MT29F [MICRON]

NAND Flash Memory; NAND闪存
MT29F
型号: MT29F
厂家: MICRON TECHNOLOGY    MICRON TECHNOLOGY
描述:

NAND Flash Memory
NAND闪存

闪存
文件: 总81页 (文件大小:2282K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Features  
NAND Flash Memory  
MT29F4G08AAA, MT29F8G08BAA, MT29F8G08DAA, MT29F16G08FAA  
Figure 1:  
48-Pin TSOP Type 1  
Features  
• Single-level cell (SLC) technology  
• Organization  
Page size x8: 2,112 bytes (2,048 + 64 bytes)  
Block size: 64 pages (128K + 4K bytes)  
Plane size: 2,048 blocks  
Device size: 4Gb: 4,096 blocks; 8Gb: 8,192 blocks;  
16Gb: 16,384 blocks  
• READ performance  
Random READ: 25µs (MAX)  
Sequential READ: 25ns (MIN)  
• WRITE performance  
PROGRAM PAGE: 220µs (TYP)  
BLOCK ERASE: 1.5ms (TYP)  
• Data retention: 10 years  
• Endurance: 100,000 PROGRAM/ERASE cycles  
• First block (block address 00h) guaranteed to be  
valid up to 1,000 PROGRAM/ERASE cycles  
• Industry-standard basic NAND Flash command set  
• Advanced command set:  
PROGRAM PAGE CACHE MODE  
PAGE READ CACHE MODE  
One-time programmable (OTP) commands  
Two-plane commands  
Interleaved die operations  
READ UNIQUE ID (contact factory)  
READ ID2 (contact factory)  
• Operation status byte provides a software method of  
detecting:  
Operation completion  
Pass/fail condition  
Write-protect status  
• Ready/busy# (R/B#) signal provides a hardware  
method of detecting operation completion  
• WP# signal: write protect entire device  
• RESET required after power-up  
• INTERNAL DATA MOVE operations supported  
within the plane from which data is read  
Options  
2
• Density  
1
4Gb (single die)  
8Gb (dual-die stack 1 CE#)  
8Gb (dual-die stack 2 CE#)  
16Gb (quad-die stack)  
• Device width: x8  
• Configuration  
# of die  
# of CE# # of R/B#  
I/O  
1
2
2
4
1
1
2
2
1
1
2
2
Common  
Common  
Common  
Common  
• VCC: 2.7–3.6V  
• Package  
48 TSOP type I (lead-free plating)  
48 TSOP type I OCPL (lead-free plating)  
• Operating temperature  
Commercial (0°C to +70°C)  
3
4
Extended (–40°C to +85°C)  
Notes: 1. For further details, see “Error Management”  
on page 58.  
2. For part numbering and markings, see  
Figure 2 on page 2.  
3. OCPL = off-center parting line.  
4. For ET devices, contact factory.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__1.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
1
Products and specifications discussed herein are subject to change by Micron without notice.  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Part Numbering Information  
Part Numbering Information  
®
Micron NAND Flash devices are available in several different configurations and  
densities (see Figure 2).  
Figure 2:  
Part Number Chart  
MT 29F 4G 08  
A
A
A
WP  
ES :A  
Design Revision  
A = First Revision  
Micron Technology  
Product Family  
Production Status  
29F = Single-Supply NAND Flash Memory  
Blank = Production  
ES = Engineering Sample  
MS = Mechanical Sample  
QS = Qualification Sample  
Density  
4G = 4Gb  
8G = 8Gb  
16G = 16Gb  
Operating Temperature Range  
Blank = Commercial (0°C to +70°C)  
ET = Extended1 (-40°C to +85°C)  
Device Width  
08 = 8 bits  
Reserved for Future Use  
Blank  
Classification  
# of die # of CE# # of R/B#  
I/O  
A
B
D
F
1
2
2
4
1
1
2
2
1
1
2
2
Common  
Common  
Common  
Common  
Flash Performance  
Blank = Standard  
Package Code  
WP = 48-pin TSOP I (lead-free)  
WC = 48-pin TSOP I OCPL (lead-free)  
Operating Voltage Range  
A = 3.3V (2.70–3.60V)  
Feature Set  
A = Feature Set A  
Notes: 1. For ET devices, contact factory.  
Valid Part Number Combinations  
After building the part number from the part numbering chart, verify that the part  
number is offered and valid by using the Micron Parametric Part Search Web site at  
www.micron.com/products/parametric. If the device required is not on this list, contact  
the factory.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__1.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
2
©2006 Micron Technology, Inc. All rights reserved.  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Table of Contents  
Table of Contents  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Part Numbering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Valid Part Number Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Memory Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Array Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Bus Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Control Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Address Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
READs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Ready/Busy# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Command Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
READ Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
PAGE READ 00h-30h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
RANDOM DATA READ 05h-E0h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
PAGE READ CACHE MODE START 31h; PAGE READ CACHE MODE START LAST 3Fh. . . . . . . . . . . . . . . . . .22  
READ ID 90h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
READ STATUS 70h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
PROGRAM Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
PROGRAM PAGE 80h-10h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
SERIAL DATA INPUT 80h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
RANDOM DATA INPUT 85h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
PROGRAM PAGE CACHE MODE 80h-15h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Internal Data Move . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
READ FOR INTERNAL DATA MOVE 00h-35h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
PROGRAM for INTERNAL DATA MOVE 85h-10h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
BLOCK ERASE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
BLOCK ERASE 60h-D0h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
One-Time Programmable (OTP) Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
OTP DATA PROGRAM A0h-10h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
OTP DATA PROTECT A5h-10h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
OTP DATA READ AFh-30h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
TWO-PLANE Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Two-Plane Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
TWO-PLANE PAGE READ 00h-00h-30h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
TWO-PLANE RANDOM DATA READ 06h-E0h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
TWO-PLANE PROGRAM PAGE 80h-11h-80h-10h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
TWO-PLANE PROGRAM PAGE CACHE MODE 80h-11h-80h-15h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
TWO-PLANE INTERNAL DATA MOVE 00h-00h-35h/85h-11h-80h-10h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
TWO-PLANE READ for INTERNAL DATA MOVE 00h-00h-35h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
TWO-PLANE PROGRAM for INTERNAL DATA MOVE 85h-11h-80h-10h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
TWO-PLANE BLOCK ERASE 60h-60h-D0h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
TWO-PLANE/MULTIPLE-DIE READ STATUS 78h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Interleaved Die Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Interleaved PROGRAM PAGE Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Interleaved PROGRAM PAGE CACHE MODE Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Interleaved TWO-PLANE PROGRAM PAGE Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Interleaved TWO-PLANE PROGRAM PAGE CACHE MODE Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Interleaved BLOCK ERASE Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Interleaved TWO-PLANE BLOCK ERASE Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
RESET Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
RESET FFh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40aTOC.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
3
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Table of Contents  
WRITE PROTECT Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Error Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
VCC Power Cycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Timing Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40aTOC.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
4
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
List of Figures  
List of Figures  
Figure 1:  
Figure 2:  
Figure 3:  
Figure 4:  
Figure 5:  
Figure 6:  
Figure 7:  
Figure 8:  
48-Pin TSOP Type 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Part Number Chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2  
48-Pin TSOP Type 1 Pin Assignment (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
NAND Flash Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Array Organization for MT29F4G08AAA and MT29F8G08DAA (x8) . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Array Organization for MT29F8G08BAA and MT29F16G08FAA (x8). . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
READY/BUSY# Open Drain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
tFall and tRise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Iol vs. Rp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
TC vs. Rp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
PAGE READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
RANDOM DATA READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
PAGE READ CACHE MODE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
READ ID Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Status Register Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
PROGRAM and READ STATUS Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
RANDOM DATA INPUT Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
PROGRAM PAGE CACHE MODE Operation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
INTERNAL DATA MOVE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
INTERNAL DATA MOVE Operation with RANDOM DATA INPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
BLOCK ERASE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
OTP DATA PROGRAM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
OTP DATA PROTECT Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
OTP DATA READ Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
TWO-PLANE PAGE READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
TWO-PLANE PAGE READ Operation with RANDOM DATA READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
TWO-PLANE PROGRAM PAGE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
TWO-PLANE PROGRAM PAGE Operation with RANDOM DATA INPUT . . . . . . . . . . . . . . . . . . . . . . .40  
TWO-PLANE PROGRAM PAGE CACHE MODE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
TWO-PLANE INTERNAL DATA MOVE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
TWO-PLANE INTERNAL DATA MOVE Operation with RANDOM DATA INPUT . . . . . . . . . . . . . . . .44  
TWO-PLANE BLOCK ERASE Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
TWO-PLANE/MULTIPLE-DIE READ STATUS Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Interleaved PROGRAM PAGE Operation with R/B# Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Interleaved PROGRAM PAGE Operation with Status Register Monitoring . . . . . . . . . . . . . . . . . . . . . .48  
Interleaved PROGRAM PAGE CACHE MODE Operation with R/B# Monitoring . . . . . . . . . . . . . . . . .48  
Interleaved PROGRAM PAGE CACHE MODE Operation with Status Register Monitoring . . . . . . . .49  
Interleaved TWO-PLANE PROGRAM PAGE Operation with R/B# Monitoring. . . . . . . . . . . . . . . . . . .50  
Interleaved TWO-PLANE PROGRAM PAGE Operation with Status Register Monitoring. . . . . . . . . .51  
Interleaved TWO-PLANE PROGRAM PAGE CACHE MODE Operation with R/B# Monitoring . . . .52  
Interleaved TWO-PLANE PROGRAM PAGE CACHE MODE Operation with Status Register  
Figure 9:  
Figure 10:  
Figure 11:  
Figure 12:  
Figure 13:  
Figure 14:  
Figure 15:  
Figure 16:  
Figure 17:  
Figure 18:  
Figure 19:  
Figure 20:  
Figure 21:  
Figure 22:  
Figure 23:  
Figure 24:  
Figure 25:  
Figure 26:  
Figure 27:  
Figure 28:  
Figure 29:  
Figure 30:  
Figure 31:  
Figure 32:  
Figure 33:  
Figure 34:  
Figure 35:  
Figure 36:  
Figure 37:  
Figure 38:  
Figure 39:  
Figure 40:  
Figure 41:  
Figure 42:  
Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Interleaved BLOCK ERASE Operation with R/B# Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Interleaved BLOCK ERASE Operation with Status Register Monitoring. . . . . . . . . . . . . . . . . . . . . . . . .54  
Interleaved TWO-PLANE BLOCK ERASE Operation with R/B# Monitoring . . . . . . . . . . . . . . . . . . . . .55  
Interleaved TWO-PLANE BLOCK ERASE Operation with Status Register Monitoring . . . . . . . . . . . .55  
RESET Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
ERASE Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
ERASE Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
PROGRAM Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
PROGRAM Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
AC Waveforms During Power Transitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
COMMAND LATCH Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
ADDRESS LATCH Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
INPUT DATA LATCH Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Figure 43:  
Figure 44:  
Figure 45:  
Figure 46:  
Figure 47:  
Figure 48:  
Figure 49:  
Figure 50:  
Figure 51:  
Figure 52:  
Figure 53:  
Figure 54:  
Figure 55:  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40aLOF.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
5
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
List of Figures  
Figure 56:  
Figure 57:  
Figure 58:  
Figure 59:  
Figure 60:  
Figure 61:  
Figure 62:  
Figure 63:  
Figure 64:  
Figure 65:  
Figure 66:  
Figure 67:  
Figure 68:  
Figure 69:  
Figure 70:  
Figure 71:  
Figure 72:  
Figure 73:  
Figure 74:  
Figure 75:  
Figure 76:  
Figure 77:  
SERIAL ACCESS Cycle After READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
SERIAL ACCESS Cycle After READ (EDO Mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
READ STATUS Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
TWO-PLANE/MULTIPLE-DIE READ STATUS Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
PAGE READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
READ Operation with CE# “Don’t Care” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
RANDOM DATA READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
PAGE READ CACHE MODE Operation, Part 1 of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
PAGE READ CACHE MODE Operation, Part 2 of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
PAGE READ CACHE MODE Operation without R/B#, Part 1 of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
PAGE READ CACHE MODE Operation without R/B#, Part 2 of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
READ ID Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
PROGRAM PAGE Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74  
Program Operation with CE# “Don’t Care” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
PROGRAM PAGE Operation with RANDOM DATA INPUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75  
INTERNAL DATA MOVE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
PROGRAM PAGE CACHE MODE Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76  
PROGRAM PAGE CACHE MODE Operation Ending on 15h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77  
BLOCK ERASE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
RESET Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
48-Pin TSOP Type 1 (WP Package Code) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
48-Pin TSOP OCPL Type 1 (WC Package Code) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40aLOF.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
6
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
List of Tables  
List of Tables  
Table 1:  
Table 2:  
Table 3:  
Table 4:  
Table 5:  
Table 6:  
Table 7:  
Table 8:  
Table 9:  
Table 10:  
Table 11:  
Table 12:  
Table 13:  
Table 14:  
Table 15:  
Table 16:  
Table 17:  
Table 18:  
Table 19:  
Signal Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Operational Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Array Addressing: MT29F4G08AAA and MT29F8G08DAA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Array Addressing: MT28F8G08BAA and MT29F16G08FAA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Command Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Two-Plane Command Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Device ID and Configuration Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Status Register Bit Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Status Register Contents After RESET Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
M29FxGxxxAA 3V Device DC and Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Valid Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
AC Characteristics: Command, Data, and Address Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
AC Characteristics: Normal Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
PROGRAM/ERASE Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40aLOT.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
7
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
General Description  
General Description  
NAND Flash technology provides a cost-effective solution for applications requiring  
high-density, solid-state storage. The MT29F4G08AAA is a 4Gb NAND Flash memory  
device. The MT29F8G08BAA is a two-die stack that operates as a single 8Gb device. The  
MT29F8G08DAA is a two-die stack that operates as two independent 4Gb devices. The  
MT29F16G08FAA is a four-die stack that operates as two independent 8Gb devices,  
providing a total storage capacity of 16Gb in a single, space-saving package. Micron  
NAND Flash devices include standard NAND Flash features as well as new features  
designed to enhance system-level performance.  
