  
IO110NDB1  
GDB1/IO112PPB1  
R3  
K8  
GND  
R4  
Revision 5  
4-11  
Package Pin Assignments  
FG256  
Pin Number A3P1000 Function  
R5  
R6  
IO168RSB2  
IO163RSB2  
IO157RSB2  
IO149RSB2  
IO143RSB2  
IO138RSB2  
IO131RSB2  
IO125RSB2  
GDB2/IO115RSB2  
TDI  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
T1  
GNDQ  
TDO  
GND  
T2  
IO183RSB2  
GEB2/IO186RSB2  
IO172RSB2  
IO170RSB2  
IO164RSB2  
IO158RSB2  
IO153RSB2  
IO142RSB2  
IO135RSB2  
IO130RSB2  
GDC2/IO116RSB2  
IO120RSB2  
GDA2/IO114RSB2  
TMS  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
GND  
4-12  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
FG484  
A1 Ball Pad Corner  
22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
Note: This is the bottom view of the package.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/products/fpga-soc/solutions.  
Revision 5  
4-13  
Package Pin Assignments  
FG484  
Pin  
FG484  
FG484  
Pin  
Pin  
Number  
A3PE600L Function  
Number  
A3PE600L Function  
Number  
A3PE600L Function  
GAA0/IO00NDB0V0  
GAA1/IO00PDB0V0  
GAB0/IO01NDB0V0  
IO05PDB0V0  
IO10PDB0V1  
IO12PDB0V2  
IO16NDB0V2  
IO23NDB1V0  
IO23PDB1V0  
IO28NDB1V1  
IO28PDB1V1  
GBB1/IO34PDB1V1  
GBA0/IO35NDB1V1  
GBA1/IO35PDB1V1  
GND  
A1  
GND  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
C1  
NC  
NC  
D5  
D6  
A2  
GND  
A3  
VCCIB0  
IO30NDB1V1  
IO30PDB1V1  
IO32PDB1V1  
NC  
D7  
A4  
IO06NDB0V1  
IO06PDB0V1  
IO08NDB0V1  
IO08PDB0V1  
IO11PDB0V1  
IO17PDB0V2  
IO18NDB0V2  
IO18PDB0V2  
IO22PDB1V0  
IO26PDB1V0  
IO29NDB1V1  
IO29PDB1V1  
IO31NDB1V1  
IO31PDB1V1  
IO32NDB1V1  
NC  
D8  
A5  
D9  
A6  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
E1  
A7  
NC  
A8  
VCCIB2  
GND  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
B1  
VCCIB7  
NC  
C2  
C3  
NC  
C4  
NC  
C5  
GND  
C6  
IO04NDB0V0  
IO04PDB0V0  
VCC  
C7  
NC  
C8  
NC  
C9  
VCC  
NC  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
D1  
IO14NDB0V2  
IO19NDB0V2  
NC  
NC  
VCCIB1  
E2  
NC  
GND  
E3  
GND  
GND  
NC  
E4  
GAB2/IO133PDB7V1  
GAA2/IO134PDB7V1  
GNDQ  
GND  
VCC  
E5  
B2  
VCCIB7  
VCC  
E6  
B3  
NC  
NC  
E7  
GAB1/IO01PDB0V0  
IO05NDB0V0  
IO10NDB0V1  
IO12NDB0V2  
IO16PDB0V2  
IO20NDB1V0  
IO24NDB1V0  
IO24PDB1V0  
GBC1/IO33PDB1V1  
GBB0/IO34NDB1V1  
GNDQ  
B4  
IO03NDB0V0  
IO03PDB0V0  
IO07NDB0V1  
IO07PDB0V1  
IO11NDB0V1  
IO17NDB0V2  
IO14PDB0V2  
IO19PDB0V2  
IO22NDB1V0  
IO26NDB1V0  
NC  
E8  
B5  
GND  
E9  
B6  
NC  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
B7  
NC  
B8  
NC  
B9  
VCCIB2  
NC  
B10  
B11  
B12  
B13  
D2  
NC  
D3  
NC  
D4  
GND  
4-14  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
FG484  
FG484  
FG484  
Pin  
Pin  
Pin  
Number  
A3PE600L Function  
GBA2/IO36PDB2V0  
IO42NDB2V0  
GND  
Number  
A3PE600L Function  
IO09NDB0V1  
IO09PDB0V1  
IO13PDB0V2  
IO21PDB1V0  
IO25PDB1V0  
IO27NDB1V0  
GNDQ  
Number  
H22  
J1  
A3PE600L Function  
E18  
E19  
E20  
E21  
E22  
F1  
G9  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
H1  
NC  
IO123NDB7V0  
IO123PDB7V0  
NC  
J2  
NC  
J3  
NC  
J4  
IO124PDB7V0  
IO125PDB7V0  
IO126PDB7V0  
IO130NDB7V1  
VCCIB7  
NC  
J5  
F2  
IO131NDB7V1  
IO131PDB7V1  
IO133NDB7V1  
IO134NDB7V1  
VMV7  
J6  
F3  
VCOMPLB  
GBB2/IO37PDB2V0  
IO39PDB2V0  
IO39NDB2V0  
IO43PDB2V0  
IO43NDB2V0  
NC  
J7  
F4  
J8  
F5  
J9  
GND  
F6  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
K1  
VCC  
F7  
VCCPLA  
VCC  
F8  
GAC0/IO02NDB0V0  
GAC1/IO02PDB0V0  
IO15NDB0V2  
IO15PDB0V2  
IO20PDB1V0  
IO25NDB1V0  
IO27PDB1V0  
GBC0/IO33NDB1V1  
VCCPLB  
VCC  
F9  
VCC  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
G1  
NC  
GND  
H2  
NC  
VCCIB2  
H3  
VCC  
IO38NDB2V0  
IO40NDB2V0  
IO40PDB2V0  
IO45PDB2V1  
NC  
H4  
IO128NDB7V1  
IO129NDB7V1  
IO132NDB7V1  
IO130PDB7V1  
VMV0  
H5  
H6  
H7  
VMV2  
H8  
IO48PDB2V1  
IO46PDB2V1  
IO121NDB7V0  
IO121PDB7V0  
NC  
IO36NDB2V0  
IO42PDB2V0  
NC  
H9  
VCCIB0  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
VCCIB0  
IO13NDB0V2  
IO21NDB1V0  
VCCIB1  
K2  
NC  
K3  
NC  
K4  
IO124NDB7V0  
IO125NDB7V0  
IO126NDB7V0  
GFC1/IO120PPB7V0  
VCCIB7  
IO127NDB7V1  
IO127PDB7V1  
NC  
VCCIB1  
K5  
G2  
VMV1  
K6  
G3  
GBC2/IO38PDB2V0  
IO37NDB2V0  
IO41NDB2V0  
IO41PDB2V0  
VCC  
K7  
G4  
IO128PDB7V1  
IO129PDB7V1  
GAC2/IO132PDB7V1  
VCOMPLA  
GNDQ  
K8  
G5  
K9  
VCC  
G6  
K10  
K11  
K12  
GND  
G7  
GND  
G8  
NC  
GND  
Revision 5  
4-15  
Package Pin Assignments  
FG484  
Pin  
FG484  
FG484  
Pin  
Pin  
Number  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
L1  
A3PE600L Function  
Number  
A3PE600L Function  
GFA2/IO117PDB6V1  
GFA1/IO118PDB6V1  
VCCPLF  
Number  
A3PE600L Function  
IO57NPB3V0  
IO55NPB3V0  
IO57PPB3V0  
NC  
GND  
VCC  
M4  
M5  
N17  
N18  
N19  
N20  
N21  
N22  
P1  
VCCIB2  
M6  
GCC1/IO50PPB2V1  
IO44NDB2V1  
IO44PDB2V1  
IO49NPB2V1  
IO45NDB2V1  
IO48NDB2V1  
IO46NDB2V1  
NC  
M7  
IO116NDB6V1  
GFB2/IO116PDB6V1  
VCC  
M8  
IO56NDB3V0  
IO58PDB3V0  
NC  
M9  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
N1  
GND  
GND  
P2  
IO111PDB6V1  
IO115NDB6V1  
IO113NPB6V1  
IO109PPB6V0  
IO108PDB6V0  
IO108NDB6V0  
VCCIB6  
GND  
P3  
GND  
P4  
VCC  
P5  
L2  
IO122PDB7V0  
IO122NDB7V0  
GFB0/IO119NPB7V0  
GFA0/IO118NDB6V1  
GFB1/IO119PPB7V0  
VCOMPLF  
GCB2/IO54PPB3V0  
GCA1/IO52PPB3V0  
GCC2/IO55PPB3V0  
VCCPLC  
P6  
L3  
P7  
L4  
P8  
L5  
P9  
GND  
L6  
GCA2/IO53PDB3V0  
IO53NDB3V0  
IO56PDB3V0  
NC  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
R1  
VCC  
L7  
VCC  
L8  
GFC0/IO120NPB7V0  
VCC  
VCC  
L9  
VCC  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
M1  
GND  
IO114PDB6V1  
IO111NDB6V1  
NC  
GND  
GND  
N2  
VCCIB3  
GND  
N3  
GDB0/IO66NPB3V1  
IO60NDB3V1  
IO60PDB3V1  
IO61PDB3V1  
NC  
GND  
N4  
GFC2/IO115PDB6V1  
IO113PPB6V1  
IO112PDB6V1  
IO112NDB6V1  
VCCIB6  
VCC  
N5  
GCC0/IO50NPB2V1  
GCB1/IO51PPB2V1  
GCA0/IO52NPB3V0  
VCOMPLC  
N6  
N7  
N8  
IO59PDB3V0  
IO58NDB3V0  
NC  
N9  
VCC  
GCB0/IO51NPB2V1  
IO49PPB2V1  
IO47NDB2V1  
IO47PDB2V1  
NC  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
GND  
GND  
R2  
IO110PDB6V0  
VCC  
GND  
R3  
GND  
R4  
IO109NPB6V0  
IO106NDB6V0  
IO106PDB6V0  
GEC0/IO104NPB6V0  
VCC  
R5  
M2  
IO114NDB6V1  
IO117NDB6V1  
VCCIB3  
R6  
M3  
IO54NPB3V0  
R7  
4-16  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
FG484  
FG484  
FG484  
Pin  
Pin  
Pin  
Number  
A3PE600L Function  
VMV5  
Number  
A3PE600L Function  
IO64PDB3V1  
IO62NDB3V1  
NC  
Number  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
W1  
A3PE600L Function  
IO83PDB5V0  
IO77NDB4V1  
IO77PDB4V1  
IO69NDB4V0  
GDB2/IO69PDB4V0  
TDI  
R8  
R9  
T21  
T22  
U1  
VCCIB5  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
T1  
VCCIB5  
IO84NDB5V0  
IO84PDB5V0  
VCCIB4  
U2  
IO107PDB6V0  
IO107NDB6V0  
GEB1/IO103PDB6V0  
GEB0/IO103NDB6V0  
VMV6  
U3  
U4  
VCCIB4  
U5  
GNDQ  
VMV3  
U6  
TDO  
VCCPLD  
U7  
VCCPLE  
GND  
GDB1/IO66PPB3V1  
GDC1/IO65PDB3V1  
IO61NDB3V1  
VCC  
U8  
IO101NPB5V2  
IO95PPB5V1  
IO92PDB5V1  
IO90PDB5V1  
IO82PDB5V0  
IO76NDB4V1  
IO76PDB4V1  
VMV4  
NC  
U9  
IO63NDB3V1  
NC  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
V1  
W2  
NC  
IO59NDB3V0  
IO62PDB3V1  
NC  
W3  
NC  
W4  
GND  
W5  
IO100NDB5V2  
FF/GEB2/IO100PDB5V2  
IO99NDB5V2  
IO88NDB5V0  
IO88PDB5V0  
IO89NDB5V0  
IO80NDB4V1  
