PIC18LF248EPSQTP [MICROCHIP]

High Performance, 28/40-Pin Enhanced FLASH Microcontrollers with CAN; 高性能,四十分之二十八引脚增强型闪存微控制器与CAN
PIC18LF248EPSQTP
型号: PIC18LF248EPSQTP
厂家: MICROCHIP    MICROCHIP
描述:

High Performance, 28/40-Pin Enhanced FLASH Microcontrollers with CAN
高性能,四十分之二十八引脚增强型闪存微控制器与CAN

闪存 微控制器
文件: 总384页 (文件大小:5831K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M
PIC18FXX8  
Data Sheet  
High Performance, 28/40-Pin  
Enhanced FLASH Microcontrollers  
with CAN  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B  
®
Note the following details of the code protection feature on PICmicro MCUs.  
The PICmicro family meets the specifications contained in the Microchip Data Sheet.  
Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,  
when used in the intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-  
edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.  
The person doing so may be engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as unbreakable.  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of  
our product.  
If you have any further questions about this matter, please contact the local sales office nearest to you.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical com-  
ponents in life support systems is not authorized except with  
express written approval by Microchip. No licenses are con-  
veyed, implicitly or otherwise, under any intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, FilterLab,  
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,  
PICSTART, PRO MATE, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip Tech-  
nology Incorporated in the U.S.A. and other countries.  
dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,  
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,  
MXDEV, MXLAB, PICC, PICDEM, PICDEM.net, rfPIC, Select  
Mode and Total Endurance are trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2002, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchips quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
DS41159B - page ii  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
M
High Performance, 28/40-Pin Enhanced FLASH  
Microcontrollers with CAN  
High Performance RISC CPU:  
Advanced Analog Features:  
10-bit, up to 8-channel Analog-to-Digital Converter  
module (A/D) with:  
Linear program memory addressing up to  
2 Mbytes  
- Conversion available during SLEEP  
- Up to 8 channels available  
Linear data memory addressing to 4 Kbytes  
Up to 10 MIPs operation  
Analog Comparator Module:  
DC - 40 MHz clock input  
- Programmable input and output multiplexing  
Comparator Voltage Reference Module  
Programmable Low Voltage Detection (LVD) module  
- Supports interrupt on low voltage detection  
Programmable Brown-out Reset (BOR)  
4 MHz - 10 MHz osc./clock input with PLL active  
16-bit wide instructions, 8-bit wide data path  
Priority levels for interrupts  
8 x 8 Single Cycle Hardware Multiplier  
Peripheral Features:  
CAN bus Module Features:  
High current sink/source 25 mA/25 mA  
Three external interrupt pins  
Message bit rates up to 1 Mbps  
Conforms to CAN 2.0B ACTIVE Spec with:  
- 29-bit Identifier Fields  
Timer0 module: 8-bit/16-bit timer/counter with  
8-bit programmable prescaler  
- 8-byte message length  
Timer1 module: 16-bit timer/counter  
- 3 Transmit Message Buffers with prioritiza-  
tion  
Timer2 module: 8-bit timer/counter with 8-bit  
period register (time-base for PWM)  
- 2 Receive Message Buffers  
Timer3 module: 16-bit timer/counter  
- 6 full 29-bit Acceptance Filters  
- Prioritization of Acceptance Filters  
Secondary oscillator clock option - Timer1/Timer3  
Capture/Compare/PWM (CCP) modules CCP  
pins can be configured as:  
- Multiple Receive Buffers for High Priority  
Messages to prevent loss due to overflow  
- Capture input: 16-bit, max resolution 6.25 ns  
- Compare: 16-bit, max resolution 100 ns (TCY)  
- Advanced Error Management Features  
- PWM output: PWM resolution is 1- to 10-bit  
Max. PWM freq. @:8-bit resolution = 156 kHz  
10-bit resolution = 39 kHz  
Special Microcontroller Features:  
Power-on Reset (POR), Power-up Timer (PWRT),  
and Oscillator Start-up Timer (OST)  
Enhanced CCP module which has all the features  
of the standard CCP module, but also has the  
following features for advanced motor control:  
Watchdog Timer (WDT) with its own on-chip RC  
oscillator  
- 1, 2, or 4 PWM outputs  
Programmable code protection  
- Selectable PWM polarity  
- Programmable PWM deadtime  
Power saving SLEEP mode  
Selectable oscillator options, including:  
- 4X Phase Lock Loop (of primary oscillator)  
- Secondary Oscillator (32 kHz) clock input  
Master Synchronous Serial Port (MSSP) with two  
modes of operation:  
In-Circuit Serial ProgrammingTM (ICSPTM) via two pins  
- 3-wire SPI(Supports all 4 SPI modes)  
- I2CMaster and Slave mode  
FLASH Technology:  
Addressable USART module: Supports Interrupt  
on Address bit  
Low power, high speed Enhanced FLASH technology  
Fully static design  
Wide operating voltage range (2.0V to 5.5V)  
Industrial and Extended temperature ranges  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 1  
PIC18FXX8  
Program Memory  
Data Memory  
MSSP  
10-bit  
A/D  
(ch)  
CCP/  
ECCP  
(PWM)  
Timers  
8/16-bit  
# Single  
Word  
Instructions  
Device  
FLASH  
I/O  
USART  
SRAM EEPROM  
(bytes) (bytes)  
Master  
I C  
SPI  
2
(bytes)  
PIC18F248  
PIC18F258  
PIC18F448  
PIC18F458  
16K  
32K  
16K  
32K  
8192  
16384  
8192  
768  
1536  
768  
256  
256  
256  
256  
22  
22  
33  
33  
5
5
8
8
2
1/0  
1/0  
1/1  
1/1  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
1/3  
1/3  
1/3  
1/3  
16384  
1536  
2
Pin Diagrams  
PDIP  
MCLR/VPP  
1
2
3
4
5
6
7
8
40  
RB7/PGD  
RB6/PGC  
RB5/PGM  
RB4  
RB3/CANRX  
RB2/CANTX/INT2  
RB1/INT1  
RB0/INT0  
VDD  
RA0/AN0/CVREF  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
RA1/AN1  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
RA5/AN4/SS/LVDIN  
RE0/AN5/RD  
RE1/AN6/WR/C1OUT  
RE2/AN7/CS/C2OUT  
VDD  
VSS  
OSC1/CLKI  
OSC2/CLKO/RA6  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VSS  
RD7/PSP7/P1D  
RD6/PSP6/P1C  
RD5/PSP5/P1B  
RD4/PSP4/ECCP1/P1A  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
RC4/SDI/SDA  
RD3/PSP3/C2IN-  
RD2/PSP2/C2IN+  
RC2/CCP1  
RC3/SCK/SCL  
RD0/PSP0/C1IN+  
RD1/PSP1/C1IN-  
PLCC  
RA4/T0CKI  
RA5/AN4/SS/LVDIN  
RE0/AN5/RD  
RE1/AN6/WR/C1OUT  
7
8
9
10  
11  
12  
13  
14  
15  
39  
RB3/CANRX  
RB2/CANTX/INT2  
RB1/INT1  
RB0/INT0  
VDD  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
RE2/AN7/CS/C2OUT  
PIC18F448  
PIC18F458  
VDD  
VSS  
VSS  
RD7/PSP7/P1D  
RD6/PSP6/P1C  
RD5/PSP5/P1B  
RD4/PSP4/ECCP1/P1A  
RC7/RX/DT  
OSC1/CLKI  
OSC2/CLKO/RA6  
RC0/T1OSO/T1CK1  
NC  
16  
17  
DS41159B-page 2  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
Pin Diagrams (Continued)  
TQFP  
RC7/RX/DT  
RD4/PSP4/ECCP1/P1A  
1
2
3
4
5
6
7
8
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
NC  
RC0/T1OSO/T1CKI  
OSC2/CLKO/RA6  
OSC1/CLKI  
VSS  
VDD  
RD5/PSP5/P1B  
RD6/PSP6/P1C  
RD7/PSP7/P1D  
VSS  
PIC18F448  
PIC18F458  
VDD  
RB0/INT0  
RB1/INT1  
RE2/AN7/CS/C2OUT  
RE1/AN6/WR/C1OUT  
RE0//AN5/RD  
RA5/AN4/SS/LVDIN  
RA4/T0CKI  
9
10  
11  
RB2/CANTX/INT2  
RB3/CANRX  
SPDIP, SOIC  
MCLR/VPP  
RA0/AN0/CVREF  
1
2
3
4
5
6
28  
27  
26  
25  
24  
23  
RB7/PGD  
RB6/PGC  
RB5/PGM  
RB4  
RB3/CANRX  
RB2/CANTX/INT2  
RA1/AN1  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
RA5/AN4/SS/LVDIN  
VSS  
22  
21  
RB1/INT1  
RB0/INT0  
7
8
OSC1/CLKI  
OSC2/CLKO/RA6  
RC0/T1OSO/T1CKI  
20  
19  
18  
17  
16  
VDD  
9
10  
11  
12  
13  
14  
VSS  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
RC1/T1OSI  
RC2/CCP1  
RC3/SCK/SCL  
15  
RC4/SDI/SDA  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 3  
PIC18FXX8  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 7  
2.0 Oscillator Configurations ............................................................................................................................................................ 17  
3.0 Reset.......................................................................................................................................................................................... 25  
4.0 Memory Organization................................................................................................................................................................. 37  
5.0 Data EEPROM Memory ............................................................................................................................................................ 59  
6.0 FLASH Program Memory........................................................................................................................................................... 65  
7.0 8 X 8 Hardware Multiplier........................................................................................................................................................... 75  
8.0 Interrupts .................................................................................................................................................................................... 77  
9.0 I/O Ports ..................................................................................................................................................................................... 93  
10.0 Parallel Slave Port.................................................................................................................................................................... 105  
11.0 Timer0 Module ......................................................................................................................................................................... 107  
12.0 Timer1 Module ......................................................................................................................................................................... 111  
13.0 Timer2 Module ......................................................................................................................................................................... 115  
14.0 Timer3 Module ......................................................................................................................................................................... 117  
15.0 Capture/Compare/PWM (CCP) Modules ................................................................................................................................. 121  
16.0 Enhanced Capture/Compare/PWM (ECCP) Module................................................................................................................ 129  
17.0 Master Synchronous Serial Port (MSSP) Module .................................................................................................................... 141  
18.0 Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART).............................................................. 181  
19.0 CAN Module ............................................................................................................................................................................. 197  
20.0 Compatible 10-bit Analog-to-Digital Converter (A/D) Module................................................................................................... 237  
21.0 Comparator Module.................................................................................................................................................................. 245  
22.0 Comparator Voltage Reference Module................................................................................................................................... 251  
23.0 Low Voltage Detect .................................................................................................................................................................. 255  
24.0 Special Features of the CPU.................................................................................................................................................... 261  
25.0 Instruction Set Summary.......................................................................................................................................................... 277  
26.0 Development Support............................................................................................................................................................... 319  
27.0 Electrical Characteristics.......................................................................................................................................................... 325  
28.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 355  
29.0 Packaging Information.............................................................................................................................................................. 357  
Appendix A: Data Sheet Revision History.......................................................................................................................................... 365  
Appendix B: Device Differences......................................................................................................................................................... 365  
Appendix C: Device Migrations.......................................................................................................................................................... 366  
Appendix D: Migrating from other PICmicro Devices......................................................................................................................... 366  
Appendix E: Development Tool Version Requirements..................................................................................................................... 367  
Index .................................................................................................................................................................................................. 369  
On-Line Support................................................................................................................................................................................. 379  
Reader Response .............................................................................................................................................................................. 380  
PIC18FXX8 Product Identification System......................................................................................................................................... 381  
DS41159B-page 4  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.  
We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchips Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include  
literature number) you are using.  
Customer Notification System  
Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 5  
PIC18FXX8  
NOTES:  
DS41159B-page 6  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
2. PIC18F2X8 devices implement 5 A/D channels,  
as opposed to 8 for PIC18F4X8 devices.  
1.0  
DEVICE OVERVIEW  
This document contains device specific information for  
the following devices:  
3. PIC18F2X8 devices implement 3 I/O ports,  
while PIC18F4X8 devices implement 5.  
1. PIC18F248  
2. PIC18F258  
3. PIC18F448  
4. PIC18F458  
4. Only PIC18F4X8 devices implement the  
Enhanced CCP module, analog comparators  
and the Parallel Slave Port.  
All other features for devices in the PIC18FXX8 family,  
including the serial communications modules, are  
identical. These are summarized in Table 1-1.  
These devices are available in 28-pin, 40-pin and  
44-pin packages. They are differentiated from each  
other in four ways:  
Block diagrams of the PIC18F2X8 and PIC18F4X8  
devices are provided in Figure 1-1 and Figure 1-2,  
respectively. The pinouts for these device families are  
listed in Table 1-2.  
1. PIC18FX58 devices have twice the FLASH pro-  
gram memory and data RAM of PIC18FX48  
devices (32 Kbytes and 1536 bytes vs.  
16 Kbytes and 768 bytes, respectively).  
TABLE 1-1:  
PIC18FXX8 DEVICE FEATURES  
Features  
PIC18F248  
PIC18F258  
PIC18F448  
PIC18F458  
Operating Frequency  
DC - 40 MHz  
32K  
DC - 40 MHz  
32K  
DC - 40 MHz  
16K  
DC - 40 MHz  
16K  
Internal Program Bytes  
Memory  
# of Single Word  
Instructions  
8192  
16384  
8192  
16384  
Data Memory (Bytes)  
Data EEPROM Memory (Bytes)  
Interrupt Sources  
768  
1536  
768  
256  
21  
1536  
256  
21  
256  
256  
17  
17  
I/O Ports  
Ports A, B, C  
Ports A, B, C  
Ports A, B, C, D, E Ports A, B, C, D, E  
Timers  
4
1
4
1
4
1
1
4
1
1
Capture/Compare/PWM Modules  
Enhanced Capture/Compare/PWM  
Modules  
Serial Communications  
MSSP, CAN,  
Addressable  
USART  
MSSP, CAN,  
Addressable  
USART  
MSSP, CAN,  
Addressable  
USART  
MSSP, CAN,  
Addressable  
USART  
Parallel Communications (PSP)  
10-bit Analog-to-Digital Converter  
Analog Comparators  
No  
No  
Yes  
8 input channels  
2
Yes  
8 input channels  
2
5 input channels 5 input channels  
No  
N/A  
No  
N/A  
Analog Comparators VREF Output  
RESETS (and Delays)  
Yes  
Yes  
POR, BOR,  
POR, BOR,  
POR, BOR,  
POR, BOR,  
RESETInstruction, RESETInstruction, RESETInstruction, RESETInstruction,  
Stack Full,  
Stack Underflow  
(PWRT, OST)  
Stack Full,  
Stack Underflow  
(PWRT, OST)  
Stack Full,  
Stack Underflow  
(PWRT, OST)  
Stack Full,  
Stack Underflow  
(PWRT, OST)  
Programmable Low Voltage Detect  
Programmable Brown-out Reset  
CAN Module  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
In-Circuit Serial Programming™  
(ICSP)  
Instruction Set  
Packages  
75 Instructions  
75 Instructions  
75 Instructions  
75 Instructions  
28-pin SPDIP  
28-pin SOIC  
28-pin SPDIP  
28-pin SOIC  
40-pin PDIP  
44-pin PLCC  
44-pin TQFP  
40-pin PDIP  
44-pin PLCC  
44-pin TQFP  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 7  
PIC18FXX8  
FIGURE 1-1:  
PIC18F248/258 BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
RA0/AN0/CVREF  
RA1/AN1  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
Table Pointer<21>  
inc/dec logic  
Data Latch  
21  
8
8
Data RAM  
up to 1536 bytes  
21  
RA5/AN4/SS/LVDIN  
OSC2/CLKO/RA6  
Address Latch  
21  
PCLATU  
PCU  
PCLATH  
PORTB  
12  
RB0/INT0  
RB1/INT1  
RB2/CANTX/INT2  
RB3/CANRX  
RB4  
RB5/PGM  
RB6/PGC  
RB7/PGD  
Address<12>  
PCH PCL  
Program Counter  
4
12  
FSR0  
4
BSR  
Bank0, F  
Address Latch  
FSR1  
FSR2  
Program Memory  
up to 32 Kbytes  
31 Level Stack  
12  
Data Latch  
inc/dec  
logic  
Decode  
PORTC  
Table Latch  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
8
16  
ROM Latch  
IR  
RC6/TX/CK  
RC7/RX/DT  
8
PRODH PRODL  
8 x 8 Multiply  
Instruction  
Decode &  
Control  
8
3
OSC2/CLKO/RA6  
OSC1/CLKI  
W
8
BITOP  
8
8
Power-up  
Timer  
Timing  
Generation  
Oscillator  
Start-up Timer  
8
T1OSI  
T1OSO  
ALU<8>  
8
Power-on  
Reset  
4X PLL  
Watchdog  
Timer  
Brown-out  
Reset  
Test Mode  
Select  
Precision  
Bandgap  
Reference  
Bandgap  
MCLR  
VDD, VSS  
PBOR  
PLVD  
10-bit  
ADC  
Timer0  
Timer1  
Timer2  
Timer3  
Synchronous  
Serial Port  
Data EEPROM  
CCP1  
USART  
CAN Module  
DS41159B-page 8  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 1-2:  
PIC18F448/458 BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
RA0/AN0/CVREF  
RA1/AN1  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
Table Pointer<21>  
inc/dec logic  
Data Latch  
21  
8
8
Data RAM  
up to 1536 Kbytes  
21  
RA5/AN4/SS/LVDIN  
OSC2/CLKO/RA6  
Address Latch  
21  
PCLATU  
PCU  
PCLATH  
PORTB  
12  
RB0/INT0  
RB1/INT1  
RB2/CANTX/INT2  
RB3/CANRX  
RB4  
RB5/PGM  
RB6/PGC  
RB7/PGD  
Address<12>  
PCH PCL  
Program Counter  
12  
4
4
Bank0, F  
BSR  
Address Latch  
FSR0  
FSR1  
FSR2  
Program Memory  
up to 32 Kbytes  
31 Level Stack  
12  
Data Latch  
inc/dec  
logic  
Decode  
PORTC  
Table Latch  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
RC6/TX/CK  
RC7/RX/DT  
8
16  
ROM Latch  
IR  
8
PORTD  
RD0/PSP0/C1IN+  
RD1/PSP1/C1IN-  
RD2/PSP2/C2IN+  
RD3/PSP3/C2IN-  
RD4/PSP4/ECCP1/P1A  
RD5/PSP5/P1B  
PRODH PRODL  
8 x 8 Multiply  
Instruction  
Decode &  
Control  
8
3
OSC2/CLKO/RA6  
OSC1/CLKI  
W
8
BITOP  
8
RD6/PSP6/P1C  
RD7/PSP7/P1D  
8
Power-up  
Timer  
Timing  
Generation  
Oscillator  
Start-up Timer  
PORTE  
8
RE0/AN5/RD  
RE1/AN6/WR//C1OUT  
RE2/AN7/CS/C2OUT  
T1OSI  
T1OSO  
ALU<8>  
Power-on  
Reset  
4X  
8
PLL  
Watchdog  
Timer  
Brown-out  
Reset  
Test Mode  
Select  
Precision  
Bandgap  
Reference  
Bandgap  
MCLR  
VDD, VSS  
PBOR  
PLVD  
10-bit  
ADC  
Parallel  
Slave Port  
Timer0  
Timer1  
CCP1  
Timer2  
Timer3  
Synchronous  
Serial Port  
Enhanced  
CCP  
Data EEPROM  
USART  
Comparators  
CAN Module  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 9  
PIC18FXX8  
TABLE 1-2:  
PIC18FXX8 PINOUT I/O DESCRIPTIONS  
Pin Number  
PIC18F248/258 PIC18F448/458  
SPDIP, SOIC PDIP TQFP PLCC  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
MCLR/VPP  
MCLR  
1
1
18  
2
Master Clear (input) or  
programming voltage (output).  
Master Clear (Reset) input.  
This pin is an active low  
RESET to the device.  
I
ST  
VPP  
NC  
P
Programming voltage input.  
12, 13, 1, 17,  
33, 34 28, 40  
These pins should be left  
unconnected.  
OSC1/CLKI  
OSC1  
9
13  
30  
14  
Oscillator crystal or external clock  
input.  
I
I
CMOS/ST  
CMOS  
Oscillator crystal input or  
external clock source input. ST  
buffer when configured in RC  
mode. Otherwise CMOS.  
External clock source input.  
Always associated with pin  
function OSC1 (see OSC1/  
CLKI, OSC2/CLKO pins).  
CLKI  
OSC2/CLKO/RA6  
OSC2  
10  
14  
31  
15  
Oscillator crystal or clock output.  
Oscillator crystal output.  
Connects to crystal or  
resonator in Crystal Oscillator  
mode.  
O
O
CLKO  
In RC mode, OSC2 pin outputs  
CLKO, which has 1/4 the  
frequency of OSC1 and  
denotes the instruction cycle  
rate.  
RA6  
I/O  
TTL  
General purpose I/O pin.  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels Analog = Analog input  
I
P
=
=
Input  
Power  
O
OD  
=
=
Output  
Open Drain (no P diode to VDD)  
DS41159B-page 10  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
TABLE 1-2:  
PIC18FXX8 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PIC18F248/258  
PIC18F448/458  
Description  
SPDIP, SOIC PDIP TQFP PLCC  
PORTA is a bi-directional I/O port.  
RA0/AN0/CVREF  
RA0  
2
2
19  
3
I/O  
I
O
TTL  
Analog  
Analog  
Digital I/O.  
AN0  
CVREF  
Analog input 0.  
Comparator voltage reference  
output.  
RA1/AN1  
RA1  
3
4
3
4
20  
21  
4
5
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 1.  
AN1  
RA2/AN2/VREF-  
RA2  
I/O  
TTL  
Digital I/O.  
AN2  
VREF-  
I
I
Analog  
Analog  
Analog input 2.  
A/D reference voltage  
(Low) input.  
RA3/AN3/VREF+  
RA3  
5
6
7
5
6
7
22  
23  
24  
6
7
8
I/O  
I
I
TTL  
Analog  
Analog  
Digital I/O.  
AN3  
VREF+  
Analog input 3.  
A/D reference voltage  
(High) input.  
RA4/T0CKI  
RA4  
I/O  
I
TTL/OD  
ST  
Digital I/O - open drain when  
configured as output.  
Timer0 external clock input.  
T0CKI  
RA5/AN4/SS/LVDIN  
RA5  
AN4  
SS  
I/O  
TTL  
Analog  
ST  
Digital I/O.  
Analog input 4.  
SPI slave select input.  
Low voltage detect input.  
I
I
I
LVDIN  
Analog  
RA6  
See the OSC2/CLKO/RA6 pin.  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels Analog = Analog input  
I
P
=
=
Input  
Power  
O
OD  
=
=
Output  
Open Drain (no P diode to VDD)  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 11  
PIC18FXX8  
TABLE 1-2:  
PIC18FXX8 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
PIC18F248/258 PIC18F448/458  
SPDIP, SOIC PDIP TQFP PLCC  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTB is a bi-directional I/O port.  
PORTB can be software  
programmed for internal weak  
pull-ups on all inputs.  
RB0/INT0  
RB0  
21  
22  
23  
33  
34  
35  
8
9
36  
37  
38  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 0.  
INT0  
RB1/INT1  
RB1  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 1.  
INT1  
RB2/CANTX/INT2  
RB2  
10  
I/O  
O
I
TTL  
TTL  
ST  
Digital I/O.  
Transmit signal for CAN bus.  
External interrupt 2.  
CANTX  
INT2  
RB3/CANRX  
RB3  
24  
36  
11  
39  
I/O  
I
TTL  
TTL  
Digital I/O.  
Receive signal for CAN bus.  
CANRX  
RB4  
25  
26  
37  
38  
14  
15  
41  
42  
I/O  
TTL  
Digital I/O.  
Interrupt-on-change pin.  
RB5/PGM  
RB5  
I/O  
I
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
Low voltage ICSP  
programming enable.  
PGM  
RB6/PGC  
RB6  
27  
28  
39  
40  
16  
17  
43  
44  
I/O  
I
TTL  
ST  
Digital I/O. In-Circuit  
Debugger pin.  
Interrupt-on-change pin.  
ICSP programming clock.  
PGC  
RB7/PGD  
RB7  
I/O  
I/O  
TTL  
ST  
Digital I/O. In-Circuit  
Debugger pin.  
Interrupt-on-change pin.  
ICSP programming data.  
PGD  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels Analog = Analog input  
I
P
=
=
Input  
Power  
O
OD  
=
=
Output  
Open Drain (no P diode to VDD)  
DS41159B-page 12  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
TABLE 1-2:  
PIC18FXX8 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PIC18F248/258  
PIC18F448/458  
Description  
SPDIP, SOIC PDIP TQFP PLCC  
PORTC is a bi-directional I/O port.  
RC0/T1OSO/T1CKI  
RC0  
11  
15  
32  
16  
I/O  
O
I
ST  
ST  
Digital I/O.  
T1OSO  
T1CKI  
Timer1 oscillator output.  
Timer1/Timer3 external clock  
input.  
RC1/T1OSI  
RC1  
12  
13  
14  
16  
17  
18  
35  
36  
37  
18  
19  
20  
I/O  
I
ST  
CMOS  
Digital I/O.  
Timer1 oscillator input.  
T1OSI  
RC2/CCP1  
RC2  
I/O  
I/O  
ST  
ST  
Digital I/O.  
Capture1 input/Compare1  
output/PWM1 output.  
CCP1  
RC3/SCK/SCL  
RC3  
I/O  
I/O  
ST  
ST  
Digital I/O.  
SCK  
Synchronous serial clock  
input/output for SPI mode.  
Synchronous serial clock  
input/output for I2C mode.  
SCL  
I/O  
ST  
RC4/SDI/SDA  
RC4  
15  
23  
42  
25  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
SPI data in.  
I2C data I/O.  
SDI  
SDA  
RC5/SDO  
RC5  
16  
17  
24  
25  
43  
44  
26  
27  
I/O  
O
ST  
Digital I/O.  
SPI data out.  
SDO  
RC6/TX/CK  
RC6  
I/O  
O
ST  
Digital I/O.  
USART asynchronous  
transmit.  
TX  
CK  
I/O  
ST  
USART synchronous clock  
(see RX/DT).  
RC7/RX/DT  
RC7  
18  
26  
1
29  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
RX  
DT  
USART asynchronous receive.  
USART synchronous data  
(see TX/CK).  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels Analog = Analog input  
I
P
=
=
Input  
Power  
O
OD  
=
=
Output  
Open Drain (no P diode to VDD)  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 13  
PIC18FXX8  
TABLE 1-2:  
PIC18FXX8 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
PIC18F248/258 PIC18F448/458  
SPDIP, SOIC PDIP TQFP PLCC  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTD is a bi-directional I/O port.  
These pins have TTL input buffers  
when external memory is enabled.  
RD0/PSP0/C1IN+  
RD0  
19  
20  
21  
22  
27  
38  
39  
40  
41  
2
21  
22  
23  
24  
30  
I/O  
I/O  
I
ST  
TTL  
Analog  
Digital I/O.  
Parallel slave port data.  
Comparator 1 input.  
PSP0  
C1IN+  
RD1/PSP1/C1IN-  
RD1  
I/O  
I/O  
I
ST  
TTL  
Analog  
Digital I/O.  
Parallel slave port data.  
Comparator 1 input.  
PSP1  
C1IN-  
RD2/PSP2/C2IN+  
RD2  
I/O  
I/O  
I
ST  
TTL  
Analog  
Digital I/O.  
Parallel slave port data.  
Comparator 2 input.  
PSP2  
C2IN+  
RD3/PSP3/C2IN-  
RD3  
I/O  
I/O  
I
ST  
TTL  
Analog  
Digital I/O.  
Parallel slave port data.  
Comparator 2 input.  
PSP3  
C2IN-  
RD4/PSP4/ECCP1/  
P1A  
RD4  
I/O  
I/O  
I/O  
O
ST  
TTL  
ST  
Digital I/O.  
PSP4  
ECCP1  
P1A  
Parallel slave port data.  
ECCP1 capture/compare.  
ECCP1 PWM output A.  
RD5/PSP5/P1B  
RD5  
28  
29  
30  
3
4
5
31  
32  
33  
I/O  
I/O  
O
ST  
TTL  
Digital I/O.  
Parallel slave port data.  
ECCP1 PWM output B.  
PSP5  
P1B  
RD6/PSP6/P1C  
RD6  
I/O  
I/O  
O
ST  
TTL  
Digital I/O.  
Parallel slave port data.  
ECCP1 PWM output C.  
PSP6  
P1C  
RD7/PSP7/P1D  
RD7  
I/O  
I/O  
O
ST  
TTL  
Digital I/O.  
Parallel slave port data.  
ECCP1 PWM output D.  
PSP7  
P1D  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
ST = Schmitt Trigger input with CMOS levels Analog = Analog input  
I
P
=
=
Input  
Power  
O
OD  
=
=
Output  
Open Drain (no P diode to VDD)  
DS41159B-page 14  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
TABLE 1-2:  
PIC18FXX8 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PIC18F248/258  
PIC18F448/458  
Description  
SPDIP, SOIC PDIP TQFP PLCC  
PORTE is a bi-directional I/O port.  
RE0/AN5/RD  
RE0  
8
9
25  
26  
9
I/O  
I
I
ST  
Analog  
TTL  
Digital I/O.  
Analog input 5.  
Read control for parallel slave  
port (see WR and CS pins).  
AN5  
RD  
RE1/AN6/WR/C1OUT  
10  
RE1  
AN6  
WR  
I/O  
I
I
ST  
Analog  
TTL  
Digital I/O.  
Analog input 6.  
Write control for parallel slave  
port (see CS and RD pins).  
Comparator 1 output.  
C1OUT  
O
Analog  
RE2/AN7/CS/C2OUT  
10  
27  
11  
RE2  
AN7  
CS  
I/O  
I
I
ST  
Analog  
TTL  
Digital I/O.  
Analog input 7.  
Chip select control for parallel  
slave port (see RD and WR  
pins).  
C2OUT  
VSS  
O
Analog  
Comparator 2 output.  
19, 8  
20  
12, 31 6, 29 13, 34  
11, 32 7, 28 12, 35  
Ground reference for logic and  
I/O pins.  
VDD  
Positive supply for logic and I/O  
pins.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels Analog = Analog input  
Input Output  
Power Open Drain (no P diode to VDD)  
CMOS = CMOS compatible input or output  
I
=
O
=
P
=
OD  
=
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 15  
PIC18FXX8  
NOTES:  
DS41159B-page 16  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 2-1:  
CRYSTAL/CERAMIC  
RESONATOROPERATION  
(HS, XT OR LP OSC  
CONFIGURATION)  
2.0  
2.1  
OSCILLATOR  
CONFIGURATIONS  
Oscillator Types  
(1)  
The PIC18FXX8 can be operated in one of eight Oscil-  
lator modes, programmable by three configuration bits  
(FOSC2, FOSC1, and FOSC0).  
C1  
OSC1  
To  
Internal  
Logic  
(3)  
RF  
XTAL  
1. LP  
2. XT  
3. HS  
4. HS4  
Low Power Crystal  
Crystal/Resonator  
SLEEP  
(2)  
RS  
High Speed Crystal/Resonator  
(1)  
PIC18FXX8  
C2  
OSC2  
High Speed Crystal/Resonator with  
PLL enabled  
5. RC  
External Resistor/Capacitor  
Note 1: See Table 2-1 and Table 2-2 for recommended  
values of C1 and C2.  
6. RCIO  
External Resistor/Capacitor with I/O  
pin enabled  
2: A series resistor (RS) may be required for AT  
strip cut crystals.  
7. EC  
External Clock  
3: RF varies with the crystal chosen.  
8. ECIO  
External Clock with I/O pin enabled  
2.2  
Crystal Oscillator/Ceramic  
Resonators  
TABLE 2-1:  
CERAMIC RESONATORS  
Ranges Tested:  
In XT, LP, HS or HS4 (PLL) Oscillator modes, a crystal  
or ceramic resonator is connected to the OSC1 and  
OSC2 pins to establish oscillation. Figure 2-1 shows  
the pin connections. An external clock source may also  
be connected to the OSC1 pin, as shown in Figure 2-3  
and Figure 2-4.  
Mode  
Freq  
OSC1  
OSC2  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
68 - 100 pF 68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
15 - 68 pF  
15 - 68 pF  
HS  
8.0 MHz  
16.0 MHz  
20.0 MHz  
25.0 MHz  
10 - 68 pF  
10 - 22 pF  
TBD  
10 - 68 pF  
10 - 22 pF  
TBD  
The PIC18FXX8 oscillator design requires the use of a  
parallel cut crystal.  
TBD  
TBD  
Note: Use of a series cut crystal may give a fre-  
quency out of the crystal manufacturers  
specifications.  
HS+PLL  
4.0 MHz  
8.0 MHz  
10.0 MHz  
TBD  
10 - 68 pF  
TBD  
TBD  
10 - 68 pF  
TBD  
These values are for design guidance only.  
See notes following Table 2-2.  
Resonators Used:  
455 kHz Panasonic EFO-A455K04B  
0.3%  
2.0 MHz  
4.0 MHz  
8.0 MHz  
Murata Erie CSA2.00MG  
Murata Erie CSA4.00MG  
Murata Erie CSA8.00MT  
0.5%  
0.5%  
0.5%  
0.5%  
16.0 MHz Murata Erie CSA16.00MX  
All resonators used did not have built-in capacitors.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 17  
PIC18FXX8  
TABLE 2-2:  
CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
2.3  
RC Oscillator  
For timing insensitive applications, the RCand  
"RCIO" device options offer additional cost savings.  
The RC oscillator frequency is a function of the supply  
voltage, the resistor (REXT) and capacitor (CEXT) val-  
ues and the operating temperature. In addition to this,  
the oscillator frequency will vary from unit to unit due to  
normal process parameter variation. Furthermore, the  
difference in lead frame capacitance between package  
types will also affect the oscillation frequency, espe-  
cially for low CEXT values. The user also needs to take  
into account variation due to tolerance of external R  
and C components used. Figure 2-2 shows how the RC  
combination is connected.  
Crystal Cap. Range Cap. Range  
Osc Type  
Freq  
C1  
C2  
LP  
32.0 kHz  
200 kHz  
200 kHz  
1.0 MHz  
4.0 MHz  
4.0 MHz  
8.0 MHz  
20.0 MHz  
25.0 MHz  
4.0 MHz  
8.0 MHz  
10.0 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
XT  
HS  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
15-33 pF  
15-33 pF  
TBD  
15-33 pF  
15-33 pF  
TBD  
In the RC Oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic.  
HS+PLL  
15 pF  
15 pF  
15-33 pF  
TBD  
15-33 pF  
TBD  
FIGURE 2-2:  
RC OSCILLATOR MODE  
These values are for design guidance only.  
See notes on this page.  
VDD  
Crystals Used  
PIC18FXX8  
Internal  
OSC1  
REXT  
32.0 kHz Epson C-001R32.768K-A ± 20 PPM  
Clock  
200 kHz  
1.0 MHz  
4.0 MHz  
STD XTL 200.000KHz  
ECS ECS-10-13-1  
ECS ECS-40-20-1  
± 20 PPM  
± 50 PPM  
± 50 PPM  
CEXT  
VSS  
OSC2/CLKO  
8.0 MHz EPSON CA-301 8.000M-C ± 30 PPM  
FOSC/4  
20.0 MHz EPSON CA-301 20.000M- ± 30 PPM  
C
Recommended values: 3 kΩ ≤ REXT 100 kΩ  
CEXT > 20 pF  
Note 1: Recommended values of C1 and C2 are  
identical to the ranges tested (Table 2-1).  
2: Higher capacitance increases the stability  
of the oscillator, but also increases the  
start-up time.  
The RCIO Oscillator mode functions like the RC mode,  
except that the OSC2 pin becomes an additional  
general purpose I/O pin.  
3: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for  
appropriate values of external components.  
4: Rs may be required in HS mode, as well as  
XT mode, to avoid overdriving crystals with  
low drive level specification.  
DS41159B-page 18  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 2-4:  
EXTERNAL CLOCK INPUT  
OPERATION (ECIO  
CONFIGURATION)  
2.4  
External Clock Input  
The EC and ECIO Oscillator modes require an external  
clock source to be connected to the OSC1 pin. The  
feedback device between OSC1 and OSC2 is turned  
off in these modes to save current. There is no oscilla-  
tor start-up time required after a Power-on Reset or  
after a recovery from SLEEP mode.  
PIC18FXX8  
OSC1  
Clock from  
Ext. System  
I/O (OSC2)  
In the EC Oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic. Figure 2-3 shows the pin connections for the EC  
Oscillator mode.  
2.5  
HS4 (PLL)  
A Phase Locked Loop circuit is provided as a program-  
mable option for users that want to multiply the fre-  
quency of the incoming crystal oscillator signal by 4.  
For an input clock frequency of 10 MHz, the internal  
clock frequency will be multiplied to 40 MHz. This is  
useful for customers who are concerned with EMI due  
to high frequency crystals.  
FIGURE 2-3:  
EXTERNAL CLOCK INPUT  
OPERATION (EC OSC  
CONFIGURATION)  
PIC18FXX8  
OSC1  
Clock from  
The PLL can only be enabled when the oscillator con-  
figuration bits are programmed for HS mode. If they are  
programmed for any other mode, the PLL is not  
enabled and the system clock will come directly from  
OSC1.  
Ext. System  
OSC2  
FOSC/4  
The ECIO Oscillator mode functions like the EC mode,  
except that the OSC2 pin becomes an additional gen-  
eral purpose I/O pin. Figure 2-4 shows the pin connec-  
tions for the ECIO Oscillator mode.  
The PLL is one of the modes of the FOSC2:FOSC0  
configuration bits. The Oscillator mode is specified dur-  
ing device programming.  
A PLL lock timer is used to ensure that the PLL has  
locked before device execution starts. The PLL lock  
timer has a time-out referred to as TPLL.  
FIGURE 2-5:  
PLL BLOCK DIAGRAM  
FOSC2:FOSC0 = 110’  
Phase  
OSC2  
Comparator  
FIN  
Loop  
Filter  
VCO  
Crystal  
FOUT  
Osc  
SYSCLK  
Divide by 4  
OSC1  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 19  
PIC18FXX8  
2.6.1  
SYSTEM CLOCK SWITCH BIT  
2.6  
Oscillator Switching Feature  
The system clock source switching is performed under  
software control. The system clock switch bit, SCS  
(OSCCON register), controls the clock switching. When  
the SCS bit is 0, the system clock source comes from  
the main oscillator selected by the FOSC2:FOSC0 con-  
figuration bits. When the SCS bit is set, the system clock  
source comes from the Timer1 oscillator. The SCS bit is  
cleared on all forms of RESET.  
The PIC18FXX8 devices include a feature that allows  
the system clock source to be switched from the main  
oscillator to an alternate low frequency clock source.  
For the PIC18FXX8 devices, this alternate clock source  
is the Timer1 oscillator. If a low frequency crystal  
(32 kHz, for example) has been attached to the Timer1  
oscillator pins and the Timer1 oscillator has been  
enabled, the device can switch to a Low Power Execu-  
tion mode. Figure 2-6 shows a block diagram of the sys-  
tem clock sources. The clock switching feature is  
enabled by programming the Oscillator Switching  
Enable (OSCSEN) bit in Configuration register,  
CONFIG1H, to a 0. Clock switching is disabled in an  
erased device. See Section 12.2 for further details of  
the Timer1 oscillator, and Section 24.1 for Configuration  
Register details.  
Note: The Timer1 oscillator must be enabled to  
switch the system clock source. The  
Timer1 oscillator is enabled by setting the  
T1OSCEN bit in the Timer1 control register  
(T1CON). If the Timer1 oscillator is not  
enabled, any write to the SCS bit will be  
ignored (SCS bit forced cleared) and the  
main oscillator continues to be the system  
clock source.  
FIGURE 2-6:  
DEVICE CLOCK SOURCES  
PIC18FXX8  
Main Oscillator  
OSC2  
TOSC/4  
4 x PLL  
SLEEP  
TOSC  
TT1P  
TSCLK  
OSC1  
Timer 1 Oscillator  
T1OSO  
T1OSCEN  
Clock  
Source  
Enable  
Oscillator  
T1OSI  
Clock Source Option  
for Other Modules  
Note:  
I/O pins have diode protection to VDD and VSS.  
REGISTER 2-1:  
OSCCON REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SCS  
bit 7  
bit 0  
bit 7-1 Unimplemented: Read as '0'  
bit 0  
SCS: System Clock Switch bit  
When OSCSEN configuration bit = 0and T1OSCEN bit is set:  
1= Switch to Timer1 oscillator/clock pin  
0= Use primary oscillator/clock input pin  
When OSCSEN is clear or T1OSCEN is clear:  
Bit is forced clear  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS41159B-page 20  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
The sequence of events that takes place when switch-  
ing from the Timer1 oscillator to the main oscillator will  
depend on the mode of the main oscillator. In addition  
to eight clock cycles of the main oscillator, additional  
delays may take place.  
2.6.2  
OSCILLATOR TRANSITIONS  
The PIC18FXX8 devices contain circuitry to prevent  
"glitches" when switching between oscillator sources.  
Essentially, the circuitry waits for eight rising edges of  
the clock source that the processor is switching to. This  
ensures that the new clock source is stable and that its  
pulse width will not be less than the shortest pulse  
width of the two clock sources.  
If the main oscillator is configured for an external crys-  
tal (HS, XT, LP), the transition will take place after an  
oscillator start-up time (TOST) has occurred. A timing  
diagram indicating the transition from the Timer1 oscil-  
lator to the main oscillator for HS, XT, and LP modes is  
shown in Figure 2-8.  
Figure 2-7 shows a timing diagram indicating the tran-  
sition from the main oscillator to the Timer1 oscillator.  
The Timer1 oscillator is assumed to be running all the  
time. After the SCS bit is set, the processor is frozen at  
the next occurring Q1 cycle. After eight synchronization  
cycles are counted from the Timer1 oscillator, opera-  
tion resumes. No additional delays are required after  
the synchronization cycles.  
FIGURE 2-7:  
TIMING DIAGRAM FOR TRANSITION FROM OSC1 TO TIMER1 OSCILLATOR  
Q4  
Q1 Q2 Q3  
Q1  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
TT1P  
2
1
3
4
5
6
7
8
T1OSI  
OSC1  
Tscs  
TOSC  
Internal  
System  
Clock  
TDLY  
SCS  
(OSCCON<0>)  
Program  
Counter  
PC  
PC + 2  
PC + 4  
Note 1: Delay on internal system clock is eight oscillator cycles for synchronization.  
FIGURE 2-8:  
TIMING DIAGRAM FOR TRANSITION BETWEEN TIMER1 AND OSC1 (HS, XT, LP)  
Q3  
Q4  
Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3  
TT1P  
T1OSI  
OSC1  
1
2
3
4
5
6
7
8
TOST  
TSCS  
OSC2  
TOSC  
Internal System  
Clock  
SCS  
(OSCCON<0>)  
Program  
Counter  
PC  
PC + 2  
PC + 4  
Note 1: TOST = 1024 TOSC (drawing not to scale).  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 21  
PIC18FXX8  
If the main oscillator is configured for HS4 (PLL) mode,  
an oscillator start-up time (TOST) plus an additional PLL  
time-out (TPLL) will occur. The PLL time-out is typically  
2 ms and allows the PLL to lock to the main oscillator  
frequency. A timing diagram indicating the transition  
from the Timer1 oscillator to the main oscillator for HS4  
mode is shown in Figure 2-9.  
If the main oscillator is configured in the RC, RCIO, EC  
or ECIO modes, there is no oscillator start-up time-out.  
Operation will resume after eight cycles of the main  
oscillator have been counted. A timing diagram indicat-  
ing the transition from the Timer1 oscillator to the main  
oscillator for RC, RCIO, EC and ECIO modes is shown  
in Figure 2-10.  
FIGURE 2-9:  
TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (HS WITH PLL)  
TT1P  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q4  
Q1  
T1OSI  
OSC1  
TOST  
TPLL  
OSC2  
TSCS  
TOSC  
PLL Clock  
Input  
1
2
3
4
5
6
8
7
Internal System  
Clock  
SCS  
(OSCCON<0>)  
Program  
Counter  
PC  
PC + 2  
PC + 4  
Note 1: TOST = 1024 TOSC (drawing not to scale).  
FIGURE 2-10:  
TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (RC, EC)  
Q3  
Q4  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1  
TT1P  
T1OSI  
OSC1  
TOSC  
6
1
4
5
7
8
2
3
OSC2  
Internal System  
Clock  
SCS  
(OSCCON<0>)  
TSCS  
Program  
Counter  
PC  
PC + 2  
PC + 4  
Note 1: RC Oscillator mode assumed.  
DS41159B-page 22  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
RESET until the device power supply and clock are sta-  
ble. For additional information on RESET operation,  
see Section 3.0.  
2.7  
Effects of SLEEP Mode on the  
On-Chip Oscillator  
When the device executes a SLEEP instruction, the  
on-chip clocks and oscillator are turned off and the  
device is held at the beginning of an instruction cycle  
(Q1 state). With the oscillator off, the OSC1 and OSC2  
signals will stop oscillating. Since all the transistor  
switching currents have been removed, SLEEP mode  
achieves the lowest current consumption of the device  
(only leakage currents). Enabling any on-chip feature  
that will operate during SLEEP will increase the current  
consumed during SLEEP. The user can wake from  
SLEEP through external RESET, Watchdog Timer  
Reset, or through an interrupt.  
The first timer is the Power-up Timer (PWRT), which  
optionally provides a fixed delay of TPWRT (parameter  
#D033) on power-up only (POR and BOR). The second  
timer is the Oscillator Start-up Timer (OST), intended to  
keep the chip in RESET until the crystal oscillator is  
stable.  
With the PLL enabled (HS4 Oscillator mode), the time-  
out sequence following a Power-on Reset is different  
from other Oscillator modes. The time-out sequence is  
as follows: the PWRT time-out is invoked after a POR  
time delay has expired, then the Oscillator Start-up  
Timer (OST) is invoked. However, this is still not a suf-  
ficient amount of time to allow the PLL to lock at high  
frequencies. The PWRT timer is used to provide an  
additional time-out. This time is called TPLL (parameter  
#7) to allow the PLL ample time to lock to the incoming  
clock frequency.  
2.8  
Power-up Delays  
Power-up delays are controlled by two timers, so that  
no external RESET circuitry is required for most appli-  
cations. The delays ensure that the device is kept in  
TABLE 2-3:  
OSC1 AND OSC2 PIN STATES IN SLEEP MODE  
OSC1 Pin  
OSC Mode  
OSC2 Pin  
RC  
Floating, external resistor should pull high At logic low  
RCIO  
Floating, external resistor should pull high Configured as PORTA, bit 6  
ECIO  
Floating  
Floating  
Configured as PORTA, bit 6  
At logic low  
EC  
LP, XT, and HS  
Feedback inverter disabled, at quiescent  
voltage level  
Feedback inverter disabled, at quiescent  
voltage level  
Note: See Table 3-1 in Section 3.0, for time-outs due to SLEEP and MCLR Reset.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 23  
PIC18FXX8  
NOTES:  
DS41159B-page 24  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
state on Power-on Reset, MCLR, WDT Reset, Brown-  
out Reset, MCLR Reset during SLEEP and by the  
RESETinstruction.  
3.0  
RESET  
The PIC18FXX8 differentiates between various kinds  
of RESET:  
Most registers are not affected by a WDT wake-up,  
since this is viewed as the resumption of normal oper-  
ation. Status bits from the RCON register, RI, TO, PD,  
POR and BOR are set or cleared differently in different  
RESET situations, as indicated in Table 3-2. These bits  
are used in software to determine the nature of the  
RESET. See Table 3-3 for a full description of the  
RESET states of all registers.  
a) Power-on Reset (POR)  
b) MCLR Reset during normal operation  
c) MCLR Reset during SLEEP  
d) Watchdog Timer (WDT) Reset during normal  
operation  
e) Programmable Brown-out Reset (PBOR)  
f) RESETInstruction  
A simplified block diagram of the on-chip RESET circuit  
is shown in Figure 3-1.  
g) Stack Full Reset  
h) Stack Underflow Reset  
The Enhanced MCU devices have a MCLR noise filter  
in the MCLR Reset path. The filter will detect and  
ignore small pulses.  
Most registers are unaffected by a RESET. Their status  
is unknown on POR and unchanged by all other  
RESETS. The other registers are forced to a RESET”  
A WDT Reset does not drive MCLR pin low.  
FIGURE 3-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
RESET  
Instruction  
Stack Full/Underflow Reset  
External Reset  
Stack  
Pointer  
MCLR  
SLEEP  
WDT  
Time-out  
Reset  
WDT  
Module  
VDD Rise  
Detect  
Power-on Reset  
VDD  
Brown-out  
Reset  
BOREN  
S
OST/PWRT  
OST  
Chip_Reset  
10-bit Ripple Counter  
10-bit Ripple Counter  
Q
R
OSC1  
PWRT  
On-chip  
(1)  
RC OSC  
Enable PWRT  
(2)  
Enable OST  
Note 1: This is a separate oscillator from the RC oscillator of the CLKI pin.  
2: See Table 3-1 for time-out situations.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 25  
PIC18FXX8  
3.1  
Power-on Reset (POR)  
3.3  
Power-up Timer (PWRT)  
A Power-on Reset pulse is generated on-chip when a  
VDD rise is detected. To take advantage of the POR cir-  
cuitry, connect the MCLR pin directly (or through a  
resistor) to VDD. This eliminates external RC compo-  
nents usually needed to create a Power-on Reset  
delay. A minimum rise rate for VDD is specified (refer to  
parameter D004). For a slow rise time, see Figure 3-2.  
The Power-up Timer provides a fixed nominal time-out  
(parameter #33), only on power-up from the POR. The  
Power-up Timer operates on an internal RC oscillator.  
The chip is kept in RESET as long as the PWRT is  
active. The PWRTs time delay allows VDD to rise to an  
acceptable level. A configuration bit (PWRTEN in  
CONFIG2L register) is provided to enable/disable the  
PWRT.  
When the device starts normal operation (exits the  
RESET condition), device operating parameters (volt-  
age, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in RESET until the operating con-  
ditions are met. Brown-out Reset may be used to meet  
the voltage start-up condition.  
The power-up time delay will vary from chip to chip due  
to VDD, temperature and process variation. See DC  
parameter #33 for details.  
3.4  
Oscillator Start-up Timer (OST)  
The Oscillator Start-up Timer (OST) provides 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over (parameter #32). This additional  
delay ensures that the crystal oscillator or resonator  
has started and stabilized.  
3.2  
MCLR  
PIC18FXX8 devices have a noise filter in the MCLR  
Reset path. The filter will detect and ignore small  
pulses.  
The OST time-out is invoked only for XT, LP, HS and  
HS4 modes and only on Power-on Reset or wake-up  
from SLEEP.  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
The behavior of the ESD protection on the MCLR pin  
differs from previous devices of this family. Voltages  
applied to the pin that exceed its specification can  
result in both resets and current draws outside of  
device specification during the RESET event. For this  
reason, Microchip recommends that the MCLR pin no  
longer be tied directly to VDD. The use of an RC  
network, as shown in Figure 3-2, is suggested.  
3.5  
PLL Lock Time-out  
With the PLL enabled, the time-out sequence following  
a Power-on Reset is different from other oscillator  
modes. A portion of the Power-up Timer is used to pro-  
vide a fixed time-out that is sufficient for the PLL to lock  
to the main oscillator frequency. This PLL lock time-out  
(TPLL) is typically 2 ms and follows the oscillator  
start-up time-out (OST).  
FIGURE 3-2:  
RECOMMENDED MCLR  
CIRCUIT  
3.6  
Brown-out Reset (BOR)  
A configuration bit, BOREN, can disable (if clear/  
programmed), or enable (if set), the Brown-out Reset  
circuitry. If VDD falls below parameter D005 for greater  
than parameter #35, the brown-out situation resets the  
chip. A RESET may not occur if VDD falls below param-  
eter D005 for less than parameter #35. The chip will  
remain in Brown-out Reset until VDD rises above BVDD.  
The Power-up Timer will then be invoked and will keep  
the chip in RESET an additional time delay (parameter  
#33). If VDD drops below BVDD while the Power-up  
Timer is running, the chip will go back into a Brown-out  
Reset and the Power-up Timer will be initialized. Once  
VDD rises above BVDD, the Power-up Timer will  
execute the additional time delay.  
VDD  
PIC18FXX8  
R1  
1 k(or greater)  
MCLR  
C1  
0.1 µF  
(not critical)  
DS41159B-page 26  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire.  
Bringing MCLR high will begin execution immediately  
(Figure 3-5). This is useful for testing purposes or to  
synchronize more than one PIC18FXX8 device  
operating in parallel.  
3.7  
Time-out Sequence  
On power-up, the time-out sequence is as follows:  
First, PWRT time-out is invoked after the POR time  
delay has expired, then OST is activated. The total  
time-out will vary based on oscillator configuration and  
the status of the PWRT. For example, in RC mode with  
the PWRT disabled, there will be no time-out at all.  
Figure 3-3, Figure 3-4, Figure 3-5, Figure 3-6 and  
Figure 3-7 depict time-out sequences on power-up.  
Table 3-2 shows the RESET conditions for some  
Special Function Registers, while Table 3-3 shows the  
RESET conditions for all registers.  
TABLE 3-1:  
TIME-OUT IN VARIOUS SITUATIONS  
Power-up(2)  
Wake-up from  
SLEEP or  
Oscillator  
Configuration  
Brown-out(2)  
PWRTEN = 0  
PWRTEN = 1  
Oscillator Switch  
HS with PLL enabled(1) 72 ms + 1024 TOSC + 2 ms 1024 TOSC + 2 ms 72 ms + 1024 TOSC + 2 ms 1024 TOSC + 2 ms  
HS, XT, LP  
EC  
External RC  
72 ms + 1024 TOSC  
72 ms  
1024 TOSC  
72 ms + 1024 TOSC  
72 ms  
1024 TOSC  
72 ms  
72 ms  
Note 1: 2 ms = Nominal time required for the 4X PLL to lock.  
2: 72 ms is the nominal power-up timer delay.  
REGISTER 3-1:  
RCON REGISTER BITS AND POSITIONS  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R/W-1  
TO  
R/W-1  
PD  
R/W-1  
POR  
R/W-1  
BOR  
bit 7  
bit 0  
TABLE 3-2:  
STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR  
RCON REGISTER  
Program  
Counter  
RCON  
Register  
Condition  
RI TO PD POR BOR STKFUL STKUNF  
Power-on Reset  
0000h  
0000h  
0--1 1100  
0--u uuuu  
1
u
1
u
1
u
0
u
0
u
u
u
u
u
MCLR Reset during normal  
operation  
Software Reset during normal  
operation  
0000h  
0000h  
0000h  
0--0 uuuu  
0--u uu11  
0--u uu11  
0
u
u
u
u
u
u
u
u
u
1
1
u
1
1
u
u
1
u
1
u
Stack Full Reset during normal  
operation  
Stack Underflow Reset during  
normal operation  
MCLR Reset during SLEEP  
WDT Reset  
0000h  
0000h  
PC + 2  
0000h  
0--u 10uu  
0--u 01uu  
u--u 00uu  
0--1 11u0  
u
u
u
1
u
1
0
0
1
0
0
1
0
1
0
u
u
u
u
u
u
u
u
0
u
u
u
u
u
u
u
u
u
u
u
WDT Wake-up  
Brown-out Reset  
Interrupt Wake-up from SLEEP  
PC + 2(1) u--u 00uu  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as '0'  
Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the  
interrupt vector (0x000008h or 0x000018h).  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 27  
PIC18FXX8  
FIGURE 3-3:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD VIA RC NETWORK)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 3-4:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 3-5:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
DS41159B-page 28  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 3-6:  
SLOW RISE TIME (MCLR TIED TO VDD VIA RC NETWORK)  
5V  
0V  
1V  
VDD  
MCLR  
TDEADTIME  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 3-7:  
TIME-OUT SEQUENCE ON POR W/ PLL ENABLED (MCLR TIED TO VDD  
VIA RC NETWORK)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
TPLL  
PLL TIME-OUT  
INTERNAL RESET  
TOST = 1024 clock cycles.  
TPLL 2 ms max. First three stages of the PWRT timer.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 29  
PIC18FXX8  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS  
MCLR Reset  
WDT Reset  
RESETInstruction  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
TOSU  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
111- -1-1  
11-- 0-00  
N/A  
---0 0000  
0000 0000  
0000 0000  
uu-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 000u  
111- -1-1  
11-- 0-00  
N/A  
---0 uuuu(3)  
uuuu uuuu(3)  
uuuu uuuu(3)  
uu-u uuuu(3)  
---u uuuu  
uuuu uuuu  
PC + 2(2)  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(1)  
uuuu -u-u(1)  
uu-u u-uu(1)  
N/A  
TOSH  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0  
POSTINC0  
POSTDEC0  
PREINC0  
PLUSW0  
FSR0H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- 0000  
xxxx xxxx  
xxxx xxxx  
N/A  
---- 0000  
uuuu uuuu  
uuuu uuuu  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
FSR0L  
WREG  
INDF1  
POSTINC1  
POSTDEC1  
PREINC1  
PLUSW1  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as 0, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008hor 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for RESET value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
Oscillator modes, they are disabled and read 0.  
6: Values for CANSTAT also apply to to its other instances (CANSTATRO1 through CANSTATRO4).  
DS41159B-page 30  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
TABLE 3-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Reset  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESETInstruction  
Stack Resets  
FSR1H  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
---- 0000  
xxxx xxxx  
---- 0000  
N/A  
---- 0000  
uuuu uuuu  
---- 0000  
N/A  
---- uuuu  
uuuu uuuu  
---- uuuu  
N/A  
FSR1L  
BSR  
INDF2  
POSTINC2  
POSTDEC2  
PREINC2  
PLUSW2  
FSR2H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- 0000  
xxxx xxxx  
---x xxxx  
xxxx xxxx  
xxxx xxxx  
1111 1111  
---- ---0  
--00 0101  
---- ---0  
0--1 11q0  
xxxx xxxx  
xxxx xxxx  
0-00 0000  
xxxx xxxx  
1111 1111  
-000 0000  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
---- 0000  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
1111 1111  
---- ---0  
--00 0101  
---- ---0  
0--1 qquu  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
uuuu uuuu  
1111 1111  
-000 0000  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
---- uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- ---u  
--uu uuuu  
---- ---u  
u--u qquu  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
uuuu uuuu  
1111 1111  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
OSCCON  
LVDCON  
WDTCON  
RCON(4)  
TMR1H  
TMR1L  
T1CON  
TMR2  
PR2  
T2CON  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1  
SSPCON2  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as 0, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008hor 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for RESET value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
Oscillator modes, they are disabled and read 0.  
6: Values for CANSTAT also apply to to its other instances (CANSTATRO1 through CANSTATRO4).  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 31  
PIC18FXX8  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Reset  
WDT Reset  
RESETInstruction  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
CCPR1H  
CCPR1L  
CCP1CON  
ECCPR1H  
ECCPR1L  
ECCP1CON  
ECCP1DEL  
ECCPAS  
CVRCON  
CMCON  
TMR3H  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
xxxx xxxx  
xxxx xxxx  
0000 00-0  
00-- 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0000 -01x  
0000 000x  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xx-0 x000  
1111 1111  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 00-0  
00-- 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 -01u  
0000 000u  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uu-0 u000  
1111 1111  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uu-u  
uu-- uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uu-0 u000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
TMR3L  
T3CON  
SPBRG  
RCREG  
TXREG  
TXSTA  
RCSTA  
EEADR  
EEDATA  
EECON2  
EECON1  
IPR3  
PIR3  
PIE3  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as 0, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008hor 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for RESET value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
Oscillator modes, they are disabled and read 0.  
6: Values for CANSTAT also apply to to its other instances (CANSTATRO1 through CANSTATRO4).  
DS41159B-page 32  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
TABLE 3-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Reset  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESETInstruction  
Stack Resets  
IPR2  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
-1-1 1111  
-0-0 0000  
-0-0 0000  
1111 1111  
0000 0000  
0000 0000  
0000 -111  
1111 1111  
1111 1111  
1111 1111  
-111 1111(5)  
---- -xxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-xxx xxxx(5)  
---- -xxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-x0x 0000(5)  
0000 0000  
0000 0000  
0000 0000  
1000 ----  
-0-- -000  
0000 0000  
0000 0000  
xxxx xxx-  
xxx- xxx-  
-1-1 1111  
-0-0 0000  
-0-0 0000  
1111 1111  
0000 0000  
0000 0000  
0000 -111  
1111 1111  
1111 1111  
1111 1111  
-111 1111(5)  
---- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
---- -000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u0u 0000(5)  
0000 0000  
0000 0000  
0000 0000  
1000 ----  
-0-- -000  
0000 0000  
0000 0000  
uuuu uuu-  
uuu- uuu-  
-u-u uuuu  
-u-u uuuu(1)  
-u-u uuuu  
uuuu uuuu  
uuuu uuuu(1)  
uuuu uuuu  
uuuu -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
---- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
---- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu ----  
-u-- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuu-  
uuu- uuu-  
PIR2  
PIE2  
IPR1  
PIR1  
PIE1  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA(5)  
LATE  
LATD  
LATC  
LATB  
LATA(5)  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA(5)  
TXERRCNT  
RXERRCNT  
COMSTAT  
CIOCON  
BRGCON3  
BRGCON2  
BRGCON1  
CANCON  
CANSTAT(6)  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as 0, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008hor 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for RESET value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
Oscillator modes, they are disabled and read 0.  
6: Values for CANSTAT also apply to to its other instances (CANSTATRO1 through CANSTATRO4).  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 33  
PIC18FXX8  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Reset  
WDT Reset  
RESETInstruction  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
RXB0D7  
RXB0D6  
RXB0D5  
RXB0D4  
RXB0D3  
RXB0D2  
RXB0D1  
RXB0D0  
RXB0DLC  
RXB0EIDL  
RXB0EIDH  
RXB0SIDL  
RXB0SIDH  
RXB0CON  
RXB1D7  
RXB1D6  
RXB1D5  
RXB1D4  
RXB1D3  
RXB1D2  
RXB1D1  
RXB1D0  
RXB1DLC  
RXB1EIDL  
RXB1EIDH  
RXB1SIDL  
RXB1SIDH  
RXB1CON  
TXB0D7  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0xxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx x-xx  
xxxx xxxx  
000- 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0xxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx x0xx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu u-uu  
uuuu uuuu  
000- 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu u0uu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu u-uu  
uuuu uuuu  
uuu- uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
TXB0D6  
TXB0D5  
TXB0D4  
TXB0D3  
TXB0D2  
TXB0D1  
TXB0D0  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as 0, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008hor 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for RESET value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
Oscillator modes, they are disabled and read 0.  
6: Values for CANSTAT also apply to to its other instances (CANSTATRO1 through CANSTATRO4).  
DS41159B-page 34  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
TABLE 3-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Reset  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESETInstruction  
Stack Resets  
TXB0DLC  
TXB0EIDL  
TXB0EIDH  
TXB0SIDL  
TXB0SIDH  
TXB0CON  
TXB1D7  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
0x00 xxxx  
xxxx xxxx  
xxxx xxxx  
xxx0 x0xx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0x00 xxxx  
xxxx xxxx  
xxxx xxxx  
xxx0 x0xx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0x00 xxxx  
xxxx xxxx  
xxxx xxxx  
xxx0 x0xx  
xxxx xxxx  
0000 0000  
0u00 uuuu  
uuuu uuuu  
uuuu uuuu  
uuu0 u0uu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0u00 uuuu  
uuuu uuuu  
uuuu uuuu  
uuu0 u0uu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0u00 uuuu  
uuuu uuuu  
uuuu uuuu  
uuu0 u0uu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
TXB1D6  
TXB1D5  
TXB1D4  
TXB1D3  
TXB1D2  
TXB1D1  
TXB1D0  
TXB1DLC  
TXB1EIDL  
TXB1EIDH  
TXB1SIDL  
TXB1SIDH  
TXB1CON  
TXB2D7  
TXB2D6  
TXB2D5  
TXB2D4  
TXB2D3  
TXB2D2  
TXB2D1  
TXB2D0  
TXB2DLC  
TXB2EIDL  
TXB2EIDH  
TXB2SIDL  
TXB2SIDH  
TXB2CON  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as 0, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008hor 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for RESET value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
Oscillator modes, they are disabled and read 0.  
6: Values for CANSTAT also apply to to its other instances (CANSTATRO1 through CANSTATRO4).  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 35  
PIC18FXX8  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Reset  
WDT Reset  
RESETInstruction  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
RXM1EIDL  
RXM1EIDH  
RXM1SIDL  
RXM1SIDH  
RXM0EIDL  
RXM0EIDH  
RXM0SIDL  
RXM0SIDH  
RXF5EIDL  
RXF5EIDH  
RXF5SIDL  
RXF5SIDH  
RXF4EIDL  
RXF4EIDH  
RXF4SIDL  
RXF4SIDH  
RXF3EIDL  
RXF3EIDH  
RXF3SIDL  
RXF3SIDH  
RXF2EIDL  
RXF2EIDH  
RXF2SIDL  
RXF2SIDH  
RXF1EIDL  
RXF1EIDH  
RXF1SIDL  
RXF1SIDH  
RXF0EIDL  
RXF0EIDH  
RXF0SIDL  
RXF0SIDH  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
xxxx xxxx  
xxxx xxxx  
xxx- --xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- --xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
uuu- --uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- --uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- --uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- --uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as 0, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008hor 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for RESET value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
Oscillator modes, they are disabled and read 0.  
6: Values for CANSTAT also apply to to its other instances (CANSTATRO1 through CANSTATRO4).  
DS41159B-page 36  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
Figure 4-1 shows the diagram for program memory  
map and stack for the PIC18F258 and PIC18F458.  
Figure 4-2 shows the the diagram for the program  
memory map and stack for the PIC18F248 and  
PIC18F448.  
4.0  
MEMORY ORGANIZATION  
There are three memory blocks in Enhanced MCU  
devices. These memory blocks are:  
Enhanced FLASH Program Memory  
Data Memory  
4.1.1  
INTERNAL PROGRAM MEMORY  
OPERATION  
EEPROM Data Memory  
Data and program memory use separate busses,  
which allows concurrent access of these blocks. Addi-  
tional detailed information on Data EEPROM and  
FLASH program memory is provided in Section 5.0 and  
Section 6.0, respectively.  
The PIC18F258 and the PIC18F458 have 32 Kbytes of  
internal Enhanced FLASH program memory. This  
means that the PIC18F258 and the PIC18F458 can  
store up to 16K of single word instructions. The  
PIC18F248 and PIC18F448 have 16 Kbytes of  
Enhanced FLASH program memory. This translates  
into 8192 single-word instructions, which can be stored  
in the Program memory. Accessing a location between  
the physically implemented memory and the 2 Mbyte  
address will cause a read of all '0's (a NOPinstruction).  
4.1  
Program Memory Organization  
The PIC18F258/458 devices have a 21-bit program  
counter that is capable of addressing a 2 Mbyte  
program memory space.  
The RESET vector address is at 0000h and the  
interrupt vector addresses are at 0008h and 0018h.  
FIGURE 4-2:  
PROGRAM MEMORY MAP  
AND STACK FOR  
PIC18F248/448  
FIGURE 4-1:  
PROGRAM MEMORY MAP  
AND STACK FOR  
PIC18F258/458  
PC<20:0>  
PC<20:0>  
21  
21  
CALL,RCALL,RETURN  
RETFIE,RETLW  
CALL,RCALL,RETURN  
RETFIE,RETLW  
Stack Level 1  
Stack Level 1  
Stack Level 31  
RESET Vector  
Stack Level 31  
RESET Vector  
0000h  
0008h  
0000h  
High Priority Interrupt Vector  
High Priority Interrupt Vector  
Low Priority Interrupt Vector  
0008h  
0018h  
Low Priority Interrupt Vector 0018h  
On-Chip  
Program Memory  
3FFFh  
4000h  
On-Chip  
Program Memory  
7FFFh  
8000h  
Read ’0’  
Read ’0’  
1FFFFFh  
200000h  
1FFFFFh  
200000h  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 37  
PIC18FXX8  
4.2.2  
RETURN STACK POINTER  
(STKPTR)  
4.2  
Return Address Stack  
The return address stack allows any combination of up  
to 31 program calls and interrupts to occur. The PC  
(Program Counter) is pushed onto the stack when a  
PUSH, CALLor RCALLinstruction is executed, or an  
interrupt is acknowledged. The PC value is pulled off  
the stack on a RETURN, RETLWor a RETFIEinstruc-  
tion. PCLATU and PCLATH are not affected by any of  
the return instructions.  
The STKPTR register contains the stack pointer value,  
the STKFUL (stack full) status bit, and the STKUNF  
(stack underflow) status bits. Register 4-1 shows the  
STKPTR register. The value of the stack pointer can be  
0 through 31. The stack pointer increments when val-  
ues are pushed onto the stack and decrements when  
values are popped off the stack. At RESET, the stack  
pointer value will be 0. The user may read and write the  
stack pointer value. This feature can be used by a Real  
Time Operating System for return stack maintenance.  
The stack operates as a 31-word by 21-bit stack mem-  
ory and a 5-bit stack pointer, with the stack pointer ini-  
tialized to 00000bafter all RESETS. There is no RAM  
associated with stack pointer 00000b. This is only a  
RESET value. During a CALLtype instruction causing  
a push onto the stack, the stack pointer is first incre-  
mented and the RAM location pointed to by the stack  
pointer is written with the contents of the PC. During a  
RETURNtype instruction causing a pop from the stack,  
the contents of the RAM location indicated by the  
STKPTR is transferred to the PC and then the stack  
pointer is decremented.  
After the PC is pushed onto the stack 31 times (without  
popping any values off the stack), the STKFUL bit is  
set. The STKFUL bit can only be cleared in software or  
by a POR.  
The action that takes place when the stack becomes  
full depends on the state of the STVREN (Stack Over-  
flow Reset Enable) configuration bit. Refer to  
Section 21.0 for a description of the device configura-  
tion bits. If STVREN is set (default), the 31st push will  
push the (PC + 2) value onto the stack, set the STKFUL  
bit, and reset the device. The STKFUL bit will remain  
set and the stack pointer will be set to 0.  
The stack space is not part of either program or data  
space. The stack pointer is readable and writable, and  
the data on the top of the stack is readable and writable  
through SFR registers. Status bits indicate if the stack  
pointer is at or beyond the 31 levels provided.  
If STVREN is cleared, the STKFUL bit will be set on the  
31st push and the stack pointer will increment to 31.  
The 32nd push will overwrite the 31st push (and so on),  
while STKPTR remains at 31.  
4.2.1  
TOP-OF-STACK ACCESS  
The top of the stack is readable and writable. Three  
register locations, TOSU, TOSH and TOSL allow  
access to the contents of the stack location indicated by  
the STKPTR register. This allows users to implement a  
software stack, if necessary. After a CALL, RCALLor  
interrupt, the software can read the pushed value by  
reading the TOSU, TOSH and TOSL registers. These  
values can be placed on a user defined software stack.  
At return time, the software can replace the TOSU,  
TOSH and TOSL and do a return.  
When the stack has been popped enough times to  
unload the stack, the next pop will return a value of zero  
to the PC and sets the STKUNF bit, while the stack  
pointer remains at 0. The STKUNF bit will remain set  
until cleared in software or a POR occurs.  
Note: Returning a value of zero to the PC on an  
underflow has the effect of vectoring the  
program to the RESET vector, where the  
stack conditions can be verified and  
appropriate actions can be taken.  
The user should disable the global interrupt enable bits  
during this time to prevent inadvertent stack  
operations.  
DS41159B-page 38  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 4-1:  
STKPTR - STACK POINTER REGISTER  
R/C-0  
STKFUL  
bit 7  
R/C-0  
U-0  
R/W-0  
SP4  
R/W-0  
SP3  
R/W-0  
SP2  
R/W-0  
SP1  
R/W-0  
SP0  
STKUNF  
bit 0  
bit 7  
bit 6  
bit 5  
STKFUL: Stack Full Flag bit  
1= Stack became full or overflowed  
0= Stack has not become full or overflowed  
STKUNF: Stack Underflow Flag bit  
1= Stack underflow occurred  
0= Stack underflow did not occur  
Unimplemented: Read as '0'  
bit 4-0 SP4:SP0: Stack Pointer Location bits  
Note: Bit 7 and bit 6 need to be cleared following a stack underflow or a stack overflow.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared C = Clearable bit  
1= Bit is set  
FIGURE 4-3:  
RETURN ADDRESS STACK AND ASSOCIATED REGISTERS  
Return Address Stack  
11111  
11110  
11101  
STKPTR<4:0>  
00010  
TOSU  
00h  
TOSH  
1Ah  
TOSL  
34h  
00011  
001A34h 00010  
000D58h 00001  
000000h 00000(1)  
Top-of-Stack  
Note 1: No RAM associated with this address; always maintained 0s.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 39  
PIC18FXX8  
4.2.3  
PUSHAND POPINSTRUCTIONS  
EXAMPLE 4-1:  
FAST REGISTER STACK  
CODE EXAMPLE  
Since the Top-of-Stack (TOS) is readable and writable,  
the ability to push values onto the stack and pull values  
off the stack without disturbing normal program execu-  
tion is a desirable option. To push the current PC value  
onto the stack, a PUSH instruction can be executed.  
This will increment the stack pointer and load the cur-  
rent PC value onto the stack. TOSU, TOSH and TOSL  
can then be modified to place a return address on the  
stack.  
CALL SUB1, FAST  
;STATUS, WREG, BSR  
;SAVED IN FAST REGISTER  
;STACK  
SUB1  
RETURN FAST  
;RESTORE VALUES SAVED  
;IN FAST REGISTER STACK  
The POPinstruction discards the current TOS by decre-  
menting the stack pointer. The previous value pushed  
onto the stack then becomes the TOS value.  
4.4  
PCL, PCLATH and PCLATU  
4.2.4  
STACK FULL/UNDERFLOW RESETS  
The program counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 21-bits  
wide. The low byte is called the PCL register. This reg-  
ister is readable and writable. The high byte is called  
the PCH register. This register contains the PC<15:8>  
bits and is not directly readable or writable. Updates to  
the PCH register may be performed through the  
PCLATH register. The upper byte is called PCU. This  
register contains the PC<20:16> bits and is not directly  
readable or writable. Updates to the PCU register may  
be performed through the PCLATU register.  
These RESETS are enabled by programming the  
STVREN configuration bit. When the STVREN bit is  
disabled, a full or underflow condition will set the appro-  
priate STKFUL or STKUNF bit, but not cause a device  
RESET. When the STVREN bit is enabled, a full or  
underflow condition will set the appropriate STKFUL or  
STKUNF bit and then cause a device RESET. The  
STKFUL or STKUNF bits are only cleared by the user  
software or a POR.  
4.3  
Fast Register Stack  
The PC addresses bytes in the program memory. To  
prevent the PC from becoming misaligned with word  
instructions, the LSb of PCL is fixed to a value of 0.  
The PC increments by 2 to address sequential instruc-  
tions in the program memory.  
A fast returnoption is available for interrupts and  
calls. A fast register stack is provided for the STATUS,  
WREG and BSR registers and is only one layer in  
depth. The stack is not readable or writable and is  
loaded with the current value of the corresponding reg-  
ister when the processor vectors for an interrupt. The  
values in the fast register stack are then loaded back  
The CALL, RCALL, GOTO and program branch  
instructions write to the program counter directly. For  
these instructions, the contents of PCLATH and  
PCLATU are not transferred to the program counter.  
into the working registers if the fast  
return  
instruction is used to return from the interrupt.  
The contents of PCLATH and PCLATU will be trans-  
ferred to the program counter by an operation that  
writes PCL. Similarly, the upper two bytes of the pro-  
gram counter will be transferred to PCLATH and  
PCLATU by an operation that reads PCL. This is useful  
for computed offsets to the PC (see Section 4.8.1).  
A low or high priority interrupt source will push values  
into the stack registers. If both low and high priority  
interrupts are enabled, the stack registers cannot be  
used reliably for low priority interrupts. If a high priority  
interrupt occurs while servicing a low priority interrupt,  
the stack register values stored by the low priority  
interrupt will be overwritten.  
If high priority interrupts are not disabled during low pri-  
ority interrupts, users must save the key registers in  
software during a low priority interrupt.  
If no interrupts are used, the fast register stack can be  
used to restore the STATUS, WREG and BSR registers  
at the end of a subroutine call. To use the fast register  
stack for a subroutine call, a fast call instruction  
must be executed.  
Example 4-1 shows a source code example that uses  
the fast register stack.  
DS41159B-page 40  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
instruction is fetched from the program memory and  
latched into the instruction register in Q4. The instruc-  
tion is decoded and executed during the following Q1  
through Q4. The clocks and instruction execution flow  
are shown in Figure 4-4.  
4.5  
Clocking Scheme/Instruction  
Cycle  
The clock input (from OSC1) is internally divided by  
four to generate four non-overlapping quadrature  
clocks, namely Q1, Q2, Q3 and Q4. Internally, the pro-  
gram counter (PC) is incremented every Q1, the  
FIGURE 4-4:  
CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Internal  
Phase  
Clock  
Q2  
Q3  
Q4  
PC  
PC  
PC+2  
PC+4  
OSC2/CLKO  
(RC Mode)  
Fetch INST (PC)  
Execute INST (PC-2)  
Fetch INST (PC+2)  
Execute INST (PC)  
Fetch INST (PC+4)  
Execute INST (PC+2)  
4.6  
Instruction Flow/Pipelining  
4.7  
Instructions in Program Memory  
An Instruction Cycleconsists of four Q cycles (Q1,  
Q2, Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle,  
while decode and execute take another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g., GOTO),  
two cycles are required to complete the instruction  
(Example 4-2).  
The program memory is addressed in bytes. Instruc-  
tions are stored as two bytes or four bytes in program  
memory. The Least Significant Byte of an instruction  
word is always stored in a program memory location  
with an even address (LSB = 0). Figure 4-3 shows an  
example of how instruction words are stored in the pro-  
gram memory. To maintain alignment with instruction  
boundaries, the PC increments in steps of 2 and the  
LSB will always read 0(see Section 4.4).  
A fetch cycle begins with the program counter (PC)  
incrementing in Q1.  
The CALLand GOTOinstructions have an absolute pro-  
gram memory address embedded into the instruction.  
Since instructions are always stored on word bound-  
aries, the data contained in the instruction is a word  
address. The word address is written to PC<20:1>,  
which accesses the desired byte address in program  
memory. Instruction #2 in Example 4-3 shows how the  
instruction GOTO 000006his encoded in the program  
memory. Program branch instructions that encode a  
relative address offset operate in the same manner.  
The offset value stored in a branch instruction repre-  
sents the number of single word instructions by which  
the PC will be offset. Section 25.0 provides further  
details of the instruction set.  
In the execution cycle, the fetched instruction is latched  
into the Instruction Register(IR) in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3, and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 41  
PIC18FXX8  
EXAMPLE 4-2:  
INSTRUCTION PIPELINE FLOW  
TCY0  
TCY1  
TCY2  
TCY3  
TCY4  
TCY5  
1. MOVLW 55h  
2. MOVWF PORTB  
3. BRA SUB_1  
Fetch 1  
Execute 1  
Fetch 2  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3 (Forced NOP)  
Flush  
5. Instruction @ address SUB_1  
Fetch SUB_1  
Execute SUB_1  
Note:  
All instructions are single cycle, except for any program branches. These take two cycles, since the fetch instruction  
is flushedfrom the pipeline while the new instruction is being fetched and then executed.  
EXAMPLE 4-3:  
INSTRUCTIONS IN PROGRAM MEMORY  
Instruction  
Opcode  
Memory  
Address  
000007h  
000008h  
000009h  
00000Ah  
00000Bh  
00000Ch  
00000Dh  
00000Eh  
00000Fh  
000010h  
000011h  
000012h  
MOVLW 055h  
0E55h  
55h  
0Eh  
03h  
EFh  
00h  
F0h  
23h  
C1h  
56h  
F4h  
GOTO 000006h  
EF03h, F000h  
MOVFF 123h, 456h  
C123h, F456h  
DS41159B-page 42  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
A lookup table can be formed with an ADDWF PCL  
instruction and a group of RETLW 0xnn instructions.  
WREG is loaded with an offset into the table before  
executing a call to that table. The first instruction of the  
called routine is the ADDWF PCLinstruction. The next  
instruction executed will be one of the RETLW 0xnn  
instructions that returns the value 0xnn to the calling  
function.  
4.7.1  
TWO-WORD INSTRUCTIONS  
The PIC18FXX8 devices have 4 two-word instructions:  
MOVFF, CALL, GOTOand LFSR. The 4 Most Signifi-  
cant bits of the second word are set to 1s, and indicate  
a special NOPinstruction. The lower 12 bits of the sec-  
ond word contain the data to be used by the instruction.  
If the first word of the instruction is executed, the data  
in the second word is accessed. If the second word of  
the instruction is executed by itself (first word was  
skipped), it will execute as a NOP. This action is neces-  
sary when the two-word instruction is preceded by a  
conditional instruction that changes the PC. A program  
example that demonstrates this concept is shown in  
Example 4-4. Refer to Section 25.0 for further details of  
the instruction set.  
The offset value (value in WREG) specifies the number  
of bytes that the program counter should advance.  
In this method, only one data byte may be stored in  
each instruction location and room on the return  
address stack is required.  
Warning: The LSb of PCL is fixed to a value of 0.  
Hence, computed GOTO to an odd  
address is not possible.  
4.8  
Lookup Tables  
4.8.2  
TABLE READS/TABLE WRITES  
Lookup tables are implemented two ways. These are:  
Computed GOTO  
Table Reads  
A better method of storing data in program memory  
allows 2 bytes of data to be stored in each instruction  
location.  
4.8.1  
COMPUTED GOTO  
Lookup table data may be stored as 2 bytes per pro-  
gram word by using table reads and writes. The table  
pointer (TBLPTR) specifies the byte address and the  
table latch (TABLAT) contains the data that is read  
from, or written to, program memory. Data is  
transferred to/from program memory, one byte at a  
time.  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL).  
The ADDWF PCLinstruction does not update PCLATH/  
PCLATU. A read operation on PCL must be performed  
prior to the ADDWF PCL.  
A description of the Table Read/Table Write operation  
is shown in Section 6.1.  
EXAMPLE 4-4:  
CASE 1:  
TWO-WORD INSTRUCTIONS  
Object Code  
Source Code  
0110 0110 0000 0000 TSTFSZ  
1100 0001 0010 0011 MOVFF  
1111 0100 0101 0110  
REG1  
; is RAM location 0?  
REG1, REG2 ; No, execute 2-word instruction  
; 2nd operand holds address of REG2  
0010 0100 0000 0000 ADDWF  
REG3  
; continue code  
CASE 2:  
Object Code  
Source Code  
0110 0110 0000 0000 TSTFSZ  
1100 0001 0010 0011 MOVFF  
1111 0100 0101 0110  
REG1  
; is RAM location 0?  
REG1, REG2 ; Yes  
; 2nd operand becomes NOP  
REG3 ; continue code  
0010 0100 0000 0000 ADDWF  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 43  
PIC18FXX8  
4.9.1  
GENERAL PURPOSE REGISTER  
FILE  
4.9  
Data Memory Organization  
The data memory is implemented as static RAM. Each  
register in the data memory has a 12-bit address,  
allowing up to 4096 bytes of data memory. Figure 4-6  
shows the data memory organization for the  
PIC18FXX8 devices.  
The register file can be accessed either directly, or indi-  
rectly. Indirect addressing operates through the File  
Select Registers (FSR). The operation of indirect  
addressing is shown in Section 4.12.  
The data memory map is divided into as many as 16  
banks that contain 256 bytes each. The lower 4 bits of  
the Bank Select Register (BSR<3:0>) select which  
bank will be accessed. The upper 4 bits for the BSR are  
not implemented.  
Enhanced MCU devices may have banked memory in  
the GPR area. GPRs are not initialized by a Power-on  
Reset and are unchanged on all other RESETS.  
Data RAM is available for use as GPR registers by all  
instructions. Bank 15 (F00h to FFFh) contains SFRs.  
All other banks of data memory contain GPR registers,  
starting with bank 0.  
The data memory contains Special Function Registers  
(SFRs) and General Purpose Registers (GPRs). The  
SFRs are used for control and status of the controller  
and peripheral functions, while GPRs are used for data  
storage and scratch pad operations in the users appli-  
cation. The SFRs start at the last location of Bank 15  
(FFFh) and grow downwards. GPRs start at the first  
location of Bank 0 and grow upwards. Any read of an  
unimplemented location will read as 0s.  
4.9.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers (SFRs) are registers  
used by the CPU and Peripheral Modules for control-  
ling the desired operation of the device. These regis-  
ters are implemented as static RAM. A list of these  
registers is given in Table 4-1.  
The entire data memory may be accessed directly, or  
indirectly. Direct addressing may require the use of the  
BSR register. Indirect addressing requires the use of  
the File Select Register (FSR). Each FSR holds a  
12-bit address value that can be used to access any  
location in the Data Memory map without banking.  
The SFRs can be classified into two sets: those asso-  
ciated with the corefunction and those related to the  
peripheral functions. Those registers related to the  
coreare described in this section, while those related  
to the operation of the peripheral features are  
described in the section of that peripheral feature.  
The instruction set and architecture allow operations  
across all banks. This may be accomplished by indirect  
addressing or by the use of the MOVFFinstruction. The  
MOVFF instruction is a two-word/two-cycle instruction,  
that moves a value from one register to another.  
The SFRs are typically distributed among the  
peripherals whose functions they control.  
The unused SFR locations will be unimplemented and  
read as '0's. See Table 4-1 for addresses for the SFRs.  
To ensure that commonly used registers (SFRs and  
select GPRs) can be accessed in a single cycle,  
regardless of the current BSR values, an Access Bank  
is implemented. A segment of Bank 0 and a segment of  
Bank 15 comprise the Access RAM. Section 4.10  
provides a detailed description of the Access RAM.  
DS41159B-page 44  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 4-5:  
BSR<3:0>  
= 0000  
DATA MEMORY MAP FOR PIC18F248/448  
Data Memory Map  
000h  
05Fh  
00h  
Access RAM  
GPR  
Bank 0  
Bank 1  
060h  
0FFh  
100h  
FFh  
00h  
= 0001  
GPR  
GPR  
1FFh  
200h  
FFh  
00h  
FFh  
300h  
Access Bank  
00h  
Access RAM  
5Fh  
60h  
= 0010  
= 1110  
SFR  
FFh  
Bank 2  
to  
Bank 14  
Unused  
Read 00h’  
When a = 0,  
the BSR is ignored and  
the Access Bank is used.  
The first 96 bytes are  
General Purpose RAM  
(from Bank 0).  
The next 160 bytes are  
Special Function  
Registers (from Bank 15).  
When a = 1,  
EFFh  
F00h  
F5Fh  
F60h  
FFFh  
the BSR is used to specify  
the RAM location that the  
instruction uses.  
00h  
FFh  
Unused  
SFR  
= 1111  
Bank 15  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 45  
PIC18FXX8  
FIGURE 4-6:  
BSR<3:0>  
= 0000  
DATA MEMORY MAP FOR PIC18F258/458  
Data Memory Map  
000h  
05Fh  
060h  
0FFh  
00h  
Access RAM  
GPR  
Bank 0  
FFh  
00h  
100h  
= 0001  
= 0010  
GPR  
GPR  
Bank 1  
Bank 2  
Bank 3  
1FFh  
200h  
FFh  
00h  
2FFh  
300h  
FFh  
00h  
= 0011  
= 0100  
= 0101  
GPR  
FFh  
3FFh  
400h  
Access Bank  
Bank 4  
Bank 5  
GPR  
GPR  
4FFh  
500h  
00h  
5Fh  
Access Bank low  
(GPR)  
00h  
FFh  
5FFh  
600h  
60h  
FFh  
Access Bank high  
(SFR)  
= 0110  
= 1110  
When a = 0,  
Bank 6  
to  
Bank 14  
Unused  
Read 00h’  
the BSR is ignored and the  
Access Bank is used.  
The first 96 bytes are  
General Purpose RAM  
(from Bank 0).  
EFFh  
F00h  
F5Fh  
F60h  
FFFh  
The next 160 bytes are  
SpecialFunctionRegisters  
(from Bank 15).  
00h  
FFh  
SFR  
SFR  
= 1111  
Bank 15  
When a = 1,  
the BSR is used to specify  
the RAM location that the  
instruction uses.  
DS41159B-page 46  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
TABLE 4-1:  
Address  
SPECIAL FUNCTION REGISTER MAP  
Name  
Address  
Name  
Address  
Name  
Address  
Name  
FFFh TOSU  
FDFh INDF2(2)  
FBFh CCPR1H  
F9Fh IPR1  
FFEh TOSH  
FDEh POSTINC2(2)  
FDDh POSTDEC2(2)  
FDCh PREINC2(2)  
FDBh PLUSW2(2)  
FDAh FSR2H  
FBEh CCPR1L  
F9Eh PIR1  
F9Dh PIE1  
F9Ch  
FFDh TOSL  
FBDh CCP1CON  
FBCh ECCPR1H(5)  
FBBh ECCPR1L(5)  
FBAh ECCP1CON(5)  
FFCh STKPTR  
FFBh PCLATU  
FFAh PCLATH  
FF9h PCL  
F9Bh  
F9Ah  
FD9h FSR2L  
FB9h  
F99h  
FF8h TBLPTRU  
FF7h TBLPTRH  
FF6h TBLPTRL  
FF5h TABLAT  
FF4h PRODH  
FF3h PRODL  
FD8h STATUS  
FD7h TMR0H  
FB8h  
F98h  
FB7h ECCP1DEL(5)  
FB6h ECCPAS(5)  
FB5h CVRCON(5)  
FB4h CMCON(5)  
FB3h TMR3H  
F97h  
FD6h TMR0L  
F96h TRISE(5)  
F95h TRISD(5)  
F94h TRISC  
F93h TRISB  
F92h TRISA  
FD5h T0CON  
FD4h  
FD3h OSCCON  
FD2h LVDCON  
FD1h WDTCON  
FD0h RCON  
FF2h INTCON  
FF1h INTCON2  
FF0h INTCON3  
FEFh INDF0(2)  
FEEh POSTINC0(2)  
FEDh POSTDEC0(2)  
FECh PREINC0(2)  
FEBh PLUSW0(2)  
FEAh FSR0H  
FB2h TMR3L  
FB1h T3CON  
F91h  
F90h  
F8Fh  
F8Eh  
FB0h  
FCFh TMR1H  
FCEh TMR1L  
FCDh T1CON  
FCCh TMR2  
FAFh SPBRG  
FAEh RCREG  
FADh TXREG  
FACh TXSTA  
FABh RCSTA  
F8Dh LATE(5)  
F8Ch LATD(5)  
F8Bh LATC  
F8Ah LATB  
F89h LATA  
FCBh PR2  
FCAh T2CON  
FC9h SSPBUF  
FC8h SSPADD  
FC7h SSPSTAT  
FC6h SSPCON1  
FC5h SSPCON2  
FC4h ADRESH  
FC3h ADRESL  
FC2h ADCON0  
FC1h ADCON1  
FAAh  
FE9h FSR0L  
FA9h EEADR  
FA8h EEDATA  
FA7h EECON2  
FA6h EECON1  
FA5h IPR3  
FA4h PIR3  
FA3h PIE3  
FA2h IPR2  
FA1h PIR2  
FA0h PIE2  
FE8h WREG  
F88h  
F87h  
F86h  
F85h  
FE7h INDF1(2)  
FE6h POSTINC1(2)  
FE5h POSTDEC1(2)  
FE4h PREINC1(2)  
FE3h PLUSW1(2)  
FE2h FSR1H  
F84h PORTE(5)  
F83h PORTD(5)  
F82h PORTC  
F81h PORTB  
F80h PORTA  
FE1h FSR1L  
FE0h BSR  
FC0h  
Note 1: Unimplemented registers are read as 0.  
2: This is not a physical register.  
3: Contents of register are dependent on WIN2:WIN0 bits in CANCON register.  
4: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given  
for each instance of the CANSTAT register, due to the Microchip Header file requirement.  
5: These registers are not implemented on the PIC18F248 and PIC18F258.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 47  
PIC18FXX8  
TABLE 4-1:  
SPECIAL FUNCTION REGISTER MAP (CONTINUED)  
Address  
Name  
Address  
Name  
Address  
Name  
Address  
Name  
F7Fh  
F7Eh  
F7Dh  
F7Ch  
F7Bh  
F7Ah  
F79h  
F78h  
F77h  
F5Fh  
F3Fh  
F1Fh RXM1EIDL  
F1Eh RXM1EIDH  
F1Dh RXM1SIDL  
F1Ch RXM1SIDH  
F1Bh RXM0EIDL  
F1Ah RXM0EIDH  
F19h RXM0SIDL  
F18h RXM0SIDH  
F17h RXF5EIDL  
F16h RXF5EIDH  
F15h RXF5SIDL  
F14h RXF5SIDH  
F13h RXF4EIDL  
F12h RXF4EIDH  
F11h RXF4SIDL  
F10h RXF4SIDH  
F0Fh RXF3EIDL  
F0Eh RXF3EIDH  
F0Dh RXF3SIDL  
F0Ch RXF3SIDH  
F0Bh RXF2EIDL  
F0Ah RXF2EIDH  
F09h RXF2SIDL  
F08h RXF2SIDH  
F07h RXF1EIDL  
F06h RXF1EIDH  
F05h RXF1SIDL  
F04h RXF1SIDH  
F03h RXF0EIDL  
F02h RXF0EIDH  
F01h RXF0SIDL  
F00h RXF0SIDH  
F5Eh CANSTATRO1(4)  
F5Dh RXB1D7  
F5Ch RXB1D6  
F5Bh RXB1D5  
F5Ah RXB1D4  
F59h RXB1D3  
F58h RXB1D2  
F57h RXB1D1  
F56h RXB1D0  
F55h RXB1DLC  
F54h RXB1EIDL  
F53h RXB1EIDH  
F52h RXB1SIDL  
F51h RXB1SIDH  
F50h RXB1CON  
F3Eh CANSTATRO3(4)  
F3Dh TXB1D7  
F3Ch TXB1D6  
F3Bh TXB1D5  
F3Ah TXB1D4  
F39h TXB1D3  
F38h TXB1D2  
F37h TXB1D1  
F36h TXB1D0  
F35h TXB1DLC  
F34h TXB1EIDL  
F33h TXB1EIDH  
F32h TXB1SIDL  
F31h TXB1SIDH  
F30h TXB1CON  
F76h TXERRCNT  
F75h RXERRCNT  
F74h COMSTAT  
F73h CIOCON  
F72h BRGCON3  
F71h BRGCON2  
F70h BRGCON1  
F6Fh CANCON  
F4Fh  
F2Fh  
F6Eh CANSTAT  
F6Dh RXB0D7(3)  
F6Ch RXB0D6(3)  
F6Bh RXB0D5(3)  
F6Ah RXB0D4(3)  
F69h RXB0D3(3)  
F68h RXB0D2(3)  
F67h RXB0D1(3)  
F66h RXB0D0(3)  
F65h RXB0DLC(3)  
F64h RXB0EIDL(3)  
F63h RXB0EIDH(3)  
F62h RXB0SIDL(3)  
F61h RXB0SIDH(3)  
F60h RXB0CON(3)  
F4Eh CANSTATRO2(4)  
F4Dh TXB0D7  
F4Ch TXB0D6  
F4Bh TXB0D5  
F4Ah TXB0D4  
F49h TXB0D3  
F48h TXB0D2  
F47h TXB0D1  
F46h TXB0D0  
F45h TXB0DLC  
F44h TXB0EIDL  
F43h TXB0EIDH  
F42h TXB0SIDL  
F41h TXB0SIDH  
F40h TXB0CON  
F2Eh CANSTATRO4(4)  
F2Dh TXB2D7  
F2Ch TXB2D6  
F2Bh TXB2D5  
F2Ah TXB2D4  
F29h TXB2D3  
F28h TXB2D2  
F27h TXB2D1  
F26h TXB2D0  
F25h TXB2DLC  
F24h TXB2EIDL  
F23h TXB2EIDH  
F22h TXB2SIDL  
F21h TXB2SIDH  
F20h TXB2CON  
Note: Shaded registers are available in Bank 15, while the rest are in Access Bank low.  