Micron NAND Flash devices use a highly multiplexed 8-bit bus (I/O[7:0]) to transfer  
data, addresses, and instructions. The five command pins (CLE, ALE, CE#, RE#, WE#)  
implement the NAND Flash command bus interface protocol. Additional pins control  
hardware write protection (WP#) and monitor device status (R/B#).  
This hardware interface creates a low-pin-count device with a standard pinout that is  
the same from one density to another, allowing future upgrades to higher densities  
without board redesign.  
The MT29F4G, MT29F8G, and MT29F16G devices contain two planes per die. Each  
plane consists of 2,048 blocks. Each block is subdivided into 64 programmable pages.  
Each page consists of 2,112 bytes. The pages are further divided into a 2,048-byte data  
storage region with a separate 64-byte area. The 64-byte area is typically used for error  
management functions.  
The contents of each page can be programmed in 220µs (TYP), and an entire block can  
be erased in 1.5ms (TYP). On-chip control logic automates PROGRAM and ERASE oper-  
ations to maximize cycle endurance. PROGRAM/ERASE endurance is specified at  
100,000 cycles with appropriate error correction code (ECC) and error management.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
8
©2006 Micron Technology, Inc. All rights reserved.  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
General Description  
Figure 3:  
48-Pin TSOP Type 1 Pin Assignment (Top View)  
x8  
x8  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
NC  
NC  
NC  
NC  
NC  
DNU  
NC  
NC  
1
2
3
4
5
6
7
8
NC  
I/O7  
I/O6  
I/O5  
I/O4  
NC  
NC  
DNUorVss  
Vcc  
Vss  
NC  
NC  
NC  
I/O3  
I/O2  
I/O1  
I/O0  
NC  
NC  
DNU  
DNU  
R/B2#1  
R/B#  
RE#  
CE#  
CE2#1  
NC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Vcc  
Vss  
NC  
NC  
CLE  
ALE  
WE#  
WP#  
NC  
NC  
NC  
NC  
NC  
Notes: 1. CE2# and R/B2# are available on 8Gb 2-CE# devices and 16Gb devices only. These pins are  
NC for other configurations.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
9
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
General Description  
Table 1:  
Symbol  
ALE  
Signal Descriptions  
Type  
Description  
Input  
Address latch enable: During the time ALE is HIGH, address information is  
transferred from I/O[7:0] into the on-chip address register on the rising edge of  
WE#. When address information is not being loaded, ALE should be driven LOW.  
Chip enable: Gates transfers between the host system and the NAND Flash device.  
After the device starts a PROGRAM or ERASE operation, CE# can be de-asserted.  
For the 8Gb configuration, CE# controls the first 4Gb of memory; CE2# controls  
the second 4Gb of memory. For the 16Gb configuration, CE# controls the first 8Gb  
of memory; CE2# controls the second 8Gb. See “Bus Operation” on page 15 for  
additional operational details.  
CE#, CE2#  
Input  
CLE  
Input  
Command latch enable: When CLE is HIGH, information is transferred from  
I/O[7:0] to the on-chip command register on the rising edge of WE#. When  
command information is not being loaded, CLE should be driven LOW.  
RE#  
WE#  
WP#  
Input  
Input  
Input  
Read enable: Gates transfers from the NAND Flash device to the host system.  
Write enable: Gates transfers from the host system to the NAND Flash device.  
Write protect: Protects against inadvertent PROGRAM and ERASE operations. All  
PROGRAM and ERASE operations are disabled when WP# is LOW.  
I/O[7:0]  
(x8)  
I/O  
Data inputs/outputs: The bidirectional I/Os transfer address, data, and instruction  
information. Data is output only during READ operations; at other times the I/Os  
are inputs.  
R/B#, R/B2#  
Output  
Ready/busy: An open-drain, active-LOW output, that uses an external pull-up  
resistor. R/B# is used to indicate when the chip is processing a PROGRAM or ERASE  
operation. It is also used during READ operations to indicate when data is being  
transferred from the array into the serial data register. When these operations  
have completed, R/B# returns to the High-Z state. In the 8Gb configuration, R/B# is  
for the 4Gb of memory enabled by CE#; R/B2# is for the 4Gb of memory enabled  
by CE2#. In the 16Gb configuration, R/B# is for the 8Gb of memory enabled by  
CE#; R/B2# is for the 8Gb of memory enabled by CE2#.  
VCC  
VSS  
NC  
Supply  
Supply  
VCC: Power supply.  
VSS: Ground connection.  
No connect: NCs are not internally connected. They can be driven or left  
unconnected.  
DNU  
Do not use: DNUs must be left unconnected.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
10  
©2006 Micron Technology, Inc. All rights reserved.  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Architecture  
Architecture  
These devices use NAND Flash electrical and command interfaces. Data, commands,  
and addresses are multiplexed onto the same pins and received by I/O control circuits.  
This provides a memory device with a low pin count. The commands received at the I/O  
control circuits are latched by a command register and are transferred to control logic  
circuits for generating internal signals to control device operations. The addresses are  
latched by an address register and sent to a row decoder or a column decoder to select a  
row address or a column address, respectively.  
The data are transferred to or from the NAND Flash memory array, byte by byte (x8),  
through a data register and a cache register. The cache register is closest to I/O control  
circuits and acts as a data buffer for the I/O data, whereas the data register is closest to  
the memory array and acts as a data buffer for the NAND Flash memory array operation.  
The NAND Flash memory array is programmed and read in page-based operations and  
is erased in block-based operations. During normal page operations, the data and cache  
registers are tied together and act as a single register. During cache operations the data  
and cache registers operate independently to increase data throughput.  
These devices also have a status register that reports the status of device operation.  
Figure 4:  
NAND Flash Functional Block Diagram  
V
CC  
VSS  
I/O  
Control  
I/Ox  
Address Register  
Status Register  
Command Register  
CE#  
CLE  
Column Decode  
ALE  
WE#  
Control  
Logic  
NAND Flash  
Array  
RE#  
WP#  
(2 planes)  
Data Register  
Cache Register  
R/B#  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
11  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Addressing  
Addressing  
NAND Flash devices do not contain dedicated address pins. Addresses are loaded using  
a 5-cycle sequence as shown in Tables 3 and 4, on pages 13 and 14. See Figure 5 for addi-  
tional memory mapping and addressing details.  
Memory Mapping  
Figure 5:  
Memory Map  
Blocks  
4Gb, 8Gb 2 CE#: BA[17:6]  
8Gb 1 CE#, 16Gb: BA[18:6]  
0
0
0
1
1
1
2
2
2
4,095  
• • • • • • • • • • • •  
8Gb 2 CE#: 4,096 blocks per CE#  
8Gb 1 CE#: 8,192 blocks per CE#  
16Gb: 8,192 blocks per CE#  
Pages  
PA[5:0]  
63  
• • •  
Bytes  
CA[11:0]  
2,047 • • • 2,111  
Spare area  
• • • • • • • • • • • • • • • • • • •  
Table 2:  
Block  
Operational Example  
Page  
Min Address in Page  
Max Address in Page  
Out of Bounds Addresses in Page  
0
0
0
1
0x0000000000  
0x0000010000  
0x0000020000  
0x000000083F  
0x000001083F  
0x000002083F  
0x0000000840–0x0000000FFF  
0x0000010840–0x0000010FFF  
0x0000020840–0x0000020FFF  
0
2
62  
63  
4,095  
4,095  
0x03FFFE0000  
0x03FFFF0000  
0x03FFFE083F  
0x03FFFF083F  
0x03FFFE0840–0x03FFFE0FFF  
0x03FFFF0840–0x03FFFF0FFF  
Notes: 1. As shown in Table 3 on page 13, the high nibble of ADDRESS cycle 2 has no assigned  
address bits; however, these 4 bits must be held LOW during the ADDRESS cycle to ensure  
that the address is interpreted correctly by the NAND Flash device. These extra bits are  
accounted for in ADDRESS cycle 2 even though they do not have address bits assigned to  
them.  
2. The 12-bit column address is capable of addressing from 0 to 4,095 bytes on a x8 device;  
however, only bytes 0 through 2,111 are valid. Bytes 2,112 through 4,095 of each page are  
“out of bounds,” do not exist in the device, and cannot be addressed.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
12  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Array Organization  
Array Organization  
Figure 6:  
Array Organization for MT29F4G08AAA and MT29F8G08DAA (x8)  
2,112 bytes  
2,112 bytes  
I/O7  
I/O0  
Cache Register  
Data Register  
2,048  
2,048  
2,048  
2,048  
64  
64  
64  
64  
1 page = (2K + 64 bytes)  
1 block = (2K + 64) bytes x 64 pages  
= (128K + 4K) bytes  
2,048 blocks  
per plane  
1 block  
1 block  
1 plane = (128K + 4K) bytes x 2,048 blocks  
= 2,112Mb  
4,096 blocks  
per device  
1 device = 2,112Mb x 2 planes  
= 4,224Mb  
Plane of  
even-numbered blocks  
Plane of  
odd-numbered blocks  
(0, 2, 4, 6, ..., 4,092, 4,094) (1, 3, 5, 7, ..., 4,093, 4,095)  
Notes: 1. For the 8Gb MT29F8G08DAA, the 4Gb array organization shown applies to each chip enable  
(CE# and CE2#).  
Table 3:  
Cycle  
Array Addressing: MT29F4G08AAA and MT29F8G08DAA  
I/O7  
I/O6  
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
CA7  
LOW  
BA7  
CA6  
LOW  
BA6  
CA5  
LOW  
PA5  
CA4  
LOW  
PA4  
CA3  
CA11  
PA3  
CA2  
CA10  
PA2  
CA1  
CA9  
PA1  
CA0  
CA8  
PA0  
First  
Second  
Third  
Fourth  
Fifth  
BA15  
LOW  
BA14  
LOW  
BA13  
LOW  
BA12  
LOW  
BA11  
LOW  
BA10  
LOW  
BA9  
BA17  
BA8  
BA16  
Notes: 1. Block address concatenated with page address = actual page address. CAx = column  
address; PAx = page address; BAx = block address.  
2. If CA11 is “1,” then CA[10:6] must be “0.”  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
13  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Array Organization  
Figure 7:  
Array Organization for MT29F8G08BAA and MT29F16G08FAA (x8)  
Die 0 Die 1  
2,112 bytes  
2,112 bytes  
2,112 bytes  
2,112 bytes  
I/O7  
Cache Register  
Data Register  
2,048  
2,048  
2,048  
2,048  
2,048  
2,048  
I/O0  
64  
64  
64  
64  
64  
64  
64  
64  
2,048  
2,048  
1 page = (2K + 64 bytes)  
1 block = (2K + 64) bytes x 64 pages  
= (128K + 4K) bytes  
2,048 blocks  
per plane  
1 block  
1 block  
1 block  
1 block  
1 plane = (128K + 4K) bytes x 2,048 blocks  
= 2,112Mb  
4,096 blocks  
per die  
1 die  
= 2,112Mb x 2 planes  
= 4,224Mb  
1 device = 4,224Mb x 2 die  
= 8,448Mb  
Plane 0: even-  
numbered blocks  
(0, 2, 4, 6, ...,  
4,092, 4,094)1  
Plane 1: odd-  
numbered blocks  
(1, 3, 5, 7, ...,  
Plane 0: even-  
Plane 1: odd-  
numbered blocks  
(4,096, 4,098, ...,  
8,188, 8,190)  
numbered blocks  
(4,097,4,099, ...,  
8,189, 8,191)  
4,093, 4,095)  
Notes: 1. Die 0, Plane 0: BA18 = 0; BA6 = 0.  
Die 0, Plane 1: BA18 = 0; BA6 = 1.  
Die 1, Plane 0: BA18 = 1; BA6 = 0.  
Die 1, Plane 1: BA18 = 1; BA6 = 1.  
2. For the 16Gb MT29F16G08FAA, the 8Gb array organization shown here applies to each chip  
enable (CE# and CE2#).  
Table 4:  
Cycle  
Array Addressing: MT28F8G08BAA and MT29F16G08FAA  
I/O7  
I/O6  
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0  
CA7  
LOW  
BA7  
CA6  
LOW  
BA6  
CA5  
LOW  
PA5  
CA4  
LOW  
PA4  
CA3  
CA11  
PA3  
CA2  
CA10  
PA2  
CA1  
CA9  
PA1  
CA0  
CA8  
PA0  
First  
Second  
Third  
Fourth  
Fifth  
BA15  
LOW  
BA14  
LOW  
BA13  
LOW  
BA12  
LOW  
BA11  
LOW  
BA10  
BA183  
BA9  
BA17  
BA8  
BA16  
Notes: 1. CAx = column address; PAx = page address; BAx = block address.  
2. If CA11 is 1, then CA[10:6] must be “0.”  
3. Die address boundary: 0 = 0–4Gb; 1 = 4Gb–8Gb.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
14  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Bus Operation  
Bus Operation  
The bus on MT29Fxxx devices is multiplexed. Data I/O, addresses, and commands all  
share the same pins, I/O[7:0].  
The command sequence normally consists of a COMMAND LATCH cycle, ADDRESS  
INPUT cycles, and 1 or more DATA cycles—either READ or WRITE.  
Control Signals  
CE#, WE#, RE#, CLE, ALE, and WP# control NAND Flash device READ and WRITE opera-  
tions. On the 8Gb MT29F8G08DAA, CE# and CE2# each control independent 4Gb arrays.  
On the 16Gb MT29F16G08FAA, CE# and CE2# each control independent 8Gb arrays.  
CE2# functions the same as CE# for its own array; all operations described for CE# also  
apply to CE2#.  
CE# is used to enable the device. When CE# is LOW and the device is not in the busy  
state, the NAND Flash memory will accept command, address, and data information.  
When the device is not performing an operation, the CE# pin is typically driven HIGH  
and the device enters standby mode. The memory will enter standby if CE# goes HIGH  
while data is being transferred and the device is not busy. This helps reduce power  
consumption. See Figure 61 on page 69 and Figure 69 on page 75 for examples of CE#  
“Don’t Care” operations.  
The CE# “Don’t Care” operation enables the NAND Flash to reside on the same asyn-  
chronous memory bus as other Flash or SRAM devices. Other devices on the memory  
bus can then be accessed while the NAND Flash is busy with internal operations. This  
capability is important for designs that require multiple NAND Flash devices on the  
same bus.  
A HIGH CLE signal indicates that a command cycle is taking place. A HIGH ALE signal  
signifies that an ADDRESS INPUT cycle is occurring.  
Commands  
Commands are written to the command register on the rising edge of WE# when:  
CE# and ALE are LOW, and  
CLE is HIGH, and  
The device is not busy  
As exceptions, the device accepts the READ STATUS, TWO-PLANE/MULTIPLE-DIE  
READ STATUS, and RESET commands when busy. Commands are transferred to the  
command register on the rising edge of WE# (see Figure 53 on page 65). Commands are  
input on I/O[7:0].  
Address Input  
Addresses are written to the address register on the rising edge of WE# when:  
CE# and CLE are LOW, and  
ALE is HIGH  
Addresses are input on I/O[7:0]. Bits not part of the address space must be LOW.  
The number of ADDRESS cycles required for each command varies. Refer to the  
command descriptions to determine addressing requirements (see Table 6 on page 19).  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
15  
©2006 Micron Technology, Inc. All rights reserved.  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Bus Operation  
Data Input  
READs  
Data is written to the data register on the rising edge of WE# when:  
CE#, CLE, and ALE are LOW, and  
the device is not busy  
Data is input on I/O[7:0]. See Figure 55 on page 66 for additional data input details.  
After a READ command is issued, data is transferred from the memory array to the data  
t
register on the rising edge of WE#. R/B# goes LOW for R and transitions HIGH after the  
transfer is complete. When data is available in the data register, it is clocked out of the  
part by RE# going LOW. See Figure 60 on page 68 for detailed timing information.  
The READ STATUS (70h) command, TWO-PLANE/MULTIPLE-DIE READ STATUS (78h)  
command, or the R/B# signal can be used to determine when the device is ready.  
t
If a controller is using a timing of 30ns or longer for RC, use Figure 56 on page 66 for  
t
proper timing. If RC is less than 30ns, use Figure 57 on page 67 for extended data output  
(EDO) timing.  
Ready/Busy#  
The R/B# output provides a hardware method of indicating the completion of  
PROGRAM, ERASE, and READ operations. The signal requires a pull-up resistor for  
proper operation. The signal is typically HIGH, and transitions to LOW after the appro-  
priate command is written to the device. The signal pins open-drain driver enables  
multiple R/B# outputs to be OR-tied. The READ STATUS command can be used in place  
of R/B#. Typically, R/B# is connected to an interrupt pin on the system controller (see  
Figure 8 on page 17).  
On the 8Gb MT29F8G08DAA, R/B# provides a status indication for the 4Gb section  
enabled by CE#, and R/B2# does the same for the 4Gb section enabled by CE2#. R/B#  
and R/B2# can be tied together, or they can be used separately to provide independent  
indications for each 4Gb section.  
On the 16Gb MT29F16G08FAA, R/B# provides a status indication for the 8Gb section  
enabled by CE#, and R/B2# does the same for the 8Gb section enabled by CE2#. R/B#  
and R/B2# can be tied together, or they can be used separately to provide independent  
indications for each 8Gb section.  
The combination of Rp and capacitive loading of the R/B# circuit determines the rise  
time of the R/B# pin. The actual value used for Rp depends on the system timing  
requirements. Large values of Rp cause R/B# to be delayed significantly. At the 10 to 90  
percent points on the R/B# waveform, rise time is approximately two time constants  
(TC).  
TC = R × C  
Where R = Rp (resistance of pull-up resistor), and C = total capacitive load.  
The fall time of the R/B# signal is determined mainly by the output impedance of the  
R/B# pin and the total load capacitance.  
Refer to Figures 10 and 11 on page 18, which depict approximate Rp values using a  
circuit load of 100pF.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
16  
©2006 Micron Technology, Inc. All rights reserved.  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Bus Operation  
The minimum value for Rp is determined by the output drive capability of the R/B#  
signal, the output voltage swing, and VCC.  
VCC(MAX) VOL(MAX)  
3.2V  
8mA + ΣIL  
Rp(MIN, 3.3V part) = --------------------------------------------------------------- = --------------------------  
IOL + ΣIL  
Where ΣIL is the sum of the input currents of all devices tied to the R/B# pin.  
Figure 8:  
READY/BUSY# Open Drain  
Rp  
VCC  
R/B#  
Open drain output  
IOL  
GND  
Device  
t
t
Figure 9:  
Fall and Rise  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
t
t
Fall Rise  
V
Vcc 3.3  
6
–1  
0
2
4
0
2
4
TC  
Notes: 1. tFall and tRise calculated at 10 percent and 90 percent points.  
2. tRise is primarily dependent on external pull-up resistor and external capacitive loading.  
3. tFall 10ns at 3.3V.  
4. See TC values in Figure 11 on page 18 for approximate Rp value and TC.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