IO81NDB4V1  
IO81PDB4V1  
IO70NDB4V0  
GDC2/IO70PDB4V0  
IO68NDB4V0  
GDA2/IO68PDB4V0  
TMS  
T2  
IO110NDB6V0  
NC  
W6  
T3  
TCK  
W7  
T4  
IO105PDB6V0  
IO105NDB6V0  
GEC1/IO104PPB6V0  
VCOMPLE  
VPUMP  
W8  
T5  
TRST  
W9  
T6  
GDA0/IO67NDB3V1  
NC  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
Y1  
T7  
T8  
GNDQ  
IO64NDB3V1  
IO63PDB3V1  
NC  
T9  
GEA2/IO101PPB5V2  
IO92NDB5V1  
IO90NDB5V1  
IO82NDB5V0  
IO74NDB4V1  
IO74PDB4V1  
GNDQ  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
V2  
NC  
V3  
GND  
V4  
GEA1/IO102PDB6V0  
GEA0/IO102NDB6V0  
GNDQ  
V5  
V6  
GND  
VCOMPLD  
VJTAG  
V7  
GEC2/IO99PDB5V2  
IO95NPB5V1  
IO91NDB5V1  
IO91PDB5V1  
IO83NDB5V0  
NC  
V8  
NC  
GDC0/IO65NDB3V1  
GDA1/IO67PDB3V1  
NC  
V9  
NC  
V10  
V11  
VCCIB6  
Y2  
NC  
Revision 5  
4-17  
Package Pin Assignments  
FG484  
Pin  
FG484  
Pin  
Number  
A3PE600L Function  
Number  
A3PE600L Function  
IO71NDB4V0  
IO71PDB4V0  
NC  
Y3  
NC  
IO98NDB5V2  
GND  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AB1  
Y4  
Y5  
Y6  
IO94NDB5V1  
IO94PDB5V1  
VCC  
NC  
Y7  
NC  
Y8  
VCCIB3  
Y9  
VCC  
GND  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
IO89PDB5V0  
IO80PDB4V1  
IO78NPB4V1  
NC  
GND  
AB2  
GND  
AB3  
VCCIB5  
AB4  
IO97NDB5V2  
IO97PDB5V2  
IO93NDB5V1  
IO93PDB5V1  
IO87NDB5V0  
IO87PDB5V0  
NC  
VCC  
AB5  
VCC  
AB6  
NC  
AB7  
NC  
AB8  
GND  
AB9  
NC  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
NC  
NC  
NC  
IO75NDB4V1  
IO75PDB4V1  
IO72NDB4V0  
IO72PDB4V0  
IO73NDB4V0  
IO73PDB4V0  
NC  
VCCIB3  
GND  
VCCIB6  
NC  
IO98PDB5V2  
IO96NDB5V2  
IO96PDB5V2  
IO86NDB5V0  
IO86PDB5V0  
IO85PDB5V0  
IO85NDB5V0  
IO78PPB4V1  
IO79NDB4V1  
IO79PDB4V1  
NC  
NC  
VCCIB4  
GND  
GND  
NC  
4-18  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
FG484  
FG484  
FG484  
Pin  
Pin  
Pin  
Number  
A3P1000 Function  
GND  
Number  
A3P1000 Function  
IO58RSB0  
IO63RSB0  
IO66RSB0  
IO68RSB0  
IO70RSB0  
NC  
Number  
A3P1000 Function  
GAA0/IO00RSB0  
GAA1/IO01RSB0  
GAB0/IO02RSB0  
IO16RSB0  
A1  
A2  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
C1  
D5  
GND  
D6  
A3  
VCCIB0  
D7  
A4  
IO07RSB0  
IO09RSB0  
IO13RSB0  
IO18RSB0  
IO20RSB0  
IO26RSB0  
IO32RSB0  
IO40RSB0  
IO41RSB0  
IO53RSB0  
IO59RSB0  
IO64RSB0  
IO65RSB0  
IO67RSB0  
IO69RSB0  
NC  
D8  
A5  
D9  
IO22RSB0  
A6  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
E1  
IO28RSB0  
A7  
NC  
IO35RSB0  
A8  
VCCIB1  
GND  
IO45RSB0  
A9  
IO50RSB0  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
B1  
VCCIB3  
IO220PDB3  
NC  
IO55RSB0  
C2  
IO61RSB0  
C3  
GBB1/IO75RSB0  
GBA0/IO76RSB0  
GBA1/IO77RSB0  
GND  
C4  
NC  
C5  
GND  
C6  
IO10RSB0  
IO14RSB0  
VCC  
C7  
NC  
C8  
NC  
C9  
VCC  
NC  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
D1  
IO30RSB0  
IO37RSB0  
IO43RSB0  
NC  
IO219NDB3  
NC  
VCCIB0  
E2  
GND  
E3  
GND  
GND  
E4  
GAB2/IO224PDB3  
GAA2/IO225PDB3  
GNDQ  
GND  
VCC  
E5  
B2  
VCCIB3  
VCC  
E6  
B3  
NC  
NC  
E7  
GAB1/IO03RSB0  
IO17RSB0  
B4  
IO06RSB0  
IO08RSB0  
IO12RSB0  
IO15RSB0  
IO19RSB0  
IO24RSB0  
IO31RSB0  
IO39RSB0  
IO48RSB0  
IO54RSB0  
NC  
E8  
B5  
GND  
E9  
IO21RSB0  
B6  
NC  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
IO27RSB0  
B7  
NC  
IO34RSB0  
B8  
NC  
IO44RSB0  
B9  
VCCIB1  
IO219PDB3  
IO220NDB3  
NC  
IO51RSB0  
B10  
B11  
B12  
B13  
IO57RSB0  
D2  
GBC1/IO73RSB0  
GBB0/IO74RSB0  
IO71RSB0  
D3  
D4  
GND  
Revision 5  
4-19  
Package Pin Assignments  
FG484  
Pin  
FG484  
FG484  
Pin  
Pin  
Number  
E18  
E19  
E20  
E21  
E22  
F1  
A3P1000 Function  
Number  
A3P1000 Function  
IO23RSB0  
IO29RSB0  
IO33RSB0  
IO46RSB0  
IO52RSB0  
IO60RSB0  
GNDQ  
Number  
A3P1000 Function  
NC  
GBA2/IO78PDB1  
IO81PDB1  
GND  
G9  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
H1  
H22  
J1  
IO212NDB3  
IO212PDB3  
NC  
J2  
NC  
J3  
IO84PDB1  
NC  
J4  
IO217NDB3  
IO218NDB3  
IO216PDB3  
IO216NDB3  
VCCIB3  
GND  
J5  
F2  
IO215PDB3  
IO215NDB3  
IO224NDB3  
IO225NDB3  
VMV3  
J6  
F3  
IO80NDB1  
GBB2/IO79PDB1  
IO79NDB1  
IO82NPB1  
IO85PDB1  
IO85NDB1  
NC  
J7  
F4  
J8  
F5  
J9  
F6  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
K1  
VCC  
F7  
IO11RSB0  
GAC0/IO04RSB0  
GAC1/IO05RSB0  
IO25RSB0  
IO36RSB0  
IO42RSB0  
IO49RSB0  
IO56RSB0  
GBC0/IO72RSB0  
IO62RSB0  
VMV0  
VCC  
F8  
VCC  
F9  
VCC  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
F22  
G1  
NC  
GND  
H2  
NC  
VCCIB1  
IO83NPB1  
IO86NPB1  
IO90PPB1  
IO87NDB1  
NC  
H3  
VCC  
H4  
IO217PDB3  
IO218PDB3  
IO221NDB3  
IO221PDB3  
VMV0  
H5  
H6  
H7  
H8  
IO89PDB1  
IO89NDB1  
IO211PDB3  
IO211NDB3  
NC  
IO78NDB1  
IO81NDB1  
IO82PPB1  
NC  
H9  
VCCIB0  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
VCCIB0  
IO38RSB0  
IO47RSB0  
VCCIB0  
K2  
K3  
IO84NDB1  
IO214NDB3  
IO214PDB3  
NC  
K4  
IO210PPB3  
IO213NDB3  
IO213PDB3  
GFC1/IO209PPB3  
VCCIB3  
VCC  
VCCIB0  
K5  
G2  
VMV1  
K6  
G3  
GBC2/IO80PDB1  
IO83PPB1  
IO86PPB1  
IO87PDB1  
VCC  
K7  
G4  
IO222NDB3  
IO222PDB3  
GAC2/IO223PDB3  
IO223NDB3  
GNDQ  
K8  
G5  
K9  
G6  
K10  
K11  
K12  
GND  
G7  
GND  
G8  
NC  
GND  
4-20  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
FG484  
FG484  
FG484  
Pin  
Pin  
Pin  
Number  
A3P1000 Function  
GND  
Number  
A3P1000 Function  
GFA2/IO206PDB3  
GFA1/IO207PDB3  
VCCPLF  
Number  
N17  
N18  
N19  
N20  
N21  
N22  
P1  
A3P1000 Function  
IO100NPB1  
IO102NDB1  
IO102PDB1  
NC  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
L1  
M4  
M5  
VCC  
VCCIB1  
M6  
GCC1/IO91PPB1  
IO90NPB1  
IO88PDB1  
IO88NDB1  
IO94NPB1  
IO98NDB1  
IO98PDB1  
NC  
M7  
IO205NDB3  
GFB2/IO205PDB3  
VCC  
M8  
IO101NPB1  
IO103PDB1  
NC  
M9  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
N1  
GND  
GND  
P2  
IO199PDB3  
IO199NDB3  
IO202NDB3  
IO202PDB3  
IO196PPB3  
IO193PPB3  
VCCIB3  
GND  
P3  
GND  
P4  
VCC  
P5  
L2  
IO200PDB3  
IO210NPB3  
GFB0/IO208NPB3  
GFA0/IO207NDB3  
GFB1/IO208PPB3  
VCOMPLF  
GFC0/IO209NPB3  
VCC  
GCB2/IO95PPB1  
GCA1/IO93PPB1  
GCC2/IO96PPB1  
IO100PPB1  
GCA2/IO94PPB1  
IO101PPB1  
IO99PPB1  
NC  
P6  
L3  
P7  
L4  
P8  
L5  
P9  
GND  
L6  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
R1  
VCC  
L7  
VCC  
L8  
VCC  
L9  
VCC  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
M1  
M2  
GND  
IO201NDB3  
IO201PDB3  
NC  
GND  
GND  
N2  
VCCIB1  
GND  
N3  
GDB0/IO112NPB1  
IO106NDB1  
IO106PDB1  
IO107PDB1  
NC  
GND  
N4  
GFC2/IO204PDB3  
IO204NDB3  
IO203NDB3  
IO203PDB3  
VCCIB3  
VCC  
N5  
GCC0/IO91NPB1  
GCB1/IO92PPB1  
GCA0/IO93NPB1  
IO96NPB1  
GCB0/IO92NPB1  
IO97PDB1  
IO97NDB1  
IO99NPB1  
NC  
N6  
N7  
N8  
IO104PDB1  
IO103NDB1  
NC  
N9  
VCC  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
GND  
GND  
R2  
IO197PPB3  
VCC  
GND  
R3  
GND  
R4  
IO197NPB3  
IO196NPB3  
IO193NPB3  
GEC0/IO190NPB3  
VCC  
R5  
IO200NDB3  
IO206NDB3  
VCCIB1  
R6  
M3  
IO95NPB1  
R7  
Revision 5  
4-21  
Package Pin Assignments  
FG484  
Pin  
FG484  
FG484  
Pin  
Pin  
Number  
A3P1000 Function  
Number  
A3P1000 Function  
IO108PDB1  
IO105NDB1  
IO195PDB3  
IO195NDB3  
IO194NPB3  
GEB1/IO189PDB3  
GEB0/IO189NDB3  
VMV2  
Number  
A3P1000 Function  
IO143RSB2  
IO138RSB2  
IO131RSB2  
IO125RSB2  
GDB2/IO115RSB2  
TDI  
R8  
VMV3  
VCCIB2  
T21  
T22  