Note 1: Unimplemented registers are read as 0.  
2: This is not a physical register.  
3: Contents of register are dependent on WIN2:WIN0 bits in CANCON register.  
4: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given  
for each instance of the CANSTAT register, due to the Microchip Header file requirement.  
5: These registers are not implemented on the PIC18F248 and PIC18F258.  
DS41159B-page 48  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
TABLE 4-2:  
REGISTER FILE SUMMARY  
Value on Details on  
Bit 0  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
POR, BOR  
Page:  
TOSU  
TOSH  
TOSL  
Top-of-Stack Upper Byte (TOS<20:16>)  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
30, 38  
30, 38  
30, 38  
30, 39  
Top-of-Stack High Byte (TOS<15:8>)  
Top-of-Stack Low Byte (TOS<7:0>)  
STKPTR  
STKFUL  
STKUNF  
Return Stack Pointer  
(2)  
PCLATU  
PCLATH  
PCL  
bit21  
Holding Register for PC<20:16>  
---0 0000  
0000 0000  
0000 0000  
30, 40  
30, 40  
30, 40  
Holding Register for PC<15:8>  
PC Low Byte (PC<7:0>)  
(2)  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
bit21  
Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
111- -1-1  
30, 68  
30, 68  
30, 68  
30, 68  
30, 75  
30, 75  
30, 79  
30, 80  
30, 81  
30, 55  
30, 55  
30, 55  
30, 55  
30, 55  
30, 55  
30, 55  
30, 55  
30, 55  
30, 55  
30, 55  
30, 55  
30, 55  
31, 55  
31, 55  
31, 54  
31, 55  
31, 55  
31, 55  
31, 55  
31, 55  
31, 55  
31, 55  
31, 57  
Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
Program Memory Table Latch  
Product Register High Byte  
Product Register Low Byte  
INTCON  
INTCON2  
INTCON3  
INDF0  
GIE/GIEH PEIE/GIEL  
TMR0IE  
INTEDG1  
INT0IE  
RBIE  
TMR0IF  
TMR0IP  
INT0IF  
RBIF  
RBIP  
RBPU  
INTEDG0  
INT1IP  
INT2IP  
INT2IE  
INT1IE  
INT2IF  
INT1IF 11-1 0-00  
Uses contents of FSR0 to address data memory - value of FSR0 not changed (not a physical register)  
Uses contents of FSR0 to address data memory - value of FSR0 post-incremented (not a physical register)  
Uses contents of FSR0 to address data memory - value of FSR0 post-incremented (not a physical register)  
Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register)  
Uses contents of FSR0 to address data memory - value of FSR0 offset by W (not a physical register)  
n/a  
n/a  
POSTINC0  
POSTDEC0  
PREINC0  
PLUSW0  
FSR0H  
n/a  
n/a  
n/a  
Indirect Data Memory Address Pointer 0 High  
---- xxxx  
xxxx xxxx  
uuuu uuuu  
n/a  
FSR0L  
Indirect Data Memory Address Pointer 0 Low Byte  
Working Register  
WREG  
INDF1  
Uses contents of FSR1 to address data memory - value of FSR1 not changed (not a physical register)  
Uses contents of FSR1 to address data memory - value of FSR1 post-incremented (not a physical register)  
Uses contents of FSR1 to address data memory - value of FSR1 post-incremented (not a physical register)  
Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register)  
Uses contents of FSR1 to address data memory - value of FSR1 offset by W (not a physical register) -  
POSTINC1  
POSTDEC1  
PREINC1  
PLUSW1  
FSR1H  
n/a  
n/a  
n/a  
n/a  
Indirect Data Memory Address Pointer 1 High  
---- xxxx  
xxxx xxxx  
---- 0000  
n/a  
FSR1L  
Indirect Data Memory Address Pointer 1 Low Byte  
BSR  
Bank Select Register  
INDF2  
Uses contents of FSR2 to address data memory - value of FSR2 not changed (not a physical register)  
Uses contents of FSR2 to address data memory - value of FSR2 post-incremented (not a physical register)  
Uses contents of FSR2 to address data memory - value of FSR2 post-incremented (not a physical register)  
Uses contents of FSR2 to address data memory - value of FSR2 pre-incremented (not a physical register)  
Uses contents of FSR2 to address data memory - value of FSR2 offset by W (not a physical register) -  
POSTINC2  
POSTDEC2  
PREINC2  
PLUSW2  
FSR2H  
n/a  
n/a  
n/a  
n/a  
Indirect Data Memory Address Pointer 2 High  
---- xxxx  
xxxx xxxx  
---x xxxx  
FSR2L  
Indirect Data Memory Address Pointer 2 Low Byte  
STATUS  
TMR0H  
N
OV  
Z
DC  
C
Timer0 Register High Byte  
Timer0 Register Low Byte  
0000 0000 31, 109  
xxxx xxxx 31, 109  
TMR0L  
T0CON  
TMR0ON  
T08BIT  
T0CS  
T0SE  
PSA  
T0PS2  
T0PS1  
T0PS0 1111 1111 31, 107  
SCS ---- ---0 31, 20  
OSCCON  
LVDCON  
WDTCON  
IRVST  
LVDEN  
LVDL3  
LVDL2  
LVDL1  
LVDL0 --00 0101 31, 257  
SWDTEN ---- ---0 31, 268  
RCON  
IPEN  
RI  
TO  
PD  
POR  
BOR  
0--1 11qq 31, 58, 91  
Legend: x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as 0s.  
2: Bit21 of the TBLPTRU allows access to the device configuration bits.  
3: RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read 0in all other Oscillator  
modes.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 49  
PIC18FXX8  
TABLE 4-2:  
REGISTER FILE SUMMARY (CONTINUED)  
Value on Details on  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
Page:  
TMR1H  
TMR1L  
Timer1 Register High Byte  
Timer1 Register Low Byte  
xxxx xxxx  
xxxx xxxx  
31, 113  
31, 113  
T1CON  
RD16  
T1CKPS1  
T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000  
31, 111  
31, 116  
31, 116  
31, 115  
TMR2  
Timer2 Register  
0000 0000  
1111 1111  
PR2  
Timer2 Period Register  
TOUTPS3 TOUTPS2  
T2CON  
TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1  
SSPCON2  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
CCPR1H  
CCPR1L  
CCP1CON  
SSP Receive Buffer/Transmit Register  
2
xxxx xxxx 31, 144  
0000 0000 31, 150  
0000 0000 31, 142, 151  
2
SSP Address Register in I C Slave mode. SSP Baud Rate Reload Register in I C Master mode.  
SMP  
WCOL  
GCEN  
CKE  
D/A  
P
S
R/W  
SSPM2  
PEN  
UA  
BF  
SSPOV  
ACKSTAT  
SSPEN  
ACKDT  
CKP  
SSPM3  
RCEN  
SSPM1  
RSEN  
SSPM0 0000 0000 31, 143, 152  
ACKEN  
SEN  
0000 0000 31, 153  
xxxx xxxx 32, 239  
xxxx xxxx 32, 239  
0000 00-0 32, 237  
A/D Result Register High Byte  
A/D Result Register Low Byte  
ADCS1  
ADFM  
ADCS0  
ADCS2  
CHS2  
CHS1  
CHS0  
GO/DONE  
PCFG2  
ADON  
PCFG3  
PCFG1  
PCFG0 00-- 0000 32, 238  
xxxx xxxx 32, 122  
Capture/Compare/PWM Register1 High Byte  
Capture/Compare/PWM Register1 Low Byte  
xxxx xxxx 32, 122  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 32, 121  
xxxx xxxx 32, 131  
(1)  
ECCPR1H  
Enhanced Capture/Compare/PWM Register1 High Byte  
Enhanced Capture/Compare/PWM Register1 Low Byte  
(1)  
ECCPR1L  
xxxx xxxx 32, 131  
(1)  
ECCP1CON  
EPWM1M1 EPWM1M0 EDC1B1  
EPDC7 EPDC6 EPDC5  
ECCPASE ECCPAS2 ECCPAS1  
EDC1B0 ECCP1M3 ECCP1M2 ECCP1M1 ECCP1M0 0000 0000 32, 129  
(1)  
ECCP1DEL  
EPDC4  
ECCPAS0  
CVRSS  
C1INV  
EPDC3  
PSSAC1  
CVR3  
EPDC2  
PSSAC0  
CVR2  
EPDC1  
EPDC0 0000 0000 32, 138  
(1)  
ECCPAS  
PSSBD1 PSSBD0 0000 0000 32, 140  
(1)  
CVRCON  
CVREN  
C2OUT  
CVROE  
C1OUT  
CVRR  
C2INV  
CVR1  
CM1  
CVR0  
CM0  
0000 0000 32, 251  
0000 0000 32, 245  
(1)  
CMCON  
CIS  
CM2  
TMR3H  
TMR3L  
T3CON  
SPBRG  
RCREG  
TXREG  
TXSTA  
RCSTA  
EEADR  
EEDATA  
EECON2  
EECON1  
IPR3  
Timer3 Register High Byte  
Timer3 Register Low Byte  
xxxx xxxx  
xxxx xxxx  
32, 119  
32, 119  
32, 117  
RD16  
T3ECCP1  
T3CKPS1  
T3CKPS0  
T3CCP1  
T3SYNC TMR3CS TMR3ON 0000 0000  
USART1 Baud Rate Generator  
USART1 Receive Register  
USART1 Transmit Register  
0000 0000 32, 183  
0000 0000 32, 189  
0000 0000 32, 187  
0000 -010 32, 181  
0000 000X 32, 182  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
BRGH  
FERR  
TRMT  
OERR  
TX9D  
RX9D  
ADDEN  
EEPROM Address Register  
EEPROM Data Register  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
32, 59  
32, 59  
32, 59  
EEPROM Control Register2 (not a physical register)  
EEPGD  
IRXIP  
IRXIF  
IRXIE  
CFGS  
WAKIP  
WAKIF  
WAKIE  
CMIP  
ERRIP  
ERRIF  
ERRIE  
FREE  
TXB2IP  
TXB2IF  
TXB2IE  
EEIP  
WRERR  
TXB1IP  
TXB1IF  
TXB1IE  
BCLIP  
WREN  
TXB0IP  
TXB0IF  
TXB0IE  
LVDIP  
WR  
RD  
xx-0 x000 32, 60, 67  
RXB1IP  
RXB1IF  
RXB1IE  
RXB0IP 1111 1111  
RXB0IF 0000 0000  
32, 90  
32, 84  
32, 87  
33, 89  
33, 83  
33, 86  
PIR3  
PIE3  
RXB0IE 0000 0000  
(1)  
IPR2  
TMR3IP ECCP1IP -1-1 1111  
(1)  
PIR2  
CMIF  
EEIF  
BCLIF  
LVDIF  
TMR3IF ECCP1IF -0-0 0000  
(1)  
PIE2  
CMIE  
EEIE  
BCLIE  
LVDIE  
TMR3IE ECCP1IE -0-0 0000  
Legend: x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as 0s.  
2: Bit21 of the TBLPTRU allows access to the device configuration bits.  
3: RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read 0in all other Oscillator  
modes.  
DS41159B-page 50  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
TABLE 4-2:  
REGISTER FILE SUMMARY (CONTINUED)  
Value on Details on  
Bit 0  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
POR, BOR  
Page:  
IPR1  
PIR1  
PIE1  
PSPIP  
PSPIF  
PSPIE  
IBF  
ADIP  
ADIF  
ADIE  
OBF  
RCIP  
RCIF  
RCIE  
IBOV  
TXIP  
TXIF  
TXIE  
SSPIP  
SSPIF  
SSPIE  
CCP1IP  
CCP1IF  
CCP1IE  
TMR2IP  
TMR2IF  
TMR2IE  
TMR1IP 1111 1111  
TMR1IF 0000 0000  
33, 88  
33, 82  
TMR1IE 0000 0000  
33, 85  
(1)  
(1)  
TRISE  
PSPMODE  
Data Direction bits for PORTE  
0000 -111 33, 103  
1111 1111 33, 100  
(1)  
(1)  
TRISD  
Data Direction Control Register for PORTD  
TRISC  
TRISB  
Data Direction Control Register for PORTC  
Data Direction Control Register for PORTB  
1111 1111  
1111 1111  
33, 98  
33, 95  
(3)  
TRISA  
Data Direction Control Register for PORTA  
--11 1111  
33, 93  
(1)  
LATE  
Read PORTE Data Latch, Write  
PORTE Data Latch  
---- -xxx 33, 102  
(1)  
(1)  
(1)  
LATD  
Read PORTD Data Latch, Write PORTD Data Latch  
Read PORTC Data Latch, Write PORTC Data Latch  
Read PORTB Data Latch, Write PORTB Data Latch  
xxxx xxxx 33, 100  
LATC  
LATB  
xxxx xxxx  
xxxx xxxx  
33, 98  
33, 95  
(3)  
LATA  
Read PORTA Data Latch, Write PORTA Data Latch  
-xxx xxxx  
33, 93  
(1)  
PORTE  
Read PORTE pins, Write PORTE  
Data Latch  
---- -000 33, 102  
(1)  
(1)  
(1)  
PORTD  
Read PORTD pins, Write PORTD Data Latch  
Read PORTC pins, Write PORTC Data Latch  
Read PORTB pins, Write PORTB Data Latch  
xxxx xxxx 33, 100  
PORTC  
PORTB  
xxxx xxxx  
xxxx xxxx  
33, 98  
33, 95  
(3)  
PORTA  
Read PORTA pins, Write PORTA Data Latch  
-x0x 0000  
33, 93  
TXERRCNT  
RXERRCNT  
COMSTAT  
CIOCON  
TEC7  
REC7  
TEC6  
REC6  
TEC5  
REC5  
TEC4  
REC4  
TXBP  
CANCAP  
TEC3  
REC3  
RXBP  
TEC2  
REC2  
TEC1  
REC1  
TEC0  
REC0  
0000 0000 33, 207  
0000 0000 33, 212  
RXB0OVFL RXB1OVFL  
TXBO  
TXWARN RXWARN EWARN 0000 0000 33, 203  
--00 ---- 33, 217  
SEG2PH2 SEG2PH1 SEG2PH0 -0-- -000 33, 217  
ENDRHI  
BRGCON3  
BRGCON2  
BRGCON1  
CANCON  
CANSTAT  
RXB0D7  
WAKFIL  
SAM  
SEG2PHTS  
SJW1  
SEG1PH2  
BRP5  
SEG1PH1 SEG1PH0 PRSEG2 PRSEG1 PRSEG0 0000 0000 33, 216  
SJW0  
BRP4  
ABAT  
BRP3  
WIN2  
BRP2  
WIN1  
BRP1  
WIN0  
BRP0  
0000 0000 33, 215  
xxxx xxx- 33, 199  
xxx- xxx- 33, 200  
REQOP2  
REQOP1  
REQOP0  
OPMODE2 OPMODE1 OPMODE0  
ICODE2  
ICODE1  
ICODE0  
RXB0D77  
RXB0D67  
RXB0D57  
RXB0D47  
RXB0D37  
RXB0D27  
RXB0D17  
RXB0D07  
RXB0D76  
RXB0D66  
RXB0D56  
RXB0D46  
RXB0D36  
RXB0D26  
RXB0D16  
RXB0D06  
RXRTR  
EID6  
RXB0D75  
RXB0D65  
RXB0D55  
RXB0D45  
RXB0D35  
RXB0D25  
RXB0D15  
RXB0D05  
RB1  
RXB0D74 RXB0D73 RXB0D72 RXB0D71 RXB0D70 xxxx xxxx  
RXB0D64 RXB0D63 RXB0D62 RXB0D61 RXB0D60 xxxx xxxx  
RXB0D54 RXB0D53 RXB0D52 RXB0D51 RXB0D50 xxxx xxxx  
RXB0D44 RXB0D43 RXB0D42 RXB0D41 RXB0D40 xxxx xxxx  
RXB0D34 RXB0D33 RXB0D32 RXB0D31 RXB0D30 xxxx xxxx  
RXB0D24 RXB0D23 RXB0D22 RXB0D21 RXB0D20 xxxx xxxx  
RXB0D14 RXB0D13 RXB0D12 RXB0D11 RXB0D10 xxxx xxxx  
RXB0D04 RXB0D03 RXB0D02 RXB0D01 RXB0D00 xxxx xxxx  
34, 211  
34, 211  
34, 211  
34, 211  
34, 211  
34, 211  
34, 211  
34, 211  
34, 211  
RXB0D6  
RXB0D5  
RXB0D4  
RXB0D3  
RXB0D2  
RXB0D1  
RXB0D0  
RXB0DLC  
RXB0EIDL  
RXB0EIDH  
RXB0SIDL  
RXB0SIDH  
RXB0CON  
RB0  
EID4  
EID12  
SRR  
SID7  
DLC3  
EID3  
EID11  
EXID  
SID6  
DLC2  
EID2  
EID10  
DLC1  
EID1  
EID9  
EID17  
SID4  
DLC0  
EID0  
EID8  
EID16  
SID3  
-xxx xxxx  
EID7  
EID5  
xxxx xxxx 34, 210  
xxxx xxxx 34, 210  
xxxx x-xx 34, 210  
xxxx xxxx 34, 209  
EID15  
EID14  
EID13  
SID2  
SID1  
SID0  
SID10  
SID9  
SID8  
SID5  
RXFUL  
RXM1  
RXM0  
RXRTRRO RXB0DBEN JTOFF  
FILHIT0 000- 0000 34, 208  
Legend: x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as 0s.  
2: Bit21 of the TBLPTRU allows access to the device configuration bits.  
3: RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read 0in all other Oscillator  
modes.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 51  
PIC18FXX8  
TABLE 4-2:  
REGISTER FILE SUMMARY (CONTINUED)  
Value on Details on  
POR, BOR Page:  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CANSTATRO1 OPMODE2 OPMODE1 OPMODE0  
ICODE2  
ICODE1  
ICODE0  
xxx- xxx- 33, 200  
RXB1D7  
RXB1D77  
RXB1D67  
RXB1D57  
RXB1D47  
RXB1D37  
RXB1D27  
RXB1D17  
RXB1D07  
RXB1D76  
RXB1D66  
RXB1D56  
RXB1D46  
RXB1D36  
RXB1D26  
RXB1D16  
RXB1D06  
RXRTR  
EID6  
RXB1D75  
RXB1D65  
RXB1D55  
RXB1D45  
RXB1D35  
RXB1D25  
RXB1D15  
RXB1D05  
RB1  
RXB1D74 RXB1D73 RXB1D72 RXB1D71 RXB1D70 xxxx xxxx  
RXB1D64 RXB1D63 RXB1D62 RXB1D61 RXB1D60 xxxx xxxx  
RXB1D54 RXB1D53 RXB1D52 RXB1D51 RXB1D50 xxxx xxxx  
RXB1D44 RXB1D43 RXB1D42 RXB1D41 RXB1D40 xxxx xxxx  
RXB1D34 RXB1D33 RXB1D32 RXB1D31 RXB1D30 xxxx xxxx  
RXB1D24 RXB1D23 RXB1D22 RXB1D21 RXB1D20 xxxx xxxx  
RXB1D14 RXB1D13 RXB1D12 RXB1D11 RXB1D10 xxxx xxxx  
RXB1D04 RXB1D03 RXB1D02 RXB1D01 RXB1D00 xxxx xxxx  
34, 211  
34, 211  
34, 211  
34, 211  
34, 211  
34, 211  
34, 211  
34, 211  
34, 211  
RXB1D6  
RXB1D5  
RXB1D4  
RXB1D3  
RXB1D2  
RXB1D1  
RXB1D0  
RXB1DLC  
RXB1EIDL  
RXB1EIDH  
RXB1SIDL  
RXB1SIDH  
RXB1CON  
RB0  
EID4  
EID12  
SRR  
SID7  
DLC3  
EID3  
EID11  
EXID  
SID6  
DLC2  
EID2  
EID10  
DLC1  
EID1  
DLC0  
EID0  
EID8  
EID16  
SID3  
-xxx xxxx  
EID7  
EID5  
xxxx xxxx 34, 210  
xxxx xxxx 34, 210  
xxxx x-xx 34, 210  
xxxx xxxx 34, 209  
EID15  
EID14  
EID13  
EID9  
SID2  
SID1  
SID0  
EID17  
SID4  
SID10  
SID9  
SID8  
SID5  
RXFUL  
RXM1  
RXM0  
RXRTRRO FILHIT2  
ICODE2 ICODE1  
FILHIT1  
ICODE0  
FILHIT0 000- 0000 34, 209  
xxx- xxx- 33, 200  
CANSTATRO2 OPMODE2 OPMODE1 OPMODE0  
TXB0D7  
TXB0D77  
TXB0D67  
TXB0D57  
TXB0D47  
TXB0D37  
TXB0D27  
TXB0D17  
TXB0D07  
TXB0D76  
TXB0D66  
TXB0D56  
TXB0D46  
TXB0D36  
TXB0D26  
TXB0D16  
TXB0D06  
TXRTR  
EID6  
TXB0D75  
TXB0D65  
TXB0D55  
TXB0D45  
TXB0D35  
TXB0D25  
TXB0D15  
TXB0D05  
TXB0D74 TXB0D73 TXB0D72 TXB0D71 TXB0D70 xxxx xxxx 34, 206  
TXB0D64 TXB0D63 TXB0D62 TXB0D61 TXB0D60 xxxx xxxx 34, 206  
TXB0D54 TXB0D53 TXB0D52 TXB0D51 TXB0D50 xxxx xxxx 34, 206  
TXB0D44 TXB0D43 TXB0D42 TXB0D41 TXB0D40 xxxx xxxx 34, 206  
TXB0D34 TXB0D33 TXB0D32 TXB0D31 TXB0D30 xxxx xxxx 34, 206  
TXB0D24 TXB0D23 TXB0D22 TXB0D21 TXB0D20 xxxx xxxx 34, 206  
TXB0D14 TXB0D13 TXB0D12 TXB0D11 TXB0D10 xxxx xxxx 34, 206  
TXB0D04 TXB0D03 TXB0D02 TXB0D01 TXB0D00 xxxx xxxx 34, 206  
TXB0D6  
TXB0D5  
TXB0D4  
TXB0D3  
TXB0D2  
TXB0D1  
TXB0D0  
TXB0DLC  
TXB0EIDL  
TXB0EIDH  
TXB0SIDL  
TXB0SIDH  
TXB0CON  
EID4  
EID12  
DLC3  
EID3  
DLC2  
EID2  
EID10  
DLC1  
EID1  
DLC0  
EID0  
EID8  
EID16  
SID3  
-x-- xxxx 35, 207  
xxxx xxxx 35, 206  
xxxx xxxx 35, 205  
xxx- x-xx 35, 205  
xxxx xxxx 35, 205  
EID7  
EID5  
EID15  
EID14  
EID13  
EID11  
EXIDE  
SID6  
EID9  
SID2  
SID1  
SID0  
EID17  
SID4  
SID10  
SID9  
SID8  
SID7  
TXERR  
SID5  
TXABT  
TXLARB  
TXREQ  
ICODE2  
TXPRI1  
ICODE0  
TXPRI0 -000 0-00 35, 204  
xxx- xxx- 33, 200  
CANSTATRO3 OPMODE2 OPMODE1 OPMODE0  
ICODE1  
TXB1D7  
TXB1D77  
TXB1D67  
TXB1D57  
TXB1D47  
TXB1D37  
TXB1D27  
TXB1D17  
TXB1D07  
TXB1D76  
TXB1D66  
TXB1D56  
TXB1D46  
TXB1D36  
TXB1D26  
TXB1D16  
TXB1D06  
TXRTR  
EID6  
TXB1D75  
TXB1D65  
TXB1D55  
TXB1D45  
TXB1D35  
TXB1D25  
TXB1D15  
TXB1D05  
TXB1D74 TXB1D73 TXB1D72 TXB1D71 TXB1D70 xxxx xxxx 35, 206  
TXB1D64 TXB1D63 TXB1D62 TXB1D61 TXB1D60 xxxx xxxx 35, 206  
TXB1D54 TXB1D53 TXB1D52 TXB1D51 TXB1D50 xxxx xxxx 35, 206  
TXB1D44 TXB1D43 TXB1D42 TXB1D41 TXB1D40 xxxx xxxx 35, 206  
TXB1D34 TXB1D33 TXB1D32 TXB1D31 TXB1D30 xxxx xxxx 35, 206  
TXB1D24 TXB1D23 TXB1D22 TXB1D21 TXB1D20 xxxx xxxx 35, 206  
TXB1D14 TXB1D13 TXB1D12 TXB1D11 TXB1D10 xxxx xxxx 35, 206  
TXB1D04 TXB1D03 TXB1D02 TXB1D01 TXB1D00 xxxx xxxx 35, 206  
TXB1D6  
TXB1D5  
TXB1D4  
TXB1D3  
TXB1D2  
TXB1D1  
TXB1D0  
TXB1DLC  
TXB1EIDL  
TXB1EIDH  
TXB1SIDL  
TXB1SIDH  
TXB1CON  
EID4  
EID12  
DLC3  
EID3  
DLC2  
EID2  
EID10  
DLC1  
EID1  
DLC0  
EID0  
EID8  
EID16  
SID3  
-x-- xxxx 35, 207  
xxxx xxxx 35, 206  
xxxx xxxx 35, 205  
xxx- x-xx 35, 205  
xxxx xxxx 35, 205  
EID7  
EID5  
EID15  
EID14  
EID13  
EID11  
EXIDE  
SID6  
EID9  
SID2  
SID1  
SID0  
EID17  
SID4  
SID10  
SID9  
SID8  
SID7  
TXERR  
SID5  
TXABT  
TXLARB  
TXREQ  
TXPRI1  
TXPRI0 0000 0000 35, 204  
Legend: x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as 0s.  
2: Bit21 of the TBLPTRU allows access to the device configuration bits.  
3: RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read 0in all other Oscillator  
modes.  
DS41159B-page 52  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
TABLE 4-2:  
REGISTER FILE SUMMARY (CONTINUED)  
Value on Details on  
Bit 0  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
POR, BOR  
Page:  
CANSTATRO4 OPMODE2 OPMODE1 OPMODE0  
ICODE2  
ICODE1  
ICODE0  
xxx- xxx- 33, 200  
TXB2D7  
TXB2D77  
TXB2D67  
TXB2D57  
TXB2D47  
TXB2D37  
TXB2D27  
TXB2D17  
TXB2D07  
TXB2D76  
TXB2D66  
TXB2D56  
TXB2D46  
TXB2D36  
TXB2D26  
TXB2D16  
TXB2D06  
TXRTR  
EID6  
TXB2D75  
TXB2D65  
TXB2D55  
TXB2D45  
TXB2D35  
TXB2D25  
TXB2D15  
TXB2D05  
TXB2D74 TXB2D73 TXB2D72 TXB2D71 TXB2D70 xxxx xxxx 35, 206  
TXB2D64 TXB2D63 TXB2D62 TXB2D61 TXB2D60 xxxx xxxx 35, 206  
TXB2D54 TXB2D53 TXB2D52 TXB2D51 TXB2D50 xxxx xxxx 35, 206  
TXB2D44 TXB2D43 TXB2D42 TXB2D41 TXB2D40 xxxx xxxx 35, 206  
TXB2D34 TXB2D33 TXB2D32 TXB2D31 TXB2D30 xxxx xxxx 35, 206  
TXB2D24 TXB2D23 TXB2D22 TXB2D21 TXB2D20 xxxx xxxx 35, 206  
TXB2D14 TXB2D13 TXB2D12 TXB2D11 TXB2D10 xxxx xxxx 35, 206  
TXB2D04 TXB2D03 TXB2D02 TXB2D01 TXB2D00 xxxx xxxx 35, 206  
TXB2D6  
TXB2D5  
TXB2D4  
TXB2D3  
TXB2D2  
TXB2D1  
TXB2D0  
TXB2DLC  
TXB2EIDL  
TXB2EIDH  
TXB2SIDL  
TXB2SIDH  
TXB2CON  
EID4  
EID12  
DLC3  
EID3  
DLC2  
EID2  
EID10  
DLC1  
EID1  
DLC0  
EID0  
EID8  
EID16  
SID3  
-x-- xxxx 35, 207  
xxxx xxxx 35, 206  
xxxx xxxx 35, 205  
xxx- x-xx 35, 205  
xxxx xxxx 35, 205  
EID7  
EID5  
EID15  
EID14  
EID13  
EID11  
EXIDE  
SID6  
EID9  
SID2  
SID1  
SID0  
EID17  
SID4  
SID10  
SID9  
SID8  
SID7  
TXERR  
SID5  
TXABT  
TXLARB  
TXREQ  
TXPRI1  
TXPRI0 -000 0-00 35, 204  
RXM1EIDL  
RXM1EIDH  
RXM1SIDL  
RXM1SIDH  
RXM0EIDL  
RXM0EIDH  
RXM0SIDL  
RXM0SIDH  
RXF5EIDL  
RXF5EIDH  
RXF5SIDL  
RXF5SIDH  
RXF4EIDL  
RXF4EIDH  
RXF4SIDL  
RXF4SIDH  
EID7  
EID15  
SID2  
EID6  
EID14  
SID1  
SID9  
EID6  
EID14  
SID1  
SID9  
EID6  
EID14  
SID1  
SID9  
EID6  
EID14  
SID1  
SID9  
EID5  
EID13  
SID0  
SID8  
EID5  
EID13  
SID0  
SID8  
EID5  
EID13  
SID0  
SID8  
EID5  
EID13  
SID0  
SID8  
EID4  
EID12  
EID3  
EID11  
EID2  
EID10  
EID1  
EID9  
EID17  
SID4  
EID1  
EID9  
EID17  
SID4  
EID1  
EID9  
EID17  
SID4  
EID1  
EID9  
EID17  
SID4  
EID0  
EID8  
EID16  
SID3  
EID0  
EID8  
EID16  
SID3  
EID0  
EID8  
EID16  
SID3  
EID0  
EID8  
EID16  
SID3  
xxxx xxxx 36, 214  
xxxx xxxx 36, 214  
xxx- --xx 36, 214  
xxxx xxxx 36, 213  
xxxx xxxx 36, 214  
xxxx xxxx 36, 214  
xxx- --xx 36, 214  
xxxx xxxx 36, 213  
xxxx xxxx 36, 213  
xxxx xxxx 36, 213  
xxx- x-xx 36, 212  
xxxx xxxx 36, 212  
xxxx xxxx 36, 213  
xxxx xxxx 36, 213  
xxx- x-xx 36, 212  
xxxx xxxx 36, 212  
SID10  
EID7  
SID7  
EID4  
EID12  
SID6  
EID3  
EID11  
SID5  
EID2  
EID10  
EID15  
SID2  
SID10  
EID7  
SID7  
EID4  
EID12  
SID6  
EID3  
EID11  
EXIDEN  
SID6  
EID3  
EID11  
EXIDEN  
SID6  
SID5  
EID2  
EID10  
EID15  
SID2  
SID10  
EID7  
SID7  
EID4  
EID12  
SID5  
EID2  
EID10  
EID15  
SID2  
SID10  
SID7  
SID5  
RXF3EIDL  
RXF3EIDH  
RXF3SIDL  
RXF3SIDH  
RXF2EIDL  
RXF2EIDH  
RXF2SIDL  
RXF2SIDH  
RXF1EIDL  
RXF1EIDH  
RXF1SIDL  
RXF1SIDH  
RXF0EIDL  
RXF0EIDH  
RXF0SIDL  
RXF0SIDH  
EID7  
EID15  
SID2  
EID6  
EID14  
SID1  
SID9  
EID6  
EID14  
SID1  
SID9  
EID6  
EID14  
SID1  
SID9  
EID6  
EID14  
SID1  
SID9  
EID5  
EID13  
SID0  
SID8  
EID5  
EID13  
SID0  
SID8  
EID5  
EID13  
SID0  
SID8  
EID5  
EID13  
SID0  
SID8  
EID4  
EID12  
EID3  
EID11  
EXIDEN  
SID6  
EID2  
EID10  
EID1  
EID9  
EID17  
SID4  
EID1  
EID9  
EID17  
SID4  
EID1  
EID9  
EID17  
SID4  
EID1  
EID9  
EID17  
SID4  
EID0  
EID8  
EID16  
SID3  
EID0  
EID8  
EID16  
SID3  
EID0  
EID8  
EID16  
SID3  
EID0  
EID8  
EID16  
SID3  
xxxx xxxx 36, 213  
xxxx xxxx 36, 213  
xxx- x-xx 36, 212  
xxxx xxxx 36, 212  
xxxx xxxx 36, 213  
xxxx xxxx 36, 213  
xxx- x-xx 36, 212  
xxxx xxxx 36, 212  
xxxx xxxx 36, 213  
xxxx xxxx 36, 213  
xxx- x-xx 36, 212  
xxxx xxxx 36, 212  
xxxx xxxx 36, 213  
xxxx xxxx 36, 213  
xxx- x-xx 36, 212  
xxxx xxxx 36, 212  
SID10  
EID7  
SID7  
EID4  
EID12  
SID5  
EID2  
EID10  
EID3  
EID15  
SID2  
EID11  
EXIDEN  
SID6  
SID10  
EID7  
SID7  
EID4  
EID12  
SID5  
EID2  
EID10  
EID3  
EID15  
SID2  
EID11  
EXIDEN  
SID6  
SID10  
EID7  
SID7  
EID4  
EID12  
SID5  
EID2  
EID10  
EID3  
EID15  
SID2  
EID11  
EXIDEN  
SID6  
SID10  
SID7  
SID5  
Legend: x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as 0s.  
2: Bit21 of the TBLPTRU allows access to the device configuration bits.  
3: RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read 0in all other Oscillator  
modes.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 53  
PIC18FXX8  
4.10 Access Bank  
4.11 Bank Select Register (BSR)  
The Access Bank is an architectural enhancement that  
is very useful for C compiler code optimization. The  
techniques used by the C compiler are also useful for  
programs written in assembly.  
The need for a large general purpose memory space  
dictates a RAM banking scheme. The data memory is  
partitioned into sixteen banks. When using direct  
addressing, the BSR should be configured for the  
desired bank.  
This data memory region can be used for:  
BSR<3:0> holds the upper 4 bits of the 12-bit RAM  
address. The BSR<7:4> bits will always read 0s, and  
writes will have no effect.  
Intermediate computational values  
Local variables of subroutines  
Faster context saving/switching of variables  
Common variables  
A
MOVLB instruction has been provided in the  
instruction set to assist in selecting banks.  
Faster evaluation/control of SFRs (no banking)  
If the currently selected bank is not implemented, any  
read will return all '0's and all writes are ignored. The  
STATUS register bits will be set/cleared as appropriate  
for the instruction performed.  
The Access Bank is comprised of the upper 160 bytes  
in Bank 15 (SFRs) and the lower 96 bytes in Bank 0.  
These two sections will be referred to as Access Bank  
High and Access Bank Low, respectively. Figure 4-6  
indicates the Access Bank areas.  
Each Bank extends up to FFh (256 bytes). All data  
memory is implemented as static RAM.  
A bit in the instruction word specifies if the operation is  
to occur in the bank specified by the BSR register, or in  
the Access Bank.  
A MOVFFinstruction ignores the BSR, since the 12-bit  
addresses are embedded into the instruction word.  
Section 4.12 provides a description of indirect address-  
ing, which allows linear addressing of the entire RAM  
space.  
When forced in the Access Bank (a = 0), the last  
address in Access Bank Low is followed by the first  
address in Access Bank High. Access Bank High maps  
most of the Special Function Registers so that these  
registers can be accessed without any software  
overhead.  
FIGURE 4-7:  
DIRECT ADDRESSING  
Direct Addressing  
(3)  
From Opcode  
BSR<3:0>  
7
0
(2)  
(3)  
Bank Select  
Location Select  
00h  
000h  
01h  
100h  
0Eh  
E00h  
0Fh  
F00h  
Data  
Memory(1)  
0FFh  
1FFh  
EFFh  
FFFh  
Bank 0  
Bank 1  
Bank 14 Bank 15  
Note 1: For register file map detail, see Table 4-1.  
2: The access bit of the instruction can be used to force an override of the selected bank (BSR<3:0>) to the  
registers of the Access Bank.  
3: The MOVFFinstruction embeds the entire 12-bit address in the instruction.  
DS41159B-page 54  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
If INDF0, INDF1 or INDF2 are read indirectly via an  
FSR, all 0s are read (zero bit is set). Similarly, if  
INDF0, INDF1 or INDF2 are written to indirectly, the  
operation will be equivalent to a NOPinstruction and the  
STATUS bits are not affected.  
4.12 Indirect Addressing, INDF and  
FSR Registers  
Indirect addressing is a mode of addressing data mem-  
ory, where the data memory address in the instruction  
is not fixed. A SFR register is used as a pointer to the  
data memory location that is to be read or written. Since  
this pointer is in RAM, the contents can be modified by  
the program. This can be useful for data tables in the  
data memory and for software stacks. Figure 4-8  
shows the operation of indirect addressing. This shows  
the moving of the value to the data memory address  
specified by the value of the FSR register.  
4.12.1  
INDIRECT ADDRESSING  
OPERATION  
Each FSR register has an INDF register associated with  
it, plus four additional register addresses. Performing an  
operation on one of these five registers determines how  
the FSR will be modified during indirect addressing.  
When data access is done to one of the five  
INDFn locations, the address selected will  
configure the FSRn register to:  
Indirect addressing is possible by using one of the INDF  
registers. Any instruction using the INDF register actually  
accesses the register indicated by the File Select Regis-  
ter, FSR. Reading the INDF register itself, indirectly (FSR  
= 0), will read 00h. Writing to the INDF register indirectly,  
results in a no operation. The FSR register contains a  
12-bit address, which is shown in Figure 4-8.  
- Do nothing to FSRn after an indirect access  
(no change) - INDFn  
- Auto-decrement FSRn after an indirect  
access (post-decrement) - POSTDECn  
- Auto-increment FSRn after an indirect  
access (post-increment) - POSTINCn  
The INDFn (0 n 2) register is not a physical register.  
Addressing INDFn actually addresses the register  
whose address is contained in the FSRn register  
(FSRn is a pointer). This is indirect addressing.  
- Auto-increment FSRn before an indirect  
access (pre-increment) - PREINCn  
- Use the value in the WREG register as an off-  
set to FSRn. Do not modify the value of the  
WREG or the FSRn register after an indirect  
access (no change) - PLUSWn  
Example 4-5 shows a simple use of indirect addressing  
to clear the RAM in Bank 1 (locations 100h-1FFh) in a  
minimum number of instructions.  
EXAMPLE 4-5:  
HOW TO CLEAR RAM  
(BANK 1) USING  
INDIRECT ADDRESSING  
FSR0, 100h ;  
When using the auto-increment or auto-decrement fea-  
tures, the effect on the FSR is not reflected in the  
STATUS register. For example, if the indirect address  
causes the FSR to equal '0', the Z bit will not be set.  
LFSR  
NEXT  
CLRF  
POSTINC0  
; Clear INDF  
; register  
Incrementing or decrementing an FSR affects all 12  
bits. That is, when FSRnL overflows from an increment,  
FSRnH will be incremented automatically.  
; & inc pointer  
; All done  
; w/ Bank1?  
; NO, clear next  
;
BTFSS  
BRA  
CONTINUE  
:
FSR0H, 1  
NEXT  
Adding these features allows the FSRn to be used as a  
software stack pointer, in addition to its uses for table  
operations in data memory.  
; YES, continue  
Each FSR has an address associated with it that per-  
forms an indexed indirect access. When a data access to  
this INDFn location (PLUSWn) occurs, the FSRn is con-  
figured to add the 2s complement value in the WREG  
register and the value in FSR to form the address before  
an indirect access. The FSR value is not changed.  
There are three indirect addressing registers. To  
address the entire data memory space (4096 bytes),  
these registers are 12-bits wide. To store the 12 bits of  
addressing information, two 8-bit registers are  
required. These indirect addressing registers are:  
1. FSR0: composed of FSR0H:FSR0L  
2. FSR1: composed of FSR1H:FSR1L  
3. FSR2: composed of FSR2H:FSR2L  
If an FSR register contains a value that indicates one of  
the INDFn, an indirect read will read 00h (zero bit is  
set), while an indirect write will be equivalent to a NOP  
(STATUS bits are not affected).  
In addition, there are registers INDF0, INDF1 and  
INDF2, which are not physically implemented. Reading  
or writing to these registers activates indirect address-  
ing, with the value in the corresponding FSR register  
being the address of the data.  
If an indirect addressing operation is done where the  
target address is an FSRnH or FSRnL register, the  
write operation will dominate over the pre- or post-  
increment/decrement functions.  
If an instruction writes a value to INDF0, the value will  
be written to the address indicated by FSR0H:FSR0L.  
A read from INDF1 reads the data from the address  
indicated by FSR1H:FSR1L. INDFn can be used in  
code anywhere an operand can be used.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 55  
PIC18FXX8  
FIGURE 4-8:  
INDIRECT ADDRESSING  
Indirect Addressing  
FSR Register  
11  
8
7
0
FSRnH  
FSRnL  
Location Select  
0000h  
Data  
Memory(1)  
0FFFh  
Note 1: For register file map detail, see Table 4-1.  
DS41159B-page 56  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
4.13 STATUS Register  
The STATUS register, shown in Register 4-2, contains  
the arithmetic status of the ALU. The STATUS register  
can be the destination for any instruction, as with any  
other register. If the STATUS register is the destination  
for an instruction that affects the Z, DC, C, OV, or N bits,  
then the write to these five bits is disabled. These bits  
are set or cleared according to the device logic. There-  
fore, the result of an instruction with the STATUS  
register as destination may be different than intended.  
It is recommended, therefore, that only BCF, BSF,  
SWAPF, MOVFF and MOVWF instructions are used to  
alter the STATUS register, because these instructions  
do not affect the Z, C, DC, OV, or N bits from the  
STATUS register. For other instructions which do not  
affect the status bits, see Table 25-2.  
Note: The C and DC bits operate as a borrow and  
digit borrow bit respectively, in subtraction.  
REGISTER 4-2:  
STATUS REGISTER  
U-0  
U-0  
U-0  
R/W-x  
N
R/W-x  
OV  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
bit 7  
bit 0  
bit 7-5 Unimplemented: Read as '0'  
bit 4  
bit 3  
N: Negative bit  
This bit is used for signed arithmetic (2s complement). It indicates whether the result of the ALU  
operation was negative (ALU MSb = 1).  
1= Result was negative  
0= Result was positive  
OV: Overflow bit  
This bit is used for signed arithmetic (2s complement). It indicates an overflow of the 7-bit  
magnitude, which causes the sign bit (bit 7) to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 2  
bit 1  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit  
For ADDWF, ADDLW, SUBLW,and SUBWFinstructions  
1= A carry-out from the 4th low order bit of the result occurred  
0= No carry-out from the 4th low order bit of the result  
Note:  
For borrow, the polarity is reversed. A subtraction is executed by adding the 2s com-  
plement of the second operand. For rotate (RRCF, RRNCF, RLCF, and RLNCF)  
instructions, this bit is loaded with either the bit 4 or bit 3 of the source register.  
bit 0  
C: Carry/borrow bit  
For ADDWF, ADDLW, SUBLW,and SUBWF instructions  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note:  
For borrow, the polarity is reversed. A subtraction is executed by adding the 2s com-  
plement of the second operand. For rotate (RRF, RLF) instructions, this bit is  
loaded with either the high or low order bit of the source register.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 57  
PIC18FXX8  
4.14 RCON Register  
Note 1: If the BOREN configuration bit is set,  
BOR is 1on Power-on Reset. If the  
BOREN configuration bit is clear, BOR is  
unknown on Power-on Reset.  
The Reset Control (RCON) register contains flag bits  
that allow differentiation between the sources of a  
device RESET. These flags include the TO, PD, POR,  
BORandRIbits. Thisregisterisreadableandwritable.  
The BOR status bit is a don't careand is  
not necessarily predictable if the brown-  
out circuit is disabled (the BOREN config-  
uration bit is clear). BOR must then be set  
by the user and checked on subsequent  
RESETS to see if it is clear, indicating a  
brown-out has occurred.  
2: It is recommended that the POR bit be set  
after  
a Power-on Reset has been  
detected, so that subsequent Power-on  
Resets may be detected.  
REGISTER 4-3:  
RCON REGISTER  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
bit 7  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (16CXXX Compatibility mode)  
bit 6-5 Unimplemented: Read as '0'  
bit 4  
RI: RESETInstruction Flag bit  
1= The RESETinstruction was not executed  
0= The RESETinstruction was executed causing a device RESET  
(must be set in software after a Brown-out Reset occurs)  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Watchdog Time-out Flag bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down Detection Flag bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
POR: Power-on Reset Status bit  
1= A Power-on Reset has not occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
BOR: Brown-out Reset Status bit  
1= A Brown-out Reset has not occurred  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS41159B-page 58  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
5.1  
EEADR Register  
5.0  
DATA EEPROM MEMORY  
The address register can address up to a maximum of  
256 bytes of data EEPROM.  
The Data EEPROM is readable and writable during  
normal operation over the entire VDD range. The data  
memory is not directly mapped in the register file  
space. Instead, it is indirectly addressed through the  
Special Function Registers (SFR).  
5.2  
EECON1 and EECON2 Registers  
EECON1 is the control register for EEPROM memory  
accesses.  
There are four SFRs used to read and write the  
program and data EEPROM memory. These registers  
are:  
EECON2 is not a physical register. Reading EECON2  
will read all '0's. The EECON2 register is used  
exclusively in the EEPROM write sequence.  
EECON1  
EECON2  
EEDATA  
EEADR  
Control bits RD and WR initiate read and write opera-  
tions, respectively. These bits cannot be cleared, only  
set, in software. They are cleared in hardware at the  
completion of the read or write operation. The inability  
to clear the WR bit in software prevents the accidental  
or premature termination of a write operation.  
The EEPROM data memory allows byte read and write.  
When interfacing to the data memory block, EEDATA  
holds the 8-bit data for read/write and EEADR holds the  
address of the EEPROM location being accessed. The  
PIC18FXX8 devices have 256 bytes of data EEPROM,  
with an address range from 00h to FFh.  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit is  
set when a write operation is interrupted by a MCLR  
Reset, or a WDT Time-out Reset, during normal oper-  
ation. In these situations, following RESET, the user  
can check the WRERR bit and rewrite the location. The  
data and address registers (EEDATA and EEADR)  
remain unchanged.  
The EEPROM data memory is rated for high erase/  
write cycles. A byte write automatically erases the loca-  
tion and writes the new data (erase-before-write). The  
write time is controlled by an on-chip timer. The write  
time will vary with voltage and temperature, as well as  
from chip-to-chip. Please refer to the specifications for  
exact limits.  
Note: Interrupt flag bit EEIF in the PIR2 register  
is set when write is complete. It must be  
cleared in software.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 59  
PIC18FXX8  
REGISTER 5-1:  
EECON1 REGISTER  
R/W-x  
R/W-x  
CFGS  
U-0  
R/W-0  
FREE  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
EEPGD  
WRERR  
bit 7  
bit 0  
bit 7  
bit 6  
EEPGD: FLASH Program or Data EEPROM Memory Select bit  
1= Access program FLASH memory  
0= Access data EEPROM memory  
CFGS: FLASH Program/Data EE or Configuration Select bit  
1= Access configuration registers  
0= Access program FLASH or data EEPROM memory  
bit 5  
bit 4  
Unimplemented: Read as '0'  
FREE: FLASH Row Erase Enable bit  
1= Erase the program memory row addressed by TBLPTR on the next WR command  
(reset by hardware)  
0= Perform write only  
bit 3  
WRERR: Write Error Flag bit  
1= A write operation is prematurely terminated  
(any MCLR or any WDT Reset during self-timed programming in normal operation)  
0= The write operation completed  
Note: When a WRERR occurs, the EEPGD or FREE bits are not cleared. This allows tracing  
of the error condition.  
bit 2  
bit 1  
WREN: Write Enable bit  
1= Allows write cycles  
0= Inhibits write to the EEPROM or FLASH memory  
WR: Write Control bit  
1= Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle  
(The operation is self-timed and the bit is cleared by hardware once write is complete. The  
WR bit can only be set (not cleared) in software.)  
0= Write cycle is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read  
(Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared)  
in software. RD bit cannot be set when EEPGD = 1.)  
0= Does not initiate an EEPROM read  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS41159B-page 60  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
5.3  
Reading the Data EEPROM  
Memory  
5.4  
Writing to the Data EEPROM  
Memory  
To read a data memory location, the user must write the  
address to the EEADR register, clear the EEPGD and  
CFGS control bits (EECON1<7:6>) and then set con-  
trol bit RD (EECON1<0>). The data is available in the  
very next instruction cycle of the EEDATA register;  
therefore, it can be read by the next instruction.  
EEDATA will hold this value until another read opera-  
tion, or until it is written to by the user (during a write  
operation).  
To write an EEPROM data location, the address must  
first be written to the EEADR register and the data writ-  
ten to the EEDATA register. Then, the sequence in  
Example 5-2 must be followed to initiate the write cycle.  
The write will not initiate if the above sequence is not  
exactly followed (write 55h to EECON2, write 0AAh to  
EECON2, then set WR bit) for each byte. It is strongly  
recommended that interrupts be disabled during this  
code segment.  
Additionally, the WREN bit in EECON1 must be set to  
enable writes. This mechanism prevents accidental  
writes to data EEPROM due to unexpected code exe-  
cution (i.e., runaway programs). The WREN bit should  
be kept clear at all times, except when updating the  
EEPROM. The WREN bit is not cleared by hardware.  
EXAMPLE 5-1:  
MOVLW DATA_EE_ADDR  
MOVWF EEADR  
DATA EEPROM READ  
;
;Data Memory Address  
;to read  
BCF  
BCS  
BSF  
MOVF  
EECON1, EEPGD ;Point to DATA memory  
After a write sequence has been initiated, clearing the  
WREN bit will not affect the current write cycle. The WR  
bit will be inhibited from being set unless the WREN bit  
is set. The WREN bit must be set on a previous instruc-  
tion. Both WR and WREN cannot be set with the same  
instruction.  
EECON1, CFGS  
EECON1, RD  
EEDATA, W  
;
;EEPROM Read  
;W = EEDATA  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EEPROM Write Complete  
Interrupt Flag bit (EEIF) is set. The user may either  
enable this interrupt, or roll this bit. EEIF must be  
cleared by software.  
EXAMPLE 5-2:  
DATA EEPROM WRITE  
MOVLW  
DATA_EE_ADDR  
EEADR  
DATA_EE_DATA  
EEDATA  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, WREN  
;
MOVWF  
MOVLW  
MOVWF  
BCF  
BCS  
BSF  
; Data Memory Address to write  
;
; Data Memory Value to write  
; Point to DATA memory  
;
; Enable writes  
BCF  
INTCON, GIE  
55h  
EECON2  
0AAh  
EECON2  
; Disable Interrupts  
;
; Write 55h  
;
; Write 0AAh  
; Set WR bit to begin write  
; Enable Interrupts  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
Required  
Sequence  
EECON1, WR  
INTCON, GIE  
BSF  
; User code execution  
; Disable writes  
BCF  
EECON1, WREN  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 61  
PIC18FXX8  
5.5  
Write Verify  
5.7  
Operation During Code Protect  
Depending on the application, good programming  
practice may dictate that the value written to the mem-  
ory should be verified against the original value. This  
should be used in applications where excessive writes  
can stress bits near the specification limit.  
Data EEPROM memory has its own code protect  
mechanism. External read and write operations are  
disabled if either of these mechanisms are enabled.  
The microcontroller itself can both read and write to the  
internal data EEPROM, regardless of the state of the  
code protect configuration bit. Refer to Section 24.0,  
Special Features of the CPU for additional information.  
Generally, a write failure will be a bit which was written  
as a 1, but reads back as a 0(due to leakage off the  
cell).  
5.8  
Using the Data EEPROM  
5.6  
Protection Against Spurious Write  
The data EEPROM is a high-endurance, byte address-  
able array that has been optimized for the storage of  
frequently changing information (e.g., program vari-  
ables or other data that are updated often). Frequently  
changing values will typically be updated more often  
than specification D124 or D124A. If this is not the  
case, an array refresh must be performed. For this rea-  
son, variables that change infrequently (such as con-  
stants, IDs, calibration, etc.) should be stored in FLASH  
program memory. A simple data EEPROM refresh  
routine is shown in Example 5-3.  
There are conditions when the device may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built-in. On power-up, the WREN bit is cleared.  
Also, the Power-up Timer (72 ms duration) prevents  
EEPROM write.  
The write initiate sequence and the WREN bit together  
reduce the probability of an accidental write during  
brown-out, power glitch, or software malfunction.  
Note: If Data EEPROM is only used to store con-  
stants and/or data that changes rarely, an  
array refresh is likely not required. See  
specification D124 or D124A.  
EXAMPLE 5-3:  
DATA EEPROM REFRESH ROUTINE  
clrf  
bcf  
bcf  
bcf  
bsf  
EEADR  
; Start at address 0  
EECON1,CFGS  
EECON1,EEPGD  
INTCON,GIE  
EECON1,WREN  
; Set for memory  
; Set for Data EEPROM  
; Disable interrupts  
; Enable writes  
; Loop to refresh array  
; Read current address  
;
; Write 55h  
;
; Write AAh  
; Set WR bit to begin write  
; Wait for write to complete  
Loop  
bsf  
EECON1,RD  
55h  
EECON2  
AAh  
EECON2  
EECON1,WR  
EECON1,WR  
$-2  
movlw  
movwf  
movlw  
movwf  
bsf  
btfsc  
bra  
incfsz  
bra  
EEADR,F  
Loop  
; Increment address  
; Not zero, do it again  
bcf  
bsf  
EECON1,WREN  
INTCON,GIE  
; Disable writes  
; Enable interrupts  
DS41159B-page 62  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
TABLE 5-1:  
REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY  
Value on  
Value on:  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
RESETS  
INTCON  
EEADR  
GIE/GIEH PEIE/GIEL TMR0IE  
EEPROM Address Register  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
EEDATA EEPROM Data Register  
EECON2 EEPROM Control Register2 (not a physical register)  
EECON1  
IPR2  
EEPGD  
CFGS  
CMIP  
CMIF  
CMIE  
FREE  
EEIP  
EEIF  
EEIE  
WRERR  
BCLIP  
BCLIF  
BCLIE  
WREN  
LVDIP  
LVDIF  
LVDIE  
WR  
RD  
xx-0 x000 uu-0 u000  
TMR3IP ECCP1IP -1-1 1111 -1-1 1111  
TMR3IF ECCP1IF -0-0 0000 -0-0 0000  
TMR3IE ECCP1IE -0-0 0000 -0-0 0000  
PIR2  
PIE2  
Legend: x= unknown, u= unchanged, r = reserved, -= unimplemented, read as '0'.  
Shaded cells are not used during FLASH/EEPROM access.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 63  
PIC18FXX8  
NOTES:  
DS41159B-page 64  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
6.1  
Table Reads and Table Writes  
6.0  
FLASH PROGRAM MEMORY  
In order to read and write program memory, there are  
two operations that allow the processor to move bytes  
between the program memory space and the data  
RAM:  
The FLASH Program Memory is readable, writable,  
and erasable during normal operation over the entire  
VDD range.  
A read from program memory is executed on one byte  
at a time. A write to program memory is executed on  
blocks of 8 bytes at a time. Program memory is erased  
in blocks of 64 bytes at a time. A bulk erase operation  
may not be issued from user code.  
Table Read (TBLRD)  
Table Write (TBLWT)  
The program memory space is 16-bits wide, while the  
data RAM space is 8-bits wide. Table Reads and Table  
Writes move data between these two memory spaces  
through an 8-bit register (TABLAT).  
Writing or erasing program memory will cease instruc-  
tion fetches until the operation is complete. The pro-  
gram memory cannot be accessed during the write or  
erase, therefore, code cannot execute. An internal pro-  
gramming timer terminates program memory writes  
and erases.  
Table Read operations retrieve data from program  
memory and places it into the data RAM space.  
Figure 6-1 shows the operation of a Table Read with  
program memory and data RAM.  
A value written to program memory does not need to be  
a valid instruction. Executing a program memory  
location that forms an invalid instruction results in a  
NOP.  
Table Write operations store data from the data mem-  
ory space into holding registers in program memory.  
The procedure to write the contents of the holding reg-  
isters into program memory is detailed in Section 6.5,  
Writing to FLASH Program Memory. Figure 6-2 shows  
the operation of a Table Write with program memory  
and data RAM.  
Table operations work with byte entities. A table block  
containing data, rather than program instructions, is not  
required to be word aligned. Therefore, a table block  
can start and end at any byte address. If a Table Write  
is being used to write executable code into program  
memory, program instructions will need to be word  
aligned.  
FIGURE 6-1:  
TABLE READ OPERATION  
Instruction: TBLRD*  
Program Memory  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: Table Pointer points to a byte in program memory.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 65  
PIC18FXX8  
FIGURE 6-2:  
TABLE WRITE OPERATION  
Instruction: TBLWT*  
Program Memory  
Holding Registers  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: Table Pointer actually points to one of eight holding registers, the address of which is determined by TBLPTRL<2:0>.  
The process for physically writing data to the Program Memory Array is discussed in Section 6.5.  
The FREE bit, when set, will allow a program memory  
6.2  
Control Registers  
erase operation. When the FREE bit is set, the erase  
operation is initiated on the next WR command. When  
FREE is clear, only writes are enabled.  
Several control registers are used in conjunction with  
the TBLRDand TBLWTinstructions. These include the:  
EECON1 register  
EECON2 register  
TABLAT register  
TBLPTR registers  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit is  
set when a write operation is interrupted by a MCLR  
Reset or a WDT Time-out Reset during normal opera-  
tion. In these situations, the user can check the  
WRERR bit and rewrite the location. It is necessary to  
reload the data and address registers (EEDATA and  
EEADR), due to RESET values of zero.  
6.2.1  
EECON1 AND EECON2 REGISTERS  
EECON1 is the control register for memory accesses.  
EECON2 is not a physical register. Reading EECON2  
will read all '0's. The EECON2 register is used  
exclusively in the memory write and erase sequences.  
Control bits RD and WR initiate read and write opera-  
tions, respectively. These bits cannot be cleared, only  
set, in software. They are cleared in hardware at the  
completion of the read or write operation. The inability  
to clear the WR bit in software prevents the accidental  
or premature termination of a write operation. The RD  
bit cannot be set when accessing program memory  
(EEPGD = 1).  
Control bit EEPGD determines if the access will be a  
program or data EEPROM memory access. When  
clear, any subsequent operations will operate on the  
data EEPROM memory. When set, any subsequent  
operations will operate on the program memory.  
Control bit CFGS determines if the access will be to the  
configuration/calibration registers or to program  
memory/data EEPROM memory. When set, subse-  
quent operations will operate on configuration regis-  
ters, regardless of EEPGD (see Section 24.0, Special  
Features of the CPU). When clear, memory selection  
access is determined by EEPGD.  
Note: If interrupts are enabled before the WR  
command, interrupt flag bit EEIF in the  
PIR2 register, is set when the write is com-  
plete. It must be cleared in software. This  
interrupt is not required to determine the  
end of a FLASH program memory write  
cycle.  
DS41159B-page 66  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 6-1:  
EECON1 REGISTER  
R/W-x  
R/W-x  
CFGS  
U-0  
R/W-0  
FREE  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
EEPGD  
WRERR  
bit 7  
bit 0  
bit 7  
bit 6  
EEPGD: FLASH Program or Data EEPROM Memory Select bit  
1= Access program FLASH memory  
0= Access data EEPROM memory  
CFGS: FLASH Program/Data EE or Configuration Select bit  
1= Access configuration registers  
0= Access program FLASH or data EEPROM memory  
bit 5  
bit 4  
Unimplemented: Read as '0'  
FREE: FLASH Row Erase Enable bit  
1= Erase the program memory row addressed by TBLPTR on the next WR command  
(cleared by completion of erase operation)  
0= Perform write only  
bit 3  
WRERR: Write Error Flag bit  
1= A write operation is prematurely terminated  
(any MCLR or any WDT Reset during self-timed programming in normal operation)  
0= The write operation completed  
Note: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows  
tracing of the error condition.  
bit 2  
bit 1  
WREN: Write Enable bit  
1= Allows write cycles  
0= Inhibits write to the EEPROM or FLASH memory  
WR: Write Control bit  
1= Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle.  
(The operation is self timed and the bit is cleared by hardware once write is complete. The  
WR bit can only be set (not cleared) in software.)  
0= Write cycle to the EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read  
(Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared)  
in software. RD bit cannot be set when EEPGD = 1.)  
0= Does not initiate an EEPROM read  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 67  
PIC18FXX8  
6.2.2  
TABLAT - TABLE LATCH REGISTER  
6.2.4  
TABLE POINTER BOUNDARIES  
The Table Latch (TABLAT) is an 8-bit register mapped  
into the SFR space. The Table Latch is used to hold  
8-bit data during data transfers between program  
memory and data RAM.  
TBLPTR is used in reads, writes, and erases of the  
FLASH program memory.  
When a TBLRD is executed, all 22 bits of the Table  
Pointer determine which byte is read from program  
memory into TABLAT.  
6.2.3  
TBLPTR - TABLE POINTER  
REGISTER  
When a TBLWTis executed, the three LSbs of the Table  
Pointer (TBLPTR<2:0>) determine which of the eight  
program memory holding registers is written to. When  
the timed write to program memory (long write) begins,  
the 19 MSbs of the Table Pointer, TBLPTR  
(TBLPTR<21:3>), will determine which program mem-  
ory block of 8 bytes is written to. For more detail, see  
Section 6.5,Writing to FLASH Program Memory.  
The Table Pointer (TBLPTR) addresses a byte within  
the program memory. The TBLPTR is comprised of  
three SFR registers: Table Pointer Upper Byte, Table  
Pointer High Byte and Table Pointer Low Byte  
(TBLPTRU:TBLPTRH:TBLPTRL). These three regis-  
ters join to form a 22-bit wide pointer. The low order 21  
bits allow the device to address up to 2 Mbytes of pro-  
gram memory space. The 22nd bit allows access to the  
Device ID, the User ID and the Configuration bits.  
When an erase of program memory is executed, the 16  
MSbs of the Table Pointer (TBLPTR<21:6>) point to the  
64-byte block that will be erased. The Least Significant  
bits (TBLPTR<5:0>) are ignored.  
The table pointer, TBLPTR, is used by the TBLRDand  
TBLWTinstructions. These instructions can update the  
TBLPTR in one of four ways, based on the table oper-  
ation. These operations are shown in Table 6-1. These  
operations on the TBLPTR only affect the low order 21  
bits.  
Figure 6-3 describes the relevant boundaries of  
TBLPTR based on FLASH program memory  
operations.  
TABLE 6-1:  
Example  
TABLE POINTER OPERATIONS WITH TBLRDAND TBLWTINSTRUCTIONS  
Operation on Table Pointer  
TBLRD*  
TBLWT*  
TBLPTR is not modified  
TBLRD*+  
TBLWT*+  
TBLPTR is incremented after the read/write  
TBLPTR is decremented after the read/write  
TBLPTR is incremented before the read/write  
TBLRD*-  
TBLWT*-  
TBLRD+*  
TBLWT+*  
FIGURE 6-3:  
TABLE POINTER BOUNDARIES BASED ON OPERATION  
21  
16 15  
TBLPTRH  
8
7
TBLPTRL  
0
TBLPTRU  
ERASE - TBLPTR<21:6>  
WRITE - TBLPTR<21:3>  
READ - TBLPTR<21:0>  
DS41159B-page 68  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
TBLPTR points to a byte address in program space.  
Executing TBLRD places the byte pointed to into  
TABLAT. In addition, TBLPTR can be modified  
automatically for the next Table Read operation.  
6.3  
Reading the FLASH Program  
Memory  
The TBLRDinstruction is used to retrieve data from pro-  
gram memory and place into data RAM. Table Reads  
from program memory are performed one byte at a  
time.  
The internal program memory is typically organized by  
words. The Least Significant bit of the address selects  
between the high and low bytes of the word. Figure 6-4  
shows the interface between the internal program  
memory and the TABLAT.  
FIGURE 6-4:  
READS FROM FLASH PROGRAM MEMORY  
Program Memory  
(Even Byte Address)  
(Odd Byte Address)  
TBLPTR = xxxxx1  
TBLPTR = xxxxx0  
Instruction Register  
(IR)  
TABLAT  
Read Register  
FETCH  
TBLRD  
EXAMPLE 6-1:  
READING A FLASH PROGRAM MEMORY WORD  
MOVLW CODE_ADDR_UPPER  
MOVWF TBLPTRU  
; Load TBLPTR with the base  
; address of the word  
MOVLW CODE_ADDR_HIGH  
MOVWF TBLPTRH  
MOVLW CODE_ADDR_LOW  
MOVWF TBLPTRL  
READ_WORD  
TBLRD*+  
; read into TABLAT and increment  
; get data  
MOVF TABLAT, W  
MOVWF WORD_LSB  
TBLRD*+  
MOVF TABLAT, W  
MOVWF WORD_MSB  
; read into TABLAT and increment  
; get data  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 69  
PIC18FXX8  
6.4.1  
FLASH PROGRAM MEMORY  
ERASE SEQUENCE  
6.4  
Erasing FLASH Program memory  
The minimum erase block is 32 words or 64 bytes. Only  
through the use of an external programmer, or through  
ICSP control, can larger blocks of program memory be  
bulk erased. Word erase in the FLASH array is not  
supported.  
The sequence of events for erasing a block of internal  
program memory location is:  
1. Load table pointer with address of row being  
erased.  
When initiating an erase sequence from the micro-  
controller itself, a block of 64 bytes of program memory  
is erased. The Most Significant 16 bits of the  
TBLPTR<21:6> point to the block being erased.  
TBLPTR<5:0> are ignored.  
2. Set the EECON1 register for the erase operation:  
set the EEPGD bit to point to program memory;  
clear the CFGS bit to access program memory;  
set the WREN bit to enable writes;  
set the FREE bit to enable the erase.  
3. Disable interrupts.  
The EECON1 register commands the erase operation.  
The EEPGD bit must be set to point to the FLASH pro-  
gram memory. The WREN bit must be set to enable  
write operations. The FREE bit is set to select an erase  
operation.  
4. Write 55h to EECON2.  
5. Write 0AAh to EECON2.  
6. Set the WR bit. This will begin the row erase  
cycle.  
For protection, the write initiate sequence for EECON2  
must be used.  
7. The CPU will stall for duration of the erase  
(about 2 ms using internal timer).  
A long write is necessary for erasing the internal  
FLASH. Instruction execution is halted while in a long  
write cycle. The long write will be terminated by the  
internal programming timer.  
8. Execute a NOP.  
9. Re-enable interrupts.  
Note: A NOPis needed after the WR command to  
ensure proper code execution.  
EXAMPLE 6-2:  
ERASING A FLASH PROGRAM MEMORY ROW  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
upper (CODE_ADDR)  
TBLPTRU  
high (CODE_ADDR)  
TBLPTRH  
low (CODE_ADDR)  
TBLPTRL  
; load TBLPTR with the base  
; address of the memory block  
ERASE_ROW  
BSF  
BCF  
BSF  
BSF  
EECON1,EEPGD  
EECON1,CFGS  
EECON1,WREN  
EECON1,FREE  
INTCON,GIE  
55h  
EECON2  
0AAh  
EECON2  
EECON1,WR  
; point to FLASH program memory  
; access FLASH program memory  
; enable write to memory  
; enable Row Erase operation  
; disable interrupts  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
; write 55H  
Required  
Sequence  
; write 0AAH  
; start erase (CPU stall)  
; NOP needed for proper code execution  
; re-enable interrupts  
NOP  
BSF  
INTCON,GIE  
DS41159B-page 70  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
5. Load Table Pointer with address of first byte  
being written.  
6.5  
Writing to FLASH Program  
Memory  
6. Write the first 8 bytes into the holding registers  
using the TBLWT instruction, auto-increment  
may be used.  
The minimum programming block is 4 words or 8 bytes.  
Word or byte programming is not supported.  
Table Writes are used internally to load the holding reg-  
isters needed to program the FLASH memory. There  
are 8 holding registers used by the Table Writes for  
programming.  
7. Set the EECON1 register for the write operation:  
set the EEPGD bit to point to program memory;  
clear the CFGS bit to access program memory;  
set the WREN to enable byte writes.  
8. Disable interrupts.  
Since the Table Latch (TABLAT) is only a single byte,  
the TBLWT instruction has to be executed 8 times for  
each programming operation. All of the Table Write  
operations will essentially be short writes, because only  
the holding registers are written. At the end of updating  
8 registers, the EECON1 register must be written to, to  
start the programming operation with a long write.  
9. Write 55h to EECON2.  
10. Write AAh to EECON2.  
11. Set the WR bit. This will begin the write cycle.  
12. The CPU will stall for duration of the write (about  
2 ms using internal timer).  
The long write is necessary for programming the inter-  
nal FLASH. Instruction execution is halted while in a  
long write cycle. The long write will be terminated by  
the internal programming timer.  
13. Execute a NOP.  
14. Re-enable interrupts.  
15. Repeat steps 6-14 seven times, to write 64  
bytes.  
The EEPROM on-chip timer controls the write time.  
The write/erase voltages are generated by an on-chip  
charge pump rated to operate over the voltage range of  
the device for byte or word operations.  
16. Verify the memory (Table Read).  
This procedure will require about 18 ms to update one  
row of 64 bytes of memory. An example of the required  
code is given in Example 6-3.  
6.5.1  
FLASH PROGRAM MEMORY WRITE  
SEQUENCE  
Note 1: A NOPis needed after the WR command  
to ensure proper code execution.  
2: Before setting the WR bit, the Table  
Pointer address needs to be within the  
range of addresses of the 8 bytes in the  
holding registers.  
The sequence of events for programming an internal  
program memory location should be:  
1. Read 64 bytes into RAM.  
2. Update data values in RAM as necessary.  
3. Load Table Pointer with address being erased.  
4. Do the row erase procedure.  
3: Holding registers are cleared on RESET  
and at the completion of each write cycle.  
FIGURE 6-5:  
TABLE WRITES TO FLASH PROGRAM MEMORY  
TABLAT  
Write Register  
8
8
8
8
TBLPTR = xxxxx0  
TBLPTR = xxxxx2  
TBLPTR = xxxxx7  
TBLPTR = xxxxx1  
Holding Register  
Holding Register  
Holding Register  
Holding Register  
Program Memory  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 71  
PIC18FXX8  
EXAMPLE 6-3:  
WRITING TO FLASH PROGRAM MEMORY  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
D’64  
COUNTER  
high (BUFFER_ADDR)  
FSR0H  
low (BUFFER_ADDR)  
FSR0L  
upper (CODE_ADDR)  
TBLPTRU  
high (CODE_ADDR)  
TBLPTRH  
low (CODE_ADDR)  
TBLPTRL  
; number of bytes in erase block  
; point to buffer  
; Load TBLPTR with the base  
; address of the memory block  
READ_BLOCK  
TBLRD*+  
MOVF  
MOVWF  
; read into TABLAT, and inc  
; get data  
; store data  
; done?  
TABLAT, W  
POSTINC0  
DECFSZ COUNTER  
BRA  
READ_BLOCK  
; repeat  
MODIFY_WORD  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
DATA_ADDR_HIGH  
FSR0H  
DATA_ADDR_LOW  
FSR0L  
NEW_DATA_LOW  
POSTINC0  
NEW_DATA_HIGH  
INDF0  
; point to buffer  
; update buffer word  
ERASE_BLOCK  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
BCF  
BSF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
upper (CODE_ADDR)  
TBLPTRU  
high (CODE_ADDR)  
TBLPTRH  
low (CODE_ADDR)  
TBLPTRL  
EECON1,EEPGD  
EECON1,CFGS  
EECON1,WREN  
EECON1,FREE  
INTCON,GIE  
55h  
; load TBLPTR with the base  
; address of the memory block  
; point to FLASH program memory  
; access FLASH program memory  
; enable write to memory  
; enable Row Erase operation  
; disable interrupts  
Required  
Sequence  
EECON2  
AAh  
EECON2  
EECON1,WR  
; write 55H  
; write AAH  
; start erase (CPU stall)  
NOP  
BSF  
TBLRD*-  
INTCON,GIE  
; re-enable interrupts  
; dummy read decrement  
WRITE_BUFFER_BACK  
MOVLW  
8
; number of write buffer groups of 8 bytes  
; point to buffer  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
COUNTER_HI  
high (BUFFER_ADDR)  
FSR0H  
low (BUFFER_ADDR)  
FSR0L  
PROGRAM_LOOP  
MOVLW  
MOVWF  
8
; number of bytes in holding register  
COUNTER  
WRITE_WORD_TO_HREGS  
MOVFW  
MOVWF  
TBLWT+*  
POSTINC0, W  
TABLAT  
; get low byte of buffer data  
; present data to table latch  
; write data, perform a short write  
; to internal TBLWT holding register.  
; loop until buffers are full  
DECFSZ COUNTER  
BRA WRITE_WORD_TO_HREGS  
DS41159B-page 72  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
EXAMPLE 6-3:  
WRITING TO FLASH PROGRAM MEMORY (CONTINUED)  
WRITE_WORD_TO_HREGS  
MOVFW  
MOVWF  
POSTINC0, W  
TABLAT  
; get low byte of buffer data  
; present data to table latch  
TBLWT+*  
; write data, perform a short write  
; to internal TBLWT holding register.  
; loop until buffers are full  
DECFSZ COUNTER  
BRA  
WRITE_WORD_TO_HREGS  
PROGRAM_MEMORY  
BSF  
BCF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
EECON1,EEPGD  
EECON1,CFGS  
EECON1,WREN  
INTCON,GIE  
55h  
EECON2  
0AAh  
EECON2  
EECON1,WR  
; point to FLASH program memory  
; access FLASH program memory  
; enable write to memory  
; disable interrupts  
; write 55H  
Required  
Sequence  
; write 0AAH  
; start program (CPU stall)  
NOP  
BSF  
INTCON,GIE  
; re-enable interrupts  
; loop until done  
DECFSZ COUNTER_HI  
BRA  
BCF  
PROGRAM_LOOP  
EECON1,WREN  
; disable write to memory  
6.5.2  
WRITE VERIFY  
6.5.4  
PROTECTION AGAINST SPURIOUS  
WRITES  
Depending on the application, good programming  
practice may dictate that the value written to the mem-  
ory should be verified against the original value. This  
should be used in applications where excessive writes  
can stress bits near the specification limit.  
To reduce the probability against spurious writes to  
FLASH program memory, the write initiate sequence  
must also be followed. See Section 24.0, Special  
Features of the CPU for more detail.  
6.5.3  
UNEXPECTED TERMINATION OF  
WRITE OPERATION  
6.6  
FLASH Program Operation During  
Code Protection  
If a write is terminated by an unplanned event, such as  
loss of power or an unexpected RESET, the memory  
location just programmed should be verified and repro-  
grammed if needed.The WRERR bit is set when a write  
operation is interrupted by a MCLR Reset, or a WDT  
Time-out Reset during normal operation. In these situ-  
ations, users can check the WRERR bit and rewrite the  
location.  
See Section 24.0, Special Features of the CPU for  
details on code protection of FLASH program memory.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 73  
PIC18FXX8  
TABLE 6-2:  
REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY  
Value on  
all other  
RESETS  
Value on:  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TBLPTRU  
bit21  
Program Memory Table Pointer Upper Byte  
(TBLPTR<20:16>)  
--00 0000 --00 0000  
TBPLTRH Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
TBLPTRL Program Memory Table Pointer High Byte (TBLPTR<7:0>)  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 000x 0000 000u  
TABLAT  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
EECON2 EEPROM Control Register2 (not a physical register)  
Program Memory Table Latch  
INTE  
RBIE  
TMR0IF  
INTF  
WR  
RBIF  
RD  
EECON1  
IPR2  
EEPGD  
CFGS  
FREE  
EEIP  
EEIF  
EEIE  
WRERR  
BCLIP  
BCLIF  
BCLIE  
WREN  
LVDIP  
LVDIF  
LVDIE  
xx-0 x000 uu-0 u000  
TMR3IP CCP2IP ---1 1111 ---1 1111  
TMR3IF CCP2IF ---0 0000 ---0 0000  
TMR3IE CCP2IE ---0 0000 ---0 0000  
PIR2  
PIE2  
Legend: x= unknown, u= unchanged, r = reserved, -= unimplemented read as '0'.  
Shaded cells are not used during FLASH/EEPROM access.  
DS41159B-page 74  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
7.2  
Operation  
7.0  
7.1  
8 X 8 HARDWARE MULTIPLIER  
Introduction  
Example 7-1 shows the sequence to do an 8 x 8  
unsigned multiply. Only one instruction is required  
when one argument of the multiply is already loaded in  
the WREG register.  
An 8 x 8 hardware multiplier is included in the ALU of  
the PIC18FXX8 devices. By making the multiply a  
hardware operation, it completes in a single instruction  
cycle. This is an unsigned multiply that gives a 16-bit  
result. The result is stored into the 16-bit product regis-  
ter pair (PRODH:PRODL). The multiplier does not  
affect any flags in the ALUSTA register.  
Example 7-2 shows the sequence to do an 8 x 8 signed  
multiply. To account for the sign bits of the arguments,  
each arguments Most Significant bit (MSb) is tested  
and the appropriate subtractions are done.  
Making the 8 x 8 multiplier execute in a single cycle  
gives the following advantages:  
EXAMPLE 7-1:  
8 x 8 UNSIGNED  
MULTIPLY ROUTINE  
Higher computational throughput  
MOVF  
MULWF  
ARG1, W  
ARG2  
;
Reduces code size requirements for multiply  
; ARG1 * ARG2 ->  
algorithms  
;
PRODH:PRODL  
The performance increase allows the device to be used  
in applications previously reserved for Digital Signal  
Processors.  
Table 7-1 shows a performance comparison between  
enhanced devices using the single cycle hardware mul-  
tiply, and performing the same function without the  
hardware multiply.  
EXAMPLE 7-2:  
8 x 8 SIGNED MULTIPLY  
ROUTINE  
MOVF  
ARG1,  
ARG2  
W
MULWF  
; ARG1 * ARG2 ->  
; PRODH:PRODL  
BTFSC  
SUBWF  
ARG2, SB  
PRODH  
; Test Sign Bit  
; PRODH = PRODH  
;
- ARG1  
MOVF  
ARG2,  
W
BTFSC  
SUBWF  
ARG1, SB  
PRODH  
; Test Sign Bit  
; PRODH = PRODH  
;
- ARG2  
TABLE 7-1:  
Routine  
PERFORMANCE COMPARISON  
Program  
Time  
@ 40 MHz @ 10 MHz @ 4 MHz  
Cycles  
(Max)  
Multiply Method  
Memory  
(Words)  
Without hardware multiply  
Hardware multiply  
13  
1
69  
1
6.9 µs  
100 ns  
9.1 µs  
600 ns  
24.2 µs  
2.4 µs  
25.4 µs  
3.6 µs  
27.6 µs  
400 ns  
36.4 µs  
2.4 µs  
69 µs  
1 µs  
91 µs  
6 µs  
8 x 8 unsigned  
8 x 8 signed  
Without hardware multiply  
Hardware multiply  
33  
6
91  
6
Without hardware multiply  
Hardware multiply  
21  
24  
52  
36  
242  
24  
254  
36  
96.8 µs  
9.6 µs  
242 µs  
24 µs  
254 µs  
36 µs  
16 x 16 unsigned  
16 x 16 signed  
Without hardware multiply  
Hardware multiply  
102.6 µs  
14.4 µs  
2002 Microchip Technology Inc.  
DS41159B-page 75  
PIC18FXX8  
Example 7-3 shows the sequence to do a 16 x 16  
unsigned multiply. Equation 7-1 shows the algorithm  
that is used. The 32-bit result is stored in four registers,  
RES3:RES0.  
EQUATION 7-2:  
16 x 16 SIGNED  
MULTIPLICATION  
ALGORITHM  
RES3:RES0  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
16  
EQUATION 7-1:  
16 x 16 UNSIGNED  
MULTIPLICATION  
ALGORITHM  
(ARG1H ARG2H 2 )+  
8
(ARG1H ARG2L 2 )+  
8
(ARG1L ARG2H 2 )+  
(ARG1L ARG2L)+  
(-1 ARG2H<7> ARG1H:ARG1L 2 )+  
(-1 ARG1H<7> ARG2H:ARG2L 2  
16  
RES3:RES0  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
16  
16  
(ARG1H ARG2H 2 )+  
)
8
(ARG1H ARG2L 2 )+  
8
(ARG1L ARG2H 2 )+  
(ARG1L ARG2L)  
EXAMPLE 7-4:  
16 x 16 SIGNED  
MULTIPLY ROUTINE  
MOVF  
MULWF  
ARG1L,  
ARG2L  
W
; ARG1L * ARG2L ->  
; PRODH:PRODL  
;
;
EXAMPLE 7-3:  
16 x 16 UNSIGNED  
MULTIPLY ROUTINE  
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
MOVF  
MULWF  
ARG1L, W  
ARG2L  
;
;
; ARG1L * ARG2L ->  
; PRODH:PRODL  
;
;
MOVF  
MULWF  
ARG1H,  
ARG2H  
W
; ARG1H * ARG2H ->  
; PRODH:PRODL  
;
;
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
;
;
MOVF  
MULWF  
ARG1H,  
ARG2H  
W
; ARG1H * ARG2H ->  
; PRODH:PRODL  
;
;
MOVF  
MULWF  
ARG1L,  
ARG2H  
W
; ARG1L * ARG2H ->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
MOVF  
ADDWF  
MOVF  
ADDWFC RES2  
CLRF WREG  
ADDWFC RES3  
PRODL,  
RES1  
PRODH,  
W
W
MOVF  
MULWF  
ARG1L,  
ARG2H  
W
; ARG1L * ARG2H ->  
; PRODH:PRODL  
MOVF  
ADDWF  
MOVF  
PRODL,  
RES1  
PRODH,  
W
W
;
; Add cross  
; products  
;
MOVF  
MULWF  
ARG1H,  
W
;
ADDWFC RES2  
CLRF WREG  
ADDWFC RES3  
;
;
;
ARG2L  
; ARG1H * ARG2L ->  
; PRODH:PRODL  
;
; Add cross  
; products  
;
;
;
MOVF  
ADDWF  
MOVF  
ADDWFC RES2  
CLRF WREG  
ADDWFC RES3  
PRODL,  
RES1  
PRODH,  
W
W
;
MOVF  
ARG1H,  
W
;
MULWF  
ARG2L  
; ARG1H * ARG2L ->  
; PRODH:PRODL  
MOVF  
ADDWF  
MOVF  
PRODL,  
RES1  
PRODH,  
W
W
;
; Add cross  
; products  
;
;
BTFSS  
BRA  
MOVF  
SUBWF  
MOVF  
ARG2H,  
7
; ARG2H:ARG2L neg?  
; no, check ARG1  
;
;
;
ADDWFC RES2  
CLRF WREG  
ADDWFC RES3  
;
;
;
SIGN_ARG1  
ARG1L,  
RES2  
ARG1H,  
W
W
SUBWFB RES3  
Example 7-4 shows the sequence to do a 16 x 16  
signed multiply. Equation 7-2 shows the algorithm  
used. The 32-bit result is stored in four registers,  
RES3:RES0. To account for the sign bits of the argu-  
ments, each argument pairs Most Significant bit (MSb)  
is tested and the appropriate subtractions are done.  
SIGN_ARG1  
BTFSS  
BRA  
ARG1H,  
CONT_CODE  
ARG2L,  
RES2  
ARG2H,  
7
; ARG1H:ARG1L neg?  
; no, done  
;
;
;
MOVF  
SUBWF  
MOVF  
W
W
SUBWFB RES3  
;
CONT_CODE  
:
DS41159B-page 76  
2002 Microchip Technology Inc.  
PIC18FXX8  
When the IPEN bit is cleared (default state), the inter-  
rupt priority feature is disabled and interrupts are com-  
patible with PICmicro® mid-range devices. In  
Compatibility mode, the interrupt priority bits for each  
source have no effect. The PEIE bit (INTCON register)  
enables/disables all peripheral interrupt sources. The  
GIE bit (INTCON register) enables/disables all interrupt  
sources. All interrupts branch to address 000008h in  
Compatibility mode.  
8.0  
INTERRUPTS  
The PIC18FXX8 devices have multiple interrupt  
sources and an interrupt priority feature that allows  
each interrupt source to be assigned a high priority  
level or a low priority level. The high priority interrupt  
vector is at 000008h, and the low priority interrupt vec-  
tor is at 000018h. High priority interrupt events will  
override any low priority interrupts that may be in  
progress.  
When an interrupt is responded to, the Global Interrupt  
Enable bit is cleared to disable further interrupts. If the  
IPEN bit is cleared, this is the GIE bit. If interrupt prior-  
ity levels are used, this will be either the GIEH or GIEL  
bit. High priority interrupt sources can interrupt a low  
priority interrupt.  
There are 13 registers that are used to control interrupt  
operation. These registers are:  
RCON  
INTCON  
INTCON2  
The return address is pushed onto the stack and the  
PC is loaded with the interrupt vector address  
(000008h or 000018h). Once in the Interrupt Service  
Routine, the source(s) of the interrupt can be deter-  
mined by polling the interrupt flag bits. The interrupt  
flag bits must be cleared in software before re-enabling  
interrupts, to avoid recursive interrupts.  
INTCON3  
PIR1, PIR2, PIR3  
PIE1, PIE2, PIE3  
IPR1, IPR2, IPR3  
It is recommended that the Microchip header files sup-  
plied with MPLAB® IDE, be used for the symbolic bit  
names in these registers. This allows the assembler/  
compiler to automatically take care of the placement of  
these bits within the specified register.  
The "return from interrupt" instruction, RETFIE, exits  
the interrupt routine and sets the GIE bit (GIEH or GIEL  
if priority levels are used), which re-enables interrupts.  
Each interrupt source has three bits to control its  
operation. The functions of these bits are:  
For external interrupt events, such as the INT pins or  
the PORTB input change interrupt, the interrupt latency  
will be three to four instruction cycles. The exact  
latency is the same for one or two-cycle instructions.  
Individual interrupt flag bits are set, regardless of the  
status of their corresponding enable bit, or the GIE bit.  
Flag bit to indicate that an interrupt event  
occurred  
Enable bit that allows program execution to  
branch to the interrupt vector address when the  
flag bit is set  
Priority bit to select high priority or low priority  
Note: Do not use the MOVFFinstruction to modify  
any of the interrupt control registers while  
any interrupt is enabled. Doing so may  
cause erratic microcontroller behavior.  
The interrupt priority feature is enabled by setting the  
IPEN bit (RCON register). When interrupt priority is  
enabled, there are two bits that enable interrupts glo-  
bally. Setting the GIEH bit (INTCON<7>) enables all  
interrupts. Setting the GIEL bit (INTCON register)  
enables all interrupts that have the priority bit cleared.  
When the interrupt flag, enable bit and appropriate glo-  
bal interrupt enable bit are set, the interrupt will vector  
immediately to address 000008h or 000018h, depend-  
ing on the priority level. Individual interrupts can be  
disabled through their corresponding enable bits.  
2002 Microchip Technology Inc  
Preliminary  
DS41159B-page 77  
PIC18FXX8  
FIGURE 8-1:  
INTERRUPT LOGIC  
TMR0IF  
TMR0IE  
TMR0IP  
RBIF  
RBIE  
RBIP  
Wake-up if in SLEEP mode  
INT0IF  
INT0IE  
INT1IF  
INT1IE  
INT1IP  
INT2IF  
INT2IE  
INT2IP  
Interrupt to CPU  
Vector to Location  
0008h  
Peripheral Interrupt Flag bit  
Peripheral Interrupt Enable bit  
Peripheral Interrupt Priority bit  
GIE/GIEH  
TMR1IF  
TMR1IE  
TMR1IP  
IPEN  
IPEN  
GIEL/PEIE  
XXXXIF  
XXXXIE  
XXXXIP  
IPEN  
Additional Peripheral Interrupts  
High Priority Interrupt Generation  
Low Priority Interrupt Generation  
Peripheral Interrupt Flag bit  
Peripheral Interrupt Enable bit  
Peripheral Interrupt Priority bit  
TMR0IF  
TMR0IE  
TMR0IP  
Interrupt to CPU  
Vector to Location  
0018h  
TMR1IF  
TMR1IE  
TMR1IP  
RBIF  
RBIE  
RBIP  
PEIE/GIEL  
GIE/GIEH  
XXXXIF  
XXXXIE  
XXXXIP  
INT0IF  
INT0IE  
INT1IF  
INT1IE  
INT1IP  
Additional Peripheral Interrupts  
INT2IF  
INT2IE  
INT2IP  
DS41159B-page 78  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
8.1  
INTCON Registers  
Note: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit, or the global  
enable bit. User software should ensure  
the appropriate interrupt flag bits are clear  
prior to enabling an interrupt. This feature  
allows software polling.  
The INTCON Registers are readable and writable reg-  
isters, which contain various enable, priority, and flag  
bits. Because of the number of interrupts to be con-  
trolled, PIC18FXX8 devices have three INTCON regis-  
ters. They are detailed in Register 8-1 through  
Register 8-3.  
REGISTER 8-1:  
INTCON REGISTER  
R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
RBIE  
R/W-0  
R/W-0  
INT0IF  
R/W-x  
RBIF  
GIE/GIEH PEIE/GIEL TMR0IE  
bit 7  
INT0IE  
TMR0IF  
bit 0  
bit 7  
GIE/GIEH: Global Interrupt Enable bit  
When IPEN (RCON<7>) = 0:  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
When IPEN (RCON<7>) = 1:  
1= Enables all high priority interrupts  
0= Disables all priority interrupts  
bit 6  
PEIE/GIEL: Peripheral Interrupt Enable bit  
When IPEN (RCON<7>) = 0:  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
When IPEN (RCON<7>) = 1:  
1= Enables all low priority peripheral interrupts  
0= Disables all low priority peripheral interrupts  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMR0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 overflow interrupt  
0= Disables the TMR0 overflow interrupt  
INT0IE: INT0 External Interrupt Enable bit  
1= Enables the INT0 external interrupt  
0= Disables the INT0 external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
TMR0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INT0IF: INT0 External Interrupt Flag bit  
1= The INT0 external interrupt occurred (must be cleared in software by reading PORTB)  
0= The INT0 external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1= At least one of the RB7:RB4 pins changed state (must be cleared in software)  
0= None of the RB7:RB4 pins have changed state  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc  
Preliminary  
DS41159B-page 79  
PIC18FXX8  
REGISTER 8-2:  
INTCON2 REGISTER  
R/W-1  
RBPU  
R/W-1  
R/W-1  
U-0  
U-0  
R/W-1  
U-0  
R/W-1  
RBIP  
INTEDG0 INTEDG1  
TMR0IP  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
RBPU: PORTB Pull-up Enable bit  
1= All PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG0: External Interrupt 0 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG1: External Interrupt 1 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
bit 4-3  
Unimplmented: Read as 0’  
bit 2  
TMR0IP: TMR0 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 1  
bit 0  
Unimplmented: Read as 0’  
RBIP: RB Port Change Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state  
of its corresponding enable bit, or the global enable bit. User software should ensure  
the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature  
allows software polling.  
DS41159B-page 80  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 8-3:  
INTCON3 REGISTER  
R/W-1  
R/W-1  
U-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
INT2IF  
R/W-0  
INT1IF  
INT2IP  
INT1IP  
INT2IE  
INT1IE  
bit 7  
bit 0  
bit 7  
bit 6  
INT2IP: INT2 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT1IP: INT1 External Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 5  
bit 4  
Unimplmented: Read as 0’  
INT2IE: INT2 External Interrupt Enable bit  
1= Enables the INT2 external interrupt  
0= Disables the INT2 external interrupt  
bit 3  
INT1IE: INT1 External Interrupt Enable bit  
1= Enables the INT1 external interrupt  
0= Disables the INT1 external interrupt  
bit 2  
bit 1  
Unimplmented: Read as 0’  
INT2IF: INT2 External Interrupt Flag bit  
1= The INT2 external interrupt occurred (must be cleared in software)  
0= The INT2 external interrupt did not occur  
bit 0  
INT1IF: INT1 External Interrupt Flag bit  
1= The INT1 external interrupt occurred (must be cleared in software)  
0= The INT1 external interrupt did not occur  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state  
of its corresponding enable bit, or the global enable bit. User software should ensure  
the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature  
allows software polling.  
2002 Microchip Technology Inc  
Preliminary  
DS41159B-page 81  
PIC18FXX8  
8.2  
PIR Registers  
Note 1: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit, or the global  
enable bit, GIE (INTCON register).  
The Peripheral Interrupt Request (PIR) registers con-  
tain the individual flag bits for the peripheral interrupts  
(Register 8-4 through Register 8-6). Due to the number  
of peripheral interrupt sources, there are three Periph-  
eral Interrupt Request (Flag) registers (PIR1, PIR2,  
PIR3).  
2: User software should ensure the appropri-  
ate interrupt flag bits are cleared prior to  
enabling an interrupt, and after servicing  
that interrupt.  
