AMU2481 [MICRONAS]

Audio Mixer; 调音台
AMU2481
型号: AMU2481
厂家: MICRONAS    MICRONAS
描述:

Audio Mixer
调音台

文件: 总25页 (文件大小:1025K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AMU 2481  
Audio Mixer  
MICRONAS  
Edition August 3, 1992  
6251-324-3E  
AMU 2481  
Contents  
Page  
Section  
Title  
3
1.  
Introduction  
3
1.1.  
Application of the AMU 2481  
5
5
5
6
6
6
6
6
7
8
9
9
9
9
9
2.  
Architecture of the AMU 2481 and Functional Description  
I/O Blocks  
2.1.  
2.1.1.  
2.1.2.  
2.1.2.1.  
2.1.2.2.  
2.1.3.  
2.1.3.1.  
2.1.3.2.  
2.1.4.  
2.2.  
Digital Decimation Filters  
S Bus Interface and S Bus  
Description of the S Bus  
The S Bus Interface  
IM Bus Interface and IM Bus  
Description of the IM Bus  
The IM Bus Interface  
Digital/Analog Converter (DAC) and Volume 2  
DSP Block  
2.2.1.  
2.2.2.  
2.2.3.  
2.3.  
C–RAM, C–ROM and Data RAM  
Program ROM, Program Counter and Control Block  
Arithmetic Logic Unit (ALU)  
System Clock ΦM and PDM Sampling Rate  
10  
10  
10  
10  
11  
11  
11  
12  
12  
12  
13  
13  
13  
14  
3.  
Functions Solved by DSP Software  
Representation of Numbers  
DC Offset Suppression (for PDM–Data only)  
50 µs Digital Deemphasis (for PDM–Data only)  
J17 Deemphasis (for S–Data only)  
Medium Quality Oversampling Filter  
Audio Mixing Section  
3.1.  
3.2.  
3.3.  
3.4.  
3.5.  
3.6.  
3.7.  
3.8.  
3.9.  
3.10.  
3.11.  
3.12.  
3.13.  
Sin x/x Compensation  
Volume Control  
Matrix 2  
50 µs Digital Preemphasis  
Oversampling Filter for Ch1 and Ch2  
AMU 2481 Initialization  
Complete Coefficient Table  
16  
16  
16  
16  
17  
17  
18  
19  
19  
19  
21  
4.  
Specifications  
4.1.  
Outline Dimensions  
Pin Connections  
4.2.  
4.2.1.  
4.2.2.  
4.3.  
24–Pin DIL Package  
44–Pin PLCC Package  
Pin Descriptions  
4.4.  
Pin Circuits  
4.5.  
Electrical Characteristics  
Absolute Maximum Ratings  
Recommended Operating Conditions  
Characteristics  
4.5.1.  
4.5.2.  
4.5.3.  
22  
23  
5.  
6.  
Appendix 1: Application Circuit  
Appendix 2: Program Structure  
2
MICRONAS INTERMETALL  
AMU 2481  
Audio Mixer  
1.1. Application of the AMU 2481  
The AMU 2481 Audio Mixer is designed to interface with  
INTERMETALL’s ADC 2311 E Audio A/D Converter,  
DMA 2271 D2–MAC Decoder on the input side, and with  
the APU 2471 or the ACP 2371 Audio Processors on the  
output side. It can receive digital audio data in two differ-  
ent formats:  
Note:  
If not otherwise designated the pin numbers men-  
tioned refer to the 24–pin DIL package.  
1. Introduction  
The AMU 2481 Audio Mixer is a digital real–time signal  
processor in NMOS technology, housed in a 24–pin Dil  
plastic package or in a 44–pin PLCC package. It is de-  
signed to perform digital processing of both TV audio in-  
formation and digital audio data supplied by the  
DMA 2271 D2–MAC Decoder. The architecture of the  
AMU 2481 combines two main blocks:  
Via the PDM inputs, the AMU 2481 is supplied with two  
1–bit PDM data streams produced by the ADC 2311 E  
Audio A/D Converter which receives analog audio infor-  
mation either from the SCART interface (Euro connec-  
tor), which is used, e.g., for video recorder connection,  
or from any terrestrial TV transmission. For this input for-  
mat, decimation filters are provided in the AMU 2481,  
which convert each PDM stream into a 16–bit word at  
a sampling rate of approximately 32 kHz.  
– I/O blocks  
– DSP block  
Via the S bus interface the AMU 2481 receives serial  
audio data, provided, e.g., by the DMA 2271 D2–MAC  
Decoder.  
The I/O blocks are used to manage the input and output  
of audio information. The DSP block consists of a mask–  
programmable digital signal processor, whose software  
can be controlled by a microprocessor (CCU) via the IM  
bus. So parameters like coefficients can be modified  
during performance. By means of the DSP software, au-  
dio functions, such as deemphasis, oversampling mix-  
ing and volume control are performed. Fig. 1–1 gives an  
overview over the AMU’s functions.  
Fig. 1–2 shows how the AMU 2481 can be used togeth-  
er with the mentioned ICs of INTERMETALL to realize  
multistandard audio processing with PAL and D2–MAC  
signals. In the following descriptions data coming from  
the ADC will be called “PDM data” and data coming from  
the DMA will be called “S data”.  
AMU 2481  
Channel 1  
S
H
A
L
Deemphasis  
J17  
S Bus  
Channel 1  
22  
–3 dB  
–3 dB  
–3 dB  
–3 dB  
sin x  
x
S–C I/O  
8
dig.  
Vol.  
DAC 1  
Vol 2  
Deemphasis  
J17  
S
Channel 2  
S
H
A
L
B
u
s
Channel 2  
23  
S–DIN  
9
sin x  
x
M
i
x
e
r
M
a
t
r
i
Deemphasis  
J17  
Channel 3  
Oversampling  
Channel 3  
S–I I/O  
15  
S
H
A
L
Channel 3  
19  
x
sin x  
x
Deemphasis  
J17  
dig.  
Vol.  
DAC 2  
Channel 4  
Oversampling  
Channel 4  
S
H
A
L
Channel 4  
20  
sin x  
x
Deemphasis  
50 µs  
PDM 1  
17  
CF  
PDM 2  
16  
Deemphasis  
50 µs  
Preemphasis  
Preemphasis  
Preemphasis  
Preemphasis  
par.  
S Bus  
6
IM Bus Interface  
D
A
V
V
RESET  
I
I
ΦM  
SUP ISB  
REF2 REF1  
ser.  
D
ID  
CL  
12  
24  
3
4
5
14  
10  
11  
13  
1
21  
Fig. 1–1: Functional block diagram of the AMU 2481  
MICRONAS INTERMETALL  
3
AMU 2481  
18.432 MHz  
18.432 MHz  
ΦM  
DOUT  
AUXDIN  
AUXIN  
S Bus  
DAC1  
DAC2  
Analog  
Sound IF  
DMA  
2271  
AMU  
2481  
ACP  
2371  
S Bus  
TVIN  
AUXOUT  
PILOTIN  
IM Bus  
CCU  
Fig. 1–2: Multistandard audio system with AMU 2481  
IM Bus  
ID CL  
D
AMU 2481  
CH1  
DAC 1 +  
VOL 2  
CH2  
Iref1  
Iref2  
CH3  
IM Bus  
Interface  
16  
16  
Separator  
16  
DAC 2  
CH4  
5
Address  
Coeff.  
Memory  
Address  
6
Data RAM  
50 x 16  
ALU  
M
U
X
MUL  
16 x 8  
20  
RAM  
32 x 8  
8
16  
SDATA  
ADD/SUB  
ACCU  
S Bus  
Interface  
SCLOCK  
SIDENT  
SDATA  
S RAM  
4 x 16  
20  
ROM  
28 x 8  
PDM RAM  
2 x 16  
S Bus  
Ident  
1 x 16  
Address  
6
Digital  
Decimation  
Filters  
Program  
ROM  
256 x 14  
14  
P C  
Control  
Main Clock  
Reset  
PDM1 PDM2  
Fig. 1–3: AMU 2481 architecture  
4
MICRONAS INTERMETALL  
AMU 2481  
2. Architecture of the AMU 2481 and Functional De-  
scription  
vert the two 1–bit PDM data streams by stepwise reduc-  
tion of bandwidth and word rate (sampling rate) into two  
PCM data streams with 16 bit word length and a sam-  
pling rate of approximately 32kHz, whichinthefollowing  
are called PCM data 1 and 2. They are temporarily  
stored in the corresponding locations of the AMU’s data  
RAM.  
As already mentioned in section 1., the AMU 2481 archi-  
tecture combines two main parts, the I/O blocks and the  