U1  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
W1  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
T1  
VCCIB2  
IO147RSB2  
IO136RSB2  
VCCIB2  
U2  
U3  
U4  
VCCIB2  
U5  
GNDQ  
VMV2  
U6  
TDO  
IO110NDB1  
GDB1/IO112PPB1  
GDC1/IO111PDB1  
IO107NDB1  
VCC  
U7  
IO179RSB2  
IO171RSB2  
IO165RSB2  
IO159RSB2  
IO151RSB2  
IO137RSB2  
IO134RSB2  
IO128RSB2  
VMV1  
GND  
U8  
NC  
U9  
IO109NDB1  
NC  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
V1  
W2  
IO191PDB3  
NC  
IO104NDB1  
IO105PDB1  
IO198PDB3  
IO198NDB3  
NC  
W3  
W4  
GND  
W5  
IO183RSB2  
GEB2/IO186RSB2  
IO172RSB2  
IO170RSB2  
IO164RSB2  
IO158RSB2  
IO153RSB2  
IO142RSB2  
IO135RSB2  
IO130RSB2  
GDC2/IO116RSB2  
IO120RSB2  
GDA2/IO114RSB2  
TMS  
T2  
W6  
T3  
TCK  
W7  
T4  
IO194PPB3  
IO192PPB3  
GEC1/IO190PPB3  
IO192NPB3  
GNDQ  
VPUMP  
W8  
T5  
TRST  
W9  
T6  
GDA0/IO113NDB1  
NC  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
Y1  
T7  
T8  
IO108NDB1  
IO109PDB1  
NC  
T9  
GEA2/IO187RSB2  
IO161RSB2  
IO155RSB2  
IO141RSB2  
IO129RSB2  
IO124RSB2  
GNDQ  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
V2  
NC  
V3  
GND  
V4  
GEA1/IO188PDB3  
GEA0/IO188NDB3  
IO184RSB2  
GEC2/IO185RSB2  
IO168RSB2  
IO163RSB2  
IO157RSB2  
IO149RSB2  
V5  
V6  
GND  
IO110PDB1  
VJTAG  
V7  
NC  
V8  
NC  
GDC0/IO111NDB1  
GDA1/IO113PDB1  
NC  
V9  
NC  
V10  
V11  
VCCIB3  
Y2  
IO191NDB3  
4-22  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
FG484  
FG484  
Pin  
Pin  
Number  
A3P1000 Function  
NC  
Number  
A3P1000 Function  
IO122RSB2  
IO119RSB2  
IO117RSB2  
NC  
Y3  
Y4  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AB1  
IO182RSB2  
GND  
Y5  
Y6  
IO177RSB2  
IO174RSB2  
VCC  
Y7  
NC  
Y8  
VCCIB1  
Y9  
VCC  
GND  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
IO154RSB2  
IO148RSB2  
IO140RSB2  
NC  
GND  
AB2  
GND  
AB3  
VCCIB2  
AB4  
IO180RSB2  
IO176RSB2  
IO173RSB2  
IO167RSB2  
IO162RSB2  
IO156RSB2  
IO150RSB2  
IO145RSB2  
IO144RSB2  
IO132RSB2  
IO127RSB2  
IO126RSB2  
IO123RSB2  
IO121RSB2  
IO118RSB2  
NC  
VCC  
AB5  
VCC  
AB6  
NC  
AB7  
NC  
AB8  
GND  
AB9  
NC  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
NC  
NC  
VCCIB1  
GND  
VCCIB3  
NC  
IO181RSB2  
IO178RSB2  
IO175RSB2  
IO169RSB2  
IO166RSB2  
IO160RSB2  
IO152RSB2  
IO146RSB2  
IO139RSB2  
IO133RSB2  
NC  
VCCIB2  
GND  
GND  
NC  
Revision 5  
4-23  
Package Pin Assignments  
FG484  
Pin  
FG484  
FG484  
Pin  
Pin  
Number  
A3PE3000L Function  
Number  
A3PE3000L Function  
IO170NDB4V2  
IO170PDB4V2  
IO166NDB4V1  
IO166PDB4V1  
IO160NDB4V0  
IO160PDB4V0  
IO158NPB4V0  
VCCIB3  
Number  
A3PE3000L Function  
IO08PDB0V0  
IO14NDB0V1  
IO14PDB0V1  
IO18NDB0V2  
IO24NDB0V2  
IO34PDB0V4  
IO40PDB0V4  
IO46NDB1V0  
IO54NDB1V1  
IO62NDB1V2  
IO62PDB1V2  
IO68NDB1V3  
IO68PDB1V3  
IO72PDB1V3  
IO74PDB1V4  
IO76NPB1V4  
VCCIB2  
A1  
GND  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AB1  
B5  
B6  
A2  
GND  
A3  
VCCIB0  
B7  
A4  
IO10NDB0V1  
IO10PDB0V1  
IO16NDB0V1  
IO16PDB0V1  
IO18PDB0V2  
IO24PDB0V2  
IO28NDB0V3  
IO28PDB0V3  
IO46PDB1V0  
IO54PDB1V1  
IO56NDB1V1  
IO56PDB1V1  
IO64NDB1V2  
IO64PDB1V2  
IO72NDB1V3  
IO74NDB1V4  
VCCIB1  
B8  
A5  
B9  
A6  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
C1  
A7  
A8  
A9  
GND  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
AA10  
AA11  
AA12  
AA13  
GND  
AB2  
GND  
AB3  
VCCIB5  
AB4  
IO216NDB5V2  
IO216PDB5V2  
IO210NDB5V2  
IO210PDB5V2  
IO208NDB5V1  
IO208PDB5V1  
IO197NDB5V0  
IO197PDB5V0  
IO174NDB4V2  
IO174PDB4V2  
IO172NDB4V2  
IO172PDB4V2  
IO168NDB4V1  
IO168PDB4V1  
IO162NDB4V1  
IO162PDB4V1  
VCCIB4  
AB5  
AB6  
AB7  
AB8  
AB9  
GND  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
B1  
VCCIB7  
C2  
IO303PDB7V3  
IO305PDB7V3  
IO06NPB0V0  
GND  
GND  
C3  
GND  
C4  
GND  
C5  
VCCIB6  
C6  
IO12NDB0V1  
IO12PDB0V1  
VCC  
IO228PDB5V4  
IO224PDB5V3  
IO218NDB5V3  
IO218PDB5V3  
IO212NDB5V2  
IO212PDB5V2  
IO198PDB5V0  
IO198NDB5V0  
IO188PPB4V4  
IO180NDB4V3  
IO180PDB4V3  
C7  
C8  
C9  
VCC  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
IO34NDB0V4  
IO40NDB0V4  
IO48NDB1V0  
IO48PDB1V0  
VCC  
GND  
GND  
GND  
B2  
VCCIB7  
VCC  
B3  
IO06PPB0V0  
IO08NDB0V0  
IO70NDB1V3  
IO70PDB1V3  
B4  
4-24  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
FG484  
FG484  
FG484  
Pin  
Pin  
Pin  
Number  
A3PE3000L Function  
GND  
Number  
A3PE3000L Function  
IO22NDB0V2  
IO30NDB0V3  
IO38PDB0V4  
IO44NDB1V0  
IO58NDB1V2  
IO58PDB1V2  
GBC1/IO79PDB1V4  
GBB0/IO80NDB1V4  
GNDQ  
Number  
F22  
G1  
A3PE3000L Function  
IO98NDB2V2  
IO289NDB7V1  
IO289PDB7V1  
IO291PPB7V2  
IO295PDB7V2  
IO297PDB7V2  
GAC2/IO307PDB7V4  
VCOMPLA  
C18  
C19  
C20  
C21  
C22  
D1  
E9  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
F1  
IO76PPB1V4  
IO88NDB2V0  
IO94PPB2V1  
VCCIB2  
G2  
G3  
G4  
IO293PDB7V2  
IO303NDB7V3  
IO305NDB7V3  
GND  
G5  
D2  
G6  
D3  
G7  
D4  
G8  
GNDQ  
D5  
GAA0/IO00NDB0V0  
GAA1/IO00PDB0V0  
GAB0/IO01NDB0V0  
IO20PDB0V2  
IO22PDB0V2  
IO30PDB0V3  
IO38NDB0V4  
IO52NDB1V1  
IO52PDB1V1  
IO66NDB1V3  
IO66PDB1V3  
GBB1/IO80PDB1V4  
GBA0/IO81NDB1V4  
GBA1/IO81PDB1V4  
GND  
GBA2/IO82PDB2V0  
IO86NDB2V0  
GND  
G9  
IO26NDB0V3  
IO26PDB0V3  
IO36PDB0V4  
IO42PDB1V0  
IO50PDB1V1  
IO60NDB1V2  
GNDQ  
D6  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
G21  
G22  
H1  
D7  
D8  
IO90NDB2V1  
IO98PDB2V2  
IO299NPB7V3  
IO301NDB7V3  
IO301PDB7V3  
IO308NDB7V4  
IO309NDB7V4  
VMV7  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
E1  
F2  
F3  
VCOMPLB  
F4  
GBB2/IO83PDB2V0  
IO92PDB2V1  
IO92NDB2V1  
IO102PDB2V2  
IO102NDB2V2  
IO105NDB2V2  
IO286PSB7V1  
IO291NPB7V2  
VCC  
F5  
F6  
F7  
VCCPLA  
F8  
GAC0/IO02NDB0V0  
GAC1/IO02PDB0V0  
IO32NDB0V3  
IO32PDB0V3  
IO44PDB1V0  
IO50NDB1V1  
IO60PDB1V2  
GBC0/IO79NDB1V4  
VCCPLB  
F9  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
F21  
IO88PDB2V0  
IO90PDB2V1  
IO94NPB2V1  
IO293NDB7V2  
IO299PPB7V3  
GND  
H2  
H3  
H4  
IO295NDB7V2  
IO297NDB7V2  
IO307NDB7V4  
IO287PDB7V1  
VMV0  
H5  
E2  
H6  
E3  
H7  
E4  
GAB2/IO308PDB7V4  
GAA2/IO309PDB7V4  
GNDQ  
VMV2  
H8  
E5  
IO82NDB2V0  
IO86PDB2V0  
IO96PDB2V1  
IO96NDB2V1  
H9  
VCCIB0  
E6  
H10  
H11  
H12  
VCCIB0  
E7  
GAB1/IO01PDB0V0  
IO20NDB0V2  
IO36NDB0V4  
IO42NDB1V0  
E8  
Revision 5  
4-25  
Package Pin Assignments  
FG484  
Pin  
FG484  
FG484  
Pin  
Pin  
Number  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
J1  
A3PE3000L Function  
Number  
A3PE3000L Function  
IO279NDB7V0  
IO283NDB7V1  
IO281NDB7V0  
GFC1/IO275PPB7V0  
VCCIB7  
Number  
A3PE3000L Function  
GCA0/IO114NPB3V0  
VCOMPLC  
VCCIB1  
VCCIB1  
K4  
K5  
L17  
L18  
L19  
L20  
L21  
L22  
M1  
VMV1  
K6  
GCB0/IO113NPB2V3  
IO110PPB2V3  
IO111NDB2V3  
IO111PDB2V3  
GNDQ  
GBC2/IO84PDB2V0  
IO83NDB2V0  
IO100NDB2V2  
IO100PDB2V2  
VCC  
K7  
K8  
K9  
VCC  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
L1  
GND  
GND  
M2  
IO255NPB6V2  
IO272NDB6V4  
GFA2/IO272PDB6V4  
GFA1/IO273PDB6V4  
VCCPLF  
VMV2  
GND  
M3  
IO105PDB2V2  
IO285NDB7V1  
IO285PDB7V1  
VMV7  
GND  
M4  
VCC  
M5  
J2  
VCCIB2  
M6  
J3  
GCC1/IO112PPB2V3  
IO108NDB2V3  
IO108PDB2V3  
IO110NPB2V3  
IO106NPB2V3  
IO109NDB2V3  
IO107NDB2V3  
IO257PSB6V2  
IO276PDB7V0  
IO276NDB7V0  
GFB0/IO274NPB7V0  
GFA0/IO273NDB6V4  
GFB1/IO274PPB7V0  
VCOMPLF  
M7  
IO271NDB6V4  