17  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Bus Operation  
Figure 10: IOL vs. Rp  
3.50ma  
3.00ma  
2.50ma  
2.00ma  
1.50ma  
1.00ma  
0.50ma  
0.00ma  
IOL at 3.60V (MAX)  
I
0
2,000  
4,000  
6,000  
Rp  
8,000  
10,000  
12,000  
Figure 11: TC vs. Rp  
IORL Cat=3T.6C0V (MAX)  
C = 100pF  
1.20µs  
1.00µs  
800ns  
600ns  
400ns  
200ns  
0ns  
T
0
2kΩ  
4kΩ  
6kΩ  
8kΩ  
10kΩ  
12kΩ  
Rp  
Table 5:  
Mode Selection  
CLE  
ALE  
CE#  
WE#  
RE#  
WP#  
Mode  
H
L
L
H
H
H
H
H
X
X
H
H
H
X
Read mode  
Write mode  
Data input  
Command input  
Address input  
Command input  
Address input  
L
H
L
H
L
L
L
L
L
L
H
L
L
L
L
H
Sequential read and data output  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
H
H
X
X
X
X
H
X
X
X
X
X
During read (busy)  
During program (busy)  
During erase (busy)  
Write protect  
H
H
L
0V/Vcc1  
Standby  
Notes: 1. WP# should be biased to CMOS HIGH or LOW for standby.  
2. Mode selection settings for this table: H = Logic level HIGH; L = Logic level LOW;  
X = VIH or VIL.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
18  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
Command Definitions  
Table 6:  
Command Set  
Number of  
Address  
Cycles  
Data  
Cycles  
Valid  
During  
Busy  
Command  
Cycle 1  
Command  
Cycle 2  
Command  
Required1  
Notes  
00h  
31h  
3Fh  
00h  
05h  
90h  
70h  
80h  
80h  
85h  
85h  
60h  
FFh  
A0h  
A5h  
AFh  
5
5
2
1
5
5
5
2
3
5
5
5
No  
No  
30h  
No  
No  
No  
No  
No  
No  
Yes  
No  
No  
No  
No  
No  
Yes  
No  
No  
No  
PAGE READ  
2
2
3
4
PAGE READ CACHE MODE  
PAGE READ CACHE MODE LAST  
READ for INTERNAL DATA MOVE  
RANDOM DATA READ  
READ ID  
No  
No  
35h  
E0h  
No  
No  
No  
READ STATUS  
Yes  
Yes  
Optional  
Yes  
No  
10h  
15h  
10h  
5
5
3
6
5
PROGRAM PAGE  
PROGRAM PAGE CACHE MODE  
PROGRAM for INTERNAL DATA MOVE  
RANDOM DATA INPUT  
BLOCK ERASE  
D0h  
No  
RESET  
Yes  
No  
10h  
10h  
30h  
OTP DATA PROGRAM  
OTP DATA PROTECT  
OTP DATA READ  
No  
Notes: 1. Indicates required data cycles between command cycle 1 and command cycle 2.  
2. Do not cross block address boundaries when using PAGE READ CACHE MODE operations.  
3. Do not cross plane address boundaries when using READ for INTERNAL DATA MOVE and  
PROGRAM for INTERNAL DATA MOVE. See Tables 3 and 4 on pages 13 and 14 for plane  
address boundary definitions.  
4. The RANDOM DATA READ command is limited to use within a single page.  
5. These commands are valid during busy when performing an interleaved die operation. See  
“Interleaved Die Operations” on page 47 for additional details.  
6. The RANDOM DATA INPUT command is limited to use within a single page.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
19  
©2006 Micron Technology, Inc. All rights reserved.  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
Table 7:  
Two-Plane Command Set  
Numberof  
Numberof  
Valid  
Command Address Command Address Command During  
Command  
Cycle 1  
Cycles  
Cycle 2  
Cycles  
Cycle 3  
Busy Notes  
00h  
00h  
5
5
00h  
00h  
5
5
30h  
35h  
No  
TWO-PLANE PAGE READ  
No  
1
TWO-PLANE READ  
for INTERNAL DATA MOVE  
06h  
78h  
5
3
E0h  
No  
2
3
TWO-PLANE RANDOM DATA READ  
Yes  
TWO-PLANE/MULTIPLE-DIE  
READ STATUS  
80h  
80h  
5
5
11h-80h  
11h-80h  
5
5
10h  
15h  
No  
No  
4
4
TWO-PLANE PROGRAM PAGE  
TWO-PLANE PROGRAM PAGE  
CACHE MODE  
85h  
60h  
5
3
11h-80h  
60h  
5
3
10h  
D0h  
No  
No  
1
4
TWO-PLANE PROGRAM  
for INTERNAL DATA MOVE  
TWO-PLANE BLOCK ERASE  
Notes: 1. Do not cross plane address boundaries when using TWO-PLANE READ for INTERNAL DATA  
MOVE and TWO-PLANE PROGRAM for INTERNAL DATA MOVE. See Tables 3 and 4 on  
pages 13 and 14 for plane address boundary definitions.  
2. The TWO-PLANE RANDOM DATA READ command is limited to use with the TWO-PLANE  
PAGE READ command.  
3. The TWO-PLANE/MULTIPLE-DIE READ STATUS command can be used to check status with  
two-plane and multiple-die operations, excluding the TWO-PLANE PAGE READ (00h-00h-  
30h) command.  
4. These commands are valid during busy when performing interleaved die operations. See  
“Interleaved Die Operations” on page 47 for additional details.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
20  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
READ Operations  
PAGE READ 00h-30h  
At power-on, the device defaults to READ mode. To enter READ mode while in opera-  
tion, write the 00h command to the command register, then write 5 ADDRESS cycles,  
and conclude with the 30h command.  
To determine the progress of the data transfer from the NAND Flash array to the data  
t
register ( R), monitor the R/B# signal or, alternatively, issue a READ STATUS (70h)  
command. If the READ STATUS command is used to monitor the data transfer, the user  
must reissue the READ (00h) command to receive data output from the data register. See  
Figure 65 on page 72 and Figure 66 on page 73 for examples. After the READ command  
has been reissued, pulsing the RE# line will result in outputting data, starting from the  
initial column address.  
A serial page read sequence outputs a complete page of data. After 30h is written, the  
page data is transferred to the data register, and R/B# goes LOW during the transfer.  
When the transfer to the data register is complete, R/B# returns HIGH. At this point, data  
can be read from the device. Starting from the initial column address and going to the  
t
end of the page, read the data by repeatedly pulsing RE# at the maximum RC rate (see  
Figure 12).  
Figure 12: PAGE READ Operation  
CLE  
CE#  
WE#  
ALE  
t
R
R/B#  
RE#  
00h  
30h  
I/Ox  
Address (5 cycles)  
Data output serial access)  
Don’t Care  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
21  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
RANDOM DATA READ 05h-E0h  
The RANDOM DATA READ command enables the user to specify a new column address  
so the data at single or multiple addresses can be read. The random read mode is  
enabled after a normal PAGE READ (00h-30h) sequence.  
Random data can be output after the initial page read by writing an 05h-E0h command  
sequence along with the new column address (2 cycles).  
The RANDOM DATA READ command can be issued without limit within the page.  
Only data on the current page can be read. Pulsing the RE# pin outputs data sequentially  
(see Figure 13).  
Figure 13: RANDOM DATA READ Operation  
t
R
R/B#  
RE#  
I/Ox  
Address  
(5 cycles)  
Address  
(2 cycles)  
Data output  
00h  
30h  
Data output  
05h  
E0h  
PAGE READ CACHE MODE START 31h; PAGE READ CACHE MODE START LAST 3Fh  
Micron NAND Flash devices have a cache register that can be used to increase the READ  
operation speed when accessing sequential pages within a block.  
First, issue a normal PAGE READ (00h–30h) command sequence. See Figure 14 on  
t
page 23 for operation details. The R/B# signal goes LOW for R during the time it takes to  
transfer the first page of data from the memory to the data register. After R/B# returns to  
HIGH, the PAGE READ CACHE MODE START (31h) command is latched into the  
t
command register. R/B# goes LOW for DCBSYR1 while data is being transferred from  
the data register to the cache register. After the data register contents are transferred to  
the cache register, another PAGE READ is automatically started as part of the 31h  
command. Data is transferred from the next sequential page of the memory array to the  
data register during the same time data is being read serially (pulsing RE#) from the  
t
cache register. If the total time to output data exceeds R, then the PAGE READ is hidden.  
The second and subsequent pages of data are transferred to the cache register by issuing  
t
additional 31h commands. R/B# will stay LOW up to DCBSYR2. This time can vary,  
depending on whether the previous memory-to-data-register transfer was completed  
prior to issuing the next 31h command. See Table 18 on page 63 for timing parameters.  
If the data transfer from memory to the data register is not completed before the 31h  
command is issued, R/B# stays LOW until the transfer is complete.  
It is not necessary to output a whole page of data before issuing another 31h command.  
R/B# will stay LOW until the previous PAGE READ is complete and the data has been  
transferred to the cache register.  
To read out the last page of data, the PAGE READ CACHE MODE START LAST (3Fh)  
command is issued. This command transfers data from the data register to the cache  
register without issuing another PAGE READ (see Figure 14 on page 23).  
Crossing block address boundaries when using the PAGE READ CACHE MODE opera-  
tion is prohibited.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
22  
©2006 Micron Technology, Inc. All rights reserved.  
Figure 14: PAGE READ CACHE MODE Operation  
CLE  
CE#  
WE#  
ALE  
t
t
t
t
DCBSYR2  
R
DCBSYR1  
DCBSYR2  
R/B#  
RE#  
I/Ox  
30h  
31h  
Data output (serial access)  
00h  
Address (5 cycles)  
31h  
Data output (serial access)  
Data output (serial access)  
3Fh  
Don’t Care  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
READ ID 90h  
The READ ID command is used to read the 5 bytes of identifier code programmed into  
the NAND Flash devices. The READ ID command reads a 5-byte table that includes  
manufacturer ID, device configuration, and part-specific information (see Table 8 on  
page 25).  
Writing 90h to the command register puts the device into the read ID mode. The  
command register stays in this mode until the next command cycle is issued (see  
Figure 15).  
Figure 15: READ ID Operation  
CLE  
CE#  
WE#  
t
AR  
ALE  
RE#  
t
t
REA  
Byte 0  
WHR  
90h  
00h  
Address, 1 cycle  
I/Ox  
Byte 1  
Byte 2  
Byte 3  
Byte 4  
Notes: 1. See Table 8 on page 25 for byte definitions.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
24  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
Table 8:  
Device ID and Configuration Codes  
Options  
I/O7  
I/O6  
I/O5  
I/O4  
I/O3  
I/O2  
I/O1  
I/O0 Value1 Notes  
Byte 0  
Manufacturer ID  
Micron  
0
0
1
0
1
1
0
0
2Ch  
Byte 1  
MT29F4G08AAA  
MT29F8G08BAA  
MT29F8G08DAA  
MT29F16G08FAA  
Byte 2  
Device ID  
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
0
1
0
1
0
1
0
0
1
0
1
0
1
0
1
DCh  
D3h  
DCh  
D3h  
4Gb, x8, 3V  
8Gb, x8, 3V  
8Gb, x8, 3V  
16Gb, x8, 3V  
2
3
1
2
0
0
0
1
00b  
01b  
00b  
01b  
Number of die per CE  
SLC  
2
0
0
Cell type  
0
1
Number of  
simultaneously  
programmed pages  
Not supported  
Supported  
0
1
0b  
1b  
Interleavedoperations  
between multiple die  
on the same CE#  
Supported  
1
1
1
1
1
1b  
Cache programming  
Byte value  
MT29F4G08AAA  
MT29F8G08BAA  
MT29F8G08DAA  
MT29F16G08FAA  
0
1
0
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
90h  
D1h  
90h  
D1h  
3
2
3
Byte 3  
Page size  
2KB  
64B  
0
1
01b  
1b  
1
1
Spare area size (bytes)  
Block size (w/o spare)  
Organization  
Serial access (MIN)  
Byte value  
128KB  
0
0
1
1
01b  
x8  
0
0
0b  
25ns  
1
1
0
0
1xxx0b  
95h  
MT29FxG08xAA  
0
0
1
0
Byte 4  
00b  
01b  
10b  
101b  
0b  
Reserved  
2
4
0
1
1
0
Planes per CE#  
2Gb  
1
0
1
Plane size  
Reserved  
Byte value  
0
0
0
0
0
MT29F4G08AAA  
MT29F8G08BAA  
MT29F8G08DAA  
MT29F16G08FAA  
1
1
1
1
0
0
0
0
1
1
1
1
0
1
0
1
1
0
1
0
0
0
0
0
0
0
0
0
54h  
58h  
54h  
58h  
2
3
Notes: 1. b = binary; h = hex.  
2. The MT29F8G08DAA device ID code reflects the configuration of each 4Gb section.  
3. The MT29F16G08FAA device ID code reflects the configuration of each 8Gb section.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
25  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
READ STATUS 70h  
These NAND Flash devices have an 8-bit status register the software can read during  
device operation. Table 9 describes the status register.  
After a READ STATUS command, all READ cycles will be from the status register until a  
new command is issued. Changes in the status register will be seen on I/O[7:0] as long  
as CE# and RE# are LOW; it is not necessary to start a new READ STATUS cycle to see  
these changes.  
In devices that have more than one die sharing a common CE# pin, the READ STATUS  
(70h) command reports the status of the die that was last addressed. If interleaved oper-  
ations are started on both die, then the TWO-PLANE/MULTIPLE-DIE READ STATUS  
(78h) command must be used to select the die that should report status. In this situa-  
tion, using the READ STATUS (70h) command will result in bus contention, as both die  
will respond until the next operation is issued.  
t
While monitoring the status register to determine when the R (transfer from NAND  
Flash array to data register) is complete, the user must reissue the READ (00h) command  
to make the change from status to read mode. After the READ command has been reis-  
sued, pulsing the RE# line will result in outputting data, starting from the initial column  
address.  
Table 9:  
Status Register Bit Definition  
SR  
Bit  
Program  
Page  
Program Page  
Cache Mode  
Page Read  
Page Read Cache Mode Block Erase  
Definition  
01  
Pass/fail  
Pass/fail (N)  
Pass/fail  
0 = Successful PROGRAM/ERASE  
1 = Error in PROGRAM/ERASE  
1
Pass/fail (N-1)  
0 = Successful PROGRAM  
1 = Error in PROGRAM  
2
3
4
5
0
0
0
Ready/busy  
Ready/busy2  
Ready/busy  
Ready/busy2  
Ready/busy  
0 = Busy  
1 = Ready  
6
Ready/busy  
Ready/busy  
cache3  
Ready/busy  
Ready/busy  
cache3  
Ready/busy  
0 = Busy  
1 = Ready  
7
Write protect Write protect Write protect Write protect Write protect  
0 = Protected  
1 = Not protected  
Notes: 1. Status register bit 0 reports a “1” if a TWO-PLANE PROGRAM PAGE or TWO-PLANE BLOCK  
ERASE operation fails on one or both planes. Status register bit 1 reports a “1” if a TWO-  
PLANE PROGRAM PAGE CACHE MODE operation fails on one or both planes. Use TWO-  
PLANE/MULTIPLE-DIE READ STATUS (78h) to determine the plane to which the operation  
failed.  
2. Status register bit 5 is “0” during the actual programming operation. If cache mode is used,  
this bit will be “1” when all internal operations are complete.  
3. Status register bit 6 is “1” when the cache is ready to accept new data. R/B# follows bit 6.  
See Figure 19 on page 29 and Figure 73 on page 77.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
26  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
Figure 16: Status Register Operation  
CE#  
t
CLR  
CLE  
WE#  
RE#  
t
REA  
70h  
Status output  
I/Ox  
PROGRAM Operations  
PROGRAM PAGE 80h-10h  
Micron NAND Flash devices are inherently page-programmed devices. Pages must be  
programmed consecutively within a block, from the least significant page address to  
most significant page address (that is, 0, 1, 2, …, 63). Random page address program-  
ming is prohibited.  
Micron NAND Flash devices also support partial-page programming operations. This  
means that any single bit can only be programmed one time before an erase is required;  
however, the page can be partitioned such that a maximum of four programming opera-  
tions are supported before an erase is required.  
SERIAL DATA INPUT 80h  
PROGRAM PAGE operations require loading the SERIAL DATA INPUT (80h) command  
into the command register, followed by 5 ADDRESS cycles, then the data. Serial data is  
loaded on consecutive WE# cycles starting at the given address. The PROGRAM (10h)  
command is written after the data input is complete. The control logic automatically  
executes the proper algorithm and controls all the necessary timing to program and  
verify the operation. Write verification only detects “1s” that are not successfully written  
to “0s.”  
t
R/B# goes LOW for the duration of array programming time, PROG. The READ STATUS  
(70h) command and the RESET (FFh) command are the only commands valid during the  
programming operation. Bit 6 of the status register will reflect the state of R/B#. When  
the device reaches ready, read bit 0 of the status register to determine if the program  
operation passed or failed (see Figure 17 on page 28). The command register stays in  
read status register mode until another valid command is written to it.  
RANDOM DATA INPUT 85h  
After the initial data set is input, additional data can be written to a new column address  
with the RANDOM DATA INPUT (85h) command. The RANDOM DATA INPUT  
command can be used any number of times in the same page prior to issuing the PAGE  
WRITE (10h) command. See Figure 18 on page 28 for the proper command sequence.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
27  
©2006 Micron Technology, Inc. All rights reserved.  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
Figure 17: PROGRAM and READ STATUS Operation  
t
PROG  
R/B#  
80h  
Address (5 cycles)  
DIN  
10h  
70h  
Status  
I/Ox  
I/O 0 = 0 PROGRAM successful  
I/O 0 = 1 PROGRAM error  
Figure 18: RANDOM DATA INPUT Operation  
t
PROG  
R/B#  
80h Address (5 cycles)  
DIN  
85h Address (2 cycles)  
DIN  
10h  
70h  
Status  
I/Ox  
PROGRAM PAGE CACHE MODE 80h-15h  
Cache programming is actually a buffered programming mode of the standard  
PROGRAM PAGE command. Programming is started by loading the SERIAL DATA  
INPUT (80h) command to the command register, followed by 5 cycles of address and a  
full or partial page of data. The data is initially copied into the cache register, and the  
CACHE PROGRAM (15h) command is then latched to the command register. Data is  
transferred from the cache register to the data register on the rising edge of WE#. R/B#  
goes LOW during this transfer time. After the data has been copied into the data register  
and R/B# returns to HIGH, memory array programming begins.  
When R/B# returns to HIGH, new data can be written to the cache register by issuing  
another CACHE PROGRAM command sequence. The time that R/B# stays LOW will be  
controlled by the actual programming time. The first time through equals the time it  
takes to transfer the cache register contents to the data register. On the second and  
subsequent programming passes, transfer from the cache register to the data register is  
held off until current data register content has been programmed into the array.  
The PROGRAM PAGE CACHE MODE command can cross block address boundaries; it  