REGISTER 8-4:  
PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1 (PIR1)  
R/W-0  
PSPIF(1)  
bit 7  
R/W-0  
ADIF  
R-0  
R-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
R/W-0  
RCIF  
TXIF  
CCP1IF  
TMR2IF  
TMR1IF  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
PSPIF: Parallel Slave Port Read/Write Interrupt Flag bit(1)  
1= A read or a write operation has taken place (must be cleared in software)  
0= No read or write has occurred  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed (must be cleared in software)  
0= The A/D conversion is not complete  
RCIF: USART Receive Interrupt Flag bit  
1=The USART receive buffer, RCREG, is full (cleared when RCREG is read)  
0=The USART receive buffer is empty  
TXIF: USART Transmit Interrupt Flag bit  
1= The USART transmit buffer, TXREG, is empty (cleared when TXREG is written)  
0= The USART transmit buffer is full  
SSPIF: Master Synchronous Serial Port Interrupt Flag bit  
1= The transmission/reception is complete (must be cleared in software)  
0= Waiting to transmit/receive  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode  
bit 1  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
Note 1: This bit is only available on PIC18F4X8 devices. For PIC18F2X8 devices, this bit  
is unimplemented and reads as 0.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS41159B-page 82  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 8-5:  
PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2 (PIR2)  
U-0  
R/W-0  
CMIF(1)  
U-0  
R/W-0  
EEIF  
R/W-0  
BCLIF  
R/W-0  
LVDIF  
R/W-0  
TMR3IF ECCP1IF(1)  
R/W-0  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as 0’  
CMIF: Comparator Interrupt Flag bit (1)  
1= Comparator input has changed  
0= Comparator input has not changed  
bit 5  
bit 4  
Unimplemented: Read as0’  
EEIF: EEPROM Write Operation Interrupt Flag bit  
1= Write operation is complete (must be cleared in software)  
0= Write operation is not complete  
bit 3  
bit 2  
bit 1  
bit 0  
BCLIF: Bus Collision Interrupt Flag bit  
1= A bus collision occurred (must be cleared in software)  
0= No bus collision occurred  
LVDIF: Low Voltage Detect Interrupt Flag bit  
1= A low voltage condition occurred (must be cleared in software)  
0= The device voltage is above the Low Voltage Detect trip point  
TMR3IF: TMR3 Overflow Interrupt Flag bit  
1= TMR3 register overflowed (must be cleared in software)  
0= TMR3 register did not overflow  
ECCP1IF: ECCP1 Interrupt Flag bit (1)  
Capture mode:  
1= A TMR1 (TMR3) register capture occurred  
(must be cleared in software)  
0= No TMR1 (TMR3) register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred  
(must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode  
Note 1: This bit is only available on PIC18F4X8 devices. For PIC18F2X8 devices, this bit  
is unimplemented and reads as 0.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc  
Preliminary  
DS41159B-page 83  
PIC18FXX8  
REGISTER 8-6:  
PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 3 (PIR3)  
R/W-0  
IRXIF  
R/W-0  
R/W-0  
ERRIF  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WAKIF  
TXB2IF  
TXB1IF  
TXB0IF  
RXB1IF  
RXB0IF  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
IRXIF: Invalid Message Received Interrupt Flag bit  
1= An invalid message has occurred on the CAN bus  
0= An invalid message has not occurred on the CAN bus  
WAKIF: Bus Activity Wake-up Interrupt Flag bit  
1= Activity on the CAN bus has occurred  
0= Activity on the CAN bus has not occurred  
ERRIF: CAN Bus Error Interrupt Flag bit  
1= An error has occurred in the CAN module (multiple sources)  
0= An error has not occurred in the CAN module  
TXB2IF: Transmit Buffer 2 Interrupt Flag bit  
1= Transmit Buffer 2 has completed transmission of a message, and may be reloaded  
0= Transmit Buffer 2 has not completed transmission of a message  
TXB1IF: Transmit Buffer 1 Interrupt Flag bit  
1= Transmit Buffer 1 has completed transmission of a message, and may be reloaded  
0= Transmit Buffer 1 has not completed transmission of a message  
TXB0IF: Transmit Buffer 0 Interrupt Flag bit  
1= Transmit Buffer 0 has completed transmission of a message, and may be reloaded  
0= Transmit Buffer 0 has not completed transmission of a message  
RXB1IF: Receive Buffer 1 Interrupt Flag bit  
1= Receive Buffer 1 has received a new message  
0= Receive Buffer 1 has not received a new message  
RXB0IF: Receive Buffer 0 Interrupt Flag bit  
1= Receive Buffer 0 has received a new message  
0= Receive Buffer 0 has not received a new message  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS41159B-page 84  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
8.3  
PIE Registers  
The Peripheral Interrupt Enable (PIE) registers contain  
the individual enable bits for the peripheral interrupts  
(Register 8-7 through Register 8-9). Due to the number  
of peripheral interrupt sources, there are three Periph-  
eral Interrupt Enable registers (PIE1, PIE2, PIE3).  
When IPEN is clear, the PEIE bit must be set to enable  
any of these peripheral interrupts.  
REGISTER 8-7:  
PERIPHERAL INTERRUPT ENABLE REGISTER 1 (PIE1)  
R/W-0  
PSPIE(1)  
bit 7  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
R/W-0  
TMR1IE  
bit 0  
CCP1IE  
TMR2IE  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit(1)  
1= Enables the PSP read/write interrupt  
0= Disables the PSP read/write interrupt  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D interrupt  
0= Disables the A/D interrupt  
RCIE: USART Receive Interrupt Enable bit  
1= Enables the USART receive interrupt  
0= Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1= Enables the USART transmit interrupt  
0= Disables the USART transmit interrupt  
SSPIE: Master Synchronous Serial Port Interrupt Enable bit  
1= Enables the MSSP interrupt  
0= Disables the MSSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
Note 1: This bit is only available on PIC18F4X8 devices. For PIC18F2X8 devices, this bit  
is unimplemented and reads as 0.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc  
Preliminary  
DS41159B-page 85  
PIC18FXX8  
REGISTER 8-8:  
PERIPHERAL INTERRUPT ENABLE REGISTER 2 (PIE2)  
U-0  
R/W-0  
CMIE(1)  
U-0  
R/W-0  
EEIE  
R/W-0  
BCLIE  
R/W-0  
LVDIE  
R/W-0  
TMR3IE ECCP1IE(1)  
R/W-0  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as '0'  
CMIE: Comparator Interrupt Enable bit(1)  
1= Enables the comparator interrupt  
0= Disables the comparator interrupt  
bit 5  
bit 4  
Unimplemented: Read as '0'  
EEIE: EEPROM Write Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 3  
bit 2  
bit 1  
bit 0  
BCLIE: Bus Collision Interrupt Enable bit  
1= Enabled  
0= Disabled  
LVDIE: Low Voltage Detect Interrupt Enable bit  
1= Enabled  
0= Disabled  
TMR3IE: TMR3 Overflow Interrupt Enable bit  
1= Enables the TMR3 overflow interrupt  
0= Disables the TMR3 overflow interrupt  
ECCP1IE: ECCP1 Interrupt Enable bit (1)  
1= Enables the ECCP1 interrupt  
0= Disables the ECCP1 interrupt  
Note 1: This bit is only available on PIC18F4X8 devices. For PIC18F2X8 devices, this bit  
is unimplemented and reads as 0.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS41159B-page 86  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 8-9:  
PERIPHERAL INTERRUPT ENABLE REGISTER 3 (PIE3)  
R/W-1  
IRXIE  
R/W-1  
R/W-1  
ERRIE  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
WAKIE  
TXB2IE  
TXB1IE  
TXB0IE  
RXB1IE  
RXB0IE  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
IRXIE: Invalid CAN Message Received Interrupt Enable bit  
1= Enables the invalid CAN message received interrupt  
0= Disables the invalid CAN message received interrupt  
WAKIE: Bus Activity Wake-up Interrupt Enable bit  
1= Enables the bus activity wake-up interrupt  
0= Disables the bus activity wake-up interrupt  
ERRIE: CAN bus Error Interrupt Enable bit  
1= Enables the CAN bus error interrupt  
0= Disables the CAN bus error interrupt  
TXB2IE: Transmit Buffer 2 Interrupt Enable bit  
1= Enables the Transmit Buffer 2 interrupt  
0= Disables the Transmit Buffer 2 interrupt  
TXB1IE: Transmit Buffer 1 Interrupt Enable bit  
1= Enables the Transmit Buffer 1 interrupt  
0= Disables the Transmit Buffer 1 interrupt  
TXB0IE: Transmit Buffer 0 Interrupt Enable bit  
1= Enables the Transmit Buffer 0 interrupt  
0= Disables the Transmit Buffer 0 interrupt  
RXB1IE: Receive Buffer 1 Interrupt Enable bit  
1= Enables the Receive Buffer 1 interrupt  
0= Disables the Receive Buffer 1 interrupt  
RXB0IE: Receive Buffer 0 Interrupt Enable bit  
1= Enables the Receive Buffer 0 interrupt  
0= Disables the Receive Buffer 0 interrupt  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc  
Preliminary  
DS41159B-page 87  
PIC18FXX8  
8.4  
IPR Registers  
The Interrupt Priority (IPR) registers contain the individ-  
ual priority bits for the peripheral interrupts. Due to the  
number of peripheral interrupt sources, there are three  
Peripheral Interrupt Priority registers (IPR1, IPR2 and  
IPR3). The operation of the priority bits requires that  
the Interrupt Priority Enable bit (IPEN) be set.  
REGISTER 8-10: PERIPHERAL INTERRUPT PRIORITY REGISTER 1 (IPR1)  
R/W-1  
PSPIP(1)  
bit 7  
R/W-1  
ADIP  
R/W-1  
RCIP  
R/W-1  
TXIP  
R/W-1  
SSPIP  
R/W-1  
R/W-1  
R/W-1  
TMR1IP  
bit 0  
CCP1IP  
TMR2IP  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PSPIP: Parallel Slave Port Read/Write Interrupt Priority bit(1)  
1= High priority  
0= Low priority  
ADIP: A/D Converter Interrupt Priority bit  
1= High priority  
0= Low priority  
RCIP: USART Receive Interrupt Priority bit  
1= High priority  
0= Low priority  
TXIP: USART Transmit Interrupt Priority bit  
1= High priority  
0= Low priority  
SSPIP: Master Synchronous Serial Port Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP1IP: CCP1 Interrupt Priority bit  
1=High priority  
0=Low priority  
TMR2IP: TMR2 to PR2 Match Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR1IP: TMR1 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
Note 1: This bit is only available on PIC18F4X8 devices. For PIC18F2X8 devices, this bit  
is unimplemented and reads as 0.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS41159B-page 88  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 8-11: PERIPHERAL INTERRUPT PRIORITY REGISTER 2 (IPR2)  
U-0  
R/W-1  
CMIP(1)  
U-0  
R/W-0  
EEIP  
R/W-1  
BCLIP  
R/W-1  
LVDIP  
R/W-1  
TMR3IP ECCP1IP(1)  
R/W-1  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as '0'  
CMIP: Comparator Interrupt Priority bit(1)  
1= High priority  
0= Low priority  
bit 5  
bit 4  
Unimplemented: Read as '0'  
EEIP: EEPROM Write Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
bit 2  
bit 1  
bit 0  
BCLIP: Bus Collision Interrupt Priority bit  
1= High priority  
0= Low priority  
LVDIP: Low Voltage Detect Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR3IP: TMR3 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
ECCP1IP: ECCP1 Interrupt Priority bit(1)  
1= High priority  
0= Low priority  
Note 1: This bit is only available on PIC18F4X8 devices. For PIC18F2X8 devices, this bit  
is unimplemented and reads as 0.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc  
Preliminary  
DS41159B-page 89  
PIC18FXX8  
REGISTER 8-12: PERIPHERAL INTERRUPT PRIORITY REGISTER 3 (IPR3)  
R/W-1  
IRXIP  
R/W-1  
R/W-1  
ERRIP  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
WAKIP  
TXB2IP  
TXB1IP  
TXB0IP  
RXB1IP  
RXB0IP  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
IRXIP: Invalid Message Received Interrupt Priority bit  
1= High priority  
0= Low priority  
WAKIP: Bus Activity Wake-up Interrupt Priority bit  
1= High priority  
0= Low priority  
ERRIP: CAN bus Error Interrupt Priority bit  
1= High priority  
0= Low priority  
TXB2IP: Transmit Buffer 2 Interrupt Priority bit  
1= High priority  
0= Low priority  
TXB1IP: Transmit Buffer 1 Interrupt Priority bit  
1= High priority  
0= Low priority  
TXB0IP: Transmit Buffer 0 Interrupt Priority bit  
1= High priority  
0= Low priority  
RXB1IP: Receive Buffer 1 Interrupt Priority bit  
1= High priority  
0= Low priority  
RXB0IP: Receive Buffer 0 Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS41159B-page 90  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
8.5  
RCON Register  
The Reset Control (RCON) register contains the IPEN  
bit, which is used to enable prioritized interrupts. The  
functions of the other bits in this register are discussed  
in more detail in Section 4.14.  
REGISTER 8-13: RCON REGISTER  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
bit 7  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (16CXXX Compatibility mode)  
bit 6-5  
bit 4  
Unimplemented: Read as '0'  
RI: RESETInstruction Flag bit  
For details of bit operation, see Register 4-3  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Watchdog Time-out Flag bit  
For details of bit operation, see Register 4-3  
PD: Power-down Detection Flag bit  
For details of bit operation, see Register 4-3  
POR: Power-on Reset Status bit  
For details of bit operation, see Register 4-3  
BOR: Brown-out Reset Status bit  
For details of bit operation, see Register 4-3  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc  
Preliminary  
DS41159B-page 91  
PIC18FXX8  
8.6  
INT Interrupts  
8.8  
PORTB Interrupt-on-Change  
External interrupts on the RB0/INT0, RB1/INT1 and  
RB2/INT2 pins are edge triggered: either rising, if the  
corresponding INTEDGx bit is set in the INTCON2 reg-  
ister, or falling, if the INTEDGx bit is clear. When a valid  
edge appears on the RBx/INTx pin, the corresponding  
flag bit INTxIF is set. This interrupt can be disabled by  
clearing the corresponding enable bit INTxIE. Flag bit  
INTxIF must be cleared in software in the Interrupt Ser-  
vice Routine before re-enabling the interrupt. All exter-  
nal interrupts (INT0, INT1 and INT2) can wake-up the  
processor from SLEEP, if bit INTxIE was set prior to  
going into SLEEP. If the global interrupt enable bit GIE  
is set, the processor will branch to the interrupt vector  
following wake-up.  
An input change on PORTB<7:4> sets flag bit RBIF  
(INTCON register). The interrupt can be enabled/  
disabled by setting/clearing enable bit RBIE (INTCON  
register). Interrupt priority for PORTB interrupt-on-  
change is determined by the value contained in the  
interrupt priority bit RBIP (INTCON2 register).  
8.9  
Context Saving During Interrupts  
During an interrupt, the return PC value is saved on the  
stack. Additionally, the WREG, STATUS and BSR regis-  
ters are saved on the fast return stack. If a fast return  
from interrupt is not used (see Section 4.3), the user  
may need to save the WREG, STATUS and BSR regis-  
ters in software. Depending on the users application,  
other registers may also need to be saved. Example 8-1  
saves and restores the WREG, STATUS and BSR  
registers during an Interrupt Service Routine.  
Interrupt priority for INT1 and INT2 is determined by the  
value contained in the interrupt priority bits INT1IP  
(INTCON3<6>) and INT2IP (INTCON3<7>). There is  
no priority bit associated with INT0; it is always a high  
priority interrupt source.  
8.7  
TMR0 Interrupt  
In 8-bit mode (which is the default), an overflow (FFh →  
00h) in the TMR0 register will set flag bit TMR0IF. In 16-  
bit mode, an overflow (FFFFh 0000h) in the  
TMR0H:TMR0L registers will set flag bit TMR0IF. The  
interrupt can be enabled/disabled by setting/clearing  
enable bit TMR0IE (INTCON register). Interrupt priority  
for Timer0 is determined by the value contained in the  
interrupt priority bit TMR0IP (INTCON2 register). See  
Section 11.0 for further details on the Timer0 module.  
EXAMPLE 8-1:  
SAVING STATUS, WREG AND BSR REGISTERS IN RAM  
MOVWF  
MOVFF  
MOVFF  
;
W_TEMP  
STATUS, STATUS_TEMP  
BSR, BSR_TEMP  
; W_TEMP is in Low Access bank  
; STATUS_TEMP located anywhere  
; BSR located anywhere  
; USER ISR CODE  
;
MOVFF  
MOVF  
MOVFF  
BSR_TEMP, BSR  
W_TEMP, W  
STATUS_TEMP, STATUS  
; Restore BSR  
; Restore WREG  
; Restore STATUS  
DS41159B-page 92  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 9-1:  
RA3:RA0 AND RA5 PINS  
BLOCK DIAGRAM  
9.0  
I/O PORTS  
Depending on the device selected, there are up to five  
general purpose I/O ports available on PIC18FXX8  
devices. Some pins of the I/O ports are multiplexed  
with an alternate function from the peripheral features  
on the device. In general, when a peripheral is enabled,  
that pin may not be used as a general purpose I/O pin.  
RD LATA  
Data Bus  
Q
D
VDD  
WR LATA or  
WR PORTA  
Each port has three registers for its operation:  
CK  
Data Latch  
Q
P
TRIS register (Data Direction register)  
PORT register (reads the levels on the pins of the  
I/O pin(1)  
device)  
Q
D
N
LAT register (output latch).  
WR TRISA  
The data latch (LAT register) is useful for  
read-modify-write operations on the value that the I/O  
pins are driving.  
CK  
Q
VSS  
Analog  
Input Mode  
TRIS Latch  
9.1  
PORTA, TRISA and LATA  
Registers  
RD TRISA  
TTL  
Input  
Buffer  
Q
D
PORTA is a 7-bit wide, bi-directional port. The corre-  
sponding Data Direction register is TRISA. Setting a  
TRISA bit (= 1) will make the corresponding PORTA  
pin an input (i.e., put the corresponding output driver in  
a High-Impedance mode). Clearing a TRISA bit (= 0)  
will make the corresponding PORTA pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
On a Power-on Reset, these pins are configured as  
inputs and read as '0'.  
EN  
RD PORTA  
SS Input (RA5 only)  
To A/D Converter and LVD Modules  
Note 1: I/O pins have diode protection to VDD and VSS.  
Reading the PORTA register reads the status of the  
pins, whereas writing to it will write to the port latch.  
FIGURE 9-2:  
RA4/T0CKI PIN BLOCK  
DIAGRAM  
Read-modify-write operations on the LATA register,  
reads and writes the latched output value for PORTA.  
The RA4 pin is multiplexed with the Timer0 module  
clock input to become the RA4/T0CKI pin. The  
RA4/T0CKI pin is a Schmitt Trigger input and an open  
drain output. All other RA port pins have TTL input  
levels and full CMOS output drivers.  
RD LATA  
Data Bus  
Q
D
The other PORTA pins are multiplexed with analog  
inputs and the analog VREF+ and VREF- inputs. The  
operation of each pin is selected by clearing/setting the  
control bits in the ADCON1 register (A/D Control  
Register 1). On a Power-on Reset, these pins are  
configured as analog inputs and read as '0'.  
WR LATA or  
WR PORTA  
CK  
Data Latch  
Q
I/O pin(1)  
N
D
Q
VSS  
Schmitt  
Trigger  
Input  
WR TRISA  
RD TRISA  
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set, when using them as analog inputs.  
CK  
Q
Buffer  
TRIS Latch  
TTL  
Input  
Buffer  
EXAMPLE 9-1:  
INITIALIZING PORTA  
Q
D
CLRF  
PORTA ; Initialize PORTA by  
; clearing output data latches  
CLRF  
LATA  
; Alternate method to clear  
; output data latches  
; Configure A/D  
EN  
RD PORTA  
MOVLW 07h  
MOVWF ADCON1 ; for digital inputs  
TMR0 Clock Input  
MOVLW 0xCF  
; Value used to initialize  
; data direction  
Note 1: I/O pin has diode protection to VSS only.  
MOVWF TRISA ; Set RA3:RA0 as inputs,  
; RA5:RA4 as outputs  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 93  
PIC18FXX8  
FIGURE 9-3:  
RA6/OSC2/CLKOUT PIN BLOCK DIAGRAM  
(FOSC = 101, 111)  
From OSC1  
Oscillator  
Circuit  
CLKO (FOSC/4)  
1
0
Data Latch  
Data Bus  
Q
D
VDD  
P
WR PORTA  
CK  
Q
RA6/OSC2/  
CLKO pin(2)  
TRIS Latch  
Q
D
N
WR TRISA  
CK  
Q
(FOSC = 100,  
101, 110, 111)  
VSS  
Schmitt  
Trigger  
RD TRISA  
Input Buffer  
Q
D
EN  
RD PORTA  
(FOSC = 110, 100)  
Note 1: CLKO is 1/4 of FOSC.  
2: I/O pin has diode protection to VDD and VSS.  
TABLE 9-1:  
PORTA FUNCTIONS  
Name  
Bit#  
bit0  
Buffer  
TTL  
Function  
RA0/AN0/CVREF  
Input/output, analog input, or analog comparator voltage reference  
output.  
RA1/AN1  
bit1  
bit2  
bit3  
bit4  
bit5  
TTL  
TTL  
TTL  
Input/output or analog input.  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
Input/output, analog input or VREF-.  
Input/output, analog input or VREF+.  
ST/OD Input/output, external clock input for Timer0, output is open drain type.  
RA5/SS/AN4/LVDIN  
TTL  
Input/output, slave select input for synchronous serial port, analog input,  
or low voltage detect input.  
RA6/OSC2/CLKO  
bit6  
TTL  
Input/output or oscillator clock output.  
Legend: TTL = TTL input, ST = Schmitt Trigger input, OD = Open Drain  
TABLE 9-2:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTA  
LATA  
RA6  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
-00x 0000 -uuu uuuu  
-xxx xxxx -uuu uuuu  
-111 1111 -111 1111  
Latch A Data Output Register  
PORTA Data Direction Register  
TRISA  
ADCON1 ADFM ADCS2  
PCFG3 PCFG2 PCFG1 PCFG0 00-- 0000 uu-- uuuu  
Legend: x= unknown, u= unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.  
DS41159B-page 94  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is per-  
formed by clearing bit RBPU (INTCON2 register). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are  
disabled on a Power-on Reset.  
9.2  
PORTB, TRISB and LATB Registers  
PORTB is an 8-bit wide, bi-directional port. The corre-  
sponding Data Direction register is TRISB. Setting a  
TRISB bit (= 1) will make the corresponding PORTB  
pin an input (i.e., put the corresponding output driver in  
a High-Impedance mode). Clearing a TRISB bit (= 0)  
will make the corresponding PORTB pin an output ( i.e.,  
put the contents of the output latch on the selected pin).  
Four of the PORTB pins (RB7:RB4) have an  
interrupt-on-change feature. Only pins configured as  
inputs can cause this interrupt to occur (i.e., any  
RB7:RB4 pin configured as an output is excluded from  
the interrupt-on-change comparison). The input pins (of  
RB7:RB4) are compared with the old value latched on  
the last read of PORTB. The mismatchoutputs of  
RB7:RB4 are ORed together to generate the RB Port  
Change Interrupt with flag bit RBIF (INTCON register).  
Read-modify-write operations on the LATB register,  
read and write the latched output value for PORTB.  
EXAMPLE 9-2:  
CLRF  
INITIALIZING PORTB  
PORTB  
; Initialize PORTB by  
; clearing output  
; data latches  
This interrupt can wake the device from SLEEP. The  
user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
CLRF  
LATB  
; Alternate method  
; to clear output  
; data latches  
MOVLW  
MOVWF  
0CFh  
; Value used to  
; initialize data  
; direction  
; Set RB3:RB0 as inputs  
; RB5:RB4 as outputs  
; RB7:RB6 as inputs  
a) Any read or write of PORTB (except with the  
MOVFF instruction). This will end the mismatch  
condition.  
TRISB  
b) Clear flag bit RBIF.  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit RBIF to be cleared.  
FIGURE 9-4:  
RB7:RB4 PINS BLOCK  
DIAGRAM  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
VDD  
RBPU(2)  
Data Bus  
Weak  
Pull-up  
P
Data Latch  
D
Q
I/O pin(1)  
FIGURE 9-5:  
RB1:RB0 PINS BLOCK  
DIAGRAM  
WR LATB  
or  
CK  
TRIS Latch  
WR PORTB  
VDD  
RBPU(2)  
D
Q
Weak  
P
Pull-up  
WR TRISB  
TTL  
Input  
Buffer  
CK  
Data Latch  
Data Bus  
WR Port  
ST  
Buffer  
D
Q
I/O pin(1)  
RD TRISB  
RD LATB  
CK  
TRIS Latch  
D
Q
TTL  
Latch  
WR TRIS  
RD TRIS  
Input  
Buffer  
CK  
Q
Q
D
RD PORTB  
Set RBIF  
EN  
Q1  
Q3  
Q
D
D
From other  
RB7:RB4 pins  
EN  
EN  
RD Port  
RBx/INTx  
RBx/INTx  
Schmitt Trigger  
Buffer  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS  
bit(s) and clear the RBPU bit (INTCON2 register).  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS  
bit(s) and clear the RBPU bit (INTCON2 register).  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 95  
PIC18FXX8  
FIGURE 9-6:  
RB2/CANTX BLOCK DIAGRAM  
OPMODE2:OPMODE0 = 000  
ENDRHI  
CANTX  
0
1
RD LATB  
Data Bus  
VDD  
P
Data Latch  
D
Q
WR PORTB or  
WR LATB  
CK  
Q
(1)  
TRIS Latch  
RB2 pin  
Q
D
N
WR TRISB  
RD TRISB  
CK  
Q
VSS  
Schmitt  
Trigger  
Q
D
EN  
RD PORTB  
Note 1: I/O pin has diode protection to VDD and VSS.  
FIGURE 9-7:  
BLOCK DIAGRAM OF RB3/CANRX PIN  
CANCON<7:5>  
VDD  
(2)  
RBPU  
Weak  
Pull-up  
P
Data Latch  
Data Bus  
D
Q
I/O  
WR LATB or PORTB  
WR TRISB  
(1)  
pin  
CK  
TRIS Latch  
D
Q
CK  
TTL  
Input  
Buffer  
RD TRISB  
RD LATB  
Q
D
EN  
RD PORTB  
RB3 or CANRX  
Schmitt Trigger  
Buffer  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (INTCON2<7>).  
.
DS41159B-page 96  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
TABLE 9-3:  
PORTB FUNCTIONS  
Name  
Bit#  
Buffer  
Function  
RB0/INT0  
bit0  
TTL/ST(1) Input/output pin or external interrupt 0 input.  
Internal software programmable weak pull-up.  
RB1/INT1  
bit1  
bit2  
bit3  
bit4  
bit5  
TTL/ST(1) Input/output pin or external interrupt 1 input.  
Internal software programmable weak pull-up.  
TTL/ST(1)  
RB2/INT2/  
CANTX  
Input/output pin, external interrupt 2 input or CAN bus transmit pin.  
Internal software programmable weak pull-up.  
RB3/CANRX  
TTL  
Input/output pin or CAN bus receive pin.  
Internal software programmable weak pull-up.  
RB4  
TTL  
TTL  
Input/output pin (with interrupt-on-change).  
Internal software programmable weak pull-up.  
RB5/PGM  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up. Low voltage serial programming enable.  
RB6/PGC  
RB7/PGD  
bit6  
bit7  
TTL/ST(2) Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up. Serial programming clock.  
TTL/ST(2) Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up. Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
TABLE 9-4:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
0000 000x 0000 000u  
LATB  
LATB Data Output Register  
TRISB  
INTCON  
PORTB Data Direction Register  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
RBIP  
INTCON2  
INTCON3  
RBPU  
INTEDG0 INTEDG1 INTEDG2  
INT1IP INT2IE  
TMR0IP  
1111 -1-1 1111 -1-1  
INT2IP  
INT1IE  
INT2IF INT1IF 11-0 0-00 11-0 0-00  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 97  
PIC18FXX8  
while other peripherals override the TRIS bit to make a  
pin an input. The user should refer to the corresponding  
peripheral section for the correct TRIS bit settings.  
9.3  
PORTC, TRISC and LATC Registers  
PORTC is an 8-bit wide, bi-directional port. The corre-  
sponding Data Direction register is TRISC. Setting a  
TRISC bit (= 1) will make the corresponding PORTC  
pin an input (i.e., put the corresponding output driver in  
a High-Impedance mode). Clearing a TRISC bit (= 0)  
will make the corresponding PORTC pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
The pin override value is not loaded into the TRIS reg-  
ister. This allows read-modify-write of the TRIS register,  
without concern due to peripheral overrides.  
EXAMPLE 9-3:  
INITIALIZING PORTC  
CLRF  
PORTC  
; Initialize PORTC by  
; clearing output  
; data latches  
Read-modify-write operations on the LATC register,  
read and write the latched output value for PORTC.  
CLRF  
LATC  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
; Set RC3:RC0 as inputs  
; RC5:RC4 as outputs  
; RC7:RC6 as inputs  
PORTC is multiplexed with several peripheral functions  
(Table 9-5). PORTC pins have Schmitt Trigger input  
buffers.  
MOVLW  
MOVWF  
0CFh  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an output,  
TRISC  
FIGURE 9-8:  
PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)  
Peripheral Out Select  
Peripheral Data Out  
VDD  
P
0
1
RD LATC  
Data Bus  
D
Q
Q
WR LATC  
or  
WR PORTC  
(1)  
CK  
I/O pin  
TRIS OVERRIDE  
Data Latch  
N
D
Q
Q
Pin Override  
Peripheral  
VSS  
TRIS  
Override  
WR TRISC  
RC0  
Yes  
Timer1 OSC for  
Timer1/Timer3  
CK  
TRIS Latch  
RC1  
Yes  
Timer1 OSC for  
Timer1/Timer3  
RD TRISC  
RC2  
RC3  
No  
Schmitt  
Trigger  
Peripheral Enable  
2
Yes  
SPI/I C Master  
Clock  
Q
D
2
RC4  
RC5  
RC6  
Yes  
Yes  
Yes  
I C Data Out  
EN  
SPI Data Out  
RD PORTC  
USART Async  
Peripheral Data In  
Xmit, Sync Clock  
RC7  
Yes  
USART Sync  
Data Out  
Note 1: I/O pins have diode protection to VDD and VSS.  
DS41159B-page 98  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
TABLE 9-5:  
Name  
PORTC FUNCTIONS  
Bit# Buffer Type  
Function  
RC0/T1OSO/T1CKI  
bit0  
ST  
Input/output port pin, Timer1 oscillator output or Timer1/Timer3 clock  
input.  
RC1/T1OSI  
RC2/CCP1  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
ST  
ST  
ST  
ST  
ST  
ST  
Input/output port pin or Timer1 oscillator input.  
Input/output port pin or Capture1 input/Compare1 output/PWM1 output.  
Input/output port pin or Synchronous Serial clock for SPI/I2C.  
Input/output port pin or SPI Data in (SPI mode) or Data I/O (I2C mode).  
Input/output port pin or Synchronous Serial Port data output.  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
RC6/TX/CK  
Input/output port pin, Addressable USART Asynchronous Transmit or  
Addressable USART Synchronous Clock.  
RC7/RX/DT  
bit7  
ST  
Input/output port pin, Addressable USART Asynchronous Receive or  
Addressable USART Synchronous Data.  
Legend: ST = Schmitt Trigger input  
TABLE 9-6:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
xxxx xxxx uuuu uuuu  
PORTC  
LATC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
LATC Data Output Register  
PORTC Data Direction Register  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
TRISC  
Legend: x= unknown, u= unchanged  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 99  
PIC18FXX8  
PORTD can be configured as an 8-bit wide micro-  
processor port (Parallel Slave Port, or PSP) by setting  
the control bit PSPMODE (TRISE<4>). In this mode,  
the input buffers are TTL. See Section 10.0 for  
additional information on the Parallel Slave Port.  
9.4  
PORTD, TRISD and LATD  
Registers  
Note: This port is only available on the  
PIC18F448 and PIC18F458.  
PORTD is also multiplexed with the analog comparator  
module and the ECCP module.  
PORTD is an 8-bit wide, bi-directional port. The corre-  
sponding Data Direction register for the port is TRISD.  
Setting a TRISD bit (= 1) will make the corresponding  
PORTD pin an input (i.e., put the corresponding output  
driver in a High-Impedance mode). Clearing a TRISD  
bit (= 0) will make the corresponding PORTD pin an  
output (i.e., put the contents of the output latch on the  
selected pin).  
EXAMPLE 9-4:  
INITIALIZING PORTD  
CLRF  
PORTD  
; Initialize PORTD by  
; clearing output  
; data latches  
CLRF  
LATD  
; Alternate method  
; to clear output  
; data latches  
Read-modify-write operations on the LATD register  
reads and writes the latched output value for PORTD.  
MOVLW  
MOVWF  
MOVLW  
07h  
CMCON  
0CFh  
; comparator off  
PORTD is uses Schmitt Trigger input buffers. Each pin  
is individually configurable as an input or output.  
; Value used to  
; initialize data  
; direction  
MOVWF  
TRISD  
; Set RD3:RD0 as inputs  
; RD5:RD4 as outputs  
; RD7:RD6 as inputs  
FIGURE 9-9:  
PORTD BLOCK DIAGRAM IN I/O PORT MODE  
PORT/PSP Select  
PSP Data Out  
RD LATD  
VDD  
P
Data Bus  
D
Q
Q
(1)  
WR LATD  
or  
PORTD  
RD0 pin  
CK  
N
Data Latch  
D
Q
Q
Vss  
WR TRISD  
CK  
TRIS Latch  
RD TRISD  
PSP Read  
Schmitt  
Trigger  
Q
D
EN  
RD PORTD  
PSP Write  
C1IN+  
Note 1: I/O pins have diode protection to VDD and VSS.  
DS41159B-page 100  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
TABLE 9-7:  
Name  
PORTD FUNCTIONS  
Bit# Buffer Type  
Function  
RD0/PSP0/C1IN+  
RD1/PSP1/C1IN-  
RD2/PSP2/C2IN+  
RD3/PSP3/C2IN-  
bit0  
bit1  
bit2  
bit3  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
Input/output port pin, parallel slave port bit0 or C1IN+ Comparator  
input.  
Input/output port pin, parallel slave port bit1 or C1IN- Comparator  
input.  
Input/output port pin, parallel slave port bit2 or C2IN+ Comparator  
input.  
Input/output port pin, parallel slave port bit3 or C2IN- Comparator  
input.  
RD4/PSP4/ECCP1/P1A bit4  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
Input/output port pin, parallel slave port bit4 or ECCP1/P1A pin.  
Input/output port pin, parallel slave port bit5 or ECCP1/P1B pin.  
Input/output port pin, parallel slave port bit6 or ECCP1/P1C pin.  
Input/output port pin, parallel slave port bit7 or ECCP1/P1D pin.  
RD5/PSP5/P1B  
RD6/PSP6/P1C  
RD7/PSP7/P1D  
bit5  
bit6  
bit7  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.  
TABLE 9-8:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTD  
RD7 RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
LATD  
LATD Data Output Register  
PORTD Data Direction Register  
IBF OBF IBOV PSPMODE  
TRISD  
TRISE2 TRISE1 TRISE0 0000 -111 0000 -111  
TRISE  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by PORTD.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 101  
PIC18FXX8  
When the Parallel Slave Port is active, the PORTE pins  
function as its control inputs. For additional details,  
refer to Section 10.0.  
9.5  
PORTE, TRISE and LATE  
Registers  
Note: This port is only available on the  
PORTE pins are also multiplexed with inputs for the  
A/D converter and outputs for the analog comparators.  
When selected as an analog input, these pins will read  
as '0's. Direction bits TRISE<2:0> control the direction  
of the RE pins, even when they are being used as ana-  
log inputs. The user must make sure to keep the pins  
configured as inputs when using them as analog  
inputs.  
PIC18F448 and PIC18F458.  
PORTE is a 3-bit wide, bi-directional port. PORTE has  
three pins (RE0/AN5/RD, RE1/AN6/WR/C1OUT and  
RE2/AN7/CS/C2OUT), which are individually config-  
urable as inputs or outputs. These pins have Schmitt  
Trigger input buffers.  
Read-modify-write operations on the LATE register,  
reads and writes the latched output value for PORTE.  
EXAMPLE 9-5:  
INITIALIZING PORTE  
The corresponding Data Direction register for the port  
is TRISE. Setting a TRISE bit (= 1) will make the cor-  
responding PORTE pin an input (i.e., put the corre-  
sponding output driver in a High-Impedance mode).  
Clearing a TRISE bit (= 0) will make the corresponding  
PORTE pin an output (i.e., put the contents of the  
output latch on the selected pin).  
CLRF  
PORTE  
LATE  
03h  
; Initialize PORTE by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
CLRF  
MOVLW  
MOVWF  
The TRISE register also controls the operation of the  
Parallel Slave Port, through the control bits in the upper  
half of the register. These are shown in Register 9-1.  
TRISE  
; Set RE1:RE0 as inputs  
; RE2 as an output  
; (RE4=0 - PSPMODE Off)  
FIGURE 9-10:  
PORTE BLOCK DIAGRAM  
Peripheral Out Select  
Peripheral Data Out  
VDD  
P
0
1
RD LATE  
Data Bus  
D
Q
Q
(1)  
I/O pin  
WR LATE  
or  
WR PORTE  
CK  
Data Latch  
N
D
Q
Q
VSS  
TRIS  
WR TRISE  
CK  
Override  
TRIS Latch  
RD TRISE  
Schmitt  
Trigger  
TRIS OVERRIDE  
Peripheral Enable  
Pin Override Peripheral  
Q
D
RE0  
RE1  
RE2  
Yes  
Yes  
Yes  
PSP  
PSP  
PSP  
EN  
RD PORTE  
Peripheral Data In  
Note 1: I/O pins have diode protection to VDD and VSS.  
DS41159B-page 102  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 9-1:  
TRISE REGISTER  
R-0  
IBF  
R-0  
R/W-0  
IBOV  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
OBF  
PSPMODE  
TRISE2  
TRISE1  
TRISE0  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
IBF: Input Buffer Full Status bit  
1= A word has been received and waiting to be read by the CPU  
0= No word has been received  
OBF: Output Buffer Full Status bit  
1= The output buffer still holds a previously written word  
0= The output buffer has been read  
IBOV: Input Buffer Overflow Detect bit (in Microprocessor mode)  
1= A write occurred when a previously input word has not been read  
(must be cleared in software)  
0= No overflow occurred  
bit 4  
PSPMODE: Parallel Slave Port Mode Select bit  
1= Parallel Slave Port mode  
0= General purpose I/O mode  
bit 3  
bit 2  
Unimplemented: Read as '0'  
TRISE2: RE2 Direction Control bit  
1= Input  
0= Output  
bit 1  
bit 0  
TRISE1: RE1 Direction Control bit  
1= Input  
0= Output  
TRISE0: RE0 Direction Control bit  
1= Input  
0= Output  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
- n = Value at POR  
1= Bit is set  
0= Bit is cleared  
x = Bit is unknown  
TABLE 9-9:  
PORTE FUNCTIONS  
Bit# Buffer Type  
Name  
Function  
ST/TTL(1)  
Input/output port pin, analog input or read control input in Parallel  
Slave Port mode.  
RE0/AN5/RD  
bit0  
ST/TTL(1)  
Input/output port pin, analog input, write control input in Parallel Slave  
Port mode or Comparator 1 output.  
ST/TTL(1) Input/output port pin, analog input, chip select control input in Parallel  
Slave Port mode or Comparator 2 output.  
RE1/AN6/WR/C1OUT  
RE2/AN7/CS/C2OUT  
bit1  
bit2  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 103  
PIC18FXX8  
TABLE 9-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on  
all other  
RESETS  
Value on:  
POR, BOR  
Name Bit 7 Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISE  
IBF OBF IBOV PSPMODE  
TRISE2  
TRISE1  
TRISE0 0000 -111 0000 -111  
PORTE  
Read PORTE pin/  
Write PORTE Data Latch  
---- -xxx ---- -uuu  
LATE  
Read PORTE Data Latch/  
Write PORTE Data Latch  
---- -xxx ---- -uuu  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by PORTE.  
DS41159B-page 104  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 10-1:  
PORTD AND PORTE  
BLOCK DIAGRAM  
(PARALLEL SLAVE  
PORT)  
10.0 PARALLEL SLAVE PORT  
Note: The Parallel Slave Port is only available on  
PIC18F4X8 devices.  
In addition to its function as a general I/O port, PORTD  
can also operate as an 8-bit wide Parallel Slave Port  
(PSP), or microprocessor port. PSP operation is con-  
trolled by the 4 upper bits of the TRISE register  
(Register 9-1). Setting control bit PSPMODE  
(TRISE<4>) enables PSP operation. In Slave mode,  
the port is asynchronously readable and writable by the  
external world.  
One bit of PORTD  
Data Bus  
D
Q
RDx pin  
WR LATD  
or  
WR PORTD  
CK  
Data Latch  
TTL  
Q
D
The PSP can directly interface to an 8-bit microproces-  
sor data bus. The external microprocessor can read or  
write the PORTD latch as an 8-bit latch. Setting the  
control bit PSPMODE enables the PORTE I/O pins to  
become control inputs for the microprocessor port.  
When set, port pin RE0 is the RD input, RE1 is the WR  
input, and RE2 is the CS (chip select) input. For this  
functionality, the corresponding data direction bits of  
the TRISE register (TRISE<2:0>) must be configured  
as inputs (set).  
RD PORTD  
RD LATD  
EN  
Set Interrupt Flag  
PSPIF (PIR1<7>)  
A write to the PSP occurs when both the CS and WR  
lines are first detected low. A read from the PSP occurs  
when both the CS and RD lines are first detected low.  
The timing for the control signals in write and read  
modes is shown in Figure 10-2 and Figure 10-3,  
respectively.  
PORTE pins  
Read  
RD  
CS  
WR  
TTL  
Chip Select  
TTL  
Write  
TTL  
Note:  
I/O pins have diode protection to VDD and VSS.  
FIGURE 10-2:  
PARALLEL SLAVE PORT WRITE WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD  
IBF  
OBF  
PSPIF  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 105  
PIC18FXX8  
FIGURE 10-3:  
PARALLEL SLAVE PORT READ WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD  
IBF  
OBF  
PSPIF  
TABLE 10-1: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTD Port Data Latch when written; Port pins when read  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
---- -000 ---- -000  
---- -xxx ---- -uuu  
LATD  
LATD Data Output bits  
TRISD  
PORTE  
LATE  
PORTD Data Direction bits  
RE2  
RE1  
RE0  
LATE Data Output bits  
IBF OBF  
TRISE  
IBOV PSPMODE  
PORTE Data Direction bits 0000 -111 0000 -111  
RBIF 0000 000x 0000 000u  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE TMR0IF INT0IF  
PIR1  
PIE1  
IPR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
SSPIP CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
TXIE  
TXIP  
Legend: x= unknown, u= unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port.  
DS41159B-page 106  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
Register 11-1 shows the Timer0 Control register  
(T0CON).  
11.0 TIMER0 MODULE  
The Timer0 module has the following features:  
Figure 11-1 shows a simplified block diagram of the  
Timer0 module in 8-bit mode and Figure 11-2 shows a  
simplified block diagram of the Timer0 module in 16-bit  
mode.  
Software selectable as an 8-bit or  
16-bit timer/counter  
Readable and writable  
Dedicated 8-bit software programmable prescaler  
Clock source selectable to be external or internal  
The T0CON register is a readable and writable register  
that controls all the aspects of Timer0, including the  
prescale selection.  
Interrupt-on-overflow from FFh to 00h in 8-bit  
mode, and FFFFh to 0000h in 16-bit mode  
Note: Timer0 is enabled on POR.  
Edge select for external clock  
REGISTER 11-1: T0CON REGISTER  
R/W-1  
TMR0ON  
bit 7  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
T0PS2  
R/W-1  
T0PS1  
R/W-1  
T0PS0  
T08BIT  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
TMR0ON: Timer0 On/Off Control bit  
1= Enables Timer0  
0= Stops Timer0  
T08BIT: Timer0 8-bit/16-bit Control bit  
1= Timer0 is configured as an 8-bit timer/counter  
0= Timer0 is configured as a 16-bit timer/counter  
T0CS: Timer0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKO)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Timer0 Prescaler Assignment bit  
1= TImer0 prescaler is NOT assigned. Timer0 clock input bypasses prescaler.  
0= Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.  
bit 2-0 T0PS2:T0PS0: Timer0 Prescaler Select bits  
111=1:256 prescale value  
110=1:128 prescale value  
101=1:64 prescale value  
100=1:32 prescale value  
011=1:16 prescale value  
010=1:8 prescale value  
001=1:4 prescale value  
000=1:2 prescale value  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 107  
PIC18FXX8  
FIGURE 11-1:  
TIMER0 BLOCK DIAGRAM IN 8-BIT MODE  
Data Bus  
8
1
0
RA4/T0CKI  
pin(2)  
1
T0SE  
Sync with  
Internal  
Clocks  
FOSC/4  
TMR0L  
Programmable  
Prescaler  
0
(2 TCY delay)  
3
PSA  
Set Interrupt  
Flag bit TMR0IF  
on Overflow  
T0PS2, T0PS1, T0PS0  
T0CS(1)  
Note 1: Upon RESET, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
2: I/O pins have diode protection to VDD and VSS.  
FIGURE 11-2:  
TIMER0 BLOCK DIAGRAM IN 16-BIT MODE  
T0CKI pin(2)  
1
1
Sync with  
T0SE  
Set Interrupt  
Flag bit TMR0IF  
on Overflow  
TMR0  
High Byte  
Internal  
Clocks  
0
TMR0L  
FOSC/4  
Programmable  
Prescaler  
0
8
(2 TCY delay)  
3
Read TMR0L  
Write TMR0L  
T0PS2, T0PS1, T0PS0  
T0CS(1)  
PSA  
8
8
TMR0H  
8
Data Bus<7:0>  
Note 1: Upon RESET, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
2: I/O pins have diode protection to VDD and VSS.  
DS41159B-page 108  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
11.2.1  
SWITCHING PRESCALER  
ASSIGNMENT  
11.1 Timer0 Operation  
Timer0 can operate as a timer or as a counter.  
The prescaler assignment is fully under software con-  
trol (i.e., it can be changed on-the-flyduring program  
execution).  
Timer mode is selected by clearing the T0CS bit. In  
Timer mode, the Timer0 module will increment every  
instruction cycle (without prescaler). If the TMR0L reg-  
ister is written, the increment is inhibited for the follow-  
ing two instruction cycles. The user can work around  
this by writing an adjusted value to the TMR0L register.  
11.3 Timer0 Interrupt  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h in 8-bit mode, or FFFFh  
to 0000h in 16-bit mode. This overflow sets the TMR0IF  
bit. The interrupt can be masked by clearing the  
TMR0IE bit. The TMR0IF bit must be cleared in soft-  
ware by the Timer0 module Interrupt Service Routine  
before re-enabling this interrupt. The TMR0 interrupt  
cannot awaken the processor from SLEEP, since the  
timer is shut-off during SLEEP.  
Counter mode is selected by setting the T0CS bit. In  
Counter mode, Timer0 will increment either on every  
rising, or falling edge of pin RA4/T0CKI. The increment-  
ing edge is determined by the Timer0 Source Edge  
Select bit (T0SE). Clearing the T0SE bit selects the ris-  
ing edge. Restrictions on the external clock input are  
discussed below.  
When an external clock input is used for Timer0, it must  
meet certain requirements. The requirements ensure  
the external clock can be synchronized with the internal  
phase clock (TOSC). Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
11.4 16-bit Mode Timer Reads and  
Writes  
Timer0 can be set in 16-bit mode by clearing T0CON  
T08BIT. Registers TMR0H and TMR0L are used to  
access 16-bit timer value.  
11.2 Prescaler  
An 8-bit counter is available as a prescaler for the  
Timer0 module. The prescaler is not readable or  
writable.  
TMR0H is not the high byte of the timer/counter in  
16-bit mode, but is actually a buffered version of the  
high byte of Timer0 (refer to Figure 11-1). The high byte  
of the Timer0 counter/timer is not directly readable nor  
writable. TMR0H is updated with the contents of the  
high byte of Timer0 during a read of TMR0L. This pro-  
vides the ability to read all 16 bits of Timer0 without  
having to verify that the read of the high and low byte  
were valid, due to a rollover between successive reads  
of the high and low byte.  
The PSA and T0PS2:T0PS0 bits determine the  
prescaler assignment and prescale ratio.  
Clearing bit PSA will assign the prescaler to the Timer0  
module. When the prescaler is assigned to the Timer0  
module, prescale values of 1:2, 1:4, ..., 1:256 are  
selectable.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g. CLRF TMR0, MOVWF  
TMR0, BSF TMR0, x.... etc.) will clear the prescaler  
count.  
A write to the high byte of Timer0 must also take place  
through the TMR0H buffer register. Timer0 high byte is  
updated with the contents of buffered value of TMR0H,  
when a write occurs to TMR0L. This allows all 16 bits  
of Timer0 to be updated at once.  
Note: Writing to TMR0 when the prescaler is  
assigned to Timer0, will clear the prescaler  
count but will not change the prescaler  
assignment.  
TABLE 11-1: REGISTERS ASSOCIATED WITH TIMER0  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
xxxx xxxx uuuu uuuu  
TMR0L  
TMR0H  
Timer0 Module Low Byte Register  
Timer0 Module High Byte Register  
0000 0000 0000 0000  
0000 000x 0000 000u  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
PSA  
TMR0IF INT0IF  
T0PS2 T0PS1  
RBIF  
T0CON  
TRISA  
TMR0ON  
T08BIT  
T0CS  
T0SE  
T0PS0 1111 1111 1111 1111  
(1)  
PORTA Data Direction Register  
--11 1111 --11 1111  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by Timer0.  
Note 1: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other Oscillator modes,  
they are disabled and read as 0.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 109  
PIC18FXX8  
NOTES:  
DS41159B-page 110  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
Register 12-1 shows the Timer1 control register. This  
register controls the Operating mode of the Timer1  
module as well as contains the Timer1 oscillator enable  
bit (T1OSCEN). Timer1 can be enabled/disabled by  
setting/clearing control bit TMR1ON (T1CON register).  
12.0 TIMER1 MODULE  
The Timer1 module timer/counter has the following  
features:  
16-bit timer/counter  
(Two 8-bit registers: TMR1H and TMR1L)  
Figure 12-1 is a simplified block diagram of the Timer1  
module.  
Readable and writable (both registers)  
Internal or external clock select  
Note: Timer1 is disabled on POR.  
Interrupt-on-overflow from FFFFh to 0000h  
RESET from CCP module special event trigger  
REGISTER 12-1: T1CON REGISTER  
R/W-0  
RD16  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit 0  
bit 7  
bit 7  
RD16: 16-bit Read/Write Mode Enable bit  
1= Enables register read/write of Timer1 in one 16-bit operation  
0= Enables register read/write of Timer1 in two 8-bit operations  
bit 6  
Unimplemented: Read as '0'  
bit 5-4  
T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11=1:8 Prescale value  
10=1:4 Prescale value  
01=1:2 Prescale value  
00=1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable bit  
1= Timer1 oscillator is enabled  
0= Timer1 oscillator is shut-off  
The oscillator inverter and feedback resistor are turned off to eliminate power drain.  
T1SYNC: Timer1 External Clock Input Synchronization Select bit  
When TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RC0/T1OSO/T13CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
bit 0  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 111  
PIC18FXX8  
When TMR1CS is clear, Timer1 increments every  
instruction cycle. When TMR1CS is set, Timer1 incre-  
ments on every rising edge of the external clock input  
or the Timer1 oscillator, if enabled.  
12.1 Timer1 Operation  
Timer1 can operate in one of these modes:  
As a timer  
As a synchronous counter  
As an asynchronous counter  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins  
become inputs. That is, the TRISC<1:0> value is  
ignored.  
The Operating mode is determined by the clock select  
bit, TMR1CS (T1CON register).  
Timer1 also has an internal RESET input. This  
RESET can be generated by the CCP module  
(Section 15.1).  
FIGURE 12-1:  
TIMER1 BLOCK DIAGRAM  
CCP Special Event Trigger  
TMR1IF  
Overflow  
Interrupt  
Flag bit  
Synchronized  
TMR1  
CLR  
0
Clock Input  
TMR1L  
TMR1H  
T1OSC  
1
TMR1ON  
On/Off  
T1SYNC  
1
T13CKI/T1OSO  
T1OSI  
Synchronize  
det  
T1OSCEN  
Enable  
Oscillator  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
(1)  
0
2
SLEEP Input  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This reduces power drain.  
FIGURE 12-2:  
TIMER1 BLOCK DIAGRAM: 16-BIT READ/WRITE MODE  
Data Bus<7:0>  
8
TMR1H  
8
8
Write TMR1L  
Read TMR1L  
Special Event Trigger  
0
Synchronized  
Clock Input  
TMR1IF  
Overflow  
Interrupt  
TMR1  
8
Timer 1  
high byte  
TMR1L  
Flag bit  
1
TMR1ON  
On/Off  
T1SYNC  
T1OSC  
T13CKI/T1OSO  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
FOSC/4  
Internal  
Clock  
0
(1)  
T1OSI  
2
SLEEP Input  
TMR1CS  
T1CKPS1:T1CKPS0  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This reduces power drain.  
DS41159B-page 112  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
12.2 Timer1 Oscillator  
12.4 Resetting Timer1 Using a CCP  
Trigger Output  
A crystal oscillator circuit is built-in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON register). The  
oscillator is a low power oscillator rated up to 200 kHz.  
It will continue to run during SLEEP. It is primarily  
intended for a 32 kHz crystal. Table 12-1 shows the  
capacitor selection for the Timer1 oscillator.  
If the CCP module is configured in Compare mode to  
generate a special event trigger" (CCP1M3:CCP1M0 =  
1011), this signal will reset Timer1 and start an A/D  
conversion (if the A/D module is enabled).  
Note: The special event triggers from the CCP1  
module will not set interrupt flag bit  
TMR1IF (PIR registers).  
The user must provide a software time delay to ensure  
proper start-up of the Timer1 oscillator.  
Timer1 must be configured for either Timer or Synchro-  
nized Counter mode to take advantage of this feature.  
If Timer1 is running in Asynchronous Counter mode,  
this RESET operation may not work.  
TABLE 12-1: CAPACITOR SELECTION FOR  
THE ALTERNATE  
OSCILLATOR  
In the event that a write to Timer1 coincides with a special  
event trigger from CCP1, the write will take precedence.  
Osc Type  
Freq  
C1  
C2  
LP  
32 kHz  
TBD(1)  
TBD(1)  
In this mode of operation, the CCPR1H:CCPR1L registers  
pair, effectively becomes the period register for Timer1.  
Crystal to be Tested:  
32.768 kHz Epson C-001R32.768K-A  
20 PPM  
12.5 Timer1 16-bit Read/Write Mode  
Note 1: Microchip suggests 33 pF as a starting  
Timer1 can be configured for 16-bit reads and writes  
(see Figure 12-2). When the RD16 control bit (T1CON  
register) is set, the address for TMR1H is mapped to a  
buffer register for the high byte of Timer1. A read from  
TMR1L will load the contents of the high byte of Timer1  
into the Timer1 high byte buffer. This provides the user  
with the ability to accurately read all 16 bits of Timer1,  
without having to determine whether a read of the high  
byte, followed by a read of the low byte is valid, due to  
a rollover between reads.  
point in validating the oscillator circuit.  
2: Higher capacitance increases the stability  
of the oscillator, but also increases the  
start-up time.  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate values of external components.  
4: Capacitor values are for design guidance  
A write to the high byte of Timer1 must also take place  
through the TMR1H buffer register. Timer1 high byte is  
updated with the contents of TMR1H when a write  
occurs to TMR1L. This allows a user to write all 16 bits  
to both the high and low bytes of Timer1 at once.  
only.  
12.3 Timer1 Interrupt  
The TMR1 register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The TMR1  
Interrupt, if enabled, is generated on overflow, which is  
latched in interrupt flag bit TMR1IF (PIR registers). This  
interrupt can be enabled/disabled by setting/clearing  
TMR1 interrupt enable bit TMR1IE (PIE registers).  
The high byte of Timer1 is not directly readable or writ-  
able in this mode. All reads and writes must take place  
through the Timer1 high byte buffer register. Writes to  
TMR1H do not clear the Timer1 prescaler. The  
prescaler is only cleared on writes to TMR1L.  
TABLE 12-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PIR1  
PIE1  
IPR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
TXIE  
TXIP  
TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
T1CON  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 113  
PIC18FXX8  
NOTES:  
DS41159B-page 114  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
13.1 Timer2 Operation  
13.0 TIMER2 MODULE  
Timer2 can be used as the PWM time-base for the  
PWM mode of the CCP module. The TMR2 register is  
readable and writable, and is cleared on any device  
RESET. The input clock (FOSC/4) has a prescale option  
of 1:1, 1:4, or 1:16, selected by control bits  
T2CKPS1:T2CKPS0 (T2CON Register). The match  
output of TMR2 goes through a 4-bit postscaler (which  
gives a 1:1 to 1:16 scaling inclusive) to generate a  
TMR2 interrupt (latched in flag bit TMR2IF, PIR  
registers).  
The Timer2 module timer has the following features:  
8-bit timer (TMR2 register)  
8-bit period register (PR2)  
Readable and writable (both registers)  
Software programmable prescaler (1:1, 1:4, 1:16)  
Software programmable postscaler (1:1 to 1:16)  
Interrupt on TMR2 match of PR2  
SSP module optional use of TMR2 output to  
generate clock shift  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
Register 13-1 shows the Timer2 Control register.  
Timer2 can be shut-off by clearing control bit TMR2ON  
(T2CON register) to minimize power consumption.  
Figure 13-1 is a simplified block diagram of the Timer2  
module. The prescaler and postscaler selection of  
Timer2 are controlled by this register.  
A write to the TMR2 register  
A write to the T2CON register  
Any device RESET (Power-on Reset, MCLR  
Reset, Watchdog Timer Reset, or Brown-out  
Reset)  
TMR2 is not cleared when T2CON is written.  
Note: Timer2 is disabled on POR.  
REGISTER 13-1: T2CON REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit 0  
bit 7  
bit 7  
Unimplemented: Read as '0'  
bit 6-3  
TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000=1:1 Postscale  
0001=1:2 Postscale  
1111=1:16 Postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 115  
PIC18FXX8  
13.2 Timer2 Interrupt  
13.3 Output of TMR2  
The Timer2 module has an 8-bit period register, PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is  
initialized to FFh upon RESET.  
The output of TMR2 (before the postscaler) is a clock  
input to the Synchronous Serial Port module, which  
optionally uses it to generate the shift clock.  
FIGURE 13-1:  
TIMER2 BLOCK DIAGRAM  
Sets Flag  
TMR2  
bit TMR2IF  
(1)  
Output  
Prescaler  
RESET  
EQ  
TMR2  
FOSC/4  
1:1, 1:4, 1:16  
Postscaler  
1:1 to 1:16  
2
Comparator  
T2CKPS1:T2CKPS0  
4
PR2  
TOUTPS3:TOUTPS0  
Note 1: TMR2 register output can be software selected by the SSP Module as a baud clock.  
TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
RBIF  
0000 000x 0000 000u  
PIR1  
PIE1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TMR1IF 0000 0000 0000 0000  
TMR1IE 0000 0000 0000 0000  
TMR1IP 0000 0000 0000 0000  
0000 0000 0000 0000  
TXIE  
TXIP  
IPR1  
TMR2  
T2CON  
PR2  
Timer2 Module Register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Timer2 Period Register 1111 1111 1111 1111  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.  
DS41159B-page 116  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
Figure 14-1 is a simplified block diagram of the Timer3  
module.  
14.0 TIMER3 MODULE  
The Timer3 module timer/counter has the following  
features:  
Register 14-1 shows the Timer3 Control Register. This  
register controls the Operating mode of the Timer3  
module and sets the CCP1 and ECCP1 clock source.  
16-bit timer/counter  
(Two 8-bit registers: TMR3H and TMR3L)  
Register 12-1 shows the Timer1 Control register. This  
register controls the Operating mode of the Timer1  
module, as well as contains the Timer1 oscillator  
enable bit (T1OSCEN), which can be a clock source for  
Timer3.  
Readable and writable (both registers)  
Internal or external clock select  
Interrupt-on-overflow from FFFFh to 0000h  
RESET from CCP1/ECCP1 module trigger  
Note: Timer3 is disabled on POR.  
REGISTER 14-1: T3CON REGISTER  
R/W-0  
RD16  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3ECCP1 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON  
bit 0  
bit 7  
bit 7  
RD16: 16-bit Read/Write Mode Enable bit  
1= Enables register read/write of Timer3 in one 16-bit operation  
0= Enables register read/write of Timer3 in two 8-bit operations  
bit 6,3  
T3ECCP1:T3CCP1: Timer3 and Timer1 to CCP1/ECCP1 Enable bits  
1x=Timer3 is the clock source for compare/capture CCP1 and ECCP1 modules  
01=Timer3 is the clock source for compare/capture of ECCP1,  
Timer1 is the clock source for compare/capture of CCP1  
00= Timer1 is the clock source for compare/capture CCP1 and ECCP1 modules  
bit 5-4  
bit 2  
T3CKPS1:T3CKPS0: Timer3 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
T3SYNC: Timer3 External Clock Input Synchronization Control bit  
(Not usable if the system clock comes from Timer1/Timer3)  
When TMR3CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR3CS = 0:  
This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.  
TMR3CS: Timer3 Clock Source Select bit  
bit 1  
1= External clock input from Timer1 oscillator or T1CKI (on the rising edge after the first falling edge)  
0= Internal clock (FOSC/4)  
bit 0  
TMR3ON: Timer3 On bit  
1= Enables Timer3  
0= Stops Timer3  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 117  
PIC18FXX8  
When TMR3CS = 0, Timer3 increments every instruc-  
tion cycle. When TMR3CS = 1, Timer3 increments on  
every rising edge of the Timer1 external clock input, or  
the Timer1 oscillator, if enabled.  
14.1 Timer3 Operation  
Timer3 can operate in one of these modes:  
As a timer  
As a synchronous counter  
As an asynchronous counter  
When the Timer1 oscillator is enabled (T1OSCEN is set),  
the RC1/T1OSI and RC0/T1OSO/T1CKI pins become  
inputs. That is, the TRISC<1:0> value is ignored.  
The Operating mode is determined by the clock select  
bit, TMR3CS (T3CON register).  
Timer3 also has an internal RESET input. This  
RESET can be generated by the CCP module  
(Section 15.1).  
FIGURE 14-1:  
TIMER3 BLOCK DIAGRAM  
CCP Special Trigger  
TMR3IF  
Overflow  
Interrupt  
T3CCPx  
Synchronized  
0
Clock Input  
Flag bit  
CLR  
TMR3L  
TMR3H  
T1OSC  
1
TMR3ON  
On/Off  
T3SYNC  
T1OSO/  
T13CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
FOSC/4  
Internal  
Clock  
0
(1)  
T1OSI  
2
SLEEP Input  
TMR3CS  
T3CKPS1:T3CKPS0  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
FIGURE 14-2:  
TIMER3 BLOCK DIAGRAM CONFIGURED IN 16-BIT READ/WRITE MODE  
Data Bus<7:0>  
8
TMR3H  
8
8
Write TMR3L  
Read TMR3L  
CCP Special Trigger  
T3CCPx  
0
Synchronized  
Clock Input  
8
TMR3  
TMR3IF Overflow  
Interrupt Flag  
bit  
CLR  
TMR3H  
TMR3L  
1
To Timer1 Clock Input  
TMR3ON  
On/Off  
T3SYNC  
T1OSC  
T1OSO/  
T13CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
FOSC/4  
Internal  
Clock  
0
(1)  
Oscillator  
T1OSI  
2
SLEEP Input  
T3CKPS1:T3CKPS0  
TMR3CS  
Note 1: When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
DS41159B-page 118  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
14.2 Timer1 Oscillator  
14.4 Resetting Timer3 Using a CCP  
Trigger Output  
The Timer1 oscillator may be used as the clock source  
for Timer3. The Timer1 oscillator is enabled by setting  
the T1OSCEN bit (T1CON Register). The oscillator is a  
low power oscillator rated up to 200 kHz. Refer to  
Section 12.0, Timer1 Module for Timer1 oscillator  
details.  
If the CCP module is configured in Compare mode to  
generate a special event trigger" (CCP1M3:CCP1M0  
= 1011), this signal will reset Timer3.  
Note: The special event triggers from the CCP  
module will not set interrupt flag bit  
TMR3IF (PIR registers).  
14.3 Timer3 Interrupt  
Timer3 must be configured for either Timer or Synchro-  
nized Counter mode to take advantage of this feature. If  
Timer3 is running in Asynchronous Counter mode, this  
RESET operation may not work. In the event that a write  
to Timer3 coincides with a special event trigger from  
CCP1, the write will take precedence. In this mode of  
operation, the CCPR1H:CCPR1L registers pair  
becomes the period register for Timer3. Refer to  
Section 15.0, Capture/Compare/PWM (CCP) Modules  
for CCP details.  
The TMR3 Register pair (TMR3H:TMR3L) increments  
from 0000h to FFFFh and rolls over to 0000h. The TMR3  
Interrupt, if enabled, is generated on overflow, which is  
latched in interrupt flag bit TMR3IF (PIR registers). This  
interrupt can be enabled/disabled by setting/clearing  
TMR3 interrupt enable bit TMR3IE (PIE registers).  
TABLE 14-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER  
Value on  
POR,  
BOR  
Value on  
all other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR2  
GIE/ GIEH PEIE/GIEL TMR0IE  
INT0IE  
EEIF  
RBIE  
BCLIF  
BCLIE  
BCLIP  
TMR0IF  
LVDIF  
LVDIE  
LVDIP  
INT0IF  
RBIF  
0000 000x 0000 000u  
CMIF  
CMIE  
CMIP  
TMR3IF ECCP1IF -0-0 0000 -0-0 0000  
TMR3IE ECCP1IE -0-0 0000 -0-0 0000  
TMR3IP ECCP1IP -0-0 0000 -0-0 0000  
xxxx xxxx uuuu uuuu  
PIE2  
EEIE  
EEIP  
IPR2  
TMR3L  
TMR3H  
T1CON  
T3CON  
Holding Register for the Least Significant Byte of the 16-bit TMR3 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR3 Register  
xxxx xxxx uuuu uuuu  
RD16  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu  
T3ECCP1 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 119  
PIC18FXX8  
NOTES:  
DS41159B-page 120  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
received time stamp for the CAN module (refer to  
Section 19.0, CAN Module for CAN operation), which  
the ECCP module does not. The ECCP module, on the  
other hand, has enhanced PWM functionality and auto  
shutdown capability. Aside from these, the operation of  
the module described in the this section is the same as  
the ECCP .  
15.0 CAPTURE/COMPARE/PWM  
(CCP) MODULES  
The CCP (Capture/Compare/PWM) module contains a  
16-bit register that can operate as a 16-bit capture reg-  
ister, as a 16-bit compare register, or as a PWM Duty  
Cycle register.  
The control register for the CCP module is shown in  
Register 15-1. Table 15-2 (following page) details the  
interactions of the CCP and ECCP modules.  
The operation of the CCP module is identical to that of  
the ECCP module (discussed in detail in Section 16.0),  
with two exceptions. The CCP module has a Capture  
special event trigger that can be used as a message  
REGISTER 15-1: CCP1CON REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
bit 0  
bit 7  
Unimplemented: Read as '0'  
bit 7-6  
bit 5-4  
DCxB1:DCxB0: PWM Duty Cycle bit1 and bit0  
Capture mode:  
Unused  
Compare mode:  
Unused  
PWM mode:  
These bits are the two LSbs (bit1 and bit0) of the 10-bit PWM duty cycle. The upper eight bits  
(DCx9:DCx2) of the duty cycle are found in CCPRxL.  
bit 3-0  
CCPxM3:CCPxM0: CCPx Mode Select bits  
0000= Capture/Compare/PWM off (resets CCPx module)  
0001= Reserved  
0010= Compare mode, toggle output on match (CCPxIF bit is set)  
0011= Capture mode, CAN message received (CCP1 only)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, initialize CCP pin Low, on compare match force CCP pin High  
(CCPIF bit is set)  
1001= Compare mode, initialize CCP pin High, on compare match force CCP pin Low  
(CCPIF bit is set)  
1010= Compare mode, CCP pin is unaffected  
(CCPIF bit is set)  
1011= Compare mode, trigger special event (CCP1IF bit is set; CCP resets TMR1 or TMR3  
and starts an A/D conversion, if the A/D module is enabled)  
11xx= PWM mode  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 121  
PIC18FXX8  
An event is selected by control bits CCP1M3:CCP1M0  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit CCP1IF (PIR registers) is set. It  
must be cleared in software. If another capture occurs  
before the value in register CCPR1 is read, the old  
captured value will be lost.  
15.1 CCP1 Module  
Capture/Compare/PWM Register1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON register controls  
the operation of CCP1. All are readable and writable.  
Table 15-1 shows the timer resources of the CCP  
module modes.  
15.2.1  
CCP PIN CONFIGURATION  
In Capture mode, the RC2/CCP1 pin should be  
configured as an input by setting the TRISC<2> bit.  
TABLE 15-1: CCP1 MODE - TIMER  
RESOURCE  
Note: If the RC2/CCP1 is configured as an out-  
put, a write to the port can cause a capture  
condition.  
CCP1 Mode  
Timer Resource  
Capture  
Compare  
PWM  
Timer1 or Timer3  
Timer1 or Timer3  
Timer2  
15.2.2  
TIMER1/TIMER3 MODE SELECTION  
The timers used with the capture feature (either Timer1  
and/or Timer3) must be running in Timer mode or Syn-  
chronized Counter mode. In Asynchronous Counter  
mode, the capture operation may not work. The timer  
used with each CCP module is selected in the T3CON  
register.  
15.2 Capture Mode  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 or TMR3 register when an  
event occurs on pin RC2/CCP1. An event is defined as:  
every falling edge  
every rising edge.  
every 4th rising edge  
every 16th rising edge  
TABLE 15-2: INTERACTION OF CCP1 AND ECCP1 MODULES  
CCP1  
Mode  
ECCP1  
Mode  
Interaction  
Capture  
Capture  
Capture  
TMR1 or TMR3 time-base. Time-base can be different for each CCP.  
Compare  
The compare could be configured for the special event trigger, which clears either TMR1  
or TMR3, depending upon which time-base is used.  
Compare  
Compare  
The compare(s) could be configured for the special event trigger, which clears TMR1 or  
TMR3, depending upon which time-base is used.  
PWM  
PWM  
PWM  
PWM  
The PWMs will have the same frequency and update rate (TMR2 interrupt).  
Capture  
Compare  
None.  
None.  
DS41159B-page 122  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
15.2.3  
SOFTWARE INTERRUPT  
15.2.5  
CAN MESSAGE TIME-STAMP  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE registers) clear to avoid false interrupts  
and should clear the flag bit CCP1IF, following any  
such change in Operating mode.  
The CAN capture event occurs when a message is  
received in either of the receive buffers. The CAN mod-  
ule provides a rising edge to the CCP1 module to  
cause a capture event. This feature is provided to  
time-stamp the received CAN messages.  
This feature is enabled by setting the CANCAP bit of  
the CAN I/O control register (CIOCON<4>). The mes-  
sage receive signal from the CAN module then takes  
the place of the events on RC2/CCP1.  
15.2.4  
CCP1 PRESCALER  
There are four prescaler settings, specified by bits  
CCP1M3:CCP1M0. Whenever the CCP1 module is  
turned off, or the CCP1 module is not in Capture mode,  
the prescaler counter is cleared. This means that any  
RESET will clear the prescaler counter.  
EXAMPLE 15-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
CLRF  
MOVLW  
CCP1CON, F  
NEW_CAPT_PS  
; Turn CCP module off  
; Load WREG with the  
; new prescaler mode  
; value and CCP ON  
; Load CCP1CON with  
; this value  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared; therefore, the first capture may be from  
a non-zero prescaler. Example 15-1 shows the recom-  
mended method for switching between capture pres-  
calers. This example also clears the prescaler counter  
and will not generate the falseinterrupt.  
MOVWF  
CCP1CON  
FIGURE 15-1:  
CAPTURE MODE OPERATION BLOCK DIAGRAM  
Set Flag bit CCP1IF  
(PIR1<2>)  
TMR3H  
TMR3L  
CCPR1L  
TMR1L  
T3CCP1  
T3ECCP1  
TMR3  
Enable  
Prescaler  
÷ 1, 4, 16  
CCP1 pin  
CCPR1H  
TMR1  
and  
Enable  
Edge Detect  
T3ECCP1  
T3CCP1  
TMR1H  
CCP1CON<3:0>  
Qs  
Note: I/O pins have diode protection to VDD and VSS.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 123  
PIC18FXX8  
15.3.2  
TIMER1/TIMER3 MODE SELECTION  
15.3 Compare Mode  
Timer1 and/or Timer3 must be running in Timer mode,  
or Synchronized Counter mode, if the CCP module is  
using the compare feature. In Asynchronous Counter  
mode, the compare operation may not work.  
In Compare mode, the 16-bit CCPR1 and ECCPR1  
register value is constantly compared against either the  
TMR1 register pair value, or the TMR3 register pair  
value. When a match occurs, the CCP1 pin can have  
one of the following actions:  
15.3.3  
SOFTWARE INTERRUPT MODE  
Driven high  
When Generate Software Interrupt is chosen, the  
CCP1 pin is not affected. Only a CCP interrupt is  
generated (if enabled).  
Driven low  
Toggle output (high to low or low to high)  
Remains unchanged  
15.3.4  
SPECIAL EVENT TRIGGER  
The action on the pin is based on the value of control  
bits CCP1M3:CCP1M0. At the same time, interrupt flag  
bit CCP1IF is set.  
In this mode, an internal hardware trigger is generated,  
which may be used to initiate an action.  
15.3.1  
CCP1 PIN CONFIGURATION  
The special event trigger output of CCP1 resets either  
the TMR1 or TMR3 register pair. Additionally, the  
ECCP1 Special Event Trigger will start an A/D  
conversion, if the A/D module is enabled.  
The user must configure the CCP1 pin as an output by  
clearing the appropriate TRISC bit.  
Note: Clearing the CCP1CON register will force  
the CCP1 compare output latch to the  
default low level. This is not the data latch.  
Note: The Special Event Trigger from the ECCP1  
module will not set the Timer1 or Timer3  
interrupt flag bits.  
FIGURE 15-2:  
COMPARE MODE OPERATION BLOCK DIAGRAM  
Special Event Trigger will:  
Reset Timer1 or Timer3 (but not set Timer1 or Timer3 Interrupt Flag bit)  
Set bit GO/DONE, which starts an A/D conversion (ECCP1 only)  
TMR3H TMR3L  
TMR1H TMR1L  
Special Event Trigger  
Set Flag bit CCP1IF  
(PIR1<2>)  
T3CCP1  
T3ECCP1  
0
1
Q
S
R
Output  
Logic  
Comparator  
Match  
CCP1  
Output Enable  
CCPR1H  
CCPR1L  
CCP1CON<3:0>  
Mode Select  
Note: I/O pins have diode protection to VDD and VSS.  
DS41159B-page 124  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
TABLE 15-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
RESETS  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
CCP1IF  
CCP1IE  
CCP1IP  
TMR2IF  
TMR2IE  
TMR2IP  
TMR1IF 0000 0000 0000 0000  
TMR1IE 0000 0000 0000 0000  
TMR1IP 0000 0000 0000 0000  
1111 1111 1111 1111  
PIE1  
IPR1  
TRISD  
TMR1L  
TMR1H  
T1CON  
CCPR1L  
CCPR1H  
CCP1CON  
PIR2  
PORTD Data Direction Register  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu  
Capture/Compare/PWM Register1 (LSB)  
Capture/Compare/PWM Register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
DC1B1  
DC1B0  
EEIF  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
CMIF  
CMIE  
CMIP  
BCLIF  
BCLIE  
BCLIP  
LVDIF  
LVDIE  
LVDIP  
TMR3IF ECCP1IF -0-0 0000 -0-0 0000  
TMR3IE ECCP1IE -0-0 0000 -0-0 0000  
TMR3IP ECCP1IP -0-0 0000 -0-0 0000  
PIE2  
EEIE  
EEIP  
IPR2  
TMR3L  
TMR3H  
T3CON  
Holding Register for the Least Significant Byte of the 16-bit TMR3 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR3 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RD16  
T3ECCP1 T3CKPS1 T3CKPS0 T3CCP1  
T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 125  
PIC18FXX8  
15.4.1  
PWM PERIOD  
15.4 PWM Mode  
The PWM period is specified by writing to the PR2 reg-  
ister. The PWM period can be calculated using the  
following formula.  
In Pulse Width Modulation (PWM) mode, the CCP1 pin  
produces up to a 10-bit resolution PWM output. Since  
the CCP1 pin is multiplexed with the PORTC data latch,  
the TRISC<2> bit must be cleared to make the CCP1  
pin an output.  
EQUATION 15-1:  
Note: Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is not the PORTC I/O data  
latch.  
PWM period = [(PR2) + 1] • 4 • TOSC •  
(TMR2 prescale value)  
PWM frequency is defined as 1 / [PWM period].  
Figure 15-3 shows a simplified block diagram of the  
CCP module in PWM mode.  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, see Section 15.4.3.  
TMR2 is cleared  
The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
FIGURE 15-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
CCP1CON<5:4>  
Note: The Timer2 postscaler (see Section 13.0)  
is not used in the determination of the  
PWM frequency. The postscaler could be  
used to have a servo update rate at a  
different frequency than the PWM output.  
Duty Cycle Registers  
CCPR1L (Master)  
CCPR1H (Slave)  
Comparator  
15.4.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time.  
Q
R
S
RC2/CCP1  
(Note 1)  
TMR2  
TRISC<2>  
Comparator  
PR2  
Clear Timer,  
Set CCP1 pin and  
latch D.C.  
EQUATION 15-2:  
PWM duty cycle =(CCPR1L:CCP1CON<5:4>) •  
TOSC (TMR2 prescale value)  
Note 1: 8-bit timer is concatenated with 2-bit internal Q clock,  
or 2 bits of the prescaler, to create 10-bit time-base.  
A PWM output (Figure 15-4) has a time-base (period)  
and a time that the output stays high (duty cycle). The  
frequency of the PWM is the inverse of the period  
(1/period).  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read only register.  
FIGURE 15-4:  
PWM OUTPUT  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
Period  
When the CCPR1H and 2-bit latch match TMR2, con-  
catenated with an internal 2-bit Q clock, or 2 bits of the  
TMR2 prescaler, the CCP1 pin is cleared.  
Duty Cycle  
TMR2 = PR2  
TMR2 = Duty Cycle  
TMR2 = PR2  
DS41159B-page 126  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
The maximum PWM resolution (bits) for a given PWM  
frequency is given by the following equation.  
15.4.3  
SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
EQUATION 15-3:  
1. Set the PWM period by writing to the PR2  
register.  
FOSC   
---------------  
log  
FPWM  
PWM Resolution (max)  
= ----------------------------- b i t s  
2. Set the PWM duty cycle by writing to the  
CCPR1L register and CCP1CON<5:4> bits.  
log(2)  
3. Make the CCP1 pin an output by clearing the  
TRISC<2> bit.  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
Note: If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
5. Configure the CCP1 module for PWM operation.  
TABLE 15-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz  
PWM Frequency  
2.44 kHz 9.76 kHz 39.06 kHz 156.3 kHz 312.5 kHz 416.6 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
FFh  
10  
4
1
1
3Fh  
8
1
1Fh  
7
1
FFh  
10  
FFh  
10  
17h  
5.5  
Maximum Resolution (bits)  
TABLE 15-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
CCP1IF  
CCP1IE  
CCP1IP  
TMR2IF  
TMR2IE  
TMR2IP  
TMR1IF 0000 0000 0000 0000  
TMR1IE 0000 0000 0000 0000  
TMR1IP 0000 0000 0000 0000  
1111 1111 1111 1111  
PIE1  
IPR1  
TRISD  
TMR2  
PORTD Data Direction Register  
Timer2 Module Register  
0000 0000 0000 0000  
PR2  
Timer2 Module Period Register  
1111 1111 1111 1111  
T2CON  
CCPR1L  
CCPR1H  
CCP1CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Capture/Compare/PWM Register1 (LSB)  
Capture/Compare/PWM Register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 127  
PIC18FXX8  
NOTES:  
DS41159B-page 128  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
The operation of the ECCP module differs from the  
CCP (discussed in detail in Section 15.0) with the addi-  
tion of an enhanced PWM module, which allows for up  
to 4 output channels and user selectable polarity.  
These features are discussed in detail in Section 16.5.  
The module can also be programmed for automatic  
shutdown in response to various analog or digital  
events.  
16.0 ENHANCED CAPTURE/  
COMPARE/PWM (ECCP)  
MODULE  
Note: The ECCP (Enhanced Capture/Compare/  
PWM) module is only available on  
PIC18F448 and PIC18F458 devices.  
This module contains a 16-bit register which can oper-  
ate as a 16-bit Capture register, a 16-bit Compare  
register, or a PWM Master/Slave Duty Cycle register.  
The control register for ECCP1 is shown in  
Register 16-1.  
REGISTER 16-1: ECCP1CON REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EPWM1M1 EPWM1M0 EDC1B1 EDC1B0 ECCP1M3 ECCP1M2 ECCP1M1 ECCP1M0  
bit 7  
bit 0  
bit 7-6  
EPWM1M<1:0>: PWM Output Configuration bits  
If ECCP1M<3:2> = 00, 01, 10:  
xx= P1A assigned as Capture/Compare input; P1B, P1C, P1D assigned as port pins  
If ECCP1M<3:2> = 11:  
00= Single output; P1A modulated; P1B, P1C, P1D assigned as port pins  
01= Full-bridge output forward; P1D modulated; P1A active; P1B, P1C inactive  
10= Half-bridge output; P1A, P1B modulated with deadband control; P1C, P1D assigned as  
port pins  
11= Full-bridge output reverse; P1B modulated; P1C active; P1A, P1D inactive  
bit 5-4  
EDC1B<1:0>: PWM Duty Cycle Least Significant bits  
Capture mode:  
Unused  
Compare mode:  
Unused  
PWM mode:  
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in ECCPR1L.  
bit 3-0  
ECCP1M<3:0>: ECCP1 Mode Select bits  
0000=Capture/Compare/PWM off (resets ECCP module)  
0001=Unused (reserved)  
0010=Compare mode, toggle output on match (ECCP1IF bit is set)  
0011=Unused (reserved)  
0100=Capture mode, every falling edge  
0101=Capture mode, every rising edge  
0110=Capture mode, every 4th rising edge  
0111=Capture mode, every 16th rising edge  
1000=Compare mode, set output on match (ECCP1IF bit is set)  
1001=Compare mode, clear output on match (ECCP1IF bit is set)  
1010=Compare mode, ECCP1 pin is unaffected (ECCP1IF bit is set)  
1011=Compare mode, trigger special event (ECCP1IF bit is set; ECCP resets TMR1or TMR3,  
and starts an A/D conversion, if the A/D module is enabled)  
1100=PWM mode; P1A, P1C active high; P1B, P1D active high  
1101=PWM mode; P1A, P1C active high; P1B, P1D active low  
1110=PWM mode; P1A, P1C active low; P1B, P1D active high  
1111=PWM mode; P1A, P1C active low; P1B, P1D active low  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 129  
PIC18FXX8  
In PWM mode, the ECCP module can have up to four  
available outputs, depending on which Operating mode  
is selected. These outputs are multiplexed with PORTD  
and the Parallel Slave Port. Both the Operating mode  
and the output pin assignments are configured by setting  
PWM Output Configuration bits EPWM1M1:EPWM1M0  
(ECCP1CON<7:6>). The specific pin assignments for  
the various Output modes are shown in Table 16-3.  
16.1 ECCP1 Module  
Enhanced Capture/Compare/PWM Register1 (ECCPR1)  
is comprised of two 8-bit registers: ECCPR1L (low  
byte) and ECCPR1H (high byte). The ECCP1CON reg-  
ister controls the operation of ECCP1; the additional  
registers, ECCPAS and ECCP1DEL, control enhanced  
PWM specific features. All registers are readable and  
writable.  
Table 16-1 shows the timer resources for the ECCP  
module modes. Table 16-2 describes the interactions  
of the ECCP module with the standard CCP module.  
TABLE 16-1: ECCP1 MODE - TIMER  
RESOURCE  
ECCP1 Mode  
Timer Resource  
Capture  
Compare  
PWM  
Timer1 or Timer3  
Timer1 or Timer3  
Timer2  
TABLE 16-2: INTERACTION OF CCP1 AND ECCP1 MODULES  
ECCP1 Mode CCP1 Mode  
Interaction  
TMR1 or TMR3 time-base. Time-base can be different for each CCP.  
Capture  
Capture  
Capture  
Compare  
The compare could be configured for the special event trigger, which clears either  
TMR1 or TMR3, depending upon which time-base is used.  
Compare  
Compare  
The compare(s) could be configured for the special event trigger, which clears TMR1  
or TMR3 depending upon which time-base is used.  
PWM  
PWM  
PWM  
PWM  
The PWMs will have the same frequency and update rate (TMR2 interrupt).  
Capture  
Compare  
None  
None  
TABLE 16-3: PIN ASSIGNMENTS FOR VARIOUS ECCP MODES  
ECCP1CON  
ECCP Mode(1)  
RD4  
RD5  
RD6  
RD7  
Configuration  
Conventional CCP Compatible  
00xx11xx  
ECCP1  
RD<5>,  
PSP<5>  
RD<6>,  
PSP<6>  
RD<7>,  
PSP<7>  
Dual Output PWM(2)  
Quad Output PWM(2)  
10xx11xx  
x1xx11xx  
P1A  
P1A  
P1B  
RD<6>,  
PSP<6>  
RD<7>,  
PSP<7>  
P1B  
P1C  
P1D  
Legend: x= Dont care. Shaded cells indicate pin assignments not used by ECCP in a given mode.  
Note 1: In all cases, the appropriate TRISD bits must be cleared to make the corresponding pin an output.  
2: In these modes, the PSP I/O control for PORTD is overridden by P1B, P1C and P1D.  
DS41159B-page 130  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
16.2 Capture Mode  
16.3 Compare Mode  
The Capture Mode of the ECCP module is virtually  
identical in operation to that of the standard CCP mod-  
ule, as discussed in Section 15.1. The differences are  
in the registers and port pins involved:  
The Compare Mode of the ECCP module is virtually  
identical in operation to that of the standard CCP mod-  
ule, as discussed in Section 15.2. The differences are  
in the registers and port pins, as described in  
Section 16.2. All other details are exactly the same.  
The 16-bit Capture register is ECCPR1 (ECCPR1H  
and ECCPR1L);  
16.3.1  
SPECIAL EVENT TRIGGER  
The capture event is selected by control bits  
Except as noted below, the special event trigger output  
of ECCP1 functions identically to that of the standard  
CCP module. It may be used to start an A/D conversion  
if the A/D module is enabled.  
ECCP1M3:ECCP1M0 (ECCP1CON<3:0>);  
The interrupt bits are ECCP1IE (PIE2<0>) and  
ECCP1IF (PIR2<0>); and  
The capture input pin is RD4, and its corresponding  
direction control bit is TRISD<4>.  
Note: The special Event trigger from the ECCP1  
module will not set the Timer1 or Timer3  
interrupt flag bits.  
Other operational details, including timer selection, out-  
put pin configuration and software interrupts, are  
exactly the same as the standard CCP module.  
16.2.1  
CAN MESSAGE TIME-STAMP  
The special capture event for the reception of CAN  
messages (Section 15.2.5) is not available with the  
ECCP module.  
TABLE 16-4: REGISTERS ASSOCIATED WITH ENHANCED CAPTURE, COMPARE, TIMER1 AND  
TIMER3  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR2  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
EEIF  
RBIE  
BCLIF  
BCLIE  
BCLIP  
TMR0IF  
LVDIF  
LVDIE  
LVDIP  
INT0IF  
RBIF  
0000 000x 0000 000u  
CMIF  
CMIE  
CMIP  
TMR3IF ECCP1IF -0-0 0000 -0-0 0000  
TMR3IE ECCP1IE -0-0 0000 -0-0 0000  
TMR3IP ECCP1IP -0-0 1111 -1-1 1111  
xxxx xxxx uuuu uuuu  
PIE2  
EEIE  
EEIP  
IPR2  
TMR1L  
TMR1H  
T1CON  
TMR3L  
TMR3H  
T3CON  
TRISD  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu  
Holding Register for the Least Significant Byte of the 16-bit TMR3 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR3 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RD16  
T3ECCP1 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu  
PORTD Data Direction Register  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
ECCPR1L Capture/Compare/PWM Register1 (LSB)  
ECCPR1H Capture/Compare/PWM Register1 (MSB)  
ECCP1CON EPWM1M1 EPWM1M0 EDC1B1 EDC1B0 ECCP1M3 ECCP1M2 ECCP1M1 ECCP1M0 0000 0000 0000 0000  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by the ECCP module and Timer1.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 131  
PIC18FXX8  
Figure 16-1 shows a simplified block diagram of PWM  
operation. All control registers are double-buffered and  
are loaded at the beginning of a new PWM cycle (the  
period boundary when the assigned timer resets), in  
order to prevent glitches on any of the outputs. The  
exception is the PWM delay register ECCP1DEL,  
which is loaded at either the duty cycle boundary or the  
boundary period (whichever comes first). Because of  
the buffering, the module waits until the assigned timer  
resets, instead of starting immediately. This means that  
enhanced PWM waveforms do not exactly match the  
standard PWM waveforms, but are instead offset by  
one full instruction cycle (4 TOSC).  
16.4 Standard PWM Mode  
When configured in Single Output mode, the ECCP  
module functions identically to the standard CCP mod-  
ule in PWM mode, as described in Section 15.4. The  
differences in registers and ports are as described in  
Section 16.2; in addition, the two Least Significant bits  
of the 10-bit PWM duty cycle value are represented by  
ECCP1CON<5:4>.  
Note: When setting up single output PWM opera-  
tions, users are free to use either of the pro-  
cesses described in Section 15.4.3 or  
Section 16.5.8. The latter is more generic,  
but will work for either single or multi-output  
PWM.  
As before, the user must manually configure the appro-  
priate TRISD bits for output.  
16.5 Enhanced PWM Mode  
16.5.1  
PWM OUTPUT CONFIGURATIONS  
The Enhanced PWM mode provides additional PWM  
output options for a broader range of control applica-  
tions. The module is an upwardly compatible version of  
the standard CCP module and is modified to provide up  
to four outputs, designated P1A through P1D. Users  
are also able to select the polarity of the signal (either  
active high or active low). The modules Output mode  
and polarity are configured by setting the  
EPWM1M1:EPWM1M0 and ECCP1M3:ECCP1M0 bits  
of the ECCP1CON register (ECCP1CON<7:6> and  
ECCP1CON<3:0>, respectively).  
The EPWM1M<1:0> bits in the ECCP1CON register  
allow one of four configurations:  
Single Output  
Half-Bridge Output  
Full-Bridge Output, Forward mode  
Full-Bridge Output, Reverse mode  
The Single Output mode is the Standard PWM mode  
discussed in Section 15.4. The Half-Bridge and Full-  
Bridge Output modes are covered in detail in the  
sections that follow.  
The general relationship of the outputs in all  
configurations is summarized in Figure 16-2.  
FIGURE 16-1:  
SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODULE  
ECCP1CON<5:4>  
EPWM1M1<1:0>  
ECCP1M<3:0>  
4
Duty Cycle Registers  
2
ECCPR1L  
ECCP1/P1A  
RD4/PSP4/ECCP1/P1A  
TRISD<4>  
TRISD<5>  
TRISD<6>  
TRISD<7>  
ECCPR1H (Slave)  
Comparator  
P1B  
RD5/PSP5/P1B  
RD6/PSP6/P1C  
Output  
R
S
Q
Controller  
P1C  
(Note 1)  
TMR2  
P1D  
RD7/PSP7/P1D  
Comparator  
PR2  
Clear Timer,  
set ECCP1 pin and  
latch D.C.  
ECCP1DEL  
Note: The 8-bit TMR2 register is concatenated with the 2-bit internal Q clock, or 2 bits of the prescaler to create the 10-bit time-base.  
DS41159B-page 132  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 16-2:  
PWM OUTPUT RELATIONSHIPS  
0
PR2+1  
DUTY  
CYCLE  
SIGNAL  
ECCP1CON  
<7:6>  
PERIOD  
P1A Modulated, Active High  
P1A Modulated, Active Low  
P1A Modulated, Active High  
P1A Modulated, Active Low  
P1B Modulated, Active High  
P1B Modulated, Active Low  
P1A Active, Active High  
00  
Delay  
10  
Delay  
P1A Active, Active Low  
P1B Inactive, Active High  
P1B Inactive, Active Low  
P1C Inactive, Active High  
P1C Inactive, Active Low  
P1D Modulated, Active High  
P1D Modulated, Active Low  
P1A Inactive, Active High  
P1A Inactive, Active Low  
P1B Modulated, Active High  
P1B Modulated, Active Low  
P1C Active, Active High  
P1C Active, Active Low  
01  
11  
P1D Inactive, Active High  
P1D Inactive, Active Low  
Relationships:  
Period = 4 * TOSC * (PR2 + 1) * (TMR2 prescale value)  
Duty Cycle = TOSC * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 prescale value)  
Delay = 4 * TOSC * ECCP1DEL  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 133  
PIC18FXX8  
16.5.2  
HALF-BRIDGE MODE  
FIGURE 16-3:  
HALF-BRIDGE PWM  
OUTPUT  
In the Half-Bridge Output mode, two pins are used as  
outputs to drive push-pull loads. The RD4/PSP4/  
ECCP1/P1A pin has the PWM output signal, while the  
RD5/PSP5/P1B pin has the complementary PWM out-  
put signal (Figure 16-3). This mode can be used for  
half-bridge applications, as shown in Figure 16-4, or for  
full-bridge applications, where four power switches are  
being modulated with two PWM signals.  
Period  
Period  
Duty Cycle  
(2)  
(2)  
P1A  
td  
td  
P1B  
In Half-Bridge Output mode, the programmable dead-  
band delay can be used to prevent shoot-through  
current in bridge power devices. The value of register  
ECCP1DEL dictates the number of clock cycles before  
the output is driven active. If the value is greater than  
the duty cycle, the corresponding output remains inac-  
tive during the entire cycle. See Section 16.5.4 for  
more details of the deadband delay operations.  
(1)  
(1)  
(1)  
td = Deadband Delay  
Note 1: At this time, the TMR2 register is equal to the  
PR2 register.  
2: Output signals are shown as asserted high.  
Since the P1A and P1B outputs are multiplexed with  
the PORTD<4> and PORTD<5> data latches, the  
TRISD<4> and TRISD<5> bits must be cleared to  
configure P1A and P1B as outputs.  
FIGURE 16-4:  
EXAMPLES OF HALF-BRIDGE OUTPUT MODE APPLICATIONS  
V+  
Standard Half-Bridge Circuit (Push-Pull)  
PIC18F448/458  
FET  
Driver  
+
V
-
P1A  
+
-
Load  
FET  
Driver  
+
V
-
P1B  
V-  
Half-Bridge Output Driving a Full-Bridge Circuit  
V+  
PIC18F448/458  
FET  
FET  
Driver  
Driver  
P1A  
+
-
Load  
FET  
Driver  
FET  
Driver  
P1B  
V-  
DS41159B-page 134  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
P1A, P1B, P1C and P1D outputs are multiplexed with  
the PORTD<4:7> data latches. The TRISD<4:7> bits  
must be cleared to make the P1A, P1B, P1C, and P1D  
pins output.  