GFB2/IO271PDB6V4  
VCC  
J4  
IO279PDB7V0  
IO283PDB7V1  
IO281PDB7V0  
IO287NDB7V1  
VCCIB7  
M8  
J5  
M9  
J6  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
N1  
GND  
J7  
GND  
J8  
GND  
J9  
GND  
GND  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
K1  
VCC  
VCC  
VCC  
L2  
GCB2/IO116PPB3V0  
GCA1/IO114PPB3V0  
GCC2/IO117PPB3V0  
VCCPLC  
VCC  
L3  
VCC  
L4  
GND  
L5  
VCCIB2  
L6  
GCA2/IO115PDB3V0  
IO115NDB3V0  
IO126PDB3V1  
IO124PSB3V1  
IO255PPB6V2  
IO253NDB6V2  
VMV6  
IO84NDB2V0  
IO104NDB2V2  
IO104PDB2V2  
IO106PPB2V3  
GNDQ  
L7  
L8  
GFC0/IO275NPB7V0  
VCC  
L9  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
GND  
GND  
N2  
IO109PDB2V3  
IO107PDB2V3  
IO277NDB7V0  
IO277PDB7V0  
GNDQ  
GND  
N3  
GND  
N4  
GFC2/IO270PPB6V4  
IO261PPB6V3  
IO263PDB6V3  
IO263NDB6V3  
VCC  
N5  
K2  
GCC0/IO112NPB2V3  
GCB1/IO113PPB2V3  
N6  
K3  
N7  
4-26  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
FG484  
FG484  
FG484  
Pin  
Pin  
Pin  
Number  
A3PE3000L Function  
VCCIB6  
Number  
A3PE3000L Function  
IO130PDB3V2  
IO128NDB3V1  
IO247NDB6V1  
IO245PDB6V1  
VCC  
Number  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
U1  
A3PE3000L Function  
IO194NDB5V0  
IO186NDB4V4  
IO186PDB4V4  
GNDQ  
N8  
N9  
P21  
P22  
R1  
VCC  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
N21  
N22  
P1  
GND  
GND  
R2  
GND  
R3  
VCOMPLD  
GND  
R4  
IO249NPB6V1  
IO251NDB6V2  
IO251PDB6V2  
GEC0/IO236NPB6V0  
VMV5  
VJTAG  
VCC  
R5  
GDC0/IO151NDB3V4  
GDA1/IO153PDB3V4  
IO144PDB3V3  
IO140PDB3V3  
IO134NDB3V2  
IO240PPB6V0  
IO238PDB6V0  
IO238NDB6V0  
GEB1/IO235PDB6V0  
GEB0/IO235NDB6V0  
VMV6  
VCCIB3  
R6  
IO116NPB3V0  
IO132NPB3V2  
IO117NPB3V0  
IO132PPB3V2  
GNDQ  
R7  
R8  
R9  
VCCIB5  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
T1  
VCCIB5  
IO196NDB5V0  
IO196PDB5V0  
VCCIB4  
U2  
IO126NDB3V1  
IO128PDB3V1  
IO247PDB6V1  
IO253PDB6V2  
IO270NPB6V4  
IO261NPB6V3  
IO249PPB6V1  
IO259PDB6V3  
IO259NDB6V3  
VCCIB6  
U3  
U4  
VCCIB4  
U5  
P2  
VMV3  
U6  
P3  
VCCPLD  
U7  
VCCPLE  
P4  
GDB1/IO152PPB3V4  
GDC1/IO151PDB3V4  
IO138NDB3V3  
VCC  
U8  
IO233NPB5V4  
IO222PPB5V3  
IO206PDB5V1  
IO202PDB5V1  
IO194PDB5V0  
IO176NDB4V2  
IO176PDB4V2  
VMV4  
P5  
U9  
P6  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
V1  
P7  
P8  
IO130NDB3V2  
IO134PDB3V2  
IO243PPB6V1  
IO245NDB6V1  
IO243NPB6V1  
IO241PDB6V0  
IO241NDB6V0  
GEC1/IO236PPB6V0  
VCOMPLE  
P9  
GND  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
VCC  
VCC  
T2  
VCC  
T3  
TCK  
VCC  
T4  
VPUMP  
GND  
T5  
TRST  
VCCIB3  
T6  
GDA0/IO153NDB3V4  
IO144NDB3V3  
IO140NDB3V3  
IO142PDB3V3  
IO239PDB6V0  
IO240NPB6V0  
GDB0/IO152NPB3V4  
IO136NDB3V2  
IO136PDB3V2  
IO138PDB3V3  
VMV3  
T7  
T8  
GNDQ  
T9  
GEA2/IO233PPB5V4  
IO206NDB5V1  
IO202NDB5V1  
T10  
T11  
V2  
Revision 5  
4-27  
Package Pin Assignments  
FG484  
Pin  
FG484  
Pin  
Number  
A3PE3000L Function  
Number  
A3PE3000L Function  
IO154NDB4V0  
GDA2/IO154PDB4V0  
TMS  
V3  
GND  
GEA1/IO234PDB6V0  
GEA0/IO234NDB6V0  
GNDQ  
W16  
W17  
W18  
W19  
W20  
W21  
W22  
Y1  
V4  
V5  
V6  
GND  
V7  
GEC2/IO231PDB5V4  
IO222NPB5V3  
IO204NDB5V1  
IO204PDB5V1  
IO195NDB5V0  
IO195PDB5V0  
IO178NDB4V3  
IO178PDB4V3  
IO155NDB4V0  
GDB2/IO155PDB4V0  
TDI  
IO150NDB3V4  
IO146NDB3V4  
IO148PPB3V4  
VCCIB6  
V8  
V9  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
W1  
Y2  
IO237NDB6V0  
IO228NDB5V4  
IO224NDB5V3  
GND  
Y3  
Y4  
Y5  
Y6  
IO220NDB5V3  
IO220PDB5V3  
VCC  
Y7  
Y8  
GNDQ  
Y9  
VCC  
TDO  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
IO200PDB5V0  
IO192PDB4V4  
IO188NPB4V4  
IO187PSB4V4  
VCC  
GND  
IO146PDB3V4  
IO142NDB3V3  
IO239NDB6V0  
IO237PDB6V0  
IO230PSB5V4  
GND  
W2  
VCC  
W3  
IO164NDB4V1  
IO164PDB4V1  
GND  
W4  
W5  
IO232NDB5V4  
FF/GEB2/IO232PDB5V4  
IO231NDB5V4  
IO214NDB5V2  
IO214PDB5V2  
IO200NDB5V0  
IO192NDB4V4  
IO184NDB4V3  
IO184PDB4V3  
IO156NDB4V0  
GDC2/IO156PDB4V0  
W6  
IO158PPB4V0  
IO150PDB3V4  
IO148NPB3V4  
VCCIB3  
W7  
W8  
W9  
W10  
W11  
W12  
W13  
W14  
W15  
4-28  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
FG896  
A1 Ball Pad Corner  
30 29 28 27 26 2524 23 22 21 20 1918 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA  
AB  
AC  
AD  
AE  
AF  
AG  
AH  
AJ  
AK  
Note: This is the bottom view.  
Note  
For Package Manufacturing and Environmental information, visit the Resource Center at  
http://www.microsemi.com/products/fpga-soc/solutions.  
Revision 5  
4-29  
Package Pin Assignments  
FG896  
FG896  
FG896  
Pin Number A3PE3000L Function  
Pin Number A3PE3000L Function  
Pin Number A3PE3000L Function  
A2  
A3  
GND  
GND  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
AA22  
AA23  
AA24  
AA25  
AA26  
AA27  
AA28  
AA29  
AA30  
AB1  
GEB1/IO235PPB6V0  
VCC  
AB15  
AB16  
AB17  
AB18  
AB19  
AB20  
AB21  
AB22  
AB23  
AB24  
AB25  
AB26  
AB27  
AB28  
AB29  
AB30  
AC1  
IO198PDB5V0  
IO192NDB4V4  
IO192PDB4V4  
IO178NDB4V3  
IO178PDB4V3  
IO174NDB4V2  
IO162NPB4V1  
VCC  
A4  
IO14NPB0V1  
GND  
IO226PPB5V4  
VCCIB5  
A5  
A6  
IO07NPB0V0  
GND  
VCCIB5  
A7  
VCCIB5  
A8  
IO09NDB0V1  
IO17NDB0V2  
IO17PDB0V2  
IO21NDB0V2  
IO21PDB0V2  
IO33NDB0V4  
IO33PDB0V4  
IO35NDB0V4  
IO35PDB0V4  
IO41NDB1V0  
IO43NDB1V0  
IO43PDB1V0  
IO45NDB1V0  
IO45PDB1V0  
IO57NDB1V2  
IO57PDB1V2  
GND  
VCCIB5  
A9  
VCCIB4  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
A22  
A23  
A24  
A25  
A26  
A27  
A28  
A29  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
VCCIB4  
VCCPLD  
VCCIB4  
VCCIB3  
VCCIB4  
IO150PDB3V4  
IO148PDB3V4  
IO147NDB3V4  
IO145PDB3V3  
IO143PDB3V3  
IO137PDB3V2  
IO254PDB6V2  
IO254NDB6V2  
IO240PDB6V0  
GEC1/IO236PDB6V0  
IO237PDB6V0  
IO237NDB6V0  
VCOMPLE  
IO174PDB4V2  
VCC  
IO142NPB3V3  
IO144NDB3V3  
IO144PDB3V3  
IO146NDB3V4  
IO146PDB3V4  
IO147PDB3V4  
IO139NDB3V3  
IO139PDB3V3  
IO133NDB3V2  
IO256NDB6V2  
IO244PDB6V1  
IO244NDB6V1  
IO241PDB6V0  
IO241NDB6V0  
IO243NPB6V1  
VCCIB6  
AC2  
AC3  
AC4  
AC5  
AC6  
AC7  
IO69PPB1V3  
GND  
AB2  
AC8  
GND  
AB3  
AC9  
IO226NPB5V4  
IO222NDB5V3  
IO216NPB5V2  
IO210NPB5V2  
IO204NDB5V1  
IO204PDB5V1  
IO194NDB5V0  
IO188NDB4V4  
IO188PDB4V4  
IO182PPB4V3  
IO170NPB4V2  
IO164NDB4V1  
GBC1/IO79PPB1V4  
GND  
AB4  
AC10  
AC11  
AC12  
AC13  
AC14  
AC15  
AC16  
AC17  
AC18  
AC19  
AC20  
AB5  
GND  
AB6  
IO256PDB6V2  
IO248PDB6V1  
IO248NDB6V1  
IO246NDB6V1  
GEA1/IO234PDB6V0  
GEA0/IO234NDB6V0  
IO243PPB6V1  
IO245NDB6V1  
AB7  
AB8  
VCCPLE  
AB9  
VCC  
AB10  
AB11  
AB12  
AB13  
AB14  
IO222PDB5V3  
IO218PPB5V3  
IO206NDB5V1  
IO206PDB5V1  
IO198NDB5V0  
4-30  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
FG896  
FG896  
Pin Number A3PE3000L Function  
FG896  
Pin Number A3PE3000L Function  
Pin Number A3PE3000L Function  
AC21  
AC22  
AC23  
AC24  
AC25  
AC26  
AC27  
AC28  
AC29  
AC30  
AD1  
IO164PDB4V1  
IO162PPB4V1  
GND  
AD26  
AD27  
AD28  
AD29  
AD30  
AE1  
VCCIB3  
GDA0/IO153NDB3V4  
GDC0/IO151NDB3V4  
GDC1/IO151PDB3V4  
GND  
AE30  
AF1  
IO149PDB3V4  
GND  
AF2  
IO238PPB6V0  
VCCIB6  
VCOMPLD  
AF3  
IO150NDB3V4  
IO148NDB3V4  
GDA1/IO153PDB3V4  
IO145NDB3V3  
IO143NDB3V3  
IO137NDB3V2  
GND  
AF4  
IO220NPB5V3  
VCC  
IO242PPB6V1  
VCC  
AF5  
AE2  
AF6  
IO228NDB5V4  
VCCIB5  
AE3  
IO239PDB6V0  
IO239NDB6V0  
VMV6  
AF7  
AE4  
AF8  
