TCM680EPA [MICROCHIP]

SWITCHED CAPACITOR CONVERTER, 8 kHz SWITCHING FREQ-MAX, PDIP8, PLASTIC, DIP-8;
TCM680EPA
型号: TCM680EPA
厂家: MICROCHIP    MICROCHIP
描述:

SWITCHED CAPACITOR CONVERTER, 8 kHz SWITCHING FREQ-MAX, PDIP8, PLASTIC, DIP-8

开关 光电二极管
文件: 总18页 (文件大小:389K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TCM680  
M
+5V To ±10V Voltage Converter  
Features  
General Description  
• 99% Voltage Conversion Efficiency  
• 85% Power Conversion Efficiency  
• Input Voltage Range:  
- +2.0V to +5.5V  
• Only 4 External Capacitors Required  
• 8-Pin SOIC Package  
The TCM680 is a dual charge pump, voltage converter  
that produces output voltages of +2V and -2V from  
IN  
IN  
a single input voltage of +2.0V to +5.5V. Common  
applications include ±10V from a single +5V logic  
supply and ±6V from a +3V lithium battery.  
The TCM680 is packaged in 8-pin SOIC and PDIP  
packages and requires only four inexpensive, external  
capacitors. The charge pumps are clocked by an on-  
board 8 kHz oscillator. Low output source impedances  
(typically 140 ) provide maximum output currents of  
10 mA for each output. Typical power conversion effi-  
ciency is 85%.  
High efficiency, small size and low cost make the  
TCM680 suitable for a wide variety of applications that  
need both positive and negative power supplies  
derived from a single input voltage.  
Applications  
• ±10V From +5V Logic Supply  
• ±6V From a 3V Lithium Cell  
• Handheld Instruments  
• Portable Cellular Phones  
• LCD Display Bias Generator  
• Panel Meters  
• Operational Amplifier Power Supplies  
Package Type  
Typical Operating Circuit  
PDIP  
+5V  
-
+
C1  
1
2
3
4
8
7
6
5
VOUT  
C4  
4.7 µF  
+
+
VIN  
VOUT  
+
+
+
C2  
C1  
C1  
TCM680CPA  
TCM680EPA  
+
C1  
4.7 µF  
VOUT+ = (2 x VIN  
)
+
-
VIN  
C2  
-
C1  
C2  
-
TCM680  
VOUT  
GND  
+
+
C2  
VOUT- = -(2 x VIN  
C3  
)
-
VOUT  
GND  
4.7 µF  
-
C2  
SOIC  
4.7 µF  
-
+
C1  
1
8
VOUT  
GND  
GND  
+
+
C2  
2
3
7
6
C1  
TCM680COA  
TCM680EOA  
-
VIN  
C2  
-
VOUT  
4
5
GND  
2002 Microchip Technology Inc.  
DS21486B-page 1  
TCM680  
† Notice: Stresses above those listed under "Maxi-  
mum Ratings" may cause permanent damage to the  
device. This is a stress rating only and functional oper-  
ation of the device at those or any other conditions  
above those indicated in the operation listings of this  
specification is not implied. Exposure to maximum rat-  
ing conditions for extended periods may affect device  
reliability  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings†  
V
V
V
V
V
V
.......................................................................+5.8V  
IN  
+
................................................................ +11.6V  
.................................................................-11.6V  
Short-Circuit Duration......................Continuous  
Current ....................................................75 mA  
OUT  
OUT  
OUT  
OUT  
+
+
dV/dT ....................................................... 1 V/µsec  
IN  
Power Dissipation (T 70°C)  
A
8-Pin PDIP ..............................................730 mW  
8-Pin SOIC ..............................................470 mW  
Operating Temperature Range.............-40°C to +85°C  
Storage Temperature Range..............-65°C to +150°C  
Maximum Junction Temperature ......................+150°C  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise noted, V = +5V, T = +25°C, refer to Figure 1-1.  
IN  
A
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
-40°C T +85°C, R = 2 kΩ  
Supply Voltage Range  
Supply Current  
V
2.0  
0.5  
1.0  
140  
180  
140  
180  
5.5  
1.0  
2.0  
2.5  
3.0  
180  
250  
220  
250  
180  
250  
V
mA  
IN  
A
L
I
V
V
V
V
= 3V, R = ∞  
IN  
IN  
IN  
IN  
L
= 5V, R = ∞  
L
= 5V, 0°C T ≤ +70°C, R = ∞  
A
L
= 5V, -40°C T ≤ +85°C, R = ∞  
IN  
A L  
-
+
Negative Charge Pump Output  
Source Resistance  
R
I
I
= 10 mA, I = 0 mA, V = 5V  
OUT  
L
L
+
IN  
= 5 mA, I = 0 mA, V = 2.8V  
L
L
IN  
0°C T ≤ + 70°C  
A
-40°C T ≤ + 85°C  
A
+
+
+
I
I
I
= 10 mA, I = 0 mA, V = 5V  
L
L
L
L IN  
+
Positive Charge Pump Output  
Source Resistance  
R
= 10 mA, I = 0 mA, V = 5V  
L IN  
= 5 mA, I = 0 mA, V = 2.8V  
OUT  
L IN  
220  
250  
0°C T ≤ + 70°C  
A
-40°C T ≤ + 85°C  
A
+
I
= 10 mA, I = 0 mA, V = 5V  
L IN  
L
Oscillator Frequency  
Power Efficiency  
Voltage Conversion Efficiency  
F
P
97  
97  
21  
85  
99  
99  
kHz  
%
%
OSC  
R = 2 kΩ  
EFF  
L
+
V
V
V
, R = ∞  
OUTEFF  
OUT  
OUT  
L
, R = ∞  
L
DS21486B-page 2  
2002 Microchip Technology Inc.  
TCM680  
V
IN  
+
C
4.7 µF  
4.7 µF  
1
+
