TC1304-AP0EMFTR [MICROCHIP]

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output; ,500 mA同步降压稳压器, + 300毫安LDO与电源就绪输出
TC1304-AP0EMFTR
型号: TC1304-AP0EMFTR
厂家: MICROCHIP    MICROCHIP
描述:

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output
,500 mA同步降压稳压器, + 300毫安LDO与电源就绪输出

稳压器
文件: 总36页 (文件大小:613K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC1303A/TC1303B/  
TC1303C/TC1304  
500 mA Synchronous Buck Regulator,  
+ 300 mA LDO with Power-Good Output  
Features  
Description  
• Dual-Output Regulator (500 mA Buck Regulator  
and 300 mA Low-Dropout Regulator)  
The TC1303/TC1304 combines a 500 mA synchro-  
nous buck regulator and 300 mA Low-Dropout Regula-  
tor (LDO) with a power-good monitor to provide a highly  
integrated solution for devices that require multiple  
supply voltages. The unique combination of an  
integrated buck switching regulator and low-dropout  
linear regulator provides the lowest system cost for  
dual-output voltage applications that require one lower  
processor core voltage and one higher bias voltage.  
• Power-Good Output with 300 ms Delay  
Total Device Quiescent Current = 65 µA, Typ.  
• Independent Shutdown for Buck and LDO  
Outputs (TC1303)  
• Both Outputs Internally Compensated  
• Synchronous Buck Regulator:  
- Over 90% Typical Efficiency  
The 500 mA synchronous buck regulator switches at a  
fixed frequency of 2.0 MHz when the load is heavy,  
providing a low noise, small-size solution. When the  
load on the buck output is reduced to light levels, it  
changes operation to a Pulse Frequency Modulation  
(PFM) mode to minimize quiescent current draw from  
the battery. No intervention is necessary for smooth  
transition from one mode to another.  
- 2.0 MHz Fixed-Frequency PWM  
(Heavy Load)  
- Low Output Noise  
- Automatic PWM to PFM mode transition  
- Adjustable (0.8V to 4.5V) and Standard  
Fixed-Output Voltages (0.8V, 1.2V, 1.5V,  
1.8V, 2.5V, 3.3V)  
The LDO provides a 300 mA auxiliary output that  
requires a single 1 µF ceramic output capacitor,  
minimizing board area and cost. The typical dropout  
voltage for the LDO output is 137 mV for a 200 mA  
load.  
• Low-Dropout Regulator:  
- Low-Dropout Voltage = 137 mV Typ. @  
200 mA  
- Standard Fixed-Output Voltages  
(1.5V, 1.8V, 2.5V, 3.3V)  
For the TC1303/TC1304, the power-good output is  
based on the regulation of the buck regulator output, the  
LDO output or the combination of both. The TC1304  
features start-up and shutdown output sequencing.  
• Power-Good Function:  
- Monitors Buck Output Function (TC1303A)  
- Monitors LDO Output Function (TC1303B)  
- Monitors Both Buck and LDO Output Func-  
tions (TC1303C and TC1304)  
The TC1303/TC1304 is available in either the 10-pin  
DFN or MSOP package.  
- 300 ms Delay Used for Processor Reset  
Additional protection features include: UVLO,  
overtemperature and overcurrent protection on both  
outputs.  
• Sequenced Startup and Shutdown (TC1304)  
• Small 10-pin 3X3 DFN or MSOP Package  
Options  
For a complete listing of TC1303/TC1304 standard  
parts, consult your Microchip representative.  
• Operating Junction Temperature Range:  
- -40°C to +125°C  
• Undervoltage Lockout (UVLO)  
• Output Short Circuit Protection  
• Overtemperature Protection  
Applications  
• Cellular Phones  
• Portable Computers  
• USB-Powered Devices  
• Handheld Medical Instruments  
• Organizers and PDAs  
© 2005 Microchip Technology Inc.  
DS21949B-page 1  
TC1303A/TC1303B/TC1303C/TC1304  
Package Types  
TC1303A,B,C  
10-Lead DFN  
10-Lead MSOP  
PGND  
10  
9
SHDN2  
VIN2  
1
2
3
4
5
PGND  
SHDN2 1  
10  
9
LX  
VIN2  
2
LX  
VIN1  
VOUT2  
8
VOUT2  
3
VIN1  
8
7
SHDN1  
PG  
4
7
SHDN1  
VFB1/VOUT1  
PG  
VFB1/VOUT1  
AGND  
6
AGND  
5
6
TC1304  
10-Lead DFN  
10-Lead MSOP  
PGND  
10  
9
SHDN  
VIN2  
1
PGND  
SHDN 1  
10  
9
LX  
VIN2  
2
2
3
4
5
LX  
VIN1  
VOUT2  
8
VOUT2  
3
VIN1  
8
7
AGND  
PG  
AGND  
4
5
7
PG  
VFB1/VOUT1  
AGND  
6
AGND  
6
VFB1/VOUT1  
DS21949B-page 2  
© 2005 Microchip Technology Inc.  
TC1303A/TC1303B/TC1303C/TC1304  
Functional Block Diagram – TC1303  
Undervoltage Lockout  
(UVLO)  
UVLO  
VREF  
Synchronous Buck Regulator  
VIN1  
PDRV  
VIN2  
LX  
Driver  
Control  
SHDN1  
NDRV  
PGND  
PGND  
PGND  
AGND  
VOUT1/VFB1  
Sense Switcher for A,C  
PG  
TC1303A(1),B(2),C(1) options  
PG Generator with Delay  
VREF  
Sense LDO for B,C  
UVLO  
VOUT2  
LDO  
SHDN2  
AGND  
Note 1: PG open-drain for A,C options  
2: PG push-pull output for B option  
© 2005 Microchip Technology Inc.  
DS21949B-page 3  
TC1303A/TC1303B/TC1303C/TC1304  
Functional Block Diagram – TC1304  
Undervoltage Lockout  
(UVLO)  
UVLO  
VREF  
Synchronous Buck Regulator  
VIN1  
PDRV  
VIN2  
LX  
Driver  
Control  
SHDN  
NDRV  
PGND  
PGND  
PGND  
AGND  
VOUT1/VFB1  
PG  
TC1304(Note)  
PG Generator with Delay  
Output Voltage  
Sequencer ckt.  
AGND  
VREF  
UVLO  
VOUT2  
LDO  
AGND  
Note:  
PG open-drain for TC1304  
DS21949B-page 4  
© 2005 Microchip Technology Inc.  
TC1303A/TC1303B/TC1303C/TC1304  
Typical Application Circuits  
TC1303A  
Fixed-Output Application  
10-Lead MSOP  
4.7 µH  
V
IN  
V
V
V
OUT1  
1.5V @ 500 mA  
L
8
2
7
1
4
9
10  
6
IN1  
IN2  
X
2.7V to 4.2V  
4.7 µF  
4.7 µF  
P
GND  
V
V
SHDN1  
SHDN2  
PG  
OUT1  
OUT2  
V
3
OUT2  
1 µF  
2.5V @ 300 mA  
R
A
GND  
PULLUP  
5
Processor  
RESET  
TC1303B  
Adjustable-Output Application  
10-Lead DFN  
4.7 µH  
V
OUT1  
Input  
Voltage  
4.5V to 5.5V  
8
9
V
V
L
X
IN1  
2.1V @  
500 mA  
4.7 µF  
1 µF  
4.7 µF  
P
GND 10  
2
7
1
4
200 kΩ 4.99 kΩ  
IN2  
V
OUT1  
OUT2  
6
3
SHDN1  
SHDN2  
*Optional  
Capacitor  
V
OUT2  
1.0 µF  
V
33 pF  
3.3V @  
300 mA  
V
IN2  
121 kΩ  
A
GND  
PG  
5
(Note)  
Processor  
RESET  
Note: Connect DFN package exposed pad to AGND  
.
TC1304  
Fixed-Output Application  
10-Lead MSOP  
4.7 µH  
V
IN  
V
V
V
L
8
2
7
1
4
9
10  
6
IN1  
OUT1  
X
2.7V to 4.2V  
1.2V @ 500 mA  
4.7 µF  
4.7 µF  
P
IN2  
GND  
V
V
A
GND  
OUT1  
OUT2  
V
SHDN  
PG  
3
OUT2  
1 µF  
2.5V @ 300 mA  
R
A
GND  
PULLUP  
5
Processor  
RESET  
© 2005 Microchip Technology Inc.  
DS21949B-page 5  
TC1303A/TC1303B/TC1303C/TC1304  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VIN - AGND ......................................................................6.0V  
All Other I/O .............................. (A - 0.3V) to (V + 0.3V)  
GND  
IN  
L to P  
.............................................. -0.3V to (V + 0.3V)  
X
GND  
IN  
P
to A  
...................................................-0.3V to +0.3V  
GND  
GND  
Output Short Circuit Current .................................Continuous  
Power Dissipation (Note 7)..........................Internally Limited  
Storage temperature .....................................-65°C to +150°C  
Ambient Temp. with Power Applied.................-40°C to +85°C  
Operating Junction Temperature...................-40°C to +125°C  
ESD protection on all pins (HBM) ....................................... 3 kV  
DC CHARACTERISTICS  
Electrical Characteristics: V =V = SHDN1,2 = 3.6V, C  
= C = 4.7 µF, C  
= 1µF, L = 4.7 µH, V  
(ADJ) = 1.8V,  
IN1  
IN2  
OUT1  
IN  
OUT2  
OUT1  
I
= 100 ma, I  
= 0.1 mA T = +25°C. Boldface specifications apply over the T range of -40°C to +85°C.  
OUT1  
OUT2 A A  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input/Output Characteristics  
Input Voltage  
V
2.7  
500  
300  
5.5  
1
V
Note 1, Note 2, Note 8  
Note 1  
IN  
Maximum Output Current  
Maximum Output Current  
Shutdown Current  
I
I
mA  
mA  
µA  
OUT1_MAX  
OUT2_MAX  
Note 1  
I
0.05  
SHDN1 = SHDN2 = GND  
IN_SHDN  
Combined V  
and V  
Current  
IN2  
IN1  
TC1303A,B Operating I  
TC1303C, TC1304 Operating I  
I
I
65.0  
70.1  
110  
110  
µA  
SHDN1 = SHDN2 = V  
IN2  
Q
Q
Q
I
= 0 mA, I  
= 0 mA  
Q
OUT1  
OUT2  
Synchronous Buck I  
38  
46  
µA  
µA  
SHDN1 = V , SHDN2 = GND  
IN  
Q
LDO I  
SHDN1 = GND, SHDN2 = V  
IN2  
Q
Shutdown/UVLO/Thermal Shutdown Characteristics  
SHDN1,SHDN2, SHDN (TC1304)  
Logic Input Voltage Low  
V
15  
%V  
V
V
V
=V  
=V  
=V  
= 2.7V to 5.5V  