must not cross die address boundaries. RANDOM DATA INPUT (85h) commands are  
permitted with PROGRAM PAGE CACHE MODE operations.  
Bit 6 (Cache R/B#) of the status register can be read by issuing the READ STATUS (70h)  
command to determine when the cache register is ready to accept new data. The R/B#  
pin always follows bit 6.  
Bit 5 (R/B#) of the status register can be polled to determine when the actual program-  
ming of the array is complete for the current programming cycle.  
If just the R/B# pin is used to determine programming completion, the last page of the  
program sequence must use the PROGRAM PAGE (10h) command instead of the  
CACHE PROGRAM (15h) command. If the CACHE PROGRAM (15h) command is used  
every time, including the last page of the programming sequence, status register bit 5  
must be used to determine when programming is complete (see Figure 19 on page 29).  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
28  
©2006 Micron Technology, Inc. All rights reserved.  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
Bit 0 of the status register returns the pass/fail for the previous page when bit 6 of the  
status register is a “1” (ready state). The pass/fail status of the current PROGRAM opera-  
tion is returned with bit 0 of the status register when bit 5 of the status register is a “1”  
(ready state) as shown in Figure 19.  
Figure 19: PROGRAM PAGE CACHE MODE Operation Example  
t
t
t
t
1
LPROG  
CBSY  
CBSY  
CBSY  
R/B#  
I/Ox  
Address &  
data input  
Address &  
data input  
Address &  
data input  
Address &  
data input  
80h  
15h  
80h  
15h  
80h  
15h  
80h  
10h  
A: Without status reads  
t
t
1
LPROG  
CBSY  
70h  
R/B#  
I/Ox  
Address &  
data input  
Status  
Address &  
data input  
Status  
80h  
15h  
80h  
10h  
70h  
output2  
output2  
B: With status reads  
Notes: 1. See Note 3, Table 19 on page 64.  
2. Check I/O[6:5] for internal ready/busy. Check I/O[1:0] for pass/fail status. RE# can stay LOW  
or pulse multiple times after a 70h command.  
Internal Data Move  
An internal data move requires two command sequences. Issue a READ for INTERNAL  
DATA MOVE (00h-35h) command first, then the PROGRAM for INTERNAL DATA MOVE  
(85h-10h) command. Data moves are only supported within the plane from which data is  
read. Moving data from odd to even blocks, from even to odd blocks, and across die  
boundaries is prohibited.  
READ FOR INTERNAL DATA MOVE 00h-35h  
The READ for INTERNAL DATA MOVE (00h-35h) command is used in conjunction with  
the PROGRAM for INTERNAL DATA MOVE (85h-10h) command. First, 00h is written to  
the command register, then the internal source address is written (5 cycles). After the  
address is input, the READ for INTERNAL DATA MOVE (35h) command writes to the  
command register. This transfers a page from memory into the cache register.  
The written column addresses are ignored even though all 5 ADDRESS cycles are  
required.  
The memory device is now ready to accept the PROGRAM for INTERNAL DATA MOVE  
command. Please refer to the description of this command in the following section.  
PROGRAM for INTERNAL DATA MOVE 85h-10h  
After the READ for INTERNAL DATA MOVE (00h-35h) command has been issued and  
R/B# goes HIGH, the PROGRAM for INTERNAL DATA MOVE (85h-10h) command can  
be written to the command register. This commandtransfers the data from the cache register  
to the data register and programming of the new destination page begins. The sequence:  
85h, destination address (5 cycles), then 10h, is written to the device. After 10h is written,  
R/B# goes LOW while the control logic automatically programs the new page. The READ  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
29  
©2006 Micron Technology, Inc. All rights reserved.  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
STATUS command can be used instead of the R/B# line to determine when the write is  
complete. When status register bit 6 = 1, bit 0 of the status register indicates if the opera-  
tion was successful.  
The RANDOM DATA INPUT (85h) command can be used during the PROGRAM for  
INTERNAL DATA MOVE command sequence to modify one or more bytes of the orig-  
inal data. First, data is copied into the cache register using the 00h-35h command  
sequence, then the RANDOM DATA INPUT (85h) command is written along with the  
address of the data to be modified next. New data is input on the external data pins. This  
copies the new data into the cache register.  
When 10h is written to the command register, the original data plus the modified data  
are transferred to the data register, and programming of the new page is started. The  
RANDOM DATA INPUT command can be issued as many times as necessary before  
starting the programming sequence with 10h (see Figures 20 and 21).  
Because INTERNAL DATA MOVE operations do not use external memory, ECC cannot  
be used to check for errors before programming the data to a new page. This can lead to  
a data error if the source page contains a bit error due to charge loss or charge gain. In  
the case that multiple INTERNAL DATA MOVE operations are performed, these bit  
errors may accumulate without correction. For this reason, it is highly recommended  
that systems using INTERNAL DATA MOVE operations also use a robust ECC scheme  
that can correct two or more bits per sector.  
Figure 20: INTERNAL DATA MOVE Operation  
t
t
PROG  
R
R/B#  
Address  
(5 cycles)  
Address  
(5 cycles)  
I/Ox  
00h  
35h  
85h  
10h  
70h  
Status  
Notes: 1. INTERNAL DATA MOVE operations are only supported within the plane from which data is  
read.  
Figure 21: INTERNAL DATA MOVE Operation with RANDOM DATA INPUT  
t
t
PROG  
R
R/B#  
Address  
Address  
Address  
Data  
I/Ox 00h  
35h  
85h  
Data 85h  
10h  
70h  
Status  
(5 cycles)  
(5 cycles)  
(2 cycles)  
Unlimited number  
of repetitions  
BLOCK ERASE Operation  
BLOCK ERASE 60h-D0h  
Erasing occurs at the block level. For example, the MT29F4G08AAA device has 4,096  
erase blocks, organized into 64 pages per block, 2,112 bytes per page (2,048 + 64 bytes).  
Each block is 132K bytes (128K + 4K bytes). The BLOCK ERASE command operates on  
one block at a time (see Figure 22 on page 31).  
Three cycles of addresses BA[18:6] and PA[5:0] are required. Although page addresses  
PA[5:0] are loaded, they are a “Don’t Care” and are ignored for BLOCK ERASE opera-  
tions. See Table 3 on page 13 for addressing details.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
30  
©2006 Micron Technology, Inc. All rights reserved.  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
The actual command sequence is a two-step process. The ERASE SETUP (60h)  
command is first written to the command register. Then 3 cycles of addresses are  
written to the device. Next, the ERASE CONFIRM (D0h) command is written to the  
command register. At the rising edge of WE#, R/B# goes LOW and the control logic auto-  
matically controls the timing and erase-verify operations. R/B# stays LOW for the entire  
t
BERS erase time.  
The READ STATUS (70h) command can be used to check the status of the BLOCK ERASE  
operation. When bit 6 = 1, the ERASE operation is complete. Bit 0 indicates a pass/fail  
condition where 0 = pass (see Figure 22, and Table 9 on page 26).  
Figure 22: BLOCK ERASE Operation  
CLE  
CE#  
WE#  
ALE  
t
BERS  
R/B#  
RE#  
I/Ox  
60h  
D0h  
70h  
Address Input (3 cycles)  
Status  
I/O 0 = 0 ERASE successful  
I/O 0 = 1 ERASE error  
Don’t Care  
One-Time Programmable (OTP) Area  
This Micron NAND Flash device offers a protected, one-time programmable NAND  
Flash memory area. Ten full pages (2,112 bytes per page) of OTP data is available on the  
device, and the entire range is guaranteed to be good. The OTP area is accessible only  
through the OTP commands. Customers can use the OTP area in any way they desire;  
typical uses include programming serial numbers or other data for permanent storage.  
In Micron NAND Flash devices, the OTP area leaves the factory in a non-written state  
(all bits are “1s”). Programming or partial-page programming enables the user to  
program only “0” bits in the OTP area. The OTP area cannot be erased, even if it is not  
protected. Protecting the OTP area simply prevents further programming of the OTP  
area.  
While the OTP area is referred to as “one-time programmable,” Micron provides a  
unique way to program and verify data—before permanently protecting it and  
preventing future changes.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
31  
©2006 Micron Technology, Inc. All rights reserved.  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
OTP programming and protection are accomplished in two discrete operations. First,  
using the OTP DATA PROGRAM (A0h-10h) command, an OTP page is programmed  
entirely in one operation or in up to four partial-page programming sequences.  
Programming can occur on other pages within the OTP area in a similar manner.  
Second, the OTP area is permanently protected from further programming using the  
OTP DATA PROTECT (A5h-10h) command. The pages within the OTP area can always  
be read using the OTP DATA READ (AFh-30h) command, whether or not it is protected.  
To determine whether or not the device is busy during an OTP operation, either monitor  
R/B# or use the READ STATUS (70h) command. Use of the TWO-PLANE/MULTIPLE-  
DIE READ STATUS (78h) command is prohibited during and following OTP operations.  
OTP DATA PROGRAM A0h-10h  
The OTP DATA PROGRAM (A0h-10h) command is used to write data to the pages within  
the OTP area. An entire page can be programmed at one time, or a page can be partially  
programmed up to four times. There is no ERASE operation for the OTP pages.  
The OTP DATA PROGRAM enables programming into an offset of an OTP page, using  
the two bytes of column address (CA[11:0]). The command is not compatible with the  
RANDOM DATA INPUT (85h) command. The OTP DATA PROGRAM command will not  
execute if the OTP area has been protected.  
To use the OTP DATA PROGRAM command, issue the A0h command. Issue 5 ADDRESS  
cycles: the first 2 ADDRESS cycles are the column address, and for the remaining 3  
cycles select a page in the range of 02h-00h-00h through 0Bh-00h-00h. Next, write from  
1 to 2,112 bytes of data. After data input is complete, issue the 10h command. The  
internal control logic automatically executes the proper programming algorithm and  
controls the necessary timing for programming and verification. Program verification  
only detects “1s” that are not successfully written to “0s.”  
t
R/B# goes LOW during the duration of the array programming time ( PROG). The READ  
STATUS (70h) command is the only command valid during the OTP DATA PROGRAM  
operation. Bit 5 of the status register will reflect the state of R/B#. If bit 7 is “0,” then the  
OTP area has been protected; otherwise, it will be a “1.”  
When the device is ready, read bit 0 of the status register to determine if the operation  
passed or failed (see Table 9 on page 26).  
It is possible to program each OTP page a maximum of four times.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
32  
©2006 Micron Technology, Inc. All rights reserved.  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
Figure 23: OTP DATA PROGRAM Operation  
CLE  
CE#  
t
WC  
WE#  
t
t
PROG  
WB  
ALE  
RE#  
Col  
Col  
OTP  
DIN  
N
DIN  
M
I/Ox  
A0h  
00h  
00h  
10h  
70h  
Status  
add 1 add 2  
page1  
OTP DATA INPUT  
command  
1 up to m bytes PROGRAM  
serial input  
command  
READ STATUS  
command  
R/B#  
OTP data written  
(following “good” status confirmation)  
x8 device: m = 2,112 bytes  
Don’t Care  
Notes: 1. The OTP page must be within the 02h–0Bh range.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
33  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
OTP DATA PROTECT A5h-10h  
The OTP DATA PROTECT (A5h-10h) command is used to protect all the data in the OTP  
area. After the data is protected it cannot be programmed further. When the OTP area is  
protected, the pages within the area are no longer programmable and cannot be unpro-  
tected.  
To use the OTP DATA PROTECT command, issue the A5h command. Next, issue the  
following 5 ADDRESS cycles: 00h-00h-01h-00h-00h. Finally, issue the 10h command.  
R/B# goes LOW while the OTP area is being protected. The protect command duration is  
t
similar to a normal page programming operation, PROG. The READ STATUS (70h)  
command is the only command valid during the OTP DATA PROTECT operation. Bit 5 of  
the status register will reflect the state of R/B#.  
When the device is ready, read bit 0 of the status register to determine if the operation  
passed or failed (see Table 9 on page 26).  
Figure 24: OTP DATA PROTECT Operation  
CLE  
CE#  
t
WC  
WE#  
ALE  
t
t
PROG  
WB  
RE#  
I/Ox  
Col  
00h  
Col  
00h  
A5h  
01h  
00h  
00h  
10h  
70h  
Status  
OTP DATA PROTECT  
command  
PROGRAM  
command  
READ STATUS  
command  
R/B#  
OTP data protected1  
Don’t Care  
Notes: 1. OTP data is protected following “good” status confirmation.  
OTP DATA READ AFh-30h  
The OTP DATA READ (AFh-30h) command is used to read data from a page within the  
OTP area. An OTP page within the OTP area is available for reading data whether or not  
the area is protected.  
To use the OTP DATA READ command, issue the AFh command. Next, issue 5 ADDRESS  
cycles: the first 2 ADDRESS cycles are the column address, and for the remaining 3  
cycles select a page in the range of 02h-00h-00h through 0Bh-00h-00h. Finally, issue the  
30h command.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
34  
©2006 Micron Technology, Inc. All rights reserved.  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
t
R/B# goes LOW ( R) while the data is moved from the OTP page to the data register. The  
READ STATUS (70h) command and the RESET (FFh) command are the only commands  
valid during the OTP DATA READ operation. Bit 5 of the status register will reflect the  
state of R/B#. For details, refer to Table 9 on page 26.  
Normal READ operation timings apply to OTP read accesses (see Figure 25). Additional  
pages within the OTP area can be selected by repeating the OTP DATA READ command.  
Figure 25: OTP DATA READ Operation  
CLE  
CE#  
WE#  
ALE  
t
R
RE#  
I/Ox  
Col  
Col  
OTP  
DOUT  
DOUT  
DOUT  
AFh  
00h  
00h  
30h  
add 1  
add 2  
page1  
N
N + 1  
M
Busy  
R/B#  
Don’t Care  
Notes: 1. The OTP page must be within the 02h–0Bh range.  
TWO-PLANE Operations  
This NAND Flash device is divided into two physical planes. Each plane contains a  
2,112-byte data register, a 2,112-byte cache register, and a 2,048-block NAND Flash  
array. Two-plane commands make better use of the Flash arrays on these physical  
planes by performing PROGRAM, READ, or ERASE operations simultaneously, signifi-  
cantly improving system performance.  
Two-Plane Addressing  
Two-plane commands require two addresses, one address per plane. These two  
addresses are subject to the following requirements:  
The least significant block address bit, BA6, must be different for the two addresses.  
The most significant block address bit, BA18 for 16Gb devices and for 8Gb devices  
with 1 CE#, must be identical for each plane.  
The page address bits, PA[5:0], must be identical for both addresses.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
35  
©2006 Micron Technology, Inc. All rights reserved.  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
TWO-PLANE PAGE READ 00h-00h-30h  
The TWO-PLANE PAGE READ (00h-00h-30h) operation is similar to the PAGE READ  
(00h-30h) operation. It transfers two pages of data from the NAND Flash array to the  
data registers. Each page must be from a different plane on the same die.  
To enter the TWO-PLANE PAGE READ mode, write the 00h command to the command  
register, then write 5 ADDRESS cycles for plane 0 (BA6 = 0). Next, write the 00h  
command to the command register, then write 5 ADDRESS cycles for plane 1 (BA6 = 1).  
Finally, issue the 30h command. The first-plane and second-plane addresses must meet  
the two-plane addressing requirements and, in addition, they must have identical  
column addresses.  
After the 30h command is written, page data is transferred from both planes to their  
t
respective data registers in R. During these transfers, R/B# goes LOW. When the trans-  
fers are complete, R/B# goes HIGH. To read out the data from the plane 0 data register,  
pulse RE# repeatedly. After the data cycle from the plane 0 address completes, issue a  
TWO-PLANE RANDOM DATA READ (06h-E0h) command to select the plane 1 address,  
then repeatedly pulse RE# to read out the data from the plane 1 data register.  
Alternatively, the READ STATUS (70h) command can monitor data transfers. When the  
transfers are complete, status register bit 6 is set to “1.” To read data from the first of the  
two planes, the user must first issue the TWO-PLANE RANDOM DATA READ (06h-E0h)  
command (see “TWO-PLANE RANDOM DATA READ 06h-E0h”) and pulse RE# repeat-  
edly. When the data cycle is complete, issue a TWO-PLANE RANDOM DATA READ (06h-  
E0h) command to select the other plane. To output the data beginning at the specified  
column address, pulse RE# repeatedly.  
Use of the TWO-PLANE/MULTIPLE-DIE READ STATUS (78h) command is prohibited  
during and following a TWO-PLANE PAGE READ operation.  
TWO-PLANE RANDOM DATA READ 06h-E0h  
The TWO-PLANE RANDOM DATA READ (06h-E0h) command is similar to the  
RANDOM DATA READ (05h-E0h) command, except that it requires 5 ADDRESS cycles  
rather than 2. The command selects a die and plane, and a column address from which  
to read data after a TWO-PLANE PAGE READ (00h-00h-30h) command.  
To issue a TWO-PLANE RANDOM DATA READ command, issue the 06h command, then  
5 ADDRESS cycles, and follow with the E0h command. Pulse RE# repeatedly to read data  
from the new plane, beginning at the specified column address.  
The primary purpose of the TWO-PLANE RANDOM DATA READ command is to select a  
new die and plane, and a column address within that die and plane. If a new die and  
plane do not need to be selected, then it is possible to use the RANDOM DATA READ  