8
+
1
2
-
V
V
C
C
OUT  
OUT  
1
+
+ 7  
6
+
+
C
C
4
2
1
+
+
10 µF  
RL  
C
2
TCM680  
-
3
4
V
C
IN  
2
5
-
V
GND  
GND  
OUT  
C
10 µF  
3
-
R
L
-
V
OUT  
FIGURE 1-1:  
Test Circuit Used For DC Characteristics Table.  
2002 Microchip Technology Inc.  
DS21486B-page 3  
TCM680  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, V = +5V, T = +25°C.  
IN  
A
300  
10.0  
9.0  
C
= C = 10 µF  
4
1
250  
200  
8.0  
7.0  
150  
100  
R
OUT  
4
5
6
3
2
1
15  
0
5
10  
V
(V)  
IN  
Load Current (mA)  
+
-
FIGURE 2-1:  
Output Resistance vs. V .  
FIGURE 2-4:  
V
or V  
vs. Load  
OUT  
IN  
OUT  
Current.  
1.4  
1.2  
1.0  
10.0  
9.0  
0.8  
0.6  
0.4  
R
= ∞  
L
8.0  
0.2  
1
7.0  
0
4
5
6
3
6
8
10  
2
4
2
+
V
(V)  
Output Current (mA) From V  
OUT  
To V  
OUT  
IN  
FIGURE 2-2:  
Supply Current vs. V .  
IN  
FIGURE 2-5:  
Output Voltage vs. Output  
Current.  
180  
I
OUT  
= 10 mA  
160  
140  
R
OUT  
120  
100  
-50  
0
50  
100  
Temperature (˚C)  
FIGURE 2-3:  
Output Source Resistance  
vs. Temperature.  
DS21486B-page 4  
2002 Microchip Technology Inc.  
TCM680  
-
3.4  
Negative Output Voltage (V  
)
3.0  
PIN DESCRIPTION  
OUT  
Negative connection for the negative charge pump out-  
put capacitor. The negative charge pump output capac-  
itor supplies the output load during the first, third and  
fourth phases of the switching cycle. During the second  
phase of the switching cycle, charge is restored to the  
negative charge pump output capacitor. The negative  
output voltage magnitude is approximately twice the  
input voltage.  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
Pin No.  
PIN FUNCTION TABLE  
(8-Pin PDIP, Symbol  
SOIC)  
Description  
-
1
2
3
4
C
Input. First charge pump  
capacitor. Negative  
connection  
Input. Second charge pump  
capacitor. Positive  
connection.  
Input. Second charge pump  
capacitor. Negative  
connection.  
1
It is recommended that a low ESR (equivalent series  
resistance) capacitor be used. Additionally, larger  
values will lower the output ripple.  
+
C
2
3.5  
Ground (GND)  
-
C
2
Input zero volt reference.  
3.6  
Power Supply Input (V )  
IN  
-
V
Output. Negative Output  
OUT  
Positive power supply input voltage connection. It is  
recommended that a low ESR (equivalent series resis-  
tance) capacitor be used to bypass the power supply  
input to ground (GND).  
voltage  
5
6
7
GND  
Input. Ground connection.  
Input. Power supply.  
Input. First charge pump  
capacitor. Positive  
connection.  
V
C
IN  
+
1
+
3.7  
First Charge Pump Capacitor (C )  
1
Positive connection for the charge pump capacitor (fly-  
ing capacitor) used to transfer charge from the input  
source to a second charge pump capacitor. Proper  
orientation is imperative when using a polarized  
capacitor.  
+
8
V
Output. Positive Output  
Voltage.  
OUT  
-
3.1  
First Charge Pump Capacitor (C )  
1
+
Negative connection for the charge pump capacitor  
(flying capacitor) used to transfer charge from the input  
source to a second charge pump capacitor. This  
charge pump capacitor is used to double the input volt-  
age and store the charge in the second charge pump  
capacitor.  
It is recommended that a low ESR (equivalent series  
resistance) capacitor be used. Additionally, larger  
values will lower the output resistance.  
3.8  
Positive Output Voltage (V  
)
OUT  
Positive connection for the positive charge pump out-  
put capacitor. The positive charge pump output capac-  
itor supplies the output load during the first, second and  
third phases of the switching cycle. During the fourth  
phase of the switching cycle, charge is restored to the  
positive charge pump output capacitor. The positive  
output voltage magnitude is approximately twice the  
input voltage.  
It is recommended that a low ESR (equivalent series  
resistance) capacitor be used. Additionally, larger  
values will lower the output ripple.  
3.2  
Second Charge Pump Capacitor  
+
(C )  
2
Positive connection for the second charge pump  
capacitor (flying capacitor) used to transfer charge from  
the first charge pump capacitor to the output.  
It is recommended that a low ESR (equivalent series  
resistance) capacitor be used. Additionally, larger  
values will lower the output resistance.  
3.3  
Second Charge Pump Capacitor  
-
(C )  
2
Negative connection for the second charge pump  
capacitor (flying capacitor) used to transfer charge from  
the first charge pump capacitor to the output. Proper  
orientation is imperative when using a polarized  
capacitor.  
2002 Microchip Technology Inc.  
DS21486B-page 5  
 