16.5.3  
FULL-BRIDGE MODE  
In Full-Bridge Output mode, four pins are used as out-  
puts; however, only two outputs are active at a time. In  
the Forward mode, pin RD4/PSP4/ECCP1/P1A is con-  
tinuously active, and pin RD7/PSP7/P1D is modulated.  
In the Reverse mode, RD6/PSP6/P1C pin is continu-  
ously active, and RD5/PSP5/P1B pin is modulated.  
These are illustrated in Figure 16-5.  
FIGURE 16-5:  
FULL-BRIDGE PWM OUTPUT  
FORWARD MODE  
Period  
(2)  
(2)  
(2)  
P1A  
P1B  
P1C  
Duty Cycle  
(2)  
P1D  
(1)  
(1)  
REVERSE MODE  
Period  
Duty Cycle  
(2)  
P1A  
(2)  
P1B  
(2)  
P1C  
(2)  
P1D  
(1)  
(1)  
Note 1: At this time, the TMR2 register is equal to the PR2 register.  
Note 2: Output signal is shown as asserted high.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 135  
PIC18FXX8  
FIGURE 16-6:  
EXAMPLE OF FULL-BRIDGE APPLICATION  
V+  
PIC18F448/458  
QB  
QD  
FET  
Driver  
FET  
Driver  
P1D  
+
-
Load  
P1C  
FET  
Driver  
FET  
Driver  
P1B  
P1A  
QA  
QC  
V-  
Figure 16-8 shows an example where the PWM direc-  
tion changes from forward to reverse, at a near 100%  
duty cycle. At time t1, the output P1A and P1D become  
inactive, while output P1C becomes active. In this  
example, since the turn off time of the power devices is  
longer than the turn on time, a shoot-through current  
flows through power devices QB and QD (see  
Figure 16-6) for the duration of t. The same phenom-  
enon will occur to power devices QA and QC for PWM  
direction change from reverse to forward.  
16.5.3.1  
Direction Change in Full-Bridge  
Mode  
In the Full-Bridge Output mode, the EPWM1M1 bit in  
the ECCP1CON register allows user to control the  
Forward/Reverse direction. When the application firm-  
ware changes this direction control bit, the ECCP1  
module will assume the new direction on the next PWM  
cycle. The current PWM cycle still continues, however,  
the non-modulated outputs, P1A and P1C signals, will  
transition to the new direction TOSC, 4 TOSC or 16 TOSC  
earlier (for T2CKRS<1:0> = 00, 01or 1x, respectively),  
before the end of the period. During this transition  
cycle, the modulated outputs, P1B and P1D, will go to  
the inactive state (Figure 16-7).  
If changing PWM direction at high duty cycle is required  
for an application, one of the following requirements  
must be met:  
1. Avoid changing PWM output direction at or near  
100% duty cycle.  
Note that in the Full-Bridge Output mode, the ECCP  
module does not provide any deadband delay. In gen-  
eral, since only one output is modulated at all times,  
deadband delay is not required. However, there is a sit-  
uation where a deadband delay might be required. This  
situation occurs when all of the following conditions are  
true:  
2. Use switch drivers that compensate the slow  
turn off of the power devices. The total turn off  
time (toff) of the power device and the driver  
must be less than the turn on time (ton).  
1. The direction of the PWM output changes when  
the duty cycle of the output is at or near 100%.  
2. The turn off time of the power switch, including  
the power device and driver circuit, is greater  
than turn on time.  
DS41159B-page 136  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 16-7:  
PWM DIRECTION CHANGE  
(1)  
PERIOD  
PERIOD  
SIGNAL  
DC  
P1A (Active High)  
P1B (Active High)  
P1C (Active High)  
P1D (Active High)  
(2)  
Note 1: The direction bit in the ECCP1 Control Register (ECCP1CON.EPWM1M1) is written any time during the PWM  
cycle.  
2: The P1A and P1C signals switch at intervals of TOSC, 4 TOSC or 16 TOSC, depending on the Timer2 prescaler value  
earlier when changing direction. The modulated P1B and P1D signals are inactive at this time.  
FIGURE 16-8:  
PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE  
FORWARD PERIOD  
REVERSE PERIOD  
P1A  
P1B  
(PWM)  
P1C  
P1D  
(PWM)  
t
on  
External Switch C  
External Switch D  
t
off  
Potential  
t = t t  
off  
on  
Shoot-Through  
Current  
t1  
Note 1: All signals are shown as active high.  
2: t is the Turn-on Delay of power switch and driver.  
on  
3: t is the Turn-off Delay of power switch and driver.  
off  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 137  
PIC18FXX8  
devices in the off state, until the microcontroller drives  
the I/O pins with the proper signal levels, or activates  
the PWM output(s).  
16.5.4  
PROGRAMMABLE DEADBAND  
DELAY  
In half-bridge or full-bridge applications, where all  
power switches are modulated at the PWM frequency  
at all times, the power switches normally require longer  
time to turn off than to turn on. If both the upper and  
lower power switches are switched at the same time  
(one turned on, and the other turned off), both switches  
will be on for a short period of time until one switch  
completely turns off. During this time, a very high cur-  
rent (shoot-through current) flows through both power  
switches, shorting the bridge supply. To avoid this  
potentially destructive shoot-through current from flow-  
ing during switching, turning on the power switch is nor-  
mally delayed to allow the other switch to completely  
turn off.  
16.5.6  
START-UP CONSIDERATIONS  
Prior to enabling the PWM outputs, the P1A, P1B, P1C  
and P1D latches may not be in the proper states.  
Enabling the TRISD bits for output at the same time  
with the ECCP1 module may cause damage to the  
power switch devices. The ECCP1 module must be  
enabled in the proper Output mode with the TRISD bits  
enabled as inputs. Once the ECCP1 completes a full  
PWM cycle, the P1A, P1B, P1C and 1PD output  
latches are properly initialized. At this time, the TRISD  
bits can be enabled for outputs to start driving the  
power switch devices. The completion of a full PWM  
cycle is indicated by the TMR2IF bit going from a 0to  
a 1.  
In the Half-Bridge Output mode, a digitally program-  
mable deadband delay is available to avoid shoot-  
through current from destroying the bridge power  
switches. The delay occurs at the signal transition from  
the non-active state to the active state. See Figure 16-3  
for illustration. The ECCP1DEL register (Register 16-2)  
sets the amount of delay.  
16.5.7  
OUTPUT POLARITY  
CONFIGURATION  
The ECCP1M<1:0> bits in the ECCP1CON register  
allow user to choose the logic conventions (asserted  
high/low) for each of the outputs.  
16.5.5  
SYSTEM IMPLEMENTATION  
The PWM output polarities must be selected before the  
PWM outputs are enabled. Charging the polarity con-  
figuration while the PWM outputs are active is not rec-  
ommended, since it may result in unpredictable  
operation.  
When the ECCP module is used in the PWM mode, the  
application hardware must use the proper external pull-  
up and/or pull-down resistors on the PWM output pins.  
When the microcontroller powers up, all of the I/O pins  
are in the high-impedance state. The external pull-up  
and pull-down resistors must keep the power switch  
REGISTER 16-2: ECCP1DEL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EPDC7  
EPDC6  
EPDC5  
EPDC4  
EPDC3  
EPDC2  
EPDC1  
EPDC0  
bit 7  
bit 0  
bit 7-0  
EPDC<7:0>: PWM Delay Count for Half-Bridge Output Mode bits  
Number of FOSC/4 (TOSC*4) cycles between the P1A transition and the P1B transition  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS41159B-page 138  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
2. Configure and start TMR2:  
16.5.8  
SETUP FOR PWM OPERATION  
a) Clear the TMR2 interrupt flag bit by clearing  
the TMR2IF bit in the PIR1 register.  
The following steps should be taken when configuring  
the ECCP1 module for PWM operation:  
b) Set the TMR2 prescale value by loading the  
T2CKPS bits (T2CON<1:0>).  
1. Configure the PWM module:  
a) Disable the ECCP1/P1A, P1B, P1C and/or  
P1D outputs by setting the respective TRISD  
bits.  
c) Enable Timer2 by setting the TMR2ON bit  
(T2CON<2>) register.  
3. Enable PWM outputs after a new cycle has  
started:  
b) Set the PWM period by loading the PR2  
register.  
a) Wait until TMR2 overflows (TMR2IF bit  
becomes a 1). The new PWM cycle begins  
here.  
c) Set the PWM duty cycle by loading the  
ECCPR1L register and ECCP1CON<5:4> bits.  
d) Configure the ECCP1 module for the desired  
PWM operation, by loading the ECCP1CON  
register with the appropriate value. With the  
ECCP1M<3:0> bits, select the active high/low  
levels for each PWM output. With the  
EPWM1M<1:0> bits, select one of the  
available Output modes.  
b) Enable the ECCP1/P1A, P1B, P1C and/or  
P1D pin outputs by clearing the respective  
TRISD bits.  
e) For Half-Bridge Output mode, set the dead-  
band delay by loading the ECCP1DEL  
register with the appropriate value.  
TABLE 16-5: REGISTERS ASSOCIATED WITH ENHANCED PWM AND TIMER2  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
RCON  
IPR2  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RI  
RBIE  
TO  
TMR0IF  
PD  
INT0IF  
POR  
RBIF  
BOR  
0000 000x 0000 000u  
0--1 11qq 0--q qquu  
IPEN  
CMIP  
CMIF  
CMIE  
EEIP  
EEIF  
EEIE  
BCLIP  
BCLIF  
BCLIE  
LVDIP  
LVDIF  
LVDIE  
TMR3IP ECCP1IP -0-0 1111 -1-1 1111  
TMR3IF ECCP1IF -0-0 0000 -0-0 0000  
TMR3IE ECCP1IE -0-0 0000 -0-0 0000  
0000 0000 0000 0000  
PIR2  
PIE2  
TMR2  
PR2  
Timer2 Module Register  
Timer2 Module Period Register  
1111 1111 1111 1111  
T2CON  
TRISD  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
PORTD Data Direction Register  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
ECCPR1H Enhanced Capture/Compare/PWM Register1 High Byte  
ECCPR1L Enhanced Capture/Compare/PWM Register1 Low Byte  
ECCP1CON EPWM1M1 EPWM1M0 EDC1B1  
ECCPAS ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0 0000 0000 0000 0000  
ECCP1DEL EPDC7 EPDC6 EPDC5 EPDC4 EPDC3 EPDC2 EPDC1 EPDC0 0000 0000 uuuu uuuu  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by the ECCP module.  
EDC1B0 ECCP1M3 ECCP1M2 ECCP1M1 ECCP1M0 0000 0000 0000 0000  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 139  
PIC18FXX8  
The internal shutdown signal is gated with the outputs  
and will immediately and asynchronously disable the  
outputs. If the internal shutdown is still in effect at the  
16.6 Enhanced CCP Auto-Shutdown  
When the ECCP is programmed for any of the PWM  
modes, the output pins associated with its function may  
be configured for Auto-Shutdown.  
time  
a new cycle begins, that entire cycle is  
suppressed, thus eliminating narrow, glitchy pulses.  
Auto-Shutdown allows the internal output of either of  
the two comparator modules, or the external interrupt  
0, to asynchronously disable the ECCP output pins.  
Thus, an external analog or digital event can discon-  
tinue an ECCP sequence. The comparator output(s) to  
be used is selected by setting the proper mode bits in  
the ECCPAS register. To use external interrupt INT0 as  
a shutdown event, INT0IE must be set. To use either of  
the comparator module outputs as a shutdown event,  
corresponding comparators must be enabled. When a  
shutdown occurs, the selected output values  
(PSSACn, PSSBDn) are written to the ECCP port pins.  
The ECCPASE bit is set by hardware upon a compara-  
tor event and can only be cleared in software. The  
ECCP outputs can be re-enabled only by clearing the  
ECCPASE bit.  
The Auto-Shutdown mode can be manually entered by  
writing a 1to the ECCPASE bit.  
REGISTER 16-3: ECCPAS: ENHANCED CAPTURE/COMPARE/PWM/AUTO-SHUTDOWN  
CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0  
bit 7  
bit 0  
bit 7  
ECCPASE: ECCP Auto-Shutdown Event Status bit  
0= ECCP outputs enabled, no shutdown event  
1= A shutdown event has occurred, must be reset in software to re-enable ECCP  
bit 6-4  
ECCPAS<2:0>: ECCP Auto-Shutdown bits  
000= No Auto-Shutdown enabled, comparators have no effect on ECCP  
001= Comparator 1 output will cause shutdown  
010= Comparator 2 output will cause shutdown  
011= Either Comparator 1 or 2 can cause shutdown  
100= INT0  
101= INT0 or Comparator 1 output  
110= INT0 or Comparator 2 output  
111= INT0 or Comparator 1 or Comparator 2 output  
bit 3-2  
bit 1-0  
PSSACn: Pin A and C Shutdown State Control bits  
00= Drive Pins A and C to 0’  
01= Drive Pins A and C to 1’  
1x= Pins A and C tri-state  
PSSBDn: Pin B and D Shutdown State Control bits  
00= Drive Pins B and D to 0’  
01= Drive Pins B and D to 1’  
1x= Pins B and D tri-state  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS41159B-page 140  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
17.3 SPI Mode  
17.0 MASTER SYNCHRONOUS  
SERIAL PORT (MSSP)  
MODULE  
The SPI mode allows 8 bits of data to be synchronously  
transmitted and received simultaneously. All four modes  
of SPI are supported. To accomplish communication,  
typically three pins are used:  
17.1 Master SSP (MSSP) Module  
Overview  
• Serial Data Out (SDO) - RC5/SDO  
• Serial Data In (SDI) - RC4/SDI/SDA  
• Serial Clock (SCK) - RC3/SCK/SCL  
The Master Synchronous Serial Port (MSSP) module is  
a serial interface useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The MSSP module  
can operate in one of two modes:  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
• Slave Select (SS) - RF7/SS  
Figure 17-1 shows the block diagram of the MSSP  
module when operating in SPI mode.  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C)  
- Full Master mode  
FIGURE 17-1:  
MSSP BLOCK DIAGRAM  
(SPI MODE)  
- Slave mode (with general address call)  
The I2C interface supports the following modes in  
hardware:  
Internal  
Data Bus  
• Master mode  
• Multi-Master mode  
• Slave mode  
Read  
Write  
SSPBUF reg  
SSPSR reg  
17.2 Control Registers  
RC4/SDI/SDA  
RC5/SDO  
The MSSP module has three associated registers.  
These include a status register (SSPSTAT) and two  
control registers (SSPCON1 and SSPCON2). The use  
of these registers and their individual configuration bits  
differ significantly, depending on whether the MSSP  
module is operated in SPI or I2C mode.  
Shift  
Clock  
bit0  
Additional details are provided under the individual  
sections.  
RF7/SS  
Control  
Enable  
SS  
Edge  
Select  
2
Clock Select  
SSPM3:SSPM0  
SMP:CKE  
2
4
TMR2 Output  
RC3/SCK/  
SCL  
(
)
2
Edge  
Select  
TOSC  
Prescaler  
4, 16, 64  
Data to TX/RX in SSPSR  
TRIS bit  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 141  
PIC18FXX8  
SSPSR is the shift register used for shifting data in or  
out. SSPBUF is the buffer register to which data bytes  
are written to or read from.  
17.3.1  
REGISTERS  
The MSSP module has four registers for SPI mode  
operation. These are:  
In receive operations, SSPSR and SSPBUF together  
create a double buffered receiver. When SSPSR  
receives a complete byte, it is transferred to SSPBUF  
and the SSPIF interrupt is set.  
• MSSP Control Register1 (SSPCON1)  
• MSSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer (SSPBUF)  
• MSSP Shift Register (SSPSR) - Not directly  
accessible  
During transmission, the SSPBUF is not double buff-  
ered. A write to SSPBUF will write to both SSPBUF and  
SSPSR.  
SSPCON1 and SSPSTAT are the control and status  
registers in SPI mode operation. The SSPCON1 regis-  
ter is readable and writable. The lower 6 bits of the  
SSPSTAT are read only. The upper two bits of the  
SSPSTAT are read/write.  
REGISTER 17-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
bit 7  
bit 6  
SMP: Sample bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode  
CKE: SPI Clock Edge Select  
When CKP = 0:  
1= Data transmitted on rising edge of SCK  
0= Data transmitted on falling edge of SCK  
When CKP = 1:  
1= Data transmitted on falling edge of SCK  
0= Data transmitted on rising edge of SCK  
bit 5  
bit 4  
D/A: Data/Address bit  
Used in I2C mode only  
P: STOP bit  
Used in I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is  
cleared.  
bit 3  
bit 2  
bit 1  
bit 0  
S: START bit  
Used in I2C mode only  
R/W: Read/Write bit information  
Used in I2C mode only  
UA: Update Address  
Used in I2C mode only  
BF: Buffer Full Status bit (Receive mode only)  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41159B-page 142  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 17-2: SSPCON1: MSSP CONTROL REGISTER1 (SPI MODE)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
bit 7  
bit 6  
WCOL: Write Collision Detect bit (Transmit mode only)  
1= The SSPBUF register is written while it is still transmitting the previous word  
(must be cleared in software)  
0= No collision  
SSPOV: Receive Overflow Indicator bit  
SPI Slave mode:  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case  
of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode.The user  
must read the SSPBUF, even if only transmitting data, to avoid setting overflow  
(must be cleared in software).  
0= No overflow  
Note:  
In Master mode, the overflow bit is not set since each new reception (and  
transmission) is initiated by writing to the SSPBUF register.  
bit 5  
bit 4  
SSPEN: Synchronous Serial Port Enable bit  
1= Enables serial port and configures SCK, SDO, SDI, and SS as serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
Note:  
When enabled, these pins must be properly configured as input or output.  
CKP: Clock Polarity Select bit  
1= IDLE state for clock is a high level  
0= IDLE state for clock is a low level  
bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
0101= SPI Slave mode, clock = SCK pin, SS pin control disabled, SS can be used as I/O pin  
0100= SPI Slave mode, clock = SCK pin, SS pin control enabled  
0011= SPI Master mode, clock = TMR2 output/2  
0010= SPI Master mode, clock = FOSC/64  
0001= SPI Master mode, clock = FOSC/16  
0000= SPI Master mode, clock = FOSC/4  
Note:  
Bit combinations not specifically listed here are either reserved, or implemented in  
I2C mode only.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 143  
PIC18FXX8  
SSPBUF register during transmission/reception of data  
will be ignored, and the write collision detect bit, WCOL  
(SSPCON1<7>), will be set. User software must clear  
the WCOL bit so that it can be determined if the follow-  
ing write(s) to the SSPBUF register completed  
successfully.  
17.3.2  
OPERATION  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits (SSPCON1<5:0>) and SSPSTAT<7:6>.  
These control bits allow the following to be specified:  
• Master mode (SCK is the clock output)  
• Slave mode (SCK is the clock input)  
• Clock Polarity (IDLE state of SCK)  
When the application software is expecting to receive  
valid data, the SSPBUF should be read before the next  
byte of data to transfer is written to the SSPBUF. Buffer  
full bit, BF (SSPSTAT<0>), indicates when SSPBUF  
has been loaded with the received data (transmission  
is complete). When the SSPBUF is read, the BF bit is  
cleared. This data may be irrelevant if the SPI is only a  
transmitter. Generally, the MSSP Interrupt is used to  
determine when the transmission/reception has com-  
pleted. The SSPBUF must be read and/or written. If the  
interrupt method is not going to be used, then software  
polling can be done to ensure that a write collision does  
not occur. Example 17-1 shows the loading of the  
SSPBUF (SSPSR) for data transmission.  
• Data input sample phase (middle or end of data  
output time)  
• Clock edge (output data on rising/falling edge of  
SCK)  
• Clock Rate (Master mode only)  
• Slave Select mode (Slave mode only)  
The MSSP consists of a transmit/receive Shift Register  
(SSPSR) and a buffer register (SSPBUF). The SSPSR  
shifts the data in and out of the device, MSb first. The  
SSPBUF holds the data that was written to the SSPSR,  
until the received data is ready. Once the 8 bits of data  
have been received, that byte is moved to the SSPBUF  
register. Then the buffer full detect bit, BF  
(SSPSTAT<0>), and the interrupt flag bit, SSPIF, are  
set. This double buffering of the received data  
(SSPBUF) allows the next byte to start reception before  
reading the data that was just received. Any write to the  
The SSPSR is not directly readable or writable, and  
can only be accessed by addressing the SSPBUF reg-  
ister. Additionally, the MSSP status register (SSPSTAT)  
indicates the various status conditions.  
EXAMPLE 17-1:  
LOADING THE SSPBUF (SSPSR) REGISTER  
LOOP BTFSS SSPSTAT, BF  
;Has data been received(transmit complete)?  
BRA  
LOOP  
;No  
MOVF SSPBUF, W  
;WREG reg = contents of SSPBUF  
MOVWF RXDATA  
;Save in user RAM, if data is meaningful  
MOVF TXDATA, W  
MOVWF SSPBUF  
;W reg = contents of TXDATA  
;New data to xmit  
DS41159B-page 144  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
17.3.3  
ENABLING SPI I/O  
17.3.4  
TYPICAL CONNECTION  
To enable the serial port, SSP Enable bit, SSPEN  
(SSPCON1<5>), must be set. To reset or reconfigure  
SPI mode, clear the SSPEN bit, re-initialize the  
SSPCON registers, and then set the SSPEN bit. This  
configures the SDI, SDO, SCK, and SS pins as serial  
port pins. For the pins to behave as the serial port func-  
tion, some must have their data direction bits (in the  
TRIS register) appropriately programmed as follows:  
Figure 17-2 shows a typical connection between two  
microcontrollers. The master controller (Processor 1)  
initiates the data transfer by sending the SCK signal.  
Data is shifted out of both shift registers on their pro-  
grammed clock edge, and latched on the opposite  
edge of the clock. Both processors should be pro-  
grammed to the same Clock Polarity (CKP), then both  
controllers would send and receive data at the same  
time. Whether the data is meaningful (or dummy data)  
depends on the application software. This leads to  
three scenarios for data transmission:  
• SDI is automatically controlled by the SPI module  
• SDO must have TRISC<5> bit cleared  
• SCK (Master mode) must have TRISC<3> bit  
cleared  
• Master sends data — Slave sends dummy data  
• Master sends data — Slave sends data  
• SCK (Slave mode) must have TRISC<3> bit set  
• SS must have TRISF<7> bit set  
• Master sends dummy data — Slave sends data  
Any serial port function that is not desired may be over-  
ridden by programming the corresponding data direc-  
tion (TRIS) register to the opposite value.  
FIGURE 17-2:  
SPI MASTER/SLAVE CONNECTION  
SPI Master SSPM3:SSPM0 = 00xxb  
SPI Slave SSPM3:SSPM0 = 010xb  
SDO  
SDI  
Serial Input Buffer  
(SSPBUF)  
Serial Input Buffer  
(SSPBUF)  
SDI  
SDO  
Shift Register  
(SSPSR)  
Shift Register  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
SCK  
PROCESSOR 1  
PROCESSOR 2  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 145  
PIC18FXX8  
The clock polarity is selected by appropriately program-  
ming the CKP bit (SSPCON1<4>). This then, would  
give waveforms for SPI communication as shown in  
Figure 17-3, Figure 17-5, and Figure 17-6, where the  
MSB is transmitted first. In Master mode, the SPI clock  
rate (bit rate) is user programmable to be one of the  
following:  
17.3.5  
MASTER MODE  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2, Figure 17-2) is to broad-  
cast data by the software protocol.  
In Master mode, the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI is  
only going to receive, the SDO output could be dis-  
abled (programmed as an input). The SSPSR register  
will continue to shift in the signal present on the SDI pin  
at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPBUF register as  
if a normal received byte (interrupts and status bits  
appropriately set). This could be useful in receiver  
applications as a “Line Activity Monitor” mode.  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 • TCY)  
• FOSC/64 (or 16 • TCY)  
• Timer2 output/2  
This allows a maximum data rate (at 40 MHz) of  
10.00 Mbps.  
Figure 17-3 shows the waveforms for Master mode.  
When the CKE bit is set, the SDO data is valid before  
there is a clock edge on SCK. The change of the input  
sample is shown based on the state of the SMP bit. The  
time when the SSPBUF is loaded with the received  
data is shown.  
FIGURE 17-3:  
SPI MODE WAVEFORM (MASTER MODE)  
Write to  
SSPBUF  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
4 Clock  
Modes  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
bit6  
bit6  
bit2  
bit2  
bit5  
bit5  
bit4  
bit4  
bit1  
bit1  
bit0  
bit0  
SDO  
(CKE = 0)  
bit7  
bit7  
bit3  
bit3  
SDO  
(CKE = 1)  
SDI  
(SMP = 0)  
bit0  
bit7  
Input  
Sample  
(SMP = 0)  
SDI  
(SMP = 1)  
bit0  
bit7  
Input  
Sample  
(SMP = 1)  
SSPIF  
Next Q4 cycle  
after Q2↓  
SSPSR to  
SSPBUF  
DS41159B-page 146  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
the SDO pin is no longer driven, even if in the mid-  
dle of a transmitted byte, and becomes a floating  
output. External pull-up/pull-down resistors may be  
desirable, depending on the application.  
17.3.6  
SLAVE MODE  
In Slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched, the SSPIF interrupt flag bit is set.  
Note 1: When the SPI is in Slave mode with SS  
pin control enabled (SSPCON<3:0> =  
0100), the SPI module will reset if the SS  
pin is set to VDD.  
While in Slave mode, the external clock is supplied by  
the external clock source on the SCK pin. This external  
clock must meet the minimum high and low times as  
specified in the electrical specifications.  
2: If the SPI is used in Slave mode with CKE  
set, then the SS pin control must be  
enabled.  
While in SLEEP mode, the slave can transmit/receive  
data. When a byte is received, the device will wake-up  
from SLEEP.  
When the SPI module resets, the bit counter is forced  
to 0. This can be done by either forcing the SS pin to a  
high level or clearing the SSPEN bit.  
17.3.7  
SLAVE SELECT  
SYNCHRONIZATION  
To emulate two-wire communication, the SDO pin can  
be connected to the SDI pin. When the SPI needs to  
operate as a receiver, the SDO pin can be configured  
as an input. This disables transmissions from the SDO.  
The SDI can always be left as an input (SDI function),  
since it cannot create a bus conflict.  
The SS pin allows a Synchronous Slave mode. The  
SPI must be in Slave mode with SS pin control  
enabled (SSPCON1<3:0> = 04h). The pin must not  
be driven low for the SS pin to function as an input.  
The Data Latch must be high. When the SS pin is  
low, transmission and reception are enabled and  
the SDO pin is driven. When the SS pin goes high,  
FIGURE 17-4:  
SLAVE SYNCHRONIZATION WAVEFORM  
SS  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit6  
bit7  
bit7  
bit0  
SDO  
bit7  
SDI  
(SMP = 0)  
bit0  
bit7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 cycle  
SSPSR to  
SSPBUF  
after Q2↓  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 147  
PIC18FXX8  
FIGURE 17-5:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)  
SS  
Optional  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit6  
bit2  
bit5  
bit4  
bit1  
bit0  
SDO  
bit7  
bit3  
SDI  
(SMP = 0)  
bit0  
bit7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 cycle  
after Q2↓  
SSPSR to  
SSPBUF  
FIGURE 17-6:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)  
SS  
Not Optional  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
Write to  
SSPBUF  
bit6  
bit2  
bit5  
bit4  
bit1  
bit0  
SDO  
bit7  
bit7  
bit3  
SDI  
(SMP = 0)  
bit0  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 cycle  
after Q2↓  
SSPSR to  
SSPBUF  
DS41159B-page 148  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
17.3.8  
SLEEP OPERATION  
17.3.10 BUS MODE COMPATIBILITY  
In Master mode, all module clocks are halted and the  
transmission/reception will remain in that state until the  
device wakes from SLEEP. After the device returns to  
normal mode, the module will continue to  
transmit/receive data.  
Table 17-1 shows the compatibility between the  
standard SPI modes and the states of the CKP and  
CKE control bits.  
TABLE 17-1: SPI BUS MODES  
In Slave mode, the SPI transmit/receive shift register  
operates asynchronously to the device. This allows the  
device to be placed in SLEEP mode and data to be  
shifted into the SPI transmit/receive shift register.  
When all 8 bits have been received, the MSSP interrupt  
flag bit will be set and if enabled, will wake the device  
from SLEEP.  
Control Bits State  
Standard SPI Mode  
Terminology  
CKP  
CKE  
0, 0  
0, 1  
1, 0  
1, 1  
0
0
1
1
1
0
1
0
17.3.9  
EFFECTS OF A RESET  
There is also a SMP bit, which controls when the data  
is sampled.  
A RESET disables the MSSP module and terminates  
the current transfer.  
TABLE 17-2: REGISTERS ASSOCIATED WITH SPI OPERATION  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
RBIF  
0000 0000 0000 0000  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 0111 1111 0111 1111  
1111 1111 1111 1111  
PIE1  
IPR1  
TRISC  
TRISF  
SSPBUF  
SSPCON  
PORTC Data Direction Register  
TRISF7 TRISF6 TRISF5 TRISF4 TRISF3  
Synchronous Serial Port Receive Buffer/Transmit Register  
TRISF2  
TRISF1 TRISF0 1111 1111 uuuu uuuu  
xxxx xxxx uuuu uuuu  
WCOL  
SMP  
SSPOV  
CKE  
SSPEN  
D/A  
CKP  
P
SSPM3  
S
SSPM2  
R/W  
SSPM1 SSPM0 0000 0000 0000 0000  
SSPSTAT  
UA  
BF  
0000 0000 0000 0000  
Legend: x= unknown, u= unchanged, - = unimplemented, read as ’0’. Shaded cells are not used by the MSSP in SPI mode.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 149  
PIC18FXX8  
2
17.4.1  
REGISTERS  
17.4 I C Mode  
The MSSP module has six registers for I2C operation.  
These are:  
The MSSP module in I2C mode fully implements all  
master and slave functions (including general call sup-  
port) and provides interrupts on START and STOP bits  
in hardware to determine a free bus (multi-master func-  
tion). The MSSP module implements the standard  
mode specifications, as well as 7-bit and 10-bit  
addressing.  
• MSSP Control Register1 (SSPCON1)  
• MSSP Control Register2 (SSPCON2)  
• MSSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer (SSPBUF)  
• MSSP Shift Register (SSPSR) - Not directly  
accessible  
Two pins are used for data transfer:  
• Serial clock (SCL) - RC3/SCK/SCL  
• Serial data (SDA) - RC4/SDI/SDA  
• MSSP Address Register (SSPADD)  
SSPCON, SSPCON2 and SSPSTAT are the control  
and status registers in I2C mode operation. The  
SSPCON and SSPCON2 registers are readable and  
writable. The lower 6 bits of the SSPSTAT are read  
only. The upper two bits of the SSPSTAT are  
read/write.  
The user must configure these pins as inputs or outputs  
through the TRISC<4:3> bits.  
FIGURE 17-7:  
MSSP BLOCK DIAGRAM  
(I2C MODE)  
SSPSR is the shift register used for shifting data in or  
out. SSPBUF is the buffer register to which data bytes  
are written to or read from.  
Internal  
Data Bus  
Read  
Write  
SSPADD register holds the slave device address  
when the SSP is configured in I2C Slave mode. When  
the SSP is configured in Master mode, the lower  
seven bits of SSPADD act as the baud rate generator  
reload value.  
SSPBUF reg  
RC3/SCK/SCL  
Shift  
Clock  
In receive operations, SSPSR and SSPBUF together,  
create a double buffered receiver. When SSPSR  
receives a complete byte, it is transferred to SSPBUF  
and the SSPIF interrupt is set.  
SSPSR reg  
RC4/  
SDI/  
SDA  
MSb  
LSb  
Addr Match  
Match Detect  
During transmission, the SSPBUF is not double buff-  
ered. A write to SSPBUF will write to both SSPBUF and  
SSPSR.  
SSPADD reg  
START and  
Set, Reset  
S, P bits  
(SSPSTAT reg)  
STOP bit Detect  
DS41159B-page 150  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 17-3: SSPSTAT: MSSP STATUS REGISTER (I2C MODE)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
SMP: Slew Rate Control bit  
In Master or Slave mode:  
1 = Slew rate control disabled for Standard Speed mode (100 kHz and 1 MHz)  
0 = Slew rate control enabled for High Speed mode (400 kHz)  
CKE: SMBus Select bit  
In Master or Slave mode:  
1= Enable SMBus specific inputs  
0= Disable SMBus specific inputs  
D/A: Data/Address bit  
In Master mode:  
Reserved  
In Slave mode:  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
bit 4  
bit 3  
bit 2  
P: STOP bit  
1= Indicates that a STOP bit has been detected last  
0= STOP bit was not detected last  
Note:  
This bit is cleared on RESET and when SSPEN is cleared.  
S: START bit  
1= Indicates that a START bit has been detected last  
0= START bit was not detected last  
Note:  
This bit is cleared on RESET and when SSPEN is cleared.  
R/W: Read/Write bit Information (I2C mode only)  
In Slave mode:  
1= Read  
0= Write  
Note:  
This bit holds the R/W bit information following the last address match. This bit is only  
valid from the address match to the next START bit, STOP bit, or not ACK bit.  
In Master mode:  
1= Transmit is in progress  
0= Transmit is not in progress  
Note:  
ORing this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is  
in IDLE mode.  
bit 1  
bit 0  
UA: Update Address (10-bit Slave mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
In Transmit mode:  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
In Receive mode:  
1= Data transmit in progress (does not include the ACK and STOP bits), SSPBUF is full  
0= Data transmit complete (does not include the ACK and STOP bits), SSPBUF is empty  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 151  
PIC18FXX8  
REGISTER 17-4: SSPCON1: MSSP CONTROL REGISTER1 (I2C MODE)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
bit 7  
WCOL: Write Collision Detect bit  
In Master Transmit mode:  
1= A write to the SSPBUF register was attempted while the I2C conditions were not valid for  
a transmission to be started (must be cleared in software)  
0= No collision  
In Slave Transmit mode:  
1= The SSPBUF register is written while it is still transmitting the previous word (must be  
cleared in software)  
0= No collision  
In Receive mode (Master or Slave modes):  
This is a “don’t care” bit  
bit 6  
SSPOV: Receive Overflow Indicator bit  
In Receive mode:  
1= A byte is received while the SSPBUF register is still holding the previous byte (must  
be cleared in software)  
0= No overflow  
In Transmit mode:  
This is a “don’t care” bit in Transmit mode  
bit 5  
bit 4  
SSPEN: Synchronous Serial Port Enable bit  
1= Enables the serial port and configures the SDA and SCL pins as the serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
Note:  
When enabled, the SDA and SCL pins must be properly configured as input or output.  
CKP: SCK Release Control bit  
In Slave mode:  
1= Release clock  
0= Holds clock low (clock stretch), used to ensure data setup time  
In Master mode:  
Unused in this mode  
bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
1111= I2C Slave mode, 10-bit address with START and STOP bit interrupts enabled  
1110= I2C Slave mode, 7-bit address with START and STOP bit interrupts enabled  
1011= I2C Firmware Controlled Master mode (Slave IDLE)  
1000= I2C Master mode, clock = FOSC / (4 * (SSPADD+1))  
0111= I2C Slave mode, 10-bit address  
0110= I2C Slave mode, 7-bit address  
Note:  
Bit combinations not specifically listed here are either reserved, or implemented in  
SPI mode only.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41159B-page 152  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 17-5: SSPCON2: MSSP CONTROL REGISTER 2 (I2C MODE)  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RCEN  
R/W-0  
PEN  
R/W-0  
RSEN  
R/W-0  
SEN  
ACKSTAT  
ACKDT  
ACKEN  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
GCEN: General Call Enable bit (Slave mode only)  
1= Enable interrupt when a general call address (0000h) is received in the SSPSR  
0= General call address disabled  
ACKSTAT: Acknowledge Status bit (Master Transmit mode only)  
1= Acknowledge was not received from slave  
0= Acknowledge was received from slave  
ACKDT: Acknowledge Data bit (Master Receive mode only)  
1= Not Acknowledge  
0= Acknowledge  
Note:  
Value that will be transmitted when the user initiates an Acknowledge sequence at  
the end of a receive.  
bit 4  
ACKEN: Acknowledge Sequence Enable bit (Master Receive mode only)  
1= Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data bit.  
Automatically cleared by hardware.  
0= Acknowledge sequence IDLE  
bit 3  
bit 2  
RCEN: Receive Enable bit (Master Mode only)  
1= Enables Receive mode for I2C  
0= Receive IDLE  
PEN: STOP Condition Enable bit (Master mode only)  
1= Initiate STOP condition on SDA and SCL pins. Automatically cleared by hardware.  
0= STOP condition IDLE  
bit 1  
bit 0  
RSEN: Repeated START Condition Enabled bit (Master mode only)  
1= Initiate Repeated START condition on SDA and SCL pins.  
Automatically cleared by hardware.  
0= Repeated START condition IDLE  
SEN: START Condition Enabled/Stretch Enabled bit  
In Master mode:  
1= Initiate START condition on SDA and SCL pins. Automatically cleared by hardware.  
0= START condition IDLE  
In Slave mode:  
1= Clock stretching is enabled for both Slave Transmit and Slave Receive (stretch enabled)  
0= Clock stretching is enabled for Slave Transmit only (Legacy mode)  
Note: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is not in the IDLE  
mode, this bit may not be set (no spooling) and the SSPBUF may not be written (or  
writes to the SSPBUF are disabled).  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 153  
PIC18FXX8  
17.4.2  
OPERATION  
17.4.3.1  
Addressing  
Once the MSSP module has been enabled, it waits for  
a START condition to occur. Following the START con-  
dition, the 8-bits are shifted into the SSPSR register. All  
incoming bits are sampled with the rising edge of the  
clock (SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match, and the BF  
and SSPOV bits are clear, the following events occur:  
The MSSP module functions are enabled by setting  
MSSP Enable bit, SSPEN (SSPCON<5>).  
The SSPCON1 register allows control of the I2C oper-  
ation. Four mode selection bits (SSPCON<3:0>) allow  
one of the following I2C modes to be selected:  
• I2C Master mode, clock = OSC/4 (SSPADD +1)  
• I2C Slave mode (7-bit address)  
• I2C Slave mode (10-bit address)  
• I2C Slave mode (7-bit address), with START and  
STOP bit interrupts enabled  
1. The SSPSR register value is loaded into the  
SSPBUF register.  
• I2C Slave mode (10-bit address), with START and  
STOP bit interrupts enabled  
• I2C Firmware controlled master operation, slave  
is IDLE  
Selection of any I2C mode, with the SSPEN bit set,  
forces the SCL and SDA pins to be open drain, pro-  
vided these pins are programmed to inputs by setting  
the appropriate TRISC bits. To ensure proper operation  
of the module, pull-up resistors must be provided  
externally to the SCL and SDA pins.  
2. The buffer full bit BF is set.  
3. An ACK pulse is generated.  
4. MSSP interrupt flag bit, SSPIF (PIR1<3>) is set  
(interrupt is generated if enabled) on the falling  
edge of the ninth SCL pulse.  
In 10-bit Address mode, two address bytes need to be  
received by the slave. The five Most Significant bits  
(MSbs) of the first address byte specify if this is a 10-bit  
address. Bit R/W (SSPSTAT<2>) must specify a write  
so the slave device will receive the second address  
byte. For a 10-bit address, the first byte would equal  
11110 A9 A8 0’, where ‘A9’ and ‘A8’ are the two  
MSbs of the address. The sequence of events for 10-bit  
address is as follows, with steps 7 through 9 for the  
slave-transmitter:  
17.4.3  
SLAVE MODE  
In Slave mode, the SCL and SDA pins must be config-  
ured as inputs (TRISC<4:3> set). The MSSP module  
will override the input state with the output data when  
required (slave-transmitter).  
The I2C Slave mode hardware will always generate an  
interrupt on an address match. Through the mode  
select bits, the user can also choose to interrupt on  
START and STOP bits  
1. Receive first (high) byte of Address (bits SSPIF,  
BF and bit UA (SSPSTAT<1>) are set).  
2. Update the SSPADD register with second (low)  
byte of Address (clears bit UA and releases the  
SCL line).  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
When an address is matched or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the Acknowledge (ACK) pulse and  
load the SSPBUF register with the received value cur-  
rently in the SSPSR register.  
4. Receive second (low) byte of Address (bits  
SSPIF, BF, and UA are set).  
5. Update the SSPADD register with the first (high)  
byte of Address. If match releases SCL line, this  
will clear bit UA.  
Any combination of the following conditions will cause  
the MSSP module not to give this ACK pulse:  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
• The buffer full bit BF (SSPSTAT<0>) was set  
before the transfer was received.  
7. Receive Repeated START condition.  
• The overflow bit SSPOV (SSPCON<6>) was set  
before the transfer was received.  
8. Receive first (high) byte of Address (bits SSPIF  
and BF are set).  
In this case, the SSPSR register value is not loaded  
into the SSPBUF, but bit SSPIF (PIR1<3>) is set. The  
BF bit is cleared by reading the SSPBUF register, while  
bit SSPOV is cleared through software.  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
The SCL clock input must have a minimum high and  
low for proper operation. The high and low times of the  
I2C specification, as well as the requirement of the  
MSSP module, are shown in timing parameter #100  
and parameter #101.  
DS41159B-page 154  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
17.4.3.2  
Reception  
17.4.3.3  
Transmission  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register and the SDA line is held low  
(ACK).  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit and pin RC3/SCK/SCL is held  
low, regardless of SEN (see Section 17.4.4, Clock  
Stretching for more detail). By stretching the clock, the  
master will be unable to assert another clock pulse until  
the slave is done preparing the transmit data.The trans-  
mit data must be loaded into the SSPBUF register,  
which also loads the SSPSR register. Then pin  
RC3/SCK/SCL should be enabled by setting bit CKP  
(SSPCON1<4>). The eight data bits are shifted out on  
the falling edge of the SCL input. This ensures that the  
SDA signal is valid during the SCL high time  
(Figure 17-9).  
When the address byte overflow condition exists, then  
the no Acknowledge (ACK) pulse is given. An overflow  
condition is defined as either bit BF (SSPSTAT<0>) is  
set, or bit SSPOV (SSPCON1<6>) is set.  
An MSSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF (PIR1<3>) must be cleared in soft-  
ware. The SSPSTAT register is used to determine the  
status of the byte.  
If SEN is enabled (SSPCON1<0>=1), RC3/SCK/SCL  
will be held low (clock stretch) following each data  
transfer. The clock must be released by setting bit CKP  
(SSPCON<4>). See Section 17.4.4, Clock Stretching  
for more detail.  
The ACK pulse from the master-receiver is latched on  
the rising edge of the ninth SCL input pulse. If the SDA  
line is high (not ACK), then the data transfer is com-  
plete. In this case, when the ACK is latched by the  
slave, the slave logic is reset (resets SSPSTAT regis-  
ter) and the slave monitors for another occurrence of  
the START bit. If the SDA line was low (ACK), the next  
transmit data must be loaded into the SSPBUF register.  
Again, pin RC3/SCK/SCL must be enabled by setting  
bit CKP.  
An MSSP interrupt is generated for each data transfer  
byte. The SSPIF bit must be cleared in software and  
the SSPSTAT register is used to determine the status  
of the byte. The SSPIF bit is set on the falling edge of  
the ninth clock pulse.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 155  
PIC18FXX8  
2
FIGURE 17-8:  
I C SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 7-BIT ADDRESS)  
DS41159B-page 156  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
2
FIGURE 17-9:  
I C SLAVE MODE TIMING (TRANSMISSION, 7-BIT ADDRESS)  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 157  
PIC18FXX8  
FIGURE 17-10:  
I2C SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 10-BIT ADDRESS)  
DS41159B-page 158  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
2
FIGURE 17-11:  
I C SLAVE MODE TIMING (TRANSMISSION, 10-BIT ADDRESS)  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 159  
PIC18FXX8  
17.4.4  
CLOCK STRETCHING  
17.4.4.3  
Clock Stretching for 7-bit Slave  
Transmit Mode  
Both 7- and 10-bit Slave modes implement automatic  
clock stretching during a transmit sequence.  
7-bit Slave Transmit mode implements clock stretching  
by clearing the CKP bit after the falling edge of the  
ninth clock, if the BF bit is clear. This occurs, regard-  
less of the state of the SEN bit.  
The SEN bit (SSPCON2<0>) allows clock stretching to  
be enabled during receives. Setting SEN will cause  
the SCL pin to be held low at the end of each data  
receive sequence.  
The user’s ISR must set the CKP bit before transmis-  
sion is allowed to continue. By holding the SCL line  
low, the user has time to service the ISR and load the  
contents of the SSPBUF before the master device can  
initiate another transmit sequence (see Figure 17-9).  
17.4.4.1  
Clock Stretching for 7-bit Slave  
Receive Mode (SEN = 1)  
In 7-bit Slave Receive mode, on the falling edge of the  
ninth clock at the end of the ACK sequence, if the BF  
bit is set, the CKP bit in the SSPCON1 register is auto-  
matically cleared, forcing the SCL output to be held  
low. The CKP being cleared to ‘0’ will assert the SCL  
line low. The CKP bit must be set in the user’s ISR  
before reception is allowed to continue. By holding the  
SCL line low, the user has time to service the ISR and  
read the contents of the SSPBUF before the master  
device can initiate another receive sequence. This will  
prevent buffer overruns from occurring.  
Note 1: If the user loads the contents of SSPBUF,  
setting the BF bit before the falling edge of  
the ninth clock, the CKP bit will not be  
cleared and clock stretching will not occur.  
2: The CKP bit can be set in software,  
regardless of the state of the BF bit.  
17.4.4.4  
Clock Stretching for 10-bit Slave  
Transmit Mode  
In 10-bit Slave Transmit mode, clock stretching is con-  
trolled during the first two address sequences by the  
state of the UA bit, just as it is in 10-bit Slave Receive  
mode. The first two addresses are followed by a third  
address sequence, which contains the high order bits  
of the 10-bit address and the R/W bit set to ‘1’. After  
the third address sequence is performed, the UA bit is  
not set, the module is now configured in Transmit  
mode, and clock stretching is controlled by the BF flag,  
as in 7-bit Slave Transmit mode (see Figure 17-11).  
Note 1: If the user reads the contents of the  
SSPBUF before the falling edge of the  
ninth clock, thus clearing the BF bit, the  
CKP bit will not be cleared and clock  
stretching will not occur.  
2: The CKP bit can be set in software,  
regardless of the state of the BF bit. The  
user should be careful to clear the BF bit  
in the ISR before the next receive  
sequence, in order to prevent an overflow  
condition.  
17.4.4.2  
Clock Stretching for 10-bit Slave  
Receive Mode (SEN = 1)  
In 10-bit Slave Receive mode, during the address  
sequence, clock stretching automatically takes place  
but CKP is not cleared. During this time, if the UA bit is  
set after the ninth clock, clock stretching is initiated.  
The UA bit is set after receiving the upper byte of the  
10-bit address, and following the receive of the second  
byte of the 10-bit address with the R/W bit cleared to  
‘0’. The release of the clock line occurs upon updating  
SSPADD. Clock stretching will occur on each data  
receive sequence as described in 7-bit mode.  
Note: If the user polls the UA bit and clears it by  
updating the SSPADD register before the  
falling edge of the ninth clock occurs, and if  
the user hasn’t cleared the BF bit by read-  
ing the SSPBUF register before that time,  
then the CKP bit will still NOT be asserted  
low. Clock stretching on the basis of the  
state of the BF bit only occurs during a data  
sequence, not an address sequence.  
DS41159B-page 160  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
assert the SCL line until an external I2C master device  
has already asserted the SCL line. The SCL output will  
remain low until the CKP bit is set, and all other devices  
on the I2C bus have de-asserted SCL. This ensures  
that a write to the CKP bit will not violate the minimum  
high time requirement for SCL (see Figure 17-12).  
17.4.4.5  
Clock Synchronization and  
the CKP bit  
If a user clears the CKP bit, the SCL output is forced to  
‘0’. Setting the CKP bit will not assert the SCL output  
low until the SCL output is already sampled low. If the  
user attempts to drive SCL low, the CKP bit will not  
FIGURE 17-12:  
CLOCK SYNCHRONIZATION TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
SDA  
SCL  
DX  
DX-1  
Master device  
asserts clock  
CKP  
Master device  
de-asserts clock  
WR  
SSPCON  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 161  
PIC18FXX8  
2
FIGURE 17-13:  
I C SLAVE MODE TIMING WITH SEN = 1 (RECEPTION, 7-BIT ADDRESS)  
DS41159B-page 162  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 17-14:  
I2C SLAVE MODE TIMING SEN = 1 (RECEPTION, 10-BIT ADDRESS)  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 163  
PIC18FXX8  
If the general call address matches, the SSPSR is  
transferred to the SSPBUF, the BF flag bit is set (eighth  
bit), and on the falling edge of the ninth bit (ACK bit),  
the SSPIF interrupt flag bit is set.  
17.4.5  
GENERAL CALL ADDRESS  
SUPPORT  
The addressing procedure for the I2C bus is such that  
the first byte after the START condition usually deter-  
mines which device will be the slave addressed by the  
master. The exception is the general call address,  
which can address all devices. When this address is  
used, all devices should, in theory, respond with an  
Acknowledge.  
When the interrupt is serviced, the source for the inter-  
rupt can be checked by reading the contents of the  
SSPBUF. The value can be used to determine if the  
address was device specific or a general call address.  
In 10-bit mode, the SSPADD is required to be updated  
for the second half of the address to match, and the UA  
bit is set (SSPSTAT<1>). If the general call address is  
sampled when the GCEN bit is set, while the slave is  
configured in 10-bit Address mode, then the second  
half of the address is not necessary, the UA bit will not  
be set, and the slave will begin receiving data after the  
Acknowledge (Figure 17-15).  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all 0’s with R/W = 0.  
The general call address is recognized when the Gen-  
eral Call Enable bit (GCEN) is enabled (SSPCON2<7>  
set). Following a START bit detect, 8-bits are shifted  
into the SSPSR and the address is compared against  
the SSPADD. It is also compared to the general call  
address and fixed in hardware.  
FIGURE 17-15:  
SLAVE MODE GENERAL CALL ADDRESS SEQUENCE  
(7 OR 10-BIT ADDRESS MODE)  
Address is compared to General Call Address  
after ACK, set interrupt  
Receiving data  
D5 D4 D3 D2 D1  
ACK  
R/W = 0  
General Call Address  
ACK  
SDA  
SCL  
D7 D6  
D0  
8
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
9
S
SSPIF  
BF (SSPSTAT<0>)  
Cleared in software  
SSPBUF is read  
SSPOV (SSPCON1<6>)  
GCEN (SSPCON2<7>)  
’0’  
’1’  
DS41159B-page 164  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
Note: The MSSP Module, when configured in I2C  
Master mode, does not allow queueing of  
events. For instance, the user is not  
allowed to initiate a START condition and  
immediately write the SSPBUF register to  
initiate transmission before the START  
condition is complete. In this case, the  
SSPBUF will not be written to and the  
WCOL bit will be set, indicating that a write  
to the SSPBUF did not occur.  
17.4.6  
MASTER MODE  
Master mode is enabled by setting and clearing the  
appropriate SSPM bits in SSPCON1 and by setting the  
SSPEN bit. In Master mode, the SCL and SDA lines  
are manipulated by the MSSP hardware.  
Master mode of operation is supported by interrupt  
generation on the detection of the START and STOP  
conditions. The STOP (P) and START (S) bits are  
cleared from a RESET or when the MSSP module is  
disabled. Control of the I2C bus may be taken when the  
P bit is set or the bus is IDLE, with both the S and P bits  
clear.  
The following events will cause SSP interrupt flag bit,  
SSPIF, to be set (SSP interrupt if enabled):  
• START condition  
In Firmware Controlled Master mode, user code con-  
ducts all I2C bus operations based on START and  
STOP bit conditions.  
• STOP condition  
• Data transfer byte transmitted/received  
• Acknowledge Transmit  
• Repeated START  
Once Master mode is enabled, the user has six  
options.  
1. Assert a START condition on SDA and SCL.  
2. Assert a Repeated START condition on SDA  
and SCL.  
3. Write to the SSPBUF register initiating transmis-  
sion of data/address.  
4. Configure the I2C port to receive data.  
5. Generate an Acknowledge condition at the end  
of a received byte of data.  
6. Generate a STOP condition on SDA and SCL.  
2
FIGURE 17-16:  
MSSP BLOCK DIAGRAM (I C MASTER MODE)  
Internal  
Data Bus  
SSPM3:SSPM0  
SSPADD<6:0>  
Read  
Write  
SSPBUF  
SSPSR  
Baud  
Rate  
Generator  
SDA  
Shift  
Clock  
SDA in  
MSb  
LSb  
START bit, STOP bit,  
Acknowledge  
Generate  
SCL  
START bit Detect  
STOP bit Detect  
Write Collision Detect  
Clock Arbitration  
State Counter for  
end of XMIT/RCV  
SCL in  
Bus Collision  
Set/Reset, S, P, WCOL (SSPSTAT)  
Set SSPIF, BCLIF  
Reset ACKSTAT, PEN (SSPCON2)  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 165  
PIC18FXX8  
I2C Master Mode Operation  
A typical transmit sequence would go as follows:  
1. The user generates a START condition by set-  
17.4.6.1  
The master device generates all of the serial clock  
pulses and the START and STOP conditions. A trans-  
fer is ended with a STOP condition or with a Repeated  
START condition. Since the Repeated START condi-  
tion is also the beginning of the next serial transfer, the  
I2C bus will not be released.  
ting  
the  
START  
enable  
bit,  
SEN  
(SSPCON2<0>).  
2. SSPIF is set. The MSSP module will wait the  
required start time before any other operation  
takes place.  
3. The user loads the SSPBUF with the slave  
address to transmit.  
In Master Transmitter mode, serial data is output  
through SDA, while SCL outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the Read/Write (R/W) bit.  
In this case, the R/W bit will be logic ’0’. Serial data is  
transmitted 8 bits at a time. After each byte is transmit-  
ted, an Acknowledge bit is received. START and STOP  
conditions are output to indicate the beginning and the  
end of a serial transfer.  
4. Address is shifted out the SDA pin until all 8 bits  
are transmitted.  
5. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
6. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
In Master Receive mode, the first byte transmitted con-  
tains the slave address of the transmitting device  
(7 bits) and the R/W bit. In this case, the R/W bit will be  
logic ’1’. Thus, the first byte transmitted is a 7-bit slave  
address followed by a ’1’ to indicate receive bit. Serial  
data is received via SDA, while SCL outputs the serial  
clock. Serial data is received 8 bits at a time. After each  
byte is received, an Acknowledge bit is transmitted.  
START and STOP conditions indicate the beginning  
and end of transmission.  
7. The user loads the SSPBUF with eight bits of  
data.  
8. Data is shifted out the SDA pin until all 8 bits are  
transmitted.  
9. The MSSP Module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
10. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
The baud rate generator used for the SPI mode opera-  
tion is used to set the SCL clock frequency for either  
100 kHz, 400 kHz or 1 MHz I2C operation. See  
Section 17.4.7, Baud Rate Generator for more details.  
11. The user generates a STOP condition by setting  
the STOP enable bit PEN (SSPCON2<2>).  
12. Interrupt is generated once the STOP condition  
is complete.  
DS41159B-page 166  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
Once the given operation is complete (i.e., transmis-  
sion of the last data bit is followed by ACK), the internal  
clock will automatically stop counting and the SCL pin  
will remain in its last state.  
17.4.7  
BAUD RATE GENERATOR  
In I2C Master mode, the baud rate generator (BRG)  
reload value is placed in the lower 7 bits of the  
SSPADD register (Figure 17-17). When a write occurs  
to SSPBUF, the baud rate generator will automatically  
begin counting. The BRG counts down to 0 and stops  
until another reload has taken place. The BRG count is  
decremented twice per instruction cycle (TCY) on the  
Q2 and Q4 clocks. In I2C Master mode, the BRG is  
reloaded automatically.  
Table 17-3 demonstrates clock rates based on  
instruction cycles and the BRG value loaded into  
SSPADD.  
FIGURE 17-17:  
BAUD RATE GENERATOR BLOCK DIAGRAM  
SSPM3:SSPM0  
SSPADD<6:0>  
SSPM3:SSPM0  
SCL  
Reload  
Control  
Reload  
BRG Down Counter  
CLKO  
FOSC/4  
TABLE 17-3: I2C CLOCK RATE W/BRG  
(2)  
FSCL  
(2 Rollovers of BRG)  
FCY  
FCY*2  
BRG Value  
10 MHz  
10 MHz  
10 MHz  
4 MHz  
4 MHz  
4 MHz  
1 MHz  
1 MHz  
1 MHz  
20 MHz  
20 MHz  
20 MHz  
8 MHz  
8 MHz  
8 MHz  
2 MHz  
2 MHz  
2 MHz  
19h  
20h  
3Fh  
0Ah  
0Dh  
28h  
03h  
0Ah  
00h  
400 kHz(1)  
312.5 kHz  
100 kHz  
400 kHz(1)  
308 kHz  
100 kHz  
333 kHz(1)  
100kHz  
1 MHz(1)  
Note 1: The I2C interface does not conform to the 400 kHz I2C specification (which applies to rates greater than  
100 kHz) in all details, but may be used with care where higher rates are required by the application.  
2: Actual frequency will depend on bus conditions.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 167  
PIC18FXX8  
sampled high, the baud rate generator is reloaded with  
the contents of SSPADD<6:0> and begins counting.  
This ensures that the SCL high time will always be at  
least one BRG rollover count, in the event that the clock  
is held low by an external device (Figure 17-18).  
17.4.7.1  
Clock Arbitration  
Clock arbitration occurs when the master, during any  
receive, transmit or Repeated START/STOP condition,  
de-asserts the SCL pin (SCL allowed to float high).  
When the SCL pin is allowed to float high, the baud rate  
generator (BRG) is suspended from counting until the  
SCL pin is actually sampled high. When the SCL pin is  
FIGURE 17-18:  
BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION  
SDA  
DX  
DX-1  
SCL allowed to transition high  
SCL de-asserted but slave holds  
SCL low (clock arbitration)  
SCL  
BRG decrements on  
Q2 and Q4 cycles  
BRG  
Value  
03h  
02h  
01h  
00h (hold off)  
03h  
02h  
SCL is sampled high, reload takes  
place and BRG starts its count.  
BRG  
Reload  
DS41159B-page 168  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
17.4.8  
I2C MASTER MODE START  
CONDITION TIMING  
17.4.8.1  
WCOL Status Flag  
If the user writes the SSPBUF when a START  
sequence is in progress, the WCOL is set and the con-  
tents of the buffer are unchanged (the write doesn’t  
occur).  
To initiate a START condition, the user sets the START  
condition enable bit, SEN (SSPCON2<0>). If the SDA  
and SCL pins are sampled high, the baud rate genera-  
tor is reloaded with the contents of SSPADD<6:0> and  
starts its count. If SCL and SDA are both sampled high  
when the baud rate generator times out (TBRG), the  
SDA pin is driven low. The action of the SDA being  
driven low, while SCL is high, is the START condition  
and causes the S bit (SSPSTAT<3>) to be set. Follow-  
ing this, the baud rate generator is reloaded with the  
contents of SSPADD<6:0> and resumes its count.  
When the baud rate generator times out (TBRG), the  
SEN bit (SSPCON2<0>) will be automatically cleared  
by hardware, the baud rate generator is suspended,  
leaving the SDA line held low and the START condition  
is complete.  
Note: Because queueing of events is not  
allowed, writing to the lower 5 bits of  
SSPCON2 is disabled until the START  
condition is complete.  
Note: If, at the beginning of the START condition,  
the SDA and SCL pins are already sam-  
pled low, or if during the START condition  
the SCL line is sampled low before the  
SDA line is driven low, a bus collision  
occurs, the Bus Collision Interrupt Flag,  
BCLIF is set, the START condition is  
aborted, and the I2C module is reset into its  
IDLE state.  
FIGURE 17-19:  
FIRST START BIT TIMING  
Set S bit (SSPSTAT<3>)  
Write to SEN bit occurs here  
SDA = 1,  
At completion of START bit,  
Hardware clears SEN bit  
and sets SSPIF bit  
SCL = 1  
TBRG  
TBRG  
Write to SSPBUF occurs here  
2nd bit  
1st bit  
SDA  
TBRG  
SCL  
TBRG  
S
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 169  
PIC18FXX8  
I2C MASTER MODE REPEATED  
START CONDITION TIMING  
Immediately following the SSPIF bit getting set, the  
user may write the SSPBUF with the 7-bit address in  
7-bit mode, or the default first address in 10-bit mode.  
After the first eight bits are transmitted and an ACK is  
received, the user may then transmit an additional eight  
bits of address (10-bit mode) or eight bits of data (7-bit  
mode).  
17.4.9  
A Repeated START condition occurs when the RSEN  
bit (SSPCON2<1>) is programmed high and the I2C  
logic module is in the IDLE state. When the RSEN bit is  
set, the SCL pin is asserted low. When the SCL pin is  
sampled low, the baud rate generator is loaded with the  
contents of SSPADD<5:0> and begins counting. The  
SDA pin is released (brought high) for one baud rate  
generator count (TBRG). When the baud rate generator  
times out, if SDA is sampled high, the SCL pin will be  
de-asserted (brought high). When SCL is sampled  
high, the baud rate generator is reloaded with the con-  
tents of SSPADD<6:0> and begins counting. SDA and  
SCL must be sampled high for one TBRG. This action is  
then followed by assertion of the SDA pin (SDA = 0) for  
17.4.9.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Repeated  
START sequence is in progress, the WCOL is set and  
the contents of the buffer are unchanged (the write  
doesn’t occur).  
Note: Because queueing of events is not  
allowed, writing of the lower 5 bits of  
SSPCON2 is disabled until the Repeated  
START condition is complete.  
one TBRG while SCL is high. Following this, the RSEN  
,
bit (SSPCON2<1>) will be automatically cleared and  
the baud rate generator will not be reloaded, leaving  
the SDA pin held low. As soon as a START condition is  
detected on the SDA and SCL pins, the S bit  
(SSPSTAT<3>) will be set. The SSPIF bit will not be set  
until the baud rate generator has timed out.  
Note 1: If RSEN is programmed while any other  
event is in progress, it will not take effect.  
2: A bus collision during the Repeated  
START condition occurs if:  
• SDA is sampled low when SCL goes  
from low to high.  
• SCL goes low before SDA is  
asserted low. This may indicate that  
another master is attempting to  
transmit a data "1".  
FIGURE 17-20:  
REPEAT START CONDITION WAVEFORM  
Set S (SSPSTAT<3>)  
Write to SSPCON2  
occurs here.  
SDA = 1,  
SDA = 1,  
SCL = 1  
At completion of START bit,  
hardware clear RSEN bit  
and set SSPIF  
SCL (no change)  
TBRG  
TBRG  
TBRG  
1st bit  
SDA  
Write to SSPBUF occurs here  
TBRG  
Falling edge of ninth clock  
End of Xmit  
SCL  
TBRG  
Sr = Repeated START  
DS41159B-page 170  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
17.4.10 I2C MASTER MODE  
TRANSMISSION  
17.4.10.3 ACKSTAT Status Flag  
In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is  
cleared when the slave has sent an Acknowledge  
(ACK = 0), and is set when the slave does not Acknowl-  
edge (ACK = 1). A slave sends an Acknowledge when  
it has recognized its address (including a general call),  
or when the slave has properly received its data.  
Transmission of a data byte, a 7-bit address, or the  
other half of a 10-bit address is accomplished by simply  
writing a value to the SSPBUF register. This action will  
set the buffer full flag bit, BF, and allow the baud rate  
generator to begin counting and start the next transmis-  
sion. Each bit of address/data will be shifted out onto  
the SDA pin after the falling edge of SCL is asserted  
(see data hold time specification parameter 106). SCL  
is held low for one baud rate generator rollover count  
(TBRG). Data should be valid before SCL is released  
high (see data setup time specification parameter 107).  
When the SCL pin is released high, it is held that way  
for TBRG. The data on the SDA pin must remain stable  
for that duration and some hold time after the next fall-  
ing edge of SCL. After the eighth bit is shifted out (the  
falling edge of the eighth clock), the BF flag is cleared  
and the master releases SDA. This allows the slave  
device being addressed to respond with an ACK bit  
during the ninth bit time if an address match occurred  
or if data was received properly. The status of ACK is  
written into the ACKDT bit on the falling edge of the  
ninth clock. If the master receives an Acknowledge, the  
Acknowledge status bit, ACKSTAT, is cleared. If not,  
the bit is set. After the ninth clock, the SSPIF bit is set  
and the master clock (baud rate generator) is sus-  
pended until the next data byte is loaded into the  
SSPBUF, leaving SCL low and SDA unchanged  
(Figure 17-21).  
17.4.11 I2C MASTER MODE RECEPTION  
Master mode reception is enabled by programming the  
receive enable bit, RCEN (SSPCON2<3>).  
Note: The RCEN bit should be set after ACK  
sequence is complete, or the RCEN bit will  
be disregarded.  
The baud rate generator begins counting, and on each  
rollover, the state of the SCL pin changes (high to  
low/low to high) and data is shifted into the SSPSR.  
After the falling edge of the eighth clock, the receive  
enable flag is automatically cleared, the contents of the  
SSPSR are loaded into the SSPBUF, the BF flag bit is  
set, the SSPIF flag bit is set and the baud rate genera-  
tor is suspended from counting, holding SCL low. The  
MSSP is now in IDLE state, awaiting the next com-  
mand. When the buffer is read by the CPU, the BF flag  
bit is automatically cleared. The user can then send an  
Acknowledge bit at the end of reception, by setting the  
Acknowledge sequence enable bit, ACKEN  
(SSPCON2<4>).  
17.4.11.1 BF Status Flag  
After the write to the SSPBUF, each bit of address will  
be shifted out on the falling edge of SCL until all seven  
address bits and the R/W bit are completed. On the fall-  
ing edge of the eighth clock, the master will de-assert  
the SDA pin, allowing the slave to respond with an  
Acknowledge. On the falling edge of the ninth clock, the  
master will sample the SDA pin to see if the address  
was recognized by a slave. The status of the ACK bit is  
loaded into the ACKSTAT status bit (SSPCON2<6>).  
Following the falling edge of the ninth clock transmis-  
sion of the address, the SSPIF is set, the BF flag is  
cleared and the baud rate generator is turned off until  
another write to the SSPBUF takes place, holding SCL  
low and allowing SDA to float.  
In receive operation, the BF bit is set when an address  
or data byte is loaded into SSPBUF from SSPSR. It is  
cleared when the SSPBUF register is read.  
17.4.11.2 SSPOV Status Flag  
In receive operation, the SSPOV bit is set when 8 bits  
are received into the SSPSR and the BF flag bit is  
already set from a previous reception.  
17.4.11.3 WCOL Status Flag  
If the user writes the SSPBUF when a receive is  
already in progress (i.e., SSPSR is still shifting in a data  
byte), the WCOL bit is set and the contents of the buffer  
are unchanged (the write doesn’t occur).  
17.4.10.1 BF Status Flag  
In Transmit mode, the BF bit (SSPSTAT<0>) is set  
when the CPU writes to SSPBUF and is cleared when  
all 8 bits are shifted out.  
17.4.10.2 WCOL Status Flag  
If the user writes the SSPBUF when a transmit is  
already in progress (i.e., SSPSR is still shifting out a  
data byte), the WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
WCOL must be cleared in software.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 171  
PIC18FXX8  
2
FIGURE 17-21:  
I C MASTER MODE WAVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESS)  
DS41159B-page 172  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
2
FIGURE 17-22:  
I C MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS)  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 173  
PIC18FXX8  
17.4.12 ACKNOWLEDGE SEQUENCE  
TIMING  
17.4.13 STOP CONDITION TIMING  
A STOP bit is asserted on the SDA pin at the end of a  
receive/transmit by setting the STOP sequence enable  
bit, PEN (SSPCON2<2>). At the end of a receive/trans-  
mit the SCL line is held low after the falling edge of the  
ninth clock. When the PEN bit is set, the master will  
assert the SDA line low. When the SDA line is sampled  
low, the baud rate generator is reloaded and counts  
down to 0. When the baud rate generator times out, the  
SCL pin will be brought high, and one TBRG (baud rate  
generator rollover count) later, the SDA pin will be  
de-asserted. When the SDA pin is sampled high while  
SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG  
later, the PEN bit is cleared and the SSPIF bit is set  
(Figure 17-24).  
An Acknowledge sequence is enabled by setting the  
Acknowledge  
sequence  
enable  
bit,  
ACKEN  
(SSPCON2<4>). When this bit is set, the SCL pin is  
pulled low and the contents of the Acknowledge data bit  
are presented on the SDA pin. If the user wishes to gen-  
erate an Acknowledge, then the ACKDT bit should be  
cleared. If not, the user should set the ACKDT bit before  
starting an Acknowledge sequence. The baud rate gen-  
erator then counts for one rollover period (TBRG) and the  
SCL pin is de-asserted (pulled high). When the SCL pin  
is sampled high (clock arbitration), the baud rate gener-  
ator counts for TBRG. The SCL pin is then pulled low. Fol-  
lowing this, the ACKEN bit is automatically cleared, the  
baud rate generator is turned off and the MSSP module  
then goes into IDLE mode (Figure 17-23).  
17.4.13.1 WCOL Status Flag  
If the user writes the SSPBUF when a STOP sequence  
is in progress, then the WCOL bit is set and the con-  
tents of the buffer are unchanged (the write doesn’t  
occur).  
17.4.12.1 WCOL Status Flag  
If the user writes the SSPBUF when an Acknowledge  
sequence is in progress, then WCOL is set and the con-  
tents of the buffer are unchanged (the write doesn’t occur).  
FIGURE 17-23:  
ACKNOWLEDGE SEQUENCE WAVEFORM  
Acknowledge sequence starts here,  
Write to SSPCON2  
ACKEN automatically cleared  
ACKEN = 1, ACKDT = 0  
TBRG  
ACK  
TBRG  
SDA  
SCL  
D0  
8
9
SSPIF  
Cleared in  
Set SSPIF at the end  
of receive  
Cleared in  
software  
software  
Set SSPIF at the end  
of Acknowledge sequence  
Note: TBRG = one baud rate generator period.  
DS41159B-page 174  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 17-24:  
STOP CONDITION RECEIVE OR TRANSMIT MODE  
SCL = 1 for TBRG, followed by SDA = 1 for TBRG  
after SDA sampled high. P bit (SSPSTAT<4>) is set.  
Write to SSPCON2  
Set PEN  
PEN bit (SSPCON2<2>) is cleared by  
hardware and the SSPIF bit is set  
Falling edge of  
9th clock  
TBRG  
SCL  
SDA  
ACK  
P
TBRG  
TBRG  
TBRG  
SCL brought high after TBRG  
SDA asserted low before rising edge of clock  
to setup STOP condition.  
Note: TBRG = one baud rate generator period.  
17.4.14 SLEEP OPERATION  
17.4.17 MULTI -MASTER  
COMMUNICATION, BUS COLLISION  
While in SLEEP mode, the I2C module can receive  
addresses or data, and when an address match or  
complete byte transfer occurs, wake the processor  
from SLEEP (if the MSSP interrupt is enabled).  
AND BUS ARBITRATION  
Multi-Master mode support is achieved by bus arbitra-  
tion. When the master outputs address/data bits onto  
the SDA pin, arbitration takes place when the master  
outputs a '1' on SDA, by letting SDA float high and  
another master asserts a '0'. When the SCL pin floats  
high, data should be stable. If the expected data on  
SDA is a '1' and the data sampled on the SDA pin = '0',  
then a bus collision has taken place. The master will set  
the Bus Collision Interrupt Flag BCLIF and reset the I2C  
port to its IDLE state (Figure 17-25).  
17.4.15 EFFECT OF A RESET  
A RESET disables the MSSP module and terminates  
the current transfer.  
17.4.16 MULTI-MASTER MODE  
In Multi-Master mode, the interrupt generation on the  
detection of the START and STOP conditions allows  
the determination of when the bus is free. The STOP  
(P) and START (S) bits are cleared from a RESET or  
when the MSSP module is disabled. Control of the I2C  
bus may be taken when the P bit (SSPSTAT<4>) is set,  
or the bus is idle with both the S and P bits clear. When  
the bus is busy, enabling the SSP interrupt will gener-  
ate the interrupt when the STOP condition occurs.  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the BF flag is  
cleared, the SDA and SCL lines are de-asserted, and  
the SSPBUF can be written to. When the user services  
the bus collision Interrupt Service Routine, and if the  
I2C bus is free, the user can resume communication by  
asserting a START condition.  
If a START, Repeated START, STOP, or Acknowledge  
condition was in progress when the bus collision  
occurred, the condition is aborted, the SDA and SCL  
lines are de-asserted, and the respective control bits in  
the SSPCON2 register are cleared. When the user ser-  
vices the bus collision Interrupt Service Routine, and if  
the I2C bus is free, the user can resume communication  
by asserting a START condition.  
In multi-master operation, the SDA line must be moni-  
tored for arbitration, to see if the signal level is the  
expected output level. This check is performed in  
hardware, with the result placed in the BCLIF bit.  
The states where arbitration can be lost are:  
• Address Transfer  
• Data Transfer  
The master will continue to monitor the SDA and SCL  
pins. If a STOP condition occurs, the SSPIF bit will be set.  
• A START Condition  
• A Repeated START Condition  
• An Acknowledge Condition  
A write to the SSPBUF will start the transmission of  
data at the first data bit, regardless of where the trans-  
mitter left off when the bus collision occurred.  
In Multi-Master mode, the interrupt generation on the  
detection of START and STOP conditions allows the  
determination of when the bus is free. Control of the I2C  
bus can be taken when the P bit is set in the SSPSTAT  
register, or the bus is IDLE and the S and P bits are  
cleared.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 175  
PIC18FXX8  
FIGURE 17-25:  
BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE  
Sample SDA. While SCL is high,  
data doesn’t match what is driven  
by the master.  
SDA line pulled low  
by another source  
Data changes  
while SCL = 0  
Bus collision has occurred.  
SDA released  
by master  
SDA  
SCL  
Set bus collision  
interrupt (BCLIF)  
BCLIF  
DS41159B-page 176  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
If the SDA pin is sampled low during this count, the  
BRG is reset and the SDA line is asserted early  
(Figure 17-28). If, however, a '1' is sampled on the SDA  
pin, the SDA pin is asserted low at the end of the BRG  
count. The baud rate generator is then reloaded and  
counts down to 0, and during this time, if the SCL pins  
are sampled as '0', a bus collision does not occur. At  
the end of the BRG count, the SCLpin is asserted low.  
17.4.17.1 Bus Collision During a START  
Condition  
During a START condition, a bus collision occurs if:  
a) SDA or SCL are sampled low at the beginning of  
the START condition (Figure 17-26).  
b) SCL is sampled low before SDA is asserted low  
(Figure 17-27).  
During a START condition, both the SDA and the SCL  
pins are monitored.  
Note: The reason that bus collision is not a factor  
during a START condition is that no two  
bus masters can assert a START condition  
at the exact same time. Therefore, one  
master will always assert SDA before the  
other. This condition does not cause a bus  
collision, because the two masters must be  
allowed to arbitrate the first address follow-  
ing the START condition. If the address is  
the same, arbitration must be allowed to  
continue into the data portion, Repeated  
START or STOP conditions.  
If the SDA pin is already low, or the SCL pin is already  
low, then all of the following occur:  
• the START condition is aborted,  
• the BCLIF flag is set, and  
the MSSP module is reset to its IDLE state  
(Figure 17-26).  
The START condition begins with the SDA and SCL  
pins de-asserted. When the SDA pin is sampled high,  
the baud rate generator is loaded from SSPADD<6:0>  
and counts down to 0. If the SCL pin is sampled low  
while SDA is high, a bus collision occurs, because it is  
assumed that another master is attempting to drive a  
data '1' during the START condition.  
FIGURE 17-26:  
BUS COLLISION DURING START CONDITION (SDA ONLY)  
SDA goes low before the SEN bit is set.  
Set BCLIF,  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
SDA  
SCL  
SEN  
Set SEN, enable START  
condition if SDA = 1, SCL=1  
SEN cleared automatically because of bus collision.  
SSP module reset into IDLE state.  
SDA sampled low before  
START condition.  
Set BCLIF.  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
BCLIF  
SSPIF and BCLIF are  
cleared in software.  
S
SSPIF  
SSPIF and BCLIF are  
cleared in software.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 177  
PIC18FXX8  
FIGURE 17-27:  
BUS COLLISION DURING START CONDITION (SCL = 0)  
SDA = 0, SCL = 1  
TBRG  
TBRG  
SDA  
Set SEN, enable START  
sequence if SDA = 1, SCL = 1  
SCL  
SEN  
SCL = 0 before SDA = 0,  
bus collision occurs. Set BCLIF.  
SCL = 0 before BRG time-out,  
bus collision occurs. Set BCLIF.  
BCLIF  
Interrupt cleared  
in software  
S
’0’  
’0’  
’0’  
’0’  
SSPIF  
FIGURE 17-28:  
BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION  
SDA = 0, SCL = 1  
Set S  
Set SSPIF  
Less than TBRG  
TBRG  
SDA pulled low by other master.  
Reset BRG and assert SDA.  
SDA  
SCL  
S
SCL pulled low after BRG  
Time-out  
SEN  
Set SEN, enable START  
sequence if SDA = 1, SCL = 1  
’0’  
BCLIF  
S
SSPIF  
Interrupts cleared  
in software  
SDA = 0, SCL = 1  
Set SSPIF  
DS41159B-page 178  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
reloaded and begins counting. If SDA goes from high to  
low before the BRG times out, no bus collision occurs  
because no two masters can assert SDA at exactly the  
same time.  
17.4.17.2 Bus Collision During a Repeated  
START Condition  
During a Repeated START condition, a bus collision  
occurs if:  
If SCL goes from high to low before the BRG times out  
and SDA has not already been asserted, a bus collision  
occurs. In this case, another master is attempting to  
transmit a data ’1’ during the Repeated START  
condition, Figure 17-30.  
a) A low level is sampled on SDA when SCL goes  
from low level to high level.  
b) SCL goes low before SDA is asserted low, indi-  
cating that another master is attempting to  
transmit a data ’1’.  
If, at the end of the BRG time-out both SCL and SDA  
are still high, the SDA pin is driven low and the BRG is  
reloaded and begins counting. At the end of the count,  
regardless of the status of the SCL pin, the SCL pin is  
driven low and the Repeated START condition is  
complete.  
When the user de-asserts SDA and the pin is allowed  
to float high, the BRG is loaded with SSPADD<6:0>  
and counts down to 0. The SCL pin is then de-asserted,  
and when sampled high, the SDA pin is sampled.  
If SDA is low, a bus collision has occurred (i.e., another  
master is attempting to transmit  
a
data ’0’,  
Figure 17-29). If SDA is sampled high, the BRG is  
FIGURE 17-29:  
BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)  
SDA  
SCL  
Sample SDA when SCL goes high.  
If SDA = 0, set BCLIF and release SDA and SCL.  
RSEN  
BCLIF  
Cleared in software  
'0'  
S
'0'  
SSPIF  
FIGURE 17-30:  
BUS COLLISION DURING REPEATED START CONDITION (CASE 2)  
TBRG  
TBRG  
SDA  
SCL  
SCL goes low before SDA,  
BCLIF  
RSEN  
Set BCLIF. Release SDA and SCL.  
Interrupt cleared  
in software  
’0’  
S
SSPIF  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 179  
PIC18FXX8  
The STOP condition begins with SDA asserted low.  
When SDA is sampled low, the SCL pin is allowed to  
float. When the pin is sampled high (clock arbitration),  
the baud rate generator is loaded with SSPADD<6:0>  
and counts down to 0. After the BRG times out, SDA is  
sampled. If SDA is sampled low, a bus collision has  
occurred. This is due to another master attempting to  
drive a data ’0’ (Figure 17-31). If the SCL pin is sampled  
low before SDA is allowed to float high, a bus collision  
occurs. This is another case of another master  
attempting to drive a data ’0’ (Figure 17-32).  
17.4.17.3 Bus Collision During a STOP  
Condition  
Bus collision occurs during a STOP condition if:  
a) After the SDA pin has been de-asserted and  
allowed to float high, SDA is sampled low after  
the BRG has timed out.  
b) After the SCL pin is de-asserted, SCL is sam-  
pled low before SDA goes high.  
FIGURE 17-31:  
BUS COLLISION DURING A STOP CONDITION (CASE 1)  
SDA sampled  
TBRG  
TBRG  
TBRG  
low after TBRG,  
Set BCLIF  
SDA  
SDA asserted low  
SCL  
PEN  
BCLIF  
P
’0’  
’0’  
SSPIF  
FIGURE 17-32:  
BUS COLLISION DURING A STOP CONDITION (CASE 2)  
TBRG  
TBRG  
TBRG  
SDA  
SCL goes low before SDA goes high  
Set BCLIF  
Assert SDA  
SCL  
PEN  
BCLIF  
P
’0’  
’0’  
SSPIF  
DS41159B-page 180  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
The USART can be configured in the following modes:  
18.0 ADDRESSABLE UNIVERSAL  
SYNCHRONOUS  
• Asynchronous (full duplex)  
• Synchronous - Master (half duplex)  
• Synchronous - Slave (half duplex).  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (USART)  
The SPEN (RCSTA register) and the TRISC<7> bits  
have to be set and the TRISC<6> bit must be cleared,  
in order to configure pins RC6/TX/CK and RC7/RX/DT  
as the Universal Synchronous Asynchronous Receiver  
Transmitter.  
The Universal Synchronous Asynchronous Receiver  
Transmitter (USART) module is one of the three serial  
I/O modules incorporated into PIC18FXX8 devices.  
(USART is also known as a Serial Communications  
Interface or SCI.) The USART can be configured as a  
full duplex asynchronous system that can communi-  
cate with peripheral devices, such as CRT terminals  
and personal computers, or it can be configured as a  
half duplex synchronous system that can communicate  
with peripheral devices, such as A/D or D/A integrated  
circuits, Serial EEPROMs, etc.  
Register 18-1 shows the Transmit Status and Control  
Register (TXSTA) and Register 18-2 shows the  
Receive Status and Control Register (RCSTA).  
REGISTER 18-1: TXSTA REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
TRMT  
bit 7  
bit 0  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care  
Synchronous mode:  
1= Master mode (Clock generated internally from BRG)  
0= Slave mode (Clock from external source)  
bit 6  
bit 5  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
Note: SREN/CREN overrides TXEN in SYNC mode.  
bit 4  
SYNC: USART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
bit 3  
bit 2  
Unimplemented: Read as '0'  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: 9th bit of Transmit Data  
Can be address/data bit or a parity bit  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR  
’0’ = Bit is cleared  
x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 181  
PIC18FXX8  
REGISTER 18-2: RCSTA REGISTER  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RX/DT and TX/CK pins as serial port pins)  
0= Serial port disabled  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care  
Synchronous mode - Master:  
1= Enables single receive  
0= Disables single receive (this bit is cleared after reception is complete.)  
Synchronous mode - Slave:  
Unused in this mode  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables continuous receive  
0= Disables continuous receive  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enables interrupt and load of the receive buffer when RSR<8>  
is set  
0= Disables address detection, all bytes are received, and ninth bit can be used as parity bit  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: 9th bit of Received Data  
Can be address/data bit or a parity bit  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41159B-page 182  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
Example 18-1 shows the calculation of the baud rate  
error for the following conditions:  
18.1 USART Baud Rate Generator  
(BRG)  
FOSC = 16 MHz  
Desired Baud Rate = 9600  
BRGH = 0  
The BRG supports both the Asynchronous and Syn-  
chronous modes of the USART. It is a dedicated 8-bit  
baud rate generator. The SPBRG register controls the  
period of a free running 8-bit timer. In Asynchronous  
mode, bit BRGH (TXSTA register) also controls the  
baud rate. In Synchronous mode, bit BRGH is ignored.  
Table 18-1 shows the formula for computation of the  
baud rate for different USART modes, which only apply  
in Master mode (internal clock).  
SYNC = 0  
It may be advantageous to use the high baud rate  
(BRGH = 1), even for slower baud clocks. This is  
because the FOSC/(16(X + 1)) equation can reduce the  
baud rate error in some cases.  
Writing a new value to the SPBRG register causes the  
BRG timer to be reset (or cleared). This ensures the  
BRG does not wait for a timer overflow before  
outputting the new baud rate.  
Given the desired baud rate and FOSC, the nearest  
integer value for the SPBRG register can be calculated  
using the formula in Table 18-1. From this, the error in  
baud rate can be determined.  
18.1.1  
SAMPLING  
The data on the RC7/RX/DT pin is sampled three times  
by a majority detect circuit to determine if a high or a  
low level is present at the RX pin.  
EXAMPLE 18-1:  
CALCULATING BAUD RATE ERROR  
Desired Baud Rate  
Solving for X:  
= FOSC / (64 (X + 1))  
X
X
X
= ( (FOSC / Desired Baud Rate) / 64 ) - 1  
= ((16000000 / 9600) / 64) - 1  
= [25.042] = 25  
Calculated Baud Rate  
Error  
= 16000000 / (64 (25 + 1))  
= 9615  
= (Calculated Baud Rate - Desired Baud Rate)  
Desired Baud Rate  
= (9615 - 9600) / 9600  
= 0.16%  
TABLE 18-1: BAUD RATE FORMULA  
SYNC  
BRGH = 0 (Low Speed)  
BRGH = 1 (High Speed)  
0
1
(Asynchronous) Baud Rate = FOSC/(64(X+1))  
(Synchronous) Baud Rate = FOSC/(4(X+1))  
Baud Rate = FOSC/(16(X+1))  
NA  
Legend: X = value in SPBRG (0 to 255)  
TABLE 18-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TXSTA  
RCSTA  
SPBRG  
CSRC  
SPEN  
TX9  
RX9  
TXEN SYNC  
BRGH TRMT TX9D 0000 -010  
0000 -010  
0000 000x  
0000 0000  
SREN CREN ADDEN FERR OERR RX9D 0000 000x  
0000 0000  
Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 183  
PIC18FXX8  
TABLE 18-3: BAUD RATES FOR SYNCHRONOUS MODE  
FOSC = 40 MHz  
33 MHz  
25 MHz  
20 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
KBAUD ERROR  
KBAUD ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
0.3  
1.2  
NA  
NA  
-
-
-
NA  
NA  
-
-
-
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
-
-
-
2.4  
NA  
-
-
NA  
-
-
NA  
-
-
NA  
-
-
9.6  
NA  
-
-
NA  
-
-
-
NA  
-
-
-
NA  
-
-
19.2  
76.8  
96  
NA  
-
-
NA  
-
NA  
-
NA  
-
-
76.92  
96.15  
303.03  
500  
+0.16  
129  
103  
32  
19  
0
77.10  
95.93  
294.64  
485.30  
8250  
32.23  
+0.39  
-0.07  
-1.79  
-2.94  
-
106  
85  
27  
16  
0
77.16  
96.15  
297.62  
480.77  
6250  
24.41  
+0.47  
+0.16  
-0.79  
-3.85  
-
80  
64  
20  
12  
0
76.92  
96.15  
294.12  
500  
+0.16  
64  
51  
16  
9
+0.16  
+0.16  
300  
500  
HIGH  
LOW  
+1.01  
-1.96  
0
-
0
-
10000  
39.06  
5000  
19.53  
0
-
255  
-
255  
-
255  
-
255  
FOSC = 16 MHz  
10 MHz  
7.15909 MHz  
5.0688 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
KBAUD ERROR  
KBAUD ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
0.3  
1.2  
NA  
NA  
-
-
-
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
NA  
NA  
-
-
-
-
-
-
2.4  
NA  
-
-
NA  
-
-
NA  
-
-
NA  
-
-
9.6  
NA  
-
+0.16  
+0.16  
-0.79  
+2.56  
0
-
NA  
-
+0.16  
-1.36  
+0.16  
+4.17  
0
-
9.62  
+0.23  
+0.23  
+1.32  
-1.88  
-0.57  
-10.51  
-
185  
92  
22  
18  
5
9.60  
0
0
131  
65  
16  
12  
3
19.2  
76.8  
96  
19.23  
76.92  
95.24  
307.70  
500  
207  
51  
41  
12  
7
19.23  
75.76  
96.15  
312.50  
500  
129  
32  
25  
7
19.24  
77.82  
94.20  
298.35  
447.44  
1789.80  
6.99  
19.20  
74.54  
97.48  
316.80  
422.40  
1267.20  
4.95  
-2.94  
+1.54  
+5.60  
-15.52  
-
300  
500  
HIGH  
LOW  
4
3
2
4000  
15.63  
-
0
2500  
9.77  
-
0
0
0
-
255  
-
255  
-
255  
-
255  
FOSC = 4 MHz  
3.579545 MHz  
1 MHz  
32.768 kHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
KBAUD ERROR  
KBAUD ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
0.3  
1.2  
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
NA  
1.20  
2.40  
9.62  
19.23  
83.33  
83.33  
250  
-
-
207  
103  
25  
12  
2
0.30  
1.17  
2.73  
8.20  
NA  
+1.14  
26  
-
-
+0.16  
+0.16  
+0.16  
+0.16  
+8.51  
-13.19  
-16.67  
-
-2.48  
6
2.4  
NA  
-
NA  
-
-
+13.78  
2
9.6  
9.62  
19.23  
76.92  
1000  
333.33  
500  
+0.16  
+0.16  
+0.16  
+4.17  
+11.11  
0
103  
51  
12  
9
9.62  
+0.23  
-0.83  
-2.90  
+3.57  
-0.57  
-10.51  
-
92  
46  
11  
8
-14.67  
0
19.2  
76.8  
96  
19.04  
74.57  
99.43  
298.30  
447.44  
894.89  
3.50  
-
-
-
-
-
-
-
-
NA  
-
2
NA  
-
300  
500  
HIGH  
LOW  
2
2
0
NA  
-
-
1
1
NA  
-
NA  
1000  
3.91  
-
0
0
250  
-
0
8.20  
0.03  
0
-
255  
-
255  
0.98  
-
255  
255  
DS41159B-page 184  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
TABLE 18-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)  
FOSC = 40 MHz  
33 MHz  
25 MHz  
20 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
KBAUD ERROR  
KBAUD  
ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
0.3  
1.2  
NA  
NA  
-
-
-
-
NA  
NA  
-
-
-
-
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
-
2.4  
NA  
-
-
2.40  
-0.07  
-0.54  
-0.54  
-4.09  
+7.42  
-14.06  
-
214  
53  
26  
6
2.40  
9.53  
19.53  
78.13  
97.66  
NA  
-0.15  
162  
40  
19  
4
2.40  
+0.16  
-1.36  
+1.73  
+1.73  
+8.51  
+4.17  
-
129  
32  
15  
3
9.6  
9.62  
18.94  
78.13  
89.29  
312.50  
625  
+0.16  
-1.36  
+1.73  
-6.99  
+4.17  
+25.00  
-
64  
32  
7
9.55  
-0.76  
9.47  
19.2  
76.8  
96  
19.10  
73.66  
103.13  
257.81  
NA  
+1.73  
19.53  
78.13  
104.17  
312.50  
NA  
+1.73  
6
4
+1.73  
3
2
300  
500  
HIGH  
LOW  
1
1
-
-
-
-
-
0
0
-
NA  
-
-
625  
0
515.63  
2.01  
-
0
390.63  
1.53  
0
312.50  
1.22  
-
0
2.44  
-
255  
-
255  
255  
-
255  
FOSC = 16 MHz  
10 MHz  
7.15909 MHz  
5.0688 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
KBAUD ERROR  
KBAUD  
ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
0.3  
1.2  
NA  
1.20  
2.40  
9.62  
19.23  
83.33  
83.33  
250  
-
-
207  
103  
25  
12  
2
NA  
1.20  
-
-
129  
64  
15  
7
NA  
1.20  
2.38  
9.32  
18.64  
111.86  
NA  
-
-
92  
46  
11  
5
NA  
1.20  
2.40  
9.90  
19.80  
79.20  
NA  
-
-
65  
32  
7
+0.16  
+0.16  
+0.16  
+0.16  
+8.51  
-13.19  
-16.67  
-
+0.16  
+0.16  
+1.73  
+1.73  
+1.73  
-18.62  
-47.92  
-
+0.23  
0
2.4  
2.40  
-0.83  
0
9.6  
9.77  
-2.90  
+3.13  
19.2  
76.8  
96  
19.53  
78.13  
78.13  
156.25  
NA  
-2.90  
+3.13  
3
1
+45.65  
0
+3.13  
0
2
1
-
-
-
-
-
-
-
-
-
-
-
-
300  
500  
HIGH  
LOW  
0
0
NA  
-
NA  
-
NA  
-
-
NA  
-
NA  
-
250  
-
0
156.25  
0.61  
-
0
111.86  
0.44  
0
79.20  
0.31  
0
0.98  
-
255  
-
255  
255  
255  
FOSC = 4 MHz  
3.579545 MHz  
%
1 MHz  
32.768 kHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
KBAUD ERROR  
KBAUD  
ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
0.3  
1.2  
0.30  
1.20  
2.40  
8.93  
20.83  
62.50  
NA  
-0.16  
207  
51  
25  
6
0.30  
1.19  
2.43  
9.32  
18.64  
55.93  
NA  
+0.23  
185  
46  
22  
5
0.30  
1.20  
2.23  
7.81  
15.63  
NA  
+0.16  
51  
12  
6
0.26  
NA  
-14.67  
1
+1.67  
-0.83  
+0.16  
-
-
-
-
-
-
-
-
-
-
-
2.4  
+1.67  
+1.32  
-6.99  
NA  
-
9.6  
-6.99  
-2.90  
-18.62  
1
NA  
-
19.2  
76.8  
96  
+8.51  
2
-2.90  
2
-18.62  
0
NA  
-
-18.62  
0
-27.17  
0
-
-
-
-
-
-
-
NA  
-
-
-
-
-
-
-
-
-
-
-
-
-
NA  
-
NA  
-
300  
500  
HIGH  
LOW  
NA  
-
NA  
-
NA  
-
NA  
-
-
NA  
-
NA  
-
NA  
-
NA  
62.50  
0.24  
0
55.93  
0.22  
0
15.63  
0.06  
0
0.51  
0.002  
0
255  
255  
255  
255  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 185  
PIC18FXX8  
TABLE 18-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)  
FOSC = 40 MHz  
33 MHz  
25 MHz  
20 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
0.3  
1.2  
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
-
-
2.4  
NA  
-
-
NA  
-
-
NA  
-
-
NA  
-
-
9.6  
NA  
-
+0.16  
-1.36  
+0.16  
+4.17  
0
-
9.60  
-0.07  
+0.39  
-0.54  
+2.31  
-1.79  
+3.13  
-
214  
106  
26  
20  
6
9.59  
-0.15  
+0.47  
+1.73  
+1.73  
+4.17  
+4.17  
-
162  
80  
19  
15  
4
9.62  
+0.16  
+0.16  
+1.73  
+0.16  
+4.17  
-16.67  
-
129  
64  
15  
12  
3
19.2  
76.8  
96  
19.23  
75.76  
96.15  
312.50  
500  
129  
32  
25  
7
19.28  
76.39  
98.21  
294.64  
515.63  
2062.50  
8,06  
19.30  
78.13  
97.66  
312.50  
520.83  
1562.50  
6.10  
19.23  
78.13  
96.15  
312.50  
416.67  
1250  
4.88  
300  
500  
HIGH  
LOW  
4
3
2
2
2500  
9.77  
-
0
0
0
0
-
255  
-
255  
-
255  
-
255  
FOSC = 16 MHz  
10 MHz  
7.15909 MHz  
5.0688 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
0.3  
1.2  
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
NA  
NA  
-
-
-
-
NA  
NA  
-
-
-
-
-
2.4  
NA  
-
+0.16  
+0.16  
+0.16  
+4.17  
+11.11  
0
-
NA  
-
-
2.41  
+0.23  
-0.83  
+1.32  
-2.90  
-6.78  
+49.15  
-10.51  
-
185  
46  
22  
5
2.40  
0
131  
32  
16  
3
9.6  
9.62  
19.23  
76.92  
100  
103  
51  
12  
9
9.62  
18.94  
78.13  
89.29  
312.50  
625  
+0.16  
-1.36  
+1.73  
-6.99  
+4.17  
+25.00  
-
64  
32  
7
9.52  
9.60  
0
-2.94  
+3.13  
+10.00  
+5.60  
-
19.2  
76.8  
96  
19.45  
74.57  
89.49  
447.44  
447.44  
447.44  
1.75  
18.64  
79.20  
105.60  
316.80  
NA  
6
4
2
300  
500  
HIGH  
LOW  
333.33  
500  
2
1
0
0
1
0
0
-
1000  
3.91  
-
0
625  
0
0
316.80  
1.24  
-
0
-
255  
2.44  
-
255  
-
255  
-
255  
FOSC = 4 MHz  
3.579545 MHz  
1 MHz  
32.768 kHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
0.3  
1.2  
NA  
1.20  
2.40  
9.62  
19.23  
NA  
-
-
207  
103  
25  
12  
-
NA  
1.20  
-
+0.23  
+0.23  
+1.32  
-2.90  
-2.90  
+16.52  
-25.43  
-
-
185  
92  
22  
11  
2
0.30  
1.20  
2.40  
8.93  
20.83  
62.50  
NA  
+0.16  
207  
51  
25  
6
0.29  
1.02  
2.05  
NA  
-2.48  
6
+0.16  
+0.16  
-14.67  
1
2.4  
+0.16  
2.41  
+0.16  
-14.67  
0
9.6  
+0.16  
9.73  
-6.99  
-
-
-
-
-
-
-
-
-
19.2  
76.8  
96  
+0.16  
18.64  
74.57  
111.86  
223.72  
NA  
+8.51  
2
NA  
-
-
-
-
-
-
-
-18.62  
0
NA  
-
NA  
-
1
-
-
-
-
-
-
NA  
-
300  
500  
HIGH  
LOW  
NA  
-
0
NA  
-
NA  
-
-
NA  
-
-
NA  
-
NA  
250  
0.98  
0
55.93  
0.22  
-
0
62.50  
0.24  
0
2.05  
0.008  
0
255  
-
255  
255  
255  
DS41159B-page 186  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
empty and flag bit TXIF (PIR registers) is set. This inter-  
rupt can be enabled/disabled by setting/clearing  
enable bit TXIE (PIE registers). Flag bit TXIF will be  
set, regardless of the state of enable bit TXIE and can-  
not be cleared in software. It will reset only when new  
data is loaded into the TXREG register. While flag bit  
TXIF indicated the status of the TXREG register,  
another bit TRMT (TXSTA register) shows the status of  
the TSR register. Status bit TRMT is a read only bit,  
which is set when the TSR register is empty. No inter-  
rupt logic is tied to this bit, so the user has to poll this  
bit in order to determine if the TSR register is empty.  