(05h-E0h) command instead (see “RANDOM DATA READ 05h-E0h” on page 22).  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
36  
©2006 Micron Technology, Inc. All rights reserved.  
Figure 26: TWO-PLANE PAGE READ Operation  
CLE  
WE#  
ALE  
RE#  
Page address M  
Page address M  
Col  
Col  
Row  
Row  
Row  
Col  
Col  
Row  
Row  
Row  
00h  
00h  
30h  
I/Ox  
add 1  
add 2  
add 1 add 2  
add 3  
add 1  
add 2  
add 1 add 2  
add 3  
t
Column address J  
Plane 0 address  
Column address J  
Plane 1 address  
R
R/B#  
1
CLE  
WE#  
ALE  
RE#  
I/Ox  
R/B#  
Col  
Col  
add 2  
Row  
Row  
Row  
add 3  
DOUT 0  
DOUT 1  
DOUT  
06h  
E0h  
DOUT 0  
DOUT 1  
DOUT  
add 1  
add 1 add 2  
Plane 0 data  
Plane 1 address  
Plane 1 data  
1
Notes: 1. Column and page addresses must be the same.  
2. The least significant block address bit, BA6, must not be the same for the first- and second-plane addresses.  
Figure 27: TWO-PLANE PAGE READ Operation with RANDOM DATA READ  
t
R
R/B#  
RE#  
I/Ox  
Address  
(2 cycles)  
00h Address (5 cycles) 00h Address (5 cycles) 30h  
Data output  
Plane 0 data  
05h  
E0h  
Data output  
Plane 0 data  
Plane 0 address  
Plane 1 address  
1
R/B#  
RE#  
I/Ox  
Address  
(2 cycles)  
06h Address (5 cycles) E0h  
Plane 1 address  
Data output  
Plane 1 data  
05h  
E0h  
Data output  
Plane 1 data  
1
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
TWO-PLANE PROGRAM PAGE 80h-11h-80h-10h  
The TWO-PLANE PROGRAM PAGE (80h-11h-80h-10h) operation is similar to the  
PROGRAM PAGE (80h-10h) operation. It programs two pages of data from the data  
registers to the Flash arrays. The pages must be programmed to different planes on the  
same die. Within a block, the pages must be programmed consecutively from the least  
significant to most significant page address. Random page programming within a block  
is prohibited. The first-plane address and the second-plane address must meet the two-  
plane addressing requirements (see “Two-Plane Addressing” on page 35).  
To begin the TWO-PLANE PROGRAM PAGE operation, write the 80h command to the  
command register; write 5 ADDRESS cycles for the first plane; then write the data. Serial  
data is loaded on consecutive WE# cycles starting at the given address. Next, write the  
11h command. The 11h command is a “dummy” command that informs the control  
logic that the first set of data for the first plane is complete. No programming of the  
t
NAND Flash array occurs. R/B# goes LOW for DBSY, then returns HIGH. The READ  
STATUS (70h) command also indicates that the device is ready when status register bit 6  
t
is set to “1.” The only valid commands during DBSY are READ STATUS (70h) and  
RESET (FFh).  
t
After DBSY, write the 80h (or 81h) command to the command register; write 5  
ADDRESS cycles for the second plane; then write the data. The PROGRAM (10h)  
command is written after the second-plane data input is complete.  
After the 10h command is written, the control logic automatically executes the proper  
algorithm and controls all the necessary timing to program and verify the operations to  
both planes. WRITE verification only detects “1s” that are not successfully written  
to “0s.”  
t
R/B# goes LOW for the duration of the array programming time ( PROG). When  
programming and verification are complete, R/B# returns HIGH. The READ STATUS  
(70h) command also indicates that the device is ready when status register bit 6 is set to  
t
“1.” The only valid commands during PROG are READ STATUS (70h), TWO-PLANE/  
MULTIPLE-DIE READ STATUS (78h), and RESET (FFh).  
When the device is ready, if the READ STATUS (70h) command indicates an error in the  
operation (status register bit 0 = 1), use the TWO-PLANE/MULTIPLE-DIE READ  
STATUS (78h) command twice—once for each plane—to determine which plane opera-  
tion failed.  
During serial data input for either plane, the RANDOM DATA INPUT (85h) command  
can be used any number of times to change the column address within that plane. For  
details on this command, see “RANDOM DATA INPUT 85h” on page 27. Figure 28 shows  
TWO-PLANE PROGRAM PAGE operation.  
Figure 28: TWO-PLANE PROGRAM PAGE Operation  
t
t
PROG  
DBSY  
R/B#  
I/Ox  
80h Address (5 cycles) Data input  
1st plane address  
11h  
80h  
Address (5 cycles)  
2nd plane address  
Data input 10h  
70h  
Status  
(or 81h)  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
39  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
Figure 29: TWO-PLANE PROGRAM PAGE Operation with RANDOM DATA INPUT  
t
DBSY  
R/B#  
I/Ox  
80h Address (5 cycles)  
1st plane address  
Data input  
85h Address (2 cycles)  
Data input  
11h  
80h  
(or 81h)  
Address (5 cycles)  
2nd plane address  
Data input  
Different column  
address than previous  
5 address cycles, for  
1st plane only  
1
Repeat as many times as necessary  
t
PROG  
R/B#  
I/Ox  
85h Address (2 cycles)  
Data input  
10h  
Different column  
address than previous  
5 address cycles, for  
2nd plane only  
1
Repeat as many times as necessary  
TWO-PLANE PROGRAM PAGE CACHE MODE 80h-11h-80h-15h  
The TWO-PLANE PROGRAM PAGE CACHE MODE (80h-11h-80h-15h) operation is  
similar to the PROGRAM PAGE CACHE MODE (80h-15h) operation. It programs two  
pages of data from the data registers to the NAND Flash arrays. The pages must be  
programmed to different planes on the same die. Within a block, the pages must be  
programmed consecutively from the least significant to the most significant page  
address. Random page programming within a block is prohibited. The first-plane and  
second-plane addresses must meet the two-plane addressing requirements (see “Two-  
Plane Addressing” on page 35).  
To enter the two-plane program page cache mode, write the 80h command to the  
command register, write 5 ADDRESS cycles for the first plane, then write the data. Serial  
data is loaded on consecutive WE# cycles starting at the given address. Next, write the  
11h command. The 11h command is a “dummy” command that informs the control  
logic that the first set of data for the first plane is complete. No programming of the  
t
NAND Flash array occurs. R/B# goes LOW for DBSY, then returns HIGH. The READ  
STATUS (70h) command also indicates that the device is ready when status register bit 6  
t
is set to “1.” The only valid commands during DBSY are READ STATUS (70h) and RESET  
(FFh).  
t
After DBSY, write the 80h (or 81h) command to the command register, write 5  
ADDRESS cycles for the second plane, then write the data. The CACHE WRITE (15h)  
command is written after the second-plane data input is complete. Data is transferred  
from the cache registers to the data registers on the rising edge of WE#. R/B# goes LOW  
during this transfer time. After the data has been copied into the data registers and R/B#  
returns HIGH, memory array programming to both planes begins.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
40  
©2006 Micron Technology, Inc. All rights reserved.  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
When R/B# returns HIGH, new data can be written to the cache registers by issuing  
another TWO-PLANE PROGRAM PAGE CACHE MODE (80h-11h-80h-15h) command  
t
sequence. The time that R/B# stays LOW ( CBSY) is determined by the actual program-  
t
ming time of the previous operation. For the first cache operation, the duration of CBSY  
is the time it takes for the data to be copied from the cache registers to the data registers.  
On the second and subsequent TWO-PLANE PROGRAM PAGE CACHE MODE opera-  
tions, transfer from the cache registers to the data registers is delayed until the current  
data register contents have been programmed into the arrays.  
If the R/B# pin is used to determine programming completion, the last operation of the  
program sequence must use the TWO-PLANE PROGRAM PAGE (80h-11h-80h-10h)  
command instead of the TWO-PLANE PROGRAM PAGE CACHE MODE (80h-11h-80h-  
15h) command. If the TWO-PLANE PROGRAM PAGE CACHE MODE (80h-11h-80h-15h)  
command is used for the last operation, then use READ STATUS (70h) to monitor opera-  
tion progress; status register bit 5 indicates when programming is complete. See Table 9  
on page 26 for details of the status register.  
To determine when the current TWO-PLANE PROGRAM PAGE CACHE MODE (80h-  
11h-80h-10h) operation has completed, issue the READ STATUS (70h) command and  
check status register bits 5 and 6. When the device is ready, use status register bit 0 to  
determine if the current operation passed and status register bit 1 to determine if the  
previous operation passed. If either bit 0 or bit 1 = 1, indicating a failed operation, then  
use the TWO-PLANE/MULTIPLE-DIE READ STATUS (78h) command twice—once for  
each plane—to determine which current or previous plane operation failed. For more  
information on status register bit definitions, see Table 9 on page 26.  
During the serial data input for either plane, the RANDOM DATA INPUT (85h)  
command can be used any number of times to change the column address within that  
plane. For details on this command, see “RANDOM DATA INPUT 85h” on page 27. See  
Figure 29 on page 40 for an example.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
41  
©2006 Micron Technology, Inc. All rights reserved.  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
Figure 30: TWO-PLANE PROGRAM PAGE CACHE MODE Operation  
tDBSY  
tCBSY  
R/B#  
I/Ox  
80h  
Address/data input  
11h  
80h  
Address/data input  
15h  
(or 81h)  
1st plane  
2nd plane  
1
tDBSY  
tCBSY  
R/B#  
I/Ox  
80h  
Address/data input  
11h  
Address/data input  
15h  
80h  
(or 81h)  
1st plane  
2nd plane  
1
2
tDBSY  
tLPROG  
R/B#  
I/Ox  
80h  
Address/data input  
11h  
Address/data input  
10h  
80h  
(or 81h)  
1st plane  
2nd plane  
2
TWO-PLANE INTERNAL DATA MOVE 00h-00h-35h/85h-11h-80h-10h  
A TWO-PLANE INTERNAL DATA MOVE operation is similar to an INTERNAL DATA  
MOVE operation, and requires two sequences. Issue a TWO-PLANE READ for  
INTERNAL DATA MOVE (00h-00h-35h) command first, then the TWO-PLANE  
PROGRAM for INTERNAL DATA MOVE (85h-11h-80h-10h) command. Data moves are  
only supported within the planes from which data is read. The first-plane and second-  
plane addresses must meet the two-plane addressing requirements for both the TWO-  
PLANE READ for INTERNAL DATA MOVE (00h-00h-35h) and TWO-PLANE PROGRAM  
for INTERNAL DATA MOVE (85h-11h-80h-10h) commands (see “Two-Plane  
Addressing” on page 35).  
TWO-PLANE READ for INTERNAL DATA MOVE 00h-00h-35h  
The TWO-PLANE READ for INTERNAL DATA MOVE (00h-00h-35h) command is used in  
conjunction with the TWO-PLANE PROGRAM for INTERNAL DATA MOVE (85h-11h-  
80h-10h) command. First, write 00h to the command register, then write the first-plane  
internal source address (5 cycles). Again, write 00h to the command register, followed by  
the second-plane internal source address (5 cycles). Finally, write 35h to the command  
t
register. After the 35h command, R/B# goes LOW for R while two pages are read into  
their respective cache registers.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
42  
©2006 Micron Technology, Inc. All rights reserved.  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
The memory device is now ready to accept the TWO-PLANE PROGRAM for INTERNAL  
DATA MOVE (85h-11h-80h-10h) command.  
TWO-PLANE PROGRAM for INTERNAL DATA MOVE 85h-11h-80h-10h  
After the TWO-PLANE READ for INTERNAL DATA MOVE (00h-00h-35h) command has  
been issued and R/B# goes HIGH (or the status register bit 6 is “1”), the TWO-PLANE  
PROGRAM for INTERNAL DATA MOVE (85h-11h-80h-10h) command is used. Pages  
must be read from and programmed to the same plane.  
First, write 85h to the command register, then write the first-plane destination address  
(5 cycles), then write 11h to the command register. The 11h command is a “dummy”  
command that informs the control logic that the first set of data for the first plane is  
t
complete. No programming of the NAND Flash array occurs. R/B# goes LOW for DBSY,  
then returns HIGH. The READ STATUS (70h) command also indicates that the device is  
t
ready when status register bit 6 is set to “1.” The only valid commands during DBSY are  
READ STATUS (70h) and RESET (FFh).  
t
After DBSY, write the 80h (or 81h) command to the command register, then write the  
second-plane destination address (5 cycles), then write 10h to the command register.  
Data is transferred from the cache registers to the data registers on the rising edge of  
WE#, and programming begins on both planes.  
t
R/B# goes LOW for the duration of array programming time, PROG. When program-  
ming and verification are complete, R/B# returns HIGH. The READ STATUS (70h)  
command also indicates that the device is ready when status register bit 6 is set to “1.”  
t
The only valid commands during PROG are READ STATUS (70h), TWO-  
PLANE/MULTIPLE-DIE READ STATUS (78h), and RESET (FFh).  
If the READ STATUS (70h) command indicates an error in the operation (status register  
bit 0 = 1), use the TWO-PLANE/MULTIPLE-DIE READ STATUS (78h) command twice—  
once for each plane—to determine which plane operation failed.  
During the serial data input for either plane, the RANDOM DATA INPUT (85h)  
command can be used any number of times to change the column address within that  
plane. For details on this command, see “RANDOM DATA INPUT 85h” on page 27. See  
Figure 32 on page 44 for an example.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
43  
©2006 Micron Technology, Inc. All rights reserved.  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
Figure 31: TWO-PLANE INTERNAL DATA MOVE Operation  
t
R
t
DBSY  
R/B#  
I/Ox  
00h Address (5 cycles) 00h Address (5 cycles) 35h  
85h Address (5 cycles) 11h  
1st-plane destination  
1st-plane source  
2nd-plane source  
1
t
PROG  
R/B#  
I/Ox  
Address (5 cycles) 10h  
2nd-plane destination  
70h  
Status  
80h  
(or 81h)  
1
Figure 32: TWO-PLANE INTERNAL DATA MOVE Operation with RANDOM DATA INPUT  
t
R
R/B#  
I/Ox  
00h Address (5 cycles) 00h Address (5 cycles) 35h  
1st-plane source 2nd-plane source  
85h Address (5 cycles)  
Data  
85h Address (2 cycles) Data 11h  
1st-plane destination Optional  
Unlimited number  
of repetitions  
1
t
t
PROG  
DBSY  
R/B#  
I/Ox  
80h  
Address (5 cycles)  
Data  
85h Address (2 cycles)  
Data  
10h  
70h  
Status  
Optional  
Unlimited number  
of repetitions  
(or 81h) 2nd-plane destination  
1
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
44  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
TWO-PLANE BLOCK ERASE 60h-60h-D0h  
The TWO-PLANE BLOCK ERASE (60h-60h-D0h) operation is similar to the BLOCK  
ERASE (60h-D0h) operation. It erases two blocks instead of one. The blocks to be erased  
must be on different planes on the same die. The first-plane and second-plane  
addresses must meet the two-plane addressing requirements (see “Two-Plane  
Addressing” on page 35). Additionally, the page addresses, PA[5:0], for both planes must  
be LOW.  
Begin a TWO-PLANE BLOCK ERASE operation by writing 60h to the command register,  
followed by 3 ADDRESS cycles of the first-plane block address. Then write 60h again to  
the command register, followed by 3 ADDRESS cycles of the second-plane block  
address. Finally, issue the D0h command.  
t
R/B# goes LOW for the duration of block erase time, BERS. When block erasure is  
complete, R/B# returns HIGH. The READ STATUS (70h) command also indicates that  
the device is ready when status register bit 6 is set to “1.” The only valid commands  
t
during BERS are READ STATUS (70h), TWO-PLANE/MULTIPLE-DIE READ STATUS  
(78h), and RESET (FFh).  
If the READ STATUS (70h) command indicates an error in the operation (status register  
bit 0 = 1), then use the TWO-PLANE/MULTIPLE-DIE READ STATUS (78h) command  
twice—once for each plane—to determine which plane operation failed.  
Figure 33: TWO-PLANE BLOCK ERASE Operation  
CLE  
CE#  
WE#  
ALE  
t
BERS  
R/B#  
RE#  
I/Ox  
60h  
60h  
D0h  
70h  
Address input (3 cycles)  
1st plane  
Address input (3 cycles)  
2nd plane  
Status  
I/O 0 = 0 ERASE successful  
I/O 0 = 1 ERASE error  
Don’t Care  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
45  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
TWO-PLANE/MULTIPLE-DIE READ STATUS 78h  
In Micron NAND Flash devices that have two planes, and possibly more than one die in  
a package that share the same CE# pin, it is possible to independently poll the status  
register of a particular plane and die using the TWO-PLANE/MULTIPLE-DIE READ  
STATUS (78h) command. This command can be used to check the status register during  
and after two-plane operations (with the exception of TWO-PLANE PAGE READ), and to  
check the status of interleaved die operations.  
After the 78h command is issued, the device requires 3 ADDRESS cycles containing the  
block and page addresses, BA[18:6] and PA[5:0]. The most significant block address bit  
in the third ADDRESS cycle, BA18, selects the proper die, and the least significant block  
address bit in the first ADDRESS cycle, BA6, selects the proper plane within that die.  
After the 78h command and the 3 ADDRESS cycles, the status register is output on  
I/O[7:0] when RE# is LOW. Changes in the status register will be seen on I/O[7:0] as long  
as CE# and RE# are LOW; it is not necessary to issue a new TWO-PLANE/MULTIPLE-DIE  
READ STATUS command to see these changes. The status register bit definitions are  
identical to those reported by the READ STATUS (70h) command (see Table 9 on  
page 26).  
In devices that have more than one die sharing a common CE# pin, when one die is not  
busy (status register bit 5 is “1”), it is possible to initiate a new operation to that die even  
if the other die is busy (see “Interleaved Die Operations” on page 47).  
If both die are busy during or following an interleaved die operation, the READ STATUS  
(70h) command must not be used to check status, as both die will respond, causing bus  
contention on I/O[7:0]. The TWO-PLANE/MULTIPLE-DIE READ STATUS (78h)  
command is required to check status during and after interleaved die operations.  