TCM680  
+
4.3  
V
Charge Storage - Phase 3  
OUT  
4.0  
DETAILED DESCRIPTION  
The third phase of the clock is identical to the first  
-
4.1  
V
Charge Storage - Phase 1  
OUT  
phase – the charge stored in C produces -5V in the  
1
negative terminal of C , which is applied to the negative  
The positive side of capacitors C and C are con-  
1
1
2
1
+
+
side of capacitor C . Since C is at +5V, the voltage  
nected to +5V at the start of this phase. C is then  
2
2
potential across C is 10V.  
switched to ground and the charge in C is transferred  
2
1
+
to C . Since C is connected to +5V, the voltage  
2
2
potential across capacitor C is now 10V.  
VIN = +5V  
2
C4  
V
IN = +5V  
+
+
-
VOUT  
SW1  
C1  
SW3  
C2  
C4  
+
VOUT  
+
+
+
-
VOUT  
SW1  
C1  
SW3  
C2  
+
VOUT  
C3  
+
+
SW2  
SW4  
+
C3  
-5V  
SW2  
SW4  
-5V  
FIGURE 4-3:  
Charge Pump - Phase 3.  
Transfer - Phase 4  
+
4.4  
V
OUT  
FIGURE 4-1:  
Charge Pump - Phase 1.  
Transfer - Phase 2  
The fourth phase of the clock connects the negative  
-
4.2  
V
OUT  
terminal of C to ground and transfers the generated  
2
+
10V across C to C , the V  
storage capacitor.  
Phase two of the clock connects the negative terminal  
2
4
OUT  
-
Simultaneously, the positive side of capacitor C is  
of C to the V  
storage capacitor C and the positive  
3
1
2
OUT  
switched to +5V and the negative side is connected to  
ground, and the cycle begins again.  
terminal of C to ground, transferring the generated  
2
-10V to C . Simultaneously, the positive side of capac-  
3
itor C is switched to +5V and the negative side is  
1
connected to ground.  
+5V  
C4  
+5V  
+
+
VOUT  
SW1  
C1  
SW3  
+
C4  
-
+
VOUT  
+
+
VOUT  
C2  
SW1  
C1  
SW3  
C2  
+
-
C3  
VOUT  
+
+
SW2  
SW4  
+
C3  
-5V  
-10V  
SW2  
SW4  
-5V  
-10V  
FIGURE 4-4:  
Charge Pump - Phase 4.  
FIGURE 4-2:  
Charge Pump - Phase 2.  
DS21486B-page 6  
2002 Microchip Technology Inc.  
TCM680  
4.5  
Maximum Operating Limits  
The maximum input voltage rating must be observed.  
The TCM680 will clamp the input voltage to 5.8V.  
Exceeding this maximum threshold will cause exces-  
sive current to flow through the TCM680, potentially  
causing permanent damage to the device.  
4.6  
Switched Capacitor Converter  
Power Losses  
The overall power loss of a switched capacitor  
converter is affected by four factors:  
1. Losses from power consumed by the internal  
oscillator, switch drive, etc. These losses will  
vary with input voltage, temperature and  
oscillator frequency.  
2. Conduction losses in the non-ideal switches.  
3. Losses due to the non-ideal nature of the  
external capacitors.  
4. Losses that occur during charge transfer from  
the pump to reservoir capacitors when a voltage  
difference between the capacitors exists.  
The power loss for the TCM680 is calculated using the  
following equation:  
EQUATION  
2
-
2
+
P
= (I  
) X R  
+ (I  
) X R  
+ I X V  
OUT IN IN  
LOSS  
OUT+  
OUT  
OUT-  
2002 Microchip Technology Inc.  
DS21486B-page 7  
TCM680  
R
is typically 140at +25°C with V = +5V and C  
IN 1  
2
SW  
5.0  
5.1  
APPLICATIONS INFORMATION  
OUT  