= 2.7V to 5.5V  
= 2.7V to 5.5V  
IL  
IH  
IN  
IN  
IN1  
IN1  
IN1  
IN2  
IN2  
IN2  
SHDN1,SHDN2, SHDN (TC1304)  
Logic Input Voltage High  
V
45  
%V  
IN  
SHDN1,SHDN2, SHDN (TC1304)  
I
-1.0  
±0.01  
1.0  
µA  
Input Leakage Current  
SHDNX = GND  
SHDNY = V  
IN  
Thermal Shutdown  
T
165  
10  
°C  
°C  
V
Note 6, Note 7  
SHD  
Thermal Shutdown Hysteresis  
T
SHD-HYS  
Undervoltage Lockout  
UVLO  
2.4  
2.55  
2.7  
V
Falling  
IN1  
(V  
and V  
)
OUT1  
OUT2  
Undervoltage Lockout Hysteresis UVLO-HYS  
200  
mV  
Note 1: The Minimum V has to meet two conditions: V 2.7V and V V + V  
V
= V or V  
.
R2  
IN  
IN  
IN  
RX  
DROPOUT, RX  
R1  
2:  
V
is the regulator output voltage setting.  
RX  
6
3: TCV  
= ((V  
– V  
) * 10 )/(V  
* D ).  
OUT2 T  
OUT2  
OUT2max  
OUT2min  
4: Regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is tested  
over a load range from 0.1 mA to the maximum specified output current.  
5: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its  
nominal value measured at a 1V differential.  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air. (i.e. T , T , θ ). Exceeding the maximum allowable power  
A
J
JA  
dissipation causes the device to initiate thermal shutdown.  
7: The integrated MOSFET switches have an integral diode from the L pin to V , and from L to P . In cases where  
GND  
X
IN  
X
these diodes are forward-biased, the package power dissipation limits must be adhered to. Thermal protection is not  
able to limit the junction temperature for these cases.  
8:  
V
and V  
are supplied by the same input source.  
IN2  
IN1  
DS21949B-page 6  
© 2005 Microchip Technology Inc.  
TC1303A/TC1303B/TC1303C/TC1304  
DC CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: V =V = SHDN1,2 = 3.6V, C  
= C = 4.7 µF, C  
= 1µF, L = 4.7 µH, V  
(ADJ) = 1.8V,  
IN1  
IN2  
OUT1  
IN  
OUT2  
OUT1  
I
= 100 ma, I  
= 0.1 mA T = +25°C. Boldface specifications apply over the T range of -40°C to +85°C.  
OUT1  
OUT2 A A  
Parameters  
Sym  
)
Min  
Typ  
Max  
Units  
Conditions  
Synchronous Buck Regulator (V  
Adjustable Output Voltage Range  
Adjustable Reference Feedback  
OUT1  
V
0.8  
4.5  
V
V
OUT1  
V
0.78  
0.8  
0.82  
FB1  
Voltage (V  
)
FB1  
Feedback Input Bias Current  
(I  
I
-2.5  
-1.5  
±0.3  
0.2  
+2.5  
nA  
%
VFB1  
)
FB1  
Output Voltage Tolerance Fixed  
(V  
V
Note 2  
OUT1  
)
OUT1  
Line Regulation (V  
)
V
%/V  
%
V
=V +1V to 5.5V,  
OUT1  
LINE-REG  
IN  
R
I
= 100 mA  
LOAD  
Load Regulation (V  
)
V
0.2  
V
= V + 1.5V, I  
= 100 mA to  
OUT1  
OUT1  
LOAD-REG  
IN  
R
LOAD  
500 mA (Note 1)  
Dropout Voltage V  
V
– V  
280  
mV  
I
= 500 mA, V  
= 3.3V  
OUT1  
IN  
OUT1  
OUT1  
(Note 5)  
Internal Oscillator Frequency  
Start Up Time  
F
1.6  
2.0  
0.5  
2.4  
MHz  
ms  
OSC  
T
T = 10% to 90%  
R
SS  
R
R
L
P-Channel  
N-Channel  
R
450  
450  
±0.01  
650  
650  
1.0  
mΩ  
mΩ  
μA  
I =100 mA  
DSon  
DSon  
DSon-P  
DSon-N  
P
R
I =100 mA  
N
Pin Leakage Current  
I
-1.0  
SHDN = 0V, V = 5.5V, L = 0V,  
IN X  
X
LX  
L
= 5.5V  
X
Positive Current Limit Threshold  
LDO Output (V  
+I  
700  
mA  
%
LX(MAX)  
)
OUT2  
Output Voltage Tolerance (V  
Temperature Coefficient  
Line Regulation  
)
V
-2.5  
±0.3  
25  
+2.5  
Note 2  
OUT2  
OUT2  
TCV  
ppm/°C Note 3  
OUT  
ΔV  
/
-0.2  
±0.02  
+0.2  
%/V  
(V +1V) V 5.5V  
OUT2  
R
IN  
ΔV  
IN  
Load Regulation, V  
Load Regulation, V  
2.5V  
ΔV  
I
/
/
-0.75  
-0.9  
-0.08  
-0.18  
+0.75  
+0.9  
%
I
I
= 0.1 mA to 300 mA (Note 4)  
= 0.1 mA to 300 mA (Note 4)  
OUT2  
OUT2  
OUT2  
OUT2  
OUT2  
OUT2  
< 2.5V  
> 2.5V  
ΔV  
%
OUT2  
OUT2  
OUT2  
I
Dropout Voltage V  
V
– V  
137  
205  
300  
500  
mV  
I
I
= 200 mA (Note 5)  
= 300 mA  
IN  
OUT2  
OUT2  
OUT2  
Power Supply Rejection Ratio  
Output Noise  
PSRR  
eN  
62  
1.8  
240  
dB  
f 100 Hz, I  
= I  
= 50 mA,  
OUT2  
OUT1  
C
= 0 µF  
IN  
½
µV/(Hz)  
mA  
f 1 kHz, I  
= 50 mA,  
OUT2  
SHDN1 = GND  
R 1Ω  
LOAD2  
Output Short Circuit Current  
(Average)  
I
OUTsc2  
Note 1: The Minimum V has to meet two conditions: V 2.7V and V V + V  
V
= V or V  
.
R2  
IN  
IN  
IN  
RX  
DROPOUT, RX  
R1  
2:  
V
is the regulator output voltage setting.  
RX  
6
3: TCV  
= ((V  
– V  
) * 10 )/(V  
* D ).  
OUT2 T  
OUT2  
OUT2max  
OUT2min  
4: Regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is tested  
over a load range from 0.1 mA to the maximum specified output current.  
5: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its  
nominal value measured at a 1V differential.  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air. (i.e. T , T , θ ). Exceeding the maximum allowable power  
A
J
JA  
dissipation causes the device to initiate thermal shutdown.  
7: The integrated MOSFET switches have an integral diode from the L pin to V , and from L to P . In cases where  
GND  
X
IN  
X
these diodes are forward-biased, the package power dissipation limits must be adhered to. Thermal protection is not  
able to limit the junction temperature for these cases.  
8:  
V
and V  
are supplied by the same input source.  
IN2  
IN1  
© 2005 Microchip Technology Inc.  
DS21949B-page 7  
TC1303A/TC1303B/TC1303C/TC1304  
DC CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: V =V = SHDN1,2 = 3.6V, C  
= C = 4.7 µF, C  
= 1µF, L = 4.7 µH, V  
(ADJ) = 1.8V,  
IN1  
IN2  
OUT1  
IN  
OUT2  
OUT1  
I
= 100 ma, I  
= 0.1 mA T = +25°C. Boldface specifications apply over the T range of -40°C to +85°C.  
OUT1  
OUT2 A A  
Parameters  
Wake-Up Time (From SHDN2  
mode), (V  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
t
31  
100  
µs  
I
I
= I  
= I  
= 50 mA  
WK  
OUT1  
OUT2  
)
OUT2  
Settling Time (From SHDN2  
mode), (V  
t
100  
µs  
= 50 mA  
S
OUT1  
OUT2  
)
OUT2  
Power-Good (PG)  
Voltage Range PG  
V
1.0  
5.5  
V
T = 0°C to +70°C  
A
PG  
1.2  
5.5  
T = -40°C to +85°C  
A
V
2.7 I  
= 100 µA  
SINK  
IN  
PG Threshold High  
V
89  
94  
92  
2
96  
% of  
On Rising V  
or V  
OUT1 OUT2  
TH_H  
(V  
or V  
)
V
V
= V  
or V  
OUT1  
OUT2  
OUTX  
OUTX  
OUT1 OUT2  
PG Threshold Low  
(V or V  
V
% of  
On Falling V  
or V  
OUT1 OUT2  
TH_L  
)
V
V
= V  
or V  
OUT1  
OUT2  
OUTX  
OUTX  
OUT1  
OUT2  
PG Threshold Hysteresis  
(V and V  
V
% of  
V
OUTX  
V
= V  
or V  
OUT2  
TH_HYS  
OUTX  
OUT1  
)
OUT1  
OUT2  
PG Threshold Tempco  
PG Delay  
ΔV /ΔT  
30  
ppm/°C  
TH  
t
165  
µs  
V
or V  
= (V + 100 mV)  
RPD  
OUT1  
OUT2 TH  
to (V - 100 mV)  
TH  
PG Active Time-out Period  
PG Output Voltage Low  
t
140  
262  
560  
0.2  
ms  
V
to V  
or V  
= V - 100 mV  
OUT2 TH  
RPU  
OUT1  
100 mV,  
TH +  
I
= 1.2 mA  
SINK  
PG_V  
PG_V  
V
V
V
orV  
= V - 100 mV  
OUT2 TH ,  
OL  
OUT1  
I
I
= 1.2 mA V  
= 100 µA, 1.0V < V  
> 2.7V  
PG  
PG  
IN2  
< 2.7V  
IN2  
PG Output Voltage High  
(TC1303B only)  
0.9* V  
V
V
V
or V  
= V + 100 mV  
OH  
OUT2  
OUT1  
OUT2  
OUT2  
OUT2 TH  
1.8V, I = - 500 µA  
< 1.8V,I = - 300 µA  
PG  
PG  
Note 1: The Minimum V has to meet two conditions: V 2.7V and V V + V  
V
= V or V  
.
R2  
IN  
IN  
IN  
RX  
DROPOUT, RX  
R1  
2:  
V
is the regulator output voltage setting.  
RX  
6
3: TCV  
= ((V  
– V  
) * 10 )/(V  
* D ).  
OUT2 T  
OUT2  
OUT2max  
OUT2min  
4: Regulation is measured at a constant junction temperature using low duty-cycle pulse testing. Load regulation is tested  
over a load range from 0.1 mA to the maximum specified output current.  
5: Dropout voltage is defined as the input-to-output voltage differential at which the output voltage drops 2% below its  
nominal value measured at a 1V differential.  
6: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction  
temperature and the thermal resistance from junction to air. (i.e. T , T , θ ). Exceeding the maximum allowable power  
A
J
JA  
dissipation causes the device to initiate thermal shutdown.  
7: The integrated MOSFET switches have an integral diode from the L pin to V , and from L to P . In cases where  
GND  
X
IN  
X
these diodes are forward-biased, the package power dissipation limits must be adhered to. Thermal protection is not  