18.2 USART Asynchronous Mode  
In this mode, the USART uses standard non-return-to-  
zero (NRZ) format (one START bit, eight or nine data  
bits and one STOP bit). The most common data format  
is 8 bits. An on-chip dedicated 8-bit baud rate generator  
can be used to derive standard baud rate frequencies  
from the oscillator. The USART transmits and receives  
the LSb first. The USART’s transmitter and receiver are  
functionally independent, but use the same data format  
and baud rate. The baud rate generator produces a  
clock, either x16 or x64 of the bit shift rate, depending  
on the BRGH bit (TXSTA register). Parity is not sup-  
ported by the hardware, but can be implemented in  
software (and stored as the ninth data bit).  
Asynchronous mode is stopped during SLEEP.  
Note 1: The TSR register is not mapped in data  
memory, so it is not available to the user.  
2: Flag bit TXIF is set when enable bit TXEN  
is set.  
Asynchronous mode is selected by clearing the SYNC  
bit (TXSTA register).  
Steps to follow when setting up an Asynchronous  
Transmission:  
The USART Asynchronous module consists of the  
following important elements:  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH (Section 18.1).  
• Baud Rate Generator  
• Sampling Circuit  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
• Asynchronous Transmitter  
• Asynchronous Receiver.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set transmit bit  
TX9. Can be used as address/data bit.  
18.2.1  
USART ASYNCHRONOUS  
TRANSMITTER  
5. Enable the transmission by setting bit TXEN,  
which will also set bit TXIF.  
The USART transmitter block diagram is shown in  
Figure 18-1. The heart of the transmitter is the Transmit  
(serial) Shift Register (TSR). The TSR register obtains  
its data from the Read/Write Transmit Buffer register  
(TXREG). The TXREG register is loaded with data in  
software. The TSR register is not loaded until the STOP  
bit has been transmitted from the previous load. As  
soon as the STOP bit is transmitted, the TSR is loaded  
with new data from the TXREG register (if available).  
Once the TXREG register transfers the data to the TSR  
register (occurs in one TCY), the TXREG register is  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Load data to the TXREG register (starts  
transmission).  
Note:  
TXIF is not cleared immediately upon load-  
ing data into the transmit buffer TXREG. The  
flag bit becomes valid in the second instruc-  
tion cycle following the load instruction.  
FIGURE 18-1:  
USART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIF  
TXREG register  
8
TXIE  
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
• •  
TSR register  
RC6/TX/CK pin  
Interrupt  
TXEN  
Baud Rate CLK  
TRMT  
SPEN  
SPBRG  
Baud Rate Generator  
TX9  
TX9D  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 187  
PIC18FXX8  
FIGURE 18-2:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(Shift Clock)  
RC6/TX/CK (pin)  
START bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
STOP bit  
TXIF bit  
(Transmit Buffer  
Register Empty Flag)  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Register Empty Flag)  
FIGURE 18-3:  
ASYNCHRONOUS TRANSMISSION (BACK TO BACK)  
Write to TXREG  
Word 1  
Word 2  
BRG Output  
(Shift Clock)  
RC6/TX/CK (pin)  
START bit  
START bit  
Word 2  
bit 0  
bit 1  
bit 7/8  
bit 0  
STOP bit  
TXIF bit  
(Interrupt Reg. Flag)  
Word 1  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
Note: This timing diagram shows two consecutive transmissions.  
TABLE 18-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF  
RBIF 0000 000x 0000 000u  
PIR1  
PSPIF  
PSPIE  
PSPIP  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
SSPIP CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
PIE1  
IPR1  
RCSTA  
SREN CREN ADDEN FERR OERR RX9D 0000 000x 0000 000x  
TXREG USART Transmit Register  
TXSTA CSRC TX9 TXEN SYNC  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented locations read as '0'.  
Shaded cells are not used for Asynchronous Transmission.  
0000 0000 0000 0000  
BRGH TRMT TX9D 0000 -010 0000 -010  
0000 0000 0000 0000  
DS41159B-page 188  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
18.2.2  
USART ASYNCHRONOUS  
RECEIVER  
18.2.3  
SETTING UP 9-BIT MODE WITH  
ADDRESS DETECT  
The receiver block diagram is shown in Figure 18-4.  
The data is received on the RC7/RX/DT pin and drives  
the data recovery block. The data recovery block is  
actually a high speed shifter, operating at x16 times the  
baud rate, whereas the main receive serial shifter oper-  
ates at the bit rate, or at FOSC. This mode would  
typically be used in RS-232 systems.  
This mode would typically be used in RS-485 systems.  
Steps to follow when setting up an Asynchronous  
Reception with Address Detect Enable:  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is required,  
set the BRGH bit.  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
Steps to follow when setting up an Asynchronous  
Reception:  
3. If interrupts are required, set the RCEN bit and  
select the desired priority level with the RCIP bit.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH (Section 18.1).  
4. Set the RX9 bit to enable 9-bit reception.  
5. Set the ADDEN bit to enable address detect.  
6. Enable reception by setting the CREN bit.  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
7. The RCIF bit will be set when reception is com-  
plete. The interrupt will be Acknowledged if the  
RCIE and GIE bits are set.  
3. If interrupts are desired, set enable bit RCIE.  
4. If 9-bit reception is desired, set bit RX9.  
5. Enable the reception by setting bit CREN.  
8. Read the RCSTA register to determine if any  
error occurred during reception, as well as read  
bit 9 of data (if applicable).  
6. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated if enable  
bit RCIE was set.  
9. Read RCREG to determine if the device is being  
addressed.  
7. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
10. If any error occurred, clear the CREN bit.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and interrupt the CPU.  
8. Read the 8-bit received data by reading the  
RCREG register.  
9. If any error occurred, clear the error by clearing  
enable bit CREN.  
FIGURE 18-4:  
USART RECEIVE BLOCK DIAGRAM  
x64 Baud Rate CLK  
FERR  
OERR  
CREN  
SPBRG  
÷ 64  
or  
÷ 16  
RSR Register  
MSb  
LSb  
0
Baud Rate Generator  
7
1
STOP (8)  
START  
• • •  
RC7/RX/DT  
Pin Buffer  
and Control  
Data  
Recovery  
RX9  
RX9D  
SPEN  
RCREG Register  
FIFO  
8
RCIF  
RCIE  
Interrupt  
Data Bus  
Note: I/O pins have diode protection to VDD and VSS.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 189  
PIC18FXX8  
FIGURE 18-5:  
ASYNCHRONOUS RECEPTION  
START  
bit  
START  
bit  
START  
bit7/8 STOP bit  
bit  
RX (pin)  
bit0  
bit1  
STOP  
bit  
STOP  
bit  
bit0  
bit7/8  
bit7/8  
Rcv shift  
Reg  
Rcv Buffer Reg  
Word 2  
RCREG  
Word 1  
RCREG  
Read Rcv  
Buffer Reg  
RCREG  
RCIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note: This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,  
causing the OERR (overrun) bit to be set.  
TABLE 18-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
PSPIF  
PSPIE  
PSPIP  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
SSPIP CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
PIE1  
IPR1  
RCSTA  
RCREG  
TXSTA  
SPBRG  
CREN ADDEN  
FERR  
OERR  
RX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 -010 0000 -010  
0000 0000 0000 0000  
USART Receive Register  
CSRC TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.  
DS41159B-page 190  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
(PIE registers). Flag bit TXIF will be set, regardless of  
the state of enable bit TXIE and cannot be cleared in  
software. It will reset only when new data is loaded into  
the TXREG register. While flag bit TXIF indicates the  
status of the TXREG register, another bit TRMT  
(TXSTA register) shows the status of the TSR register.  
TRMT is a read only bit, which is set when the TSR is  
empty. No interrupt logic is tied to this bit, so the user  
has to poll this bit in order to determine if the TSR reg-  
ister is empty. The TSR is not mapped in data memory,  
so it is not available to the user.  
18.3 USART Synchronous Master  
Mode  
In Synchronous Master mode, the data is transmitted in  
a half-duplex manner (i.e., transmission and reception  
do not occur at the same time). When transmitting data,  
the reception is inhibited and vice versa. Synchronous  
mode is entered by setting bit SYNC (TXSTA register).  
In addition, enable bit SPEN (RCSTA register) is set, in  
order to configure the RC6/TX/CK and RC7/RX/DT I/O  
pins to CK (clock) and DT (data) lines, respectively. The  
Master mode indicates that the processor transmits the  
master clock on the CK line. The Master mode is  
entered by setting bit CSRC (TXSTA register).  
Steps to follow when setting up a Synchronous Master  
Transmission:  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 18.1).  
18.3.1  
USART SYNCHRONOUS MASTER  
TRANSMISSION  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN, and CSRC.  
The USART transmitter block diagram is shown in  
Figure 18-1. The heart of the transmitter is the Transmit  
(serial) Shift register (TSR). The shift register obtains  
its data from the Read/Write Transmit Buffer register  
(TXREG). The TXREG register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one TCY), the TXREG is empty and interrupt  
bit TXIF (PIR registers) is set. The interrupt can be  
enabled/disabled by setting/clearing enable bit TXIE  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting bit TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the TXREG  
register.  
Note:  
TXIF is not cleared immediately upon load-  
ing data into the transmit buffer TXREG. The  
flag bit becomes valid in the second instruc-  
tion cycle following the load instruction.  
TABLE 18-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PIR1  
PSPIF  
PSPIE  
PSPIP  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
TMR2IF TMR1IF 0000 0000 0000 0000  
PIE1  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
IPR1  
RCSTA  
CREN ADDEN  
FERR  
OERR  
RX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 -010 0000 -010  
0000 0000 0000 0000  
TXREG USART Transmit Register  
TXSTA CSRC TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Transmission.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 191  
PIC18FXX8  
FIGURE 18-6:  
SYNCHRONOUS TRANSMISSION  
Q4  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
bit 7  
RC7/RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
Word 2  
Word 1  
RC6/TX/CK  
pin  
Write to  
TXREG Reg  
Write Word 1  
Write Word 2  
TXIF bit  
(Interrupt Flag)  
TRMT bit  
’1’  
’1’  
TXEN bit  
Note: Sync Master mode; SPBRG = ’0’; continuous transmission of two 8-bit words.  
FIGURE 18-7:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RC7/RX/DT pin  
bit0  
bit1  
bit2  
bit6  
bit7  
RC6/TX/CK pin  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
DS41159B-page 192  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
Steps to follow when setting up a Synchronous Master  
Reception:  
18.3.2  
USART SYNCHRONOUS MASTER  
RECEPTION  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 18.1).  
Once Synchronous Master mode is selected, reception  
is enabled by setting either enable bit SREN (RCSTA  
register), or enable bit CREN (RCSTA register). Data is  
sampled on the RC7/RX/DT pin on the falling edge of  
the clock. If enable bit SREN is set, only a single word  
is received. If enable bit CREN is set, the reception is  
continuous until CREN is cleared. If both bits are set,  
then CREN takes precedence.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. Ensure bits CREN and SREN are clear.  
4. If interrupts are desired, set enable bit RCIE.  
5. If 9-bit reception is desired, set bit RX9.  
6. If a single reception is required, set bit SREN.  
For continuous reception, set bit CREN.  
7. Interrupt flag bit RCIF will be set when reception  
is complete and an interrupt will be generated if  
the enable bit RCIE was set.  
8. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read the 8-bit received data by reading the  
RCREG register.  
10. If any error occurred, clear the error by clearing  
bit CREN.  
TABLE 18-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
SSPIF  
SSPIE  
SSPIP  
ADDEN  
TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
PSPIF  
PSPIE  
PSPIP  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
CREN  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
PIE1  
IPR1  
RCSTA  
RCREG  
TXSTA  
SPBRG  
FERR  
OERR  
RX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 -010 0000 -010  
0000 0000 0000 0000  
USART Receive Register  
CSRC TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Reception.  
FIGURE 18-8:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3  
Q2  
Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q4 Q1  
RC7/RX/DT pin  
RC6/TX/CK pin  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
Write to  
bit SREN  
SREN bit  
CREN bit  
’0’  
’0’  
RCIF bit  
(Interrupt)  
Read  
RXREG  
Note: Timing diagram demonstrates Sync Master mode with bit SREN = ’1’ and bit BRGH = ’0’.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 193  
PIC18FXX8  
18.4.2  
USART SYNCHRONOUS SLAVE  
RECEPTION  
18.4 USART Synchronous Slave Mode  
Synchronous Slave mode differs from the Master  
mode, in that the shift clock is supplied externally at the  
RC6/TX/CK pin (instead of being supplied internally in  
Master mode). This allows the device to transfer or  
receive data while in SLEEP mode. Slave mode is  
entered by clearing bit CSRC (TXSTA register).  
The operation of the Synchronous Master and Slave  
modes is identical, except in the case of the SLEEP  
mode and bit SREN, which is a "don’t care" in Slave  
mode.  
If receive is enabled by setting bit CREN prior to the  
SLEEPinstruction, then a word may be received during  
SLEEP. On completely receiving the word, the RSR  
register will transfer the data to the RCREG register,  
and if enable bit RCIE bit is set, the interrupt generated  
will wake the chip from SLEEP. If the global interrupt is  
enabled, the program will branch to the interrupt vector.  
18.4.1  
USART SYNCHRONOUS SLAVE  
TRANSMIT  
The operation of the Synchronous Master and Slave  
modes are identical, except in the case of the SLEEP  
mode.  
Steps to follow when setting up a Synchronous Slave  
Reception:  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
1. Enable the synchronous master serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
a) The first word will immediately transfer to the  
TSR register and transmit.  
b) The second word will remain in TXREG register.  
c) Flag bit TXIF will not be set.  
2. If interrupts are desired, set enable bit RCIE.  
3. If 9-bit reception is desired, set bit RX9.  
4. To enable reception, set enable bit CREN.  
d) When the first word has been shifted out of TSR,  
the TXREG register will transfer the second  
word to the TSR and flag bit TXIF will be set.  
5. Flag bit RCIF will be set when reception is com-  
plete. An interrupt will be generated if enable bit  
RCIE was set.  
e) If enable bit TXIE is set, the interrupt will wake  
the chip from SLEEP. If the global interrupt is  
enabled, the program will branch to the interrupt  
vector.  
6. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
Steps to follow when setting up a Synchronous Slave  
Transmission:  
7. Read the 8-bit received data by reading the  
RCREG register.  
1. Enable the synchronous slave serial port by set-  
ting bits SYNC and SPEN and clearing bit  
CSRC.  
8. If any error occurred, clear the error by clearing  
bit CREN.  
2. Clear bits CREN and SREN.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting enable bit  
TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the TXREG  
register.  
DS41159B-page 194  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
TABLE 18-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
PSPIF  
PSPIE  
PSPIP  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
SSPIF  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
PIE1  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
SSPIP CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
IPR1  
TXIP  
RCSTA  
TXREG  
TXSTA  
SPBRG  
CREN  
ADDEN  
FERR  
OERR  
RX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 -010 0000 -010  
0000 0000 0000 0000  
USART Transmit Register  
CSRC TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Slave Transmission.  
TABLE 18-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on  
POR,  
Value on all  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
other  
BOR  
RESETS  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
SSPIF  
SSPIE  
SSPIP  
ADDEN  
TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
PSPIF  
PSPIE  
PSPIP  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
PIE1  
IPR1  
TXIP  
RCSTA  
RCREG  
TXSTA  
SPBRG  
CREN  
FERR  
OERR  
RX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 -010 0000 -010  
0000 0000 0000 0000  
USART Receive Register  
CSRC TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Slave Reception.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 195  
PIC18FXX8  
NOTES:  
DS41159B-page 196  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
19.1.1  
OVERVIEW OF THE MODULE  
19.0 CAN MODULE  
19.1 Overview  
The CAN bus module consists of a protocol engine and  
message buffering and control. The CAN protocol  
engine handles all functions for receiving and transmit-  
ting messages on the CAN bus. Messages are trans-  
mitted by first loading the appropriate data registers.  
Status and errors can be checked by reading the  
appropriate registers. Any message detected on the  
CAN bus is checked for errors and then matched  
against filters to see if it should be received and stored  
in one of the 2 receive registers.  
The Controller Area Network (CAN) module is a serial  
interface, useful for communicating with other peripher-  
als or microcontroller devices. This interface/protocol  
was designed to allow communications within noisy  
environments.  
The CAN module is a communication controller, imple-  
menting the CAN 2.0 A/B protocol as defined in the  
BOSCH specification. The module will support CAN  
1.2, CAN 2.0A, CAN2.0B Passive, and CAN 2.0B  
Active versions of the protocol. The module implemen-  
tation is a full CAN system. The CAN specification is  
not covered within this data sheet. The reader may  
refer to the BOSCH CAN specification for further  
details.  
The CAN Module supports the following frame types:  
• Standard Data Frame  
• Extended Data Frame  
• Remote Frame  
• Error Frame  
• Overload Frame Reception  
• Interframe Space  
The module features are as follows:  
• Implementation of the CAN protocol CAN1.2,  
CAN2.0A and CAN2.0B  
CAN module uses RB3/CANRX and RB2/CANTX/INT2  
pins to interface with CAN bus. In order to configure  
CANRX and CANTX as CAN interface:  
• Standard and extended data frames  
• 0 - 8 bytes data length  
• bit TRISB<3> must be set;  
• Programmable bit rate up to 1 Mbit/sec  
• Support for remote frames  
• bit TRISB<2> must be cleared.  
• Double-buffered receiver with two prioritized  
received message storage buffers  
19.1.2  
TRANSMIT/RECEIVE BUFFERS  
The PIC18FXX8 has three transmit and two receive buff-  
ers, two acceptance masks (one for each receive  
buffer), and a total of six acceptance filters. Figure 19-1  
is a block diagram of these buffers and their connection  
to the protocol engine.  
• 6 full (standard/extended identifier) acceptance  
filters, 2 associated with the high priority receive  
buffer, and 4 associated with the low priority  
receive buffer  
• 2 full acceptance filter masks, one each  
associated with the high and low priority receive  
buffers  
• Three transmit buffers with application specified  
prioritization and abort capability  
• Programmable wake-up functionality with  
integrated low pass filter  
• Programmable Loopback mode supports self-test  
operation  
• Signaling via interrupt capabilities for all CAN  
receiver and transmitter error states  
• Programmable clock source  
• Programmable link to timer module for  
time-stamping and network synchronization  
• Low power SLEEP mode  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 197  
PIC18FXX8  
FIGURE 19-1:  
CAN BUFFERS AND PROTOCOL ENGINE BLOCK DIAGRAM  
BUFFERS  
Accept  
Acceptance Mask  
RXM1  
Acceptance Filter  
RXM2  
TXREQ  
TXABT  
TXLARB  
TXERR  
TXBUFF  
TXB0  
MESSAGE  
Accept  
Acceptance Mask  
RXM0  
Acceptance Filter  
RXF3  
TXREQ  
TXABT  
TXLARB  
TXERR  
TXBUFF  
TXB1  
Acceptance Filter  
RXF0  
Acceptance Filter  
RXF4  
MESSAGE  
Acceptance Filter  
RXF5  
Acceptance Filter  
RXF1  
TXREQ  
TXABT  
TXLARB  
TXERR  
TXBUFF  
TXB2  
Message  
Request  
MESSAGE  
RXB0  
RXB1  
Data and  
Identifier  
Data and  
Identifier  
Message  
Queue  
Identifier  
Identifier  
Control  
Transmit Byte Sequencer  
Message Assembly Buffer  
PROTOCOL  
ENGINE  
Receive Shift  
Transmit Shift  
RXERRCNT  
Comparator  
CRC Register  
Bus-Off  
Err-Pas  
Bit Timing  
Generator  
Transmit  
Logic  
Protocol  
FSM  
Bit Timing  
Logic  
Transmit  
Error  
Receive  
Error  
TXERRCNT  
Counter  
Counter  
RX  
TX  
DS41159B-page 198  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
19.2.1  
CAN CONTROL AND STATUS  
REGISTERS  
19.2 CAN Module Registers  
Note: Not all CAN registers are available in the  
The registers described in this section control the over-  
all operation of the CAN module and show its  
operational status.  
access bank.  
There are many control and data registers associated  
with the CAN module. For convenience, their  
descriptions have been grouped into the following  
sections:  
• Control and Status Registers  
• Transmit Buffer Registers (Data and Control)  
• Receive Buffer Registers (Data and Control)  
• Baud Rate Control Registers  
• I/O Control Register  
• Interrupt Status and Control Registers  
REGISTER 19-1: CANCON – CAN CONTROL REGISTER  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
ABAT  
R/W-0  
WIN2  
R/W-0  
WIN1  
R/W-0  
WIN0  
U-0  
REQOP2 REQOP1 REQOP0  
bit 7  
bit 0  
bit 7-5  
REQOP2:REQOP0: Request CAN Operation Mode bits  
1xx= Request Configuration mode  
011= Request Listen Only mode  
010= Request Loopback mode  
001= Request Disable mode  
000= Request Normal mode  
bit 4  
ABAT: Abort All Pending Transmissions bit  
1= Abort all pending transmissions (in all transmit buffers)  
0= Transmissions proceeding as normal  
bit 3-1  
WIN2:WIN0: Window Address bits  
This selects which of the CAN buffers to switch into the access bank area. This allows access  
to the buffer registers from any data memory bank. After a frame has caused an interrupt, the  
ICODE3:ICODE0 bits can be copied to the WIN3:WIN0 bits to select the correct buffer. See  
Example 19-1 for code example.  
111= Receive Buffer 0  
110= Receive Buffer 0  
101= Receive Buffer 1  
100= Transmit Buffer 0  
011= Transmit Buffer 1  
010= Transmit Buffer 2  
001= Receive Buffer 0  
000= Receive Buffer 0  
bit 0  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 199  
PIC18FXX8  
REGISTER 19-2: CANSTAT – CAN STATUS REGISTER  
R-1  
R-0  
R-0  
U-0  
R-0  
R-0  
R-0  
U-0  
OPMODE2 OPMODE1 OPMODE0  
bit 7  
ICODE2 ICODE1 ICODE0  
bit 0  
bit 7-5  
OPMODE2:OPMODE0: Operation Mode Status bits  
111= Reserved  
110= Reserved  
101= Reserved  
100= Configuration mode  
011= Listen Only mode  
010= Loopback mode  
001= Disable mode  
000= Normal mode  
Note:  
Before the device goes into SLEEP mode, select Disable mode.  
bit 4  
Unimplemented: Read as ’0’  
bit 3-1  
ICODE2:ICODE0: Interrupt Code bits  
When an interrupt occurs, a prioritized coded interrupt value will be present in the  
ICODE3:ICODE0 bits. These codes indicate the source of the interrupt. The ICODE3:ICODE0  
bits can be copied to the WIN3:WIN0 bits to select the correct buffer to map into the Access  
Bank area. See Example 19-1 for code example.  
111= Wake-up on Interrupt  
110= RXB0 Interrupt  
101= RXB1 Interrupt  
100= TXB0 Interrupt  
011= TXB1 Interrupt  
010= TXB2 Interrupt  
001= Error Interrupt  
000= No Interrupt  
bit 0  
Unimplemented: Read as ’0’  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41159B-page 200  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
EXAMPLE 19-1:  
WIN AND ICODE BITS USAGE IN INTERRUPT SERVICE ROUTINE TO ACCESS  
TX/RX BUFFERS  
; Save application required context.  
; Poll interrupt flags and determine source of interrupt  
; This was found to be CAN interrupt  
; TempCANCON and TempCANSTAT are variables defined in Access Bank low  
MOVFF  
CANCON, TempCANCON  
; Save CANCON.WIN bits  
; This is required to prevent CANCON  
; from corrupting CAN buffer access  
; in-progress while this interrupt  
; occurred  
MOVFF  
CANSTAT, TempCANSTAT  
; Save CANSTAT register  
; This is required to make sure that  
; we use same CANSTAT value rather  
; than one changed by another CAN  
; interrupt.  
MOVF  
ANDLW  
ADDWF  
TempCANSTAT, W  
b’00001110’  
PCL, F  
; Retrieve ICODE bits  
; Perform computed GOTO  
; to corresponding interrupt cause  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
NoInterrupt  
; 000 = No interrupt  
ErrorInterrupt  
TXB2Interrupt  
TXB1Interrupt  
TXB0Interrupt  
RXB1Interrupt  
RXB0Interrupt  
; 001 = Error interrupt  
; 010 = TXB2 interrupt  
; 011 = TXB1 interrupt  
; 100 = TXB0 interrupt  
; 101 = RXB1 interrupt  
; 110 = RXB0 interrupt  
; 111 = Wake-up on interrupt  
WakeupInterrupt  
BCF  
PIR3, WAKIF  
; Clear the interrupt flag  
;
; User code to handle wake-up procedure  
;
;
; Continue checking for other interrupt source or return from here  
NoInterrupt  
; PC should never vector here. User may  
; place a trap such as infinite loop or pin/port  
; indication to catch this error.  
ErrorInterrupt  
BCF  
PIR3, ERRIF  
; Clear the interrupt flag  
; Handle error.  
RETFIE  
TXB2Interrupt  
BCF  
GOTO  
PIR3, TXB2IF  
AccessBuffer  
; Clear the interrupt flag  
; Clear the interrupt flag  
; Clear the interrupt flag  
; Clear the interrupt flag  
TXB1Interrupt  
BCF  
GOTO  
PIR3, TXB1IF  
AccessBuffer  
TXB0Interrupt  
BCF  
GOTO  
PIR3, TXB0IF  
AccessBuffer  
RXB1Interrupt  
BCF  
GOTO  
PIR3, RXB1IF  
Accessbuffer  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 201  
PIC18FXX8  
EXAMPLE 19-1:  
WIN AND ICODE BITS USAGE IN INTERRUPT SERVICE ROUTINE TO ACCESS  
TX/RX BUFFERS (CONTINUED)  
RXB0Interrupt  
BCF  
GOTO  
PIR3, RXB0IF  
AccessBuffer  
; Clear the interrupt flag  
AccessBuffer  
; This is either TX or RX interrupt  
; Copy CANCON.ICODE bits to CANSTAT.WIN bits  
MOVF  
TempCANCON, W  
b11110001’  
TempCANCON  
; Clear CANCON.WIN bits before copying  
; new ones.  
; Use previously saved CANCON value to  
; make sure same value.  
ANDLW  
MOVWF  
; Copy masked value back to TempCANCON  
MOVF  
TempCANSTAT, W  
; Retrieve ICODE bits  
ANDLW  
b00001110’  
; Use previously saved CANSTAT value  
; to make sure same value.  
IORWF  
MOVFF  
TempCANCON  
TempCANCON, CANCON  
; Copy ICODE bits to WIN bits.  
; Copy the result to actual CANCON  
; Access current buffer…  
; User code  
; Restore CANCON.WIN bits  
MOVF  
ANDLW  
IORWF  
CANCON, W  
b11110001’  
TempCANCON  
; Preserve current non WIN bits  
; Restore original WIN bits  
; Do not need to restore CANSTAT - it is read-only register.  
; Return from interrupt or check for another module interrupt source  
DS41159B-page 202  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 19-3: COMSTAT – COMMUNICATION STATUS REGISTER  
R/C-0  
R/C-0  
R-0  
R-0  
R-0  
R-0  
TXWARN RXWARN EWARN  
bit 0  
R-0  
R-0  
RXB0OVFL RXB1OVFL  
bit 7  
TXBO  
TXBP  
RXBP  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RXB0OVFL: Receive Buffer 0 Overflow bit  
1= Receive Buffer 0 overflowed  
0= Receive Buffer 0 has not overflowed  
RXB1OVFL: Receive Buffer 1 Overflow bit  
1= Receive Buffer 1 overflowed  
0= Receive Buffer 1 has not overflowed  
TXBO: Transmitter Bus-Off bit  
1= Transmit Error Counter > 255  
0= Transmit Error Counter 255  
TXBP: Transmitter Bus Passive bit  
1= Transmission Error Counter > 127  
0= Transmission Error Counter 127  
RXBP: Receiver Bus Passive bit  
1= Receive Error Counter > 127  
0= Receive Error Counter 127  
TXWARN: Transmitter Warning bit  
1= 127 Transmit Error Counter > 95  
0= Transmit Error Counter 95  
RXWARN: Receiver Warning bit  
1= 127 Receive Error Counter > 95  
0= Receive Error Counter 95  
EWARN: Error Warning bit  
This bit is a flag of the RXWARN and TXWARN bits  
1= The RXWARN or the TXWARN bits are set  
0= Neither the RXWARN or the TXWARN bits are set  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 203  
PIC18FXX8  
19.2.2  
CAN TRANSMIT BUFFER  
REGISTERS  
This section describes the CAN Transmit Buffer  
registers and their associated control registers.  
REGISTER 19-4: TXBnCON – TRANSMIT BUFFER n CONTROL REGISTERS  
U-0  
R-0  
R-0  
R-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
TXABT  
TXLARB  
TXERR  
TXREQ  
TXPRI1  
TXPRI0  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ’0’  
TXABT: Transmission Aborted Status bit  
1= Message was aborted  
0= Message was not aborted  
bit 5  
bit 4  
bit 3  
TXLARB: Transmission Lost Arbitration Status bit  
1= Message lost arbitration while being sent  
0= Message did not lose arbitration while being sent  
TXERR: Transmission Error Detected Status bit  
1= A bus error occurred while the message was being sent  
0= A bus error did not occur while the message was being sent  
TXREQ: Transmit Request Status bit  
1= Requests sending a message. Clears the TXABT, TXLARB, and TXERR bits.  
0= Automatically cleared when the message is successfully sent  
Note:  
Clearing this bit in software while the bit is set, will request a message abort.  
bit 2  
Unimplemented: Read as ’0’  
bit 1-0  
TXPRI1:TXPRI0: Transmit Priority bits  
11= Priority Level 3 (Highest Priority)  
10= Priority Level 2  
01= Priority Level 1  
00= Priority Level 0 (Lowest Priority)  
Note:  
These bits set the order in which Transmit buffer will be transferred. They do not  
alter CAN message identifier.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41159B-page 204  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 19-5: TXBnSIDH: TRANSMIT BUFFER n STANDARD IDENTIFIER, HIGH BYTE  
R/W-x  
SID10  
R/W-x  
SID9  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
bit 7  
bit 0  
bit 7-0  
SID10:SID3: Standard Identifier bits, if EXIDE = 0 (TXBnSID Register)  
Extended Identifier bits EID28:EID21, if EXIDE = 1  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 19-6: TXBnSIDL – TRANSMIT BUFFER n STANDARD IDENTIFIER, LOW BYTE  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
R/W-x  
R/W-x  
EXIDE  
R/W-x  
R/W-x  
EID17  
R/W-x  
EID16  
bit 7  
bit 0  
bit 7-5  
SID2:SID0: Standard Identifier bits, if EXIDE = 0  
Extended Identifier bits EID20:EID18, if EXIDE = 1  
Unimplemented: Read as ’0’  
bit 4  
bit 3  
EXIDE: Extended Identifier Enable bit  
1= Message will transmit Extended ID, SID10:SID0 becomes EID28:EID18  
0= Message will transmit Standard ID, EID17:EID0 are ignored  
bit 2  
Unimplemented: Read as ’0’  
bit 1-0  
EID17:EID16: Extended Identifier bits  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 19-7: TXBnEIDH – TRANSMIT BUFFER n EXTENDED IDENTIFIER, HIGH BYTE  
R/W-x  
EID15  
R/W-x  
EID14  
R/W-x  
EID13  
R/W-x  
EID12  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
bit 7  
bit 0  
bit 7-0  
EID15:EID8: Extended Identifier bits  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 205  
PIC18FXX8  
REGISTER 19-8: TXBnEIDL – TRANSMIT BUFFER n EXTENDED IDENTIFIER, LOW BYTE  
R/W-x  
EID7  
R/W-x  
EID6  
R/W-x  
EID5  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
bit 7  
bit 0  
bit 7-0  
EID7:EID0: Extended Identifier bits  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 19-9: TXBnDm – TRANSMIT BUFFER n DATA FIELD BYTE m REGISTERS  
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x  
TXBnDm7 TXBnDm6 TXBnDm5 TXBnDm4 TXBnDm3 TXBnDm2 TXBnDm1 TXBnDm0  
bit 7 bit 0  
R/W-x  
bit 7-0  
TXBnDm7:TXBnDm0: Transmit Buffer n Data Field Byte m bits (where 0n<3 and 0<m<8)  
Each Transmit Buffer has an array of registers. For example, Transmit buffer 0 has 7 registers:  
TXB0D0 to TXB0D7.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41159B-page 206  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 19-10: TXBnDLC – TRANSMIT BUFFER n DATA LENGTH CODE REGISTERS  
U-0  
R/W-x  
U-0  
U-0  
R/W-x  
DLC3  
R/W-x  
DLC2  
R/W-x  
DLC1  
R/W-x  
DLC0  
TXRTR  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ’0’  
TXRTR: Transmission Frame Remote Transmission Request bit  
1= Transmitted message will have TXRTR bit set  
0= Transmitted message will have TXRTR bit cleared  
bit 5-4  
bit 3-0  
Unimplemented: Read as ’0’  
DLC3:DLC0: Data Length Code bits  
1111= Reserved  
1110= Reserved  
1101= Reserved  
1100= Reserved  
1011= Reserved  
1010= Reserved  
1001= Reserved  
1000= Data Length = 8 bytes  
0111= Data Length = 7 bytes  
0110= Data Length = 6 bytes  
0101= Data Length = 5 bytes  
0100= Data Length = 4 bytes  
0011= Data Length = 3 bytes  
0010= Data Length = 2 bytes  
0001= Data Length = 1 bytes  
0000= Data Length = 0 bytes  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 19-11: TXERRCNT – TRANSMIT ERROR COUNT REGISTER  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
TEC7  
TEC6  
TEC5  
TEC4  
TEC3  
TEC2  
TEC1  
TEC0  
bit 7  
bit 0  
bit 7-0  
TEC7:TEC0: Transmit Error Counter bits  
This register contains a value which is derived from the rate at which errors occur. When the  
error count overflows, the bus-off state occurs. When the bus has 128 occurrences of 11  
consecutive recessive bits, the counter value is cleared.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 207  
PIC18FXX8  
19.2.3  
CAN RECEIVE BUFFER  
REGISTERS  
This section shows the Receive Buffer registers with  
their associated control registers.  
REGISTER 19-12: RXB0CON – RECEIVE BUFFER 0 CONTROL REGISTER  
R/C-0  
R/W-0  
R/W-0  
U-0  
R-0  
R/W-0  
R-0  
R/W-0  
RXFUL(1) RXM1(1) RXM0(1)  
RXRTRRO RXB0DBEN JTOFF  
FILHIT0  
bit 7  
bit 0  
bit 7  
RXFUL: Receive Full Status bit(1)  
1= Receive buffer contains a received message  
0= Receive buffer is open to receive a new message  
Note:  
This bit is set by the CAN module and must be cleared by software after the buffer  
is read.  
bit 6-5  
RXM1:RXM0: Receive Buffer Mode bits(1)  
11= Receive all messages (including those with errors)  
10= Receive only valid messages with extended identifier  
01= Receive only valid messages with standard identifier  
00= Receive all valid messages  
bit 4  
bit 3  
Unimplemented: Read as ’0’  
RXRTRRO: Receive Remote Transfer Request Read Only bit  
1= Remote transfer request  
0= No remote transfer request  
bit 2  
bit 1  
RXB0DBEN: Receive Buffer 0 Double Buffer Enable bit  
1= Receive Buffer 0 overflow will write to Receive Buffer 1  
0= No Receive Buffer 0 overflow to Receive Buffer 1  
JTOFF: Jump Table Offset bit (read only copy of RXB0DBEN)  
1= Allows Jump Table offset between 6 and 7  
0= Allows Jump Table offset between 1 and 0  
Note:  
This bit allows same filter jump table for both RXB0CON and RXB1CON.  
bit 0  
FILHIT0: Filter Hit bit  
This bit indicates which acceptance filter enabled the message reception into Receive Buffer 0  
1= Acceptance Filter 1 (RXF1)  
0= Acceptance Filter 0 (RXF0)  
Note  
1: Bits RXFUL, RXM1 and RXM0 of RXB0CON are not mirrored in RXB1CON.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41159B-page 208  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 19-13: RXB1CON – RECEIVE BUFFER 1 CONTROL REGISTER  
R/C-0  
R/W-0  
R/W-0  
U-0  
R-0  
R-0  
R-0  
R-0  
RXFUL(1) RXM1(1) RXM0(1)  
RXRTRRO FILHIT2  
FILHIT1  
FILHIT0  
bit 7  
bit 0  
bit 7  
RXFUL: Receive Full Status bit(1)  
1= Receive buffer contains a received message  
0= Receive buffer is open to receive a new message  
Note:  
This bit is set by the CAN module and should be cleared by software after the buffer  
is read.  
bit 6-5  
RXM1:RXM0: Receive Buffer Mode bits(1)  
11= Receive all messages (including those with errors)  
10= Receive only valid messages with extended identifier  
01= Receive only valid messages with standard identifier  
00= Receive all valid messages  
bit 4  
bit 3  
Unimplemented: Read as ’0’  
RXRTRRO: Receive Remote Transfer Request bit (read only)  
1= Remote transfer request  
0= No remote transfer request  
bit 2-0  
FILHIT2:FILHIT0: Filter Hit bits  
These bits indicate which acceptance filter enabled the last message reception into Receive  
Buffer 1  
111= Reserved  
110= Reserved  
101= Acceptance Filter 5 (RXF5)  
100= Acceptance Filter 4 (RXF4)  
011= Acceptance Filter 3 (RXF3)  
010= Acceptance Filter 2 (RXF2)  
001= Acceptance Filter 1 (RXF1) only possible when RXB0DBEN bit is set  
000= Acceptance Filter 0 (RXF0) only possible when RXB0DBEN bit is set  
Note  
1: Bits RXFUL, RXM1 and RXM0 of RXB1CON are not mirrored in RXB0CON.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 19-14: RXBnSIDH – RECEIVE BUFFER n STANDARD IDENTIFIER, HIGH BYTE  
REGISTER  
R/W-x  
SID10  
R/W-x  
SID9  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
bit 7  
bit 0  
bit 7-0  
SID10:SID3: Standard Identifier bits, if EXID = 0 (RXBnSIDL Register)  
Extended Identifier bits EID28:EID21, if EXID = 1  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR  
’0’ = Bit is cleared  
x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 209  
PIC18FXX8  
REGISTER 19-15: RXBnSIDL – RECEIVE BUFFER n STANDARD IDENTIFIER, LOW BYTE  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
R/W-x  
SRR  
R/W-x  
EXID  
U-0  
R/W-x  
EID17  
R/W-x  
EID16  
bit 7  
bit 0  
bit 7-5  
bit 4  
SID2:SID0: Standard Identifier bits, if EXID = 0  
Extended Identifier bits EID20:EID18, if EXID = 1  
SRR: Substitute Remote Request bit  
This bit is always ‘0’ when EXID = ‘1’, or equal to the value of RXRTRRO (RXnBCON<3>)  
when EXID = ‘0’.  
bit 3  
EXID: Extended Identifier bit  
1= Received message is an Extended Data Frame, SID10:SID0 are EID28:EID18  
0= Received message is a Standard Data Frame  
bit 2  
Unimplemented: Read as ’0’  
bit 1-0  
EID17:EID16: Extended Identifier bits  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 19-16: RXBnEIDH – RECEIVE BUFFER n EXTENDED IDENTIFIER, HIGH BYTE  
R/W-x  
EID15  
R/W-x  
EID14  
R/W-x  
EID13  
R/W-x  
EID12  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
bit 0  
bit 7  
bit 7-0  
EID15:EID8: Extended Identifier bits  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 19-17: RXBnEIDL – RECEIVE BUFFER n EXTENDED IDENTIFIER, LOW BYTE  
R/W-x  
EID7  
R/W-x  
EID6  
R/W-x  
EID5  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
bit 7  
bit 0  
bit 7-0  
EID7:EID0: Extended Identifier bits  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41159B-page 210  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 19-18: RXBnDLC – RECEIVE BUFFER n DATA LENGTH CODE REGISTERS  
U-0  
R/W-x  
R/W-x  
RB1  
R/W-x  
RB0  
R/W-x  
DLC3  
R/W-x  
DLC2  
R/W-x  
DLC1  
R/W-x  
DLC0  
RXRTR  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ’0’  
RXRTR: Receiver Remote Transmission Request bit  
1= Remote transfer request  
0= No remote transfer request  
bit 5  
RB1: Reserved bit 1  
Reserved by CAN Spec and read as ’0’  
bit 4  
RB0: Reserved bit 0  
Reserved by CAN Spec and read as ’0’  
bit 3-0  
DLC3:DLC0: Data Length Code bits  
1111= Invalid  
1110= Invalid  
1101= Invalid  
1100= Invalid  
1011= Invalid  
1010= Invalid  
1001= Invalid  
1000= Data Length = 8 bytes  
0111= Data Length = 7 bytes  
0110= Data Length = 6 bytes  
0101= Data Length = 5 bytes  
0100= Data Length = 4 bytes  
0011= Data Length = 3 bytes  
0010= Data Length = 2 bytes  
0001= Data Length = 1 bytes  
0000= Data Length = 0 bytes  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 19-19: RXBnDm – RECEIVE BUFFER n DATA FIELD BYTE m REGISTERS  
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x  
RXBnDm7 RXBnDm6 RXBnDm5 RXBnDm4 RXBnDm3 RXBnDm2 RXBnDm1 RXBnDm0  
bit 7 bit 0  
R/W-x  
bit 7-0  
RXBnDm7:RXBnDm0: Receive Buffer n Data Field Byte m bits (where 0n<1 and 0<m<7)  
Each Receive Buffer has an array of registers. For example, Receive buffer 0 has 8 registers:  
RXB0D0 to RXB0D7.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 211  
PIC18FXX8  
REGISTER 19-20: RXERRCNT – RECEIVE ERROR COUNT REGISTER  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
REC7  
REC6  
REC5  
REC4  
REC3  
REC2  
REC1  
REC0  
bit 7  
bit 0  
bit 7-0  
REC7:REC0: Receive Error Counter bits  
This register contains the Receive Error value as defined by the CAN specifications.  
When RXERRCNT > 127, the module will go into an error passive state. RXERRCNT does not  
have the ability to put the module in “Bus-Off” state.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
19.2.3.1  
Message Acceptance Filters and  
Masks  
This subsection describes the Message Acceptance  
filters and masks for the CAN Receive buffers.  
REGISTER 19-21: RXFnSIDH – RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER,  
HIGH BYTE  
R/W-x  
SID10  
R/W-x  
SID9  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
bit 7  
bit 0  
bit 7-0  
SID10:SID3: Standard Identifier Filter bits, if EXIDEN = 0  
Extended Identifier Filter bits EID28:EID21, if EXIDEN = 1  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 19-22: RXFnSIDL – RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER,  
LOW BYTE  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
U-0  
R/W-x  
EXIDEN  
U-0  
R/W-x  
EID17  
R/W-x  
EID16  
bit 7  
bit 0  
bit 7-5  
SID2:SID0: Standard Identifier Filter bits, if EXIDEN = 0  
Extended Identifier Filter bits EID20:EID18, if EXIDEN = 1  
Unimplemented: Read as ’0’  
bit 4  
bit 3  
EXIDEN: Extended Identifier Filter Enable bit  
1= Filter will only accept Extended ID messages  
0= Filter will only accept Standard ID messages  
bit 2  
Unimplemented: Read as ’0’  
bit 1-0  
EID17:EID16: Extended Identifier Filter bits  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41159B-page 212  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 19-23: RXFnEIDH – RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER,  
HIGH BYTE  
R/W-x  
EID15  
bit 7  
R/W-x  
EID14  
R/W-x  
EID13  
R/W-x  
EID12  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
bit 0  
bit 7-0  
EID15:EID8: Extended Identifier Filter bits  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 19-24: RXFnEIDL – RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER,  
LOW BYTE  
R/W-x  
EID7  
R/W-x  
EID6  
R/W-x  
EID5  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
bit 7  
bit 0  
bit 7-0  
EID7:EID0: Extended Identifier Filter bits  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 19-25: RXMnSIDH – RECEIVE ACCEPTANCE MASK n STANDARD IDENTIFIER MASK,  
HIGH BYTE  
R/W-x  
SID10  
R/W-x  
SID9  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
bit 7  
bit 0  
bit 7-0  
SID10:SID3: Standard Identifier Mask bits, or Extended Identifier Mask bits EID28:EID21  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 213  
PIC18FXX8  
REGISTER 19-26: RXMnSIDL – RECEIVE ACCEPTANCE MASK n STANDARD IDENTIFIER MASK,  
LOW BYTE  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
U-0  
U-0  
U-0  
R/W-x  
EID17  
R/W-x  
EID16  
bit 7  
bit 0  
bit 7-5  
bit 4-2  
bit 1-0  
SID2:SID0: Standard Identifier Mask bits, or Extended Identifier Mask bits EID20:EID18  
Unimplemented: Read as ’0’  
EID17:EID16: Extended Identifier Mask bits  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 19-27: RXMnEIDH – RECEIVE ACCEPTANCE MASK n EXTENDED IDENTIFIER MASK,  
HIGH BYTE  
R/W-x  
EID15  
R/W-x  
EID14  
R/W-x  
EID13  
R/W-x  
EID12  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
bit 7  
bit 0  
bit 7-0  
EID15:EID8: Extended Identifier Mask bits  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 19-28: RXMnEIDL – RECEIVE ACCEPTANCE MASK n EXTENDED IDENTIFIER MASK,  
LOW BYTE  
R/W-x  
EID7  
R/W-x  
EID6  
R/W-x  
EID5  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
bit 7  
bit 0  
bit 7-0  
EID7:EID0: Extended Identifier Mask bits  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41159B-page 214  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
19.2.4  
CAN BAUD RATE REGISTERS  
This subsection describes the CAN Baud Rate  
registers.  
REGISTER 19-29: BRGCON1 – BAUD RATE CONTROL REGISTER 1  
R/W-0  
SJW1  
R/W-0  
SJW0  
R/W-0  
BRP5  
R/W-0  
BRP4  
R/W-0  
BRP3  
R/W-0  
BRP2  
R/W-0  
BRP1  
R/W-0  
BRP0  
bit 7  
bit 0  
bit 7-6  
bit 5-0  
SJW1:SJW0: Synchronized Jump Width bits  
11= Synchronization Jump Width Time = 4 x TQ  
10= Synchronization Jump Width Time = 3 x TQ  
01= Synchronization Jump Width Time = 2 x TQ  
00= Synchronization Jump Width Time = 1 x TQ  
BRP5:BRP0: Baud Rate Prescaler bits  
111111= TQ = (2 x 64)/FOSC  
111110= TQ = (2 x 63)/FOSC  
:
:
000001= TQ = (2 x 2)/FOSC  
000000= TQ = (2 x 1)/FOSC  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
Note: This register is accessible in Configuration mode only.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 215  
PIC18FXX8  
REGISTER 19-30: BRGCON2 – BAUD RATE CONTROL REGISTER 2  
R/W-0  
SEG2PHTS  
bit 7  
R/W-0  
SAM  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SEG1PH2 SEG1PH1 SEG1PH0 PRSEG2 PRSEG1 PRSEG0  
bit 0  
bit 7  
SEG2PHTS: Phase Segment 2 Time Select bit  
1= Freely programmable  
0= Maximum of PHEG1 or Information Processing Time (IPT), whichever is greater  
bit 6  
SAM: Sample of the CAN bus Line bit  
1= Bus line is sampled three times prior to the sample point  
0= Bus line is sampled once at the sample point  
bit 5-3  
SEG1PH2:SEG1PH0: Phase Segment 1 bits  
111= Phase Segment 1 Time = 8 x TQ  
110= Phase Segment 1 Time = 7 x TQ  
101= Phase Segment 1 Time = 6 x TQ  
100= Phase Segment 1 Time = 5 x TQ  
011= Phase Segment 1 Time = 4 x TQ  
010= Phase Segment 1 Time = 3 x TQ  
001= Phase Segment 1 Time = 2 x TQ  
000= Phase Segment 1 Time = 1 x TQ  
bit 2-0  
PRSEG2:PRSEG0: Propagation Time Select bits  
111= Propagation Time = 8 x TQ  
110= Propagation Time = 7 x TQ  
101= Propagation Time = 6 x TQ  
100= Propagation Time = 5 x TQ  
011= Propagation Time = 4 x TQ  
010= Propagation Time = 3 x TQ  
001= Propagation Time = 2 x TQ  
000= Propagation Time = 1 x TQ  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
Note: This register is accessible in Configuration mode only.  
DS41159B-page 216  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 19-31: BRGCON3 – BAUD RATE CONTROL REGISTER 3  
U-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
WAKFIL  
SEG2PH2(1) SEG2PH1(1) SEG2PH0(1)  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ’0’  
WAKFIL: Selects CAN bus Line Filter for Wake-up bit  
1= Use CAN bus line filter for wake-up  
0= CAN bus line filter is not used for wake-up  
bit 5-3  
bit 2-0  
Unimplemented: Read as ’0’  
SEG2PH2:SEG2PH0: Phase Segment 2 Time Select bits(1)  
111= Phase Segment 2 Time = 8 x TQ  
110= Phase Segment 2 Time = 7 x TQ  
101= Phase Segment 2 Time = 6 x TQ  
100= Phase Segment 2 Time = 5 x TQ  
011= Phase Segment 2 Time = 4 x TQ  
010= Phase Segment 2 Time = 3 x TQ  
001= Phase Segment 2 Time = 2 x TQ  
000= Phase Segment 2 Time = 1 x TQ  
Note 1: Ignored if SEG2PHTS bit (BRGCON2<7>) is clear.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
19.2.5  
CAN MODULE I/O CONTROL  
REGISTER  
This register controls the operation of the CAN module’s  
I/O pins in relation to the rest of the microcontroller.  
REGISTER 19-32: CIOCON – CAN I/O CONTROL REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
ENDRHI CANCAP  
bit 7  
bit 0  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
ENDRHI: Enable Drive High bit  
1= CANTX pin will drive VDD when recessive  
0= CANTX pin will tri-state when recessive  
bit 4  
CANCAP: CAN Message Receive Capture Enable bit  
1= Enable CAN capture, CAN message receive signal replaces input on RC2/CCP1  
0= Disable CAN capture, RC2/CCP1 input to CCP1 module  
bit 3-0  
Unimplemented: Read as ’0’  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR  
’0’ = Bit is cleared  
x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 217  
PIC18FXX8  
19.2.6  
CAN INTERRUPT REGISTERS  
The registers in this section are the same as described  
in Section 8.0. They are duplicated here for  
convenience.  
REGISTER 19-33: PIR3 – PERIPHERAL INTERRUPT FLAG REGISTER  
R/W-0  
IRXIF  
R/W-0  
R/W-0  
ERRIF  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WAKIF  
TXB2IF  
TXB1IF  
TXB0IF  
RXB1IF  
RXB0IF  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
IRXIF: CAN Invalid Received Message Interrupt Flag bit  
1= An invalid message has occurred on the CAN bus  
0= No invalid message on CAN bus  
WAKIF: CAN bus Activity Wake-up Interrupt Flag bit  
1= Activity on CAN bus has occurred  
0= No activity on CAN bus  
ERRIF: CAN bus Error Interrupt Flag bit  
1= An error has occurred in the CAN module (multiple sources)  
0= No CAN module errors  
TXB2IF: CAN Transmit Buffer 2 Interrupt Flag bit  
1= Transmit Buffer 2 has completed transmission of a message and may be reloaded  
0= Transmit Buffer 2 has not completed transmission of a message  
TXB1IF: CAN Transmit Buffer 1 Interrupt Flag bit  
1= Transmit Buffer 1 has completed transmission of a message and may be reloaded  
0= Transmit Buffer 1 has not completed transmission of a message  
TXB0IF: CAN Transmit Buffer 0 Interrupt Flag bit  
1= Transmit Buffer 0 has completed transmission of a message and may be reloaded  
0= Transmit Buffer 0 has not completed transmission of a message  
RXB1IF: CAN Receive Buffer 1 Interrupt Flag bit  
1= Receive Buffer 1 has received a new message  
0= Receive Buffer 1 has not received a new message  
RXB0IF: CAN Receive Buffer 0 Interrupt Flag bit  
1= Receive Buffer 0 has received a new message  
0= Receive Buffer 0 has not received a new message  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41159B-page 218  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 19-34: PIE3 – PERIPHERAL INTERRUPT ENABLE REGISTER  
R/W-0  
IRXIE  
R/W-0  
R/W-0  
ERRIE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WAKIE  
TXB2IE  
TXB1IE  
TXB0IE  
RXB1IE  
RXB0IE  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
IRXIE: CAN Invalid Received Message Interrupt Enable bit  
1= Enable invalid message received interrupt  
0= Disable invalid message received interrupt  
WAKIE: CAN bus Activity Wake-up Interrupt Enable bit  
1= Enable bus activity wake-up interrupt  
0= Disable bus activity wake-up interrupt  
ERRIE: CAN bus Error Interrupt Enable bit  
1= Enable CAN bus error interrupt  
0= Disable CAN bus error interrupt  
TXB2IE: CAN Transmit Buffer 2 Interrupt Enable bit  
1= Enable Transmit Buffer 2 interrupt  
0= Disable Transmit Buffer 2 interrupt  
TXB1IE: CAN Transmit Buffer 1 Interrupt Enable bit  
1= Enable Transmit Buffer 1 interrupt  
0= Disable Transmit Buffer 1 interrupt  
TXB0IE: CAN Transmit Buffer 0 Interrupt Enable bit  
1= Enable Transmit Buffer 0 interrupt  
0= Disable Transmit Buffer 0 interrupt  
RXB1IE: CAN Receive Buffer 1 Interrupt Enable bit  
1= Enable Receive Buffer 1 interrupt  
0= Disable Receive Buffer 1 interrupt  
RXB0IE: CAN Receive Buffer 0 Interrupt Enable bit  
1= Enable Receive Buffer 0 interrupt  
0= Disable Receive Buffer 0 interrupt  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 219  
PIC18FXX8  
REGISTER 19-35: IPR3 – PERIPHERAL INTERRUPT PRIORITY REGISTER  
R/W-1  
IRXIP  
R/W-1  
R/W-1  
ERRIP  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
WAKIP  
TXB2IP  
TXB1IP  
TXB0IP  
RXB1IP  
RXB0IP  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
IRXIP: CAN Invalid Received Message Interrupt Priority bit  
1= High priority  
0= Low priority  
WAKIP: CAN bus Activity Wake-up Interrupt Priority bit  
1= High priority  
0= Low priority  
ERRIP: CAN bus Error Interrupt Priority bit  
1= High priority  
0= Low priority  
TXB2IP: CAN Transmit Buffer 2 Interrupt Priority bit  
1= High priority  
0= Low priority  
TXB1IP: CAN Transmit Buffer 1 Interrupt Priority bit  
1= High priority  
0= Low priority  
TXB0IP: CAN Transmit Buffer 0 Interrupt Priority bit  
1= High priority  
0= Low priority  
RXB1IP: CAN Receive Buffer 1 Interrupt Priority bit  
1= High priority  
0= Low priority  
RXB0IP: CAN Receive Buffer 0 Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS41159B-page 220  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
TABLE 19-1: CAN CONTROLLER REGISTER MAP  
Address  
Name  
Address  
Name  
Address  
Name  
Address  
Name  
F7Fh  
F5Fh  
F3Fh  
F1Fh RXM1EIDL  
F7Eh  
F7Dh  
F7Ch  
F7Bh  
F7Ah  
F79h  
F78h  
F77h  
F5Eh CANSTATRO1(2)  
F3Eh CANSTATRO3(2)  
F1Eh RXM1EIDH  
F1Dh RXM1SIDL  
F1Ch RXM1SIDH  
F1Bh RXM0EIDL  
F1Ah RXM0EIDH  
F19h RXM0SIDL  
F18h RXM0SIDH  
F5Dh  
F5Ch  
F5Bh  
F5Ah  
F59h  
F58h  
F57h  
F56h  
F55h  
F54h  
F53h  
F52h  
F51h  
F50h  
F4Fh  
RXB1D7  
RXB1D6  
RXB1D5  
RXB1D4  
RXB1D3  
RXB1D2  
RXB1D1  
RXB1D0  
RXB1DLC  
RXB1EIDL  
RXB1EIDH  
RXB1SIDL  
RXB1SIDH  
RXB1CON  
F3Dh  
F3Ch  
F3Bh  
F3Ah  
F39h  
F38h  
F37h  
F36h  
F35h  
F34h  
F33h  
F32h  
F31h  
F30h  
F2Fh  
TXB1D7  
TXB1D6  
TXB1D5  
TXB1D4  
TXB1D3  
TXB1D2  
TXB1D1  
TXB1D0  
TXB1DLC  
TXB1EIDL  
TXB1EIDH  
TXB1SIDL  
TXB1SIDH  
TXB1CON  
F17h  
F16h  
F15h  
F14h  
F13h  
F12h  
F11h  
F10h  
F0Fh  
RXF5EIDL  
RXF5EIDH  
RXF5SIDL  
RXF5SIDH  
RXF4EIDL  
RXF4EIDH  
RXF4SIDL  
RXF4SIDH  
RXF3EIDL  
F76h TXERRCNT  
F75h RXERRCNT  
F74h COMSTAT  
F73h  
CIOCON  
F72h BRGCON3  
F71h BRGCON2  
F70h BRGCON1  
F6Fh CANCON  
F6Eh CANSTAT  
F4Eh CANSTATRO2(2)  
F2Eh CANSTATRO4(2)  
F0Eh  
F0Dh  
F0Ch  
F0Bh  
F0Ah  
F09h  
F08h  
F07h  
F06h  
F05h  
F04h  
F03h  
F02h  
F01h  
F00h  
RXF3EIDH  
RXF3SIDL  
RXF3SIDH  
RXF2EIDL  
RXF2EIDH  
RXF2SIDL  
RXF2SIDH  
RXF1EIDL  
RXF1EIDH  
RXF1SIDL  
RXF1SIDH  
RXF0EIDL  
RXF0EIDH  
RXF0SIDL  
RXF0SIDH  
F6Dh  
F6Ch  
F6Bh  
F6Ah  
F69h  
F68h  
F67h  
F66h  
RXB0D7  
RXB0D6  
RXB0D5  
RXB0D4  
RXB0D3  
RXB0D2  
RXB0D1  
RXB0D0  
F4Dh  
F4Ch  
F4Bh  
F4Ah  
F49h  
F48h  
F47h  
F46h  
F45h  
F44h  
F43h  
F42h  
F41h  
F40h  
TXB0D7  
TXB0D6  
F2Dh  
F2Ch  
F2Bh  
F2Ah  
F29h  
F28h  
F27h  
F26h  
F25h  
F24h  
F23h  
F22h  
F21h  
F20h  
TXB2D7  
TXB2D6  
TXB0D5  
TXB2D5  
TXB0D4  
TXB2D4  
TXB0D3  
TXB2D3  
TXB0D2  
TXB2D2  
TXB0D1  
TXB2D1  
TXB0D0  
TXB2D0  
F65h RXB0DLC  
F64h RXB0EIDL  
F63h RXB0EIDH  
F62h RXB0SIDL  
F61h RXB0SIDH  
F60h RXB0CON  
TXB0DLC  
TXB0EIDL  
TXB0EIDH  
TXB0SIDL  
TXB0SIDH  
TXB0CON  
TXB2DLC  
TXB2EIDL  
TXB2EIDH  
TXB2SIDL  
TXB2SIDH  
TXB2CON  
Note 1: Shaded registers are available in Access Bank Low area, while the rest are available in Bank 15.  
2: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given  
for each instance of the CANSTAT register, due to the Microchip Header file requirement.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 221  
PIC18FXX8  
If REQOP<2:0> is set to ‘001’, the module will enter the  
Module Disable mode. This mode is similar to disabling  
other peripheral modules by turning off the module  
enables. This causes the module internal clock to stop  
unless the module is active (i.e., receiving or transmit-  
ting a message). If the module is active, the module will  
wait for 11 recessive bits on the CAN bus, detect that  
condition as an idle bus, then accept the module  
disable command. OPMODE<2:0> = ‘001’ indicates  
whether the module successfully went into Module  
Disable mode.  
19.3 CAN Modes of Operation  
The PIC18FXX8 has six main modes of operation:  
• Configuration mode  
• Disable mode  
• Normal Operation mode  
• Listen Only mode  
• Loopback mode  
• Error Recognition mode  
All modes except Error Recognition are requested by  
setting the REQOP bits (CANCON<7:5>); Error Recog-  
nition is requested through the RXM bits of the Receive  
Buffer register(s). Entry into a mode is acknowledged  
by monitoring the OPMODE bits.  
The WAKIF interrupt is the only module interrupt that is  
still active in the Module Disable mode. If the WAKIE is  
set, the processor will receive an interrupt whenever  
the CAN bus detects a dominant state, as occurs with  
a SOF.  
When changing modes, the mode will not actually  
change until all pending message transmissions are  
complete. Because of this, the user must verify that the  
device has actually changed into the requested mode  
before further operations are executed.  
The I/O pins will revert to normal I/O function when the  
module is in the Module Disable mode.  
19.3.3  
NORMAL MODE  
This is the standard operating mode of the PIC18FXX8.  
In this mode, the device actively monitors all bus mes-  
sages and generates Acknowledge bits, error frames,  
etc. This is also the only mode in which the PIC18FXX8  
will transmit messages over the CAN bus.  
19.3.1  
CONFIGURATION MODE  
The CAN module has to be initialized before the activa-  
tion. This is only possible if the module is in the Config-  
uration mode. The Configuration mode is requested by  
setting REQOP2 bit. Only when the status bit  
OPMODE2 has a high level, can the initialization be  
performed. Afterwards, the configuration registers, the  
acceptance mask registers, and the acceptance filter  
registers can be written. The module is activated by  
setting the REQOP control bits to zero.  
19.3.4  
LISTEN ONLY MODE  
Listen Only mode provides  
a
means for the  
PIC18FXX8 to receive all messages, including mes-  
sages with errors. This mode can be used for bus mon-  
itor applications, or for detecting the baud rate in ‘hot  
plugging’ situations. For auto-baud detection, it is nec-  
essary that there are at least two other nodes which are  
communicating with each other. The baud rate can be  
detected empirically by testing different values until  
valid messages are received. The Listen Only mode is  
a silent mode, meaning no messages will be transmit-  
ted while in this state, including error flags or Acknowl-  
edge signals. The filters and masks can be used to  
allow only particular messages to be loaded into the  
receive registers, or the filter masks can be set to all  
zeros to allow a message with any identifier to pass.  
The error counters are reset and deactivated in this  
state. The Listen Only mode is activated by setting the  
mode request bits in the CANCON register.  
The module will protect the user from accidentally vio-  
lating the CAN protocol through programming errors.  
All registers which control the configuration of the mod-  
ule can not be modified while the module is on-line.  
The CAN module will not be allowed to enter the Con-  
figuration mode while a transmission is taking place.  
The CONFIG bit serves as a lock to protect the  
following registers.  
• Configuration registers  
• Bus Timing registers  
• Identifier Acceptance Filter registers  
• Identifier Acceptance Mask registers  
In the Configuration mode, the module will not transmit  
or receive. The error counters are cleared and the inter-  
rupt flags remain unchanged. The programmer will  
have access to configuration registers that are access  
restricted in other modes.  
19.3.2  
DISABLE MODE  
In Disable mode, the module will not transmit or  
receive. The module has the ability to set the WAKIF bit  
due to bus activity, however, any pending interrupts will  
remain and the error counters will retain their value.  
DS41159B-page 222  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
19.3.5  
LOOPBACK MODE  
19.4.2  
TRANSMIT PRIORITY  
This mode will allow internal transmission of messages  
from the transmit buffers to the receive buffers, without  
actually transmitting messages on the CAN bus. This  
mode can be used in system development and testing.  
In this mode, the ACK bit is ignored and the device will  
allow incoming messages from itself, just as if they  
were coming from another node. The Loopback mode  
is a silent mode, meaning no messages will be trans-  
mitted while in this state, including error flags or  
Acknowledge signals. The TXCAN pin will revert to port  
I/O while the device is in this mode. The filters and  
masks can be used to allow only particular messages  
to be loaded into the receive registers. The masks can  
be set to all zeros to provide a mode that accepts all  
messages. The Loopback mode is activated by setting  
the mode request bits in the CANCON register.  
Transmit priority is a prioritization within the PIC18FXX8  
of the pending transmittable messages. This is indepen-  
dent from, and not related to, any prioritization implicit in  
the message arbitration scheme built into the CAN pro-  
tocol. Prior to sending the SOF, the priority of all buffers  
that are queued for transmission is compared. The trans-  
mit buffer with the highest priority will be sent first. If two  
buffers have the same priority setting, the buffer with the  
highest buffer number will be sent first. There are four  
levels of transmit priority. If TXP bits for a particular mes-  
sage buffer are set to 11, that buffer has the highest pos-  
sible priority. If TXP bits for a particular message buffer  
are 00, that buffer has the lowest possible priority.  
FIGURE 19-2:  
TRANSMIT BUFFER  
BLOCK DIAGRAM  
19.3.6  
ERROR RECOGNITION MODE  
TXREQ  
TXABT  
TXLARB  
TXERR  
TXBUFF  
TXB0  
The module can be set to ignore all errors and receive  
any message. The Error Recognition mode is activated  
by setting the RXM<1:0> bits in the RXBnCON regis-  
ters to 11. In this mode, the data which is in the mes-  
sage assembly buffer until the error time, is copied in  
the receive buffer and can be read via the CPU inter-  
face. In addition, the data which was on the internal  
sampling of the CAN bus at the error time and the state  
vector of the protocol state machine and the bit counter  
CntCan, are stored in registers and can be read.  
MESSAGE  
TXB1  
TXREQ  
TXABT  
TXLARB  
TXERR  
TXBUFF  
MESSAGE  
TXB2  
TXREQ  
TXABT  
TXLARB  
TXERR  
TXBUFF  
Message  
Request  
MESSAGE  
19.4 CAN Message Transmission  
Message  
Queue  
19.4.1  
TRANSMIT BUFFERS  
Control  
The PIC18FXX8 implements three Transmit Buffers  
(Figure 19-2). Each of these buffers occupies 14 bytes  
of SRAM and are mapped into the device memory  
map.  
Transmit Byte Sequencer  
For the MCU to have write access to the message  
buffer, the TXREQ bit must be clear, indicating that the  
message buffer is clear of any pending message to be  
transmitted. At a minimum, the TXBnSIDH, TXBnSIDL,  
and TXBnDLC registers must be loaded. If data bytes  
are present in the message, the TXBnDm registers  
must also be loaded. If the message is to use extended  
identifiers, the TXBnEIDm registers must also be  
loaded and the EXIDE bit set.  
Prior to sending the message, the MCU must initialize  
the TXInE bit to enable or disable the generation of an  
interrupt when the message is sent. The MCU must  
also initialize the TXP priority bits (see Section 19.4.2).  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 223  
PIC18FXX8  
19.4.3  
INITIATING TRANSMISSION  
19.4.4  
ABORTING TRANSMISSION  
To initiate message transmission, the TXREQ bit must  
be set for each buffer to be transmitted. When TXREQ  
is set, the TXABT, TXLARB and TXERR bits will be  
cleared.  
The MCU can request to abort a message by clearing  
the TXREQ bit associated with the corresponding mes-  
sage buffer (TXBnCON<3>). Setting the ABAT bit  
(CANCON<4>) will request an abort of all pending mes-  
sages. If the message has not yet started transmission,  
or if the message started but is interrupted by loss of  
arbitration or an error, the abort will be processed. The  
abort is indicated when the module sets the ABT bits for  
the corresponding buffer (TXBnCON<6>). If the mes-  
sage has started to transmit, it will attempt to transmit the  
current message fully. If the current message is transmit-  
ted fully and is not lost to arbitration or an error, the ABT  
bit will not be set, because the message was transmitted  
successfully. Likewise, if a message is being transmitted  
during an abort request and the message is lost to arbi-  
tration or an error, the message will not be retransmitted  
and the ABT bit will be set, indicating that the message  
was successfully aborted.  
Setting the TXREQ bit does not initiate a message  
transmission, it merely flags a message buffer as ready  
for transmission. Transmission will start when the  
device detects that the bus is available. The device will  
then begin transmission of the highest priority message  
that is ready.  
When the transmission has completed successfully, the  
TXREQ bit will be cleared, the TXBnIF bit will be set, and  
an interrupt will be generated if the TXBnIE bit is set.  
If the message transmission fails, the TXREQ will remain  
set, indicating that the message is still pending for trans-  
mission and one of the following condition flags will be  
set. If the message started to transmit but encountered  
an error condition, the TXERR and the IRXIF bits will be  
set and an interrupt will be generated. If the message lost  
arbitration, the TXLARB bit will be set.  
DS41159B-page 224  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 19-3:  
TRANSMIT MESSAGE FLOW CHART  
Start  
The message transmission sequence begins when  
the device determines that the TXREQ for any of the  
transmit registers has been set.  
Are any  
TXREQ  
bits = 1  
?
No  
Clearing the TXREQ bit while it is set, or setting  
the ABAT bit before the message has started  
transmission, will abort the message.  
Yes  
Clear: TXABT, TXLARB  
and TXERR  
No  
Is  
Is  
Yes  
No  
CAN bus Available  
to Start Transmission  
?
TXREQ = 0  
ABAT = 1  
?
Yes  
Examine TXPRI <1:0> to  
Determine Highest Priority Message  
Begin Transmission (SOF)  
Was  
No  
Set  
TXERR = 1  
Message Transmitted  
Successfully?  
Yes  
Set TXREQ = 0  
Is  
Yes  
Arbitration Lost During  
Transmission  
TXLARB = 1?  
Yes  
Is  
Generate  
Interrupt  
TXIE = 1?  
A message can also be  
No  
aborted, if  
a message  
error or lost arbitration  
condition occurred during  
transmission.  
No  
Is  
TXREQ = 0  
or TXABT = 1  
Yes  
?
Set  
TXBUFE = 1  
No  
The TXIE bit determines if an inter-  
rupt should be generated when a  
message is successfully transmitted.  
Abort Transmission:  
Set TXABT = 1  
END  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 225  
PIC18FXX8  
The RXM bits set special Receive modes. Normally,  
these bits are set to ‘00’ to enable reception of all valid  
messages, as determined by the appropriate accep-  
tance filters. In this case, the determination of whether  
or not to receive standard or extended messages is  
determined by the EXIDE bit in the acceptance filter  
register. If the RXM bits are set to ‘01’ or ‘10’, the  
receiver will accept only messages with standard or  
extended identifiers, respectively. If an acceptance fil-  
ter has the EXIDE bit set, such that it does not corre-  
spond with the RXM mode, that acceptance filter is  
rendered useless. These two modes of RXM bits can  
be used in systems where it is known that only standard  
or extended messages will be on the bus. If the RXM  
bits are set to ‘11’, the buffer will receive all messages,  
regardless of the values of the acceptance filters. Also,  
if a message has an error before the end of frame, that  
portion of the message assembled in the MAB before  
the error frame, will be loaded into the buffer. This  
mode has some value in debugging a CAN system and  
would not be used in an actual system environment.  
19.5 Message Reception  
19.5.1  
RECEIVE MESSAGE BUFFERING  
The PIC18FXX8 includes two full receive buffers with  
multiple acceptance filters for each. There is also a  
separate Message Assembly Buffer (MAB), which acts  
as a third receive buffer (see Figure 19-4).  
19.5.2  
RECEIVE BUFFERS  
Of the three receive buffers, the MAB is always commit-  
ted to receiving the next message from the bus. The  
remaining two receive buffers are called RXB0 and  
RXB1 and can receive a complete message from the  
protocol engine. The MCU can access one buffer while  
the other buffer is available for message reception, or  
holding a previously received message.  
The MAB assembles all messages received. These  
messages will be transferred to the RXBn buffers, only  
if the acceptance filter criteria are met.  
Note: The entire contents of the MAB are moved  
into the receive buffer once a message is  
accepted. This means that, regardless of  
the type of identifier (standard or extended)  
and the number of data bytes received, the  
entire receive buffer is overwritten with the  
MAB contents. Therefore, the contents of  
all registers in the buffer must be assumed  
to have been modified when any message  
is received.  
19.5.4  
TIME-STAMPING  
The CAN module can be programmed to generate a  
time-stamp for every message that is received. When  
enabled, the module generates a capture signal for  
CCP1, which in turns captures the value of either  
Timer1 or Timer3. This value can be used as the  
message time-stamp.  
To use the time-stamp capability, the CANCAP bit  
(CIOCAN<4>) must be set. This replaces the capture  
input for CCP1 with the signal generated from the CAN  
module. In addition, CCP1CON<3:0> must be set to  
0011’ to enable the CCP special event trigger for CAN  
events.  
When a message is moved into either of the receive  
buffers, the appropriate RXBnIF bit is set. This bit must  
be cleared by the MCU when it has completed process-  
ing the message in the buffer, in order to allow a new  
message to be received into the buffer. This bit pro-  
vides a positive lockout to ensure that the MCU has fin-  
ished with the message before the PIC18FXX8  
attempts to load a new message into the receive buffer.  
If the RXBnIE bit is set, an interrupt will be generated to  
indicate that a valid message has been received.  
FIGURE 19-4:  
RECEIVE BUFFER BLOCK  
DIAGRAM  
Accept  
Acceptance Mask  
RXM1  
19.5.3  
RECEIVE PRIORITY  
Acceptance Filter  
RXM2  
RXB0 is the higher priority buffer and has two message  
acceptance filters associated with it. RXB1 is the lower  
priority buffer and has four acceptance filters associ-  
ated with it. The lower number of acceptance filters  
makes the match on RXB0 more restrictive and implies  
a higher priority for that buffer. Additionally, the  
RXB0CON register can be configured such that if  
RXB0 contains a valid message and another valid mes-  
sage is received, an overflow error will not occur and  
the new message will be moved into RXB1, regardless  
of the acceptance criteria of RXB1. There are also two  
programmable acceptance filter masks available, one  
for each receive buffer (see Section 4.5).  
Accept  
Acceptance Mask  
Acceptance Filter  
RXF3  
RXM0  
Acceptance Filter  
RXF0  
Acceptance Filter  
RXF4  
Acceptance Filter  
RXF5  
Acceptance Filter  
RXF1  
RXB0  
RXB1  
Data and Data and  
Identifier  
Identifier  
Identifier  
Identifier  
When a message is received, bits <3:0> of the  
RXBnCON register will indicate the acceptance filter  
number that enabled reception and whether the  
received message is a remote transfer request.  
Message Assembly Buffer  
DS41159B-page 226  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 19-5:  
MESSAGE RECEPTION FLOW CHART  
Start  
Detect  
No  
Start of  
Message?  
Yes  
Begin Loading Message into  
Message Assembly Buffer (MAB)  
Valid  
Generate  
Error  
Frame  
No  
Message  
Received?  
Yes  
Yes, meets criteria  
for RXB1  
Yes, meets criteria  
for RXBO  
Message  
Identifier meets  
a Filter Criteria?  
No  
Go to Start  
The RXFUL bit determines if the  
receive register is empty and able  
to accept a new message.  
The RXB0DBEN bit determines if  
RXB0 can rollover into RXB1 if it is  
full.  
Is  
No  
Is  
Yes  
RXFUL = 0?  
RX0DBEN = 1?  
Yes  
No  
Is  
No  
Generate Overrun Error:  
Set RXB1OVFL  
Generate Overrun Error:  
Set RXB0OVFL  
Move Message into RXB0  
Set RXRDY = 1  
RXFUL = 0?  
Yes  
Move Message into RXB1  
No  
Is  
Set FILHIT <0>  
according to which Filter  
Criteria was met  
ERRIE = 1?  
Set RXRDY = 1  
Yes  
Go to Start  
Set FILHIT <2:0>  
according to which Filter  
Criteria was met  
Is  
Yes  
Is  
Yes  
Generate  
Interrupt  
RXIE = 1?  
RXIE = 1?  
No  
No  
Set CANSTAT <3:0> according  
to which Receive Buffer the  
Message was loaded into  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 227  
PIC18FXX8  
For RXB1, the RXB1CON register contains the  
FILHIT<2:0> bits. They are coded as follows:  
19.6 Message Acceptance Filters and  
Masks  
101= Acceptance Filter 5 (RXF5)  
100= Acceptance Filter 4 (RXF4)  
011= Acceptance Filter 3 (RXF3)  
010= Acceptance Filter 2 (RXF2)  
001= Acceptance Filter 1 (RXF1)  
000= Acceptance Filter 0 (RXF0)  
The Message Acceptance Filters and Masks are used  
to determine if a message in the message assembly  
buffer should be loaded into either of the receive buff-  
ers. Once a valid message has been received into the  
MAB, the identifier fields of the message are compared  
to the filter values. If there is a match, that message will  
be loaded into the appropriate receive buffer. The filter  
masks are used to determine which bits in the identifier  
are examined with the filters. A truth table is shown  
below in Table 19-2 that indicates how each bit in the  
identifier is compared to the masks and filters to deter-  
mine if a message should be loaded into a receive  
buffer. The mask, essentially determines which bits to  
apply the acceptance filters to. If any mask bit is set to  
a zero, then that bit will automatically be accepted,  
regardless of the filter bit.  
Note: 000 and 001 can only occur if the  
RXB0DBEN bit is set in the RXB0CON  
register, allowing RXB0 messages to  
rollover into RXB1.  
The coding of the RXB0DBEN bit enables these three  
bits to be used similarly to the FILHIT bits and to distin-  
guish a hit on filter RXF0 and RXF1, in either RXB0, or  
after a rollover into RXB1.  
111= Acceptance Filter 1 (RXF1)  
110= Acceptance Filter 0 (RXF0)  
001= Acceptance Filter 1 (RXF1)  
000= Acceptance Filter 0  
TABLE 19-2: FILTER/MASK TRUTH TABLE  
Message  
Identifier  
bit n001  
Accept or  
Reject  
bit n  
Mask  
bit n  
Filter bit n  
If the RXB0DBEN bit is clear, there are six codes cor-  
responding to the six filters. If the RXB0DBEN bit is set,  
there are six codes corresponding to the six filters, plus  
two additional codes corresponding to RXF0 and RXF1  
filters that rollover into RXB1.  
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
Accept  
Accept  
Reject  
Reject  
Accept  
If more than one acceptance filter matches, the FILHIT  
bits will encode the binary value of the lowest num-  
bered filter that matched. In other words, if filter RXF2  
and filter RXF4 match, FILHIT will be loaded with the  
value for RXF2. This essentially prioritizes the accep-  
tance filters with a lower number filter having higher pri-  
ority. Messages are compared to filters in ascending  
order of filter number.  
Legend: X= don’t care  
As shown in the Receive Buffers Block Diagram  
(Figure 19-4), acceptance filters RXF0 and RXF1, and  
filter mask RXM0 are associated with RXB0. Filters  
RXF2, RXF3, RXF4, and RXF5 and mask RXM1 are  
associated with RXB1. When a filter matches and a  
message is loaded into the receive buffer, the filter num-  
ber that enabled the message reception is loaded into  
the FILHIT bit(s).  
The mask and filter registers can only be modified  
when the PIC18FXX8 is in Configuration mode. The  
mask and filter registers cannot be read outside of Con-  
figuration mode. When outside of Configuration mode,  
all mask and filter registers will be read as ‘0’.  
FIGURE 19-6:  
MESSAGE ACCEPTANCE MASK AND FILTER OPERATION  
Acceptance Filter Register  
Acceptance Mask Register  
RXFn  
RXMn  
0
0
RXMn  
RxRqst  
1
RXFn  
1
RXFn  
RXMn  
n
n
Message Assembly Buffer  
Identifier  
DS41159B-page 228  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
The Nominal Bit Time is defined as  
19.7 Baud Rate Setting  
TBIT = 1 / Nominal Bit rate  
All nodes on a given CAN bus must have the same  
nominal bit rate. The CAN protocol uses Non-Return-  
to-Zero (NRZ) coding, which does not encode a clock  
within the data stream. Therefore, the receive clock  
must be recovered by the receiving nodes and  
synchronized to the transmitters clock.  
The Nominal Bit Time can be thought of as being  
divided into separate, non-overlapping time segments.  
These segments (Figure 19-7) include:  
• Synchronization Segment (Sync_Seg)  
• Propagation Time Segment (Prop_Seg)  
• Phase Buffer Segment 1 (Phase_Seg1)  
• Phase Buffer Segment 2 (Phase_Seg2)  
As oscillators and transmission time may vary from  
node to node; the receiver must have some type of  
Phase Lock Loop (PLL) synchronized to data transmis-  
sion edges to synchronize and maintain the receiver  
clock. Since the data is NRZ coded, it is necessary to  
include bit stuffing to ensure that an edge occurs at  
least every six bit times, to maintain the Digital Phase  
Lock Loop (DPLL) synchronization.  
The time segments (and thus the Nominal Bit Time) are  
in turn made up of integer units of time called Time  
Quanta or TQ (see Figure 19-7). By definition, the nom-  
inal bit time is programmable from a minimum of 8 TQ  
to a maximum of 25 TQ. Also, by definition, the mini-  
mum Nominal Bit Time is 1 µs, corresponding to a max-  
imum 1 Mb/s rate. The actual duration is given by the  
relationship  
The bit timing of the PIC18FXX8 is implemented using  
a DPLL that is configured to synchronize to the incom-  
ing data, and provides the nominal timing for the trans-  
mitted data. The DPLL breaks each bit time into  
multiple segments, made up of minimal periods of time  
called the Time Quanta (TQ).  
Nominal Bit Time = TQ * (Sync_Seg + Prop_Seg +  
Phase_Seg1 + Phase_Seg2)  
The Time Quantum is a fixed unit derived from the  
oscillator period. It is also defined by the programmable  
baud rate prescaler with integer values from 1 to 64, in  
addition to a fixed divide-by-two for clock generation.  
Mathematically, this is  
Bus timing functions executed within the bit time frame,  
such as synchronization to the local oscillator, network  
transmission delay compensation, and sample point  
positioning, are defined by the programmable bit timing  
logic of the DPLL.  
TQ (µs) = (2 * (BRP+1)) / FOSC (MHz)  
All devices on the CAN bus must use the same bit rate.  
However, all devices are not required to have the same  
master oscillator clock frequency. For the different clock  
frequencies of the individual devices, the bit rate has to  
be adjusted by appropriately setting the baud rate  
prescaler and number of time quanta in each segment.  
or  
TQ (µs) = (2 * (BRP+1)) * TOSC (µs)  
where FOSC is the clock frequency, TOSC is the corre-  
sponding oscillator period, and BRP is an integer (0  
through 63) represented by the binary values of  
BRGCON1<5:0>.  
The Nominal Bit Rate is the number of bits transmitted  
per second, assuming an ideal transmitter with an ideal  
oscillator, in the absence of resynchronization. The  
nominal bit rate is defined to be a maximum of 1 Mb/s.  
FIGURE 19-7:  
BIT TIME PARTITIONING  
Input  
Signal  
Propagation  
Segment  
Phase  
Segment 1  
Phase  
Segment 2  
Sync  
Segment  
Bit  
Time  
Intervals  
TQ  
Sample Point  
Nominal Bit Time  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 229  
PIC18FXX8  
19.7.1  
TIME QUANTA  
19.7.3  
PROPAGATION SEGMENT  
As already mentioned, the Time Quanta is a fixed unit  
derived from the oscillator period and baud rate pres-  
caler. Its relationship to TBIT and the Nominal Bit Rate  
is shown in Example 19-2.  
This part of the bit time is used to compensate for phys-  
ical delay times within the network. These delay times  
consist of the signal propagation time on the bus line  
and the internal delay time of the nodes. The length of  
the Propagation Segment can be programmed from  
1 TQ to 8 TQ by setting the PRSEG2:PRSEG0 bits.  
EXAMPLE 19-2:  
CALCULATING TQ,  
NOMINAL BIT RATE AND  
NOMINAL BIT TIME  
19.7.4  
PHASE BUFFER SEGMENTS  
The Phase Buffer Segments are used to optimally  
locate the sampling point of the received bit, within the  
nominal bit time. The sampling point occurs between  
phase segment 1 and phase segment 2. These seg-  
ments can be lengthened or shortened by the resyn-  
chronization process. The end of phase segment 1  
determines the sampling point within a bit time. Phase  
segment 1 is programmable from 1 TQ to 8 TQ in dura-  
tion. Phase segment 2 provides delay before the next  
transmitted data transition and is also programmable  
from 1 TQ to 8 TQ in duration. However, due to IPT  
requirements, the actual minimum length of phase seg-  
ment 2 is 2 TQ, or it may be defined to be equal to the  
greater of phase segment 1 or the Information  
Processing Time (IPT).  
TQ (µs) = (2 * (BRP+1)) / FOSC (MHz)  
TBIT (µs) = TQ (µs) * number of TQ per bit interval  
Nominal Bit Rate (bits/s) = 1 / TBIT  
CASE 1:  
For FOSC = 16 MHz, BRP<5:0> = 00h, and  
Nominal Bit Time = 8 TQ:  
TQ = (2*1) / 16 = 0.125 µs (125 ns)  
TBIT = 8 * 0.125 = 1 µs (10-6 s)  
Nominal Bit Rate = 1 / 10-6 = 106 bits/s (1 Mb/s)  
CASE 2:  
19.7.5  
SAMPLE POINT  
For FOSC = 20 MHz, BRP<5:0> = 01h, and  
Nominal Bit Time = 8 TQ:  
The Sample Point is the point of time at which the bus  
level is read and the value of the received bit is deter-  
mined. The sampling point occurs at the end of phase  
segment 1. If the bit timing is slow and contains many  
TQ, it is possible to specify multiple sampling of the bus  
line at the sample point. The value of the received bit is  
determined to be the value of the majority decision of  
three values. The three samples are taken at the sam-  
ple point, and twice before, with a time of TQ/2 between  
each sample.  
TQ = (2*2) / 20 = 0.2 µs (200 ns)  
TBIT = 8 * 0.2 = 1.6 µs (1.6 * 10-6 S)  
Nominal Bit Rate = 1 / 1.6 * 10-6 s = 625,000 bits/s  
(625 Kb/s)  
CASE 3:  
For FOSC = 25 MHz, BRP<5:0> = 3Fh, and  
Nominal Bit Time = 25 TQ:  
19.7.6  
INFORMATION PROCESSING TIME  
TQ = (2*64) / 25 = 5.12 µs  
TBIT = 25 * 5.12 = 128 µs (1.28 * 10-4 s)  
Nominal Bit Rate = 1 / 1.28 * 10-4 = 7813 bits/s  
The Information Processing Time (IPT) is the time seg-  
ment, starting at the sample point that is reserved for  
calculation of the subsequent bit level. The CAN spec-  
ification defines this time to be less than or equal to  
2 TQ. The PIC18FXX8 defines this time to be 2 TQ.  
Thus, phase segment 2 must be at least 2 TQ long.  
(7.8 Kb/s)  
The frequencies of the oscillators in the different nodes  
must be coordinated in order to provide a system wide  
specified nominal bit time. This means that all oscilla-  
tors must have a TOSC that is an integral divisor of TQ.  
It should also be noted that although the number of TQ  
is programmable from 4 to 25, the usable minimum is  
8 TQ. A bit time of less than 8 TQ in length is not  
guaranteed to operate correctly.  
19.7.2  
SYNCHRONIZATION SEGMENT  
This part of the bit time is used to synchronize the var-  
ious CAN nodes on the bus. The edge of the input sig-  
nal is expected to occur during the sync segment. The  
duration is 1 TQ.  
DS41159B-page 230  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
The phase error of an edge is given by the position of  
the edge relative to Sync Seg, measured in TQ. The  
phase error is defined in magnitude of TQ as follows:  
19.8 Synchronization  
To compensate for phase shifts between the oscillator  
frequencies of each of the nodes on the bus, each CAN  
controller must be able to synchronize to the relevant  
signal edge of the incoming signal. When an edge in  
the transmitted data is detected, the logic will compare  
the location of the edge to the expected time (Sync  
Seg). The circuit will then adjust the values of phase  
segment 1 and phase segment 2, as necessary. There  
are two mechanisms used for synchronization.  
• e = 0 if the edge lies within SYNCESEG.  
• e > 0 if the edge lies before the SAMPLE POINT.  
• e < 0 if the edge lies after the SAMPLE POINT of  
the previous bit  
If the magnitude of the phase error is less than, or equal  
to, the programmed value of the synchronization jump  
width, the effect of a resynchronization is the same as  
that of a hard synchronization.  
19.8.1  
HARD SYNCHRONIZATION  
If the magnitude of the phase error is larger than the  
synchronization jump width, and if the phase error is  
positive, then phase segment 1 is lengthened by an  
amount equal to the synchronization jump width.  
Hard synchronization is only done when there is a  
recessive to dominant edge during a BUS IDLE condi-  
tion, indicating the start of a message. After hard syn-  
chronization, the bit time counters are restarted with  
Sync Seg. Hard synchronization forces the edge which  
has occurred to lie within the synchronization segment  
of the restarted bit time. Due to the rules of synchroni-  
zation, if a hard synchronization occurs, there will not  
be a resynchronization within that bit time.  
If the magnitude of the phase error is larger than the  
resynchronization jump width, and if the phase error is  
negative, then phase segment 2 is shortened by an  
amount equal to the synchronization jump width.  
19.8.3  
SYNCHRONIZATION RULES  
19.8.2  
RESYNCHRONIZATION  
• Only one synchronization within one bit time is  
allowed.  
As a result of resynchronization, phase segment 1 may  
be lengthened, or phase segment 2 may be shortened.  
The amount of lengthening or shortening of the phase  
buffer segments has an upper bound given by the Syn-  
chronization Jump Width (SJW). The value of the SJW  
will be added to phase segment 1 (see Figure 19-8), or  
subtracted from phase segment 2 (see Figure 19-9).  
The SJW is programmable between 1 TQ and 4 TQ.  
• An edge will be used for synchronization only if  
the value detected at the previous sample point  
(previously read bus value) differs from the bus  
value immediately after the edge.  
• All other recessive to dominant edges fulfilling  
rules 1 and 2, will be used for resynchronization,  
with the exception that a node transmitting a dom-  
inant bit will not perform a resynchronization as a  
result of a recessive to dominant edge with a  
positive phase error.  
Clocking information will only be derived from reces-  
sive to dominant transitions. The property, that only a  
fixed maximum number of successive bits have the  
same value, ensures resynchronization to the bit  
stream during a frame.  
FIGURE 19-8:  
LENGTHENING A BIT PERIOD (ADDING SJW TO PHASE SEGMENT 1)  
Input  
Signal  
Bit  
Time  
Segments  
Prop  
Segment  
Phase  
Segment 1  
Phase  
Segment 2  
Sync  
SJW  
TQ  
Sample Point  
Nominal Bit Length  
Actual Bit Length  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 231  
PIC18FXX8  
FIGURE 19-9:  
SHORTENING A BIT PERIOD (SUBTRACTING SJW FROM PHASE SEGMENT 2)  
Prop  
Segment  
Phase  
Segment 1  
Phase  
Segment 2  
Sync  
SJW  
TQ  
Sample Point  
Actual Bit Length  
Nominal Bit Length  
19.11.1 BRGCON1  
19.9 Programming Time Segments  
The BRP bits control the baud rate prescaler. The  
SJW<1:0> bits select the synchronization jump width in  
terms of multiples of TQ.  
Some requirements for programming of the time  
segments:  
• Prop Seg + Phase Seg 1 Phase Seg 2  
• Phase Seg 2 Sync Jump Width.  