IO230PDB5V4  
IO229NDB5V4  
IO229PDB5V4  
IO214PPB5V2  
IO208NDB5V1  
IO208PDB5V1  
IO200PDB5V0  
IO196NDB5V0  
IO186NDB4V4  
IO186PDB4V4  
IO180NDB4V3  
IO180PDB4V3  
IO168NDB4V1  
IO168PDB4V1  
IO160NDB4V0  
IO158NPB4V0  
VCCIB4  
AE5  
AF9  
AE5  
VMV6  
AF10  
AF11  
AF12  
AF13  
AF14  
AF15  
AF16  
AF17  
AF18  
AF19  
AF20  
AF21  
AF22  
AF23  
AF24  
AF25  
AF26  
AF27  
AF28  
AF29  
AF29  
AF30  
AG1  
AD2  
IO242NPB6V1  
IO240NDB6V0  
GEC0/IO236NDB6V0  
VCCIB6  
AE6  
GND  
AD3  
AE7  
GNDQ  
AD4  
AE8  
IO230NDB5V4  
IO224NPB5V3  
IO214NPB5V2  
IO212NDB5V2  
IO212PDB5V2  
IO202NPB5V1  
IO200NDB5V0  
IO196PDB5V0  
IO190NDB4V4  
IO184PDB4V3  
IO184NDB4V3  
IO172PDB4V2  
IO172NDB4V2  
IO166NDB4V1  
IO160PDB4V0  
GNDQ  
AD5  
AE9  
AD6  
GNDQ  
AE10  
AE11  
AE12  
AE13  
AE14  
AE15  
AE16  
AE17  
AE18  
AE19  
AE20  
AE21  
AE22  
AE23  
AE24  
AE25  
AE26  
AE27  
AE28  
AE28  
AE29  
AD6  
GNDQ  
AD7  
VCC  
AD8  
VMV5  
AD9  
VCCIB5  
AD10  
AD11  
AD12  
AD13  
AD14  
AD15  
AD16  
AD17  
AD18  
AD19  
AD20  
AD21  
AD22  
AD23  
AD24  
AD25  
IO224PPB5V3  
IO218NPB5V3  
IO216PPB5V2  
IO210PPB5V2  
IO202PPB5V1  
IO194PDB5V0  
IO190PDB4V4  
IO182NPB4V3  
IO176NDB4V2  
IO176PDB4V2  
IO170PPB4V2  
IO166PDB4V1  
VCCIB4  
IO154NPB4V0  
VCC  
TDO  
VCCIB3  
VMV4  
GNDQ  
GND  
GNDQ  
GDB0/IO152NDB3V4  
GDB1/IO152PDB3V4  
VMV3  
GND  
IO238NPB6V0  
VCC  
TCK  
AG2  
VCC  
VMV3  
AG3  
IO232NPB5V4  
GND  
TRST  
VCC  
AG4  
Revision 5  
4-31  
Package Pin Assignments  
FG896  
FG896  
FG896  
Pin Number A3PE3000L Function  
Pin Number A3PE3000L Function  
Pin Number A3PE3000L Function  
AG5  
AG6  
IO220PPB5V3  
IO228PDB5V4  
IO231NDB5V4  
GEC2/IO231PDB5V4  
IO225NPB5V3  
IO223NPB5V3  
IO221PDB5V3  
IO221NDB5V3  
IO205NPB5V1  
IO199NDB5V0  
IO199PDB5V0  
IO187NDB4V4  
IO187PDB4V4  
IO181NDB4V3  
IO171PPB4V2  
IO165NPB4V1  
IO161NPB4V0  
IO159NDB4V0  
IO159PDB4V0  
IO158PPB4V0  
GDB2/IO155PDB4V0  
GDA2/IO154PPB4V0  
GND  
AH10  
AH11  
AH12  
AH13  
AH14  
AH15  
AH16  
AH17  
AH18  
AH19  
AH20  
AH21  
AH22  
AH23  
AH24  
AH25  
AH26  
AH27  
AH28  
AH29  
AH30  
AJ1  
IO225PPB5V3  
IO223PPB5V3  
IO211NDB5V2  
IO211PDB5V2  
IO205PPB5V1  
IO195NDB5V0  
IO185NDB4V3  
IO185PDB4V3  
IO181PDB4V3  
IO177NDB4V2  
IO171NPB4V2  
IO165PPB4V1  
IO161PPB4V0  
IO157NDB4V0  
IO157PDB4V0  
IO155NDB4V0  
VCCIB4  
AJ16  
AJ17  
AJ18  
AJ19  
AJ20  
AJ21  
AJ22  
AJ23  
AJ24  
AJ25  
AJ26  
AJ27  
AJ28  
AJ29  
AJ30  
AK2  
IO183NDB4V3  
IO183PDB4V3  
IO179NPB4V3  
IO177PDB4V2  
IO173NDB4V2  
IO173PDB4V2  
IO163NDB4V1  
IO163PDB4V1  
IO167NPB4V1  
VCC  
AG7  
AG8  
AG9  
AG10  
AG11  
AG12  
AG13  
AG14  
AG15  
AG16  
AG17  
AG18  
AG19  
AG20  
AG21  
AG22  
AG23  
AG24  
AG25  
AG26  
AG27  
AG28  
AG29  
AG30  
AH1  
IO156NPB4V0  
VCC  
TMS  
GND  
GND  
GND  
AK3  
GND  
TDI  
AK4  
IO217PPB5V2  
GND  
VCC  
AK5  
VPUMP  
AK6  
IO215PPB5V2  
GND  
GND  
AK7  
GND  
AK8  
IO207NDB5V1  
IO207PDB5V1  
IO201NDB5V0  
IO201PDB5V0  
IO193NDB4V4  
IO193PDB4V4  
IO197PDB5V0  
IO191NDB4V4  
IO191PDB4V4  
IO189NDB4V4  
IO189PDB4V4  
IO179PPB4V3  
IO175NDB4V2  
IO175PDB4V2  
IO169NDB4V1  
AJ2  
GND  
AK9  
VJTAG  
AJ3  
GEA2/IO233PPB5V4  
VCC  
AK10  
AK11  
AK12  
AK13  
AK14  
AK15  
AK16  
AK17  
AK18  
AK19  
AK20  
AK21  
AK22  
VCC  
AJ4  
IO149NDB3V4  
GND  
AJ5  
IO217NPB5V2  
VCC  
AJ6  
AH2  
IO233NPB5V4  
VCC  
AJ7  
IO215NPB5V2  
IO213NDB5V2  
IO213PDB5V2  
IO209NDB5V1  
IO209PDB5V1  
IO203NDB5V1  
IO203PDB5V1  
IO197NDB5V0  
IO195PDB5V0  
AH3  
AJ8  
AH4  
FF/GEB2/IO232PPB5  
V4  
AJ9  
AJ10  
AJ11  
AJ12  
AJ13  
AJ14  
AJ15  
AH5  
AH6  
AH7  
AH8  
AH9  
VCCIB5  
IO219NDB5V3  
IO219PDB5V3  
IO227NDB5V4  
IO227PDB5V4  
4-32  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
FG896  
FG896  
Pin Number A3PE3000L Function  
FG896  
Pin Number A3PE3000L Function  
Pin Number A3PE3000L Function  
AK23  
AK24  
AK25  
AK26  
AK27  
AK28  
AK29  
B1  
IO169PDB4V1  
GND  
B30  
C1  
GND  
GND  
D6  
D7  
GAC1/IO02PDB0V0  
IO06NPB0V0  
GAB0/IO01NDB0V0  
IO05NDB0V0  
IO11NDB0V1  
IO11PDB0V1  
IO23NDB0V2  
IO23PDB0V2  
IO27PDB0V3  
IO40PDB0V4  
IO47NDB1V0  
IO47PDB1V0  
IO55NPB1V1  
IO65NDB1V3  
IO65PDB1V3  
IO71NDB1V3  
IO71PDB1V3  
IO73NDB1V4  
IO73PDB1V4  
IO74NDB1V4  
GBB0/IO80NPB1V4  
GND  
IO167PPB4V1  
GND  
C2  
IO309NPB7V4  
VCC  
D8  
C3  
D9  
GDC2/IO156PPB4V0  
GND  
C4  
GAA0/IO00NPB0V0  
VCCIB0  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
E1  
C5  
GND  
C6  
IO03PDB0V0  
IO03NDB0V0  
GAB1/IO01PDB0V0  
IO05PDB0V0  
IO15NPB0V1  
IO25NDB0V3  
IO25PDB0V3  
IO31NPB0V3  
IO27NDB0V3  
IO39NDB0V4  
IO39PDB0V4  
IO55PPB1V1  
IO51PDB1V1  
IO59NDB1V2  
IO63NDB1V2  
IO63PDB1V2  
IO67NDB1V3  
IO67PDB1V3  
IO75NDB1V4  
IO75PDB1V4  
VCCIB1  
GND  
C7  
B2  
GND  
C8  
B3  
GAA2/IO309PPB7V4  
VCC  
C9  
B4  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
C27  
C28  
C29  
C30  
D1  
B5  
IO14PPB0V1  
VCC  
B6  
B7  
IO07PPB0V0  
IO09PDB0V1  
IO15PPB0V1  
IO19NDB0V2  
IO19PDB0V2  
IO29NDB0V3  
IO29PDB0V3  
IO31PPB0V3  
IO37NDB0V4  
IO37PDB0V4  
IO41PDB1V0  
IO51NDB1V1  
IO59PDB1V2  
IO53PDB1V1  
IO53NDB1V1  
IO61NDB1V2  
IO61PDB1V2  
IO69NPB1V3  
VCC  
B8  
B9  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
B22  
B23  
B24  
B25  
B26  
B27  
B28  
B29  
GBA0/IO81NPB1V4  
VCC  
GBA2/IO82PPB2V0  
GND  
E2  
IO303NPB7V3  
VCCIB7  
IO64PPB1V2  
VCC  
E3  
E4  
IO305PPB7V3  
VCC  
GBA1/IO81PPB1V4  
GND  
E5  
E6  
GAC0/IO02NDB0V0  
VCCIB0  
IO303PPB7V3  
VCC  
E7  
GBC0/IO79NPB1V4  
VCC  
D2  
E8  
IO06PPB0V0  
IO24NDB0V2  
IO24PDB0V2  
IO13NDB0V1  
D3  
IO305NPB7V3  
GND  
E9  
IO64NPB1V2  
GND  
D4  
E10  
E11  
D5  
GAA1/IO00PPB0V0  
Revision 5  
4-33  
Package Pin Assignments  
FG896  
FG896  
FG896  
Pin Number A3PE3000L Function  
Pin Number A3PE3000L Function  
Pin Number A3PE3000L Function  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
E21  
E22  
E23  
E24  
E25  
E26  
E27  
E28  
E29  
E30  
F1  
IO13PDB0V1  
IO34NDB0V4  
IO34PDB0V4  
IO40NDB0V4  
IO49NDB1V1  
IO49PDB1V1  
IO50PDB1V1  
IO58PDB1V2  
IO60NDB1V2  
IO77PDB1V4  
IO68NDB1V3  
IO68PDB1V3  
VCCIB1  
F17  
F18  
F19  
F20  
F21  
F22  
F23  
F24  
F25  
F26  
F26  
F27  
F28  
F29  
F30  
G1  
IO48PDB1V0  
IO50NDB1V1  
IO58NDB1V2  
IO60PDB1V2  
IO77NDB1V4  
IO72NDB1V3  
IO72PDB1V3  
GNDQ  
G21  
G22  
G23  
G24  
G25  
G25  
G26  
G27  
G28  
G29  
G30  
H1  
IO66PDB1V3  
VCCIB1  
VMV1  
VCC  
GNDQ  
GNDQ  
VCCIB2  
IO86NDB2V0  
IO92NDB2V1  
IO100PPB2V2  
GND  
GND  
VMV2  
VMV2  
IO86PDB2V0  
IO92PDB2V1  
VCC  
IO294PDB7V2  
IO294NDB7V2  
IO300NDB7V3  
IO300PDB7V3  
IO295PDB7V2  
IO299PDB7V3  
VCOMPLA  
GND  
H2  
IO74PDB1V4  
VCC  
H3  
IO100NPB2V2  
GND  
H4  
GBB1/IO80PPB1V4  
VCCIB2  
H5  
G2  
IO296NPB7V2  
IO306NDB7V4  
IO297NDB7V2  
VCCIB7  
H6  
IO82NPB2V0  
GND  
G3  
H7  
G4  
H8  
IO296PPB7V2  
VCC  
G5  
H9  
IO08NDB0V0  
IO08PDB0V0  
IO18PDB0V2  
IO26NPB0V3  
IO28NDB0V3  
IO28PDB0V3  
IO38PPB0V4  
IO42NDB1V0  
IO52NDB1V1  
IO52PDB1V1  
IO62NDB1V2  
IO62PDB1V2  
IO70NDB1V3  
IO70PDB1V3  
GND  
F2  
G6  
GNDQ  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
H21  
H22  
H23  
H24  
H25  
F3  
IO306PDB7V4  
IO297PDB7V2  
VMV7  
G6  
GNDQ  
F4  
G7  
VCC  
F5  
G8  
VMV0  
F5  
VMV7  
G9  
VCCIB0  
F6  
GND  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
IO10NDB0V1  
IO16NDB0V1  
IO22PDB0V2  
IO26PPB0V3  
IO38NPB0V4  
IO36NDB0V4  
IO46NDB1V0  
IO46PDB1V0  
IO56NDB1V1  
