TC835CBU [MICROCHIP]

Personal Computer Data Acquisition A/D Converter; 个人计算机数据采集A / D转换器
TC835CBU
型号: TC835CBU
厂家: MICROCHIP    MICROCHIP
描述:

Personal Computer Data Acquisition A/D Converter
个人计算机数据采集A / D转换器

转换器 计算机
文件: 总24页 (文件大小:543K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC835  
Personal Computer Data Acquisition A/D Converter  
Features  
General Description  
• Upgrade of Pin-Compatible TC7135, ICL7135  
• 200kHz Operation  
The TC835 is a low power, 4-1/2 digit (0.005%  
resolution), BCD analog to digital converter (ADC) that  
has been characterized for 200kHz clock rate opera-  
tion. The five conversions per second rate is nearly  
twice as fast as the ICL7135 or TC7135. The TC835,  
like the TC7135, does not use the external diode resis-  
tor rollover error compensation circuits required by the  
ICL7135.  
• Single 5V Operation With TC7660  
• Multiplexed BCD Data Output  
• UART and Microprocessor Interface  
• Control Outputs for Auto-Ranging  
• Input Sensitivity: 100µV  
• No Sample and Hold Required  
The multiplexed BCD data output is perfect for interfac-  
ing to personal computers. The low cost, greater than  
14-bit high-resolution and 100µV sensitivity makes the  
TC835 exceptionally cost-effective.  
Applications  
• Personal Computer Data Acquisition  
• Scales, Panel Meters, Process Controls  
• HP-IL Bus Instrumentation  
Microprocessor-based data acquisition systems are  
supported by the BUSY and STROBE outputs, along  
with the RUN/HOLD input of the TC835. The  
OVERRANGE, UNDERRANGE, BUSY and RUN/  
HOLD control functions, plus multiplexed BCD data  
outputs, make the TC835 the ideal converter for µP-  
based scales, measurement systems and intelligent  
panel meters.  
Device Selection Table  
Part Number  
Package  
Temperature Range  
TC835CBU  
64-PinPQFP  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
TC835CKW 44-PinPQFP  
TC835CPI 28-PinPDIP  
The TC835 interfaces with full function LCD and LED  
display decoder/drivers. The UNDERRANGE and  
OVERRANGE outputs may be used to implement an  
auto-ranging scheme or special display functions.  
Note: Tape and Reel available for 44-Pin PQFP  
package.  
2002 Microchip Technology Inc.  
DS21478B-page 1  
TC835  
Package Type  
28-Pin PDIP  
44-Pin PQFP  
UNDERRANGE  
28  
V-  
1
2
27 OVERRANGE  
REF IN  
ANALOG  
26  
25  
24  
23  
22  
21  
20  
19  
STROBE  
RUN/HOLD  
DIGTAL GND  
POLARITY  
CLOCK IN  
BUSY  
3
COM  
44 43 42 41 40 39 38 37 36 35 34  
INT OUT  
AZ IN  
4
NC  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
1
2
3
4
NC  
5
NC  
INT OUT  
AZ IN  
BUFF OUT  
6
RUN/HOLD  
DGND  
POLARITY  
CLK IN  
BUSY  
D1 (LSD)  
D2  
C
-
7
REF  
TC835CPI  
BUFF OUT  
REF CAP–  
C
REF  
+
8
9
D1 (LSD)  
D2  
5
6
–INPUT  
+INPUT  
10  
11  
12  
13  
14  
REF CAP+  
–INPUT  
+INPUT  
V+  
TC835CKW  
18  
17  
16  
D3  
7
V+  
(MSD) D5  
(LSB) B1  
B2  
D4  
8
B8 (MSD)  
B4  
9
15  
NC  
10  
11  
NC  
NC  
23 NC  
19 20 21 22  
12 13 14 15 16 17 18  
64-Pin PQFP  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
NC  
1
2
48 NC  
47  
NC  
NC  
NC  
NC  
NC  
NC  
3
46  
NC  
4
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
D3  
D4  
B3  
5
6
7
B4  
OVERRANGE  
UNDERRANGE  
SUB  
8
B2  
TC835CBU  
9
SUB  
B1  
10  
11  
12  
13  
14  
15  
16  
V–  
REF IN  
D5  
NC  
NC  
NC  
ANALOG COM  
NC  
NC  
NC  
NC  
NC  
NC  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
1. NC = No internal connection.  
NOTES:  
2. Pins 9, 25, 40 and 56 are connected to the die substrate. The potential at these pins is approximately V+.  
No external connections should be made.  
DS21478B-page 2  
2002 Microchip Technology Inc.  
TC835  
Typical Application  
Address Bus  
Control  
+
5V  
Data Bus  
V+ REF CAP  
BUF  
-15V  
+15V  
HCTS157  
AZ  
POL  
PA0  
PA1  
PA2  
1Y  
2Y  
3Y  
1B  
2B  
3B  
S
OR  
INT  
UR  
D5  
B8  
B4  
B2  
DG529  
Channel 1  
INPUT+  
D
1A  
2A  
3A  
A
B
Channel 2  
Channel 3  
Channel 4  
TC835  
R 6522 P  
D
PA3  
PA4  
PA5  
PA6  
PA7  
CA1  
CA2  
B1  
WR  
A A EN  
D1  
V
R
REF Voltage  
D2  
1 0  
Input  
D3  
Differential  
Multiplexer  
D4  
Analog  
Common  
STB  
R/H  
F
IN DGND  
F
IN  
-
5V  
PB0  
PB1 PB2 PB3  
Channel Selection  
2002 Microchip Technology Inc.  
DS21478B-page 3  
TC835  
*Stresses above those listed under "Absolute Maximum Rat-  
ings" may cause permanent damage to the device. These are  
stress ratings only and functional operation of the device at  
these or any other conditions above those indicated in the  
operation sections of the specifications is not implied. Expo-  
sure to Absolute Maximum Rating conditions for extended  
periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings*  
Positive Supply Voltage......................................... +6V  
Negative Supply Voltage ........................................ -9V  
Analog Input Voltage (Pin 9 or 10) ... V+ to V– (Note 2)  
Reference Input Voltage (Pin 2) ..................... V+ to V–  
+
Clock Input Voltage ........................................ 0V to V  
Operating Temperature Range................0°C to +70°C  
Storage Temperature Range ............. -65°C to +150°C  
Package Power Dissipation (T 70°C)  
A
28-Pin Plastic DIP ............................ 1.14Ω  
44-Pin PQFP .................................... 1.00Ω  
64-Pin PQFP .................................... 1.14Ω  
TC835 ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: TA = +25°C, FCLOCK = 200kHz, V+ = +5V, V- = -5V, unless otherwise specified.  
Symbol  
Analog  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
Display Reading with Zero Volt Input  
Zero Reading Temperature Coefficient  
-0.0000 ±0.0000 +0.0000 Display Reading Note 3, Note 4  