19.11.2 BRGCON2  
For example, assume that a 125 kHz CAN baud rate is  
desired, using 20 MHz for FOSC. With a TOSC of 50 ns,  
a baud rate prescaler value of 04h gives a TQ of 500 ns.  
To obtain a Nominal Bit Rate of 125 kHz, the Nominal  
Bit Time must be 8 µs, or 16 TQ.  
The PRSEG bits set the length of the propagation seg-  
ment in terms of TQ. The SEG1PH bits set the length of  
phase segment 1 in TQ. The SAM bit controls how  
many times the RXCAN pin is sampled. Setting this bit  
to a ‘1’ causes the bus to be sampled three times; twice  
at TQ/2 before the sample point, and once at the normal  
sample point (which is at the end of phase segment 1).  
The value of the bus is determined to be the value read  
during at least two of the samples. If the SAM bit is set  
to a ‘0’, then the RXCAN pin is sampled only once at  
the sample point. The SEG2PHTS bit controls how the  
length of phase segment 2 is determined. If this bit is  
set to a ‘1’, then the length of phase segment 2 is deter-  
mined by the SEG2PH bits of BRGCON3. If the  
SEG2PHTS bit is set to a ‘0’, then the length of phase  
segment 2 is the greater of phase segment 1 and the  
information processing time (which is fixed at 2 TQ for  
the PIC18FXX8).  
Using 1 TQ for the Sync Segment, 2 TQ for the Propa-  
gation Segment and 7 TQ for Phase Segment 1 would  
place the sample point at 10 TQ after the transition.  
This leaves 6 TQ for Phase Segment 2.  
By the rules above, the Sync Jump Width could be the  
maximum of 4 TQ. However, normally a large SJW is  
only necessary when the clock generation of the differ-  
ent nodes is inaccurate or unstable, such as using  
ceramic resonators. Typically, an SJW of 1 is enough.  
19.10 Oscillator Tolerance  
As a rule of thumb, the bit timing requirements allow  
ceramic resonators to be used in applications with  
transmission rates of up to 125 Kbit/sec. For the full bus  
speed range of the CAN protocol, a quartz oscillator is  
required. A maximum node-to-node oscillator variation  
of 1.7% is allowed.  
19.11.3 BRGCON3  
The PHSEG2<2:0> bits set the length (in TQ) of phase  
segment 2, if the SEG2PHTS bit is set to a ‘1’. If the  
SEG2PHTS bit is set to a ‘0’, then the PHSEG2<2:0>  
bits have no effect.  
19.11 Bit Timing Configuration  
Registers  
The configuration registers (BRGCON1, BRGCON2,  
BRGCON3) control the bit timing for the CAN bus inter-  
face. These registers can only be modified when the  
PIC18FXX8 is in Configuration mode.  
DS41159B-page 232  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
19.12.6 ERROR STATES  
19.12 Error Detection  
Detected errors are made public to all other nodes via  
error frames. The transmission of the erroneous mes-  
sage is aborted and the frame is repeated as soon as  
possible. Furthermore, each CAN node is in one of the  
three error states “error-active”, “error-passive” or “bus-  
off” according to the value of the internal error counters.  
The error-active state is the usual state, where the bus  
node can transmit messages and activate error frames  
(made of dominant bits), without any restrictions. In the  
error-passive state, messages and passive error  
frames (made of recessive bits) may be transmitted.  
The bus-off state makes it temporarily impossible for  
the station to participate in the bus communication.  
During this state, messages can neither be received  
nor transmitted.  
The CAN protocol provides sophisticated error detection  
mechanisms. The following errors can be detected.  
19.12.1 CRC ERROR  
With the Cyclic Redundancy Check (CRC), the trans-  
mitter calculates special check bits for the bit  
sequence, from the start of a frame until the end of the  
data field. This CRC sequence is transmitted in the  
CRC field. The receiving node also calculates the CRC  
sequence using the same formula and performs a com-  
parison to the received sequence. If a mismatch is  
detected, a CRC error has occurred and an error frame  
is generated. The message is repeated.  
19.12.2 ACKNOWLEDGE ERROR  
19.12.7 ERROR MODES AND ERROR  
COUNTERS  
In the Acknowledge field of a message, the transmitter  
checks if the Acknowledge slot (which was sent out as  
a recessive bit) contains a dominant bit. If not, no other  
node has received the frame correctly. An Acknowl-  
edge Error has occurred; an error frame is generated  
and the message will have to be repeated.  
The PIC18FXX8 contains two error counters: the  
Receive Error Counter (RXERRCNT), and the Trans-  
mit Error Counter (TXERRCNT). The values of both  
counters can be read by the MCU. These counters are  
incremented or decremented in accordance with the  
CAN bus specification.  
19.12.3 FORM ERROR  
lf a node detects a dominant bit in one of the four seg-  
ments, including end of frame, interframe space,  
Acknowledge delimiter, or CRC delimiter, then a Form  
Error has occurred and an error frame is generated.  
The message is repeated.  
The PIC18FXX8 is error-active if both error counters  
are below the error-passive limit of 128. It is error-  
passive if at least one of the error counters equals or  
exceeds 128. It goes to bus-off if the transmit error  
counter equals or exceeds the bus-off limit of 256. The  
device remains in this state until the bus-off recovery  
sequence is received. The bus-off recovery sequence  
consists of 128 occurrences of 11 consecutive reces-  
sive bits (see Figure 19-10). Note that the CAN mod-  
ule, after going bus-off, will recover back to error-active  
without any intervention by the MCU, if the bus remains  
IDLE for 128 X 11 bit times. If this is not desired, the  
error Interrupt Service Routine should address this.  
The current Error mode of the CAN module can be read  
by the MCU via the COMSTAT register.  
19.12.4 BIT ERROR  
A Bit Error occurs if a transmitter sends a dominant bit  
and detects a recessive bit, or if it sends a recessive bit  
and detects a dominant bit, when monitoring the actual  
bus level and comparing it to the just transmitted bit. In  
the case where the transmitter sends a recessive bit  
and a dominant bit is detected during the arbitration  
field and the Acknowledge slot, no bit error is  
generated because normal arbitration is occurring.  
Additionally, there is an error state warning flag bit,  
EWARN, which is set if at least one of the error  
counters equals or exceeds the error warning limit of  
96. EWARN is reset if both error counters are less than  
the error warning limit.  
19.12.5 STUFF BIT ERROR  
lf, between the start of frame and the CRC delimiter, six  
consecutive bits with the same polarity are detected,  
the bit stuffing rule has been violated. A Stuff Bit Error  
occurs and an error frame is generated. The message  
is repeated.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 233  
PIC18FXX8  
FIGURE 19-10:  
ERROR MODES STATE DIAGRAM  
RESET  
Error-  
Active  
RXERRCNT < 127 or  
TXERRCNT < 127  
128 occurrences of  
11 consecutive  
"recessive" bits  
RXERRCNT > 127 or  
TXERRCNT > 127  
Error-  
Passive  
TXERRCNT > 255  
Bus-  
Off  
19.13.1 INTERRUPT CODE BITS  
19.13 CAN Interrupts  
The source of a pending interrupt is indicated in the  
ICODE (interrupt code) bits of the CANSTAT register  
(ICOD<2:0>). Interrupts are internally prioritized such  
that the higher priority interrupts are assigned lower  
ICODE values. Once the highest priority interrupt con-  
dition has been cleared, the code for the next highest  
priority interrupt that is pending (if any), will be reflected  
by the ICODE bits (see Table 19-3, following page).  
Note that only those interrupt sources that have their  
associated CANINTE enable bit set will be reflected in  
the ICODE bits.  
The module has several sources of interrupts. Each of  
these interrupts can be individually enabled or dis-  
abled. The CANINTF register contains interrupt flags.  
The CANINTE register contains the enables for the 8  
main interrupts. A special set of read only bits in the  
CANSTAT register, the ICODE bits, can be used in  
combination with a jump table for efficient handling of  
interrupts.  
All interrupts have one source, with the exception of the  
Error Interrupt. Any of the Error Interrupt sources can set  
the Error Interrupt Flag. The source of the Error Interrupt  
can be determined by reading the Communication  
Status register, COMSTAT.  
19.13.2 TRANSMIT INTERRUPT  
When the Transmit Interrupt is enabled, an interrupt will  
be generated when the associated transmit buffer  
becomes empty and is ready to be loaded with a new  
message. The TXBnIF bit will be set to indicate the  
source of the interrupt. The interrupt is cleared by the  
MCU resetting the TXBnIF bit to a ‘0’.  
The interrupts can be broken up into two categories:  
receive and transmit interrupts.  
The receive related interrupts are:  
• Receive Interrupts  
• Wake-up Interrupt  
• Receiver Overrun Interrupt  
• Receiver Warning Interrupt  
• Receiver Error-Passive Interrupt  
19.13.3 RECEIVE INTERRUPT  
When the Receive Interrupt is enabled, an interrupt will  
be generated when a message has been successfully  
received and loaded into the associated receive buffer.  
This interrupt is activated immediately after receiving  
the EOF field. The RXBnIF bit will be set to indicate the  
source of the interrupt. The interrupt is cleared by the  
MCU resetting the RXBnIF bit to a ‘0’.  
The transmit related interrupts are:  
• Transmit Interrupts  
• Transmitter Warning Interrupt  
• Transmitter Error-Passive Interrupt  
• Bus-Off Interrupt  
DS41159B-page 234  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
TABLE 19-3: VALUES FOR ICODE<2:0>  
ICOD  
19.13.6 ERROR INTERRUPT  
When the Error Interrupt is enabled, an interrupt is gen-  
erated if an overflow condition occurs, or if the error  
state of transmitter or receiver has changed. The error  
flags in COMSTAT will indicate one of the following  
conditions.  
Interrupt  
Boolean Expression  
<2:0>  
ERR•WAK•TX0•TX1•TX2•RX0•  
RX1  
000  
None  
001  
010  
011  
100  
101  
110  
Error  
TXB2  
TXB1  
TXB0  
RXB1  
RXB0  
ERR  
19.13.6.1 Receiver Overflow  
An overflow condition occurs when the MAB has  
assembled a valid received message (the message  
meets the criteria of the acceptance filters) and the  
receive buffer associated with the filter is not available  
for loading of a new message. The associated  
COMSTAT.RXnOVFL bit will be set to indicate the  
overflow condition. This bit must be cleared by the  
MCU.  
ERR•TX0•TX1•TX2  
ERR•TX0•TX1  
ERR•TX0  
ERR•TX0•TX1•TX2•RX0•RX1  
ERR•TX0•TX1•TX2•RX0  
19.13.6.2 Receiver Warning  
Wake on ERR•TX0•TX1•TX2•RX0•RX1•  
Interrupt WAK  
The receive error counter has reached the MCU  
warning limit of 96.  
111  
Key:  
19.13.6.3 Transmitter Warning  
ERR = ERRIF * ERRIE RX0 = RXB0IF * RXB0IE  
TX0 = TXB0IF * TXB0IE RX1 = RXB1IF * RXB1IE  
TX1 = TXB1IF * TXB1IE WAK = WAKIF * WAKIE  
TX2 = TXB2IF * TXB2IE  
The transmit error counter has reached the MCU  
warning limit of 96.  
19.13.6.4 Receiver Bus Passive  
The receive error counter has exceeded the error-  
passive limit of 127 and the device has gone to  
error-passive state.  
19.13.4 MESSAGE ERROR INTERRUPT  
When an error occurs during transmission or reception  
of a message, the message error flag IRXIF will be set  
and if the IRXIE bit is set, an interrupt will be generated.  
This is intended to be used to facilitate baud rate deter-  
mination when used in conjunction with Listen Only  
mode.  
19.13.6.5 Transmitter Bus Passive  
The transmit error counter has exceeded the error-  
passive limit of 127 and the device has gone to  
error- passive state.  
19.13.6.6 Bus-Off  
19.13.5 BUS ACTIVITY WAKE-UP  
INTERRUPT  
The transmit error counter has exceeded 255 and the  
device has gone to bus-off state.  
When the PIC18FXX8 is in SLEEP mode and the Bus  
Activity Wake-up Interrupt is enabled, an interrupt will  
be generated, and the WAKIF bit will be set when activ-  
ity is detected on the CAN bus. This interrupt causes  
the PIC18FXX8 to exit SLEEP mode. The interrupt is  
reset by the MCU, clearing the WAKIF bit.  
19.13.7 INTERRUPT ACKNOWLEDGE  
Interrupts are directly associated with one or more sta-  
tus flags in the PIR register. Interrupts are pending as  
long as one of the flags is set. Once an interrupt flag is  
set by the device, the flag can not be reset by the  
microcontroller until the interrupt condition is removed.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 235  
PIC18FXX8  
NOTES:  
DS41159B-page 236  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
The A/D module has four registers. These registers are:  
20.0 COMPATIBLE 10-BIT  
ANALOG-TO-DIGITAL  
• A/D Result High Register (ADRESH)  
• A/D Result Low Register (ADRESL)  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
CONVERTER (A/D) MODULE  
The Analog-to-Digital (A/D) Converter module has five  
inputs for the PIC18F2X8 devices and eight for the  
PIC18F4X8 devices. This module has the ADCON0  
and ADCON1 register definitions that are compatible  
with the PICmicro® mid-range A/D module.  
The ADCON0 register, shown in Register 20-1, con-  
trols the operation of the A/D module. The ADCON1  
register, shown in Register 20-2, configures the  
functions of the port pins.  
The A/D allows conversion of an analog input signal to  
a corresponding 10-bit digital number.  
REGISTER 20-1: ADCON0 REGISTER  
R/W-0  
ADCS1  
bit 7  
R/W-0  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
U-0  
R/W-0  
ADON  
ADCS0  
GO/DONE  
bit 0  
bit 7-6 ADCS1:ADCS0: A/D Conversion Clock Select bits (ADCON0 bits in bold)  
ADCON1  
<ADCS2> <ADCS1:ADCS0>  
ADCON0  
Clock Conversion  
0
0
0
0
1
1
1
1
00  
01  
10  
11  
00  
01  
10  
11  
FOSC/2  
FOSC/8  
FOSC/32  
FRC (clock derived from the internal A/D RC oscillator)  
FOSC/4  
FOSC/16  
FOSC/64  
FRC (clock derived from the internal A/D RC oscillator)  
bit 5-3 CHS2:CHS0: Analog Channel Select bits  
000= channel 0 (AN0)  
001= channel 1 (AN1)  
010= channel 2 (AN2)  
011= channel 3 (AN3)  
100= channel 4 (AN4)  
101= channel 5 (AN5)(1)  
110= channel 6 (AN6)(1)  
111= channel 7 (AN7)(1)  
Note 1: These channels are unimplemented on PIC18CF2X8 (28-pin) devices. Do not  
select any unimplemented channel.  
bit 2  
GO/DONE: A/D Conversion Status bit  
When ADON = 1:  
1=A/D conversion in progress (setting this bit starts the A/D conversion which is automatically  
cleared by hardware when the A/D conversion is complete)  
0=A/D conversion not in progress  
bit 1  
bit 0  
Unimplemented: Read as '0'  
ADON: A/D On bit  
1= A/D converter module is powered up  
0= A/D converter module is shut-off and consumes no operating current  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 237  
PIC18FXX8  
REGISTER 20-2: ADCON1 REGISTER  
R/W-0  
ADFM  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG0  
bit 0  
ADCS2  
PCFG3  
PCFG2  
PCFG1  
bit 7  
bit 7  
bit 6  
ADFM: A/D Result Format Select bit.  
1= Right justified. Six (6) Most Significant bits of ADRESH are read as ’0’.  
0= Left justified. Six (6) Least Significant bits of ADRESL are read as ’0’.  
ADCS2: A/D Conversion Clock Select bit (ADCON1 bits in bold)  
ADCON1  
<ADCS2> <ADCS1:ADCS0>  
ADCON0  
Clock Conversion  
0
0
0
0
1
1
1
1
00  
01  
10  
11  
00  
01  
10  
11  
FOSC/2  
FOSC/8  
FOSC/32  
FRC (clock derived from the internal A/D RC oscillator)  
FOSC/4  
FOSC/16  
FOSC/64  
FRC (clock derived from the internal A/D RC oscillator)  
bit 5-4  
bit 3-0  
Unimplemented: Read as '0'  
PCFG3:PCFG0: A/D Port Configuration Control bits  
PCFG  
AN7  
AN6  
AN5  
AN4  
AN3  
AN2  
AN1  
AN0  
VREF+  
VREF-  
C / R  
0000  
0001  
0010  
0011  
0100  
0101  
011x  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
A
A
D
D
D
D
D
A
D
D
D
D
D
D
D
A
A
D
D
D
D
D
A
D
D
D
D
D
D
D
A
A
D
D
D
D
D
A
A
A
A
D
D
D
D
A
A
A
A
D
D
D
A
A
A
A
A
D
D
D
A
A
A
A
A
A
A
A
A
D
A
A
A
A
A
A
D
D
A
A
A
A
A
A
D
A
A
A
A
A
A
A
A
VDD  
AN3  
VDD  
AN3  
VDD  
AN3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
8 / 0  
7 / 1  
5 / 0  
4 / 1  
3 / 0  
2 / 1  
0 / 0  
6 / 2  
6 / 0  
5 / 1  
4 / 2  
3 / 2  
2 / 2  
1 / 0  
1 / 2  
VREF+  
A
A
VREF+  
A
A
D
VREF+  
D
D
D
VREF+  
A
VREF-  
A
AN3  
VDD  
AN3  
AN3  
AN3  
AN3  
VDD  
AN3  
AN2  
VSS  
VSS  
AN2  
AN2  
AN2  
VSS  
AN2  
VREF+  
VREF+  
VREF+  
VREF+  
D
A
VREF-  
VREF-  
VREF-  
D
VREF+  
VREF-  
A = Analog input D = Digital I/O  
C / R = # of analog input channels / # of A/D voltage references  
Note: Shaded cells indicate channels available only on PIC18F4X8 devices.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR reset ’1’ = Bit is set  
Note: On any device RESET, the port pins that are multiplexed with analog functions (ANx)  
are forced to be analog inputs.  
DS41159B-page 238  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
The analog reference voltage is software selectable to  
either the device’s positive and negative supply voltage  
(VDD and VSS), or the voltage level on the  
RA3/AN3/VREF+ pin and RA2/AN2/VREF- pin.  
A device RESET forces all registers to their RESET  
state. This forces the A/D module to be turned off and  
any conversion is aborted.  
Each port pin associated with the A/D converter can be  
configured as an analog input (RA3 can also be a  
voltage reference), or as a digital I/O.  
The A/D converter has a unique feature of being able  
to operate while the device is in SLEEP mode. To oper-  
ate in SLEEP, the A/D conversion clock must be  
derived from the A/D’s internal RC oscillator.  
The ADRESH and ADRESL registers contain the result  
of the A/D conversion. When the A/D conversion is com-  
plete, the result is loaded into the ADRESH/ADRESL  
registers, the GO/DONE bit (ADCON0<2>) is cleared,  
and A/D interrupt flag bit, ADIF, is set. The block  
diagram of the A/D module is shown in Figure 20-1.  
The output of the sample and hold is the input into the  
converter, which generates the result via successive  
approximation.  
FIGURE 20-1:  
A/D BLOCK DIAGRAM  
CHS2:CHS0  
111  
AN7(1)  
110  
AN6(1)  
101  
AN5(1)  
100  
AN4  
VAIN  
011  
(Input Voltage)  
AN3  
010  
AN2  
10-bit  
Converter  
A/D  
001  
AN1  
PCFG0  
000  
AN0  
VDD  
VREF+  
VREF-  
Reference  
voltage  
VSS  
Note 1: Channels AN5 through AN7 are not available on PIC18F2X8 devices.  
2: All I/O pins have diode protection to VDD and VSS.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 239  
PIC18FXX8  
The value that is in the ADRESH/ADRESL registers is  
6. Read A/D Result registers (ADRESH/ADRESL);  
clear bit ADIF if required.  
not modified for  
a
Power-on Reset. The  
ADRESH/ADRESL registers will contain unknown data  
after a Power-on Reset.  
7. For next conversion, go to step 1 or step 2, as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2 TAD is  
required before next acquisition starts.  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS bits selected as an  
input. To determine acquisition time, see Section 20.1.  
After this acquisition time has elapsed, the A/D conver-  
sion can be started. The following steps should be fol-  
lowed for doing an A/D conversion:  
20.1 A/D Acquisition Requirements  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 20-2. The  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD). The source impedance affects the offset voltage  
at the analog input (due to pin leakage current). The  
maximum recommended impedance for analog  
sources is 2.5 k. After the analog input channel is  
selected (changed), this acquisition must be done  
before the conversion can be started.  
1. Configure the A/D module:  
• Configure analog pins, voltage reference and  
digital I/O (ADCON1)  
• Select A/D input channel (ADCON0)  
• Select A/D conversion clock (ADCON0)  
• Turn on A/D module (ADCON0)  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
• Set ADIE bit  
• Set GIE bit  
Note: When the conversion is started, the hold-  
ing capacitor is disconnected from the  
input pin.  
3. Wait the required acquisition time.  
4. Start conversion:  
• Set GO/DONE bit (ADCON0)  
5. Wait for A/D conversion to complete, by either:  
• Polling for the GO/DONE bit to be cleared  
OR  
• Waiting for the A/D interrupt  
FIGURE 20-2:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
Rs  
CPIN  
5 pF  
I LEAKAGE  
± 500 nA  
VAIN  
CHOLD = 120 pF  
VT = 0.6V  
VSS  
Legend: CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
VDD 4V  
3V  
I LEAKAGE = leakage current at the pin due to  
various junctions  
2V  
RIC  
= interconnect resistance  
= sampling switch  
SS  
CHOLD  
= sample/hold capacitance (from DAC)  
5
6 7 8 9 10 11  
Sampling Switch (k)  
DS41159B-page 240  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
To calculate the minimum acquisition time,  
Equation 20-1 may be used. This equation assumes  
that 1/2 LSb error is used (1024 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified resolution.  
Example 20-1 shows the calculation of the minimum  
required acquisition time TACQ. This calculation is  
based on the following application system assumptions:  
• CHOLD  
• Rs  
=
=
120 pF  
2.5 kΩ  
• Conversion Error 1/2 LSb  
• VDD  
=
=
=
5V Rss = 7 kΩ  
50°C (system max.)  
0V @ time = 0  
Temperature  
• VHOLD  
EQUATION 20-1: ACQUISITION TIME  
TACQ  
=
=
Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient  
TAMP + TC + TCOFF  
EQUATION 20-2: A/D MINIMUM CHARGING TIME  
VHOLD  
or  
Tc  
=
=
(VREF – (VREF/2048)) • (1 - e(-Tc/CHOLD(RIC + RSS + RS))  
)
-(120 pF)(1 k+ RSS + RS) ln(1/2047)  
EXAMPLE 20-1:  
CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME  
TACQ  
=
TAMP + TC + TCOFF  
Temperature coefficient is only required for temperatures > 25°C.  
TACQ  
TC  
=
=
2 µs + TC + [(Temp - 25°C)(0.05 µs/°C)]  
-CHOLD (RIC + RSS + RS) ln(1/2047)  
-120 pF (1 k+ 7 k+ 2.5 k) ln(0.0004885)  
-120 pF (10.5 k) ln(0.0004885)  
-1.26 µs (-7.6241)  
9.61 µs  
TACQ  
=
2 µs + 9.61 µs + [(50°C - 25°C)(0.05 µs/°C)]  
11.61 µs + 1.25 µs  
12.86 µs  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 241  
PIC18FXX8  
20.2 Selecting the A/D Conversion Clock  
20.3 Configuring Analog Port Pins  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 12 TAD per 10-bit conversion.  
The source of the A/D conversion clock is software  
selectable. The seven possible options for TAD are:  
The ADCON1, TRISA and TRISE registers control the  
operation of the A/D port pins. The port pins that are  
desired as analog inputs must have their corresponding  
TRIS bits set (input). If the TRIS bit is cleared (output),  
the digital output level (VOH or VOL) will be converted.  
• 2 TOSC  
The A/D operation is independent of the state of the  
CHS2:CHS0 bits and the TRIS bits.  
• 4 TOSC  
• 8 TOSC  
• 16 TOSC  
Note 1: When reading the port register, all pins con-  
figured as analog input channels will read  
as cleared (a low level). Pins configured as  
digital inputs will convert an analog input.  
Analog levels on a digitally configured input  
will not affect the conversion accuracy.  
• 32 TOSC  
• 64 TOSC  
• Internal RC oscillator.  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of 1.6 µs.  
2: Analog levels on any pin that is defined as  
a digital input (including the AN4:AN0  
pins) may cause the input buffer to con-  
sume current that is out of the devices  
specification.  
Table 20-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
TABLE 20-1: TAD vs. DEVICE OPERATING FREQUENCIES  
Device Frequency  
AD Clock Source (TAD)  
Operation ADCS2:ADCS0  
000  
20 MHz  
5 MHz  
1.25 MHz  
333.33 kHz  
2 TOSC  
100 ns(2)  
200 ns(2)  
400 ns(2)  
800 ns(2)  
1.6 µs  
400 ns(2)  
800 ns(2)  
1.6 µs  
1.6 µs  
3.2 µs  
6 µs  
12 µs  
4 TOSC  
8 TOSC  
16 TOSC  
32 TOSC  
64 TOSC  
RC  
100  
001  
101  
010  
110  
011  
6.4 µs  
24 µs(3)  
48 µs(3)  
96 µs(3)  
192 µs(3)  
2 - 6 µs(1)  
3.2 µs  
6.4 µs  
12.8 µs  
25.6 µs(3)  
51.2 µs(3)  
2 - 6 µs(1)  
3.2 µs  
2 - 6 µs(1)  
12.8 µs  
2 - 6 µs(1)  
Legend: Shaded cells are outside of recommended range.  
Note 1: The RC source has a typical TAD time of 4 µs.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
TABLE 20-2: TAD vs. DEVICE OPERATING FREQUENCIES (FOR EXTENDED, LC DEVICES)  
Device Frequency  
AD Clock Source (TAD)  
Operation ADCS2:ADCS0  
000  
4 MHz  
2 MHz  
1.25 MHz  
333.33 kHz  
2 TOSC  
500 ns(2)  
1.0 µs(2)  
2.0 µs(2)  
4.0 µs(2)  
8.0 µs  
1.0 µs(2)  
2.0 µs(2)  
4.0 µs  
1.6 µs(2)  
3.2 µs(2)  
6.4 µs  
6 µs  
12 µs  
4 TOSC  
8 TOSC  
16 TOSC  
32 TOSC  
64 TOSC  
RC  
100  
001  
101  
010  
110  
011  
24 µs(3)  
48 µs(3)  
96 µs(3)  
192 µs(3)  
3 - 9 µs(1,4)  
8.0 µs  
12.8 µs  
16.0 µs  
32.0 µs  
3 - 9 µs(1,4)  
25.6 µs(3)  
51.2 µs(3)  
3 - 9 µs(1,4)  
16.0 µs  
3 - 9 µs(1,4)  
Legend: Shaded cells are outside of recommended range.  
Note 1: The RC source has a typical TAD time of 6 µs.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
DS41159B-page 242  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
20.4 A/D Conversions  
20.5 Use of the ECCP Trigger  
Figure 20-3 shows the operation of the A/D converter  
after the GO bit has been set. Clearing the GO/DONE  
bit during a conversion will abort the current conver-  
sion. The A/D result register pair will NOT be updated  
with the partially completed A/D conversion sample.  
That is, the ADRESH:ADRESL registers will continue  
to contain the value of the last completed conversion  
(or the last value written to the ADRESH:ADRESL reg-  
isters). After the A/D conversion is aborted, a 2 TAD wait  
is required before the next acquisition is started. After  
this 2 TAD wait, acquisition on the selected channel is  
automatically started.  
An A/D conversion can be started by the “special event  
trigger” of the ECCP module. This requires that the  
ECCP1M3:ECCP1M0 bits (ECCP1CON<3:0>) be pro-  
grammed as 1011and that the A/D module is enabled  
(ADON bit is set). When the trigger occurs, the  
GO/DONE bit will be set, starting the A/D conversion and  
the Timer1 (or Timer3) counter will be reset to zero.  
Timer1 (or Timer3) is reset to automatically repeat the  
A/D acquisition period with minimal software overhead  
(moving ADRESH/ADRESL to the desired location). The  
appropriate analog input channel must be selected and  
the minimum acquisition done before the “special event  
trigger” sets the GO/DONE bit (starts a conversion).  
Note: The GO/DONE bit should NOT be set in  
If the A/D module is not enabled (ADON is cleared), the  
“special event trigger” will be ignored by the A/D module,  
but will still reset the Timer1 (or Timer3) counter.  
the same instruction that turns on the A/D.  
FIGURE 20-3:  
A/D CONVERSION TAD CYCLES  
TCY - TAD TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7 TAD8 TAD9 TAD10 TAD11  
b2 b1 b0  
b3 b0  
b7  
b6  
b5  
b4  
b8  
b9  
Conversion Starts  
Holding capacitor is disconnected from analog input  
(typically 100 ns)  
Set GO bit  
Next Q4: ADRESH/ADRESL is loaded, GO bit is cleared,  
ADIF bit is set, holding capacitor is connected to analog input.  
TABLE 20-3: SUMMARY OF A/D REGISTERS  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
TXIE  
TXIP  
EEIF  
EEIE  
EEIP  
RBIE  
SSPIF  
SSPIE  
SSPIP  
BCLIF  
BCLIE  
BCLIP  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
LVDIF  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
RBIF  
0000 000x 0000 000u  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
-0-0 0000 -0-0 0000  
-0-0 0000 -0-0 0000  
-0-0 0000 -0-0 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
(1)  
PIR1  
PIE1  
IPR1  
PIR2  
PIE2  
IPR2  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TMR1IF  
TMR1IE  
TMR1IP  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
CMIF  
CMIE  
CMIP  
TMR3IF ECCP1IF  
TMR3IE ECCP1IE  
TMR3IP ECCP1IP  
(1)  
(1)  
LVDIE  
LVDIP  
ADRESH A/D Result Register  
ADRESL A/D Result Register  
ADCON0 ADCS1  
ADCS0  
ADCS2  
RA6  
CHS2  
CHS1  
CHS0 GO/DONE  
ADON  
PCFG0  
RA0  
0000 00-0 0000 00-0  
00-- 0000 00-- 0000  
-00x 0000 -00u 0000  
-111 1111 -111 1111  
---- -000 ---- -000  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
ADCON1  
PORTA  
TRISA  
PORTE  
LATE  
ADFM  
PCFG3  
RA3  
PCFG2  
RA2  
PCFG1  
RA1  
RA5  
RA4  
PORTA Data Direction Register  
RE2  
RE1  
RE0  
LATE2  
TRISE2  
LATE1  
TRISE1  
LATE0  
TRISE  
IBF  
OBF  
IBOV  
PSPMODE  
TRISE0  
Legend: x = unknown, u = unchanged, - = unimplemented, read as ’0’. Shaded cells are not used for A/D conversion.  
Note 1: These bits are reserved on PIC18F2X8 devices; always maintain these bits clear.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 243  
PIC18FXX8  
NOTES:  
DS41159B-page 244  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
The CMCON register, shown in Register 21-1, controls  
the comparator input and output multiplexers. A block  
diagram of the comparator is shown in Figure 21-1.  
21.0 COMPARATOR MODULE  
Note: The analog comparators are only available  
on the PIC18F448 and PIC18F458.  
The comparator module contains two analog compara-  
tors. The inputs to the comparators are multiplexed  
with the RD0 through RD3 pins. The On-Chip Voltage  
Reference (Section 22.0) can also be an input to the  
comparators.  
REGISTER 21-1: CMCON REGISTER  
R-0  
R-0  
R/W-0  
C2INV  
R/W-0  
C1INV  
R/W-0  
CIS  
R/W-0  
CM2  
R/W-0  
CM1  
R/W-0  
CM0  
C2OUT  
C1OUT  
bit 7  
bit 0  
bit 7  
C2OUT: Comparator 2 Output bit  
When C2INV = 0:  
1= C2 VIN+ > C2 VIN–  
0= C2 VIN+ < C2 VIN–  
When C2INV = 1:  
1= C2 VIN+ < C2 VIN–  
0= C2 VIN+ > C2 VIN–  
bit 6  
C1OUT: Comparator 1 Output bit  
When C1INV = 0:  
1= C1 VIN+ > C1 VIN–  
0= C1 VIN+ < C1 VIN–  
When C1INV = 1:  
1= C1 VIN+ < C1 VIN–  
0= C1 VIN+ > C1 VIN–  
bit 5  
bit 4  
bit 3  
C2INV: Comparator 2 Output Inversion bit  
1= C2 output inverted  
0= C2 output not inverted  
C1INV: Comparator 1 Output Inversion bit  
1= C1 output inverted  
0= C1 output not inverted  
CIS: Comparator Input Switch bit  
When CM2:CM0 = 110:  
1= C1 VIN- connects to RD0/PSP0  
C2 VIN- connects to RD2/PSP2  
0= C1 VIN- connects to RD1/PSP1  
C2 VIN- connects to RD3/PSP3  
bit 2-0  
CM2:CM0: Comparator Mode bits  
Figure 21-1 shows the Comparator modes and CM2:CM0 bit settings  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 245  
PIC18FXX8  
mode is changed, the comparator output level may not  
be valid for the specified mode change delay, shown in  
Electrical Specifications (Section 27.0).  
21.1 Comparator Configuration  
There are eight modes of operation for the compara-  
tors. The CMCON register is used to select these  
modes. Figure 21-1 shows the eight possible modes.  
The TRISD register controls the data direction of the  
comparator pins for each mode. If the Comparator  
Note: Comparator interrupts should be disabled  
during  
a
Comparator mode change.  
Otherwise, a false interrupt may occur.  
FIGURE 21-1:  
COMPARATOR I/O OPERATING MODES  
Comparators Reset (POR Default Value)  
Comparators Off  
CM2:CM0 = 000  
CM2:CM0 = 111  
A
D
VIN-  
VIN-  
RD1/PSP1  
RD0/PSP0  
RD1/PSP1  
Off (Read as ’0’)  
Off (Read as ’0’)  
Off (Read as ’0’)  
Off (Read as ’0’)  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
A
D
RD0/PSP0  
A
A
D
VIN-  
VIN-  
RD3/PSP3  
RD2/PSP2  
RD3/PSP3  
VIN+  
VIN+  
D
RD2/PSP2  
Two Independent Comparators with Outputs  
CM2:CM0 = 011  
Two Independent Comparators  
CM2:CM0 = 010  
A
VIN-  
A
VIN-  
RD1/PSP1  
RD0/PSP0  
RD1/PSP1  
RD0/PSP0  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
RE1/WR/AN6  
A
A
VIN-  
A
VIN-  
RD3/PSP3  
RD2/PSP2  
RD3/PSP3  
RD2/PSP2  
VIN+  
VIN+  
A
RE2/CS/AN7  
Two Common Reference Comparators  
Two Common Reference Comparators with Outputs  
CM2:CM0 = 100  
CM2:CM0 = 101  
A
A
VIN-  
VIN-  
RD1/PSP1  
RD0/PSP0  
RD1/PSP1  
RD0/PSP0  
C1OUT  
C2OUT  
C1OUT  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
A
A
RE1/WR/AN6  
A
D
VIN-  
RD3/PSP3  
RD2/PSP2  
A
VIN-  
VIN+  
RD3/PSP3  
RD2/PSP2  
C2OUT  
VIN+  
D
RE2/CS/AN7  
Four Inputs Multiplexed to Two Comparators  
One Independent Comparator with Output  
CM2:CM0 = 110  
CM2:CM0 = 001  
A
A
A
VIN-  
RD1/PSP1  
RD1/PSP1  
RD0/PSP0  
CIS = 0  
CIS = 1  
VIN-  
A
C1OUT  
C1  
C2  
VIN+  
RD0/PSP0  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
RE1/WR/AN6  
A
A
RD3/PSP3  
RD2/PSP2  
VIN-  
CIS = 0  
CIS = 1  
VIN+  
D
VIN-  
RD3/PSP3  
RD2/PSP2  
Off (Read as ’0’)  
VIN+  
D
CVREF  
From VREF Module  
A = Analog Input, port reads zeros always  
D = Digital Input  
CIS (CMCON<3>) is the Comparator Input Switch  
DS41159B-page 246  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
21.3.2  
INTERNAL REFERENCE SIGNAL  
21.2 Comparator Operation  
The comparator module also allows the selection of an  
internally generated voltage reference for the compara-  
tors. Section 22.0 contains a detailed description of the  
Comparator Voltage Reference Module that provides  
this signal. The internal reference signal is used when  
comparators are in mode CM<2:0> = 110(Figure 21-1).  
In this mode, the internal voltage reference is applied to  
the VIN+ pin of both comparators.  
A single comparator is shown in Figure 21-2 along with  
the relationship between the analog input levels and  
the digital output. When the analog input at VIN+ is less  
than the analog input VIN-, the output of the comparator  
is a digital low level. When the analog input at VIN+ is  
greater than the analog input VIN-, the output of the  
comparator is a digital high level. The shaded areas of  
the output of the comparator in Figure 21-2 represent  
the uncertainty due to input offsets and response time.  
21.4 Comparator Response Time  
21.3 Comparator Reference  
Response time is the minimum time, after selecting a  
new reference voltage or input source, before the  
comparator output has a valid level. If the internal ref-  
erence is changed, the maximum delay of the internal  
voltage reference must be considered when using the  
comparator outputs. Otherwise the maximum delay of  
the comparators should be used (Section 27.0).  
An external or internal reference signal may be used  
depending on the Comparator Operating mode. The  
analog signal present at VIN- is compared to the signal  
at VIN+, and the digital output of the comparator is  
adjusted accordingly (Figure 21-2).  
FIGURE 21-2:  
SINGLE COMPARATOR  
21.5 Comparator Outputs  
The comparator outputs are read through the CMCON  
register. These bits are read only. The comparator  
outputs may also be directly output to the RE1 and RE2  
I/O pins. When enabled, multiplexors in the output path  
of the RE1 and RE2 pins will switch and the output of  
each pin will be the unsynchronized output of the com-  
parator. The uncertainty of each of the comparators is  
related to the input offset voltage and the response time  
given in the specifications. Figure 21-3 shows the  
comparator output block diagram.  
VIN+  
VIN-  
+
-
Output  
VIN-  
VIN+  
The TRISE bits will still function as an output enable/  
disable for the RE1 and RE2 pins while in this mode.  
The polarity of the comparator outputs can be changed  
using the C2INV and C1INV bits (CMCON<4:5>).  
Output  
Note 1: When reading the PORT register, all pins  
configured as analog inputs will read as a  
‘0’. Pins configured as digital inputs will  
convert an analog input, according to the  
Schmitt Trigger input specification.  
21.3.1  
EXTERNAL REFERENCE SIGNAL  
When external voltage references are used, the  
comparator module can be configured to have the com-  
parators operate from the same, or different reference  
sources. However, threshold detector applications may  
require the same reference. The reference signal must  
be between VSS and VDD, and can be applied to either  
pin of the comparator(s).  
2: Analog levels on any pin defined as a dig-  
ital input, may cause the input buffer to  
consume more current than is specified.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 247  
PIC18FXX8  
FIGURE 21-3:  
COMPARATOR OUTPUT BLOCK DIAGRAM  
Port Pins  
MULTIPLEX  
+
-
CxINV  
To RE1 or  
RE2 pin  
Bus  
Data  
Q
D
Read CMCON  
EN  
Q
Set  
CMIF  
bit  
D
From  
Other  
Comparator  
EN  
CL  
Read CMCON  
RESET  
21.6 Comparator Interrupts  
Note: If a change in the CMCON register  
(C1OUT or C2OUT) should occur when a  
read operation is being executed (start of  
the Q2 cycle), then the CMIF (PIR  
registers) interrupt flag may not get set.  
The comparator interrupt flag is set whenever there is  
a change in the output value of either comparator.  
Software will need to maintain information about the  
status of the output bits, as read from CMCON<7:6>, to  
determine the actual change that occurred. The CMIF  
bit (PIR registers) is the comparator interrupt flag. The  
CMIF bit must be reset by clearing ‘0’. Since it is also  
possible to write a '1' to this register, a simulated  
interrupt may be initiated.  
The user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
a) Any read or write of CMCON will end the  
mismatch condition.  
b) Clear flag bit CMIF.  
The CMIE bit (PIE registers) and the PEIE bit (INTCON  
register) must be set to enable the interrupt. In addition,  
the GIE bit must also be set. If any of these bits are  
clear, the interrupt is not enabled, though the CMIF bit  
will still be set if an interrupt condition occurs.  
A mismatch condition will continue to set flag bit CMIF.  
Reading CMCON will end the mismatch condition and  
allow flag bit CMIF to be cleared.  
.
DS41159B-page 248  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
21.7 Comparator Operation During  
SLEEP  
21.8 Effects of a RESET  
A device RESET forces the CMCON register to its  
RESET state, causing the comparator module to be in  
the comparator RESET mode, CM<2:0> = 000. This  
ensures that all potential inputs are analog inputs.  
Device current is minimized when analog inputs are  
present at RESET time. The comparators will be  
powered down during the RESET interval.  
When a comparator is active and the device is placed  
in SLEEP mode, the comparator remains active and  
the interrupt is functional, if enabled. This interrupt will  
wake-up the device from SLEEP mode, when enabled.  
While the comparator is powered up, higher SLEEP  
currents than shown in the power-down current  
specification will occur. Each operational comparator  
will consume additional current, as shown in the com-  
parator specifications. To minimize power consumption  
while in SLEEP mode, turn off the comparators,  
CM<2:0> = 111, before entering SLEEP. If the device  
wakes up from SLEEP, the contents of the CMCON  
register are not affected.  
21.9 Analog Input Connection  
Considerations  
A simplified circuit for an analog input is shown in  
Figure 21-4. Since the analog pins are connected to a  
digital output, they have reverse biased diodes to VDD  
and VSS. The analog input, therefore, must be between  
VSS and VDD. If the input voltage deviates from this  
range by more than 0.6V in either direction, one of the  
diodes is forward biased and a latchup condition may  
occur. A maximum source impedance of 10 kis rec-  
ommended for the analog sources. Any external com-  
ponent connected to an analog input pin, such as a  
capacitor or a Zener diode, should have very little  
leakage current.  
FIGURE 21-4:  
ANALOG INPUT MODEL  
VDD  
VT = 0.6V  
RIC  
RS < 10k  
AIN  
I LEAKAGE  
500 nA  
CPIN  
5 pF  
VA  
VT = 0.6V  
VSS  
Legend:  
CPIN  
VT  
=
=
Input Capacitance  
Threshold Voltage  
I LEAKAGE = Leakage Current at the pin due to various junctions  
RIC  
RS  
VA  
=
=
=
Interconnect Resistance  
Source Impedance  
Analog Voltage  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 249  
PIC18FXX8  
TABLE 21-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE  
Value on  
all other  
RESETS  
Value on  
POR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CMCON C2OUT C1OUT C2INV  
CVRCON CVREN CVROE CVRR  
C1INV  
CVRSS  
INT0IE  
CIS  
CM2  
CM1  
CM0  
CVR0  
RBIF  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 000x 0000 000u  
CVR3 CVR2  
CVR1  
INTCON  
GIE/  
PEIE/ TMR0IE  
GIEL  
RBIE TMR0IF INT0IF  
GIEH  
PIR2  
CMIF(1)  
CMIE(1)  
CMIP(1)  
RD6  
EEIF  
EEIE  
EEIP  
RD4  
BCLIF LVDIF TMR3IF ECCP1IF(1) -0-0 0000 -0-0 0000  
BCLIE LVDIE TMR3IE ECCP1IE(1) -0-0 0000 -0-0 0000  
BCLIP LVDIP TMR3IP ECCP1IP(1) -1-1 1111 -1-1 1111  
PIE2  
IPR2  
PORTD  
LATD  
TRISD  
PORTE  
LATE  
RD7  
RD5  
RD3  
RD2  
RD1  
RD0  
x000 0000 u000 0000  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
---- -000 ---- -000  
---- -xxx ---- -uuu  
LATD7 LATD6 LATD5  
LATD4  
LATD3 LATD2 LATD1  
LATD0  
PORTD Data Direction Register  
RE2  
RE1  
RE0  
LATE2 LATE1  
LATE0  
TRISE  
IBF(1) OBF(1) IBOV(1) PSPMODE(1)  
TRISE2 TRISE1 TRISE0 0000 -111 0000 -111  
Legend: x= unknown, u= unchanged, - = unimplemented, read as "0"  
Note 1: These bits are reserved on PIC18F2X8 devices; always maintain these bits clear.  
DS41159B-page 250  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
22.1 Configuring the Comparator  
22.0 COMPARATOR VOLTAGE  
REFERENCE MODULE  
Voltage Reference  
The Comparator Voltage Reference can output 16 dis-  
tinct voltage levels for each range. The equations used  
to calculate the output of the Comparator Voltage  
Reference are as follows.  
Note: The Comparator Voltage Reference is only  
available on the PIC18F448 and  
PIC18F458.  
This module is a 16-tap resistor ladder network that  
provides a selectable voltage reference. The resistor  
ladder is segmented to provide two ranges of CVREF  
values and has a power-down function to conserve  
power when the reference is not being used. The  
CVRCON register controls the operation of the  
reference as shown in Register 22-1. The block  
diagram is shown in Figure 22-1.  
EQUATION 22-1:  
If CVRR = 1:  
CVREF = (CVR<3:0>/24) x CVRSRC  
where:  
CVRSS = 1, CVRSRC = (VREF+) – (VREF-)  
CVRSS = 0, CVRSRC = VDD – VSS  
The comparator and reference supply voltage can  
come from either VDD and VSS, or the external VREF+  
and VREF-, that are multiplexed with RA3 and RA2. The  
comparator reference supply voltage is controlled by  
the CVRSS bit.  
EQUATION 22-2:  
If CVRR = 0:  
CVREF = (CVRSRC x 1/4) + (CVR<3:0>/32) x CVRSRC  
where:  
CVRSS = 1, CVRSRC = (VREF+) – (VREF-)  
CVRSS = 0, CVRSRC = VDD – VSS  
The settling time of the Comparator Voltage Reference  
must be considered when changing the RA0/AN0/CVREF  
output (see Table 27-4 in Section 27.2).  
REGISTER 22-1:  
CVRCON REGISTER  
R/W-0  
R/W-0  
R/W-0  
CVRR  
R/W-0  
R/W-0  
CVR3  
R/W-0  
CVR2  
R/W-0  
CVR1  
R/W-0  
CVR0  
CVREN  
CVROE  
CVRSS  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-0  
CVREN: Comparator Voltage Reference Enable bit  
1= CVREF circuit powered on  
0= CVREF circuit powered down  
CVROE: Comparator VREF Output Enable bit  
1= CVREF voltage level is also output on the RA0/AN0/CVREF pin  
0= CVREF voltage is disconnected from the RA0/AN0/CVREF pin  
CVRR: Comparator VREF Range Selection bit  
1= 0.00 CVRSRC to 0.625 CVRSRC, with CVRSRC/24 step size  
0= 0.25 CVRSRC to 0.719 CVRSRC, with CVRSRC/32 step size  
CVRSS: Comparator VREF Source Selection bit  
1= Comparator reference source CVRSRC = VDD – VSS  
0= Comparator reference source CVRSRC = (VREF+) – (VREF-)  
CVR<3:0>: Comparator VREF Value Selection 0 CVR3:CVR0 15 bits  
When CVRR = 1:  
CVREF = (CVR3:CVR0/24) (CVRSRC)  
When CVRR = 0:  
CVREF = 1/4 (CVRSRC) + (CVR3:CVR0/32) (CVRSRC)  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR  
’0’ = Bit is cleared  
x = Bit is unknown  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 251  
PIC18FXX8  
FIGURE 22-1:  
VOLTAGE REFERENCE BLOCK DIAGRAM  
VDD  
VREF+  
16 Stages  
CVRSS = 0  
CVRSS = 1  
CVREN  
R
R
R
8R  
R
CVRR  
CVRSS = 0  
8R  
CVRSS = 1  
RA2/AN2VREF-  
CVR3  
RA0/AN0/CVREF  
or CVREF of Comparator  
(From CVRCON<3:0>)  
CVR0  
16-to-1 Analog MUX  
22.2 Voltage Reference Accuracy/Error  
22.4 Effects of a RESET  
The full range of voltage reference cannot be realized  
due to the construction of the module. The transistors  
on the top and bottom of the resistor ladder network  
(Figure 22-1) keep VREF from approaching the refer-  
ence source rails. The voltage reference is derived  
from the reference source; therefore, the VREF output  
changes with fluctuations in that source. The absolute  
accuracy of the voltage reference can be found in  
Section 27.0.  
A device RESET disables the voltage reference by  
clearing bit CVREN (CVRCON register). This RESET  
also disconnects the reference from the RA2 pin by  
clearing bit CVROE (CVRCON register) and selects  
the high voltage range by clearing bit CVRR (CVRCON  
register). The CVRSS value select bits, CVRCON<3:0>,  
are also cleared.  
22.5 Connection Considerations  
The voltage reference module operates independently  
of the comparator module. The output of the reference  
generator may be connected to the RA0/AN0 pin if the  
TRISA<0> bit is set and the CVROE bit (CVRCON<6>)  
is set. Enabling the voltage reference output onto the  
RA0/AN0 pin, with an input signal present, will increase  
current consumption. Connecting RA0/AN0 as a digital  
output with CVRSS enabled, will also increase current  
consumption.  
22.3 Operation During SLEEP  
When the device wakes up from SLEEP through an  
interrupt or a Watchdog Timer Time-out, the contents of  
the CVRCON register are not affected. To minimize  
current consumption in SLEEP mode, the voltage  
reference should be disabled.  
The RA0/AN0 pin can be used as a simple D/A output  
with limited drive capability. Due to the limited current  
drive capability, a buffer must be used on the voltage  
reference output for external connections to VREF.  
Figure 22-2 shows an example buffering technique.  
DS41159B-page 252  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 22-2:  
VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE  
(1)  
R
RA0/AN0  
CVREF  
Module  
+
CVREF Output  
Voltage  
Reference  
Output  
Impedance  
Note 1: R is dependent upon the voltage reference configuration CVRCON<3:0> and CVRCON<5>.  
TABLE 22-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE  
Value on  
Value on  
all other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR  
CVRCON CVREN CVROE CVRR CVRSS CVR3  
CVR2  
CM2  
CVR1  
CM1  
CVR0 0000 0000 0000 0000  
CM0 0000 0000 0000 0000  
CMCON  
TRISA  
C2OUT C1OUT C2INV C1INV  
CIS  
TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 -111 1111 -111 1111  
Legend: x= unknown, u= unchanged, - = unimplemented, read as "0".  
Shaded cells are not used with the comparator voltage reference.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 253  
PIC18FXX8  
NOTES:  
DS41159B-page 254  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
Figure 23-1 shows a possible application voltage curve  
(typically for batteries). Over time, the device voltage  
decreases. When the device voltage equals voltage VA,  
the LVD logic generates an interrupt. This occurs at  
time TA. The application software then has the time,  
until the device voltage is no longer in valid operating  
range, to shutdown the system. Voltage point VB is the  
minimum valid operating voltage specification. This  
occurs at time TB. The difference TB TA is the total  
time for shutdown.  
23.0 LOW VOLTAGE DETECT  
In many applications, the ability to determine if the  
device voltage (VDD) is below a specified voltage level  
is a desirable feature. A window of operation for the  
application can be created, where the application soft-  
ware can do “housekeeping tasks” before the device  
voltage exits the valid operating range. This can be  
done using the Low Voltage Detect module.  
This module is a software programmable circuitry,  
where a device voltage trip point can be specified.  
When the voltage of the device becomes lower than the  
specified point, an interrupt flag is set. If the interrupt is  
enabled, the program execution will branch to the inter-  
rupt vector address and the software can then respond  
to that interrupt source.  
The block diagram for the LVD module is shown in  
Figure 23-2. A comparator uses an internally gener-  
ated reference voltage as the set point. When the  
selected tap output of the device voltage crosses the  
set point (is lower than), the LVDIF bit is set.  
Each node in the resistor divider represents a “trip  
point” voltage. The “trip point” voltage is the minimum  
supply voltage level at which the device can operate  
before the LVD module asserts an interrupt. When the  
supply voltage is equal to the trip point, the voltage  
tapped off of the resistor array is equal to the internal  
reference voltage generated by the voltage reference  
module. The comparator then generates an interrupt  
signal setting the LVDIF bit. This voltage is software  
programmable to any one of 16 values (see  
Figure 23-2). The trip point is selected by programming  
the LVDL3:LVDL0 bits (LVDCON<3:0>).  
The Low Voltage Detect circuitry is completely under  
software control. This allows the circuitry to be “turned  
off” by the software, which minimizes the current  
consumption for the device.  
FIGURE 23-1:  
TYPICAL LOW VOLTAGE DETECT APPLICATION  
VA  
VB  
Legend:  
VA = LVD trip point  
VB = Minimum valid device  
operating voltage  
TB  
TA  
Time  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 255  
PIC18FXX8  
FIGURE 23-2:  
LOW VOLTAGE DETECT (LVD) BLOCK DIAGRAM  
VDD  
LVDIN  
LVD3:LVD0  
LVDCON  
Register  
LVDIF  
Internally Generated  
Reference Voltage  
LVDEN  
The LVD module has an additional feature that allows  
the user to supply the trip voltage to the module from  
an external source. This mode is enabled when bits  
LVDL3:LVDL0 are set to ‘1111’. In this state, the com-  
parator input is multiplexed from the external input pin  
LVDIN to one input of the comparator (Figure 23-3).  
The other input is connected to the internally gener-  
ated voltage reference (parameter D423 in  
Section 27.2). This gives users flexibility, because it  
allows them to configure the Low Voltage Detect inter-  
rupt to occur at any voltage in the valid operating  
range.  
FIGURE 23-3:  
LOW VOLTAGE DETECT (LVD) WITH EXTERNAL INPUT BLOCK DIAGRAM  
VDD  
VDD  
LVD3:LVD0  
LVDCON  
Register  
LVDIN  
LVDEN  
Externally Generated  
Trip Point  
LVD  
VxEN  
BODEN  
EN  
BGAP  
DS41159B-page 256  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
23.1 Control Register  
The Low Voltage Detect Control register controls the  
operation of the Low Voltage Detect circuitry.  
REGISTER 23-1: LVDCON REGISTER  
U-0  
U-0  
R-0  
R/W-0  
R/W-0  
LVDL3  
R/W-1  
LVDL2  
R/W-0  
LVDL1  
R/W-1  
LVDL0  
IRVST  
LVDEN  
bit 7  
bit 0  
bit 7-6  
bit 5  
Unimplemented: Read as '0'  
IRVST: Internal Reference Voltage Stable Flag bit  
1= Indicates that the Low Voltage Detect logic will generate the interrupt flag at the  
specified voltage range  
0= Indicates that the Low Voltage Detect logic will not generate the interrupt flag at the  
specified voltage range and the LVD interrupt should not be enabled  
bit 4  
LVDEN: Low Voltage Detect Power Enable bit  
1= Enables LVD, powers up LVD circuit  
0= Disables LVD, powers down LVD circuit  
bit 3-0  
LVDL3:LVDL0: Low Voltage Detection Limit bits  
1111= External analog input is used (input comes from the LVDIN pin)  
1110= 4.5V min. - 4.77V max.  
1101= 4.2V min. - 4.45V max.  
1100= 4.0V min. - 4.24V max.  
1011= 3.8V min. - 4.03V max.  
1010= 3.6V min. - 3.82V max.  
1001= 3.5V min. - 3.71V max.  
1000= 3.3V min. - 3.50V max.  
0111= 3.0V min. - 3.18V max.  
0110= 2.8V min. - 2.97V max.  
0101= 2.7V min. - 2.86V max.  
0100= 2.5V min. - 2.65V max.  
0011= 2.4V min. - 2.54V max.  
0010= 2.2V min. - 2.33V max.  
0001= 2.0V min. - 2.12V max.  
0000= Reserved  
Note:  
LVDL3:LVDL0 modes, which result in a trip point below the valid operating voltage  
of the device, are not tested.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 257  
PIC18FXX8  
The following steps are needed to set up the LVD  
module:  
23.2 Operation  
Depending on the power source for the device voltage,  
the voltage normally decreases relatively slowly. This  
means that the LVD module does not need to be con-  
stantly operating. To decrease the current require-  
ments, the LVD circuitry only needs to be enabled for  
short periods, where the voltage is checked. After  
doing the check, the LVD module may be disabled.  
1. Write the value to the LVDL3:LVDL0 bits  
(LVDCON register), which selects the desired  
LVD trip point.  
2. Ensure that LVD interrupts are disabled (the  
LVDIE bit is cleared or the GIE bit is cleared).  
3. Enable the LVD module (set the LVDEN bit in  
the LVDCON register).  
Each time that the LVD module is enabled, the circuitry  
requires some time to stabilize. After the circuitry has  
stabilized, all status flags may be cleared. The module  
will then indicate the proper state of the system.  
4. Wait for the LVD module to stabilize (the IRVST  
bit to become set).  
5. Clear the LVD interrupt flag, which may have  
falsely become set until the LVD module has  
stabilized (clear the LVDIF bit).  
6. Enable the LVD interrupt (set the LVDIE and the  
GIE bits).  
Figure 23-4 shows typical waveforms that the LVD  
module may be used to detect.  
FIGURE 23-4:  
LOW VOLTAGE DETECT WAVEFORMS  
CASE 1:  
LVDIF may not be set  
VDD  
.
VLVD  
LVDIF  
Enable LVD  
Internally Generated  
Reference Stable  
TIVRST  
LVDIF cleared in software  
CASE 2:  
VDD  
VLVD  
LVDIF  
Enable LVD  
TIVRST  
Internally Generated  
Reference Stable  
LVDIF cleared in software  
LVDIF cleared in software,  
LVDIF remains set since LVD condition still exists  
DS41159B-page 258  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
23.2.1  
REFERENCE VOLTAGE SET POINT  
23.3 Operation During SLEEP  
The Internal Reference Voltage of the LVD module may  
be used by other internal circuitry (the Programmable  
Brown-out Reset). If these circuits are disabled (lower  
current consumption), the reference voltage circuit  
requires a time to become stable before a low voltage  
condition can be reliably detected. This time is invariant  
of system clock speed. This start-up time is specified in  
electrical specification parameter 36. The low voltage  
interrupt flag will not be enabled until a stable reference  
voltage is reached. Refer to the waveform in Figure 23-4.  
When enabled, the LVD circuitry continues to operate  
during SLEEP. If the device voltage crosses the trip  
point, the LVDIF bit will be set and the device will  
wake-up from SLEEP. Device execution will continue  
from the interrupt vector address if interrupts have  
been globally enabled.  
23.4 Effects of a RESET  
A device RESET forces all registers to their RESET  
state. This forces the LVD module to be turned off.  
23.2.2  
CURRENT CONSUMPTION  
When the module is enabled, the LVD comparator and  
voltage divider are enabled and will consume static cur-  
rent. The voltage divider can be tapped from multiple  
places in the resistor array. Total current consumption,  
when enabled, is specified in electrical specification  
parameter D022B.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 259  
PIC18FXX8  
NOTES:  
DS41159B-page 260  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
SLEEP mode is designed to offer a very low current  
power-down mode. The user can wake-up from SLEEP  
through external RESET, Watchdog Timer Wake-up or  
through an interrupt. Several oscillator options are also  
made available to allow the part to fit the application.  
The RC oscillator option saves system cost, while the  
LP crystal option saves power. A set of configuration  
bits is used to select various options.  
24.0 SPECIAL FEATURES OF THE  
CPU  
There are several features intended to maximize sys-  
tem reliability, minimize cost through elimination of  
external components, provide power saving operating  
modes and offer code protection. These are:  
• OSC Selection  
• RESET  
24.1 Configuration Bits  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
The configuration bits can be programmed (read as '0'),  
or left unprogrammed (read as '1'), to select various  
device configurations. These bits are mapped starting  
at program memory location 300000h.  
The user will note that address 300000h is beyond the  
user program memory space. In fact, it belongs to the  
configuration memory space (300000h - 3FFFFFh),  
which can only be accessed using Table Reads and  
Table Writes.  
• Watchdog Timer (WDT)  
• SLEEP  
• Code Protection  
• ID Locations  
Programming the configuration registers is done in a  
manner similar to programming the FLASH memory.  
The EECON1 register WR bit starts a self-timed write  
to the configuration register. In normal operation mode,  
a TBLWT instruction with the TBLPTR pointed to the  
configuration register sets up the address and the data  
for the configuration register write. Setting the WR bit  
starts a long write to the configuration register. The con-  
figuration registers are written a byte at a time. To write  
or erase a configuration cell, a TBLWTinstruction can  
write a ‘1’ or a ‘0’ into the cell.  
• In-Circuit Serial Programming  
All PIC18FXX8 devices have a Watchdog Timer, which  
is permanently enabled via the configuration bits or  
software controlled. It runs off its own RC oscillator for  
added reliability. There are two timers that offer neces-  
sary delays on power-up. One is the Oscillator Start-up  
Timer (OST), intended to keep the chip in RESET until  
the crystal oscillator is stable. The other is the Power-  
up Timer (PWRT), which provides a fixed delay on  
power-up only, designed to keep the part in RESET  
while the power supply stabilizes. With these two tim-  
ers on-chip, most applications need no external  
RESET circuitry.  
TABLE 24-1: CONFIGURATION BITS AND DEVICE IDS  
Default/  
Unprogrammed  
Value  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300001h  
CONFIG1H  
OSCSEN  
FOSC2  
BORV0  
FOSC1  
BOREN  
FOSC0  
--1- -111  
300002h  
300003h  
300006h  
300008h  
300009h  
30000Ah  
30000Bh  
30000Ch  
30000Dh  
CONFIG2L  
CONFIG2H  
CONFIG4L  
CONFIG5L  
CONFIG5H  
CONFIG6L  
CONFIG6H  
CONFIG7L  
CONFIG7H  
BORV1  
PWRTEN  
WDTEN  
STVREN  
CP0  
---- 1111  
---- 1111  
1--- -1-1  
---- 1111  
11-- ----  
---- 1111  
111- ----  
---- 1111  
-1-- ----  
(1)  
WDTPS2 WDTPS1 WDTPS0  
DEBUG  
CP3  
LVP  
CP2  
CP1  
CPD  
CPB  
WRT3  
WRT2  
WRT1  
WRT0  
WRTD  
WRTB  
WRTC  
EBTR3  
EBTR2  
EBTR1  
EBTR0  
EBTRB  
DEV1  
DEV9  
3FFFFEh DEVID1  
3FFFFFh DEVID2  
DEV2  
DEV10  
DEV0  
DEV8  
REV4  
DEV7  
REV3  
DEV6  
REV2  
DEV5  
REV1  
DEV4  
REV0  
DEV3  
0000 1000  
Legend: x= unknown, u= unchanged, - = unimplemented, q= value depends on condition.  
Shaded cells are unimplemented, read as ‘0’.  
Note 1: See Register 24-11 for DEVID1 values.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 261  
PIC18FXX8  
REGISTER 24-1: CONFIGURATIONREGISTER1HIGH(CONFIG1H:BYTEADDRESS300001h)  
U-0  
U-0  
R/P-1  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
OSCSEN  
FOSC2 FOSC1 FOSC0  
bit 0  
bit 7  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
OSCSEN: Oscillator System Clock Switch Enable bit  
1= Oscillator system clock switch option is disabled (main oscillator is source)  
0= Oscillator system clock switch option is enabled (oscillator switching is enabled)  
bit 4-3  
bit 2-0  
Unimplemented: Read as ‘0’  
FOSC2:FOSC0: Oscillator Selection bits  
111= RC oscillator w/ OSC2 configured as RA6  
110= HS oscillator with PLL enabled/clock frequency = (4 x FOSC)  
101= EC oscillator w/ OSC2 configured as RA6  
100= EC oscillator w/ OSC2 configured as divide-by-4 clock output  
011= RC oscillator  
010= HS oscillator  
001= XT oscillator  
000= LP oscillator  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
REGISTER 24-2: CONFIGURATION REGISTER 2 LOW (CONFIG2L:BYTE ADDRESS300002h)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
BORV1  
BORV0 BOREN PWRTEN  
bit 0  
bit 7  
bit 7-4  
bit 3-2  
Unimplemented: Read as ‘0’  
BORV1:BORV0: Brown-out Reset Voltage bits  
11= VBOR set to 2.0V  
10= VBOR set to 2.7V  
01= VBOR set to 4.2V  
00= VBOR set to 4.5V  
bit 1  
bit 0  
BOREN: Brown-out Reset Enable bit(1)  
1= Brown-out Reset enabled  
0= Brown-out Reset disabled  
PWRTEN: Power-up Timer Enable bit(1)  
1= PWRT disabled  
0= PWRT enabled  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS41159B-page 262  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 24-3: CONFIGURATION REGISTER 2 HIGH (CONFIG2H:BYTE ADDRESS 300003h)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
WDTPS2 WDTPS1 WDTPS0 WDTEN  
bit 0  
bit 7  
bit 7-4  
bit 3-1  
Unimplemented: Read as ‘0’  
WDTPS2:WDTPS0: Watchdog Timer Postscale Select bits  
111= 1:128  
110= 1:64  
101= 1:32  
100= 1:16  
011= 1:8  
010= 1:4  
001= 1:2  
000= 1:1  
Note: The Watchdog Timer postscale select bits configuration used in the PIC18FXXX  
devices has changed from the configuration used in the PIC18CXXX devices.  
bit 0  
WDTEN: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled (control is placed on the SWDTEN bit)  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
REGISTER 24-4: CONFIGURATION REGISTER 4 LOW (CONFIG4L: BYTE ADDRESS 300006h)  
R/P-1  
DEBUG  
bit 7  
U-0  
U-0  
U-0  
U-0  
R/P-1  
LVP  
U-0  
R/P-1  
STVREN  
bit 0  
bit 7  
DEBUG: Background Debugger Enable bit  
1= Background Debugger disabled. RB6 and RB7 configured as general purpose I/O pins.  
0= Background Debugger enabled. RB6 and RB7 are dedicated to In-Circuit Debug.  
bit 6-3  
bit 2  
Unimplemented: Read as ‘0’  
LVP: Low Voltage ICSP Enable bit  
1= Low Voltage ICSP enabled  
0= Low Voltage ICSP disabled  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
STVREN: Stack Full/Underflow Reset Enable bit  
1= Stack Full/Underflow will cause RESET  
0= Stack Full/Underflow will not cause RESET  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 263  
PIC18FXX8  
REGISTER 24-5: CONFIGURATION REGISTER 5 LOW (CONFIG5L:BYTE ADDRESS300008h)  
U-0  
U-0  
U-0  
U-0  
R/C-1  
CP3(1)  
R/C-1  
CP2(1)  
R/C-1  
CP1  
R/C-1  
CP0  
bit 7  
bit 0  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
CP3: Code Protection bit(1)  
1= Block 3 (006000-007FFFh) not code protected  
0= Block 3 (006000-007FFFh) code protected  
bit 2  
bit 1  
bit 0  
CP2: Code Protection bit(1)  
1= Block 2 (004000-005FFFh) not code protected  
0= Block 2 (004000-005FFFh) code protected  
CP1: Code Protection bit  
1= Block 1 (002000-003FFFh) not code protected  
0= Block 1 (002000-003FFFh) code protected  
CP0: Code Protection bit  
1= Block 0 (000200-001FFFh) not code protected  
0= Block 0 (000200-001FFFh) code protected  
Note 1: Unimplemented in PIC18FX48 devices; maintain this bit set.  
Legend:  
R = Readable bit  
- n = Value when device is unprogrammed  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
REGISTER 24-6: CONFIGURATION REGISTER 5HIGH (CONFIG5H:BYTEADDRESS300009h)  
R/C-1  
CPD  
R/C-1  
CPB  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
bit 7  
CPD: Data EEPROM Code Protection bit  
1= Data EEPROM not code protected  
0= Data EEPROM code protected  
bit 6  
CPB: Boot Block Code Protection bit  
1= Boot Block (000000-0001FFh) not code protected  
0= Boot Block (000000-0001FFh) code protected  
bit 5-0  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS41159B-page 264  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 24-7: CONFIGURATIONREGISTER6LOW(CONFIG6L:BYTEADDRESS30000Ah)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
WRT3(1) WRT2(1)  
R/P-1  
R/P-1  
R/P-1  
WRT1  
WRT0  
bit 7  
bit 0  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
WRT3: Write Protection bit(1)  
1= Block 3 (006000-007FFFh) not write protected  
0= Block 3 (006000-007FFFh) write protected  
bit 2  
bit 1  
bit 0  
WRT2: Write Protection bit(1)  
1= Block 2 (004000-005FFFh) not write protected  
0= Block 2 (004000-005FFFh) write protected  
WRT1: Write Protection bit  
1= Block 1 (002000-003FFFh) not write protected  
0= Block 1 (002000-003FFFh) write protected  
WRT0: Write Protection bit  
1= Block 0 (000200-001FFFh) not write protected  
0= Block 0 (000200-001FFFh) write protected  
Note 1: Unimplemented in PIC18FX48 devices; maintain this bit set.  
Legend:  
R = Readable bit  
- n = Value when device is unprogrammed  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
REGISTER 24-8: CONFIGURATIONREGISTER6HIGH(CONFIG6H:BYTEADDRESS30000Bh)  
R/P-1  
R/P-1  
R-1  
U-0  
U-0  
U-0  
U-0  
U-0  
WRTD  
WRTB  
WRTC  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
WRTD: Data EEPROM Write Protection bit  
1= Data EEPROM not write protected  
0= Data EEPROM write protected  
WRTB: Boot Block Write Protection bit  
1= Boot Block (000000-0001FFh) not write protected  
0= Boot Block (000000-0001FFh) write protected  
WRTC: Configuration Register Write Protection bit  
1= Configuration registers (300000-3000FFh) not write protected  
0= Configuration registers (300000-3000FFh) write protected  
Note: This bit is read only, and cannot be changed in User mode.  
bit 4-0  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
P =Programmable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 265  
PIC18FXX8  
REGISTER 24-9: CONFIGURATIONREGISTER7LOW(CONFIG7L:BYTEADDRESS30000Ch)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
EBTR3(1) EBTR2(1)  
R/P-1  
R/P-1  
R/P-1  
EBTR1  
EBTR0  
bit 7  
bit 0  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
EBTR3: Table Read Protection bit(1)  
1= Block 3 (006000-007FFFh) not protected from Table Reads executed in other blocks  
0= Block 3 (006000-007FFFh) protected from Table Reads executed in other blocks  
bit 2  
bit 1  
bit 0  
EBTR2: Table Read Protection bit(1)  
1= Block 2 (004000-005FFFh) not protected from Table Reads executed in other blocks  
0= Block 2 (004000-005FFFh) protected from Table Reads executed in other blocks  
EBTR1: Table Read Protection bit  
1= Block 1 (002000-003FFFh) not protected from Table Reads executed in other blocks  
0= Block 1 (002000-003FFFh) protected from Table Reads executed in other blocks  
EBTR0: Table Read Protection bit  
1= Block 0 (000200-001FFFh) not protected from Table Reads executed in other blocks  
0= Block 0 (000200-001FFFh) protected from Table Reads executed in other blocks  
Note 1: Unimplemented in PIC18FX48 devices; maintain this bit set.  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
REGISTER 24-10: CONFIGURATION REGISTER 7 HIGH (CONFIG7H: BYTE ADDRESS 30000Dh)  
U-0  
R/P-1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
EBTRB  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
EBTRB: Boot Block Table Read Protection bit  
1= Boot Block (000000-0001FFh) not protected from Table Reads executed in other blocks  
0= Boot Block (000000-0001FFh) protected from Table Reads executed in other blocks  
bit 5-0  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
P =Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS41159B-page 266  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 24-11: DEVICE ID REGISTER 1 FOR PIC18FXX8 DEVICE  
(DEVID1: BYTE ADDRESS 3FFFFEh)  
R
R
R
R
R
R
R
R
DEV2  
DEV1  
DEV0  
REV4  
REV3  
REV2  
REV1  
REV0  
bit 7  
bit 0  
bit 7-5  
bit 4-0  
DEV2:DEV0: Device ID bits  
These bits are used with the DEV<10:3> bits in the Device ID Register 2 to identify the  
part number  
REV4:REV0: Revision ID bits  
These bits are used to indicate the device revision  
Legend:  
R = Readable bit  
P =Programmable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
REGISTER 24-12: DEVICE ID REGISTER 2 FOR PIC18FXX8 DEVICE  
(DEVID2: BYTE ADDRESS 3FFFFFh)  
R
R
R
R
R
R
R
R
DEV10  
DEV9  
DEV8  
DEV7  
DEV6  
DEV5  
DEV4  
DEV3  
bit 7  
bit 0  
bit 7-0  
DEV10:DEV3: Device ID bits  
These bits are used with the DEV<2:0> bits in the Device ID Register 1 to identify the  
part number  
Legend:  
R = Readable bit  
P =Programmable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 267  
PIC18FXX8  
The WDT time-out period values may be found in the  
Electrical Specifications section under parameter #31.  
Values for the WDT postscaler may be assigned using  
the configuration bits.  
24.2 Watchdog Timer (WDT)  
The Watchdog Timer is a free running, on-chip RC  
oscillator, which does not require any external compo-  
nents. This RC oscillator is separate from the RC oscil-  
lator of the OSC1/CLKI pin. That means that the WDT  
will run, even if the clock on the OSC1/CLKI and OSC2/  
CLKO/RA6 pins of the device has been stopped, for  
example, by execution of a SLEEPinstruction.  
Note: The CLRWDTand SLEEPinstructions clear  
the WDT and the postscaler, if assigned to  
the WDT and prevent it from timing out and  
generating a device RESET condition.  
During normal operation, a WDT time-out generates a  
device RESET (Watchdog Timer Reset). If the device is  
in SLEEP mode, a WDT time-out causes the device to  
wake-up and continue with normal operation (Watch-  
dog Timer Wake-up). The TO bit in the RCON register  
will be cleared upon a WDT time-out.  
Note: When a CLRWDT instruction is executed  
and the postscaler is assigned to the WDT,  
the postscaler count will be cleared, but the  
postscaler assignment is not changed.  
The Watchdog Timer is enabled/disabled by a device  
configuration bit. If the WDT is enabled, software exe-  
cution may not disable this function. When the WDTEN  
configuration bit is cleared, the SWDTEN bit enables/  
disables the operation of the WDT.  
24.2.1  
CONTROL REGISTER  
Register 24-13 shows the WDTCON register. This is a  
readable and writable register, which contains a control  
bit that allows software to override the WDT enable  
configuration bit, only when the configuration bit has  
disabled the WDT.  
REGISTER 24-13: WDTCON REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SWDTEN  
bit 0  
bit 7  
bit 7-1  
bit 0  
Unimplemented: Read as ’0’  
SWDTEN: Software Controlled Watchdog Timer Enable bit  
1= Watchdog Timer is on  
0= Watchdog Timer is turned off if the WDTEN configuration bit in the configuration  
register = ‘0’  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR reset  
DS41159B-page 268  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
24.2.2  
WDT POSTSCALER  
The WDT has a postscaler that can extend the WDT  
Reset period. The postscaler is selected at the time of  
the device programming, by the value written to the  
CONFIG2H configuration register.  
FIGURE 24-1:  
WATCHDOG TIMER BLOCK DIAGRAM  
WDT Timer  
Postscaler  
8
8 - to - 1 MUX  
WDTPS2:WDTPS0  
WDTEN  
Configuration bit  
SWDTEN bit  
WDT  
Time-out  
Note:  
WDPS2:WDPS0 are bits in register CONFIG2H.  
TABLE 24-2: SUMMARY OF WATCHDOG TIMER REGISTERS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CONFIG2H  
RCON  
IPEN  
RI  
WDTPS2 WDTPS2 WDTPS0  
WDTEN  
BOR  
TO  
PD  
POR  
WDTCON  
SWDTEN  
Legend: Shaded cells are not used by the Watchdog Timer.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 269  
PIC18FXX8  
External MCLR Reset will cause a device RESET. All  
other events are considered a continuation of program  
execution and will cause a “wake-up”. The TO and PD  
bits in the RCON register can be used to determine the  
cause of the device RESET. The PD bit, which is set on  
power-up, is cleared when SLEEP is invoked. The TO  
bit is cleared, if a WDT time-out occurred (and caused  
wake-up).  
24.3 Power-down Mode (SLEEP)  
Power-down mode is entered by executing a SLEEP  
instruction.  
If enabled, the Watchdog Timer will be cleared, but  
keeps running, the PD bit (RCON<3>) is cleared, the  
TO (RCON<4>) bit is set, and the oscillator driver is  
turned off. The I/O ports maintain the status they had  
before the SLEEP instruction was executed (driving  
high, low or hi-impedance).  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 2) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the inter-  
rupt address. In cases where the execution of the  
instruction following SLEEP is not desirable, the user  
should have a NOPafter the SLEEPinstruction.  
For lowest current consumption in this mode, place all  
I/O pins at either VDD or VSS, ensure no external cir-  
cuitry is drawing current from the I/O pin, power-down  
the A/D and disable external clocks. Pull all I/O pins  
that are hi-impedance inputs, high or low externally, to  
avoid switching currents caused by floating inputs. The  
T0CKI input should also be at VDD or VSS for lowest  
current consumption. The contribution from on-chip  
pull-ups on PORTB should be considered.  
The MCLR pin must be at a logic high level (VIHMC).  
24.3.2  
WAKE-UP USING INTERRUPTS  
24.3.1  
WAKE-UP FROM SLEEP  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
The device can wake-up from SLEEP through one of  
the following events:  
1. External RESET input on MCLR pin.  
• If an interrupt condition (interrupt flag bit and inter-  
rupt enable bits are set) occurs before the execu-  
tion of a SLEEPinstruction, the SLEEPinstruction  
will complete as a NOP. Therefore, the WDT and  
WDT postscaler will not be cleared, the TO bit will  
not be set and PD bits will not be cleared.  
2. Watchdog Timer Wake-up (if WDT was  
enabled).  
3. Interrupt from INT pin, RB port change or a  
peripheral interrupt.  
The following peripheral interrupts can wake the device  
from SLEEP:  
• If the interrupt condition occurs during or after  
the execution of a SLEEPinstruction, the device  
will immediately wake-up from SLEEP. The  
SLEEPinstruction will be completely executed  
before the wake-up. Therefore, the WDT and  
WDT postscaler will be cleared, the TO bit will be  
set and the PD bit will be cleared.  
1. PSP read or write.  
2. TMR1 interrupt. Timer1 must be operating as an  
asynchronous counter.  
3. TMR3 interrupt. Timer3 must be operating as an  
asynchronous counter.  
4. CCP Capture mode interrupt.  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
5. Special event trigger (Timer1 in Asynchronous  
mode using an external clock).  
6. MSSP (START/STOP) bit detect interrupt.  
7. MSSP transmit or receive in Slave mode  
(SPI/I2C).  
8. USART RX or TX (Synchronous Slave mode).  
9. A/D conversion (when A/D clock source is RC).  
10. EEPROM write operation complete.  
11. LVD interrupt.  
To ensure that the WDT is cleared, a CLRWDT  
instruction should be executed before a SLEEP  
instruction.  
Other peripherals cannot generate interrupts, since  
during SLEEP, no on-chip clocks are present.  
DS41159B-page 270  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 24-2:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT(1,2)  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKO(4)  
INT pin  
(2)  
TOST  
INTF flag  
(INTCON<1>)  
Interrupt Latency(3)  
GIEH bit  
Processor in  
SLEEP  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
PC  
PC+2  
PC+4  
PC+4  
PC + 4  
0008h  
000Ah  
Instruction  
Fetched  
Inst(0008h)  
Inst(PC + 2)  
Inst(PC + 4)  
Inst(PC + 2)  
Inst(000Ah)  
Inst(PC) = SLEEP  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Inst(0008h)  
SLEEP  
Inst(PC - 1)  
Note 1: XT, HS or LP Oscillator mode assumed.  
2: GIE = ’1’ assumed. In this case, after wake-up, the processor jumps to the interrupt routine. If GIE = ’0’, execution will continue in-line.  
3: TOST = 1024 TOSC (drawing not to scale). This delay will not occur for RC and EC Osc modes.  
4: CLKO is not available in these Osc modes, but shown here for timing reference.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 271  
PIC18FXX8  
Each of the five blocks has three code protection bits  
associated with them. They are:  
24.4 Program Verification and  
Code Protection  
• Code Protect bit (CPn)  
The overall structure of the code protection on the  
PIC18 FLASH devices differs significantly from other  
PICmicro devices.  
• Write Protect bit (WRTn)  
• External Block Table Read bit (EBTRn)  
Figure 24-3 shows the program memory organization  
for 16- and 32-Kbyte devices and the specific code  
protection bit associated with each block. The actual  
locations of the bits are summarized in Table 24-3.  
The user program memory is divided into five blocks.  
One of these is a boot block of 512 bytes. The remain-  
der of the memory is divided into four blocks on binary  
boundaries.  
FIGURE 24-3:  
CODE PROTECTED PROGRAM MEMORY FOR PIC18F2X8/4X8  
MEMORY SIZE/DEVICE  
Block Code Protection  
16 Kbytes  
(PIC18FX48)  
32 Kbytes  
(PIC18FX58)  
Address  
Range  
Controlled By:  
CPB, WRTB, EBTRB  
CP0, WRT0, EBTR0  
000000h  
0001FFh  
Boot Block  
Boot Block  
Block 0  
000200h  
Block 0  
Block 1  
001FFFh  
002000h  
Block 1  
Block 2  
Block 3  
CP1, WRT1, EBTR1  
CP2, WRT2, EBTR2  
CP3, WRT3, EBTR3  
003FFFh  
004000h  
Unimplemented  
Read 0s  
005FFFh  
006000h  
Unimplemented  
Read 0s  
007FFFh  
008000h  
Unimplemented  
Read 0s  
Unimplemented  
Read 0s  
(Unimplemented Memory Space)  
1FFFFFh  
TABLE 24-3: SUMMARY OF CODE PROTECTION REGISTERS  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300008h  
CONFIG5L  
CONFIG5H  
CONFIG6L  
CPD  
CPB  
CP3  
CP2  
CP1  
CP0  
300009h  
30000Ah  
30000Bh  
30000Ch  
30000Dh  
WRT3  
WRT2  
WRT1  
WRT0  
CONFIG6H WRTD  
WRTB  
WRTC  
CONFIG7L  
CONFIG7H  
EBTR3  
EBTR2  
EBTR1  
EBTR0  
EBTRB  
Legend: Shaded cells are unimplemented.  
DS41159B-page 272  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
24.4.1  
PROGRAM MEMORY  
CODE PROTECTION  
Note: Code protection bits may only be written to  
a ‘0’ from a ‘1’ state. It is not possible to  
write a ‘1’ to a bit in the ‘0’ state. Code pro-  
tection bits are only set to ‘1’ by a full chip  
erase or block erase function. The full chip  
erase and block erase functions can only  
be initiated via ICSP or an external  
programmer.  
The user memory may be read to or written from any  
location using the Table Read and Table Write instruc-  
tions. The device ID may be read with Table Reads.  
The configuration registers may be read and written  
with the Table Read and Table Write instructions.  
In User mode, the CPn bits have no direct effect. CPn  
bits inhibit external reads and writes. A block of user  
memory may be protected from Table Writes if the  
WRTn configuration bit is ‘0’. The EBTRn bits control  
Table Reads. For a block of user memory with the  
EBTRn bit set to ‘0’, a Table Read instruction that  
executes from within that block is allowed to read. A  
Table Read instruction that executes from a location  
outside of that block is not allowed to read, and will  
result in reading ‘0’s. Figures 24-4 through 24-6  
illustrate Table Write and Table Read protection.  
FIGURE 24-4:  
TABLE WRITE (WRTn) DISALLOWED  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
WRTB,EBTRB = 11  
0001FFh  
000200h  
TBLPTR = 000FFF  
PC = 001FFE  
WRT0,EBTR0 = 01  
TBLWT *  
TBLWT *  
001FFFh  
002000h  
WRT1,EBTR1 = 11  
003FFFh  
004000h  
PC = 004FFE  
WRT2,EBTR2 = 11  
005FFFh  
006000h  
WRT3,EBTR3 = 11  
007FFFh  
Results: All Table Writes disabled to Blockn whenever WRTn = ‘0’.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 273  
PIC18FXX8  
FIGURE 24-5:  
EXTERNAL BLOCK TABLE READ (EBTRn) DISALLOWED  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
WRTB,EBTRB = 11  
0001FFh  
000200h  
TBLPTR = 000FFF  
PC = 002FFE  
WRT0,EBTR0 = 10  
001FFFh  
002000h  
TBLRD *  
WRT1,EBTR1 = 11  
WRT2,EBTR2 = 11  
003FFFh  
004000h  
005FFFh  
006000h  
WRT3,EBTR3 = 11  
007FFFh  
Results: All Table Reads from external blocks to Blockn are disabled whenever EBTRn = ‘0’.  
TABLAT register returns a value of “0”.  
FIGURE 24-6:  
EXTERNAL BLOCK TABLE READ (EBTRn) ALLOWED  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
WRTB,EBTRB = 11  
0001FFh  
000200h  
TBLPTR = 000FFF  
PC = 001FFE  
WRT0,EBTR0 = 10  
TBLRD *  
001FFFh  
002000h  
WRT1,EBTR1 = 11  
WRT2,EBTR2 = 11  
WRT3,EBTR3 = 11  
003FFFh  
004000h  
005FFFh  
006000h  
007FFFh  
Results: Table Reads permitted within Blockn, even when EBTRBn = ‘0’.  
TABLAT register returns the value of the data at the location TBLPTR.  
DS41159B-page 274  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
To use the In-Circuit Debugger function of the micro-  
controller, the design must implement In-Circuit Serial  
Programming connections to MCLR/VPP, VDD, GND,  
RB7 and RB6. This will interface to the In-Circuit  
Debugger module available from Microchip, or one of  
the third party development tool companies. The  
Microchip In-Circuit Debugger (ICD) used with the  
PIC18FXXX microcontrollers is the MPLAB® ICD 2.  
24.4.2  
DATA EEPROM  
CODE PROTECTION  
The entire data EEPROM is protected from external  
reads and writes by two bits: CPD and WRTD. CPD  
inhibits external reads and writes of data EEPROM.  
WRTD inhibits external writes to data EEPROM. The  
CPU can continue to read and write data EEPROM,  
regardless of the protection bit settings.  
24.8 Low Voltage ICSP Programming  
24.4.3  
CONFIGURATION REGISTER  
PROTECTION  
The LVP bit configuration register CONFIG4L enables  
low voltage ICSP programming. This mode allows the  
microcontroller to be programmed via ICSP using a  
VDD source in the operating voltage range. This only  
means that VPP does not have to be brought to VIHH,  
but can instead be left at the normal operating voltage.  
In this mode, the RB5/PGM pin is dedicated to the pro-  
gramming function and ceases to be a general purpose  
I/O pin. During programming, VDD is applied to the  
MCLR/VPP pin. To enter Programming mode, VDD must  
be applied to the RB5/PGM, provided the LVP bit is set.  
The LVP bit defaults to a (‘1’) from the factory.  
The configuration registers can be write protected. The  
WRTC bit controls protection of the configuration regis-  
ters. In User mode, the WRTC bit is readable only.  
WRTC can only be written via ICSP or an external  
programmer.  
24.5 ID Locations  
Eight memory locations (200000h - 200007h) are des-  
ignated as ID locations, where the user can store  
checksum or other code identification numbers. These  
locations are accessible during normal execution  
through the TBLRD and TBLWT instructions, or during  
program/verify. The ID locations can be read when the  
device is code protected.  
Note 1: The High Voltage Programming mode is  
always available, regardless of the state  
of the LVP bit, by applying VIHH to the  
MCLR pin.  
2: While in Low Voltage ICSP mode, the  
RB5 pin can no longer be used as a  
general purpose I/O pin.  
24.6  
In-Circuit Serial Programming  
PIC18FXXX microcontrollers can be serially pro-  
grammed while in the end application circuit. This is  
simply done with two lines for clock and data, and three  
other lines for power, ground and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices, and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed.  
3: When using Low Voltage ICSP program-  
ming (LVP) and the pull-ups on PORTB  
are enabled, bit 5 in the TRISB register  
must be cleared to disable the pull-up on  
RB5 and ensure the proper operation of  
the device.  
If Low Voltage Programming mode is not used, the LVP  
bit can be programmed to a '0' and RB5/PGM becomes  
a digital I/O pin. However, the LVP bit may only be pro-  
grammed when programming is entered with VIHH on  
MCLR/VPP. The LVP bit can only be charged when  
using high voltage on MCLR.  
24.7 In-Circuit Debugger  
When the DEBUG bit in configuration register  
CONFIG4L is programmed to a ’0’, the In-Circuit  
Debugger functionality is enabled. This function allows  
simple debugging functions when used with MPLAB®  
IDE. When the microcontroller has this feature  
enabled, some of the resources are not available for  
general use. Resources used include 2 I/O pins, stack  
locations, program memory and data memory. For  
more information on the resources required, see the  
User’s Guide for the In-Circuit Debugger you are using.  
It should be noted that once the LVP bit is programmed  
to 0, only the High Voltage Programming mode is avail-  
able and only High Voltage Programming mode can be  
used to program the device.  
When using Low Voltage ICSP, the part must be sup-  
plied 4.5V to 5.5V, if a bulk erase will be executed. This  
includes reprogramming of the code protect bits from  
an on-state to off-state. For all other cases of Low Volt-  
age ICSP, the part may be programmed at the normal  
operating voltage. This means unique user IDs, or user  
code can be reprogrammed or added.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 275  
PIC18FXX8  
NOTES:  
DS41159B-page 276  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
The control instructions may use some of the following  
operands:  
25.0 INSTRUCTION SET SUMMARY  
The PIC18 instruction set adds many enhancements to  
the previous PICmicro instruction sets, while maintaining  
an easy migration from these PICmicro instruction sets.  
• A program memory address (specified by ‘n’)  
• The mode of the Call or Return instructions  
(specified by ‘s’)  
Most instructions are a single program memory word  
(16 bits), but there are three instructions that require  
two program memory locations.  
• The mode of the Table Read and Table Write  
instructions (specified by ‘m’)  
• No operand required  
(specified by ‘—’)  
Each single word instruction is a 16-bit word divided  
into an OPCODE, which specifies the instruction type  
and one or more operands, which further specify the  
operation of the instruction.  
All instructions are a single word, except for three  
double-word instructions. These three instructions  
were made double-word instructions so that all the  
required information is available in these 32 bits. In the  
second word, the 4 MSbs are 1’s. If this second word is  
executed as an instruction (by itself), it will execute as  
a NOP.  
The instruction set is highly orthogonal and is grouped  
into four basic categories:  
Byte-oriented operations  
Bit-oriented operations  
Literal operations  
All single word instructions are executed in a single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles, with the additional instruction cycle(s) executed  
as a NOP.  
Control operations  
The PIC18 instruction set summary in Table 25-2 lists  
byte-oriented, bit-oriented, literal and control  
operations. Table 25-1 shows the opcode field  
descriptions.  
The double-word instructions execute in two instruction  
cycles.  
Most byte-oriented instructions have three operands:  
1. The file register (specified by ‘f’)  
One instruction cycle consists of four oscillator periods.  
Thus, for an oscillator frequency of 4 MHz, the normal  
instruction execution time is 1 µs. If a conditional test is  
true, or the program counter is changed as a result of  
an instruction, the instruction execution time is 2 µs.  
Two-word branch instructions (if true) would take 3 µs.  
2. The destination of the result  
(specified by ‘d’)  
3. The accessed memory  
(specified by ‘a’)  
The file register designator 'f' specifies which file  
register is to be used by the instruction.  
Figure 25-1 shows the general formats that the  
instructions can have.  
The destination designator ‘d’ specifies where the  
result of the operation is to be placed. If 'd' is zero, the  
result is placed in the WREG register. If 'd' is one, the  
result is placed in the file register specified in the  
instruction.  
All examples use the format nnhto represent a  
hexadecimal number, where hsignifies  
a
hexadecimal digit.  
The Instruction Set Summary, shown in Table 25-2,  
lists the instructions recognized by the Microchip  
Assembler (MPASMTM).  
All bit-oriented instructions have three operands:  
1. The file register (specified by ‘f’)  
Section 25.2 provides a description of each instruction.  
2. The bit in the file register  
(specified by ‘b’)  
25.1 READ-MODIFY-WRITE  
OPERATIONS  
3. The accessed memory  
(specified by ‘a’)  
The bit field designator 'b' selects the number of the bit  
affected by the operation, while the file register desig-  
nator 'f' represents the number of the file in which the  
bit is located.  
Any instruction that specifies a file register as part of  
the instruction performs a Read-Modify-Write (R-M-W)  
operation. The register is read, the data is modified,  
and the result is stored according to either the instruc-  
tion or the destination designator ‘d’. A read operation  
is performed on a register even if the instruction writes  
to that register.  
The literal instructions may use some of the following  
operands:  
• A literal value to be loaded into a file register  
(specified by ‘k’)  
For example, a “clrf PORTB” instruction will read  
PORTB, clear all the data bits, then write the result  
back to PORTB. This example would have the unin-  
tended result that the condition that sets the RBIF flag  
would be cleared.  
• The desired FSR register to load the literal value  
into (specified by ‘f’)  
• No operand required  
(specified by ‘—’)  
2002 Microchip Technology Inc.  
DS41159B-page 277  
PIC18FXX8  
TABLE 25-1: OPCODE FIELD DESCRIPTIONS  
Field  
Description  
a
RAM access bit  
a = 0: RAM location in Access RAM (BSR register is ignored)  
a = 1: RAM bank is specified by BSR register  
bbb  
BSR  
d
Bit address within an 8-bit file register (0 to 7)  
Bank Select Register. Used to select the current RAM bank.  
Destination select bit;  
d = 0: store result in WREG,  
d = 1: store result in file register f.  
dest  
f
Destination either the WREG register or the specified register file location  
8-bit Register file address (0x00 to 0xFF)  
fs  
12-bit Register file address (0x000 to 0xFFF). This is the source address.  
12-bit Register file address (0x000 to 0xFFF). This is the destination address.  
Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value)  
Label name  
fd  
k
label  
mm  
The mode of the TBLPTR register for the Table Read and Table Write instructions.  
Only used with Table Read and Table Write instructions:  
*
No change to register (such as TBLPTR with Table Reads and Writes)  
Post-Increment register (such as TBLPTR with Table Reads and Writes)  
Post-Decrement register (such as TBLPTR with Table Reads and Writes)  
Pre-Increment register (such as TBLPTR with Table Reads and Writes)  
*+  
*-  
+*  
n
The relative address (2’s complement number) for relative branch instructions, or the direct address for  
Call/Branch and Return instructions  
PRODH  
PRODL  
s
Product of Multiply high byte  
Product of Multiply low byte  
Fast Call/Return mode select bit;  
s = 0: do not update into/from shadow registers  
s = 1: certain registers loaded into/from shadow registers (Fast mode)  
u
Unused or Unchanged  
WREG  
x
Working register (accumulator)  
Don't care (0 or 1).  