Use of the TWO-PLANE/MULTIPLE-DIE READ STATUS (78h) command is prohibited  
during and following power-on RESET and OTP commands.  
Figure 34: TWO-PLANE/MULTIPLE-DIE READ STATUS Cycle  
CE#  
CLE  
WE#  
ALE  
RE#  
I/Ox  
t
AR  
t
t
WHR  
REA  
Status output  
78h  
Address (3 cycles)  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
46  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
Interleaved Die Operations  
In devices that have more than one die sharing a common CE# pin, it is possible to  
significantly improve performance by interleaving operations between the die. When  
both die are idle (R/B# is HIGH or status register bit 5 is “1”), issue a command to the  
first die (BA18 = 0). Then, while the first die is busy (R/B# is LOW), issue a command to  
the other die (BA18 = 1).  
There are two ways to verify operation completion in each die: using the R/B# signal, or  
monitoring the status register. R/B# remains LOW while either die is busy. When R/B#  
goes HIGH, then both die are idle and the operations are complete. Alternatively, the  
TWO-PLANE/MULTIPLE-DIE READ STATUS (78h) command can report the status of  
each die individually. If a die is performing a cache operation, like PROGRAM PAGE  
CACHE MODE (80h-15h) or TWO-PLANE PROGRAM PAGE CACHE MODE (80h-11h-  
80h-15h), then the die is able to accept the data for another cache operation when status  
register bit 6 is “1.” All operations, including cache operations, are complete on a die  
when status register bit 5 is “1.”  
During and following interleaved die operations, the READ STATUS (70h) command is  
prohibited. Instead, use the TWO-PLANE/MULTIPLE-DIE READ STATUS (78h)  
command. This command selects which die will report status. Interleaved two-plane  
commands must also meet the requirements in “Two-Plane Addressing” on page 35.  
PROGRAM PAGE, PROGRAM PAGE CACHE MODE, TWO-PLANE PROGRAM PAGE,  
TWO-PLANE PROGRAM PAGE CACHE MODE, BLOCK ERASE, and TWO-PLANE BLOCK  
ERASE can be used as interleaved operations on separate die that share a common CE#.  
Interleaved PROGRAM PAGE Operations  
Figures 35 and 36 show how to perform two types of interleaved PROGRAM PAGE oper-  
ations. In Figure 35, the R/B# signal is monitored for operation completion. In Figure 36  
on page 48, the status register is monitored for operation completion with the TWO-  
PLANE/MULTIPLE-DIE READ STATUS (78h) command.  
RANDOM DATA INPUT (85h) is permitted during interleaved PROGRAM PAGE  
operations.  
Figure 35: Interleaved PROGRAM PAGE Operation with R/B# Monitoring  
I/Ox  
80h Address Data 10h  
Die 1  
80h Address Data 10h  
Die 2  
80h Address Data 10h  
Die 1  
80h Address Data 10h  
Die 2  
R/B#  
(die 1 internal)  
R/B#  
(die 2 internal)  
R/B#  
(external)  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
47  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
Figure 36: Interleaved PROGRAM PAGE Operation with Status Register Monitoring  
I/Ox  
78h  
80h Address Data 10h  
Die 1  
80h Address Data 10h  
Die 2  
Address Status  
Die 1  
80h Address Data 10h  
Die 1  
R/B#  
(die 1 internal)  
R/B#  
(die 2 internal)  
R/B#  
(external)  
Interleaved PROGRAM PAGE CACHE MODE Operations  
Figures 37 and 38 show how to perform two types of interleaved PROGRAM PAGE  
CACHE MODE operations. In Figure 37, the R/B# signal is monitored. In Figure 38 on  
page 49, the status register is monitored with the TWO-PLANE/MULTIPLE-DIE READ  
STATUS (78h) command.  
RANDOM DATA INPUT (85h) is permitted during interleaved PROGRAM PAGE CACHE  
MODE operations.  
Figure 37: Interleaved PROGRAM PAGE CACHE MODE Operation with R/B# Monitoring  
I/Ox  
80h Address Data 15h  
Die 1  
80h Address Data 15h  
Die 2  
80h Address Data 15h  
Die 1  
80h Address Data 15h  
Die 2  
R/B#  
(die 1 internal)  
R/B#  
(die 2 internal)  
R/B#  
(external)  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
48  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
Figure 38: Interleaved PROGRAM PAGE CACHE MODE Operation with Status Register Monitoring  
I/Ox  
78h  
80h Address Data 15h  
Die 1  
80h Address Data 15h  
Die 2  
Address Status  
Die 1  
80h Address Data 15h  
Die 1  
R/B#  
(die 1 internal)  
R/B#  
(die 2 internal)  
R/B#  
(external)  
Interleaved TWO-PLANE PROGRAM PAGE Operations  
Figure 39 on page 50 and Figure 40 on page 51 show how to perform two types of inter-  
leaved TWO-PLANE PROGRAM PAGE operations. In Figure 39, the R/B# signal is moni-  
tored for operation completion. In Figure 40, the TWO-PLANE/MULTIPLE-DIE READ  
STATUS (78h) command is used to monitor the status register for operation completion.  
The interleaved TWO-PLANE PROGRAM PAGE operation must meet two-plane  
addressing requirements. See “Two-Plane Addressing” on page 35 for details.  
RANDOM DATA INPUT (85h) is permitted during interleaved TWO-PLANE PROGRAM  
PAGE operations.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
49  
©2006 Micron Technology, Inc. All rights reserved.  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
Figure 39: Interleaved TWO-PLANE PROGRAM PAGE Operation with R/B# Monitoring  
I/Ox  
80h Address Data 11h  
Die 1  
80h Address Data 10h  
Die 1  
80h Address Data 11h  
Die 2  
80h Address Data 10h  
Die 2  
R/B#  
(die 1 internal)  
R/B#  
(die 2 internal)  
R/B#  
(external)  
1
I/Ox  
80h Address Data 11h  
Die 1  
80h Address Data  
Die 1  
R/B#  
(die 1 internal)  
R/B#  
(die 2 internal)  
R/B#  
(external)  
1
Notes: 1. Two-plane addressing requirements apply.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
50  
Figure 40: Interleaved TWO-PLANE PROGRAM PAGE Operation with Status Register Monitoring  
I/Ox  
80h Address Data 11h  
Die 1  
80h Address Data 10h  
Die 1  
80h Address Data 11h  
Die 2  
80h Address Data 10h  
Die 2  
R/B#  
(die 1 internal)  
R/B#  
(die 2 internal)  
R/B#  
(external)  
1
80h Address Data 11h  
Die 1  
78h Address Status  
Die 1  
80h Address Data 10h  
Die 1  
78h Address Status  
Die 2  
80h Address Data 11h  
Die 2  
I/Ox  
R/B#  
(die 1 internal)  
R/B#  
(die 2 internal)  
R/B#  
(external)  
1
Notes: 1. Two-plane addressing requirements apply.  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
Interleaved TWO-PLANE PROGRAM PAGE CACHE MODE Operations  
Figures 41 and 42 show how to perform two types of interleaved TWO-PLANE  
PROGRAM PAGE CACHE MODE operations. In Figure 41, the R/B# signal is monitored.  
In Figure 42 on page 53, the status register is monitored with the TWO-  
PLANE/MULTIPLE-DIE READ STATUS (78h) command.  
The interleaved TWO-PLANE PROGRAM PAGE CACHE MODE operation must meet  
two-plane addressing requirements. See “Two-Plane Addressing” on page 35 for details.  
RANDOM DATA INPUT (85h) is permitted during interleaved TWO-PLANE PROGRAM  
PAGE CACHE MODE operations.  
Figure 41: Interleaved TWO-PLANE PROGRAM PAGE CACHE MODE Operation with R/B# Monitoring  
I/Ox  
80h Address Data 11h  
Die 1  
80h Address Data 15h  
(or 81h)  
80h Address Data 11h  
Die 2  
80h Address Data 15h  
(or 81h)  
Die 1  
Die 2  
R/B#  
(die 1 internal)  
R/B#  
(die 2 internal)  
R/B#  
(external)  
1
I/Ox  
80h Address Data 11h  
Die 1  
80h Address Data 15h  
(or 81h)  
Die 1  
R/B#  
(die 1 internal)  
R/B#  
(die 2 internal)  
R/B#  
(external)  
1
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
52  
Figure 42: Interleaved TWO-PLANE PROGRAM PAGE CACHE MODE Operation with Status Register Monitoring  
80h Address Data 11h  
Die 1  
80h Address Data 15h  
80h Address Data 11h  
Die 2  
80h Address Data 15h  
(or 81h)  
I/Ox  
(or 81h)  
Die 1  
Die 2  
R/B#  
(die 1 internal)  
R/B#  
(die 2 internal)  
R/B#  
(external)  
1
I/Ox  
80h  
78h Address Status  
Die 1  
80h Address Data 11h  
Die 1  
Address Data 15h  
78h Address Status  
Die 2  
80h Address Data 11h  
Die 2  
(or 81h)  
Die 1  
R/B#  
(die 1 internal)  
R/B#  
(die 2 internal)  
R/B#  
(external)  
1
Notes: 1. Two-plane addressing requirements apply.  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
Interleaved BLOCK ERASE Operations  
Figures 43 and 44 show how to perform two types of interleaved BLOCK ERASE opera-  
tions. In Figure 43, the R/B# signal is monitored for operation completion. In Figure 44,  
the TWO-PLANE/MULTIPLE-DIE READ STATUS (78h) command is used to monitor the  
status register for operation completion.  
Figure 43: Interleaved BLOCK ERASE Operation with R/B# Monitoring  
I/Ox  
60h Address D0h  
Die 1  
60h Address D0h  
Die 2  
60h Address D0h  
Die 1  
60h Address D0h  
Die 2  
R/B#  
(die 1 internal)  
R/B#  
(die 2 internal)  
R/B#  
(external)  
Figure 44: Interleaved BLOCK ERASE Operation with Status Register Monitoring  
I/Ox  
78h  
60h Address D0h  
Die 1  
60h Address D0h  
Die 2  
Address Status  
Die 1  
60h Address D0h  
Die 1  
R/B#  
(die 1 internal)  
R/B#  
(die 2 internal)  
R/B#  
(external)  
Interleaved TWO-PLANE BLOCK ERASE Operations  
Figures 45 and 46 on page 55 show how to perform two types of interleaved BLOCK  
ERASE operations. In Figure 45, the R/B# signal is monitored for operation completion.  
In Figure 46, the TWO-PLANE/MULTIPLE-DIE READ STATUS (78h) command is used  
to monitor the status register for operation completion.  
The interleaved TWO-PLANE BLOCK ERASE operation must meet two-plane addressing  
requirements. See “Two-Plane Addressing” on page 35 for details.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
54  
©2006 Micron Technology, Inc. All rights reserved.  
Figure 45: Interleaved TWO-PLANE BLOCK ERASE Operation with R/B# Monitoring  
I/Ox  
60h Address 60h Address D0h  
Die 1 Die 1  
60h Address 60h Address D0h  
Die 2 Die 2  
60hAddress 60h Address D0h  
Die 1 Die 1  
R/B#  
(die 1 internal)  
R/B#  
(die 2 internal)  
R/B#  
(external)  
Notes: 1. Two-plane addressing requirements apply.  
Figure 46: Interleaved TWO-PLANE BLOCK ERASE Operation with Status Register Monitoring  
I/Ox  
60h Address 60h Address D0h  
Die 1 Die 1  
60h Address 60h Address D0h  
Die 2 Die 2  
78h Address Status  
Die 1  
60hAddress 60h Address D0h  
Die 1 Die 1  
R/B#  
(die 1 internal)  
R/B#  
(die 2 internal)  
R/B#  
(external)  
Notes: 1. Two-plane addressing requirements apply.  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
RESET Operation  
RESET FFh  
The RESET command is used to put the memory device into a known condition and to  
abort the command sequence in progress.  
READ, PROGRAM, and ERASE commands can be aborted while the device is in the busy  
state. The contents of the memory location being programmed or the block being erased  
are no longer valid. The data may be partially erased or programmed, and is invalid. The  
command register is cleared and is ready for the next command. The data register and  
cache register contents are marked invalid.  
The status register contains the value E0h when WP# is HIGH; otherwise it is written  
t
with a 60h value. R/B# goes LOW for RST after the RESET command is written to the  
command register (see Figure 47 and Table 10).  
The RESET command must be issued to all CE#s after power-on. The device will be busy  
for a maximum of 1ms. Use of the TWO-PLANE/MULTIPLE-DIE READ STATUS (78h)  
command is prohibited during and following the initial RESET command and OTP oper-  
ations.  
Figure 47: RESET Operation  
CLE  
CE#  
WE#  
R/B#  
t
WB  
t
RST  
I/Ox  
FFh  
RESET  
command  
Table 10: Status Register Contents After RESET Operation  
Condition  
Status  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Hex  
1
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
E0h  
60h  
WP# HIGH  
WP# LOW  
Ready  
Ready and write protected  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
56  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Command Definitions  
WRITE PROTECT Operation  
It is possible to enable and disable PROGRAM and ERASE commands using the WP# pin.  
t
Figures 48 through 51 illustrate the setup time ( WW) required from WP# toggling until a  
PROGRAM or ERASE command is latched into the command register. After command  
cycle 1 is latched, the WP# pin must not be toggled until the command is complete and  
the device is ready (status register bit 5 is “1”).  
Figure 48: ERASE Enable  
WE#  
I/Ox  
t
t
t
WW  
60h  
D0h  
D0h  
10h  
WP#  
R/B#  
Figure 49: ERASE Disable  
WE#  
WW  
60h  
I/Ox  
WP#  
R/B#  
Figure 50: PROGRAM Enable  
WE#  
WW  
80h  
I/Ox  
WP#  
R/B#  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
57  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Error Management  
Figure 51: PROGRAM Disable  
WE#  
t
WW  
80h  
I/Ox  
WP#  
R/B#  
10h  
Error Management  
This NAND Flash device is specified to have a minimum of 4,016 valid blocks (NVB) out  
of every 4,096 total available blocks. This means the devices may have blocks that are  
invalid when shipped from the factory. An invalid block is one that contains one or more  
bad bits. Additional bad blocks may develop with use. However, the total number of  
available blocks will not fall below NVB during the endurance life of the product.  
Although NAND Flash memory devices may contain bad blocks, they can be used quite  
reliably in systems that provide bad-block management and error correction algo-  
rithms. This type of software environment ensures data integrity.  
Internal circuitry isolates each block from other blocks, so the presence of a bad block  
does not affect the operation of the rest of the NAND Flash array.  
The first block (physical block address 00h) for each CE# is guaranteed to be valid with  
ECC (up to 1,000 PROGRAM/ERASE cycles) when shipped from the factory. This  
provides a reliable location for storing boot code and critical boot information.  
NAND Flash devices are shipped from the factory erased. The factory identifies invalid  
blocks before shipping by programming data other than FFh into the first spare location  
(column address 2,048) of the first or second page of each bad block.  
System software should check the first spare address on the first and second page of  
each block prior to performing any PROGRAM or ERASE operations on the NAND Flash  
device. A bad-block table can then be created, allowing system software to map around  
these areas. Factory testing is performed under worst-case conditions. Because blocks  
marked “bad” may be marginal, it may not be possible to recover this information if the  
block is erased.  
Over time, some memory locations may fail to program or erase properly. In order to  
ensure that data is stored properly over the life of the NAND Flash device, the following  
precautions are required:  
Check status after a PROGRAM, ERASE, or INTERNAL DATA MOVE operation.  
Under typical use conditions, utilize a minimum of 1-bit ECC per 528 bytes of data.  
Use bad-block management and a wear-leveling algorithm.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
58  
©2006 Micron Technology, Inc. All rights reserved.  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Electrical Characteristics  
Electrical Characteristics  
Stresses greater than those listed in Table 11 may cause permanent damage to the  
device. This is a stress rating only, and functional operation of the device at these or any  
other conditions above those indicated in the operational sections of this specification is  
not guaranteed. Exposure to absolute maximum rating conditions for extended periods  
may affect reliability.  
Table 11: Absolute Maximum Ratings  
Voltage on any pin relative to VSS  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
VIN  
VCC  
TSTG  
–0.6  
–0.6  
–65  
+4.6  
+4.6  
+150  
5
V
V
Voltage input  
MT29FxG08xAA  
MT29FxG08xAA  
VCC supply voltage  
°C  
mA  
Storage temperature  
Short circuit output current, I/Os  
Table 12: Recommended Operating Conditions  
Parameter/Condition  
Symbol  
Min  
Typ  
Max  
Unit  
TA  
0
–40  
2.7  
0
+70  
+85  
3.6  
0
oC  
Operating temperature  
Commercial  
Extended  
Vcc  
Vss  
3.3  
0
V
V
VCC supply voltage  
MT29FxG08xAA  
Ground supply voltage  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
59  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Electrical Characteristics  
VCC Power Cycling  
Micron NAND Flash devices are designed to prevent data corruption during power tran-  
sitions. VCC is internally monitored. When VCC goes below approximately 2.0V,  
PROGRAM and ERASE functions are disabled. WP# provides additional hardware  
protection. WP# should be kept at VIL during power cycling. When VCC reaches 2.5V,  
10µs should be allowed for the NAND Flash to initialize before executing any commands  
(see Figure 52).  
The RESET command must be issued to all CE#s after power-on. The device will be busy  
for a maximum of 1ms.  
Figure 52: AC Waveforms During Power Transitions  
3V device: 2.5V  
3V device: 2.5V  
CLE  
VCC  
HIGH  
WP#  
WE#  
10µs  
FFh  
I/Ox  
1ms  
(MAX)  
R/B#  
Don’t Care  
Undefined  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
60  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Electrical Characteristics  
Table 13: M29FxGxxxAA 3V Device DC and Operating Characteristics  
Parameter  
Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
tRC = 25ns; CE# = VIL;  
IOUT = 0mA  
ICC1  
25  
35  
mA  
Sequential read current  
ICC2  
ICC3  
ISB1  
25  
25  
35  
35  
1
mA  
mA  
mA  
Program current  
Erase current  
CE# = VIH; WP# = 0V/VCC  
Standby current (TTL)  
Standby current (CMOS)  
MT29F4G08AAA  
MT29F8G08BAA  
MT29F8G08DAA  
MT29F16G08FAA  
Input leakage current  
MT29F4G08AAA  
MT29F8G08BAA  
MT29F8G08DAA  
MT29F16G08FAA  
Output leakage current  
MT29F4G08AAA  
MT29F8G08BAA  
MT29F8G08DAA  
MT29F16G08FAA  
Input high voltage  
CE# = VCC - 0.2V;  
WP# = 0V/VCC  
ISB2  
10  
20  
20  
40  
50  
µA  
µA  
µA  
µA  
100  
100  
200  
VIN = 0V to VCC  
ILI  
10  
20  
20  
40  
µA  
µA  
µA  
µA  
VOUT = 0V to VCC  
ILO  
10  
20  
µA  
µA  
µA  
µA  
V
20  
40  
I/O[7:0],  
VIH  
0.8 x VCC  
VCC + 0.3  
CE#, CLE, ALE, WE#, RE#, WP#, R/B#  
VIL  
VOH  
–0.3  
2.4  
0.2 x Vcc  
V
V
Input low voltage (all inputs)  
Output high voltage  
IOH = –400µA  
IOL = 2.1mA  
VOL = 0.4V  
0.4  
VOL  
V
Output low voltage  
IOL (R/B#)  
8
10  
mA  
Output low current (R/B#)  
Table 14: Valid Blocks  