and C as 4.7 µF low ESR capacitors. The fixed term  
(32R ) is about 130. It can easily be seen that  
Voltage Multiplication and  
Inversion  
increasing or decreasing values of C and C will affect  
1
2
efficiency by changing R  
. However, be careful  
OUT  
The TCM680 performs voltage multiplication and inver-  
sion simultaneously, providing positive and negative  
outputs (Figure 5-1). The magnitude of both outputs is,  
approximately, twice the input voltage. Unlike other  
switched capacitor converters, the TCM680 requires  
only four external capacitors to provide both functions  
simultaneously.  
about ESR. This term can quickly become dominant  
with large electrolytic capacitors. Table 5-1 shows  
R
for various values of C and C (assume 0.5Ω  
1 2  
OUT  
ESR). C and C must be rated at 6 VDC or greater  
1
4
while C and C must be rated at 12 VDC or greater.  
2
3
Output voltage ripple is affected by C and C .  
3
4
Typically, the larger the value of C and C , the less the  
3
4
ripple for a given load current. The formula for  
+
V
is given below:  
RIPPLE(p-p)  
C1  
22 µF  
+
+
8
7
6
5
+
1
2
-
VOUT  
VOUT  
C1  
C2  
EQUATION  
V
V
+
+
+
C4  
C1  
+
+
+
= {1/[2(f  
/3) x C4] + 2(ESR )} (I  
)
22 µF  
RIPPLE(p-p)  
PUMP  
C4  
OUT  
OUT  
C2  
TCM680  
-
3
4
22 µF  
VIN  
VIN  
GND  
C2  
= {1/[2(f  
/3) x C3] + 2(ESR )} (I  
)
RIPPLE(p-p)  
PUMP  
C3  
-
VOUT GND  
For a 10 µF (0.5ESR) capacitor for C , C ,  
3
4
C3  
f
= 21 kHz and I  
= 10 mA, the peak-to-peak  
PUMP  
OUT  
22 µF  
ripple voltage at the output will be less than 100 mV. In  
most applications (I 10 mA), 10-20 µF output  
-
VOUT  
OUT  
capacitors and 1-5 µF pump capacitors will suffice.  
FIGURE 5-1:  
Positive and Negative  
Table 5-2 shows V for different values of C and  
RIPPLE  
3
Converter.  
C (assume 1 ESR).  
4
5.2  
Capacitor Selection  
TABLE 5-1:  
OUTPUT RESISTANCE  
The TCM680 requires only 4 external capacitors for  
operation, which can be inexpensive, polarized alumi-  
num electrolytic types. For the circuit in Figure 5-1, the  
output characteristics are largely determined by the  
external capacitors. An expression for R  
derived as shown below:  
VS. C , C  
1
2
R
+
-
C , C (µF)  
, R  
()  
OUT  
1
2
OUT  
0.1  
0.47  
1
3.3  
4.7  
10  
1089  
339  
232  
165  
157  
146  
141  
137  
can be  
OUT  
EQUATION  
ROUT+ = 4(RSW1 + RSW2 + ESRC1 + RSW3 + RSW4 + ESRC2  
)
+4(RSW1 + RSW2 + ESRC1 + RSW3 + RSW4 + ESRC2  
+1/(fPUMP x C1) + 1/(fPUMP x C2) + ESRC4  
)
)
22  
100  
ROUT = 4(RSW1 + RSW2 + ESRC1 + RSW3 + RSW4 + ESRC2  
)
+4(RSW1 + RSW2 + ESRC1 + RSW3 + RSW4 + ESRC2  
+1/(fPUMP x C1) + 1/(fPUMP x C2) + ESRC3  
TABLE 5-2:  
V
PEAK-TO-PEAK  
RIPPLE  
VS. C , C (I  
10 mA)  
3
4
OUT  
+
-
C , C (µF)  
V
,V  
(mV)  
3
4
0.47  
1
RIPPLE(p-p)  
RIPPLE(p-p)  
Assuming all switch resistances are approximately  
equal:  
1540  
734  
236  
172  
91  
EQUATION  
3.3  
4.7  
10  
22  
100  
ROUT+ = 32RSW + 8ESRC1 + 8ESRC2 + ESRC4  
+1/(fPUMP x C1) + 1/(fPUMP x C2)  
ROUT= 32RSW + 8ESRC1 + 8ESRC2 + ESRC3  
+1/(fPUMP x C1) + 1/(fPUMP x C2)  
52  
27  
DS21486B-page 8  
2002 Microchip Technology Inc.  
 