able to limit the junction temperature for these cases.  
8:  
V
and V  
are supplied by the same input source.  
IN2  
IN1  
DS21949B-page 8  
© 2005 Microchip Technology Inc.  
TC1303A/TC1303B/TC1303C/TC1304  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, all limits are specified for: VIN = +2.7V to +5.5V  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Operating Junction Temperature  
Range  
TJ  
-40  
+125  
°C  
Steady state  
Storage Temperature Range  
Maximum Junction Temperature  
Thermal Package Resistances  
Thermal Resistance, 10L-DFN  
TA  
TJ  
-65  
+150  
+150  
°C  
°C  
Transient  
θJA  
41  
°C/W Typical 4-layer Board with  
Internal Ground Plane and 2 Vias  
in Thermal Pad  
Thermal Resistance, 10L-MSOP  
θJA  
113  
°C/W Typical 4-layer Board with  
Internal Ground Plane  
© 2005 Microchip Technology Inc.  
DS21949B-page 9  
TC1303A/TC1303B/TC1303C/TC1304  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, V = V = SHDN1,2 = 3.6V, C  
= C = 4.7 µF, C  
= 1 µF, L = 4.7 µH,  
OUT2  
IN1  
IN2  
OUT1  
IN  
V
(ADJ) = 1.8V, T = +25°C. Boldface specifications apply over the T range of -40°C to +85°C. T = +25°C. Adjustable- or fixed-  
OUT1  
A
A
A
output voltage options can be used to generate the Typical Performance Characteristics.  
80  
76  
72  
68  
64  
60  
55  
50  
45  
40  
35  
30  
VIN = 5.5V  
IOUT1 = IOUT2 = 0 mA  
SHDN1 = VIN2  
SHDN2 = VIN2  
IOUT2 = 0 mA  
VIN = 5.5V  
VIN = 4.2V  
VIN = 4.2V  
VIN = 3.6V  
SHDN1 = AGND  
SHDN2 = VIN2  
VIN = 3.6V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-1:  
IQ Switcher and LDO  
FIGURE 2-4:  
IQ LDO Current vs. Ambient  
Current vs. Ambient Temperature (TC1303A,B).  
Temperature.  
VIN = 5.5V  
78  
76  
74  
72  
70  
68  
66  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
SHDN1 = VIN2  
SHDN2 = VIN2  
SHDN1 = VIN2  
SHDN2 = AGND  
IOUT1 = 100 mA  
VIN = 4.2V  
IOUT1 = 250 mA  
IOUT1 = 500 mA  
VIN = 3.6V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2.7 3.05 3.4 3.75 4.1 4.45 4.8 5.15 5.5  
Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-2:  
IQ Switcher and LDO  
FIGURE 2-5:  
VOUT1 Output Efficiency vs.  
Current vs. Ambient Temperature  
(TC1303C, TC1304).  
Input Voltage (VOUT1 = 1.2V).  
SHDN1 = VIN2  
SHDN2 = AGND  
100  
95  
90  
85  
80  
75  
70  
55  
SHDN1 = VIN2  
SHDN2 = AGND  
IOUT1 = 0 mA  
VIN = 5.5V  
50  
45  
VIN1 = 3.6V  
40  
VIN1 = 4.2V  
VIN = 4.2V  
VIN = 3.6V  
35  
30  
VIN1 = 3.0V  
0.005  
0.104  
0.203  
0.302  
0.401  
0.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
IOUT1 (A)  
Ambient Temperature (°C)  
FIGURE 2-6:  
V
OUT1 Output Efficiency vs.  
FIGURE 2-3:  
IQ Switcher Current vs.  
IOUT1 (VOUT1 = 1.2V).  
Ambient Temperature.  
DS21949B-page 10  
© 2005 Microchip Technology Inc.  
TC1303A/TC1303B/TC1303C/TC1304  
Note: Unless otherwise indicated, V = V = SHDN1,2 = 3.6V, C  
= C = 4.7 µF, C  
= 1 µF, L = 4.7 µH,  
OUT2  
IN1  
IN2  
OUT1  
IN  
V
(ADJ) = 1.8V, T = +25°C. Boldface specifications apply over the T range of -40°C to +85°C. T = +25°C. Adjustable- or fixed-  
OUT1  
A
A
A
output voltage options can be used to generate the Typical Performance Characteristics.  
VIN1 = 3.6V  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
SHDN1 = VIN2  
SHDN2 = AGND  
IOUT1 = 100 mA  
IOUT1 = 250 mA  
VIN1 = 4.2V  
SHDN1 = VIN2  
SHDN2 = AGND  
IOUT1 = 500 mA  
VIN1 = 5.5V  
0.005  
0.104  
0.203  
0.302  
0.401  
0.5  
2.7 3.05 3.4 3.75 4.1 4.45 4.8 5.15 5.5  
Input Voltage (V)  
IOUT1 (A)  
FIGURE 2-7:  
VOUT1 Output Efficiency vs.  
FIGURE 2-10:  
V
OUT1 Output Efficiency vs.  
Input Voltage (VOUT1 = 1.8V).  
IOUT1 (VOUT1 = 3.3V).  
1.21  
1.206  
1.202  
1.198  
1.194  
1.19  
100  
SHDN1 = VIN2  
SHDN2 = AGND  
SHDN1 = VIN2  
SHDN2 = AGND  
VIN = 3.0V  
95  
VIN1 = 3.6V  
90  
85  
80  
75  
VIN = 4.2V  
VIN = 3.6V  
0.005  
0.104  
0.203  
0.302  
0.401  
0.5  
0.005  
0.104  
0.203  
0.302  
0.401  
0.5  
I
OUT1 (A)  
IOUT1 (A)  
FIGURE 2-8:  
VOUT1 Output Efficiency vs.  
FIGURE 2-11:  
VOUT1 vs. IOUT1  
IOUT1 (VOUT1 = 1.8V).  
(VOUT1 = 1.2V).  
100  
96  
92  
88  
84  
80  
1.82  
1.815  
1.81  
SHDN1 = VIN2  
SHDN2 = AGND  
SHDN1 = VIN2  
SHDN2 = AGND  
VIN1 = 3.6V  
IOUT1 = 100 mA  
IOUT1 = 250 mA  
1.805  
1.8  
IOUT1 = 500 mA  
1.795  
1.79  
0.005  
0.104  
0.203  
0.302  
0.401  
0.5  
3.60  
3.92  
4.23  
4.55  
4.87  
5.18  
5.50  
I
OUT1 (A)  
Input Voltage (V)  
FIGURE 2-9:  
VOUT1 Output Efficiency vs.  
FIGURE 2-12:  
VOUT1 vs. IOUT1  
Input Voltage (VOUT1 = 3.3V).  
(VOUT1 = 1.8V).  
© 2005 Microchip Technology Inc.  
DS21949B-page 11  
TC1303A/TC1303B/TC1303C/TC1304  
Note: Unless otherwise indicated, V = V = SHDN1,2 = 3.6V, C  
= C = 4.7 µF, C  
= 1 µF, L = 4.7 µH,  
OUT2  
IN1  
IN2  
OUT1  
IN  
V
(ADJ) = 1.8V, T = +25°C. Boldface specifications apply over the T range of -40°C to +85°C. T = +25°C. Adjustable- or fixed-  
OUT1  
A
A
A
output voltage options can be used to generate the Typical Performance Characteristics.  
0.820  
0.815  
0.810  
0.805  
0.800  
0.795  
0.790  
3.4  
3.36  
3.32  
3.28  
3.24  
3.2  
SHDN1 = VIN2  
SHDN2 = AGND  
SHDN1 = VIN2  
SHDN2 = AGND  
VIN1 = 3.6V  
VIN1 = 4.2V  
0.005  
0.104  
0.203  
0.302  
0.401  
0.5  
IOUT1 (A)  
Ambient Temperature (°C)  
FIGURE 2-13:  
VOUT1 vs. IOUT1  
FIGURE 2-16:  
VOUT1 Adjustable Feedback  
(VOUT1 = 3.3V).  
Voltage vs. Ambient Temperature.  
0.6  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
SHDN1 = VIN2  
SHDN2 = AGND  
SHDN1 = VIN2  
SHDN2 = AGND  
0.55  
0.5  
TA = 25 °C  
0.45  
0.4  
N-Channel  
P-Channel  
0.35  
0.3  
2.7  
3.1  
3.5  
3.9  
4.3  
4.7  
5.1  
5.5  
3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
Input Voltage (V)  
Input Voltage (V)  
FIGURE 2-14:  
VOUT1 Switching Frequency  
FIGURE 2-17:  
VOUT1 Switch Resistance  
vs. Input Voltage.  
vs. Input Voltage.  
0.65  
2.00  
1.98  
1.96  
1.94  
1.92  
1.90  
SHDN1 = VIN2  
SHDN2 = AGND  
SHDN1 = VIN2  
SHDN2 = AGND  
VIN1 = 3.6V  
0.6  
0.55  
0.5  
P-Channel  
N-Channel  
0.45  
0.4  
0.35  
0.3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-15:  
VOUT1 Switching Frequency  
FIGURE 2-18:  
VOUT1 Switch Resistance  
vs. Ambient Temperature.  
vs. Ambient Temperature.  
DS21949B-page 12  
© 2005 Microchip Technology Inc.  
TC1303A/TC1303B/TC1303C/TC1304  
Note: Unless otherwise indicated, V = V = SHDN1,2 = 3.6V, C  
= C = 4.7 µF, C  
= 1 µF, L = 4.7 µH,  
OUT2  
IN1  
IN2  
OUT1  
IN  
V
(ADJ) = 1.8V, T = +25°C. Boldface specifications apply over the T range of -40°C to +85°C. T = +25°C. Adjustable- or fixed-  
OUT1  
A
A
A
output voltage options can be used to generate the Typical Performance Characteristics.  
IOUT2 = 150 mA  
0.4  
0.35  
0.3  
1.492  
1.49  
SHDN1 = VIN2  
SHDN2 = AGND  
TA = + 85°C  
TA = + 25°C  
1.488  
1.486  
1.484  
1.482  
0.25  
0.2  
SHDN1 = AGND  
SHDN2 = VIN2  
VOUT1 = 3.3V  
IOUT1 = 500 mA  
TA = - 40°C  
0.15  
0.1  
2.7 3.05 3.4 3.75 4.1 4.45 4.8 5.15 5.5  
Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-19:  
VOUT1 Dropout Voltage vs.  
FIGURE 2-22:  
VOUT2 Output Voltage vs.  
Ambient Temperature.  
Input Voltage (VOUT2 = 1.5V).  
1.802  
IOUT2 = 150 mA  
SHDN1 = AGND  
SHDN2 = VIN2  
1.800  
TA = + 85°C  
1.798  
TA = + 25°C  
1.796  
TA = - 40°C  
1.794  
1.792  
2.7 3.05 3.4 3.75 4.1 4.45 4.8 5.15 5.5  
Input Voltage (V)  
FIGURE 2-20:  
VOUT1 and VOUT2 Heavy  
FIGURE 2-23:  
VOUT2 Output Voltage vs.  
Load Switching Waveforms vs. Time.  
Input Voltage (VOUT2 = 1.8V).  
2.508  
2.506  
2.504  
2.502  
2.500  
2.498  
2.496  
SHDN1 = AGND  
SHDN2 = VIN2  
IOUT2 = 150 mA  
TA = + 85°C  
TA = + 25°C  
TA = - 40°C  
3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5  
Input Voltage (V)  
FIGURE 2-21:  
VOUT1 and VOUT2 Light  
FIGURE 2-24:  
VOUT2 Output Voltage vs.  
Load Switching Waveforms vs. Time.  
Input Voltage (VOUT2 = 2.5V).  
© 2005 Microchip Technology Inc.  
DS21949B-page 13  
TC1303A/TC1303B/TC1303C/TC1304  
Note: Unless otherwise indicated, V = V = SHDN1,2 = 3.6V, C  
= C = 4.7 µF, C  
= 1 µF, L = 4.7 µH,  
OUT2  
IN1  
IN2  
OUT1  
