TC510IOI713 [MICROCHIP]

Precision Analog Front Ends with Dual Slope ADC; 精密模拟前端与双积分ADC
TC510IOI713
型号: TC510IOI713
厂家: MICROCHIP    MICROCHIP
描述:

Precision Analog Front Ends with Dual Slope ADC
精密模拟前端与双积分ADC

文件: 总38页 (文件大小:562K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC500/A/510/514  
Precision Analog Front Ends with Dual Slope ADC  
Features:  
General Description:  
• Precision (up to 17 bits) A/D Converter “Front  
End”  
TheTC500/A/510/514 family are precision analog front  
ends that implement dual slope A/D converters having  
a maximum resolution of 17 bits plus sign. As a  
minimum, each device contains the integrator, zero  
crossing comparator and processor interface logic. The  
TC500 is the base (16-bit max) device and requires  
both positive and negative power supplies. The  
TC500A is identical to the TC500 with the exception  
that it has improved linearity, allowing it to operate to a  
maximum resolution of 17 bits. The TC510 adds an on-  
board negative power supply converter for single-  
supply operation. The TC514 adds both a negative  
power supply converter and a 4-input differential  
analog multiplexer.  
• 3-Pin Control Interface to Microprocessor  
• Flexible: User Can Trade-off Conversion Speed  
for Resolution  
• Single-Supply Operation (TC510/TC514)  
• 4 Input, Differential Analog MUX (TC514)  
• Automatic Input Voltage Polarity Detection  
• Low Power Dissipation:  
- (TC500/TC500A): 10 mW  
- (TC510/TC514): 18 mW  
• Wide Analog Input Range:  
- ±4.2V (TC500A/TC510)  
Each device has the same processor control interface  
consisting of 3 wires: control inputs (A and B) and zero-  
crossing comparator output (CMPTR). The processor  
manipulates A, B to sequence the TC5XX through four  
phases of conversion: auto-zero, integrate, de-  
integrate and integrator zero. During the auto-zero  
phase, offset voltages in the TC5XX are corrected by a  
closed loop feedback mechanism. The input voltage is  
applied to the integrator during the integrate phase.  
This causes an integrator output dv/dt directly  
proportional to the magnitude of the input voltage. The  
higher the input voltage, the greater the magnitude of  
the voltage stored on the integrator during this phase.  
At the start of the de-integrate phase, an external  
voltage reference is applied to the integrator and, at the  
same time, the external host processor starts its on-  
board timer. The processor maintains this state until a  
transition occurs on the CMPTR output, at which time  
the processor halts its timer. The resulting timer count  
is the converted analog data. Integrator zero (the final  
phase of conversion) removes any residue remaining  
in the integrator in preparation for the next conversion.  
• Directly Accepts Bipolar and Differential  
Input Signals  
Applications:  
• Precision Analog Signal Processor  
• Precision Sensor Interface  
• High Accuracy DC Measurements  
The TC500/A/510/514 offer high resolution (up to  
17 bits), superior 50/60 Hz noise rejection, low-power  
operation, minimum I/O connections, low input bias  
currents and lower cost compared to other converter  
technologies having similar conversion speeds.  
© 2008 Microchip Technology Inc.  
DS21428E-page 1  
TC500/A/510/514  
Package Types  
16-Pin PDIP/SOIC/CERDIP  
28-Pin PDIP/SOIC  
CINT  
VSS  
CAZ  
VDD  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VOUT  
CAP–  
28  
1
2
3
4
5
6
7
8
9
DGND  
CINT  
CAZ  
27 DGND  
26 CAP+  
CMPTR OUT  
B
A
BUF  
VDD  
25  
TC500/  
BUF  
TC500A  
ACOM  
ACOM  
24 OSC  
CREF  
+
VIN  
VIN  
+
CREF  
CREF  
VREF  
VREF  
+
+
23 CMPTR OUT  
CREF  
22  
21  
20  
19  
18  
17  
A
TC514  
VREF  
+
VREF  
B
A0  
24-Pin PDIP/SOIC  
CH4– 10  
CH3– 11  
CH2– 12  
CH1– 13  
N/C 14  
A1  
VOUT  
CINT  
CAZ  
CAP–  
DGND  
CAP+  
VDD  
1
2
3
4
5
6
7
8
9
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
CH1+  
CH2+  
16 CH3+  
BUF  
15  
CH4+  
ACOM  
OSC  
CREF  
CREF  
VREF  
VREF  
+
+
CMPTR OUT  
TC510  
A
B
VIN  
VIN  
+
N/C  
N/C  
N/C  
10  
11  
12  
N/C  
N/C  
Typical Application  
Control Logic  
Converter Sate  
A
0
0
1
1
B
C
R
INT  
INT  
0
1
0
1
Zero Integrator Output  
Auto-Zero  
C
REF  
C
Signal Integrate  
De-integrate  
AZ  
V
-
V
+
A1  
REF  
A0  
REF  
C
C
C
+
C
-
REF  
BUF  
INT  
AZ  
REF  
TC500  
Buffer  
-
SW SW  
R
R
Integrator  
+
TC500A  
TC510  
TC514  
CH1+  
CH2+  
CH3+  
CH4+  
CH1-  
CH2-  
CH3-  
CH4-  
SW  
CMPTR 1  
+
I
DIF.  
CMPTR 2  
+
+
MUX  
(TC514)  
SW -  
SW  
RI  
-
RI  
Level  
Shift  
CMPTR  
Output  
SW  
SW  
Z
IZ  
SW  
Z
Polarity  
Detection  
SW  
+
SW  
-
RI  
RI  
ACOM  
SW  
1
SW  
I
Analog  
Phase  
Decoding  
Logic  
DGND  
Switch  
Control  
Signals  
DC-TO-DC  
Converter  
(TC510 & TC514)  
V
SS  
OSC  
V
-
OUT  
CAP+  
CAP-  
V
A
B
SS  
1.0 μF  
(TC500  
TC500A)  
Control Logic  
C
-
1.0 μF  
OUT  
DS21428E-page 2  
© 2008 Microchip Technology Inc.  
TC500/A/510/514  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to  
the device. These are stress ratings only and functional  
operation of the device at these or any other conditions  
above those indicated in the operation sections of the  
specifications is not implied. Exposure to Absolute  
Maximum Rating conditions for extended periods may  
affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings†  
TC510/TC514 Positive Supply Voltage  
(VDD to GND) .........................................+10.5V  
TC500/TC500A Supply Voltage  
(VDD to VSS) ..............................................+18V  
TC500/TC500A Positive Supply Voltage  
(VDD to GND) ............................................+12V  
TC500/TC500A Negative Supply Voltage  
(VSS to GND)................................................-8V  
Analog Input Voltage (VIN+ or VIN-) ............VDD to VSS  
Logic Input Voltage...............VDD +0.3V to GND - 0.3V  
Voltage on OSC:  
........................... -0.3V to (VDD +0.3V) for VDD < 5.5V  
Ambient Operating Temperature Range:  
................................................................ 0°C to +70°C  
Storage Temperature Range:.............-65°C to +150°C  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, TC510/TC514: VDD = +5V, TC500/TC500A: VSS = ±5V.  
CAZ = CREF = 0.47 μF.  
TA = +25°C  
Typ.  
TA = 0°C to 70°C  
Parameters  
Sym  
Units  
Conditions  
Min.  
Max.  
Min.  
Typ.  
Max.  
Analog  
Resolution  
60  
μV  
Note 1  
Zero-scale Error with  
Auto-zero Phase  
ZSE  
ENL  
0.005  
0.003  
0.015  
0.010  
0.005  
0.003  
0.015  
0.010  
0.012  
0.009  
0.060  
0.045  
% F.S. TC500/TC510/TC514  
TC500A  
End Point Linearity  
0.005  
% F.S. TC500/TC510/TC514  
Note 1, Note 2,  
% F.S.  
TC500A  
Best-Case Straight  
Line Linearity  
NL  
0.003  
0.008  
% F.S. TC500/TC510/TC514,  
Note 1, Note 2  
0.005  
1
2
% F.S. TC500A  
Zero-scale Temp.  
Coefficient  
ZSTC  
SYE  
μV/°C Over Operating  
Temperature Range  
Full-scale Symmetry  
Error (Rollover Error)  
0.01  
0.03  
10  
% F.S. Note 1  
Full-scale  
Temperature  
Coefficient  
FSTC  
ppm/°C Over Operating  
Temperature Range;  
External Reference  
TC = 0 ppm/°C  
Input Current  
IIN  
6
pA  
V
VIN = 0V  
Common Mode  
Voltage Range  
VCMR VSS + 1.5  
VDD – 1.5 VSS + 1.5  
VDD – 0.9 VSS + 0.9  
VDD – 1.5 VSS + 1.5  
VDD – 1.5  
Integrator Output  
Swing  
V
SS + 0.9  
VSS + 0.9  
VSS + 1.5  
V
V
Analog Input Signal  
Range  
VSS + 1.5  
ACOM = GND = 0V  
Note 1: Integrate time 66 ms, auto-zero time 66 ms, VINT (peak) 4V.  
2: End point linearity at ±1/4, ±1/2, ±3/4 F.S. after full-scale adjustment.  
3: Rollover error is related to CINT, CREF, CAZ characteristics.  
© 2008 Microchip Technology Inc.  
DS21428E-page 3  
TC500/A/510/514  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, TC510/TC514: VDD = +5V, TC500/TC500A: VSS = ±5V.  
CAZ = CREF = 0.47 μF.  
TA = +25°C  
TA = 0°C to 70°C  
Parameters  
Sym  
Units  
Conditions  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
Voltage Reference  
Range  
VREF  
VSS +1  
VDD – 1  
VSS +1  
VDD – 1  
V
VREF- VREF  
+
Digital  
Comparator Logic 1,  
Output High  
VOH  
VOL  
VIH  
VIL  
4
0.4  
1
4
0.4  
1
V
V
V
V
ISOURCE = 400 μA  