DSP core. Fig. 1–3 shows a block diagram of the archi-  
tecture.  
As the two PDM data streams at the input of the decima-  
tion filters have no separate clock signal, the decimation  
filters are equipped with a synchronization facility. This  
feature also supplies the AMU software with the sam-  
pling clock (approx. 32 kHz), which is called ”I/O Sync”  
or IOSYNC. More details on data/clock timing can be  
found in section 2.3.  
2.1. I/O Blocks  
2.1.1. Digital Decimation Filters  
Thedigitaldecimationfiltersarecascadesoftransversal  
and recursive lowpass filters. They are required to con-  
H
S–Ident  
L
H
S–Clock  
64 Clock Cycles  
L
H
S–Data  
16 Bit Sound 1 16 Bit Sound 2 16 Bit Sound 3 16 Bit Sound 4  
L
A
B
Section A  
Section B  
t
S6  
H
L
S–Ident  
t
S3  
t
S1  
t
S2  
H
L
S–Clock  
S–Data  
t
S4  
t
S5  
H
L
LSB of Sound 1  
MSB of Sound 4  
Fig. 2–1: S bus waveforms  
MICRONAS INTERMETALL  
5
AMU 2481  
2.1.2. S–Bus Interface and S–Bus  
2.1.2.1. Description of the S–Bus  
or to an S–bus master mode (bit 4 = 1). The slave mode  
is required in an application as shown in Fig. 1–2 where  
the DMA 2271 D2–MAC Decoder acts as master on the  
S–bus, i.e. the DMA 2271 supplies the S–Clock and S–  
Ident signals as well as the S–Data input signal.  
The S–bus was designed to connect the digital sound  
output of the DMA 2271 D2/MAC Decoder to audio–  
processing ICs such as the AMU 2481 Audio Mixer or  
the APU 2471 Audio Processor etc., and to connect  
these ICs with each other. The S–bus is an unidirec-  
tional, digital bus which transmits the sound information  
in one direction only, so that it is not necessary to solve  
priority problems on the bus.  
To enable parallel cascading of AMUs without external  
switches, (e.g. NICAM to SCART and D2MAC to TV) in  
the 44–PLCC package, the SBUS signals S–Ident and  
S–Clock, (and the Main Clock, see section 2.3.) can be  
passed through the AMU 2481. The corresponding  
open–drain outputs can be switched to high impedance,  
which is the default status after power–on reset. To  
switch them on or off (high imp.), use the same bit that  
controls the SBUS data output:  
The S–bus consists of the three lines S–Clock, S–Ident  
and S–Data. The DMA 2271 generates the signals S–  
ClockandS–Ident, whichcontrolthedatatransfertoand  
between the various processors which follow the DMA  
2271. For this, the S–Clock and S–Ident inputs of all  
processors in the system are connected to the S–Clock  
and S–Ident outputs of the DMA 2271. S–data output of  
the DMA 2271 is connected to the S–Data input of the  
next following AMU, the AMU’s S–Data output is con-  
nected to the APU’s S–Data input and so on.  
k33 bit3 = 0 outputs = active  
= 1 outputs = high impedance  
2.1.3. IM Bus Interface and IM Bus  
2.1.3.1. Description of the IM Bus  
The INTERMETALL Bus (IM Bus for short) was de-  
signed to control the DIGIT 2000 ICs by the CCU Central  
Control Unit. Via this bus the CCU can write data to the  
ICs or read data from them. This means the CCU acts  
asamasterwhereasallcontrolledICsareslaves.TheIM  
bus consists of three lines for the signals Ident (ID),  
Clock (CL) and Data (D). The clock frequency range is  
50 Hz to 170 kHz. Ident and clock are unidirectional from  
the CCU to the slave ICs, Data is bidirectional. Bidirec-  
tionality is achieved by using open–drain outputs with  
On–resistances of 150 Ohm maximum. The 2.5 kOhm  
pull–up resistor common to all outputs is incorporated in  
the CCU.The timing of a complete IM bus transaction is  
shown in Fig. 2–2 and in the “Recommended Operating  
Conditions”. In the non–operative state the signals of all  
three bus lines are High. To start a transaction the CCU  
sets the ID signal to Low level, indicating an address  
transmission, then sets the CL signal to Low level and  
switches the first bit on the Data line.Then eight address  
bits are transmitted, beginning with the LSB. Data take-  
over in the slave ICs occurs at the positive edge of the  
clock signal. At the end of the address byte the ID signal  
goesHigh, initiatingtheaddresscomparisonintheslave  
circuits. In the addressed slave the IM bus interface  
switches over to Data read or write, because these func-  
tions are correlated to the address.  
Thesoundinformationistransmittedinframesof64bits,  
divided into four successive 16–bit samples. Each sam-  
ple represents one sound channel. The timing of a com-  
plete transmission of four samples is shown in Fig. 2–1,  
the times are specified in “Recommended Operating  
Conditions”. The transmission starts with the LSB of the  
first sample. The S–Clock signal is used to write the data  
into the receiver’s input register. The S–Ident signal  
marks the end of one frame of 64 bits and is used as  
latch pulse for the input register. The repetition rate of  
the S–Ident pulses is identical to the sampling rate of the  
D2–MAC sound signal; thus it is possible to transfer four  
sound channels simultaneously.  
2.1.2.2. The S–Bus Interface  
The S–bus interface of the AMU 2481 mainly consists of  
an input and an output register, each 64–bit wide. The  
timing to write or read bit by bit is supplied by the S–  
Clock signal. In the case of an S–Ident pulse, the con-  
tents of the input register are transferred to the data  
RAM (see section 2.2.1.) and the contents of the output  
register are written to the S–Data output.  
The S–Ident is also used as the sampling rate reference  
for the DSP software in the case of digital source mode.  
In this mode the IOSYNC generated by the decimation  
filters is locked to the S–Ident. This allows a mixed  
mode: S–Data and PDM Data can be processed simul-  
taneously. Inthiscase, however, theremustbethesame  
audio sample rate of PDM data and S–bus data (see  
2.3.). If this is not the case, the S–Ident line has to be dis-  
abled.  
Also controlled by the address the CCU now transmits  
eight or sixteen clock pulses, and accordingly one or two  
Bytes of data are written into the addressed IC or read  
out from it, beginning with the LSB. The completion of  
the bus transaction is signalled by a short Low state  
pulse of the ID signal. This initiates the storing of the  
transferred data.  
By means of coefficient k33 (see section 3.13.) the AMU  
2481 can be switched to an S–bus slave mode (bit 4=0)  
It is permissible to interrupt a bus transaction for up to 10  
ms.  
6
MICRONAS INTERMETALL  
AMU 2481  
For future software compatibility, the CCU must write a  
zero into all bits not used at present. When reading un-  