IN  
V
(ADJ) = 1.8V, T = +25°C. Boldface specifications apply over the T range of -40°C to +85°C. T = +25°C. Adjustable- or fixed-  
OUT1  
A
A
A
output voltage options can be used to generate the Typical Performance Characteristics.  
SHDN1 = AGND  
SHDN2 = VIN2  
0.005  
0.000  
3.298  
3.297  
3.296  
3.295  
3.294  
3.293  
3.292  
SHDN1 = AGND  
SHDN2 = VIN2  
IOUT2 = 150 mA  
VOUT2 = 3.3V  
-0.005  
-0.010  
-0.015  
-0.020  
-0.025  
-0.030  
-0.035  
TA = + 85°C  
IOUT2 = 100 µA  
VOUT2 = 2.5V  
TA = + 25°C  
TA = - 40°C  
VOUT2 = 1.5V  
3.60  
3.92  
4.23  
4.55  
4.87  
5.18  
5.50  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-25:  
VOUT2 Output Voltage vs.  
FIGURE 2-28:  
V
OUT2 Line Regulation vs.  
Input Voltage (VOUT2 = 3.3V).  
Ambient Temperature.  
0.1  
0.30  
VIN2 = 3.6V  
SHDN1 = AGND  
SHDN2 = VIN2  
SHDN1 = AGND  
SHDN2 = VIN2  
VOUT2 = 3.3V  
0.0  
-0.1  
-0.2  
-0.3  
-0.4  
0.25  
IOUT2 = 300 mA  
0.20  
IOUT2 = 200 mA  
0.15  
VOUT2 = 2.6V  
VOUT2 = 1.5V  
0.10  
0.05  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-26:  
VOUT2 Dropout Voltage vs.  
FIGURE 2-29:  
VOUT2 Load Regulation vs.  
Ambient Temperature (VOUT2 = 2.5V).  
Ambient Temperature.  
0.3  
350  
VIN = 3.6V  
SHDN1 = AGND  
SHDN2 = VIN2  
SHDN1 = VIN2  
SHDN2 = VIN2  
325  
300  
275  
250  
225  
200  
0.2  
0.1  
0.0  
IOUT2 = 300 mA  
IOUT2 = 200 mA  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-27:  
VOUT2 Dropout Voltage vs.  
FIGURE 2-30:  
PG Active Delay Time-out  
Ambient Temperature (VOUT2 = 3.3V).  
vs. Ambient Temperature.  
DS21949B-page 14  
© 2005 Microchip Technology Inc.  
TC1303A/TC1303B/TC1303C/TC1304  
Note: Unless otherwise indicated, V = V = SHDN1,2 = 3.6V, C  
= C = 4.7 µF, C  
= 1 µF, L = 4.7 µH,  
OUT2  
IN1  
IN2  
OUT1  
IN  
V
(ADJ) = 1.8V, T = +25°C. Boldface specifications apply over the T range of -40°C to +85°C. T = +25°C. Adjustable- or fixed-  
OUT1  
A
A
A
output voltage options can be used to generate the Typical Performance Characteristics.  
96  
95  
94  
93  
92  
91  
90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
SHDN1 = VIN2  
SHDN2 = VIN2  
VIN = 3.6V  
SHDN1 = GND  
VOUT2 = 1.5V  
COUT2 = 1.0 µF  
IOUT2 = 30 mA  
PG Threshold Hi  
CIN = 0 µF  
COUT2 = 4.7 µF  
PG Threshold Low  
0.01  
0.1  
1
10  
100  
1000  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Frequency (kHz)  
Ambient Temperature (°C)  
FIGURE 2-31:  
PG Threshold Voltage vs.  
FIGURE 2-34:  
VOUT2 Power Supply Ripple  
Ambient Temperature.  
Rejection vs. Frequency.  
10  
0.02  
SHDN1 = AGND  
SHDN2 = VIN2  
SHDN1 = VIN2  
SHDN2 = VIN2  
VIN = 3.6V  
0.018  
1
0.016  
0.014  
0.012  
0.01  
IOL = 1.2 mA  
0.1  
VIN = 3.6V  
VOUT2 = 2.5V  
I
OUT2 = 50 mA  
0.01  
0.01  
0.1  
1
10  
100  
1000 10000  
Ambient Temperature (°C)  
Frequency (kHz)  
FIGURE 2-32:  
PG Output Voltage Level  
FIGURE 2-35:  
VOUT2 Noise vs. Frequency.  
Low vs. Ambient Temperature.  
VOUT2 = 2.8V  
3.0  
2.5  
VOUT2 = 2.5V  
2.0  
1.5  
VOUT2 = 1.5V  
1.0  
VIN = 3.6V  
0.5  
SHDN1 = VIN2  
SHDN2 = VIN2  
IOH = 500 µA  
0.0  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (°C)  
FIGURE 2-33:  
PG Output Voltage Level  
FIGURE 2-36:  
VOUT1 Load Step Response  
High vs. Ambient Temperature.  
vs. Time.  
© 2005 Microchip Technology Inc.  
DS21949B-page 15  
TC1303A/TC1303B/TC1303C/TC1304  
Note: Unless otherwise indicated, V = V = SHDN1,2 = 3.6V, C  
= C = 4.7 µF, C  
= 1 µF, L = 4.7 µH,  
OUT2  
IN1  
IN2  
OUT1  
IN  
V
(ADJ) = 1.8V, T = +25°C. Boldface specifications apply over the T range of -40°C to +85°C. T = +25°C. Adjustable- or fixed-  
OUT1  
A
A
A
output voltage options can be used to generate the Typical Performance Characteristics.  
FIGURE 2-37:  
vs. Time.  
VOUT2 Load Step Response  
VOUT1 and VOUT2 Line Step  
VOUT1 and VOUT2 Start-up  
FIGURE 2-40:  
Waveforms.  
V
OUT1 and VOUT2 Shutdown  
FIGURE 2-38:  
Response vs. Time.  
FIGURE 2-41:  
Power-Good Output Timing.  
FIGURE 2-42:  
Start-up Waveforms  
FIGURE 2-39:  
(TC1304).  
Waveforms.  
DS21949B-page 16  
© 2005 Microchip Technology Inc.  
TC1303A/TC1303B/TC1303C/TC1304  
Note: Unless otherwise indicated, V = V = SHDN1,2 = 3.6V, C  
= C = 4.7 µF, C  
= 1 µF, L = 4.7 µH,  
OUT2  
IN1  
IN2  
OUT1  
IN  
V
(ADJ) = 1.8V, T = +25°C. Boldface specifications apply over the T range of -40°C to +85°C. T = +25°C. Adjustable- or fixed-  
OUT1  
A
A
A
output voltage options can be used to generate the Typical Performance Characteristics.  
FIGURE 2-43:  
Shutdown Waveforms  
(TC1304).  
© 2005 Microchip Technology Inc.  
DS21949B-page 17  
TC1303A/TC1303B/TC1303C/TC1304  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
Pin No.  
PIN FUNCTION TABLE  
TC1303  
Name  
TC1304  
Name  
Function  
1
1
SHDN2  
Active Low Shutdown Input for LDO Output Pin  
SHDN  
Active Low Shutdown Input both Buck Regulator Output and LDO Output.  
Initiates sequencing up and down  
2
3
4
5
6
VIN2  
VOUT2  
PG  
VIN2  
VOUT2  
PG  
Analog Input Supply Voltage Pin  
LDO Output Voltage Pin  
Power-Good Output Pin  
Analog Ground Pin  
AGND  
AGND  
V
FB/VOUT1 VFB/VOUT1 Buck Feedback Voltage (Adjustable Version) / Buck Output Voltage  
(Fixed Version) Pin  
7
7
SHDN1  
Active Low Shutdown Input for Buck Regulator Output Pin  
Analog Ground Pin  
AGND  
VIN1  
LX  
8
VIN1  
LX  
Buck Regulator Input Voltage Pin  
Buck Inductor Output Pin  
9
10  
EP  
PGND  
PGND  
Power Ground Pin  
Exposed  
Pad  
Exposed For the DFN package, the center exposed pad is a thermal path to remove  
Pad  
heat from the device. Electrically this pad is at ground potential and should  
be connected to AGND  
3.1  
TC1303 LDO Shutdown Input Pin  
(SHDN2)  
3.5  
Power-Good Output Pin (PG)  
PG is an output level indicating that VOUT2 (LDO) is  
within 94% of regulation. The PG output is configured  
as a push-pull for the TC1303B and open-drain output  
for the TC1303A, TC1303C and TC1304.  
SHDN2 is a logic-level input used to turn the LDO Reg-  
ulator on and off. A logic-high (> 45% of VIN), will  
enable the regulator output. A logic-low (< 15% of VIN)  
will ensure that the output is turned off.  
3.6  
Analog Ground Pin (A  
)
GND  
3.2  
TC1304 Shutdown Input Pin  
(SHDN)  
AGND is the analog ground connection. Tie AGND to the  
analog portion of the ground plane (AGND). See the  
physical layout information in Section 5.0 “Application  
Circuits/Issues” for grounding recommendations.  
SHDN is a logic-level input used to initiate the sequenc-  
ing of the LDO output, then the buck regulator output.  
A logic-high (> 45% of VIN), will enable the regulator  
outputs. A logic-low (< 15% of VIN) will ensure that the  
outputs are turned off.  
3.7  
Buck Regulator Output Sense Pin  
(V /V  
)
FB OUT1  
For VOUT1 adjustable-output voltage options, connect  
the center of the output voltage divider to the VFB pin.  
For fixed-output voltage options, connect the output of  
the buck regulator to this pin (VOUT1).  
3.3  
LDO Input Voltage Pin (V  
)
IN2  
VIN2 is a LDO power input supply pin. Connect variable  
input voltage source to VIN2. Connect VIN1 and VIN2  
together with board traces as short as possible. VIN2  
provides the input voltage for the LDO. An additional  
capacitor can be added to lower the LDO regulator  
input ripple voltage.  
3.8  
Buck Regulator Shutdown Input  
Pin (SHDN1)  
SHDN1 is a logic-level input used to turn the buck  
regulator on and off. A logic-high (> 45% of VIN), will  
enable the regulator output. A logic-low (< 15% of VIN)  
will ensure that the output is turned off.  
3.4  
LDO Output Voltage Pin (V  
)
OUT2  
VOUT2 is a regulated LDO output voltage pin. Connect  
a 1 µF or larger capacitor to VOUT2 and AGND for proper  
operation.  
DS21949B-page 18  
© 2005 Microchip Technology Inc.  
TC1303A/TC1303B/TC1303C/TC1304  
3.9  
Buck Regulator Input Voltage Pin  
(V  
3.11 Power Ground Pin (P  
)
GND  
)
IN1  
VIN1 is the buck regulator power input supply pin.  
Connect a variable input voltage source to VIN1  
Connect VIN1 and VIN2 together with board traces as  
short as possible.  
