PIC18F8585-E/PT [MICROCHIP]

64/68/80-Pin High-Performance, 64-Kbyte Enhanced Flash Microcontrollers with ECAN Module; 64 /68/ 80引脚高性能, 64 KB的增强型闪存微控制器与ECAN模块
PIC18F8585-E/PT
型号: PIC18F8585-E/PT
厂家: MICROCHIP    MICROCHIP
描述:

64/68/80-Pin High-Performance, 64-Kbyte Enhanced Flash Microcontrollers with ECAN Module
64 /68/ 80引脚高性能, 64 KB的增强型闪存微控制器与ECAN模块

闪存 微控制器和处理器 外围集成电路 时钟
文件: 总496页 (文件大小:8365K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC18F6585/8585/6680/8680  
Data Sheet  
64/68/80-Pin High-Performance,  
64-Kbyte Enhanced Flash  
Microcontrollers with ECAN Module  
2004 Microchip Technology Inc.  
DS30491C  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical  
components in life support systems is not authorized except  
with express written approval by Microchip. No licenses are  
conveyed, implicitly or otherwise, under any intellectual  
property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart and rfPIC are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
AmpLab, FilterLab, microID, MXDEV, MXLAB, PICMASTER,  
SEEVAL, SmartShunt and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Application Maestro, dsPICDEM, dsPICDEM.net,  
dsPICworks, ECAN, ECONOMONITOR, FanSense,  
FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP,  
ICEPIC, Migratable Memory, MPASM, MPLIB, MPLINK,  
MPSIM, PICkit, PICDEM, PICDEM.net, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, rfLAB, Select Mode,  
SmartSensor, SmartTel and Total Endurance are trademarks  
of Microchip Technology Incorporated in the U.S.A. and other  
countries.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2004, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in October  
2003. The Company’s quality system processes and procedures are for  
its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
DS30491C-page ii  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
64/68/80-Pin High-Performance, 64-Kbyte Enhanced Flash  
Microcontrollers with ECAN Module  
High-Performance RISC CPU:  
Analog Features:  
• Source code compatible with the PIC16 and  
PIC17 instruction sets  
• Up to 16-channel, 10-bit Analog-to-Digital  
Converter module (A/D) with:  
• Linear program memory addressing to 2 Mbytes  
• Linear data memory addressing to 4096 bytes  
• 1 Kbyte of data EEPROM  
• Up to 10 MIPs operation:  
- DC – 40 MHz osc./clock input  
- Fast sampling rate  
- Programmable acquisition time  
- Conversion available during Sleep  
• Programmable 16-level Low-Voltage Detection  
(LVD) module:  
- 4 MHz-10 MHz osc./clock input with PLL active  
• 16-bit wide instructions, 8-bit wide data path  
• Priority levels for interrupts  
- Supports interrupt on Low-Voltage Detection  
• Programmable Brown-out Reset (BOR)  
• Dual analog comparators:  
• 31-level, software accessible hardware stack  
• 8 x 8 Single-Cycle Hardware Multiplier  
- Programmable input/output configuration  
ECAN Module Features:  
• Message bit rates up to 1 Mbps  
• Conforms to CAN 2.0B ACTIVE Specification  
• Fully backward compatible with PIC18XXX8 CAN  
modules  
External Memory Interface  
(PIC18F8X8X Devices Only):  
• Address capability of up to 2 Mbytes  
• 16-bit interface  
• Three modes of operation:  
Peripheral Features:  
• High current sink/source 25 mA/25 mA  
• Four external interrupt pins  
- Legacy, Enhanced Legacy, FIFO  
• Three dedicated transmit buffers with prioritization  
• Two dedicated receive buffers  
• Six programmable receive/transmit buffers  
• Three full 29-bit acceptance masks  
• 16 full 29-bit acceptance filters with dynamic association  
• DeviceNet™ data byte filter support  
• Automatic remote frame handling  
• Advanced Error Management features  
• Timer0 module: 8-bit/16-bit timer/counter  
• Timer1 module: 16-bit timer/counter  
• Timer2 module: 8-bit timer/counter  
• Timer3 module: 16-bit timer/counter  
• Secondary oscillator clock option – Timer1/Timer3  
• One Capture/Compare/PWM (CCP) module:  
- Capture is 16-bit, max. resolution 6.25 ns  
(TCY/16)  
Special Microcontroller Features:  
• 100,000 erase/write cycle Enhanced Flash  
program memory typical  
• 1,000,000 erase/write cycle Data EEPROM  
memory typical  
- Compare is 16-bit, max. resolution 100 ns (TCY)  
- PWM output: PWM resolution is 1 to 10-bit  
• Enhanced Capture/Compare/PWM (ECCP) module:  
- Same Capture/Compare features as CCP  
- One, two or four PWM outputs  
• 1-second programming time  
• Flash/Data EEPROM Retention: > 40 years  
• Self-reprogrammable under software control  
• Power-on Reset (POR), Power-up Timer (PWRT)  
and Oscillator Start-up Timer (OST)  
• Watchdog Timer (WDT) with its own On-Chip  
RC Oscillator  
- Selectable polarity  
- Programmable dead time  
- Auto-shutdown on external event  
- Auto-restart  
• Master Synchronous Serial Port (MSSP) module  
with two modes of operation:  
• Programmable code protection  
• Power saving Sleep mode  
- 3-wire SPI™ (supports all 4 SPI modes)  
- I2C™ Master and Slave mode  
• Selectable oscillator options including:  
- Software enabled 4x Phase Lock Loop (of  
primary oscillator)  
- Secondary Oscillator (32 kHz) clock input  
• In-Circuit Serial Programming™ (ICSP™) via two pins  
• MPLAB® In-Circuit Debug (ICD) via two pins  
• Enhanced Addressable USART module:  
- Supports RS-232, RS-485 and LIN 1.2  
- Programmable wake-up on Start bit  
- Auto-baud detect  
• Parallel Slave Port (PSP) module  
2004 Microchip Technology Inc.  
DS30491C-page 1  
PIC18F6585/8585/6680/8680  
CMOS Technology:  
• Low-power, high-speed Flash technology  
• Fully static design  
• Wide operating voltage range (2.0V to 5.5V)  
• Industrial and Extended temperature ranges  
Program Memory  
Data Memory  
MSSP  
CCP/  
ECCP  
(PWM)  
10-bit  
A/D (ch)  
ECAN/  
AUSART 8-bit/16-bit  
Timers  
Device  
I/O  
EMA  
# Single-Word SRAM EEPROM  
Instructions (bytes) (bytes)  
Master  
Bytes  
SPI  
2
I C  
PIC18F6585 48K  
PIC18F6680 64K  
PIC18F8585 48K  
PIC18F8680 64K  
24576  
32768  
24576  
32768  
3328  
3328  
3328  
3328  
1024  
1024  
1024  
1024  
53  
53  
69  
69  
12  
12  
16  
16  
1/1  
1/1  
1/1  
1/1  
Y
Y
Y
Y
Y
Y
Y
Y
Y/Y  
Y/Y  
Y/Y  
Y/Y  
2/3  
2/3  
2/3  
2/3  
N
N
Y
Y
DS30491C-page 2  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
Pin Diagrams  
64-Pin TQFP  
64 63 62 61 60 59 58 57 56 55 54 53 52 51  
50 49  
RB0/INT0  
RE1/WR  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
1
RB1/INT1  
RE0/RD  
RG0/CANTX1  
RG1/CANTX2  
RG2/CANRX  
RG3  
2
RB2/INT2  
3
RB3/INT3  
4
RB4/KBI0  
5
RB5/KBI1/PGM  
RB6/KBI2/PGC  
VSS  
6
RG5/MCLR/VPP  
RG4/P1D  
7
PIC18F6X8X  
8
VSS  
OSC2/CLKO/RA6  
OSC1/CLKI  
VDD  
9
VDD  
10  
11  
12  
13  
14  
15  
16  
RF7/SS  
RB7/KBI3/PGD  
RC5/SDO  
RF6/AN11/C1IN-  
RF5/AN10/C1IN+/CVREF  
RF4/AN9/C2IN-  
RF3/AN8/C2IN+  
RF2/AN7/C1OUT  
RC4/SDI/SDA  
RC3/SCK/SCL  
RC2/CCP1/P1A  
17 18 19 20 21 22 23 24 25 26 27 28  
29 30 31 32  
Note 1: CCP2 pin placement depends on CCP2MX setting.  
2004 Microchip Technology Inc.  
DS30491C-page 3  
PIC18F6585/8585/6680/8680  
Pin Diagrams (Continued)  
68-Pin PLCC  
9
8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61  
10  
11  
12  
13  
14  
15  
16  
60  
59  
RB0/INT0  
RB1/INT1  
RB2/INT2  
RB3/INT3  
RB4/KBI0  
RB5/KBI1/PGM  
RB6/KBI2/PGC  
VSS  
RE1/WR  
RE0/RD  
RG0/CANTX1  
RG1/CANTX2  
RG2/CANRX  
RG3  
Top View  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
RG5/MCLR/VPP  
RG4/P1D  
17  
18  
19  
20  
21  
N/C  
N/C  
PIC18F6X8X  
OSC2/CLKO/RA6  
VSS  
VDD  
OSC1/CLKI  
VDD  
RF7/SS  
22  
23  
24  
25  
26  
RF6/AN11/C1IN-  
RF5/AN10/C1IN+/CVREF  
RF4/AN9/C2IN-  
RF3/AN8/C2IN+  
RF2/AN7/C1OUT  
48  
47  
46  
45  
44  
RB7/KBI3/PGD  
RC5/SDO  
RC4/SDI/SDA  
RC3/SCK/SCL  
RC2/CCP1/P1A  
2728 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
Note 1: CCP2 pin placement depends on CCP2MX setting.  
DS30491C-page 4  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
Pin Diagrams (Continued)  
80-Pin TQFP  
80 79 78  
77 76 75 74 73 72 71 70 69 68 67 66 65  
64 63 62 61  
RH2/A18  
1
RJ2/WRL  
RJ3/WRH  
RB0/INT0  
RB1/INT1  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
RH3/A19  
2
RE1/WR/AD9  
3
RE0/RD/AD8  
4
RG0/CANTX1  
5
RB2/INT2  
RB3/INT3/CCP2(2)  
RG1/CANTX2  
6
RB4/KBI0  
RG2/CANRX  
7
RB5/KBI1/PGM  
RB6/KBI2/PGC  
VSS  
RG3  
8
RG5/MCLR/VPP  
9
RG4/P1D  
PIC18F8X8X  
10  
VSS  
11  
OSC2/CLKO/RA6  
OSC1/CLKI  
VDD  
VDD  
12  
RF7/SS  
13  
RB7/KBI3/PGD  
RC5/SDO  
RF6/AN11/C1IN-  
14  
RF5/AN10/C1IN+/CVREF  
15  
RC4/SDI/SDA  
RC3/SCK/SCL  
RC2/CCP1/P1A  
RJ7/UB  
RF4/AN9/C2IN-  
16  
RF3/AN8/C2IN+  
17  
RF2/AN7/C1OUT  
18  
RH7/AN15/P1B(3)  
19  
RH6/AN14/P1C(3)  
RJ6/LB  
20  
40  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39  
Note 1: PSP is available only in Microcontroller mode.  
2: CCP2 pin placement depends on CCP2MX and Processor mode settings.  
3: P1B and P1C pin placement depends on ECCPMX setting.  
2004 Microchip Technology Inc.  
DS30491C-page 5  
PIC18F6585/8585/6680/8680  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 9  
2.0 Oscillator Configurations ............................................................................................................................................................ 23  
3.0 Reset.......................................................................................................................................................................................... 33  
4.0 Memory Organization................................................................................................................................................................. 51  
5.0 Flash Program Memory.............................................................................................................................................................. 83  
6.0 External Memory Interface ......................................................................................................................................................... 93  
7.0 Data EEPROM Memory ........................................................................................................................................................... 101  
8.0 8 x 8 Hardware Multiplier.......................................................................................................................................................... 107  
9.0 Interrupts .................................................................................................................................................................................. 109  
10.0 I/O Ports ................................................................................................................................................................................... 125  
11.0 Timer0 Module ......................................................................................................................................................................... 155  
12.0 Timer1 Module ......................................................................................................................................................................... 159  
13.0 Timer2 Module ......................................................................................................................................................................... 162  
14.0 Timer3 Module ......................................................................................................................................................................... 164  
15.0 Capture/Compare/PWM (CCP) Modules ................................................................................................................................. 167  
16.0 Enhanced Capture/Compare/PWM (ECCP) Module................................................................................................................ 175  
17.0 Master Synchronous Serial Port (MSSP) Module .................................................................................................................... 189  
18.0 Enhanced Universal Synchronous Asynchronous Receiver Transmitter (USART).................................................................. 229  
19.0 10-bit Analog-to-Digital Converter (A/D) Module...................................................................................................................... 249  
20.0 Comparator Module.................................................................................................................................................................. 259  
21.0 Comparator Voltage Reference Module................................................................................................................................... 265  
22.0 Low-Voltage Detect.................................................................................................................................................................. 269  
23.0 ECAN Module........................................................................................................................................................................... 275  
24.0 Special Features of the CPU.................................................................................................................................................... 345  
25.0 Instruction Set Summary.......................................................................................................................................................... 365  
26.0 Development Support............................................................................................................................................................... 407  
27.0 Electrical Characteristics.......................................................................................................................................................... 413  
28.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 449  
29.0 Packaging Information.............................................................................................................................................................. 465  
Appendix A: Revision History............................................................................................................................................................. 469  
Appendix B: Device Differences......................................................................................................................................................... 469  
Appendix C: Conversion Considerations ........................................................................................................................................... 470  
Appendix D: Migration from Mid-Range to Enhanced Devices.......................................................................................................... 470  
Appendix E: Migration from High-End to Enhanced Devices............................................................................................................. 471  
Index .................................................................................................................................................................................................. 473  
On-Line Support................................................................................................................................................................................. 487  
Systems Information and Upgrade Hot Line ...................................................................................................................................... 487  
Reader Response .............................................................................................................................................................................. 488  
PIC18F6585/8585/6680/8680 Product Identification System ............................................................................................................ 489  
DS30491C-page 6  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.  
We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
• Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
• The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include liter-  
ature number) you are using.  
Customer Notification System  
Register on our Web site at www.microchip.com/cn to receive the most current information on all of our products.  
2004 Microchip Technology Inc.  
DS30491C-page 7  
PIC18F6585/8585/6680/8680  
NOTES:  
DS30491C-page 8  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
All  
other  
features  
for  
devices  
in  
the  
1.0  
DEVICE OVERVIEW  
PIC18F6585/8585/6680/8680 family are identical.  
These are summarized in Table 1-1.  
This document contains device specific information for  
the following devices:  
Block diagrams of the PIC18F6X8X and PIC18F8X8X  
devices are provided in Figure 1-1 and Figure 1-2,  
respectively. The pinouts for these device families are  
listed in Table 1-2.  
• PIC18F6585  
• PIC18F6680  
• PIC18F8585  
• PIC18F8680  
PIC18F6X8X devices are available in 64-pin TQFP and  
68-pin PLCC packages. PIC18F8X8X devices are  
available in the 80-pin TQFP package. They are  
differentiated from each other in four ways:  
1. Flash program memory (48 Kbytes for  
PIC18FX585 devices, 64 Kbytes for  
PIC18FX680)  
2. A/D channels (12 for PIC18F6X8X devices,  
16 for PIC18F8X8X)  
3. I/O ports (7 on PIC18F6X8X devices, 9 on  
PIC18F8X8X)  
4. External program memory interface (present  
only on PIC18F8X8X devices)  
TABLE 1-1:  
PIC18F6585/8585/6680/8680 DEVICE FEATURES  
Features  
PIC18F6585  
PIC18F6680  
PIC18F8585  
PIC18F8680  
Operating Frequency  
DC – 40 MHz  
DC – 40 MHz  
DC – 40 MHz  
DC – 40 MHz  
DC – 25 MHz w/EMA DC – 25 MHz w/EMA  
Program Memory (Bytes)  
Program Memory (Instructions)  
Data Memory (Bytes)  
Data EEPROM Memory (Bytes)  
External Memory Interface  
Interrupt Sources  
48K  
64K  
48K (2 MB EMA)  
64K (2 MB EMA)  
24576  
32768  
24576  
32768  
3328  
3328  
3328  
3328  
1024  
1024  
1024  
1024  
No  
No  
Yes  
Yes  
29  
29  
29  
29  
I/O Ports  
Ports A-G  
Ports A-G  
Ports A-H, J  
Ports A-H, J  
Timers  
4
1
1
4
1
1
4
1
1
4
1
1
Capture/Compare/PWM Module  
EnhancedCapture/Compare/PWM  
Module  
Serial Communications  
MSSP,  
MSSP,  
MSSP,  
MSSP,  
Enhanced AUSART, Enhanced AUSART, Enhanced AUSART, Enhanced AUSART,  
ECAN  
ECAN  
ECAN  
ECAN  
(1)  
(1)  
Parallel Communications  
10-bit Analog-to-Digital Module  
Resets (and Delays)  
PSP  
PSP  
PSP  
PSP  
12 input channels  
12 input channels  
16 input channels  
16 input channels  
POR, BOR,  
RESETInstruction,  
Stack Full,  
POR, BOR,  
RESETInstruction,  
Stack Full,  
POR, BOR,  
RESETInstruction,  
Stack Full,  
POR, BOR,  
RESETInstruction,  
Stack Full,  
Stack Underflow  
(PWRT, OST)  
Stack Underflow  
(PWRT, OST)  
Stack Underflow  
(PWRT, OST)  
Stack Underflow  
(PWRT, OST)  
Programmable Low-Voltage Detect  
Programmable Brown-out Reset  
Instruction Set  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
75 Instructions  
75 Instructions  
75 Instructions  
80-pin TQFP  
75 Instructions  
80-pin TQFP  
Package  
64-pin TQFP,  
68-pin PLCC  
64-pin TQFP,  
68-pin PLCC  
Note 1: PSP is only available in Microcontroller mode.  
2004 Microchip Technology Inc.  
DS30491C-page 9  
PIC18F6585/8585/6680/8680  
FIGURE 1-1:  
PIC18F6X8X BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
RA0/AN0  
RA1/AN1  
Table Pointer<21>  
Data Latch  
21  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
8
8
Data RAM  
(3328 bytes)  
inc/dec logic  
21  
RA5/AN4/LVDIN  
OSC2/CLKO/RA6  
Address Latch  
12  
21  
PCLATH  
PCLATU  
PORTB  
RB2/INT2:RB0/INT0  
RB3/INT3  
RB4/KBI0  
RB5/KBI1/PGM  
RB6/KBI2/PGC  
RB7/KBI3/PGD  
Address<12>  
PCU PCH PCL  
Program Counter  
4
BSR  
12  
FSR0  
4
Bank0, F  
Address Latch  
FSR1  
FSR2  
Program Memory  
(48 Kbytes)  
31 Level Stack  
12  
Data Latch  
PORTC  
inc/dec  
logic  
RC0/T1OSO/T13CKI  
RC1/T1OSI/CCP2(1)  
RC2/CCP1/P1A  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
RC6/TX/CK  
RC7/RX/DT  
Decode  
Table Latch  
8
16  
ROM Latch  
IR  
PORTD  
PORTE  
8
RD7/PSP7:RD0/PSP0  
PRODH PRODL  
8 x 8 Multiply  
Instruction  
Decode &  
Control  
RE0/RD  
RE1/WR  
RE2/CS  
RE3  
8
3
W
8
BITOP  
8
8
Power-up  
Timer  
RE4  
OSC2/CLKO/RA6  
OSC1/CLKI  
RE5/P1C  
RE6/P1B  
RE7/CCP2(1)  
Timing  
Generation  
Oscillator  
Start-up Timer  
8
ALU<8>  
Power-on  
Reset  
PORTF  
RF0/AN5  
8
RF1/AN6/C2OUT  
RF2/AN7/C1OUT  
RF3/AN8/C2IN+  
RF4/AN9/C2IN-  
RF5/AN10/C1IN+/CVREF  
RF6/AN11/C1IN-  
RF7/SS  
Watchdog  
Timer  
Precision  
Band Gap  
Reference  
Brown-out  
Reset  
Test Mode  
Select  
RG5/  
VDD, VSS  
MCLR  
PORTG  
RG0/CANTX1  
RG1/CANTX2  
RG2/CANRX  
RG3  
RG4/P1D  
RG5/MCLR/VPP  
BOR  
LVD  
Timer3  
Timer0  
Timer1  
Timer2  
Synchronous  
Serial Port  
10-bit  
ADC  
CCP2  
ECCP1  
Comparator  
AUSART  
ECAN Module  
Data EEPROM  
Note 1: The CCP2 pin placement depends on the CCP2MX and Processor mode settings.  
DS30491C-page 10  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 1-2:  
PIC18F8X8X BLOCK DIAGRAM  
Data Bus<8>  
AD7:AD0  
PORTA  
RA0/AN0  
RA1/AN1  
Table Pointer<21>  
inc/dec logic  
Data Latch  
21  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
8
8
Data RAM  
(3328 bytes)  
RA5/AN4/LVDIN  
OSC2/CLKO/RA6  
21  
Address Latch  
12  
21  
PCLATH  
PCLATU  
PORTB  
RB2/INT2:RB0/INT0  
RB3/INT3/CCP2(1)  
RB4/KBI0  
RB5/KBI1/PGM  
RB6/KBI2/PGC  
RB7/KBI3/PGD  
Address<12>  
PCU PCH PCL  
Program Counter  
4
BSR  
12  
FSR0  
4
Bank0, F  
Address Latch  
FSR1  
FSR2  
Program Memory  
(64 Kbytes)  
31 Level Stack  
12  
Data Latch  
PORTC  
inc/dec  
logic  
RC0/T1OSO/T13CKI  
RC1/T1OSI/CCP2(1)  
RC2/CCP1/P1A  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
Decode  
Table Latch  
8
16  
ROM Latch  
IR  
RC6/TX/CK  
RC7/RX/DT  
PORTD  
PORTE  
A16, AD15:AD8  
8
RD7/PSP7/AD7:  
RD0/PSP0/AD0  
PRODH PRODL  
8 x 8 Multiply  
Instruction  
Decode &  
Control  
RE0/RD/AD8  
RE1/WR/AD9  
RE2/CS/AD10  
RE3/AD11  
8
3
W
8
BITOP  
8
8
Power-up  
Timer  
RE4/AD12  
OSC2/CLKO/RA6  
OSC1/CLKI  
RE5/AD13/P1C(2)  
RE6/AD14/P1B(2)  
RE7/CCP2(1)/AD15  
Timing  
Generation  
Oscillator  
Start-up Timer  
8
ALU<8>  
Power-on  
Reset  
PORTF  
RF0/AN5  
8
RF1/AN6/C2OUT  
RF2/AN7/C1OUT  
RF3/AN8/C2IN+  
RF4/AN9/C2IN-  
RF5/AN10/C1IN+/CVREF  
RF6/AN11/C1IN-  
RF7/SS  
Watchdog  
Timer  
Precision  
Band Gap  
Reference  
Brown-out  
Reset  
Test Mode  
Select  
PORTJ  
RJ0/ALE  
RJ1/OE  
RJ2/WRL  
RJ3/WRH  
RJ4/BA0  
RJ5/CE  
PORTG  
PORTH  
RG0/CANTX1  
RG1/CANTX2  
RG2/CANRX  
RG3  
RG4/P1D  
RG5/  
VDD, VSS  
MCLR  
RJ6/LB  
RJ7/UB  
RG5/MCLR/VPP  
RH7/AN15/P1B(2)  
RH6/AN14/P1C(2)  
RH5/AN13  
BOR  
LVD  
Timer3  
Timer0  
Timer2  
Timer1  
RH4/AN12  
RH3/A19:RH0/A16  
Synchronous  
Serial Port  
10-bit  
ADC  
ECCP1  
CCP2  
Comparator  
AUSART  
ECAN Module  
Note 1: The CCP2 pin placement depends on the CCP2MX and Processor mode settings.  
2: P1B and P1C pin placement depends on the ECCPMX setting.  
2004 Microchip Technology Inc.  
DS30491C-page 11  
PIC18F6585/8585/6680/8680  
TABLE 1-2:  
PIC18F6585/8585/6680/8680 PINOUT I/O DESCRIPTIONS  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PIC18F6X8X PIC18F8X8X  
Description  
TQFP PLCC  
TQFP  
RG5/MCLR/VPP  
7
16  
50  
9
Master Clear (input) or programming  
voltage (input).  
RG5  
MCLR  
I
I
ST  
ST  
General purpose input pin.  
Master Clear (Reset) input. This pin is  
an active-low Reset to the device.  
Programming voltage input.  
VPP  
P
I
OSC1/CLKI  
OSC1  
39  
49  
50  
Oscillator crystal or external clock input.  
Oscillator crystal input or external clock  
source input. ST buffer when configured  
in RC mode; otherwise CMOS.  
CMOS/ST  
CMOS  
CLKI  
I
External clock source input. Always  
associated with pin function OSC1  
(see OSC1/CLKI, OSC2/CLKO pins).  
OSC2/CLKO/RA6  
OSC2  
40  
51  
Oscillator crystal or clock output.  
Oscillator crystal output.  
O
O
Connects to crystal or resonator in  
Crystal Oscillator mode.  
In RC mode, OSC2 pin outputs CLKO  
which has 1/4 the frequency of OSC1  
and denotes the instruction cycle rate.  
General purpose I/O pin.  
CLKO  
RA6  
I/O  
TTL  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
= Schmitt Trigger input with CMOS levels  
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 in all operating modes except Microcontroller – applies to PIC18F8X8X only.  
2: Default assignment when CCP2MX is set.  
3: External memory interface functions are only available on PIC18F8X8X devices.  
4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode; otherwise, it is  
multiplexed with either RB3 or RC1.  
5: PORTH and PORTJ are only available on PIC18F8X8X (80-pin) devices.  
6: PSP is available in Microcontroller mode only.  
7: On PIC18F8X8X devices, these pins can be multiplexed with RH7/RH6 by changing the ECCPMX  
configuration bit.  
DS30491C-page 12  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 1-2:  
PIC18F6585/8585/6680/8680 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PIC18F6X8X PIC18F8X8X  
Description  
TQFP PLCC  
TQFP  
PORTA is a bidirectional I/O port.  
RA0/AN0  
RA0  
24  
23  
22  
34  
33  
32  
30  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 0.  
AN0  
RA1/AN1  
RA1  
29  
28  
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 1.  
AN1  
RA2/AN2/VREF-  
RA2  
I/O  
TTL  
Digital I/O.  
AN2  
VREF-  
I
I
Analog  
Analog  
Analog input 2.  
A/D reference voltage (Low) input.  
RA3/AN3/VREF+  
RA3  
21  
28  
27  
31  
39  
38  
27  
34  
33  
I/O  
I
I
TTL  
Analog  
Analog  
Digital I/O.  
Analog input 3.  
A/D reference voltage (High) input.  
AN3  
VREF+  
RA4/T0CKI  
RA4  
I/O  
I
ST/OD  
ST  
Digital I/O – Open-drain when  
configured as output.  
Timer0 external clock input.  
T0CKI  
RA5/AN4/LVDIN  
RA5  
I/O  
TTL  
Digital I/O.  
AN4  
LVDIN  
I
I
Analog  
Analog  
Analog input 4.  
Low-voltage detect input.  
RA6  
See the OSC2/CLKO/RA6 pin.  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
= Schmitt Trigger input with CMOS levels  
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 in all operating modes except Microcontroller – applies to PIC18F8X8X only.  
2: Default assignment when CCP2MX is set.  
3: External memory interface functions are only available on PIC18F8X8X devices.  
4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode; otherwise, it is  
multiplexed with either RB3 or RC1.  
5: PORTH and PORTJ are only available on PIC18F8X8X (80-pin) devices.  
6: PSP is available in Microcontroller mode only.  
7: On PIC18F8X8X devices, these pins can be multiplexed with RH7/RH6 by changing the ECCPMX  
configuration bit.  
2004 Microchip Technology Inc.  
DS30491C-page 13  
PIC18F6585/8585/6680/8680  
TABLE 1-2:  
PIC18F6585/8585/6680/8680 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PIC18F6X8X PIC18F8X8X  
Description  
TQFP PLCC  
TQFP  
PORTB is a bidirectional I/O port. PORTB  
can be software programmed for internal  
weak pull-ups on all inputs.  
RB0/INT0  
RB0  
48  
47  
46  
45  
60  
59  
58  
57  
58  
57  
56  
55  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 0.  
INT0  
RB1/INT1  
RB1  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 1.  
INT1  
RB2/INT2  
RB2  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 2.  
INT2  
RB3/INT3/CCP2  
RB3  
I/O  
I/O  
I/O  
TTL  
ST  
ST  
Digital I/O.  
INT3  
External interrupt 3.  
Capture 2 input/Compare 2 output/  
PWM 2 output.  
CCP2(1)  
RB4/KBI0  
RB4  
44  
43  
56  
55  
54  
53  
I/O  
I
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
KBI0  
RB5/KBI1/PGM  
RB5  
I/O  
I
I/O  
TTL  
ST  
ST  
Digital I/O.  
KBI1  
PGM  
Interrupt-on-change pin.  
Low-Voltage ICSP Programming  
enable pin.  
RB6/KBI2/PGC  
RB6  
42  
37  
54  
48  
52  
47  
I/O  
I
I/O  
TTL  
ST  
ST  
Digital I/O.  
KBI2  
PGC  
Interrupt-on-change pin.  
In-circuit debugger and ICSP  
programming clock.  
RB7/KBI3/PGD  
RB7  
I/O  
I/O  
TTL  
ST  
Digital I/O.  
KBI3  
PGD  
Interrupt-on-change pin.  
In-circuit debugger and ICSP  
programming data.  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
= Schmitt Trigger input with CMOS levels  
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 in all operating modes except Microcontroller – applies to PIC18F8X8X only.  
2: Default assignment when CCP2MX is set.  
3: External memory interface functions are only available on PIC18F8X8X devices.  
4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode; otherwise, it is  
multiplexed with either RB3 or RC1.  
5: PORTH and PORTJ are only available on PIC18F8X8X (80-pin) devices.  
6: PSP is available in Microcontroller mode only.  
7: On PIC18F8X8X devices, these pins can be multiplexed with RH7/RH6 by changing the ECCPMX  
configuration bit.  
DS30491C-page 14  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 1-2:  
PIC18F6585/8585/6680/8680 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PIC18F6X8X PIC18F8X8X  
Description  
TQFP PLCC  
TQFP  
PORTC is a bidirectional I/O port.  
RC0/T1OSO/T13CKI  
RC0  
30  
29  
41  
40  
36  
I/O  
O
I
ST  
ST  
Digital I/O.  
Timer1 oscillator output.  
Timer1/Timer3 external clock input.  
T1OSO  
T13CKI  
RC1/T1OSI/CCP2  
RC1  
35  
I/O  
I
I/O  
ST  
CMOS  
ST  
Digital I/O.  
T1OSI  
Timer1 oscillator input.  
CCP2 Capture input/Compare output/  
PWM 2 output.  
CCP2(1, 4)  
RC2/CCP1/P1A  
RC2  
33  
34  
44  
45  
43  
44  
I/O  
I/O  
I/O  
ST  
ST  
ST  
Digital I/O.  
CCP1 Capture input/Compare output.  
CCP1 PWM output A.  
CCP1  
P1A  
RC3/SCK/SCL  
RC3  
I/O  
I/O  
ST  
ST  
Digital I/O.  
Synchronous serial clock input/output  
for SPI mode.  
SCK  
SCL  
I/O  
ST  
Synchronous serial clock input/output  
for I2C mode.  
RC4/SDI/SDA  
RC4  
35  
46  
45  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
SPI data in.  
I2C data I/O.  
SDI  
SDA  
RC5/SDO  
RC5  
36  
31  
47  
42  
46  
37  
I/O  
O
ST  
Digital I/O.  
SPI data out.  
SDO  
RC6/TX/CK  
RC6  
I/O  
O
I/O  
ST  
ST  
Digital I/O.  
TX  
CK  
USART asynchronous transmit.  
USART synchronous clock  
(see RX/DT).  
RC7/RX/DT  
RC7  
32  
43  
38  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
RX  
DT  
USART 1 asynchronous receive.  
USART 1 synchronous data  
(see TX/CK).  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
= Schmitt Trigger input with CMOS levels  
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 in all operating modes except Microcontroller – applies to PIC18F8X8X only.  
2: Default assignment when CCP2MX is set.  
3: External memory interface functions are only available on PIC18F8X8X devices.  
4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode; otherwise, it is  
multiplexed with either RB3 or RC1.  
5: PORTH and PORTJ are only available on PIC18F8X8X (80-pin) devices.  
6: PSP is available in Microcontroller mode only.  
7: On PIC18F8X8X devices, these pins can be multiplexed with RH7/RH6 by changing the ECCPMX  
configuration bit.  
2004 Microchip Technology Inc.  
DS30491C-page 15  
PIC18F6585/8585/6680/8680  
TABLE 1-2:  
PIC18F6585/8585/6680/8680 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PIC18F6X8X PIC18F8X8X  
Description  
TQFP PLCC  
TQFP  
PORTD is a bidirectional I/O port. These  
pins have TTL input buffers when external  
memory is enabled.  
RD0/PSP0/AD0  
RD0  
58  
55  
54  
53  
52  
51  
50  
49  
3
72  
69  
68  
67  
66  
65  
64  
63  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
Parallel Slave Port data.  
External memory address/data 0.  
PSP0(6)  
AD0(3)  
RD1/PSP1/AD1  
RD1  
67  
66  
65  
64  
63  
62  
61  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
Parallel Slave Port data.  
External memory address/data 1.  
PSP1(6)  
AD1(3)  
RD2/PSP2/AD2  
RD2  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
Parallel Slave Port data.  
External memory address/data 2.  
PSP2(6)  
AD2(3)  
RD3/PSP3/AD3  
RD3  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
Parallel Slave Port data.  
External memory address/data 3.  
PSP3(6)  
AD3(3)  
RD4/PSP4/AD4  
RD4  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
Parallel Slave Port data.  
External memory address/data 4.  
PSP4(6)  
AD4(3)  
RD5/PSP5/AD5  
RD5  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
Parallel Slave Port data.  
External memory address/data 5.  
PSP5(6)  
AD5(3)  
RD6/PSP6/AD6  
RD6  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
Parallel Slave Port data.  
External memory address/data 6.  
PSP6(6)  
AD6(3)  
RD7/PSP7/AD7  
RD7  
I/O  
I/O  
I/O  
ST  
TTL  
TTL  
Digital I/O.  
Parallel Slave Port data.  
External memory address/data 7.  
PSP7(6)  
AD7(3)  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
= Schmitt Trigger input with CMOS levels  
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 in all operating modes except Microcontroller – applies to PIC18F8X8X only.  
2: Default assignment when CCP2MX is set.  
3: External memory interface functions are only available on PIC18F8X8X devices.  
4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode; otherwise, it is  
multiplexed with either RB3 or RC1.  
5: PORTH and PORTJ are only available on PIC18F8X8X (80-pin) devices.  
6: PSP is available in Microcontroller mode only.  
7: On PIC18F8X8X devices, these pins can be multiplexed with RH7/RH6 by changing the ECCPMX  
configuration bit.  
DS30491C-page 16  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 1-2:  
PIC18F6585/8585/6680/8680 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PIC18F6X8X PIC18F8X8X  
Description  
TQFP PLCC  
TQFP  
PORTE is a bidirectional I/O port.  
RE0/RD/AD8  
RE0  
2
1
11  
10  
9
4
I/O  
I
ST  
TTL  
Digital I/O.  
Read control for Parallel Slave Port  
(see WR and CS pins).  
RD(6)  
AD8(3)  
I/O  
TTL  
External memory address/data 8.  
RE1/WR/AD9  
RE1  
3
I/O  
I
ST  
TTL  
Digital I/O.  
Write control for Parallel Slave Port  
(see CS and RD pins).  
WR(6)  
AD9(3)  
I/O  
TTL  
External memory address/data 9.  
RE2/CS/AD10  
RE2  
64  
78  
I/O  
I
ST  
TTL  
Digital I/O.  
Chip select control for Parallel Slave  
Port (see RD and WR).  
CS(6)  
AD10(3)  
I/O  
TTL  
External memory address/data 10.  
RE3/AD11  
RE3  
63  
62  
61  
8
7
6
77  
76  
75  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 11.  
AD11(3)  
RE4/AD12  
RE4  
I/O  
I/O  
ST  
TTL  
Digital I/O.  
External memory address/data 12.  
AD12(3)  
RE5/AD13/P1C  
RE5  
I/O  
I/O  
I/O  
ST  
TTL  
ST  
Digital I/O.  
External memory address/data 13.  
ECCP1 PWM output C.  
AD13(3)  
P1C(7)  
RE6/AD14/P1B  
RE6  
60  
59  
5
4
74  
73  
I/O  
I/O  
I/O  
ST  
TTL  
ST  
Digital I/O.  
External memory address/data 14.  
ECCP1 PWM output B.  
AD14(3)  
P1B(7)  
RE7/CCP2/AD15  
RE7  
I/O  
I/O  
ST  
ST  
Digital I/O.  
Capture 2 input/Compare 2 output/  
PWM 2 output.  
CCP2(1,4)  
AD15(3)  
I/O  
TTL  
External memory address/data 15.  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
= Schmitt Trigger input with CMOS levels  
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 in all operating modes except Microcontroller – applies to PIC18F8X8X only.  
2: Default assignment when CCP2MX is set.  
3: External memory interface functions are only available on PIC18F8X8X devices.  
4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode; otherwise, it is  
multiplexed with either RB3 or RC1.  
5: PORTH and PORTJ are only available on PIC18F8X8X (80-pin) devices.  
6: PSP is available in Microcontroller mode only.  
7: On PIC18F8X8X devices, these pins can be multiplexed with RH7/RH6 by changing the ECCPMX  
configuration bit.  
2004 Microchip Technology Inc.  
DS30491C-page 17  
PIC18F6585/8585/6680/8680  
TABLE 1-2:  
PIC18F6585/8585/6680/8680 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PIC18F6X8X PIC18F8X8X  
Description  
TQFP PLCC  
TQFP  
PORTF is a bidirectional I/O port.  
RF0/AN5  
RF0  
18  
17  
28  
27  
24  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 5.  
AN5  
RF1/AN6/C2OUT  
RF1  
23  
18  
17  
16  
15  
I/O  
I
O
ST  
Analog  
ST  
Digital I/O.  
Analog input 6.  
Comparator 2 output.  
AN6  
C2OUT  
RF2/AN7/C1OUT  
RF2  
16  
15  
14  
13  
26  
25  
24  
23  
I/O  
I
O
ST  
Analog  
ST  
Digital I/O.  
Analog input 7.  
Comparator 1 output.  
AN7  
C1OUT  
RF3/AN8/C2IN+  
RF1  
I/O  
I
I
ST  
Analog  
Analog  
Digital I/O.  
Analog input 8.  
Comparator 2 input (+).  
AN8  
C2IN+  
RF4/AN9/C2IN-  
RF1  
I/O  
I
I
ST  
Analog  
Analog  
Digital I/O.  
Analog input 9.  
Comparator 2 input (-).  
AN9  
C2IN-  
RF5/AN10/C1IN+/CVREF  
RF1  
AN10  
C1IN+  
CVREF  
I/O  
I
I
ST  
Digital I/O.  
Analog input 10.  
Comparator 1 input (+).  
Comparator VREF output.  
Analog  
Analog  
Analog  
O
RF6/AN11/C1IN-  
RF6  
12  
11  
22  
21  
14  
13  
I/O  
I
I
ST  
Analog  
Analog  
Digital I/O.  
Analog input 11.  
Comparator 1 input (-)  
AN11  
C1IN-  
RF7/SS  
RF7  
I/O  
I
ST  
TTL  
Digital I/O.  
SPI slave select input.  
SS  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
= Schmitt Trigger input with CMOS levels  
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 in all operating modes except Microcontroller – applies to PIC18F8X8X only.  
2: Default assignment when CCP2MX is set.  
3: External memory interface functions are only available on PIC18F8X8X devices.  
4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode; otherwise, it is  
multiplexed with either RB3 or RC1.  
5: PORTH and PORTJ are only available on PIC18F8X8X (80-pin) devices.  
6: PSP is available in Microcontroller mode only.  
7: On PIC18F8X8X devices, these pins can be multiplexed with RH7/RH6 by changing the ECCPMX  
configuration bit.  
DS30491C-page 18  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 1-2:  
PIC18F6585/8585/6680/8680 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PIC18F6X8X PIC18F8X8X  
Description  
TQFP PLCC  
TQFP  
PORTG is a bidirectional I/O port.  
RG0/CANTX1  
RG0  
3
4
5
12  
13  
14  
5
I/O  
O
ST  
TTL  
Digital I/O.  
CAN bus transmit 1.  
CANTX1  
RG1/CANTX2  
RG1  
6
7
I/O  
O
ST  
TTL  
Digital I/O.  
CAN bus transmit 2.  
CANTX2  
RG2/CANRX  
RG2  
I/O  
I
ST  
TTL  
Digital I/O.  
CAN bus receive.  
CANRX  
RG3  
RG3  
6
8
15  
17  
8
I/O  
ST  
Digital I/O.  
RG4/P1D  
RG4  
10  
I/O  
O
ST  
TTL  
Digital I/O.  
ECCP1 PWM output D.  
P1D  
RG5  
7
16  
9
I
ST  
General purpose input pin.  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
= Schmitt Trigger input with CMOS levels  
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 in all operating modes except Microcontroller – applies to PIC18F8X8X only.  
2: Default assignment when CCP2MX is set.  
3: External memory interface functions are only available on PIC18F8X8X devices.  
4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode; otherwise, it is  
multiplexed with either RB3 or RC1.  
5: PORTH and PORTJ are only available on PIC18F8X8X (80-pin) devices.  
6: PSP is available in Microcontroller mode only.  
7: On PIC18F8X8X devices, these pins can be multiplexed with RH7/RH6 by changing the ECCPMX  
configuration bit.  
2004 Microchip Technology Inc.  
DS30491C-page 19  
PIC18F6585/8585/6680/8680  
TABLE 1-2:  
PIC18F6585/8585/6680/8680 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PIC18F6X8X PIC18F8X8X  
Description  
TQFP PLCC  
TQFP  
PORTH is a bidirectional I/O port(5)  
.
RH0/A16  
RH0  
79  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory address 16.  
A16  
RH1/A17  
RH1  
80  
1
I/O  
O
ST  
TTL  
Digital I/O.  
External memory address 17.  
A17  
RH2/A18  
RH2  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory address 18.  
A18  
RH3/A19  
RH3  
2
I/O  
O
ST  
TTL  
Digital I/O.  
External memory address 19.  
A19  
RH4/AN12  
RH4  
22  
21  
20  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 12.  
AN12  
RH5/AN13  
RH5  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 13.  
AN13  
RH6/AN14/P1C  
RH6  
I/O  
I
I/O  
ST  
Analog  
ST  
Digital I/O.  
Analog input 14.  
Alternate CCP1 PWM output C.  
AN14  
P1C(7)  
RH7/AN15/P1B  
RH7  
19  
I/O  
I
ST  
Analog  
Digital I/O.  
Analog input 15.  
Alternate CCP1 PWM output B.  
AN15  
P1B(7)  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
= Schmitt Trigger input with CMOS levels  
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 in all operating modes except Microcontroller – applies to PIC18F8X8X only.  
2: Default assignment when CCP2MX is set.  
3: External memory interface functions are only available on PIC18F8X8X devices.  
4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode; otherwise, it is  
multiplexed with either RB3 or RC1.  
5: PORTH and PORTJ are only available on PIC18F8X8X (80-pin) devices.  
6: PSP is available in Microcontroller mode only.  
7: On PIC18F8X8X devices, these pins can be multiplexed with RH7/RH6 by changing the ECCPMX  
configuration bit.  
DS30491C-page 20  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 1-2:  
PIC18F6585/8585/6680/8680 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PIC18F6X8X PIC18F8X8X  
Description  
TQFP PLCC  
TQFP  
PORTJ is a bidirectional I/O port(5)  
Digital I/O.  
.
RJ0/ALE  
RJ0  
62  
I/O  
O
ST  
TTL  
ALE  
External memory address latch  
enable.  
RJ1/OE  
RJ1  
61  
60  
59  
39  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory output enable.  
OE  
RJ2/WRL  
RJ2  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory write low control.  
WRL  
RJ3/WRH  
RJ3  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory write high control.  
WRH  
RJ4/BA0  
RJ4  
I/O  
O
ST  
TTL  
Digital I/O.  
System bus byte address 0 control.  
BA0  
RJ5/CE  
CE  
40  
42  
I/O  
O
ST  
TTL  
Digital I/O  
External memory chip enable.  
RJ6/LB  
RJ6  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory low byte select.  
LB  
RJ7/UB  
RJ7  
41  
I/O  
O
ST  
TTL  
Digital I/O.  
External memory high byte select.  
UB  
VSS  
VDD  
9, 25, 19, 36,  
41, 56 53, 68  
11, 31,  
51, 70  
P
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
10,26, 2, 20,  
38, 57 37, 49  
12, 32,  
48, 71  
P
AVSS  
AVDD  
NC  
20  
19  
30  
29  
26  
25  
P
P
Ground reference for analog modules.  
Positive supply for analog modules.  
No connect.  
1, 18,  
35, 52  
Legend: TTL = TTL compatible input  
CMOS = CMOS compatible input or output  
Analog = Analog input  
ST  
I
= Schmitt Trigger input with CMOS levels  
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
Note 1: Alternate assignment for CCP2 in all operating modes except Microcontroller – applies to PIC18F8X8X only.  
2: Default assignment when CCP2MX is set.  
3: External memory interface functions are only available on PIC18F8X8X devices.  
4: CCP2 is multiplexed with this pin by default when configured in Microcontroller mode; otherwise, it is  
multiplexed with either RB3 or RC1.  
5: PORTH and PORTJ are only available on PIC18F8X8X (80-pin) devices.  
6: PSP is available in Microcontroller mode only.  
7: On PIC18F8X8X devices, these pins can be multiplexed with RH7/RH6 by changing the ECCPMX  
configuration bit.  
2004 Microchip Technology Inc.  
DS30491C-page 21  
PIC18F6585/8585/6680/8680  
NOTES:  
DS30491C-page 22  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 2-1:  
CRYSTAL/CERAMIC  
RESONATOROPERATION  
(HS, XT OR LP  
2.0  
2.1  
OSCILLATOR  
CONFIGURATIONS  
CONFIGURATION)  
Oscillator Types  
(1)  
C1  
OSC1  
The PIC18F6585/8585/6680/8680 devices can be  
operated in eleven different oscillator modes. The user  
can program four configuration bits (FOSC3, FOSC2,  
FOSC1 and FOSC0) to select one of these eleven  
modes:  
To  
Internal  
Logic  
(3)  
RF  
XTAL  
Sleep  
(2)  
RS  
1. LP  
2. XT  
3. HS  
4. RC  
5. EC  
6. ECIO  
Low-Power Crystal  
(1)  
C2  
PIC18FXX80/XX85  
Crystal/Resonator  
OSC2  
High-Speed Crystal/Resonator  
External Resistor/Capacitor  
External Clock  
Note 1: See Table 2-1 and Table 2-2 for recommended  
values of C1 and C2.  
2: A series resistor (RS) may be required for AT  
External Clock with I/O  
pin enabled  
strip cut crystals.  
3: RF varies with the oscillator mode chosen.  
7. HS+PLL  
8. RCIO  
High-Speed Crystal/Resonator  
with PLL enabled  
External Resistor/Capacitor with  
I/O pin enabled  
TABLE 2-1:  
CAPACITOR SELECTION FOR  
CERAMIC RESONATORS  
9. ECIO+SPLL External Clock with software  
controlled PLL  
Ranges Tested:  
10. ECIO+PLL External Clock with PLL and I/O  
pin enabled  
Mode  
Freq  
C1  
C2  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
68-100 pF  
15-68 pF  
15-68 pF  
68-100 pF  
15-68 pF  
15-68 pF  
11. HS+SPLL  
High-Speed Crystal/Resonator  
with software control  
HS  
8.0 MHz  
16.0 MHz  
10-68 pF  
10-22 pF  
10-68 pF  
10-22 pF  
2.2  
Crystal Oscillator/Ceramic  
Resonators  
These values are for design guidance only.  
See notes following this table.  
In XT, LP, HS, HS+PLL or HS+SPLL Oscillator modes,  
a crystal or ceramic resonator is connected to the OSC1  
and OSC2 pins to establish oscillation. Figure 2-1  
shows the pin connections.  
Resonators Used:  
2.0 MHz Murata Erie CSA2.00MG  
4.0 MHz Murata Erie CSA4.00MG  
8.0 MHz Murata Erie CSA8.00MT  
16.0 MHz Murata Erie CSA16.00MX  
0.5%  
0.5%  
0.5%  
0.5%  
The PIC18F6585/8585/6680/8680 oscillator design  
requires the use of a parallel cut crystal.  
Note:  
Use of a series cut crystal may give a fre-  
quency out of the crystal manufacturers  
specifications.  
All resonators used did not have built-in capacitors.  
Note 1: Higher capacitance increases the stability  
of the oscillator, but also increases the  
start-up time.  
2: When operating below 3V VDD, or when  
using certain ceramic resonators at any  
voltage, it may be necessary to use high  
gain HS mode, try a lower frequency  
resonator, or switch to a crystal oscillator.  
3: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appro-  
priate values of external components, or  
verify oscillator performance.  
2004 Microchip Technology Inc.  
DS30491C-page 23  
PIC18F6585/8585/6680/8680  
An external clock source may also be connected to the  
OSC1 pin in the HS, XT and LP modes, as shown in  
Figure 2-2.  
TABLE 2-2:  
CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
Ranges Tested:  
FIGURE 2-2:  
EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR  
LP OSC CONFIGURATION)  
Mode  
Freq  
C1  
C2  
LP  
32.0 kHz  
200 kHz  
200 kHz  
1.0 MHz  
4.0 MHz  
4.0 MHz  
8.0 MHz  
20.0 MHz  
25.0 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
XT  
HS  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
OSC1  
Clock from  
Ext. System  
PIC18FXX80/XX85  
OSC2  
15 pF  
15 pF  
Open  
15 pF  
15 pF  
15-33 pF  
15-33 pF  
TBD  
15-33 pF  
15-33 pF  
TBD  
2.3  
RC Oscillator  
For timing insensitive applications, the “RC” and  
“RCIO” device options offer additional cost savings.  
The RC oscillator frequency is a function of the supply  
voltage, the resistor (REXT) and capacitor (CEXT) val-  
ues and the operating temperature. In addition to this,  
the oscillator frequency will vary from unit to unit, due  
to normal process parameter variation. Furthermore,  
the difference in lead frame capacitance between pack-  
age types will also affect the oscillation frequency,  
especially for low CEXT values. The user also needs to  
take into account variation due to tolerance of external  
R and C components used. Figure 2-3 shows how the  
R/C combination is connected.  
These values are for design guidance only.  
See notes following this table.  
Crystals Used  
32.0 kHz  
200 kHz  
1.0 MHz  
4.0 MHz  
8.0 MHz  
Epson C-001R32.768K-A ± 20 PPM  
STD XTL 200.000KHz  
ECS ECS-10-13-1  
ECS ECS-40-20-1  
± 20 PPM  
± 50 PPM  
± 50 PPM  
Epson CA-301 8.000M-C ± 30 PPM  
20.0 MHz Epson CA-301 20.000M-C ± 30 PPM  
In the RC Oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic.  
Note 1: Higher capacitance increases the stability  
of the oscillator, but also increases the  
start-up time.  
2: Rs (see Figure 2-1) may be required in  
HS mode, as well as XT mode, to avoid  
overdriving crystals with low drive level  
specifications.  
FIGURE 2-3:  
RC OSCILLATOR MODE  
VDD  
3: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appro-  
priate values of external components, or  
verify oscillator performance.  
REXT  
Internal  
OSC1  
Clock  
CEXT  
VSS  
PIC18FXX80/XX85  
OSC2/CLKO  
FOSC/4  
Recommended values: 3 kΩ ≤ REXT 100 kΩ  
CEXT > 20pF  
The RCIO Oscillator mode functions like the RC mode  
except that the OSC2 pin becomes an additional gen-  
eral purpose I/O pin. The I/O pin becomes bit 6 of  
PORTA (RA6).  
DS30491C-page 24  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
2.4  
External Clock Input  
2.5  
Phase Locked Loop (PLL)  
The EC, ECIO, EC+PLL and EC+SPLL Oscillator  
modes require an external clock source to be con-  
nected to the OSC1 pin. The feedback device between  
OSC1 and OSC2 is turned off in these modes to save  
current. There is a maximum 1.5 µs start-up required  
after a Power-on Reset, or wake-up from Sleep mode.  
A Phase Locked Loop circuit is provided as a  
programmable option for users that want to multiply the  
frequency of the incoming oscillator signal by 4. For an  
input clock frequency of 10 MHz, the internal clock  
frequency will be multiplied to 40 MHz. This is useful for  
customers who are concerned with EMI due to  
high-frequency crystals.  
In the EC Oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic. Figure 2-4 shows the pin connections for the EC  
Oscillator mode.  
The PLL can only be enabled when the oscillator config-  
uration bits are programmed for High-Speed Oscillator  
or External Clock mode. If they are programmed for any  
other mode, the PLL is not enabled and the system clock  
will come directly from OSC1. There are two types of  
PLL modes: Software Controlled PLL and Configuration  
bits Controlled PLL. In Software Controlled PLL mode,  
PIC18F6585/8585/6680/8680 executes at regular clock  
frequency after all Reset conditions. During execution,  
application can enable PLL and switch to 4x clock  
frequency operation by setting the PLLEN bit in the  
OSCCON register. In Configuration bits Controlled PLL  
mode, PIC18F6585/8585/6680/8680 always executes  
with 4x clock frequency.  
FIGURE 2-4:  
EXTERNAL CLOCK INPUT  
OPERATION  
(EC CONFIGURATION)  
OSC1  
Clock from  
Ext. System  
PIC18FXX80/XX85  
OSC2  
FOSC/4  
The type of PLL is selected by programming the  
FOSC<3:0> configuration bits in the CONFIG1H  
Configuration register. The oscillator mode is specified  
during device programming.  
The ECIO Oscillator mode functions like the EC mode,  
except that the OSC2 pin becomes an additional gen-  
eral purpose I/O pin. The I/O pin becomes bit 6 of  
PORTA (RA6). Figure 2-5 shows the pin connections  
for the ECIO Oscillator mode.  
A PLL lock timer is used to ensure that the PLL has  
locked before device execution starts. The PLL lock  
timer has a time-out that is called TPLL.  
FIGURE 2-5:  
EXTERNAL CLOCK INPUT  
OPERATION  
(ECIOCONFIGURATION)  
OSC1  
Clock from  
Ext. System  
PIC18FXX80/XX85  
I/O (OSC2)  
RA6  
FIGURE 2-6:  
PLL BLOCK DIAGRAM  
PLL Enable  
Phase  
Comparator  
FIN  
Loop  
Filter  
VCO  
SYSCLK  
FOUT  
Divide by 4  
2004 Microchip Technology Inc.  
DS30491C-page 25  
PIC18F6585/8585/6680/8680  
execution mode. Figure 2-7 shows a block diagram of  
the system clock sources. The clock switching feature  
is enabled by programming the Oscillator Switching  
Enable (OSCSEN) bit in configuration register,  
CONFIG1H, to a ‘0’. Clock switching is disabled in an  
erased device. See Section 12.0 “Timer1 Module” for  
further details of the Timer1 oscillator. See Section 24.0  
“Special Features of the CPU” for configuration  
register details.  
2.6  
Oscillator Switching Feature  
The PIC18F6585/8585/6680/8680 devices include a  
feature that allows the system clock source to be  
switched from the main oscillator to an alternate  
low-frequency  
clock  
source.  
For  
the  
PIC18F6585/8585/6680/8680 devices, this alternate  
clock source is the Timer1 oscillator. If a low-frequency  
crystal (32 kHz, for example) has been attached to the  
Timer1 oscillator pins and the Timer1 oscillator has  
been enabled, the device can switch to a low-power  
FIGURE 2-7:  
DEVICE CLOCK SOURCES  
PIC18FXX80/XX85  
Main Oscillator  
OSC2  
Tosc/4  
4 x PLL  
Sleep  
TOSC  
TT1P  
TSCLK  
OSC1  
Timer1 Oscillator  
T1OSO  
T1OSCEN  
Enable  
Oscillator  
Clock  
Source  
T1OSI  
Clock Source Option  
for other Modules  
DS30491C-page 26  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
enabled (PLLEN = 1) and locked (LOCK = 1), else it will  
be forced clear. When programmed with Configuration  
Controlled PLL mode, the SCS1 bit will be forced clear.  
2.6.1  
SYSTEM CLOCK SWITCH BIT  
The system clock source switching is performed under  
software control. The System Clock Switch bits,  
SCS1:SCS0 (OSCCON<1:0>), control the clock switch-  
ing. When the SCS0 bit is ‘0’, the system clock source  
comes from the main oscillator that is selected by the  
FOSC configuration bits in configuration register,  
CONFIG1H. When the SCS0 bit is set, the system clock  
source will come from the Timer1 oscillator. The SCS0  
bit is cleared on all forms of Reset.  
Note:  
The Timer1 oscillator must be enabled  
and operating to switch the system clock  
source. The Timer1 oscillator is enabled  
by setting the T1OSCEN bit in the Timer1  
Control register (T1CON). If the Timer1  
oscillator is not enabled, then any write to  
the SCS0 bit will be ignored (SCS0 bit  
forced cleared) and the main oscillator will  
continue to be the system clock source.  
When FOSC bits are programmed for software PLL  
mode, the SCS1 bit can be used to select between pri-  
mary oscillator/clock and PLL output. The SCS1 bit will  
only have an effect on the system clock if the PLL is  
REGISTER 2-1:  
OSCCON REGISTER  
U-0  
U-0  
U-0  
U-0  
R/W-0  
LOCK  
R/W-0  
R/W-0  
SCS1  
R/W-0  
SCS0  
PLLEN  
bit 7  
bit 0  
bit 7-4 Unimplemented: Read as ‘0’  
bit 3  
bit 2  
bit 1  
LOCK: Phase Lock Loop Lock Status bit  
1= Phase Lock Loop output is stable as system clock  
0= Phase Lock Loop output is not stable and output cannot be used as system clock  
PLLEN(1): Phase Lock Loop Enable bit  
1= Enable Phase Lock Loop output as system clock  
0= Disable Phase Lock Loop  
SCS1: System Clock Switch bit 1  
When PLLEN and LOCK bits are set:  
1= Use PLL output  
0= Use primary oscillator/clock input pin  
When PLLEN or LOCK bit is cleared:  
Bit is forced clear.  
bit 0  
SCS0(2): System Clock Switch bit 0  
When OSCSEN configuration bit = 0and T1OSCEN bit = 1:  
1= Switch to Timer1 oscillator/clock pin  
0= Use primary oscillator/clock input pin  
When OSCSEN and T1OSCEN are in other states:  
Bit is forced clear.  
Note 1: PLLEN bit is ignored when configured for ECIO+PLL and HS+PLL. This bit is used  
in ECIO+SPLL and HS+SPLL modes only.  
2: The setting of SCS0 = 1supersedes SCS1 = 1.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
2004 Microchip Technology Inc.  
DS30491C-page 27  
PIC18F6585/8585/6680/8680  
The sequence of events that takes place when switch-  
ing from the Timer1 oscillator to the main oscillator will  
depend on the mode of the main oscillator. In addition  
to eight clock cycles of the main oscillator, additional  
delays may take place.  
2.6.2  
OSCILLATOR TRANSITIONS  
PIC18F6585/8585/6680/8680 devices contain circuitry  
to prevent “glitches” when switching between oscillator  
sources. Essentially, the circuitry waits for eight rising  
edges of the clock source that the processor is switch-  
ing to. This ensures that the new clock source is stable  
and that its pulse width will not be less than the shortest  
pulse width of the two clock sources.  
If the main oscillator is configured for an external  
crystal (HS, XT, LP), then the transition will take place  
after an oscillator start-up time (TOST) has occurred. A  
timing diagram, indicating the transition from the  
Timer1 oscillator to the main oscillator for HS, XT and  
LP modes, is shown in Figure 2-9.  
A timing diagram, indicating the transition from the  
main oscillator to the Timer1 oscillator, is shown in  
Figure 2-8. The Timer1 oscillator is assumed to be run-  
ning all the time. After the SCS0 bit is set, the processor  
is frozen at the next occurring Q1 cycle. After eight  
synchronization cycles are counted from the Timer1  
oscillator, operation resumes. No additional delays are  
required after the synchronization cycles.  
FIGURE 2-8:  
TIMING DIAGRAM FOR TRANSITION FROM OSC1 TO TIMER1 OSCILLATOR  
Q1 Q2 Q3 Q4 Q1  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
TT1P  
1
2
3
4
5
6
7
8
T1OSI  
OSC1  
TSCS  
TOSC  
Internal  
System  
Clock  
TDLY  
SCS  
(OSCCON<0>)  
Program  
Counter  
PC  
PC + 2  
PC + 4  
Note:  
TDLY is the delay from SCS high to first count of transition circuit.  
FIGURE 2-9:  
TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (HS, XT, LP)  
Q1 Q2 Q3 Q4 Q1 Q2 Q3  
Q3  
Q4  
Q1  
TT1P  
T1OSI  
OSC1  
1
2
3
4
5
6
7
8
TOST  
TSCS  
TOSC  
Internal  
System Clock  
SCS  
(OSCCON<0>)  
Program  
Counter  
PC + 6  
PC  
PC + 2  
Note:  
TOST = 1024 TOSC (drawing not to scale).  
DS30491C-page 28  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
If the main oscillator is configured for HS mode with  
If the main oscillator is configured for EC mode with PLL  
active, only the PLL time-out (TPLL) will occur. The PLL  
time-out is typically 2 ms and allows the PLL to lock to  
the main oscillator frequency. A timing diagram, indicat-  
ing the transition from the Timer1 oscillator to the main  
oscillator for EC with PLL active, is shown in Figure 2-11.  
PLL active, an oscillator start-up time (TOST) plus an  
additional PLL time-out (TPLL) will occur. The PLL time-  
out is typically 2 ms and allows the PLL to lock to the  
main oscillator frequency. A timing diagram, indicating  
the transition from the Timer1 oscillator to the main  
oscillator for HS-PLL mode, is shown in Figure 2-10.  
FIGURE 2-10:  
TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1  
(HS WITH PLL ACTIVE, SCS1 = 1)  
TT1P  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q4  
Q1  
T1OSI  
OSC1  
TOST  
TPLL  
TSCS  
TOSC  
1
PLL Clock  
Input  
2
3
4
5
6
7
8
Internal System  
Clock  
SCS  
(OSCCON<0>)  
Program Counter  
PC + 4  
PC  
PC + 2  
Note:  
TOST = 1024 TOSC (drawing not to scale).  
FIGURE 2-11:  
TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1  
(EC WITH PLL ACTIVE, SCS1 = 1)  
TT1P  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q4  
Q1  
T1OSI  
OSC1  
TPLL  
TSCS  
TOSC  
PLL Clock  
Input  
1
2
3
4
5
6
7
8
Internal System  
Clock  
SCS  
(OSCCON<0>)  
Program Counter  
PC  
PC + 2  
PC + 4  
2004 Microchip Technology Inc.  
DS30491C-page 29  
PIC18F6585/8585/6680/8680  
If the main oscillator is configured in the RC, RCIO, EC  
or ECIO modes, there is no oscillator start-up time-out.  
Operation will resume after eight cycles of the main  
oscillator have been counted. A timing diagram, indi-  
cating the transition from the Timer1 oscillator to the  
main oscillator for RC, RCIO, EC and ECIO modes, is  
shown in Figure 2-12.  
FIGURE 2-12:  
TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (RC, EC)  
Q3  
Q4  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1  
TT1P  
OSC  
T
T1OSI  
OSC1  
6
1
4
5
7
8
2
3
Internal System  
Clock  
SCS  
(OSCCON<0>)  
TSCS  
Program  
Counter  
PC + 2  
PC  
PC + 4  
Note:  
RC Oscillator mode assumed.  
DS30491C-page 30  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
switching currents have been removed, Sleep mode  
achieves the lowest current consumption of the device  
(only leakage currents). Enabling any on-chip feature  
2.7  
Effects of Sleep Mode on the  
On-Chip Oscillator  
When the device executes a SLEEPinstruction, the on-  
chip clocks and oscillator are turned off and the device  
is held at the beginning of an instruction cycle (Q1  
state). With the oscillator off, the OSC1 and OSC2  
signals will stop oscillating. Since all the transistor  
that will operate during Sleep will increase the current  
consumed during Sleep. The user can wake from  
Sleep through external Reset, Watchdog Timer Reset,  
or through an interrupt.  
TABLE 2-3:  
OSC Mode  
OSC1 AND OSC2 PIN STATES IN SLEEP MODE  
OSC1 Pin  
OSC2 Pin  
RC  
Floating, external resistor should pull high  
At logic low  
RCIO  
Floating, external resistor should pull high  
Configured as PORTA, bit 6  
Configured as PORTA, bit 6  
At logic low  
ECIO  
Floating  
Floating  
EC  
LP, XT, and HS  
Feedback inverter disabled at  
quiescent voltage level  
Feedback inverter disabled at  
quiescent voltage level  
Note:  
See Table 3-1 in Section 3.0 “Reset”, for time-outs due to Sleep and MCLR Reset.  
With the PLL enabled (HS+PLL and EC+PLL Oscillator  
2.8  
Power-up Delays  
mode), the time-out sequence following a Power-on  
Reset is different from other oscillator modes. The  
time-out sequence is as follows: First, the PWRT time-  
out is invoked after a POR time delay has expired.  
Then, the Oscillator Start-up Timer (OST) is invoked.  
However, this is still not a sufficient amount of time to  
allow the PLL to lock at high frequencies. The PWRT  
timer is used to provide an additional fixed 2 ms  
(nominal) time-out to allow the PLL ample time to lock  
to the incoming clock frequency.  
Power-up delays are controlled by two timers so that no  
external Reset circuitry is required for most applica-  
tions. The delays ensure that the device is kept in  
Reset until the device power supply and clock are sta-  
ble. For additional information on Reset operation, see  
Section 3.0 “Reset”.  
The first timer is the Power-up Timer (PWRT) which  
optionally provides a fixed delay of 72 ms (nominal) on  
power-up only (POR and BOR). The second timer is  
the Oscillator Start-up Timer (OST), intended to keep  
the chip in Reset until the crystal oscillator is stable.  
2004 Microchip Technology Inc.  
DS30491C-page 31  
PIC18F6585/8585/6680/8680  
NOTES:  
DS30491C-page 32  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
Most registers are not affected by a WDT wake-up  
since this is viewed as the resumption of normal oper-  
3.0  
RESET  
The PIC18F6585/8585/6680/8680 devices differentiate  
between various kinds of Reset:  
ation. Status bits from the RCON register, RI, TO, PD,  
POR and BOR, are set or cleared differently in different  
Reset situations, as indicated in Table 3-2. These bits  
are used in software to determine the nature of the  
Reset. See Table 3-3 for a full description of the Reset  
states of all registers.  
a) Power-on Reset (POR)  
b) MCLR Reset during normal operation  
c) MCLR Reset during Sleep  
d) Watchdog Timer (WDT) Reset (during normal  
operation)  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 3-1.  
e) Programmable Brown-out Reset (BOR)  
f) RESETInstruction  
The Enhanced MCU devices have a MCLR noise filter  
in the MCLR Reset path. The filter will detect and  
ignore small pulses. The MCLR pin is not driven low by  
any internal Resets, including the WDT.  
g) Stack Full Reset  
h) Stack Underflow Reset  
Most registers are unaffected by a Reset. Their status  
is unknown on POR and unchanged by all other  
Resets. The other registers are forced to a “Reset  
state” on Power-on Reset, MCLR, WDT Reset, Brown-  
out Reset, MCLR Reset during Sleep and by the  
RESETinstruction.  
FIGURE 3-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
RESET  
Instruction  
Stack  
Pointer  
Stack Full/Underflow Reset  
External Reset  
MCLR  
SLEEP  
WDT  
WDT  
Module  
Time-out  
Reset  
VDD Rise  
Detect  
Power-on Reset  
VDD  
Brown-out  
Reset  
S
BOREN  
OST/PWRT  
OST  
10-bit Ripple Counter  
Chip_Reset  
R
Q
OSC1  
PWRT  
10-bit Ripple Counter  
On-chip  
RC OSC(1)  
Enable PWRT  
(2)  
Enable OST  
Note 1: This is a separate oscillator from the RC oscillator of the CLKI pin.  
2: See Table 3-1 for time-out situations.  
2004 Microchip Technology Inc.  
DS30491C-page 33  
PIC18F6585/8585/6680/8680  
3.1  
Power-on Reset (POR)  
3.3  
Oscillator Start-up Timer (OST)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected. To take advantage of the POR cir-  
cuitry, tie the MCLR pin through a 1 kto 10 kresis-  
tor to VDD. This will eliminate external RC components  
usually needed to create a Power-on Reset delay. A  
minimum rise rate for VDD is specified (parameter  
D004). For a slow rise time, see Figure 3-2.  
The Oscillator Start-up Timer (OST) provides 1024  
oscillator cycles (from OSC1 input) delay after the  
PWRT delay is over (parameter #32). This ensures that  
the crystal oscillator or resonator has started and  
stabilized.  
The OST time-out is invoked only for XT, LP and HS  
modes and only on Power-on Reset, or wake-up from  
Sleep.  
When the device starts normal operation (i.e., exits the  
Reset condition), device operating parameters (volt-  
age, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in Reset until the operating  
conditions are met.  
3.4  
PLL Lock Time-out  
With the PLL enabled, the time-out sequence following  
a Power-on Reset is different from other oscillator  
modes. A portion of the Power-up Timer is used to pro-  
vide a fixed time-out that is sufficient for the PLL to lock  
to the main oscillator frequency. This PLL lock time-out  
(TPLL) is typically 2 ms and follows the oscillator  
start-up time-out (OST).  
FIGURE 3-2:  
EXTERNAL POWER-ON  
RESET CIRCUIT (FOR  
SLOW VDD POWER-UP)  
VDD  
3.5  
Brown-out Reset (BOR)  
A configuration bit, BOREN, can disable (if clear/  
programmed), or enable (if set) the Brown-out Reset  
circuitry. If VDD falls below parameter D005 for greater  
than parameter #35, the brown-out situation will reset  
the chip. A Reset may not occur if VDD falls below  
parameter D005 for less than parameter #35. The chip  
will remain in Brown-out Reset until VDD rises above  
BVDD. If the Power-up Timer is enabled, it will be  
invoked after VDD rises above BVDD; it then will keep  
the chip in Reset for an additional time delay (parame-  
ter #33). If VDD drops below BVDD while the Power-up  
Timer is running, the chip will go back into a Brown-out  
Reset and the Power-up Timer will be initialized. Once  
VDD rises above BVDD, the Power-up Timer will  
execute the additional time delay.  
D
R
R1  
MCLR  
PIC18FXX8X  
C
Note 1: External Power-on Reset circuit is required  
only if the VDD power-up slope is too slow.  
The diode D helps discharge the capacitor  
quickly when VDD powers down.  
2: R < 40 kis recommended to make sure that  
the voltage drop across R does not violate  
the device’s electrical specification.  
3: R1 = 1 kto 10 kwill limit any current flow-  
ing into MCLR from external capacitor C, in  
the event of MCLR/VPP pin breakdown due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS).  
3.6  
Time-out Sequence  
On power-up, the time-out sequence is as follows:  
First, PWRT time-out is invoked after the POR time  
delay has expired. Then, OST is activated. The total  
time-out will vary based on oscillator configuration and  
the status of the PWRT. For example, in RC mode with  
the PWRT disabled, there will be no time-out at all.  
Figure 3-3, Figure 3-4, Figure 3-5, Figure 3-6 and  
Figure 3-7 depict time-out sequences on power-up.  
3.2  
Power-up Timer (PWRT)  
The Power-up Timer provides a fixed nominal time-out  
(parameter #33) only on power-up from the POR. The  
Power-up Timer operates on an internal RC oscillator.  
The chip is kept in Reset as long as the PWRT is active.  
The PWRT’s time delay allows VDD to rise to an  
acceptable level. A configuration bit is provided to  
enable/disable the PWRT.  
Since the time-outs occur from the POR pulse, the  
time-outs will expire if MCLR is kept low long enough.  
Bringing MCLR high will begin execution immediately  
(Figure 3-5). This is useful for testing purposes or to  
synchronize more than one PIC18FXX8X device  
operating in parallel.  
The power-up time delay will vary from chip-to-chip due  
to VDD, temperature and process variation. See DC  
parameter #33 for details.  
Table 3-2 shows the Reset conditions for some Special  
Function Registers while Table 3-3 shows the Reset  
conditions for all of the registers.  
DS30491C-page 34  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 3-1:  
TIME-OUT IN VARIOUS SITUATIONS  
Power-up(2)  
Wake-up from  
Sleep or  
Oscillator Switch  
Oscillator  
Configuration  
Brown-out  
PWRTE = 0  
HS with PLL enabled(1) 72 ms + 1024 TOSC + 2ms  
PWRTE = 1  
1024 TOSC + 2 ms 1024 TOSC + 2 ms 1024 TOSC + 2 ms  
EC with PLL enabled(1)  
72 ms + 2ms  
72 ms + 1024 TOSC  
72 ms  
1.5 µs + 2 ms  
1024 TOSC  
1.5 µs  
2 ms  
1024 TOSC  
1.5 µs  
1.5 µs + 2 ms  
1024 TOSC  
1.5 µs(3)  
HS, XT, LP  
EC  
External RC  
72 ms  
1.5 µs  
1.5 µs  
1.5 µs  
Note 1: 2 ms is the nominal time required for the 4x PLL to lock.  
2: 72 ms is the nominal power-up timer delay if implemented.  
3: 1.5 µs is the recovery time from Sleep. There is no recovery time from oscillator switch.  
REGISTER 3-1:  
RCON REGISTER BITS AND POSITIONS  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R/W-1  
TO  
R/W-1  
PD  
R/W-1  
POR  
R/W-0  
BOR  
bit 7  
Note:  
bit 0  
Refer to Section 4.14 “RCON Register” for bit definitions.  
TABLE 3-2:  
STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR  
RCON REGISTER  
Program  
Counter  
RCON  
Register  
Condition  
RI TO PD POR BOR STKFUL STKUNF  
Power-on Reset  
0000h  
0000h  
0--1 1100  
0--u uuuu  
1
u
1
u
1
u
0
u
0
u
u
u
u
u
MCLR Reset during normal  
operation  
Software Reset during normal  
operation  
0000h  
0000h  
0000h  
0--0 uuuu  
0--u uu11  
0--u uu11  
0
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
u
1
u
1
u
Stack Full Reset during normal  
operation  
Stack Underflow Reset during  
normal operation  
MCLR Reset during Sleep  
WDT Reset  
0000h  
0000h  
0--u 10uu  
0--u 01uu  
u--u 00uu  
0--1 11u0  
u--u 00uu  
u
1
u
1
u
1
0
0
1
1
0
1
0
1
0
u
u
u
1
u
u
u
u
0
u
u
u
u
u
u
u
u
u
u
u
WDT Wake-up  
PC + 2  
0000h  
PC + 2(1)  
Brown-out Reset  
Interrupt wake-up from Sleep  
Legend: u= unchanged, x= unknown, – = unimplemented bit, read as ‘0’  
Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the  
interrupt vector (000008h or 000018h).  
2004 Microchip Technology Inc.  
DS30491C-page 35  
PIC18F6585/8585/6680/8680  
TABLE 3-3:  
Register  
TOSU  
INITIALIZATION CONDITIONS FOR ALL REGISTERS  
MCLR Resets  
Power-on Reset,  
Brown-out Reset  
WDT Reset  
RESET Instruction  
Stack Resets  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
---0 0000  
0000 0000  
0000 0000  
uu-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 000x  
1111 1111  
1100 0000  
N/A  
---0 uuuu(3)  
uuuu uuuu(3)  
uuuu uuuu(3)  
uu-u uuuu(3)  
---u uuuu  
uuuu uuuu  
PC + 2(2)  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(1)  
uuuu uuuu(1)  
uuuu uuuu(1)  
N/A  
---0 0000  
TOSH  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
1111 1111  
1100 0000  
N/A  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0  
POSTINC0  
POSTDEC0  
PREINC0  
PLUSW0  
FSR0H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- xxxx  
xxxx xxxx  
xxxx xxxx  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
FSR0L  
WREG  
INDF1  
POSTINC1  
POSTDEC1  
PREINC1  
PLUSW1  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they read ‘0’.  
7: This register reads all ‘0’s until ECAN is set up in Mode 1 or Mode 2.  
DS30491C-page 36  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 3-3:  
Register  
FSR1H  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
RESET Instruction  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
---- xxxx  
---- uuuu  
---- uuuu  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
FSR1L  
xxxx xxxx  
---- 0000  
N/A  
uuuu uuuu  
---- 0000  
N/A  
uuuu uuuu  
---- uuuu  
N/A  
BSR  
INDF2  
POSTINC2  
POSTDEC2  
PREINC2  
PLUSW2  
FSR2H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- xxxx  
xxxx xxxx  
---x xxxx  
0000 0000  
xxxx xxxx  
1111 1111  
---- 0000  
--00 0101  
---- ---0  
0--q 11qq  
xxxx xxxx  
xxxx xxxx  
0-00 0000  
0000 0000  
1111 1111  
-000 0000  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
---- uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
1111 1111  
---- 0000  
--00 0101  
---- ---0  
0--q qquu  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
0000 0000  
1111 1111  
-000 0000  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
---- uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- uuuu  
--uu uuuu  
---- ---u  
u--u qquu  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
uuuu uuuu  
1111 1111  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
OSCCON  
LVDCON  
WDTCON  
RCON(4)  
TMR1H  
TMR1L  
T1CON  
TMR2  
PR2  
T2CON  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1  
SSPCON2  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they read ‘0’.  
7: This register reads all ‘0’s until ECAN is set up in Mode 1 or Mode 2.  
2004 Microchip Technology Inc.  
DS30491C-page 37  
PIC18F6585/8585/6680/8680  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
Power-on Reset,  
Brown-out Reset  
WDT Reset  
RESET Instruction  
Stack Resets  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
ADRESH  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
CCPR1H  
CCPR1L  
CCP1CON  
CCPR2H  
CCPR2L  
CCP2CON  
CCPAS1  
CVRCON  
CMCON  
TMR3H  
xxxx xxxx  
--00 0000  
--00 0000  
0-00 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 ----  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
0000 000x  
---- --00  
0000 0000  
0000 0000  
xx-0 x000  
00-0 x000  
uuuu uuuu  
--00 0000  
--00 0000  
0-00 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 ----  
0000 0000  
0000 0000  
0000 0000  
0000 0010  
0000 000x  
---- --00  
0000 0000  
0000 0000  
uu-0 u000  
00-0 u000  
uuuu uuuu  
--uu uuuu  
--uu uuuu  
u-uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu ----  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- --uu  
uuuu uuuu  
uuuu uuuu  
uu-0 u000  
uu-u uuuu  
TMR3L  
T3CON  
PSPCON  
SPBRG  
RCREG  
TXREG  
TXSTA  
RCSTA  
EEADRH  
EEADR  
EEDATA  
EECON2  
EECON1  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they read ‘0’.  
7: This register reads all ‘0’s until ECAN is set up in Mode 1 or Mode 2.  
DS30491C-page 38  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 3-3:  
Register  
IPR3  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
RESET Instruction  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
1111 1111  
1111 1111  
uuuu uuuu  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIR3  
0000 0000  
0000 0000  
-1-1 1111  
-0-0 0000  
-0-0 0000  
1111 1111  
0000 0000  
0000 0000  
0-00 --00  
1111 1111  
1111 1111  
---1 1111  
1111 1111  
0000 -111  
1111 1111  
1111 1111  
1111 1111  
-111 1111(5)  
xxxx xxxx  
xxxx xxxx  
---x xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-xxx xxxx(5)  
0000 0000  
0000 0000  
-1-1 1111  
-0-0 0000  
-0-0 0000  
1111 1111  
0000 0000  
0000 0000  
0-00 --00  
1111 1111  
1111 1111  
---1 1111  
1111 1111  
0000 -111  
1111 1111  
1111 1111  
1111 1111  
-111 1111(5)  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
uuuu uuuu  
uuuu uuuu  
-u-u uuuu  
-u-u uuuu(1)  
-u-u uuuu  
uuuu uuuu  
uuuu uuuu(1)  
uuuu uuuu  
u-uu --uu  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
PIE3  
IPR2  
PIR2  
PIE2  
IPR1  
PIR1  
PIE1  
MEMCON  
TRISJ  
TRISH  
TRISG  
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA(5,6)  
LATJ  
LATH  
LATG  
LATF  
LATE  
LATD  
LATC  
LATB  
LATA(5,6)  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they read ‘0’.  
7: This register reads all ‘0’s until ECAN is set up in Mode 1 or Mode 2.  
2004 Microchip Technology Inc.  
DS30491C-page 39  
PIC18F6585/8585/6680/8680  
TABLE 3-3:  
Register  
PORTJ  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
Power-on Reset,  
Brown-out Reset  
WDT Reset  
RESET Instruction  
Stack Resets  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PORTH  
0000 xxxx  
--xx xxxx  
x000 0000  
---- -000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-x0x 0000(5)  
0000 0000  
-1-0 0-00  
0000 0000  
0001 0000  
0000 0000  
0000 0000  
0000 0000  
0000 ----  
00-- -000  
0000 0000  
0000 0000  
1000 000-  
100- 000-  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-xxx xxxx  
0000 uuuu  
--uu uuuu  
u000 0000  
---- -000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u0u 0000(5)  
0000 0000  
-1-0 0-00  
0000 0000  
0001 0000  
0000 0000  
0000 0000  
0000 0000  
0000 ----  
00-- -000  
0000 0000  
0000 0000  
1000 000-  
100- 000-  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
--uu uuuu  
u000 0000  
---- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
uuuu uuuu  
-u-u u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu ----  
uu-- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuu-  
uuu- uuu-  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
PORTG  
PORTF  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA(5,6)  
SPBRGH  
BAUDCON  
ECCP1DEL  
ECANCON  
TXERRCNT  
RXERRCNT  
COMSTAT  
CIOCON  
BRGCON3  
BRGCON2  
BRGCON1  
CANCON  
CANSTAT  
RXB0D7  
RXB0D6  
RXB0D5  
RXB0D4  
RXB0D3  
RXB0D2  
RXB0D1  
RXB0D0  
RXB0DLC  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they read ‘0’.  
7: This register reads all ‘0’s until ECAN is set up in Mode 1 or Mode 2.  
DS30491C-page 40  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 3-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESET Instruction  
Stack Resets  
RXB0EIDL  
RXB0EIDH  
RXB0SIDL  
RXB0SIDH  
RXB0CON  
RXB1D7  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
xxxx xxxx  
xxxx xxxx  
xxxx x-xx  
xxxx xxxx  
000- 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-xxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx x-xx  
xxxx xxxx  
000- 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-x-- xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
uuuu uuuu  
uuuu uuuu  
uuuu u-uu  
uuuu uuuu  
000- 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu u-uu  
uuuu uuuu  
000- 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u-- uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu u-uu  
uuuu uuuu  
uuu- uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu u-uu  
uuuu uuuu  
uuu- uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u-- uuuu  
uuuu uuuu  
-uuu uuuu  
uuu- u-uu  
RXB1D6  
RXB1D5  
RXB1D4  
RXB1D3  
RXB1D2  
RXB1D1  
RXB1D0  
RXB1DLC  
RXB1EIDL  
RXB1EIDH  
RXB1SIDL  
RXB1SIDH  
RXB1CON  
TXB0D7  
TXB0D6  
TXB0D5  
TXB0D4  
TXB0D3  
TXB0D2  
TXB0D1  
TXB0D0  
TXB0DLC  
TXB0EIDL  
TXB0EIDH  
TXB0SIDL  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they read ‘0’.  
7: This register reads all ‘0’s until ECAN is set up in Mode 1 or Mode 2.  
2004 Microchip Technology Inc.  
DS30491C-page 41  
PIC18F6585/8585/6680/8680  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
Power-on Reset,  
Brown-out Reset  
WDT Reset  
RESET Instruction  
Stack Resets  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
TXB0SIDH  
TXB0CON  
TXB1D7  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
xxxx xxxx  
0000 0-00  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-x-- xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
0000 0-00  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-x-- xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxx- x-xx  
0000 0-00  
xxxx xxxx  
uuuu uuuu  
0000 0-00  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u-- uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
0000 0-00  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u-- uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuu- u-uu  
0000 0-00  
uuuu uuuu  
uuuu uuuu  
uuuu u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u-- uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- uu-u  
-uuu uuuu  
uuuu u-uu  
0uuu uuuu  
0uuu uuuu  
0uuu uuuu  
0uuu uuuu  
0uuu uuuu  
0uuu uuuu  
0uuu uuuu  
0uuu uuuu  
-u-- uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuu- u-uu  
uuuu u-uu  
uuuu uuuu  
TXB1D6  
TXB1D5  
TXB1D4  
TXB1D3  
TXB1D2  
TXB1D1  
TXB1D0  
TXB1DLC  
TXB1EIDL  
TXB1EIDH  
TXB1SIDL  
TXB1SIDH  
TXB1CON  
TXB2D7  
TXB2D6  
TXB2D5  
TXB2D4  
TXB2D3  
TXB2D2  
TXB2D1  
TXB2D0  
TXB2DLC  
TXB2EIDL  
TXB2EIDH  
TXB2SIDL  
TXB2SIDH  
TXB2CON  
RXM1EIDL  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they read ‘0’.  
7: This register reads all ‘0’s until ECAN is set up in Mode 1 or Mode 2.  
DS30491C-page 42  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 3-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESET Instruction  
Stack Resets  
RXM1EIDH  
RXM1SIDL  
RXM1SIDH  
RXM0EIDL  
RXM0EIDH  
RXM0SIDL  
RXM0SIDH  
RXF5EIDL  
RXF5EIDH  
RXF5SIDL  
RXF5SIDH  
RXF4EIDL  
RXF4EIDH  
RXF4SIDL  
RXF4SIDH  
RXF3EIDL  
RXF3EIDH  
RXF3SIDL  
RXF3SIDH  
RXF2EIDL  
RXF2EIDH  
RXF2SIDL  
RXF2SIDH  
RXF1EIDL  
RXF1EIDH  
RXF1SIDL  
RXF1SIDH  
RXF0EIDL  
RXF0EIDH  
RXF0SIDL  
RXF0SIDH  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they read ‘0’.  
7: This register reads all ‘0’s until ECAN is set up in Mode 1 or Mode 2.  
2004 Microchip Technology Inc.  
DS30491C-page 43  
PIC18F6585/8585/6680/8680  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
Power-on Reset,  
Brown-out Reset  
WDT Reset  
RESET Instruction  
Stack Resets  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
B5D7(7)  
B5D6(7)  
B5D5(7)  
B5D4(7)  
B5D3(7)  
B5D2(7)  
B5D1(7)  
B5D0(7)  
B5DLC(7)  
B5EIDL(7)  
B5EIDH(7)  
B5SIDL(7)  
B5SIDH(7)  
B5CON(7)  
B4D7(7)  
B4D6(7)  
B4D5(7)  
B4D4(7)  
B4D3(7)  
B4D2(7)  
B4D1(7)  
B4D0(7)  
B4DLC(7)  
B4EIDL(7)  
B4EIDH(7)  
B4SIDL(7)  
B4SIDH(7)  
B4CON(7)  
B3D7(7)  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-xxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx x-xx  
xxxx x-xx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-xxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx x-xx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu u-uu  
uuuu u-uu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu u-uu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu u-uu  
uuuu u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
B3D6(7)  
B3D5(7)  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they read ‘0’.  
7: This register reads all ‘0’s until ECAN is set up in Mode 1 or Mode 2.  
DS30491C-page 44  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 3-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESET Instruction  
Stack Resets  
B3D4(7)  
B3D3(7)  
B3D2(7)  
B3D1(7)  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-xxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx x-xx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-xxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx x-xx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu u-uu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu u-uu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
B3D0(7)  
B3DLC(7)  
B3EIDL(7)  
B3EIDH(7)  
B3SIDL(7)  
B3SIDH(7)  
B3CON(7)  
B2D7(7)  
B2D6(7)  
B2D5(7)  
B2D4(7)  
B2D3(7)  
B2D2(7)  
B2D1(7)  
B2D0(7)  
B2DLC(7)  
B2EIDL(7)  
B2EIDH(7)  
B2SIDL(7)  
B2SIDH(7)  
B2CON(7)  
B1D7(7)  
B1D6(7)  
B1D5(7)  
B1D4(7)  
B1D3(7)  
B1D2(7)  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they read ‘0’.  
7: This register reads all ‘0’s until ECAN is set up in Mode 1 or Mode 2.  
2004 Microchip Technology Inc.  
DS30491C-page 45  
PIC18F6585/8585/6680/8680  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
Power-on Reset,  
Brown-out Reset  
WDT Reset  
RESET Instruction  
Stack Resets  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
B1D1(7)  
B1D0(7)  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
xxxx xxxx  
xxxx xxxx  
-xxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx x-xx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-xxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx x-xx  
xxxx xxxx  
0000 0000  
---0 00--  
0000 0000  
0000 00--  
0000 0000  
0000 0000  
0000 0101  
0101 0000  
---0 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu u-uu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu u-uu  
uuuu uuuu  
0000 0000  
---u uu--  
0000 0000  
0000 00--  
0000 0000  
0000 0000  
0000 0101  
0101 0000  
---0 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu u-uu  
uuuu uuuu  
uuuu uuuu  
---u uu--  
uuuu uuuu  
uuuu uu--  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u-- uuuu  
uuuu uuuu  
B1DLC(7)  
B1EIDL(7)  
B1EIDH(7)  
B1SIDL(7)  
B1SIDH(7)  
B1CON(7)  
B0D7(7)  
B0D6(7)  
B0D5(7)  
B0D4(7)  
B0D3(7)  
B0D2(7)  
B0D1(7)  
B0D0(7)  
B0DLC(7)  
B0EIDL(7)  
B0EIDH(7)  
B0SIDL(7)  
B0SIDH(7)  
B0CON(7)  
TXBIE(7)  
BIE0(7)  
BSEL0(7)  
MSEL3(7)  
MSEL2(7)  
MSEL1(7)  
MSEL0(7)  
SDFLC(7)  
RXFCON1(7)  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they read ‘0’.  
7: This register reads all ‘0’s until ECAN is set up in Mode 1 or Mode 2.  
DS30491C-page 46  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 3-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESET Instruction  
Stack Resets  
RXFCON0(7)  
PIC18F6X8X PIC18F8X8X  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0001 0001  
0001 0001  
0000 0000  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0001 0001  
0001 0001  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
-uuu uuuu  
-uuu uuuu  
RXFBCON7(7) PIC18F6X8X PIC18F8X8X  
RXFBCON6(7) PIC18F6X8X PIC18F8X8X  
RXFBCON5(7) PIC18F6X8X PIC18F8X8X  
RXFBCON4(7) PIC18F6X8X PIC18F8X8X  
RXFBCON3(7) PIC18F6X8X PIC18F8X8X  
RXFBCON2(7) PIC18F6X8X PIC18F8X8X  
RXFBCON1(7) PIC18F6X8X PIC18F8X8X  
RXFBCON0(7) PIC18F6X8X PIC18F8X8X  
RXF15EIDL(7) PIC18F6X8X PIC18F8X8X  
RXF15EIDH(7) PIC18F6X8X PIC18F8X8X  
RXF15SIDL(7) PIC18F6X8X PIC18F8X8X  
RXF15SIDH(7) PIC18F6X8X PIC18F8X8X  
RXF14EIDL(7) PIC18F6X8X PIC18F8X8X  
RXF14EIDH(7) PIC18F6X8X PIC18F8X8X  
RXF14SIDL(7) PIC18F6X8X PIC18F8X8X  
RXF14SIDH(7) PIC18F6X8X PIC18F8X8X  
RXF13EIDL(7) PIC18F6X8X PIC18F8X8X  
RXF13EIDH(7) PIC18F6X8X PIC18F8X8X  
RXF13SIDL(7) PIC18F6X8X PIC18F8X8X  
RXF13SIDH(7) PIC18F6X8X PIC18F8X8X  
RXF12EIDL(7) PIC18F6X8X PIC18F8X8X  
RXF12EIDH(7) PIC18F6X8X PIC18F8X8X  
RXF12SIDL(7) PIC18F6X8X PIC18F8X8X  
RXF12SIDH(7) PIC18F6X8X PIC18F8X8X  
RXF11EIDL(7) PIC18F6X8X PIC18F8X8X  
RXF11EIDH(7) PIC18F6X8X PIC18F8X8X  
RXF11SIDL(7) PIC18F6X8X PIC18F8X8X  
RXF11SIDH(7) PIC18F6X8X PIC18F8X8X  
RXF10EIDL(7) PIC18F6X8X PIC18F8X8X  
RXF10EIDH(7) PIC18F6X8X PIC18F8X8X  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they read ‘0’.  
7: This register reads all ‘0’s until ECAN is set up in Mode 1 or Mode 2.  
2004 Microchip Technology Inc.  
DS30491C-page 47  
PIC18F6585/8585/6680/8680  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Resets  
Power-on Reset,  
Brown-out Reset  
WDT Reset  
RESET Instruction  
Stack Resets  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
RXF10SIDL(7) PIC18F6X8X PIC18F8X8X  
RXF10SIDH(7) PIC18F6X8X PIC18F8X8X  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
-uuu uuuu  
-uuu uuuu  
-uuu uuuu  
-uuu uuuu  
-uuu uuuu  
-uuu uuuu  
-uuu uuuu  
-uuu uuuu  
-uuu uuuu  
-uuu uuuu  
-uuu uuuu  
-uuu uuuu  
-uuu uuuu  
-uuu uuuu  
-uuu uuuu  
-uuu uuuu  
-uuu uuuu  
-uuu uuuu  
RXF9EIDL(7)  
RXF9EIDH(7) PIC18F6X8X PIC18F8X8X  
RXF9SIDL(7)  
PIC18F6X8X PIC18F8X8X  
RXF9SIDH(7) PIC18F6X8X PIC18F8X8X  
RXF8EIDL(7)  
PIC18F6X8X PIC18F8X8X  
RXF8EIDH(7) PIC18F6X8X PIC18F8X8X  
RXF8SIDL(7)  
PIC18F6X8X PIC18F8X8X  
RXF8SIDH(7) PIC18F6X8X PIC18F8X8X  
RXF7EIDL(7)  
PIC18F6X8X PIC18F8X8X  
RXF7EIDH(7) PIC18F6X8X PIC18F8X8X  
RXF7SIDL(7)  
PIC18F6X8X PIC18F8X8X  
RXF7SIDH(7) PIC18F6X8X PIC18F8X8X  
RXF6EIDL(7)  
PIC18F6X8X PIC18F8X8X  
RXF6EIDH(7) PIC18F6X8X PIC18F8X8X  
RXF6SIDL(7)  
PIC18F6X8X PIC18F8X8X  
RXF6SIDH(7) PIC18F6X8X PIC18F8X8X  
PIC18F6X8X PIC18F8X8X  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Bit 6 of PORTA, LATA and TRISA are not available on all devices. When unimplemented, they read ‘0’.  
7: This register reads all ‘0’s until ECAN is set up in Mode 1 or Mode 2.  
DS30491C-page 48  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 3-3:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD VIA 1 kRESISTOR)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 3-4:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 3-5:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
2004 Microchip Technology Inc.  
DS30491C-page 49  
PIC18F6585/8585/6680/8680  
FIGURE 3-6:  
SLOW RISE TIME (MCLR TIED TO VDD VIA 1 kRESISTOR)  
5V  
1V  
0V  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 3-7:  
TIME-OUT SEQUENCE ON POR W/ PLL ENABLED  
(MCLR TIED TO VDD VIA 1 kRESISTOR)  
VDD  
MCLR  
IINTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
TPLL  
PLL TIME-OUT  
INTERNAL RESET  
Note:  
TOST = 1024 clock cycles.  
TPLL 2 ms max. First three stages of the PWRT timer.  
DS30491C-page 50  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
4.1.1  
PIC18F8X8X PROGRAM MEMORY  
MODES  
4.0  
MEMORY ORGANIZATION  
There  
are  
three  
memory  
blocks  
in  
PIC18F8X8X devices differ significantly from their  
PIC18 predecessors in their utilization of program  
memory. In addition to available on-chip Flash program  
memory, these controllers can also address up to  
2 Mbytes of external program memory through the  
external memory interface. There are four distinct  
operating modes available to the controllers:  
PIC18F6585/8585/6680/8680 devices. They are:  
• Program Memory  
• Data RAM  
• Data EEPROM  
Data and program memory use separate busses which  
allows for concurrent access of these blocks. Additional  
detailed information for Flash program memory and data  
EEPROM is provided in Section 5.0 “Flash Program  
Memory” and Section 7.0 “Data EEPROM Memory”,  
respectively.  
• Microprocessor (MP)  
• Microprocessor with Boot Block (MPBB)  
• Extended Microcontroller (EMC)  
• Microcontroller (MC)  
In addition to on-chip Flash, the PIC18F8X8X devices  
are also capable of accessing external program mem-  
ory through an external memory bus. Depending on the  
selected operating mode (discussed in Section 4.1.1  
“PIC18F8X8X Program Memory Modes”), the  
controllers may access either internal or external pro-  
gram memory exclusively, or both internal and external  
memory in selected blocks. Additional information on  
the external memory interface is provided in  
Section 6.0 “External Memory Interface”.  
The Program Memory mode is determined by setting  
the two Least Significant bits of the CONFIG3L config-  
uration byte, as shown in Register 4-1. (See also  
Section 24.1 “Configuration Bits” for additional  
details on the device configuration bits.)  
The Program Memory modes operate as follows:  
• The Microprocessor Mode permits access only  
to external program memory; the contents of the  
on-chip Flash memory are ignored. The 21-bit  
program counter permits access to a 2-MByte  
linear program memory space.  
4.1  
Program Memory Organization  
• The Microprocessor with Boot Block Mode  
accesses on-chip Flash memory from addresses  
000000h to 0007FFh. Above this, external  
program memory is accessed all the way up to  
the 2-MByte limit. Program execution auto-  
matically switches between the two memories as  
required.  
A 21-bit program counter is capable of addressing the  
2-Mbyte program memory space. Accessing a location  
between the physically implemented memory and the  
2-Mbyte address will cause a read of all ‘0’s (a NOP  
instruction).  
The PIC18F6585 and PIC18F8585 each have  
48 Kbytes of on-chip Flash memory, while the  
PIC18F6680 and PIC18F8680 have 64 Kbytes of Flash.  
This means that PIC18FX585 devices can store inter-  
nally up to 24,576 single-word instructions and  
PIC18FX680 devices can store up to 32,768 single-word  
instructions.  
• The Microcontroller Mode accesses only  
on-chip Flash memory. Attempts to read above  
the physical limit of the on-chip Flash (0BFFFh for  
the PIC18F8585, 0FFFFh for the PIC18F8680)  
causes a read of all ‘0’s (a NOPinstruction).  
The Microcontroller mode is the only operating  
mode available to PIC18F6X8X devices.  
The Reset vector address is at 0000h and the interrupt  
vector addresses are at 0008h and 0018h.  
• The Extended Microcontroller Mode allows  
access to both internal and external program  
memories as a single block. The device can  
access its entire on-chip Flash memory; above  
this, the device accesses external program mem-  
ory up to the 2-MByte program space limit. As  
with Boot Block mode, execution automatically  
switches between the two memories as required.  
Figure 4-1 shows the program memory map for  
PIC18F6585/8585 devices while Figure 4-2 shows the  
program memory map for PIC18F6680/8680 devices.  
In all modes, the microcontroller has complete access  
to data RAM and EEPROM.  
Figure 4-3 compares the memory maps of the different  
Program Memory modes. The differences between on-  
chip and external memory access limitations are more  
fully explained in Table 4-1.  
2004 Microchip Technology Inc.  
DS30491C-page 51  
PIC18F6585/8585/6680/8680  
FIGURE 4-1:  
INTERNAL PROGRAM  
MEMORY MAP AND  
STACK FOR  
FIGURE 4-2:  
INTERNAL PROGRAM  
MEMORY MAP AND  
STACK FOR  
PIC18F6585/8585  
PIC18F6680/8680  
PC<20:0>  
PC<20:0>  
21  
21  
CALL,RCALL,RETURN  
RETFIE,RETLW  
CALL,RCALL,RETURN  
RETFIE,RETLW  
Stack Level 1  
Stack Level 1  
Stack Level 31  
Reset Vector  
Stack Level 31  
Reset Vector  
000000h  
000000h  
High Priority Interrupt Vector  
Low Priority Interrupt Vector  
High Priority Interrupt Vector  
Low Priority Interrupt Vector  
000008h  
000018h  
000008h  
000018h  
On-Chip Flash  
Program Memory  
00BFFFh  
00C000h  
On-Chip Flash  
Program Memory  
00FFFFh  
010000h  
Read ‘0’  
Read ‘0’  
1FFFFFh  
200000h  
1FFFFFh  
200000h  
TABLE 4-1:  
MEMORY ACCESS FOR PIC18F8X8X PROGRAM MEMORY MODES  
Internal Program Memory External Program Memory  
Operating Mode  
Execution  
Table Read  
From  
Execution  
Table Read  
From  
Table Write To  
Table Write To  
From  
From  
Microprocessor  
No Access  
Yes  
No Access  
Yes  
No Access  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Microprocessor w/  
Boot Block  
Microcontroller  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No Access  
Yes  
No Access  
Yes  
No Access  
Yes  
Extended  
Microcontroller  
DS30491C-page 52  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 4-1:  
CONFIG3L CONFIGURATION BYTE  
R/P-1  
WAIT  
U-0  
U-0  
U-0  
U-0  
U-0  
R/P-1  
PM1  
R/P-1  
PM0  
bit 7  
bit 0  
bit 7  
WAIT: External Bus Data Wait Enable bit  
1= Wait selections unavailable, device will not wait  
0= Wait programmed by WAIT1 and WAIT0 bits of MEMCOM register (MEMCOM<5:4>)  
bit 6-2  
bit 1-0  
Unimplemented: Read as ‘0’  
PM1:PM0: Processor Data Memory Mode Select bits  
11= Microcontroller mode  
10= Microprocessor mode  
01= Microcontroller with Boot Block mode  
00= Extended Microcontroller mode  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown  
- n = Value after erase  
FIGURE 4-3:  
MEMORY MAPS FOR PIC18F8X8X PROGRAM MEMORY MODES  
Microprocessor  
with Boot Block  
Mode  
Extended  
Microcontroller  
Mode  
Microprocessor  
Microcontroller  
Mode  
Mode  
000000h  
000000h  
000000h  
000000h  
On-Chip  
Program  
Memory  
(No  
On-Chip  
Program  
Memory  
On-Chip  
On-Chip  
Program  
Memory  
Program  
Memory  
00BFFFh(1)  
00FFFFh(2)  
00BFFFh(1)  
00FFFFh(2)  
access)  
0007FFh  
000800h  
00C000h(1)  
010000h(2)  
00C000h(1)  
010000h(2)  
External  
Program  
Memory  
Reads  
0’s  
External  
Program  
Memory  
External  
Program  
Memory  
1FFFFFh  
1FFFFFh  
1FFFFFh  
1FFFFFh  
External On-Chip  
Memory  
Flash  
External  
Memory  
External  
Memory  
On-Chip  
Flash  
On-Chip  
Flash  
On-Chip  
Flash  
Note 1: PIC18F6585 and PIC18F8585.  
2: PIC18F6680 and PIC18F8680.  
2004 Microchip Technology Inc.  
DS30491C-page 53  
PIC18F6585/8585/6680/8680  
4.2.2  
RETURN STACK POINTER  
(STKPTR)  
4.2  
Return Address Stack  
The return address stack allows any combination of up  
to 31 program calls and interrupts to occur. The PC  
(Program Counter) is pushed onto the stack when a  
CALLor RCALLinstruction is executed or an interrupt is  
Acknowledged. The PC value is pulled off the stack on  
a RETURN, RETLW, or a RETFIE instruction. PCLATU  
and PCLATH are not affected by any of the RETURNor  
CALLinstructions.  
The STKPTR register contains the stack pointer value,  
the STKFUL (Stack Full) status bit, and the STKUNF  
(Stack Underflow) status bits. Register 4-2 shows the  
STKPTR register. The value of the stack pointer can be  
0 through 31. The stack pointer increments when values  
are pushed onto the stack and decrements when values  
are popped off the stack. At Reset, the stack pointer  
value will be ‘0’. The user may read and write the stack  
pointer value. This feature can be used by a Real-Time  
Operating System for return stack maintenance.  
The stack operates as a 31-word by 21-bit RAM and a  
5-bit stack pointer, with the stack pointer initialized to  
00000b after all Resets. There is no RAM associated  
with stack pointer 00000b. This is only a Reset value.  
During a CALLtype instruction causing a push onto the  
stack, the stack pointer is first incremented and the  
RAM location pointed to by the stack pointer is written  
with the contents of the PC. During a RETURN type  
instruction causing a pop from the stack, the contents  
of the RAM location pointed to by the STKPTR are  
transferred to the PC and then the stack pointer is  
decremented.  
After the PC is pushed onto the stack 31 times (without  
popping any values off the stack), the STKFUL bit is  
set. The STKFUL bit can only be cleared in software or  
by a POR.  
The action that takes place when the stack becomes  
full depends on the state of the STVREN (Stack  
Overflow Reset Enable) configuration bit. Refer to  
Section 25.0 “Instruction Set Summary” for a  
description of the device configuration bits. If STVREN  
is set (default), the 31st push will push the (PC + 2)  
value onto the stack, set the STKFUL bit and reset the  
device. The STKFUL bit will remain set and the stack  
pointer will be set to ‘0’.  
The stack space is not part of either program or data  
space. The stack pointer is readable and writable and  
the address on the top of the stack is readable and writ-  
able through SFR registers. Data can also be pushed  
to or popped from the stack, using the top-of-stack  
SFRs. Status bits indicate if the stack pointer is at or  
beyond the 31 levels provided.  
If STVREN is cleared, the STKFUL bit will be set on the  
31st push and the stack pointer will increment to 31.  
Any additional pushes will not overwrite the 31st push  
and STKPTR will remain at 31.  
4.2.1  
TOP-OF-STACK ACCESS  
When the stack has been popped enough times to  
unload the stack, the next pop will return a value of zero  
to the PC and sets the STKUNF bit while the stack  
pointer remains at ‘0’. The STKUNF bit will remain set  
until cleared in software or a POR occurs.  
The top of the stack is readable and writable. Three  
register locations, TOSU, TOSH and TOSL, hold the  
contents of the stack location pointed to by the  
STKPTR register. This allows users to implement a  
software stack if necessary. After a CALL, RCALLor  
interrupt, the software can read the pushed value by  
reading the TOSU, TOSH and TOSL registers. These  
values can be placed on a user defined software stack.  
At return time, the software can replace the TOSU,  
TOSH and TOSL and do a return.  
Note:  
Returning a value of zero to the PC on an  
underflow has the effect of vectoring the  
program to the Reset vector, where the  
stack conditions can be verified and  
appropriate actions can be taken.  
The user must disable the global interrupt enable bits  
during this time to prevent inadvertent stack  
operations.  
DS30491C-page 54  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 4-2:  
STKPTR REGISTER  
R/C-0 R/C-0  
U-0  
R/W-0  
SP4  
R/W-0  
SP3  
R/W-0  
SP2  
R/W-0  
SP1  
R/W-0  
SP0  
STKFUL(1) STKUNF(1)  
bit 7  
bit 0  
bit 7  
bit 6  
STKFUL: Stack Full Flag bit  
1= Stack became full or overflowed  
0= Stack has not become full or overflowed  
STKUNF: Stack Underflow Flag bit  
1= Stack underflow occurred  
0= Stack underflow did not occur  
bit 5  
Unimplemented: Read as ‘0’  
bit 4-0  
SP4:SP0: Stack Pointer Location bits  
Note 1: Bit 7 and bit 6 can only be cleared in user software or by a POR.  
Legend:  
C = Clearable bit  
- n = Value at POR ‘1’ = Bit is set  
R = Readable bit U = Unimplemented bit, read as ‘0’ W = Writable bit  
‘0’ = Bit is cleared x = Bit is unknown  
FIGURE 4-4:  
RETURN ADDRESS STACK AND ASSOCIATED REGISTERS  
Return Address Stack  
11111  
11110  
11101  
STKPTR<4:0>  
TOSU  
00h  
TOSH  
1Ah  
TOSL  
34h  
00010  
00011  
001A34h 00010  
000D58h 00001  
00000  
Top-of-Stack  
4.2.3  
PUSHAND POPINSTRUCTIONS  
4.2.4  
STACK FULL/UNDERFLOW RESETS  
Since the Top-of-Stack (TOS) is readable and writable,  
the ability to push values onto the stack and pull values  
off the stack, without disturbing normal program execu-  
tion, is a desirable option. To push the current PC value  
onto the stack, a PUSH instruction can be executed.  
This will increment the stack pointer and load the cur-  
rent PC value onto the stack. TOSU, TOSH and TOSL  
can then be modified to place a return address on the  
stack.  
These Resets are enabled by programming the  
STVREN configuration bit. When the STVREN bit is  
disabled, a full or underflow condition will set the  
appropriate STKFUL or STKUNF bit, but not cause a  
device Reset. When the STVREN bit is enabled, a full  
or underflow condition will set the appropriate STKFUL  
or STKUNF bit and then cause a device Reset. The  
STKFUL or STKUNF bits are only cleared by the user  
software or a POR Reset.  
The ability to pull the TOS value off of the stack and  
replace it with the value that was previously pushed  
onto the stack, without disturbing normal execution, is  
achieved by using the POPinstruction. The POPinstruc-  
tion discards the current TOS by decrementing the  
stack pointer. The previous value pushed onto the  
stack then becomes the TOS value.  
2004 Microchip Technology Inc.  
DS30491C-page 55  
PIC18F6585/8585/6680/8680  
4.3  
Fast Register Stack  
4.4  
PCL, PCLATH and PCLATU  
A “fast interrupt return” option is available for interrupts.  
A fast register stack is provided for the Status, WREG  
and BSR registers and is only one in depth. The stack  
is not readable or writable and is loaded with the  
current value of the corresponding register when the  
processor vectors for an interrupt. The values in the  
registers are then loaded back into the working regis-  
ters if the FAST RETURNinstruction is used to return  
from the interrupt.  
The program counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 21 bits  
wide. The low byte is called the PCL register; this reg-  
ister is readable and writable. The high byte is called  
the PCH register. This register contains the PC<15:8>  
bits and is not directly readable or writable; updates to  
the PCH register may be performed through the  
PCLATH register. The upper byte is called PCU. This  
register contains the PC<20:16> bits and is not directly  
readable or writable; updates to the PCU register may  
be performed through the PCLATU register.  
A low or high priority interrupt source will push values  
into the stack registers. If both low and high priority  
interrupts are enabled, the stack registers cannot be  
used reliably for low priority interrupts. If a high priority  
interrupt occurs while servicing a low priority interrupt,  
the stack register values stored by the low priority  
interrupt will be overwritten.  
The PC addresses bytes in the program memory. To  
prevent the PC from becoming misaligned with word  
instructions, the LSB of the PCL is fixed to a value of  
0’. The PC increments by 2 to address sequential  
instructions in the program memory.  
If high priority interrupts are not disabled during low  
priority interrupts, users must save the key registers in  
software during a low priority interrupt.  
The CALL, RCALL, GOTO and program branch  
instructions write to the program counter directly. For  
these instructions, the contents of PCLATH and  
PCLATU are not transferred to the program counter.  
If no interrupts are used, the fast register stack can be  
used to restore the Status, WREG and BSR registers at  
the end of a subroutine call. To use the fast register  
stack for a subroutine call, a FAST CALL instruction  
must be executed.  
The contents of PCLATH and PCLATU will be trans-  
ferred to the program counter by an operation that  
writes PCL. Similarly, the upper two bytes of the pro-  
gram counter will be transferred to PCLATH and  
PCLATU by an operation that reads PCL. This is useful  
for computed offsets to the PC (see Section 4.8.1  
“Computed GOTO”).  
Example 4-1 shows a source code example that uses  
the fast register stack.  
EXAMPLE 4-1:  
FAST REGISTER STACK  
CODE EXAMPLE  
;STATUS, WREG, BSR  
;SAVED IN FAST REGISTER  
;STACK  
4.5  
Clocking Scheme/Instruction  
Cycle  
CALL SUB1, FAST  
The clock input (from OSC1) is internally divided by  
four to generate four non-overlapping quadrature  
clocks, namely Q1, Q2, Q3 and Q4. Internally, the  
program counter (PC) is incremented every Q1, the  
instruction is fetched from the program memory and  
latched into the instruction register in Q4. The instruc-  
tion is decoded and executed during the following Q1  
through Q4. The clocks and instruction execution flow  
are shown in Figure 4-5.  
SUB1  
RETURN FAST ;RESTORE VALUES SAVED  
;IN FAST REGISTER STACK  
FIGURE 4-5:  
CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Internal  
Phase  
Clock  
Q4  
PC  
PC+2  
PC+4  
PC  
OSC2/CLKO  
(RC Mode)  
Execute INST (PC-2)  
Fetch INST (PC)  
Execute INST (PC)  
Fetch INST (PC+2)  
Execute INST (PC+2)  
Fetch INST (PC+4)  
DS30491C-page 56  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
A fetch cycle begins with the program counter (PC)  
incrementing in Q1.  
4.6  
Instruction Flow/Pipelining  
An “Instruction Cycle” consists of four Q cycles (Q1,  
Q2, Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle,  
while decode and execute takes another instruction  
cycle. However, due to the pipelining each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g., GOTO),  
then two cycles are required to complete the instruction  
(Example 4-2).  
In the execution cycle, the fetched instruction is latched  
into the “Instruction Register” (IR) in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3, and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
EXAMPLE 4-2:  
INSTRUCTION PIPELINE FLOW  
TCY0  
TCY1  
TCY2  
TCY3  
TCY4  
TCY5  
1. MOVLW 55h  
2. MOVWF PORTB  
3. BRA SUB_1  
Fetch 1  
Execute 1  
Fetch 2  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, 3 (Forced NOP)  
Flush (NOP)  
5. Instruction @ address SUB_1  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle except for any program branches. These take two cycles since the fetch instruction  
is “flushed” from the pipeline while the new instruction is being fetched and then executed.  
The CALLand GOTOinstructions have an absolute pro-  
4.7  
Instructions in Program Memory  
gram memory address embedded into the instruction.  
Since instructions are always stored on word bound-  
aries, the data contained in the instruction is a word  
address. The word address is written to PC<20:1>  
which accesses the desired byte address in program  
memory. Instruction #2 in Figure 4-6 shows how the  
instruction “GOTO 000006h” is encoded in the program  
memory. Program branch instructions which encode a  
relative address offset operate in the same manner.  
The offset value stored in a branch instruction repre-  
sents the number of single-word instructions that the  
PC will be offset by. Section 25.0 “Instruction Set  
Summary” provides further details of the instruction  
set.  
The program memory is addressed in bytes. Instruc-  
tions are stored as two bytes or four bytes in program  
memory. The Least Significant Byte (LSB) of an  
instruction word is always stored in a program memory  
location with an even address (LSB = 0). Figure 4-6  
shows an example of how instruction words are stored  
in the program memory. To maintain alignment with  
instruction boundaries, the PC increments in steps of 2  
and the LSB will always read ‘0’ (see Section 4.4  
“PCL, PCLATH and PCLATU”).  
FIGURE 4-6:  
INSTRUCTIONS IN PROGRAM MEMORY  
Word Address  
LSB = 1  
LSB = 0  
Program Memory  
Byte Locations →  
000000h  
000002h  
000004h  
000006h  
000008h  
00000Ah  
00000Ch  
00000Eh  
000010h  
000012h  
000014h  
Instruction 1:  
Instruction 2:  
0Fh  
55h  
03h  
00h  
23h  
56h  
MOVLW  
GOTO  
055h  
000006h  
0EFh  
0F0h  
0C1h  
0F4h  
Instruction 3:  
MOVFF  
123h, 456h  
2004 Microchip Technology Inc.  
DS30491C-page 57  
PIC18F6585/8585/6680/8680  
accessed. If the second word of the instruction is exe-  
cuted by itself (first word was skipped), it will execute as  
a NOP. This action is necessary when the two-word  
instruction is preceded by a conditional instruction that  
changes the PC. A program example that demon-  
strates this concept is shown in Example 4-3. Refer to  
Section 25.0 “Instruction Set Summary” for further  
details of the instruction set.  
4.7.1  
TWO-WORD INSTRUCTIONS  
The PIC18F6585/8585/6680/8680 devices have four  
two-word instructions: MOVFF, CALL, GOTO and  
LFSR. The second word of these instructions has the 4  
MSBs set to ‘1’s and is a special kind of NOPinstruction.  
The lower 12 bits of the second word contain data to be  
used by the instruction. If the first word of the instruc-  
tion is executed, the data in the second word is  
EXAMPLE 4-3:  
CASE 1:  
TWO-WORD INSTRUCTIONS  
Object Code  
Source Code  
0110 0110 0000 0000 TSTFSZ  
1100 0001 0010 0011 MOVFF  
1111 0100 0101 0110  
REG1  
; is RAM location 0?  
REG1, REG2 ; No, execute 2-word instruction  
; 2nd operand holds address of REG2  
0010 0100 0000 0000 ADDWF  
REG3  
; continue code  
CASE 2:  
Object Code  
Source Code  
0110 0110 0000 0000 TSTFSZ  
1100 0001 0010 0011 MOVFF  
1111 0100 0101 0110  
REG1  
; is RAM location 0?  
REG1, REG2 ; Yes  
; 2nd operand becomes NOP  
REG3 ; continue code  
0010 0100 0000 0000 ADDWF  
4.8.2  
TABLE READS/TABLE WRITES  
4.8  
Look-up Tables  
A better method of storing data in program memory  
allows 2 bytes of data to be stored in each instruction  
location.  
Look-up tables are implemented two ways. These are:  
• Computed GOTO  
Table Reads  
Look-up table data may be stored 2 bytes per program  
word by using table reads and writes. The Table Pointer  
(TBLPTR) specifies the byte address and the Table  
Latch (TABLAT) contains the data that is read from, or  
written to program memory. Data is transferred to/from  
program memory, one byte at a time.  
4.8.1  
COMPUTED GOTO  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL).  
A look-up table can be formed with an ADDWF PCL  
instruction and a group of RETLW 0xnn instructions.  
WREG is loaded with an offset into the table before  
executing a call to that table. The first instruction of the  
called routine is the ADDWF PCL instruction. The next  
instruction executed will be one of the RETLW 0xnn  
instructions that returns the value 0xnn to the calling  
function.  
A description of the table read/table write operation is  
shown in Section 5.0 “Flash Program Memory”.  
The offset value (value in WREG) specifies the number  
of bytes that the program counter should advance.  
In this method, only one data byte may be stored in  
each instruction location and room on the return  
address stack is required.  
DS30491C-page 58  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
4.9.1  
GENERAL PURPOSE  
REGISTER FILE  
4.9  
Data Memory Organization  
The data memory is implemented as static RAM. Each  
register in the data memory has a 12-bit address,  
allowing up to 4096 bytes of data memory. Figure 4-7  
shows the data memory organization for the  
PIC18F6585/8585/6680/8680 devices.  
The register file can be accessed either directly or indi-  
rectly. Indirect addressing operates using a File Select  
Register and corresponding Indirect File Operand. The  
operation of indirect addressing is shown in  
Section 4.12 “Indirect Addressing, INDF and FSR  
Registers”.  
The data memory map is divided into 16 banks that  
contain 256 bytes each. The lower 4 bits of the Bank  
Select Register (BSR<3:0>) select which bank will be  
accessed. The upper 4 bits for the BSR are not  
implemented.  
Enhanced MCU devices may have banked memory in  
the GPR area. GPRs are not initialized by a Power-on  
Reset and are unchanged on all other Resets.  
Data RAM is available for use as general purpose regis-  
ters by all instructions. The top section of Bank 15  
(0F60h to 0FFFh) contains SFRs. All other banks of data  
memory contain GPR registers, starting with Bank 0.  
The data memory contains Special Function Registers  
(SFR) and General Purpose Registers (GPR). The  
SFRs are used for control and status of the controller  
and peripheral functions, while GPRs are used for data  
storage and scratch pad operations in the user’s appli-  
cation. The SFRs start at the last location of Bank 15  
(0FFFh) and extend downwards. Any remaining space  
beyond the SFRs in the Bank may be implemented as  
GPRs. GPRs start at the first location of Bank 0 and  
grow upwards. Any read of an unimplemented location  
will read as ‘0’s.  
4.9.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers (SFRs) are registers  
used by the CPU and peripheral modules for controlling  
the desired operation of the device. These registers are  
implemented as static RAM. A list of these registers is  
given in Table 4-2 and Table 4-3.  
The entire data memory may be accessed directly or  
indirectly. Direct addressing may require the use of the  
BSR register. Indirect addressing requires the use of a  
File Select Register (FSRn) and a corresponding Indi-  
rect File Operand (INDFn). Each FSR holds a 12-bit  
address value that can be used to access any location  
in the data memory map without banking.  
The SFRs can be classified into two sets: those asso-  
ciated with the “core” function and those related to the  
peripheral functions. Those registers related to the  
“core” are described in this section, while those related  
to the operation of the peripheral features are  
described in the section of that peripheral feature. The  
SFRs are typically distributed among the peripherals  
whose functions they control.  
The instruction set and architecture allow operations  
across all banks. This may be accomplished by indirect  
addressing or by the use of the MOVFFinstruction. The  
MOVFF instruction is a two-word/two-cycle instruction  
that moves a value from one register to another.  
The unused SFR locations are unimplemented and  
read as ‘0’s. The addresses for the SFRs are listed in  
Table 4-2.  
To ensure that commonly used registers (SFRs and  
select GPRs) can be accessed in a single cycle regard-  
less of the current BSR values, an Access Bank is  
implemented. A segment of Bank 0 and a segment of  
Bank 15 comprise the Access RAM. Section 4.10  
“Access Bank” provides a detailed description of the  
Access RAM.  
2004 Microchip Technology Inc.  
DS30491C-page 59  
PIC18F6585/8585/6680/8680  
FIGURE 4-7:  
DATA MEMORY MAP FOR PIC18FXX80/XX85 DEVICES  
BSR<3:0>  
Data Memory Map  
000h  
00h  
Access RAM  
GPRs  
= 0000  
05Fh  
Bank 0  
060h  
FFh  
00h  
0FFh  
100h  
= 0001  
= 0010  
GPRs  
GPRs  
Bank 1  
Bank 2  
Bank 3  
FFh  
00h  
1FFh  
200h  
FFh  
00h  
2FFh  
300h  
= 0011  
= 0100  
GPRs  
GPRs  
FFh  
3FFh  
400h  
Bank 4  
Access Bank  
4FFh  
500h  
00h  
Access RAM low  
5Fh  
60h  
Access RAM high  
(SFRs)  
FFh  
Bank 5  
to  
Bank 12  
GPRs  
When a = 0,  
the BSR is ignored and the  
Access Bank is used.  
CFFh  
D00h  
= 1101  
= 1110  
Bank 13  
Bank 14  
Bank 15  
CAN SFRs  
CAN SFRs  
The first 96 bytes are General  
Purpose RAM (from Bank 0).  
The second 160 bytes are  
Special Function Registers  
(from Bank 15).  
DFFh  
E00h  
00h  
FFh  
00h  
EFFh  
F00h  
CAN SFRs  
SFRs  
= 1111  
F5Fh  
F60h  
FFh  
FFFh  
When a = 1,  
the BSR is used to specify the  
RAM location that the instruction  
uses.  
DS30491C-page 60  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 4-2:  
SPECIAL FUNCTION REGISTER MAP  
Address  
FFFh  
FFEh  
FFDh  
FFCh  
FFBh  
FFAh  
FF9h  
FF8h  
FF7h  
FF6h  
FF5h  
FF4h  
FF3h  
FF2h  
FF1h  
FF0h  
FEFh  
Name  
TOSU  
Address  
FDFh  
Name  
INDF2(3)  
POSTINC2(3)  
Address  
FBFh  
FBEh  
FBDh  
FBCh  
FBBh  
FBAh  
FB9h  
FB8h  
FB7h  
FB6h  
FB5h  
FB4h  
FB3h  
FB2h  
FB1h  
FB0h  
FAFh  
FAEh  
FADh  
FACh  
FABh  
FAAh  
FA9h  
FA8h  
FA7h  
FA6h  
FA5h  
FA4h  
FA3h  
FA2h  
FA1h  
FA0h  
Name  
Address  
F9Fh  
Name  
IPR1  
PIR1  
PIE1  
CCPR1H  
CCPR1L  
CCP1CON  
CCPR2H  
CCPR2L  
CCP2CON  
TOSH  
FDEh  
F9Eh  
TOSL  
FDDh POSTDEC2(3)  
F9Dh  
F9Ch MEMCON(2)  
STKPTR  
PCLATU  
PCLATH  
PCL  
FDCh  
FDBh  
FDAh  
FD9h  
FD8h  
FD7h  
FD6h  
FD5h  
FD4h  
FD3h  
FD2h  
FD1h  
FD0h  
FCFh  
FCEh  
FCDh  
FCCh  
FCBh  
FCAh  
FC9h  
FC8h  
FC7h  
FC6h  
FC5h  
FC4h  
FC3h  
FC2h  
FC1h  
FC0h  
PREINC2(3)  
PLUSW2(3)  
FSR2H  
(1)  
F9Bh  
F9Ah  
F99h  
F98h  
F97h  
F96h  
F95h  
F94h  
F93h  
F92h  
F91h  
F90h  
F8Fh  
F8Eh  
F8Dh  
F8Ch  
F8Bh  
F8Ah  
F89h  
F88h  
F87h  
F86h  
F85h  
F84h  
F83h  
F82h  
F81h  
F80h  
TRISJ(2)  
TRISH(2)  
TRISG  
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA  
LATJ(2)  
LATH(2)  
LATG  
(1)  
FSR2L  
(1)  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0(3)  
STATUS  
TMR0H  
(1)  
TMR0L  
ECCP1AS  
CVRCON  
CMCON  
TMR3H  
TMR3L  
T3CON  
PSPCON  
SPBRG  
RCREG  
TXREG  
TXSTA  
RCSTA  
EEADRH  
EEADR  
EEDATA  
EECON2  
EECON1  
IPR3  
T0CON  
(1)  
OSCCON  
LVDCON  
WDTCON  
RCON  
TMR1H  
FEEh POSTINC0(3)  
FEDh POSTDEC0(3)  
TMR1L  
LATF  
T1CON  
LATE  
FECh  
FEBh  
FEAh  
FE9h  
FE8h  
FE7h  
PREINC0(3)  
PLUSW0(3)  
FSR0H  
TMR2  
LATD  
PR2  
LATC  
T2CON  
LATB  
FSR0L  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1  
SSPCON2  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
LATA  
WREG  
INDF1(3)  
PORTJ(2)  
PORTH(2)  
PORTG  
PORTF  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA  
FE6h POSTINC1(3)  
FE5h POSTDEC1(3)  
FE4h  
FE3h  
FE2h  
FE1h  
FE0h  
PREINC1(3)  
PLUSW1(3)  
FSR1H  
PIR3  
PIE3  
IPR2  
FSR1L  
PIR2  
BSR  
PIE2  
Note 1: Unimplemented registers are read as ‘0’.  
2: This register is not available on PIC18F6X8X devices.  
3: This is not a physical register.  
2004 Microchip Technology Inc.  
DS30491C-page 61  
PIC18F6585/8585/6680/8680  
TABLE 4-2:  
SPECIAL FUNCTION REGISTER MAP (CONTINUED)  
Address  
F7Fh  
F7Eh  
F7Dh  
F7Ch  
F7Bh  
F7Ah  
F79h  
F78h  
F77h  
F76h  
Name  
Address  
Name  
Address  
Name  
Address  
Name  
SPBRGH  
F5Fh CANCON_RO0  
F5Eh CANSTAT_RO0  
F3Fh CANCON_RO2  
F3Eh CANSTAT_RO2  
F1Fh RXM1EIDL  
F1Eh RXM1EIDH  
F1Dh RXM1SIDL  
F1Ch RXM1SIDH  
F1Bh RXM0EIDL  
F1Ah RXM0EIDH  
F19h RXM0SIDL  
F18h RXM0SIDH  
F17h RXF5EIDL  
F16h RXF5EIDH  
F15h RXF5SIDL  
F14h RXF5SIDH  
F13h RXF4EIDL  
F12h RXF4EIDH  
F11h RXF4SIDL  
F10h RXF4SIDH  
F0Fh RXF3EIDL  
F0Eh RXF3EIDH  
F0Dh RXF3SIDL  
F0Ch RXF3SIDH  
F0Bh RXF2EIDL  
F0Ah RXF2EIDH  
F09h RXF2SIDL  
F08h RXF2SIDH  
F07h RXF1EIDL  
F06h RXF1EIDH  
F05h RXF1SIDL  
F04h RXF1SIDH  
F03h RXF0EIDL  
F02h RXF0EIDH  
F01h RXF0SIDL  
F00h RXF0SIDH  
BAUDCON  
(1)  
F5Dh  
F5Ch  
F5Bh  
F5Ah  
F59h  
F58h  
F57h  
F56h  
F55h  
F54h  
F53h  
F52h  
F51h  
F50h  
RXB1D7  
RXB1D6  
F3Dh  
F3Ch  
F3Bh  
F3Ah  
F39h  
F38h  
F37h  
F36h  
F35h  
F34h  
F33h  
F32h  
F31h  
F30h  
TXB1D7  
TXB1D6  
(1)  
(1)  
RXB1D5  
TXB1D5  
(1)  
RXB1D4  
TXB1D4  
ECCP1DEL  
RXB1D3  
TXB1D3  
(1)  
RXB1D2  
TXB1D2  
ECANCON  
TXERRCNT  
RXB1D1  
TXB1D1  
RXB1D0  
TXB1D0  
F75h RXERRCNT  
RXB1DLC  
RXB1EIDL  
RXB1EIDH  
RXB1SIDL  
RXB1SIDH  
RXB1CON  
TXB1DLC  
TXB1EIDL  
TXB1EIDH  
TXB1SIDL  
TXB1SIDH  
TXB1CON  
F74h  
F73h  
F72h  
F71h  
F70h  
F6Fh  
F6Eh  
F6Dh  
F6Ch  
F6Bh  
F6Ah  
F69h  
F68h  
F67h  
F66h  
F65h  
F64h  
F63h  
F62h  
F61h  
F60h  
COMSTAT  
CIOCON  
BRGCON3  
BRGCON2  
BRGCON1  
CANCON  
CANSTAT  
RXB0D7  
F4Fh CANCON_RO1  
F4Eh CANSTAT_RO1  
F2Fh CANCON_RO3  
F2Eh CANSTAT_RO3  
F4Dh  
F4Ch  
F4Bh  
F4Ah  
F49h  
F48h  
F47h  
F46h  
F45h  
F44h  
F43h  
F42h  
F41h  
F40h  
TXB0D7  
TXB0D6  
F2Dh  
F2Ch  
F2Bh  
F2Ah  
F29h  
F28h  
F27h  
F26h  
F25h  
F24h  
F23h  
F22h  
F21h  
F20h  
TXB2D7  
TXB2D6  
RXB0D6  
RXB0D5  
TXB0D5  
TXB2D5  
RXB0D4  
TXB0D4  
TXB2D4  
RXB0D3  
TXB0D3  
TXB2D3  
RXB0D2  
TXB0D2  
TXB2D2  
RXB0D1  
TXB0D1  
TXB2D1  
RXB0D0  
TXB0D0  
TXB2D0  
RXB0DLC  
RXB0EIDL  
RXB0EIDH  
RXB0SIDL  
RXB0SIDH  
RXB0CON  
TXB0DLC  
TXB0EIDL  
TXB0EIDH  
TXB0SIDL  
TXB0SIDH  
TXB0CON  
TXB2DLC  
TXB2EIDL  
TXB2EIDH  
TXB2SIDL  
TXB2SIDH  
TXB2CON  
Note 1: Unimplemented registers are read as ‘0’.  
2: This register is not available on PIC18F6X8X devices.  
3: This is not a physical register.  
DS30491C-page 62  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 4-2:  
SPECIAL FUNCTION REGISTER MAP (CONTINUED)  
Address  
EFFh  
EFEh  
EFDh  
EFCh  
EFBh  
EFAh  
EF9h  
EF8h  
EF7h  
EF6h  
EF5h  
EF4h  
EF3h  
EF2h  
EF1h  
EF0h  
EEFh  
EEEh  
EEDh  
EECh  
EEBh  
EEAh  
EE9h  
EE8h  
EE7h  
EE6h  
EE5h  
EE4h  
EE3h  
EE2h  
EE1h  
EE0h  
Name  
Address  
EDFh  
EDEh  
EDDh  
EDCh  
EDBh  
EDAh  
ED9h  
ED8h  
ED7h  
ED6h  
ED5h  
ED4h  
ED3h  
ED2h  
ED1h  
ED0h  
ECFh  
ECEh  
ECDh  
ECCh  
ECBh  
ECAh  
EC9h  
EC8h  
EC7h  
EC6h  
EC5h  
EC4h  
EC3h  
EC2h  
EC1h  
EC0h  
Name  
Address  
EBFh  
EBEh  
EBDh  
EBCh  
EBBh  
EBAh  
EB9h  
EB8h  
EB7h  
EB6h  
EB5h  
EB4h  
EB3h  
EB2h  
EB1h  
EB0h  
EAFh  
EAEh  
EADh  
EACh  
EABh  
EAAh  
EA9h  
EA8h  
EA7h  
EA6h  
EA5h  
EA4h  
EA3h  
EA2h  
EA1h  
EA0h  
Name  
Address  
E9Fh  
E9Eh  
E9Dh  
E9Ch  
E9Bh  
E9Ah  
E99h  
E98h  
E97h  
E96h  
E95h  
E94h  
E93h  
E92h  
E91h  
E90h  
E8Fh  
E8Eh  
E8Dh  
E8Ch  
E8Bh  
E8Ah  
E89h  
E88h  
E87h  
E86h  
E85h  
E84h  
E83h  
E82h  
E81h  
E80h  
Name  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Note 1: Unimplemented registers are read as ‘0’.  
2: This register is not available on PIC18F6X8X devices.  
3: This is not a physical register.  
2004 Microchip Technology Inc.  
DS30491C-page 63  
PIC18F6585/8585/6680/8680  
TABLE 4-2:  
SPECIAL FUNCTION REGISTER MAP (CONTINUED)  
Address  
Name Address Name Address Name  
Address  
E1Fh  
E1Eh  
E1Dh  
E1Ch  
E1Bh  
E1Ah  
E19h  
E18h  
E17h  
E16h  
E15h  
E14h  
E13h  
E12h  
E11h  
E10h  
E0Fh  
E0Eh  
E0Dh  
E0Ch  
E0Bh  
E0Ah  
E09h  
E08h  
E07h  
E06h  
E05h  
E04h  
E03h  
E02h  
E01h  
E00h  
Name  
(1)  
E7Fh CANCON_RO4  
E7Eh CANSTAT_RO4  
E5Fh CANCON_RO6  
E5Eh CANSTAT_RO6  
E3Fh CANCON_RO8  
E3Eh CANSTAT_RO8  
(1)  
(1)  
E7Dh  
E7Ch  
E7Bh  
E7Ah  
E79h  
E78h  
E77h  
E76h  
E75h  
E74h  
E73h  
E72h  
E71h  
E70h  
B5D7  
B5D6  
E5Dh  
E5Ch  
E5Bh  
E5Ah  
E59h  
E58h  
E57h  
E56h  
E55h  
E54h  
E53h  
E52h  
E51h  
E50h  
B3D7  
B3D6  
E3Dh  
E3Ch  
E3Bh  
E3Ah  
E39h  
E38h  
E37h  
E36h  
E35h  
E34h  
E33h  
E32h  
E31h  
E30h  
B1D7  
B1D6  
(1)  
(1)  
B5D5  
B3D5  
B1D5  
(1)  
B5D4  
B3D4  
B1D4  
(1)  
B5D3  
B3D3  
B1D3  
(1)  
B5D2  
B3D2  
B1D2  
(1)  
B5D1  
B3D1  
B1D1  
(1)  
B5D0  
B3D0  
B1D0  
(1)  
B5DLC  
B5EIDL  
B5EIDH  
B5SIDL  
B5SIDH  
B5CON  
B3DLC  
B3EIDL  
B3EIDH  
B3SIDL  
B3SIDH  
B3CON  
B1DLC  
B1EIDL  
B1EIDH  
B1SIDL  
B1SIDH  
B1CON  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
E6Fh CANCON_RO5  
E6Eh CANSTAT_RO5  
E4Fh CANCON_RO7  
E4Eh CANSTAT_RO7  
E2Fh CANCON_RO9  
E2Eh CANSTAT_RO9  
(1)  
(1)  
E6Dh  
E6Ch  
E6Bh  
E6Ah  
E69h  
E68h  
E67h  
E66h  
E65h  
E64h  
E63h  
E62h  
E61h  
E60h  
B4D7  
B4D6  
E4Dh  
E4Ch  
E4Bh  
E4Ah  
E49h  
E48h  
E47h  
E46h  
E45h  
E44h  
E43h  
E42h  
E41h  
E40h  
B2D7  
B2D6  
E2Dh  
E2Ch  
E2Bh  
E2Ah  
E29h  
E28h  
E27h  
E26h  
E25h  
E24h  
E23h  
E22h  
E21h  
E20h  
B0D7  
B0D6  
(1)  
(1)  
B4D5  
B2D5  
B0D5  
(1)  
B4D4  
B2D4  
B0D4  
(1)  
B4D3  
B2D3  
B0D3  
(1)  
B4D2  
B2D2  
B0D2  
(1)  
B4D1  
B2D1  
B0D1  
(1)  
B4D0  
B2D0  
B0D0  
(1)  
B4DLC  
B4EIDL  
B4EIDH  
B4SIDL  
B4SIDH  
B4CON  
B2DLC  
B2EIDL  
B2EIDH  
B2SIDL  
B2SIDH  
B2CON  
B0DLC  
B0EIDL  
B0EIDH  
B0SIDL  
B0SIDH  
B0CON  
(1)  
(1)  
(1)  
(1)  
(1)  
Note 1: Unimplemented registers are read as ‘0’.  
2: This register is not available on PIC18F6X8X devices.  
3: This is not a physical register.  
DS30491C-page 64  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 4-2:  
SPECIAL FUNCTION REGISTER MAP (CONTINUED)  
Address  
DFFh  
DFEh  
DFDh  
DFCh  
DFBh  
DFAh  
DF9h  
DF8h  
DF7h  
DF6h  
DF5h  
DF4h  
DF3h  
DF2h  
DF1h  
DF0h  
DEFh  
DEEh  
DEDh  
DECh  
DEBh  
DEAh  
DE9h  
DE8h  
DE7h  
DE6h  
DE5h  
DE4h  
DE3h  
DE2h  
DE1h  
DE0h  
Name  
Address  
DDFh  
DDEh  
DDDh  
DDCh  
DDBh  
DDAh  
DD9h  
DD8h  
DD7h  
DD6h  
DD5h  
DD4h  
DD3h  
DD2h  
DD1h  
DD0h  
DCFh  
DCEh  
DCDh  
DCCh  
DCBh  
DCAh  
DC9h  
DC8h  
DC7h  
DC6h  
DC5h  
DC4h  
DC3h  
DC2h  
DC1h  
DC0h  
Name  
Address  
DBFh  
DBEh  
DBDh  
DBCh  
DBBh  
DBAh  
DB9h  
DB8h  
DB7h  
DB6h  
DB5h  
DB4h  
DB3h  
DB2h  
DB1h  
DB0h  
DAFh  
DAEh  
DADh  
DACh  
DABh  
DAAh  
DA9h  
DA8h  
DA7h  
DA6h  
DA5h  
DA4h  
DA3h  
DA2h  
DA1h  
DA0h  
Name  
Address  
D9Fh  
D9Eh  
D9Dh  
D9Ch  
D9Bh  
D9Ah  
D99h  
D98h  
D97h  
D96h  
D95h  
D94h  
Name  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
TXBIE  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
BIE0  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
BSEL0  
SDFLC  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
RXFCON1  
RXFCON0  
(1)  
(1)  
(1)  
(1)  
(1)  
MSEL3  
MSEL2  
MSEL1  
MSEL0  
D93h RXF15EIDL  
D92h RXF15EIDH  
D91h RXF15SIDL  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
D90h RXF15SIDH  
(1)  
(1)  
(1)  
(1)  
D8Fh  
D8Eh  
D8Dh  
D8Ch  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
D8Bh RXF14EIDL  
D8Ah RXF14EIDH  
D89h RXF14SIDL  
D88h RXF14SIDH  
D87h RXF13EIDL  
D86h RXF13EIDH  
D85h RXF13SIDL  
D84h RXF13SIDH  
D83h RXF12EIDL  
D82h RXF12EIDH  
D81h RXF12SIDL  
D80h RXF12SIDH  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
RXFBCON7  
RXFBCON6  
RXFBCON5  
RXFBCON4  
RXFBCON3  
RXFBCON2  
RXFBCON1  
RXFBCON0  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Note 1: Unimplemented registers are read as ‘0’.  
2: This register is not available on PIC18F6X8X devices.  
3: This is not a physical register.  
2004 Microchip Technology Inc.  
DS30491C-page 65  
PIC18F6585/8585/6680/8680  
TABLE 4-2:  
SPECIAL FUNCTION REGISTER MAP (CONTINUED)  
Address  
D7Fh  
D7Eh  
D7Dh  
D7Ch  
D7Bh  
D7Ah  
D79h  
D78h  
D77h  
D76h  
D75h  
D74h  
D73h  
D72h  
D71h  
D70h  
D6Fh  
D6Eh  
D6Dh  
D6Ch  
D6Bh  
D6Ah  
D69h  
D68h  
D67h  
D66h  
D65h  
D64h  
D63h  
D62h  
D61h  
D60h  
Name  
(1)  
(1)  
(1)  
(1)  
RXF11EIDL  
RXF11EIDH  
RXF11SIDL  
RXF11SIDH  
RXF10EIDL  
RXF10EIDH  
RXF10SIDL  
RXF10SIDH  
RXF9EIDL  
RXF9EIDH  
RXF9SIDL  
RXF9SIDH  
(1)  
(1)  
(1)  
(1)  
RXF8EIDL  
RXF8EIDH  
RXF8SIDL  
RXF8SIDH  
RXF7EIDL  
RXF7EIDH  
RXF7SIDL  
RXF7SIDH  
RXF6EIDL  
RXF6EIDH  
RXF6SIDL  
RXF6SIDH  
Note 1: Unimplemented registers are read as ‘0’.  
2: This register is not available on PIC18F6X8X devices.  
3: This is not a physical register.  
DS30491C-page 66  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 4-3:  
REGISTER FILE SUMMARY  
Value on  
POR, BOR on page:  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TOSU  
Top-of-Stack Upper Byte (TOS<20:16>)  
---0 0000 36, 54  
0000 0000 36, 54  
0000 0000 36, 54  
00-0 0000 36, 55  
--00 0000 36, 56  
0000 0000 36, 56  
0000 0000 36, 56  
--00 0000 36, 86  
0000 0000 36, 86  
0000 0000 36, 86  
0000 0000 36, 86  
xxxx xxxx 36, 107  
xxxx xxxx 36, 107  
0000 000x 36, 111  
1111 1111 36, 112  
1100 0000 36, 113  
TOSH  
Top-of-Stack High Byte (TOS<15:8>)  
Top-of-Stack Low Byte (TOS<7:0>)  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
STKFUL  
STKUNF  
Return Stack Pointer  
bit 21  
Holding Register for PC<20:16>  
Holding Register for PC<15:8>  
PC Low Byte (PC<7:0>)  
(2)  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
bit 21  
Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)  
Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
Program Memory Table Latch  
Product Register High Byte  
Product Register Low Byte  
INTCON  
INTCON2  
INTCON3  
INDF0  
GIE/GIEH  
RBPU  
PEIE/GIEL  
INTEDG0  
INT1IP  
TMR0IE  
INTEDG1  
INT3IE  
INT0IE  
INTEDG2  
INT2IE  
RBIE  
INTEDG3  
INT1IE  
TMR0IF  
TMR0IP  
INT3IF  
INT0IF  
INT3IP  
INT2IF  
RBIF  
RBIP  
INT2IP  
INT1IF  
Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register)  
n/a  
n/a  
n/a  
n/a  
n/a  
79  
79  
79  
79  
79  
POSTINC0  
POSTDEC0  
PREINC0  
PLUSW0  
Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented  
(not a physical register) – value of FSR0 offset by value in WREG  
FSR0H  
Indirect Data Memory Address Pointer 0 High Byte  
---- 0000 36, 79  
xxxx xxxx 36, 79  
FSR0L  
Indirect Data Memory Address Pointer 0 Low Byte  
Working Register  
WREG  
xxxx xxxx  
36  
79  
79  
79  
79  
79  
INDF1  
Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register)  
Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register)  
Uses contents of FSR1 to address data memory – value of FSR1 post-decremented (not a physical register)  
Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register)  
n/a  
n/a  
n/a  
n/a  
n/a  
POSTINC1  
POSTDEC1  
PREINC1  
PLUSW1  
Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented  
(not a physical register) – value of FSR1 offset by value in WREG  
FSR1H  
Indirect Data Memory Address Pointer 1 High Byte  
---- 0000 37, 79  
xxxx xxxx 37, 79  
---- 0000 37, 78  
FSR1L  
Indirect Data Memory Address Pointer 1 Low Byte  
BSR  
Bank Select Register  
INDF2  
Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 post-decremented (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)  
n/a  
n/a  
n/a  
n/a  
n/a  
79  
79  
79  
79  
79  
POSTINC2  
POSTDEC2  
PREINC2  
PLUSW2  
Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented  
(not a physical register) – value of FSR2 offset by value in WREG  
FSR2H  
FSR2L  
Indirect Data Memory Address Pointer 2 High Byte  
---- 0000 37, 79  
xxxx xxxx 37, 79  
Indirect Data Memory Address Pointer 2 Low Byte  
x= unknown, u= unchanged, – = unimplemented, q= value depends on condition  
Legend:  
Note 1:  
RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read ‘0’ in all other oscillator  
modes.  
2:  
3:  
4:  
5:  
6:  
7:  
Bit 21 of the TBLPTRU allows access to the device configuration bits.  
These registers are unused on PIC18F6X80 devices; always maintain these clear.  
These bits have multiple functions depending on the CAN module mode selection.  
Meaning of this register depends on whether this buffer is configured as transmit or receive.  
RG5 is available as an input when MCLR is disabled.  
This register reads all ‘0’s until the ECAN module is set up in Mode 1 or Mode 2.  
2004 Microchip Technology Inc.  
DS30491C-page 67  
PIC18F6585/8585/6680/8680  
TABLE 4-3:  
REGISTER FILE SUMMARY (CONTINUED)  
Value on  
POR, BOR on page:  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
STATUS  
TMR0H  
TMR0L  
N
OV  
Z
DC  
C
---x xxxx 37, 81  
0000 0000 37, 157  
xxxx xxxx 37, 157  
1111 1111 37, 155  
---- 0000 27, 37  
--00 0101 37, 271  
Timer0 Register High Byte  
Timer0 Register Low Byte  
T0CON  
OSCCON  
LVDCON  
WDTCON  
RCON  
TMR0ON  
T08BIT  
T0CS  
T0SE  
PSA  
LOCK  
LVDL3  
T0PS2  
PLLEN  
LVDL2  
T0PS1  
SCS1  
LVDL1  
T0PS0  
SCS  
IRVST  
LVDEN  
LVDL0  
SWDTE ---- ---0 37, 355  
IPEN  
RI  
TO  
PD  
POR  
BOR  
0--1 11qq 37, 82,  
123  
TMR1H  
Timer1 Register High Byte  
Timer1 Register Low Byte  
xxxx xxxx 37, 159  
xxxx xxxx 37, 159  
TMR1L  
T1CON  
RD16  
T1CKPS1  
T1CKPS0 T1OSCEN  
T1SYNC  
TMR1CS TMR1ON 0-00 0000 37, 159  
0000 0000 37, 162  
TMR2  
Timer2 Register  
PR2  
Timer2 Period Register  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0  
1111 1111 37, 163  
T2CON  
TMR2ON  
2
T2CKPS1 T2CKPS0 -000 0000 37, 162  
xxxx xxxx 37, 189  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1  
SSPCON2  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
CCPR1H  
CCPR1L  
CCP1CON  
CCPR2H  
CCPR2L  
CCP2CON  
ECCP1AS  
CVRCON  
CMCON  
TMR3H  
SSP Receive Buffer/Transmit Register  
2
SSP Address Register in I C Slave mode. SSP Baud Rate Reload Register in I C Master mode.  
0000 0000 37, 198  
0000 0000 37, 199  
SMP  
WCOL  
GCEN  
CKE  
D/A  
P
S
R/W  
SSPM2  
PEN  
UA  
BF  
SSPOV  
ACKSTAT  
SSPEN  
ACKDT  
CKP  
SSPM3  
RCEN  
SSPM1  
RSEN  
SSPM0 0000 0000 37, 191  
ACKEN  
SEN  
0000 0000 37, 201  
xxxx xxxx 38, 257  
xxxx xxxx 38, 257  
--00 0000 38, 249  
A/D Result Register High Byte  
A/D Result Register Low Byte  
CHS3  
VCFG1  
ACQT2  
CHS2  
VCFG0  
ACQT1  
CHS1  
PCFG3  
ACQT0  
CHS0  
PCFG2  
ADCS2  
GO/DONE  
PCFG1  
ADON  
PCFG0 --00 0000 38, 257  
ADCS0 0-00 0000 38, 251  
xxxx xxxx 38, 173  
ADFM  
ADCS1  
Enhanced Capture/Compare/PWM Register 1 High Byte  
Enhanced Capture/Compare/PWM Register 1 Low Byte  
xxxx xxxx 38, 172  
P1M1  
P1M0  
DC1B1  
DC1B0  
CCP1M3  
CCP1M2  
CCP1M1 CCP1M0 0000 0000 38, 172  
xxxx xxxx 38, 172  
Capture/Compare/PWM Register 2 High Byte  
Capture/Compare/PWM Register 2 Low Byte  
xxxx xxxx 38, 172  
DC2B1  
DC2B0  
CCP2M3  
PSSAC1  
CVR3  
CCP2M2  
PSSAC0  
CVR2  
CCP2M1 CCP2M0 --00 0000 38, 172  
ECCPASE  
CVREN  
C2OUT  
ECCPAS2  
CVROE  
C1OUT  
ECCPAS1 ECCPAS0  
PSSBD1  
CVR1  
CM1  
PSSBD0 0000 0000 38, 172  
CVRR  
C2INV  
CVRSS  
C1INV  
CVR0  
CM0  
0000 0000 38, 265  
0000 0000 38, 259  
xxxx xxxx 38, 164  
xxxx xxxx 38, 164  
CIS  
CM2  
Timer3 Register High Byte  
Timer3 Register Low Byte  
TMR3L  
T3CON  
RD16  
IBF  
T3CCP2  
OBF  
T3CKPS1  
IBOV  
T3CKPS0  
T3CCP1  
T3SYNC  
TMR3CS TMR3ON 0000 0000 38, 164  
0000 ---- 38, 153  
PSPCON  
PSPMODE  
Legend:  
Note 1:  
x= unknown, u= unchanged, – = unimplemented, q= value depends on condition  
RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read ‘0’ in all other oscillator  
modes.  
2:  
3:  
4:  
5:  
6:  
7:  
Bit 21 of the TBLPTRU allows access to the device configuration bits.  
These registers are unused on PIC18F6X80 devices; always maintain these clear.  
These bits have multiple functions depending on the CAN module mode selection.  
Meaning of this register depends on whether this buffer is configured as transmit or receive.  
RG5 is available as an input when MCLR is disabled.  
This register reads all ‘0’s until the ECAN module is set up in Mode 1 or Mode 2.  
DS30491C-page 68  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 4-3:  
REGISTER FILE SUMMARY (CONTINUED)  
Value on  
POR, BOR on page:  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPBRG  
RCREG  
TXREG  
TXSTA  
USART Baud Rate Generator  
USART Receive Register  
USART Transmit Register  
0000 0000 38, 239  
0000 0000 38, 241  
0000 0000 38, 239  
0000 0010 38, 230  
0000 000x 38, 231  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
SENDB  
ADDEN  
BRGH  
FERR  
TRMT  
OERR  
TX9D  
RX9D  
RCSTA  
EEADRH  
EEADR  
EEDATA  
EECON2  
EECON1  
IPR3  
EE Adr Register High ---- --00 38, 105  
0000 0000 38, 105  
Data EEPROM Address Register  
Data EEPROM Data Register  
0000 0000 38, 105  
Data EEPROM Control Register 2 (not a physical register)  
---- ---- 38, 105  
EEPGD  
IRXIP  
CFGS  
FREE  
WRERR  
TXB1IP  
WREN  
WR  
RD  
00-0 x000 38, 102  
WAKIP  
ERRIP  
TXB2IP/  
TXBnIP  
TXB0IP  
RXB1IP/  
RXBnIP FIFOWMIP  
RXB0IP/ 1111 1111 39, 122  
PIR3  
PIE3  
IRXIF  
IRXIE  
WAKIF  
WAKIE  
ERRIF  
ERRIE  
TXB2IF/  
TXBnIF  
TXB1IF  
TXB1IE  
TXB0IF  
TXB0IE  
RXB1IF/  
RXBnIF FIFOWMIF  
RXB0IF/ 0000 0000 39, 116  
TXB2IE/  
TXBnIE  
RXB1IE/  
RXBnIE FIFOWMIE  
RXB0IE/ 0000 0000 39, 119  
IPR2  
PIR2  
PIE2  
IPR1  
PIR1  
PIE1  
CMIP  
CMIF  
CMIE  
ADIP  
ADIF  
ADIE  
EEIP  
EEIF  
EEIE  
TXIP  
TXIF  
BCLIP  
BCLIF  
BCLIE  
SSPIP  
SSPIF  
SSPIE  
LVDIP  
LVDIF  
LVDIE  
CCP1IP  
CCP1IF  
CCP1IE  
TMR3IP  
TMR3IF  
TMR3IE  
TMR2IP  
TMR2IF  
TMR2IE  
WM1  
CCP2IP -1-1 1111 39, 121  
CCP2IF -0-0 0000 39, 115  
CCP2IE -0-0 0000 39, 118  
TMR1IP 0111 1111 39, 120  
TMR1IF 0000 0000 39, 114  
TMR1IE 0000 0000 39, 117  
PSPIP  
PSPIF  
PSPIE  
EBDIS  
RCIP  
RCIF  
RCIE  
WAIT1  
TXIE  
WAIT0  
(3)  
MEMCON  
WM0  
0-00 --00 39, 94  
1111 1111 39, 151  
1111 1111 39, 148  
---1 1111 39, 145  
1111 1111 39, 141  
1111 1111 39, 138  
1111 1111 39, 135  
1111 1111 39, 131  
1111 1111 39, 128  
-111 1111 39, 125  
xxxx xxxx 39, 151  
xxxx xxxx 39, 148  
---x xxxx 39, 145  
xxxx xxxx 39, 141  
xxxx xxxx 39, 138  
xxxx xxxx 39, 133  
xxxx xxxx 39, 131  
xxxx xxxx 39, 128  
-xxx xxxx 39, 125  
(3)  
TRISJ  
Data Direction Control Register for PORTJ  
Data Direction Control Register for PORTH  
(3)  
TRISH  
TRISG  