IO56PDB1V1  
IO66NDB1V3  
F7  
GNDQ  
F8  
IO12NDB0V1  
IO12PDB0V1  
IO10PDB0V1  
IO16PDB0V1  
IO22NDB0V2  
IO30NDB0V3  
IO30PDB0V3  
IO36PDB0V4  
IO48NDB1V0  
F9  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
VCOMPLB  
GBC2/IO84PDB2V0  
4-34  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
FG896  
Pin Number A3PE3000L Function  
H26  
H27  
H28  
H29  
H30  
J1  
IO84NDB2V0  
IO96PDB2V1  
IO96NDB2V1  
IO89PDB2V0  
IO89NDB2V0  
IO290NDB7V2  
IO290PDB7V2  
IO302NDB7V3  
IO302PDB7V3  
IO295NDB7V2  
IO299NDB7V3  
VCCIB7  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
VCCPLA  
J9  
VCC  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18  
J19  
J20  
J21  
J22  
J23  
J24  
J25  
J26  
J27  
J28  
J29  
J30  
K1  
IO04NPB0V0  
IO18NDB0V2  
IO20NDB0V2  
IO20PDB0V2  
IO32NDB0V3  
IO32PDB0V3  
IO42PDB1V0  
IO44NDB1V0  
IO44PDB1V0  
IO54NDB1V1  
IO54PDB1V1  
IO76NPB1V4  
VCC  
VCCPLB  
VCCIB2  
IO90PDB2V1  
IO90NDB2V1  
GBB2/IO83PDB2V0  
IO83NDB2V0  
IO91PDB2V1  
IO91NDB2V1  
IO288NDB7V1  
Revision 5  
4-35  
Package Pin Assignments  
FG896  
Pin Number A3PE3000L Function  
K2  
K3  
IO288PDB7V1  
IO304NDB7V3  
IO304PDB7V3  
GAB2/IO308PDB7V4  
IO308NDB7V4  
IO301PDB7V3  
IO301NDB7V3  
GAC2/IO307PPB7V4  
VCC  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
K21  
K22  
K23  
K24  
K25  
K26  
K27  
K28  
K29  
K30  
L1  
IO04PPB0V0  
VCCIB0  
VCCIB0  
VCCIB0  
VCCIB0  
VCCIB1  
VCCIB1  
VCCIB1  
VCCIB1  
IO76PPB1V4  
VCC  
IO78PPB1V4  
IO88NDB2V0  
IO88PDB2V0  
IO94PDB2V1  
IO94NDB2V1  
IO85PDB2V0  
IO85NDB2V0  
IO93PDB2V1  
IO93NDB2V1  
IO286NDB7V1  
IO286PDB7V1  
IO298NDB7V3  
IO298PDB7V3  
IO283PDB7V1  
IO291NDB7V2  
IO291PDB7V2  
L2  
L3  
L4  
L5  
L6  
L7  
4-36  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
FG896  
Pin Number A3PE3000L Function  
L8  
L9  
IO293PDB7V2  
IO293NDB7V2  
IO307NPB7V4  
VCC  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
L21  
L22  
L23  
L24  
L25  
L26  
L27  
L28  
L29  
L30  
M1  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
IO78NPB1V4  
IO104NPB2V2  
IO98NDB2V2  
IO98PDB2V2  
IO87PDB2V0  
IO87NDB2V0  
IO97PDB2V1  
IO101PDB2V2  
IO103PDB2V2  
IO119NDB3V0  
IO282NDB7V1  
IO282PDB7V1  
IO292NDB7V2  
IO292PDB7V2  
IO283NDB7V1  
IO285PDB7V1  
IO287PDB7V1  
IO289PDB7V1  
IO289NDB7V1  
VCCIB7  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
VCC  
GND  
GND  
Revision 5  
4-37  
Package Pin Assignments  
FG896  
Pin Number A3PE3000L Function  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
M21  
M22  
M23  
M24  
M25  
M26  
M27  
M28  
M29  
M30  
N1  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCCIB2  
NC  
IO104PPB2V2  
IO102PDB2V2  
IO102NDB2V2  
IO95PDB2V1  
IO97NDB2V1  
IO101NDB2V2  
IO103NDB2V2  
IO119PDB3V0  
IO276PDB7V0  
IO278PDB7V0  
IO280PDB7V0  
IO284PDB7V1  
IO279PDB7V0  
IO285NDB7V1  
IO287NDB7V1  
IO281NDB7V0  
IO281PDB7V0  
VCCIB7  
N2  
N3  
N4  
N5  
N6  
N7  
N8  
N9  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
4-38  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
FG896  
Pin Number A3PE3000L Function  
N20  
N21  
N22  
N23  
N24  
N25  
N26  
N27  
N28  
N29  
N30  
P1  
VCC  
VCCIB2  
IO106NDB2V3  
IO106PDB2V3  
IO108PDB2V3  
IO108NDB2V3  
IO95NDB2V1  
IO99NDB2V2  
IO99PDB2V2  
IO107PDB2V3  
IO107NDB2V3  
IO276NDB7V0  
IO278NDB7V0  
IO280NDB7V0  
IO284NDB7V1  
IO279NDB7V0  
GFC1/IO275PDB7V0  
GFC0/IO275NDB7V0  
IO277PDB7V0  
IO277NDB7V0  
VCCIB7  
P2  
P3  
P4  
P5  
P6  
P7  
P8  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
P21  
P22  
P23  
P24  
P25  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCCIB2  
GCC1/IO112PDB2V3  
IO110PDB2V3  
IO110NDB2V3  
IO109PPB2V3  
Revision 5  
4-39  
Package Pin Assignments  
FG896  
Pin Number A3PE3000L Function  
P26  
P27  
P28  
P29  
P30  
R1  
IO111NPB2V3  
IO105PDB2V2  
IO105NDB2V2  
GCC2/IO117PDB3V0  
IO117NDB3V0  
GFC2/IO270PDB6V4  
GFB1/IO274PPB7V0  
VCOMPLF  
R2  
R3  
R4  
GFA0/IO273NDB6V4  
GFB0/IO274NPB7V0  
IO271NDB6V4  
GFB2/IO271PDB6V4  
IO269PDB6V4  
IO269NDB6V4  
VCCIB7  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
T1  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCCIB2  
GCC0/IO112NDB2V3  
GCB2/IO116PDB3V0  
IO118PDB3V0  
IO111PPB2V3  
IO122PPB3V1  
GCA0/IO114NPB3V0  
VCOMPLC  
GCB1/IO113PPB2V3  
IO115NPB3V0  
IO270NDB6V4  
4-40  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
FG896  
Pin Number A3PE3000L Function  
T2  
T3  
VCCPLF  
GFA2/IO272PPB6V4  
GFA1/IO273PDB6V4  
IO272NPB6V4  
IO267NDB6V4  
IO267PDB6V4  
IO265PDB6V3  
IO263PDB6V3  
VCCIB6  
T4  
T5  
T6  
T7  
T8  
T9  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
T21  
T22  
T23  
T24  
T25  
T26  
T27  
T28  
T29  
T30  
U1  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCCIB3  
IO109NPB2V3  
IO116NDB3V0  
IO118NDB3V0  
IO122NPB3V1  
GCA1/IO114PPB3V0  
GCB0/IO113NPB2V3  
GCA2/IO115PPB3V0  
VCCPLC  
IO121PDB3V0  
IO268PDB6V4  
IO264NDB6V3  
IO264PDB6V3  
IO258PDB6V3  
IO258NDB6V3  
IO257PPB6V2  
IO261PPB6V3  
U2  
U3  
U4  
U5  
U6  
U7  
Revision 5  
4-41  
Package Pin Assignments  
FG896  
Pin Number A3PE3000L Function  
U8  
U9  
IO265NDB6V3  
IO263NDB6V3  
VCCIB6  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
U21  
U22  
U23  
U24  
U25  
U26  
U27  
U28  
U29  
U30  
V1  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCCIB3  
IO120PDB3V0  
IO128PDB3V1  
IO124PDB3V1  
IO124NDB3V1  
IO126PDB3V1  
IO129PDB3V1  
IO127PDB3V1  
IO125PDB3V1  
IO121NDB3V0  
IO268NDB6V4  
IO262PDB6V3  
IO260PDB6V3  
IO252PDB6V2  
IO257NPB6V2  
IO261NPB6V3  
IO255PDB6V2  
IO259PDB6V3  
IO259NDB6V3  
VCCIB6  
V2  
V3  
V4  
V5  
V6  
V7  
V8  
V9  
V10  
V11  
V12  
V13  
VCC  
GND  
GND  
4-42  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
FG896  
Pin Number A3PE3000L Function  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
V21  
V22  
V23  
V24  
V25  
V26  
V27  
V28  
V29  
V30  
W1  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
VCCIB3  
IO120NDB3V0  
IO128NDB3V1  
IO132PDB3V2  
IO130PPB3V2  
IO126NDB3V1  
IO129NDB3V1  
IO127NDB3V1  
IO125NDB3V1  
IO123PDB3V1  
IO266NDB6V4  
IO262NDB6V3  
IO260NDB6V3  
IO252NDB6V2  
IO251NDB6V2  
IO251PDB6V2  
IO255NDB6V2  
IO249PPB6V1  
IO253PDB6V2  
VCCIB6  
W2  
W3  
W4  
W5  
W6  
W7  
W8  
W9  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Revision 5  
4-43  
Package Pin Assignments  
FG896  
Pin Number A3PE3000L Function  
W20  
W21  
W22  
W23  
W24  
W25  
W26  
W27  
W28  
W29  
W30  
Y1  
VCC  
VCCIB3  
IO134PDB3V2  
IO138PDB3V3  
IO132NDB3V2  
IO136NPB3V2  
IO130NPB3V2  
IO141PDB3V3  
IO135PDB3V2  
IO131PDB3V2  
IO123NDB3V1  
IO266PDB6V4  
IO250PDB6V2  
IO250NDB6V2  
IO246PDB6V1  
IO247NDB6V1  
IO247PDB6V1  
IO249NPB6V1  
IO245PDB6V1  
IO253NDB6V2  
GEB0/IO235NPB6V0  
VCC  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Y8  
Y9  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Y21  
Y22  
Y23  
Y24  
Y25  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
VCC  
IO142PPB3V3  
IO134NDB3V2  
IO138NDB3V3  
IO140NDB3V3  
IO140PDB3V3  
4-44  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
FG896  
Pin Number A3PE3000L Function  
Y26  
Y27  
Y28  
Y29  
Y30  
IO136PPB3V2  
IO141NDB3V3  
IO135NDB3V2  
IO131NDB3V2  
IO133PDB3V2  
Revision 5  
4-45  
5 – Datasheet Information  
List of Changes  
The following table lists critical changes that were made in each revision of the datasheet.  