Connect all large-signal level ground returns to PGND  
.
These large-signal, level ground traces should have a  
small loop area and length to prevent coupling of  
switching noise to sensitive traces. Please see the  
physical layout information supplied in Section 5.0  
“Application Circuits/Issues”  
recommendations.  
.
for  
grounding  
3.10 Buck Inductor Output Pin (L )  
X
Connect LX directly to the buck inductor. This pin  
carries large signal-level current; all connections  
should be made as short as possible.  
3.12 Exposed Pad (EP)  
For the DFN package, connect the EP to AGND, with  
vias into the AGND plane.  
© 2005 Microchip Technology Inc.  
DS21949B-page 19  
TC1303A/TC1303B/TC1303C/TC1304  
4.2.1  
FIXED-FREQUENCY PWM MODE  
4.0  
4.1  
DETAILED DESCRIPTION  
Device Overview  
While operating in Pulse Width Modulation (PWM)  
mode, the TC1303/TC1304 buck regulator switches at  
a fixed, 2.0 MHz frequency. The PWM mode is suited  
for higher load current operation, maintaining low out-  
put noise and high conversion efficiency. PFM-to-PWM  
mode transition is initiated for any of the following  
conditions:  
The TC1303/TC1304 combines a 500 mA synchro-  
nous buck regulator with a 300 mA LDO and a power-  
good output. This unique combination provides a small,  
low-cost solution for applications that require two or  
more voltage rails. The buck regulator can deliver high-  
output current over a wide range of input-to-output  
voltage ratios while maintaining high efficiency. This is  
typically used for the lower-voltage, high-current  
processor core. The LDO is a minimal parts-count  
solution (single-output capacitor), providing a regulated  
voltage for an auxiliary rail. The typical LDO dropout  
voltage (137 mV @ 200 mA) allows the use of very low  
input-to-output LDO differential voltages, minimizing  
the power loss internal to the LDO pass transistor. A  
power-good output is provided, indicating that the buck  
regulator output, the LDO output or both outputs are in  
regulation. Additional features include independent  
shutdown inputs (TC1303), UVLO, output voltage  
• Continuous inductor current is sensed  
• Inductor peak current exceeds 100 mA  
• The buck regulator output voltage has dropped  
out of regulation (step load has occurred)  
The typical PFM-to-PWM threshold is 80 mA.  
4.2.2  
PFM MODE  
PFM mode is entered when the output load on the buck  
regulator is very light. Once detected, the converter  
enters the PFM mode automatically and begins to skip  
pulses to minimize unnecessary quiescent current  
draw by reducing the number of switching cycles per  
second. The typical quiescent current for the switching  
regulator is less than 35 µA. The transition from PWM  
to PFM mode occurs when discontinuous inductor  
current is sensed or the peak inductor current is less  
than 60 mA (typ.). The typical PWM to PFM mode  
threshold is 30 mA. For low input-to-output differential  
voltages, the PWM-to-PFM mode threshold can be low  
due to the lack of ripple current. It is recommended that  
VIN1 be one volt greater than VOUT1 for PWM-to-PFM  
transitions.  
sequencing  
overtemperature shutdown.  
(TC1304),  
overcurrent  
and  
4.2  
Synchronous Buck Regulator  
The synchronous buck regulator is capable of supply-  
ing a 500 mA continuous output current over a wide  
range of input and output voltages. The output voltage  
range is from 0.8V (min) to 4.5V (max). The regulator  
operates in three different modes, automatically select-  
ing the most efficient mode of operation. During heavy  
load conditions, the TC1303/TC1304 buck converter  
operates at a high, fixed frequency (2.0 MHz) using  
current mode control. This minimizes output ripple and  
noise (less than 8 mV peak-to-peak ripple) while main-  
taining high efficiency (typically > 90%). For standby or  
light load applications, the buck regulator will automat-  
ically switch to a power-saving Pulse Frequency  
Modulation (PFM) mode. This minimizes the quiescent  
current draw on the battery, while keeping the buck  
output voltage in regulation. The typical buck PFM  
mode current is 38 µA. The buck regulator is capable of  
operating at 100% duty cycle, minimizing the voltage  
drop from input-to-output for wide input, battery-  
powered applications. For fixed-output voltage applica-  
tions, the feedback divider and control loop compensa-  
tion components are integrated, eliminating the need  
for external components. The buck regulator output is  
protected against overcurrent, short circuit and over-  
temperature. While shut down, the synchronous buck  
N-channel and P-channel switches are off, so the LX  
pin is in a high-impedance state (this allows for  
connecting a source on the output of the buck regulator  
as long as its voltage does not exceed the input  
voltage).  
4.3  
Low Drop Out Regulator (LDO)  
The LDO output is a 300 mA low-dropout linear regula-  
tor that provides a regulated output voltage with a  
single 1 µF external capacitor. The output voltage is  
available in fixed options only, ranging from 1.5V to  
3.3V. The LDO is stable using ceramic output capaci-  
tors that inherently provide lower output noise and  
reduce the size and cost of the regulator solution. The  
quiescent current consumed by the LDO output is  
typically less than 40 µA, with a typical dropout voltage  
of 137 mV at 200 mA. While operating in Dropout  
mode, the LDO quiescent current will increase, mini-  
mizing the necessary voltage differential needed for the  
LDO output to maintain regulation. The LDO output is  
protected against overcurrent and overtemperature  
conditions.  
DS21949B-page 20  
© 2005 Microchip Technology Inc.  
TC1303A/TC1303B/TC1303C/TC1304  
4.4  
Power-Good  
4.5  
Power Good Output Options  
A Power-Good (PG) output signal is generated based  
off of the buck regulator output voltage (VOUT1), the  
LDO output voltage (VOUT2) or the combination of both  
outputs. A fixed delay time of approximately 262 ms is  
generated once the monitored output voltage is above  
the power-good threshold (typically 94% of VOUTX). As  
the monitored output voltage falls out of regulation, the  
falling PG threshold is typically 92% of the output  
voltage. The PG output signal is pulled up to the output  
voltage, indicating that power is good and pulled low,  
indicating that the output is out of regulation. The typi-  
cal quiescent current draw for power-good circuitry is  
less than 10 µA.  
There are three monitoring options for the TC1303  
family.  
For the TC1303A, only the buck regulator output  
voltage (VOUT1) is monitored. The PG output signal  
depends only on VOUT1  
For the TC1303B, only the LDO output voltage (VOUT2  
is monitored. The PG output signal depends only on  
VOUT2  
.
)
.
For the TC1303C and TC1304, both the buck regulator  
output voltage and LDO output voltage are monitored.  
If either one of the outputs fall out of regulation, the PG  
will be low. Only if both VOUT1 and VOUT2 are within the  
PG voltage threshold limits will the PG output be high.  
If the monitored output voltage falls below the power-  
good threshold, the power-good output will transition to  
the Low state. The power-good circuitry has a 165 µs  
delay when detecting a falling output voltage. This  
helps to increase the noise immunity of the power-good  
output, avoiding false triggering of the PG signal during  
line and load transients.  
For the TC1303A,C and TC1304, the PG output pin is  
open drain and can be pulled up to any level within the  
given absolute maximum ratings (AGND - 0.3V) to (VIN  
+ 0.3V).  
TABLE 4-1:  
PG AVAILABLE OPTIONS  
PG  
PG Output  
Part  
Number  
Output  
LDO  
PG Output  
Type  
VTH_H  
VOUT1  
Buck  
(VOUT1  
)
(VOUT2  
)
or VOUT2  
tRPU  
TC1303A  
TC1303B  
Yes  
No  
No  
Open-Drain  
Push-Pull  
Yes  
(VOUT2  
)
VOH  
tRPD  
TC1303C  
TC1304  
Yes  
Yes  
Yes  
Yes  
Open-Drain  
Open-Drain  
PG  
VOL  
FIGURE 4-1:  
Power-Good Timing.  
© 2005 Microchip Technology Inc.  