defined or unused bits, the CCU must adopt “don’t care”  
behavior.  
an 8–bit address to the IM bus interface of the AMU  
2481, addressing a certain register or C–RAM location  
of the AMU. The IM bus interface has to check this ad-  
dressandifnecessary, tostoreitandthefollowing8data  
bits into special IM bus interface registers. Transfer of  
the data bits to the corresponding C–RAM locations is  
then performed by the AMU hardware at the sampling  
rate. Transmission of one Byte (8 bits) takes 100 µs. A  
spacing of 30 µs must be provided between the end of  
one transmission and the start of the next one.  
2.1.3.2. IM Bus Interface  
To write coefficient value(s) into the AMU2481 registers  
the following steps have to be taken:  
1. addressingtheAMU2481(allowsmultiprocessorsys-  
tem)  
In the case of addressing the AMU 2481 (step 1 above),  
the address transmitted first is 102 (= select register). If  
the following 8–bit data is identical to 15, the AMU 2481  
will accept further IM bus data. This kind of selective ad-  
dressing allows controlling of different AMU and APU  
types (e.g. “selectword” of APU 2471 = 00, “selectword  
of AMU 2481 VS = 14) in a multi–APU system without  
usingdifferentaddressranges. EachAPU/AMUtypewill  
have its own mask–programmed “selectword”.  
2. writing of 8 bit data into the IM bus interface registers  
After having completed step 1, step 2 can be performed  
as often as the communication between AMU 2481 and  
CCU is required, on the condition that the processor ad-  
dress has not been changed by the CCU.  
Comments to the steps mentioned above: The syntax of  
step 1 is identical to that of step 2. The CCU transmits  
H
Ident  
L
H
16  
Clock  
or  
24  
1
2
3
4
5
6
7
8
9
10 11 12 13  
L
H
Data  
Address  
LSB  
MSBLSB  
Data  
MSB  
L
A
B
C
Section A  
Section B  
Section C  
t
IM10  
H
L
Ident  
t
t
IM1  
IM6  
t
t
t
IM5  
IM3  
IM4  
t
IM2  
H
L
Clock  
Data  
t
t
t
IM8  
IM9  
IM7  
H
L
Address LSB  
Address MSB  
Data MSB  
Fig. 2–2: IM bus waveforms  
MICRONAS INTERMETALL  
7
AMU 2481  
2.1.4. Digital/Analog Converter (DAC) and Volume 2  
+12 V  
IREF1  
68 k  
Digital to analog conversion is performed by four special  
conversion circuits. The channels 1 and 2 are assigned  
to DAC 1, channels 3 and 4 to DAC 2. At any time, the  
current level of the output signals depends on the value  
of the reference currents, which are fed to pin 21 (for  
DAC 1) and to pin 1 (for DAC 2). Fig. 2–3 gives applica-  
tion diagrams for the DAC circuits. The RC network con-  
nected to the outputs is required for suppressing the  
clockfromtheD/Aconversion(1nF). Toachieveanana-  
log deemphasis of 50 µs, the 1 nF capacitors must be  
enlarged to the 10 nF. To improve the signal–to–noise  
ratio of the AMU 2481 (especially for low volume set-  
tings) an additional volume control facility (Vol 2) is pro-  
vided after the DAC 1 D/A converters. A digitally–ad-  
justed attenuator acts in 29 steps of 1 dB each.  
R
+
10 µ  
C
4.7 k  
21  
AMU 2481  
Ch1  
22  
23  
DAC 1  
Vol. 2  
R > 100 k  
I
Ch2  
1 n*  
a)  
Note:  
+12 V  
There is an application restriction with these converters:  
The clock rate of the AMU must meet the following clock  
condition:  
IREF2  
68 k  
R
+
C
4.7 k  
Clock rate = sampling rate n 16  
10 µ  
1
n must be an integer value. In section 2.3. all clocks rele-  
vant for the AMU application are listed. They fulfill that  
condition.  
AMU 2481  
Ch3  
19  
20  
DAC 2  
R > 100 k  
I
Ch4  
1 n*  
b)  
Fig. 2–3: DAC application diagrams  
a) DAC 1 Interface  
b) DAC 2 Interface  
*) optionally 10 nF for 50 µs analog deemphasis  
8
MICRONAS INTERMETALL  
AMU 2481  
2.2. DSP Block  
2.2.3. Arithmetic Logic Unit (ALU)  
The core of the DSP block is the ALU. Multiplication of  
16 8 bit, addition using a 20–bit accumulator, and shift  
operations are performed in the ALU. Accumulation is  
done according to a saturation characteristic (see sec-  
tion 3.1.).  
The AMU 2481 contains a complete mask–programma-  
ble digital signal processor with the blocks as described  
in the following sections.  
2.2.1. C–RAM, C–ROM and Data RAM  
2.3. System Clock ΦM and PDM Sampling Rate  
The clock at the AMU’s ΦM input is dependent on the  
current TV standard. The AMU is mainly provided for the  
German TV stereo system PAL and digital source stan-  
dard (e.g. D2–MAC). In all cases, the physical source of  
the AMU’s system clock is the DMA 2271 D2–MAC De-  
coder (Fig.1–2):  
Coefficients and control parameters for digital process-  
ing of audio data are either fixed or variable by means  
of the CCU. The coefficient (C) memory is therefore di-  
vided into two parts:  
C–RAM, containing 32 locations of 8 bits each, which  
can be loaded by the CCU via the IM bus interface. The  
AMU software needs 32 variable parameters, and for  
proper processing all locations must be loaded with the  
corresponding values.  
Table 2–1: Selection of operation mode by k33  
Mode  
k 33, Bit 6  
PAL  
D2–MAC  
0
1
C–ROM, containing 28 locations of 8 bits each, which  
are loaded with fixed values, required for the DSP soft-  
ware. Fortheuserthereisnopossibilitytochangecoeffi-  
cients in the C–ROM. Input data and intermediate re-  
sults can be stored in the AMU’s Data RAM whose  
locations have 16 bits each. This RAM is arranged in the  
following way:  
1. For PAL mode, the system clock ΦM is derived from  
the color carrier frequency, for example in the MCU 2600  
Clock Generator IC, and transferred to the DMA 2271 to  
be passed on to the AMU. In the ADC, as well as in the  
AMU, the ΦM clock is divided by four to produce the  
PDM rate, and by 128 to generate the sampling rate.  
– 50 locations for intermediate results and output data  
– 4 locations for S bus input channels  
2. For digital source (S bus) operation, the AMU sys-  
tem clock ΦM is generated in the DMA 2271 in such a  
way that it is a multiple of the D2–MAC typical audio  
sampling frequency. The S bus signals S–Clock and S–  
Ident are then derived from this clock.  
– 2 locations for 2 PDM channels from the decimation fil-  
ters  
Table 2–2 gives details about the clock requirements of  
the above operation modes. Selection of the operation  
mode (clock dividers) has to be transmitted by the CCU  
by means of coefficient k33, Bit 6 (see table 2–1, also  
section 3.13.).  
2.2.2. Program ROM, Program Counter and Control  
Block  
The DSP software of the AMU 2481 is stored in the pro-  
gram ROM. Its size is 256 14 bits, and its content can-  