Comparator Logic 0,  
Output Low  
3.5  
3.5  
ISINK = 2.1 mA  
Logic 1, Input High  
Voltage  
Logic 0, Input Low  
Voltage  
Logic Input Current  
Comparator Delay  
IL  
2
0.3  
3
μA  
μs  
Logic ‘1’ or ‘0’  
tD  
Multiplexer (TC514 Only)  
Maximum Input  
Voltage  
-2.5  
6
2.5  
10  
-2.5  
2.5  
V
VDD = 5V  
VDD = 5V  
Drain/Source ON  
Resistance  
RDSON  
k  
Power (TC510/TC514 Only)  
Supply Current  
IS  
1.8  
18  
2.4  
3.5  
mA  
mW  
V
VDD = 5V, A = 1, B = 1  
VDD = 5V  
Power Dissipation  
PD  
Positive Supply  
Operating Voltage  
Range  
VDD  
4.5  
5.5  
4.5  
5.5  
Operating Source  
Resistance  
ROUT  
60  
85  
100  
IOUT = 10 mA  
Oscillator Frequency  
100  
kHz  
mA  
Note 1  
Maximum Current  
Out  
IOUT  
-10  
-10  
VDD = 5V  
Power (TC500/TC500A Only)  
Supply Current  
IS  
1
1.5  
2.5  
mA  
mW  
V
VS = ±5V, A = B = 1  
VDD = 5V, VSS = -5V  
Power Dissipation  
PD  
10  
Positive Supply  
VDD  
4.5  
7.5  
4.5  
7.5  
Operating Range  
Negative Supply  
Operating Range  
VSS  
-4.5  
-7.5  
- 4.5  
-7.5  
V
Note 1: Integrate time 66 ms, auto-zero time 66 ms, VINT (peak) 4V.  
2: End point linearity at ±1/4, ±1/2, ±3/4 F.S. after full-scale adjustment.  
3: Rollover error is related to CINT, CREF, CAZ characteristics.  
DS21428E-page 4  
© 2008 Microchip Technology Inc.  
TC500/A/510/514  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
-0  
5
4
T
A
= +25 C  
°
T
= +25 C  
°
A
V+ = 5V  
-1  
-2  
-3  
-4  
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-5  
-6  
-7  
-8  
Slope 60Ω  
0
2
4
6
8
10 12 14 16 18 20  
0
10  
20  
30 40  
50  
Load Current (mA)  
60  
70  
80  
Output Current (mA)  
FIGURE 2-1:  
Output Voltage vs. Load  
FIGURE 2-4:  
Output Voltage vs. Output  
Current.  
Current.  
200  
100  
V+ = 5V  
I
V+ = 5V, T = +25°C  
A
Osc. Freq. = 100 kHz  
= 10 mA  
175  
150  
125  
100  
75  
OUT  
90  
80  
70  
60  
50  
CAP = 1 µF  
CAP = 10 µF  
50  
25  
40  
-50  
0
0
25  
50  
75  
100  
0
1
2
3
4
5
6
7
8
9
10  
-25  
Temperature ( C)  
°
Load Current (mA)  
FIGURE 2-2:  
Output Ripple vs. Load  
FIGURE 2-5:  
Output Source Resistance  
Current.  
vs. Temperature.  
100  
150  
V+ = 5V  
T
= +25°C  
A
V+ = 5V  
125  
100  
10  
75  
50  
1
1
10  
100  
Oscillator Capacitance (pF)  
-50  
-25  
0
25  
50  
Temperature (°C)  
75  
100 125  
1000  
FIGURE 2-3:  
Oscillator Frequency vs.  
FIGURE 2-6:  
Oscillator Frequency vs.  
Capacitance.  
Temperature.  
© 2008 Microchip Technology Inc.  
DS21428E-page 5  
TC500/A/510/514  
NOTES:  
DS21428E-page 6  
© 2008 Microchip Technology Inc.  
TC500/A/510/514  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
TC500,  
TC500A  
Symbol  
Function  
TC510  
TC514  
CERDIP,  
PDIP, SOIC  
PDIP, SOIC PDIP, SOIC  
1
2
3
4
5
2
2
CINT  
VSS  
Integrator output. Integrator capacitor connection.  
Not Used  
Not Used  
Negative power supply input (TC500/TC500A only).  
Auto-zero input. The auto-zero capacitor connection.  
Buffer output. The Integrator capacitor connection.  
3
4
5
3
4
5
CAZ  
BUF  
ACOM  
This pin is grounded in most applications. It is recommended that  
ACOM and the input common pin (Ven- or CHn-) be within the analog  
Common Mode Range (CMR).  
6
7
6
7
6
CREF  
CREF  
VREF  
VREF  
VIN  
-
Input. Negative reference capacitor connection.  
Input. Positive reference capacitor connection.  
Input. External voltage reference (-) connection.  
Input. External voltage reference (+) connection.  
Negative analog input.  
7
+
8
8
8
-
9
9
9
Not Used  
Not Used  
22  
+
10  
11  
12  
13  
15  
16  
18  
17  
-
VIN  
A
+
Positive analog input.  
Input. Converter phase control MSB. (See input B.)  
21  
B
Input. Converter phase control LSB. The states of A, B place the  
TC5XX in one of four required phases. A conversion is complete  
when all four phases have been executed:  
Phase control input pins: AB = 00: Integrator zero  
01: Auto-zero  
10: Integrate  
11: De-integrate  
14  
19  
23  
CMPTR OUT Zero crossing comparator output. CMPTR is high during the  
integration phase when a positive input voltage is being integrated  
and is low when a negative input voltage is being integrated. A high-  
to-low transition on CMPTR signals the processor that the De-  
integrate phase is completed. CMPTR is undefined during the auto-  
zero phase. It should be monitored to time the integrator zero phase.  
15  
16  
23  
21  
22  
24  
1
27  
25  
26  
28  
1
DGND  
VDD  
Input. Digital ground.  
Input. Power supply positive connection.  
CAP+  
CAP-  
Input. Negative power supply converter capacitor (+) connection.  
Input. Negative power supply converter capacitor (-) connection.  
VOUT  
-
Output. Negative power supply converter output and reservoir  
capacitor connection. This output can be used to power other  
devices in the circuit requiring a negative bias voltage.  
20  
24  
OSC  
Oscillator control input. The negative power supply converter  
normally runs at a frequency of 100 kHz. The converter oscillator  
frequency can be slowed down (to reduce quiescent current) by  
connecting an external capacitor between this pin and VDD (see  
Section 2.0 “Typical Performance Curves”).  
18  
13  
17  
12  
16  
11  
15  
10  
20  
CH1+  
CH1-  
CH2+  
CH2-  
CH3+  
CH3-  
CH4+  
CH4-  
A0  
Positive analog input pin. MUX channel 1.  
Negative analog input pin. MUX channel 1.  
Positive analog input pin. MUX channel 2.  
Negative analog input pin. MUX channel 2.  
Positive analog input pin. MUX channel 3.  
Negative analog input pin. MUX channel 3.  
Positive analog input pin. MUX channel 4.  
Negative analog input pin. MUX channel 4  
Multiplexer input channel select input LSB (see A1).  
© 2008 Microchip Technology Inc.  
DS21428E-page 7  
TC500/A/510/514  
TABLE 3-1:  
PIN FUNCTION TABLE (CONTINUED)  
TC500,  
TC500A  
Symbol  
Function  
TC510  
TC514  
CERDIP,  
PDIP, SOIC  
PDIP, SOIC PDIP, SOIC  
19  
A1  
Multiplexer input channel select input MSB.  
Phase control input pins: A1, A0 = 00 = Channel 1  
01 = Channel 2  
10 = Channel 3  
11 = Channel 4  
DS21428E-page 8  
© 2008 Microchip Technology Inc.  
TC500/A/510/514  
Integrating converters provide inherent noise rejection  
4.0  
4.1  
DETAILED DESCRIPTION  
with at least  
a 20dB/decade attenuation rate.  
Interference signals with frequencies at integral  
multiples of the integration period are, theoretically,  
completely removed, since the average value of a sine  
wave of frequency (1/T) averaged over a period (T) is  
zero.  
Dual Slope Conversion Principles  
Actual data conversion is accomplished in two  
phases: input signal integration and reference voltage  
de-integration.  
Integrating converters often establish the integration  
period to reject 50/60 Hz line frequency interference  
signals. The ability to reject such signals is shown by a  
normal mode rejection plot (Figure 4-1). Normal mode  
rejection is limited in practice to 50 to 65 dB, since the  
line frequency can deviate by a few tenths of a percent  
(Figure 4-2).  
The integrator output is initialized to 0V prior to the start  
of integration. During integration, analog switch S1  
connects VIN to the integrator input where it is  
maintained for  
a fixed time period (TINT). The  
application of VIN causes the integrator output to depart  
0V at a rate determined by the magnitude of VIN and a  
direction determined by the polarity of VIN. The de-  
integration phase is initiated immediately at the  
expiration of TINT  
.
30  
Measurment  
Period  
T =  
During de-integration, S1 connects a reference voltage  
(having a polarity opposite that of VIN) to the integrator  
input. At the same time, an external precision timer is  
started. The de-integration phase is maintained until  
the comparator output changes state, indicating the  
integrator has returned to its starting point of 0V. When  
this occurs, the precision timer is stopped. The de-  
integration time period (TDEINT), as measured by the  
precision timer, is directly proportional to the magnitude  
of the applied input voltage (see Figure 4-3).  
20  
10  
0
A simple mathematical equation relates the input  