DS21949B-page 21  
TC1303A/TC1303B/TC1303C/TC1304  
the turn on of the Buck Regulator output (VOUT1) until  
the LDO output is in regulation. During power-down,  
the sequencing circuit will turn off the Buck Regulator  
output prior to turning off LDO output.  
4.6  
TC1304 Sequencing  
The TC1304 device features an integrated sequencing  
option. A sequencing circuit using only the SHDN input,  
(Pin1), will turn on the LDO output (VOUT2) and delay  
160 µs Delay*  
+
V
SHDN  
OUT2  
Enable  
To PG  
Delay CKT.  
92% of V  
OUT2  
+
160 µs Delay*  
V
OUT1  
Enable  
92% of V  
OUT1  
* 160 µs delay on trailing edge  
FIGURE 4-2:  
TC1304 Sequencing Circuit.  
4.7  
Soft Start  
TC1304  
Power Up Timing From SHDN  
Both outputs of the TC1303/TC1304 are controlled  
during start-up. Less than 1% of VOUT1 or VOUT2 over-  
shoot is observed during start-up from VIN rising above  
the UVLO voltage or either SHDN1 or SHDN2 being  
enabled.  
V
/V  
IN1 IN2  
4.8  
Overtemperature Protection  
SHDN  
500 µs  
The TC1303/TC1304 has an integrated overtempera-  
ture protection circuit that monitors the device junction  
temperature and shuts the device off if the junction tem-  
perature exceeds the typical 165°C threshold. If the  
overtemperature threshold is reached, the soft start is  
reset so that, once the junction temperature cools to  
approximately 155°C, the device will automatically  
restart.  
V
OUT1  
OUT2  
t
+ t  
S
WK  
V
300ms  
Power Good  
FIGURE 4-3:  
TC1304 Power-up Timing  
from SHDN.  
DS21949B-page 22  
© 2005 Microchip Technology Inc.  
TC1303A/TC1303B/TC1303C/TC1304  
An additional VIN2 capacitor can be added to reduce  
5.0  
5.1  
APPLICATION  
CIRCUITS/ISSUES  
high-frequency noise on the LDO input voltage pin  
(VIN2). This additional capacitor (1 µF on page 5) is not  
necessary for typical applications.  
Typical Applications  
5.4  
Input and Output Capacitor  
Selection  
The TC1303/TC1304 500 mA buck regulator + 300 mA  
LDO with power-good operates over a wide input volt-  
age range (2.7V to 5.5V) and is ideal for single-cell Li-  
Ion battery-powered applications, USB-powered appli-  
cations, three-cell NiMH or NiCd applications and 3V to  
5V regulated input applications. The 10-pin MSOP and  
3X3 DFN packages provide a small footprint with  
minimal external components.  
As with all buck-derived dc-dc switching regulators, the  
input current is pulled from the source in pulses. This  
places a burden on the TC1303/TC1304 input filter  
capacitor. In most applications, a minimum of 4.7 µF is  
recommended on VIN1 (buck regulator input voltage  
pin). In applications that have high source impedance,  
or have long leads, (10 inches) connecting to the input  
source, additional capacitance should be used. The  
capacitor type can be electrolytic (aluminum, tantalum,  
POSCAP, OSCON) or ceramic. For most portable elec-  
tronic applications, ceramic capacitors are preferred  
due to their small size and low cost.  
5.2  
Fixed Output Application  
A typical VOUT1 fixed-output voltage application is  
shown in “Typical Application Circuits”. A 4.7 µF  
VIN1 ceramic input capacitor, 4.7 µF VOUT1 ceramic  
capacitor, 1.0 µF ceramic VOUT2 capacitor and 4.7 µH  
inductor make up the entire external component solu-  
tion for this dual-output application. No external divid-  
ers or compensation components are necessary. For  
this application, the input voltage range is 2.7V to 4.2V,  
VOUT1 = 1.5V at 500 mA, while VOUT2 = 2.5V at  
300 mA.  
For applications that require very low noise on the LDO  
output, an additional capacitor (typically 1 µF) can be  
added to the VIN2 pin (LDO input voltage pin).  
Low ESR electrolytic or ceramic can be used for the  
buck regulator output capacitor. Again, ceramic is  
recommended because of its physical attributes and  
cost. For most applications, a 4.7 µF is recommended.  
Refer to Table 5-1 for recommended values. Larger  
capacitors (up to 22 µF) can be used. There are some  
advantages in load step performance when using  
larger value capacitors. Ceramic materials X7R and  
X5R have low temperature coefficients and are well  
within the acceptable ESR range required.  
5.3  
Adjustable Output Application  
A typical VOUT1 adjustable output application is also  
shown in “Typical Application Circuits”. For this  
application, the buck regulator output voltage is adjust-  
able by using two external resistors as a voltage  
divider. For adjustable-output voltages, it is recom-  
mended that the top resistor divider value be 200 kΩ.  
The bottom resistor divider can be calculated using the  
following formula:  
TABLE 5-1:  
TC1303A, TC1303B, TC1303C,  
TC1304 RECOMMENDED  
CAPACITOR VALUES  
EQUATION 5-1:  
C(VIN1  
4.7 µF  
none  
)
C(VIN2  
)
COUT1  
COUT2  
VFB  
min  
none  
none  
4.7 µF  
22 µF  
1 µF  
--------------------------------  
RBOT = RTOP  
×
VOUT1 VFB  
max  
10 µF  
Example:  
RTOP  
VOUT1  
VFB  
=
=
=
=
=
200 kΩ  
2.1V  
0.8V  
RBOT  
RBOT  
200 kΩ x (0.8V/(2.1V – 0.8V))  
123 kΩ (Standard Value = 121 kΩ)  
For adjustable-output applications, an additional R-C  
compensation is necessary for the buck regulator  
control loop stability. Recommended values are:  
RCOMP  
CCOMP  
=
=
4.99 kΩ  
33 pF  
© 2005 Microchip Technology Inc.  
DS21949B-page 23  
TC1303A/TC1303B/TC1303C/TC1304  
TABLE 5-2:  
TC1303A, TC1303B, TC1303C,  
TC1304 RECOMMENDED  
INDUCTOR VALUES  
5.5  
Inductor Selection  
For most applications, a 4.7 µH inductor is recom-  
mended to minimize noise. There are many different  
magnetic core materials and package options to select  
from. That decision is based on size, cost and accept-  
able radiated energy levels. Toroid and shielded ferrite  
pot cores will have low radiated energy, but tend to be  
larger and higher is cost. With a typical 2.0 MHz switch-  
ing frequency, the inductor ripple current can be  
calculated based on the following formulas.  
DCR  
Ω
(MAX)  
Part  
Value  
MAX  
Size  
Number (µH)  
IDC (A) WxLxH (mm)  
Coiltronics®  
SD10  
SD10  
2.2  
3.3  
4.7  
0.091 1.35 5.2, 5.2, 1.0 max.  
0.108 1.24 5.2, 5.2, 1.0 max.  
0.154 1.04 5.2, 5.2, 1.0 max.  
SD10  
EQUATION 5-2:  
Coiltronics  
SD12  
VOUT  
2.2  
3.3  
4.7  
0.075 1.80 5.2, 5.2, 1.2 max.  
0.104 1.42 5.2, 5.2, 1.2 max.  
0.118 1.29 5.2, 5.2, 1.2 max.  
-------------  
DutyCycle =  
VIN  
SD12  
SD12  
Sumida Corporation®  
Duty cycle represents the percentage of switch-on  
time.  
CMD411  
CMD411  
CMD411  
Coilcraft®  
1008PS  
2.2  
3.3  
4.7  
0.116 0.950 4.4, 5.8, 1.2 max.  
0.174 0.770 4.4, 5.8, 1.2 max.  
0.216 0.750 4.4, 5.8, 1.2 max.  
EQUATION 5-3:  
1
FSW  
---------  
TON = DutyCycle ×  
4.7  
4.7  
0.35  
0.11  
1.0 3.8, 3.8, 2.74 max.  
1.15 5.9, 5.0, 3.81 max  
Where:  
FSW = Switching Frequency.  
1812PS  
5.6  
Thermal Calculations  
The inductor ac ripple current can be calculated using  
the following relationship:  
5.6.1  
BUCK REGULATOR OUTPUT  
(VOUT1  
)
EQUATION 5-4:  
The TC1303/TC1304 is available in two different 10-pin  
packages (MSOP and 3X3 DFN). By calculating the  
power dissipation and applying the package thermal  
resistance, (θJA), the junction temperature is estimated.  
The maximum continuous junction temperature rating  
for the TC1303/TC1304 is +125°C.  
ΔIL  
Δt  
--------  
VL = L ×  
Where:  
VL = voltage across the inductor (VIN – VOUT  
)
Δt = on-time of P-channel MOSFET  
To quickly estimate the internal power dissipation for  
the switching buck regulator, an empirical calculation  
using measured efficiency can be used. Given the  
measured efficiency (Section 2.0 “Typical Perfor-  
mance Curves”), the internal power dissipation is  
estimated below:  
Solving for ΔIL = yields:  
EQUATION 5-5:  
VL  
-----  
ΔIL  
=
× Δt  
L
EQUATION 5-6:  
When considering inductor ratings, the maximum DC  
current rating of the inductor should be at least equal to  
the maximum buck regulator load current (IOUT1), plus  
one half of the peak-to-peak inductor ripple current  
(1/2 * ΔIL). The inductor DC resistance can add to the  