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA  
Data Direction Control Register for PORTG  
Data Direction Control Register for PORTF  
Data Direction Control Register for PORTE  
Data Direction Control Register for PORTD  
Data Direction Control Register for PORTC  
Data Direction Control Register for PORTB  
(1)  
TRISA6  
Data Direction Control Register for PORTA  
(3)  
LATJ  
Read PORTJ Data Latch, Write PORTJ Data Latch  
Read PORTH Data Latch, Write PORTH Data Latch  
(3)  
LATH  
LATG  
LATF  
LATE  
LATD  
LATC  
LATB  
LATA  
Read PORTG Data Latch, Write PORTG Data Latch  
Read PORTF Data Latch, Write PORTF Data Latch  
Read PORTE Data Latch, Write PORTE Data Latch  
Read PORTD Data Latch, Write PORTD Data Latch  
Read PORTC Data Latch, Write PORTC Data Latch  
Read PORTB Data Latch, Write PORTB Data Latch  
(1)  
(1)  
LATA6  
Read PORTA Data Latch, Write PORTA Data Latch  
Legend:  
Note 1:  
x= unknown, u= unchanged, – = unimplemented, q= value depends on condition  
RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read ‘0’ in all other oscillator  
modes.  
2:  
3:  
4:  
5:  
6:  
7:  
Bit 21 of the TBLPTRU allows access to the device configuration bits.  
These registers are unused on PIC18F6X80 devices; always maintain these clear.  
These bits have multiple functions depending on the CAN module mode selection.  
Meaning of this register depends on whether this buffer is configured as transmit or receive.  
RG5 is available as an input when MCLR is disabled.  
This register reads all ‘0’s until the ECAN module is set up in Mode 1 or Mode 2.  
2004 Microchip Technology Inc.  
DS30491C-page 69  
PIC18F6585/8585/6680/8680  
TABLE 4-3:  
REGISTER FILE SUMMARY (CONTINUED)  
Value on  
POR, BOR on page:  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(3)  
PORTJ  
Read PORTJ pins, Write PORTJ Data Latch  
xxxx xxxx 40, 151  
xxxx xxxx 40, 148  
--0x xxxx 40, 145  
xxxx xxxx 40, 141  
xxxx xxxx 40, 136  
xxxx xxxx 40, 133  
xxxx xxxx 40, 131  
xxxx xxxx 40, 128  
-x0x 0000 40, 125  
0000 0000 40, 233  
(3)  
PORTH  
Read PORTH pins, Write PORTH Data Latch  
(6)  
PORTG  
RG5  
Read PORTG pins, Write PORTG Data Latch  
PORTF  
Read PORTF pins, Write PORTF Data Latch  
Read PORTE pins, Write PORTE Data Latch  
Read PORTD pins, Write PORTD Data Latch  
Read PORTC pins, Write PORTC Data Latch  
PORTE  
PORTD  
PORTC  
PORTB  
Read PORTB pins, Write PORTB Data Latch  
(1)  
(1)  
PORTA  
RA6  
Read PORTA pins, Write PORTA Data Latch  
SPBRGH  
BAUDCON  
ECCP1DEL  
TXERRCNT  
RXERRCNT  
Enhanced USART Baud Rate Generator High Byte  
RCIDL  
PDC6  
TEC6  
REC6  
SCKP  
PDC4  
TEC4  
REC4  
TXBP  
BRG16  
PDC3  
TEC3  
REC3  
RXBP  
WUE  
PDC1  
TEC1  
REC1  
ABDEN -1-0 0-00 40, 233  
PRSEN  
TEC7  
REC7  
PDC5  
TEC5  
REC5  
TXBO  
PDC2  
PDC0  
TEC0  
REC0  
0000 0000 40, 187  
0000 0000 40, 288  
0000 0000 40, 296  
TEC2  
REC2  
COMSTAT  
Mode 0  
RXB0OVFL RXB1OVFL  
RXBnOVFL  
FIFOEMPTY RXBnOVFL  
TXWARN  
RXWARN EWARN 0000 0000 40, 284  
RXWARN EWARN -000 0000 40, 284  
RXWARN EWARN 0000 0000 40, 284  
COMSTAT  
Mode 1  
TXBO  
TXBO  
TXBP  
TXBP  
RXBP  
RXBP  
TXWARN  
TXWARN  
COMSTAT  
Mode 2  
CIOCON  
TX2SRC  
WAKDIS  
SEG2PHT  
SJW1  
TX2EN  
WAKFIL  
SAM  
ENDRHI  
CANCAP  
0000 ---- 40, 318  
BRGCON3  
BRGCON2  
BRGCON1  
SEG2PH2 SEG2PH1 SEG2PH0 00-- -000 40, 317  
SEG1PH2 SEG1PH1 SEG1PH0  
PRSEG2  
BRP2  
PRSEG1 PRSEG0 0000 0000 40, 317  
SJW0  
BRP5  
BRP4  
ABAT  
BRP3  
WIN2  
BRP1  
WIN0  
BRP0  
0000 0000 40, 317  
1000 000- 40, 239  
CANCON  
Mode 0  
REQOP2  
REQOP1  
REQOP0  
WIN1  
CANCON  
Mode 1  
REQOP2  
REQOP2  
REQOP1  
REQOP1  
REQOP0  
REQOP0  
ABAT  
ABAT  
FP0  
1000 ---- 40, 239  
1000 0000 40, 239  
000- 0000 40, 239  
CANCON  
Mode 2  
FP3  
FP2  
FP1  
CANSTAT  
Mode 0  
OPMODE2 OPMODE1 OPMODE0  
ICODE2  
EICODE3  
ICODE1  
EICODE2  
ICODE0  
CANSTAT  
Modes 0, 1  
OPMODE2 OPMODE1 OPMODE0 EICODE4  
EICODE1 EICODE0 0000 0000 40, 239  
EWIN1 EWIN0 0001 0000 40, 323  
ECANCON  
RXB0D7  
RXB0D6  
RXB0D5  
RXB0D4  
RXB0D3  
RXB0D2  
RXB0D1  
RXB0D0  
MDSEL1  
RXB0D77  
RXB0D67  
RXB0D57  
RXB0D47  
RXB0D37  
RXB0D27  
RXB0D17  
RXB0D07  
MDSEL0  
RXB0D76  
RXB0D66  
RXB0D56  
RXB0D46  
RXB0D36  
RXB0D26  
RXB0D16  
RXB0D06  
FIFOWM  
RXB0D75  
RXB0D65  
RXB0D55  
RXB0D45  
RXB0D35  
RXB0D25  
RXB0D15  
RXB0D05  
EWIN4  
EWIN3  
EWIN2  
RXB0D74  
RXB0D64  
RXB0D54  
RXB0D44  
RXB0D34  
RXB0D24  
RXB0D14  
RXB0D04  
RXB0D73  
RXB0D63  
RXB0D53  
RXB0D43  
RXB0D33  
RXB0D23  
RXB0D13  
RXB0D03  
RXB0D72  
RXB0D62  
RXB0D52  
RXB0D42  
RXB0D32  
RXB0D22  
RXB0D12  
RXB0D02  
RXB0D71 RXB0D70 xxxx xxxx 40, 230  
RXB0D61 RXB0D60 xxxx xxxx 40, 230  
RXB0D51 RXB0D50 xxxx xxxx 40, 230  
RXB0D41 RXB0D40 xxxx xxxx 40, 230  
RXB0D31 RXB0D30 xxxx xxxx 40, 230  
RXB0D21 RXB0D20 xxxx xxxx 40, 230  
RXB0D11 RXB0D10 xxxx xxxx 40, 230  
RXB0D01 RXB0D00 xxxx xxxx 40, 230  
Legend:  
Note 1:  
x= unknown, u= unchanged, – = unimplemented, q= value depends on condition  
RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read ‘0’ in all other oscillator  
modes.  
2:  
3:  
4:  
5:  
6:  
7:  
Bit 21 of the TBLPTRU allows access to the device configuration bits.  
These registers are unused on PIC18F6X80 devices; always maintain these clear.  
These bits have multiple functions depending on the CAN module mode selection.  
Meaning of this register depends on whether this buffer is configured as transmit or receive.  
RG5 is available as an input when MCLR is disabled.  
This register reads all ‘0’s until the ECAN module is set up in Mode 1 or Mode 2.  
DS30491C-page 70  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 4-3:  
REGISTER FILE SUMMARY (CONTINUED)  
Value on  
POR, BOR on page:  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RXB0DLC  
RXB0EIDL  
RXB0EIDH  
RXB0SIDL  
RXB0SIDH  
RXRTR  
EID6  
RB1  
EID5  
EID13  
SID0  
SID8  
RB0  
EID4  
EID12  
SRR  
DLC3  
EID3  
EID11  
EXID  
SID6  
DLC2  
EID2  
DLC1  
EID1  
EID9  
EID17  
SID4  
DLC0  
EID0  
EID8  
EID16  
SID3  
-xxx xxxx 40, 230  
xxxx xxxx 41, 230  
xxxx xxxx 41, 230  
xxxx x-xx 41, 230  
xxxx xxxx 41, 230  
000- 0000 41, 230  
EID7  
EID15  
SID2  
EID14  
SID1  
EID10  
SID10  
RXFUL  
SID9  
SID7  
SID5  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
RXB0CON  
Mode 0  
RXM1  
RXM0  
RXRTRR0  
RXB0DBEN  
JTOFF  
FILHIT0  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
RXB0CON  
Mode 1, 2  
RXFUL  
RXM1  
RTRR0  
FILHIT4  
FILHIT3  
FILHIT2  
FILHIT1  
FILHIT0  
0000 0000 41, 230  
RXB1D7  
RXB1D6  
RXB1D5  
RXB1D4  
RXB1D3  
RXB1D2  
RXB1D1  
RXB1D0  
RXB1DLC  
RXB1EIDL  
RXB1EIDH  
RXB1SIDL  
RXB1SIDH  
RXB1D77  
RXB1D67  
RXB1D57  
RXB1D47  
RXB1D37  
RXB1D27  
RXB1D17  
RXB1D07  
RXB1D76  
RXB1D66  
RXB1D56  
RXB1D46  
RXB1D36  
RXB1D26  
RXB1D16  
RXB1D06  
RXRTR  
EID6  
RXB1D75  
RXB1D65  
RXB1D55  
RXB1D45  
RXB1D35  
RXB1D25  
RXB1D15  
RXB1D05  
RB1  
RXB1D74  
RXB1D64  
RXB1D54  
RXB1D44  
RXB1D34  
RXB1D24  
RXB1D14  
RXB1D04  
RB0  
RXB1D73  
RXB1D63  
RXB1D53  
RXB1D43  
RXB1D33  
RXB1D23  
RXB1D13  
RXB1D03  
DLC3  
RXB1D72  
RXB1D62  
RXB1D52  
RXB1D42  
RXB1D32  
RXB1D22  
RXB1D12  
RXB1D02  
DLC2  
RXB1D71 RXB1D70 xxxx xxxx 41, 230  
RXB1D61 RXB1D60 xxxx xxxx 41, 230  
RXB1D51 RXB1D50 xxxx xxxx 41, 230  
RXB1D41 RXB1D40 xxxx xxxx 41, 230  
RXB1D31 RXB1D30 xxxx xxxx 41, 230  
RXB1D21 RXB1D20 xxxx xxxx 41, 230  
RXB1D11 RXB1D10 xxxx xxxx 41, 230  
RXB1D01 RXB1D00 xxxx xxxx 41, 230  
DLC1  
EID1  
EID9  
EID17  
SID4  
DLC0  
EID0  
EID8  
EID16  
SID3  
-xxx xxxx 41, 230  
xxxx xxxx 41, 230  
xxxx xxxx 41, 230  
xxxx x-xx 41, 230  
xxxx xxxx 41, 230  
000- 0000 41, 230  
EID7  
EID5  
EID4  
EID3  
EID2  
EID15  
EID14  
EID13  
EID12  
EID11  
EID10  
SID2  
SID1  
SID0  
SRR  
EXID  
SID10  
SID9  
SID8  
SID7  
SID6  
SID5  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
RXB1CON  
Mode 0  
RXFUL  
RXM1  
RXM0  
RXRTRR0  
FILHIT2  
FILHIT1  
FILHIT0  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
RXB1CON  
Mode 1, 2  
RXFUL  
RXM1  
RTRRO  
FILHIT4  
FILHIT3  
FILHIT2  
FILHIT1  
FILHIT0  
0000 0000 41, 230  
TXB0D7  
TXB0D6  
TXB0D5  
TXB0D4  
TXB0D3  
TXB0D2  
TXB0D1  
TXB0D0  
TXB0DLC  
TXB0EIDL  
TXB0EIDH  
TXB0SIDL  
TXB0SIDH  
TXB0D77  
TXB0D67  
TXB0D57  
TXB0D47  
TXB0D37  
TXB0D27  
TXB0D17  
TXB0D07  
TXB0D76  
TXB0D66  
TXB0D56  
TXB0D46  
TXB0D36  
TXB0D26  
TXB0D16  
TXB0D06  
TXRTR  
EID6  
TXB0D75  
TXB0D65  
TXB0D55  
TXB0D45  
TXB0D35  
TXB0D25  
TXB0D15  
TXB0D05  
TXB0D74  
TXB0D64  
TXB0D54  
TXB0D44  
TXB0D34  
TXB0D24  
TXB0D14  
TXB0D04  
TXB0D73  
TXB0D63  
TXB0D53  
TXB0D43  
TXB0D33  
TXB0D23  
TXB0D13  
TXB0D03  
DLC3  
TXB0D72  
TXB0D62  
TXB0D52  
TXB0D42  
TXB0D32  
TXB0D22  
TXB0D12  
TXB0D02  
DLC2  
TXB0D71 TXB0D70 xxxx xxxx 41, 230  
TXB0D61 TXB0D60 xxxx xxxx 41, 230  
TXB0D51 TXB0D50 xxxx xxxx 41, 230  
TXB0D41 TXB0D40 xxxx xxxx 41, 230  
TXB0D31 TXB0D30 xxxx xxxx 41, 230  
TXB0D21 TXB0D20 xxxx xxxx 41, 230  
TXB0D11 TXB0D10 xxxx xxxx 41, 230  
TXB0D01 TXB0D00 xxxx xxxx 41, 230  
DLC1  
EID1  
DLC0  
EID0  
EID8  
EID16  
SID3  
-x-- xxxx 41, 230  
xxxx xxxx 41, 230  
xxxx xxxx 41, 230  
xx-x x-xx 41, 230  
xxxx xxxx 42, 230  
EID7  
EID5  
EID4  
EID3  
EID2  
EID15  
EID14  
EID13  
EID12  
EID11  
EID10  
EID9  
SID2  
SID1  
SID0  
EXIDE  
EID17  
SID4  
SID10  
SID9  
SID8  
SID7  
SID6  
SID5  
TXB0CON  
Mode 0  
TXABT  
TXLARB  
TXERR  
TXREQ  
TXPRI1  
TXPRI0 -000 0-00 42, 230  
TXB0CON  
Mode 1, 2  
TXBIF  
TXABT  
TXLARB  
TXERR  
TXREQ  
TXPRI1  
TXPRI0 0000 0-00 42, 230  
Legend:  
Note 1:  
x= unknown, u= unchanged, – = unimplemented, q= value depends on condition  
RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read ‘0’ in all other oscillator  
modes.  
2:  
3:  
4:  
5:  
6:  
7:  
Bit 21 of the TBLPTRU allows access to the device configuration bits.  
These registers are unused on PIC18F6X80 devices; always maintain these clear.  
These bits have multiple functions depending on the CAN module mode selection.  
Meaning of this register depends on whether this buffer is configured as transmit or receive.  
RG5 is available as an input when MCLR is disabled.  
This register reads all ‘0’s until the ECAN module is set up in Mode 1 or Mode 2.  
2004 Microchip Technology Inc.  
DS30491C-page 71  
PIC18F6585/8585/6680/8680  
TABLE 4-3:  
REGISTER FILE SUMMARY (CONTINUED)  
Value on  
POR, BOR on page:  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TXB1D7  
TXB1D6  
TXB1D5  
TXB1D4  
TXB1D3  
TXB1D2  
TXB1D1  
TXB1D0  
TXB1DLC  
TXB1EIDL  
TXB1EIDH  
TXB1SIDL  
TXB1SIDH  
TXB1D77  
TXB1D67  
TXB1D57  
TXB1D47  
TXB1D37  
TXB1D27  
TXB1D17  
TXB1D07  
TXB1D76  
TXB1D66  
TXB1D56  
TXB1D46  
TXB1D36  
TXB1D26  
TXB1D16  
TXB1D06  
TXRTR  
EID6  
TXB1D75  
TXB1D65  
TXB1D55  
TXB1D45  
TXB1D35  
TXB1D25  
TXB1D15  
TXB1D05  
TXB1D74  
TXB1D64  
TXB1D54  
TXB1D44  
TXB1D34  
TXB1D24  
TXB1D14  
TXB1D04  
TXB1D73  
TXB1D63  
TXB1D53  
TXB1D43  
TXB1D33  
TXB1D23  
TXB1D13  
TXB1D03  
DLC3  
TXB1D72  
TXB1D62  
TXB1D52  
TXB1D42  
TXB1D32  
TXB1D22  
TXB1D12  
TXB1D02  
DLC2  
TXB1D71 TXB1D70 xxxx xxxx 42, 230  
TXB1D61 TXB1D60 xxxx xxxx 42, 230  
TXB1D51 TXB1D50 xxxx xxxx 42, 230  
TXB1D41 TXB1D40 xxxx xxxx 42, 230  
TXB1D31 TXB1D30 xxxx xxxx 42, 230  
TXB1D21 TXB1D20 xxxx xxxx 42, 230  
TXB1D11 TXB1D10 xxxx xxxx 42, 230  
TXB1D01 TXB1D00 xxxx xxxx 42, 230  
DLC1  
EID1  
DLC0  
EID0  
EID8  
EID16  
SID3  
-x-- xxxx 42, 230  
xxxx xxxx 42, 230  
xxxx xxxx 42, 230  
xx-x x-xx 42, 230  
xxxx xxxx 42, 230  
EID7  
EID5  
EID4  
EID3  
EID2  
EID15  
EID14  
EID13  
EID12  
EID11  
EID10  
EID9  
SID2  
SID1  
SID0  
EXIDE  
EID17  
SID4  
SID10  
SID9  
SID8  
SID7  
SID6  
SID5  
TXB1CON  
Mode 0  
TXABT  
TXLARB  
TXERR  
TXREQ  
TXPRI1  
TXPRI0 -000 0-00 42, 230  
TXB1CON  
Mode 1, 2  
TXBIF  
TXABT  
TXLARB  
TXERR  
TXREQ  
TXPRI1  
TXPRI0 0000 0-00 42, 230  
TXB2D7  
TXB2D6  
TXB2D5  
TXB2D4  
TXB2D3  
TXB2D2  
TXB2D1  
TXB2D0  
TXB2DLC  
TXB2EIDL  
TXB2EIDH  
TXB2SIDL  
TXB2SIDH  
TXB2D77  
TXB2D67  
TXB2D57  
TXB2D47  
TXB2D37  
TXB2D27  
TXB2D17  
TXB2D07  
TXB2D76  
TXB2D66  
TXB2D56  
TXB2D46  
TXB2D36  
TXB2D26  
TXB2D16  
TXB2D06  
TXRTR  
EID6  
TXB2D75  
TXB2D65  
TXB2D55  
TXB2D45  
TXB2D35  
TXB2D25  
TXB2D15  
TXB2D05  
TXB2D74  
TXB2D64  
TXB2D54  
TXB2D44  
TXB2D34  
TXB2D24  
TXB2D14  
TXB2D04  
TXB2D73  
TXB2D63  
TXB2D53  
TXB2D43  
TXB2D33  
TXB2D23  
TXB2D13  
TXB2D03  
DLC3  
TXB2D72  
TXB2D62  
TXB2D52  
TXB2D42  
TXB2D32  
TXB2D22  
TXB2D12  
TXB2D02  
DLC2  
TXB2D71 TXB2D70 xxxx xxxx 42, 230  
TXB2D61 TXB2D60 xxxx xxxx 42, 230  
TXB2D51 TXB2D50 xxxx xxxx 42, 230  
TXB2D41 TXB2D40 xxxx xxxx 42, 230  
TXB2D31 TXB2D30 xxxx xxxx 42, 230  
TXB2D21 TXB2D20 xxxx xxxx 42, 230  
TXB2D11 TXB2D10 xxxx xxxx 42, 230  
TXB2D01 TXB2D00 xxxx xxxx 42, 230  
DLC1  
EID1  
DLC0  
EID0  
EID8  
EID16  
SID3  
-x-- xxxx 42, 230  
xxxx xxxx 42, 230  
xxxx xxxx 42, 230  
xxx- x-xx 42, 230  
xxxx xxxx 42, 230  
EID7  
EID5  
EID4  
EID3  
EID2  
EID15  
EID14  
EID13  
EID12  
EID11  
EID10  
EID9  
SID2  
SID1  
SID0  
EXIDE  
EID17  
SID4  
SID10  
SID9  
SID8  
SID7  
SID6  
SID5  
TXB2CON  
Mode 0  
TXABT  
TXLARB  
TXERR  
TXREQ  
TXPRI1  
TXPRI0 -000 0-00 42, 230  
TXB2CON  
Mode 1, 2  
TXBIF  
TXABT  
TXLARB  
TXERR  
TXREQ  
TXPRI1  
TXPRI0 0000 0-00 42, 230  
RXM1EIDL  
RXM1EIDH  
RXM1SIDL  
RXM1SIDH  
RXM0EIDL  
RXM0EIDH  
RXM0SIDL  
RXM0SIDH  
EID7  
EID15  
SID2  
EID6  
EID14  
SID1  
SID9  
EID6  
EID14  
SID1  
SID9  
EID6  
EID5  
EID13  
SID0  
SID8  
EID5  
EID13  
SID0  
SID8  
EID5  
EID4  
EID12  
EID3  
EID11  
EXIDEN  
SID6  
EID2  
EID10  
EID1  
EID9  
EID17  
SID4  
EID1  
EID9  
EID17  
SID4  
EID1  
EID0  
EID8  
EID16  
SID3  
EID0  
EID8  
EID16  
SID3  
EID0  
xxxx xxxx 42, 230  
xxxx xxxx 43, 230  
xx-x 0-xx 43, 230  
xxxx xxxx 43, 230  
xxxx xxxx 43, 230  
xxxx xxxx 43, 230  
xx-x 0-xx 43, 230  
xxxx xxxx 43, 230  
xxxx xxxx 47, 230  
SID10  
EID7  
SID7  
EID4  
EID12  
SID5  
EID2  
EID10  
EID3  
EID15  
SID2  
EID11  
EXIDM  
SID6  
SID10  
EID7  
SID7  
EID4  
SID5  
EID2  
(7)  
RXF15EIDL  
EID3  
Legend:  
Note 1:  
x= unknown, u= unchanged, – = unimplemented, q= value depends on condition  
RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read ‘0’ in all other oscillator  
modes.  
2:  
3:  
4:  
5:  
6:  
7:  
Bit 21 of the TBLPTRU allows access to the device configuration bits.  
These registers are unused on PIC18F6X80 devices; always maintain these clear.  
These bits have multiple functions depending on the CAN module mode selection.  
Meaning of this register depends on whether this buffer is configured as transmit or receive.  
RG5 is available as an input when MCLR is disabled.  
This register reads all ‘0’s until the ECAN module is set up in Mode 1 or Mode 2.  
DS30491C-page 72  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 4-3:  
REGISTER FILE SUMMARY (CONTINUED)  
Value on  
POR, BOR on page:  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(7)  
RXF15EIDH  
EID15  
SID2  
EID14  
SID1  
SID9  
EID6  
EID14  
SID1  
SID9  
EID6  
EID14  
SID1  
SID9  
EID6  
EID14  
SID1  
SID9  
EID6  
EID14  
SID1  
SID9  
EID6  
EID14  
SID1  
SID9  
EID6  
EID14  
SID1  
SID9  
EID6  
EID14  
SID1  
SID9  
EID6  
EID14  
SID1  
SID9  
EID6  
EID14  
SID1  
SID9  
EID6  
EID14  
EID13  
SID0  
SID8  
EID5  
EID13  
SID0  
SID8  
EID5  
EID13  
SID0  
SID8  
EID5  
EID13  
SID0  
SID8  
EID5  
EID13  
SID0  
SID8  
EID5  
EID13  
SID0  
SID8  
EID5  
EID13  
SID0  
SID8  
EID5  
EID13  
SID0  
SID8  
EID5  
EID13  
SID0  
SID8  
EID5  
EID13  
SID0  
SID8  
EID5  
EID13  
EID12  
EID11  
EXIDEN  
SID6  
EID10  
EID9  
EID17  
SID4  
EID1  
EID9  
EID17  
SID4  
EID1  
EID9  
EID17  
SID4  
EID1  
EID9  
EID17  
SID4  
EID1  
EID9  
EID17  
SID4  
EID1  
EID9  
EID17  
SID4  
EID1  
EID9  
EID17  
SID4  
EID1  
EID9  
EID17  
SID4  
EID1  
EID9  
EID17  
SID4  
EID1  
EID9  
EID17  
SID4  
EID1  
EID9  
EID8  
EID16  
SID3  
EID0  
EID8  
EID16  
SID3  
EID0  
EID8  
EID16  
SID3  
EID0  
EID8  
EID16  
SID3  
EID0  
EID8  
EID16  
SID3  
EID0  
EID8  
EID16  
SID3  
EID0  
EID8  
EID16  
SID3  
EID0  
EID8  
EID16  
SID3  
EID0  
EID8  
EID16  
SID3  
EID0  
EID8  
EID16  
SID3  
EID0  
EID8  
xxxx xxxx 47, 230  
xx-x x-xx 47, 230  
xxxx xxxx 47, 230  
xxxx xxxx 47, 230  
xxxx xxxx 47, 230  
xx-x x-xx 47, 230  
xxxx xxxx 47, 230  
xxxx xxxx 47, 230  
xxxx xxxx 47, 230  
xx-x x-xx 47, 230  
xxxx xxxx 47, 230  
xxxx xxxx 47, 230  
xxxx xxxx 47, 230  
xx-x x-xx 47, 230  
xxxx xxxx 47, 230  
xxxx xxxx 47, 230  
xxxx xxxx 47, 230  
xx-x x-xx 47, 230  
xxxx xxxx 47, 230  
xxxx xxxx 47, 230  
xxxx xxxx 47, 230  
xx-x x-xx 48, 230  
xxxx xxxx 48, 230  
xxxx xxxx 47, 230  
xxxx xxxx 48, 230  
xx-x x-xx 48, 230  
xxxx xxxx 48, 230  
xxxx xxxx 48, 230  
xxxx xxxx 48, 230  
xx-x x-xx 48, 230  
xxxx xxxx 48, 230  
xxxx xxxx 48, 230  
xxxx xxxx 48, 230  
xx-x x-xx 48, 230  
xxxx xxxx 48, 230  
xxxx xxxx 48, 230  
xxxx xxxx 48, 230  
xx-x x-xx 48, 230  
xxxx xxxx 48, 230  
xxxx xxxx 43, 230  
xxxx xxxx 43, 230  
(7)  
RXF15SIDL  
(7)  
RXF15SIDH  
SID10  
EID7  
SID7  
EID4  
EID12  
SID5  
EID2  
EID10  
(7)  
RXF14EIDL  
EID3  
(7)  
RXF14EIDH  
EID15  
SID2  
EID11  
EXIDEN  
SID6  
(7)  
RXF14SIDL  
(7)  
RXF14SIDH  
SID10  
EID7  
SID7  
EID4  
EID12  
SID5  
EID2  
EID10  
(7)  
RXF13EIDL  
EID3  
(7)  
RXF13EIDH  
EID15  
SID2  
EID11  
EXIDEN  
SID6  
(7)  
RXF13SIDL  
(7)  
RXF13SIDH  
SID10  
EID7  
SID7  
EID4  
EID12  
SID5  
EID2  
EID10  
(7)  
RXF12EIDL  
EID3  
(7)  
RXF12EIDH  
EID15  
SID2  
EID11  
EXIDEN  
SID6  
(7)  
RXF12SIDL  
(7)  
RXF12SIDH  
SID10  
EID7  
SID7  
EID4  
EID12  
SID5  
EID2  
EID10  
(7)  
RXF11EIDL  
EID3  
(7)  
RXF11EIDH  
EID15  
SID2  
EID11  
EXIDEN  
SID6  
(7)  
RXF11SIDL  
(7)  
RXF11SIDH  
SID10  
EID7  
SID7  
EID4  
EID12  
SID5  
EID2  
EID10  
(7)  
RXF10EIDL  
EID3  
(7)  
RXF10EIDH  
EID15  
SID2  
EID11  
EXIDEN  
SID6  
(7)  
RXF10SIDL  
(7)  
RXF10SIDH  
SID10  
EID7  
SID7  
EID4  
EID12  
SID5  
EID2  
EID10  
(7)  
RXF9EIDL  
EID3  
(7)  
RXF9EIDH  
EID15  
SID2  
EID11  
EXIDEN  
SID6  
(7)  
RXF9SIDL  
(7)  
RXF9SIDH  
SID10  
EID7  
SID7  
EID4  
EID12  
SID5  
EID2  
EID10  
(7)  
RXF8EIDL  
EID3  
(7)  
RXF8EIDH  
EID15  
SID2  
EID11  
EXIDEN  
SID6  
(7)  
RXF8SIDL  
(7)  
RXF8SIDH  
SID10  
EID7  
SID7  
EID4  
EID12  
SID5  
EID2  
EID10  
(7)  
RXF7EIDL  
EID3  
(7)  
RXF7EIDH  
EID15  
SID2  
EID11  
EXIDEN  
SID6  
(7)  
RXF7SIDL  
(7)  
RXF7SIDH  
SID10  
EID7  
SID7  
EID4  
EID12  
SID5  
EID2  
EID10  
(7)  
RXF6EIDL  
EID3  
(7)  
RXF6EIDH  
EID15  
SID2  
EID11  
EXIDEN  
SID6  
(7)  
RXF6SIDL  
(7)  
RXF6SIDH  
SID10  
EID7  
SID7  
EID4  
EID12  
SID5  
EID2  
EID10  
RXF5EIDL  
RXF5EIDH  
EID3  
EID15  
EID11  
Legend:  
Note 1:  
x= unknown, u= unchanged, – = unimplemented, q= value depends on condition  
RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read ‘0’ in all other oscillator  
modes.  
2:  
3:  
4:  
5:  
6:  
7:  
Bit 21 of the TBLPTRU allows access to the device configuration bits.  
These registers are unused on PIC18F6X80 devices; always maintain these clear.  
These bits have multiple functions depending on the CAN module mode selection.  
Meaning of this register depends on whether this buffer is configured as transmit or receive.  
RG5 is available as an input when MCLR is disabled.  
This register reads all ‘0’s until the ECAN module is set up in Mode 1 or Mode 2.  
2004 Microchip Technology Inc.  
DS30491C-page 73  
PIC18F6585/8585/6680/8680  
TABLE 4-3:  
REGISTER FILE SUMMARY (CONTINUED)  
Value on  
POR, BOR on page:  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RXF5SIDL  
RXF5SIDH  
RXF4EIDL  
RXF4EIDH  
RXF4SIDL  
RXF4SIDH  
RXF3EIDL  
RXF3EIDH  
RXF3SIDL  
RXF3SIDH  
RXF2EIDL  
RXF2EIDH  
RXF2SIDL  
RXF2SIDH  
RXF1EIDL  
RXF1EIDH  
RXF1SIDL  
RXF1SIDH  
RXF0EIDL  
RXF0EIDH  
RXF0SIDL  
RXF0SIDH  
SID2  
SID10  
EID7  
SID1  
SID9  
SID0  
SID8  
EXIDEN  
SID6  
EID17  
SID4  
EID16  
SID3  
xx-x x-xx 43, 230  
xxxx xxxx 43, 230  
xxxx xxxx 43, 230  
xxxx xxxx 43, 230  
xx-x x-xx 43, 230  
xxxx xxxx 43, 230  
xxxx xxxx 43, 230  
xxxx xxxx 43, 230  
xx-x x-xx 43, 230  
xxxx xxxx 43, 230  
xxxx xxxx 43, 230  
xxxx xxxx 43, 230  
xx-x x-xx 43, 230  
xxxx xxxx 43, 230  
xxxx xxxx 43, 230  
xxxx xxxx 43, 230  
xx-x x-xx 43, 230  
xxxx xxxx 43, 230  
xxxx xxxx 43, 230  
xxxx xxxx 43, 230  
xx-x x-xx 43, 230  
xxxx xxxx 43, 230  
xxxx xxxx 44, 230  
xxxx xxxx 44, 230  
xxxx xxxx 44, 230  
xxxx xxxx 44, 230  
xxxx xxxx 44, 230  
xxxx xxxx 44, 230  
xxxx xxxx 44, 230  
xxxx xxxx 44, 230  
-xxx xxxx 44, 230  
xxxx xxxx 44, 230  
xxxx xxxx 44, 230  
xxxx x-xx 44, 230  
SID7  
EID4  
EID12  
SID5  
EID2  
EID10  
EID6  
EID5  
EID3  
EID1  
EID0  
EID15  
SID2  
EID14  
SID1  
EID13  
SID0  
EID11  
EXIDEN  
SID6  
EID9  
EID8  
EID17  
SID4  
EID16  
SID3  
SID10  
EID7  
SID9  
SID8  
SID7  
EID4  
EID12  
SID5  
EID2  
EID10  
EID6  
EID5  
EID3  
EID1  
EID0  
EID15  
SID2  
EID14  
SID1  
EID13  
SID0  
EID11  
EXIDEN  
SID6  
EID9  
EID8  
EID17  
SID4  
EID16  
SID3  
SID10  
EID7  
SID9  
SID8  
SID7  
EID4  
EID12  
SID5  
EID2  
EID10  
EID6  
EID5  
EID3  
EID1  
EID0  
EID15  
SID2  
EID14  
SID1  
EID13  
SID0  
EID11  
EXIDEN  
SID6  
EID9  
EID8  
EID17  
SID4  
EID16  
SID3  
SID10  
EID7  
SID9  
SID8  
SID7  
EID4  
EID12  
SID5  
EID2  
EID10  
EID6  
EID5  
EID3  
EID1  
EID0  
EID15  
SID2  
EID14  
SID1  
EID13  
SID0  
EID11  
EXIDEN  
SID6  
EID9  
EID8  
EID17  
SID4  
EID16  
SID3  
SID10  
EID7  
SID9  
SID8  
SID7  
EID4  
EID12  
SID5  
EID2  
EID10  
EID6  
EID5  
EID3  
EID1  
EID0  
EID15  
SID2  
EID14  
SID1  
EID13  
SID0  
EID11  
EXIDEN  
SID6  
EID9  
EID8  
EID17  
SID4  
EID16  
SID3  
SID10  
B5D77  
B5D67  
B5D57  
B5D47  
B5D37  
B5D27  
B5D17  
B5D07  
SID9  
SID8  
SID7  
B5D74  
B5D64  
B5D54  
B5D44  
B5D34  
B5D24  
B5D14  
B5D04  
RB0  
SID5  
B5D72  
B5D62  
B5D52  
B5D42  
B5D32  
B5D22  
B5D12  
B5D02  
DLC2  
EID2  
EID10  
(7)  
B5D7  
B5D76  
B5D66  
B5D56  
B5D46  
B5D36  
B5D26  
B5D16  
B5D06  
RXRTR  
EID6  
B5D75  
B5D65  
B5D55  
B5D45  
B5D35  
B5D25  
B5D15  
B5D05  
RB1  
B5D73  
B5D63  
B5D53  
B5D43  
B5D33  
B5D23  
B5D13  
B5D03  
DLC3  
EID3  
B5D71  
B5D61  
B5D51  
B5D41  
B5D31  
B5D21  
B5D11  
B5D01  
DLC1  
EID1  
B5D70  
B5D60  
B5D50  
B5D40  
B5D30  
B5D20  
B5D10  
B5D00  
DLC0  
EID0  
(7)  
B5D6  
(7)  
B5D5  
(7)  
B5D4  
(7)  
B5D3  
(7)  
B5D2  
(7)  
B5D1  
(7)  
B5D0  
(7)  
B5DLC  
(7)  
B5EIDL  
EID7  
EID5  
EID4  
EID12  
SRR  
(7)  
B5EIDH  
EID15  
SID2  
EID14  
SID1  
EID13  
SID0  
EID11  
EID9  
EID8  
(7)  
B5SIDL  
EXID/  
EID17  
EID16  
(5)  
EXIDE  
(7)  
B5SIDH  
SID10  
SID9  
SID8  
SID7  
SID6  
SID5  
SID4  
SID3  
xxxx xxxx 44, 230  
(5, 7)  
B5CON  
RXFUL/  
TXBIF  
RXM1/  
TXABT  
RTRRO/  
TXLARB  
FILHIT4/  
TXERR  
FILHIT3/  
TXREQ  
FILHIT2/  
RTREN  
FILHIT1/  
TXPRI1  
FILHIT0/ 0000 0000 44, 230  
TXPRI0  
(7)  
B4D7  
B4D77  
B4D67  
B4D57  
B4D47  
B4D76  
B4D66  
B4D56  
B4D46  
B4D75  
B4D65  
B4D55  
B4D45  
B4D74  
B4D64  
B4D54  
B4D44  
B4D73  
B4D63  
B4D53  
B4D43  
B4D72  
B4D62  
B4D52  
B4D42  
B4D71  
B4D61  
B4D51  
B4D41  
B4D70  
B4D60  
B4D50  
B4D40  
xxxx xxxx 44, 230  
xxxx xxxx 44, 230  
xxxx xxxx 44, 230  
xxxx xxxx 44, 230  
(7)  
B4D6  
(7)  
B4D5  
(7)  
B4D4  
Legend:  
Note 1:  
x= unknown, u= unchanged, – = unimplemented, q= value depends on condition  
RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read ‘0’ in all other oscillator  
modes.  
2:  
3:  
4:  
5:  
6:  
7:  
Bit 21 of the TBLPTRU allows access to the device configuration bits.  
These registers are unused on PIC18F6X80 devices; always maintain these clear.  
These bits have multiple functions depending on the CAN module mode selection.  
Meaning of this register depends on whether this buffer is configured as transmit or receive.  
RG5 is available as an input when MCLR is disabled.  
This register reads all ‘0’s until the ECAN module is set up in Mode 1 or Mode 2.  
DS30491C-page 74  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 4-3:  
REGISTER FILE SUMMARY (CONTINUED)  
Value on  
POR, BOR on page:  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(7)  
B4D3  
B4D37  
B4D27  
B4D17  
B4D07  
B4D36  
B4D26  
B4D16  
B4D06  
RXRTR  
EID6  
B4D35  
B4D25  
B4D15  
B4D05  
RB1  
B4D34  
B4D24  
B4D14  
B4D04  
RB0  
B4D33  
B4D23  
B4D13  
B4D03  
DLC3  
EID3  
B4D32  
B4D22  
B4D12  
B4D02  
DLC2  
EID2  
B4D31  
B4D21  
B4D11  
B4D01  
DLC1  
EID1  
B4D30  
B4D20  
B4D10  
B4D00  
DLC0  
EID0  
xxxx xxxx 44, 230  
xxxx xxxx 44, 230  
xxxx xxxx 44, 230  
xxxx xxxx 44, 230  
-xxx xxxx 44, 230  
xxxx xxxx 44, 230  
xxxx xxxx 44, 230  
xxxx x-xx 44, 230  
(7)  
B4D2  
(7)  
B4D1  
(7)  
B4D0  
(7)  
B4DLC  
(7)  
B4EIDL  
EID7  
EID5  
EID4  
(7)  
B4EIDH  
EID15  
SID2  
EID14  
SID1  
EID13  
SID0  
EID12  
SRR  
EID11  
EID10  
EID9  
EID8  
(7)  
B4SIDL  
EXID/  
EID17  
EID16  
(5)  
EXIDE  
SID6  
(7)  
B4SIDH  
SID10  
SID9  
SID8  
SID7  
SID5  
SID4  
SID3  
xxxx xxxx 44, 230  
(5, 7)  
B4CON  
RXFUL/  
TXB3IF  
RXM1/  
TXABT  
RTRRO/  
TXLARB  
FILHIT4/  
TXERR  
FILHIT3/  
TXREQ  
FILHIT2/  
RTREN  
FILHIT1/  
TXPRI1  
FILHIT0/ 0000 0000 44, 230  
TXPRI0  
(7)  
B3D7  
B3D77  
B3D67  
B3D57  
B3D47  
B3D37  
B3D27  
B3D17  
B3D07  
B3D76  
B3D66  
B3D56  
B3D46  
B3D36  
B3D26  
B3D16  
B3D06  
RXRTR  
EID6  
B3D75  
B3D65  
B3D55  
B3D45  
B3D35  
B3D25  
B3D15  
B3D05  
RB1  
B3D74  
B3D64  
B3D54  
B3D44  
B3D34  
B3D24  
B3D14  
B3D04  
RB0  
B3D73  
B3D63  
B3D53  
B3D43  
B3D33  
B3D23  
B3D13  
B3D03  
DLC3  
B3D72  
B3D62  
B3D52  
B3D42  
B3D32  
B3D22  
B3D12  
B3D02  
DLC2  
EID2  
B3D71  
B3D61  
B3D51  
B3D41  
B3D31  
B3D21  
B3D11  
B3D01  
DLC1  
B3D70  
B3D60  
B3D50  
B3D40  
B3D30  
B3D20  
B3D10  
B3D00  
DLC0  
xxxx xxxx 44, 230  
xxxx xxxx 44, 230  
xxxx xxxx 44, 230  
xxxx xxxx 45, 230  
xxxx xxxx 45, 230  
xxxx xxxx 45, 230  
xxxx xxxx 45, 230  
xxxx xxxx 45, 230  
-xxx xxxx 45, 230  
xxxx xxxx 45, 230  
xxxx xxxx 45, 230  
xxxx x-xx 45, 230  
(7)  
B3D6  
(7)  
B3D5  
(7)  
B3D4  
(7)  
B3D3  
(7)  
B3D2  
(7)  
B3D1  
(7)  
B3D0  
(7)  
B3DLC  
(7)  
B3EIDL  
EID7  
EID5  
EID4  
EID3  
EID1  
EID0  
(7)  
B3EIDH  
EID15  
SID2  
EID14  
SID1  
EID13  
SID0  
EID12  
SRR  
EID11  
EID10  
EID9  
EID8  
(7)  
B3SIDL  
EXID/  
EID17  
EID16  
(5)  
EXIDE  
(7)  
B3SIDH  
SID10  
SID9  
SID8  
SID7  
SID6  
SID5  
SID4  
SID3  
xxxx xxxx 45, 230  
(5, 7)  
B3CON  
RXFUL/  
TXBIF  
RXM1/  
TXABT  
RTRRO/  
TXLARB  
FILHIT4/  
TXERR  
FILHIT3/  
TXREQ  
FILHIT2/  
RTREN  
FILHIT1/  
TXPRI1  
FILHIT0/ 0000 0000 45, 230  
TXPRI0  
(7)  
B2D7  
B2D77  
B2D67  
B2D57  
B2D47  
B2D37  
B2D27  
B2D17  
B2D07  
B2D76  
B2D66  
B2D56  
B2D46  
B2D36  
B2D26  
B2D16  
B2D06  
RXRTR  
EID6  
B2D75  
B2D65  
B2D55  
B2D45  
B2D35  
B2D25  
B2D15  
B2D05  
RB1  
B2D74  
B2D64  
B2D54  
B2D44  
B2D34  
B2D24  
B2D14  
B2D04  
RB0  
B2D73  
B2D63  
B2D53  
B2D43  
B2D33  
B2D23  
B2D13  
B2D03  
DLC3  
B2D72  
B2D62  
B2D52  
B2D42  
B2D32  
B2D22  
B2D12  
B2D02  
DLC2  
EID2  
B2D71  
B2D61  
B2D51  
B2D41  
B2D31  
B2D21  
B2D11  
B2D01  
DLC1  
B2D70  
B2D60  
B2D50  
B2D40  
B2D30  
B2D20  
B2D10  
B2D00  
DLC0  
xxxx xxxx 45, 230  
xxxx xxxx 45, 230  
xxxx xxxx 45, 230  
xxxx xxxx 45, 230  
xxxx xxxx 45, 230  
xxxx xxxx 45, 230  
xxxx xxxx 45, 230  
xxxx xxxx 45, 230  
-xxx xxxx 45, 230  
xxxx xxxx 45, 230  
xxxx xxxx 45, 230  
xxxx x-xx 45, 230  
(7)  
B2D6  
(7)  
B2D5  
(7)  
B2D4  
(7)  
B2D3  
(7)  
B2D2  
(7)  
B2D1  
(7)  
B2D0  
(7)  
B2DLC  
(7)  
B2EIDL  
EID7  
EID5  
EID4  
EID3  
EID1  
EID0  
(7)  
B2EIDH  
EID15  
SID2  
EID14  
SID1  
EID13  
SID0  
EID12  
SRR  
EID11  
EID10  
EID9  
EID8  
(7)  
B2SIDL  
EXID/  
EID17  
EID16  
(5)  
EXIDE  
(7)  
B2SIDH  
SID10  
SID9  
SID8  
SID7  
SID6  
SID5  
SID4  
SID3  
xxxx xxxx 45, 230  
Legend:  
Note 1:  
x= unknown, u= unchanged, – = unimplemented, q= value depends on condition  
RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read ‘0’ in all other oscillator  
modes.  
2:  
3:  
4:  
5:  
6:  
7:  
Bit 21 of the TBLPTRU allows access to the device configuration bits.  
These registers are unused on PIC18F6X80 devices; always maintain these clear.  
These bits have multiple functions depending on the CAN module mode selection.  
Meaning of this register depends on whether this buffer is configured as transmit or receive.  
RG5 is available as an input when MCLR is disabled.  
This register reads all ‘0’s until the ECAN module is set up in Mode 1 or Mode 2.  
2004 Microchip Technology Inc.  
DS30491C-page 75  
PIC18F6585/8585/6680/8680  
TABLE 4-3:  
REGISTER FILE SUMMARY (CONTINUED)  
Value on  
POR, BOR on page:  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(5, 7)  
B2CON  
RXFUL/  
TXBIF  
RXM1/  
TXABT  
RTRRO/  
TXLARB  
FILHIT4/  
TXERR  
FILHIT3/  
TXREQ  
FILHIT2/  
RTREN  
FILHIT1/  
TXPRI1  
FILHIT0/ 0000 0000 45, 230  
TXPRI0  
(7)  
B1D7  
B1D77  
B1D67  
B1D57  
B1D47  
B1D37  
B1D27  
B1D17  
B1D07  
B1D76  
B1D66  
B1D56  
B1D46  
B1D36  
B1D26  
B1D16  
B1D06  
RXRTR  
EID6  
B1D75  
B1D65  
B1D55  
B1D45  
B1D35  
B1D25  
B1D15  
B1D05  
RB1  
B1D74  
B1D64  
B1D54  
B1D44  
B1D34  
B1D24  
B1D14  
B1D04  
RB0  
B1D73  
B1D63  
B1D53  
B1D43  
B1D33  
B1D23  
B1D13  
B1D03  
DLC3  
EID3  
B1D72  
B1D62  
B1D52  
B1D42  
B1D32  
B1D22  
B1D12  
B1D02  
DLC2  
EID2  
B1D71  
B1D61  
B1D51  
B1D41  
B1D31  
B1D21  
B1D11  
B1D01  
DLC1  
EID1  
B1D70  
B1D60  
B1D50  
B1D40  
B1D30  
B1D20  
B1D10  
B1D00  
DLC0  
EID0  
xxxx xxxx 45, 230  
xxxx xxxx 45, 230  
xxxx xxxx 45, 230  
xxxx xxxx 45, 230  
xxxx xxxx 45, 230  
xxxx xxxx 45, 230  
xxxx xxxx 46, 230  
xxxx xxxx 46, 230  
-xxx xxxx 46, 230  
xxxx xxxx 46, 230  
xxxx xxxx 46, 230  
xxxx x-xx 46, 230  
xxxx xxxx 46, 230  
(7)  
B1D6  
(7)  
B1D5  
(7)  
B1D4  
(7)  
B1D3  
(7)  
B1D2  
(7)  
B1D1  
(7)  
B1D0  
(7)  
B1DLC  
(7)  
B1EIDL  
EID7  
EID5  
EID4  
(7)  
B1EIDH  
EID15  
SID2  
EID14  
SID1  
EID13  
SID0  
EID12  
SRR  
EID11  
EXID  
EID10  
EID9  
EID8  
(7)  
B1SIDL  
EID17  
SID4  
EID16  
SID3  
(7)  
B1SIDH  
SID10  
SID9  
SID8  
SID7  
SID6  
SID5  
(5, 7)  
B1CON  
RXFUL/  
TXBIF  
RXM1/  
TXABT  
RTRRO/  
TXLARB  
FILHIT4/  
TXERR  
FILHIT3/  
TXREQ  
FILHIT2/  
RTREN  
FILHIT1/  
TXPRI1  
FILHIT0/ 0000 0000 46, 230  
TXPRI0  
(7)  
B0D7  
B0D77  
B0D67  
B0D57  
B0D47  
B0D37  
B0D27  
B0D17  
B0D07  
B0D76  
B0D66  
B0D56  
B0D46  
B0D36  
B0D26  
B0D16  
B0D06  
RTR  
B0D75  
B0D65  
B0D55  
B0D45  
B0D35  
B0D25  
B0D15  
B0D05  
RB1  
B0D74  
B0D64  
B0D54  
B0D44  
B0D34  
B0D24  
B0D14  
B0D04  
RB0  
B0D73  
B0D63  
B0D53  
B0D43  
B0D33  
B0D23  
B0D13  
B0D03  
DLC3  
EID3  
B0D72  
B0D62  
B0D52  
B0D42  
B0D32  
B0D22  
B0D12  
B0D02  
DLC2  
EID2  
B0D71  
B0D61  
B0D51  
B0D41  
B0D31  
B0D21  
B0D11  
B0D01  
DLC1  
EID1  
B0D70  
B0D60  
B0D50  
B0D40  
B0D30  
B0D20  
B0D10  
B0D00  
DLC0  
EID0  
xxxx xxxx 46, 230  
xxxx xxxx 46, 230  
xxxx xxxx 46, 230  
xxxx xxxx 46, 230  
xxxx xxxx 46, 230  
xxxx xxxx 46, 230  
xxxx xxxx 46, 230  
xxxx xxxx 46, 230  
-xxx xxxx 46, 230  
xxxx xxxx 46, 230  
xxxx xxxx 46, 230  
xxxx x-xx 46, 230  
xxxx xxxx 46, 230  
(7)  
B0D6  
(7)  
B0D5  
(7)  
B0D4  
(7)  
B0D3  
(7)  
B0D2  
(7)  
B0D1  
(7)  
B0D0  
(7)  
B0DLC  
(7)  
B0EIDL  
EID7  
EID6  
EID5  
EID4  
(7)  
B0EIDH  
EID15  
SID2  
EID14  
SID1  
EID13  
SID0  
EID12  
SRR  
EID11  
EXID  
EID10  
EID9  
EID8  
(7)  
B0SIDL  
EID17  
SID4  
EID16  
SID3  
(7)  
B0SIDH  
SID10  
SID9  
SID8  
SID7  
SID6  
SID5  
(5, 7)  
B0CON  
RXFUL/  
TXBIF  
RXM1/  
TXABT  
RTRRO/  
TXLARB  
FILHIT4/  
TXERR  
FILHIT3/  
TXREQ  
FILHIT2/  
RTREN  
FILHIT1/  
TXPRI1  
FILHIT0/ 0000 0000 46, 230  
TXPRI0  
(7)  
TXBIE  
TXB2IE  
B2IE  
TXB1IE  
B1IE  
TXB0IE  
B0IE  
---0 00-- 46, 230  
RXB0IE 0000 0000 46, 230  
0000 00-- 46, 230  
FIL12_0 0000 0000 46, 230  
(7)  
BIE0  
B5IE  
B4IE  
B3IE  
RXB1IE  
(7)  
BSEL0  
B5TXEN  
FIL15_1  
FIL11_1  
FIL7_1  
FIL3_1  
B4TXEN  
FIL15_0  
FIL11_0  
FIL7_0  
FIL3_0  
B3TXEN  
FIL14_1  
FIL10_1  
FIL6_1  
FIL2_1  
B2TXEN  
FIL14_0  
FIL10_0  
FIL6_0  
B1TXEN  
FIL13_1  
FIL9_1  
B0TXEN  
FIL13_0  
FIL9_0  
(7)  
MSEL3  
FIL12_1  
FIL8_1  
FIL4_1  
FIL0_1  
DFLC1  
RXF9EN  
RXF1EN  
(7)  
MSEL2  
FIL8_0  
FIL4_0  
FIL0_0  
DFLC0  
0000 0000 46, 230  
0000 0101 46, 230  
0101 0000 46, 230  
---0 0000 46, 230  
(7)  
MSEL1  
FIL5_1  
FIL5_0  
(7)  
MSEL0  
FIL2_0  
FIL1_1  
FIL1_0  
(7)  
SDFLC  
DFLC4  
DFLC3  
RXF11EN  
RXF3EN  
DFLC2  
RXF10EN  
RXF2EN  
(7)  
RXFCON1  
RXF15EN  
RXF7EN  
RXF14EN  
RXF6EN  
RXF13EN  
RXF5EN  
RXF12EN  
RXF4EN  
RXF8EN 0000 0000 46, 230  
RXF0EN 0011 1111 47, 230  
(7)  
RXFCON0  
Legend:  
Note 1:  
x= unknown, u= unchanged, – = unimplemented, q= value depends on condition  
RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read ‘0’ in all other oscillator  
modes.  
2:  
3:  
4:  
5:  
6:  
7:  
Bit 21 of the TBLPTRU allows access to the device configuration bits.  
These registers are unused on PIC18F6X80 devices; always maintain these clear.  
These bits have multiple functions depending on the CAN module mode selection.  
Meaning of this register depends on whether this buffer is configured as transmit or receive.  
RG5 is available as an input when MCLR is disabled.  
This register reads all ‘0’s until the ECAN module is set up in Mode 1 or Mode 2.  
DS30491C-page 76  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 4-3:  
REGISTER FILE SUMMARY (CONTINUED)  
Value on  
POR, BOR on page:  
Details  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(7)  
RXFBCON7  
F15BP_3  
F13BP_3  
F11BP_3  
F9BP_3  
F7BP_3  
F5BP_3  
F3BP_3  
F1BP_3  
F15BP_2  
F13BP_2  
F11BP_2  
F9BP_2  
F7BP_2  
F5BP_2  
F3BP_2  
F1BP_2  
F15BP_1  
F13BP_1  
F11BP_1  
F9BP_1  
F7BP_1  
F5BP_1  
F3BP_1  
F1BP_1  
F15BP_0  
F13BP_0  
F11BP_0  
F9BP_0  
F7BP_0  
F5BP_0  
F3BP_0  
F1BP_0  
F14BP_3  
F12BP_3  
F10BP_3  
F8BP_3  
F6BP_3  
F4BP_3  
F2BP_3  
F0BP_3  
F14BP_2  
F12BP_2  
F10BP_2  
F8BP_2  
F6BP_2  
F4BP_2  
F2BP_2  
F0BP_2  
F14BP_1 F14BP_01 0000 0000 47, 230  
F12BP_1 F12BP_01 0000 0000 47, 230  
F10BP_1 F10BP_01 0000 0000 47, 230  
(7)  
RXFBCON6  
(7)  
RXFBCON5  
(7)  
RXFBCON4  
F8BP_1  
F6BP_1  
F4BP_1  
F2BP_1  
F0BP_1  
F8BP_01 0000 0000 47, 230  
F6BP_01 0000 0000 47, 230  
F4BP_01 0000 0000 47, 230  
F2BP_01 0000 0000 47, 230  
F0BP_01 0000 0000 47, 230  
(7)  
RXFBCON3  
(7)  
RXFBCON2  
(7)  
RXFBCON1  
(7)  
RXFBCON0  
Legend:  
Note 1:  
x= unknown, u= unchanged, – = unimplemented, q= value depends on condition  
RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read ‘0’ in all other oscillator  
modes.  
2:  
3:  
4:  
5:  
6:  
7:  
Bit 21 of the TBLPTRU allows access to the device configuration bits.  
These registers are unused on PIC18F6X80 devices; always maintain these clear.  
These bits have multiple functions depending on the CAN module mode selection.  
Meaning of this register depends on whether this buffer is configured as transmit or receive.  
RG5 is available as an input when MCLR is disabled.  
This register reads all ‘0’s until the ECAN module is set up in Mode 1 or Mode 2.  
2004 Microchip Technology Inc.  
DS30491C-page 77  
PIC18F6585/8585/6680/8680  
4.10  
Access Bank  
4.11 Bank Select Register (BSR)  
The Access Bank is an architectural enhancement  
which is very useful for C compiler code optimization.  
The techniques used by the C compiler may also be  
useful for programs written in assembly.  
The need for a large general purpose memory space  
dictates a RAM banking scheme. The data memory is  
partitioned into sixteen banks. When using direct  
addressing, the BSR should be configured for the  
desired bank.  
This data memory region can be used for:  
BSR<3:0> holds the upper 4 bits of the 12-bit RAM  
address. The BSR<7:4> bits will always read ‘0’s and  
writes will have no effect.  
• Intermediate computational values  
• Local variables of subroutines  
• Faster context saving/switching of variables  
• Common variables  
A
MOVLB instruction has been provided in the  
instruction set to assist in selecting banks.  
• Faster evaluation/control of SFRs (no banking)  
If the currently selected bank is not implemented, any  
read will return all ‘0’s and all writes are ignored. The  
Status register bits will be set/cleared as appropriate for  
the instruction performed.  
The Access Bank is comprised of the upper 160 bytes  
in Bank 15 (SFRs) and the lower 96 bytes in Bank 0.  
These two sections will be referred to as Access RAM  
High and Access RAM Low, respectively. Figure 4-7  
indicates the Access RAM areas.  
Each Bank extends up to 0FFh (256 bytes). All data  
memory is implemented as static RAM.  
A bit in the instruction word specifies if the operation is  
to occur in the bank specified by the BSR register or in  
the Access Bank. This bit is denoted by the ‘a’ bit (for  
access bit).  
A MOVFFinstruction ignores the BSR since the 12-bit  
addresses are embedded into the instruction word.  
Section 4.12 “Indirect Addressing, INDF and FSR  
Registers” provides a description of indirect address-  
ing which allows linear addressing of the entire RAM  
space.  
When forced in the Access Bank (a = 0), the last  
address in Access RAM Low is followed by the first  
address in Access RAM High. Access RAM High maps  
the Special Function Registers so that these registers  
can be accessed without any software overhead. This is  
useful for testing status flags and modifying control bits.  
FIGURE 4-8:  
DIRECT ADDRESSING  
Direct Addressing  
(3)  
From Opcode  
BSR<3:0>  
7
0
(2)  
(3)  
Bank Select  
Location Select  
00h  
01h  
100h  
0Eh  
E00h  
0Fh  
F00h  
000h  
Data  
Memory(1)  
0FFh  
Bank 0  
1FFh  
Bank 1  
EFFh  
FFFh  
Bank 14  
Bank 15  
Note 1: For register file map detail, see Table 4-2.  
2: The access bit of the instruction can be used to force an override of the selected bank (BSR<3:0>) to the  
registers of the Access Bank.  
3: The MOVFFinstruction embeds the entire 12-bit address in the instruction.  
DS30491C-page 78  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
the data from the address pointed to by  
FSR1H:FSR1L. INDFn can be used in code anywhere  
an operand can be used.  
4.12 Indirect Addressing, INDF and  
FSR Registers  
Indirect addressing is a mode of addressing data mem-  
ory where the data memory address in the instruction  
is not fixed. An FSR register is used as a pointer to the  
data memory location that is to be read or written. Since  
this pointer is in RAM, the contents can be modified by  
the program. This can be useful for data tables in the  
data memory and for software stacks. Figure 4-9  
shows the operation of indirect addressing. This shows  
the moving of the value to the data memory address  
specified by the value of the FSR register.  
If INDF0, INDF1, or INDF2 are read indirectly via an  
FSR, all ‘0’s are read (zero bit is set). Similarly, if  
INDF0, INDF1, or INDF2 are written to indirectly, the  
operation will be equivalent to a NOPinstruction and the  
Status bits are not affected.  
4.12.1  
INDIRECT ADDRESSING  
OPERATION  
Each FSR register has an INDF register associated  
with it plus four additional register addresses.  
Performing an operation on one of these five registers  
determines how the FSR will be modified during  
indirect addressing.  
Indirect addressing is possible by using one of the  
INDF registers. Any instruction using the INDF register  
actually accesses the register pointed to by the File  
Select Register, FSR. Reading the INDF register itself,  
indirectly (FSR = 0), will read 00h. Writing to the INDF  
register indirectly, results in a no operation. The FSR  
register contains a 12-bit address which is shown in  
Figure 4-10.  
When data access is done to one of the five INDFn  
locations, the address selected will configure the FSRn  
register to:  
• Do nothing to FSRn after an indirect access (no  
change) – INDFn.  
The INDFn register is not a physical register. Address-  
ing INDFn actually addresses the register whose  
address is contained in the FSRn register (FSRn is a  
pointer). This is indirect addressing.  
• Auto-decrement FSRn after an indirect access  
(post-decrement) – POSTDECn.  
• Auto-increment FSRn after an indirect access  
(post-increment) – POSTINCn.  
Example 4-4 shows a simple use of indirect addressing  
to clear the RAM in Bank 1 (locations 100h-1FFh) in a  
minimum number of instructions.  
• Auto-increment FSRn before an indirect access  
(pre-increment) – PREINCn.  
• Use the value in the WREG register as an offset  
to FSRn. Do not modify the value of the WREG or  
the FSRn register after an indirect access (no  
change) – PLUSWn.  
EXAMPLE 4-4:  
HOW TO CLEAR RAM  
(BANK 1) USING  
INDIRECT ADDRESSING  
LFSR  
CLRF  
FSR0, 100h  
POSTINC0  
;
When using the auto-increment or auto-decrement fea-  
tures, the effect on the FSR is not reflected in the Status  
register. For example, if the indirect address causes the  
FSR to equal ‘0’, the Z bit will not be set.  
NEXT  
; Clear INDF  
; register and  
; inc pointer  
; All done with  
; Bank1?  
BTFSS FSR0H, 1  
Incrementing or decrementing an FSR affects all  
12 bits. That is, when FSRnL overflows from an  
increment, FSRnH will be incremented automatically.  
BRA  
CONTINUE  
NEXT  
; NO, clear next  
; YES, continue  
Adding these features allows the FSRn to be used as a  
stack pointer in addition to its uses for table operations  
in data memory.  
There are three Indirect Addressing registers. To  
address the entire data memory space (4096 bytes),  
these registers are 12-bits wide. To store the 12 bits of  
addressing information, two 8-bit registers are  
required. These Indirect Addressing registers are:  
Each FSR has an address associated with it that  
performs an indexed indirect access. When a data  
access to this INDFn location (PLUSWn) occurs, the  
FSRn is configured to add the signed value in the  
WREG register and the value in FSR to form the  
address before an indirect access. The FSR value is  
not changed.  
1. FSR0: composed of FSR0H:FSR0L  
2. FSR1: composed of FSR1H:FSR1L  
3. FSR2: composed of FSR2H:FSR2L  
In addition, there are registers INDF0, INDF1 and  
INDF2 which are not physically implemented. Reading  
or writing to these registers activates indirect address-  
ing with the value in the corresponding FSR register  
being the address of the data. If an instruction writes a  
value to INDF0, the value will be written to the address  
pointed to by FSR0H:FSR0L. A read from INDF1 reads  
If an FSR register contains a value that points to one of  
the INDFn, an indirect read will read 00h (zero bit is  
set), while an indirect write will be equivalent to a NOP  
(Status bits are not affected).  
2004 Microchip Technology Inc.  
DS30491C-page 79  
PIC18F6585/8585/6680/8680  
If an indirect addressing operation is done where the  
target address is an FSRnH or FSRnL register, the  
write operation will dominate over the pre- or  
post-increment/decrement functions.  
FIGURE 4-9:  
INDIRECT ADDRESSING OPERATION  
0h  
RAM  
Instruction  
Executed  
Opcode  
Address  
12  
0FFFh  
File Address = Access of an Indirect Addressing Register  
BSR<3:0>  
12  
12  
Instruction  
Fetched  
4
8
Opcode  
FSR  
File  
FIGURE 4-10:  
INDIRECT ADDRESSING  
Indirect Addressing  
11  
FSR Register  
0
Location Select  
0000h  
Data  
Memory(1)  
0FFFh  
Note 1: For register file map detail, see Table 4-2.  
DS30491C-page 80  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the Status register  
4.13 Status Register  
The Status register, shown in Register 4-3, contains the  
arithmetic status of the ALU. The Status register can be  
the destination for any instruction as with any other reg-  
ister. If the Status register is the destination for an  
instruction that affects the Z, DC, C, OV or N bits, then  
the write to these five bits is disabled. These bits are set  
or cleared according to the device logic. Therefore, the  
result of an instruction with the Status register as  
destination may be different than intended.  
as 000u u1uu(where u= unchanged).  
It is recommended, therefore, that only BCF, BSF,  
SWAPF, MOVFF and MOVWF instructions are used to  
alter the Status register because these instructions do  
not affect the Z, C, DC, OV or N bits from the Status  
register. For other instructions not affecting any status  
bits, see Table 25-2.  
Note:  
The C and DC bits operate as a borrow and  
digit borrow bit respectively, in subtraction.  
REGISTER 4-3:  
STATUS REGISTER  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
OV  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
N
bit 7  
bit 0  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
N: Negative bit  
This bit is used for signed arithmetic (2’s complement). It indicates whether the result was  
negative (ALU MSB = 1).  
1= Result was negative  
0= Result was positive  
bit 3  
OV: Overflow bit  
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the  
7-bit magnitude which causes the sign bit (bit 7) to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 2  
bit 1  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit  
For ADDWF, ADDLW, SUBLW, and SUBWFinstructions:  
1= A carry-out from the 4th low order bit of the result occurred  
0= No carry-out from the 4th low order bit of the result  
Note:  
For borrow, the polarity is reversed. A subtraction is executed by adding the  
2’s complement of the second operand. For rotate (RRF, RLF) instructions, this bit  
is loaded with either the bit 4 or bit 3 of the source register.  
bit 0  
C: Carry/borrow bit  
For ADDWF, ADDLW, SUBLW, and SUBWFinstructions:  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note:  
For borrow, the polarity is reversed. A subtraction is executed by adding the  
2’s complement of the second operand. For rotate (RRF, RLF) instructions, this bit  
is loaded with either the high or low-order bit of the source register.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 81  
PIC18F6585/8585/6680/8680  
4.14 RCON Register  
Note 1: It is recommended that the POR bit be set  
after Power-on Reset has been  
a
The Reset Control (RCON) register contains flag bits  
that allow differentiation between the sources of a  
device Reset. These flags include the TO, PD, POR,  
BOR and RI bits. This register is readable and writable.  
detected so that subsequent Power-on  
Resets may be detected.  
2: Brown-out Reset is said to have occurred  
when BOR is ‘0’ and POR is ‘1’ (assum-  
ing that POR was set to ‘1’ by software  
immediately after POR).  
REGISTER 4-4:  
RCON REGISTER  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R/W-1  
TO  
R/W-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
bit 7  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16CXXX Compatibility mode)  
bit 6-5 Unimplemented: Read as ‘0’  
bit 4  
RI: RESETInstruction Flag bit  
1= The RESETinstruction was not executed  
0= The RESETinstruction was executed causing a device Reset  
(must be set in software after a Brown-out Reset occurs)  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Watchdog Time-out Flag bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down Detection Flag bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
POR: Power-on Reset Status bit  
1= A Power-on Reset has not occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
BOR: Brown-out Reset Status bit  
1= A Brown-out Reset has not occurred  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 82  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
5.1  
Table Reads and Table Writes  
5.0  
FLASH PROGRAM MEMORY  
In order to read and write program memory, there are  
two operations that allow the processor to move bytes  
between the program memory space and the data RAM:  
The Flash program memory is readable, writable and  
erasable during normal operation over the entire VDD  
range.  
Table Read (TBLRD)  
Table Write (TBLWT)  
A read from program memory is executed on one byte  
at a time. A write to program memory is executed on  
blocks of 8 bytes at a time. Program memory is erased  
in blocks of 64 bytes at a time. A bulk erase operation  
cannot be issued from user code.  
The program memory space is 16 bits wide, while the  
data RAM space is 8-bits wide. Table reads and table  
writes move data between these two memory spaces  
through an 8-bit register (TABLAT).  
Writing or erasing program memory will cease  
instruction fetches until the operation is complete. The  
program memory cannot be accessed during the write  
or erase, therefore, code cannot execute. An internal  
programming timer terminates program memory writes  
and erases.  
Table read operations retrieve data from program  
memory and places it into the data RAM space.  
Figure 5-1 shows the operation of a table read with  
program memory and data RAM.  
Table write operations store data from the data memory  
space into holding registers in program memory. The  
procedure to write the contents of the holding  
registers into program memory is detailed in  
Section 5.5 “Writing to Flash Program Memory”.  
Figure 5-2 shows the operation of a table write with  
program memory and data RAM.  
A value written to program memory does not need to be  
a valid instruction. Executing a program memory  
location that forms an invalid instruction results in a  
NOP.  
Table operations work with byte entities. A table block  
containing data, rather than program instructions, is not  
required to be word aligned. Therefore, a table block can  
start and end at any byte address. If a table write is being  
used to write executable code into program memory,  
program instructions will need to be word aligned.  
FIGURE 5-1:  
TABLE READ OPERATION  
Instruction: TBLRD*  
Program Memory  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: Table Pointer points to a byte in program memory.  
2004 Microchip Technology Inc.  
DS30491C-page 83  
PIC18F6585/8585/6680/8680  
FIGURE 5-2:  
TABLE WRITE OPERATION  
Instruction: TBLWT*  
Program Memory  
Holding Registers  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: Table Pointer actually points to one of eight holding registers, the address of which is determined by  
TBLPTRL<2:0>. The process for physically writing data to the program memory array is discussed in  
Section 5.5 “Writing to Flash Program Memory”.  
The FREE bit, when set, will allow a program memory  
erase operation. When the FREE bit is set, the erase  
operation is initiated on the next WR command. When  
FREE is clear, only writes are enabled.  
5.2  
Control Registers  
Several control registers are used in conjunction with  
the TBLRDand TBLWTinstructions. These include the:  
• EECON1 register  
• EECON2 register  
• TABLAT register  
• TBLPTR registers  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit is  
set when a write operation is interrupted by a MCLR  
Reset or a WDT Time-out Reset during normal opera-  
tion. In these situations, the user can check the  
WRERR bit and rewrite the location. It is necessary to  
reload the data and address registers (EEDATA and  
EEADR) due to Reset values of zero.  
5.2.1  
EECON1 AND EECON2 REGISTERS  
EECON1 is the control register for memory accesses.  
EECON2 is not a physical register. Reading EECON2  
will read all ‘0’s. The EECON2 register is used  
exclusively in the memory write and erase sequences.  
The WR control bit initiates write operations. The bit  
cannot be cleared, only set in software; it is cleared in  
hardware at the completion of the write operation. The  
inability to clear the WR bit in software prevents the  
Control bit EEPGD determines if the access will be a  
program or data EEPROM memory access. When  
clear, any subsequent operations will operate on the  
data EEPROM memory. When set, any subsequent  
operations will operate on the program memory.  
accidental or premature termination of  
operation.  
a write  
Note:  
Interrupt flag bit, EEIF in the PIR2 register,  
is set when the write is complete. It must  
be cleared in software.  
Control bit CFGS determines if the access will be to the  
configuration/calibration registers or to program  
memory/data EEPROM memory. When set, subse-  
quent operations will operate on configuration registers  
regardless of EEPGD (see Section 24.0 “Special  
Features of the CPU”). When clear, memory selection  
access is determined by EEPGD.  
DS30491C-page 84  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 5-1:  
EECON1 REGISTER (ADDRESS FA6h)  
R/W-x  
R/W-x  
CFGS  
U-0  
R/W-0  
FREE  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
EEPGD  
WRERR  
bit 7  
bit 0  
bit 7  
bit 6  
EEPGD: Flash Program or Data EEPROM Memory Select bit  
1= Access Flash program memory  
0= Access data EEPROM memory  
CFGS: Flash Program/Data EEPROM or Configuration Select bit  
1= Access configuration registers  
0= Access Flash program or data EEPROM memory  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
FREE: Flash Row Erase Enable bit  
1= Erase the program memory row addressed by TBLPTR on the next WR command  
(cleared by completion of erase operation)  
0= Perform write only  
bit 3  
WRERR: Flash Program/Data EEPROM Error Flag bit  
1= A write operation is prematurely terminated  
(any Reset during self-timed programming in normal operation)  
0= The write operation completed  
Note:  
When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows  
tracing of the error condition.  
bit 2  
bit 1  
WREN: Flash Program/Data EEPROM Write Enable bit  
1= Allows write cycles  
0= Inhibits write to the EEPROM  
WR: Write Control bit  
1= Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write  
cycle. (The operation is self-timed and the bit is cleared by hardware once write is  
complete. The WR bit can only be set (not cleared) in software.)  
0= Write cycle to the EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read. (Read takes one cycle. RD is cleared in hardware. The RD bit  
can only be set (not cleared) in software. RD bit cannot be set when EEPGD = 1.)  
0= Does not initiate an EEPROM read  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
S = Settable bit  
- n = Value after erase  
x = Bit is unknown  
‘0’ = Bit is cleared  
2004 Microchip Technology Inc.  
DS30491C-page 85  
PIC18F6585/8585/6680/8680  
5.2.2  
TABLAT – TABLE LATCH REGISTER  
5.2.4  
TABLE POINTER BOUNDARIES  
The Table Latch (TABLAT) is an 8-bit register mapped  
into the SFR space. The Table Latch is used to hold 8-  
bit data during data transfers between program  
memory and data RAM.  
TBLPTR is used in reads, writes and erases of the  
Flash program memory.  
When a TBLRD is executed, all 22 bits of the table  
pointer determine which byte is read from program  
memory into TABLAT.  
5.2.3  
TBLPTR – TABLE POINTER  
REGISTER  
When a TBLWTis executed, the three LSbs of the Table  
Pointer (TBLPTR<2:0>) determine which of the eight  
program memory holding registers is written to. When  
the timed write to program memory (long write) begins,  
the 19 MSbs of the Table Pointer (TBLPTR<21:3>) will  
determine which program memory block of 8 bytes is  
written to. For more detail, see Section 5.5 “Writing to  
Flash Program Memory”.  
The Table Pointer (TBLPTR) addresses a byte within  
the program memory. The TBLPTR is comprised of  
three SFR registers: Table Pointer Upper Byte, Table  
Pointer High Byte and Table Pointer Low Byte  
(TBLPTRU:TBLPTRH:TBLPTRL). These three regis-  
ters join to form a 22-bit wide pointer. The low-order  
21 bits allow the device to address up to 2 Mbytes of  
program memory space. The 22nd bit allows access to  
the device ID, the user ID and the configuration bits.  
When an erase of program memory is executed, the  
16 MSbs of the Table Pointer (TBLPTR<21:6>) point to  
the 64-byte block that will be erased. The Least  
Significant bits (TBLPTR<5:0>) are ignored.  
The Table Pointer, TBLPTR, is used by the TBLRDand  
TBLWTinstructions. These instructions can update the  
TBLPTR in one of four ways based on the table opera-  
tion. These operations are shown in Table 5-1. These  
operations on the TBLPTR only affect the low-order  
21 bits.  
Figure 5-3 describes the relevant boundaries of  
TBLPTR based on Flash program memory operations.  
TABLE 5-1:  
Example  
TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS  
Operation on Table Pointer  
TBLRD*  
TBLWT*  
TBLPTR is not modified  
TBLRD*+  
TBLWT*+  
TBLPTR is incremented after the read/write  
TBLPTR is decremented after the read/write  
TBLPTR is incremented before the read/write  
TBLRD*-  
TBLWT*-  
TBLRD+*  
TBLWT+*  
FIGURE 5-3:  
TABLE POINTER BOUNDARIES BASED ON OPERATION  
21  
16 15  
TBLPTRH  
8
7
TBLPTRL  
0
TBLPTRU  
ERASE – TBLPTR<20:6>  
WRITE – TBLPTR<21:3>  
READ – TBLPTR<21:0>  
DS30491C-page 86  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TBLPTR points to a byte address in program space.  
Executing TBLRD places the byte pointed to into  
TABLAT. In addition, TBLPTR can be modified  
5.3  
Reading the Flash Program  
Memory  
The TBLRD instruction is used to retrieve data from  
program memory and places it into data RAM. Table  
reads from program memory are performed one byte at  
a time.  
automatically for the next table read operation.  
The internal program memory is typically organized by  
words. The Least Significant bit of the address selects  
between the high and low bytes of the word. Figure 5-4  
shows the interface between the internal program  
memory and the TABLAT.  
FIGURE 5-4:  
READS FROM FLASH PROGRAM MEMORY  
Program Memory  
(Even Byte Address)  
(Odd Byte Address)  
TBLPTR = xxxxx1  
TBLPTR = xxxxx0  
Instruction Register  
(IR)  
TABLAT  
Read Register  
FETCH  
TBLRD  
EXAMPLE 5-1:  
READING A FLASH PROGRAM MEMORY WORD  
MOVLW  
upper(CODE_ADDR)  
TBLPTRU  
high(CODE_ADDR)  
TBLPTRH  
low(CODE_ADDR_LOW)  
TBLPTRL  
; Load TBLPTR with the base  
; address of the word  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
READ_WORD  
TBLRD*+  
MOVF  
MOVWF  
TBLRD*+  
MOVF  
; read into TABLAT and increment  
; get data  
TABLAT, W  
LSB  
; read into TABLAT and increment  
; get data  
TABLAT, W  
MSB  
MOVWF  
2004 Microchip Technology Inc.  
DS30491C-page 87  
PIC18F6585/8585/6680/8680  
5.4.1  
FLASH PROGRAM MEMORY  
ERASE SEQUENCE  
5.4  
Erasing Flash Program Memory  
The minimum erase block is 32 words or 64 bytes. Only  
through the use of an external programmer or through  
ICSP control can larger blocks of program memory be  
bulk erased. Word erase in the Flash array is not  
supported.  
The sequence of events for erasing a block of internal  
program memory location is:  
1. Load table pointer with address of row being  
erased.  
When initiating an erase sequence from the micro-  
controller itself, a block of 64 bytes of program memory  
is erased. The Most Significant 16 bits of the  
TBLPTR<21:6> point to the block being erased.  
TBLPTR<5:0> are ignored.  
2. Set the EECON1 register for the erase  
operation:  
• set EEPGD bit to point to program memory;  
• clear the CFGS bit to access program memory;  
• set WREN bit to enable writes;  
• set FREE bit to enable the erase.  
3. Disable interrupts.  
The EECON1 register commands the erase operation.  
The EEPGD bit must be set to point to the Flash  
program memory. The WREN bit must be set to enable  
write operations. The FREE bit is set to select an erase  
operation.  
4. Write 55h to EECON2.  
5. Write 0AAh to EECON2.  
6. Set the WR bit. This will begin the row erase  
cycle.  
For protection, the write initiate sequence for EECON2  
must be used.  
7. The CPU will stall for duration of the erase  
(about 2 ms using internal timer).  
A long write is necessary for erasing the internal Flash.  
Instruction execution is halted while in a long write  
cycle. The long write will be terminated by the internal  
programming timer.  
8. Execute a NOP.  
9. Re-enable interrupts.  
EXAMPLE 5-2:  
ERASING A FLASH PROGRAM MEMORY ROW  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
upper(CODE_ADDR)  
TBLPTRU  
high(CODE_ADDR)  
TBLPTRH  
low(CODE_ADDR)  
TBLPTRL  
; load TBLPTR with the base  
; address of the memory block  
ERASE_ROW  
BSF  
BCF  
BSF  
BSF  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, WREN  
EECON1, FREE  
INTCON, GIE  
55h  
EECON2  
0AAh  
EECON2  
EECON1, WR  
; point to Flash program memory  
; access Flash program memory  
; enable write to memory  
; enable Row Erase operation  
; disable interrupts  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
; write 55h  
Required  
Sequence  
; write 0AAh  
; start erase (CPU stall)  
NOP  
BSF  
INTCON, GIE  
; re-enable interrupts  
DS30491C-page 88  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
the holding registers are written. At the end of updating  
eight registers, the EECON1 register must be written  
to, to start the programming operation with a long write.  
5.5  
Writing to Flash Program Memory  
The minimum programming block is 4 words or 8 bytes.  
Word or byte programming is not supported.  
The long write is necessary for programming the inter-  
nal Flash. Instruction execution is halted while in a long  
write cycle. The long write will be terminated by the  
internal programming timer.  
Table writes are used internally to load the holding  
registers needed to program the Flash memory. There  
are eight holding registers used by the table writes for  
programming.  
The EEPROM on-chip timer controls the write time.  
The write/erase voltages are generated by an on-chip  
charge pump, rated to operate over the voltage range  
of the device for byte or word operations.  
Since the Table Latch (TABLAT) is only a single byte,  
the TBLWT instruction has to be executed 8 times for  
each programming operation. All of the table write  
operations will essentially be short writes because only  
FIGURE 5-5:  
TABLE WRITES TO FLASH PROGRAM MEMORY  
TABLAT  
Write Register  
8
8
8
8
TBLPTR = xxxxx0  
TBLPTR = xxxxx2  
TBLPTR = xxxxx7  
TBLPTR = xxxxx1  
Holding Register  
Holding Register  
Holding Register  
Holding Register  
Program Memory  
2004 Microchip Technology Inc.  
DS30491C-page 89  
PIC18F6585/8585/6680/8680  
8. Disable interrupts.  
5.5.1  
FLASH PROGRAM MEMORY WRITE  
SEQUENCE  
9. Write 55h to EECON2.  
10. Write 0AAh to EECON2.  
The sequence of events for programming an internal  
program memory location should be:  
11. Set the WR bit. This will begin the write cycle.  
12. The CPU will stall for duration of the write (about  
5 ms using internal timer).  
1. Read 64 bytes into RAM.  
2. Update data values in RAM as necessary.  
3. Load table pointer with address being erased.  
4. Do the row erase procedure.  
13. Execute a NOP.  
14. Re-enable interrupts.  
15. Repeat steps 6-14 seven times to write 64 bytes.  
16. Verify the memory (table read).  
5. Load table pointer with address of first byte  
being written.  
6. Write the first 8 bytes into the holding registers  
with auto-increment.  
This procedure will require about 40 ms to update one  
row of 64 bytes of memory. An example of the required  
code is given in Example 5-3.  
7. Set the EECON1 register for the write operation:  
• set EEPGD bit to point to program memory;  
• clear the CFGS bit to access program memory;  
• set WREN to enable byte writes.  
Note:  
Before setting the WR bit, the Table  
Pointer address needs to be within the  
intended address range of the eight bytes  
in the holding register.  
EXAMPLE 5-3:  
WRITING TO FLASH PROGRAM MEMORY  
MOVLW  
D’64  
; number of bytes in erase block  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
COUNTER  
high(BUFFER_ADDR)  
FSR0H  
low(BUFFER_ADDR)  
FSR0L  
upper(CODE_ADDR)  
TBLPTRU  
high(CODE_ADDR)  
TBLPTRH  
low(CODE_ADDR)  
TBLPTRL  
; point to buffer  
; Load TBLPTR with the base  
; address of the memory block  
READ_BLOCK  
TBLRD*+  
MOVF  
MOVWF  
DECFSZ  
BRA  
; read into TABLAT, and inc  
; get data  
; store data  
; done?  
TABLAT, W  
POSTINC0  
COUNTER  
READ_BLOCK  
; repeat  
MODIFY_WORD  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
high(DATA_ADDR)  
FSR0H  
low(DATA_ADDR)  
FSR0L  
low(NEW_DATA)  
POSTINC0  
high(NEW_DATA)  
INDF0  
; point to buffer  
; update buffer word  
DS30491C-page 90  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
EXAMPLE 5-3:  
WRITING TO FLASH PROGRAM MEMORY (CONTINUED)  
ERASE_BLOCK  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
BCF  
BSF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
upper(CODE_ADDR)  
TBLPTRU  
high(CODE_ADDR)  
TBLPTRH  
low(CODE_ADDR)  
TBLPTRL  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, WREN  
EECON1, FREE  
INTCON, GIE  
55h  
; load TBLPTR with the base  
; address of the memory block  
; point to Flash program memory  
; access Flash program memory  
; enable write to memory  
; enable Row Erase operation  
; disable interrupts  
EECON2  
0AAh  
EECON2  
EECON1, WR  
; write 55H  
Required  
Sequence  
; write AAH  
; start erase (CPU stall)  
NOP  
BSF  
TBLRD*-  
INTCON, GIE  
; re-enable interrupts  
; dummy read decrement  
WRITE_BUFFER_BACK  
MOVLW  
8
; number of write buffer groups of 8 bytes  
; point to buffer  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
COUNTER_HI  
high(BUFFER_ADDR)  
FSR0H  
low(BUFFER_ADDR)  
FSR0L  
PROGRAM_LOOP  
MOVLW  
MOVWF  
8
; number of bytes in holding register  
COUNTER  
WRITE_WORD_TO_HREGS  
MOVFW  
MOVWF  
TBLWT+*  
POSTINC0, W  
TABLAT  
; get low byte of buffer data  
; present data to table latch  
; write data, perform a short write  
; to internal TBLWT holding register.  
; loop until buffers are full  
DECFSZ  
BRA  
COUNTER  
WRITE_WORD_TO_HREGS  
PROGRAM_MEMORY  
BSF  
BCF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, WREN  
INTCON, GIE  
55h  
EECON2  
0AAh  
EECON2  
EECON1, WR  
; point to Flash program memory  
; access Flash program memory  
; enable write to memory  
; disable interrupts  
; write 55h  
Required  
Sequence  
; write 0AAh  
; start program (CPU stall)  
NOP  
BSF  
DECFSZ  
BRA  
INTCON, GIE  
COUNTER_HI  
PROGRAM_LOOP  
EECON1, WREN  
; re-enable interrupts  
; loop until done  
BCF  
; disable write to memory  
2004 Microchip Technology Inc.  
DS30491C-page 91  
PIC18F6585/8585/6680/8680  
5.5.2  
WRITE VERIFY  
5.5.4  
PROTECTION AGAINST SPURIOUS  
WRITES  
Depending on the application, good programming  
practice may dictate that the value written to the mem-  
ory should be verified against the original value. This  
should be used in applications where excessive writes  
can stress bits near the specification limit.  
To protect against spurious writes to Flash program  
memory, the write initiate sequence must also be  
followed. See Section 24.0 “Special Features of the  
CPU” for more detail.  
5.5.3  
UNEXPECTED TERMINATION OF  
WRITE OPERATION  
5.6  
Flash Program Operation During  
Code Protection  
If a write is terminated by an unplanned event, such as  
loss of power or an unexpected Reset, the memory  
location just programmed should be verified and repro-  
grammed if needed. The WRERR bit is set when a  
write operation is interrupted by a MCLR Reset or a  
WDT Time-out Reset during normal operation. In these  
situations, users can check the WRERR bit and rewrite  
the location.  
See Section 24.0 “Special Features of the CPU” for  
details on code protection of Flash program memory.  
TABLE 5-2:  
Name  
REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY  
Value on  
Value on:  
POR, BOR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
TBLPTRU  
bit 21 Program Memory Table Pointer Upper Byte  
(TBLPTR<20:16>)  
--00 0000 --00 0000  
TBPLTRH Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
TBLPTRL Program Memory Table Pointer High Byte (TBLPTR<7:0>)  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
TABLAT  
INTCON  
EECON2  
EECON1  
IPR2  
Program Memory Table Latch  
GIE/GIEH PEIE/GIEL TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
RD  
EEPROM Control Register 2 (not a physical register)  
EEPGD  
CFGS  
CMIP  
CMIF  
CMIE  
FREE  
EEIP  
EEIF  
EEIE  
WRERR WREN  
WR  
xx-0 x000 uu-0 u000  
BCLIP  
BCLIF  
BCLIE  
LVDIP  
LVDIF  
LVDIE  
TMR3IP  
TMR3IF  
TMR3IE  
CCP2IP -1-1 1111 -1-1 1111  
CCP2IF -0-0 0000 -0-0 0000  
CCP2IE -0-0 0000 -0-0 0000  
PIR2  
PIE2  
Legend:  
x= unknown, u= unchanged, r= reserved, – = unimplemented, read as ‘0’.  
Shaded cells are not used during Flash/EEPROM access.  
DS30491C-page 92  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
6.1  
Program Memory Modes and the  
External Memory Interface  
6.0  
EXTERNAL MEMORY  
INTERFACE  
As previously noted, PIC18F8X8X controllers are  
capable of operating in any one of four program mem-  
ory modes using combinations of on-chip and external  
program memory. The functions of the multiplexed port  
pins depend on the program memory mode selected as  
well as the setting of the EBDIS bit.  
Note:  
The external memory interface is not  
implemented on PIC18F6X8X (64/68-pin)  
devices.  
The external memory interface is a feature of the  
PIC18F8X8X devices that allows the controller to  
access external memory devices (such as Flash,  
EPROM, SRAM, etc.) as program memory.  
In Microprocessor Mode, the external bus is always  
active and the port pins have only the external bus  
function.  
The physical implementation of the interface uses  
27 pins. These pins are reserved for external address/  
data bus functions; they are multiplexed with I/O port  
pins on four ports. Three I/O ports are multiplexed with  
the address/data bus, while the fourth port is multi-  
plexed with the bus control signals. The I/O port func-  
tions are enabled when the EBDIS bit in the MEMCON  
register is set (see Register 6-1). A list of the  
multiplexed pins and their functions is provided in  
Table 6-1.  
In Microcontroller Mode, the bus is not active and the  
pins have their port functions only. Writes to the  
MEMCOM register are not permitted.  
In Microprocessor with Boot Block or Extended  
Microcontroller Mode, the external program memory  
bus shares I/O port functions on the pins. When the  
device is fetching or doing table read/table write  
operations on the external program memory space, the  
pins will have the external bus function. If the device is  
fetching and accessing internal program memory  
locations only, the EBDIS control bit will change the  
pins from external memory to I/O port functions. When  
EBDIS = 0, the pins function as the external bus. When  
EBDIS = 1, the pins function as I/O ports.  
As implemented in the PIC18F8X8X devices, the  
interface operates in a similar manner to the external  
memory interface introduced on PIC18C601/801  
microcontrollers. The most notable difference is that  
the interface on PIC18F8X8X devices only operates in  
16-bit modes. The 8-bit mode is not supported.  
For a more complete discussion of the operating modes  
that use the external memory interface, refer to  
Section 4.1.1 “PIC18F8X8X Program Memory  
Modes”.  
2004 Microchip Technology Inc.  
DS30491C-page 93  
PIC18F6585/8585/6680/8680  
REGISTER 6-1:  
MEMCON REGISTER  
R/W-0  
EBDIS(1)  
bit 7  
U-0  
R/W-0  
WAIT1  
R/W-0  
WAIT0  
U-0  
U-0  
R/W-0  
WM1  
R/W-0  
WM0  
bit 0  
bit 7  
EBDIS: External Bus Disable bit(1)  
1= External system bus disabled, all external bus drivers are mapped as I/O ports  
0= External system bus enabled and I/O ports are disabled  
Note 1: This bit is ignored when device is accessing external memory either to fetch an  
instruction or perform TBLRD/TBLWT.  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-4  
WAIT<1:0>: Table Reads and Writes Bus Cycle Wait Count bits  
11= Table reads and writes will wait 0 TCY  
10= Table reads and writes will wait 1 TCY  
01= Table reads and writes will wait 2 TCY  
00= Table reads and writes will wait 3 TCY  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
WM<1:0>: TBLWTOperation with 16-bit Bus bits  
1x= Word Write mode: LSB and MSB word output, WRH active when MSB written  
01= Byte Select mode: TABLAT data copied on both MS and LS Byte, WRH and (UB or LB)  
will activate  
00= Byte Write mode: TABLAT data copied on both MS and LS Byte, WRH or WRL will activate  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
Note:  
The MEMCON register is held in Reset in Microcontroller mode.  
DS30491C-page 94  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
If the device fetches or accesses external memory  
When the device is executing out of internal memory  
(with EBDIS = 0) in Microprocessor with Boot Block  
mode or Extended Microcontroller mode, the control sig-  
nals will be in inactive. They will go to a state where the  
AD<15:0>, A<19:16> are tri-state; the OE, WRH, WRL,  
UB and LB signals are ‘1’; and ALE and BA0 are ‘0’.  
while EBDIS = 1, the pins will switch to external bus. If  
the EBDIS bit is set by a program executing from exter-  
nal memory, the action of setting the bit will be delayed  
until the program branches into the internal memory. At  
that time, the pins will change from external bus to I/O  
ports.  
TABLE 6-1:  
Name  
PIC18F8X8X EXTERNAL BUS – I/O PORT FUNCTIONS  
Port  
Bit  
Function  
RD0/AD0  
RD1/AD1  
RD2/AD2  
RD3/AD3  
RD4/AD4  
RD5/AD5  
RD6/AD6  
RD7/AD7  
RE0/AD8  
RE1/AD9  
RE2/AD10  
RE3/AD11  
RE4/AD12  
RE5/AD13  
RE6/AD14  
RE7/AD15  
RH0/A16  
RH1/A17  
RH2/A18  
RH3/A19  
RJ0/ALE  
RJ1/OE  
PORTD  
PORTD  
PORTD  
PORTD  
PORTD  
PORTD  
PORTD  
PORTD  
PORTE  
PORTE  
PORTE  
PORTE  
PORTE  
PORTE  
PORTE  
PORTE  
PORTH  
PORTH  
PORTH  
PORTH  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
PORTJ  
bit 0 Input/Output or System Bus Address bit 0 or Data bit 0  
bit 1 Input/Output or System Bus Address bit 1 or Data bit 1  
bit 2 Input/Output or System Bus Address bit 2 or Data bit 2  
bit 3 Input/Output or System Bus Address bit 3 or Data bit 3  
bit 4 Input/Output or System Bus Address bit 4 or Data bit 4  
bit 5 Input/Output or System Bus Address bit 5 or Data bit 5  
bit 6 Input/Output or System Bus Address bit 6 or Data bit 6  
bit 7 Input/Output or System Bus Address bit 7 or Data bit 7  
bit 0 Input/Output or System Bus Address bit 8 or Data bit 8  
bit 1 Input/Output or System Bus Address bit 9 or Data bit 9  
bit 2 Input/Output or System Bus Address bit 10 or Data bit 10  
bit 3 Input/Output or System Bus Address bit 11 or Data bit 11  
bit 4 Input/Output or System Bus Address bit 12 or Data bit 12  
bit 5 Input/Output or System Bus Address bit 13 or Data bit 13  
bit 6 Input/Output or System Bus Address bit 14 or Data bit 14  
bit 7 Input/Output or System Bus Address bit 15 or Data bit 15  
bit 0 Input/Output or System Bus Address bit 16  
bit 1 Input/Output or System Bus Address bit 17  
bit 2 Input/Output or System Bus Address bit 18  
bit 3 Input/Output or System Bus Address bit 19  
bit 0 Input/Output or System Bus Address Latch Enable (ALE) Control pin  
bit 1 Input/Output or System Bus Output Enable (OE) Control pin  
bit 2 Input/Output or System Bus Write Low (WRL) Control pin  
bit 3 Input/Output or System Bus Write High (WRH) Control pin  
bit 4 Input/Output or System Bus Byte Address bit 0  
RJ2/WRL  
RJ3/WRH  
RJ4/BA0  
RJ5/CE  
bit 5 Input/Output or Chip Enable  
RJ6/LB  
bit 6 Input/Output or System Bus Lower Byte Enable (LB) Control pin  
bit 7 Input/Output or System Bus Upper Byte Enable (UB) Control pin  
RJ7/UB  
2004 Microchip Technology Inc.  
DS30491C-page 95  
PIC18F6585/8585/6680/8680  
For all 16-bit modes, the Address Latch Enable (ALE)  
pin indicates that the Address bits (A<15:0>) are avail-  
able on the external memory interface bus. Following  
the address latch, the Output Enable signal (OE ) will  
enable both bytes of program memory at once to form  
a 16-bit instruction word.  
6.2  
16-bit Mode  
The external memory interface implemented in  
PIC18F8X8X devices operates only in 16-bit mode.  
The mode selection is not software configurable but is  
programmed via the configuration bits.  
The WM<1:0> bits in the MEMCON register determine  
three types of connections in 16-bit mode. They are  
referred to as:  
In Byte Select mode, JEDEC standard Flash memories  
will require BA0 for the byte address line, and one I/O  
line to select between Byte and Word mode. The other  
16-bit modes do not need BA0. JEDEC standard static  
RAM memories will use the UB or LB signals for byte  
selection.  
• 16-bit Byte Write  
• 16-bit Word Write  
• 16-bit Byte Select  
These three different configurations allow the designer  
maximum flexibility in using 8-bit and 16-bit memory  
devices.  
6.2.1  
16-BIT BYTE WRITE MODE  
Figure 6-1 shows an example of 16-bit Byte Write  
mode for PIC18F8X8X devices.  
FIGURE 6-1:  
16-BIT BYTE WRITE MODE EXAMPLE  
D<7:0>  
(MSB)  
A<x:0>  
(LSB)  
A<x:0>  
PIC18F8X8X  
AD<7:0>  
A<19:0>  
D<15:8>  
373  
373  
D<7:0>  
D<7:0>  
CE  
D<7:0>  
CE  
AD<15:8>  
ALE  
(1)  
(1)  
OE WR  
OE WR  
A<19:16>  
CE  
OE  
WRH  
WRL  
Address Bus  
Data Bus  
Control Lines  
Note 1: This signal only applies to table writes. See Section 5.1 “Table Reads and Table Writes”.  
DS30491C-page 96  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
6.2.2  
16-BIT WORD WRITE MODE  
Figure 6-2 shows an example of 16-bit Word Write  
mode for PIC18F8X8X devices.  
FIGURE 6-2:  
16-BIT WORD WRITE MODE EXAMPLE  
PIC18F8X8X  
AD<7:0>  
A<20:1>  
D<15:0>  
JEDEC Word  
373  
373  
A<x:0>  
EPROM Memory  
D<15:0>  
CE  
(1)  
OE  
WR  
AD<15:8>  
ALE  
A<19:16>  
CE  
OE  
WRH  
Address Bus  
Data Bus  
Control Lines  
Note 1: This signal only applies to table writes. See Section 5.1 “Table Reads and Table Writes”.  
2004 Microchip Technology Inc.  
DS30491C-page 97  
PIC18F6585/8585/6680/8680  
6.2.3  
16-BIT BYTE SELECT MODE  
Figure 6-3 shows an example of 16-bit Byte Select  
mode for PIC18F8X8X devices.  
FIGURE 6-3:  
16-BIT BYTE SELECT MODE EXAMPLE  
PIC18F8X8X  
AD<7:0>  
A<20:1>  
373  
AD<15:8>  
373  
ALE  
A<19:16>  
OE  
A<20:1>  
A<x:1>  
OE  
(1)  
WRH  
WR  
WRL  
BA0  
JEDEC Word  
A0  
SRAM Memory  
CE  
CE  
LB  
UB  
D<15:0>  
LB  
D<15:0>  
UB  
Address Bus  
Data Bus  
Control Lines  
Note 1: This signal only applies to table writes. See Section 5.1 “Table Reads and Table Writes”.  
DS30491C-page 98  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
6.2.4  
16-BIT MODE TIMING  
Figure 6-4 shows the 16-bit mode external bus timing  
for PIC18F8X8X devices.  
FIGURE 6-4:  
EXTERNAL PROGRAM MEMORY BUS TIMING (16-BIT MODE)  
Q1  
Q1  
Q2  
Q2  
Q3  
Q3  
Q4  
Q4  
Q1  
Q1  
Q2  
Q2  
Q3  
Q3  
Q4  
Q4  
Q4  
Q1  
Q4  
Q2  
Q4  
Q3  
Q4  
Q4  
Apparent Q  
Actual Q  
A<19:16>  
0h  
Ch  
3AABh  
CF33h  
0E55h  
9256h  
AD<15:0>  
BA0  
ALE  
OE  
WRH  
WRL  
1’  
1’  
1’  
1’  
1 TCY Wait  
Opcode Fetch  
Table Read  
of 92h  
MOVLW55h  
from 007556h  
from 199E67h  
2004 Microchip Technology Inc.  
DS30491C-page 99  
PIC18F6585/8585/6680/8680  
NOTES:  
DS30491C-page 100  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
7.1  
EEADRH:EEADR  
7.0  
DATA EEPROM MEMORY  
The address register pair, EEADRH:EEADR, can  
address up to a maximum of 1024 bytes of data  
EEPROM.  
The data EEPROM is readable and writable during nor-  
mal operation over the entire VDD range. The data  
memory is not directly mapped in the register file  
space. Instead, it is indirectly addressed through the  
Special Function Registers (SFR).  
7.2  
EECON1 and EECON2 Registers  
There are five SFRs used to read and write the  
program and data EEPROM memory. These registers  
are:  
EECON1 is the control register for EEPROM memory  
accesses.  
EECON2 is not a physical register. Reading EECON2  
will read all ‘0’s. The EECON2 register is used  
exclusively in the EEPROM write sequence.  
• EECON1  
• EECON2  
• EEDATA  
• EEADR  
Control bits RD and WR initiate read and write opera-  
tions, respectively. These bits cannot be cleared, only  
set in software. They are cleared in hardware at the  
completion of the read or write operation. The inability  
to clear the WR bit in software prevents the accidental  
or premature termination of a write operation.  
• EEADRH  
The EEPROM data memory allows byte read and write.  
When interfacing to the data memory block, EEDATA  
holds the 8-bit data for read/write and EEADR holds the  
address of the EEPROM location being accessed.  
These devices have 1024 bytes of data EEPROM with  
an address range from 0h to 3FFh.  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit is  
set when a write operation is interrupted by a MCLR  
Reset or a WDT Time-out Reset during normal opera-  
tion. In these situations, the user can check the  
WRERR bit and rewrite the location. It is necessary to  
reload the data and address registers (EEDATA and  
EEADR) due to the Reset condition forcing the  
contents of the registers to zero.  
The EEPROM data memory is rated for high erase/  
write cycles. A byte write automatically erases the loca-  
tion and writes the new data (erase-before-write). The  
write time is controlled by an on-chip timer. The write  
time will vary with voltage and temperature as well as  
from chip to chip. Please refer to parameter D122  
(Electrical Characteristics, Section 27.0 “Electrical  
Characteristics”) for exact limits.  
Note:  
Interrupt flag bit, EEIF in the PIR2 register,  
is set when write is complete. It must be  
cleared in software.  
2004 Microchip Technology Inc.  
DS30491C-page 101  
PIC18F6585/8585/6680/8680  
REGISTER 7-1:  
EECON1 REGISTER (ADDRESS FA6h)  
R/W-x  
R/W-x  
CFGS  
U-0  
R/W-0  
FREE  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
EEPGD  
WRERR  
bit 7  
bit 0  
bit 7  
bit 6  
EEPGD: Flash Program or Data EEPROM Memory Select bit  
1= Access Flash program memory  
0= Access data EEPROM memory  
CFGS: Flash Program/Data EE or Configuration Select bit  
1= Access configuration or calibration registers  
0= Access Flash program or data EEPROM memory  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
FREE: Flash Row Erase Enable bit  
1= Erase the program memory row addressed by TBLPTR on the next WR command  
(cleared by completion of erase operation)  
0= Perform write only  
bit 3  
WRERR: Flash Program/Data EE Error Flag bit  
1= A write operation is prematurely terminated (any MCLR or any WDT Reset during self-timed  
programming in normal operation)  
0= The write operation completed  
Note:  
When a WRERR occurs, the EEPGD or FREE bits are not cleared. This allows  
tracing of the error condition.  
bit 2  
bit 1  
WREN: Flash Program/Data EE Write Enable bit  
1= Allows write cycles  
0= Inhibits write to the EEPROM  
WR: Write Control bit  
1= Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle.  
(The operation is self-timed and the bit is cleared by hardware once write is complete. The  
WR bit can only be set (not cleared) in software.)  
0= Write cycle to the EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read. (Read takes one cycle. RD is cleared in hardware. The RD bit  
can only be set (not cleared) in software. RD bit cannot be set when EEPGD = 1.)  
0= Does not initiate an EEPROM read  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
S = Settable bit  
- n = Value after erase  
x = Bit is unknown  
‘0’ = Bit is cleared  
DS30491C-page 102  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
(EECON1<6>) and then set control bit, RD  
(EECON1<0>). The data is available for the very next  
instruction cycle; therefore, the EEDATA register can  
7.3  
Reading the Data EEPROM  
Memory  
To read a data memory location, the user must write the  
address to the EEADR register, clear the EEPGD con-  
trol bit (EECON1<7>), clear the CFGS control bit  
be read by the next instruction. EEDATA will hold this  
value until another read operation or until it is written to  
by the user (during a write operation).  
EXAMPLE 7-1:  
DATA EEPROM READ  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BCF  
BCF  
BSF  
MOVF  
DATA_EE_ADR_HI  
EEADRH  
DATA_EE_ADDR_LOW  
EEADR  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, RD  
EEDATA, W  
;
;
;
; Data Memory Address to read  
; Point to DATA memory  
; Access program Flash or Data EEPROM memory  
; EEPROM Read  
; W = EEDATA  
cution (i.e., runaway programs). The WREN bit should  
be kept clear at all times except when updating the  
EEPROM. The WREN bit is not cleared by hardware.  
7.4  
Writing to the Data EEPROM  
Memory  
To write an EEPROM data location, the address must  
first be written to the EEADRH:EEADR register pair  
and the data written to the EEDATA register. Then the  
sequence in Example 7-2 must be followed to initiate  
the write cycle.  
After a write sequence has been initiated, EECON1,  
EEADRH:EEADR and EDATA cannot be modified. The  
WR bit will be inhibited from being set unless the  
WREN bit is set. The WREN bit must be set on a pre-  
vious instruction. Both WR and WREN cannot be set  
with the same instruction.  
The write will not initiate if the above sequence is not  
exactly followed (write 55h to EECON2, write 0AAh to  
EECON2, then set WR bit) for each byte. It is strongly  
recommended that interrupts be disabled during this  
code segment.  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EEPROM Write Complete  
Interrupt Flag bit (EEIF) is set. The user may either  
enable this interrupt or poll this bit. EEIF must be  
cleared by software.  
Additionally, the WREN bit in EECON1 must be set to  
enable writes. This mechanism prevents accidental  
writes to data EEPROM due to unexpected code exe-  
EXAMPLE 7-2:  
DATA EEPROM WRITE  
MOVLW  
DATA_EE_ADDR_HI  
EEADRH  
DATA_EE_ADDR_LOW  
EEADR  
DATA_EE_DATA  
EEDATA  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, WREN  
;
;
;
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BCF  
; Data Memory Address to read  
;
; Data Memory Value to write  
; Point to DATA memory  
; Access program Flash or Data EEPROM memory  
; Enable writes  
BCF  
BSF  
BCF  
INTCON, GIE  
55h  
EECON2  
0AAh  
EECON2  
; Disable interrupts  
;
; Write 55h  
;
; Write 0AAh  
; Set WR bit to begin write  
; Enable interrupts  
Required  
Sequence  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
EECON1, WR  
INTCON, GIE  
BSF  
.
; user code execution  
.
.
BCF  
EECON1, WREN  
; Disable writes on write complete (EEIF set)  
2004 Microchip Technology Inc.  
DS30491C-page 103  
PIC18F6585/8585/6680/8680  
7.5  
Write Verify  
7.7  
Operation During Code-Protect  
Depending on the application, good programming  
practice may dictate that the value written to the mem-  
ory should be verified against the original value. This  
should be used in applications where excessive writes  
can stress bits near the specification limit.  
Data EEPROM memory has its own code-protect  
mechanism. External read and write operations are  
disabled if either of these mechanisms are enabled.  
The microcontroller itself can both read and write to the  
internal data EEPROM regardless of the state of the  
code-protect configuration bit. Refer to Section 24.0  
“Special Features of the CPU” for additional  
information.  
7.6  
Protection Against Spurious Write  
There are conditions when the device may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built-in. On power-up, the WREN bit is cleared.  
Also, the Power-up Timer (72 ms duration) prevents  
EEPROM write.  
7.8  
Using the Data EEPROM  
The data EEPROM is a high endurance, byte address-  
able array that has been optimized for the storage of  
frequently changing information (e.g., program vari-  
ables or other data that are updated often). Frequently  
changing values will typically be updated more often  
than specification D124. If this is not the case, an array  
refresh must be performed. For this reason, variables  
that change infrequently (such as constants, IDs,  
calibration, etc.) should be stored in Flash program  
memory.  
The write initiate sequence and the WREN bit together  
help prevent an accidental write during brown-out,  
power glitch, or software malfunction.  
A simple data EEPROM refresh routine is shown in  
Example 7-3.  
Note:  
If data EEPROM is only used to store con-  
stants and/or data that changes rarely, an  
array refresh is likely not required. See  
specification D124.  
EXAMPLE 7-3:  
DATA EEPROM REFRESH ROUTINE  
CLRF  
CLRF  
BCF  
BCF  
BCF  
EEADRH  
EEADR  
EECON1, CFGS  
EECON1, EEPGD  
INTCON, GIE  
EECON1, WREN  
;
; Start at address 0  
; Set for memory  
; Set for Data EEPROM  
; Disable interrupts  
; Enable writes  
; Loop to refresh array  
; Read current address  
;
; Write 55h  
;
; Write 0AAh  
; Set WR bit to begin write  
; Wait for write to complete  
BSF  
Loop  
BSF  
EECON1, RD  
55h  
EECON2  
0AAh  
EECON2  
EECON1, WR  
EECON1, WR  
$-2  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
BTFSC  
BRA  
INCFSZ  
BRA  
EEADR, F  
Loop  
; Increment address  
; Not zero, do it again  
INCFS2  
BRA  
EEADRH, F  
Loop  
;
;
BCF  
BSF  
EECON1, WREN  
INTCON, GIE  
; Disable writes  
; Enable interrupts  
DS30491C-page 104  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 7-1:  
Name  
REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
EEADRH  
GIE/  
GIEH  
PEIE/  
GIEL  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF 0000 000x 0000 000u  
EE Addr High  
---- --00 ---- --00  
0000 0000 0000 0000  
0000 0000 0000 0000  
EEADR EEPROM Address Register  
EEDATA EEPROM Data Register  
EECON2 EEPROM Control Register 2 (not a physical register)  
EECON1 EEPGD CFGS  
FREE WRERR WREN  
WR  
RD  
xx-0 x000 uu-0 u000  
IPR2  
PIR2  
PIE2  
CMIP  
CMIF  
CMIE  
EEIP  
EEIF  
EEIE  
BCLIP  
BCLIF  
BCLIE  
LVDIP TMR3IP CCP2IP -1-1 1111 ---1 1111  
LVDIF TMR3IF CCP2IF -0-0 0000 ---0 0000  
LVDIE TMR3IE CCP2IE -0-0 0000 ---0 0000  
Legend: x= unknown, u= unchanged, r= reserved, = unimplemented, read as ‘0’.  
Shaded cells are not used during Flash/EEPROM access.  
2004 Microchip Technology Inc.  
DS30491C-page 105  
PIC18F6585/8585/6680/8680  
NOTES:  
DS30491C-page 106  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
8.2  
Operation  
8.0  
8.1  
8 x 8 HARDWARE MULTIPLIER  
Introduction  
Example 8-1 shows the sequence to do an 8 x 8  
unsigned multiply. Only one instruction is required  
when one argument of the multiply is already loaded in  
the WREG register.  
An 8 x 8 hardware multiplier is included in the ALU of  
the PIC18F6585/8585/6680/8680 devices. By making  
the multiply a hardware operation, it completes in a sin-  
gle instruction cycle. This is an unsigned multiply that  
gives a 16-bit result. The result is stored in the 16-bit  
product register pair (PRODH:PRODL). The multiplier  
does not affect any flags in the ALUSTA register.  
Example 8-2 shows the sequence to do an 8 x 8 signed  
multiply. To account for the sign bits of the arguments,  
each argument’s Most Significant bit (MSb) is tested  
and the appropriate subtractions are done.  
EXAMPLE 8-1:  
8 x 8 UNSIGNED  
MULTIPLY ROUTINE  
Making the 8 x 8 multiplier execute in a single cycle  
gives the following advantages:  
MOVF  
MULWF  
ARG1, W  
ARG2  
;
• Higher computational throughput  
; ARG1 * ARG2 ->  
; PRODH:PRODL  
• Reduces code size requirements for multiply  
algorithms  
The performance increase allows the device to be used  
in applications previously reserved for Digital Signal  
Processors.  
EXAMPLE 8-2:  
8 x 8 SIGNED MULTIPLY  
ROUTINE  
Table 8-1 shows a performance comparison between  
enhanced devices using the single-cycle hardware  
multiply and performing the same function without the  
hardware multiply.  
MOVF  
MULWF  
ARG1, W  
ARG2  
;
; ARG1 * ARG2 ->  
; PRODH:PRODL  
; Test Sign Bit  
; PRODH = PRODH  
BTFSC  
SUBWF  
ARG2, SB  
PRODH  
;
;
- ARG1  
MOVF  
BTFSC  
SUBWF  
ARG2, W  
ARG1, SB  
PRODH  
; Test Sign Bit  
; PRODH = PRODH  
;
- ARG2  
TABLE 8-1:  
Routine  
PERFORMANCE COMPARISON  
Program  
Time  
@ 40 MHz @ 10 MHz @ 4 MHz  
Cycles  
(Max)  
Multiply Method  
Memory  
(Words)  
Without hardware multiply  
Hardware multiply  
13  
1
69  
1
6.9 µs  
100 ns  
9.1 µs  
600 ns  
24.2 µs  
2.4 µs  
25.4 µs  
3.6 µs  
27.6 µs  
400 ns  
36.4 µs  
2.4 µs  
96.8 µs  
9.6 µs  
69 µs  
1 µs  
8 x 8 unsigned  
8 x 8 signed  
Without hardware multiply  
Hardware multiply  
33  
6
91  
6
91 µs  
6 µs  
242 µs  
24 µs  
254 µs  
36 µs  
Without hardware multiply  
Hardware multiply  
21  
24  
52  
36  
242  
24  
254  
36  
16 x 16 unsigned  
16 x 16 signed  
Without hardware multiply  
Hardware multiply  
102.6 µs  
14.4 µs  
2004 Microchip Technology Inc.  
DS30491C-page 107  
PIC18F6585/8585/6680/8680  
Example 8-3 shows the sequence to do a 16 x 16  
unsigned multiply. Equation 8-1 shows the algorithm  
that is used. The 32-bit result is stored in four registers,  
RES3:RES0.  
EQUATION 8-2:  
16 x 16 SIGNED  
MULTIPLICATION  
ALGORITHM  
RES3:RES0  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
(ARG1H ARG2H 216) +  
EQUATION 8-1:  
16 x 16 UNSIGNED  
MULTIPLICATION  
ALGORITHM  
(ARG1H ARG2L 28) +  
(ARG1L ARG2H 28) +  
(ARG1L ARG2L) +  
(-1 ARG2H<7> ARG1H:ARG1L 216) +  
(-1 ARG1H<7> ARG2H:ARG2L 216)  
RES3:RES0  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
(ARG1H ARG2H 216) +  
(ARG1H ARG2L 28) +  
(ARG1L ARG2H 28) +  
(ARG1L ARG2L)  
EXAMPLE 8-4:  
16 x 16 SIGNED  
MULTIPLY ROUTINE  
MOVF  
MULWF  
ARG1L, W  
ARG2L  
EXAMPLE 8-3:  
16 x 16 UNSIGNED  
MULTIPLY ROUTINE  
; ARG1L * ARG2L ->  
; PRODH:PRODL  
MOVF  
MULWF  
ARG1L, W  
ARG2L  
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
;
;
; ARG1L * ARG2L ->  
; PRODH:PRODL  
;
;
;
;
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
MOVF  
MULWF  
ARG1H, W  
ARG2H  
; ARG1H * ARG2H ->  
;
;
; PRODH:PRODL  
;
;
MOVF  
MULWF  
ARG1H, W  
ARG2H  
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
; ARG1H * ARG2H ->  
; PRODH:PRODL  
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
;
;
MOVF  
MULWF  
ARG1L, W  
ARG2H  
; ARG1L * ARG2H ->  
; PRODH:PRODL  
MOVF  
MULWF  
ARG1L, W  
ARG2H  
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1  
PRODH, W  
;
; ARG1L * ARG2H ->  
; PRODH:PRODL  
; Add cross  
; products  
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1  
PRODH, W  
;
ADDWFC RES2  
CLRF WREG  
ADDWFC RES3  
;
;
;
; Add cross  
; products  
ADDWFC RES2  
CLRF WREG  
ADDWFC RES3  
;
;
;
;
MOVF  
MULWF  
ARG1H, W  
ARG2L  
;
; ARG1H * ARG2L ->  
;
; PRODH:PRODL  
MOVF  
MULWF  
ARG1H, W  
ARG2L  
;
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1  
PRODH, W  
;
; ARG1H * ARG2L ->  
; PRODH:PRODL  
; Add cross  
; products  
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1  
PRODH, W  
;
ADDWFC RES2  
CLRF WREG  
ADDWFC RES3  
;
;
;
; Add cross  
; products  
ADDWFC RES2  
CLRF WREG  
ADDWFC RES3  
;
;
;
;
;
BTFSS  
BRA  
MOVF  
SUBWF  
MOVF  
ARG2H, 7  
; ARG2H:ARG2L neg?  
; no, check ARG1  
;
;
;
SIGN_ARG1  
ARG1L, W  
RES2  
Example 8-4 shows the sequence to do a 16 x 16  
signed multiply. Equation 8-2 shows the algorithm  
used. The 32-bit result is stored in four registers,  
RES3:RES0. To account for the sign bits of the argu-  
ments, each argument pairs’ Most Significant bit (MSb)  
is tested and the appropriate subtractions are done.  
ARG1H, W  
SUBWFB RES3  
SIGN_ARG1  
BTFSS  
BRA  
ARG1H, 7  
CONT_CODE  
ARG2L, W  
RES2  
; ARG1H:ARG1L neg?  
; no, done  
;
;
;
MOVF  
SUBWF  
MOVF  
ARG2H, W  
SUBWFB RES3  
;
CONT_CODE  
:
DS30491C-page 108  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
When the IPEN bit is cleared (default state), the  
interrupt priority feature is disabled and interrupts are  
9.0  
INTERRUPTS  
compatible with PICmicro® mid-range devices. In Com-  
patibility mode, the interrupt priority bits for each source  
have no effect. INTCON<6> is the PEIE bit which  
enables/disables all peripheral interrupt sources.  
INTCON<7> is the GIE bit which enables/disables all  
interrupt sources. All interrupts branch to address  
000008h in Compatibility mode.  
The PIC18F6585/8585/6680/8680 devices have multi-  
ple interrupt sources and an interrupt priority feature  
that allows each interrupt source to be assigned a high  
or a low priority level. The high priority interrupt vector  
is at 000008h while the low priority interrupt vector is at  
000018h. High priority interrupt events will override any  
low priority interrupts that may be in progress.  
There are thirteen registers which are used to control  
interrupt operation. They are:  
When an interrupt is responded to, the global interrupt  
enable bit is cleared to disable further interrupts. If the  
IPEN bit is cleared, this is the GIE bit. If interrupt priority  
levels are used, this will be either the GIEH or GIEL bit.  
High priority interrupt sources can interrupt a low  
priority interrupt.  
• RCON  
• INTCON  
• INTCON2  
• INTCON3  
The return address is pushed onto the stack and the  
PC is loaded with the interrupt vector address  
(000008h or 000018h). Once in the Interrupt Service  
Routine, the source(s) of the interrupt can be deter-  
mined by polling the interrupt flag bits. The interrupt  
flag bits must be cleared in software before re-enabling  
interrupts to avoid recursive interrupts.  
• PIR1, PIR2, PIR3  
• PIE1, PIE2, PIE3  
• IPR1, IPR2, IPR3  
It is recommended that the Microchip header files  
supplied with MPLAB® IDE be used for the symbolic bit  
names in these registers. This allows the assembler/  
compiler to automatically take care of the placement of  
these bits within the specified register.  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine and sets the GIE bit (GIEH or GIEL  
if priority levels are used) which re-enables interrupts.  
Each interrupt source (except INT0) has three bits to  
control its operation. The functions of these bits are:  
For external interrupt events, such as the INT pins or  
the PORTB input change interrupt, the interrupt latency  
will be three to four instruction cycles. The exact  
latency is the same for one- or two-cycle instructions.  
Individual interrupt flag bits are set regardless of the  
status of their corresponding enable bit or the GIE bit.  
• Flag bit to indicate that an interrupt event  
occurred  
• Enable bit that allows program execution to  
branch to the interrupt vector address when the  
flag bit is set  
• Priority bit to select high priority or low priority  
The interrupt priority feature is enabled by setting the  
IPEN bit (RCON<7>). When interrupt priority is  
enabled, there are two bits which enable interrupts  
globally. Setting the GIEH bit (INTCON<7>) enables all  
interrupts that have the priority bit set. Setting the GIEL  
bit (INTCON<6>) enables all interrupts that have the  
priority bit cleared. When the interrupt flag, enable bit  
and appropriate global interrupt enable bit are set, the  
interrupt will vector immediately to address 000008h or  
000018h depending on the priority level. Individual  
interrupts can be disabled through their corresponding  
enable bits.  
2004 Microchip Technology Inc.  
DS30491C-page 109  
PIC18F6585/8585/6680/8680  
FIGURE 9-1:  
INTERRUPT LOGIC  
Wake-up if in Sleep Mode  
TMR0IF  
TMR0IE  
TMR0IP  
RBIF  
RBIE  
RBIP  
INT0IF  
INT0IE  
Interrupt to CPU  
Vector to Location  
0008h  
INT1IF  
INT1IE  
INT1IP  
INT2IF  
INT2IE  
INT2IP  
Peripheral Interrupt Flag bit  
Peripheral Interrupt Enable bit  
Peripheral Interrupt Priority bit  
GIEH/GIE  
TMR1IF  
TMR1IE  
TMR1IP  
IPE  
IPEN  
XXXXIF  
XXXXIE  
XXXXIP  
GIEL/PEIE  
IPEN  
Additional Peripheral Interrupts  
High Priority Interrupt Generation  
Low Priority Interrupt Generation  
Peripheral Interrupt Flag bit  
Peripheral Interrupt Enable bit  
Peripheral Interrupt Priority bit  
Interrupt to CPU  
Vector to Location  
0018h  
TMR0IF  
TMR0IE  
TMR0IP  
TMR1IF  
TMR1IE  
TMR1IP  
RBIF  
RBIE  
XXXXIF  
XXXXIE  
XXXXIP  
GIEL/PEIE  
RBIP  
GIE/GEIH  
INT1IF  
INT1IE  
INT1IP  
Additional Peripheral Interrupts  
INT2IF  
INT2IE  
INT2IP  
DS30491C-page 110  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
9.1  
INTCON Registers  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit. User software should ensure  
the appropriate interrupt flag bits are clear  
prior to enabling an interrupt. This feature  
allows for software polling.  
The INTCON registers are readable and writable  
registers which contain various enable, priority and flag  
bits.  
REGISTER 9-1:  
INTCON REGISTER  
R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
RBIE  
R/W-0  
R/W-0  
INT0IF  
R/W-x  
RBIF  
GIE/GIEH PEIE/GIEL  
bit 7  
TMR0IE  
INT0IE  
TMR0IF  
bit 0  
bit 7  
GIE/GIEH: Global Interrupt Enable bit  
When IPEN (RCON<7>) = 0:  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
When IPEN (RCON<7>) = 1:  
1= Enables all high priority interrupts  
0= Disables all interrupts  
bit 6  
PEIE/GIEL: Peripheral Interrupt Enable bit  
When IPEN (RCON<7>) = 0:  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
When IPEN (RCON<7>) = 1:  
1= Enables all low priority peripheral interrupts  
0= Disables all low priority peripheral interrupts  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMR0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 overflow interrupt  
0= Disables the TMR0 overflow interrupt  
INT0IE: INT0 External Interrupt Enable bit  
1= Enables the INT0 external interrupt  
0= Disables the INT0 external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
TMR0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INT0IF: INT0 External Interrupt Flag bit  
1= The INT0 external interrupt occurred (must be cleared in software)  
0= The INT0 external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1= At least one of the RB7:RB4 pins changed state (must be cleared in software)  
0= None of the RB7:RB4 pins have changed state  
Note:  
A mismatch condition will continue to set this bit. Reading PORTB will end the  
mismatch condition and allow the bit to be cleared.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 111  
PIC18F6585/8585/6680/8680  
REGISTER 9-2:  
INTCON2 REGISTER  
R/W-1  
RBPU  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
RBIP  
INTEDG0 INTEDG1 INTEDG2 INTEDG3 TMR0IP  
INT3IP  
bit 7  
bit 0  
bit 7  
bit 6  
RBPU: PORTB Pull-up Enable bit  
1= All PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG0: External Interrupt 0 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
bit 5  
bit 4  
INTEDG1: External Interrupt 1 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG2: External Interrupt 2 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
bit 3  
bit 2  
bit 1  
bit 0  
INTEDG3: External Interrupt 3 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
TMR0IP: TMR0 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
INT3IP: INT3 External Interrupt Priority bit  
1= High priority  
0= Low priority  
RBIP: RB Port Change Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
Note:  
Interrupt flag bits are set when an interrupt condition occurs regardless of the state  
of its corresponding enable bit or the global enable bit. User software should ensure  
the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature  
allows for software polling.  
DS30491C-page 112  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 9-3:  
INTCON3 REGISTER  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
INT3IF  
R/W-0  
INT2IF  
R/W-0  
INT1IF  
INT2IP  
INT1IP  
INT3IE  
INT2IE  
INT1IE  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
INT2IP: INT2 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT1IP: INT1 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT3IE: INT3 External Interrupt Enable bit  
1= Enables the INT3 external interrupt  
0= Disables the INT3 external interrupt  
INT2IE: INT2 External Interrupt Enable bit  
1= Enables the INT2 external interrupt  
0= Disables the INT2 external interrupt  
INT1IE: INT1 External Interrupt Enable bit  
1= Enables the INT1 external interrupt  
0= Disables the INT1 external interrupt  
INT3IF: INT3 External Interrupt Flag bit  
1= The INT3 external interrupt occurred (must be cleared in software)  
0= The INT3 external interrupt did not occur  
INT2IF: INT2 External Interrupt Flag bit  
1= The INT2 external interrupt occurred (must be cleared in software)  
0= The INT2 external interrupt did not occur  
INT1IF: INT1 External Interrupt Flag bit  
1= The INT1 external interrupt occurred (must be cleared in software)  
0= The INT1 external interrupt did not occur  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
Note:  
Interrupt flag bits are set when an interrupt condition occurs regardless of the state  
of its corresponding enable bit or the global enable bit. User software should ensure  
the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature  
allows for software polling.  
2004 Microchip Technology Inc.  
DS30491C-page 113  
PIC18F6585/8585/6680/8680  
9.2  
PIR Registers  
Note 1: Interrupt flag bits are set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>).  
The PIR registers contain the individual flag bits for the  
peripheral interrupts. Due to the number of peripheral  
interrupt sources, there are three Peripheral Interrupt  
Flag registers (PIR1, PIR2 and PIR3).  
2: User software should ensure the appropri-  
ate interrupt flag bits are cleared prior to  
enabling an interrupt, and after servicing  
that interrupt.  
REGISTER 9-4:  
PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1  
R/W-0  
PSPIF(1)  
bit 7  
R/W-0  
ADIF  
R-0  
R-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
R/W-0  
RCIF  
TXIF  
CCP1IF  
TMR2IF  
TMR1IF  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
PSPIF: Parallel Slave Port Read/Write Interrupt Flag bit(1)  
1= A read or a write operation has taken place (must be cleared in software)  
0= No read or write has occurred  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed (must be cleared in software)  
0= The A/D conversion is not complete  
RCIF: USART Receive Interrupt Flag bit  
1= The USART receive buffer, RCREG, is full (cleared when RCREG is read)  
0= The USART receive buffer is empty  
TXIF: USART Transmit Interrupt Flag bit  
1= The USART transmit buffer, TXREG, is empty (cleared when TXREG is written)  
0= The USART transmit buffer is full  
SSPIF: Master Synchronous Serial Port Interrupt Flag bit  
1= The transmission/reception is complete (must be cleared in software)  
0= Waiting to transmit/receive  
CCP1IF: Enhanced CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode.  
bit 1  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
Note 1: Available in Microcontroller mode only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 114  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 9-5:  
PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2  
U-0  
R/W-0  
CMIF  
U-0  
R/W-0  
EEIF  
R/W-0  
BCLIF  
R/W-0  
LVDIF  
R/W-0  
R/W-0  
TMR3IF  
CCP2IF  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
CMIF: Comparator Interrupt Flag bit  
1= The comparator input has changed (must be cleared in software)  
0= The comparator input has not changed  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
EEIF: Data EEPROM/Flash Write Operation Interrupt Flag bit  
1= The write operation is complete (must be cleared in software)  
0= The write operation is not complete, or has not been started  
bit 3  
BCLIF: Bus Collision Interrupt Flag bit  
1= A bus collision occurred while the SSP module (configured in I2C Master mode)  
was transmitting (must be cleared in software)  
0= No bus collision occurred  
bit 2  
bit 1  
bit 0  
LVDIF: Low-Voltage Detect Interrupt Flag bit  
1= A low-voltage condition occurred (must be cleared in software)  
0= The device voltage is above the Low-Voltage Detect trip point  
TMR3IF: TMR3 Overflow Interrupt Flag bit  
1= TMR3 register overflowed (must be cleared in software)  
0= TMR3 register did not overflow  
CCP2IF: CCP2 Interrupt Flag bit  
Capture mode:  
1= A TMR1 or TMR3 register capture occurred (must be cleared in software)  
0= No TMR1 or TMR3 register capture occurred  
Compare mode:  
1= A TMR1 or TMR3 register compare match occurred (must be cleared in software)  
0= No TMR1 or TMR3 register compare match occurred  
PWM mode:  
Unused in this mode.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 115  
PIC18F6585/8585/6680/8680  
REGISTER 9-6:  
PIR3: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 3  
R/W-0  
IRXIF  
R/W-0  
R/W-0  
ERRIF  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WAKIF  
TXB2IF/ TXB1IF(1) TXB0IF(1) RXB1IF/  
RXB0IF/  
TXBnIF  
RXBnIF FIFOWMIF  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
IRXIF: CAN Invalid Received Message Interrupt Flag bit  
1= An invalid message has occurred on the CAN bus  
0= No invalid message on CAN bus  
WAKIF: CAN bus Activity Wake-up Interrupt Flag bit  
1= Activity on CAN bus has occurred  
0= No activity on CAN bus  
ERRIF: CAN bus Error Interrupt Flag bit  
1= An error has occurred in the CAN module (multiple sources)  
0= No CAN module errors  
When CAN is in Mode 0:  
TXB2IF: CAN Transmit Buffer 2 Interrupt Flag bit  
1= Transmit Buffer 2 has completed transmission of a message and may be reloaded  
0= Transmit Buffer 2 has not completed transmission of a message  
When CAN is in Mode 1 or 2:  
TXBnIF: Any Transmit Buffer Interrupt Flag bit  
1= One or more transmit buffers has completed transmission of a message and may be  
reloaded (TXBIE or BIE0<7:2> must be non-zero)  
0= No message was transmitted  
bit 3  
bit 2  
bit 1  
TXB1IF: CAN Transmit Buffer 1 Interrupt Flag bit(1)  
1= Transmit Buffer 1 has completed transmission of a message and may be reloaded  
0= Transmit Buffer 1 has not completed transmission of a message  
TXB0IF: CAN Transmit Buffer 0 Interrupt Flag bit(1)  
1= Transmit Buffer 0 has completed transmission of a message and may be reloaded  
0= Transmit Buffer 0 has not completed transmission of a message  
When CAN is in Mode 0:  
RXB1IF: CAN Receive Buffer 1 Interrupt Flag bit  
1= Receive Buffer 1 has received a new message  
0= Receive Buffer 1 has not received a new message  
When CAN is in Mode 1 or 2:  
RXBnIF: CAN Receive Buffer Interrupt Flag bit  
1= One or more receive buffers has received a new message  
0= No receive buffer has received a new message  
bit 0  
When CAN is in Mode 0:  
RXB0IF: CAN Receive Buffer 0 Interrupt Flag bit(1)  
1= Receive Buffer 0 has received a new message  
0= Receive Buffer 0 has not received a new message  
When CAN is in Mode 1:  
Unimplemented: Read as ‘0’  
When CAN is in Mode 2:  
FIFOWMIF: FIFO Watermark Interrupt Flag bit  
1= FIFO high watermark is reached  
0= FIFO high watermark is not reached  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 116  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
9.3  
PIE Registers  
The PIE registers contain the individual enable bits for  
the peripheral interrupts. Due to the number of  
peripheral interrupt sources, there are three Peripheral  
Interrupt Enable registers (PIE1, PIE2 and PIE3).  
When the IPEN bit (RCON<7>) is ‘0’, the PEIE bit must  
be set to enable any of these peripheral interrupts.  
REGISTER 9-7:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
R/W-0  
PSPIE(1)  
bit 7  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
R/W-0  
TMR1IE  
bit 0  
CCP1IE  
TMR2IE  
bit 7  
PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit(1)  
1= Enables the PSP read/write interrupt  
0= Disables the PSP read/write interrupt  
Note 1: Available in Microcontroller mode only.  
ADIE: A/D Converter Interrupt Enable bit  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
1= Enables the A/D interrupt  
0= Disables the A/D interrupt  
RCIE: USART Receive Interrupt Enable bit  
1= Enables the USART receive interrupt  
0= Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1= Enables the USART transmit interrupt  
0= Disables the USART transmit interrupt  
SSPIE: Master Synchronous Serial Port Interrupt Enable bit  
1= Enables the MSSP interrupt  
0= Disables the MSSP interrupt  
CCP1IE: Enhanced CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 117  
PIC18F6585/8585/6680/8680  
REGISTER 9-8:  
PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2  
U-0  
R/W-0  
CMIE  
U-0  
R/W-0  
EEIE  
R/W-0  
BCLIE  
R/W-0  
LVDIE  
R/W-0  
R/W-0  
TMR3IE  
CCP2IE  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
CMIE: Comparator Interrupt Enable bit  
1= Enables the comparator interrupt  
0= Disables the comparator interrupt  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
EEIE: Data EEPROM/Flash Write Operation Interrupt Enable bit  
1= Enables the write operation interrupt  
0= Disables the write operation interrupt  
bit 3  
bit 2  
bit 1  
bit 0  
BCLIE: Bus Collision Interrupt Enable bit  
1= Enables the bus collision interrupt  
0= Disables the bus collision interrupt  
LVDIE: Low-Voltage Detect Interrupt Enable bit  
1= Enables the Low-Voltage Detect interrupt  
0= Disables the Low-Voltage Detect interrupt  
TMR3IE: TMR3 Overflow Interrupt Enable bit  
1= Enables the TMR3 overflow interrupt  
0= Disables the TMR3 overflow interrupt  
CCP2IE: CCP2 Interrupt Enable bit  
1= Enables the CCP2 interrupt  
0= Disables the CCP2 interrupt  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 118  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 9-9:  
PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3  
R/W-0  
IRXIE  
R/W-0  
R/W-0  
ERRIE  
R/W-0  
TXB2IE/ TXB1IE(1) TXB0IE(1) RXB1IE/  
TXBnIE RXBnIE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WAKIE  
RXB0IE/  
FIFOWMIE  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
IRXIE: CAN Invalid Received Message Interrupt Enable bit  
1= Enable invalid message received interrupt  
0= Disable invalid message received interrupt  
WAKIE: CAN bus Activity Wake-up Interrupt Enable bit  
1= Enable bus activity wake-up interrupt  
0= Disable bus activity wake-up interrupt  
ERRIE: CAN bus Error Interrupt Enable bit  
1= Enable CAN bus error interrupt  
0= Disable CAN bus error interrupt  
When CAN is in Mode 0:  
TXB2IE: CAN Transmit Buffer 2 Interrupt Enable bit  
1= Enable Transmit Buffer 2 interrupt  
0= Disable Transmit Buffer 2 interrupt  
When CAN is in Mode 1 or 2:  
TXBnIE: CAN Transmit Buffer Interrupts Enable bit  
1= Enable transmit buffer interrupt; individual interrupt is enabled by TXBIE and BIE0  
0= Disable all transmit buffer interrupts  
bit 3  
bit 2  
bit 1  
TXB1IE: CAN Transmit Buffer 1 Interrupt Enable bit(1)  
1= Enable Transmit Buffer 1 interrupt  
0= Disable Transmit Buffer 1 interrupt  
TXB0IE: CAN Transmit Buffer 0 Interrupt Enable bit(1)  
1= Enable Transmit Buffer 0 interrupt  
0= Disable Transmit Buffer 0 interrupt  
When CAN is in Mode 0:  
RXB1IE: CAN Receive Buffer 1 Interrupt Enable bit  
1= Enable Receive Buffer 1 interrupt  
0= Disable Receive Buffer 1 interrupt  
When CAN is in Mode 1 or 2:  
RXBnIE: CAN Receive Buffer Interrupts Enable bit  
1= Enable receive buffer interrupt; individual interrupt is enabled by BIE0  
0= Disable all receive buffer interrupts  
bit 0  
When CAN is in Mode 0:  
RXB0IE: CAN Receive Buffer 0 Interrupt Enable bit  
1= Enable Receive Buffer 0 interrupt  
0= Disable Receive Buffer 0 interrupt  
When CAN is in Mode 1:  
Unimplemented: Read as ‘0’  
When CAN is in Mode 2:  
FIFOWMIE: FIFO Watermark Interrupt Enable bit  
1= Enable FIFO watermark interrupt  
0= Disable FIFO watermark interrupt  
Note 1: In CAN Mode 1 and 2, this bit is forced to ‘0’.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 119  
PIC18F6585/8585/6680/8680  
9.4  
IPR Registers  
The IPR registers contain the individual priority bits for  
the peripheral interrupts. Due to the number of  
peripheral interrupt sources, there are three Peripheral  
Interrupt Priority registers (IPR1, IPR2 and IPR3). The  
operation of the priority bits requires that the Interrupt  
Priority Enable (IPEN) bit be set.  
REGISTER 9-10: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1  
R/W-1  
PSPIP(1)  
bit 7  
R/W-1  
ADIP  
R/W-1  
RCIP  
R/W-1  
TXIP  
R/W-1  
SSPIP  
R/W-1  
R/W-1  
R/W-1  
TMR1IP  
bit 0  
CCP1IP  
TMR2IP  
bit 7  
PSPIP: Parallel Slave Port Read/Write Interrupt Priority bit(1)  
1= High priority  
0= Low priority  
Note 1: Available in Microcontroller mode only.  
ADIP: A/D Converter Interrupt Priority bit  
bit 6  
bit 5  
bit 4  
1= High priority  
0= Low priority  
RCIP: USART Receive Interrupt Priority bit  
1= High priority  
0= Low priority  
TXIP: USART Transmit Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
bit 2  
bit 1  
bit 0  
SSPIP: Master Synchronous Serial Port Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP1IP: CCP1 Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR2IP: TMR2 to PR2 Match Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR1IP: TMR1 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 120  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 9-11: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2  
U-0  
R/W-1  
CMIP  
U-0  
R/W-1  
EEIP  
R/W-1  
BCLIP  
R/W-1  
LVDIP  
R/W-1  
R/W-1  
TMR3IP  
CCP2IP  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
CMIP: Comparator Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
EEIP: Data EEPROM/Flash Write Operation Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
bit 2  
bit 1  
bit 0  
BCLIP: Bus Collision Interrupt Priority bit  
1= High priority  
0= Low priority  
LVDIP: Low-Voltage Detect Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR3IP: TMR3 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP2IP: CCP2 Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 121  
PIC18F6585/8585/6680/8680  
REGISTER 9-12: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3  
R/W-1  
IRXIP  
R/W-1  
R/W-1  
ERRIP  
R/W-1  
TXB2IP/ TXB1IP(1) TXB0IP(1) RXB1IP/  
TXBnIP RXBnIP  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
WAKIP  
RXB0IP/  
FIFOWMIP  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
IRXIP: CAN Invalid Received Message Interrupt Priority bit  
1= High priority  
0= Low priority  
WAKIP: CAN bus Activity Wake-up Interrupt Priority bit  
1= High priority  
0= Low priority  
ERRIP: CAN bus Error Interrupt Priority bit  
1= High priority  
0= Low priority  
When CAN is in Mode 0:  
TXB2IP: CAN Transmit Buffer 2 Interrupt Priority bit  
1= High priority  
0= Low priority  
When CAN is in Mode 1 or 2:  
TXBnIP: CAN Transmit Buffer Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
bit 2  
bit 1  
TXB1IP: CAN Transmit Buffer 1 Interrupt Priority bit(1)  
1= High priority  
0= Low priority  
TXB0IP: CAN Transmit Buffer 0 Interrupt Priority bit(1)  
1= High priority  
0= Low priority  
When CAN is in Mode 0:  
RXB1IP: CAN Receive Buffer 1 Interrupt Priority bit  
1= High priority  
0= Low priority  
When CAN is in Mode 1 or 2:  
RXBnIP: CAN Receive Buffer Interrupts Priority bit  
1= High priority  
0= Low priority  
bit 0  
When CAN is in Mode 0:  
RXB0IP: CAN Receive Buffer 0 Interrupt Priority bit  
1= High priority  
0= Low priority  
When CAN is in Mode 1:  
Unimplemented: Read as ‘0’  
When CAN is in Mode 2:  
FIFOWMIP: FIFO Watermark Interrupt Priority bit  
1= High priority  
0= Low priority  
Note 1: In CAN Mode 1 and 2, this bit is forced to ‘0’.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 122  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
9.5  
RCON Register  
The RCON register contains the IPEN bit which is used  
to enable prioritized interrupts. The functions of the  
other bits in this register are discussed in more detail in  
Section 4.14 “RCON Register”.  
REGISTER 9-13: RCON REGISTER  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
bit 7  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16 Compatibility mode)  
bit 6-5 Unimplemented: Read as ‘0’  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RI: RESETInstruction Flag bit  
For details of bit operation, see Register 4-4.  
TO: Watchdog Time-out Flag bit  
For details of bit operation, see Register 4-4.  
PD: Power-down Detection Flag bit  
For details of bit operation, see Register 4-4.  
POR: Power-on Reset Status bit  
For details of bit operation, see Register 4-4.  
BOR: Brown-out Reset Status bit  
For details of bit operation, see Register 4-4.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR  
‘0’ = Bit is cleared  
x = Bit is unknown  
2004 Microchip Technology Inc.  
DS30491C-page 123  
PIC18F6585/8585/6680/8680  
9.6  
INT0 Interrupt  
9.7  
TMR0 Interrupt  
External interrupts on the RB0/INT0, RB1/INT1, RB2/  
INT2 and RB3/INT3 pins are edge-triggered: either ris-  
ing if the corresponding INTEDGx bit is set in the  
INTCON2 register, or falling if the INTEDGx bit is clear.  
When a valid edge appears on the RBx/INTx pin, the  
corresponding flag bit, INTxF, is set. This interrupt can  
be disabled by clearing the corresponding enable bit,  
INTxE. Flag bit, INTxF, must be cleared in software in  
the Interrupt Service Routine before re-enabling the  
interrupt. All external interrupts (INT0, INT1, INT2 and  
INT3) can wake-up the processor from Sleep if bit  
INTxIE was set prior to going into Sleep. If the global  
interrupt enable bit GIE is set, the processor will branch  
to the interrupt vector following wake-up.  
In 8-bit mode (which is the default), an overflow in the  
TMR0 register (0FFh 00h) will set flag bit TMR0IF. In  
16-bit mode, an overflow in the TMR0H:TMR0L regis-  
ters (0FFFFh 0000h) will set flag bit, TMR0IF. The  
interrupt can be enabled/disabled by setting/clearing  
enable bit, TMR0IE (INTCON<5>). Interrupt priority for  
Timer0 is determined by the value contained in the  
interrupt priority bit, TMR0IP (INTCON2<2>). See  
Section 11.0 “Timer0 Module” for further details on  
the Timer0 module.  
9.8  
PORTB Interrupt-on-Change  
An input change on PORTB<7:4> sets flag bit RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit, RBIE (INTCON<3>).  
Interrupt priority for PORTB interrupt-on-change is  
determined by the value contained in the interrupt  
priority bit, RBIP (INTCON2<0>).  
The interrupt priority for INT, INT2 and INT3 is deter-  
mined by the value contained in the interrupt priority  
bits: INT1IP (INTCON3<6>), INT2IP (INTCON3<7>)  
and INT3IP (INTCON2<1>). There is no priority bit  
associated with INT0; it is always a high priority  
interrupt source.  
9.9  
Context Saving During Interrupts  
During an interrupt, the return PC value is saved on the  
stack. Additionally, the WREG, Status and BSR registers  
are saved on the fast return stack. If a fast return from  
interrupt is not used (See Section 4.3 “Fast Register  
Stack”), the user may need to save the WREG, Status  
and BSR registers in software. Depending on the user’s  
application, other registers may also need to be saved.  
Example 9-1 saves and restores the WREG, Status and  
BSR registers during an Interrupt Service Routine.  
EXAMPLE 9-1:  
SAVING STATUS, WREG AND BSR REGISTERS IN RAM  
MOVWF  
MOVFF  
MOVFF  
;
W_TEMP  
STATUS, STATUS_TEMP  
BSR, BSR_TEMP  
; W_TEMP is in virtual bank  
; STATUS_TEMP located anywhere  
; BSR located anywhere  
; USER ISR CODE  
;
MOVFF  
MOVF  
MOVFF  
BSR_TEMP, BSR  
W_TEMP, W  
STATUS_TEMP, STATUS  
; Restore BSR  
; Restore WREG  
; Restore STATUS  
DS30491C-page 124  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
10.1 PORTA, TRISA and LATA  
Registers  
10.0 I/O PORTS  
Depending on the device selected, there are either seven  
or nine I/O ports available on PIC18F6X8X/8X8X  
devices. Some of their pins are multiplexed with one or  
more alternate functions from the other peripheral fea-  
tures on the device. In general, when a peripheral is  
enabled, that pin may not be used as a general purpose  
I/O pin.  
PORTA is a 7-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISA. Setting a  
TRISA bit (= 1) will make the corresponding PORTA pin  
an input (i.e., put the corresponding output driver in a  
high-impedance mode). Clearing a TRISA bit (= 0) will  
make the corresponding PORTA pin an output (i.e., put  
the contents of the output latch on the selected pin).  
Each port has three registers for its operation. These  
registers are:  
Reading the PORTA register reads the status of the  
pins, whereas writing to it will write to the port latch.  
• TRIS register (data direction register)  
The Data Latch register (LATA) is also memory  
mapped. Read-modify-write operations on the LATA  
register read and write the latched output value for  
PORTA.  
• PORT register (reads the levels on the pins of the  
device)  
• LAT register (output latch)  
The Data Latch register (LAT) is useful for read-modify-  
write operations on the value that the I/O pins are  
driving.  
The RA4 pin is multiplexed with the Timer0 module  
clock input to become the RA4/T0CKI pin. The  
RA4/T0CKI pin is a Schmitt Trigger input and an open-  
drain output. All other RA port pins have TTL input  
levels and full CMOS output drivers.  
A simplified version of a generic I/O port and its  
operation is shown in Figure 10-1.  
The RA6 pin is only enabled as a general I/O pin in  
ECIO and RCIO Oscillator modes.  
FIGURE 10-1:  
SIMPLIFIED BLOCK  
DIAGRAM OF  
The other PORTA pins are multiplexed with analog  
inputs and the analog VREF+ and VREF- inputs. The  
operation of each pin is selected by clearing/setting the  
control bits in the ADCON1 register (A/D Control  
Register 1).  
PORT/LAT/TRIS  
OPERATION  
RD LAT  
Note:  
On a Power-on Reset, RA5 and RA3:RA0  
are configured as analog inputs and read  
as ‘0’. RA6 and RA4 are configured as  
digital inputs.  
TRIS  
D
Q
WR LAT +  
WR Port  
CK  
Data Latch  
The TRISA register controls the direction of the RA pins  
even when they are being used as analog inputs. The  
user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
Data Bus  
RD Port  
I/O pin  
EXAMPLE 10-1:  
INITIALIZING PORTA  
CLRF  
PORTA  
; Initialize PORTA by  
; clearing output  
; data latches  
CLRF  
LATA  
; Alternate method  
; to clear output  
; data latches  
MOVLW 0Fh  
; Configure A/D  
MOVWF ADCON1 ; for digital inputs  
MOVLW 0CFh  
; Value used to  
; initialize data  
; direction  
MOVWF TRISA  
; Set RA<3:0> as inputs  
; RA<5:4> as outputs  
2004 Microchip Technology Inc.  
DS30491C-page 125  
PIC18F6585/8585/6680/8680  
FIGURE 10-2:  
BLOCK DIAGRAM OF  
RA3:RA0AND RA5PINS  
FIGURE 10-3:  
BLOCK DIAGRAM OF  
RA4/T0CKI PIN  
RD LATA  
RD LATA  
Data  
Bus  
Data  
Bus  
D
Q
D
Q
Q
WR LATA  
or  
PORTA  
WR LATA  
or  
PORTA  
VDD  
I/O pin(1)  
Q
Data Latch  
CK  
CK  
P
N
Data Latch  
I/O pin(1)  
D
Q
N
D
Q
VSS  
WR TRISA  
RD TRISA  
Schmitt  
Trigger  
Input  
WR TRISA  
RD TRISA  
CK  
Q
VSS  
Analog  
Q
CK  
TRIS Latch  
TRIS Latch  
Input  
Buffer  
Mode  
TTL  
Input  
Buffer  
Q
D
Q
D
EN  
EN  
RD PORTA  
RD PORTA  
TMR0 Clock Input  
To A/D Converter and LVD Modules  
Note 1: I/O pins have protection diodes to VDD and VSS.  
Note 1: I/O pins have protection diodes to VDD and VSS.  
FIGURE 10-4:  
BLOCK DIAGRAM OF RA6 PIN (WHEN ENABLED AS I/O)  
ECRA6 or RCRA6 Enable  
Data Bus  
RD LATA  
D
Q
Q
VDD  
P
WR LATA or PORTA  
CK  
Data Latch  
I/O pin(1)  
N
D
Q
WR TRISA  
VSS  
CK  
Q
TRIS Latch  
TTL  
Input  
Buffer  
TRISA  
RD  
ECRA6 or RCRA6 Enable  
Q
D
EN  
RD PORTA  
Note 1: I/O pins have protection diodes to VDD and VSS.  
DS30491C-page 126  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 10-1: PORTA FUNCTIONS  
Name  
RA0/AN0  
Bit#  
Buffer  
Function  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
TTL  
TTL  
TTL  
TTL  
Input/output or analog input.  
RA1/AN1  
Input/output or analog input.  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
Input/output or analog input or VREF-.  
Input/output or analog input or VREF+.  
ST/OD Input/output or external clock input for Timer0. Output is open-drain type.  
RA5/AN4/LVDIN  
TTL  
Input/output or slave select input for synchronous serial port or analog  
input, or Low-Voltage Detect input.  
OSC2/CLKO/RA6  
bit 6  
TTL  
OSC2 or clock output, or I/O pin.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
TABLE 10-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTA  
LATA  
RA6  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
-x0x 0000 -u0u 0000  
-xxx xxxx -uuu uuuu  
-111 1111 -111 1111  
LATA Data Output Register  
PORTA Data Direction Register  
TRISA  
ADCON1  
VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, – = unimplemented locations read as ‘0’.  
Shaded cells are not used by PORTA.  
2004 Microchip Technology Inc.  
DS30491C-page 127  
PIC18F6585/8585/6680/8680  
A mismatch condition will continue to set flag bit, RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit RBIF to be cleared.  
10.2 PORTB, TRISB and LATB  
Registers  
PORTB is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISB. Setting a  
TRISB bit (= 1) will make the corresponding PORTB  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISB bit (= 0)  
will make the corresponding PORTB pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
For PIC18FXX85 devices, RB3 can be configured by the  
configuration bit, CCP2MX, as the alternate peripheral  
pin for the CCP2 module. This is only available when the  
device is configured in Microprocessor, Microprocessor  
with Boot Block, or Extended Microcontroller Operating  
modes.  
The Data Latch register (LATB) is also memory mapped.  
Read-modify-write operations on the LATB register read  
and write the latched output value for PORTB.  
EXAMPLE 10-2:  
INITIALIZING PORTB  
The RB5 pin is used as the LVP programming pin.  
When the LVP configuration bit is programmed, this pin  
loses the I/O function and becomes a programming test  
function.  
CLRF  
PORTB  
; Initialize PORTB by  
; clearing output  
; data latches  
CLRF  
LATB  
; Alternate method  
; to clear output  
; data latches  
Note:  
When LVP is enabled, the weak pull-up on  
RB5 is disabled.  
MOVLW  
MOVWF  
0CFh  
; Value used to  
; initialize data  
; direction  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
FIGURE 10-5:  
BLOCK DIAGRAM OF  
RB7:RB4 PINS  
TRISB  
VDD  
RBPU(2)  
Data Bus  
Weak  
P
Pull-up  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is  
performed by clearing bit RBPU (INTCON2<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are  
disabled on a Power-on Reset.  
Data Latch  
D
Q
WR LATB  
or PORTB  
I/O pin(1)  
CK  
TRIS Latch  
D
Q
Note:  
On a Power-on Reset, these pins are  
configured as digital inputs.  
WR TRISB  
TTL  
Input  
Buffer  
CK  
ST  
Buffer  
Four of the PORTB pins (RB3:RB0) are the external  
interrupt pins, INT3 through INT0. In order to use these  
pins as external interrupts, the corresponding TRISB  
bit must be set to ‘1’.  
RD TRISB  
RD LATB  
Latch  
The other four PORTB pins (RB7:RB4) have an  
interrupt-on-change feature. Only pins configured as  
inputs can cause this interrupt to occur (i.e., any  
RB7:RB4 pin configured as an output is excluded from  
the interrupt-on-change comparison). The input pins (of  
RB7:RB4) are compared with the old value latched on  
the last read of PORTB. The “mismatch” outputs of  
RB7:RB4 are OR’ed together to generate the RB port  
change interrupt with flag bit, RBIF (INTCON<0>).  
Q
D
RD PORTB  
Set RBIF  
Q1  
EN  
Q
D
RD PORTB  
Q3  
From other  
RB7:RB4 pins  
EN  
RB7:RB5 in Serial Programming Mode  
This interrupt can wake the device from Sleep. The  
user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s)  
and clear the RBPU bit (INTCON2<7>).  
a) Any read or write of PORTB (except with the  
MOVFF instruction). This will end the mismatch  
condition.  
b) Clear flag bit RBIF.  
DS30491C-page 128  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 10-6:  
BLOCK DIAGRAM OF RB2:RB0 PINS  
VDD  
RBPU(2)  
Weak  
P
Pull-up  
Data Latch  
Data Bus  
WR Port  
D
Q
I/O pin(1)  
CK  
TRIS Latch  
D
Q
TTL  
Input  
Buffer  
WR TRIS  
CK  
RD TRIS  
RD Port  
Q
D
EN  
INTx  
RD Port  
Schmitt Trigger  
Buffer  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (OPTION_REG<7>).  
FIGURE 10-7:  
BLOCK DIAGRAM OF RB3 PIN  
VDD  
Weak  
RBPU(2)  
CCP2MX  
P
Pull-up  
CCP Output(3)  
1
VDD  
P
Enable(3)  
CCP Output  
0
Data Latch  
Data Bus  
I/O pin(1)  
D
Q
WR LATB or  
WR PORTB  
N
CK  
VSS  
TRIS Latch  
D
TTL  
WR TRISB  
Input  
CK  
Q
Buffer  
RD TRISB  
RD LATB  
D
Q
RD PORTB  
EN  
RD PORTB  
CCP2 or INT3  
Schmitt Trigger  
Buffer  
CCP2MX = 0  
Note 1: I/O pin has diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (INTCON2<7>).  
3: For PIC18FXX85 parts, the CCP2 input/output is multiplexed with RB3 if the CCP2MX bit is enabled (= 0) in the Configuration  
register and the device is operating in Microprocessor, Microprocessor with Boot Block or Extended Microcontroller mode.  
2004 Microchip Technology Inc.  
DS30491C-page 129  
PIC18F6585/8585/6680/8680  
TABLE 10-3: PORTB FUNCTIONS  
Name  
RB0/INT0  
Bit#  
Buffer  
Function  
bit 0  
TTL/ST(1) Input/output pin or external interrupt input 0. Internal software  
programmable weak pull-up.  
RB1/INT1  
bit 1  
bit 2  
bit 3  
TTL/ST(1) Input/output pin or external interrupt input 1. Internal software  
programmable weak pull-up.  
TTL/ST(1) Input/output pin or external interrupt input 2. Internal software  
programmable weak pull-up.  
TTL/ST(4) Input/output pin or external interrupt input 3. Capture 2 input/  
Compare 2 output/PWM output (when CCP2MX configuration bit is  
enabled, all PIC18FXX85 operating modes except Microcontroller  
mode). Internal software programmable weak pull-up.  
RB2/INT2  
RB3/INT3/CCP2(3)  
RB4/KBI0  
bit 4  
bit 5  
bit 6  
bit 7  
TTL  
Input/output pin (with interrupt-on-change). Internal software  
programmable weak pull-up.  
RB5/KBI1/PGM  
RB6/KBI2/PGC  
RB7/KBI3/PGD  
TTL/ST(2) Input/output pin (with interrupt-on-change). Internal software  
programmable weak pull-up. Low-voltage ICSP enable pin.  
TTL/ST(2) Input/output pin (with interrupt-on-change). Internal software  
programmable weak pull-up. Serial programming clock.  
TTL/ST(2) Input/output pin (with interrupt-on-change). Internal software  
programmable weak pull-up. Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
3: RC1 is the alternate assignment for CCP2 when CCP2MX is not set (all operating modes except  
Microcontroller mode).  
4: This buffer is a Schmitt Trigger input when configured as the CCP2 input.  
TABLE 10-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTB  
LATB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
0000 0000 0000 0000  
LATB Data Output Register  
TRISB  
INTCON  
PORTB Data Direction Register  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
INTCON2  
INTCON3  
Legend:  
RBPU  
INTEDG0 INTEDG1 INTEDG2 INTEDG3 TMR0IP INT3IP  
INT1IP INT3IE INT2IE INT1IE INT3IF INT2IF  
RBIP  
1111 1111 1111 1111  
1100 0000 1100 0000  
INT2IP  
INT1IF  
x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
DS30491C-page 130  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
The pin override value is not loaded into the TRIS reg-  
ister. This allows read-modify-write of the TRIS register  
without concern due to peripheral overrides.  
10.3 PORTC, TRISC and LATC  
Registers  
PORTC is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISC. Setting a  
TRISC bit (= 1) will make the corresponding PORTC  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISC bit (= 0)  
will make the corresponding PORTC pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
RC1 is normally configured by configuration bit,  
CCP2MX, as the default peripheral pin of the CCP2  
module (default/erased state, CCP2MX = 1).  
EXAMPLE 10-3:  
INITIALIZING PORTC  
CLRF  
PORTC  
; Initialize PORTC by  
; clearing output  
; data latches  
The Data Latch register (LATC) is also memory mapped.  
Read-modify-write operations on the LATC register read  
and write the latched output value for PORTC.  
CLRF  
LATC  
; Alternate method  
; to clear output  
; data latches  
PORTC is multiplexed with several peripheral functions  
(Table 10-5). PORTC pins have Schmitt Trigger input  
buffers.  
MOVLW  
MOVWF  
0CFh  
; Value used to  
; initialize data  
; direction  
; Set RC<3:0> as inputs  
; RC<5:4> as outputs  
; RC<7:6> as inputs  
TRISC  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an  
output, while other peripherals override the TRIS bit to  
make a pin an input. The user should refer to the corre-  
sponding peripheral section for the correct TRIS bit  
settings.  
Note:  
On a Power-on Reset, these pins are  
configured as digital inputs.  
FIGURE 10-8:  
PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)  
PORTC/Peripheral Out Select  
Peripheral Data Out  
VDD  
P
0
1
RD LATC  
Data Bus  
D
Q
Q
(1)  
I/O pin  
WR LATC or  
WR PORTC  
CK  
Data Latch  
TRIS OVERRIDE  
N
D
Q
Q
Pin  
Override  
Peripheral  
TRIS  
Override  
Logic  
VSS  
WR TRISC  
CK  
RC0  
Yes  
Timer1 Osc for  
Timer1/Timer3  
TRIS Latch  
RC1  
Yes  
Timer1 Osc for  
Timer1/Timer3,  
CCP2 I/O  
RD TRISC  
Schmitt  
Trigger  
Peripheral Output  
RC2  
RC3  
Yes  
Yes  
CCP1 I/O  
(2)  
Enable  
2
Q
D
SPI/I C  
Master Clock  
EN  
2
RC4  
RC5  
RC6  
Yes  
Yes  
Yes  
I C Data Out  
RD PORTC  
SPI Data Out  
Peripheral Data In  
USART Async  
Xmit, Sync Clock  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: Peripheral output enable is only active if peripheral select is active.  
RC7  
Yes  
USART Sync  
Data Out  
2004 Microchip Technology Inc.  
DS30491C-page 131  
PIC18F6585/8585/6680/8680  