not be modified by the user because it is mask–pro-  
grammed. Program ROM is addressed by the program  
counter (P.C.), which is a preset table counter.  
To enable parallel cascading of AMUs without external  
switches, (e.g. NICAM to SCART and D2MAC to TV) in  
the 44–PLCC package, the main clock (the S–Clock and  
the S–Ident, see section 2.1.2.2.) can be passed  
through the AMU 2481. The push–pull output can be  
switched to high impedance, which is the default status  
after power–on reset. To switch it on or off, use the same  
bit that controls the SBUS output:  
Instruction decoding and coordinating of all time func-  
tions is performed by the control block. Multiplexing of  
the two busses, addressing the coefficient memory and  
controlling the separator are also tasks of the control  
block. By means of the separator, data are transferred  
to the DACs.  
k33 bit3 = 0 outputs = active  
= 1 outputs = high impedance  
Table 2–2: AMU system clock ΦM and derived sampling rates  
TV Standard  
AMU ΦM  
PDM Rate  
Sampling Rate  
PAL  
D2–MAC  
17.73 MHz  
18.432 MHz  
:4 = 4.43 MHz  
:128 = 34.63 kHz  
:576 = 32 kHz  
MICRONAS INTERMETALL  
9
AMU 2481  
3. Functions Solved by DSP Software  
3.1. Representation of Numbers  
3.3. 50 µs Digital Deemphasis (for PDM–Data Only).  
A digital deemphasis is applied to the PDM inputs in or-  
der to process preemphasized audio signals (e.g. FM  
TV). So it is not necessary to realize the 50 µs deem-  
phasis by analog networks at the AMU’s outputs as  
shown in Fig. 2–3 (or at the APU’s output with complete  
systems, as shown in Fig. 1–2). In the case of process-  
ing SCART signals or if an analog deemphasis at the  
DACoutputs is preferred, the digital deemphasis can be  
switched off (linear frequency response). Fig. 3–1  
shows the 50 µs deemphasis frequency response. The  
control procedure is:  
The AMU 2481 has a two’s complement, fixed point  
arithmetic with decimal point being left-hand and the  
MSB being the sign bit. The word lengths are defined as  
follows:  
coefficients:  
8 bits including sign bit  
16 bits including sign bit  
20 bits including sign bit  
data at multiplier input:  
intermediate results:  
Table 3–1 shows as an example the range of the 8–bit  
coefficients, resulting from the conditions mentioned  
above. From the view of the CCU programmer this might  
be the most interesting case. Three formats are used to  
express the coefficient values: Integer decimal, integer  
hexadecimal and normalized.  
50 µs deemphasis on:  
18.432 MHz  
17.732 MHz  
Φ Main Clock  
KRDEEM (k26)  
69 (0.5390)  
73 (0.5703)  
Coefficient values must be transferred from the CCU to  
the AMU via the IM bus in binary format; therefore in  
most tables of this data sheet the values will be pres-  
ented in HEX and additionally in the normalized format,  
to make the digital signal processing background more  
understandable. To save space the normalized values  
will be rounded.  
50 µs deemphasis off:  
18.432 MHz  
0 (0.0)  
17.732 MHz  
Φ Main Clock  
KRDEEM (k26)  
0 (0.0)  
dB  
5.0  
3.2. DC Offset Suppression (only for PDM–Data)  
To avoid audible distortions caused by volume changes  
the DC part of the signals coming from the decimation  
filters has to be minimized. Therefore DC suppression  
for both channels is performed by the following steps:  
0.0  
–5.0  
1. calculation of the DC levels in two separate measure  
paths, i.e. down–sampling of both channels to about  
1 kHz  
–10.0  
–15.0  
–20.0  
2. lowpass filtering  
3. subtracting the resulting DC signals from the original  
channels ( = DC compensation)  
100.0  
1000.0  
10000.0  
Hz  
Note: The feature DC offset suppression is not control-  
lable by the CCU, e.d. all coefficients are fixed and  
stored in the AMU’s C–ROM.  
Fig. 3–1: 50µsdigitaldeemphasisfrequencyresponse  
Table 3–1: Range of an 8–bit coefficient value  
Coefficient  
AMU Internal Presentation  
HEX  
DEC  
Normalized  
Max. Value  
Min. Positive Number  
0111 1111  
0000 0001  
7F  
01  
127  
001  
0.9921875  
0.0078125  
Max. Negative Number  
Min. Number  
1111 1111  
1000 0000  
FF  
80  
255  
128  
–0.0078125  
–1.0  
Note: Coefficients kij have to be determined such that  
any overflow in the AMU arithmetic is excluded. Never-  
theless, if overflow occurs, the ALU will deal it according  
to a saturation characteristic. Considering this restric-  
tion, for good S/N ratio the digital range must be optimal-  
ly used.  
10  
MICRONAS INTERMETALL  
AMU 2481  
3.4. J17 Digital Deemphasis (Only for S–Data)  
one filter is switched on channel 3:  
KOVERS (k30) = 0 (0.0)  
A J17 digital deemphasis is included in all S bus chan-  
nels. This is important in the case of D2–MAC mode. For  
test purposes or for future digital sources without J17  
preemphasis this function can be switched off (linear fre-  
quency response). Fig. 3–2 shows the frequency re-  
sponse. The control procedure is:  
dB  
10  
0
–10  
–20  
J17 deemphasis on:  
–30  
–40  
–50  
–60  
18.432 MHz  
17.732 MHz  
Φ Main Clock  
KRJ17 (k28)  
KNJ17 (k29)  
116 (0.90625)  
11 (0.0859375)  
117 (0.9140625)  
10 (0.078125)  
0
2.5  
5
7.5  
10  
12.5  
15 kHz  
J17 deemphasis off:  
Fig. 3–3: Oversampling filter frequency response  
18.432 MHz  
0 (0.0)  
17.732 MHz  
0 (0.0)  
Φ Main Clock  
KRJ17 (k28)  
KNJ17 (k29)  
3.6. Audio Mixing Section  
This basic feature allows to route any input to every out-  
put and of course to mix different–weighted input chan-  
nels. Due to the three shift–left (SHAL) at the matrix out-  
putacoefficientof16(=0.125)correspondstoa1:1ratio  
of input to output. Table 3–2 shows the coefficients and  
their meaning.  
118 (0.921875)  
118 (0.921875)  
dB  
5.0  
Table 3–2: Output matrix coefficients  
0.0  
–5.0  
Output  
Coefficient  
Connection  
to Source  
Channel  
–10.0  
–15.0  
Ch1:  
Ch2:  
Ch3:  
Ch4:  
KS1L1 (k02)  
KS2L1 (k03)  
KS3L1 (k04)  
KS4L1 (k05)  
KP1L1 (k06)  
KP2L1 (k07)  
S bus channel 1  
S bus channel 2  
S bus channel 3  
S bus channel 4  
PDM 1  
–20.0  
100.0  
PDM 2  
1000.0  
10000.0  
Hz  
KS1R1 (k08) S bus channel 1  
KS2R1 (k09) S bus channel 2  
KS3R1 (k10) S bus channel 3  
KS4R1 (k11) S bus channel 4  
KP1R1 (k12) PDM 1  
Fig. 3–2: J17 deemphasis frequency response  
3.5. Medium Quality Oversampling Filter  
KP2R1 (k13) PDM 2  
KS1L2 (k14)  
KS2L2 (k15)  
KS3L2 (k16)  
KS4L2 (k17)  
KP1L2 (k18)  
KP2L2 (k19)  
S bus channel 1  
S bus channel 2  
S bus channel 3  
S bus channel 4  
PDM 1  
Two oversampling filters in the S bus channels 3 and 4  