Revision  
Changes  
Page  
I-II  
Revision 5  
Updated FG896 package in the "I/Os Per Package 1" table (SAR34171).  
(September 2014)  
Removed reference to JTAG interface operated at 3.3 V from "Advanced Architecture"  
section (SAR 34686).  
1-4  
Fixed table note (1) in Table 2-1 (SAR 47815).  
2-1  
2-2  
Deleted ambient temp row and modified notes in Table 2-2 (SAR 59413).  
Removed "5 V-tolerant input buffer and push-pull output buffer" from "2.5 V LVCMOS"  
section" (SAR 24916).  
2-49  
Removed table notes referencing +/-5% and 350mV differential voltage from  
Table 2-160 (SAR 34810).  
2-86  
DDR frequency added to Table 2-182, Table 2-183, Table 2-184, Table 2-186, 2-105–  
Table 2-187, Table 2-188 (SAR 56034).  
2-109  
Table note (3) added to Table 2-201 and Table 2-202 to clarify delay increments  
2-123  
(SAR 34821).  
Terminology clarified in Table 2-203, Table 2-204, Table 2-205, Table 2-206, 2-129 -  
Table 2-207, Table 2-208, Table 2-209, Table 2-210, Table 2-211, Table 2-212, 2-145  
Table 2-213, Table 2-214, Table 2-215, Table 2-216, Figure 2-44, Figure 2-45, Figure  
2-46, Figure 2-47, Figure 2-48, and Figure 2-50 (SAR 38237).  
Revised statement in "VMVx I/O Supply Voltage (quiet)" section per (SAR 38324).  
Libero IDE revised to SoC throughout (SAR 40287).  
3-1  
N/A  
Revision 4  
(April 2014)  
Added FG256 under A3P1000 in Table 1 • Military ProASIC3/EL Low-Power Devices, I, III, 2-6  
in "I/Os Per Package 1", "Temperature Grade Offerings", "FG256" section, and and 4-9  
Table 2-5 • Package Thermal Resistivities (SAR 56384). Added Note for Speed Grade  
in "Military ProASIC3/EL Ordering Information" section. Also added missing details for  
FG484 for A3P1000 to Table 2-5 • Package Thermal Resistivities (SAR 56384).  
Added details related to Speed Grade 2 to the "Military ProASIC3/EL Ordering  
Information" section and the "Speed Grade and Temperature Grade Matrix" section  
(SAR 56384).  
III  
Changed Actel references to Microsemi.  
NA  
1-2  
Revision 3  
(Sept 2012)  
The "Security" section was modified to clarify that Microsemi does not support read-  
back of programmed data.  
Revision 2  
(June 2012)  
The FG484 package was added for A3P1000 in Table 1 • Military ProASIC3/EL Low- I, II, III  
Power Devices, the I/Os Per Package 1 table, and the "Temperature Grade Offerings"  
table (SAR 39010).  
The "FG484" pin table for A3P1000 has been added (SAR 39010).  
4-19  
Revision 5  
5-1  
Datasheet Information  
Revision  
Changes  
Page  
Revision 1  
(June 2011)  
In the "High Performance" section, 66-Bit PCI was corrected to 64-Bit PCI (SAR  
31977).  
I
The A3P250 device and VQ100 package were added to product tables in the "Military  
ProASIC3/EL Low Power Flash FPGAs" chapter (SAR 30526).  
I
The Y security option and Licensed DPA Logo were added to the "Military  
ProASIC3/EL Ordering Information" section. The trademarked Licensed DPA Logo  
identifies that a product is covered by a DPA counter-measures license from  
Cryptography Research (SAR 32151).  
III  
The A3P250 device was added to applicable tables in the "Military ProASIC3/EL DC  
and Switching Characteristics" chapter (SAR 30526).  
2-1  
2-2  
The VPUMP voltage for operation mode was changed from "0 to 3.45 V" to "0 to 3.6  
V" in Table 2-2 • Recommended Operating Conditions 1(SAR 25220).  
3.3 V LVCMOS wide range and 1.2 V LVCMOS wide range were added to applicable  
tables in the following sections (SAR 28061):  
Table 2-2 • Recommended Operating Conditions 1  
2-2  
2-9  
"Power per I/O Pin"  
2-22  
2-25  
2-18  
2-29  
2-37  
"Overview of I/O Performance"  
"Summary of I/O Timing Characteristics – Default I/O Software Settings"  
"User I/O Characteristics"  
"Detailed I/O DC Characteristics"  
"Single-Ended I/O Characteristics" (SAR 31925)  
5-2  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Revision  
Changes  
Page  
Revision 1  
(continued)  
The "Quiescent Supply Current " section was updated.  
2-7  
Table 2-8 • Power Supply State Per Mode is new (SAR 24882, 24112, 32549).  
New values were added to the following tables (SAR 30619):  
Table 2-9 • Quiescent Supply Current (IDD) Characteristics, Flash*Freeze Mode*  
Table 2-11 • Quiescent Supply Current (IDD) Characteristics, Shutdown Mode*  
Table 2-12 • Quiescent Supply Current (IDD), Static Mode and Active Mode 1 (the  
name of this table changed from "No Flash*Freeze Mode" to "Static Mode and Active  
Mode" per SAR 32549)  
Table 2-13 • Quiescent Supply Current (IDD) Characteristics for A3P250 and  
A3P1000  
The military maximum current for A3P1000 was revised in the following table (SAR  
30620):  
Table 2-13 • Quiescent Supply Current (IDD) Characteristics for A3P250 and  
A3P1000  
All timing and power tables were updated to reflect changes in the software resulting 2-9 to  
from characterization and bug fixes (SAR 32394).  
2-146  
In the following tables for A3P250 and A3P1000, the note regarding dynamic power 2-12,  
was revised to, "Dynamic Power consumption is given for software default drive  
strength and output slew. Output load is lower than the software default" (SAR 32449).  
2-12  
Table 2-18 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software  
Settings 1  
Table 2-19 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software  
Settings  
Values for A3PE600L and A3P250 were added to Table 2-21 • Different Components 2-13,  
Contributing to Dynamic Power Consumption in Military ProASIC3 and ProASIC3/EL  
Devices at 1.5 V VCC. Values in the table, and in Table 2-20 • Different Components  
Contributing to Dynamic Power Consumption in Military ProASIC3/EL Devices  
Operating at 1.2 V VCC, were updated were updated to reflect changes in the  
software resulting from characterization and bug fixes (SAR 30528).  
2-14  
Table 2-22 • Different Components Contributing to the Static Power Consumption in 2-14,  
Military ProASIC3/EL Devices and the "Total Static Power Consumption—PSTAT  
"
2-15  
calculation were updated to add PDC0 (SAR 32549).  
The "Timing Model" was updated (SAR 29793).  
2-18  
2-25  
The title of Table 2-29 • Summary of AC Measuring Points was changed from  
"Summary of AC Memory Points" (SAR 32446).  
The following note was added to Table 2-31, and Table 2-32, Summary of I/O Timing  
Characteristics (SAR 32449):  
2-26  
"Output delays provided in this table were extracted with an output load indicated in  
the Capacitive Load column. For a specific output load, refer to Designer software."  
Resistances and short circuit currents were updated (SARs 29793, 31717):  
Table 2-36 • I/O Output Buffer Maximum Resistances 1 Applicable to Pro I/Os for  
2-30 to  
2-33  
A3PE600L and A3PE3000L Only  
Table 2-40 • I/O Short Currents IOSH/IOSL Applicable to Pro I/Os for A3PE600L and  
A3PE3000L Only (SAR 31717)  
Tables for Pro I/Os in the "Single-Ended I/O Characteristics" section (SAR 31717).  
Revision 5  
5-3  
Datasheet Information  
Revision  
Changes  
Page  
Revision 1  
(continued)  
The drive strength was changed from 25 mA to 20 mA for 3.3 V and 2.5 V GTL  
(SAR 31978). This affects the following tables:  
2-22  
2-26  
2-27  
2-30  
Table 2-25 • Summary of Maximum and Minimum DC Input and Output Levels  
Table 2-31 • Summary of I/O Timing Characteristics—Software Default Settings (SAR  
32394)  
Table 2-32 • Summary of I/O Timing Characteristics—Software Default Settings  