buck converter I2R losses. A rating of less than 200 mΩ  
is recommended. Overall efficiency will be improved by  
using lower DC resistance inductors.  
VOUT1 × IOUT1  
Efficiency  
-------------------------------------  
(VOUT1 × IOUT1) = PDissipation  
The first term is equal to the input power (definition of  
efficiency, POUT/PIN = Efficiency). The second term is  
equal to the delivered power. The difference is internal  
power dissipation. This is an estimate assuming that  
most of the power lost is internal to the TC1303B.  
There is some percentage of power lost in the buck  
inductor, with very little loss in the input and output  
capacitors.  
DS21949B-page 24  
© 2005 Microchip Technology Inc.  
TC1303A/TC1303B/TC1303C/TC1304  
As an example, for a 3.6V input, 1.8V output with a load  
components are placed near their respective pins to  
minimize trace length. The CIN1 and COUT1 capacitor  
returns are connected closely together at the PGND  
plane. The LDO optional input capacitor (CIN2) and  
LDO output capacitor COUT2 are returned to the AGND  
plane. The analog ground plane and power ground  
plane are connected at one point (shown near L1). All  
other signals (SHDN1, SHDN2, feedback in the  
adjustable-output case) should be referenced to AGND  
and have the AGND plane underneath them.  
of 400 mA, the efficiency taken from Figure 2-8 is  
approximately 84%. The internal power dissipation is  
approximately 137 mW.  
5.6.2  
The  
LDO OUTPUT (VOUT2  
)
internal power dissipation  
within  
the  
TC1303/TC1304 LDO is a function of input voltage,  
output voltage and output current. Equation 5-7 can be  
used to calculate the internal power dissipation for the  
LDO.  
- Via  
A
to P  
GND  
GND  
EQUATION 5-7:  
PLDO = (VIN(MAX )) VOUT2(MIN)) × IOUT2(MAX ))  
+V  
OUT1  
* C  
Optional  
IN2  
C
OUT1  
Where:  
L
1
A
GND  
PLDO  
= LDO Pass device internal  
power dissipation  
P
GND  
C
IN2  
1
2
3
4
5
10  
9
VIN(MAX) = Maximum input voltage  
C
IN1  
+V  
+V  
IN2  
VOUT(MIN)= LDO minimum output voltage  
+V  
IN1  
8
OUT2  
7
C
OUT2  
The maximum power dissipation capability for a  
package can be calculated given the junction-to-  
ambient thermal resistance and the maximum ambient  
temperature for the application. The following equation  
can be used to determine the package’s maximum  
internal power dissipation.  
6
TC1303B  
P
Plane  
GND  
A
GND  
A
Plane  
GND  
FIGURE 5-1:  
Fixed 10-Pin MSOP.  
Component Placement,  
There will be some difference in layout for the 10-pin  
DFN package due to the thermal pad. A typical fixed-  
output DFN layout is shown below. For the DFN layout,  
the VIN1 to VIN2 connection is routed on the bottom of  
the board around the TC1303/TC1304 thermal pad.  
5.6.3  
LDO POWER DISSIPATION  
EXAMPLE  
Input Voltage  
VIN = 5V±10%  
LDO Output Voltage and Current  
VOUT = 3.3V  
- Via  
+V  
A
to P  
GND  
OUT1  
GND  
IOUT = 300 mA  
* C  
Optional  
IN2  
Internal Power Dissipation  
PLDO(MAX) = (VIN(MAX) – VOUT2(MIN)) x IOUT2(MAX)  
PLDO = (5.5V – 0.975 x 3.3V) x 300 mA  
PLDO = 684.8 mW  
C
OUT1  
L
A
1
GND  
PGND  
C
IN2  
1
2
3
4
5
10  
9
P
GND  
+V  
IN2  
C
IN1  
5.7  
PCB Layout Information  
8
+V  
OUT2  
+V  
IN1  
7
Some basic design guidelines should be used when  
physically placing the TC1303/TC1304 on a Printed  
Circuit Board (PCB). The TC1303/TC1304 has two  
ground pins, identified as AGND (analog ground) and  
PGND (power ground). By separating grounds, it is  
possible to minimize the switching frequency noise on  
the LDO output. The first priority, while placing external  
components on the board, is the input capacitor (CIN1).  
Wiring should be short and wide; the input current for  
the TC1303/TC1304 can be as high as 800 mA. The  
next priority would be the buck regulator output  
capacitor (COUT1) and inductor (L1). All three of these  
C
OUT2  
6
TC1303B  
A
GND  
P
Plane  
GND  
A
Plane  
GND  
FIGURE 5-2:  
Fixed 10-Pin DFN.  
Component Placement,  
© 2005 Microchip Technology Inc.  
DS21949B-page 25  
TC1303A/TC1303B/TC1303C/TC1304  
5.8  
Design Example  
VOUT1 = 2.0V @ 500 mA  
VOUT2 = 3.3V @ 300 mA  
VIN = 5V±10%  
L = 4.7µH  
Calculate PWM mode inductor ripple current  
Nominal Duty  
Cycle = 2.0V/5.0V = 40%  
P-channel  
Switch-on time = 0.40 x 1/(2 MHz) = 200 ns  
VL = (VIN-VOUT1) = 3V  
ΔIL = (VL/L) x TON = 128 mA  
Peak inductor current:  
IL(PK) = IOUT1+1/2ΔIL = 564 mA  
Switcher power loss:  
Use efficiency estimate for 1.8V from Figure 2-8  
Efficiency = 84%, PDISS1 = 190 mW  
Resistor Divider:  
RTOP = 200 kΩ  
RBOT = 133 kΩ  
LDO Output:  
PDISS2 = (VIN(MAX)  
VOUT2(MIN)) x IOUT2(MAX)  
PDISS2 = (5.5V – (0.975) x 3.3V) x 300 mA  
PDISS2 = 684.8 mW  
Total  
Dissipation = 190 mW + 685 mW = 874 mW  
Junction Temp Rise and Maximum Ambient  
Operating Temperature Calculations  
10-Pin MSOP (4-Layer Board with internal Planes)  
RθJA = 113° C/Watt  
Junction Temp.  
Rise = 874 mW x 113° C/Watt = 98.8°C  
Max. Ambient  
Temperature = 125°C - 98.8°C  
Max. Ambient  
Temperature = 26.3°C  
10-Pin DFN  
RθJA = 41° C/Watt (4-Layer Board with  
internal planes and 2 vias)  
Junction Temp.  
Rise = 874 mW x 41° C/Watt = 35.8°C  
Max. Ambient  
Temperature = 125°C - 35.8°C  
Max. Ambient  
Temperature = 89.2°C  
This is above the +85°C max. ambient temperature.  
DS21949B-page 26  
© 2005 Microchip Technology Inc.  
TC1303A/TC1303B/TC1303C/TC1304  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
10-Lead MSOP*  
Example:  
10-Lead DFN  
Example:  
— 1 = TC1303B  
2 = TC1303A  
3 = TC1303C  
4 = TC1304  
— 1 = 1.375V VOUT1  
— H = 2.6V VOUT2  
— 0 = Default  
XXXX  
YYWW  
NNN  
11H0  
0520  
256  
XXXXXX  
YWWNNN  
11H0/E  
520256  
* The MSOP package for this device has not  
been qualified at the time of this publication.  
Contact your Microchip sales office for  
availability.  
Third letter represents VOUT2 configuration:  
Code VOUT2 Code VOUT1 Code VOUT2  
A
B
C
D
E
F
G
H
I
3.3V  
3.2V  
3.1V  
3.0V  
2.9V  
2.8V  
2.7V  
2.6V  
2.5V  
J
K
L
2.4V  
2.3V  
2.2V  
2.1V  
2.0V  
1.9V  
1.8V  
1.7V  
1.6V  
S
T
1.5V  
Second letter represents VOUT1 configuration:  
U
V
W
X
Y
Z
M
N
O
P
Q
R
Code VOUT1 Code VOUT1 Code VOUT1  
A
B
C
D
E
F
G
H
I
3.3V  
3.2V  
3.1V  
3.0V  
2.9V  
2.8V  
2.7V  
2.6V  
2.5V  
J
K
L
2.4V  
2.3V  
2.2V  
2.1V  
2.0V  
1.9V  
1.8V  
1.7V  
1.6V  
S
T
1.5V  
1.4V  
1.3V  
1.2V  
1.1V  
1.0V  
0.9V  
Adj  
U
V
W
X
Y
Z
M
N
O
P
Q
R
Fourth letter represents +50 mV Increments:  
Code  
Code  
0
1
Default  
2
3
+50 mV to V2  
1
1.375V  
+50 mV to V1  
+50 mV to V1  
and V2  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2005 Microchip Technology Inc.  
DS21949B-page 27  
TC1303A/TC1303B/TC1303C/TC1304  
10-Lead Plastic Dual Flat No Lead Package (MF) 3x3x0.9 mm Body (DFN) – Saw Singulated  
p
b
E
n
L
D
D2  
EXPOSED  
METAL  
PAD  
2
1
PIN 1  
ID INDEX  
AREA  
E2  
TOP VIEW  
BOTTOM VIEW  
(NOTE 2)  
A
EXPOSED  
TIE BAR  
A3  
A1  
(NOTE 1)  
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
10  
MAX  
n
e
Number of Pins  
Pitch  
10  
.020 BSC  
0.50 BSC  
0.90  
Overall Height  
Standoff  
A
.031  
.035  
.001  
.008 REF.  
.039  
.002  
0.80  
1.00  
A1  
A3  
E
.000  
0.00  
0.02  
0.05  
Lead Thickness  
Overall Length  
Exposed Pad Length  
Overall Width  
Exposed Pad Width  
Lead Width  
0.20 REF.  
3.00  
.112  
.055  
.112  
.047  
.008  
.012  
.118  
--  
.124  
.096  
.124  
.069  
.015  
.020  
2.85  
1.39  
2.85  
1.20  
0.18  
0.30  
3.15  
2.45  
3.15  
1.75  
0.30  
0.50  
(Note 3)  
(Note 3)  
E2  
D
--  
.118  
--  
3.00  
D2  
b
--  
.010  
.016  
0.25  
Lead Length  
L
0.40  
*Controlling Parameter  
Notes:  
1. Package may have one or more exposed tie bars at ends.  
2. Pin 1 visual index feature may vary, but must be located within the hatched area.  
3. Exposed pad dimensions vary with paddle size.  
4. JEDEC equivalent: Not registered  
Drawing No. C04-063  
Revised 05/24/04  
DS21949B-page 28  
© 2005 Microchip Technology Inc.  
TC1303A/TC1303B/TC1303C/TC1304  
10-Lead Plastic Micro Small Outline Package (UN) (MSOP*)  