allow to mix the D2–MAC medium–quality signals (16  
kHz sampling rate) with the high–quality signals (32 kHz  
sampling rate). It is a third–order Cauer–type lowpass  
with a stopband attenuation of 40 dB. The frequency re-  
sponse is shown in Fig. 3–3. There are three selection  
modes regarding the oversampling filters:  
PDM 2  
KS1R2 (k20) S bus channel 1  
KS2R2 (k21) S bus channel 2  
KS3R2 (k22) S bus channel 3  
KS4R2 (k23) S bus channel 4  
KP1R2 (k24) PDM 1  
both filters switched on:  
KOVERS (k30) = 129 (–0.992 1875)  
both filters switched off:  
KOVERS (k30) = 127 (0.992 187 5)  
KP2R2 (k25) PDM 2  
MICRONAS INTERMETALL  
11  
AMU 2481  
3.7. Sin x/x Compensation  
trolled by a digitally–adjusted attenuator, which is con-  
trolled by k34 in steps of 1 dB each, and the total number  
of steps is 29.  
The sin x/x compensation results in an improved fre-  
quency response. It is a precompensation of the 4 dB  
loss at half the sampling rate, that happens due to the  
D/A conversion. Fig.3–4 shows the frequency response  
of the sin x/x compensation. This function is always ac-  
tive, and no controller activity is required.  
range: k34 = 0 to 29 (0.0 to 0.265 625)  
The adjustment procedure for the channels 3 and 4  
(DAC 2) is performed by means of coefficient k1 and re-  
sultsinadynamicrangeof42dB, too. Thereisnoanalog  
Vol 2 adjustment for the channels 3 and 4 (DAC 2) out-  
puts.  
dB  
4.0  
range: KVOL34 (k1) = 0 to 127 (0.0 to 0.992 187 5)  
2.0  
0.0  
mute condition: KVOL34 (k1) = 0  
(0.0)  
–2.0  
–4.0  
–6.0  
–8.0  
–10.0  
3.9. Matrix  
Thematrixdefinestheconfigurationbetweenthefourin-  
put channels and the D/A converter section. This means  
that channels 1 and 2 can be allocated to the DAC1 con-  
verters or to the DAC2 D/A converters and the same for  
channels 3 and 4. The matrix allows no mixing. The ma-  
trix feature is important to have a freely programmable  
selectionofmainspeaker, headphonesandSCARTout-  
put. Control coefficient is k31:  
Hz  
Fig. 3–4: Frequency response of the sin x/x  
compensation  
KOUT (k31) = 127 (0.992 187 5) selects:  
3.8. Volume Control  
Matrix Input  
to  
Matrix Output  
Channel 1  
Channel 2  
Channel 3  
Channel 4  
Channel 1  
Channel 2  
Channel 3  
Channel 4  
The volume control facility works on the DAC 1 and  
DAC 2 analog outputs only.  
The adjustment procedure for the output channels 1 and  
2 (DAC 1) is performed by means of coefficient k0 and  
gives a dynamic range of 42 dB:  
KOUT (k31) = 128 (–1.0) selects:  
range: KVOL12 (k0) = 0 to 127 (0.0 to 0.992 187 5)  
Matrix Input  
to  
Matrix Output  
mute condition: KVOL12 (k0) = 0  
(0.0)  
Channel 1  
Channel 2  
Channel 3  
Channel 4  
Channel 3  
Channel 4  
Channel 1  
Channel 2  
In addition to this volume control, there is an additional  
analog volume adjustment (Vol 2) after the DAC 1 (see  
section 2.1.4.). The output channels 1 and 2 are con-  
12  
MICRONAS INTERMETALL  
AMU 2481  
3.10. 50 µs Digital Preemphasis  
fact that it is a software oversampling, the clock frequen-  
cy must be fixed at 18.432 MHz.  
The 50 µs digital preemphasis feature has been imple-  
mented to get compatibility to the former concept using  
the analog deemphasis network connected to the DAC  
outputs of the AMU or APU. In the case of D2–MAC op-  
eration mode, this analog deemphasis has to be  
precompensated. In the combined system shown in Fig.  
1–2, the 50 µs deemphasis is now realized in the ACP  
2371 by digital means, so that the preemphasis is not  
needed. For this case, it is possible to switch off the  
preemphasis by means of coefficient k27:  
dB  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
50 µs preemphasis on:  
18.432 MHz  
17.732 MHz  
0
5000  
10000  
15000  
20000  
25000  
30000 Hz  
Φ Main Clock  
KPRE (k27)  
187 (–0.5390625)  
183 (–0.5703125)  
Fig. 3–6: Frequency response of the oversampling  
filter  
50 µs preemphasis off:  
3.12. AMU 2481 Initialization  
18.432 MHz  
0 (0.0)  
17.732 MHz  
Φ Main Clock  
– After switching–on the power or after reset, the AMU  
2481 requires a certain startup time (Fig. 3–7) to ac-  
cept coefficients and valid audio data.  
KPRE (k27)  
0 (0.0)  
– Immediately after a reset the volume (k0 and k1) is  
automatically set to zero.  
dB  
5.
– After a delay of another 0.5 s (or 0.6 s after power–on)  
a complete set of coefficients is transferred by the  
CCU via the IM bus, keeping volume (k0, k1) to zero.  
0.
– 20 ms later the mute function is switched off by the  
CCU.  
–5.
Power  
On  
–10.
–15.
–20.
V
SUP  
t
t
100 ms  
2 V  
100.0  
1000.0  
10000.0  
Hz  
Reset  
AMU works for sure  
k , k = 0 autonomous  
Fig. 3–5: 50 µs digital preemphasis frequency  
response  
0
1
in Interface  
>0.5 s  
k , k 0  
from  
CCU  
0
1
Data  
from  
CCU  
Coeff. into  
C RAM  
3.11. Oversampling Filter for Ch1 and Ch2  
k , k = 0  
0
1
Mute  
20 ms  
t
Two oversampling filters in channels 1 and 2 are im-  
plemented. The oversampling factor is two. Fig.3–6  
shows the frequency response of the filters. Due to the  
Fig. 3–7: Initialization of the AMU 2481  
MICRONAS INTERMETALL  
13  
AMU 2481  
3.13. Complete Coefficient Table  
Table33detailsallcoefficientsandcontrolwordswhich  
can be influenced by the CCU. Notes see page following  
Table 3–3.  
Table 3–3: Available addresses in the AMU’s C–RAM and their applications  
Address  
Coefficient  
Description  
64  
65  
KVOL12  
KVOL34  
k00  
k01  
digital volume DAC1  
digital volume DAC2  
66  
67  
68  
69  
70  
71  
KS1L1  
KS2L1  
KS3L1  
KS4L1  
KP1L1  
KP2L1  
k02  
k03  
k04  
k05  
k06  
k07  
channel 1 source switch  
channel 1 source switch  
channel 1 source switch  
channel 1 source switch  
channel 1 source switch  
channel 1 source switch  
72  
73  
74  
75  
76  
77  
KS1R1  
KS2R1  
KS3R1  
KS4R1  
KP1R1  
KP2R1  
k08  
k09  
k10  
k11  
k12  
k13  
channel 2 source switch  
channel 2 source switch  
channel 2 source switch  
channel 2 source switch  
channel 2 source switch  
channel 2 source switch  
78  
79  
80  
81  
82  
83  
KS1L2  
KS2L2  
KS3L2  
KS4L2  
KP1L2  
KP2L2  
k14  
k15  
k16  
k17  
k18  
k19  
channel 3 source switch  
channel 3 source switch  
channel 3 source switch  
channel 3 source switch  
channel 3 source switch  
channel 3 source switch  
84  
85  
86  
87  
88  
89  
KS1R2  
KS2R2  
KS3R2  
KS4R2  
KP1R2  
KP2R2  
k20  
k21  
k22  
k23  
k24  
k25  
channel 4 source switch  
channel 4 source switch  
channel 4 source switch  
channel 4 source switch  
channel 4 source switch  