TABLE 10-5: PORTC FUNCTIONS  
Name  
Bit# Buffer Type  
Function  
RC0/T1OSO/T13CKI bit 0  
ST  
Input/output port pin, Timer1 oscillator output or Timer1/Timer3  
clock input.  
RC1/T1OSI/CCP2(1)  
bit 1  
ST  
Input/output port pin, Timer1 oscillator input or Capture 2 input/  
Compare 2 output/PWM output (when CCP2MX configuration bit is  
disabled).  
RC2/CCP1/P1A  
RC3/SCK/SCL  
bit 2  
bit 3  
ST  
ST  
Input/output port pin or Capture 1 input/Compare 1 output/  
PWM1 output.  
RC3 can also be the synchronous serial clock for both SPI and I2C  
modes.  
RC4/SDI/SDA  
RC5/SDO  
bit 4  
bit 5  
bit 6  
ST  
ST  
ST  
RC4 can also be the SPI data in (SPI mode) or data I/O (I2C mode).  
Input/output port pin or synchronous serial port data output.  
RC6/TX/CK  
Input/output port pin, addressable USART asynchronous transmit or  
addressable USART synchronous clock.  
RC7/RX/DT  
bit 7  
ST  
Input/output port pin, addressable USART asynchronous receive or  
addressable USART synchronous data.  
Legend: ST = Schmitt Trigger input  
Note 1: RB3 is the alternate assignment for CCP2 when CCP2MX is set.  
TABLE 10-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTC  
LATC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
LATC Data Output Register  
PORTC Data Direction Register  
TRISC  
Legend: x= unknown, u= unchanged  
DS30491C-page 132  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 10-9:  
PORTD BLOCK DIAGRAM  
IN I/O PORT MODE  
10.4 PORTD, TRISD and LATD  
Registers  
PORTD is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISD. Setting a  
TRISD bit (= 1) will make the corresponding PORTD  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISD bit (= 0)  
will make the corresponding PORTD pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
RD LATD  
Data  
Bus  
D
Q
WR LATD  
or  
PORTD  
I/O pin(1)  
CK  
Data Latch  
The Data Latch register (LATD) is also memory mapped.  
Read-modify-write operations on the LATD register read  
and write the latched output value for PORTD.  
D
Q
Schmitt  
Trigger  
Input  
WR TRISD  
RD TRISD  
CK  
TRIS Latch  
PORTD is an 8-bit port with Schmitt Trigger input  
buffers. Each pin is individually configurable as an input  
or output.  
Buffer  
Note:  
On a Power-on Reset, these pins are  
configured as digital inputs.  
On PIC18F8X8X devices, PORTD is multiplexed with  
the system bus as the external memory interface; I/O  
port functions are only available when the system bus  
is disabled by setting the EBDIS bit in the MEMCOM  
register (MEMCON<7>). When operating as the exter-  
nal memory interface, PORTD is the low-order byte of  
the multiplexed address/data bus (AD7:AD0).  
Q
D
EN  
RD PORTD  
Note 1: I/O pins have diode protection to VDD and VSS.  
PORTD can also be configured as an 8-bit wide micro-  
processor port (Parallel Slave Port) by setting control  
bit, PSPMODE (TRISE<4>). In this mode, the input  
buffers are TTL. See Section 10.10 “Parallel Slave  
Port (PSP)” for additional information.  
EXAMPLE 10-4:  
INITIALIZING PORTD  
CLRF  
PORTD  
; Initialize PORTD by  
; clearing output  
; data latches  
CLRF  
LATD  
; Alternate method  
; to clear output  
; data latches  
MOVLW 0CFh  
MOVWF TRISD  
; Value used to  
; initialize data  
; direction  
; Set RD<3:0> as inputs  
; RD<5:4> as outputs  
; RD<7:6> as inputs  
2004 Microchip Technology Inc.  
DS30491C-page 133  
PIC18F6585/8585/6680/8680  
FIGURE 10-10:  
PORTD BLOCK DIAGRAM IN SYSTEM BUS MODE (PIC18F8X8X ONLY)  
Q
D
EN  
RD PORTD  
RD LATD  
Data Bus  
Port  
D
Q
0
1
Data  
WR LATD  
or PORTD  
(1)  
I/O pin  
CK  
Data Latch  
D
Q
TTL  
WR TRISD  
RD TRISD  
CK  
Input  
Buffer  
TRIS Latch  
Bus Enable  
System Bus  
Control  
Data/TRIS Out  
Drive Bus  
Instruction Register  
Instruction Read  
Note 1: I/O pins have protection diodes to VDD and VSS.  
DS30491C-page 134  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 10-7: PORTD FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
RD0/PSP0/AD0(2)  
RD1/PSP1/AD1(2)  
RD2/PSP2/AD2(2)  
RD3/PSP3/AD3(2)  
RD4/PSP4/AD4(2)  
RD5/PSP5/AD5(2)  
RD6/PSP6/AD6(2)  
RD7/PSP7/AD7(2)  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
Input/output port pin, Parallel Slave Port bit 0 or address/data bus bit 0.  
Input/output port pin, Parallel Slave Port bit 1 or address/data bus bit 1.  
Input/output port pin, Parallel Slave Port bit 2 or address/data bus bit 2.  
Input/output port pin, Parallel Slave Port bit 3 or address/data bus bit 3.  
Input/output port pin, Parallel Slave Port bit 4 or address/data bus bit 4.  
Input/output port pin, Parallel Slave Port bit 5 or address/data bus bit 5.  
Input/output port pin, Parallel Slave Port bit 6 or address/data bus bit 6.  
Input/output port pin, Parallel Slave Port bit 7 or address/data bus bit 7.  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in System Bus or Parallel Slave  
Port mode.  
2: Available in PIC18F8X8X devices only.  
TABLE 10-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
PORTD  
LATD  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
0000 ---- 0000 ----  
LATD Data Output Register  
PORTD Data Direction Register  
TRISD  
PSPCON  
IBF  
OBF  
IBOV PSPMODE  
WAIT1 WAIT0  
MEMCON EBDIS  
WM1  
WM0 0-00 --00 0-00 --00  
Legend: x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used by PORTD.  
2004 Microchip Technology Inc.  
DS30491C-page 135  
PIC18F6585/8585/6680/8680  
Pin RE7 can be configured as the alternate peripheral  
10.5 PORTE, TRISE and LATE  
Registers  
pin for the CCP2 module when the device is operating  
in Microcontroller mode. This is done by clearing the  
configuration bit, CCP2MX, in configuration register,  
CONFIG3H (CONFIG3H<0>).  
PORTE is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISE. Setting a  
TRISE bit (= 1) will make the corresponding PORTE  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISE bit (= 0)  
will make the corresponding PORTE pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
Note:  
For PIC18F8X8X (80-pin) devices operat-  
ing in other than Microcontroller mode,  
PORTE defaults to the system bus on  
Power-on Reset.  
Read-modify-write operations on the LATE register  
read and write the latched output value for PORTE.  
EXAMPLE 10-5:  
INITIALIZING PORTE  
PORTE is an 8-bit port with Schmitt Trigger input  
buffers. Each pin is individually configurable as an input  
or output. PORTE is multiplexed with the Enhanced  
CCP module (Table 10-9).  
CLRF  
PORTE  
LATE  
03h  
; Initialize PORTE by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
;initializedata  
; direction  
CLRF  
On PIC18F8X8X devices, PORTE is also multiplexed  
with the system bus as the external memory interface;  
the I/O bus is available only when the system bus is  
disabled by setting the EBDIS bit in the MEMCON  
register (MEMCON<7>). If the device is configured in  
Microprocessor or Extended Microcontroller mode, then  
the PORTE<7:0> becomes the high byte of the address/  
data bus for the external program memory interface. In  
Microcontroller mode, the PORTE<2:0> pins become the  
control inputs for the Parallel Slave Port when bit  
PSPMODE (PSPCON<4>) is set. (Refer to  
Section 4.1.1 “PIC18F8X8X Program Memory  
Modes” for more information on program memory  
modes.)  
MOVLW  
MOVWF  
TRISE  
; Set RE1:RE0 as inputs  
; RE7:RE2 as outputs  
When the Parallel Slave Port is active, three PORTE  
pins (RE0/RD/AD8, RE1/WR/AD9 and RE2/CS/AD10)  
function as its control inputs. This automatically occurs  
when the PSPMODE bit (PSPCON<4>) is set. Users  
must also make certain that bits TRISE<2:0> are set to  
configure the pins as digital inputs and the ADCON1  
register is configured for digital I/O. The PORTE PSP  
control functions are summarized in Table 10-9.  
DS30491C-page 136  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 10-11:  
PORTE BLOCK DIAGRAM IN I/O MODE  
Peripheral Out Select  
Peripheral Data Out  
VDD  
P
0
1
RD LATE  
Data Bus  
WR LATE  
or WR PORTE  
D
Q
Q
(1)  
I/O pin  
CK  
Data Latch  
N
D
Q
Q
TRIS OVERRIDE  
VSS  
WR TRISE  
TRIS  
Override  
CK  
Pin Override  
Peripheral  
TRIS Latch  
RE0  
RE1  
RE2  
RE3  
RE4  
RE5  
RE6  
RE7  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
External Bus  
External Bus  
External Bus  
External Bus  
External Bus  
External Bus  
External Bus  
External Bus  
RD TRISE  
Schmitt  
Trigger  
Peripheral Enable  
Q
D
EN  
RD PORTE  
Peripheral Data In  
Note 1: I/O pins have diode protection to VDD and VSS.  
FIGURE 10-12:  
PORTE BLOCK DIAGRAM IN SYSTEM BUS MODE (PIC18F8X8X ONLY)  
Q
D
EN  
RD PORTE  
RD LATE  
Data Bus  
Port  
D
Q
0
1
Data  
WR LATE  
or PORTE  
(1)  
I/O pin  
CK  
Data Latch  
D
Q
TTL  
WR TRISE  
CK  
Input  
Buffer  
TRIS Latch  
RD TRISE  
Bus Enable  
Data/TRIS Out  
Drive Bus  
System Bus  
Control  
Instruction Register  
Instruction Read  
Note 1: I/O pins have protection diodes to VDD and VSS.  
2004 Microchip Technology Inc.  
DS30491C-page 137  
PIC18F6585/8585/6680/8680  
TABLE 10-9:  
Name  
PORTE FUNCTIONS  
Bit#  
Buffer Type  
Function  
RE0/RD/AD8(2)  
RE1/WR/AD9(2)  
RE2/CS/AD10(2)  
bit 0  
ST/TTL(1)  
Input/output port pin, read control for Parallel Slave Port or  
address/data bit 8.  
For RD (PSP Control mode):  
1= Not a read operation  
0= Read operation, reads PORTD register (if chip selected)  
bit 1  
bit 2  
ST/TTL(1)  
ST/TTL(1)  
Input/output port pin, write control for Parallel Slave Port or  
address/data bit 9.  
For WR (PSP Control mode):  
1= Not a write operation  
0= Write operation, writes PORTD register (if chip selected)  
Input/output port pin, chip select control for Parallel Slave Port or  
address/data bit 10.  
For CS (PSP Control mode):  
1= Device is not selected  
0= Device is selected  
RE3/AD11(2)  
RE4/AD12(2)  
RE5/AD13/(2)P1C(3) bit 5  
RE6/AD14/(2)P1B(3)  
RE7/CCP2/AD15(2)  
bit 3  
bit 4  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
Input/output port pin or address/data bit 11.  
Input/output port pin or address/data bit 12.  
Input/output port pin, address/data bit 13 or ECCP1 PWM output C.  
Input/output port pin, address/data bit 13 or ECCP1 PWM output B.  
bit 6  
bit 7  
Input/output port pin, Capture 2 input/Compare 2 output/PWM output  
(PIC18F8X20 devices in Microcontroller mode only) or  
address/data bit 15.  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O or CCP mode, and TTL buffers when in System Bus or PSP  
Control mode.  
2: Available in PIC18F8X8X devices only.  
3: On PIC18F8X8X devices, these pins may be moved to RHY or RH6 by changing the ECCPMX  
configuration bit.  
TABLE 10-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on  
Value on:  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
1111 1111  
xxxx xxxx  
xxxx xxxx  
0-00 --00  
0000 ----  
1111 1111  
uuuu uuuu  
uuuu uuuu  
0000 --00  
0000 ----  
TRISE  
PORTE Data Direction Control Register  
PORTE  
LATE  
Read PORTE pin/Write PORTE Data Latch  
Read PORTE Data Latch/Write PORTE Data Latch  
MEMCON EBDIS  
PSPCON IBF  
WAIT1  
WAIT0  
WM1  
WM0  
OBF  
IBOV PSPMODE  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTE.  
DS30491C-page 138  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
EXAMPLE 10-6:  
INITIALIZING PORTF  
10.6 PORTF, LATF and TRISF Registers  
CLRF  
PORTF  
; Initialize PORTF by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
PORTF is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISF. Setting a  
TRISF bit (= 1) will make the corresponding PORTF pin  
an input (i.e., put the corresponding output driver in a  
high-impedance mode). Clearing a TRISF bit (= 0) will  
make the corresponding PORTF pin an output (i.e., put  
the contents of the output latch on the selected pin).  
CLRF  
LATF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
07h  
CMCON  
0Fh  
ADCON1  
0CFh  
;
; Turn off comparators  
;
; Set PORTF as digital I/O  
; Value used to  
; initialize data  
; direction  
; Set RF3:RF0 as inputs  
; RF5:RF4 as outputs  
; RF7:RF6 as inputs  
Read-modify-write operations on the LATF register  
read and write the latched output value for PORTF.  
PORTF is multiplexed with several analog peripheral  
functions, including the A/D converter inputs and  
comparator inputs, outputs, and voltage reference.  
MOVWF  
TRISF  
Note 1: On a Power-on Reset, the RF6:RF0 pins  
are configured as inputs and read as ‘0’.  
2: To configure PORTF as digital I/O, turn off  
comparators and set ADCON1 value.  
FIGURE 10-13:  
PORTF RF1/AN6/C2OUT AND RF2/AN7/C1OUT PINS BLOCK DIAGRAM  
Port/Comparator Select  
Comparator Data Out  
VDD  
P
0
1
RD LATF  
Q
Data Bus  
D
WR LATF or  
I/O pin  
WR PORTF  
Q
CK  
Data Latch  
N
D
Q
Q
VSS  
WR TRISF  
CK  
Analog  
Input  
Mode  
TRIS Latch  
Schmitt  
Trigger  
RD TRISF  
Q
D
EN  
RD PORTF  
To A/D Converter  
Note 1: I/O pins have diode protection to VDD and VSS.  
2004 Microchip Technology Inc.  
DS30491C-page 139  
PIC18F6585/8585/6680/8680  
FIGURE 10-14:  
RF6:RF3 AND RF0 PINS  
BLOCK DIAGRAM  
FIGURE 10-15:  
RF7 PIN BLOCK  
DIAGRAM  
RD LATF  
RD LATF  
Data  
Bus  
Data  
Bus  
D
Q
D
Q
WR LATF or  
WR PORTF  
I/O pin  
WR LATF  
or  
WR PORTF  
VDD  
CK  
Data Latch  
CK  
Q
P
Data Latch  
D
Q
N
I/O pin  
Schmitt  
Trigger  
Input  
D
Q
WR TRISF  
CK  
TRIS Latch  
Buffer  
WR TRISF  
RD TRISF  
VSS  
Analog  
CK  
TRIS Latch  
Q
TTL  
Input  
Buffer  
Input  
Mode  
RD TRISF  
ST  
Input  
Q
D
Buffer  
Q
D
EN  
RD PORTF  
SS Input  
EN  
RD PORTF  
To A/D Converter or Comparator Input  
Note:  
I/O pins have diode protection to VDD and VSS.  
Note 1: I/O pins have diode protection to VDD and VSS.  
DS30491C-page 140  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 10-11: PORTF FUNCTIONS  
Name  
RF0/AN5  
Bit#  
Buffer Type  
Function  
bit 0  
ST  
ST  
ST  
ST  
ST  
ST  
Input/output port pin or analog input.  
RF1/AN6/C2OUT bit 1  
RF2/AN7/C1OUT bit 2  
Input/output port pin, analog input or comparator 2 output.  
Input/output port pin, analog input or comparator 1 output.  
Input/output port pin, analog input or comparator 2 input (+).  
Input/output port pin, analog input or comparator 2 input (-).  
RF3/AN8/C2IN+  
RF4/AN9/C2IN-  
bit 3  
bit 4  
bit 5  
RF5/AN10/  
C1IN+/CVREF  
Input/output port pin, analog input, comparator 1 input (+) or  
comparator reference output.  
RF6/AN11/C1IN-  
RF7/SS  
bit 6  
bit 7  
ST  
Input/output port pin, analog input or comparator 1 input (-).  
ST/TTL  
Input/output port pin or slave select pin for synchronous serial port.  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
TABLE 10-12: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISF  
PORTF Data Direction Control Register  
Read PORTF pin/Write PORTF Data Latch  
Read PORTF Data Latch/Write PORTF Data Latch  
1111 1111  
xxxx xxxx  
0000 0000  
1111 1111  
uuuu uuuu  
uuuu uuuu  
--00 0000  
0000 0000  
0000 0000  
PORTF  
LATF  
ADCON1  
CMCON  
VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0 --00 0000  
C2OUT C1OUT C2INV C1INV CIS CM2 CM1 CM0 0000 0000  
CVRCON CVREN CVROE CVRR CVRSS CVR3 CVR2 CVR1 CVR0 0000 0000  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTF.  
2004 Microchip Technology Inc.  
DS30491C-page 141  
PIC18F6585/8585/6680/8680  
The pin override value is not loaded into the TRIS reg-  
ister. This allows read-modify-write of the TRIS register  
without concern due to peripheral overrides.  
10.7 PORTG, TRISG and LATG  
Registers  
PORTG is a 6-bit wide port with 5 bidirectional pins and  
1 unidirectional pin. The corresponding data direction  
register is TRISG. Setting a TRISG bit (= 1) will make  
the corresponding PORTG pin an input (i.e., put the  
corresponding output driver in a high-impedance  
mode). Clearing a TRISG bit (= 0) will make the corre-  
sponding PORTG pin an output (i.e., put the contents  
of the output latch on the selected pin).  
EXAMPLE 10-7:  
INITIALIZING PORT  
CLRF  
PORTG  
; Initialize PORTG by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
CLRF  
LATG  
MOVLW 04h  
The Data Latch register (LATG) is also memory mapped.  
Read-modify-write operations on the LATG register read  
and write the latched output value for PORTG.  
MOVWF TRISG  
; Set RG1:RG0 as outputs  
; RG2 as input  
; RG4:RG3 as inputs  
Pins RG0-RG2 on PORTG are multiplexed with the CAN  
peripheral. Refer to Section 23.0 “ECAN Module” for  
proper settings of TRISG when CAN is enabled. RG5 is  
multiplexed with MCLR/VPP. Refer to Register 24-5 for  
more information.  
Note 1: On a Power-on Reset, RG5 is enabled as  
a digital input only if Master Clear  
functionality is disabled (MCLRE = 0).  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTG pin. Some  
peripherals override the TRIS bit to make a pin an output,  
while other peripherals override the TRIS bit to make a  
pin an input. The user should refer to the corresponding  
peripheral section for the correct TRIS bit settings.  
2: If the device Master Clear is disabled,  
verify that either of the following is done to  
ensure proper entry into ICSP mode:  
a) disable Low-Voltage Programming  
(CONFIG4L<2> = 0); or  
b) make certain that RB5/KBI1/PGM is  
held low during entry into ICSP.  
Note:  
On a Power-on Reset, these pins are  
configured as digital inputs.  
FIGURE 10-16:  
RG0/CANTX1 PIN BLOCK DIAGRAM  
OPMODE2:OPMODE0 = 000  
TXD  
ENDRHI  
VDD  
0
RD LATG  
1
Data Bus  
D
Q
P
WR PORTG or  
WR LATG  
CK  
Q
Data Latch  
I/O pin  
D
Q
N
WR TRISG  
RD TRISG  
CK  
Q
TRIS Latch  
VSS  
OPMODE2:OPMODE0 = 000  
Schmitt  
Trigger  
Q
D
EN  
RD PORTG  
Note: I/O pins have diode protection to VDD and VSS.  
DS30491C-page 142  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 10-17:  
RG1/CANTX2 PIN BLOCK DIAGRAM  
TX1SRC  
OPMODE2:OPMODE0 = 000  
TX2EN  
TXD  
0
1
CANCLK  
ENDRHI  
0
1
VDD  
P
RD LATG  
Data Bus  
D
Q
WR PORTG or  
WR LATG  
CK  
Q
Data Latch  
I/O pin  
D
Q
N
WR TRISG  
RD TRISG  
CK  
Q
TRIS Latch  
VSS  
OPMODE2:OPMODE0 = 000  
Schmitt  
Trigger  
Q
D
EN  
RD PORTG  
Note: I/O pins have diode protection to VDD and VSS.  
FIGURE 10-18:  
RG2/CANRX PIN BLOCK  
DIAGRAM  
FIGURE 10-19:  
RG3 PIN BLOCK  
DIAGRAM  
RD LATG  
RD LATG  
Data Bus  
Data Bus  
D
Q
D
Q
I/O pin  
I/O pin  
WR LATG  
or  
WR PORTG  
WR LATG  
or  
WR PORTG  
CK  
CK  
Data Latch  
Data Latch  
D
Q
D
Q
Schmitt  
Trigger  
Input  
Schmitt  
Trigger  
Input  
WR TRISG  
WR TRISG  
CK  
CK  
Buffer  
Buffer  
TRIS Latch  
TRIS Latch  
RD TRISG  
RD TRISG  
Q
D
Q
D
EN  
EN  
RD PORTG  
CANRX  
RD PORTG  
Note: I/O pins have diode protection to VDD and VSS.  
Note: I/O pins have diode protection to VDD and VSS.  
2004 Microchip Technology Inc.  
DS30491C-page 143  
PIC18F6585/8585/6680/8680  
FIGURE 10-20:  
RG4/P1D PIN BLOCK DIAGRAM  
CCP1 P1D Enable  
P1D Out  
RD LATG  
1
0
Data Bus  
D
Q
I/O pin  
WR LATG  
or  
WR PORTG  
CK  
Data Latch  
Auto-Shutdown  
D
Q
Schmitt  
Trigger  
Input  
WR TRISG  
CK  
TRIS Latch  
Buffer  
RD TRISG  
Q
D
EN  
RD PORTG  
Note: I/O pins have diode protection to VDD and VSS.  
FIGURE 10-21:  
RG5/MCLR/VPP PIN BLOCK DIAGRAM  
MCLRE  
Data Bus  
RD TRISA  
RG5/MCLR/VPP  
Schmitt  
Trigger  
RD LATA  
Latch  
Q
D
EN  
RD PORTA  
High-Voltage Detect  
HV  
Internal MCLR  
Filter  
Low-Level  
MCLR Detect  
DS30491C-page 144  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 10-13: PORTG FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
RG0/CANTX1  
RG1/CANTX2  
bit 0  
bit 1  
ST  
ST  
Input/output port pin or CAN bus transmit output.  
Input/output port pin, CAN bus complimentary transmit output or CAN  
bus bit time clock.  
RG2/CANRX  
RG3  
bit 2  
bit 3  
bit 4  
bit 5  
ST  
ST  
ST  
ST  
Input/output port pin or CAN bus receive.  
Input/output port pin.  
RG4/P1D  
Input/output port pin or ECCP1 PWM output D.  
RG5/MCLR/VPP  
Master Clear input or programming voltage input (if MCLR is enabled).  
Input only port pin or programming voltage input (if MCLR is  
disabled).  
Legend: ST = Schmitt Trigger input  
TABLE 10-14: SUMMARY OF REGISTERS ASSOCIATED WITH PORTG  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTG  
LATG  
RG5(1) Read PORTF pin/Write PORTF Data Latch  
--0x xxxx --0u uuuu  
---x xxxx ---u uuuu  
---1 1111 ---1 1111  
LATG Data Output Register  
TRISG  
Data Direction Control Register for PORTG  
Legend: x= unknown, u= unchanged  
Note 1: RG5 is available as an input only when MCLR is disabled.  
2004 Microchip Technology Inc.  
DS30491C-page 145  
PIC18F6585/8585/6680/8680  
FIGURE 10-22:  
RH3:RH0 PINS BLOCK  
DIAGRAM IN I/O MODE  
10.8 PORTH, LATH and TRISH  
Registers  
Note:  
PORTH is available only on PIC18F8X8X  
devices.  
RD LATH  
Data  
Bus  
PORTH is an 8-bit wide, bidirectional I/O port. The cor-  
responding data direction register is TRISH. Setting a  
TRISH bit (= 1) will make the corresponding PORTH  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISH bit (= 0)  
will make the corresponding PORTH pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
D
Q
I/O pin(1)  
WR LATH  
or  
PORTH  
CK  
Data Latch  
D
Q
Read-modify-write operations on the LATH register  
read and write the latched output value for PORTH.  
Schmitt  
Trigger  
Input  
WR TRISH  
RD TRISH  
CK  
TRIS Latch  
Buffer  
Pins RH7:RH4 are multiplexed with analog inputs  
AN15:AN12. Pins RH3:RH0 are multiplexed with the  
system bus as the external memory interface; they are  
the high-order address bits, A19:A16. By default, pins  
RH7:RH4 are enabled as A/D inputs and pins  
RH3:RH0 are enabled as the system address bus.  
Register ADCON1 configures RH7:RH4 as I/O or A/D  
inputs. Register MEMCON configures RH3:RH0 as I/O  
or system bus pins.  
Q
D
EN  
RD PORTH  
Pins RH7 and RH6 can be configured as the alternate  
peripheral pins for CCP1 PWM output P1B and P1C,  
respectively. This is done by clearing the configuration  
bit ECCPMX, in configuration register CONFIG3H  
(CONFIG3H<1>).  
Note 1: I/O pins have diode protection to VDD and VSS.  
FIGURE 10-23:  
RH7:RH4 PINS BLOCK  
DIAGRAM IN I/O MODE  
Note 1: On Power-on Reset, PORTH pins  
RH7:RH4 default to A/D inputs and read  
as ‘0’.  
RD LATH  
Data  
Bus  
2: On Power-on Reset, PORTH pins  
D
Q
RH3:RH0 default to system bus signals.  
I/O pin(1)  
WR LATH  
or  
PORTH  
CK  
Data Latch  
EXAMPLE 10-8:  
INITIALIZING PORTH  
CLRF  
PORTH  
; Initialize PORTH by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
;
D
Q
Schmitt  
Trigger  
Input  
WR TRISH  
CLRF  
LATH  
CK  
TRIS Latch  
Buffer  
MOVLW  
MOVWF  
MOVLW  
0Fh  
ADCON1  
0CFh  
RD TRISH  
;
; Value used to  
; initialize data  
; direction  
Q
D
MOVWF  
TRISH  
; Set RH3:RH0 as inputs  
; RH5:RH4 as outputs  
; RH7:RH6 as inputs  
EN  
RD PORTH  
To A/D Converter  
Note 1: I/O pins have diode protection to VDD and VSS.  
DS30491C-page 146  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 10-24:  
RH3:RH0 PINS BLOCK DIAGRAM IN SYSTEM BUS MODE  
Q
D
EN  
RD PORTH  
RD LATD  
Data Bus  
Port  
D
Q
0
1
Data  
I/O pin(1)  
WR LATH  
or  
PORTH  
CK  
Data Latch  
D
Q
WR TRISH  
RD TRISH  
TTL  
Input  
Buffer  
CK  
TRIS Latch  
External Enable  
Address Out  
System Bus  
Control  
Drive System  
To Instruction Register  
Instruction Read  
Note 1: I/O pins have diode protection to VDD and VSS.  
2004 Microchip Technology Inc.  
DS30491C-page 147  
PIC18F6585/8585/6680/8680  
TABLE 10-15: PORTH FUNCTIONS  
Name  
RH0/A16  
Bit#  
Buffer Type  
Function  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST  
Input/output port pin or address bit 16 for external memory interface.  
Input/output port pin or address bit 17 for external memory interface.  
Input/output port pin or address bit 18 for external memory interface.  
Input/output port pin or address bit 19 for external memory interface.  
Input/output port pin or analog input channel 12.  
RH1/A17  
RH2/A18  
RH3/A19  
RH4/AN12  
RH5/AN13  
ST  
Input/output port pin or analog input channel 13.  
RH6/AN14/P1C(2)  
RH7/AN15/P1B(2)  
ST  
Input/output port pin or analog input channel 14.  
ST  
Input/output port pin or analog input channel 15.  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in System Bus or Parallel Slave  
Port mode.  
2: Alternate pin assignment when ECCPMX configuration bit is cleared.  
TABLE 10-16: SUMMARY OF REGISTERS ASSOCIATED WITH PORTH  
Value on  
Value on:  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
1111 1111  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0-00 --00  
1111 1111  
uuuu uuuu  
uuuu uuuu  
--00 0000  
0-00 --00  
TRISH  
PORTH Data Direction Control Register  
Read PORTH pin/Write PORTH Data Latch  
Read PORTH Data Latch/Write PORTH Data Latch  
PORTH  
LATH  
ADCON1  
MEMCON(1) EBDIS  
VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0  
WAIT1 WAIT0 WM1 WM0  
Legend: x= unknown, u= unchanged, – = unimplemented. Shaded cells are not used by PORTH.  
Note 1: This register is held in Reset in Microcontroller mode.  
DS30491C-page 148  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 10-25:  
PORTJ BLOCK DIAGRAM  
IN I/O MODE  
10.9 PORTJ, TRISJ and LATJ  
Registers  
Note:  
PORTJ is available only on PIC18F8X8X  
devices.  
RD LATJ  
Data  
Bus  
PORTJ is an 8-bit wide, bidirectional port. The corre-  
sponding data direction register is TRISJ. Setting a  
TRISJ bit (= 1) will make the corresponding PORTJ pin  
an input (i.e., put the corresponding output driver in a  
high-impedance mode). Clearing a TRISJ bit (= 0) will  
make the corresponding PORTJ pin an output (i.e., put  
the contents of the output latch on the selected pin).  
D
Q
I/O pin(1)  
WR LATJ  
or  
PORTJ  
CK  
Data Latch  
D
Q
Schmitt  
Trigger  
Input  
The Data Latch register (LATJ) is also memory  
mapped. Read-modify-write operations on the LATJ  
register read and write the latched output value for  
PORTJ.  
WR TRISJ  
CK  
TRIS Latch  
Buffer  
RD TRISJ  
PORTJ is multiplexed with the system bus as the  
external memory interface; I/O port functions are only  
available when the system bus is disabled. When  
operating as the external memory interface, PORTJ  
provides the control signal to external memory devices.  
The RJ5 pin is not multiplexed with any system bus  
functions.  
Q
D
EN  
RD PORTJ  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTJ pin. Some  
peripherals override the TRIS bit to make a pin an  
output, while other peripherals override the TRIS bit to  
make a pin an input. The user should refer to the  
corresponding peripheral section for the correct TRIS  
bit settings.  
Note 1: I/O pins have diode protection to VDD and VSS.  
Note:  
On a Power-on Reset, these pins are  
configured as digital inputs.  
The pin override value is not loaded into the TRIS reg-  
ister. This allows read-modify-write of the TRIS register  
without concern due to peripheral overrides.  
EXAMPLE 10-9:  
INITIALIZING PORTJ  
CLRF  
PORTJ  
; Initialize PORTG by  
; clearing output  
; data latches  
CLRF  
LATJ  
; Alternate method  
; to clear output  
; data latches  
MOVLW 0CFh  
MOVWF TRISJ  
; Value used to  
; initializedata  
; direction  
; Set RJ3:RJ0 as inputs  
; RJ5:RJ4 as output  
; RJ7:RJ6 as inputs  
2004 Microchip Technology Inc.  
DS30491C-page 149  
PIC18F6585/8585/6680/8680  
FIGURE 10-26:  
RJ5:RJ0 PINS BLOCK DIAGRAM IN SYSTEM BUS MODE  
Q
D
EN  
RD PORTJ  
RD LATJ  
Data Bus  
Port  
D
Q
0
1
Data  
I/O pin(1)  
WR LATJ  
or  
PORTJ  
CK  
Data Latch  
D
Q
WR TRISJ  
RD TRISJ  
CK  
TRIS Latch  
Control Out  
System Bus  
Control  
External Enable  
Drive System  
Note 1: I/O pins have diode protection to VDD and VSS.  
FIGURE 10-27:  
RJ7:RJ6 PINS BLOCK DIAGRAM IN SYSTEM BUS MODE  
Q
D
EN  
RD PORTJ  
RD LATJ  
Data Bus  
Port  
D
Q
0
1
Data  
I/O pin(1)  
WR LATJ  
or  
PORTJ  
CK  
Data Latch  
D
Q
WR TRISJ  
CK  
TRIS Latch  
RD TRISJ  
UB/LB Out  
WM = 01  
System Bus  
Control  
Drive System  
Note 1: I/O pins have diode protection to VDD and VSS.  
DS30491C-page 150  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 10-17: PORTJ FUNCTIONS  
Name  
RJ0/ALE  
Bit#  
Buffer Type  
Function  
bit 0  
ST  
Input/output port pin or address latch enable control for external  
memory interface.  
RJ1/OE  
bit 1  
bit 2  
bit 3  
bit 4  
ST  
ST  
ST  
ST  
Input/output port pin or output enable control for external memory  
interface.  
RJ2/WRL  
RJ3/WRH  
RJ4/BA0  
Input/output port pin or write low byte control for external memory  
interface.  
Input/output port pin or write high byte control for external memory  
interface.  
Input/output port pin or byte address 0 control for external memory  
interface.  
RJ5/CE  
RJ6/LB  
bit 5  
bit 6  
ST  
ST  
Input/output port pin or external memory chip enable.  
Input/output port pin or lower byte select control for external  
memory interface.  
RJ7/UB  
bit 7  
ST  
Input/output port pin or upper byte select control for external  
memory interface.  
Legend: ST = Schmitt Trigger input  
TABLE 10-18: SUMMARY OF REGISTERS ASSOCIATED WITH PORTJ  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTJ  
LATJ  
Read PORTJ pin/Write PORTJ Data Latch  
LATJ Data Output Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
TRISJ  
Data Direction Control Register for PORTJ  
Legend: x= unknown, u= unchanged  
2004 Microchip Technology Inc.  
DS30491C-page 151  
PIC18F6585/8585/6680/8680  
FIGURE 10-28:  
PORTD AND PORTE  
BLOCK DIAGRAM  
(PARALLEL SLAVE PORT)  
10.10 Parallel Slave Port (PSP)  
PORTD also operates as an 8-bit wide Parallel Slave  
Port, or microprocessor port, when control bit  
PSPMODE (TRISE<4>) is set. It is asynchronously  
readable and writable by the external world through RD  
control input pin, RE0/RD/AD8 and WR control input  
pin, RE1/WR/AD9.  
Data Bus  
D
Q
RDx  
pin  
WR LATD  
or  
PORTD  
CK  
Data Latch  
Note:  
For PIC18F8X8X devices, the Parallel  
Slave Port is available only in  
Microcontroller mode.  
TTL  
Q
D
The PSP can directly interface to an 8-bit micro-  
processor data bus. The external microprocessor can  
read or write the PORTD latch as an 8-bit latch. Setting  
bit PSPMODE enables port pin RE0/RD/AD8 to be the  
RD input, RE1/WR/AD9 to be the WR input and  
RE2/CS/AD10 to be the CS (chip select) input. For this  
functionality, the corresponding data direction bits of  
the TRISE register (TRISE<2:0>) must be configured  
as inputs (set). The A/D port configuration bits  
PCFG2:PCFG0 (ADCON1<2:0>) must be set, which  
will configure pins RE2:RE0 as digital I/O.  
RD PORTD  
EN  
TRIS Latch  
RD LATD  
One bit of PORTD  
Set Interrupt Flag  
PSPIF (PIR1<7>)  
A write to the PSP occurs when both the CS and WR  
lines are first detected low. A read from the PSP occurs  
when both the CS and RD lines are first detected low.  
The PORTE I/O pins become control inputs for  
the microprocessor port when bit PSPMODE  
(PSPCON<4>) is set. In this mode, the user must make  
sure that the TRISE<2:0> bits are set (pins are config-  
ured as digital inputs) and the ADCON1 is configured  
for digital I/O. In this mode, the input buffers are TTL.  
Read  
RD  
CS  
TTL  
Chip Select  
TTL  
Write  
WR  
TTL  
Note: I/O pin has protection diodes to VDD and VSS.  
DS30491C-page 152  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 10-1: PSPCON REGISTER  
R-0  
IBF  
R-0  
R/W-0  
IBOV  
R/W-0  
U-0  
U-0  
U-0  
U-0  
OBF  
PSPMODE  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
IBF: Input Buffer Full Status bit  
1= A data byte has been received and is waiting to be read by the CPU  
0= No data byte has been received  
OBF: Output Buffer Full Status bit  
1= The output buffer still holds a previously written data byte  
0= The output buffer has been read  
IBOV: Input Buffer Overflow Detect bit  
1= A write occurred when a previously input data byte has not been read  
(must be cleared in software)  
0= No overflow occurred  
bit 4  
PSPMODE: Parallel Slave Port Mode Select bit  
1= Parallel Slave Port mode  
0= General Purpose I/O mode  
bit 3-0  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
FIGURE 10-29:  
PARALLEL SLAVE PORT WRITE WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
2004 Microchip Technology Inc.  
DS30491C-page 153  
PIC18F6585/8585/6680/8680  
FIGURE 10-30:  
PARALLEL SLAVE PORT READ WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD<7:0>  
IBF  
OBF  
PSPIF  
TABLE 10-19: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTD Port Data Latch when Written; Port pins when Read  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
LATD  
LATD Data Output bits  
TRISD  
PORTD Data Direction bits  
(1)  
(1)  
(1)  
PORTE RE7/CCP2/ RE6/AD14/ RE5/AD13/  
RE4/  
RE3/ RE2/CS / RE1/WR / RE0/RD / xxxx xxxx uuuu uuuu  
AD15  
P1B  
P1C  
AD12  
AD11  
AD10  
AD9  
AD8  
LATE  
LATE Data Output bits  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
0000 ---- 0000 ----  
0000 0000 0000 0000  
TRISE  
PORTE Data Direction bits  
PSPCON  
INTCON  
IBF  
OBF  
IBOV  
PSPMODE  
INT0IE  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IF  
RBIE  
TMR0IF  
INT0IF  
RBIF  
(1)  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
CCP1IF  
CCP1IE  
CCP1IP  
TMR2IF  
TMR2IE  
TMR2IP  
TMR1IF 0000 0000 0000 0000  
TMR1IE 0000 0000 0000 0000  
TMR1IP 1111 1111 1111 1111  
(1)  
(1)  
PIE1  
IPR1  
Legend:  
x= unknown, u= unchanged, – = unimplemented, read as ‘0’. Shaded cells are not used by the Parallel Slave Port.  
Note 1: Enabled only in Microcontroller mode.  
DS30491C-page 154  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
Figure 11-1 shows a simplified block diagram of the  
Timer0 module in 8-bit mode and Figure 11-2 shows a  
simplified block diagram of the Timer0 module in 16-bit  
11.0 TIMER0 MODULE  
The Timer0 module has the following features:  
mode.  
• Software selectable as an 8-bit or 16-bit timer/  
counter  
The T0CON register (Register 11-1) is a readable and  
writable register that controls all the aspects of Timer0,  
including the prescale selection.  
• Readable and writable  
• Dedicated 8-bit software programmable prescaler  
• Clock source selectable to be external or internal  
Note:  
Timer0 is enabled on POR.  
• Interrupt-on-overflow from 0FFh to 00h in 8-bit  
mode and 0FFFFh to 0000h in 16-bit mode  
• Edge select for external clock  
REGISTER 11-1: T0CON: TIMER0 CONTROL REGISTER  
R/W-1  
TMR0ON  
bit 7  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
T0PS2  
R/W-1  
T0PS1  
R/W-1  
T0PS0  
T08BIT  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
TMR0ON: Timer0 On/Off Control bit  
1= Enables Timer0  
0= Stops Timer0  
T08BIT: Timer0 8-bit/16-bit Control bit  
1= Timer0 is configured as an 8-bit timer/counter  
0= Timer0 is configured as a 16-bit timer/counter  
T0CS: Timer0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKO)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Timer0 Prescaler Assignment bit  
1= TImer0 prescaler is not assigned. Timer0 clock input bypasses prescaler.  
0= Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.  
bit 2-0 T0PS2:T0PS0: Timer0 Prescaler Select bits  
111= 1:256 prescale value  
110= 1:128 prescale value  
101= 1:64 prescale value  
100= 1:32 prescale value  
011= 1:16 prescale value  
010= 1:8 prescale value  
001= 1:4 prescale value  
000= 1:2 prescale value  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 155  
PIC18F6585/8585/6680/8680  
FIGURE 11-1:  
TIMER0 BLOCK DIAGRAM IN 8-BIT MODE  
Data Bus  
FOSC/4  
0
1
8
0
Sync with  
Internal  
Clocks  
TMR0  
RA4/T0CKI pin  
Programmable  
Prescaler  
1
(2 TCY delay)  
T0SE  
3
PSA  
Set Interrupt  
Flag bit TMR0IF  
on Overflow  
T0PS2, T0PS1, T0PS0  
T0CS  
Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
FIGURE 11-2:  
TIMER0 BLOCK DIAGRAM IN 16-BIT MODE  
FOSC/4  
0
0
Sync with  
Internal  
Clocks  
Set Interrupt  
Flag bit TMR0IF  
on Overflow  
TMR0  
High Byte  
1
TMR0L  
Programmable  
Prescaler  
T0CKI pin  
1
8
(2 TCY delay)  
T0SE  
3
Read TMR0L  
Write TMR0L  
T0PS2, T0PS1, T0PS0  
T0CS  
PSA  
8
8
TMR0H  
8
Data Bus<7:0>  
Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
DS30491C-page 156  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
11.2.1  
SWITCHING PRESCALER  
ASSIGNMENT  
11.1 Timer0 Operation  
Timer0 can operate as a timer or as a counter.  
The prescaler assignment is fully under software  
control (i.e., it can be changed “on-the-fly” during  
program execution).  
Timer mode is selected by clearing the T0CS bit. In  
Timer mode, the Timer0 module will increment every  
instruction cycle (without prescaler). If the TMR0 regis-  
ter is written, the increment is inhibited for the following  
two instruction cycles. The user can work around this  
by writing an adjusted value to the TMR0 register.  
11.3 Timer0 Interrupt  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from 0FFh to 00h in 8-bit mode, or  
0FFFFh to 0000h in 16-bit mode. This overflow sets the  
TMR0IF bit. The interrupt can be masked by clearing  
the TMR0IE bit. The TMR0IE bit must be cleared in  
software by the Timer0 module Interrupt Service  
Routine before re-enabling this interrupt. The TMR0  
interrupt cannot awaken the processor from Sleep  
since the timer is shut-off during Sleep.  
Counter mode is selected by setting the T0CS bit. In  
Counter mode, Timer0 will increment either on every  
rising or falling edge of pin RA4/T0CKI. The increment-  
ing edge is determined by the Timer0 Source Edge  
Select bit (T0SE). Clearing the T0SE bit selects the  
rising edge. Restrictions on the external clock input are  
discussed below.  
When an external clock input is used for Timer0, it must  
meet certain requirements. The requirements ensure  
the external clock can be synchronized with the internal  
phase clock (TOSC). Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
11.4 16-Bit Mode Timer Reads  
and Writes  
TMR0H is not the high byte of the timer/counter in  
16-bit mode, but is actually a buffered version of the  
high byte of Timer0 (refer to Figure 11-2). The high byte  
of the Timer0 counter/timer is not directly readable nor  
writable. TMR0H is updated with the contents of the  
high byte of Timer0 during a read of TMR0L. This pro-  
vides the ability to read all 16 bits of Timer0 without  
having to verify that the read of the high and low byte  
were valid due to a rollover between successive reads  
of the high and low byte.  
11.2 Prescaler  
An 8-bit counter is available as a prescaler for the  
Timer0 module. The prescaler is not readable or  
writable.  
The PSA and T0PS2:T0PS0 bits determine the  
prescaler assignment and prescale ratio.  
Clearing bit PSA will assign the prescaler to the Timer0  
module. When the prescaler is assigned to the Timer0  
module, prescale values of 1:2, 1:4, ..., 1:256 are  
selectable.  
A write to the high byte of Timer0 must also take place  
through the TMR0H buffer register. Timer0 high byte is  
updated with the contents of TMR0H when a write  
occurs to TMR0L. This allows all 16 bits of Timer0 to be  
updated at once.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF TMR0, MOVWF  
TMR0, BSF TMR0, x, ..., etc.) will clear the prescaler  
count.  
Note:  
Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count but will not change the prescaler  
assignment.  
TABLE 11-1: REGISTERS ASSOCIATED WITH TIMER0  
Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Bit 1  
Bit 0  
TMR0L Timer0 Module Low Byte Register  
TMR0H Timer0 Module High Byte Register  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF 0000 000x 0000 000u  
T0CON  
TRISA  
TMR0ON  
T08BIT  
T0CS  
T0SE  
PSA  
T0PS2 T0PS1 T0PS0 1111 1111 1111 1111  
PORTA Data Direction Register  
-111 1111 -111 1111  
Legend: x= unknown, u= unchanged, = unimplemented locations, read as ‘0’. Shaded cells are not used by  
Timer0.  
2004 Microchip Technology Inc.  
DS30491C-page 157  
PIC18F6585/8585/6680/8680  
NOTES:  
DS30491C-page 158  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
Figure 12-1 is a simplified block diagram of the Timer1  
module.  
12.0 TIMER1 MODULE  
The Timer1 module timer/counter has the following  
features:  
Register 12-1 details the Timer1 Control register. This  
register controls the operating mode of the Timer1  
module and contains the Timer1 Oscillator Enable bit  
(T1OSCEN). Timer1 can be enabled or disabled by  
setting or clearing control bit, TMR1ON (T1CON<0>).  
• 16-bit timer/counter  
(two 8-bit registers; TMR1H and TMR1L)  
• Readable and writable (both registers)  
• Internal or external clock select  
• Interrupt on overflow from 0FFFFh to 0000h  
• Reset from CCP module special event trigger  
REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
RD16  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit 0  
bit 7  
bit 7  
bit 6  
RD16: 16-bit Read/Write Mode Enable bit  
1= Enables register read/write of Timer1 in one 16-bit operation  
0= Enables register read/write of Timer1 in two 8-bit operations  
Unimplemented: Read as ‘0’  
bit 5-4 T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 prescale value  
10= 1:4 prescale value  
01= 1:2 prescale value  
00= 1:1 prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable bit  
1= Timer1 oscillator is enabled  
0= Timer1 oscillator is shut-off  
The oscillator inverter and feedback resistor are turned off to eliminate power drain.  
T1SYNC: Timer1 External Clock Input Synchronization Select bit  
When TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RC0/T1OSO/T13CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 159  
PIC18F6585/8585/6680/8680  
When TMR1CS = 0, Timer1 increments every instruc-  
12.1 Timer1 Operation  
tion cycle. When TMR1CS = 1, Timer1 increments on  
every rising edge of the external clock input or the  
Timer1 oscillator if enabled.  
Timer1 can operate in one of these modes:  
• As a timer  
• As a synchronous counter  
• As an asynchronous counter  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI and RC0/T1OSO/T13CKI pins  
become inputs. That is, the TRISC<1:0> value is  
ignored and the pins are read as ‘0’.  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
Timer1 also has an internal “Reset input”. This Reset  
can be generated by the CCP module (Section 15.0  
“Capture/Compare/PWM (CCP) Modules”).  
FIGURE 12-1:  
TIMER1 BLOCK DIAGRAM  
CCP Special Event Trigger  
TMR1IF  
Overflow  
Interrupt  
Flag Bit  
Synchronized  
TMR1  
0
Clock Input  
CLR  
TMR1L  
TMR1H  
1
TMR1ON  
On/Off  
T1SYNC  
T1OSC  
1
T13CKI/T1OSO  
T1OSI  
Synchronize  
det  
T1OSCEN  
Enable  
Oscillator  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
(1)  
0
2
Sleep Input  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
FIGURE 12-2:  
TIMER1 BLOCK DIAGRAM: 16-BIT READ/WRITE MODE  
Data Bus<7:0>  
8
TMR1H  
8
8
Write TMR1L  
Read TMR1L  
CCP Special Event Trigger  
0
TMR1IF  
Overflow  
Interrupt  
Synchronized  
Clock Input  
TMR1  
8
CLR  
Timer 1  
High Byte  
TMR1L  
Flag bit  
1
TMR1ON  
T1SYNC  
On/Off  
T1OSC  
T13CKI/T1OSO  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
FOSC/4  
Internal  
Clock  
0
(1)  
T1OSI  
2
Sleep Input  
TMR1CS  
T1CKPS1:T1CKPS0  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
DS30491C-page 160  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
12.2 Timer1 Oscillator  
12.4 Resetting Timer1 Using a CCP  
Trigger Output  
A crystal oscillator circuit is built-in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit, T1OSCEN (T1CON<3>). The oscil-  
lator is a low-power oscillator rated up to 200 kHz. It will  
continue to run during Sleep. It is primarily intended for  
a 32 kHz crystal. Table 12-1 shows the capacitor  
selection for the Timer1 oscillator.  
If the CCP module is configured in Compare mode  
to generate “special event trigger”  
a
(CCP1M3:CCP1M0 = 1011), this signal will reset  
Timer1 and start an A/D conversion (if the A/D module  
is enabled).  
Note:  
The special event triggers from the CCP1  
module will not set interrupt flag bit  
TMR1IF (PIR1<0>).  
The user must provide a software time delay to ensure  
proper start-up of the Timer1 oscillator.  
Timer1 must be configured for either Timer or Synchro-  
nized Counter mode to take advantage of this feature.  
If Timer1 is running in Asynchronous Counter mode,  
this Reset operation may not work.  
TABLE 12-1: CAPACITOR SELECTION  
FOR THE ALTERNATE  
OSCILLATOR  
Osc Type  
Freq  
C1  
C2  
In the event that a write to Timer1 coincides with a  
special event trigger from CCP1, the write will take  
precedence.  
LP  
32 kHz  
TBD(1)  
TBD(1)  
Crystal to be Tested:  
32.768 kHz Epson C-001R32.768K-A  
In this mode of operation, the CCPR1H:CCPR1L register  
pair effectively becomes the period register for Timer1.  
20 PPM  
Note 1: Microchip suggests 33 pF as a starting  
point in validating the oscillator circuit.  
12.5 Timer1 16-Bit Read/Write Mode  
2: Higher capacitance increases the stability  
of the oscillator but also increases the  
start-up time.  
Timer1 can be configured for 16-bit reads and writes  
(see Figure 12-2). When the RD16 control bit  
(T1CON<7>) is set, the address for TMR1H is mapped  
to a buffer register for the high byte of Timer1. A read  
from TMR1L will load the contents of the high byte of  
Timer1 into the Timer1 high byte buffer. This provides  
the user with the ability to accurately read all 16 bits of  
Timer1 without having to determine whether a read of  
the high byte, followed by a read of the low byte, is valid  
due to a rollover between reads.  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate  
values  
of  
external  
components.  
4: Capacitor values are for design guidance  
only.  
A write to the high byte of Timer1 must also take place  
through the TMR1H Buffer register. Timer1 high byte is  
updated with the contents of TMR1H when a write  
occurs to TMR1L. This allows a user to write all 16 bits  
to both the high and low bytes of Timer1 at once.  
12.3 Timer1 Interrupt  
The TMR1 register pair (TMR1H:TMR1L) increments  
from 0000h to 0FFFFh and rolls over to 0000h. The  
TMR1 interrupt, if enabled, is generated on overflow  
which is latched in interrupt flag bit, TMR1IF  
(PIR1<0>). This interrupt can be enabled/disabled by  
setting/clearing TMR1 interrupt enable bit, TMR1IE  
(PIE1<0>).  
The high byte of Timer1 is not directly readable or writ-  
able in this mode. All reads and writes must take place  
through the Timer1 High Byte Buffer register. Writes to  
TMR1H do not clear the Timer1 prescaler. The  
prescaler is only cleared on writes to TMR1L.  
TABLE 12-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
RBIF  
0000 0000 0000 0000  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 0111 1111 0111 1111  
PIE1  
TXIE  
TXIP  
IPR1  
TMR1L  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
T1CON  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu  
Legend:  
x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used by the Timer1 module.  
2004 Microchip Technology Inc.  
DS30491C-page 161  
PIC18F6585/8585/6680/8680  
13.1 Timer2 Operation  
13.0 TIMER2 MODULE  
Timer2 can be used as the PWM time base for the  
PWM mode of the CCP module. The TMR2 register is  
readable and writable and is cleared on any device  
Reset. The input clock (FOSC/4) has a prescale option  
of 1:1, 1:4 or 1:16, selected by control bits,  
T2CKPS1:T2CKPS0 (T2CON<1:0>). The match out-  
put of TMR2 goes through a 4-bit postscaler (which  
gives a 1:1 to 1:16 scaling inclusive) to generate a  
TMR2 interrupt latched in flag bit, TMR2IF (PIR1<1>).  
The Timer2 module timer has the following features:  
• 8-bit timer (TMR2 register)  
• 8-bit period register (PR2)  
• Readable and writable (both registers)  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
• Interrupt on TMR2 match of PR2  
• SSP module optional use of TMR2 output to  
generate clock shift  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
Timer2 has a control register shown in Register 13-1.  
Timer2 can be shut-off by clearing control bit, TMR2ON  
(T2CON<2>), to minimize power consumption.  
Figure 13-1 is a simplified block diagram of the Timer2  
module. Register 13-1 shows the Timer2 Control regis-  
ter. The prescaler and postscaler selection of Timer2  
are controlled by this register.  
• a write to the TMR2 register  
• a write to the T2CON register  
• any device Reset (Power-on Reset, MCLR Reset,  
Watchdog Timer Reset, or Brown-out Reset)  
TMR2 is not cleared when T2CON is written.  
REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit 0  
bit 7  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3 T2OUTPS3:T2OUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 postscale  
0001= 1:2 postscale  
1111= 1:16 postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0 T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 162  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
13.2 Timer2 Interrupt  
13.3 Output of TMR2  
The Timer2 module has an 8-bit period register, PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is  
initialized to 0FFh upon Reset.  
The output of TMR2 (before the postscaler) is fed to the  
synchronous serial port module which optionally uses it  
to generate the shift clock.  
FIGURE 13-1:  
TIMER2 BLOCK DIAGRAM  
Sets Flag  
TMR2  
bit TMR2IF  
(1)  
Output  
Prescaler  
Reset  
EQ  
FOSC/4  
TMR2  
1:1, 1:4, 1:16  
Postscaler  
1:1 to 1:16  
2
Comparator  
PR2  
T2CKPS1:T2CKPS0  
4
T2OUTPS3:T2OUTPS0  
Note 1: TMR2 register output can be software selected by the SSP module as a baud clock.  
TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
RBIF  
0000 0000 0000 0000  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
0000 0000 0000 0000  
PIE1  
TXIE  
TXIP  
IPR1  
TMR2  
T2CON  
PR2  
Timer2 Module Register  
T2OUTPS3 T2OUTPS2 T2OUTPS1 T2OUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Timer2 Period Register 1111 1111 1111 1111  
x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used by the Timer2 module.  
Legend:  
2004 Microchip Technology Inc.  
DS30491C-page 163  
PIC18F6585/8585/6680/8680  
Figure 14-1 is a simplified block diagram of the Timer3  
module.  
14.0 TIMER3 MODULE  
The Timer3 module timer/counter has the following  
features:  
Register 14-1 shows the Timer3 Control register. This  
register controls the operating mode of the Timer3  
module and sets the Enhanced CCP1 and CCP2 clock  
source.  
• 16-bit timer/counter  
(two 8-bit registers; TMR3H and TMR3L)  
• Readable and writable (both registers)  
• Internal or external clock select  
Register 12-1 shows the Timer1 Control register. This  
register controls the operating mode of the Timer1  
module, as well as containing the Timer1 oscillator  
enable bit (T1OSCEN) which can be a clock source for  
Timer3.  
• Interrupt on overflow from FFFFh to 0000h  
• Reset from CCP module trigger  
REGISTER 14-1: T3CON: TIMER3 CONTROL REGISTER  
R/W-0  
RD16  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON  
bit 0  
bit 7  
bit 7  
RD16: 16-bit Read/Write Mode Enable bit  
1= Enables register read/write of Timer3 in one 16-bit operation  
0= Enables register read/write of Timer3 in two 8-bit operations  
bit 6, 3 T3CCP2:T3CCP1: Timer3 and Timer1 to CCPx Enable bits  
1x= Timer3 is the clock source for compare/capture of CCP1 and CCP2 modules  
01= Timer3 is the clock source for compare/capture of CCP2 module,  
Timer1 is the clock source for compare/capture of CCP1 module  
00= Timer1 is the clock source for compare/capture of CCP1 and CCP2 modules  
bit 5-4 T3CKPS1:T3CKPS0: Timer3 Input Clock Prescale Select bits  
11= 1:8 prescale value  
10= 1:4 prescale value  
01= 1:2 prescale value  
00= 1:1 prescale value  
bit 2  
T3SYNC: Timer3 External Clock Input Synchronization Control bit  
(Not usable if the system clock comes from Timer1/Timer3.)  
When TMR3CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR3CS = 0:  
This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.  
bit 1  
bit 0  
TMR3CS: Timer3 Clock Source Select bit  
1= External clock input from Timer1 oscillator or T13CKI  
(on the rising edge after the first falling edge)  
0= Internal clock (FOSC/4)  
TMR3ON: Timer3 On bit  
1= Enables Timer3  
0= Stops Timer3  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 164  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
When TMR3CS = 0, Timer3 increments every instruc-  
tion cycle. When TMR3CS = 1, Timer3 increments on  
every rising edge of the Timer1 external clock input or  
the Timer1 oscillator if enabled.  
14.1 Timer3 Operation  
Timer3 can operate in one of these modes:  
• As a timer  
• As a synchronous counter  
• As an asynchronous counter  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI and RC0/T1OSO/T13CKI pins  
become inputs. That is, the TRISC<1:0> value is  
The operating mode is determined by the clock select  
bit, TMR3CS (T3CON<1>).  
ignored and the pins are read as ‘0’.  
Timer3 also has an internal “Reset input”. This Reset  
can be generated by the CCP module (Section 14.0  
“Timer3 Module”).  
FIGURE 14-1:  
TIMER3 BLOCK DIAGRAM  
CCP Special Trigger  
T3CCPx  
TMR3IF  
Overflow  
Interrupt  
Synchronized  
Clock Input  
0
Flag bit  
CLR  
TMR3H  
T1OSC  
TMR3L  
1
TMR3ON  
On/Off  
T3SYNC  
(3)  
T1OSO/  
T13CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
FOSC/4  
Internal  
Clock  
0
(1)  
T1OSI  
2
TMR3CS  
Sleep Input  
T3CKPS1:T3CKPS0  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
FIGURE 14-2:  
TIMER3 BLOCK DIAGRAM CONFIGURED IN 16-BIT READ/WRITE MODE  
Data Bus<7:0>  
8
TMR3H  
8
8
Write TMR3L  
Read TMR3L  
CCP Special Trigger  
T3CCPx  
0
Synchronized  
Clock Input  
8
TMR3  
Set TMR3IF Flag bit  
on Overflow  
CLR  
Timer3  
High Byte  
TMR3L  
1
To Timer1 Clock Input  
TMR3ON  
On/Off  
T3SYNC  
T1OSC  
T1OSO/  
T13CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
FOSC/4  
Internal  
Clock  
0
(1)  
T1OSI  
2
Sleep Input  
T3CKPS1:T3CKPS0  
TMR3CS  
Note 1: When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
2004 Microchip Technology Inc.  
DS30491C-page 165  
PIC18F6585/8585/6680/8680  
14.2 Timer1 Oscillator  
14.4 Resetting Timer3 Using a CCP  
Trigger Output  
The Timer1 oscillator may be used as the clock source  
for Timer3. The Timer1 oscillator is enabled by setting  
the T1OSCEN (T1CON<3>) bit. The oscillator is a low-  
power oscillator rated up to 200 kHz. See Section 12.0  
“Timer1 Module” for further details.  
If the CCP module is configured in Compare mode  
to  
generate  
a
“special  
event  
trigger”  
(CCP1M3:CCP1M0 = 1011), this signal will reset  
Timer3.  
Note:  
The special event triggers from the CCP  
module will not set interrupt flag bit,  
TMR3IF (PIR1<0>).  
14.3 Timer3 Interrupt  
The TMR3 register pair (TMR3H:TMR3L) increments  
from 0000h to 0FFFFh and rolls over to 0000h. The  
TMR3 interrupt, if enabled, is generated on overflow  
which is latched in interrupt flag bit, TMR3IF  
(PIR2<1>). This interrupt can be enabled/disabled by  
setting/clearing TMR3 interrupt enable bit, TMR3IE  
(PIE2<1>).  
Timer3 must be configured for either Timer or Synchro-  
nized Counter mode to take advantage of this feature.  
If Timer3 is running in Asynchronous Counter mode,  
this Reset operation may not work. In the event that a  
write to Timer3 coincides with a special event trigger  
from CCP1, the write will take precedence. In this mode  
of operation, the CCPR1H:CCPR1L register pair  
effectively becomes the period register for Timer3.  
TABLE 14-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 0000 0000 0000  
PIR2  
CMIF  
CMIE  
CMIP  
EEIF  
EEIE  
EEIP  
BCLIF  
BCLIE  
BCLIP  
LVDIF  
LVDIE  
LVDIP  
TMR3IF  
TMR3IE  
TMR3IP  
CCP2IF -0-0 0000 -0-0 0000  
CCP2IE -0-0 0000 -0-0 0000  
CCP2IP -1-1 1111 -1-1 1111  
xxxx xxxx uuuu uuuu  
PIE2  
IPR2  
TMR3L  
TMR3H  
T1CON  
T3CON  
Legend:  
Holding Register for the Least Significant Byte of the 16-bit TMR3 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR3 Register  
xxxx xxxx uuuu uuuu  
RD16  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu  
x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used by the Timer3 module.  
DS30491C-page 166  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
Additionally, the CCP2 special event trigger may be  
used to start an A/D conversion if the A/D module is  
enabled.  
15.0 CAPTURE/COMPARE/PWM  
(CCP) MODULES  
PIC18FXX80/XX85 devices contain a total of two CCP  
modules: CCP1 and CCP2. CCP1 is an enhanced  
version of the CCP2 module. CCP1 is fully backward  
compatible with the CCP2 module.  
To avoid duplicate information, this section describes  
basic CCP module operation that applies to both CCP1  
and CCP2. Enhanced CCP functionality of the  
CCP1 module is described in Section 16.0 “Enhanced  
Capture/Compare/PWM (ECCP) Module”.  
The CCP1 module differs from CCP2 in the following  
respect:  
The control registers for the CCP1 and CCP2 modules  
are shown in Register 15-1 and Register 15-2,  
respectively. Table 15-2 details the interactions of the  
CCP and ECCP modules.  
• CCP1 contains a special trigger event that may  
reset Timer1 or the Timer3 register pair  
• CCP1 contains “CAN Message Time-Stamp Trigger”  
• CCP1 contains enhanced PWM output with  
programmable dead band and auto-shutdown  
functionality  
REGISTER 15-1: CCP1CON REGISTER  
R/W-0  
CCP1M0  
bit 0  
R/W-0  
P1M1  
R/W-0  
P1M0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1  
bit 7  
bit 7-6  
P1M1:P1M0: Enhanced PWM Output Configuration bits  
If CCP1M<3:2> = 00, 01, 10:  
xx=P1A assigned as capture/compare input; P1B, P1C, P1D assigned as port pins  
If CCP1M<3:2> = 11:  
00= Single output; P1A modulated; P1B, P1C, P1D assigned as port pins  
01= Full-bridge output forward; P1D modulated; P1A active; P1B, P1C inactive  
10= Half-bridge output; P1A, P1B modulated with dead-band control; P1C, P1D assigned as  
port pins  
11= Full-bridge output reverse; P1B modulated; P1C active; P1A, P1D inactive  
bit 5-4  
DC1B1:DC1B0: PWM Duty Cycle bit 1 and bit 0  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two LSbs of the 10-bit PWM duty cycle. The eight MSbs of the duty cycle are  
found in CCPR1L.  
bit 3-0  
CCP1M3:CCP1M0: Enhanced CCP Mode Select bits  
0000= Capture/Compare/PWM off (resets CCP1 module)  
0001= Reserved  
0010= Compare mode, toggle output on match  
0011= Reserved  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, initialize CCP pin low, on compare match force CCP pin high  
1001= Compare mode, initialize CCP pin high, on compare match force CCP pin low  
1010= Compare mode, generate software interrupt only, CCP pin is unaffected  
1011= Compare mode, trigger special event, resets TMR1 or TMR3  
1100= PWM mode; P1A, P1C active-high; P1B, P1D active-high  
1101= PWM mode; P1A, P1C active-high; P1B, P1D active-low  
1110= PWM mode; P1A, P1C active-low; P1B, P1D active-high  
1111= PWM mode; P1A, P1C active-low; P1B, P1D active-low  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 167  
PIC18F6585/8585/6680/8680  
REGISTER 15-2: CCP2CON REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DC2B1  
DC2B0  
CCP2M3 CCP2M2 CCP2M1 CCP2M0  
bit 0  
bit 7  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
DC2B1:DC2B0: PWM Duty Cycle bit 1 and bit 0  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two LSbs of the 10-bit PWM duty cycle. The eight MSbs of the duty cycle are  
found in CCPR2L.  
bit 3-0  
CCP2M3:CCP2M0: CCP2 Mode Select bits  
0000= Capture/Compare/PWM off (resets CCP2 module)  
0001= Reserved  
0010= Compare mode, toggle output on match  
0011= Reserved  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, initialize CCP pin low, on compare match force CCP pin high  
1001= Compare mode, initialize CCP pin high, on compare match force CCP pin low  
1010= Compare mode, generate software interrupt only, CCP pin is unaffected  
1011= Compare mode, trigger special event, resets TMR1 or TMR3 and starts A/D conversion  
if A/D module is enabled  
11xx= PWM mode  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 168  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
An event is selected by control bits CCPxM3:CCPxM0  
(CCPxCON<3:0>). When a capture is made, the inter-  
rupt request flag bit, CCPxIF (PIR registers), is set. It  
must be cleared in software. If another capture occurs  
before the value in register CCPRx is read, the old  
captured value will be lost.  
15.1 CCP Module  
Both CCP1 and CCP2 are comprised of two 8-bit  
registers: CCPRxL (low byte) and CCPRxH (high byte),  
1 x 2. The CCPxCON register controls the  
operation of CCPx. All are readable and writable.  
Table 15-1 shows the timer resources of the CCP  
module modes.  
15.2.1  
CCP PIN CONFIGURATION  
In Capture mode, the CCPx pin should be configured  
as an input by setting the appropriate TRIS bit.  
TABLE 15-1: CCP MODE – TIMER  
RESOURCE  
Note:  
If the CCPx is configured as an output, a  
write to the port can cause a capture  
condition.  
CCP Mode  
Timer Resource  
Capture  
Compare  
PWM  
Timer1 or Timer3  
Timer1 or Timer3  
Timer2  
15.2.2  
TIMER1/TIMER3 MODE SELECTION  
The timer used with each CCP module is selected in  
the T3CCP2:T3CCP1 bits of the T3CON register. The  
timers used with the capture feature (either Timer1 or  
Timer3) must be running in Timer mode or Synchro-  
nized Counter mode. In Asynchronous Counter mode,  
the capture operation may not work.  
15.2 Capture Mode  
In Capture mode, CCPRxH:CCPRxL captures the  
16-bit value of the TMR1 or TMR3 register when an  
event occurs on pin CCPn. An event is defined as:  
• every falling edge  
• every rising edge  
• every 4th rising edge  
• every 16th rising edge  
TABLE 15-2: INTERACTION OF CCP MODULES  
CCP1  
Mode  
CCP2  
Mode  
Interaction  
Capture  
Capture  
Capture  
TMR1 or TMR3 time base. Time base can be different for each CCP.  
Compare  
The compare could be configured for the special event trigger which clears either TMR1  
or TMR3 depending upon which time base is used.  
Compare  
Compare  
The compare(s) could be configured for the special event trigger which clears TMR1 or  
TMR3 depending upon which time base is used.  
PWM  
PWM  
PWM  
PWM  
The PWMs will have the same frequency and update rate (TMR2 interrupt).  
Capture  
Compare  
None.  
None.  
2004 Microchip Technology Inc.  
DS30491C-page 169  
PIC18F6585/8585/6680/8680  
15.2.3  
SOFTWARE INTERRUPT  
15.2.5  
CAN MESSAGE TIME-STAMP  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCPxIE (PIE registers) clear to avoid false interrupts  
and should clear the flag bit, CCPxIF, following any  
such change in operating mode.  
The CAN capture event occurs when a message is  
received in any of the receive buffers. When config-  
ured, the CAN module provides the trigger to the CCP1  
module to cause a capture event. This feature is  
provided to time-stamp the received CAN messages.  
This feature is enabled by setting the CANCAP bit of  
the CAN I/O Control register (CIOCON<4>). The  
message receive signal from the CAN module then  
takes the place of the events on RC2/CCP1.  
15.2.4  
CCP PRESCALER  
There are four prescaler settings specified by bits  
CCPxM3:CCPxM0. Whenever the CCPx module is  
turned off, or the CCPx module is not in Capture mode,  
the prescaler counter is cleared. This means that any  
Reset will clear the prescaler counter.  
EXAMPLE 15-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
Switching from one capture prescaler to another may  
generate an interrupt. The prescaler counter will not be  
cleared; therefore, the first capture may be from a  
non-zero prescaler. Example 15-1 shows the  
recommended method for switching between capture  
prescalers. This example also clears the prescaler  
counter and will not generate the “false” interrupt.  
CLRF  
MOVLW  
CCP1CON  
NEW_CAPT_PS  
; Turn CCP module off  
; Load WREG with the  
; new prescaler mode  
; value and CCP ON  
; Load CCP1CON with  
; this value  
MOVWF  
CCP1CON  
FIGURE 15-1:  
CAPTURE MODE OPERATION BLOCK DIAGRAM  
TMR3H  
TMR3L  
CCPR1L  
TMR1L  
Set Flag bit CCP1IF  
T3CCP2  
T3CCP2  
TMR3  
Enable  
Prescaler  
÷ 1, 4, 16  
CCP1 pin  
CCPR1H  
TMR1  
and  
Edge Detect  
Enable  
TMR1H  
CCP1CON<3:0>  
Q’s  
Set Flag bit CCP2IF  
T3CCP1  
TMR3H  
TMR3L  
CCPR2L  
TMR1L  
T3CCP2  
TMR3  
Enable  
Prescaler  
÷ 1, 4, 16  
CCP2 pin  
CCPR2H  
TMR1  
and  
Edge Detect  
Enable  
T3CCP2  
T3CCP1  
TMR1H  
CCP2CON<3:0>  
Q’s  
DS30491C-page 170  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
15.3.2  
TIMER1/TIMER3 MODE SELECTION  
15.3 Compare Mode  
The timer used with each CCP module is selected in  
the T3CCP2:T3CCP1 bits of the T3CON register.  
Timer1 and/or Timer3 must be running in Timer mode,  
or Synchronized Counter mode, if the CCP module is  
using the compare feature. In Asynchronous Counter  
mode, the compare operation may not work.  
In Compare mode, the 16-bit CCPRx register value is  
constantly compared against either the TMR1 register  
pair value or the TMR3 register pair value. When a  
match occurs, the CCPx pin can have one of the  
following actions:  
• Driven high  
• Driven low  
15.3.3  
SOFTWARE INTERRUPT MODE  
Toggle output (high-to-low or low-to-high)  
• Remains unchanged  
When generate software interrupt is chosen, the CCPx  
pin is not affected. Only a CCP interrupt is generated (if  
enabled).  
The action on the pin is based on the value of control  
bits, CCPxM3:CCPxM0. At the same time, interrupt  
flag bit, CCPxIF, is set.  
15.3.4  
SPECIAL EVENT TRIGGER  
In this mode, an internal hardware trigger is generated  
which may be used to initiate an action.  
When configured to drive the CCP pin, the CCP1 pin  
cannot be changed; CCP1 module controls the pin.  
The special event trigger output of CCP1 resets either  
the TMR1 or TMR3 register pair. This allows the CCPR1  
register to effectively be a 16-bit programmable period  
register for TMR1 or TMR3.  
15.3.1  
CCP PIN CONFIGURATION  
The user must configure the CCPx pin as an output by  
clearing the appropriate TRIS bit.  
Additionally, the CCP2 special event trigger will start an  
A/D conversion if the A/D module is enabled.  
By default, the CCP2 pin is multiplexed with RC1.  
Alternately, it can also be multiplexed with either RB3  
or RE7. This is done by changing the CCP2MX  
configuration bit.  
Note:  
The special event trigger from the CCPx  
module will not set the Timer1 or Timer3  
interrupt flag bits.  
Note:  
Clearing the CCPxCON register will force  
the CCPx compare output latch to the  
default low level. This is not the data latch.  
FIGURE 15-2:  
COMPARE MODE OPERATION BLOCK DIAGRAM  
Special Event Trigger will:  
Reset Timer1 or Timer3, but not set Timer1 or Timer3 interrupt flag bit  
and set bit GO/DONE (ADCON0<2>)  
which starts an A/D conversion (CCP2 only)  
Set Flag bit CCP1IF  
CCPR1H CCPR1L  
Comparator  
Q
S
R
Output  
Logic  
Match  
RC2/CCP1 pin  
TRISC<2>  
Output Enable  
1
0
CCP1CON<3:0>  
Mode Select  
T3CCP2  
TMR1H TMR1L  
TMR3H TMR3L  
Special Event Trigger  
Set Flag bit CCP2IF  
T3CCP1  
T3CCP2  
0
1
Q
S
R
Output  
Logic  
Comparator  
Match  
RC1/CCP2 pin  
TRISC<1>  
Output Enable  
CCPR2H CCPR2L  
CCP2CON<3:0>  
Mode Select  
2004 Microchip Technology Inc.  
DS30491C-page 171  
PIC18F6585/8585/6680/8680  
TABLE 15-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
TMR2IF  
TMR1IF 0000 0000 0000 0000  
TMR1IE 0000 0000 0000 0000  
TMR1IP 1111 1111 1111 1111  
1111 1111 1111 1111  
PIE1  
CCP1IE TMR2IE  
CCP1IP TMR2IP  
IPR1  
TRISD  
TMR1L  
TMR1H  
T1CON  
CCPR1L  
CCPR1H  
CCP1CON  
PIR2  
PORTD Data Direction Register  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu  
Capture/Compare/PWM Register 1 (LSB)  
Capture/Compare/PWM Register 1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
P1M1  
P1M0  
CMIF  
CMIE  
CMIP  
DC1B1  
DC1B0  
EEIF  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 0000 0000 0000 0000  
BCLIF  
BCLIE  
BCLIP  
LVDIF  
LVDIE  
LVDIP  
TMR3IF  
TMR3IE  
TMR3IP  
CCP2IF -0-0 0000 -0-0 0000  
CCP2IE -0-0 0000 -0-0 0000  
CCP2IP -1-1 1111 -1-1 1111  
xxxx xxxx uuuu uuuu  
PIE2  
EEIE  
EEIP  
IPR2  
TMR3L  
TMR3H  
T3CON  
Legend:  
Holding Register for the Least Significant Byte of the 16-bit TMR3 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR3 Register  
xxxx xxxx uuuu uuuu  
RD16  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by capture and Timer1.  
DS30491C-page 172  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
15.4.1  
PWM PERIOD  
15.4 PWM Mode  
The PWM period is specified by writing to the PR2  
register. The PWM period can be calculated using the  
following formula.  
In Pulse Width Modulation (PWM) mode, the CCPx pin  
produces up to a 10-bit resolution PWM output. For  
PWM mode to function properly, the TRIS bit for the  
CCPx pin must be cleared to make it an output.  
EQUATION 15-1:  
Note:  
Clearing the CCPxCON register will force  
the CCPx PWM output latch to the default  
low level. This is not the port data latch.  
PWM Period = [(PR2) + 1] • 4 • TOSC •  
(TMR2 Prescale Value)  
Figure 15-3 shows a simplified block diagram of the  
CCP module in PWM mode.  
PWM frequency is defined as 1/[PWM period].  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, see Section 15.4.3  
“Setup for PWM Operation”.  
• TMR2 is cleared  
• The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
FIGURE 15-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
• The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
CCPxCON<5:4>  
Duty Cycle Registers  
Note:  
The Timer2 postscaler (see Section 13.0  
“Timer2 Module”) is not used in the  
determination of the PWM frequency. The  
postscaler could be used to have a servo  
update rate at a different frequency than  
the PWM output.  
CCPRxL (Master)  
CCPRxH (Slave)  
Comparator  
Q
R
15.4.2  
PWM DUTY CYCLE  
CCPx  
The PWM duty cycle is specified by writing to the  
CCPRxL register and to the CCPxCON<5:4> bits. Up  
to 10-bit resolution is available. The CCPRxL contains  
the eight MSbs and the CCPxCON<5:4> contain the  
two LSbs. This 10-bit value is represented by  
CCPRxL:CCPxCON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time.  
(Note 1)  
TMR2  
S
TRIS bit  
Comparator  
PR2  
Clear Timer,  
set CCPx pin and  
latch D.C.  
EQUATION 15-2:  
Note 1: 8-bit timer is concatenated with 2-bit internal Q clock or  
2 bits of the prescaler to create 10-bit time base.  
PWM Duty Cycle = (CCPRxL:CCPxCON<5:4>) •  
TOSC • (TMR2 Prescale Value)  
A PWM output (Figure 15-4) has a time base (period)  
and a time that the output stays high (duty cycle). The  
frequency of the PWM is the inverse of the period  
(1/period).  
CCPRxL and CCPxCON<5:4> can be written to at any  
time but the duty cycle value is not latched into  
CCPRxH until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPRxH is a read-only register.  
FIGURE 15-4:  
PWM OUTPUT  
The CCPRxH register and a 2-bit internal latch are  
used to double-buffer the PWM duty cycle. This  
double-buffering is essential for glitchless PWM  
operation.  
Period  
Duty Cycle  
When the CCPRxH and 2-bit latch match TMR2,  
concatenated with an internal 2-bit Q clock or 2 bits of  
the TMR2 prescaler, the CCPx pin is cleared.  
TMR2 = PR2  
TMR2 = Duty Cycle  
TMR2 = PR2  
2004 Microchip Technology Inc.  
DS30491C-page 173  
PIC18F6585/8585/6680/8680  
The maximum PWM resolution (bits) for a given PWM  
frequency is given by the following equation.  
15.4.3  
SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
EQUATION 15-3:  
1. Set the PWM period by writing to the PR2  
register.  
FOSC   
---------------  
log  
FPWM  
2. Set the PWM duty cycle by writing to the  
CCPRxL register and CCPxCON<5:4> bits.  
PWM Resolution (max)  
= ----------------------------- b i t s  
log(2)  
3. Make the CCPx pin an output by clearing  
corresponding TRIS bit.  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
Note:  
If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
5. Configure the CCPx module for PWM operation.  
TABLE 15-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz  
PWM Frequency  
2.44 kHz 9.76 kHz 39.06 kHz 156.3 kHz 312.5 kHz 416.6 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
0FFh  
10  
4
1
1
3Fh  
8
1
1Fh  
7
1
0FFh  
10  
0FFh  
10  
17h  
5.5  
Maximum Resolution (bits)  
TABLE 15-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
RBIF  
0000 000x 0000 000u  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TMR1IF 0000 0000 0000 0000  
TMR1IE 0000 0000 0000 0000  
TMR1IP 1111 1111 1111 1111  
1111 1111 1111 1111  
PIE1  
TXIE  
TXIP  
IPR1  
TRISC  
TMR2  
PR2  
PORTC Data Direction Register  
Timer2 Module Register  
0000 0000 0000 0000  
Timer2 Module Period Register  
1111 1111 1111 1111  
T2CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
CCPR1L Capture/Compare/PWM Register 1 (LSB)  
CCPR1H Capture/Compare/PWM Register 1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP1CON  
P1M1  
P1M0  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
CCPR2L Capture/Compare/PWM Register 2 (LSB)  
CCPR2H Capture/Compare/PWM Register 2 (MSB)  
xxxx xxxx uuuu uuuu  
CCP2CON  
DC2B1  
DC2B0  
CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
Legend:  
x= unknown, u= unchanged, – = unimplemented, read as ‘0’. Shaded cells are not used by PWM and Timer2.  
DS30491C-page 174  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
The control register for CCP1 is shown in Register 16-1.  
16.0 ENHANCED CAPTURE/  
COMPARE/PWM (ECCP)  
MODULE  
In addition to the expanded functions of the  
CCP1CON register, the CCP1 module has two  
additional registers associated with enhanced PWM  
The CCP1 module is implemented as a standard CCP  
module with enhanced PWM capabilities. These capa-  
bilities allow for 2 or 4 output channels, user selectable  
polarity, dead-band control, and automatic shutdown  
and restart and are discussed in detail in Section 16.2  
“Enhanced PWM Mode”.  
operation and auto-shutdown features:  
• ECCP1DEL  
• ECCP1AS  
REGISTER 16-1: CCP1CON REGISTER  
R/W-0  
P1M1  
R/W-0  
P1M0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
bit 0  
bit 7  
bit 7-6  
P1M1:P1M0: Enhanced PWM Output Configuration bits  
If CCP1M<3:2> = 00, 01, 10:  
xx= P1A assigned as capture/compare input; P1B, P1C, P1D assigned as port pins  
If CCP1M<3:2> = 11:  
00= Single output; P1A modulated, P1B, P1C, P1D assigned as port pins  
01= Full-bridge output forward; P1D modulated; P1A active; P1B, P1C inactive  
10= Half-bridge output; P1A, P1B modulated with dead-band control; P1C, P1D assigned as  
port pins  
11= Full-bridge output reverse; P1B modulated; P1C active; P1A, P1D inactive  
bit 5-4  
DC1B1:DC1B0: PWM Duty Cycle bit 1 and bit 0  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two LSbs of the 10-bit PWM duty cycle. The eight MSbs of the duty cycle are  
found in CCPR1L.  
bit 3-0  
CCP1M3:CCP1M0: Enhanced CCP Mode Select bits  
0000=Capture/Compare/PWM off (resets CCP1 module)  
0001=Reserved  
0010=Compare mode, toggle output on match  
0011=Capture mode, CAN message time-stamp  
0100=Capture mode, every falling edge  
0101=Capture mode, every rising edge  
0110=Capture mode, every 4th rising edge  
0111=Capture mode, every 16th rising edge  
1000=Compare mode, initialize CCP pin low, on compare match, force CCP pin high  
1001=Compare mode, initialize CCP pin high, on compare match, force CCP pin low  
1010=Compare mode, generate software interrupt only, CCP pin is unaffected  
1011=Compare mode, trigger special event, resets TMR1 or TMR3  
1100=PWM mode; P1A, P1C active-high; P1B, P1D active-high  
1101=PWM mode; P1A, P1C active-high; P1B, P1D active-low  
1110=PWM mode; P1A, P1C active-low; P1B, P1D active-high  
1111=PWM mode; P1A, P1C active-low; P1B, P1D active-low  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 175  
PIC18F6585/8585/6680/8680  
To configure I/O pins as PWM outputs, the proper PWM  
16.1 ECCP Outputs  
mode must be selected by setting the P1Mx and  
CCP1Mx bits (CCP1CON<7:6> and <3:0>, respec-  
tively). The appropriate TRIS direction bits for the port  
pins must also be set as outputs.  
The enhanced CCP module may have up to four  
outputs depending on the selected operating mode.  
These outputs, designated P1A through P1D, are  
multiplexed with I/O pins RC2, RE6, RE5 and RG4.  
The pin assignments are summarized in Table 16-1.  
TABLE 16-1: PIN ASSIGNMENTS FOR VARIOUS ECCP MODES  
CCP1CON  
ECCP Mode  
RC2  
RE6  
RE5  
RG4  
Configuration  
Compatible CCP  
Dual PWM  
00xx11xx  
10xx11xx  
x1xx11xx  
CCP1  
P1A  
RE6  
RE5  
RE5  
RG4  
RG4  
P1D  
P1B(2)  
P1B(2)  
Quad PWM  
P1A  
P1C(2)  
Legend: x= Don’t care. Shaded cells indicate pin assignments not used by ECCP in a given mode.  
Note 1: TRIS register values must be configured appropriately.  
2: On PIC18F8X8X devices, these pins can be alternately multiplexed with RH7 or RH6 by changing the  
ECCPMX configuration bit.  
FIGURE 16-1:  
COMPARE MODE OPERATION BLOCK DIAGRAM  
Special Event Trigger will:  
Reset Timer1 or Timer3, but will not set Timer1 or Timer3 interrupt flag bit  
and set bit GO/DONE (ADCON0<2>) which starts an A/D conversion.  
Set Flag bit CCP1IF  
Match  
CCPR1H CCPR1L  
Comparator  
Q
S
R
Output  
Logic  
RB3/CCP1/P1A pin  
TRISB<3>  
Output Enable  
1
0
T3CCP2  
CCP1CON<3:0>  
Mode Select  
TMR1H TMR1L  
TMR3H TMR3L  
DS30491C-page 176  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
16.2.2  
PWM DUTY CYCLE  
16.2 Enhanced PWM Mode  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The PWM duty cycle is  
calculated by the following equation.  
The Enhanced PWM mode provides additional PWM  
output options for a broader range of control applica-  
tions. The module is a backward compatible version of  
the standard CCP module and offers up to four outputs,  
designated P1A through P1D. Users are also able to  
select the polarity of the signal (either active-high or  
active-low). The module’s output mode and polarity are  
configured by setting the P1M1:P1M0 and  
CCP1M3:CCP1M0 bits of the CCP1CON register  
(CCP1CON<7:6> and CCP1CON<3:0>, respectively).  
EQUATION 16-2:  
PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) •  
TOSC • (TMR2 Prescale Value)  
Figure 16-2 shows a simplified block diagram of PWM  
operation. All control registers are double-buffered and  
are loaded at the beginning of a new PWM cycle (the  
period boundary when Timer2 resets) in order to pre-  
vent glitches on any of the outputs. The exception is the  
PWM Delay register, ECCP1DEL, which is loaded at  
either the duty cycle boundary or the boundary period  
(whichever comes first). Because of the buffering, the  
module waits until the assigned timer resets instead of  
starting immediately. This means that enhanced PWM  
waveforms do not exactly match the standard PWM  
waveforms, but are instead offset by one full instruction  
cycle (4 TOSC).  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not copied into  
CCPR1H until a match between PR2 and TMR2 occurs  
(i.e., the period is complete). In PWM mode, CCPR1H  
is a read-only register.  
The CCPR1H register and a 2-bit internal latch are  
used to double-buffer the PWM duty cycle. This  
double-buffering is essential for glitchless PWM opera-  
tion. When the CCPR1H and 2-bit latch match TMR2,  
concatenated with an internal 2-bit Q clock or two bits  
of the TMR2 prescaler, the CCP1 pin is cleared. The  
maximum PWM resolution (bits) for a given PWM  
frequency is given by the following equation:  
As before, the user must manually configure the  
appropriate TRIS bits for output.  
16.2.1  
PWM PERIOD  
EQUATION 16-3:  
The PWM period is specified by writing to the PR2  
register. The PWM period can be calculated using the  
following equation.  
FOSC  
log  
FPWM  
bits  
PWM Resolution (max) =  
log(2)  
EQUATION 16-1:  
PWM Period = [(PR2) + 1] • 4 • TOSC •  
(TMR2 Prescale Value)  
Note:  
If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
PWM frequency is defined as 1/[PWM period]. When  
TMR2 is equal to PR2, the following three events occur  
on the next increment cycle:  
16.2.3  
PWM OUTPUT CONFIGURATIONS  
The P1M1:P1M0 bits in the CCP1CON register allow  
one of four configurations:  
• TMR2 is cleared  
• The CCP1 pin is set (if PWM duty cycle = 0%, the  
CCP1 pin will not be set)  
• Single Output  
• Half-Bridge Output  
• The PWM duty cycle is copied from CCPR1L into  
CCPR1H  
• Full-Bridge Output, Forward mode  
• Full-Bridge Output, Reverse mode  
Note:  
The Timer2 postscaler (see Section 13.0  
“Timer2 Module”) is not used in the  
determination of the PWM frequency. The  
postscaler could be used to have a servo  
update rate at a different frequency than  
the PWM output.  
The Single Output mode is the standard PWM mode  
discussed in Section 16.2 “Enhanced PWM Mode”.  
The Half-Bridge and Full-Bridge Output modes are  
covered in detail in the sections that follow.  
The general relationship of the outputs in all  
configurations is summarized in Figure 16-3.  
2004 Microchip Technology Inc.  
DS30491C-page 177  
PIC18F6585/8585/6680/8680  
TABLE 16-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz  
PWM Frequency  
2.44 kHz  
9.77 kHz  
39.06 kHz 156.25 kHz 312.50 kHz 416.67 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
FFh  
10  
4
1
1
3Fh  
8
1
1Fh  
7
1
FFh  
10  
FFh  
10  
17h  
6.58  
Maximum Resolution (bits)  
FIGURE 16-2:  
SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODULE  
CCP1CON<5:4>  
P1M1<1:0>  
CCP1M<3:0>  
4
Duty Cycle Registers  
2
CCPR1L  
CCP1/P1A  
RC2/CCP1/P1A  
TRISC<2>  
TRISE<6>  
TRISE<5>  
TRISG<4>  
CCPR1H (Slave)  
Comparator  
RE6/AD14/P1B or RH7(2)  
RE5/AD13/P1C or RH6(2)  
RG4/P1D  
P1B  
Output  
Controller  
R
S
Q
P1C  
(Note 1)  
TMR2  
P1D  
Comparator  
PR2  
Clear Timer,  
set CCP1 pin and  
latch D.C.  
CCP1DEL  
Note 1:  
2:  
The 8-bit timer TMR2 register is concatenated with the 2-bit internal Q clock or 2 bits of the prescaler to create the 10-bit time base.  
Alternate setting controlled by the ECCPMX bit (PIC18F8X8X devices only).  
FIGURE 16-3:  
PWM OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)  
0
PR2 + 1  
Duty  
Cycle  
SIGNAL  
CCP1CON  
<7:6>  
Period  
P1A Modulated  
P1A Modulated  
P1B Modulated  
P1A Active  
(Single Output)  
00  
10  
(1)  
(1)  
Delay  
Delay  
(Half-Bridge)  
P1B Inactive  
P1C Inactive  
P1D Modulated  
P1A Inactive  
P1B Modulated  
P1C Active  
(Full-Bridge,  
Forward)  
01  
(Full-Bridge,  
Reverse)  
11  
P1D Inactive  
Note 1: Dead-band delay is programmed using the ECCP1DEL register (Section 16.2.6 “Programmable Dead-Band Delay”).  
DS30491C-page 178  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 16-4:  
PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)  
0
PR2 + 1  
Duty  
Cycle  
SIGNAL  
CCP1CON  
<7:6>  
Period  
P1A Modulated  
P1A Modulated  
P1B Modulated  
P1A Active  
(Single Output)  
00  
10  
(1)  
(1)  
Delay  
Delay  
(Half-Bridge)  
P1B Inactive  
P1C Inactive  
P1D Modulated  
P1A Inactive  
P1B Modulated  
P1C Active  
(Full-Bridge,  
Forward)  
01  
(Full-Bridge,  
Reverse)  
11  
P1D Inactive  
Note 1: Dead-band delay is programmed using the ECCP1DEL register (Section 16.2.6 “Programmable Dead-Band Delay”).  
Relationships:  
Period = 4 * TOSC * (PR2 + 1) * (TMR2 prescale value)  
Duty Cycle = TOSC * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 prescale value)  
Delay = 4 * TOSC * (PWM1CON<6:0>)  
2004 Microchip Technology Inc.  
DS30491C-page 179  
PIC18F6585/8585/6680/8680  
Since the P1A and P1B outputs are multiplexed with  
the PORTC<2> and PORTE<6> data latches, the  
TRISC<2> and TRISE<6> bits must be cleared to  
configure P1A and P1B as outputs.  
16.2.4  
HALF-BRIDGE MODE  
In the Half-Bridge Output mode, two pins are used as  
outputs to drive push-pull loads. The PWM output signal  
is output on the P1A pin while the complementary PWM  
output signal is output on the P1B pin (Figure 16-5).  
This mode can be used for half-bridge applications, as  
shown in Figure 16-6, or for full-bridge applications  
where four power switches are being modulated with  
two PWM signals.  
FIGURE 16-5:  
HALF-BRIDGE PWM  
OUTPUT  
Period  
Period  
Duty Cycle  
In Half-Bridge Output mode, the programmable dead-  
band delay can be used to prevent shoot-through  
current in half-bridge power devices. The value of bits  
PDC6:PDC0 sets the number of instruction cycles  
before the output is driven active. If the value is greater  
than the duty cycle, the corresponding output remains  
inactive during the entire cycle. See Section 16.2.6  
“Programmable Dead-Band Delay” for more details  
of the dead-band delay operations.  
(2)  
(2)  
P1A  
td  
td  
P1B  
(1)  
(1)  
(1)  
td = Dead-band Delay  
Note 1: At this time, the TMR2 register is equal to the  
PR2 register.  
2: Output signals are shown as active-high.  
FIGURE 16-6:  
EXAMPLES OF HALF-BRIDGE OUTPUT MODE APPLICATIONS  
V+  
Standard Half-Bridge Circuit (“Push-Pull”)  
PIC18FXX80/XX85  
FET  
Driver  
+
V
-
P1A  
Load  
FET  
Driver  
+
V
-
P1B  
V-  
Half-Bridge Output Driving a Full-Bridge Circuit  
V+  
PIC18FXX80/XX85  
FET  
Driver  
FET  
Driver  
P1A  
Load  
FET  
FET  
Driver  
Driver  
P1B  
V-  
DS30491C-page 180  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
P1A, P1B, P1C and P1D outputs are multiplexed with  
the PORTC<2>, PORTE<6:5> and PORTG<4> data  
latches. The TRISC<2>, TRISC<6:5> and TRISG<4>  
bits must be cleared to make the P1A, P1B, P1C and  
P1D pins outputs.  
16.2.5  
FULL-BRIDGE MODE  
In Full-Bridge Output mode, four pins are used as  
outputs; however, only two outputs are active at a time.  
In the Forward mode, pin P1A is continuously active  
and pin P1D is modulated. In the Reverse mode, pin  
PGC is continuously active and pin P1B is modulated.  
These are illustrated in Figure 16-7.  
FIGURE 16-7:  
FULL-BRIDGE PWM OUTPUT  
Forward Mode  
Period  
(2)  
P1A  
Duty Cycle  
(2)  
(2)  
P1B  
P1C  
(2)  
P1D  
(1)  
(1)  
Reverse Mode  
Period  
Duty Cycle  
(2)  
P1A  
(2)  
P1B  
(2)  
P1C  
(2)  
P1D  
(1)  
(1)  
Note 1: At this time, the TMR2 register is equal to the PR2 register.  
Note 2: Output signal is shown as active-high.  
2004 Microchip Technology Inc.  
DS30491C-page 181  
PIC18F6585/8585/6680/8680  
FIGURE 16-8:  
EXAMPLE OF FULL-BRIDGE APPLICATION  
V+  
PIC18FXX80/XX85  
QC  
QA  
FET  
Driver  
FET  
Driver  
P1A  
Load  
P1B  
FET  
Driver  
FET  
Driver  
P1C  
P1D  
QD  
QB  
V-  
Figure 16-10 shows an example where the PWM direc-  
tion changes from forward to reverse at a near 100%  
duty cycle. At time t1, the output P1A and P1D become  
inactive while output P1C becomes active. In this  
example, since the turn off time of the power devices is  
longer than the turn on time, a shoot-through current  
may flow through power devices QC and QD (see  
Figure 16-8) for the duration of ‘t’. The same phenom-  
enon will occur to power devices QA and QB for PWM  
direction change from reverse to forward.  
16.2.5.1  
Direction Change in Full-Bridge Mode  
In the Full-Bridge Output mode, the P1M1 bit in the  
CCP1CON register allows the user to control the  
forward/reverse direction. When the application  
firmware changes this direction control bit, the module  
will assume the new direction on the next PWM cycle.  
Just before the end of the current PWM period, the mod-  
ulated outputs (P1B and P1D) are placed in their inactive  
state while the unmodulated outputs (P1A and P1C) are  
switched to drive in the opposite direction. This occurs in  
a time interval of (4 TOSC * (Timer2 Prescale value))  
before the next PWM period begins. The Timer2  
prescaler will be either 1, 4 or 16, depending on the  
value of the T2CKPS bit (T2CON<1:0>). During the  
interval from the switch of the unmodulated outputs to  
the beginning of the next period, the modulated outputs  
(P1B and P1D) remain inactive. This relationship is  
shown in Figure 16-9.  
If changing PWM direction at high duty cycle is required  
for an application, one of the following requirements  
must be met:  
1. Reduce PWM for  
changing directions.  
a PWM period before  
2. Use switch drivers that can drive the switches off  
faster than they can drive them on.  
Other options to prevent shoot-through current may  
exist.  
Note that in the Full-Bridge Output mode, the CCP1  
module does not provide any dead-band delay. In  
general, since only one output is modulated at all times,  
dead-band delay is not required. However, there is a  
situation where a dead-band delay might be required.  
This situation occurs when both of the following  
conditions are true:  
1. The direction of the PWM output changes when  
the duty cycle of the output is at or near 100%.  
2. The turn off time of the power switch, including  
the power device and driver circuit, is greater  
than the turn on time.  
DS30491C-page 182  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 16-9:  
PWM DIRECTION CHANGE  
(1)  
Period  
Period  
SIGNAL  
P1A (Active-High)  
P1B (Active-High)  
DC  
P1C (Active-High)  
P1D (Active-High)  
(Note 2)  
DC  
Note 1: The direction bit in the CCP1 Control register (CCP1CON<7>) is written any time during the PWM cycle.  
2: When changing directions, the P1A and P1C signals switch before the end of the current PWM cycle at inter-  
vals of 4 TOSC, 16 TOSC or 64 TOSC, depending on the Timer2 prescaler value. The modulated P1B and P1D  
signals are inactive at this time.  
FIGURE 16-10:  
PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE  
Forward Period  
Reverse Period  
t1  
P1A  
P1B  
DC  
P1C  
P1D  
DC  
t
ON  
External Switch C  
External Switch D  
t
OFF  
Potential  
Shoot-Through  
Current  
t = t  
– t  
ON  
OFF  
Note 1: All signals are shown as active-high.  
2: t is the turn on delay of power switch QC and its driver.  
ON  
3: t  
is the turn off delay of power switch QD and its driver.  
OFF  
2004 Microchip Technology Inc.  
DS30491C-page 183  
PIC18F6585/8585/6680/8680  
A shutdown event can be caused by either of the two  
comparator modules or a low level on the RB0 pin (or  
any combination of these three sources). The compar-  
ators may be used to monitor a voltage input propor-  
tional to a current being monitored in the bridge circuit.  
If the voltage exceeds a threshold, the comparator  
switches state and triggers a shutdown. Alternatively, a  
low digital signal on the RB0 pin can also trigger a  
shutdown. The auto-shutdown feature can be disabled  
by not selecting any auto-shutdown sources. The  
auto-shutdown sources to be used are selected using  
the ECCPAS2:ECCPAS0 bits (bits <6:4> of the  
ECCP1AS register).  
16.2.6  
PROGRAMMABLE  
DEAD-BAND DELAY  
In half-bridge applications where all power switches are  
modulated at the PWM frequency at all times, the  
power switches normally require more time to turn off  
than to turn on. If both the upper and lower power  
switches are switched at the same time (one turned on  
and the other turned off), both switches may be on for  
a short period of time until one switch completely turns  
off. During this brief interval, a very high current (shoot-  
through current) may flow through both power  
switches, shorting the bridge supply. To avoid this  
potentially destructive shoot-through current from flow-  
ing during switching, turning on either of the power  
switches is normally delayed to allow the other switch  
to completely turn off.  
When a shutdown occurs, the output pins are asyn-  
chronously placed in their shutdown states, specified  
by the PSSAC1:PSSAC0 and PSSBD1:PSSBD0 bits  
(ECCP1AS<3:0>). Each pin pair (P1A/P1C and P1B/  
P1D) may be set to drive high, drive low, or be tri-stated  
(not driving). The ECCPASE bit (ECCP1AS<7>) is also  
set to hold the enhanced PWM outputs in their  
shutdown states.  
In the Half-Bridge Output mode, a digitally pro-  
grammable dead-band delay is available to avoid  
shoot-through current from destroying the bridge  
power switches. The delay occurs at the signal  
transition from the non-active state to the active state.  
See Figure 16-5 for an illustration. The lower seven bits  
of the ECCP1DEL register (Register 16-2) set the  
delay period in terms of microcontroller instruction  
cycles (TCY or 4 TOSC).  
The ECCPASE bit is set by hardware when a shutdown  
event occurs. If automatic restarts are not enabled, the  
ECCPASE bit is cleared by firmware when the cause of  
the shutdown clears. If automatic restarts are enabled,  
the ECCPASE bit is automatically cleared when the  
cause of the auto-shutdown has cleared.  
16.2.7  
ENHANCED PWM  
AUTO-SHUTDOWN  
If the ECCPASE bit is set when a PWM period begins,  
the PWM outputs remain in their shutdown state for that  
entire PWM period. When the ECCPASE bit is cleared,  
the PWM outputs will return to normal operation at the  
beginning of the next PWM period.  
When the CCP1 is programmed for any of the  
enhanced PWM modes, the active output pins may be  
configured for auto-shutdown. Auto-shutdown immedi-  
ately places the enhanced PWM output pins into a  
defined shutdown state when a shutdown event  
occurs.  
Note:  
Writing to the ECCPASE bit is disabled  
while a shutdown condition is active.  
REGISTER 16-2: ECCP1DEL: ECCP1 DELAY REGISTER  
R/W-0  
R/W-0  
PDC6  
R/W-0  
PDC5  
R/W-0  
PDC4  
R/W-0  
PDC3  
R/W-0  
PDC2  
R/W-0  
PDC1  
R/W-0  
PDC0  
PRSEN  
bit 7  
bit 0  
bit 7  
PRSEN: PWM Restart Enable bit  
1= Upon auto-shutdown, the ECCPASE bit clears automatically once the shutdown event  
goes away; the PWM restarts automatically  
0= Upon auto-shutdown, ECCPASE must be cleared in software to restart the PWM  
bit 6-0  
PDC<6:0>: PWM Delay Count bits  
Number of FOSC/4 (4 * TOSC) cycles between the scheduled time when a PWM signal should  
transition active and the actual time it transitions active.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 184  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 16-3: ECCP1AS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN  
CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0  
bit 7  
bit 0  
bit 7  
ECCPASE: ECCP Auto-Shutdown Event Status bit  
0= ECCP outputs are operating  
1= A shutdown event has occurred; ECCP outputs are in shutdown state  
bit 6-4  
ECCPAS<2:0>: ECCP Auto-Shutdown Source Select bits  
000=Auto-shutdown is disabled  
001=Comparator 1 output  
010=Comparator 2 output  
011=Either Comparator 1 or 2  
100=RB0  
101=RB0 or Comparator 1  
110=RB0 or Comparator 2  
111=RB0 or Comparator 1 or Comparator 2  
bit 3-2  
bit 1-0  
PSSACn: Pins A and C Shutdown State Control bits  
00= Drive pins A and C to ‘0’  
01= Drive pins A and C to ‘1’  
1x= Pins A and C tri-state  
PSSBDn: Pins B and D Shutdown State Control bits  
00= Drive pins B and D to ‘0’  
01= Drive pins B and D to ‘1’  
1x= Pins B and D tri-state  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 185  
PIC18F6585/8585/6680/8680  
16.2.7.1  
Auto-Shutdown and Automatic  
Restart  
16.2.8  
START-UP CONSIDERATIONS  
When the ECCP module is used in the PWM mode, the  
application hardware must use the proper external pull-  
up and/or pull-down resistors on the PWM output pins.  
When the microcontroller is released from Reset, all of  
the I/O pins are in the high-impedance state. The exter-  
nal circuits must keep the power switch devices in the  
off state until the microcontroller drives the I/O pins with  
the proper signal levels or activates the PWM output(s).  
The auto-shutdown feature can be configured to allow  
automatic restarts of the module following a shutdown  
event. This is enabled by setting the PRSEN bit of the  
ECCP1DEL register (ECCP1DEL<7>).  
In Shutdown mode with PRSEN = 1(Figure 16-11), the  
ECCPASE bit will remain set for as long as the cause  
of the shutdown continues. When the shutdown condi-  
tion clears, the ECCPASE bit is cleared. If PRSEN = 0  
(Figure 16-12), once a shutdown condition occurs, the  
ECCPASE bit will remain set until it is cleared by firm-  
ware. Once ECCPASE is cleared, the enhanced PWM  
will resume at the beginning of the next PWM period.  
The CCP1M1:CCP1M0 bits (CCP1CON<1:0>) allow  
the user to choose whether the PWM output signals are  
active-high or active-low for each pair of PWM output  
pins (P1A/P1C and P1B/P1D). The PWM output  
polarities must be selected before the PWM pins are  
configured as outputs. Changing the polarity configura-  
tion while the PWM pins are configured as outputs is  
not recommended since it may result in damage to the  
application circuits.  
Note:  
Writing to the ECCPASE bit is disabled  
while a shutdown condition is active.  
Independent of the PRSEN bit setting, if the auto-  
shutdown source is one of the comparators, the shut-  
down condition is a level. The ECCPASE bit cannot be  
cleared as long as the cause of the shutdown persists.  
The P1A, P1B, P1C and P1D output latches may not be  
in the proper states when the PWM module is initialized.  
Enabling the PWM pins for output at the same time as  
the ECCP module may cause damage to the applica-  
tion circuit. The ECCP module must be enabled in the  
proper Output mode and complete a full PWM cycle  
before configuring the PWM pins as outputs. The com-  
pletion of a full PWM cycle is indicated by the TMR2IF  
bit being set as the second PWM period begins.  
The Auto-Shutdown mode can be forced by writing a ‘1’  
to the ECCPASE bit.  
FIGURE 16-11:  
PWM AUTO-SHUTDOWN (PRSEN = 1, AUTO-RESTART ENABLED)  
PWM Period  
Shutdown Event  
ECCPASE bit  
PWM Activity  
Normal PWM  
Start of  
PWM Period  
Shutdown  
Event Occurs Event Clears  
Shutdown  
PWM  
Resumes  
FIGURE 16-12:  
PWM AUTO-SHUTDOWN (PRSEN = 0, AUTO-RESTART DISABLED)  
PWM Period  
Shutdown Event  
ECCPASE bit  
PWM Activity  
Normal PWM  
ECCPASE  
Cleared by  
Firmware  
Start of  
PWM Period  
Shutdown  
Event Occurs Event Clears  
Shutdown  
PWM  
Resumes  
DS30491C-page 186  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
7. If auto-restart operation is required, set the  
PRSEN bit (ECCP1DEL<7>).  
16.2.9  
SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the ECCP1 module for PWM operation:  
8. Configure and start TMR2:  
• Clear the TMR2 interrupt flag bit by clearing  
the TMR2IF bit (PIR1<1>).  
1. Configure the PWM pins, P1A and P1B (and  
P1C and P1D, if used), as inputs by setting the  
corresponding TRISB bits.  
• Set the TMR2 prescale value by loading the  
T2CKPS bits (T2CON<1:0>).  
2. Set the PWM period by loading the PR2 register.  
• Enable Timer2 by setting the TMR2ON bit  
(T2CON<2>).  
3. Configure the ECCP1 module for the desired  
PWM mode and configuration by loading the  
CCP1CON register with the appropriate values:  
9. Enable PWM outputs after a new PWM cycle  
has started:  
• Select one of the available output  
configurations and direction with the  
P1M1:P1M0 bits.  
• Wait until TMR2 overflows (TMR2IF bit is set).  
• Enable the CCP1/P1A, P1B, P1C and/or P1D  
pin outputs by clearing the respective TRISB  
bits.  
• Select the polarities of the PWM output  
signals with the CCP1M3:CCP1M0 bits.  
• Clear the ECCPASE bit (ECCP1AS<7>).  
4. Set the PWM duty cycle by loading the CCPR1L  
register and CCP1CON<5:4> bits.  
16.2.10 EFFECTS OF A RESET  
5. For Half-Bridge Output mode, set the dead-  
band delay by loading ECCP1DEL<6:0> with  
the appropriate value.  
Both Power-on and subsequent Resets will force all  
ports to Input mode and the CCP registers to their  
Reset states.  
6. If auto-shutdown operation is required, load the  
ECCPAS register:  
This forces the Enhanced CCP module to reset to a  
state compatible with the standard CCP module.  
• Select the auto-shutdown sources using the  
ECCPAS<2:0> bits.  
• Select the shutdown states of the PWM  
output pins using PSSAC1:PSSAC0 and  
PSSBD1:PSSBD0 bits.  
• Set the ECCPASE bit (ECCPAS<7>).  
• Configure the comparators using the CMCON  
register.  
• Configure the comparator inputs as analog  
inputs.  
TABLE 16-3: REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
RBIF  
0000 000x 0000 000u  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TMR1IF 0000 0000 0000 0000  
TMR1IE 0000 0000 0000 0000  
TMR1IP 1111 1111 1111 1111  
1111 1111 1111 1111  
PIE1  
TXIE  
TXIP  
IPR1  
TRISC  
TRISE  
TRISG  
TMR2  
PORTC Data Direction Register  
PORTE Data Direction Register  
1111 1111 1111 1111  
---1 1111 ---1 1111  
PORTG Data Direction Register  
Timer2 Module Register  
Timer2 Module Period Register  
0000 0000 0000 0000  
PR2  
1111 1111 1111 1111  
T2CON  
CCPR1L  
CCPR1H  
CCP1CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Capture/Compare/PWM Register 1 (LSB)  
Capture/Compare/PWM Register 1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
P1M1  
P1M0  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 0000 0000 0000 0000  
ECCP1AS ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0 0000 0000 0000 0000  
ECCP1DEL PRSEN PDC6 PDC5 PDC4 PDC3 PDC2 PDC1 PDC0 0000 0000 uuuu uuuu  
Legend: x= unknown, u= unchanged, – = unimplemented, read as ‘0’. Shaded cells are not used by PWM and Timer2.  
2004 Microchip Technology Inc.  
DS30491C-page 187  
PIC18F6585/8585/6680/8680  
NOTES:  
DS30491C-page 188  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
17.3 SPI Mode  
17.0 MASTER SYNCHRONOUS  
SERIAL PORT (MSSP)  
MODULE  
The SPI mode allows 8 bits of data to be synchronously  
transmitted and received simultaneously. All four  
modes of SPI are supported. To accomplish  
communication, typically three pins are used:  
17.1 Master SSP (MSSP) Module  
Overview  
• Serial Data Out (SDO) – RC5/SDO  
• Serial Data In (SDI) – RC4/SDI/SDA  
The Master Synchronous Serial Port (MSSP) module is  
a serial interface, useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The MSSP module  
can operate in one of two modes:  
• Serial Clock (SCK) – RC3/SCK/SCL  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
• Slave Select (SS) – RF7/SS  
Figure 17-1 shows the block diagram of the MSSP  
module when operating in SPI mode.  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C)  
- Full Master mode  
FIGURE 17-1:  
MSSP BLOCK DIAGRAM  
(SPI MODE)  
- Slave mode (with general address call)  
The I2C interface supports the following modes in  
hardware:  
Internal  
Data Bus  
Read  
Write  
• Master mode  
• Multi-Master mode  
• Slave mode  
SSPBUF Reg  
SSPSR Reg  
17.2 Control Registers  
RC4/SDI/SDA  
RC5/SDO  
The MSSP module has three associated registers.  
These include a status register (SSPSTAT) and two  
control registers (SSPCON1 and SSPCON2). The use  
of these registers and their individual configuration bits  
differ significantly depending on whether the MSSP  
module is operated in SPI or I2C mode.  
Shift  
Clock  
bit0  
RF7/SS  
Control  
Enable  
SS  
Additional details are provided under the individual  
sections.  
Edge  
Select  
2
Clock Select  
SSPM3:SSPM0  
SMP:CKE  
2
4
TMR2 Output  
RC3/SCK/  
SCL  
(
)
2
Edge  
Select  
TOSC  
Prescaler  
4, 16, 64  
Data to TX/RX in SSPSR  
TRIS bit  
2004 Microchip Technology Inc.  
DS30491C-page 189  
PIC18F6585/8585/6680/8680  
SSPSR is the shift register used for shifting data in or  
out. SSPBUF is the buffer register to which data bytes  
are written to or read from.  
17.3.1  
REGISTERS  
The MSSP module has four registers for SPI mode  
operation. These are:  
In receive operations, SSPSR and SSPBUF together  
create a double-buffered receiver. When SSPSR  
receives a complete byte, it is transferred to SSPBUF  
and the SSPIF interrupt is set.  
• MSSP Control Register 1 (SSPCON1)  
• MSSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer Register  
(SSPBUF)  
During transmission, the SSPBUF is not double-  
buffered. A write to SSPBUF will write to both SSPBUF  
and SSPSR.  
• MSSP Shift Register (SSPSR) – Not directly  
accessible  
SSPCON1 and SSPSTAT are the control and status  
registers in SPI mode operation. The SSPCON1 regis-  
ter is readable and writable. The lower 6 bits of the  
SSPSTAT are read-only. The upper two bits of the  
SSPSTAT are read/write.  
REGISTER 17-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
bit 7  
bit 6  
SMP: Sample bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode.  
CKE: SPI Clock Edge Select bit  
When CKP = 0:  
1= Data transmitted on rising edge of SCK  
0= Data transmitted on falling edge of SCK  
When CKP = 1:  
1= Data transmitted on falling edge of SCK  
0= Data transmitted on rising edge of SCK  
bit 5  
bit 4  
D/A: Data/Address bit  
Used in I2C mode only.  
P: Stop bit  
Used in I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is  
cleared.  
bit 3  
bit 2  
bit 1  
bit 0  
S: Start bit  
Used in I2C mode only.  
R/W: Read/Write bit Information  
Used in I2C mode only.  
UA: Update Address bit  
Used in I2C mode only.  
BF: Buffer Full Status bit (Receive mode only)  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 190  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 17-2: SSPCON1: MSSP CONTROL REGISTER 1 (SPI MODE)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
bit 7  
bit 6  
WCOL: Write Collision Detect bit (Transmit mode only)  
1= The SSPBUF register is written while it is still transmitting the previous word (must be  
cleared in software)  
0= No collision  
SSPOV: Receive Overflow Indicator bit  
SPI Slave mode:  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case  
of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode.The user  
must read the SSPBUF, even if only transmitting data, to avoid setting overflow (must be  
cleared in software).  
0= No overflow  
Note:  
In Master mode, the overflow bit is not set since each new reception (and  
transmission) is initiated by writing to the SSPBUF register.  
bit 5  
bit 4  
SSPEN: Synchronous Serial Port Enable bit  
1= Enables serial port and configures SCK, SDO, SDI, and SS as serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
Note:  
When enabled, these pins must be properly configured as input or output.  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
0101= SPI Slave mode, clock = SCK pin, SS pin control disabled, SS can be used as I/O pin  
0100= SPI Slave mode, clock = SCK pin, SS pin control enabled  
0011= SPI Master mode, clock = TMR2 output/2  
0010= SPI Master mode, clock = FOSC/64  
0001= SPI Master mode, clock = FOSC/16  
0000= SPI Master mode, clock = FOSC/4  
Note:  
Bit combinations not specifically listed here are either reserved or implemented in  
I2C mode only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 191  
PIC18F6585/8585/6680/8680  
reading the data that was just received. Any write to the  
SSPBUF register during transmission/reception of data  
will be ignored and the Write Collision detect bit, WCOL  
(SSPCON1<7>), will be set. User software must clear  
the WCOL bit so that it can be determined if the follow-  
ing write(s) to the SSPBUF register completed  
successfully.  
17.3.2  
OPERATION  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits (SSPCON1<5:0> and SSPSTAT<7:6>).  
These control bits allow the following to be specified:  
• Master mode (SCK is the clock output)  
• Slave mode (SCK is the clock input)  
• Clock Polarity (Idle state of SCK)  
When the application software is expecting to receive  
valid data, the SSPBUF should be read before the next  
byte of data to transfer is written to the SSPBUF. Buffer  
Full bit, BF (SSPSTAT<0>), indicates when SSPBUF  
has been loaded with the received data (transmission  
is complete). When the SSPBUF is read, the BF bit is  
cleared. This data may be irrelevant if the SPI is only a  
transmitter. Generally, the MSSP interrupt is used to  
determine when the transmission/reception has com-  
pleted. The SSPBUF must be read and/or written. If the  
interrupt method is not going to be used, then software  
polling can be done to ensure that a write collision does  
not occur. Example 17-1 shows the loading of the  
SSPBUF (SSPSR) for data transmission.  
• Data Input Sample Phase (middle or end of data  
output time)  
• Clock Edge (output data on rising/falling edge of  
SCK)  
• Clock Rate (Master mode only)  
• Slave Select mode (Slave mode only)  
The MSSP consists of a Transmit/Receive Shift regis-  
ter (SSPSR) and a Buffer register (SSPBUF). The  
SSPSR shifts the data in and out of the device, MSb  
first. The SSPBUF holds the data that was written to the  
SSPSR, until the received data is ready. Once the 8 bits  
of data have been received, that byte is moved to the  
SSPBUF register. Then the Buffer Full detect bit, BF  
(SSPSTAT<0>) and the interrupt flag bit, SSPIF, are  
set. This double-buffering of the received data  
(SSPBUF) allows the next byte to start reception before  
The SSPSR is not directly readable or writable and can  
only be accessed by addressing the SSPBUF register.  
Additionally, the MSSP Status register (SSPSTAT)  
indicates the various status conditions.  
EXAMPLE 17-1:  
LOADING THE SSPBUF (SSPSR) REGISTER  
LOOP  
BTFSS  
BRA  
SSPSTAT, BF  
LOOP  
;Has data been received(transmit complete)?  
;No  
MOVF  
SSPBUF, W  
;WREG reg = contents of SSPBUF  
MOVWF  
RXDATA  
;Save in user RAM, if data is meaningful  
MOVF  
MOVWF  
TXDATA, W  
SSPBUF  
;W reg = contents of TXDATA  
;New data to xmit  
DS30491C-page 192  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
17.3.3  
ENABLING SPI I/O  
17.3.4  
TYPICAL CONNECTION  
To enable the serial port, SSP Enable bit, SSPEN  
(SSPCON1<5>), must be set. To reset or reconfigure  
SPI mode, clear the SSPEN bit, reinitialize the  
SSPCON registers and then set the SSPEN bit. This  
configures the SDI, SDO, SCK and SS pins as serial  
port pins. For the pins to behave as the serial port func-  
tion, some must have their data direction bits (in the  
TRIS register) appropriately programmed as follows:  
Figure 17-2 shows a typical connection between two  
microcontrollers. The master controller (Processor 1)  
initiates the data transfer by sending the SCK signal.  
Data is shifted out of both shift registers on their pro-  
grammed clock edge and latched on the opposite edge  
of the clock. Both processors should be programmed to  
the same Clock Polarity (CKP), then both controllers  
would send and receive data at the same time.  
Whether the data is meaningful (or dummy data)  
depends on the application software. This leads to  
three scenarios for data transmission:  
• SDI is automatically controlled by the SPI module  
• SDO must have TRISC<5> bit cleared  
• SCK (Master mode) must have TRISC<3> bit  
cleared  
• Master sends data - Slave sends dummy data  
• Master sends data - Slave sends data  
• SCK (Slave mode) must have TRISC<3> bit set  
• SS must have TRISF<7> bit set  
• Master sends dummy data - Slave sends data  
Any serial port function that is not desired may be  
overridden by programming the corresponding data  
direction (TRIS) register to the opposite value.  
FIGURE 17-2:  
SPI MASTER/SLAVE CONNECTION  
SPI Master SSPM3:SSPM0 = 00xxb  
SPI Slave SSPM3:SSPM0 = 010xb  
SDO  
SDI  
Serial Input Buffer  
(SSPBUF)  
Serial Input Buffer  
(SSPBUF)  
SDI  
SDO  
Shift Register  
(SSPSR)  
Shift Register  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
SCK  
PROCESSOR 1  
PROCESSOR 2  
2004 Microchip Technology Inc.  
DS30491C-page 193  
PIC18F6585/8585/6680/8680  
Figure 17-3, Figure 17-5 and Figure 17-6, where the  
MSB is transmitted first. In Master mode, the SPI clock  
rate (bit rate) is user programmable to be one of the  
following:  
17.3.5  
MASTER MODE  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2, Figure 17-2) is to  
broadcast data by the software protocol.  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 • TCY)  
• FOSC/64 (or 16 • TCY)  
• Timer2 output/2  
In Master mode, the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI is  
only going to receive, the SDO output could be dis-  
abled (programmed as an input). The SSPSR register  
will continue to shift in the signal present on the SDI pin  
at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPBUF register as  
if a normal received byte (interrupts and status bits  
appropriately set). This could be useful in receiver  
applications as a “Line Activity Monitor” mode.  
This allows a maximum data rate (at 40 MHz) of  
10.00 Mbps.  
Figure 17-3 shows the waveforms for Master mode.  
When the CKE bit is set, the SDO data is valid before  
there is a clock edge on SCK. The change of the input  
sample is shown based on the state of the SMP bit. The  
time when the SSPBUF is loaded with the received  
data is shown.  
The clock polarity is selected by appropriately program-  
ming the CKP bit (SSPCON1<4>). This then, would  
give waveforms for SPI communication, as shown in  
FIGURE 17-3:  
SPI MODE WAVEFORM (MASTER MODE)  
Write to  
SSPBUF  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
4 Clock  
Modes  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
bit 6  
bit 6  
bit 2  
bit 2  
bit 5  
bit 5  
bit 4  
bit 4  
bit 1  
bit 1  
bit 0  
bit 0  
SDO  
(CKE = 0)  
bit 7  
bit 7  
bit 3  
bit 3  
SDO  
(CKE = 1)  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SDI  
(SMP = 1)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 1)  
SSPIF  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
DS30491C-page 194  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
the SS pin goes high, the SDO pin is no longer driven  
even if in the middle of a transmitted byte and becomes  
a floating output. External pull-up/pull-down resistors  
may be desirable depending on the application.  
17.3.6  
SLAVE MODE  
In Slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched, the SSPIF interrupt flag bit is set.  
Note 1: When the SPI is in Slave mode with SS pin  
control enabled (SSPCON<3:0> = 0100),  
the SPI module will reset if the SS pin is set  
to VDD.  
While in Slave mode, the external clock is supplied by  
the external clock source on the SCK pin. This external  
clock must meet the minimum high and low times as  
specified in the electrical specifications.  
2: If the SPI is used in Slave mode with CKE  
set, then the SS pin control must be  
enabled.  
While in Sleep mode, the slave can transmit/receive  
data. When a byte is received, the device will wake-up  
from Sleep.  
When the SPI module resets, the bit counter is forced  
to ‘0’. This can be done by either forcing the SS pin to  
a high level or clearing the SSPEN bit.  
17.3.7  
SLAVE SELECT  
SYNCHRONIZATION  
The SS pin allows a Synchronous Slave mode. The SPI  
must be in Slave mode with SS pin control enabled  
(SSPCON1<3:0> = 04h). The pin must not be driven  
low for the SS pin to function as an input. The data latch  
must be high. When the SS pin is low, transmission and  
reception are enabled and the SDO pin is driven. When  
To emulate two-wire communication, the SDO pin can  
be connected to the SDI pin. When the SPI needs to  
operate as a receiver, the SDO pin can be configured  
as an input. This disables transmissions from the SDO.  
The SDI can always be left as an input (SDI function)  
since it cannot create a bus conflict.  
FIGURE 17-4:  
SLAVE SYNCHRONIZATION WAVEFORM  
SS  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 7  
bit 7  
bit 0  
SDO  
bit 7  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
2004 Microchip Technology Inc.  
DS30491C-page 195  
PIC18F6585/8585/6680/8680  
FIGURE 17-5:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)  
SS  
Optional  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 3  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
SSPSR to  
SSPBUF  
after Q2↓  
FIGURE 17-6:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)  
SS  
Not Optional  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 3  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
DS30491C-page 196  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
17.3.8  
SLEEP OPERATION  
17.3.10 BUS MODE COMPATIBILITY  
In Master mode, all module clocks are halted and the  
transmission/reception will remain in that state until the  
device wakes from Sleep. After the device returns to  
normal mode, the module will continue to  
transmit/receive data.  
Table 17-1 shows the compatibility between the  
standard SPI modes and the states of the CKP and  
CKE control bits.  
TABLE 17-1: SPI BUS MODES  
In Slave mode, the SPI Transmit/Receive Shift register  
operates asynchronously to the device. This allows the  
device to be placed in Sleep mode and data to be  
shifted into the SPI Transmit/Receive Shift register.  
When all 8 bits have been received, the MSSP interrupt  
flag bit will be set and if enabled, will wake the device  
from Sleep.  
Control Bits State  
Standard SPI Mode  
Terminology  
CKP  
CKE  
0, 0  
0, 1  
1, 0  
1, 1  
0
0
1
1
1
0
1
0
17.3.9  
EFFECTS OF A RESET  
There is also a SMP bit which controls when the data is  
sampled.  
A Reset disables the MSSP module and terminates the  
current transfer.  
TABLE 17-2: REGISTERS ASSOCIATED WITH SPI OPERATION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
RBIF  
0000 0000 0000 0000  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
1111 1111 1111 1111  
PIE1  
IPR1  
TRISC  
TRISF  
PORTC Data Direction Register  
TRISF7 TRISF6 TRISF5 TRISF4 TRISF3  
Synchronous Serial Port Receive Buffer/Transmit Register  
TRISF2  
TRISF1 TRISF0 1111 1111 uuuu uuuu  
xxxx xxxx uuuu uuuu  
SSPBUF  
SSPCON  
SSPSTAT  
Legend:  
WCOL  
SMP  
SSPOV  
CKE  
SSPEN  
D/A  
CKP  
P
SSPM3  
S
SSPM2  
R/W  
SSPM1 SSPM0 0000 0000 0000 0000  
UA  
BF  
0000 0000 0000 0000  
x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used by the MSSP in SPI mode.  
2004 Microchip Technology Inc.  
DS30491C-page 197  
PIC18F6585/8585/6680/8680  
2
17.4.1  
REGISTERS  
17.4 I C Mode  
The MSSP module has six registers for I2C operation.  
These are:  
The MSSP module in I2C mode fully implements all  
master and slave functions (including general call sup-  
port) and provides interrupts on Start and Stop bits in  
hardware to determine a free bus (multi-master func-  
tion). The MSSP module implements the standard  
mode specifications, as well as 7-bit and 10-bit  
addressing.  
• MSSP Control Register 1 (SSPCON1)  
• MSSP Control Register 2 (SSPCON2)  
• MSSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer (SSPBUF)  
• MSSP Shift Register (SSPSR) – Not directly  
accessible  
Two pins are used for data transfer:  
• Serial clock (SCL) – RC3/SCK/SCL  
• Serial data (SDA) – RC4/SDI/SDA  
• MSSP Address Register (SSPADD)  
SSPCON, SSPCON2 and SSPSTAT are the control  
and status registers in I2C mode operation. The  
SSPCON and SSPCON2 registers are readable and  
writable. The lower six bits of the SSPSTAT are read-  
only. The upper two bits of the SSPSTAT are  
read/write.  
The user must configure these pins as inputs or outputs  
through the TRISC<4:3> bits.  
FIGURE 17-7:  
MSSP BLOCK DIAGRAM  
(I2C MODE)  
SSPSR is the shift register used for shifting data in or  
out. SSPBUF is the buffer register to which data bytes  
are written to or read from.  
Internal  
Data Bus  
Read  
Write  
SSPADD register holds the slave device address when  
the SSP is configured in I2C Slave mode. When the  
SSP is configured in Master mode, the lower seven bits  
of SSPADD act as the Baud Rate Generator reload  
value.  
RC3/SCK/  
SCL  
SSPBUF Reg  
Shift  
Clock  
In receive operations, SSPSR and SSPBUF together  
create a double-buffered receiver. When SSPSR  
receives a complete byte, it is transferred to SSPBUF  
and the SSPIF interrupt is set.  
SSPSR Reg  
RC4/  
SDI/  
SDA  
MSb  
LSb  
Addr Match  
Match Detect  
SSPADD Reg  
During transmission, the SSPBUF is not double-  
buffered. A write to SSPBUF will write to both SSPBUF  
and SSPSR.  
Set, Reset  
S, P bits  
(SSPSTAT Reg)  
Start and  
Stop bit Detect  
DS30491C-page 198  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 17-3: SSPSTAT: MSSP STATUS REGISTER (I2C MODE)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
SMP: Slew Rate Control bit  
In Master or Slave mode:  
1= Slew rate control disabled for Standard Speed mode (100 kHz and 1 MHz)  
0= Slew rate control enabled for High-Speed mode (400 kHz)  
CKE: SMBus Select bit  
In Master or Slave mode:  
1= Enable SMBus specific inputs  
0= Disable SMBus specific inputs  
D/A: Data/Address bit  
In Master mode:  
Reserved.  
In Slave mode:  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
bit 4  
bit 3  
bit 2  
P: Stop bit  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
Note:  
This bit is cleared on Reset and when SSPEN is cleared.  
S: Start bit  
1= Indicates that a Start bit has been detected last  
0= Start bit was not detected last  
Note:  
This bit is cleared on Reset and when SSPEN is cleared.  
R/W: Read/Write bit Information (I2C mode only)  
In Slave mode:  
1= Read  
0= Write  
Note:  
This bit holds the R/W bit information following the last address match. This bit is  
only valid from the address match to the next Start bit, Stop bit or not ACK bit.  
In Master mode:  
1= Transmit is in progress  
0= Transmit is not in progress  
Note:  
ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is  
in Idle mode.  
bit 1  
bit 0  
UA: Update Address bit (10-bit Slave mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
In Transmit mode:  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
In Receive mode:  
1= Data transmit in progress (does not include the ACK and Stop bits), SSPBUF is full  
0= Data transmit complete (does not include the ACK and Stop bits), SSPBUF is empty  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 199  
PIC18F6585/8585/6680/8680  
REGISTER 17-4: SSPCON1: MSSP CONTROL REGISTER 1 (I2C MODE)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
bit 7  
WCOL: Write Collision Detect bit  
In Master Transmit mode:  
1= A write to the SSPBUF register was attempted while the I2C conditions were not valid for  
a transmission to be started (must be cleared in software)  
0= No collision  
In Slave Transmit mode:  
1= The SSPBUF register is written while it is still transmitting the previous word (must be  
cleared in software)  
0= No collision  
In Receive mode (Master or Slave modes):  
This is a “don’t care” bit.  
bit 6  
SSPOV: Receive Overflow Indicator bit  
In Receive mode:  
1= A byte is received while the SSPBUF register is still holding the previous byte (must be  
cleared in software)  
0= No overflow  
In Transmit mode:  
This is a “don’t care” bit in Transmit mode.  
bit 5  
bit 4  
SSPEN: Synchronous Serial Port Enable bit  
1= Enables the serial port and configures the SDA and SCL pins as the serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
Note:  
When enabled, the SDA and SCL pins must be properly configured as input or  
output.  
CKP: SCK Release Control bit  
In Slave mode:  
1= Release clock  
0= Holds clock low (clock stretch), used to ensure data setup time  
In Master mode:  
Unused in this mode.  
bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
1111= I2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled  
1110= I2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled  
1011= I2C Firmware Controlled Master mode (slave Idle)  
1000= I2C Master mode, clock = FOSC/(4 * (SSPADD + 1))  
0111= I2C Slave mode, 10-bit address  
0110= I2C Slave mode, 7-bit address  
Note:  
Bit combinations not specifically listed here are either reserved or implemented in  
SPI mode only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 200  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 17-5: SSPCON2: MSSP CONTROL REGISTER 2 (I2C MODE)  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RCEN  
R/W-0  
PEN  
R/W-0  
RSEN  
R/W-0  
SEN  
ACKSTAT  
ACKDT  
ACKEN  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
GCEN: General Call Enable bit (Slave mode only)  
1= Enable interrupt when a general call address (0000h) is received in the SSPSR  
0= General call address disabled  
ACKSTAT: Acknowledge Status bit (Master Transmit mode only)  
1= Acknowledge was not received from slave  
0= Acknowledge was received from slave  
ACKDT: Acknowledge Data bit (Master Receive mode only)  
1= Not Acknowledge  
0= Acknowledge  
Note:  
Value that will be transmitted when the user initiates an Acknowledge sequence at  
the end of a receive.  
bit 4  
ACKEN: Acknowledge Sequence Enable bit (Master Receive mode only)  
1= Initiate Acknowledge sequence on SDA and SCL pins and transmit ACKDT data bit.  
Automatically cleared by hardware.  
0= Acknowledge sequence Idle  
bit 3  
bit 2  
bit 1  
bit 0  
RCEN: Receive Enable bit (Master Mode only)  
1= Enables Receive mode for I2C  
0= Receive Idle  
PEN: Stop Condition Enable bit (Master mode only)  
1= Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Stop condition Idle  
RSEN: Repeated Start Condition Enabled bit (Master mode only)  
1= Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Repeated Start condition Idle  
SEN: Start Condition Enabled/Stretch Enabled bit  
In Master mode:  
1= Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Start condition Idle  
In Slave mode:  
1= Clock stretching is enabled for both slave transmit and slave receive (stretch enabled)  
0= Clock stretching is disabled  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
Note:  
For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is not in the Idle mode,  
this bit may not be set (no spooling) and the SSPBUF may not be written (or writes  
to the SSPBUF are disabled).  
2004 Microchip Technology Inc.  
DS30491C-page 201  
PIC18F6585/8585/6680/8680  
17.4.2  
OPERATION  
17.4.3.1  
Addressing  
The MSSP module functions are enabled by setting  
MSSP Enable bit, SSPEN (SSPCON<5>).  
The SSPCON1 register allows control of the I2C oper-  
ation. Four mode selection bits (SSPCON<3:0>) allow  
one of the following I2C modes to be selected:  
• I2C Master mode, clock = OSC/4 (SSPADD + 1)  
• I2C Slave mode (7-bit address)  
• I2C Slave mode (10-bit address)  
Once the MSSP module has been enabled, it waits for  
a Start condition to occur. Following the Start condition,  
the 8 bits are shifted into the SSPSR register. All incom-  
ing bits are sampled with the rising edge of the clock  
(SCL) line. The value of register SSPSR<7:1> is com-  
pared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match and the BF  
and SSPOV bits are clear, the following events occur:  
• I2C Slave mode (7-bit address) with Start and  
Stop bit interrupts enabled  
• I2C Slave mode (10-bit address) with Start and  
Stop bit interrupts enabled  
• I2C Firmware Controlled Master mode, slave is  
Idle  
Selection of any I2C mode with the SSPEN bit set,  
forces the SCL and SDA pins to be open-drain, pro-  
vided these pins are programmed to inputs by setting  
the appropriate TRISC bits. To ensure proper operation  
of the module, pull-up resistors must be provided  
externally to the SCL and SDA pins.  
1. The SSPSR register value is loaded into the  
SSPBUF register.  
2. The buffer full bit BF is set.  
3. An ACK pulse is generated.  
4. MSSP interrupt flag bit, SSPIF (PIR1<3>), is set  
(interrupt is generated, if enabled) on the falling  
edge of the ninth SCL pulse.  
In 10-bit Address mode, two address bytes need to be  
received by the slave. The five Most Significant bits  
(MSbs) of the first address byte specify if this is a 10-bit  
address. Bit R/W (SSPSTAT<2>) must specify a write  
so the slave device will receive the second address  
byte. For a 10-bit address, the first byte would equal  
11110 A9 A8 0’, where ‘A9’ and ‘A8’ are the two  
MSbs of the address. The sequence of events for  
10-bit address is as follows, with steps 7 through 9 for  
the slave-transmitter:  
17.4.3  
SLAVE MODE  
In Slave mode, the SCL and SDA pins must be config-  
ured as inputs (TRISC<4:3> set). The MSSP module  
will override the input state with the output data when  
required (slave-transmitter).  
The I2C Slave mode hardware will always generate an  
interrupt on an address match. Through the mode  
select bits, the user can also choose to interrupt on  
Start and Stop bits  
1. Receive first (high) byte of address (bits SSPIF,  
BF and bit UA (SSPSTAT<1>) are set).  
2. Update the SSPADD register with second (low)  
byte of address (clears bit UA and releases the  
SCL line).  
When an address is matched or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the Acknowledge (ACK) pulse and  
load the SSPBUF register with the received value  
currently in the SSPSR register.  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
4. Receive second (low) byte of address (bits  
SSPIF, BF, and UA are set).  
5. Update the SSPADD register with the first (high)  
byte of address. If match releases SCL line, this  
will clear bit UA.  
Any combination of the following conditions will cause  
the MSSP module not to give this ACK pulse:  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
• The buffer full bit BF (SSPSTAT<0>) was set  
before the transfer was received.  
7. Receive Repeated Start condition.  
• The overflow bit SSPOV (SSPCON<6>) was set  
before the transfer was received.  
8. Receive first (high) byte of address (bits SSPIF  
and BF are set).  
In this case, the SSPSR register value is not loaded  
into the SSPBUF but bit SSPIF (PIR1<3>) is set. The  
BF bit is cleared by reading the SSPBUF register while  
bit SSPOV is cleared through software.  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
The SCL clock input must have a minimum high and  
low for proper operation. The high and low times of the  
I2C specification, as well as the requirement of the  
MSSP module, are shown in timing parameter #100  
and parameter #101.  
DS30491C-page 202  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
17.4.3.2  
Reception  
17.4.3.3  
Transmission  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register and the SDA line is held low  
(ACK).  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit and pin RC3/SCK/SCL is held  
low, regardless of SEN (see Section 17.4.4 “Clock  
Stretching” for more detail). By stretching the clock,  
the master will be unable to assert another clock pulse  
until the slave is done preparing the transmit data. The  
transmit data must be loaded into the SSPBUF register  
which also loads the SSPSR register. Then pin RC3/  
SCK/SCL should be enabled by setting bit CKP  
(SSPCON1<4>). The eight data bits are shifted out on  
the falling edge of the SCL input. This ensures that the  
SDA signal is valid during the SCL high time  
(Figure 17-9).  
When the address byte overflow condition exists, then  
the no Acknowledge (ACK) pulse is given. An overflow  
condition is defined as either bit BF (SSPSTAT<0>) is  
set or bit SSPOV (SSPCON1<6>) is set.  
An MSSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF (PIR1<3>) must be cleared in soft-  
ware. The SSPSTAT register is used to determine the  
status of the byte.  
If SEN is enabled (SSPCON2<0> = 1), RC3/SCK/SCL  
will be held low (clock stretch) following each data  
transfer. The clock must be released by setting bit  
CKP (SSPCON<4>). See Section 17.4.4 “Clock  
Stretching” for more detail.  
The ACK pulse from the master-receiver is latched on  
the rising edge of the ninth SCL input pulse. If the SDA  
line is high (not ACK), then the data transfer is com-  
plete. In this case, when the ACK is latched by the  
slave, the slave logic is reset (resets SSPSTAT regis-  
ter) and the slave monitors for another occurrence of  
the Start bit. If the SDA line was low (ACK), the next  
transmit data must be loaded into the SSPBUF register.  
Again, pin RC3/SCK/SCL must be enabled by setting  
bit CKP.  
An MSSP interrupt is generated for each data transfer  
byte. The SSPIF bit must be cleared in software and  
the SSPSTAT register is used to determine the status  
of the byte. The SSPIF bit is set on the falling edge of  
the ninth clock pulse.  
2004 Microchip Technology Inc.  
DS30491C-page 203  
PIC18F6585/8585/6680/8680  
2
FIGURE 17-8:  
I C SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 7-BIT ADDRESS)  
DS30491C-page 204  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
2
FIGURE 17-9:  
I C SLAVE MODE TIMING (TRANSMISSION, 7-BIT ADDRESS)  
2004 Microchip Technology Inc.  
DS30491C-page 205  
PIC18F6585/8585/6680/8680  
FIGURE 17-10:  
I2C SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 10-BIT ADDRESS)  
DS30491C-page 206  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
2
FIGURE 17-11:  
I C SLAVE MODE TIMING (TRANSMISSION, 10-BIT ADDRESS)  
2004 Microchip Technology Inc.  
DS30491C-page 207  
PIC18F6585/8585/6680/8680  
17.4.4  
CLOCK STRETCHING  
17.4.4.3  
Clock Stretching for 7-bit Slave  
Transmit Mode  
Both 7- and 10-bit Slave modes implement automatic  
clock stretching during a transmit sequence.  
7-bit Slave Transmit mode implements clock stretching  
by clearing the CKP bit after the falling edge of the ninth  
clock, if the BF bit is clear. This occurs regardless of the  
state of the SEN bit.  
The SEN bit (SSPCON2<0>) allows clock stretching to  
be enabled during receives. Setting SEN will cause the  
SCL pin to be held low at the end of each data receive  
sequence.  
The user’s ISR must set the CKP bit before transmis-  
sion is allowed to continue. By holding the SCL line low,  
the user has time to service the ISR and load the con-  
tents of the SSPBUF before the master device can  
initiate another transmit sequence (see Figure 17-9).  
17.4.4.1  
Clock Stretching for 7-bit Slave  
Receive Mode (SEN = 1)  
In 7-bit Slave Receive mode, on the falling edge of the  
ninth clock at the end of the ACK sequence if the BF bit  
is set, the CKP bit in the SSPCON1 register is automat-  
ically cleared, forcing the SCL output to be held low.  
The CKP being cleared to ‘0’ will assert the SCL line  
low. The CKP bit must be set in the user’s ISR before  
reception is allowed to continue. By holding the SCL  
line low, the user has time to service the ISR and read  
the contents of the SSPBUF before the master device  
can initiate another receive sequence. This will prevent  
buffer overruns from occurring (see Figure 17-13).  
Note 1: If the user loads the contents of SSPBUF,  
setting the BF bit before the falling edge of  
the ninth clock, the CKP bit will not be  
cleared and clock stretching will not occur.  
2: The CKP bit can be set in software  
regardless of the state of the BF bit.  
17.4.4.4  
Clock Stretching for 10-bit Slave  
Transmit Mode  
In 10-bit Slave Transmit mode, clock stretching is  
controlled during the first two address sequences by  
the state of the UA bit, just as it is in 10-bit Slave  
Receive mode. The first two addresses are followed by  
a third address sequence which contains the high order  
bits of the 10-bit address and the R/W bit set to ‘1’. After  
the third address sequence is performed, the UA bit is  
not set, the module is now configured in Transmit  
mode, and clock stretching is controlled by the BF flag  
as in 7-bit Slave Transmit mode (see Figure 17-11).  
Note 1: If the user reads the contents of the  
SSPBUF before the falling edge of the  
ninth clock, thus clearing the BF bit, the  
CKP bit will not be cleared and clock  
stretching will not occur.  
2: The CKP bit can be set in software  
regardless of the state of the BF bit. The  
user should be careful to clear the BF bit  
in the ISR before the next receive  
sequence in order to prevent an overflow  
condition.  
17.4.4.2  
Clock Stretching for 10-bit Slave  
Receive Mode (SEN = 1)  
In 10-bit Slave Receive mode, during the address  
sequence, clock stretching automatically takes place  
but CKP is not cleared. During this time, if the UA bit is  
set after the ninth clock, clock stretching is initiated.  
The UA bit is set after receiving the upper byte of the  
10-bit address and following the receive of the second  
byte of the 10-bit address with the R/W bit cleared to  
0’. The release of the clock line occurs upon updating  
SSPADD. Clock stretching will occur on each data  
receive sequence as described in 7-bit mode.  
Note:  
If the user polls the UA bit and clears it by  
updating the SSPADD register before the  
falling edge of the ninth clock occurs and if  
the user hasn’t cleared the BF bit by read-  
ing the SSPBUF register before that time,  
then the CKP bit will still NOT be asserted  
low. Clock stretching on the basis of the  
state of the BF bit only occurs during a  
data sequence, not an address sequence.  
DS30491C-page 208  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
until an external I2C master device has already  
asserted the SCL line. The SCL output will remain low  
until the CKP bit is set and all other devices on the I2C  
bus have deasserted SCL. This ensures that a write to  
the CKP bit will not violate the minimum high time  
requirement for SCL (see Figure 17-12).  
17.4.4.5  
Clock Synchronization and  
the CKP bit  
When the CKP bit is cleared, the SCL output is forced  
to ‘0’. However, setting the CKP bit will not assert the  
SCL output low until the SCL output is already sampled  
low. Therefore, the CKP bit will not assert the SCL line  
FIGURE 17-12:  
CLOCK SYNCHRONIZATION TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
SDA  
SCL  
DX  
DX-1  
Master device  
asserts clock  
CKP  
Master device  
deasserts clock  
WR  
SSPCON  
2004 Microchip Technology Inc.  
DS30491C-page 209  
PIC18F6585/8585/6680/8680  
2
FIGURE 17-13:  
I C SLAVE MODE TIMING WITH SEN = 1 (RECEPTION, 7-BIT ADDRESS)  