E
E1  
p
D
2
1
B
n
α
A
φ
c
A2  
A1  
L
(F)  
β
L1  
Units  
Dimension Limits  
INCHES  
MILLIMETERS*  
NOM  
MIN  
NOM  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
10  
10  
.020 TYP  
0.50 TYP.  
Overall Height  
A
A2  
A1  
E
-
-
.033  
-
.043  
-
-
1.10  
0.95  
0.15  
Molded Package Thickness  
Standoff  
.030  
.037  
0.75  
0.85  
.000  
.006  
0.00  
-
Overall Width  
.193 BSC  
4.90 BSC  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
.118 BSC  
3.00 BSC  
.118 BSC  
3.00 BSC  
L
.016  
.024  
.031  
0.40  
0.60  
0.80  
Footprint  
F
.037 REF  
0.95 REF  
φ
c
Foot Angle  
0°  
.003  
.006  
5°  
-
8°  
.009  
.012  
15°  
0°  
0.08  
0.15  
5°  
-
8°  
0.23  
0.30  
15°  
Lead Thickness  
Lead Width  
-
-
B
α
β
.009  
0.23  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
-
-
-
-
5°  
15°  
5°  
15°  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .010" (0.254mm) per side.  
JEDEC Equivalent: MO-187  
Drawing No. C04-021  
* The MSOP package for the TC1303B has not been qualified at the time of this publication.  
Contact your Microchip sales office for availability.  
© 2005 Microchip Technology Inc.  
DS21949B-page 29  
TC1303A/TC1303B/TC1303C/TC1304  
NOTES:  
DS21949B-page 30  
© 2005 Microchip Technology Inc.  
TC1303A/TC1303B/TC1303C/TC1304  
APPENDIX A: REVISION HISTORY  
Revision B (July 2005)  
1. Added information on TC1303A, TC1303C and  
TC1304 throughout data sheet.  
Revision A (June 2005)  
• Original Release of this Document.  
© 2005 Microchip Technology Inc.  
DS21949B-page 31  
TC1303A/TC1303B/TC1303C/TC1304  
NOTES:  
DS21949B-page 32  
© 2005 Microchip Technology Inc.  
TC1303A/TC1303B/TC1303C/TC1304  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
TC1303  
X-  
X
X
X
X
XX  
XX  
a)  
b)  
c)  
TC1303A-SI0EMF:  
1.5V, 2.5V, Default,  
10LD DFN pkg.  
Adj, 3.3V, Default,  
10LD MSOP pkg.  
Type  
B
V
V
+50 mV Temp Package Tube  
Increments  
OUT1  
OUT2  
or  
Tape &  
Reel  
Range  
TC1303A-ZA0EUN:  
TC1303A-PP3EMFTR: 1.8V, 1.8V, +50 mV,  
10LD DFN pkg.  
Tape and Reel  
Device:  
Options  
TC1303A: PWM/LDO combo with Power-Good  
TC1303B: PWM/LDO combo with Power-Good  
TC1303C: PWM/LDO combo with Power-Good  
TC1304: PWM/LDO combo with Power-Good  
a)  
TC1303B-1H0EMF:  
1.375V, 2.6V, Default,  
10LD DFN pkg.  
3.3V, 2.7V, Default,  
10LD MSOP pkg.  
3.3V, 3.0V, Default,  
10LD DFN pkg.  
2.5V, 3.3V, Default,  
10LD MSOP pkg.  
2.5V, 3.3V, Default,  
10LD DFN pkg.  
1.8V, 2.8V, Default,  
10LD MSOP pkg.  
1.8V, 2.8V, Default,  
10LD DFN pkg.  
b)  
c)  
d)  
e)  
f)  
TC1303B-AG0EUN:  
TC1303B-AD0EMF:  
TC1303B-IA0EUN:  
TC1303B-IA0EMF:  
TC1303B-PF0EUN:  
TC1303B-PF0EMF:  
TC1303B-PG0EUN:  
Code  
VOUT1  
Code  
VOUT2  
Code  
+50 mV  
A
B
C
D
E
F
G
H
I
3.3V  
3.2V  
3.1V  
3.0V  
2.9V  
2.8V  
2.7V  
2.6V  
2.5V  
2.4V  
2.3V  
2.2V  
2.1V  
2.0V  
1.9V  
1.8V  
1.7V  
1.6V  
1.5V  
1.4V  
1.3V  
1.2V  
1.1V  
1.0V  
0.9V  
Adjustable  
1.375V  
A
B
C
D
E
F
G
H
I
3.3V  
3.2V  
3.1V  
3.0V  
2.9V  
2.8V  
2.7V  
2.6V  
2.5V  
2.4V  
2.3V  
2.2V  
2.1V  
2.0V  
1.9V  
1.8V  
1.7V  
1.6V  
1.5V  
0
1
2
3
Default  
+50 mV to V1  
+50 mV to V2  
+50 mV to V1  
and V2  
g)  
h)  
i)  
1.8V, 2.7V, Default,  
10LD MSOP pkg.  
J
K
L
J
K
L
TC1303B-DG0EMFTR: 3.0V, 2.7V, Default,  
10LD DFN pkg.  
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
Tape and Reel  
a)  
b)  
TC1303C-VP0EMF:  
1.2V, 1.8V, Default,  
10LD DFN pkg.  
TC1303C-VP0EMFTR: 1.2V, 1.8V, Default,  
10LD DFN pkg.  
Tape and Reel.  
a)  
TC1304-VI0EMF:  
1.2V, 2.5V, Default,  
10LD DFN pkg.  
1.2V, 1.8V, Default,  
10LD DFN pkg.  
1.2V, 2.5V, Default,  
10LD MSOP pkg.  
1.2V, 2.5V, Default,  
10LD DFN pkg.  
b)  
c)  
d)  
TC1304-VP0EMF:  
TC1304-VI0EUN:  
TC1304-VI0EMFTR:  
1
1
* Contact Factory for Alternate Output Voltage and Reset  
Voltage Configurations.  
Tape and Reel.  
1.2V, 1.8V, Default  
10LD DFN pkg.  
e)  
f)  
TC1304-VP0EMFTR:  
TC1304-VI0EUNTR:  
Tape and Reel.  
Temperature  
Range:  
E
= -40°C to +85°C  
1.2V, 2.5V, Default,  
10LD MSOP pkg.  
Tape and Reel.  
Package:  
MF  
UN  
=
=
Dual Flat, No Lead (3x3 mm body), 10-lead  
Plastic Micro Small Outline (MSOP), 10-lead  
(The MSOP package for this device has not been  
qualified at the time of this publication. Contact your  
Microchip sales office for availability.)  
Tube or  
Tape and Reel:  
Blank  
TR  
=
=
Tube  
Tape and Reel  
© 2005 Microchip Technology Inc.  
DS21949B-page 33  
TC1303A/TC1303B/TC1303C/TC1304  
NOTES:  
DS21949B-page 34  
© 2005 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION, INCLUDING BUT NOT  
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,  
MERCHANTABILITY OR FITNESS FOR PURPOSE.  
Microchip disclaims all liability arising from this information and  
its use. Use of Microchip’s products as critical components in  
life support systems is not authorized except with express  
written approval by Microchip. No licenses are conveyed,  
implicitly or otherwise, under any Microchip intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro,  
PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
PICMASTER, SEEVAL, SmartSensor and The Embedded  
Control Solutions Company are registered trademarks of  
Microchip Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, Linear Active Thermistor,  
MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM,  
PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo,  
PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode,  
Smart Serial, SmartTel, Total Endurance and WiperLock are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2005, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in  
October 2003. The Company’s quality system processes and  
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2005 Microchip Technology Inc.  
DS21949B-page 35  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
India - Bangalore  
Tel: 91-80-2229-0061  
Fax: 91-80-2229-0062  
Austria - Weis  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-5160-8631  
Fax: 91-11-5160-8632  
China - Chengdu  
Tel: 86-28-8676-6200  
Fax: 86-28-8676-6599  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Atlanta  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Korea - Seoul  
Boston  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Qingdao  
Tel: 86-532-502-7355  
Fax: 86-532-502-7205  
Malaysia - Penang  
Tel: 604-646-8870  
Fax: 604-646-5086  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-352-30-52  
Fax: 34-91-352-11-47  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Philippines - Manila  
Tel: 011-632-634-9065  
Fax: 011-632-634-9069  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shenzhen  
Detroit  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
Taiwan - Hsinchu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
San Jose  
Mountain View, CA  
Tel: 650-215-1444  
Fax: 650-961-0286  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
07/01/05  
DS21949B-page 36  
© 2005 Microchip Technology Inc.  

相关型号:

TC1304-AP0EUN

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output
MICROCHIP

TC1304-AP0EUNTR

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output
MICROCHIP

TC1304-AP1EMF

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output
MICROCHIP

TC1304-AP1EMFTR

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output
MICROCHIP

TC1304-AP1EUN

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output
MICROCHIP

TC1304-AP1EUNTR

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output
MICROCHIP

TC1304-AP2EMF

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output
MICROCHIP

TC1304-AP2EMFTR

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output
MICROCHIP

TC1304-AP2EUN

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output
MICROCHIP

TC1304-AP2EUNTR

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output
MICROCHIP

TC1304-AP3EMF

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output
MICROCHIP

TC1304-AP3EMFTR

500 mA Synchronous Buck Regulator, + 300 mA LDO with Power-Good Output
MICROCHIP