 
 
TCM680  
5.3  
Paralleling Devices  
5.4  
Output Voltage Regulation  
-
+
To reduce the value of R  
and R  
, multiple  
The outputs of the TCM680 can be regulated to provide  
+5V from a 3V input source (Figure 5-3). The TCM680  
performs voltage multiplication and inversion produc-  
ing output voltages of, approximately, +6V. The  
TCM680 outputs are regulated to +5V with the linear  
regulators TC55 and TC59. The TC54 is a voltage  
detector providing an indication that the input source is  
low and that the outputs may fall out of regulation. The  
input source to the TCM680 can vary from 2.8V to 5.5V  
without adversely affecting the output regulation mak-  
ing this application well suited for use with single cell  
Li-Ion batteries or three alkaline or nickel based  
batteries connected in series.  
OUT  
OUT  
TCM680 voltage converters can be connected in paral-  
lel (Figure 5-2). The output resistance of both outputs  
will be reduced, approximately, by a factor of n, where  
n is the number of devices connected in parallel.  
EQUATION  
-
-
R
= R  
(of TCM680)  
OUT  
OUT  
n (number of devices)  
EQUATION  
+
+
R
= R  
(of TCM680)  
OUT  
OUT  
n (number of devices)  
Each device requires its own pump capacitors, but all  
devices may share the same reservoir capacitors. To  
preserve ripple performance, the value of the reservoir  
capacitors should be scaled according to the number of  
devices connected in parallel.  
V
IN  
22 µF  
+
+
-
+
V
V
IN  
C
C
IN  
C
C
1
1
1
1
+
+
-
+
V
OUT  
Positive  
Supply  
10 µF  
+
-
10 µF  
V
OUT  
-
TCM680  
TCM680  
+
+
C
C
C
C
2
2
2
+
+
Negative  
Supply  
V
10 µF  
10 µF  
OUT  
-
V
OUT  
-
GND  
2
GND  
+
22 µF  
GND  
FIGURE 5-2:  
Paralleling TCM680 for Lower Output Source Resistance.  
2002 Microchip Technology Inc.  
DS21486B-page 9  
 