channel 4 source switch  
90  
91  
92  
93  
KRDEEM k26  
deemphasis for PDM input  
preemphasis for S bus output  
deemphasis for S bus input  
deemphasis for S bus input  
KPRE  
KRJ17  
KNJ17  
k27  
k28  
k29  
94  
95  
KOVERS  
KOUT  
k30  
k31  
oversampling switch  
output changing switch  
96  
97  
k32  
k33  
ADC coefficient (see ADC data sheet)  
control word for standard selection  
98  
k34  
VOL2; analog volume control  
processor selection  
102  
Select Reg.  
14  
MICRONAS INTERMETALL  
AMU 2481  
Notes to Table 3–3:  
Cascading of two or more AMUs for future applications  
need additional control information concerning the S  
bus. This is done by means of k33 and to ensure upward  
compatibility all bits are defined as follows:  
k33: Bit 7 = 0* clock divider = 4 (section 2.3.)  
= 1 clock divider = 3 (section 2.3.)  
Bit 6 = 0* sampling rate is derived from  
system clock (section 2.3.)  
= 1 sampling clock according to  
digital source (section 2.3.)  
Bit 5 = 0* normal mode  
= 1 test mode  
concerning the S bus the AMU 2481 is:  
Bit 4 = 0* slave  
= 1 master  
Bit 3 = 0 S bus data output active  
(section 2.3.)  
= 1* S bus data output = high  
impedance (section 2.3.)  
Bit 2 = 0* Pal mode  
= 1 D2MAC/NICAM mode  
Bit 1 = 0* normal S bus operation  
= 1 S bus access to conversion filter  
for MSP FM mode  
Bit 0 = 0 not used, for compatibility must  
be set to 0.  
*) reset status  
MICRONAS INTERMETALL  
15  
AMU 2481  
4. Specifications  
4.1. Outline Dimensions  
Fig. 4–1: AMU 2481 in 24–pin Dil Plastic Package,  
20 B 24 according to DIN 41 870  
Weight approx. 4.5 g  
Dimensions in mm  
2.4  
10 x 1.27 = 12.7± 0.1  
1.27±0.1 1.2 x 45°  
1.2 x 45°  
6
1
40  
2
7
39  
17  
29  
1.9 1.5  
4.05  
18  
28  
+0.25  
17.4  
16.5±0.1  
4.75 ±0.15  
0.1  
Fig. 4–2: AMU 2481 in 44–pin PLCC Package,  
Weight approx. 2.2 g  
Dimensions in mm  
4.2. Pin Connections  
9
S–Data Input  
V Internal Substrate Bias Voltage  
ISB  
4.2.1. 24–Pin DIL Package  
10  
11  
12  
13  
14  
15  
16  
17  
18  
1
2
3
4
5
6
7
8
I
Reference Current Input (for DAC 2)  
Reset Input  
REF2  
Leave Vacant  
Ground (Digital)  
ΦM Clock Input  
IM Bus Data Input/Output  
IM Bus Ident Input  
IM Bus Clock Input  
S–Data Output  
V
SUP  
S–Ident Input/Output  
PDM2 Digital Input (R)  
PDM1 Digital Input (L)  
Leave Vacant  
Leave Vacant  
S–Clock Input/Output  
16  
MICRONAS INTERMETALL  
AMU 2481  
19  
20  
21  
22  
23  
24  
DAC2 Output Ch3  
DAC 2 Output Ch 4  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
Leave Vacant  
Leave Vacant  
I
Reference Current Input (for DAC1)  
IM Bus Data Input/Output  
Leave Vacant  
REF1  
DAC1 Output Ch1  
DAC1 Output Ch2  
Ground (Analog)  
IM Bus Ident Input  
Leave Vacant  
IM Bus Clock Input  
Leave Vacant  
4.2.2. 44–Pin PLCC Package  
1
ΦM Main Clock Input  
Leave Vacant  
S–Data Output  
Leave Vacant  
2
3
Leave Vacant  
V
SUP  
4
Leave Vacant  
Ground Supply  
S–Clock Input/Output  
Leave Vacant  
5
Leave Vacant  
6
Leave Vacant  
7
S–Ident Input/Output  
S–Ident Output 2**  
PDM2 Digital Input (R)  
Leave Vacant  
S–Data Input  
8
Leave Vacant  
9
Leave Vacant  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Reset Input  
PDM1 Digital Input (L)  
Vacant*  
S–Clock Output 2**  
ΦM Main Clock Output**  
DAC2 Output Ch3  
Vacant*  
* = In order to minimize crosstalk, these pins should be  
appropriately grounded.  
DAC2 Output Ch4  
Vacant*  
** = additional outputs compared to 24–pin Dil package  
pins 8, 43 see section 2.1.2.2.; pin 44 see section 2.3.  
4.3. Pin Descriptions (pin numbers for 24–pin DIL  
package)  
I
Reference Current Input (for DAC1)  
REF1  
DAC1 Output Ch1  
Vacant*  
Pins 1 and 21 – Reference Current Inputs (Fig. 4–3)  
These inputs require a current of 150 µA called refer-  
ence current I  
the DAC interfaces.  
and serving for volume adjustment in  
REF  
DAC1 Output Ch2  
Leave Vacant  
Ground (Analog)  
Pin 12 – Digital Ground, 0  
This pin must be connected to the negative of the supply.  
It must be used for ground connections in conjunction  
with digital signals.  
V
ISB  
Internal Substrate Bias Voltage  
Pin 3 – IM Bus Input/Output (Fig. 4–8)  
Via this pin, the AMU 2481 is connected to the IM bus  
and communicates with the CCU.  
I
Reference Current Input (for DAC2)  
REF2  
MICRONAS INTERMETALL  
17  
AMU 2481  
Pins 4 and 5 – IM Bus Inputs (Fig. 4–4)  
V
SUP  
Via these pins, the AMU 2481 is connected to the IM bus  
and receives instructions from the CCU.  
Pins 6, 8, 9 and 15 – Serial Audio Interface (S Bus)  
Pin9istheSDatainput(Fig. 4–7)andpin6theSData  
output (Fig. 4–9). Pins 8 and 15 are S–Clock and S–  
Ident inputs/outputs (Fig. 4–10), the status depending  
on bit 4 in coefficient k33 (see sections 2.1.2.2. and  
3.13.).  
E
E
Fig. 4–3:  
Input Pins 1, 21  
GND  
V
SUP  
Pin 14 – V  
Supply Voltage  
SUP  
D
This pin must be connected to the positive of the supply.  
Pin 10 – V Internal Substrate Bias Voltage  
ISB  
E
The AMU 2481 has an on–chip substrate bias generator  
which produces a negative bias voltage of about 3.4 V.  
Pin 10 should have a 0.1 µF capacitor to ground.  
Fig. 4–4:  
Input Pins 4, 5, 11  
GND  
D
Pin 11 – Reset Input (Fig. 4–4)  
In the steady state, high level is required at pin 11. A low  
level normalizes the AMU 2481. Initialization is de-  
scribed in section 3.12.  
BIAS  
V
SUP  
D
D
Pin 13 – ΦM Main Clock Input (Fig. 4–5)  
This pin receives the required main clock signal from the  
MCU 2600 or MCU 2632 Clock Generator IC or from the  
DMA 2271 D2–MAC Decoder or the MSP 2410 Multi-  
standard Sound Processor.  
Fig. 4–5:  
E
Input Pin 13  
GND  
Pins 16 and 17 – PDM2 and PDM1 Digital Input (Fig.  
4–6)  
V
SUP  
These pins receive the pulse–density modulated output  
signals of the ADC 2311 E.  
D
E
D
E
BIAS  
Pins 19 and 20 – DAC2 Outputs Ch3 and Ch4 (Fig. 4–9)  
These pins supply the audio output signals as output  
currents whose amplitude is determined by the refer-  
Fig. 4–6:  
Input Pins 16, 17  
ence current I  
fed to pin 1. The output signal of pins  
REF2  
GND  
19 and 20 is only influenced by the VOL1 volumecontrol.  
Pins 22 and 23 – DAC 1 Outputs Ch1 and Ch2 (Fig. 4–9)  
These pins supply the audio output signals as output  
currents whose amplitude is determined by the refer-  
V
SUP  
D
encecurrentI  
fedtopin21. Theoutputsignalofpins  
REF1  
22 and 23 is influenced by the VOL 1 and VOL 2 volume  
control facilities.  
E
BIAS  
GND  
Fig. 4–7:  
Input Pin 9  
Pin 24 – Analog Ground 0  
This pin must be connected to the negative of the supply.  
It serves as ground connection for analog signals.  
V
SUP  
4.4. Pin Circuits (pin numbers for 24–pin DIL pack-  
age)  
D
E
The following figures schematically show the circuitry at  
the various pins. The integrated protection structures  
are not shown. The letter “ E” means enhancement, the  
letter “D” depletion.  
E
Fig. 4–8:  
Input/Output Pin 3  
GND  
18  
MICRONAS INTERMETALL  
AMU 2481  
V
SUP  
V
SUP  
D
E
BIAS  
E
Fig. 4–9:  
E
Fig. 4–10:  
Input/Output Pins 8, 15  
GND  
Output Pin 6,19, 20, 22  
GND  
4.5. Electrical Characteristics (pin numbers for 24–pin DIL package)  
All voltages are referred to ground.  
4.5.1. Absolute Maximum Ratings  
Symbol  
Parameter  
Pin No.  
Min.  
Max.  
Unit  
°C  
°C  
V
T
A
Ambient Operating Temperature  
Storage Temperature  
Supply Voltage  
0
65  
T
–40  
+125  
6
S
V
V
V
14  
SUP  
Input Voltage, all Inputs  
DAC Output Voltage  
–0.3 V  
–0.3  
V
SUP  
I
19, 20,  
22, 23  
+12  
V
DO  
V
S–Bus Output Voltage  
6, 8, 15  
–0.3 V  
V
SO  
SUP  
I
DAC and S–Bus Output Current  
6, 8, 15,  
19, 20,  
22, 23  
10  
mA  
DSO  
4.5.2. Recommended Operating Conditions at T = 0 to 65 °C, f = 14.3 to 18.4 MHz  
Φ
A
M
Symbol  
Parameter  
Pin No.  
14  
Min.  
4.75  
1.5  
Typ.  
5.0  
Max.  
5.25  
3.5  
Unit  
V
V
V
V
Supply Voltage  
SUP  
ΦM Clock Input D.C. Voltage  
13  
V
Φ
Φ
MIDC  
MIAC  
ΦM Clock Input A.C. Voltage (p–p)  
0.8  
2.5  
V
t
t
ΦM Clock Input  
High/Low Ratio  
0.9  
1.0  
1.1  
Φ
MIH  
Φ
MIL  
t
Φ
ΦM Clock Input High to Low  
0.15  
MIHL  
Transition Time  
f
Φ
M
V
V
Reset Input Low Voltage  
Reset Input High Voltage  
Reference Input Current  
IM Bus Input Low Voltage  
IM Bus Input High Voltage  
ΦI IM Bus Clock Frequency  
11  
1.2  
V
REIL  
REIH  
REF  
2.4  
V
I
1, 21  
0.15  
mA  
V
V
IMIL  
V
IMIH  
3 to 5  
0.8  
2.4  
0.05  
V
f
Φ
170  
kHz  
I
MICRONAS INTERMETALL  
19  
AMU 2481  
Recommended Operating Conditions, continued  
Symbol  
Parameter  
Pin No.  
Min.  
Typ.  
Max.  
Unit  
t
ΦI Clock Input Delay Time  
after IM Bus Ident Input  
3 to 5  
0
IM1  
t
t
t
ΦI Clock Input Low Pulse Time  
ΦI Clock Input High Pulse Time  
3.0  
3.0  
0
µs  
µs  
IM2  
IM3  
IM4  
ΦI Clock Input Setup Time  
before Ident Input High  
t
t
t
t
t
t
ΦI Clock Input Hold Time  
after Ident Input High  
1.5  
6.0  
0
µs  
µs  
IM5  
IM6  
IM7  
IM8  
IM9  
IM10  
ΦI Clock Input Setup Time  
before Ident End–Pulse Input  
IM Bus Data Input Delay Time  
after ΦI Clock Input  
IM Bus Data Input Setup Time  
before ΦI Clock Input  
0
IM Bus Data Input Hold Time  
after ΦI Clock Input  
0
IM Bus Ident End–Pulse Low Time  
S Bus Input Low Voltage  
3.0  
µs  
V
V
8, 9, 15  
8
0.4  
20  
SIL  
–I  
f
S Bus Input High Current  
µA  
SIH  
ΦS Clock Input Frequency  
f
Φ
M
IS  
4
t
t
ΦS Clock Input  
High/Low Ratio  
0.8  
150  
50  
1
1.2  
S2  
S1  
t
t
t
t
ΦS Clock Input Setup Time  
before Ident End–Pulse Input  
8, 15  
8, 9  
ns  
ns  
ns  
ns  
S3  
S Bus Data Input Setup Time  
before ΦS Clock Input  
S4  
S5  
S6  
S Bus Data Input Hold Time  
after ΦS Clock Input  
50  
S Bus Ident End–Pulse  
Input Low Time  
15  
150  
V
Digital Input Low Voltage  
16, 17  
0.5  
DIL  
V  
SUP  
–0.3 V  
V
DIH  
Digital Input High Voltage  
0.5  
V  
SUP  
+0.3 V  
C
ISB  
Internal Substrate Bias  
Voltage Filter Capacitor  
10  
100  
nF  
20  
MICRONAS INTERMETALL  
AMU 2481  
4.5.3. Characteristics at T = 0 to 65 °C, V  
= 4.75 to 5.25 V, f = 14.3 to 18.4 MHz  
Φ
M
A
SUP  
Symbol  
Parameter  
Pin No.  
Min.  
Typ.  
Max.  
170  
0.4  
Unit  
mA  
V
Test Conditions  
I
Supply Current  
14  
3
140  
SUP  
V
I
IM Bus Output Low Voltage  
IM Bus Output High Current  
I
= 3 mA  
= 5 V  
IMOL  
IMO  
10  
µA  
V
V
IMOH  
IMO  
–I  
SIL  
S–Clock/Ident/Data Input  
Low Current  
8, 9, 15  
1
2.7  
mA  
= 0.3 V  
SI  
V
SIH  
S–Clock/Ident/Data Input  
High Voltage  
1.2  
V
I = 0  
SI  
V
S–Bus Output Low Voltage  
S–Data Output High Current  
8, 9, 15  
6
0.3  
10  
V
I
= 6 mA  
SO  
SOL  
SOH  
I
I
µA  
mA  
V
= 5 V  
SO  
DAC1 Output  
22, 23  
0.81  
I
=0.15 mA,  
OMAIN  
REF1  
Peak–to–Peak Current  
VOL2 = 0 dB  
I =0.15 mA,  
REF1  
25  
0.81  
µA  
mA  
%
VOL2 = –30 dB  
I
DAC2 Output  
Peak–to–Peak Current  
19, 20  
I
=0.15 mA  
OAUX  
REF2  
THD  
Total Hamonic Distortion of  
DAC Output  
19, 20,  
22, 23  
0.1  
V
V
Internal Substrate Bias Voltage  
Reference Input Voltage Drop  
10  
21  
–3.4  
2.5  
V
V
C
R
= 100 nF  
ISB  
ISB  
= 68 kOhm from  
REF1  
REF1  
+12 V, VOL2 = 0 dB  
0.45  
2.5  
V
V
R
REF1  
+12 V, VOL2 = –30 dB  
= 68 kOhm from  
V
REF2  
Reference Input Voltage Drop  
1
R
REF2  
= 68 kOhm from  
+12 V  
MICRONAS INTERMETALL  
21  
AMU 2481  
5. Appendix 1: Application Circuit (pin numbers for 24–pin Dil package)  
+12 V  
+5 V  
A
D
68k  
1
100  
100  
15 µ  
5.6 µH  
+
+
0.1µ 10 µ  
L1  
4.7 n  
12  
+
+
A
22 µ  
10  
24  
21  
14  
16  
17  
18  
19  
Ch 3  
4.7 k  
PDM2  
from ADC  
PDM1  
1 µ  
AF Out  
Ch 4  
20  
22 µ  
+
LV  
1n *)  
A
A
9
8
S–Data  
In  
22  
23  
AMU 2481  
Ch 1  
AF Out  
Ch 2  
4.7 k  
S–Clock  
In/Out  
S–Ident  
In/Out  
S–Data  
Out  
1 µ  
15  
6
1n *)  
A
11  
2
3
4
5
7
13  
S Bus  
from DMA  
or MSP  
LV  
LV  
D
ID CL  
IM Bus  
Reset  
ΦM Main Clock  
*optionally 10 nF for 50 µs analog deemphasis  
Fig. 5–1: Application circuit  
22  
MICRONAS INTERMETALL  
AMU 2481  
MICRONAS INTERMETALL GmbH  
Hans-Bunte-Strasse 19  
D-79108 Freiburg (Germany)  
P.O. Box 840  
D-79008 Freiburg (Germany)  
Tel. +49-761-517-0  
Fax +49-761-517-2174  
All information and data contained in this data sheet are with-  
out any commitment, are not to be considered as an offer for  
conclusion of a contract nor shall they be construed as to  
create any liability. Any new issue of this data sheet invalidates  
previous issues. Product availability and delivery dates are ex-  
clusively subject to our respective order confirmation form; the  
same applies to orders based on development samples deliv-  
ered. By this publication, MICRONAS INTERMETALL GmbH  
does not assume responsibility for patent infringements or  
other rights of third parties which may result from its use.  
Reprinting is generally permitted, indicating the source. How-  
ever, our prior consent must be obtained in all cases.  
E-mail: docservice@intermetall.de  
Internet: http://www.intermetall.de  
Printed in Germany  
by Simon Druck GmbH & Co., Freiburg (8/92)  
Order No. 6251-324-3E  
24  
MICRONAS INTERMETALL  
End of Data Sheet  
Multimedia ICs  
Back to Summary  
MICRONAS  
Back to Data Sheets  