Parameter  
Symbol  
Device  
Min  
Max  
Unit  
blocks  
Notes  
NVB  
MT29F4G08AAA  
MT29F8G08BAA  
MT29F8G08DAA  
MT29F16G08FAA  
4,016  
8,032  
8,032  
16,064  
4,096  
8,192  
8,192  
16,384  
1, 2  
3
Valid block number  
3
3
Notes: 1. Invalid blocks are blocks that contain one or more bad bits. The device may contain bad  
blocks upon shipment. Additional bad blocks may develop over time; however, the total  
number of available blocks will not drop below NVB during the endurance life of the device.  
Do not erase or program blocks marked invalid by the factory.  
2. Block 00h (the first block) is guaranteed to be valid up to 1,000 PROGRAM/ERASE cycles.  
3. Each 4Gb section has a maximum of 80 invalid blocks.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
61  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Electrical Characteristics  
Table 15: Capacitance  
Description  
Symbol  
Device  
Max  
Unit  
Notes  
CIN  
MT29F4G08AAA  
MT29F8G08BAA  
MT29F8G08DAA  
MT29F16G08FAA  
MT29F4G08AAA  
MT29F8G08BAA  
MT29F8G08DAA  
MT29F16G08FAA  
10  
20  
20  
40  
10  
20  
20  
40  
pF  
1, 2  
Input capacitance  
CIO  
pF  
1, 2  
Input/output capacitance (I/O)  
Notes: 1. These parameters are verified in device characterization and are not 100 percent tested.  
2. Test conditions: TC = 25°C; f = 1 MHz; VIN = 0V.  
Table 16: Test Conditions  
Parameter  
Value  
Notes  
0.0V to VCC  
Input pulse levels  
MT29FxG08xAA  
5ns  
VCC/2  
Input rise and fall times  
Input and output timing levels  
Output load  
1 TTL GATE and CL = 50pF  
1
Notes: 1. Verified in device characterization; not 100 percent tested.  
Table 17: AC Characteristics: Command, Data, and Address Input  
Cache Mode1  
Min Max  
Standard Mode  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
70  
10  
25  
10  
10  
25  
35  
10  
20  
45  
15  
25  
30  
70  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
ALE to data start  
ALE hold time  
tADL  
tALH  
tALS  
tCH  
tCLH  
tCLS  
tCS  
tDH  
tDS  
tWC  
tWH  
tWP  
tWW  
10  
5
ALE setup time  
CE# hold time  
5
CLE hold time  
10  
15  
5
CLE setup time  
CE# setup time  
Data hold time  
Data setup time  
WRITE cycle time  
WE# pulse width HIGH  
WE# pulse width  
WP# setup time  
10  
25  
10  
12  
30  
Notes: 1. For PAGE READ CACHE MODE and PROGRAM PAGE CACHE MODE operations, cache mode  
timing applies.  
2. Timing for tADL begins in the ADDRESS cycle on the final rising edge of WE# and ends with  
the first rising edge of WE# for data input.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
62  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Electrical Characteristics  
Table 18: AC Characteristics: Normal Operation  
Cache Mode  
Min Max  
10  
Standard Mode  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
ALE to RE# delay  
tAR  
10  
25  
30  
ns  
ns  
ns  
ns  
ns  
µs  
CE# access time  
tCEA  
45  
45  
1
2
CE# HIGH to output High-Z  
CLE to RE# delay  
tCHZ  
tCLR  
10  
15  
10  
15  
CE# HIGH to output hold  
tCOH  
tDCBSYR1  
3
Cache busy in page read cache mode  
(first 31h)  
tDCBSYR1  
25  
µs  
Cache busy in page read cache mode  
(next 31h and 3Fh)  
tDCBSYR2  
tIR  
tR  
0
0
ns  
µs  
1
Output High-Z to RE# LOW  
25  
25  
Data transfer from Flash array to data  
register  
tRC  
50  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
1
1
1
READ cycle time  
tREA  
tREH  
tRHOH  
tRHW  
tRHZ  
tRLOH  
tRP  
30  
20  
RE# access time  
15  
22  
100  
10  
22  
100  
RE# HIGH hold time  
RE# HIGH to output hold  
RE# HIGH to WE# LOW  
RE# HIGH to output High-Z  
RE# LOW to output hold  
RE# pulse width  
100  
100  
2
1
5
5
25  
20  
12  
20  
tRR  
5/10/500  
100  
5/10/500  
100  
Ready to RE# LOW  
tRST  
3
4
Reset time (READ/PROGRAM/ERASE)  
WE# HIGH to busy  
tWB  
tWHR  
60  
60  
WE# HIGH to RE# LOW  
Notes: 1. For PAGE READ CACHE MODE and PROGRAM PAGE CACHE MODE operations, cache mode  
timing applies.  
2. Transition is measured 200mV from steady-state voltage with load. This parameter is sam-  
pled and not 100 percent tested.  
3. The first time the RESET (FFh) command is issued while the device is idle, the device will go  
busy for a maximum of 1ms. Thereafter, the device goes busy for maximum 5µs.  
4. Do not issue a new command during tWB, even if R/B# is ready.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
63  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Electrical Characteristics  
Table 19: PROGRAM/ERASE Characteristics  
Symbol  
Parameter  
Typ  
Max  
Unit  
Notes  
1.5  
3
4
2
cycles  
ms  
µs  
1
NOP  
Number of partial page programs  
tBERS  
tCBSY  
tDBSY  
tLPROG  
tOBSY  
tPROG  
BLOCK ERASE operation time  
600  
1
2
3
4
Busy time for PROGRAM CACHE operation  
Busy time for TWO-PLANE PROGRAM PAGE operation  
LAST PAGE PROGRAM operation time  
0.5  
µs  
25  
600  
µs  
Busy time for OTP DATA PROGRAM operation if OTP is protected  
PAGE PROGRAM operation time  
220  
µs  
Notes: 1. Four total partial-page programs to the same page.  
2. tCBSY MAX time depends on timing between internal program completion and data-in.  
3. tLPROG = tPROG (last page) + tPROG (last - 1 page) - command load time (last page) -  
address load time (last page) - data load time (last page).  
4. Typical tPROG time may increase for two-plane operations.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
64  
©2006 Micron Technology, Inc. All rights reserved.  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Timing Diagrams  
Timing Diagrams  
Figure 53: COMMAND LATCH Cycle  
CLE  
t
t
CLH  
CLS  
t
t
CH  
CS  
CE#  
t
WP  
WE#  
ALE  
t
t
ALH  
ALS  
t
t
DH  
DS  
I/Ox  
COMMAND  
Don’t Care  
Figure 54: ADDRESS LATCH Cycle  
CLE  
t
CLS  
t
CS  
CE#  
t
WC  
t
t
WP  
WH  
WE#  
t
ALS  
t
ALH  
ALE  
I/Ox  
t
t
DS  
DH  
Col  
add 1  
Col  
Row  
Row  
Row  
add 2  
add 1  
add 2  
add 3  
Undefined  
Don’t Care  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
65  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Timing Diagrams  
Figure 55: INPUT DATA LATCH Cycle  
CLE  
t
CLH  
CE#  
t
t
ALS  
CH  
ALE  
t
WC  
t
t
t
WP  
WP  
WP  
WE#  
t
WH  
t
t
t
t
t
t
DS DH  
DIN 0  
DS DH  
DS DH  
DIN 1  
DIN Final1  
I/Ox  
Don’t Care  
Notes: 1. DIN Final = 2,111 (x8).  
Figure 56: SERIAL ACCESS Cycle After READ  
t
CEA  
CE#  
t
CHZ  
t
t
REA  
t
REA  
REA  
t
t
REH  
t
RP  
COH  
RE#  
t
t
RHZ  
RHZ  
t
RHOH  
I/Ox  
DOUT  
DOUT  
DOUT  
t
t
RR  
RC  
R/B#  
Don’t Care  
Note:  
Use this timing diagram for tRC 30ns.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
66  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Timing Diagrams  
Figure 57: SERIAL ACCESS Cycle After READ (EDO Mode)  
CE#  
t
t
t
RC  
CHZ  
t
t
REH  
RP  
COH  
RE#  
t
t
RHZ  
t
REA  
REA  
t
t
t
RLOH  
RHOH  
CEA  
I/Ox  
R/B#  
DOUT  
DOUT  
DOUT  
t
RR  
Don’t Care  
Note:  
Use this timing diagram for tRC < 30ns.  
Figure 58: READ STATUS Operation  
t
CLR  
CLE  
t
t
CLH  
CLS  
t
CS  
CE#  
t
t
CH  
WP  
WE#  
RE#  
t
t
CEA  
t
CHZ  
t
t
COH  
WHR  
RP  
t
RHZ  
t
RHOH  
t
t
t
IR  
t
DS DH  
REA  
Status  
output  
70h  
I/Ox  
Don’t Care  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
67  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Timing Diagrams  
Figure 59: TWO-PLANE/MULTIPLE-DIE READ STATUS Operation  
t
CS  
CE#  
CLE  
t
t
CLH  
CLS  
t
t
WC  
t
t
t
WP WH  
WP  
CH  
WE#  
ALE  
RE#  
I/Ox  
t
t
CEA  
CHZ  
t
t
t
t
t
AR  
COH  
ALH  
ALS  
ALH  
t
RHZ  
t
t
REA  
t
t
DH  
t
WHR  
DS  
RHOH  
Status output  
78h  
Row add 1 Row add 2 Row add 3  
Don’t Care  
Figure 60: PAGE READ Operation  
CLE  
t
CLR  
CE#  
t
WC  
WE#  
t
WB  
t
AR  
ALE  
RE#  
t
t
t
R
RHZ  
RC  
t
t
RP  
RR  
Col  
add 1  
Col  
add 2  
Row  
add 1  
Row  
add 2  
Row  
add 3  
DOUT  
DOUT  
DOUT  
I/Ox  
30h  
00h  
N
N + 1  
M
Busy  
R/B#  
Don’t Care  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
68  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Timing Diagrams  
Figure 61: READ Operation with CE# “Don’t Care”  
CLE  
CE#  
RE#  
ALE  
t
R
R/B#  
WE#  
I/Ox  
00h  
Address (5 cycles)  
30h  
Data output  
t
CEA  
Don’t Care  
CE#  
t
t
t
REA  
CHZ  
RE#  
I/Ox  
COH  
Out  
Figure 62: RANDOM DATA READ Operation  
CLE  
t
CLR  
CE#  
WE#  
t
t
WB  
RHW  
t
t
AR  
WHR  
ALE  
t
t
t
REA  
R
RC  
RE#  
I/Ox  
t
RR  
DOUT  
DOUT  
DOUT  
DOUT  
Col  
Col  
Row  
Row  
Row  
Col  
Col  
00h  
30h  
05h  
E0h  
N
N + 1  
M
M + 1  
add 1 add 2 add 1 add 2 add 3  
add 1 add 2  
Column address N  
Column address M  
Busy  
R/B#  
Don’t Care  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
69  
Figure 63: PAGE READ CACHE MODE Operation, Part 1 of 2  
CLE  
t
t
t
CLS CLH  
t
CH  
CS  
CE#  
t
WC  
WE#  
ALE  
t
t
RHW  
CEA  
t
RC  
RE#  
I/Ox  
t
t
R
WB  
t
REA  
t
t
DS DH  
t
RR  
Col  
add 1  
Col  
add 2  
Row  
add 1  
Row  
add 2  
Row  
add 3  
DOUT DOUT  
DOUT  
0
00h  
30h  
31h  
31h  
0
1
Column address  
00h  
Page address  
Page address  
Page address  
M + 1  
t
t
DCBSYR2  
DCBSYR1  
M
M
R/B#  
Column address 0  
Column address 0  
1
Continued to  
of next page  
1
Don’t Care  
Figure 64: PAGE READ CACHE MODE Operation, Part 2 of 2  
CLE  
t
t
CLH  
CLS  
t
t
CH  
CS  
CE#  
WE#  
ALE  
t
t
t
RHW  
CEA  
RHW  
t
RC  
RE#  
t
WB  
t
RR  
t
t
t
DS DH  
31h  
REA  
D
OUT  
0
D
OUT  
0
D
OUT  
1
D
OUT  
0
D
OUT  
1
D
OUT  
1
I/Ox  
DOUT  
31h  
3Fh  
DOUT  
DOUT  
DOUT  
t
t
t
DCBSYR2  
Page address  
Page address  
Page address  
DCBSYR2  
DCBSYR2  
M + 2  
M + x  
M + 1  
R/B#  
Column address 0  
Column address 0  
Column address 0  
1
Don’t Care  
Continued from  
1
of previous page  
Figure 65: PAGE READ CACHE MODE Operation without R/B#, Part 1 of 2  
CLE  
tCLS tCLH  
t
t
CH  
CS  
CE#  
t
WC  
WE#  
ALE  
t
t
RHW  
CEA  
t
RC  
RE#  
I/Ox  
t
REA  
t
t
DS DH  
Col  
add 1  
Col  
add 2  
Row  
add 1  
Row  
add 2  
Row  
add 3  
D
OUT  
0
D
OUT  
1
D
OUT  
0
00h  
30h  
70h  
Status  
31h  
70h  
Status  
00h  
D
OUT  
31h  
70h  
Status  
00h  
Page address  
Column address  
00h  
Page address  
Page address  
I/O 5= 0, Busy  
= 1, Ready  
I/O 6= 0, Cache busy  
= 1, Cache ready  
I/O 6= 0, Cache busy  
= 1, Cache ready  
M
M
M + 1  
Column address 0  
Column address 0  
1
Don’t Care  
Continued to  
of next page  
1
Figure 66: PAGE READ CACHE MODE Operation without R/B#, Part 2 of 2  
CLE  
t
t
t
t
CLS  
CLH  
CS  
CH  
CE#  
WE#  
ALE  
t
t
RHW  
CEA  
t
RC  
RE#  
I/Ox  
t
t
t
DS DH  
REA  
D
OUT  
0
D
OUT  
0
D
OUT  
1
D
OUT  
1
D
OUT  
0
D
OUT  
1
DOUT  
31h  
Status  
00h  
DOUT  
31h  
00h  
DOUT  
3Fh  
00h  
DOUT  
70h  
70h  
Status  
70h  
Status  
Page address  
Page address  
Page address  
I/O 6= 0, Cache busy  
= 1, Cache ready  
M + 1  
I/O 6= 0, Cache busy  
= 1, Cache ready  
M + 2  
I/O 6= 0, Cache busy  
= 1, Cache ready  
M + x  
Column address 0  
Column address 0  
Column address 0  
1
Don’t Care  
Continued from  
1
of previous page  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Timing Diagrams  
Figure 67: READ ID Operation  
CLE  
CE#  
WE#  
t
AR  
ALE  
RE#  
t
t
REA  
Byte 0  
WHR  
90h  
00h  
Address, 1 cycle  
I/Ox  
Byte 1  
Byte 2  
Byte 3  
Byte 4  
Note:  
See Table 8 on page 25 for actual values.  
Figure 68: PROGRAM PAGE Operation  
CLE  
CE#  
t
t
ADL  
WC  
WE#  
t
t
t
WHR  
WB  
PROG  
ALE  
RE#  
Col  
Col  
Row  
Row  
Row  
DIN  
DIN  
I/Ox  
80h  
10h  
70h  
Status  
add 1  
add 2  
add 1  
add 2  
add 3  
N
M
SERIAL DATA  
INPUT command  
1 up to m Byte  
serial input  
PROGRAM  
command  
READ STATUS  
command  
R/B#  
x8 device: m = 2,112 bytes  
Don’t Care  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
74  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Timing Diagrams  
Figure 69: Program Operation with CE# “Don’t Care”  
CLE  
CE#  
WE#  
ALE  
I/Ox  
80h  
Address (5 cycles)  
Data  
t
input  
Data  
input  
10h  
t
CS  
CH  
Don’t Care  
CE#  
t
WP  
WE#  
Figure 70: PROGRAM PAGE Operation with RANDOM DATA INPUT  
CLE  
CE#  
t
t
t
ADL  
WC  
ADL  
WE#  
ALE  
t
t
t
WB  
PROG  
WHR  
RE#  
I/Ox  
Col  
Col  
Row  
Row  
Row  
DIN  
DIN  
Col  
Col  
DIN  
DIN  
80h  
85h  
Status  
10h  
70h  
add 1 add 2 add 1 add 2 add 3  
N
N+1  
add 1 add 2  
N
N+1  
SERIAL DATA  
INPUT command  
RANDOM DATA Column address  
INPUT command  
PROGRAM  
command  
READ STATUS  
command  
Serial input  
Serial input  
R/B#  
Don’t Care  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
75  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Timing Diagrams  
Figure 71: INTERNAL DATA MOVE Operation  
CLE  
CE#  
t
t
WC  
ADL  
WE#  
ALE  
t
t
t
WHR  
t
WB  
PROG  
WB  
RE#  
I/Ox  
t
R
Col  
Col  
Row  
Row  
Row  
Col  
Col  
Row Row Row  
Data  
Data  
Status  
00h  
35h  
85h  
10h  
70h  
READ  
STATUS  
add 1 add 2 add 1 add 2 add 3  
add 1 add 2 add 1 add 2 add 3  
1
N
Busy  
Busy  
R/B#  
INTERNAL  
DATA MOVE  
Don’t Care  
Note:  
INTERNAL DATA MOVE operations are only supported within the plane from which data is  
read.  
Figure 72: PROGRAM PAGE CACHE MODE Operation  
CLE  
CE#  
t
t
ADL  
WC  
WE#  
t
t
t
WHR  
t
t
WB LPROG  
WB CBSY  
ALE  
RE#  
I/Ox  
Col  
Col  
Col  
Row Row Row  
add 1 add 2 add 3  
DIN  
DIN  
Col  
Row Row Row  
add 1 add 2 add 3  
DIN  
DIN  
80h  
15h  
80h  
10h  
70h  
Status  
add 1 add 2  
add 1 add 2  
N
M
N
M
SERIAL DATA  
INPUT  
Serial input PROGRAM  
PROGRAM  
R/B#  
Last page - 1  
Last page  
Don’t Care  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
76  
Figure 73: PROGRAM PAGE CACHE MODE Operation Ending on 15h  
CLE  
CE#  
t
t
t
ADL  
WC  
ADL  
WE#  
ALE  
t
t
WHR  
WHR  
RE#  
I/Ox  
Col  
Col  
Row Row Row  
add 1 add 2 add 3  
Col  
Col  
Row Row Row  
DIN  
DIN  
DIN  
DIN  
80h  
15h 70h Status  
80h  
15h  
70h  
Status  
70h  
Status  
add 1 add 2  
add 1 add 2 add 1 add 2 add 3  
N
M
N
M
SERIAL DATA  
INPUT  
Serial input PROGRAM  
PROGRAM  
Last page – 1  
Last page  
To verify successful completion of the last 2 pages:  
I/O5 = 1, Ready  
I/O0 = 0, Last page PROGRAM successful  
I/O1 = 0, Last page – 1 PROGRAM successful  
Poll status until:  
I/O6 1, Ready  
=
Don’t Care  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Timing Diagrams  
Figure 74: BLOCK ERASE Operation  
CLE  
CE#  
t
WC  
WE#  
t
t
WB  
WHR  
ALE  
RE#  
t
BERS  
Row  
Row  
Row  
Status  
I/Ox  
60h  
D0h  
70h  
add 1  
add 2  
add 3  
Row address  
ERASE  
command  
READ STATUS  
command  
Busy  
R/B#  
AUTO BLOCK  
ERASE SETUP  
command  
I/O0 = 0, Pass  
I/O0 = 1, Fail  
Don’t Care  
Figure 75: RESET Operation  
CLE  
CE#  
WE#  
R/B#  
t
WB  
t
RST  
I/Ox  
FFh  
RESET  
command  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
78  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Package Dimensions  
Package Dimensions  
Figure 76: 48-Pin TSOP Type 1 (WP Package Code)  
0.25  
Mold compound:  
Epoxy novolac  
Plated lead finish:  
for reference only  
0.50 TYP  
20.00 0.25  
18.40 0.08  
for reference  
100% Sn  
only  
48  
1
Package width and length  
do not include mold  
protrusion. Allowable  
protrusion is 0.25 per side.  
12.00 0.08  
0.27 MAX  
0.17 MIN  
24  
25  
0.25  
0.10  
Gage  
plane  
+0.03  
0.15  
See detail A  
-0.02  
+0.10  
-0.05  
1.20 MAX  
0.10  
0.50 0.1  
0.80  
Detail A  
Note:  
All dimensions are in millimeters.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
79  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Package Dimensions  
Figure 77: 48-Pin TSOP OCPL Type 1 (WC Package Code)  
0.25 for  
reference only  
0.50 for  
reference only  
Mold compound:  
Epoxy novolac  
Plated lead finish:  
100% Sn  
20.00 0.25  
18.40 0.08  
48  
1
Package width and length do  
not include mold protrusion.  
Allowable protrusion is  
0.25 per side.  
12.00 0.08  
0.27 MAX  
0.17 MIN  
24  
25  
0.10  
+0.03  
-0.02  
0.15  
See detail A  
0.25  
1.20 MAX  
Gage  
plane  
+0.10  
-0.05  
0.10  
0.50 0.1  
0.80  
Detail A  
Note:  
All dimensions are in millimeters.  
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900  
prodmktg@micron.com www.micron.com Customer Comment Line: 800-932-4992  
Micron, the M logo, and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of  
their respective owners.  
This data sheet contains minimum and maximum limits specified over the complete power supply and temperature range  
for production devices. Although considered final, these specifications are subject to change, as further product  
development and data characterization sometimes occur.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
80  
4Gb, 8Gb, and 16Gb x8 NAND Flash Memory  
Revision History  
Revision History  
Rev. B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2/07  
Page 1: Added MT29F8G08BAA to title, 8Gb (dual-die stack 1 CE#), 8Gb (dual-die  
stack 2 CE#) to density options, 2 die, 1 CE#, 1 RB# to configuration options. Added  
extended temperature to options.  
Figure 2 on page 2: Added classification B: 2 die, 1 CE#, 1 RB#. Added extended  
temperature and note to contact factory.  
“General Description” on page 8: Added MT29F8G08BAA to first paragraph; revised  
fourth paragraph.  
Figure 3 on page 9: Modified note 1.  
Figure 5 on page 12: Revised block information.  
Figure 7 on page 14: Added new part number information to figure title and note 2.  
Table 4 on page 14: Changed part numbers in title.  
Former Figure 8 on page 17, “Time Constants” and Figure 9 on page 17, “Minimum  
Rp”: Converted to equation format.  
Table 8 on page 25: Added MT29F8G08BAA in bytes 1, 2, and 4, modified interleaved  
operations description, added note 3, changed part number in note 2.  
Two-Plane Addressing” on page 35: Revised second bullet re BA18.  
“Error Management” on page 58: Modified second bullet.  
Table 12 on page 59: Added extended temperature.  
Tables 13 and 14 on page 61, Table 15 on page 62: Added MT29F8G08DAA.  
t
t
Table 19 on page 64: Changed CBSY (MAX) and PROG (MAX) to 600µs.  
Rev. A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8/06  
Initial release.  
PDF: 09005aef81b80e13/Source: 09005aef81b80eac  
4gb_nand_m40a__2.fm - Rev. B 2/07 EN  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2006 Micron Technology, Inc. All rights reserved.  
81  