TCZ  
0.5  
2
5
µV/°C  
VIN = 0V, (Note 5)  
TCFS Full-Scale Temperature Coefficient  
ppm/°C  
VIN = 2V;  
(Note 5, Note 6  
NL  
Nonlinearity Error  
0.5  
1
Count  
LSB  
Note 7  
Note 7  
DNL  
Differential Linearity Error  
0.01  
Display Reading in Ratiometric Operation  
+0.9996 +0.9998 +1.0000 Display Reading VIN = VREF, (Note 3)  
±FSE ± Full Scale Symmetry Error (Rollover Error)  
0.5  
1
1
Count  
pA  
–VIN = +VIN, (Note 8)  
IIN  
eN  
Input Leakage Current  
Noise  
10  
Note 4  
15  
µVP-P  
Peak to Peak Value not  
Exceeded 95% of Time  
Digital  
IIL  
IIH  
Input Low Current  
Input High Current  
Output Low Voltage  
10  
0.08  
0.2  
100  
10  
0.4  
5
µA  
µA  
V
VIN = 0V  
VIN = +5V  
IOL = 1.6mA  
IOH = 1mA  
IOH = 10µA  
VOL  
VOH  
Output High Voltage;  
B1, B2, B4, B8, D1 –D5  
Busy, Polarity, Overrange,  
Underrange, Strobe  
2.4  
4.9  
4.4  
V
4.99  
5
V
fCLK  
Clock Frequency  
0
200  
1200  
kHz  
Note 10  
Note 1: Functional operation is not implied.  
2: Limit input current to under 100 µA if input voltages exceed supply voltage.  
3: Full scale voltage = 2V.  
4: VIN = 0V.  
5: 0°C TA +70°C.  
6: External reference temperature coefficient less than 0.01ppm/°C.  
7: -2V VIN +2V. Error of reading from best fit straight line.  
8: |VIN| = 1.9959.  
9: Test circuit shown in Figure 1-1.  
10: Specification related to clock frequency range over which the TC835 correctly performs its various functions. Increased  
errors result at higher operating frequencies.  
DS21478B-page 4  
2002 Microchip Technology Inc.  
TC835  
TC835 ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: TA = +25°C, FCLOCK = 200kHz, V+ = +5V, V- = -5V, unless otherwise specified.  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions  
Power Supply  
V+  
V–  
I+  
Positive Supply Voltage  
Negative Supply Voltage  
4
5
-5  
6
-8  
3
V
-3  
V
Positive Supply Current  
Negative Supply Current  
Power Dissipation  
1
mA  
mA  
mΩ  
fCLK = 0Hz  
fCLK = 0Hz  
fCLK = 0Hz  
I–  
0.7  
8.5  
3
PD  
30  
Note 1: Functional operation is not implied.  
2: Limit input current to under 100 µA if input voltages exceed supply voltage.  
3: Full scale voltage = 2V.  
4: VIN = 0V.  
5: 0°C TA +70°C.  
6: External reference temperature coefficient less than 0.01ppm/°C.  
7: -2V VIN +2V. Error of reading from best fit straight line.  
8: |VIN| = 1.9959.  
9: Test circuit shown in Figure 1-1.  
10: Specification related to clock frequency range over which the TC835 correctly performs its various functions. Increased  
errors result at higher operating frequencies.  
2002 Microchip Technology Inc.  
DS21478B-page 5  
TC835  
2.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 2-1.  
TABLE 2-1:  
PIN FUNCTION TABLE  
Pin Number  
28-Pin PDIP  
Symbol  
Description  
1
2
V-  
Negative power supply input.  
External reference input.  
REF IN  
3
ANALOG COMMON Reference point for REF IN.  
4
INT OUT  
AZ IN  
Integrator output. Integrator capacitor connection.  
Auto zero input. Auto zero capacitor connection.  
Analog input buffer output. Integrator resistor connection.  
Reference capacitor input. Reference capacitor negative connection.  
Reference capacitor input. Reference capacitor positive connection.  
Analog input. Analog input negative connection.  
Analog input. Analog input positive connection.  
Positive power supply input.  
5
6
BUFF OUT  
7
CREF  
CREF  
-
8
+
9
-INPUT  
+INPUT  
V+  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
D5  
Digit drive output. Most Significant Digit (MSD)  
Binary Coded Decimal (BCD) output. Least Significant Bit (LSB)  
BCD output.  
B1  
B2  
B4  
BCD output.  
B8  
BCD output. Most Significant Bit (MSB)  
Digit drive output.  
D4  
D3  
Digit drive output.  
D2  
Digit drive output.  
D1  
Digit drive output. Least Significant Digit (LSD)  
BUSY  
Busy output. At the beginning of the signal-integration phase, BUSY goes High and  
remains High until the first clock pulse after the integrator zero crossing.  
22  
23  
CLOCK IN  
POLARITY  
Clock input. Conversion clock connection.  
Polarity output. A positive input is indicated by a logic High output. The polarity output is  
valid at the beginning of the reference integrate phase and remains valid until determined  
during the next conversion.  
24  
25  
DGND  
Digital logic reference input.  
RUN/HOLD  
Run / Hold input. When at a logic High, conversions are performed continuously. A logic  
Low holds the current data as long as the Low condition exists.  
26  
27  
STROBE  
Strobe output. The STROBE output pulses low in the center of the digit drive outputs.  
OVERRANGE  
Over range output. A logic High indicates that the analog input exceeds the full scale input  
range.  
28  
UNDERRANGE  
Under range output. A logic High indicates that the analog input is less than 9% of the full  
scale input range.  
DS21478B-page 6  
2002 Microchip Technology Inc.  
TC835  
FIGURE 3-1:  
BASIC DUAL SLOPE  
CONVERTER  
3.0  
DETAILED DESCRIPTION  
(All Pin Designations Refer to 28-Pin DIP)  
Analog Input  
Signal  
Integrator  
-
3.1  
Dual Slope Conversion Principles  
Comparator  
-
The TC835 is a dual slope, integrating analog to digital  
converter. An understanding of the dual slope conver-  
sion technique will aid in following the detailed TC835  
operational theory.  
+
+
Switch  
Drive  
Clock  
Phase  
The conventional dual slope converter measurement  
cycle has two distinct phases:  
REF  
Control  
Logic  
Control  
Voltage  
Polarity Control  
1. Input signal integration  
2. Reference voltage integration (de-integration)  
Counter  
Display  
The input signal being converted is integrated for a fixed  
time period, with time being measured by counting clock  
pulses. An opposite polarity constant reference voltage  
is then integrated until the integrator output voltage  
returns to zero. The reference integration time is directly  
proportional to the input signal.  
V
IN  
V
IN  
V  
REF  
1/2 V  
REF  
Fixed Variable  
Signal Reference  
Integrate Integrate  
Time Time  
In  
a simple dual slope converter, a complete  
conversion requires the integrator output to "ramp-up"  
and "ramp-down."  
3.2  
TC835 Operational Theory  
The TC835 incorporates a system zero phase and  
integrator output voltage zero phase to the normal two  
phase dual slope measurement cycle. Reduced sys-  
tem errors, fewer calibration steps and a shorter over-  
range recovery time result.  
A simple mathematical equation relates the input sig-  
nal, reference voltage and integration time:  
EQUATION 3-1:  
T
V
T
1
INT  
REF DEINT  
R
The TC835 measurement cycle contains four phases:  
V
(T)DT =  
IN  
R
C
C
0
INT INT  
INT INT  
1. System zero  
where:  
2. Analog input signal integration  
3. Reference voltage integration  
4. Integrator output zero  
V
= Reference voltage  
REF  
T
T
= Signal integration time (fixed)  
INT  
Internal analog gate status for each phase is shown in  
Table 3-1.  
= Reference voltage integration time  
(variable).  
DEINT  
For a constant V  
:
3.2.1  
SYSTEM ZERO  
IN  
During this phase, errors due to buffer, integrator and  
comparator offset voltages are compensated for by  
EQUATION 3-2:  
V
T
REF DEINT  
charging C (auto zero capacitor) with a compensat-  
AZ  
V
=
IN  
t
ing error voltage. With a zero input voltage the  
integrator output will remain at zero.  
INT  
The dual slope converter accuracy is unrelated to the  
integrating resistor and capacitor values, as long as  
they are stable during a measurement cycle. An  
inherent benefit is noise immunity. Noise spikes are  
integrated, or averaged, to zero during the integration  
periods. Integrating ADCs are immune to the large  
conversion errors that plague successive approxima-  
tion converters in high noise environments (see  
Figure 3-1).  
The external input signal is disconnected from the inter-  
nal circuitry by opening the two SW switches. The  
I
internal input points connect to ANALOG COMMON.  
The reference capacitor charges to the reference  
voltage potential through SW . A feedback loop,  
R
closed around the integrator and comparator, charges  
the C  
capacitor with a voltage to compensate for  
AZ  
buffer amplifier, integrator and comparator offset  
voltages (see Figure 3-2).  
2002 Microchip Technology Inc.  
DS21478B-page 7  
TC835  
FIGURE 3-2:  
SYSTEM ZERO PHASE  
FIGURE 3-4:  
REFERENCE VOLTAGE  
INTEGRATION CYCLE  
Analog  
Input Buffer  
SW  
I
Analog  
C
R
INT  
INT  
+
+IN  
SW  
I
Input Buffer  
C
R
INT  
INT  
+
+IN  
-
SW - SW  
RI  
+
RI  
C
SZ  
-
SW - SW  
RI  
+
RI  
C
SW  
IZ  
SW  
Z
SZ  
-
C
Comparator  
SW  
REF  
R
SW  
IZ  
SW  
Z
+
REF  
IN  
-
+
Comparator  
C
SW  
R
REF  
+
-
REF  
IN  
To Digital  
Section  
+
Integrator  
SW  
Z
-
SW  
Z
To Digital  
Section  
Integrator  
SW + SW  
RI RI  
-
SW  
SW  
Z
Z
Analog  
Common  
SW + SW  
RI RI  
-
Analog  
Common  
SW  
1
SW  
I
Switch Open  
SW  
1
IN  
Switch Closed  
SW  
I
Switch Open  
IN  
Switch Closed  
3.2.2  
ANALOG INPUT SIGNAL  
INTEGRATION  
3.2.4  
INTEGRATOR OUTPUT ZERO  
The TC835 integrates the differential voltage between  
the +INPUT and -INPUT pins. The differential voltage  
must be within the device Common mode range (-1V  
from either supply rail, typically). The input signal polarity  
is determined at the end of this phase (see Figure 3-3).  
This phase guarantees the integrator output is at 0V  
when the system zero phase is entered and that the  
true system offset voltages are compensated for. This  
phase normally lasts 100 to 200 clock cycles. If an  
overrange condition exists, the phase is extended to  
6200 clock cycles (see Figure 3-5).  
FIGURE 3-3:  
INPUT SIGNAL  
FIGURE 3-5:  
INTEGRATOR OUTPUT  
ZERO PHASE  
INTEGRATION PHASE  
Analog  
Input Buffer  
SW  
I
C
R
INT  
INT  
+
+IN  
Analog  
SW  
I
Input Buffer  
+
-
R
INT  
C
INT  
SW - SW  
RI RI  
+
+
IN  
C
SZ  
-
SW - SW  
RI RI  
+
SW  
SW  
Z
IZ  
C
SZ  
-
C
Comparator  
REF  
SW  
R
+
REF  
IN  
SW  
Z
SW  
IZ  
+
-
C
SW  
SW  
REF  
Comparator  
-
R
To  
+
-
REF  
IN  
Integrator  
Digital  
Section  
+
SW  
Z
SW  
Z
To Digital  
Section  
Integrator  
SW + SW  
RI RI  
-
SW  
Z
Analog  
Common  
Z
SW + SW  
RI RI  
-
SW  
1
Analog  
Common  
SW  
I
Switch Open  
Switch Closed  
IN  
SW  
1
SW  
I
Switch Open  
Switch Closed  
IN  
3.2.3  
REFERENCE VOLTAGE  
INTEGRATION  
The previously charged reference capacitor is con-  
nected with the proper polarity to ramp the integrator  
output back to zero (see Figure 3-4). The digital reading  
displayed is:  
[Differential Input]  
Reading = 10,000  
V
REF  
TABLE 3-1:  
INTERNAL ANALOG GATE STATUS  
Conversion Cycle Phase  
SWI  
SWRI  
+
SWRI  
-
SWZ  
Closed  
SWR  
SW1  
SWIZ  
Reference Figures  
System Zero  
Closed  
Closed  
Figure 3-2  
Figure 3-3  
Figure 3-4  
Figure 3-5  
Input Signal Integration  
Reference Voltage Integration  
Integrator Output Zero  
Closed  
Closed*  
Closed  
Closed  
Closed  
*Note:  
Assumes a positive polarity input signal. SWRI would be closed for a negative input signal.  
DS21478B-page 8  
2002 Microchip Technology Inc.  
TC835  
4.3  
Reference Voltage Input  
(REF IN (Pin 2))  
4.0  
ANALOG SECTION  
FUNCTIONAL DESCRIPTION  
The REF IN input must be a positive voltage with  
respect to ANALOG COMMON. A reference voltage  
circuit is shown in Figure 4-1.  
(In Reference to the 28-Pin Plastic Package)  
4.1  
Differential Inputs  
(+INPUT (Pin 10) and  
–INPUT (Pin 9))  
FIGURE 4-1:  
USING AN EXTERNAL  
REFERENCE  
The TC835 operates with differential voltages within  
the input amplifier Common mode range. The input  
amplifier Common mode range extends from 0.5V  
below the positive supply to 1V above the negative  
supply. Within this Common mode voltage range, an  
86dB Common mode rejection ratio is typical.  
V+  
V+  
10k  
MCP1525  
TC835  
2.5 V  
REF  
REF  
IN  
The integrator output also follows the Common mode  
voltage. The integrator output must not be allowed to  
saturate. An example of a worst case condition would  
be when a large positive Common mode voltage with a  
near full scale negative differential input voltage is  
applied. The negative input signal drives the integrator  
positive when most of its swing has been used up by  
the positive Common mode voltage. For these critical  
applications, the integrator swing can be reduced to  
less than the recommended 4V full scale swing, with  
the effect of reduced accuracy. The integrator output  
can swing within 0.3V of either supply without loss of  
linearity.  
10k  
1µF  
ANALOG  
COMMON  
Analog Ground  
4.2  
Analog Common Input (Pin 3)  
ANALOG COMMON is used as the -INPUT return dur-  
ing auto zero and de-integrate. If -INPUT is different  
from ANALOG COMMON, a Common mode voltage  
exists in the system. This signal is rejected by the  
excellent CMRR of the converter. In most applications,  
-INPUT will be set at a fixed, known voltage (power  
supply common, for instance). In this application,  
ANALOG COMMON should be tied to the same point,  
thus removing the common-mode voltage from the  
converter. The reference voltage is referenced to  
ANALOG COMMON.  
2002 Microchip Technology Inc.  
DS21478B-page 9  
TC835  
5.0  
DIGITAL SECTION  
FUNCTIONAL DESCRIPTION  
The major digital subsystems within the TC835 are  
illustrated in Figure 5-1, with timing relationships  
shown in Figure 5-2. The multiplexed BCD output data  
can be displayed on LCD or LED. The digital section is  
best described through a discussion of the control sig-  
nals and data outputs.  
FIGURE 5-1:  
DIGITAL SECTION FUNCTIONAL DIAGRAM  
Polarity  
D5  
MSB  
D4  
Digit  
D3  
Drive  
D2  
D1  
13 B1  
14 B2  
15 B4  
16 B8  
Signal  
LSB  
Data  
Multiplexer  
Output  
From  
Analog  
Section  
Latch  
Latch  
Latch  
Latch  
Latch  
Polarity  
FF  
Counters  
Zero  
Cross  
Detect  
Control Logic  
27  
24  
22  
Clock  
25  
RUN/  
28  
26  
21  
Busy  
DGND  
Overrange Underrange STROBE  
In  
HOLD  
DS21478B-page 10  
2002 Microchip Technology Inc.  
TC835  
FIGURE 5-2:  
TIMING DIAGRAMS FOR  
OUTPUTS  
5.2  
STROBE Output (Pin 26)  
During the measurement cycle, the STROBE control  
line is pulsed low five times. The five low pulses occur  
Integrator  
Output  
in the center of the digit drive signals (D , D , D , D )  
(see Figure 5-3).  
1
2
3
5
Signal  
Integrate  
10,000  
Counts  
(Fixed)  
System  
Zero  
Reference  
Integrate  
10,001  
Counts  
20,001  
D5 (MSD) goes high for 201 counts when the measure-  
ment cycles end. In the center of the D5 pulse, 101  
clock pulses after the end of the measurement cycle,  
the first STROBE occurs for one-half clock pulse. After  
the D5 digit strobe, D4 goes high for 200 clock pulses.  
The STROBE goes low 100 clock pulses after D4 goes  
high. This continues through the D1 digit drive pulse.  
Counts (Max)  
Full Measurement Cycle  
40,002 Counts  
Busy  
Overrange when  
Applicable  
Underrange when  
Applicable  
The digit drive signals will continue to permit display  
scanning. STROBE pulses are not repeated until a new  
measurement is completed. The digit drive signals will  
not continue if the previous signal resulted in an  
overrange condition.  
Expanded Scale Below  
Digit Scan  
D5  
D4  
D3  
D2  
The active low STROBE pulses aid BCD data transfer  
to UARTs, processors and external latches.  
D1  
100  
First D5 of System Zero and  
Reference Integrate One Count  
Longer  
*
Counts  
STROBE  
FIGURE 5-3:  
STROBE SIGNAL LOW  
FIVE TIMES PER  
CONVERSION  
Reference  
Integrate  
Signal  
Integrate  
Auto Zero  
*
Digit Scan  
D5  
D4  
D3  
D2  
D1  
for Overrange  
TC835  
Outputs  
*
Busy  
End of Conversion  
*
B1B8  
D3  
Data  
D2  
Data  
D1 (LSD)  
Data  
D5  
Data  
D5 (MSD)  
Data  
D4  
Data  
STROBE  
Note Absence of  
STROBE  
200  
Counts  
5.1  
RUN/HOLD Input (Pin 25)  
201  
Counts  
200  
D5  
D4  
D3  
Counts  
When left open, this pin assumes a logic "1" level. With  
a RUN/HOLD = 1, the TC835 performs conversions  
continuously, with a new measurement cycle beginning  
every 40,002 clock pulses.  
200  
Counts  
200  
Counts  
When RUN/HOLD changes to a logic "0," the measure-  
ment cycle in progress will be completed, and data held  
and displayed as long as the logic "0" condition exists.  
200  
Counts  
D2  
D1  
A positive pulse (>300nsec) at RUN/HOLD initiates a  
new measurement cycle. The measurement cycle in  
progress when RUN/HOLD initially assumed the logic  
"0" state must be completed before the positive pulse  
200  
Counts  
*Delay between Busy going Low and First STROBE pulse is  
dependent on Analog Input.  
can be recognized as  
command.  
a single conversion run  
5.3  
BUSY Output  
The new measurement cycle begins with a 10,001-  
count auto zero phase. At the end of this phase, the  
busy signal goes high.  
At the beginning of the signal integration phase, BUSY  
goes high and remains high until the first clock pulse  
after the integrator zero crossing. BUSY returns to the  
logic "0" state after the measurement cycle ends in an  
overrange condition. The internal display latches are  
loaded during the first clock pulse after BUSY and are  
latched at the clock pulse end. The BUSY signal does  
not go high at the beginning of the measurement cycle,  
which starts with the auto zero cycle.  
2002 Microchip Technology Inc.  
DS21478B-page 11  
TC835  
5.4  
OVERRANGE Output  
6.0  
6.1  
TYPICAL APPLICATIONS  
Component Value Selection  
If the input signal causes the reference voltage integra-  
tion time to exceed 20,000 clock pulses, the  
OVERRANGE output is set to a logic "1." The over-  
range output register is set when BUSY goes low, and  
is reset at the beginning of the next reference  
integration phase.  
The integrating resistor is determined by the full-scale  
input voltage and the output current of the buffer used  
to charge the integrator capacitor. Both the buffer  
amplifier and the integrator have a class A output  
stage, with 100µA of quiescent current. A 20µA drive  
current gives negligible linearity errors. Values of 5µA  
to 40µA give good results. The exact value of an  
integrating resistor for a 20µA current is easily calcu-  
lated.  
5.5  
UNDERRANGE Output  
If the output count is 9% of full scale or less (-1800  
counts), the underrange register bit is set at the end of  
BUSY. The bit is set low at the next signal integration  
phase.  
EQUATION 6-1:  
5.6  
POLARITY Output  
Full scale voltage  
R
=
INT  
20µA  
A positive input is registered by a logic "1" polarity  
signal. The POLARITY bit is valid at the beginning of  
Reference Integrate and remains valid until determined  
during the next conversion.  
6.1.1  
INTEGRATING CAPACITOR  
The product of integrating resistor and capacitor should  
be selected to give the maximum voltage swing that  
ensures the tolerance buildup will not saturate the inte-  
grator swing (approximately 0.3V from either supply).  
For ±5V supplies and ANALOG COMMON tied to sup-  
ply ground, a ±3.5V to ±4V full-scale integrator swing is  
adequate. A 0.10µF to 0.47µF is recommended. In  
The POLARITY bit is valid even for a zero reading.  
Signals less than the converter's LSB will have the sig-  
nal polarity determined correctly. This is useful in null  
applications.  
5.7  
Digit Drive Outputs  
general, the value of C  
is given by:  
INT  
Digit drive signals are positive going signals. The scan  
sequence is D5 to D1. All positive pulses are 200 clock  
pulses wide, except D5, which is 201 clock pulses wide.  
EQUATION 6-2:  
[10,000 x clock period] x I  
All five digits are scanned continuously, unless an over-  
range condition occurs. In an overrange condition, all  
digit drives are held low from the final STROBE pulse  
until the beginning of the next reference integrate  
phase. The scanning sequence is then repeated. This  
provides a blinking visual display indication.  
INT  
C
=
INT  
Integrator output voltage swing  
(10,000) (clock period) (20µA)  
=
Integrator output voltage swing  
A very important characteristic of the integrating capac-  
itor is that it has low dielectric absorption to prevent  
rollover or ratiometric errors. A good test for dielectric  
absorption would be to use the capacitor with the input  
tied to the reference. This ratiometric condition should  
read half scale 0.9999, with any deviation probably due  
to dielectric absorption. Polypropylene capacitors give  
undetectable errors at reasonable cost. Polystyrene  
and polycarbonate capacitors may also be used in less  
critical applications.  
5.8  
BCD Data Outputs  
The binary coded decimal (BCD) bits B , B , B , B are  
8
4
2
1
positive-true logic signals. The data bits become active  
simultaneously with the digit drive signals. In an  
overrange condition, all data bits are at a logic "0" state.  
6.1.2  
AUTO ZERO AND REFERENCE  
CAPACITORS  
The size of the auto zero capacitor has some influence  
on the noise of the system. A large capacitor reduces  
the noise. The reference capacitor should be large  
enough such that stray capacitance to ground from its  
nodes is negligible.  
The dielectric absorption of the reference capacitor and  
auto zero capacitor are only important at power-on or  
when the circuit is recovering from an overload.  
DS21478B-page 12  
2002 Microchip Technology Inc.  
TC835  
Smaller or cheaper capacitors can be used if accurate  
readings are not required for the first few seconds of  
recovery.  
The conversion rate is easily calculated:  
EQUATION 6-3:  
Clock Frequency (Hz)  
4000  
6.1.3  
REFERENCE VOLTAGE  
Reading 1/sec =  
The analog input required to generate a full scale out-  
put is V = 2V  
.
REF  
IN  
6.3  
Power Supplies and Grounds  
The stability of the reference voltage is a major factor in  
the overall absolute accuracy of the converter. For this  
reason, it is recommended that a high-quality reference  
be used where high-accuracy absolute measurements  
are being made.  
6.3.1  
POWER SUPPLIES  
The TC835 is designed to work from ±5V supplies. For  
single +5V operation, a TC7660 can provide a  
–5V supply.  
6.2  
Conversion Timing  
6.3.2  
GROUNDING  
6.2.1  
LINE FREQUENCY REJECTION  
Systems should use separate digital and analog  
ground systems to avoid loss of accuracy.  
A signal integration period at a multiple of the 60Hz line  
frequency will maximize 60Hz "line noise" rejection. A  
200kHz clock frequency will reject 60Hz and 400Hz  
noise. This corresponds to five readings per second  
(see Table 6-1 and Table 6-2).  
6.4  
High-Speed Operation  
The maximum conversion rate of most dual-slope A/D  
converters is limited by the frequency response of the  
comparator. The comparator in this circuit follows the  
integrator ramp with a 3µsec delay, and at a clock fre-  
quency of 200kHz (5µsec period), half of the first refer-  
ence integrate clock period is lost in delay. This means  
that the meter reading will change from 0 to 1 with a  
50µV input, 1 to 2 with 150µV, 2 to 3 at 250µV, etc. This  
transition at midpoint is considered desirable by most  
users, however, if the clock frequency is increased  
appreciably above 200kHz, the instrument will flash "1"  
on noise peaks even when the input is shorted.  
TABLE 6-1:  
CONVERSION RATE VS.  
CLOCK FREQUENCY  
Oscillator Frequency  
(kHz)  
Conversion Rate  
(Conv./Sec.)  
100  
120  
200  
300  
400  
800  
1200  
2.5  
3
5
7.5  
10  
20  
30  
For many dedicated applications where the input signal  
is always of one polarity, the delay of the comparator  
need not be a limitation. Since the nonlinearity and  
noise do not increase substantially with frequency,  
clock rates of up to ~1MHz may be used. For a fixed  
clock frequency, the extra count or counts caused by  
comparator delay will be a constant and can be  
subtracted out digitally.  
TABLE 6-2:  
LINE FREQUENCY VS.  
CLOCK FREQUENCY  
Line Frequency Rejection  
The clock frequency may be extended above 200kHz  
without this error, however, by using a low-value resis-  
tor in series with the integrating capacitor. The effect of  
the resistor is to introduce a small pedestal voltage onto  
the integrator output at the beginning of the reference  
integrate phase. By careful selection of the ratio  
between this resistor and the integrating resistor (a few  
tens of ohms in the recommended circuit), the compar-  
ator delay can be compensated and the maximum  
clock frequency extended by approximately a factor of  
3. At higher frequencies, ringing and second-order  
breaks will cause significant nonlinearities in the first  
few counts of the instrument.  
Oscillator Frequency  
(kHz)  
60Hz  
50Hz  
400Hz  
50.000  
53.333  
66.667  
80.000  
83.333  
100.000  
125.000  
133.333  
166.667  
200.000  
250.000  
The minimum clock frequency is established by leak-  
age on the auto zero and reference capacitors. With  
most devices, measurement cycles as long as 10 sec-  
onds give no measurable leakage error.  
2002 Microchip Technology Inc.  
DS21478B-page 13  
TC835  
The clock used should be free from significant phase or  
frequency jitter. Several suitable low-cost oscillators  
are shown in Section 6.0, Typical Applications. The  
multiplexed output means that if the display takes sig-  
nificant current from the logic supply, the clock should  
have good PSRR.  
course, the flip flop delays the true zero crossing by up  
to one count in every instance. If a correction were not  
made, the display would always be one count too high.  
Therefore, the counter is disabled for one clock pulse  
at the beginning of the reference integrate (de-inte-  
grate) phase. This one-count delay compensates for  
the delay of the zero crossing flip flop and allows the  
correct number to be latched into the display. Similarly,  
a one-count delay at the beginning of auto zero gives  
an overload display of 0000 instead of 0001. No delay  
occurs during signal integrate, so that true ratiometric  
readings result.  
6.5  
Zero Crossing Flip-Flop  
The flip flop interrogates the data once every clock  
pulse after the transients of the previous clock pulse  
and half-clock pulse have died down. False zero cross-  
ings caused by clock pulses are not recognized. Of  
FIGURE 6-1:  
4-1/2 DIGIT ADC MULTIPLEXED COMMON ANODE LED DISPLAY  
+5V  
20 19 18 17 12  
D1 D2 D3 D4 D5  
INT OUT  
4
5
0.33µF  
1µF  
AZ IN  
4.7kΩ  
1µF  
23  
7
POL  
6
BUFF  
b
c
7
7
7
7
OUT  
C
-
100kΩ  
REF  
22  
10  
TC835  
F
IN  
200kHz  
100kΩ  
X7  
8
C
+
REF  
Blank MSD On Zero  
+
+INPUT  
915  
5
Analog  
16  
15  
14  
13  
6
2
1
7
1µF  
Input  
B8  
D
C
B
A
9
3
RBI  
DM7447A  
INPUT  
B4  
B2  
B1  
16  
+5V  
ANALOG  
COMMON  
REF  
V–  
IN  
V+  
1
2
11  
V+  
5V  
100kΩ  
MCP1525  
1µF  
DS21478B-page 14  
2002 Microchip Technology Inc.  
TC835  
FIGURE 6-2:  
RC OSCILLATOR CIRCUIT  
FIGURE 6-3:  
COMPARATOR CLOCK  
CIRCUITS  
R
2
R
1
+5V  
C
F
O
16kΩ  
16kΩ  
1kΩ  
56kΩ  
Gates are 74C04  
2
3
+
8
V
OUT  
0.22µF  
7
LM311  
-
1
1
R R  
1
2
30kΩ  
390pF  
, R =  
1. f  
=
4
P
O
R + R  
2C(0.41R + 0.7R )  
1
2
P
1
a. If R1 = R2 = R1, F0.55/RC  
b. If R2 >> R1, f 0.45/R1C  
c. If R2 << R1, f 0.72/R1C  
+5V  
R2  
100kΩ  
R4  
2kΩ  
2. Examples:  
a. f = 120kHz, C = 420pF  
R1 = R2 10.9kΩ  
C2  
10pF  
2
3
+
6
7
R2  
100kΩ  
V
LM311  
-
OUT  
b. f = 120kHz, C = 420pF, R2 = 50kΩ  
R1 = 8.93kΩ  
4
R3  
50kΩ  
1
C1  
0.1µF  
c. f = 120kHz, C = 220pF, R2 = 5kΩ  
R = 27.3kΩ  
1
FIGURE 6-4:  
4-1/2 DIGIT ADC WITH MULTIPLEXED COMMON CATHODE LED DISPLAY  
+5V  
+5V  
SET V  
REF  
= 1V  
5V  
28  
27  
26  
1
2
3
V-  
UR  
OR  
TC835  
MCP1525  
100  
REF IN  
kΩ  
150Ω  
1µF  
ANALOG  
GND  
STROBE  
47  
kΩ  
10  
11  
9
8
7
6
5
4
3
2
1
Analog  
GND  
150Ω  
25  
24  
23  
22  
21  
20  
4
5
6
7
8
9
INT  
OUT  
RUN/HOLD  
DGND  
POLARITY  
CLK IN  
BUSY  
1µF  
0.33µF  
12  
13  
14  
15  
AZ IN  
BUFF  
OUT  
MC14513  
100 kΩ  
1µF  
C
+
REF  
REF  
100  
kΩ  
+
SIG  
C
-
+5V  
16  
17  
(LSD) D1  
D2  
INPUT  
0.1  
µF  
10  
11  
12  
19  
18  
17  
+INPUT  
IN  
18  
+5V  
D3  
V+  
D4  
D5 (MSD)  
13  
14  
16  
15  
(MSB) B8  
B4  
B1 (LSB)  
B2  
F
OSC  
= 200kHz  
2002 Microchip Technology Inc.  
DS21478B-page 15  
TC835  
FIGURE 6-5:  
TEST CIRCUIT  
5V  
TC835  
SET V  
= 1V  
REF  
IN  
1
2
3
4
V
REF  
V-  
28  
27  
26  
25  
24  
23  
22  
UNDERRANGE  
100kΩ  
REF IN  
OVERRANGE  
ANALOG  
STROBE  
COMMON  
INT OUT  
ANALOG GND  
RUN/HOLD  
DIGTAL GND  
POLARITY  
CLOCK IN  
BUSY  
0.47  
1µF  
5
6
µF  
AZ IN  
BUFF OUT  
Clock  
Input  
100 kΩ  
7
8
9
C
C
-
REF  
REF  
100  
Signal  
Input  
21 120kHz  
1µF  
kΩ  
+
20  
19  
18  
INPUT  
(LSD) D1  
D2  
0.1µF  
10  
11  
12  
13  
14  
+INPUT  
V+  
D3  
+
5V  
17  
16  
15  
D5 (MSD)  
D4  
B1 (LSB)  
B2  
(MSB) B8  
B4  
DS21478B-page 16  
2002 Microchip Technology Inc.  
TC835  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
Package marking data not available at this time.  
7.2  
Taping Forms  
Component Taping Orientation for 64-Pin PQFP Devices  
User Direction of Feed  
PIN 1  
W
P
Standard Reel Component Orientation  
for TR Suffix Device  
Carrier Tape, Number of Components Per Reel and Reel Size  
Package  
Carrier Width (W)  
Pitch (P)  
Part Per Full Reel  
Reel Size  
64-Pin PQFP  
32 mm  
24 mm  
250  
13 in  
NOTE: Drawing does not represent total number of pins.  
Component Taping Orientation for 44-Pin PQFP Devices  
User Direction of Feed  
PIN 1  
W
P
Standard Reel Component Orientation  
for TR Suffix Device  
Carrier Tape, Number of Components Per Reel and Reel Size  
Package  
Carrier Width (W)  
24 mm  
Pitch (P)  
16 mm  
Part Per Full Reel  
500  
Reel Size  
13 in  
44-Pin PQFP  
NOTE: Drawing does not represent total number of pins.  
2002 Microchip Technology Inc.  
DS21478B-page 17  
TC835  
7.3  
Package Dimensions  
28-Pin PDIP (Wide)  
PIN 1  
.555 (14.10)  
.530 (13.46)  
1.465 (37.21)  
1.435 (36.45)  
.610 (15.49)  
.590 (14.99)  
.200 (5.08)  
.140 (3.56)  
.040 (1.02)  
.020 (0.51)  
.015 (0.38)  
.008 (0.20)  
3˚MIN.  
.150 (3.81)  
.115 (2.92)  
.700 (17.78)  
.610 (15.50)  
.110 (2.79)  
.090 (2.29)  
.070 (1.78)  
.045 (1.14)  
.022 (0.56)  
.015 (0.38)  
Dimensions: inches (mm)  
44-Pin PQFP  
7 ˚MAX.  
.009 (0.23)  
.005 (0.13)  
PIN 1  
.041 (1.03)  
.026 (0.65)  
.018 (0.45)  
.012 (0.30)  
.398 (10.10)  
.390 (9.90)  
.557 (14.15)  
.537 (13.65)  
.031 (0.80) TYP.  
.010 (0.25) TYP.  
.398 (10.10)  
.390 (9.90)  
.083 (2.10)  
.075 (1.90)  
.557 (14.15)  
.537 (13.65)  
.096 (2.45) MAX.  
Dimensions: inches (mm)  
DS21478B-page 18  
2002 Microchip Technology Inc.  
TC835  
7.3  
Package Dimensions (Continued)  
7˚ MAX.  
64-Pin PQFP  
.009 (0.23)  
.005 (0.13)  
.041 (1.03)  
.031 (0.78)  
PIN 1  
.018 (0.45)  
.012 (0.30)  
.555 (14.10)  
.547 (13.90)  
.687 (17.45)  
.667 (16.95)  
.031 (0.80) TYP.  
.010 (0.25) TYP.  
.555 (14.10)  
.547 (13.90)  
.120 (3.05)  
.100 (2.55)  
.687 (17.45)  
.667 (16.95)  
.130 (3.30) MAX.  
Dimensions: inches (mm)  
2002 Microchip Technology Inc.  
DS21478B-page 19  
TC835  
NOTES:  
DS21478B-page 20  
2002 Microchip Technology Inc.  
TC835  
SALES AND SUPPORT  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2002 Microchip Technology Inc.  
DS21478B-page 21  
TC835  
NOTES:  
DS21478B-page 22  
2002 Microchip Technology Inc.  
TC835  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical com-  
ponents in life support systems is not authorized except with  
express written approval by Microchip. No licenses are con-  
veyed, implicitly or otherwise, under any intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, FilterLab,  
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,  
PICSTART, PRO MATE, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip Tech-  
nology Incorporated in the U.S.A. and other countries.  
dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,  
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,  
MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode  
and Total Endurance are trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2002, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchip’s quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
2002 Microchip Technology Inc.  
DS21478B-page 23  
WORLDWIDE SALES AND SERVICE  
Japan  
AMERICAS  
ASIA/PACIFIC  
Microchip Technology Japan K.K.  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Korea  
Rocky Mountain  
China - Beijing  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-7456  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
Bei Hai Wan Tai Bldg.  
Atlanta  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
China - Chengdu  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Singapore, 188980  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Taiwan  
Microchip Technology Taiwan  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Chengdu 610016, China  
Tel: 86-28-86766200 Fax: 86-28-86766599  
Tel: 630-285-0071 Fax: 630-285-0075  
China - Fuzhou  
Dallas  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Fuzhou 350001, China  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
EUROPE  
Denmark  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Tel: 972-818-7423 Fax: 972-818-2924  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Tel: 86-591-7503506 Fax: 86-591-7503521  
China - Shanghai  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
Los Angeles  
Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Microchip Technology GmbH  
Gustav-Heinemann Ring 125  
D-81739 Munich, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
China - Shenzhen  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
Rm. 1315, 13/F, Shenzhen Kerry Centre,  
Renminnan Lu  
Shenzhen 518001, China  
Tel: 86-755-2350361 Fax: 86-755-2366086  
New York  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
San Jose  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
Toronto  
China - Hong Kong SAR  
Italy  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Milan, Italy  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
India  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
Microchip Technology Inc.  
India Liaison Office  
United Kingdom  
Microchip Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
04/20/02  
DS21478B-page 24  
2002 Microchip Technology Inc.  

相关型号:

TC835CBUTR

1-CH DUAL-SLOPE ADC, PQFP64, PLASTIC, QFP-64
MICROCHIP

TC835CKW

Personal Computer Data Acquisition A/D Converter
MICROCHIP

TC835CKW

PERSONAL COMPUTER DATA ACQUISITION A/D CONVERTER
TELCOM

TC835CPI

Personal Computer Data Acquisition A/D Converter
MICROCHIP

TC835CPI

PERSONAL COMPUTER DATA ACQUISITION A/D CONVERTER
TELCOM

TC835CPIG

1-CH DUAL-SLOPE ADC, PDIP28, PLASTIC, DIP-28
MICROCHIP

TC8395-90

16-Bit Microcontroller
ETC

TC8395BH

16-Bit Microcontroller
ETC

TC8398

Microcontroller, 16-Bit, MROM, 12MHz, NMOS, CDIP48, CERAMIC, DIP-48
INTEL

TC83C251SA

Microcontroller, 8-Bit, MROM, 12MHz, CMOS, CDIP40, CERAMIC, DIP-40
INTEL

TC83C251SA16

HIGH-PERFORMANCE CHMOS MICROCONTROLLER
INTEL

TC83C251SB

Microcontroller, 8-Bit, MROM, 12MHz, CMOS, CDIP40, CERAMIC, DIP-40
INTEL