The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all  
Microchip software tools.  
TBLPTR  
21-bit Table Pointer (points to a Program Memory location)  
8-bit Table Latch  
TABLAT  
TOS  
Top-of-Stack  
PC  
Program Counter  
PCL  
Program Counter Low Byte  
Program Counter High Byte  
Program Counter High Byte Latch  
Program Counter Upper Byte Latch  
Global Interrupt Enable bit  
Watchdog Timer  
PCH  
PCLATH  
PCLATU  
GIE  
WDT  
TO  
Time-out bit  
PD  
Power-down bit  
C, DC, Z, OV, N  
ALU status bits Carry, Digit Carry, Zero, Overflow, Negative  
Optional  
[
]
)
(
Contents  
< >  
Assigned to  
Register bit field  
In the set of  
italics  
User defined term (font is courier)  
DS41159B-page 278  
2002 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 25-1:  
GENERAL FORMAT FOR INSTRUCTIONS  
Byte-oriented file register operations  
Example Instruction  
15  
10  
OPCODE  
9
8
7
0
ADDWF MYREG, W, B  
d
a
f (FILE #)  
d = 0 for result destination to be WREG register  
d = 1 for result destination to be file register (f)  
a = 0 to force Access Bank  
a = 1 for BSR to select bank  
f = 8-bit file register address  
Byte to Byte move operations (2-word)  
15  
12 11  
0
0
OPCODE  
f (Source FILE #)  
MOVFF MYREG1, MYREG2  
15  
12 11  
1111  
f (Destination FILE #)  
f = 12-bit file register address  
Bit-oriented file register operations  
15 12 11 9 8  
OPCODE b (BIT #)  
7
0
BSF MYREG, bit, B  
a
f (FILE #)  
b = 3-bit position of bit in file register (f)  
a = 0 to force Access Bank  
a = 1 for BSR to select bank  
f = 8-bit file register address  
Literal operations  
15  
8
7
0
MOVLW 0x7F  
OPCODE  
k (literal)  
k = 8-bit immediate value  
Control operations  
CALL, GOTO and Branch operations  
15  
8 7  
0
GOTO Label  
OPCODE  
12 11  
n<7:0> (literal)  
15  
0
1111  
n<19:8> (literal)  
n = 20-bit immediate value  
15  
15  
8
7
0
CALL MYFUNC  
OPCODE  
12 11  
n<7:0> (literal)  
S
0
n<19:8> (literal)  
S = Fast bit  
11 10  
15  
0
0
BRA MYFUNC  
BC MYFUNC  
OPCODE  
n<10:0> (literal)  
15  
OPCODE  
8 7  
n<7:0> (literal)  
2002 Microchip Technology Inc.  
DS41159B-page 279  
PIC18FXX8  
TABLE 25-2: PIC18FXXX INSTRUCTION SET  
16-Bit Instruction Word  
MSb LSb  
Mnemonic,  
Status  
Affected  
Description  
Cycles  
Notes  
Operands  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF f, d, a Add WREG and f  
1
1
1
1
1
0010 01da ffff ffff C, DC, Z, OV, N 1, 2  
0010 00da ffff ffff C, DC, Z, OV, N 1, 2  
0001 01da ffff ffff Z, N  
0110 101a ffff ffff Z  
0001 11da ffff ffff Z, N  
ADDWFC f, d, a Add WREG and Carry bit to f  
ANDWF  
CLRF  
COMF  
f, d, a AND WREG with f  
f, a Clear f  
f, d, a Complement f  
1,2  
2
1, 2  
4
CPFSEQ f, a  
CPFSGT f, a  
CPFSLT f, a  
Compare f with WREG, skip = 1 (2 or 3) 0110 001a ffff ffff None  
Compare f with WREG, skip > 1 (2 or 3) 0110 010a ffff ffff None  
Compare f with WREG, skip < 1 (2 or 3) 0110 000a ffff ffff None  
4
1, 2  
DECF  
f, d, a Decrement f  
1
0000 01da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
DECFSZ f, d, a Decrement f, Skip if 0  
DCFSNZ f, d, a Decrement f, Skip if Not 0  
1 (2 or 3) 0010 11da ffff ffff None  
1 (2 or 3) 0100 11da ffff ffff None  
1, 2, 3, 4  
1, 2  
INCF  
f, d, a Increment f  
1
0010 10da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
INCFSZ  
INFSNZ  
IORWF  
MOVF  
f, d, a Increment f, Skip if 0  
f, d, a Increment f, Skip if Not 0  
f, d, a Inclusive OR WREG with f  
f, d, a Move f  
fs, fd Move fs (source) to 1st word  
fd (destination) 2nd word  
1 (2 or 3) 0011 11da ffff ffff None  
1 (2 or 3) 0100 10da ffff ffff None  
4
1, 2  
1, 2  
1
1
1
2
0001 00da ffff ffff Z, N  
0101 00da ffff ffff Z, N  
1100 ffff ffff ffff None  
1111 ffff ffff ffff  
MOVFF  
MOVWF f, a  
Move WREG to f  
Multiply WREG with f  
Negate f  
1
1
1
1
1
1
1
1
1
0110 111a ffff ffff None  
0000 001a ffff ffff None  
0110 110a ffff ffff C, DC, Z, OV, N 1, 2  
0011 01da ffff ffff C, Z, N  
0100 01da ffff ffff Z, N  
0011 00da ffff ffff C, Z, N  
0100 00da ffff ffff Z, N  
0110 100a ffff ffff None  
MULWF  
NEGF  
RLCF  
RLNCF  
RRCF  
RRNCF  
SETF  
f, a  
f, a  
f, d, a Rotate Left f through Carry  
f, d, a Rotate Left f (No Carry)  
f, d, a Rotate Right f through Carry  
f, d, a Rotate Right f (No Carry)  
1, 2  
f, a  
Set f  
SUBFWB f, d, a Subtract f from WREG with  
borrow  
0101 01da ffff ffff C, DC, Z, OV, N 1, 2  
SUBWF  
f, d, a Subtract WREG from f  
1
1
0101 11da ffff ffff C, DC, Z, OV, N  
0101 10da ffff ffff C, DC, Z, OV, N 1, 2  
SUBWFB f, d, a Subtract WREG from f with  
borrow  
SWAPF  
TSTFSZ f, a  
XORWF f, d, a Exclusive OR WREG with f  
BIT-ORIENTED FILE REGISTER OPERATIONS  
f, d, a Swap nibbles in f  
1
0011 10da ffff ffff None  
4
1, 2  
Test f, skip if 0  
1 (2 or 3) 0110 011a ffff ffff None  
1
0001 10da ffff ffff Z, N  
BCF  
BSF  
BTFSC  
BTFSS  
BTG  
f, b, a Bit Clear f  
f, b, a Bit Set f  
f, b, a Bit Test f, Skip if Clear  
f, b, a Bit Test f, Skip if Set  
f, d, a Bit Toggle f  
1
1
1001 bbba ffff ffff None  
1000 bbba ffff ffff None  
1, 2  
1, 2  
3, 4  
3, 4  
1, 2  
1 (2 or 3) 1011 bbba ffff ffff None  
1 (2 or 3) 1010 bbba ffff ffff None  
1
0111 bbba ffff ffff None  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be  
that value present on the pins themselves. For example, if the data latch is ’1’ for a pin configured as input and  
is driven low by an external device, the data will be written back with a ’0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be  
cleared if assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP,  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that  
all program memory locations have a valid instruction.  
5: If the Table Write starts the write cycle to internal memory, the write will continue until terminated.  
DS41159B-page 280  
2002 Microchip Technology Inc.  
PIC18FXX8  
TABLE 25-2: PIC18FXXX INSTRUCTION SET (CONTINUED)  
Mnemonic,  
16-Bit Instruction Word  
LSb  
Status  
Affected  
Description  
Cycles  
Notes  
Operands  
MSb  
CONTROL OPERATIONS  
BC  
BN  
n
n
n
n
n
n
n
n
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
1 (2)  
1 (2)  
1 (2)  
2
1110 0010 nnnn nnnn None  
1110 0110 nnnn nnnn None  
1110 0011 nnnn nnnn None  
1110 0111 nnnn nnnn None  
1110 0101 nnnn nnnn None  
1110 0001 nnnn nnnn None  
1110 0100 nnnn nnnn None  
1101 0nnn nnnn nnnn None  
1110 0000 nnnn nnnn None  
1110 110s kkkk kkkk None  
1111 kkkk kkkk kkkk  
Branch if Negative  
Branch if Not Carry  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
Branch if Overflow  
Branch Unconditionally  
Branch if Zero  
BNC  
BNN  
BNOV  
BNZ  
BOV  
BRA  
BZ  
n
n, s  
CALL  
Call subroutine 1st word  
2nd word  
CLRWDT  
DAW  
GOTO  
n
Clear Watchdog Timer  
Decimal Adjust WREG  
Go to address 1st word  
2nd word  
1
1
2
0000 0000 0000 0100 TO, PD  
0000 0000 0000 0111 C  
1110 1111 kkkk kkkk None  
1111 kkkk kkkk kkkk  
NOP  
NOP  
POP  
PUSH  
RCALL  
RESET  
RETFIE  
n
No Operation  
No Operation (Note 4)  
Pop top of return stack (TOS)  
Push top of return stack (TOS) 1  
Relative Call  
1
1
1
0000 0000 0000 0000 None  
1111 xxxx xxxx xxxx None  
0000 0000 0000 0110 None  
0000 0000 0000 0101 None  
1101 1nnn nnnn nnnn None  
0000 0000 1111 1111 All  
0000 0000 0001 000s GIE/GIEH,  
PEIE/GIEL  
2
1
2
Software device RESET  
Return from interrupt enable  
s
RETLW  
RETURN  
SLEEP  
k
s
Return with literal in WREG  
Return from Subroutine  
Go into Standby mode  
2
2
1
0000 1100 kkkk kkkk None  
0000 0000 0001 001s None  
0000 0000 0000 0011 TO, PD  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be  
that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and  
is driven low by an external device, the data will be written back with a '0'.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be  
cleared if assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP,  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that  
all program memory locations have a valid instruction.  
5: If the Table Write starts the write cycle to internal memory, the write will continue until terminated.  
2002 Microchip Technology Inc.  
DS41159B-page 281  
PIC18FXX8  
TABLE 25-2: PIC18FXXX INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
LITERAL OPERATIONS  
ADDLW  
ANDLW  
IORLW  
LFSR  
k
k
k
f, k  
Add literal and WREG  
AND literal with WREG  
Inclusive OR literal with WREG 1  
Move literal (12-bit) 2nd word  
to FSRx 1st word  
Move literal to BSR<3:0>  
Move literal to WREG  
Multiply literal with WREG  
Return with literal in WREG  
Subtract WREG from literal  
1
1
0000 1111 kkkk  
0000 1011 kkkk  
0000 1001 kkkk  
1110 1110 00ff  
1111 0000 kkkk  
0000 0001 0000  
0000 1110 kkkk  
0000 1101 kkkk  
0000 1100 kkkk  
0000 1000 kkkk  
0000 1010 kkkk  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
kkkk Z, N  
kkkk None  
kkkk  
kkkk None  
kkkk None  
kkkk None  
kkkk None  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
2
MOVLB  
MOVLW  
MULLW  
RETLW  
SUBLW  
XORLW  
k
k
k
k
k
k
1
1
1
2
1
Exclusive OR literal with WREG 1  
DATA MEMORY PROGRAM MEMORY OPERATIONS  
TBLRD*  
Table Read  
2
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
1000 None  
1001 None  
1010 None  
1011 None  
1100 None  
1101 None  
1110 None  
1111 None  
TBLRD*+  
TBLRD*-  
TBLRD+*  
TBLWT*  
TBLWT*+  
TBLWT*-  
TBLWT+*  
Table Read with post-increment  
Table Read with post-decrement  
Table Read with pre-increment  
Table Write  
Table Write with post-increment  
Table Write with post-decrement  
Table Write with pre-increment  
2 (5)  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be  
that value present on the pins themselves. For example, if the data latch is ’1’ for a pin configured as input and  
is driven low by an external device, the data will be written back with a ’0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be  
cleared if assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP,  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that  
all program memory locations have a valid instruction.  
5: If the Table Write starts the write cycle to internal memory, the write will continue until terminated.  
DS41159B-page 282  
2002 Microchip Technology Inc.  
PIC18FXX8  
25.2 Instruction Set  
ADDLW  
ADD literal to W  
ADDWF  
ADD W to f  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Syntax:  
[ label ] ADDWF  
f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(W) + k W  
N, OV, C, DC, Z  
Operation:  
(W) + (f) dest  
0000  
1111  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Description:  
The contents of W are added to the  
8-bit literal ’k’ and the result is  
placed in W.  
0010  
01da  
ffff  
ffff  
Description:  
Add W to register ’f’. If ’d’ is 0, the  
result is stored in W. If ’d’ is 1, the  
result is stored back in register ’f’  
(default). If ‘a’ is 0, the Access  
Bank will be selected. If ‘a’ is 1, the  
BSR is used.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
1
Decode  
Read  
literal ’k’  
Process  
Data  
Write to W  
Q Cycle Activity:  
Q1  
ADDLW  
0x15  
Example:  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
W
=
0x10  
After Instruction  
W
=
0x25  
ADDWF  
REG, W  
Example:  
Before Instruction  
W
REG  
=
=
0x17  
0xC2  
After Instruction  
W
REG  
=
=
0xD9  
0xC2  
2002 Microchip Technology Inc.  
DS41159B-page 283  
PIC18FXX8  
ADDWFC  
ADD W and Carry bit to f  
ANDLW  
AND literal with W  
Syntax:  
[ label ] ADDWFC  
f [,d [,a]]  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
(W) .AND. k W  
N, Z  
Operation:  
(W) + (f) + (C) dest  
0000  
1011  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Description:  
The contents of W are ANDed with  
the 8-bit literal 'k'. The result is  
placed in W.  
0010  
00da  
ffff  
ffff  
Description:  
Add W, the Carry Flag and data  
memory location ’f’. If ’d’ is 0, the  
result is placed in W. If ’d’ is 1, the  
result is placed in data memory loca-  
tion 'f'. If ‘a’ is 0, the Access Bank  
will be selected. If ‘a’ is 1, the BSR  
will not be overridden.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
’k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
ANDLW  
0x5F  
Example:  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
W
=
0xA3  
0x03  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
After Instruction  
W
=
ADDWFC  
REG, W  
Example:  
Before Instruction  
Carry bit =  
1
REG  
W
=
=
0x02  
0x4D  
After Instruction  
Carry bit =  
0
REG  
W
=
=
0x02  
0x50  
DS41159B-page 284  
2002 Microchip Technology Inc.  
PIC18FXX8  
ANDWF  
AND W with f  
BC  
Branch if Carry  
[ label ] BC  
Syntax:  
[ label ] ANDWF  
f [,d [,a]]  
Syntax:  
n
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if carry bit is ’1’  
(PC) + 2 + 2n PC  
Operation:  
(W) .AND. (f) dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
0010  
nnnn  
nnnn  
0001  
01da  
ffff  
ffff  
Description:  
If the Carry bit is ’1’, then the  
program will branch.  
Description:  
The contents of W are AND’ed with  
register 'f'. If 'd' is 0, the result is  
stored in W. If 'd' is 1, the result is  
stored back in register 'f' (default). If  
‘a’ is 0, the Access Bank will be  
selected. If ‘a’ is 1, the BSR will not  
be overridden (default).  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
If Jump:  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
ANDWF  
REG, W  
Example:  
Before Instruction  
If No Jump:  
Q1  
W
REG  
=
=
0x17  
0xC2  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
No  
operation  
After Instruction  
W
REG  
=
=
0x02  
0xC2  
HERE  
BC JUMP  
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Carry  
=
=
=
=
1;  
PC  
address (JUMP)  
If Carry  
PC  
0;  
address (HERE+2)  
2002 Microchip Technology Inc.  
DS41159B-page 285  
PIC18FXX8  
BCF  
Bit Clear f  
BN  
Branch if Negative  
[ label ] BN  
Syntax:  
[ label ] BCF f,b[,a]  
Syntax:  
n
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if negative bit is ’1’  
(PC) + 2 + 2n PC  
Operation:  
0 f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0110  
nnnn  
nnnn  
1001  
bbba  
ffff  
ffff  
Description:  
If the Negative bit is ’1’, then the  
program will branch.  
Description:  
Bit 'b' in register 'f' is cleared. If ‘a’  
is 0, the Access Bank will be  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
If Jump:  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write  
Q1  
Q2  
Q3  
Q4  
register ’f’  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
BCF  
FLAG_REG,  
7
Example:  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Before Instruction  
FLAG_REG = 0xC7  
If No Jump:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
FLAG_REG = 0x47  
Decode  
Read literal  
’n’  
Process  
Data  
No  
operation  
HERE  
BN Jump  
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Negative  
=
=
=
=
1;  
PC  
address (Jump)  
If Negative  
PC  
0;  
address (HERE+2)  
DS41159B-page 286  
2002 Microchip Technology Inc.  
PIC18FXX8  
BNC  
Branch if Not Carry  
BNN  
Branch if Not Negative  
Syntax:  
[ label ] BNC  
-128 n 127  
if carry bit is ’0’  
n
Syntax:  
[ label ] BNN  
-128 n 127  
n
Operands:  
Operation:  
Operands:  
Operation:  
if negative bit is ’0’  
(PC) + 2 + 2n PC  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0011  
nnnn  
nnnn  
1110  
0111  
nnnn  
nnnn  
Description:  
If the Carry bit is ’0’, then the  
program will branch.  
Description:  
If the Negative bit is ’0’, then the  
program will branch.  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
’n’  
Process  
Data  
No  
operation  
HERE  
BNC Jump  
HERE  
BNN Jump  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Carry  
=
=
=
=
0;  
If Negative  
=
=
=
=
0;  
PC  
address (Jump)  
PC  
address (Jump)  
If Carry  
PC  
1;  
If Negative  
PC  
1;  
address (HERE+2)  
address (HERE+2)  
2002 Microchip Technology Inc.  
DS41159B-page 287  
PIC18FXX8  
BNOV  
Branch if Not Overflow  
BNZ  
Branch if Not Zero  
Syntax:  
[ label ] BNOV  
-128 n 127  
n
Syntax:  
[ label ] BNZ  
-128 n 127  
if zero bit is ’0’  
n
Operands:  
Operation:  
Operands:  
Operation:  
if overflow bit is ’0’  
(PC) + 2 + 2n PC  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0101  
nnnn  
nnnn  
1110  
0001  
nnnn  
nnnn  
Description:  
If the Overflow bit is ’0’, then the  
program will branch.  
Description:  
If the Zero bit is ’0’, then the pro-  
gram will branch.  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
’n’  
Process  
Data  
No  
operation  
HERE  
BNOV Jump  
HERE  
BNZ Jump  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Overflow  
=
=
=
=
0;  
If Zero  
=
=
=
=
0;  
PC  
address (Jump)  
PC  
address (Jump)  
If Overflow  
PC  
1;  
If Zero  
PC  
1;  
address (HERE+2)  
address (HERE+2)  
DS41159B-page 288  
2002 Microchip Technology Inc.  
PIC18FXX8  
BRA  
Unconditional Branch  
[ label ] BRA  
BSF  
Bit Set f  
Syntax:  
n
Syntax:  
[ label ] BSF f,b[,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
-1024 n 1023  
(PC) + 2 + 2n PC  
None  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operation:  
1 f<b>  
1101  
0nnn  
nnnn  
nnnn  
Status Affected:  
Encoding:  
None  
Description:  
Add the 2’s complement number  
’2n’ to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is a  
two-cycle instruction.  
1000  
bbba  
ffff  
ffff  
Description:  
Bit 'b' in register 'f' is set. If ‘a’ is 0,  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value.  
Words:  
Cycles:  
1
2
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
Decode  
Read  
register ’f’  
Process  
Data  
Write  
register ’f’  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
BSF  
FLAG_REG, 7  
Example:  
Before Instruction  
HERE  
BRA Jump  
Example:  
FLAG_REG  
=
=
0x0A  
0x8A  
Before Instruction  
After Instruction  
FLAG_REG  
PC  
=
=
address (HERE)  
address (Jump)  
After Instruction  
PC  
2002 Microchip Technology Inc.  
DS41159B-page 289  
PIC18FXX8  
BTFSC  
Bit Test File, Skip if Clear  
BTFSS  
Bit Test File, Skip if Set  
Syntax:  
[ label ] BTFSC f,b[,a]  
Syntax:  
[ label ] BTFSS f,b[,a]  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operation:  
skip if (f<b>) = 0  
None  
Operation:  
skip if (f<b>) = 1  
None  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
1011  
bbba  
ffff  
ffff  
1010  
bbba  
ffff  
ffff  
Description:  
If bit 'b' in register ’f' is 0, then the  
next instruction is skipped.  
Description:  
If bit 'b' in register 'f' is 1, then the  
next instruction is skipped.  
If bit 'b' is 0, then the next instruction  
fetched during the current instruction  
execution is discarded, and a NOPis  
executed instead, making this a  
two-cycle instruction. If ‘a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
If bit 'b' is 1, then the next instruction  
fetched during the current instruc-  
tion execution, is discarded and a  
NOPis executed instead, making this  
a two-cycle instruction. If ‘a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
Process Data  
No  
Decode  
Read  
Process Data  
No  
register ’f’  
operation  
register ’f’  
operation  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
HERE  
FALSE  
TRUE  
BTFSC  
:
:
FLAG, 1  
HERE  
FALSE  
TRUE  
BTFSS  
:
:
FLAG, 1  
Example:  
Example:  
Before Instruction  
PC  
Before Instruction  
PC  
=
address (HERE)  
=
address (HERE)  
After Instruction  
After Instruction  
If FLAG<1>  
=
=
=
=
0;  
If FLAG<1>  
=
=
=
=
0;  
PC  
address (TRUE)  
1;  
PC  
address (FALSE)  
1;  
If FLAG<1>  
PC  
If FLAG<1>  
PC  
address (FALSE)  
address (TRUE)  
DS41159B-page 290  
2002 Microchip Technology Inc.  
PIC18FXX8  
BTG  
Bit Toggle f  
BOV  
Branch if Overflow  
Syntax:  
[ label ] BTG f,b[,a]  
Syntax:  
[ label ] BOV  
-128 n 127  
n
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
Operation:  
if overflow bit is ’1’  
(PC) + 2 + 2n PC  
Operation:  
(f<b>) f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0100  
nnnn  
nnnn  
0111  
bbba  
ffff  
ffff  
Description:  
If the Overflow bit is ’1’, then the  
program will branch.  
Description:  
Bit ’b’ in data memory location ’f’ is  
inverted. If ‘a’ is 0, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
If Jump:  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write  
Q1  
Q2  
Q3  
Q4  
register ’f’  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
BTG  
PORTC,  
4
Example:  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Before Instruction:  
PORTC  
=
0111 0101 [0x75]  
If No Jump:  
Q1  
After Instruction:  
Q2  
Q3  
Q4  
PORTC  
=
0110 0101 [0x65]  
Decode  
Read literal  
’n’  
Process  
Data  
No  
operation  
HERE  
BOV JUMP  
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Overflow  
=
=
=
=
1;  
PC  
address (JUMP)  
If Overflow  
PC  
0;  
address (HERE+2)  
2002 Microchip Technology Inc.  
DS41159B-page 291  
PIC18FXX8  
BZ  
Branch if Zero  
[ label ] BZ  
CALL  
Subroutine Call  
Syntax:  
n
Syntax:  
[ label ] CALL k [,s]  
Operands:  
Operation:  
-128 n 127  
Operands:  
0 k 1048575  
s [0,1]  
if Zero bit is ’1’  
(PC) + 2 + 2n PC  
Operation:  
(PC) + 4 TOS,  
k PC<20:1>,  
if s = 1  
Status Affected:  
Encoding:  
None  
1110  
0000  
nnnn  
nnnn  
(W) WS,  
(STATUS) STATUSS,  
(BSR) BSRS  
Description:  
If the Zero bit is ’1’, then the  
program will branch.  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Status Affected:  
None  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
1110  
1111  
110s  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
19  
Description:  
Subroutine call of entire 2 Mbyte  
memory range. First, return  
address (PC+ 4) is pushed onto the  
return stack. If ’s’ = 1, the W,  
Words:  
Cycles:  
1
1(2)  
STATUS and BSR registers are  
also pushed into their respective  
shadow registers, WS, STATUSS  
and BSRS. If 's' = 0, no update  
occurs (default). Then, the 20-bit  
value ’k’ is loaded into PC<20:1>.  
CALLis a two-cycle instruction.  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Words:  
Cycles:  
2
2
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
No  
operation  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal Push PC to Read literal  
HERE  
BZ Jump  
Example:  
’k’<7:0>,  
stack  
’k’<19:8>,  
Write to PC  
Before Instruction  
PC  
=
address (HERE)  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
After Instruction  
If Zero  
=
=
=
=
1;  
PC  
address (Jump)  
HERE  
CALL THERE,FAST  
Example:  
If Zero  
PC  
0;  
address (HERE+2)  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
PC  
=
=
=
=
address (THERE)  
TOS  
WS  
address (HERE + 4)  
W
BSR  
STATUS  
BSRS  
STATUSS=  
DS41159B-page 292  
2002 Microchip Technology Inc.  
PIC18FXX8  
CLRF  
Clear f  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
[label] CLRF f [,a]  
Syntax:  
[ label ] CLRWDT  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
None  
000h WDT,  
000h WDT postscaler,  
1 TO,  
Operation:  
000h f  
1 Z  
1 PD  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
TO, PD  
0110  
101a  
ffff  
ffff  
0000  
0000  
0000  
0100  
Description:  
Clears the contents of the specified  
register. If ‘a’ is 0, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will  
be selected as per the BSR value  
(default).  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
postscaler of the WDT. Status bits  
TO and PD are set.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
No  
operation  
Process  
Data  
No  
operation  
Decode  
Read  
register ’f’  
Process  
Data  
Write  
register ’f’  
CLRWDT  
Example:  
CLRF  
FLAG_REG  
Example:  
Before Instruction  
WDT Counter  
=
?
Before Instruction  
FLAG_REG  
=
=
0x5A  
0x00  
After Instruction  
After Instruction  
FLAG_REG  
WDT Counter  
WDT Postscaler  
TO  
PD  
=
=
=
=
0x00  
0
1
1
2002 Microchip Technology Inc.  
DS41159B-page 293  
PIC18FXX8  
COMF  
Complement f  
CPFSEQ  
Compare f with W, skip if f = W  
Syntax:  
[ label ] COMF f [,d [,a]]  
Syntax:  
[ label ] CPFSEQ f [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) – (W),  
Operation:  
(f) dest  
skip if (f) = (W)  
(unsigned comparison)  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
None  
0001  
11da  
ffff  
ffff  
0110  
001a  
ffff  
ffff  
Description:  
The contents of register ’f’ are com-  
plemented. If ’d’ is 0, the result is  
stored in W. If ’d’ is 1, the result is  
stored back in register ’f’ (default). If  
‘a’ is 0, the Access Bank will be  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
Description:  
Compares the contents of data  
memory location 'f' to the contents  
of W by performing an unsigned  
subtraction.  
If 'f' = W, then the fetched instruc-  
tion is discarded and a NOPis exe-  
cuted instead, making this a  
two-cycle instruction. If ‘a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
1(2)  
destination  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
COMF  
REG, W  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
REG  
=
0x13  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ’f’  
Process  
Data  
No  
operation  
REG  
=
0x13  
W
=
0xEC  
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
CPFSEQ REG  
Example:  
NEQUAL  
EQUAL  
:
:
Before Instruction  
PC Address  
=
HERE  
W
REG  
=
=
?
?
After Instruction  
If REG  
PC  
=
=
W;  
Address (EQUAL)  
If REG  
PC  
=
W;  
Address (NEQUAL)  
DS41159B-page 294  
2002 Microchip Technology Inc.  
PIC18FXX8  
CPFSGT  
Compare f with W, skip if f > W  
CPFSLT  
Compare f with W, skip if f < W  
Syntax:  
[ label ] CPFSGT f [,a]  
Syntax:  
[ label ] CPFSLT f [,a]  
Operands:  
0 f 255  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) − (W),  
Operation:  
(f) – (W),  
skip if (f) > (W)  
(unsigned comparison)  
skip if (f) < (W)  
(unsigned comparison)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0110  
010a  
ffff  
ffff  
0110  
000a  
ffff  
ffff  
Description:  
Compares the contents of data  
memory location ’f’ to the contents  
of the W by performing an  
Description:  
Compares the contents of data  
memory location 'f' to the contents  
of W by performing an unsigned  
subtraction.  
unsigned subtraction.  
If the contents of ’f’ are greater than  
the contents of WREG, then the  
fetched instruction is discarded and  
a NOPis executed instead, making  
this a two-cycle instruction. If ‘a’ is  
0, the Access Bank will be  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
If the contents of 'f' are less than  
the contents of W, then the fetched  
instruction is discarded and a NOP  
is executed instead, making this a  
two-cycle instruction. If ‘a’ is 0, the  
Access Bank will be selected. If ’a’  
is 1, the BSR will not be overridden  
(default).  
Words:  
Cycles:  
1
1(2)  
Words:  
Cycles:  
1
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register ’f’  
Process  
Data  
No  
operation  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
Q2  
Q3  
Q4  
If skip:  
Q1  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q2  
Q3  
Q4  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
If skip and followed by 2-word instruction:  
No  
No  
No  
No  
Q1  
Q2  
Q3  
Q4  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
NLESS  
LESS  
CPFSLT REG  
:
:
Example:  
HERE  
CPFSGT REG  
Example:  
NGREATER  
GREATER  
:
:
Before Instruction  
PC  
W
=
=
Address (HERE)  
?
Before Instruction  
After Instruction  
PC  
W
=
=
Address (HERE)  
?
If REG  
PC  
If REG  
PC  
<
=
=
W;  
Address (LESS)  
W;  
Address (NLESS)  
After Instruction  
If REG  
PC  
>
=
W;  
Address (GREATER)  
If REG  
PC  
=
W;  
Address (NGREATER)  
2002 Microchip Technology Inc.  
DS41159B-page 295  
PIC18FXX8  
DAW  
Decimal Adjust W Register  
DECF  
Decrement f  
Syntax:  
[label] DAW  
Syntax:  
[ label ] DECF f [,d [,a]]  
Operands:  
Operation:  
None  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
If [W<3:0> >9] or [DC = 1] then  
(W<3:0>) + 6 W<3:0>;  
else  
(W<3:0>) W<3:0>;  
Operation:  
(f) – 1 dest  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
0000  
01da  
ffff  
ffff  
If [W<7:4> >9] or [C = 1] then  
(W<7:4>) + 6 W<7:4>;  
else  
Description:  
Decrement register 'f'. If 'd' is 0, the  
result is stored in W. If 'd' is 1, the  
result is stored back in register 'f'  
(default). If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
(W<7:4>) W<7:4>;  
Status Affected:  
Encoding:  
C
0000  
0000  
0000  
0111  
Description:  
DAW adjusts the eight-bit value in  
W, resulting from the earlier addi-  
tion of two variables (each in  
packed BCD format) and produces  
a correct packed BCD result.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register W  
Process  
Data  
Write  
W
DECF  
CNT,  
Example:  
Before Instruction  
DAW  
Example1:  
CNT  
Z
=
=
0x01  
0
Before Instruction  
After Instruction  
W
C
DC  
=
=
=
0xA5  
0
0
CNT  
=
=
0x00  
1
Z
After Instruction  
W
=
0x05  
C
DC  
=
=
1
0
Example 2:  
Before Instruction  
W
=
0xCE  
C
DC  
=
=
0
0
After Instruction  
W
=
0x34  
C
DC  
=
=
1
0
DS41159B-page 296  
2002 Microchip Technology Inc.  
PIC18FXX8  
DECFSZ  
Decrement f, skip if 0  
DCFSNZ  
Decrement f, skip if not 0  
Syntax:  
[ label ] DECFSZ f [,d [,a]]  
Syntax:  
[ label ] DCFSNZ f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – 1 dest,  
skip if result = 0  
Operation:  
(f) – 1 dest,  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0010  
11da  
ffff  
ffff  
0100  
11da  
ffff  
ffff  
Description:  
The contents of register 'f' are dec-  
remented. If 'd' is 0, the result is  
placed in W. If 'd' is 1, the result is  
placed back in register 'f' (default).  
If the result is 0, the next instruc-  
tion, which is already fetched, is  
discarded, and a NOPis executed  
instead, making it a two-cycle  
instruction. If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Description:  
The contents of register 'f' are dec-  
remented. If 'd' is 0, the result is  
placed in W. If 'd' is 1, the result is  
placed back in register 'f' (default).  
If the result is not 0, the next  
instruction, which is already  
fetched, is discarded, and a NOPis  
executed instead, making it a  
two-cycle instruction. If ’a’ is 0, the  
Access Bank will be selected,  
overriding the BSR value. If ’a’ = 1,  
then the bank will be selected as  
per the BSR value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
HERE  
DECFSZ  
GOTO  
CNT  
LOOP  
HERE  
ZERO  
NZERO  
DCFSNZ TEMP  
:
:
Example:  
Example:  
CONTINUE  
Before Instruction  
Before Instruction  
TEMP  
PC  
=
Address (HERE)  
=
?
After Instruction  
After Instruction  
CNT  
=
=
=
=
CNT - 1  
0;  
Address (CONTINUE)  
0;  
Address (HERE+2)  
TEMP  
If TEMP  
PC  
If TEMP  
PC  
=
=
=
=
TEMP - 1,  
0;  
Address (ZERO)  
0;  
Address (NZERO)  
If CNT  
PC  
If CNT  
PC  
2002 Microchip Technology Inc.  
DS41159B-page 297  
PIC18FXX8  
GOTO  
Unconditional Branch  
INCF  
Increment f  
Syntax:  
[ label ] GOTO k  
0 k 1048575  
k PC<20:1>  
None  
Syntax:  
[ label ] INCF f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
1110  
1111  
1111  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
0010  
10da  
ffff  
ffff  
19  
Description:  
GOTOallows an unconditional  
branch anywhere within entire  
2 Mbyte memory range. The 20-bit  
value ’k’ is loaded into PC<20:1>.  
GOTOis always a two-cycle  
instruction.  
Description:  
The contents of register ’f’ are  
incremented. If ’d’ is 0, the result is  
placed in W. If ’d’ is 1, the result is  
placed back in register ’f’ (default).  
If ’a’ is 0, the Access Bank will be  
selected, overriding the BSR value.  
If ’a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
Read literal  
’k’<7:0>,  
No  
operation  
Read literal  
’k’<19:8>,  
Write to PC  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
GOTO THERE  
Example:  
INCF  
CNT,  
Example:  
After Instruction  
Before Instruction  
PC  
=
Address (THERE)  
CNT  
=
0xFF  
Z
=
=
=
0
?
?
C
DC  
After Instruction  
CNT  
=
=
=
=
0x00  
Z
1
1
1
C
DC  
DS41159B-page 298  
2002 Microchip Technology Inc.  
PIC18FXX8  
INCFSZ  
Increment f, skip if 0  
INFSNZ  
Increment f, skip if not 0  
Syntax:  
[ label ] INCFSZ f [,d [,a]]  
Syntax:  
[ label ] INFSNZ f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest,  
skip if result = 0  
Operation:  
(f) + 1 dest,  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0011  
11da  
ffff  
ffff  
0100  
10da  
ffff  
ffff  
Description:  
The contents of register ’f’ are  
incremented. If ’d’ is 0, the result is  
placed in W. If ’d’ is 1, the result is  
placed back in register ’f’ (default).  
If the result is 0, the next instruc-  
tion, which is already fetched, is  
discarded, and a NOPis executed  
instead, making it a two-cycle  
instruction. If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Description:  
The contents of register 'f' are  
incremented. If 'd' is 0, the result is  
placed in W. If 'd' is 1, the result is  
placed back in register 'f' (default).  
If the result is not 0, the next  
instruction, which is already  
fetched, is discarded, and a NOPis  
executed instead, making it a  
two-cycle instruction. If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
HERE  
NZERO  
ZERO  
INCFSZ  
:
:
CNT  
HERE  
ZERO  
NZERO  
INFSNZ REG  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
Address (HERE)  
PC  
=
Address (HERE)  
After Instruction  
After Instruction  
CNT  
If CNT  
PC  
If CNT  
PC  
=
=
=
=
CNT + 1  
REG  
If REG  
PC  
If REG  
PC  
=
=
=
=
REG + 1  
0;  
0;  
Address (ZERO)  
0;  
Address (NZERO)  
Address (NZERO)  
0;  
Address (ZERO)  
2002 Microchip Technology Inc.  
DS41159B-page 299  
PIC18FXX8  
IORLW  
Inclusive OR literal with W  
IORWF  
Inclusive OR W with f  
Syntax:  
[ label ] IORLW k  
0 k 255  
Syntax:  
[ label ] IORWF f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(W) .OR. k W  
N, Z  
Operation:  
(W) .OR. (f) dest  
0000  
1001  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, Z  
Description:  
The contents of W are OR’ed with  
the eight-bit literal 'k'. The result is  
placed in W.  
0001  
00da  
ffff  
ffff  
Description:  
Inclusive OR W with register 'f'. If 'd'  
is 0, the result is placed in W. If 'd'  
is 1, the result is placed back in  
register 'f' (default). If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ’k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
IORLW  
0x35  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
W
=
0x9A  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
After Instruction  
W
=
0xBF  
IORWF RESULT, W  
Example:  
Before Instruction  
RESULT =  
0x13  
0x91  
W
=
After Instruction  
RESULT =  
0x13  
0x93  
W
=
DS41159B-page 300  
2002 Microchip Technology Inc.  
PIC18FXX8  
LFSR  
Load FSR  
MOVF  
Move f  
Syntax:  
[ label ] LFSR f,k  
Syntax:  
[ label ] MOVF f [,d [,a]]  
Operands:  
0 f 2  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
0 k 4095  
Operation:  
k FSRf  
Operation:  
f dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
1111  
1110  
0000  
00ff  
k kkk  
11  
kkkk  
k kkk  
0101  
00da  
ffff  
ffff  
7
Description:  
The 12-bit literal ’k’ is loaded into  
the file select register pointed to  
by ’f’.  
Description:  
The contents of register ’f’ are  
moved to a destination dependent  
upon the status of ’d’. If 'd' is 0, the  
result is placed in W. If 'd' is 1, the  
result is placed back in register 'f'  
(default). Location 'f' can be any-  
where in the 256 byte bank. If ’a’ is  
0, the Access Bank will be  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
Decode  
Read literal  
’k’ MSB  
Process  
Data  
Write  
literal ’k’  
MSB to  
FSRfH  
Decode  
Read literal  
’k’ LSB  
Process  
Data  
Write literal  
’k’ to FSRfL  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
LFSR 2, 0x3AB  
Example:  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ’f’  
Process  
Data  
Write W  
FSR2H  
FSR2L  
=
=
0x03  
0xAB  
MOVF  
REG, W  
Example:  
Before Instruction  
REG  
W
=
=
0x22  
0xFF  
After Instruction  
REG  
W
=
=
0x22  
0x22  
2002 Microchip Technology Inc.  
DS41159B-page 301  
PIC18FXX8  
MOVFF  
Move f to f  
MOVLB  
Move literal to low nibble in BSR  
Syntax:  
[ label ] MOVFF fs,fd  
Syntax:  
[ label ] MOVLB k  
0 k 255  
k BSR  
Operands:  
0 fs 4095  
0 fd 4095  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operation:  
(fs) fd  
None  
Status Affected:  
None  
0000  
0001  
kkkk  
kkkk  
Encoding:  
1st word (source)  
2nd word (destin.)  
Description:  
The 8-bit literal ’k’ is loaded into  
the Bank Select Register (BSR).  
1100  
1111  
ffff  
ffff  
ffff  
ffff  
ffffs  
ffffd  
Words:  
Cycles:  
1
1
Description:  
The contents of source register ’fs’  
are moved to destination register  
’fd’. Location of source ’fs’ can be  
anywhere in the 4096 byte data  
space (000h to FFFh), and location  
of destination ’fd’ can also be any-  
where from 000h to FFFh.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
’k’  
Process  
Data  
Write  
literal ’k’ to  
BSR  
Either source or destination can be  
W (a useful special situation).  
MOVFFis particularly useful for  
transferring a data memory location  
to a peripheral register (such as the  
transmit buffer or an I/O port).  
MOVLB  
5
Example:  
Before Instruction  
BSR register  
=
=
0x02  
0x05  
After Instruction  
BSR register  
The MOVFFinstruction cannot use  
the PCL, TOSU, TOSH or TOSL as  
the destination register.  
The MOVFFinstruction should not  
be used to modify interrupt settings  
while any interrupt is enabled (see  
page 77).  
Words:  
Cycles:  
2
2 (3)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
(src)  
Process  
Data  
No  
operation  
Decode  
No  
operation  
No  
operation  
Write  
register ’f’  
(dest)  
No dummy  
read  
MOVFF  
REG1, REG2  
Example:  
Before Instruction  
REG1  
REG2  
=
=
0x33  
0x11  
After Instruction  
REG1  
REG2  
=
=
0x33,  
0x33  
DS41159B-page 302  
2002 Microchip Technology Inc.  
PIC18FXX8  
MOVLW  
Move literal to W  
MOVWF  
Move W to f  
Syntax:  
[ label ] MOVLW k  
0 k 255  
k W  
Syntax:  
[ label ] MOVWF f [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(W) f  
None  
Status Affected:  
Encoding:  
None  
0000  
1110  
kkkk  
kkkk  
0110  
111a  
ffff  
ffff  
Description:  
The eight-bit literal ’k’ is loaded into  
W.  
Description:  
Move data from W to register ’f’.  
Location ’f’ can be anywhere in the  
256 byte bank. If ‘a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ’k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
MOVLW  
0x5A  
Example:  
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
W
=
0x5A  
Decode  
Read  
register ’f’  
Process  
Data  
Write  
register ’f’  
MOVWF  
REG  
Example:  
Before Instruction  
W
REG  
=
=
0x4F  
0xFF  
After Instruction  
W
REG  
=
=
0x4F  
0x4F  
2002 Microchip Technology Inc.  
DS41159B-page 303  
PIC18FXX8  
MULLW  
Multiply Literal with W  
MULWF  
Multiply W with f  
Syntax:  
[ label ] MULLW  
0 k 255  
k
Syntax:  
[ label ] MULWF f [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
a [0,1]  
(W) x k PRODH:PRODL  
Operation:  
(W) x (f) PRODH:PRODL  
None  
Status Affected:  
Encoding:  
None  
0000  
1101  
kkkk  
kkkk  
0000  
001a  
ffff  
ffff  
Description:  
An unsigned multiplication is car-  
ried out between the contents of  
W and the 8-bit literal ’k’. The  
16-bit result is placed in  
PRODH:PRODL register pair.  
PRODH contains the high byte.  
W is unchanged.  
None of the status flags are  
affected.  
Note that neither overflow nor  
carry is possible in this opera-  
tion. A zero result is possible, but  
not detected.  
Description:  
An unsigned multiplication is car-  
ried out between the contents of  
W and the register file location ’f’.  
The 16-bit result is stored in the  
PRODH:PRODL register pair.  
PRODH contains the high byte.  
Both W and ’f’ are unchanged.  
None of the status flags are  
affected.  
Note that neither overflow nor  
carry is possible in this opera-  
tion. A zero result is possible, but  
not detected. If ‘a’ is 0, the  
Access Bank will be selected,  
overriding the BSR value. If  
‘a’= 1, then the bank will be  
selected as per the BSR value  
(default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ’k’  
Process  
Data  
Write  
registers  
PRODH:  
PRODL  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
MULLW  
0xC4  
Example:  
Decode  
Read  
register ’f’  
Process  
Data  
Write  
Before Instruction  
registers  
PRODH:  
PRODL  
W
PRODH  
PRODL  
=
=
=
0xE2  
?
?
After Instruction  
W
MULWF  
REG  
Example:  
=
0xE2  
PRODH  
PRODL  
=
=
0xAD  
0x08  
Before Instruction  
W
=
0xC4  
REG  
PRODH  
PRODL  
=
=
=
0xB5  
?
?
After Instruction  
W
=
0xC4  
REG  
PRODH  
PRODL  
=
=
=
0xB5  
0x8A  
0x94  
DS41159B-page 304  
2002 Microchip Technology Inc.  
PIC18FXX8  
NEGF  
Negate f  
NOP  
No Operation  
Syntax:  
[ label ] NEGF f [,a]  
Syntax:  
[ label ] NOP  
None  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
No operation  
None  
Operation:  
( f ) + 1 f  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
0000  
1111  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0110  
110a  
ffff  
ffff  
Description:  
Words:  
No operation.  
Description:  
Location ‘f’ is negated using two’s  
complement. The result is placed in  
the data memory location 'f'. If ’a’ is  
0, the Access Bank will be  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
selected, overriding the BSR value.  
If ’a’ = 1, then the bank will be  
selected as per the BSR value.  
Q2  
No  
Q3  
No  
Q4  
Decode  
No  
operation  
operation  
operation  
Words:  
Cycles:  
1
1
Example:  
None.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write  
register ’f’  
NEGF  
REG, 1  
Example:  
Before Instruction  
REG  
=
0011 1010 [0x3A]  
1100 0110 [0xC6]  
After Instruction  
REG  
=
2002 Microchip Technology Inc.  
DS41159B-page 305  
PIC18FXX8  
POP  
Pop Top of Return Stack  
PUSH  
Push Top of Return Stack  
Syntax:  
[ label ] POP  
None  
Syntax:  
[ label ] PUSH  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
(TOS) bit bucket  
None  
(PC+2) TOS  
None  
0000  
0000  
0000  
0110  
0000  
0000  
0000  
0101  
Description:  
The TOS value is pulled off the  
return stack and is discarded. The  
TOS value then becomes the previ-  
ous value that was pushed onto the  
return stack.  
This instruction is provided to  
enable the user to properly manage  
the return stack to incorporate a  
software stack.  
Description:  
The PC+2 is pushed onto the top of  
the return stack. The previous TOS  
value is pushed down on the stack.  
This instruction allows the user to  
implement a software stack by  
modifying TOS, and then push it  
onto the return stack.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
PUSH PC+2  
onto return  
stack  
No  
operation  
No  
operation  
Q2  
Q3  
Q4  
Decode  
No  
operation  
POP TOS  
value  
No  
operation  
PUSH  
Example:  
POP  
GOTO  
Example:  
Before Instruction  
NEW  
TOS  
PC  
=
=
0x00345A  
0x000124  
Before Instruction  
TOS  
=
=
0x0031A2  
0x014332  
After Instruction  
Stack (1 level down)  
PC  
=
=
=
0x000126  
0x000126  
0x00345A  
TOS  
After Instruction  
Stack (1 level down)  
TOS  
PC  
=
=
0x014332  
NEW  
DS41159B-page 306  
2002 Microchip Technology Inc.  
PIC18FXX8  
RCALL  
Relative Call  
RESET  
Reset  
Syntax:  
[ label ] RCALL  
-1024 n 1023  
(PC) + 2 TOS,  
n
Syntax:  
[ label ] RESET  
Operands:  
Operation:  
Operands:  
Operation:  
None  
Reset all registers and flags that  
are affected by a MCLR Reset.  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
All  
1101  
1nnn  
nnnn  
nnnn  
0000  
0000  
1111  
1111  
Description:  
Subroutine call with a jump up to  
1K from the current location. First,  
return address (PC+2) is pushed  
onto the stack. Then, add the 2’s  
complement number ’2n’ to the PC.  
Since the PC will have incremented  
to fetch the next instruction, the  
new address will be PC+2+2n.  
This instruction is a two-cycle  
instruction.  
Description:  
This instruction provides a way to  
execute a MCLR Reset in software.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Start  
reset  
No  
operation  
No  
operation  
Words:  
Cycles:  
1
2
RESET  
Example:  
After Instruction  
Registers =  
Reset Value  
Reset Value  
Q Cycle Activity:  
Q1  
Flags*  
=
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
Push PC to  
stack  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
RCALL  
Jump  
Example:  
Before Instruction  
PC  
=
Address (HERE)  
After Instruction  
PC  
=
Address (Jump)  
Address (HERE+2)  
TOS =  
2002 Microchip Technology Inc.  
DS41159B-page 307  
PIC18FXX8  
RETFIE  
Return from Interrupt  
RETLW  
Return Literal to W  
Syntax:  
[ label ] RETFIE [s]  
s [0,1]  
Syntax:  
[ label ] RETLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
(TOS) PC,  
1 GIE/GIEH or PEIE/GIEL,  
if s = 1  
k W,  
(TOS) PC,  
PCLATU, PCLATH are unchanged  
(WS) W,  
(STATUSS) STATUS,  
(BSRS) BSR,  
Status Affected:  
Encoding:  
None  
0000  
1100  
kkkk  
kkkk  
PCLATU, PCLATH are unchanged.  
Description:  
W is loaded with the eight-bit literal  
'k'. The program counter is loaded  
from the top of the stack (the return  
address). The high address latch  
(PCLATH) remains unchanged.  
Status Affected:  
Encoding:  
GIE/GIEH, PEIE/GIEL.  
0000  
0000  
0001  
000s  
Description:  
Return from interrupt. Stack is  
popped and Top-of-Stack (TOS) is  
loaded into the PC. Interrupts are  
enabled by setting either the high  
or low priority global interrupt  
enable bit. If ‘s’ = 1, the contents of  
the shadow registers WS,  
STATUSS and BSRS are loaded  
into their corresponding registers,  
W, STATUS and BSR. If ‘s’ = 0, no  
update of these registers occurs  
(default).  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ’k’  
Process  
Data  
pop PC from  
stack, Write  
to W  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Words:  
Cycles:  
1
2
Example:  
CALL TABLE ; W contains table  
; offset value  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
; W now has  
; table value  
Decode  
No  
operation  
No  
operation  
pop PC from  
stack  
:
TABLE  
ADDWF PCL ; W = offset  
Set GIEH or  
GIEL  
RETLW k0  
RETLW k1  
:
; Begin table  
;
No  
operation  
No  
operation  
No  
operation  
No  
operation  
:
RETLW kn  
; End of table  
RETFIE  
1
Example:  
After Interrupt  
Before Instruction  
PC  
W
=
=
=
=
=
TOS  
WS  
W
=
0x07  
BSR  
STATUS  
GIE/GIEH, PEIE/GIEL  
BSRS  
STATUSS  
1
After Instruction  
W
=
value of kn  
DS41159B-page 308  
2002 Microchip Technology Inc.  
PIC18FXX8  
RETURN  
Return from Subroutine  
RLCF  
Rotate Left f through Carry  
Syntax:  
[ label ] RETURN [s]  
s [0,1]  
Syntax:  
[ label ] RLCF f [,d [,a]]  
Operands:  
Operation:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(TOS) PC,  
if s = 1  
(WS) W,  
Operation:  
(f<n>) dest<n+1>,  
(f<7>) C,  
(STATUSS) STATUS,  
(BSRS) BSR,  
PCLATU, PCLATH are unchanged  
(C) dest<0>  
Status Affected:  
Encoding:  
C, N, Z  
Status Affected:  
Encoding:  
None  
0011  
01da  
ffff  
ffff  
0000  
0000  
0001  
001s  
Description:  
The contents of register 'f' are  
rotated one bit to the left through  
the Carry Flag. If 'd' is 0, the result  
is placed in W. If 'd' is 1, the result  
is stored back in register 'f'  
(default). If ‘a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Description:  
Return from subroutine. The stack  
is popped and the top of the stack  
(TOS) is loaded into the program  
counter. If ‘s’= 1, the contents of the  
shadow registers WS, STATUSS  
and BSRS are loaded into their cor-  
responding registers, W, STATUS  
and BSR. If ‘s’ = 0, no update of  
these registers occurs (default).  
Words:  
Cycles:  
1
2
register f  
C
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
No  
operation  
Process  
Data  
pop PC from  
stack  
Q2  
Q3  
Q4  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
RLCF  
REG, W  
Example:  
RETURN  
Example:  
Before Instruction  
REG  
C
=
=
1110 0110  
0
After Interrupt  
PC = TOS  
After Instruction  
REG  
=
1110 0110  
W
C
=
=
1100 1100  
1
2002 Microchip Technology Inc.  
DS41159B-page 309  
PIC18FXX8  
RLNCF  
Rotate Left f (no carry)  
RRCF  
Rotate Right f through Carry  
Syntax:  
[ label ] RLNCF f [,d [,a]]  
Syntax:  
[ label ] RRCF f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<n>) dest<n+1>,  
(f<7>) dest<0>  
Operation:  
(f<n>) dest<n-1>,  
(f<0>) C,  
(C) dest<7>  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
C, N, Z  
0100  
01da  
ffff  
ffff  
0011  
00da  
ffff  
ffff  
Description:  
The contents of register ’f’ are  
rotated one bit to the left. If ’d’ is 0,  
the result is placed in W. If ’d’ is 1,  
the result is stored back in register  
'f' (default). If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ is 1, then the  
bank will be selected as per the  
BSR value (default).  
Description:  
The contents of register 'f' are  
rotated one bit to the right through  
the Carry Flag. If 'd' is 0, the result  
is placed in W. If 'd' is 1, the result  
is placed back in register 'f'  
(default). If ‘a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ is 1, then the  
bank will be selected as per the  
BSR value (default).  
register f  
Words:  
Cycles:  
1
1
register f  
C
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
RLNCF  
REG  
Example:  
Before Instruction  
RRCF  
REG, W  
Example:  
REG  
=
1010 1011  
0101 0111  
After Instruction  
Before Instruction  
REG  
=
REG  
C
=
=
1110 0110  
0
After Instruction  
REG  
=
1110 0110  
W
C
=
=
0111 0011  
0
DS41159B-page 310  
2002 Microchip Technology Inc.  
PIC18FXX8  
RRNCF  
Rotate Right f (no carry)  
SETF  
Set f  
Syntax:  
[ label ] RRNCF f [,d [,a]]  
Syntax:  
[ label ] SETF f [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
FFh f  
Operation:  
(f<n>) dest<n-1>,  
(f<0>) dest<7>  
Status Affected:  
Encoding:  
None  
0110  
100a  
ffff  
ffff  
Status Affected:  
Encoding:  
N, Z  
Description:  
The contents of the specified regis-  
ter are set to FFh. If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ is 1, then  
the bank will be selected as per the  
BSR value (default).  
0100  
00da  
ffff  
ffff  
Description:  
The contents of register ’f’ are  
rotated one bit to the right. If ’d’ is 0,  
the result is placed in W. If ’d’ is 1,  
the result is placed back in register  
'f' (default). If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ is 1, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
register f  
Decode  
Read  
register ’f’  
Process  
Data  
Write  
register ’f’  
Words:  
Cycles:  
1
1
SETF  
REG  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
REG  
=
0x5A  
0xFF  
Q2  
Q3  
Q4  
After Instruction  
REG  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
=
RRNCF  
REG, 1, 0  
Example 1:  
Before Instruction  
REG  
=
1101 0111  
1110 1011  
RRNCF REG, W  
After Instruction  
REG  
=
Example 2:  
Before Instruction  
W
REG  
=
=
?
1101 0111  
After Instruction  
W
REG  
=
=
1110 1011  
1101 0111  
2002 Microchip Technology Inc.  
DS41159B-page 311  
PIC18FXX8  
SLEEP  
Enter SLEEP mode  
SUBFWB  
Subtract f from W with borrow  
Syntax:  
[ label ] SLEEP  
Syntax:  
[ label ] SUBFWB f [,d [,a]]  
Operands:  
Operation:  
None  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
00h WDT,  
0 WDT postscaler,  
1 TO,  
Operation:  
(W) – (f) – (C) dest  
0 PD  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Status Affected:  
Encoding:  
TO, PD  
0101  
01da  
ffff  
ffff  
0000  
0000  
0000  
0011  
Description:  
Subtract register 'f' and carry flag  
(borrow) from W (2’s complement  
method). If 'd' is 0, the result is  
stored in W. If 'd' is 1, the result is  
stored in register 'f' (default). If ’a’ is  
0, the Access Bank will be selected,  
overriding the BSR value. If ’a’ is 1,  
then the bank will be selected as  
per the BSR value (default).  
Description:  
The power-down status bit (PD) is  
cleared. The time-out status bit  
(TO) is set. Watchdog Timer and  
its postscaler are cleared.  
The processor is put into SLEEP  
mode with the oscillator stopped.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
No  
operation  
Process  
Data  
Go to  
sleep  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
SLEEP  
Example:  
SUBFWB REG  
Example 1:  
Before Instruction  
TO  
PD  
=
=
?
?
Before Instruction  
REG  
=
0x03  
0x02  
0x01  
After Instruction  
W
C
=
=
TO  
=
1 †  
PD  
=
0
After Instruction  
REG  
W
=
=
0xFF  
0x02  
† If WDT causes wake-up, this bit is cleared.  
C
Z
N
=
=
=
0x00  
0x00  
0x01 ; result is negative  
SUBFWB  
REG, 0, 0  
Example 2:  
Before Instruction  
REG  
=
2
W
C
=
=
5
1
After Instruction  
REG  
W
=
=
2
3
C
Z
N
=
=
=
1
0
0
; result is positive  
SUBFWB  
REG, 1, 0  
Example 3:  
Before Instruction  
REG  
=
1
W
C
=
=
2
0
After Instruction  
REG  
W
=
=
0
2
C
Z
N
=
=
=
1
1
0
; result is zero  
DS41159B-page 312  
2002 Microchip Technology Inc.  
PIC18FXX8  
SUBLW  
Subtract W from literal  
SUBWF  
Syntax:  
Subtract W from f  
Syntax:  
[ label ] SUBLW k  
0 k 255  
[ label ] SUBWF f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
k – (W) W  
N, OV, C, DC, Z  
Operation:  
(f) – (W) dest  
0000  
1000  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Description:  
W is subtracted from the eight-bit  
literal 'k'. The result is placed in  
W.  
0101  
11da  
ffff  
ffff  
Description:  
Subtract W from register 'f' (2’s  
complement method). If 'd' is 0,  
the result is stored in W. If 'd' is 1,  
the result is stored back in regis-  
ter 'f' (default). If ’a’ is 0, the  
Access Bank will be selected,  
overriding the BSR value. If ’a’ is  
1, then the bank will be selected  
as per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ’k’  
Process  
Data  
Write to W  
SUBLW 0x02  
Example 1:  
Words:  
Cycles:  
1
1
Before Instruction  
W
C
=
=
1
?
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
W
=
1
C
=
=
=
1
0
0
; result is positive  
Z
SUBWF REG  
Example 1:  
N
SUBLW 0x02  
Example 2:  
Before Instruction  
REG  
W
C
=
=
=
3
2
?
Before Instruction  
W
C
=
=
2
?
After Instruction  
After Instruction  
REG  
W
=
=
1
2
W
=
0
C
Z
N
=
=
=
1
0
0
; result is positive  
C
Z
N
=
=
=
1
1
0
; result is zero  
SUBWF REG, W  
Example 2:  
SUBLW 0x02  
Example 3:  
Before Instruction  
Before Instruction  
REG  
=
2
2
?
W
C
=
=
3
?
W
C
=
=
After Instruction  
After Instruction  
W
=
FF ; (2’s complement)  
REG  
=
2
0
C
Z
N
=
=
=
0
0
1
; result is negative  
W
=
C
Z
N
=
=
=
1
1
0
; result is zero  
SUBWF REG  
Example 3:  
Before Instruction  
REG  
=
0x01  
W
C
=
=
0x02  
?
After Instruction  
REG  
W
=
=
0xFFh ;(2’s complement)  
0x02  
C
Z
N
=
=
=
0x00 ; result is negative  
0x00  
0x01  
2002 Microchip Technology Inc.  
DS41159B-page 313  
PIC18FXX8  
SUBWFB  
Syntax:  
Subtract W from f with Borrow  
SWAPF  
Swap f  
Syntax:  
[ label ] SWAPF f [,d [,a]]  
[ label ] SUBWFB f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<3:0>) dest<7:4>,  
(f<7:4>) dest<3:0>  
Operation:  
(f) – (W) – (C) dest  
Status Affected: N, OV, C, DC, Z  
Status Affected:  
Encoding:  
None  
0101  
10da  
ffff  
ffff  
Encoding:  
0011  
10da  
ffff  
ffff  
Description:  
Subtract W and the carry flag (bor-  
row) from register 'f' (2’s complement  
method). If 'd' is 0, the result is stored  
in W. If 'd' is 1, the result is stored  
back in register 'f' (default). If ’a’ is 0,  
the Access Bank will be selected,  
overriding the BSR value. If ’a’ is 1,  
then the bank will be selected as per  
the BSR value (default).  
Description:  
The upper and lower nibbles of reg-  
ister ’f’ are exchanged. If ’d’ is 0, the  
result is placed in W. If ’d’ is 1, the  
result is placed in register ’f’  
(default). If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ is 1, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
SUBWFB REG, 1, 0  
Example 1:  
Before Instruction  
SWAPF  
REG  
Example:  
REG  
=
0x19  
0x0D  
0x01  
(0001 1001)  
(0000 1101)  
Before Instruction  
W
C
=
=
REG  
=
0x53  
0x35  
After Instruction  
After Instruction  
REG  
=
REG  
=
0x0C  
0x0D  
(0000 1011)  
(0000 1101)  
W
=
C
Z
N
=
=
=
0x01  
0x00  
0x00  
; result is positive  
SUBWFB REG, 0, 0  
Example 2:  
Before Instruction  
REG  
W
C
=
=
=
0x1B  
0x1A  
0x00  
(0001 1011)  
(0001 1010)  
After Instruction  
REG  
W
=
=
0x1B  
0x00  
(0001 1011)  
C
Z
N
=
=
=
0x01  
0x01  
0x00  
; result is zero  
SUBWFB REG, 1, 0  
Example 3:  
Before Instruction  
REG  
W
C
=
=
=
0x03  
0x0E  
0x01  
(0000 0011)  
(0000 1101)  
After Instruction  
REG  
=
0xF5  
0x0E  
(1111 0100)  
; [2’s comp]  
(0000 1101)  
W
=
C
Z
N
=
=
=
0x00  
0x00  
0x01  
; result is negative  
DS41159B-page 314  
2002 Microchip Technology Inc.  
PIC18FXX8  
TBLRD  
Table Read  
TBLRD  
Table Read (cont’d)  
TBLRD *+ ;  
Syntax:  
[ label ] TBLRD ( *; *+; *-; +*)  
Example1:  
Operands:  
Operation:  
None  
Before Instruction  
TABLAT  
TBLPTR  
MEMORY(0x00A356)  
=
=
=
0x55  
0x00A356  
0x34  
if TBLRD *,  
(Prog Mem (TBLPTR)) TABLAT;  
TBLPTR - No Change;  
if TBLRD *+,  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) +1 TBLPTR;  
if TBLRD *-,  
After Instruction  
TABLAT  
TBLPTR  
=
=
0x34  
0x00A357  
TBLRD +* ;  
Example2:  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) -1 TBLPTR;  
if TBLRD +*,  
(TBLPTR) +1 TBLPTR;  
(Prog Mem (TBLPTR)) TABLAT;  
Before Instruction  
TABLAT  
TBLPTR  
=
=
=
=
0xAA  
0x01A357  
0x12  
MEMORY(0x01A357)  
MEMORY(0x01A358)  
0x34  
After Instruction  
Status Affected:None  
TABLAT  
TBLPTR  
=
=
0x34  
0x01A358  
0000  
0000  
0000  
10nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
Encoding:  
Description:  
This instruction is used to read the con-  
tents of Program Memory (P.M.). To  
address the program memory, a pointer  
called Table Pointer (TBLPTR) is used.  
The TBLPTR (a 21-bit pointer) points  
to each byte in the program memory.  
TBLPTR has a 2 Mbyte address range.  
TBLPTR[0] = 0: Least Significant  
Byte of Program  
Memory Word  
TBLPTR[0] = 1: Most Significant  
Byte of Program  
Memory Word  
The TBLRDinstruction can modify the  
value of TBLPTR as follows:  
• no change  
• post-increment  
• post-decrement  
• pre-increment  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
No  
No  
operation  
operation  
operation  
No  
No operation  
No  
No operation  
operation (Read Program operation (Write TABLAT)  
Memory)  
2002 Microchip Technology Inc.  
DS41159B-page 315  
PIC18FXX8  
TBLWT  
Table Write  
TBLWT Table Write (Continued)  
Syntax:  
[ label ]  
TBLWT ( *; *+; *-; +*)  
Words: 1  
Operands:  
Operation:  
None  
Cycles: 2  
if TBLWT*,  
Q Cycle Activity:  
(TABLAT) Holding Register;  
TBLPTR - No Change;  
if TBLWT*+,  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
No  
No  
operation  
operation  
operation  
(TABLAT) Holding Register;  
(TBLPTR) +1 TBLPTR;  
if TBLWT*-,  
(TABLAT) Holding Register;  
(TBLPTR) -1 TBLPTR;  
if TBLWT+*,  
No  
operation  
No  
operation  
(Read  
No  
operation  
No  
operation  
(Write to  
Holding  
Register )  
TABLAT)  
(TBLPTR) +1 TBLPTR;  
(TABLAT) Holding Register;  
Example1:  
TBLWT *+;  
Before Instruction  
Status Affected: None  
TABLAT  
TBLPTR  
=
=
0x55  
0000  
0000  
0000  
11nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
Encoding:  
0x00A356  
HOLDING REGISTER  
(0x00A356)  
=
0xFF  
After Instructions (table write completion)  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(0x00A356)  
=
=
0x55  
0x00A357  
Description:  
This instruction uses the 3 LSBs of  
TBLPTR to determine which of the 8  
holding registers the TABLAT is written  
to. The holding registers are used to  
program the contents of Program  
Memory (P.M.). (Refer to Section 6.0  
for additional details on programming  
FLASH memory.)  
=
0x55  
Example 2:  
TBLWT +*;  
Before Instruction  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(0x01389A)  
HOLDING REGISTER  
(0x01389B)  
=
=
0x34  
0x01389A  
=
=
0xFF  
0xFF  
The TBLPTR (a 21-bit pointer) points  
to each byte in the program memory.  
TBLPTR has a 2 MBtye address  
range. The LSb of the TBLPTR selects  
which byte of the program memory  
location to access.  
After Instruction (table write completion)  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(0x01389A)  
HOLDING REGISTER  
(0x01389B)  
=
=
0x34  
0x01389B  
=
=
0xFF  
0x34  
TBLPTR[0] = 0:Least Significant  
Byte of Program  
Memory Word  
TBLPTR[0] = 1:Most Significant  
Byte of Program  
Memory Word  
The TBLWT instruction can modify the  
value of TBLPTR as follows:  
• no change  
• post-increment  
• post-decrement  
• pre-increment  
DS41159B-page 316  
2002 Microchip Technology Inc.  
PIC18FXX8  
TSTFSZ  
Test f, skip if 0  
XORLW  
Exclusive OR literal with W  
Syntax:  
[ label ] TSTFSZ f [,a]  
Syntax:  
[ label ] XORLW k  
0 k 255  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
(W) .XOR. k W  
N, Z  
Operation:  
skip if f = 0  
None  
Status Affected:  
Encoding:  
0000  
1010  
kkkk  
kkkk  
0110  
011a  
ffff  
ffff  
Description:  
The contents of W are XORed  
with the 8-bit literal 'k'. The result  
is placed in W.  
Description:  
If ’f’ = 0, the next instruction,  
fetched during the current instruc-  
tion execution is discarded and a  
NOPis executed, making this a  
two-cycle instruction. If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ is 1,  
then the bank will be selected as  
per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ’k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1(2)  
XORLW 0xAF  
Example:  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Before Instruction  
W
=
0xB5  
0x1A  
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
W
=
Decode  
Read  
register ’f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
NZERO  
ZERO  
TSTFSZ CNT  
:
Example:  
:
Before Instruction  
PC  
=
Address (HERE)  
After Instruction  
If CNT  
=
=
=
0x00,  
PC  
Address (ZERO)  
0x00,  
If CNT  
PC  
Address (NZERO)  
2002 Microchip Technology Inc.  
DS41159B-page 317  
PIC18FXX8  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] XORWF f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(W) .XOR. (f) dest  
Status Affected:  
Encoding:  
N, Z  
0001  
10da  
ffff  
ffff  
Description:  
Exclusive OR the contents of W  
with register ’f’. If ’d’ is 0, the result  
is stored in W. If ’d’ is 1, the result is  
stored back in the register ’f’  
(default). If ‘a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ is 1, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
XORWF  
REG  
Example:  
Before Instruction  
REG  
W
=
=
0xAF  
0xB5  
After Instruction  
REG  
W
=
=
0x1A  
0xB5  
DS41159B-page 318  
2002 Microchip Technology Inc.  
PIC18FXX8  
The MPLAB IDE allows you to:  
26.0 DEVELOPMENT SUPPORT  
• Edit your source files (either assembly or ‘C’)  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
• One touch assemble (or compile) and download  
to PICmicro emulator and simulator tools (auto-  
matically updates all project information)  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Debug using:  
- source files  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
- absolute listing file  
- machine code  
- MPLAB C17 and MPLAB C18 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
The ability to use MPLAB IDE with multiple debugging  
tools allows users to easily switch from the cost-  
effective simulator to a full-featured emulator with  
minimal retraining.  
• Simulators  
- MPLAB SIM Software Simulator  
• Emulators  
26.2 MPASM Assembler  
- MPLAB ICE 2000 In-Circuit Emulator  
- ICEPIC™ In-Circuit Emulator  
• In-Circuit Debugger  
The MPASM assembler is a full-featured universal  
macro assembler for all PICmicro MCU’s.  
- MPLAB ICD  
The MPASM assembler has a command line interface  
and a Windows shell. It can be used as a stand-alone  
application on a Windows 3.x or greater system, or it  
can be used through MPLAB IDE. The MPASM assem-  
bler generates relocatable object files for the MPLINK  
object linker, Intel® standard HEX files, MAP files to  
detail memory usage and symbol reference, an abso-  
lute LST file that contains source lines and generated  
machine code, and a COD file for debugging.  
• Device Programmers  
- PRO MATE® II Universal Device Programmer  
- PICSTART® Plus Entry-Level Development  
Programmer  
• Low Cost Demonstration Boards  
- PICDEMTM 1 Demonstration Board  
- PICDEM 2 Demonstration Board  
- PICDEM 3 Demonstration Board  
- PICDEM 17 Demonstration Board  
- KEELOQ® Demonstration Board  
The MPASM assembler features include:  
• Integration into MPLAB IDE projects.  
• User-defined macros to streamline assembly  
code.  
26.1 MPLAB Integrated Development  
Environment Software  
• Conditional assembly for multi-purpose source  
files.  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. The MPLAB IDE is a Windows®-based  
application that contains:  
• Directives that allow complete control over the  
assembly process.  
26.3 MPLAB C17 and MPLAB C18  
C Compilers  
• An interface to debugging tools  
- simulator  
The MPLAB C17 and MPLAB C18 Code Development  
Systems are complete ANSI ‘C’ compilers for  
Microchip’s PIC17CXXX and PIC18CXXX family of  
microcontrollers, respectively. These compilers provide  
powerful integration capabilities and ease of use not  
found with other compilers.  
- programmer (sold separately)  
- emulator (sold separately)  
- in-circuit debugger (sold separately)  
• A full-featured editor  
• A project manager  
For easier source level debugging, the compilers pro-  
vide symbol information that is compatible with the  
MPLAB IDE memory display.  
• Customizable toolbar and key mapping  
• A status bar  
• On-line help  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 319  
PIC18FXX8  
26.4 MPLINK Object Linker/  
MPLIB Object Librarian  
26.6 MPLAB ICE High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
The MPLINK object linker combines relocatable  
objects created by the MPASM assembler and the  
MPLAB C17 and MPLAB C18 C compilers. It can also  
link relocatable objects from pre-compiled libraries,  
using directives from a linker script.  
The MPLAB ICE universal in-circuit emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PICmicro  
microcontrollers (MCUs). Software control of the  
MPLAB ICE in-circuit emulator is provided by the  
MPLAB Integrated Development Environment (IDE),  
which allows editing, building, downloading and source  
debugging from a single environment.  
The MPLIB object librarian is a librarian for pre-  
compiled code to be used with the MPLINK object  
linker. When a routine from a library is called from  
another source file, only the modules that contain that  
routine will be linked in with the application. This allows  
large libraries to be used efficiently in many different  
applications. The MPLIB object librarian manages the  
creation and modification of library files.  
The MPLAB ICE 2000 is a full-featured emulator sys-  
tem with enhanced trace, trigger and data monitoring  
features. Interchangeable processor modules allow the  
system to be easily reconfigured for emulation of differ-  
ent processors. The universal architecture of the  
MPLAB ICE in-circuit emulator allows expansion to  
support new PICmicro microcontrollers.  
The MPLINK object linker features include:  
• Integration with MPASM assembler and MPLAB  
C17 and MPLAB C18 C compilers.  
The MPLAB ICE in-circuit emulator system has been  
designed as a real-time emulation system, with  
advanced features that are generally found on more  
expensive development tools. The PC platform and  
Microsoft® Windows environment were chosen to best  
make these features available to you, the end user.  
• Allows all memory areas to be defined as sections  
to provide link-time flexibility.  
The MPLIB object librarian features include:  
• Easier linking because single libraries can be  
included instead of many smaller files.  
• Helps keep code maintainable by grouping  
related modules together.  
26.7 ICEPIC In-Circuit Emulator  
• Allows libraries to be created and modules to be  
added, listed, replaced, deleted or extracted.  
The ICEPIC low cost, in-circuit emulator is a solution  
for the Microchip Technology PIC16C5X, PIC16C6X,  
PIC16C7X and PIC16CXXX families of 8-bit One-  
Time-Programmable (OTP) microcontrollers. The mod-  
ular system can support different subsets of PIC16C5X  
or PIC16CXXX products through the use of inter-  
changeable personality modules, or daughter boards.  
The emulator is capable of emulating without target  
application circuitry being present.  
26.5 MPLAB SIM Software Simulator  
The MPLAB SIM software simulator allows code devel-  
opment in a PC-hosted environment by simulating the  
PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user-defined key press, to any of the pins. The  
execution can be performed in single step, execute  
until break, or trace mode.  
The MPLAB SIM simulator fully supports symbolic debug-  
ging using the MPLAB C17 and the MPLAB C18 C com-  
pilers and the MPASM assembler. The software simulator  
offers the flexibility to develop and debug code outside of  
the laboratory environment, making it an excellent multi-  
project software development tool.  
DS41159B-page 320  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
26.8 MPLAB ICD In-Circuit Debugger  
26.11 PICDEM 1 Low Cost PICmicro  
Demonstration Board  
Microchip’s In-Circuit Debugger, MPLAB ICD, is a pow-  
erful, low cost, run-time development tool. This tool is  
based on the FLASH PICmicro MCUs and can be used  
to develop for this and other PICmicro microcontrollers.  
The MPLAB ICD utilizes the in-circuit debugging capa-  
bility built into the FLASH devices. This feature, along  
with Microchip’s In-Circuit Serial ProgrammingTM proto-  
col, offers cost-effective in-circuit FLASH debugging  
from the graphical user interface of the MPLAB  
Integrated Development Environment. This enables a  
designer to develop and debug source code by watch-  
ing variables, single-stepping and setting break points.  
Running at full speed enables testing hardware in real-  
time.  
The PICDEM 1 demonstration board is a simple board  
which demonstrates the capabilities of several of  
Microchip’s microcontrollers. The microcontrollers sup-  
ported are: PIC16C5X (PIC16C54 to PIC16C58A),  
PIC16C61, PIC16C62X, PIC16C71, PIC16C8X,  
PIC17C42, PIC17C43 and PIC17C44. All necessary  
hardware and software is included to run basic demo  
programs. The user can program the sample microcon-  
trollers provided with the PICDEM 1 demonstration  
board on a PRO MATE II device programmer, or a  
PICSTART Plus development programmer, and easily  
test firmware. The user can also connect the  
PICDEM 1 demonstration board to the MPLAB ICE in-  
circuit emulator and download the firmware to the emu-  
lator for testing. A prototype area is available for the  
user to build some additional hardware and connect it  
to the microcontroller socket(s). Some of the features  
include an RS-232 interface, a potentiometer for simu-  
lated analog input, push button switches and eight  
LEDs connected to PORTB.  
26.9 PRO MATE II Universal Device  
Programmer  
The PRO MATE II universal device programmer is a  
full-featured programmer, capable of operating in  
stand-alone mode, as well as PC-hosted mode. The  
PRO MATE II device programmer is CE compliant.  
The PRO MATE II device programmer has program-  
mable VDD and VPP supplies, which allow it to verify  
programmed memory at VDD min and VDD max for max-  
imum reliability. It has an LCD display for instructions  
and error messages, keys to enter commands and a  
modular detachable socket assembly to support various  
package types. In stand-alone mode, the PRO MATE II  
device programmer can read, verify, or program  
PICmicro devices. It can also set code protection in this  
mode.  
26.12 PICDEM 2 Low Cost PIC16CXX  
Demonstration Board  
The PICDEM 2 demonstration board is a simple dem-  
onstration board that supports the PIC16C62,  
PIC16C64, PIC16C65, PIC16C73 and PIC16C74  
microcontrollers. All the necessary hardware and soft-  
ware is included to run the basic demonstration pro-  
grams. The user can program the sample  
microcontrollers provided with the PICDEM 2 demon-  
stration board on a PRO MATE II device programmer,  
or a PICSTART Plus development programmer, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 2 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding additional hardware and  
connecting it to the microcontroller socket(s). Some of  
the features include a RS-232 interface, push button  
switches, a potentiometer for simulated analog input, a  
serial EEPROM to demonstrate usage of the I2CTM bus  
and separate headers for connection to an LCD  
module and a keypad.  
26.10 PICSTART Plus Entry Level  
Development Programmer  
The PICSTART Plus development programmer is an  
easy-to-use, low cost, prototype programmer. It con-  
nects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient.  
The PICSTART Plus development programmer sup-  
ports all PICmicro devices with up to 40 pins. Larger pin  
count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus development programmer is CE  
compliant.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 321  
PIC18FXX8  
26.13 PICDEM 3 Low Cost PIC16CXXX  
Demonstration Board  
26.14 PICDEM 17 Demonstration Board  
The PICDEM 17 demonstration board is an evaluation  
board that demonstrates the capabilities of several  
Microchip microcontrollers, including PIC17C752,  
PIC17C756A, PIC17C762 and PIC17C766. All neces-  
sary hardware is included to run basic demo programs,  
which are supplied on a 3.5-inch disk. A programmed  
sample is included and the user may erase it and  
program it with the other sample programs using the  
PRO MATE II device programmer, or the PICSTART  
Plus development programmer, and easily debug and  
test the sample code. In addition, the PICDEM 17 dem-  
onstration board supports downloading of programs to  
and executing out of external FLASH memory on board.  
The PICDEM 17 demonstration board is also usable  
with the MPLAB ICE in-circuit emulator, or the  
PICMASTER emulator and all of the sample programs  
can be run and modified using either emulator. Addition-  
ally, a generous prototype area is available for user  
hardware.  
The PICDEM 3 demonstration board is a simple dem-  
onstration board that supports the PIC16C923 and  
PIC16C924 in the PLCC package. It will also support  
future 44-pin PLCC microcontrollers with an LCD Mod-  
ule. All the necessary hardware and software is  
included to run the basic demonstration programs. The  
user can program the sample microcontrollers pro-  
vided with the PICDEM 3 demonstration board on a  
PRO MATE II device programmer, or a PICSTART Plus  
development programmer with an adapter socket, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 3 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding hardware and connecting it  
to the microcontroller socket(s). Some of the features  
include a RS-232 interface, push button switches, a  
potentiometer for simulated analog input, a thermistor  
and separate headers for connection to an external  
LCD module and a keypad. Also provided on the  
PICDEM 3 demonstration board is a LCD panel, with 4  
commons and 12 segments, that is capable of display-  
ing time, temperature and day of the week. The  
PICDEM 3 demonstration board provides an additional  
RS-232 interface and Windows software for showing  
the demultiplexed LCD signals on a PC. A simple serial  
interface allows the user to construct a hardware  
demultiplexer for the LCD signals.  
26.15 KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchip’s HCS Secure Data Products. The HCS eval-  
uation kit includes a LCD display to show changing  
codes, a decoder to decode transmissions and a pro-  
gramming interface to program test transmitters.  
DS41159B-page 322  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
TABLE 26-1: DEVELOPMENT TOOLS FROM MICROCHIP  
0 1 5 2 P M C  
X X X C R M F  
H C S X X X  
X X C 9 3  
/ X X C 2 5  
/ X X C 2 4  
X X X F 8 C 1 P I  
X X C 8 2 C 1 P I  
X 7 X 7 C 1 C I P  
X 4 1 7 C I C P  
X 9 X 6 C 1 C I P  
X 8 X 6 F 1 C I P  
8 X 6 1 F C I P  
/ X 8 1 6 C I C P  
X 7 X 6 C 1 C I P  
X 7 1 6 C I C P  
X 6 2 1 6 C I F P  
X
X X C 6 C 1 P I  
X 6 1 6 C I C P  
X 5 1 6 C I C P  
0 0 1 4 C I 0 P  
X
X X C 2 C 1 P I  
s o l T e o r a w f t S o s r o t a u l E m e r u b g e g D s m e a r m o g P r r  
s t K l a i E d v n a s d r a B o o m D e  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 323  
PIC18FXX8  
NOTES:  
DS41159B-page 324  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
27.0 ELECTRICAL CHARACTERISTICS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias.............................................................................................................-55°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4) ......................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +7.5V  
Voltage on MCLR with respect to VSS (Note 2) ......................................................................................... 0V to +13.25V  
Voltage on RA4 with respect to Vss............................................................................................................... 0V to +8.5V  
Total power dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)..........................................................................................................±20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) ...................................................................................................±20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by all ports (combined) ....................................................................................................200 mA  
Maximum current sourced by all ports (combined) ...............................................................................................200 mA  
Note 1: Power dissipation is calculated as follows:  
Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)  
2: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latchup.  
Thus, a series resistor of 50-100should be used when applying a “low” level to the MCLR/VPP pin, rather  
than pulling this pin directly to VSS.  
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions  
above those indicated in the operation listings of this specification is not implied. Exposure to maximum  
rating conditions for extended periods may affect device reliability.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 325  
PIC18FXX8  
FIGURE 27-1:  
PIC18FXX8 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
PIC18FXX8  
4.2V  
3.5V  
3.0V  
2.5V  
2.0V  
40 MHz  
Frequency  
FIGURE 27-2:  
PIC18LFXX8 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
PIC18LFXX8  
4.2V  
3.5V  
3.0V  
2.5V  
2.0V  
40 MHz  
4 MHz  
Frequency  
FMAX = (16.36 MHz/V) (VDDAPPMIN – 2.0V) + 4 MHz, if VDDAPPMIN 4.2V  
= 40 MHz, if VDDAPPMIN > 4.2V  
Note: VDDAPPMIN is the minimum voltage of the PICmicro® device in the application.  
DS41159B-page 326  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
27.1 DC Characteristics  
PIC18LFXX8  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature -40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
PIC18FXX8  
(Industrial, Extended)  
Param  
No.  
Characteristic/  
Symbol  
Min Typ(5) Max Units  
Conditions  
Device  
VDD  
Supply Voltage  
D001  
D001  
D002  
PIC18LFXX8 2.0  
PIC18FXX8 4.2  
5.5  
5.5  
V
V
V
HS, XT, RC and LP osc mode  
VDR  
RAM Data Retention  
1.5  
Voltage(1)  
D003  
D004  
VPOR  
VDD Start Voltage  
to ensure internal  
Power-on Reset signal  
0.7  
V
See section on Power-on Reset for details  
SVDD  
VBOR  
VDD Rise Rate  
to ensure internal  
Power-on Reset signal  
0.05  
V/ms See section on Power-on Reset for details  
Brown-out Reset Voltage  
PIC18LFXX8  
D005  
D005  
BORV1:BORV0 = 11 2.0  
BORV1:BORV0 = 10 2.7  
BORV1:BORV0 = 01 4.2  
BORV1:BORV0 = 00 4.5  
PIC18FXX8  
2.16  
2.86  
4.46  
4.78  
V
V
V
V
BORV1:BORV0 = 1x N.A.  
BORV1:BORV0 = 01 4.2  
BORV1:BORV0 = 00 4.5  
N.A.  
4.46  
4.78  
V
V
V
Not in operating voltage range of device  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode or during a device RESET, without losing  
RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have  
an impact on the current consumption.  
The test conditions for all IDD measurements in Active Operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS, and  
all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be  
estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
5: Typical is taken at 25°C.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 327  
PIC18FXX8  
27.1 DC Characteristics (Continued)  
PIC18LFXX8  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature -40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
PIC18FXX8  
(Industrial, Extended)  
Param  
Symbol  
No.  
Characteristic/  
Device  
Min Typ(5) Max Units  
Conditions  
Supply Current(2,3,4)  
PIC18LFXX8  
IDD  
D010  
XT, RC, RCIO osc configurations  
1
2
TBD mA FOSC = 4 MHz, VDD = 2.0V  
D010  
PIC18FXX8  
PIC18LFXX8  
PIC18FXX8  
PIC18LFXX8  
PIC18FXX8  
PIC18LFXX8  
XT, RC, RCIO osc configurations  
TBD mA FOSC = 4 MHz, VDD = 4.2V  
D010A  
D010A  
D010C  
D010C  
D013  
LP osc configuration  
30 TBD µA FOSC = 32 kHz, VDD = 2.0V  
LP osc configuration  
185 TBD µA FOSC = 32 kHz, VDD = 4.2V  
EC, ECIO osc configurations,  
22 TBD mA FOSC = 40 MHz, VDD = 5.5V  
EC, ECIO osc configurations,  
22 TBD mA FOSC = 40 MHz, VDD = 5.5V  
HS osc configurations  
1.4 TBD mA FOSC = 6 MHz, VDD = 2.5V  
14 TBD mA FOSC = 25 MHz, VDD = 5.5V  
HS + PLL osc configuration  
22 TBD mA FOSC = 10 MHz, VDD = 5.5V  
D013  
PIC18FXX8  
HS osc configurations  
14 TBD mA FOSC = 25 MHz, VDD = 5.5V  
HS + PLL osc configuration  
22 TBD mA FOSC = 10 MHz, VDD = 5.5V  
D014  
D014  
PIC18LFXX8  
PIC18FXX8  
Timer1 osc configuration  
32 TBD µA FOSC = 32 kHz, VDD = 2.5V  
OSCB osc configuration  
62 TBD µA FOSC = 32 kHz, VDD = 4.2V  
Legend: Rows are shaded for improved readability.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode or during a device RESET, without losing  
RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in Active Operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS,  
and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be  
estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
5: Typical is taken at 25°C.  
DS41159B-page 328  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
27.1 DC Characteristics (Continued)  
PIC18LFXX8  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
PIC18FXX8  
(Industrial, Extended)  
Param  
Symbol  
No.  
Characteristic/  
Device  
Min Typ(5) Max Units  
Conditions  
IPD  
Power-down Current(3)  
D020  
D020  
D021B  
PIC18LFXX8  
0.09 TBD µA VDD = 2.5V, -40°C to +85°C  
0.11 TBD µA VDD = 5.5V, -40°C to +85°C  
PIC18FXX8  
0.1 TBD µA VDD = 4.2V, -40°C to +85°C  
0.11 TBD µA VDD = 5.5V, -40°C to +85°C  
0.1 TBD µA VDD = 4.2V, -40°C to +125°C  
0.11 TBD µA VDD = 5.5V, -40°C to +125°C  
IWDT  
Module Differential Current  
D022  
D022  
Watchdog Timer  
1
TBD µA VDD = 2.5V  
PIC18LFXX8  
15 TBD µA VDD = 5.5V  
15 TBD µA VDD = 5.5V, -40°C to +85°C  
15 TBD µA VDD = 5.5V, -40°C to +125°C  
Watchdog Timer  
PIC18FXX8  
D022A IBOR  
D022A  
Brown-out Reset  
40 TBD µA VDD = 5.5V  
PIC18LFXX8  
Brown-out Reset  
40 TBD µA VDD = 5.5V, -40°C to +85°C  
40 TBD µA VDD = 5.5V, -40°C to +125°  
PIC18FXX8  
D022B ILVD  
D022B  
Low Voltage Detect  
30 TBD µA VDD = 2.5V  
PIC18LFXX8  
Low Voltage Detect  
40 TBD µA VDD = 4.2V, -40°C to +85°C  
40 TBD µA VDD = 4.2V, -40°C to +125°C  
PIC18FXX8  
D025  
D025  
IOSCB  
Timer1 Oscillator  
8
TBD µA VDD = 2.5V  
PIC18LFXX8  
Timer1 Oscillator  
9
9
TBD µA VDD = 4.2V, -40°C to +85°C  
TBD µA VDD = 4.2V, -40°C to +125°C  
PIC18FXX8  
Legend: Rows are shaded for improved readability.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode or during a device RESET, without losing  
RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in Active Operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS,  
and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be  
estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
5: Typical is taken at 25°C.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 329  
PIC18FXX8  
27.2 DC Characteristics: PIC18FXX8 (Industrial, Extended)  
PIC18LFXX8 (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Symbol  
No.  
Characteristic/  
Device  
Min  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O ports:  
D030  
D030A  
D031  
with TTL buffer  
VSS  
0.15 VDD  
0.8  
V
V
VDD < 4.5V  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
RC3 and RC4  
VSS  
VSS  
0.2 VDD  
0.3 VDD  
V
V
D032  
MCLR  
VSS  
VSS  
0.2 VDD  
0.3 VDD  
V
V
D032A  
OSC1 (in XT, HS and LP modes)  
and T1OSI  
D033  
OSC1 (in RC mode)(1)  
Input High Voltage  
I/O ports:  
VSS  
0.2 VDD  
V
VIH  
D040  
D040A  
D041  
with TTL buffer  
0.25 VDD + 0.8V  
2.0  
VDD  
VDD  
V
V
VDD < 4.5V  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
RC3 and RC4  
0.8 VDD  
0.7 VDD  
VDD  
VDD  
V
V
D042  
MCLR  
0.8 VDD  
0.7 VDD  
VDD  
VDD  
V
V
D042A  
OSC1 (in XT, HS and LP modes)  
and T1OSI  
D043  
OSC1 (RC mode)(1)  
0.9 VDD  
TBD  
VDD  
TBD  
V
V
D050 VHYS  
Hysteresis of Schmitt Trigger  
Inputs  
IIL  
Input Leakage Current(2,3)  
D060  
I/O ports  
1
µA VSS VPIN VDD,  
Pin at hi-impedance  
D061  
MCLR  
5
5
µA Vss VPIN VDD  
µA Vss VPIN VDD  
D063  
OSC1  
IPU  
Weak Pull-up Current  
PORTB weak pull-up current  
D070 IPURB  
50  
400  
µA VDD = 5V, VPIN = VSS  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PICmicro device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
DS41159B-page 330  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
27.2 DC Characteristics: PIC18FXX8 (Industrial, Extended)  
PIC18LFXX8 (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic/  
Device  
Min  
Max  
Units  
Conditions  
VOL  
Output Low Voltage  
D080  
I/O ports  
0.6  
0.6  
0.6  
0.6  
V
V
V
V
IOL = 8.5 mA, VDD = 4.2V,  
-40°C to +85°C  
D080A  
D083  
IOL = 7.0 mA, VDD = 4.2V,  
-40°C to +125°C  
IOL = 1.6 mA, VDD = 4.2V,  
-40°C to +85°C  
OSC2/CLKO  
(RC mode)  
D083A  
IOL = 1.2 mA, VDD = 4.2V,  
-40°C to +125°C  
VOH  
Output High Voltage(3)  
D090  
I/O ports  
VDD - 0.7  
VDD - 0.7  
VDD - 0.7  
VDD - 0.7  
V
V
V
V
V
IOH = -3.0 mA, VDD = 4.2V,  
-40°C to +85°C  
D090A  
D092  
IOH = -2.5 mA, VDD = 4.2V,  
-40°C to +125°C  
OSC2/CLKO  
(RC mode)  
IOH = -1.3 mA, VDD = 4.2V,  
-40°C to +85°C  
IOH = -1.0 mA, VDD = 4.2V,  
-40°C to +125°C  
D092A  
D150  
VOD  
Open Drain High Voltage  
7.5  
RA4 pin  
Capacitive Loading Specs  
on Output Pins  
D101  
D102  
CIO  
CB  
All I/O pins and OSC2  
(in RC mode)  
50  
pF To meet the AC Timing Specifications  
pF In I2C mode  
SCL, SDA  
400  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PICmicro device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 331  
PIC18FXX8  
FIGURE 27-3:  
LOW VOLTAGE DETECT CHARACTERISTICS  
VDD  
(LVDIF can be  
cleared in software)  
VLVD  
(LVDIF set by hardware)  
37  
LVDIF  
TABLE 27-1: LOW VOLTAGE DETECT CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
No.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
(Note 1)  
D420 VLVD  
LVD Voltage  
LVDL<3:0> = 0000  
2.0  
2.2  
2.4  
2.5  
2.7  
2.8  
3.0  
3.3  
3.5  
3.6  
3.8  
4.0  
4.2  
4.5  
1.17  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
LVDL<3:0> = 0001  
LVDL<3:0> = 0010  
LVDL<3:0> = 0011  
LVDL<3:0> = 0100  
LVDL<3:0> = 0101  
LVDL<3:0> = 0110  
LVDL<3:0> = 0111  
LVDL<3:0> = 1000  
LVDL<3:0> = 1001  
LVDL<3:0> = 1010  
LVDL<3:0> = 1011  
LVDL<3:0> = 1100  
LVDL<3:0> = 1101  
LVDL<3:0> = 1110  
2.12  
2.33  
2.54  
2.66  
2.86  
2.98  
3.2  
3.52  
3.72  
3.84  
4.04  
4.26  
4.46  
4.78  
1.23  
D423  
VBGAP  
Bandgap Reference Voltage Value  
Note 1: This is not a valid setting since the minimum supply voltage is 2.0V.  