TCM680  
+
+
COUT  
22 µF  
TC55RP5002EXX  
VIN  
VOUT  
+5 Supply  
Ground  
+
-
VIN  
C1  
+6V  
+
+
10 µF  
1 µF  
1 µF  
VSS  
C1  
C2  
+
TCM680  
3V  
+
+
+
VSS  
10 µF  
-6V  
-
-5 Supply  
-
VOUT  
VIN  
VOUT  
C2  
GND  
-
+
COUT  
22 µF  
TC595002ECB  
TC54VC2702Exx  
VOUT  
VIN  
LOW BATTERY  
VSS  
FIGURE 5-3:  
Split Supply Derived from 3V Battery.  
DS21486B-page 10  
2002 Microchip Technology Inc.  
TCM680  
6.0  
6.1  
PACKAGING INFORMATION  
Packaging Marking Information  
8-Lead PDIP (300 mil)  
Example:  
XXXXXXXX  
XXXXXNNN  
TCM680  
CPA123  
YYWW  
0231  
8-Lead SOIC (150 mil)  
Example:  
TCM680  
XXXXXXXX  
XXXXYYWW  
COA0231  
NNN  
123  
Legend: XX...X Customer specific information*  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard OTP marking consists of Microchip part number, year code, week code, and traceability code.  
2002 Microchip Technology Inc.  
DS21486B-page 11  
TCM680  
8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
β
B1  
B
p
eB  
Units  
Dimension Limits  
INCHES*  
NOM  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
A
A2  
A1  
E
E1  
D
L
c
B1  
B
Number of Pins  
Pitch  
Top to Seating Plane  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
8
.100  
.155  
.130  
2.54  
3.94  
3.30  
.140  
.170  
.145  
3.56  
2.92  
4.32  
3.68  
.115  
.015  
.300  
.240  
.360  
.125  
.008  
.045  
.014  
.310  
5
0.38  
7.62  
6.10  
9.14  
3.18  
0.20  
1.14  
0.36  
7.87  
5
.313  
.250  
.373  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.385  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
9.46  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
9.78  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-018  
DS21486B-page 12  
2002 Microchip Technology Inc.  
TCM680  
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
A
A2  
A1  
E
E1  
D
Number of Pins  
Pitch  
Overall Height  
8
.050  
.061  
.056  
.007  
.237  
.154  
.193  
.015  
.025  
4
1.27  
.053  
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
6.02  
3.91  
4.90  
0.38  
0.62  
4
1.75  
1.55  
0.25  
6.20  
3.99  
5.00  
0.51  
0.76  
8
Molded Package Thickness  
Standoff  
.052  
.004  
.228  
.146  
.189  
.010  
.019  
0
.061  
.010  
.244  
.157  
.197  
.020  
.030  
8
§
0.10  
5.79  
3.71  
4.80  
0.25  
0.48  
0
Overall Width  
Molded Package Width  
Overall Length  
Chamfer Distance  
Foot Length  
Foot Angle  
h
L
φ
c
Lead Thickness  
Lead Width  
.008  
.013  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.33  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-057  
2002 Microchip Technology Inc.  
DS21486B-page 13  
TCM680  
NOTES:  
DS21486B-page 14  
2002 Microchip Technology Inc.  
TCM680  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
Examples:  
Temperature Package  
Range  
a)  
b)  
c)  
d)  
e)  
f)  
TCM680COA: Charge Pump Converter,  
SOIC pkg, 0°C to +70°C.  
TCM680COATR: Charge Pump Converter,  
SOIC pkg, 0°C to +70°C, Tape and Reel.  
TCM680CPA: Charge Pump Converter,  
PDIP pkg, 0°C to +70°C.  
TCM680EOA: Charge Pump Converter,  
SOIC pkg, -40°C to +85°C.  
TCM680EOATR: Charge Pump Converter,  
SOIC pkg, -40°C to +85°C, Tape and Reel.  
TCM680EPA: Charge Pump Converter,  
PDIP pkg, -40°C to +85°C.  
Device:  
TCM680: Charge Pump Converter  
Temperature Range:  
Package:  
C
E
=
=
0°C to +70°C  
-40°C to +85°C  
PA  
=
Plastic DIP (300 mil Body), 8-lead  
Plastic SOIC, (150 mil Body), 8-lead  
Plastic SOIC, (150 mil Body), 8-lead  
(Tape and Reel)  
OA  
=
=
OATR  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2002 Microchip Technology Inc.  
DS21486B-page15  
TCM680  
NOTES:  
DS21486B-page 16  
2002 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-  
edge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical com-  
ponents in life support systems is not authorized except with  
express written approval by Microchip. No licenses are con-  