DS30491C-page 210  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 17-14:  
I2C SLAVE MODE TIMING SEN = 1 (RECEPTION, 10-BIT ADDRESS)  
2004 Microchip Technology Inc.  
DS30491C-page 211  
PIC18F6585/8585/6680/8680  
If the general call address matches, the SSPSR is  
transferred to the SSPBUF, the BF flag bit is set (eighth  
bit) and on the falling edge of the ninth bit (ACK bit), the  
SSPIF interrupt flag bit is set.  
17.4.5  
GENERAL CALL ADDRESS  
SUPPORT  
The addressing procedure for the I2C bus is such that  
the first byte after the Start condition usually  
determines which device will be the slave addressed by  
the master. The exception is the general call address  
which can address all devices. When this address is  
used, all devices should, in theory, respond with an  
Acknowledge.  
When the interrupt is serviced, the source for the inter-  
rupt can be checked by reading the contents of the  
SSPBUF. The value can be used to determine if the  
address was device specific or a general call address.  
In 10-bit mode, the SSPADD is required to be updated  
for the second half of the address to match and the UA  
bit is set (SSPSTAT<1>). If the general call address is  
sampled when the GCEN bit is set while the slave is  
configured in 10-bit Address mode, then the second  
half of the address is not necessary, the UA bit will not  
be set and the slave will begin receiving data after the  
Acknowledge (Figure 17-15).  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all ‘0’s with R/W = 0.  
The general call address is recognized when the Gen-  
eral Call Enable bit (GCEN) is enabled (SSPCON2<7>  
is set). Following a Start bit detect, 8 bits are shifted into  
the SSPSR and the address is compared against the  
SSPADD. It is also compared to the general call  
address and fixed in hardware.  
FIGURE 17-15:  
SLAVE MODE GENERAL CALL ADDRESS SEQUENCE  
(7 OR 10-BIT ADDRESS MODE)  
Address is compared to General Call Address  
after ACK, set interrupt  
Receiving Data  
D5 D4 D3 D2 D1  
ACK  
R/W = 0  
General Call Address  
ACK  
9
SDA  
SCL  
D7 D6  
D0  
8
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
9
S
SSPIF  
BF (SSPSTAT<0>)  
Cleared in software  
SSPBUF is read  
SSPOV (SSPCON1<6>)  
GCEN (SSPCON2<7>)  
0’  
1’  
DS30491C-page 212  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
17.4.6  
MASTER MODE  
Note:  
The MSSP module, when configured in  
I2C Master mode, does not allow queueing  
of events. For instance, the user is not  
allowed to initiate a Start condition and  
immediately write the SSPBUF register to  
initiate transmission before the Start condi-  
tion is complete. In this case, the SSPBUF  
will not be written to and the WCOL bit will  
be set, indicating that a write to the  
SSPBUF did not occur.  
Master mode is enabled by setting and clearing the  
appropriate SSPM bits in SSPCON1 and by setting the  
SSPEN bit. In Master mode, the SCL and SDA lines  
are manipulated by the MSSP hardware.  
Master mode of operation is supported by interrupt  
generation on the detection of the Start and Stop  
conditions. The Stop (P) and Start (S) bits are cleared  
from a Reset or when the MSSP module is disabled.  
Control of the I2C bus may be taken when the P bit is  
set or the bus is Idle, with both the S and P bits clear.  
The following events will cause SSP interrupt flag bit,  
SSPIF, to be set (SSP interrupt if enabled):  
In Firmware Controlled Master mode, user code  
conducts all I2C bus operations based on Start and  
Stop bit conditions.  
• Start Condition  
• Stop Condition  
Once Master mode is enabled, the user has six  
options.  
• Data Transfer Byte Transmitted/Received  
• Acknowledge Transmit  
• Repeated Start  
1. Assert a Start condition on SDA and SCL.  
2. Assert a Repeated Start condition on SDA and  
SCL.  
3. Write to the SSPBUF register initiating  
transmission of data/address.  
4. Configure the I2C port to receive data.  
5. Generate an Acknowledge condition at the end  
of a received byte of data.  
6. Generate a Stop condition on SDA and SCL.  
2
FIGURE 17-16:  
MSSP BLOCK DIAGRAM (I C MASTER MODE)  
Internal  
Data Bus  
SSPM3:SSPM0  
SSPADD<6:0>  
Read  
Write  
SSPBUF  
SSPSR  
Baud  
Rate  
Generator  
SDA  
Shift  
Clock  
SDA In  
MSb  
LSb  
Start bit, Stop bit,  
Acknowledge  
Generate  
SCL  
Start bit Detect  
Stop bit Detect  
Write Collision Detect  
Clock Arbitration  
State Counter for  
end of XMIT/RCV  
SCL In  
Bus Collision  
Set/Reset S, P, WCOL (SSPSTAT)  
Set SSPIF, BCLIF  
Reset ACKSTAT, PEN (SSPCON2)  
2004 Microchip Technology Inc.  
DS30491C-page 213  
PIC18F6585/8585/6680/8680  
I2C Master Mode Operation  
A typical transmit sequence would go as follows:  
17.4.6.1  
1. The user generates a Start condition by setting  
the Start enable bit, SEN (SSPCON2<0>).  
The master device generates all of the serial clock  
pulses and the Start and Stop conditions. A transfer is  
ended with a Stop condition or with a Repeated Start  
condition. Since the Repeated Start condition is also  
the beginning of the next serial transfer, the I2C bus will  
not be released.  
2. SSPIF is set. The MSSP module will wait the  
required start time before any other operation  
takes place.  
3. The user loads the SSPBUF with the slave  
address to transmit.  
In Master Transmitter mode, serial data is output  
through SDA while SCL outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the Read/Write (R/W) bit.  
In this case, the R/W bit will be logic ‘0’. Serial data is  
transmitted 8 bits at a time. After each byte is transmit-  
ted, an Acknowledge bit is received. Start and Stop  
conditions are output to indicate the beginning and the  
end of a serial transfer.  
4. Address is shifted out the SDA pin until all 8 bits  
are transmitted.  
5. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
6. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
In Master Receive mode, the first byte transmitted con-  
tains the slave address of the transmitting device  
(7 bits) and the R/W bit. In this case, the R/W bit will be  
logic ‘1’. Thus, the first byte transmitted is a 7-bit slave  
address followed by a ‘1’ to indicate a receive bit. Serial  
data is received via SDA while SCL outputs the serial  
clock. Serial data is received 8 bits at a time. After each  
byte is received, an Acknowledge bit is transmitted.  
Start and Stop conditions indicate the beginning and  
end of transmission.  
7. The user loads the SSPBUF with eight bits of  
data.  
8. Data is shifted out the SDA pin until all 8 bits are  
transmitted.  
9. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
10. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
The Baud Rate Generator used for the SPI mode  
operation is used to set the SCL clock frequency for  
either 100 kHz, 400 kHz or 1 MHz I2C operation. See  
Section 17.4.7 “Baud Rate Generator” for more  
detail.  
11. The user generates a Stop condition by setting  
the Stop enable bit PEN (SSPCON2<2>).  
12. Interrupt is generated once the Stop condition is  
complete.  
DS30491C-page 214  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
Once the given operation is complete (i.e., transmis-  
sion of the last data bit is followed by ACK), the internal  
clock will automatically stop counting and the SCL pin  
will remain in its last state.  
17.4.7  
BAUD RATE GENERATOR  
In I2C Master mode, the Baud Rate Generator (BRG)  
reload value is placed in the lower 7 bits of the  
SSPADD register (Figure 17-17). When a write occurs  
to SSPBUF, the Baud Rate Generator will automatically  
begin counting. The BRG counts down to ‘0’ and stops  
until another reload has taken place. The BRG count is  
decremented twice per instruction cycle (TCY) on the  
Q2 and Q4 clocks. In I2C Master mode, the BRG is  
reloaded automatically.  
Table 17-3 demonstrates clock rates based on  
instruction cycles and the BRG value loaded into  
SSPADD.  
FIGURE 17-17:  
BAUD RATE GENERATOR BLOCK DIAGRAM  
SSPM3:SSPM0  
SSPADD<6:0>  
SSPM3:SSPM0  
SCL  
Reload  
Control  
Reload  
BRG Down Counter  
CLKO  
FOSC/4  
TABLE 17-3: I2C CLOCK RATE w/BRG  
FSCL  
FCY  
FCY*2  
BRG Value  
(2 Rollovers of BRG)  
10 MHz  
10 MHz  
10 MHz  
4 MHz  
4 MHz  
4 MHz  
1 MHz  
1 MHz  
1 MHz  
20 MHz  
20 MHz  
20 MHz  
8 MHz  
8 MHz  
8 MHz  
2 MHz  
2 MHz  
2 MHz  
19h  
20h  
64h  
0Ah  
0Dh  
28h  
03h  
0Ah  
00h  
400 kHz(1)  
312.5 kHz  
100 kHz  
400 kHz(1)  
308 kHz  
100 kHz  
333 kHz(1)  
100 kHz  
1 MHz(1)  
Note 1: The I2C interface does not conform to the 400 kHz I2C specification (which applies to rates greater than  
100 kHz) in all details but may be used with care where higher rates are required by the application.  
2004 Microchip Technology Inc.  
DS30491C-page 215  
PIC18F6585/8585/6680/8680  
SCL pin is sampled high, the Baud Rate Generator is  
reloaded with the contents of SSPADD<6:0> and  
begins counting. This ensures that the SCL high time  
will always be at least one BRG rollover count in the  
event that the clock is held low by an external device  
(Figure 17-18).  
17.4.7.1  
Clock Arbitration  
Clock arbitration occurs when the master, during any  
receive, transmit or Repeated Start/Stop condition,  
deasserts the SCL pin (SCL allowed to float high).  
When the SCL pin is allowed to float high, the Baud  
Rate Generator (BRG) is suspended from counting  
until the SCL pin is actually sampled high. When the  
FIGURE 17-18:  
BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION  
SDA  
DX  
DX-1  
SCL allowed to transition high  
SCL deasserted but slave holds  
SCL low (clock arbitration)  
SCL  
BRG decrements on  
Q2 and Q4 cycles  
BRG  
Value  
03h  
02h  
01h  
00h (hold off)  
03h  
02h  
SCL is sampled high, reload takes  
place and BRG starts its count  
BRG  
Reload  
DS30491C-page 216  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
17.4.8  
I2C MASTER MODE START  
CONDITION TIMING  
17.4.8.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Start sequence  
is in progress, the WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
To initiate a Start condition, the user sets the Start Con-  
dition Enable bit, SEN (SSPCON2<0>). If the SDA and  
SCL pins are sampled high, the Baud Rate Generator  
is reloaded with the contents of SSPADD<6:0> and  
starts its count. If SCL and SDA are both sampled high  
when the Baud Rate Generator times out (TBRG), the  
SDA pin is driven low. The action of the SDA being  
driven low while SCL is high is the Start condition and  
causes the S bit (SSPSTAT<3>) to be set. Following  
this, the Baud Rate Generator is reloaded with the  
contents of SSPADD<6:0> and resumes its count.  
When the Baud Rate Generator times out (TBRG), the  
SEN bit (SSPCON2<0>) will be automatically cleared  
by hardware, the Baud Rate Generator is suspended,  
leaving the SDA line held low and the Start condition is  
complete.  
Note:  
Because queueing of events is not  
allowed, writing to the lower 5 bits of  
SSPCON2 is disabled until the Start  
condition is complete.  
Note:  
If at the beginning of the Start condition,  
the SDA and SCL pins are already sam-  
pled low or if during the Start condition, the  
SCL line is sampled low before the SDA  
line is driven low, a bus collision occurs,  
the Bus Collision Interrupt Flag, BCLIF, is  
set, the Start condition is aborted and the  
I2C module is reset into its Idle state.  
FIGURE 17-19:  
FIRST START BIT TIMING  
Set S bit (SSPSTAT<3>)  
At completion of Start bit,  
Write to SEN bit occurs here  
SDA = 1,  
SCL = 1  
hardware clears SEN bit  
and sets SSPIF bit  
TBRG  
TBRG  
Write to SSPBUF occurs here  
1st bit  
2nd bit  
SDA  
TBRG  
SCL  
TBRG  
S
2004 Microchip Technology Inc.  
DS30491C-page 217  
PIC18F6585/8585/6680/8680  
I2C MASTER MODE REPEATED  
START CONDITION TIMING  
Immediately following the SSPIF bit getting set, the  
user may write the SSPBUF with the 7-bit address in  
7-bit mode, or the default first address in 10-bit mode.  
After the first eight bits are transmitted and an ACK is  
received, the user may then transmit an additional eight  
bits of address (10-bit mode) or eight bits of data (7-bit  
mode).  
17.4.9  
A Repeated Start condition occurs when the RSEN bit  
(SSPCON2<1>) is programmed high and the I2C logic  
module is in the Idle state. When the RSEN bit is set,  
the SCL pin is asserted low. When the SCL pin is  
sampled low, the Baud Rate Generator is loaded with  
the contents of SSPADD<5:0> and begins counting.  
The SDA pin is released (brought high) for one Baud  
Rate Generator count (TBRG). When the Baud Rate  
Generator times out, if SDA is sampled high, the SCL  
pin will be deasserted (brought high). When SCL is  
sampled high, the Baud Rate Generator is reloaded  
with the contents of SSPADD<6:0> and begins count-  
ing. SDA and SCL must be sampled high for one TBRG.  
This action is then followed by assertion of the SDA pin  
(SDA = 0) for one TBRG while SCL is high. Following  
this, the RSEN bit (SSPCON2<1>) will be automatically  
cleared and the Baud Rate Generator will not be  
reloaded, leaving the SDA pin held low. As soon as a  
Start condition is detected on the SDA and SCL pins,  
the S bit (SSPSTAT<3>) will be set. The SSPIF bit will  
notbesetuntiltheBaudRateGeneratorhastimedout.  
17.4.9.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Repeated Start  
sequence is in progress, the WCOL is set and the con-  
tents of the buffer are unchanged (the write doesn’t  
occur).  
Note:  
Because queueing of events is not  
allowed, writing of the lower 5 bits of  
SSPCON2 is disabled until the Repeated  
Start condition is complete.  
Note 1: If RSEN is programmed while any other  
event is in progress, it will not take effect.  
2: A bus collision during the Repeated Start  
condition occurs if:  
• SDA is sampled low when SCL goes  
from low-to-high.  
• SCL goes low before SDA is  
asserted low. This may indicate that  
another master is attempting to  
transmit a data ‘1’.  
FIGURE 17-20:  
REPEAT START CONDITION WAVEFORM  
Set S (SSPSTAT<3>)  
Write to SSPCON2  
occurs here.  
SDA = 1,  
SCL (no change).  
SDA = 1,  
SCL = 1  
At completion of Start bit,  
hardware clears RSEN bit  
and sets SSPIF  
TBRG  
TBRG  
TBRG  
1st bit  
SDA  
Write to SSPBUF occurs here  
TBRG  
Falling edge of ninth clock,  
end of Xmit  
SCL  
TBRG  
Sr = Repeated Start  
DS30491C-page 218  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
17.4.10 I2C MASTER MODE  
TRANSMISSION  
17.4.10.3 ACKSTAT Status Flag  
In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is  
cleared when the slave has sent an Acknowledge  
(ACK = 0) and is set when the slave does not Acknowl-  
edge (ACK = 1). A slave sends an Acknowledge when  
it has recognized its address (including a general call)  
or when the slave has properly received its data.  
Transmission of a data byte, a 7-bit address, or the  
other half of a 10-bit address is accomplished by simply  
writing a value to the SSPBUF register. This action will  
set the Buffer Full flag bit, BF and allow the Baud Rate  
Generator to begin counting and start the next trans-  
mission. Each bit of address/data will be shifted out  
onto the SDA pin after the falling edge of SCL is  
asserted (see data hold time specification parameter  
#106). SCL is held low for one Baud Rate Generator  
rollover count (TBRG). Data should be valid before SCL  
is released high (see data setup time specification  
parameter #107). When the SCL pin is released high, it  
is held that way for TBRG. The data on the SDA pin  
must remain stable for that duration and some hold  
time after the next falling edge of SCL. After the eighth  
bit is shifted out (the falling edge of the eighth clock),  
the BF flag is cleared and the master releases SDA.  
This allows the slave device being addressed to  
respond with an ACK bit during the ninth bit time if an  
address match occurred, or if data was received  
properly. The status of ACK is written into the ACKDT  
bit on the falling edge of the ninth clock. If the master  
receives an Acknowledge, the Acknowledge Status bit,  
ACKSTAT, is cleared. If not, the bit is set. After the ninth  
clock, the SSPIF bit is set and the master clock (Baud  
Rate Generator) is suspended until the next data byte  
is loaded into the SSPBUF, leaving SCL low and SDA  
unchanged (Figure 17-21).  
17.4.11 I2C MASTER MODE RECEPTION  
Master mode reception is enabled by programming the  
receive enable bit, RCEN (SSPCON2<3>).  
Note:  
The MSSP module must be in an Idle state  
before the RCEN bit is set or the RCEN bit  
will be disregarded.  
The Baud Rate Generator begins counting and on each  
rollover, the state of the SCL pin changes (high-to-low/  
low-to-high) and data is shifted into the SSPSR. After the  
falling edge of the eighth clock, the receive enable flag is  
automatically cleared, the contents of the SSPSR are  
loaded into the SSPBUF, the BF flag bit is set, the SSPIF  
flag bit is set and the Baud Rate Generator is suspended  
from counting, holding SCL low. The MSSP is now in Idle  
state awaiting the next command. When the buffer is  
read by the CPU, the BF flag bit is automatically cleared.  
The user can then send an Acknowledge bit at the end  
of reception by setting the Acknowledge sequence  
enable bit, ACKEN (SSPCON2<4>).  
17.4.11.1 BF Status Flag  
After the write to the SSPBUF, each bit of the address  
will be shifted out on the falling edge of SCL until all  
seven address bits and the R/W bit are completed. On  
the falling edge of the eighth clock, the master will  
deassert the SDA pin, allowing the slave to respond  
with an Acknowledge. On the falling edge of the ninth  
clock, the master will sample the SDA pin to see if the  
address was recognized by a slave. The status of the  
ACK bit is loaded into the ACKSTAT status bit  
(SSPCON2<6>). Following the falling edge of the ninth  
clock transmission of the address, the SSPIF is set, the  
BF flag is cleared and the Baud Rate Generator is  
turned off until another write to the SSPBUF takes  
place, holding SCL low and allowing SDA to float.  
In receive operation, the BF bit is set when an address  
or data byte is loaded into SSPBUF from SSPSR. It is  
cleared when the SSPBUF register is read.  
17.4.11.2 SSPOV Status Flag  
In receive operation, the SSPOV bit is set when 8 bits  
are received into the SSPSR and the BF flag bit is  
already set from a previous reception.  
17.4.11.3 WCOL Status Flag  
If the user writes the SSPBUF when a receive is  
already in progress (i.e., SSPSR is still shifting in a data  
byte), the WCOL bit is set and the contents of the buffer  
are unchanged (the write doesn’t occur).  
17.4.10.1 BF Status Flag  
In Transmit mode, the BF bit (SSPSTAT<0>) is set  
when the CPU writes to SSPBUF and is cleared when  
all 8 bits are shifted out.  
17.4.10.2 WCOL Status Flag  
If the user writes the SSPBUF when a transmit is  
already in progress (i.e., SSPSR is still shifting out a  
data byte), the WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
WCOL must be cleared in software.  
2004 Microchip Technology Inc.  
DS30491C-page 219  
PIC18F6585/8585/6680/8680  
2
FIGURE 17-21:  
I C MASTER MODE WAVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESS)  
DS30491C-page 220  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
2
FIGURE 17-22:  
I C MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS)  
2004 Microchip Technology Inc.  
DS30491C-page 221  
PIC18F6585/8585/6680/8680  
17.4.12 ACKNOWLEDGE SEQUENCE  
TIMING  
17.4.13 STOP CONDITION TIMING  
A Stop bit is asserted on the SDA pin at the end of a  
receive/transmit by setting the Stop Sequence Enable  
bit, PEN (SSPCON2<2>). At the end of a receive/  
transmit, the SCL line is held low after the falling edge  
of the ninth clock. When the PEN bit is set, the master  
will assert the SDA line low. When the SDA line is  
sampled low, the Baud Rate Generator is reloaded and  
counts down to ‘0’. When the Baud Rate Generator  
times out, the SCL pin will be brought high and one  
TBRG (Baud Rate Generator rollover count) later, the  
SDA pin will be deasserted. When the SDA pin is sam-  
pled high while SCL is high, the P bit (SSPSTAT<4>) is  
set. A TBRG later, the PEN bit is cleared and the SSPIF  
bit is set (Figure 17-24).  
An Acknowledge sequence is enabled by setting  
the Acknowledge Sequence Enable bit, ACKEN  
(SSPCON2<4>). When this bit is set, the SCL pin is  
pulled low and the contents of the Acknowledge data bit  
are presented on the SDA pin. If the user wishes to gen-  
erate an Acknowledge, then the ACKDT bit should be  
cleared. If not, the user should set the ACKDT bit before  
starting an Acknowledge sequence. The Baud Rate  
Generator then counts for one rollover period (TBRG)  
and the SCL pin is deasserted (pulled high). When the  
SCL pin is sampled high (clock arbitration), the Baud  
Rate Generator counts for TBRG. The SCL pin is then  
pulled low. Following this, the ACKEN bit is automatically  
cleared, the Baud Rate Generator is turned off and the  
MSSP module then goes into Idle mode (Figure 17-23).  
17.4.13.1 WCOL Status Flag  
If the user writes the SSPBUF when a Stop sequence  
is in progress, then the WCOL bit is set and the con-  
tents of the buffer are unchanged (the write doesn’t  
occur).  
17.4.12.1 WCOL Status Flag  
If the user writes the SSPBUF when an Acknowledge  
sequence is in progress, then WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
FIGURE 17-23:  
ACKNOWLEDGE SEQUENCE WAVEFORM  
Acknowledge sequence starts here,  
write to SSPCON2  
ACKEN automatically cleared  
ACKEN = 1, ACKDT = 0  
TBRG  
ACK  
TBRG  
SDA  
SCL  
D0  
8
9
SSPIF  
Cleared in  
Set SSPIF at the end  
of receive  
software  
Cleared in  
software  
Set SSPIF at the end  
of Acknowledge sequence  
Note: TBRG = one Baud Rate Generator period.  
FIGURE 17-24:  
STOP CONDITION RECEIVE OR TRANSMIT MODE  
SCL = 1for TBRG, followed by SDA = 1for TBRG  
after SDA sampled high. P bit (SSPSTAT<4>) is set.  
Write to SSPCON2,  
set PEN  
Falling edge of  
9th clock  
PEN bit (SSPCON2<2>) is cleared by  
hardware and the SSPIF bit is set  
TBRG  
SCL  
SDA  
ACK  
P
TBRG  
TBRG  
TBRG  
SCL brought high after TBRG  
SDA asserted low before rising edge of clock  
to setup Stop condition  
Note: TBRG = one Baud Rate Generator period.  
DS30491C-page 222  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
17.4.14 SLEEP OPERATION  
17.4.17 MULTI -MASTER COMMUNICATION,  
While in Sleep mode, the I2C module can receive  
addresses or data and when an address match or com-  
plete byte transfer occurs, wake the processor from  
Sleep (if the MSSP interrupt is enabled).  
BUS COLLISION AND  
BUS ARBITRATION  
Multi-Master mode support is achieved by bus arbitra-  
tion. When the master outputs address/data bits onto  
the SDA pin, arbitration takes place when the master  
outputs a ‘1’ on SDA by letting SDA float high and  
another master asserts a ‘0’. When the SCL pin floats  
high, data should be stable. If the expected data on  
SDA is a ‘1’ and the data sampled on the SDA pin = 0,  
then a bus collision has taken place. The master will set  
the Bus Collision Interrupt Flag, BCLIF and reset the  
I2C port to its Idle state (Figure 17-25).  
17.4.15 EFFECT OF A RESET  
A Reset disables the MSSP module and terminates the  
current transfer.  
17.4.16 MULTI-MASTER MODE  
In Multi-Master mode, the interrupt generation on the  
detection of the Start and Stop conditions allows the  
determination of when the bus is free. The Stop (P) and  
Start (S) bits are cleared from a Reset or when the  
MSSP module is disabled. Control of the I2C bus may  
be taken when the P bit (SSPSTAT<4>) is set or the  
bus is Idle, with both the S and P bits clear. When the  
bus is busy, enabling the SSP interrupt will generate  
the interrupt when the Stop condition occurs.  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the BF flag is  
cleared, the SDA and SCL lines are deasserted and the  
SSPBUF can be written to. When the user services the  
bus collision Interrupt Service Routine and if the I2C  
bus is free, the user can resume communication by  
asserting a Start condition.  
In multi-master operation, the SDA line must be moni-  
tored for arbitration to see if the signal level is the  
expected output level. This check is performed in  
hardware with the result placed in the BCLIF bit.  
If a Start, Repeated Start, Stop, or Acknowledge condi-  
tion was in progress when the bus collision occurred,  
the condition is aborted, the SDA and SCL lines are  
deasserted, and the respective control bits in the  
SSPCON2 register are cleared. When the user ser-  
vices the bus collision Interrupt Service Routine and if  
the I2C bus is free, the user can resume communication  
by asserting a Start condition.  
The states where arbitration can be lost are:  
• Address Transfer  
• Data Transfer  
• A Start Condition  
The master will continue to monitor the SDA and SCL  
pins. If a Stop condition occurs, the SSPIF bit will be set.  
• A Repeated Start Condition  
• An Acknowledge Condition  
A write to the SSPBUF will start the transmission of  
data at the first data bit regardless of where the  
transmitter left off when the bus collision occurred.  
In Multi-Master mode, the interrupt generation on the  
detection of Start and Stop conditions allows the determi-  
nation of when the bus is free. Control of the I2C bus can  
be taken when the P bit is set in the SSPSTAT register or  
the bus is Idle and the S and P bits are cleared.  
FIGURE 17-25:  
BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE  
Sample SDA. While SCL is high,  
data doesn’t match what is driven  
by the master.  
SDA line pulled low  
by another source  
Data changes  
while SCL = 0  
Bus collision has occurred.  
SDA released  
by master  
SDA  
SCL  
Set bus collision  
interrupt (BCLIF)  
BCLIF  
2004 Microchip Technology Inc.  
DS30491C-page 223  
PIC18F6585/8585/6680/8680  
If the SDA pin is sampled low during this count, the  
17.4.17.1 Bus Collision During a Start  
Condition  
BRG is reset and the SDA line is asserted early  
(Figure 17-28). If, however, a ‘1’ is sampled on the SDA  
pin, the SDA pin is asserted low at the end of the BRG  
count. The Baud Rate Generator is then reloaded and  
counts down to ‘0’ and during this time, if the SCL pins  
are sampled as ‘0’, a bus collision does not occur. At  
the end of the BRG count, the SCLpin is asserted low.  
During a Start condition, a bus collision occurs if:  
a) SDA or SCL are sampled low at the beginning of  
the Start condition (Figure 17-26).  
b) SCL is sampled low before SDA is asserted low  
(Figure 17-27).  
During a Start condition, both the SDA and the SCL  
pins are monitored.  
Note:  
The reason that bus collision is not a factor  
during a Start condition is that no two bus  
masters can assert a Start condition at the  
exact same time. Therefore, one master  
will always assert SDA before the other.  
This condition does not cause a bus  
collision because the two masters must be  
allowed to arbitrate the first address follow-  
ing the Start condition. If the address is the  
same, arbitration must be allowed to  
continue into the data portion, Repeated  
Start or Stop conditions.  
If the SDA pin is already low or the SCL pin is already  
low, then all of the following occur:  
• the Start condition is aborted,  
• the BCLIF flag is set, and  
• the MSSP module is reset to its Idle state  
(Figure 17-26).  
The Start condition begins with the SDA and SCL pins  
deasserted. When the SDA pin is sampled high, the  
Baud Rate Generator is loaded from SSPADD<6:0>  
and counts down to ‘0’. If the SCL pin is sampled low  
while SDA is high, a bus collision occurs because it is  
assumed that another master is attempting to drive a  
data ‘1’ during the Start condition.  
FIGURE 17-26:  
BUS COLLISION DURING START CONDITION (SDA ONLY)  
SDA goes low before the SEN bit is set.  
Set BCLIF;  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
SDA  
SCL  
SEN  
Set SEN, enable Start  
condition if SDA = 1, SCL = 1  
SEN cleared automatically because of bus collision.  
SSP module reset into Idle state.  
SDA sampled low before  
Start condition. Set BCLIF;  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
BCLIF  
SSPIF and BCLIF are  
cleared in software  
S
SSPIF  
SSPIF and BCLIF are  
cleared in software  
DS30491C-page 224  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 17-27:  
BUS COLLISION DURING START CONDITION (SCL = 0)  
SDA = 0, SCL = 1  
TBRG  
TBRG  
SDA  
Set SEN, enable Start  
sequence if SDA = 1, SCL = 1  
SCL  
SEN  
SCL = 0before SDA = 0,  
bus collision occurs. Set BCLIF.  
SCL = 0before BRG time-out,  
bus collision occurs. Set BCLIF.  
BCLIF  
Interrupt cleared  
in software  
S
0’  
0’  
0’  
0’  
SSPIF  
FIGURE 17-28:  
BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION  
SDA = 0, SCL = 1  
Set S  
Set SSPIF  
Less than TBRG  
TBRG  
SDA pulled low by other master.  
Reset BRG and assert SDA.  
SDA  
SCL  
S
SCL pulled low after BRG  
Time-out  
SEN  
Set SEN, enable START  
sequence if SDA = 1, SCL = 1  
0’  
BCLIF  
S
SSPIF  
Interrupts cleared  
in software  
SDA = 0, SCL = 1,  
set SSPIF  
2004 Microchip Technology Inc.  
DS30491C-page 225  
PIC18F6585/8585/6680/8680  
reloaded and begins counting. If SDA goes from high to  
17.4.17.2 Bus Collision During a Repeated  
Start Condition  
low before the BRG times out, no bus collision occurs  
because no two masters can assert SDA at exactly the  
same time.  
During a Repeated Start condition, a bus collision  
occurs if:  
If SCL goes from high to low before the BRG times out  
and SDA has not already been asserted, a bus collision  
occurs. In this case, another master is attempting to  
transmit a data ‘1’ during the Repeated Start condition  
(see Figure 17-30).  
a) A low level is sampled on SDA when SCL goes  
from low level to high level.  
b) SCL goes low before SDA is asserted low,  
indicating that another master is attempting to  
transmit a data ‘1’.  
If, at the end of the BRG time-out, both SCL and SDA  
are still high, the SDA pin is driven low and the BRG is  
reloaded and begins counting. At the end of the count,  
regardless of the status of the SCL pin, the SCL pin is  
driven low and the Repeated Start condition is  
complete.  
When the user deasserts SDA and the pin is allowed to  
float high, the BRG is loaded with SSPADD<6:0> and  
counts down to ‘0’. The SCL pin is then deasserted and  
when sampled high, the SDA pin is sampled.  
If SDA is low, a bus collision has occurred (i.e., another  
master is attempting to transmit a data ‘0’, see  
Figure 17-29). If SDA is sampled high, the BRG is  
FIGURE 17-29:  
BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)  
SDA  
SCL  
Sample SDA when SCL goes high.  
If SDA = 0, set BCLIF and release SDA and SCL.  
RSEN  
BCLIF  
Cleared in software  
0’  
S
0’  
SSPIF  
FIGURE 17-30:  
BUS COLLISION DURING REPEATED START CONDITION (CASE 2)  
TBRG  
TBRG  
SDA  
SCL  
SCL goes low before SDA,  
set BCLIF. Release SDA and SCL.  
BCLIF  
RSEN  
Interrupt cleared  
in software  
0’  
S
SSPIF  
DS30491C-page 226  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
The Stop condition begins with SDA asserted low.  
When SDA is sampled low, the SCL pin is allowed to  
float. When the pin is sampled high (clock arbitration),  
the Baud Rate Generator is loaded with SSPADD<6:0>  
and counts down to ‘0’. After the BRG times out, SDA  
is sampled. If SDA is sampled low, a bus collision has  
occurred. This is due to another master attempting to  
drive a data ‘0’ (Figure 17-31). If the SCL pin is  
sampled low before SDA is allowed to float high, a bus  
collision occurs. This is another case of another master  
attempting to drive a data ‘0’ (Figure 17-32).  
17.4.17.3 Bus Collision During a Stop  
Condition  
Bus collision occurs during a Stop condition if:  
a) After the SDA pin has been deasserted and  
allowed to float high, SDA is sampled low after  
the BRG has timed out.  
b) After the SCL pin is deasserted, SCL is sampled  
low before SDA goes high.  
FIGURE 17-31:  
BUS COLLISION DURING A STOP CONDITION (CASE 1)  
SDA sampled  
low after TBRG,  
set BCLIF  
TBRG  
TBRG  
TBRG  
SDA  
SDA asserted low  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
FIGURE 17-32:  
BUS COLLISION DURING A STOP CONDITION (CASE 2)  
TBRG  
TBRG  
TBRG  
SDA  
SCL goes low before SDA goes high,  
set BCLIF  
Assert SDA  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
2004 Microchip Technology Inc.  
DS30491C-page 227  
PIC18F6585/8585/6680/8680  
NOTES:  
DS30491C-page 228  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
In order to configure pins RC6/TX/CK and RC7/RX/DT  
as the Universal Synchronous Asynchronous Receiver  
Transmitter:  
18.0 ENHANCED UNIVERSAL  
SYNCHRONOUS  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (USART)  
• SPEN (RCSTA<7>) bit must be set (= 1),  
• TRISC<6> bit must be set (= 1), and  
• TRISC<7> bit must be set (= 1).  
The Universal Synchronous Asynchronous Receiver  
Transmitter (USART) module is one of the two serial  
I/O modules. (USART is also known as a Serial  
Communications Interface or SCI.) The USART can be  
configured as a full-duplex asynchronous system that  
can communicate with peripheral devices, such as  
CRT terminals and personal computers. It can also be  
configured as a half-duplex synchronous system that  
can communicate with peripheral devices, such as A/D  
or D/A integrated circuits, serial EEPROMs, etc.  
Note:  
The USART control will automatically  
reconfigure the pin from input to output as  
needed.  
The operation of the Enhanced USART module is  
controlled through three registers:  
• Transmit Status and Control (TXSTA)  
• Receive Status and Control (RCSTA)  
• Baud Rate Control (BAUDCON)  
The Enhanced USART module implements additional  
features, including automatic baud rate detection and  
calibration, automatic wake-up on sync break reception  
and 12-bit break character transmit. These make it  
ideally suited for use in Local Interconnect Network bus  
(LIN bus) systems.  
These are detailed on the following pages in  
Register 18-1, Register 18-2 and Register 18-3,  
respectively.  
The USART can be configured in the following modes:  
• Asynchronous (full-duplex) with:  
- Auto-wake-up on character reception  
- Auto-baud calibration  
- 12-bit break character transmission  
• Synchronous – Master (half-duplex) with  
selectable clock polarity  
• Synchronous – Slave (half-duplex) with selectable  
clock polarity  
2004 Microchip Technology Inc.  
DS30491C-page 229  
PIC18F6585/8585/6680/8680  
REGISTER 18-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
bit 7  
R/W-0  
TX9  
R/W-0  
TXEN  
R/W-0  
SYNC  
R/W-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
bit 0  
SENDB  
TRMT  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
Note:  
SREN/CREN overrides TXEN in Sync mode.  
bit 4  
bit 3  
SYNC: USART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
SENDB: Send Break Character bit  
Asynchronous mode:  
1= Send sync break on next transmission (cleared by hardware upon completion)  
0= Sync break transmission completed  
Synchronous mode:  
Don’t care.  
bit 2  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode.  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: 9th bit of Transmit Data  
Can be address/data bit or a parity bit.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 230  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 18-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RX/DT and TX/CK pins as serial port pins)  
0= Serial port disabled (held in Reset)  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave:  
Don’t care.  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enables interrupt and loads the receive buffer when RSR<8>  
is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
Asynchronous mode 9-bit (RX9 = 0):  
Don’t care.  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG register and receiving next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: 9th bit of Received Data  
This can be an address/data bit or a parity bit and must be calculated by user firmware.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 231  
PIC18F6585/8585/6680/8680  
REGISTER 18-3: BAUDCON: BAUD RATE CONTROL REGISTER  
U-0  
R-1  
U-0  
R/W-0  
SCKP  
R/W-0  
U-0  
R/W-0  
WUE  
R/W-0  
RCIDL  
BRG16  
ABDEN  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
RCIDL: Receive Operation Idle Status bit  
1= Receive operation is Idle  
0= Receive operation is active  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
SCKP: Synchronous Clock Polarity Select bit  
Asynchronous mode:  
Unused in this mode.  
Synchronous mode:  
1= Idle state for clock (CK) is a high level  
0= Idle state for clock (CK) is a low level  
bit 3  
BRG16: 16-bit Baud Rate Register Enable bit  
1= 16-bit Baud Rate Generator – SPBRGH and SPBRG  
0= 8-bit Baud Rate Generator – SPBRG only (Compatible mode), SPBRGH value ignored  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
WUE: Wake-up Enable bit  
Asynchronous mode:  
1= USART will continue to sample the RX pin – interrupt generated on falling edge; bit cleared  
in hardware on following rising edge  
0= RX pin not monitored or rising edge detected  
Synchronous mode:  
Unused in this mode.  
bit 0  
ABDEN: Auto-Baud Detect Enable bit  
Asynchronous mode:  
1= Enable baud rate measurement on the next character – requires reception of a sync field  
(55h); cleared in hardware upon completion  
0= Baud rate measurement disabled or completed  
Synchronous mode:  
Unused in this mode.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 232  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
the error in baud rate can be determined. An example  
18.1 USART Baud Rate Generator (BRG)  
calculation is shown in Example 18-1. Typical baud  
rates and error values for the various Asynchronous  
modes are shown in Table 18-2. It may be advantageous  
to use the high baud rate (BRGH = 1) or the 16-bit BRG  
to reduce the baud rate error, or achieve a slow baud  
rate for a fast oscillator frequency.  
The BRG is a dedicated 8-bit or 16-bit generator that  
supports both the Asynchronous and Synchronous  
modes of the USART. By default, the BRG operates in  
8-bit mode; setting the BRG16 bit (BAUDCON<3>)  
selects 16-bit mode.  
The SPBRGH:SPBRG register pair controls the period  
of a free-running timer. In Asynchronous mode, bits  
BRGH (TXSTA<2>) and BRG16 also control the baud  
rate. In Synchronous mode, bit BRGH is ignored.  
Table 18-1 shows the formula for computation of the  
baud rate for different USART modes which only apply  
in Master mode (internally generated clock).  
Writing a new value to the SPBRGH:SPBRG registers  
causes the BRG timer to be reset (or cleared). This  
ensures the BRG does not wait for a timer overflow  
before outputting the new baud rate.  
18.1.1  
SAMPLING  
The data on the RC7/RX/DT pin is sampled three times  
by a majority detect circuit to determine if a high or a  
low level is present at the RX pin.  
Given the desired baud rate and FOSC, the nearest  
integer value for the SPBRGH:SPBRG registers can be  
calculated using the formulas in Table 18-1. From this,  
TABLE 18-1: BAUD RATE FORMULAS  
Configuration Bits  
BRG/USART Mode  
Baud Rate Formula  
FOSC/[64 (n + 1)]  
FOSC/[16 (n + 1)]  
SYNC  
BRG16  
BRGH  
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
x
x
8-bit/Asynchronous  
8-bit/Asynchronous  
16-bit/Asynchronous  
16-bit/Asynchronous  
8-bit/Synchronous  
16-bit/Synchronous  
FOSC/[4 (n + 1)]  
Legend: x= Don’t care, n = Value of SPBRGH:SPBRG register pair  
EXAMPLE 18-1: CALCULATING BAUD RATE ERROR  
For a device with FOSC of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:  
Desired Baud Rate = FOSC/(64 ([SPBRGH:SPBRG] + 1))  
Solving for SPBRGH:SPBRG:  
X
= ((FOSC/Desired Baud Rate)/64) – 1  
= ((16000000/9600)/64) – 1  
= [25.042] = 25  
Calculated Baud Rate= 16000000/(64 (25 + 1))  
= 9615  
Error  
= (Calculated Baud Rate – Desired Baud Rate)/Desired Baud Rate  
= (9615 – 9600)/9600 = 0.16%  
TABLE 18-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Value on  
POR, BOR  
Value on all  
other Resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TXSTA  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
SCKP  
SENDB  
ADDEN  
BRG16  
BRGH  
FERR  
TRMT  
OERR  
WUE  
TX9D  
RX9D  
0000 0010  
0000 000x  
0000 0010  
0000 000x  
-1-0 0-00  
0000 0000  
0000 0000  
RCSTA  
BAUDCON  
RCIDL  
ABDEN -1-0 0-00  
0000 0000  
SPBRGH Baud Rate Generator Register, High Byte  
SPBRG  
Baud Rate Generator Register, Low Byte  
x= unknown, -= unimplemented, read as ‘0’. Shaded cells are not used by the BRG.  
0000 0000  
Legend:  
2004 Microchip Technology Inc.  
DS30491C-page 233  
PIC18F6585/8585/6680/8680  
TABLE 18-3: BAUD RATES FOR ASYNCHRONOUS MODES  
SYNC = 0, BRGH = 0, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
255  
129  
31  
15  
4
129  
64  
15  
7
1201  
2403  
9615  
-0.16  
-0.16  
-0.16  
103  
51  
12  
1.221  
1.73  
0.16  
1.73  
1.73  
8.51  
-9.58  
1.202  
2.404  
9.766  
19.531  
52.083  
78.125  
0.16  
0.16  
1.73  
1.73  
-9.58  
-32.18  
2.4  
2.441  
9.615  
19.531  
56.818  
125.000  
1.73  
0.16  
1.73  
-1.36  
8.51  
255  
64  
31  
10  
4
2.404  
9.6  
9.766  
19.2  
57.6  
115.2  
19.531  
62.500  
104.167  
2
2
1
SYNC = 0, BRGH = 0, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
0.300  
1.202  
0.16  
0.16  
207  
51  
25  
6
300  
1201  
2403  
-0.16  
-0.16  
-0.16  
103  
25  
12  
300  
1201  
-0.16  
-0.16  
51  
12  
2.4  
2.404  
0.16  
9.6  
8.929  
-6.99  
8.51  
19.2  
57.6  
115.2  
20.833  
62.500  
62.500  
2
8.51  
0
-45.75  
0
SYNC = 0, BRGH = 1, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 20.000 MHz  
FOSC = 10.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
(decimal)  
SPBRG Actual  
value  
(decimal)  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
%
Error  
%
Error  
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Rate  
(K)  
(decimal)  
0.3  
1.2  
2.4  
2.441  
9.615  
19.531  
56.818  
125.000  
1.73  
0.16  
1.73  
-1.36  
8.51  
255  
64  
31  
10  
4
2403  
9615  
19230  
55555  
-0.16  
-0.16  
-0.16  
3.55  
207  
51  
25  
8
9.6  
9.766  
19.231  
58.140  
113.636  
1.73  
0.16  
0.94  
-1.36  
255  
129  
42  
9.615  
19.231  
56.818  
113.636  
0.16  
0.16  
-1.36  
-1.36  
129  
64  
21  
10  
19.2  
57.6  
115.2  
21  
SYNC = 0, BRGH = 1, BRG16 = 0  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
207  
103  
25  
12  
3
1201  
2403  
9615  
-0.16  
-0.16  
-0.16  
103  
51  
12  
300  
1201  
2403  
-0.16  
-0.16  
-0.16  
207  
51  
25  
1.202  
0.16  
0.16  
0.16  
0.16  
8.51  
8.51  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
62.500  
125.000  
1
DS30491C-page 234  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 18-3: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 0, BRG16 = 1  
FOSC = 20.000 MHz FOSC = 10.000 MHz  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
SPBRG Actual  
SPBRG Actual  
value  
SPBRG  
value  
(decimal)  
%
Error  
%
%
%
Error  
value  
(decimal)  
Rate  
(K)  
value  
Rate  
(K)  
Rate  
(K)  
Error  
Error  
(decimal)  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.00  
0.02  
0.06  
0.16  
0.16  
0.94  
-1.36  
8332  
2082  
1040  
259  
129  
42  
0.300  
1.200  
0.02  
-0.03  
-0.03  
0.16  
4165  
1041  
520  
129  
64  
0.300  
1.200  
0.02  
-0.03  
0.16  
0.16  
1.73  
-1.36  
8.51  
2082  
520  
259  
64  
300  
1201  
2403  
9615  
19230  
55555  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
3.55  
1665  
415  
207  
51  
2.4  
2.402  
2.399  
2.404  
9.6  
9.615  
9.615  
9.615  
19.2  
57.6  
115.2  
19.231  
58.140  
113.636  
19.231  
56.818  
113.636  
0.16  
19.531  
56.818  
125.000  
31  
25  
-1.36  
-1.36  
21  
10  
8
21  
10  
4
SYNC = 0, BRGH = 0, BRG16 = 1  
BAUD  
RATE  
(K)  
FOSC = 4.000 MHz  
FOSC = 2.000 MHz  
FOSC = 1.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
value  
SPBRG Actual  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
Error  
%
Error  
Rate  
(K)  
Rate  
(K)  
Error  
(decimal)  
0.3  
1.2  
0.300  
1.202  
0.04  
0.16  
0.16  
0.16  
0.16  
8.51  
8.51  
832  
207  
103  
25  
12  
3
300  
1201  
2403  
9615  
-0.16  
-0.16  
-0.16  
-0.16  
415  
103  
51  
12  
300  
1201  
2403  
-0.16  
-0.16  
-0.16  
207  
51  
25  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
62.500  
125.000  
1
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 20.000 MHz FOSC = 10.000 MHz  
BAUD  
RATE  
(K)  
FOSC = 40.000 MHz  
FOSC = 8.000 MHz  
Actual  
Rate  
(K)  
SPBRG Actual  
SPBRG Actual  
SPBRG Actual  
value  
SPBRG  
value  
(decimal)  
%
Error  
%
%
%
Error  
value  
(decimal)  
Rate  
(K)  
value  
Rate  
(K)  
Rate  
(K)  
Error  
Error  
(decimal)  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.00  
0.00  
0.02  
0.06  
-0.03  
0.35  
-0.22  
33332  
8332  
4165  
1040  
520  
0.300  
1.200  
0.00  
0.02  
0.02  
-0.03  
0.16  
-0.22  
0.94  
16665  
4165  
2082  
520  
259  
86  
0.300  
1.200  
0.00  
0.02  
0.06  
0.16  
0.16  
0.94  
-1.36  
8332  
2082  
1040  
259  
129  
42  
300  
1200  
-0.01  
-0.04  
-0.04  
-0.16  
-0.16  
0.79  
6665  
1665  
832  
207  
103  
34  
2.4  
2.400  
2.400  
2.402  
2400  
9.6  
9.606  
9.596  
9.615  
9615  
19.2  
57.6  
115.2  
19.193  
57.803  
114.943  
19.231  
57.471  
116.279  
19.231  
58.140  
113.636  
19230  
57142  
117647  
172  
86  
42  
21  
-2.12  
16  
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 4.000 MHz FOSC = 2.000 MHz FOSC = 1.000 MHz  
BAUD  
RATE  
(K)  
Actual  
Rate  
(K)  
SPBRG Actual  
SPBRG Actual  
SPBRG  
value  
(decimal)  
%
Error  
%
Error  
%
Error  
value  
Rate  
(K)  
value  
Rate  
(K)  
(decimal)  
(decimal)  
0.3  
1.2  
0.300  
1.200  
0.01  
0.04  
0.16  
0.16  
0.16  
2.12  
-3.55  
3332  
832  
415  
103  
51  
300  
1201  
2403  
9615  
19230  
55555  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
3.55  
1665  
415  
207  
51  
300  
1201  
2403  
9615  
19230  
-0.04  
-0.16  
-0.16  
-0.16  
-0.16  
832  
207  
103  
25  
2.4  
2.404  
9.6  
9.615  
19.2  
57.6  
115.2  
19.231  
58.824  
111.111  
25  
12  
16  
8
8
2004 Microchip Technology Inc.  
DS30491C-page 235  
PIC18F6585/8585/6680/8680  
carry occurred for 8-bit modes by checking for 00h in  
the SPBRGH register. Refer to Table 18-4 for counter  
clock rates to the BRG.  
18.1.2  
AUTO-BAUD RATE DETECT  
The enhanced USART module supports the automatic  
detection and calibration of baud rate. This feature is  
active only in Asynchronous mode and while the WUE  
bit is clear.  
While the ABD sequence takes place, the USART state  
machine is held in Idle. The RCIF interrupt is set once  
the fifth rising edge on RX is detected. The value in the  
RCREG needs to be read to clear the RCIF interrupt.  
RCREG content should be discarded.  
The automatic baud rate measurement sequence  
(Figure 18-1) begins whenever a Start bit is received  
and the ABDEN bit is set. The calculation is  
self-averaging.  
Note 1: If the WUE bit is set with the ABDEN bit,  
auto-baud rate detection will occur on the  
byte following the break character.  
In the Auto-Baud Rate Detect (ABD) mode, the clock to  
the BRG is reversed. Rather than the BRG clocking the  
incoming RX signal, the RX signal is timing the BRG. In  
ABD mode, the internal Baud Rate Generator is used  
as a counter to time the bit period of the incoming serial  
byte stream.  
2: It is up to the user to determine that the  
incoming character baud rate is within the  
range of the selected BRG clock source.  
Some combinations of oscillator fre-  
quency and USART baud rates are not  
possible due to bit error rates. Overall  
system timing and communication baud  
rates must be taken into consideration  
when using the auto-baud rate detection  
feature.  
Once the ABDEN bit is set, the state machine will clear  
the BRG and look for a Start bit. The auto-baud detect  
must receive a byte with the value 55h (ASCII “U”,  
which is also the LIN bus sync character) in order to  
calculate the proper bit rate. The measurement is taken  
over both a low and a high bit time in order to minimize  
any effects caused by asymmetry of the incoming  
signal. After a Start bit, the SPBRG begins counting up  
using the preselected clock source on the first rising  
edge of RX. After eight bits on the RX pin or the fifth  
rising edge, an accumulated value totalling the proper  
BRG period is left in the SPBRGH:SPBRG registers.  
Once the 5th edge is seen (should correspond to the  
Stop bit), the ABDEN bit is automatically cleared.  
TABLE 18-4: BRG COUNTER CLOCK  
RATES  
BRG16 BRGH  
BRG Counter Clock  
0
0
1
0
1
FOSC/512  
FOSC/128  
FOSC/128  
FOSC/32  
0
1
While calibrating the baud rate period, the BRG regis-  
ters are clocked at 1/8th the preconfigured clock rate.  
Note that the BRG clock will be configured by the  
BRG16 and BRGH bits. Independent of the BRG16 bit  
setting, both the SPBRG and SPBRGH will be used as  
a 16-bit counter. This allows the user to verify that no  
1
Note:  
During the ABD sequence, SPBRG and  
SPBRGH are both used as a 16-bit  
counter independent of BRG16 setting.  
FIGURE 18-1:  
AUTOMATIC BAUD RATE CALCULATION  
XXXXh  
0000h  
001Ch  
BRG Value  
Edge #2  
Bit 3  
Edge #3  
Bit 5  
Edge #4  
Bit 7  
Bit 6  
Edge #5  
Stop Bit  
Edge #1  
Start  
Bit 1  
RX pin  
Bit 0  
Bit 2  
Bit 4  
BRG Clock  
Auto-Cleared  
Set by User  
ABDEN bit  
RCIF bit  
(Interrupt)  
Read  
RCREG  
XXXXh  
XXXXh  
1Ch  
00h  
SPBRG  
SPBRGH  
Note 1: The ABD sequence requires the USART module to be configured in Asynchronous mode and WUE = 0.  
DS30491C-page 236  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
Once the TXREG register transfers the data to the TSR  
register (occurs in one TCY), the TXREG register is  
18.2 USART Asynchronous Mode  
The Asynchronous mode of operation is selected by  
clearing the SYNC bit (TXSTA<4>). In this mode, the  
USART uses standard Non-Return-to-Zero (NRZ) for-  
mat (one Start bit, eight or nine data bits and one Stop  
bit). The most common data format is 8 bits. An on-chip  
dedicated 8-bit/16-bit Baud Rate Generator can be  
used to derive standard baud rate frequencies from the  
oscillator.  
empty and flag bit TXIF (PIR1<4>) is set. This interrupt  
can be enabled/disabled by setting/clearing enable bit  
TXIE (PIE1<4>). Flag bit TXIF will be set regardless of  
the state of enable bit TXIE and cannot be cleared in  
software. Flag bit TXIF is not cleared immediately upon  
loading the Transmit Buffer register, TXREG. TXIF  
becomes valid in the second instruction cycle following  
the load instruction. Polling TXIF immediately following  
a load of TXREG will return invalid results.  
The USART transmits and receives the LSb first. The  
USART’s transmitter and receiver are functionally inde-  
pendent but use the same data format and baud rate.  
The Baud Rate Generator produces a clock, either x16  
or x64 of the bit shift rate depending on the BRGH and  
BRG16 bits (TXSTA<2> and BAUDCON<3>). Parity is  
not supported by the hardware but can be implemented  
in software and stored as the 9th data bit.  
While flag bit TXIF indicates the status of the TXREG  
register, another bit, TRMT (TXSTA<1>), shows the  
status of the TSR register. Status bit TRMT is a read-  
only bit which is set when the TSR register is empty. No  
interrupt logic is tied to this bit, so the user has to poll  
this bit in order to determine if the TSR register is  
empty.  
Asynchronous mode is available in all low-power  
modes; it is available in Sleep mode only when auto-  
wake-up on sync break is enabled. When in PRI_IDLE  
mode, no changes to the Baud Rate Generator values  
are required; however, other low-power mode clocks  
may operate at another frequency than the primary  
clock. Therefore, the Baud Rate Generator values may  
need to be adjusted.  
Note 1: The TSR register is not mapped in data  
memory so it is not available to the user.  
2: Flag bit TXIF is set when enable bit TXEN  
is set.  
To set up an Asynchronous Transmission:  
1. Initialize the SPBRGH:SPBRG registers for the  
appropriate baud rate. Set or clear the BRGH  
and BRG16 bits, as required, to achieve the  
desired baud rate.  
When operating in Asynchronous mode, the USART  
module consists of the following important elements:  
• Baud Rate Generator  
Note:  
When BRGH and BRG16 bits are set,  
• Sampling Circuit  
SPBRGH:SPBRG must be more than ‘1’.  
• Asynchronous Transmitter  
• Asynchronous Receiver  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
• Auto-Wake-up on Sync Break Character  
• 12-bit Break Character Transmit  
• Auto-Baud Rate Detection  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set transmit bit  
TX9. Can be used as address/data bit.  
5. Enable the transmission by setting bit TXEN  
which will also set bit TXIF.  
18.2.1  
USART ASYNCHRONOUS  
TRANSMITTER  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
The USART transmitter block diagram is shown in  
Figure 18-2. The heart of the transmitter is the Transmit  
(Serial) Shift register (TSR). The Shift register obtains  
its data from the read/write transmit buffer, TXREG. The  
TXREG register is loaded with data in software. The  
TSR register is not loaded until the Stop bit has been  
transmitted from the previous load. As soon as the Stop  
bit is transmitted, the TSR is loaded with new data from  
the TXREG register (if available).  
7. Load data to the TXREG register (starts  
transmission).  
If using interrupts, ensure that the GIE and PEIE bits in  
the INTCON register (INTCON<7:6>) are set.  
2004 Microchip Technology Inc.  
DS30491C-page 237  
PIC18F6585/8585/6680/8680  
FIGURE 18-2:  
USART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIF  
TXREG Register  
8
TXIE  
RC6/TX/CK pin  
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
• •  
TSR Register  
Interrupt  
Baud Rate CLK  
SPBRG  
TXEN  
TRMT  
SPEN  
BRG16  
SPBRGH  
TX9  
TX9D  
Baud Rate Generator  
FIGURE 18-3:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(Shift Clock)  
RC6/TX/CK  
(pin)  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
Stop bit  
TXIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
1 TCY  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
FIGURE 18-4:  
ASYNCHRONOUS TRANSMISSION (BACK TO BACK)  
Write to TXREG  
Word 2  
Start bit  
Word 1  
BRG Output  
(Shift Clock)  
RC6/TX/CK  
(pin)  
Start bit  
Word 2  
bit 0  
bit 1  
bit 7/8  
bit 0  
Stop bit  
Word 2  
1 TCY  
Word 1  
TXIF bit  
(Interrupt Reg. Flag)  
1 TCY  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Word 1  
Transmit Shift Reg.  
Transmit Shift Reg.  
Note: This timing diagram shows two consecutive transmissions.  
DS30491C-page 238  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 18-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
0000 0000 0000 0000  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0010 0000 0010  
-1-1 0-00 -1-1 0-00  
0000 0000 0000 0000  
0000 0000 0000 0000  
PSPIF  
PSPIE  
PSPIP  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
SSPIF CCP1IF TMR2IF TMR1IF  
SSPIE CCP1IE TMR2IE TMR1IE  
SSPIP CCP1IP TMR2IP TMR1IP  
PIE1  
IPR1  
RCSTA  
TXREG  
TXSTA  
BAUDCON  
CREN ADDEN  
FERR  
OERR  
RX9D  
USART Transmit Register  
CSRC  
TX9  
TXEN  
SYNC SENDB BRGH  
SCKP BRG16  
TRMT  
WUE  
TX9D  
RCIDL  
ABDEN  
SPBRGH Baud Rate Generator Register, High Byte  
SPBRG  
Baud Rate Generator Register, Low Byte  
Legend:  
x= unknown, – = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous transmission.  
2004 Microchip Technology Inc.  
DS30491C-page 239  
PIC18F6585/8585/6680/8680  
18.2.2  
USART ASYNCHRONOUS  
RECEIVER  
18.2.3  
SETTING UP 9-BIT MODE WITH  
ADDRESS DETECT  
The receiver block diagram is shown in Figure 18-5.  
The data is received on the RC7/RX/DT pin and drives  
the data recovery block. The data recovery block is  
actually a high-speed shifter operating at x16 times the  
baud rate, whereas the main receive serial shifter oper-  
ates at the bit rate or at FOSC. This mode would  
typically be used in RS-232 systems.  
This mode would typically be used in RS-485 systems.  
To set up an asynchronous reception with address  
detect enable:  
1. Initialize the SPBRGH:SPBRG registers for the  
appropriate baud rate. Set or clear the BRGH  
and BRG16 bits, as required, to achieve the  
desired baud rate..  
To set up an asynchronous reception:  
Note:  
When BRGH and BRG16 bits are set,  
1. Initialize the SPBRGH:SPBRG registers for the  
appropriate baud rate. Set or clear the BRGH  
and BRG16 bits, as required, to achieve the  
desired baud rate.  
SPBRGH:SPBRG must be more than ‘1’.  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
3. If interrupts are required, set the RCEN bit and  
select the desired priority level with the RCIP bit.  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
4. Set the RX9 bit to enable 9-bit reception.  
5. Set the ADDEN bit to enable address detect.  
6. Enable reception by setting the CREN bit.  
3. If interrupts are desired, set enable bit RCIE.  
4. If 9-bit reception is desired, set bit RX9.  
5. Enable the reception by setting bit CREN.  
7. The RCIF bit will be set when reception is com-  
plete. The interrupt will be Acknowledged if the  
RCIE and GIE bits are set.  
6. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated if enable  
bit RCIE was set.  
8. Read the RCSTA register to determine if any  
error occurred during reception, as well as read  
bit 9 of data (if applicable).  
7. Read the RCSTA register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read RCREG to determine if the device is being  
addressed.  
8. Read the 8-bit received data by reading the  
RCREG register.  
10. If any error occurred, clear the CREN bit.  
9. If any error occurred, clear the error by clearing  
enable bit CREN.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and interrupt the CPU.  
10. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 18-5:  
USART RECEIVE BLOCK DIAGRAM  
CREN  
OERR  
FERR  
x64 Baud Rate CLK  
SPBRGH  
SPBRG  
÷ 64  
or  
RSR Register  
• • •  
LSb  
Start  
MSb  
Stop  
BRG16  
÷ 16  
(8)  
7
1
0
or  
÷ 4  
Baud Rate Generator  
RX9  
RC7/RX/DT  
Pin Buffer  
Data  
and Control  
Recovery  
RX9D  
RCREG Register  
FIFO  
SPEN  
8
Interrupt  
RCIF  
RCIE  
Data Bus  
DS30491C-page 240  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
To set up an asynchronous transmission:  
5. Enable the transmission by setting bit TXEN  
which will also set bit TXIF.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high-speed baud rate is desired,  
set bit BRGH (see Section 18.1 “USART Baud  
Rate Generator (BRG)”).  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Load data to the TXREG register (starts  
transmission).  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
If using interrupts, ensure that the GIE and PEIE bits in  
the INTCON register (INTCON<7:6>) are set.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set transmit bit  
TX9. Can be used as address/data bit.  
FIGURE 18-6:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX (pin)  
bit 0 bit 1  
Stop  
bit  
Stop  
bit  
bit 7/8 Stop  
bit  
bit 0  
bit 7/8  
bit 7/8  
Rcv Shift  
Reg  
Rcv Buffer Reg  
Word 2  
RCREG  
Word 1  
RCREG  
Read Rcv  
Buffer Reg  
RCREG  
RCIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note: This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word causing  
the OERR (overrun) bit to be set.  
TABLE 18-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 000x  
0000 000u  
0000 0000  
0000 0000  
1111 1111  
0000 000x  
0000 0000  
0000 0010  
-1-1 0-00  
0000 0000  
0000 0000  
PSPIF  
PSPIE  
PSPIP  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000  
SSPIP CCP1IP TMR2IP TMR1IP 1111 1111  
PIE1  
IPR1  
RCSTA  
RCREG  
TXSTA  
BAUDCON  
CREN ADDEN FERR  
OERR  
RX9D  
0000 000x  
0000 0000  
0000 0010  
USART Receive Register  
CSRC  
TX9  
TXEN  
SYNC SENDB BRGH  
TRMT  
WUE  
TX9D  
RCIDL  
SCKP BRG16  
ABDEN -1-1 0-00  
0000 0000  
SPBRGH Baud Rate Generator Register, High Byte  
SPBRG  
Baud Rate Generator Register, Low Byte  
0000 0000  
Legend:  
x= unknown, – = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous reception.  
2004 Microchip Technology Inc.  
DS30491C-page 241  
PIC18F6585/8585/6680/8680  
and cause data or framing errors. To work properly,  
therefore, the initial character in the transmission must  
be all ‘0’s. This can be 00h (8 bytes) for standard RS-232  
devices or 000h (12 bits) for LIN bus.  
18.2.4  
AUTO-WAKE-UP ON SYNC BREAK  
CHARACTER  
During Sleep mode, all clocks to the USART are  
suspended. Because of this, the Baud Rate Generator  
is inactive and a proper byte reception cannot be per-  
formed. The auto-wake-up feature allows the controller  
to wake-up due to activity on the RX/DT line while the  
USART is operating in Asynchronous mode.  
Oscillator start-up time must also be considered,  
especially in applications using oscillators with longer  
start-up intervals (i.e., XT or HS mode). The sync break  
(or wake-up signal) character must be of sufficient  
length and be followed by a sufficient interval to allow  
enough time for the selected oscillator to start and  
provide proper initialization of the USART.  
The auto-wake-up feature is enabled by setting the  
WUE bit (BAUDCON<1>). Once set, the typical receive  
sequence on RX/DT is disabled and the USART  
remains in an Idle state monitoring for a wake-up event  
independent of the CPU mode. A wake-up event con-  
sists of a high-to-low transition on the RX/DT line. (This  
coincides with the start of a sync break or a wake-up  
signal character for the LIN protocol.)  
18.2.4.2  
Special Considerations Using  
the WUE Bit  
The timing of WUE and RCIF events may cause some  
confusion when it comes to determining the validity of  
received data. As noted, setting the WUE bit places the  
USART in an Idle mode. The wake-up event causes a  
receive interrupt by setting the RCIF bit. The WUE bit  
is cleared after this when a rising edge is seen on  
RX/DT. The interrupt condition is then cleared by read-  
ing the RCREG register. Ordinarily, the data in RCREG  
will be dummy data and should be discarded.  
Following a wake-up event, the module generates an  
RCIF interrupt. The interrupt is generated synchro-  
nously to the Q clocks in normal operating modes  
(Figure 18-7) and asynchronously, if the device is in  
Sleep mode (Figure 18-8). The interrupt condition is  
cleared by reading the RCREG register.  
The WUE bit is automatically cleared once a low-to-  
high transition is observed on the RX line following the  
wake-up event. At this point, the USART module is in  
Idle mode and returns to normal operation. This signals  
to the user that the sync break event is over.  
The fact that the WUE bit has been cleared (or is still  
set) and the RCIF flag is set should not be used as an  
indicator of the integrity of the data in RCREG. Users  
should consider implementing a parallel method in  
firmware to verify received data integrity.  
To assure that no actual data is lost, check the RCIDL  
bit to verify that a receive operation is not in process. If  
a receive operation is not occurring, the WUE bit may  
then be set just prior to entering the Sleep mode.  
18.2.4.1  
Special Considerations Using  
Auto-Wake-up  
Since auto-wake-up functions by sensing rising edge  
transitions on RX/DT, information with any state changes  
before the Stop bit may signal a false end-of-character  
FIGURE 18-7:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
WUE bit  
Auto-Cleared  
Bit Set by User  
RX/DT Line  
RCIF  
Cleared due to User Read of RCREG  
Note:  
The USART remains in Idle while the WUE bit is set.  
FIGURE 18-8:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
WUE bit  
Auto-Cleared  
Bit Set by User  
RX/DT Line  
RCIF  
Note 1  
Cleared due to User Read of RCREG  
Sleep Ends  
Sleep Command Executed  
Note 1: If the wake-up event requires long oscillator warm-up time, the auto-clear of the WUE bit can occur while the stposc signal is still active.  
This sequence should not depend on the presence of Q clocks.  
2: The USART remains in Idle while the WUE bit is set.  
DS30491C-page 242  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
18.2.5  
BREAK CHARACTER SEQUENCE  
18.2.5.1  
Break and Sync Transmit Sequence  
The enhanced USART module has the capability of  
sending the special break character sequences that  
are required by the LIN bus standard. The break char-  
acter transmit consists of a Start bit, followed by twelve  
0’ bits and a Stop bit. The frame break character is sent  
whenever the SENDB and TXEN bits (TXSTA<3> and  
TXSTA<5>) are set while the Transmit Shift register is  
loaded with data. Note that the value of data written to  
TXREG will be ignored and all ‘0’s will be transmitted.  
The following sequence will send a message frame  
header made up of a break, followed by an auto-baud  
sync byte. This sequence is typical of a LIN bus master.  
1. Configure the USART for the desired mode.  
2. Set the TXEN and SENDB bits to set up the  
break character.  
3. Load the TXREG with a dummy character to  
initiate transmission (the value is ignored).  
4. Write ‘55h’ to TXREG to load the sync character  
into the transmit FIFO buffer.  
The SENDB bit is automatically reset by hardware after  
the corresponding Stop bit is sent. This allows the user  
to preload the transmit FIFO with the next transmit byte  
following the break character (typically, the sync  
character in the LIN specification).  
5. After the break has been sent, the SENDB bit is  
reset by hardware. The sync character now  
transmits in the preconfigured mode.  
When the TXREG becomes empty, as indicated by the  
TXIF, the next data byte can be written to TXREG.  
Note that the data value written to the TXREG for the  
break character is ignored. The write simply serves the  
purpose of initiating the proper sequence.  
18.2.6  
RECEIVING A BREAK CHARACTER  
The TRMT bit indicates when the transmit operation is  
active or Idle, just as it does during normal transmis-  
sion. See Figure 18-9 for the timing of the break  
character sequence.  
The enhanced USART module can receive a break  
character in two ways.  
The first method forces the configuration of the baud  
rate at a frequency of 9/13 the typical speed. This  
allows for the Stop bit transition to be at the correct  
sampling location (13 bits for break versus Start bit and  
8 data bits for typical data).  
The second method uses the auto-wake-up feature  
described in Section 18.2.4 “Auto-Wake-up on Sync  
Break Character”. By enabling this feature, the  
USART will sample the next two transitions on RX/DT,  
cause an RCIF interrupt, and receive the next data byte  
followed by another interrupt.  
Note that following a break character, the user will typ-  
ically want to enable the auto-baud rate detect feature.  
For both methods, the user can set the ABD bit once  
the TXIF interrupt is observed.  
FIGURE 18-9:  
SEND BREAK CHARACTER SEQUENCE  
Write to TXREG  
Dummy Write  
BRG Output  
(Shift Clock)  
TX (pin)  
Start Bit  
Bit 0  
Bit 1  
Break  
Bit 11  
Stop Bit  
TXIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
SENDB Sampled Here  
Auto-Cleared  
SENDB  
(Transmit Shift  
Reg. Empty Flag)  
2004 Microchip Technology Inc.  
DS30491C-page 243  
PIC18F6585/8585/6680/8680  
Once the TXREG register transfers the data to the TSR  
18.3 USART Synchronous  
Master Mode  
register (occurs in one TCYCLE), the TXREG is empty  
and interrupt bit TXIF (PIR1<4>) is set. The interrupt  
can be enabled/disabled by setting/clearing enable bit,  
TXIE (PIE1<4>). Flag bit TXIF will be set regardless of  
the state of enable bit TXIE and cannot be cleared in  
software. It will reset only when new data is loaded into  
the TXREG register.  
The Synchronous Master mode is entered by setting  
the CSRC bit (TXSTA<7>). In this mode, the data is  
transmitted in a half-duplex manner (i.e., transmission  
and reception do not occur at the same time). When  
transmitting data, the reception is inhibited and vice  
versa. Synchronous mode is entered by setting bit  
SYNC (TXSTA<4>). In addition, enable bit, SPEN  
(RCSTA<7>), is set in order to configure the  
RC6/TX/CK and RC7/RX/DT I/O pins to CK (clock) and  
DT (data) lines, respectively.  
While flag bit TXIF indicates the status of the TXREG  
register, another bit, TRMT (TXSTA<1>), shows the sta-  
tus of the TSR register. TRMT is a read-only bit which is  
set when the TSR is empty. No interrupt logic is tied to  
this bit so the user must poll this bit in order to determine  
if the TSR register is empty. The TSR is not mapped in  
data memory so it is not available to the user.  
The Master mode indicates that the processor trans-  
mits the master clock on the CK line. Clock polarity is  
selected with the SCKP bit (BAUDCON<5>); setting  
SCKP sets the Idle state on CK as high, while clearing  
the bit sets the Idle state as low. This option is provided  
to support Microwire devices with this module.  
To set up a synchronous master transmission:  
1. Initialize the SPBRGH:SPBRG registers for the  
appropriate baud rate. Set or clear the BRGH  
and BRG16 bits, as required, to achieve the  
desired baud rate.  
18.3.1  
USART SYNCHRONOUS MASTER  
TRANSMISSION  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
The USART transmitter block diagram is shown in  
Figure 18-2. The heart of the transmitter is the Transmit  
(Serial) Shift Register (TSR). The Shift register obtains  
its data from the Read/Write Transmit Buffer register,  
TXREG. The TXREG register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG (if available).  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting bit TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the TXREG  
register.  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
FIGURE 18-10:  
SYNCHRONOUS TRANSMISSION  
Q1 Q2 Q3Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q3 Q4 Q1 Q2 Q3Q4 Q1Q2 Q3Q4 Q1 Q2Q3Q4 Q1 Q2Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RC7/RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
Word 2  
bit 7  
Word 1  
RC6/TX/CK  
pin  
(SCKP = 0)  
RC6/TX/CK  
pin  
(SCKP = 1)  
Write to  
TXREG Reg  
Write Word 1  
Write Word 2  
TXIF bit  
(Interrupt Flag)  
TRMT bit  
TXEN bit  
1’  
1’  
Note: Sync Master mode, SPBRG = 0, continuous transmission of two 8-bit words.  
DS30491C-page 244  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 18-11:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RC7/RX/DT pin  
bit 0  
bit 1  
bit 2  
bit 6  
bit 7  
RC6/TX/CK pin  
Write to  
TXREG Reg  
TXIF bit  
TRMT bit  
TXEN bit  
TABLE 18-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
RBIF  
0000 0000 0000 0000  
PSPIF  
PSPIE  
PSPIP  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
PIE1  
IPR1  
RCSTA  
TXREG  
TXSTA  
BAUDCON  
CREN ADDEN  
FERR  
OERR  
RX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0010 0000 0010  
-1-0 0-00 -1-0 0-00  
0000 0000 0000 0000  
0000 0000 0000 0000  
USART Transmit Register  
CSRC  
TX9  
TXEN  
SYNC SENDB  
SCKP BRG16  
BRGH  
TRMT  
WUE  
TX9D  
RCIDL  
ABDEN  
SPBRGH Baud Rate Generator Register, High Byte  
SPBRG  
Baud Rate Generator Register, Low Byte  
Legend:  
x= unknown, -= unimplemented, read as ‘0’. Shaded cells are not used for synchronous master transmission.  
2004 Microchip Technology Inc.  
DS30491C-page 245  
PIC18F6585/8585/6680/8680  
3. Ensure bits CREN and SREN are clear.  
4. If interrupts are desired, set enable bit RCIE.  
5. If 9-bit reception is desired, set bit RX9.  
18.3.2  
USART SYNCHRONOUS MASTER  
RECEPTION  
Once Synchronous mode is selected, reception is  
enabled by setting either the Single Receive Enable bit,  
SREN (RCSTA<5>), or the Continuous Receive  
Enable bit, CREN (RCSTA<4>). Data is sampled on the  
RC7/RX/DT pin on the falling edge of the clock.  
6. If a single reception is required, set bit SREN.  
For continuous reception, set bit CREN.  
7. Interrupt flag bit RCIF will be set when reception  
is complete and an interrupt will be generated if  
the enable bit RCIE was set.  
If enable bit SREN is set, only a single word is received.  
If enable bit CREN is set, the reception is continuous  
until CREN is cleared. If both bits are set, then CREN  
takes precedence.  
8. Read the RCSTA register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read the 8-bit received data by reading the  
RCREG register.  
To set up a synchronous master reception:  
1. Initialize the SPBRGH:SPBRG registers for the  
appropriate baud rate. Set or clear the BRGH  
and BRG16 bits, as required, to achieve the  
desired baud rate.  
10. If any error occurred, clear the error by clearing  
bit CREN.  
11. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
FIGURE 18-12:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RC7/RX/DT pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
RC7/TX/CK pin  
(SCKP = 0)  
RC7/TX/CK pin  
(SCKP = 1)  
Write to  
bit SREN  
SREN bit  
CREN bit  
0’  
0’  
RCIF bit  
(Interrupt)  
Read  
RXREG  
Note: Timing diagram demonstrates Sync Master mode with bit SREN = 1and bit BRGH = 0.  
TABLE 18-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF INT0IF  
RBIF  
0000 0000 0000 0000  
PSPIF  
PSPIE  
PSPIP  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
PIE1  
IPR1  
RCSTA  
RCREG  
TXSTA  
BAUDCON  
CREN ADDEN  
FERR  
OERR  
RX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0010 0000 0010  
-1-0 0-00 -1-0 0-00  
0000 0000 0000 0000  
0000 0000 0000 0000  
USART Receive Register  
CSRC  
TX9  
TXEN  
SYNC SENDB  
BRGH  
TRMT  
WUE  
TX9D  
RCIDL  
SCKP  
BRG16  
ABDEN  
SPBRGH Baud Rate Generator Register, High Byte  
SPBRG  
Baud Rate Generator Register, Low Byte  
Legend:  
x= unknown, -= unimplemented, read as ‘0’. Shaded cells are not used for synchronous master reception.  
DS30491C-page 246  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
To set up a synchronous slave transmission:  
18.4 USART Synchronous Slave Mode  
1. Enable the synchronous slave serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
Synchronous Slave mode is entered by clearing bit  
CSRC (TXSTA<7>). This mode differs from the  
Synchronous Master mode in that the shift clock is sup-  
plied externally at the RC6/TX/CK pin (instead of being  
supplied internally in Master mode). This allows the  
device to transfer or receive data while in any low-power  
mode.  
2. Clear bits CREN and SREN.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting enable bit  
TXEN.  
18.4.1  
USART SYNCHRONOUS SLAVE  
TRANSMIT  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
The operation of the Synchronous Master and Slave  
modes are identical except in the case of the Sleep  
mode.  
7. Start transmission by loading data to the TXREG  
register.  
8. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
a) The first word will immediately transfer to the  
TSR register and transmit.  
b) The second word will remain in TXREG register.  
c) Flag bit TXIF will not be set.  
d) When the first word has been shifted out of TSR,  
the TXREG register will transfer the second word  
to the TSR and flag bit TXIF will now be set.  
e) If enable bit TXIE is set, the interrupt will wake  
the chip from Sleep. If the global interrupt is  
enabled, the program will branch to the interrupt  
vector.  
TABLE 18-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
PSPIF  
PSPIE  
PSPIP  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
SSPIP CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
PIE1  
IPR1  
RCSTA  
TXREG  
TXSTA  
BAUDCON  
CREN ADDEN  
FERR  
OERR  
RX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0010 0000 0010  
USART Transmit Register  
CSRC  
TX9  
TXEN  
SYNC SENDB BRGH  
SCKP BRG16  
TRMT  
WUE  
TX9D  
RCIDL  
ABDEN -1-1 0-00 -1-1 0-00  
0000 0000 0000 0000  
SPBRGH Baud Rate Generator Register, High Byte  
SPBRG  
Baud Rate Generator Register, Low Byte  
0000 0000 0000 0000  
Legend:  
x= unknown, -= unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave transmission.  
2004 Microchip Technology Inc.  
DS30491C-page 247  
PIC18F6585/8585/6680/8680  
To set up a synchronous slave reception:  
18.4.2  
USART SYNCHRONOUS SLAVE  
RECEPTION  
1. Enable the synchronous master serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
The operation of the Synchronous Master and Slave  
modes is identical, except in the case of Sleep or any  
Idle mode and bit SREN, which is a “don’t care” in  
Slave mode.  
2. If interrupts are desired, set enable bit RCIE.  
3. If 9-bit reception is desired, set bit RX9.  
4. To enable reception, set enable bit CREN.  
If receive is enabled by setting the CREN bit prior to  
entering Sleep or any Idle mode, then a word may be  
received while in this low-power mode. Once the word  
is received, the RSR register will transfer the data to the  
RCREG register; if the RCIE enable bit is set, the inter-  
rupt generated will wake the chip from low-power  
mode. If the global interrupt is enabled, the program will  
branch to the interrupt vector.  
5. Flag bit RCIF will be set when reception is  
complete. An interrupt will be generated if  
enable bit RCIE was set.  
6. Read the RCSTA register to get the 9th bit (if  
enabled) and determine if any error occurred  
during reception.  
7. Read the 8-bit received data by reading the  
RCREG register.  
8. If any error occurred, clear the error by clearing  
bit CREN.  
9. If using interrupts, ensure that the GIE and PEIE  
bits in the INTCON register (INTCON<7:6>) are  
set.  
TABLE 18-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 0000 0000 0000  
PSPIF  
PSPIE  
PSPIP  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
SSPIF  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
PIE1  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
SSPIP CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
IPR1  
RCSTA  
RCREG  
TXSTA  
BAUDCON  
CREN ADDEN  
FERR  
OERR  
RX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0010 0000 0010  
USART Receive Register  
CSRC  
TX9  
TXEN  
SYNC  
SCKP  
SENDB  
BRG16  
BRGH  
TRMT  
WUE  
TX9D  
RCIDL  
ABDEN -1-0 0-00 -1-0 0-00  
0000 0000 0000 0000  
SPBRGH Baud Rate Generator Register, High Byte  
SPBRG  
Baud Rate Generator Register, Low Byte  
0000 0000 0000 0000  
Legend:  
x= unknown, -= unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave reception.  
DS30491C-page 248  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
The module has five registers:  
19.0 10-BIT ANALOG-TO-DIGITAL  
• A/D Result High Register (ADRESH)  
• A/D Result Low Register (ADRESL)  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
• A/D Control Register 2 (ADCON2)  
CONVERTER (A/D) MODULE  
The Analog-to-Digital (A/D) converter module has 12  
inputs for the PIC18F6X8X devices and 16 inputs for  
the PIC18F8X8X devices. This module allows conver-  
sion of an analog input signal to a corresponding 10-bit  
digital number.  
The ADCON0 register, shown in Register 19-1,  
controls the operation of the A/D module. The  
ADCON1 register, shown in Register 19-2, configures  
the functions of the port pins. The ADCON2 register,  
shown in Register 19-3, configures the A/D clock  
source, programmed acquisition time and justification.  
A new feature for the A/D converter is the addition of pro-  
grammable acquisition time. This feature allows the user  
to select a new channel for conversion and to set the  
GO/DONE bit immediately. When the GO/DONE bit is  
set, the selected channel is sampled for the  
programmed acquisition time before a conversion is  
actually started. This removes the firmware overhead  
that may have been required to allow for an acquisition  
(sampling) period (see Register 19-3 and Section 19.4  
“Selecting the A/D Conversion Clock”).  
REGISTER 19-1: ADCON0 REGISTER  
U-0  
U-0  
R/W-0  
CHS3  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
R/W-0  
ADON  
GO/DONE  
bit 7  
bit 0  
bit 7-6 Unimplemented: Read as ‘0’  
bit 5-2 CHS3:CHS0: Analog Channel Select bits  
0000= Channel 0 (AN0)  
0001= Channel 1 (AN1)  
0010= Channel 2 (AN2)  
0011= Channel 3 (AN3)  
0100= Channel 4 (AN4)  
0101= Channel 5 (AN5)  
0110= Channel 6 (AN6)  
0111= Channel 7 (AN7)  
1000= Channel 8 (AN8)  
1001= Channel 9 (AN9)  
1010= Channel 10 (AN10)  
1011= Channel 11 (AN11)  
1100= Channel 12 (AN12)(1)  
1101= Channel 13 (AN13)(1)  
1110= Channel 14 (AN14)(1)  
1111= Channel 15 (AN15)(1)  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
When ADON = 1:  
1= A/D conversion in progress. This bit is automatically cleared when the A/D conversion is  
complete.  
0= A/D Idle  
ADON: A/D On bit  
1= A/D converter module is enabled  
0= A/D converter module is disabled and consumes no current  
Note 1: These channels are only available on PIC18F8X8X devices.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 249  
PIC18F6585/8585/6680/8680  
REGISTER 19-2: ADCON1 REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
VCFG1  
VCFG0  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
bit 7-6 Unimplemented: Read as ‘0’  
bit 5-4 VCFG1:VCFG0: Voltage Reference Configuration bits  
A/D VREF+  
A/D VREF-  
00  
01  
10  
11  
AVDD  
AVSS  
External VREF+  
AVDD  
AVSS  
External VREF-  
External VREF-  
External VREF+  
bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits  
AN15 AN14 AN13 AN12 AN11 AN10 AN9 AN8 AN7 AN6 AN5 AN4 AN3 AN2 AN1 AN0  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
A
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
A
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
A
A
D
D
D
D
D
D
D
D
D
D
D
D
D
D
A
A
A
D
D
D
D
D
D
D
D
D
D
D
D
D
A
A
A
A
D
D
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
D
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
A
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
D
A = Analog input  
D = Digital I/O  
Shaded cells = Additional channels available on the PIC18F8X8X devices  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
Note:  
Channels AN15 through AN12 are not available on the 68-pin devices.  
DS30491C-page 250  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 19-3: ADCON2 REGISTER  
R/W-0  
ADFM  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ACQT2  
ACQT1  
ACQT0  
ADCS2  
ADCS1  
ADCS0  
bit 7  
bit 0  
bit 7  
ADFM: A/D Result Format Select bit  
1= Right justified  
0= Left justified  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-3  
ACQT2:ACQT0: A/D Acquisition Time Select bits  
(1)  
000= 0 TAD  
001= 2 TAD  
010= 4 TAD  
011= 6 TAD  
100= 8 TAD  
101= 12 TAD  
110= 16 TAD  
111= 20 TAD  
bit 2-0  
ADCS2:ADCS0: A/D Conversion Clock Select bits  
000= FOSC/2  
001= FOSC/8  
010= FOSC/32  
011= FRC (clock derived from A/D RC oscillator)(1)  
100= FOSC/4  
101= FOSC/16  
110= FOSC/64  
111= FRC (clock derived from A/D RC oscillator)(1)  
Note 1: If the A/D FRC clock source is selected, a delay of one TCY (instruction cycle) is  
added before the A/D clock starts. This allows the SLEEPinstruction to be executed  
before starting a conversion.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 251  
PIC18F6585/8585/6680/8680  
The analog reference voltage is software selectable to  
either the device’s positive and negative supply voltage  
(AVDD and AVSS) or the voltage level on the RA3/AN3/  
VREF+ and RA2/AN2/VREF- pins.  
A device Reset forces all registers to their Reset state.  
This forces the A/D module to be turned off and any  
conversion in progress is aborted.  
Each port pin associated with the A/D converter can be  
configured as an analog input or as a digital I/O. The  
ADRESH and ADRESL registers contain the result of  
the A/D conversion. When the A/D conversion is com-  
plete, the result is loaded into the ADRESH/ADRESL  
registers, the GO/DONE bit (ADCON0 register) is  
cleared and A/D interrupt flag bit ADIF is set. The block  
diagram of the A/D module is shown in Figure 19-1.  
The A/D converter has a unique feature of being able  
to operate while the device is in Sleep mode. To oper-  
ate in Sleep, the A/D conversion clock must be derived  
from the A/D’s internal RC oscillator.  
The output of the sample and hold is the input into the  
converter which generates the result via successive  
approximation.  
FIGURE 19-1:  
A/D BLOCK DIAGRAM  
CHS3:CHS0  
1111  
(1)  
AN15  
1110  
(1)  
AN14  
1101  
(1)  
AN13  
1100  
(1)  
AN12  
1011  
AN11  
1010  
AN10  
1001  
AN9  
1000  
AN8  
0111  
AN7  
0110  
AN6  
0101  
AN5  
0100  
AN4  
VAIN  
0011  
(Input Voltage)  
10-bit  
Converter  
A/D  
AN3  
0010  
AN2  
0001  
VCFG1:VCFG0  
AN1  
0000  
AN0  
VDD  
VREF+  
VREF-  
Reference  
Voltage  
VSS  
Note 1: Channels AN15 through AN12 are not available on the PIC18F6X8X.  
2: I/O pins have diode protection to VDD and VSS.  
DS30491C-page 252  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
The value in the ADRESH/ADRESL registers is not  
The following steps should be followed to do an A/D  
conversion:  
modified for a Power-on Reset. The ADRESH/  
ADRESL registers will contain unknown data after a  
Power-on Reset.  
1. Configure the A/D module:  
• Configure analog pins, voltage reference and  
digital I/O (ADCON1)  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS bits selected as an  
input. To determine acquisition time, see Section 19.1  
“A/D Acquisition Requirements”. After this acquisi-  
tion time has elapsed, the A/D conversion can be  
started. An acquisition time can be programmed to  
occur between setting the GO/DONE bit and the actual  
start of the conversion.  
• Select A/D input channel (ADCON0)  
• Select A/D acquisition time (ADCON2)  
• Select A/D conversion clock (ADCON2)  
• Turn on A/D module (ADCON0)  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
• Set ADIE bit  
• Set GIE bit  
3. Wait the required acquisition time (if required).  
4. Start conversion:  
• Set GO/DONE bit (ADCON0 register)  
5. Wait for A/D conversion to complete by either:  
• Polling for the GO/DONE bit to be cleared  
or  
• Waiting for the A/D interrupt  
6. Read A/D Result registers (ADRESH:ADRESL);  
clear bit ADIF if required.  
7. For next conversion, go to step 1 or step 2 as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2 TAD is  
required before next acquisition starts.  
FIGURE 19-2:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
Rs  
CPIN  
5 pF  
VAIN  
ILEAKAGE  
± 500 nA  
CHOLD = 120 pF  
VT = 0.6V  
VSS  
Legend: CPIN  
= input capacitance  
= threshold voltage  
6V  
VT  
5V  
VDD 4V  
3V  
ILEAKAGE = leakage current at the pin due to  
various junctions  
RIC  
= interconnect resistance  
= sampling switch  
2V  
SS  
CHOLD  
RSS  
= sample/hold capacitance (from DAC)  
= sampling switch resistance  
5
6
7
8 9 10 11  
Sampling Switch (k)  
2004 Microchip Technology Inc.  
DS30491C-page 253  
PIC18F6585/8585/6680/8680  
19.1 A/D Acquisition Requirements  
19.2 A/D VREF+ and VREF- References  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 19-2. The  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD). The source impedance affects the offset voltage  
at the analog input (due to pin leakage current). The  
maximum recommended impedance for analog  
sources is 2.5 k. After the analog input channel is  
selected (changed), this acquisition must be done  
before the conversion can be started.  
If external voltage references are used instead of the  
internal AVDD and AVSS sources, the source impedance  
of the VREF+ and VREF- voltage sources must be consid-  
ered. During acquisition, currents supplied by these  
sources are insignificant. However, during conversion,  
the A/D module sinks and sources current through the  
reference sources. The effect of this current, as specified  
in parameter A50, along with source impedance must be  
considered to meet specified A/D resolution.  
Note:  
When using external voltage references  
with the A/D converter, the source imped-  
ance of the external voltage references  
must be less than 20to obtain the spec-  
ified A/D resolution. Higher reference  
source impedances will increase both  
offset and gain errors. Resistive voltage  
dividers will not provide a sufficiently low  
source impedance.  
Note:  
When the conversion is started, the  
holding capacitor is disconnected from the  
input pin.  
To calculate the minimum acquisition time,  
Equation 19-1 may be used. This equation assumes  
that 1/2 LSb error is used (1024 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified resolution.  
To maintain the best possible performance  
in A/D conversions, external VREF inputs  
should be buffered with an operational  
amplifier or other low output impedance  
circuit.  
Example 19-1 shows the calculation of the minimum  
required acquisition time, TACQ. This calculation is based  
on the following application system assumptions:  
CHOLD  
Rs  
Conversion Error  
VDD  
Temperature  
VHOLD  
=
=
=
=
=
120 pF  
2.5 kΩ  
1/2 LSb  
5V Rss = 7 kΩ  
50°C (system max.)  
0V @ time = 0  
EQUATION 19-1: ACQUISITION TIME  
TACQ  
=
=
Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient  
TAMP + TC + TCOFF  
EQUATION 19-2: A/D MINIMUM CHARGING TIME  
VHOLD  
or  
TC  
=
(VREF – (VREF/2048)) • (1 – e(-Tc/CHOLD(RIC + RSS + RS))  
)
=
-(120 pF)(1 k+ RSS + RS) ln(1/2047)  
EXAMPLE 19-1:  
CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME  
TACQ  
=
TAMP + TC + TCOFF  
Temperature coefficient is only required for temperatures > 25°C.  
TACQ  
=
2 µs + TC + [(Temp – 25°C)(0.05 µs/°C)]  
TC  
=
-CHOLD (RIC + RSS + RS) ln(1/2047)  
-120 pF (1 k+ 7 k+ 2.5 k) ln(0.0004885)  
-120 pF (10.5 k) ln(0.0004885)  
-1.26 µs (-7.6241)  
9.61 µs  
TACQ  
=
2 µs + 9.61 µs + [(50°C – 25°C)(0.05 µs/°C)]  
11.61 µs + 1.25 µs  
12.86 µs  
DS30491C-page 254  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
19.3 Selecting and Configuring  
Automatic Acquisition Time  
19.4 Selecting the A/D Conversion Clock  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 11 TAD per 10-bit conversion.  
The source of the A/D conversion clock is software  
selectable. There are seven possible options for TAD:  
The ADCON2 register allows the user to select an  
acquisition time that occurs each time the GO/DONE  
bit is set.  
2 TOSC  
4 TOSC  
When the GO/DONE bit is set, sampling is stopped and  
a conversion begins. The user is responsible for ensur-  
ing the required acquisition time has passed between  
selecting the desired input channel and setting the  
GO/DONE bit. This occurs when the ACQT2:ACQT0  
bits (ADCON2<5:3>) remain in their Reset state (‘000’)  
and is compatible with devices that do not offer  
programmable acquisition times.  
8 TOSC  
16 TOSC  
64 TOSC  
32 TOSC  
Internal RC Oscillator  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be as short as possible but greater than the  
minimum TAD (approximately 2 µs, see parameter 130  
for more information).  
If desired, the ACQT bits can be set to select a pro-  
grammable acquisition time for the A/D module. When  
the GO/DONE bit is set, the A/D module continues to  
sample the input for the selected acquisition time, then  
automatically begins a conversion. Since the acquisi-  
tion time is programmed, there may be no need to wait  
for an acquisition time between selecting a channel and  
setting the GO/DONE bit.  
Table 19-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
19.5 Configuring Analog Port Pins  
The ADCON1, TRISA, TRISF and TRISH registers con-  
trol the operation of the A/D port pins. The port pins  
needed as analog inputs must have their corresponding  
TRIS bits set (input). If the TRIS bit is cleared (output),  
the digital output level (VOH or VOL) will be converted.  
In either case, when the conversion is completed, the  
GO/DONE bit is cleared, the ADIF flag is set, and the  
A/D begins sampling the currently selected channel  
again. If an acquisition time is programmed, there is  
nothing to indicate if the acquisition time has ended or  
if the conversion has begun.  
The A/D operation is independent of the state of the  
CHS3:CHS0 bits and the TRIS bits.  
Note 1: When reading the port register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins config-  
ured as digital inputs will convert an  
analog input. Analog levels on a digitally  
configured input will not affect the  
conversion accuracy.  
2: Analog levels on any pin defined as a dig-  
ital input may cause the input buffer to  
consume current out of the device’s  
specification limits.  
TABLE 19-1: TAD vs. DEVICE OPERATING FREQUENCIES  
AD Clock Source (TAD)  
Maximum Device Frequency  
Operation  
2 TOSC  
ADCS2:ADCS0  
PIC18FXX80/XX85  
PIC18LFXX80/XX85  
666 kHz  
000  
100  
001  
101  
010  
110  
x11  
1.25 MHz  
2.50 MHz  
5.00 MHz  
10.0 MHz  
20.0 MHz  
40.0 MHz  
1.00 MHz(1)  
4 TOSC  
1.33 MHz  
8 TOSC  
2.66 MHz  
16 TOSC  
32 TOSC  
64 TOSC  
RC(3)  
5.33 MHz  
10.65 MHz  
21.33 MHz  
1.00 MHz(2)  
Note 1: The RC source has a typical TAD time of 4 µs.  
2: The RC source has a typical TAD time of 6 µs.  
3: For device frequencies above 1 MHz, the device must be in Sleep for the entire conversion or the A/D  
accuracy may be out of specification.  
2004 Microchip Technology Inc.  
DS30491C-page 255  
PIC18F6585/8585/6680/8680  
19.6 A/D Conversions  
19.7 Use of the CCP2 Trigger  
Figure 19-3 shows the operation of the A/D converter  
after the GO bit has been set and the ACQT2:ACQT0  
bits are cleared. A conversion is started after the follow-  
ing instruction to allow entry into Sleep mode before the  
conversion begins.  
An A/D conversion can be started by the “special event  
trigger” of the CCP2 module. This requires that the  
CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be pro-  
grammed as ‘1011’ and that the A/D module is enabled  
(ADON bit is set). When the trigger occurs, the  
GO/DONE bit will be set, starting the A/D conversion  
and the Timer1 (or Timer3) counter will be reset to zero.  
Timer1 (or Timer3) is reset to automatically repeat the  
A/D acquisition period with minimal software overhead  
(moving ADRESH/ADRESL to the desired location).  
The appropriate analog input channel must be selected  
and the minimum acquisition done before the “special  
event trigger” sets the GO/DONE bit (starts a  
conversion).  
Figure 19-4 shows the operation of the A/D converter  
after the GO bit has been set, the ACQT2:ACQT0 bits  
are set to ‘010’ and selecting a 4 TAD acquisition time  
before the conversion starts.  
Clearing the GO/DONE bit during a conversion will  
abort the current conversion. The A/D Result register  
pair will not be updated with the partially completed A/D  
conversion sample. This means the ADRESH:ADRESL  
registers will continue to contain the value of the last  
completed conversion (or the last value written to the  
ADRESH:ADRESL registers).  
If the A/D module is not enabled (ADON is cleared), the  
“special event trigger” will be ignored by the A/D  
module but will still reset the Timer1 (or Timer3)  
counter.  
After the A/D conversion is completed or aborted, a  
2 TAD wait is required before the next acquisition can  
be started. After this wait, acquisition on the selected  
channel is automatically started.  
Note:  
The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
FIGURE 19-3:  
A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)  
TCY - TAD  
TAD7 TAD8 TAD9 TAD10 TAD11  
TAD1 TAD2 TAD3 TAD4 TAD5 TAD6  
b6  
b4  
b1  
b0  
b9  
b8  
b7  
b5  
b3  
b2  
Conversion starts  
Holding capacitor is disconnected from analog input (typically 100 ns)  
Set GO bit  
Next Q4: ADRESH/ADRESL is loaded, GO bit is cleared,  
ADIF bit is set, holding capacitor is connected to analog input.  
FIGURE 19-4:  
A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)  
TAD Cycles  
TACQT Cycles  
7
8
9
10  
b1  
11  
b0  
1
2
3
4
1
2
3
4
5
6
b7  
b6  
b3  
b2  
b8  
b5  
b4  
b9  
Automatic  
Acquisition  
Time  
Conversion starts  
(Holding capacitor is disconnected)  
Set GO bit  
(Holding capacitor continues  
acquiring input)  
Next Q4: ADRESH:ADRESL is loaded, GO bit is cleared,  
ADIF bit is set, holding capacitor is reconnected to analog input.  
DS30491C-page 256  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 19-2: SUMMARY OF A/D REGISTERS  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
TMR3IF  
TMR3IE  
TMR3IP  
RBIF  
0000 0000 0000 0000  
PIR1  
PIE1  
IPR1  
PIR2  
PIE2  
IPR2  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
CMIF  
CMIE  
CMIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
EEIF  
EEIE  
EEIP  
SSPIF CCP1IF  
SSPIE CCP1IE  
SSPIP CCP1IP  
TMR1IF 0000 0000 0000 0000  
TMR1IE 0000 0000 0000 0000  
TMR1IP 1111 1111 1111 1111  
CCP2IF -0-0 0000 -0-0 0000  
CCP2IE -0-0 0000 -0-0 0000  
CCP2IP -1-1 1111 -1-1 1111  
xxxx xxxx uuuu uuuu  
BCLIF  
BCLIE  
BCLIP  
LVDIF  
LVDIE  
LVDIP  
ADRESH A/D Result Register High Byte  
ADRESL A/D Result Register Low Byte  
xxxx xxxx uuuu uuuu  
ADCON0  
ADCON1  
ADCON2  
PORTA  
TRISA  
CHS3  
CHS3  
CHS1  
CHS0  
GO/DONE  
PCFG1  
ADCS1  
RA1  
ADON  
PCFG0  
ADCS0  
RA0  
--00 0000 --00 0000  
--00 0000 --00 0000  
0--- -000 0--- -000  
--xx xxxx --uu uuuu  
--11 1111 --11 1111  
xxxx xxxx uuuu uuuu  
VCFG1 VCFG0 PCFG3 PCFG2  
ADFM  
ADCS2  
RA2  
RA6  
RA5  
RA4  
RA3  
PORTA Data Direction Register  
PORTF  
LATF  
RF7  
LATF7  
RF6  
RF5  
RF4  
RF3  
RF2  
RF1  
RF0  
LATF6  
LATF5  
LATF4  
LATF3  
LATF2  
LATF1  
LATF0  
xxxx xxxx  
uuuu uuuu  
TRISF  
PORTF Data Direction Control Register  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
(1)  
PORTH  
RH7  
RH6  
RH5  
RH4  
RH3  
RH2  
RH1  
RH0  
(1)  
LATH  
LATH7  
LATH6  
LATH5  
LATH4 LATH3  
LATH2  
LATH1  
LATH0  
(1)  
TRISH  
PORTH Data Direction Control Register  
Legend:  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used for A/D conversion.  
Note 1: Only available on PIC18F8X8X devices.  
2004 Microchip Technology Inc.  
DS30491C-page 257  
PIC18F6585/8585/6680/8680  
NOTES:  
DS30491C-page 258  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
The CMCON register, shown in Register 20-1, controls  
the comparator input and output multiplexers. A block  
diagram of the various comparator configurations is  
shown in Figure 20-1.  
20.0 COMPARATOR MODULE  
The comparator module contains two analog  
comparators. The inputs to the comparators are  
multiplexed with the RF1 through RF6 pins. The on-  
chip voltage reference (Section 21.0 “Comparator  
Voltage Reference Module”) can also be an input to  
the comparators.  
REGISTER 20-1: CMCON REGISTER  
R-0  
R-0  
R/W-0  
C2INV  
R/W-0  
C1INV  
R/W-0  
CIS  
R/W-0  
CM2  
R/W-0  
CM1  
R/W-0  
CM0  
C2OUT  
C1OUT  
bit 7  
bit 0  
bit 7  
C2OUT: Comparator 2 Output bit  
When C2INV = 0:  
1= C2 VIN+ > C2 VIN-  
0= C2 VIN+ < C2 VIN-  
When C2INV = 1:  
1= C2 VIN+ < C2 VIN-  
0= C2 VIN+ > C2 VIN-  
bit 6  
C1OUT: Comparator 1 Output bit  
When C1INV = 0:  
1= C1 VIN+ > C1 VIN-  
0= C1 VIN+ < C1 VIN-  
When C1INV = 1:  
1= C1 VIN+ < C1 VIN-  
0= C1 VIN+ > C1 VIN-  
bit 5  
bit 4  
bit 3  
C2INV: Comparator 2 Output Inversion bit  
1= C2 output inverted  
0= C2 output not inverted  
C1INV: Comparator 1 Output Inversion bit  
1= C1 output inverted  
0= C1 output not inverted  
CIS: Comparator Input Switch bit  
When CM2:CM0 = 110:  
1= C1 VIN- connects to RF5/AN10  
C2 VIN- connects to RF3/AN8  
0= C1 VIN- connects to RF6/AN11  
C2 VIN- connects to RF4/AN9  
bit 2-0  
CM2:CM0: Comparator Mode bits  
Figure 20-1 shows the Comparator modes and CM2:CM0 bit settings.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 259  
PIC18F6585/8585/6680/8680  
mode is changed, the comparator output level may not  
be valid for the specified mode change delay shown in  
20.1 Comparator Configuration  
There are eight modes of operation for the compara-  
tors. The CMCON register is used to select these  
modes. Figure 20-1 shows the eight possible modes.  
The TRISF register controls the data direction of the  
comparator pins for each mode. If the Comparator  
Section 27.0 “Electrical Characteristics”.  
Note:  
Comparator interrupts should be disabled  
during Comparator mode change.  
Otherwise, a false interrupt may occur.  
a
FIGURE 20-1:  
COMPARATOR I/O OPERATING MODES  
Comparators Reset (POR Default Value)  
Comparators Off  
CM2:CM0 = 000  
CM2:CM0 = 111  
A
D
VIN-  
VIN-  
RF6/AN11  
RF5/AN10  
RF6/AN11  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
A
D
RF5/AN10  
A
A
D
VIN-  
VIN-  
RF4/AN9  
RF3/AN8  
RF4/AN9  
VIN+  
VIN+  
D
RF3/AN8  
Two Independent Comparators with Outputs  
CM2:CM0 = 011  
Two Independent Comparators  
CM2:CM0 = 010  
A
VIN-  
A
VIN-  
RF6/AN11  
RF5/AN10  
RF6/AN11  
RF5/AN10  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
RF2/AN7/C1OUT  
A
A
VIN-  
A
VIN-  
RF4/AN9  
RF3/AN8  
RF4/AN9  
VIN+  
VIN+  
A
RF3/AN8  
RF1/AN6/C2OUT  
Two Common Reference Comparators  
Two Common Reference Comparators with Outputs  
CM2:CM0 = 100  
CM2:CM0 = 101  
A
A
VIN-  
VIN-  
RF6/AN11  
RF5/AN10  
RF6/AN11  
RF5/AN10  
C1OUT  
C2OUT  
C1OUT  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
A
A
RF2/AN7/C1OUT  
A
D
VIN-  
RF4/AN9  
RF3/AN8  
A
VIN-  
VIN+  
RF4/AN9  
C2OUT  
VIN+  
D
RF3/AN8  
RF1/AN6/C2OUT  
Four Inputs Multiplexed to Two Comparators  
One Independent Comparator with Output  
CM2:CM0 = 110  
CM2:CM0 = 001  
A
A
A
VIN-  
RF6/AN11  
RF6/AN11  
RF5/AN10  
CIS = 0  
CIS = 1  
VIN-  
A
C1OUT  
C1  
C2  
VIN+  
RF5/AN10  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
RF2/AN7/C1OUT  
A
A
RF4/AN9  
RF3/AN8  
VIN-  
CIS = 0  
CIS = 1  
VIN+  
D
VIN-  
RF4/AN9  
Off (Read as ‘0’)  
VIN+  
D
RF3/AN8  
CVREF  
From VREF Module  
A = Analog Input, port reads zeros always  
DS30491C-page 260  
D = Digital Input  
CIS (CMCON<3>) = Comparator Input Switch  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
20.3.2  
INTERNAL REFERENCE SIGNAL  
20.2 Comparator Operation  
The comparator module also allows the selection of an  
internally generated voltage reference for the compara-  
tors. Section 21.0 “Comparator Voltage Reference  
Module” contains a detailed description of the compar-  
ator voltage reference module that provides this signal.  
The internal reference signal is used when comparators  
are in mode CM<2:0> = 110(Figure 20-1). In this mode,  
the internal voltage reference is applied to the VIN+ pin  
of both comparators.  
A single comparator is shown in Figure 20-2, along with  
the relationship between the analog input levels and  
the digital output. When the analog input at VIN+ is less  
than the analog input VIN-, the output of the comparator  
is a digital low level. When the analog input at VIN+ is  
greater than the analog input VIN-, the output of the  
comparator is a digital high level. The shaded areas of  
the output of the comparator in Figure 20-2 represent  
the uncertainty due to input offsets and response time.  
20.4 Comparator Response Time  
20.3 Comparator Reference  
Response time is the minimum time, after selecting a  
new reference voltage or input source, before the  
comparator output has a valid level. If the internal  
reference is changed, the maximum delay of the inter-  
nal voltage reference must be considered when using  
the comparator outputs. Otherwise, the maximum  
delay of the comparators should be used (Section 27.0  
“Electrical Characteristics”).  
An external or internal reference signal may be used  
depending on the Comparator Operating mode. The  
analog signal present at VIN- is compared to the signal  
at VIN+ and the digital output of the comparator is  
adjusted accordingly (Figure 20-2).  
FIGURE 20-2:  
SINGLE COMPARATOR  
20.5 Comparator Outputs  
VIN+  
VIN-  
+
Output  
The comparator outputs are read through the CMCON  
register. These bits are read-only. The comparator  
outputs may also be directly output to the RF1 and RF2  
I/O pins. When enabled, multiplexors in the output path  
of the RF1 and RF2 pins will switch and the output of  
each pin will be the unsynchronized output of the com-  
parator. The uncertainty of each of the comparators is  
related to the input offset voltage and the response time  
given in the specifications. Figure 20-3 shows the  
comparator output block diagram.  
VIN-  
VIN+  
The TRISA bits will still function as an output  
enable/disable for the RF1 and RF2 pins while in this  
mode.  
Output  
The polarity of the comparator outputs can be changed  
using the C2INV and C1INV bits (CMCON<4:5>).  
20.3.1  
EXTERNAL REFERENCE SIGNAL  
When external voltage references are used, the  
comparator module can be configured to have the com-  
parators operate from the same or different reference  
sources. However, threshold detector applications may  
require the same reference. The reference signal must  
be between VSS and VDD and can be applied to either  
pin of the comparator(s).  
Note 1: When reading the Port register, all pins  
configured as analog inputs will read as a  
0’. Pins configured as digital inputs will  
convert an analog input according to the  
Schmitt Trigger input specification.  
2: Analog levels on any pin defined as a dig-  
ital input may cause the input buffer to  
consume more current than is specified.  
2004 Microchip Technology Inc.  
DS30491C-page 261  
PIC18F6585/8585/6680/8680  
FIGURE 20-3:  
COMPARATOR OUTPUT BLOCK DIAGRAM  
Port pins  
MULTIPLEX  
+
-
CxINV  
To RF1 or  
RF2 pin  
Bus  
Data  
Q
D
Read CMCON  
EN  
Q
Set  
CMIF  
bit  
D
From  
other  
Comparator  
EN  
CL  
Read CMCON  
RESET  
20.6 Comparator Interrupts  
Note:  
If a change in the CMCON register  
(C1OUT or C2OUT) should occur when a  
read operation is being executed (start of  
the Q2 cycle), then the CMIF (PIR  
registers) interrupt flag may not get set.  
The comparator interrupt flag is set whenever there is  
a change in the output value of either comparator.  
Software will need to maintain information about the  
status of the output bits, as read from CMCON<7:6>, to  
determine the actual change that occurred. The CMIF  
bit (PIR registers) is the Comparator Interrupt Flag. The  
CMIF bit must be reset by clearing it to ‘0’. Since it is  
also possible to write a ‘1’ to this register, a simulated  
interrupt may be initiated.  
The user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
a) Any read or write of CMCON will end the  
mismatch condition.  
b) Clear flag bit CMIF.  
The CMIE bit (PIE registers) and the PEIE bit (INTCON  
register) must be set to enable the interrupt. In addition,  
the GIE bit must also be set. If any of these bits are  
clear, the interrupt is not enabled, though the CMIF bit  
will still be set if an interrupt condition occurs.  
A mismatch condition will continue to set flag bit CMIF.  
Reading CMCON will end the mismatch condition and  
allow flag bit CMIF to be cleared.  
DS30491C-page 262  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
20.7 Comparator Operation During  
20.9 Analog Input Connection  
Considerations  
Sleep  
When a comparator is active and the device is placed  
in Sleep mode, the comparator remains active and the  
interrupt is functional if enabled. This interrupt will  
wake-up the device from Sleep mode when enabled.  
While the comparator is powered up, higher Sleep  
currents than shown in the power-down current  
specification will occur. Each operational comparator  
will consume additional current as shown in the com-  
parator specifications. To minimize power consumption  
while in Sleep mode, turn off the comparators  
(CM<2:0> = 111) before entering Sleep. If the device  
wakes up from Sleep, the contents of the CMCON  
register are not affected.  
A simplified circuit for an analog input is shown in  
Figure 20-4. Since the analog pins are connected to a  
digital output, they have reverse biased diodes to VDD  
and VSS. The analog input, therefore, must be between  
VSS and VDD. If the input voltage deviates from this  
range by more than 0.6V in either direction, one of the  
diodes is forward biased and a latch-up condition may  
occur. A maximum source impedance of 10 kis  
recommended for the analog sources. Any external  
component connected to an analog input pin, such as  
a capacitor or a Zener diode, should have very little  
leakage current.  
20.8 Effects of a Reset  
A device Reset forces the CMCON register to its Reset  
state, causing the comparator module to be in the  
Comparator Reset mode (CM<2:0> = 000). This  
ensures that all potential inputs are analog inputs.  
Device current is minimized when analog inputs are  
present at Reset time. The comparators will be  
powered down during the Reset interval.  
FIGURE 20-4:  
COMPARATOR ANALOG INPUT MODEL  
VDD  
VT = 0.6V  
RIC  
RS < 10k  
AIN  
Comparator  
Input  
ILEAKAGE  
±500 nA  
CPIN  
5 pF  
VA  
VT = 0.6V  
VSS  
Legend: CPIN  
=
Input Capacitance  
VT  
= Threshold Voltage  
ILEAKAGE = Leakage Current at the pin due to various junctions  
RIC  
RS  
VA  
=
=
=
Interconnect Resistance  
Source Impedance  
Analog Voltage  
2004 Microchip Technology Inc.  
DS30491C-page 263  
PIC18F6585/8585/6680/8680  
TABLE 20-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE  
Value on  
all other  
Resets  
Value on  
POR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CMCON  
C2OUT  
C1OUT  
CVROE  
C2INV  
C1INV  
CIS  
CM2  
CM1  
CM0  
0000 0000 0000 0000  
CVRCON CVREN  
CVRR CVRSS CVR3  
CVR2  
CVR1  
CVR0 0000 0000 0000 0000  
RBIF 0000 0000 0000 0000  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
BCLIF  
BCLIE  
BCLIP  
RF3  
TMR0IF INT0IF  
EEIF  
EEIE  
EEIP  
RF4  
PIR2  
CMIF  
CMIE  
CMIP  
RF6  
LVDIF TMR3IF CCP2IF -0-0 0000 -0-0 0000  
LVDIE TMR3IE CCP2IE -0-0 0000 -0-0 0000  
LVDIP TMR3IP CCP2IP -1-1 1111 -1-1 1111  
PIE2  
IPR2  
PORTF  
LATF  
RF7  
RF5  
LATF5  
RF2  
RF1  
RF0  
xxxx xxxx uuuu uuuu  
LATF7  
TRISF7  
LATF6  
TRISF6  
LATF4 LATF3  
LATF2  
LATF1  
LATF0 xxxx xxxx uuuu uuuu  
TRISF  
Legend:  
TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0 1111 1111 1111 1111  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are unused by the comparator module.  
DS30491C-page 264  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
21.1 Configuring the Comparator  
Voltage Reference  
21.0 COMPARATOR VOLTAGE  
REFERENCE MODULE  
The comparator voltage reference can output 16 distinct  
voltage levels for each range. The equations used to  
calculate the output of the comparator voltage reference  
are as follows:  
The comparator voltage reference is a 16-tap resistor  
ladder network that provides a selectable voltage  
reference. The resistor ladder is segmented to provide  
two ranges of CVREF values and has a power-down  
function to conserve power when the reference is not  
being used. The CVRCON register controls the  
operation of the reference as shown in Register 21-1.  
The block diagram is given in Figure 21-1.  
If CVRR = 1:  
CVREF = (CVR<3:0>/24) x CVRSRC  
If CVRR = 0:  
CVREF = (CVDD x 1/4) + (CVR<3:0>/32) x CVRSRC  
The comparator reference supply voltage can come  
from either VDD or VSS, or the external VREF+ and  
VREF- that are multiplexed with RA3 and RA2. The  
comparator reference supply voltage is controlled by  
the CVRSS bit.  
The settling time of the comparator voltage reference  
must be considered when changing the CVREF output  
(Section 27.0 “Electrical Characteristics”).  
REGISTER 21-1:  
CVRCON REGISTER  
R/W-0  
R/W-0  
R/W-0  
CVRR  
R/W-0  
R/W-0  
CVR3  
R/W-0  
CVR2  
R/W-0  
CVR1  
R/W-0  
CVR0  
CVREN  
CVROE  
CVRSS  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
CVREN: Comparator Voltage Reference Enable bit  
1= CVREF circuit powered on  
0= CVREF circuit powered down  
CVROE: Comparator VREF Output Enable bit(1)  
1= CVREF voltage level is also output on the RF5/AN10/C1IN+/CVREF pin  
0= CVREF voltage is disconnected from the RF5/AN10/C1IN+/CVREF pin  
CVRR: Comparator VREF Range Selection bit  
1= 0.00 CVRSRC to 0.625 CVRSRC with CVRSRC/24 step size  
0= 0.25 CVRSRC to 0.71875 CVRSRC with CVRSRC/32 step size  
CVRSS: Comparator VREF Source Selection bit  
1= Comparator reference source, CVRSRC = VREF+ – VREF-  
0= Comparator reference source, CVRSRC = VDD – VSS  
Note:  
To select (VREF+ – VREF-) as the comparator voltage reference source, the voltage  
reference configuration bits in the ADCON1 register (ADCON1<5:4>) must also be  
set to ‘11’.  
bit 3-0  
CVR3:CVR0: Comparator VREF Value Selection bits (0 VR3:VR0 15)  
When CVRR = 1:  
CVREF = (CVR<3:0>/24) (CVRSRC)  
When CVRR = 0:  
CVREF = 1/4 (CVRSRC) + (CVR3:CVR0/32) (CVRSRC)  
Note 1: If enabled for output, RF5 must also be configured as an input by setting TRISF<5>  
to ‘1’.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 265  
PIC18F6585/8585/6680/8680  
FIGURE 21-1:  
VOLTAGE REFERENCE BLOCK DIAGRAM  
VDD  
VREF+  
16 Stages  
CVRSS = 1  
CVRSS = 0  
CVREN  
R
R
R
8R  
R
CVRR  
CVRSS = 0  
8R  
CVRSS = 1  
VREF-  
CVR3  
CVREF  
(From CVRCON<3:0>)  
CVR0  
16-1 Analog Mux  
Note: R is defined in Section 27.0 “Electrical Characteristics”.  
21.2 Voltage Reference Accuracy/Error  
21.4 Effects of a Reset  
The full range of voltage reference cannot be realized  
due to the construction of the module. The transistors  
on the top and bottom of the resistor ladder network  
(Figure 21-1) keep CVREF from approaching the refer-  
ence source rails. The voltage reference is derived  
from the reference source; therefore, the CVREF output  
changes with fluctuations in that source. The tested  
absolute accuracy of the voltage reference can be  
found in Section 27.0 “Electrical Characteristics”.  
A device Reset disables the voltage reference by  
clearing bit CVREN (CVRCON<7>). This Reset also  
disconnects the reference from the RA2 pin by clearing  
bit CVROE (CVRCON<6>) and selects the high-  
voltage range by clearing bit CVRR (CVRCON<5>).  
The VRSS value select bits, CVRCON<3:0>, are also  
cleared.  
21.5 Connection Considerations  
The voltage reference module operates independently  
of the comparator module. The output of the reference  
generator may be connected to the RF5 pin if the  
TRISF<5> bit is set and the CVROE bit is set. Enabling  
the voltage reference output onto the RF5 pin with an  
input signal present will increase current consumption.  
Connecting RF5 as a digital output with VRSS enabled  
will also increase current consumption.  
21.3 Operation During Sleep  
When the device wakes up from Sleep through an  
interrupt or a Watchdog Timer time-out, the contents of  
the CVRCON register are not affected. To minimize  
current consumption in Sleep mode, the voltage  
reference should be disabled.  
The RF5 pin can be used as a simple D/A output with  
limited drive capability. Due to the limited current drive  
capability, a buffer must be used on the voltage refer-  
ence output for external connections to VREF.  
Figure 21-2 shows an example buffering technique.  
DS30491C-page 266  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 21-2:  
VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE  
(1)  
RF5  
R
CVREF  
+
Module  
CVREF Output  
Voltage  
Reference  
Output  
Impedance  
Note 1: R is dependent upon the voltage reference configuration bits CVRCON<3:0> and CVRCON<5>.  
TABLE 21-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE  
Value on  
Value on  
all other  
Resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR  
CVRCON CVREN CVROE CVRR CVRSS CVR3  
CVR2  
CM2  
CVR1  
CM1  
CVR0 0000 0000 0000 0000  
CM0 0000 0000 0000 0000  
CMCON  
TRISF  
C2OUT C1OUT C2INV C1INV  
CIS  
TRISF7 TRISF6 TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0 1111 1111 1111 1111  
Legend: x= unknown, u= unchanged, -= unimplemented, read as ‘0’.  
Shaded cells are not used with the comparator voltage reference.  
2004 Microchip Technology Inc.  
DS30491C-page 267  
PIC18F6585/8585/6680/8680  
NOTES:  
DS30491C-page 268  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
The Low-Voltage Detect circuitry is completely under  
software control. This allows the circuitry to be “turned  
off” by the software which minimizes the current  
consumption for the device.  
22.0 LOW-VOLTAGE DETECT  
In many applications, the ability to determine if the  
device voltage (VDD) is below a specified voltage level  
is a desirable feature. A window of operation for the  
application can be created where the application soft-  
ware can do “housekeeping tasks” before the device  
voltage exits the valid operating range. This can be  
done using the Low-Voltage Detect module.  
Figure 22-1 shows a possible application voltage curve  
(typically for batteries). Over time, the device voltage  
decreases. When the device voltage equals voltage VA,  
the LVD logic generates an interrupt. This occurs at  
time TA. The application software then has the time,  
until the device voltage is no longer in valid operating  
range, to shut down the system. Voltage point VB is the  
minimum valid operating voltage specification. This  
occurs at time TB. The difference, TB TA, is the total  
time for shutdown.  
This module is a software programmable circuitry  
where a device voltage trip point can be specified.  
When the voltage of the device becomes lower then the  
specified point, an interrupt flag is set. If the interrupt is  
enabled, the program execution will branch to the inter-  
rupt vector address and the software can then respond  
to that interrupt source.  
FIGURE 22-1:  
TYPICAL LOW-VOLTAGE DETECT APPLICATION  
VA  
VB  
Legend:  
VA = LVD trip point  
VB = Minimum valid device  
operating voltage  
TB  
TA  
Time  
The block diagram for the LVD module is shown in  
Figure 22-2. A comparator uses an internally gener-  
ated reference voltage as the set point. When the  
selected tap output of the device voltage crosses the  
set point (is lower than), the LVDIF bit is set.  
supply voltage is equal to the trip point, the voltage  
tapped off of the resistor array is equal to the 1.2V  
internal reference voltage generated by the voltage  
reference module. The comparator then generates an  
interrupt signal setting the LVDIF bit. This voltage is  
software programmable to any one of 16 values (see  
Figure 22-2). The trip point is selected by  
programming the LVDL3:LVDL0 bits (LVDCON<3:0>).  
Each node in the resistor divider represents a “trip  
point” voltage. The “trip point” voltage is the minimum  
supply voltage level at which the device can operate  
before the LVD module asserts an interrupt. When the  
2004 Microchip Technology Inc.  
DS30491C-page 269  
PIC18F6585/8585/6680/8680  
FIGURE 22-2:  
LOW-VOLTAGE DETECT (LVD) BLOCK DIAGRAM  
VDD  
LVDIN  
LVD3:LVD0  
LVDCON  
Register  
LVDIF  
Internally Generated  
LVDEN  
Reference Voltage  
(Parameter #D423)  
The LVD module has an additional feature that allows  
the user to supply the trip voltage to the module from an  
external source. This mode is enabled when bits  
LVDL3:LVDL0 are set to ‘1111’. In this state, the com-  
parator input is multiplexed from the external input pin,  
LVDIN (Figure 22-3). This gives users flexibility  
because it allows them to configure the Low-Voltage  
Detect interrupt to occur at any voltage in the valid  
operating range.  
FIGURE 22-3:  
LOW-VOLTAGE DETECT (LVD) WITH EXTERNAL INPUT BLOCK DIAGRAM  
VDD  
VDD  
LVD3:LVD0  
LVDCON  
Register  
LVDIN  
LVDEN  
Externally Generated  
Trip Point  
LVD  
VxEN  
BODEN  
EN  
BGAP  
DS30491C-page 270  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
22.1 Control Register  
The Low-Voltage Detect Control register controls the  
operation of the Low-Voltage Detect circuitry.  
REGISTER 22-1: LVDCON REGISTER  
U-0  
U-0  
R-0  
R/W-0  
R/W-0  
LVDL3  
R/W-1  
LVDL2  
R/W-0  
LVDL1  
R/W-1  
LVDL0  
IRVST  
LVDEN  
bit 7  
bit 0  
bit 7-6 Unimplemented: Read as ‘0’  
bit 5  
bit 4  
IRVST: Internal Reference Voltage Stable Flag bit  
1= Indicates that the Low-Voltage Detect logic will generate the interrupt flag at the specified  
voltage range  
0= Indicates that the Low-Voltage Detect logic will not generate the interrupt flag at the  
specified voltage range and the LVD interrupt should not be enabled  
LVDEN: Low-Voltage Detect Power Enable bit  
1= Enables LVD, powers up LVD circuit  
0= Disables LVD, powers down LVD circuit  
bit 3-0 LVDL3:LVDL0: Low-Voltage Detection Limit bits  
1111= External analog input is used (input comes from the LVDIN pin)  
1110= 4.5V-4.77V  
1101= 4.2V-4.45V  
1100= 4.0V-4.24V  
1011= 3.8V-4.03V  
1010= 3.6V-3.82V  
1001= 3.5V-3.71V  
1000= 3.3V-3.50V  
0111= 3.0V-3.18V  
0110= 2.8V-2.97V  
0101= 2.7V-2.86V  
0100= 2.5V-2.65V  
0011= 2.4V-2.54V  
0010= 2.2V-2.33V  
0001= 2.0V-2.12V  
0000= Reserved  
Note:  
LVDL3:LVDL0 modes which result in a trip point below the valid operating voltage  
of the device are not tested.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 271  
PIC18F6585/8585/6680/8680  
The following steps are needed to set up the LVD  
module:  
22.2 Operation  
Depending on the power source for the device voltage,  
the voltage normally decreases relatively slowly. This  
means that the LVD module does not need to be  
constantly operating. To decrease the current require-  
ments, the LVD circuitry only needs to be enabled for  
short periods where the voltage is checked. After doing  
the check, the LVD module may be disabled.  
1. Write the value to the LVDL3:LVDL0 bits  
(LVDCON register) which selects the desired  
LVD trip point.  
2. Ensure that LVD interrupts are disabled (the  
LVDIE bit is cleared or the GIE bit is cleared).  
3. Enable the LVD module (set the LVDEN bit in  
the LVDCON register).  
Each time that the LVD module is enabled, the circuitry  
requires some time to stabilize. After the circuitry has  
stabilized, all status flags may be cleared. The module  
will then indicate the proper state of the system.  
4. Wait for the LVD module to stabilize (the IRVST  
bit to become set).  
5. Clear the LVD interrupt flag which may have  
falsely become set until the LVD module has  
stabilized (clear the LVDIF bit).  
6. Enable the LVD interrupt (set the LVDIE and the  
GIE bits).  
Figure 22-4 shows typical waveforms that the LVD  
module may be used to detect.  
FIGURE 22-4:  
LOW-VOLTAGE DETECT WAVEFORMS  
CASE 1:  
LVDIF may not be set  
VDD  
VLVD  
LVDIF  
Enable LVD  
Internally Generated  
Reference Stable  
TIVRST  
LVDIF cleared in software  
CASE 2:  
VDD  
VLVD  
LVDIF  
Enable LVD  
TIVRST  
Internally Generated  
Reference Stable  
LVDIF cleared in software  
LVDIF cleared in software,  
LVDIF remains set since LVD condition still exists  
DS30491C-page 272  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
22.2.1  
REFERENCE VOLTAGE SET POINT  
22.3 Operation During Sleep  
The internal reference voltage of the LVD module,  
specified in electrical specification parameter #D423,  
may be used by other internal circuitry (the Program-  
mable Brown-out Reset). If these circuits are disabled  
(lower current consumption), the reference voltage  
circuit requires a time to become stable before a low-  
voltage condition can be reliably detected. This time is  
invariant of system clock speed. This start-up time is  
specified in electrical specification parameter #36. The  
low-voltage interrupt flag will not be enabled until a  
stable reference voltage is reached. Refer to the  
waveform in Figure 22-4.  
When enabled, the LVD circuitry continues to operate  
during Sleep. If the device voltage crosses the trip  
point, the LVDIF bit will be set and the device will  
wake-up from Sleep. Device execution will continue  
from the interrupt vector address if interrupts have  
been globally enabled.  
22.4 Effects of a Reset  
A device Reset forces all registers to their Reset state.  
This forces the LVD module to be turned off.  
22.2.2  
CURRENT CONSUMPTION  
When the module is enabled, the LVD comparator and  
voltage divider are enabled and will consume static cur-  
rent. The voltage divider can be tapped from multiple  
places in the resistor array. Total current consumption,  
when enabled, is specified in electrical specification  
parameter #D022B.  
2004 Microchip Technology Inc.  
DS30491C-page 273  
PIC18F6585/8585/6680/8680  
NOTES:  
DS30491C-page 274  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
23.1 Module Overview  
23.0 ECAN MODULE  
The CAN bus module consists of a protocol engine and  
message buffering and control. The CAN protocol  
engine automatically handles all functions for receiving  
and transmitting messages on the CAN bus. Messages  
are transmitted by first loading the appropriate data  
registers. Status and errors can be checked by reading  
the appropriate registers. Any message detected on  
the CAN bus is checked for errors and then matched  
against filters to see if it should be received and stored  
in one of the two receive registers.  
PIC18F6585/8585/6680/8680 devices contain an  
Enhanced Controller Area Network (ECAN) module.  
The ECAN module is fully backward compatible with  
the CAN module available in PIC18CXX8 and  
PIC18FXX8 devices.  
The Controller Area Network (CAN) module is a serial  
interface which is useful for communicating with other  
peripherals or microcontroller devices. This interface,  
or protocol, was designed to allow communications  
within noisy environments.  
The CAN module supports the following frame types:  
The ECAN module is a communication controller,  
implementing the CAN 2.0A or B protocol as defined in  
the BOSCH specification. The module will support  
CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B  
Active versions of the protocol. The module implemen-  
tation is a full CAN system; however, the CAN specifi-  
cation is not covered within this data sheet. Refer to the  
BOSCH CAN specification for further details.  
• Standard Data Frame  
• Extended Data Frame  
• Remote Frame  
• Error Frame  
• Overload Frame Reception  
• Interframe Space Generation/Detection  
The CAN module uses the RG0/CANTX1,  
RG1/CANTX2 and RG2/CANRX pins to interface with  
the CAN bus. In Normal mode, the CAN module  
automatically overrides the TRISG0 and TRISG1 bits  
of the CAN module pins.  
The module features are as follows:  
• Implementation of the CAN protocol CAN 1.2,  
CAN 2.0A and CAN 2.0B  
• DeviceNetTM data bytes filter support  
• Standard and extended data frames  
• 0-8 bytes data length  
23.1.1  
MODULE FUNCTIONALITY  
• Programmable bit rate up to 1 Mbit/sec  
• Fully backward compatible with PIC18XX8 CAN  
module  
• Three modes of operation:  
- Mode 0 – Legacy mode  
The CAN bus module consists of a protocol engine,  
message buffering and control (see Figure 23-1). The  
protocol engine can best be understood by defining the  
types of data frames to be transmitted and received by  
the module.  
- Mode 1 – Enhanced Legacy mode with  
DeviceNet support  
The following sequence illustrates the necessary initial-  
ization steps before the ECAN module can be used to  
transmit or receive a message. Steps can be added or  
removed depending on the requirements of the  
application.  
- Mode 2 – FIFO mode with DeviceNet support  
• Support for remote frames with automated handling  
• Double-buffered receiver with two prioritized  
received message storage buffers  
• Six buffers programmable as RX and TX  
message buffers  
• 16 full (standard/extended identifier) acceptance  
filters that can be linked to one of four masks  
• Two full acceptance filter masks that can be  
assigned to any filter  
• One full acceptance filter that can be used as either  
an acceptance filter or acceptance filter mask  
• Three dedicated transmit buffers with application  
specified prioritization and abort capability  
• Programmable wake-up functionality with  
integrated low-pass filter  
1. Ensure that the ECAN module is in Configuration  
mode.  
2. Select ECAN Operational mode.  
3. Set up the baud rate registers.  
4. Set up the filter and mask registers.  
5. Set the ECAN module to Normal mode or any  
other mode required by the application logic.  
• Programmable Loopback mode supports self-test  
operation  
• Signaling via interrupt capabilities for all CAN  
receiver and transmitter error states  
• Programmable clock source  
• Programmable link to timer module for  
time-stamping and network synchronization  
• Low-Power Sleep mode  
2004 Microchip Technology Inc.  
DS30491C-page 275  
PIC18F6585/8585/6680/8680  
FIGURE 23-1:  
CAN BUFFERS AND PROTOCOL ENGINE BLOCK DIAGRAM  
16-4 to 1 muxs  
BUFFERS  
Acceptance Filters  
(RXF0 – RXF05)  
MODE 0  
TXB0  
TXB1  
TXB2  
VCC  
A
c
c
e
p
t
RXF15  
Acceptance Filters  
(RXF06 – RXF15)  
MODE 1, 2  
MODE 0  
2 RX  
Buffers  
Message  
Queue  
Control  
Identifier  
M
A
B
Transmit Byte Sequencer  
Data Field  
Rcv Byte  
MODE 1, 2  
6 TX/RX  
Buffers  
Transmit Option  
MESSAGE  
BUFFERS  
PROTOCOL  
ENGINE  
Receive  
Error  
Counter  
REC  
TEC  
Transmit  
Error  
Counter  
Err-Pas  
Bus-Off  
Transmit<7:0>  
Shift<14:0>  
Receive<8:0>  
{Transmit<5:0>, Receive<8:0>}  
Comparator  
Protocol  
Finite  
State  
Machine  
CRC<14:0>  
Bit  
Timing  
Logic  
Transmit  
Logic  
Clock  
Generator  
Configuration  
Registers  
TX  
RX  
DS30491C-page 276  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
23.2.1  
CAN CONTROL AND STATUS  
REGISTERS  
23.2 CAN Module Registers  
Note:  
Not all CAN registers are available in the  
Access Bank.  
The registers described in this section control the  
overall operation of the CAN module and show its  
operational status.  
There are many control and data registers associated  
with the CAN module. For convenience, their  
descriptions have been grouped into the following  
sections:  
• Control and Status Registers  
• Dedicated Transmit Buffer Registers  
• Dedicated Receive Buffer Registers  
• Programmable TX/RX and Auto RTR Buffers  
• Baud Rate Control Registers  
• I/O Control Register  
• Interrupt Status and Control Registers  
Detailed descriptions of each register and their usage  
are described in the following sections.  
2004 Microchip Technology Inc.  
DS30491C-page 277  
PIC18F6585/8585/6680/8680  
REGISTER 23-1: CANCON: CAN CONTROL REGISTER  
R/W-1  
R/W-0  
R/W-0  
R/S-0  
ABAT  
R/W-0  
WIN2  
R/W-0  
WIN1  
R/W-0  
WIN0  
U-0  
Mode 0  
Mode 1  
Mode 2  
REQOP2 REQOP1 REQOP0  
R/W-1  
R/W-0  
R/W-0  
R/S-0  
ABAT  
U-0  
U-0  
U-0  
U-0  
REQOP2 REQOP1 REQOP0  
R/W-1  
R/W-0  
R/W-0  
R/S-0  
ABAT  
R-0  
R-0  
R-0  
R-0  
REQOP2 REQOP1 REQOP0  
bit 7  
FP3  
FP2  
FP1  
FP0  
bit 0  
bit 7-5  
REQOP2:REQOP0: Request CAN Operation Mode bits  
1xx= Request Configuration mode  
011= Request Listen Only mode  
010= Request Loopback mode  
001= Request Disable mode  
000= Request Normal mode  
bit 4  
ABAT: Abort All Pending Transmissions bit  
1= Abort all pending transmissions (in all transmit buffers)  
0= Transmissions proceeding as normal  
bit 3-1  
Mode 0:  
WIN2:WIN0: Window Address bits  
This selects which of the CAN buffers to switch into the access bank area. This allows access  
to the buffer registers from any data memory bank. After a frame has caused an interrupt, the  
ICODE2:ICODE0 bits can be copied to the WIN2:WIN0 bits to select the correct buffer. See  
Example 23-2 for a code example.  
111= Receive Buffer 0  
110= Receive Buffer 0  
101= Receive Buffer 1  
100= Transmit Buffer 0  
011= Transmit Buffer 1  
010= Transmit Buffer 2  
001= Receive Buffer 0  
000= Receive Buffer 0  
bit 0  
Unimplemented: Read as ‘0’  
bit 3-0  
Mode 1:  
Unimplemented: Read as ‘0’  
Mode 2:  
FP3:FP0: FIFO Read Pointer bits  
These bits point to the message buffer to be read.  
0111:0000= Message buffer to be read  
1111:1000= Reserved  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 278  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 23-2: CANSTAT: CAN STATUS REGISTER  
R-1  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
U-0  
Mode 0  
(1)  
(1)  
(1)  
(1)  
OPMODE2 OPMODE1 OPMODE0  
ICODE2 ICODE1 ICODE0  
R-1  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
Mode 1, 2  
(1)  
(1)  
OPMODE2 OPMODE1 OPMODE0 EICODE4 EICODE3 EICODE2 EICODE1 EICODE0  
bit 7  
bit 0  
bit 7-5  
OPMODE2:OPMODE0: Operation Mode Status bits(1)  
111= Reserved  
110= Reserved  
101= Reserved  
100= Configuration mode  
011= Listen Only mode  
010= Loopback mode  
001= Disable/Sleep mode  
000= Normal mode  
bit 4  
Mode 0:  
Unimplemented: Read as ‘0’  
ICODE2:ICODE0: Interrupt Code bits in Mode 0  
bit 3-1  
When an interrupt occurs, a prioritized coded interrupt value will be present in these bits. This  
code indicates the source of the interrupt. By copying ICODE2:ICODE0 to WIN2:WIN0, it is pos-  
sible to select the correct buffer to map into the Access Bank area. See Example 23-2 for a code  
example.  
ICODE2:ICODE0 Value  
No interrupt  
000  
001  
010  
011  
100  
101  
110  
111  
Error interrupt  
TXB2 interrupt  
TXB1 interrupt  
TXB0 interrupt  
RXB1 interrupt  
RXB0 interrupt  
Wake-up interrupt  
bit 0  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 279  
PIC18F6585/8585/6680/8680  
REGISTER 23-2: CANSTAT: CAN STATUS REGISTER (CONTINUED)  
bit 4-0  
Mode 1,2:  
EICODE4:EICODE0: Interrupt Code bits in Mode 1 and Mode 2  
When an interrupt occurs, a prioritized coded interrupt value will be present in these bits. This  
code indicates the source of the interrupt. Unlike ICODE bits in Mode 0, these bits may not be  
copied directly to EWIN bits to map interrupted buffer to Access Bank area. If required, user  
software may maintain a table in program memory to map EICODE bits to EWIN bits and access  
interrupt buffer in Access Bank area.  
EICODE4:EICODE0 Value  
No interrupt  
Error interrupt  
00000  
00010  
TXB2 interrupt  
00100  
TXB1 interrupt  
00110  
TXB0 interrupt  
RXB1 interrupt  
01000  
10001/10000(2)  
RXB0 interrupt  
10000  
Wake-up interrupt  
RX/TX B0 interrupt  
RX/TX B1 interrupt  
RX/TX B2 interrupt  
RX/TX B3 interrupt  
RX/TX B4 interrupt  
RX/TX B4 interrupt  
01110  
10010(2)  
10011(2)  
10100(2)  
10101(2)  
10110(2)  
10111(2)  
Note 1: To achieve maximum power saving and/or able to wake-up on CAN bus activity,  
switch CAN module to Disable mode before putting the device to Sleep.  
2: In Mode 2, if the buffer is configured as a receiver, EICODE bits will always contain  
10000’ upon interrupt.  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit W = Writable bit  
‘0’ = Bit is cleared  
- n = Value at POR  
x = Bit is unknown  
C = Clearable bit  
‘1’ = Bit is set  
DS30491C-page 280  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
EXAMPLE 23-1:  
CHANGING TO CONFIGURATION MODE  
; Request Configuration mode.  
MOVLW  
MOVWF  
B’10000000’  
CANCON  
; Set to Configuration Mode.  
; A request to switch to Configuration mode may not be immediately honored.  
; Module will wait for CAN bus to be idle before switching to Configuration Mode.  
; Request for other modes such as Loopback, Disable etc. may be honored immediately.  
; It is always good practice to wait and verify before continuing.  
ConfigWait:  
MOVF  
ANDLW  
CANSTAT, W  
B’10000000’  
; Read current mode state.  
; Interested in OPMODE bits only.  
; Is it Configuration mode yet?  
; No. Continue to wait...  
TSTFSZ WREG  
BRA  
ConfigWait  
; Module is in Configuration mode now.  
; Modify configuration registers as required.  
; Switch back to Normal mode to be able to communicate.  
EXAMPLE 23-2:  
WIN AND ICODE BITS USAGE IN INTERRUPT SERVICE ROUTINE TO ACCESS  
TX/RX BUFFERS  
; Save application required context.  
; Poll interrupt flags and determine source of interrupt  
; This was found to be CAN interrupt  
; TempCANCON and TempCANSTAT are variables defined in Access Bank low  
MOVFF  
CANCON, TempCANCON  
; Save CANCON.WIN bits  
; This is required to prevent CANCON  
; from corrupting CAN buffer access  
; in-progress while this interrupt  
; occurred  
MOVFF  
CANSTAT, TempCANSTAT  
; Save CANSTAT register  
; This is required to make sure that  
; we use same CANSTAT value rather  
; than one changed by another CAN  
; interrupt.  
MOVF  
ANDLW  
ADDWF  
TempCANSTAT, W  
B’00001110’  
PCL, F  
; Retrieve ICODE bits  
; Perform computed GOTO  
; to corresponding interrupt cause  
; 000 = No interrupt  
; 001 = Error interrupt  
; 010 = TXB2 interrupt  
; 011 = TXB1 interrupt  
; 100 = TXB0 interrupt  
; 101 = RXB1 interrupt  
; 110 = RXB0 interrupt  
; 111 = Wake-up on interrupt  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
NoInterrupt  
ErrorInterrupt  
TXB2Interrupt  
TXB1Interrupt  
TXB0Interrupt  
RXB1Interrupt  
RXB0Interrupt  
WakeupInterrupt  
BCF  
PIR3, WAKIF  
; Clear the interrupt flag  
;
; User code to handle wake-up procedure  
;
;
; Continue checking for other interrupt source or return from here  
NoInterrupt  
; PC should never vector here. User may  
; place a trap such as infinite loop or pin/port  
; indication to catch this error.  
2004 Microchip Technology Inc.  
DS30491C-page 281  
PIC18F6585/8585/6680/8680  
EXAMPLE 23-2:  
WIN AND ICODE BITS USAGE IN INTERRUPT SERVICE ROUTINE TO ACCESS  
TX/RX BUFFERS (CONTINUED)  
ErrorInterrupt  
BCF  
PIR3, ERRIF  
; Clear the interrupt flag  
; Handle error.  
RETFIE  
TXB2Interrupt  
BCF  
GOTO  
TXB1Interrupt  
BCF  
GOTO  
TXB0Interrupt  
BCF  
GOTO  
RXB1Interrupt  
PIR3, TXB2IF  
AccessBuffer  
; Clear the interrupt flag  
; Clear the interrupt flag  
; Clear the interrupt flag  
; Clear the interrupt flag  
PIR3, TXB1IF  
AccessBuffer  
PIR3, TXB0IF  
AccessBuffer  
BCF  
GOTO  
PIR3, RXB1IF  
Accessbuffer  
RXB0Interrupt  
BCF  
GOTO  
PIR3, RXB0IF  
AccessBuffer  
; Clear the interrupt flag  
AccessBuffer  
; This is either TX or RX interrupt  
; Copy CANSTAT.ICODE bits to CANCON.WIN bits  
MOVF  
TempCANCON, W  
; Clear CANCON.WIN bits before copying  
; new ones.  
ANDLW  
B’11110001’  
; Use previously saved CANCON value to  
; make sure same value.  
MOVWF  
MOVF  
ANDLW  
TempCANCON  
TempCANSTAT, W  
B’00001110’  
; Copy masked value back to TempCANCON  
; Retrieve ICODE bits  
; Use previously saved CANSTAT value  
; to make sure same value.  
IORWF  
MOVFF  
TempCANCON  
TempCANCON, CANCON  
; Copy ICODE bits to WIN bits.  
; Copy the result to actual CANCON  
; Access current buffer…  
; User code  
; Restore CANCON.WIN bits  
MOVF  
ANDLW  
IORWF  
CANCON, W  
B’11110001’  
TempCANCON  
; Preserve current non WIN bits  
; Restore original WIN bits  
; Do not need to restore CANSTAT - it is read-only register.  
; Return from interrupt or check for another module interrupt source  
DS30491C-page 282  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 23-3: ECANCON: ENHANCED CAN CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
MDSEL1(1, 2) MDSEL0(1, 2) FIFOWM EWIN4  
EWIN3  
EWIN2  
EWIN1  
EWIN0  
bit 7  
bit 0  
bit 7-6  
MDSEL1:MDSEL0: Mode Select bits  
00= Legacy mode (Mode 0, default)  
01= Enhanced Legacy mode (Mode 1)  
10= Enhanced FIFO mode (Mode 2)  
11= Reserved  
bit 5  
FIFOWM: FIFO High Water Mark bit(3)  
1= Will cause FIFO interrupt when one receive buffer remains(4)  
0= Will cause FIFO interrupt when four receive buffers remain  
bit 4-0  
EWIN4:EWIN0: Enhanced Window Address bits  
These bits map the group of 16 banked CAN SFRs into access bank addresses 0F60-0F6Dh.  
Exact group of registers to map is determined by binary value of these bits.  
Mode 0:  
Unimplemented: Read as ‘0’  
Mode 1, 2:  
00000= Acceptance Filters 0, 1, 2 and BRGCON3, 2  
00001= Acceptance Filters 3, 4, 5 and BRGCON1, CIOCON  
00010= Acceptance Filter Masks, Error and Interrupt Control  
00011= Transmit Buffer 0  
00100= Transmit Buffer 1  
00101= Transmit Buffer 2  
00110= Acceptance Filters 6, 7, 8  
00111= Acceptance Filters 9, 10, 11  
01000= Acceptance Filters 12, 13, 14  
01001= Acceptance Filters 15  
01010-01111= Reserved  
10000 = Receive Buffer 0  
10001 = Receive Buffer 1  
10010 = TX/RX Buffer 0  
10011 = TX/RX Buffer 1  
10100 = TX/RX Buffer 2  
10101 = TX/RX Buffer 3  
10110 = TX/RX Buffer 4  
10111 = TX/RX Buffer 5  
11000-11111= Reserved  
Note 1: These bits can only be changed in Configuration mode. See Register 19-2 to  
change to Configuration mode.  
2: A new mode takes into effect only after Configuration mode is exited.  
3: This bit is used in Mode 2 only.  
4: FIFO length of 4 or less will cause this bit to be set.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 283  
PIC18F6585/8585/6680/8680  
REGISTER 23-4: COMSTAT: COMMUNICATION STATUS REGISTER  
R/C-0  
R/C-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
Mode 0  
Mode 1  
Mode 2  
RXB0OVFL RXB1OVFL TXBO  
TXBP  
RXBP  
TXWARN RXWARN EWARN  
U-0  
R/C-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
RXBnOVFL  
TXB0  
TXBP  
RXBP  
TXWARN RXWARN EWARN  
R/C-0  
R/C-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
FIFOEMPTY RXBnOVFL TXBO  
bit 7  
TXBP  
RXBP  
TXWARN RXWARN EWARN  
bit 0  
bit 7  
Mode 0:  
RXB0OVFL: Receive Buffer 0 Overflow bit  
1= Receive Buffer 0 overflowed  
0= Receive Buffer 0 has not overflowed  
Mode 1:  
Unimplemented: Read as ‘0’  
Mode 2:  
FIFOEMPTY: FIFO Not Empty bit  
1= Receive FIFO is not empty  
0= Receive FIFO is empty  
bit 6  
Mode 0:  
RXB1OVFL: Receive Buffer 1 Overflow bit  
1= Receive Buffer 1 overflowed  
0= Receive Buffer 1 has not overflowed  
Mode 1, 2:  
RXBnOVFL: Receive Buffer Overflow bit  
1= Receive buffer has overflowed  
0= Receive buffer has not overflowed  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TXBO: Transmitter Bus-Off bit  
1= Transmit error counter > 255  
0= Transmit error counter 255  
TXBP: Transmitter Bus Passive bit  
1= Transmit error counter > 127  
0= Transmit error counter 127  
RXBP: Receiver Bus Passive bit  
1= Receive error counter > 127  
0= Receive error counter 127  
TXWARN: Transmitter Warning bit  
1= 127 Transmit error counter > 95  
0= Transmit error counter 95  
RXWARN: Receiver Warning bit  
1= 127 Receive error counter > 95  
0= Receive error counter 95  
EWARN: Error Warning bit  
This bit is a flag of the RXWARN and TXWARN bits.  
1= The RXWARN or the TXWARN bits are set  
0= Neither the RXWARN or the TXWARN bits are set  
Legend:  
C = Clearable bit  
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR ‘1’ = Bit is set  
DS30491C-page 284  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
23.2.2  
DEDICATED CAN TRANSMIT  
BUFFER REGISTERS  
This section describes the dedicated CAN Transmit  
Buffer registers and their associated control registers.  
REGISTER 23-5: TXBnCON: TRANSMIT BUFFER n CONTROL REGISTERS [0 n 2]  
U-0  
R-0  
R-0  
R-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
Mode 0  
TXABT  
TXLARB  
TXERR  
TXREQ  
TXPRI1  
TXPRI0  
R/C-0  
TXBIF  
R-0  
R-0  
R-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
Mode 1, 2  
TXABT  
TXLARB  
TXERR  
TXREQ  
TXPRI1  
TXPRI0  
bit 7  
bit 0  
bit 7  
Mode 0:  
Unimplemented: Read as ‘0’  
Mode 1, 2:  
TXBIF: Transmit Buffer Interrupt Flag bit  
1= Transmit buffer has completed transmission of message and may be reloaded  
0= Transmit buffer has not completed transmission of a message  
bit 6  
bit 5  
bit 4  
bit 3  
TXABT: Transmission Aborted Status bit(1)  
1= Message was aborted  
0= Message was not aborted  
TXLARB: Transmission Lost Arbitration Status bit(1)  
1= Message lost arbitration while being sent  
0= Message did not lose arbitration while being sent  
TXERR: Transmission Error Detected Status bit(1)  
1= A bus error occurred while the message was being sent  
0= A bus error did not occur while the message was being sent  
TXREQ: Transmit Request Status bit(2)  
1= Requests sending a message. Clears the TXABT, TXLARB, and TXERR bits.  
0= Automatically cleared when the message is successfully sent  
Note:  
Clearing this bit in software while the bit is set, will request a message abort.  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
TXPRI1:TXPRI0: Transmit Priority bits(3)  
11= Priority Level 3 (highest priority)  
10= Priority Level 2  
01= Priority Level 1  
00= Priority Level 0 (lowest priority)  
Note 1: This bit is automatically cleared when TXREQ is set.  
2: While TXREQ is set, Transmit Buffer registers remain read-only.  
3: These bits define the order in which transmit buffers will be transferred. They do not  
alter the CAN message identifier.  
Legend:  
C = Clearable bit R = Readable bit W = Writable bit  
‘1’ = Bit is set ‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR  
x = Bit is unknown  
2004 Microchip Technology Inc.  
DS30491C-page 285  
PIC18F6585/8585/6680/8680  
REGISTER 23-6: TXBnSIDH: TRANSMIT BUFFER n STANDARD IDENTIFIER REGISTERS,  
HIGH BYTE [0 n 2]  
R/W-x  
R/W-x  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
SID10  
SID9  
bit 7  
bit 0  
bit 7-0  
SID10:SID3: Standard Identifier bits, if EXIDE (TXBnSIDL<3>) = 0;  
Extended Identifier bits EID28:EID21, if EXIDE = 1.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 23-7: TXBnSIDL: TRANSMIT BUFFER n STANDARD IDENTIFIER REGISTERS,  
LOW BYTE [0 n 2]  
R/W-x  
R/W-x  
R/W-x  
SID0  
U-0  
R/W-x  
EXIDE  
U-0  
R/W-x  
EID17  
R/W-x  
EID16  
SID2  
SID1  
bit 7  
bit 0  
bit 7-5  
SID2:SID0: Standard Identifier bits, if EXIDE (TXBnSIDL<3>) = 0;  
Extended Identifier bits EID20:EID18, if EXIDE = 1.  
Unimplemented: Read as ‘0’  
bit 4  
bit 3  
EXIDE: Extended Identifier Enable bit  
1= Message will transmit extended ID, SID10:SID0 becomes EID28:EID18  
0= Message will transmit standard ID, EID17:EID0 are ignored  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
EID17:EID16: Extended Identifier bits  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 23-8: TXBnEIDH: TRANSMIT BUFFER n EXTENDED IDENTIFIER REGISTERS,  
HIGH BYTE [0 n 2]  
R/W-x  
R/W-x  
R/W-x  
EID13  
R/W-x  
EID12  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
EID15  
EID14  
bit 7  
bit 0  
bit 7-0  
EID15:EID8: Extended Identifier bits (not used when transmitting standard identifier message)  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 286  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 23-9: TXBnEIDL: TRANSMIT BUFFER n EXTENDED IDENTIFIER REGISTERS,  
LOW BYTE [0 n 2]  
R/W-x  
R/W-x  
R/W-x  
EID5  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
EID7  
EID6  
bit 7  
bit 0  
bit 7-0  
EID7:EID0: Extended Identifier bits (not used when transmitting standard identifier message)  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 23-10: TXBnDm: TRANSMIT BUFFER n DATA FIELD BYTE m REGISTERS  
[0 n 2, 0 m 7]  
R/W-x  
TXBnDm7 TXBnDm6 TXBnDm5 TXBnDm4 TXBnDm3 TXBnDm2 TXBnDm1 TXBnDm0  
bit 7 bit 0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 7-0  
TXBnDm7:TXBnDm0: Transmit Buffer n Data Field Byte m bits (where 0 n < 3 and 0 m < 8)  
Each transmit buffer has an array of registers. For example, Transmit Buffer 0 has 7 registers:  
TXB0D0 to TXB0D7.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 287  
PIC18F6585/8585/6680/8680  
REGISTER 23-11: TXBnDLC: TRANSMITBUFFER n DATA LENGTHCODE REGISTERS[0 n2]  
U-0  
R/W-x  
U-0  
U-0  
R/W-x  
DLC3  
R/W-x  
DLC2  
R/W-x  
DLC1  
R/W-x  
DLC0  
TXRTR  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
TXRTR: Transmit Remote Frame Transmission Request bit  
1= Transmitted message will have TXRTR bit set  
0= Transmitted message will have TXRTR bit cleared  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
DLC3:DLC0: Data Length Code bits  
1111= Reserved  
1110= Reserved  
1101= Reserved  
1100= Reserved  
1011= Reserved  
1010= Reserved  
1001= Reserved  
1000= Data length = 8 bytes  
0111= Data length = 7 bytes  
0110= Data length = 6 bytes  
0101= Data length = 5 bytes  
0100= Data length = 4 bytes  
0011= Data length = 3 bytes  
0010= Data length = 2 bytes  
0001= Data length = 1 bytes  
0000= Data length = 0 bytes  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 23-12: TXERRCNT: TRANSMIT ERROR COUNT REGISTER  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
TEC7  
TEC6  
TEC5  
TEC4  
TEC3  
TEC2  
TEC1  
TEC0  
bit 7  
bit 0  
bit 7-0  
TEC7:TEC0: Transmit Error Counter bits  
This register contains a value which is derived from the rate at which errors occur. When the  
error count overflows, the bus-off state occurs. When the bus has 128 occurrences of  
11 consecutive recessive bits, the counter value is cleared.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 288  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
EXAMPLE 23-3:  
TRANSMITTING A CAN MESSAGE USING BANKED METHOD  
; Need to transmit Standard Identifier message 123h using TXB0 buffer.  
; To successfully transmit, CAN module must be either in Normal or Loopback mode.  
; TXB0 buffer is not in access bank. And since we want banked method, we need to make sure  
; that correct bank is selected.  
BANKSELTXB0CON  
; One BANKSEL in beginning will make sure that we are  
; in correct bank for rest of the buffer access.  
; Now load transmit data into TXB0 buffer.  
MOVLW  
MOVWF  
MY_DATA_BYTE1  
TXB0D0  
; Load first data byte into buffer  
; Compiler will automatically set “BANKED” bit  
; Load rest of data bytes - up to 8 bytes into TXB0 buffer.  
...  
; Load message identifier  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
60H  
TXB0SIDL  
24H  
; Load SID2:SID0, EXIDE = 0  
; Load SID10:SID3  
TXB0SIDH  
; No need to load TXB0EIDL:TXB0EIDH, as we are transmitting Standard Identifier Message only.  
; Now that all data bytes are loaded, mark it for transmission.  
MOVLW  
MOVWF  
B’00001000’  
TXB0CON  
; Normal priority; Request transmission  
; If required, wait for message to get transmitted  
BTFSC  
BRA  
TXB0CON, TXREQ  
$-2  
; Is it transmitted?  
; No. Continue to wait...  
; Message is transmitted.  
2004 Microchip Technology Inc.  
DS30491C-page 289  
PIC18F6585/8585/6680/8680  
EXAMPLE 23-4:  
TRANSMITTING A CAN MESSAGE USING WIN BITS  
; Need to transmit Standard Identifier message 123h using TXB0 buffer.  
; To successfully transmit, CAN module must be either in Normal or Loopback mode.  
; TXB0 buffer is not in access bank. Use WIN bits to map it to RXB0 area.  
MOVF  
CANCON, W  
; WIN bits are in lower 4 bits only. Read CANCON  
; register to preserve all other bits. If operation  
; mode is already known, there is no need to preserve  
; other bits.  
ANDLW  
IORLW  
MOVWF  
B’11110000’  
B’00001000’  
CANCON  
; Clear WIN bits.  
; Select Transmit Buffer 0  
; Apply the changes.  
; Now TXB0 is mapped in place of RXB0. All future access to RXB0 registers will actually  
; yield TXB0 register values.  
; Load transmit data into TXB0 buffer.  
MOVLW  
MOVWF  
MY_DATA_BYTE1  
RXB0D0  
; Load first data byte into buffer  
; Access TXB0D0 via RXB0D0 address.  
; Load rest of the data bytes - up to 8 bytes into “TXB0” buffer using RXB0 registers.  
...  
; Load message identifier  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
60H  
RXB0SIDL  
24H  
; Load SID2:SID0, EXIDE = 0  
; Load SID10:SID3  
RXB0SIDH  
; No need to load RXB0EIDL:RXB0EIDH, as we are transmitting Standard Identifier Message only.  
; Now that all data bytes are loaded, mark it for transmission.  
MOVLW  
MOVWF  
B’00001000’  
RXB0CON  
; Normal priority; Request transmission  
; If required, wait for message to get transmitted  
BTFSC  
BRA  
RXB0CON, TXREQ  
$-2  
; Is it transmitted?  
; No. Continue to wait...  
; Message is transmitted.  
; If required, reset the WIN bits to default state.  
DS30491C-page 290  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
23.2.3  
DEDICATED CAN RECEIVE  
BUFFER REGISTERS  
This section shows the dedicated CAN Receive Buffer  
registers with their associated control registers.  
REGISTER 23-13: RXB0CON: RECEIVE BUFFER 0 CONTROL REGISTER  
R/C-0  
R/W-0  
RXM1  
R/W-0  
RXM0  
U-0  
R-0  
R/W-0  
R-0  
R-0  
Mode 0  
Mode 1, 2  
bit 7  
RXFUL  
RXRTRRO RXB0DBEN JTOFF  
FILHIT0  
R/C-0  
R/W-0  
RXM1  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
RXFUL  
RTRRO  
FILHIT4  
FILHIT3  
FILHIT2  
FILHIT1 FILHIT0  
bit 0  
bit 7  
RXFUL: Receive Full Status bit  
1= Receive buffer contains a received message  
0= Receive buffer is open to receive a new message  
Note:  
This bit is set by the CAN module upon receiving a message and must be cleared  
by software after the buffer is read. As long as RXFUL is set, no new message will  
be loaded and buffer will be considered full.  
bit 6  
Mode 0:  
RXM1: Receive Buffer Mode bit 1; combines with RXM0 to form RXM<1:0> bits (see bit 5)  
11= Receive all messages (including those with errors); filter criteria is ignored  
10= Receive only valid messages with extended identifier; EXIDEN in RXFnSIDL must be ‘1’  
01= Receive only valid messages with standard identifier, EXIDEN in RXFnSIDL must be ‘0’  
00= Receive all valid messages as per EXIDEN bit in RXFnSIDL register  
Mode 1, 2:  
RXM1: Receive Buffer Mode bit  
1= Receive all messages (including those with errors); acceptance filters are ignored  
0= Receive all valid messages as per acceptance filters  
bit 5  
Mode 0:  
RXM0: Receive Buffer Mode bit 0; combines with RXM1 to form RXM<1:0> bits (see bit 6)  
Mode 1, 2:  
RTRRO: Remote Transmission Request bit for Received Message (read-only)  
1= A remote transmission request is received  
0= A remote transmission request is not received  
bit 4  
bit 3  
Mode 0:  
Unimplemented: Read as ‘0’  
Mode 1, 2:  
FILHIT4: Filter Hit bit 4  
This bit combines with other bits to form filter acceptance bits <4:0>.  
Mode 0:  
RXRTRRO: Remote Transmission Request bit for Received Message (read-only)  
1= A remote transmission request is received  
0= A remote transmission request is not received  
Mode 1, 2:  
FILHIT3: Filter Hit bit 3  
This bit combines with other bits to form filter acceptance bits <4:0>.  
Legend:  
C = Clearable bit R = Readable bit W = Writable bit  
‘1’ = Bit is set ‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR  
x = Bit is unknown  
2004 Microchip Technology Inc.  
DS30491C-page 291  
PIC18F6585/8585/6680/8680  
REGISTER 23-13: RXB0CON: RECEIVE BUFFER 0 CONTROL REGISTER (CONTINUED)  
bit 2  
Mode 0:  
RXB0DBEN: Receive Buffer 0 Double-Buffer Enable bit  
1= Receive Buffer 0 overflow will write to Receive Buffer 1  
0= No Receive Buffer 0 overflow to Receive Buffer 1  
Mode 1, 2:  
FILHIT2: Filter Hit bit 2  
This bit combines with other bits to form filter acceptance bits <4:0>.  
bit 1  
Mode 0:  
JTOFF: Jump Table Offset bit (read-only copy of RXB0DBEN)  
1= Allows jump table offset between 6 and 7  
0= Allows jump table offset between 1 and 0  
Note:  
This bit allows same filter jump table for both RXB0CON and RXB1CON.  
Mode 1, 2:  
FILHIT1: Filter Hit bit 1  
This bit combines with other bits to form filter acceptance bits <4:0>.  
bit 0  
Mode 0:  
FILHIT0: Filter Hit bit 0  
This bit indicates which acceptance filter enabled the message reception into Receive Buffer 0.  
1= Acceptance Filter 1 (RXF1)  
0= Acceptance Filter 0 (RXF0)  
Mode 1, 2:  
FILHIT0: Filter Hit bit 0  
This bit, in combination with FILHIT<4:1>, indicates which acceptance filter enabled the  
message reception into this receive buffer.  
01111= Acceptance Filter 15 (RXF15)  
01110= Acceptance Filter 14 (RXF14)  
...  
00000= Acceptance Filter 0 (RXF0)  
Legend:  
U = Unimplemented bit, read as ‘0’  
R = Readable bit W = Writable bit  
‘0’ = Bit is cleared  
- n = Value at POR  
x = Bit is unknown  
C = Clearable bit  
‘1’ = Bit is set  
DS30491C-page 292  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 23-14: RXB1CON: RECEIVE BUFFER 1 CONTROL REGISTER  
R/C-0  
R/W-0  
R/W-0  
U-0  
R-0  
R/W-0  
R-0  
R-0  
Mode 0  
RXFUL  
RXM1  
RXM0  
RXRTRRO  
FILHIT2  
FILHIT1  
FILHIT0  
R/C-0  
R/W-0  
RXM1  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
Mode 1, 2  
RXFUL  
RTRRO  
FILHIT4  
FILHIT3  
FILHIT2  
FILHIT1  
FILHIT0  
bit 7  
bit 0  
bit 7  
RXFUL: Receive Full Status bit  
1= Receive buffer contains a received message  
0= Receive buffer is open to receive a new message  
Note:  
This bit is set by the CAN module upon receiving a message and must be cleared by software after  
the buffer is read. As long as RXFUL is set, no new message will be loaded and buffer will be  
considered full.  
Mode 0:  
bit 6  
RXM1: Receive Buffer Mode bit 1; combines with RXM0 to form RXM<1:0> bits (see bit 5)  
11= Receive all messages (including those with errors); filter criteria is ignored  
10= Receive only valid messages with extended identifier; EXIDEN in RXFnSIDL must be ‘1’  
01= Receive only valid messages with standard identifier, EXIDEN in RXFnSIDL must be ‘0’  
00= Receive all valid messages as per EXIDEN bit in RXFnSIDL register  
Mode 1, 2:  
RXM1: Receive Buffer Mode bit  
1= Receive all messages (including those with errors); acceptance filters are ignored  
0= Receive all valid messages as per acceptance filters  
bit 5  
Mode 0:  
RXM0: Receive Buffer Mode bit 0; combines with RXM1 to form RXM<1:0> bits (see bit 6)  
Mode 1, 2:  
RTRRO: Remote Transmission Request bit for Received Message (read-only)  
1= A remote transmission request is received  
0= A remote transmission request is not received  
bit 4  
bit 3  
Mode 0:  
Unimplemented: Read as ‘0’  
Mode 1, 2:  
FILHIT4: Filter Hit bit 4  
This bit combines with other bits to form filter acceptance bits <4:0>.  
Mode 0:  
RXRTRRO: Remote Transmission Request bit for Received Message (read-only)  
1= A remote transmission request is received  
0= A remote transmission request is not received  
Mode 1, 2:  
FILHIT3: Filter Hit bit 3  
This bit combines with other bits to form filter acceptance bits <4:0>.  
bit 2-0  
Mode 0:  
FILHIT2:FILHIT0: Filter Hit bits  
These bits indicate which acceptance filter enabled the last message reception into Receive Buffer 1.  
111= Reserved  
110= Reserved  
101= Acceptance Filter 5 (RXF5)  
100= Acceptance Filter 4 (RXF4)  
011= Acceptance Filter 3 (RXF3)  
010= Acceptance Filter 2 (RXF2)  
001= Acceptance Filter 1 (RXF1), only possible when RXB0DBEN bit is set  
000= Acceptance Filter 0 (RXF0), only possible when RXB0DBEN bit is set  
Mode 1, 2:  
FILHIT2:FILHIT0 Filter Hit bits <2:0>  
These bits, in combination with FILHIT<4:3>, indicate which acceptance filter enabled the message reception  
into this receive buffer.  
01111= Acceptance Filter 15 (RXF15)  
01110= Acceptance Filter 14 (RXF14)  
...  
00000= Acceptance Filter 0 (RXF0)  
Legend:  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR  
x = Bit is unknown  
C = Clearable bit  
‘1’ = Bit is set  
R = Readable bit  
‘0’ = Bit is cleared  
W = Writable bit  
2004 Microchip Technology Inc.  
DS30491C-page 293  
PIC18F6585/8585/6680/8680  
REGISTER 23-15: RXBnSIDH: RECEIVE BUFFER n STANDARD IDENTIFIER REGISTERS,  
HIGH BYTE [0 n 1]  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
SID10  
SID9  
SID8  
SID7  
SID6  
SID5  
SID4  
SID3  
bit 7  
bit 0  
bit 7-0  
SID10:SID3: Standard Identifier bits, if EXID = 0(RXBnSIDL<3>);  
Extended Identifier bits EID28:EID21, if EXID = 1.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 23-16: RXBnSIDL: RECEIVE BUFFER n STANDARD IDENTIFIER REGISTERS,  
LOW BYTE [0 n 1]  
R-x  
R-x  
R-x  
R-x  
R-x  
U-0  
R-x  
R-x  
SID2  
SID1  
SID0  
SRR  
EXID  
EID17  
EID16  
bit 7  
bit 0  
bit 7-5  
bit 4  
SID2:SID0: Standard Identifier bits, if EXID = 0;  
Extended Identifier bits EID20:EID18, if EXID = 1.  
SRR: Substitute Remote Request bit  
This bit is always ‘0’ when EXID = 1or equal to the value of RXRTRRO (RBXnCON<3>)  
when EXID = 0.  
bit 3  
EXID: Extended Identifier bit  
1= Received message is an extended data frame, SID10:SID0 are EID28:EID18  
0= Received message is a standard data frame  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
EID17:EID16: Extended Identifier bits  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 23-17: RXBnEIDH: RECEIVE BUFFER n EXTENDED IDENTIFIER REGISTERS,  
HIGH BYTE [0 n 1]  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
EID8  
bit 0  
EID15  
EID14  
EID13  
EID12  
EID11  
EID10  
EID9  
bit 7  
bit 7-0  
EID15:EID8: Extended Identifier bits  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 294  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 23-18: RXBnEIDL: RECEIVE BUFFER n EXTENDED IDENTIFIER REGISTERS,  
LOW BYTE [0 n 1]  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
EID7  
EID6  
EID5  
EID4  
EID3  
EID2  
EID1  
EID0  
bit 7  
bit 0  
bit 7-0  
EID7:EID0: Extended Identifier bits  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 23-19: RXBnDLC: RECEIVE BUFFER n DATA LENGTH CODE REGISTERS [0 n 1]  
U-0  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
RXRTR  
RB1  
RB0  
DLC3  
DLC2  
DLC1  
DLC0  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
RXRTR: Receiver Remote Transmission Request bit  
1= Remote transfer request  
0= No remote transfer request  
bit 5  
RB1: Reserved bit 1  
Reserved by CAN Spec and read as ‘0’.  
RB0: Reserved bit 0  
bit 4  
Reserved by CAN Spec and read as ‘0’.  
DLC3:DLC0: Data Length Code bits  
bit 3-0  
1111= Invalid  
1110= Invalid  
1101= Invalid  
1100= Invalid  
1011= Invalid  
1010= Invalid  
1001= Invalid  
1000= Data length = 8 bytes  
0111= Data length = 7 bytes  
0110= Data length = 6 bytes  
0101= Data length = 5 bytes  
0100= Data length = 4 bytes  
0011= Data length = 3 bytes  
0010= Data length = 2 bytes  
0001= Data length = 1 bytes  
0000= Data length = 0 bytes  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 295  
PIC18F6585/8585/6680/8680  
REGISTER 23-20: RXBnDm: RECEIVE BUFFER n DATA FIELD BYTE m REGISTERS  
[0 n 1, 0 m 7]  
R-x  
RXBnDm7 RXBnDm6 RXBnDm5 RXBnDm4 RXBnDm3 RXBnDm2 RXBnDm1 RXBnDm0  
bit 7 bit 0  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
bit 7-0  
RXBnDm7:RXBnDm0: Receive Buffer n Data Field Byte m bits (where 0 n < 1 and 0 < m < 7)  
Each receive buffer has an array of registers. For example, Receive Buffer 0 has 8 registers:  
RXB0D0 to RXB0D7.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 23-21: RXERRCNT: RECEIVE ERROR COUNT REGISTER  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
REC7  
REC6  
REC5  
REC4  
REC3  
REC2  
REC1  
REC0  
bit 7  
bit 0  
bit 7-0  
REC7:REC0: Receive Error Counter bits  
This register contains the receive error value as defined by the CAN specifications.  
When RXERRCNT > 127, the module will go into an error-passive state. RXERRCNT does not  
have the ability to put the module in “bus-off” state.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
EXAMPLE 23-5:  
READING A CAN MESSAGE  
; Need to read a pending message from RXB0 buffer.  
; To receive any message, filter, mask and RXM1:RXM0 bits in RXB0CON registers must be  
; programmed correctly.  
;
; Make sure that there is a message pending in RXB0.  
BTFSS  
BRA  
RXB0CON, RXFUL  
NoMessage  
; Does RXB0 contain a message?  
; No. Handle this situation...  
; We have verified that a message is pending in RXB0 buffer.  
; If this buffer can receive both Standard or Extended Identifier messages,  
; identify type of message received.  
BTFSS  
BRA  
RXB0SIDL, EXID  
StandardMessage  
; Is this Extended Identifier?  
; No. This is Standard Identifier message.  
; Yes. This is Extended Identifier message.  
; Read all 29-bits of Extended Identifier message.  
...  
; Now read all data bytes  
MOVFF  
...  
RXB0DO, MY_DATA_BYTE1  
; Once entire message is read, mark the RXB0 that it is read and no longer FULL.  
BCF  
RXB0CON, RXFUL  
; This will allow CAN Module to load new messages  
; into this buffer.  
...  
DS30491C-page 296  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
23.2.3.1  
Programmable TX/RX and  
Auto RTR Buffers  
The ECAN module contains 6 message buffers that can  
be programmed as transmit or receive buffers. Any of  
these buffers can also be programmed to automatically  
handle RTR messages.  
Note:  
These registers are not used in Mode 0.  
REGISTER 23-22: BnCON: TX/RX BUFFER n CONTROL REGISTERS IN RECEIVE MODE  
[0 n 5, TXnEN (BSEL0<n>) = 0](1)  
R/C-0  
R/W-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
RXFUL  
RXM1  
RTRRO  
FILHIT4  
FILHIT3  
FILHIT2  
FILHIT1  
FILHIT0  
bit 7  
bit 0  
bit 7  
RXFUL: Receive Full Status bit(1)  
1= Receive buffer contains a received message  
0= Receive buffer is open to receive a new message  
Note:  
This bit is set by the CAN module upon receiving a message and must be cleared  
by software after the buffer is read. As long as RXFUL is set, no new message will  
be loaded and buffer will be considered full.  
bit 6  
RXM1: Receive Buffer Mode bit  
1= Receive all messages including partial and invalid (acceptance filters are ignored)  
0= Receive all valid messages as per acceptance filters  
bit 5  
RTRRO: Read-Only Remote Transmission Request bit for Received Message  
1= Received message is a remote transmission request  
0= Received message is not a remote transmission request  
bit 4-0  
FILHIT4:FILHIT0: Filter Hit bits  
These bits indicate which acceptance filter enabled the last message reception into this buffer.  
01111= Acceptance Filter 15 (RXF15)  
01110= Acceptance Filter 14 (RXF14)  
...  
00001= Acceptance Filter 1 (RXF1)  
00000= Acceptance Filter 0 (RXF0)  
Note 1: These registers are available in Mode 1 and 2 only.  
Legend:  
C = Clearable bit R = Readable bit W = Writable bit  
‘1’ = Bit is set ‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR  
x = Bit is unknown  
2004 Microchip Technology Inc.  
DS30491C-page 297  
PIC18F6585/8585/6680/8680  
REGISTER 23-23: BnCON: TX/RX BUFFER n CONTROL REGISTERS IN TRANSMIT MODE  
[0 n 5, TXnEN (BSEL0<n>) = 1](1)  
R/W-0  
R-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TXBIF  
TXABT  
TXLARB  
TXERR  
TXREQ  
RTREN  
TXPRI1  
TXPRI0  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
TXBIF: Transmit Buffer Interrupt Flag bit(1)  
1= A message is successfully transmitted  
0= No message was transmitted  
TXABT: Transmission Aborted Status bit(1)  
1= Message was aborted  
0= Message was not aborted  
TXLARB: Transmission Lost Arbitration Status bit(2)  
1= Message lost arbitration while being sent  
0= Message did not lose arbitration while being sent  
TXERR: Transmission Error Detected Status bit(2)  
1= A bus error occurred while the message was being sent  
0= A bus error did not occur while the message was being sent  
TXREQ: Transmit Request Status bit(3)  
1= Requests sending a message; clears the TXABT, TXLARB, and TXERR bits  
0= Automatically cleared when the message is successfully sent  
Note:  
Clearing this bit in software while the bit is set will request a message abort.  
bit 2  
RTREN: Automatic Remote Transmission Request Enable bit  
1= When a remote transmission request is received, TXREQ will be automatically set  
0= When a remote transmission request is received, TXREQ will be unaffected  
bit 1-0  
TXPRI1:TXPRI0: Transmit Priority bits(4)  
11= Priority Level 3 (highest priority)  
10= Priority Level 2  
01= Priority Level 1  
00= Priority Level 0 (lowest priority)  
Note 1: These registers are available in Mode 1 and 2 only.  
2: This bit is automatically cleared when TXREQ is set.  
3: While TXREQ is set or transmission is in progress, transmit buffer registers remain  
read-only.  
4: These bits set the order in which the transmit buffer will be transferred. They do not  
alter the CAN message identifier.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 298  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 23-24: BnSIDH: TX/RX BUFFER n STANDARD IDENTIFIER REGISTERS,  
HIGH BYTE IN RECEIVE MODE [0 n 5, TXnEN (BSEL0<n>) = 0](1)  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
SID10  
SID9  
SID8  
SID7  
SID6  
SID5  
SID4  
SID3  
bit 7  
bit 0  
bit 7-0  
SID10:SID3: Standard Identifier bits, if EXIDE (BnSIDL<3>) = 0;  
Extended Identifier bits EID28:EID21, if EXIDE = 1.  
Note 1: These registers are available in Mode 1 and 2 only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 23-25: BnSIDH: TX/RX BUFFER n STANDARD IDENTIFIER REGISTERS,  
HIGH BYTE IN TRANSMIT MODE [0 n 5, TXnEN (BSEL0<n>) = 1](1)  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SID3  
SID10  
SID9  
SID8  
SID7  
SID6  
SID5  
SID4  
bit 7  
bit 0  
bit 7-0  
SID10:SID3: Standard Identifier bits, if EXIDE (BnSIDL<3>) = 0;  
Extended Identifier bits EID28:EID21, if EXIDE = 1.  
Note 1: These registers are available in Mode 1 and 2 only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 299  
PIC18F6585/8585/6680/8680  
REGISTER 23-26: BnSIDL: TX/RX BUFFER n STANDARD IDENTIFIER REGISTERS,  
LOW BYTE IN RECEIVE MODE [0 n 5, TXnEN (BSEL0<n>) = 0](1)  
R-x  
R-x  
R-x  
R-x  
R-x  
U-0  
R-x  
R-x  
SID2  
SID1  
SID0  
SRR  
EXID  
EID17  
EID16  
bit 7  
bit 0  
bit 7-5  
bit 4  
SID2:SID0: Standard Identifier bits, if EXID = 0;  
Extended Identifier bits EID20:EID18, if EXID = 1.  
SRR: Substitute Remote Transmission Request bit (only when EXID = 1)  
1= Remote transmission request occurred  
0= No remote transmission request occurred  
bit 3  
EXID: Extended Identifier Enable bit  
1= Received message is an extended identifier frame, SID10:SID0 are EID28:EID18  
0= Received message is a standard identifier frame  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
EID17:EID16: Extended Identifier bits  
Note 1: These registers are available in Mode 1 and 2 only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 23-27: BnSIDL: TX/RX BUFFER n STANDARD IDENTIFIER REGISTERS,  
LOW BYTE IN TRANSMIT MODE [0 n 5, TXnEN (BSEL0<n>) = 1](1)  
R/W-x  
R/W-x  
R/W-x  
U-0  
R/W-x  
U-0  
R/W-x  
R/W-x  
EID16  
SID2  
SID1  
SID0  
EXIDE  
EID17  
bit 7  
SID2:SID0: Standard Identifier bits, if EXIDE = 0;  
bit 0  
bit 7-5  
Extended Identifier bits EID20:EID18, if EXIDE = 1.  
Unimplemented: Read as ‘0’  
bit 4  
bit 3  
EXIDE: Extended Identifier Enable bit  
1= Received message is an extended identifier frame, SID10:SID0 are EID28:EID18  
0= Received message is a standard identifier frame  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
EID17:EID16: Extended Identifier bits  
Note 1: These registers are available in Mode 1 and 2 only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 300  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 23-28: BnEIDH: TX/RX BUFFER n EXTENDED IDENTIFIER REGISTERS,  
HIGH BYTE IN RECEIVE MODE [0 n 5, TXnEN (BSEL0<n>) = 0](1)  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
EID15  
EID14  
EID13  
EID12  
EID11  
EID10  
EID9  
EID8  
bit 7  
bit 0  
bit 7-0  
EID15:EID8: Extended Identifier bits  
Note 1: These registers are available in Mode 1 and 2 only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 23-29: BnEIDH: TX/RX BUFFER n EXTENDED IDENTIFIER REGISTERS,  
HIGH BYTE IN TRANSMIT MODE [0 n 5, TXnEN (BSEL0<n>) = 1](1)  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
EID8  
EID15  
EID14  
EID13  
EID12  
EID11  
EID10  
EID9  
bit 7  
EID15:EID8: Extended Identifier bits  
bit 0  
bit 7-0  
Note 1: These registers are available in Mode 1 and 2 only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 301  
PIC18F6585/8585/6680/8680  
REGISTER 23-30: BnEIDL: TX/RX BUFFER n EXTENDED IDENTIFIER REGISTERS,  
LOW BYTE IN RECEIVE MODE [0 n 5, TXnEN (BSEL<n>) = 0](1)  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
EID7  
EID6  
EID5  
EID4  
EID3  
EID2  
EID1  
EID0  
bit 7  
bit 0  
bit 7-0  
EID7:EID0: Extended Identifier bits  
Note 1: These registers are available in Mode 1 and 2 only.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
REGISTER 23-31: BnEIDL: TX/RX BUFFER n EXTENDED IDENTIFIER REGISTERS,  
LOW BYTE IN TRANSMIT MODE [0 n 5, TXnEN (BSEL<n>) = 1](1)  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
EID0  
EID7  
EID6  
EID5  
EID4  
EID3  
EID2  
EID1  
bit 7  
bit 0  
bit 7-0  
EID7:EID0: Extended Identifier bits  
Note 1: These registers are available in Mode 1 and 2 only.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS30491C-page 302  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 23-32: BnDm: TX/RX BUFFER n DATA FIELD BYTE m REGISTERS IN RECEIVE MODE  
[0 n 5, 0 m 7, TXnEN (BSEL<n>) = 0](1)  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
BnDm7  
BnDm6  
BnDm5  
BnDm4  
BnDm3  
BnDm2  
BnDm1  
BnDm0  
bit 7  
bit 0  
bit 7-0  
BnDm7:BnDm0: Receive Buffer n Data Field Byte m bits (where 0 n < 3 and 0 < m < 8)  
Each receive buffer has an array of registers. For example, Receive Buffer 0 has 7 registers:  
B0D0 to B0D7.  
Note 1: These registers are available in Mode 1 and 2 only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 23-33: BnDm: TX/RX BUFFER n DATA FIELD BYTE m REGISTERS IN TRANSMIT MODE  
[0 n 5, 0 m 7, TXnEN (BSEL<n>) = 1](1)  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
BnDm7  
BnDm6  
BnDm5  
BnDm4  
BnDm3  
BnDm2  
BnDm1  
BnDm0  
bit 7  
bit 0  
bit 7-0  
BnDm7:BnDm0: Transmit Buffer n Data Field Byte m bits (where 0 n < 3 and 0 < m < 8)  
Each transmit buffer has an array of registers. For example, Transmit Buffer 0 has 7 registers:  
TXB0D0 to TXB0D7.  
Note 1: These registers are available in Mode 1 and 2 only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 303  
PIC18F6585/8585/6680/8680  
REGISTER 23-34: BnDLC: TX/RX BUFFER n DATA LENGTH CODE REGISTERS IN RECEIVE MODE  
[0 n 5, TXnEN (BSEL<n>) = 0](1)  
U-0  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
R-x  
RXRTR  
RB1  
RB0  
DLC3  
DLC2  
DLC1  
DLC0  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
RXRTR: Receiver Remote Transmission Request bit  
1= This is a remote transmission request  
0= This is not a remote transmission request  
bit 5  
RB1: Reserved bit 1  
Reserved by CAN Spec and read as ‘0’.  
RB0: Reserved bit 0  
bit 4  
Reserved by CAN Spec and read as ‘0’.  
DLC3:DLC0: Data Length Code bits  
bit 3-0  
1111= Reserved  
1110= Reserved  
1101= Reserved  
1100= Reserved  
1011= Reserved  
1010= Reserved  
1001= Reserved  
1000= Data length = 8 bytes  
0111= Data length = 7 bytes  
0110= Data length = 6 bytes  
0101= Data length = 5 bytes  
0100= Data length = 4 bytes  
0011= Data length = 3 bytes  
0010= Data length = 2 bytes  
0001= Data length = 1 bytes  
0000= Data length = 0 bytes  
Note 1: These registers are available in Mode 1 and 2 only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 304  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 23-35: BnDLC: TX/RX BUFFER n DATA LENGTH CODE REGISTERS IN TRANSMIT MODE  
[0 n 5, TXnEN (BSEL<n>) = 1](1)  
U-0  
R/W-x  
U-0  
U-0  
R/W-x  
DLC3  
R/W-x  
DLC2  
R/W-x  
DLC1  
R/W-x  
DLC0  
TXRTR  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
TXRTR: Transmitter Remote Transmission Request bit  
1= Transmitted message will have RTR bit set  
0= Transmitted message will have RTR bit cleared  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
DLC3:DLC0: Data Length Code bits  
1111-1001= Reserved  
1000= Data length = 8 bytes  
0111= Data length = 7 bytes  
0110= Data length = 6 bytes  
0101= Data length = 5 bytes  
0100= Data length = 4 bytes  
0011= Data length = 3 bytes  
0010= Data length = 2 bytes  
0001= Data length = 1 bytes  
0000= Data length = 0 bytes  
Note 1: These registers are available in Mode 1 and 2 only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 23-36: BSEL0: BUFFER SELECT REGISTER 0(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
B5TXEN  
B4TXEN  
B3TXEN B2TXEN B1TXEN B0TXEN  
bit 7  
bit 0  
bit 7-2  
bit 1-0  
B5TXEN:B0TXEN: Buffer 5 to Buffer 0 Transmit Enable bit  
1= Buffer is configured in Transmit mode  
0= Buffer is configured in Receive mode  
Unimplemented: Read as ‘0’  
Note 1: This register is available in Mode 1 and 2 only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 305  
PIC18F6585/8585/6680/8680  
23.2.3.2  
Message Acceptance Filters  
and Masks  
This subsection describes the message acceptance  
filters and masks for the CAN receive buffers.  
Note:  
These  
registers  
are  
writable  
in  
Configuration mode only.  
REGISTER 23-37: RXFnSIDH: RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER  
REGISTERS, HIGH BYTE [0 n 15](1)  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
SID10  
SID9  
SID8  
SID7  
bit 7  
bit 0  
bit 7-0  
SID10:SID3: Standard Identifier Filter bits, if EXIDEN = 0;  
Extended Identifier Filter bits EID28:EID21, if EXIDEN = 1.  
Note 1: Registers RXF6SIDH:RXF15SIDH are available in Mode 1 and 2 only.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
REGISTER 23-38: RXFnSIDL: RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER  
REGISTERS, LOW BYTE [0 n 15](1)  
R/W-x  
R/W-x  
R/W-x  
U-0  
R/W-x  
U-0  
R/W-x  
EID17  
R/W-x  
EID16  
SID2  
SID1  
SID0  
EXIDEN  
bit 7  
bit 0  
bit 7-5  
SID2:SID0: Standard Identifier Filter bits, if EXIDEN = 0;  
Extended Identifier Filter bits EID20:EID18, if EXIDEN = 1.  
Unimplemented: Read as ‘0’  
bit 4  
bit 3  
EXIDEN: Extended Identifier Filter Enable bit  
1= Filter will only accept extended ID messages  
0= Filter will only accept standard ID messages  
Note:  
In Mode 0, this bit must be set/cleared as required, irrespective of corresponding  
mask register value.  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
EID17:EID16: Extended Identifier Filter bits  
Note 1: Registers RXF6SIDL:RXF15SIDL are available in Mode 1 and 2 only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 306  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 23-39: RXFnEIDH: RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER  
REGISTERS, HIGH BYTE [0 n 15](1)  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
EID15  
EID14  
EID13  
EID12  
bit 7  
bit 0  
bit 7-0  
EID15:EID8: Extended Identifier Filter bits  
Note 1: Registers RXF6EIDH:RXF15EIDH are available in Mode 1 and 2 only.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
REGISTER 23-40: RXFnEIDL: RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER  
REGISTERS, LOW BYTE [0 n 15](1)  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
EID7  
EID6  
EID5  
EID4  
bit 7  
bit 0  
bit 7-0  
EID7:EID0: Extended Identifier Filter bits  
Note 1: Registers RXF6EIDL:RXF15EIDL are available in Mode 1 and 2 only.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
REGISTER 23-41: RXMnSIDH: RECEIVE ACCEPTANCE MASK n STANDARD IDENTIFIER MASK  
REGISTERS, HIGH BYTE [0 n 1]  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
SID10  
SID9  
SID8  
SID7  
bit 7  
bit 0  
bit 7-0  
SID10:SID3: Standard Identifier Mask bits, or Extended Identifier Mask bits EID28:EID21  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 307  
PIC18F6585/8585/6680/8680  
REGISTER 23-42: RXMnSIDL: RECEIVE ACCEPTANCE MASK n STANDARD IDENTIFIER MASK  
REGISTERS, LOW BYTE [0 n 1]  
R/W-x  
R/W-x  
R/W-x  
U-0  
R/W-0  
EXIDEN(1)  
U-0  
R/W-x  
EID17  
R/W-x  
EID16  
SID2  
SID1  
SID0  
bit 7  
bit 0  
bit 7-5  
bit 4  
SID2:SID0: Standard Identifier Mask bits, or Extended Identifier Mask bits EID20:EID18  
Unimplemented: Read as ‘0’  
Mode 0:  
bit 3  
Unimplemented: Read as ‘0’  
Mode 1, 2:  
EXIDEN: Extended Identifier Filter Enable Mask bit(1)  
1= Messages selected by EXIDEN bit in RXFnSIDL will be accepted  
0= Both standard and extended identifier messages will be accepted  
Note 1: This bit is available in Mode 1 and 2 only.  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
EID17:EID16: Extended Identifier Mask bits  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 23-43: RXMnEIDH: RECEIVE ACCEPTANCE MASK n EXTENDED IDENTIFIER MASK  
REGISTERS, HIGH BYTE [0 n 1]  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
EID15  
EID14  
EID13  
EID12  
bit 7  
bit 0  
bit 7-0  
EID15:EID8: Extended Identifier Mask bits  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 23-44: RXMnEIDL: RECEIVE ACCEPTANCE MASK n EXTENDED IDENTIFIER MASK  
REGISTERS, LOW BYTE [0 n 1]  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
EID7  
EID6  
EID5  
EID4  
bit 7  
bit 0  
bit 7-0  
EID7:EID0: Extended Identifier Mask bits  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 308  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 23-45: SDFLC: STANDARD DATA BYTES FILTER LENGTH COUNT REGISTER(1)  
U-0  
U-0  
U-0  
R/W-0  
FLC4  
R/W-0  
FLC3  
R/W-0  
FLC2  
R/W-0  
FLC1  
R/W-0  
FLC0  
bit 7  
bit 0  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
FLC4:FLC0: Filter Length Count bits  
Mode 0:  
Not used; forced to ‘00000’.  
Mode 1, 2:  
00000-10010 = 0  
18 bits are available for standard data byte filter. Actual number of bits  
used depends on DLC3:DLC0 bits (RXBnDLC<3:0> or BnDLC<3:0> if  
configured as RX buffer) of message being received.  
If DLC3:DLC0 = 0000No bits will be compared with incoming data bits  
If DLC3:DLC0 = 0001Up to 8 data bits of RXFnEID<7:0>, as determined by FLC2:FLC0, will  
be compared with the corresponding number of data bits of the  
incoming message  
If DLC3:DLC0 = 0010Up to 16 data bits of RXFnEID<15:0>, as determined by FLC3:FLC0,  
will be compared with the corresponding number of data bits of the  
incoming message  
If DLC3:DLC0 = 0011Up to 18 data bits of RXFnEID<17:0>, as determined by FLC4:FLC0,  
will be compared with the corresponding number of data bits of the  
incoming message  
Note 1: This register is available in Mode 1 and 2 only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 23-46: RXFCONn: RECEIVE FILTER CONTROL REGISTER n [0 n 1](1)  
R/W-0  
R/W-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
RXFCON0  
RXF7EN  
RXF6EN  
RXF5EN RXF4EN RXF3EN RXF2EN RXF1EN RXF0EN  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RXFCON1  
RXF15EN RXF14EN RXF13EN RXF12EN RXF11EN RXF10EN RXF9EN RXF8EN  
bit 7  
bit 0  
bit 7-0  
RXFnEN: Receive Filter n Enable bit  
0= Filter is disabled  
1= Filter is enabled  
Note 1: This register is available in Mode 1 and 2 only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 309  
PIC18F6585/8585/6680/8680  
REGISTER 23-47: RXFBCONn: RECEIVE FILTER BUFFER CONTROL REGISTER n(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RXFBCON0  
RXFBCON1  
RXFBCON2  
RXFBCON3  
RXFBCON4  
RXFBCON5  
RXFBCON6  
RXFBCON7  
F1BP_3  
F1BP_2  
F1BP_1 F1BP_0 F0BP_3 F0BP_2 F0BP_1 F0BP_0  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
F3BP_3  
F3BP_2  
F3BP_1 F3BP_0 F2BP_3 F2BP_2 F2BP_1 F2BP_0  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
F5BP_3  
F5BP_2  
F5BP_1 F5BP_0 F4BP_3 F4BP_2 F4BP_1 F4BP_0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F7BP_3  
F7BP_2  
F7BP_1 F7BP_0 F6BP_3 F6BP_2 F6BP_1 F6BP_0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F9BP_3  
F9BP_2  
F9BP_1 F9BP_0 F8BP_3 F8BP_2 F8BP_1 F8BP_0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F11BP_3  
F11BP_2 F11BP_1 F11BP_0 F10BP_3 F10BP_2 F10BP_1 F10BP_0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F13BP_3  
F13BP_2 F13BP_1 F13BP_0 F12BP_3 F12BP_2 F12BP_1 F12BP_0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
F15BP_3  
F15BP_2 F15BP_1 F15BP_0 F14BP_3 F14BP_2 F14BP_1 F14BP_0  
bit 0  
bit 7  
bit 7-0  
FnBP_3:FnBP_0: Filter n Buffer Pointer Nibble bits  
0000= Filter n is associated with RXB0  
0001= Filter n is associated with RXB1  
0010= Filter n is associated with B0  
0011= Filter n is associated with B1  
.
.
.
0111= Filter n is associated with B5  
1111:1000= Reserved  
Note 1: This register is available in Mode 1 and 2 only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 310  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 23-48: MSEL0: MASK SELECT REGISTER 0(1)  
R/W-0  
R/W-1  
R/W-0  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FIL3_1  
FIL3_0  
FIL2_1  
FIL2_0  
FIL1_1  
FIL1_0  
FIL0_1  
FIL0_0  
bit 7  
bit 0  
bit 7-6  
bit 5-4  
bit 3-2  
bit 1-0  
FIL3_1:FIL3_0: Filter 3 Select bits 1 and 0  
11= No mask  
10= Filter 15  
01= Acceptance Mask 1  
00= Acceptance Mask 0  
FIL2_1:FIL2_0: Filter 2 Select bits 1 and 0  
11= No mask  
10= Filter 15  
01= Acceptance Mask 1  
00= Acceptance Mask 0  
FIL1_1:FIL1_0: Filter 1 Select bits 1 and 0  
11= No mask  
10= Filter 15  
01= Acceptance Mask 1  
00= Acceptance Mask 0  
FIL0_1:FIL0_0: Filter 0 Select bits 1 and 0  
11= No mask  
10= Filter 15  
01= Acceptance Mask 1  
00= Acceptance Mask 0  
Note 1: This register is available in Mode 1 and 2 only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 311  
PIC18F6585/8585/6680/8680  
REGISTER 23-49: MSEL1: MASK SELECT REGISTER 1(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-1  
R/W-0  
R/W-1  
FIL7_1  
FIL7_0  
FIL6_1  
FIL6_0  
FIL5_1  
FIL5_0  
FIL4_1  
FIL4_0  
bit 7  
bit 0  
bit 7-6  
bit 5-4  
bit 3-2  
bit 1-0  
FIL7_1:FIL7_0: Filter 7 Select bits 1 and 0  
11= No mask  
10= Filter 15  
01= Acceptance Mask 1  
00= Acceptance Mask 0  
FIL6_1:FIL6_0: Filter 6 Select bits 1 and 0  
11= No mask  
10= Filter 15  
01= Acceptance Mask 1  
00= Acceptance Mask 0  
FIL5_1:FIL5_0: Filter 5 Select bits 1 and 0  
11= No mask  
10= Filter 15  
01= Acceptance Mask 1  
00= Acceptance Mask 0  
FIL4_1:FIL4_0: Filter 4 Select bits 1 and 0  
11= No mask  
10= Filter 15  
01= Acceptance Mask 1  
00= Acceptance Mask 0  
Note 1: This register is available in Mode 1 and 2 only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 312  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 23-50: MSEL2: MASK SELECT REGISTER 2(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FIL11_1  
FIL11_0  
FIL10_1 FIL10_0  
FIL9_1  
FIL9_0  
FIL8_1  
FIL8_0  
bit 7  
bit 0  
bit 7-6  
bit 5-4  
bit 3-2  
bit 1-0  
FIL11_1:FIL11_0: Filter 11 Select bits 1 and 0  
11= No mask  
10= Filter 15  
01= Acceptance Mask 1  
00= Acceptance Mask 0  
FIL10_1:FIL10_0: Filter 10 Select bits 1 and 0  
11= No mask  
10= Filter 15  
01= Acceptance Mask 1  
00= Acceptance Mask 0  
FIL9_1:FIL9_0: Filter 9 Select bits 1 and 0  
11= No mask  
10= Filter 15  
01= Acceptance Mask 1  
00= Acceptance Mask 0  
FIL8_1:FIL8_0: Filter 8 Select bits 1 and 0  
11= No mask  
10= Filter 15  
01= Acceptance Mask 1  
00= Acceptance Mask 0  
Note 1: This register is available in Mode 1 and 2 only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 313  
PIC18F6585/8585/6680/8680  
REGISTER 23-51: MSEL3: MASK SELECT REGISTER 3(1)  
R/W-0  
R/W-0  
R/W-0  
FIL14_1 FIL14_0 FIL13_1 FIL13_0 FIL12_1 FIL12_0  
bit 0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
FIL15_1  
FIL15_0  
bit 7  
bit 7-6  
bit 5-4  
bit 3-2  
bit 1-0  
FIL15_1:FIL15_0: Filter 15 Select bits 1 and 0  
11= No mask  
10= Filter 15  
01= Acceptance Mask 1  
00= Acceptance Mask 0  
FIL14_1:FIL14_0: Filter 14 Select bits 1 and 0  
11= No mask  
10= Filter 15  
01= Acceptance Mask 1  
00= Acceptance Mask 0  
FIL13_1:FIL13_0: Filter 13 Select bits 1 and 0  
11= No mask  
10= Filter 15  
01= Acceptance Mask 1  
00= Acceptance Mask 0  
FIL12_1:FIL12_0: Filter 12 Select bits 1 and 0  
11= No mask  
10= Filter 15  
01= Acceptance Mask 1  
00= Acceptance Mask 0  
Note 1: This register is available in Mode 1 and 2 only.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 314  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
23.2.4  
CAN BAUD RATE REGISTERS  
This subsection describes the CAN Baud Rate  
registers.  
Note:  
These  
registers  
are  
writable  
in  
Configuration mode only.  
REGISTER 23-52: BRGCON1: BAUD RATE CONTROL REGISTER 1  
R/W-0  
SJW1  
R/W-0  
SJW0  
R/W-0  
BRP5  
R/W-0  
BRP4  
R/W-0  
BRP3  
R/W-0  
BRP2  
R/W-0  
BRP1  
R/W-0  
BRP0  
bit 7  
bit 0  
bit 7-6  
bit 5-0  
SJW1:SJW0: Synchronized Jump Width bits  
11= Synchronization jump width time = 4 x TQ  
10= Synchronization jump width time = 3 x TQ  
01= Synchronization jump width time = 2 x TQ  
00= Synchronization jump width time = 1 x TQ  
BRP5:BRP0: Baud Rate Prescaler bits  
111111= TQ = (2 x 64)/FOSC  
111110= TQ = (2 x 63)/FOSC  
.
.
.
000001= TQ = (2 x 2)/FOSC  
000000= TQ = (2 x 1)/FOSC  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 315  
PIC18F6585/8585/6680/8680  
REGISTER 23-53: BRGCON2: BAUD RATE CONTROL REGISTER 2  
R/W-0  
SEG2PHTS  
bit 7  
R/W-0  
SAM  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SEG1PH2 SEG1PH1 SEG1PH0 PRSEG2 PRSEG1 PRSEG0  
bit 0  
bit 7  
SEG2PHTS: Phase Segment 2 Time Select bit  
1= Freely programmable  
0= Maximum of PHEG1 or Information Processing Time (IPT), whichever is greater  
bit 6  
SAM: Sample of the CAN bus Line bit  
1= Bus line is sampled three times prior to the sample point  
0= Bus line is sampled once at the sample point  
bit 5-3  
SEG1PH2:SEG1PH0: Phase Segment 1 bits  
111= Phase Segment 1 time = 8 x TQ  
110= Phase Segment 1 time = 7 x TQ  
101= Phase Segment 1 time = 6 x TQ  
100= Phase Segment 1 time = 5 x TQ  
011= Phase Segment 1 time = 4 x TQ  
010= Phase Segment 1 time = 3 x TQ  
001= Phase Segment 1 time = 2 x TQ  
000= Phase Segment 1 time = 1 x TQ  
bit 2-0  
PRSEG2:PRSEG0: Propagation Time Select bits  
111= Propagation time = 8 x TQ  
110= Propagation time = 7 x TQ  
101= Propagation time = 6 x TQ  
100= Propagation time = 5 x TQ  
011= Propagation time = 4 x TQ  
010= Propagation time = 3 x TQ  
001= Propagation time = 2 x TQ  
000= Propagation time = 1 x TQ  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 316  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 23-54: BRGCON3: BAUD RATE CONTROL REGISTER 3  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
WAKDIS WAKFIL  
bit 7  
SEG2PH2(1) SEG2PH1(1) SEG2PH0(1)  
bit 0  
bit 7  
bit 6  
WAKDIS: Wake-up Disable bit  
1= Disable CAN bus activity wake-up feature  
0= Enable CAN bus activity wake-up feature  
WAKFIL: Selects CAN bus Line Filter for Wake-up bit  
1= Use CAN bus line filter for wake-up  
0= CAN bus line filter is not used for wake-up  
bit 5-3  
bit 2-0  
Unimplemented: Read as ‘0’  
SEG2PH2:SEG2PH0: Phase Segment 2 Time Select bits(1)  
111= Phase Segment 2 time = 8 x TQ  
110= Phase Segment 2 time = 7 x TQ  
101= Phase Segment 2 time = 6 x TQ  
100= Phase Segment 2 time = 5 x TQ  
011= Phase Segment 2 time = 4 x TQ  
010= Phase Segment 2 time = 3 x TQ  
001= Phase Segment 2 time = 2 x TQ  
000= Phase Segment 2 time = 1 x TQ  
Note 1: Ignored if SEG2PHTS bit (BRGCON2<7>) is ‘0’.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 317  
PIC18F6585/8585/6680/8680  
23.2.5  
CAN MODULE I/O CONTROL  
REGISTER  
This register controls the operation of the CAN module’s  
I/O pins in relation to the rest of the microcontroller.  
REGISTER 23-55: CIOCON: CAN I/O CONTROL REGISTER  
R/W-0  
TX2SRC  
bit 7  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
TX2EN  
ENDRHI CANCAP  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-0  
TX2SRC: CANTX2 Pin Data Source bit  
1= CANTX2 pin will output the CAN clock  
0= CANTX2 pin will output CANTX1  
TX2EN: CANTX2 Pin Enable bit  
1= CANTX2 pin will output CANTX1 or CAN clock as selected by TX2SRC bit  
0= CANTX2 pin will have digital I/O function  
ENDRHI: Enable Drive High bit(1)  
1= CANTX pin will drive VDD when recessive  
0= CANTX pin will be tri-state when recessive  
CANCAP: CAN Message Receive Capture Enable bit  
1= Enable CAN capture, CAN message receive signal replaces input on RC2/CCP1  
0= Disable CAN capture, RC2/CCP1 input to CCP1 module  
Unimplemented: Read as ‘0’  
Note 1: Always set this bit when using differential bus to avoid signal crosstalk in CANTX  
from other nearby pins.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS30491C-page 318  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
23.2.6  
CAN INTERRUPT REGISTERS  
The registers in this section are the same as described  
in Section 9.0 “Interrupts”. They are duplicated here  
for convenience.  
REGISTER 23-56: PIR3: PERIPHERAL INTERRUPT FLAG REGISTER  
R/W-0  
IRXIF  
R/W-0  
R/W-0  
ERRIF  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WAKIF  
TXB2IF/ TXB1IF(1) TXB0IF(1) RXB1IF/  
RXB0IF/  
TXBnIF  
RXBnIF FIFOWMIF  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
IRXIF: CAN Invalid Received Message Interrupt Flag bit  
1= An invalid message has occurred on the CAN bus  
0= No invalid message on CAN bus  
WAKIF: CAN bus Activity Wake-up Interrupt Flag bit  
1= Activity on CAN bus has occurred  
0= No activity on CAN bus  
ERRIF: CAN bus Error Interrupt Flag bit  
1= An error has occurred in the CAN module (multiple sources)  
0= No CAN module errors  
When CAN is in Mode 0:  
TXB2IF: CAN Transmit Buffer 2 Interrupt Flag bit  
1= Transmit Buffer 2 has completed transmission of a message and may be reloaded  
0= Transmit Buffer 2 has not completed transmission of a message  
When CAN is in Mode 1 or 2:  
TXBnIF: Any Transmit Buffer Interrupt Flag bit  
1= One or more transmit buffers has completed transmission of a message and may be reloaded  
0= No transmit buffer is ready for reload  
bit 3  
bit 2  
bit 1  
TXB1IF: CAN Transmit Buffer 1 Interrupt Flag bit(1)  
1= Transmit Buffer 1 has completed transmission of a message and may be reloaded  
0= Transmit Buffer 1 has not completed transmission of a message  
TXB0IF: CAN Transmit Buffer 0 Interrupt Flag bit(1)  
1= Transmit Buffer 0 has completed transmission of a message and may be reloaded  
0= Transmit Buffer 0 has not completed transmission of a message  
When CAN is in Mode 0:  
RXB1IF: CAN Receive Buffer 1 Interrupt Flag bit  
1= Receive Buffer 1 has received a new message  
0= Receive Buffer 1 has not received a new message  
When CAN is in Mode 1 or 2:  
RXBnIF: Any Receive Buffer Interrupt Flag bit  
1= One or more receive buffers has received a new message  
0= No receive buffer has received a new message  
bit 0  
When CAN is in Mode 0:  
RXB0IF: CAN Receive Buffer 0 Interrupt Flag bit  
1= Receive Buffer 0 has received a new message  
0= Receive Buffer 0 has not received a new message  
When CAN is in Mode 1:  
Unimplemented: Read as ‘0’  
When CAN is in Mode 2:  
FIFOWMIF: FIFO Watermark Interrupt Flag bit  
1= FIFO high watermark is reached  
0= FIFO high watermark is not reached  
Note 1: In CAN Mode 1 and 2, this bit is forced to ‘0’.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 319  
PIC18F6585/8585/6680/8680  
REGISTER 23-57: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER  
R/W-0  
IRXIE  
R/W-0  
R/W-0  
ERRIE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WAKIE  
TXB2IE/ TXB1IE(1) TXB0IE(1) RXB1IE/  
RXB0IE/  
TXBnIE  
RXBnIE FIFOWMIE  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
IRXIE: CAN Invalid Received Message Interrupt Enable bit  
1= Enable invalid message received interrupt  
0= Disable invalid message received interrupt  
WAKIE: CAN bus Activity Wake-up Interrupt Enable bit  
1= Enable bus activity wake-up interrupt  
0= Disable bus activity wake-up interrupt  
ERRIE: CAN bus Error Interrupt Enable bit  
1= Enable CAN bus error interrupt  
0= Disable CAN bus error interrupt  
When CAN is in Mode 0:  
TXB2IE: CAN Transmit Buffer 2 Interrupt Enable bit  
1= Enable Transmit Buffer 2 interrupt  
0= Disable Transmit Buffer 2 interrupt  
When CAN is in Mode 1 or 2:  
TXBnIE: CAN Transmit Buffer Interrupts Enable bit  
1= Enable transmit buffer interrupt; individual interrupt is enabled by TXBIE and BIE0  
0= Disable all transmit buffer interrupts  
bit 3  
bit 2  
bit 1  
TXB1IE: CAN Transmit Buffer 1 Interrupt Enable bit(1)  
1= Enable Transmit Buffer 1 interrupt  
0= Disable Transmit Buffer 1 interrupt  
TXB0IE: CAN Transmit Buffer 0 Interrupt Enable bit(1)  
1= Enable Transmit Buffer 0 interrupt  
0= Disable Transmit Buffer 0 interrupt  
When CAN is in Mode 0:  
RXB1IE: CAN Receive Buffer 1 Interrupt Enable bit  
1= Enable Receive Buffer 1 interrupt  
0= Disable Receive Buffer 1 interrupt  
When CAN is in Mode 1 or 2:  
RXBnIE: CAN Receive Buffer Interrupts Enable bit  
1= Enable receive buffer interrupt; individual interrupt is enabled by BIE0  
0= Disable all receive buffer interrupts  
bit 0  
When CAN is in Mode 0:  
RXB0IE: CAN Receive Buffer 0 Interrupt Enable bit  
1= Enable Receive Buffer 0 interrupt  
0= Disable Receive Buffer 0 interrupt  
When CAN is in Mode 1:  
Unimplemented: Read as ‘0’  
When CAN is in Mode 2:  
FIFOWMIE: FIFO Watermark Interrupt Enable bit  
1= Enable FIFO watermark interrupt  
0= Disable FIFO watermark interrupt  
Note 1: In CAN Mode 1 and 2, this bit is forced to ‘0’.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 320  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 23-58: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER  
R/W-1  
IRXIP  
R/W-1  
R/W-1  
ERRIP  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
WAKIP  
TXB2IP/ TXB1IP(1) TXB0IP(1) RXB1IP/  
RXB0IP/  
TXBnIP  
RXBnIP FIFOWMIP  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
IRXIP: CAN Invalid Received Message Interrupt Priority bit  
1= High priority  
0= Low priority  
WAKIP: CAN bus Activity Wake-up Interrupt Priority bit  
1= High priority  
0= Low priority  
ERRIP: CAN bus Error Interrupt Priority bit  
1= High priority  
0= Low priority  
When CAN is in Mode 0:  
TXB2IP: CAN Transmit Buffer 2 Interrupt Priority bit  
1= High priority  
0= Low priority  
When CAN is in Mode 1 or 2:  
TXBnIP: CAN Transmit Buffer Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
bit 2  
bit 1  
TXB1IP: CAN Transmit Buffer 1 Interrupt Priority bit(1)  
1= High priority  
0= Low priority  
TXB0IP: CAN Transmit Buffer 0 Interrupt Priority bit(1)  
1= High priority  
0= Low priority  
When CAN is in Mode 0:  
RXB1IP: CAN Receive Buffer 1 Interrupt Priority bit  
1= High priority  
0= Low priority  
When CAN is in Mode 1 or 2:  
RXBnIP: CAN Receive Buffer Interrupts Priority bit  
1= High priority  
0= Low priority  
bit 0  
When CAN is in Mode 0:  
RXB0IP: CAN Receive Buffer 0 Interrupt Priority bit  
1= High priority  
0= Low priority  
When CAN is in Mode 1:  
Unimplemented: Read as ‘0’  
When CAN is in Mode 2:  
FIFOWMIP: FIFO Watermark Interrupt Priority bit  
1= High priority  
0= Low priority  
Note 1: In CAN Mode 1 and 2, this bit is forced to ‘0’.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR  
‘0’ = Bit is cleared  
x = Bit is unknown  
2004 Microchip Technology Inc.  
DS30491C-page 321  
PIC18F6585/8585/6680/8680  
REGISTER 23-59: TXBIE: TRANSMIT BUFFERS INTERRUPT ENABLE REGISTER(1)  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
TXB2IE  
TXB1IE  
TXB0IE  
bit 7  
bit 0  
bit 7-5  
bit 4-2  
Unimplemented: Read as ‘0’  
TX2BIE:TXB0IE: Transmit Buffer 2-0 Interrupt Enable bit(2)  
1= Transmit buffer interrupt is enabled  
0= Transmit buffer interrupt is disabled  
bit 1-0  
Unimplemented: Read as ‘0’  
Note 1: This register is available in Mode 1 and 2 only.  
2: TXBIE in PIE3 register must be set to get an interrupt.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
REGISTER 23-60: BIE0: BUFFER INTERRUPT ENABLE REGISTER 0(1)  
R/W-0  
B5IE  
R/W-0  
B4IE  
R/W-0  
B3IE  
R/W-0  
B2IE  
R/W-0  
B1IE  
R/W-0  
B0IE  
R/W-0  
R/W-0  
RXB1IE  
RXB0IE  
bit 7  
bit 0  
bit 7-2  
bit 1-0  
B5IE:B0IE: Programmable Transmit/Receive Buffer 5-0 Interrupt Enable bit(2)  
1= Interrupt is enabled  
0= Interrupt is disabled  
RXB1IE:RXB0IE: Dedicated Receive Buffer 1-0 Interrupt Enable bit(2)  
1= Interrupt is enabled  
0= Interrupt is disabled  
Note 1: This register is available in Mode 1 and 2 only.  
2: Either TXBIE or RXBIE in PIE3 register must be set to get an interrupt.  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30491C-page 322  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 23-1: CAN CONTROLLER REGISTER MAP  
Address(1)  
F7Fh  
F7Eh  
F7Dh  
F7Ch  
F7Bh  
F7Ah  
F79h  
F78h  
F77h  
F76h  
F75h  
F74h  
F73h  
F72h  
F71h  
F70h  
F6Fh  
Name  
Address  
Name  
Address  
Name  
Address  
Name  
SPBRGH(3)  
BAUDCON(3)  
F5Fh CANCON_RO0  
F5Eh CANSTAT_RO0  
F3Fh CANCON_RO2  
F3Eh CANSTAT_RO2  
F1Fh RXM1EIDL  
F1Eh RXM1EIDH  
F1Dh RXM1SIDL  
F1Ch RXM1SIDH  
F1Bh RXM0EIDL  
F1Ah RXM0EIDH  
F19h RXM0SIDL  
F18h RXM0SIDH  
F17h RXF5EIDL  
F16h RXF5EIDH  
F15h RXF5SIDL  
F14h RXF5SIDH  
F13h RXF4EIDL  
F12h RXF4EIDH  
F11h RXF4SIDL  
F10h RXF4SIDH  
F0Fh RXF3EIDL  
(4)  
F5Dh  
F5Ch  
F5Bh  
F5Ah  
F59h  
F58h  
F57h  
F56h  
F55h  
F54h  
F53h  
F52h  
F51h  
F50h  
F4Fh  
RXB1D7  
RXB1D6  
F3Dh  
F3Ch  
F3Bh  
F3Ah  
F39h  
F38h  
F37h  
F36h  
F35h  
F34h  
F33h  
F32h  
F31h  
F30h  
F2Fh  
TXB1D7  
TXB1D6  
(4)  
(4)  
RXB1D5  
TXB1D5  
(4)  
RXB1D4  
TXB1D4  
ECCP1DEL(3)  
RXB1D3  
TXB1D3  
(4)  
RXB1D2  
TXB1D2  
ECANCON  
TXERRCNT  
RXERRCNT  
COMSTAT  
CIOCON  
RXB1D1  
TXB1D1  
RXB1D0  
TXB1D0  
RXB1DLC  
RXB1EIDL  
RXB1EIDH  
RXB1SIDL  
RXB1SIDH  
RXB1CON  
TXB1DLC  
TXB1EIDL  
TXB1EIDH  
TXB1SIDL  
TXB1SIDH  
TXB1CON  
BRGCON3  
BRGCON2  
BRGCON1  
CANCON  
CANCON_RO1(2)  
CANCON_RO3(2)  
CANSTAT_RO1(2)  
TXB0D7  
CANSTAT_RO3(2)  
TXB2D7  
F6Eh  
CANSTAT  
F4Eh  
F2Eh  
F0Eh RXF3EIDH  
F6Dh  
F6Ch  
F6Bh  
F6Ah  
F69h  
F68h  
F67h  
F66h  
F65h  
F64h  
F63h  
F62h  
F61h  
F60h  
RXB0D7  
RXB0D6  
F4Dh  
F4Ch  
F4Bh  
F4Ah  
F49h  
F48h  
F47h  
F46h  
F45h  
F44h  
F43h  
F42h  
F41h  
F40h  
F2Dh  
F2Ch  
F2Bh  
F2Ah  
F29h  
F28h  
F27h  
F26h  
F25h  
F24h  
F23h  
F22h  
F21h  
F20h  
F0Dh RXF3SIDL  
F0Ch RXF3SIDH  
F0Bh RXF2EIDL  
F0Ah RXF2EIDH  
F09h RXF2SIDL  
F08h RXF2SIDH  
F07h RXF1EIDL  
F06h RXF1EIDH  
F05h RXF1SIDL  
F04h RXF1SIDH  
F03h RXF0EIDL  
F02h RXF0EIDH  
F01h RXF0SIDL  
F00h RXF0SIDH  
TXB0D6  
TXB2D6  
RXB0D5  
TXB0D5  
TXB2D5  
RXB0D4  
TXB0D4  
TXB2D4  
RXB0D3  
TXB0D3  
TXB2D3  
RXB0D2  
TXB0D2  
TXB2D2  
RXB0D1  
TXB0D1  
TXB2D1  
RXB0D0  
TXB0D0  
TXB2D0  
RXB0DLC  
RXB0EIDL  
RXB0EIDH  
RXB0SIDL  
RXB0SIDH  
RXB0CON  
TXB0DLC  
TXB0EIDL  
TXB0EIDH  
TXB0SIDL  
TXB0SIDH  
TXB0CON  
TXB2DLC  
TXB2EIDL  
TXB2EIDH  
TXB2SIDL  
TXB2SIDH  
TXB2CON  
Note 1: Shaded registers are available in Access Bank low area while the rest are available in Bank 15.  
2: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for  
each instance of the controller register due to the Microchip header file requirement.  
3: These registers are not CAN registers.  
4: Unimplemented registers are read as ‘0’.  
2004 Microchip Technology Inc.  
DS30491C-page 323  
PIC18F6585/8585/6680/8680  
TABLE 23-1: CAN CONTROLLER REGISTER MAP (CONTINUED)  
Address(1)  
EFFh  
EFEh  
EFDh  
EFCh  
EFBh  
EFAh  
EF9h  
EF8h  
EF7h  
EF6h  
EF5h  
EF4h  
EF3h  
EF2h  
EF1h  
EF0h  
EEFh  
EEEh  
EEDh  
EECh  
EEBh  
EEAh  
EE9h  
EE8h  
EE7h  
EE6h  
EE5h  
EE4h  
EE3h  
EE2h  
EE1h  
EE0h  
Name  
Address  
EDFh  
EDEh  
EDDh  
EDCh  
EDBh  
EDAh  
ED9h  
ED8h  
ED7h  
ED6h  
ED5h  
ED4h  
ED3h  
ED2h  
ED1h  
ED0h  
ECFh  
ECEh  
ECDh  
ECCh  
ECBh  
ECAh  
EC9h  
EC8h  
EC7h  
EC6h  
EC5h  
EC4h  
EC3h  
EC2h  
EC1h  
EC0h  
Name  
Address  
EBFh  
EBEh  
EBDh  
EBCh  
EBBh  
EBAh  
EB9h  
EB8h  
EB7h  
EB6h  
EB5h  
EB4h  
EB3h  
EB2h  
EB1h  
EB0h  
EAFh  
EAEh  
EADh  
EACh  
EABh  
EAAh  
EA9h  
EA8h  
EA7h  
EA6h  
EA5h  
EA4h  
EA3h  
EA2h  
EA1h  
EA0h  
Name  
Address  
E9Fh  
E9Eh  
E9Dh  
E9Ch  
E9Bh  
E9Ah  
E99h  
E98h  
E97h  
E96h  
E95h  
E94h  
E93h  
E92h  
E91h  
E90h  
E8Fh  
E8Eh  
E8Dh  
E8Ch  
E8Bh  
E8Ah  
E89h  
E88h  
E87h  
E86h  
E85h  
E84h  
E83h  
E82h  
E81h  
E80h  
Name  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
Note 1: Shaded registers are available in Access Bank low area while the rest are available in Bank 15.  
2: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for  
each instance of the controller register due to the Microchip header file requirement.  
3: These registers are not CAN registers.  
4: Unimplemented registers are read as ‘0’.  
DS30491C-page 324  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 23-1: CAN CONTROLLER REGISTER MAP (CONTINUED)  
Address(1)  
Name Address Name Address  
Name  
Address  
E1Fh  
E1Eh  
E1Dh  
E1Ch  
E1Bh  
E1Ah  
E19h  
E18h  
E17h  
E16h  
E15h  
E14h  
E13h  
E12h  
E11h  
E10h  
E0Fh  
E0Eh  
E0Dh  
E0Ch  
E0Bh  
E0Ah  
E09h  
E08h  
E07h  
E06h  
E05h  
E04h  
E03h  
E02h  
E01h  
E00h  
Name  
E7Fh CANCON_RO4(2)  
E7Eh CANSTAT_RO4(2)  
E5Fh CANCON_RO6(2)  
E5Eh CANSTAT_RO6(2)  
E3Fh CANCON_RO8(2)  
E3Eh CANSTAT_RO8(2)  
(4)  
(4)  
(4)  
E7Dh  
E7Ch  
E7Bh  
E7Ah  
E79h  
E78h  
E77h  
E76h  
E75h  
E74h  
E73h  
E72h  
E71h  
E70h  
B5D7  
B5D6  
E5Dh  
E5Ch  
E5Bh  
E5Ah  
E59h  
E58h  
E57h  
E56h  
E55h  
E54h  
E53h  
E52h  
E51h  
E50h  
B3D7  
B3D6  
E3Dh  
E3Ch  
E3Bh  
E3Ah  
E39h  
E38h  
E37h  
E36h  
E35h  
E34h  
E33h  
E32h  
E31h  
E30h  
B1D7  
B1D6  
(4)  
(4)  
B5D5  
B3D5  
B1D5  
(4)  
B5D4  
B3D4  
B1D4  
(4)  
B5D3  
B3D3  
B1D3  
(4)  
B5D2  
B3D2  
B1D2  
(4)  
B5D1  
B3D1  
B1D1  
(4)  
B5D0  
B3D0  
B1D0  
(4)  
B5DLC  
B5EIDL  
B5EIDH  
B5SIDL  
B5SIDH  
B5CON  
B3DLC  
B3EIDL  
B3EIDH  
B3SIDL  
B3SIDH  
B3CON  
B1DLC  
B1EIDL  
B1EIDH  
B1SIDL  
B1SIDH  
B1CON  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
E6Fh CANCON_RO5  
E6Eh CANSTAT_RO5  
E4Fh CANCON_RO7  
E4Eh CANSTAT_RO7  
E2Fh CANCON_RO9  
E2Eh CANSTAT_RO9  
(4)  
(4)  
E6Dh  
E6Ch  
E6Bh  
E6Ah  
E69h  
E68h  
E67h  
E66h  
E65h  
E64h  
E63h  
E62h  
E61h  
E60h  
B4D7  
B4D6  
E4Dh  
E4Ch  
E4Bh  
E4Ah  
E49h  
E48h  
E47h  
E46h  
E45h  
E44h  
E43h  
E42h  
E41h  
E40h  
B2D7  
B2D6  
E2Dh  
E2Ch  
E2Bh  
E2Ah  
E29h  
E28h  
E27h  
E26h  
E25h  
E24h  
E23h  
E22h  
E21h  
E20h  
B0D7  
B0D6  
(4)  
(4)  
B4D5  
B2D5  
B0D5  
(4)  
B4D4  
B2D4  
B0D4  
(4)  
B4D3  
B2D3  
B0D3  
(4)  
B4D2  
B2D2  
B0D2  
(4)  
B4D1  
B2D1  
B0D1  
(4)  
B4D0  
B2D0  
B0D0  
(4)  
B4DLC  
B4EIDL  
B4EIDH  
B4SIDL  
B4SIDH  
B4CON  
B2DLC  
B2EIDL  
B2EIDH  
B2SIDL  
B2SIDH  
B2CON  
B0DLC  
B0EIDL  
B0EIDH  
B0SIDL  
B0SIDH  
B0CON  
(4)  
(4)  
(4)  
(4)  
(4)  
Note 1: Shaded registers are available in Access Bank low area while the rest are available in Bank 15.  
2: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for  
each instance of the controller register due to the Microchip header file requirement.  
3: These registers are not CAN registers.  
4: Unimplemented registers are read as ‘0’.  
2004 Microchip Technology Inc.  
DS30491C-page 325  
PIC18F6585/8585/6680/8680  
TABLE 23-1: CAN CONTROLLER REGISTER MAP (CONTINUED)  
Address(1)  
DFFh  
DFEh  
DFDh  
DFCh  
DFBh  
DFAh  
DF9h  
DF8h  
DF7h  
DF6h  
DF5h  
DF4h  
DF3h  
DF2h  
DF1h  
DF0h  
DEFh  
DEEh  
DEDh  
DECh  
DEBh  
DEAh  
DE9h  
DE8h  
DE7h  
DE6h  
DE5h  
DE4h  
DE3h  
DE2h  
DE1h  
DE0h  
Name  
Address  
DDFh  
DDEh  
DDDh  
DDCh  
DDBh  
DDAh  
DD9h  
DD8h  
DD7h  
DD6h  
DD5h  
DD4h  
DD3h  
DD2h  
DD1h  
DD0h  
DCFh  
DCEh  
DCDh  
DCCh  
DCBh  
DCAh  
DC9h  
DC8h  
DC7h  
DC6h  
DC5h  
DC4h  
DC3h  
DC2h  
DC1h  
DC0h  
Name  
Address  
DBFh  
DBEh  
DBDh  
DBCh  
DBBh  
DBAh  
DB9h  
DB8h  
DB7h  
DB6h  
DB5h  
DB4h  
DB3h  
DB2h  
DB1h  
DB0h  
DAFh  
DAEh  
DADh  
DACh  
DABh  
DAAh  
DA9h  
DA8h  
DA7h  
DA6h  
DA5h  
DA4h  
DA3h  
DA2h  
DA1h  
DA0h  
Name  
Address  
D9Fh  
D9Eh  
D9Dh  
D9Ch  
D9Bh  
D9Ah  
D99h  
D98h  
D97h  
D96h  
D95h  
D94h  
Name  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
TXBIE  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
BIE0  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
BSEL0  
SDFLC  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
RXFCON1  
RXFCON0  
(4)  
(4)  
(4)  
(4)  
(4)  
MSEL3  
MSEL2  
MSEL1  
MSEL0  
D93h RXF15EIDL  
D92h RXF15EIDH  
D91h RXF15SIDL  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
D90h RXF15SIDH  
(4)  
(4)  
(4)  
(4)  
D8Fh  
D8Eh  
D8Dh  
D8Ch  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
D8Bh RXF14EIDL  
D8Ah RXF14EIDH  
D89h RXF14SIDL  
D88h RXF14SIDH  
D87h RXF13EIDL  
D86h RXF13EIDH  
D85h RXF13SIDL  
D84h RXF13SIDH  
D83h RXF12EIDL  
D82h RXF12EIDH  
D81h RXF12SIDL  
D80h RXF12SIDH  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
RXFBCON7  
RXFBCON6  
RXFBCON5  
RXFBCON4  
RXFBCON3  
RXFBCON2  
RXFBCON1  
RXFBCON0  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
(4)  
Note 1: Shaded registers are available in Access Bank low area while the rest are available in Bank 15.  
2: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given for  
each instance of the controller register due to the Microchip header file requirement.  
3: These registers are not CAN registers.  
4: Unimplemented registers are read as ‘0’.  
DS30491C-page 326  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 23-1: CAN CONTROLLER REGISTER MAP (CONTINUED)  
Address(1)  
Name  
(4)  
D7Fh  
D7Eh  
D7Dh  
D7Ch  
D7Bh  
D7Ah  
D79h  
D78h  
D77h  
D76h  
D75h  
D74h  
D73h  
D72h  
D71h  
D70h  
D6Fh  
D6Eh  
D6Dh  
D6Ch  
D6Bh  
D6Ah  
D69h  
D68h  
D67h  
D66h  
D65h  
D64h  
D63h  
D62h  
D61h  
D60h  
(4)  
(4)  
(4)  
RXF11EIDL  
RXF11EIDH  
RXF11SIDL  
RXF11SIDH  
RXF10EIDL  
RXF10EIDH  
RXF10SIDL  
RXF10SIDH  
RXF9EIDL  
RXF9EIDH  
RXF9SIDL  
RXF9SIDH  
(4)  
(4)  
(4)  
(4)  
RXF8EIDL  
RXF8EIDH  
RXF8SIDL  
RXF8SIDH  
RXF7EIDL  
RXF7EIDH  
RXF7SIDL  
RXF7SIDH  
RXF6EIDL  
RXF6EIDH  
RXF6SIDL  
RXF6SIDH  
Note 1: Shaded registers are available in Access Bank low area while the rest are available in Bank 15.  
2: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given  
for each instance of the controller register due to the Microchip header file requirement.  
3: These registers are not CAN registers.  
4: Unimplemented registers are read as ‘0’.  
2004 Microchip Technology Inc.  
DS30491C-page 327  
PIC18F6585/8585/6680/8680  
In the Configuration mode, the module will not transmit  
23.3 CAN Modes of Operation  
or receive. The error counters are cleared and the inter-  
rupt flags remain unchanged. The programmer will  
have access to configuration registers that are access  
restricted in other modes.  
The PIC18F6585/8585/6680/8680 has six main modes  
of operation:  
• Configuration mode  
• Disable mode  
23.3.2  
DISABLE MODE  
• Normal Operation mode  
• Listen Only mode  
• Loopback mode  
In Disable mode, the module will not transmit or  
receive. The module has the ability to set the WAKIF bit  
due to bus activity; however, any pending interrupts will  
remain and the error counters will retain their value.  
• Error Recognition mode  
All modes, except Error Recognition, are requested by  
setting the REQOP bits (CANCON<7:5>); Error Recog-  
nition is requested through the RXM bits of the Receive  
Buffer register(s). Entry into a mode is Acknowledged  
by monitoring the OPMODE bits.  
If REQOP<2:0> is set to ‘001’, the module will enter the  
Module Disable mode. This mode is similar to disabling  
other peripheral modules by turning off the module  
enables. This causes the module internal clock to stop  
unless the module is active (i.e., receiving or transmit-  
ting a message). If the module is active, the module will  
wait for 11 recessive bits on the CAN bus, detect that  
condition as an Idle bus, then accept the module  
disable command. OPMODE<2:0> = 001 indicates  
whether the module successfully went into Module  
Disable mode.  
When changing modes, the mode will not actually  
change until all pending message transmissions are  
complete. Because of this, the user must verify that the  
device has actually changed into the requested mode  
before further operations are executed.  
23.3.1  
CONFIGURATION MODE  
The WAKIE interrupt is the only module interrupt that is  
still active in the Module Disable mode. If wake-up from  
CAN bus activity is required, the CAN module must be  
put into Disable mode before putting the core to Sleep.  
If the WAKDIS is cleared and WAKIE is set, the proces-  
sor will receive an interrupt whenever the module  
detects recessive to dominant transition. On wake-up,  
the module will automatically be set to the previous  
mode of operation. For example, if the module was  
switched from Normal to Disable mode on bus activity  
wake-up, the module will automatically enter into  
Normal mode and the first message that caused the  
module to wake-up is lost. The module will not gener-  
ate any error frame. Firmware logic must detect this  
condition and make sure that retransmission is  
requested. If the processor receives a wake-up inter-  
rupt while it is sleeping, more than one message may  
get lost. The actual number of messages lost would  
depend on the processor oscillator start-up time and  
incoming message bit rate.  
The CAN module must be initialized before the  
activation. This is only possible if the module is in the  
Configuration mode. The Configuration mode is  
requested by setting the REQOP2 bit. Only when the  
status bit, OPMODE2, has a high level can the initial-  
ization be performed. Once in Configuration mode,  
registers such as baud rate control, acceptance mask/  
filter and ECAN mode selection can be modified. A new  
ECAN mode selection does not take into effect until  
Configuration mode is exited. The module is activated  
by setting the REQOP control bits to zero.  
The module will protect the user from accidentally  
violating the CAN protocol through programming  
errors. All registers which control the configuration of  
the module can not be modified while the module is  
online. The CAN module will not be allowed to enter the  
Configuration mode while a transmission or reception  
is taking place. The CAN module will also not be  
allowed, if the CANRX pin is low (i.e., the CAN bus is  
busy). The CAN module waits for 11 recessive bits on  
the CAN bus (bus Idle condition) before switching to  
Configuration mode. The Configuration mode serves  
as a lock to protect the following registers:  
The I/O pins will revert to normal I/O function when the  
module is in the Module Disable mode.  
Note:  
CAN module must be put in Disable or  
Configuration mode prior to putting the  
processor to sleep. Failure to do that may  
put the CAN module in indeterminate  
state.  
• Configuration registers  
• Functional Mode Selection registers  
• Bit Timing registers  
• Identifier Acceptance Filter registers  
• Identifier Acceptance Mask registers  
• Filter and Mask Control registers  
• Mask Selection registers  
DS30491C-page 328  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
23.3.3  
NORMAL MODE  
23.3.6  
ERROR RECOGNITION MODE  
This is the standard operating mode of the  
PIC18F6585/8585/6680/8680 devices. In this mode,  
the device actively monitors all bus messages and gen-  
erates Acknowledge bits, error frames, etc. This is also  
the only mode in which the PIC18F6585/8585/6680/  
8680 devices will transmit messages over the CAN  
bus.  
The module can be set to ignore all errors and receive  
any message. In functional Mode 0, the Error Recogni-  
tion mode is activated by setting the RXM<1:0> bits in  
the RXBnCON registers to ‘11’. In this mode, the data  
which is in the message assembly buffer until the error  
time, is copied in the receive buffer and can be read via  
the CPU interface.  
23.3.4  
LISTEN ONLY MODE  
23.4 CAN Module Functional Modes  
Listen Only mode provides  
a
means for the  
In addition to CAN modes of operation, the ECAN  
module offers a total of three functional modes. Each of  
these modes are identified as Mode 0, Mode 1 and  
Mode 2.  
PIC18F6585/8585/6680/8680 devices to receive all  
messages, including messages with errors. This mode  
can be used for bus monitor applications or for  
detecting the baud rate in ‘hot plugging’ situations. For  
auto-baud detection, it is necessary that there are at  
least two other nodes which are communicating with  
each other. The baud rate can be detected empirically  
by testing different values until valid messages are  
received. The Listen Only mode is a silent mode,  
meaning no messages will be transmitted while in this  
state, including error flags or Acknowledge signals. The  
filters and masks can be used to allow only particular  
messages to be loaded into the receive registers, or the  
filter masks can be set to all zeros to allow a message  
with any identifier to pass. The error counters are reset  
and deactivated in this state. The Listen Only mode is  
activated by setting the mode request bits in the  
CANCON register.  
23.4.1  
MODE 0 – LEGACY MODE  
Mode 0 is designed to be fully compatible with CAN  
modules used in PIC18CXX8 and PIC18FXX8 devices.  
This is the default mode of operation on all Reset  
conditions. As a result, module code written for the  
PIC18XX8 CAN module may be used on the ECAN  
module without any code changes.  
The following is the list of resources available in Mode 0:  
• Three transmit buffers: TXB0, TXB1 and TXB2  
• Two receive buffers: RXB0 and RXB1  
• Two acceptance masks, one for each receive  
buffer: RXM0, RXM1  
• Six acceptance filters, 2 for RXB0 and 4 for RXB1:  
RXF0, RXF1, RXF2, RXF3, RXF4, RXF5  
23.3.5  
LOOPBACK MODE  
This mode will allow internal transmission of messages  
from the transmit buffers to the receive buffers without  
actually transmitting messages on the CAN bus. This  
mode can be used in system development and testing.  
In this mode, the ACK bit is ignored and the device will  
allow incoming messages from itself, just as if they  
were coming from another node. The Loopback mode  
is a silent mode, meaning no messages will be trans-  
mitted while in this state, including error flags or  
Acknowledge signals. The CANTX pin will revert to port  
I/O while the device is in this mode. The filters and  
masks can be used to allow only particular messages  
to be loaded into the receive registers. The masks can  
be set to all zeros to provide a mode that accepts all  
messages. The Loopback mode is activated by setting  
the mode request bits in the CANCON register.  
23.4.2  
MODE 1 – ENHANCED LEGACY  
MODE  
Mode 1 is similar to Mode 0, with the exception that  
more resources are available in Mode 1. There are  
16 acceptance filters and two Acceptance Mask regis-  
ters. Acceptance Filter 15 can be used as either an  
acceptance filter or an Acceptance Mask register. In  
addition to three transmit and two receive buffers, there  
are six more message buffers. One or more of these  
additional buffers can be programmed as transmit or  
receive buffers. These additional buffers can also be  
programmed to automatically handle RTR messages.  
Fourteen of 16 Acceptance Filter registers can be  
dynamically associated to any receive buffer and  
Acceptance Mask register. This capability can be used  
to associate more than one filter to any one buffer.  
2004 Microchip Technology Inc.  
DS30491C-page 329  
PIC18F6585/8585/6680/8680  
When a receive buffer is programmed to use standard  
23.5 CAN Message Buffers  
identifier messages, part of the full Acceptance Filter  
register can be used as data byte filter. The length of  
data byte filter is programmable from 0 to 18 bits. This  
functionality simplifies implementation of high-level  
protocols, such as DeviceNet.  
23.5.1 DEDICATED TRANSMIT BUFFERS  
The PIC18F6585/8585/6680/8680 devices implement  
three dedicated transmit buffers – TXB0, TXB1 and  
TXB2. Each of these buffers occupies 14 bytes of  
SRAM and are mapped into the SFR memory map.  
These are the only transmit buffers available in  
Mode 0. Mode 1 and 2 may access these and other  
additional buffers.  
The following is the list of resources available in Mode 1:  
• Three transmit buffers: TXB0, TXB1 and TXB2  
• Two receive buffers: RXB0 and RXB1  
• Six buffers programmable as TX or RX: B0-B5  
• Automatic RTR handling on B0-B5  
Each transmit buffer contains one Control register  
(TXBnCON), four Identifier registers (TXBnSIDL,  
TXBnSIDH, TXBnEIDL, TXBnEIDH), one Data Length  
Count register (TXBnDLC) and eight Data Byte  
registers (TXBnDm).  
• Sixteen dynamically assigned acceptance filters:  
RXF0-RXF15  
• Two dedicated Acceptance Mask registers;  
RXF15 programmable as third mask:  
RXM0-RXM1, RXF15  
23.5.2  
DEDICATED RECEIVE BUFFERS  
• Programmable data filter on standard identifier  
messages: SDFLC  
The PIC18F6585/8585/6680/8680 devices implement  
two dedicated receive buffers – RXB0 and RXB1. Each  
of these buffers occupies 14 bytes of SRAM and are  
mapped into SFR memory map. These are the only  
receive buffers available in Mode 0. Mode 1 and 2 may  
access these and other additional buffers.  
23.4.3  
MODE 2 – ENHANCED FIFO MODE  
In Mode 2, two or more receive buffers are used to form  
the receive FIFO (First In First Out) buffer. There is no  
one-to-one relation between the receive buffer and  
Acceptance Filter registers. Any filter that is enabled  
and linked to any FIFO receive buffer can generate  
acceptance and cause FIFO to be updated.  
Each receive buffer contains one Control register  
(RXBnCON), four Identifier registers (RXBnSIDL,  
RXBnSIDH, RXBnEIDL, RXBnEIDH), one Data Length  
Count register (RXBnDLC) and eight Data Byte  
registers (RXBnDm).  
FIFO length is user programmable, from 2-8 buffers  
deep. FIFO length is determined by the very first  
programmable buffer that is configured as a transmit  
buffer. For example, if Buffer 2 (B2) is programmed as  
a transmit buffer, FIFO consists of RXB0, RXB1, B0  
and B1 – creating a FIFO length of 4. If all programma-  
ble buffers are configured as receive buffers, FIFO will  
have the maximum length of 8.  
There is also a separate Message Assembly Buffer  
(MAB) which acts as an additional receive buffer. MAB  
is always committed to receiving the next message  
from the bus and is not directly accessible to user firm-  
ware. The MAB assembles all incoming messages one  
by one. A message is transferred to appropriate  
receive buffers only if the corresponding acceptance  
filter criteria is met.  
The following is the list of resources available in Mode 2:  
• Three transmit buffers: TXB0, TXB1 and TXB2  
• Two receive buffers: RXB0 and RXB1  
• Six buffers programmable as TX or RX; receive  
buffers form FIFO: B0-B5  
• Automatic RTR handling on B0-B5  
• Sixteen acceptance filters: RXF0-RXF15  
• Two dedicated Acceptance Mask registers;  
RXF15 programmable as third mask:  
RXM0-RXM1, RXF15  
• Programmable data filter on standard identifier  
messages: SDFLC, useful for DeviceNet protocol  
DS30491C-page 330  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
The following outlines the steps required to  
automatically handle RTR messages:  
23.5.3  
PROGRAMMABLE TRANSMIT/  
RECEIVE BUFFERS  
1. Set buffer to Transmit mode by setting TXnEN  
The ECAN module implements six new buffers: B0-B5.  
These buffers are individually programmable as either  
transmit or receive buffers. These buffers are available  
only in Mode 1 and 2. As with dedicated transmit and  
receive buffers, each of these programmable buffers  
occupies 14 bytes of SRAM and are mapped into SFR  
memory map.  
bit to ‘1’ in BSEL0 register.  
2. At least one acceptance filter must be associ-  
ated with this buffer and preloaded with  
expected RTR identifier.  
3. Bit RTREN in BnCON register must be set to ‘1’.  
4. Buffer must be preloaded with the data to be  
sent as a RTR response.  
Each buffer contains one Control register (BnCON),  
four Identifier registers (BnSIDL, BnSIDH, BnEIDL,  
BnEIDH), one Data Length Count register (BnDLC)  
and eight Data Byte registers (BnDm). Each of these  
registers contains two sets of control bits. Depending  
on whether the buffer is configured as transmit or  
receive, one would use the corresponding control bit  
set. By default, all buffers are configured as receive  
buffers. Each buffer can be individually configured as  
transmit or receive buffers by setting the corresponding  
TXENn bit in the BSEL0 register.  
Normally, user firmware will keep Buffer Data registers  
up to date. If firmware attempts to update buffer while  
an automatic RTR response is in process of  
transmission, all writes to buffers are ignored.  
23.6 CAN Message Transmission  
23.6.1  
INITIATING TRANSMISSION  
For the MCU to have write access to the message  
buffer, the TXREQ bit must be clear, indicating that the  
message buffer is clear of any pending message to be  
transmitted. At a minimum, the SIDH, SIDL, and DLC  
registers must be loaded. If data bytes are present in  
the message, the data registers must also be loaded. If  
the message is to use extended identifiers, the  
EIDH:EIDL registers must also be loaded and the  
EXIDE bit set.  
When configured as transmit buffers, user firmware  
may access transmit buffers in any order similar to  
accessing dedicated transmit buffers. In receive config-  
uration, with Mode 1 enabled, user firmware may also  
access receive buffers in any order required. But in  
Mode 2, all receive buffers are combined to form a sin-  
gle FIFO. Actual FIFO length is programmable by user  
firmware. Access to FIFO must be done through the  
FIFO pointer bits (FP<4:0>) in the CANCON register. It  
must be noted that there is no hardware protection  
against out of order FIFO reads.  
To initiate message transmission, the TXREQ bit must  
be set for each buffer to be transmitted. When TXREQ  
is set, the TXABT, TXLARB and TXERR bits will be  
cleared. To successfully complete the transmission,  
there must be at least one node with matching baud  
rate on the network.  
23.5.4  
PROGRAMMABLE AUTO-RTR  
BUFFERS  
Setting the TXREQ bit does not initiate a message  
transmission, it merely flags a message buffer as ready  
for transmission. Transmission will start when the  
device detects that the bus is available. The device will  
then begin transmission of the highest priority message  
that is ready.  
In Mode 1 and 2, any of six programmable transmit/  
receive buffers may be programmed to automatically  
respond to predefined RTR messages without user  
firmware intervention. Automatic RTR handling is  
enabled by setting the TXnEN bit in the BSEL0 register  
and the RTREN bit in the BnCON register. After this  
setup, when an RTR request is received, the TXREQ  
bit is automatically set and current buffer content is  
automatically queued for transmission as a RTR  
response. As with all transmit buffers, once the TXREQ  
bit is set, buffer registers become read-only and any  
writes to them will be ignored.  
When the transmission has completed successfully, the  
TXREQ bit will be cleared, the TXBnIF bit will be set, and  
an interrupt will be generated if the TXBnIE bit is set.  
If the message transmission fails, the TXREQ will  
remain set, indicating that the message is still pending  
for transmission and one of the following condition flags  
will be set. If the message started to transmit but  
encountered an error condition, the TXERR and the  
IRXIF bits will be set and an interrupt will be generated.  
If the message lost arbitration, the TXLARB bit will be  
set.  
2004 Microchip Technology Inc.  
DS30491C-page 331  
PIC18F6585/8585/6680/8680  
Once an abort is requested by setting ABAT or TXABT  
bits, it cannot be cleared to cancel the abort request.  
Only CAN module hardware or a POR condition can  
clear it.  
23.6.2  
ABORTING TRANSMISSION  
The MCU can request to abort a message by clearing  
the TXREQ bit associated with the corresponding mes-  
sage buffer (TXBnCON<3> or BnCON<3>). Setting the  
ABAT bit (CANCON<4>) will request an abort of all  
pending messages. If the message has not yet started  
transmission or if the message started but is inter-  
rupted by loss of arbitration or an error, the abort will be  
processed. The abort is indicated when the module  
sets the TXABT bit for the corresponding buffer  
(TXBnCON<6> or BnCON<6>). If the message has  
started to transmit, it will attempt to transmit the current  
message fully. If the current message is transmitted  
fully and is not lost to arbitration or an error, the TXABT  
bit will not be set because the message was transmit-  
ted successfully. Likewise, if a message is being  
transmitted during an abort request and the message is  
lost to arbitration or an error, the message will not be  
retransmitted and the TXABT bit will be set, indicating  
that the message was successfully aborted.  
23.6.3  
TRANSMIT PRIORITY  
prioritization within the  
Transmit priority is  
a
PIC18F6585/8585/6680/8680 devices of the pending  
transmittable messages. This is independent from and  
not related to any prioritization implicit in the message  
arbitration scheme built into the CAN protocol. Prior to  
sending the SOF, the priority of all buffers that are  
queued for transmission is compared. The transmit  
buffer with the highest priority will be sent first. If more  
than one buffer has the same priority setting, the mes-  
sage is transmitted in the order of TXB2, TXB1, TXB0,  
B5, B4, B3, B2, B1, B0. There are four levels of transmit  
priority. If TXP bits for a particular message buffer are  
set to ‘11’, that buffer has the highest possible priority.  
If TXP bits for a particular message buffer are ‘00’, that  
buffer has the lowest possible priority.  
FIGURE 23-2:  
TRANSMIT BUFFERS  
TXB0  
TXB1  
TXB2  
TXB3-TXB8  
Message  
Queue  
Control  
Transmit Byte Sequencer  
DS30491C-page 332  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
Each receive buffer contains RXM bits to set special  
Receive modes. In Mode 0, RXM<1:0> bits in  
RXBnCON define a total of four Receive modes. In  
Mode 1 and 2, RXM1 bit in combination with the EXID  
23.7 Message Reception  
23.7.1 RECEIVING A MESSAGE  
Of all receive buffers, the MAB is always committed to  
receiving the next message from the bus. The MCU  
can access one buffer while the other buffer is available  
for message reception, or holding a previously received  
message.  
mask and filter bit define the same four Receive  
modes. Normally, these bits are set to ‘00’ to enable  
reception of all valid messages as determined by the  
appropriate acceptance filters. In this case, the deter-  
mination of whether or not to receive standard or  
extended messages is determined by the EXIDE bit in  
the Acceptance Filter register. In Mode 0, if the RXM  
bits are set to ‘01’ or ‘10’, the receiver will accept only  
messages with standard or extended identifiers,  
respectively. If an acceptance filter has the EXIDE bit  
set such that it does not correspond with the RXM  
mode, that acceptance filter is rendered useless. In  
Mode 1 and 2, setting EXID in the SIDL Mask register  
will ensure that only standard or extended identifiers  
are received. These two modes of RXM bits can be  
used in systems where it is known that only standard or  
extended messages will be on the bus. If the RXM bits  
are set to ‘11’ (RXM1 = 1in Mode 1 and 2), the buffer  
will receive all messages regardless of the values of  
the acceptance filters. Also, if a message has an error  
before the end of frame, that portion of the message  
assembled in the MAB before the error frame, will be  
loaded into the buffer. This mode may serve as a valu-  
able debugging tool for a given CAN network. It should  
not be used in an actual system environment as the  
actual system will always have some bus errors and all  
nodes on the bus are expected to ignore them.  
Note:  
The entire contents of the MAB are moved  
into the receive buffer once a message is  
accepted. This means that regardless of  
the type of identifier (standard or  
extended) and the number of data bytes  
received, the entire receive buffer is over-  
written with the MAB contents. Therefore,  
the contents of all registers in the buffer  
must be assumed to have been modified  
when any message is received.  
When a message is moved into either of the receive  
buffers, the associated RXFUL bit is set. This bit must  
be cleared by the MCU when it has completed process-  
ing the message in the buffer in order to allow a new  
message to be received into the buffer. This bit  
provides a positive lockout to ensure that the firmware  
has finished with the message before the module  
attempts to load a new message into the receive buffer.  
If the receive interrupt is enabled, an interrupt will be  
generated to indicate that a valid message has been  
received.  
Once a message is loaded into any matching buffer,  
user firmware may determine exactly what filter caused  
this reception by checking the filter hit bits in the  
RXBnCON or BnCON registers. In Mode 0, FILHIT<3:0>  
of RXBnCON serve as filter hit bits. In Mode 1 and 2,  
FILHIT<4:0> of BnCON serve as filter hit bits. The same  
registers also indicate whether the current message is  
RTR frame or not. A received message is considered a  
standard identifier message if the EXID bit in RXBnSIDL  
or the BnSIDL register is cleared. Conversely, a set  
EXID bit indicates an extended identifier message. If the  
received message is a standard identifier message, user  
firmware needs to read the SIDL and SIDH registers. In  
the case of an extended identifier message, firmware  
should read the SIDL, SIDH, EIDL and EIDH registers. If  
the RXBnDLC or BnDLC register contain non-zero data  
count, user firmware should also read the corresponding  
number of data bytes by accessing the RXBnDm or  
BnDm registers. When a received message is RTR and  
if the current buffer is not configured for automatic RTR  
handling, user firmware must take appropriate action  
and respond manually.  
In Mode 1 and 2, when a programmable buffer is  
configured as a transmit buffer and one or more accep-  
tance filters are associated with it, all incoming mes-  
sages matching this acceptance filter criteria will be  
discarded. To avoid this scenario, user firmware must  
make sure that there are no acceptance filters associ-  
ated with a buffer configured as a transmit buffer.  
23.7.2  
RECEIVE PRIORITY  
When in Mode 0, RXB0 is the higher priority buffer and  
has two message acceptance filters associated with it.  
RXB1 is the lower priority buffer and has four acceptance  
filters associated with it. The lower number of acceptance  
filters makes the match on RXB0 more restrictive and  
implies a higher priority for that buffer. Additionally, the  
RXB0CON register can be configured such that if RXB0  
contains a valid message and another valid message is  
received, an overflow error will not occur and the new  
message will be moved into RXB1 regardless of the  
acceptance criteria of RXB1. There are also two  
programmable acceptance filter masks available, one for  
each receive buffer (see Section 4.5).  
2004 Microchip Technology Inc.  
DS30491C-page 333  
PIC18F6585/8585/6680/8680  
In Mode 1 and 2, there are a total of 16 acceptance fil-  
ters available and each can be dynamically assigned to  
any of the receive buffers. A buffer with a lower number  
has higher priority. Given this, if an incoming message  
matches with two or more receive buffer acceptance  
criteria, the buffer with the lower number will be loaded  
with that message.  
23.7.4  
TIME-STAMPING  
The CAN module can be programmed to generate a  
time-stamp for every message that is received. When  
enabled, the module generates a capture signal for  
CCP1, which in turn captures the value of either Timer1  
or Timer3. This value can be used as the message  
time-stamp.  
To use the time-stamp capability, the CANCAP bit  
(CIOCAN<4>) must be set. This replaces the capture  
input for CCP1 with the signal generated from the CAN  
module. In addition, CCP1CON<3:0> must be set to  
0011’ to enable the CCP special event trigger for CAN  
events.  
23.7.3  
ENHANCED FIFO MODE  
When configured for Mode 2, two of the dedicated  
receive buffers, in combination with one or more pro-  
grammable transmit/receive buffers, are used to create  
a maximum of 8 buffers deep FIFO (First In First Out)  
buffer. In this mode, there is no direct correlation  
between filters and receive buffer registers. Any filter  
that has been enabled can generate an acceptance.  
When a message has been accepted, it is stored in the  
next available receive buffer register and an internal  
write pointer is incremented. The FIFO can be a maxi-  
mum of 8 buffers deep. The entire FIFO must consist of  
contiguous receive buffers. The FIFO head begins at  
RXB0 buffer and its tail spans toward B5. The maxi-  
mum length of the FIFO is limited by the presence or  
absence of the first transmit buffer starting from B0. If a  
buffer is configured as a transmit buffer, the FIFO  
length is reduced accordingly. For instance, if B3 is  
configured as transmit buffer, the actual FIFO will con-  
sist of RXB0, RXB1, B0, B1 and B2, a total of 5 buffers.  
If B0 is configured as a transmit buffer, the FIFO length  
will be 2. If none of the programmable buffers are con-  
figured as a transmit buffer, the FIFO will be 8 buffers  
deep. A system that requires more transmit buffers  
should try to locate transmit buffers at the very end of  
B0-B5 buffers to maximize available FIFO length.  
23.8 Message Acceptance Filters  
and Masks  
The message acceptance filters and masks are used to  
determine if a message in the message assembly  
buffer should be loaded into any of the receive buffers.  
Once a valid message has been received into the MAB,  
the identifier fields of the message are compared to the  
filter values. If there is a match, that message will be  
loaded into the appropriate receive buffer. The filter  
masks are used to determine which bits in the identifier  
are examined with the filters. A truth table is shown  
below in Table 23-2 that indicates how each bit in the  
identifier is compared to the masks and filters to deter-  
mine if a message should be loaded into a receive  
buffer. The mask essentially determines which bits to  
apply the acceptance filters to. If any mask bit is set to  
a zero, then that bit will automatically be accepted  
regardless of the filter bit.  
When a message is received in FIFO mode, the Inter-  
rupt Flag Code bits (EICODE<4:0>) in the CANSTAT  
register will have a value of ‘10000’, indicating the  
FIFO has received a message. FIFO pointer bits  
FP<3:0> in the CANCON register point to the buffer  
that contains data not yet read. The FIFO pointer bits,  
in this sense, serve as the FIFO read pointer. The user  
should use FP bits and read corresponding buffer data.  
When receive data is no longer needed, the RXFUL bit  
in the current buffer must be cleared, causing FP<3:0>  
to be updated by the module.  
TABLE 23-2: FILTER/MASK TRUTH TABLE  
Message  
Identifier  
bit n001  
Accept or  
Reject  
bit n  
Mask  
bit n  
Filter  
bit n  
0
1
1
1
1
x
0
0
1
1
x
0
1
0
1
Accept  
Accept  
Reject  
Reject  
Accept  
To determine whether FIFO is empty or not, the user  
may use FP<3:0> bits to access RXFUL bit in the cur-  
rent buffer. If RXFUL is cleared, the FIFO is considered  
to be empty. If it is set, the FIFO may contain one or  
more messages. In Mode 2, the module also provides  
a bit called FIFO High Water Mark (FIFOWM) in the  
ECANCON register. This bit can be used to cause an  
interrupt whenever the FIFO contains only one or four  
empty buffers. The FIFO high water mark interrupt can  
serve as an early warning to a full FIFO condition.  
Legend: x= don’t care  
In Mode 0, acceptance filters RXF0 and RXF1 and filter  
mask RXM0 are associated with RXB0. Filters RXF2,  
RXF3, RXF4 and RXF5 and mask RXM1 are  
associated with RXB1.  
DS30491C-page 334  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
In Mode 1 and 2, there are an additional 10 acceptance  
The coding of the RXB0DBEN bit enables these three  
bits to be used similarly to the FILHIT bits and to distin-  
guish a hit on filter RXF0 and RXF1, in either RXB0 or  
after a rollover into RXB1.  
filters, RXF6-RXF15, creating a total of 16 available  
filters. RXF15 can be used either as an acceptance  
filter or acceptance mask register. Each of these  
acceptance filters can be individually enabled or  
disabled by setting or clearing RXFENn bit in the  
RXFCONn register. Any of these 16 acceptance filters  
can be dynamically associated with any of the receive  
buffers. Actual association is made by setting appropri-  
ate bits in the RXFBCONn register. Each RXFBCONn  
register contains a nibble for each filter. This nibble can  
be used to associate a specific filter to any of available  
receive buffers. User firmware may associate more  
than one filter to any one specific receive buffer.  
111= Acceptance Filter 1 (RXF1)  
110= Acceptance Filter 0 (RXF0)  
001= Acceptance Filter 1 (RXF1)  
000= Acceptance Filter 0  
If the RXB0DBEN bit is clear, there are six codes cor-  
responding to the six filters. If the RXB0DBEN bit is set,  
there are six codes corresponding to the six filters plus  
two additional codes corresponding to RXF0 and RXF1  
filters that rollover into RXB1.  
In addition to dynamic filter to buffer association, in  
Mode 1 and 2, each filter can also be dynamically asso-  
ciated to available acceptance mask registers. FILn_m  
bits in the MSELn register can be used to link a specific  
acceptance filter to an acceptance mask register. As  
with filter to buffer association, one can also associate  
more than one mask to a specific acceptance filter.  
In Mode 1 and 2, each buffer control register contains  
5 bits of filter hit bits FILHIT<4:0>. A binary value of ‘0’  
indicates a hit from RXF0 and 15 indicates RXF15.  
If more than one acceptance filter matches, the FILHIT  
bits will encode the binary value of the lowest  
numbered filter that matched. In other words, if filter  
RXF2 and filter RXF4 match, FILHIT will be loaded with  
the value for RXF2. This essentially prioritizes the  
acceptance filters with a lower number filter having  
higher priority. Messages are compared to filters in  
ascending order of filter number.  
When a filter matches and a message is loaded into the  
receive buffer, the filter number that enabled the  
message reception is loaded into the FILHIT bit(s). In  
Mode 0 for RXB1, the RXB1CON register contains the  
FILHIT<2:0> bits. They are coded as follows:  
The mask and filter registers can only be modified  
when the PIC18F6585/8585/6680/8680 devices are in  
Configuration mode.  
101= Acceptance Filter 5 (RXF5)  
100= Acceptance Filter 4 (RXF4)  
011= Acceptance Filter 3 (RXF3)  
010= Acceptance Filter 2 (RXF2)  
001= Acceptance Filter 1 (RXF1)  
000= Acceptance Filter 0 (RXF0)  
Note:  
000’ and ‘001’ can only occur if the  
RXB0DBEN bit is set in the RXB0CON  
register, allowing RXB0 messages to  
rollover into RXB1.  
FIGURE 23-3:  
MESSAGE ACCEPTANCE MASK AND FILTER OPERATION  
Acceptance Filter Register  
Acceptance Mask Register  
RXFn  
RXMn  
0
0
RXMn  
RxRqst  
1
RXFn  
1
RXFn  
RXMn  
n
n
Message Assembly Buffer  
Identifier  
2004 Microchip Technology Inc.  
DS30491C-page 335  
PIC18F6585/8585/6680/8680  
The Nominal Bit Time is defined as:  
EQUATION 23-1:  
23.9 Baud Rate Setting  
All nodes on a given CAN bus must have the same  
nominal bit rate. The CAN protocol uses Non-Return-  
to-Zero (NRZ) coding which does not encode a clock  
within the data stream. Therefore, the receive clock  
must be recovered by the receiving nodes and  
synchronized to the transmitter’s clock.  
TBIT = 1/Nominal Bit Rate  
The Nominal Bit Time can be thought of as being  
divided into separate, non-overlapping time segments.  
These segments (Figure 23-4) include:  
As oscillators and transmission time may vary from  
node to node, the receiver must have some type of  
Phase Lock Loop (PLL) synchronized to data transmis-  
sion edges to synchronize and maintain the receiver  
clock. Since the data is NRZ coded, it is necessary to  
include bit stuffing to ensure that an edge occurs at  
least every six bit times to maintain the Digital Phase  
Lock Loop (DPLL) synchronization.  
• Synchronization Segment (Sync_Seg)  
• Propagation Time Segment (Prop_Seg)  
• Phase Buffer Segment 1 (Phase_Seg1)  
• Phase Buffer Segment 2 (Phase_Seg2)  
The time segments (and thus the Nominal Bit Time) are  
in turn made up of integer units of time called Time  
Quanta or TQ (see Figure 23-4). By definition, the Nom-  
inal Bit Time is programmable from a minimum of 8 TQ  
to a maximum of 25 TQ. Also by definition, the minimum  
Nominal Bit Time is 1 µs, corresponding to a maximum  
1 Mb/s rate. The actual duration is given by the  
relationship:  
The bit timing of the PIC18F6585/8585/6680/8680 is  
implemented using a DPLL that is configured to syn-  
chronize to the incoming data and provides the nominal  
timing for the transmitted data. The DPLL breaks each  
bit time into multiple segments made up of minimal  
periods of time called the Time Quanta (TQ).  
EQUATION 23-2:  
Bus timing functions executed within the bit time frame,  
such as synchronization to the local oscillator, network  
transmission delay compensation, and sample point  
positioning, are defined by the programmable bit timing  
logic of the DPLL.  
Nominal Bit Time = TQ * (Sync_Seg + Prop_Seg +  
Phase_Seg1 + Phase_Seg2)  
The Time Quantum is a fixed unit derived from the  
oscillator period. It is also defined by the programmable  
baud rate prescaler with integer values from 1 to 64 in  
addition to a fixed divide-by-two for clock generation.  
Mathematically, this is:  
All devices on the CAN bus must use the same bit rate.  
However, all devices are not required to have the same  
master oscillator clock frequency. For the different clock  
frequencies of the individual devices, the bit rate has to  
be adjusted by appropriately setting the baud rate  
prescaler and number of time quanta in each segment.  
EQUATION 23-3:  
TQ (µs) = (2 * (BRP+1))/FOSC (MHz)  
or  
TQ (µs) = (2 * (BRP+1)) * TOSC (µs)  
The Nominal Bit Rate is the number of bits transmitted  
per second, assuming an ideal transmitter with an ideal  
oscillator, in the absence of resynchronization. The  
nominal bit rate is defined to be a maximum of 1 Mb/s.  
where FOSC is the clock frequency, TOSC is the corre-  
sponding oscillator period, and BRP is an integer (0  
through 63) represented by the binary values of  
BRGCON1<5:0>.  
FIGURE 23-4:  
BIT TIME PARTITIONING  
Input  
Signal  
Propagation  
Segment  
Phase  
Segment 1  
Phase  
Sync  
Segment  
Bit  
Time  
Intervals  
Segment 2  
TQ  
Sample Point  
Nominal Bit Time  
DS30491C-page 336  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
23.9.1  
TIME QUANTA  
23.9.2  
SYNCHRONIZATION SEGMENT  
As already mentioned, the Time Quanta is a fixed unit  
derived from the oscillator period and baud rate  
prescaler. Its relationship to TBIT and the Nominal Bit  
Rate is shown in Example 23-6.  
This part of the bit time is used to synchronize the  
various CAN nodes on the bus. The edge of the input  
signal is expected to occur during the sync segment.  
The duration is 1 TQ.  
23.9.3  
PROPAGATION SEGMENT  
EXAMPLE 23-6:  
CALCULATING TQ,  
NOMINAL BIT RATE AND  
NOMINAL BIT TIME  
This part of the bit time is used to compensate for phys-  
ical delay times within the network. These delay times  
consist of the signal propagation time on the bus line  
and the internal delay time of the nodes. The length of  
the Propagation Segment can be programmed from  
1 TQ to 8 TQ by setting the PRSEG2:PRSEG0 bits.  
TQ (µs) = (2 * (BRP+1))/FOSC (MHz)  
TBIT (µs) = TQ (µs) * number of TQ per bit interval  
Nominal Bit Rate (bits/s) = 1/TBIT  
23.9.4  
PHASE BUFFER SEGMENTS  
CASE 1:  
The phase buffer segments are used to optimally  
locate the sampling point of the received bit within the  
nominal bit time. The sampling point occurs between  
Phase Segment 1 and Phase Segment 2. These  
segments can be lengthened or shortened by the  
resynchronization process. The end of Phase Segment  
1 determines the sampling point within a bit time.  
Phase Segment 1 is programmable from 1 TQ to 8 TQ  
in duration. Phase Segment 2 provides delay before  
the next transmitted data transition and is also  
programmable from 1 TQ to 8 TQ in duration. However,  
due to IPT requirements, the actual minimum length of  
Phase Segment 2 is 2 TQ, or it may be defined to be  
equal to the greater of Phase Segment 1 or the  
Information Processing Time (IPT).  
For FOSC = 16 MHz, BRP<5:0> = 00h and  
Nominal Bit Time = 8 TQ:  
TQ = (2*1)/16 = 0.125 µs (125 ns)  
TBIT = 8 * 0.125 = 1 µs (10-6s)  
Nominal Bit Rate = 1/10-6 = 106 bits/s (1 Mb/s)  
CASE 2:  
For FOSC = 20 MHz, BRP<5:0> = 01h and  
Nominal Bit Time = 8 TQ:  
TQ = (2*2)/20 = 0.2 µs (200 ns)  
TBIT = 8 * 0.2 = 1.6 µs (1.6 * 10-6s)  
Nominal Bit Rate = 1/1.6 * 10-6s =625,000 bits/s  
23.9.5  
SAMPLE POINT  
(625 Kb/s)  
The sample point is the point of time at which the bus  
level is read and the value of the received bit is deter-  
mined. The sampling point occurs at the end of Phase  
Segment 1. If the bit timing is slow and contains many  
TQ, it is possible to specify multiple sampling of the bus  
line at the sample point. The value of the received bit is  
determined to be the value of the majority decision of  
three values. The three samples are taken at the sam-  
ple point and twice before, with a time of TQ/2 between  
each sample.  
CASE 3:  
For FOSC = 25 MHz, BRP<5:0> = 3Fh and  
Nominal Bit Time = 25 TQ:  
TQ = (2*64)/25 = 5.12 µs  
TBIT = 25 * 5.12 = 128 µs (1.28 * 10-4s)  
Nominal Bit Rate = 1/1.28 * 10-4 = 7813 bits/s  
(7.8 Kb/s)  
23.9.6  
INFORMATION PROCESSING TIME  
The frequencies of the oscillators in the different nodes  
must be coordinated in order to provide a system wide  
specified nominal bit time. This means that all oscilla-  
tors must have a TOSC that is an integral divisor of TQ.  
It should also be noted that although the number of TQ  
is programmable from 4 to 25, the usable minimum is  
8 TQ. A bit time of less than 8 TQ in length is not  
guaranteed to operate correctly.  
The Information Processing Time (IPT) is the time  
segment starting at the sample point that is reserved  
for calculation of the subsequent bit level. The CAN  
specification defines this time to be less than or equal  
to 2 TQ. The PIC18F6585/8585/6680/8680 devices  
define this time to be 2 TQ. Thus, Phase Segment 2  
must be at least 2 TQ long.  
2004 Microchip Technology Inc.  
DS30491C-page 337  
PIC18F6585/8585/6680/8680  
The phase error of an edge is given by the position of  
the edge relative to Sync_Seg, measured in TQ. The  
phase error is defined in magnitude of TQ as follows:  
23.10 Synchronization  
To compensate for phase shifts between the oscillator  
frequencies of each of the nodes on the bus, each CAN  
controller must be able to synchronize to the relevant  
signal edge of the incoming signal. When an edge in  
the transmitted data is detected, the logic will compare  
the location of the edge to the expected time  
(Sync_Seg). The circuit will then adjust the values of  
Phase Segment 1 and Phase Segment 2 as necessary.  
There are two mechanisms used for synchronization.  
• e = 0 if the edge lies within Sync_Seg.  
• e > 0 if the edge lies before the sample point.  
• e < 0 if the edge lies after the sample point of the  
previous bit.  
If the magnitude of the phase error is less than, or equal  
to the programmed value of the synchronization jump  
width, the effect of a resynchronization is the same as  
that of a hard synchronization.  
23.10.1 HARD SYNCHRONIZATION  
If the magnitude of the phase error is larger than the  
synchronization jump width, and if the phase error is  
positive, then Phase Segment 1 is lengthened by an  
amount equal to the synchronization jump width.  
Hard synchronization is only done when there is a  
recessive to dominant edge during a bus Idle condition,  
indicating the start of a message. After hard synchroni-  
zation, the bit time counters are restarted with  
Sync_Seg. Hard synchronization forces the edge  
which has occurred to lie within the synchronization  
segment of the restarted bit time. Due to the rules of  
synchronization, if a hard synchronization occurs there  
will not be a resynchronization within that bit time.  
If the magnitude of the phase error is larger than the  
resynchronization jump width, and if the phase error is  
negative, then Phase Segment 2 is shortened by an  
amount equal to the synchronization jump width.  
23.10.3 SYNCHRONIZATION RULES  
23.10.2 RESYNCHRONIZATION  
• Only one synchronization within one bit time is  
allowed.  
As a result of resynchronization, Phase Segment 1  
may be lengthened or Phase Segment 2 may be short-  
ened. The amount of lengthening or shortening of the  
phase buffer segments has an upper bound given by  
the Synchronization Jump Width (SJW). The value of  
the SJW will be added to Phase Segment 1 (see  
Figure 23-5) or subtracted from Phase Segment 2 (see  
Figure 23-6). The SJW is programmable between 1 TQ  
and 4 TQ.  
• An edge will be used for synchronization only if  
the value detected at the previous sample point  
(previously read bus value) differs from the bus  
value immediately after the edge.  
• All other recessive to dominant edges fulfilling  
rules 1 and 2 will be used for resynchronization,  
with the exception that a node transmitting a  
dominant bit will not perform a resynchronization  
as a result of a recessive to dominant edge with a  
positive phase error.  
Clocking information will only be derived from reces-  
sive to dominant transitions. The property that only a  
fixed maximum number of successive bits have the  
same value, ensures resynchronization to the bit  
stream during a frame.  
DS30491C-page 338  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 23-5:  
LENGTHENING A BIT PERIOD (ADDING SJW TO PHASE SEGMENT 1)  
Input  
Signal  
Bit  
Time  
Segments  
Prop  
Phase  
Phase  
Sync  
SJW  
Segment  
Segment 1  
Segment 2  
TQ  
Sample Point  
Nominal Bit Length  
Actual Bit Length  
FIGURE 23-6:  
SHORTENING A BIT PERIOD (SUBTRACTING SJW FROM PHASE SEGMENT 2)  
Prop  
Phase  
Phase  
Sync  
SJW  
Segment  
Segment 1  
Segment 2  
TQ  
Sample Point  
Actual Bit Length  
Nominal Bit Length  
2004 Microchip Technology Inc.  
DS30491C-page 339  
PIC18F6585/8585/6680/8680  
23.13.2 BRGCON2  
23.11 Programming Time Segments  
The PRSEG bits set the length of the propagation seg-  
ment in terms of TQ. The SEG1PH bits set the length of  
Phase Segment 1 in TQ. The SAM bit controls how  
many times the RXCAN pin is sampled. Setting this bit  
to a ‘1’ causes the bus to be sampled three times; twice  
at TQ/2 before the sample point and once at the normal  
sample point (which is at the end of Phase Segment 1).  
The value of the bus is determined to be the value read  
during at least two of the samples. If the SAM bit is set  
to a ‘0’, then the RXCAN pin is sampled only once at  
the sample point. The SEG2PHTS bit controls how the  
length of Phase Segment 2 is determined. If this bit is  
set to a ‘1’, then the length of Phase Segment 2 is  
determined by the SEG2PH bits of BRGCON3. If the  
SEG2PHTS bit is set to a ‘0’, then the length of Phase  
Segment 2 is the greater of Phase Segment 1 and the  
information processing time (which is fixed at 2 TQ for  
the PIC18F6585/8585/6680/8680).  
Some requirements for programming of the time  
segments:  
• Prop_Seg + Phase_Seg 1 Phase_Seg 2  
• Phase_Seg 2 Sync Jump Width.  
For example, assume that a 125 kHz CAN baud rate is  
desired, using 20 MHz for FOSC. With a TOSC of 50 ns,  
a baud rate prescaler value of 04h gives a TQ of 500 ns.  
To obtain a Nominal Bit Rate of 125 kHz, the Nominal  
Bit Time must be 8 µs or 16 TQ.  
Using 1 TQ for the Sync_Seg, 2 TQ for the Prop_Seg  
and 7 TQ for Phase Segment 1, would place the sample  
point at 10 TQ after the transition. This leaves 6 TQ for  
Phase Segment 2.  
By the rules above, the Sync Jump Width could be the  
maximum of 4 TQ. However, normally a large SJW is  
only necessary when the clock generation of the  
different nodes is inaccurate or unstable, such as using  
ceramic resonators. Typically, an SJW of 1 is enough.  
23.13.3 BRGCON3  
The PHSEG2<2:0> bits set the length (in TQ) of Phase  
Segment 2 if the SEG2PHTS bit is set to a ‘1’. If the  
SEG2PHTS bit is set to a ‘0’, then the PHSEG2<2:0>  
bits have no effect.  
23.12 Oscillator Tolerance  
As a rule of thumb, the bit timing requirements allow  
ceramic resonators to be used in applications with  
transmission rates of up to 125 Kbit/sec. For the full bus  
speed range of the CAN protocol, a quartz oscillator is  
required. A maximum node-to-node oscillator variation  
of 1.7% is allowed.  
23.14 Error Detection  
The CAN protocol provides sophisticated error  
detection mechanisms. The following errors can be  
detected.  
23.13 Bit Timing Configuration  
Registers  
23.14.1 CRC ERROR  
With the Cyclic Redundancy Check (CRC), the trans-  
mitter calculates special check bits for the bit  
sequence, from the start of a frame until the end of the  
data field. This CRC sequence is transmitted in the  
CRC field. The receiving node also calculates the CRC  
sequence using the same formula and performs a  
comparison to the received sequence. If a mismatch is  
detected, a CRC error has occurred and an error frame  
is generated. The message is repeated.  
The Configuration registers (BRGCON1, BRGCON2,  
BRGCON3) control the bit timing for the CAN bus  
interface. These registers can only be modified when  
the PIC18F6585/8585/6680/8680 devices are in  
Configuration mode.  
23.13.1 BRGCON1  
The BRP bits control the baud rate prescaler. The  
SJW<1:0> bits select the synchronization jump width in  
terms of multiples of TQ.  
DS30491C-page 340  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
node can transmit messages and activate error frames  
(made of dominant bits) without any restrictions. In the  
23.14.2 ACKNOWLEDGE ERROR  
In the Acknowledge field of a message, the transmitter  
checks if the Acknowledge slot (which was sent out as  
a recessive bit) contains a dominant bit. If not, no other  
node has received the frame correctly. An Acknowl-  
edge error has occurred; an error frame is generated  
and the message will have to be repeated.  
error-passive state, messages and passive error  
frames (made of recessive bits) may be transmitted.  
The bus-off state makes it temporarily impossible for  
the station to participate in the bus communication.  
During this state, messages can neither be received  
nor transmitted.  
23.14.3 FORM ERROR  
23.14.7 ERROR MODES AND ERROR  
COUNTERS  
If a node detects a dominant bit in one of the four  
segments, including end of frame, interframe space,  
Acknowledge delimiter, or CRC delimiter, then a form  
error has occurred and an error frame is generated.  
The message is repeated.  
The PIC18F6585/8585/6680/8680 devices contain two  
error counters: the Receive Error Counter  
(RXERRCNT), and the Transmit Error Counter  
(TXERRCNT). The values of both counters can be read  
by the MCU. These counters are incremented or  
decremented in accordance with the CAN bus  
specification.  
23.14.4 BIT ERROR  
A bit error occurs if a transmitter sends a dominant bit  
and detects a recessive bit, or if it sends a recessive bit  
and detects a dominant bit, when monitoring the actual  
bus level and comparing it to the just transmitted bit. In  
the case where the transmitter sends a recessive bit  
and a dominant bit is detected during the arbitration  
field and the Acknowledge slot, no bit error is  
generated because normal arbitration is occurring.  
The PIC18F6585/8585/6680/8680 devices are error-  
active if both error counters are below the error-passive  
limit of 128. They are error-passive if at least one of the  
error counters equals or exceeds 128. They go to bus-  
off if the transmit error counter equals or exceeds the  
bus-off limit of 256. The devices remain in this state  
until the bus-off recovery sequence is received. The  
bus-off recovery sequence consists of 128 occurrences  
of 11 consecutive recessive bits (see Figure 23-7).  
Note that the CAN module, after going bus-off, will  
recover back to error-active without any intervention by  
the MCU if the bus remains Idle for 128 x 11 bit times.  
If this is not desired, the error Interrupt Service Routine  
should address this. The current Error mode of the  
CAN module can be read by the MCU via the  
COMSTAT register.  
23.14.5 STUFF BIT ERROR  
lf between the start of frame and the CRC delimiter, six  
consecutive bits with the same polarity are detected,  
the bit stuffing rule has been violated. A stuff bit error  
occurs and an error frame is generated. The message  
is repeated.  
23.14.6 ERROR STATES  
Detected errors are made public to all other nodes via  
error frames. The transmission of the erroneous mes-  
sage is aborted and the frame is repeated as soon as  
possible. Furthermore, each CAN node is in one of the  
three error states “error-active”, “error-passive” or “bus-  
off” according to the value of the internal error counters.  
The error-active state is the usual state where the bus  
Additionally, there is an error state warning flag bit,  
EWARN, which is set if at least one of the error  
counters equals or exceeds the error warning limit of  
96. EWARN is reset if both error counters are less than  
the error warning limit.  
2004 Microchip Technology Inc.  
DS30491C-page 341  
PIC18F6585/8585/6680/8680  
FIGURE 23-7:  
ERROR MODES STATE DIAGRAM  
Reset  
Error  
Active  
-
RXERRCNT < 127 or  
TXERRCNT < 127  
128 occurrences of  
11 consecutive  
“recessive” bits  
RXERRCNT > 127 or  
TXERRCNT > 127  
Error  
-
Passive  
TXERRCNT > 255  
Bus  
Off  
-
The transmit related interrupts are:  
23.15 CAN Interrupts  
• Transmit Interrupts  
The module has several sources of interrupts. Each of  
these interrupts can be individually enabled or dis-  
abled. The PIR3 register contains interrupt flags. The  
PIE3 register contains the enables for the 8 main inter-  
rupts. A special set of read-only bits in the CANSTAT  
register, the ICODE bits, can be used in combination  
with a jump table for efficient handling of interrupts.  
• Transmitter Warning Interrupt  
• Transmitter Error-Passive Interrupt  
• Bus-Off Interrupt  
23.15.1 INTERRUPT CODE BITS  
To simplify the interrupt handling process in user firm-  
ware, the ECAN module encodes a special set of bits. In  
Mode 0, these bits are ICODE<2:0> in the CANSTAT  
register. In Mode 1 and 2, these bits are EICODE<3:0>  
in the CANSTAT register. Interrupts are internally priori-  
tized such that the higher priority interrupts are assigned  
lower values. Once the highest priority interrupt condi-  
tion has been cleared, the code for the next highest  
priority interrupt that is pending (if any) will be reflected  
by the ICODE bits. Note that only those interrupt sources  
that have their associated interrupt enable bit set will be  
reflected in the ICODE bits.  
All interrupts have one source with the exception of the  
error interrupt and buffer interrupts in Mode 1 and 2. Any  
of the error interrupt sources can set the error interrupt  
flag. The source of the error interrupt can be determined  
by reading the Communication Status register,  
COMSTAT. In Mode 1 and 2, there are two interrupt  
enable/disable and flag bits – one for all transmit buffers  
and the other for all receive buffers.  
The interrupts can be broken up into two categories:  
receive and transmit interrupts.  
The receive related interrupts are:  
In Mode 2, when a receive message interrupt occurs,  
EICODE bits will always consist of ‘10000’. User  
firmware may use FIFO pointer bits to actually access  
the next available buffer.  
• Receive Interrupts  
• Wake-up Interrupt  
• Receiver Overrun Interrupt  
• Receiver Warning Interrupt  
• Receiver Error-Passive Interrupt  
DS30491C-page 342  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
23.15.2 TRANSMIT INTERRUPT  
23.15.5 BUS ACTIVITY WAKE-UP  
INTERRUPT  
When the transmit interrupt is enabled, an interrupt will  
be generated when the associated transmit buffer  
becomes empty and is ready to be loaded with a new  
message. In Mode 0, there are separate interrupt  
enable/disable and flag bits for each of the three  
dedicated transmit buffers. The TXBnIF bit will be set to  
indicate the source of the interrupt. The interrupt is  
cleared by the MCU resetting the TXBnIF bit to a ‘0’. In  
Mode 1 and 2, all transmit buffers share one interrupt  
enable/disable and flag bits. In Mode 1 and 2, TXBIE in  
PIE3 and TXBIF in PIR3 indicate when a transmit buffer  
has completed transmission of its message. TXBnIF,  
TXBnIE and TXBnIP in PIR3, PIE3 and IPR3, respec-  
tively, are not used in Mode 1 and 2. Individual transmit  
buffer interrupts can be enabled or disabled by setting or  
clearing TXBIE and BnIE register bits. When a shared  
interrupt occurs, user firmware must poll the TXREQ bit  
of all transmit buffers to detect the source of interrupt.  
When the PIC18F6585/8585/6680/8680 devices are in  
Sleep mode and the bus activity wake-up interrupt is  
enabled, an interrupt will be generated and the WAKIF  
bit will be set when activity is detected on the CAN bus.  
This interrupt causes the PIC18F6585/8585/6680/  
8680 devices to exit Sleep mode. The interrupt is reset  
by the MCU, clearing the WAKIF bit.  
23.15.6 ERROR INTERRUPT  
When the error interrupt is enabled, an interrupt is  
generated if an overflow condition occurs or if the error  
state of the transmitter or receiver has changed. The  
error flags in COMSTAT will indicate one of the  
following conditions.  
23.15.6.1 Receiver Overflow  
An overflow condition occurs when the MAB has  
assembled a valid received message (the message  
meets the criteria of the acceptance filters) and the  
receive buffer associated with the filter is not available  
for loading of a new message. The associated  
COMSTAT.RXnOVFL bit will be set to indicate the  
overflow condition. This bit must be cleared by the  
MCU.  
23.15.3 RECEIVE INTERRUPT  
When the receive interrupt is enabled, an interrupt will  
be generated when a message has been successfully  
received and loaded into the associated receive buffer.  
This interrupt is activated immediately after receiving  
the End Of Frame (EOF) field.  
In Mode 0, the RXBnIF bit is set to indicate the source  
of the interrupt. The interrupt is cleared by the MCU  
resetting the RXBnIF bit to a ‘0’.  
23.15.6.2 Receiver Warning  
The receive error counter has reached the MCU  
warning limit of 96.  
In Mode 1 and 2, all receive buffers share one interrupt.  
Individual receive buffer interrupts can be controlled by  
the RXBnIE and BIEn registers. In Mode 1, when a  
shared receive interrupt occurs, user firmware must  
poll the RXFUL bit of each receive buffer to detect the  
source of interrupt. In Mode 2, a receive interrupt  
indicates that the new message is loaded into FIFO.  
FIFO can be read by using FIFO pointer bits, FP.  
23.15.6.3 Transmitter Warning  
The transmit error counter has reached the MCU  
warning limit of 96.  
23.15.6.4 Receiver Bus Passive  
The receive error counter has exceeded the error-  
passive limit of 127 and the device has gone to  
error-passive state.  
In Mode 2, the FIFOWMIF bit indicates if the FIFO high  
watermark is reached. The FIFO high watermark is  
defined by the FIFOWM bit in the ECANCON register.  
23.15.6.5 Transmitter Bus Passive  
23.15.4 MESSAGE ERROR INTERRUPT  
The transmit error counter has exceeded the error-  
passive limit of 127 and the device has gone to  
error-passive state.  
When an error occurs during transmission or reception  
of a message, the message error flag, IRXIF, will be set  
and if the IRXIE bit is set, an interrupt will be generated.  
This is intended to be used to facilitate baud rate  
determination when used in conjunction with Listen  
Only mode.  
23.15.6.6 Bus-Off  
The transmit error counter has exceeded 255 and the  
device has gone to bus-off state.  
23.15.6.7 Interrupt Acknowledge  
Interrupts are directly associated with one or more sta-  
tus flags in the PIR register. Interrupts are pending as  
long as one of the flags is set. Once an interrupt flag is  
set by the device, the flag can not be reset by the  
microcontroller until the interrupt condition is removed.  
2004 Microchip Technology Inc.  
DS30491C-page 343  
PIC18F6585/8585/6680/8680  
NOTES:  
DS30491C-page 344  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
24.1 Configuration Bits  
24.0 SPECIAL FEATURES OF THE  
CPU  
The configuration bits can be programmed (read as ‘0’)  
or left unprogrammed (read as ‘1’) to select various  
device configurations. These bits are mapped, starting  
at program memory location 300000h.  
There are several features intended to maximize sys-  
tem reliability, minimize cost through elimination of  
external components, provide power saving operating  
modes and offer code protection. These are:  
The user will note that address 300000h is beyond the  
user program memory space. In fact, it belongs to the  
configuration memory space (300000h through  
3FFFFFh) which can only be accessed using table  
reads and table writes.  
• OSC Selection  
• Reset  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
Programming the Configuration registers is done in a  
manner similar to programming the Flash memory. The  
EECON1 register WR bit starts a self-timed write to the  
Configuration register. In normal Operation mode, a  
TBLWTinstruction with the TBLPTR pointed to the Con-  
figuration register sets up the address and the data for  
the Configuration register write. Setting the WR bit  
starts a long write to the Configuration register. The  
Configuration registers are written a byte at a time. To  
write or erase a configuration cell, a TBLWTinstruction  
can write a ‘1’ or a ‘0’ into the cell.  
• Watchdog Timer (WDT)  
• Sleep  
• Code Protection  
• ID Locations  
• In-Circuit Serial Programming  
All PIC18F6585/8585/6680/8680 devices have  
a
Watchdog Timer which is permanently enabled via the  
configuration bits or software controlled. It runs off its  
own RC oscillator for added reliability. There are two  
timers that offer necessary delays on power-up. One is  
the Oscillator Start-up Timer (OST), intended to keep  
the chip in Reset until the crystal oscillator is stable.  
The other is the Power-up Timer (PWRT) which pro-  
vides a fixed delay on power-up only, designed to keep  
the part in Reset while the power supply stabilizes. With  
these two timers on-chip, most applications need no  
external Reset circuitry.  
Sleep mode is designed to offer a very low current  
Power-down mode. The user can wake-up from Sleep  
through external Reset, Watchdog Timer Wake-up, or  
through an interrupt. Several oscillator options are also  
made available to allow the part to fit the application.  
The RC oscillator option saves system cost, while the  
LP crystal option saves power. A set of configuration  
bits is used to select various options.  
2004 Microchip Technology Inc.  
DS30491C-page 345  
PIC18F6585/8585/6680/8680  
TABLE 24-1: CONFIGURATION BITS AND DEVICE IDS  
Default/  
Unprogrammed  
Value  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300001h CONFIG1H  
300002h CONFIG2L  
300003h CONFIG2H  
OSCSEN  
FOSC3  
BORV1  
FOSC2  
BORV0  
FOSC1  
BODEN  
FOSC0  
PWRTEN  
WDTEN  
PM0  
--1- 1111  
---- 1111  
---1 1111  
1--- --11  
1--- --11  
1--- -1-1  
---- 1111  
11-- ----  
---- 1111  
111- ----  
---- 1111  
-1-- ----  
(Note 3)  
WDTPS3 WDTPS2 WDTPS1 WDTPS0  
(1)  
300004h CONFIG3L  
WAIT  
PM1  
ECCPMX  
(4)  
300005h CONFIG3H MCLRE  
300006h CONFIG4L DEBUG  
CCP2MX  
STVREN  
CP0  
LVP  
CP2  
(2)  
300008h CONFIG5L  
300009h CONFIG5H  
30000Ah CONFIG6L  
CPD  
CP3  
CP1  
CPB  
(2)  
(2)  
WRT3  
WRT2  
WRT1  
WRT0  
30000Bh CONFIG6H WRTD  
WRTB  
WRTC  
30000Ch CONFIG7L  
30000Dh CONFIG7H  
3FFFFEh DEVID1  
3FFFFFh DEVID2  
EBTR3  
EBTR2  
EBTR1  
EBTR0  
EBTRB  
DEV1  
DEV9  
DEV2  
DEV10  
DEV0  
DEV8  
REV4  
DEV7  
REV3  
DEV6  
REV2  
DEV5  
REV1  
DEV4  
REV0  
DEV3  
0000 1010  
Legend:  
x= unknown, u= unchanged, -= unimplemented, q= value depends on condition.  
Shaded cells are unimplemented, read as ‘0’.  
Note 1: Unimplemented in PIC18F6X8X devices; maintain this bit set.  
2: Unimplemented in PIC18FX585 devices; maintain this bit set.  
3: See Register 24-13 for DEVID1 values.  
4: Reserved in PIC18F6X8X devices; maintain this bit set.  
DS30491C-page 346  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 24-1: CONFIG1H:CONFIGURATIONREGISTER1HIGH(BYTEADDRESS300001h)  
U-0  
U-0  
R/P-1  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
OSCSEN  
FOSC3  
FOSC2  
FOSC1  
FOSC0  
bit 7  
bit 0  
bit 7-6 Unimplemented: Read as ‘0’  
bit 5  
bit 4  
OSCSEN: Oscillator System Clock Switch Enable bit  
1= Oscillator system clock switch option is disabled (main oscillator is source)  
0= Timer1 oscillator system clock switch option is enabled (oscillator switching is enabled)  
Unimplemented: Read as ‘0’  
bit 3-0 FOSC3:FOSC0: Oscillator Selection bits  
1111= RC oscillator with OSC2 configured as RA6  
1110= HS oscillator with SW enabled 4x PLL  
1101= EC oscillator with OSC2 configured as RA6 and SW enabled 4x PLL  
1100= EC oscillator with OSC2 configured as RA6 and HW enabled 4x PLL  
1011= Reserved; do not use  
1010= Reserved; do not use  
1001= Reserved; do not use  
1000= Reserved; do not use  
0111= RC oscillator with OSC2 configured as RA6  
0110= HS oscillator with HW enabled 4x PLL  
0101= EC oscillator with OSC2 configured as RA6  
0100= EC oscillator with OSC2 configured as divide by 4 clock output  
0011= RC oscillator with OSC2 configured as divide by 4 clock output  
0010= HS oscillator  
0001= XT oscillator  
0000= LP oscillator  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
2004 Microchip Technology Inc.  
DS30491C-page 347  
PIC18F6585/8585/6680/8680  
REGISTER 24-2: CONFIG2L:CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS300002h)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
BORV1  
BORV0 BOREN PWRTEN  
bit 0  
bit 7  
bit 7-4 Unimplemented: Read as ‘0’  
bit 3-2 BORV1:BORV0: Brown-out Reset Voltage bits  
11= VBOR set to 2.0V  
10= VBOR set to 2.7V  
01= VBOR set to 4.2V  
00= VBOR set to 4.5V  
bit 1  
bit 0  
BOREN: Brown-out Reset Enable bit  
1= Brown-out Reset enabled  
0= Brown-out Reset disabled  
PWRTEN: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS30491C-page 348  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 24-3: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
WDTPS3 WDTPS2 WDTPS1 WDTPS0 WDTEN  
bit 0  
bit 7  
bit 7-5 Unimplemented: Read as ‘0’  
bit 4-1 WDTPS3:WDTPS0: Watchdog Timer Postscaler Select bits  
1111 = 1:32768  
1110 = 1:16384  
1101 = 1:8192  
1100 = 1:4096  
1011 = 1:2048  
1010 = 1:1024  
1001 = 1:512  
1000 = 1:256  
0111= 1:128  
0110= 1:64  
0101= 1:32  
0100= 1:16  
0011= 1:8  
0010= 1:4  
0001= 1:2  
0000= 1:1  
bit 0  
WDTEN: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled (control is placed on the SWDTEN bit)  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
REGISTER 24-4: CONFIG3L:CONFIGURATIONREGISTER3LOW(BYTEADDRESS300004h)(1)  
R/P-1  
WAIT  
U-0  
U-0  
U-0  
U-0  
U-0  
R/P-1  
PM1  
R/P-1  
PM0  
bit 7  
bit 0  
bit 7  
WAIT: External Bus Data Wait Enable bit  
1= Wait selections unavailable for table reads and table writes  
0= Wait selections for table reads and table writes are determined by WAIT1:WAIT0 bits  
(MEMCOM<5:4>)  
bit 6-2 Unimplemented: Read as ‘0’  
bit 1-0 PM1:PM0: Processor Mode Select bits  
11= Microcontroller mode  
10= Microprocessor mode  
01= Microprocessor with Boot Block mode  
00= Extended Microcontroller mode  
Note 1: This register is unimplemented for PIC18F6X8X devices; maintain these bits set.  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
2004 Microchip Technology Inc.  
DS30491C-page 349  
PIC18F6585/8585/6680/8680  
REGISTER 24-5: CONFIG3H:CONFIGURATIONREGISTER3HIGH(BYTEADDRESS300005h)  
R/P-1  
U-0  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
MCLRE  
ECCPMX CCP2MX  
bit 0  
bit 7  
bit 7  
MCLRE: MCLR Enable bit(1)  
1= MCLR pin enabled, RG5 input pin disabled  
0= RG5 input enabled, MCLR disabled  
bit 6-2 Unimplemented: Read as ‘0’  
bit 1  
ECCPMX: CCP1 PWM outputs P1B, P1C mux bit (PIC18F8X8X devices only)(2)  
1= P1B, P1C are multiplexed with RE6, RE5  
0= P1B, P1C are multiplexed with RH7, RH6  
bit 0  
CCP2MX: CCP2 Mux bit  
In Microcontroller mode:  
1= CCP2 input/output is multiplexed with RC1  
0= CCP2 input/output is multiplexed with RE7  
In Microprocessor, Microprocessor with Boot Block and Extended Microcontroller modes  
(PIC18F8X8X devices only):  
1= CCP2 input/output is multiplexed with RC1  
0= CCP2 input/output is multiplexed with RB3  
Note 1: If MCLR is disabled, either disable low-voltage ICSP or hold RB5/PGM low to  
ensure proper entry into ICSP mode.  
2: Reserved for PIC18F6X8X devices; maintain this bit set.  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
REGISTER 24-6: CONFIG4L:CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS300006h)  
R/P-1  
U-0  
U-0  
U-0  
U-0  
R/P-1  
LVP  
U-0  
R/P-1  
STVREN  
bit 0  
DEBUG  
bit 7  
bit 7  
DEBUG: Background Debugger Enable bit  
1= Background debugger disabled. RB6 and RB7 configured as general purpose I/O pins.  
0= Background debugger enabled. RB6 and RB7 are dedicated to in-circuit debug.  
bit 6-3 Unimplemented: Read as ‘0’  
bit 2  
LVP: Low-Voltage ICSP Enable bit  
1= Low-voltage ICSP enabled  
0= Low-voltage ICSP disabled  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
STVREN: Stack Full/Underflow Reset Enable bit  
1= Stack full/underflow will cause Reset  
0= Stack full/underflow will not cause Reset  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS30491C-page 350  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 24-7: CONFIG5L: CONFIGURATION REGISTER 5 LOW (BYTE ADDRESS 300008h)  
U-0  
U-0  
U-0  
U-0  
R/C-1  
CP3(1)  
R/C-1  
CP2  
R/C-1  
CP1  
R/C-1  
CP0  
bit 7  
bit 0  
bit 7-4 Unimplemented: Read as ‘0’  
bit 3  
CP3: Code Protection bit(1)  
1= Block 3 (00C000-00FFFFh) not code-protected  
0= Block 3 (00C000-00FFFFh) code-protected  
Note 1: Unimplemented in PIC18FX585 devices; maintain this bit set.  
CP2: Code Protection bit  
bit 2  
bit 1  
bit 0  
1= Block 2 (008000-00BFFFh) not code-protected  
0= Block 2 (008000-00BFFFh) code-protected  
CP1: Code Protection bit  
1= Block 1 (004000-007FFFh) not code-protected  
0= Block 1 (004000-007FFFh) code-protected  
CP0: Code Protection bit  
1= Block 0 (000800-003FFFh) not code-protected  
0= Block 0 (000800-003FFFh) code-protected  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
REGISTER 24-8: CONFIG5H:CONFIGURATIONREGISTER5HIGH(BYTEADDRESS300009h)  
R/C-1  
CPD  
R/C-1  
CPB  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
bit 7  
bit 6  
CPD: Data EEPROM Code Protection bit  
1= Data EEPROM not code-protected  
0= Data EEPROM code-protected  
CPB: Boot Block Code Protection bit  
1= Boot block (000000-0007FFh) not code-protected  
0= Boot block (000000-0007FFh) code-protected  
bit 5-0 Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
2004 Microchip Technology Inc.  
DS30491C-page 351  
PIC18F6585/8585/6680/8680  
REGISTER 24-9: CONFIG6L:CONFIGURATIONREGISTER6LOW(BYTE ADDRESS30000Ah)  
U-0  
U-0  
U-0  
U-0  
R/C-1  
WRT3(1)  
R/C-1  
WRT2  
R/C-1  
WRT1  
R/C-1  
WRT0  
bit 7  
bit 0  
bit 7-4 Unimplemented: Read as ‘0’  
bit 3  
WRT3: Write Protection bit(1)  
1= Block 3 (00C000-00FFFFh) not write-protected  
0= Block 3 (00C000-00FFFFh) write-protected  
Note 1: Unimplemented in PIC18FX585 devices; maintain this bit set.  
WRT2: Write Protection bit  
bit 2  
bit 1  
bit 0  
1= Block 2 (008000-00BFFFh) not write-protected  
0= Block 2 (008000-00BFFFh) write-protected  
WRT1: Write Protection bit  
1= Block 1 (004000-007FFFh) not write-protected  
0= Block 1 (004000-007FFFh) write-protected  
WR0: Write Protection bit  
1= Block 0 (000800-003FFFh) not write-protected  
0= Block 0 (000800-003FFFh) write-protected  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
REGISTER 24-10: CONFIG6H:CONFIGURATION REGISTER 6 HIGH(BYTEADDRESS30000Bh)  
R/C-1  
R/C-1  
R/C-1  
U-0  
U-0  
U-0  
U-0  
U-0  
WRTD  
WRTB  
WRTC  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
WRTD: Data EEPROM Write Protection bit  
1= Data EEPROM not write-protected  
0= Data EEPROM write-protected  
WRTB: Boot Block Write Protection bit  
1= Boot block (000000-0007FFh) not write-protected  
0= Boot block (000000-0007FFh) write-protected  
WRTC: Configuration Register Write Protection bit  
1= Configuration registers (300000-3000FFh) not write-protected  
0= Configuration registers (300000-3000FFh) write-protected  
bit 4-0 Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS30491C-page 352  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
REGISTER 24-11: CONFIG7L: CONFIGURATION REGISTER 7 LOW (BYTE ADDRESS 30000Ch)  
U-0  
U-0  
U-0  
U-0  
R/C-1  
EBTR3(1)  
R/C-1  
R/C-1  
R/C-1  
EBTR2  
EBTR1  
EBTR0  
bit 7  
bit 0  
bit 7-4 Unimplemented: Read as ‘0’  
bit 3  
EBTR3: Table Read Protection bit(1)  
1= Block 3 (00C000-00FFFFh) not protected from table reads executed in other blocks  
0= Block 3 (00C000-00FFFFh) protected from table reads executed in other blocks  
Note 1: Unimplemented in PIC18FX585 devices; maintain this bit set.  
EBTR2: Table Read Protection bit  
bit 2  
bit 1  
bit 0  
1= Block 2 (008000-00BFFFh) not protected from table reads executed in other blocks  
0= Block 2 (008000-00BFFFh) protected from table reads executed in other blocks  
EBTR1: Table Read Protection bit  
1= Block 1 (004000-007FFFh) not protected from table reads executed in other blocks  
0= Block 1 (004000-007FFFh) protected from table reads executed in other blocks  
EBTR0: Table Read Protection bit  
1= Block 0 (000800-003FFFh) not protected from table reads executed in other blocks  
0= Block 0 (000800-003FFFh) protected from table reads executed in other blocks  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
REGISTER 24-12: CONFIG7H:CONFIGURATION REGISTER 7 HIGH(BYTEADDRESS30000Dh)  
U-0  
R/C-1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
EBTRB  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
EBTRB: Boot Block Table Read Protection bit  
1= Boot block (000000-0007FFh) not protected from table reads executed in other blocks  
0= Boot block (000000-0007FFh) protected from table reads executed in other blocks  
bit 5-0 Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
2004 Microchip Technology Inc.  
DS30491C-page 353  
PIC18F6585/8585/6680/8680  
REGISTER 24-13: DEVICE ID REGISTER 1 FOR PIC18FXX8X DEVICES (ADDRESS 3FFFFEh)  
R
R
R
R
R
R
R
R
DEV2  
DEV1  
DEV0  
REV4  
REV3  
REV2  
REV1  
REV0  
bit 7  
bit 0  
bit 7-5 DEV2:DEV0: Device ID bits  
000= PIC18F8680  
001= PIC18F6680  
010= PIC18F8585  
011= PIC18F6585  
bit 4-0 REV4:REV0: Revision ID bits  
These bits are used to indicate the device revision.  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
REGISTER 24-14: DEVICE ID REGISTER 2 FOR PIC18FXX8X DEVICES (ADDRESS 3FFFFFh)  
R-0  
R-0  
R-0  
R-0  
R-1  
R-0  
R-1  
R-0  
DEV3  
bit 0  
DEV10  
DEV9  
DEV8  
DEV7  
DEV6  
DEV5  
DEV4  
bit 7  
bit 7-0 DEV10:DEV3: Device ID bits  
These bits are used with the DEV2:DEV0 bits in the Device ID Register 1 to identify the  
part number.  
0000 1010= PIC18F6585/8585/6680/8680  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
DS30491C-page 354  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
The WDT time-out period values may be found in  
Section 27.0 “Electrical Characteristics” under  
24.2 Watchdog Timer (WDT)  
The Watchdog Timer is a free-running, on-chip RC  
oscillator which does not require any external compo-  
nents. This RC oscillator is separate from the RC  
oscillator of the OSC1/CLKI pin. That means that the  
WDT will run even if the clock on the OSC1/CLKI and  
OSC2/CLKO/RA6 pins of the device has been stopped,  
for example, by execution of a SLEEPinstruction.  
parameter #31. Values for the WDT postscaler may be  
assigned using the configuration bits.  
Note 1: The CLRWDT and SLEEP instructions  
clear the WDT and the postscaler if  
assigned to the WDT and prevent it from  
timing out and generating a device Reset  
condition.  
During normal operation, a WDT time-out generates a  
device Reset (Watchdog Timer Reset). If the device is  
in Sleep mode, a WDT time-out causes the device to  
wake-up and continue with normal operation (Watch-  
dog Timer wake-up). The TO bit in the RCON register  
will be cleared upon a WDT time-out.  
2: When a CLRWDT instruction is executed  
and the postscaler is assigned to the  
WDT, the postscaler count will be cleared  
but the postscaler assignment is not  
changed.  
The Watchdog Timer is enabled/disabled by a device  
configuration bit. If the WDT is enabled, software  
execution may not disable this function. When the  
WDTEN configuration bit is cleared, the SWDTEN bit  
enables/disables the operation of the WDT.  
24.2.1  
CONTROL REGISTER  
Register 24-15 shows the WDTCON register. This is a  
readable and writable register which contains a control  
bit that allows software to override the WDT enable  
configuration bit, only when the configuration bit has  
disabled the WDT.  
REGISTER 24-15: WDTCON REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SWDTEN  
bit 0  
bit 7  
bit 7-1 Unimplemented: Read as ‘0’  
bit 0  
SWDTEN: Software Controlled Watchdog Timer Enable bit  
1= Watchdog Timer is on  
0= Watchdog Timer is turned off if the WDTEN configuration bit in the Configuration register = 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2004 Microchip Technology Inc.  
DS30491C-page 355  
PIC18F6585/8585/6680/8680  
24.2.2  
WDT POSTSCALER  
The WDT has a postscaler that can extend the WDT  
Reset period. The postscaler is selected at the time of  
the device programming by the value written to the  
CONFIG2H Configuration register.  
FIGURE 24-1:  
WATCHDOG TIMER BLOCK DIAGRAM  
WDT Timer  
Postscaler  
16  
WDTPS3:WDTPS0  
16-to-1 MUX  
WDTEN  
Configuration bit  
SWDTEN bit  
WDT  
Time-out  
Note:  
WDPS3:WDPS0 are bits in register CONFIG2H.  
TABLE 24-2: SUMMARY OF WATCHDOG TIMER REGISTERS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CONFIG2H  
RCON  
IPEN  
WDTPS3 WDTPS2 WDTPS2 WDTPS0  
WDTEN  
BOR  
RI  
TO  
PD  
POR  
WDTCON  
SWDTEN  
Legend: Shaded cells are not used by the Watchdog Timer.  
DS30491C-page 356  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
Other peripherals cannot generate interrupts since  
during Sleep, no on-chip clocks are present.  
24.3 Power-down Mode (Sleep)  
Power-down mode is entered by executing a SLEEP  
External MCLR Reset will cause a device Reset. All  
other events are considered a continuation of program  
execution and will cause a “wake-up”. The TO and PD  
bits in the RCON register can be used to determine the  
cause of the device Reset. The PD bit which is set on  
power-up is cleared when Sleep is invoked. The TO bit  
is cleared if a WDT time-out occurred (and caused  
wake-up).  
instruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit (RCON<3>) is cleared, the  
TO (RCON<4>) bit is set and the oscillator driver is  
turned off. The I/O ports maintain the status they had  
before the SLEEP instruction was executed (driving  
high, low, or high-impedance).  
For lowest current consumption in this mode, place all  
I/O pins at either VDD or VSS, ensure no external cir-  
cuitry is drawing current from the I/O pin, power-down  
the A/D and disable external clocks. Pull all I/O pins  
that are high-impedance inputs, high or low externally  
to avoid switching currents caused by floating inputs.  
The T0CKI input should also be at VDD or VSS for low-  
est current consumption. The contribution from on-chip  
pull-ups on PORTB should be considered.  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 2) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the inter-  
rupt address. In cases where the execution of the  
instruction following SLEEP is not desirable, the user  
should have a NOPafter the SLEEPinstruction.  
The MCLR pin must be at a logic high level (VIHMC).  
24.3.1  
WAKE-UP FROM SLEEP  
The device can wake-up from Sleep through one of the  
following events:  
24.3.2  
WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
1. External Reset input on MCLR pin.  
2. Watchdog Timer Wake-up (if WDT was  
enabled).  
• If an interrupt condition (interrupt flag bit and  
interrupt enable bits are set) occurs before the  
execution of a SLEEPinstruction, the SLEEP  
instruction will complete as a NOP. Therefore, the  
WDT and WDT postscaler will not be cleared, the  
TO bit will not be set and PD bits will not be  
cleared.  
3. Interrupt from INT pin, RB port change or a  
peripheral interrupt.  
The following peripheral interrupts can wake the device  
from Sleep:  
1. PSP read or write.  
2. TMR1 interrupt. Timer1 must be operating as an  
asynchronous counter.  
• If the interrupt condition occurs during or after  
the execution of a SLEEPinstruction, the device  
will immediately wake-up from Sleep. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT  
3. TMR3 interrupt. Timer3 must be operating as an  
asynchronous counter.  
4. CCP Capture mode interrupt.  
5. Special event trigger (Timer1 in Asynchronous  
mode using an external clock).  
postscaler will be cleared, the TO bit will be set  
and the PD bit will be cleared.  
6. MSSP (Start/Stop) bit detect interrupt.  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
7. MSSP transmit or receive in Slave mode  
(SPI/I2C).  
8. USART RX or TX (Synchronous Slave mode).  
9. A/D conversion (when A/D clock source is RC).  
10. EEPROM write operation complete.  
11. LVD interrupt.  
To ensure that the WDT is cleared, a CLRWDT  
instruction should be executed before a SLEEP  
instruction.  
12. CAN wake-up interrupt.  
2004 Microchip Technology Inc.  
DS30491C-page 357  
PIC18F6585/8585/6680/8680  
FIGURE 24-2:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT(1,2)  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKO(4)  
INT pin  
(2)  
TOST  
INTF Flag  
(INTCON<1>)  
Interrupt Latency(3)  
GIEH bit  
(INTCON<7>)  
Processor in  
Sleep  
INSTRUCTION FLOW  
PC  
PC  
PC+2  
PC+4  
PC+4  
PC + 4  
0008h  
000Ah  
Instruction  
Inst(0008h)  
Inst(PC + 2)  
Inst(PC + 4)  
Inst(PC + 2)  
Inst(000Ah)  
Inst(PC) = Sleep  
Fetched  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Inst(0008h)  
Sleep  
Inst(PC - 1)  
Note 1: XT, HS or LP Oscillator mode assumed.  
2: GIE = 1assumed. In this case after wake-up, the processor jumps to the interrupt routine. If GIE = 0, execution will continue in-line.  
3: TOST = 1024 TOSC (drawing not to scale). This delay will not occur for RC and EC Oscillator modes.  
4: CLKO is not available in these oscillator modes but shown here for timing reference.  
DS30491C-page 358  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
Figure 24-3 shows the program memory organization  
for 48 and 64-Kbyte devices and the specific code  
protection bit associated with each block. The actual  
24.4 Program Verification and  
Code Protection  
The overall structure of the code protection on the  
PIC18 Flash devices differs significantly from other  
PICmicro® devices.  
locations of the bits are summarized in Table 24-3.  
The user program memory is divided on binary bound-  
aries into four blocks of 16 Kbytes each. The first block  
is further divided into a boot block of 2048 bytes and a  
second block (Block 0) of 14 Kbytes.  
Each of the blocks has three code protection bits  
associated with them. They are:  
• Code-Protect bit (CPn)  
• Write-Protect bit (WRTn)  
• External Block Table Read bit (EBTRn)  
FIGURE 24-3:  
CODE-PROTECTED PROGRAM MEMORY FOR PIC18FXX8X DEVICES  
MEMORY SIZE/DEVICE  
Block Code Protection  
48 Kbytes  
64 Kbytes  
Address  
Controlled By:  
(PIC18FX585  
(PIC18FX680)  
Range  
000000h  
0007FFh  
Boot Block  
Boot Block  
Block 0  
CPB, WRTB, EBTRB  
CP0, WRT0, EBTR0  
000800h  
003FFFh  
Block 0  
Block 1  
004000h  
Block 1  
Block 2  
Block 3  
CP1, WRT1, EBTR1  
CP2, WRT2, EBTR2  
CP3, WRT3, EBTR3  
007FFFh  
008000h  
Block 2  
00BFFFh  
00C000h  
Unimplemented Read ‘0’  
00FFFFh  
TABLE 24-3: SUMMARY OF CODE PROTECTION REGISTERS  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300008h  
CONFIG5L  
CONFIG5H  
CONFIG6L  
CPD  
CPB  
CP3(1)  
CP2  
CP1  
CP0  
300009h  
30000Ah  
30000Bh  
30000Ch  
30000Dh  
WRT3(1)  
EBTR3(1) EBTR2  
WRT2  
WRT1  
WRT0  
CONFIG6H WRTD  
WRTB  
WRTC  
CONFIG7L  
CONFIG7H  
EBTR1  
EBTR0  
EBTRB  
Legend: Shaded cells are unimplemented.  
Note 1: Unimplemented in PIC18FX585 devices.  
2004 Microchip Technology Inc.  
DS30491C-page 359  
PIC18F6585/8585/6680/8680  
that block is not allowed to read and will result in read-  
ing ‘0’s. Figures 24-4 through 24-6 illustrate table write  
and table read protection.  
24.4.1  
PROGRAM MEMORY  
CODE PROTECTION  
The user memory may be read to or written from any  
location using the table read and table write instruc-  
tions. The device ID may be read with table reads. The  
Configuration registers may be read and written with  
the table read and table write instructions.  
Note:  
Code protection bits may only be written to  
a ‘0’ from a ‘1’ state. It is not possible to  
write a ‘1’ to a bit in the ‘0’ state. Code  
protection bits are only set to ‘1’ by a full  
chip erase or block erase function. The full  
chip erase and block erase functions can  
only be initiated via ICSP or an external  
programmer.  
In User mode, the CPn bits have no direct effect. CPn  
bits inhibit external reads and writes. A block of user  
memory may be protected from table writes if the  
WRTn configuration bit is ‘0’. The EBTRn bits control  
table reads. For a block of user memory with the  
EBTRn bit set to ‘0’, a table read instruction that exe-  
cutes from within that block is allowed to read. A table  
read instruction that executes from a location outside of  
FIGURE 24-4:  
TABLE WRITE (WRTn) DISALLOWED  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
0007FFh  
000800h  
WRTB, EBTRB = 11  
TBLPTR = 000FFFh  
PC = 003FFEh  
WRT0, EBTR0 = 01  
WRT1, EBTR1 = 11  
TBLWT *  
003FFFh  
004000h  
007FFFh  
008000h  
TBLWT *  
WRT2, EBTR2 = 11  
WRT3, EBTR3 = 11  
PC = 008FFEh  
00BFFFh  
00C000h  
00FFFFh  
Results: All table writes disabled to Block n whenever WRTn = 0.  
DS30491C-page 360  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 24-5:  
EXTERNAL BLOCK TABLE READ (EBTRn) DISALLOWED  
Register Values  
Program Memory Configuration Bit Settings  
000000h  
0007FFh  
000800h  
WRTB, EBTRB = 11  
WRT0, EBTR0 = 10  
TBLPTR = 000FFFh  
003FFFh  
004000h  
TBLRD *  
PC = 004FFEh  
WRT1, EBTR1 = 11  
007FFFh  
008000h  
WRT2, EBTR2 = 11  
WRT3, EBTR3 = 11  
00BFFFh  
00C000h  
00FFFFh  
Results: All table reads from external blocks to Block n are disabled whenever EBTRn = 0.  
TABLAT register returns a value of ‘0’.  
FIGURE 24-6:  
EXTERNAL BLOCK TABLE READ (EBTRn) ALLOWED  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
0007FFh  
000800h  
WRTB, EBTRB = 11  
TBLPTR = 000FFFh  
PC = 003FFEh  
WRT0, EBTR0 = 10  
TBLRD *  
003FFFh  
004000h  
WRT1, EBTR1 = 11  
007FFFh  
008000h  
WRT2, EBTR2 = 11  
WRT3, EBTR3 = 11  
00BFFFh  
00C000h  
00FFFFh  
Results: Table reads permitted within Block n even when EBTRBn = 0.  
TABLAT register returns the value of the data at the location TBLPTR.  
2004 Microchip Technology Inc.  
DS30491C-page 361  
PIC18F6585/8585/6680/8680  
24.4.2  
DATA EEPROM CODE  
PROTECTION  
24.7 In-Circuit Debugger  
When the DEBUG bit in Configuration register,  
CONFIG4L, is programmed to a ‘0’, the in-circuit  
debugger functionality is enabled. This function allows  
simple debugging functions when used with MPLAB®  
IDE. When the microcontroller has this feature  
enabled, some of the resources are not available for  
general use. Table 24-4 shows which features are  
consumed by the background debugger.  
The entire data EEPROM is protected from external  
reads and writes by two bits: CPD and WRTD. CPD  
inhibits external reads and writes of data EEPROM.  
WRTD inhibits external writes to data EEPROM. The  
CPU can continue to read and write data EEPROM  
regardless of the protection bit settings.  
24.4.3  
CONFIGURATION REGISTER  
PROTECTION  
TABLE 24-4: DEBUGGER RESOURCES  
The Configuration registers can be write-protected. The  
WRTC bit controls protection of the Configuration regis-  
ters. In User mode, the WRTC bit is readable only. WRTC  
can only be written via ICSP or an external programmer.  
I/O pins  
RB6, RB7  
Stack  
2 levels  
512 bytes  
10 bytes  
Program Memory  
Data Memory  
24.5 ID Locations  
To use the in-circuit debugger function of the micro-  
controller, the design must implement In-Circuit Serial  
Programming connections to MCLR/VPP, VDD, GND,  
RB7 and RB6. This will interface to the in-circuit  
debugger module available from Microchip or one of  
the third party development tool companies.  
Eight memory locations (200000h-200007h) are  
designated as ID locations where the user can store  
checksum or other code identification numbers. These  
locations are accessible during normal execution  
through the TBLRD and TBLWT instructions or during  
program/verify. The ID locations can be read when the  
device is code-protected.  
24.6  
In-Circuit Serial Programming  
PIC18FXX80/XX85 microcontrollers can be serially  
programmed while in the end application circuit. This is  
simply done with two lines for clock and data, and three  
other lines for power, ground and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed.  
DS30491C-page 362  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
If Low-Voltage Programming mode is not used, the LVP  
24.8 Low-Voltage ICSP Programming  
bit can be programmed to a ‘0’ and RB5/KBI1/PGM  
becomes a digital I/O pin. However, the LVP bit may  
only be programmed when programming is entered  
with VIHH on RG5/MCLR/VPP.  
The LVP bit in Configuration register, CONFIG4L,  
enables Low-Voltage ICSP Programming. This mode  
allows the microcontroller to be programmed via ICSP  
using a VDD source in the operating voltage range. This  
only means that VPP does not have to be brought to VIHH  
but can instead be left at the normal operating voltage.  
In this mode, the RB5/KBI1/PGM pin is dedicated to the  
programming function and ceases to be a general pur-  
pose I/O pin. During programming, VDD is applied to the  
RG5/MCLR/VPP pin. To enter Programming mode, VDD  
must be applied to the RB5/KBI1/PGM pin, provided the  
LVP bit is set. The LVP bit defaults to a ‘1’ from the  
factory.  
It should be noted that once the LVP bit is programmed  
to ‘0’, only the High-Voltage Programming mode is  
available and only High-Voltage Programming mode  
can be used to program the device.  
When using low-voltage ICSP, the part must be sup-  
plied 4.5V to 5.5V if a bulk erase will be executed. This  
includes reprogramming of the code-protect bits from  
an on-state to an off-state. For all other cases of low-  
voltage ICSP, the part may be programmed at the  
normal operating voltage. This means unique user IDs  
or user code can be reprogrammed or added.  
Note 1: The High-Voltage Programming mode is  
always available regardless of the state of  
the LVP bit, by applying VIHH to the MCLR  
pin.  
2: While in Low-Voltage ICSP mode, the  
RB5 pin can no longer be used as a  
general purpose I/O pin and should be  
held low during normal operation.  
3: When using Low-Voltage ICSP Program-  
ming (LVP) and the pull-ups on PORTB  
are enabled, bit 5 in the TRISB register  
must be cleared to disable the pull-up on  
RB5 and ensure the proper operation of  
the device.  
4: If the device Master Clear is disabled,  
verify that either of the following is done to  
ensure proper entry into ICSP mode:  
a) disable Low-Voltage Programming  
(CONFIG4L<2> = 0); or  
b) make certain that RB5/KBI1/PGM is  
held low during entry into ICSP.  
2004 Microchip Technology Inc.  
DS30491C-page 363  
PIC18F6585/8585/6680/8680  
NOTES:  
DS30491C-page 364  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
The literal instructions may use some of the following  
operands:  
25.0 INSTRUCTION SET SUMMARY  
The PIC18 instruction set adds many enhancements to  
the previous PICmicro instruction sets, while maintain-  
ing an easy migration from these PICmicro instruction  
sets.  
• A literal value to be loaded into a file register  
(specified by ‘k’)  
• The desired FSR register to load the literal value  
into (specified by ‘f’)  
Most instructions are a single program memory word  
(16 bits) but there are three instructions that require two  
program memory locations.  
• No operand required (specified by ‘—’)  
The control instructions may use some of the following  
operands:  
Each single-word instruction is a 16-bit word divided  
into an opcode, which specifies the instruction type and  
one or more operands, which further specify the  
operation of the instruction.  
• A program memory address (specified by ‘n’)  
• The mode of the call or return instructions  
(specified by ‘s’)  
• The mode of the table read and table write  
instructions (specified by ‘m’)  
The instruction set is highly orthogonal and is grouped  
into four basic categories:  
• No operand required (specified by ‘—’)  
Byte-oriented operations  
Bit-oriented operations  
Literal operations  
All instructions are a single word except for three  
double-word instructions. These three instructions  
were made double-word instructions so that all the  
required information is available in these 32 bits. In the  
second word, the 4 MSbs are ‘1’s. If this second word  
is executed as an instruction (by itself), it will execute  
as a NOP.  
Control operations  
The PIC18 instruction set summary in Table 25-2 lists  
byte-oriented, bit-oriented, literal and control  
operations. Table 25-1 shows the opcode field  
descriptions.  
All single-word instructions are executed in a single  
instruction cycle unless a conditional test is true or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles with the additional instruction cycle(s) executed  
as a NOP.  
Most byte-oriented instructions have three operands:  
1. The file register (specified by ‘f’)  
2. The destination of the result (specified by ‘d’)  
3. The accessed memory (specified by ‘a’)  
The file register designator ‘f’ specifies which file  
register is to be used by the instruction.  
The double-word instructions execute in two instruction  
cycles.  
The destination designator ‘d’ specifies where the  
result of the operation is to be placed. If ‘d’ is zero, the  
result is placed in the WREG register. If ‘d’ is one, the  
result is placed in the file register specified in the  
instruction.  
One instruction cycle consists of four oscillator periods.  
Thus, for an oscillator frequency of 4 MHz, the normal  
instruction execution time is 1 µs. If a conditional test is  
true or the program counter is changed as a result of an  
instruction, the instruction execution time is 2 µs.  
Two-word branch instructions (if true) would take 3 µs.  
All bit-oriented instructions have three operands:  
1. The file register (specified by ‘f’)  
Figure 25-1 shows the general formats that the  
instructions can have.  
2. The bit in the file register (specified by ‘b’)  
3. The accessed memory (specified by ‘a’)  
All examples use the format ‘nnh’ to represent a hexa-  
decimal number, where ‘h’ signifies a hexadecimal  
digit.  
The bit field designator ‘b’ selects the number of the bit  
affected by the operation, while the file register desig-  
nator ‘f’ represents the number of the file in which the  
bit is located.  
The Instruction Set Summary, shown in Table 25-2,  
lists the instructions recognized by the Microchip  
Assembler (MPASMTM).  
Section 25.1 “Instruction Set” provides a description  
of each instruction.  
2004 Microchip Technology Inc.  
DS30491C-page 365  
PIC18F6585/8585/6680/8680  
TABLE 25-1: OPCODE FIELD DESCRIPTIONS  
Field  
Description  
a
RAM access bit  
a = 0: RAM location in Access RAM (BSR register is ignored)  
a = 1: RAM bank is specified by BSR register  
bbb  
BSR  
d
Bit address within an 8-bit file register (0 to 7).  
Bank Select Register. Used to select the current RAM bank.  
Destination select bit  
d = 0: store result in WREG  
d = 1: store result in file register f  
dest  
f
Destination either the WREG register or the specified register file location.  
8-bit register file address (0x00 to 0xFF).  
fs  
12-bit register file address (0x000 to 0xFFF). This is the source address.  
12-bit register file address (0x000 to 0xFFF). This is the destination address.  
Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).  
Label name.  
fd  
k
label  
mm  
The mode of the TBLPTR register for the table read and table write instructions.  
Only used with table read and table write instructions:  
*
No change to register (such as TBLPTR with table reads and writes).  
Post-Increment register (such as TBLPTR with table reads and writes).  
Post-Decrement register (such as TBLPTR with table reads and writes).  
Pre-Increment register (such as TBLPTR with table reads and writes).  
*+  
*-  
+*  
n
The relative address (2’s complement number) for relative branch instructions, or the direct address for  
call/branch and return instructions.  
PRODH  
PRODL  
s
Product of Multiply High Byte.  
Product of Multiply Low Byte.  
Fast Call/Return mode select bit  
s = 0: do not update into/from shadow registers  
s = 1: certain registers loaded into/from shadow registers (Fast mode)  
u
Unused or unchanged.  
WREG  
x
Working register (accumulator).  
Don’t care (0 or 1).  
The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all  
Microchip software tools.  
TBLPTR  
TABLAT  
TOS  
21-bit Table Pointer (points to a program memory location).  
8-bit Table Latch.  
Top-of-Stack.  
PC  
Program Counter.  
PCL  
Program Counter Low Byte.  
Program Counter High Byte.  
Program Counter High Byte Latch.  
Program Counter Upper Byte Latch.  
Global Interrupt Enable bit.  
Watchdog Timer.  
PCH  
PCLATH  
PCLATU  
GIE  
WDT  
TO  
Time-out bit.  
PD  
Power-down bit.  
C, DC, Z, OV, N  
ALU status bits: Carry, Digit Carry, Zero, Overflow, Negative.  
Optional.  
[
]
)
(
Contents.  
< >  
Assigned to.  
Register bit field.  
In the set of.  
italics  
User defined term (font is courier).  
DS30491C-page 366  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 25-1:  
GENERAL FORMAT FOR INSTRUCTIONS  
Byte-oriented file register operations  
15 10  
OPCODE f (FILE #)  
Example Instruction  
9
8
7
0
ADDWF MYREG, W, B  
d
a
d = 0for result destination to be WREG register  
d = 1for result destination to be file register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit file register address  
Byte to Byte move operations (2-word)  
15  
12 11  
0
0
OPCODE  
f (Source FILE #)  
MOVFF MYREG1, MYREG2  
15  
12 11  
1111  
f (Destination FILE #)  
f = 12-bit file register address  
Bit-oriented file register operations  
15 12 11 9 8  
OPCODE b (BIT #)  
7
0
BSF MYREG, bit, B  
a
f (FILE #)  
b = 3-bit position of bit in file register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit file register address  
Literal operations  
15  
8
7
0
MOVLW 0x7F  
OPCODE  
k (literal)  
k = 8-bit immediate value  
Control operations  
CALL, GOTO and Branch operations  
15  
8 7  
0
GOTO Label  
OPCODE  
12 11  
n<7:0> (literal)  
15  
0
1111  
n<19:8> (literal)  
n = 20-bit immediate value  
15  
15  
8
7
0
CALL MYFUNC  
OPCODE  
12 11  
n<7:0> (literal)  
S
0
n<19:8> (literal)  
S = Fast bit  
11 10  
15  
0
0
BRA MYFUNC  
BC MYFUNC  
OPCODE  
n<10:0> (literal)  
15  
OPCODE  
8 7  
n<7:0> (literal)  
2004 Microchip Technology Inc.  
DS30491C-page 367  
PIC18F6585/8585/6680/8680  
TABLE 25-2: PIC18FXXX INSTRUCTION SET  
16-Bit Instruction Word  
MSb LSb  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF f, d, a Add WREG and f  
ADDWFC f, d, a Add WREG and Carry bit to f  
ANDWF f, d, a AND WREG with f  
1
0010 01da ffff ffff C, DC, Z, OV, N 1, 2  
0010 00da ffff ffff C, DC, Z, OV, N 1, 2  
1
1
1
1
0001 01da ffff ffff Z, N  
0110 101a ffff ffff Z  
0001 11da ffff ffff Z, N  
1,2  
2
1, 2  
4
CLRF  
f, a  
Clear f  
COMF  
f, d, a Complement f  
CPFSEQ f, a  
CPFSGT f, a  
CPFSLT f, a  
Compare f with WREG, Skip =  
Compare f with WREG, Skip >  
Compare f with WREG, Skip <  
1 (2 or 3) 0110 001a ffff ffff None  
1 (2 or 3) 0110 010a ffff ffff None  
1 (2 or 3) 0110 000a ffff ffff None  
4
1, 2  
DECF  
f, d, a Decrement f  
1
0000 01da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
DECFSZ f, d, a Decrement f, Skip if 0  
DCFSNZ f, d, a Decrement f, Skip if Not 0  
1 (2 or 3) 0010 11da ffff ffff None  
1 (2 or 3) 0100 11da ffff ffff None  
1, 2, 3, 4  
1, 2  
INCF  
f, d, a Increment f  
1
0010 10da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
INCFSZ f, d, a Increment f, Skip if 0  
INFSNZ f, d, a Increment f, Skip if Not 0  
1 (2 or 3) 0011 11da ffff ffff None  
1 (2 or 3) 0100 10da ffff ffff None  
4
1, 2  
1, 2  
1
IORWF  
MOVF  
f, d, a Inclusive OR WREG with f  
f, d, a Move f  
1
1
2
0001 00da ffff ffff Z, N  
0101 00da ffff ffff Z, N  
1100 ffff ffff ffff None  
1111 ffff ffff ffff  
MOVFF fs, fd Move fs (source) to 1st word  
fd (destination) 2nd word  
MOVWF f, a  
MULWF f, a  
Move WREG to f  
Multiply WREG with f  
Negate f  
1
1
1
1
1
1
1
1
1
0110 111a ffff ffff None  
0000 001a ffff ffff None  
0110 110a ffff ffff C, DC, Z, OV, N 1, 2  
0011 01da ffff ffff C, Z, N  
0100 01da ffff ffff Z, N  
0011 00da ffff ffff C, Z, N  
0100 00da ffff ffff Z, N  
0110 100a ffff ffff None  
NEGF  
RLCF  
RLNCF  
RRCF  
f, a  
f, d, a Rotate Left f through Carry  
f, d, a Rotate Left f (No Carry)  
f, d, a Rotate Right f through Carry  
1, 2  
RRNCF f, d, a Rotate Right f (No Carry)  
SETF f, a Set f  
SUBFWB f, d, a Subtract f from WREG with  
borrow  
0101 01da ffff ffff C, DC, Z, OV, N 1, 2  
SUBWF f, d, a Subtract WREG from f  
SUBWFB f, d, a Subtract WREG from f with  
borrow  
1
1
0101 11da ffff ffff C, DC, Z, OV, N  
0101 10da ffff ffff C, DC, Z, OV, N 1, 2  
SWAPF f, d, a Swap nibbles in f  
1
0011 10da ffff ffff None  
4
TSTFSZ f, a  
Test f, Skip if 0  
1 (2 or 3) 0110 011a ffff ffff None  
1, 2  
XORWF f, d, a Exclusive OR WREG with f  
1
0001 10da ffff ffff Z, N  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
BTG  
f, b, a Bit Clear f  
f, b, a Bit Set f  
f, b, a Bit Test f, Skip if Clear  
f, b, a Bit Test f, Skip if Set  
f, d, a Bit Toggle f  
1
1
1001 bbba ffff ffff None  
1000 bbba ffff ffff None  
1, 2  
1, 2  
3, 4  
3, 4  
1, 2  
1 (2 or 3) 1011 bbba ffff ffff None  
1 (2 or 3) 1010 bbba ffff ffff None  
1
0111 bbba ffff ffff None  
Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is  
driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be  
cleared if assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that  
all program memory locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
DS30491C-page 368  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 25-2: PIC18FXXX INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
MSb LSb  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
CONTROL OPERATIONS  
BC  
BN  
n
n
n
n
n
n
n
n
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
1110 0010 nnnn nnnn None  
1110 0110 nnnn nnnn None  
1110 0011 nnnn nnnn None  
1110 0111 nnnn nnnn None  
1110 0101 nnnn nnnn None  
1110 0001 nnnn nnnn None  
1110 0100 nnnn nnnn None  
1101 0nnn nnnn nnnn None  
1110 0000 nnnn nnnn None  
1110 110s kkkk kkkk None  
1111 kkkk kkkk kkkk  
Branch if Negative  
Branch if Not Carry  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
Branch if Overflow  
Branch Unconditionally  
Branch if Zero  
BNC  
BNN  
BNOV  
BNZ  
BOV  
BRA  
BZ  
n
n, s  
1 (2)  
2
CALL  
Call subroutine 1st word  
2nd word  
CLRWDT —  
Clear Watchdog Timer  
Decimal Adjust WREG  
Go to address 1st word  
2nd word  
1
1
2
0000 0000 0000 0100 TO, PD  
0000 0000 0000 0111 C  
1110 1111 kkkk kkkk None  
1111 kkkk kkkk kkkk  
DAW  
n
GOTO  
NOP  
NOP  
POP  
PUSH  
RCALL  
RESET  
RETFIE  
n
No Operation  
No Operation  
1
1
1
1
2
1
2
0000 0000 0000 0000 None  
1111 xxxx xxxx xxxx None  
0000 0000 0000 0110 None  
0000 0000 0000 0101 None  
1101 1nnn nnnn nnnn None  
0000 0000 1111 1111 All  
0000 0000 0001 000s GIE/GIEH,  
PEIE/GIEL  
4
Pop top of return stack (TOS)  
Push top of return stack (TOS)  
Relative Call  
Software device Reset  
Return from interrupt enable  
s
k
RETLW  
RETURN s  
SLEEP  
Return with literal in WREG  
Return from Subroutine  
Go into Standby mode  
2
2
1
0000 1100 kkkk kkkk None  
0000 0000 0001 001s None  
0000 0000 0000 0011 TO, PD  
Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is  
driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be  
cleared if assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that  
all program memory locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
2004 Microchip Technology Inc.  
DS30491C-page 369  
PIC18F6585/8585/6680/8680  
TABLE 25-2: PIC18FXXX INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
LITERAL OPERATIONS  
ADDLW  
ANDLW  
IORLW  
LFSR  
k
k
k
f, k  
Add literal and WREG  
1
0000 1111 kkkk  
0000 1011 kkkk  
0000 1001 kkkk  
1110 1110 00ff  
1111 0000 kkkk  
0000 0001 0000  
0000 1110 kkkk  
0000 1101 kkkk  
0000 1100 kkkk  
0000 1000 kkkk  
0000 1010 kkkk  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
kkkk Z, N  
kkkk None  
kkkk  
kkkk None  
kkkk None  
kkkk None  
kkkk None  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
AND literal with WREG  
Inclusive OR literal with WREG  
Move literal (12-bit) 2nd word  
to FSRx 1st word  
Move literal to BSR<3:0>  
Move literal to WREG  
Multiply literal with WREG  
Return with literal in WREG  
Subtract WREG from literal  
1
1
2
MOVLB  
MOVLW  
MULLW  
RETLW  
SUBLW  
XORLW  
k
k
k
k
k
k
1
1
1
2
1
Exclusive OR literal with WREG 1  
DATA MEMORY PROGRAM MEMORY OPERATIONS  
TBLRD*  
Table Read  
2
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
1000 None  
1001 None  
1010 None  
1011 None  
1100 None  
1101 None  
1110 None  
1111 None  
TBLRD*+  
TBLRD*-  
TBLRD+*  
TBLWT*  
TBLWT*+  
TBLWT*-  
TBLWT+*  
Table Read with post-increment  
Table Read with post-decrement  
Table Read with pre-increment  
Table Write  
Table Write with post-increment  
Table Write with post-decrement  
Table Write with pre-increment  
2 (5)  
Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that  
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is  
driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be  
cleared if assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that  
all program memory locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
DS30491C-page 370  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
25.1 Instruction Set  
ADDLW  
ADD literal to W  
ADDWF  
ADD W to f  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Syntax:  
[ label ] ADDWF  
f [,d [,a] f [,d [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(W) + k W  
N, OV, C, DC, Z  
Operation:  
(W) + (f) dest  
0000  
1111  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Description:  
The contents of W are added to the  
8-bit literal ‘k’ and the result is  
placed in W.  
0010  
01da  
ffff  
ffff  
Description:  
Add W to register ‘f’. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘d’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected. If ‘a’ is ‘1’,  
the BSR is used.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
ADDLW  
0x15  
Example:  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
W
=
0x10  
After Instruction  
W
=
0x25  
ADDWF  
REG, 0, 0  
Example:  
Before Instruction  
W
REG  
=
=
0x17  
0xC2  
After Instruction  
W
REG  
=
=
0xD9  
0xC2  
2004 Microchip Technology Inc.  
DS30491C-page 371  
PIC18F6585/8585/6680/8680  
ADDWFC  
ADD W and Carry bit to f  
ANDLW  
AND literal with W  
Syntax:  
[ label ] ADDWFC  
f [,d [,a]]  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
(W) .AND. k W  
N, Z  
Operation:  
(W) + (f) + (C) dest  
0000  
1011  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
Description:  
The contents of W are ANDed with  
the 8-bit literal ‘k’. The result is  
placed in W.  
0010  
00da  
ffff  
ffff  
Description:  
Add W, the Carry Flag and data  
memory location ‘f’. If ‘d’ is ‘0’, the  
result is placed in W. If ‘d’ is ‘1’, the  
result is placed in data memory loca-  
tion ‘f’. If ‘a’ is ‘0’, the Access Bank  
will be selected. If ‘a’ is ‘1’, the BSR  
will not be overridden.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
ANDLW  
0x5F  
Example:  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
W
=
0xA3  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
After Instruction  
W
=
0x03  
ADDWFC  
REG, 0, 1  
Example:  
Before Instruction  
Carry bit =  
1
REG  
W
=
=
0x02  
0x4D  
After Instruction  
Carry bit =  
0
0x02  
REG  
=
W
=
0x50  
DS30491C-page 372  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
ANDWF  
AND W with f  
BC  
Branch if Carry  
[ label ] BC  
Syntax:  
[ label ] ANDWF  
f [,d [,a]]  
Syntax:  
n
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if carry bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
(W) .AND. (f) dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
0010  
nnnn  
nnnn  
0001  
01da  
ffff  
ffff  
Description:  
If the Carry bit is ‘1’, then the  
Description:  
The contents of W are AND’ed with  
register ‘f’. If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank will be  
selected. If ‘a’ is ‘1’, the BSR will  
not be overridden (default).  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
If Jump:  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
ANDWF  
REG, 0, 0  
Example:  
Before Instruction  
If No Jump:  
Q1  
W
REG  
=
=
0x17  
0xC2  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
After Instruction  
W
REG  
=
=
0x02  
0xC2  
HERE  
BC  
5
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Carry  
=
=
=
=
1;  
PC  
address (HERE+12)  
0;  
If Carry  
PC  
address (HERE+2)  
2004 Microchip Technology Inc.  
DS30491C-page 373  
PIC18F6585/8585/6680/8680  
BCF  
Bit Clear f  
BN  
Branch if Negative  
[ label ] BN  
Syntax:  
[ label ] BCF f,b[,a]  
Syntax:  
n
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if negative bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
0 f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0110  
nnnn  
nnnn  
1001  
bbba  
ffff  
ffff  
Description:  
If the Negative bit is ‘1’, then the  
program will branch.  
Description:  
Bit ‘b’ in register ‘f’ is cleared. If ‘a’  
is ‘0’, the Access Bank will be  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
If Jump:  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
Q1  
Q2  
Q3  
Q4  
register ‘f’  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
BCF  
FLAG_REG, 7, 0  
Example:  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Before Instruction  
FLAG_REG = 0xC7  
If No Jump:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
FLAG_REG = 0x47  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
HERE  
BN Jump  
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Negative = 1;  
PC address (Jump)  
If Negative = 0;  
PC address (HERE+2)  
=
=
DS30491C-page 374  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
BNC  
Branch if Not Carry  
BNN  
Branch if Not Negative  
Syntax:  
[ label ] BNC  
-128 n 127  
if carry bit is ‘0’  
n
Syntax:  
[ label ] BNN  
-128 n 127  
n
Operands:  
Operation:  
Operands:  
Operation:  
if negative bit is ‘0’  
(PC) + 2 + 2n PC  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0011  
nnnn  
nnnn  
1110  
0111  
nnnn  
nnnn  
Description:  
If the Carry bit is ‘0’, then the  
program will branch.  
Description:  
If the Negative bit is ‘0’, then the  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
HERE  
BNC Jump  
HERE  
BNN Jump  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
0;  
address (Jump)  
1;  
address (HERE+2)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Carry  
PC  
If Carry  
PC  
=
=
=
=
If Negative  
PC  
If Negative  
PC  
=
=
=
=
0;  
address (Jump)  
1;  
address (HERE+2)  
2004 Microchip Technology Inc.  
DS30491C-page 375  
PIC18F6585/8585/6680/8680  
BNOV  
Branch if Not Overflow  
BNZ  
Branch if Not Zero  
Syntax:  
[ label ] BNOV  
-128 n 127  
n
Syntax:  
[ label ] BNZ  
-128 n 127  
if zero bit is ‘0’  
n
Operands:  
Operation:  
Operands:  
Operation:  
if overflow bit is ‘0’  
(PC) + 2 + 2n PC  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0101  
nnnn  
nnnn  
1110  
0001  
nnnn  
nnnn  
Description:  
If the Overflow bit is ‘0’, then the  
program will branch.  
Description:  
If the Zero bit is ‘0’, then the  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
HERE  
BNOV Jump  
HERE  
BNZ Jump  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
0;  
address (Jump)  
1;  
address (HERE+2)  
After Instruction  
After Instruction  
If Overflow  
PC  
If Overflow  
PC  
=
=
=
=
0;  
If Zero  
PC  
If Zero  
PC  
=
=
=
=
address (Jump)  
1;  
address (HERE+2)  
DS30491C-page 376  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
BRA  
Unconditional Branch  
[ label ] BRA  
BSF  
Bit Set f  
Syntax:  
n
Syntax:  
[ label ] BSF f,b[,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
-1024 n 1023  
(PC) + 2 + 2n PC  
None  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operation:  
1 f<b>  
1101  
0nnn  
nnnn  
nnnn  
Status Affected:  
Encoding:  
None  
Description:  
Add the 2’s complement number  
‘2n’ to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is a  
two-cycle instruction.  
1000  
bbba  
ffff  
ffff  
Description:  
Bit ‘b’ in register ‘f’ is set. If ‘a’ is ‘0’,  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value.  
Words:  
Cycles:  
1
2
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
BSF  
FLAG_REG, 7, 1  
Example:  
Before Instruction  
HERE  
BRA Jump  
Example:  
FLAG_REG  
=
=
0x0A  
0x8A  
Before Instruction  
After Instruction  
FLAG_REG  
PC  
=
address (HERE)  
address (Jump)  
After Instruction  
PC  
=
2004 Microchip Technology Inc.  
DS30491C-page 377  
PIC18F6585/8585/6680/8680  
BTFSC  
Bit Test File, Skip if Clear  
BTFSS  
Bit Test File, Skip if Set  
Syntax:  
[ label ] BTFSC f,b[,a]  
Syntax:  
[ label ] BTFSS f,b[,a]  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operation:  
skip if (f<b>) = 0  
Operation:  
skip if (f<b>) = 1  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1011  
bbba  
ffff  
ffff  
1010  
bbba  
ffff  
ffff  
Description:  
If bit ‘b’ in register ‘f’ is ‘0’, then the  
next instruction is skipped.  
Description:  
If bit ‘b’ in register ‘f’ is ‘1’, then the  
next instruction is skipped.  
If bit ‘b’ is ‘0’, then the next  
If bit ‘b’ is ‘1’, then the next  
instruction fetched during the current  
instruction execution is discarded  
and a NOPis executed instead,  
making this a two-cycle instruction. If  
‘a’ is ‘0’, the Access Bank will be  
selected, overriding the BSR value. If  
‘a’ = 1, then the bank will be selected  
as per the BSR value (default).  
instruction fetched during the  
current instruction execution is  
discarded and a NOPis executed  
instead, making this a two-cycle  
instruction. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding the  
BSR value. If ‘a’ = 1, then the bank  
will be selected as per the BSR value  
(default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
Decode  
Read  
Process  
Data  
No  
operation  
register ‘f’  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
FALSE  
TRUE  
BTFSC  
:
:
FLAG, 1, 0  
Example:  
HERE  
FALSE  
TRUE  
BTFSS  
:
:
FLAG, 1, 0  
Example:  
Before Instruction  
PC  
=
address (HERE)  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If FLAG<1>  
=
=
=
=
0;  
After Instruction  
PC  
address (TRUE)  
1;  
If FLAG<1>  
=
=
=
=
0;  
If FLAG<1>  
PC  
PC  
address (FALSE)  
1;  
address (FALSE)  
If FLAG<1>  
PC  
address (TRUE)  
DS30491C-page 378  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
BTG  
Bit Toggle f  
BOV  
Branch if Overflow  
Syntax:  
[ label ] BTG f,b[,a]  
Syntax:  
[ label ] BOV  
-128 n 127  
n
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operands:  
Operation:  
if overflow bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
(f<b>) f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0100  
nnnn  
nnnn  
0111  
bbba  
ffff  
ffff  
Description:  
If the Overflow bit is ‘1’, then the  
program will branch.  
Description:  
Bit ‘b’ in data memory location ‘f’ is  
inverted. If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
If Jump:  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
Q1  
Q2  
Q3  
Q4  
register ‘f’  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
BTG  
PORTC, 4, 0  
Example:  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Before Instruction:  
PORTC  
=
0111 0101 [0x75]  
If No Jump:  
Q1  
After Instruction:  
Q2  
Q3  
Q4  
PORTC  
=
0110 0101 [0x65]  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
HERE  
BOV Jump  
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Overflow  
=
=
=
=
1;  
PC  
address (Jump)  
If Overflow  
PC  
0;  
address (HERE+2)  
2004 Microchip Technology Inc.  
DS30491C-page 379  
PIC18F6585/8585/6680/8680  
BZ  
Branch if Zero  
[ label ] BZ  
CALL  
Subroutine Call  
Syntax:  
n
Syntax:  
[ label ] CALL k [,s]  
Operands:  
Operation:  
-128 n 127  
Operands:  
0 k 1048575  
s [0,1]  
if Zero bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
(PC) + 4 TOS,  
k PC<20:1>,  
if s = 1  
Status Affected:  
Encoding:  
None  
1110  
0000  
nnnn  
nnnn  
(W) WS,  
(STATUS) STATUSS,  
(BSR) BSRS  
Description:  
If the Zero bit is ‘1’, then the  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Status Affected:  
None  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
1110  
1111  
110s  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
19  
Description:  
Subroutine call of entire 2-Mbyte  
memory range. First, return  
address (PC+ 4) is pushed onto the  
return stack. If ‘s’ = 1, the W,  
Status and BSR registers are also  
pushed into their respective  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
shadow registers, WS, STATUSS  
and BSRS. If ‘s’ = 0, no update  
occurs (default). Then, the 20-bit  
value ‘k’ is loaded into PC<20:1>.  
CALLis a two-cycle instruction.  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Words:  
Cycles:  
2
2
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal Push PC to Read literal  
HERE  
BZ Jump  
Example:  
‘k’<7:0>,  
stack  
‘k’<19:8>,  
Write to PC  
Before Instruction  
PC  
=
address (HERE)  
1;  
address (Jump)  
0;  
address (HERE+2)  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
After Instruction  
If Zero  
PC  
If Zero  
PC  
=
=
=
=
HERE  
CALL THERE,1  
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
PC  
=
address (THERE)  
TOS  
=
=
=
=
address (HERE + 4)  
WS  
BSRS  
STATUSS  
W
BSR  
STATUS  
DS30491C-page 380  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
CLRF  
Clear f  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
[ label ] CLRF f [,a]  
Syntax:  
[ label ] CLRWDT  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
None  
000h WDT,  
000h WDT postscaler,  
1 TO,  
Operation:  
000h f  
1 Z  
1 PD  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
TO, PD  
0110  
101a  
ffff  
ffff  
0000  
0000  
0000  
0100  
Description:  
Clears the contents of the specified  
register. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
postscaler of the WDT. Status bits  
TO and PD are set.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
No  
operation  
Process  
Data  
No  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
CLRWDT  
Example:  
CLRF  
FLAG_REG,1  
Example:  
Before Instruction  
WDT Counter  
=
?
Before Instruction  
FLAG_REG  
=
=
0x5A  
0x00  
After Instruction  
WDT Counter  
WDT Postscaler  
TO  
PD  
=
=
=
=
0x00  
After Instruction  
FLAG_REG  
0
1
1
2004 Microchip Technology Inc.  
DS30491C-page 381  
PIC18F6585/8585/6680/8680  
COMF  
Complement f  
CPFSEQ  
Compare f with W, skip if f = W  
Syntax:  
[ label ] COMF f [,d [,a]]  
Syntax:  
[ label ] CPFSEQ f [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) – (W),  
Operation:  
(f) dest  
skip if (f) = (W)  
(unsigned comparison)  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
None  
0001  
11da  
ffff  
ffff  
0110  
001a  
ffff  
ffff  
Description:  
The contents of register ‘f’ are com-  
plemented. If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’ (default).  
If ‘a’ is ‘0’, the Access Bank will be  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
Description:  
Compares the contents of data  
memory location ‘f’ to the contents  
of W by performing an unsigned  
subtraction.  
If ‘f’ = W, then the fetched  
instruction is discarded and a NOP  
is executed instead, making this a  
two-cycle instruction. If ‘a’ is ‘0’, the  
Access Bank will be selected,  
overriding the BSR value. If ‘a’ = 1,  
then the bank will be selected as  
per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
1(2)  
destination  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
COMF  
REG, 0, 0  
Example:  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
REG  
=
0x13  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
After Instruction  
REG  
=
0x13  
W
=
0xEC  
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
CPFSEQ REG, 0  
Example:  
NEQUAL  
EQUAL  
:
:
Before Instruction  
PC Address  
=
HERE  
W
REG  
=
=
?
?
After Instruction  
If REG  
PC  
=
=
W;  
Address (EQUAL)  
If REG  
PC  
=
W;  
Address (NEQUAL)  
DS30491C-page 382  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
CPFSGT  
Compare f with W, skip if f > W  
CPFSLT  
Compare f with W, skip if f < W  
Syntax:  
[ label ] CPFSGT f [,a]  
Syntax:  
[ label ] CPFSLT f [,a]  
Operands:  
0 f 255  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) − (W),  
Operation:  
(f) – (W),  
skip if (f) > (W)  
(unsigned comparison)  
skip if (f) < (W)  
(unsigned comparison)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0110  
010a  
ffff  
ffff  
0110  
000a  
ffff  
ffff  
Description:  
Compares the contents of data  
memory location ‘f’ to the contents  
of the W by performing an  
Description:  
Compares the contents of data  
memory location ‘f’ to the contents  
of W by performing an unsigned  
subtraction.  
unsigned subtraction.  
If the contents of ‘f’ are greater than  
the contents of WREG, then the  
fetched instruction is discarded and  
a NOPis executed instead, making  
this a two-cycle instruction. If ‘a’ is  
0’, the Access Bank will be  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
If the contents of ‘f’ are less than  
the contents of W, then the fetched  
instruction is discarded and a NOP  
is executed instead, making this a  
two-cycle instruction. If ‘a’ is ‘0’, the  
Access Bank will be selected. If ’a’  
is ‘1’, the BSR will not be overrid-  
den (default).  
Words:  
Cycles:  
1
1(2)  
Words:  
Cycles:  
1
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
Q2  
Q3  
Q4  
If skip:  
Q1  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q2  
Q3  
Q4  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
If skip and followed by 2-word instruction:  
No  
No  
No  
No  
Q1  
Q2  
Q3  
Q4  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
NLESS  
LESS  
CPFSLT REG, 1  
:
:
Example:  
HERE  
CPFSGT REG, 0  
Example:  
NGREATER  
GREATER  
:
:
Before Instruction  
PC  
W
=
=
Address (HERE)  
?
Before Instruction  
After Instruction  
PC  
=
Address (HERE)  
W
=
?
If REG  
PC  
If REG  
PC  
<
=
=
W;  
Address (LESS)  
W;  
Address (NLESS)  
After Instruction  
If REG  
PC  
>
=
W;  
Address (GREATER)  
If REG  
PC  
=
W;  
Address (NGREATER)  
2004 Microchip Technology Inc.  
DS30491C-page 383  
PIC18F6585/8585/6680/8680  
DAW  
Decimal Adjust W Register  
DECF  
Decrement f  
Syntax:  
[ label ] DAW  
Syntax:  
[ label ] DECF f [,d [,a]]  
Operands:  
Operation:  
None  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
If [W<3:0> >9] or [DC = 1] then  
(W<3:0>) + 6 W<3:0>;  
else  
(W<3:0>) W<3:0>;  
Operation:  
(f) – 1 dest  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
0000  
01da  
ffff  
ffff  
If [W<7:4> >9] or [C = 1] then  
(W<7:4>) + 6 W<7:4>;  
else  
Description:  
Decrement register ‘f’. If ‘d’ is ‘0’,  
the result is stored in W. If ‘d’ is ‘1’,  
the result is stored back in register  
‘f’ (default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
(W<7:4>) W<7:4>;  
Status Affected:  
Encoding:  
C
0000  
0000  
0000  
0111  
Description:  
DAW adjusts the eight-bit value in  
W, resulting from the earlier  
addition of two variables (each in  
packed BCD format) and produces  
a correct packed BCD result.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register W  
Process  
Data  
Write  
W
DECF  
CNT,  
1, 0  
Example:  
Before Instruction  
CNT  
Z
=
=
0x01  
0
DAW  
Example1:  
After Instruction  
Before Instruction  
CNT  
=
=
0x00  
1
W
=
0xA5  
Z
C
DC  
=
=
0
0
After Instruction  
W
=
0x05  
C
DC  
=
=
1
0
Example 2:  
Before Instruction  
W
=
0xCE  
C
DC  
=
=
0
0
After Instruction  
W
=
0x34  
C
DC  
=
=
1
0
DS30491C-page 384  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
DECFSZ  
Decrement f, skip if 0  
DCFSNZ  
Decrement f, skip if not 0  
Syntax:  
[ label ] DECFSZ f [,d [,a]]  
Syntax:  
[ label ] DCFSNZ f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – 1 dest,  
skip if result = 0  
Operation:  
(f) – 1 dest,  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0010  
11da  
ffff  
ffff  
0100  
11da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’  
(default).  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’  
(default).  
If the result is ‘0’, the next  
If the result is not ‘0’, the next  
instruction which is already fetched  
is discarded and a NOPis executed  
instead, making it a two-cycle  
instruction. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
instruction which is already fetched  
is discarded and a NOPis executed  
instead, making it a two-cycle  
instruction. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
HERE  
DECFSZ  
GOTO  
CNT, 1, 1  
LOOP  
HERE  
ZERO  
NZERO  
DCFSNZ TEMP, 1, 0  
:
:
Example:  
Example:  
CONTINUE  
Before Instruction  
Before Instruction  
TEMP  
PC  
=
Address (HERE)  
=
?
After Instruction  
After Instruction  
CNT  
If CNT  
PC  
If CNT  
PC  
=
=
=
=
CNT - 1  
0;  
TEMP  
If TEMP  
PC  
If TEMP  
PC  
=
=
=
=
TEMP - 1,  
0;  
Address (CONTINUE)  
0;  
Address (ZERO)  
0;  
Address (NZERO)  
Address (HERE+2)  
2004 Microchip Technology Inc.  
DS30491C-page 385  
PIC18F6585/8585/6680/8680  
GOTO  
Unconditional Branch  
INCF  
Increment f  
Syntax:  
[ label ] GOTO k  
0 k 1048575  
k PC<20:1>  
None  
Syntax:  
[ label ] INCF f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
1110  
1111  
1111  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
0010  
10da  
ffff  
ffff  
19  
Description:  
GOTOallows an unconditional  
branch anywhere within entire  
2-Mbyte memory range. The 20-bit  
value ‘k’ is loaded into PC<20:1>.  
GOTOis always a two-cycle  
instruction.  
Description:  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’<7:0>,  
No  
operation  
Read literal  
‘k’<19:8>,  
Write to PC  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
GOTO THERE  
Example:  
INCF  
CNT, 1, 0  
Example:  
After Instruction  
Before Instruction  
PC  
=
Address (THERE)  
CNT  
=
0xFF  
Z
=
=
=
0
?
?
C
DC  
After Instruction  
CNT  
=
=
=
=
0x00  
Z
1
1
1
C
DC  
DS30491C-page 386  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
INCFSZ  
Increment f, skip if 0  
INFSNZ  
Increment f, skip if not 0  
Syntax:  
[ label ] INCFSZ f [,d [,a]]  
Syntax:  
[ label ] INFSNZ f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest,  
skip if result = 0  
Operation:  
(f) + 1 dest,  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0011  
11da  
ffff  
ffff  
0100  
10da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’  
(default).  
Description:  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’  
(default).  
If the result is ‘0’, the next instruc-  
tion which is already fetched is  
discarded and a NOPis executed  
instead, making it a two-cycle  
instruction. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
If the result is not ‘0’, the next  
instruction which is already fetched  
is discarded and a NOPis executed  
instead, making it a two-cycle  
instruction. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
HERE  
NZERO  
ZERO  
INCFSZ  
:
:
CNT, 1, 0  
HERE  
ZERO  
NZERO  
INFSNZ REG, 1, 0  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
Address (HERE)  
PC  
=
Address (HERE)  
After Instruction  
After Instruction  
CNT  
If CNT  
PC  
If CNT  
PC  
=
=
=
=
CNT + 1  
REG  
If REG  
PC  
If REG  
PC  
=
=
=
=
REG + 1  
0;  
Address (NZERO)  
0;  
Address (ZERO)  
0;  
Address (ZERO)  
0;  
Address (NZERO)  
2004 Microchip Technology Inc.  
DS30491C-page 387  
PIC18F6585/8585/6680/8680  
IORLW  
Inclusive OR literal with W  
IORWF  
Inclusive OR W with f  
Syntax:  
[ label ] IORLW k  
0 k 255  
Syntax:  
[ label ] IORWF f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(W) .OR. k W  
N, Z  
Operation:  
(W) .OR. (f) dest  
0000  
1001  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, Z  
Description:  
The contents of W are OR’ed with  
the eight-bit literal ‘k’. The result is  
placed in W.  
0001  
00da  
ffff  
ffff  
Description:  
Inclusive OR W with register ‘f’. If  
‘d’ is ‘0’, the result is placed in W. If  
‘d’ is ‘1’, the result is placed back in  
register ‘f’ (default). If ‘a’ is ‘0’, the  
Access Bank will be selected,  
overriding the BSR value. If ‘a’ = 1,  
then the bank will be selected as  
per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
IORLW  
0x35  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
W
=
0x9A  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
After Instruction  
W
=
0xBF  
IORWF RESULT, 0, 1  
Example:  
Before Instruction  
RESULT =  
0x13  
0x91  
W
=
After Instruction  
RESULT =  
0x13  
0x93  
W
=
DS30491C-page 388  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
LFSR  
Load FSR  
MOVF  
Move f  
Syntax:  
[ label ] LFSR f,k  
Syntax:  
[ label ] MOVF f [,d [,a]]  
Operands:  
0 f 2  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
0 k 4095  
Operation:  
k FSRf  
Operation:  
f dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
1111  
1110  
0000  
00ff  
k kkk  
11  
kkkk  
k kkk  
0101  
00da  
ffff  
ffff  
7
Description:  
The 12-bit literal ‘k’ is loaded into  
the file select register pointed to  
by ‘f’.  
Description:  
The contents of register ‘f’ are  
moved to a destination dependent  
upon the status of ‘d’. If ‘d’ is ‘0’, the  
result is placed in W. If ‘d’ is ‘1’, the  
result is placed back in register ‘f’  
(default). Location ‘f’ can be any-  
where in the 256-byte bank. If ‘a’ is  
0’, the Access Bank will be  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
Decode  
Read literal  
‘k’ MSB  
Process  
Data  
Write  
literal ‘k’  
MSB to  
FSRfH  
Decode  
Read literal  
‘k’ LSB  
Process  
Data  
Write literal  
‘k’ to FSRfL  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
LFSR 2, 0x3AB  
Example:  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write W  
FSR2H  
FSR2L  
=
=
0x03  
0xAB  
MOVF  
REG, 0, 0  
Example:  
Before Instruction  
REG  
W
=
=
0x22  
0xFF  
After Instruction  
REG  
W
=
=
0x22  
0x22  
2004 Microchip Technology Inc.  
DS30491C-page 389  
PIC18F6585/8585/6680/8680  
MOVFF  
Move f to f  
MOVLB  
Move literal to low nibble in BSR  
Syntax:  
[ label ] MOVFF fs,fd  
Syntax:  
[ label ] MOVLB k  
0 k 255  
k BSR  
Operands:  
0 fs 4095  
0 fd 4095  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operation:  
(fs) fd  
None  
Status Affected:  
None  
0000  
0001  
kkkk  
kkkk  
Encoding:  
1st word (source)  
2nd word (destin.)  
Description:  
The 8-bit literal ‘k’ is loaded into  
the Bank Select Register (BSR).  
1100  
1111  
ffff  
ffff  
ffff  
ffff  
ffffs  
ffffd  
Words:  
Cycles:  
1
1
Description:  
The contents of source register ‘fs’  
are moved to destination register  
‘fd’. Location of source ‘fs’ can be  
anywhere in the 4096-byte data  
space (000h to FFFh) and location  
of destination ‘fd’ can also be  
anywhere from 000h to FFFh.  
Either source or destination can be  
W (a useful special situation).  
MOVFFis particularly useful for  
transferring a data memory location  
to a peripheral register (such as the  
transmit buffer or an I/O port).  
The MOVFFinstruction cannot use  
the PCL, TOSU, TOSH or TOSL as  
the destination register  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’  
Process  
Data  
Write  
literal ‘k’ to  
BSR  
MOVLB  
5
Example:  
Before Instruction  
BSR register  
=
=
0x02  
0x05  
After Instruction  
BSR register  
Words:  
Cycles:  
2
2 (3)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
(src)  
Process  
Data  
No  
operation  
Decode  
No  
operation  
No  
operation  
Write  
register ‘f’  
(dest)  
No dummy  
read  
MOVFF  
REG1, REG2  
Example:  
Before Instruction  
REG1  
REG2  
=
=
0x33  
0x11  
After Instruction  
REG1  
REG2  
=
=
0x33,  
0x33  
DS30491C-page 390  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
MOVLW  
Move literal to W  
MOVWF  
Move W to f  
Syntax:  
[ label ] MOVLW k  
0 k 255  
k W  
Syntax:  
[ label ] MOVWF f [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(W) f  
None  
Status Affected:  
Encoding:  
None  
0000  
1110  
kkkk  
kkkk  
0110  
111a  
ffff  
ffff  
Description:  
The eight-bit literal ‘k’ is loaded into  
W.  
Description:  
Move data from W to register ‘f’.  
Location ‘f’ can be anywhere in the  
256-byte bank. If ‘a’ is ‘0’, the  
Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
MOVLW  
0x5A  
Example:  
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
W
=
0x5A  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
MOVWF  
REG, 0  
Example:  
Before Instruction  
W
REG  
=
=
0x4F  
0xFF  
After Instruction  
W
REG  
=
=
0x4F  
0x4F  
2004 Microchip Technology Inc.  
DS30491C-page 391  
PIC18F6585/8585/6680/8680  
MULLW  
Multiply Literal with W  
MULWF  
Multiply W with f  
Syntax:  
[ label ] MULLW  
0 k 255  
k
Syntax:  
[ label ] MULWF f [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
a [0,1]  
(W) x k PRODH:PRODL  
Operation:  
(W) x (f) PRODH:PRODL  
None  
Status Affected:  
Encoding:  
None  
0000  
1101  
kkkk  
kkkk  
0000  
001a  
ffff  
ffff  
Description:  
An unsigned multiplication is  
carried out between the contents  
of W and the 8-bit literal ‘k’. The  
16-bit result is placed in  
PRODH:PRODL register pair.  
PRODH contains the high byte.  
W is unchanged.  
None of the status flags are  
affected.  
Note that neither overflow nor  
carry is possible in this  
Description:’  
An unsigned multiplication is  
carried out between the contents  
of W and the register file location  
‘f’. The 16-bit result is stored in  
the PRODH:PRODL register  
pair. PRODH contains the high  
byte.  
Both W and ‘f’ are unchanged.  
None of the status flags are  
affected.  
operation. A zero result is  
possible but not detected.  
Note that neither overflow nor  
carry is possible in this  
operation. A zero result is  
possible but not detected. If ‘a’ is  
0’, the Access Bank will be  
selected, overriding the BSR  
value. If ‘a’ = 1, then the bank  
will be selected as per the BSR  
value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write  
registers  
PRODH:  
PRODL  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
MULLW  
0xC4  
Example:  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
W
PRODH  
PRODL  
=
=
=
0xE2  
registers  
PRODH:  
PRODL  
?
?
After Instruction  
W
=
0xE2  
0xAD  
0x08  
MULWF  
REG, 1  
Example:  
PRODH  
PRODL  
=
=
Before Instruction  
W
=
0xC4  
REG  
PRODH  
PRODL  
=
=
=
0xB5  
?
?
After Instruction  
W
=
0xC4  
REG  
PRODH  
PRODL  
=
=
=
0xB5  
0x8A  
0x94  
DS30491C-page 392  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
NEGF  
Negate f  
NOP  
No Operation  
Syntax:  
[ label ] NEGF f [,a]  
Syntax:  
[ label ] NOP  
None  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
No operation  
None  
Operation:  
( f ) + 1 f  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
0000  
1111  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0110  
110a  
ffff  
ffff  
Description:  
Words:  
No operation.  
Description:  
Location ‘f’ is negated using two’s  
complement. The result is placed in  
the data memory location ‘f’. If ‘a’ is  
0’, the Access Bank will be  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be  
selected as per the BSR value.  
Q2  
No  
Q3  
No  
Q4  
Decode  
No  
operation  
operation  
operation  
Words:  
Cycles:  
1
1
Example:  
None.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
NEGF  
REG, 1  
Example:  
Before Instruction  
REG  
=
0011 1010 [0x3A]  
1100 0110 [0xC6]  
After Instruction  
REG  
=
2004 Microchip Technology Inc.  
DS30491C-page 393  
PIC18F6585/8585/6680/8680  
POP  
Pop Top of Return Stack  
PUSH  
Push Top of Return Stack  
Syntax:  
[ label ] POP  
None  
Syntax:  
[ label ] PUSH  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
(TOS) bit bucket  
None  
(PC+2) TOS  
None  
0000  
0000  
0000  
0110  
0000  
0000  
0000  
0101  
Description:  
The TOS value is pulled off the  
return stack and is discarded. The  
TOS value then becomes the  
previous value that was pushed  
onto the return stack.  
This instruction is provided to  
enable the user to properly manage  
the return stack to incorporate a  
software stack.  
Description:  
The PC+2 is pushed onto the top of  
the return stack. The previous TOS  
value is pushed down on the stack.  
This instruction allows implement-  
ing a software stack by modifying  
TOS, and then pushing it onto the  
return stack.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
PUSH PC+2  
onto return  
stack  
No  
operation  
No  
operation  
Q2  
Q3  
Q4  
Decode  
No  
operation  
POP TOS  
value  
No  
operation  
PUSH  
Example:  
POP  
GOTO  
Example:  
Before Instruction  
NEW  
TOS  
PC  
=
=
00345Ah  
000124h  
Before Instruction  
TOS  
=
0031A2h  
014332h  
After Instruction  
Stack (1 level down)=  
PC  
=
=
000126h  
000126h  
00345Ah  
TOS  
After Instruction  
Stack (1 level down)=  
TOS  
PC  
=
=
014332h  
NEW  
DS30491C-page 394  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
RCALL  
Relative Call  
RESET  
Reset  
Syntax:  
[ label ] RCALL  
-1024 n 1023  
(PC) + 2 TOS,  
n
Syntax:  
[ label ] RESET  
Operands:  
Operation:  
Operands:  
Operation:  
None  
Reset all registers and flags that  
are affected by a MCLR Reset.  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
All  
1101  
1nnn  
nnnn  
nnnn  
0000  
0000  
1111  
1111  
Description:  
Subroutine call with a jump up to  
1K from the current location. First,  
return address (PC+2) is pushed  
onto the stack. Then, add the 2’s  
complement number ‘2n’ to the PC.  
Since the PC will have incremented  
to fetch the next instruction, the  
new address will be PC+2+2n. This  
instruction is a two-cycle  
Description:  
This instruction provides a way to  
execute a MCLR Reset in software.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Start  
No  
No  
Reset  
operation  
operation  
instruction.  
Words:  
Cycles:  
1
2
RESET  
Example:  
After Instruction  
Registers =  
Reset Value  
Reset Value  
Q Cycle Activity:  
Q1  
Flags*  
=
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Push PC to  
stack  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
RCALL  
Jump  
Example:  
Before Instruction  
PC  
=
Address (HERE)  
After Instruction  
PC  
=
Address (Jump)  
Address (HERE+2)  
TOS =  
2004 Microchip Technology Inc.  
DS30491C-page 395  
PIC18F6585/8585/6680/8680  
RETFIE  
Return from Interrupt  
RETLW  
Return Literal to W  
Syntax:  
[ label ] RETFIE [s]  
s [0,1]  
Syntax:  
[ label ] RETLW k  
0 k 255  
Operands:  
Operation:  
Operands:  
Operation:  
(TOS) PC,  
1 GIE/GIEH or PEIE/GIEL,  
if s = 1  
k W,  
(TOS) PC,  
PCLATU, PCLATH are unchanged  
(WS) W,  
(STATUSS) STATUS,  
(BSRS) BSR,  
Status Affected:  
Encoding:  
None  
0000  
1100  
kkkk  
kkkk  
PCLATU, PCLATH are unchanged.  
Description:  
W is loaded with the eight-bit literal  
‘k’. The program counter is loaded  
from the top of the stack (the return  
address). The high address latch  
(PCLATH) remains unchanged.  
Status Affected:  
Encoding:  
GIE/GIEH, PEIE/GIEL.  
0000  
0000  
0001  
000s  
Description:  
Return from interrupt. Stack is  
popped and Top-of-Stack (TOS) is  
loaded into the PC. Interrupts are  
enabled by setting either the high  
or low priority global interrupt  
enable bit. If ‘s’ = 1, the contents of  
the shadow registers WS,  
STATUSS and BSRS are loaded  
into their corresponding registers,  
W, Status and BSR. If ‘s’ = 0, no  
update of these registers occurs  
(default).  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Pop PC from  
stack, Write  
to W  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Words:  
Cycles:  
1
2
Example:  
CALL TABLE ; W contains table  
; offset value  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
; W now has  
; table value  
Decode  
No  
operation  
No  
operation  
Pop PC from  
stack  
:
TABLE  
ADDWF PCL ; W = offset  
Set GIEH or  
GIEL  
RETLW k0  
RETLW k1  
:
; Begin table  
;
No  
operation  
No  
operation  
No  
operation  
No  
operation  
:
RETLW kn  
; End of table  
RETFIE  
1
Example:  
After Interrupt  
Before Instruction  
PC  
W
=
=
=
=
=
TOS  
WS  
W
=
0x07  
BSR  
STATUS  
GIE/GIEH, PEIE/GIEL  
BSRS  
STATUSS  
1
After Instruction  
W
=
value of kn  
DS30491C-page 396  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
RETURN  
Return from Subroutine  
RLCF  
Rotate Left f through Carry  
Syntax:  
[ label ] RETURN [s]  
s [0,1]  
Syntax:  
[ label ] RLCF f [,d [,a]]  
Operands:  
Operation:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(TOS) PC,  
if s = 1  
(WS) W,  
Operation:  
(f<n>) dest<n+1>,  
(f<7>) C,  
(STATUSS) STATUS,  
(BSRS) BSR,  
PCLATU, PCLATH are unchanged  
(C) dest<0>  
Status Affected:  
Encoding:  
C, N, Z  
Status Affected:  
Encoding:  
None  
0011  
01da  
ffff  
ffff  
0000  
0000  
0001  
001s  
Description:  
The contents of register ‘f’ are  
rotated one bit to the left through  
the Carry flag. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is stored back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the  
BSR value (default).  
Description:  
Return from subroutine. The stack  
is popped and the top of the stack  
(TOS) is loaded into the program  
counter. If ‘s’ = 1, the contents of  
the shadow registers WS,  
STATUSS and BSRS are loaded  
into their corresponding registers,  
W, Status and BSR. If ‘s’ = 0, no  
update of these registers occurs  
(default).  
register f  
C
Words:  
Cycles:  
1
2
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
No  
Process  
Data  
Pop PC  
from stack  
operation  
Decode  
Read  
Process  
Write to  
No  
No  
No  
No  
register ‘f’  
Data  
destination  
operation  
operation  
operation  
operation  
RLCF  
REG, 0, 0  
Example:  
Before Instruction  
RETURN  
Example:  
REG  
C
=
=
1110 0110  
0
After Interrupt  
After Instruction  
PC  
=
TOS  
REG  
=
1110 0110  
W
C
=
=
1100 1100  
1
2004 Microchip Technology Inc.  
DS30491C-page 397  
PIC18F6585/8585/6680/8680  
RLNCF  
Rotate Left f (no carry)  
RRCF  
Rotate Right f through Carry  
Syntax:  
[ label ] RLNCF f [,d [,a]]  
Syntax:  
[ label ] RRCF f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<n>) dest<n+1>,  
(f<7>) dest<0>  
Operation:  
(f<n>) dest<n-1>,  
(f<0>) C,  
(C) dest<7>  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
C, N, Z  
0100  
01da  
ffff  
ffff  
0011  
00da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
rotated one bit to the left. If ‘d’ is ‘0,’  
the result is placed in W. If ‘d’ is ‘1’,  
the result is stored back in register  
‘f’ (default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ is ‘1’, then the  
bank will be selected as per the  
BSR value (default).  
Description:  
The contents of register ‘f’ are  
rotated one bit to the right through  
the Carry flag. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ is ‘1’, then the  
bank will be selected as per the  
BSR value (default).  
register f  
Words:  
Cycles:  
1
1
register f  
C
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Q2  
Q3  
Q4  
Decode  
Read  
Process  
Write to  
register ‘f’  
Data  
destination  
RLNCF  
REG, 1, 0  
Example:  
Before Instruction  
RRCF  
REG, 0, 0  
Example:  
REG  
=
1010 1011  
0101 0111  
After Instruction  
Before Instruction  
REG  
=
REG  
C
=
=
1110 0110  
0
After Instruction  
REG  
=
1110 0110  
W
C
=
=
0111 0011  
0
DS30491C-page 398  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
RRNCF  
Rotate Right f (no carry)  
SETF  
Set f  
Syntax:  
[ label ] RRNCF f [,d [,a]]  
Syntax:  
[ label ] SETF f [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
FFh f  
Operation:  
(f<n>) dest<n-1>,  
(f<0>) dest<7>  
Status Affected:  
Encoding:  
None  
0110  
100a  
ffff  
ffff  
Status Affected:  
Encoding:  
N, Z  
Description:  
The contents of the specified  
0100  
00da  
ffff  
ffff  
register are set to FFh. If ‘a’ is ‘0’,  
the Access Bank will be selected,  
overriding the BSR value. If ‘a’ is  
1’, then the bank will be selected  
as per the BSR value (default).  
Description:’  
The contents of register ‘f’ are  
rotated one bit to the right. If ‘d’ is  
0’, the result is placed in W. If ‘d’ is  
1’, the result is placed back in  
register ‘f’ (default). If ‘a’ is ‘0’, the  
Access Bank will be selected,  
overriding the BSR value. If ‘a’ is  
1’, then the bank will be selected  
as per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
register f  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Words:  
Cycles:  
1
1
SETF  
REG,1  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
REG  
=
0x5A  
0xFF  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
REG  
=
RRNCF  
REG, 1, 0  
Example 1:  
Before Instruction  
REG  
=
1101 0111  
1110 1011  
RRNCF REG, 0, 0  
After Instruction  
REG  
=
Example 2:  
Before Instruction  
W
REG  
=
=
?
1101 0111  
After Instruction  
W
REG  
=
=
1110 1011  
1101 0111  
2004 Microchip Technology Inc.  
DS30491C-page 399  
PIC18F6585/8585/6680/8680  
SLEEP  
Enter Sleep mode  
SUBFWP  
Subtract f from W with borrow  
Syntax:  
[ label ] SLEEP  
Syntax:  
[ label ] SUBFWB f [,d [,a]]  
Operands:  
Operation:  
None  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
00h WDT,  
0 WDT postscaler,  
1 TO,  
Operation:  
(W) – (f) – (C) dest  
0 PD  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Status Affected:  
Encoding:  
TO, PD  
0101  
01da  
ffff  
ffff  
0000  
0000  
0000  
0011  
Description:  
Subtract register ‘f’ and carry flag  
(borrow) from W (2’s complement  
method). If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored in register ‘f’ (default). If ‘a’  
is ‘0’, the Access Bank will be  
selected, overriding the BSR  
value. If ‘a’ is ‘1’, then the bank will  
be selected as per the BSR value  
(default).  
Description:  
The Power-down status bit (PD) is  
cleared. The Time-out status bit  
(TO) is set. Watchdog Timer and  
its postscaler are cleared.  
The processor is put into Sleep  
mode with the oscillator stopped.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
No  
operation  
Process  
Data  
Go to  
SLEEP  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
SLEEP  
Example:  
Before Instruction  
SUBFWB  
REG, 1, 0  
Example 1:  
TO  
=
?
PD  
=
?
Before Instruction  
After Instruction  
REG  
=
=
=
3
2
1
W
TO  
=
1 †  
C
PD  
=
0
After Instruction  
REG  
W
C
=
=
=
=
=
FF  
2
† If WDT causes wake-up, this bit is cleared.  
0
Z
0
1
N
; result is negative  
SUBFWB  
REG, 0, 0  
Example 2:  
Before Instruction  
REG  
W
C
=
=
=
2
5
1
After Instruction  
REG  
W
C
=
=
=
=
=
2
3
1
0
0
Z
N
; result is positive  
SUBFWB  
REG, 1, 0  
Example 3:  
Before Instruction  
REG  
W
C
=
=
=
1
2
0
After Instruction  
REG  
W
C
=
=
=
=
=
0
2
1
1
0
Z
; result is zero  
N
DS30491C-page 400  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
SUBLW  
Subtract W from literal  
SUBWF  
Syntax:  
Subtract W from f  
Syntax:  
[ label ] SUBLW k  
0 k 255  
[ label ] SUBWF f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
k – (W) W  
N, OV, C, DC, Z  
Operation:  
(f) – (W) dest  
0000  
1000  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Description:  
W is subtracted from the eight-bit  
literal ‘k’. The result is placed in  
W.  
0101  
11da  
ffff  
ffff  
Description:  
Subtract W from register ‘f’ (2’s  
complement method). If ‘d’ is ‘0’,  
the result is stored in W. If ‘d’ is  
1’, the result is stored back in  
register ‘f’ (default). If ‘a’ is ‘0’, the  
Access Bank will be selected,  
overriding the BSR value. If ‘a’ is  
1’, then the bank will be selected  
as per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
SUBLW 0x02  
Example 1:  
Words:  
Cycles:  
1
1
Before Instruction  
W
=
1
C
=
?
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
W
C
Z
=
=
=
=
1
1
0
0
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
; result is positive  
N
SUBWF  
REG, 1, 0  
Example 1:  
SUBLW 0x02  
Example 2:  
Before Instruction  
Before Instruction  
REG  
=
=
=
3
2
?
W
C
=
=
2
?
W
C
After Instruction  
After Instruction  
REG  
W
C
=
=
=
=
=
1
2
1
0
0
W
C
Z
=
=
=
=
0
1
1
0
; result is zero  
; result is positive  
Z
N
N
SUBLW 0x02  
Example 3:  
SUBWF  
REG, 0, 0  
Example 2:  
Before Instruction  
Before Instruction  
W
C
=
=
3
?
REG  
W
C
=
=
=
2
2
?
After Instruction  
W
C
Z
=
=
=
=
FF ; (2’s complement)  
After Instruction  
0
0
1
; result is negative  
REG  
W
C
Z
N
=
=
=
=
=
2
0
1
1
0
N
; result is zero  
SUBWF  
REG, 1, 0  
Example 3:  
Before Instruction  
REG  
=
=
=
1
2
?
W
C
After Instruction  
REG  
W
C
=
=
=
=
=
FFh ;(2’s complement)  
2
0
0
1
; result is negative  
Z
N
2004 Microchip Technology Inc.  
DS30491C-page 401  
PIC18F6585/8585/6680/8680  
SUBWFB  
Syntax:  
Subtract W from f with Borrow  
SWAPF  
Swap f  
Syntax:  
[ label ] SWAPF f [,d [,a]]  
[ label ] SUBWFB f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<3:0>) dest<7:4>,  
(f<7:4>) dest<3:0>  
Operation:  
(f) – (W) – (C) dest  
Status Affected: N, OV, C, DC, Z  
Status Affected:  
Encoding:  
None  
Encoding:  
0101  
10da  
ffff  
ffff  
0011  
10da  
ffff  
ffff  
Description:  
Subtract W and the Carry flag (bor-  
row) from register ‘f’ (2’s complement  
method). If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’ (default). If  
‘a’ is ‘0’, the Access Bank will be  
selected, overriding the BSR value. If  
‘a’ is ‘1’, then the bank will be  
selected as per the BSR value  
(default).  
Description:  
The upper and lower nibbles of  
register ‘f’ are exchanged. If ‘d’ is  
0’, the result is placed in W. If ‘d’ is  
1’, the result is placed in register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ is ‘1’, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
SUBWFB REG, 1, 0  
Example 1:  
SWAPF  
REG, 1, 0  
Example:  
Before Instruction  
Before Instruction  
REG  
W
C
=
=
=
0x19  
0x0D  
1
(0001 1001)  
(0000 1101)  
REG  
=
0x53  
0x35  
After Instruction  
After Instruction  
REG  
=
REG  
W
C
Z
N
=
=
=
=
=
0x0C  
0x0D  
(0000 1011)  
(0000 1101)  
1
0
0
; result is positive  
SUBWFB REG, 0, 0  
Example 2:  
Before Instruction  
REG  
W
C
=
=
=
0x1B  
0x1A  
0
(0001 1011)  
(0001 1010)  
After Instruction  
REG  
W
C
=
=
=
=
=
0x1B  
(0001 1011)  
0x00  
1
1
0
Z
; result is zero  
N
SUBWFB REG, 1, 0  
Example 3:  
Before Instruction  
REG  
W
C
=
=
=
0x03  
0x0E  
1
(0000 0011)  
(0000 1101)  
After Instruction  
REG  
=
0xF5  
(1111 0100)  
; [2’s comp]  
W
C
Z
=
=
=
=
0x0E  
(0000 1101)  
0
0
1
N
; result is negative  
DS30491C-page 402  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TBLRD  
Table Read  
TBLRD  
Table Read (Continued)  
TBLRD *+ ;  
Syntax:  
[ label ] TBLRD ( *; *+; *-; +*)  
Example1:  
Operands:  
Operation:  
None  
Before Instruction  
TABLAT  
TBLPTR  
MEMORY(0x00A356)  
=
=
=
0x55  
0x00A356  
0x34  
if TBLRD *,  
(Prog Mem (TBLPTR)) TABLAT;  
TBLPTR – No Change;  
if TBLRD *+,  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) + 1 TBLPTR;  
if TBLRD *-,  
After Instruction  
TABLAT  
TBLPTR  
=
=
0x34  
0x00A357  
TBLRD +* ;  
Example2:  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) – 1 TBLPTR;  
if TBLRD +*,  
(TBLPTR) + 1 TBLPTR;  
(Prog Mem (TBLPTR)) TABLAT;  
Before Instruction  
TABLAT  
TBLPTR  
=
=
=
=
0xAA  
0x01A357  
0x12  
MEMORY(0x01A357)  
MEMORY(0x01A358)  
0x34  
After Instruction  
Status Affected:None  
TABLAT  
TBLPTR  
=
=
0x34  
0x01A358  
0000  
0000  
0000  
10nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
Encoding:  
Description:  
This instruction is used to read the  
contents of Program Memory (P.M.). To  
address the program memory, a pointer  
called Table Pointer (TBLPTR) is used.  
The TBLPTR (a 21-bit pointer) points  
to each byte in the program memory.  
TBLPTR has a 2-Mbyte address  
range.  
TBLPTR[0] = 0: Least Significant  
Byte of Program  
Memory Word  
TBLPTR[0] = 1: Most Significant  
Byte of Program  
Memory Word  
The TBLRDinstruction can modify the  
value of TBLPTR as follows:  
• no change  
• post-increment  
• post-decrement  
• pre-increment  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
No  
No  
operation  
operation  
operation  
No  
operation  
No operation  
(Read  
No  
operation  
No operation  
(Write  
Program Memory)  
TABLAT)  
2004 Microchip Technology Inc.  
DS30491C-page 403  
PIC18F6585/8585/6680/8680  
TBLWT  
Table Write  
TBLWT  
Table Write (Continued)  
Syntax:  
[ label ] TBLWT ( *; *+; *-; +*)  
Words: 1  
Cycles: 2  
Operands:  
Operation:  
None  
if TBLWT*,  
Q Cycle Activity:  
Q1  
(TABLAT) Holding Register;  
TBLPTR – No Change;  
if TBLWT*+,  
Q2  
Q3  
Q4  
Decode  
No  
No  
No  
operation  
operation  
operation  
(TABLAT) Holding Register;  
(TBLPTR) + 1 TBLPTR;  
if TBLWT*-,  
(TABLAT) Holding Register;  
(TBLPTR) – 1 TBLPTR;  
if TBLWT+*,  
No  
operation  
No  
operation  
(Read  
No  
operation  
No  
operation  
(Write to  
Holding  
Register )  
TABLAT)  
(TBLPTR) + 1 TBLPTR;  
(TABLAT) Holding Register;  
Example1:  
TBLWT *+;  
Status Affected: None  
Before Instruction  
0000  
0000  
0000  
11nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
Encoding:  
TABLAT  
TBLPTR  
=
=
0x55  
0x00A356  
HOLDING REGISTER  
(0x00A356)  
=
0xFF  
After Instructions (table write completion)  
TABLAT  
=
0x55  
Description:  
This instruction uses the 3 LSBs of  
TBLPTR to determine which of the  
8 holding registers the TABLAT is  
written to. The holding registers are  
used to program the contents of  
Program Memory (P.M.). (Refer  
to Section 5.0 “Flash Program  
Memory” for additional details on  
programming Flash memory.)  
The TBLPTR (a 21-bit pointer) points  
to each byte in the program memory.  
TBLPTR has a 2-MBtye address  
range. The LSb of the TBLPTR  
selects which byte of the program  
memory location to access.  
TBLPTR  
=
0x00A357  
HOLDING REGISTER  
(0x00A356)  
=
0x55  
Example 2:  
TBLWT +*;  
Before Instruction  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(0x01389A)  
HOLDING REGISTER  
(0x01389B)  
=
=
0x34  
0x01389A  
=
=
0xFF  
0xFF  
After Instruction (table write completion)  
TABLAT  
TBLPTR  
HOLDING REGISTER  
(0x01389A)  
HOLDING REGISTER  
(0x01389B)  
=
=
0x34  
0x01389B  
=
=
0xFF  
0x34  
TBLPTR[0] = 0:Least Significant  
Byte of Program  
Memory Word  
TBLPTR[0] = 1:Most Significant  
Byte of Program  
Memory Word  
The TBLWT instruction can modify  
the value of TBLPTR as follows:  
• no change  
• post-increment  
• post-decrement  
• pre-increment  
DS30491C-page 404  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TSTFSZ  
Test f, skip if 0  
XORLW  
Exclusive OR literal with W  
Syntax:  
[ label ] TSTFSZ f [,a]  
Syntax:  
[ label ] XORLW k  
0 k 255  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
(W) .XOR. k W  
N, Z  
Operation:  
skip if f = 0  
Status Affected:  
Encoding:  
None  
0000  
1010  
kkkk  
kkkk  
0110  
011a  
ffff  
ffff  
Description:  
The contents of W are XORed  
with the 8-bit literal ‘k’. The result  
is placed in W.  
Description:  
If ‘f’ = 0, the next instruction,  
fetched during the current  
instruction execution is discarded  
and a NOPis executed, making this  
a two-cycle instruction. If ‘a’ is ‘0’,  
the Access Bank will be selected,  
overriding the BSR value. If ‘a’ is  
1’, then the bank will be selected  
as per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1(2)  
Example:  
XORLW 0xAF  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Before Instruction  
W
=
0xB5  
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
W
=
0x1A  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
NZERO  
ZERO  
TSTFSZ CNT, 1  
:
:
Example:  
Before Instruction  
PC  
=
Address (HERE)  
After Instruction  
If CNT  
=
=
=
0x00,  
PC  
Address (ZERO)  
0x00,  
If CNT  
PC  
Address (NZERO)  
2004 Microchip Technology Inc.  
DS30491C-page 405  
PIC18F6585/8585/6680/8680  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] XORWF f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(W) .XOR. (f) dest  
Status Affected:  
Encoding:  
N, Z  
0001  
10da  
ffff  
ffff  
Description:  
Exclusive OR the contents of W  
with register ‘f’. If ‘d’ is ‘0’, the result  
is stored in W. If ‘d’ is ‘1’, the result  
is stored back in the register ‘f’  
(default). If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding  
the BSR value. If ‘a’ is ‘1’, then the  
bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
XORWF  
REG, 1, 0  
Example:  
Before Instruction  
REG  
W
=
=
0xAF  
0xB5  
After Instruction  
REG  
W
=
=
0x1A  
0xB5  
DS30491C-page 406  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
26.1 MPLAB Integrated Development  
Environment Software  
26.0 DEVELOPMENT SUPPORT  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• An interface to debugging tools  
- simulator  
- MPLAB C17 and MPLAB C18 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- programmer (sold separately)  
- emulator (sold separately)  
- in-circuit debugger (sold separately)  
• A full-featured editor with color coded context  
• A multiple project manager  
- MPLAB C30 C Compiler  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB SIM Software Simulator  
- MPLAB dsPIC30 Software Simulator  
• Emulators  
• High-level source code debugging  
• Mouse over variable inspection  
• Extensive on-line help  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB ICE 4000 In-Circuit Emulator  
• In-Circuit Debugger  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
- MPLAB ICD 2  
• One touch assemble (or compile) and download  
to PICmicro emulator and simulator tools  
(automatically updates all project information)  
• Device Programmers  
- PRO MATE® II Universal Device Programmer  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
• Low-Cost Demonstration Boards  
- PICDEMTM 1 Demonstration Board  
- PICDEM.netTM Demonstration Board  
- PICDEM 2 Plus Demonstration Board  
- PICDEM 3 Demonstration Board  
- PICDEM 4 Demonstration Board  
- PICDEM 17 Demonstration Board  
- PICDEM 18R Demonstration Board  
- PICDEM LIN Demonstration Board  
- PICDEM USB Demonstration Board  
• Evaluation Kits  
• Debug using:  
- source files (assembly or C)  
- mixed assembly and C  
- machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increasing flexibility  
and power.  
26.2 MPASM Assembler  
The MPASM assembler is a full-featured, universal  
macro assembler for all PICmicro MCUs.  
®
- KEELOQ  
- PICDEM MSC  
- microID®  
- CAN  
The MPASM assembler generates relocatable object  
files for the MPLINK object linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol ref-  
erence, absolute LST files that contain source lines and  
generated machine code and COFF files for  
debugging.  
- PowerSmart®  
- Analog  
The MPASM assembler features include:  
• Integration into MPLAB IDE projects  
• User defined macros to streamline assembly code  
• Conditional assembly for multi-purpose source  
files  
• Directives that allow complete control over the  
assembly process  
2004 Microchip Technology Inc.  
DS30491C-page 407  
PIC18F6585/8585/6680/8680  
26.3 MPLAB C17 and MPLAB C18  
C Compilers  
26.6 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPLAB C17 and MPLAB C18 Code Development  
MPLAB ASM30 assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 compiler uses the  
assembler to produce it’s object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
Systems are complete ANSI  
C
compilers for  
Microchip’s PIC17CXXX and PIC18CXXX family of  
microcontrollers. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
26.4 MPLINK Object Linker/  
MPLIB Object Librarian  
• Rich directive set  
The MPLINK object linker combines relocatable  
objects created by the MPASM assembler and the  
MPLAB C17 and MPLAB C18 C compilers. It can link  
relocatable objects from precompiled libraries, using  
directives from a linker script.  
• Flexible macro language  
• MPLAB IDE compatibility  
26.7 MPLAB SIM Software Simulator  
The MPLAB SIM software simulator allows code devel-  
opment in a PC hosted environment by simulating the  
PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user defined key press, to any pin. The execu-  
tion can be performed in Single-Step, Execute Until  
Break or Trace mode.  
The MPLIB object librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The MPLAB SIM simulator fully supports symbolic  
debugging using the MPLAB C17 and MPLAB C18  
C Compilers, as well as the MPASM assembler. The  
software simulator offers the flexibility to develop and  
debug code outside of the laboratory environment,  
making it an excellent, economical software  
development tool.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
26.5 MPLAB C30 C Compiler  
26.8 MPLAB SIM30 Software Simulator  
The MPLAB C30 C compiler is a full-featured, ANSI  
compliant, optimizing compiler that translates standard  
ANSI C programs into dsPIC30F assembly language  
source. The compiler also supports many command  
line options and language extensions to take full  
advantage of the dsPIC30F device hardware capabili-  
ties and afford fine control of the compiler code  
generator.  
The MPLAB SIM30 software simulator allows code  
development in a PC hosted environment by simulating  
the dsPIC30F series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user defined key press, to any of the pins.  
The MPLAB SIM30 simulator fully supports symbolic  
debugging using the MPLAB C30 C Compiler and  
MPLAB ASM30 assembler. The simulator runs in either  
a Command Line mode for automated tasks, or from  
MPLAB IDE. This high-speed simulator is designed to  
debug, analyze and optimize time intensive DSP  
routines.  
MPLAB C30 is distributed with a complete ANSI C  
standard library. All library functions have been vali-  
dated and conform to the ANSI C library standard. The  
library includes functions for string manipulation,  
dynamic memory allocation, data conversion, time-  
keeping and math functions (trigonometric, exponential  
and hyperbolic). The compiler provides symbolic  
information for high-level source debugging with the  
MPLAB IDE.  
DS30491C-page 408  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
26.9 MPLAB ICE 2000  
High-Performance Universal  
In-Circuit Emulator  
26.11 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
The MPLAB ICE 2000 universal in-circuit emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for  
PICmicro microcontrollers. Software control of the  
MPLAB ICE 2000 in-circuit emulator is advanced by  
the MPLAB Integrated Development Environment,  
which allows editing, building, downloading and source  
debugging from a single environment.  
USB interface. This tool is based on the Flash  
PICmicro MCUs and can be used to develop for these  
and other PICmicro microcontrollers. The MPLAB  
ICD 2 utilizes the in-circuit debugging capability built  
into the Flash devices. This feature, along with  
Microchip’s In-Circuit Serial ProgrammingTM (ICSPTM  
)
protocol, offers cost effective in-circuit Flash debugging  
from the graphical user interface of the MPLAB  
Integrated Development Environment. This enables a  
designer to develop and debug source code by setting  
breakpoints, single-stepping and watching variables,  
CPU status and peripheral registers. Running at full  
speed enables testing hardware and applications in  
real-time. MPLAB ICD 2 also serves as a development  
programmer for selected PICmicro devices.  
The MPLAB ICE 2000 is a full-featured emulator sys-  
tem with enhanced trace, trigger and data monitoring  
features. Interchangeable processor modules allow the  
system to be easily reconfigured for emulation of differ-  
ent processors. The universal architecture of the  
MPLAB ICE in-circuit emulator allows expansion to  
support new PICmicro microcontrollers.  
The MPLAB ICE 2000 in-circuit emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
26.12 PRO MATE II Universal Device  
Programmer  
The PRO MATE II is a universal, CE compliant device  
programmer with programmable voltage verification at  
VDDMIN and VDDMAX for maximum reliability. It features  
an LCD display for instructions and error messages  
and a modular detachable socket assembly to support  
various package types. In Stand-Alone mode, the  
PRO MATE II device programmer can read, verify and  
program PICmicro devices without a PC connection. It  
can also set code protection in this mode.  
26.10 MPLAB ICE 4000  
High-Performance Universal  
In-Circuit Emulator  
The MPLAB ICE 4000 universal in-circuit emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for high-  
end PICmicro microcontrollers. Software control of the  
MPLAB ICE in-circuit emulator is provided by the  
MPLAB Integrated Development Environment, which  
allows editing, building, downloading and source  
debugging from a single environment.  
26.13 MPLAB PM3 Device Programmer  
The MPLAB PM3 is a universal, CE compliant device  
programmer with programmable voltage verification at  
VDDMIN and VDDMAX for maximum reliability. It features  
a large LCD display (128 x 64) for menus and error  
messages and a modular detachable socket assembly  
to support various package types. The ICSP™ cable  
assembly is included as a standard item. In Stand-  
Alone mode, the MPLAB PM3 device programmer can  
read, verify and program PICmicro devices without a  
PC connection. It can also set code protection in this  
mode. MPLAB PM3 connects to the host PC via an  
RS-232 or USB cable. MPLAB PM3 has high-speed  
communications and optimized algorithms for quick  
programming of large memory devices and incorpo-  
rates an SD/MMC card for file storage and secure data  
applications.  
The MPLAB ICD 4000 is a premium emulator system,  
providing the features of MPLAB ICE 2000, but with  
increased emulation memory and high-speed perfor-  
mance for dsPIC30F and PIC18XXXX devices. Its  
advanced emulator features include complex triggering  
and timing, up to 2 Mb of emulation memory and the  
ability to view variables in real-time.  
The MPLAB ICE 4000 in-circuit emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft Windows 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
2004 Microchip Technology Inc.  
DS30491C-page 409  
PIC18F6585/8585/6680/8680  
26.14 PICSTART Plus Development  
Programmer  
26.17 PICDEM 2 Plus  
Demonstration Board  
The PICSTART Plus development programmer is an  
easy-to-use, low-cost, prototype programmer. It con-  
nects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus development programmer supports  
most PICmicro devices up to 40 pins. Larger pin count  
devices, such as the PIC16C92X and PIC17C76X,  
may be supported with an adapter socket. The  
PICSTART Plus development programmer is CE  
compliant.  
The PICDEM 2 Plus demonstration board supports  
many 18, 28 and 40-pin microcontrollers, including  
PIC16F87X and PIC18FXX2 devices. All the neces-  
sary hardware and software is included to run the dem-  
onstration programs. The sample microcontrollers  
provided with the PICDEM 2 demonstration board can  
be programmed with a PRO MATE II device program-  
mer, PICSTART Plus development programmer, or  
MPLAB ICD 2 with a Universal Programmer Adapter.  
The MPLAB ICD 2 and MPLAB ICE in-circuit emulators  
may also be used with the PICDEM 2 demonstration  
board to test firmware. A prototype area extends the  
circuitry for additional application components. Some  
of the features include an RS-232 interface, a 2 x 16  
LCD display, a piezo speaker, an on-board temperature  
sensor, four LEDs and sample PIC18F452 and  
PIC16F877 Flash microcontrollers.  
26.15 PICDEM 1 PICmicro  
Demonstration Board  
The PICDEM 1 demonstration board demonstrates the  
capabilities of the PIC16C5X (PIC16C54 to  
PIC16C58A), PIC16C61, PIC16C62X, PIC16C71,  
PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All  
necessary hardware and software is included to run  
basic demo programs. The sample microcontrollers  
provided with the PICDEM 1 demonstration board can  
be programmed with a PRO MATE II device program-  
mer or a PICSTART Plus development programmer.  
The PICDEM 1 demonstration board can be connected  
to the MPLAB ICE in-circuit emulator for testing. A  
prototype area extends the circuitry for additional appli-  
cation components. Features include an RS-232  
interface, a potentiometer for simulated analog input,  
push button switches and eight LEDs.  
26.18 PICDEM 3 PIC16C92X  
Demonstration Board  
The PICDEM 3 demonstration board supports the  
PIC16C923 and PIC16C924 in the PLCC package. All  
the necessary hardware and software is included to run  
the demonstration programs.  
26.19 PICDEM 4 8/14/18-Pin  
Demonstration Board  
The PICDEM 4 can be used to demonstrate the capa-  
bilities of the 8, 14 and 18-pin PIC16XXXX and  
PIC18XXXX MCUs, including the PIC16F818/819,  
PIC16F87/88, PIC16F62XA and the PIC18F1320  
family of microcontrollers. PICDEM 4 is intended to  
showcase the many features of these low pin count  
parts, including LIN and Motor Control using ECCP.  
Special provisions are made for low-power operation  
with the supercapacitor circuit and jumpers allow on-  
board hardware to be disabled to eliminate current  
draw in this mode. Included on the demo board are pro-  
visions for Crystal, RC or Canned Oscillator modes, a  
five volt regulator for use with a nine volt wall adapter  
or battery, DB-9 RS-232 interface, ICD connector for  
programming via ICSP and development with MPLAB  
ICD 2, 2 x 16 liquid crystal display, PCB footprints for  
H-Bridge motor driver, LIN transceiver and EEPROM.  
Also included are: header for expansion, eight LEDs,  
four potentiometers, three push buttons and a proto-  
typing area. Included with the kit is a PIC16F627A and  
a PIC18F1320. Tutorial firmware is included along with  
the User’s Guide.  
26.16 PICDEM.net Internet/Ethernet  
Demonstration Board  
The PICDEM.net demonstration board is an Internet/  
Ethernet demonstration board using the PIC18F452  
microcontroller and TCP/IP firmware. The board  
supports any 40-pin DIP device that conforms to the  
standard pinout used by the PIC16F877 or  
PIC18C452. This kit features a user friendly TCP/IP  
stack, web server with HTML, a 24L256 Serial  
EEPROM for Xmodem download to web pages into  
Serial EEPROM, ICSP/MPLAB ICD 2 interface con-  
nector, an Ethernet interface, RS-232 interface and a  
16 x 2 LCD display. Also included is the book and  
CD-ROM “TCP/IP Lean, Web Servers for Embedded  
Systems,” by Jeremy Bentham  
DS30491C-page 410  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
26.20 PICDEM 17 Demonstration Board  
26.24 PICDEM USB PIC16C7X5  
Demonstration Board  
The PICDEM 17 demonstration board is an evaluation  
board that demonstrates the capabilities of several  
Microchip microcontrollers, including PIC17C752,  
PIC17C756A, PIC17C762 and PIC17C766. A pro-  
grammed sample is included. The PRO MATE II device  
programmer, or the PICSTART Plus development pro-  
grammer, can be used to reprogram the device for user  
tailored application development. The PICDEM 17  
demonstration board supports program download and  
execution from external on-board Flash memory. A  
generous prototype area is available for user hardware  
expansion.  
The PICDEM USB Demonstration Board shows off the  
capabilities of the PIC16C745 and PIC16C765 USB  
microcontrollers. This board provides the basis for  
future USB products.  
26.25 Evaluation and  
Programming Tools  
In addition to the PICDEM series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
for these products.  
• KEELOQ evaluation and programming tools for  
Microchip’s HCS Secure Data Products  
26.21 PICDEM 18R PIC18C601/801  
Demonstration Board  
• CAN developers kit for automotive network  
applications  
The PICDEM 18R demonstration board serves to assist  
development of the PIC18C601/801 family of Microchip  
microcontrollers. It provides hardware implementation  
of both 8-bit Multiplexed/Demultiplexed and 16-bit  
Memory modes. The board includes 2 Mb external  
Flash memory and 128 Kb SRAM memory, as well as  
serial EEPROM, allowing access to the wide range of  
memory types supported by the PIC18C601/801.  
• Analog design boards and filter design software  
• PowerSmart battery charging evaluation/  
calibration kits  
• IrDA® development kit  
• microID development and rfLabTM development  
software  
• SEEVAL® designer kit for memory evaluation and  
endurance calculations  
26.22 PICDEM LIN PIC16C43X  
Demonstration Board  
• PICDEM MSC demo boards for Switching mode  
power supply, high-power IR driver, delta sigma  
ADC and flow rate sensor  
The powerful LIN hardware and software kit includes a  
series of boards and three PICmicro microcontrollers.  
The small footprint PIC16C432 and PIC16C433 are  
used as slaves in the LIN communication and feature  
Check the Microchip web page and the latest Product  
Selector Guide for the complete list of demonstration  
and evaluation kits.  
on-board LIN transceivers.  
A PIC16F874 Flash  
microcontroller serves as the master. All three micro-  
controllers are programmed with firmware to provide  
LIN bus communication.  
26.23 PICkitTM 1 Flash Starter Kit  
A complete “development system in a box”, the PICkit  
Flash Starter Kit includes a convenient multi-section  
board for programming, evaluation and development of  
8/14-pin Flash PIC® microcontrollers. Powered via  
USB, the board operates under a simple Windows GUI.  
The PICkit 1 Starter Kit includes the User’s Guide (on  
CD ROM), PICkit 1 tutorial software and code for  
various applications. Also included are MPLAB® IDE  
(Integrated Development Environment) software,  
software and hardware “Tips 'n Tricks for 8-pin Flash  
PIC® Microcontrollers” Handbook and a USB interface  
cable. Supports all current 8/14-pin Flash PIC  
microcontrollers, as well as many future planned  
devices.  
2004 Microchip Technology Inc.  
DS30491C-page 411  
PIC18F6585/8585/6680/8680  
NOTES:  
DS30491C-page 412  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
27.0 ELECTRICAL CHARACTERISTICS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias.............................................................................................................-55°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4) ......................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +5.5V  
Voltage on MCLR with respect to VSS (Note 2) ......................................................................................... 0V to +13.25V  
Voltage on RA4 with respect to Vss............................................................................................................... 0V to +8.5V  
Total power dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)...................................................................................................................... 20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) .............................................................................................................. 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports ..................................................................................................................200 mA  
Note 1: Power dissipation is calculated as follows:  
Pdis = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOl x IOL)  
2: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50-100should be used when applying a “low” level to the MCLR/VPP pin rather  
than pulling this pin directly to VSS.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2004 Microchip Technology Inc.  
DS30491C-page 413  
PIC18F6585/8585/6680/8680  
FIGURE 27-1:  
PIC18F6585/8585/6680/8680 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
PIC18FXX8X  
4.2V  
3.5V  
3.0V  
2.5V  
2.0V  
FMAX  
Frequency  
FMAX = 40 MHz for PIC18F6X8X and PIC18F8X8X in Microcontroller mode.  
FMAX = 25 MHz for PIC18F8X8X in modes other than Microcontroller mode.  
FIGURE 27-2:  
PIC18LF6585/8585/6680/8680 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0V  
5.5V  
5.0V  
PIC18LFXX8X  
4.5V  
4.2V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
FMAX  
4 MHz  
For PIC18F6X8X and PIC18F8X8X in Microcontroller mode:  
Frequency  
FMAX = (16.36 MHz/V) (VDDAPPMIN – 2.0V) + 4 MHz, if VDDAPPMIN 4.2V;  
FMAX = 40 MHz, if VDDAPPMIN > 4.2V.  
For PIC18F8X8X in modes other than Microcontroller mode:  
FMAX = (9.55 MHz/V) (VDDAPPMIN – 2.0V) + 4 MHz, if VDDAPPMIN 4.2V;  
FMAX = 25 MHz, if VDDAPPMIN > 4.2V.  
Note: VDDAPPMIN is the minimum voltage of the PICmicro® device in the application.  
DS30491C-page 414  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 27-3:  
PIC18F6585/8585/6680/8680 VOLTAGE-FREQUENCY GRAPH (EXTENDED)  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
PIC18FXX8X  
4.2V  
3.5V  
3.0V  
2.5V  
2.0V  
25 MHz  
Frequency  
2004 Microchip Technology Inc.  
DS30491C-page 415  
PIC18F6585/8585/6680/8680  
27.1 DC Characteristics: Supply Voltage  
PIC18FXX8X (Industrial, Extended)  
PIC18LFXX8X (Industrial)  
PIC18LFXX8X  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18FXX8X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param.  
No.  
Symbol  
Characteristic  
Supply Voltage  
Min  
Typ  
Max  
Units  
Conditions  
D001 VDD  
PIC18LFXX8X  
PIC18FXX8X  
Analog Supply  
2.0  
4.2  
5.5  
5.5  
V
V
V
HS, XT, RC and LP Oscillator mode  
D001A AVDD  
D002 VDR  
D003 VPOR  
VDD – 0.3  
VDD + 0.3  
Voltage  
RAM Data Retention  
Voltage(1)  
1.5  
V
V
VDD Start Voltage  
to ensure internal  
0.7  
See section on Power-on Reset for  
details  
Power-on Reset signal  
D004 SVDD  
D005 VBOR  
VDD Rise Rate  
to ensure internal  
Power-on Reset signal  
0.05  
V/ms See section on Power-on Reset for  
details  
Brown-out Reset Voltage  
BORV1:BORV0 = 11  
BORV1:BORV0 = 10  
BORV1:BORV0 = 01  
BORV1:BORV0 = 00  
1.96  
2.64  
4.11  
4.41  
2.18  
2.92  
4.55  
4.87  
V
V
V
V
Legend: Shading of rows is to assist in readability of the table.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM  
data.  
DS30491C-page 416  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
27.2 DC Characteristics: Power-down and Supply Current  
PIC18FXX8X (Industrial, Extended)  
PIC18LFXX8X (Industrial)  
PIC18LFXX8X  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18FXX8X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param.  
No.  
Device  
Typ Max Units  
Conditions  
Power-down Current (IPD)(1)  
D020  
PIC18LFXX8X 0.2  
1
1
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 2.0V,  
(Sleep mode)  
0.2  
5.0  
10  
1
D020A  
D020B  
PIC18LFXX8X 0.4  
VDD = 3.0V,  
(Sleep mode)  
0.4  
1
3.0  
All devices 0.7  
0.7  
18  
2
VDD = 5.0V,  
(Sleep mode)  
2
15.0  
32  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and  
all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as  
I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and  
temperature, also have an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can  
be estimated by the formula Ir = VDD/2REXT (mA) with REXT in k.  
2004 Microchip Technology Inc.  
DS30491C-page 417  
PIC18F6585/8585/6680/8680  
27.2 DC Characteristics: Power-down and Supply Current  
PIC18FXX8X (Industrial, Extended)  
PIC18LFXX8X (Industrial) (Continued)  
PIC18LFXX8X  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18FXX8X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param.  
No.  
Device  
Typ Max Units  
Conditions  
Supply Current (IDD)(2,3)  
D010  
PIC18LFXX8X 500  
300  
500  
500  
µA  
µA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
850 1000 µA  
PIC18LFXX8X 500  
900  
900  
1.5  
2
µA  
µA  
FOSC = 1 MHZ,  
EC oscillator  
500  
1
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
All devices  
1
1
2
1.3  
1
3
PIC18LFXX8X  
2
1
2
1.5  
2.5  
2
PIC18LFXX8X 1.5  
FOSC = 4 MHz,  
EC oscillator  
1.5  
2
2
2.5  
5
All devices  
3
3
4
5
6
Legend: Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and  
all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as  
I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and  
temperature, also have an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can  
be estimated by the formula Ir = VDD/2REXT (mA) with REXT in k.  
DS30491C-page 418  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
27.2 DC Characteristics: Power-down and Supply Current  
PIC18FXX8X (Industrial, Extended)  
PIC18LFXX8X (Industrial) (Continued)  
PIC18LFXX8X  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
PIC18FXX8X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param.  
No.  
Device  
Typ Max Units  
Conditions  
Supply Current (IDD)(2,3)  
PIC18FXX8X 13  
27  
27  
29  
31  
31  
34  
34  
34  
44  
46  
46  
51  
45  
50  
54  
55  
60  
65  
125  
150  
188  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
-40°C  
15  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-10°C  
+25°C  
+70°C  
-10°C  
+25°C  
+70°C  
-10°C  
+25°C  
+70°C  
VDD = 4.2V  
VDD = 5.0V  
VDD = 4.2V  
VDD = 5.0V  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
19  
FOSC = 25 MHZ,  
EC oscillator  
PIC18FXX8X 17  
21  
23  
PIC18FXX8X 20  
24  
29  
FOSC = 40 MHZ,  
EC oscillator  
PIC18FXX8X 28  
33  
40  
D014  
PIC18LFXX8X 27  
30  
µA  
32  
µA  
PIC18LFXX8X 33  
µA  
µA  
FOSC = 32 kHz,  
Timer1 as clock  
36  
39  
µA  
All devices 75  
µA  
µA  
90  
113  
µA  
Legend: Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and  
all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as  
I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and  
temperature, also have an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can  
be estimated by the formula Ir = VDD/2REXT (mA) with REXT in k.  
2004 Microchip Technology Inc.  
DS30491C-page 419  
PIC18F6585/8585/6680/8680  
27.2 DC Characteristics: Power-down and Supply Current  
PIC18FXX8X (Industrial, Extended)  
PIC18LFXX8X (Industrial) (Continued)  
PIC18LFXX8X  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
PIC18FXX8X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
(Industrial, Extended)  
Param.  
No.  
Device  
Typ Max Units  
Conditions  
Module Differential Currents (IWDT, IBOR, ILVD, IOSCB, IAD)  
D022  
(IWDT)  
Watchdog Timer <1  
1.5  
2
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
<1  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
5
20  
10  
20  
35  
25  
35  
50  
115  
175  
125  
150  
225  
27  
30  
35  
60  
65  
75  
75  
85  
100  
2
3
3
10  
12  
15  
20  
D022A  
(IBOR)  
Brown-out Reset 55  
µA -40°C to +85°C  
µA -40°C to +85°C  
µA -40°C to +85°C  
µA -40°C to +85°C  
µA -40°C to +85°C  
VDD = 3.0V  
VDD = 5.0V  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
105  
D022B  
(ILVD)  
Low-Voltage Detect 45  
45  
45  
D025  
(IOSCB)  
Timer1 Oscillator 20  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
-10°C  
+25°C  
+70°C  
-10°C  
+25°C  
+70°C  
-10°C  
+25°C  
+70°C  
+25°C  
+25°C  
+25°C  
20  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
32 kHz on Timer1  
25  
22  
22  
32 kHz on Timer1  
32 kHz on Timer1  
25  
30  
30  
35  
D026  
(IAD)  
A/D Converter <1  
VDD = 2.0V  
VDD = 3.0V  
VDD = 5.0V  
<1  
<1  
2
A/D on, not converting  
2
Legend: Shading of rows is to assist in readability of the table.  
Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and  
all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).  
2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as  
I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and  
temperature, also have an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD;  
MCLR = VDD; WDT enabled/disabled as specified.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can  
be estimated by the formula Ir = VDD/2REXT (mA) with REXT in k.  
DS30491C-page 420  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
27.3 DC Characteristics: PIC18FXX8X (Industrial, Extended)  
PIC18LFXX8X (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Symbol  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O ports:  
with TTL buffer  
D030  
D030A  
D031  
VSS  
0.15 VDD  
0.8  
V
V
VDD < 4.5V  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
RC3 and RC4  
VSS  
VSS  
0.2 VDD  
0.3 VDD  
V
V
D032  
MCLR  
VSS  
VSS  
0.2 VDD  
0.3 VDD  
V
V
D032A  
OSC1 (in XT, HS and LP modes)  
and T1OSI  
D033  
OSC1 (in RC and EC mode)(1)  
Input High Voltage  
I/O ports:  
VSS  
0.2 VDD  
V
VIH  
D040  
with TTL buffer  
0.25 VDD +  
0.8V  
VDD  
VDD  
V
V
VDD < 4.5V  
D040A  
D041  
2.0  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
RC3 and RC4  
0.8 VDD  
0.7 VDD  
VDD  
VDD  
V
V
D042  
MCLR, OSC1 (EC mode)  
0.8 VDD  
0.7 VDD  
VDD  
VDD  
V
V
D042A  
OSC1 (in XT, HS and LP modes)  
and T1OSI  
D043  
D060  
OSC1 (RC mode)(1)  
Input Leakage Current(2,3)  
I/O ports  
0.9 VDD  
VDD  
1
V
IIL  
µA VSS VPIN VDD,  
Pin at high-impedance  
D061  
D063  
MCLR  
5
5
µA Vss VPIN VDD  
µA Vss VPIN VDD  
OSC1  
IPU  
Weak Pull-up Current  
PORTB weak pull-up current  
D070  
IPURB  
50  
400  
µA VDD = 5V, VPIN = VSS  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PICmicro device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: Parameter is characterized but not tested.  
2004 Microchip Technology Inc.  
DS30491C-page 421  
PIC18F6585/8585/6680/8680  
27.3 DC Characteristics: PIC18FXX8X (Industrial, Extended)  
PIC18LFXX8X (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Symbol  
No.  
Characteristic  
Min  
Max  
Units  
Conditions  
VOL  
VOH  
VOD  
Output Low Voltage  
I/O ports  
D080  
0.6  
0.6  
0.6  
0.6  
V
V
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 7.0 mA, VDD = 4.5V,  
-40°C to +125°C  
D080A  
D083  
OSC2/CLKO  
(RC mode)  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
D083A  
IOL = 1.2 mA, VDD = 4.5V,  
-40°C to +125°C  
Output High Voltage(3)  
D090  
I/O ports  
VDD – 0.7  
VDD – 0.7  
VDD – 0.7  
VDD – 0.7  
V
V
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -2.5 mA, VDD = 4.5V,  
-40°C to +125°C  
D090A  
D092  
OSC2/CLKO  
(RC mode)  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
D092A  
D150  
IOH = -1.0 mA, VDD = 4.5V,  
-40°C to +125°C  
RA4 pin  
Open-Drain High Voltage  
8.5  
Capacitive Loading Specs  
on Output Pins  
D100(4)  
COSC2 OSC2 pin  
15  
pF In XT, HS and LP modes  
when external clock is used  
to drive OSC1  
D101  
D102  
CIO  
CB  
All I/O pins and OSC2  
(in RC mode)  
50  
pF To meet the AC Timing  
Specifications  
pF In I2C mode  
SCL, SDA  
400  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PICmicro device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: Parameter is characterized but not tested.  
DS30491C-page 422  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 27-1: COMPARATOR SPECIFICATIONS  
Operating Conditions: 3.0V < VDD < 5.5V, -40°C < TA < +125°C, unless otherwise stated  
Param  
No.  
Sym  
Characteristics  
Input Offset Voltage  
Min  
Typ  
Max  
Units  
Comments  
D300  
VIOFF  
0
± 5.0  
± 10  
VDD – 1.5  
mV  
V
D301  
D302  
VICM  
Input Common Mode Voltage  
Common Mode Rejection Ratio  
CMRR  
TRESP  
55  
dB  
Response Time(1)  
300  
300A  
150  
400  
600  
ns  
ns  
PIC18FXX8X  
PIC18LFXX8X  
301  
TMC2OV Comparator Mode Change to  
Output Valid  
10  
µs  
Note 1: Response time measured with one comparator input at (VDD – 1.5)/2 while the other input transitions from  
VSS to VDD.  
TABLE 27-2: VOLTAGE REFERENCE SPECIFICATIONS  
Operating Conditions: 3.0V < VDD < 5.5V, -40°C < TA < +125°C, unless otherwise stated  
Param  
No.  
Sym  
Characteristics  
Resolution  
Min  
Typ  
Max  
Units  
Comments  
D310  
VRES  
VDD/24  
VDD/32  
LSb  
D311  
VRAA  
Absolute Accuracy  
1/4  
1/2  
LSb Low Range (VRR = 1)  
LSb High Range (VRR = 0)  
D312  
310  
VRUR  
TSET  
Unit Resistor Value (R)  
Settling Time(1)  
2k  
µs  
10  
Note 1: Settling time measured while VRR = 1and VR<3:0> transitions from 0000to 1111.  
2004 Microchip Technology Inc.  
DS30491C-page 423  
PIC18F6585/8585/6680/8680  
FIGURE 27-4:  
LOW-VOLTAGE DETECT CHARACTERISTICS  
VDD  
(LVDIF can be  
cleared in software)  
VLVD  
(LVDIF set by hardware)  
LVDIF  
TABLE 27-3: LOW-VOLTAGE DETECT CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
No.  
Symbol  
Characteristic  
LVD Voltage on  
Min  
Typ† Max  
Units  
Conditions  
D420  
LVV = 0000  
LVV = 0001  
LVV = 0010  
LVV = 0011  
LVV = 0100  
LVV = 0101  
LVV = 0110  
LVV = 0111  
LVV = 1000  
LVV = 1001  
LVV = 1010  
LVV = 1011  
LVV = 1100  
LVV = 1101  
LVV = 1110  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VDD transition high  
to low  
1.96  
2.16  
2.35  
2.46  
2.64  
2.75  
2.95  
3.24  
3.43  
3.53  
3.72  
3.92  
4.11  
4.41  
2.06  
2.27  
2.47  
2.58  
2.78  
2.89  
3.1  
2.16  
2.38  
2.59  
2.71  
2.92  
3.03  
3.26  
3.58  
3.79  
3.91  
4.12  
4.33  
4.55  
4.87  
3.41  
3.61  
3.72  
3.92  
4.13  
4.33  
4.64  
1.22  
D423  
VBG  
Band Gap Reference Voltage  
Value  
Production tested at TAMB = 25°C. Specifications over temperature limits ensured by characterization.  
DS30491C-page 424  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 27-4: MEMORY PROGRAMMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC Characteristics  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
Internal Program Memory  
Programming Specifications  
(Note 1)  
D110  
D112  
D113  
VPP  
IPP  
Voltage on MCLR/VPP pin  
Current into MCLR/VPP pin  
9.00  
13.25  
5
V
(Note 2)  
µA  
mA  
IDDP  
Supply Current during  
Programming  
10  
Data EEPROM Memory  
Cell Endurance  
D120  
ED  
100K  
10K  
1M  
100K  
E/W -40°C to +85°C  
E/W +85°C to +125°C  
D120A ED  
Cell Endurance  
D121 VDRW VDD for Read/Write  
VMIN  
5.5  
V
Using EECON to read/write,  
VMIN = Minimum operating  
voltage  
D122 TDEW Erase/Write Cycle Time  
D123 TRETD Characteristic Retention  
D123A TRETD Characteristic Retention  
Program Flash Memory  
40  
4
ms  
Year -40°C to +85°C (Note 3)  
Year 25°C (Note 3)  
100  
D130  
EP  
Cell Endurance  
Cell Endurance  
VDD for Read  
10K  
1000  
VMIN  
100K  
10K  
E/W -40°C to +85°C  
E/W +85°C to +125°C  
D130A EP  
D131  
D132  
VPR  
VIE  
5.5  
V
VMIN = Minimum operating  
voltage  
VDD for Block Erase  
4.5  
4.5  
5.5  
5.5  
V
V
Using ICSP port  
Using ICSP port  
D132A VIW  
VDD for Externally Timed Erase  
or Write  
D132B VPEW VDD for Self-timed Write  
VMIN  
5.5  
V
VMIN = Minimum operating  
voltage  
D133  
TIE  
ICSP Block Erase Cycle Time  
1
5
ms VDD > 4.5V  
ms VDD > 4.5V  
D133A TIW  
ICSP Erase or Write Cycle Time  
(externally timed)  
D133A TIW  
Self-timed Write Cycle Time  
40  
2.5  
ms  
D134 TRETD Characteristic Retention  
D134A TRETD Characteristic Retention  
Year -40°C to +85°C (Note 3)  
Year 25°C (Note 3)  
100  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: These specifications are for programming the on-chip program memory through the use of table write  
instructions.  
2: The pin may be kept in this range at times other than programming but it is not recommended.  
3: Retention time is valid provided no other specifications are violated.  
2004 Microchip Technology Inc.  
DS30491C-page 425  
PIC18F6585/8585/6680/8680  
27.4 AC (Timing) Characteristics  
27.4.1  
TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created  
following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
3. TCC:ST  
4. Ts  
(I2C specifications only)  
(I2C specifications only)  
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
ck  
cs  
di  
CCP1  
CLKO  
CS  
osc  
rd  
OSC1  
RD  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
Fall  
P
R
V
Z
Period  
H
High  
Rise  
I
L
Invalid (high-impedance)  
Low  
Valid  
High-impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
Hold  
SU  
Setup  
ST  
DAT  
STA  
DATA input hold  
Start condition  
STO  
Stop condition  
DS30491C-page 426  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
27.4.2  
TIMING CONDITIONS  
The temperature and voltages specified in Table 27-5  
apply to all timing specifications unless otherwise  
noted. Figure 27-5 specifies the load conditions for the  
timing specifications.  
TABLE 27-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
AC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 27.1 and  
Section 27.3.  
LC parts operate for industrial temperatures only.  
FIGURE 27-5:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load condition 1 Load condition 2  
VDD/2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2/CLKO  
and including D and E outputs as ports  
VSS  
2004 Microchip Technology Inc.  
DS30491C-page 427  
PIC18F6585/8585/6680/8680  
27.4.3  
TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 27-6:  
EXTERNAL CLOCK TIMING (ALL MODES EXCEPT PLL)  
Q4  
Q1  
1
Q2  
Q3  
Q4  
Q1  
OSC1  
CLKO  
3
4
4
3
2
TABLE 27-6: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
External CLKI Frequency(1)  
DC  
DC  
DC  
DC  
DC  
0.1  
4
4
4
4
4
40  
25  
25  
16  
4
4
25  
25  
25  
16  
10  
6.25  
200  
10,000  
250  
250  
200  
MHz EC, ECIO, -40°C to +85°C  
MHz EC,ECIO, -40°C to +85°C, EMA  
MHz EC, ECIO, +85°C to +125°C  
MHz EC, ECIO, +85°C to +125°C, EMA  
MHz RC oscillator  
1A  
FOSC  
Oscillator Frequency(1)  
MHz XT oscillator  
MHz HS oscillator, -40°C to +85°C  
MHz HS oscillator, -40°C to +85°C, EMA  
MHz HS oscillator, +85°C to +125°C  
MHz HS oscillator, +85°C to +125°C, EMA  
MHz HS + PLL oscillator, -40°C to +85°C  
MHz HS + PLL oscillator, +85°C to +125°C  
kHz LP oscillator  
4
DC  
25  
40  
40  
62.5  
250  
250  
40  
40  
40  
62.5  
100  
160  
5
External CLKI Period(1)  
Oscillator Period(1)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
EC, ECIO, -40°C to +85°C  
EC,ECIO, -40°C to +85°C, EMA  
EC, ECIO, +85°C to +125°C  
EC, ECIO, +85°C to +125°C, EMA  
RC oscillator  
1
TOSC  
XT oscillator  
HS oscillator, -40°C to +85°C  
HS oscillator, -40°C to +85°C, EMA  
HS oscillator, +85°C to +125°C  
HS oscillator, +85°C to +125°C, EMA  
HS + PLL oscillator, -40°C to +85°C  
HS + PLL oscillator, +85°C to +125°C  
LP oscillator  
2
3
TCY  
Instruction Cycle Time(1)  
100  
160  
30  
2.5  
10  
ns  
ns  
TCY = 4/FOSC, -40°C to +85°C  
TCY = 4/FOSC, +85°C to +125°C  
TOSL,  
TOSH  
External Clock in (OSC1)  
High or Low Time  
ns  
µs  
ns  
XT oscillator  
LP oscillator  
HS oscillator  
4
TOSR,  
TOSF  
External Clock in (OSC1)  
Rise or Fall Time  
20  
50  
7.5  
ns  
ns  
ns  
XT oscillator  
LP oscillator  
HS oscillator  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period for all configurations  
except PLL. All specified values are based on characterization data for that particular oscillator type under  
standard operating conditions with the device executing code. Exceeding these specified limits may result  
in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested  
to operate at “min.” values with an external clock applied to the OSC1/CLKI pin. When an external clock  
input is used, the “max.” cycle time limit is “DC” (no clock) for all devices.  
DS30491C-page 428  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 27-7: PLL CLOCK TIMING SPECIFICATIONS (VDD = 4.2 TO 5.5V)  
Param.  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units  
Conditions  
FOSC Oscillator Frequency Range  
4
10  
40  
2
MHz HS mode  
FSYS On-Chip VCO System Frequency  
16  
-2  
MHz HS mode  
trc  
PLL Start-up Time (Lock Time)  
ms  
%
CLK CLKO Stability (Jitter)  
+2  
Data in “Typ” column is at 5V, 25°C, unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
FIGURE 27-7:  
CLKO AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKO  
13  
14  
12  
19  
18  
16  
I/O Pin  
(Input)  
15  
17  
I/O Pin  
(Output)  
New Value  
Old Value  
20, 21  
Refer to Figure 27-5 for load conditions.  
Note:  
2004 Microchip Technology Inc.  
DS30491C-page 429  
PIC18F6585/8585/6680/8680  
TABLE 27-8: CLKO AND I/O TIMING REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units Conditions  
10  
11  
12  
13  
14  
15  
16  
17  
18  
TOSH2CKL OSC1 to CLKO ↓  
TOSH2CKH OSC1 to CLKO ↑  
75  
75  
35  
35  
50  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
200  
TCKR  
TCKF  
CLKO Rise Time  
CLKO Fall Time  
100  
100  
TCKL2IOV CLKO to Port Out Valid  
0.5 TCY + 20  
TIOV2CKH Port In Valid before CLKO ↑  
TCKH2IOI Port In Hold after CLKO ↑  
0.25 TCY + 25  
0
TOSH2IOV OSC1 (Q1 cycle) to Port Out Valid  
TOSH2IOI OSC1 (Q2 cycle) to Port PIC18FXX8X  
150  
100  
200  
Input Invalid  
(I/O in hold time)  
18A  
PIC18LFXX8X  
19  
TIOV2OSH Port Input Valid to OSC1 (I/O in setup time)  
0
10  
10  
25  
60  
25  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20  
TIOR  
Port Output Rise Time  
Port Output Fall Time  
INT pin High or Low Time  
PIC18FXX8X  
PIC18LFXX8X  
PIC18FXX8X  
PIC18LFXX8X  
20A  
21  
TIOF  
21A  
22†  
23†  
24†  
TINP  
TCY  
TCY  
20  
TRBP  
TRCP  
RB7:RB4 Change INT High or Low Time  
RC7:RC4 Change INT High or Low Time  
These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC mode, where CLKO output is 4 x TOSC.  
FIGURE 27-8:  
PROGRAM MEMORY READ TIMING DIAGRAM  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
OSC1  
A<19:16>  
BA0  
Address  
Address  
Address  
Data from External  
Address  
AD<15:0>  
163  
162  
150  
151  
160  
155  
161  
166  
167  
168  
169  
ALE  
CE  
164  
171  
171A  
OE  
165  
DS30491C-page 430  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TABLE 27-9: PROGRAM MEMORY READ TIMING REQUIREMENTS (VDD = 4.2 TO 5.5V)  
Param.  
Symbol  
Characteristics  
Min  
Typ  
Max  
Units  
No  
150  
TADV2ALL Address Out Valid to ALE (address  
0.25 TCY – 10  
ns  
setup time)  
151  
TALL2ADL  
ALE to Address Out Invalid (address  
hold time)  
5
ns  
155  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
171  
TALL2OEL ALE to OE ↓  
10  
0.125 TCY  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TADZ2OEL AD High-Z to OE (bus release to OE)  
TOEH2ADD OE to AD Driven  
0
0.125 TCY – 5  
TADV2OEH LS Data Valid before OE (data setup time)  
TOEH2ADL OE to Data In Invalid (data hold time)  
TALH2ALL ALE Pulse Width  
20  
0
0.25 TCY  
0.5 TCY  
1 TCY  
TOEL2OEH OE Pulse Width  
0.5 TCY – 5  
TALH2ALH ALE to ALE (cycle time)  
TACC  
Address Valid to Data Valid  
0.75 TCY – 25  
0.5 TCY – 25  
0.625 TCY + 10  
10  
TOE  
OE to Data Valid  
TALL2OEH ALE to OE ↑  
0.625 TCY – 10  
TALH2CSL Chip Select Active to ALE ↓  
171A TUBL2OEH AD Valid to Chip Select Active  
0.25 TCY – 20  
FIGURE 27-9:  
PROGRAM MEMORY WRITE TIMING DIAGRAM  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
OSC1  
A<19:16>  
BA0  
Address  
Address  
Address  
166  
Data  
Address  
AD<15:0>  
153  
150  
151  
156  
ALE  
CE  
171  
171A  
154  
WRH or  
WRL  
157A  
157  
UB or  
LB  
2004 Microchip Technology Inc.  
DS30491C-page 431  
PIC18F6585/8585/6680/8680  
TABLE 27-10: PROGRAM MEMORY WRITE TIMING REQUIREMENTS (VDD = 4.2 TO 5.5V)  
Param.  
Symbol  
Characteristics  
Min  
Typ  
Max Units  
No.  
150  
TADV2ALL Address Out Valid to ALE (address setup time)  
TALL2ADL ALE to Address Out Invalid (address hold time)  
TWRH2ADL WRn to Data Out Invalid (data hold time)  
0.25 TCY – 10  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
151  
153  
154  
156  
157  
5
5
TWRL  
WRn Pulse Width  
0.5 TCY – 5  
0.5 TCY – 10  
0.25 TCY  
0.125 TCY – 5  
0.5 TCY  
TADV2WRH Data Valid before WRn (data setup time)  
TBSV2WRL Byte Select Valid before WRn (byte select setup time)  
157A TWRH2BSI WRn to Byte Select Invalid (byte select hold time)  
166  
171  
TALH2ALH ALE to ALE (cycle time)  
TALH2CSL Chip Enable Active to ALE ↓  
0.25 TCY  
171A TUBL2OEH AD Valid to Chip Enable Active  
0.25 TCY – 20  
FIGURE 27-10:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND  
POWER-UP TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O pins  
Note:  
Refer to Figure 27-5 for load conditions.  
DS30491C-page 432  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 27-11:  
BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
VBGAP = 1.2V  
VIRVST  
Enable Internal  
Reference Voltage  
Internal Reference  
Voltage Stable  
36  
TABLE 27-11: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
30  
31  
TMCL  
TWDT  
MCLR Pulse Width (low)  
2
7
µs  
Watchdog Timer Time-out Period  
(No Postscaler)  
18  
33  
ms  
32  
33  
34  
TOST  
Oscillation Start-up Timer Period  
Power up Timer Period  
1024 TOSC  
72  
2
1024 TOSC  
ms  
µs  
TOSC = OSC1 period  
TPWRT  
28  
132  
TIOZ  
I/O High-Impedance from MCLR Low  
or Watchdog Timer Reset  
35  
36  
TBOR  
Brown-out Reset Pulse Width  
200  
µs  
µs  
VDD BVDD (see )  
VDD VLVD  
TIVRST  
Time for Internal Reference  
Voltage to become stable  
20  
50  
37  
TLVD  
Low-Voltage Detect Pulse Width  
200  
µs  
FIGURE 27-12:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
41  
40  
42  
T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note:  
Refer to Figure 27-5 for load conditions.  
2004 Microchip Technology Inc.  
DS30491C-page 433  
PIC18F6585/8585/6680/8680  
TABLE 27-12: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
40  
TT0H  
T0CKI High Pulse Width  
T0CKI Low Pulse Width  
T0CKI Period  
No prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
With prescaler  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
41  
42  
TT0L  
TT0P  
0.5 TCY + 20  
10  
TCY + 10  
Greater of:  
20 nS or TCY + 40  
N
ns N = prescale  
value  
(1, 2, 4,..., 256)  
45  
46  
TT1H  
TT1L  
T1CKI  
High Time  
Synchronous, no prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Synchronous, PIC18FXX8X  
10  
with prescaler  
PIC18LFXX8X  
25  
Asynchronous PIC18FXX8X  
PIC18LFXX8X  
30  
50  
0.5 TCY + 5  
10  
T1CKILow Synchronous, no prescaler  
Time  
Synchronous, PIC18FXX8X  
with prescaler  
PIC18LFXX8X  
25  
Asynchronous PIC18FXX8X  
PIC18LFXX8X  
30  
TBD  
TBD  
47  
48  
TT1P  
FT1  
T1CKI  
Input  
Period  
Synchronous  
Greater of:  
20 nS or TCY + 40  
N
ns N = prescale  
value  
(1, 2, 4, 8)  
Asynchronous  
60  
DC  
50  
ns  
kHz  
T1CKI Oscillator Input Frequency Range  
TCKE2TMRI Delay from External T1CKI Clock Edge to  
Timer Increment  
2 TOSC  
7 TOSC  
DS30491C-page 434  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 27-13:  
CAPTURE/COMPARE/PWM TIMINGS (ALL CCP MODULES)  
CCPx  
(Capture Mode)  
50  
51  
52  
54  
CCPx  
(Compare or PWM Mode)  
53  
Refer to Figure 27-5 for load conditions.  
Note:  
TABLE 27-13: CAPTURE/COMPARE/PWM REQUIREMENTS (ALL CCP MODULES)  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
50  
TCCL  
CCPx Input Low No prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Time  
With  
prescaler  
PIC18FXX8X  
PIC18LFXX8X  
10  
20  
51  
TCCH  
CCPx Input  
High Time  
No prescaler  
0.5 TCY + 20  
With  
PIC18FXX8X  