相关型号:

AMU2481VS

Consumer IC
ETC

AMU2485

Audio Processor (24-Pin Plastic Package)
ETC

AMUI-65656L-40

Standard SRAM, 32KX8, 40ns, CMOS, PDSO28,
ATMEL

AMUI-65656L-40:D

Standard SRAM, 32KX8, 40ns, CMOS, PDSO28,
TEMIC

AMUI-65656L-40:R

Standard SRAM, 32KX8, 40ns, CMOS, PDSO28,
ATMEL

AMUI-65656L-40:RD

Standard SRAM, 32KX8, 40ns, CMOS, PDSO28,
ATMEL

AMUI-65656L-40SHXXX

Standard SRAM, 32KX8, 40ns, CMOS, PDSO28,
ATMEL

AMUI-65656L-40SHXXX:D

Standard SRAM, 32KX8, 40ns, CMOS, PDSO28,
ATMEL

AMUI-65656L-40SHXXX:R

Standard SRAM, 32KX8, 40ns, CMOS, PDSO28,
ATMEL

AMUI-65656L-40SHXXX:RD

Standard SRAM, 32KX8, 40ns, CMOS, PDSO28,
ATMEL

AMUI-65656L-45

Standard SRAM, 32KX8, 45ns, CMOS, PDSO28,
ATMEL

AMUI-65656L-45:D

Standard SRAM, 32KX8, 45ns, CMOS, PDSO28,
ATMEL