veyed, implicitly or otherwise, under any intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, KEELOQ,  
MPLAB, PIC, PICmicro, PICSTART and PRO MATE are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL  
and The Embedded Control Solutions Company are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense,  
FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP,  
ICEPIC, microPort, Migratable Memory, MPASM, MPLIB,  
MPLINK, MPSIM, PICC, PICDEM, PICDEM.net, rfPIC, Select  
Mode and Total Endurance are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2002, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
®
PICmicro 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchip’s quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
2002 Microchip Technology Inc.  
DS21486B - page 17  
M
WORLDWIDE SALES AND SERVICE  
Japan  
AMERICAS  
ASIA/PACIFIC  
Microchip Technology Japan K.K.  
Benex S-1 6F  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Korea  
China - Beijing  
Rocky Mountain  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-4338  
Bei Hai Wan Tai Bldg.  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Atlanta  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
Singapore  
3780 Mansell Road, Suite 130  
Alpharetta, GA 30022  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
Tel: 770-640-0034 Fax: 770-640-0307  
China - Chengdu  
#07-02 Prime Centre  
Boston  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401-2402, 24th Floor,  
Singapore, 188980  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Taiwan  
Ming Xing Financial Tower  
Microchip Technology (Barbados) Inc.,  
Taiwan Branch  
No. 88 TIDU Street  
Chicago  
Chengdu 610016, China  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
11F-3, No. 207  
Tel: 86-28-86766200 Fax: 86-28-86766599  
Tung Hua North Road  
Taipei, 105, Taiwan  
China - Fuzhou  
Tel: 630-285-0071 Fax: 630-285-0075  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Dallas  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
EUROPE  
Austria  
No. 71 Wusi Road  
Tel: 972-818-7423 Fax: 972-818-2924  
Fuzhou 350001, China  
Microchip Technology Austria GmbH  
Durisolstrasse 2  
Detroit  
Tel: 86-591-7503506 Fax: 86-591-7503521  
Tri-Atria Office Building  
China - Hong Kong SAR  
A-4600 Wels  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Austria  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
Denmark  
Kwai Fong, N.T., Hong Kong  
Kokomo  
Tel: 852-2401-1200 Fax: 852-2401-3431  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
China - Shanghai  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Los Angeles  
Room 701, Bldg. B  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Far East International Plaza  
No. 317 Xian Xia Road  
France  
Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Tel: 949-263-1888 Fax: 949-263-1338  
Shanghai, 200051  
San Jose  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
China - Shenzhen  
Batiment A - ler Etage  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Tel: 408-436-7950 Fax: 408-436-7955  
Rm. 1812, 18/F, Building A, United Plaza  
No. 5022 Binhe Road, Futian District  
Shenzhen 518033, China  
Germany  
Toronto  
Microchip Technology GmbH  
Steinheilstrasse 10  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
Tel: 86-755-82901380 Fax: 86-755-82966626  
D-85737 Ismaning, Germany  
China - Qingdao  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Rm. B503, Fullhope Plaza,  
Italy  
No. 12 Hong Kong Central Rd.  
Qingdao 266071, China  
Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Tel: 86-532-5027355 Fax: 86-532-5027205  
India  
Milan, Italy  
Microchip Technology Inc.  
India Liaison Office  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
Divyasree Chambers  
United Kingdom  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Microchip Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
12/05/02  
DS21486B-page 18  
2002 Microchip Technology Inc.  

相关型号:

TCM78808FN

8 CHANNEL(S), 19.2Kbps, SERIAL COMM CONTROLLER, PQCC68
TI

TCM78808FNR

8 CHANNEL(S), 19.2Kbps, SERIAL COMM CONTROLLER, PQCC68
TI

TCM78808HA-00

8 CHANNEL(S), SERIAL COMM CONTROLLER, CQFP68, 1.27 MM PITCH, HERMETIC SEALED, QFP-68
TI

TCM78808HB

8 CHANNEL(S), 19.2Kbps, SERIAL COMM CONTROLLER, CQFP68, 1.27 MM PITCH, HERMETIC SEALED, QFP-68
TI

TCM78808HB-00

8 CHANNEL(S), SERIAL COMM CONTROLLER, CQFP68, 1.27 MM PITCH, HERMETIC SEALED, QFP-68
TI

TCM8-1

RF Transformer
MINI

TCM8-1+

RF Transformer
MINI

TCM8000

CELLULAR TELEPHONE AUDIO PROCESSOR
TI

TCM8000FN

Cellular Telephone Audio Processor 44-PLCC
TI

TCM8000FR

TELECOM, CELLULAR, BASEBAND CIRCUIT, PQFP44, TQFP-44
TI

TCM8002

DATA PROCESSOR FOR CELLULAR TELEPHONE
TI

TCM8002FR

DATA PROCESSOR FOR CELLULAR TELEPHONE
TI