PIC18LFXX8X  
10  
20  
prescaler  
52  
53  
TCCP  
TCCR  
CCPx Input Period  
3 TCY + 40  
N
N = prescale  
value (1,4 or 16)  
CCPx Output Rise Time  
PIC18FXX8X  
PIC18LFXX8X  
PIC18FXX8X  
PIC18LFXX8X  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
54  
TCCF  
CCPx Output Fall Time  
2004 Microchip Technology Inc.  
DS30491C-page 435  
PIC18F6585/8585/6680/8680  
FIGURE 27-14:  
PARALLEL SLAVE PORT TIMING (PIC18FXX8X)  
RE2/CS  
RE0/RD  
RE1/WR  
65  
RD7:RD0  
62  
64  
63  
Note:  
Refer to Figure 27-5 for load conditions.  
TABLE 27-14: PARALLEL SLAVE PORT REQUIREMENTS (PIC18FXX8X)  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
62  
TDTV2WRH Data In Valid before WR or CS ↑  
20  
25  
ns  
ns  
(setup time)  
Extended Temp. range  
63  
64  
TWRH2DTI WR or CS to Data–In  
PIC18FXX8X  
PIC18LFXX8X  
20  
35  
ns  
ns  
Invalid (hold time)  
TRDL2DTV RD and CS to Data–Out Valid  
80  
90  
ns  
ns  
Extended Temp. range  
65  
66  
TRDH2DTI RD or CS to Data–Out Invalid  
10  
30  
ns  
TIBFINH  
Inhibit of the IBF flag bit being cleared from  
3 TCY  
WR or CS ↑  
DS30491C-page 436  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 27-15:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
bit 6 - - - - - -1  
LSb  
SDO  
SDI  
75, 76  
MSb In  
74  
bit 6 - - - -1  
LSb In  
73  
Note: Refer to Figure 27-5 for load conditions.  
TABLE 27-15: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)  
Param.  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TSSL2SCH, SS to SCK or SCK Input  
TSSL2SCL  
TCY  
ns  
71  
TSCH  
SCK Input High Time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
TSCL  
SCK Input Low Time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TDIV2SCH, Setup Time of SDI Data Input to SCK Edge  
TDIV2SCL  
100  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the 1st Clock Edge 1.5 TCY + 40  
of Byte 2  
ns (Note 2)  
TSCH2DIL, Hold Time of SDI Data Input to SCK Edge  
TSCL2DIL  
100  
ns  
75  
TDOR  
SDO Data Output Rise Time PIC18FXX8X  
PIC18LFXX8X  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
76  
78  
TDOF  
TSCR  
SDO Data Output Fall Time  
SCK Output Rise Time  
(Master mode)  
PIC18FXX8X  
PIC18LFXX8X  
79  
80  
TSCF  
SCK Output Fall Time (Master mode)  
TSCH2DOV, SDO Data Output Valid after PIC18FXX8X  
TSCL2DOV SCK Edge  
PIC18LFXX8X  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
2004 Microchip Technology Inc.  
DS30491C-page 437  
PIC18F6585/8585/6680/8680  
FIGURE 27-16:  
EXAMPLE SPI MASTER MODE TIMING (CKE = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
LSb  
MSb  
bit 6 - - - - - -1  
SDO  
SDI  
75, 76  
MSb In  
74  
bit 6 - - - -1  
LSb In  
Note: Refer to Figure 27-5 for load conditions.  
TABLE 27-16: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)  
Param.  
No.  
Symbol  
TSCH  
Characteristic  
Min  
Max Units Conditions  
71  
SCK Input High Time  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
(Slave mode)  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
TSCL  
SCK Input Low Time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TDIV2SCH, Setup Time of SDI Data Input to SCK Edge  
TDIV2SCL  
100  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the 1st Clock Edge 1.5 TCY + 40  
of Byte 2  
ns (Note 2)  
TSCH2DIL, Hold Time of SDI Data Input to SCK Edge  
TSCL2DIL  
100  
ns  
75  
TDOR  
SDO Data Output Rise Time PIC18FXX8X  
PIC18LFXX8X  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
76  
78  
TDOF  
TSCR  
SDO Data Output Fall Time  
SCK Output Rise Time  
(Master mode)  
PIC18FXX8X  
PIC18LFXX8X  
79  
80  
TSCF  
SCK Output Fall Time (Master mode)  
TSCH2DOV, SDO Data Output Valid after PIC18FXX8X  
TSCL2DOV SCK Edge  
PIC18LFXX8X  
81  
TDOV2SCH, SDO Data Output Setup to SCK Edge  
TDOV2SCL  
TCY  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
DS30491C-page 438  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 27-17:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
LSb  
SDO  
SDI  
bit 6 - - - - - -1  
77  
75, 76  
MSb In  
74  
bit 6 - - - -1  
LSb In  
73  
Note:  
Refer to Figure 27-5 for load conditions.  
TABLE 27-17: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING, CKE = 0)  
Param.  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TSSL2SCH, SS to SCK or SCK Input  
TSSL2SCL  
TCY  
ns  
71  
TSCH  
SCK Input High Time (Slave mode)  
SCK Input Low Time (Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
TSCL  
ns  
72A  
73  
ns (Note 1)  
TDIV2SCH, Setup Time of SDI Data Input to SCK Edge  
TDIV2SCL  
100  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2 1.5 TCY + 40  
ns (Note 2)  
TSCH2DIL, Hold Time of SDI Data Input to SCK Edge  
TSCL2DIL  
100  
ns  
75  
TDOR  
SDO Data Output Rise Time  
PIC18FXX8X  
PIC18LFXX8X  
25  
45  
25  
50  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
76  
77  
78  
TDOF  
SDO Data Output Fall Time  
10  
TSSH2DOZ SS to SDO Output High-Impedance  
TSCR  
SCK oUtput Rise Time (Master mode) PIC18FXX8X  
PIC18LFXX8X  
79  
80  
TSCF  
SCK Output Fall Time (Master mode)  
TSCH2DOV, SDO Data Output Valid after SCK Edge PIC18FXX8X  
TSCL2DOV  
PIC18LFXX8X  
83  
TSCH2SSH, SS after SCK Edge  
TSCL2SSH  
1.5 TCY + 40  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
2004 Microchip Technology Inc.  
DS30491C-page 439  
PIC18F6585/8585/6680/8680  
FIGURE 27-18:  
EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
bit 6 - - - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
MSb In  
74  
bit 6 - - - -1  
LSb In  
Note: Refer to Figure 27-5 for load conditions.  
TABLE 27-18: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)  
Param.  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TSSL2SCH, SS to SCK or SCK Input  
TSSL2SCL  
TCY  
ns  
71  
TSCH  
TSCL  
TB2B  
SCK Input High Time (Slave mode)  
SCK Input Low Time (Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
ns  
72A  
73A  
74  
ns (Note 1)  
ns (Note 2)  
ns  
Last Clock Edge of Byte 1 to the First Clock Edge of Byte 2 1.5 TCY + 40  
TSCH2DIL, Hold Time of SDI Data Input to SCK Edge  
TSCL2DIL  
100  
75  
TDOR  
SDO Data Output Rise Time  
PIC18FXX8X  
PIC18LFXX8X  
25  
45  
25  
50  
25  
45  
25  
50  
100  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
76  
77  
78  
TDOF  
SDO Data Output Fall Time  
TSSH2DOZ SS to SDO Output High-Impedance  
10  
TSCR  
SCK Output Rise Time  
(Master mode)  
PIC18FXX8X  
PIC18LFXX8X  
79  
80  
TSCF  
SCK Output Fall Time (Master mode)  
TSCH2DOV, SDO Data Output Valid after SCK  
TSCL2DOV Edge  
PIC18FXX8X  
PIC18LFXX8X  
PIC18FXX8X  
PIC18LFXX8X  
82  
83  
TSSL2DOV SDO Data Output Valid after SS ↓  
Edge  
TSCH2SSH, SS after SCK Edge  
TSCL2SSH  
1.5 TCY + 40  
Note 1: Requires the use of Parameter #73A.  
2: Only if Parameter #71A and #72A are used.  
DS30491C-page 440  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 27-19:  
I2C BUS START/STOP BITS TIMING  
SCL  
SDA  
91  
93  
90  
92  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 27-5 for load conditions.  
TABLE 27-19: I2C BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
90  
TSU:STA Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns  
Only relevant for Repeated  
Start condition  
91  
92  
93  
THD:STA Start Condition  
Hold Time  
4000  
600  
ns  
ns  
ns  
After this period, the first  
clock pulse is generated  
TSU:STO Stop Condition  
Setup Time  
4700  
600  
THD:STO Stop Condition  
Hold Time  
4000  
600  
FIGURE 27-20:  
I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 27-5 for load conditions.  
2004 Microchip Technology Inc.  
DS30491C-page 441  
PIC18F6585/8585/6680/8680  
TABLE 27-20: I2C BUS DATA REQUIREMENTS (SLAVE MODE)  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
100  
THIGH  
Clock High Time  
100 kHz mode  
4.0  
µs  
µs  
PIC18FXX8X must operate  
at a minimum of 1.5 MHz  
400 kHz mode  
0.6  
PIC18FXX8X must operate  
at a minimum of 10 MHz  
SSP Module  
1.5 TCY  
4.7  
101  
TLOW  
Clock Low Time  
100 kHz mode  
µs  
µs  
PIC18FXX8X must operate  
at a minimum of 1.5 MHz  
400 kHz mode  
1.3  
PIC18FXX8X must operate  
at a minimum of 10 MHz  
SSP Module  
1.5 TCY  
102  
103  
TR  
TF  
SDA and SCL Rise 100 kHz mode  
1000  
ns  
ns  
Time  
400 kHz mode  
20 + 0.1 CB 300  
CB is specified to be from  
10 to 400 pF  
SDA and SCL Fall 100 kHz mode  
Time  
300  
ns  
ns  
400 kHz mode  
20 + 0.1 CB 300  
CB is specified to be from  
10 to 400 pF  
90  
TSU:STA  
THD:STA  
Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
µs  
Only relevant for Repeated  
Start condition  
91  
Start Condition  
Hold Time  
After this period, the first  
clock pulse is generated  
106  
107  
92  
THD:DAT Data Input Hold  
Time  
0
0.9  
TSU:DAT  
TSU:STO  
TAA  
Data Input Setup  
Time  
250  
100  
4.7  
0.6  
(Note 2)  
Stop Condition  
Setup Time  
109  
110  
Output Valid from  
Clock  
3500  
(Note 1)  
TBUF  
Bus Free Time  
4.7  
1.3  
Time the bus must be free  
before a new transmission  
can Start  
D102  
CB  
Bus Capacitive Loading  
400  
pF  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region  
(min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.  
2: A Fast mode I2C bus device can be used in a Standard mode I2C bus system but the requirement,  
TSU:DAT 250 ns, must then be met. This will automatically be the case if the device does not stretch the  
low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output  
the next data bit to the SDA line.  
TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before  
the SCL line is released.  
DS30491C-page 442  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 27-21:  
MASTER SSP I2C BUS START/STOP BITS TIMING WAVEFORMS  
SCL  
SDA  
93  
91  
90  
92  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 27-5 for load conditions.  
TABLE 27-21: MASTER SSP I2C BUS START/STOP BITS REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
90  
TSU:STA Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ns Only relevant for  
Repeated Start  
condition  
91  
92  
93  
THD:STA Start Condition  
Hold Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ns After this period, the  
first clock pulse is  
generated  
2(TOSC)(BRG + 1)  
TSU:STO Stop Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ns  
2(TOSC)(BRG + 1)  
THD:STO Stop Condition  
Hold Time  
100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
ns  
2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
Note 1: Maximum pin capacitance = 10 pF for all I2C pins.  
FIGURE 27-22:  
MASTER SSP I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
91  
92  
107  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 27-5 for load conditions.  
2004 Microchip Technology Inc.  
DS30491C-page 443  
PIC18F6585/8585/6680/8680  
TABLE 27-22: MASTER SSP I2C BUS DATA REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
100  
THIGH  
Clock High Time 100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
ms  
ms  
ms  
ms  
ms  
ns  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
101  
102  
103  
90  
TLOW  
TR  
Clock Low Time 100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
SDA and SCL  
Rise Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
1000  
300  
300  
300  
300  
100  
CB is specified to be from  
10 to 400 pF  
20 + 0.1 CB  
ns  
ns  
TF  
SDA and SCL  
Fall Time  
ns  
CB is specified to be from  
10 to 400 pF  
20 + 0.1 CB  
ns  
ns  
TSU:STA Start Condition 100 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms Only relevant for  
Setup Time  
Repeated Start  
400 kHz mode  
ms  
condition  
ms  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
91  
THD:STA Start Condition 100 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms After this period, the first  
Hold Time  
clock pulse is generated  
400 kHz mode  
ms  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
ms  
ns  
106  
107  
92  
THD:DAT Data Input  
Hold Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
0
0
0.9  
ms  
ns  
TBD  
250  
TSU:DAT Data Input  
Setup Time  
ns  
ns  
(Note 2)  
100  
TBD  
ns  
TSU:STO Stop Condition  
Setup Time  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
ms  
ms  
ns  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
109  
110  
D102  
TAA  
TBUF  
CB  
Output Valid  
from Clock  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
3500  
1000  
ns  
ns  
Bus Free Time  
4.7  
1.3  
TBD  
ms Time the bus must be free  
before a new transmission  
ms  
can start  
ms  
Bus Capacitive Loading  
400  
pF  
Note 1: Maximum pin capacitance = 10 pF for all I2C pins.  
2: A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but parameter #107 250 ns,  
must then be met. This will automatically be the case if the device does not stretch the low period of the SCL  
signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the  
SDA line, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode), before the SCL  
line is released.  
DS30491C-page 444  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 27-23:  
USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
121  
121  
RC7/RX/DT  
pin  
120  
Refer to Figure 27-5 for load conditions.  
122  
Note:  
TABLE 27-23: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units Conditions  
No.  
120  
TCKH2DTV SYNC XMIT (MASTER & SLAVE)  
Clock High to Data Out Valid  
PIC18FXX8X  
PIC18LFXX8X  
40  
100  
20  
ns  
ns  
ns  
ns  
ns  
ns  
121  
122  
TCKRF  
TDTRF  
Clock Out Rise Time and Fall Time PIC18FXX8X  
(Master mode)  
PIC18LFXX8X  
50  
Data Out Rise Time and Fall Time  
PIC18FXX8X  
PIC18LFXX8X  
20  
50  
FIGURE 27-24:  
USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
125  
RC7/RX/DT  
pin  
126  
Note: Refer to Figure 27-5 for load conditions.  
TABLE 27-24: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
125  
TDTV2CKL SYNC RCV (MASTER & SLAVE)  
Data Hold before CK (DT hold time)  
TCKL2DTL Data Hold after CK (DT hold time)  
10  
15  
ns  
ns  
126  
2004 Microchip Technology Inc.  
DS30491C-page 445  
PIC18F6585/8585/6680/8680  
TABLE 27-25: A/D CONVERTER CHARACTERISTICS:  
PIC18F6585/8585/6680/8680 (INDUSTRIAL, EXTENDED)  
PIC18LF6585/8585/6680/8680 (INDUSTRIAL)  
Param  
No.  
Symbol  
Characteristic  
Resolution  
Min  
Typ  
Max  
Units  
Conditions  
A01  
NR  
10  
TBD  
bit VREF = VDD 3.0V  
bit VREF = VDD < 3.0V  
A03  
A04  
A05  
A06  
EIL  
Integral Linearity Error  
Differential Linearity Error  
Full-Scale Error  
<±1  
TBD  
LSb VREF = VDD 3.0V  
LSb VREF = VDD < 3.0V  
EDL  
EFS  
EOFF  
<±1  
TBD  
LSb VREF = VDD 3.0V  
LSb VREF = VDD < 3.0V  
<±1  
TBD  
LSb VREF = VDD 3.0V  
LSb VREF = VDD < 3.0V  
Offset Error  
<±1  
TBD  
LSb VREF = VDD 3.0V  
LSb VREF = VDD < 3.0V  
A10  
A20  
A20A  
A21  
A22  
A25  
A30  
Monotonicity  
guaranteed(3)  
V
VSS VAIN VREF  
VREF  
Reference Voltage  
(VREFH – VREFL)  
0V  
3V  
V
For 10-bit resolution  
VREFH Reference Voltage High  
AVss  
AVDD + 0.3V  
AVDD  
V
VREFL  
VAIN  
Reference Voltage Low  
Analog Input Voltage  
AVss – 0.3V  
AVSS – 0.3V  
V
VREF + 0.3V  
10.0  
V
ZAIN  
Recommended Impedance of  
Analog Voltage Source  
kΩ  
A40  
A50  
IAD  
A/D Conversion PIC18FXX8X  
180  
90  
µA Average current  
Current (VDD)  
consumption when  
PIC18LFXX8X  
µA  
A/D is on (Note 1)  
IREF  
VREF Input Current (Note 2)  
5
150  
µA During VAIN acquisition.  
µA During A/D conversion  
cycle.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current  
spec includes any such leakage from the A/D module.  
VREF current is from RA2/AN2/VREF- and RA3/AN3/VREF+ pins or AVDD and AVSS pins, whichever is  
selected as reference input.  
2: Vss VAIN VREF  
3: The A/D conversion result never decreases with an increase in the input voltage and has no missing  
codes.  
DS30491C-page 446  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 27-25:  
A/D CONVERSION TIMING  
BSF ADCON0, GO  
(Note 2)  
131  
130  
Q4  
132  
A/D CLK  
. . .  
. . .  
9
8
7
2
1
0
A/D DATA  
ADRES  
NEW_DATA  
TCY  
OLD_DATA  
ADIF  
GO  
DONE  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEPinstruction to be  
executed.  
2: This is a minimal RC delay (typically 100 ns) which also disconnects the holding capacitor from the analog input.  
TABLE 27-26: A/D CONVERSION REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
130  
TAD  
A/D Clock Period  
PIC18FXX8X  
1.6  
3.0  
2.0  
3.0  
11  
20(5)  
20(5)  
6.0  
µs TOSC based, VREF 3.0V  
µs TOSC based, VREF full range  
µs A/D RC mode  
PIC18LFXX8X  
PIC18FXX8X  
PIC18LFXX8X  
9.0  
µs A/D RC mode  
131  
132  
TCNV  
TACQ  
Conversion Time  
(not including acquisition time) (Note 1)  
Acquisition Time (Note 3)  
12  
TAD  
15  
10  
µs -40°C Temp +125°C  
µs 0°C Temp +125°C  
135  
136  
TSWC  
TAMP  
Switching Time from Convert Sample  
Amplifier Settling Time (Note 2)  
1
(Note 4)  
µs This may be used if the  
“new” input voltage has not  
changed by more than 1 LSb  
(i.e., 5 mV @ 5.12V) from the  
last sampled voltage (as  
stated on CHOLD).  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 19.0 “10-bit Analog-to-Digital Converter (A/D) Module” for minimum conditions when input  
voltage has changed more than 1 LSb.  
3: The time for the holding capacitor to acquire the “New” input voltage when the voltage changes full scale  
after the conversion (AVDD to AVSS, or AVSS to AVDD). The source impedance (RS) on the input channels is  
50.  
4: On the next Q4 cycle of the device clock.  
5: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.  
2004 Microchip Technology Inc.  
DS30491C-page 447  
PIC18F6585/8585/6680/8680  
NOTES:  
DS30491C-page 448  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
28.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
“Typical” represents the mean of the distribution at 25°C. “Maximum” or “minimum” represents (mean + 3σ) or (mean – 3σ)  
respectively, where σ is a standard deviation, over the whole temperature range.  
FIGURE 28-1:  
TYPICAL IDD vs. FOSC OVER VDD (HS MODE)  
40  
36  
32  
28  
24  
20  
16  
12  
8
5.5V  
5.0V  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +85°C)  
Minimum: mean – 3σ (-40°C to +85°C)  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
4
2.0V  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FOSC (MHz)  
FIGURE 28-2:  
MAXIMUM IDD vs. FOSC OVER VDD (HS MODE)  
48  
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
5.5V  
5.0V  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +85°C)  
Minimum: mean – 3σ (-40°C to +85°C)  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
4
2.0V  
8
0
4
12  
16  
20  
24  
28  
32  
36  
40  
FOSC (MHz)  
2004 Microchip Technology Inc.  
DS30491C-page 449  
PIC18F6585/8585/6680/8680  
FIGURE 28-3:  
TYPICAL IDD vs. FOSC OVER VDD (HS/PLL MODE)  
40  
36  
32  
28  
24  
20  
16  
12  
8
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +85°C)  
Minimum: mean – 3σ (-40°C to +85°C)  
5.5V  
5.0V  
4.5V  
4.2V  
4
0
4
5
6
7
8
9
10  
FOSC (MHz)  
FIGURE 28-4:  
MAXIMUM IDD vs. FOSC OVER VDD (HS/PLL MODE)  
45  
40  
35  
30  
25  
20  
15  
10  
5
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +85°C)  
Minimum: mean – 3σ (-40°C to +85°C)  
5.5V  
5.0V  
4.5V  
4.2V  
0
4
5
6
7
8
9
10  
F
(MHz)  
OSC  
DS30491C-page 450  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 28-5:  
TYPICAL IDD vs. FOSC OVER VDD (XT MODE)  
5
5.5V  
Typical:  
statistical mean @ 25°C  
5.0V  
4.5V  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
4
3
2
1
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
FOSC (MHz)  
FIGURE 28-6:  
MAXIMUM IDD vs. FOSC OVER VDD (XT MODE)  
7
5.5V  
6
5
4
3
2
1
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
F
(MHz)  
OSC  
2004 Microchip Technology Inc.  
DS30491C-page 451  
PIC18F6585/8585/6680/8680  
FIGURE 28-7:  
TYPICAL IDD vs. FOSC OVER VDD (LP MODE)  
1
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
20  
30  
40  
50  
60  
70  
80  
90  
100  
FOSC (kHz)  
FIGURE 28-8:  
MAXIMUM IDD vs. FOSC OVER VDD (LP MODE)  
6
5.5V  
5
4
3
2
1
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0
20  
30  
40  
50  
60  
(kHz)  
70  
80  
90  
100  
F
OSC  
DS30491C-page 452  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 28-9:  
TYPICAL IDD vs. FOSC OVER VDD (EC MODE)  
40  
36  
32  
28  
24  
20  
16  
12  
8
Typical:  
statistical mean @ 25°C  
5.5V  
5.0V  
Maximum: mean + 3σ (-40°C to +85°C)  
Minimum: mean – 3σ (-40°C to +85°C)  
4.5V  
4.2V  
4.0V  
3.5V  
3.0V  
4
2.5V  
2.0V  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
F
(MHz)  
OSC  
FIGURE 28-10:  
MAXIMUM IDD vs. FOSC OVER VDD (EC MODE)  
48  
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
Typical:  
statistical mean @ 25°C  
5.5V  
5.0V  
Maximum: mean + 3σ (-40°C to +85°C)  
Minimum: mean – 3σ (-40°C to +85°C)  
4.5V  
4.2V  
4.0V  
3.5V  
3.0V  
2.5V  
4
2.0V  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
F
(MHz)  
OSC  
2004 Microchip Technology Inc.  
DS30491C-page 453  
PIC18F6585/8585/6680/8680  
FIGURE 28-11:  
TYPICAL AND MAXIMUM IT1OSC vs. VDD (TIMER1 AS SYSTEM CLOCK)  
240  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-10°C to +70°C)  
Minimum: mean – 3σ (-10°C to +70°C)  
220  
200  
180  
160  
140  
120  
100  
80  
Max (70°C)  
Typ (25°C)  
60  
40  
20  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 28-12:  
AVERAGE FOSC vs. VDD FOR VARIOUS R’s (RC MODE, C = 20 pF, TEMP = 25°C)  
6,000  
Operation above 4MHz is not recomended.  
5,000  
4,000  
3,000  
2,000  
1,000  
33Ω  
3.3kΩ  
5.1 kΩ  
10 kΩ  
100 kΩ  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
DD  
(V)  
DS30491C-page 454  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 28-13:  
AVERAGE FOSC vs. VDD FOR VARIOUS R’s (RC MODE, C = 100 pF, TEMP = 25°C)  
2,200  
2,000  
1,800  
1,600  
1,400  
1,200  
1,000  
800  
3.3 kΩ  
5.1 kΩ  
10 kΩ  
600  
400  
200  
100 kΩ  
1
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
DD  
(V)  
FIGURE 28-14:  
AVERAGE FOSC vs. VDD FOR VARIOUS R’s (RC MODE, C = 300 pF, TEMP = 25°C)  
800  
700  
600  
500  
400  
300  
200  
100  
3.3 kΩ  
5.1 kΩ  
10 kΩ  
100 kΩ  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
V
(V)  
DD  
2004 Microchip Technology Inc.  
DS30491C-page 455  
PIC18F6585/8585/6680/8680  
FIGURE 28-15:  
IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)  
1000  
Max  
(-40°C to +125°C)  
100  
10  
Max  
(85°C)  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
1
Typ (25°C)  
0.1  
0.01  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 28-16:  
TYPICAL AND MAXIMUM IBOR vs. VDD OVER TEMPERATURE,  
VBOR = 2.00V-2.16V  
300  
Device  
Held in  
Reset  
Typical:  
statistical mean @ 25°C  
250  
200  
150  
100  
50  
Max (+125°C)  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
Max (+85°C)  
Typ (+25°C)  
Device  
in Sleep  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS30491C-page 456  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 28-17:  
IT1OSC vs. VDD (SLEEP MODE, TIMER1 AND OSCILLATOR ENABLED)  
80  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-10°C to +70°C)  
Minimum: mean – 3σ (-10°C to +70°C)  
70  
60  
50  
40  
30  
20  
10  
Max (70°C)  
Typ (25°C)  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 28-18:  
IPD vs. VDD (SLEEP MODE, WDT ENABLED)  
1000  
Max  
(-40°C to +125°C)  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
100  
10  
1
Max  
(85°C)  
Typ (25°C)  
0.1  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2004 Microchip Technology Inc.  
DS30491C-page 457  
PIC18F6585/8585/6680/8680  
FIGURE 28-19:  
TYPICAL, MINIMUM AND MAXIMUM WDT PERIOD vs. VDD  
40  
35  
30  
25  
20  
15  
10  
5
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
Max (125°C)  
Max (85°C)  
Typ (25°C)  
Min (-40°C)  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 28-20:  
ILVD vs. VDD OVER TEMPERATURE, VLVD = 4.5-4.78V  
250  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
Max (125°C)  
200  
150  
100  
50  
Max (125°C)  
LVDIF state  
is unknown  
Typ (25°C)  
LVDIF can be  
cleared by  
firmware  
Typ (25°C)  
LVDIF is set  
by hardware  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS30491C-page 458  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 28-21:  
TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO +125°C)  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Max  
Typ (+25°C)  
Typ (25C)  
Min  
Min  
0.0  
0
5
10  
15  
20  
25  
IOH (-mA)  
FIGURE 28-22:  
TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 3V, -40°C TO +125°C)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Max  
Typ (+25°C)  
Min  
0.0  
0
5
10  
15  
20  
25  
IOH (-mA)  
2004 Microchip Technology Inc.  
DS30491C-page 459  
PIC18F6585/8585/6680/8680  
FIGURE 28-23:  
TYPICAL AND MAXIMUM VOL vs. IOL (VDD = 5V, -40°C TO +125°C)  
1.8  
1.6  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Max  
Max  
TyTpy(p+(2255°CC))  
0
5
10  
15  
20  
25  
IOL (-mA)  
FIGURE 28-24:  
TYPICAL AND MAXIMUM VOL vs. IOL (VDD = 3V, -40°C TO +125°C)  
2.5  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
2.0  
1.5  
1.0  
0.5  
0.0  
Max  
Typ (+25°C)  
Typ (25C)  
0
5
10  
15  
20  
25  
IOL (-mA)  
DS30491C-page 460  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 28-25:  
MINIMUM AND MAXIMUM VIN vs. VDD (ST INPUT, -40°C TO +125°C)  
4.0  
Typical:  
statistical mean @ 25°C  
VIH Max  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIH Min  
VIL Max  
VIL Min  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 28-26:  
MINIMUM AND MAXIMUM VIN vs. VDD (TTL INPUT, -40°C TO +125°C)  
1.6  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VTH (Max)  
VTH (Min)  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
2004 Microchip Technology Inc.  
DS30491C-page 461  
PIC18F6585/8585/6680/8680  
FIGURE 28-27:  
MINIMUM AND MAXIMUM VIN vs. VDD (I2C INPUT, -40°C TO +125°C)  
3.5  
VIH Max  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Minimum: mean – 3σ (-40°C to +125°C)  
VIL Max  
VIH Min  
VIL Min  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 28-28:  
A/D NONLINEARITY vs. VREFH (VDD = VREFH, -40°C TO +125°C)  
4
3.5  
3
-40°C  
+25°C  
25C  
2.5  
2
+85°C  
85C  
1.5  
1
0.5  
0
+125°C  
125C  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD and VREFH (V)  
DS30491C-page 462  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
FIGURE 28-29:  
A/D NON-LINEARITY vs. VREFH (VDD = 5V, -40°C TO +125°C)  
3
2.5  
2
1.5  
1
Max (-40°C to +125°C)  
TTyypp((+2255C°)C)  
0.5  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VREFH (V)  
2004 Microchip Technology Inc.  
DS30491C-page 463  
PIC18F6585/8585/6680/8680  
NOTES:  
DS30491C-page 464  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
29.0 PACKAGING INFORMATION  
29.1 Package Marking Information  
64-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC18F6680  
-I/PT  
0410017  
68-Lead PLCC  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC18F6680-I/L  
0410017  
80-Lead TQFP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
PIC18F8680-E  
/PT  
0410017  
Legend: XX...X Customer specific information*  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard PICmicro device marking consists of Microchip part number, year code, week code, and  
traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check  
with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP  
price.  
2004 Microchip Technology Inc.  
DS30491C-page 465  
PIC18F6585/8585/6680/8680  
29.2 Package Details  
The following sections give the technical details of the packages.  
64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
E
E1  
#leads=n1  
p
D1  
D
2
1
B
n
°
CH x 45  
α
A
c
A2  
L
φ
β
A1  
(F)  
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
64  
MAX  
n
p
Number of Pins  
Pitch  
64  
.020  
16  
0.50  
16  
Pins per Side  
Overall Height  
n1  
A
.039  
.043  
.039  
.006  
.024  
.039  
3.5  
.047  
1.00  
0.95  
1.10  
1.00  
0.15  
0.60  
1.00  
3.5  
1.20  
Molded Package Thickness  
Standoff  
A2  
A1  
L
(F)  
φ
.037  
.002  
.018  
.041  
.010  
.030  
1.05  
0.25  
0.75  
§
0.05  
0.45  
Foot Length  
Footprint (Reference)  
Foot Angle  
0
.463  
.463  
.390  
.390  
.005  
.007  
.025  
5
7
.482  
.482  
.398  
.398  
.009  
.011  
.045  
15  
0
11.75  
11.75  
9.90  
9.90  
0.13  
0.17  
0.64  
5
7
12.25  
12.25  
10.10  
10.10  
0.23  
0.27  
1.14  
15  
Overall Width  
E
D
.472  
.472  
.394  
.394  
.007  
.009  
.035  
10  
12.00  
12.00  
10.00  
10.00  
0.18  
0.22  
0.89  
10  
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
E1  
D1  
c
Lead Width  
B
CH  
α
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-026  
Drawing No. C04-085  
DS30491C-page 466  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
68-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)  
E
E1  
#leads=n1  
D1 D  
n 1 2  
°
°
α
CH2 x 45  
CH1 x 45  
A3  
A2  
A
32°  
c
B1  
B
A1  
p
β
D2  
E2  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
68  
MAX  
n
p
Number of Pins  
Pitch  
68  
.050  
17  
1.27  
17  
Pins per Side  
Overall Height  
n1  
A
.165  
.173  
.153  
.028  
.029  
.045  
.005  
.990  
.990  
.954  
.954  
.920  
.920  
.011  
.029  
.020  
5
.180  
4.19  
3.68  
0.51  
0.61  
1.02  
0.00  
25.02  
25.02  
24.13  
24.13  
22.61  
22.61  
0.20  
0.66  
0.33  
0
4.39  
3.87  
0.71  
0.74  
1.14  
0.13  
25.15  
25.15  
24.23  
24.23  
23.37  
23.37  
0.27  
0.74  
0.51  
5
4.57  
Molded Package Thickness  
Standoff  
A2  
A1  
A3  
CH1  
CH2  
E
.145  
.020  
.024  
.040  
.000  
.985  
.985  
.950  
.950  
.890  
.890  
.008  
.026  
.013  
0
.160  
.035  
.034  
.050  
.010  
.995  
.995  
.958  
.958  
.930  
.930  
.013  
.032  
.021  
10  
4.06  
0.89  
0.86  
1.27  
0.25  
25.27  
25.27  
24.33  
24.33  
23.62  
23.62  
0.33  
0.81  
0.53  
10  
§
Side 1 Chamfer Height  
Corner Chamfer 1  
Corner Chamfer (others)  
Overall Width  
Overall Length  
D
Molded Package Width  
Molded Package Length  
Footprint Width  
E1  
D1  
E2  
D2  
c
Footprint Length  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
B1  
B
α
β
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-047  
Drawing No. C04-049  
2004 Microchip Technology Inc.  
DS30491C-page 467  
PIC18F6585/8585/6680/8680  
80-Lead Plastic Thin Quad Flatpack (PT) 12x12x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
E
E1  
#leads=n1  
p
D1  
D
2
B
c
1
n
°
CH x 45  
A
α
A2  
φ
β
L
A1  
(F)  
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
80  
MAX  
n
p
Number of Pins  
Pitch  
80  
.020  
20  
0.50  
20  
Pins per Side  
Overall Height  
n1  
A
.039  
.037  
.002  
.018  
.043  
.039  
.004  
.024  
.039  
3.5  
.047  
1.00  
0.95  
1.10  
1.00  
0.10  
0.60  
1.00  
3.5  
1.20  
Molded Package Thickness  
Standoff  
A2  
A1  
L
(F)  
φ
.041  
.006  
.030  
1.05  
0.15  
0.75  
§
0.05  
0.45  
Foot Length  
Footprint (Reference)  
Foot Angle  
0
.541  
.541  
.463  
.463  
.004  
.007  
.025  
5
7
.561  
.561  
.482  
.482  
.008  
.011  
.045  
15  
0
13.75  
13.75  
11.75  
11.75  
0.09  
0.17  
0.64  
5
7
14.25  
14.25  
12.25  
12.25  
0.20  
0.27  
1.14  
15  
Overall Width  
E
D
.551  
.551  
.472  
.472  
.006  
.009  
.035  
10  
14.00  
14.00  
12.00  
12.00  
0.15  
0.22  
0.89  
10  
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
E1  
D1  
c
Lead Width  
B
CH  
α
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-026  
Drawing No. C04-092  
DS30491C-page 468  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
APPENDIX A: REVISION HISTORY  
APPENDIX B: DEVICE  
DIFFERENCES  
Revision A (February 2003)  
The differences between the devices listed in this data  
sheet are shown in Table B-1.  
Original data sheet for PIC18F6585/8585/6680/8680  
family.  
Revision B (June 2003)  
This revision includes updates to the Special Function  
Registers in Table 4-2 and Table 23-1 and minor  
corrections to the data sheet text.  
Revision C (February 2004)  
This revision includes the DC and AC Characteristics  
Graphs and Tables. The Electrical Specifications in  
Section 27.0 “Electrical Characteristics” have been  
updated and there have been minor corrections to the  
data sheet text.  
TABLE B-1:  
DEVICE DIFFERENCES  
Feature  
PIC18F6585  
PIC18F6680  
PIC18F8585  
PIC18F8680  
On-Chip Program Memory (Kbytes)  
I/O Ports  
48  
64  
48  
64  
Ports A, B, C, D,  
E, F, G  
Ports A, B, C, D, Ports A, B, C, D,  
Ports A, B, C, D,  
E, F, G, H, J  
E, F, G  
E, F, G, H, J  
A/D Channels  
12  
12  
16  
16  
Yes  
External Memory Interface  
Package Types  
No  
No  
Yes  
64-pin TQFP,  
68-pin PLCC  
64-pin TQFP,  
68-pin PLCC  
80-pin TQFP  
80-pin TQFP  
2004 Microchip Technology Inc.  
DS30491C-page 469  
PIC18F6585/8585/6680/8680  
APPENDIX C: CONVERSION  
CONSIDERATIONS  
APPENDIX D: MIGRATION FROM  
MID-RANGE TO  
ENHANCED DEVICES  
This appendix discusses the considerations for con-  
verting from previous versions of a device to the ones  
listed in this data sheet. Typically, these changes are  
due to the differences in the process technology used.  
An example of this type of conversion is from a  
PIC17C756 to a PIC18F8720.  
A detailed discussion of the differences between the  
mid-range MCU devices (i.e., PIC16CXXX) and the  
enhanced devices (i.e., PIC18FXXX) is provided in  
AN716, “Migrating Designs from PIC16C74A/74B to  
PIC18C442.” The changes discussed, while device  
specific, are generally applicable to all mid-range to  
enhanced device migrations.  
Not Applicable  
This Application Note is available as Literature Number  
DS00716.  
DS30491C-page 470  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
APPENDIX E: MIGRATION FROM  
HIGH-END TO  
ENHANCED DEVICES  
A detailed discussion of the migration pathway and  
differences between the high-end MCU devices (i.e.,  
PIC17CXXX) and the enhanced devices (i.e.,  
PIC18FXXXX) is provided in AN726, “PIC17CXXX to  
PIC18CXXX Migration.” This Application Note is  
available as Literature Number DS00726.  
2004 Microchip Technology Inc.  
DS30491C-page 471  
PIC18F6585/8585/6680/8680  
NOTES:  
DS30491C-page 472  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
INDEX  
ANDLW............................................................................. 372  
ANDWF............................................................................. 373  
Assembler  
MPASM Assembler .................................................. 407  
A
A/D.................................................................................... 249  
A/D Converter Interrupt,  
Configuring ....................................................... 253  
Acquisition Requirements ......................................... 254  
Acquisition Time........................................................ 254  
ADCON0 Register..................................................... 249  
ADCON1 Register..................................................... 249  
ADCON2 Register..................................................... 249  
ADRESH Register..................................................... 249  
ADRESH/ADRESL Registers ................................... 252  
ADRESL Register ..................................................... 249  
Analog Port Pins ....................................................... 152  
Analog Port Pins,  
Configuring ....................................................... 255  
Associated Register  
Summary .......................................................... 257  
Automatic Acquisition Time....................................... 255  
Calculating Minimum Required  
Acquisition Time (Example) .............................. 254  
CCP2 Trigger............................................................ 256  
Configuring the Module............................................. 253  
Conversion Clock (TAD) ............................................ 255  
Conversion Requirements ........................................ 447  
Conversion Status  
(GO/DONE Bit) ................................................. 252  
Conversions.............................................................. 256  
Converter Characteristics ......................................... 446  
Minimum Charging Time........................................... 254  
Special Event Trigger  
Auto-Wake-up on Sync  
Break Character ....................................................... 242  
B
Baud Rate Generator ....................................................... 215  
BC..................................................................................... 373  
BCF .................................................................................. 374  
BF Status Flag.................................................................. 219  
Bit Timing Configuration Registers  
BRGCON1................................................................ 340  
BRGCON2................................................................ 340  
BRGCON3................................................................ 340  
Block Diagrams  
16-bit Byte Select Mode ............................................. 98  
16-bit Byte Write Mode............................................... 96  
16-bit Word Write Mode.............................................. 97  
A/D............................................................................ 252  
Analog Input Model................................................... 253  
Baud Rate Generator ............................................... 215  
CAN Buffers and Protocol Engine ............................ 276  
Capture Mode Operation.......................................... 170  
Comparator  
Analog Input Model .......................................... 263  
Comparator I/O Operating Modes  
(diagram) .......................................................... 260  
Comparator Output................................................... 262  
Comparator Voltage Reference................................ 266  
Compare Mode Operation................................ 171, 176  
Enhanced PWM........................................................ 178  
Low-Voltage Detect (LVD)........................................ 270  
Low-Voltage Detect (LVD) with  
(CCP)................................................................ 171  
Special Event Trigger  
(CCP2).............................................................. 256  
VREF+ and VREF- References................................... 254  
Absolute Maximum Ratings .............................................. 413  
AC (Timing) Characteristics.............................................. 426  
Load Conditions for Device  
External Input ................................................... 270  
2
MSSP (I C Master Mode)......................................... 213  
2
MSSP (I C Mode)..................................................... 198  
Timing Specifications........................................ 427  
Parameter Symbology .............................................. 426  
Temperature and Voltage  
MSSP (SPI Mode) .................................................... 189  
On-Chip Reset Circuit................................................. 33  
PIC18F6X8X Architecture .......................................... 10  
PIC18F8X8X Architecture .......................................... 11  
PLL ............................................................................. 25  
PORT/LAT/TRIS Operation...................................... 125  
PORTA  
RA3:RA0 and RA5 Pins.................................... 126  
RA4/T0CKI Pin ................................................. 126  
RA6 Pin (When Enabled as I/O)....................... 126  
PORTB  
RB2:RB0 Pins................................................... 129  
RB3 Pin ............................................................ 129  
RB7:RB4 Pins................................................... 128  
PORTC (Peripheral Output  
Override)........................................................... 131  
PORTD and PORTE  
Specifications.................................................... 427  
Timing Conditions ..................................................... 427  
ACKSTAT Status Flag ...................................................... 219  
ADCON0 Register............................................................. 249  
GO/DONE Bit............................................................ 252  
ADCON1 Register............................................................. 249  
ADCON2 Register............................................................. 249  
ADDLW ............................................................................. 371  
ADDWF............................................................................. 371  
ADDWFC .......................................................................... 372  
ADRESH Register............................................................. 249  
ADRESH/ADRESL Registers ........................................... 252  
ADRESL Register ............................................................. 249  
Analog-to-Digital Converter.  
See A/D.  
(Parallel Slave Port).......................................... 152  
2004 Microchip Technology Inc.  
DS30491C-page 473  
PIC18F6585/8585/6680/8680  
PORTD in I/O Port Mode ..........................................133  
PORTD in System Bus Mode ...................................134  
PORTE in I/O Mode ..................................................137  
PORTE in System Bus Mode....................................137  
PORTF  
C
C Compilers  
MPLAB C17.............................................................. 408  
MPLAB C18.............................................................. 408  
MPLAB C30.............................................................. 408  
CALL................................................................................. 380  
Capture (CCP Module) ..................................................... 169  
CAN Message Time-Stamp...................................... 170  
CCP Pin Configuration.............................................. 169  
CCPRxH:CCPRxL Registers.................................... 169  
Software Interrupt ..................................................... 170  
Timer1/Timer3 Mode Selection................................. 169  
Capture, Compare (CCP Module),  
RF1/AN6/C2OUT and  
RF2/AN7/C1OUT Pins..............................139  
RF6:RF3 and RF0 Pins.....................................140  
RF7 Pin.............................................................140  
PORTG  
RG0/CANTX1 Pin .............................................142  
RG1/CANTX2 Pin .............................................143  
RG2/CANRX Pin...............................................143  
RG3 Pin ............................................................143  
RG4/P1D Pin ....................................................144  
RG5/MCLR/VPP Pin..........................................144  
PORTH  
RH3:RH0 Pins in I/O Mode...............................146  
RH3:RH0 Pins in  
System Bus Mode.....................................147  
RH7:RH4 Pins in I/O Mode...............................146  
PORTJ  
Timer1 and Timer3  
Associated Registers................................................ 172  
Capture/Compare/PWM (CCP) ........................................ 167  
Capture Mode.  
See Capture (CCP Module).  
CCP Module ............................................................. 169  
CCPRxH Register..................................................... 169  
CCPRxL Register ..................................................... 169  
Compare Mode.  
See Compare (CCP Module).  
Interaction of CCP1 and  
RJ4:RJ0 Pins in  
System Bus Mode.....................................150  
RJ7:RJ6 Pins in  
CCP2 Modules ................................................. 169  
PWM Mode.  
System Bus Mode.....................................150  
PORTJ in I/O Mode...................................................149  
PWM (CCP Module) .................................................173  
Reads from Flash Program  
Memory...............................................................87  
Single Comparator ....................................................261  
Table Read Operation.................................................83  
Table Write Operation.................................................84  
Table Writes to Flash Program  
Memory...............................................................89  
Timer0 in 16-bit Mode ...............................................156  
Timer0 in 8-bit Mode .................................................156  
Timer1.......................................................................160  
Timer1 (16-bit Read/Write Mode) .............................160  
Timer2.......................................................................163  
Timer3.......................................................................165  
Timer3 in 16-bit Read/Write Mode ............................165  
USART Receive........................................................240  
USART Transmit.......................................................238  
Voltage Reference  
See PWM (CCP Module).  
Timer Resources ...................................................... 169  
Capture/Compare/PWM  
Requirements ........................................................... 435  
CLKO and I/O Timing Requirements........................ 430, 431  
Clocking Scheme/Instruction Cycle .................................... 56  
CLRF ................................................................................ 381  
CLRWDT .......................................................................... 381  
Code Examples  
16 x 16 Signed Multiply Routine ............................... 108  
16 x 16 Unsigned Multiply Routine ........................... 108  
8 x 8 Signed Multiply Routine ................................... 107  
8 x 8 Unsigned Multiply Routine ............................... 107  
Changing Between Capture  
Prescalers......................................................... 170  
Changing to Configuration Mode.............................. 281  
Data EEPROM Read................................................ 103  
Data EEPROM Refresh Routine............................... 104  
Data EEPROM Write ................................................ 103  
Erasing a Flash Program  
Output Buffer (example)....................................267  
Watchdog Timer........................................................356  
BN .....................................................................................374  
BNC...................................................................................375  
BNN...................................................................................375  
BNOV................................................................................376  
BNZ...................................................................................376  
BOR. See Brown-out Reset.  
BOV...................................................................................379  
BRA...................................................................................377  
Break Character (12-bit)  
Transmit and Receive ...............................................243  
BRG. See Baud Rate Generator.  
Brown-out Reset (BOR) .............................................. 34, 345  
BSF ...................................................................................377  
BTFSC ..............................................................................378  
BTFSS...............................................................................378  
BTG...................................................................................379  
BZ......................................................................................380  
Memory Row ...................................................... 88  
Fast Register Stack .................................................... 56  
How to Clear RAM (Bank 1) Using  
Indirect Addressing............................................. 79  
Initializing PORTA..................................................... 125  
Initializing PORTB..................................................... 128  
Initializing PORTC .................................................... 131  
Initializing PORTD .................................................... 133  
Initializing PORTE..................................................... 136  
Initializing PORTF..................................................... 139  
Initializing PORTG .................................................... 142  
Initializing PORTH .................................................... 146  
Initializing PORTJ ..................................................... 149  
Loading the SSPBUF (SSPSR)  
Register ............................................................ 192  
Reading a Flash Program  
Memory Word..................................................... 87  
DS30491C-page 474  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
Saving Status, WREG and BSR Registers  
in RAM .............................................................. 124  
Transmitting a CAN Message Using  
Banked Method................................................. 289  
Transmitting a CAN Message Using  
WIN Bits............................................................ 290  
WIN and ICODE Bits Usage in Interrupt  
D
Data EEPROM Memory  
Associated Registers................................................ 105  
EEADRH  
EEADR Register Pair ....................................... 101  
EECON1 Register .................................................... 101  
EECON2 Register .................................................... 101  
Operation During  
Service Routine to Access  
TX/RX Buffers................................................... 281  
Writing to Flash Program Memory ........................ 90–91  
Code Protection ................................................................ 345  
COMF ............................................................................... 382  
Comparator ....................................................................... 259  
Analog Input Connection  
Considerations.................................................. 263  
Associated Registers ................................................ 264  
Configuration............................................................. 260  
Effects of a Reset...................................................... 263  
Interrupts................................................................... 262  
Operation .................................................................. 261  
Operation During Sleep ............................................ 263  
Outputs ..................................................................... 261  
Reference ................................................................. 261  
External Signal.................................................. 261  
Internal Signal................................................... 261  
Response Time......................................................... 261  
Comparator Specifications................................................ 423  
Comparator Voltage  
Code-Protect .................................................... 104  
Protection Against  
Spurious Write.................................................. 104  
Reading .................................................................... 103  
Using ........................................................................ 104  
Write Verify............................................................... 104  
Writing to .................................................................. 103  
Data Memory ...................................................................... 59  
General Purpose Registers ........................................ 59  
Map for PIC18FXX80/XX85  
Devices............................................................... 60  
Special Function Registers......................................... 59  
DAW ................................................................................. 384  
DC and AC Characteristics  
Graphs and Tables................................................... 449  
DC Characteristics  
PIC18FXX8X (Industrial and  
Extended), PIC18LFXX8X  
(Industrial)......................................................... 421  
Power-down and  
Reference ................................................................. 265  
Accuracy and Error ................................................... 266  
Associated Registers ................................................ 267  
Configuring................................................................ 265  
Connection Considerations....................................... 266  
Effects of a Reset...................................................... 266  
Operation During Sleep ............................................ 266  
Compare (CCP Module) ................................................... 171  
CCP Pin Configuration.............................................. 171  
CCPRx Register........................................................ 171  
Software Interrupt ..................................................... 171  
Special Event Trigger................................ 161, 166, 171  
Timer1/Timer3 Mode  
Selection ........................................................... 171  
Compare (CCP2 Module)  
Special Event Trigger................................................ 256  
Configuration Bits.............................................................. 345  
Configuration Mode........................................................... 328  
Control Registers  
Supply Current.................................................. 417  
Supply Voltage ......................................................... 416  
DCFSNZ ........................................................................... 385  
DECF................................................................................ 384  
DECFSZ ........................................................................... 385  
Demonstration Boards  
PICDEM 1................................................................. 410  
PICDEM 17............................................................... 411  
PICDEM 18R............................................................ 411  
PICDEM 2 Plus......................................................... 410  
PICDEM 3................................................................. 410  
PICDEM 4................................................................. 410  
PICDEM LIN............................................................. 411  
PICDEM USB ........................................................... 411  
PICDEM.net Internet/  
Ethernet............................................................ 410  
Development Support....................................................... 407  
Device Differences............................................................ 469  
Device Features.................................................................... 9  
Device Overview................................................................... 9  
Direct Addressing ............................................................... 78  
Disable Mode.................................................................... 328  
EECON1 and EECON2 .............................................. 84  
TABLAT (Table Latch)  
Register .............................................................. 86  
TBLPTR (Table Pointer)  
Register .............................................................. 86  
Conversion Considerations............................................... 470  
CPFSEQ ........................................................................... 382  
CPFSGT ........................................................................... 383  
CPFSLT ............................................................................ 383  
2004 Microchip Technology Inc.  
DS30491C-page 475  
PIC18F6585/8585/6680/8680  
Information Processing Time  
E
(IPT).................................................................. 338  
Lengthening a Bit Period .......................................... 339  
Listen Only Mode...................................................... 330  
Loopback Mode ........................................................ 330  
Message Acceptance Filters  
ECAN Module ...................................................................275  
Baud Rate Setting.....................................................337  
Bit Time Partitioning..................................................337  
Bit Timing Configuration  
Registers...........................................................340  
Calculating TQ, Nominal Bit Rate and  
Nominal Bit Time...............................................338  
CAN Baud Rate Registers ........................................315  
CAN Control and Status  
and Masks ................................................ 306, 335  
Message Acceptance Mask and  
Filter Operation................................................. 336  
Message Reception.................................................. 334  
Enhanced FIFO Mode ...................................... 335  
Priority .............................................................. 334  
Time-Stamping ................................................. 335  
Normal Mode ............................................................ 328  
Oscillator Tolerance.................................................. 340  
Overview................................................................... 275  
Phase Buffer Segments............................................ 338  
Programmable TX/RX and  
Registers...........................................................277  
CAN Controller Register Map ...................................323  
CAN I/O Control Register..........................................318  
CAN Interrupt Registers............................................319  
CAN Interrupts ..........................................................342  
Acknowledge.....................................................343  
Bus Activity Wake-up........................................343  
Bus-Off..............................................................343  
Code Bits ..........................................................342  
Error..................................................................343  
Message Error ..................................................343  
Receive.............................................................343  
Receiver Bus Passive.......................................343  
Receiver Overflow.............................................343  
Receiver Warning .............................................343  
Transmit............................................................342  
Transmitter Bus Passive...................................343  
Transmitter Warning .........................................343  
CAN Message Buffers ..............................................331  
Dedicated Receive............................................331  
Dedicated Transmit...........................................331  
Programmable Auto-RTR .................................332  
Programmable  
Auto-RTR Buffers ............................................. 297  
Programming Time Segments.................................. 340  
Propagation Segment............................................... 338  
Sample Point ............................................................ 338  
Shortening a Bit Period............................................. 340  
Synchronization ........................................................ 339  
Hard.................................................................. 339  
Resynchronization............................................ 339  
Rules ................................................................ 339  
Synchronization Segment......................................... 338  
Time Quanta............................................................. 338  
Electrical Characteristics .................................................. 413  
Enhanced Capture/Compare/PWM  
(ECCP) ..................................................................... 175  
Outputs..................................................................... 176  
Enhanced PWM Mode.  
See PWM (ECCP Module).  
Enhanced Universal Synchronous  
Transmit/Receive......................................331  
CAN Message Transmission ....................................332  
Aborting.............................................................332  
Initiating.............................................................332  
Priority...............................................................333  
CAN Modes of Operation..........................................328  
CAN Registers ..........................................................277  
Configuration Mode...................................................328  
Dedicated CAN Receive  
Asynchronous Receiver  
Transmitter (USART)................................................ 229  
Errata.................................................................................... 7  
Error Recognition Mode.................................................... 328  
Evaluation and Programming Tools.................................. 411  
Example SPI Mode Requirements  
(Master Mode, CKE = 0)........................................... 437  
Example SPI Mode Requirements  
(Master Mode, CKE = 1)........................................... 438  
Example SPI Mode Requirements  
(Slave Mode, CKE = 0)............................................. 439  
Example SPI Slave Mode Requirements  
(CKE = 1).................................................................. 440  
External Clock Timing  
Requirements ........................................................... 428  
External Memory Interface.................................................. 93  
16-bit Byte Select Mode.............................................. 98  
16-bit Byte Write Mode ............................................... 96  
16-bit Mode................................................................. 96  
16-bit Mode Timing..................................................... 99  
16-bit Word Write Mode.............................................. 97  
PIC18F8X8X External Bus -  
Buffer Registers ................................................291  
Dedicated CAN Transmit  
Buffer Registers ................................................285  
Disable Mode ............................................................328  
Error Detection..........................................................341  
Acknowledge.....................................................341  
Bit......................................................................341  
CRC ..................................................................341  
Error Modes and Counters................................341  
Error States.......................................................341  
Form..................................................................341  
Stuff Bit .............................................................341  
Error Modes State (diagram) ....................................342  
Error Recognition Mode ............................................330  
Filter-Mask Truth (table)............................................335  
Functional Modes......................................................330  
Mode 0 - Legacy Mode .....................................330  
Mode 1 - Enhanced  
I/O Port Functions............................................... 95  
Program Memory Modes............................................ 93  
Legacy Mode ............................................330  
Mode 2 - Enhanced  
FIFO Mode................................................331  
DS30491C-page 476  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
Instruction Set................................................................... 365  
ADDLW..................................................................... 371  
F
Firmware Instructions........................................................ 365  
Flash Program Memory ...................................................... 83  
Associated Registers .................................................. 92  
Control Registers ........................................................ 84  
Erase Sequence ......................................................... 88  
Erasing........................................................................ 88  
Operation During Code  
ADDWF .................................................................... 371  
ADDWFC.................................................................. 372  
ANDLW..................................................................... 372  
ANDWF .................................................................... 373  
BC............................................................................. 373  
BCF .......................................................................... 374  
BN............................................................................. 374  
BNC.......................................................................... 375  
BNN.......................................................................... 375  
BNOV ....................................................................... 376  
BNZ .......................................................................... 376  
BOV.......................................................................... 379  
BRA .......................................................................... 377  
BSF........................................................................... 377  
BTFSC...................................................................... 378  
BTFSS...................................................................... 378  
BTG .......................................................................... 379  
BZ............................................................................. 380  
CALL......................................................................... 380  
CLRF ........................................................................ 381  
CLRWDT .................................................................. 381  
COMF....................................................................... 382  
CPFSEQ................................................................... 382  
CPFSGT................................................................... 383  
CPFSLT.................................................................... 383  
DAW ......................................................................... 384  
DCFSNZ................................................................... 385  
DECF........................................................................ 384  
DECFSZ ................................................................... 385  
GOTO....................................................................... 386  
INCF ......................................................................... 386  
INCFSZ..................................................................... 387  
INFSNZ..................................................................... 387  
IORLW...................................................................... 388  
IORWF...................................................................... 388  
LFSR ........................................................................ 389  
MOVF ....................................................................... 389  
MOVFF..................................................................... 390  
MOVLB..................................................................... 390  
MOVLW.................................................................... 391  
MOVWF.................................................................... 391  
MULLW..................................................................... 392  
MULWF .................................................................... 392  
NEGF........................................................................ 393  
NOP.......................................................................... 393  
POP.......................................................................... 394  
PUSH........................................................................ 394  
RCALL...................................................................... 395  
RESET...................................................................... 395  
RETFIE..................................................................... 396  
RETLW..................................................................... 396  
RETURN................................................................... 397  
RLCF ........................................................................ 397  
RLNCF...................................................................... 398  
RRCF........................................................................ 398  
RRNCF..................................................................... 399  
SETF ........................................................................ 399  
Protection............................................................ 92  
Reading....................................................................... 87  
Table Pointer  
Boundaries Based on Operation......................... 86  
Table Pointer Boundaries ........................................... 86  
Table Reads and Table Writes ................................... 83  
Write Sequence .......................................................... 90  
Writing to..................................................................... 89  
Protection Against Spurious  
Writes.......................................................... 92  
Unexpected Termination..................................... 92  
Write Verify ......................................................... 92  
G
General Call Address Support .......................................... 212  
GOTO ............................................................................... 386  
H
Hardware Multiplier ........................................................... 107  
Introduction ............................................................... 107  
Operation .................................................................. 107  
Performance Comparison  
(table)................................................................ 107  
I
I/O Ports............................................................................ 125  
2
I C Bus Data Requirements  
(Slave Mode)............................................................. 442  
2
I C Bus Start/Stop Bits Requirements  
(Slave Mode)............................................................. 441  
2
I C Mode  
General Call Address Support .................................. 212  
Master Mode  
Operation .......................................................... 214  
Read/Write Bit Information  
(R/W Bit) ................................................... 202, 203  
Serial Clock (RC3/SCK/SCL).................................... 203  
ID Locations.............................................................. 345, 362  
INCF.................................................................................. 386  
INCFSZ............................................................................. 387  
In-Circuit Debugger........................................................... 362  
Resources (table)...................................................... 362  
In-Circuit Serial Programming  
(ICSP) ............................................................... 345, 362  
Indirect Addressing  
INDF and FSR Registers ............................................ 79  
Operation .................................................................... 79  
Indirect File Operand .......................................................... 59  
INFSNZ............................................................................. 387  
Instruction Flow/Pipelining .................................................. 57  
Instruction Format............................................................. 367  
2004 Microchip Technology Inc.  
DS30491C-page 477  
PIC18F6585/8585/6680/8680  
SLEEP ......................................................................400  
SUBFWP...................................................................400  
M
2
Master SSP I C Bus  
SUBLW .....................................................................401  
SUBWF.....................................................................401  
SUBWFB...................................................................402  
SWAPF .....................................................................402  
TBLRD ......................................................................403  
TBLWT......................................................................404  
TSTFSZ ....................................................................405  
XORLW.....................................................................405  
XORWF.....................................................................406  
Summary Table.........................................................368  
INT Interrupt (RB0/INT).  
Data Requirements................................................... 444  
Master SSP I C Bus Start/Stop Bits  
Requirements ........................................................... 443  
Master Synchronous Serial Port (MSSP).  
See MSSP.  
Memory Organization  
2
Data Memory .............................................................. 59  
PIC18F8X8X Program Memory Modes ...................... 51  
Extended Microcontroller.................................... 51  
Microcontroller.................................................... 51  
Microprocessor................................................... 51  
Microprocessor with  
See Interrupt Sources.  
INTCON Registers ............................................................111  
Boot Block .................................................. 51  
Program Memory........................................................ 51  
Memory Programming Requirements............................... 425  
Migration from High-End to  
Enhanced Devices.................................................... 471  
Migration from Mid-Range to  
Enhanced Devices.................................................... 470  
MOVF ............................................................................... 389  
MOVFF ............................................................................. 390  
MOVLB ............................................................................. 390  
MOVLW ............................................................................ 391  
MOVWF............................................................................ 391  
MPLAB ASM30 Assembler,  
Linker, Librarian........................................................ 408  
MPLAB ICD 2 In-Circuit Debugger ................................... 409  
MPLAB ICE 2000 High-Performance Universal  
In-Circuit Emulator.................................................... 409  
MPLAB ICE 4000 High-Performance Universal  
In-Circuit Emulator.................................................... 409  
MPLAB Integrated Development  
2
Inter-Integrated Circuit. See I C.  
Interrupt Sources...............................................................345  
A/D Conversion Complete ........................................253  
Capture Complete (CCP)..........................................170  
Compare Complete (CCP)........................................171  
ECAN Module ...........................................................342  
INT0 ..........................................................................124  
Interrupt-on-Change  
(RB7:RB4).........................................................128  
PORTB, Interrupt-on-Change ...................................124  
RB0/INT Pin, External...............................................124  
TMR0 ........................................................................124  
TMR0 Overflow .........................................................157  
TMR1 Overflow ................................................. 159, 161  
TMR2 to PR2 Match .................................................163  
TMR2 to PR2 Match (PWM) .....................162, 173, 177  
TMR3 Overflow ................................................. 164, 166  
Interrupts...........................................................................109  
Context Saving During  
Interrupts...........................................................124  
Control Registers ......................................................111  
Enable Registers.......................................................117  
Flag Registers...........................................................114  
Logic (diagram).........................................................110  
Priority Registers.......................................................120  
Reset Control Registers............................................123  
Interrupts, Flag Bits  
CCP Flag (CCPxIF Bit) .............................169, 170, 171  
IORLW ..............................................................................388  
IORWF ..............................................................................388  
IPR Registers....................................................................120  
Environment Software .............................................. 407  
MPLAB PM3 Device Programmer .................................... 409  
MPLINK Object Linker/  
MPLIB Object Librarian............................................. 408  
MSSP................................................................................ 189  
ACK Pulse ........................................................ 202, 203  
Clock Stretching........................................................ 208  
10-bit Slave Receive Mode  
(SEN = 1).................................................. 208  
10-bit Slave Transmit Mode.............................. 208  
7-bit Slave Receive Mode  
(SEN = 1).................................................. 208  
7-bit Slave Transmit Mode................................ 208  
Clock Synchronization and the  
L
LFSR.................................................................................389  
Listen Only Mode ..............................................................328  
Look-up Tables  
CKP Bit............................................................. 209  
Control Registers (general)....................................... 189  
2
I C Mode .................................................................. 198  
Computed GOTO........................................................58  
Table Reads/Table Writes ..........................................58  
Loopback Mode.................................................................328  
Low-Voltage Detect...........................................................269  
Characteristics ..........................................................424  
Converter Characteristics .........................................424  
Effects of a Reset......................................................273  
Operation ..................................................................272  
Current Consumption........................................273  
During Sleep .....................................................273  
Reference Voltage Set Point.............................273  
Typical Application ....................................................269  
Low-Voltage ICSP Programming ......................................363  
LVD. See Low-Voltage Detect.  
Acknowledge Sequence Timing ....................... 222  
Baud Rate Generator ....................................... 215  
Bus Collision  
During a Repeated  
Start Condition.................................. 226  
Bus Collision During a  
Start Condition.......................................... 224  
Bus Collision During a  
Stop Condition.......................................... 227  
Clock Arbitration ............................................... 216  
Effect of a Reset............................................... 223  
2
I C Clock Rate w/BRG ..................................... 215  
DS30491C-page 478  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
Master Mode..................................................... 213  
Oscillator Selection........................................................... 345  
Oscillator Start-up Timer (OST).................................. 34, 345  
Oscillator Switching Feature  
Reception.................................................. 219  
Repeated Start Condition  
Timing............................................... 218  
Transmission ............................................ 219  
Master Mode Start Condition ............................ 217  
Module Operation ............................................. 202  
Multi-Master Communication,  
System Clock Switch Bit............................................. 27  
Oscillator, Timer1.............................................. 159, 161, 166  
Oscillator, Timer3.............................................................. 164  
Oscillator, WDT................................................................. 355  
P
Bus Collision and  
Packaging......................................................................... 465  
Details....................................................................... 466  
Marking..................................................................... 465  
Parallel Slave Port (PSP).......................................... 133, 152  
Associated Registers................................................ 154  
RE0/RD/AD8 Pin ...................................................... 152  
RE1/WR/AD9 Pin ..................................................... 152  
RE2/CS/AD10 Pin .................................................... 152  
Select (PSPMODE Bit)..................................... 133, 152  
Parallel Slave Port Requirements  
Arbitration ................................................. 223  
Multi-Master Mode ............................................ 223  
Registers........................................................... 198  
Slave Mode....................................................... 202  
Slave Mode, Addressing................................... 202  
Slave Mode, Reception..................................... 203  
Slave Mode, Transmission ............................... 203  
Sleep Operation................................................ 223  
Stop Condition Timing ...................................... 222  
2
2
I C Mode. See I C.  
(PIC18FXX8X).......................................................... 436  
Phase Locked Loop (PLL).................................................. 25  
PICkit 1 Flash Starter Kit .................................................. 411  
PICSTART Plus Development  
Programmer.............................................................. 410  
PIE Registers.................................................................... 117  
Pin Functions  
Overview................................................................... 189  
SPI Mode .................................................................. 189  
Associated Registers........................................ 197  
Bus Mode Compatibility .................................... 197  
Effects of a Reset ............................................. 197  
Enabling SPI I/O ............................................... 193  
Master Mode..................................................... 194  
Operation .......................................................... 192  
Slave Mode....................................................... 195  
Slave Select  
Synchronization ........................................ 195  
Sleep Operation................................................ 197  
SPI Clock .......................................................... 194  
Typical Connection ........................................... 193  
SPI Mode. See SPI.  
AVDD........................................................................... 21  
AVSS ........................................................................... 21  
OSC1/CLKI................................................................. 12  
OSC2/CLKO/RA6....................................................... 12  
RA0/AN0..................................................................... 13  
RA1/AN1..................................................................... 13  
RA2/AN2/VREF- .......................................................... 13  
RA3/AN3/VREF+ ......................................................... 13  
RA4/T0CKI ................................................................. 13  
RA5/AN4/LVDIN......................................................... 13  
RA6............................................................................. 13  
RB0/INT0.................................................................... 14  
RB1/INT1.................................................................... 14  
RB2/INT2.................................................................... 14  
RB3/INT3/CCP2 ......................................................... 14  
RB4/KBI0.................................................................... 14  
RB5/KBI1/PGM........................................................... 14  
RB6/KBI2/PGC........................................................... 14  
RB7/KBI3/PGD........................................................... 14  
RC0/T1OSO/T13CKI.................................................. 15  
RC1/T1OSI/CCP2 ...................................................... 15  
RC2/CCP1/P1A.......................................................... 15  
RC3/SCK/SCL............................................................ 15  
RC4/SDI/SDA............................................................. 15  
RC5/SDO.................................................................... 15  
RC6/TX/CK................................................................. 15  
RC7/RX/DT................................................................. 15  
RD0/PSP0/AD0 .......................................................... 16  
RD1/PSP1/AD1 .......................................................... 16  
RD2/PSP2/AD2 .......................................................... 16  
RD3/PSP3/AD3 .......................................................... 16  
RD4/PSP4/AD4 .......................................................... 16  
RD5/PSP5/AD5 .......................................................... 16  
RD6/PSP6/AD6 .......................................................... 16  
RD7/PSP7/AD7 .......................................................... 16  
RE0/RD/AD8 .............................................................. 17  
RE1/WR/AD9.............................................................. 17  
SSPBUF Register ..................................................... 194  
SSPSR Register ....................................................... 194  
MSSP Module  
SPI Master/Slave Connection................................... 193  
MULLW ............................................................................. 392  
MULWF............................................................................. 392  
N
NEGF ................................................................................ 393  
NOP .................................................................................. 393  
Normal Operation Mode.................................................... 328  
O
Opcode Field Descriptions................................................ 366  
OPTION_REG Register  
PSA Bit...................................................................... 157  
T0CS Bit.................................................................... 157  
T0PS2:T0PS0 Bits.................................................... 157  
T0SE Bit.................................................................... 157  
Oscillator Configuration....................................................... 23  
EC............................................................................... 23  
ECIO ........................................................................... 23  
ECIO+PLL................................................................... 23  
ECIO+SPLL ................................................................ 23  
HS............................................................................... 23  
HS+PLL ...................................................................... 23  
HS+SPLL .................................................................... 23  
LP................................................................................ 23  
RC............................................................................... 23  
RCIO........................................................................... 23  
XT ............................................................................... 23  
2004 Microchip Technology Inc.  
DS30491C-page 479  
PIC18F6585/8585/6680/8680  
RE2/CS/AD10.............................................................17  
RE3/AD11...................................................................17  
RE4/AD12...................................................................17  
RE5/AD13/P1C...........................................................17  
RE6/AD14/P1B ...........................................................17  
RE7/CCP2/AD15 ........................................................17  
RF0/AN5 .....................................................................18  
RF1/AN6/C2OUT ........................................................18  
RF2/AN7/C1OUT ........................................................18  
RF3/AN8/C2IN+..........................................................18  
RF4/AN9/C2IN-...........................................................18  
RF5/AN10/C1IN+/CVREF ............................................18  
RF6/AN11/C1IN-.........................................................18  
RF7/SS .......................................................................18  
RG0/CANTX1 .............................................................19  
RG1/CANTX2 .............................................................19  
RG2/CANRX...............................................................19  
RG3.............................................................................19  
RG4/P1D.....................................................................19  
RG5/MCLR/VPP ..........................................................12  
RH0/A16 .....................................................................20  
RH1/A17 .....................................................................20  
RH2/A18 .....................................................................20  
RH3/A19 .....................................................................20  
RH4/AN12...................................................................20  
RH5/AN13...................................................................20  
RH6/AN14/P1C...........................................................20  
RH7/AN15/P1B...........................................................20  
RJ0/ALE......................................................................21  
RJ1/OE .......................................................................21  
RJ2/WRL.....................................................................21  
RJ3/WRH ....................................................................21  
RJ4/BA0......................................................................21  
RJ5/CE........................................................................21  
RJ6/LB ........................................................................21  
RJ7/UB........................................................................21  
VDD..............................................................................21  
VSS..............................................................................21  
PIR Registers....................................................................114  
PLL Clock Timing Specifications.......................................429  
PLL Lock Time-out..............................................................34  
Pointer, FSR........................................................................79  
POP...................................................................................394  
POR. See Power-on Reset.  
PORTD ............................................................................. 152  
Associated Registers................................................ 135  
Functions .................................................................. 135  
LATD Register .......................................................... 133  
Parallel Slave Port (PSP)  
Function............................................................ 133  
PORTD Register....................................................... 133  
TRISD Register......................................................... 133  
PORTE  
Analog Port Pins....................................................... 152  
Associated Registers................................................ 138  
Functions .................................................................. 138  
LATE Register .......................................................... 136  
PORTE Register....................................................... 136  
PSP Mode Select  
(PSPMODE Bit)........................................ 133, 152  
RE0/RD/AD8 Pin ...................................................... 152  
RE1/WR/AD9 Pin...................................................... 152  
RE2/CS/AD10 Pin..................................................... 152  
TRISE Register......................................................... 136  
PORTF  
Associated Registers................................................ 141  
Functions .................................................................. 141  
LATF Register........................................................... 139  
PORTF Register ....................................................... 139  
TRISF Register......................................................... 139  
PORTG  
Associated Registers................................................ 145  
Functions .................................................................. 145  
LATG Register.......................................................... 142  
PORTG Register....................................................... 142  
TRISG Register ........................................................ 142  
PORTH  
Associated Registers................................................ 148  
Functions .................................................................. 148  
LATH Register .......................................................... 146  
PORTH Register....................................................... 146  
TRISH Register......................................................... 146  
PORTJ  
Associated Registers................................................ 151  
Functions .................................................................. 151  
LATJ Register........................................................... 149  
PORTJ Register........................................................ 149  
TRISJ Register ......................................................... 149  
PORTA  
Postscaler, WDT  
Associated Registers ................................................127  
Functions ..................................................................127  
LATA Register...........................................................125  
PORTA Register .......................................................125  
TRISA Register .........................................................125  
PORTB  
Associated Registers ................................................130  
Functions ..................................................................130  
LATB Register...........................................................128  
PORTB Register .......................................................128  
RB0/INT Pin, External...............................................124  
TRISB Register .........................................................128  
PORTC  
Assignment (PSA Bit) ............................................... 157  
Rate Select  
(T0PS2:T0PS0 Bits) ......................................... 157  
Power-down Mode. See Sleep.  
Power-on Reset (POR)............................................... 34, 345  
Power-up Delays ................................................................ 31  
Power-up Timer (PWRT) ............................................ 34, 345  
Prescaler  
Timer2 ...................................................................... 177  
Prescaler, Capture............................................................ 170  
Prescaler, Timer0 ............................................................. 157  
Assignment (PSA Bit) ............................................... 157  
Rate Select  
Associated Registers ................................................132  
Functions ..................................................................132  
LATC Register ..........................................................131  
PORTC Register.......................................................131  
RC3/SCK/SCL Pin ....................................................203  
TRISC Register.........................................................131  
(T0PS2:T0PS0 Bits) ......................................... 157  
Prescaler, Timer2 ............................................................. 173  
PRO MATE II Universal Device  
Programmer.............................................................. 409  
DS30491C-page 480  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
Product Identification System ........................................... 487  
Program Counter  
PCL, PCLATH and PCLATU  
Registers............................................................. 56  
Program Memory  
Output Relationships  
(Active-Low State) ............................................ 179  
Programmable Dead-Band Delay............................. 184  
PWM Direction Change (diagram)............................ 183  
PWM Direction Change at Near 100%  
Instructions.................................................................. 57  
Two-Word ........................................................... 58  
Interrupt Vector ........................................................... 51  
Map and Stack for  
PIC18F6585/8585............................................... 52  
Map and Stack for  
Duty Cycle (diagram)........................................ 183  
Setup for Operation .................................................. 187  
Start-up Considerations............................................ 186  
Q
Q Clock..................................................................... 173, 177  
PIC18F6680/8680............................................... 52  
Memory Access for  
PIC18F8X8X Modes ........................................... 52  
Memory Maps for  
R
RAM. See Data Memory.  
RC Oscillator....................................................................... 24  
RCALL .............................................................................. 395  
RCON Register................................................................. 123  
RCSTA Register  
PIC18F8X8X Modes ........................................... 53  
Reset Vector ............................................................... 51  
Program Memory Modes  
SPEN Bit................................................................... 229  
Register File........................................................................ 59  
Register File Summary ................................................. 67–77  
Registers  
Extended Microcontroller ............................................ 93  
Microcontroller ............................................................ 93  
Microprocessor ........................................................... 93  
Microprocessor with  
ADCON0 (A/D Control 0).......................................... 249  
ADCON1 (A/D Control 1).......................................... 250  
ADCON2 (A/D Control 2).......................................... 251  
BAUDCON (Baud Rate Control)............................... 232  
BIE0 (Buffer Interrupt Enable 0) ............................... 322  
BnCON (TX/RX Buffer n Control,  
Receive Mode) ................................................. 297  
BnCON (TX/RX Buffer n Control,  
Transmit Mode) ................................................ 298  
BnDLC (TX/RX Buffer n Data Length  
Boot Block........................................................... 93  
Program Memory Write Timing  
Requirements............................................................ 432  
Program Verification and  
Code Protection ........................................................ 359  
Associated Registers ................................................ 359  
Configuration Register  
Protection.......................................................... 362  
Data EEPROM Code  
Protection.......................................................... 362  
Memory Code Protection .......................................... 360  
Programming, Device Instructions .................................... 365  
PSP. See Parallel Slave Port.  
PUSH ................................................................................ 394  
PWM (CCP Module) ......................................................... 173  
CCPR1H:CCPR1L Registers.................................... 177  
CCPR1L:CCPR1H Registers.................................... 173  
Duty Cycle......................................................... 173, 177  
Example Frequencies/  
Code in Receive Mode).................................... 304  
BnDLC (TX/RX Buffer n Data Length  
Code in Transmit Mode)................................... 305  
BnDm (TX/RX Buffer n Data Field Byte m  
in Receive Mode).............................................. 303  
BnDm (TX/RX Buffer n Data Field Byte m  
in Transmit Mode)............................................. 303  
BnEIDH (TX/RX Buffer n Extended  
Identifier, High Byte in  
Receive Mode) ................................................. 301  
BnEIDH (TX/RX Buffer n Extended  
Resolutions............................................... 174, 178  
Period................................................................ 173, 177  
Registers Associated with PWM  
Identifier, High Byte in  
Transmit Mode) ................................................ 301  
BnEIDL (TX/RX Buffer n Extended  
Identifier, Low Byte in  
Receive Mode) ................................................. 302  
BnEIDL (TX/RX Buffer n Extended  
Identifier, Low Byte in  
Transmit Mode) ................................................ 302  
BnSIDH (TX/RX Buffer n Standard  
and Timer2........................................................ 187  
Setup for PWM Operation......................................... 174  
TMR2 to PR2 Match ................................. 162, 173, 177  
PWM (CCP Module) and Timer2  
Associated Registers ................................................ 174  
PWM (ECCP Module) ....................................................... 177  
Effects of a Reset...................................................... 187  
Enhanced PWM Auto-Shutdown .............................. 184  
Full-Bridge Application  
Identifier, High Byte in  
Receive Mode) ................................................. 299  
BnSIDH (TX/RX Buffer n Standard  
Identifier, High Byte in  
Transmit Mode) ................................................ 299  
BnSIDL (TX/RX Buffer n Standard  
Example............................................................ 182  
Full-Bridge Mode....................................................... 181  
Direction Change .............................................. 182  
Half-Bridge Mode...................................................... 180  
Half-Bridge Output Mode  
Applications Example ....................................... 180  
Output Configurations............................................... 177  
Output Relationships  
Identifier, Low Byte in  
Receive Mode) ................................................. 300  
(Active-High State)............................................ 178  
2004 Microchip Technology Inc.  
DS30491C-page 481  
PIC18F6585/8585/6680/8680  
BnSIDL (TX/RX Buffer n Standard  
PIR3 (Peripheral Interrupt  
Identifier, Low Byte in  
Request 3)........................................................ 116  
PSPCON (Parallel Slave Port  
Control)............................................................. 153  
RCON (Reset Control).................................. 35, 82, 123  
RCSTA (Receive Status and  
Control)............................................................. 231  
RXB0CON (Receive Buffer 0  
Control)............................................................. 291  
RXB1CON (Receive Buffer 1  
Control)............................................................. 293  
RXBnDLC (Receive Buffer n  
Data Length Code) ........................................... 295  
RXBnDm (Receive Buffer n  
Transmit Mode).................................................300  
BRGCON1 (Baud Rate Control 1) ............................315  
BRGCON2 (Baud Rate Control 2) ............................316  
BRGCON3 (Baud Rate Control 3) ............................317  
BSEL0 (Buffer Select 0)............................................305  
CANCON (CAN Control)...........................................278  
CANSTAT (CAN Status)...........................................279  
CCP1CON (CCP1 Control)............................... 167, 175  
CCP2CON (CCP2 Control).......................................168  
CIOCON (CAN I/O Control) ......................................318  
CMCON (Comparator Control) .................................259  
COMSTAT  
(CAN Communication Status)...........................284  
CONFIG1H (Configuration 1 High) ...........................347  
CONFIG2H (Configuration 2 High) ...........................349  
CONFIG2L (Configuration 2 Low).............................348  
CONFIG3H (Configuration 3 High) ...........................350  
CONFIG3L (Configuration 3 Low).............................349  
CONFIG3L (Configuration Byte).................................53  
CONFIG4L (Configuration 4 Low).............................350  
CONFIG5H (Configuration 5 High) ...........................351  
CONFIG5L (Configuration 5 Low).............................351  
CONFIG6H (Configuration 6 High) ...........................352  
CONFIG6L (Configuration 6 Low).............................352  
CONFIG7H (Configuration 7 High) ...........................353  
CONFIG7L (Configuration 7 Low).............................353  
CVRCON (Comparator Voltage  
Data Field Byte m)............................................ 296  
RXBnEIDH (Receive Buffer n  
Extended Identifier, High Byte)......................... 294  
RXBnEIDL (Receive Buffer n  
Extended Identifier, Low Byte).......................... 295  
RXBnSIDH (Receive Buffer n  
Standard Indentifier, High Byte) ....................... 294  
RXBnSIDL (Receive Buffer n  
Standard Identifier, Low Byte) .......................... 294  
RXERRCNT (Receive Error Count).......................... 296  
RXFnEIDH (Receive Acceptance  
Filter n Extended Identifier,  
High Byte)......................................................... 307  
RXFnEIDL (Receive Acceptance  
Filter n Extended Identifier,  
Reference Control)............................................265  
Device ID 1 ...............................................................354  
Device ID 2 ...............................................................354  
ECANCON (Enhanced CAN Control) .......................283  
ECCP1AS (ECCP1 Auto-Shutdown  
Low Byte).......................................................... 307  
RXFnSIDH (Receive Acceptance  
Filter n Standard Identifier Filter,  
High Byte)......................................................... 306  
RXFnSIDL (Receive Acceptance  
Control) .............................................................185  
ECCP1DEL (ECCP1 Delay) .....................................184  
EECON1 (Data EEPROM  
Filter n Standard Identifier Filter,  
Low Byte).......................................................... 306  
RXMnEIDH (Receive Acceptance  
Control 1) .................................................... 85, 102  
INTCON (Interrupt Control).......................................111  
INTCON2 (Interrupt Control 2)..................................112  
INTCON3 (Interrupt Control 3)..................................113  
IPR1 (Peripheral Interrupt  
Mask n Extended Identifier Mask,  
High Byte)......................................................... 308  
RXMnEIDL (Receive Acceptance  
Mask n Extended Identifier Mask,  
Low Byte).......................................................... 308  
RXMnSIDH (Receive Acceptance  
Priority 1)...........................................................120  
IPR2 (Peripheral Interrupt  
Mask n Standard Identifier Mask,  
Priority 2)...........................................................121  
IPR3 (Peripheral Interrupt  
High Byte)......................................................... 307  
RXMnSIDL (Receive Acceptance  
Priority 3)................................................... 122, 321  
LVDCON (LVD Control)............................................271  
MEMCON (Memory Control).......................................94  
OSCCON (Oscillator Control) .....................................27  
PIE1 (Peripheral Interrupt  
Mask n Standard Identifier Mask,  
Low Byte).......................................................... 308  
SSPCON1 (MSSP Control 1  
in SPI Mode)..................................................... 191  
SSPCON2 (MSSP Control 2  
2
Enable 1)...........................................................117  
PIE2 (Peripheral Interrupt  
in I C Mode) ..................................................... 201  
SSPSTAT (MSSP Status  
Enable 2)...........................................................118  
PIE3 (Peripheral Interrupt  
Enable 3)................................................... 119, 320  
PIR1 (Peripheral Interrupt  
Request 1) ........................................................114  
PIR2 (Peripheral Interrupt  
Request 2) ........................................................115  
PIR3 (Peripheral Interrupt  
in SPI Mode).................................................... 190  
Status ......................................................................... 81  
STKPTR (Stack Pointer)............................................. 55  
T0CON (Timer0 Control) .......................................... 155  
T1CON (Timer 1 Control) ......................................... 159  
T2CON (Timer2 Control) .......................................... 162  
T3CON (Timer3 Control) .......................................... 164  
Flag 3)...............................................................319  
DS30491C-page 482  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
TXBIE (Transmit Buffers  
SPI  
Interrupt Enable) ............................................... 322  
TXBnCON (Transmit Buffer n  
Control)............................................................. 285  
TXBnDLC (Transmit Buffer n  
Data Length Code) ........................................... 288  
TXBnDm (Transmit Buffer n  
Data Field Byte m)............................................ 287  
TXBnEIDH (Transmit Buffer n  
Serial Clock .............................................................. 189  
Serial Data In............................................................ 189  
Serial Data Out......................................................... 189  
Slave Select.............................................................. 189  
SPI Mode.................................................................. 189  
SPI Master/Slave Connection........................................... 193  
SPI Mode  
Master/Slave Connection ......................................... 193  
SS..................................................................................... 189  
SSP  
Extended Identifier, High Byte)......................... 286  
TXBnEIDL (Transmit Buffer n  
Extended Identifier, Low Byte).......................... 287  
TXBnSIDH (Transmit Buffer n  
Standard Identifier, High Byte).......................... 286  
TXBnSIDL (Transmit Buffer n  
Standard Identifier, Low Byte) .......................... 286  
TXERRCNT (Transmit Error Count) ......................... 288  
TXSTA (Transmit Status and  
Control)............................................................. 230  
WDTCON (Watchdog Timer  
TMR2 Output for Clock Shift............................. 162, 163  
SSPOV Status Flag .......................................................... 219  
SSPSTAT Register  
R/W Bit ............................................................. 202, 203  
Status Bits  
Significance and Initialization  
Condition for RCON Register............................. 35  
SUBFWP .......................................................................... 400  
SUBLW............................................................................. 401  
SUBWF............................................................................. 401  
SUBWFB .......................................................................... 402  
SWAPF............................................................................. 402  
Control)............................................................. 355  
RESET .............................................................................. 395  
Reset........................................................................... 33, 345  
Reset, Watchdog Timer, Oscillator  
T
Start-up Timer, Power-up Timer and  
Table Pointer Operations  
Brown-out Reset Requirements................................ 433  
RETFIE ............................................................................. 396  
RETLW ............................................................................. 396  
RETURN ........................................................................... 397  
Return Address Stack  
(table) ......................................................................... 86  
TBLRD.............................................................................. 403  
TBLWT ............................................................................. 404  
Time-out in Various  
Situations.................................................................... 35  
Time-out Sequence ............................................................ 34  
Timer0 .............................................................................. 155  
16-bit Mode Timer Reads and  
and Associated Registers ........................................... 55  
Stack Pointer (STKPTR)............................................. 54  
Top-of-Stack Access................................................... 54  
Revision History................................................................ 469  
RLCF................................................................................. 397  
RLNCF .............................................................................. 398  
RRCF ................................................................................ 398  
RRNCF ............................................................................. 399  
Writes ............................................................... 157  
Associated Registers................................................ 157  
Clock Source Edge Select  
(T0SE Bit)......................................................... 157  
Clock Source Select  
(T0CS Bit)......................................................... 157  
Operation.................................................................. 157  
Overflow Interrupt..................................................... 157  
Prescaler .................................................................. 157  
Switching Assignment ...................................... 157  
Prescaler. See Prescaler, Timer0.  
S
SCK................................................................................... 189  
SDI.................................................................................... 189  
SDO .................................................................................. 189  
Serial Clock, SCK ............................................................. 189  
Serial Data In, SDI ............................................................ 189  
Serial Data Out, SDO........................................................ 189  
Serial Peripheral Interface. See SPI.  
SETF................................................................................. 399  
Slave Select, SS ............................................................... 189  
SLEEP .............................................................................. 400  
Sleep......................................................................... 345, 357  
Software Simulator  
Timer0 and Timer1 External Clock  
Requirements ........................................................... 434  
Timer1 .............................................................................. 159  
16-bit Read/Write Mode............................................ 161  
Associated Registers................................................ 161  
Operation.................................................................. 160  
Oscillator........................................................... 159, 161  
Overflow Interrupt............................................. 159, 161  
Special Event Trigger  
(MPLAB SIM)............................................................ 408  
Software Simulator  
(MPLAB SIM30)........................................................ 408  
Special Event Trigger. See Compare.  
Special Features of the CPU ............................................ 345  
Configuration Registers .................................... 347–353  
Special Function Registers ................................................. 59  
Map............................................................................. 61  
(CCP)........................................................ 161, 171  
TMR1H Register....................................................... 159  
TMR1L Register ....................................................... 159  
2004 Microchip Technology Inc.  
DS30491C-page 483  
PIC18F6585/8585/6680/8680  
Timer2...............................................................................162  
Associated Registers ................................................163  
Operation ..................................................................162  
Postscaler. See Postscaler, Timer2.  
Example SPI Slave Mode  
(CKE = 0).......................................................... 439  
Example SPI Slave Mode  
(CKE = 1).......................................................... 440  
External Clock (All Modes  
except PLL) ...................................................... 428  
External Program Memory Bus  
PR2 Register.............................................162, 173, 177  
Prescaler. See Prescaler, Timer2.  
SSP Clock Shift................................................. 162, 163  
TMR2 Register..........................................................162  
TMR2 to PR2 Match  
(16-bit Mode) ...................................................... 99  
First Start Bit............................................................. 217  
Full-Bridge PWM Output........................................... 181  
Half-Bridge PWM Output .......................................... 180  
Interrupt.....................................162, 163, 173, 177  
Timer3...............................................................................164  
Associated Registers ................................................166  
Operation ..................................................................165  
Oscillator........................................................... 164, 166  
Overflow Interrupt ............................................. 164, 166  
Special Event Trigger  
2
I C Bus Data............................................................. 441  
2
I C Bus Start/Stop Bits ............................................. 441  
2
I C Master Mode (7 or  
10-bit Transmission)......................................... 220  
I C Master Mode  
2
(CCP)................................................................166  
TMR3H Register .......................................................164  
TMR3L Register........................................................164  
Timing Diagrams  
(7-bit Reception)............................................... 221  
I C Slave Mode (10-bit Reception,  
SEN = 0)........................................................... 206  
I C Slave Mode (10-bit Reception,  
2
2
A/D Conversion.........................................................447  
Acknowledge Sequence ...........................................222  
Asynchronous Reception ..........................................241  
Asynchronous Transmission.....................................238  
Asynchronous Transmission  
(Back to Back)...................................................238  
Automatic Baud Rate  
Calculation ........................................................236  
Auto-Wake-up Bit (WUE) During  
Normal Operation..............................................242  
Auto-Wake-up Bit (WUE)  
During Sleep .....................................................242  
Baud Rate Generator with  
Clock Arbitration................................................216  
BRG Reset Due to SDA Arbitration During  
Start Condition ..................................................225  
Brown-out Reset (BOR)............................................433  
Bus Collision During a Repeated  
SEN = 1)........................................................... 211  
I C Slave Mode  
(10-bit Transmission)........................................ 207  
I C Slave Mode (7-bit Reception,  
SEN = 0)........................................................... 204  
I C Slave Mode (7-bit Reception,  
SEN = 1)........................................................... 210  
I C Slave Mode  
2
2
2
2
(7-bit Transmission).......................................... 205  
Low-Voltage Detect .................................................. 272  
2
Master SSP I C Bus Data......................................... 443  
2
Master SSP I C Bus  
Start/Stop Bits................................................... 443  
Parallel Slave Port  
(PIC18FXX8X).................................................. 436  
Parallel Slave Port (PSP)  
Read................................................................. 154  
Parallel Slave Port (PSP)  
Start Condition (Case 1) ...................................226  
Bus Collision During a Repeated  
Start Condition (Case 2) ...................................226  
Bus Collision During a Stop Condition  
Write ................................................................. 153  
Program Memory Read ............................................ 430  
Program Memory Write............................................. 431  
PWM Auto-Shutdown (PRSEN = 0,  
(Case 1) ............................................................227  
Bus Collision During a Stop Condition  
Auto-Restart Disabled) ..................................... 186  
PWM Auto-Shutdown (PRSEN = 1,  
(Case 2) ............................................................227  
Bus Collision During Start Condition  
(SCL = 0) ..........................................................225  
Bus Collision During Start Condition  
Auto-Restart Enabled)...................................... 186  
PWM Output............................................................. 173  
Repeat Start Condition ............................................. 218  
Reset, Watchdog Timer (WDT),  
(SDA only).........................................................224  
Bus Collision for Transmit and  
Acknowledge....................................................223  
Capture/Compare/PWM  
Oscillator Start-up Timer (OST)  
and Power-up Timer (PWRT)........................... 432  
Send Break Character Sequence............................. 243  
Slave Mode General Call Address  
(All CCP Modules) ............................................435  
CLKO and I/O ...........................................................429  
Clock Synchronization ..............................................209  
Clock/Instruction Cycle ...............................................56  
Example SPI Master Mode  
Sequence (7 or 10-bit  
Address Mode) ................................................. 212  
Slave Synchronization .............................................. 195  
Slow Rise Time (MCLR Tied to VDD  
via 1 kResistor) ............................................... 50  
SPI Mode (Master Mode).......................................... 194  
SPI Mode (Slave Mode with  
(CKE = 0) ..........................................................437  
Example SPI Master Mode  
(CKE = 1) ..........................................................438  
CKE = 0)........................................................... 196  
DS30491C-page 484  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
SPI Mode (Slave Mode with  
Baud Rate Generator (BRG) .................................... 233  
CKE = 1) ........................................................... 196  
Stop Condition Receive or  
Transmit Mode.................................................. 222  
Synchronous Reception  
Associated Registers........................................ 233  
Auto-Baud Rate Detect..................................... 236  
Baud Rate Error, Calculating............................ 233  
Baud Rates, Asynchronous  
(Master Mode, SREN) ...................................... 246  
Synchronous Transmission....................................... 244  
Synchronous Transmission  
(Through TXEN) ............................................... 245  
Time-out Sequence on POR w/PLL  
Enabled (MCLR Tied to VDD  
via 1 kResistor) ............................................... 50  
Time-out Sequence on Power-up  
Modes....................................................... 234  
High Baud Rate Select  
(BRGH Bit) ............................................... 233  
Sampling .......................................................... 233  
Serial Port Enable (SPEN Bit) .................................. 229  
Synchronous Master Mode....................................... 244  
Associated Registers,  
Reception ................................................. 246  
Associated Registers,  
(MCLR Not Tied to VDD)  
Case 1 ................................................................ 49  
Case 2 ................................................................ 49  
Time-out Sequence on Power-up  
Transmit ................................................... 245  
Reception ......................................................... 246  
Transmission .................................................... 244  
Synchronous Slave Mode......................................... 247  
Associated Registers,  
(MCLR Tied to VDD  
via 1 kResistor) ............................................... 49  
Timer0 and Timer1 External Clock ........................... 433  
Transition Between Timer1 and OSC1  
(EC with PLL Active, SCS1 = 1) ......................... 29  
Transition Between Timer1 and OSC1  
(HS with PLL Active, SCS1 = 1) ......................... 29  
Transition Between Timer1 and OSC1  
(HS, XT, LP) ....................................................... 28  
Transition Between Timer1 and  
Receive .................................................... 248  
Associated Registers,  
Transmit ................................................... 247  
Reception ......................................................... 248  
Transmission .................................................... 247  
USART Synchronous Receive  
Requirements ........................................................... 445  
USART Synchronous Transmission  
OSC1 (RC, EC) .................................................. 30  
Transition from OSC1 to  
Timer1 Oscillator................................................. 28  
USART Synchronous Receive  
Requirements ........................................................... 445  
V
Voltage Reference Specifications..................................... 423  
(Master/Slave) .................................................. 445  
USART Synchronous Transmission  
(Master/Slave) .................................................. 445  
Wake-up from Sleep via Interrupt ............................. 358  
W
Wake-up from Sleep................................................. 345, 357  
Using Interrupts ........................................................ 357  
Watchdog Timer (WDT)............................................ 345, 355  
Associated Registers................................................ 356  
Control Register........................................................ 355  
Postscaler......................................................... 355, 356  
Programming Considerations................................... 355  
RC Oscillator ............................................................ 355  
Time-out Period........................................................ 355  
WCOL............................................................................... 217  
WCOL Status Flag.................................... 217, 218, 219, 222  
WWW, On-Line Support ....................................................... 7  
TRISE Register  
PSPMODE Bit................................................... 133, 152  
TSTFSZ ............................................................................ 405  
Two-Word Instructions  
Example Cases........................................................... 58  
TXSTA Register  
BRGH Bit .................................................................. 233  
U
USART  
Asynchronous Mode ................................................. 237  
12-bit Break Transmit and  
X
XORLW ............................................................................ 405  
XORWF ............................................................................ 406  
Receive..................................................... 243  
Associated Registers, Receive ......................... 241  
Associated Registers, Transmit ........................ 239  
Auto-Wake-up on Sync Break .......................... 242  
Receiver............................................................ 240  
Setting up 9-bit Mode with  
Address Detect ......................................... 240  
Transmitter........................................................ 237  
2004 Microchip Technology Inc.  
DS30491C-page 485  
PIC18F6585/8585/6680/8680  
NOTES:  
DS30491C-page 486  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
ON-LINE SUPPORT  
SYSTEMS INFORMATION AND  
UPGRADE HOT LINE  
Microchip provides on-line support on the Microchip  
World Wide Web site.  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip’s development systems software products.  
Plus, this line provides information on how customers  
can receive the most current upgrade kits. The Hot Line  
Numbers are:  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape® or Microsoft®  
Internet Explorer. Files are also available for FTP  
download from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-480-792-7302 for the rest of the world.  
Connecting to the Microchip Internet  
Web Site  
The Microchip web site is available at the following  
URL:  
www.microchip.com  
The file transfer site is available by using an FTP  
service to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User’s Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Systems,  
technical information and more  
• Listing of seminars and events  
2004 Microchip Technology Inc.  
DS30491C-page 487  
PIC18F6585/8585/6680/8680  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC18F6585/8585/6680/8680  
DS30491C  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS30491C-page 488  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
PIC18F6585/8585/6680/8680 PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
X
/XX  
XXX  
PART NO.  
Device  
Examples:  
Temperature Package  
Range  
Pattern  
a) PIC18LF6680 - I/PT 301 = Industrial  
temp., TQFP package, Extended VDD  
limits, QTP pattern #301.  
b) PIC18F8585 - I/PT = Industrial temp.,  
TQFP package, normal VDD limits.  
c) PIC18F8680 - E/PT = Extended temp.,  
TQFP package, standard VDD limits.  
(1)  
(2)  
Device  
PIC18FXX8X , PIC18FXX8XT ;  
VDD range 4.2V to 5.5V  
(1)  
(2)  
PIC18LFXX8X , PIC18LFXX8XT  
VDD range 2.0V to 5.5V  
;
Temperature  
Range  
I
E
=
=
-40°C to +85°C (Industrial)  
-40°C to +125°C (Extended)  
Note 1: F  
LF  
2: T  
=
=
Standard Voltage Range  
Extended Voltage Range  
Package  
Pattern  
PT = TQFP (Thin Quad Flatpack)  
=
in tape and reel  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
2004 Microchip Technology Inc.  
DS30491C-page 489  
PIC18F6585/8585/6680/8680  
NOTES:  
DS30491C-page 490  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
NOTES:  
2004 Microchip Technology Inc.  
DS30491C-page 491  
PIC18F6585/8585/6680/8680  
NOTES:  
DS30491C-page 492  
2004 Microchip Technology Inc.  
PIC18F6585/8585/6680/8680  
NOTES:  
2004 Microchip Technology Inc.  
DS30491C-page 493  
WORLDWIDE SALES AND SERVICE  
China - Beijing  
Korea  
AMERICAS  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Unit 706B  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
Wan Tai Bei Hai Bldg.  
No. 6 Chaoyangmen Bei Str.  
Beijing, 100027, China  
Tel: 86-10-85282100  
Fax: 86-10-85282104  
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or  
82-2-558-5934  
Singapore  
200 Middle Road  
#07-02 Prime Centre  
Singapore, 188980  
Tel: 65-6334-8870 Fax: 65-6334-8850  
China - Chengdu  
Rm. 2401-2402, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Chengdu 610016, China  
Tel: 86-28-86766200  
Atlanta  
3780 Mansell Road, Suite 130  
Alpharetta, GA 30022  
Tel: 770-640-0034  
Fax: 770-640-0307  
Taiwan  
Kaohsiung Branch  
30F - 1 No. 8  
Fax: 86-28-86766599  
Boston  
Min Chuan 2nd Road  
Kaohsiung 806, Taiwan  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
China - Fuzhou  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Fuzhou 350001, China  
Tel: 86-591-7503506  
Fax: 86-591-7503521  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848  
Fax: 978-692-3821  
Taiwan  
Taiwan Branch  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Hong Kong SAR  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Dallas  
EUROPE  
Austria  
Durisolstrasse 2  
A-4600 Wels  
Austria  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
Denmark  
Regus Business Centre  
Lautrup hoj 1-3  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250  
Tel: 86-21-6275-5700  
Fax: 86-21-6275-5060  
China - Shenzhen  
Rm. 1812, 18/F, Building A, United Plaza  
No. 5022 Binhe Road, Futian District  
Shenzhen 518033, China  
Tel: 86-755-82901380  
Fax: 86-755-8295-1393  
China - Shunde  
Fax: 248-538-2260  
Ballerup DK-2750 Denmark  
Tel: 45-4420-9895 Fax: 45-4420-9910  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, IN 46902  
Tel: 765-864-8360  
Fax: 765-864-8387  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Room 401, Hongjian Building, No. 2  
Los Angeles  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888  
Fax: 949-263-1338  
Fengxiangnan Road, Ronggui Town, Shunde  
District, Foshan City, Guangdong 528303, China  
Tel: 86-757-28395507 Fax: 86-757-28395571  
Germany  
China - Qingdao  
Rm. B505A, Fullhope Plaza,  
No. 12 Hong Kong Central Rd.  
Qingdao 266071, China  
Tel: 86-532-5027355 Fax: 86-532-5027205  
Steinheilstrasse 10  
D-85737 Ismaning, Germany  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
San Jose  
1300 Terra Bella Avenue  
Mountain View, CA 94043  
Tel: 650-215-1444  
Italy  
India  
Via Quasimodo, 12  
20025 Legnano (MI)  
Milan, Italy  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-22290061 Fax: 91-80-22290062  
Japan  
Fax: 650-961-0286  
Toronto  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Netherlands  
P. A. De Biesbosch 14  
NL-5152 SC Drunen, Netherlands  
Tel: 31-416-690399  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
ASIA/PACIFIC  
Australia  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Australia  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Fax: 31-416-690340  
United Kingdom  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
02/17/04  
DS30491C-page 494  
2004 Microchip Technology Inc.  

相关型号:

PIC18F8585-I/L

64/68/80-Pin High-Performance, 64-Kbyte Enhanced Flash Microcontrollers with ECAN Module
MICROCHIP

PIC18F8585-I/PT

64/68/80-Pin High-Performance, 64-Kbyte Enhanced Flash Microcontrollers with ECAN Module
MICROCHIP

PIC18F8585T-E/PT

8-BIT, FLASH, 40 MHz, RISC MICROCONTROLLER, PQFP80, 12 X 12 MM, 1 MM HEIGHT, PLASTIC, MS-026, TQFP-80
MICROCHIP

PIC18F8585T-I/PT

8-BIT, FLASH, 40 MHz, RISC MICROCONTROLLER, PQFP80, 12 X 12 MM, 1 MM HEIGHT, PLASTIC, MS-026, TQFP-80
MICROCHIP

PIC18F85J10

64/80-Pin, High-Performance 1-Mbit Flash Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18F85J10-I/PTQTP

64/80-Pin, High-Performance 1-Mbit Flash Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18F85J10-I/PTSQTP

64/80-Pin, High-Performance 1-Mbit Flash Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18F85J10I/PTQTP

64/80-Pin High-Performance, 1-Mbit Flash Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18F85J10I/PTSQTP

64/80-Pin High-Performance, 1-Mbit Flash Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18F85J10T-I/PTQTP

64/80-Pin, High-Performance 1-Mbit Flash Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18F85J10T-I/PTSQTP

64/80-Pin, High-Performance 1-Mbit Flash Microcontrollers with nanoWatt Technology
MICROCHIP

PIC18F85J11

64/80-Pin High-Performance Microcontrollers with nanoWatt Technology
MICROCHIP