Table 2-36 • I/O Output Buffer Maximum Resistances 1 Applicable to Pro I/Os for  
A3PE600L and A3PE3000L Only  
2-33  
Table 2-40 • I/O Short Currents IOSH/IOSL Applicable to Pro I/Os for A3PE600L and  
A3PE3000L Only  
2-73  
2-75  
Table 2-120 • Minimum and Maximum DC Input and Output Levels  
Table 2-124 • Minimum and Maximum DC Input and Output Levels  
The values in Table 2-39 • I/O Weak Pull-Up/Pull-Down Resistances were revised  
(SAR 29793, 28061).  
2-32  
2-37  
The AC Loading diagrams in the "Single-Ended I/O Characteristics" section were  
updated to match summary of I/O timing tables in the "Summary of I/O Timing  
Characteristics – Default I/O Software Settings" section (SAR 32449).  
The tables in the "Voltage-Referenced I/O Characteristics" section and "Differential I/O  
Characteristics" section were updated with current values (SARs 29793, 32391,  
32394).  
2-73  
2-85  
Two note references were added to Table 2-160 • Minimum and Maximum DC Input  
and Output Levels to clarify the following notes: ±5% [VCCI] and differential input  
voltage = ±350 mV [VDIFF] (SAR 29428).  
2-86  
The "Global Tree Timing Characteristics" section was updated.  
Table 2-199 • A3P250 Global Resource is new (SAR 30526).  
Available values were added or revised in the following tables (SAR 30698):  
Table 2-195 • A3PE600L Global Resource  
2-120  
Table 2-200 • A3P1000 Global Resource  
Table 2-197 • A3PE600L Global Resource  
Table 2-201 • Military ProASIC3/EL CCC/PLL Specification and Table 2-202 • Military 2-123  
ProASIC3/EL CCC/PLL Specification were updated with current values (SAR 32521).  
The following figures were removed (SAR 29991):  
N/A  
Figure 2-49 • Write Access after Write onto Same Address  
Figure 2-50 • Read Access after Write onto Same Address  
Figure 2-51 • Write Access after Read onto Same Address  
The naming of the address collision parameters in the SRAM "Timing Characteristics" 2-129  
section was changed, and values were updated accordingly (SAR 29991).  
The values for tCKQ1 in Table 2-203 • RAM4K9, Table 2-204 • RAM4K9, and 2-129,  
Table 2-205 • RAM4K9 were reversed with respect to WMODE and have been 2-130,  
corrected (SAR 32343).  
2-131  
Table 2-212 • FIFO through Table 2-216 • FIFO are new (SAR 32394).  
2-141,  
2-145  
Tables in the "Embedded FlashROM Characteristics" section were updated (SAR 2-146  
32392).  
The "Pin Descriptions and Packaging" chapter was added (SAR 21642).  
3-1  
4-1  
Package names used in the "Package Pin Assignments" section were revised to  
match standards given in Package Mechanical Drawings (SAR 27395).  
5-4  
Revision 5  
Military ProASIC3/EL Low Power Flash FPGAs  
Revision  
Changes  
Page  
Revision 1  
(continued)  
The "VQ100" pin table for A3P250 is new (SAR 31975).  
4-2  
The "FG144" pin table for A3P1000 was updated to remove the Flash*Freeze (FF)  
designation from pin L3. This package does not support Flash*Freeze functionality.  
Pin W6 of the "FG484" for A3PE600L was designated as the Flash*Freeze control pin  
for that package (SAR 24084).  
4-7,  
4-14  
Revision 5  
5-5  
Datasheet Information  
Datasheet Categories  
Categories  
In order to provide the latest information to designers, some datasheet parameters are published before  
data has been fully characterized from silicon devices. The data provided for a given device, as  
highlighted in the "Military ProASIC3/EL Device Status" table on page II, is designated as either "Product  
Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:  
Product Brief  
The product brief is a summarized version of a datasheet (advance or production) and contains general  
product information. This document gives an overview of specific device and family information.  
Advance  
This version contains initial estimated information based on simulation, other products, devices, or speed  
grades. This information can be used as estimates, but not for production. This label only applies to the  
DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not  
been fully characterized.  
Preliminary  
The datasheet contains information based on simulation and/or initial characterization. The information is  
believed to be correct, but changes are possible.  
Unmarked (production)  
This version contains information that is considered to be final.  
Export Administration Regulations (EAR)  
The products described in this document are subject to the Export Administration Regulations (EAR).  
They could require an approved export license prior to export from the United States. An export includes  
release of product or disclosure of technology to a foreign national inside or outside the United States.  
Safety Critical, Life Support, and High-Reliability Applications  
Policy  
The products described in this advance status document may not have completed the Microsemi  
qualification process. Products may be amended or enhanced during the product introduction and  
qualification process, resulting in changes in device functionality or performance. It is the responsibility of  
each customer to ensure the fitness of any product (but especially a new product) for a particular  
purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications.  
Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating  
to life-support applications. A reliability report covering all of the SoC Products Group’s products is  
available at http://www.microsemi.com/documents/ORT_Report.pdf. Microsemi also offers a variety of  
enhanced qualification and lot acceptance screening procedures. Contact your local sales office for  
additional reliability information.  
5-6  
Revision 5  
Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor  
and system solutions for communications, defense and security, aerospace, and industrial  
markets. Products include high-performance and radiation-hardened analog mixed-signal  
integrated circuits, FPGAs, SoCs, and ASICs; power management products; timing and  
synchronization devices and precise time solutions, setting the world's standard for time; voice  
processing devices; RF solutions; discrete components; security technologies and scalable  
anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design  
capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has  
approximately 3,400 employees globally. Learn more at www.microsemi.com.  
Microsemi Corporate Headquarters  
One Enterprise, Aliso Viejo CA 92656 USA  
Within the USA: +1 (800) 713-4113  
Outside the USA: +1 (949) 380-6100  
Sales: +1 (949) 380-6136  
© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of  
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.  
Fax: +1 (949) 215-4996  
E-mail: sales.support@microsemi.com  
51700106-5/09.14  

相关型号:

A3P1000-FGG484YT

暂无描述
MICROSEMI

A3P1000-FPQ144

ProASIC3 Flash Family FPGAs
ACTEL

A3P1000-FPQ144ES

ProASIC3 Flash Family FPGAs
ACTEL

A3P1000-FPQ144I

ProASIC3 Flash Family FPGAs
ACTEL

A3P1000-FPQ144PP

ProASIC3 Flash Family FPGAs
ACTEL

A3P1000-FPQG144

ProASIC3 Flash Family FPGAs
ACTEL

A3P1000-FPQG144ES

ProASIC3 Flash Family FPGAs
ACTEL

A3P1000-FPQG144I

ProASIC3 Flash Family FPGAs
ACTEL

A3P1000-FPQG144PP

ProASIC3 Flash Family FPGAs
ACTEL

A3P1000-FVQ144

ProASIC3 Flash Family FPGAs
ACTEL

A3P1000-FVQ144ES

ProASIC3 Flash Family FPGAs
ACTEL

A3P1000-FVQ144I

ProASIC3 Flash Family FPGAs
ACTEL