相关型号:

MT29F16G08AJADAWP

4Gb, 8Gb, 16Gb: x8, x16 NAND Flash Memory Features
MICRON

MT29F2G16AADWPDTR

2Gb x8, x16: NAND Flash Memory
MICRON

MT29F32G08CBACA

Micron Confidential and Proprietary
MICRON

MT29F4G08ABADAH4

4Gb, 8Gb, 16Gb: x8, x16 NAND Flash Memory Features
MICRON

MT29F4G08ABADAWP

4Gb, 8Gb, 16Gb: x8, x16 NAND Flash Memory Features
MICRON

MT29F4G08ABBDAH4

4Gb, 8Gb, 16Gb: x8, x16 NAND Flash Memory Features
MICRON

MT29F4G08ABBDAHC

4Gb, 8Gb, 16Gb: x8, x16 NAND Flash Memory Features
MICRON

MT29F4G16ABADAH4

4Gb, 8Gb, 16Gb: x8, x16 NAND Flash Memory Features
MICRON

MT29F4G16ABADAWP

4Gb, 8Gb, 16Gb: x8, x16 NAND Flash Memory Features
MICRON

MT29F4G16ABBDAH4

4Gb, 8Gb, 16Gb: x8, x16 NAND Flash Memory Features
MICRON

MT29F4G16ABBDAHC

4Gb, 8Gb, 16Gb: x8, x16 NAND Flash Memory Features
MICRON

MT29F8G08ADADAH4

4Gb, 8Gb, 16Gb: x8, x16 NAND Flash Memory Features
MICRON