signal, reference voltage and integration time:  
0.1/T  
1/T  
Input Frequency  
10/T  
FIGURE 4-1:  
Normal Mode Rejection.  
Integrating Converter  
EQUATION 4-1:  
VREFCDEINT  
TINT  
1
-----------------------  
VIN(T)DT = --------------------------------  
0
RINTCINT  
RINTCINT  
80  
70  
60  
50  
Where:  
VREF  
TINT  
=
=
=
Reference Voltage  
t = 0.1 sec  
Signal Integration time (fixed)  
tDEINT  
Reference Voltage Integration time  
(variable)  
For a constant VIN:  
40  
DEV  
100  
DEV  
100  
SIN 60p t (1 –  
60p t (1 –  
)
)
EQUATION 4-2:  
Normal Mode = 20 LOG  
Rejection  
30  
TDEINT  
-----------------  
TINT  
DEV = Deviation from 60 Hz  
t = Integration Period  
VIN = VREF  
20  
0.01  
0.1  
1.0  
Line Frequency Deviation from 60 Hz (%)  
The dual slope converter accuracy is unrelated to the  
integrating resistor and capacitor values as long as  
they are stable during a measurement cycle.  
FIGURE 4-2:  
Line Frequency Deviation.  
An inherent benefit is noise immunity. Input noise  
spikes are integrated (averaged to zero) during the  
integration periods. Integrating ADCs are immune to  
the large conversion errors that plague successive  
approximation converters in high noise environments.  
© 2008 Microchip Technology Inc.  
DS21428E-page 9  
TC500/A/510/514  
CINT  
TC510  
Integrator  
RINT  
Analog  
VINT  
Input (VIN)  
Comparator  
+
CMPTR Out  
+
S1  
±
Phase  
Control  
Switch Driver  
Ref  
Voltage  
Control  
Logic  
Polarity Control  
A
B
I/O  
Microcomputer  
VSUPPLY  
VINT  
VIN VREF  
VIN 1/2 VREF  
ROM  
RAM  
Timer  
Counter  
TINT  
FIGURE 4-3:  
TDEINT  
Basic Dual Slope Converter.  
DS21428E-page 10  
© 2008 Microchip Technology Inc.  
TC500/A/510/514  
The internal analog switch status for each of these  
phases is summarized in Table 5-1. This table  
references the Typical Application.  
5.0  
TC500/A/510/514 CONVERTER  
OPERATION  
The TC500/A/510/514 incorporates an auto-zero and  
Integrator phase in addition to the input signal Integrate  
and reference De-integrate phases. The addition of  
these phases reduce system errors, calibration steps  
and shorten overrange recovery time. A typical  
measurement cycle uses all four phases in the  
following order:  
1. Auto-zero.  
2. Input signal integration.  
3. Reference de-integration.  
4. Integrator output zero.  
TABLE 5-1:  
INTERNAL ANALOG GATE STATUS  
Conversion Phase  
SWI  
SWR+  
SWR-  
SWZ  
SWR  
SW1  
SWIZ  
Auto-zero (A = 0, B = 1)  
Closed  
Closed  
Closed  
Input Signal Integration (A = 1, B = 0)  
Closed  
Reference Voltage De-integration  
(A =1, B = 1)  
*
Closed  
Closed  
Integrator Output Zero (A = 0, B = 0)  
Closed  
Closed Closed  
* Assumes a positive polarity input signal. SWRI would be closed for a negative input signal.  
5.1  
Auto-zero Phase (AZ)  
5.3  
Reference Voltage De-integration  
Phase (DINT  
)
During this phase, errors due to buffer, integrator and  
comparator offset voltages are nulled out by charging  
CAZ (auto-zero capacitor) with a compensating error  
voltage.  
The previously charged reference capacitor is  
connected with the proper polarity to ramp the  
integrator output back to zero. An externally-provided,  
precision timer is used to measure the duration of this  
phase. The resulting time measurement is proportional  
to the magnitude of the applied input voltage.  
The external input signal is disconnected from the  
internal circuitry by opening the two SWI switches. The  
internal input points connect to analog common. The  
reference capacitor is charged to the reference voltage  
potential through SWR. A feedback loop, closed around  
the integrator and comparator, charges the capacitor  
(CAZ) with a voltage to compensate for buffer amplifier,  
integrator and comparator offset voltages.  
5.4  
Integrator Output Zero Phase (IZ)  
This phase ensures the integrator output is at 0V when  
the auto-zero phase is entered, and that only system  
offset voltages are compensated. This phase is used at  
the end of the reference voltage de-integration phase  
and MUST be used for ALL TC5XX applications having  
resolutions of 12-bits or more. If this phase is not used,  
the value of the auto-zero capacitor (CAZ) must be  
about 2 to 3 times the value of the integration capacitor  
(CINT) to reduce the effects of charge sharing. The  
integrator output zero phase should be programmed to  
operate until the output of the comparator returns high.  
The overall timing system is shown in Figure 5-1.  
5.2  
Analog Input Signal Integration  
Phase (INT)  
The TC5XX integrates the differential voltage between  
the VIN+ and VIN– inputs. The differential voltage must  
be within the device’s Common mode range VCMR. The  
input signal polarity is normally checked via software at  
the end of this phase: CMPTR = 1 for positive polarity;  
CMPTR = 0 for negative polarity.  
© 2008 Microchip Technology Inc.  
DS21428E-page 11  
TC500/A/510/514  
T
TIME  
Converter Status  
Auto-zero  
Integrate  
Reference  
Overshoot Integrator  
De-integrate  
Output  
Zero  
Full-scale Input  
Integrator  
Voltage V  
0
INT  
Comparator Delay  
Undefined  
Comparator  
Output  
0 For Negative Input  
1 For Positive Input  
A
A = 1  
B = 1  
A = 1  
B = 0  
A = 0  
B = 1  
A = 0  
B = 0  
AB Inputs  
B
Begin Conversion with  
Auto-Zero Phase  
Time Input  
Integration  
Phase  
Capture  
De-integration  
Time  
Integrator  
Output  
Zero Phase (Auto-Zero is  
Ready for Next  
Conversion  
Controller  
Operation  
Complete  
Idle State)  
Sample Input Polarity  
Minimizing  
Overshoot  
will Minimize  
I.O.Z. Time  
Typically = T  
INT  
T
INT  
Comparator Delay +  
Processor Latency  
(Positive Input Shown)  
Notes: The length of this phase is chosen almost arbitrarily  
but needs to be long enough to null out worst case errors  
(see text).  
FIGURE 5-1:  
Typical Dual Slope A/D Converter System Timing.  
DS21428E-page 12  
© 2008 Microchip Technology Inc.  
TC500/A/510/514  
The difference in reference for (+) or (-) input voltages  
will cause a rollover error. This error can be minimized  
by using a large reference capacitor in comparison to  
the stray capacitance.  
6.0  
6.1  
ANALOG SECTION  
Differential Inputs (VIN+, VIN–)  
The TC5XX operates with differential voltages within  
the input amplifier Common mode range. The amplifier  
Common mode range extends from 1.5V below  
positive supply to 1.5V above negative supply. Within  
this Common mode voltage range, Common mode  
rejection is typically 80 dB. Full accuracy is maintained,  
however, when the inputs are no less than 1.5V from  
either supply.  
6.4  
Phase Control Inputs (A, B)  
The A, B unlatched logic inputs select the TC5XX  
operating phase. The A, B inputs are normally driven  
by a microprocessor I/O port or external logic.  
6.5  
Comparator Output  
The integrator output also follows the Common mode  
voltage. The integrator output must not be allowed to  
saturate. A worst-case condition exists, for example,  
when a large, positive Common mode voltage, with a  
near full-scale negative differential input voltage, is  
applied. The negative input signal drives the integrator  
positive when most of its swing has been used up by  
the positive Common mode voltage. For these critical  
applications, the integrator swing can be reduced. The  
integrator output can swing within 0.9V of either supply  
without loss of linearity.  
By monitoring the comparator output during the fixed  
signal integrate time, the input signal polarity can be  
determined by the microprocessor controlling the  
conversion. The comparator output is high for positive  
signals and low for negative signals during the signal  
integrate phase (see Figure 6-1).  
During the reference de-integrate phase, the  
comparator output will make a high-to-low transition as  
the integrator output ramp crosses zero. The transition  
is used to signal the processor that the conversion is  
complete.  
The internal comparator delay is 2 μs, typically.  
Figure 6-1 shows the comparator output for large  
positive and negative signal inputs. For signal inputs at  
or near zero volts, however, the integrator swing is very  
small. If Common mode noise is present, the  
comparator can switch several times during the  
beginning of the signal integrate period. To ensure that  
the polarity reading is correct, the comparator output  
should be read and stored at the end of the signal  
integrate phase.  
6.2  
Analog Common  
Analog common is used as VIN return during system  
zero and reference de-integrate. If VIN– is different from  
analog common, a Common mode voltage exists in the  
system. This signal is rejected by the excellent CMR of  
the converter. In most applications, VIN– will be set at a  
fixed known voltage (i.e., power supply common). A  
Common mode voltage will exist when VIN– is not  
connected to analog common.  
The comparator output is undefined during the auto-  
zero phase and is used to time the integrator output  
zero phase. (See Section 8.6 “Integrator Output Zero  
Phase”).  
6.3  
Differential Reference  
(VREF+, VREF–)  
The reference voltage can be anywhere within 1V of  
the power supply voltage of the converter. Rollover  
error is caused by the reference capacitor losing or  
gaining charge due to stray capacitance on its nodes.  
Signal  
Integrate  
Reference  
Deintegrate  
Signal  
Integrate  
Reference  
De-integrate  
Integrator  
Output  
Zero  
Crossing  
Integrator  
Output  
Zero  
Crossing  
Comparator  
Output  
Comparator  
Output  
A. Positive Input Signal  
B. Negative Input Signal  
FIGURE 6-1:  
Comparator Output.  
© 2008 Microchip Technology Inc.  
DS21428E-page 13  
TC500/A/510/514  
NOTES:  
DS21428E-page 14  
© 2008 Microchip Technology Inc.  
TC500/A/510/514  
TABLE 7-1:  
C
AND C SELECTION  
AZ  
7.0  
7.1  
TYPICAL APPLICATIONS  
Component Value Selection  
REF  
Conversions  
Per Second  
Typical Value of  
Suggested* Part  
Number  
CREF, CAZ (μF)  
>7  
0.1  
SMR5 104K50J01L4  
SMR5 224K50J02L4  
SMR5 474K50J04L4  
The procedure outlined below allows the user to arrive  
at values for the following TC5XX design variables:  
2 to 7  
0.22  
0.47  
2 or less  
1. Integration Phase Timing.  
* Manufactured by Evox Rifa, Inc.  
2. Integrator Timing Components (RINT, CINT).  
3. Auto-zero and Reference Capacitors.  
4. Voltage Reference.  
7.6  
Calculate Integrating Capacitor  
(CINT  
)
7.2  
Select Integration Time  
The integrating capacitor must be selected to maximize  
integrator output voltage swing. The integrator output  
voltage swing is defined as the absolute value of VDD  
(or VSS) less 0.9V (i.e., IVDD - 0.9VI or IVSS + 0.9VI).  
Using the 20 μA buffer maximum output current, the  
value of the integrating capacitor is calculated using the  
following equation.  
Integration time must be picked as a multiple of the  
period of the line frequency. For example, TINT times of  
33 ms, 66 ms and 132 ms maximize 60 Hz line  
rejection.  
7.3  
DINT and IZ Phase Timing  
EQUATION 7-2:  
The duration of the DINT phase is a function of the  
amount of voltage stored on the integrator during TINT  
and the value of VREF. The DINT phase must be initiated  
immediately following INT and terminated when an  
integrator output zero-crossing is detected. In general,  
the maximum number of counts chosen for DINT is twice  
that of INT (with VREF chosen at VIN(MAX) /2).  
(TINT)(20 × 106  
)
CINT = --------------------------------------------  
(VS 0.9)  
Where:  
TINT  
VS  
=
=
Integration Period  
IVDDI or IVSSI, whichever is less  
(TC500/A)  
7.4  
Calculate Integrating Resistor  
(RINT  
VS  
=
IVDDI (TC510, TC514)  
)
The desired full-scale input voltage and amplifier output  
current capability determine the value of RINT. The  
buffer and integrator amplifiers each have a full-scale  
current of 20 μA.  
It is critical that the integrating capacitor has a very low  
dielectric absorption. Polypropylene capacitors are an  
example of one such dialectic. Polyester and poly-  
bicarbonate capacitors may also be used in less critical  
applications. Table 7-2 summarizes recommended  
The value of RINT is, therefore, directly calculated in the  
following equation:  
capacitors for CINT  
TABLE 7-2: RECOMMENDED CAPACITOR  
FOR C  
.
EQUATION 7-1:  
INT  
VIN(MAX)  
RINT(in MΩ) = ----------------------  
20  
Suggested  
Part Number*  
Value  
Where:  
0.1  
SMR5 104K50J01L4  
SMR5 224K50J02L4  
SMR5 334K50J03L4  
SMR5 474K50J04L4  
VIN(MAX)  
=
=
Maximum input voltage (full count  
voltage)  
0.22  
0.33  
0.47  
RINT  
Integrating Resistor (in M)  
For loop stability, RINT should be 50 kΩ  
* Manufactured by Evox Rifa, Inc.  
7.5  
Select Reference (CREF) and Auto-  
zero (CAZ) Capacitors  
7.7  
Calculate VREF  
The reference de-integration voltage is calculated  
using the following equation:  
CREF and CAZ must be low leakage capacitors (such as  
polypropylene). The slower the conversion rate, the  
larger the value CREF must be. Recommended  
capacitors for CREF and CAZ are shown in Table 7-1.  
Larger values for CAZ and CREF may also be used to  
limit rollover errors.  
EQUATION 7-3:  
(VS 0.9)(CINT)(RINT  
)
----------------------------------------------------------  
VREF  
=
V
2(TINT  
)
© 2008 Microchip Technology Inc.  
DS21428E-page 15  
TC500/A/510/514  
NOTES:  
DS21428E-page 16  
© 2008 Microchip Technology Inc.  
TC500/A/510/514  
8.3  
Auto-zero Phase  
8.0  
8.1  
DESIGN CONSIDERATIONS  
Noise  
The length of this phase is usually set to be equal to the  
input signal integration time. This decision is virtually  
arbitrary since the magnitudes of the various system  
errors are not known. Setting the auto-zero time equal  
to the Input Integrate time should be more than  
adequate to null out system errors. The system may  
remain in this phase indefinitely (i.e., auto-zero is the  
appropriate Idle state for a TC5XX device).  
The threshold noise (NTH) is the algebraic sum of the  
integrator and comparator noise and is typically 30 μV.  
Figure 8-1 illustrates how the value of the reference  
voltage can affect the final count. Such errors can be  
reduced by increased integration times, in the same  
way that 50/60 Hz noise is rejected. The signal-to-  
noise ratio is related to the integration time (TINT) and  
the integration time constant (RINT, CINT) as follows:  
8.4  
Input Signal Integrate Phase  
The length of this phase is constant from one  
conversion to the next and depends on system  
parameters and component value selections. The  
calculation of TINT is shown elsewhere in this data  
sheet. At some point near the end of this phase, the  
microcontroller should sample CMPTR to determine  
the input signal polarity. This value is, in effect, the Sign  
Bit for the overall conversion result. Optimally, CMPTR  
should be sampled just before this phase is terminated  
by changing AB from 10 to 11. The consideration here  
is that, during the initial stage of input integration when  
the integrator voltage is low, the comparator may be  
affected by noise and its output unreliable. Once  
integration is well underway, the comparator will be in a  
defined state.  
EQUATION 8-1:  
VIN  
tINT  
(RINT) (CINT  
---------------------- --------------------------------------  
S/N (dB) = 20 log  
6  
)
30 × 10  
8.2  
System Timing  
To obtain maximum performance from the TC5XX, the  
overshoot at the end of the de-integration phase must  
be minimized. Also, the integrator output zero phase  
must be terminated as soon as the comparator output  
returns high (see Figure 5-1).  
Figure 5-1 shows the overall timing for a typical system  
in which a TC5XX is interfaced to a microcontroller. The  
microcontroller drives the A, B inputs with I/O lines and  
monitors the comparator output (CMPTR) using an I/O  
line or dedicated timer capture control pin. It may be  
necessary to monitor the state of the CMPTR output in  
addition to having it control a timer directly for the  
Reference de-integration phase (this is further  
explained below.)  
8.5  
Reference De-integration  
The length of this phase must be precisely measured  
from the transition of AB from 10 to 11 to the falling-  
edge of CMPTR. The comparator delay contributes  
some error in timing this phase. The typical delay is  
specified to be 2 μs. This should be considered in the  
context of the length of a single count when  
determining overall system performance and possible  
single count errors. Additionally, overshoot will result in  
charge accumulating on the integrator once its output  
crosses zero. This charge must be nulled during the  
integrator output zero phase.  
The timing diagram in Figure 5-1 is not to scale, as the  
timing in a real system depends on many system  
parameters and component value selections. There  
are four critical timing events (as shown in Figure 5-1):  
sampling the input polarity, capturing the de-integration  
time, minimizing overshoot and properly executing the  
integrator output zero phase.  
S
S
S
30 µV  
NTH  
NTH  
NTH  
High VREF  
Normal VREF  
Low VREF  
VREF  
RINT CINT  
Slope (S) =  
NTH = Noise Threshold  
FIGURE 8-1:  
Noise Threshold.  
© 2008 Microchip Technology Inc.  
DS21428E-page 17  
TC500/A/510/514  
8.6  
Integrator Output Zero Phase  
8.7  
Using the TC510/TC514  
The comparator delay and the controller’s response  
latency may result in overshoot, causing charge  
buildup on the integrator at the end of a conversion.  
This charge must be removed or performance will  
degrade. The integrator output zero phase should be  
activated (AB = 00) until CMPTR goes high. It is  
absolutely critical that this phase be terminated  
immediately so that overshoot is not allowed to occur in  
the opposite direction. At this point, it can be assured  
that the integrator is near zero. Auto-zero should be  
entered (AB = 01) and the TC5XX held in this state until  
the next cycle is begun (see Figure 8-2).  
8.7.1  
NEGATIVE SUPPLY VOLTAGE  
CONVERTER (TC510, TC514)  
A capacitive charge pump is employed to invert the  
voltage on VDD for negative bias within the TC510/  
TC514. This voltage is also available on the VOUT– pin  
to provide negative bias elsewhere in the system. Two  
external capacitors are required to perform the  
conversion.  
Timing is generated by an internal state machine driven  
from an on-board oscillator. During the first phase,  
capacitor CF is switched across the power supply and  
charged to VS+. This charge is transferred to capacitor  
COUT– during the second phase. The oscillator  
normally runs at 100 kHz to ensure minimum output  
ripple. This frequency can be reduced by placing a  
capacitor from OSC to VDD. The relationship between  
the capacitor value is shown in Section 2.0 “Typical  
Performance Curves”.  
Integrator  
Output  
Zero  
Crossing  
Overshoot  
8.7.2  
ANALOG INPUT MULTIPLEXER  
(TC514)  
Comparator  
Output Comp  
The TC514 is equipped with a four-input differential  
analog multiplexer. Input channels are selected using  
select inputs (A1, A0). These are high-true control  
signals (i.e., channel 0 is selected when (A1, A0 = 00).  
De-integrate Phase  
Integrator  
Zero Phase  
Integrate  
Phase  
FIGURE 8-2:  
Overshoot.  
DS21428E-page 18  
© 2008 Microchip Technology Inc.  
TC500/A/510/514  
9.0  
DESIGN EXAMPLES  
Refer to Figures 9-1 to 9-4.  
Given:  
Required Resolution: 16 bits (65,536  
counts).  
Maximum VIN: ±2V  
Power Supply Voltage: +5V  
60 Hz System  
Step 1.  
Pick integration time (tINT) as a multiple  
of the line frequency:  
1/60 Hz = 16.6 ms. Use 4x line  
frequency.  
= 66 ms  
Step 2.  
Step 3.  
Calculate RINT  
INT = VIN(MAX) /20 μA 2 /20 μA  
= 100 kΩ  
:
R
Calculate CINT for maximum (4V)  
integrator output swing.  
CINT = (tINT) (20 x 10 –6) / (VS - 0.9)  
= (.066) (20 x 10 –6) / (4.1)  
= 0.32 μF (use closest value: 0.33 μF)  
Note:  
Microchip recommended capacitor:  
Evox Rifa p/n: 5MR5 334K50J03L4.  
Step 4.  
Choose CREF and CAZ based on  
conversion rate.  
Conversions/sec:  
= 1/(TAZ + TINT + 2 TINT + 2 ms)  
= 1/(66 ms +66 ms +132 ms +2 ms)  
= 3.7 conversions/sec  
From which CAZ = CREF = 0.22 μF  
(see Table 7-1)  
Note:  
Microchip recommended capacitor:  
Evox Rifa p/n: 5MR5 224K50J02L4  
Step 5.  
Calculate VREF:  
EQUATION 9-1:  
(VS 0.9)(CINT)(RINT  
VREF = ----------------------------------------------------------  
2(TINT  
)
)
(4.1)(0.33 × 106)(100 × 103)  
= -------------------------------------------------------------------------  
2(66 × 103  
)
= 1.025 (V)  
© 2008 Microchip Technology Inc.  
DS21428E-page 19  
TC500/A/510/514  
24  
23  
1
CAP-  
V
-
OUT  
C
INT  
1 μF  
0.33 μF  
Typical Waveforms  
Pin 2  
2
DGND  
C
C
+5V  
1 μF  
INT  
C
AZ  
TC510  
22  
21  
0.22 μF  
3
CAP+  
AZ  
V
+
IN  
4
V
DD  
+5V  
+5V  
BUF  
R
INT  
Pin 19  
100 kΩ  
5
6
ACOM  
®
PIC MCU  
19  
MCP1525  
CMPTR  
C
-
C
REF  
REF  
REF  
R
2
0.22 μF  
10 kΩ  
R , 10 kΩ  
Pin 2  
-
18  
17  
7
9
8
C
V
+
A
B
V
IN  
3
1 μF  
Pin 19  
+
-
REF  
16  
15  
C
V
+
IN  
1
V
INPUT+  
INPUT-  
REF  
0.01 μF  
V
-
IN  
FIGURE 9-1:  
TC510 Design Sample.  
1
28  
27  
V
-
CAP-  
OUT  
C
1 μF  
INT  
0.33 μF  
2
C
DGND  
1 μF  
INT  
+5V  
C
AZ  
26  
25  
0.22 μF  
3
4
CAP+  
C
AZ  
V
+5V  
TC514  
DD  
+5V  
BUF  
R
INT  
22  
19  
23  
A0  
100 kΩ  
Analog  
Mux Logic  
5
6
ACOM  
®
A1  
PIC MCU  
MCP1525  
CMPTR  
C
C
-
C
REF  
REF  
REF  
R
2 0.22 μF  
10 kΩ  
R , 10 kΩ  
22  
21  
7
9
8
A
B
+
3
1 μF  
V
V
+
-
REF  
REF  
18  
13  
C
1
CH1+  
CH1-  
INPUT 1+  
0.01 μF  
INPUT 1-  
Typical Waveforms  
PIN 2  
17  
12  
CH2+  
CH2-  
CH3+  
CH3-  
INPUT 2+  
INPUT 2-  
V
+
IN  
16  
11  
INPUT 3+  
INPUT 3-  
PIN 23  
15  
10  
CH4+  
CH4-  
INPUT4+  
INPUT4-  
PIN 2  
-
V
IN  
PIN 23  
FIGURE 9-2:  
TC514 Design Example.  
DS21428E-page 20  
© 2008 Microchip Technology Inc.  
TC500/A/510/514  
+5V  
21  
1
1 μF  
VDD VOUT  
-
24  
CAP-  
1 μF  
22  
7
CAP+  
CREF  
CREF  
VREF  
+
0.22 μF  
0.01 μF  
10 kΩ  
10 kΩ  
6
9
-
MCP1525  
+
1 μF  
TC510  
8
VREF  
-
100 kΩ  
0.22 μF  
PC  
Printer  
Port  
4
BUF  
CAZ  
18  
17  
3
2
A
B
PORT  
0378  
Hex  
0.33 μF  
100 kΩ  
3
2
CINT  
VIN+  
10  
19  
16  
CMPTR  
+
0.01 μF  
Input  
15  
5
VIN-  
ACOM  
DGND  
23  
®
FIGURE 9-3:  
TC510 To IBM Compatible Printer Port.  
© 2008 Microchip Technology Inc.  
DS21428E-page 21  
TC500/A/510/514  
+5V  
25  
V
DD  
1
28  
26  
1 μF  
1 μF  
18  
VOUT  
+
CH1+  
CAP–  
CAP+  
Input 1  
13  
17  
10 kΩ  
CH1–  
CH2+  
+
Input 2  
7
6
12  
16  
11  
CREF  
+
MCP1525  
CH2–  
CH3+  
CH3–  
0.22 μF  
0.01 μF  
+
CREF  
-
10 kΩ  
10 kΩ  
Input 3  
9
8
15  
10  
VREF+  
CH4+  
+
Input 4  
CH4– TC514  
VREF  
-
20  
A0  
Analog  
Mux Control Logic  
19  
22  
21  
23  
100 kΩ  
IBM®  
Printer Port  
2
A1  
4
3
BUF  
CAZ  
CINT  
A
Port  
0.22 μF  
0.33 μF  
2
3
0378  
B
Hex  
10  
CMPTR  
5
ACOM  
DGND  
27  
®
FIGURE 9-4:  
TC514 To IBM Compatible Printer Port.  
DS21428E-page 22  
© 2008 Microchip Technology Inc.  
TC500/A/510/514  
10.0 PACKAGING INFORMATION  
10.1 Package Marking Information  
16-Lead CERDIP (300 mil) (TC500/TC500A)  
Example:  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
TC500AIJE  
0818256  
YYWWNNN  
16-Lead PDIP (300 mil) (TC500/TC500A)  
Example:  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
TC500CPE
0818256  
e
3
YYWWNNN  
16-Lead SOIC (300 mil) (TC500/TC500A)  
Example:  
XXXXXXXXXXX  
XXXXXXXXXXX  
XXXXXXXXXXX  
TC500ACOE
e
3
0818256  
YYWWNNN  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2008 Microchip Technology Inc.  
DS21428E-page 23  
TC500/A/510/514  
Package Marking Information (Continued)  
24-Lead PDIP (300 mil) (TC510)  
Example:  
Example:  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
TC510CPF  
0818256  
24-Lead SOIC (300 mil) (TC510)  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
e
3
TC510COG
0818256  
YYWWNNN  
28-Lead PDIP (300 mil) (TC514)  
Example:  
Example:  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
TC514CPJ
e
3
0818256  
YYWWNNN  
28-Lead SOIC (300 mil) (TC514)  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
TC514COI  
e3  
0818256  
YYWWNNN  
DS21428E-page 24  
© 2008 Microchip Technology Inc.  
TC500/A/510/514  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢅꢊꢋꢌꢇꢍꢎꢅꢏꢇꢐꢑꢂꢃꢋꢑꢄꢇꢒꢓꢔꢕꢇꢖꢇꢗꢘꢙꢙꢚꢇꢛꢜꢆꢝꢇꢞꢈꢔꢟꢍꢐꢠꢡ  
ꢢꢜꢣꢄꢥ 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢔꢇꢍ3ꢇꢒꢉꢅ"ꢊꢇ)ꢃꢄꢒ 'ꢅꢔꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢔꢅꢂꢇꢍ3ꢇꢒꢃꢄꢒꢅꢑꢔꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢔ144)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢔꢁꢍꢌ&4ꢔꢇꢍ3ꢇꢒꢃꢄꢒ  
N
E1  
NOTE 1  
1
2
D
E
A2  
A
c
L
A1  
b1  
E2  
b
e
5ꢄꢃ%  
ꢙ6+7-ꢑ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ8ꢃ&ꢃ%  
ꢖꢙ6  
69ꢖ  
ꢖꢕ:  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
ꢀ;  
ꢁꢀꢚꢚꢅ0ꢑ+  
ꢔꢅ%ꢌꢅꢑꢉꢇ%ꢃꢄꢒꢅꢂꢈꢇꢄꢉ  
ꢑ%ꢇꢄ"ꢌ$$ꢅꢅꢐ  
+ꢉꢊꢇ&ꢃꢍꢅꢂꢇꢍ3ꢇꢒꢉꢅ7ꢉꢃꢒꢎ%  
ꢑꢎꢌ!ꢈ"ꢉꢊꢅ%ꢌꢅꢑꢎꢌ!ꢈ"ꢉꢊꢅ=ꢃ"%ꢎ  
+ꢉꢊꢇ&ꢃꢍꢅꢂꢇꢍ3ꢇꢒꢉꢅ=ꢃ"%ꢎ  
9ꢆꢉꢊꢇꢈꢈꢅ8ꢉꢄꢒ%ꢎ  
ꢘꢃꢔꢅ%ꢌꢅꢑꢉꢇ%ꢃꢄꢒꢅꢂꢈꢇꢄꢉ  
8ꢉꢇ"ꢅꢘꢎꢃꢍ3ꢄꢉ    
5ꢔꢔꢉꢊꢅ8ꢉꢇ"ꢅ=ꢃ"%ꢎ  
M
M
M
M
ꢁꢏꢚꢚ  
M
ꢕꢀ  
ꢕꢏ  
-
-ꢀ  
8
(ꢀ  
(
-ꢏ  
ꢁꢚꢀ/  
ꢁꢀꢗꢚ  
ꢁꢏꢜꢚ  
ꢁꢏꢗ/  
ꢁꢛꢗꢚ  
ꢁꢀꢏ/  
ꢁꢚꢚ>  
ꢁꢚꢗ/  
ꢁꢚꢀ/  
ꢁ,ꢏꢚ  
ꢁꢀꢛ/  
ꢁ,ꢏ/  
ꢁ,ꢚꢚ  
ꢁꢛ>ꢚ  
ꢁꢏꢚꢚ  
ꢁꢚꢀ/  
ꢁꢚ;/  
ꢁꢚꢏ,  
ꢁꢗꢀꢚ  
M
ꢁꢏ>>  
ꢁꢛ;ꢚ  
M
M
M
8ꢌ)ꢉꢊꢅ8ꢉꢇ"ꢅ=ꢃ"%ꢎ  
9ꢆꢉꢊꢇꢈꢈꢅꢝꢌ)ꢅꢑꢔꢇꢍꢃꢄꢒ  
M
M
ꢢꢜꢣꢄꢤꢥ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢐꢅꢑꢃꢒꢄꢃ$ꢃꢍꢇꢄ%ꢅ+ꢎꢇꢊꢇꢍ%ꢉꢊꢃ %ꢃꢍꢁ  
,ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢒꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢒꢅꢔꢉꢊꢅꢕꢑꢖ-ꢅ.ꢀꢗꢁ/ꢖꢁ  
0ꢑ+1 0ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢘꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢔ ꢍꢎꢄꢌꢈꢌꢒꢋ ꢓꢊꢇ)ꢃꢄꢒ +ꢚꢗꢞꢚꢚ,0  
© 2008 Microchip Technology Inc.  
DS21428E-page 25  
TC500/A/510/514  
ꢀꢁꢂꢃꢄꢅꢆꢇꢠꢏꢅꢤꢣꢋꢌꢇꢍꢎꢅꢏꢇꢐꢑꢂꢃꢋꢑꢄꢇꢒꢠꢔꢕꢇꢖꢇꢘꢙꢙꢇꢊꢋꢏꢇꢛꢜꢆꢝꢇꢞꢠꢍꢐꢠꢡ  
ꢢꢜꢣꢄꢥ 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢔꢇꢍ3ꢇꢒꢉꢅ"ꢊꢇ)ꢃꢄꢒ 'ꢅꢔꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢔꢅꢂꢇꢍ3ꢇꢒꢃꢄꢒꢅꢑꢔꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢔ144)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢔꢁꢍꢌ&4ꢔꢇꢍ3ꢇꢒꢃꢄꢒ  
N
NOTE 1  
E1  
1
2
3
D
E
A
A2  
L
c
A1  
b1  
e
eB  
b
5ꢄꢃ%  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ8ꢃ&ꢃ%  
ꢙ6+7-ꢑ  
69ꢖ  
ꢀ;  
ꢁꢀꢚꢚꢅ0ꢑ+  
M
ꢖꢙ6  
ꢖꢕ:  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
ꢔꢅ%ꢌꢅꢑꢉꢇ%ꢃꢄꢒꢅꢂꢈꢇꢄꢉ  
M
ꢁꢏꢀꢚ  
ꢁꢀꢜ/  
M
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ3ꢇꢒꢉꢅꢘꢎꢃꢍ3ꢄꢉ    
0ꢇ ꢉꢅ%ꢌꢅꢑꢉꢇ%ꢃꢄꢒꢅꢂꢈꢇꢄꢉ  
ꢑꢎꢌ!ꢈ"ꢉꢊꢅ%ꢌꢅꢑꢎꢌ!ꢈ"ꢉꢊꢅ=ꢃ"%ꢎ  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ3ꢇꢒꢉꢅ=ꢃ"%ꢎ  
9ꢆꢉꢊꢇꢈꢈꢅ8ꢉꢄꢒ%ꢎ  
ꢘꢃꢔꢅ%ꢌꢅꢑꢉꢇ%ꢃꢄꢒꢅꢂꢈꢇꢄꢉ  
8ꢉꢇ"ꢅꢘꢎꢃꢍ3ꢄꢉ    
5ꢔꢔꢉꢊꢅ8ꢉꢇ"ꢅ=ꢃ"%ꢎ  
ꢕꢏ  
ꢕꢀ  
-
-ꢀ  
8
(ꢀ  
(
ꢉ0  
ꢁꢀꢀ/  
ꢁꢚꢀ/  
ꢁꢏꢜꢚ  
ꢁꢏꢗꢚ  
ꢁꢛ,/  
ꢁꢀꢀ/  
ꢁꢚꢚ>  
ꢁꢚꢗ/  
ꢁꢚꢀꢗ  
M
ꢁꢀ,ꢚ  
M
ꢁ,ꢀꢚ  
ꢁꢏ/ꢚ  
ꢁꢛ//  
ꢁꢀ,ꢚ  
ꢁꢚꢀꢚ  
ꢁꢚ;ꢚ  
ꢁꢚꢀ>  
M
ꢁ,ꢏ/  
ꢁꢏ>ꢚ  
ꢁꢛꢛ/  
ꢁꢀ/ꢚ  
ꢁꢚꢀ/  
ꢁꢚꢛꢚ  
ꢁꢚꢏꢏ  
ꢁꢗ,ꢚ  
8ꢌ)ꢉꢊꢅ8ꢉꢇ"ꢅ=ꢃ"%ꢎ  
9ꢆꢉꢊꢇꢈꢈꢅꢝꢌ)ꢅꢑꢔꢇꢍꢃꢄꢒꢅꢅꢐ  
ꢢꢜꢣꢄꢤꢥ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢐꢅꢑꢃꢒꢄꢃ$ꢃꢍꢇꢄ%ꢅ+ꢎꢇꢊꢇꢍ%ꢉꢊꢃ %ꢃꢍꢁ  
,ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢓꢅꢇꢄ"ꢅ-ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢔꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢖꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢔꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢁꢚꢀꢚ?ꢅꢔꢉꢊꢅ ꢃ"ꢉꢁ  
ꢗꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢒꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢒꢅꢔꢉꢊꢅꢕꢑꢖ-ꢅ.ꢀꢗꢁ/ꢖꢁ  
0ꢑ+1 0ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢘꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢔ ꢍꢎꢄꢌꢈꢌꢒꢋ ꢓꢊꢇ)ꢃꢄꢒ +ꢚꢗꢞꢚꢀꢛ0  
DS21428E-page 26  
© 2008 Microchip Technology Inc.  
TC500/A/510/514  
ꢀꢁꢂꢃꢄꢅꢆꢇꢠꢏꢅꢤꢣꢋꢌꢇꢦꢊꢅꢏꢏꢇꢧꢎꢣꢏꢋꢑꢄꢇꢒꢧꢔꢕꢇꢖꢇꢨꢋꢆꢄꢩꢇꢪꢗꢫꢙꢇꢊꢊꢇꢛꢜꢆꢝꢇꢞꢦꢧꢐꢈꢡ  
ꢢꢜꢣꢄꢥ 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢔꢇꢍ3ꢇꢒꢉꢅ"ꢊꢇ)ꢃꢄꢒ 'ꢅꢔꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢔꢅꢂꢇꢍ3ꢇꢒꢃꢄꢒꢅꢑꢔꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢔ144)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢔꢁꢍꢌ&4ꢔꢇꢍ3ꢇꢒꢃꢄꢒ  
D
N
E
E1  
NOTE 1  
1
2 3  
e
b
h
α
h
c
φ
A
A2  
L
β
A1  
L1  
5ꢄꢃ%  
ꢖꢙ88ꢙꢖ-ꢘ-ꢝꢑ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ8ꢃ&ꢃ%  
ꢖꢙ6  
69ꢖ  
ꢖꢕ:  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
ꢀ;  
ꢀꢁꢏꢛꢅ0ꢑ+  
9ꢆꢉꢊꢇꢈꢈꢅ7ꢉꢃꢒꢎ%  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ3ꢇꢒꢉꢅꢘꢎꢃꢍ3ꢄꢉ    
ꢑ%ꢇꢄ"ꢌ$$ꢅꢅꢐ  
M
ꢏꢁꢚ/  
ꢚꢁꢀꢚ  
M
M
M
ꢏꢁ;/  
M
ꢚꢁ,ꢚ  
ꢕꢏ  
ꢕꢀ  
-
9ꢆꢉꢊꢇꢈꢈꢅ=ꢃ"%ꢎ  
ꢀꢚꢁ,ꢚꢅ0ꢑ+  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ3ꢇꢒꢉꢅ=ꢃ"%ꢎ  
9ꢆꢉꢊꢇꢈꢈꢅ8ꢉꢄꢒ%ꢎ  
+ꢎꢇ&$ꢉꢊꢅ@ꢌꢔ%ꢃꢌꢄꢇꢈA  
2ꢌꢌ%ꢅ8ꢉꢄꢒ%ꢎ  
-ꢀ  
ꢛꢁ/ꢚꢅ0ꢑ+  
ꢀꢚꢁ,ꢚꢅ0ꢑ+  
ꢚꢁꢏ/  
ꢚꢁꢗꢚ  
M
M
ꢚꢁꢛ/  
ꢀꢁꢏꢛ  
8
2ꢌꢌ%ꢔꢊꢃꢄ%  
2ꢌꢌ%ꢅꢕꢄꢒꢈꢉ  
8ꢉꢇ"ꢅꢘꢎꢃꢍ3ꢄꢉ    
8ꢉꢇ"ꢅ=ꢃ"%ꢎ  
ꢖꢌꢈ"ꢅꢓꢊꢇ$%ꢅꢕꢄꢒꢈꢉꢅ  
ꢖꢌꢈ"ꢅꢓꢊꢇ$%ꢅꢕꢄꢒꢈꢉꢅ0ꢌ%%ꢌ&  
8ꢀ  
ꢀꢁꢗꢚꢅꢝ-2  
ꢚꢟ  
ꢚꢁꢏꢚ  
ꢚꢁ,ꢀ  
/ꢟ  
M
M
M
M
M
>ꢟ  
(
ꢚꢁ,,  
ꢚꢁ/ꢀ  
ꢀ/ꢟ  
/ꢟ  
ꢀ/ꢟ  
ꢢꢜꢣꢄꢤꢥ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢐꢅꢑꢃꢒꢄꢃ$ꢃꢍꢇꢄ%ꢅ+ꢎꢇꢊꢇꢍ%ꢉꢊꢃ %ꢃꢍꢁ  
,ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢓꢅꢇꢄ"ꢅ-ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢔꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢖꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢔꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢚꢁꢀ/ꢅ&&ꢅꢔꢉꢊꢅ ꢃ"ꢉꢁ  
ꢗꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢒꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢒꢅꢔꢉꢊꢅꢕꢑꢖ-ꢅ.ꢀꢗꢁ/ꢖꢁ  
0ꢑ+1 0ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢘꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢝ-21 ꢝꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢔ!ꢊꢔꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢔ ꢍꢎꢄꢌꢈꢌꢒꢋ ꢓꢊꢇ)ꢃꢄꢒ +ꢚꢗꢞꢀꢚꢏ0  
© 2008 Microchip Technology Inc.  
DS21428E-page 27  
TC500/A/510/514  
ꢀꢁꢂꢃꢄꢅꢆꢇꢠꢏꢅꢤꢣꢋꢌꢇꢦꢊꢅꢏꢏꢇꢧꢎꢣꢏꢋꢑꢄꢇꢒꢧꢔꢕꢇꢖꢇꢨꢋꢆꢄꢩꢇꢪꢗꢫꢙꢇꢊꢊꢇꢛꢜꢆꢝꢇꢞꢦꢧꢐꢈꢡꢇꢃꢅꢑꢆꢇꢠꢅꢣꢣꢄꢉꢑꢇꢇ  
ꢢꢜꢣꢄꢥ 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢔꢇꢍ3ꢇꢒꢉꢅ"ꢊꢇ)ꢃꢄꢒ 'ꢅꢔꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢔꢅꢂꢇꢍ3ꢇꢒꢃꢄꢒꢅꢑꢔꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢔ144)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢔꢁꢍꢌ&4ꢔꢇꢍ3ꢇꢒꢃꢄꢒ  
DS21428E-page 28  
© 2008 Microchip Technology Inc.  
TC500/A/510/514  
ꢬꢭꢂꢃꢄꢅꢆꢇꢦꢮꢋꢑꢑꢝꢇꢠꢏꢅꢤꢣꢋꢌꢇꢍꢎꢅꢏꢇꢐꢑꢂꢃꢋꢑꢄꢇꢒꢠꢯꢕꢇꢖꢇꢘꢙꢙꢇꢊꢋꢏꢇꢛꢜꢆꢝꢇꢞꢦꢠꢍꢐꢠꢡ  
ꢢꢜꢣꢄꢥ 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢔꢇꢍ3ꢇꢒꢉꢅ"ꢊꢇ)ꢃꢄꢒ 'ꢅꢔꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢔꢅꢂꢇꢍ3ꢇꢒꢃꢄꢒꢅꢑꢔꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢔ144)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢔꢁꢍꢌ&4ꢔꢇꢍ3ꢇꢒꢃꢄꢒ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
c
A1  
b1  
b
e
eB  
5ꢄꢃ%  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ8ꢃ&ꢃ%  
ꢙ6+7-ꢑ  
69ꢖ  
ꢏꢗ  
ꢁꢀꢚꢚꢅ0ꢑ+  
M
ꢖꢙ6  
ꢖꢕ:  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
ꢔꢅ%ꢌꢅꢑꢉꢇ%ꢃꢄꢒꢅꢂꢈꢇꢄꢉ  
M
ꢁꢏꢀꢚ  
ꢁꢀꢜ/  
M
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ3ꢇꢒꢉꢅꢘꢎꢃꢍ3ꢄꢉ    
0ꢇ ꢉꢅ%ꢌꢅꢑꢉꢇ%ꢃꢄꢒꢅꢂꢈꢇꢄꢉ  
ꢑꢎꢌ!ꢈ"ꢉꢊꢅ%ꢌꢅꢑꢎꢌ!ꢈ"ꢉꢊꢅ=ꢃ"%ꢎ  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ3ꢇꢒꢉꢅ=ꢃ"%ꢎ  
9ꢆꢉꢊꢇꢈꢈꢅ8ꢉꢄꢒ%ꢎ  
ꢘꢃꢔꢅ%ꢌꢅꢑꢉꢇ%ꢃꢄꢒꢅꢂꢈꢇꢄꢉ  
8ꢉꢇ"ꢅꢘꢎꢃꢍ3ꢄꢉ    
5ꢔꢔꢉꢊꢅ8ꢉꢇ"ꢅ=ꢃ"%ꢎ  
ꢕꢏ  
ꢕꢀ  
-
-ꢀ  
8
(ꢀ  
(
ꢉ0  
ꢁꢀꢀ/  
ꢁꢚꢀ/  
ꢁꢏ>ꢚ  
ꢁꢏꢗꢚ  
ꢀꢁꢀ//  
ꢁꢀꢀ/  
ꢁꢚꢚ>  
ꢁꢚꢗ/  
ꢁꢚꢀꢗ  
M
ꢁꢀ,ꢚ  
M
ꢁ,ꢀꢚ  
ꢁꢏ/ꢚ  
ꢀꢁꢏ/ꢚ  
ꢁꢀ,ꢚ  
ꢁꢚꢀꢚ  
ꢁꢚ;ꢚ  
ꢁꢚꢀ>  
M
ꢁ,ꢏ/  
ꢁꢏ>ꢚ  
ꢀꢁꢏ>ꢚ  
ꢁꢀ;ꢚ  
ꢁꢚꢀ/  
ꢁꢚꢛꢚ  
ꢁꢚꢏ,  
ꢁꢗ,ꢚ  
8ꢌ)ꢉꢊꢅ8ꢉꢇ"ꢅ=ꢃ"%ꢎ  
9ꢆꢉꢊꢇꢈꢈꢅꢝꢌ)ꢅꢑꢔꢇꢍꢃꢄꢒꢅꢅꢐ  
ꢢꢜꢣꢄꢤꢥ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢐꢅꢑꢃꢒꢄꢃ$ꢃꢍꢇꢄ%ꢅ+ꢎꢇꢊꢇꢍ%ꢉꢊꢃ %ꢃꢍꢁ  
,ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢓꢅꢇꢄ"ꢅ-ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢔꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢖꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢔꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢁꢚꢀꢚ?ꢅꢔꢉꢊꢅ ꢃ"ꢉꢁ  
ꢗꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢒꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢒꢅꢔꢉꢊꢅꢕꢑꢖ-ꢅ.ꢀꢗꢁ/ꢖꢁ  
0ꢑ+1 0ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢘꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢔ ꢍꢎꢄꢌꢈꢌꢒꢋ ꢓꢊꢇ)ꢃꢄꢒ +ꢚꢗꢞꢚꢗ,0  
© 2008 Microchip Technology Inc.  
DS21428E-page 29  
TC500/A/510/514  
ꢬꢭꢂꢃꢄꢅꢆꢇꢠꢏꢅꢤꢣꢋꢌꢇꢦꢊꢅꢏꢏꢇꢧꢎꢣꢏꢋꢑꢄꢇꢒOGꢕꢇꢖꢇꢨꢋꢆꢄꢩꢇꢪꢗꢫꢙꢇꢊꢊꢇꢛꢜꢆꢝꢇꢞꢦꢧꢐꢈꢡ  
ꢢꢜꢣꢄꢥ 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢔꢇꢍ3ꢇꢒꢉꢅ"ꢊꢇ)ꢃꢄꢒ 'ꢅꢔꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢔꢅꢂꢇꢍ3ꢇꢒꢃꢄꢒꢅꢑꢔꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢔ144)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢔꢁꢍꢌ&4ꢔꢇꢍ3ꢇꢒꢃꢄꢒ  
D
N
E
E1  
NOTE 1  
1
3
2
e
b
α
h
h
c
φ
A
A2  
L
β
A1  
L1  
5ꢄꢃ%  
ꢖꢙ88ꢙꢖ-ꢘ-ꢝꢑ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ8ꢃ&ꢃ%  
ꢖꢙ6  
69ꢖ  
ꢖꢕ:  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
ꢏꢗ  
ꢀꢁꢏꢛꢅ0ꢑ+  
9ꢆꢉꢊꢇꢈꢈꢅ7ꢉꢃꢒꢎ%  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ3ꢇꢒꢉꢅꢘꢎꢃꢍ3ꢄꢉ    
ꢑ%ꢇꢄ"ꢌ$$ꢅꢅꢐ  
M
ꢏꢁꢚ/  
ꢚꢁꢀꢚ  
M
M
M
ꢏꢁ;/  
M
ꢚꢁ,ꢚ  
ꢕꢏ  
ꢕꢀ  
-
9ꢆꢉꢊꢇꢈꢈꢅ=ꢃ"%ꢎ  
ꢀꢚꢁ,ꢚꢅ0ꢑ+  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ3ꢇꢒꢉꢅ=ꢃ"%ꢎ  
9ꢆꢉꢊꢇꢈꢈꢅ8ꢉꢄꢒ%ꢎ  
+ꢎꢇ&$ꢉꢊꢅ@ꢌꢔ%ꢃꢌꢄꢇꢈA  
2ꢌꢌ%ꢅ8ꢉꢄꢒ%ꢎ  
-ꢀ  
ꢛꢁ/ꢚꢅ0ꢑ+  
ꢀ/ꢁꢗꢚꢅ0ꢑ+  
ꢚꢁꢏ/  
ꢚꢁꢗꢚ  
M
M
ꢚꢁꢛ/  
ꢀꢁꢏꢛ  
8
2ꢌꢌ%ꢔꢊꢃꢄ%  
2ꢌꢌ%ꢅꢕꢄꢒꢈꢉ  
8ꢉꢇ"ꢅꢘꢎꢃꢍ3ꢄꢉ    
8ꢉꢇ"ꢅ=ꢃ"%ꢎ  
ꢖꢌꢈ"ꢅꢓꢊꢇ$%ꢅꢕꢄꢒꢈꢉꢅ  
ꢖꢌꢈ"ꢅꢓꢊꢇ$%ꢅꢕꢄꢒꢈꢉꢅ0ꢌ%%ꢌ&  
8ꢀ  
ꢀꢁꢗꢚꢅꢝ-2  
ꢚꢟ  
ꢚꢁꢏꢚ  
ꢚꢁ,ꢀ  
/ꢟ  
M
M
M
M
M
>ꢟ  
(
ꢚꢁ,,  
ꢚꢁ/ꢀ  
ꢀ/ꢟ  
/ꢟ  
ꢀ/ꢟ  
ꢢꢜꢣꢄꢤꢥ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢐꢅꢑꢃꢒꢄꢃ$ꢃꢍꢇꢄ%ꢅ+ꢎꢇꢊꢇꢍ%ꢉꢊꢃ %ꢃꢍꢁ  
,ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢓꢅꢇꢄ"ꢅ-ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢔꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢖꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢔꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢚꢁꢀ/ꢅ&&ꢅꢔꢉꢊꢅ ꢃ"ꢉꢁ  
ꢗꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢒꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢒꢅꢔꢉꢊꢅꢕꢑꢖ-ꢅ.ꢀꢗꢁ/ꢖꢁ  
0ꢑ+1 0ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢘꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢝ-21 ꢝꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢔ!ꢊꢔꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢔ ꢍꢎꢄꢌꢈꢌꢒꢋ ꢓꢊꢇ)ꢃꢄꢒ +ꢚꢗꢞꢚꢏ/0  
DS21428E-page 30  
© 2008 Microchip Technology Inc.  
TC500/A/510/514  
ꢬꢰꢂꢃꢄꢅꢆꢇꢦꢮꢋꢑꢑꢝꢇꢠꢏꢅꢤꢣꢋꢌꢇꢍꢎꢅꢏꢇꢐꢑꢂꢃꢋꢑꢄꢇꢒꢠꢓꢕꢇꢖꢇꢘꢙꢙꢇꢊꢋꢏꢇꢛꢜꢆꢝꢇꢞꢦꢠꢍꢐꢠꢡ  
ꢢꢜꢣꢄꢥ 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢔꢇꢍ3ꢇꢒꢉꢅ"ꢊꢇ)ꢃꢄꢒ 'ꢅꢔꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢔꢅꢂꢇꢍ3ꢇꢒꢃꢄꢒꢅꢑꢔꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢔ144)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢔꢁꢍꢌ&4ꢔꢇꢍ3ꢇꢒꢃꢄꢒ  
N
NOTE 1  
E1  
1
2 3  
D
E
A2  
A
L
c
b1  
A1  
b
e
eB  
5ꢄꢃ%  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ8ꢃ&ꢃ%  
ꢙ6+7-ꢑ  
69ꢖ  
ꢏ>  
ꢁꢀꢚꢚꢅ0ꢑ+  
M
ꢖꢙ6  
ꢖꢕ:  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
ꢔꢅ%ꢌꢅꢑꢉꢇ%ꢃꢄꢒꢅꢂꢈꢇꢄꢉ  
M
ꢁꢏꢚꢚ  
ꢁꢀ/ꢚ  
M
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ3ꢇꢒꢉꢅꢘꢎꢃꢍ3ꢄꢉ    
0ꢇ ꢉꢅ%ꢌꢅꢑꢉꢇ%ꢃꢄꢒꢅꢂꢈꢇꢄꢉ  
ꢑꢎꢌ!ꢈ"ꢉꢊꢅ%ꢌꢅꢑꢎꢌ!ꢈ"ꢉꢊꢅ=ꢃ"%ꢎ  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ3ꢇꢒꢉꢅ=ꢃ"%ꢎ  
9ꢆꢉꢊꢇꢈꢈꢅ8ꢉꢄꢒ%ꢎ  
ꢘꢃꢔꢅ%ꢌꢅꢑꢉꢇ%ꢃꢄꢒꢅꢂꢈꢇꢄꢉ  
8ꢉꢇ"ꢅꢘꢎꢃꢍ3ꢄꢉ    
5ꢔꢔꢉꢊꢅ8ꢉꢇ"ꢅ=ꢃ"%ꢎ  
ꢕꢏ  
ꢕꢀ  
-
-ꢀ  
8
(ꢀ  
(
ꢉ0  
ꢁꢀꢏꢚ  
ꢁꢚꢀ/  
ꢁꢏꢜꢚ  
ꢁꢏꢗꢚ  
ꢀꢁ,ꢗ/  
ꢁꢀꢀꢚ  
ꢁꢚꢚ>  
ꢁꢚꢗꢚ  
ꢁꢚꢀꢗ  
M
ꢁꢀ,/  
M
ꢁ,ꢀꢚ  
ꢁꢏ>/  
ꢀꢁ,;/  
ꢁꢀ,ꢚ  
ꢁꢚꢀꢚ  
ꢁꢚ/ꢚ  
ꢁꢚꢀ>  
M
ꢁ,,/  
ꢁꢏꢜ/  
ꢀꢁꢗꢚꢚ  
ꢁꢀ/ꢚ  
ꢁꢚꢀ/  
ꢁꢚꢛꢚ  
ꢁꢚꢏꢏ  
ꢁꢗ,ꢚ  
8ꢌ)ꢉꢊꢅ8ꢉꢇ"ꢅ=ꢃ"%ꢎ  
9ꢆꢉꢊꢇꢈꢈꢅꢝꢌ)ꢅꢑꢔꢇꢍꢃꢄꢒꢅꢅꢐ  
ꢢꢜꢣꢄꢤꢥ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢐꢅꢑꢃꢒꢄꢃ$ꢃꢍꢇꢄ%ꢅ+ꢎꢇꢊꢇꢍ%ꢉꢊꢃ %ꢃꢍꢁ  
,ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢓꢅꢇꢄ"ꢅ-ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢔꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢖꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢔꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢁꢚꢀꢚ?ꢅꢔꢉꢊꢅ ꢃ"ꢉꢁ  
ꢗꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢒꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢒꢅꢔꢉꢊꢅꢕꢑꢖ-ꢅ.ꢀꢗꢁ/ꢖꢁ  
0ꢑ+1 0ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢘꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢔ ꢍꢎꢄꢌꢈꢌꢒꢋ ꢓꢊꢇ)ꢃꢄꢒ +ꢚꢗꢞꢚꢛꢚ0  
© 2008 Microchip Technology Inc.  
DS21428E-page 31  
TC500/A/510/514  
ꢬꢰꢂꢃꢄꢅꢆꢇꢠꢏꢅꢤꢣꢋꢌꢇꢦꢊꢅꢏꢏꢇꢧꢎꢣꢏꢋꢑꢄꢇꢒꢧꢐꢕꢇꢖꢇꢨꢋꢆꢄꢩꢇꢪꢗꢫꢙꢇꢊꢊꢇꢛꢜꢆꢝꢇꢞꢦꢧꢐꢈꢡ  
ꢢꢜꢣꢄꢥ 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢔꢇꢍ3ꢇꢒꢉꢅ"ꢊꢇ)ꢃꢄꢒ 'ꢅꢔꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢔꢅꢂꢇꢍ3ꢇꢒꢃꢄꢒꢅꢑꢔꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢔ144)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢔꢁꢍꢌ&4ꢔꢇꢍ3ꢇꢒꢃꢄꢒ  
D
N
E
E1  
NOTE 1  
1
2
3
e
b
h
α
h
c
φ
A2  
A
L
A1  
L1  
β
5ꢄꢃ%  
ꢖꢙ88ꢙꢖ-ꢘ-ꢝꢑ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ8ꢃ&ꢃ%  
ꢖꢙ6  
69ꢖ  
ꢖꢕ:  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
ꢏ>  
ꢀꢁꢏꢛꢅ0ꢑ+  
9ꢆꢉꢊꢇꢈꢈꢅ7ꢉꢃꢒꢎ%  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ3ꢇꢒꢉꢅꢘꢎꢃꢍ3ꢄꢉ    
ꢑ%ꢇꢄ"ꢌ$$ꢅꢅꢐ  
M
ꢏꢁꢚ/  
ꢚꢁꢀꢚ  
M
M
M
ꢏꢁ;/  
M
ꢚꢁ,ꢚ  
ꢕꢏ  
ꢕꢀ  
-
9ꢆꢉꢊꢇꢈꢈꢅ=ꢃ"%ꢎ  
ꢀꢚꢁ,ꢚꢅ0ꢑ+  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ3ꢇꢒꢉꢅ=ꢃ"%ꢎ  
9ꢆꢉꢊꢇꢈꢈꢅ8ꢉꢄꢒ%ꢎ  
+ꢎꢇ&$ꢉꢊꢅ@ꢌꢔ%ꢃꢌꢄꢇꢈA  
2ꢌꢌ%ꢅ8ꢉꢄꢒ%ꢎ  
-ꢀ  
ꢛꢁ/ꢚꢅ0ꢑ+  
ꢀꢛꢁꢜꢚꢅ0ꢑ+  
ꢚꢁꢏ/  
ꢚꢁꢗꢚ  
M
M
ꢚꢁꢛ/  
ꢀꢁꢏꢛ  
8
2ꢌꢌ%ꢔꢊꢃꢄ%  
8ꢀ  
ꢀꢁꢗꢚꢅꢝ-2  
2ꢌꢌ%ꢅꢕꢄꢒꢈꢉꢅ  
8ꢉꢇ"ꢅꢘꢎꢃꢍ3ꢄꢉ    
8ꢉꢇ"ꢅ=ꢃ"%ꢎ  
ꢖꢌꢈ"ꢅꢓꢊꢇ$%ꢅꢕꢄꢒꢈꢉꢅ  
ꢖꢌꢈ"ꢅꢓꢊꢇ$%ꢅꢕꢄꢒꢈꢉꢅ0ꢌ%%ꢌ&  
ꢚꢟ  
ꢚꢁꢀ>  
ꢚꢁ,ꢀ  
/ꢟ  
M
M
M
M
M
>ꢟ  
(
ꢚꢁ,,  
ꢚꢁ/ꢀ  
ꢀ/ꢟ  
/ꢟ  
ꢀ/ꢟ  
ꢢꢜꢣꢄꢤꢥ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢐꢅꢑꢃꢒꢄꢃ$ꢃꢍꢇꢄ%ꢅ+ꢎꢇꢊꢇꢍ%ꢉꢊꢃ %ꢃꢍꢁ  
,ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢓꢅꢇꢄ"ꢅ-ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢔꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢖꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢔꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢚꢁꢀ/ꢅ&&ꢅꢔꢉꢊꢅ ꢃ"ꢉꢁ  
ꢗꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢒꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢒꢅꢔꢉꢊꢅꢕꢑꢖ-ꢅ.ꢀꢗꢁ/ꢖꢁ  
0ꢑ+1 0ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢘꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢝ-21 ꢝꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢔ!ꢊꢔꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢔ ꢍꢎꢄꢌꢈꢌꢒꢋ ꢓꢊꢇ)ꢃꢄꢒ +ꢚꢗꢞꢚ/ꢏ0  
DS21428E-page 32  
© 2008 Microchip Technology Inc.  
TC500/A/510/514  
APPENDIX A: REVISION HISTORY  
Revision E (November 2008)  
• Updated Section 10.0 “Packaging Informa-  
tion”.  
Revision D (January 2006)  
• Undocumented changes.  
Revision C (January 2004)  
• Undocumented changes.  
Revision B (May 2002)  
• Undocumented changes.  
Revision A (March 2001)  
• Initial release of this document.  
© 2008 Microchip Technology Inc.  
DS21428E-page 33  
TC500/A/510/514  
NOTES:  
DS21428E-page 34  
© 2008 Microchip Technology Inc.  
TC500/A/510/514  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
Examples:  
Temperature  
Range  
Package  
a)  
b)  
TC500ACOE:  
Commercial Temp.,  
16LD SOIC package.  
TC500ACOE713: Commercial Temp.,  
16LD SOIC package,  
Tape and Reel.  
Device  
TC500 16 Bit Analog Processor  
TC500A 16 Bit Analog Processor  
TC510 Precision Analog Front End  
TC514 Precision Analog Front End  
c)  
d)  
TC500ACPE:  
TC500AIJE:  
Commercial Temp.,  
16LD PDIP package.  
Industrial Temp.,  
16LD CERDIP package.  
a)  
b)  
TC500COE:  
Commercial Temp.,  
16LD SOIC package.  
Commercial Temp.,  
16LD SOIC package,  
Tape and Reel.  
Commercial Temp.,  
16LD PDIP package.  
Industrial Temp.,  
Temperature Range  
Package  
C
I
=
0°C to +70°C (Commercial)  
= 25°C to +85°C (Industrial)  
TC500COE713:  
JE  
PE  
OE  
OE713  
=
=
=
=
Ceramic Dual In-line, (300 mil Body), 16-lead  
Plastic DIP, (300 mil Body), 16-lead  
Plastic SOIC, (300 mil Body), 16-lead  
Plastic SOIC, (300 mil Body), 16-lead  
(Tape and Reel)  
c)  
d)  
TC500CPE:  
TC500IJE:  
16LD CERDIP package.  
PF  
OG  
OG713  
=
=
=
Plastic DIP, (300 mil Body), 24-lead  
Plastic SOIC, (300 mil Body), 24-lead  
Plastic SOIC, (300 mil Body), 24-lead  
(Tape and Reel)  
Plastic DIP, (300 mil Body), 28-lead  
Plastic SOIC, (300 mil Body), 28-lead  
Plastic SOIC, (300 mil Body), 28-lead  
(Tape and Reel)  
a)  
b)  
TC510COG:  
Commercial Temp.,  
24LD PDIP package.  
Commercial Temp.,  
24LD PDIP package,  
Tape and Reel.  
TC510COG713:  
PJ  
OI  
OI713  
=
=
=
c)  
TC510CPF:  
Commercial Temp.,  
24LD PDIP package.  
a)  
b)  
TC514COI:  
Commercial Temp.,  
28LD PDIP package.  
Commercial Temp.,  
28LD PDIP package,  
Tape and Reel.  
TC514COI713:  
c)  
TC514CPJ:  
Commercial Temp.,  
28LD PDIP package.  
© 2008 Microchip Technology Inc.  
DS21428E-page 35  
TC500/A/510/514  
NOTES:  
DS21428E-page 36  
© 2008 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, rfPIC, SmartShunt and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, In-Circuit Serial  
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,  
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,  
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total  
Endurance, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2008, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2008 Microchip Technology Inc.  
DS21428E-page 37  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
01/02/08  
DS21428E-page 38  
© 2008 Microchip Technology Inc.  

相关型号:

TC510IOIOI713

Precision Analog Front Ends
MICROCHIP

TC510IPE

Precision Analog Front Ends
MICROCHIP

TC510IPF

Precision Analog Front Ends
MICROCHIP

TC510IPJ

Precision Analog Front Ends
MICROCHIP

TC511000BFT-70

IC 1M X 1 FAST PAGE DRAM, 70 ns, PDSO20, 6 X 16 MM, TSOP1-24/20, Dynamic RAM
TOSHIBA

TC511000BTR-10

IC 1M X 1 FAST PAGE DRAM, 100 ns, PDSO20, 6 X 16 MM, REVERSE, TSOP1-24/20, Dynamic RAM
TOSHIBA

TC511000BTR-60

IC 1M X 1 FAST PAGE DRAM, 60 ns, PDSO20, 6 X 16 MM, REVERSE, TSOP1-24/20, Dynamic RAM
TOSHIBA

TC511000BTRL-10

IC 1M X 1 FAST PAGE DRAM, 100 ns, PDSO20, 6 X 16 MM, REVERSE, TSOP1-24/20, Dynamic RAM
TOSHIBA

TC511000BTRL-70

IC 1M X 1 FAST PAGE DRAM, 70 ns, PDSO20, 6 X 16 MM, REVERSE, TSOP1-24/20, Dynamic RAM
TOSHIBA

TC511000BTRL-80

IC 1M X 1 FAST PAGE DRAM, 80 ns, PDSO20, 6 X 16 MM, REVERSE, TSOP1-24/20, Dynamic RAM
TOSHIBA

TC511001AZ-80

IC 1M X 1 NIBBLE MODE DRAM, 80 ns, PZIP19, 0.400 INCH, PLASTIC, ZIP-20/19, Dynamic RAM
TOSHIBA

TC511002AZ-70

IC 1M X 1 STATIC COLUMN DRAM, 70 ns, PZIP19, 0.400 INCH, PLASTIC, ZIP-20/19, Dynamic RAM
TOSHIBA