DS41159B-page 332  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
TABLE 27-2: DC CHARACTERISTICS: EEPROM AND ENHANCED FLASH  
DC Characteristics  
Standard Operating Conditions  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
Data EEPROM Memory  
D120  
ED  
Byte Endurance  
Byte Endurance  
100K  
10K  
1M  
100K  
E/W -40°C to +85°C  
E/W +85°C to +125°C  
D120A ED  
D121  
VDRW VDD for Read/Write  
VMIN  
5.5  
V
Using EECON to read/write  
VMIN = Minimum operating voltage  
D122  
D123  
TDEW Erase/Write Cycle Time  
TRETD Retention  
2
ms  
40  
Years Provided no specifications are  
violated  
D124  
TREF  
Number of Total Erase/Write  
Cycles to Data EEPROM before  
Refresh*  
1M  
10M  
1M  
Cycles -40°C to +85°C  
D124A TREF Number of Total Erase/Write  
Cycles to Data EEPROM before  
Refresh*  
100K  
Cycles +85°C to +125°C  
Program Flash Memory  
D130  
EP  
Cell Endurance  
Cell Endurance  
VDD for Read  
10K  
1000  
VMIN  
4.5  
100K  
10K  
E/W -40°C to +85°C  
E/W +85°C to +125°C  
D130A EP  
D131  
D132  
VPR  
VIE  
5.5  
5.5  
5.5  
5.5  
V
V
V
V
VMIN = Minimum operating voltage  
Using ICSP port  
VDD for ISCP Erase  
VDD for ISCP Write  
D132A VIW  
4.5  
Using ICSP port  
D132B VPEW VDD for EECON Erase/Write  
VMIN  
Using EECON to erase/write  
VMIN = Minimum operating voltage  
D133  
TIE  
ICSP Erase Cycle Time  
1
4
ms VDD > 4.5V  
ms VDD > 4.5V  
D133A TIW  
ICSP Erase or Write Cycle Time  
(externally timed)  
D133B TPIW  
Self-timed Write Cycle Time  
2
ms  
D134  
TRETD Retention  
40  
Years Provided no specifications are  
violated  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
*
See Section 5.8 for more information.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 333  
PIC18FXX8  
TABLE 27-3: COMPARATOR SPECIFICATIONS  
Operating Conditions: VDD range as described in Section 27.1, -40°C < TA < +125°C.  
Param  
No.  
Sym  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
D300  
VIOFF  
Input Offset Voltage  
Input Common Mode Voltage  
CMRR CMRR  
5.0  
10  
mV  
V
D301  
D302  
VICM  
0
VDD – 1.5  
+55*  
db  
D300  
TRESP  
Response Time(1)  
TBD*  
TBD*  
TBD*  
TBD*  
ns  
ns  
PIC18FXX8  
PIC18LFXX8  
D301  
TMC2OV Comparator Mode Change to  
Output Valid  
10*  
µs  
*
These parameters are characterized but not tested.  
Note 1: Response time measured with one comparator input at (VDD – 1.5)/2 while the other input transitions from  
VSS to VDD.  
TABLE 27-4: VOLTAGE REFERENCE SPECIFICATIONS  
Operating Conditions: VDD range as described in Section 27.1, -40°C < TA < +125°C.  
Param No.  
Sym  
Characteristics  
Resolution  
Min  
Typ  
Max  
Units  
Comments  
D310  
D311  
D312  
D310  
VRES  
VDD/24  
VDD/32  
TBD  
LSB  
LSB  
VRAA  
VRUR  
TSET  
Absolute Accuracy  
Unit Resistor Value (R)  
Settling Time(1)  
2K*  
10*  
µs  
*
These parameters are characterized but not tested.  
Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from 0000to 1111.  
DS41159B-page 334  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
27.3 AC (Timing) Characteristics  
27.3.1 TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created  
following one of the following formats:  
1. TppS2ppS  
2. TppS  
3. TCC:ST  
4. Ts  
(I2C specifications only)  
(I2C specifications only)  
T
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
ck  
cs  
di  
CCP1  
CLKO  
CS  
osc  
rd  
OSC1  
RD  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
ST  
Hold  
SU  
Setup  
DAT  
STA  
DATA input hold  
START condition  
STO  
STOP condition  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 335  
PIC18FXX8  
27.3.2  
TIMING CONDITIONS  
The temperature and voltages specified in Table 27-5  
apply to all timing specifications, unless otherwise  
noted. Figure 27-4 specifies the load conditions for the  
timing specifications.  
TABLE 27-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
AC CHARACTERISTICS  
-40°C TA +125°C for extended  
Operating voltage VDD range as described in DC spec Section 27.1.  
LC parts operate for industrial temperatures only.  
FIGURE 27-4:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 Load Condition 2  
VDD/2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2/CLKO  
and including D and E outputs as ports  
VSS  
DS41159B-page 336  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
27.3.3  
TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 27-5:  
EXTERNAL CLOCK TIMING  
Q4  
Q1  
1
Q2  
Q3  
Q4  
4
Q1  
OSC1  
CLKO  
3
4
3
2
TABLE 27-6: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param No. Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
1A  
FOSC  
External CLKI Frequency(1)  
DC  
DC  
4
4
MHz XT osc  
25  
10  
MHz HS osc  
MHz HS + PLL osc  
DC  
DC  
200  
40  
kHz LP osc  
MHz EC  
Oscillator Frequency(1)  
DC  
0.1  
4
4
4
MHz RC osc  
MHz XT osc  
25  
10  
200  
MHz HS osc  
4
MHz HS + PLL osc  
kHz LP osc  
5
1
TOSC  
External CLKI Period(1)  
250  
40  
100  
ns XT and RC osc  
ns HS osc  
ns HS + PLL osc  
5
5
µs LP osc  
ns EC  
Oscillator Period(1)  
250  
250  
ns RC osc  
ns XT osc  
10,000  
100  
40  
10,000  
100  
ns HS osc  
ns HS + PLL osc  
5
100  
30  
2.5  
10  
µs LP osc  
ns TCY = 4/FOSC  
ns XT osc  
ns LP osc  
µs HS osc  
ns XT osc  
ns LP osc  
ns HS osc  
2
3
TCY  
Instruction Cycle Time(1)  
TosL,  
TosH  
External Clock in (OSC1)  
High or Low Time  
4
TosR,  
TosF  
External Clock in (OSC1)  
Rise or Fall Time  
20  
50  
7.5  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with  
the device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an  
external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "Max." cycle time  
limit is "DC" (no clock) for all devices.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 337  
PIC18FXX8  
TABLE 27-7: PLL CLOCK TIMING SPECIFICATION (VDD = 4.2V - 5.5V)  
Param No. Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
7
TPLL  
PLL Start-up Time (Lock Time)  
CLKO Stability (Jitter) using PLL  
2
ms  
%
CLK  
TBD  
TBD  
FIGURE 27-6:  
CLKO AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
CLKO  
11  
10  
13  
14  
12  
19  
18  
16  
I/O Pin  
(Input)  
15  
17  
I/O Pin  
(Output)  
New Value  
Old Value  
20, 21  
Note: Refer to Figure 27-4 for load conditions.  
TABLE 27-8: CLKO AND I/O TIMING REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units Conditions  
No.  
10  
TosH2ckL OSC1to CLKO↓  
TosH2ckH OSC1to CLKO↑  
75  
75  
35  
35  
50  
10  
10  
200  
200  
100  
100  
ns  
ns  
ns  
ns  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
11  
12  
TckR  
TckF  
CLKO rise time  
CLKO fall time  
13  
14  
TckL2ioV CLKO to Port out valid  
TioV2ckH Port in valid before CLKO↑  
TckH2ioI Port in hold after CLKO↑  
TosH2ioV OSC1(Q1 cycle) to Port out valid  
0.5 TCY + 20 ns  
15  
0.25 TCY + 25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
16  
0
17  
150  
18  
TosH2ioI OSC1(Q2 cycle) to Port  
PIC18FXX8  
100  
200  
0
input invalid (I/O in hold time)  
18A  
19  
PIC18LFXX8  
TioV2osH Port input valid to OSC1(I/O in setup time)  
20  
TIOR  
Port output rise time  
Port output fall time  
INT pin high or low time  
PIC18FXX8  
PIC18LFXX8  
PIC18FXX8  
PIC18LFXX8  
25  
60  
25  
60  
20A  
21  
TIOF  
21A  
22††  
23††  
24††  
TINP  
TCY  
TCY  
20  
TRBP  
TRCP  
RB7:RB4 change INT high or low time  
RC7:RC4 change INT high or low time  
†† These parameters are asynchronous events, not related to any internal clock edges.  
Note 1: Measurements are taken in RC mode where CLKO pin output is 4 x TOSC.  
DS41159B-page 338  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 27-7:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 27-4 for load conditions.  
FIGURE 27-8:  
BROWN-OUT RESET AND LOW VOLTAGE DETECT TIMING  
BVDD (for 35)  
VLVD (for 37)  
35, 37  
VDD  
VBGAP = 1.2V  
VIRVST  
Enable Internal Reference Voltage  
Internal Reference Voltage stable  
36  
TABLE 27-9: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,  
BROWN-OUT RESET AND LOW VOLTAGE DETECT REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
30  
TmcL  
TWDT  
MCLR Pulse Width (low)  
2
7
µs  
31  
Watchdog Timer Time-out Period  
(No Prescaler)  
18  
33  
ms  
32  
33  
34  
TOST  
TPWRT  
TIOZ  
Oscillation Start-up Timer Period  
Power-up Timer Period  
1024 TOSC  
72  
2
1024 TOSC  
ms  
µs  
TOSC = OSC1 period  
28  
132  
I/O Hi-impedance from MCLR Low or  
Watchdog Timer Reset  
35  
36  
TBOR  
Brown-out Reset Pulse Width  
200  
µs  
µs  
For VDD BVDD (see D005)  
For VDD VLVD (see D420)  
TIVRST  
Time for Internal Reference  
Voltage to become stable  
20  
50  
37  
TLVD  
Low Voltage Detect Pulse Width  
200  
µs  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 339  
PIC18FXX8  
FIGURE 27-9:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
41  
40  
42  
T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 27-4 for load conditions.  
TABLE 27-10: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max Units Conditions  
No.  
40  
Tt0H  
T0CKI High Pulse Width  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
41  
42  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
0.5 TCY + 20  
10  
TCY + 10  
Greater of:  
20 ns or TCY + 40  
N
ns N = prescale  
value  
(1, 2, 4,..., 256)  
45  
46  
Tt1H  
Tt1L  
T1CKI  
High Time  
Synchronous, no prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Synchronous, PIC18FXX8  
10  
with prescaler  
PIC18LFXX8  
25  
Asynchronous PIC18FXX8  
PIC18LFXX8  
30  
50  
0.5 TCY + 5  
10  
T1CKI  
Low Time  
Synchronous, no prescaler  
Synchronous, PIC18FXX8  
with prescaler  
PIC18LFXX8  
25  
Asynchronous PIC18FXX8  
PIC18LFXX8  
30  
TBD  
TBD  
47  
48  
Tt1P  
Ft1  
T1CKI  
Input Period  
Synchronous  
Greater of:  
20 ns or TCY + 40  
N
ns N = prescale  
value  
(1, 2, 4, 8)  
Asynchronous  
60  
DC  
50  
ns  
kHz  
T1CKI Oscillator Input Frequency Range  
Tcke2tmrI Delay from External T1CKI Clock Edge to  
Timer Increment  
2 TOSC  
7 TOSC  
DS41159B-page 340  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 27-10:  
CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND ECCP1)  
CCPx  
(Capture Mode)  
50  
51  
52  
54  
CCPx  
(Compare or PWM Mode)  
53  
Note: Refer to Figure 27-4 for load conditions.  
TABLE 27-11: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND ECCP1)  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
50  
TccL  
CCPx input low No Prescaler  
time  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
With  
PIC18FXX8  
PIC18LFXX8  
10  
Prescaler  
20  
51  
TccH  
CCPx input  
high time  
No Prescaler  
0.5 TCY + 20  
With  
PIC18FXX8  
10  
20  
Prescaler  
PIC18LFXX8  
52  
53  
TccP  
TccR  
CCPx input period  
3 TCY + 40  
N
N = prescale  
value (1,4 or 16)  
CCPx output fall time  
PIC18FXX8  
PIC18LFXX8  
PIC18FXX8  
PIC18LFXX8  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
54  
TccF  
CCPx output fall time  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 341  
PIC18FXX8  
FIGURE 27-11:  
PARALLEL SLAVE PORT TIMING (PIC18F248 AND PIC18F458)  
RE2/CS  
RE0/RD  
RE1/WR  
65  
RD7:RD0  
62  
64  
63  
Note: Refer to Figure 27-4 for load conditions.  
TABLE 27-12: PARALLEL SLAVE PORT REQUIREMENTS (PIC18F248 AND PIC18F458)  
Param  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
62  
TdtV2wrH Data-in valid before WRor CS↑  
20  
25  
ns  
(setup time)  
ns Extended Temp. range  
63  
64  
TwrH2dtI  
WRor CSto data-in invalid PIC18FXX8  
(hold time)  
20  
35  
ns  
ns  
PIC18LFXX8  
TrdL2dtV RDand CSto data-out valid  
80  
90  
ns  
ns Extended Temp. range  
65  
66  
TrdH2dtI  
TibfINH  
RDor CSto data-out invalid  
Inhibit the IBF flag bit being cleared from  
10  
30  
ns  
ns  
3 TCY  
WRor CS↑  
DS41159B-page 342  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 27-12:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
Bit6 - - - - - -1  
Bit6 - - - -1  
LSb  
SDO  
SDI  
75, 76  
MSb In  
74  
LSb In  
73  
Note: Refer to Figure 27-4 for load conditions.  
TABLE 27-13: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)  
Param  
Symbol  
Characteristic  
Min  
Max Units Conditions  
No.  
70  
TssL2scH, SSto SCKor SCKinput  
TssL2scL  
TCY  
ns  
71  
TscH  
SCK input high time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
TscL  
SCK input low time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TdiV2scH, Setup time of SDI data input to SCK edge  
TdiV2scL  
100  
ns  
73A  
74  
TB2B  
Last clock edge of Byte1 to the 1st clock edge of 1.5 TCY + 40  
Byte2  
ns (Note 2)  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
ns  
75  
TdoR  
SDO data output rise time  
PIC18FXX8  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC18LFXX8  
76  
78  
TdoF  
TscR  
SDO data output fall time  
SCK output rise time  
(Master mode)  
PIC18FXX8  
PIC18LFXX8  
79  
80  
TscF  
SCK output fall time (Master mode)  
TscH2doV, SDO data output valid after  
TscL2doV SCK edge  
PIC18FXX8  
PIC18LFXX8  
Note 1: Requires the use of parameter # 73A.  
2: Only if parameter #’s 71A and 72A are used.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 343  
PIC18FXX8  
FIGURE 27-13:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
LSb  
MSb  
Bit6 - - - - - -1  
Bit6 - - - -1  
SDO  
SDI  
75, 76  
MSb In  
74  
LSb In  
Note: Refer to Figure 27-4 for load conditions.  
TABLE 27-14: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)  
Param  
Symbol  
Characteristic  
Min  
Max Units Conditions  
No.  
71  
TscH  
SCK input high time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
TscL  
SCK input low time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TdiV2scH, Setup time of SDI data input to SCK edge  
TdiV2scL  
100  
ns  
73A  
74  
TB2B  
Last clock edge of Byte1 to the 1st clock edge of 1.5 TCY + 40  
Byte2  
ns (Note 2)  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
ns  
75  
TdoR  
SDO data output rise time  
PIC18FXX8  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC18LFXX8  
76  
78  
TdoF  
TscR  
SDO data output fall time  
SCK output rise time  
(Master mode)  
PIC18FXX8  
PIC18LFXX8  
79  
80  
TscF  
SCK output fall time (Master mode)  
TscH2doV, SDO data output valid after  
TscL2doV SCK edge  
PIC18FXX8  
PIC18LFXX8  
81  
TdoV2scH, SDO data output setup to SCK edge  
TdoV2scL  
TCY  
Note 1: Requires the use of parameter # 73A.  
2: Only if parameter #’s 71A and 72A are used.  
DS41159B-page 344  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 27-14:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
SCK  
(CKP = 1)  
79  
78  
80  
SDO  
SDI  
MSb  
LSb  
Bit6 - - - - - -1  
Bit6 - - - -1  
77  
75, 76  
MSb In  
74  
LSb In  
73  
Note: Refer to Figure 27-4 for load conditions.  
TABLE 27-15: EXAMPLE SPI MODE REQUIREMENTS, SLAVE MODE TIMING (CKE = 0)  
Param  
Symbol  
Characteristic  
Min  
Max Units Conditions  
No.  
70  
TssL2scH, SSto SCKor SCKinput  
TssL2scL  
TCY  
ns  
71  
TscH  
SCK input high time (Slave mode) Continuous  
1.25 TCY + 30  
ns  
71A  
72  
Single Byte  
Continuous  
Single Byte  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
TscL  
SCK input low time (Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TdiV2scH, Setup time of SDI data input to SCK edge  
TdiV2scL  
100  
ns  
73A  
74  
TB2B  
Last clock edge of Byte1 to the 1st clock edge of Byte2 1.5 TCY + 40  
ns (Note 2)  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
ns  
75  
TdoR  
SDO data output rise time  
PIC18FXX8  
25  
45  
25  
50  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC18LFXX8  
76  
77  
78  
TdoF  
SDO data output fall time  
10  
TssH2doZ SSto SDO output hi-impedance  
TscR  
SCK output rise time (Master mode) PIC18FXX8  
PIC18LFXX8  
79  
80  
TscF  
SCK output fall time (Master mode)  
TscH2doV, SDO data output valid after SCK  
TscL2doV edge  
PIC18FXX8  
PIC18LFXX8  
83  
TscH2ssH, SS after SCK edge  
TscL2ssH  
1.5 TCY + 40  
Note 1: Requires the use of parameter # 73A.  
2: Only if parameter #’s 71A and 72A are used.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 345  
PIC18FXX8  
FIGURE 27-15:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
Bit6 - - - - - -1  
Bit6 - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
MSb In  
74  
LSb In  
Note: Refer to Figure 27-4 for load conditions.  
TABLE 27-16: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)  
Param  
Symbol  
Characteristic  
Min  
Max Units Conditions  
No.  
70  
TssL2scH, SSto SCKor SCKinput  
TssL2scL  
TCY  
ns  
71  
TscH  
TscL  
TB2B  
SCK input high time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
ns  
SCK input low time  
(Slave mode)  
72A  
73A  
74  
ns (Note 1)  
ns (Note 2)  
ns  
Last clock edge of Byte1 to the 1st clock edge of Byte2 1.5 TCY + 40  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
75  
TdoR  
SDO data output rise time  
PIC18FXX8  
25  
45  
25  
ns  
ns  
ns  
PIC18LFXX8  
76  
TdoF  
SDO data output fall time  
77  
78  
TssH2doZ SSto SDO output hi-impedance  
10  
50  
25  
ns  
ns  
ns  
ns  
ns  
ns  
TscR  
SCK output rise time  
(Master mode)  
PIC18FXX8  
PIC18LFXX8  
45  
79  
80  
TscF  
SCK output fall time (Master mode)  
25  
TscH2doV, SDO data output valid after SCK  
TscL2doV edge  
PIC18FXX8  
50  
PIC18LFXX8  
100  
82  
83  
TssL2doV SDO data output valid after SS↓  
PIC18FXX8  
50  
100  
ns  
ns  
ns  
edge  
PIC18LFXX8  
TscH2ssH, SS after SCK edge  
TscL2ssH  
1.5 TCY + 40  
Note 1: Requires the use of parameter # 73A.  
2: Only if parameter #’s 71A and 72A are used.  
DS41159B-page 346  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 27-16:  
I2C BUS START/STOP BITS TIMING  
SCL  
SDA  
91  
93  
90  
92  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 27-4 for load conditions.  
TABLE 27-17: I2C BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
90  
TSU:STA START condition  
Setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns  
Only relevant for Repeated  
START condition  
91  
92  
93  
THD:STA START condition  
Hold time  
4000  
600  
ns  
ns  
ns  
After this period, the first  
clock pulse is generated  
TSU:STO STOP condition  
Setup time  
4700  
600  
THD:STO STOP condition  
Hold time  
4000  
600  
FIGURE 27-17:  
I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 27-4 for load conditions.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 347  
PIC18FXX8  
TABLE 27-18: I2C BUS DATA REQUIREMENTS (SLAVE MODE)  
Param  
Symbol  
Characteristic  
100 kHz mode  
Min  
Max Units  
Conditions  
No.  
100  
THIGH  
Clock high time  
4.0  
µs  
µs  
PIC18FXX8 must operate  
at a minimum of 1.5 MHz  
400 kHz mode  
0.6  
PIC18FXX8 must operate  
at a minimum of 10 MHz  
SSP Module  
1.5 TCY  
4.7  
101  
TLOW  
Clock low time  
100 kHz mode  
µs  
µs  
PIC18FXX8 must operate  
at a minimum of 1.5 MHz  
400 kHz mode  
1.3  
PIC18FXX8 must operate  
at a minimum of 10 MHz  
SSP module  
1.5 TCY  
ns  
ns  
ns  
102  
103  
TR  
TF  
SDA and SCL rise 100 kHz mode  
1000  
time  
400 kHz mode  
20 + 0.1 CB 300  
CB is specified to be from  
10 to 400 pF  
SDA and SCL fall 100 kHz mode  
300  
ns  
ns  
time  
400 kHz mode  
20 + 0.1 CB 300  
CB is specified to be from  
10 to 400 pF  
90  
TSU:STA  
THD:STA  
START condition  
setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
µs  
Only relevant for Repeated  
START condition  
91  
START condition  
hold time  
After this period the first  
clock pulse is generated  
106  
107  
92  
THD:DAT Data input hold  
time  
0
0.9  
TSU:DAT  
TSU:STO  
TAA  
Data input setup  
time  
250  
100  
4.7  
0.6  
(Note 2)  
STOP condition  
setup time  
109  
110  
Output valid from  
clock  
3500  
(Note 1)  
TBUF  
Bus free time  
4.7  
1.3  
Time the bus must be free  
before a new transmission  
can start  
D102  
CB  
Bus capacitive loading  
400  
pF  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region  
(min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
2: A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement  
TSU;DAT 250 ns must then be met. This will automatically be the case if the device does not stretch the  
LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must  
output the next data bit to the SDA line.  
Before the SCL line is released, TR max. + TSU;DAT = 1000 + 250 = 1250 ns (according to the Standard  
mode I2C bus specification).  
DS41159B-page 348  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 27-18:  
MASTER SSP I2C BUS START/STOP BITS TIMING WAVEFORMS  
SCL  
SDA  
93  
91  
90  
92  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 27-4 for load conditions.  
TABLE 27-19: MASTER SSP I2C BUS START/STOP BITS REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
90  
TSU:STA START condition  
Setup time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ns Only relevant for  
Repeated START  
condition  
91  
92  
93  
THD:STA START condition  
Hold time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ns After this period, the  
first clock pulse is  
generated  
TSU:STO STOP condition  
Setup time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ns  
THD:STO STOP condition  
Hold time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ns  
Note 1: Maximum pin capacitance = 10 pF for all I2C pins.  
FIGURE 27-19:  
MASTER SSP I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
91  
92  
107  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 27-4 for load conditions.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 349  
PIC18FXX8  
TABLE 27-20: MASTER SSP I2C BUS DATA REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
100  
THIGH  
Clock high time 100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
ms  
ms  
ms  
ms  
ms  
ms  
ns  
2(TOSC)(BRG + 1)  
1 MHz mode(1)  
2(TOSC)(BRG + 1)  
101  
102  
103  
90  
TLOW  
TR  
Clock low time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
SDA and SCL  
rise time  
1000  
300  
300  
300  
300  
100  
CB is specified to be from  
10 to 400 pF  
20 + 0.1 CB  
ns  
ns  
TF  
SDA and SCL  
fall time  
ns  
CB is specified to be from  
10 to 400 pF  
20 + 0.1 CB  
ns  
ns  
TSU:STA  
THD:STA  
START condition 100 kHz mode  
2(TOSC)(BRG + 1)  
ms  
ms  
ms  
Only relevant for  
Repeated START  
condition  
setup time  
400 kHz mode  
2(TOSC)(BRG + 1)  
1 MHz mode(1)  
2(TOSC)(BRG + 1)  
91  
START condition 100 kHz mode  
2(TOSC)(BRG + 1)  
ms After this period, the first  
hold time  
clock pulse is generated  
400 kHz mode  
2(TOSC)(BRG + 1)  
ms  
1 MHz mode(1)  
2(TOSC)(BRG + 1)  
ms  
ns  
106  
107  
92  
THD:DAT Data input  
hold time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
0
0
0.9  
ms  
ns  
TBD  
TSU:DAT  
TSU:STO  
TAA  
Data input  
setup time  
250  
ns  
ns  
ns  
ms  
ms  
ms  
ns  
ns  
ns  
(Note 2)  
100  
TBD  
STOP condition 100 kHz mode  
2(TOSC)(BRG + 1)  
setup time  
400 kHz mode  
1 MHz mode(1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
109  
110  
Output valid from 100 kHz mode  
3500  
1000  
clock  
400 kHz mode  
1 MHz mode(1)  
TBUF  
Bus free time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
4.7  
1.3  
TBD  
ms Time the bus must be free  
before a new transmission  
can start  
ms  
ms  
D102 CB  
Bus capacitive loading  
400  
pF  
Note 1: Maximum pin capacitance = 10 pF for all I2C pins.  
2: A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but parameter #107 250 ns  
must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL  
signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the  
SDA line. Before the SCL line is released, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for  
100 kHz mode).  
DS41159B-page 350  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 27-20:  
USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
121  
121  
RC7/RX/DT  
pin  
120  
Note: Refer to Figure 27-4 for load conditions.  
122  
TABLE 27-21: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units Conditions  
No.  
120  
TckH2dtV SYNC XMIT (Master & Slave)  
Clock high to data-out valid  
PIC18FXX8  
PIC18LFXX8  
PIC18FXX8  
PIC18LFXX8  
PIC18FXX8  
PIC18LFXX8  
40  
100  
20  
ns  
ns  
ns  
ns  
ns  
ns  
121  
122  
Tckrf  
Tdtrf  
Clock out rise time and fall time  
(Master mode)  
50  
Data-out rise time and fall time  
20  
50  
FIGURE 27-21:  
USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
125  
RC7/RX/DT  
pin  
126  
Note: Refer to Figure 27-4 for load conditions.  
TABLE 27-22: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
125  
TdtV2ckl SYNC RCV (Master & Slave)  
Data-hold before CK (DT hold time)  
10  
15  
ns  
ns  
126  
TckL2dtl  
Data-hold after CK (DT hold time)  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 351  
PIC18FXX8  
TABLE 27-23: A/D CONVERTER CHARACTERISTICS: PIC18FXX8 (INDUSTRIAL, EXTENDED)  
PIC18LFXX8 (INDUSTRIAL)  
Param  
No.  
Symbol  
Characteristic  
Resolution  
Min  
Typ  
Max  
Units  
Conditions  
A01  
NR  
10  
TBD  
bit VREF = VDD 3.0V  
bit VREF = VDD < 3.0V  
A03  
A04  
A05  
A06  
EIL  
Integral linearity error  
Differential linearity error  
Full scale error  
<±1  
TBD  
LSb VREF = VDD 3.0V  
LSb VREF = VDD < 3.0V  
EDL  
EFS  
EOFF  
<±1  
TBD  
LSb VREF = VDD 3.0V  
LSb VREF = VDD < 3.0V  
<±1  
TBD  
LSb VREF = VDD 3.0V  
LSb VREF = VDD < 3.0V  
Offset error  
<±1.5  
TBD  
LSb VREF = VDD 3.0V  
LSb VREF = VDD < 3.0V  
A10  
A20  
A20A  
A21  
A22  
A25  
A30  
Monotonicity  
guaranteed(3)  
V
VSS VAIN VREF  
VREF  
Reference voltage  
(VREFH – VREFL)  
0V  
3V  
V
For 10-bit resolution  
VREFH  
VREFL  
VAIN  
Reference voltage High  
Reference voltage Low  
Analog input voltage  
VSS  
VDD + 0.3V  
VDD  
V
VSS - 0.3V  
VSS - 0.3V  
V
VREF + 0.3V  
10.0  
V
ZAIN  
Recommended impedance of  
analog voltage source  
kΩ  
A40  
A50  
IAD  
A/D conversion PIC18FXX8  
180  
90  
µA Average current  
current (VDD)  
consumption when  
PIC18LFXX8  
µA  
A/D is on (Note 1).  
IREF  
VREF input current (Note 2)  
10  
1000  
µA During VAIN acquisition.  
Based on differential of  
VHOLD to VAIN. To charge  
CHOLD.  
10  
µA During A/D conversion  
cycle.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current  
spec includes any such leakage from the A/D module.  
VREF current is from RA2/AN2/VREF- and RA3/AN3/VREF+ pins or VDD and VSS pins, whichever is selected  
as reference input.  
2: VSS VAIN VREF  
3: The A/D conversion result never decreases with an increase in the input voltage, and has no missing codes.  
DS41159B-page 352  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 27-22:  
A/D CONVERSION TIMING  
BSF ADCON0, GO  
(Note 2)  
131  
130  
Q4  
132  
A/D CLK  
. . .  
. . .  
9
8
7
2
1
0
A/D DATA  
ADRES  
NEW_DATA  
TCY  
OLD_DATA  
ADIF  
GO  
DONE  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts.  
This allows the SLEEPinstruction to be executed.  
2: This is a minimal RC delay (typically 100 ns), which also disconnects the holding capacitor from the analog input.  
TABLE 27-24: A/D CONVERSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
130  
TAD  
A/D clock period  
PIC18FXX8  
1.6  
20(5)  
µs TOSC based, VREF 3.0V  
PIC18LFXX8  
PIC18FXX8  
PIC18LFXX8  
3.0  
2.0  
3.0  
11  
20(5)  
6.0  
9.0  
12  
µs TOSC based, VREF full range  
µs A/D RC mode  
µs A/D RC mode  
TAD  
131  
132  
TCNV  
TACQ  
Conversion time  
(not including acquisition time) (Note 1)  
Acquisition time (Note 3)  
15  
10  
µs -40°C Temp +125°C  
µs 0°C Temp +125°C  
135  
136  
TSWC  
TAMP  
Switching time from convert sample  
Amplifier settling time (Note 2)  
1
(Note 4)  
µs This may be used if the  
“new” input voltage has not  
changed by more than 1 LSb  
(i.e., 5 mV @ 5.12V) from the  
last sampled voltage (as  
stated on CHOLD).  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 20.0 for minimum conditions when input voltage has changed more than 1 LSb.  
3: The time for the holding capacitor to acquire the “New” input voltage when the voltage changes full scale  
after the conversion (AVDD to AVSS, or AVSS to AVDD). The source impedance (RS) on the input channels  
is 50.  
4: On the next Q4 cycle of the device clock.  
5: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 353  
PIC18FXX8  
NOTES:  
DS41159B-page 354  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
28.0 DC AND AC  
CHARACTERISTICS GRAPHS  
AND TABLES  
Graphs and Tables are not available at this time.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 355  
PIC18FXX8  
NOTES:  
DS41159B-page 356  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
29.0 PACKAGING INFORMATION  
29.1 Package Marking Information  
28-Lead PDIP (Skinny DIP)  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
PIC18F258-I/SP  
YYWWNNN  
0220017  
40-Lead PDIP  
Example  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC18F448-I/P  
0220017  
Example  
28-Lead SOIC  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
PIC18F248-E/SO  
0220017  
YYWWNNN  
Legend: XX...X Customer specific information*  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard PICmicro device marking consists of Microchip part number, year code, week code, and  
traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check  
with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP  
price.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 357  
PIC18FXX8  
29.1 Package Marking Information (Continued)  
44-Lead PLCC  
Example  
XXXXXXXXXX  
PIC18F458  
-I/L  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
0220017  
44-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC18F448  
-I/PT  
0220017  
DS41159B-page 358  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
29.2 Package Details  
The following sections give the technical details of the  
packages.  
28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
B1  
β
A1  
eB  
B
p
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
28  
28  
.100  
.150  
.130  
2.54  
3.81  
3.30  
Top to Seating Plane  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A
A2  
A1  
E
.140  
.160  
3.56  
4.06  
.125  
.015  
.300  
.275  
1.345  
.125  
.008  
.040  
.016  
.320  
.135  
3.18  
0.38  
7.62  
6.99  
34.16  
3.18  
0.20  
1.02  
0.41  
8.13  
5
3.43  
.310  
.285  
1.365  
.130  
.012  
.053  
.019  
.350  
10  
.325  
.295  
1.385  
.135  
.015  
.065  
.022  
.430  
15  
7.87  
7.24  
34.67  
3.30  
0.29  
1.33  
0.48  
8.89  
10  
8.26  
7.49  
35.18  
3.43  
0.38  
1.65  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
5
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-095  
Drawing No. C04-070  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 359  
PIC18FXX8  
40-Lead Plastic Dual In-line (P) – 600 mil (PDIP)  
E1  
D
2
α
n
1
E
A2  
A
L
c
B1  
B
β
A1  
p
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
40  
MAX  
n
p
Number of Pins  
Pitch  
40  
.100  
.175  
.150  
2.54  
Top to Seating Plane  
A
.160  
.190  
.160  
4.06  
3.56  
4.45  
3.81  
4.83  
4.06  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.140  
.015  
.595  
.530  
2.045  
.120  
.008  
.030  
.014  
.620  
5
0.38  
15.11  
13.46  
51.94  
3.05  
0.20  
0.76  
0.36  
15.75  
5
.600  
.545  
2.058  
.130  
.012  
.050  
.018  
.650  
10  
.625  
.560  
2.065  
.135  
.015  
.070  
.022  
.680  
15  
15.24  
13.84  
52.26  
3.30  
0.29  
1.27  
0.46  
16.51  
10  
15.88  
14.22  
52.45  
3.43  
0.38  
1.78  
0.56  
17.27  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
§
eB  
α
β
Mold Draft Angle Bottom  
* Controlling Parameter  
§ Significant Characteristic  
5
10  
15  
5
10  
15  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-011  
Drawing No. C04-016  
DS41159B-page 360  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
28-Lead Plastic Small Outline (SO) – Wide, 300 mil (SOIC)  
E
E1  
p
D
B
2
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
28  
28  
1.27  
2.50  
2.31  
0.20  
10.34  
7.49  
17.87  
0.50  
0.84  
4
.050  
.099  
.091  
.008  
.407  
.295  
.704  
.020  
.033  
4
Overall Height  
A
.093  
.104  
2.36  
2.64  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.088  
.004  
.394  
.288  
.695  
.010  
.016  
0
.094  
.012  
.420  
.299  
.712  
.029  
.050  
8
2.24  
0.10  
10.01  
7.32  
17.65  
0.25  
0.41  
0
2.39  
0.30  
10.67  
7.59  
18.08  
0.74  
1.27  
8
§
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle Top  
c
Lead Thickness  
Lead Width  
.009  
.014  
0
.011  
.017  
12  
.013  
.020  
15  
0.23  
0.36  
0
0.28  
0.42  
12  
0.33  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-052  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 361  
PIC18FXX8  
44-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)  
E
E1  
#leads=n1  
D
D1  
n 1 2  
CH2 x 45°  
CH1 x 45°  
α
A3  
A2  
A
35°  
B1  
B
c
A1  
β
p
E2  
D2  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
44  
MAX  
n
p
Number of Pins  
Pitch  
44  
.050  
11  
1.27  
11  
Pins per Side  
Overall Height  
n1  
A
.165  
.145  
.020  
.024  
.040  
.000  
.685  
.685  
.650  
.650  
.590  
.590  
.008  
.026  
.013  
0
.173  
.153  
.028  
.029  
.045  
.005  
.690  
.690  
.653  
.653  
.620  
.620  
.011  
.029  
.020  
5
.180  
4.19  
3.68  
0.51  
0.61  
1.02  
0.00  
17.40  
17.40  
16.51  
16.51  
14.99  
14.99  
0.20  
0.66  
0.33  
0
4.39  
3.87  
0.71  
0.74  
1.14  
0.13  
17.53  
17.53  
16.59  
16.59  
15.75  
15.75  
0.27  
0.74  
0.51  
5
4.57  
Molded Package Thickness  
Standoff  
A2  
A1  
A3  
CH1  
CH2  
E
.160  
.035  
.034  
.050  
.010  
.695  
.695  
.656  
.656  
.630  
.630  
.013  
.032  
.021  
10  
4.06  
0.89  
0.86  
1.27  
0.25  
17.65  
17.65  
16.66  
16.66  
16.00  
16.00  
0.33  
0.81  
0.53  
10  
§
Side 1 Chamfer Height  
Corner Chamfer 1  
Corner Chamfer (others)  
Overall Width  
Overall Length  
D
Molded Package Width  
Molded Package Length  
Footprint Width  
E1  
D1  
E2  
D2  
c
Footprint Length  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
B1  
B
α
β
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-047  
Drawing No. C04-048  
DS41159B-page 362  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
E
E1  
#leads=n1  
p
D1  
D
2
1
B
n
°
CH x 45  
α
A
c
φ
β
A1  
A2  
L
(F)  
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
44  
MAX  
n
p
Number of Pins  
Pitch  
44  
.031  
11  
0.80  
11  
Pins per Side  
Overall Height  
n1  
A
.039  
.037  
.002  
.018  
.043  
.039  
.004  
.024  
.039  
3.5  
.047  
1.00  
0.95  
1.10  
1.00  
0.10  
0.60  
1.20  
Molded Package Thickness  
Standoff  
A2  
A1  
L
(F)  
φ
.041  
.006  
.030  
1.05  
0.15  
0.75  
§
0.05  
0.45  
1.00  
0
Foot Length  
Footprint (Reference)  
Foot Angle  
0
.463  
.463  
.390  
.390  
.004  
.012  
.025  
5
7
.482  
.482  
.398  
.398  
.008  
.017  
.045  
15  
3.5  
12.00  
12.00  
10.00  
10.00  
0.15  
0.38  
0.89  
10  
7
12.25  
12.25  
10.10  
10.10  
0.20  
0.44  
1.14  
15  
Overall Width  
E
D
.472  
.472  
.394  
.394  
.006  
.015  
.035  
10  
11.75  
11.75  
9.90  
9.90  
0.09  
0.30  
0.64  
5
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
E1  
D1  
c
Lead Width  
B
CH  
α
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-026  
Drawing No. C04-076  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 363  
PIC18FXX8  
NOTES:  
DS41159B-page 364  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
APPENDIX A: DATA SHEET  
REVISION HISTORY  
APPENDIX B: DEVICE  
DIFFERENCES  
The differences between the devices listed in this data  
sheet are shown in Table B-1.  
Revision A (June 2001)  
Original data sheet for the PIC18FXX8 family.  
Revision B (May 2002)  
Updated information on CAN module, device memory  
and register maps, I/O ports and Enhanced CCP.  
TABLE B-1:  
DEVICE DIFFERENCES  
Features  
PIC18F248  
PIC18F258  
PIC18F448  
PIC18F458  
Internal  
Program  
Memory  
Bytes  
16K  
32K  
16K  
32K  
# of Single word  
Instructions  
8192  
16384  
8192  
16384  
Data Memory (Bytes)  
I/O Ports  
768  
Ports A, B, C  
1536  
Ports A, B, C  
768  
1536  
Ports A, B, C, D, E Ports A, B, C, D, E  
Enhanced Capture/Compare/PWM  
Modules  
1
1
Parallel Slave Port  
No  
No  
Yes  
Yes  
10-bit Analog-to-Digital Converter  
Analog Comparators  
5 input channels 5 input channels 8 input channels 8 input channels  
No  
No  
2
2
Analog Comparators VREF Output  
Packages  
N/A  
N/A  
Yes  
Yes  
28-pin SPDIP  
28-pin SOIC  
28-pin SPDIP  
28-pin SOIC  
40-pin PDIP  
44-pin PLCC  
44-pin TQFP  
40-pin PDIP  
44-pin PLCC  
44-pin TQFP  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 365  
PIC18FXX8  
APPENDIX C: DEVICE MIGRATIONS  
APPENDIX D: MIGRATING FROM  
OTHER PICmicro  
This section is intended to describe the functional and  
electrical specification differences when migrating  
between functionally similar devices (such as from a  
PIC16C74A to a PIC16C74B).  
DEVICES  
This discusses some of the issues in migrating from  
other PICmicro devices to the PIC18FXX8 family of  
devices.  
Not Applicable  
D.1  
PIC16CXXX to PIC18FXX8  
See Application Note AN716.  
D.2  
PIC17CXXX to PIC18FXX8  
See Application Note AN726.  
DS41159B-page 366  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
APPENDIX E: DEVELOPMENT  
TOOL VERSION  
REQUIREMENTS  
This lists the minimum requirements (software/  
firmware) of the specified development tool to support  
the devices listed in this data sheet.  
MPLAB® SIMULATOR:  
MPLAB® ICE 2000:  
MPLAB IDE  
V7.40 (MPLAB IDE V5.40)  
TBD  
PIC18FXX8 Processor Module:  
Part Number  
PCM 18XD0  
PIC18FXX8 Device Adapter:  
Socket  
Part Number  
28-pin PDIP  
28-pin SOIC  
DVA16XP282  
DVA16XP282 with  
XLT 28SO Transition  
Socket  
40-pin PDIP  
44-pin TQFP  
DVA16XP401  
DVA16PQ441 with  
XLT 44PT Transition  
Socket  
44-pin PLCC  
DVA16XL441  
MPLAB® ICD 2:  
PRO MATE® II:  
TBD  
TBD  
Device Programmer  
PICSTART® Plus:  
version TBD  
Development Programmer  
MPASMTM Assembler:  
V2.80  
(MPLAB IDE V5.40)  
MPLAB® C18 C Compiler: version TBD  
CAN-TOOL:  
Not available at time of  
printing.  
Third Party Tools:  
OSEK/VDX  
operating  
system available from  
Vector Infromatik GmbH,  
Germany and Realogy  
Ltd, UK.  
Note: Please read all associated README.TXT  
files that are supplied with the develop-  
ment tools. These "read me" files will dis-  
cuss product support and any known  
limitations.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 367  
PIC18FXX8  
NOTES:  
DS41159B-page 368  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
INDEX  
Block Diagrams  
A
A/D ........................................................................... 239  
Analog Input Model ...........................................240, 249  
Baud Rate Generator .............................................. 167  
CAN Buffers and Protocol Engine ........................... 198  
Capture Mode (CCP Module) .................................. 123  
Comparator I/O Operating Modes ........................... 246  
Comparator Output .................................................. 248  
Compare (CCP Module) Mode Operation ............... 124  
Enhanced PWM ....................................................... 132  
Interrupt Logic ............................................................ 78  
Low Voltage Detect ................................................. 256  
Low Voltage Detect with External Input ................... 256  
A/D ................................................................................... 237  
A/D Converter Flag (ADIF bit) .................................. 239  
A/D Converter Interrupt, Configuring ....................... 240  
Acquisition Requirements ........................................ 240  
Acquisition Time ....................................................... 241  
ADCON0 Register .................................................... 237  
ADCON1 Register .................................................... 237  
ADRESH Register .................................................... 237  
ADRESH/ADRESL Registers .................................. 239  
ADRESL Register .................................................... 237  
Analog Port Pins, Configuring .................................. 242  
Associated Registers Summary ............................... 243  
Calculating the Minimum Required  
2
MSSP (I C Master Mode) ........................................ 165  
2
MSSP (I C Mode) .................................................... 150  
Acquisition Time ............................................... 241  
Configuring the Module ............................................ 240  
Conversion Clock (TAD) ........................................... 242  
Conversion Status (GO/DONE bit) .......................... 239  
Conversion TAD Cycles ............................................ 243  
Conversions ............................................................. 243  
Converter Characteristics ........................................ 352  
Minimum Charging Time .......................................... 241  
Selecting the Conversion Clock ............................... 242  
Special Event Trigger (CCP) .................................... 124  
Special Event Trigger (ECCP) ......................... 131, 243  
TAD vs. Device Operating Frequencies  
MSSP (SPI Mode) ................................................... 141  
On-Chip Reset Circuit ................................................ 25  
PIC18F248/258 Architecture ....................................... 8  
PIC18F448/458 Architecture ....................................... 9  
PLL ............................................................................ 19  
PORTC (Peripheral Output Override) ........................ 98  
PORTD and PORTE (Parallel Slave Port) ............... 105  
PORTD in I/O Port Mode ......................................... 100  
PORTE .................................................................... 102  
PWM (CCP Module) ................................................ 126  
RA3:RA0 and RA5 Port Pins ..................................... 93  
RA4/T0CKI Pin .......................................................... 93  
RA6/OSC2/CLKO Pin ................................................ 94  
RB1:RB0 Port Pins .................................................... 95  
RB2:CANTX Port Pins ............................................... 96  
RB3:CANRX Port Pins ............................................... 96  
RB7:RB4 Port Pins .................................................... 95  
Reads from FLASH Program Memory ....................... 69  
Receive Buffer ......................................................... 226  
Table Read Operation ............................................... 65  
Table Write Operation ................................................ 66  
Table Writes to FLASH Program Memory ................. 71  
Timer0 Module  
(For Extended, LC Devices) (table) ................. 242  
TAD vs. Device Operating Frequencies (table) ........ 242  
Use of the ECCP Trigger ......................................... 243  
Absolute Maximum Ratings ............................................. 325  
AC (Timing) Characteristics ............................................. 335  
Parameter Symbology ............................................. 335  
Access Bank ...................................................................... 54  
ACKSTAT ......................................................................... 171  
ADCON0 Register ............................................................ 237  
GO/DONE bit ........................................................... 239  
ADCON1 Register ............................................................ 237  
ADDLW ............................................................................ 283  
Addressable Universal Synchronous Asynchronous  
Receiver Transmitter. See USART  
ADDWF ............................................................................ 283  
ADDWFC ......................................................................... 284  
ADRESH Register ............................................................ 237  
ADRESH/ADRESL Registers ........................................... 239  
ADRESL Register ............................................................ 237  
Analog-to-Digital Converter. See A/D  
16-bit Mode ...................................................... 108  
8-bit Mode ........................................................ 108  
Timer1 Module ......................................................... 112  
Timer1 Module (16-bit Read/Write Mode) ............... 112  
Timer2 ..................................................................... 116  
Timer3 ..................................................................... 118  
Timer3 (16-bit Read/Write Mode) ............................ 118  
Transmit Buffer ........................................................ 223  
USART Receive ....................................................... 189  
USART Transmit ...................................................... 187  
Voltage Reference ................................................... 252  
Watchdog Timer ...................................................... 269  
BN .................................................................................... 286  
BNC ................................................................................. 287  
BNN ................................................................................. 287  
BNOV ............................................................................... 288  
BNZ .................................................................................. 288  
BOR. See Brown-out Reset  
ANDLW ............................................................................ 284  
ANDWF ............................................................................ 285  
Assembler  
MPASM Assembler .................................................. 319  
Associated Registers ............................................... 190, 195  
B
Bank Select Register (BSR) ............................................... 54  
Baud Rate Generator ....................................................... 167  
BC .................................................................................... 285  
BCF .................................................................................. 286  
BF ..................................................................................... 171  
Bit Timing Configuration Registers  
BOV ................................................................................. 291  
BRA ................................................................................. 289  
BRGCON1 ............................................................... 232  
BRGCON2 ............................................................... 232  
BRGCON3 ............................................................... 232  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 369  
PIC18FXX8  
BRG. See Baud Rate Generator  
Programming Time Segments ................................. 232  
Propagation Segment .............................................. 230  
Receive Buffer Registers ......................................... 208  
Receive Buffers ....................................................... 226  
Receive Message Buffering ..................................... 226  
Receive Priority ........................................................ 226  
Registers .................................................................. 199  
Resynchronization ................................................... 231  
Sample Point ........................................................... 230  
Shortening a bit Period ............................................ 232  
Stuff Bit Error ........................................................... 233  
Synchronization ....................................................... 231  
Synchronization Rules ............................................. 231  
Synchronization Segment ........................................ 230  
Time Quanta ............................................................ 230  
Transmit Buffer Registers ........................................ 204  
Transmit Buffers ...................................................... 223  
Transmit Message Flow Chart ................................. 225  
Transmit Priority ....................................................... 223  
Transmit/Receive Buffers ........................................ 197  
Values for ICODE (table) ......................................... 235  
Capture (CCP Module) .................................................... 122  
CAN Message Time-Stamp ..................................... 123  
CCP Pin Configuration ............................................. 122  
CCPR1H:CCPR1L Registers ................................... 122  
Software Interrupt .................................................... 123  
Timer1/Timer3 Mode Selection ................................ 122  
Capture (ECCP Module) .................................................. 131  
CAN Message Time-Stamp ..................................... 131  
Capture/Compare/PWM (CCP) ........................................ 121  
Capture Mode. See Capture (CCP Module)  
Brown-out Reset (BOR) ............................................. 26, 261  
BSF ..................................................................................289  
BTFSC .............................................................................290  
BTFSS ..............................................................................290  
BTG ..................................................................................291  
BZ .....................................................................................292  
C
CALL ................................................................................292  
CAN Module .....................................................................197  
Aborting Transmission .............................................224  
Acknowledge Error ...................................................233  
Baud Rate Registers ................................................215  
Baud Rate Setting ....................................................229  
Bit Error ....................................................................233  
Bit Time Partitioning .................................................229  
Bit Timing Configuration Registers ...........................232  
Calculating TQ, Nominal bit Rate and  
Nominal bit Time ..............................................230  
Configuration Mode ..................................................222  
Control and Status Registers ...................................199  
Controller Register Map ...........................................221  
CRC Error ................................................................233  
Disable Mode ...........................................................222  
Error Detection .........................................................233  
Error Modes and Error Counters ..............................233  
Error Modes State Diagram .....................................234  
Error States ..............................................................233  
Filter Mask Truth (table) ...........................................228  
Form Error ................................................................233  
Hard Synchronization ...............................................231  
I/O Control Register .................................................217  
Information Processing Time ...................................230  
Initiating Transmission .............................................224  
Interrupt Acknowledge .............................................235  
Interrupt Registers ....................................................218  
Interrupts ..................................................................234  
Bus Activity Wake-up .......................................235  
Bus-Off .............................................................235  
Code bits ..........................................................234  
Error .................................................................235  
Message Error .................................................235  
Receive ............................................................234  
Receiver Bus Passive ......................................235  
Receiver Overflow ............................................235  
Receiver Warning ............................................235  
Transmit ...........................................................234  
Transmitter Bus Passive ..................................235  
Transmitter Warning ........................................235  
Lengthening a bit Period ..........................................231  
Listen Only Mode .....................................................222  
Loopback Mode ........................................................223  
Message Acceptance Filters and  
CCP1 Module .......................................................... 122  
CCPR1H Register .................................................... 122  
CCPR1L Register .................................................... 122  
Compare Mode. See Compare (CCP Module)  
Interaction of CCP1 and ECCP1 Modules ............... 122  
PWM Mode. See PWM (CCP Module)  
Timer Resources ..................................................... 122  
Ceramic Resonators  
Ranges Tested .......................................................... 17  
Clocking Scheme ............................................................... 41  
CLRF ............................................................................... 293  
CLRWDT .......................................................................... 293  
Code Examples  
16 x 16 Signed Multiply Routine ................................ 76  
16 x 16 Unsigned Multiply Routine ............................ 76  
8 x 8 Signed Multiply Routine .................................... 75  
8 x 8 Unsigned Multiply Routine ................................ 75  
Changing Between Capture Prescalers ................... 123  
Data EEPROM Read ................................................. 61  
Data EEPROM Refresh Routine ................................ 62  
Data EEPROM Write ................................................. 61  
Erasing a FLASH Program Memory Row .................. 70  
Fast Register Stack ................................................... 40  
How to Clear RAM (Bank 1) Using  
Indirect Addressing ............................................ 55  
Initializing PORTA ...................................................... 93  
Initializing PORTB ...................................................... 95  
Initializing PORTC ..................................................... 98  
Initializing PORTD ................................................... 100  
Initializing PORTE .................................................... 102  
Loading the SSPBUF Register ................................ 144  
Reading a FLASH Program Memory Word ............... 69  
Saving STATUS, WREG and  
Masks ....................................................... 212, 228  
Message Acceptance Mask and  
Filter Operation ................................................228  
Message Reception .................................................226  
Message Reception Flow Chart ...............................227  
Message Time-Stamping .........................................226  
Message Transmission ............................................223  
Modes of Operation ..................................................222  
Normal Mode ............................................................222  
Oscillator Tolerance .................................................232  
Overview ..................................................................197  
Phase Buffer Segments ...........................................230  
BSR Registers in RAM ...................................... 92  
DS41159B-page 370  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
WIN and ICODE bits Usage in Interrupt  
DC Characteristics ............................ 327, 328, 329, 330, 331  
EEPROM and Enhanced FLASH ............................ 333  
DCFSNZ .......................................................................... 297  
DECF ............................................................................... 296  
DECFSZ .......................................................................... 297  
Development Support ...................................................... 319  
Development Tool Version Requirements ....................... 367  
Device Differences ........................................................... 365  
Device Migrations ............................................................ 366  
Device Overview .................................................................. 7  
Features ...................................................................... 7  
Direct Addressing .............................................................. 56  
Disable Mode (CAN Module) ........................................... 222  
Service Routine to Access TX/RX Buffers ....... 201  
Writing to FLASH Program Memory .................... 7273  
Code Protection ............................................................... 261  
COMF ............................................................................... 294  
Comparator Module ......................................................... 245  
Analog Input Connection Considerations ................. 249  
Associated Registers ............................................... 250  
Configuration ............................................................ 246  
Effects of a RESET .................................................. 249  
External Reference Signal ....................................... 247  
Internal Reference Signal ........................................ 247  
Interrupts .................................................................. 248  
Operation ................................................................. 247  
Operation During SLEEP ......................................... 249  
Outputs .................................................................... 247  
Reference ................................................................ 247  
Response Time ........................................................ 247  
Comparator Specifications ............................................... 334  
Comparator Voltage Reference Module ........................... 251  
Accuracy/Error ......................................................... 252  
Associated Registers ............................................... 253  
Configuring ............................................................... 251  
Connection Considerations ...................................... 252  
Effects of a RESET .................................................. 252  
Operation During SLEEP ......................................... 252  
Output Buffer Example ............................................. 253  
Compare (CCP Module) ................................................... 124  
Associated Registers ............................................... 125  
CCP1 Pin Configuration ........................................... 124  
CCPR1H:CCPR1L Registers ................................... 124  
Software Interrupt .................................................... 124  
Special Event Trigger ........................113, 119, 124, 243  
Timer1/Timer3 Mode Selection ................................ 124  
Compare (ECCP Module) ................................................ 131  
Associated Registers ............................................... 131  
Special Event Trigger ............................................... 131  
Compatible 10-bit Analog-to-Digital Converter  
E
Electrical Characteristics ................................................. 325  
Enhanced Capture/Compare/PWM (ECCP) .................... 129  
Auto-Shutdown ........................................................ 140  
Capture Mode. See Capture (ECCP Module)  
Compare Mode. See Compare (ECCP Module)  
ECCPR1H Register ................................................. 130  
ECCPR1L Register .................................................. 130  
Interaction of CCP1 and ECCP1 Modules ............... 130  
Pin Assignments for Various Modes ........................ 130  
PWM Mode. See PWM (ECCP Module)  
Timer Resources ..................................................... 130  
Enhanced CCP Auto-Shutdown ...................................... 140  
Enhanced PWM Mode. See PWM  
(ECCP Module) ........................................................ 132  
Errata ................................................................................... 5  
Error Recognition Mode (CAN Module) ........................... 222  
External Clock Input ........................................................... 19  
F
Firmware Instructions ...................................................... 277  
FLASH Program Memory .................................................. 65  
Associated Registers ................................................. 74  
Control Registers ....................................................... 66  
Erase Sequence ........................................................ 70  
Erasing ...................................................................... 70  
Operation During Code Protect ................................. 73  
Reading ..................................................................... 69  
TABLAT (Table Latch) Register ................................. 68  
Table Pointer  
(A/D) Module. See A/D.  
Configuration Mode (CAN Module) .................................. 222  
CPFSEQ .......................................................................... 294  
CPFSGT ........................................................................... 295  
CPFSLT ........................................................................... 295  
Crystal Oscillator  
Boundaries Based on Operation ....................... 68  
Table Pointer Boundaries .......................................... 68  
Table Reads and Table Writes .................................. 65  
TBLPTR (Table Pointer) Register .............................. 68  
Write Sequence ......................................................... 71  
Writing to ................................................................... 71  
Protection Against Spurious Writes ................... 73  
Unexpected Termination ................................... 73  
Write Verify ........................................................ 73  
Capacitor Selection .................................................... 18  
D
Data EEPROM Memory ..................................................... 59  
Associated Registers ................................................. 63  
EEADR Register ........................................................ 59  
EECON1 Register ...................................................... 59  
EECON2 Register ...................................................... 59  
Operation During Code Protect .................................. 62  
Protection Against Spurious Writes ........................... 62  
Reading ...................................................................... 61  
Usage ......................................................................... 62  
Write Verify ................................................................ 62  
Writing to .................................................................... 61  
Data Memory ...................................................................... 44  
General Purpose Registers ........................................ 44  
Special Function Registers ........................................ 44  
Data Memory Map  
G
GOTO .............................................................................. 298  
H
Hardware Multiplier ............................................................ 75  
Operation ................................................................... 75  
Performance Comparison (table) ............................... 75  
HS4 (PLL) .......................................................................... 19  
PIC18F248/448 .......................................................... 45  
PIC18F258/458 .......................................................... 46  
DAW ................................................................................. 296  
DC and AC Characteristics Graphs and Tables ............... 355  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 371  
PIC18FXX8  
BZ ............................................................................ 292  
CALL ........................................................................ 292  
CLRF ....................................................................... 293  
CLRWDT ................................................................. 293  
COMF ...................................................................... 294  
CPFSEQ .................................................................. 294  
CPFSGT .................................................................. 295  
CPFSLT ................................................................... 295  
DAW ........................................................................ 296  
DCFSNZ .................................................................. 297  
DECF ....................................................................... 296  
DECFSZ .................................................................. 297  
GOTO ...................................................................... 298  
INCF ........................................................................ 298  
INCFSZ .................................................................... 299  
INFSNZ .................................................................... 299  
IORLW ..................................................................... 300  
IORWF ..................................................................... 300  
LFSR ........................................................................ 301  
MOVF ...................................................................... 301  
MOVFF .................................................................... 302  
MOVLB .................................................................... 302  
MOVLW ................................................................... 303  
MOVWF ................................................................... 303  
MULLW .................................................................... 304  
MULWF .................................................................... 304  
NEGF ....................................................................... 305  
NOP ......................................................................... 305  
POP ......................................................................... 306  
PUSH ....................................................................... 306  
RCALL ..................................................................... 307  
RESET ..................................................................... 307  
RETFIE .................................................................... 308  
RETLW .................................................................... 308  
RETURN .................................................................. 309  
RLCF ....................................................................... 309  
RLNCF ..................................................................... 310  
RRCF ....................................................................... 310  
RRNCF .................................................................... 311  
SETF ........................................................................ 311  
SLEEP ..................................................................... 312  
SUBFWB ................................................................. 312  
SUBLW .................................................................... 313  
SUBWF .................................................................... 313  
SUBWFB ................................................................. 314  
SWAPF .................................................................... 314  
TBLRD ..................................................................... 315  
TBLWT ..................................................................... 316  
TSTFSZ ................................................................... 317  
XORLW .................................................................... 317  
XORWF ................................................................... 318  
Summary Table ....................................................... 280  
I
I/O Ports .............................................................................93  
2
I C Mode ..........................................................................150  
ACK Pulse ........................................................ 154, 155  
Acknowledge Sequence Timing ...............................174  
Baud Rate Generator ...............................................167  
Bus Collision and Arbitration ....................................175  
Bus Collision During a Repeated  
START Condition .............................................179  
Bus Collision During a START Condition .................177  
Bus Collision During a STOP Condition ...................180  
Clock Arbitration .......................................................168  
Clock Stretching .......................................................160  
Effect of a RESET ....................................................175  
General Call Address Support .................................164  
Master Mode ............................................................165  
Operation .........................................................166  
Reception .........................................................171  
Repeated START Condition Timing .................170  
Master Mode START Condition Timing ...................169  
Master Mode Transmission ......................................171  
Multi-Master Mode ...................................................175  
Read/Write bit Information (R/W bit) ................ 154, 155  
Registers ..................................................................150  
Serial Clock (RC3/SCK/SCL) ...................................155  
Slave Mode ..............................................................154  
Addressing .......................................................154  
Reception .........................................................155  
Transmission ....................................................155  
SLEEP Operation .....................................................175  
STOP Condition Timing ...........................................174  
ICEPIC In-Circuit Emulator ..............................................320  
ID Locations ............................................................. 261, 275  
INCF .................................................................................298  
INCFSZ ............................................................................299  
In-Circuit Debugger ..........................................................275  
In-Circuit Serial Programming (ICSP) ...................... 261, 275  
Indirect Addressing ............................................................56  
FSR Register ..............................................................55  
INDF Register ............................................................55  
Operation ...................................................................55  
INFSNZ ............................................................................299  
Initialization Conditions for All Registers ............................30  
Instruction Cycle .................................................................41  
Instruction Flow/Pipelining .................................................41  
Instruction Format ............................................................279  
Instruction Set ..................................................................277  
ADDLW ....................................................................283  
ADDWF ....................................................................283  
ADDWFC .................................................................284  
ANDLW ....................................................................284  
ANDWF ....................................................................285  
BC ............................................................................285  
BCF ..........................................................................286  
BN ............................................................................286  
BNC ..........................................................................287  
BNN ..........................................................................287  
BNOV .......................................................................288  
BNZ ..........................................................................288  
BOV ..........................................................................291  
BRA ..........................................................................289  
BSF ..........................................................................289  
BTFSC .....................................................................290  
BTFSS ......................................................................290  
BTG ..........................................................................291  
INTCON Register  
RBIF bit ...................................................................... 95  
2
Inter-Integrated Circuit. See I C  
Interrupt Sources  
A/D Conversion Complete ....................................... 240  
CAN Module ............................................................ 234  
Capture Complete (CCP) ......................................... 123  
Compare Complete (CCP) ....................................... 124  
Interrupt-on-Change (RB7:RB4) ................................ 95  
TMR0 Overflow ........................................................ 109  
TMR1 Overflow .................................................111, 113  
TMR2 to PR2 Match ................................................ 116  
TMR2 to PR2 Match (PWM) .............................115, 126  
TMR3 Overflow .................................................117, 119  
DS41159B-page 372  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
Interrupt-on-Change (RB7:RB4) Flag  
SPI Master/Slave Connection .................................. 145  
SPI Mode ................................................................. 141  
SPI Slave Mode ....................................................... 147  
TMR2 Output for Clock Shift .............................115, 116  
Typical Connection .................................................. 145  
(RBIF bit) .................................................................... 95  
Interrupts ............................................................................ 77  
Context Saving During ............................................... 92  
Enable Registers ........................................................ 85  
Flag Registers ............................................................ 82  
INT ............................................................................. 92  
PORTB Interrupt-on-Change ..................................... 92  
Priority Registers ........................................................ 88  
TMR0 ......................................................................... 92  
Interrupts, Flag bits  
2
MSSP. See also I C Mode, SPI Mode.  
MULLW ............................................................................ 304  
MULWF ............................................................................ 304  
N
NEGF ............................................................................... 305  
NOP ................................................................................. 305  
Normal Operation Mode (CAN Module) ........................... 222  
CCP1 Flag (CCP1IF bit) ...........................122, 123, 124  
Interrupts, Flag bits  
A/D Converter Flag (ADIF bit) .................................. 239  
IORLW ............................................................................. 300  
IORWF ............................................................................. 300  
O
OPCODE Field Descriptions ............................................ 278  
OPTION_REG Register  
K
PSA bit ..................................................................... 109  
T0CS bit ................................................................... 109  
T0PS2:T0PS0 bits ................................................... 109  
T0SE bit ................................................................... 109  
Oscillator  
KEELOQ Evaluation and Programming Tools ................... 322  
L
LFSR ................................................................................ 301  
Listen Only Mode (CAN Module) ..................................... 222  
Lookup Tables .................................................................... 43  
Computed GOTO ....................................................... 43  
Table Reads/Table Writes ......................................... 43  
Loopback Mode (CAN Module) ........................................ 222  
Low Voltage Detect .......................................................... 255  
Characteristics ......................................................... 332  
Characteristics (diagram) ......................................... 332  
Current Consumption ............................................... 259  
Effects of a RESET .................................................. 259  
Operation ................................................................. 258  
Operation During SLEEP ......................................... 259  
Reference Voltage Set Point .................................... 259  
Typical Application ................................................... 255  
Low Voltage ICSP Programming ..................................... 275  
LVD. See Low Voltage Detect.  
Effects of SLEEP Mode ............................................. 23  
Power-up Delays ....................................................... 23  
Switching Feature ...................................................... 20  
System Clock Switch bit ............................................ 20  
Transitions ................................................................. 21  
Oscillator Configurations .................................................... 17  
Crystal Oscillator, Ceramic Resonators ..................... 17  
EC .............................................................................. 17  
ECIO .......................................................................... 17  
HS .............................................................................. 17  
HS4 ............................................................................ 17  
LP .............................................................................. 17  
RC ........................................................................17, 18  
RCIO .......................................................................... 17  
XT .............................................................................. 17  
Oscillator Selection .......................................................... 261  
Oscillator, Timer1 ..............................................111, 113, 119  
Oscillator, WDT ................................................................ 268  
M
Master Synchronous Serial Port (MSSP). See MSSP.  
Master Synchronous Serial Port. See MSSP.  
P
Memory Organization ......................................................... 37  
Data Memory ............................................................. 44  
Internal Program Memory Operation ......................... 37  
Program Memory ....................................................... 37  
Migrating from other PICmicro Devices ........................... 366  
MOVF ............................................................................... 301  
MOVFF ............................................................................. 302  
MOVLB ............................................................................. 302  
MOVLW ............................................................................ 303  
MOVWF ........................................................................... 303  
MPLAB C17 and MPLAB C18 C Compilers ..................... 319  
MPLAB ICD In-Circuit Debugger ...................................... 321  
MPLAB ICE High Performance Universal  
Packaging Information ..................................................... 357  
Details ...................................................................... 359  
Marking .................................................................... 357  
Parallel Slave Port (PSP) ..........................................100, 105  
Associated Registers ............................................... 106  
PORTD .................................................................... 105  
PSP Mode Select (PSPMODE) bit .......................... 100  
RE2/CS .................................................................... 105  
PIC18FXX8 Voltage-Frequency Graph  
(Industrial) ................................................................ 326  
PIC18LFXX8 Voltage-Frequency Graph  
(Industrial) ................................................................ 326  
PICDEM 1 Low Cost PICmicro  
In-Circuit Emulator with MPLAB IDE ........................ 320  
MPLAB Integrated Development  
Demonstration Board ............................................... 321  
PICDEM 17 Demonstration Board ................................... 322  
PICDEM 2 Low Cost PIC16CXX  
Demonstration Board ............................................... 321  
PICDEM 3 Low Cost PIC16CXXX  
Environment Software .............................................. 319  
MPLINK Object Linker/MPLIB Object Librarian ............... 320  
MSSP ............................................................................... 141  
Control Registers ..................................................... 141  
Enabling SPI I/O ...................................................... 145  
Demonstration Board ............................................... 322  
PICSTART Plus Entry Level Development  
2
I C Mode Operation ................................................. 154  
Programmer ............................................................. 321  
Operation ................................................................. 144  
Overview .................................................................. 141  
SPI Master Mode ..................................................... 146  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 373  
PIC18FXX8  
Pin Functions  
PORTD  
Associated Register Summary ................................ 101  
MCLR/VPP ..................................................................10  
OSC1/CLKI ................................................................10  
OSC2/CLKO/RA6 .......................................................10  
RA0/AN0/CVREF ........................................................11  
RA1/AN1 ....................................................................11  
RA2/AN2/VREF- ..........................................................11  
RA3/AN3/VREF+ .........................................................11  
RA4/T0CKI .................................................................11  
RA5/AN4/SS/LVDIN ...................................................11  
RA6 ............................................................................11  
RB0/INT0 ...................................................................12  
RB1/INT1 ...................................................................12  
RB2/CANTX ...............................................................12  
RB3/CANRX ...............................................................12  
RB4 ............................................................................12  
RB5/PGM ...................................................................12  
RB6/PGC ...................................................................12  
RB7/PGD ...................................................................12  
RC0/T1OSO/T1CKI ....................................................13  
RC1/T1OSI .................................................................13  
RC2/CCP1 .................................................................13  
RC3/SCK/SCL ............................................................13  
RC4/SDI/SDA .............................................................13  
RC5/SDO ...................................................................13  
RC6/TX/CK ................................................................13  
RC7/RX/DT ................................................................13  
RD0/PSP0/C1IN+ ......................................................14  
RD1/PSP1/C1IN- .......................................................14  
RD2/PSP2/C2IN+ ......................................................14  
RD3/PSP3/C2IN- .......................................................14  
RD4/PSP4/ECCP/PA .................................................14  
RD5/PSP5/PB ............................................................14  
RD6/PSP6/PC ............................................................14  
RD7/PSP7/PD ............................................................14  
RE0/AN5/RD ..............................................................15  
RE1/AN6/WR/C1OUT ................................................15  
RE2/AN7/CS/C2OUT .................................................15  
Pinout I/O Descriptions ......................................................10  
Pointer, FSRn .....................................................................55  
POP ..................................................................................306  
POR. See Power-on Reset.  
Functions ................................................................. 101  
LATD Register ......................................................... 100  
Parallel Slave Port (PSP) Function .......................... 100  
PORTD Register ...................................................... 100  
TRISD Register ........................................................ 100  
PORTE  
Associated Register Summary ................................ 104  
Functions ................................................................. 103  
LATE Register ......................................................... 102  
PORTE Register ...................................................... 102  
PSP Mode Select (PSPMODE) bit .......................... 100  
RE2/CS .................................................................... 105  
TRISE Register ........................................................ 102  
Postscaler, WDT  
Assignment (PSA bit) ............................................... 109  
Rate Select (T0PS2:T0PS0 bits) ............................. 109  
Power-down Mode. See SLEEP  
Power-on Reset (POR) ...............................................26, 261  
MCLR ......................................................................... 26  
Oscillator Start-up Timer (OST) ..........................26, 261  
PLL Lock Time-out ..................................................... 26  
Power-up Timer (PWRT) ....................................26, 261  
Time-out Sequence ................................................... 27  
Power-up Delays  
OSC1 and OSC2 Pin States in SLEEP Mode ........... 23  
Prescaler, Capture ........................................................... 123  
Prescaler, Timer0 ............................................................. 109  
Assignment (PSA bit) ............................................... 109  
Rate Select (T0PS2:T0PS0 bits) ............................. 109  
Prescaler, Timer2 ............................................................. 126  
PRO MATE II Universal Device Programmer .................. 321  
Product Identification System .......................................... 381  
Program Counter  
PCL Register ............................................................. 40  
PCLATH Register ...................................................... 40  
PCLATU Register ...................................................... 40  
Program Memory ............................................................... 37  
Fast Register Stack ................................................... 40  
Instructions ................................................................ 41  
Two-Word .......................................................... 43  
Map and Stack for PIC18F248/448 ........................... 37  
Map and Stack for PIC18F258/458 ........................... 37  
PUSH and POP Instructions ...................................... 40  
Return Address Stack ................................................ 38  
Return Stack Pointer (STKPTR) ................................ 38  
Stack Full/Underflow Resets ...................................... 40  
Top-of-Stack Access .................................................. 38  
Program Verification and Code Protection ....................... 272  
Associated Registers Summary ............................... 272  
Configuration Register Protection ............................ 275  
Data EEPROM Code Protection .............................. 275  
Program Memory Code Protection .......................... 273  
Programming, Device Instructions ................................... 277  
PUSH ............................................................................... 306  
PWM (CCP Module) ........................................................ 126  
CCPR1H:CCPR1L Registers ................................... 126  
Duty Cycle ............................................................... 126  
Example Frequencies/Resolutions .......................... 127  
Output Diagram ....................................................... 126  
Period ...................................................................... 126  
Registers Associated with PWM and Timer2 ........... 127  
Setup for PWM Operation ........................................ 127  
TMR2 to PR2 Match .........................................115, 126  
PORTA  
Associated Register Summary ...................................94  
Functions ....................................................................94  
LATA Register ............................................................93  
PORTA Register ........................................................93  
TRISA Register ..........................................................93  
PORTB  
Associated Registers .................................................97  
Functions ....................................................................97  
LATB Register ............................................................95  
PORTB Register ........................................................95  
RB7:RB4 Interrupt-on-Change Flag  
(RBIF bit) ............................................................95  
TRISB Register ..........................................................95  
PORTC  
Associated Registers .................................................99  
Functions ....................................................................99  
LATC Register ............................................................98  
PORTC Register ........................................................98  
RC3/SCK/SCL Pin ...................................................155  
RC7/RX/DT Pin ........................................................183  
TRISC Register .................................................. 98, 181  
DS41159B-page 374  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
PWM (ECCP Module) ...................................................... 132  
Associated Registers ............................................... 139  
Direction Change in Full-Bridge Output Mode ......... 136  
Enhanced CCP Auto-Shutdown ............................... 140  
Full-Bridge Application Example .............................. 136  
Full-Bridge Mode ...................................................... 135  
Full-Bridge PWM Output Diagram ........................... 135  
Half-Bridge Mode ..................................................... 134  
Half-Bridge Output Diagram ..................................... 134  
Half-Bridge Output Mode Applications Example ...... 134  
Output Configurations .............................................. 132  
Output Polarity Configuration ................................... 138  
Output Relationships Diagram ................................. 133  
Programmable Deadband Delay .............................. 138  
PWM Direction Change at Near 100%  
EECON1 (EEPROM Control 1) ............................60, 67  
INTCON (Interrupt Control) ........................................ 79  
INTCON2 (Interrupt Control 2) ................................... 80  
INTCON3 (Interrupt Control 3) ................................... 81  
IPR1 (Peripheral Interrupt Priority 1) ......................... 88  
IPR2 (Peripheral Interrupt Priority 2) ......................... 89  
IPR3 (Peripheral Interrupt Priority 3) ......................... 90  
IPR3 (Peripheral Interrupt Priority) .......................... 220  
LVDCON (LVD Control) ........................................... 257  
OSCCON (Oscillator Control) .................................... 20  
PIE1 (Peripheral Interrupt Enable 1) .......................... 85  
PIE2 (Peripheral Interrupt Enable 2) .......................... 86  
PIE3 (Peripheral Interrupt Enable 3) .......................... 87  
PIE3 (Peripheral Interrupt Enable) ........................... 219  
PIR1 (Peripheral Interrupt Request (Flag) 1) ............. 82  
PIR2 (Peripheral Interrupt Request (Flag) 2) ............. 83  
PIR3 (Peripheral Interrupt Flag) ............................... 218  
PIR3 (Peripheral Interrupt Request (Flag) 3) ............. 84  
RCON (Reset Control) ..........................................58, 91  
RCSTA (USART Receive Status) ............................ 182  
RXB0CON (Receive Buffer 0 Control) ..................... 208  
RXB1CON (Receive Buffer 1 Control) ..................... 209  
RXBnDLC (Receive Buffer n  
Duty Cycle Diagram ......................................... 137  
PWM Direction Change Diagram ............................. 137  
Setup for PWM Operation ........................................ 139  
Standard Mode ........................................................ 132  
Start-up Considerations ........................................... 138  
System Implementation ........................................... 138  
Q
Q Clock ............................................................................ 126  
Data Length Code) .......................................... 211  
RXBnDm (Receive Buffer n Data  
Field Byte m) ................................................... 211  
RXBnEIDH (Receive Buffer n Extended  
R
RAM. See Data Memory.  
RCALL .............................................................................. 307  
RCON Register  
Identifier,  
High Byte) ........................................................ 210  
RXBnEIDL (Receive Buffer n Extended  
Significance of Status bits vs.  
Initialization Condition ........................................ 27  
RCSTA Register ............................................................... 181  
SPEN bit .................................................................. 181  
Receiver Warning ............................................................. 235  
Register File ....................................................................... 44  
Register File Summary ....................................................... 49  
Registers  
Identifier, Low Byte) ......................................... 210  
RXBnSIDH (Receive Buffer n Standard  
Identifier, High Byte) ........................................ 209  
RXBnSIDL (Receive Buffer n Standard  
Identifier, Low Byte) ......................................... 210  
RXERRCNT (Receive Error Count) ......................... 212  
RXFnEIDH (Receive Acceptance Filter n  
ADCON0 (A/D Control 0) ......................................... 237  
ADCON1 (A/D Control 1) ......................................... 238  
BRGCON1 (Baud Rate Control 1) ........................... 215  
BRGCON2 (Baud Rate Control 2) ........................... 216  
BRGCON3 (Baud Rate Control 3) ........................... 217  
CANCON (CAN Control) .......................................... 199  
CANSTAT (CAN Status) .......................................... 200  
CCP1CON (CCP1 Control) ...................................... 121  
CIOCON (CAN I/O Control) ..................................... 217  
CMCON (Comparator Control) ................................ 245  
COMSTAT (CAN Communication Status) ............... 203  
CONFIG1H (Configuration 1 High) .......................... 262  
CONFIG2H (Configuration 2 High) .......................... 263  
CONFIG2L (Configuration 2 Low) ............................ 262  
CONFIG4L (Configuration 4 Low) ............................ 263  
CONFIG5H (Configuration 5 High) .......................... 264  
CONFIG5L (Configuration 5 Low) ............................ 264  
CONFIG6H (Configuration 6 High) .......................... 265  
CONFIG6L (Configuration 6 Low) ............................ 265  
CONFIG7H (Configuration 7 High) .......................... 266  
CONFIG7L (Configuration 7 Low) ............................ 266  
CVRCON (Comparator Voltage  
Extended Identifier, High Byte) ........................ 213  
RXFnEIDL (Receive Acceptance Filter n  
Extended Identifier, Low Byte) ......................... 213  
RXFnSIDH (Receive Acceptance Filter n  
Standard Identifier Filter, High Byte) ............... 212  
RXFnSIDL (Receive Acceptance Filter n  
Standard Identifier Filter, Low Byte) ................ 212  
RXMnEIDH (Receive Acceptance Mask n  
Extended Identifier Mask, High Byte) .............. 214  
RXMnEIDL (Receive Acceptance Mask n  
Extended Identifier Mask, Low Byte) ............... 214  
RXMnSIDH (Receive Acceptance Mask n  
Standard Identifier Mask, High Byte) ............... 213  
RXMnSIDL (Receive Acceptance Mask n  
Standard Identifier Mask, Low Byte) ................ 214  
SSPCON1 (MSSP Control 1) .................................. 143  
2
SSPCON1 (MSSP Control 1) (I C Mode ................. 152  
2
SSPCON2 (MSSP Control 2) (I C Mode) ................ 153  
SSPSTAT (MSSP Status) ........................................ 142  
2
SSPSTAT (MSSP Status) (I C Mode) ..................... 151  
STATUS .................................................................... 57  
STKPTR (Stack Pointer) ............................................ 39  
T0CON (Timer0 Control) ......................................... 107  
T1CON (Timer1 Control) ......................................... 111  
T2CON (Timer2 Control) ......................................... 115  
T3CON (Timer3 Control) ......................................... 117  
TRISE (PORTE Direction/PSP Control) .................. 103  
TXBnCON (Transmit Buffer n Control) .................... 204  
Reference Control) ........................................... 251  
Device ID Register 1 ................................................ 267  
Device ID Register 2 ................................................ 267  
ECCP1CON (ECCP1 Control) ................................. 129  
ECCP1DEL (PWM Delay) ........................................ 138  
ECCPAS (Enhanced Capture/Compare/PWM  
Auto-Shutdown Control) ................................... 140  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 375  
PIC18FXX8  
TXBnDLC (Transmit Buffer n Data  
Length Code) ...................................................207  
TXBnDm (Transmit Buffer n  
Data Field Byte m) ...........................................206  
TXBnEIDH (Transmit Buffer n  
Extended Identifier, High Byte) ........................205  
TXBnEIDL (Transmit Buffer n  
Slave Select Synchronization .................................. 147  
SLEEP Operation .................................................... 149  
SPI Clock ................................................................. 146  
SSPBUF Register .................................................... 146  
SSPSR Register ...................................................... 146  
SSPOV bit ........................................................................ 171  
SSPSTAT Register  
Extended Identifier, Low Byte) .........................206  
TXBnSIDH (Transmit Buffer n  
Standard Identifier, High Byte) .........................205  
TXBnSIDL (Transmit Buffer n  
R/W bit ..............................................................154, 155  
SUBFWB ......................................................................... 312  
SUBLW ............................................................................ 313  
SUBWF ............................................................................ 313  
SUBWFB ......................................................................... 314  
SWAPF ............................................................................ 314  
Standard Identifier, Low Byte) ..........................205  
TXERRCNT (Transmit Error Count) .........................207  
TXSTA (USART Transmit Status) ............................181  
WDTCON (Watchdog Timer Control) .......................268  
RESET ............................................................... 25, 261, 307  
MCLR Reset During Normal Operation ......................25  
MCLR Reset During SLEEP ......................................25  
Power-on Reset (POR) ..............................................25  
Programmable Brown-out Reset (PBOR) ..................25  
RESET Instruction ......................................................25  
Stack Full Reset .........................................................25  
Stack Underflow Reset ...............................................25  
Watchdog Timer (WDT) Reset ...................................25  
RETFIE ............................................................................308  
RETLW .............................................................................308  
RETURN ..........................................................................309  
Revision History ...............................................................365  
RLCF ................................................................................309  
RLNCF .............................................................................310  
RRCF ...............................................................................310  
RRNCF .............................................................................311  
T
Table Pointer Operations (table) ........................................ 68  
TBLRD ............................................................................. 315  
TBLWT ............................................................................. 316  
Timer0 .............................................................................. 107  
16-bit Mode Timer Reads and Writes ...................... 109  
Clock Source Edge Select (T0SE bit) ...................... 109  
Clock Source Select (T0CS bit) ............................... 109  
Operation ................................................................. 109  
Overflow Interrupt .................................................... 109  
Prescaler .................................................................. 109  
Prescaler. See Prescaler, Timer0  
Switching Prescaler Assignment ............................. 109  
Timer1 .............................................................................. 111  
Associated Registers ............................................... 113  
Operation ................................................................. 112  
Oscillator ...........................................................111, 113  
Overflow Interrupt .............................................111, 113  
Special Event Trigger (CCP) ............................113, 124  
Special Event Trigger (ECCP) ................................. 131  
TMR1H Register ...................................................... 111  
TMR1L Register ....................................................... 111  
TMR3L Register ....................................................... 117  
Timer2 .............................................................................. 115  
Associated Registers ............................................... 116  
Operation ................................................................. 115  
Postscaler. See Postscaler, Timer2  
S
Sales and Support ............................................................381  
SCI. See USART  
SCK pin ............................................................................141  
SDI pin .............................................................................141  
SDO pin ............................................................................141  
Serial Clock (SCK) pin .....................................................141  
Serial Communication Interface. See USART  
Serial Peripheral Interface. See SPI  
PR2 Register ....................................................115, 126  
Prescaler. See Prescaler, Timer2  
SETF ................................................................................311  
Slave Select (SS) Pin .......................................................141  
Slave Select Synchronization ...........................................147  
Slave Select, SS pin .........................................................141  
SLEEP .............................................................. 261, 270, 312  
Software Simulator (MPLAB SIM) ....................................320  
Special Event Trigger. See Compare  
Special Features of the CPU ............................................261  
Configuration bits .....................................................261  
Configuration bits and Device IDs ............................261  
Configuration Registers .................................... 262267  
Special Function Register Map ..........................................47  
Special Function Registers ................................................44  
SPI Mode  
SSP Clock Shift ................................................115, 116  
TMR2 Register ......................................................... 115  
TMR2 to PR2 Match Interrupt ...................115, 116, 126  
Timer3 .............................................................................. 117  
Associated Registers ............................................... 119  
Operation ................................................................. 118  
Oscillator .................................................................. 119  
Overflow Interrupt .............................................117, 119  
Special Event Trigger (CCP) ................................... 119  
TMR3H Register ...................................................... 117  
Timing Conditions ............................................................ 336  
Load Conditions for Device Specifications .............. 336  
Temperature and Voltage  
Associated Registers ...............................................149  
Bus Mode Compatibility ...........................................149  
Effects of a RESET ..................................................149  
Master Mode ............................................................146  
Master/Slave Connection .........................................145  
Serial Clock ..............................................................141  
Serial Data In (SDI) pin ............................................141  
Serial Data Out (SDO) pin ........................................141  
Slave Mode ..............................................................147  
Slave Select .............................................................141  
Specifications - AC .......................................... 336  
Timing Diagrams  
A/D Conversion ........................................................ 353  
Acknowledge Sequence .......................................... 174  
Baud Rate Generator with Clock Arbitration ............ 168  
BRG Reset Due to SDA Arbitration During  
START Condition ............................................. 178  
Brown-out Reset (BOR) and Low  
Voltage Detect ................................................. 339  
DS41159B-page 376  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
Bus Collision During a Repeated  
Time-out Sequence on Power-up  
START Condition (Case 1) .............................. 179  
Bus Collision During a Repeated  
(MCLR Not Tied to VDD): Case 2 ...................... 28  
Time-out Sequence on Power-up  
START Condition (Case2) ............................... 179  
Bus Collision During a STOP  
Condition (Case 1) ........................................... 180  
Bus Collision During a STOP  
Condition (Case 2) ........................................... 180  
Bus Collision During START  
Condition (SCL = 0) ......................................... 178  
Bus Collision During START  
Condition (SDA Only) ....................................... 177  
Bus Collision for Transmit and  
Acknowledge .................................................... 176  
Capture/Compare/PWM  
(MCLR Tied to VDD Via RC Network) ................ 28  
Timer0 and Timer1 External Clock .......................... 340  
Transition Between Timer1 and OSC1  
(HS with PLL) .................................................... 22  
Transition Between Timer1 and OSC1  
(HS, XT, LP) ...................................................... 21  
Transition Between Timer1 and OSC1  
(RC, EC) ............................................................ 22  
Transition from OSC1 to Timer1 Oscillator ................ 21  
USART Asynchronous Reception ............................ 190  
USART Asynchronous Transmission ...................... 188  
USART Asynchronous Transmission  
(CCP1 and ECCP1) ......................................... 341  
CLKO and I/O .......................................................... 338  
Clock Synchronization ............................................. 161  
External Clock .......................................................... 337  
First START bit Timing ............................................. 169  
(Back to Back) ................................................. 188  
USART Synchronous Receive (Master/Slave) ........ 351  
USART Synchronous Reception  
(Master Mode, SREN) ..................................... 193  
USART Synchronous Transmission ........................ 192  
USART Synchronous Transmission  
2
I C Bus Data ............................................................ 347  
2
I C Bus START/STOP bits ...................................... 347  
(Master/Slave) ................................................. 351  
USART Synchronous Transmission  
2
I C Master Mode (Reception, 7-bit Address) ........... 173  
2
I C Master Mode (Transmission, 7 or  
(Through TXEN) .............................................. 192  
Wake-up from SLEEP via Interrupt .......................... 271  
Timing Diagrams and Specifications ............................... 337  
A/D Conversion Requirements ................................ 353  
Capture/Compare/PWM Requirements  
10-bit Address) ................................................. 172  
I C Slave Mode (Transmission,  
2
10-bit Address) ................................................. 159  
I C Slave Mode (Transmission,  
2
7-bit Address) ................................................... 157  
I C Slave Mode SEN = 1 (Reception,  
10-bit Address) ................................................. 163  
I C Slave Mode with SEN = 0 (Reception,  
10-bit Address) ................................................. 158  
I C Slave Mode with SEN = 0 (Reception,  
7-bit Address) ................................................... 156  
I C Slave Mode with SEN = 1 (Reception,  
(CCP1 and ECCP1) ......................................... 341  
CLKO and I/O Timing Requirements ....................... 338  
Example SPI Mode Requirements  
(Master Mode, CKE = 0) .................................. 343  
Example SPI Mode Requirements  
2
2
2
(Master Mode, CKE = 1) .................................. 344  
Example SPI Mode Requirements  
2
(Slave Mode, CKE = 0) .................................... 345  
Example SPI Slave Mode Requirements (CKE = 1) 346  
External Clock Timing Requirements ...................... 337  
7-bit Address) ................................................... 162  
Low Voltage Detect .................................................. 258  
2
2
Master SSP I C Bus Data ........................................ 349  
I C Bus Data Requirements (Slave Mode) .............. 348  
2
2
Master SSP I C Bus START/STOP bits .................. 349  
I C Bus START/STOP bits Requirements  
Parallel Slave Port (PIC18F248  
(Slave Mode) ................................................... 347  
2
and PIC18F458) ............................................... 342  
Parallel Slave Port Read Waveforms ....................... 106  
Parallel Slave Port Write Waveforms ....................... 105  
Repeat START Condition ........................................ 170  
RESET, Watchdog Timer (WDT), Oscillator  
Start-up Timer (OST), Power-up Timer  
(PWRT) ............................................................ 339  
Slave Mode General Call Address Sequence  
Master SSP I C Bus Data Requirements ................ 350  
2
Master SSP I C Bus START/STOP bits  
Requirements .................................................. 349  
Parallel Slave Port Requirements  
(PIC18F248 and PIC18F458) .......................... 342  
PLL Clock ................................................................ 338  
RESET, Watchdog Timer, Oscillator Start-up  
Timer, Power-up Timer, Brown-out Reset  
(7 or 10-bit Address Mode) .............................. 164  
Slave Synchronization ............................................. 147  
Slow Rise Time (MCLR Tied to VDD  
and Low Voltage Detect Requirements ........... 339  
Timer0 and Timer1 External  
Clock Requirements ........................................ 340  
USART Synchronous Transmission  
Via RC Network) ................................................ 29  
SPI Master Mode (CKE = 0) .................................... 343  
SPI Master Mode (CKE = 1) .................................... 344  
SPI Mode (Master Mode) ......................................... 146  
SPI Mode (Slave Mode with CKE = 0) ..................... 148  
SPI Mode (Slave Mode with CKE = 1) ..................... 148  
SPI Slave Mode (CKE = 0) ...................................... 345  
SPI Slave Mode (CKE = 1) ...................................... 346  
STOP Condition Receive or Transmit Mode ............ 175  
Time-out Sequence on POR w/ PLL Enabled  
Requirements .................................................. 351  
TSTFSZ ........................................................................... 317  
TXSTA Register  
BRGH bit ................................................................. 183  
(MCLR Tied to VDD Via RC Network) ................ 29  
Time-out Sequence on Power-up  
(MCLR Not Tied to VDD): Case 1 ....................... 28  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 377  
PIC18FXX8  
U
V
USART .............................................................................181  
Asynchronous Mode ................................................187  
Asynchronous Reception ................................. 189, 190  
Asynchronous Transmission ....................................187  
Associated Registers .......................................188  
Baud Rate Generator (BRG) ....................................183  
Associated Registers .......................................183  
Baud Rate Error, Calculating ...........................183  
Baud Rate Formula ..........................................183  
Baud Rates for Asynchronous Mode  
Voltage Reference Specifications .................................... 334  
W
Wake-up from SLEEP ...............................................261, 270  
Using Interrupts ....................................................... 270  
Watchdog Timer (WDT) ............................................261, 268  
Associated Registers ............................................... 269  
Control Register ....................................................... 268  
Postscaler ................................................................ 269  
Programming Considerations .............................66, 268  
RC Oscillator ............................................................ 268  
Time-out Period ....................................................... 268  
WCOL ...............................................................169, 171, 174  
WCOL Status Flag ........................................................... 169  
WDT. See Watchdog Timer. ............................................ 268  
WWW, On-Line Support ...................................................... 5  
(BRGH = 0) ..............................................185  
Baud Rates for Asynchronous Mode  
(BRGH = 1) ..............................................186  
Baud Rates for Synchronous Mode .................184  
High Baud Rate Select (BRGH bit) ..................183  
Sampling ..........................................................183  
Serial Port Enable (SPEN) bit ..................................181  
Setting Up 9-bit Mode with Address Detect .............189  
Synchronous Master Mode ......................................191  
Synchronous Master Reception ...............................193  
Associated Registers .......................................193  
Synchronous Master Transmission ..........................191  
Associated Registers .......................................191  
Synchronous Slave Mode ........................................194  
Synchronous Slave Reception ......................... 194, 195  
Synchronous Slave Transmission  
X
XORLW ............................................................................ 317  
XORWF ........................................................................... 318  
Associated Registers .......................................195  
Synchronous Slave Transmit ...................................194  
DS41159B-page 378  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip's development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-480-792-7302 for the rest of the world.  
ConnectingtotheMicrochipInternetWebSite  
013001  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User’s Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Systems,  
technical information and more  
• Listing of seminars and events  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 379  
PIC18FXX8  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS41159B  
Device:  
PIC18FXX8  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS41159B-page 380  
Preliminary  
2002 Microchip Technology Inc.  
PIC18FXX8  
PIC18FXX8 PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature Package  
Range  
Pattern  
a)  
PIC18LF258 - I/L 301 = Industrial temp., PLCC  
package, Extended VDD limits, QTP pattern  
#301.  
b)  
c)  
PIC18LF458 - I/PT = Industrial temp., TQFP  
package, Extended VDD limits.  
Device  
PIC18F248/258(1), PIC18F448/458(1), PIC18F248/258T(2)  
PIC18F448/458T(2)  
,
PIC18F258 - E/L = Extended temp., PLCC  
package, normal VDD limits.  
;
VDD range 4.2V to 5.5V  
PIC18LF248/258(1), PIC18LF448/458(1), PIC18LF248/258T(2)  
PIC18LF448/458T(2);  
,
VDD range 2.0V to 5.5V  
Temperature Range  
Package  
I
E
=
=
-40°C to +85°C (Industrial)  
-40°C to +125°C (Extended)  
Note 1:  
2:  
F
LF  
T
=
=
=
Standard Voltage Range  
Wide Voltage Range  
in tape and reel PLCC, and TQFP  
packages only.  
PT  
L
SO  
SP  
P
=
=
=
=
=
TQFP (Thin Quad Flatpack)  
PLCC  
SOIC  
Skinny Plastic DIP  
PDIP  
Pattern  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2002 Microchip Technology Inc.  
Preliminary  
DS41159B-page 381  
M
WORLDWIDE SALES AND SERVICE  
Japan  
AMERICAS  
ASIA/PACIFIC  
Microchip Technology Japan K.K.  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Korea  
Rocky Mountain  
China - Beijing  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-4338  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
Bei Hai Wan Tai Bldg.  
Atlanta  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
Singapore, 188980  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Taiwan  
Microchip Technology (Barbados) Inc.,  
Taiwan Branch  
11F-3, No. 207  
Tel: 770-640-0034 Fax: 770-640-0307  
China - Chengdu  
Boston  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Chengdu 610016, China  
Tel: 86-28-86766200 Fax: 86-28-86766599  
China - Fuzhou  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Fuzhou 350001, China  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423 Fax: 972-818-2924  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
EUROPE  
Denmark  
Detroit  
Tri-Atria Office Building  
Tel: 86-591-7503506 Fax: 86-591-7503521  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
China - Shanghai  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
China - Shenzhen  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
Rm. 1315, 13/F, Shenzhen Kerry Centre,  
Renminnan Lu  
Shenzhen 518001, China  
Tel: 86-755-2350361 Fax: 86-755-2366086  
Kokomo  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
Los Angeles  
France  
Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Microchip Technology GmbH  
Gustav-Heinemann Ring 125  
D-81739 Munich, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
New York  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
San Jose  
China - Hong Kong SAR  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Italy  
Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Tel: 408-436-7950 Fax: 408-436-7955  
Toronto  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
India  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
Microchip Technology Inc.  
India Liaison Office  
United Kingdom  
Microchip Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
Austria  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Microchip Technology Austria GmbH  
Durisolstrasse 2  
A-4600 Wels  
Austria  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
05/16/02  
DS41159B-page 382  
Preliminary  
2002 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY