PIC18F258-I/SOSQTP [MICROCHIP]

28/40-Pin High-Performance, Enhanced Flash Microcontrollers with CAN Module; 40分之28引脚高性能,增强型闪存微控制器与CAN模块
PIC18F258-I/SOSQTP
型号: PIC18F258-I/SOSQTP
厂家: MICROCHIP    MICROCHIP
描述:

28/40-Pin High-Performance, Enhanced Flash Microcontrollers with CAN Module
40分之28引脚高性能,增强型闪存微控制器与CAN模块

闪存 微控制器
文件: 总402页 (文件大小:7079K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC18FXX8  
Data Sheet  
28/40-Pin High-Performance,  
Enhanced Flash Microcontrollers  
with CAN Module  
© 2006 Microchip Technology Inc.  
DS41159E  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active  
Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2006, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
DS41159E-page ii  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
28/40-Pin High-Performance, Enhanced Flash  
Microcontrollers with CAN  
High-Performance RISC CPU:  
Advanced Analog Features:  
• 10-bit, up to 8-channel Analog-to-Digital Converter  
module (A/D) with:  
• Linear program memory addressing up to  
2 Mbytes  
- Conversion available during Sleep  
- Up to 8 channels available  
• Linear data memory addressing to 4 Kbytes  
• Up to 10 MIPS operation  
• Analog Comparator module:  
• DC – 40 MHz clock input  
- Programmable input and output multiplexing  
• Comparator Voltage Reference module  
• Programmable Low-Voltage Detection (LVD) module:  
- Supports interrupt-on-Low-Voltage Detection  
• Programmable Brown-out Reset (BOR)  
• 4 MHz-10 MHz oscillator/clock input with  
PLL active  
• 16-bit wide instructions, 8-bit wide data path  
• Priority levels for interrupts  
• 8 x 8 Single-Cycle Hardware Multiplier  
CAN bus Module Features:  
Peripheral Features:  
• Complies with ISO CAN Conformance Test  
• Message bit rates up to 1 Mbps  
• Conforms to CAN 2.0B Active Spec with:  
- 29-bit Identifier Fields  
• High current sink/source 25 mA/25 mA  
• Three external interrupt pins  
• Timer0 module: 8-bit/16-bit timer/counter with  
8-bit programmable prescaler  
- 8-byte message length  
• Timer1 module: 16-bit timer/counter  
- 3 Transmit Message Buffers with prioritization  
- 2 Receive Message Buffers  
• Timer2 module: 8-bit timer/counter with 8-bit  
period register (time base for PWM)  
• Timer3 module: 16-bit timer/counter  
- 6 full, 29-bit Acceptance Filters  
- Prioritization of Acceptance Filters  
• Secondary oscillator clock option – Timer1/Timer3  
• Capture/Compare/PWM (CCP) modules;  
CCP pins can be configured as:  
- Multiple Receive Buffers for High Priority  
Messages to prevent loss due to overflow  
- Capture input: 16-bit, max resolution 6.25 ns  
- Compare: 16-bit, max resolution 100 ns (TCY)  
- Advanced Error Management Features  
Special Microcontroller Features:  
- PWM output: PWM resolution is 1 to 10-bit  
Max. PWM freq. @:8-bit resolution = 156 kHz  
10-bit resolution = 39 kHz  
• Power-on Reset (POR), Power-up Timer (PWRT)  
and Oscillator Start-up Timer (OST)  
• Enhanced CCP module which has all the features  
of the standard CCP module, but also has the  
following features for advanced motor control:  
• Watchdog Timer (WDT) with its own on-chip RC  
oscillator  
• Programmable code protection  
- 1, 2 or 4 PWM outputs  
• Power-saving Sleep mode  
- Selectable PWM polarity  
- Programmable PWM dead time  
• Selectable oscillator options, including:  
- 4x Phase Lock Loop (PLL) of primary oscillator  
- Secondary Oscillator (32 kHz) clock input  
• In-Circuit Serial ProgrammingTM (ICSPTM) via two pins  
• Master Synchronous Serial Port (MSSP) with two  
modes of operation:  
- 3-wire SPI™ (Supports all 4 SPI modes)  
- I2C™ Master and Slave mode  
Flash Technology:  
• Addressable USART module:  
• Low-power, high-speed Enhanced Flash technology  
• Fully static design  
- Supports interrupt-on-address bit  
• Wide operating voltage range (2.0V to 5.5V)  
• Industrial and Extended temperature ranges  
© 2006 Microchip Technology Inc.  
DS41159E-page 1  
PIC18FXX8  
Program Memory  
Device  
Data Memory  
MSSP  
10-bit  
A/D  
(ch)  
CCP/  
ECCP  
(PWM)  
Timers  
8/16-bit  
I/O  
USART  
Flash # Single-Word SRAM EEPROM  
(bytes) Instructions (bytes) (bytes)  
Master  
SPI™  
2
I C™  
PIC18F248 16K  
PIC18F258 32K  
PIC18F448 16K  
PIC18F458 32K  
8192  
16384  
8192  
768  
1536  
768  
256  
256  
256  
256  
22  
22  
33  
33  
5
5
8
8
2
1/0  
1/0  
1/1  
1/1  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
1/3  
1/3  
1/3  
1/3  
16384  
1536  
2
Pin Diagrams  
PDIP  
MCLR/VPP  
1
40  
RB7/PGD  
RB6/PGC  
RB5/PGM  
RB4  
RA0/AN0/CVREF  
2
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
RA1/AN1  
RA2/AN2/VREF-  
3
4
RA3/AN3/VREF+  
RB3/CANRX  
5
RA4/T0CKI  
RB2/CANTX/INT2  
RB1/INT1  
RB0/INT0  
VDD  
6
RA5/AN4/SS/LVDIN  
RE0/AN5/RD  
RE1/AN6/WR/C1OUT  
RE2/AN7/CS/C2OUT  
VDD  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
VSS  
RD7/PSP7/P1D  
RD6/PSP6/P1C  
RD5/PSP5/P1B  
RD4/PSP4/ECCP1/P1A  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
RC4/SDI/SDA  
RD3/PSP3/C2IN-  
RD2/PSP2/C2IN+  
VSS  
OSC1/CLKI  
OSC2/CLKO/RA6  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
RC2/CCP1  
RC3/SCK/SCL  
RD0/PSP0/C1IN+  
RD1/PSP1/C1IN-  
PLCC  
RA4/T0CKI  
RA5/AN4/SS/LVDIN  
RE0/AN5/RD  
RE1/AN6/WR/C1OUT  
7
39  
RB3/CANRX  
RB2/CANTX/INT2  
RB1/INT1  
RB0/INT0  
VDD  
8
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
9
10  
11  
12  
13  
14  
15  
16  
17  
RE2/AN7/CS/C2OUT  
PIC18F448  
PIC18F458  
VDD  
VSS  
VSS  
RD7/PSP7/P1D  
RD6/PSP6/P1C  
RD5/PSP5/P1B  
RD4/PSP4/ECCP1/P1A  
RC7/RX/DT  
OSC1/CLKI  
OSC2/CLKO/RA6  
RC0/T1OSO/T1CK1  
NC  
DS41159E-page 2  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
Pin Diagrams (Continued)  
TQFP  
RC7/RX/DT  
RD4/PSP4/ECCP1/P1A  
1
2
3
4
5
6
7
8
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
NC  
RC0/T1OSO/T1CKI  
OSC2/CLKO/RA6  
OSC1/CLKI  
VSS  
VDD  
RD5/PSP5/P1B  
RD6/PSP6/P1C  
RD7/PSP7/P1D  
VSS  
PIC18F448  
PIC18F458  
VDD  
RB0/INT0  
RB1/INT1  
RE2/AN7/CS/C2OUT  
RE1/AN6/WR/C1OUT  
RE0//AN5/RD  
RA5/AN4/SS/LVDIN  
RA4/T0CKI  
9
10  
11  
RB2/CANTX/INT2  
RB3/CANRX  
SPDIP, SOIC  
MCLR/VPP  
RA0/AN0/CVREF  
RA1/AN1  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
1
2
3
4
5
6
28  
27  
26  
25  
24  
23  
RB7/PGD  
RB6/PGC  
RB5/PGM  
RB4  
RB3/CANRX  
RB2/CANTX/INT2  
RA5/AN4/SS/LVDIN  
VSS  
22  
21  
RB1/INT1  
RB0/INT0  
7
8
OSC1/CLKI  
OSC2/CLKO/RA6  
RC0/T1OSO/T1CKI  
20  
19  
18  
17  
16  
VDD  
VSS  
RC7/RX/DT  
RC6/TX/CK  
RC5/SDO  
9
10  
11  
12  
13  
14  
RC1/T1OSI  
RC2/CCP1  
RC3/SCK/SCL  
15  
RC4/SDI/SDA  
© 2006 Microchip Technology Inc.  
DS41159E-page 3  
PIC18FXX8  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 7  
2.0 Oscillator Configurations ............................................................................................................................................................ 17  
3.0 Reset.......................................................................................................................................................................................... 25  
4.0 Memory Organization................................................................................................................................................................. 37  
5.0 Data EEPROM Memory ............................................................................................................................................................ 59  
6.0 Flash Program Memory.............................................................................................................................................................. 65  
7.0 8 x 8 Hardware Multiplier............................................................................................................................................................ 75  
8.0 Interrupts .................................................................................................................................................................................... 77  
9.0 I/O Ports ..................................................................................................................................................................................... 93  
10.0 Parallel Slave Port.................................................................................................................................................................... 107  
11.0 Timer0 Module ......................................................................................................................................................................... 109  
12.0 Timer1 Module ......................................................................................................................................................................... 113  
13.0 Timer2 Module ......................................................................................................................................................................... 117  
14.0 Timer3 Module ......................................................................................................................................................................... 119  
15.0 Capture/Compare/PWM (CCP) Modules ................................................................................................................................. 123  
16.0 Enhanced Capture/Compare/PWM (ECCP) Module................................................................................................................ 131  
17.0 Master Synchronous Serial Port (MSSP) Module .................................................................................................................... 143  
18.0 Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART).............................................................. 183  
19.0 CAN Module ............................................................................................................................................................................. 199  
20.0 Compatible 10-Bit Analog-to-Digital Converter (A/D) Module .................................................................................................. 241  
21.0 Comparator Module.................................................................................................................................................................. 249  
22.0 Comparator Voltage Reference Module................................................................................................................................... 255  
23.0 Low-Voltage Detect.................................................................................................................................................................. 259  
24.0 Special Features of the CPU.................................................................................................................................................... 265  
25.0 Instruction Set Summary.......................................................................................................................................................... 281  
26.0 Development Support............................................................................................................................................................... 323  
27.0 Electrical Characteristics.......................................................................................................................................................... 329  
28.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 361  
29.0 Packaging Information.............................................................................................................................................................. 377  
Appendix A: Data Sheet Revision History.......................................................................................................................................... 385  
Appendix B: Device Differences......................................................................................................................................................... 385  
Appendix C: Device Migrations.......................................................................................................................................................... 386  
Appendix D: Migrating From Other PICmicro® Devices..................................................................................................................... 386  
Index .................................................................................................................................................................................................. 387  
On-Line Support................................................................................................................................................................................. 397  
Systems Information and Upgrade Hot Line ...................................................................................................................................... 397  
Reader Response .............................................................................................................................................................................. 398  
PIC18FXX8 Product Identification System......................................................................................................................................... 399  
DS41159E-page 4  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
© 2006 Microchip Technology Inc.  
DS41159E-page 5  
PIC18FXX8  
NOTES:  
DS41159E-page 6  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
2. PIC18F2X8 devices implement 5 A/D channels,  
as opposed to 8 for PIC18F4X8 devices.  
1.0  
DEVICE OVERVIEW  
This document contains device specific information for  
the following devices:  
3. PIC18F2X8 devices implement 3 I/O ports,  
while PIC18F4X8 devices implement 5.  
• PIC18F248  
• PIC18F258  
• PIC18F448  
• PIC18F458  
4. Only PIC18F4X8 devices implement the  
Enhanced CCP module, analog comparators  
and the Parallel Slave Port.  
All other features for devices in the PIC18FXX8 family,  
including the serial communications modules, are  
identical. These are summarized in Table 1-1.  
These devices are available in 28-pin, 40-pin and  
44-pin packages. They are differentiated from each  
other in four ways:  
Block diagrams of the PIC18F2X8 and PIC18F4X8  
devices are provided in Figure 1-1 and Figure 1-2,  
respectively. The pinouts for these device families are  
listed in Table 1-2.  
1. PIC18FX58 devices have twice the Flash  
program memory and data RAM of PIC18FX48  
devices (32 Kbytes and 1536 bytes vs.  
16 Kbytes and 768 bytes, respectively).  
TABLE 1-1:  
PIC18FXX8 DEVICE FEATURES  
Features  
PIC18F248  
PIC18F258  
PIC18F448  
PIC18F458  
Operating Frequency  
DC – 40 MHz  
16K  
DC – 40 MHz  
32K  
DC – 40 MHz  
16K  
DC – 40 MHz  
32K  
Internal  
Program  
Memory  
Bytes  
# of Single-Word  
Instructions  
8192  
16384  
8192  
16384  
Data Memory (Bytes)  
Data EEPROM Memory (Bytes)  
Interrupt Sources  
768  
1536  
768  
256  
21  
1536  
256  
21  
256  
256  
17  
17  
I/O Ports  
Ports A, B, C  
Ports A, B, C  
Ports A, B, C, D, E Ports A, B, C, D, E  
Timers  
4
1
4
1
4
1
1
4
1
1
Capture/Compare/PWM Modules  
Enhanced Capture/Compare/  
PWM Modules  
Serial Communications  
MSSP, CAN,  
MSSP, CAN,  
MSSP, CAN,  
MSSP, CAN,  
Addressable USART Addressable USART Addressable USART Addressable USART  
Parallel Communications (PSP)  
10-bit Analog-to-Digital Converter  
Analog Comparators  
No  
5 input channels  
No  
No  
5 input channels  
No  
Yes  
8 input channels  
2
Yes  
8 input channels  
2
Analog Comparators VREF Output  
Resets (and Delays)  
N/A  
N/A  
Yes  
Yes  
POR, BOR,  
POR, BOR,  
POR, BOR,  
POR, BOR,  
RESETInstruction, RESETInstruction, RESETInstruction, RESETInstruction,  
Stack Full,  
Stack Underflow  
(PWRT, OST)  
Stack Full,  
Stack Underflow  
(PWRT, OST)  
Stack Full,  
Stack Underflow  
(PWRT, OST)  
Stack Full,  
Stack Underflow  
(PWRT, OST)  
Programmable Low-Voltage Detect  
Programmable Brown-out Reset  
CAN Module  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
In-Circuit Serial Programming™  
(ICSP™)  
Instruction Set  
Packages  
75 Instructions  
75 Instructions  
75 Instructions  
75 Instructions  
28-pin SPDIP  
28-pin SOIC  
28-pin SPDIP  
28-pin SOIC  
40-pin PDIP  
44-pin PLCC  
44-pin TQFP  
40-pin PDIP  
44-pin PLCC  
44-pin TQFP  
© 2006 Microchip Technology Inc.  
DS41159E-page 7  
PIC18FXX8  
FIGURE 1-1:  
PIC18F248/258 BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
PORTB  
RA0/AN0/CVREF  
RA1/AN1  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
Table Pointer<21>  
inc/dec logic  
Data Latch  
21  
8
8
Data RAM  
up to 1536 bytes  
21  
RA5/AN4/SS/LVDIN  
OSC2/CLKO/RA6  
Address Latch  
21  
PCLATH  
PCLATU  
PCU  
12  
RB0/INT0  
RB1/INT1  
RB2/CANTX/INT2  
RB3/CANRX  
RB4  
RB5/PGM  
RB6/PGC  
RB7/PGD  
Address<12>  
PCH PCL  
Program Counter  
4
12  
FSR0  
4
BSR  
Bank0, F  
Address Latch  
FSR1  
FSR2  
Program Memory  
up to 32 Kbytes  
31 Level Stack  
12  
Data Latch  
inc/dec  
logic  
Decode  
PORTC  
Table Latch  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
8
16  
ROM Latch  
IR  
RC6/TX/CK  
RC7/RX/DT  
8
PRODH PRODL  
8 x 8 Multiply  
Instruction  
Decode &  
Control  
8
3
OSC2/CLKO/RA6  
OSC1/CLKI  
W
8
BITOP  
8
8
Power-up  
Timer  
Timing  
Generation  
Oscillator  
Start-up Timer  
8
T1OSI  
T1OSO  
ALU<8>  
8
Power-on  
Reset  
4X PLL  
Watchdog  
Timer  
Brown-out  
Reset  
Test Mode  
Select  
Precision  
Band Gap  
Reference  
Band Gap  
MCLR  
VDD, VSS  
PBOR  
PLVD  
10-bit  
ADC  
Timer0  
Timer1  
Timer2  
Timer3  
Synchronous  
Serial Port  
Data EEPROM  
CCP1  
USART  
CAN Module  
DS41159E-page 8  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 1-2:  
PIC18F448/458 BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
RA0/AN0/CVREF  
RA1/AN1  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
Table Pointer<21>  
21  
Data Latch  
8
8
Data RAM  
up to 1536 Kbytes  
inc/dec logic  
21  
RA5/AN4/SS/LVDIN  
OSC2/CLKO/RA6  
Address Latch  
21  
PCLATU PCLATH  
PORTB  
12  
RB0/INT0  
RB1/INT1  
RB2/CANTX/INT2  
RB3/CANRX  
RB4  
RB5/PGM  
RB6/PGC  
RB7/PGD  
Address<12>  
PCH PCL  
Program Counter  
PCU  
12  
4
4
Bank0, F  
BSR  
Address Latch  
FSR0  
FSR1  
FSR2  
Program Memory  
up to 32 Kbytes  
31 Level Stack  
12  
Data Latch  
inc/dec  
logic  
Decode  
PORTC  
Table Latch  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
RC6/TX/CK  
RC7/RX/DT  
8
16  
ROM Latch  
IR  
8
PORTD  
RD0/PSP0/C1IN+  
RD1/PSP1/C1IN-  
RD2/PSP2/C2IN+  
RD3/PSP3/C2IN-  
RD4/PSP4/ECCP1/P1A  
RD5/PSP5/P1B  
PRODH PRODL  
8 x 8 Multiply  
Instruction  
Decode &  
Control  
8
3
OSC2/CLKO/RA6  
OSC1/CLKI  
W
8
BITOP  
8
RD6/PSP6/P1C  
RD7/PSP7/P1D  
8
Power-up  
Timer  
Timing  
Generation  
Oscillator  
Start-up Timer  
PORTE  
8
RE0/AN5/RD  
RE1/AN6/WR//C1OUT  
RE2/AN7/CS/C2OUT  
T1OSI  
T1OSO  
ALU<8>  
Power-on  
Reset  
4X  
8
PLL  
Watchdog  
Timer  
Brown-out  
Reset  
Test Mode  
Select  
Precision  
Band Gap  
Reference  
Band Gap  
MCLR  
VDD, VSS  
PBOR  
PLVD  
10-bit  
ADC  
Parallel  
Slave Port  
Timer0  
Timer1  
CCP1  
Timer2  
Timer3  
Synchronous  
Serial Port  
Enhanced  
CCP  
Data EEPROM  
USART  
Comparators  
CAN Module  
© 2006 Microchip Technology Inc.  
DS41159E-page 9  
PIC18FXX8  
TABLE 1-2:  
PIC18FXX8 PINOUT I/O DESCRIPTIONS  
Pin Number  
PIC18F248/258 PIC18F448/458  
SPDIP, SOIC PDIP TQFP PLCC  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
MCLR/VPP  
MCLR  
1
1
18  
2
Master Clear (input) or  
programming voltage (output).  
Master Clear (Reset) input.  
This pin is an active low Reset  
to the device.  
I
ST  
VPP  
NC  
P
Programming voltage input.  
9
12, 13, 1, 17,  
33, 34 28, 40  
These pins should be left  
unconnected.  
OSC1/CLKI  
OSC1  
13  
30  
14  
Oscillator crystal or external clock  
input.  
I
I
CMOS/ST  
CMOS  
Oscillator crystal input or  
external clock source input. ST  
buffer when configured in RC  
mode; otherwise, CMOS.  
External clock source input.  
Always associated with pin  
function OSC1 (see OSC1/  
CLKI, OSC2/CLKO pins).  
CLKI  
OSC2/CLKO/RA6  
OSC2  
10  
14  
31  
15  
Oscillator crystal or clock output.  
Oscillator crystal output.  
Connects to crystal or  
resonator in Crystal Oscillator  
mode.  
O
O
CLKO  
In RC mode, OSC2 pin outputs  
CLKO, which has 1/4 the  
frequency of OSC1 and  
denotes the instruction cycle  
rate.  
RA6  
I/O  
TTL  
General purpose I/O pin.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
DS41159E-page 10  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TABLE 1-2:  
PIC18FXX8 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PIC18F248/258  
PIC18F448/458  
Description  
SPDIP, SOIC PDIP TQFP PLCC  
PORTA is a bidirectional I/O port.  
RA0/AN0/CVREF  
RA0  
2
2
19  
3
I/O  
I
O
TTL  
Analog  
Analog  
Digital I/O.  
AN0  
CVREF  
Analog input 0.  
Comparator voltage reference  
output.  
RA1/AN1  
RA1  
3
4
3
4
20  
21  
4
5
I/O  
I
TTL  
Analog  
Digital I/O.  
Analog input 1.  
AN1  
RA2/AN2/VREF-  
RA2  
I/O  
TTL  
Digital I/O.  
AN2  
VREF-  
I
I
Analog  
Analog  
Analog input 2.  
A/D reference voltage  
(Low) input.  
RA3/AN3/VREF+  
RA3  
5
6
7
5
6
7
22  
23  
24  
6
7
8
I/O  
I
I
TTL  
Analog  
Analog  
Digital I/O.  
AN3  
VREF+  
Analog input 3.  
A/D reference voltage  
(High) input.  
RA4/T0CKI  
RA4  
I/O  
I
TTL/OD  
ST  
Digital I/O – open-drain when  
configured as output.  
Timer0 external clock input.  
T0CKI  
RA5/AN4/SS/LVDIN  
RA5  
AN4  
SS  
I/O  
TTL  
Analog  
ST  
Digital I/O.  
Analog input 4.  
SPI™ slave select input.  
Low-Voltage Detect input.  
I
I
I
LVDIN  
Analog  
RA6  
See the OSC2/CLKO/RA6 pin.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
© 2006 Microchip Technology Inc.  
DS41159E-page 11  
PIC18FXX8  
TABLE 1-2:  
PIC18FXX8 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
PIC18F248/258 PIC18F448/458  
SPDIP, SOIC PDIP TQFP PLCC  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTB is a bidirectional I/O port.  
PORTB can be software  
programmed for internal weak  
pull-ups on all inputs.  
RB0/INT0  
RB0  
21  
22  
23  
33  
34  
35  
8
9
36  
37  
38  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 0.  
INT0  
RB1/INT1  
RB1  
I/O  
I
TTL  
ST  
Digital I/O.  
External interrupt 1.  
INT1  
RB2/CANTX/INT2  
RB2  
10  
I/O  
O
I
TTL  
TTL  
ST  
Digital I/O.  
Transmit signal for CAN bus.  
External interrupt 2.  
CANTX  
INT2  
RB3/CANRX  
RB3  
24  
36  
11  
39  
I/O  
I
TTL  
TTL  
Digital I/O.  
Receive signal for CAN bus.  
CANRX  
RB4  
25  
26  
37  
38  
14  
15  
41  
42  
I/O  
TTL  
Digital I/O.  
Interrupt-on-change pin.  
RB5/PGM  
RB5  
I/O  
I
TTL  
ST  
Digital I/O.  
Interrupt-on-change pin.  
Low-voltage ICSP™  
programming enable.  
PGM  
RB6/PGC  
RB6  
27  
28  
39  
40  
16  
17  
43  
44  
I/O  
I
TTL  
ST  
Digital I/O. In-Circuit  
Debugger pin.  
Interrupt-on-change pin.  
ICSP programming clock.  
PGC  
RB7/PGD  
RB7  
I/O  
I/O  
TTL  
ST  
Digital I/O. In-Circuit  
Debugger pin.  
Interrupt-on-change pin.  
ICSP programming data.  
PGD  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
DS41159E-page 12  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TABLE 1-2:  
PIC18FXX8 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PIC18F248/258  
PIC18F448/458  
Description  
SPDIP, SOIC PDIP TQFP PLCC  
PORTC is a bidirectional I/O port.  
RC0/T1OSO/T1CKI  
RC0  
11  
15  
32  
16  
I/O  
O
I
ST  
ST  
Digital I/O.  
T1OSO  
T1CKI  
Timer1 oscillator output.  
Timer1/Timer3 external clock  
input.  
RC1/T1OSI  
RC1  
12  
13  
14  
16  
17  
18  
35  
36  
37  
18  
19  
20  
I/O  
I
ST  
CMOS  
Digital I/O.  
Timer1 oscillator input.  
T1OSI  
RC2/CCP1  
RC2  
I/O  
I/O  
ST  
ST  
Digital I/O.  
Capture 1 input/Compare 1  
output/PWM1 output.  
CCP1  
RC3/SCK/SCL  
RC3  
I/O  
I/O  
ST  
ST  
Digital I/O.  
SCK  
Synchronous serial clock  
input/output for SPI™ mode.  
Synchronous serial clock  
input/output for I2C™ mode.  
SCL  
I/O  
ST  
RC4/SDI/SDA  
RC4  
15  
23  
42  
25  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
SPI data in.  
I2C data I/O.  
SDI  
SDA  
RC5/SDO  
RC5  
16  
17  
24  
25  
43  
44  
26  
27  
I/O  
O
ST  
Digital I/O.  
SPI data out.  
SDO  
RC6/TX/CK  
RC6  
I/O  
O
ST  
Digital I/O.  
USART asynchronous  
transmit.  
TX  
CK  
I/O  
ST  
USART synchronous clock  
(see RX/DT).  
RC7/RX/DT  
RC7  
18  
26  
1
29  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O.  
RX  
DT  
USART asynchronous receive.  
USART synchronous data  
(see TX/CK).  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
© 2006 Microchip Technology Inc.  
DS41159E-page 13  
PIC18FXX8  
TABLE 1-2:  
PIC18FXX8 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
PIC18F248/258 PIC18F448/458  
SPDIP, SOIC PDIP TQFP PLCC  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTD is a bidirectional I/O port.  
These pins have TTL input buffers  
when external memory is enabled.  
RD0/PSP0/C1IN+  
RD0  
19  
20  
21  
22  
27  
38  
39  
40  
41  
2
21  
22  
23  
24  
30  
I/O  
I/O  
I
ST  
TTL  
Analog  
Digital I/O.  
Parallel Slave Port data.  
Comparator 1 input.  
PSP0  
C1IN+  
RD1/PSP1/C1IN-  
RD1  
I/O  
I/O  
I
ST  
TTL  
Analog  
Digital I/O.  
Parallel Slave Port data.  
Comparator 1 input.  
PSP1  
C1IN-  
RD2/PSP2/C2IN+  
RD2  
I/O  
I/O  
I
ST  
TTL  
Analog  
Digital I/O.  
Parallel Slave Port data.  
Comparator 2 input.  
PSP2  
C2IN+  
RD3/PSP3/C2IN-  
RD3  
I/O  
I/O  
I
ST  
TTL  
Analog  
Digital I/O.  
Parallel Slave Port data.  
Comparator 2 input.  
PSP3  
C2IN-  
RD4/PSP4/ECCP1/  
P1A  
RD4  
I/O  
I/O  
I/O  
O
ST  
TTL  
ST  
Digital I/O.  
PSP4  
ECCP1  
P1A  
Parallel Slave Port data.  
ECCP1 capture/compare.  
ECCP1 PWM output A.  
RD5/PSP5/P1B  
RD5  
28  
29  
30  
3
4
5
31  
32  
33  
I/O  
I/O  
O
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
ECCP1 PWM output B.  
PSP5  
P1B  
RD6/PSP6/P1C  
RD6  
I/O  
I/O  
O
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
ECCP1 PWM output C.  
PSP6  
P1C  
RD7/PSP7/P1D  
RD7  
I/O  
I/O  
O
ST  
TTL  
Digital I/O.  
Parallel Slave Port data.  
ECCP1 PWM output D.  
PSP7  
P1D  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
DS41159E-page 14  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TABLE 1-2:  
PIC18FXX8 PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PIC18F248/258  
PIC18F448/458  
Description  
SPDIP, SOIC PDIP TQFP PLCC  
PORTE is a bidirectional I/O port.  
RE0/AN5/RD  
RE0  
8
9
25  
26  
9
I/O  
I
I
ST  
Analog  
TTL  
Digital I/O.  
Analog input 5.  
Read control for Parallel Slave  
Port (see WR and CS pins).  
AN5  
RD  
RE1/AN6/WR/C1OUT  
10  
RE1  
AN6  
WR  
I/O  
I
I
ST  
Analog  
TTL  
Digital I/O.  
Analog input 6.  
Write control for Parallel Slave  
Port (see CS and RD pins).  
Comparator 1 output.  
C1OUT  
O
Analog  
RE2/AN7/CS/C2OUT  
10  
27  
11  
RE2  
AN7  
CS  
I/O  
I
I
ST  
Analog  
TTL  
Digital I/O.  
Analog input 7.  
Chip select control for Parallel  
Slave Port (see RD and WR  
pins).  
C2OUT  
VSS  
O
Analog  
Comparator 2 output.  
19, 8  
20  
12, 31 6, 29 13, 34  
11, 32 7, 28 12, 35  
Ground reference for logic and  
I/O pins.  
VDD  
Positive supply for logic and I/O  
pins.  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open-Drain (no P diode to VDD)  
© 2006 Microchip Technology Inc.  
DS41159E-page 15  
PIC18FXX8  
NOTES:  
DS41159E-page 16  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 2-1:  
CRYSTAL/CERAMIC  
RESONATOROPERATION  
(HS, XT OR LP OSC  
CONFIGURATION)  
2.0  
2.1  
OSCILLATOR  
CONFIGURATIONS  
Oscillator Types  
(1)  
C1  
OSC1  
The PIC18FXX8 can be operated in one of eight oscil-  
lator modes, programmable by three configuration bits  
(FOSC2, FOSC1 and FOSC0).  
To  
Internal  
Logic  
(3)  
XTAL  
RF  
1. LP  
2. XT  
3. HS  
4. HS4  
Low-Power Crystal  
Crystal/Resonator  
Sleep  
(2)  
RS  
High-Speed Crystal/Resonator  
(1)  
PIC18FXX8  
C2  
OSC2  
High-Speed Crystal/Resonator with  
PLL enabled  
Note 1: See Table 2-1 and Table 2-2 for recommended  
5. RC  
External Resistor/Capacitor  
values of C1 and C2.  
6. RCIO  
External Resistor/Capacitor with I/O  
pin enabled  
2: A series resistor (RS) may be required for AT  
strip cut crystals.  
7. EC  
External Clock  
3: RF varies with the crystal chosen.  
8. ECIO  
External Clock with I/O pin enabled  
2.2  
Crystal Oscillator/Ceramic  
Resonators  
TABLE 2-1:  
CERAMIC RESONATORS  
Ranges Tested:  
In XT, LP, HS or HS4 (PLL) Oscillator modes, a crystal  
or ceramic resonator is connected to the OSC1 and  
OSC2 pins to establish oscillation. Figure 2-1 shows  
the pin connections. An external clock source may also  
be connected to the OSC1 pin, as shown in Figure 2-3  
and Figure 2-4.  
Mode  
Freq  
OSC1  
OSC2  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
68-100 pF  
15-68 pF  
15-68 pF  
68-100 pF  
15-68 pF  
15-68 pF  
HS  
8.0 MHz  
16.0 MHz  
10-68 pF  
10-22 pF  
10-68 pF  
10-22 pF  
The PIC18FXX8 oscillator design requires the use of a  
parallel cut crystal.  
These values are for design guidance only.  
See notes following Table 2-2.  
Note:  
Use of a series cut crystal may give a fre-  
quency out of the crystal manufacturer’s  
specifications.  
Resonators Used:  
455 kHz Panasonic EFO-A455K04B  
0.3%  
2.0 MHz  
4.0 MHz  
8.0 MHz  
Murata Erie CSA2.00MG  
Murata Erie CSA4.00MG  
Murata Erie CSA8.00MT  
0.5%  
0.5%  
0.5%  
0.5%  
16.0 MHz Murata Erie CSA16.00MX  
All resonators used did not have built-in capacitors.  
© 2006 Microchip Technology Inc.  
DS41159E-page 17  
PIC18FXX8  
TABLE 2-2:  
CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
2.3  
RC Oscillator  
For timing insensitive applications, the “RC” and “RCIO”  
device options offer additional cost savings. The RC  
oscillator frequency is a function of the supply voltage,  
the resistor (REXT) and capacitor (CEXT) values and the  
operating temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal  
process parameter variation. Furthermore, the differ-  
ence in lead frame capacitance between package types  
will also affect the oscillation frequency, especially for  
low CEXT values. The user also needs to take into  
account variation due to tolerance of external R and C  
components used. Figure 2-2 shows how the RC  
combination is connected.  
Crystal Cap. Range Cap.Range  
Osc Type  
Freq  
C1  
C2  
LP  
32.0 kHz  
200 kHz  
200 kHz  
1.0 MHz  
4.0 MHz  
4.0 MHz  
8.0 MHz  
20.0 MHz  
25.0 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
XT  
HS  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
In the RC Oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic.  
These values are for design guidance only.  
See notes on this page.  
Crystals Used  
Note:  
If the oscillator frequency divided by 4  
signal is not required in the application, it  
is recommended to use RCIO mode to  
save current.  
32.0 kHz Epson C-001R32.768K-A  
20 PPM  
200 kHz  
1.0 MHz  
4.0 MHz  
STD XTL 200.000KHz  
ECS ECS-10-13-1  
ECS ECS-40-20-1  
20 PPM  
50 PPM  
50 PPM  
30 PPM  
30 PPM  
FIGURE 2-2:  
RC OSCILLATOR MODE  
8.0 MHz EPSON CA-301 8.000M-C  
20.0 MHz EPSON CA-301 20.000M-C  
VDD  
PIC18FXX8  
Internal  
OSC1  
REXT  
Note 1: Recommended values of C1 and C2 are  
identical to the ranges tested (Table 2-1).  
Clock  
2: Higher capacitance increases the stability  
of the oscillator but also increases the  
start-up time.  
CEXT  
VSS  
OSC2/CLKO  
FOSC/4  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
Recommended values: 3 kΩ ≤ REXT 100 kΩ  
CEXT > 20 pF  
appropriate  
values  
of  
external  
components.  
4: Rs may be required in HS mode, as well  
as XT mode, to avoid overdriving crystals  
with low drive level specification.  
The RCIO Oscillator mode functions like the RC mode,  
except that the OSC2 pin becomes an additional  
general purpose I/O pin. The I/O pin becomes bit 6 of  
PORTA (RA6).  
DS41159E-page 18  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 2-4:  
EXTERNAL CLOCK INPUT  
OPERATION (ECIO  
CONFIGURATION)  
2.4  
External Clock Input  
The EC and ECIO Oscillator modes require an external  
clock source to be connected to the OSC1 pin. The  
feedback device between OSC1 and OSC2 is turned  
off in these modes to save current. There is no oscilla-  
tor start-up time required after a Power-on Reset or  
after a recovery from Sleep mode.  
PIC18FXX8  
OSC1  
Clock from  
Ext. System  
I/O (OSC2)  
In the EC Oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic. Figure 2-3 shows the pin connections for the EC  
Oscillator mode.  
2.5  
HS4 (PLL)  
A Phase Locked Loop circuit is provided as a program-  
mable option for users that want to multiply the  
frequency of the incoming crystal oscillator signal by 4.  
For an input clock frequency of 10 MHz, the internal  
clock frequency will be multiplied to 40 MHz. This is  
useful for customers who are concerned with EMI due  
to high-frequency crystals.  
FIGURE 2-3:  
EXTERNAL CLOCK INPUT  
OPERATION (EC OSC  
CONFIGURATION)  
PIC18FXX8  
OSC1  
Clock from  
Ext. System  
The PLL can only be enabled when the oscillator  
configuration bits are programmed for HS mode. If they  
are programmed for any other mode, the PLL is not  
enabled and the system clock will come directly from  
OSC1.  
OSC2  
FOSC/4  
The ECIO Oscillator mode functions like the EC mode,  
except that the OSC2 pin becomes an additional  
general purpose I/O pin. Figure 2-4 shows the pin  
connections for the ECIO Oscillator mode.  
The PLL is one of the modes of the FOSC2:FOSC0  
configuration bits. The oscillator mode is specified  
during device programming.  
A PLL lock timer is used to ensure that the PLL has  
locked before device execution starts. The PLL lock  
timer has a time-out referred to as TPLL.  
FIGURE 2-5:  
PLL BLOCK DIAGRAM  
FOSC2:FOSC0 = 110  
Phase  
Comparator  
OSC2  
FIN  
Loop  
Filter  
VCO  
Crystal  
FOUT  
Osc  
SYSCLK  
Divide by 4  
OSC1  
© 2006 Microchip Technology Inc.  
DS41159E-page 19  
PIC18FXX8  
2.6.1  
SYSTEM CLOCK SWITCH BIT  
2.6  
Oscillator Switching Feature  
The system clock source switching is performed under  
software control. The system clock switch bit, SCS  
(OSCCON register), controls the clock switching. When  
the SCS bit is ‘0’, the system clock source comes from  
the main oscillator selected by the FOSC2:FOSC0  
configuration bits. When the SCS bit is set, the system  
clock source comes from the Timer1 oscillator. The SCS  
bit is cleared on all forms of Reset.  
The PIC18FXX8 devices include a feature that allows  
the system clock source to be switched from the main  
oscillator to an alternate low-frequency clock source.  
For the PIC18FXX8 devices, this alternate clock source  
is the Timer1 oscillator. If a low-frequency crystal  
(32 kHz, for example) has been attached to the Timer1  
oscillator pins and the Timer1 oscillator has been  
enabled, the device can switch to a Low-Power Execu-  
tion mode. Figure 2-6 shows a block diagram of the  
system clock sources. The clock switching feature is  
enabled by programming the Oscillator Switching  
Enable (OSCSEN) bit in Configuration register,  
CONFIG1H, to a ‘0’. Clock switching is disabled in an  
erased device. See Section 12.2 “Timer1 Oscillator”  
for further details of the Timer1 oscillator and  
Section 24.1 “Configuration Bits” for Configuration  
register details.  
Note:  
The Timer1 oscillator must be enabled to  
switch the system clock source. The  
Timer1 oscillator is enabled by setting the  
T1OSCEN bit in the Timer1 Control regis-  
ter (T1CON). If the Timer1 oscillator is not  
enabled, any write to the SCS bit will be  
ignored (SCS bit forced cleared) and the  
main oscillator continues to be the system  
clock source.  
FIGURE 2-6:  
DEVICE CLOCK SOURCES  
PIC18FXX8  
Main Oscillator  
OSC2  
TOSC/4  
4 x PLL  
Sleep  
TOSC  
TT1P  
TSCLK  
OSC1  
Timer 1 Oscillator  
T1OSO  
T1OSCEN  
Enable  
Oscillator  
Clock  
Source  
T1OSI  
Clock Source Option  
for Other Modules  
Note:  
I/O pins have diode protection to VDD and VSS.  
REGISTER 2-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
SCS  
bit 7  
bit 0  
bit 7-1 Unimplemented: Read as ‘0’  
bit 0  
SCS: System Clock Switch bit  
When OSCSEN configuration bit = 0and T1OSCEN bit is set:  
1= Switch to Timer1 oscillator/clock pin  
0= Use primary oscillator/clock input pin  
When OSCSEN is clear or T1OSCEN is clear:  
Bit is forced clear.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS41159E-page 20  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
The sequence of events that takes place when switch-  
ing from the Timer1 oscillator to the main oscillator will  
depend on the mode of the main oscillator. In addition  
to eight clock cycles of the main oscillator, additional  
delays may take place.  
2.6.2  
OSCILLATOR TRANSITIONS  
The PIC18FXX8 devices contain circuitry to prevent  
“glitches” when switching between oscillator sources.  
Essentially, the circuitry waits for eight rising edges of  
the clock source that the processor is switching to. This  
ensures that the new clock source is stable and that its  
pulse width will not be less than the shortest pulse  
width of the two clock sources.  
If the main oscillator is configured for an external  
crystal (HS, XT, LP), the transition will take place after  
an oscillator start-up time (TOST) has occurred. A timing  
diagram indicating the transition from the Timer1  
oscillator to the main oscillator for HS, XT and LP  
modes is shown in Figure 2-8.  
Figure 2-7 shows a timing diagram indicating the tran-  
sition from the main oscillator to the Timer1 oscillator.  
The Timer1 oscillator is assumed to be running all the  
time. After the SCS bit is set, the processor is frozen at  
the next occurring Q1 cycle. After eight synchronization  
cycles are counted from the Timer1 oscillator,  
operation resumes. No additional delays are required  
after the synchronization cycles.  
FIGURE 2-7:  
TIMING DIAGRAM FOR TRANSITION FROM OSC1 TO TIMER1 OSCILLATOR  
Q4  
Q1 Q2 Q3  
Q1  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4 Q1  
TT1P  
2
1
3
4
5
6
7
8
T1OSI  
OSC1  
Tscs  
TOSC  
Internal  
System  
Clock  
TDLY  
SCS  
(OSCCON<0>)  
Program  
Counter  
PC  
PC + 2  
PC + 4  
Note 1: Delay on internal system clock is eight oscillator cycles for synchronization.  
FIGURE 2-8:  
TIMING DIAGRAM FOR TRANSITION BETWEEN TIMER1 AND OSC1 (HS, XT, LP)  
Q3  
Q4  
Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3  
TT1P  
T1OSI  
OSC1  
1
2
3
4
5
6
7
8
TOST  
TSCS  
OSC2  
TOSC  
Internal System  
Clock  
SCS  
(OSCCON<0>)  
Program  
Counter  
PC  
PC + 2  
PC + 4  
Note 1: TOST = 1024 TOSC (drawing not to scale).  
© 2006 Microchip Technology Inc.  
DS41159E-page 21  
PIC18FXX8  
If the main oscillator is configured for HS4 (PLL) mode,  
an oscillator start-up time (TOST) plus an additional PLL  
time-out (TPLL) will occur. The PLL time-out is typically  
2 ms and allows the PLL to lock to the main oscillator  
frequency. A timing diagram indicating the transition  
from the Timer1 oscillator to the main oscillator for HS4  
mode is shown in Figure 2-9.  
If the main oscillator is configured in the RC, RCIO, EC  
or ECIO modes, there is no oscillator start-up time-out.  
Operation will resume after eight cycles of the main  
oscillator have been counted. A timing diagram indicat-  
ing the transition from the Timer1 oscillator to the main  
oscillator for RC, RCIO, EC and ECIO modes is shown  
in Figure 2-10.  
FIGURE 2-9:  
TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (HS WITH PLL)  
TT1P  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q4  
Q1  
T1OSI  
OSC1  
TOST  
TPLL  
OSC2  
TSCS  
TOSC  
PLL Clock  
Input  
1
2
3
4
5
6
8
7
Internal System  
Clock  
SCS  
(OSCCON<0>)  
Program  
Counter  
PC  
PC + 2  
PC + 4  
Note 1: TOST = 1024 TOSC (drawing not to scale).  
FIGURE 2-10:  
TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (RC, EC)  
Q3  
Q4  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1  
TT1P  
T1OSI  
OSC1  
TOSC  
1
2
3
4
5
6
7
8
OSC2  
Internal System  
Clock  
SCS  
(OSCCON<0>)  
TSCS  
Program  
Counter  
PC  
PC + 2  
PC + 4  
Note 1: RC Oscillator mode assumed.  
DS41159E-page 22  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
Reset until the device power supply and clock are  
stable. For additional information on Reset operation,  
see Section 3.0 “Reset”.  
2.7  
Effects of Sleep Mode on the  
On-Chip Oscillator  
When the device executes a SLEEP instruction, the  
on-chip clocks and oscillator are turned off and the  
device is held at the beginning of an instruction cycle  
(Q1 state). With the oscillator off, the OSC1 and OSC2  
signals will stop oscillating. Since all the transistor  
switching currents have been removed, Sleep mode  
achieves the lowest current consumption of the device  
(only leakage currents). Enabling any on-chip feature  
that will operate during Sleep will increase the current  
consumed during Sleep. The user can wake from  
Sleep through external Reset, Watchdog Timer Reset  
or through an interrupt.  
The first timer is the Power-up Timer (PWRT), which  
optionally provides a fixed delay of TPWRT (parameter  
#D033) on power-up only (POR and BOR). The second  
timer is the Oscillator Start-up Timer (OST), intended to  
keep the chip in Reset until the crystal oscillator is  
stable.  
With the PLL enabled (HS4 Oscillator mode), the time-  
out sequence following a Power-on Reset is different  
from other oscillator modes. The time-out sequence is  
as follows: the PWRT time-out is invoked after a POR  
time delay has expired, then the Oscillator Start-up  
Timer (OST) is invoked. However, this is still not a  
sufficient amount of time to allow the PLL to lock at high  
frequencies. The PWRT timer is used to provide an  
additional fixed 2 ms (nominal) to allow the PLL ample  
time to lock to the incoming clock frequency.  
2.8  
Power-up Delays  
Power-up delays are controlled by two timers so that no  
external Reset circuitry is required for most applica-  
tions. The delays ensure that the device is kept in  
TABLE 2-3:  
OSC1 AND OSC2 PIN STATES IN SLEEP MODE  
OSC1 Pin  
OSC Mode  
OSC2 Pin  
RC  
Floating, external resistor should pull high At logic low  
RCIO  
Floating, external resistor should pull high Configured as PORTA, bit 6  
ECIO  
Floating  
Floating  
Configured as PORTA, bit 6  
At logic low  
EC  
LP, XT and HS  
Feedback inverter disabled at quiescent  
voltage level  
Feedback inverter disabled at quiescent  
voltage level  
Note:  
See Table 3-1 in Section 3.0 “Reset” for time-outs due to Sleep and MCLR Reset.  
© 2006 Microchip Technology Inc.  
DS41159E-page 23  
PIC18FXX8  
NOTES:  
DS41159E-page 24  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
state on Power-on Reset, MCLR, WDT Reset, Brown-  
out Reset, MCLR Reset during Sleep and by the  
RESETinstruction.  
3.0  
RESET  
The PIC18FXX8 differentiates between various kinds  
of RESET:  
Most registers are not affected by a WDT wake-up,  
since this is viewed as the resumption of normal oper-  
ation. Status bits from the RCON register, RI, TO, PD,  
POR and BOR are set or cleared differently in different  
Reset situations, as indicated in Table 3-2. These bits  
are used in software to determine the nature of the  
Reset. See Table 3-3 for a full description of the Reset  
states of all registers.  
a) Power-on Reset (POR)  
b) MCLR Reset during normal operation  
c) MCLR Reset during Sleep  
d) Watchdog Timer (WDT) Reset during normal  
operation  
e) Programmable Brown-out Reset (PBOR)  
f) RESETInstruction  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 3-1.  
g) Stack Full Reset  
h) Stack Underflow Reset  
The Enhanced MCU devices have a MCLR noise filter  
in the MCLR Reset path. The filter will detect and  
ignore small pulses.  
Most registers are unaffected by a Reset. Their status  
is unknown on POR and unchanged by all other  
Resets. The other registers are forced to a “Reset”  
A WDT Reset does not drive MCLR pin low.  
FIGURE 3-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
RESET  
Instruction  
Stack Full/Underflow Reset  
External Reset  
Stack  
Pointer  
MCLR  
Sleep  
WDT  
Time-out  
Reset  
WDT  
Module  
VDD Rise  
Detect  
Power-on Reset  
VDD  
Brown-out  
Reset  
BOREN  
S
OST/PWRT  
OST  
Chip_Reset  
10-bit Ripple Counter  
10-bit Ripple Counter  
Q
R
OSC1  
PWRT  
On-chip  
(1)  
RC OSC  
Enable PWRT  
(2)  
Enable OST  
Note 1: This is a separate oscillator from the RC oscillator of the CLKI pin.  
2: See Table 3-1 for time-out situations.  
© 2006 Microchip Technology Inc.  
DS41159E-page 25  
PIC18FXX8  
3.1  
Power-on Reset (POR)  
3.3  
Power-up Timer (PWRT)  
A Power-on Reset pulse is generated on-chip when a  
VDD rise is detected. To take advantage of the POR  
circuitry, connect the MCLR pin directly (or through a  
resistor) to VDD. This eliminates external RC compo-  
nents usually needed to create a Power-on Reset  
delay. A minimum rise rate for VDD is specified (refer to  
parameter D004). For a slow rise time, see Figure 3-2.  
The Power-up Timer provides a fixed nominal time-out  
(parameter #33), only on power-up from the POR. The  
Power-up Timer operates on an internal RC oscillator.  
The chip is kept in Reset as long as the PWRT is active.  
The PWRT’s time delay allows VDD to rise to an accept-  
able level. A configuration bit (PWRTEN in CONFIG2L  
register) is provided to enable/disable the PWRT.  
When the device starts normal operation (exits the  
Reset condition), device operating parameters  
(voltage, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in Reset until the operating condi-  
tions are met. Brown-out Reset may be used to meet  
the voltage start-up condition.  
The power-up time delay will vary from chip to chip due  
to VDD, temperature and process variation. See DC  
parameter #33 for details.  
3.4  
Oscillator Start-up Timer (OST)  
The Oscillator Start-up Timer (OST) provides a 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over (parameter #32). This additional  
delay ensures that the crystal oscillator or resonator  
has started and stabilized.  
3.2  
MCLR  
PIC18FXX8 devices have a noise filter in the MCLR  
Reset path. The filter will detect and ignore small  
pulses.  
The OST time-out is invoked only for XT, LP, HS and  
HS4 modes and only on Power-on Reset or wake-up  
from Sleep.  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
3.5  
PLL Lock Time-out  
The behavior of the ESD protection on the MCLR pin  
differs from previous devices of this family. Voltages  
applied to the pin that exceed its specification can  
result in both Resets and current draws outside of  
device specification during the Reset event. For this  
reason, Microchip recommends that the MCLR pin no  
longer be tied directly to VDD. The use of an RC  
network, as shown in Figure 3-2, is suggested.  
With the PLL enabled, the time-out sequence following  
a Power-on Reset is different from other oscillator  
modes. A portion of the Power-up Timer is used to pro-  
vide a fixed time-out that is sufficient for the PLL to lock  
to the main oscillator frequency. This PLL lock time-out  
(TPLL) is typically 2 ms and follows the oscillator  
start-up time-out (OST).  
FIGURE 3-2:  
EXTERNAL POWER-ON  
RESET CIRCUIT (FOR  
SLOW VDD POWER-UP)  
3.6  
Brown-out Reset (BOR)  
A configuration bit, BOREN, can disable (if clear/  
programmed), or enable (if set), the Brown-out Reset  
circuitry. If VDD falls below parameter D005 for greater  
than parameter #35, the brown-out situation resets the  
chip. A Reset may not occur if VDD falls below param-  
eter D005 for less than parameter #35. The chip will  
remain in Brown-out Reset until VDD rises above BVDD.  
The Power-up Timer will then be invoked and will keep  
the chip in Reset an additional time delay (parameter  
#33). If VDD drops below BVDD while the Power-up  
Timer is running, the chip will go back into a Brown-out  
Reset and the Power-up Timer will be initialized. Once  
VDD rises above BVDD, the Power-up Timer will  
execute the additional time delay.  
VDD  
D
R
R1  
MCLR  
PIC18FXXX  
C
Note 1: External Power-on Reset circuit is required  
only if the VDD power-up slope is too slow.  
The diode D helps discharge the capacitor  
quickly when VDD powers down.  
2: R < 40 kΩ is recommended to make sure that  
the voltage drop across R does not violate  
the device’s electrical specification.  
3: R1 = 100Ω to 1 kΩ will limit any current flow-  
ing into MCLR from external capacitor C, in  
the event of MCLR/VPP pin breakdown due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS).  
DS41159E-page 26  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire.  
Bringing MCLR high will begin execution immediately  
(Figure 3-5). This is useful for testing purposes or to  
synchronize more than one PIC18FXX8 device  
operating in parallel.  
3.7  
Time-out Sequence  
On power-up, the time-out sequence is as follows:  
First, PWRT time-out is invoked after the POR time  
delay has expired, then OST is activated. The total  
time-out will vary based on oscillator configuration and  
the status of the PWRT. For example, in RC mode with  
the PWRT disabled, there will be no time-out at all.  
Figure 3-3, Figure 3-4, Figure 3-5, Figure 3-6 and  
Figure 3-7 depict time-out sequences on power-up.  
Table 3-2 shows the Reset conditions for some Special  
Function Registers, while Table 3-3 shows the Reset  
conditions for all registers.  
TABLE 3-1:  
TIME-OUT IN VARIOUS SITUATIONS  
Power-up(2)  
Wake-up from  
Oscillator  
Configuration  
Brown-out(2)  
Sleep or  
PWRTEN = 0  
PWRTEN = 1  
Oscillator Switch  
HS with PLL enabled(1) 72 ms + 1024 TOSC + 2 ms 1024 TOSC + 2 ms 72 ms + 1024 TOSC + 2 ms 1024 TOSC + 2 ms  
HS, XT, LP  
EC  
72 ms + 1024 TOSC  
72 ms  
1024 TOSC  
72 ms + 1024 TOSC  
72 ms  
1024 TOSC  
External RC  
72 ms  
72 ms  
Note 1: 2 ms = Nominal time required for the 4x PLL to lock.  
2: 72 ms is the nominal Power-up Timer delay.  
REGISTER 3-1:  
TABLE 3-2:  
RCON REGISTER BITS AND POSITIONS  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R/W-1  
TO  
R/W-1  
PD  
R/W-0  
POR  
R/W-1  
BOR  
bit 7  
bit 0  
STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR  
RCON REGISTER  
Program  
Counter  
RCON  
Register  
Condition  
RI TO PD POR BOR STKFUL STKUNF  
Power-on Reset  
0000h  
0000h  
0--1 110q  
0--0 011q  
1
u
1
u
1
u
0
u
0
u
u
u
u
u
MCLR Reset during normal  
operation  
Software Reset during normal  
operation  
0000h  
0000h  
0000h  
0--0 011q  
0--0 011q  
0--0 011q  
0
u
u
u
u
u
u
u
u
u
1
1
u
1
1
u
u
1
u
1
u
Stack Full Reset during normal  
operation  
Stack Underflow Reset during  
normal operation  
MCLR Reset during Sleep  
WDT Reset  
0000h  
0000h  
0--0 011q  
0--0 011q  
0--1 101q  
0--1 110q  
0--1 101q  
u
u
u
1
u
1
0
0
1
1
0
1
0
1
0
u
u
u
u
u
u
u
u
0
u
u
u
u
u
u
u
u
u
u
u
WDT Wake-up  
PC + 2  
Brown-out Reset  
0000h  
PC + 2(1)  
Interrupt wake-up from Sleep  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as ‘0’  
Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the  
interrupt vector (000008h or 000018h).  
© 2006 Microchip Technology Inc.  
DS41159E-page 27  
PIC18FXX8  
FIGURE 3-3:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 3-4:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 3-5:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
DS41159E-page 28  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 3-6:  
SLOW RISE TIME (MCLR TIED TO VDD)  
5V  
1V  
0V  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 3-7:  
TIME-OUT SEQUENCE ON POR W/PLL ENABLED (MCLR TIED TO VDD)  
VDD  
MCLR  
IINTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
TPLL  
PLL TIME-OUT  
INTERNAL RESET  
Note: TOST = 1024 clock cycles.  
TPLL 2 ms max. First three stages of the PWRT timer.  
© 2006 Microchip Technology Inc.  
DS41159E-page 29  
PIC18FXX8  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS  
MCLR Reset  
WDT Reset  
RESETInstruction  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
TOSU  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
111- -1-1  
11-0 0-00  
N/A  
---0 0000  
0000 0000  
0000 0000  
uu-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 000u  
111- -1-1  
11-0 0-00  
N/A  
---0 uuuu(3)  
uuuu uuuu(3)  
uuuu uuuu(3)  
uu-u uuuu(3)  
---u uuuu  
uuuu uuuu  
PC + 2(2)  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(1)  
uuu- -u-u(1)  
uu-u u-uu(1)  
N/A  
TOSH  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0  
POSTINC0  
POSTDEC0  
PREINC0  
PLUSW0  
FSR0H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- xxxx  
xxxx xxxx  
xxxx xxxx  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
FSR0L  
WREG  
INDF1  
POSTINC1  
POSTDEC1  
PREINC1  
PLUSW1  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Values for CANSTAT also apply to its other instances (CANSTATRO1 through CANSTATRO4).  
DS41159E-page 30  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TABLE 3-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Reset  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESETInstruction  
Stack Resets  
FSR1H  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
---- xxxx  
xxxx xxxx  
---- 0000  
N/A  
---- uuuu  
uuuu uuuu  
---- 0000  
N/A  
---- uuuu  
uuuu uuuu  
---- uuuu  
N/A  
FSR1L  
BSR  
INDF2  
POSTINC2  
POSTDEC2  
PREINC2  
PLUSW2  
FSR2H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- xxxx  
xxxx xxxx  
---x xxxx  
0000 0000  
xxxx xxxx  
1111 1111  
---- ---0  
--00 0101  
---- ---0  
0--1 110q  
xxxx xxxx  
xxxx xxxx  
0-00 0000  
0000 0000  
1111 1111  
-000 0000  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 00-0  
---- uuuu  
uuuu uuuu  
---u uuuu  
0000 0000  
uuuu uuuu  
1111 1111  
---- ---0  
--00 0101  
---- ---0  
0--0 011q  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
0000 0000  
1111 1111  
-000 0000  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 00-0  
---- uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- ---u  
--uu uuuu  
---- ---u  
0--1 101q  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
uuuu uuuu  
1111 1111  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uu-u  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
OSCCON  
LVDCON  
WDTCON  
RCON(4)  
TMR1H  
TMR1L  
T1CON  
TMR2  
PR2  
T2CON  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1  
SSPCON2  
ADRESH  
ADRESL  
ADCON0  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Values for CANSTAT also apply to its other instances (CANSTATRO1 through CANSTATRO4).  
© 2006 Microchip Technology Inc.  
DS41159E-page 31  
PIC18FXX8  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Reset  
WDT Reset  
RESETInstruction  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
ADCON1  
CCPR1H  
CCPR1L  
CCP1CON  
ECCPR1H  
ECCPR1L  
ECCP1CON  
ECCP1DEL  
ECCPAS  
CVRCON  
CMCON  
TMR3H  
TMR3L  
T3CON  
SPBRG  
RCREG  
TXREG  
TXSTA  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
00-- 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 -010  
0000 000x  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xx-0 x000  
1111 1111  
0000 0000  
0000 0000  
-1-1 1111  
-0-0 0000  
-0-0 0000  
1111 1111  
0000 0000  
0000 0000  
00-- 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 -010  
0000 000u  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uu-0 u000  
1111 1111  
0000 0000  
0000 0000  
-1-1 1111  
-0-0 0000  
-0-0 0000  
1111 1111  
0000 0000  
0000 0000  
uu-- uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uu-0 u000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u-u uuuu  
-u-u uuuu(1)  
-u-u uuuu  
uuuu uuuu  
uuuu uuuu(1)  
uuuu uuuu  
RCSTA  
EEADR  
EEDATA  
EECON2  
EECON1  
IPR3  
PIR3  
PIE3  
IPR2  
PIR2  
PIE2  
IPR1  
PIR1  
PIE1  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Values for CANSTAT also apply to its other instances (CANSTATRO1 through CANSTATRO4).  
DS41159E-page 32  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TABLE 3-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Reset  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESETInstruction  
Stack Resets  
TRISE  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
0000 -111  
1111 1111  
1111 1111  
1111 1111  
-111 1111(5)  
---- -xxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-xxx xxxx(5)  
---- -xxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-x0x 0000(5)  
0000 0000  
0000 0000  
0000 0000  
--00 ----  
-0-- -000  
0000 0000  
0000 0000  
xxxx xxx-  
xxx- xxx-  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0000 -111  
1111 1111  
1111 1111  
1111 1111  
-111 1111(5)  
---- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
---- -000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u0u 0000(5)  
0000 0000  
0000 0000  
0000 0000  
--00 ----  
-0-- -000  
0000 0000  
0000 0000  
uuuu uuu-  
uuu- uuu-  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
---- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
---- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu ----  
-u-- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuu-  
uuu- uuu-  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
TRISD  
TRISC  
TRISB  
TRISA(5)  
LATE  
LATD  
LATC  
LATB  
LATA(5)  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA(5)  
TXERRCNT  
RXERRCNT  
COMSTAT  
CIOCON  
BRGCON3  
BRGCON2  
BRGCON1  
CANCON  
CANSTAT(6)  
RXB0D7  
RXB0D6  
RXB0D5  
RXB0D4  
RXB0D3  
RXB0D2  
RXB0D1  
RXB0D0  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Values for CANSTAT also apply to its other instances (CANSTATRO1 through CANSTATRO4).  
© 2006 Microchip Technology Inc.  
DS41159E-page 33  
PIC18FXX8  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Reset  
WDT Reset  
RESETInstruction  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
RXB0DLC  
RXB0EIDL  
RXB0EIDH  
RXB0SIDL  
RXB0SIDH  
RXB0CON  
RXB1D7  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
-xxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx x-xx  
xxxx xxxx  
000- 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-xxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx x-xx  
xxxx xxxx  
000- 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-x-- xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu u-uu  
uuuu uuuu  
000- 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu u-uu  
uuuu uuuu  
000- 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u-- uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu u-uu  
uuuu uuuu  
uuu- uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu u-uu  
uuuu uuuu  
uuu- uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u-- uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
RXB1D6  
RXB1D5  
RXB1D4  
RXB1D3  
RXB1D2  
RXB1D1  
RXB1D0  
RXB1DLC  
RXB1EIDL  
RXB1EIDH  
RXB1SIDL  
RXB1SIDH  
RXB1CON  
TXB0D7  
TXB0D6  
TXB0D5  
TXB0D4  
TXB0D3  
TXB0D2  
TXB0D1  
TXB0D0  
TXB0DLC  
TXB0EIDL  
TXB0EIDH  
TXB0SIDL  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Values for CANSTAT also apply to its other instances (CANSTATRO1 through CANSTATRO4).  
DS41159E-page 34  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TABLE 3-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Reset  
WDT Reset  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Applicable Devices  
RESETInstruction  
Stack Resets  
TXB0SIDH  
TXB0CON  
TXB1D7  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
xxxx xxxx  
-000 0-00  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-x-- xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-x-- xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
-000 0-00  
xxxx xxxx  
xxxx xxxx  
uuuu uuuu  
-000 0-00  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u-- uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u-- uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
-000 0-00  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u-- uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u-- uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
-uuu u-uu  
uuuu uuuu  
uuuu uuuu  
TXB1D6  
TXB1D5  
TXB1D4  
TXB1D3  
TXB1D2  
TXB1D1  
TXB1D0  
TXB1DLC  
TXB1EIDL  
TXB1EIDH  
TXB1SIDL  
TXB1SIDH  
TXB1CON  
TXB2D7  
TXB2D6  
TXB2D5  
TXB2D4  
TXB2D3  
TXB2D2  
TXB2D1  
TXB2D0  
TXB2DLC  
TXB2EIDL  
TXB2EIDH  
TXB2SIDL  
TXB2SIDH  
TXB2CON  
RXM1EIDL  
RXM1EIDH  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Values for CANSTAT also apply to its other instances (CANSTATRO1 through CANSTATRO4).  
© 2006 Microchip Technology Inc.  
DS41159E-page 35  
PIC18FXX8  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Reset  
WDT Reset  
RESETInstruction  
Stack Resets  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
Applicable Devices  
RXM1SIDL  
RXM1SIDH  
RXM0EIDL  
RXM0EIDH  
RXM0SIDL  
RXM0SIDH  
RXF5EIDL  
RXF5EIDH  
RXF5SIDL  
RXF5SIDH  
RXF4EIDL  
RXF4EIDH  
RXF4SIDL  
RXF4SIDH  
RXF3EIDL  
RXF3EIDH  
RXF3SIDL  
RXF3SIDH  
RXF2EIDL  
RXF2EIDH  
RXF2SIDL  
RXF2SIDH  
RXF1EIDL  
RXF1EIDH  
RXF1SIDL  
RXF1SIDH  
RXF0EIDL  
RXF0EIDH  
RXF0SIDL  
RXF0SIDH  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
PIC18F2X8 PIC18F4X8  
xxx- --xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- --xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
uuu- --uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- --uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuu- --uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- --uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as ‘0’, q= value depends on condition.  
Shaded cells indicate conditions do not apply for the designated device.  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the  
interrupt vector (0008h or 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the  
hardware stack.  
4: See Table 3-2 for Reset value for specific condition.  
5: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO Oscillator modes only. In all other  
oscillator modes, they are disabled and read ‘0’.  
6: Values for CANSTAT also apply to its other instances (CANSTATRO1 through CANSTATRO4).  
DS41159E-page 36  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
Figure 4-1 shows the diagram for program memory  
map and stack for the PIC18F248 and PIC18F448.  
Figure 4-2 shows the diagram for the program memory  
map and stack for the PIC18F258 and PIC18F458.  
4.0  
MEMORY ORGANIZATION  
There are three memory blocks in Enhanced MCU  
devices. These memory blocks are:  
• Enhanced Flash Program Memory  
• Data Memory  
• EEPROM Data Memory  
4.1.1  
INTERNAL PROGRAM MEMORY  
OPERATION  
The PIC18F258 and the PIC18F458 have 32 Kbytes of  
internal Enhanced Flash program memory. This means  
that the PIC18F258 and the PIC18F458 can store up to  
16K of single-word instructions. The PIC18F248 and  
PIC18F448 have 16 Kbytes of Enhanced Flash  
program memory. This translates into 8192 single-word  
instructions, which can be stored in the program  
memory. Accessing a location between the physically  
implemented memory and the 2-Mbyte address will  
cause a read of all ‘0’s (a NOPinstruction).  
Data and program memory use separate busses,  
which allows concurrent access of these blocks.  
Additional detailed information on data EEPROM and  
Flash program memory is provided in Section 5.0  
“Data EEPROM Memory” and Section 6.0 “Flash  
Program Memory”, respectively.  
4.1  
Program Memory Organization  
The PIC18F258/458 devices have a 21-bit program  
counter that is capable of addressing a 2-Mbyte  
program memory space.  
The Reset vector address is at 0000h and the interrupt  
vector addresses are at 0008h and 0018h.  
FIGURE 4-2:  
PROGRAM MEMORY MAP  
AND STACK FOR  
PIC18F258/458  
FIGURE 4-1:  
PROGRAM MEMORY MAP  
AND STACK FOR  
PIC18F248/448  
PC<20:0>  
PC<20:0>  
21  
21  
CALL,RCALL,RETURN  
RETFIE,RETLW  
CALL,RCALL,RETURN  
RETFIE,RETLW  
Stack Level 1  
Stack Level 1  
Stack Level 31  
Stack Level 31  
0000h  
Reset Vector  
0000h  
Reset Vector  
High Priority Interrupt Vector  
Low Priority Interrupt Vector  
0008h  
0018h  
High Priority Interrupt Vector  
Low Priority Interrupt Vector  
0008h  
0018h  
On-Chip  
Program Memory  
3FFFh  
4000h  
On-Chip  
Program Memory  
7FFFh  
8000h  
Read ‘0’  
Read ‘0’  
1FFFFFh  
200000h  
1FFFFFh  
200000h  
© 2006 Microchip Technology Inc.  
DS41159E-page 37  
PIC18FXX8  
4.2.2  
RETURN STACK POINTER  
(STKPTR)  
4.2  
Return Address Stack  
The return address stack allows any combination of up  
to 31 program calls and interrupts to occur. The PC  
(Program Counter) is pushed onto the stack when a  
PUSH, CALL or RCALL instruction is executed, or an  
interrupt is Acknowledged. The PC value is pulled off  
the stack on a RETURN, RETLWor a RETFIEinstruc-  
tion. PCLATU and PCLATH are not affected by any of  
the RETURNinstructions.  
The STKPTR register contains the Stack Pointer value,  
the STKFUL (Stack Full) status bit and the STKUNF  
(Stack Underflow) status bits. Register 4-1 shows the  
STKPTR register. The value of the Stack Pointer can be  
0 through 31. The Stack Pointer increments when val-  
ues are pushed onto the stack and decrements when  
values are popped off the stack. At Reset, the Stack  
Pointer value will be ‘0’. The user may read and write  
the Stack Pointer value. This feature can be used by a  
Real-Time Operating System for return stack  
maintenance.  
The stack operates as a 31-word by 21-bit stack  
memory and a 5-bit Stack Pointer register, with the  
Stack Pointer initialized to 00000b after all Resets.  
There is no RAM associated with Stack Pointer  
00000b. This is only a Reset value. During a CALLtype  
instruction, causing a push onto the stack, the Stack  
Pointer is first incremented and the RAM location  
pointed to by the Stack Pointer is written with the con-  
tents of the PC. During a RETURN type instruction,  
causing a pop from the stack, the contents of the RAM  
location indicated by the STKPTR are transferred to the  
PC and then the Stack Pointer is decremented.  
After the PC is pushed onto the stack 31 times (without  
popping any values off the stack), the STKFUL bit is  
set. The STKFUL bit can only be cleared in software or  
by a POR.  
The action that takes place when the stack becomes  
full depends on the state of the STVREN (Stack Over-  
flow Reset Enable) configuration bit. Refer to  
Section 21.0 “Comparator Module” for a description  
of the device configuration bits. If STVREN is set  
(default), the 31st push will push the (PC + 2) value  
onto the stack, set the STKFUL bit and reset the  
device. The STKFUL bit will remain set and the Stack  
Pointer will be set to ‘0’.  
The stack space is not part of either program or data  
space. The Stack Pointer is readable and writable and  
the data on the top of the stack is readable and writable  
through SFR registers. Status bits indicate if the stack  
pointer is at or beyond the 31 levels provided.  
If STVREN is cleared, the STKFUL bit will be set on the  
31st push and the Stack Pointer will increment to 31.  
The 32nd push will overwrite the 31st push (and so on),  
while STKPTR remains at 31.  
4.2.1  
TOP-OF-STACK ACCESS  
The top of the stack is readable and writable. Three  
register locations, TOSU, TOSH and TOSL allow  
access to the contents of the stack location indicated by  
the STKPTR register. This allows users to implement a  
software stack, if necessary. After a CALL, RCALL or  
interrupt, the software can read the pushed value by  
reading the TOSU, TOSH and TOSL registers. These  
values can be placed on a user defined software stack.  
At return time, the software can replace the TOSU,  
TOSH and TOSL and do a return.  
When the stack has been popped enough times to  
unload the stack, the next pop will return a value of zero  
to the PC and sets the STKUNF bit, while the stack  
pointer remains at ‘0’. The STKUNF bit will remain set  
until cleared in software or a POR occurs.  
Note:  
Returning a value of zero to the PC on an  
underflow has the effect of vectoring the  
program to the Reset vector, where the  
stack conditions can be verified and  
appropriate actions can be taken.  
The user should disable the global interrupt enable bits  
during this time to prevent inadvertent stack  
operations.  
DS41159E-page 38  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 4-1:  
STKPTR: STACK POINTER REGISTER  
R/C-0  
STKFUL  
bit 7  
R/C-0  
U-0  
R/W-0  
SP4  
R/W-0  
SP3  
R/W-0  
SP2  
R/W-0  
SP1  
R/W-0  
SP0  
STKUNF  
bit 0  
bit 7  
bit 6  
bit 5  
STKFUL: Stack Full Flag bit  
1= Stack became full or overflowed  
0= Stack has not become full or overflowed  
STKUNF: Stack Underflow Flag bit  
1= Stack underflow occurred  
0= Stack underflow did not occur  
Unimplemented: Read as ‘0’  
bit 4-0 SP4:SP0: Stack Pointer Location bits  
Note:  
Bit 7 and bit 6 need to be cleared following a stack underflow or a stack overflow.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared C = Clearable bit  
FIGURE 4-3:  
RETURN ADDRESS STACK AND ASSOCIATED REGISTERS  
Return Address Stack  
11111  
11110  
11101  
STKPTR<4:0>  
00010  
TOSU  
00h  
TOSH  
1Ah  
TOSL  
34h  
00011  
001A34h 00010  
000D58h 00001  
000000h 00000(1)  
Top-of-Stack  
Note 1: No RAM associated with this address; always maintained ‘0’s.  
© 2006 Microchip Technology Inc.  
DS41159E-page 39  
PIC18FXX8  
4.2.3  
PUSH AND POP INSTRUCTIONS  
EXAMPLE 4-1:  
FAST REGISTER STACK  
CODE EXAMPLE  
;STATUS, WREG, BSR  
;SAVED IN FAST REGISTER  
;STACK  
Since the Top-of-Stack (TOS) is readable and writable,  
the ability to push values onto the stack and pull values  
off the stack, without disturbing normal program execu-  
tion, is a desirable option. To push the current PC value  
onto the stack, a PUSH instruction can be executed.  
This will increment the Stack Pointer and load the  
current PC value onto the stack. TOSU, TOSH and  
TOSL can then be modified to place a return address  
on the stack.  
CALL SUB1, FAST  
SUB1  
RETURN FAST  
;RESTORE VALUES SAVED  
;IN FAST REGISTER STACK  
The POPinstruction discards the current TOS by decre-  
menting the Stack Pointer. The previous value pushed  
onto the stack then becomes the TOS value.  
4.4  
PCL, PCLATH and PCLATU  
4.2.4  
STACK FULL/UNDERFLOW RESETS  
These Resets are enabled by programming the  
STVREN configuration bit. When the STVREN bit is  
disabled, a full or underflow condition will set the appro-  
priate STKFUL or STKUNF bit, but not cause a device  
Reset. When the STVREN bit is enabled, a full or  
underflow condition will set the appropriate STKFUL or  
STKUNF bit and then cause a device Reset. The  
STKFUL or STKUNF bits are only cleared by the user  
software or a POR.  
The Program Counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 21 bits  
wide. The low byte is called the PCL register. This reg-  
ister is readable and writable. The high byte is called  
the PCH register. This register contains the PC<15:8>  
bits and is not directly readable or writable. Updates to  
the PCH register may be performed through the  
PCLATH register. The upper byte is called PCU. This  
register contains the PC<20:16> bits and is not directly  
readable or writable. Updates to the PCU register may  
be performed through the PCLATU register.  
4.3  
Fast Register Stack  
The PC addresses bytes in the program memory. To  
prevent the PC from becoming misaligned with word  
instructions, the LSb of PCL is fixed to a value of ‘0’.  
The PC increments by 2 to address sequential  
instructions in the program memory.  
A “fast return” option is available for interrupts and  
calls. A fast register stack is provided for the Status,  
WREG and BSR registers and is only one layer in  
depth. The stack is not readable or writable and is  
loaded with the current value of the corresponding  
register when the processor vectors for an interrupt.  
The values in the fast register stack are then loaded  
back into the working registers if the FAST RETURN  
instruction is used to return from the interrupt.  
The CALL, RCALL, GOTO and program branch  
instructions write to the program counter directly. For  
these instructions, the contents of PCLATH and  
PCLATU are not transferred to the program counter.  
A low or high priority interrupt source will push values  
into the stack registers. If both low and high priority  
interrupts are enabled, the stack registers cannot be  
used reliably for low priority interrupts. If a high priority  
interrupt occurs while servicing a low priority interrupt,  
the stack register values stored by the low priority  
interrupt will be overwritten.  
The contents of PCLATH and PCLATU will be  
transferred to the program counter by an operation that  
writes PCL. Similarly, the upper two bytes of the  
program counter will be transferred to PCLATH and  
PCLATU by an operation that reads PCL. This is useful  
for computed offsets to the PC (see Section 4.8.1  
“Computed GOTO”).  
If high priority interrupts are not disabled during low  
priority interrupts, users must save the key registers in  
software during a low priority interrupt.  
If no interrupts are used, the fast register stack can be  
used to restore the Status, WREG and BSR registers at  
the end of a subroutine call. To use the fast register  
stack for a subroutine call, a FAST CALL instruction  
must be executed.  
Example 4-1 shows a source code example that uses  
the fast register stack.  
DS41159E-page 40  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
4.5  
Clocking Scheme/Instruction  
Cycle  
The clock input (from OSC1) is internally divided by  
four to generate four non-overlapping quadrature  
clocks, namely Q1, Q2, Q3 and Q4. Internally, the  
Program Counter (PC) is incremented every Q1, the  
instruction is fetched from the program memory and  
latched into the instruction register in Q4. The instruc-  
tion is decoded and executed during the following Q1  
through Q4. The clocks and instruction execution flow  
are shown in Figure 4-4.  
FIGURE 4-4:  
CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Internal  
Phase  
Clock  
Q2  
Q3  
Q4  
PC  
PC  
PC + 2  
PC + 4  
OSC2/CLKO  
(RC Mode)  
Fetch INST (PC)  
Execute INST (PC – 2)  
Fetch INST (PC + 2)  
Execute INST (PC)  
Fetch INST (PC + 4)  
Execute INST (PC + 2)  
4.6  
Instruction Flow/Pipelining  
4.7  
Instructions in Program Memory  
An “Instruction Cycle” consists of four Q cycles (Q1,  
Q2, Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle,  
while decode and execute take another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g., GOTO),  
two cycles are required to complete the instruction  
(Example 4-2).  
The program memory is addressed in bytes. Instruc-  
tions are stored as two bytes or four bytes in program  
memory. The Least Significant Byte of an instruction  
word is always stored in a program memory location  
with an even address (LSB = 0). Figure 4-3 shows an  
example of how instruction words are stored in the  
program memory. To maintain alignment with instruc-  
tion boundaries, the PC increments in steps of 2 and  
the LSB will always read ‘0’ (see Section 4.4 “PCL,  
PCLATH and PCLATU”).  
A fetch cycle begins with the Program Counter (PC)  
incrementing in Q1.  
The CALL and GOTO instructions have an absolute  
program memory address embedded into the instruc-  
tion. Since instructions are always stored on word  
boundaries, the data contained in the instruction is a  
word address. The word address is written to PC<20:1>,  
which accesses the desired byte address in program  
memory. Instruction #2 in Example 4-3 shows how the  
instruction “GOTO 000006h” is encoded in the program  
memory. Program branch instructions that encode a  
relative address offset operate in the same manner. The  
offset value stored in a branch instruction represents the  
number of single-word instructions by which the PC will  
be offset. Section 25.0 “Instruction Set Summary”  
provides further details of the instruction set.  
In the execution cycle, the fetched instruction is latched  
into the “Instruction Register” (IR) in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3 and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
© 2006 Microchip Technology Inc.  
DS41159E-page 41  
PIC18FXX8  
EXAMPLE 4-2:  
INSTRUCTION PIPELINE FLOW  
TCY0  
TCY1  
TCY2  
TCY3  
TCY4  
TCY5  
1. MOVLW 55h  
2. MOVWF PORTB  
3. BRA SUB_1  
Fetch 1  
Execute 1  
Fetch 2  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3 (Forced NOP)  
Flush  
5. Instruction @ address SUB_1  
Fetch SUB_1  
Execute SUB_1  
Note:  
All instructions are single cycle, except for any program branches. These take two cycles, since the fetch instruction is  
“flushed” from the pipeline while the new instruction is being fetched and then executed.  
EXAMPLE 4-3:  
INSTRUCTIONS IN PROGRAM MEMORY  
Instruction  
Opcode  
Memory  
Address  
000007h  
000008h  
000009h  
00000Ah  
00000Bh  
00000Ch  
00000Dh  
00000Eh  
00000Fh  
000010h  
000011h  
000012h  
MOVLW 055h  
0E55h  
55h  
0Eh  
GOTO 000006h  
0EF03h, 0F000h  
03h  
0EFh  
00h  
0F0h  
23h  
MOVFF 123h, 456h  
0C123h, 0F456h  
0C1h  
56h  
0F4h  
DS41159E-page 42  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
instruction executed will be one of the RETLW 0xnn  
instructions that returns the value 0xnn to the calling  
function.  
4.7.1  
TWO-WORD INSTRUCTIONS  
The PIC18FXX8 devices have 4 two-word instructions:  
MOVFF, CALL, GOTOand LFSR. The 4 Most Signifi-  
cant bits of the second word are set to ‘1’s and indicate  
a special NOP instruction. The lower 12 bits of the  
second word contain the data to be used by the  
instruction. If the first word of the instruction is executed,  
the data in the second word is accessed. If the second  
word of the instruction is executed by itself (first word  
was skipped), it will execute as a NOP. This action is  
necessary when the two-word instruction is preceded by  
a conditional instruction that changes the PC. A program  
example that demonstrates this concept is shown in  
Example 4-4. Refer to Section 25.0 “Instruction Set  
Summary” for further details of the instruction set.  
The offset value (value in WREG) specifies the number  
of bytes that the program counter should advance.  
In this method, only one data byte may be stored in  
each instruction location and room on the return  
address stack is required.  
Note 1: The LSb of PCL is fixed to a value of ‘0’.  
Hence, computed GOTOto an odd address  
is not possible.  
2: The ADDWF PCL instruction does not  
update PCLATH/PCLATU. A read opera-  
tion on PCL must be performed to update  
PCLATH and PCLATU.  
4.8  
Look-up Tables  
4.8.2  
TABLE READS/TABLE WRITES  
Look-up tables are implemented two ways. These are:  
A better method of storing data in program memory  
allows 2 bytes of data to be stored in each instruction  
location.  
• Computed GOTO  
Table Reads  
Look-up table data may be stored as 2 bytes per  
program word by using table reads and writes. The  
Table Pointer (TBLPTR) specifies the byte address and  
the Table Latch (TABLAT) contains the data that is read  
from, or written to, program memory. Data is  
transferred to/from program memory, one byte at a  
time.  
4.8.1  
COMPUTED GOTO  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL).  
A look-up table can be formed with an ADDWF PCL  
instruction and a group of RETLW 0xnn instructions.  
WREG is loaded with an offset into the table before  
executing a call to that table. The first instruction of the  
called routine is the ADDWF PCL instruction. The next  
A description of the table read/table write operation is  
shown in Section 6.1 “Table Reads and Table Writes”.  
EXAMPLE 4-4:  
CASE 1:  
TWO-WORD INSTRUCTIONS  
Object Code  
Source Code  
0110 0110 0000 0000 TSTFSZ  
1100 0001 0010 0011 MOVFF  
1111 0100 0101 0110  
REG1  
; is RAM location 0?  
REG1, REG2 ; No, execute 2-word instruction  
; 2nd operand holds address of REG2  
0010 0100 0000 0000 ADDWF  
REG3  
; continue code  
CASE 2:  
Object Code  
Source Code  
0110 0110 0000 0000 TSTFSZ  
1100 0001 0010 0011 MOVFF  
1111 0100 0101 0110  
REG1  
; is RAM location 0?  
REG1, REG2 ; Yes  
; 2nd operand becomes NOP  
REG3 ; continue code  
0010 0100 0000 0000 ADDWF  
© 2006 Microchip Technology Inc.  
DS41159E-page 43  
PIC18FXX8  
4.9.1  
GENERAL PURPOSE  
REGISTER FILE  
4.9  
Data Memory Organization  
The data memory is implemented as static RAM. Each  
register in the data memory has a 12-bit address,  
allowing up to 4096 bytes of data memory. Figure 4-6  
shows the data memory organization for the  
PIC18FXX8 devices.  
The register file can be accessed either directly or  
indirectly. Indirect addressing operates through the File  
Select Registers (FSR). The operation of indirect  
addressing is shown in Section 4.12 “Indirect  
Addressing, INDF and FSR Registers”.  
The data memory map is divided into as many as  
16 banks that contain 256 bytes each. The lower 4 bits  
of the Bank Select Register (BSR<3:0>) select which  
bank will be accessed. The upper 4 bits for the BSR are  
not implemented.  
Enhanced MCU devices may have banked memory in  
the GPR area. GPRs are not initialized by a Power-on  
Reset and are unchanged on all other Resets.  
Data RAM is available for use as GPR registers by all  
instructions. Bank 15 (F00h to FFFh) contains SFRs.  
All other banks of data memory contain GPR registers,  
starting with Bank 0.  
The data memory contains Special Function Registers  
(SFRs) and General Purpose Registers (GPRs). The  
SFRs are used for control and status of the controller  
and peripheral functions, while GPRs are used for data  
storage and scratchpad operations in the user’s appli-  
cation. The SFRs start at the last location of Bank 15  
(FFFh) and grow downwards. GPRs start at the first  
location of Bank 0 and grow upwards. Any read of an  
unimplemented location will read as ‘0’s.  
4.9.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers (SFRs) are registers  
used by the CPU and peripheral modules for controlling  
the desired operation of the device. These registers are  
implemented as static RAM. A list of these registers is  
given in Table 4-1.  
The entire data memory may be accessed directly or  
indirectly. Direct addressing may require the use of the  
BSR register. Indirect addressing requires the use of  
the File Select Register (FSR). Each FSR holds a  
12-bit address value that can be used to access any  
location in the data memory map without banking.  
The SFRs can be classified into two sets: those asso-  
ciated with the “core” function and those related to the  
peripheral functions. Those registers related to the  
“core” are described in this section, while those related  
to the operation of the peripheral features are  
described in the section of that peripheral feature.  
The instruction set and architecture allow operations  
across all banks. This may be accomplished by indirect  
addressing or by the use of the MOVFFinstruction. The  
MOVFF instruction is a two-word/two-cycle instruction,  
that moves a value from one register to another.  
The SFRs are typically distributed among the  
peripherals whose functions they control.  
The unused SFR locations will be unimplemented and  
read as ‘0’s. See Table 4-1 for addresses for the SFRs.  
To ensure that commonly used registers (SFRs and  
select GPRs) can be accessed in a single cycle,  
regardless of the current BSR values, an Access Bank  
is implemented. A segment of Bank 0 and a segment of  
Bank 15 comprise the Access RAM. Section 4.10  
“Access Bank” provides a detailed description of the  
Access RAM.  
DS41159E-page 44  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 4-5:  
BSR<3:0>  
= 0000  
DATA MEMORY MAP FOR PIC18F248/448  
Data Memory Map  
000h  
05Fh  
00h  
Access RAM  
GPR  
Bank 0  
060h  
0FFh  
100h  
FFh  
00h  
= 0001  
= 0010  
GPR  
GPR  
Bank 1  
Bank 2  
1FFh  
200h  
FFh  
00h  
FFh  
300h  
Access Bank  
00h  
Access Bank Low  
(GPR)  
5Fh  
60h  
= 0011  
= 1110  
Access Bank High  
Bank 3  
to  
Bank 14  
Unused  
Read ‘00h’  
(SFR)  
FFh  
When a = 0,  
the BSR is ignored and  
the Access Bank is used.  
The first 96 bytes are  
general purpose RAM  
(from Bank 0).  
The next 160 bytes are  
Special Function  
Registers (from Bank 15).  
When a = 1,  
EFFh  
F00h  
F5Fh  
F60h  
FFFh  
the BSR is used to specify  
the RAM location that the  
instruction uses.  
00h  
FFh  
Unused  
SFR  
= 1111  
Bank 15  
© 2006 Microchip Technology Inc.  
DS41159E-page 45  
PIC18FXX8  
FIGURE 4-6:  
BSR<3:0>  
= 0000  
DATA MEMORY MAP FOR PIC18F258/458  
Data Memory Map  
000h  
05Fh  
060h  
0FFh  
00h  
Access RAM  
GPR  
Bank 0  
FFh  
00h  
100h  
= 0001  
= 0010  
GPR  
GPR  
Bank 1  
Bank 2  
Bank 3  
1FFh  
200h  
FFh  
00h  
2FFh  
300h  
FFh  
00h  
= 0011  
= 0100  
= 0101  
GPR  
FFh  
3FFh  
400h  
Access Bank  
Bank 4  
Bank 5  
GPR  
GPR  
4FFh  
500h  
00h  
Access Bank low  
(GPR)  
00h  
FFh  
5Fh  
60h  
5FFh  
600h  
Access Bank high  
(SFR)  
FFh  
= 0110  
= 1110  
When a = 0,  
Bank 6  
to  
Bank 14  
Unused  
Read ‘00h’  
the BSR is ignored and the  
Access Bank is used.  
The first 96 bytes are  
general purpose RAM  
(from Bank 0).  
EFFh  
F00h  
F5Fh  
F60h  
FFFh  
The next 160 bytes are  
SpecialFunctionRegisters  
(from Bank 15).  
00h  
FFh  
SFR  
SFR  
= 1111  
Bank 15  
When a = 1,  
the BSR is used to specify  
the RAM location that the  
instruction uses.  
DS41159E-page 46  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TABLE 4-1:  
Address  
SPECIAL FUNCTION REGISTER MAP  
Name  
Address  
Name  
Address  
Name  
Address  
Name  
FFFh TOSU  
FDFh INDF2(2)  
FBFh CCPR1H  
F9Fh IPR1  
FFEh TOSH  
FDEh POSTINC2(2)  
FDDh POSTDEC2(2)  
FDCh PREINC2(2)  
FDBh PLUSW2(2)  
FDAh FSR2H  
FBEh CCPR1L  
F9Eh PIR1  
F9Dh PIE1  
F9Ch  
FFDh TOSL  
FBDh CCP1CON  
FBCh ECCPR1H(5)  
FBBh ECCPR1L(5)  
FBAh ECCP1CON(5)  
FFCh STKPTR  
FFBh PCLATU  
FFAh PCLATH  
FF9h PCL  
F9Bh  
F9Ah  
FD9h FSR2L  
FB9h  
F99h  
FF8h TBLPTRU  
FF7h TBLPTRH  
FF6h TBLPTRL  
FF5h TABLAT  
FF4h PRODH  
FF3h PRODL  
FD8h STATUS  
FD7h TMR0H  
FB8h  
F98h  
FB7h ECCP1DEL(5)  
FB6h ECCPAS(5)  
FB5h CVRCON(5)  
FB4h CMCON(5)  
FB3h TMR3H  
F97h  
FD6h TMR0L  
F96h TRISE(5)  
F95h TRISD(5)  
F94h TRISC  
F93h TRISB  
F92h TRISA  
FD5h T0CON  
FD4h  
FD3h OSCCON  
FD2h LVDCON  
FD1h WDTCON  
FD0h RCON  
FF2h INTCON  
FF1h INTCON2  
FF0h INTCON3  
FEFh INDF0(2)  
FEEh POSTINC0(2)  
FEDh POSTDEC0(2)  
FECh PREINC0(2)  
FEBh PLUSW0(2)  
FEAh FSR0H  
FB2h TMR3L  
FB1h T3CON  
F91h  
F90h  
F8Fh  
F8Eh  
FB0h  
FCFh TMR1H  
FCEh TMR1L  
FCDh T1CON  
FCCh TMR2  
FAFh SPBRG  
FAEh RCREG  
FADh TXREG  
FACh TXSTA  
FABh RCSTA  
F8Dh LATE(5)  
F8Ch LATD(5)  
F8Bh LATC  
F8Ah LATB  
F89h LATA  
FCBh PR2  
FCAh T2CON  
FC9h SSPBUF  
FC8h SSPADD  
FC7h SSPSTAT  
FC6h SSPCON1  
FC5h SSPCON2  
FC4h ADRESH  
FC3h ADRESL  
FC2h ADCON0  
FC1h ADCON1  
FAAh  
FE9h FSR0L  
FA9h EEADR  
FA8h EEDATA  
FA7h EECON2  
FA6h EECON1  
FA5h IPR3  
FA4h PIR3  
FA3h PIE3  
FA2h IPR2  
FA1h PIR2  
FA0h PIE2  
FE8h WREG  
F88h  
F87h  
F86h  
F85h  
FE7h INDF1(2)  
FE6h POSTINC1(2)  
FE5h POSTDEC1(2)  
FE4h PREINC1(2)  
FE3h PLUSW1(2)  
FE2h FSR1H  
F84h PORTE(5)  
F83h PORTD(5)  
F82h PORTC  
F81h PORTB  
F80h PORTA  
FE1h FSR1L  
FE0h BSR  
FC0h  
Note 1: Unimplemented registers are read as ‘0’.  
2: This is not a physical register.  
3: Contents of register are dependent on WIN2:WIN0 bits in the CANCON register.  
4: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given  
for each instance of the CANSTAT register due to the Microchip header file requirement.  
5: These registers are not implemented on the PIC18F248 and PIC18F258.  
© 2006 Microchip Technology Inc.  
DS41159E-page 47  
PIC18FXX8  
TABLE 4-1:  
SPECIAL FUNCTION REGISTER MAP (CONTINUED)  
Address  
Name  
Address  
Name  
Address  
Name  
Address  
Name  
F7Fh  
F7Eh  
F7Dh  
F7Ch  
F7Bh  
F7Ah  
F79h  
F78h  
F77h  
F5Fh  
F3Fh  
F1Fh RXM1EIDL  
F1Eh RXM1EIDH  
F1Dh RXM1SIDL  
F1Ch RXM1SIDH  
F1Bh RXM0EIDL  
F1Ah RXM0EIDH  
F19h RXM0SIDL  
F18h RXM0SIDH  
F17h RXF5EIDL  
F16h RXF5EIDH  
F15h RXF5SIDL  
F14h RXF5SIDH  
F13h RXF4EIDL  
F12h RXF4EIDH  
F11h RXF4SIDL  
F10h RXF4SIDH  
F0Fh RXF3EIDL  
F0Eh RXF3EIDH  
F0Dh RXF3SIDL  
F0Ch RXF3SIDH  
F0Bh RXF2EIDL  
F0Ah RXF2EIDH  
F09h RXF2SIDL  
F08h RXF2SIDH  
F07h RXF1EIDL  
F06h RXF1EIDH  
F05h RXF1SIDL  
F04h RXF1SIDH  
F03h RXF0EIDL  
F02h RXF0EIDH  
F01h RXF0SIDL  
F00h RXF0SIDH  
F5Eh CANSTATRO1(4)  
F5Dh RXB1D7  
F5Ch RXB1D6  
F5Bh RXB1D5  
F5Ah RXB1D4  
F59h RXB1D3  
F58h RXB1D2  
F57h RXB1D1  
F56h RXB1D0  
F55h RXB1DLC  
F54h RXB1EIDL  
F53h RXB1EIDH  
F52h RXB1SIDL  
F51h RXB1SIDH  
F50h RXB1CON  
F3Eh CANSTATRO3(4)  
F3Dh TXB1D7  
F3Ch TXB1D6  
F3Bh TXB1D5  
F3Ah TXB1D4  
F39h TXB1D3  
F38h TXB1D2  
F37h TXB1D1  
F36h TXB1D0  
F35h TXB1DLC  
F34h TXB1EIDL  
F33h TXB1EIDH  
F32h TXB1SIDL  
F31h TXB1SIDH  
F30h TXB1CON  
F76h TXERRCNT  
F75h RXERRCNT  
F74h COMSTAT  
F73h CIOCON  
F72h BRGCON3  
F71h BRGCON2  
F70h BRGCON1  
F6Fh CANCON  
F4Fh  
F2Fh  
F6Eh CANSTAT  
F6Dh RXB0D7(3)  
F6Ch RXB0D6(3)  
F6Bh RXB0D5(3)  
F6Ah RXB0D4(3)  
F69h RXB0D3(3)  
F68h RXB0D2(3)  
F67h RXB0D1(3)  
F66h RXB0D0(3)  
F65h RXB0DLC(3)  
F64h RXB0EIDL(3)  
F63h RXB0EIDH(3)  
F62h RXB0SIDL(3)  
F61h RXB0SIDH(3)  
F60h RXB0CON(3)  
F4Eh CANSTATRO2(4)  
F4Dh TXB0D7  
F4Ch TXB0D6  
F4Bh TXB0D5  
F4Ah TXB0D4  
F49h TXB0D3  
F48h TXB0D2  
F47h TXB0D1  
F46h TXB0D0  
F45h TXB0DLC  
F44h TXB0EIDL  
F43h TXB0EIDH  
F42h TXB0SIDL  
F41h TXB0SIDH  
F40h TXB0CON  
F2Eh CANSTATRO4(4)  
F2Dh TXB2D7  
F2Ch TXB2D6  
F2Bh TXB2D5  
F2Ah TXB2D4  
F29h TXB2D3  
F28h TXB2D2  
F27h TXB2D1  
F26h TXB2D0  
F25h TXB2DLC  
F24h TXB2EIDL  
F23h TXB2EIDH  
F22h TXB2SIDL  
F21h TXB2SIDH  
F20h TXB2CON  
Note:  
Shaded registers are available in Bank 15, while the rest are in Access Bank low.  
Note 1: Unimplemented registers are read as ‘0’.  
2: This is not a physical register.  
3: Contents of register are dependent on WIN2:WIN0 bits in the CANCON register.  
4: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given  
for each instance of the CANSTAT register due to the Microchip header file requirement.  
5: These registers are not implemented on the PIC18F248 and PIC18F258.  
DS41159E-page 48  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TABLE 4-2:  
REGISTER FILE SUMMARY  
Value on Details on  
Bit 0  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
POR, BOR  
Page:  
TOSU  
Top-of-Stack Upper Byte (TOS<20:16>)  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
111- -1-1  
11-0 0-00  
N/A  
30, 38  
30, 38  
30, 38  
30, 39  
30, 40  
30, 40  
30, 40  
30, 68  
30, 68  
30, 68  
30, 68  
30, 75  
30, 75  
30, 79  
30, 80  
30, 81  
30, 55  
30, 55  
30, 55  
30, 55  
30, 55  
30, 55  
30, 55  
30, 55  
30, 55  
30, 55  
30, 55  
30, 55  
30, 55  
31, 55  
31, 55  
31, 54  
31, 55  
31, 55  
31, 55  
31, 55  
31, 55  
31, 55  
31, 55  
31, 57  
31, 111  
31, 111  
31, 109  
31, 20  
31, 261  
31, 272  
TOSH  
Top-of-Stack High Byte (TOS<15:8>)  
Top-of-Stack Low Byte (TOS<7:0>)  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
STKFUL  
STKUNF  
bit 21(2)  
Return Stack Pointer  
Holding Register for PC<20:16>  
Holding Register for PC<15:8>  
PC Low Byte (PC<7:0>)  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
bit 21(2)  
Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)  
Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
Program Memory Table Latch  
Product Register High Byte  
Product Register Low Byte  
INTCON  
INTCON2  
INTCON3  
INDF0  
GIE/GIEH  
RBPU  
PEIE/GIEL  
INTEDG0  
INT1IP  
TMR0IE  
INTEDG1  
INT0IE  
RBIE  
TMR0IF  
TMR0IP  
INT0IF  
RBIF  
RBIP  
INT2IP  
INT2IE  
INT1IE  
INT2IF  
INT1IF  
Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register)  
POSTINC0  
POSTDEC0  
PREINC0  
PLUSW0  
FSR0H  
Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)  
Uses contents of FSR0 to address data memory – value of FSR0 offset by W (not a physical register)  
N/A  
N/A  
N/A  
N/A  
Indirect Data Memory Address Pointer 0 High  
---- xxxx  
xxxx xxxx  
xxxx xxxx  
N/A  
FSR0L  
Indirect Data Memory Address Pointer 0 Low Byte  
Working Register  
WREG  
INDF1  
Uses contents of FSR1 to address data memory – value of FSR1 not changed (not a physical register)  
Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register)  
Uses contents of FSR1 to address data memory – value of FSR1 post-incremented (not a physical register)  
Uses contents of FSR1 to address data memory – value of FSR1 pre-incremented (not a physical register)  
Uses contents of FSR1 to address data memory – value of FSR1 offset by W (not a physical register)  
POSTINC1  
POSTDEC1  
PREINC1  
PLUSW1  
FSR1H  
N/A  
N/A  
N/A  
N/A  
Indirect Data Memory Address Pointer 1 High  
---- xxxx  
xxxx xxxx  
---- 0000  
N/A  
FSR1L  
Indirect Data Memory Address Pointer 1 Low Byte  
BSR  
Bank Select Register  
INDF2  
Uses contents of FSR2 to address data memory – value of FSR2 not changed (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 post-incremented (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 pre-incremented (not a physical register)  
Uses contents of FSR2 to address data memory – value of FSR2 offset by W (not a physical register)  
POSTINC2  
POSTDEC2  
PREINC2  
PLUSW2  
FSR2H  
N/A  
N/A  
N/A  
N/A  
Indirect Data Memory Address Pointer 2 High  
---- xxxx  
xxxx xxxx  
---x xxxx  
0000 0000  
xxxx xxxx  
1111 1111  
---- ---0  
--00 0101  
FSR2L  
Indirect Data Memory Address Pointer 2 Low Byte  
STATUS  
TMR0H  
N
OV  
Z
DC  
C
Timer0 Register High Byte  
Timer0 Register Low Byte  
TMR0L  
T0CON  
TMR0ON  
T08BIT  
T0CS  
T0SE  
PSA  
T0PS2  
T0PS1  
T0PS0  
SCS  
OSCCON  
LVDCON  
WDTCON  
IRVST  
LVDEN  
LVDL3  
LVDL2  
LVDL1  
LVDL0  
SWDTEN ---- ---0  
BOR 0--1 110q 31, 58, 91  
RCON  
IPEN  
RI  
TO  
PD  
POR  
Legend:  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
Note 1:  
These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as ‘0’s.  
2:  
3:  
Bit 21 of the TBLPTRU allows access to the device configuration bits.  
RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read ‘0’ in all other oscillator modes.  
© 2006 Microchip Technology Inc.  
DS41159E-page 49  
PIC18FXX8  
TABLE 4-2:  
REGISTER FILE SUMMARY (CONTINUED)  
Value on Details on  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
Page:  
TMR1H  
TMR1L  
T1CON  
TMR2  
Timer1 Register High Byte  
Timer1 Register Low Byte  
xxxx xxxx  
xxxx xxxx  
31, 116  
31, 116  
31, 113  
31, 118  
31, 118  
31, 117  
31, 146  
31, 152  
RD16  
T1CKPS1  
TOUTPS2  
T1CKPS0  
TOUTPS1  
T1OSCEN  
TOUTPS0  
T1SYNC  
TMR2ON  
TMR1CS  
TMR1ON 0-00 0000  
0000 0000  
Timer2 Register  
PR2  
Timer2 Period Register  
TOUTPS3  
1111 1111  
T2CON  
SSPBUF  
SSPADD  
SSPSTAT  
T2CKPS1 T2CKPS0 -000 0000  
SSP Receive Buffer/Transmit Register  
SSP Address Register in I2C™ Slave mode. SSP Baud Rate Reload Register in I2C Master mode.  
xxxx xxxx  
0000 0000  
SMP  
WCOL  
GCEN  
CKE  
D/A  
P
S
R/W  
SSPM2  
PEN  
UA  
BF  
0000 0000 31, 144,  
153  
SSPCON1  
SSPOV  
SSPEN  
ACKDT  
CKP  
SSPM3  
RCEN  
SSPM1  
RSEN  
SSPM0  
SEN  
0000 0000 31, 145,  
145  
SSPCON2  
ADRESH  
ADRESL  
ACKSTAT  
ACKEN  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 00-0  
00-- 0000  
xxxx xxxx  
xxxx xxxx  
31, 155  
31, 243  
31, 243  
31, 241  
32, 242  
32, 124  
32, 124  
32, 123  
32, 133  
32, 133  
32, 131  
32, 140  
32, 142  
32, 255  
32, 249  
32, 121  
32, 121  
A/D Result Register High Byte  
A/D Result Register Low Byte  
ADCON0  
ADCON1  
CCPR1H  
ADCS1  
ADFM  
ADCS0  
ADCS2  
CHS2  
CHS1  
CHS0  
GO/DONE  
PCFG2  
ADON  
PCFG3  
PCFG1  
PCFG0  
Capture/Compare/PWM Register 1 High Byte  
Capture/Compare/PWM Register 1 Low Byte  
CCPR1L  
CCP1CON  
ECCPR1H(1)  
ECCPR1L(1)  
DC1B1  
DC1B0  
CCP1M3  
CCP1M2  
CCP1M1  
CCP1M0 --00 0000  
xxxx xxxx  
Enhanced Capture/Compare/PWM Register 1 High Byte  
Enhanced Capture/Compare/PWM Register 1 Low Byte  
xxxx xxxx  
ECCP1CON(1) EPWM1M1 EPWM1M0  
EDC1B1  
EPDC5  
ECCPAS1  
CVRR  
EDC1B0  
EPDC4  
ECCP1M3 ECCP1M2 ECCP1M1 ECCP1M0 0000 0000  
ECCP1DEL(1)  
ECCPAS(1)  
CVRCON(1)  
CMCON(1)  
TMR3H  
EPDC7  
ECCPASE  
CVREN  
EPDC6  
ECCPAS2  
CVROE  
C1OUT  
EPDC3  
PSSAC1  
CVR3  
EPDC2  
PSSAC0  
CVR2  
EPDC1  
PSSBD1  
CVR1  
EPDC0  
0000 0000  
ECCPAS0  
CVRSS  
C1INV  
PSSBD0 0000 0000  
CVR0  
CM0  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
C2OUT  
C2INV  
CIS  
CM2  
CM1  
Timer3 Register High Byte  
Timer3 Register Low Byte  
TMR3L  
T3CON  
SPBRG  
RCREG  
TXREG  
TXSTA  
RCSTA  
EEADR  
EEDATA  
EECON2  
EECON1  
IPR3  
RD16  
T3ECCP1  
T3CKPS1  
T3CKPS0  
T3CCP1  
T3SYNC  
TMR3CS  
TMR3ON 0000 0000  
0000 0000  
32, 119  
32, 185  
32, 191  
32, 189  
32, 183  
32, 184  
32, 59  
USART Baud Rate Generator  
USART Receive Register  
USART Transmit Register  
0000 0000  
0000 0000  
CSRC  
SPEN  
TX9  
RX9  
TXEN  
SREN  
SYNC  
CREN  
BRGH  
FERR  
TRMT  
OERR  
TX9D  
RX9D  
0000 -010  
0000 000x  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
ADDEN  
EEPROM Address Register  
EEPROM Data Register  
32, 59  
EEPROM Control Register 2 (not a physical register)  
32, 59  
EEPGD  
IRXIP  
IRXIF  
IRXIE  
CFGS  
WAKIP  
WAKIF  
WAKIE  
CMIP  
ERRIP  
ERRIF  
ERRIE  
FREE  
TXB2IP  
TXB2IF  
TXB2IE  
EEIP  
WRERR  
TXB1IP  
TXB1IF  
TXB1IE  
BCLIP  
WREN  
TXB0IP  
TXB0IF  
TXB0IE  
LVDIP  
WR  
RD  
xx-0 x000 32, 60, 67  
RXB1IP  
RXB1IF  
RXB1IE  
RXB0IP 1111 1111  
RXB0IF 0000 0000  
RXB0IE 0000 0000  
32, 90  
32, 84  
32, 87  
32, 89  
32, 83  
32, 86  
PIR3  
PIE3  
IPR2  
TMR3IP ECCP1IP(1) -1-1 1111  
TMR3IF ECCP1IF(1) -0-0 0000  
TMR3IE ECCP1IE(1) -0-0 0000  
PIR2  
CMIF  
EEIF  
BCLIF  
LVDIF  
PIE2  
CMIE  
EEIE  
BCLIE  
LVDIE  
Legend:  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
Note 1:  
These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as ‘0’s.  
2:  
3:  
Bit 21 of the TBLPTRU allows access to the device configuration bits.  
RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read ‘0’ in all other oscillator modes.  
DS41159E-page 50  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TABLE 4-2:  
REGISTER FILE SUMMARY (CONTINUED)  
Value on Details on  
Bit 0  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
POR, BOR  
Page:  
IPR1  
PSPIP(1)  
PSPIF(1)  
PSPIE(1)  
IBF  
ADIP  
ADIF  
ADIE  
OBF  
RCIP  
RCIF  
RCIE  
IBOV  
TXIP  
TXIF  
SSPIP  
SSPIF  
SSPIE  
CCP1IP  
CCP1IF  
CCP1IE  
TMR2IP  
TMR2IF  
TMR2IE  
TMR1IP 1111 1111  
TMR1IF 0000 0000  
TMR1IE 0000 0000  
32, 88  
32, 82  
PIR1  
PIE1  
TXIE  
32, 85  
TRISE(1)  
TRISD(1)  
TRISC  
TRISB  
TRISA(3)  
LATE(1)  
PSPMODE  
Data Direction bits for PORTE(1)  
0000 -111  
1111 1111  
1111 1111  
1111 1111  
-111 1111  
---- -xxx  
33, 105  
33, 102  
33, 100  
33, 96  
Data Direction Control Register for PORTD(1)  
Data Direction Control Register for PORTC  
Data Direction Control Register for PORTB  
Data Direction Control Register for PORTA  
33, 93  
Read PORTE Data Latch, Write  
PORTE Data Latch(1)  
33, 104  
LATD(1)  
LATC  
Read PORTD Data Latch, Write PORTD Data Latch(1)  
Read PORTC Data Latch, Write PORTC Data Latch  
Read PORTB Data Latch, Write PORTB Data Latch  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-xxx xxxx  
33, 102  
33, 100  
33, 96  
LATB  
LATA(3)  
PORTE(1)  
Read PORTA Data Latch, Write PORTA Data Latch  
33, 93  
Read PORTE pins, Write PORTE Data ---- -xxx  
33, 104  
Latch(1)  
PORTD(1)  
PORTC  
Read PORTD pins, Write PORTD Data Latch(1)  
Read PORTC pins, Write PORTC Data Latch  
Read PORTB pins, Write PORTB Data Latch  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-x0x 0000  
33, 102  
33, 100  
33, 96  
PORTB  
PORTA(3)  
TXERRCNT  
RXERRCNT  
COMSTAT  
CIOCON  
Read PORTA pins, Write PORTA Data Latch  
33, 93  
TEC7  
REC7  
TEC6  
REC6  
TEC5  
REC5  
TEC4  
REC4  
TEC3  
REC3  
TEC2  
REC2  
TEC1  
REC1  
TEC0  
REC0  
0000 0000  
0000 0000  
33, 209  
33, 214  
33, 205  
33, 221  
33, 220  
33, 219  
33, 218  
33, 201  
33, 202  
33, 214  
33, 214  
33, 214  
33, 214  
33, 214  
33, 214  
33, 214  
33, 214  
34, 213  
34, 213  
34, 212  
34, 212  
34, 212  
34, 210  
RXB0OVFL RXB1OVFL  
TXBO  
TXBP  
RXBP  
TXWARN RXWARN  
EWARN 0000 0000  
--00 ----  
SEG2PH2 SEG2PH1 SEG2PH0 -0-- -000  
ENDRHI  
CANCAP  
BRGCON3  
BRGCON2  
BRGCON1  
CANCON  
CANSTAT  
RXB0D7  
WAKFIL  
SAM  
SEG2PHTS  
SJW1  
SEG1PH2  
BRP5  
SEG1PH1  
BRP4  
SEG1PH0  
BRP3  
PRSEG2  
BRP2  
PRSEG1  
BRP1  
PRSEG0 0000 0000  
SJW0  
BRP0  
0000 0000  
xxxx xxx-  
xxx- xxx-  
REQOP2  
REQOP1  
REQOP0  
ABAT  
WIN2  
WIN1  
WIN0  
OPMODE2 OPMODE1 OPMODE0  
ICODE2  
RXB0D73  
RXB0D63  
RXB0D53  
RXB0D43  
RXB0D33  
RXB0D23  
RXB0D13  
RXB0D03  
DLC3  
ICODE1  
ICODE0  
RXB0D77  
RXB0D67  
RXB0D57  
RXB0D47  
RXB0D37  
RXB0D27  
RXB0D17  
RXB0D07  
RXB0D76  
RXB0D66  
RXB0D56  
RXB0D46  
RXB0D36  
RXB0D26  
RXB0D16  
RXB0D06  
RXRTR  
EID6  
RXB0D75  
RXB0D65  
RXB0D55  
RXB0D45  
RXB0D35  
RXB0D25  
RXB0D15  
RXB0D05  
RB1  
RXB0D74  
RXB0D64  
RXB0D54  
RXB0D44  
RXB0D34  
RXB0D24  
RXB0D14  
RXB0D04  
RB0  
RXB0D72 RXB0D71 RXB0D70 xxxx xxxx  
RXB0D62 RXB0D61 RXB0D60 xxxx xxxx  
RXB0D52 RXB0D51 RXB0D50 xxxx xxxx  
RXB0D42 RXB0D41 RXB0D40 xxxx xxxx  
RXB0D32 RXB0D31 RXB0D30 xxxx xxxx  
RXB0D22 RXB0D21 RXB0D20 xxxx xxxx  
RXB0D12 RXB0D11 RXB0D10 xxxx xxxx  
RXB0D02 RXB0D01 RXB0D00 xxxx xxxx  
RXB0D6  
RXB0D5  
RXB0D4  
RXB0D3  
RXB0D2  
RXB0D1  
RXB0D0  
RXB0DLC  
RXB0EIDL  
RXB0EIDH  
RXB0SIDL  
RXB0SIDH  
RXB0CON  
DLC2  
EID2  
EID10  
DLC1  
EID1  
DLC0  
EID0  
EID8  
EID16  
SID3  
-xxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx x-xx  
xxxx xxxx  
EID7  
EID5  
EID4  
EID3  
EID15  
EID14  
EID13  
EID12  
EID11  
EID9  
SID2  
SID1  
SID0  
SRR  
EXID  
EID17  
SID4  
SID10  
SID9  
SID8  
SID7  
SID6  
SID5  
RXFUL  
RXM1  
RXM0  
RXRTRRO RXB0DBEN  
JTOFF  
FILHIT0 000- 0000  
Legend:  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
Note 1:  
These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as ‘0’s.  
2:  
3:  
Bit 21 of the TBLPTRU allows access to the device configuration bits.  
RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read ‘0’ in all other oscillator modes.  
© 2006 Microchip Technology Inc.  
DS41159E-page 51  
PIC18FXX8  
TABLE 4-2:  
REGISTER FILE SUMMARY (CONTINUED)  
Value on Details on  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
Page:  
CANSTATRO1 OPMODE2 OPMODE1 OPMODE0  
ICODE2  
RXB1D73  
RXB1D63  
RXB1D53  
RXB1D43  
RXB1D33  
RXB1D23  
RXB1D13  
RXB1D03  
DLC3  
ICODE1  
ICODE0  
xxx- xxx-  
33, 202  
34, 214  
34, 214  
34, 214  
34, 214  
34, 214  
34, 214  
34, 214  
34, 214  
34, 213  
34, 213  
34, 212  
34, 212  
34, 212  
34, 211  
33, 202  
34, 208  
34, 208  
34, 208  
34, 208  
34, 208  
34, 208  
34, 208  
34, 208  
34, 209  
34, 208  
34, 207  
34, 207  
35, 207  
35, 206  
33, 202  
35, 208  
35, 208  
35, 208  
35, 208  
35, 208  
35, 208  
35, 208  
35, 208  
35, 209  
35, 208  
35, 207  
35, 207  
35, 207  
35, 206  
RXB1D7  
RXB1D77  
RXB1D67  
RXB1D57  
RXB1D47  
RXB1D37  
RXB1D27  
RXB1D17  
RXB1D07  
RXB1D76  
RXB1D66  
RXB1D56  
RXB1D46  
RXB1D36  
RXB1D26  
RXB1D16  
RXB1D06  
RXRTR  
EID6  
RXB1D75  
RXB1D65  
RXB1D55  
RXB1D45  
RXB1D35  
RXB1D25  
RXB1D15  
RXB1D05  
RB1  
RXB1D74  
RXB1D64  
RXB1D54  
RXB1D44  
RXB1D34  
RXB1D24  
RXB1D14  
RXB1D04  
RB0  
RXB1D72 RXB1D71 RXB1D70 xxxx xxxx  
RXB1D62 RXB1D61 RXB1D60 xxxx xxxx  
RXB1D52 RXB1D51 RXB1D50 xxxx xxxx  
RXB1D42 RXB1D41 RXB1D40 xxxx xxxx  
RXB1D32 RXB1D31 RXB1D30 xxxx xxxx  
RXB1D22 RXB1D21 RXB1D20 xxxx xxxx  
RXB1D12 RXB1D11 RXB1D10 xxxx xxxx  
RXB1D02 RXB1D01 RXB1D00 xxxx xxxx  
RXB1D6  
RXB1D5  
RXB1D4  
RXB1D3  
RXB1D2  
RXB1D1  
RXB1D0  
RXB1DLC  
RXB1EIDL  
RXB1EIDH  
RXB1SIDL  
RXB1SIDH  
RXB1CON  
DLC2  
EID2  
DLC1  
EID1  
DLC0  
EID0  
EID8  
EID16  
SID3  
-xxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx x-xx  
xxxx xxxx  
EID7  
EID5  
EID4  
EID3  
EID15  
EID14  
EID13  
EID12  
EID11  
EID10  
EID9  
SID2  
SID1  
SID0  
SRR  
EXID  
EID17  
SID4  
SID10  
SID9  
SID8  
SID7  
SID6  
SID5  
RXFUL  
RXM1  
RXM0  
RXRTRRO  
ICODE2  
TXB0D73  
TXB0D63  
TXB0D53  
TXB0D43  
TXB0D33  
TXB0D23  
TXB0D13  
TXB0D03  
DLC3  
FILHIT2  
ICODE1  
FILHIT1  
ICODE0  
FILHIT0 000- 0000  
xxx- xxx-  
CANSTATRO2 OPMODE2 OPMODE1 OPMODE0  
TXB0D7  
TXB0D77  
TXB0D67  
TXB0D57  
TXB0D47  
TXB0D37  
TXB0D27  
TXB0D17  
TXB0D07  
TXB0D76  
TXB0D66  
TXB0D56  
TXB0D46  
TXB0D36  
TXB0D26  
TXB0D16  
TXB0D06  
TXRTR  
EID6  
TXB0D75  
TXB0D65  
TXB0D55  
TXB0D45  
TXB0D35  
TXB0D25  
TXB0D15  
TXB0D05  
TXB0D74  
TXB0D64  
TXB0D54  
TXB0D44  
TXB0D34  
TXB0D24  
TXB0D14  
TXB0D04  
TXB0D72 TXB0D71 TXB0D70 xxxx xxxx  
TXB0D62 TXB0D61 TXB0D60 xxxx xxxx  
TXB0D52 TXB0D51 TXB0D50 xxxx xxxx  
TXB0D42 TXB0D41 TXB0D40 xxxx xxxx  
TXB0D32 TXB0D31 TXB0D30 xxxx xxxx  
TXB0D22 TXB0D21 TXB0D20 xxxx xxxx  
TXB0D6  
TXB0D5  
TXB0D4  
TXB0D3  
TXB0D2  
TXB0D1  
TXB0D12  
TXB0D11 TXB0D10 xxxx xxxx  
TXB0D0  
TXB0D02 TXB0D01 TXB0D00 xxxx xxxx  
TXB0DLC  
TXB0EIDL  
TXB0EIDH  
TXB0SIDL  
TXB0SIDH  
TXB0CON  
DLC2  
EID2  
EID10  
DLC1  
EID1  
DLC0  
EID0  
EID8  
EID16  
SID3  
TXPRI0  
-x-- xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
-000 0-00  
xxx- xxx-  
EID7  
EID5  
EID4  
EID3  
EID15  
EID14  
EID13  
EID12  
EID11  
EID9  
SID2  
SID1  
SID0  
EXIDE  
EID17  
SID4  
SID10  
SID9  
SID8  
SID7  
SID6  
SID5  
TXABT  
TXLARB  
TXERR  
TXREQ  
ICODE2  
TXB1D73  
TXB1D63  
TXB1D53  
TXB1D43  
TXB1D33  
TXB1D23  
TXB1D13  
TXB1D03  
DLC3  
TXPRI1  
ICODE0  
CANSTATRO3 OPMODE2 OPMODE1 OPMODE0  
ICODE1  
TXB1D7  
TXB1D77  
TXB1D67  
TXB1D57  
TXB1D47  
TXB1D37  
TXB1D27  
TXB1D17  
TXB1D07  
TXB1D76  
TXB1D66  
TXB1D56  
TXB1D46  
TXB1D36  
TXB1D26  
TXB1D16  
TXB1D06  
TXRTR  
EID6  
TXB1D75  
TXB1D65  
TXB1D55  
TXB1D45  
TXB1D35  
TXB1D25  
TXB1D15  
TXB1D05  
TXB1D74  
TXB1D64  
TXB1D54  
TXB1D44  
TXB1D34  
TXB1D24  
TXB1D14  
TXB1D04  
TXB1D72 TXB1D71 TXB1D70 xxxx xxxx  
TXB1D62 TXB1D61 TXB1D60 xxxx xxxx  
TXB1D52 TXB1D51 TXB1D50 xxxx xxxx  
TXB1D42 TXB1D41 TXB1D40 xxxx xxxx  
TXB1D32 TXB1D31 TXB1D30 xxxx xxxx  
TXB1D22 TXB1D21 TXB1D20 xxxx xxxx  
TXB1D6  
TXB1D5  
TXB1D4  
TXB1D3  
TXB1D2  
TXB1D1  
TXB1D12  
TXB1D11 TXB1D10 xxxx xxxx  
TXB1D0  
TXB1D02 TXB1D01 TXB1D00 xxxx xxxx  
TXB1DLC  
TXB1EIDL  
TXB1EIDH  
TXB1SIDL  
TXB1SIDH  
TXB1CON  
DLC2  
EID2  
EID10  
DLC1  
EID1  
DLC0  
EID0  
-x-- xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
0000 0000  
EID7  
EID5  
EID4  
EID3  
EID15  
EID14  
EID13  
EID12  
EID11  
EID9  
EID8  
SID2  
SID1  
SID0  
EXIDE  
EID17  
SID4  
EID16  
SID3  
SID10  
SID9  
SID8  
SID7  
SID6  
SID5  
TXABT  
TXLARB  
TXERR  
TXREQ  
TXPRI1  
TXPRI0  
Legend:  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
Note 1:  
These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as ‘0’s.  
2:  
3:  
Bit 21 of the TBLPTRU allows access to the device configuration bits.  
RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read ‘0’ in all other oscillator modes.  
DS41159E-page 52  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TABLE 4-2:  
REGISTER FILE SUMMARY (CONTINUED)  
Value on Details on  
Bit 0  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
POR, BOR  
Page:  
CANSTATRO4 OPMODE2 OPMODE1 OPMODE0  
TXB2D74  
TXB2D64  
TXB2D54  
TXB2D44  
TXB2D34  
TXB2D24  
TXB2D14  
TXB2D04  
ICODE2  
TXB2D73  
TXB2D63  
TXB2D53  
TXB2D43  
TXB2D33  
TXB2D23  
TXB2D13  
TXB2D03  
DLC3  
ICODE1  
ICODE0  
xxx- xxx-  
33, 202  
35, 208  
35, 208  
35, 208  
35, 208  
35, 208  
35, 208  
35, 208  
35, 208  
35, 209  
35, 208  
35, 207  
35, 207  
35, 207  
35, 206  
35, 217  
35, 217  
36, 217  
36, 216  
36, 217  
36, 217  
36, 217  
36, 216  
36, 216  
36, 216  
36, 215  
36, 215  
36, 216  
36, 216  
36, 215  
36, 215  
36, 216  
36, 216  
36, 215  
36, 215  
36, 216  
36, 216  
36, 215  
36, 215  
36, 216  
36, 216  
36, 215  
36, 215  
36, 216  
36, 216  
36, 215  
36, 215  
TXB2D7  
TXB2D77  
TXB2D67  
TXB2D57  
TXB2D47  
TXB2D37  
TXB2D27  
TXB2D17  
TXB2D07  
TXB2D76  
TXB2D66  
TXB2D56  
TXB2D46  
TXB2D36  
TXB2D26  
TXB2D16  
TXB2D06  
TXRTR  
EID6  
TXB2D75  
TXB2D65  
TXB2D55  
TXB2D45  
TXB2D35  
TXB2D25  
TXB2D15  
TXB2D05  
TXB2D72 TXB2D71 TXB2D70 xxxx xxxx  
TXB2D62 TXB2D61 TXB2D60 xxxx xxxx  
TXB2D52 TXB2D51 TXB2D50 xxxx xxxx  
TXB2D42 TXB2D41 TXB2D40 xxxx xxxx  
TXB2D32 TXB2D31 TXB2D30 xxxx xxxx  
TXB2D22 TXB2D21 TXB2D20 xxxx xxxx  
TXB2D6  
TXB2D5  
TXB2D4  
TXB2D3  
TXB2D2  
TXB2D1  
TXB2D12  
TXB2D11 TXB2D10 xxxx xxxx  
TXB2D0  
TXB2D02 TXB2D01 TXB2D00 xxxx xxxx  
TXB2DLC  
TXB2EIDL  
TXB2EIDH  
TXB2SIDL  
TXB2SIDH  
TXB2CON  
RXM1EIDL  
RXM1EIDH  
RXM1SIDL  
RXM1SIDH  
RXM0EIDL  
RXM0EIDH  
RXM0SIDL  
RXM0SIDH  
RXF5EIDL  
RXF5EIDH  
RXF5SIDL  
RXF5SIDH  
RXF4EIDL  
RXF4EIDH  
RXF4SIDL  
RXF4SIDH  
RXF3EIDL  
RXF3EIDH  
RXF3SIDL  
RXF3SIDH  
RXF2EIDL  
RXF2EIDH  
RXF2SIDL  
RXF2SIDH  
RXF1EIDL  
RXF1EIDH  
RXF1SIDL  
RXF1SIDH  
RXF0EIDL  
RXF0EIDH  
RXF0SIDL  
RXF0SIDH  
DLC2  
EID2  
EID10  
DLC1  
EID1  
EID9  
EID17  
SID4  
TXPRI1  
EID1  
EID9  
EID17  
SID4  
EID1  
EID9  
EID17  
SID4  
EID1  
EID9  
EID17  
SID4  
EID1  
EID9  
EID17  
SID4  
EID1  
EID9  
EID17  
SID4  
EID1  
EID9  
EID17  
SID4  
EID1  
EID9  
EID17  
SID4  
EID1  
EID9  
EID17  
SID4  
DLC0  
EID0  
EID8  
EID16  
SID3  
TXPRI0  
EID0  
EID8  
EID16  
SID3  
EID0  
EID8  
EID16  
SID3  
EID0  
EID8  
EID16  
SID3  
EID0  
EID8  
EID16  
SID3  
EID0  
EID8  
EID16  
SID3  
EID0  
EID8  
EID16  
SID3  
EID0  
EID8  
EID16  
SID3  
EID0  
EID8  
EID16  
SID3  
-x-- xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
-000 0-00  
xxxx xxxx  
xxxx xxxx  
xxx- --xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- --xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
EID7  
EID5  
EID4  
EID3  
EID15  
SID2  
EID14  
SID1  
EID13  
SID0  
EID12  
EID11  
EXIDE  
SID6  
SID10  
SID9  
SID8  
SID7  
SID5  
TXABT  
EID6  
TXLARB  
EID5  
TXERR  
EID4  
TXREQ  
EID3  
EID7  
EID2  
EID10  
EID15  
SID2  
EID14  
SID1  
EID13  
SID0  
EID12  
EID11  
SID10  
EID7  
SID9  
SID8  
SID7  
SID6  
SID5  
EID2  
EID10  
EID6  
EID5  
EID4  
EID3  
EID15  
SID2  
EID14  
SID1  
EID13  
SID0  
EID12  
EID11  
SID10  
EID7  
SID9  
SID8  
SID7  
SID6  
SID5  
EID2  
EID10  
EID6  
EID5  
EID4  
EID3  
EID15  
SID2  
EID14  
SID1  
EID13  
SID0  
EID12  
EID11  
EXIDEN  
SID6  
SID10  
EID7  
SID9  
SID8  
SID7  
SID5  
EID2  
EID10  
EID6  
EID5  
EID4  
EID3  
EID15  
SID2  
EID14  
SID1  
EID13  
SID0  
EID12  
EID11  
EXIDEN  
SID6  
SID10  
EID7  
SID9  
SID8  
SID7  
SID5  
EID2  
EID10  
EID6  
EID5  
EID4  
EID3  
EID15  
SID2  
EID14  
SID1  
EID13  
SID0  
EID12  
EID11  
EXIDEN  
SID6  
SID10  
EID7  
SID9  
SID8  
SID7  
SID5  
EID2  
EID10  
EID6  
EID5  
EID4  
EID3  
EID15  
SID2  
EID14  
SID1  
EID13  
SID0  
EID12  
EID11  
EXIDEN  
SID6  
SID10  
EID7  
SID9  
SID8  
SID7  
SID5  
EID2  
EID10  
EID6  
EID5  
EID4  
EID3  
EID15  
SID2  
EID14  
SID1  
EID13  
SID0  
EID12  
EID11  
EXIDEN  
SID6  
SID10  
EID7  
SID9  
SID8  
SID7  
SID5  
EID2  
EID10  
EID6  
EID5  
EID4  
EID3  
EID15  
SID2  
EID14  
SID1  
EID13  
SID0  
EID12  
EID11  
EXIDEN  
SID6  
SID10  
SID9  
SID8  
SID7  
SID5  
Legend:  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
Note 1:  
These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as ‘0’s.  
2:  
3:  
Bit 21 of the TBLPTRU allows access to the device configuration bits.  
RA6 and associated bits are configured as port pins in RCIO and ECIO Oscillator mode only and read ‘0’ in all other oscillator modes.  
© 2006 Microchip Technology Inc.  
DS41159E-page 53  
PIC18FXX8  
4.10 Access Bank  
4.11 Bank Select Register (BSR)  
The Access Bank is an architectural enhancement that  
is very useful for C compiler code optimization. The  
techniques used by the C compiler are also useful for  
programs written in assembly.  
The need for a large general purpose memory space  
dictates a RAM banking scheme. The data memory is  
partitioned into sixteen banks. When using direct  
addressing, the BSR should be configured for the  
desired bank.  
This data memory region can be used for:  
BSR<3:0> holds the upper 4 bits of the 12-bit RAM  
address. The BSR<7:4> bits will always read ‘0’s and  
writes will have no effect.  
• Intermediate computational values  
• Local variables of subroutines  
• Faster context saving/switching of variables  
• Common variables  
A
MOVLB instruction has been provided in the  
instruction set to assist in selecting banks.  
• Faster evaluation/control of SFRs (no banking)  
If the currently selected bank is not implemented, any  
read will return all ‘0’s and all writes are ignored. The  
Status register bits will be set/cleared as appropriate for  
the instruction performed.  
The Access Bank is comprised of the upper 160 bytes  
in Bank 15 (SFRs) and the lower 96 bytes in Bank 0.  
These two sections will be referred to as Access Bank  
High and Access Bank Low, respectively. Figure 4-6  
indicates the Access Bank areas.  
Each Bank extends up to FFh (256 bytes). All data  
memory is implemented as static RAM.  
A bit in the instruction word specifies if the operation is  
to occur in the bank specified by the BSR register or in  
the Access Bank.  
A MOVFFinstruction ignores the BSR since the 12-bit  
addresses are embedded into the instruction word.  
Section 4.12 “Indirect Addressing, INDF and FSR  
Registers” provides a description of indirect address-  
ing, which allows linear addressing of the entire RAM  
space.  
When forced in the Access Bank (a = 0), the last  
address in Access Bank Low is followed by the first  
address in Access Bank High. Access Bank High maps  
most of the Special Function Registers so that these  
registers can be accessed without any software  
overhead.  
FIGURE 4-7:  
DIRECT ADDRESSING  
Direct Addressing  
(3)  
From Opcode  
BSR<3:0>  
7
0
(2)  
(3)  
Bank Select  
Location Select  
00h  
000h  
01h  
100h  
0Eh  
0Fh  
0E00h  
0F00h  
Data  
Memory(1)  
0FFh  
1FFh  
0EFFh  
0FFFh  
Bank 0  
Bank 1  
Bank 14 Bank 15  
Note 1: For register file map detail, see Table 4-1.  
2: The access bit of the instruction can be used to force an override of the selected bank (BSR<3:0>) to the  
registers of the Access Bank.  
3: The MOVFFinstruction embeds the entire 12-bit address in the instruction.  
DS41159E-page 54  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
If INDF0, INDF1 or INDF2 are read indirectly via an  
FSR, all ‘0’s are read (zero bit is set). Similarly, if  
INDF0, INDF1 or INDF2 are written to indirectly, the  
operation will be equivalent to a NOPinstruction and the  
Status bits are not affected.  
4.12 Indirect Addressing, INDF and  
FSR Registers  
Indirect addressing is a mode of addressing data mem-  
ory where the data memory address in the instruction  
is not fixed. A SFR register is used as a pointer to the  
data memory location that is to be read or written. Since  
this pointer is in RAM, the contents can be modified by  
the program. This can be useful for data tables in the  
data memory and for software stacks. Figure 4-8  
shows the operation of indirect addressing. This shows  
the moving of the value to the data memory address  
specified by the value of the FSR register.  
4.12.1  
INDIRECT ADDRESSING  
OPERATION  
Each FSR register has an INDF register associated with  
it, plus four additional register addresses. Performing an  
operation on one of these five registers determines how  
the FSR will be modified during indirect addressing.  
• When data access is done to one of the five  
INDFn locations, the address selected will  
configure the FSRn register to:  
Indirect addressing is possible by using one of the INDF  
registers. Any instruction using the INDF register actually  
accesses the register indicated by the File Select Regis-  
ter, FSR. Reading the INDF register itself, indirectly  
(FSR = 0), will read 00h. Writing to the INDF register  
indirectly, results in a no operation. The FSR register  
contains a 12-bit address which is shown in Figure 4-8.  
- Do nothing to FSRn after an indirect access  
(no change) – INDFn  
- Auto-decrement FSRn after an indirect  
access (post-decrement) – POSTDECn  
- Auto-increment FSRn after an indirect  
access (post-increment) – POSTINCn  
The INDFn (0 n 2) register is not a physical register.  
Addressing INDFn actually addresses the register  
whose address is contained in the FSRn register  
(FSRn is a pointer). This is indirect addressing.  
- Auto-increment FSRn before an indirect  
access (pre-increment) – PREINCn  
- Use the value in the WREG register as an  
offset to FSRn. Do not modify the value of the  
WREG or the FSRn register after an indirect  
access (no change) – PLUSWn  
Example 4-5 shows a simple use of indirect addressing  
to clear the RAM in Bank 1 (locations 100h-1FFh) in a  
minimum number of instructions.  
When using the auto-increment or auto-decrement  
features, the effect on the FSR is not reflected in the  
Status register. For example, if the indirect address  
causes the FSR to equal ‘0’, the Z bit will not be set.  
EXAMPLE 4-5:  
HOW TO CLEAR RAM  
(BANK 1) USING  
INDIRECT ADDRESSING  
FSR0, 100h ;  
LFSR  
NEXT  
CLRF  
POSTINC0  
; Clear INDF  
; register  
; & inc pointer  
; All done  
; w/ Bank1?  
; NO, clear next  
;
Incrementing or decrementing an FSR affects all  
12 bits. That is, when FSRnL overflows from an  
increment, FSRnH will be incremented automatically.  
BTFSS  
BRA  
FSR0H, 1  
NEXT  
Adding these features allows the FSRn to be used as a  
software stack pointer in addition to its uses for table  
operations in data memory.  
CONTINUE  
:
; YES, continue  
Each FSR has an address associated with it that  
performs an indexed indirect access. When a data  
access to this INDFn location (PLUSWn) occurs, the  
FSRn is configured to add the 2’s complement value in  
the WREG register and the value in FSR to form the  
address before an indirect access. The FSR value is not  
changed.  
There are three indirect addressing registers. To  
address the entire data memory space (4096 bytes),  
these registers are 12 bits wide. To store the 12 bits of  
addressing information, two 8-bit registers are  
required. These indirect addressing registers are:  
1. FSR0: composed of FSR0H:FSR0L  
2. FSR1: composed of FSR1H:FSR1L  
3. FSR2: composed of FSR2H:FSR2L  
If an FSR register contains a value that indicates one of  
the INDFn, an indirect read will read 00h (zero bit is  
set), while an indirect write will be equivalent to a NOP  
(Status bits are not affected).  
In addition, there are registers INDF0, INDF1 and  
INDF2, which are not physically implemented. Reading  
or writing to these registers activates indirect address-  
ing, with the value in the corresponding FSR register  
being the address of the data.  
If an indirect addressing operation is done where the  
target address is an FSRnH or FSRnL register, the  
write operation will dominate over the pre- or  
post-increment/decrement functions.  
If an instruction writes a value to INDF0, the value will  
be written to the address indicated by FSR0H:FSR0L.  
A read from INDF1 reads the data from the address  
indicated by FSR1H:FSR1L. INDFn can be used in  
code anywhere an operand can be used.  
© 2006 Microchip Technology Inc.  
DS41159E-page 55  
PIC18FXX8  
FIGURE 4-8:  
INDIRECT ADDRESSING  
Indirect Addressing  
FSR Register  
11  
8
7
0
FSRnH  
FSRnL  
Location Select  
0000h  
Data  
Memory(1)  
0FFFh  
Note 1: For register file map detail, see Table 4-1.  
DS41159E-page 56  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the Status register as  
000u u1uu(where u= unchanged).  
4.13 Status Register  
The Status register, shown in Register 4-2, contains the  
arithmetic status of the ALU. The Status register can be  
the destination for any instruction, as with any other  
register. If the Status register is the destination for an  
instruction that affects the Z, DC, C, OV or N bits, then  
the write to these five bits is disabled. These bits are set  
or cleared according to the device logic. Therefore, the  
result of an instruction with the Status register as  
destination may be different than intended.  
It is recommended, therefore, that only BCF, BSF,  
SWAPF, MOVFF and MOVWF instructions are used to  
alter the Status register, because these instructions do  
not affect the Z, C, DC, OV or N bits from the Status  
register. For other instructions which do not affect the  
status bits, see Table 25-2.  
Note: The C and DC bits operate as a Borrow  
and Digit Borrow bit respectively, in  
subtraction.  
REGISTER 4-2:  
STATUS REGISTER  
U-0  
U-0  
U-0  
R/W-x  
N
R/W-x  
OV  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
bit 7  
bit 0  
bit 7-5 Unimplemented: Read as ‘0’  
bit 4  
bit 3  
N: Negative bit  
This bit is used for signed arithmetic (2’s complement). It indicates whether the result of the ALU  
operation was negative (ALU MSb = 1).  
1= Result was negative  
0= Result was positive  
OV: Overflow bit  
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the 7-bit  
magnitude which causes the sign bit (bit 7) to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 2  
bit 1  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit Carry/Borrow bit  
For ADDWF, ADDLW, SUBLWand SUBWFinstructions:  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
Note:  
For Borrow, the polarity is reversed. A subtraction is executed by adding the 2’s  
complement of the second operand. For rotate (RRCF, RRNCF, RLCF and RLNCF)  
instructions, this bit is loaded with either bit 4 or bit 3 of the source register.  
bit 0  
C: Carry/Borrow bit  
For ADDWF, ADDLW, SUBLWand SUBWF instructions:  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note:  
For Borrow, the polarity is reversed. A subtraction is executed by adding the 2’s  
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is  
loaded with either the high or low-order bit of the source register.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 57  
PIC18FXX8  
4.14 RCON Register  
Note 1: If the BOREN configuration bit is set,  
BOR is ‘1’ on Power-on Reset. If the  
BOREN configuration bit is clear, BOR is  
unknown on Power-on Reset.  
The Reset Control (RCON) register contains flag bits  
that allow differentiation between the sources of a  
device Reset. These flags include the TO, PD, POR,  
BOR and RI bits. Thisregisteris readableandwritable.  
The BOR status bit is a “don’t care” and is  
not necessarily predictable if the brown-  
out circuit is disabled (the BOREN config-  
uration bit is clear). BOR must then be set  
by the user and checked on subsequent  
Resets to see if it is clear, indicating a  
brown-out has occurred.  
2: It is recommended that the POR bit be set  
after  
a Power-on Reset has been  
detected, so that subsequent Power-on  
Resets may be detected.  
REGISTER 4-3:  
RCON: RESET CONTROL REGISTER  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R/W  
TO  
R/W  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
bit 7  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16CXXX Compatibility mode)  
bit 6-5 Unimplemented: Read as ‘0’  
bit 4  
RI: RESETInstruction Flag bit  
1= The RESETinstruction was not executed  
0= The RESETinstruction was executed causing a device Reset  
(must be set in software after a Brown-out Reset occurs)  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Watchdog Time-out Flag bit  
1= After power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down Detection Flag bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
POR: Power-on Reset Status bit  
1= A Power-on Reset has not occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
BOR: Brown-out Reset Status bit  
1= A Brown-out Reset has not occurred  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS41159E-page 58  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
5.1  
EEADR Register  
5.0  
DATA EEPROM MEMORY  
The address register can address up to a maximum of  
256 bytes of data EEPROM.  
The data EEPROM is readable and writable during  
normal operation over the entire VDD range. The data  
memory is not directly mapped in the register file  
space. Instead, it is indirectly addressed through the  
Special Function Registers (SFR).  
5.2  
EECON1 and EECON2 Registers  
EECON1 is the control register for EEPROM memory  
accesses.  
There are four SFRs used to read and write the  
program and data EEPROM memory. These registers  
are:  
EECON2 is not a physical register. Reading EECON2  
will read all ‘0’s. The EECON2 register is used  
exclusively in the EEPROM write sequence.  
• EECON1  
• EECON2  
• EEDATA  
• EEADR  
Control bits, RD and WR, initiate read and write opera-  
tions, respectively. These bits cannot be cleared, only  
set, in software. They are cleared in hardware at the  
completion of the read or write operation. The inability  
to clear the WR bit in software prevents the accidental  
or premature termination of a write operation.  
The EEPROM data memory allows byte read and write.  
When interfacing to the data memory block, EEDATA  
holds the 8-bit data for read/write and EEADR holds the  
address of the EEPROM location being accessed. The  
PIC18FXX8 devices have 256 bytes of data EEPROM  
with an address range from 00h to FFh.  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit is  
set when a write operation is interrupted by a MCLR  
Reset, or a WDT Time-out Reset, during normal oper-  
ation. In these situations, the user can check the  
WRERR bit and rewrite the location. It is necessary to  
reload the data and address registers (EEDATA and  
EEADR) due to the Reset condition forcing the  
contents of the registers to zero.  
The EEPROM data memory is rated for high erase/  
write cycles. A byte write automatically erases the loca-  
tion and writes the new data (erase-before-write). The  
write time is controlled by an on-chip timer. The write  
time will vary with voltage and temperature, as well as  
from chip-to-chip. Please refer to the specifications for  
exact limits.  
Note:  
Interrupt flag bit, EEIF in the PIR2 register,  
is set when write is complete. It must be  
cleared in software.  
© 2006 Microchip Technology Inc.  
DS41159E-page 59  
PIC18FXX8  
REGISTER 5-1:  
EECON1: EEPROM CONTROL REGISTER 1  
R/W-x  
R/W-x  
CFGS  
U-0  
R/W-0  
FREE  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
EEPGD  
WRERR  
bit 7  
bit 0  
bit 7  
bit 6  
EEPGD: Flash Program or Data EEPROM Memory Select bit  
1= Access program Flash memory  
0= Access data EEPROM memory  
CFGS: Flash Program/Data EE or Configuration Select bit  
1= Access Configuration registers  
0= Access program Flash or data EEPROM memory  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
FREE: Flash Row Erase Enable bit  
1= Erase the program memory row addressed by TBLPTR on the next WR command  
(reset by hardware)  
0= Perform write only  
bit 3  
WRERR: Write Error Flag bit  
1= A write operation is prematurely terminated  
(any MCLR or any WDT Reset during self-timed programming in normal operation)  
0= The write operation completed  
Note:  
When a WRERR occurs, the EEPGD or FREE bits are not cleared. This allows  
tracing of the error condition.  
bit 2  
bit 1  
WREN: Write Enable bit  
1= Allows write cycles  
0= Inhibits write to the EEPROM or Flash memory  
WR: Write Control bit  
1= Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle  
(The operation is self-timed and the bit is cleared by hardware once write is complete. The  
WR bit can only be set (not cleared) in software.)  
0= Write cycle is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read  
(Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared)  
in software. RD bit cannot be set when EEPGD = 1.)  
0= Does not initiate an EEPROM read  
Legend:  
R = Readable bit  
W = Writable bit  
S = Settable bit  
U = Unimplemented bit, read as ‘0’  
x = Bit is unknown  
-n = Value at POR ‘1’ = Bit is set  
‘0’ = Bit is cleared  
DS41159E-page 60  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
5.3  
Reading the Data EEPROM  
Memory  
5.4  
Writing to the Data EEPROM  
Memory  
To read a data memory location, the user must write the  
address to the EEADR register, clear the EEPGD and  
CFGS control bits (EECON1<7:6>) and then set  
control bit RD (EECON1<0>). The data is available in  
the very next instruction cycle of the EEDATA register;  
therefore, it can be read by the next instruction.  
EEDATA will hold this value until another read  
operation or until it is written to by the user (during a  
write operation).  
To write an EEPROM data location, the address must  
first be written to the EEADR register and the data writ-  
ten to the EEDATA register. Then, the sequence in  
Example 5-2 must be followed to initiate the write cycle.  
The write will not initiate if the above sequence is not  
exactly followed (write 55h to EECON2, write 0AAh to  
EECON2, then set WR bit) for each byte. It is strongly  
recommended that interrupts be disabled during this  
code segment.  
Additionally, the WREN bit in EECON1 must be set to  
enable writes. This mechanism prevents accidental  
writes to data EEPROM due to unexpected code exe-  
cution (i.e., runaway programs). The WREN bit should  
be kept clear at all times, except when updating the  
EEPROM. The WREN bit is not cleared by hardware.  
EXAMPLE 5-1:  
DATA EEPROM READ  
MOVLW DATA_EE_ADDR  
MOVWF EEADR  
;
;Data Memory Address  
;to read  
BCF  
BCS  
BSF  
MOVF  
EECON1, EEPGD ;Point to DATA memory  
EECON1, CFGS  
EECON1, RD  
EEDATA, W  
;
After a write sequence has been initiated, clearing the  
WREN bit will not affect the current write cycle. The WR  
bit will be inhibited from being set unless the WREN bit  
is set. The WREN bit must be set on a previous instruc-  
tion. Both WR and WREN cannot be set with the same  
instruction.  
;EEPROM Read  
;W = EEDATA  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EEPROM Write Complete  
Interrupt Flag bit (EEIF) is set. The user may either  
enable this interrupt or roll this bit. EEIF must be  
cleared by software.  
EXAMPLE 5-2:  
DATA EEPROM WRITE  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BCF  
DATA_EE_ADDR  
EEADR  
DATA_EE_DATA  
EEDATA  
;
; Data Memory Address to read  
;
; Data Memory Value to write  
EECON1, EEPGD ; Point to DATA memory  
BCF  
BSF  
EECON1, CFGS  
EECON1, WREN  
; Access program FLASH or Data EEPROM memory  
; Enable writes  
BCF  
INTCON, GIE  
55h  
EECON2  
0AAh  
EECON2  
; Disable interrupts  
;
; Write 55h  
;
; Write AAh  
; Set WR bit to begin write  
; Enable interrupts  
Required  
Sequence  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
EECON1, WR  
INTCON, GIE  
BSF  
.
; user code execution  
.
.
BCF  
EECON1, WREN  
; Disable writes on write complete (EEIF set)  
© 2006 Microchip Technology Inc.  
DS41159E-page 61  
PIC18FXX8  
5.5  
Write Verify  
5.7  
Operation During Code-Protect  
Depending on the application, good programming  
practice may dictate that the value written to the  
memory should be verified against the original value.  
This should be used in applications where excessive  
writes can stress bits near the specification limit.  
Data EEPROM memory has its own code-protect  
mechanism. External read and write operations are  
disabled if either of these mechanisms are enabled.  
The microcontroller itself can both read and write to the  
internal data EEPROM, regardless of the state of the  
code-protect configuration bit. Refer to Section 24.0  
“Special Features of the CPU” for additional  
information.  
Generally, a write failure will be a bit which was written  
as a ‘1’, but reads back as a ‘0’ (due to leakage off the  
cell).  
5.6  
Protection Against Spurious Write  
5.8  
Using the Data EEPROM  
There are conditions when the device may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built-in. On power-up, the WREN bit is cleared.  
Also, the Power-up Timer (72 ms duration) prevents  
EEPROM write.  
The data EEPROM is a high-endurance, byte address-  
able array that has been optimized for the storage of  
frequently changing information (e.g., program  
variables or other data that are updated often).  
Frequently changing values will typically be updated  
more often than specification D124 or D124A. If this is  
not the case, an array refresh must be performed. For  
this reason, variables that change infrequently (such as  
constants, IDs, calibration, etc.) should be stored in  
Flash program memory. A simple data EEPROM  
refresh routine is shown in Example 5-3.  
The write initiate sequence and the WREN bit together  
reduce the probability of an accidental write during  
brown-out, power glitch or software malfunction.  
Note:  
If data EEPROM is only used to store  
constants and/or data that changes rarely,  
an array refresh is likely not required. See  
specification D124 or D124A.  
EXAMPLE 5-3:  
DATA EEPROM REFRESH ROUTINE  
CLRF  
BCF  
BCF  
BCF  
BSF  
EEADR  
; Start at address 0  
EECON1, CFGS  
EECON1, EEPGD  
INTCON, GIE  
EECON1, WREN  
; Set for memory  
; Set for Data EEPROM  
; Disable interrupts  
; Enable writes  
; Loop to refresh array  
; Read current address  
;
; Write 55h  
;
; Write AAh  
; Set WR bit to begin write  
; Wait for write to complete  
Loop  
BSF  
EECON1, RD  
55h  
EECON2  
0AAh  
EECON2  
EECON1, WR  
EECON1, WR  
$-2  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
BTFSC  
BRA  
INCFSZ  
BRA  
EEADR, F  
Loop  
; Increment address  
; Not zero, do it again  
BCF  
BSF  
EECON1, WREN  
INTCON, GIE  
; Disable writes  
; Enable interrupts  
DS41159E-page 62  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TABLE 5-1:  
REGISTERS ASSOCIATED WITH DATA EEPROM MEMORY  
Value on  
Value on:  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
POR, BOR  
Resets  
INTCON  
EEADR  
GIE/GIEH PEIE/GIEL TMR0IE  
EEPROM Address Register  
INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
EEDATA EEPROM Data Register  
EECON2 EEPROM Control Register 2 (not a physical register)  
EECON1  
IPR2  
EEPGD  
CFGS  
CMIP  
CMIF  
CMIE  
FREE  
EEIP  
EEIF  
EEIE  
WRERR WREN  
WR  
RD  
xx-0 x000 uu-0 u000  
-1-1 1111 -1-1 1111  
-0-0 0000 -0-0 0000  
-0-0 0000 -0-0 0000  
(1)  
(1)  
(1)  
BCLIP  
BCLIF  
BCLIE  
LVDIP  
LVDIF  
LVDIE  
TMR3IP ECCP1IP  
TMR3IF ECCP1IF  
PIR2  
PIE2  
TMR3IE ECCP1IE  
Legend:  
x= unknown, u= unchanged, r = reserved, -= unimplemented, read as ‘0’.  
Shaded cells are not used during Flash/EEPROM access.  
Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as ‘0’s.  
© 2006 Microchip Technology Inc.  
DS41159E-page 63  
PIC18FXX8  
NOTES:  
DS41159E-page 64  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
6.1  
Table Reads and Table Writes  
6.0  
FLASH PROGRAM MEMORY  
In order to read and write program memory, there are  
two operations that allow the processor to move bytes  
between the program memory space and the data  
RAM:  
The Flash program memory is readable, writable and  
erasable during normal operation over the entire VDD  
range.  
A read from program memory is executed on one byte  
at a time. A write to program memory is executed on  
blocks of 8 bytes at a time. Program memory is erased  
in blocks of 64 bytes at a time. A bulk erase operation  
may not be issued from user code.  
Table Read (TBLRD)  
Table Write (TBLWT)  
The program memory space is 16 bits wide, while the  
data RAM space is 8 bits wide. Table reads and table  
writes move data between these two memory spaces  
through an 8-bit register (TABLAT).  
Writing or erasing program memory will cease instruc-  
tion fetches until the operation is complete. The  
program memory cannot be accessed during the write  
or erase, therefore, code cannot execute. An internal  
programming timer terminates program memory writes  
and erases.  
Table read operations retrieve data from program  
memory and place it into the data RAM space.  
Figure 6-1 shows the operation of a table read with  
program memory and data RAM.  
A value written to program memory does not need to be  
a valid instruction. Executing a program memory  
location that forms an invalid instruction results in a  
NOP.  
Table write operations store data from the data memory  
space into holding registers in program memory. The  
procedure to write the contents of the holding registers  
into program memory is detailed in Section 6.5  
“Writing to Flash Program Memory”. Figure 6-2  
shows the operation of a table write with program  
memory and data RAM.  
Table operations work with byte entities. A table block  
containing data, rather than program instructions, is not  
required to be word aligned. Therefore, a table block  
can start and end at any byte address. If a table write is  
being used to write executable code into program  
memory, program instructions will need to be word  
aligned.  
FIGURE 6-1:  
TABLE READ OPERATION  
Instruction: TBLRD*  
Program Memory  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: Table Pointer points to a byte in program memory.  
© 2006 Microchip Technology Inc.  
DS41159E-page 65  
PIC18FXX8  
FIGURE 6-2:  
TABLE WRITE OPERATION  
Instruction: TBLWT*  
Program Memory  
Holding Registers  
(1)  
Table Pointer  
Table Latch (8-bit)  
TABLAT  
TBLPTRU TBLPTRH TBLPTRL  
Program Memory  
(TBLPTR)  
Note 1: Table Pointer actually points to one of eight holding registers, the address of which is determined by TBLPTRL<2:0>.  
The process for physically writing data to the program memory array is discussed in Section 6.5 “Writing to Flash  
Program Memory”.  
The FREE bit, when set, will allow a program memory  
6.2  
Control Registers  
erase operation. When the FREE bit is set, the erase  
operation is initiated on the next WR command. When  
FREE is clear, only writes are enabled.  
Several control registers are used in conjunction with  
the TBLRDand TBLWTinstructions. These include the:  
• EECON1 register  
• EECON2 register  
• TABLAT register  
• TBLPTR registers  
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear. The WRERR bit is  
set when a write operation is interrupted by a MCLR  
Reset or a WDT Time-out Reset during normal opera-  
tion. In these situations, the user can check the  
WRERR bit and rewrite the location. It is necessary to  
reload the data and address registers (EEDATA and  
EEADR) due to Reset values of zero.  
6.2.1  
EECON1 AND EECON2 REGISTERS  
EECON1 is the control register for memory accesses.  
EECON2 is not a physical register. Reading EECON2  
will read all ‘0’s. The EECON2 register is used  
exclusively in the memory write and erase sequences.  
Control bits, RD and WR, initiate read and write opera-  
tions, respectively. These bits cannot be cleared, only  
set, in software. They are cleared in hardware at the  
completion of the read or write operation. The inability  
to clear the WR bit in software prevents the accidental  
or premature termination of a write operation. The RD  
bit cannot be set when accessing program memory  
(EEPGD = 1).  
Control bit EEPGD determines if the access will be a  
program or data EEPROM memory access. When  
clear, any subsequent operations will operate on the  
data EEPROM memory. When set, any subsequent  
operations will operate on the program memory.  
Control bit CFGS determines if the access will be to the  
Configuration/Calibration registers or to program  
memory/data EEPROM memory. When set,  
subsequent operations will operate on Configuration  
registers regardless of EEPGD (see Section 24.0  
“Special Features of the CPU”). When clear, memory  
selection access is determined by EEPGD.  
Note: Interrupt flag bit, EEIF in the PIR2 register,  
is set when write is complete. It must be  
cleared in software.  
DS41159E-page 66  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 6-1:  
EECON1: EEPROM CONTROL REGISTER 1  
R/W-x  
R/W-x  
CFGS  
U-0  
R/W-0  
FREE  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-0  
RD  
EEPGD  
WRERR  
bit 7  
bit 0  
bit 7  
bit 6  
EEPGD: Flash Program or Data EEPROM Memory Select bit  
1= Access program Flash memory  
0= Access data EEPROM memory  
CFGS: Flash Program/Data EE or Configuration Select bit  
1= Access Configuration registers  
0= Access program Flash or data EEPROM memory  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
FREE: Flash Row Erase Enable bit  
1= Erase the program memory row addressed by TBLPTR on the next WR command  
(cleared by completion of erase operation)  
0= Perform write only  
bit 3  
WRERR: Write Error Flag bit  
1= A write operation is prematurely terminated  
(any MCLR or any WDT Reset during self-timed programming in normal operation)  
0= The write operation completed  
Note:  
When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows  
tracing of the error condition.  
bit 2  
bit 1  
WREN: Write Enable bit  
1= Allows write cycles  
0= Inhibits write to the EEPROM or Flash memory  
WR: Write Control bit  
1= Initiates a data EEPROM erase/write cycle or a program memory erase cycle or write cycle  
(The operation is self-timed and the bit is cleared by hardware once write is complete. The  
WR bit can only be set (not cleared) in software.)  
0= Write cycle to the EEPROM is complete  
bit 0  
RD: Read Control bit  
1= Initiates an EEPROM read  
(Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared)  
in software. RD bit cannot be set when EEPGD = 1.)  
0= Does not initiate an EEPROM read  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
S = Settable bit  
U = Unimplemented bit, read as ‘0’  
x = Bit is unknown  
‘0’ = Bit is cleared  
© 2006 Microchip Technology Inc.  
DS41159E-page 67  
PIC18FXX8  
6.2.2  
TABLAT – TABLE LATCH REGISTER  
6.2.4  
TABLE POINTER BOUNDARIES  
The Table Latch (TABLAT) is an 8-bit register mapped  
into the SFR space. The Table Latch is used to hold  
8-bit data during data transfers between program  
memory and data RAM.  
TBLPTR is used in reads, writes and erases of the  
Flash program memory.  
When a TBLRD is executed, all 22 bits of the Table  
Pointer determine which byte is read from program  
memory into TABLAT.  
6.2.3  
TBLPTR – TABLE POINTER  
REGISTER  
When a TBLWTis executed, the three LSbs of the Table  
Pointer (TBLPTR<2:0>) determine which of the eight  
program memory holding registers is written to. When  
the timed write to program memory (long write) begins,  
the 19 MSbs of the Table Pointer, TBLPTR  
(TBLPTR<21:3>), will determine which program  
memory block of 8 bytes is written to. For more detail,  
see Section 6.5 “Writing to Flash Program Memory”.  
The Table Pointer (TBLPTR) addresses a byte within  
the program memory. The TBLPTR is comprised of  
three SFR registers: Table Pointer Upper Byte, Table  
Pointer High Byte and Table Pointer Low Byte  
(TBLPTRU:TBLPTRH:TBLPTRL). These three regis-  
ters join to form a 22-bit wide pointer. The low-order  
21 bits allow the device to address up to 2 Mbytes of  
program memory space. The 22nd bit allows access to  
the device ID, the user ID and the configuration bits.  
When an erase of program memory is executed, the  
16 MSbs of the Table Pointer (TBLPTR<21:6>) point to  
the 64-byte block that will be erased. The Least  
Significant bits (TBLPTR<5:0>) are ignored.  
The Table Pointer, TBLPTR, is used by the TBLRDand  
TBLWTinstructions. These instructions can update the  
TBLPTR in one of four ways based on the table  
operation. These operations are shown in Table 6-1.  
These operations on the TBLPTR only affect the  
low-order 21 bits.  
Figure 6-3 describes the relevant boundaries of  
TBLPTR based on Flash program memory operations.  
TABLE 6-1:  
Example  
TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS  
Operation on Table Pointer  
TBLRD*  
TBLWT*  
TBLPTR is not modified  
TBLRD*+  
TBLWT*+  
TBLPTR is incremented after the read/write  
TBLPTR is decremented after the read/write  
TBLPTR is incremented before the read/write  
TBLRD*-  
TBLWT*-  
TBLRD+*  
TBLWT+*  
FIGURE 6-3:  
TABLE POINTER BOUNDARIES BASED ON OPERATION  
21  
16 15  
TBLPTRH  
8
7
TBLPTRL  
0
TBLPTRU  
ERASE – TBLPTR<21:6>  
WRITE – TBLPTR<21:3>  
READ – TBLPTR<21:0>  
DS41159E-page 68  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TBLPTR points to a byte address in program space.  
Executing TBLRD places the byte pointed to into  
TABLAT. In addition, TBLPTR can be modified  
automatically for the next table read operation.  
6.3  
Reading the Flash Program  
Memory  
The TBLRD instruction is used to retrieve data from  
program memory and places it into data RAM. Table  
reads from program memory are performed one byte at  
a time.  
The internal program memory is typically organized by  
words. The Least Significant bit of the address selects  
between the high and low bytes of the word. Figure 6-4  
shows the interface between the internal program  
memory and the TABLAT.  
FIGURE 6-4:  
READS FROM FLASH PROGRAM MEMORY  
Program Memory  
(Even Byte Address)  
(Odd Byte Address)  
TBLPTR = xxxxx1  
TBLPTR = xxxxx0  
Instruction Register  
TABLAT  
Read Register  
FETCH  
TBLRD  
(IR)  
EXAMPLE 6-1:  
READING A FLASH PROGRAM MEMORY WORD  
MOVLW  
CODE_ADDR_UPPER  
TBLPTRU  
CODE_ADDR_HIGH  
TBLPTRH  
CODE_ADDR_LOW  
TBLPTRL  
; Load TBLPTR with the base  
; address of the word  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
READ_WORD  
TBLRD*+  
MOVF  
MOVWF  
TBLRD*+  
MOVF  
; read into TABLAT and increment  
; get data  
TABLAT, W  
WORD_LSB  
; read into TABLAT and increment  
; get data  
TABLAT, W  
WORD_MSB  
MOVWF  
© 2006 Microchip Technology Inc.  
DS41159E-page 69  
PIC18FXX8  
6.4.1  
FLASH PROGRAM MEMORY  
ERASE SEQUENCE  
6.4  
Erasing Flash Program Memory  
The minimum erase block is 32 words or 64 bytes. Only  
through the use of an external programmer, or through  
ICSP control, can larger blocks of program memory be  
bulk erased. Word erase in the Flash array is not  
supported.  
The sequence of events for erasing a block of internal  
program memory location is:  
1. Load Table Pointer with address of row being  
erased.  
When initiating an erase sequence from the micro-  
controller itself, a block of 64 bytes of program memory  
is erased. The Most Significant 16 bits of the  
TBLPTR<21:6> point to the block being erased.  
TBLPTR<5:0> are ignored.  
2. Set the EECON1 register for the erase operation:  
• set the EEPGD bit to point to program memory;  
• clear the CFGS bit to access program memory;  
• set the WREN bit to enable writes;  
• set the FREE bit to enable the erase.  
3. Disable interrupts.  
The EECON1 register commands the erase operation.  
The EEPGD bit must be set to point to the Flash  
program memory. The WREN bit must be set to enable  
write operations. The FREE bit is set to select an erase  
operation.  
4. Write 55h to EECON2.  
5. Write 0AAh to EECON2.  
6. Set the WR bit. This will begin the row erase  
cycle.  
For protection, the write initiate sequence for EECON2  
must be used.  
7. The CPU will stall for duration of the erase  
(about 2 ms using internal timer).  
A long write is necessary for erasing the internal Flash.  
Instruction execution is halted while in a long write  
cycle. The long write will be terminated by the internal  
programming timer.  
8. Re-enable interrupts.  
EXAMPLE 6-2:  
ERASING A FLASH PROGRAM MEMORY ROW  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
upper (CODE_ADDR)  
TBLPTRU  
high (CODE_ADDR)  
TBLPTRH  
low (CODE_ADDR)  
TBLPTRL  
; load TBLPTR with the base  
; address of the memory block  
ERASE_ROW  
BSF  
BCF  
BSF  
BSF  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, WREN  
EECON1, FREE  
INTCON, GIE  
55h  
EECON2  
0AAh  
EECON2  
EECON1, WR  
; point to FLASH program memory  
; access FLASH program memory  
; enable write to memory  
; enable Row Erase operation  
; disable interrupts  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
; write 55H  
Required  
Sequence  
; write 0AAH  
; start erase (CPU stall)  
; NOP needed for proper code execution  
; re-enable interrupts  
NOP  
BSF  
INTCON, GIE  
DS41159E-page 70  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
6.5.1  
FLASH PROGRAM MEMORY WRITE  
SEQUENCE  
6.5  
Writing to Flash Program Memory  
The minimum programming block is 4 words or 8 bytes.  
Word or byte programming is not supported.  
The sequence of events for programming an internal  
program memory location should be:  
Table writes are used internally to load the holding  
registers needed to program the Flash memory. There  
are 8 holding registers used by the table writes for  
programming.  
1. Read 64 bytes into RAM.  
2. Update data values in RAM as necessary.  
3. Load Table Pointer with address being erased.  
4. Do the row erase procedure.  
Since the Table Latch (TABLAT) is only a single byte,  
the TBLWT instruction has to be executed 8 times for  
each programming operation. All of the table write  
operations will essentially be short writes, because only  
the holding registers are written. At the end of updating  
8 registers, the EECON1 register must be written to, to  
start the programming operation with a long write.  
5. Load Table Pointer with address of first byte  
being written.  
6. Write the first 8 bytes into the holding registers  
using the TBLWT instruction, auto-increment  
may be used.  
7. Set the EECON1 register for the write operation:  
• set the EEPGD bit to point to program memory;  
• clear the CFGS bit to access program memory;  
• set the WREN to enable byte writes.  
8. Disable interrupts.  
The long write is necessary for programming the inter-  
nal Flash. Instruction execution is halted while in a long  
write cycle. The long write will be terminated by the  
internal programming timer.  
The EEPROM on-chip timer controls the write time.  
The write/erase voltages are generated by an on-chip  
charge pump rated to operate over the voltage range of  
the device for byte or word operations.  
9. Write 55h to EECON2.  
10. Write AAh to EECON2.  
11. Set the WR bit. This will begin the write cycle.  
12. The CPU will stall for duration of the write (about  
2 ms using internal timer).  
13. Re-enable interrupts.  
14. Repeat steps 6-14 seven times to write  
64 bytes.  
15. Verify the memory (table read).  
This procedure will require about 18 ms to update one  
row of 64 bytes of memory. An example of the required  
code is given in Example 6-3.  
Note:  
Before setting the WR bit, the Table  
Pointer address needs to be within the  
intended address range of the 8 bytes in  
the holding registers.  
FIGURE 6-5:  
TABLE WRITES TO FLASH PROGRAM MEMORY  
TABLAT  
Write Register  
8
8
8
8
TBLPTR = xxxxx0  
TBLPTR = xxxxx2  
Holding Register  
TBLPTR = xxxxx7  
TBLPTR = xxxxx1  
Holding Register  
Holding Register  
Holding Register  
Program Memory  
© 2006 Microchip Technology Inc.  
DS41159E-page 71  
PIC18FXX8  
EXAMPLE 6-3:  
WRITING TO FLASH PROGRAM MEMORY  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
D'64  
COUNTER  
high (BUFFER_ADDR)  
FSR0H  
low (BUFFER_ADDR)  
FSR0L  
upper (CODE_ADDR)  
TBLPTRU  
high (CODE_ADDR)  
TBLPTRH  
low (CODE_ADDR)  
TBLPTRL  
; number of bytes in erase block  
; point to buffer  
; Load TBLPTR with the base  
; address of the memory block  
READ_BLOCK  
TBLRD*+  
MOVF  
MOVWF  
; read into TABLAT, and inc  
; get data  
; store data  
; done?  
TABLAT, W  
POSTINC0  
DECFSZ COUNTER  
BRA  
READ_BLOCK  
; repeat  
MODIFY_WORD  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
DATA_ADDR_HIGH  
FSR0H  
DATA_ADDR_LOW  
FSR0L  
NEW_DATA_LOW  
POSTINC0  
NEW_DATA_HIGH  
INDF0  
; point to buffer  
; update buffer word  
ERASE_BLOCK  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
BCF  
BSF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
upper (CODE_ADDR)  
TBLPTRU  
high (CODE_ADDR)  
TBLPTRH  
low (CODE_ADDR)  
TBLPTRL  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, WREN  
EECON1, FREE  
INTCON, GIE  
55h  
; load TBLPTR with the base  
; address of the memory block  
; point to FLASH program memory  
; access FLASH program memory  
; enable write to memory  
; enable Row Erase operation  
; disable interrupts  
Required  
Sequence  
EECON2  
0AAh  
EECON2  
EECON1, WR  
; write 55H  
; write AAH  
; start erase (CPU stall)  
NOP  
BSF  
TBLRD*-  
INTCON, GIE  
; re-enable interrupts  
; dummy read decrement  
WRITE_BUFFER_BACK  
MOVLW  
8
; number of write buffer groups of 8 bytes  
; point to buffer  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
COUNTER_HI  
high (BUFFER_ADDR)  
FSR0H  
low (BUFFER_ADDR)  
FSR0L  
PROGRAM_LOOP  
MOVLW  
MOVWF  
8
; number of bytes in holding register  
COUNTER  
WRITE_WORD_TO_HREGS  
MOVFW  
MOVWF  
TBLWT+*  
POSTINC0, W  
TABLAT  
; get low byte of buffer data  
; present data to table latch  
; write data, perform a short write  
; to internal TBLWT holding register.  
; loop until buffers are full  
DECFSZ COUNTER  
BRA WRITE_WORD_TO_HREGS  
DS41159E-page 72  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
EXAMPLE 6-3:  
WRITING TO FLASH PROGRAM MEMORY (CONTINUED)  
WRITE_WORD_TO_HREGS  
MOVFW  
MOVWF  
POSTINC0, W  
TABLAT  
; get low byte of buffer data  
; present data to table latch  
TBLWT+*  
; write data, perform a short write  
; to internal TBLWT holding register.  
; loop until buffers are full  
DECFSZ COUNTER  
BRA  
WRITE_WORD_TO_HREGS  
PROGRAM_MEMORY  
BSF  
BCF  
BSF  
BCF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
EECON1, EEPGD  
EECON1, CFGS  
EECON1, WREN  
INTCON, GIE  
55h  
EECON2  
0AAh  
EECON2  
EECON1, WR  
; point to FLASH program memory  
; access FLASH program memory  
; enable write to memory  
; disable interrupts  
; write 55h  
Required  
Sequence  
; write 0AAh  
; start program (CPU stall)  
NOP  
BSF  
INTCON, GIE  
; re-enable interrupts  
; loop until done  
DECFSZ COUNTER_HI  
BRA  
BCF  
PROGRAM_LOOP  
EECON1, WREN  
; disable write to memory  
6.5.2  
WRITE VERIFY  
6.5.4  
PROTECTION AGAINST SPURIOUS  
WRITES  
Depending on the application, good programming  
practice may dictate that the value written to the  
memory should be verified against the original value.  
This should be used in applications where excessive  
writes can stress bits near the specification limit.  
To reduce the probability against spurious writes to  
Flash program memory, the write initiate sequence  
must also be followed. See Section 24.0 “Special  
Features of the CPU” for more detail.  
6.5.3  
UNEXPECTED TERMINATION OF  
WRITE OPERATION  
6.6  
Flash Program Operation During  
Code Protection  
If a write is terminated by an unplanned event, such as  
loss of power or an unexpected Reset, the memory  
location just programmed should be verified and repro-  
grammed if needed.The WRERR bit is set when a write  
operation is interrupted by a MCLR Reset or a WDT  
Time-out Reset during normal operation. In these  
situations, users can check the WRERR bit and rewrite  
the location.  
See Section 24.0 “Special Features of the CPU” for  
details on code protection of Flash program memory.  
© 2006 Microchip Technology Inc.  
DS41159E-page 73  
PIC18FXX8  
TABLE 6-2:  
REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY  
Value on  
all other  
Resets  
Value on:  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TBLPTRU  
bit 21 Program Memory Table Pointer Upper Byte  
(TBLPTR<20:16>)  
--00 0000 --00 0000  
TBPLTRH Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
TBLPTRL Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 000x 0000 000u  
TABLAT  
Program Memory Table Latch  
INTCON GIE/GIEH PEIE/  
GIEL  
TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
WR  
RBIF  
RD  
EECON2 EEPROM Control Register 2 (not a physical register)  
EECON1  
IPR2  
EEPGD  
CFGS  
CMIP  
CMIF  
CMIE  
FREE  
EEIP  
EEIF  
EEIE  
WRERR  
BCLIP  
BCLIF  
BCLIE  
WREN  
LVDIP  
LVDIF  
LVDIE  
xx-0 x000 uu-0 u000  
-1-1 1111 -1-1 1111  
-0-0 0000 -0-0 0000  
-0-0 0000 -0-0 0000  
(1)  
(1)  
(1)  
TMR3IP ECCP1IP  
TMR3IF ECCP1IF  
TMR3IE ECCP1IE  
PIR2  
PIE2  
Legend:  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’.  
Shaded cells are not used during Flash/EEPROM access.  
Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as ‘0’s.  
DS41159E-page 74  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
7.2  
Operation  
7.0  
7.1  
8 x 8 HARDWARE MULTIPLIER  
Introduction  
Example 7-1 shows the sequence to do an 8 x 8  
unsigned multiply. Only one instruction is required  
when one argument of the multiply is already loaded in  
the WREG register.  
An 8 x 8 hardware multiplier is included in the ALU of  
the PIC18FXX8 devices. By making the multiply a  
hardware operation, it completes in a single instruction  
cycle. This is an unsigned multiply that gives a 16-bit  
result. The result is stored in the 16-bit product register  
pair (PRODH:PRODL). The multiplier does not affect  
any flags in the ALUSTA register.  
Example 7-2 shows the sequence to do an 8 x 8 signed  
multiply. To account for the sign bits of the arguments,  
each argument’s Most Significant bit (MSb) is tested  
and the appropriate subtractions are done.  
EXAMPLE 7-1:  
8 x 8 UNSIGNED  
MULTIPLY ROUTINE  
Making the 8 x 8 multiplier execute in a single cycle  
gives the following advantages:  
MOVF  
MULWF  
ARG1, W  
ARG2  
;
• Higher computational throughput  
; ARG1 * ARG2 ->  
;
• Reduces code size requirements for multiply  
algorithms  
PRODH:PRODL  
The performance increase allows the device to be used  
in applications previously reserved for Digital Signal  
Processors.  
EXAMPLE 7-2:  
8 x 8 SIGNED MULTIPLY  
ROUTINE  
Table 7-1 shows a performance comparison between  
Enhanced devices using the single-cycle hardware  
multiply and performing the same function without the  
hardware multiply.  
MOVF  
ARG1, W  
MULWF  
ARG2  
; ARG1 * ARG2 ->  
; PRODH:PRODL  
BTFSC  
SUBWF  
ARG2, SB  
PRODH  
; Test Sign Bit  
; PRODH = PRODH  
;
- ARG1  
MOVF  
BTFSC  
SUBWF  
ARG2, W  
ARG1, SB  
PRODH  
; Test Sign Bit  
; PRODH = PRODH  
;
- ARG2  
TABLE 7-1:  
Routine  
PERFORMANCE COMPARISON  
Program  
Time  
@ 40 MHz @ 10 MHz @ 4 MHz  
Cycles  
(Max)  
Multiply Method  
Memory  
(Words)  
Without hardware multiply  
Hardware multiply  
13  
1
69  
1
6.9 μs  
100 ns  
9.1 μs  
600 ns  
24.2 μs  
2.4 μs  
25.4 μs  
3.6 μs  
27.6 μs  
400 ns  
36.4 μs  
2.4 μs  
96.8 μs  
9.6 μs  
69 μs  
1 μs  
8 x 8 unsigned  
8 x 8 signed  
Without hardware multiply  
Hardware multiply  
33  
6
91  
6
91 μs  
6 μs  
242 μs  
24 μs  
254 μs  
36 μs  
Without hardware multiply  
Hardware multiply  
21  
24  
52  
36  
242  
24  
254  
36  
16 x 16 unsigned  
16 x 16 signed  
Without hardware multiply  
Hardware multiply  
102.6 μs  
14.4 μs  
© 2006 Microchip Technology Inc.  
DS41159E-page 75  
PIC18FXX8  
Example 7-3 shows the sequence to do a 16 x 16  
unsigned multiply. Equation 7-1 shows the algorithm  
that is used. The 32-bit result is stored in four registers,  
RES3:RES0.  
EQUATION 7-2:  
16 x 16 SIGNED  
MULTIPLICATION  
ALGORITHM  
RES3:RES0  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
16  
EQUATION 7-1:  
16 x 16 UNSIGNED  
MULTIPLICATION  
ALGORITHM  
(ARG1H ARG2H 2 ) +  
8
(ARG1H ARG2L 2 ) +  
8
(ARG1L ARG2H 2 ) +  
(ARG1L ARG2L)+  
(-1 ARG2H<7> ARG1H:ARG1L 2 ) +  
(-1 ARG1H<7> ARG2H:ARG2L 2  
16  
RES3:RES0  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
16  
16  
(ARG1H ARG2H 2 ) +  
)
8
(ARG1H ARG2L 2 ) +  
8
(ARG1L ARG2H 2 ) +  
(ARG1L ARG2L)  
EXAMPLE 7-4:  
16 x 16 SIGNED  
MULTIPLY ROUTINE  
MOVF  
MULWF  
ARG1L, W  
ARG2L  
EXAMPLE 7-3:  
16 x 16 UNSIGNED  
MULTIPLY ROUTINE  
; ARG1L * ARG2L ->  
; PRODH:PRODL  
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
;
;
MOVF  
MULWF  
ARG1L, W  
ARG2L  
; ARG1L * ARG2L ->  
;
;
; PRODH:PRODL  
;
;
MOVF  
MULWF  
ARG1H, W  
ARG2H  
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
; ARG1H * ARG2H ->  
; PRODH:PRODL  
;
;
;
;
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
MOVF  
MULWF  
ARG1H, W  
ARG2H  
; ARG1H * ARG2H ->  
; PRODH:PRODL  
;
;
MOVF  
MULWF  
ARG1L, W  
ARG2H  
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
; ARG1L * ARG2H ->  
; PRODH:PRODL  
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1  
PRODH, W  
;
MOVF  
MULWF  
ARG1L, W  
ARG2H  
; Add cross  
; products  
; ARG1L * ARG2H ->  
; PRODH:PRODL  
ADDWFC RES2  
CLRF WREG  
ADDWFC RES3  
;
;
;
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1  
PRODH, W  
;
; Add cross  
; products  
;
ADDWFC RES2  
CLRF WREG  
ADDWFC RES3  
;
;
;
MOVF  
ARG1H, W  
;
MULWF  
ARG2L  
; ARG1H * ARG2L ->  
; PRODH:PRODL  
;
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1  
PRODH, W  
;
MOVF  
MULWF  
ARG1H, W  
ARG2L  
;
; Add cross  
; products  
; ARG1H * ARG2L ->  
; PRODH:PRODL  
ADDWFC RES2  
CLRF WREG  
ADDWFC RES3  
;
;
;
MOVF  
ADDWF  
MOVF  
PRODL, W  
RES1  
PRODH, W  
;
; Add cross  
; products  
;
;
ADDWFC RES2  
CLRF WREG  
ADDWFC RES3  
;
;
;
BTFSS  
BRA  
MOVF  
SUBWF  
MOVF  
ARG2H, 7  
; ARG2H:ARG2L neg?  
; no, check ARG1  
;
;
;
SIGN_ARG1  
ARG1L, W  
RES2  
ARG1H, W  
Example 7-4 shows the sequence to do a 16 x 16  
signed multiply. Equation 7-2 shows the algorithm  
used. The 32-bit result is stored in four registers,  
RES3:RES0. To account for the sign bits of the argu-  
ments, each argument pair’s Most Significant bit (MSb)  
is tested and the appropriate subtractions are done.  
SUBWFB RES3  
SIGN_ARG1  
BTFSS  
BRA  
ARG1H, 7  
CONT_CODE  
ARG2L, W  
RES2  
; ARG1H:ARG1L neg?  
; no, done  
;
;
;
MOVF  
SUBWF  
MOVF  
ARG2H, W  
SUBWFB RES3  
;
CONT_CODE  
:
DS41159E-page 76  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
When the IPEN bit is cleared (default state), the  
interrupt priority feature is disabled and interrupts are  
compatible with PICmicro® mid-range devices. In  
Compatibility mode, the interrupt priority bits for each  
source have no effect. The PEIE bit (INTCON register)  
enables/disables all peripheral interrupt sources. The  
GIE bit (INTCON register) enables/disables all interrupt  
sources. All interrupts branch to address 000008h in  
Compatibility mode.  
8.0  
INTERRUPTS  
The PIC18FXX8 devices have multiple interrupt  
sources and an interrupt priority feature that allows  
each interrupt source to be assigned a high priority  
level or a low priority level. The high priority interrupt  
vector is at 000008h and the low priority interrupt vector  
is at 000018h. High priority interrupt events will  
override any low priority interrupts that may be in  
progress.  
When an interrupt is responded to, the global interrupt  
enable bit is cleared to disable further interrupts. If the  
IPEN bit is cleared, this is the GIE bit. If interrupt priority  
levels are used, this will be either the GIEH or GIEL bit.  
High priority interrupt sources can interrupt a low  
priority interrupt.  
There are 13 registers that are used to control interrupt  
operation. These registers are:  
• RCON  
• INTCON  
• INTCON2  
The return address is pushed onto the stack and the  
PC is loaded with the interrupt vector address  
(000008h or 000018h). Once in the Interrupt Service  
Routine, the source(s) of the interrupt can be deter-  
mined by polling the interrupt flag bits. The interrupt  
flag bits must be cleared in software before re-enabling  
interrupts to avoid recursive interrupts.  
• INTCON3  
• PIR1, PIR2, PIR3  
• PIE1, PIE2, PIE3  
• IPR1, IPR2, IPR3  
It is recommended that the Microchip header files,  
supplied with MPLAB® IDE, be used for the symbolic bit  
names in these registers. This allows the assembler/  
compiler to automatically take care of the placement of  
these bits within the specified register.  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine and sets the GIE bit (GIEH or GIEL  
if priority levels are used), which re-enables interrupts.  
Each interrupt source has three bits to control its  
operation. The functions of these bits are:  
For external interrupt events, such as the INT pins or  
the PORTB input change interrupt, the interrupt latency  
will be three to four instruction cycles. The exact  
latency is the same for one or two-cycle instructions.  
Individual interrupt flag bits are set regardless of the  
status of their corresponding enable bit or the GIE bit.  
• Flag bit to indicate that an interrupt event  
occurred  
• Enable bit that allows program execution to  
branch to the interrupt vector address when the  
flag bit is set  
Note:  
Do not use the MOVFFinstruction to modify  
any of the interrupt control registers while  
any interrupt is enabled. Doing so may  
cause erratic microcontroller behavior.  
• Priority bit to select high priority or low priority  
The interrupt priority feature is enabled by setting the  
IPEN bit (RCON register). When interrupt priority is  
enabled, there are two bits that enable interrupts  
globally. Setting the GIEH bit (INTCON<7>) enables all  
interrupts. Setting the GIEL bit (INTCON register)  
enables all interrupts that have the priority bit cleared.  
When the interrupt flag, enable bit and appropriate  
global interrupt enable bit are set, the interrupt will vec-  
tor immediately to address 000008h or 000018h,  
depending on the priority level. Individual interrupts can  
be disabled through their corresponding enable bits.  
© 2006 Microchip Technology Inc.  
DS41159E-page 77  
PIC18FXX8  
FIGURE 8-1:  
INTERRUPT LOGIC  
TMR0IF  
TMR0IE  
TMR0IP  
RBIF  
RBIE  
RBIP  
Wake-up if in Sleep mode  
INT0IF  
INT0IE  
INT1IF  
INT1IE  
INT1IP  
INT2IF  
INT2IE  
INT2IP  
Interrupt to CPU  
Vector to Location  
0008h  
Peripheral Interrupt Flag bit  
Peripheral Interrupt Enable bit  
Peripheral Interrupt Priority bit  
GIE/GIEH  
TMR1IF  
TMR1IE  
TMR1IP  
IPEN  
IPEN  
GIEL/PEIE  
XXXXIF  
XXXXIE  
XXXXIP  
IPEN  
Additional Peripheral Interrupts  
High Priority Interrupt Generation  
Low Priority Interrupt Generation  
Peripheral Interrupt Flag bit  
Peripheral Interrupt Enable bit  
Peripheral Interrupt Priority bit  
TMR0IF  
TMR0IE  
TMR0IP  
Interrupt to CPU  
Vector to Location  
0018h  
TMR1IF  
TMR1IE  
TMR1IP  
RBIF  
RBIE  
RBIP  
PEIE/GIEL  
GIE/GIEH  
XXXXIF  
XXXXIE  
XXXXIP  
INT0IF  
INT0IE  
INT1IF  
INT1IE  
INT1IP  
Additional Peripheral Interrupts  
INT2IF  
INT2IE  
INT2IP  
DS41159E-page 78  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
8.1  
INTCON Registers  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
interrupt enable bit. User software should  
ensure the appropriate interrupt flag bits  
are clear prior to enabling an interrupt.  
This feature allows software polling.  
The INTCON registers are readable and writable regis-  
ters which contain various enable, priority and flag bits.  
Because of the number of interrupts to be controlled,  
PIC18FXX8 devices have three INTCON registers.  
They are detailed in Register 8-1 through Register 8-3.  
REGISTER 8-1:  
INTCON: INTERRUPT CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RBIE  
R/W-0  
R/W-0  
INT0IF  
R/W-x  
RBIF  
GIE/GIEH PEIE/GIEL TMR0IE  
bit 7  
INT0IE  
TMR0IF  
bit 0  
bit 7  
GIE/GIEH: Global Interrupt Enable bit  
When IPEN (RCON<7>) = 0:  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
When IPEN (RCON<7>) = 1:  
1= Enables all high priority interrupts  
0= Disables all priority interrupts  
bit 6  
PEIE/GIEL: Peripheral Interrupt Enable bit  
When IPEN (RCON<7>) = 0:  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
When IPEN (RCON<7>) = 1:  
1= Enables all low priority peripheral interrupts  
0= Disables all low priority peripheral interrupts  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMR0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 overflow interrupt  
0= Disables the TMR0 overflow interrupt  
INT0IE: INT0 External Interrupt Enable bit  
1= Enables the INT0 external interrupt  
0= Disables the INT0 external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
TMR0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INT0IF: INT0 External Interrupt Flag bit  
1= The INT0 external interrupt occurred (must be cleared in software by reading PORTB)  
0= The INT0 external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1= At least one of the RB7:RB4 pins changed state (must be cleared in software)  
0= None of the RB7:RB4 pins have changed state  
Note:  
A mismatch condition will continue to set this bit. Reading PORTB will end the  
mismatch condition and allow the bit to be cleared.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 79  
PIC18FXX8  
REGISTER 8-2:  
INTCON2: INTERRUPT CONTROL REGISTER 2  
R/W-1  
R/W-1  
R/W-1  
U-0  
U-0  
R/W-1  
U-0  
R/W-1  
RBIP  
RBPU  
INTEDG0 INTEDG1  
TMR0IP  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
RBPU: PORTB Pull-up Enable bit  
1= All PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG0: External Interrupt 0 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG1: External Interrupt 1 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
bit 4-3 Unimplemented: Read as ‘0’  
bit 2  
TMR0IP: TMR0 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
RBIP: RB Port Change Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
Note:  
Interrupt flag bits are set when an interrupt condition occurs regardless of the state  
of its corresponding enable bit or the global interrupt enable bit. User software  
should ensure the appropriate interrupt flag bits are clear prior to enabling an  
interrupt. This feature allows software polling.  
DS41159E-page 80  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 8-3:  
INTCON3: INTERRUPT CONTROL REGISTER 3  
R/W-1  
R/W-1  
U-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
INT2IF  
R/W-0  
INT1IF  
INT2IP  
INT1IP  
INT2IE  
INT1IE  
bit 7  
bit 0  
bit 7  
bit 6  
INT2IP: INT2 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT1IP: INT1 External Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
INT2IE: INT2 External Interrupt Enable bit  
1= Enables the INT2 external interrupt  
0= Disables the INT2 external interrupt  
bit 3  
INT1IE: INT1 External Interrupt Enable bit  
1= Enables the INT1 external interrupt  
0= Disables the INT1 external interrupt  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
INT2IF: INT2 External Interrupt Flag bit  
1= The INT2 external interrupt occurred (must be cleared in software)  
0= The INT2 external interrupt did not occur  
bit 0  
INT1IF: INT1 External Interrupt Flag bit  
1= The INT1 external interrupt occurred (must be cleared in software)  
0= The INT1 external interrupt did not occur  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
Note:  
Interrupt flag bits are set when an interrupt condition occurs regardless of the state  
of its corresponding enable bit or the global interrupt enable bit. User software  
should ensure the appropriate interrupt flag bits are clear prior to enabling an  
interrupt. This feature allows software polling.  
© 2006 Microchip Technology Inc.  
DS41159E-page 81  
PIC18FXX8  
8.2  
PIR Registers  
Note 1: Interrupt flag bits are set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the Global  
Interrupt Enable bit, GIE (INTCON  
register).  
The Peripheral Interrupt Request (PIR) registers  
contain the individual flag bits for the peripheral  
interrupts (Register 8-4 through Register 8-6). Due to  
the number of peripheral interrupt sources, there are  
three Peripheral Interrupt Request (Flag) registers  
(PIR1, PIR2, PIR3).  
2: User software should ensure the appropri-  
ate interrupt flag bits are cleared prior to  
enabling an interrupt and after servicing  
that interrupt.  
REGISTER 8-4:  
PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1  
R/W-0  
PSPIF(1)  
bit 7  
R/W-0  
ADIF  
R-0  
R-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
R/W-0  
RCIF  
TXIF  
CCP1IF  
TMR2IF  
TMR1IF  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
PSPIF: Parallel Slave Port Read/Write Interrupt Flag bit(1)  
1= A read or a write operation has taken place (must be cleared in software)  
0= No read or write has occurred  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed (must be cleared in software)  
0= The A/D conversion is not complete  
RCIF: USART Receive Interrupt Flag bit  
1= The USART receive buffer, RCREG, is full (cleared when RCREG is read)  
0= The USART receive buffer is empty  
TXIF: USART Transmit Interrupt Flag bit  
1= The USART transmit buffer, TXREG, is empty (cleared when TXREG is written)  
0= The USART transmit buffer is full  
SSPIF: Master Synchronous Serial Port Interrupt Flag bit  
1= The transmission/reception is complete (must be cleared in software)  
0= Waiting to transmit/receive  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode.  
bit 1  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
Note 1: This bit is only available on PIC18F4X8 devices. For PIC18F2X8 devices, this bit  
is unimplemented and reads as ‘0’.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS41159E-page 82  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 8-5:  
PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2  
U-0  
R/W-0  
CMIF(1)  
U-0  
R/W-0  
EEIF  
R/W-0  
BCLIF  
R/W-0  
LVDIF  
R/W-0  
TMR3IF ECCP1IF(1)  
R/W-0  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
CMIF: Comparator Interrupt Flag bit(1)  
1= Comparator input has changed  
0= Comparator input has not changed  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
EEIF: EEPROM Write Operation Interrupt Flag bit  
1= Write operation is complete (must be cleared in software)  
0= Write operation is not complete  
bit 3  
bit 2  
bit 1  
bit 0  
BCLIF: Bus Collision Interrupt Flag bit  
1= A bus collision occurred (must be cleared in software)  
0= No bus collision occurred  
LVDIF: Low-Voltage Detect Interrupt Flag bit  
1= A low-voltage condition occurred (must be cleared in software)  
0= The device voltage is above the Low-Voltage Detect trip point  
TMR3IF: TMR3 Overflow Interrupt Flag bit  
1= TMR3 register overflowed (must be cleared in software)  
0= TMR3 register did not overflow  
ECCP1IF: ECCP1 Interrupt Flag bit(1)  
Capture mode:  
1= A TMR1 (TMR3) register capture occurred (must be cleared in software)  
0= No TMR1 (TMR3) register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode.  
Note 1: This bit is only available on PIC18F4X8 devices. For PIC18F2X8 devices, this bit  
is unimplemented and reads as ‘0’.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 83  
PIC18FXX8  
REGISTER 8-6:  
PIR3: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 3  
R/W-0  
IRXIF  
R/W-0  
R/W-0  
ERRIF  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WAKIF  
TXB2IF  
TXB1IF  
TXB0IF  
RXB1IF  
RXB0IF  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
IRXIF: Invalid Message Received Interrupt Flag bit  
1= An invalid message has occurred on the CAN bus  
0= An invalid message has not occurred on the CAN bus  
WAKIF: Bus Activity Wake-up Interrupt Flag bit  
1= Activity on the CAN bus has occurred  
0= Activity on the CAN bus has not occurred  
ERRIF: CAN bus Error Interrupt Flag bit  
1= An error has occurred in the CAN module (multiple sources)  
0= An error has not occurred in the CAN module  
TXB2IF: Transmit Buffer 2 Interrupt Flag bit  
1= Transmit Buffer 2 has completed transmission of a message and may be reloaded  
0= Transmit Buffer 2 has not completed transmission of a message  
TXB1IF: Transmit Buffer 1 Interrupt Flag bit  
1= Transmit Buffer 1 has completed transmission of a message and may be reloaded  
0= Transmit Buffer 1 has not completed transmission of a message  
TXB0IF: Transmit Buffer 0 Interrupt Flag bit  
1= Transmit Buffer 0 has completed transmission of a message and may be reloaded  
0= Transmit Buffer 0 has not completed transmission of a message  
RXB1IF: Receive Buffer 1 Interrupt Flag bit  
1= Receive Buffer 1 has received a new message  
0= Receive Buffer 1 has not received a new message  
RXB0IF: Receive Buffer 0 Interrupt Flag bit  
1= Receive Buffer 0 has received a new message  
0= Receive Buffer 0 has not received a new message  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS41159E-page 84  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
8.3  
PIE Registers  
The Peripheral Interrupt Enable (PIE) registers contain  
the individual enable bits for the peripheral interrupts  
(Register 8-7 through Register 8-9). Due to the number  
of peripheral interrupt sources, there are three Periph-  
eral Interrupt Enable registers (PIE1, PIE2, PIE3).  
When IPEN is clear, the PEIE bit must be set to enable  
any of these peripheral interrupts.  
REGISTER 8-7:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
R/W-0  
PSPIE(1)  
bit 7  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
R/W-0  
TMR1IE  
bit 0  
CCP1IE  
TMR2IE  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit(1)  
1= Enables the PSP read/write interrupt  
0= Disables the PSP read/write interrupt  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D interrupt  
0= Disables the A/D interrupt  
RCIE: USART Receive Interrupt Enable bit  
1= Enables the USART receive interrupt  
0= Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1= Enables the USART transmit interrupt  
0= Disables the USART transmit interrupt  
SSPIE: Master Synchronous Serial Port Interrupt Enable bit  
1= Enables the MSSP interrupt  
0= Disables the MSSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
Note 1: This bit is only available on PIC18F4X8 devices. For PIC18F2X8 devices, this bit  
is unimplemented and reads as ‘0’.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 85  
PIC18FXX8  
REGISTER 8-8:  
PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2  
U-0  
R/W-0  
CMIE(1)  
U-0  
R/W-0  
EEIE  
R/W-0  
BCLIE  
R/W-0  
LVDIE  
R/W-0  
TMR3IE ECCP1IE(1)  
R/W-0  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
CMIE: Comparator Interrupt Enable bit(1)  
1= Enables the comparator interrupt  
0= Disables the comparator interrupt  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
EEIE: EEPROM Write Interrupt Enable bit  
1= Enabled  
0= Disabled  
bit 3  
bit 2  
bit 1  
bit 0  
BCLIE: Bus Collision Interrupt Enable bit  
1= Enabled  
0= Disabled  
LVDIE: Low-Voltage Detect Interrupt Enable bit  
1= Enabled  
0= Disabled  
TMR3IE: TMR3 Overflow Interrupt Enable bit  
1= Enables the TMR3 overflow interrupt  
0= Disables the TMR3 overflow interrupt  
ECCP1IE: ECCP1 Interrupt Enable bit(1)  
1= Enables the ECCP1 interrupt  
0= Disables the ECCP1 interrupt  
Note 1: This bit is only available on PIC18F4X8 devices. For PIC18F2X8 devices, this bit  
is unimplemented and reads as ‘0’.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS41159E-page 86  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 8-9:  
PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3  
R/W-1  
IRXIE  
R/W-1  
R/W-1  
ERRIE  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
WAKIE  
TXB2IE  
TXB1IE  
TXB0IE  
RXB1IE  
RXB0IE  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
IRXIE: Invalid CAN Message Received Interrupt Enable bit  
1= Enables the invalid CAN message received interrupt  
0= Disables the invalid CAN message received interrupt  
WAKIE: Bus Activity Wake-up Interrupt Enable bit  
1= Enables the bus activity wake-up interrupt  
0= Disables the bus activity wake-up interrupt  
ERRIE: CAN bus Error Interrupt Enable bit  
1= Enables the CAN bus error interrupt  
0= Disables the CAN bus error interrupt  
TXB2IE: Transmit Buffer 2 Interrupt Enable bit  
1= Enables the Transmit Buffer 2 interrupt  
0= Disables the Transmit Buffer 2 interrupt  
TXB1IE: Transmit Buffer 1 Interrupt Enable bit  
1= Enables the Transmit Buffer 1 interrupt  
0= Disables the Transmit Buffer 1 interrupt  
TXB0IE: Transmit Buffer 0 Interrupt Enable bit  
1= Enables the Transmit Buffer 0 interrupt  
0= Disables the Transmit Buffer 0 interrupt  
RXB1IE: Receive Buffer 1 Interrupt Enable bit  
1= Enables the Receive Buffer 1 interrupt  
0= Disables the Receive Buffer 1 interrupt  
RXB0IE: Receive Buffer 0 Interrupt Enable bit  
1= Enables the Receive Buffer 0 interrupt  
0= Disables the Receive Buffer 0 interrupt  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 87  
PIC18FXX8  
8.4  
IPR Registers  
The Interrupt Priority (IPR) registers contain the individ-  
ual priority bits for the peripheral interrupts. Due to the  
number of peripheral interrupt sources, there are three  
Peripheral Interrupt Priority registers (IPR1, IPR2 and  
IPR3). The operation of the priority bits requires that  
the Interrupt Priority Enable bit (IPEN) be set.  
REGISTER 8-10: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1  
R/W-1  
PSPIP(1)  
bit 7  
R/W-1  
ADIP  
R/W-1  
RCIP  
R/W-1  
TXIP  
R/W-1  
SSPIP  
R/W-1  
R/W-1  
R/W-1  
TMR1IP  
bit 0  
CCP1IP  
TMR2IP  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PSPIP: Parallel Slave Port Read/Write Interrupt Priority bit(1)  
1= High priority  
0= Low priority  
ADIP: A/D Converter Interrupt Priority bit  
1= High priority  
0= Low priority  
RCIP: USART Receive Interrupt Priority bit  
1= High priority  
0= Low priority  
TXIP: USART Transmit Interrupt Priority bit  
1= High priority  
0= Low priority  
SSPIP: Master Synchronous Serial Port Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP1IP: CCP1 Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR2IP: TMR2 to PR2 Match Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR1IP: TMR1 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
Note 1: This bit is only available on PIC18F4X8 devices. For PIC18F2X8 devices, this bit  
is unimplemented and reads as ‘0’.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS41159E-page 88  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 8-11: IPR2: PERIPHERAL INTERRUPT PRIORITY REGISTER 2  
U-0  
R/W-1  
CMIP(1)  
U-0  
R/W-1  
EEIP  
R/W-1  
BCLIP  
R/W-1  
LVDIP  
R/W-1  
TMR3IP ECCP1IP(1)  
R/W-1  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
CMIP: Comparator Interrupt Priority bit(1)  
1= High priority  
0= Low priority  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
EEIP: EEPROM Write Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 3  
bit 2  
bit 1  
bit 0  
BCLIP: Bus Collision Interrupt Priority bit  
1= High priority  
0= Low priority  
LVDIP: Low-Voltage Detect Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR3IP: TMR3 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
ECCP1IP: ECCP1 Interrupt Priority bit(1)  
1= High priority  
0= Low priority  
Note 1: This bit is only available on PIC18F4X8 devices. For PIC18F2X8 devices, this bit  
is unimplemented and reads as ‘0’.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 89  
PIC18FXX8  
REGISTER 8-12: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3  
R/W-1  
IRXIP  
R/W-1  
R/W-1  
ERRIP  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
WAKIP  
TXB2IP  
TXB1IP  
TXB0IP  
RXB1IP  
RXB0IP  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
IRXIP: Invalid Message Received Interrupt Priority bit  
1= High priority  
0= Low priority  
WAKIP: Bus Activity Wake-up Interrupt Priority bit  
1= High priority  
0= Low priority  
ERRIP: CAN bus Error Interrupt Priority bit  
1= High priority  
0= Low priority  
TXB2IP: Transmit Buffer 2 Interrupt Priority bit  
1= High priority  
0= Low priority  
TXB1IP: Transmit Buffer 1 Interrupt Priority bit  
1= High priority  
0= Low priority  
TXB0IP: Transmit Buffer 0 Interrupt Priority bit  
1= High priority  
0= Low priority  
RXB1IP: Receive Buffer 1 Interrupt Priority bit  
1= High priority  
0= Low priority  
RXB0IP: Receive Buffer 0 Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS41159E-page 90  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
8.5  
RCON Register  
The Reset Control (RCON) register contains the IPEN  
bit which is used to enable prioritized interrupts. The  
functions of the other bits in this register are discussed  
in more detail in Section 4.14 “RCON Register”.  
REGISTER 8-13: RCON: RESET CONTROL REGISTER  
R/W-0  
IPEN  
U-0  
U-0  
R/W-1  
RI  
R-1  
TO  
R-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
bit 7  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (PIC16CXXX Compatibility mode)  
bit 6-5 Unimplemented: Read as ‘0’  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RI: RESETInstruction Flag bit  
For details of bit operation, see Register 4-3.  
TO: Watchdog Time-out Flag bit  
For details of bit operation, see Register 4-3.  
PD: Power-down Detection Flag bit  
For details of bit operation, see Register 4-3.  
POR: Power-on Reset Status bit  
For details of bit operation, see Register 4-3.  
BOR: Brown-out Reset Status bit  
For details of bit operation, see Register 4-3.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 91  
PIC18FXX8  
8.6  
INT Interrupts  
8.8  
PORTB Interrupt-on-Change  
External interrupts on the RB0/INT0, RB1/INT1 and  
RB2/CANTX/INT2 pins are edge triggered: either rising  
if the corresponding INTEDGx bit is set in the  
INTCON2 register, or falling if the INTEDGx bit is clear.  
When a valid edge appears on the RBx/INTx pin, the  
corresponding flag bit INTxIF is set. This interrupt can  
be disabled by clearing the corresponding enable bit  
INTxIE. Flag bit INTxIF must be cleared in software in  
the Interrupt Service Routine before re-enabling the  
interrupt. All external interrupts (INT0, INT1 and INT2)  
can wake-up the processor from Sleep if bit INTxIE was  
set prior to going into Sleep. If the Global Interrupt  
Enable bit, GIE, is set, the processor will branch to the  
interrupt vector following wake-up.  
An input change on PORTB<7:4> sets flag bit RBIF  
(INTCON register). The interrupt can be enabled/  
disabled by setting/clearing enable bit RBIE (INTCON  
register). Interrupt priority for PORTB interrupt-on-  
change is determined by the value contained in the  
interrupt priority bit RBIP (INTCON2 register).  
8.9  
Context Saving During Interrupts  
During an interrupt, the return PC value is saved on the  
stack. Additionally, the WREG, Status and BSR  
registers are saved on the fast return stack. If a fast  
return from interrupt is not used (see Section 4.3 “Fast  
Register Stack”), the user may need to save the  
WREG, Status and BSR registers in software. Depend-  
ing on the user’s application, other registers may also  
need to be saved. Example 8-1 saves and restores the  
WREG, Status and BSR registers during an Interrupt  
Service Routine.  
Interrupt priority for INT1 and INT2 is determined by the  
value contained in the interrupt priority bits INT1IP  
(INTCON3<6>) and INT2IP (INTCON3<7>). There is  
no priority bit associated with INT0; it is always a high  
priority interrupt source.  
8.7  
TMR0 Interrupt  
In 8-bit mode (which is the default), an overflow (FFh →  
00h) in the TMR0 register will set flag bit TMR0IF. In  
16-bit mode, an overflow (FFFFh 0000h) in the  
TMR0H:TMR0L registers will set flag bit TMR0IF. The  
interrupt can be enabled/disabled by setting/clearing  
enable bit TMR0IE (INTCON register). Interrupt priority  
for Timer0 is determined by the value contained in the  
interrupt priority bit TMR0IP (INTCON2 register). See  
Section 11.0 “Timer0 Module” for further details.  
EXAMPLE 8-1:  
SAVING STATUS, WREG AND BSR REGISTERS IN RAM  
MOVWF  
MOVFF  
MOVFF  
;
W_TEMP  
STATUS, STATUS_TEMP  
BSR, BSR_TEMP  
; W_TEMP is in Low Access bank  
; STATUS_TEMP located anywhere  
; BSR located anywhere  
; USER ISR CODE  
;
MOVFF  
MOVF  
MOVFF  
BSR_TEMP, BSR  
W_TEMP, W  
STATUS_TEMP, STATUS  
; Restore BSR  
; Restore WREG  
; Restore STATUS  
DS41159E-page 92  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
Read-modify-write operations on the LATA register  
read and write the latched output value for PORTA.  
9.0  
I/O PORTS  
Depending on the device selected, there are up to five  
general purpose I/O ports available on PIC18FXX8  
devices. Some pins of the I/O ports are multiplexed  
with an alternate function from the peripheral features  
on the device. In general, when a peripheral is enabled,  
that pin may not be used as a general purpose I/O pin.  
The RA4 pin is multiplexed with the Timer0 module  
clock input to become the RA4/T0CKI pin. The RA4/  
T0CKI pin is a Schmitt Trigger input and an open-drain  
output. All other RA port pins have TTL input levels and  
full CMOS output drivers.  
The other PORTA pins are multiplexed with analog  
inputs and the analog VREF+ and VREF- inputs. The  
operation of each pin is selected by clearing/setting the  
control bits in the ADCON1 register (A/D Control  
Register 1). On a Power-on Reset, these pins are  
configured as analog inputs and read as ‘0’.  
Each port has three registers for its operation:  
• TRIS register (Data Direction register)  
• PORT register (reads the levels on the pins of the  
device)  
• LAT register (output latch)  
The data latch (LAT register) is useful for read-modify-  
write operations on the value that the I/O pins are  
driving.  
Note:  
On a Power-on Reset, RA5 and RA3:RA0  
are configured as analog inputs and read  
as ‘0’. RA6 and RA4 are configured as  
digital inputs.  
9.1  
PORTA, TRISA and LATA  
Registers  
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set, when using them as analog inputs.  
PORTA is a 7-bit wide, bidirectional port. The corre-  
sponding Data Direction register is TRISA. Setting a  
TRISA bit (= 1) will make the corresponding PORTA pin  
an input (i.e., put the corresponding output driver in a  
high-impedance mode). Clearing a TRISA bit (= 0) will  
make the corresponding PORTA pin an output (i.e., put  
the contents of the output latch on the selected pin). On  
a Power-on Reset, these pins are configured as inputs  
and read as ‘0’.  
EXAMPLE 9-1:  
INITIALIZING PORTA  
CLRF  
PORTA ; Initialize PORTA by  
; clearing output data latches  
CLRF  
LATA  
; Alternate method to clear  
; output data latches  
; Configure A/D  
MOVLW 07h  
MOVWF ADCON1; for digital inputs  
MOVLW 0CFh  
; Value used to initialize  
; data direction  
Reading the PORTA register reads the status of the  
pins, whereas writing to it will write to the port latch.  
MOVWF TRISA ; Set RA3:RA0 as inputs,  
; RA5:RA4 as outputs  
© 2006 Microchip Technology Inc.  
DS41159E-page 93  
PIC18FXX8  
FIGURE 9-1:  
RA3:RA0 AND RA5 PINS  
BLOCK DIAGRAM  
FIGURE 9-2:  
RA4/T0CKI PIN BLOCK  
DIAGRAM  
RD LATA  
Data Bus  
RD LATA  
Data Bus  
Q
D
Q
D
VDD  
WR LATA or  
WR PORTA  
WR LATA or  
WR PORTA  
CK  
Data Latch  
Q
P
CK  
Data Latch  
Q
I/O pin(1)  
N
I/O pin(1)  
Q
D
N
D
Q
VSS  
Schmitt  
Trigger  
Input  
WR TRISA  
CK  
WR TRISA  
RD TRISA  
Q
VSS  
CK  
Q
Analog  
Input Mode  
TRIS Latch  
Buffer  
TRIS Latch  
TTL  
Input  
Buffer  
RD TRISA  
TTL  
Input  
Buffer  
Q
D
Q
D
EN  
EN  
RD PORTA  
RD PORTA  
TMR0 Clock Input  
SS Input (RA5 only)  
To A/D Converter and LVD Modules  
Note 1: I/O pins have diode protection to VDD and VSS.  
Note 1: I/O pin has diode protection to VSS only.  
FIGURE 9-3:  
OSC2/CLKO/RA6 PIN BLOCK DIAGRAM  
(FOSC = 101, 111)  
From OSC1  
Oscillator  
Circuit  
CLKO (FOSC/4)  
1
0
Data Latch  
Data Bus  
Q
D
VDD  
P
WR PORTA  
CK  
Q
OSC2/CLKO  
RA6 pin(2)  
TRIS Latch  
Q
D
N
WR TRISA  
CK  
Q
(FOSC = 100,  
101, 110, 111)  
VSS  
Schmitt  
Trigger  
RD TRISA  
Input Buffer  
Q
D
EN  
RD PORTA  
(FOSC = 110, 100)  
Note 1: CLKO is 1/4 of FOSC.  
2: I/O pin has diode protection to VDD and VSS.  
DS41159E-page 94  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TABLE 9-1:  
Name  
PORTA FUNCTIONS  
Bit#  
Buffer  
Function  
RA0/AN0/CVREF  
bit 0  
TTL  
Input/output, analog input or analog comparator voltage reference  
output.  
RA1/AN1  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
TTL  
TTL  
TTL  
Input/output or analog input.  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
Input/output, analog input or VREF-.  
Input/output, analog input or VREF+.  
ST/OD Input/output, external clock input for Timer0, output is open-drain type.  
RA5/AN4/SS/LVDIN  
TTL  
Input/output, analog input, slave select input for synchronous serial port  
or Low-Voltage Detect input.  
OSC2/CLKO/RA6  
bit 6  
TTL  
Oscillator clock output or input/output.  
Legend: TTL = TTL input, ST = Schmitt Trigger input, OD = Open-Drain  
TABLE 9-2:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTA  
LATA  
RA6  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
-00x 0000 -uuu uuuu  
-xxx xxxx -uuu uuuu  
-111 1111 -111 1111  
Latch A Data Output Register  
PORTA Data Direction Register  
TRISA  
ADCON1 ADFM ADCS2  
PCFG3 PCFG2 PCFG1 PCFG0 00-- 0000 uu-- uuuu  
Legend: x= unknown, u= unchanged, - = unimplemented locations read as ‘0’. Shaded cells are not used by PORTA.  
© 2006 Microchip Technology Inc.  
DS41159E-page 95  
PIC18FXX8  
This interrupt can wake the device from Sleep. The  
user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
9.2  
PORTB, TRISB and LATB  
Registers  
PORTB is an 8-bit wide, bidirectional port. The corre-  
sponding Data Direction register is TRISB. Setting a  
TRISB bit (= 1) will make the corresponding PORTB  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISB bit (= 0)  
will make the corresponding PORTB pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
a) Any read or write of PORTB (except with the  
MOVFF instruction). This will end the mismatch  
condition.  
b) Clear flag bit RBIF.  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit RBIF to be cleared.  
Read-modify-write operations on the LATB register,  
read and write the latched output value for PORTB.  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
EXAMPLE 9-2:  
CLRF  
INITIALIZING PORTB  
PORTB  
; Initialize PORTB by  
; clearing output  
; data latches  
Note 1: While in Low-Voltage ICSP mode, the  
RB5 pin can no longer be used as a  
general purpose I/O pin and should not  
be held low during normal operation to  
protect against inadvertent ICSP mode  
entry.  
CLRF  
LATB  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
; Set RB3:RB0 as inputs  
; RB5:RB4 as outputs  
; RB7:RB6 as inputs  
MOVLW  
MOVWF  
0CFh  
TRISB  
2: When using Low-Voltage ICSP Program-  
ming (LVP), the pull-up on RB5 becomes  
disabled. If TRISB bit 5 is cleared,  
thereby setting RB5 as an output, LATB  
bit 5 must also be cleared for proper  
operation.  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is  
performed by clearing bit RBPU (INTCON2 register).  
The weak pull-up is automatically turned off when the  
port pin is configured as an output. The pull-ups are  
disabled on a Power-on Reset.  
Four of the PORTB pins (RB7:RB4) have an interrupt-  
on-change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e., any RB7:RB4 pin  
configured as an output is excluded from the interrupt-  
on-change comparison). The input pins (of RB7:RB4)  
are compared with the old value latched on the last  
read of PORTB. The “mismatch” outputs of RB7:RB4  
are ORed together to generate the RB Port Change  
Interrupt with Flag bit RBIF (INTCON register).  
DS41159E-page 96  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 9-4:  
RB7:RB4 PINS BLOCK  
DIAGRAM  
FIGURE 9-5:  
RB1:RB0 PINS BLOCK  
DIAGRAM  
VDD  
VDD  
RBPU(2)  
RBPU(2)  
Data Bus  
Weak  
P
Weak  
Pull-up  
P
Pull-up  
Data Latch  
Data Latch  
Data Bus  
WR Port  
D
Q
D
Q
I/O pin(1)  
I/O pin(1)  
WR LATB  
or  
WR PORTB  
CK  
CK  
TRIS Latch  
D
Q
TRIS Latch  
TTL  
Input  
Buffer  
D
Q
WR TRISB  
TTL  
Input  
Buffer  
CK  
WR TRIS  
RD TRIS  
ST  
Buffer  
CK  
RD TRISB  
RD LATB  
Latch  
Q
Q
D
Q
D
RD PORTB  
Set RBIF  
EN  
Q1  
Q3  
EN  
RD Port  
D
From other  
RB7:RB4 pins  
RBx/INTx  
EN  
Schmitt Trigger  
Buffer  
RBx/INTx  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS  
bit(s) and clear the RBPU bit (INTCON2 register).  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS  
bit(s) and clear the RBPU bit (INTCON2 register).  
© 2006 Microchip Technology Inc.  
DS41159E-page 97  
PIC18FXX8  
FIGURE 9-6:  
RB2/CANTX/INT2 PIN BLOCK DIAGRAM  
OPMODE2:OPMODE0 = 000  
ENDRHI  
CANTX  
0
1
RD LATB  
Data Bus  
VDD  
P
Data Latch  
D
Q
WR PORTB or  
WR LATB  
CK  
Q
TRIS Latch  
RB2/CANTX/  
INT2 pin  
(1)  
Q
D
N
WR TRISB  
RD TRISB  
CK  
Q
VSS  
Schmitt  
Trigger  
Q
D
EN  
RD PORTB  
Note 1: I/O pin has diode protection to VDD and VSS.  
FIGURE 9-7:  
RB3/CANRX PIN BLOCK DIAGRAM  
CANCON<7:5>  
VDD  
(2)  
RBPU  
Weak  
P
Pull-up  
Data Latch  
Data Bus  
D
Q
(1)  
I/O pin  
WR LATB or PORTB  
WR TRISB  
CK  
TRIS Latch  
D
Q
CK  
TTL  
Input  
Buffer  
RD TRISB  
RD LATB  
Q
D
EN  
RD PORTB  
RB3 or CANRX  
Schmitt Trigger  
Buffer  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (INTCON2<7>).  
.
DS41159E-page 98  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TABLE 9-3:  
Name  
PORTB FUNCTIONS  
Bit#  
Buffer  
Function  
RB0/INT0  
bit 0  
TTL/ST(1) Input/output pin or external interrupt 0 input.  
Internal software programmable weak pull-up.  
RB1/INT1  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
TTL/ST(1) Input/output pin or external interrupt 1 input.  
Internal software programmable weak pull-up.  
TTL/ST(1) Input/output pin, CAN bus transmit pin or external interrupt 2 input.  
Internal software programmable weak pull-up.  
RB2/CANTX/  
INT2  
RB3/CANRX  
TTL  
TTL  
TTL  
Input/output pin or CAN bus receive pin.  
Internal software programmable weak pull-up.  
RB4  
Input/output pin (with interrupt-on-change).  
Internal software programmable weak pull-up.  
RB5/PGM  
RB6/PGC  
RB7/PGD  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up. Low-voltage serial programming enable.  
TTL/ST(2) Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up. Serial programming clock.  
TTL/ST(2) Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up. Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
TABLE 9-4:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
0000 000x 0000 000u  
111- -1-1 111- -1-1  
LATB  
LATB Data Output Register  
TRISB  
PORTB Data Direction Register  
GIE/GIEH PEIE/GIEL TMR0IE  
INTCON  
INTCON2  
INTCON3  
Legend:  
INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
RBIP  
RBPU  
INTEDG0 INTEDG1  
INT1IP  
TMR0IP  
INT2IP  
INT2IE  
INT1IE  
INT2IF INT1IF 11-0 0-00 11-1 0-00  
x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
© 2006 Microchip Technology Inc.  
DS41159E-page 99  
PIC18FXX8  
while other peripherals override the TRIS bit to make a  
pin an input. The user should refer to the corresponding  
peripheral section for the correct TRIS bit settings.  
9.3  
PORTC, TRISC and LATC  
Registers  
PORTC is an 8-bit wide, bidirectional port. The corre-  
sponding Data Direction register is TRISC. Setting a  
TRISC bit (= 1) will make the corresponding PORTC  
pin an input (i.e., put the corresponding output driver in  
a high-impedance mode). Clearing a TRISC bit (= 0)  
will make the corresponding PORTC pin an output (i.e.,  
put the contents of the output latch on the selected pin).  
The pin override value is not loaded into the TRIS  
register. This allows read-modify-write of the TRIS  
register, without concern due to peripheral overrides.  
EXAMPLE 9-3:  
INITIALIZING PORTC  
; Initialize PORTC by  
; clearing output  
; data latches  
CLRF  
PORTC  
Read-modify-write operations on the LATC register,  
read and write the latched output value for PORTC.  
CLRF  
LATC  
; Alternate method  
; to clear output  
; data latches  
PORTC is multiplexed with several peripheral functions  
(Table 9-5). PORTC pins have Schmitt Trigger input  
buffers.  
MOVLW  
MOVWF  
0CFh  
; Value used to  
; initialize data  
; direction  
; Set RC3:RC0 as inputs  
; RC5:RC4 as outputs  
; RC7:RC6 as inputs  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an output,  
TRISC  
FIGURE 9-8:  
PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)  
Peripheral Out Select  
Peripheral Data Out  
VDD  
P
0
1
RD LATC  
Data Bus  
D
Q
Q
WR LATC  
or  
WR PORTC  
(1)  
CK  
I/O pin  
TRIS OVERRIDE  
Data Latch  
N
D
Q
Q
Pin Override  
Peripheral  
VSS  
TRIS  
Override  
WR TRISC  
RC0  
Yes  
Timer1 Oscillator  
for Timer1/Timer3  
CK  
TRIS Latch  
RC1  
Yes  
Timer1 Oscillator  
for Timer1/Timer3  
RD TRISC  
RC2  
RC3  
No  
Schmitt  
Trigger  
Peripheral Enable  
2
Yes  
SPI™/I C™  
Master Clock  
Q
D
2
RC4  
RC5  
RC6  
Yes  
Yes  
Yes  
I C Data Out  
EN  
SPI Data Out  
RD PORTC  
USART Async  
Peripheral Data In  
Xmit, Sync Clock  
RC7  
Yes  
USART Sync Data  
Out  
Note 1: I/O pins have diode protection to VDD and VSS.  
DS41159E-page 100  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TABLE 9-5:  
Name  
PORTC FUNCTIONS  
Bit# Buffer Type  
Function  
RC0/T1OSO/T1CKI  
bit 0  
ST  
Input/output port pin, Timer1 oscillator output or Timer1/Timer3 clock  
input.  
RC1/T1OSI  
RC2/CCP1  
bit 1  
bit 2  
ST  
ST  
Input/output port pin or Timer1 oscillator input.  
Input/output port pin or Capture 1 input/Compare 1 output/  
PWM1 output.  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
bit 3  
bit 4  
bit 5  
bit 6  
ST  
ST  
ST  
ST  
Input/output port pin or synchronous serial clock for SPI™/I2C™.  
Input/output port pin or SPI data in (SPI mode) or data I/O (I2C mode).  
Input/output port pin or synchronous serial port data output.  
RC6/TX/CK  
Input/output port pin, addressable USART asynchronous transmit or  
addressable USART synchronous clock.  
RC7/RX/DT  
bit 7  
ST  
Input/output port pin, addressable USART asynchronous receive or  
addressable USART synchronous data.  
Legend: ST = Schmitt Trigger input  
TABLE 9-6:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on  
Value on  
POR, BOR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
PORTC  
LATC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
LATC Data Output Register  
PORTC Data Direction Register  
TRISC  
Legend: x= unknown, u= unchanged  
© 2006 Microchip Technology Inc.  
DS41159E-page 101  
PIC18FXX8  
PORTD can be configured as an 8-bit wide, micro-  
processor port (Parallel Slave Port or PSP) by setting  
the control bit PSPMODE (TRISE<4>). In this mode,  
the input buffers are TTL. See Section 10.0 “Parallel  
Slave Port” for additional information.  
9.4  
PORTD, TRISD and LATD  
Registers  
Note:  
This port is only available on the  
PIC18F448 and PIC18F458.  
PORTD is also multiplexed with the analog comparator  
module and the ECCP module.  
PORTD is an 8-bit wide, bidirectional port. The corre-  
sponding Data Direction register for the port is TRISD.  
Setting a TRISD bit (= 1) will make the corresponding  
PORTD pin an input (i.e., put the corresponding output  
driver in a high-impedance mode). Clearing a TRISD  
bit (= 0) will make the corresponding PORTD pin an  
output (i.e., put the contents of the output latch on the  
selected pin).  
EXAMPLE 9-4:  
INITIALIZING PORTD  
CLRF  
PORTD  
; Initialize PORTD by  
; clearing output  
; data latches  
CLRF  
LATD  
; Alternate method  
; to clear output  
; data latches  
Read-modify-write operations on the LATD register  
read and write the latched output value for PORTD.  
MOVLW  
MOVWF  
MOVLW  
07h  
CMCON  
0CFh  
; comparator off  
PORTD uses Schmitt Trigger input buffers. Each pin is  
individually configurable as an input or output.  
; Value used to  
; initialize data  
; direction  
MOVWF  
TRISD  
; Set RD3:RD0 as inputs  
; RD5:RD4 as outputs  
; RD7:RD6 as inputs  
FIGURE 9-9:  
PORTD BLOCK DIAGRAM IN I/O PORT MODE  
PORT/PSP Select  
PSP Data Out  
RD LATD  
VDD  
P
Data Bus  
D
Q
Q
WR LATD  
or  
PORTD  
RD0/PSP0/  
CK  
(1)  
C1IN+ pin  
N
Data Latch  
D
Q
Q
Vss  
WR TRISD  
CK  
TRIS Latch  
RD TRISD  
PSP Read  
Schmitt  
Trigger  
Q
D
EN  
RD PORTD  
PSP Write  
C1IN+  
Note 1: I/O pins have diode protection to VDD and VSS.  
DS41159E-page 102  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TABLE 9-7:  
Name  
PORTD FUNCTIONS  
Bit# Buffer Type  
Function  
RD0/PSP0/C1IN+  
RD1/PSP1/C1IN-  
RD2/PSP2/C2IN+  
RD3/PSP3/C2IN-  
bit 0  
bit 1  
bit 2  
bit 3  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
Input/output port pin, Parallel Slave Port bit 0 or C1IN+ comparator  
input.  
Input/output port pin, Parallel Slave Port bit 1 or C1IN- comparator  
input.  
Input/output port pin, Parallel Slave Port bit 2 or C2IN+ comparator  
input.  
Input/output port pin, Parallel Slave Port bit 3 or C2IN- comparator  
input.  
RD4/PSP4/ECCP1/P1A bit 4  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
Input/output port pin, Parallel Slave Port bit 4 or ECCP1/P1A pin.  
Input/output port pin, Parallel Slave Port bit 5 or P1B pin.  
Input/output port pin, Parallel Slave Port bit 6 or P1C pin.  
Input/output port pin, Parallel Slave Port bit 7 or P1D pin.  
RD5/PSP5/P1B  
RD6/PSP6/P1C  
RD7/PSP7/P1D  
bit 5  
bit 6  
bit 7  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.  
TABLE 9-8:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTD  
RD7 RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
LATD  
LATD Data Output Register  
PORTD Data Direction Register  
IBF OBF IBOV PSPMODE  
TRISD  
TRISE  
TRISE2 TRISE1 TRISE0 0000 -111 0000 -111  
Legend: x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by PORTD.  
© 2006 Microchip Technology Inc.  
DS41159E-page 103  
PIC18FXX8  
When the Parallel Slave Port is active, the PORTE pins  
function as its control inputs. For additional details,  
refer to Section 10.0 “Parallel Slave Port”.  
9.5  
PORTE, TRISE and LATE  
Registers  
Note:  
This port is only available on the  
PIC18F448 and PIC18F458.  
PORTE pins are also multiplexed with inputs for the A/D  
converter and outputs for the analog comparators. When  
selected as an analog input, these pins will read as ‘0’s.  
Direction bits TRISE<2:0> control the direction of the RE  
pins, even when they are being used as analog inputs.  
The user must make sure to keep the pins configured as  
inputs when using them as analog inputs.  
PORTE is a 3-bit wide, bidirectional port. PORTE has  
three pins (RE0/AN5/RD, RE1/AN6/WR/C1OUT and  
RE2/AN7/CS/C2OUT) which are individually config-  
urable as inputs or outputs. These pins have Schmitt  
Trigger input buffers.  
Read-modify-write operations on the LATE register,  
read and write the latched output value for PORTE.  
EXAMPLE 9-5:  
INITIALIZING PORTE  
; Initialize PORTE by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
; Set RE1:RE0 as inputs  
; RE2 as an output  
; (RE4=0 - PSPMODE Off)  
CLRF  
PORTE  
LATE  
03h  
The corresponding Data Direction register for the port  
is TRISE. Setting a TRISE bit (= 1) will make the  
corresponding PORTE pin an input (i.e., put the corre-  
sponding output driver in a high-impedance mode).  
Clearing a TRISE bit (= 0) will make the corresponding  
PORTE pin an output (i.e., put the contents of the  
output latch on the selected pin).  
CLRF  
MOVLW  
MOVWF  
The TRISE register also controls the operation of the  
Parallel Slave Port through the control bits in the upper  
half of the register. These are shown in Register 9-1.  
TRISE  
FIGURE 9-10:  
PORTE BLOCK DIAGRAM  
Peripheral Out Select  
Peripheral Data Out  
VDD  
0
1
P
RD LATE  
Data Bus  
D
Q
Q
(1)  
I/O pin  
WR LATE  
or  
WR PORTE  
CK  
Data Latch  
N
D
Q
Q
VSS  
TRIS  
Override  
WR TRISE  
CK  
TRIS Latch  
RD TRISE  
Schmitt  
Trigger  
TRIS OVERRIDE  
Peripheral Enable  
Pin Override Peripheral  
Q
D
RE0  
RE1  
RE2  
Yes  
Yes  
Yes  
PSP  
PSP  
PSP  
EN  
RD PORTE  
Peripheral Data In  
Note 1: I/O pins have diode protection to VDD and VSS.  
DS41159E-page 104  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 9-1:  
TRISE REGISTER  
R-0  
IBF  
R-0  
R/W-0  
IBOV  
R/W-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
OBF  
PSPMODE  
TRISE2  
TRISE1  
TRISE0  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
IBF: Input Buffer Full Status bit  
1= A word has been received and waiting to be read by the CPU  
0= No word has been received  
OBF: Output Buffer Full Status bit  
1= The output buffer still holds a previously written word  
0= The output buffer has been read  
IBOV: Input Buffer Overflow Detect bit (in Microprocessor mode)  
1= A write occurred when a previously input word has not been read  
(must be cleared in software)  
0= No overflow occurred  
bit 4  
PSPMODE: Parallel Slave Port Mode Select bit  
1= Parallel Slave Port mode  
0= General Purpose I/O mode  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
TRISE2: RE2 Direction Control bit  
1= Input  
0= Output  
bit 1  
bit 0  
TRISE1: RE1 Direction Control bit  
1= Input  
0= Output  
TRISE0: RE0 Direction Control bit  
1= Input  
0= Output  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 105  
PIC18FXX8  
TABLE 9-9:  
Name  
RE0/AN5/RD  
PORTE FUNCTIONS  
Bit# Buffer Type  
Function  
bit 0  
ST/TTL(1) Input/output port pin, analog input or read control input in Parallel  
Slave Port mode.  
RE1/AN6/WR/C1OUT bit 1  
RE2/AN7/CS/C2OUT bit 2  
ST/TTL(1) Input/output port pin, analog input, write control input in Parallel Slave  
Port mode or Comparator 1 output.  
ST/TTL(1) Input/output port pin, analog input, chip select control input in Parallel  
Slave Port mode or Comparator 2 output.  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.  
TABLE 9-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
TRISE  
IBF  
OBF  
IBOV PSPMODE  
TRISE2 TRISE1 TRISE0 0000 -111 0000 -111  
PORTE  
Read PORTE pin/  
---- -xxx ---- -uuu  
Write PORTE Data Latch  
LATE  
Read PORTE Data Latch/  
Write PORTE Data Latch  
---- -xxx ---- -uuu  
ADCON1 ADFM ADCS2  
PCFG3 PCFG2 PCFG1 PCFG0 00-- 0000 00-- 0000  
Legend: x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by PORTE.  
DS41159E-page 106  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 10-1:  
PORTD AND PORTE  
BLOCK DIAGRAM  
(PARALLEL SLAVE PORT)  
10.0 PARALLEL SLAVE PORT  
Note:  
The Parallel Slave Port is only available on  
PIC18F4X8 devices.  
One bit of PORTD  
In addition to its function as a general I/O port, PORTD  
can also operate as an 8-bit wide Parallel Slave Port  
(PSP) or microprocessor port. PSP operation is  
controlled by the 4 upper bits of the TRISE register  
(Register 9-1). Setting control bit PSPMODE  
(TRISE<4>) enables PSP operation. In Slave mode,  
the port is asynchronously readable and writable by the  
external world.  
Data Bus  
D
Q
RDx pin  
WR LATD  
or  
WR PORTD  
CK  
Data Latch  
TTL  
Q
D
RD PORTD  
RD LATD  
EN  
The PSP can directly interface to an 8-bit micro-  
processor data bus. The external microprocessor can  
read or write the PORTD latch as an 8-bit latch. Setting  
the control bit PSPMODE enables the PORTE I/O pins  
to become control inputs for the microprocessor port.  
When set, port pin RE0 is the RD input, RE1 is the WR  
input and RE2 is the CS (chip select) input. For this  
functionality, the corresponding data direction bits of  
the TRISE register (TRISE<2:0>) must be configured  
as inputs (set).  
Set Interrupt Flag  
PSPIF (PIR1<7>)  
PORTE pins  
A write to the PSP occurs when both the CS and WR  
lines are first detected low. A read from the PSP occurs  
when both the CS and RD lines are first detected low.  
The timing for the control signals in Write and Read  
modes is shown in Figure 10-2 and Figure 10-3,  
respectively.  
Read  
RD  
CS  
WR  
TTL  
Chip Select  
TTL  
Write  
TTL  
Note:  
I/O pins have diode protection to VDD and VSS.  
FIGURE 10-2:  
PARALLEL SLAVE PORT WRITE WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD  
IBF  
OBF  
PSPIF  
© 2006 Microchip Technology Inc.  
DS41159E-page 107  
PIC18FXX8  
FIGURE 10-3:  
PARALLEL SLAVE PORT READ WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD  
IBF  
OBF  
PSPIF  
TABLE 10-1: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTD Port Data Latch when written; Port pins when read  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
---- -xxx ---- -000  
---- -xxx ---- -uuu  
LATD  
LATD Data Output bits  
TRISD  
PORTE  
LATE  
PORTD Data Direction bits  
RE2  
RE1  
RE0  
LATE Data Output bits  
IBF OBF  
TRISE  
IBOV PSPMODE  
PORTE Data Direction bits 0000 -111 0000 -111  
RBIF 0000 000x 0000 000u  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE TMR0IF INT0IF  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
SSPIP CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
PIE1  
TXIE  
TXIP  
IPR1  
Legend:  
x= unknown, u= unchanged, - = unimplemented, read as ‘0’. Shaded cells are not used by the Parallel Slave Port.  
DS41159E-page 108  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
Register 11-1 shows the Timer0 Control register  
(T0CON).  
11.0 TIMER0 MODULE  
The Timer0 module has the following features:  
Figure 11-1 shows a simplified block diagram of the  
Timer0 module in 8-bit mode and Figure 11-2 shows a  
simplified block diagram of the Timer0 module in 16-bit  
mode.  
• Software selectable as an 8-bit or  
16-bit timer/counter  
• Readable and writable  
• Dedicated 8-bit software programmable prescaler  
• Clock source selectable to be external or internal  
The T0CON register is a readable and writable register  
that controls all the aspects of Timer0, including the  
prescale selection.  
• Interrupt-on-overflow from FFh to 00h in 8-bit  
mode and FFFFh to 0000h in 16-bit mode  
Note:  
Timer0 is enabled on POR.  
• Edge select for external clock  
REGISTER 11-1: T0CON: TIMER0 CONTROL REGISTER  
R/W-1  
TMR0ON  
bit 7  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
T0PS2  
R/W-1  
T0PS1  
R/W-1  
T0PS0  
T08BIT  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
TMR0ON: Timer0 On/Off Control bit  
1= Enables Timer0  
0= Stops Timer0  
T08BIT: Timer0 8-bit/16-bit Control bit  
1= Timer0 is configured as an 8-bit timer/counter  
0= Timer0 is configured as a 16-bit timer/counter  
T0CS: Timer0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKO)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Timer0 Prescaler Assignment bit  
1= TImer0 prescaler is not assigned. Timer0 clock input bypasses prescaler.  
0= Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.  
bit 2-0 T0PS2:T0PS0: Timer0 Prescaler Select bits  
111=1:256 Prescale value  
110=1:128 Prescale value  
101=1:64 Prescale value  
100=1:32 Prescale value  
011=1:16 Prescale value  
010=1:8 Prescale value  
001=1:4 Prescale value  
000=1:2 Prescale value  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 109  
PIC18FXX8  
FIGURE 11-1:  
TIMER0 BLOCK DIAGRAM IN 8-BIT MODE  
Data Bus  
8
1
0
RA4/T0CKI  
pin(2)  
1
T0SE  
Sync with  
Internal  
Clocks  
FOSC/4  
TMR0L  
Programmable  
Prescaler  
0
(2 TCY Delay)  
3
PSA  
Set Interrupt  
Flag bit TMR0IF  
on Overflow  
T0PS2, T0PS1, T0PS0  
T0CS(1)  
Note 1: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
2: I/O pins have diode protection to VDD and VSS.  
FIGURE 11-2:  
TIMER0 BLOCK DIAGRAM IN 16-BIT MODE  
T0CKI pin(2)  
1
1
Sync with  
Internal  
Clocks  
T0SE  
Set Interrupt  
Flag bit TMR0IF  
on Overflow  
TMR0  
High Byte  
0
TMR0L  
FOSC/4  
Programmable  
Prescaler  
0
8
(2 TCY Delay)  
3
Read TMR0L  
Write TMR0L  
T0PS2, T0PS1, T0PS0  
T0CS(1)  
PSA  
8
8
TMR0H  
8
Data Bus<7:0>  
Note 1: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
2: I/O pins have diode protection to VDD and VSS.  
DS41159E-page 110  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
11.2.1  
SWITCHING PRESCALER  
ASSIGNMENT  
11.1 Timer0 Operation  
Timer0 can operate as a timer or as a counter.  
The prescaler assignment is fully under software  
control (i.e., it can be changed “on-the-fly” during  
program execution).  
Timer mode is selected by clearing the T0CS bit. In  
Timer mode, the Timer0 module will increment every  
instruction cycle (without prescaler). If the TMR0L  
register is written, the increment is inhibited for the  
following two instruction cycles. The user can work  
around this by writing an adjusted value to the TMR0L  
register.  
11.3 Timer0 Interrupt  
The TMR0 interrupt is generated when the TMR0  
register overflows from FFh to 00h in 8-bit mode or  
FFFFh to 0000h in 16-bit mode. This overflow sets the  
TMR0IF bit. The interrupt can be masked by clearing  
the TMR0IE bit. The TMR0IF bit must be cleared in  
software by the Timer0 module Interrupt Service  
Routine before re-enabling this interrupt. The TMR0  
interrupt cannot awaken the processor from Sleep  
since the timer is shut-off during Sleep.  
Counter mode is selected by setting the T0CS bit. In  
Counter mode, Timer0 will increment either on every  
rising or falling edge of pin RA4/T0CKI. The increment-  
ing edge is determined by the Timer0 Source Edge  
Select bit (T0SE). Clearing the T0SE bit selects the  
rising edge. Restrictions on the external clock input are  
discussed below.  
When an external clock input is used for Timer0, it must  
meet certain requirements. The requirements ensure  
the external clock can be synchronized with the internal  
phase clock (TOSC). Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
11.4 16-Bit Mode Timer Reads  
and Writes  
Timer0 can be set in 16-bit mode by clearing the  
T08BIT in T0CON. Registers TMR0H and TMR0L are  
used to access the 16-bit timer value.  
11.2 Prescaler  
TMR0H is not the high byte of the timer/counter in  
16-bit mode, but is actually a buffered version of the  
high byte of Timer0 (refer to Figure 11-1). The high byte  
of the Timer0 timer/counter is not directly readable nor  
writable. TMR0H is updated with the contents of the  
high byte of Timer0 during a read of TMR0L. This  
provides the ability to read all 16 bits of Timer0 without  
having to verify that the read of the high and low byte  
were valid, due to a rollover between successive reads  
of the high and low byte.  
An 8-bit counter is available as a prescaler for the  
Timer0 module. The prescaler is not readable or  
writable.  
The PSA and T0PS2:T0PS0 bits determine the  
prescaler assignment and prescale ratio.  
Clearing bit PSA will assign the prescaler to the Timer0  
module. When the prescaler is assigned to the Timer0  
module, prescale values of 1:2, 1:4, ..., 1:256 are  
selectable.  
A write to the high byte of Timer0 must also take place  
through the TMR0H Buffer register. Timer0 high byte is  
updated with the contents of the buffered value of  
TMR0H when a write occurs to TMR0L. This allows all  
16 bits of Timer0 to be updated at once.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g., CLRF TMR0, MOVWF  
TMR0, BSF TMR0, x.... etc.) will clear the prescaler  
count.  
Note:  
Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count but will not change the prescaler  
assignment.  
TABLE 11-1: REGISTERS ASSOCIATED WITH TIMER0  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR0L  
TMR0H  
Timer0 Module Low Byte Register  
Timer0 Module High Byte Register  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0000 000x 0000 000u  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
PSA  
TMR0IF INT0IF  
T0PS2 T0PS1  
RBIF  
T0CON  
TRISA  
TMR0ON  
T08BIT  
T0CS  
T0SE  
T0PS0 1111 1111 1111 1111  
(1)  
PORTA Data Direction Register  
-111 1111 -111 1111  
Legend:  
x= unknown, u= unchanged, -= unimplemented locations read as ‘0’. Shaded cells are not used by Timer0.  
Note 1: Bit 6 of PORTA, LATA and TRISA is enabled in ECIO and RCIO Oscillator modes only. In all other oscillator modes, it is  
disabled and reads as ‘0’.  
© 2006 Microchip Technology Inc.  
DS41159E-page 111  
PIC18FXX8  
NOTES:  
DS41159E-page 112  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
Register 12-1 shows the Timer1 Control register. This  
register controls the operating mode of the Timer1  
module, as well as contains the Timer1 Oscillator  
Enable bit (T1OSCEN). Timer1 can be enabled/  
disabled by setting/clearing control bit, TMR1ON  
(T1CON register).  
12.0 TIMER1 MODULE  
The Timer1 module timer/counter has the following  
features:  
• 16-bit timer/counter  
(two 8-bit registers: TMR1H and TMR1L)  
• Readable and writable (both registers)  
• Internal or external clock select  
Figure 12-1 is a simplified block diagram of the Timer1  
module.  
• Interrupt-on-overflow from FFFFh to 0000h  
• Reset from CCP module special event trigger  
Note:  
Timer1 is disabled on POR.  
REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
RD16  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit 0  
bit 7  
bit 7  
bit 6  
RD16: 16-bit Read/Write Mode Enable bit  
1= Enables register read/write of Timer1 in one 16-bit operation  
0= Enables register read/write of Timer1 in two 8-bit operations  
Unimplemented: Read as ‘0’  
bit 5-4 T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11=1:8 Prescale value  
10=1:4 Prescale value  
01=1:2 Prescale value  
00=1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable bit  
1= Timer1 oscillator is enabled  
0= Timer1 oscillator is shut-off  
The oscillator inverter and feedback resistor are turned off to eliminate power drain.  
T1SYNC: Timer1 External Clock Input Synchronization Select bit  
When TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RC0/T1OSO/T1CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 113  
PIC18FXX8  
When TMR1CS is clear, Timer1 increments every  
instruction cycle. When TMR1CS is set, Timer1  
increments on every rising edge of the external clock  
input or the Timer1 oscillator, if enabled.  
12.1 Timer1 Operation  
Timer1 can operate in one of these modes:  
• As a timer  
• As a synchronous counter  
• As an asynchronous counter  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins  
become inputs. That is, the TRISC<1:0> value is  
ignored.  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON register).  
Timer1 also has an internal “Reset input”. This Reset  
can be generated by the CCP module (Section 15.1  
“CCP1 Module”).  
FIGURE 12-1:  
TIMER1 BLOCK DIAGRAM  
CCP Special Event Trigger  
TMR1IF  
Overflow  
Interrupt  
Flag bit  
Synchronized  
Clock Input  
TMR1  
CLR  
0
TMR1L  
TMR1H  
T1OSC  
1
TMR1ON  
On/Off  
T1SYNC  
1
T1CKI/T1OSO  
T1OSI  
Synchronize  
det  
T1OSCEN  
Enable  
Prescaler  
1, 2, 4, 8  
FOSC/4  
Internal  
Clock  
(1)  
Oscillator  
0
2
Sleep Input  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This reduces power drain.  
FIGURE 12-2:  
TIMER1 BLOCK DIAGRAM: 16-BIT READ/WRITE MODE  
Data Bus<7:0>  
8
TMR1H  
8
8
Write TMR1L  
Read TMR1L  
Special Event Trigger  
Synchronized  
Clock Input  
0
TMR1IF  
Overflow  
Interrupt  
TMR1  
8
Timer 1  
TMR1L  
High Byte  
Flag bit  
1
TMR1ON  
On/Off  
T1SYNC  
T1OSC  
T1CKI/T1OSO  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
FOSC/4  
Internal  
Clock  
0
(1)  
T1OSI  
Oscillator  
2
Sleep Input  
TMR1CS  
T1CKPS1:T1CKPS0  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This reduces power drain.  
DS41159E-page 114  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
12.2 Timer1 Oscillator  
12.4 Resetting Timer1 Using a CCP  
Trigger Output  
A crystal oscillator circuit is built in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON register). The  
oscillator is a low-power oscillator rated up to 50 kHz. It  
will continue to run during Sleep. It is primarily intended  
for a 32 kHz crystal. Table 12-1 shows the capacitor  
selection for the Timer1 oscillator.  
If the CCP module is configured in Compare mode  
to  
generate  
a
“special  
event  
trigger”  
(CCP1M3:CCP1M0 = 1011), this signal will reset  
Timer1 and start an A/D conversion (if the A/D module  
is enabled).  
Note:  
The special event triggers from the CCP1  
module will not set interrupt flag bit,  
TMR1IF (PIR registers).  
The user must provide a software time delay to ensure  
proper start-up of the Timer1 oscillator.  
Timer1 must be configured for either Timer or Synchro-  
nized Counter mode to take advantage of this feature.  
If Timer1 is running in Asynchronous Counter mode,  
this Reset operation may not work.  
TABLE 12-1: CAPACITOR SELECTION FOR  
THE ALTERNATE  
OSCILLATOR  
Osc Type  
Freq  
C1  
C2  
In the event that a write to Timer1 coincides with a special  
event trigger from CCP1, the write will take precedence.  
LP  
32 kHz  
TBD(1)  
TBD(1)  
Crystal to be Tested:  
32.768 kHz Epson C-001R32.768K-A  
In this mode of operation, the CCPR1H:CCPR1L register  
pair effectively becomes the period register for Timer1.  
20 PPM  
12.5 Timer1 16-Bit Read/Write Mode  
Note 1: Microchip suggests 33 pF as a starting  
point in validating the oscillator circuit.  
Timer1 can be configured for 16-bit reads and writes  
(see Figure 12-2). When the RD16 control bit (T1CON  
register) is set, the address for TMR1H is mapped to a  
buffer register for the high byte of Timer1. A read from  
TMR1L will load the contents of the high byte of Timer1  
into the Timer1 High Byte Buffer register. This provides  
the user with the ability to accurately read all 16 bits of  
Timer1 without having to determine whether a read of  
the high byte, followed by a read of the low byte, is valid  
due to a rollover between reads.  
2: Higher capacitance increases the stability  
of the oscillator, but also increases the  
start-up time.  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate values of external components.  
4: Capacitor values are for design guidance  
only.  
A write to the high byte of Timer1 must also take place  
through the TMR1H Buffer register. Timer1 high byte is  
updated with the contents of TMR1H when a write  
occurs to TMR1L. This allows a user to write all 16 bits  
to both the high and low bytes of Timer1 at once.  
12.3 Timer1 Interrupt  
The TMR1 register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The TMR1  
Interrupt, if enabled, is generated on overflow which is  
latched in interrupt flag bit, TMR1IF (PIR registers). This  
interrupt can be enabled/disabled by setting/clearing  
TMR1 Interrupt Enable bit, TMR1IE (PIE registers).  
The high byte of Timer1 is not directly readable or  
writable in this mode. All reads and writes must take  
place through the Timer1 High Byte Buffer register.  
Writes to TMR1H do not clear the Timer1 prescaler.  
The prescaler is only cleared on writes to TMR1L.  
© 2006 Microchip Technology Inc.  
DS41159E-page 115  
PIC18FXX8  
TABLE 12-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PIR1  
PIE1  
IPR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
(1)  
(1)  
TXIE  
TXIP  
TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
T1CON  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu  
Legend:  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by the Timer1 module.  
Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as ‘0’s.  
DS41159E-page 116  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
13.1 Timer2 Operation  
13.0 TIMER2 MODULE  
Timer2 can be used as the PWM time base for the  
PWM mode of the CCP module. The TMR2 register is  
readable and writable and is cleared on any device  
Reset. The input clock (FOSC/4) has a prescale option  
of 1:1, 1:4 or 1:16, selected by control bits  
T2CKPS1:T2CKPS0 (T2CON register). The match  
output of TMR2 goes through a 4-bit postscaler (which  
gives a 1:1 to 1:16 scaling inclusive) to generate a  
TMR2 interrupt (latched in flag bit TMR2IF, PIR  
registers).  
The Timer2 module timer has the following features:  
• 8-bit timer (TMR2 register)  
• 8-bit period register (PR2)  
• Readable and writable (both registers)  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
• Interrupt on TMR2 match of PR2  
• SSP module optional use of TMR2 output to  
generate clock shift  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
Register 13-1 shows the Timer2 Control register.  
Timer2 can be shut-off by clearing control bit TMR2ON  
(T2CON register) to minimize power consumption.  
Figure 13-1 is a simplified block diagram of the Timer2  
module. The prescaler and postscaler selection of  
Timer2 are controlled by this register.  
• A write to the TMR2 register  
• A write to the T2CON register  
• Any device Reset (Power-on Reset, MCLR Reset,  
Watchdog Timer Reset or Brown-out Reset)  
TMR2 is not cleared when T2CON is written.  
Note:  
Timer2 is disabled on POR.  
REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit 0  
bit 7  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3 TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000=1:1 Postscale  
0001=1:2 Postscale  
1111=1:16 Postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0 T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 117  
PIC18FXX8  
13.2 Timer2 Interrupt  
13.3 Output of TMR2  
The Timer2 module has an 8-bit period register, PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is  
initialized to FFh upon Reset.  
The output of TMR2 (before the postscaler) is a clock  
input to the Synchronous Serial Port module which  
optionally uses it to generate the shift clock.  
FIGURE 13-1:  
TIMER2 BLOCK DIAGRAM  
Sets Flag  
TMR2  
bit TMR2IF  
(1)  
Output  
Prescaler  
Reset  
EQ  
TMR2  
FOSC/4  
1:1, 1:4, 1:16  
Postscaler  
1:1 to 1:16  
2
Comparator  
PR2  
T2CKPS1:T2CKPS0  
4
TOUTPS3:TOUTPS0  
Note 1: TMR2 register output can be software selected by the SSP module as a baud clock.  
TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
RBIF  
0000 000x 0000 000u  
(1)  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TMR1IF 0000 0000 0000 0000  
TMR1IE 0000 0000 0000 0000  
TMR1IP 1111 1111 1111 1111  
0000 0000 0000 0000  
(1)  
(1)  
PIE1  
TXIE  
TXIP  
IPR1  
TMR2  
T2CON  
PR2  
Timer2 Module Register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Timer2 Period Register 1111 1111 1111 1111  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by the Timer2 module.  
Legend:  
Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as ‘0’s.  
DS41159E-page 118  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
Figure 14-1 is a simplified block diagram of the Timer3  
module.  
14.0 TIMER3 MODULE  
The Timer3 module timer/counter has the following  
features:  
Register 14-1 shows the Timer3 Control register. This  
register controls the operating mode of the Timer3  
module and sets the CCP1 and ECCP1 clock source.  
• 16-bit timer/counter  
(two 8-bit registers: TMR3H and TMR3L)  
Register 12-1 shows the Timer1 Control register. This  
register controls the operating mode of the Timer1  
module, as well as contains the Timer1 Oscillator  
Enable bit (T1OSCEN) which can be a clock source for  
Timer3.  
• Readable and writable (both registers)  
• Internal or external clock select  
• Interrupt-on-overflow from FFFFh to 0000h  
• Reset from CCP1/ECCP1 module trigger  
Note:  
Timer3 is disabled on POR.  
REGISTER 14-1: T3CON:TIMER3 CONTROL REGISTER  
R/W-0  
RD16  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3ECCP1 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON  
bit 0  
bit 7  
bit 7  
RD16: 16-bit Read/Write Mode Enable bit  
1= Enables register read/write of Timer3 in one 16-bit operation  
0= Enables register read/write of Timer3 in two 8-bit operations  
bit 6,3 T3ECCP1:T3CCP1: Timer3 and Timer1 to CCP1/ECCP1 Enable bits  
1x= Timer3 is the clock source for compare/capture CCP1 and ECCP1 modules  
01= Timer3 is the clock source for compare/capture of ECCP1,  
Timer1 is the clock source for compare/capture of CCP1  
00= Timer1 is the clock source for compare/capture CCP1 and ECCP1 modules  
bit 5-4 T3CKPS1:T3CKPS0: Timer3 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 2  
T3SYNC: Timer3 External Clock Input Synchronization Control bit  
(Not usable if the system clock comes from Timer1/Timer3.)  
When TMR3CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR3CS = 0:  
This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.  
TMR3CS: Timer3 Clock Source Select bit  
bit 1  
bit 0  
1= External clock input from Timer1 oscillator or T1CKI (on the rising edge after the first falling edge)  
0= Internal clock (FOSC/4)  
TMR3ON: Timer3 On bit  
1= Enables Timer3  
0= Stops Timer3  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 119  
PIC18FXX8  
When TMR3CS = 0, Timer3 increments every instruc-  
tion cycle. When TMR3CS = 1, Timer3 increments on  
every rising edge of the Timer1 external clock input or  
the Timer1 oscillator, if enabled.  
14.1 Timer3 Operation  
Timer3 can operate in one of these modes:  
• As a timer  
• As a synchronous counter  
• As an asynchronous counter  
When the Timer1 oscillator is enabled (T1OSCEN is set),  
the RC1/T1OSI and RC0/T1OSO/T1CKI pins become  
inputs. That is, the TRISC<1:0> value is ignored.  
The operating mode is determined by the clock select  
bit, TMR3CS (T3CON register).  
Timer3 also has an internal “Reset input”. This Reset  
can be generated by the CCP module (Section 15.1  
“CCP1 Module”).  
FIGURE 14-1:  
TIMER3 BLOCK DIAGRAM  
CCP Special Trigger  
TMR3IF  
T3CCPx  
Synchronized  
Clock Input  
Overflow  
0
Interrupt  
Flag bit  
CLR  
TMR3L  
TMR3H  
T1OSC  
1
TMR3ON  
On/Off  
T3SYNC  
T1OSO/  
T1CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
FOSC/4  
Internal  
0
(1)  
T1OSI  
Oscillator  
Clock  
2
Sleep Input  
TMR3CS  
T3CKPS1:T3CKPS0  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
FIGURE 14-2:  
TIMER3 BLOCK DIAGRAM CONFIGURED IN 16-BIT READ/WRITE MODE  
Data Bus<7:0>  
8
TMR3H  
8
8
Write TMR3L  
Read TMR3L  
CCP Special Trigger  
T3CCPx  
Synchronized  
Clock Input  
8
TMR3  
TMR3IF Overflow  
Interrupt Flag  
bit  
0
CLR  
TMR3H  
TMR3L  
1
To Timer1 Clock Input  
TMR3ON  
On/Off  
T3SYNC  
T1OSC  
T1OSO/  
T1CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
FOSC/4  
Internal  
Clock  
0
(1)  
Oscillator  
T1OSI  
2
Sleep Input  
T3CKPS1:T3CKPS0  
TMR3CS  
Note 1: When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
DS41159E-page 120  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
14.2 Timer1 Oscillator  
14.4 Resetting Timer3 Using a CCP  
Trigger Output  
The Timer1 oscillator may be used as the clock source  
for Timer3. The Timer1 oscillator is enabled by setting  
the T1OSCEN bit (T1CON register). The oscillator is a  
low-power oscillator rated up to 50 kHz. Refer to  
Section 12.0 “Timer1 Module” for Timer1 oscillator  
details.  
If the CCP module is configured in Compare mode  
to  
generate  
a
“special  
event  
trigger”  
(CCP1M3:CCP1M0 = 1011), this signal will reset  
Timer3.  
Note:  
The special event triggers from the CCP  
module will not set interrupt flag bit  
TMR3IF (PIR registers).  
14.3 Timer3 Interrupt  
The TMR3 register pair (TMR3H:TMR3L) increments  
from 0000h to 0FFFFh and rolls over to 0000h. The  
TMR3 interrupt, if enabled, is generated on overflow  
which is latched in interrupt flag bit TMR3IF (PIR regis-  
ters). This interrupt can be enabled/disabled by setting/  
clearing TMR3 Interrupt Enable bit, TMR3IE (PIE  
registers).  
Timer3 must be configured for either Timer or Synchro-  
nized Counter mode to take advantage of this feature. If  
Timer3 is running in Asynchronous Counter mode, this  
Reset operation may not work. In the event that a write  
to Timer3 coincides with a special event trigger from  
CCP1, the write will take precedence. In this mode of  
operation, the CCPR1H:CCPR1L register pair becomes  
the period register for Timer3. Refer to Section 15.0  
“Capture/Compare/PWM (CCP) Modules” for CCP  
details.  
TABLE 14-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/ GIEH PEIE/GIEL TMR0IE  
INT0IE  
EEIF  
RBIE  
BCLIF  
BCLIE  
BCLIP  
TMR0IF  
LVDIF  
LVDIE  
LVDIP  
INT0IF  
RBIF  
0000 000x 0000 000u  
PIR2  
CMIF  
CMIE  
CMIP  
TMR3IF ECCP1IF -0-0 0000 -0-0 0000  
TMR3IE ECCP1IE -0-0 0000 -0-0 0000  
TMR3IP ECCP1IP -1-1 1111 -1-1 1111  
xxxx xxxx uuuu uuuu  
PIE2  
EEIE  
EEIP  
IPR2  
TMR3L  
Holding Register for the Least Significant Byte of the 16-bit TMR3 Register  
TMR3H Holding Register for the Most Significant Byte of the 16-bit TMR3 Register  
xxxx xxxx uuuu uuuu  
T1CON  
T3CON  
Legend:  
RD16  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu  
T3ECCP1 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by the Timer1 module.  
© 2006 Microchip Technology Inc.  
DS41159E-page 121  
PIC18FXX8  
NOTES:  
DS41159E-page 122  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
module has a Capture special event trigger that can be  
used as a message received time-stamp for the CAN  
module (refer to Section 19.0 “CAN Module” for CAN  
operation) which the ECCP module does not. The  
ECCP module, on the other hand, has Enhanced PWM  
functionality and auto-shutdown capability. Aside from  
these, the operation of the module described in this  
section is the same as the ECCP.  
15.0 CAPTURE/COMPARE/PWM  
(CCP) MODULES  
The CCP (Capture/Compare/PWM) module contains a  
16-bit register that can operate as a 16-bit Capture  
register, as a 16-bit Compare register or as a PWM  
Duty Cycle register.  
The operation of the CCP module is identical to that  
of the ECCP module (discussed in detail in  
Section 16.0 “Enhanced Capture/Compare/PWM  
(ECCP) Module”) with two exceptions. The CCP  
The control register for the CCP module is shown in  
Register 15-1. Table 15-2 (following page) details the  
interactions of the CCP and ECCP modules.  
REGISTER 15-1: CCP1CON: CCP1 CONTROL REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
bit 0  
bit 7  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
DCxB1:DCxB0: PWM Duty Cycle bit 1 and bit 0  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two LSbs (bit 1 and bit 0) of the 10-bit PWM duty cycle. The upper eight bits  
(DCx9:DCx2) of the duty cycle are found in CCPRxL.  
bit 3-0  
CCPxM3:CCPxM0: CCPx Mode Select bits  
0000= Capture/Compare/PWM off (resets CCPx module)  
0001= Reserved  
0010= Compare mode, toggle output on match (CCPxIF bit is set)  
0011= Capture mode, CAN message received (CCP1 only)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, initialize CCP pin low, on compare match force CCP pin high  
(CCPIF bit is set)  
1001= Compare mode, initialize CCP pin high, on compare match force CCP pin low  
(CCPIF bit is set)  
1010= Compare mode, CCP pin is unaffected  
(CCPIF bit is set)  
1011= Compare mode, trigger special event (CCP1IF bit is set; CCP resets TMR1 or TMR3  
and starts an A/D conversion if the A/D module is enabled)  
11xx= PWM mode  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 123  
PIC18FXX8  
An event is selected by control bits CCP1M3:CCP1M0  
(CCP1CON<3:0>). When a capture is made, the  
interrupt request flag bit, CCP1IF (PIR registers), is set.  
It must be cleared in software. If another capture  
occurs before the value in register CCPR1 is read, the  
old captured value will be lost.  
15.1 CCP1 Module  
Capture/Compare/PWM Register1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON register controls  
the operation of CCP1. All are readable and writable.  
Table 15-1 shows the timer resources of the CCP  
module modes.  
15.2.1  
CCP PIN CONFIGURATION  
In Capture mode, the RC2/CCP1 pin should be  
configured as an input by setting the TRISC<2> bit.  
TABLE 15-1: CCP1 MODE – TIMER  
RESOURCE  
Note:  
If the RC2/CCP1 is configured as an out-  
put, a write to the port can cause a capture  
condition.  
CCP1 Mode  
Timer Resource  
Capture  
Compare  
PWM  
Timer1 or Timer3  
Timer1 or Timer3  
Timer2  
15.2.2  
TIMER1/TIMER3 MODE SELECTION  
The timers used with the capture feature (either Timer1  
and/or Timer3) must be running in Timer mode or Syn-  
chronized Counter mode. In Asynchronous Counter  
mode, the capture operation may not work. The timer  
used with each CCP module is selected in the T3CON  
register.  
15.2 Capture Mode  
In Capture mode, CCPR1H:CCPR1L captures the 16-  
bit value of the TMR1 or TMR3 register when an event  
occurs on pin RC2/CCP1. An event is defined as:  
• every falling edge  
• every rising edge  
• every 4th rising edge  
• every 16th rising edge  
TABLE 15-2: INTERACTION OF CCP1 AND ECCP1 MODULES  
CCP1  
Mode  
ECCP1  
Mode  
Interaction  
Capture  
Capture  
Capture  
TMR1 or TMR3 time base. Time base can be different for each CCP.  
Compare  
The compare could be configured for the special event trigger which clears either TMR1  
or TMR3, depending upon which time base is used.  
Compare  
Compare  
The compare(s) could be configured for the special event trigger which clears TMR1 or  
TMR3, depending upon which time base is used.  
PWM  
PWM  
PWM  
PWM  
The PWMs will have the same frequency and update rate (TMR2 interrupt).  
Capture  
Compare  
None.  
None.  
DS41159E-page 124  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
15.2.3  
SOFTWARE INTERRUPT  
15.2.5  
CAN MESSAGE TIME-STAMP  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE registers) clear to avoid false interrupts  
and should clear the flag bit CCP1IF, following any  
such change in operating mode.  
The CAN capture event occurs when a message is  
received in either of the receive buffers. The CAN  
module provides a rising edge to the CCP1 module to  
cause a capture event. This feature is provided to  
time-stamp the received CAN messages.  
This feature is enabled by setting the CANCAP bit of  
the CAN I/O control register (CIOCON<4>). The  
message receive signal from the CAN module then  
takes the place of the events on RC2/CCP1.  
15.2.4  
CCP1 PRESCALER  
There are four prescaler settings specified by bits  
CCP1M3:CCP1M0. Whenever the CCP1 module is  
turned off, or the CCP1 module is not in Capture mode,  
the prescaler counter is cleared. This means that any  
Reset will clear the prescaler counter.  
EXAMPLE 15-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared; therefore, the first capture may be from  
a non-zero prescaler. Example 15-1 shows the recom-  
mended method for switching between capture  
prescalers. This example also clears the prescaler  
counter and will not generate the “false” interrupt.  
CLRF  
MOVLW  
CCP1CON, F  
NEW_CAPT_PS  
; Turn CCP module off  
; Load WREG with the  
; new prescaler mode  
; value and CCP ON  
; Load CCP1CON with  
; this value  
MOVWF  
CCP1CON  
FIGURE 15-1:  
CAPTURE MODE OPERATION BLOCK DIAGRAM  
Set Flag bit CCP1IF  
(PIR1<2>)  
TMR3H  
TMR3L  
CCPR1L  
TMR1L  
T3CCP1  
T3ECCP1  
TMR3  
Enable  
Prescaler  
÷ 1, 4, 16  
CCP1 pin  
CCPR1H  
TMR1  
and  
Enable  
Edge Detect  
T3ECCP1  
T3CCP1  
TMR1H  
CCP1CON<3:0>  
Qs  
Note: I/O pins have diode protection to VDD and VSS.  
© 2006 Microchip Technology Inc.  
DS41159E-page 125  
PIC18FXX8  
15.3.2  
TIMER1/TIMER3 MODE SELECTION  
15.3 Compare Mode  
Timer1 and/or Timer3 must be running in Timer mode,  
or Synchronized Counter mode, if the CCP module is  
using the compare feature. In Asynchronous Counter  
mode, the compare operation may not work.  
In Compare mode, the 16-bit CCPR1 and ECCPR1  
register value is constantly compared against either the  
TMR1 register pair value or the TMR3 register pair  
value. When a match occurs, the CCP1 pin can have  
one of the following actions:  
15.3.3  
SOFTWARE INTERRUPT MODE  
• Driven high  
When generate software interrupt is chosen, the CCP1  
pin is not affected. Only a CCP interrupt is generated (if  
enabled).  
• Driven low  
Toggle output (high-to-low or low-to-high)  
• Remains unchanged  
15.3.4  
SPECIAL EVENT TRIGGER  
The action on the pin is based on the value of control  
bits CCP1M3:CCP1M0. At the same time, interrupt flag  
bit CCP1IF is set.  
In this mode, an internal hardware trigger is generated,  
which may be used to initiate an action.  
The special event trigger output of CCP1 resets either  
the TMR1 or TMR3 register pair. Additionally, the  
ECCP1 special event trigger will start an A/D  
conversion if the A/D module is enabled.  
15.3.1  
CCP1 PIN CONFIGURATION  
The user must configure the CCP1 pin as an output by  
clearing the appropriate TRISC bit.  
Note:  
Clearing the CCP1CON register will force  
the CCP1 compare output latch to the  
default low level. This is not the data latch.  
Note:  
The special event trigger from the ECCP1  
module will not set the Timer1 or Timer3  
interrupt flag bits.  
FIGURE 15-2:  
COMPARE MODE OPERATION BLOCK DIAGRAM  
Special Event Trigger will:  
Reset Timer1 or Timer3 (but not set Timer1 or Timer3 Interrupt Flag bit)  
Set bit GO/DONE which starts an A/D conversion (ECCP1 only)  
TMR3H TMR3L  
TMR1H TMR1L  
Special Event Trigger  
Set Flag bit CCP1IF  
(PIR1<2>)  
T3CCP1  
T3ECCP1  
0
1
Q
S
R
Output  
Logic  
Comparator  
CCPR1H  
Match  
CCP1  
Output Enable  
CCPR1L  
CCP1CON<3:0>  
Mode Select  
Note 1: I/O pins have diode protection to VDD and VSS.  
DS41159E-page 126  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TABLE 15-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
CCP1IF  
CCP1IE  
CCP1IP  
TMR2IF  
TMR2IE  
TMR2IP  
TMR1IF 0000 0000 0000 0000  
TMR1IE 0000 0000 0000 0000  
TMR1IP 1111 1111 1111 1111  
1111 1111 1111 1111  
(1)  
(1)  
PIE1  
IPR1  
TRISD  
TMR1L  
TMR1H  
T1CON  
CCPR1L  
CCPR1H  
CCP1CON  
PIR2  
PORTD Data Direction Register  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu  
Capture/Compare/PWM Register 1 (LSB)  
Capture/Compare/PWM Register 1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
DC1B1  
DC1B0  
EEIF  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
CMIF  
CMIE  
CMIP  
BCLIF  
BCLIE  
BCLIP  
LVDIF  
LVDIE  
LVDIP  
TMR3IF ECCP1IF -0-0 0000 -0-0 0000  
TMR3IE ECCP1IE -0-0 0000 -0-0 0000  
TMR3IP ECCP1IP -1-1 1111 -1-1 1111  
PIE2  
EEIE  
EEIP  
IPR2  
TMR3L  
TMR3H  
T3CON  
Legend:  
Holding Register for the Least Significant Byte of the 16-bit TMR3 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR3 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RD16  
T3ECCP1 T3CKPS1 T3CKPS0 T3CCP1  
T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by Capture and Timer1.  
Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as ‘0’s.  
© 2006 Microchip Technology Inc.  
DS41159E-page 127  
PIC18FXX8  
15.4.1  
PWM PERIOD  
15.4 PWM Mode  
The PWM period is specified by writing to the PR2  
register. The PWM period can be calculated using the  
following formula.  
In Pulse-Width Modulation (PWM) mode, the CCP1 pin  
produces up to a 10-bit resolution PWM output. Since  
the CCP1 pin is multiplexed with the PORTC data latch,  
the TRISC<2> bit must be cleared to make the CCP1  
pin an output.  
EQUATION 15-1:  
PWM Period = [(PR2) + 1] • 4 • TOSC •  
(TMR2 Prescale Value)  
Note:  
Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is not the PORTC I/O data  
latch.  
PWM frequency is defined as 1/[PWM period].  
Figure 15-3 shows a simplified block diagram of the  
CCP module in PWM mode.  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, see Section 15.4.3  
“Setup for PWM Operation”.  
• TMR2 is cleared  
• The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
• The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
FIGURE 15-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
Note:  
The Timer2 postscaler (see Section 13.0  
“Timer2 Module”) is not used in the  
determination of the PWM frequency. The  
postscaler could be used to have a servo  
update rate at a different frequency than  
the PWM output.  
CCP1CON<5:4>  
Duty Cycle Registers  
CCPR1L (Master)  
CCPR1H (Slave)  
Comparator  
15.4.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time.  
Q
R
S
RC2/CCP1  
(Note 1)  
TMR2  
TRISC<2>  
Comparator  
PR2  
Clear Timer,  
set CCP1 pin and  
latch D.C.  
EQUATION 15-2:  
PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) •  
TOSC • (TMR2 Prescale Value)  
Note 1: 8-bit timer is concatenated with 2-bit internal Q clock,  
or 2 bits of the prescaler, to create 10-bit time base.  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read-only register.  
A PWM output (Figure 15-4) has a time base (period)  
and a time that the output stays high (duty cycle). The  
frequency of the PWM is the inverse of the period  
(1/period).  
FIGURE 15-4:  
PWM OUTPUT  
The CCPR1H register and a 2-bit internal latch are  
used to double-buffer the PWM duty cycle. This  
double-buffering is essential for glitchless PWM  
operation.  
Period  
When the CCPR1H and 2-bit latch match TMR2,  
concatenated with an internal 2-bit Q clock or 2 bits of  
the TMR2 prescaler, the CCP1 pin is cleared.  
Duty Cycle  
TMR2 = PR2  
TMR2 = Duty Cycle  
TMR2 = PR2  
DS41159E-page 128  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
The maximum PWM resolution (bits) for a given PWM  
frequency is given by the following equation.  
15.4.3  
SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
EQUATION 15-3:  
1. Set the PWM period by writing to the PR2  
register.  
FOSC  
---------------  
log  
FPWM  
2. Set the PWM duty cycle by writing to the  
CCPR1L register and CCP1CON<5:4> bits.  
PWM Resolution (max)  
= ----------------------------- b i t s  
log(2)  
3. Make the CCP1 pin an output by clearing the  
TRISC<2> bit.  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
Note:  
If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
5. Configure the CCP1 module for PWM operation.  
TABLE 15-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz  
PWM Frequency  
2.44 kHz 9.76 kHz 39.06 kHz 156.3 kHz 312.5 kHz 416.6 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
0FFh  
10  
4
1
1
3Fh  
8
1
1Fh  
7
1
0FFh  
10  
0FFh  
10  
17h  
5.5  
Maximum Resolution (bits)  
TABLE 15-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
TMR2IF  
TMR1IF 0000 0000 0000 0000  
TMR1IE 0000 0000 0000 0000  
TMR1IP 1111 1111 1111 1111  
1111 1111 1111 1111  
(1)  
(1)  
PIE1  
CCP1IE TMR2IE  
CCP1IP TMR2IP  
IPR1  
TRISD  
TMR2  
PORTD Data Direction Register  
Timer2 Module Register  
0000 0000 0000 0000  
PR2  
Timer2 Module Period Register  
1111 1111 1111 1111  
T2CON  
CCPR1L  
CCPR1H  
CCP1CON  
Legend:  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Capture/Compare/PWM Register1 (LSB)  
Capture/Compare/PWM Register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
x= unknown, u= unchanged, - = unimplemented, read as ‘0’. Shaded cells are not used by PWM and Timer2.  
Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as ‘0’s.  
© 2006 Microchip Technology Inc.  
DS41159E-page 129  
PIC18FXX8  
NOTES:  
DS41159E-page 130  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
The operation of the ECCP module differs from the  
CCP (discussed in detail in Section 15.0 “Capture/  
Compare/PWM (CCP) Modules”) with the addition of  
an Enhanced PWM module which allows for up to 4  
output channels and user selectable polarity. These  
features are discussed in detail in Section 16.5  
“Enhanced PWM Mode”. The module can also be  
programmed for automatic shutdown in response to  
various analog or digital events.  
16.0 ENHANCED CAPTURE/  
COMPARE/PWM (ECCP)  
MODULE  
Note:  
The ECCP (Enhanced Capture/Compare/  
PWM) module is only available on  
PIC18F448 and PIC18F458 devices.  
This module contains a 16-bit register which can oper-  
ate as a 16-bit Capture register, a 16-bit Compare  
register or a PWM Master/Slave Duty Cycle register.  
The control register for ECCP1 is shown in  
Register 16-1.  
REGISTER 16-1: ECCP1CON: ECCP1 CONTROL REGISTER  
R/W-0 R/W-0 R/W-0 R/W-0  
EPWM1M1 EPWM1M0 EDC1B1 EDC1B0 ECCP1M3 ECCP1M2 ECCP1M1 ECCP1M0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
bit 0  
bit 7  
bit 7-6  
EPWM1M<1:0>: PWM Output Configuration bits  
If ECCP1M<3:2> = 00, 01, 10:  
xx= P1A assigned as Capture/Compare input; P1B, P1C, P1D assigned as port pins  
If ECCP1M<3:2> = 11:  
00= Single output; P1A modulated; P1B, P1C, P1D assigned as port pins  
01= Full-bridge output forward; P1D modulated; P1A active; P1B, P1C inactive  
10= Half-bridge output; P1A, P1B modulated with deadband control; P1C, P1D assigned as  
port pins  
11= Full-bridge output reverse; P1B modulated; P1C active; P1A, P1D inactive  
bit 5-4  
bit 3-0  
EDC1B<1:0>: PWM Duty Cycle Least Significant bits  
Capture mode:  
Unused.  
Compare mode:  
Unused.  
PWM mode:  
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in ECCPR1L.  
ECCP1M<3:0>: ECCP1 Mode Select bits  
0000= Capture/Compare/PWM off (resets ECCP module)  
0001= Unused (reserved)  
0010= Compare mode, toggle output on match (ECCP1IF bit is set)  
0011= Unused (reserved)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (ECCP1IF bit is set)  
1001= Compare mode, clear output on match (ECCP1IF bit is set)  
1010= Compare mode, ECCP1 pin is unaffected (ECCP1IF bit is set)  
1011= Compare mode, trigger special event (ECCP1IF bit is set; ECCP resets TMR1or TMR3  
and starts an A/D conversion if the A/D module is enabled)  
1100= PWM mode; P1A, P1C active-high; P1B, P1D active-high  
1101= PWM mode; P1A, P1C active-high; P1B, P1D active-low  
1110= PWM mode; P1A, P1C active-low; P1B, P1D active-high  
1111= PWM mode; P1A, P1C active-low; P1B, P1D active-low  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 131  
PIC18FXX8  
In PWM mode, the ECCP module can have up to four  
available outputs, depending on which operating mode  
is selected. These outputs are multiplexed with PORTD  
and the Parallel Slave Port. Both the operating mode  
and the output pin assignments are configured by setting  
PWM output configuration bits, EPWM1M1:EPWM1M0  
(ECCP1CON<7:6>). The specific pin assignments for  
the various output modes are shown in Table 16-3.  
16.1 ECCP1 Module  
Enhanced Capture/Compare/PWM Register 1 (ECCPR1)  
is comprised of two 8-bit registers: ECCPR1L (low  
byte) and ECCPR1H (high byte). The ECCP1CON  
register controls the operation of ECCP1; the additional  
registers, ECCPAS and ECCP1DEL, control Enhanced  
PWM specific features. All registers are readable and  
writable.  
Table 16-1 shows the timer resources for the ECCP  
module modes. Table 16-2 describes the interactions  
of the ECCP module with the standard CCP module.  
TABLE 16-1: ECCP1 MODE – TIMER  
RESOURCE  
ECCP1 Mode  
Timer Resource  
Capture  
Compare  
PWM  
Timer1 or Timer3  
Timer1 or Timer3  
Timer2  
TABLE 16-2: INTERACTION OF CCP1 AND ECCP1 MODULES  
ECCP1 Mode CCP1 Mode Interaction  
TMR1 or TMR3 time base. Time base can be different for each CCP.  
Capture  
Capture  
Capture  
Compare  
The compare could be configured for the special event trigger which clears either  
TMR1 or TMR3 depending upon which time base is used.  
Compare  
Compare  
The compare(s) could be configured for the special event trigger which clears TMR1  
or TMR3 depending upon which time base is used.  
PWM  
PWM  
PWM  
PWM  
The PWMs will have the same frequency and update rate (TMR2 interrupt).  
Capture  
Compare  
None  
None  
TABLE 16-3: PIN ASSIGNMENTS FOR VARIOUS ECCP MODES  
ECCP1CON  
ECCP Mode(1)  
RD4  
RD5  
RD6  
RD7  
Configuration  
Conventional CCP Compatible  
00xx11xx  
ECCP1  
RD<5>,  
PSP<5>  
RD<6>,  
PSP<6>  
RD<7>,  
PSP<7>  
Dual Output PWM(2)  
10xx11xx  
P1A  
P1B  
RD<6>,  
PSP<6>  
RD<7>,  
PSP<7>  
Quad Output PWM(2)  
x1xx11xx  
P1A  
P1B  
P1C  
P1D  
Legend: x= Don’t care. Shaded cells indicate pin assignments not used by ECCP in a given mode.  
Note 1: In all cases, the appropriate TRISD bits must be cleared to make the corresponding pin an output.  
2: In these modes, the PSP I/O control for PORTD is overridden by P1B, P1C and P1D.  
DS41159E-page 132  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
16.2 Capture Mode  
16.3 Compare Mode  
The Capture mode of the ECCP module is virtually  
identical in operation to that of the standard CCP mod-  
ule as discussed in Section 15.1 “CCP1 Module”.  
The differences are in the registers and port pins  
involved:  
The Compare mode of the ECCP module is virtually  
identical in operation to that of the standard CCP  
module as discussed in Section 15.2 “Capture  
Mode”. The differences are in the registers and port  
pins as described in Section 16.2 “Capture Mode”.  
All other details are exactly the same.  
• The 16-bit Capture register is ECCPR1  
(ECCPR1H and ECCPR1L);  
16.3.1  
SPECIAL EVENT TRIGGER  
• The capture event is selected by control bits  
ECCP1M3:ECCP1M0 (ECCP1CON<3:0>);  
Except as noted below, the special event trigger output  
of ECCP1 functions identically to that of the standard  
CCP module. It may be used to start an A/D conversion  
if the A/D module is enabled.  
• The interrupt bits are ECCP1IE (PIE2<0>) and  
ECCP1IF (PIR2<0>); and  
• The capture input pin is RD4 and its corresponding  
direction control bit is TRISD<4>.  
Note:  
The special event trigger from the ECCP1  
module will not set the Timer1 or Timer3  
interrupt flag bits.  
Other operational details, including timer selection,  
output pin configuration and software interrupts, are  
exactly the same as the standard CCP module.  
16.2.1  
CAN MESSAGE TIME-STAMP  
The special capture event for the reception of CAN mes-  
sages (Section 15.2.5 “CAN Message Time-Stamp”)  
is not available with the ECCP module.  
TABLE 16-4: REGISTERS ASSOCIATED WITH ENHANCED CAPTURE, COMPARE,  
TIMER1 AND TIMER3  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR2  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
EEIF  
RBIE  
BCLIF  
BCLIE  
BCLIP  
TMR0IF  
LVDIF  
LVDIE  
LVDIP  
INT0IF  
RBIF  
0000 000x 0000 000u  
CMIF  
CMIE  
CMIP  
TMR3IF ECCP1IF -0-0 0000 -0-0 0000  
TMR3IE ECCP1IE -0-0 0000 -0-0 0000  
TMR3IP ECCP1IP -1-1 1111 -1-1 1111  
xxxx xxxx uuuu uuuu  
PIE2  
EEIE  
EEIP  
IPR2  
TMR1L  
TMR1H  
T1CON  
TMR3L  
TMR3H  
T3CON  
TRISD  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu  
Holding Register for the Least Significant Byte of the 16-bit TMR3 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR3 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RD16  
T3ECCP1 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu  
PORTD Data Direction Register  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
ECCPR1L Capture/Compare/PWM Register1 (LSB)  
ECCPR1H Capture/Compare/PWM Register1 (MSB)  
ECCP1CON EPWM1M1 EPWM1M0 EDC1B1 EDC1B0 ECCP1M3 ECCP1M2 ECCP1M1 ECCP1M0 0000 0000 0000 0000  
Legend: x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by the ECCP module and Timer1.  
© 2006 Microchip Technology Inc.  
DS41159E-page 133  
PIC18FXX8  
Figure 16-1 shows a simplified block diagram of PWM  
operation. All control registers are double-buffered and  
are loaded at the beginning of a new PWM cycle (the  
period boundary when the assigned timer resets) in  
order to prevent glitches on any of the outputs. The  
exception is the PWM Delay register, ECCP1DEL,  
which is loaded at either the duty cycle boundary or the  
boundary period (whichever comes first). Because of  
the buffering, the module waits until the assigned timer  
resets instead of starting immediately. This means that  
Enhanced PWM waveforms do not exactly match the  
standard PWM waveforms, but are instead offset by  
one full instruction cycle (4 TOSC).  
16.4 Standard PWM Mode  
When configured in Single Output mode, the ECCP  
module functions identically to the standard CCP  
module in PWM mode as described in Section 15.4  
“PWM Mode”. The differences in registers and ports  
are as described in Section 16.2 “Capture Mode”. In  
addition, the two Least Significant bits of the 10-bit  
PWM duty cycle value are represented by  
ECCP1CON<5:4>.  
Note:  
When setting up single output PWM  
operations, users are free to use either of  
the processes described in Section 15.4.3  
“Setup for PWM Operation” or  
Section 16.5.8 “Setup for PWM Opera-  
tion”. The latter is more generic, but will  
work for either single or multi-output PWM.  
As before, the user must manually configure the  
appropriate TRISD bits for output.  
16.5.1  
PWM OUTPUT CONFIGURATIONS  
The EPWM1M<1:0> bits in the ECCP1CON register  
allow one of four configurations:  
16.5 Enhanced PWM Mode  
• Single Output  
The Enhanced PWM mode provides additional PWM  
output options for a broader range of control applica-  
tions. The module is an upwardly compatible version of  
the standard CCP module and is modified to provide up  
to four outputs, designated P1A through P1D. Users  
are also able to select the polarity of the signal (either  
active-high or active-low). The module’s output mode  
and polarity are configured by setting the  
EPWM1M1:EPWM1M0 and ECCP1M3:ECCP1M0 bits  
of the ECCP1CON register (ECCP1CON<7:6> and  
ECCP1CON<3:0>, respectively).  
• Half-Bridge Output  
• Full-Bridge Output, Forward mode  
• Full-Bridge Output, Reverse mode  
The Single Output mode is the standard PWM mode  
discussed in Section 15.4 “PWM Mode”. The Half-  
Bridge and Full-Bridge Output modes are covered in  
detail in the sections that follow.  
The general relationship of the outputs in all  
configurations is summarized in Figure 16-2.  
FIGURE 16-1:  
SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODULE  
ECCP1CON<5:4>  
ECCP1M<3:0>  
4
EPWM1M1<1:0>  
Duty Cycle Registers  
2
ECCPR1L  
ECCP1/P1A  
RD4/PSP4/ECCP1/P1A  
TRISD<4>  
TRISD<5>  
TRISD<6>  
TRISD<7>  
ECCPR1H (Slave)  
Comparator  
P1B  
RD5/PSP5/P1B  
RD6/PSP6/P1C  
Output  
R
Q
Controller  
P1C  
(Note 1)  
TMR2  
S
P1D  
RD7/PSP7/P1D  
Comparator  
PR2  
Clear Timer,  
set ECCP1 pin and  
latch D.C.  
ECCP1DEL  
Note: The 8-bit TMR2 register is concatenated with the 2-bit internal Q clock, or 2 bits of the prescaler, to create the 10-bit time base.  
DS41159E-page 134  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 16-2:  
PWM OUTPUT RELATIONSHIPS  
0
PR2 + 1  
Duty  
Cycle  
SIGNAL  
ECCP1CON  
Period  
<7:6>  
P1A Modulated, Active-High  
P1A Modulated, Active-Low  
P1A Modulated, Active-High  
P1A Modulated, Active-Low  
P1B Modulated, Active-High  
P1B Modulated, Active-Low  
P1A Active, Active-High  
P1A Active, Active-Low  
00  
Delay  
10  
Delay  
P1B Inactive, Active-High  
P1B Inactive, Active-Low  
P1C Inactive, Active-High  
P1C Inactive, Active-Low  
P1D Modulated, Active-High  
P1D Modulated, Active-Low  
P1A Inactive, Active-High  
P1A Inactive, Active-Low  
P1B Modulated, Active-High  
P1B Modulated, Active-Low  
P1C Active, Active-High  
P1C Active, Active-Low  
01  
11  
P1D Inactive, Active-High  
P1D Inactive, Active-Low  
Relationships:  
• Period = 4 * TOSC * (PR2 + 1) * (TMR2 Prescale Value)  
• Duty Cycle = TOSC * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value)  
• Delay = 4 * TOSC * ECCP1DEL  
© 2006 Microchip Technology Inc.  
DS41159E-page 135  
PIC18FXX8  
16.5.2  
HALF-BRIDGE MODE  
FIGURE 16-3:  
HALF-BRIDGE PWM  
OUTPUT  
In the Half-Bridge Output mode, two pins are used as  
outputs to drive push-pull loads. The RD4/PSP4/  
ECCP1/P1A pin has the PWM output signal, while the  
RD5/PSP5/P1B pin has the complementary PWM  
output signal (Figure 16-3). This mode can be used for  
half-bridge applications, as shown in Figure 16-4, or for  
full-bridge applications where four power switches are  
being modulated with two PWM signals.  
Period  
Period  
Duty Cycle  
(2)  
(2)  
P1A  
td  
td  
P1B  
In Half-Bridge Output mode, the programmable dead-  
band delay can be used to prevent shoot-through  
current in bridge power devices. The value of register  
ECCP1DEL dictates the number of clock cycles before  
the output is driven active. If the value is greater than  
the duty cycle, the corresponding output remains  
inactive during the entire cycle. See Section 16.5.4  
“Programmable Dead-Band Delay” for more details  
of the dead-band delay operations.  
(1)  
(1)  
(1)  
td = Dead-Band Delay  
Note 1: At this time, the TMR2 register is equal to the  
PR2 register.  
2: Output signals are shown as asserted high.  
Since the P1A and P1B outputs are multiplexed with  
the PORTD<4> and PORTD<5> data latches, the  
TRISD<4> and TRISD<5> bits must be cleared to  
configure P1A and P1B as outputs.  
FIGURE 16-4:  
EXAMPLES OF HALF-BRIDGE OUTPUT MODE APPLICATIONS  
V+  
Standard Half-Bridge Circuit (“Push-Pull”)  
PIC18F448/458  
FET  
Driver  
+
V
-
P1A  
+
-
Load  
FET  
Driver  
+
V
-
P1B  
V-  
Half-Bridge Output Driving a Full-Bridge Circuit  
V+  
PIC18F448/458  
FET  
FET  
Driver  
Driver  
P1A  
+
-
Load  
FET  
Driver  
FET  
Driver  
P1B  
V-  
DS41159E-page 136  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
P1A, P1B, P1C and P1D outputs are multiplexed with  
the PORTD<4:7> data latches. The TRISD<4:7> bits  
must be cleared to make the P1A, P1B, P1C and P1D  
pins output.  
16.5.3  
FULL-BRIDGE MODE  
In Full-Bridge Output mode, four pins are used as out-  
puts; however, only two outputs are active at a time. In  
the Forward mode, pin RD4/PSP4/ECCP1/P1A is con-  
tinuously active and pin RD7/PSP7/P1D is modulated.  
In the Reverse mode, RD6/PSP6/P1C pin is continu-  
ously active and RD5/PSP5/P1B pin is modulated.  
These are illustrated in Figure 16-5.  
FIGURE 16-5:  
FULL-BRIDGE PWM OUTPUT  
FORWARD MODE  
Period  
(2)  
(2)  
(2)  
P1A  
Duty Cycle  
P1B  
P1C  
(2)  
P1D  
(1)  
(1)  
REVERSE MODE  
Period  
Duty Cycle  
(2)  
P1A  
(2)  
P1B  
(2)  
P1C  
(2)  
P1D  
(1)  
(1)  
Note 1: At this time, the TMR2 register is equal to the PR2 register.  
Note 2: Output signal is shown as asserted high.  
© 2006 Microchip Technology Inc.  
DS41159E-page 137  
PIC18FXX8  
FIGURE 16-6:  
EXAMPLE OF FULL-BRIDGE APPLICATION  
V+  
PIC18F448/458  
QB  
QD  
FET  
Driver  
FET  
Driver  
P1D  
+
-
Load  
P1C  
FET  
Driver  
FET  
Driver  
P1B  
P1A  
QA  
QC  
V-  
Figure 16-8 shows an example where the PWM  
direction changes from forward to reverse at a near  
100% duty cycle. At time t1, the outputs P1A and P1D  
become inactive, while output P1C becomes active. In  
this example, since the turn-off time of the power  
devices is longer than the turn-on time, a shoot-through  
current flows through power devices QB and QD (see  
Figure 16-6) for the duration of ‘t’. The same phenom-  
enon will occur to power devices QA and QC for PWM  
direction change from reverse to forward.  
16.5.3.1  
Direction Change in Full-Bridge  
Mode  
In the Full-Bridge Output mode, the EPWM1M1 bit in  
the ECCP1CON register allows the user to control the  
forward/reverse direction. When the application firm-  
ware changes this direction control bit, the ECCP1  
module will assume the new direction on the next PWM  
cycle. The current PWM cycle still continues, however,  
the non-modulated outputs, P1A and P1C signals, will  
transition to the new direction TOSC, 4 TOSC or 16 TOSC  
earlier (for T2CKRS<1:0> = 00, 01or 1x, respectively)  
before the end of the period. During this transition  
cycle, the modulated outputs, P1B and P1D, will go to  
the inactive state (Figure 16-7).  
If changing PWM direction at high duty cycle is required  
for an application, one of the following requirements  
must be met:  
1. Avoid changing PWM output direction at or near  
100% duty cycle.  
Note that in the Full-Bridge Output mode, the ECCP  
module does not provide any dead-band delay. In  
general, since only one output is modulated at all times,  
dead-band delay is not required. However, there is a  
situation where a dead-band delay might be required.  
This situation occurs when all of the following  
conditions are true:  
2. Use switch drivers that compensate the slow  
turn off of the power devices. The total turn-off  
time (toff) of the power device and the driver  
must be less than the turn-on time (ton).  
1. The direction of the PWM output changes when  
the duty cycle of the output is at or near 100%.  
2. The turn-off time of the power switch, including  
the power device and driver circuit, is greater  
than turn-on time.  
DS41159E-page 138  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 16-7:  
PWM DIRECTION CHANGE  
(1)  
Period  
Period  
SIGNAL  
DC  
P1A (Active-High)  
P1B (Active-High)  
P1C (Active-High)  
P1D (Active-High)  
(2)  
Note 1: The direction bit in the ECCP1 Control Register (ECCP1CON.EPWM1M1) is written any time during the PWM  
cycle.  
2: The P1A and P1C signals switch at intervals of TOSC, 4 TOSC or 16 TOSC, depending on the Timer2 prescaler  
value earlier when changing direction. The modulated P1B and P1D signals are inactive at this time.  
FIGURE 16-8:  
PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE  
Forward Period  
Reverse Period  
(1)  
(1)  
P1A  
P1B  
(PWM)  
(1)  
(1)  
P1C  
P1D  
(PWM)  
(2)  
t
on  
(1)  
(1)  
External Switch C  
External Switch D  
(3)  
t
off  
(2,3)  
Potential  
t = t – t  
off  
on  
Shoot-Through  
(1)  
Current  
t1  
Note 1: All signals are shown as active-high.  
2: t is the turn-on delay of power switch and driver.  
on  
3: t is the turn-off delay of power switch and driver.  
off  
© 2006 Microchip Technology Inc.  
DS41159E-page 139  
PIC18FXX8  
devices in the off state until the microcontroller drives  
the I/O pins with the proper signal levels, or activates  
the PWM output(s).  
16.5.4  
PROGRAMMABLE DEAD-BAND  
DELAY  
In half-bridge or full-bridge applications, where all  
power switches are modulated at the PWM frequency  
at all times, the power switches normally require longer  
time to turn off than to turn on. If both the upper and  
lower power switches are switched at the same time  
(one turned on and the other turned off), both switches  
will be on for a short period of time until one switch  
completely turns off. During this time, a very high  
current (shoot-through current) flows through both  
power switches, shorting the bridge supply. To avoid  
this potentially destructive shoot-through current from  
flowing during switching, turning on the power switch is  
normally delayed to allow the other switch to  
completely turn off.  
16.5.6  
START-UP CONSIDERATIONS  
Prior to enabling the PWM outputs, the P1A, P1B, P1C  
and P1D latches may not be in the proper states.  
Enabling the TRISD bits for output at the same time  
with the ECCP1 module may cause damage to the  
power switch devices. The ECCP1 module must be  
enabled in the proper output mode with the TRISD bits  
enabled as inputs. Once the ECCP1 completes a full  
PWM cycle, the P1A, P1B, P1C and P1D output  
latches are properly initialized. At this time, the TRISD  
bits can be enabled for outputs to start driving the  
power switch devices. The completion of a full PWM  
cycle is indicated by the TMR2IF bit going from a ‘0’ to  
a ‘1’.  
In the Half-Bridge Output mode, a digitally programmable  
dead-band delay is available to avoid shoot-through  
current from destroying the bridge power switches. The  
delay occurs at the signal transition from the non-active  
state to the active state. See Figure 16-3 for illustration.  
The ECCP1DEL register (Register 16-2) sets the amount  
of delay.  
16.5.7  
OUTPUT POLARITY  
CONFIGURATION  
The ECCP1M<1:0> bits in the ECCP1CON register  
allow user to choose the logic conventions (asserted  
high/low) for each of the outputs.  
16.5.5  
SYSTEM IMPLEMENTATION  
The PWM output polarities must be selected before the  
PWM outputs are enabled. Charging the polarity  
configuration while the PWM outputs are active is not  
recommended since it may result in unpredictable  
operation.  
When the ECCP module is used in the PWM mode, the  
application hardware must use the proper external pull-  
up and/or pull-down resistors on the PWM output pins.  
When the microcontroller powers up, all of the I/O pins  
are in the high-impedance state. The external pull-up  
and pull-down resistors must keep the power switch  
REGISTER 16-2: ECCP1DEL: PWM DELAY REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
EPDC7  
EPDC6  
EPDC5  
EPDC4  
EPDC3  
EPDC2  
EPDC1  
EPDC0  
bit 7  
bit 0  
bit 7-0  
EPDC<7:0>: PWM Delay Count for Half-Bridge Output Mode bits  
Number of FOSC/4 (TOSC * 4) cycles between the P1A transition and the P1B transition.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS41159E-page 140  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
2. Configure and start TMR2:  
16.5.8  
SETUP FOR PWM OPERATION  
a) Clear the TMR2 interrupt flag bit by clearing  
the TMR2IF bit in the PIR1 register.  
The following steps should be taken when configuring  
the ECCP1 module for PWM operation:  
b) Set the TMR2 prescale value by loading the  
T2CKPS bits (T2CON<1:0>).  
1. Configure the PWM module:  
a) Disable the ECCP1/P1A, P1B, P1C and/or  
P1D outputs by setting the respective TRISD  
bits.  
c) Enable Timer2 by setting the TMR2ON bit  
(T2CON<2>) register.  
3. Enable PWM outputs after a new cycle has  
started:  
b) Set the PWM period by loading the PR2  
register.  
a) Wait until TMR2 overflows (TMR2IF bit  
becomes a ‘1’). The new PWM cycle begins  
here.  
c) Set the PWM duty cycle by loading the  
ECCPR1L register and ECCP1CON<5:4>  
bits.  
b) Enable the ECCP1/P1A, P1B, P1C and/or  
P1D pin outputs by clearing the respective  
TRISD bits.  
d) Configure the ECCP1 module for the  
desired PWM operation by loading the  
ECCP1CON register with the appropriate  
value. With the ECCP1M<3:0> bits, select  
the active-high/low levels for each PWM  
output. With the EPWM1M<1:0> bits, select  
one of the available output modes.  
e) For Half-Bridge Output mode, set the dead-  
band delay by loading the ECCP1DEL  
register with the appropriate value.  
TABLE 16-5: REGISTERS ASSOCIATED WITH ENHANCED PWM AND TIMER2  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
RCON  
IPR2  
GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
RI  
RBIE  
TO  
TMR0IF  
PD  
INT0IF  
POR  
RBIF  
BOR  
0000 000x 0000 000u  
0--1 110q 0--0 011q  
IPEN  
CMIP  
CMIF  
CMIE  
EEIP  
EEIF  
EEIE  
BCLIP  
BCLIF  
BCLIE  
LVDIP  
LVDIF  
LVDIE  
TMR3IP ECCP1IP -1-1 1111 -1-1 1111  
TMR3IF ECCP1IF -0-0 0000 -0-0 0000  
TMR3IE ECCP1IE -0-0 0000 -0-0 0000  
0000 0000 0000 0000  
PIR2  
PIE2  
TMR2  
PR2  
Timer2 Module Register  
Timer2 Module Period Register  
1111 1111 1111 1111  
T2CON  
TRISD  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
PORTD Data Direction Register  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
ECCPR1H Enhanced Capture/Compare/PWM Register 1 High Byte  
ECCPR1L Enhanced Capture/Compare/PWM Register 1 Low Byte  
ECCP1CON EPWM1M1 EPWM1M0 EDC1B1 EDC1B0 ECCP1M3 ECCP1M2 ECCP1M1 ECCP1M0 0000 0000 0000 0000  
ECCPAS  
ECCP1DEL  
Legend:  
ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0 0000 0000 0000 0000  
EPDC7 EPDC6 EPDC5 EPDC4 EPDC3 EPDC2 EPDC1 EPDC0 0000 0000 uuuu uuuu  
x= unknown, u= unchanged, -= unimplemented, read as ‘0’. Shaded cells are not used by the ECCP module.  
© 2006 Microchip Technology Inc.  
DS41159E-page 141  
PIC18FXX8  
The internal shutdown signal is gated with the outputs  
and will immediately and asynchronously disable the  
outputs. If the internal shutdown is still in effect at the  
16.6 Enhanced CCP Auto-Shutdown  
When the ECCP is programmed for any of the PWM  
modes, the output pins associated with its function may  
be configured for auto-shutdown.  
time  
a new cycle begins, that entire cycle is  
suppressed, thus eliminating narrow, glitchy pulses.  
Auto-shutdown allows the internal output of either of  
the two comparator modules, or the external  
interrupt 0, to asynchronously disable the ECCP output  
pins. Thus, an external analog or digital event can  
discontinue an ECCP sequence. The comparator out-  
put(s) to be used is selected by setting the proper mode  
bits in the ECCPAS register. To use external interrupt  
INT0 as a shutdown event, INT0IE must be set. To use  
either of the comparator module outputs as a shutdown  
event, corresponding comparators must be enabled.  
When a shutdown occurs, the selected output values  
(PSSACn, PSSBDn) are written to the ECCP port pins.  
The ECCPASE bit is set by hardware upon a compara-  
tor event and can only be cleared in software. The  
ECCP outputs can be re-enabled only by clearing the  
ECCPASE bit.  
The Auto-Shutdown mode can be manually entered by  
writing a ‘1’ to the ECCPASE bit.  
REGISTER 16-3: ECCPAS: ENHANCED CAPTURE/COMPARE/PWM AUTO-SHUTDOWN  
CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ECCPASE ECCPAS2 ECCPAS1 ECCPAS0 PSSAC1 PSSAC0 PSSBD1 PSSBD0  
bit 7  
bit 0  
bit 7  
ECCPASE: ECCP Auto-Shutdown Event Status bit  
0= ECCP outputs enabled, no shutdown event  
1= A shutdown event has occurred, must be reset in software to re-enable ECCP  
bit 6-4  
ECCPAS<2:0>: ECCP Auto-Shutdown bits  
000= No auto-shutdown enabled, comparators have no effect on ECCP  
001= Comparator 1 output will cause shutdown  
010= Comparator 2 output will cause shutdown  
011= Either Comparator 1 or 2 can cause shutdown  
100= INT0  
101= INT0 or Comparator 1 output  
110= INT0 or Comparator 2 output  
111= INT0 or Comparator 1 or Comparator 2 output  
bit 3-2  
bit 1-0  
PSSACn: Pins A and C Shutdown State Control bits  
00= Drive Pins A and C to ‘0’  
01= Drive Pins A and C to ‘1’  
1x= Pins A and C tri-state  
PSSBDn: Pins B and D Shutdown State Control bits  
00= Drive Pins B and D to ‘0’  
01= Drive Pins B and D to ‘1’  
1x= Pins B and D tri-state  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS41159E-page 142  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
17.3 SPI Mode  
17.0 MASTER SYNCHRONOUS  
SERIAL PORT (MSSP)  
MODULE  
The SPI mode allows 8 bits of data to be synchronously  
transmitted and received simultaneously. All four modes  
of SPI are supported. To accomplish communication,  
typically three pins are used:  
17.1 Master SSP (MSSP) Module  
Overview  
• Serial Data Out (SDO) – RC5/SDO  
• Serial Data In (SDI) – RC4/SDI/SDA  
• Serial Clock (SCK) – RC3/SCK/SCL  
The Master Synchronous Serial Port (MSSP) module is  
a serial interface useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, shift registers,  
display drivers, A/D converters, etc. The MSSP module  
can operate in one of two modes:  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
• Slave Select (SS) – RA5/AN4/SS/LVDIN  
Figure 17-1 shows the block diagram of the MSSP  
module when operating in SPI mode.  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C)  
- Full Master mode  
FIGURE 17-1:  
MSSP BLOCK DIAGRAM  
(SPI™ MODE)  
- Slave mode (with general address call)  
The I2C interface supports the following modes in  
hardware:  
Internal  
Data Bus  
Read  
Write  
• Master mode  
• Multi-Master mode  
• Slave mode  
SSPBUF reg  
SSPSR reg  
17.2 Control Registers  
RC4/SDI/SDA  
RC5/SDO  
The MSSP module has three associated registers.  
These include a status register (SSPSTAT) and two  
control registers (SSPCON1 and SSPCON2). The use  
of these registers and their individual configuration bits  
differ significantly, depending on whether the MSSP  
module is operated in SPI or I2C mode.  
Shift  
Clock  
bit0  
RA5/AN4/  
SS/LVDIN  
Control  
Enable  
Additional details are provided under the individual  
sections.  
SS  
Edge  
Select  
2
Clock Select  
SSPM3:SSPM0  
SMP:CKE  
2
4
TMR2 Output  
RC3/SCK/  
SCL  
(
)
2
Edge  
Select  
TOSC  
Prescaler  
4, 16, 64  
Data to TX/RX in SSPSR  
TRIS bit  
© 2006 Microchip Technology Inc.  
DS41159E-page 143  
PIC18FXX8  
SSPSR is the shift register used for shifting data in or  
out. SSPBUF is the buffer register to which data bytes  
are written to or read from.  
17.3.1  
REGISTERS  
The MSSP module has four registers for SPI mode  
operation. These are:  
In receive operations, SSPSR and SSPBUF together  
create a double-buffered receiver. When SSPSR  
receives a complete byte, it is transferred to SSPBUF  
and the SSPIF interrupt is set.  
• MSSP Control Register 1 (SSPCON1)  
• MSSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer (SSPBUF)  
• MSSP Shift Register (SSPSR) – Not directly  
accessible  
During transmission, the SSPBUF is not double-  
buffered. A write to SSPBUF will write to both SSPBUF  
and SSPSR.  
SSPCON1 and SSPSTAT are the control and status  
registers in SPI mode operation. The SSPCON1  
register is readable and writable. The lower 6 bits of  
the SSPSTAT are read-only. The upper two bits of the  
SSPSTAT are read/write.  
REGISTER 17-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
bit 7  
bit 6  
SMP: Sample bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode.  
CKE: SPI Clock Edge Select bit  
1= Transmit occurs on transition from active to Idle clock state  
0= Transmit occurs on transition from Idle to active clock state  
Note:  
Polarity of clock state is set by the CKP bit (SSPCON1<4>).  
bit 5  
bit 4  
D/A: Data/Address bit  
Used in I2C mode only.  
P: Stop bit  
Used in I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is  
cleared.  
bit 3  
bit 2  
bit 1  
bit 0  
S: Start bit  
Used in I2C mode only.  
R/W: Read/Write Information bit  
Used in I2C mode only.  
UA: Update Address bit  
Used in I2C mode only.  
BF: Buffer Full Status bit (Receive mode only)  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS41159E-page 144  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 17-2: SSPCON1: MSSP CONTROL REGISTER 1 (SPI MODE)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
bit 7  
bit 6  
WCOL: Write Collision Detect bit (Transmit mode only)  
1= The SSPBUF register is written while it is still transmitting the previous word  
(must be cleared in software)  
0= No collision  
SSPOV: Receive Overflow Indicator bit  
SPI Slave mode:  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case  
of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode.The user  
must read the SSPBUF even if only transmitting data to avoid setting overflow (must be  
cleared in software).  
0= No overflow  
Note:  
In Master mode, the overflow bit is not set since each new reception (and  
transmission) is initiated by writing to the SSPBUF register.  
bit 5  
bit 4  
SSPEN: Synchronous Serial Port Enable bit  
1= Enables serial port and configures SCK, SDO, SDI and SS as serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
Note:  
When enabled, these pins must be properly configured as input or output.  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
0101= SPI Slave mode, clock = SCK pin, SS pin control disabled, SS can be used as I/O pin  
0100= SPI Slave mode, clock = SCK pin, SS pin control enabled  
0011= SPI Master mode, clock = TMR2 output/2  
0010= SPI Master mode, clock = FOSC/64  
0001= SPI Master mode, clock = FOSC/16  
0000= SPI Master mode, clock = FOSC/4  
Note:  
Bit combinations not specifically listed here are either reserved or implemented in  
I2C mode only.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 145  
PIC18FXX8  
SSPBUF register during transmission/reception of data  
will be ignored and the Write Collision detect bit, WCOL  
(SSPCON1<7>), will be set. User software must clear  
the WCOL bit so that it can be determined if the follow-  
ing write(s) to the SSPBUF register completed  
successfully.  
17.3.2  
OPERATION  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits (SSPCON1<5:0> and SSPSTAT<7:6>).  
These control bits allow the following to be specified:  
• Master mode (SCK is the clock output)  
• Slave mode (SCK is the clock input)  
• Clock Polarity (Idle state of SCK)  
When the application software is expecting to receive  
valid data, the SSPBUF should be read before the next  
byte of data to transfer is written to the SSPBUF. Buffer  
Full bit, BF (SSPSTAT<0>), indicates when SSPBUF  
has been loaded with the received data (transmission  
is complete). When the SSPBUF is read, the BF bit is  
cleared. This data may be irrelevant if the SPI is only a  
transmitter. Generally, the MSSP interrupt is used to  
determine when the transmission/reception has com-  
pleted. The SSPBUF must be read and/or written. If the  
interrupt method is not going to be used, then software  
polling can be done to ensure that a write collision does  
not occur. Example 17-1 shows the loading of the  
SSPBUF (SSPSR) for data transmission.  
• Data Input Sample Phase (middle or end of data  
output time)  
• Clock Edge (output data on rising/falling edge of  
SCK)  
• Clock Rate (Master mode only)  
• Slave Select mode (Slave mode only)  
The MSSP consists of a transmit/receive shift register  
(SSPSR) and a buffer register (SSPBUF). The SSPSR  
shifts the data in and out of the device, MSb first. The  
SSPBUF holds the data that was written to the SSPSR  
until the received data is ready. Once the 8 bits of data  
have been received, that byte is moved to the SSPBUF  
register. Then, the Buffer Full detect bit BF  
(SSPSTAT<0>) and the interrupt flag bit SSPIF are set.  
This double-buffering of the received data (SSPBUF)  
allows the next byte to start reception before reading  
the data that was just received. Any write to the  
The SSPSR is not directly readable or writable and can  
only be accessed by addressing the SSPBUF register.  
Additionally, the MSSP Status register (SSPSTAT)  
indicates the various status conditions.  
EXAMPLE 17-1:  
LOADING THE SSPBUF (SSPSR) REGISTER  
LOOP BTFSS SSPSTAT, BF  
;Has data been received(transmit complete)?  
BRA  
LOOP  
;No  
MOVF  
SSPBUF, W  
;WREG reg = contents of SSPBUF  
MOVWF RXDATA  
;Save in user RAM, if data is meaningful  
MOVF  
MOVWF SSPBUF  
TXDATA, W  
;W reg = contents of TXDATA  
;New data to xmit  
DS41159E-page 146  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
17.3.3  
ENABLING SPI I/O  
17.3.4  
TYPICAL CONNECTION  
To enable the serial port, SSP Enable bit, SSPEN  
(SSPCON1<5>), must be set. To reset or reconfigure  
SPI mode, clear the SSPEN bit, reinitialize the SSPCON  
registers and then, set the SSPEN bit. This configures  
the SDI, SDO, SCK and SS pins as serial port pins. For  
the pins to behave as the serial port function, some must  
have their data direction bits (in the TRIS register)  
appropriately programmed as follows:  
Figure 17-2 shows a typical connection between two  
microcontrollers. The master controller (Processor 1)  
initiates the data transfer by sending the SCK signal.  
Data is shifted out of both shift registers on their  
programmed clock edge and latched on the opposite  
edge of the clock. Both processors should be  
programmed to the same Clock Polarity (CKP), then  
both controllers would send and receive data at the  
same time. Whether the data is meaningful (or dummy  
data) depends on the application software. This leads  
to three scenarios for data transmission:  
• SDI is automatically controlled by the SPI module  
• SDO must have TRISC<5> bit cleared  
• SCK (Master mode) must have TRISC<3> bit  
cleared  
• Master sends data – Slave sends dummy data  
• Master sends data – Slave sends data  
• SCK (Slave mode) must have TRISC<3> bit set  
• SS must have TRISA<5> bit set  
• Master sends dummy data – Slave sends data  
Any serial port function that is not desired may be over-  
ridden by programming the corresponding data  
direction (TRIS) register to the opposite value.  
FIGURE 17-2:  
SPI™ MASTER/SLAVE CONNECTION  
SPI™ Master SSPM3:SSPM0 = 00xxb  
SPI™ Slave SSPM3:SSPM0 = 010xb  
SDO  
SDI  
Serial Input Buffer  
(SSPBUF)  
Serial Input Buffer  
(SSPBUF)  
SDI  
SDO  
Shift Register  
(SSPSR)  
Shift Register  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
SCK  
PROCESSOR 1  
PROCESSOR 2  
© 2006 Microchip Technology Inc.  
DS41159E-page 147  
PIC18FXX8  
The clock polarity is selected by appropriately program-  
ming the CKP bit (SSPCON1<4>). This then, would  
give waveforms for SPI communication as shown in  
Figure 17-3, Figure 17-5 and Figure 17-6, where the  
MSB is transmitted first. In Master mode, the SPI clock  
rate (bit rate) is user programmable to be one of the  
following:  
17.3.5  
MASTER MODE  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2, Figure 17-2) is to  
broadcast data by the software protocol.  
In Master mode, the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI is  
only going to receive, the SDO output could be dis-  
abled (programmed as an input). The SSPSR register  
will continue to shift in the signal present on the SDI pin  
at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPBUF register as  
if a normal received byte (interrupts and status bits  
appropriately set). This could be useful in receiver  
applications as a “Line Activity Monitor” mode.  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 • TCY)  
• FOSC/64 (or 16 • TCY)  
• Timer2 output/2  
This allows a maximum data rate (at 40 MHz) of  
10.00 Mbps.  
Figure 17-3 shows the waveforms for Master mode.  
When the CKE bit is set, the SDO data is valid before  
there is a clock edge on SCK. The change of the input  
sample is shown based on the state of the SMP bit. The  
time when the SSPBUF is loaded with the received  
data is shown.  
FIGURE 17-3:  
SPI™ MODE WAVEFORM (MASTER MODE)  
Write to  
SSPBUF  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
4 Clock  
Modes  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
bit 6  
bit 6  
bit 2  
bit 2  
bit 5  
bit 5  
bit 4  
bit 4  
bit 1  
bit 1  
bit 0  
bit 0  
SDO  
(CKE = 0)  
bit 7  
bit 7  
bit 3  
bit 3  
SDO  
(CKE = 1)  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SDI  
(SMP = 1)  
bit 0  
bit7  
Input  
Sample  
(SMP = 1)  
SSPIF  
Next Q4 cycle  
after Q2↓  
SSPSR to  
SSPBUF  
DS41159E-page 148  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
must be high. When the SS pin is low, transmission and  
reception are enabled and the SDO pin is driven. When  
the SS pin goes high, the SDO pin is no longer driven,  
even if in the middle of a transmitted byte and becomes  
a floating output. External pull-up/pull-down resistors  
may be desirable depending on the application.  
17.3.6  
SLAVE MODE  
In Slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched, the SSPIF interrupt flag bit is set.  
While in Slave mode, the external clock is supplied by  
the external clock source on the SCK pin. This external  
clock must meet the minimum high and low times as  
specified in the electrical specifications.  
Note 1: When the SPI is in Slave mode with SS pin  
control enabled (SSPCON1<3:0> = 0100),  
the SPI module will reset if the SS pin is set  
to VDD.  
While in Sleep mode, the slave can transmit/receive  
data. When a byte is received, the device will wake-up  
from Sleep. Before enabling the module in SPI Slave  
mode, the clock line must match the proper Idle state.  
The clock line can be observed by reading the SCK pin.  
The Idle state is determined by the CKP bit  
(SSPCON1<4>).  
2: If the SPI is used in Slave mode with CKE  
set, then the SS pin control must be  
enabled.  
When the SPI module resets, the bit counter is forced  
to ‘0’. This can be done by either forcing the SS pin to  
a high level or clearing the SSPEN bit.  
17.3.7  
SLAVE SELECT  
SYNCHRONIZATION  
To emulate two-wire communication, the SDO pin can  
be connected to the SDI pin. When the SPI needs to  
operate as a receiver, the SDO pin can be configured  
as an input. This disables transmissions from the SDO.  
The SDI can always be left as an input (SDI function)  
since it cannot create a bus conflict.  
The SS pin allows a Synchronous Slave mode. The  
SPI must be in Slave mode with SS pin control enabled  
(SSPCON1<3:0> = 04h). The pin must not be driven  
low for the SS pin to function as an input. The data latch  
FIGURE 17-4:  
SLAVE SYNCHRONIZATION WAVEFORM  
SS  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 7  
bit 7  
bit 0  
bit 0  
SDO  
bit 7  
SDI  
(SMP = 0)  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 cycle  
after Q2↓  
SSPSR to  
SSPBUF  
© 2006 Microchip Technology Inc.  
DS41159E-page 149  
PIC18FXX8  
FIGURE 17-5:  
SPI™ MODE WAVEFORM (SLAVE MODE WITH CKE = 0)  
SS  
Optional  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 3  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 cycle  
after Q2↓  
SSPSR to  
SSPBUF  
FIGURE 17-6:  
SPI™ MODE WAVEFORM (SLAVE MODE WITH CKE = 1)  
SS  
Not Optional  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 3  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
Next Q4 cycle  
after Q2↓  
SSPSR to  
SSPBUF  
DS41159E-page 150  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
17.3.8  
SLEEP OPERATION  
17.3.10 BUS MODE COMPATIBILITY  
In Master mode, all module clocks are halted and the  
transmission/reception will remain in that state until the  
device wakes from Sleep. After the device returns to  
normal mode, the module will continue to transmit/  
receive data.  
Table 17-1 shows the compatibility between the  
standard SPI modes and the states of the CKP and  
CKE control bits.  
TABLE 17-1: SPI™ BUS MODES  
In Slave mode, the SPI Transmit/Receive Shift register  
operates asynchronously to the device. This allows the  
device to be placed in Sleep mode and data to be  
shifted into the SPI Transmit/Receive Shift register.  
When all 8 bits have been received, the MSSP interrupt  
flag bit will be set and if enabled, will wake the device  
from Sleep.  
Control Bits State  
Standard SPI Mode  
Terminology  
CKP  
CKE  
0, 0  
0, 1  
1, 0  
1, 1  
0
0
1
1
1
0
1
0
17.3.9  
EFFECTS OF A RESET  
There is also an SMP bit which controls when the data  
is sampled.  
A Reset disables the MSSP module and terminates the  
current transfer.  
TABLE 17-2: REGISTERS ASSOCIATED WITH SPI™ OPERATION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
1111 1111 1111 1111  
(1)  
(1)  
PIE1  
IPR1  
TRISC  
PORTC Data Direction Register  
TRISA6 TRISA5 TRISA4 TRISA3  
Synchronous Serial Port Receive Buffer/Transmit Register  
TRISA  
TRISA2  
TRISA1 TRISA0 -111 1111 -111 1111  
xxxx xxxx uuuu uuuu  
SSPBUF  
SSPCON1  
SSPSTAT  
Legend:  
WCOL  
SMP  
SSPOV  
CKE  
SSPEN  
D/A  
CKP  
P
SSPM3  
S
SSPM2  
R/W  
SSPM1 SSPM0 0000 0000 0000 0000  
UA  
BF  
0000 0000 0000 0000  
x= unknown, u= unchanged, - = unimplemented, read as ‘0’. Shaded cells are not used by the MSSP in SPI™ mode.  
Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as ‘0’s.  
© 2006 Microchip Technology Inc.  
DS41159E-page 151  
PIC18FXX8  
2
17.4.1  
REGISTERS  
17.4 I C Mode  
The MSSP module has six registers for I2C operation.  
These are:  
The MSSP module in I2C mode fully implements all  
master and slave functions (including general call  
support) and provides interrupts on Start and Stop bits  
in hardware to determine a free bus (multi-master  
function). The MSSP module implements the standard  
mode specifications, as well as 7-bit and 10-bit  
addressing.  
• MSSP Control Register 1 (SSPCON1)  
• MSSP Control Register 2 (SSPCON2)  
• MSSP Status Register (SSPSTAT)  
• Serial Receive/Transmit Buffer (SSPBUF)  
• MSSP Shift Register (SSPSR) – Not directly  
accessible  
Two pins are used for data transfer:  
• Serial clock (SCL) – RC3/SCK/SCL  
• Serial data (SDA) – RC4/SDI/SDA  
• MSSP Address Register (SSPADD)  
SSPCON1, SSPCON2 and SSPSTAT are the control  
and status registers in I2C mode operation. The  
SSPCON1 and SSPCON2 registers are readable and  
writable. The lower 6 bits of the SSPSTAT are read-only.  
The upper two bits of the SSPSTAT are read/write.  
The user must configure these pins as inputs or outputs  
through the TRISC<4:3> bits.  
FIGURE 17-7:  
MSSP BLOCK DIAGRAM  
(I2C™ MODE)  
SSPSR is the shift register used for shifting data in or  
out. SSPBUF is the buffer register to which data bytes  
are written to or read from.  
Internal  
Data Bus  
SSPADD register holds the slave device address  
when the SSP is configured in I2C Slave mode. When  
the SSP is configured in Master mode, the lower  
seven bits of SSPADD act as the Baud Rate  
Generator reload value.  
Read  
Write  
RC3/SCK/  
SCL  
SSPBUF reg  
Shift  
Clock  
In receive operations, SSPSR and SSPBUF together  
create a double-buffered receiver. When SSPSR  
receives a complete byte, it is transferred to SSPBUF  
and the SSPIF interrupt is set.  
SSPSR reg  
RC4/  
SDI/  
MSb  
LSb  
SDA  
During transmission, the SSPBUF is not double-  
buffered. A write to SSPBUF will write to both SSPBUF  
and SSPSR.  
Addr Match  
Match Detect  
SSPADD reg  
Set, Reset  
S, P bits  
(SSPSTAT reg)  
Start and  
Stop bit Detect  
DS41159E-page 152  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 17-3: SSPSTAT: MSSP STATUS REGISTER (I2C MODE)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
SMP: Slew Rate Control bit  
In Master or Slave mode:  
1 = Slew rate control disabled for Standard Speed mode (100 kHz and 1 MHz)  
0 = Slew rate control enabled for High-Speed mode (400 kHz)  
CKE: SMBus Select bit  
In Master or Slave mode:  
1= Enable SMBus specific inputs  
0= Disable SMBus specific inputs  
D/A: Data/Address bit  
In Master mode:  
Reserved.  
In Slave mode:  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
bit 4  
bit 3  
bit 2  
P: Stop bit  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
Note:  
This bit is cleared on Reset and when SSPEN is cleared.  
S: Start bit  
1= Indicates that a Start bit has been detected last  
0= Start bit was not detected last  
Note:  
This bit is cleared on Reset and when SSPEN is cleared.  
R/W: Read/Write Information bit (I2C mode only)  
In Slave mode:  
1= Read  
0= Write  
Note:  
This bit holds the R/W bit information following the last address match. This bit is  
only valid from the address match to the next Start bit, Stop bit or not ACK bit.  
In Master mode:  
1= Transmit is in progress  
0= Transmit is not in progress  
Note:  
ORing this bit with SEN, RSEN, PEN, RCEN or ACKEN will indicate if the MSSP is  
in Idle mode.  
bit 1  
bit 0  
UA: Update Address bit (10-bit Slave mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
In Transmit mode:  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
In Receive mode:  
1= Data transmit in progress (does not include the ACK and Stop bits), SSPBUF is full  
0= Data transmit complete (does not include the ACK and Stop bits), SSPBUF is empty  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 153  
PIC18FXX8  
REGISTER 17-4: SSPCON1: MSSP CONTROL REGISTER 1 (I2C MODE)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
bit 7  
WCOL: Write Collision Detect bit  
In Master Transmit mode:  
1= A write to the SSPBUF register was attempted while the I2C conditions were not valid for  
a transmission to be started (must be cleared in software)  
0= No collision  
In Slave Transmit mode:  
1= The SSPBUF register is written while it is still transmitting the previous word (must be  
cleared in software)  
0= No collision  
In Receive mode (Master or Slave modes):  
This is a “don’t care” bit.  
bit 6  
SSPOV: Receive Overflow Indicator bit  
In Receive mode:  
1= A byte is received while the SSPBUF register is still holding the previous byte (must  
be cleared in software)  
0= No overflow  
In Transmit mode:  
This is a “don’t care” bit in Transmit mode.  
bit 5  
bit 4  
SSPEN: Synchronous Serial Port Enable bit  
1= Enables the serial port and configures the SDA and SCL pins as the serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
Note:  
When enabled, the SDA and SCL pins must be properly configured as input or output.  
CKP: SCK Release Control bit  
In Slave mode:  
1= Release clock  
0= Holds clock low (clock stretch), used to ensure data setup time  
In Master mode:  
Unused in this mode.  
bit 3-0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
1111= I2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled  
1110= I2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled  
1011= I2C Firmware Controlled Master mode (Slave Idle)  
1000= I2C Master mode, clock = FOSC/(4 * (SSPADD + 1))  
0111= I2C Slave mode, 10-bit address  
0110= I2C Slave mode, 7-bit address  
Note:  
Bit combinations not specifically listed here are either reserved or implemented in  
SPI mode only.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS41159E-page 154  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 17-5: SSPCON2: MSSP CONTROL REGISTER 2 (I2C MODE)  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RCEN  
R/W-0  
PEN  
R/W-0  
RSEN  
R/W-0  
SEN  
ACKSTAT  
ACKDT  
ACKEN  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
GCEN: General Call Enable bit (Slave mode only)  
1= Enable interrupt when a general call address (0000h) is received in the SSPSR  
0= General call address disabled  
ACKSTAT: Acknowledge Status bit (Master Transmit mode only)  
1= Acknowledge was not received from slave  
0= Acknowledge was received from slave  
ACKDT: Acknowledge Data bit (Master Receive mode only)  
1= Not Acknowledge  
0= Acknowledge  
Note:  
Value that will be transmitted when the user initiates an Acknowledge sequence at  
the end of a receive.  
bit 4  
ACKEN: Acknowledge Sequence Enable bit (Master Receive mode only)  
1= Initiate Acknowledge sequence on SDA and SCL pins and transmit ACKDT data bit.  
Automatically cleared by hardware.  
0= Acknowledge sequence Idle  
bit 3  
bit 2  
bit 1  
bit 0  
RCEN: Receive Enable bit (Master Mode only)  
1= Enables Receive mode for I2C  
0= Receive Idle  
PEN: Stop Condition Enable bit (Master mode only)  
1= Initiate Stop condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Stop condition Idle  
RSEN: Repeated Start Condition Enable bit (Master mode only)  
1= Initiate Repeated Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Repeated Start condition Idle  
SEN: Start Condition Enable/Stretch Enable bit  
In Master mode:  
1= Initiate Start condition on SDA and SCL pins. Automatically cleared by hardware.  
0= Start condition Idle  
In Slave mode:  
1= Clock stretching is enabled for both slave transmit and slave receive (stretch enabled)  
0= Clock stretching is enabled for slave transmit only (Legacy mode)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
Note:  
For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is not in the Idle mode,  
this bit may not be set (no spooling) and the SSPBUF may not be written (or writes  
to the SSPBUF are disabled).  
© 2006 Microchip Technology Inc.  
DS41159E-page 155  
PIC18FXX8  
17.4.2  
OPERATION  
17.4.3.1  
Addressing  
The MSSP module functions are enabled by setting  
MSSP Enable bit, SSPEN (SSPCON1<5>).  
The SSPCON1 register allows control of the I2C  
operation. Four mode selection bits (SSPCON1<3:0>)  
allow one of the following I2C modes to be selected:  
• I2C Master mode, clock = OSC/4 (SSPADD +1)  
• I2C Slave mode (7-bit address)  
• I2C Slave mode (10-bit address)  
Once the MSSP module has been enabled, it waits for  
a Start condition to occur. Following the Start condition,  
the 8 bits are shifted into the SSPSR register. All incom-  
ing bits are sampled with the rising edge of the clock  
(SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match and the BF  
and SSPOV bits are clear, the following events occur:  
• I2C Slave mode (7-bit address) with Start and  
Stop bit interrupts enabled  
• I2C Slave mode (10-bit address) with Start and  
Stop bit interrupts enabled  
• I2C Firmware Controlled Master mode, slave is  
Idle  
Selection of any I2C mode with the SSPEN bit set  
forces the SCL and SDA pins to be open-drain, pro-  
vided these pins are programmed to inputs by setting  
the appropriate TRISC bits. To ensure proper operation  
of the module, pull-up resistors must be provided  
externally to the SCL and SDA pins.  
1. The SSPSR register value is loaded into the  
SSPBUF register.  
2. The Buffer Full bit BF is set.  
3. An ACK pulse is generated.  
4. MSSP Interrupt Flag bit, SSPIF (PIR1<3>), is  
set (interrupt is generated if enabled) on the  
falling edge of the ninth SCL pulse.  
In 10-bit Address mode, two address bytes need to be  
received by the slave. The five Most Significant bits  
(MSbs) of the first address byte specify if this is a 10-bit  
address. Bit R/W (SSPSTAT<2>) must specify a write so  
the slave device will receive the second address byte.  
For a 10-bit address, the first byte would equal  
11110 A9 A8 0’, where ‘A9’ and ‘A8’ are the two MSbs  
of the address. The sequence of events for 10-bit  
address is as follows, with steps 7 through 9 for the  
slave-transmitter:  
17.4.3  
SLAVE MODE  
In Slave mode, the SCL and SDA pins must be config-  
ured as inputs (TRISC<4:3> set). The MSSP module  
will override the input state with the output data when  
required (slave-transmitter).  
The I2C Slave mode hardware will always generate an  
interrupt on an address match. Through the mode  
select bits, the user can also choose to interrupt on  
Start and Stop bits.  
1. Receive first (high) byte of address (bits SSPIF,  
BF and bit UA (SSPSTAT<1>) are set).  
2. Update the SSPADD register with second (low)  
byte of address (clears bit UA and releases the  
SCL line).  
When an address is matched, or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the Acknowledge (ACK) pulse and  
load the SSPBUF register with the received value  
currently in the SSPSR register.  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
4. Receive second (low) byte of address (bits  
SSPIF, BF and UA are set).  
5. Update the SSPADD register with the first (high)  
byte of address. If match releases SCL line, this  
will clear bit UA.  
Any combination of the following conditions will cause  
the MSSP module not to give this ACK pulse:  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
• The Buffer Full bit, BF (SSPSTAT<0>), was set  
before the transfer was received.  
7. Receive Repeated Start condition.  
• The overflow bit, SSPOV (SSPCON1<6>), was  
set before the transfer was received.  
8. Receive first (high) byte of address (bits SSPIF  
and BF are set).  
In this case, the SSPSR register value is not loaded  
into the SSPBUF, but bit SSPIF (PIR1<3>) is set. The  
BF bit is cleared by reading the SSPBUF register, while  
bit SSPOV is cleared through software.  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
The SCL clock input must have a minimum high and  
low for proper operation. The high and low times of the  
I2C specification, as well as the requirement of the  
MSSP module, are shown in timing parameter #100  
and parameter #101.  
DS41159E-page 156  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
17.4.3.2  
Reception  
17.4.3.3  
Transmission  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register and the SDA line is held low  
(ACK).  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit and pin RC3/SCK/SCL is held  
low regardless of SEN (see Section 17.4.4 “Clock  
Stretching” for more detail). By stretching the clock,  
the master will be unable to assert another clock pulse  
until the slave is done preparing the transmit data. The  
transmit data must be loaded into the SSPBUF register,  
which also loads the SSPSR register. Then, pin RC3/  
SCK/SCL should be enabled by setting bit CKP  
(SSPCON1<4>). The eight data bits are shifted out on  
the falling edge of the SCL input. This ensures that the  
SDA signal is valid during the SCL high time  
(Figure 17-9).  
When the address byte overflow condition exists, then  
the no Acknowledge (ACK) pulse is given. An overflow  
condition is defined as either bit BF (SSPSTAT<0>) is  
set or bit SSPOV (SSPCON1<6>) is set.  
An MSSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF (PIR1<3>) must be cleared in  
software. The SSPSTAT register is used to determine  
the status of the byte.  
If SEN is enabled (SSPCON2<0> = 1), RC3/SCK/SCL  
will be held low (clock stretch) following each data  
transfer. The clock must be released by setting bit  
CKP (SSPCON1<4>). See Section 17.4.4 “Clock  
Stretching” for more detail.  
The ACK pulse from the master-receiver is latched on  
the rising edge of the ninth SCL input pulse. If the SDA  
line is high (not ACK), then the data transfer is  
complete. In this case, when the ACK is latched by the  
slave, the slave logic is reset (resets SSPSTAT regis-  
ter) and the slave monitors for another occurrence of  
the Start bit. If the SDA line was low (ACK), the next  
transmit data must be loaded into the SSPBUF register.  
Again, pin RC3/SCK/SCL must be enabled by setting  
bit CKP.  
An MSSP interrupt is generated for each data transfer  
byte. The SSPIF bit must be cleared in software and  
the SSPSTAT register is used to determine the status  
of the byte. The SSPIF bit is set on the falling edge of  
the ninth clock pulse.  
© 2006 Microchip Technology Inc.  
DS41159E-page 157  
PIC18FXX8  
2
FIGURE 17-8:  
I C™ SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 7-BIT ADDRESS)  
DS41159E-page 158  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
2
FIGURE 17-9:  
I C™ SLAVE MODE TIMING (TRANSMISSION, 7-BIT ADDRESS)  
© 2006 Microchip Technology Inc.  
DS41159E-page 159  
PIC18FXX8  
FIGURE 17-10:  
I2C™ SLAVE MODE TIMING WITH SEN = 0 (RECEPTION, 10-BIT ADDRESS)  
DS41159E-page 160  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
2
FIGURE 17-11:  
I C™ SLAVE MODE TIMING (TRANSMISSION, 10-BIT ADDRESS)  
© 2006 Microchip Technology Inc.  
DS41159E-page 161  
PIC18FXX8  
17.4.4  
CLOCK STRETCHING  
17.4.4.3  
Clock Stretching for 7-bit Slave  
Transmit Mode  
Both 7 and 10-bit Slave modes implement automatic  
clock stretching during a transmit sequence.  
7-bit Slave Transmit mode implements clock stretching  
by clearing the CKP bit after the falling edge of the  
ninth clock if the BF bit is clear. This occurs regardless  
of the state of the SEN bit.  
The SEN bit (SSPCON2<0>) allows clock stretching to  
be enabled during receives. Setting SEN will cause  
the SCL pin to be held low at the end of each data  
receive sequence.  
The user’s ISR must set the CKP bit before transmis-  
sion is allowed to continue. By holding the SCL line  
low, the user has time to service the ISR and load the  
contents of the SSPBUF before the master device can  
initiate another transmit sequence (see Figure 17-9).  
17.4.4.1  
Clock Stretching for 7-bit Slave  
Receive Mode (SEN = 1)  
In 7-bit Slave Receive mode, on the falling edge of the  
ninth clock at the end of the ACK sequence, if the BF  
bit is set, the CKP bit in the SSPCON1 register is auto-  
matically cleared, forcing the SCL output to be held  
low. The CKP being cleared to ‘0’ will assert the SCL  
line low. The CKP bit must be set in the user’s ISR  
before reception is allowed to continue. By holding the  
SCL line low, the user has time to service the ISR and  
read the contents of the SSPBUF before the master  
device can initiate another receive sequence. This will  
prevent buffer overruns from occurring.  
Note 1: If the user loads the contents of SSPBUF,  
setting the BF bit before the falling edge of  
the ninth clock, the CKP bit will not be  
cleared and clock stretching will not occur.  
2: The CKP bit can be set in software  
regardless of the state of the BF bit.  
17.4.4.4  
Clock Stretching for 10-bit Slave  
Transmit Mode  
In 10-bit Slave Transmit mode, clock stretching is  
controlled during the first two address sequences by  
the state of the UA bit, just as it is in 10-bit Slave  
Receive mode. The first two addresses are followed  
by a third address sequence which contains the high-  
order bits of the 10-bit address and the R/W bit set to  
1’. After the third address sequence is performed, the  
UA bit is not set, the module is now configured in  
Transmit mode and clock stretching is controlled by  
the BF flag as in 7-bit Slave Transmit mode (see  
Figure 17-11).  
Note 1: If the user reads the contents of the  
SSPBUF before the falling edge of the  
ninth clock, thus clearing the BF bit, the  
CKP bit will not be cleared and clock  
stretching will not occur.  
2: The CKP bit can be set in software  
regardless of the state of the BF bit. The  
user should be careful to clear the BF bit  
in the ISR before the next receive  
sequence in order to prevent an overflow  
condition.  
17.4.4.2  
Clock Stretching for 10-bit Slave  
Receive Mode (SEN = 1)  
In 10-bit Slave Receive mode, during the address  
sequence, clock stretching automatically takes place  
but CKP is not cleared. During this time, if the UA bit is  
set after the ninth clock, clock stretching is initiated.  
The UA bit is set after receiving the upper byte of the  
10-bit address and following the receive of the second  
byte of the 10-bit address with the R/W bit cleared to  
0’. The release of the clock line occurs upon updating  
SSPADD. Clock stretching will occur on each data  
receive sequence as described in 7-bit mode.  
Note:  
If the user polls the UA bit and clears it by  
updating the SSPADD register before the  
falling edge of the ninth clock occurs and if  
the user hasn’t cleared the BF bit by read-  
ing the SSPBUF register before that time,  
then the CKP bit will still NOT be asserted  
low. Clock stretching on the basis of the  
state of the BF bit only occurs during a  
data sequence, not an address sequence.  
DS41159E-page 162  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
assert the SCL line until an external I2C master device  
has already asserted the SCL line. The SCL output will  
remain low until the CKP bit is set and all other devices  
on the I2C bus have deasserted SCL. This ensures that  
a write to the CKP bit will not violate the minimum high  
time requirement for SCL (see Figure 17-12).  
17.4.4.5  
Clock Synchronization and  
the CKP bit  
If a user clears the CKP bit, the SCL output is forced to  
0’. Setting the CKP bit will not assert the SCL output  
low until the SCL output is already sampled low. If the  
user attempts to drive SCL low, the CKP bit will not  
FIGURE 17-12:  
CLOCK SYNCHRONIZATION TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
SDA  
SCL  
DX  
DX – 1  
Master device  
asserts clock  
CKP  
Master device  
deasserts clock  
WR  
SSPCON1  
© 2006 Microchip Technology Inc.  
DS41159E-page 163  
PIC18FXX8  
2
FIGURE 17-13:  
I C™ SLAVE MODE TIMING WITH SEN = 1 (RECEPTION, 7-BIT ADDRESS)  
DS41159E-page 164  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 17-14:  
I2C™ SLAVE MODE TIMING WITH SEN = 1 (RECEPTION, 10-BIT ADDRESS)  
© 2006 Microchip Technology Inc.  
DS41159E-page 165  
PIC18FXX8  
If the general call address matches, the SSPSR is  
transferred to the SSPBUF, the BF flag bit is set (eighth  
bit) and on the falling edge of the ninth bit (ACK bit), the  
SSPIF interrupt flag bit is set.  
17.4.5  
GENERAL CALL ADDRESS  
SUPPORT  
The addressing procedure for the I2C bus is such that  
the first byte after the Start condition usually  
determines which device will be the slave addressed by  
the master. The exception is the general call address  
which can address all devices. When this address is  
used, all devices should, in theory, respond with an  
Acknowledge.  
When the interrupt is serviced, the source for the inter-  
rupt can be checked by reading the contents of the  
SSPBUF. The value can be used to determine if the  
address was device specific or a general call address.  
In 10-bit mode, the SSPADD is required to be updated  
for the second half of the address to match and the UA  
bit is set (SSPSTAT<1>). If the general call address is  
sampled when the GCEN bit is set, while the slave is  
configured in 10-bit Address mode, then the second  
half of the address is not necessary, the UA bit will not  
be set and the slave will begin receiving data after the  
Acknowledge (Figure 17-15).  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all ‘0’s with R/W = 0.  
The general call address is recognized when the Gen-  
eral Call Enable bit (GCEN) is enabled (SSPCON2<7>  
set). Following a Start bit detect, 8 bits are shifted into  
the SSPSR and the address is compared against the  
SSPADD. It is also compared to the general call  
address and fixed in hardware.  
FIGURE 17-15:  
SLAVE MODE GENERAL CALL ADDRESS SEQUENCE  
(7 OR 10-BIT ADDRESS MODE)  
Address is compared to General Call Address  
after ACK, set interrupt  
Receiving data  
D5 D4 D3 D2 D1  
ACK  
9
R/W = 0  
General Call Address  
ACK  
SDA  
SCL  
D7 D6  
D0  
8
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
S
SSPIF  
BF (SSPSTAT<0>)  
Cleared in software  
SSPBUF is read  
SSPOV (SSPCON1<6>)  
GCEN (SSPCON2<7>)  
0’  
1’  
DS41159E-page 166  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
17.4.6  
MASTER MODE  
Note:  
The MSSP module, when configured in  
I2C Master mode, does not allow queueing  
of events. For instance, the user is not  
allowed to initiate a Start condition and  
immediately write the SSPBUF register to  
initiate transmission before the Start  
condition is complete. In this case, the  
SSPBUF will not be written to and the  
WCOL bit will be set, indicating that a write  
to the SSPBUF did not occur.  
Master mode is enabled by setting and clearing the  
appropriate SSPM bits in SSPCON1 and by setting the  
SSPEN bit. In Master mode, the SCL and SDA lines  
are manipulated by the MSSP hardware.  
Master mode of operation is supported by interrupt  
generation on the detection of the Start and Stop  
conditions. The Stop (P) and Start (S) bits are cleared  
from a Reset or when the MSSP module is disabled.  
Control of the I2C bus may be taken when the P bit is  
set or the bus is Idle, with both the S and P bits clear.  
The following events will cause SSP Interrupt Flag bit,  
SSPIF, to be set (SSP interrupt if enabled):  
In Firmware Controlled Master mode, user code  
conducts all I2C bus operations based on Start and  
Stop bit conditions.  
• Start condition  
• Stop condition  
Once Master mode is enabled, the user has six  
options.  
• Data transfer byte transmitted/received  
• Acknowledge transmit  
• Repeated Start  
1. Assert a Start condition on SDA and SCL.  
2. Assert a Repeated Start condition on SDA and  
SCL.  
3. Write to the SSPBUF register initiating  
transmission of data/address.  
4. Configure the I2C port to receive data.  
5. Generate an Acknowledge condition at the end  
of a received byte of data.  
6. Generate a Stop condition on SDA and SCL.  
2
FIGURE 17-16:  
MSSP BLOCK DIAGRAM (I C™ MASTER MODE)  
Internal  
Data Bus  
SSPM3:SSPM0  
SSPADD<6:0>  
Read  
Write  
SSPBUF  
SSPSR  
Baud  
Rate  
Generator  
SDA  
Shift  
Clock  
SDA in  
MSb  
LSb  
Start bit, Stop bit,  
Acknowledge  
Generate  
SCL  
Start bit Detect  
Stop bit Detect  
Write Collision Detect  
Clock Arbitration  
State Counter for  
end of XMIT/RCV  
SCL in  
Bus Collision  
Set/Reset S, P, WCOL (SSPSTAT);  
set SSPIF, BCLIF;  
reset ACKSTAT, PEN (SSPCON2)  
© 2006 Microchip Technology Inc.  
DS41159E-page 167  
PIC18FXX8  
I2C Master Mode Operation  
A typical transmit sequence would go as follows:  
17.4.6.1  
1. The user generates a Start condition by setting  
the Start Enable bit, SEN (SSPCON2<0>).  
The master device generates all of the serial clock  
pulses and the Start and Stop conditions. A transfer is  
ended with a Stop condition, or with a Repeated Start  
condition. Since the Repeated Start condition is also  
the beginning of the next serial transfer, the I2C bus will  
not be released.  
2. SSPIF is set. The MSSP module will wait the  
required start time before any other operation  
takes place.  
3. The user loads the SSPBUF with the slave  
address to transmit.  
In Master Transmitter mode, serial data is output  
through SDA while SCL outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the Read/Write (R/W) bit.  
In this case, the R/W bit will be logic ‘0’. Serial data is  
transmitted 8 bits at a time. After each byte is transmit-  
ted, an Acknowledge bit is received. Start and Stop  
conditions are output to indicate the beginning and the  
end of a serial transfer.  
4. Address is shifted out the SDA pin until all 8 bits  
are transmitted.  
5. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
6. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
In Master Receive mode, the first byte transmitted con-  
tains the slave address of the transmitting device  
(7 bits) and the R/W bit. In this case, the R/W bit will be  
logic ‘1’. Thus, the first byte transmitted is a 7-bit slave  
address followed by a ‘1’ to indicate receive bit. Serial  
data is received via SDA while SCL outputs the serial  
clock. Serial data is received 8 bits at a time. After each  
byte is received, an Acknowledge bit is transmitted.  
Start and Stop conditions indicate the beginning and  
end of transmission.  
7. The user loads the SSPBUF with eight bits of  
data.  
8. Data is shifted out the SDA pin until all 8 bits are  
transmitted.  
9. The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
SSPCON2 register (SSPCON2<6>).  
10. The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
The Baud Rate Generator used for the SPI mode  
operation is used to set the SCL clock frequency for  
either 100 kHz, 400 kHz or 1 MHz I2C operation. See  
Section 17.4.7 “Baud Rate Generator” for more  
details.  
11. The user generates a Stop condition by setting  
the Stop Enable bit PEN (SSPCON2<2>).  
12. Interrupt is generated once the Stop condition is  
complete.  
DS41159E-page 168  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
Once the given operation is complete (i.e., transmis-  
sion of the last data bit is followed by ACK), the internal  
clock will automatically stop counting and the SCL pin  
will remain in its last state.  
17.4.7  
BAUD RATE GENERATOR  
In I2C Master mode, the Baud Rate Generator (BRG)  
reload value is placed in the lower 7 bits of the  
SSPADD register (Figure 17-17). When a write occurs  
to SSPBUF, the Baud Rate Generator will automatically  
begin counting. The BRG counts down to 0 and stops  
until another reload has taken place. The BRG count is  
decremented twice per instruction cycle (TCY) on the  
Q2 and Q4 clocks. In I2C Master mode, the BRG is  
reloaded automatically.  
Table 17-3 demonstrates clock rates based on  
instruction cycles and the BRG value loaded into  
SSPADD.  
FIGURE 17-17:  
BAUD RATE GENERATOR BLOCK DIAGRAM  
SSPM3:SSPM0  
SSPADD<6:0>  
SSPM3:SSPM0  
SCL  
Reload  
Control  
Reload  
BRG Down Counter  
CLKO  
FOSC/4  
TABLE 17-3: I2C™ CLOCK RATE w/BRG  
FSCL  
FOSC  
FCY  
FCY * 2  
BRG Value  
(2 Rollovers of BRG)  
40 MHz  
40 MHz  
40 MHz  
16 MHz  
16 MHz  
16 MHz  
4 MHz  
10 MHz  
10 MHz  
10 MHz  
4 MHz  
4 MHz  
4 MHz  
1 MHz  
1 MHz  
1 MHz  
20 MHz  
20 MHz  
20 MHz  
8 MHz  
8 MHz  
8 MHz  
2 MHz  
2 MHz  
2 MHz  
18h  
1Fh  
63h  
09h  
0Ch  
27h  
02h  
09h  
00h  
400 kHz(1)  
312.5 kHz  
100 kHz  
400 kHz(1)  
308 kHz  
100 kHz  
333 kHz(1)  
4 MHz  
100kHz  
1 MHz(1)  
4 MHz  
Note 1: The I2C™ interface does not conform to the 400 kHz I2C specification (which applies to rates greater than  
100 kHz) in all details, but may be used with care where higher rates are required by the application.  
© 2006 Microchip Technology Inc.  
DS41159E-page 169  
PIC18FXX8  
SCL pin is sampled high, the Baud Rate Generator is  
reloaded with the contents of SSPADD<6:0> and  
begins counting. This ensures that the SCL high time  
will always be at least one BRG rollover count in the  
event that the clock is held low by an external device  
(Figure 17-18).  
17.4.7.1  
Clock Arbitration  
Clock arbitration occurs when the master, during any  
receive, transmit or Repeated Start/Stop condition,  
deasserts the SCL pin (SCL allowed to float high).  
When the SCL pin is allowed to float high, the Baud  
Rate Generator (BRG) is suspended from counting  
until the SCL pin is actually sampled high. When the  
FIGURE 17-18:  
BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION  
SDA  
DX  
DX – 1  
SCL allowed to transition high  
SCL deasserted but slave holds  
SCL low (clock arbitration)  
SCL  
BRG decrements on  
Q2 and Q4 cycles  
BRG  
Value  
03h  
02h  
01h  
00h (hold off)  
03h  
02h  
SCL is sampled high, reload takes  
place and BRG starts its count  
BRG  
Reload  
DS41159E-page 170  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
17.4.8  
I2C MASTER MODE START  
CONDITION TIMING  
17.4.8.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Start sequence  
is in progress, the WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
To initiate a Start condition, the user sets the Start  
condition enable bit, SEN (SSPCON2<0>). If the SDA  
and SCL pins are sampled high, the Baud Rate Gener-  
ator is reloaded with the contents of SSPADD<6:0>  
and starts its count. If SCL and SDA are both sampled  
high when the Baud Rate Generator times out (TBRG),  
the SDA pin is driven low. The action of the SDA being  
driven low, while SCL is high, is the Start condition and  
causes the S bit (SSPSTAT<3>) to be set. Following  
this, the Baud Rate Generator is reloaded with the  
contents of SSPADD<6:0> and resumes its count.  
When the Baud Rate Generator times out (TBRG), the  
SEN bit (SSPCON2<0>) will be automatically cleared  
by hardware, the Baud Rate Generator is suspended,  
leaving the SDA line held low and the Start condition is  
complete.  
Note:  
Because queueing of events is not  
allowed, writing to the lower 5 bits of  
SSPCON2 is disabled until the Start  
condition is complete.  
Note:  
If, at the beginning of the Start condition,  
the SDA and SCL pins are already sam-  
pled low, or if during the Start condition, the  
SCL line is sampled low before the SDA  
line is driven low, a bus collision occurs;  
the Bus Collision Interrupt Flag, BCLIF, is  
set, the Start condition is aborted and the  
I2C module is reset into its Idle state.  
FIGURE 17-19:  
FIRST START BIT TIMING  
Set S bit (SSPSTAT<3>)  
At completion of Start bit,  
Write to SEN bit occurs here  
SDA = 1,  
SCL = 1  
hardware clears SEN bit  
and sets SSPIF bit  
TBRG  
TBRG  
Write to SSPBUF occurs here  
1st bit  
2nd bit  
SDA  
TBRG  
SCL  
TBRG  
S
© 2006 Microchip Technology Inc.  
DS41159E-page 171  
PIC18FXX8  
I2C MASTER MODE REPEATED  
START CONDITION TIMING  
Immediately following the SSPIF bit getting set, the user  
may write the SSPBUF with the 7-bit address in 7-bit  
mode, or the default first address in 10-bit mode. After  
the first eight bits are transmitted and an ACK is  
received, the user may then transmit an additional eight  
bits of address (10-bit mode) or eight bits of data (7-bit  
mode).  
17.4.9  
A Repeated Start condition occurs when the RSEN bit  
(SSPCON2<1>) is programmed high and the I2C logic  
module is in the Idle state. When the RSEN bit is set,  
the SCL pin is asserted low. When the SCL pin is sam-  
pled low, the Baud Rate Generator is loaded with the  
contents of SSPADD<5:0> and begins counting. The  
SDA pin is released (brought high) for one Baud Rate  
Generator count (TBRG). When the Baud Rate Genera-  
tor times out, if SDA is sampled high, the SCL pin will  
be deasserted (brought high). When SCL is sampled  
high, the Baud Rate Generator is reloaded with the  
contents of SSPADD<6:0> and begins counting. SDA  
and SCL must be sampled high for one TBRG. This  
action is then followed by assertion of the SDA pin  
(SDA = 0) for one TBRG while SCL is high. Following  
this, the RSEN bit (SSPCON2<1>) will be automatically  
cleared and the Baud Rate Generator will not be  
reloaded, leaving the SDA pin held low. As soon as a  
Start condition is detected on the SDA and SCL pins,  
the S bit (SSPSTAT<3>) will be set. The SSPIF bit will  
notbesetuntiltheBaudRateGeneratorhastimedout.  
17.4.9.1  
WCOL Status Flag  
If the user writes the SSPBUF when a Repeated Start  
sequence is in progress, the WCOL is set and the  
contents of the buffer are unchanged (the write doesn’t  
occur).  
Note:  
Because queueing of events is not  
allowed, writing of the lower 5 bits of  
SSPCON2 is disabled until the Repeated  
Start condition is complete.  
Note 1: If RSEN is programmed while any other  
event is in progress, it will not take effect.  
2: A bus collision during the Repeated Start  
condition occurs if:  
• SDA is sampled low when SCL goes  
from low-to-high.  
• SCL goes low before SDA is  
asserted low. This may indicate that  
another master is attempting to  
transmit a data ‘1’.  
FIGURE 17-20:  
REPEATED START CONDITION WAVEFORM  
Set S (SSPSTAT<3>)  
Write to SSPCON2  
occurs here.  
SDA = 1,  
SCL (no change).  
SDA = 1,  
SCL = 1  
At completion of Start bit,  
hardware clears RSEN bit  
and sets SSPIF  
TBRG  
TBRG  
TBRG  
1st bit  
SDA  
Write to SSPBUF occurs here  
TBRG  
Falling edge of ninth clock  
End of Xmit  
SCL  
TBRG  
Sr = Repeated Start  
DS41159E-page 172  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
17.4.10 I2C MASTER MODE  
TRANSMISSION  
17.4.10.3 ACKSTAT Status Flag  
In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is  
cleared when the slave has sent an Acknowledge  
(ACK = 0) and is set when the slave does not Acknowl-  
edge (ACK = 1). A slave sends an Acknowledge when  
it has recognized its address (including a general call)  
or when the slave has properly received its data.  
Transmission of a data byte, a 7-bit address or the  
other half of a 10-bit address is accomplished by simply  
writing a value to the SSPBUF register. This action will  
set the Buffer Full flag bit BF and allow the Baud Rate  
Generator to begin counting and start the next trans-  
mission. Each bit of address/data will be shifted out  
onto the SDA pin after the falling edge of SCL is  
asserted (see data hold time specification parameter  
#106). SCL is held low for one Baud Rate Generator  
rollover count (TBRG). Data should be valid before SCL  
is released high (see data setup time specification  
parameter #107). When the SCL pin is released high, it  
is held that way for TBRG. The data on the SDA pin  
must remain stable for that duration and some hold  
time after the next falling edge of SCL. After the eighth  
bit is shifted out (the falling edge of the eighth clock),  
the BF flag is cleared and the master releases SDA.  
This allows the slave device being addressed to  
respond with an ACK bit during the ninth bit time, if an  
address match occurred, or if data was received prop-  
erly. The status of ACK is written into the ACKDT bit  
on the falling edge of the ninth clock. If the master  
receives an Acknowledge, the Acknowledge Status bit,  
ACKSTAT, is cleared. If not, the bit is set. After the ninth  
clock, the SSPIF bit is set and the master clock (Baud  
Rate Generator) is suspended until the next data byte  
is loaded into the SSPBUF, leaving SCL low and SDA  
unchanged (Figure 17-21).  
17.4.11 I2C MASTER MODE RECEPTION  
Master mode reception is enabled by programming the  
Receive Enable bit, RCEN (SSPCON2<3>).  
Note:  
The RCEN bit should be set after the ACK  
sequence is complete or the RCEN bit will  
be disregarded.  
The Baud Rate Generator begins counting and on each  
rollover, the state of the SCL pin changes (high-to-low/  
low-to-high) and data is shifted into the SSPSR. After  
the falling edge of the eighth clock, the receive enable  
flag is automatically cleared, the contents of the  
SSPSR are loaded into the SSPBUF, the BF flag bit is  
set, the SSPIF flag bit is set and the Baud Rate Gener-  
ator is suspended from counting, holding SCL low. The  
MSSP is now in Idle state awaiting the next command.  
When the buffer is read by the CPU, the BF flag bit is  
automatically cleared. The user can then send an  
Acknowledge bit at the end of reception by setting the  
Acknowledge Sequence Enable bit, ACKEN  
(SSPCON2<4>).  
17.4.11.1 BF Status Flag  
After the write to the SSPBUF, each bit of address will  
be shifted out on the falling edge of SCL until all seven  
address bits and the R/W bit are completed. On the  
falling edge of the eighth clock, the master will deassert  
the SDA pin, allowing the slave to respond with an  
Acknowledge. On the falling edge of the ninth clock, the  
master will sample the SDA pin to see if the address  
was recognized by a slave. The status of the ACK bit is  
loaded into the ACKSTAT status bit (SSPCON2<6>).  
Following the falling edge of the ninth clock transmis-  
sion of the address, the SSPIF bit is set, the BF flag is  
cleared and the Baud Rate Generator is turned off until  
another write to the SSPBUF takes place, holding SCL  
low and allowing SDA to float.  
In receive operation, the BF bit is set when an address  
or data byte is loaded into SSPBUF from SSPSR. It is  
cleared when the SSPBUF register is read.  
17.4.11.2 SSPOV Status Flag  
In receive operation, the SSPOV bit is set when 8 bits  
are received into the SSPSR and the BF flag bit is  
already set from a previous reception.  
17.4.11.3 WCOL Status Flag  
If the user writes the SSPBUF when a receive is  
already in progress (i.e., SSPSR is still shifting in a data  
byte), the WCOL bit is set and the contents of the buffer  
are unchanged (the write doesn’t occur).  
17.4.10.1 BF Status Flag  
In Transmit mode, the BF bit (SSPSTAT<0>) is set  
when the CPU writes to SSPBUF and is cleared when  
all 8 bits are shifted out.  
17.4.10.2 WCOL Status Flag  
If the user writes the SSPBUF when a transmit is  
already in progress (i.e., SSPSR is still shifting out a  
data byte), the WCOL is set and the contents of the  
buffer are unchanged (the write doesn’t occur).  
WCOL must be cleared in software.  
© 2006 Microchip Technology Inc.  
DS41159E-page 173  
PIC18FXX8  
2
FIGURE 17-21:  
I C™ MASTER MODE WAVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESS)  
DS41159E-page 174  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
2
FIGURE 17-22:  
I C™ MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS)  
© 2006 Microchip Technology Inc.  
DS41159E-page 175  
PIC18FXX8  
17.4.12 ACKNOWLEDGE SEQUENCE  
TIMING  
17.4.13 STOP CONDITION TIMING  
A Stop bit is asserted on the SDA pin at the end of a  
receive/transmit by setting the Stop Sequence Enable  
bit, PEN (SSPCON2<2>). At the end of a receive/  
transmit, the SCL line is held low after the falling edge  
of the ninth clock. When the PEN bit is set, the master  
will assert the SDA line low. When the SDA line is  
sampled low, the Baud Rate Generator is reloaded and  
counts down to 0. When the Baud Rate Generator  
times out, the SCL pin will be brought high and one  
TBRG (Baud Rate Generator rollover count) later, the  
SDA pin will be deasserted. When the SDA pin is  
An Acknowledge sequence is enabled by setting the  
Acknowledge Sequence Enable bit, ACKEN  
(SSPCON2<4>). When this bit is set, the SCL pin is  
pulled low and the contents of the Acknowledge data bit  
are presented on the SDA pin. If the user wishes to gen-  
erate an Acknowledge, then the ACKDT bit should be  
cleared. If not, the user should set the ACKDT bit before  
starting an Acknowledge sequence. The Baud Rate  
Generator then counts for one rollover period (TBRG)  
and the SCL pin is deasserted (pulled high). When the  
SCL pin is sampled high (clock arbitration), the Baud  
Rate Generator counts for TBRG. The SCL pin is then  
pulled low. Following this, the ACKEN bit is automatically  
cleared, the Baud Rate Generator is turned off and the  
MSSP module then goes into Idle mode (Figure 17-23).  
sampled high while SCL is high, the  
(SSPSTAT<4>) is set. A TBRG later, the PEN bit is  
cleared and the SSPIF bit is set (Figure 17-24).  
P
bit  
17.4.13.1 WCOL Status Flag  
If the user writes the SSPBUF when a Stop sequence  
is in progress, then the WCOL bit is set and the con-  
tents of the buffer are unchanged (the write doesn’t  
occur).  
17.4.12.1 WCOL Status Flag  
If the user writes the SSPBUF when an Acknowledge  
sequence is in progress, then WCOL is set and the con-  
tents of the buffer are unchanged (the write doesn’t occur).  
FIGURE 17-23:  
ACKNOWLEDGE SEQUENCE WAVEFORM  
Acknowledge sequence starts here,  
write to SSPCON2  
ACKEN automatically cleared  
ACKEN = 1, ACKDT = 0  
TBRG  
TBRG  
ACK  
SDA  
SCL  
D0  
8
9
SSPIF  
Cleared in  
software  
Set SSPIF at the end  
of receive  
Cleared in  
software  
Set SSPIF at the end  
of Acknowledge sequence  
Note: TBRG = one Baud Rate Generator period.  
FIGURE 17-24:  
STOP CONDITION RECEIVE OR TRANSMIT MODE  
SCL = 1for TBRG, followed by SDA = 1for TBRG  
after SDA sampled high. P bit (SSPSTAT<4>) is set.  
Write to SSPCON2  
Set PEN  
PEN bit (SSPCON2<2>) is cleared by  
hardware and the SSPIF bit is set  
Falling edge of  
9th clock  
TBRG  
SCL  
SDA  
ACK  
P
TBRG  
TBRG  
TBRG  
SCL brought high after TBRG  
SDA asserted low before rising edge of clock  
to setup Stop condition  
Note: TBRG = one Baud Rate Generator period.  
DS41159E-page 176  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
17.4.14 SLEEP OPERATION  
17.4.17 MULTI -MASTER  
While in Sleep mode, the I2C module can receive  
addresses or data and when an address match or  
complete byte transfer occurs, wake the processor  
from Sleep (if the MSSP interrupt is enabled).  
COMMUNICATION, BUS COLLISION  
AND BUS ARBITRATION  
Multi-Master mode support is achieved by bus arbitra-  
tion. When the master outputs address/data bits onto  
the SDA pin, arbitration takes place when the master  
outputs a ‘1’ on SDA by letting SDA float high and  
another master asserts a ‘0’. When the SCL pin floats  
high, data should be stable. If the expected data on  
SDA is a ‘1’ and the data sampled on the SDA pin = 0,  
then a bus collision has taken place. The master will set  
the Bus Collision Interrupt Flag BCLIF and reset the I2C  
port to its Idle state (Figure 17-25).  
17.4.15 EFFECT OF A RESET  
A Reset disables the MSSP module and terminates the  
current transfer.  
17.4.16 MULTI-MASTER MODE  
In Multi-Master mode, the interrupt generation on the  
detection of the Start and Stop conditions allows the  
determination of when the bus is free. The Stop (P) and  
Start (S) bits are cleared from a Reset or when the  
MSSP module is disabled. Control of the I2C bus may  
be taken when the P bit (SSPSTAT<4>) is set, or the  
bus is Idle, with both the S and P bits clear. When the  
bus is busy, enabling the SSP interrupt will generate  
the interrupt when the Stop condition occurs.  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the BF flag is  
cleared, the SDA and SCL lines are deasserted and the  
SSPBUF can be written to. When the user services the  
bus collision Interrupt Service Routine and if the I2C  
bus is free, the user can resume communication by  
asserting a Start condition.  
In multi-master operation, the SDA line must be moni-  
tored for arbitration to see if the signal level is the  
expected output level. This check is performed in  
hardware with the result placed in the BCLIF bit.  
If a Start, Repeated Start, Stop or Acknowledge  
condition was in progress when the bus collision  
occurred, the condition is aborted, the SDA and SCL  
lines are deasserted and the respective control bits in  
the SSPCON2 register are cleared. When the user ser-  
vices the bus collision Interrupt Service Routine and if  
the I2C bus is free, the user can resume communication  
by asserting a Start condition.  
The states where arbitration can be lost are:  
• Address Transfer  
• Data Transfer  
• A Start Condition  
The master will continue to monitor the SDA and SCL  
pins. If a Stop condition occurs, the SSPIF bit will be set.  
• A Repeated Start Condition  
• An Acknowledge Condition  
A write to the SSPBUF will start the transmission of  
data at the first data bit regardless of where the  
transmitter left off when the bus collision occurred.  
In Multi-Master mode, the interrupt generation on the  
detection of Start and Stop conditions allows the determi-  
nation of when the bus is free. Control of the I2C bus can  
be taken when the P bit is set in the SSPSTAT register or  
the bus is Idle and the S and P bits are cleared.  
FIGURE 17-25:  
BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE  
Sample SDA. While SCL is high,  
data doesn’t match what is driven  
by the master.  
SDA line pulled low  
by another source  
Data changes  
while SCL = 0  
Bus collision has occurred.  
SDA released  
by master  
SDA  
SCL  
Set bus collision  
interrupt (BCLIF)  
BCLIF  
© 2006 Microchip Technology Inc.  
DS41159E-page 177  
PIC18FXX8  
If the SDA pin is sampled low during this count, the  
BRG is reset and the SDA line is asserted early  
(Figure 17-28). If, however, a ‘1’ is sampled on the SDA  
pin, the SDA pin is asserted low at the end of the BRG  
count. The Baud Rate Generator is then reloaded and  
counts down to 0 and during this time, if the SCL pins  
are sampled as ‘0’, a bus collision does not occur. At  
the end of the BRG count, the SCLpin is asserted low.  
17.4.17.1 Bus Collision During a Start  
Condition  
During a Start condition, a bus collision occurs if:  
a) SDA or SCL are sampled low at the beginning of  
the Start condition (Figure 17-26).  
b) SCL is sampled low before SDA is asserted low  
(Figure 17-27).  
During a Start condition, both the SDA and the SCL  
pins are monitored.  
Note:  
The reason that bus collision is not a factor  
during a Start condition is that no two bus  
masters can assert a Start condition at the  
exact same time. Therefore, one master  
will always assert SDA before the other.  
This condition does not cause a bus colli-  
sion because the two masters must be  
allowed to arbitrate the first address  
following the Start condition. If the address  
is the same, arbitration must be allowed to  
continue into the data portion, Repeated  
Start or Stop conditions.  
If the SDA pin is already low, or the SCL pin is already  
low, then all of the following occur:  
• the Start condition is aborted,  
• the BCLIF flag is set and  
the MSSP module is reset to its Idle state  
(Figure 17-26).  
The Start condition begins with the SDA and SCL pins  
deasserted. When the SDA pin is sampled high, the  
Baud Rate Generator is loaded from SSPADD<6:0>  
and counts down to 0. If the SCL pin is sampled low  
while SDA is high, a bus collision occurs because it is  
assumed that another master is attempting to drive a  
data ‘1’ during the Start condition.  
FIGURE 17-26:  
BUS COLLISION DURING START CONDITION (SDA ONLY)  
SDA goes low before the SEN bit is set.  
Set BCLIF,  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
SDA  
SCL  
SEN  
Set SEN, enable Start  
condition if SDA = 1, SCL = 1  
SEN cleared automatically because of bus collision.  
SSP module reset into Idle state.  
SDA sampled low before  
Start condition. Set BCLIF.  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
BCLIF  
SSPIF and BCLIF are  
cleared in software  
S
SSPIF  
SSPIF and BCLIF are  
cleared in software.  
DS41159E-page 178  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 17-27:  
BUS COLLISION DURING START CONDITION (SCL = 0)  
SDA = 0, SCL = 1  
TBRG  
TBRG  
SDA  
Set SEN, enable Start  
sequence if SDA = 1, SCL = 1  
SCL  
SEN  
SCL = 0before SDA = 0,  
bus collision occurs. Set BCLIF.  
SCL = 0before BRG time-out,  
bus collision occurs. Set BCLIF.  
BCLIF  
Interrupt cleared  
in software  
S
0’  
0’  
0’  
0’  
SSPIF  
FIGURE 17-28:  
BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION  
SDA = 0, SCL = 1  
Set S  
Set SSPIF  
Less than TBRG  
TBRG  
SDA pulled low by other master.  
Reset BRG and assert SDA.  
SDA  
SCL  
S
SCL pulled low after BRG  
Time-out  
SEN  
Set SEN, enable Start  
sequence if SDA = 1, SCL = 1  
0’  
BCLIF  
S
SSPIF  
Interrupts cleared  
in software  
SDA = 0, SCL = 1,  
set SSPIF  
© 2006 Microchip Technology Inc.  
DS41159E-page 179  
PIC18FXX8  
counting. If SDA goes from high-to-low before the BRG  
times out, no bus collision occurs because no two  
masters can assert SDA at exactly the same time.  
17.4.17.2 Bus Collision During a Repeated  
Start Condition  
During a Repeated Start condition, a bus collision  
occurs if:  
If SCL goes from high-to-low before the BRG times out  
and SDA has not already been asserted, a bus collision  
occurs. In this case, another master is attempting to  
transmit a data ‘1’ during the Repeated Start condition  
(Figure 17-30).  
a) A low level is sampled on SDA when SCL goes  
from low level to high level.  
b) SCL goes low before SDA is asserted low,  
indicating that another master is attempting to  
transmit a data ‘1’.  
If, at the end of the BRG time-out, both SCL and SDA  
are still high, the SDA pin is driven low and the BRG is  
reloaded and begins counting. At the end of the count,  
regardless of the status of the SCL pin, the SCL pin is  
driven low and the Repeated Start condition is  
complete.  
When the user deasserts SDA and the pin is allowed to  
float high, the BRG is loaded with SSPADD<6:0> and  
counts down to 0. The SCL pin is then deasserted and  
when sampled high, the SDA pin is sampled.  
If SDA is low, a bus collision has occurred (i.e., another  
master is attempting to transmit a data ‘0’, Figure 17-29).  
If SDA is sampled high, the BRG is reloaded and begins  
FIGURE 17-29:  
BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)  
SDA  
SCL  
Sample SDA when SCL goes high.  
If SDA = 0, set BCLIF and release SDA and SCL.  
RSEN  
BCLIF  
Cleared in software  
0’  
S
0’  
SSPIF  
FIGURE 17-30:  
BUS COLLISION DURING A REPEATED START CONDITION (CASE 2)  
TBRG  
TBRG  
SDA  
SCL  
SCL goes low before SDA,  
set BCLIF. Release SDA and SCL.  
BCLIF  
RSEN  
Interrupt cleared  
in software  
0’  
S
SSPIF  
DS41159E-page 180  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
The Stop condition begins with SDA asserted low.  
When SDA is sampled low, the SCL pin is allowed to  
float. When the pin is sampled high (clock arbitration),  
the Baud Rate Generator is loaded with SSPADD<6:0>  
and counts down to 0. After the BRG times out, SDA is  
sampled. If SDA is sampled low, a bus collision has  
occurred. This is due to another master attempting to  
drive a data ‘0’ (Figure 17-31). If the SCL pin is  
sampled low before SDA is allowed to float high, a bus  
collision occurs. This is another case of another master  
attempting to drive a data ‘0’ (Figure 17-32).  
17.4.17.3 Bus Collision During a Stop  
Condition  
Bus collision occurs during a Stop condition if:  
a) After the SDA pin has been deasserted and  
allowed to float high, SDA is sampled low after  
the BRG has timed out.  
b) After the SCL pin is deasserted, SCL is sampled  
low before SDA goes high.  
FIGURE 17-31:  
BUS COLLISION DURING A STOP CONDITION (CASE 1)  
SDA sampled  
low after TBRG,  
set BCLIF  
TBRG  
TBRG  
TBRG  
SDA  
SDA asserted low  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
FIGURE 17-32:  
BUS COLLISION DURING A STOP CONDITION (CASE 2)  
TBRG  
TBRG  
TBRG  
SDA  
SCL goes low before SDA goes high,  
set BCLIF  
Assert SDA  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
© 2006 Microchip Technology Inc.  
DS41159E-page 181  
PIC18FXX8  
NOTES:  
DS41159E-page 182  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
The USART can be configured in the following modes:  
18.0 ADDRESSABLE UNIVERSAL  
SYNCHRONOUS  
• Asynchronous (full-duplex)  
• Synchronous – Master (half-duplex)  
• Synchronous – Slave (half-duplex).  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (USART)  
The SPEN (RCSTA register) and the TRISC<7> bits  
have to be set and the TRISC<6> bit must be cleared  
in order to configure pins RC6/TX/CK and RC7/RX/DT  
as the Universal Synchronous Asynchronous Receiver  
Transmitter.  
The Universal Synchronous Asynchronous Receiver  
Transmitter (USART) module is one of the three serial  
I/O modules incorporated into PIC18FXX8 devices.  
(USART is also known as a Serial Communications  
Interface or SCI.) The USART can be configured as a  
full-duplex asynchronous system that can communi-  
cate with peripheral devices, such as CRT terminals  
and personal computers, or it can be configured as a  
half-duplex synchronous system that can communicate  
with peripheral devices, such as A/D or D/A integrated  
circuits, serial EEPROMs, etc.  
Register 18-1 shows the Transmit Status and Control  
register (TXSTA) and Register 18-2 shows the Receive  
Status and Control register (RCSTA).  
REGISTER 18-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
TRMT  
bit 7  
bit 0  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
Note:  
SREN/CREN overrides TXEN in Sync mode.  
bit 4  
SYNC: USART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode.  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: 9th bit of Transmit Data  
Can be address/data bit or a parity bit.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 183  
PIC18FXX8  
REGISTER 18-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RX/DT and TX/CK pins as serial port pins)  
0= Serial port disabled  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive (this bit is cleared after reception is complete)  
Synchronous mode – Slave:  
Unused in this mode.  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables continuous receive  
0= Disables continuous receive  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enables interrupt and load of the receive buffer when RSR<8>  
is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: 9th bit of Received Data  
Can be address/data bit or a parity bit.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS41159E-page 184  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
Example 18-1 shows the calculation of the baud rate  
error for the following conditions:  
18.1 USART Baud Rate Generator  
(BRG)  
FOSC = 16 MHz  
Desired Baud Rate = 9600  
BRGH = 0  
The BRG supports both the Asynchronous and  
Synchronous modes of the USART. It is a dedicated  
8-bit Baud Rate Generator. The SPBRG register  
controls the period of a free running, 8-bit timer. In  
Asynchronous mode, bit BRGH (TXSTA register) also  
controls the baud rate. In Synchronous mode, bit  
BRGH is ignored. Table 18-1 shows the formula for  
computation of the baud rate for different USART  
modes which only apply in Master mode (internal  
clock).  
SYNC = 0  
It may be advantageous to use the high baud rate  
(BRGH = 1) even for slower baud clocks. This is  
because the FOSC/(16(X + 1)) equation can reduce the  
baud rate error in some cases.  
Writing a new value to the SPBRG register causes the  
BRG timer to be reset (or cleared). This ensures the  
BRG does not wait for a timer overflow before  
outputting the new baud rate.  
Given the desired baud rate and FOSC, the nearest  
integer value for the SPBRG register can be calculated  
using the formula in Table 18-1. From this, the error in  
baud rate can be determined.  
18.1.1  
SAMPLING  
The data on the RC7/RX/DT pin is sampled three times  
by a majority detect circuit to determine if a high or a  
low level is present at the RX pin.  
EXAMPLE 18-1:  
CALCULATING BAUD RATE ERROR  
Desired Baud Rate  
= FOSC/(64 (X + 1))  
Solving for X:  
X
X
X
= ((FOSC/Desired Baud Rate)/64) – 1  
= ((16000000/9600)/64) – 1  
= [25.042] = 25  
Calculated Baud Rate  
Error  
= 16000000/(64 (25 + 1))  
= 9615  
= (Calculated Baud Rate – Desired Baud Rate)  
Desired Baud Rate  
= (9615 – 9600)/9600  
= 0.16%  
TABLE 18-1: BAUD RATE FORMULA  
SYNC  
BRGH = 0 (Low Speed)  
BRGH = 1 (High Speed)  
0
1
(Asynchronous) Baud Rate = FOSC/(64 (X + 1))  
(Synchronous) Baud Rate = FOSC/(4 (X + 1))  
Baud Rate = FOSC/(16 (X + 1))  
NA  
Legend: X = value in SPBRG (0 to 255)  
TABLE 18-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TXSTA  
RCSTA  
SPBRG  
CSRC  
SPEN  
TX9  
RX9  
TXEN SYNC  
BRGH TRMT TX9D 0000 -010  
0000 -010  
0000 000u  
0000 0000  
SREN CREN ADDEN FERR OERR RX9D 0000 000x  
0000 0000  
Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented, read as ‘0’. Shaded cells are not used by the BRG.  
© 2006 Microchip Technology Inc.  
DS41159E-page 185  
PIC18FXX8  
TABLE 18-3: BAUD RATES FOR SYNCHRONOUS MODE  
FOSC = 40 MHz  
33 MHz  
25 MHz  
20 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
KBAUD ERROR  
KBAUD ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
0.3  
1.2  
NA  
NA  
-
-
-
NA  
NA  
-
-
-
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
-
-
-
2.4  
NA  
-
-
NA  
-
-
NA  
-
-
NA  
-
-
9.6  
NA  
-
-
NA  
-
-
-
NA  
-
-
-
NA  
-
-
19.2  
76.8  
96  
NA  
-
-
NA  
-
NA  
-
NA  
-
-
76.92  
96.15  
303.03  
500  
+0.16  
129  
103  
32  
19  
0
77.10  
95.93  
294.64  
485.30  
8250  
32.23  
+0.39  
-0.07  
-1.79  
-2.94  
-
106  
85  
27  
16  
0
77.16  
96.15  
297.62  
480.77  
6250  
24.41  
+0.47  
+0.16  
-0.79  
-3.85  
-
80  
64  
20  
12  
0
76.92  
96.15  
294.12  
500  
+0.16  
64  
51  
16  
9
+0.16  
+0.16  
300  
500  
HIGH  
LOW  
+1.01  
-1.96  
0
-
0
-
10000  
39.06  
5000  
19.53  
0
-
255  
-
255  
-
255  
-
255  
FOSC = 16 MHz  
10 MHz  
7.15909 MHz  
5.0688 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
KBAUD ERROR  
KBAUD ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
0.3  
1.2  
NA  
NA  
-
-
-
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
NA  
NA  
-
-
-
-
-
-
2.4  
NA  
-
-
NA  
-
-
NA  
-
-
NA  
-
-
9.6  
NA  
-
+0.16  
+0.16  
-0.79  
+2.56  
0
-
NA  
-
+0.16  
-1.36  
+0.16  
+4.17  
0
-
9.62  
+0.23  
+0.23  
+1.32  
-1.88  
-0.57  
-10.51  
-
185  
92  
22  
18  
5
9.60  
0
0
131  
65  
16  
12  
3
19.2  
76.8  
96  
19.23  
76.92  
95.24  
307.70  
500  
207  
51  
41  
12  
7
19.23  
75.76  
96.15  
312.50  
500  
129  
32  
25  
7
19.24  
77.82  
94.20  
298.35  
447.44  
1789.80  
6.99  
19.20  
74.54  
97.48  
316.80  
422.40  
1267.20  
4.95  
-2.94  
+1.54  
+5.60  
-15.52  
-
300  
500  
HIGH  
LOW  
4
3
2
4000  
15.63  
-
0
2500  
9.77  
-
0
0
0
-
255  
-
255  
-
255  
-
255  
FOSC = 4 MHz  
3.579545 MHz  
1 MHz  
32.768 kHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
KBAUD ERROR  
KBAUD ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
0.3  
1.2  
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
NA  
1.20  
2.40  
9.62  
19.23  
83.33  
83.33  
250  
-
-
207  
103  
25  
12  
2
0.30  
1.17  
2.73  
8.20  
NA  
+1.14  
26  
-
-
+0.16  
+0.16  
+0.16  
+0.16  
+8.51  
-13.19  
-16.67  
-
-2.48  
6
2.4  
NA  
-
NA  
-
-
+13.78  
2
9.6  
9.62  
19.23  
76.92  
1000  
333.33  
500  
+0.16  
+0.16  
+0.16  
+4.17  
+11.11  
0
103  
51  
12  
9
9.62  
+0.23  
-0.83  
-2.90  
+3.57  
-0.57  
-10.51  
-
92  
46  
11  
8
-14.67  
0
19.2  
76.8  
96  
19.04  
74.57  
99.43  
298.30  
447.44  
894.89  
3.50  
-
-
-
-
-
-
-
-
NA  
-
2
NA  
-
300  
500  
HIGH  
LOW  
2
2
0
NA  
-
-
1
1
NA  
-
NA  
1000  
3.91  
-
0
0
250  
-
0
8.20  
0.03  
0
-
255  
-
255  
0.98  
-
255  
255  
DS41159E-page 186  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TABLE 18-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)  
FOSC = 40 MHz  
33 MHz  
25 MHz  
20 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
KBAUD ERROR  
KBAUD  
ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
0.3  
1.2  
NA  
NA  
-
-
-
-
NA  
NA  
-
-
-
-
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
-
2.4  
NA  
-
-
2.40  
-0.07  
-0.54  
-0.54  
-4.09  
+7.42  
-14.06  
-
214  
53  
26  
6
2.40  
9.53  
19.53  
78.13  
97.66  
NA  
-0.15  
162  
40  
19  
4
2.40  
+0.16  
-1.36  
+1.73  
+1.73  
+8.51  
+4.17  
-
129  
32  
15  
3
9.6  
9.62  
18.94  
78.13  
89.29  
312.50  
625  
+0.16  
-1.36  
+1.73  
-6.99  
+4.17  
+25.00  
-
64  
32  
7
9.55  
-0.76  
9.47  
19.2  
76.8  
96  
19.10  
73.66  
103.13  
257.81  
NA  
+1.73  
19.53  
78.13  
104.17  
312.50  
NA  
+1.73  
6
4
+1.73  
3
2
300  
500  
HIGH  
LOW  
1
1
-
-
-
-
-
0
0
-
NA  
-
-
625  
0
515.63  
2.01  
-
0
390.63  
1.53  
0
312.50  
1.22  
-
0
2.44  
-
255  
-
255  
255  
-
255  
FOSC = 16 MHz  
10 MHz  
7.15909 MHz  
5.0688 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
KBAUD ERROR  
KBAUD  
ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
0.3  
1.2  
NA  
1.20  
2.40  
9.62  
19.23  
83.33  
83.33  
250  
-
-
207  
103  
25  
12  
2
NA  
1.20  
-
-
129  
64  
15  
7
NA  
1.20  
2.38  
9.32  
18.64  
111.86  
NA  
-
-
92  
46  
11  
5
NA  
1.20  
2.40  
9.90  
19.80  
79.20  
NA  
-
-
65  
32  
7
+0.16  
+0.16  
+0.16  
+0.16  
+8.51  
-13.19  
-16.67  
-
+0.16  
+0.16  
+1.73  
+1.73  
+1.73  
-18.62  
-47.92  
-
+0.23  
0
2.4  
2.40  
-0.83  
0
9.6  
9.77  
-2.90  
+3.13  
19.2  
76.8  
96  
19.53  
78.13  
78.13  
156.25  
NA  
-2.90  
+3.13  
3
1
+45.65  
0
+3.13  
0
2
1
-
-
-
-
-
-
-
-
-
-
-
-
300  
500  
HIGH  
LOW  
0
0
NA  
-
NA  
-
NA  
-
-
NA  
-
NA  
-
250  
-
0
156.25  
0.61  
-
0
111.86  
0.44  
0
79.20  
0.31  
0
0.98  
-
255  
-
255  
255  
255  
FOSC = 4 MHz  
3.579545 MHz  
%
1 MHz  
32.768 kHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
KBAUD ERROR  
KBAUD  
ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
0.3  
1.2  
0.30  
1.20  
2.40  
8.93  
20.83  
62.50  
NA  
-0.16  
207  
51  
25  
6
0.30  
1.19  
2.43  
9.32  
18.64  
55.93  
NA  
+0.23  
185  
46  
22  
5
0.30  
1.20  
2.23  
7.81  
15.63  
NA  
+0.16  
51  
12  
6
0.26  
NA  
-14.67  
1
+1.67  
-0.83  
+0.16  
-
-
-
-
-
-
-
-
-
-
-
2.4  
+1.67  
+1.32  
-6.99  
NA  
-
9.6  
-6.99  
-2.90  
-18.62  
1
NA  
-
19.2  
76.8  
96  
+8.51  
2
-2.90  
2
-18.62  
0
NA  
-
-18.62  
0
-27.17  
0
-
-
-
-
-
-
-
NA  
-
-
-
-
-
-
-
-
-
-
-
-
-
NA  
-
NA  
-
300  
500  
HIGH  
LOW  
NA  
-
NA  
-
NA  
-
NA  
-
-
NA  
-
NA  
-
NA  
-
NA  
62.50  
0.24  
0
55.93  
0.22  
0
15.63  
0.06  
0
0.51  
0.002  
0
255  
255  
255  
255  
© 2006 Microchip Technology Inc.  
DS41159E-page 187  
PIC18FXX8  
TABLE 18-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)  
FOSC = 40 MHz  
33 MHz  
25 MHz  
20 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
0.3  
1.2  
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
-
-
2.4  
NA  
-
-
NA  
-
-
NA  
-
-
NA  
-
-
9.6  
NA  
-
+0.16  
-1.36  
+0.16  
+4.17  
0
-
9.60  
-0.07  
+0.39  
-0.54  
+2.31  
-1.79  
+3.13  
-
214  
106  
26  
20  
6
9.59  
-0.15  
+0.47  
+1.73  
+1.73  
+4.17  
+4.17  
-
162  
80  
19  
15  
4
9.62  
+0.16  
+0.16  
+1.73  
+0.16  
+4.17  
-16.67  
-
129  
64  
15  
12  
3
19.2  
76.8  
96  
19.23  
75.76  
96.15  
312.50  
500  
129  
32  
25  
7
19.28  
76.39  
98.21  
294.64  
515.63  
2062.50  
8,06  
19.30  
78.13  
97.66  
312.50  
520.83  
1562.50  
6.10  
19.23  
78.13  
96.15  
312.50  
416.67  
1250  
4.88  
300  
500  
HIGH  
LOW  
4
3
2
2
2500  
9.77  
-
0
0
0
0
-
255  
-
255  
-
255  
-
255  
FOSC = 16 MHz  
10 MHz  
7.15909 MHz  
5.0688 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
0.3  
1.2  
NA  
NA  
-
-
-
NA  
NA  
-
-
-
-
NA  
NA  
-
-
-
-
NA  
NA  
-
-
-
-
-
2.4  
NA  
-
+0.16  
+0.16  
+0.16  
+4.17  
+11.11  
0
-
NA  
-
-
2.41  
+0.23  
-0.83  
+1.32  
-2.90  
-6.78  
+49.15  
-10.51  
-
185  
46  
22  
5
2.40  
0
131  
32  
16  
3
9.6  
9.62  
19.23  
76.92  
100  
103  
51  
12  
9
9.62  
18.94  
78.13  
89.29  
312.50  
625  
+0.16  
-1.36  
+1.73  
-6.99  
+4.17  
+25.00  
-
64  
32  
7
9.52  
9.60  
0
-2.94  
+3.13  
+10.00  
+5.60  
-
19.2  
76.8  
96  
19.45  
74.57  
89.49  
447.44  
447.44  
447.44  
1.75  
18.64  
79.20  
105.60  
316.80  
NA  
6
4
2
300  
500  
HIGH  
LOW  
333.33  
500  
2
1
0
0
1
0
0
-
1000  
3.91  
-
0
625  
0
0
316.80  
1.24  
-
0
-
255  
2.44  
-
255  
-
255  
-
255  
FOSC = 4 MHz  
3.579545 MHz  
1 MHz  
32.768 kHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
0.3  
1.2  
NA  
1.20  
2.40  
9.62  
19.23  
NA  
-
-
207  
103  
25  
12  
-
NA  
1.20  
-
+0.23  
+0.23  
+1.32  
-2.90  
-2.90  
+16.52  
-25.43  
-
-
185  
92  
22  
11  
2
0.30  
1.20  
2.40  
8.93  
20.83  
62.50  
NA  
+0.16  
207  
51  
25  
6
0.29  
1.02  
2.05  
NA  
-2.48  
6
+0.16  
+0.16  
-14.67  
1
2.4  
+0.16  
2.41  
+0.16  
-14.67  
0
9.6  
+0.16  
9.73  
-6.99  
-
-
-
-
-
-
-
-
-
19.2  
76.8  
96  
+0.16  
18.64  
74.57  
111.86  
223.72  
NA  
+8.51  
2
NA  
-
-
-
-
-
-
-
-18.62  
0
NA  
-
NA  
-
1
-
-
-
-
-
-
NA  
-
300  
500  
HIGH  
LOW  
NA  
-
0
NA  
-
NA  
-
-
NA  
-
-
NA  
-
NA  
250  
0.98  
0
55.93  
0.22  
-
0
62.50  
0.24  
0
2.05  
0.008  
0
255  
-
255  
255  
255  
DS41159E-page 188  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
interrupt can be enabled/disabled by setting/clearing  
enable bit TXIE (PIE1 register). Flag bit TXIF will be set  
regardless of the state of enable bit TXIE and cannot be  
cleared in software. It will reset only when new data is  
loaded into the TXREG register. While flag bit, TXIF,  
indicated the status of the TXREG register, another bit,  
TRMT (TXSTA register), shows the status of the TSR  
register. Status bit TRMT is a read-only bit which is set  
when the TSR register is empty. No interrupt logic is  
tied to this bit, so the user has to poll this bit in order to  
determine if the TSR register is empty.  
18.2 USART Asynchronous Mode  
In this mode, the USART uses standard Non-Return-  
to-Zero (NRZ) format (one Start bit, eight or nine data  
bits and one Stop bit). The most common data format  
is 8 bits. An on-chip dedicated 8-bit Baud Rate  
Generator can be used to derive standard baud rate  
frequencies from the oscillator. The USART transmits  
and receives the LSb first. The USART’s transmitter  
and receiver are functionally independent but use the  
same data format and baud rate. The Baud Rate  
Generator produces a clock, either x16 or x64 of the bit  
shift rate, depending on the BRGH bit (TXSTA regis-  
ter). Parity is not supported by the hardware but can be  
implemented in software (and stored as the ninth data  
bit). Asynchronous mode is stopped during Sleep.  
Note 1: The TSR register is not mapped in data  
memory, so it is not available to the user.  
2: Flag bit TXIF is set when enable bit TXEN  
is set.  
Asynchronous mode is selected by clearing the SYNC  
bit (TXSTA register).  
Steps to follow when setting up an Asynchronous  
Transmission:  
The USART Asynchronous module consists of the  
following important elements:  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high-speed baud rate is desired,  
set bit BRGH (Section 18.1 “USART Baud  
Rate Generator (BRG)”).  
• Baud Rate Generator  
• Sampling Circuit  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
• Asynchronous Transmitter  
• Asynchronous Receiver.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set transmit bit  
TX9. Can be used as address/data bit.  
18.2.1  
USART ASYNCHRONOUS  
TRANSMITTER  
5. Enable the transmission by setting bit TXEN  
which will also set bit TXIF.  
The USART transmitter block diagram is shown in  
Figure 18-1. The heart of the transmitter is the Transmit  
(Serial) Shift Register (TSR). The TSR register obtains  
its data from the Read/Write Transmit Buffer register  
(TXREG). The TXREG register is loaded with data in  
software. The TSR register is not loaded until the Stop  
bit has been transmitted from the previous load. As  
soon as the Stop bit is transmitted, the TSR is loaded  
with new data from the TXREG register (if available).  
Once the TXREG register transfers the data to the TSR  
register (occurs in one TCY), the TXREG register is  
empty and flag bit TXIF (PIR1 register) is set. This  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Load data to the TXREG register (starts  
transmission).  
Note:  
TXIF is not cleared immediately upon  
loading data into the transmit buffer  
TXREG. The flag bit becomes valid in the  
second instruction cycle following the load  
instruction.  
FIGURE 18-1:  
USART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIF  
TXREG register  
8
TXIE  
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
• •  
TSR Register  
RC6/TX/CK pin  
Interrupt  
TXEN  
Baud Rate CLK  
TRMT  
SPEN  
SPBRG  
Baud Rate Generator  
TX9  
TX9D  
© 2006 Microchip Technology Inc.  
DS41159E-page 189  
PIC18FXX8  
FIGURE 18-2:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(Shift Clock)  
RC6/TX/CK (pin)  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
Stop bit  
TXIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
FIGURE 18-3:  
ASYNCHRONOUS TRANSMISSION (BACK TO BACK)  
Write to TXREG  
Word 1  
Word 2  
Start bit  
BRG Output  
(Shift Clock)  
RC6/TX/CK (pin)  
Start bit  
Word 2  
bit 0  
bit 1  
bit 7/8  
bit 0  
Stop bit  
TXIF bit  
(Interrupt Reg. Flag)  
Word 1  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
Note: This timing diagram shows two consecutive transmissions.  
TABLE 18-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF  
RBIF 0000 000x 0000 000u  
PIR1  
PSPIF(1)  
PSPIE(1)  
PSPIP(1)  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
SSPIP CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
PIE1  
IPR1  
RCSTA  
SREN CREN ADDEN FERR OERR RX9D 0000 000x 0000 000u  
TXREG USART Transmit Register  
TXSTA CSRC TX9 TXEN SYNC  
SPBRG Baud Rate Generator Register  
0000 0000 0000 0000  
BRGH TRMT  
TX9D 0000 -010 0000 -010  
0000 0000 0000 0000  
Legend: x= unknown, - = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous transmission.  
Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as ‘0’s.  
DS41159E-page 190  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
18.2.2  
USART ASYNCHRONOUS  
RECEIVER  
18.2.3  
SETTING UP 9-BIT MODE WITH  
ADDRESS DETECT  
The receiver block diagram is shown in Figure 18-4.  
The data is received on the RC7/RX/DT pin and drives  
the data recovery block. The data recovery block is  
actually a high-speed shifter, operating at x16 times the  
baud rate, whereas the main receive serial shifter oper-  
ates at the bit rate or at FOSC. This mode would  
typically be used in RS-232 systems.  
This mode would typically be used in RS-485 systems.  
Steps to follow when setting up an Asynchronous  
Reception with Address Detect Enable:  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high-speed baud rate is required,  
set the BRGH bit.  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
Steps to follow when setting up an Asynchronous  
Reception:  
3. If interrupts are required, set the RCEN bit and  
select the desired priority level with the RCIP bit.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high-speed baud rate is desired,  
set bit BRGH (Section 18.1 “USART Baud  
Rate Generator (BRG)”).  
4. Set the RX9 bit to enable 9-bit reception.  
5. Set the ADDEN bit to enable address detect.  
6. Enable reception by setting the CREN bit.  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
7. The RCIF bit will be set when reception is  
complete. The interrupt will be Acknowledged if  
the RCIE and GIE bits are set.  
3. If interrupts are desired, set enable bit RCIE.  
4. If 9-bit reception is desired, set bit RX9.  
5. Enable the reception by setting bit CREN.  
8. Read the RCSTA register to determine if any  
error occurred during reception, as well as read  
bit 9 of data (if applicable).  
6. Flag bit RCIF will be set when reception is  
complete and an interrupt will be generated if  
enable bit RCIE was set.  
9. Read RCREG to determine if the device is being  
addressed.  
7. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
10. If any error occurred, clear the CREN bit.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and interrupt the CPU.  
8. Read the 8-bit received data by reading the  
RCREG register.  
9. If any error occurred, clear the error by clearing  
enable bit CREN.  
FIGURE 18-4:  
USART RECEIVE BLOCK DIAGRAM  
x64 Baud Rate CLK  
FERR  
OERR  
CREN  
SPBRG  
÷ 64  
or  
÷ 16  
RSR Register  
LSb  
Start  
MSb  
0
Baud Rate Generator  
1
7
Stop (8)  
• • •  
RC7/RX/DT  
Pin Buffer  
and Control  
Data  
Recovery  
RX9  
RX9D  
SPEN  
RCREG Register  
FIFO  
8
RCIF  
RCIE  
Interrupt  
Data Bus  
Note: I/O pins have diode protection to VDD and VSS.  
© 2006 Microchip Technology Inc.  
DS41159E-page 191  
PIC18FXX8  
FIGURE 18-5:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX (pin)  
bit 0 bit 1  
Stop  
bit  
Stop  
bit  
bit 7/8 Stop  
bit  
bit 0  
bit 7/8  
bit 7/8  
Rcv Shift  
Reg  
Rcv Buffer Reg  
Word 2  
RCREG  
Word 1  
RCREG  
Read Rcv  
Buffer Reg  
RCREG  
RCIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note: This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,  
causing the OERR (overrun) bit to be set.  
TABLE 18-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
SSPIP CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
(1)  
(1)  
PIE1  
IPR1  
RCSTA  
RCREG  
TXSTA  
SPBRG  
Legend:  
SPEN  
CREN ADDEN  
FERR  
OERR  
RX9D  
0000 000x 0000 000u  
0000 0000 0000 0000  
0000 -010 0000 -010  
0000 0000 0000 0000  
USART Receive Register  
CSRC TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
Baud Rate Generator Register  
x= unknown, - = unimplemented locations read as ‘0’. Shaded cells are not used for asynchronous reception.  
Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as ‘0’s.  
DS41159E-page 192  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
software. It will reset only when new data is loaded into  
the TXREG register. While flag bit, TXIF, indicates the  
status of the TXREG register, another bit, TRMT  
(TXSTA register), shows the status of the TSR register.  
TRMT is a read-only bit which is set when the TSR is  
empty. No interrupt logic is tied to this bit, so the user  
has to poll this bit in order to determine if the TSR  
register is empty. The TSR is not mapped in data  
memory, so it is not available to the user.  
18.3 USART Synchronous  
Master Mode  
In Synchronous Master mode, the data is transmitted in  
a half-duplex manner (i.e., transmission and reception  
do not occur at the same time). When transmitting data,  
the reception is inhibited and vice versa. Synchronous  
mode is entered by setting bit SYNC (TXSTA register).  
In addition, enable bit SPEN (RCSTA register) is set in  
order to configure the RC6/TX/CK and RC7/RX/DT I/O  
pins to CK (clock) and DT (data) lines, respectively. The  
Master mode indicates that the processor transmits the  
master clock on the CK line. The Master mode is  
entered by setting bit CSRC (TXSTA register).  
Steps to follow when setting up a Synchronous Master  
Transmission:  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 18.1 “USART Baud Rate  
Generator (BRG)”).  
18.3.1  
USART SYNCHRONOUS MASTER  
TRANSMISSION  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting bit TXEN.  
The USART transmitter block diagram is shown in  
Figure 18-1. The heart of the transmitter is the Transmit  
(Serial) Shift Register (TSR). The shift register obtains  
its data from the Read/Write Transmit Buffer register  
(TXREG). The TXREG register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one TCY), the TXREG is empty and interrupt  
bit TXIF (PIR1 register) is set. The interrupt can be  
enabled/disabled by setting/clearing enable bit TXIE  
(PIE1 register). Flag bit TXIF will be set regardless of  
the state of enable bit TXIE and cannot be cleared in  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the TXREG  
register.  
Note:  
TXIF is not cleared immediately upon  
loading data into the transmit buffer  
TXREG. The flag bit becomes valid in the  
second instruction cycle following the load  
instruction.  
TABLE 18-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
TMR2IF TMR1IF 0000 0000 0000 0000  
(1)  
(1)  
PIE1  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
IPR1  
RCSTA  
SPEN  
CREN ADDEN  
FERR  
OERR  
RX9D  
0000 000x 0000 000u  
0000 0000 0000 0000  
0000 -010 0000 -010  
0000 0000 0000 0000  
TXREG USART Transmit Register  
TXSTA CSRC TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
SPBRG Baud Rate Generator Register  
Legend:  
Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as ‘0’s.  
x= unknown, - = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master transmission.  
© 2006 Microchip Technology Inc.  
DS41159E-page 193  
PIC18FXX8  
FIGURE 18-6:  
SYNCHRONOUS TRANSMISSION  
Q4  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
bit 7  
RC7/RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
Word 2  
Word 1  
RC6/TX/CK  
pin  
Write to  
TXREG Reg  
Write Word 1  
Write Word 2  
TXIF bit  
(Interrupt Flag)  
TRMT bit  
1’  
1’  
TXEN bit  
Note: Sync Master mode; SPBRG = 0; continuous transmission of two 8-bit words.  
FIGURE 18-7:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RC7/RX/DT pin  
bit 0  
bit 1  
bit 2  
bit 6  
bit 7  
RC6/TX/CK pin  
Write to  
TXREG Reg  
TXIF bit  
TRMT bit  
TXEN bit  
DS41159E-page 194  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
Steps to follow when setting up a Synchronous Master  
Reception:  
18.3.2  
USART SYNCHRONOUS MASTER  
RECEPTION  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 18.1 “USART Baud Rate  
Generator (BRG)”).  
Once Synchronous Master mode is selected, reception  
is enabled by setting either enable bit SREN (RCSTA  
register) or enable bit CREN (RCSTA register). Data is  
sampled on the RC7/RX/DT pin on the falling edge of  
the clock. If enable bit SREN is set, only a single word  
is received. If enable bit CREN is set, the reception is  
continuous until CREN is cleared. If both bits are set,  
then CREN takes precedence.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. Ensure bits CREN and SREN are clear.  
4. If interrupts are desired, set enable bit RCIE.  
5. If 9-bit reception is desired, set bit RX9.  
6. If a single reception is required, set bit SREN.  
For continuous reception, set bit CREN.  
7. Interrupt flag bit RCIF will be set when reception  
is complete and an interrupt will be generated if  
the enable bit RCIE was set.  
8. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read the 8-bit received data by reading the  
RCREG register.  
10. If any error occurred, clear the error by clearing  
bit CREN.  
TABLE 18-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
SSPIF  
SSPIE  
SSPIP  
ADDEN  
TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
CREN  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
(1)  
(1)  
PIE1  
IPR1  
RCSTA  
RCREG  
TXSTA  
SPBRG  
Legend:  
SPEN  
FERR  
OERR  
RX9D  
0000 000x 0000 000u  
0000 0000 0000 0000  
0000 -010 0000 -010  
0000 0000 0000 0000  
USART Receive Register  
CSRC TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
Baud Rate Generator Register  
x= unknown, - = unimplemented, read as ‘0’. Shaded cells are not used for synchronous master reception.  
Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as ‘0’s.  
FIGURE 18-8:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3  
Q1 Q2 Q3  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q4 Q1  
Q4  
RC7/RX/DT pin  
RC6/TX/CK pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
Write to  
bit SREN  
SREN bit  
CREN bit  
0’  
0’  
RCIF bit  
(Interrupt)  
Read  
RXREG  
Note: Timing diagram demonstrates Sync Master mode with bit SREN = 1and bit BRGH = 0.  
© 2006 Microchip Technology Inc.  
DS41159E-page 195  
PIC18FXX8  
18.4.2  
USART SYNCHRONOUS SLAVE  
RECEPTION  
18.4 USART Synchronous Slave Mode  
Synchronous Slave mode differs from the Master mode  
in that the shift clock is supplied externally at the RC6/  
TX/CK pin (instead of being supplied internally in  
Master mode). This allows the device to transfer or  
receive data while in Sleep mode. Slave mode is  
entered by clearing bit CSRC (TXSTA register).  
The operation of the Synchronous Master and Slave  
modes is identical, except in the case of the Sleep  
mode and bit SREN, which is a “don’t care” in Slave  
mode.  
If receive is enabled by setting bit CREN prior to the  
SLEEPinstruction, then a word may be received during  
Sleep. On completely receiving the word, the RSR  
register will transfer the data to the RCREG register  
and if enable bit RCIE bit is set, the interrupt generated  
will wake the chip from Sleep. If the global interrupt is  
enabled, the program will branch to the interrupt vector.  
18.4.1  
USART SYNCHRONOUS SLAVE  
TRANSMIT  
The operation of the Synchronous Master and Slave  
modes are identical, except in the case of the Sleep  
mode.  
Steps to follow when setting up a Synchronous Slave  
Reception:  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
1. Enable the synchronous master serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
a) The first word will immediately transfer to the  
TSR register and transmit.  
b) The second word will remain in TXREG register.  
c) Flag bit TXIF will not be set.  
2. If interrupts are desired, set enable bit RCIE.  
3. If 9-bit reception is desired, set bit RX9.  
4. To enable reception, set enable bit CREN.  
d) When the first word has been shifted out of TSR,  
the TXREG register will transfer the second  
word to the TSR and flag bit TXIF will be set.  
5. Flag bit RCIF will be set when reception is  
complete. An interrupt will be generated if  
enable bit RCIE was set.  
e) If enable bit TXIE is set, the interrupt will wake  
the chip from Sleep. If the global interrupt is  
enabled, the program will branch to the interrupt  
vector.  
6. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
Steps to follow when setting up a Synchronous Slave  
Transmission:  
7. Read the 8-bit received data by reading the  
RCREG register.  
1. Enable the synchronous slave serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
8. If any error occurred, clear the error by clearing  
bit CREN.  
2. Clear bits CREN and SREN.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting enable bit  
TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the TXREG  
register.  
DS41159E-page 196  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TABLE 18-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
SSPIF  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
(1)  
(1)  
PIE1  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
SSPIP CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
IPR1  
TXIP  
RCSTA  
TXREG  
TXSTA  
SPBRG  
Legend:  
SPEN  
CREN  
ADDEN  
FERR  
OERR  
RX9D  
0000 000x 0000 000u  
0000 0000 0000 0000  
0000 -010 0000 -010  
0000 0000 0000 0000  
USART Transmit Register  
CSRC TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
Baud Rate Generator Register  
x= unknown, - = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave transmission.  
Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as ‘0’s.  
TABLE 18-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
SSPIF  
SSPIE  
SSPIP  
ADDEN  
TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
(1)  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 1111 1111 1111 1111  
(1)  
(1)  
PIE1  
IPR1  
TXIP  
RCSTA  
RCREG  
TXSTA  
SPBRG  
Legend:  
SPEN  
CREN  
FERR  
OERR  
RX9D  
0000 000x 0000 000u  
0000 0000 0000 0000  
0000 -010 0000 -010  
0000 0000 0000 0000  
USART Receive Register  
CSRC TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
Baud Rate Generator Register  
x= unknown, - = unimplemented, read as ‘0’. Shaded cells are not used for synchronous slave reception.  
Note 1: These registers or register bits are not implemented on the PIC18F248 and PIC18F258 and read as ‘0’s.  
© 2006 Microchip Technology Inc.  
DS41159E-page 197  
PIC18FXX8  
NOTES:  
DS41159E-page 198  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
19.1.1  
OVERVIEW OF THE MODULE  
19.0 CAN MODULE  
19.1 Overview  
The CAN bus module consists of a protocol engine and  
message buffering and control. The CAN protocol  
engine handles all functions for receiving and transmit-  
ting messages on the CAN bus. Messages are  
transmitted by first loading the appropriate data  
registers. Status and errors can be checked by reading  
the appropriate registers. Any message detected on  
the CAN bus is checked for errors and then matched  
against filters to see if it should be received and stored  
in one of the 2 receive registers.  
The Controller Area Network (CAN) module is a serial  
interface, useful for communicating with other peripher-  
als or microcontroller devices. This interface/protocol  
was designed to allow communications within noisy  
environments.  
The CAN module is a communication controller,  
implementing the CAN 2.0 A/B protocol as defined in  
the BOSCH specification. The module will support  
CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B  
Active versions of the protocol. The module implemen-  
tation is a full CAN system. The CAN specification is  
not covered within this data sheet. The reader may  
refer to the BOSCH CAN specification for further  
details.  
The CAN module supports the following frame types:  
• Standard Data Frame  
• Extended Data Frame  
• Remote Frame  
• Error Frame  
• Overload Frame Reception  
• Interframe Space  
The module features are as follows:  
• Complies with ISO CAN Conformance Test  
CAN module uses RB3/CANRX and RB2/CANTX/INT2  
pins to interface with CAN bus. In order to configure  
CANRX and CANTX as CAN interface:  
• Implementation of the CAN protocol CAN 1.2,  
CAN 2.0A and CAN 2.0B  
• Standard and extended data frames  
• 0-8 bytes data length  
• bit TRISB<3> must be set;  
• bit TRISB<2> must be cleared.  
• Programmable bit rate up to 1 Mbit/sec  
• Support for remote frames  
19.1.2  
TRANSMIT/RECEIVE BUFFERS  
• Double-buffered receiver with two prioritized  
received message storage buffers  
The PIC18FXX8 has three transmit and two receive  
buffers, two acceptance masks (one for each receive  
buffer) and a total of six acceptance filters. Figure 19-1  
is a block diagram of these buffers and their connection  
to the protocol engine.  
• 6 full (standard/extended identifier) acceptance  
filters, 2 associated with the high priority receive  
buffer and 4 associated with the low priority  
receive buffer  
• 2 full acceptance filter masks, one each  
associated with the high and low priority receive  
buffers  
• Three transmit buffers with application specified  
prioritization and abort capability  
• Programmable wake-up functionality with  
integrated low-pass filter  
• Programmable Loopback mode supports self-test  
operation  
• Signaling via interrupt capabilities for all CAN  
receiver and transmitter error states  
• Programmable clock source  
• Programmable link to timer module for  
time-stamping and network synchronization  
• Low-power Sleep mode  
© 2006 Microchip Technology Inc.  
DS41159E-page 199  
PIC18FXX8  
FIGURE 19-1:  
CAN BUFFERS AND PROTOCOL ENGINE BLOCK DIAGRAM  
BUFFERS  
Accept  
Acceptance Mask  
RXM1  
Acceptance Filter  
RXM2  
TXREQ  
TXABT  
TXLARB  
TXERR  
TXBUFF  
TXB0  
MESSAGE  
Accept  
Acceptance Mask  
RXM0  
Acceptance Filter  
RXF3  
TXREQ  
TXABT  
TXLARB  
TXERR  
TXBUFF  
TXB1  
Acceptance Filter  
RXF0  
Acceptance Filter  
RXF4  
MESSAGE  
Acceptance Filter  
RXF5  
Acceptance Filter  
RXF1  
TXREQ  
TXABT  
TXLARB  
TXERR  
TXBUFF  
TXB2  
Message  
Request  
MESSAGE  
RXB0  
RXB1  
Data and  
Identifier  
Data and  
Identifier  
Message  
Queue  
Identifier  
Identifier  
Control  
Transmit Byte Sequencer  
Message Assembly Buffer  
PROTOCOL  
ENGINE  
Receive Shift  
Transmit Shift  
RXERRCNT  
Comparator  
CRC Register  
Bus-Off  
Err-Pas  
Bit Timing  
Generator  
Transmit  
Logic  
Protocol  
FSM  
Bit Timing  
Logic  
Transmit  
Error  
Counter  
Receive  
Error  
Counter  
TXERRCNT  
RX  
TX  
DS41159E-page 200  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
19.2.1  
CAN CONTROL AND STATUS  
REGISTERS  
19.2 CAN Module Registers  
Note:  
Not all CAN registers are available in the  
Access Bank.  
The registers described in this section control the  
overall operation of the CAN module and show its  
operational status.  
There are many control and data registers associated  
with the CAN module. For convenience, their  
descriptions have been grouped into the following  
sections:  
• Control and Status Registers  
• Transmit Buffer Registers (Data and Control)  
• Receive Buffer Registers (Data and Control)  
• Baud Rate Control Registers  
• I/O Control Register  
• Interrupt Status and Control Registers  
REGISTER 19-1: CANCON: CAN CONTROL REGISTER  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
ABAT  
R/W-0  
WIN2  
R/W-0  
WIN1  
R/W-0  
WIN0  
U-0  
REQOP2 REQOP1 REQOP0  
bit 7  
bit 0  
bit 7-5  
REQOP2:REQOP0: Request CAN Operation Mode bits  
1xx= Request Configuration mode  
011= Request Listen Only mode  
010= Request Loopback mode  
001= Request Disable mode  
000= Request Normal mode  
bit 4  
ABAT: Abort All Pending Transmissions bit  
1= Abort all pending transmissions (in all transmit buffers)  
0= Transmissions proceeding as normal  
bit 3-1  
WIN2:WIN0: Window Address bits  
This selects which of the CAN buffers to switch into the Access Bank area. This allows access  
to the buffer registers from any data memory bank. After a frame has caused an interrupt, the  
ICODE2:ICODE0 bits can be copied to the WIN2:WIN0 bits to select the correct buffer. See  
Example 19-1 for code example.  
111= Receive Buffer 0  
110= Receive Buffer 0  
101= Receive Buffer 1  
100= Transmit Buffer 0  
011= Transmit Buffer 1  
010= Transmit Buffer 2  
001= Receive Buffer 0  
000= Receive Buffer 0  
bit 0  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 201  
PIC18FXX8  
REGISTER 19-2: CANSTAT: CAN STATUS REGISTER  
R-1  
R-0  
R-0  
U-0  
R-0  
R-0  
R-0  
U-0  
OPMODE2 OPMODE1 OPMODE0  
bit 7  
ICODE2 ICODE1 ICODE0  
bit 0  
bit 7-5  
OPMODE2:OPMODE0: Operation Mode Status bits  
111= Reserved  
110= Reserved  
101= Reserved  
100= Configuration mode  
011= Listen Only mode  
010= Loopback mode  
001= Disable mode  
000= Normal mode  
Note:  
Before the device goes into Sleep mode, select Disable mode.  
bit 4  
Unimplemented: Read as ‘0’  
bit 3-1  
ICODE2:ICODE0: Interrupt Code bits  
When an interrupt occurs, a prioritized coded interrupt value will be present in the  
ICODE2:ICODE0 bits. These codes indicate the source of the interrupt. The ICODE2:ICODE0  
bits can be copied to the WIN2:WIN0 bits to select the correct buffer to map into the Access  
Bank area. See Example 19-1 for code example.  
111= Wake-up on interrupt  
110= RXB0 interrupt  
101= RXB1 interrupt  
100= TXB0 interrupt  
011= TXB1 interrupt  
010= TXB2 interrupt  
001= Error interrupt  
000= No interrupt  
bit 0  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS41159E-page 202  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
EXAMPLE 19-1:  
WIN AND ICODE BITS USAGE IN INTERRUPT SERVICE ROUTINE TO ACCESS  
TX/RX BUFFERS  
; Save application required context.  
; Poll interrupt flags and determine source of interrupt  
; This was found to be CAN interrupt  
; TempCANCON and TempCANSTAT are variables defined in Access Bank low  
MOVFF  
CANCON, TempCANCON  
; Save CANCON.WIN bits  
; This is required to prevent CANCON  
; from corrupting CAN buffer access  
; in-progress while this interrupt  
; occurred  
MOVFF  
CANSTAT, TempCANSTAT  
; Save CANSTAT register  
; This is required to make sure that  
; we use same CANSTAT value rather  
; than one changed by another CAN  
; interrupt.  
MOVF  
ANDLW  
ADDWF  
TempCANSTAT, W  
b’00001110’  
PCL, F  
; Retrieve ICODE bits  
; Perform computed GOTO  
; to corresponding interrupt cause  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
NoInterrupt  
; 000 = No interrupt  
ErrorInterrupt  
TXB2Interrupt  
TXB1Interrupt  
TXB0Interrupt  
RXB1Interrupt  
RXB0Interrupt  
; 001 = Error interrupt  
; 010 = TXB2 interrupt  
; 011 = TXB1 interrupt  
; 100 = TXB0 interrupt  
; 101 = RXB1 interrupt  
; 110 = RXB0 interrupt  
; 111 = Wake-up on interrupt  
WakeupInterrupt  
BCF  
PIR3, WAKIF  
; Clear the interrupt flag  
;
; User code to handle wake-up procedure  
;
;
; Continue checking for other interrupt source or return from here  
NoInterrupt  
; PC should never vector here. User may  
; place a trap such as infinite loop or pin/port  
; indication to catch this error.  
ErrorInterrupt  
BCF  
PIR3, ERRIF  
; Clear the interrupt flag  
; Handle error.  
RETFIE  
TXB2Interrupt  
BCF  
GOTO  
PIR3, TXB2IF  
AccessBuffer  
; Clear the interrupt flag  
; Clear the interrupt flag  
; Clear the interrupt flag  
; Clear the interrupt flag  
TXB1Interrupt  
BCF  
GOTO  
PIR3, TXB1IF  
AccessBuffer  
TXB0Interrupt  
BCF  
GOTO  
PIR3, TXB0IF  
AccessBuffer  
RXB1Interrupt  
BCF  
GOTO  
PIR3, RXB1IF  
Accessbuffer  
© 2006 Microchip Technology Inc.  
DS41159E-page 203  
PIC18FXX8  
EXAMPLE 19-1:  
WIN AND ICODE BITS USAGE IN INTERRUPT SERVICE ROUTINE TO ACCESS  
TX/RX BUFFERS (CONTINUED)  
RXB0Interrupt  
BCF  
GOTO  
PIR3, RXB0IF  
AccessBuffer  
; Clear the interrupt flag  
AccessBuffer  
; This is either TX or RX interrupt  
; Copy CANCON.ICODE bits to CANSTAT.WIN bits  
MOVF  
CANCON, W  
b’11110001’  
CANCON  
; Clear CANCON.WIN bits before copying  
; new ones.  
; Use previously saved CANCON value to  
; make sure same value.  
ANDLW  
MOVWF  
; Copy masked value back to TempCANCON  
MOVF  
ANDLW  
TempCANSTAT, W  
b’00001110’  
; Retrieve ICODE bits  
; Use previously saved CANSTAT value  
; to make sure same value.  
IORWF  
CANCON  
; Copy ICODE bits to WIN bits.  
; Copy the result to actual CANCON  
; Access current buffer…  
; User code  
; Restore CANCON.WIN bits  
MOVF  
ANDLW  
IORWF  
CANCON, W  
b’11110001’  
TempCANCON, W  
; Preserve current non WIN bits  
; Restore original WIN bits  
MOVWF  
CANCON  
; Do not need to restore CANSTAT - it is read-only register.  
; Return from interrupt or check for another module interrupt source  
DS41159E-page 204  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 19-3: COMSTAT: COMMUNICATION STATUS REGISTER  
R/C-0  
R/C-0  
R-0  
R-0  
R-0  
R-0  
TXWARN RXWARN EWARN  
bit 0  
R-0  
R-0  
RXB0OVFL RXB1OVFL  
bit 7  
TXBO  
TXBP  
RXBP  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RXB0OVFL: Receive Buffer 0 Overflow bit  
1= Receive Buffer 0 overflowed  
0= Receive Buffer 0 has not overflowed  
RXB1OVFL: Receive Buffer 1 Overflow bit  
1= Receive Buffer 1 overflowed  
0= Receive Buffer 1 has not overflowed  
TXBO: Transmitter Bus-Off bit  
1= Transmit Error Counter > 255  
0= Transmit Error Counter 255  
TXBP: Transmitter Bus Passive bit  
1= Transmission Error Counter > 127  
0= Transmission Error Counter 127  
RXBP: Receiver Bus Passive bit  
1= Receive Error Counter > 127  
0= Receive Error Counter 127  
TXWARN: Transmitter Warning bit  
1= 127 Transmit Error Counter > 95  
0= Transmit Error Counter 95  
RXWARN: Receiver Warning bit  
1= 127 Receive Error Counter > 95  
0= Receive Error Counter 95  
EWARN: Error Warning bit  
This bit is a flag of the RXWARN and TXWARN bits.  
1= The RXWARN or the TXWARN bits are set  
0= Neither the RXWARN or the TXWARN bits are set  
Legend:  
R = Readable bit  
W = Writable bit C = Clearable bit  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
x = Bit is unknown  
-n = Value at POR ‘1’ = Bit is set  
© 2006 Microchip Technology Inc.  
DS41159E-page 205  
PIC18FXX8  
19.2.2  
CAN TRANSMIT BUFFER  
REGISTERS  
This section describes the CAN Transmit Buffer  
registers and their associated control registers.  
REGISTER 19-4: TXBnCON: TRANSMIT BUFFER n CONTROL REGISTERS  
U-0  
R-0  
R-0  
R-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
TXABT  
TXLARB  
TXERR  
TXREQ  
TXPRI1  
TXPRI0  
bit 7  
Unimplemented: Read as ‘0’  
bit 0  
bit 7  
bit 6  
TXABT: Transmission Aborted Status bit  
1= Message was aborted  
0= Message was not aborted  
bit 5  
bit 4  
bit 3  
TXLARB: Transmission Lost Arbitration Status bit  
1= Message lost arbitration while being sent  
0= Message did not lose arbitration while being sent  
TXERR: Transmission Error Detected Status bit  
1= A bus error occurred while the message was being sent  
0= A bus error did not occur while the message was being sent  
TXREQ: Transmit Request Status bit  
1= Requests sending a message. Clears the TXABT, TXLARB and TXERR bits.  
0= Automatically cleared when the message is successfully sent  
Note:  
Clearing this bit in software while the bit is set will request a message abort.  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
TXPRI1:TXPRI0: Transmit Priority bits  
11= Priority Level 3 (highest priority)  
10= Priority Level 2  
01= Priority Level 1  
00= Priority Level 0 (lowest priority)  
Note:  
These bits set the order in which the Transmit Buffer will be transferred. They do  
not alter the CAN message identifier.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS41159E-page 206  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 19-5: TXBnSIDH: TRANSMIT BUFFER n STANDARD IDENTIFIER,  
HIGH BYTE REGISTERS  
R/W-x  
SID10  
R/W-x  
SID9  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
bit 7  
bit 0  
bit 7-0  
SID10:SID3: Standard Identifier bits if EXIDE = 0(TXBnSID Register) or  
Extended Identifier bits EID28:EID21 if EXIDE = 1  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
REGISTER 19-6: TXBnSIDL: TRANSMIT BUFFER n STANDARD IDENTIFIER,  
LOW BYTE REGISTERS  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
R/W-x  
R/W-x  
EXIDE  
R/W-x  
R/W-x  
EID17  
R/W-x  
EID16  
bit 7  
bit 0  
bit 7-5  
SID2:SID0: Standard Identifier bits if EXIDE = 0or  
Extended Identifier bits EID20:EID18 if EXIDE = 1  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
EXIDE: Extended Identifier enable bit  
1= Message will transmit extended ID, SID10:SID0 becomes EID28:EID18  
0= Message will transmit standard ID, EID17:EID0 are ignored  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
EID17:EID16: Extended Identifier bits  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
REGISTER 19-7: TXBnEIDH: TRANSMIT BUFFER n EXTENDED IDENTIFIER,  
HIGH BYTE REGISTERS  
R/W-x  
EID15  
R/W-x  
EID14  
R/W-x  
EID13  
R/W-x  
EID12  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
bit 7  
bit 0  
bit 7-0  
EID15:EID8: Extended Identifier bits  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 207  
PIC18FXX8  
REGISTER 19-8: TXBnEIDL: TRANSMIT BUFFER n EXTENDED IDENTIFIER,  
LOW BYTE REGISTERS  
R/W-x  
EID7  
R/W-x  
EID6  
R/W-x  
EID5  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
bit 7  
bit 0  
bit 7-0  
EID7:EID0: Extended Identifier bits  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
REGISTER 19-9: TXBnDm: TRANSMIT BUFFER n DATA FIELD BYTE m REGISTERS  
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x  
TXBnDm7 TXBnDm6 TXBnDm5 TXBnDm4 TXBnDm3 TXBnDm2 TXBnDm1 TXBnDm0  
bit 7 bit 0  
R/W-x  
bit 7-0  
TXBnDm7:TXBnDm0: Transmit Buffer n Data Field Byte m bits (where 0 n < 3 and 0 < m < 8)  
Each Transmit Buffer has an array of registers. For example, Transmit Buffer 0 has 7 registers:  
TXB0D0 to TXB0D7.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS41159E-page 208  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 19-10: TXBnDLC: TRANSMIT BUFFER n DATA LENGTH CODE REGISTERS  
U-0  
R/W-x  
U-0  
U-0  
R/W-x  
DLC3  
R/W-x  
DLC2  
R/W-x  
DLC1  
R/W-x  
DLC0  
TXRTR  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
TXRTR: Transmission Frame Remote Transmission Request bit  
1= Transmitted message will have TXRTR bit set  
0= Transmitted message will have TXRTR bit cleared  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
DLC3:DLC0: Data Length Code bits  
1111= Reserved  
1110= Reserved  
1101= Reserved  
1100= Reserved  
1011= Reserved  
1010= Reserved  
1001= Reserved  
1000= Data Length = 8 bytes  
0111= Data Length = 7 bytes  
0110= Data Length = 6 bytes  
0101= Data Length = 5 bytes  
0100= Data Length = 4 bytes  
0011= Data Length = 3 bytes  
0010= Data Length = 2 bytes  
0001= Data Length = 1 bytes  
0000= Data Length = 0 bytes  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
REGISTER 19-11: TXERRCNT: TRANSMIT ERROR COUNT REGISTER  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
TEC7  
TEC6  
TEC5  
TEC4  
TEC3  
TEC2  
TEC1  
TEC0  
bit 7  
bit 0  
bit 7-0  
TEC7:TEC0: Transmit Error Counter bits  
This register contains a value which is derived from the rate at which errors occur. When the  
error count overflows, the bus-off state occurs. When the bus has 128 occurrences of  
11 consecutive recessive bits, the counter value is cleared.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 209  
PIC18FXX8  
19.2.3  
CAN RECEIVE BUFFER  
REGISTERS  
This section shows the Receive Buffer registers with  
their associated control registers.  
REGISTER 19-12: RXB0CON: RECEIVE BUFFER 0 CONTROL REGISTER  
R/C-0  
R/W-0  
R/W-0  
U-0  
R-0  
R/W-0  
R-0  
R-0  
RXFUL(1) RXM1(1) RXM0(1)  
RXRTRRO RXB0DBEN JTOFF  
FILHIT0  
bit 7  
bit 0  
bit 7  
RXFUL: Receive Full Status bit(1)  
1= Receive buffer contains a received message  
0= Receive buffer is open to receive a new message  
Note:  
This bit is set by the CAN module and must be cleared by software after the buffer  
is read.  
bit 6-5  
RXM1:RXM0: Receive Buffer Mode bits(1)  
11= Receive all messages (including those with errors)  
10= Receive only valid messages with extended identifier  
01= Receive only valid messages with standard identifier  
00= Receive all valid messages  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
RXRTRRO: Receive Remote Transfer Request Read-Only bit  
1= Remote transfer request  
0= No remote transfer request  
bit 2  
bit 1  
RXB0DBEN: Receive Buffer 0 Double-Buffer Enable bit  
1= Receive Buffer 0 overflow will write to Receive Buffer 1  
0= No Receive Buffer 0 overflow to Receive Buffer 1  
JTOFF: Jump Table Offset bit (read-only copy of RXB0DBEN)  
1= Allows jump table offset between 6 and 7  
0= Allows jump table offset between 1 and 0  
Note:  
This bit allows same filter jump table for both RXB0CON and RXB1CON.  
bit 0  
FILHIT0: Filter Hit bit  
This bit indicates which acceptance filter enabled the message reception into Receive Buffer 0.  
1= Acceptance Filter 1 (RXF1)  
0= Acceptance Filter 0 (RXF0)  
Note 1: Bits RXFUL, RXM1 and RXM0 of RXB0CON are not mirrored in RXB1CON.  
Legend:  
R = Readable bit  
W = Writable bit C = Clearable bit  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
x = Bit is unknown  
-n = Value at POR ‘1’ = Bit is set  
DS41159E-page 210  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 19-13: RXB1CON: RECEIVE BUFFER 1 CONTROL REGISTER  
R/C-0  
R/W-0  
R/W-0  
U-0  
R-0  
R-0  
R-0  
R-0  
RXFUL(1) RXM1(1) RXM0(1)  
RXRTRRO FILHIT2  
FILHIT1  
FILHIT0  
bit 7  
bit 0  
bit 7  
RXFUL: Receive Full Status bit(1)  
1= Receive buffer contains a received message  
0= Receive buffer is open to receive a new message  
Note:  
This bit is set by the CAN module and should be cleared by software after the buffer  
is read.  
bit 6-5  
RXM1:RXM0: Receive Buffer Mode bits(1)  
11= Receive all messages (including those with errors)  
10= Receive only valid messages with extended identifier  
01= Receive only valid messages with standard identifier  
00= Receive all valid messages  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
RXRTRRO: Receive Remote Transfer Request bit (read-only)  
1= Remote transfer request  
0= No remote transfer request  
bit 2-0  
FILHIT2:FILHIT0: Filter Hit bits  
These bits indicate which acceptance filter enabled the last message reception into Receive  
Buffer 1.  
111= Reserved  
110= Reserved  
101= Acceptance Filter 5 (RXF5)  
100= Acceptance Filter 4 (RXF4)  
011= Acceptance Filter 3 (RXF3)  
010= Acceptance Filter 2 (RXF2)  
001= Acceptance Filter 1 (RXF1), only possible when RXB0DBEN bit is set  
000= Acceptance Filter 0 (RXF0), only possible when RXB0DBEN bit is set  
Note 1: Bits RXFUL, RXM1 and RXM0 of RXB1CON are not mirrored in RXB0CON.  
Legend:  
R = Readable bit  
W = Writable bit C = Clearable bit  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
x = Bit is unknown  
-n = Value at POR ‘1’ = Bit is set  
© 2006 Microchip Technology Inc.  
DS41159E-page 211  
PIC18FXX8  
REGISTER 19-14: RXBnSIDH: RECEIVE BUFFER n STANDARD IDENTIFIER,  
HIGH BYTE REGISTERS  
R/W-x  
SID10  
R/W-x  
SID9  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
bit 7  
bit 0  
bit 7-0  
SID10:SID3: Standard Identifier bits if EXID = 0(RXBnSIDL Register) or  
Extended Identifier bits EID28:EID21 if EXID = 1  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
REGISTER 19-15: RXBnSIDL: RECEIVE BUFFER n STANDARD IDENTIFIER,  
LOW BYTE REGISTERS  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
R/W-x  
SRR  
R/W-x  
EXID  
U-0  
R/W-x  
EID17  
R/W-x  
EID16  
bit 7  
bit 0  
bit 7-5  
bit 4  
SID2:SID0: Standard Identifier bits if EXID = 0or  
Extended Identifier bits EID20:EID18 if EXID = 1  
SRR: Substitute Remote Request bit  
This bit is always ‘0’ when EXID = 1or equal to the value of RXRTRRO (RXnBCON<3>)  
when EXID = 0.  
bit 3  
EXID: Extended Identifier bit  
1= Received message is an extended data frame, SID10:SID0 are EID28:EID18  
0= Received message is a standard data frame  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
EID17:EID16: Extended Identifier bits  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
REGISTER 19-16: RXBnEIDH: RECEIVE BUFFER n EXTENDED IDENTIFIER,  
HIGH BYTE REGISTERS  
R/W-x  
EID15  
R/W-x  
EID14  
R/W-x  
EID13  
R/W-x  
EID12  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
bit 0  
bit 7  
bit 7-0  
EID15:EID8: Extended Identifier bits  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS41159E-page 212  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 19-17: RXBnEIDL: RECEIVE BUFFER n EXTENDED IDENTIFIER,  
LOW BYTE REGISTERS  
R/W-x  
EID7  
R/W-x  
EID6  
R/W-x  
EID5  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
bit 7  
bit 0  
bit 7-0  
EID7:EID0: Extended Identifier bits  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
REGISTER 19-18: RXBnDLC: RECEIVE BUFFER n DATA LENGTH CODE REGISTERS  
U-0  
R/W-x  
R/W-x  
RB1  
R/W-x  
RB0  
R/W-x  
DLC3  
R/W-x  
DLC2  
R/W-x  
DLC1  
R/W-x  
DLC0  
RXRTR  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
RXRTR: Receiver Remote Transmission Request bit  
1= Remote transfer request  
0= No remote transfer request  
bit 5  
RB1: Reserved bit 1  
Reserved by CAN spec and read as ‘0’.  
RB0: Reserved bit 0  
bit 4  
Reserved by CAN spec and read as ‘0’.  
DLC3:DLC0: Data Length Code bits  
bit 3-0  
1111= Invalid  
1110= Invalid  
1101= Invalid  
1100= Invalid  
1011= Invalid  
1010= Invalid  
1001= Invalid  
1000= Data Length = 8 bytes  
0111= Data Length = 7 bytes  
0110= Data Length = 6 bytes  
0101= Data Length = 5 bytes  
0100= Data Length = 4 bytes  
0011= Data Length = 3 bytes  
0010= Data Length = 2 bytes  
0001= Data Length = 1 bytes  
0000= Data Length = 0 bytes  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 213  
PIC18FXX8  
REGISTER 19-19: RXBnDm: RECEIVE BUFFER n DATA FIELD BYTE m REGISTERS  
R/W-x  
RXBnDm7 RXBnDm6 RXBnDm5 RXBnDm4 RXBnDm3 RXBnDm2 RXBnDm1 RXBnDm0  
bit 7 bit 0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 7-0  
RXBnDm7:RXBnDm0: Receive Buffer n Data Field Byte m bits (where 0 n < 1 and 0 < m < 7)  
Each receive buffer has an array of registers. For example, Receive Buffer 0 has 8 registers:  
RXB0D0 to RXB0D7.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
REGISTER 19-20: RXERRCNT: RECEIVE ERROR COUNT REGISTER  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
REC7  
REC6  
REC5  
REC4  
REC3  
REC2  
REC1  
REC0  
bit 7  
bit 0  
bit 7-0  
REC7:REC0: Receive Error Counter bits  
This register contains the receive error value as defined by the CAN specifications.  
When RXERRCNT > 127, the module will go into an error passive state. RXERRCNT does not  
have the ability to put the module in “Bus-Off” state.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS41159E-page 214  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
19.2.3.1  
Message Acceptance Filters and  
Masks  
This subsection describes the message acceptance  
filters and masks for the CAN receive buffers.  
REGISTER 19-21: RXFnSIDH: RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER,  
HIGH BYTE REGISTERS  
R/W-x  
SID10  
R/W-x  
SID9  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
bit 7  
bit 0  
bit 7-0  
SID10:SID3: Standard Identifier Filter bits if EXIDEN = 0or  
Extended Identifier Filter bits EID28:EID21 if EXIDEN = 1  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
REGISTER 19-22: RXFnSIDL: RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER,  
LOW BYTE REGISTERS  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
U-0  
R/W-x  
U-0  
R/W-x  
EID17  
R/W-x  
EID16  
EXIDEN  
bit 7  
bit 0  
bit 7-5  
SID2:SID0: Standard Identifier Filter bits if EXIDEN = 0 or  
Extended Identifier Filter bits EID20:EID18 if EXIDEN = 1  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
EXIDEN: Extended Identifier Filter Enable bit  
1= Filter will only accept extended ID messages  
0= Filter will only accept standard ID messages  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
EID17:EID16: Extended Identifier Filter bits  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 215  
PIC18FXX8  
REGISTER 19-23: RXFnEIDH: RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER,  
HIGH BYTE REGISTERS  
R/W-x  
EID15  
R/W-x  
EID14  
R/W-x  
EID13  
R/W-x  
EID12  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
bit 7  
bit 0  
bit 7-0  
EID15:EID8: Extended Identifier Filter bits  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
REGISTER 19-24: RXFnEIDL: RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER,  
LOW BYTE REGISTERS  
R/W-x  
EID7  
R/W-x  
EID6  
R/W-x  
EID5  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
bit 7  
bit 0  
bit 7-0  
EID7:EID0: Extended Identifier Filter bits  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
REGISTER 19-25: RXMnSIDH: RECEIVE ACCEPTANCE MASK n STANDARD IDENTIFIER MASK,  
HIGH BYTE REGISTERS  
R/W-x  
SID10  
R/W-x  
SID9  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
bit 7  
bit 0  
bit 7-0  
SID10:SID3: Standard Identifier Mask bits or Extended Identifier Mask bits EID28:EID21  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS41159E-page 216  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 19-26: RXMnSIDL: RECEIVE ACCEPTANCE MASK n STANDARD IDENTIFIER MASK,  
LOW BYTE REGISTERS  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
U-0  
U-0  
U-0  
R/W-x  
EID17  
R/W-x  
EID16  
bit 7  
bit 0  
bit 7-5  
bit 4-2  
bit 1-0  
SID2:SID0: Standard Identifier Mask bits or Extended Identifier Mask bits EID20:EID18  
Unimplemented: Read as ‘0’  
EID17:EID16: Extended Identifier Mask bits  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
REGISTER 19-27: RXMnEIDH: RECEIVE ACCEPTANCE MASK n EXTENDED IDENTIFIER MASK,  
HIGH BYTE REGISTERS  
R/W-x  
EID15  
R/W-x  
EID14  
R/W-x  
EID13  
R/W-x  
EID12  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
bit 7  
bit 0  
bit 7-0  
EID15:EID8: Extended Identifier Mask bits  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
REGISTER 19-28: RXMnEIDL: RECEIVE ACCEPTANCE MASK n EXTENDED IDENTIFIER MASK,  
LOW BYTE REGISTERS  
R/W-x  
EID7  
R/W-x  
EID6  
R/W-x  
EID5  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
bit 7  
bit 0  
bit 7-0  
EID7:EID0: Extended Identifier Mask bits  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 217  
PIC18FXX8  
19.2.4  
CAN BAUD RATE REGISTERS  
This subsection describes the CAN Baud Rate  
registers.  
REGISTER 19-29: BRGCON1: BAUD RATE CONTROL REGISTER 1  
R/W-0  
SJW1  
R/W-0  
SJW0  
R/W-0  
BRP5  
R/W-0  
BRP4  
R/W-0  
BRP3  
R/W-0  
BRP2  
R/W-0  
BRP1  
R/W-0  
BRP0  
bit 7  
bit 0  
bit 7-6  
bit 5-0  
SJW1:SJW0: Synchronized Jump Width bits  
11= Synchronization Jump Width Time = 4 x TQ  
10= Synchronization Jump Width Time = 3 x TQ  
01= Synchronization Jump Width Time = 2 x TQ  
00= Synchronization Jump Width Time = 1 x TQ  
BRP5:BRP0: Baud Rate Prescaler bits  
111111= TQ = (2 x 64)/FOSC  
111110= TQ = (2 x 63)/FOSC  
:
:
000001= TQ = (2 x 2)/FOSC  
000000= TQ = (2 x 1)/FOSC  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
Note:  
This register is accessible in Configuration mode only.  
DS41159E-page 218  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 19-30: BRGCON2: BAUD RATE CONTROL REGISTER 2  
R/W-0  
SEG2PHTS  
bit 7  
R/W-0  
SAM  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SEG1PH2 SEG1PH1 SEG1PH0 PRSEG2 PRSEG1 PRSEG0  
bit 0  
bit 7  
SEG2PHTS: Phase Segment 2 Time Select bit  
1= Freely programmable  
0= Maximum of PHEG1 or Information Processing Time (IPT), whichever is greater  
bit 6  
SAM: Sample of the CAN bus Line bit  
1= Bus line is sampled three times prior to the sample point  
0= Bus line is sampled once at the sample point  
bit 5-3  
SEG1PH2:SEG1PH0: Phase Segment 1 bits  
111= Phase Segment 1 Time = 8 x TQ  
110= Phase Segment 1 Time = 7 x TQ  
101= Phase Segment 1 Time = 6 x TQ  
100= Phase Segment 1 Time = 5 x TQ  
011= Phase Segment 1 Time = 4 x TQ  
010= Phase Segment 1 Time = 3 x TQ  
001= Phase Segment 1 Time = 2 x TQ  
000= Phase Segment 1 Time = 1 x TQ  
bit 2-0  
PRSEG2:PRSEG0: Propagation Time Select bits  
111= Propagation Time = 8 x TQ  
110= Propagation Time = 7 x TQ  
101= Propagation Time = 6 x TQ  
100= Propagation Time = 5 x TQ  
011= Propagation Time = 4 x TQ  
010= Propagation Time = 3 x TQ  
001= Propagation Time = 2 x TQ  
000= Propagation Time = 1 x TQ  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
Note:  
This register is accessible in Configuration mode only.  
© 2006 Microchip Technology Inc.  
DS41159E-page 219  
PIC18FXX8  
REGISTER 19-31: BRGCON3: BAUD RATE CONTROL REGISTER 3  
U-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
WAKFIL  
SEG2PH2(1) SEG2PH1(1) SEG2PH0(1)  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
WAKFIL: Selects CAN bus Line Filter for Wake-up bit  
1= Use CAN bus line filter for wake-up  
0= CAN bus line filter is not used for wake-up  
bit 5-3  
bit 2-0  
Unimplemented: Read as ‘0’  
SEG2PH2:SEG2PH0: Phase Segment 2 Time Select bits(1)  
111= Phase Segment 2 Time = 8 x TQ  
110= Phase Segment 2 Time = 7 x TQ  
101= Phase Segment 2 Time = 6 x TQ  
100= Phase Segment 2 Time = 5 x TQ  
011= Phase Segment 2 Time = 4 x TQ  
010= Phase Segment 2 Time = 3 x TQ  
001= Phase Segment 2 Time = 2 x TQ  
000= Phase Segment 2 Time = 1 x TQ  
Note 1: Ignored if SEG2PHTS bit (BRGCON2<7>) is clear.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS41159E-page 220  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
19.2.5  
CAN MODULE I/O CONTROL  
REGISTER  
This register controls the operation of the CAN module’s  
I/O pins in relation to the rest of the microcontroller.  
REGISTER 19-32: CIOCON: CAN I/O CONTROL REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
ENDRHI CANCAP  
bit 7  
bit 0  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
ENDRHI: Enable Drive High bit  
1= CANTX pin will drive VDD when recessive  
0= CANTX pin will tri-state when recessive  
bit 4  
CANCAP: CAN Message Receive Capture Enable bit  
1= Enable CAN capture, CAN message receive signal replaces input on RC2/CCP1  
0= Disable CAN capture, RC2/CCP1 input to CCP1 module  
bit 3-0  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 221  
PIC18FXX8  
19.2.6  
CAN INTERRUPT REGISTERS  
The registers in this section are the same as described  
in Section 8.0 “Interrupts”. They are duplicated here  
for convenience.  
REGISTER 19-33: PIR3: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 3  
R/W-0  
IRXIF  
R/W-0  
R/W-0  
ERRIF  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WAKIF  
TXB2IF  
TXB1IF  
TXB0IF  
RXB1IF  
RXB0IF  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
IRXIF: CAN Invalid Received Message Interrupt Flag bit  
1= An invalid message has occurred on the CAN bus  
0= No invalid message on CAN bus  
WAKIF: CAN bus Activity Wake-up Interrupt Flag bit  
1= Activity on CAN bus has occurred  
0= No activity on CAN bus  
ERRIF: CAN bus Error Interrupt Flag bit  
1= An error has occurred in the CAN module (multiple sources)  
0= No CAN module errors  
TXB2IF: CAN Transmit Buffer 2 Interrupt Flag bit  
1= Transmit Buffer 2 has completed transmission of a message and may be reloaded  
0= Transmit Buffer 2 has not completed transmission of a message  
TXB1IF: CAN Transmit Buffer 1 Interrupt Flag bit  
1= Transmit Buffer 1 has completed transmission of a message and may be reloaded  
0= Transmit Buffer 1 has not completed transmission of a message  
TXB0IF: CAN Transmit Buffer 0 Interrupt Flag bit  
1= Transmit Buffer 0 has completed transmission of a message and may be reloaded  
0= Transmit Buffer 0 has not completed transmission of a message  
RXB1IF: CAN Receive Buffer 1 Interrupt Flag bit  
1= Receive Buffer 1 has received a new message  
0= Receive Buffer 1 has not received a new message  
RXB0IF: CAN Receive Buffer 0 Interrupt Flag bit  
1= Receive Buffer 0 has received a new message  
0= Receive Buffer 0 has not received a new message  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS41159E-page 222  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 19-34: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3  
R/W-0  
IRXIE  
R/W-0  
R/W-0  
ERRIE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WAKIE  
TXB2IE  
TXB1IE  
TXB0IE  
RXB1IE  
RXB0IE  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
IRXIE: CAN Invalid Received Message Interrupt Enable bit  
1= Enable invalid message received interrupt  
0= Disable invalid message received interrupt  
WAKIE: CAN bus Activity Wake-up Interrupt Enable bit  
1= Enable bus activity wake-up interrupt  
0= Disable bus activity wake-up interrupt  
ERRIE: CAN bus Error Interrupt Enable bit  
1= Enable CAN bus error interrupt  
0= Disable CAN bus error interrupt  
TXB2IE: CAN Transmit Buffer 2 Interrupt Enable bit  
1= Enable Transmit Buffer 2 interrupt  
0= Disable Transmit Buffer 2 interrupt  
TXB1IE: CAN Transmit Buffer 1 Interrupt Enable bit  
1= Enable Transmit Buffer 1 interrupt  
0= Disable Transmit Buffer 1 interrupt  
TXB0IE: CAN Transmit Buffer 0 Interrupt Enable bit  
1= Enable Transmit Buffer 0 interrupt  
0= Disable Transmit Buffer 0 interrupt  
RXB1IE: CAN Receive Buffer 1 Interrupt Enable bit  
1= Enable Receive Buffer 1 interrupt  
0= Disable Receive Buffer 1 interrupt  
RXB0IE: CAN Receive Buffer 0 Interrupt Enable bit  
1= Enable Receive Buffer 0 interrupt  
0= Disable Receive Buffer 0 interrupt  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 223  
PIC18FXX8  
REGISTER 19-35: IPR3: PERIPHERAL INTERRUPT PRIORITY REGISTER 3  
R/W-1  
IRXIP  
R/W-1  
R/W-1  
ERRIP  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
WAKIP  
TXB2IP  
TXB1IP  
TXB0IP  
RXB1IP  
RXB0IP  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
IRXIP: CAN Invalid Received Message Interrupt Priority bit  
1= High priority  
0= Low priority  
WAKIP: CAN bus Activity Wake-up Interrupt Priority bit  
1= High priority  
0= Low priority  
ERRIP: CAN bus Error Interrupt Priority bit  
1= High priority  
0= Low priority  
TXB2IP: CAN Transmit Buffer 2 Interrupt Priority bit  
1= High priority  
0= Low priority  
TXB1IP: CAN Transmit Buffer 1 Interrupt Priority bit  
1= High priority  
0= Low priority  
TXB0IP: CAN Transmit Buffer 0 Interrupt Priority bit  
1= High priority  
0= Low priority  
RXB1IP: CAN Receive Buffer 1 Interrupt Priority bit  
1= High priority  
0= Low priority  
RXB0IP: CAN Receive Buffer 0 Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
DS41159E-page 224  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TABLE 19-1: CAN CONTROLLER REGISTER MAP  
Address  
Name  
Address  
Name  
Address  
Name  
Address  
Name  
F7Fh  
F7Eh  
F7Dh  
F7Ch  
F7Bh  
F7Ah  
F79h  
F78h  
F77h  
F5Fh  
F3Fh  
F1Fh RXM1EIDL  
F1Eh RXM1EIDH  
F1Dh RXM1SIDL  
F1Ch RXM1SIDH  
F1Bh RXM0EIDL  
F1Ah RXM0EIDH  
F19h RXM0SIDL  
F18h RXM0SIDH  
F5Eh CANSTATRO1(2)  
F3Eh CANSTATRO3(2)  
F5Dh  
F5Ch  
F5Bh  
F5Ah  
F59h  
F58h  
F57h  
F56h  
F55h  
F54h  
F53h  
F52h  
F51h  
F50h  
F4Fh  
RXB1D7  
RXB1D6  
RXB1D5  
RXB1D4  
RXB1D3  
RXB1D2  
RXB1D1  
RXB1D0  
RXB1DLC  
RXB1EIDL  
RXB1EIDH  
RXB1SIDL  
RXB1SIDH  
RXB1CON  
F3Dh  
F3Ch  
F3Bh  
F3Ah  
F39h  
F38h  
F37h  
F36h  
F35h  
F34h  
F33h  
F32h  
F31h  
F30h  
F2Fh  
TXB1D7  
TXB1D6  
TXB1D5  
TXB1D4  
TXB1D3  
TXB1D2  
TXB1D1  
TXB1D0  
TXB1DLC  
TXB1EIDL  
TXB1EIDH  
TXB1SIDL  
TXB1SIDH  
TXB1CON  
F17h  
F16h  
F15h  
F14h  
F13h  
F12h  
F11h  
F10h  
F0Fh  
F0Eh  
F0Dh  
F0Ch  
F0Bh  
F0Ah  
F09h  
F08h  
F07h  
F06h  
F05h  
F04h  
F03h  
F02h  
F01h  
F00h  
RXF5EIDL  
RXF5EIDH  
RXF5SIDL  
RXF5SIDH  
RXF4EIDL  
RXF4EIDH  
RXF4SIDL  
RXF4SIDH  
RXF3EIDL  
RXF3EIDH  
RXF3SIDL  
RXF3SIDH  
RXF2EIDL  
RXF2EIDH  
RXF2SIDL  
RXF2SIDH  
RXF1EIDL  
RXF1EIDH  
RXF1SIDL  
RXF1SIDH  
RXF0EIDL  
RXF0EIDH  
RXF0SIDL  
RXF0SIDH  
F76h TXERRCNT  
F75h RXERRCNT  
F74h COMSTAT  
F73h  
CIOCON  
F72h BRGCON3  
F71h BRGCON2  
F70h BRGCON1  
F6Fh CANCON  
F6Eh CANSTAT  
F4Eh CANSTATRO2(2)  
F2Eh CANSTATRO4(2)  
F6Dh  
F6Ch  
F6Bh  
F6Ah  
F69h  
F68h  
F67h  
F66h  
RXB0D7  
RXB0D6  
RXB0D5  
RXB0D4  
RXB0D3  
RXB0D2  
RXB0D1  
RXB0D0  
F4Dh  
F4Ch  
F4Bh  
F4Ah  
F49h  
F48h  
F47h  
F46h  
F45h  
F44h  
F43h  
F42h  
F41h  
F40h  
TXB0D7  
TXB0D6  
F2Dh  
F2Ch  
F2Bh  
F2Ah  
F29h  
F28h  
F27h  
F26h  
F25h  
F24h  
F23h  
F22h  
F21h  
F20h  
TXB2D7  
TXB2D6  
TXB0D5  
TXB2D5  
TXB0D4  
TXB2D4  
TXB0D3  
TXB2D3  
TXB0D2  
TXB2D2  
TXB0D1  
TXB2D1  
TXB0D0  
TXB2D0  
F65h RXB0DLC  
F64h RXB0EIDL  
F63h RXB0EIDH  
F62h RXB0SIDL  
F61h RXB0SIDH  
F60h RXB0CON  
TXB0DLC  
TXB0EIDL  
TXB0EIDH  
TXB0SIDL  
TXB0SIDH  
TXB0CON  
TXB2DLC  
TXB2EIDL  
TXB2EIDH  
TXB2SIDL  
TXB2SIDH  
TXB2CON  
Note 1: Shaded registers are available in Access Bank low area while the rest are available in Bank 15.  
2: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given  
for each instance of the CANSTAT register due to the Microchip Header file requirement.  
© 2006 Microchip Technology Inc.  
DS41159E-page 225  
PIC18FXX8  
19.3.2  
DISABLE MODE  
19.3 CAN Modes of Operation  
In Disable mode, the module will not transmit or  
receive. The module has the ability to set the WAKIF bit  
due to bus activity, however, any pending interrupts will  
remain and the error counters will retain their value.  
The PIC18FXX8 has six main modes of operation:  
• Configuration mode  
• Disable mode  
• Normal Operation mode  
• Listen Only mode  
• Loopback mode  
If REQOP<2:0> is set to ‘001’, the module will enter the  
Module Disable mode. This mode is similar to disabling  
other peripheral modules by turning off the module  
enables. This causes the module internal clock to stop  
unless the module is active (i.e., receiving or transmit-  
ting a message). If the module is active, the module will  
wait for 11 recessive bits on the CAN bus, detect that  
condition as an IDLE bus, then accept the module  
disable command. OPMODE<2:0> = 001 indicates  
whether the module successfully went into Module  
Disable mode.  
• Error Recognition mode  
All modes, except Error Recognition, are requested by  
setting the REQOP bits (CANCON<7:5>); Error Recog-  
nition is requested through the RXM bits of the Receive  
Buffer register(s). Entry into a mode is Acknowledged  
by monitoring the OPMODE bits.  
When changing modes, the mode will not actually  
change until all pending message transmissions are  
complete. Because of this, the user must verify that the  
device has actually changed into the requested mode  
before fUrther Operations Are Executed.  
The WAKIF interrupt is the only module interrupt that is  
still active in the Module Disable mode. If the WAKIE is  
set, the processor will receive an interrupt whenever  
the CAN bus detects a dominant state, as occurs with  
a SOF. If the processor receives an interrupt while it is  
sleeping, more than one message may get lost. User  
firmware must anticipate this condition and request  
retransmission. If the processor is running while it  
receives an interrupt, only the first message may get  
lost.  
19.3.1  
CONFIGURATION MODE  
The CAN module has to be initialized before the  
activation. This is only possible if the module is in the  
Configuration mode. The Configuration mode is  
requested by setting the REQOP2 bit. Only when the  
OPMODE2 status bit has a high level can the initializa-  
tion be performed. Afterwards, the Configuration  
registers, the Acceptance Mask registers and the  
Acceptance Filter registers can be written. The module  
is activated by setting the REQOP control bits to zero.  
The I/O pins will revert to normal I/O function when the  
module is in the Module Disable mode.  
19.3.3  
NORMAL MODE  
This is the standard operating mode of the PIC18FXX8.  
In this mode, the device actively monitors all bus  
messages and generates Acknowledge bits, error  
frames, etc. This is also the only mode in which the  
PIC18FXX8 will transmit messages over the CAN bus.  
The module will protect the user from accidentally  
violating the CAN protocol through programming  
errors. All registers which control the configuration of  
the module can not be modified while the module is on-  
line. The CAN module will not be allowed to enter the  
Configuration mode while a transmission is taking  
place. The CONFIG bit serves as a lock to protect the  
following registers.  
19.3.4  
LISTEN ONLY MODE  
Listen Only mode provides  
a
means for the  
PIC18FXX8 to receive all messages, including  
messages with errors. This mode can be used for bus  
monitor applications or for detecting the baud rate in  
‘hot plugging’ situations. For auto-baud detection, it is  
necessary that there are at least two other nodes which  
are communicating with each other. The baud rate can  
be detected empirically by testing different values until  
valid messages are received. The Listen Only mode is  
a silent mode, meaning no messages will be trans-  
mitted while in this state, including error flags or  
Acknowledge signals. The filters and masks can be  
used to allow only particular messages to be loaded  
into the receive registers, or the filter masks can be set  
to all zeros to allow a message with any identifier to  
pass. The error counters are reset and deactivated in  
this state. The Listen Only mode is activated by setting  
the mode request bits in the CANCON register.  
• Configuration registers  
• Bus Timing registers  
• Identifier Acceptance Filter registers  
• Identifier Acceptance Mask registers  
In the Configuration mode, the module will not transmit  
or receive. The error counters are cleared and the  
interrupt flags remain unchanged. The programmer will  
have access to Configuration registers that are access  
restricted in other modes.  
DS41159E-page 226  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
19.3.5  
LOOPBACK MODE  
19.4.2  
TRANSMIT PRIORITY  
This mode will allow internal transmission of messages  
from the transmit buffers to the receive buffers without  
actually transmitting messages on the CAN bus. This  
mode can be used in system development and testing.  
In this mode, the ACK bit is ignored and the device will  
allow incoming messages from itself, just as if they  
were coming from another node. The Loopback mode  
is a silent mode, meaning no messages will be trans-  
mitted while in this state, including error flags or  
Acknowledge signals. The TXCAN pin will revert to port  
I/O while the device is in this mode. The filters and  
masks can be used to allow only particular messages  
to be loaded into the receive registers. The masks can  
be set to all zeros to provide a mode that accepts all  
messages. The Loopback mode is activated by setting  
the mode request bits in the CANCON register.  
Transmit priority is  
a
prioritization within the  
PIC18FXX8 of the pending transmittable messages.  
This is independent from and not related to any prioriti-  
zation implicit in the message arbitration scheme built  
into the CAN protocol. Prior to sending the SOF, the  
priority of all buffers that are queued for transmission is  
compared. The transmit buffer with the highest priority  
will be sent first. If two buffers have the same priority  
setting, the buffer with the highest buffer number will be  
sent first. There are four levels of transmit priority. If  
TXP bits for a particular message buffer are set to ‘11’,  
that buffer has the highest possible priority. If TXP bits  
for a particular message buffer are ‘00’, that buffer has  
the lowest possible priority.  
FIGURE 19-2:  
TRANSMIT BUFFER  
BLOCK DIAGRAM  
19.3.6  
ERROR RECOGNITION MODE  
The module can be set to ignore all errors and receive  
all message. The Error Recognition mode is activated  
by setting the RXM<1:0> bits in the RXBnCON  
registers to ‘11’. In this mode, all messages, valid or  
invalid, are received and copied to the receive buffer.  
TXREQ  
TXABT  
TXLARB  
TXERR  
TXBUFF  
TXB0  
MESSAGE  
TXB1  
TXREQ  
TXABT  
TXLARB  
TXERR  
TXBUFF  
19.4 CAN Message Transmission  
MESSAGE  
19.4.1  
TRANSMIT BUFFERS  
The PIC18FXX8 implements three transmit buffers  
(Figure 19-2). Each of these buffers occupies 14 bytes  
of SRAM and are mapped into the device memory  
map.  
TXB2  
TXREQ  
TXABT  
TXLARB  
TXERR  
TXBUFF  
Message  
Request  
MESSAGE  
Message  
Queue  
Control  
For the MCU to have write access to the message  
buffer, the TXREQ bit must be clear, indicating that the  
message buffer is clear of any pending message to be  
transmitted. At a minimum, the TXBnSIDH, TXBnSIDL  
and TXBnDLC registers must be loaded. If data bytes  
are present in the message, the TXBnDm registers  
must also be loaded. If the message is to use extended  
identifiers, the TXBnEIDm registers must also be  
loaded and the EXIDE bit set.  
Transmit Byte Sequencer  
Prior to sending the message, the MCU must initialize  
the TXInE bit to enable or disable the generation of an  
interrupt when the message is sent. The MCU must  
also initialize the TXP priority bits (see Section 19.4.2  
“Transmit Priority”).  
© 2006 Microchip Technology Inc.  
DS41159E-page 227  
PIC18FXX8  
19.4.3  
INITIATING TRANSMISSION  
19.4.4  
ABORTING TRANSMISSION  
To initiate message transmission, the TXREQ bit must  
be set for each buffer to be transmitted. When TXREQ  
is set, the TXABT, TXLARB and TXERR bits will be  
cleared.  
The MCU can request to abort a message by clearing  
the TXREQ bit associated with the corresponding  
message buffer (TXBnCON<3>). Setting the ABAT bit  
(CANCON<4>) will request an abort of all pending  
messages. If the message has not yet started transmis-  
sion, or if the message started but is interrupted by loss  
of arbitration or an error, the abort will be processed.  
The abort is indicated when the module sets the ABT  
bits for the corresponding buffer (TXBnCON<6>). If the  
message has started to transmit, it will attempt to  
transmit the current message fully. If the current  
message is transmitted fully and is not lost to arbitration  
or an error, the ABT bit will not be set because the  
message was transmitted successfully. Likewise, if a  
message is being transmitted during an abort request  
and the message is lost to arbitration or an error, the  
message will not be retransmitted and the ABT bit will  
be set, indicating that the message was successfully  
aborted.  
Setting the TXREQ bit does not initiate a message  
transmission; it merely flags a message buffer as ready  
for transmission. Transmission will start when the  
device detects that the bus is available. The device will  
then begin transmission of the highest priority message  
that is ready.  
When the transmission has completed successfully,  
the TXREQ bit will be cleared, the TXBnIF bit will be set  
and an interrupt will be generated if the TXBnIE bit is  
set.  
If the message transmission fails, the TXREQ will  
remain set, indicating that the message is still pending  
for transmission and one of the following condition flags  
will be set. If the message started to transmit but  
encountered an error condition, the TXERR and the  
IRXIF bits will be set and an interrupt will be generated.  
If the message lost arbitration, the TXLARB bit will be  
set.  
DS41159E-page 228  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 19-3:  
INTERNAL TRANSMIT MESSAGE FLOWCHART  
Start  
The message transmission sequence begins when  
the device determines that the TXREQ for any of the  
transmit registers has been set.  
Are any  
TXREQ  
bits = 1?  
No  
Clearing the TXREQ bit while it is set, or setting  
the ABAT bit before the message has started  
transmission, will abort the message.  
Yes  
Clear: TXABT, TXLARB  
and TXERR  
No  
Is  
Yes  
Is CAN bus  
Available to Start  
Transmission?  
No  
TXREQ = 0  
ABAT = 1?  
Yes  
Examine TXPRI <1:0> to  
Determine Highest Priority Message  
Begin Transmission (SOF)  
Was  
No  
Set  
TXERR = 1  
Message Transmitted  
Successfully?  
Yes  
Set TXREQ = 0  
Is  
Yes  
Arbitration Lost During  
Transmission  
TXLARB = 1?  
Yes  
Is  
Generate  
Interrupt  
TXIE = 1?  
A message can also be  
No  
aborted if  
a message  
error or lost arbitration  
condition occurred during  
transmission.  
No  
Is  
Yes  
TXREQ = 0  
or TXABT = 1?  
Set  
TXBUFE = 1  
No  
The TXIE bit determines if an inter-  
rupt should be generated when a  
message is successfully transmitted.  
Abort Transmission:  
Set TXABT = 1  
END  
© 2006 Microchip Technology Inc.  
DS41159E-page 229  
PIC18FXX8  
The RXM bits set special Receive modes. Normally,  
these bits are set to ‘00’ to enable reception of all valid  
messages as determined by the appropriate accep-  
tance filters. In this case, the determination of whether  
or not to receive standard or extended messages is  
determined by the EXIDE bit in the Acceptance Filter  
register. If the RXM bits are set to ‘01’ or ‘10’, the  
receiver will accept only messages with standard or  
extended identifiers, respectively. If an acceptance  
filter has the EXIDE bit set, such that it does not corre-  
spond with the RXM mode, that acceptance filter is  
rendered useless. These two modes of RXM bits can  
be used in systems where it is known that only standard  
or extended messages will be on the bus. If the RXM  
bits are set to ‘11’, the buffer will receive all messages  
regardless of the values of the acceptance filters. Also,  
if a message has an error before the end of frame, that  
portion of the message assembled in the MAB before  
the error frame will be loaded into the buffer. This mode  
has some value in debugging a CAN system and would  
not be used in an actual system environment.  
19.5 Message Reception  
19.5.1  
RECEIVE MESSAGE BUFFERING  
The PIC18FXX8 includes two full receive buffers with  
multiple acceptance filters for each. There is also a  
separate Message Assembly Buffer (MAB) which acts  
as a third receive buffer (see Figure 19-4).  
19.5.2  
RECEIVE BUFFERS  
Of the three receive buffers, the MAB is always commit-  
ted to receiving the next message from the bus. The  
remaining two receive buffers are called RXB0 and  
RXB1 and can receive a complete message from the  
protocol engine. The MCU can access one buffer while  
the other buffer is available for message reception or  
holding a previously received message.  
The MAB assembles all messages received. These  
messages will be transferred to the RXBn buffers only  
if the acceptance filter criteria are met.  
Note:  
The entire contents of the MAB are moved  
into the receive buffer once a message is  
accepted. This means that regardless of  
the type of identifier (standard or  
extended) and the number of data bytes  
received, the entire receive buffer is over-  
written with the MAB contents. Therefore,  
the contents of all registers in the buffer  
must be assumed to have been modified  
when any message is received.  
19.5.4  
TIME-STAMPING  
The CAN module can be programmed to generate a  
time-stamp for every message that is received. When  
enabled, the module generates a capture signal for  
CCP1 which in turns captures the value of either  
Timer1 or Timer3. This value can be used as the  
message time-stamp.  
To use the time-stamp capability, the CANCAP bit  
(CIOCAN<4>) must be set. This replaces the capture  
input for CCP1 with the signal generated from the CAN  
module. In addition, CCP1CON<3:0> must be set to  
0011’ to enable the CCP special event trigger for CAN  
events.  
When a message is moved into either of the receive  
buffers, the appropriate RXBnIF bit is set. This bit must  
be cleared by the MCU when it has completed process-  
ing the message in the buffer in order to allow a new  
message to be received into the buffer. This bit  
provides a positive lockout to ensure that the MCU has  
finished with the message before the PIC18FXX8  
attempts to load a new message into the receive buffer.  
If the RXBnIE bit is set, an interrupt will be generated to  
indicate that a valid message has been received.  
FIGURE 19-4:  
RECEIVE BUFFER BLOCK  
DIAGRAM  
Accept  
Acceptance Mask  
RXM1  
19.5.3  
RECEIVE PRIORITY  
Acceptance Filter  
RXM2  
RXB0 is the higher priority buffer and has two message  
acceptance filters associated with it. RXB1 is the lower  
priority buffer and has four acceptance filters associ-  
ated with it. The lower number of acceptance filters  
makes the match on RXB0 more restrictive and implies  
a higher priority for that buffer. Additionally, the  
RXB0CON register can be configured such if RXB0  
contains a valid message and another valid message is  
received, an overflow error will not occur and the new  
message will be moved into RXB1 regardless of the  
acceptance criteria of RXB1. There are also two  
programmable acceptance filter masks available, one  
for each receive buffer (see Section 19.6 “Message  
Acceptance Filters and Masks”).  
Accept  
Acceptance Mask  
Acceptance Filter  
RXF3  
RXM0  
Acceptance Filter  
RXF0  
Acceptance Filter  
RXF4  
Acceptance Filter  
RXF5  
Acceptance Filter  
RXF1  
RXB0  
RXB1  
Data and Data and  
Identifier  
Identifier  
Identifier  
Identifier  
When a message is received, bits <3:0> of the  
RXBnCON register will indicate the acceptance filter  
number that enabled reception and whether the  
received message is a remote transfer request.  
Message Assembly Buffer  
DS41159E-page 230  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 19-5:  
INTERNAL MESSAGE RECEPTION FLOWCHART  
Start  
Detect  
No  
Start of  
Message?  
Yes  
Begin Loading Message into  
Message Assembly Buffer (MAB)  
Valid  
Message  
Received?  
Generate  
Error  
Frame  
No  
Yes  
Yes, meets criteria  
for RXB1  
Yes, meets criteria  
for RXBO  
Message  
Identifier meets a  
Filter Criteria?  
No  
Go to Start  
The RXFUL bit determines if the  
receive register is empty and able  
to accept a new message.  
The RXB0DBEN bit determines if  
RXB0 can rollover into RXB1 if it is  
full.  
Is  
No  
Is  
Yes  
RXFUL = 0?  
RX0DBEN = 1?  
Yes  
No  
Is  
No  
Generate Overrun Error:  
Set RXB1OVFL  
Generate Overrun Error:  
Set RXB0OVFL  
Move Message into RXB0  
RXFUL = 0?  
Set RXRDY = 1  
Yes  
Move Message into RXB1  
No  
Is  
Set FILHIT <0>  
according to which Filter  
Criteria was met  
ERRIE = 1?  
Set RXRDY = 1  
Yes  
Go to Start  
Set FILHIT <2:0>  
according to which Filter  
Criteria was met  
Yes  
Is  
Is  
Yes  
Generate  
Interrupt  
RXIE = 1?  
RXIE = 1?  
No  
No  
Set CANSTAT <3:0> according  
to which Receive Buffer the  
Message was loaded into  
© 2006 Microchip Technology Inc.  
DS41159E-page 231  
PIC18FXX8  
For RXB1, the RXB1CON register contains the  
FILHIT<2:0> bits. They are coded as follows:  
19.6 Message Acceptance Filters  
and Masks  
101= Acceptance Filter 5 (RXF5)  
100= Acceptance Filter 4 (RXF4)  
011= Acceptance Filter 3 (RXF3)  
010= Acceptance Filter 2 (RXF2)  
001= Acceptance Filter 1 (RXF1)  
000= Acceptance Filter 0 (RXF0)  
The message acceptance filters and masks are used to  
determine if a message in the message assembly  
buffer should be loaded into either of the receive buff-  
ers. Once a valid message has been received into the  
MAB, the identifier fields of the message are compared  
to the filter values. If there is a match, that message will  
be loaded into the appropriate receive buffer. The filter  
masks are used to determine which bits in the identifier  
are examined with the filters. A truth table is shown  
below in Table 19-2 that indicates how each bit in the  
identifier is compared to the masks and filters to deter-  
mine if a message should be loaded into a receive  
buffer. The mask essentially determines which bits to  
apply the acceptance filters to. If any mask bit is set to  
a zero, then that bit will automatically be accepted  
regardless of the filter bit.  
Note:  
000’ and ‘001’ can only occur if the  
RXB0DBEN bit is set in the RXB0CON  
register allowing RXB0 messages to  
rollover into RXB1.  
The coding of the RXB0DBEN bit enables these three  
bits to be used similarly to the FILHIT bits and to  
distinguish a hit on filter RXF0 and RXF1, in either  
RXB0, or after a rollover into RXB1.  
111= Acceptance Filter 1 (RXF1)  
110= Acceptance Filter 0 (RXF0)  
001= Acceptance Filter 1 (RXF1)  
000= Acceptance Filter 0  
TABLE 19-2: FILTER/MASK TRUTH TABLE  
Message  
Identifier  
bit n001  
Accept or  
Reject  
bit n  
Mask  
bit n  
Filter bit n  
If the RXB0DBEN bit is clear, there are six codes  
corresponding to the six filters. If the RXB0DBEN bit is  
set, there are six codes corresponding to the six filters  
plus two additional codes corresponding to RXF0 and  
RXF1 filters that rollover into RXB1.  
0
1
1
1
1
x
0
0
1
1
x
0
1
0
1
Accept  
Accept  
Reject  
Reject  
Accept  
If more than one acceptance filter matches, the FILHIT  
bits will encode the binary value of the lowest  
numbered filter that matched. In other words, if filter  
RXF2 and filter RXF4 match, FILHIT will be loaded with  
the value for RXF2. This essentially prioritizes the  
acceptance filters with a lower number filter having  
higher priority. Messages are compared to filters in  
ascending order of filter number.  
Legend: x= don’t care  
As shown in the receive buffer block diagram  
(Figure 19-4), acceptance filters RXF0 and RXF1 and  
filter mask RXM0 are associated with RXB0. Filters  
RXF2, RXF3, RXF4 and RXF5 and mask RXM1 are  
associated with RXB1. When a filter matches and a  
message is loaded into the receive buffer, the filter  
number that enabled the message reception is loaded  
into the FILHIT bit(s).  
The mask and filter registers can only be modified  
when the PIC18FXX8 is in Configuration mode. The  
mask and filter registers cannot be read outside of  
Configuration mode. When outside of Configuration  
mode, all mask and filter registers will be read as ‘0’.  
FIGURE 19-6:  
MESSAGE ACCEPTANCE MASK AND FILTER OPERATION  
Acceptance Filter Register  
Acceptance Mask Register  
RXFn  
RXMn  
0
0
RXMn  
RxRqst  
1
RXFn  
1
RXFn  
RXMn  
n
n
Message Assembly Buffer  
Identifier  
DS41159E-page 232  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
The Nominal Bit Time is defined as:  
19.7 Baud Rate Setting  
TBIT = 1/Nominal Bit Rate  
All nodes on a given CAN bus must have the same  
nominal bit rate. The CAN protocol uses Non-Return-  
to-Zero (NRZ) coding which does not encode a clock  
within the data stream. Therefore, the receive clock  
must be recovered by the receiving nodes and  
synchronized to the transmitters clock.  
The nominal bit time can be thought of as being divided  
into separate, non-overlapping time segments. These  
segments (Figure 19-7) include:  
• Synchronization Segment (Sync_Seg)  
• Propagation Time Segment (Prop_Seg)  
• Phase Buffer Segment 1 (Phase_Seg1)  
• Phase Buffer Segment 2 (Phase_Seg2)  
As oscillators and transmission time may vary from  
node to node, the receiver must have some type of  
Phase Lock Loop (PLL) synchronized to data transmis-  
sion edges to synchronize and maintain the receiver  
clock. Since the data is NRZ coded, it is necessary to  
include bit stuffing to ensure that an edge occurs at  
least every six bit times to maintain the Digital Phase  
Lock Loop (DPLL) synchronization.  
The time segments (and thus, the nominal bit time) are,  
in turn, made up of integer units of time called time  
quanta or TQ (see Figure 19-7). By definition, the  
nominal bit time is programmable from a minimum of  
8 TQ to a maximum of 25 TQ. Also, by definition, the  
minimum nominal bit time is 1 μs corresponding to a  
maximum 1 Mb/s rate. The actual duration is given by  
the relationship:  
The bit timing of the PIC18FXX8 is implemented using  
a DPLL that is configured to synchronize to the  
incoming data and provides the nominal timing for the  
transmitted data. The DPLL breaks each bit time into  
multiple segments made up of minimal periods of time  
called the Time Quanta (TQ).  
Nominal Bit Time = TQ * (Sync_Seg + Prop_Seg +  
Phase_Seg1 + Phase_Seg2)  
The time quantum is a fixed unit derived from the  
oscillator period. It is also defined by the programmable  
baud rate prescaler, with integer values from 1 to 64, in  
addition to a fixed divide-by-two for clock generation.  
Mathematically, this is  
Bus timing functions executed within the bit time frame,  
such as synchronization to the local oscillator, network  
transmission delay compensation and sample point  
positioning, are defined by the programmable bit timing  
logic of the DPLL.  
TQ (μs) = (2 * (BRP + 1))/FOSC (MHz)  
or  
All devices on the CAN bus must use the same bit rate.  
However, all devices are not required to have the same  
master oscillator clock frequency. For the different clock  
frequencies of the individual devices, the bit rate has to  
be adjusted by appropriately setting the baud rate  
prescaler and number of time quanta in each segment.  
TQ (μs) = (2 * (BRP + 1)) * TOSC (μs)  
where FOSC is the clock frequency, TOSC is the  
corresponding oscillator period and BRP is an integer  
(0 through 63) represented by the binary values of  
BRGCON1<5:0>.  
The Nominal Bit Rate is the number of bits transmitted  
per second, assuming an ideal transmitter with an ideal  
oscillator, in the absence of resynchronization. The  
nominal bit rate is defined to be a maximum of 1 Mb/s.  
FIGURE 19-7:  
BIT TIME PARTITIONING  
Input  
Signal  
Propagation  
Segment  
Phase  
Segment 1  
Phase  
Segment 2  
Sync  
Segment  
Bit  
Time  
Intervals  
TQ  
Sample Point  
Nominal Bit Time  
© 2006 Microchip Technology Inc.  
DS41159E-page 233  
PIC18FXX8  
19.7.1  
TIME QUANTA  
19.7.2  
SYNCHRONIZATION SEGMENT  
As already mentioned, the time quanta is a fixed unit  
derived from the oscillator period and baud rate  
prescaler. Its relationship to TBIT and the nominal bit  
rate is shown in Example 19-2.  
This part of the bit time is used to synchronize the  
various CAN nodes on the bus. The edge of the input  
signal is expected to occur during the sync segment.  
The duration is 1 TQ.  
19.7.3  
PROPAGATION SEGMENT  
EXAMPLE 19-2:  
CALCULATING TQ,  
NOMINAL BIT RATE AND  
NOMINAL BIT TIME  
This part of the bit time is used to compensate for  
physical delay times within the network. These delay  
times consist of the signal propagation time on the bus  
line and the internal delay time of the nodes. The length  
of the Propagation Segment can be programmed from  
1 TQ to 8 TQ by setting the PRSEG2:PRSEG0 bits.  
TQ (μs) = (2 * (BRP + 1))/FOSC (MHz)  
TBIT (μs) = TQ (μs) * number of TQ per bit interval  
Nominal Bit Rate (bits/s) = 1/TBIT  
19.7.4  
PHASE BUFFER SEGMENTS  
CASE 1:  
The phase buffer segments are used to optimally  
locate the sampling point of the received bit within the  
nominal bit time. The sampling point occurs between  
Phase Segment 1 and Phase Segment 2. These  
segments can be lengthened or shortened by the  
resynchronization process. The end of Phase Segment  
1 determines the sampling point within a bit time.  
Phase Segment 1 is programmable from 1 TQ to 8 TQ  
in duration. Phase Segment 2 provides delay before  
the next transmitted data transition and is also  
programmable from 1 TQ to 8 TQ in duration. However,  
due to IPT requirements, the actual minimum length of  
Phase Segment 2 is 2 TQ or it may be defined to be  
equal to the greater of Phase Segment 1 or the  
Information Processing Time (IPT).  
For FOSC = 16 MHz, BRP<5:0> = 00h and  
Nominal Bit Time = 8 TQ:  
TQ = (2 * 1)/16 = 0.125 μs (125 ns)  
TBIT = 8 * 0.125 = 1 μs (10-6s)  
Nominal Bit Rate = 1/10-6 = 106 bits/s (1 Mb/s)  
CASE 2:  
For FOSC = 20 MHz, BRP<5:0> = 01h and  
Nominal Bit Time = 8 TQ:  
TQ = (2 * 2)/20 = 0.2 μs (200 ns)  
TBIT = 8 * 0.2 = 1.6 μs (1.6 * 10-6s)  
Nominal Bit Rate = 1/1.6 * 10-6s = 625,000 bits/s  
19.7.5  
SAMPLE POINT  
(625 Kb/s)  
The sample point is the point of time at which the bus  
level is read and the value of the received bit is deter-  
mined. The sampling point occurs at the end of Phase  
Segment 1. If the bit timing is slow and contains many  
TQ, it is possible to specify multiple sampling of the bus  
line at the sample point. The value of the received bit is  
determined to be the value of the majority decision of  
three values. The three samples are taken at the sam-  
ple point and twice before, with a time of TQ/2 between  
each sample.  
CASE 3:  
For FOSC = 25 MHz, BRP<5:0> = 3Fh and  
Nominal Bit Time = 25 TQ:  
TQ = (2 * 64)/25 = 5.12 μs  
TBIT = 25 * 5.12 = 128 μs (1.28 * 10-4s)  
Nominal Bit Rate = 1/1.28 * 10-4  
=
7813 bits/s  
(7.8 Kb/s)  
19.7.6  
INFORMATION PROCESSING TIME  
The frequencies of the oscillators in the different nodes  
must be coordinated in order to provide a system wide  
specified nominal bit time. This means that all oscilla-  
tors must have a TOSC that is an integral divisor of TQ.  
It should also be noted that although the number of TQ  
is programmable from 4 to 25, the usable minimum is  
8 TQ. A bit time of less than 8 TQ in length is not  
ensured to operate correctly.  
The Information Processing Time (IPT) is the time  
segment, starting at the sample point, that is reserved  
for calculation of the subsequent bit level. The CAN  
specification defines this time to be less than or equal  
to 2 TQ. The PIC18FXX8 defines this time to be 2 TQ.  
Thus, Phase Segment 2 must be at least 2 TQ long.  
DS41159E-page 234  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
The phase error of an edge is given by the position of  
the edge relative to Sync_Seg, measured in TQ. The  
phase error is defined in magnitude of TQ as follows:  
19.8 Synchronization  
To compensate for phase shifts between the oscillator  
frequencies of each of the nodes on the bus, each CAN  
controller must be able to synchronize to the relevant  
signal edge of the incoming signal. When an edge in  
the transmitted data is detected, the logic will compare  
the location of the edge to the expected time  
(Sync_Seg). The circuit will then adjust the values of  
• e = 0 if the edge lies within Sync_Seg.  
• e > 0 if the edge lies before the sample point.  
• e < 0 if the edge lies after the sample point of the  
previous bit.  
If the magnitude of the phase error is less than or equal  
to the programmed value of the synchronization jump  
width, the effect of a resynchronization is the same as  
that of a hard synchronization.  
Phase Segment  
1 and Phase Segment 2, as  
necessary. There are two mechanisms used for  
synchronization.  
If the magnitude of the phase error is larger than the  
synchronization jump width and if the phase error is  
positive, then Phase Segment 1 is lengthened by an  
amount equal to the synchronization jump width.  
19.8.1  
HARD SYNCHRONIZATION  
Hard synchronization is only done when there is a reces-  
sive to dominant edge during a bus Idle condition, indi-  
cating the start of  
a
message. After hard  
If the magnitude of the phase error is larger than the  
resynchronization jump width and if the phase error is  
negative, then Phase Segment 2 is shortened by an  
amount equal to the synchronization jump width.  
synchronization, the bit time counters are restarted with  
Sync_Seg. Hard synchronization forces the edge which  
has occurred to lie within the synchronization segment of  
the restarted bit time. Due to the rules of synchroniza-  
tion, if a hard synchronization occurs, there will not be a  
resynchronization within that bit time.  
19.8.3  
SYNCHRONIZATION RULES  
• Only one synchronization within one bit time is  
allowed.  
19.8.2  
RESYNCHRONIZATION  
As a result of resynchronization, Phase Segment 1  
may be lengthened or Phase Segment 2 may be short-  
ened. The amount of lengthening or shortening of the  
phase buffer segments has an upper bound given by  
the Synchronization Jump Width (SJW). The value of  
the SJW will be added to Phase Segment 1 (see  
Figure 19-8) or subtracted from Phase Segment 2 (see  
Figure 19-9). The SJW is programmable between 1 TQ  
and 4 TQ.  
• An edge will be used for synchronization only if  
the value detected at the previous sample point  
(previously read bus value) differs from the bus  
value immediately after the edge.  
• All other recessive to dominant edges, fulfilling  
rules 1 and 2, will be used for resynchronization  
with the exception that a node transmitting a  
dominant bit will not perform a resynchronization  
as a result of a recessive to dominant edge with a  
positive phase error.  
Clocking information will only be derived from reces-  
sive to dominant transitions. The property, that only a  
fixed maximum number of successive bits have the  
same value, ensures resynchronization to the bit  
stream during a frame.  
FIGURE 19-8:  
LENGTHENING A BIT PERIOD (ADDING SJW TO PHASE SEGMENT 1)  
Input  
Signal  
Bit  
Time  
Segments  
Prop  
Segment  
Phase  
Segment 1  
Phase  
Segment 2  
Sync  
SJW  
TQ  
Sample Point  
Nominal Bit Length  
Actual Bit Length  
© 2006 Microchip Technology Inc.  
DS41159E-page 235  
PIC18FXX8  
FIGURE 19-9:  
SHORTENING A BIT PERIOD (SUBTRACTING SJW FROM PHASE SEGMENT 2)  
Prop  
Segment  
Phase  
Segment 1  
Phase  
Segment 2  
Sync  
SJW  
TQ  
Sample Point  
Actual Bit Length  
Nominal Bit Length  
19.11.1 BRGCON1  
19.9 Programming Time Segments  
The BRP bits control the baud rate prescaler. The  
SJW<1:0> bits select the synchronization jump width in  
terms of multiples of TQ.  
Some requirements for programming of the time  
segments:  
• Prop Seg + Phase Seg 1 Phase Seg 2  
• Phase Seg 2 Sync Jump Width  
19.11.2 BRGCON2  
For example, assume that a 125 kHz CAN baud rate is  
desired using 20 MHz for FOSC. With a TOSC of 50 ns,  
a baud rate prescaler value of 04h gives a TQ of 500 ns.  
To obtain a nominal bit rate of 125 kHz, the nominal bit  
time must be 8 μs or 16 TQ.  
The PRSEG bits set the length of the Propagation Seg-  
ment in terms of TQ. The SEG1PH bits set the length of  
Phase Segment 1 in TQ. The SAM bit controls how  
many times the RXCAN pin is sampled. Setting this bit  
to a ‘1’ causes the bus to be sampled three times; twice  
at TQ/2 before the sample point and once at the normal  
sample point (which is at the end of Phase Segment 1).  
The value of the bus is determined to be the value read  
during at least two of the samples. If the SAM bit is set  
to a ‘0’, then the RXCAN pin is sampled only once at  
the sample point. The SEG2PHTS bit controls how the  
length of Phase Segment 2 is determined. If this bit is  
set to a ‘1’, then the length of Phase Segment 2 is  
determined by the SEG2PH bits of BRGCON3. If the  
SEG2PHTS bit is set to a ‘0’, then the length of Phase  
Segment 2 is the greater of Phase Segment 1 and the  
information processing time (which is fixed at 2 TQ for  
the PIC18FXX8).  
Using 1 TQ for the Sync Segment, 2 TQ for the Propa-  
gation Segment and 7 TQ for Phase Segment 1 would  
place the sample point at 10 TQ after the transition.  
This leaves 6 TQ for Phase Segment 2.  
By the rules above, the Sync Jump Width could be the  
maximum of 4 TQ. However, normally a large SJW is  
only necessary when the clock generation of the differ-  
ent nodes is inaccurate or unstable, such as using  
ceramic resonators. Typically, an SJW of 1 is enough.  
19.10 Oscillator Tolerance  
As a rule of thumb, the bit timing requirements allow  
ceramic resonators to be used in applications with  
transmission rates of up to 125 Kbit/sec. For the full bus  
speed range of the CAN protocol, a quartz oscillator is  
required. A maximum node-to-node oscillator variation  
of 1.7% is allowed.  
19.11.3 BRGCON3  
The PHSEG2<2:0> bits set the length (in TQ) of Phase  
Segment 2 if the SEG2PHTS bit is set to a ‘1’. If the  
SEG2PHTS bit is set to a ‘0’, then the PHSEG2<2:0>  
bits have no effect.  
19.11 Bit Timing Configuration  
Registers  
The Configuration registers (BRGCON1, BRGCON2,  
BRGCON3) control the bit timing for the CAN bus  
interface. These registers can only be modified when  
the PIC18FXX8 is in Configuration mode.  
DS41159E-page 236  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
19.12.6 ERROR STATES  
19.12 Error Detection  
Detected errors are made public to all other nodes via  
error frames. The transmission of the erroneous  
message is aborted and the frame is repeated as soon  
as possible. Furthermore, each CAN node is in one of  
the three error states “error-active”, “error-passive” or  
“bus-off” according to the value of the internal error  
counters. The error-active state is the usual state,  
where the bus node can transmit messages and  
activate error frames (made of dominant bits) without  
any restrictions. In the error-passive state, messages  
and passive error frames (made of recessive bits) may  
be transmitted. The bus-off state makes it temporarily  
impossible for the station to participate in the bus  
communication. During this state, messages can  
neither be received nor transmitted.  
The CAN protocol provides sophisticated error detection  
mechanisms. The following errors can be detected.  
19.12.1 CRC ERROR  
With the Cyclic Redundancy Check (CRC), the  
transmitter calculates special check bits for the bit  
sequence, from the start of a frame until the end of the  
data field. This CRC sequence is transmitted in the  
CRC field. The receiving node also calculates the CRC  
sequence using the same formula and performs a  
comparison to the received sequence. If a mismatch is  
detected, a CRC error has occurred and an error frame  
is generated. The message is repeated.  
19.12.2 ACKNOWLEDGE ERROR  
In the Acknowledge field of a message, the transmitter  
checks if the Acknowledge slot (which was sent out as  
a recessive bit) contains a dominant bit. If not, no other  
node has received the frame correctly. An Acknowl-  
edge Error has occurred; an error frame is generated  
and the message will have to be repeated.  
19.12.7 ERROR MODES AND ERROR  
COUNTERS  
The PIC18FXX8 contains two error counters: the  
Receive Error Counter (RXERRCNT) and the Transmit  
Error Counter (TXERRCNT). The values of both  
counters can be read by the MCU. These counters are  
incremented or decremented in accordance with the  
CAN bus specification.  
19.12.3 FORM ERROR  
If a node detects a dominant bit in one of the four  
segments, including end of frame, interframe space,  
Acknowledge delimiter or CRC delimiter, then a Form  
Error has occurred and an error frame is generated.  
The message is repeated.  
The PIC18FXX8 is error-active if both error counters  
are below the error-passive limit of 128. It is error-  
passive if at least one of the error counters equals or  
exceeds 128. It goes to bus-off if the transmit error  
counter equals or exceeds the bus-off limit of 256. The  
device remains in this state until the bus-off recovery  
sequence is received. The bus-off recovery sequence  
consists of 128 occurrences of 11 consecutive  
recessive bits (see Figure 19-10). Note that the CAN  
module, after going bus-off, will recover back to error-  
active without any intervention by the MCU if the bus  
remains Idle for 128 x 11 bit times. If this is not desired,  
the error Interrupt Service Routine should address this.  
The current error mode of the CAN module can be read  
by the MCU via the COMSTAT register.  
19.12.4 BIT ERROR  
A Bit Error occurs if a transmitter sends a dominant bit  
and detects a recessive bit, or if it sends a recessive bit  
and detects a dominant bit, when monitoring the actual  
bus level and comparing it to the just transmitted bit. In  
the case where the transmitter sends a recessive bit  
and a dominant bit is detected during the arbitration  
field and the Acknowledge slot, no Bit Error is  
generated because normal arbitration is occurring.  
Additionally, there is an Error State Warning flag bit,  
EWARN, which is set if at least one of the error  
counters equals or exceeds the error warning limit of  
96. EWARN is reset if both error counters are less than  
the error warning limit.  
19.12.5 STUFF BIT ERROR  
If, between the start of frame and the CRC delimiter, six  
consecutive bits with the same polarity are detected,  
the bit stuffing rule has been violated. A Stuff Bit Error  
occurs and an error frame is generated. The message  
is repeated.  
© 2006 Microchip Technology Inc.  
DS41159E-page 237  
PIC18FXX8  
FIGURE 19-10:  
ERROR MODES STATE DIAGRAM  
Reset  
Error-  
Active  
RXERRCNT < 127 or  
TXERRCNT < 127  
128 occurrences of  
11 consecutive  
“recessive” bits  
RXERRCNT > 127 or  
TXERRCNT > 127  
Error-  
Passive  
TXERRCNT > 255  
Bus-  
Off  
19.13.1 INTERRUPT CODE BITS  
19.13 CAN Interrupts  
The source of a pending interrupt is indicated in the  
ICODE (Interrupt Code) bits of the CANSTAT register  
(ICODE<2:0>). Interrupts are internally prioritized such  
that the higher priority interrupts are assigned lower  
ICODE values. Once the highest priority interrupt con-  
dition has been cleared, the code for the next highest  
priority interrupt that is pending (if any) will be reflected  
by the ICODE bits (see Table 19-3, following page).  
Note that only those interrupt sources that have their  
associated CANINTE enable bit set will be reflected in  
the ICODE bits.  
The module has several sources of interrupts. Each of  
these interrupts can be individually enabled or  
disabled. The CANINTF register contains interrupt  
flags. The CANINTE register contains the enables for  
the 8 main interrupts. A special set of read-only bits in  
the CANSTAT register, the ICODE bits, can be used in  
combination with a jump table for efficient handling of  
interrupts.  
All interrupts have one source, with the exception of the  
error interrupt. Any of the error interrupt sources can set  
the error interrupt flag. The source of the error interrupt  
can be determined by reading the Communication  
Status register, COMSTAT.  
19.13.2 TRANSMIT INTERRUPT  
When the transmit interrupt is enabled, an interrupt will  
be generated when the associated transmit buffer  
becomes empty and is ready to be loaded with a new  
message. The TXBnIF bit will be set to indicate the  
source of the interrupt. The interrupt is cleared by the  
MCU resetting the TXBnIF bit to a ‘0’.  
The interrupts can be broken up into two categories:  
receive and transmit interrupts.  
The receive related interrupts are:  
• Receive Interrupts  
• Wake-up Interrupt  
• Receiver Overrun Interrupt  
• Receiver Warning Interrupt  
• Receiver Error-Passive Interrupt  
19.13.3 RECEIVE INTERRUPT  
When the receive interrupt is enabled, an interrupt will  
be generated when a message has been successfully  
received and loaded into the associated receive buffer.  
This interrupt is activated immediately after receiving  
the EOF field. The RXBnIF bit will be set to indicate the  
source of the interrupt. The interrupt is cleared by the  
MCU resetting the RXBnIF bit to a ‘0’.  
The transmit related interrupts are:  
• Transmit Interrupts  
• Transmitter Warning Interrupt  
• Transmitter Error-Passive Interrupt  
• Bus-Off Interrupt  
DS41159E-page 238  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TABLE 19-3: VALUES FOR ICODE<2:0>  
ICOD  
19.13.6 ERROR INTERRUPT  
When the error interrupt is enabled, an interrupt is  
generated if an overflow condition occurs or if the error  
state of transmitter or receiver has changed. The error  
flags in COMSTAT will indicate one of the following  
conditions.  
Interrupt  
Boolean Expression  
<2:0>  
ERR•WAK•TX0•TX1•TX2•RX0•  
RX1  
000  
None  
001  
010  
011  
100  
101  
110  
Error  
TXB2  
TXB1  
TXB0  
RXB1  
RXB0  
ERR  
19.13.6.1 Receiver Overflow  
An overflow condition occurs when the MAB has  
assembled a valid received message (the message  
meets the criteria of the acceptance filters) and the  
receive buffer associated with the filter is not available  
for loading of a new message. The associated  
COMSTAT.RXnOVFL bit will be set to indicate the  
overflow condition. This bit must be cleared by the  
MCU.  
ERR•TX0•TX1•TX2  
ERR•TX0•TX1  
ERR•TX0  
ERR•TX0•TX1•TX2•RX0•RX1  
ERR•TX0•TX1•TX2•RX0  
19.13.6.2 Receiver Warning  
Wake on ERR•TX0•TX1•TX2•RX0•RX1•  
Interrupt WAK  
111  
The receive error counter has reached the MCU  
warning limit of 96.  
Key:  
ERR = ERRIF * ERRIE RX0 = RXB0IF * RXB0IE  
TX0 = TXB0IF * TXB0IE RX1 = RXB1IF * RXB1IE  
TX1 = TXB1IF * TXB1IE WAK = WAKIF * WAKIE  
TX2 = TXB2IF * TXB2IE  
19.13.6.3 Transmitter Warning  
The transmit error counter has reached the MCU  
warning limit of 96.  
19.13.6.4 Receiver Bus Passive  
The receive error counter has exceeded the error-  
passive limit of 127 and the device has gone to  
error-passive state.  
19.13.4 MESSAGE ERROR INTERRUPT  
When an error occurs during transmission or reception  
of a message, the message error flag IRXIF will be set  
and if the IRXIE bit is set, an interrupt will be generated.  
This is intended to be used to facilitate baud rate  
determination when used in conjunction with Listen  
Only mode.  
19.13.6.5 Transmitter Bus Passive  
The transmit error counter has exceeded the error-  
passive limit of 127 and the device has gone to  
error-passive state.  
19.13.5 BUS ACTIVITY WAKE-UP  
INTERRUPT  
19.13.6.6 Bus-Off  
The transmit error counter has exceeded 255 and the  
device has gone to bus-off state.  
When the PIC18FXX8 is in Sleep mode and the bus  
activity wake-up interrupt is enabled, an interrupt will be  
generated and the WAKIF bit will be set when activity is  
detected on the CAN bus. This interrupt causes the  
PIC18FXX8 to exit Sleep mode. The interrupt is reset  
by the MCU, clearing the WAKIF bit.  
19.13.7 INTERRUPT ACKNOWLEDGE  
Interrupts are directly associated with one or more  
status flags in the PIR register. Interrupts are pending  
as long as one of the flags is set. Once an interrupt flag  
is set by the device, the flag cannot be reset by the  
microcontroller until the interrupt condition is removed.  
© 2006 Microchip Technology Inc.  
DS41159E-page 239  
PIC18FXX8  
NOTES:  
DS41159E-page 240  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
The A/D module has four registers. These registers are:  
20.0 COMPATIBLE 10-BIT ANALOG-  
TO-DIGITAL CONVERTER (A/D)  
MODULE  
• A/D Result High Register (ADRESH)  
• A/D Result Low Register (ADRESL)  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
The Analog-to-Digital (A/D) Converter module has five  
inputs for the PIC18F2X8 devices and eight for the  
PIC18F4X8 devices. This module has the ADCON0  
and ADCON1 register definitions that are compatible  
with the PICmicro® mid-range A/D module.  
The ADCON0 register, shown in Register 20-1,  
controls the operation of the A/D module. The  
ADCON1 register, shown in Register 20-2, configures  
the functions of the port pins.  
The A/D allows conversion of an analog input signal to  
a corresponding 10-bit digital number.  
REGISTER 20-1: ADCON0: A/D CONTROL REGISTER 0  
R/W-0  
R/W-0  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
U-0  
R/W-0  
ADON  
ADCS1  
ADCS0  
GO/DONE  
bit 7  
bit 0  
bit 7-6 ADCS1:ADCS0: A/D Conversion Clock Select bits (ADCON0 bits in bold)  
ADCON1  
<ADCS2>  
ADCON0  
<ADCS1:ADCS0>  
Clock Conversion  
0
0
0
0
1
1
1
1
00  
01  
10  
11  
00  
01  
10  
11  
FOSC/2  
FOSC/8  
FOSC/32  
FRC (clock derived from the internal A/D RC oscillator)  
FOSC/4  
FOSC/16  
FOSC/64  
FRC (clock derived from the internal A/D RC oscillator)  
bit 5-3 CHS2:CHS0: Analog Channel Select bits  
000= Channel 0 (AN0)  
001= Channel 1 (AN1)  
010= Channel 2 (AN2)  
011= Channel 3 (AN3)  
100= Channel 4 (AN4)  
101= Channel 5 (AN5)(1)  
110= Channel 6 (AN6)(1)  
111= Channel 7 (AN7)(1)  
Note 1: These channels are unimplemented on PIC18F2X8 (28-pin) devices. Do not select  
any unimplemented channel.  
bit 2  
GO/DONE: A/D Conversion Status bit  
When ADON = 1:  
1= A/D conversion in progress (setting this bit starts the A/D conversion which is automatically  
cleared by hardware when the A/D conversion is complete)  
0= A/D conversion not in progress  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
ADON: A/D On bit  
1= A/D converter module is powered up  
0= A/D converter module is shut-off and consumes no operating current  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 241  
PIC18FXX8  
REGISTER 20-2: ADCON1: A/D CONTROL REGISTER 1  
R/W-0  
ADFM  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADCS2  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
bit 7  
bit 6  
ADFM: A/D Result Format Select bit  
1= Right justified. Six (6) Most Significant bits of ADRESH are read as ‘0’.  
0= Left justified. Six (6) Least Significant bits of ADRESL are read as ‘0’.  
ADCS2: A/D Conversion Clock Select bit (ADCON1 bits in bold)  
ADCON1  
<ADCS2> <ADCS1:ADCS0>  
ADCON0  
Clock Conversion  
0
0
0
0
1
1
1
1
00  
01  
10  
11  
00  
01  
10  
11  
FOSC/2  
FOSC/8  
FOSC/32  
FRC (clock derived from the internal A/D RC oscillator)  
FOSC/4  
FOSC/16  
FOSC/64  
FRC (clock derived from the internal A/D RC oscillator)  
bit 5-4 Unimplemented: Read as ‘0’  
bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits  
PCFG  
AN7  
AN6  
AN5  
AN4  
AN3  
AN2  
AN1  
AN0  
VREF+  
VREF-  
C/R  
0000  
0001  
0010  
0011  
0100  
0101  
011x  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
A
A
D
D
D
D
D
A
D
D
D
D
D
D
D
A
A
D
D
D
D
D
A
D
D
D
D
D
D
D
A
A
D
D
D
D
D
A
A
A
A
D
D
D
D
A
A
A
A
D
D
D
A
A
A
A
A
D
D
D
A
A
A
A
A
A
A
A
A
D
A
A
A
A
A
A
D
D
A
A
A
A
A
A
D
A
A
A
A
A
A
A
A
VDD  
AN3  
VDD  
AN3  
VDD  
AN3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
8/0  
7/1  
5/0  
4/1  
3/0  
2/1  
0/0  
6/2  
6/0  
5/1  
4/2  
3/2  
2/2  
1/0  
1/2  
VREF+  
A
A
VREF+  
A
A
D
VREF+  
D
D
D
VREF+  
A
VREF-  
A
AN3  
VDD  
AN3  
AN3  
AN3  
AN3  
VDD  
AN3  
AN2  
VSS  
VSS  
AN2  
AN2  
AN2  
VSS  
AN2  
VREF+  
VREF+  
VREF+  
VREF+  
D
A
VREF-  
VREF-  
VREF-  
D
VREF+  
VREF-  
A = Analog input D = Digital I/O  
C/R = # of analog input channels/# of A/D voltage references  
Note: Shaded cells indicate channels available only on PIC18F4X8 devices.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
Note:  
On any device Reset, the port pins that are multiplexed with analog functions (ANx)  
are forced to be analog inputs.  
DS41159E-page 242  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
The analog reference voltage is software selectable to  
either the device’s positive and negative supply voltage  
(VDD and VSS) or the voltage level on the RA3/AN3/  
VREF+ pin and RA2/AN2/VREF- pin.  
A device Reset forces all registers to their Reset state.  
This forces the A/D module to be turned off and any  
conversion is aborted.  
Each port pin associated with the A/D converter can be  
configured as an analog input (RA3 can also be a  
voltage reference) or as a digital I/O.  
The A/D converter has a unique feature of being able  
to operate while the device is in Sleep mode. To oper-  
ate in Sleep, the A/D conversion clock must be derived  
from the A/D’s internal RC oscillator.  
The ADRESH and ADRESL registers contain the result  
of the A/D conversion. When the A/D conversion is com-  
plete, the result is loaded into the ADRESH/ADRESL  
registers, the GO/DONE bit (ADCON0<2>) is cleared  
and A/D Interrupt Flag bit, ADIF, is set. The block  
diagram of the A/D module is shown in Figure 20-1.  
The output of the sample and hold is the input into the  
converter which generates the result via successive  
approximation.  
FIGURE 20-1:  
A/D BLOCK DIAGRAM  
CHS2:CHS0  
111  
AN7(1)  
110  
AN6(1)  
101  
AN5(1)  
100  
AN4  
VAIN  
011  
(Input Voltage)  
AN3  
010  
AN2  
10-bit  
Converter  
A/D  
001  
AN1  
PCFG0  
000  
AN0  
VDD  
VREF+  
VREF-  
Reference  
voltage  
VSS  
Note 1: Channels AN5 through AN7 are not available on PIC18F2X8 devices.  
2: All I/O pins have diode protection to VDD and VSS.  
© 2006 Microchip Technology Inc.  
DS41159E-page 243  
PIC18FXX8  
The value that is in the ADRESH/ADRESL registers is  
not modified for a Power-on Reset. The ADRESH/  
ADRESL registers will contain unknown data after a  
Power-on Reset.  
6. Read A/D Result registers (ADRESH/ADRESL);  
clear bit ADIF if required.  
7. For next conversion, go to step 1 or step 2 as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2 TAD is  
required before next acquisition starts.  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the  
conversion is started. The analog input channels must  
have their corresponding TRIS bits selected as an  
input. To determine acquisition time, see Section 20.1  
“A/D Acquisition Requirements”. After this acquisi-  
tion time has elapsed, the A/D conversion can be  
started. The following steps should be followed for  
doing an A/D conversion:  
20.1 A/D Acquisition Requirements  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 20-2. The  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD). The source impedance affects the offset voltage  
at the analog input (due to pin leakage current). The  
maximum recommended impedance for analog  
sources is 2.5 kΩ. After the analog input channel is  
selected (changed), this acquisition must be done  
before the conversion can be started.  
1. Configure the A/D module:  
• Configure analog pins, voltage reference and  
digital I/O (ADCON1)  
• Select A/D input channel (ADCON0)  
• Select A/D conversion clock (ADCON0)  
• Turn on A/D module (ADCON0)  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
• Set ADIE bit  
Note:  
When the conversion is started, the  
holding capacitor is disconnected from the  
input pin.  
• Set GIE bit  
3. Wait the required acquisition time.  
4. Start conversion:  
• Set GO/DONE bit (ADCON0)  
5. Wait for A/D conversion to complete, by either:  
• Polling for the GO/DONE bit to be cleared  
OR  
• Waiting for the A/D interrupt  
FIGURE 20-2:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
Rs  
CPIN  
5 pF  
I LEAKAGE  
500 nA  
VAIN  
CHOLD = 120 pF  
VSS  
VT = 0.6V  
Legend:CPIN  
= input capacitance  
= threshold voltage  
6V  
5V  
VDD 4V  
VT  
I LEAKAGE = leakage current at the pin due to  
various junctions  
3V  
2V  
RIC  
SS  
= interconnect resistance  
= sampling switch  
CHOLD  
= sample/hold capacitance (from DAC)  
5
6 7 8 9 10 11  
Sampling Switch (kΩ)  
DS41159E-page 244  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
To calculate the minimum acquisition time,  
Equation 20-1 may be used. This equation assumes  
that 1/2 LSb error is used (1024 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified resolution.  
Example 20-1 shows the calculation of the minimum  
required acquisition time TACQ. This calculation is  
based on the following application system assumptions:  
• CHOLD  
• Rs  
=
=
120 pF  
2.5 kΩ  
• Conversion Error 1/2 LSb  
• VDD  
=
=
=
5V Rss = 7 kΩ  
50°C (system max.)  
0V @ time = 0  
Temperature  
• VHOLD  
EQUATION 20-1: ACQUISITION TIME  
TACQ  
=
Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient  
=
TAMP + TC + TCOFF  
EQUATION 20-2: A/D MINIMUM CHARGING TIME  
VHOLD  
or  
=
(VREF – (VREF/2048)) • (1 – e(-Tc/CHOLD(RIC + RSS + RS))  
)
Tc  
=
-(120 pF)(1 kΩ + RSS + RS) ln(1/2047)  
EXAMPLE 20-1:  
CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME  
TACQ  
=
TAMP + TC + TCOFF  
Temperature coefficient is only required for temperatures > 25°C.  
TACQ  
TC  
=
=
2 μs + TC + [(Temp – 25°C)(0.05 μs/°C)]  
-CHOLD (RIC + RSS + RS) ln(1/2047)  
-120 pF (1 kΩ + 7 kΩ + 2.5 kΩ) ln(0.0004885)  
-120 pF (10.5 kΩ) ln(0.0004885)  
-1.26 μs (-7.6241)  
9.61 μs  
TACQ  
=
2 μs + 9.61 μs + [(50°C – 25°C)(0.05 μs/°C)]  
11.61 μs + 1.25 μs  
12.86 μs  
Note:  
When using external voltage references with the A/D converter, the source impedance of the external  
voltage references must be less than 20Ω to obtain the specified A/D resolution. Higher reference source  
impedances will increase both offset and gain errors. Resistive voltage dividers will not provide a sufficiently  
low source impedance.  
To maintain the best possible performance in A/D conversions, external VREF inputs should be buffered with  
an operational amplifier or other low output impedance circuit.  
© 2006 Microchip Technology Inc.  
DS41159E-page 245  
PIC18FXX8  
20.2 Selecting the A/D Conversion  
Clock  
20.3 Configuring Analog Port Pins  
The ADCON1, TRISA and TRISE registers control the  
operation of the A/D port pins. The port pins that are  
desired as analog inputs must have their corresponding  
TRIS bits set (input). If the TRIS bit is cleared (output),  
the digital output level (VOH or VOL) will be converted.  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 12 TAD per 10-bit conversion.  
The source of the A/D conversion clock is software  
selectable. The seven possible options for TAD are:  
The A/D operation is independent of the state of the  
CHS2:CHS0 bits and the TRIS bits.  
• 2 TOSC  
• 4 TOSC  
• 8 TOSC  
Note 1: When reading the port register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins config-  
ured as digital inputs will convert an  
analog input. Analog levels on a digitally  
configured input will not affect the  
conversion accuracy.  
• 16 TOSC  
• 32 TOSC  
• 64 TOSC  
• Internal RC oscillator.  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of 1.6 μs.  
2: Analog levels on any pin that is defined as  
a digital input (including the AN4:AN0  
pins) may cause the input buffer to  
consume current that is out of the  
device’s specification.  
Table 20-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
TABLE 20-1: TAD vs. DEVICE OPERATING FREQUENCIES  
Device Frequency  
AD Clock Source (TAD)  
Operation ADCS2:ADCS0  
000  
20 MHz  
100 ns(2)  
200 ns(2)  
400 ns(2)  
800 ns(2)  
1.6 μs  
5 MHz  
400 ns(2)  
800 ns(2)  
1.6 μs  
1.25 MHz  
1.6 μs  
333.33 kHz  
6 μs  
2 TOSC  
4 TOSC  
8 TOSC  
16 TOSC  
32 TOSC  
64 TOSC  
RC  
100  
001  
101  
010  
110  
011  
3.2 μs  
12 μs  
6.4 μs  
24 μs(3)  
48 μs(3)  
96 μs(3)  
192 μs(3)  
2-6 μs(1)  
3.2 μs  
12.8 μs  
25.6 μs(3)  
51.2 μs(3)  
2-6 μs(1)  
6.4 μs  
3.2 μs  
2-6 μs(1)  
12.8 μs  
2-6 μs(1)  
Legend: Shaded cells are outside of recommended range.  
Note 1: The RC source has a typical TAD time of 4 μs.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
TABLE 20-2: TAD vs. DEVICE OPERATING FREQUENCIES (FOR EXTENDED, LF DEVICES)  
Device Frequency  
AD Clock Source (TAD)  
Operation ADCS2:ADCS0  
000  
4 MHz  
500 ns(2)  
1.0 μs(2)  
2.0 μs(2)  
4.0 μs(2)  
8.0 μs  
2 MHz  
1.25 MHz  
1.6 μs(2)  
3.2 μs(2)  
6.4 μs  
333.33 kHz  
6 μs  
2 TOSC  
1.0 μs(2)  
2.0 μs(2)  
4.0 μs  
4 TOSC  
8 TOSC  
16 TOSC  
32 TOSC  
64 TOSC  
RC  
100  
001  
101  
010  
110  
011  
12 μs  
24 μs(3)  
48 μs(3)  
96 μs(3)  
192 μs(3)  
3-9 μs(1)  
8.0 μs  
12.8 μs  
16.0 μs  
32.0 μs  
3-9 μs(1)  
25.6 μs(3)  
51.2 μs(3)  
3-9 μs(1)  
16.0 μs  
3-9 μs(1)  
Legend: Shaded cells are outside of recommended range.  
Note 1: The RC source has a typical TAD time of 6 μs.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
DS41159E-page 246  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
20.4.1  
A/D RESULT REGISTERS  
20.4 A/D Conversions  
The ADRESH:ADRESL register pair is the location  
where the 10-bit A/D result is loaded at the completion  
of the A/D conversion. This register pair is 16 bits wide.  
The A/D module gives the flexibility to left or right justify  
the 10-bit result in the 16-bit result register. The A/D  
Format Select bit (ADFM) controls this justification.  
Figure 20-3 shows the operation of the A/D result justi-  
fication. The extra bits are loaded with ‘0’s. When an  
A/D result will not overwrite these locations (A/D  
disable), these registers may be used as two general  
purpose 8-bit registers.  
Figure 20-4 shows the operation of the A/D converter  
after the GO bit has been set. Clearing the GO/DONE  
bit during a conversion will abort the current conver-  
sion. The A/D Result register pair will not be updated  
with the partially completed A/D conversion sample.  
That is, the ADRESH:ADRESL registers will continue  
to contain the value of the last completed conversion  
(or the last value written to the ADRESH:ADRESL  
registers). After the A/D conversion is aborted, a 2 TAD  
wait is required before the next acquisition is started.  
After this 2 TAD wait, acquisition on the selected  
channel is automatically started.  
Note:  
The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
FIGURE 20-3:  
A/D RESULT JUSTIFICATION  
10-bit Result  
ADFM = 0  
ADFM = 1  
0
7
7
2 1 0 7  
0 7 6 5  
0
0000 00  
0000 00  
ADRESH  
ADRESL  
ADRESH  
ADRESL  
10-bit Result  
10-bit Result  
Left Justified  
Right Justified  
© 2006 Microchip Technology Inc.  
DS41159E-page 247  
PIC18FXX8  
acquisition period with minimal software overhead  
(moving ADRESH/ADRESL to the desired location). The  
appropriate analog input channel must be selected and  
the minimum acquisition done before the “special event  
trigger” sets the GO/DONE bit (starts a conversion).  
20.5 Use of the ECCP Trigger  
An A/D conversion can be started by the “special event  
trigger” of the ECCP module. This requires that the  
ECCP1M3:ECCP1M0 bits (ECCP1CON<3:0>) be pro-  
grammed as ‘1011’ and that the A/D module is enabled  
(ADON bit is set). When the trigger occurs, the GO/  
DONE bit will be set, starting the A/D conversion and the  
Timer1 (or Timer3) counter will be reset to zero. Timer1  
(or Timer3) is reset to automatically repeat the A/D  
If the A/D module is not enabled (ADON is cleared), the  
“special event trigger” will be ignored by the A/D module  
but will still reset the Timer1 (or Timer3) counter.  
FIGURE 20-4:  
A/D CONVERSION TAD CYCLES  
TCY - TAD TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7 TAD8 TAD9 TAD10 TAD11  
b0  
b3  
b2  
b1  
b0  
b7  
b6  
b5  
b4  
b8  
b9  
Conversion Starts  
Holding capacitor is disconnected from analog input  
(typically 100 ns)  
Set GO bit  
Next Q4: ADRESH/ADRESL is loaded, GO bit is cleared,  
ADIF bit is set, holding capacitor is connected to analog input.  
TABLE 20-3: SUMMARY OF A/D REGISTERS  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
TXIE  
TXIP  
EEIF  
EEIE  
EEIP  
RBIE  
SSPIF  
SSPIE  
SSPIP  
BCLIF  
BCLIE  
BCLIP  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
LVDIF  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
RBIF  
0000 000x 0000 000u  
0000 0000 0000 0000  
0000 0000 0000 0000  
1111 1111 1111 1111  
-0-0 0000 -0-0 0000  
-0-0 0000 -0-0 0000  
-1-1 1111 -1-1 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0000 00-0 0000 00-0  
00-- 0000 00-- 0000  
-x0x 0000 -u0u 0000  
-111 1111 -111 1111  
---- -xxx ---- -000  
---- -xxx ---- -uuu  
0000 -111 0000 -111  
(1)  
PIR1  
PIE1  
IPR1  
PIR2  
PIE2  
IPR2  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TMR1IF  
TMR1IE  
TMR1IP  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
CMIF  
CMIE  
CMIP  
TMR3IF ECCP1IF  
TMR3IE ECCP1IE  
TMR3IP ECCP1IP  
(1)  
(1)  
LVDIE  
LVDIP  
ADRESH A/D Result Register  
ADRESL A/D Result Register  
ADCON0 ADCS1  
ADCS0  
ADCS2  
RA6  
CHS2  
CHS1  
CHS0 GO/DONE  
ADON  
PCFG0  
RA0  
ADCON1  
PORTA  
TRISA  
ADFM  
PCFG3  
RA3  
PCFG2  
RA2  
PCFG1  
RA1  
RA5  
RA4  
PORTA Data Direction Register  
PORTE  
LATE  
RE2  
RE1  
RE0  
LATE2  
TRISE2  
LATE1  
TRISE1  
LATE0  
TRISE  
IBF  
OBF  
IBOV  
PSPMODE  
TRISE0  
Legend:  
x= unknown, u= unchanged, - = unimplemented, read as ‘0’. Shaded cells are not used for A/D conversion.  
Note 1: These bits are reserved on PIC18F2X8 devices; always maintain these bits clear.  
DS41159E-page 248  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
The CMCON register, shown in Register 21-1, controls  
the comparator input and output multiplexers. A block  
diagram of the comparator is shown in Figure 21-1.  
21.0 COMPARATOR MODULE  
Note:  
The analog comparators are only  
available on the PIC18F448 and  
PIC18F458.  
The comparator module contains two analog com-  
parators. The inputs to the comparators are  
multiplexed with the RD0 through RD3 pins. The on-chip  
voltage reference (Section 22.0 “Comparator Voltage  
Reference Module”) can also be an input to the  
comparators.  
REGISTER 21-1: CMCON: COMPARATOR CONTROL REGISTER  
R-0  
R-0  
R/W-0  
C2INV  
R/W-0  
C1INV  
R/W-0  
CIS  
R/W-0  
CM2  
R/W-0  
CM1  
R/W-0  
CM0  
C2OUT  
C1OUT  
bit 7  
bit 0  
bit 7  
C2OUT: Comparator 2 Output bit  
When C2INV = 0:  
1= C2 VIN+ > C2 VIN-  
0= C2 VIN+ < C2 VIN-  
When C2INV = 1:  
1= C2 VIN+ < C2 VIN-  
0= C2 VIN+ > C2 VIN-  
bit 6  
C1OUT: Comparator 1 Output bit  
When C1INV = 0:  
1= C1 VIN+ > C1 VIN-  
0= C1 VIN+ < C1 VIN-  
When C1INV = 1:  
1= C1 VIN+ < C1 VIN-  
0= C1 VIN+ > C1 VIN-  
bit 5  
bit 4  
bit 3  
C2INV: Comparator 2 Output Inversion bit  
1= C2 output inverted  
0= C2 output not inverted  
C1INV: Comparator 1 Output Inversion bit  
1= C1 output inverted  
0= C1 output not inverted  
CIS: Comparator Input Switch bit  
When CM2:CM0 = 110:  
1= C1 VIN- connects to RD0/PSP0  
C2 VIN- connects to RD2/PSP2  
0= C1 VIN- connects to RD1/PSP1  
C2 VIN- connects to RD3/PSP3  
bit 2-0 CM2:CM0: Comparator Mode bits  
Figure 21-1 shows the Comparator modes and CM2:CM0 bit settings.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 249  
PIC18FXX8  
mode is changed, the comparator output level may not  
be valid for the specified mode change delay shown in  
Section 27.0 “Electrical Characteristics”.  
21.1 Comparator Configuration  
There are eight modes of operation for the compara-  
tors. The CMCON register is used to select these  
modes. Figure 21-1 shows the eight possible modes.  
The TRISD register controls the data direction of the  
comparator pins for each mode. If the Comparator  
Note:  
Comparator interrupts should be disabled  
during Comparator mode change;  
otherwise, a false interrupt may occur.  
a
FIGURE 21-1:  
COMPARATOR I/O OPERATING MODES  
Comparators Reset (POR Default Value)  
CM2:CM0 = 000  
Comparators Off  
CM2:CM0 = 111  
A
D
VIN-  
VIN-  
RD1/PSP1  
RD0/PSP0  
RD1/PSP1  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
Off (Read as ‘0’)  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
A
D
RD0/PSP0  
A
A
D
VIN-  
VIN-  
RD3/PSP3  
RD2/PSP2  
RD3/PSP3  
VIN+  
VIN+  
D
RD2/PSP2  
Two Independent Comparators with Outputs  
CM2:CM0 = 011  
Two Independent Comparators  
CM2:CM0 = 010  
A
VIN-  
A
VIN-  
RD1/PSP1  
RD0/PSP0  
RD1/PSP1  
RD0/PSP0  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
RE1/AN6/WR/C1OUT  
A
A
VIN-  
A
A
VIN-  
RD3/PSP3  
RD2/PSP2  
RD3/PSP3  
RD2/PSP2  
VIN+  
VIN+  
RE2/AN7/CS/C2OUT  
Two Common Reference Comparators  
CM2:CM0 = 100  
Two Common Reference Comparators with Outputs  
CM2:CM0 = 101  
A
A
VIN-  
VIN-  
RD1/PSP1  
RD0/PSP0  
RD1/PSP1  
RD0/PSP0  
C1OUT  
C2OUT  
C1OUT  
C1  
C2  
C1  
VIN+  
VIN+  
A
A
RE1/AN6/WR/  
C1OUT  
A
D
VIN-  
RD3/PSP3  
RD2/PSP2  
A
VIN-  
VIN+  
RD3/PSP3  
C2OUT  
C2  
VIN+  
D
RD2/PSP2  
RE2/AN7/CS/C2OUT  
Four Inputs Multiplexed to Two Comparators  
CM2:CM0 = 110  
One Independent Comparator with Output  
CM2:CM0 = 001  
A
A
A
VIN-  
RD1/PSP1  
RD1/PSP1  
RD0/PSP0  
CIS = 0  
CIS = 1  
VIN-  
A
C1OUT  
C1  
C2  
VIN+  
RD0/PSP0  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
RE1/AN6/WR/C1OUT  
A
A
RD3/PSP3  
RD2/PSP2  
VIN-  
CIS = 0  
CIS = 1  
VIN+  
D
D
VIN-  
RD3/PSP3  
RD2/PSP2  
Off (Read as ‘0’)  
VIN+  
CVREF  
From VREF Module  
A = Analog Input, port reads zeros always  
D = Digital Input  
CIS (CMCON<3>) is the Comparator Input Switch  
DS41159E-page 250  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
21.3.2  
INTERNAL REFERENCE SIGNAL  
21.2 Comparator Operation  
The comparator module also allows the selection of an  
internally generated voltage reference for the compara-  
tors. Section 22.0 “Comparator Voltage Reference  
Module” contains a detailed description of the module  
that provides this signal. The internal reference signal is  
used when comparators are in mode CM<2:0> = 110  
(Figure 21-1). In this mode, the internal voltage  
reference is applied to the VIN+ pin of both comparators.  
A single comparator is shown in Figure 21-2 along with  
the relationship between the analog input levels and  
the digital output. When the analog input at VIN+ is less  
than the analog input VIN-, the output of the comparator  
is a digital low level. When the analog input at VIN+ is  
greater than the analog input VIN-, the output of the  
comparator is a digital high level. The shaded areas of  
the output of the comparator in Figure 21-2 represent  
the uncertainty due to input offsets and response time.  
21.4 Comparator Response Time  
21.3 Comparator Reference  
Response time is the minimum time, after selecting a  
new reference voltage or input source, before the  
comparator output has a valid level. If the internal ref-  
erence is changed, the maximum delay of the internal  
voltage reference must be considered when using the  
comparator outputs. Otherwise, the maximum delay of  
the comparators should be used (Section 27.0  
“Electrical Characteristics”).  
An external or internal reference signal may be used  
depending on the comparator operating mode. The  
analog signal present at VIN- is compared to the signal  
at VIN+ and the digital output of the comparator is  
adjusted accordingly (Figure 21-2).  
FIGURE 21-2:  
SINGLE COMPARATOR  
21.5 Comparator Outputs  
The comparator outputs are read through the CMCON  
register. These bits are read-only. The comparator  
outputs may also be directly output to the RE1 and RE2  
I/O pins. When enabled, multiplexors in the output path  
of the RE1 and RE2 pins will switch and the output of  
each pin will be the unsynchronized output of the  
comparator. The uncertainty of each of the  
comparators is related to the input offset voltage and  
the response time given in the specifications.  
Figure 21-3 shows the comparator output block  
diagram.  
VIN+  
VIN-  
+
-
Output  
VIN-  
V
VIN+  
The TRISE bits will still function as an output enable/  
disable for the RE1 and RE2 pins while in this mode.  
Output  
The polarity of the comparator outputs can be changed  
using the C2INV and C1INV bits (CMCON<4:5>).  
Note 1: When reading the Port register, all pins  
configured as analog inputs will read as a  
0’. Pins configured as digital inputs will  
convert an analog input according to the  
Schmitt Trigger input specification.  
21.3.1  
EXTERNAL REFERENCE SIGNAL  
When external voltage references are used, the  
comparator module can be configured to have the com-  
parators operate from the same or different reference  
sources. However, threshold detector applications may  
require the same reference. The reference signal must  
be between VSS and VDD and can be applied to either  
pin of the comparator(s).  
2: Analog levels on any pin defined as a dig-  
ital input may cause the input buffer to  
consume more current than is specified.  
© 2006 Microchip Technology Inc.  
DS41159E-page 251  
PIC18FXX8  
FIGURE 21-3:  
COMPARATOR OUTPUT BLOCK DIAGRAM  
Port Pins  
MULTIPLEX  
+
-
CxINV  
To RE1 or  
RE2 pin  
Bus  
Data  
Q
D
Read CMCON  
EN  
Q
Set  
CMIF  
bit  
D
From  
Other  
Comparator  
EN  
CL  
Read CMCON  
Reset  
21.6 Comparator Interrupts  
Note:  
If a change in the CMCON register  
(C1OUT or C2OUT) should occur when a  
read operation is being executed (start of  
the Q2 cycle), then the CMIF (PIR2  
register) interrupt flag may not get set.  
The comparator interrupt flag is set whenever there is  
a change in the output value of either comparator.  
Software will need to maintain information about the  
status of the output bits, as read from CMCON<7:6>, to  
determine the actual change that occurred. The CMIF  
bit (PIR2 register) is the Comparator Interrupt Flag. The  
CMIF bit must be reset by clearing ‘0’. Since it is also  
possible to write a ‘1’ to this register, a simulated  
interrupt may be initiated.  
The user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
a) Any read or write of CMCON will end the  
mismatch condition.  
b) Clear flag bit CMIF.  
The CMIE bit (PIE2 register) and the PEIE bit (INTCON  
register) must be set to enable the interrupt. In addition,  
the GIE bit must also be set. If any of these bits are  
clear, the interrupt is not enabled, though the CMIF bit  
will still be set if an interrupt condition occurs.  
A mismatch condition will continue to set flag bit CMIF.  
Reading CMCON will end the mismatch condition and  
allow flag bit CMIF to be cleared.  
DS41159E-page 252  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
21.7 Comparator Operation During  
Sleep  
21.8 Effects of a Reset  
A device Reset forces the CMCON register to its Reset  
state, causing the comparator module to be in the  
Comparator Reset mode, CM<2:0> = 000. This  
ensures that all potential inputs are analog inputs.  
Device current is minimized when analog inputs are  
present at Reset time. The comparators will be  
powered down during the Reset interval.  
When a comparator is active and the device is placed  
in Sleep mode, the comparator remains active and the  
interrupt is functional if enabled. This interrupt will  
wake-up the device from Sleep mode when enabled.  
While the comparator is powered up, higher Sleep  
currents than shown in the power-down current  
specification will occur. Each operational comparator  
will consume additional current, as shown in the com-  
parator specifications. To minimize power consumption  
while in Sleep mode, turn off the comparators,  
CM<2:0> = 111, before entering Sleep. If the device  
wakes up from Sleep, the contents of the CMCON  
register are not affected.  
21.9 Analog Input Connection  
Considerations  
A simplified circuit for an analog input is shown in  
Figure 21-4. Since the analog pins are connected to a  
digital output, they have reverse biased diodes to VDD  
and VSS. The analog input, therefore, must be between  
VSS and VDD. If the input voltage deviates from this  
range by more than 0.6V in either direction, one of the  
diodes is forward biased and a latch-up condition may  
occur. A maximum source impedance of 10 kΩ is  
recommended for the analog sources. Any external  
component connected to an analog input pin, such as  
a capacitor or a Zener diode, should have very little  
leakage current.  
FIGURE 21-4:  
ANALOG INPUT MODEL  
VDD  
VT = 0.6V  
RIC  
RS < 10k  
AIN  
I LEAKAGE  
500 nA  
CPIN  
5 pF  
VA  
VT = 0.6V  
VSS  
Legend:  
CPIN  
VT  
=
=
Input Capacitance  
Threshold Voltage  
I LEAKAGE = Leakage Current at the pin due to various junctions  
RIC  
RS  
VA  
=
=
=
Interconnect Resistance  
Source Impedance  
Analog Voltage  
© 2006 Microchip Technology Inc.  
DS41159E-page 253  
PIC18FXX8  
TABLE 21-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE  
Value on  
all other  
Resets  
Value on  
POR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CMCON C2OUT C1OUT C2INV  
CVRCON CVREN CVROE CVRR  
C1INV  
CVRSS  
INT0IE  
CIS  
CM2  
CM1  
CM0  
CVR0  
RBIF  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 000x 0000 000u  
CVR3 CVR2  
CVR1  
INTCON  
GIE/  
PEIE/ TMR0IE  
GIEL  
RBIE TMR0IF INT0IF  
GIEH  
PIR2  
CMIF(1)  
CMIE(1)  
CMIP(1)  
RD6  
EEIF  
EEIE  
EEIP  
RD4  
BCLIF LVDIF TMR3IF ECCP1IF(1) -0-0 0000 -0-0 0000  
BCLIE LVDIE TMR3IE ECCP1IE(1) -0-0 0000 -0-0 0000  
BCLIP LVDIP TMR3IP ECCP1IP(1) -1-1 1111 -1-1 1111  
PIE2  
IPR2  
PORTD  
LATD  
TRISD  
PORTE  
LATE  
RD7  
RD5  
RD3  
RD2  
RD1  
RD0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
---- -xxx ---- -000  
---- -xxx ---- -uuu  
LATD7 LATD6 LATD5  
LATD4  
LATD3 LATD2 LATD1  
LATD0  
PORTD Data Direction Register  
RE2  
RE1  
RE0  
LATE2 LATE1  
LATE0  
TRISE  
IBF(1) OBF(1) IBOV(1) PSPMODE(1)  
TRISE2 TRISE1 TRISE0 0000 -111 0000 -111  
Legend: x= unknown, u= unchanged, - = unimplemented, read as ‘0’  
Note 1: These bits are reserved on PIC18F2X8 devices; always maintain these bits clear.  
DS41159E-page 254  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
22.1 Configuring the Comparator  
22.0 COMPARATOR VOLTAGE  
REFERENCE MODULE  
Voltage Reference  
The comparator voltage reference can output 16 distinct  
voltage levels for each range. The equations used to  
calculate the output of the comparator voltage reference  
are as follows.  
Note:  
The comparator voltage reference is only  
available on the PIC18F448 and  
PIC18F458.  
This module is a 16-tap resistor ladder network that  
provides a selectable voltage reference. The resistor  
ladder is segmented to provide two ranges of CVREF  
values and has a power-down function to conserve  
power when the reference is not being used. The  
CVRCON register controls the operation of the  
reference, as shown in Register 22-1. The block  
diagram is shown in Figure 22-1.  
EQUATION 22-1:  
If CVRR = 1:  
CVREF = (CVR<3:0>/24) x CVRSRC  
where:  
CVRSS = 1, CVRSRC = (VREF+) – (VREF-)  
CVRSS = 0, CVRSRC = AVDD AVSS  
The comparator and reference supply voltage can  
come from either VDD and VSS, or the external VREF+  
and VREF-, that are multiplexed with RA3 and RA2. The  
comparator reference supply voltage is controlled by  
the CVRSS bit.  
EQUATION 22-2:  
If CVRR = 0:  
CVREF = (CVRSRC x 1/4) + (CVR<3:0>/32) x CVRSRC  
where:  
CVRSS = 1, CVRSRC = (VREF+) – (VREF-)  
CVRSS = 0, CVRSRC = AVDD AVSS  
The settling time of the Comparator Voltage Reference  
must be considered when changing the RA0/AN0/  
CVREF output (see Table 27-4 in Section 27.2 “DC  
Characteristics”).  
REGISTER 22-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
CVRR  
R/W-0  
R/W-0  
CVR3  
R/W-0  
CVR2  
R/W-0  
CVR1  
R/W-0  
CVR0  
CVREN  
CVROE  
CVRSS  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
CVREN: Comparator Voltage Reference Enable bit  
1= CVREF circuit powered on  
0= CVREF circuit powered down  
CVROE: Comparator VREF Output Enable bit  
1= CVREF voltage level is also output on the RA0/AN0/CVREF pin  
0= CVREF voltage is disconnected from the RA0/AN0/CVREF pin  
CVRR: Comparator VREF Range Selection bit  
1= 0.00 CVRSRC to 0.625 CVRSRC with CVRSRC/24 step size  
0= 0.25 CVRSRC to 0.719 CVRSRC with CVRSRC/32 step size  
CVRSS: Comparator VREF Source Selection bit  
1= Comparator reference source, CVRSRC = (VREF+) – (VREF-)  
0= Comparator reference source, CVRSRC = VDD – VSS  
bit 3-0 CVR<3:0>: Comparator VREF Value Selection 0 CVR3:CVR0 15 bits  
When CVRR = 1:  
CVREF = (CVR3:CVR0/24) (CVRSRC)  
When CVRR = 0:  
CVREF = 1/4 (CVRSRC) + (CVR3:CVR0/32) (CVRSRC)  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 255  
PIC18FXX8  
FIGURE 22-1:  
VOLTAGE REFERENCE BLOCK DIAGRAM  
VDD  
VREF+  
16 Stages  
CVRSS = 1  
CVRSS = 0  
CVREN  
R
R
R
8R  
R
CVRR  
CVRSS = 1  
8R  
CVRSS = 0  
RA2/AN2/VREF-  
CVR3  
RA0/AN0/CVREF  
or CVREF of Comparator  
(From CVRCON<3:0>)  
CVR0  
16-to-1 Analog MUX  
22.2 Voltage Reference Accuracy/Error  
22.4 Effects of a Reset  
The full range of voltage reference cannot be realized  
due to the construction of the module. The transistors  
on the top and bottom of the resistor ladder network  
(Figure 22-1) keep VREF from approaching the refer-  
ence source rails. The voltage reference is derived  
from the reference source; therefore, the VREF output  
changes with fluctuations in that source. The absolute  
accuracy of the voltage reference can be found in  
Section 27.0 “Electrical Characteristics”.  
A device Reset disables the voltage reference by  
clearing bit CVREN (CVRCON register). This Reset  
also disconnects the reference from the RA2 pin by  
clearing bit CVROE (CVRCON register) and selects the  
high-voltage range by clearing bit CVRR (CVRCON  
register). The CVRSS value select bits, CVRCON<3:0>,  
are also cleared.  
22.5 Connection Considerations  
The voltage reference module operates independently  
of the comparator module. The output of the reference  
generator may be connected to the RA0/AN0 pin if the  
TRISA<0> bit is set and the CVROE bit (CVRCON<6>)  
is set. Enabling the voltage reference output onto the  
RA0/AN0 pin, with an input signal present, will increase  
current consumption. Connecting RA0/AN0 as a digital  
output, with CVRSS enabled, will also increase current  
consumption.  
22.3 Operation During Sleep  
When the device wakes up from Sleep through an  
interrupt or a Watchdog Timer time-out, the contents of  
the CVRCON register are not affected. To minimize  
current consumption in Sleep mode, the voltage  
reference should be disabled.  
The RA0/AN0 pin can be used as a simple D/A output  
with limited drive capability. Due to the limited current  
drive capability, a buffer must be used on the voltage  
reference output for external connections to VREF.  
Figure 22-2 shows an example buffering technique.  
DS41159E-page 256  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 22-2:  
VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE  
(1)  
R
RA0/AN0  
CVREF  
Module  
+
CVREF Output  
Voltage  
Reference  
Output  
Impedance  
Note 1: R is dependent upon the voltage reference configuration CVRCON<3:0> and CVRCON<5>.  
TABLE 22-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE  
Value on  
Value on  
all other  
Resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR  
CVRCON CVREN CVROE CVRR CVRSS CVR3  
CVR2  
CM2  
CVR1  
CM1  
CVR0 0000 0000 0000 0000  
CM0 0000 0000 0000 0000  
CMCON  
TRISA  
C2OUT C1OUT C2INV C1INV  
CIS  
TRISA6 TRISA5 TRISA4 TRISA3 TRISA2 TRISA1 TRISA0 -111 1111 -111 1111  
Legend: x= unknown, u= unchanged, - = unimplemented, read as ‘0’.  
Shaded cells are not used with the comparator voltage reference.  
© 2006 Microchip Technology Inc.  
DS41159E-page 257  
PIC18FXX8  
NOTES:  
DS41159E-page 258  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
Figure 23-1 shows a possible application voltage curve  
(typically for batteries). Over time, the device voltage  
decreases. When the device voltage equals voltage VA,  
the LVD logic generates an interrupt. This occurs at  
time TA. The application software then has the time,  
until the device voltage is no longer in valid operating  
range, to shutdown the system. Voltage point VB is the  
minimum valid operating voltage specification. This  
occurs at time TB. The difference TB TA is the total  
time for shutdown.  
23.0 LOW-VOLTAGE DETECT  
In many applications, the ability to determine if the  
device voltage (VDD) is below a specified voltage level  
is a desirable feature. A window of operation for the  
application can be created, where the application  
software can do “housekeeping tasks” before the  
device voltage exits the valid operating range. This can  
be done using the Low-Voltage Detect module.  
This module is a software programmable circuitry,  
where a device voltage trip point can be specified.  
When the voltage of the device becomes lower than the  
specified point, an interrupt flag is set. If the interrupt is  
enabled, the program execution will branch to the  
interrupt vector address and the software can then  
respond to that interrupt source.  
The block diagram for the LVD module is shown in  
Figure 23-2. A comparator uses an internally gener-  
ated reference voltage as the set point. When the  
selected tap output of the device voltage crosses the  
set point (is lower than), the LVDIF bit is set.  
Each node in the resistor divider represents a “trip point”  
voltage. The “trip point” voltage is the minimum supply  
voltage level at which the device can operate before the  
LVD module asserts an interrupt. When the supply  
voltage is equal to the trip point, the voltage tapped off of  
the resistor array is equal to the internal reference  
voltage generated by the voltage reference module. The  
comparator then generates an interrupt signal, setting  
the LVDIF bit. This voltage is software programmable to  
any one of 16 values (see Figure 23-2). The trip point is  
selected by programming the LVDL3:LVDL0 bits  
(LVDCON<3:0>).  
The Low-Voltage Detect circuitry is completely under  
software control. This allows the circuitry to be “turned  
off” by the software which minimizes the current  
consumption for the device.  
FIGURE 23-1:  
TYPICAL LOW-VOLTAGE DETECT APPLICATION  
VA  
VB  
Legend:  
VA = LVD trip point  
VB = Minimum valid device  
operating voltage  
TB  
TA  
Time  
© 2006 Microchip Technology Inc.  
DS41159E-page 259  
PIC18FXX8  
FIGURE 23-2:  
LOW-VOLTAGE DETECT (LVD) BLOCK DIAGRAM  
VDD  
LVDIN  
LVDL3:LVDL0  
LVDCON  
Register  
LVDIF  
Internally Generated  
LVDEN  
Reference Voltage,  
1.2V Typical  
The LVD module has an additional feature that allows  
the user to supply the trip voltage to the module from an  
external source. This mode is enabled when bits  
LVDL3:LVDL0 are set to ‘1111’. In this state, the com-  
parator input is multiplexed from the external input pin  
LVDIN to one input of the comparator (Figure 23-3).  
The other input is connected to the internally generated  
voltage reference (parameter #D423 in Section 27.2  
“DC Characteristics”). This gives users flexibility,  
because it allows them to configure the Low-Voltage  
Detect interrupt to occur at any voltage in the valid  
operating range.  
FIGURE 23-3:  
LOW-VOLTAGE DETECT (LVD) WITH EXTERNAL INPUT BLOCK DIAGRAM  
VDD  
VDD  
LVDL3:LVDL0  
LVDCON  
Register  
LVDEN  
LVDIN  
Externally Generated  
Trip Point  
LVD  
VxEN  
BODEN  
EN  
BGAP  
DS41159E-page 260  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
23.1 Control Register  
The Low-Voltage Detect Control register controls the  
operation of the Low Voltage Detect circuitry.  
REGISTER 23-1: LVDCON: LOW-VOLTAGE DETECT CONTROL REGISTER  
U-0  
U-0  
R-0  
R/W-0  
R/W-0  
LVDL3  
R/W-1  
LVDL2  
R/W-0  
LVDL1  
R/W-1  
LVDL0  
IRVST  
LVDEN  
bit 7  
bit 0  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
IRVST: Internal Reference Voltage Stable Flag bit  
1= Indicates that the Low-Voltage Detect logic will generate the interrupt flag at the specified  
voltage range  
0= Indicates that the Low-Voltage Detect logic will not generate the interrupt flag at the  
specified voltage range and the LVD interrupt should not be enabled  
bit 4  
LVDEN: Low-Voltage Detect Power Enable bit  
1= Enables LVD, powers up LVD circuit  
0= Disables LVD, powers down LVD circuit  
bit 3-0  
LVDL3:LVDL0: Low-Voltage Detection Limit bits  
1111= External analog input is used (input comes from the LVDIN pin)  
1110= 4.45V min.-4.83V max.  
1101= 4.16V min.-4.5V max.  
1100= 3.96V min.-4.2V max.  
1011= 3.76V min.-4.08V max.  
1010= 3.57V min.-3.87V max.  
1001= 3.47V min.-3.75V max.  
1000= 3.27V min.-3.55V max.  
0111= 2.98V min.-3.22V max.  
0110= 2.77V min.-3.01V max.  
0101= 2.67V min.-2.89V max.  
0100= 2.48V min.-2.68V max.  
0011= 2.37V min.-2.57V max.  
0010= 2.18V min.-2.36V max.  
0001= 1.98V min.-2.14V max.  
0000= Reserved  
Note:  
LVDL3:LVDL0 modes, which result in a trip point below the valid operating voltage  
of the device, are not tested.  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
© 2006 Microchip Technology Inc.  
DS41159E-page 261  
PIC18FXX8  
The following steps are needed to set up the LVD  
module:  
23.2 Operation  
Depending on the power source for the device voltage,  
the voltage normally decreases relatively slowly. This  
means that the LVD module does not need to be  
constantly operating. To decrease the current require-  
ments, the LVD circuitry only needs to be enabled for  
short periods where the voltage is checked. After doing  
the check, the LVD module may be disabled.  
1. Write the value to the LVDL3:LVDL0 bits  
(LVDCON register) which selects the desired  
LVD trip point.  
2. Ensure that LVD interrupts are disabled (the  
LVDIE bit is cleared or the GIE bit is cleared).  
3. Enable the LVD module (set the LVDEN bit in  
the LVDCON register).  
Each time that the LVD module is enabled, the circuitry  
requires some time to stabilize. After the circuitry has  
stabilized, all status flags may be cleared. The module  
will then indicate the proper state of the system.  
4. Wait for the LVD module to stabilize (the IRVST  
bit to become set).  
5. Clear the LVD interrupt flag, which may have  
falsely become set, until the LVD module has  
stabilized (clear the LVDIF bit).  
6. Enable the LVD interrupt (set the LVDIE and the  
GIE bits).  
Figure 23-4 shows typical waveforms that the LVD  
module may be used to detect.  
FIGURE 23-4:  
LOW-VOLTAGE DETECT WAVEFORMS  
CASE 1:  
LVDIF may not be set  
VDD  
VLVD  
LVDIF  
Enable LVD  
Internally Generated  
Reference Stable  
TIRVST  
LVDIF cleared in software  
CASE 2:  
VDD  
VLVD  
LVDIF  
Enable LVD  
TIRVST  
Internally Generated  
Reference Stable  
LVDIF cleared in software  
LVDIF cleared in software,  
LVDIF remains set since LVD condition still exists  
DS41159E-page 262  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
23.2.1  
REFERENCE VOLTAGE SET POINT  
23.3 Operation During Sleep  
The internal reference voltage of the LVD module may be  
used by other internal circuitry (the Programmable  
Brown-out Reset). If these circuits are disabled (lower  
current consumption), the reference voltage circuit  
requires a time to become stable before a low-voltage  
condition can be reliably detected. This time is invariant  
of system clock speed. This start-up time is specified in  
electrical specification parameter #36. The low-voltage  
interrupt flag will not be enabled until a stable reference  
voltage is reached. Refer to the waveform in Figure 23-4.  
When enabled, the LVD circuitry continues to operate  
during Sleep. If the device voltage crosses the trip  
point, the LVDIF bit will be set and the device will wake-  
up from Sleep. Device execution will continue from the  
interrupt vector address if interrupts have been globally  
enabled.  
23.4 Effects of a Reset  
A device Reset forces all registers to their Reset state.  
This forces the LVD module to be turned off.  
23.2.2  
CURRENT CONSUMPTION  
When the module is enabled, the LVD comparator and  
voltage divider are enabled and will consume static cur-  
rent. The voltage divider can be tapped from multiple  
places in the resistor array. Total current consumption,  
when enabled, is specified in electrical specification  
parameter #D022B.  
© 2006 Microchip Technology Inc.  
DS41159E-page 263  
PIC18FXX8  
NOTES:  
DS41159E-page 264  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
Sleep mode is designed to offer a very Low-Current  
Power-Down mode. The user can wake-up from Sleep  
through external Reset, Watchdog Timer wake-up or  
through an interrupt. Several oscillator options are also  
made available to allow the part to fit the application.  
The RC oscillator option saves system cost while the  
LP crystal option saves power. A set of configuration  
bits is used to select various options.  
24.0 SPECIAL FEATURES OF  
THE CPU  
There are several features intended to maximize  
system reliability, minimize cost through elimination of  
external components, provide power-saving operating  
modes and offer code protection. These are:  
• Oscillator Selection  
• Reset  
24.1 Configuration Bits  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
• Interrupts  
The configuration bits can be programmed (read as ‘0’)  
or left unprogrammed (read as ‘1’), to select various  
device configurations. These bits are mapped starting  
at program memory location 300000h.  
The user will note that address 300000h is beyond the  
user program memory space. In fact, it belongs to the  
configuration memory space (300000h-3FFFFFh)  
which can only be accessed using table reads and  
table writes.  
• Watchdog Timer (WDT)  
• Sleep  
• Code Protection  
• ID Locations  
• In-Circuit Serial Programming  
Programming the Configuration registers is done in a  
manner similar to programming the Flash memory. The  
EECON1 register WR bit starts a self-timed write to the  
Configuration register. In normal operation mode, a  
TBLWT instruction, with the TBLPTR pointed to the  
Configuration register, sets up the address and the  
data for the Configuration register write. Setting the WR  
bit starts a long write to the Configuration register. The  
Configuration registers are written a byte at a time. To  
write or erase a configuration cell, a TBLWTinstruction  
can write a ‘1’ or a ‘0’ into the cell.  
All PIC18FXX8 devices have a Watchdog Timer which  
is permanently enabled via the configuration bits or  
software controlled. It runs off its own RC oscillator for  
added reliability. There are two timers that offer  
necessary delays on power-up. One is the Oscillator  
Start-up Timer (OST), intended to keep the chip in  
Reset until the crystal oscillator is stable. The other is  
the Power-up Timer (PWRT) which provides a fixed  
delay on power-up only, designed to keep the part in  
Reset while the power supply stabilizes. With these two  
timers on-chip, most applications need no external  
Reset circuitry.  
TABLE 24-1: CONFIGURATION BITS AND DEVICE IDS  
Default/  
Unprogrammed  
Value  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300001h  
CONFIG1H  
CONFIG2L  
CONFIG2H  
CONFIG4L  
CONFIG5L  
CONFIG5H  
CONFIG6L  
CONFIG6H  
CONFIG7L  
CONFIG7H  
OSCSEN  
FOSC2  
BORV0  
FOSC1  
BOREN  
FOSC0  
PWRTEN  
WDTEN  
--1- -111  
---- 1111  
---- 1111  
300002h  
300003h  
300006h  
300008h  
300009h  
30000Ah  
30000Bh  
30000Ch  
30000Dh  
BORV1  
WDTPS2 WDTPS1 WDTPS0  
DEBUG  
CP3  
LVP  
CP2  
CP1  
STVREN  
CP0  
1--- -1-1  
---- 1111  
11-- ----  
---- 1111  
111- ----  
---- 1111  
-1-- ----  
(1)  
CPD  
CPB  
WRT3  
WRT2  
WRT1  
WRT0  
WRTD  
WRTB  
WRTC  
EBTR3  
EBTR2  
EBTR1  
EBTR0  
EBTRB  
DEV1  
DEV9  
3FFFFEh DEVID1  
3FFFFFh DEVID2  
DEV2  
DEV10  
DEV0  
DEV8  
REV4  
DEV7  
REV3  
DEV6  
REV2  
DEV5  
REV1  
DEV4  
REV0  
DEV3  
0000 1000  
Legend:  
Note 1:  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition. Shaded cells are unimplemented, read as ‘0’.  
See Register 24-11 for DEVID1 values.  
© 2006 Microchip Technology Inc.  
DS41159E-page 265  
PIC18FXX8  
REGISTER 24-1: CONFIG1H:CONFIGURATIONREGISTER1HIGH(BYTEADDRESS300001h)  
U-0  
U-0  
R/P-1  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
OSCSEN  
FOSC2 FOSC1 FOSC0  
bit 0  
bit 7  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
OSCSEN: Oscillator System Clock Switch Enable bit  
1= Oscillator system clock switch option is disabled (main oscillator is source)  
0= Oscillator system clock switch option is enabled (oscillator switching is enabled)  
bit 4-3  
bit 2-0  
Unimplemented: Read as ‘0’  
FOSC2:FOSC0: Oscillator Selection bits  
111= RC oscillator w/OSC2 configured as RA6  
110= HS oscillator with PLL enabled/clock frequency = (4 x FOSC)  
101= EC oscillator w/OSC2 configured as RA6  
100= EC oscillator w/OSC2 configured as divide-by-4 clock output  
011= RC oscillator  
010= HS oscillator  
001= XT oscillator  
000= LP oscillator  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
-n = Value when device is unprogrammed  
REGISTER 24-2: CONFIG2L:CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS300002h)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
BORV1  
BORV0 BOREN PWRTEN  
bit 0  
bit 7  
bit 7-4  
bit 3-2  
Unimplemented: Read as ‘0’  
BORV1:BORV0: Brown-out Reset Voltage bits  
11= VBOR set to 2.0V  
10= VBOR set to 2.7V  
01= VBOR set to 4.2V  
00= VBOR set to 4.5V  
bit 1  
bit 0  
BOREN: Brown-out Reset Enable bit  
1= Brown-out Reset enabled  
0= Brown-out Reset disabled  
PWRTEN: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS41159E-page 266  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 24-3: CONFIG2H: CONFIGURATION REGISTER 2 HIGH (BYTE ADDRESS 300003h)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
WDTPS2 WDTPS1 WDTPS0 WDTEN  
bit 0  
bit 7  
bit 7-4  
bit 3-1  
Unimplemented: Read as ‘0’  
WDTPS2:WDTPS0: Watchdog Timer Postscale Select bits  
111= 1:128  
110= 1:64  
101= 1:32  
100= 1:16  
011= 1:8  
010= 1:4  
001= 1:2  
000= 1:1  
Note:  
The Watchdog Timer postscale select bits configuration used in the PIC18FXXX  
devices has changed from the configuration used in the PIC18CXXX devices.  
bit 0  
WDTEN: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled (control is placed on the SWDTEN bit)  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
REGISTER 24-4: CONFIG4L: CONFIGURATION REGISTER 4 LOW (BYTE ADDRESS 300006h)  
R/P-1  
U-0  
U-0  
U-0  
U-0  
R/P-1  
LVP  
U-0  
R/P-1  
STVREN  
bit 0  
DEBUG  
bit 7  
bit 7  
DEBUG: Background Debugger Enable bit  
1= Background Debugger disabled. RB6 and RB7 configured as general purpose I/O pins.  
0= Background Debugger enabled. RB6 and RB7 are dedicated to In-Circuit Debug.  
bit 6-3  
bit 2  
Unimplemented: Read as ‘0’  
LVP: Low-Voltage ICSP Enable bit  
1= Low-Voltage ICSP enabled  
0= Low-Voltage ICSP disabled  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
STVREN: Stack Full/Underflow Reset Enable bit  
1= Stack Full/Underflow will cause Reset  
0= Stack Full/Underflow will not cause Reset  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
© 2006 Microchip Technology Inc.  
DS41159E-page 267  
PIC18FXX8  
REGISTER 24-5: CONFIG5L:CONFIGURATION REGISTER 5 LOW (BYTE ADDRESS300008h)  
U-0  
U-0  
U-0  
U-0  
R/C-1  
CP3(1)  
R/C-1  
CP2(1)  
R/C-1  
CP1  
R/C-1  
CP0  
bit 7  
bit 0  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
CP3: Code Protection bit(1)  
1= Block 3 (006000-007FFFh) not code-protected  
0= Block 3 (006000-007FFFh) code-protected  
bit 2  
bit 1  
bit 0  
CP2: Code Protection bit(1)  
1= Block 2 (004000-005FFFh) not code-protected  
0= Block 2 (004000-005FFFh) code-protected  
CP1: Code Protection bit  
1= Block 1 (002000-003FFFh) not code-protected  
0= Block 1 (002000-003FFFh) code-protected  
CP0: Code Protection bit  
1= Block 0 (000200-001FFFh) not code-protected  
0= Block 0 (000200-001FFFh) code-protected  
Note 1: Unimplemented in PIC18FX48 devices; maintain this bit set.  
Legend:  
R = Readable bit  
-n = Value when device is unprogrammed  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
REGISTER 24-6: CONFIG5H:CONFIGURATION REGISTER5 HIGH (BYTEADDRESS300009h)  
R/C-1  
CPD  
R/C-1  
CPB  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
bit 7  
CPD: Data EEPROM Code Protection bit  
1= Data EEPROM not code-protected  
0= Data EEPROM code-protected  
bit 6  
CPB: Boot Block Code Protection bit  
1= Boot Block (000000-0001FFh) not code-protected  
0= Boot Block (000000-0001FFh) code-protected  
bit 5-0  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
C = Clearable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS41159E-page 268  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 24-7: CONFIG6L:CONFIGURATIONREGISTER6 LOW(BYTEADDRESS30000Ah)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
WRT3(1) WRT2(1)  
R/P-1  
R/P-1  
R/P-1  
WRT1  
WRT0  
bit 7  
bit 0  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
WRT3: Write Protection bit(1)  
1= Block 3 (006000-007FFFh) not write-protected  
0= Block 3 (006000-007FFFh) write-protected  
bit 2  
bit 1  
bit 0  
WRT2: Write Protection bit(1)  
1= Block 2 (004000-005FFFh) not write-protected  
0= Block 2 (004000-005FFFh) write-protected  
WRT1: Write Protection bit  
1= Block 1 (002000-003FFFh) not write-protected  
0= Block 1 (002000-003FFFh) write-protected  
WRT0: Write Protection bit  
1= Block 0 (000200-001FFFh) not write-protected  
0= Block 0 (000200-001FFFh) write-protected  
Note 1: Unimplemented in PIC18FX48 devices; maintain this bit set.  
Legend:  
R = Readable bit  
-n = Value when device is unprogrammed  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
REGISTER 24-8: CONFIG6H:CONFIGURATION REGISTER6 HIGH(BYTEADDRESS30000Bh)  
R/P-1  
R/P-1  
R-1  
U-0  
U-0  
U-0  
U-0  
U-0  
WRTD  
WRTB  
WRTC  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
WRTD: Data EEPROM Write Protection bit  
1= Data EEPROM not write-protected  
0= Data EEPROM write-protected  
WRTB: Boot Block Write Protection bit  
1= Boot Block (000000-0001FFh) not write-protected  
0= Boot Block (000000-0001FFh) write-protected  
WRTC: Configuration Register Write Protection bit  
1= Configuration registers (300000-3000FFh) not write-protected  
0= Configuration registers (300000-3000FFh) write-protected  
Note:  
This bit is read-only and cannot be changed in user mode.  
bit 4-0  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
© 2006 Microchip Technology Inc.  
DS41159E-page 269  
PIC18FXX8  
REGISTER 24-9: CONFIG7L:CONFIGURATIONREGISTER7 LOW(BYTE ADDRESS30000Ch)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
EBTR3(1) EBTR2(1)  
R/P-1  
R/P-1  
R/P-1  
EBTR1  
EBTR0  
bit 7  
bit 0  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
EBTR3: Table Read Protection bit(1)  
1= Block 3 (006000-007FFFh) not protected from table reads executed in other blocks  
0= Block 3 (006000-007FFFh) protected from table reads executed in other blocks  
bit 2  
bit 1  
bit 0  
EBTR2: Table Read Protection bit(1)  
1= Block 2 (004000-005FFFh) not protected from table reads executed in other blocks  
0= Block 2 (004000-005FFFh) protected from table reads executed in other blocks  
EBTR1: Table Read Protection bit  
1= Block 1 (002000-003FFFh) not protected from table reads executed in other blocks  
0= Block 1 (002000-003FFFh) protected from table reads executed in other blocks  
EBTR0: Table Read Protection bit  
1= Block 0 (000200-001FFFh) not protected from table reads executed in other blocks  
0= Block 0 (000200-001FFFh) protected from table reads executed in other blocks  
Note 1: Unimplemented in PIC18FX48 devices; maintain this bit set.  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
-n = Value when device is unprogrammed  
REGISTER 24-10: CONFIG7H: CONFIGURATION REGISTER 7 HIGH (BYTE ADDRESS 30000Dh)  
U-0  
R/P-1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
EBTRB  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
EBTRB: Boot Block Table Read Protection bit  
1= Boot Block (000000-0001FFh) not protected from table reads executed in other blocks  
0= Boot Block (000000-0001FFh) protected from table reads executed in other blocks  
bit 5-0  
Unimplemented: Read as ‘0’  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
-n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS41159E-page 270  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
REGISTER 24-11: DEVID1: DEVICE ID REGISTER 1 FOR PIC18FXX8 DEVICES  
(BYTE ADDRESS 3FFFFEh)  
R
R
R
R
R
R
R
R
DEV2  
DEV1  
DEV0  
REV4  
REV3  
REV2  
REV1  
REV0  
bit 7  
bit 0  
bit 7-5  
DEV2:DEV0: Device ID bits  
These bits are used with the DEV<10:3> bits in the Device ID Register 2 to identify the  
part number.  
000= PIC18F248  
001= PIC18F448  
010= PIC18F258  
011= PIC18F458  
bit 4-0  
REV4:REV0: Revision ID bits  
These bits are used to indicate the device revision.  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
-n = Value when device is unprogrammed  
REGISTER 24-12: DEVID2: DEVICE ID REGISTER 2 FOR PIC18FXX8 DEVICES  
(BYTE ADDRESS 3FFFFFh)  
R
R
R
R
R
R
R
R
DEV10  
DEV9  
DEV8  
DEV7  
DEV6  
DEV5  
DEV4  
DEV3  
bit 0  
bit 7  
bit 7-0  
DEV10:DEV3: Device ID bits  
These bits are used with the DEV<2:0> bits in the Device ID Register 1 to identify the  
part number.  
00001000= PIC18FXX8  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
-n = Value when device is unprogrammed  
© 2006 Microchip Technology Inc.  
DS41159E-page 271  
PIC18FXX8  
The WDT time-out period values may be found in  
Section 27.0 “Electrical Characteristics” under  
parameter #31. Values for the WDT postscaler may be  
assigned using the configuration bits.  
24.2 Watchdog Timer (WDT)  
The Watchdog Timer is a free running, on-chip RC  
oscillator which does not require any external com-  
ponents. This RC oscillator is separate from the RC  
oscillator of the OSC1/CLKI pin. That means that the  
WDT will run, even if the clock on the OSC1/CLKI and  
OSC2/CLKO/RA6 pins of the device has been stopped,  
for example, by execution of a SLEEPinstruction.  
Note:  
The CLRWDTand SLEEPinstructions clear  
the WDT and the postscaler if assigned to  
the WDT and prevent it from timing out  
and generating a device Reset condition.  
During normal operation, a WDT time-out generates a  
device Reset (Watchdog Timer Reset). If the device is  
in Sleep mode, a WDT time-out causes the device to  
wake-up and continue with normal operation  
(Watchdog Timer wake-up). The TO bit in the RCON  
register will be cleared upon a WDT time-out.  
Note:  
When a CLRWDT instruction is executed  
and the postscaler is assigned to the WDT,  
the postscaler count will be cleared but the  
postscaler assignment is not changed.  
24.2.1  
CONTROL REGISTER  
The Watchdog Timer is enabled/disabled by a device  
configuration bit. If the WDT is enabled, software  
execution may not disable this function. When the  
WDTEN configuration bit is cleared, the SWDTEN bit  
enables/disables the operation of the WDT.  
Register 24-13 shows the WDTCON register. This is a  
readable and writable register which contains a control  
bit that allows software to override the WDT enable  
configuration bit only when the configuration bit has  
disabled the WDT.  
REGISTER 24-13: WDTCON: WATCHDOG TIMER CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SWDTEN  
bit 0  
bit 7  
bit 7-1  
bit 0  
Unimplemented: Read as ‘0’  
SWDTEN: Software Controlled Watchdog Timer Enable bit  
1= Watchdog Timer is on  
0= Watchdog Timer is turned off if the WDTEN configuration bit in the Configuration register = 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n = Value at POR  
DS41159E-page 272  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
24.2.2  
WDT POSTSCALER  
The WDT has a postscaler that can extend the WDT  
Reset period. The postscaler is selected at the time of  
device programming by the value written to the  
CONFIG2H Configuration register.  
FIGURE 24-1:  
WATCHDOG TIMER BLOCK DIAGRAM  
WDT Timer  
Postscaler  
8
WDTPS2:WDTPS0  
8-to-1 MUX  
WDTEN  
Configuration bit  
SWDTEN bit  
WDT  
Time-out  
Note:  
WDTPS2:WDTPS0 are bits in register CONFIG2H.  
TABLE 24-2: SUMMARY OF WATCHDOG TIMER REGISTERS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CONFIG2H  
RCON  
IPEN  
RI  
WDTPS2 WDTPS1 WDTPS0  
WDTEN  
BOR  
TO  
PD  
POR  
WDTCON  
SWDTEN  
Legend: Shaded cells are not used by the Watchdog Timer.  
© 2006 Microchip Technology Inc.  
DS41159E-page 273  
PIC18FXX8  
External MCLR Reset will cause a device Reset. All  
other events are considered a continuation of program  
execution and will cause a “wake-up”. The TO and PD  
bits in the RCON register can be used to determine the  
cause of the device Reset. The PD bit, which is set on  
power-up, is cleared when Sleep is invoked. The TO bit  
is cleared if a WDT time-out occurred (and caused  
wake-up).  
24.3 Power-Down Mode (Sleep)  
Power-down mode is entered by executing a SLEEP  
instruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit (RCON<2>) is cleared, the  
TO bit (RCON<3>) is set and the oscillator driver is  
turned off. The I/O ports maintain the status they had  
before the SLEEP instruction was executed (driving  
high, low or high-impedance).  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 2) is prefetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the inter-  
rupt address. In cases where the execution of the  
instruction following SLEEP is not desirable, the user  
should have a NOPafter the SLEEPinstruction.  
For lowest current consumption in this mode, place all  
I/O pins at either VDD or VSS, ensure no external circuitry  
is drawing current from the I/O pin, power-down the A/D  
and disable external clocks. Pull all I/O pins that are  
high-impedance inputs, high or low externally, to avoid  
switching currents caused by floating inputs. The T0CKI  
input should also be at VDD or VSS for lowest current  
consumption. The contribution from on-chip pull-ups on  
PORTB should be considered.  
The MCLR pin must be at a logic high level (VIHMC).  
24.3.2  
WAKE-UP USING INTERRUPTS  
24.3.1  
WAKE-UP FROM SLEEP  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
The device can wake-up from Sleep through one of the  
following events:  
1. External Reset input on MCLR pin.  
• If an interrupt condition (interrupt flag bit and  
interrupt enable bits are set) occurs before the  
execution of a SLEEPinstruction, the SLEEP  
instruction will complete as a NOP. Therefore, the  
WDT and WDT postscaler will not be cleared, the  
TO bit will not be set and the PD bit will not be  
cleared.  
2. Watchdog Timer wake-up (if WDT was  
enabled).  
3. Interrupt from INT pin, RB port change or a  
peripheral interrupt.  
The following peripheral interrupts can wake the device  
from Sleep:  
• If the interrupt condition occurs during or after  
the execution of a SLEEPinstruction, the device  
will immediately wake-up from Sleep. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT  
1. PSP read or write.  
2. TMR1 interrupt. Timer1 must be operating as an  
asynchronous counter.  
3. TMR3 interrupt. Timer3 must be operating as an  
asynchronous counter.  
postscaler will be cleared, the TO bit will be set  
and the PD bit will be cleared.  
4. CCP Capture mode interrupt.  
5. Special event trigger (Timer1 in Asynchronous  
mode using an external clock).  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
6. MSSP (Start/Stop) bit detect interrupt.  
7. MSSP transmit or receive in Slave mode  
(SPI/I2C).  
8. USART RX or TX (Synchronous Slave mode).  
9. A/D conversion (when A/D clock source is RC).  
10. EEPROM write operation complete.  
11. LVD interrupt.  
To ensure that the WDT is cleared, a CLRWDT  
instruction should be executed before a SLEEP  
instruction.  
Other peripherals cannot generate interrupts, since  
during Sleep, no on-chip clocks are present.  
DS41159E-page 274  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 24-2:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT(1,2)  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKO(4)  
INT pin  
(2)  
TOST  
INTF Flag  
(INTCON<1>)  
Interrupt Latency(3)  
GIEH bit  
Processor in  
Sleep  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
PC  
PC + 2  
PC + 4  
PC + 4  
PC + 4  
0008h  
000Ah  
Instruction  
Fetched  
Inst(0008h)  
Inst(PC + 2)  
Inst(PC + 4)  
Inst(PC + 2)  
Inst(000Ah)  
Inst(PC) = Sleep  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Inst(0008h)  
Sleep  
Inst(PC – 1)  
Note 1: XT, HS or LP Oscillator mode assumed.  
2: GIE = 1assumed. In this case, after wake-up, the processor jumps to the interrupt routine. If GIE = 0, execution will continue in-line.  
3: TOST = 1024 TOSC (drawing not to scale). This delay will not occur for RC and EC Oscillator modes.  
4: CLKO is not available in these oscillator modes but shown here for timing reference.  
© 2006 Microchip Technology Inc.  
DS41159E-page 275  
PIC18FXX8  
Each of the five blocks has three code protection bits  
associated with them. They are:  
24.4 Program Verification and  
Code Protection  
• Code-Protect bit (CPn)  
The overall structure of the code protection on the  
PIC18 Flash devices differs significantly from other  
PICmicro devices.  
• Write-Protect bit (WRTn)  
• External Block Table Read bit (EBTRn)  
Figure 24-3 shows the program memory organization  
for 16 and 32-Kbyte devices and the specific code  
protection bit associated with each block. The actual  
locations of the bits are summarized in Table 24-3.  
The user program memory is divided into five blocks.  
One of these is a boot block of 512 bytes. The remain-  
der of the memory is divided into four blocks on binary  
boundaries.  
FIGURE 24-3:  
CODE-PROTECTED PROGRAM MEMORY FOR PIC18FXX8  
MEMORY SIZE/DEVICE  
Block Code Protection  
16 Kbytes  
(PIC18FX48)  
32 Kbytes  
(PIC18FX58)  
Address  
Range  
Controlled By:  
CPB, WRTB, EBTRB  
CP0, WRT0, EBTR0  
000000h  
0001FFh  
Boot Block  
Boot Block  
Block 0  
000200h  
Block 0  
Block 1  
001FFFh  
002000h  
Block 1  
Block 2  
Block 3  
CP1, WRT1, EBTR1  
CP2, WRT2, EBTR2  
CP3, WRT3, EBTR3  
003FFFh  
004000h  
Unimplemented  
Read ‘0’s  
005FFFh  
006000h  
Unimplemented  
Read ‘0’s  
007FFFh  
008000h  
Unimplemented  
Unimplemented  
Read ‘0’s  
Read ‘0’s  
(Unimplemented Memory Space)  
1FFFFFh  
TABLE 24-3: SUMMARY OF CODE PROTECTION REGISTERS  
File Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300008h  
CONFIG5L  
CONFIG5H  
CONFIG6L  
CPD  
CPB  
CP3  
CP2  
CP1  
CP0  
300009h  
30000Ah  
30000Bh  
30000Ch  
30000Dh  
WRT3  
WRT2  
WRT1  
WRT0  
CONFIG6H WRTD  
WRTB  
WRTC  
CONFIG7L  
CONFIG7H  
EBTR3  
EBTR2  
EBTR1  
EBTR0  
EBTRB  
Legend: Shaded cells are unimplemented.  
DS41159E-page 276  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
24.4.1  
PROGRAM MEMORY  
CODE PROTECTION  
Note:  
Code protection bits may only be written to  
a ‘0’ from a ‘1’ state. It is not possible to  
write a ‘1’ to a bit in the ‘0’ state. Code  
protection bits are only set to ‘1’ by a full  
chip erase or block erase function. The full  
chip erase and block erase functions can  
only be initiated via ICSP or an external  
programmer.  
The user memory may be read to or written from any  
location using the table read and table write instruc-  
tions. The device ID may be read with table reads. The  
Configuration registers may be read and written with  
the table read and table write instructions.  
In user mode, the CPn bits have no direct effect. CPn  
bits inhibit external reads and writes. A block of user  
memory may be protected from table writes if the  
WRTn configuration bit is ‘0’. The EBTRn bits control  
table reads. For a block of user memory with the  
EBTRn bit set to ‘0’, a table read instruction that  
executes from within that block is allowed to read. A  
table read instruction that executes from a location  
outside of that block is not allowed to read and will  
result in reading ‘0’s. Figures 24-4 through 24-6  
illustrate table write and table read protection.  
FIGURE 24-4:  
TABLE WRITE (WRTn) DISALLOWED  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
0001FFh  
WRTB, EBTRB = 11  
000200h  
TBLPTR = 000FFF  
PC = 001FFE  
WRT0, EBTR0 = 01  
TBLWT *  
TBLWT *  
001FFFh  
002000h  
WRT1, EBTR1 = 11  
WRT2, EBTR2 = 11  
WRT3, EBTR3 = 11  
003FFFh  
004000h  
PC = 004FFE  
005FFFh  
006000h  
007FFFh  
Results: All table writes disabled to Blockn whenever WRTn = 0.  
© 2006 Microchip Technology Inc.  
DS41159E-page 277  
PIC18FXX8  
FIGURE 24-5:  
EXTERNAL BLOCK TABLE READ (EBTRn) DISALLOWED  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
WRTB, EBTRB = 11  
0001FFh  
000200h  
TBLPTR = 000FFF  
PC = 002FFE  
WRT0, EBTR0 = 10  
001FFFh  
002000h  
TBLRD *  
WRT1, EBTR1 = 11  
WRT2, EBTR2 = 11  
003FFFh  
004000h  
005FFFh  
006000h  
WRT3, EBTR3 = 11  
007FFFh  
Results: All table reads from external blocks to Blockn are disabled whenever EBTRn = 0.  
TABLAT register returns a value of ‘0’.  
FIGURE 24-6:  
EXTERNAL BLOCK TABLE READ (EBTRn) ALLOWED  
Register Values  
Program Memory  
Configuration Bit Settings  
000000h  
WRTB, EBTRB = 11  
WRT0, EBTR0 = 10  
0001FFh  
000200h  
TBLPTR = 000FFF  
PC = 001FFE  
TBLRD *  
001FFFh  
002000h  
WRT1, EBTR1 = 11  
WRT2, EBTR2 = 11  
WRT3, EBTR3 = 11  
003FFFh  
004000h  
005FFFh  
006000h  
007FFFh  
Results: Table reads permitted within Blockn even when EBTRBn = 0.  
TABLAT register returns the value of the data at the location TBLPTR.  
DS41159E-page 278  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
To use the In-Circuit Debugger function of the micro-  
controller, the design must implement In-Circuit Serial  
Programming connections to MCLR/VPP, VDD, GND,  
RB7 and RB6. This will interface to the In-Circuit  
Debugger module available from Microchip or one of  
the third party development tool companies. The  
Microchip In-Circuit Debugger (ICD) used with the  
PIC18FXXX microcontrollers is the MPLAB® ICD 2.  
24.4.2  
DATA EEPROM  
CODE PROTECTION  
The entire data EEPROM is protected from external  
reads and writes by two bits: CPD and WRTD. CPD  
inhibits external reads and writes of data EEPROM.  
WRTD inhibits external writes to data EEPROM. The  
CPU can continue to read and write data EEPROM  
regardless of the protection bit settings.  
24.8 Low-Voltage ICSP Programming  
24.4.3  
CONFIGURATION REGISTER  
PROTECTION  
The LVP bit in Configuration register, CONFIG4L,  
enables Low-Voltage ICSP Programming. This mode  
allows the microcontroller to be programmed via ICSP  
using a VDD source in the operating voltage range. This  
only means that VPP does not have to be brought to  
VIHH but can instead be left at the normal operating  
voltage. In this mode, the RB5/PGM pin is dedicated to  
the programming function and ceases to be a general  
purpose I/O pin. During programming, VDD is applied to  
the MCLR/VPP pin. To enter Programming mode, VDD  
must be applied to the RB5/PGM pin, provided the LVP  
bit is set. The LVP bit defaults to a (‘1’) from the factory.  
The Configuration registers can be write-protected.  
The WRTC bit controls protection of the Configuration  
registers. In user mode, the WRTC bit is readable only.  
WRTC can only be written via ICSP or an external  
programmer.  
24.5 ID Locations  
Eight memory locations (200000h-200007h) are  
designated as ID locations where the user can store  
checksum or other code identification numbers. These  
locations are accessible during normal execution  
through the TBLRD and TBLWT instructions or during  
program/verify. The ID locations can be read when the  
device is code-protected.  
Note 1: The High-Voltage Programming mode is  
always available, regardless of the state  
of the LVP bit, by applying VIHH to the  
MCLR pin.  
2: While in Low-Voltage ICSP mode, the  
RB5 pin can no longer be used as a  
general purpose I/O pin.  
24.6  
In-Circuit Serial Programming  
PIC18FXXX microcontrollers can be serially pro-  
grammed while in the end application circuit. This is  
simply done with two lines for clock and data and three  
other lines for power, ground and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom  
firmware to be programmed.  
3: When using Low-Voltage ICSP Program-  
ming (LVP) and the pull-ups on PORTB  
are enabled, bit 5 in the TRISB register  
must be cleared to disable the pull-up on  
RB5 and ensure the proper operation of  
the device.  
If Low-Voltage Programming mode is not used, the LVP  
bit can be programmed to a ‘0’ and RB5/PGM becomes  
a digital I/O pin. However, the LVP bit may only be  
programmed when programming is entered with VIHH  
on MCLR/VPP. The LVP bit can only be charged when  
using high voltage on MCLR.  
24.7 In-Circuit Debugger  
When the DEBUG bit in Configuration register,  
CONFIG4L, is programmed to a ‘0’, the In-Circuit  
Debugger functionality is enabled. This function allows  
simple debugging functions when used with  
MPLAB® IDE. When the microcontroller has this fea-  
ture enabled, some of the resources are not available  
for general use. Resources used include 2 I/O pins,  
stack locations, program memory and data memory.  
For more information on the resources required, see  
the User’s Guide for the In-Circuit Debugger you are  
using.  
It should be noted that once the LVP bit is programmed  
to ‘0’, only the High-Voltage Programming mode is  
available and only High-Voltage Programming mode  
can be used to program the device.  
When using Low-Voltage ICSP Programming, the part  
must be supplied 4.5V to 5.5V if a bulk erase will be  
executed. This includes reprogramming of the code-  
protect bits from an ON state to an OFF state. For all  
other cases of Low-Voltage ICSP Programming, the  
part may be programmed at the normal operating  
voltage. This means unique user IDs or user code can  
be reprogrammed or added.  
© 2006 Microchip Technology Inc.  
DS41159E-page 279  
PIC18FXX8  
NOTES:  
DS41159E-page 280  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
The control instructions may use some of the following  
operands:  
25.0 INSTRUCTION SET SUMMARY  
The PIC18 instruction set adds many enhancements to  
the previous PICmicro instruction sets, while maintaining  
an easy migration from these PICmicro instruction sets.  
• A program memory address (specified by ‘n’)  
• The mode of the CALLor RETURNinstructions  
(specified by ‘s’)  
Most instructions are a single program memory word  
(16 bits) but there are three instructions that require two  
program memory locations.  
• The mode of the table read and table write  
instructions (specified by ‘m’)  
• No operand required  
(specified by ‘—’)  
Each single-word instruction is a 16-bit word divided  
into an opcode, which specifies the instruction type and  
one or more operands, which further specify the  
operation of the instruction.  
All instructions are a single word, except for three  
double-word instructions. These three instructions  
were made double-word instructions so that all the  
required information is available in these 32 bits. In the  
second word, the 4 MSbs are ‘1’s. If this second word  
is executed as an instruction (by itself), it will execute  
as a NOP.  
The instruction set is highly orthogonal and is grouped  
into four basic categories:  
Byte-oriented operations  
Bit-oriented operations  
Literal operations  
All single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles, with the additional instruction cycle(s) executed  
as a NOP.  
Control operations  
The PIC18 instruction set summary in Table 25-2 lists  
byte-oriented, bit-oriented, literal and control  
operations. Table 25-1 shows the opcode field  
descriptions.  
The double-word instructions execute in two instruction  
cycles.  
Most byte-oriented instructions have three operands:  
1. The file register (specified by ‘f’)  
One instruction cycle consists of four oscillator periods.  
Thus, for an oscillator frequency of 4 MHz, the normal  
instruction execution time is 1 μs. If a conditional test is  
true, or the program counter is changed as a result of  
an instruction, the instruction execution time is 2 μs.  
Two-word branch instructions (if true) would take 3 μs.  
2. The destination of the result  
(specified by ‘d’)  
3. The accessed memory  
(specified by ‘a’)  
The file register designator ‘f’ specifies which file  
register is to be used by the instruction.  
Figure 25-1 shows the general formats that the  
instructions can have.  
The destination designator ‘d’ specifies where the  
result of the operation is to be placed. If ‘d’ is zero, the  
result is placed in the WREG register. If ‘d’ is one, the  
result is placed in the file register specified in the  
instruction.  
All examples use the format ‘nnh’ to represent a hexa-  
decimal number, where ‘h’ signifies a hexadecimal  
digit.  
The Instruction Set Summary, shown in Table 25-2,  
lists the instructions recognized by the Microchip  
MPASMTM Assembler.  
All bit-oriented instructions have three operands:  
1. The file register (specified by ‘f’)  
Section 25.2 “Instruction Set” provides a description  
of each instruction.  
2. The bit in the file register  
(specified by ‘b’)  
3. The accessed memory  
(specified by ‘a’)  
25.1 Read-Modify-Write Operations  
The bit field designator ‘b’ selects the number of the bit  
affected by the operation, while the file register desig-  
nator ‘f’ represents the number of the file in which the  
bit is located.  
Any instruction that specifies a file register as part of  
the instruction performs a Read-Modify-Write (R-M-W)  
operation. The register is read, the data is modified and  
the result is stored according to either the instruction or  
the destination designator ‘d’. A read operation is  
performed on a register even if the instruction writes to  
that register.  
The literal instructions may use some of the following  
operands:  
• A literal value to be loaded into a file register  
(specified by ‘k’)  
For example, a “CLRF PORTB” instruction will read  
PORTB, clear all the data bits, then write the result  
back to PORTB. This example would have the  
unintended result that the condition that sets the RBIF  
flag would be cleared.  
• The desired FSR register to load the literal value  
into (specified by ‘f’)  
• No operand required  
(specified by ‘—’)  
© 2006 Microchip Technology Inc.  
DS41159E-page 281  
PIC18FXX8  
TABLE 25-1: OPCODE FIELD DESCRIPTIONS  
Field  
Description  
a
RAM access bit:  
a = 0: RAM location in Access RAM (BSR register is ignored)  
a = 1: RAM bank is specified by BSR register  
bbb  
BSR  
d
Bit address within an 8-bit file register (0 to 7).  
Bank Select Register. Used to select the current RAM bank.  
Destination select bit:  
d = 0: store result in WREG  
d = 1: store result in file register f  
dest  
f
Destination either the WREG register or the specified register file location.  
8-bit register file address (0x00 to 0xFF).  
fs  
12-bit register file address (0x000 to 0xFFF). This is the source address.  
12-bit register file address (0x000 to 0xFFF). This is the destination address.  
Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).  
Label name.  
fd  
k
label  
mm  
The mode of the TBLPTR register for the table read and table write instructions.  
Only used with table read and table write instructions:  
*
No change to register (such as TBLPTR with table reads and writes)  
Post-Increment register (such as TBLPTR with table reads and writes)  
Post-Decrement register (such as TBLPTR with table reads and writes)  
Pre-Increment register (such as TBLPTR with table reads and writes)  
*+  
*-  
+*  
n
The relative address (2’s complement number) for relative branch instructions or the direct address for  
Call/Branch and Return instructions.  
PRODH  
PRODL  
s
Product of Multiply High Byte.  
Product of Multiply Low Byte.  
Fast Call/Return mode select bit:  
s = 0: do not update into/from shadow registers  
s = 1: certain registers loaded into/from shadow registers (Fast mode)  
u
Unused or unchanged.  
WREG  
x
Working register (accumulator).  
Don’t care (0 or 1).  
The assembler will generate code with x = 0. It is the recommended form of use for compatibility with all  
Microchip software tools.  
TBLPTR  
21-bit Table Pointer (points to a program memory location).  
8-bit Table Latch.  
TABLAT  
TOS  
Top-of-Stack.  
PC  
Program Counter  
PCL  
Program Counter Low Byte.  
Program Counter High Byte.  
Program Counter High Byte Latch.  
Program Counter Upper Byte Latch.  
Global Interrupt Enable bit.  
Watchdog Timer.  
PCH  
PCLATH  
PCLATU  
GIE  
WDT  
TO  
Time-out bit.  
PD  
Power-Down bit.  
C, DC, Z, OV, N  
ALU status bits: Carry, Digit Carry, Zero, Overflow, Negative.  
Optional.  
[
]
)
(
Contents.  
< >  
Assigned to.  
Register bit field.  
In the set of.  
italics  
User defined term (font is courier).  
DS41159E-page 282  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 25-1:  
GENERAL FORMAT FOR INSTRUCTIONS  
Byte-oriented file register operations  
Example Instruction  
15  
10  
OPCODE  
9
8
7
0
ADDWF MYREG, W, B  
d
a
f (FILE #)  
d = 0for result destination to be WREG register  
d = 1for result destination to be file register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit file register address  
Byte to Byte move operations (2-word)  
15  
12 11  
0
0
OPCODE  
f (Source FILE #)  
MOVFF MYREG1, MYREG2  
15  
12 11  
1111  
f (Destination FILE #)  
f = 12-bit file register address  
Bit-oriented file register operations  
15 12 11 9 8  
OPCODE b (BIT #)  
7
0
BSF MYREG, bit, B  
a
f (FILE #)  
b = 3-bit position of bit in file register (f)  
a = 0to force Access Bank  
a = 1for BSR to select bank  
f = 8-bit file register address  
Literal operations  
15  
8
7
0
MOVLW 0x7F  
OPCODE  
k (literal)  
k = 8-bit immediate value  
Control operations  
CALL, GOTO and Branch operations  
15  
8 7  
0
GOTO Label  
OPCODE  
12 11  
n<7:0> (literal)  
15  
0
1111  
n<19:8> (literal)  
n = 20-bit immediate value  
15  
15  
8
7
0
CALL MYFUNC  
OPCODE  
12 11  
n<7:0> (literal)  
S
0
n<19:8> (literal)  
S = Fast bit  
11 10  
15  
0
0
BRA MYFUNC  
BC MYFUNC  
OPCODE  
n<10:0> (literal)  
15  
OPCODE  
8 7  
n<7:0> (literal)  
© 2006 Microchip Technology Inc.  
DS41159E-page 283  
PIC18FXX8  
TABLE 25-2: PIC18FXXX INSTRUCTION SET  
Mnemonic,  
16-Bit Instruction Word  
MSb LSb  
Status  
Affected  
Description  
Cycles  
Notes  
Operands  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF f, d, a Add WREG and f  
ADDWFC f, d, a Add WREG and Carry bit to f  
1
1
1
1
1
0010 01da ffff ffff C, DC, Z, OV, N 1, 2  
0010 00da ffff ffff C, DC, Z, OV, N 1, 2  
ANDWF  
CLRF  
COMF  
f, d, a AND WREG with f  
f, a Clear f  
f, d, a Complement f  
0001 01da ffff ffff Z, N  
0110 101a ffff ffff Z  
0001 11da ffff ffff Z, N  
1,2  
2
1, 2  
4
CPFSEQ f, a  
CPFSGT f, a  
CPFSLT f, a  
Compare f with WREG, skip = 1 (2 or 3) 0110 001a ffff ffff None  
Compare f with WREG, skip > 1 (2 or 3) 0110 010a ffff ffff None  
Compare f with WREG, skip < 1 (2 or 3) 0110 000a ffff ffff None  
4
1, 2  
DECF  
f, d, a Decrement f  
1
0000 01da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
DECFSZ f, d, a Decrement f, Skip if 0  
DCFSNZ f, d, a Decrement f, Skip if Not 0  
1 (2 or 3) 0010 11da ffff ffff None  
1 (2 or 3) 0100 11da ffff ffff None  
1, 2, 3, 4  
1, 2  
INCF  
f, d, a Increment f  
1
0010 10da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4  
INCFSZ  
INFSNZ  
IORWF  
MOVF  
f, d, a Increment f, Skip if 0  
f, d, a Increment f, Skip if Not 0  
f, d, a Inclusive OR WREG with f  
f, d, a Move f  
fs, fd Move fs (source) to 1st word 2  
fd (destination) 2nd word  
1 (2 or 3) 0011 11da ffff ffff None  
1 (2 or 3) 0100 10da ffff ffff None  
4
1, 2  
1, 2  
1
1
1
0001 00da ffff ffff Z, N  
0101 00da ffff ffff Z, N  
1100 ffff ffff ffff None  
1111 ffff ffff ffff  
MOVFF  
MOVWF f, a  
Move WREG to f  
Multiply WREG with f  
Negate f  
1
1
1
1
1
1
1
1
1
0110 111a ffff ffff None  
0000 001a ffff ffff None  
0110 110a ffff ffff C, DC, Z, OV, N 1, 2  
0011 01da ffff ffff C, Z, N  
0100 01da ffff ffff Z, N  
0011 00da ffff ffff C, Z, N  
0100 00da ffff ffff Z, N  
0110 100a ffff ffff None  
MULWF  
NEGF  
RLCF  
RLNCF  
RRCF  
RRNCF  
SETF  
f, a  
f, a  
f, d, a Rotate Left f through Carry  
f, d, a Rotate Left f (No Carry)  
f, d, a Rotate Right f through Carry  
f, d, a Rotate Right f (No Carry)  
1, 2  
f, a  
Set f  
SUBFWB f, d, a Subtract f from WREG with  
borrow  
0101 01da ffff ffff C, DC, Z, OV, N 1, 2  
SUBWF  
f, d, a Subtract WREG from f  
1
1
0101 11da ffff ffff C, DC, Z, OV, N  
0101 10da ffff ffff C, DC, Z, OV, N 1, 2  
SUBWFB f, d, a Subtract WREG from f with  
borrow  
SWAPF  
TSTFSZ f, a  
XORWF f, d, a Exclusive OR WREG with f  
BIT-ORIENTED FILE REGISTER OPERATIONS  
f, d, a Swap nibbles in f  
1
0011 10da ffff ffff None  
4
1, 2  
Test f, skip if 0  
1 (2 or 3) 0110 011a ffff ffff None  
1
0001 10da ffff ffff Z, N  
BCF  
BSF  
BTFSC  
BTFSS  
BTG  
f, b, a Bit Clear f  
f, b, a Bit Set f  
f, b, a Bit Test f, Skip if Clear  
f, b, a Bit Test f, Skip if Set  
f, d, a Bit Toggle f  
1
1
1001 bbba ffff ffff None  
1000 bbba ffff ffff None  
1, 2  
1, 2  
3, 4  
3, 4  
1, 2  
1 (2 or 3) 1011 bbba ffff ffff None  
1 (2 or 3) 1010 bbba ffff ffff None  
1
0111 bbba ffff ffff None  
Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be  
that value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input  
and is driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be  
cleared if assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that  
all program memory locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
DS41159E-page 284  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TABLE 25-2: PIC18FXXX INSTRUCTION SET (CONTINUED)  
Mnemonic,  
16-Bit Instruction Word  
LSb  
Status  
Affected  
Description  
Cycles  
Notes  
Operands  
MSb  
CONTROL OPERATIONS  
BC  
BN  
n
n
n
n
n
n
n
n
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
1 (2)  
1 (2)  
1 (2)  
2
1110 0010 nnnn nnnn None  
1110 0110 nnnn nnnn None  
1110 0011 nnnn nnnn None  
1110 0111 nnnn nnnn None  
1110 0101 nnnn nnnn None  
1110 0001 nnnn nnnn None  
1110 0100 nnnn nnnn None  
1101 0nnn nnnn nnnn None  
1110 0000 nnnn nnnn None  
1110 110s kkkk kkkk None  
1111 kkkk kkkk kkkk  
Branch if Negative  
Branch if Not Carry  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
Branch if Overflow  
Branch Unconditionally  
Branch if Zero  
BNC  
BNN  
BNOV  
BNZ  
BOV  
BRA  
BZ  
n
n, s  
CALL  
Call subroutine1st word  
2nd word  
CLRWDT  
DAW  
GOTO  
n
Clear Watchdog Timer  
Decimal Adjust WREG  
Go to address 1st word  
2nd word  
1
1
2
0000 0000 0000 0100 TO, PD  
0000 0000 0000 0111 C  
1110 1111 kkkk kkkk None  
1111 kkkk kkkk kkkk  
NOP  
NOP  
POP  
PUSH  
RCALL  
RESET  
RETFIE  
n
No Operation  
No Operation  
Pop top of return stack (TOS)  
Push top of return stack (TOS) 1  
Relative Call  
Software device Reset  
Return from interrupt enable  
1
1
1
0000 0000 0000 0000 None  
1111 xxxx xxxx xxxx None  
0000 0000 0000 0110 None  
0000 0000 0000 0101 None  
1101 1nnn nnnn nnnn None  
0000 0000 1111 1111 All  
0000 0000 0001 000s GIE/GIEH,  
PEIE/GIEL  
4
2
1
2
s
RETLW  
RETURN  
SLEEP  
k
s
Return with literal in WREG  
Return from Subroutine  
Go into Standby mode  
2
2
1
0000 1100 kkkk kkkk None  
0000 0000 0001 001s None  
0000 0000 0000 0011 TO, PD  
Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be  
that value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input  
and is driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be  
cleared if assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that  
all program memory locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
© 2006 Microchip Technology Inc.  
DS41159E-page 285  
PIC18FXX8  
TABLE 25-2: PIC18FXXX INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
LITERAL OPERATIONS  
ADDLW  
ANDLW  
IORLW  
LFSR  
k
k
k
f, k  
Add literal and WREG  
AND literal with WREG  
Inclusive OR literal with WREG 1  
Move literal (12-bit)2nd word  
to FSRx 1st word  
Move literal to BSR<3:0>  
Move literal to WREG  
Multiply literal with WREG  
Return with literal in WREG  
Subtract WREG from literal  
1
1
0000 1111 kkkk  
0000 1011 kkkk  
0000 1001 kkkk  
1110 1110 00ff  
1111 0000 kkkk  
0000 0001 0000  
0000 1110 kkkk  
0000 1101 kkkk  
0000 1100 kkkk  
0000 1000 kkkk  
0000 1010 kkkk  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
kkkk Z, N  
kkkk None  
kkkk  
kkkk None  
kkkk None  
kkkk None  
kkkk None  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
2
MOVLB  
MOVLW  
MULLW  
RETLW  
SUBLW  
XORLW  
k
k
k
k
k
k
1
1
1
2
1
Exclusive OR literal with WREG 1  
DATA MEMORY PROGRAM MEMORY OPERATIONS  
TBLRD*  
Table Read  
2
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
1000 None  
1001 None  
1010 None  
1011 None  
1100 None  
1101 None  
1110 None  
1111 None  
TBLRD*+  
TBLRD*-  
TBLRD+*  
TBLWT*  
TBLWT*+  
TBLWT*-  
TBLWT+*  
Table Read with post-increment  
Table Read with post-decrement  
Table Read with pre-increment  
Table Write  
Table Write with post-increment  
Table Write with post-decrement  
Table Write with pre-increment  
2 (5)  
Note 1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be  
that value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input  
and is driven low by an external device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be  
cleared if assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The  
second cycle is executed as a NOP.  
4: Some instructions are 2-word instructions. The second word of these instructions will be executed as a NOP  
unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that  
all program memory locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
DS41159E-page 286  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
25.2 Instruction Set  
ADDLW  
ADD Literal to W  
ADDWF  
ADD W to f  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Syntax:  
[ label ] ADDWF  
f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(W) + k W  
N, OV, C, DC, Z  
Operation:  
(W) + (f) dest  
0000  
1111  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
The contents of W are added to the 8-bit  
literal ‘k’ and the result is placed in W.  
0010  
01da  
ffff  
ffff  
Description:  
Add W to register ‘f’. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access Bank  
will be selected. If ‘a’ is ‘1’, the BSR is  
used.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
Example:  
ADDLW  
0x15  
Q Cycle Activity:  
Q1  
Before Instruction  
0x10  
After Instruction  
0x25  
Q2  
Q3  
Q4  
W
=
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
W
=
Example:  
ADDWF  
REG, W  
Before Instruction  
W
REG  
=
=
0x17  
0xC2  
After Instruction  
W
REG  
=
=
0xD9  
0xC2  
© 2006 Microchip Technology Inc.  
DS41159E-page 287  
PIC18FXX8  
ADDWFC  
ADD W and Carry bit to f  
ANDLW  
AND Literal with W  
Syntax:  
[ label ] ADDWFC  
f [,d [,a]]  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
(W) .AND. k W  
N, Z  
Operation:  
(W) + (f) + (C) dest  
0000  
1011  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
The contents of W are ANDed with the  
8-bit literal ‘k’. The result is placed in W.  
0010  
00da  
ffff  
ffff  
Description:  
Add W, the Carry flag and data memory  
location ‘f’. If ‘d’ is ‘0’, the result is placed  
in W. If ‘d’ is ‘1’, the result is placed in  
data memory location ‘f’. If ‘a’ is ‘0’, the  
Access Bank will be selected. If ‘a’ is ‘1’,  
the BSR will not be overridden.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
Example:  
ANDLW  
0x5F  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Before Instruction  
W
=
0xA3  
0x03  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
After Instruction  
W
=
Example:  
ADDWFC  
REG, W  
Before Instruction  
Carry bit =  
1
REG  
W
=
=
0x02  
0x4D  
After Instruction  
Carry bit =  
0
0x02  
0x50  
REG  
W
=
=
DS41159E-page 288  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
ANDWF  
AND W with f  
BC  
Branch if Carry  
[ label ] BC  
Syntax:  
[ label ] ANDWF  
f [,d [,a]]  
Syntax:  
n
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if Carry bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
(W) .AND. (f) dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
0010  
nnnn  
nnnn  
0001  
01da  
ffff  
ffff  
Description:  
If the Carry bit is ‘1’, then the program  
will branch.  
Description:  
The contents of W are ANDed with  
register ‘f’. If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored back  
in register ‘f’ (default). If ‘a’ is ‘0’, the  
Access Bank will be selected. If ‘a’ is ‘1’,  
the BSR will not be overridden (default).  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next instruc-  
tion, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
If Jump:  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
Q1  
Q2  
Q3  
Q4  
destination  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Example:  
ANDWF  
REG, W  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Before Instruction  
W
=
=
0x17  
0xC2  
If No Jump:  
Q1  
REG  
Q2  
Q3  
Q4  
After Instruction  
W
REG  
=
=
0x02  
0xC2  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BC JUMP  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Carry  
PC  
If Carry  
PC  
=
=
=
=
1;  
address (JUMP)  
0;  
address (HERE + 2)  
© 2006 Microchip Technology Inc.  
DS41159E-page 289  
PIC18FXX8  
BCF  
Bit Clear f  
BN  
Branch if Negative  
[ label ] BN  
Syntax:  
[ label ] BCF f,b[,a]  
Syntax:  
n
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if Negative bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
0 f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0110  
nnnn  
nnnn  
1001  
bbba  
ffff  
ffff  
Description:  
If the Negative bit is ‘1’, then the  
Description:  
Bit ‘b’ in register ‘f’ is cleared. If ‘a’ is ‘0’,  
the Access Bank will be selected, over-  
riding the BSR value. If ‘a’ = 1, then the  
bank will be selected as per the BSR  
value (default).  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next instruc-  
tion, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
Q Cycle Activity:  
Q1  
1(2)  
Q2  
Q3  
Q4  
Q Cycle Activity:  
If Jump:  
Decode  
Read  
Process  
Data  
Write  
register ‘f’  
register ‘f’  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Example:  
BCF  
FLAG_REG, 7  
Before Instruction  
FLAG_REG = 0xC7  
After Instruction  
FLAG_REG = 0x47  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BN Jump  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Negative  
PC  
If Negative  
PC  
=
=
=
=
1;  
address (Jump)  
0;  
address (HERE + 2)  
DS41159E-page 290  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
BNC  
Branch if Not Carry  
BNN  
Branch if Not Negative  
Syntax:  
[ label ] BNC  
-128 n 127  
if Carry bit is ‘0’  
n
Syntax:  
[ label ] BNN  
n
Operands:  
Operation:  
Operands:  
Operation:  
-128 n 127  
if Negative bit is ‘0’  
(PC) + 2 + 2n PC  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0011  
nnnn  
nnnn  
1110  
0111  
nnnn  
nnnn  
Description:  
If the Carry bit is ‘0’, then the program  
will branch.  
Description:  
If the Negative bit is ‘0’, then the  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next instruc-  
tion, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next instruc-  
tion, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BNC Jump  
Example:  
HERE  
BNN Jump  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Negative  
PC  
If Carry  
PC  
If Carry  
PC  
=
=
=
=
0;  
=
=
=
=
0;  
address (Jump)  
address (Jump)  
1;  
address (HERE + 2)  
1;  
If Negative  
PC  
address (HERE + 2)  
© 2006 Microchip Technology Inc.  
DS41159E-page 291  
PIC18FXX8  
BNOV  
Branch if Not Overflow  
BNZ  
Branch if Not Zero  
Syntax:  
[ label ] BNOV  
n
Syntax:  
[ label ] BNZ  
-128 n 127  
if Zero bit is ‘0’  
n
Operands:  
Operation:  
-128 n 127  
Operands:  
Operation:  
if Overflow bit is ‘0’  
(PC) + 2 + 2n PC  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0101  
nnnn  
nnnn  
1110  
0001  
nnnn  
nnnn  
Description:  
If the Overflow bit is ‘0’, then the  
program will branch.  
Description:  
If the Zero bit is ‘0’, then the program  
will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next instruc-  
tion, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next instruc-  
tion, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BNOV Jump  
Example:  
HERE  
BNZ Jump  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Overflow  
PC  
If Overflow  
PC  
=
=
=
=
0;  
If Zero  
PC  
If Zero  
PC  
=
=
=
=
0;  
address (Jump)  
address (Jump)  
1;  
1;  
address (HERE + 2)  
address (HERE + 2)  
DS41159E-page 292  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
BRA  
Unconditional Branch  
[ label ] BRA  
BSF  
Bit Set f  
Syntax:  
n
Syntax:  
[ label ] BSF f,b[,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
-1024 n 1023  
(PC) + 2 + 2n PC  
None  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operation:  
1 f<b>  
1101  
0nnn  
nnnn  
nnnn  
Status Affected:  
Encoding:  
None  
Add the 2’s complement number ‘2n’ to  
the PC. Since the PC will have  
incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is a  
two-cycle instruction.  
1000  
bbba  
ffff  
ffff  
Description:  
Bit ‘b’ in register ‘f’ is set. If ‘a’ is ‘0’, the  
Access Bank will be selected,  
overriding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value.  
Words:  
Cycles:  
1
2
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to PC  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
BSF  
FLAG_REG, 7  
Before Instruction  
FLAG_REG  
After Instruction  
FLAG_REG  
Example:  
HERE  
BRA Jump  
=
=
0x0A  
0x8A  
Before Instruction  
PC  
=
=
address (HERE)  
address (Jump)  
After Instruction  
PC  
© 2006 Microchip Technology Inc.  
DS41159E-page 293  
PIC18FXX8  
BTFSC  
Bit Test File, Skip if Clear  
BTFSS  
Bit Test File, Skip if Set  
Syntax:  
[ label ] BTFSC f,b[,a]  
Syntax:  
[ label ] BTFSS f,b[,a]  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operation:  
skip if (f<b>) = 0  
Operation:  
skip if (f<b>) = 1  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1011  
bbba  
ffff  
ffff  
1010  
bbba  
ffff  
ffff  
Description:  
If bit ‘b’ in register ‘f’ is ‘0’, then the next  
instruction is skipped.  
Description:  
If bit ‘b’ in register ‘f’ is ‘1’, then the next  
instruction is skipped.  
If bit ‘b’ is ‘0’, then the next instruction  
fetched during the current instruction  
execution is discarded and a NOPis  
executed instead, making this a two-cycle  
instruction. If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value (default).  
If bit ‘b’ is ‘1’, then the next instruction  
fetched during the current instruction  
execution is discarded and a NOPis  
executed instead, making this a two-cycle  
instruction. If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note:  
3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
Example:  
HERE  
FALSE  
TRUE  
BTFSC  
:
:
FLAG, 1  
Example:  
HERE  
FALSE  
TRUE  
BTFSS  
:
:
FLAG, 1  
Before Instruction  
PC  
Before Instruction  
PC  
=
address (HERE)  
=
address (HERE)  
After Instruction  
After Instruction  
If FLAG<1>  
PC  
If FLAG<1>  
PC  
=
=
=
=
0;  
If FLAG<1>  
PC  
If FLAG<1>  
PC  
=
=
=
=
0;  
address (TRUE)  
1;  
address (FALSE)  
1;  
address (FALSE)  
address (TRUE)  
DS41159E-page 294  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
BTG  
Bit Toggle f  
BOV  
Branch if Overflow  
Syntax:  
[ label ] BTG f,b[,a]  
Syntax:  
[ label ] BOV  
n
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
Operation:  
-128 n 127  
if Overflow bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
(f<b>) f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0100  
nnnn  
nnnn  
0111  
bbba  
ffff  
ffff  
Description:  
If the Overflow bit is ‘1’, then the  
Description:  
Bit ‘b’ in data memory location ‘f’ is  
inverted. If ‘a’ is ‘0’, the Access Bank will  
be selected, overriding the BSR value. If  
‘a’ = 1, then the bank will be selected as  
per the BSR value (default).  
program will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next instruc-  
tion, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
Q Cycle Activity:  
Q1  
1(2)  
Q2  
Q3  
Q4  
Q Cycle Activity:  
If Jump:  
Decode  
Read  
Process  
Data  
Write  
register ‘f’  
register ‘f’  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
Example:  
BTG  
PORTC,  
4
Before Instruction:  
PORTC  
After Instruction:  
PORTC  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
=
0111 0101 [0x75]  
0110 0101 [0x65]  
If No Jump:  
Q1  
=
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Example:  
HERE  
BOV JUMP  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Overflow  
PC  
If Overflow  
PC  
=
=
=
=
1;  
address (JUMP)  
0;  
address (HERE + 2)  
© 2006 Microchip Technology Inc.  
DS41159E-page 295  
PIC18FXX8  
BZ  
Branch if Zero  
[ label ] BZ  
CALL  
Subroutine Call  
Syntax:  
n
Syntax:  
[ label ] CALL k [,s]  
Operands:  
Operation:  
-128 n 127  
Operands:  
0 k 1048575  
s [0,1]  
if Zero bit is ‘1’  
(PC) + 2 + 2n PC  
Operation:  
(PC) + 4 TOS,  
k PC<20:1>,  
if s = 1  
Status Affected:  
Encoding:  
None  
1110  
0000  
nnnn  
nnnn  
(W) WS,  
(Status) STATUSS,  
(BSR) BSRS  
Description:  
If the Zero bit is ‘1’, then the program  
will branch.  
The 2’s complement number ‘2n’ is  
added to the PC. Since the PC will have  
incremented to fetch the next instruc-  
tion, the new address will be  
PC + 2 + 2n. This instruction is then a  
two-cycle instruction.  
Status Affected:  
None  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
1110  
1111  
110s  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
19  
Description:  
Subroutine call of entire 2-Mbyte  
memory range. First, return address  
(PC + 4) is pushed onto the return  
stack. If ‘s’ = 1, the W, Status and BSR  
registers are also pushed into their  
respective shadow registers, WS,  
STATUSS and BSRS. If ‘s’ = 0, no  
update occurs (default). Then, the  
20-bit value ‘k’ is loaded into PC<20:1>.  
CALLis a two-cycle instruction.  
Words:  
Cycles:  
1
1(2)  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘n’  
Process  
Data  
Write to  
PC  
No  
operation  
No  
No  
No  
Words:  
Cycles:  
2
2
operation  
operation  
operation  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read literal  
‘n’  
Process  
Data  
No  
operation  
Q2  
Q3  
Q4  
Decode  
Read literal Push PC to Read literal  
‘k’<7:0>,  
stack  
‘k’<19:8>,  
Write to PC  
Example:  
HERE  
BZ Jump  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
Example:  
HERE  
CALL THERE,FAST  
If Zero  
PC  
If Zero  
PC  
=
=
=
=
1;  
address (Jump)  
Before Instruction  
PC  
After Instruction  
0;  
=
address (HERE)  
address (HERE + 2)  
PC  
=
address (THERE)  
TOS  
WS  
=
=
=
address (HERE + 4)  
W
BSR  
Status  
BSRS  
STATUSS=  
DS41159E-page 296  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
CLRF  
Clear f  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
[ label ] CLRF f [,a]  
Syntax:  
[ label ] CLRWDT  
None  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
000h WDT,  
000h WDT postscaler,  
1 TO,  
Operation:  
000h f  
1 Z  
1 PD  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
TO, PD  
0110  
101a  
ffff  
ffff  
0000  
0000  
0000  
0100  
Description:  
Clears the contents of the specified  
register. If ‘a’ is ‘0’, the Access Bank will  
be selected, overriding the BSR value.  
If ‘a’ = 1, then the bank will be selected  
as per the BSR value (default).  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
postscaler of the WDT. Status bits TO  
and PD are set.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Decode  
No  
operation  
Process  
Data  
No  
operation  
Example:  
CLRF  
FLAG_REG  
Example:  
CLRWDT  
Before Instruction  
FLAG_REG  
After Instruction  
FLAG_REG  
Before Instruction  
WDT Counter  
After Instruction  
=
=
0x5A  
0x00  
=
?
WDT Counter  
WDT Postscaler  
TO  
PD  
=
=
=
=
0x00  
0
1
1
© 2006 Microchip Technology Inc.  
DS41159E-page 297  
PIC18FXX8  
COMF  
Complement f  
CPFSEQ  
Compare f with W, Skip if f = W  
Syntax:  
[ label ] COMF f [,d [,a]]  
Syntax:  
[ label ] CPFSEQ f [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) – (W),  
Operation:  
(f) dest  
skip if (f) = (W)  
(unsigned comparison)  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
None  
0001  
11da  
ffff  
ffff  
0110  
001a  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
complemented. If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’ (default). If ‘a’  
is ‘0’, the Access Bank will be selected,  
overriding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Description:  
Compares the contents of data memory  
location ‘f’ to the contents of W by  
performing an unsigned subtraction.  
If ‘f’ = W, then the fetched instruction is  
discarded and a NOPis executed  
instead, making this a two-cycle  
instruction. If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
Q2  
Q3  
Q4  
1(2)  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Example:  
COMF  
REG, W  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
REG  
=
0x13  
After Instruction  
If skip:  
Q1  
REG  
W
=
=
0x13  
0xEC  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
CPFSEQ REG  
NEQUAL  
EQUAL  
:
:
Before Instruction  
PC Address  
=
=
=
HERE  
?
?
W
REG  
After Instruction  
If REG  
PC  
If REG  
PC  
=
=
=
W;  
Address (EQUAL)  
W;  
Address (NEQUAL)  
DS41159E-page 298  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
CPFSGT  
Compare f with W, Skip if f > W  
CPFSLT  
Compare f with W, Skip if f < W  
Syntax:  
[ label ] CPFSGT f [,a]  
Syntax:  
[ label ] CPFSLT f [,a]  
Operands:  
0 f 255  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) − (W),  
Operation:  
(f) – (W),  
skip if (f) > (W)  
skip if (f) < (W)  
(unsigned comparison)  
(unsigned comparison)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0110  
010a  
ffff  
ffff  
0110  
000a  
ffff  
ffff  
Description:  
Compares the contents of data memory  
location ‘f’ to the contents of the W by  
performing an unsigned subtraction.  
If the contents of ‘f’ are greater than the  
contents of WREG, then the fetched  
instruction is discarded and a NOPis  
executed instead, making this a  
two-cycle instruction. If ‘a’ is ‘0’, the  
Access Bank will be selected,  
Description:  
Compares the contents of data memory  
location ‘f’ to the contents of W by  
performing an unsigned subtraction.  
If the contents of ‘f’ are less than the  
contents of W, then the fetched  
instruction is discarded and a NOPis  
executed instead, making this a  
two-cycle instruction. If ‘a’ is ‘0’, the  
Access Bank will be selected. If ‘a’ is ‘1’,  
the BSR will not be overridden (default).  
overriding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1(2)  
Words:  
Cycles:  
1
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
Q2  
Q3  
Q4  
If skip:  
Q1  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Q2  
Q3  
Q4  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
If skip and followed by 2-word instruction:  
No  
No  
No  
No  
operation  
Q1  
Q2  
Q3  
Q4  
operation  
operation  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
NLESS  
LESS  
CPFSLT REG  
:
:
Example:  
HERE  
CPFSGT REG  
NGREATER  
GREATER  
:
:
Before Instruction  
PC  
W
=
=
Address (HERE)  
?
Before Instruction  
After Instruction  
PC  
W
=
=
Address (HERE)  
?
If REG  
PC  
If REG  
PC  
<
=
=
W;  
Address (LESS)  
After Instruction  
W;  
If REG  
PC  
If REG  
PC  
>
=
=
W;  
Address (NLESS)  
Address (GREATER)  
W;  
Address (NGREATER)  
© 2006 Microchip Technology Inc.  
DS41159E-page 299  
PIC18FXX8  
DAW  
Decimal Adjust W Register  
DECF  
Decrement f  
Syntax:  
[ label ] DAW  
None  
Syntax:  
[ label ] DECF f [,d [,a]]  
Operands:  
Operation:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
If [W<3:0> > 9] or [DC = 1] then  
(W<3:0>) + 6 W<3:0>;  
else  
Operation:  
(f) – 1 dest  
(W<3:0>) W<3:0>  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
0000  
01da  
ffff  
ffff  
If [W<7:4> > 9] or [C = 1] then  
(W<7:4>) + 6 W<7:4>;  
else  
Description:  
Decrement register ‘f’. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value (default).  
(W<7:4>) W<7:4>  
Status Affected:  
Encoding:  
C
0000  
0000  
0000  
0111  
Description:  
DAWadjusts the eight-bit value in W  
resulting from the earlier addition of two  
variables (each in packed BCD format)  
and produces a correct packed BCD  
result.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Example:  
DECF  
CNT,  
Decode  
Read  
register W  
Process  
Data  
Write  
W
Before Instruction  
CNT  
Z
After Instruction  
=
0x01  
0
Example 1:  
DAW  
=
Before Instruction  
W
=
=
=
0xA5  
0
0
CNT  
Z
=
=
0x00  
1
C
DC  
After Instruction  
W
=
=
=
0x05  
1
0
C
DC  
Example 2:  
Before Instruction  
W
=
=
=
0xCE  
0
0
C
DC  
After Instruction  
W
=
=
=
0x34  
1
0
C
DC  
DS41159E-page 300  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
DECFSZ  
Decrement f, Skip if 0  
DCFSNZ  
Decrement f, Skip if not 0  
Syntax:  
[ label ] DECFSZ f [,d [,a]]  
Syntax:  
[ label ] DCFSNZ f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – 1 dest,  
Operation:  
(f) – 1 dest,  
skip if result = 0  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0010  
11da  
ffff  
ffff  
0100  
11da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
If the result is ‘0’, the next instruction  
which is already fetched is discarded  
and a NOPis executed instead, making  
it a two-cycle instruction. If ‘a’ is ‘0’, the  
Access Bank will be selected,  
decremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
If the result is not ‘0’, the next  
instruction which is already fetched is  
discarded and a NOPis executed  
instead, making it a two-cycle  
instruction. If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value  
(default).  
overriding the BSR value. If ‘a’ = 1,  
then the bank will be selected as per  
the BSR value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
Example:  
HERE  
DECFSZ  
GOTO  
CNT  
LOOP  
Example:  
HERE  
ZERO  
NZERO  
DCFSNZ TEMP  
:
:
CONTINUE  
Before Instruction  
PC  
After Instruction  
Before Instruction  
TEMP  
=
Address (HERE)  
=
?
After Instruction  
CNT  
=
CNT – 1  
0;  
If CNT  
=
=
=
TEMP  
If TEMP  
PC  
If TEMP  
PC  
=
=
=
=
TEMP – 1,  
0;  
PC  
Address (CONTINUE)  
0;  
If CNT  
PC  
Address (ZERO)  
0;  
Address (HERE + 2)  
Address (NZERO)  
© 2006 Microchip Technology Inc.  
DS41159E-page 301  
PIC18FXX8  
GOTO  
Unconditional Branch  
INCF  
Increment f  
Syntax:  
[ label ] GOTO  
0 k 1048575  
k PC<20:1>  
None  
k
Syntax:  
[ label ] INCF f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
Status Affected:  
Encoding:  
C, DC, N, OV, Z  
1110  
1111  
1111  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
0010  
10da  
ffff  
ffff  
19  
Description:  
GOTOallows an unconditional branch  
Description:  
The contents of register ‘f’ are  
anywhere within entire 2-Mbyte memory  
range. The 20-bit value ‘k’ is loaded into  
PC<20:1>. GOTOis always a two-cycle  
instruction.  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default). If ‘a’  
is ‘0’, the Access Bank will be selected,  
overriding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’<7:0>  
No  
operation  
Read literal  
‘k’<19:8>,  
Write to PC  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Example:  
INCF  
CNT,  
Example:  
GOTO THERE  
Before Instruction  
After Instruction  
PC Address (THERE)  
CNT  
Z
=
0xFF  
=
=
=
=
0
?
?
C
DC  
After Instruction  
CNT  
Z
=
0x00  
=
=
=
1
1
1
C
DC  
DS41159E-page 302  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
INCFSZ  
Increment f, Skip if 0  
INFSNZ  
Increment f, Skip if not 0  
Syntax:  
[ label ] INCFSZ f [,d [,a]]  
Syntax:  
[ label ] INFSNZ f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest,  
skip if result = 0  
Operation:  
(f) + 1 dest,  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0011  
11da  
ffff  
ffff  
0100  
10da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
If the result is ‘0’, the next instruction  
which is already fetched is discarded  
and a NOPis executed instead, making  
it a two-cycle instruction. If ‘a’ is ‘0’, the  
Access Bank will be selected,  
incremented. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
If the result is not ‘0’, the next  
instruction which is already fetched is  
discarded and a NOPis executed  
instead, making it a two-cycle  
instruction. If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value (default).  
overriding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
Example:  
HERE  
NZERO  
ZERO  
INCFSZ  
:
:
CNT  
Example:  
HERE  
ZERO  
NZERO  
INFSNZ REG  
Before Instruction  
PC  
After Instruction  
Before Instruction  
PC  
After Instruction  
=
Address (HERE)  
=
Address (HERE)  
CNT  
If CNT  
PC  
If CNT  
PC  
=
CNT + 1  
REG  
If REG  
PC  
If REG  
PC  
=
REG + 1  
=
=
=
0;  
=
=
=
0;  
Address (ZERO)  
0;  
Address (NZERO)  
Address (NZERO)  
0;  
Address (ZERO)  
© 2006 Microchip Technology Inc.  
DS41159E-page 303  
PIC18FXX8  
IORLW  
Inclusive OR Literal with W  
IORWF  
Inclusive OR W with f  
Syntax:  
[ label ] IORLW  
0 k 255  
(W) .OR. k W  
N, Z  
k
Syntax:  
[ label ] IORWF f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(W) .OR. (f) dest  
0000  
1001  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, Z  
The contents of W are ORed with the  
eight-bit literal ‘k’. The result is placed in  
W.  
0001  
00da  
ffff  
ffff  
Description:  
Inclusive OR W with register ‘f’. If ‘d’ is  
0’, the result is placed in W. If ‘d’ is ‘1’,  
the result is placed back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
Example:  
IORLW  
0x35  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Before Instruction  
W
=
0x9A  
0xBF  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
After Instruction  
W
=
Example:  
IORWF RESULT, W  
Before Instruction  
RESULT =  
0x13  
0x91  
W
=
After Instruction  
RESULT =  
0x13  
0x93  
W
=
DS41159E-page 304  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
LFSR  
Load FSR  
MOVF  
Move f  
Syntax:  
[ label ] LFSR f,k  
Syntax:  
[ label ] MOVF f [,d [,a]]  
Operands:  
0 f 2  
0 k 4095  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
k FSRf  
Operation:  
f dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N, Z  
1110  
1111  
1110  
0000  
00ff  
k kkk  
11  
kkkk  
k kkk  
0101  
00da  
ffff  
ffff  
7
Description:  
The 12-bit literal ‘k’ is loaded into the  
file select register pointed to by ‘f’.  
Description:  
The contents of register ‘f’ are moved to  
a destination dependent upon the  
status of ‘d’. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default).  
Location ‘f’ can be anywhere in the  
256-byte bank. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding the  
BSR value. If ‘a’ = 1, then the bank will  
be selected as per the BSR value  
(default).  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
‘k’ MSB  
Process  
Data  
Write  
literal ‘k’  
MSB to  
FSRfH  
Words:  
Cycles:  
1
1
Decode  
Read literal  
‘k’ LSB  
Process  
Data  
Write literal  
‘k’ to FSRfL  
Q Cycle Activity:  
Q1  
Example:  
LFSR 2, 0x3AB  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write W  
After Instruction  
FSR2H  
FSR2L  
=
=
0x03  
0xAB  
Example:  
MOVF  
REG, W  
Before Instruction  
REG  
W
=
=
0x22  
0xFF  
After Instruction  
REG  
W
=
=
0x22  
0x22  
© 2006 Microchip Technology Inc.  
DS41159E-page 305  
PIC18FXX8  
MOVFF  
Move f to f  
MOVLB  
Move Literal to Low Nibble in BSR  
Syntax:  
[ label ] MOVFF f ,f  
Syntax:  
[ label ] MOVLB  
0 k 255  
k BSR  
k
s
d
Operands:  
0 f 4095  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
s
0 f 4095  
d
Operation:  
(f ) f  
s
d
None  
Status Affected:  
None  
0000  
0001  
kkkk  
kkkk  
Encoding:  
1st word (source)  
2nd word (destin.)  
The 8-bit literal ‘k’ is loaded into the  
Bank Select Register (BSR).  
1100  
1111  
ffff  
ffff  
ffff  
ffff  
ffff  
ffff  
s
d
Words:  
Cycles:  
1
1
Description:  
The contents of source register ‘f ’ are  
s
moved to destination register ‘f ’.  
d
Location of source ‘f ’ can be anywhere  
in the 4096-byte data space (000h to  
s
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
FFFh) and location of destination ‘f ’  
d
Decode  
Read literal  
‘k’  
Process  
Data  
Write  
literal ‘k’ to  
BSR  
can also be anywhere from 000h to  
FFFh.  
Either source or destination can be W  
(a useful special situation).  
MOVFFis particularly useful for  
transferring a data memory location to a  
peripheral register (such as the transmit  
buffer or an I/O port).  
Example:  
MOVLB  
5
Before Instruction  
BSR register  
After Instruction  
BSR register  
=
=
0x02  
0x05  
The MOVFFinstruction cannot use the  
PCL, TOSU, TOSH or TOSL as the  
destination register.  
The MOVFFinstruction should not be  
used to modify interrupt settings while  
any interrupt is enabled (see page 77).  
Words:  
Cycles:  
2
2 (3)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
(src)  
Process  
Data  
No  
operation  
Decode  
No  
operation  
No  
operation  
Write  
register ‘f’  
(dest)  
No dummy  
read  
Example:  
MOVFF  
REG1, REG2  
Before Instruction  
REG1  
REG2  
=
=
0x33  
0x11  
After Instruction  
REG1  
REG2  
=
=
0x33  
0x33  
DS41159E-page 306  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
MOVLW  
Move Literal to W  
MOVWF  
Move W to f  
Syntax:  
[ label ] MOVLW  
0 k 255  
k W  
k
Syntax:  
[ label ] MOVWF f [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(W) f  
None  
Status Affected:  
Encoding:  
None  
0000  
1110  
kkkk  
kkkk  
0110  
111a  
ffff  
ffff  
The eight-bit literal ‘k’ is loaded into W.  
Description:  
Move data from W to register ‘f’.  
1
1
Location ‘f’ can be anywhere in the  
256-byte bank. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding the  
BSR value. If ‘a’ = 1, then the bank will  
be selected as per the BSR value  
(default).  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
Example:  
MOVLW  
0x5A  
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
W
=
0x5A  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Example:  
MOVWF  
REG  
Before Instruction  
W
REG  
=
=
0x4F  
0xFF  
After Instruction  
W
REG  
=
=
0x4F  
0x4F  
© 2006 Microchip Technology Inc.  
DS41159E-page 307  
PIC18FXX8  
MULLW  
Multiply Literal with W  
MULWF  
Multiply W with f  
Syntax:  
[ label ] MULLW  
k
Syntax:  
[ label ] MULWF f [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
Operands:  
0 f 255  
a [0,1]  
(W) x k PRODH:PRODL  
Operation:  
(W) x (f) PRODH:PRODL  
None  
Status Affected:  
Encoding:  
None  
0000  
1101  
kkkk  
kkkk  
0000  
001a  
ffff  
ffff  
An unsigned multiplication is carried out  
between the contents of W and the 8-bit  
literal ‘k’. The 16-bit result is placed in  
the PRODH:PRODL register pair.  
PRODH contains the high byte. W is  
unchanged.  
None of the status flags are affected.  
Note that neither Overflow nor Carry is  
possible in this operation. A Zero result  
is possible but not detected.  
Description:  
An unsigned multiplication is carried out  
between the contents of W and the  
register file location ‘f’. The 16-bit result  
is stored in the PRODH:PRODL  
register pair. PRODH contains the high  
byte.  
Both W and ‘f’ are unchanged.  
None of the status flags are affected.  
Note that neither Overflow nor Carry is  
possible in this operation. A Zero result  
is possible but not detected. If ‘a’ is ‘0’,  
the Access Bank will be selected,  
overriding the BSR value. If ‘a’= 1, then  
the bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write  
Words:  
Cycles:  
1
1
registers  
PRODH:  
PRODL  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Example:  
MULLW  
0xC4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
Before Instruction  
registers  
PRODH:  
PRODL  
W
PRODH  
PRODL  
=
=
=
0xE2  
?
?
After Instruction  
Example:  
MULWF  
REG  
W
PRODH  
PRODL  
=
=
=
0xE2  
0xAD  
0x08  
Before Instruction  
W
=
=
=
=
0xC4  
0xB5  
REG  
PRODH  
PRODL  
?
?
After Instruction  
W
=
=
=
=
0xC4  
0xB5  
0x8A  
0x94  
REG  
PRODH  
PRODL  
DS41159E-page 308  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
NEGF  
Negate f  
NOP  
No Operation  
Syntax:  
[ label ] NEGF f [,a]  
Syntax:  
[ label ] NOP  
None  
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
No operation  
None  
Operation:  
( f ) + 1 f  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
0000  
1111  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0110  
110a  
ffff  
ffff  
Description:  
Location ‘f’ is negated using two’s  
complement. The result is placed in the  
data memory location ‘f’. If ‘a’ is ‘0’, the  
Access Bank will be selected,  
overriding the BSR value. If ‘a’ = 1, then  
the bank will be selected as per the  
BSR value.  
Description:  
Words:  
No operation.  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
No  
Q4  
Decode  
No  
operation  
No  
Words:  
Cycles:  
1
1
operation  
operation  
Example:  
None.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Example:  
NEGF  
REG, 1  
Before Instruction  
REG  
After Instruction  
REG  
=
0011 1010 [0x3A]  
1100 0110 [0xC6]  
=
© 2006 Microchip Technology Inc.  
DS41159E-page 309  
PIC18FXX8  
POP  
Pop Top of Return Stack  
PUSH  
Push Top of Return Stack  
Syntax:  
[ label ] POP  
None  
Syntax:  
[ label ] PUSH  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
(TOS) bit bucket  
None  
(PC + 2) TOS  
None  
0000  
0000  
0000  
0110  
0000  
0000  
0000  
0101  
The TOS value is pulled off the return  
stack and is discarded. The TOS value  
then becomes the previous value that  
was pushed onto the return stack.  
This instruction is provided to enable  
the user to properly manage the return  
stack to incorporate a software stack.  
The PC + 2 is pushed onto the top of  
the return stack. The previous TOS  
value is pushed down on the stack.  
This instruction allows the user to  
implement a software stack by  
modifying TOS and then pushing it onto  
the return stack.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
No  
operation  
POP TOS  
value  
No  
operation  
Decode  
PUSH PC + 2  
onto return  
stack  
No  
operation  
No  
operation  
Example:  
POP  
GOTO  
NEW  
Example:  
PUSH  
Before Instruction  
TOS  
Stack (1 level down)  
Before Instruction  
=
=
0x0031A2  
0x014332  
TOS  
PC  
=
=
0x00345A  
0x000124  
After Instruction  
After Instruction  
TOS  
PC  
=
=
0x014332  
NEW  
PC  
=
=
=
0x000126  
0x000126  
0x00345A  
TOS  
Stack (1 level down)  
DS41159E-page 310  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
RCALL  
Relative Call  
RESET  
Reset  
Syntax:  
[ label ] RCALL  
-1024 n 1023  
(PC) + 2 TOS,  
n
Syntax:  
[ label ] RESET  
None  
Operands:  
Operation:  
Operands:  
Operation:  
Reset all registers and flags that are  
affected by a MCLR Reset.  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
All  
1101  
1nnn  
nnnn  
nnnn  
0000  
0000  
1111  
1111  
Description:  
Subroutine call with a jump up to 1K  
from the current location. First, return  
address (PC + 2) is pushed onto the  
stack. Then, add the 2’s complement  
number ‘2n’ to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC + 2 + 2n. This instruction is a  
two-cycle instruction.  
Description:  
This instruction provides a way to  
execute a MCLR Reset in software.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Start  
No  
No  
Reset  
operation  
operation  
Words:  
Cycles:  
1
2
Example:  
RESET  
Q Cycle Activity:  
Q1  
After Instruction  
Registers =  
Q2  
Q3  
Q4  
Reset Value  
Reset Value  
Flags*  
=
Decode  
Read literal ‘n’  
Process  
Data  
Write to  
PC  
Push PC to  
stack  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
RCALL Jump  
Before Instruction  
PC  
After Instruction  
PC  
TOS =  
=
Address (HERE)  
=
Address (Jump)  
Address (HERE + 2)  
© 2006 Microchip Technology Inc.  
DS41159E-page 311  
PIC18FXX8  
RETFIE  
Return from Interrupt  
RETLW  
Return Literal to W  
Syntax:  
[ label ] RETFIE [s]  
Syntax:  
[ label ] RETLW k  
Operands:  
Operation:  
s [0,1]  
Operands:  
Operation:  
0 k 255  
(TOS) PC,  
k W,  
1 GIE/GIEH or PEIE/GIEL,  
if s = 1  
(TOS) PC,  
PCLATU, PCLATH are unchanged  
(WS) W,  
(STATUSS) Status,  
(BSRS) BSR,  
Status Affected:  
Encoding:  
None  
0000  
1100  
kkkk  
kkkk  
PCLATU, PCLATH are unchanged.  
Description:  
W is loaded with the eight-bit literal ‘k’.  
The program counter is loaded from the  
top of the stack (the return address).  
The high address latch (PCLATH)  
remains unchanged.  
Status Affected:  
Encoding:  
GIE/GIEH, PEIE/GIEL.  
0000  
0000  
0001  
000s  
Description:  
Return from interrupt. Stack is popped  
and Top-of-Stack (TOS) is loaded into  
the PC. Interrupts are enabled by  
setting either the high or low priority  
global interrupt enable bit. If ‘s’ = 1, the  
contents of the shadow registers WS,  
STATUSS and BSRS are loaded into  
their corresponding registers W, Status  
and BSR. If ‘s’ = 0, no update of these  
registers occurs (default).  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Pop PC  
from stack,  
Write to W  
No  
operation  
No  
No  
No  
Words:  
Cycles:  
1
2
operation  
operation  
operation  
Q Cycle Activity:  
Q1  
Example:  
Q2  
Q3  
Q4  
CALL TABLE ; W contains table  
; offset value  
Decode  
No  
operation  
No  
operation  
Pop PC from  
stack  
; W now has  
; table value  
Set GIEH or  
GIEL  
:
No  
operation  
No  
operation  
No  
operation  
No  
operation  
TABLE  
ADDWF PCL ; W = offset  
RETLW k0  
RETLW k1  
:
; Begin table  
;
Example:  
RETFIE 1  
After Interrupt  
:
PC  
=
=
=
=
=
TOS  
WS  
BSRS  
STATUSS  
1
RETLW kn  
; End of table  
W
BSR  
Status  
Before Instruction  
W
=
0x07  
GIE/GIEH, PEIE/GIEL  
After Instruction  
W
=
value of kn  
DS41159E-page 312  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
RETURN  
Return from Subroutine  
RLCF  
Rotate Left f through Carry  
Syntax:  
[ label ] RETURN [s]  
Syntax:  
[ label ]  
RLCF f [,d [,a]]  
Operands:  
Operation:  
s [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(TOS) PC,  
if s = 1  
(WS) W,  
Operation:  
(f<n>) dest<n + 1>,  
(f<7>) C,  
(C) dest<0>  
(STATUSS) Status,  
(BSRS) BSR,  
PCLATU, PCLATH are unchanged  
Status Affected:  
Encoding:  
C, N, Z  
Status Affected:  
Encoding:  
None  
0011  
01da  
ffff  
ffff  
0000  
0000  
0001  
001s  
Description:  
The contents of register ‘f’ are rotated  
one bit to the left through the Carry flag.  
If ‘d’ is ‘0’, the result is placed in W. If ‘d’  
is ‘1’, the result is stored back in register  
‘f’ (default). If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ = 1, then the bank will be  
selected as per the BSR value (default).  
Description:  
Return from subroutine. The stack is  
popped and the top of the stack (TOS)  
is loaded into the program counter. If  
‘s’= 1, the contents of the shadow  
registers WS, STATUSS and BSRS are  
loaded into their corresponding  
registers W, Status and BSR. If ‘s’ = 0,  
no update of these registers occurs  
(default).  
register f  
C
Words:  
Cycles:  
1
2
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Read  
register ‘f’  
Q3  
Process  
Data  
Q4  
Decode  
No  
operation  
Process  
Data  
Pop PC  
from stack  
Decode  
Write to  
destination  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
RLCF  
REG, W  
Before Instruction  
Example:  
RETURN  
REG  
C
=
=
1110 0110  
0
After Interrupt  
PC = TOS  
After Instruction  
REG  
=
=
=
1110 0110  
1100 1100  
1
W
C
© 2006 Microchip Technology Inc.  
DS41159E-page 313  
PIC18FXX8  
RLNCF  
Rotate Left f (no carry)  
RRCF  
Rotate Right f through Carry  
Syntax:  
[ label ]  
RLNCF f [,d [,a]]  
Syntax:  
[ label ] RRCF f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<n>) dest<n + 1>,  
(f<7>) dest<0>  
Operation:  
(f<n>) dest<n – 1>,  
(f<0>) C,  
(C) dest<7>  
Status Affected:  
Encoding:  
N, Z  
Status Affected:  
Encoding:  
C, N, Z  
0100  
01da  
ffff  
ffff  
0011  
00da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are rotated  
one bit to the left. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’ (default). If ‘a’  
is ‘0’, the Access Bank will be selected,  
overriding the BSR value. If ‘a’ is ‘1’,  
then the bank will be selected as per  
the BSR value (default).  
Description:  
The contents of register ‘f’ are rotated  
one bit to the right through the Carry  
flag. If ‘d’ is ‘0’, the result is placed in W.  
If ‘d’ is ‘1’, the result is placed back in  
register ‘f’ (default). If ‘a’ is ‘0’, the  
Access Bank will be selected,  
overriding the BSR value. If ‘a’ is ‘1’,  
then the bank will be selected as per  
the BSR value (default).  
register f  
register f  
C
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
RLNCF  
REG  
Before Instruction  
REG  
After Instruction  
Example:  
RRCF  
REG, W  
=
1010 1011  
0101 0111  
Before Instruction  
REG  
=
REG  
C
=
=
1110 0110  
0
After Instruction  
REG  
=
=
=
1110 0110  
0111 0011  
0
W
C
DS41159E-page 314  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
RRNCF  
Rotate Right f (no carry)  
SETF  
Set f  
Syntax:  
[ label ] RRNCF f [,d [,a]]  
Syntax:  
[ label ] SETF f [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
FFh f  
Operation:  
(f<n>) dest<n – 1>,  
(f<0>) dest<7>  
Status Affected:  
Encoding:  
None  
0110  
100a  
ffff  
ffff  
Status Affected:  
Encoding:  
N, Z  
Description:  
The contents of the specified register  
are set to FFh. If ‘a’ is ‘0’, the Access  
Bank will be selected, overriding the  
BSR value. If ‘a’ is ‘1’, then the bank will  
be selected as per the BSR value  
(default).  
0100  
00da  
ffff  
ffff  
Description:  
The contents of register ‘f’ are rotated  
one bit to the right. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’ (default). If ‘a’  
is ‘0’, the Access Bank will be selected,  
overriding the BSR value. If ‘a’ is ‘1’,  
then the bank will be selected as per  
the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
register f  
Decode  
Read  
register ‘f’  
Process  
Data  
Write  
register ‘f’  
Words:  
Cycles:  
1
1
Example:  
SETF  
REG  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
REG  
After Instruction  
REG  
=
=
0x5A  
0xFF  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example 1:  
RRNCF  
REG, 1, 0  
Before Instruction  
REG  
After Instruction  
REG  
=
1101 0111  
=
1110 1011  
RRNCF REG, W  
Example 2:  
Before Instruction  
W
REG  
=
=
?
1101 0111  
After Instruction  
W
REG  
=
=
1110 1011  
1101 0111  
© 2006 Microchip Technology Inc.  
DS41159E-page 315  
PIC18FXX8  
SLEEP  
Enter Sleep Mode  
SUBFWB  
Subtract f from W with Borrow  
Syntax:  
[ label ] SLEEP  
None  
Syntax:  
[ label ] SUBFWB f [,d [,a]]  
Operands:  
Operation:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
00h WDT,  
0 WDT postscaler,  
1 TO,  
Operation:  
(W) – (f) – (C) dest  
0 PD  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Status Affected:  
Encoding:  
TO, PD  
0101  
01da  
ffff  
ffff  
0000  
0000  
0000  
0011  
Description:  
Subtract register ‘f’ and Carry flag  
(borrow) from W (2’s complement  
method). If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored in  
register ‘f’ (default). If ‘a’ is ‘0’, the  
Access Bank will be selected,  
overriding the BSR value. If ‘a’ is ‘1’,  
then the bank will be selected as per  
the BSR value (default).  
Description:  
The Power-Down status bit (PD) is  
cleared. The Time-out status bit (TO)  
is set. Watchdog Timer and its  
postscaler are cleared.  
The processor is put into Sleep mode  
with the oscillator stopped.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
No  
operation  
Process  
Data  
Go to  
Sleep  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
SLEEP  
Example 1:  
SUBFWB REG  
Before Instruction  
TO  
PD  
=
=
?
?
Before Instruction  
REG  
W
C
=
=
=
0x03  
0x02  
0x01  
After Instruction  
TO  
PD  
=
=
1 †  
0
After Instruction  
REG  
W
C
=
0xFF  
0x02  
0x00  
0x00  
=
=
=
=
If WDT causes wake-up, this bit is cleared.  
Z
N
0x01 ; result is negative  
Example 2:  
Before Instruction  
SUBFWB  
REG, 0, 0  
REG  
W
C
=
=
=
2
5
1
After Instruction  
REG  
W
C
=
2
3
1
0
0
=
=
=
=
Z
N
; result is positive  
Example 3:  
Before Instruction  
SUBFWB  
REG, 1, 0  
REG  
W
C
=
=
=
1
2
0
After Instruction  
REG  
W
C
=
0
2
1
1
0
=
=
=
=
Z
; result is zero  
N
DS41159E-page 316  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
SUBLW  
Subtract W from Literal  
SUBWF  
Syntax:  
Subtract W from f  
Syntax:  
[ label ] SUBLW  
0 k 255  
k
[ label ] SUBWF f [,d [,a]]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
k – (W) W  
N, OV, C, DC, Z  
Operation:  
(f) – (W) dest  
0000  
1000  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
W is subtracted from the eight-bit  
literal ‘k’. The result is placed in W.  
0101  
11da  
ffff  
ffff  
Description:  
Subtract W from register ‘f’ (2’s  
complement method). If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’  
(default). If ‘a’ is ‘0’, the Access Bank  
will be selected, overriding the BSR  
value. If ‘a’ is ‘1’, then the bank will be  
selected as per the BSR value  
(default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to W  
Example 1:  
SUBLW 0x02  
Words:  
Cycles:  
1
1
Before Instruction  
W
C
=
=
1
?
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
W
C
Z
=
1
=
=
=
1
0
0
; result is positive  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
N
Example 1:  
SUBWF REG  
Example 2:  
Before Instruction  
SUBLW 0x02  
Before Instruction  
REG  
W
=
3
2
?
W
C
=
=
2
?
=
=
C
After Instruction  
After Instruction  
W
C
Z
=
0
REG  
W
C
Z
N
=
1
2
1
0
0
=
=
=
1
1
0
; result is zero  
=
=
=
=
; result is positive  
N
Example 3:  
Before Instruction  
SUBLW 0x02  
Example 2:  
SUBWF REG, W  
W
C
=
=
3
?
Before Instruction  
REG  
W
C
=
=
=
2
2
?
After Instruction  
W
C
Z
=
FF ; (2’s complement)  
=
=
=
0
0
1
; result is negative  
After Instruction  
REG  
W
C
=
2
0
1
1
0
N
=
=
=
=
; result is zero  
Z
N
Example 3:  
SUBWF REG  
Before Instruction  
REG  
W
C
=
=
=
0x01  
0x02  
?
After Instruction  
REG  
W
C
=
0xFFh ;(2’s complement)  
=
=
=
=
0x02  
0x00 ; result is negative  
0x00  
0x01  
Z
N
© 2006 Microchip Technology Inc.  
DS41159E-page 317  
PIC18FXX8  
SUBWFB  
Syntax:  
Subtract W from f with Borrow  
SWAPF  
Swap f  
Syntax:  
[ label ] SWAPF f [,d [,a]]  
[ label ] SUBWFB f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<3:0>) dest<7:4>,  
(f<7:4>) dest<3:0>  
Operation:  
(f) – (W) – (C) dest  
Status Affected:  
Encoding:  
N, OV, C, DC, Z  
Status Affected:  
Encoding:  
None  
0101  
10da  
ffff  
ffff  
0011  
10da  
ffff  
ffff  
Description:  
Subtract W and the Carry flag (borrow)  
from register ‘f’ (2’s complement  
method). If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored back  
in register ‘f’ (default). If ‘a’ is ‘0’, the  
Access Bank will be selected,  
overriding the BSR value. If ‘a’ is ‘1’,  
then the bank will be selected as per the  
BSR value (default).  
Description:  
The upper and lower nibbles of register  
‘f’ are exchanged. If ‘d’ is ‘0’, the result  
is placed in W. If ‘d’ is ‘1’, the result is  
placed in register ‘f’ (default). If ‘a’ is ‘0’,  
the Access Bank will be selected,  
overriding the BSR value. If ‘a’ is ‘1’,  
then the bank will be selected as per  
the BSR value (default).  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example 1:  
SUBWFB REG, 1, 0  
Example:  
SWAPF  
REG  
Before Instruction  
Before Instruction  
REG  
=
=
=
0x19  
0x0D  
0x01  
(0001 1001)  
(0000 1101)  
REG  
=
0x53  
0x35  
W
C
After Instruction  
After Instruction  
REG  
=
REG  
W
=
0x0C  
0x0D  
0x01  
0x00  
0x00  
(0000 1011)  
(0000 1101)  
=
=
=
=
C
Z
N
; result is positive  
Example 2:  
Before Instruction  
SUBWFB REG, 0, 0  
REG  
=
=
=
0x1B  
0x1A  
0x00  
(0001 1011)  
(0001 1010)  
W
C
After Instruction  
REG  
W
C
=
0x1B  
0x00  
0x01  
0x01  
0x00  
(0001 1011)  
=
=
=
=
Z
; result is zero  
N
Example 3:  
Before Instruction  
SUBWFB REG, 1, 0  
REG  
=
=
=
0x03  
0x0E  
0x01  
(0000 0011)  
(0000 1101)  
W
C
After Instruction  
REG  
=
0xF5  
(1111 0100)  
; [2’s comp]  
W
=
=
=
=
0x0E  
0x00  
0x00  
0x01  
(0000 1101)  
C
Z
N
; result is negative  
DS41159E-page 318  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TBLRD  
Table Read  
Syntax:  
[ label ]  
None  
TBLRD ( *; *+; *-; +*)  
Operands:  
Operation:  
if TBLRD *,  
(Prog Mem (TBLPTR)) TABLAT;  
TBLPTR – No Change;  
if TBLRD *+,  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) + 1 TBLPTR;  
if TBLRD *-,  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) – 1 TBLPTR;  
if TBLRD +*,  
(TBLPTR) + 1 TBLPTR;  
(Prog Mem (TBLPTR)) TABLAT  
Status Affected: None  
Encoding:  
0000  
0000  
0000  
10nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
Description:  
This instruction is used to read the contents  
of Program Memory (P.M.). To address the  
program memory, a pointer called Table  
Pointer (TBLPTR) is used.  
The TBLPTR (a 21-bit pointer) points to each  
byte in the program memory. TBLPTR has a  
2-Mbyte address range.  
TBLPTR[0] = 0: Least Significant  
Byte of Program  
Memory Word  
TBLPTR[0] = 1: Most Significant Byte  
of Program Memory  
Word  
The TBLRDinstruction can modify the value  
of TBLPTR as follows:  
no change  
post-increment  
post-decrement  
pre-increment  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
No  
Q3  
No  
Q4  
Decode  
No  
operation  
operation  
operation  
No  
No operation  
No  
No operation  
(Write  
TABLAT)  
operation (Read Program operation  
Memory)  
Example 1:  
TBLRD *+ ;  
Before Instruction  
TABLAT  
=
=
=
0x55  
0x00A356  
0x34  
TBLPTR  
MEMORY(0x00A356)  
After Instruction  
TABLAT  
TBLPTR  
=
=
0x34  
0x00A357  
Example 2:  
TBLRD +* ;  
Before Instruction  
TABLAT  
TBLPTR  
=
=
=
=
0xAA  
0x01A357  
0x12  
MEMORY(0x01A357)  
MEMORY(0x01A358)  
After Instruction  
0x34  
TABLAT  
TBLPTR  
=
=
0x34  
0x01A358  
© 2006 Microchip Technology Inc.  
DS41159E-page 319  
PIC18FXX8  
TBLWT  
Table Write  
TBLWT Table Write (Continued)  
Syntax:  
[ label ]  
None  
TBLWT ( *; *+; *-; +*)  
Words: 1  
Operands:  
Operation:  
Cycles: 2  
if TBLWT*,  
Q Cycle Activity:  
(TABLAT) Holding Register;  
TBLPTR – No Change;  
if TBLWT*+,  
(TABLAT) Holding Register;  
(TBLPTR) + 1 TBLPTR;  
if TBLWT*-,  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
No operation  
(Read  
TABLAT)  
No  
No operation  
(TABLAT) Holding Register;  
(TBLPTR) – 1 TBLPTR;  
if TBLWT+*,  
operation (Write to Holding  
Register)  
(TBLPTR) + 1 TBLPTR;  
(TABLAT) Holding Register;  
Example 1:  
TBLWT *+;  
Status Affected: None  
Before Instruction  
Encoding:  
0000  
0000  
0000  
11nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
TABLAT  
TBLPTR  
=
=
0x55  
0x00A356  
HOLDING REGISTER  
(0x00A356)  
=
0xFF  
After Instructions (table write completion)  
TABLAT  
=
=
0x55  
Description:  
This instruction uses the 3 LSBs of TBLPTR to  
determine which of the 8 holding registers the  
TABLAT is written to. The holding registers are  
used to program the contents of Program  
Memory (P.M.). (Refer to Section 6.0 “Flash  
Program Memory” for additional details.)  
The TBLPTR (a 21-bit pointer) points to each  
byte in the program memory. TBLPTR has a  
2-Mbyte address range. The LSb of the  
TBLPTR selects which byte of the program  
memory location to access.  
TBLPTR  
0x00A357  
HOLDING REGISTER  
(0x00A356)  
=
0x55  
Example 2:  
TBLWT +*;  
Before Instruction  
TABLAT  
TBLPTR  
=
=
0x34  
0x01389A  
HOLDING REGISTER  
(0x01389A)  
=
0xFF  
0xFF  
HOLDING REGISTER  
(0x01389B)  
=
TBLPTR[0] = 0: Least Significant Byte  
of Program Memory  
After Instruction (table write completion)  
Word  
TABLAT  
=
=
0x34  
TBLPTR  
0x01389B  
TBLPTR[0] = 1: Most Significant Byte  
of Program Memory  
HOLDING REGISTER  
(0x01389A)  
HOLDING REGISTER  
(0x01389B)  
=
=
0xFF  
0x34  
Word  
The TBLWT instruction can modify the value  
of TBLPTR as follows:  
no change  
post-increment  
post-decrement  
pre-increment  
DS41159E-page 320  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TSTFSZ  
Test f, Skip if 0  
XORLW  
Exclusive OR Literal with W  
Syntax:  
[ label ] TSTFSZ f [,a]  
Syntax:  
[ label ] XORLW  
0 k 255  
k
Operands:  
0 f 255  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
(W) .XOR. k W  
N, Z  
Operation:  
skip if f = 0  
Status Affected:  
Encoding:  
None  
0000  
1010  
kkkk  
kkkk  
0110  
011a  
ffff  
ffff  
The contents of W are XORed with  
the 8-bit literal ‘k’. The result is placed  
in W.  
Description:  
If ‘f’ = 0, the next instruction fetched  
during the current instruction execution  
is discarded and a NOPis executed,  
making this a two-cycle instruction. If ‘a’  
is ‘0’, the Access Bank will be selected,  
overriding the BSR value. If ‘a’ is ‘1’,  
then the bank will be selected as per  
the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ‘k’  
Process  
Data  
Write to  
W
Words:  
Cycles:  
1
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Example:  
XORLW 0xAF  
Before Instruction  
Q Cycle Activity:  
Q1  
W
=
0xB5  
0x1A  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ‘f’  
Process  
Data  
No  
operation  
W
=
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Example:  
HERE  
NZERO  
ZERO  
TSTFSZ CNT  
:
:
Before Instruction  
PC  
=
Address (HERE)  
After Instruction  
If CNT  
PC  
If CNT  
PC  
=
=
=
0x00,  
Address (ZERO)  
0x00,  
Address (NZERO)  
© 2006 Microchip Technology Inc.  
DS41159E-page 321  
PIC18FXX8  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] XORWF f [,d [,a]]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(W) .XOR. (f) dest  
Status Affected:  
Encoding:  
N, Z  
0001  
10da  
ffff  
ffff  
Description:  
Exclusive OR the contents of W with  
register ‘f’. If ‘d’ is ‘0’, the result is stored  
in W. If ‘d’ is ‘1’, the result is stored back  
in register ‘f’ (default). If ‘a’ is ‘0’, the  
Access Bank will be selected,  
overriding the BSR value. If ‘a’ is ‘1’,  
then the bank will be selected as per  
the BSR value (default).  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ‘f’  
Process  
Data  
Write to  
destination  
Example:  
XORWF  
REG  
Before Instruction  
REG  
W
=
=
0xAF  
0xB5  
After Instruction  
REG  
W
=
=
0x1A  
0xB5  
DS41159E-page 322  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
26.1 MPLAB Integrated Development  
Environment Software  
26.0 DEVELOPMENT SUPPORT  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16-bit micro-  
controller market. The MPLAB IDE is a Windows®  
based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
• An interface to debugging tools  
- simulator  
- MPLAB C17 and MPLAB C18 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- programmer (sold separately)  
- emulator (sold separately)  
- in-circuit debugger (sold separately)  
• A full-featured editor with color coded context  
• A multiple project manager  
- MPLAB C30 C Compiler  
- MPLAB ASM30 Assembler/Linker/Library  
• Simulators  
• Customizable data windows with direct edit of  
contents  
- MPLAB SIM Software Simulator  
- MPLAB dsPIC30 Software Simulator  
• Emulators  
• High-level source code debugging  
• Mouse over variable inspection  
• Extensive on-line help  
- MPLAB ICE 2000 In-Circuit Emulator  
- MPLAB ICE 4000 In-Circuit Emulator  
• In-Circuit Debugger  
The MPLAB IDE allows you to:  
• Edit your source files (either assembly or C)  
- MPLAB ICD 2  
• One touch assemble (or compile) and download  
to PICmicro emulator and simulator tools  
(automatically updates all project information)  
• Device Programmers  
- PRO MATE® II Universal Device Programmer  
- PICSTART® Plus Development Programmer  
- MPLAB PM3 Device Programmer  
• Low-Cost Demonstration Boards  
- PICDEMTM 1 Demonstration Board  
- PICDEM.netTM Demonstration Board  
- PICDEM 2 Plus Demonstration Board  
- PICDEM 3 Demonstration Board  
- PICDEM 4 Demonstration Board  
- PICDEM 17 Demonstration Board  
- PICDEM 18R Demonstration Board  
- PICDEM LIN Demonstration Board  
- PICDEM USB Demonstration Board  
• Evaluation Kits  
• Debug using:  
- source files (assembly or C)  
- mixed assembly and C  
- machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increasing flexibility  
and power.  
26.2 MPASM Assembler  
The MPASM assembler is a full-featured, universal  
macro assembler for all PICmicro MCUs.  
®
- KEELOQ Evaluation and Programming Tools  
- PICDEM MSC  
- microID® Developer Kits  
- CAN  
The MPASM assembler generates relocatable object  
files for the MPLINK object linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol ref-  
erence, absolute LST files that contain source lines and  
generated machine code and COFF files for  
debugging.  
- PowerSmart® Developer Kits  
- Analog  
The MPASM assembler features include:  
• Integration into MPLAB IDE projects  
• User defined macros to streamline assembly code  
• Conditional assembly for multi-purpose source  
files  
• Directives that allow complete control over the  
assembly process  
© 2006 Microchip Technology Inc.  
DS41159E-page 323  
PIC18FXX8  
26.3 MPLAB C17 and MPLAB C18  
C Compilers  
26.6 MPLAB ASM30 Assembler, Linker  
and Librarian  
The MPLAB C17 and MPLAB C18 Code Development  
MPLAB ASM30 assembler produces relocatable  
machine code from symbolic assembly language for  
dsPIC30F devices. MPLAB C30 compiler uses the  
assembler to produce it’s object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
Systems are complete ANSI  
C
compilers for  
Microchip’s PIC17CXXX and PIC18CXXX family of  
microcontrollers. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use not found with other compilers.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
• Support for the entire dsPIC30F instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
26.4 MPLINK Object Linker/  
MPLIB Object Librarian  
• Rich directive set  
The MPLINK object linker combines relocatable  
objects created by the MPASM assembler and the  
MPLAB C17 and MPLAB C18 C compilers. It can link  
relocatable objects from precompiled libraries, using  
directives from a linker script.  
• Flexible macro language  
• MPLAB IDE compatibility  
26.7 MPLAB SIM Software Simulator  
The MPLAB SIM software simulator allows code devel-  
opment in a PC hosted environment by simulating the  
PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user defined key press, to any pin. The execu-  
tion can be performed in Single-Step, Execute Until  
Break or Trace mode.  
The MPLIB object librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The MPLAB SIM simulator fully supports symbolic  
debugging using the MPLAB C17 and MPLAB C18  
C Compilers, as well as the MPASM assembler. The  
software simulator offers the flexibility to develop and  
debug code outside of the laboratory environment,  
making it an excellent, economical software  
development tool.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
26.5 MPLAB C30 C Compiler  
26.8 MPLAB SIM30 Software Simulator  
The MPLAB C30 C compiler is a full-featured, ANSI  
compliant, optimizing compiler that translates standard  
ANSI C programs into dsPIC30F assembly language  
source. The compiler also supports many command  
line options and language extensions to take full  
advantage of the dsPIC30F device hardware capabili-  
ties and afford fine control of the compiler code  
generator.  
The MPLAB SIM30 software simulator allows code  
development in a PC hosted environment by simulating  
the dsPIC30F series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user defined key press, to any of the pins.  
The MPLAB SIM30 simulator fully supports symbolic  
debugging using the MPLAB C30 C Compiler and  
MPLAB ASM30 assembler. The simulator runs in either  
a Command Line mode for automated tasks, or from  
MPLAB IDE. This high-speed simulator is designed to  
debug, analyze and optimize time intensive DSP  
routines.  
MPLAB C30 is distributed with a complete ANSI C  
standard library. All library functions have been vali-  
dated and conform to the ANSI C library standard. The  
library includes functions for string manipulation,  
dynamic memory allocation, data conversion, time-  
keeping and math functions (trigonometric, exponential  
and hyperbolic). The compiler provides symbolic  
information for high-level source debugging with the  
MPLAB IDE.  
DS41159E-page 324  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
26.9 MPLAB ICE 2000  
High-Performance Universal  
26.11 MPLAB ICD 2 In-Circuit Debugger  
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a  
powerful, low-cost, run-time development tool,  
connecting to the host PC via an RS-232 or high-speed  
USB interface. This tool is based on the Flash  
PICmicro MCUs and can be used to develop for these  
and other PICmicro microcontrollers. The MPLAB  
ICD 2 utilizes the in-circuit debugging capability built  
into the Flash devices. This feature, along with  
In-Circuit Emulator  
The MPLAB ICE 2000 universal in-circuit emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for  
PICmicro microcontrollers. Software control of the  
MPLAB ICE 2000 in-circuit emulator is advanced by  
the MPLAB Integrated Development Environment,  
which allows editing, building, downloading and source  
debugging from a single environment.  
Microchip’s In-Circuit Serial ProgrammingTM (ICSPTM  
)
protocol, offers cost effective in-circuit Flash debugging  
from the graphical user interface of the MPLAB  
Integrated Development Environment. This enables a  
designer to develop and debug source code by setting  
breakpoints, single-stepping and watching variables,  
CPU status and peripheral registers. Running at full  
speed enables testing hardware and applications in  
real-time. MPLAB ICD 2 also serves as a development  
programmer for selected PICmicro devices.  
The MPLAB ICE 2000 is a full-featured emulator sys-  
tem with enhanced trace, trigger and data monitoring  
features. Interchangeable processor modules allow the  
system to be easily reconfigured for emulation of differ-  
ent processors. The universal architecture of the  
MPLAB ICE in-circuit emulator allows expansion to  
support new PICmicro microcontrollers.  
The MPLAB ICE 2000 in-circuit emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft® Windows 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
26.12 PRO MATE II Universal Device  
Programmer  
The PRO MATE II is a universal, CE compliant device  
programmer with programmable voltage verification at  
VDDMIN and VDDMAX for maximum reliability. It features  
an LCD display for instructions and error messages  
and a modular detachable socket assembly to support  
various package types. In Stand-Alone mode, the  
PRO MATE II device programmer can read, verify and  
program PICmicro devices without a PC connection. It  
can also set code protection in this mode.  
26.10 MPLAB ICE 4000  
High-Performance Universal  
In-Circuit Emulator  
The MPLAB ICE 4000 universal in-circuit emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for high-  
end PICmicro microcontrollers. Software control of the  
MPLAB ICE in-circuit emulator is provided by the  
MPLAB Integrated Development Environment, which  
allows editing, building, downloading and source  
debugging from a single environment.  
26.13 MPLAB PM3 Device Programmer  
The MPLAB PM3 is a universal, CE compliant device  
programmer with programmable voltage verification at  
VDDMIN and VDDMAX for maximum reliability. It features  
a large LCD display (128 x 64) for menus and error  
messages and a modular detachable socket assembly  
to support various package types. The ICSP™ cable  
assembly is included as a standard item. In Stand-  
Alone mode, the MPLAB PM3 device programmer can  
read, verify and program PICmicro devices without a  
PC connection. It can also set code protection in this  
mode. MPLAB PM3 connects to the host PC via an RS-  
232 or USB cable. MPLAB PM3 has high-speed com-  
munications and optimized algorithms for quick pro-  
gramming of large memory devices and incorporates  
an SD/MMC card for file storage and secure data appli-  
cations.  
The MPLAB ICD 4000 is a premium emulator system,  
providing the features of MPLAB ICE 2000, but with  
increased emulation memory and high-speed perfor-  
mance for dsPIC30F and PIC18XXXX devices. Its  
advanced emulator features include complex triggering  
and timing, up to 2 Mb of emulation memory and the  
ability to view variables in real-time.  
The MPLAB ICE 4000 in-circuit emulator system has  
been designed as a real-time emulation system with  
advanced features that are typically found on more  
expensive development tools. The PC platform and  
Microsoft Windows 32-bit operating system were  
chosen to best make these features available in a  
simple, unified application.  
© 2006 Microchip Technology Inc.  
DS41159E-page 325  
PIC18FXX8  
26.14 PICSTART Plus Development  
Programmer  
26.17 PICDEM 2 Plus  
Demonstration Board  
The PICSTART Plus development programmer is an  
easy-to-use, low-cost, prototype programmer. It con-  
nects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient. The  
PICSTART Plus development programmer supports  
most PICmicro devices up to 40 pins. Larger pin count  
devices, such as the PIC16C92X and PIC17C76X,  
may be supported with an adapter socket. The  
PICSTART Plus development programmer is CE  
compliant.  
The PICDEM 2 Plus demonstration board supports  
many 18, 28 and 40-pin microcontrollers, including  
PIC16F87X and PIC18FXX2 devices. All the neces-  
sary hardware and software is included to run the dem-  
onstration programs. The sample microcontrollers  
provided with the PICDEM 2 demonstration board can  
be programmed with a PRO MATE II device program-  
mer, PICSTART Plus development programmer, or  
MPLAB ICD 2 with a Universal Programmer Adapter.  
The MPLAB ICD 2 and MPLAB ICE in-circuit emulators  
may also be used with the PICDEM 2 demonstration  
board to test firmware. A prototype area extends the  
circuitry for additional application components. Some  
of the features include an RS-232 interface, a 2 x 16  
LCD display, a piezo speaker, an on-board temperature  
sensor, four LEDs and sample PIC18F452 and  
PIC16F877 Flash microcontrollers.  
26.15 PICDEM 1 PICmicro  
Demonstration Board  
The PICDEM 1 demonstration board demonstrates the  
capabilities of the PIC16C5X (PIC16C54 to  
PIC16C58A), PIC16C61, PIC16C62X, PIC16C71,  
PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All  
necessary hardware and software is included to run  
basic demo programs. The sample microcontrollers  
provided with the PICDEM 1 demonstration board can  
be programmed with a PRO MATE II device program-  
mer or a PICSTART Plus development programmer.  
The PICDEM 1 demonstration board can be connected  
to the MPLAB ICE in-circuit emulator for testing. A  
prototype area extends the circuitry for additional appli-  
cation components. Features include an RS-232  
interface, a potentiometer for simulated analog input,  
push button switches and eight LEDs.  
26.18 PICDEM 3 PIC16C92X  
Demonstration Board  
The PICDEM 3 demonstration board supports the  
PIC16C923 and PIC16C924 in the PLCC package. All  
the necessary hardware and software is included to run  
the demonstration programs.  
26.19 PICDEM 4 8/14/18-Pin  
Demonstration Board  
The PICDEM 4 can be used to demonstrate the capa-  
bilities of the 8, 14 and 18-pin PIC16XXXX and  
PIC18XXXX MCUs, including the PIC16F818/819,  
PIC16F87/88, PIC16F62XA and the PIC18F1320  
family of microcontrollers. PICDEM 4 is intended to  
showcase the many features of these low pin count  
parts, including LIN and Motor Control using ECCP.  
Special provisions are made for low-power operation  
with the supercapacitor circuit and jumpers allow on-  
board hardware to be disabled to eliminate current  
draw in this mode. Included on the demo board are pro-  
visions for Crystal, RC or Canned Oscillator modes, a  
five volt regulator for use with a nine volt wall adapter  
or battery, DB-9 RS-232 interface, ICD connector for  
programming via ICSP and development with MPLAB  
ICD 2, 2 x 16 liquid crystal display, PCB footprints for  
H-Bridge motor driver, LIN transceiver and EEPROM.  
Also included are: header for expansion, eight LEDs,  
four potentiometers, three push buttons and a proto-  
typing area. Included with the kit is a PIC16F627A and  
a PIC18F1320. Tutorial firmware is included along  
with the User’s Guide.  
26.16 PICDEM.net Internet/Ethernet  
Demonstration Board  
The PICDEM.net demonstration board is an Internet/  
Ethernet demonstration board using the PIC18F452  
microcontroller and TCP/IP firmware. The board  
supports any 40-pin DIP device that conforms to the  
standard pinout used by the PIC16F877 or  
PIC18C452. This kit features a user friendly TCP/IP  
stack, web server with HTML, a 24L256 Serial  
EEPROM for Xmodem download to web pages into  
Serial EEPROM, ICSP/MPLAB ICD 2 interface con-  
nector, an Ethernet interface, RS-232 interface and a  
16 x 2 LCD display. Also included is the book and  
CD-ROM “TCP/IP Lean, Web Servers for Embedded  
Systems,” by Jeremy Bentham  
DS41159E-page 326  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
26.20 PICDEM 17 Demonstration Board  
26.24 PICDEM USB PIC16C7X5  
Demonstration Board  
The PICDEM 17 demonstration board is an evaluation  
board that demonstrates the capabilities of several  
Microchip microcontrollers, including PIC17C752,  
PIC17C756A, PIC17C762 and PIC17C766. A pro-  
grammed sample is included. The PRO MATE II device  
programmer, or the PICSTART Plus development pro-  
grammer, can be used to reprogram the device for user  
tailored application development. The PICDEM 17  
demonstration board supports program download and  
execution from external on-board Flash memory. A  
generous prototype area is available for user hardware  
expansion.  
The PICDEM USB Demonstration Board shows off the  
capabilities of the PIC16C745 and PIC16C765 USB  
microcontrollers. This board provides the basis for  
future USB products.  
26.25 Evaluation and  
Programming Tools  
In addition to the PICDEM series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
for these products.  
• KEELOQ evaluation and programming tools for  
Microchip’s HCS Secure Data Products  
26.21 PICDEM 18R PIC18C601/801  
Demonstration Board  
• CAN developers kit for automotive network  
applications  
The PICDEM 18R demonstration board serves to assist  
development of the PIC18C601/801 family of Microchip  
microcontrollers. It provides hardware implementation  
of both 8-bit Multiplexed/Demultiplexed and 16-bit  
Memory modes. The board includes 2 Mb external  
Flash memory and 128 Kb SRAM memory, as well as  
serial EEPROM, allowing access to the wide range of  
memory types supported by the PIC18C601/801.  
• Analog design boards and filter design software  
• PowerSmart battery charging evaluation/  
calibration kits  
• IrDA® development kit  
• microID development and rfLabTM development  
software  
• SEEVAL® designer kit for memory evaluation and  
endurance calculations  
26.22 PICDEM LIN PIC16C43X  
Demonstration Board  
• PICDEM MSC demo boards for Switching mode  
power supply, high-power IR driver, delta sigma  
ADC and flow rate sensor  
The powerful LIN hardware and software kit includes a  
series of boards and three PICmicro microcontrollers.  
The small footprint PIC16C432 and PIC16C433 are  
used as slaves in the LIN communication and feature  
Check the Microchip web page and the latest Product  
Selector Guide for the complete list of demonstration  
and evaluation kits.  
on-board LIN transceivers.  
A PIC16F874 Flash  
microcontroller serves as the master. All three micro-  
controllers are programmed with firmware to provide  
LIN bus communication.  
26.23 PICkitTM 1 Flash Starter Kit  
A complete “development system in a box”, the PICkit™  
Flash Starter Kit includes a convenient multi-section  
board for programming, evaluation and development of  
8/14-pin Flash PIC® microcontrollers. Powered via USB,  
the board operates under a simple Windows GUI. The  
PICkit 1 Starter Kit includes the User’s Guide (on CD  
ROM), PICkit 1 tutorial software and code for various  
applications. Also included are MPLAB® IDE (Integrated  
Development Environment) software, software and  
hardware “Tips 'n Tricks for 8-pin Flash PIC®  
Microcontrollers” Handbook and a USB interface cable.  
Supports all current 8/14-pin Flash PIC microcontrollers,  
as well as many future planned devices.  
© 2006 Microchip Technology Inc.  
DS41159E-page 327  
PIC18FXX8  
NOTES:  
DS41159E-page 328  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
27.0 ELECTRICAL CHARACTERISTICS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias.............................................................................................................-40°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR and RA4) .......................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +7.5V  
Voltage on MCLR with respect to VSS (Note 2) ......................................................................................... 0V to +13.25V  
Voltage on RA4 with respect to VSS............................................................................................................... 0V to +8.5V  
Total power dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD).......................................................................................................... 20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) ................................................................................................... 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by all ports (combined) ....................................................................................................200 mA  
Maximum current sourced by all ports (combined) ...............................................................................................200 mA  
Note 1: Power dissipation is calculated as follows:  
Pdis = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOL x IOL)  
2: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50-100Ω should be used when applying a “low” level to the MCLR/VPP pin rather  
than pulling this pin directly to VSS.  
Note:  
Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions  
above those indicated in the operation listings of this specification is not implied. Exposure to maximum  
rating conditions for extended periods may affect device reliability.  
© 2006 Microchip Technology Inc.  
DS41159E-page 329  
PIC18FXX8  
FIGURE 27-1:  
PIC18FXX8 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
PIC18FXX8  
4.2V  
3.5V  
3.0V  
2.5V  
2.0V  
40 MHz  
Frequency  
FIGURE 27-2:  
PIC18FXX8 VOLTAGE-FREQUENCY GRAPH (EXTENDED)  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
PIC18FXX8  
4.2V  
3.5V  
3.0V  
2.5V  
2.0V  
25 MHz  
Frequency  
DS41159E-page 330  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 27-3:  
PIC18LFXX8 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
PIC18LFXX8  
4.2V  
3.5V  
3.0V  
2.5V  
2.0V  
40 MHz  
4 MHz  
Frequency  
FMAX = (16.36 MHz/V) (VDDAPPMIN – 2.0V) + 4 MHz, if VDDAPPMIN 4.2V = 40 MHz, if VDDAPPMIN > 4.2V  
Note: VDDAPPMIN is the minimum voltage of the PICmicro® device in the application.  
© 2006 Microchip Technology Inc.  
DS41159E-page 331  
PIC18FXX8  
27.1 DC Characteristics  
PIC18LFXX8  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature -40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
PIC18FXX8  
(Industrial, Extended)  
Param  
No.  
Characteristic/  
Symbol  
Min Typ Max Units  
Conditions  
Device  
VDD  
Supply Voltage  
D001  
D001  
D002  
PIC18LFXX8 2.0  
PIC18FXX8 4.2  
5.5  
5.5  
V
V
V
HS, XT, RC and LP Oscillator modes  
VDR  
RAM Data Retention  
1.5  
Voltage(1)  
D003  
D004  
VPOR  
VDD Start Voltage  
to ensure internal  
Power-on Reset signal  
0.7  
V
See section on Power-on Reset for details  
SVDD  
VBOR  
VDD Rise Rate  
to ensure internal  
Power-on Reset signal  
0.05  
V/ms See section on Power-on Reset for details  
Brown-out Reset Voltage  
PIC18LFXX8  
D005  
D005  
BORV1:BORV0 = 11 1.96  
BORV1:BORV0 = 10 2.64  
BORV1:BORV0 = 01 4.07  
BORV1:BORV0 = 00 4.36  
PIC18FXX8  
2.16  
2.92  
4.59  
4.92  
V
V
V
V
BORV1:BORV0 = 1x N.A.  
BORV1:BORV0 = 01 4.07  
BORV1:BORV0 = 00 4.36  
N.A.  
4.59  
4.92  
V
V
V
Not in operating voltage range of device  
Legend: Rows are shaded for improved readability.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM  
data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have  
an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD and VSS  
and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).  
4: For RC oscillator configuration, current through REXT is not included. The current through the resistor can  
be estimated by the formula Ir = VDD/2 REXT (mA) with REXT in kOhm.  
5: The LVD and BOR modules share a large portion of circuitry. The ΔIBOR and ΔILVD currents are not  
additive. Once one of these modules is enabled, the other may also be enabled without further penalty.  
DS41159E-page 332  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
27.1 DC Characteristics (Continued)  
PIC18LFXX8  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
PIC18FXX8  
(Industrial, Extended)  
Param  
Symbol  
No.  
Characteristic/  
Device  
Min Typ Max Units  
Conditions  
IDD  
Supply Current(2,3,4)  
D010  
PIC18LFXX8  
XT oscillator configuration  
.7  
.7  
1.7  
2
2
4
mA VDD = 2.0V, +25°C, FOSC = 4 MHz  
mA VDD = 2.0V, -40°C to +85°C, FOSC = 4 MHz  
mA VDD = 4.2V, -40°C to +85°C, FOSC = 4 MHz  
RC oscillator configuration  
1
1
2.5  
2.5  
2.5  
5
mA VDD = 2.0V, +25°C, FOSC = 4 MHz  
mA VDD = 2.0V, -40°C to +85°C, FOSC = 4 MHz  
mA VDD = 4.2V, -40°C to +85°C, FOSC = 4 MHz  
RCIO oscillator configuration  
.7  
.7  
1.8  
2.5  
2.5  
4
mA VDD = 2.0V, +25°C, FOSC = 4 MHz  
mA VDD = 2.0V, -40°C to +85°C, FOSC = 4 MHz  
mA VDD = 4.2V, -40°C to +85°C, FOSC = 4 MHz  
D010  
PIC18FXX8  
XT oscillator configuration  
1.7  
1.7  
1.7  
4
4
4
mA VDD = 4.2V, +25°C, FOSC = 4 MHz  
mA VDD = 4.2V, -40°C to +85°C, FOSC = 4 MHz  
mA VDD = 4.2V, -40°C to +125°C, FOSC = 4 MHz  
RC oscillator configuration  
2.5  
2.5  
2.5  
5
5
6
mA VDD = 4.2V, +25°C, FOSC = 4 MHz  
mA VDD = 4.2V, -40°C to +85°C, FOSC = 4 MHz  
mA VDD = 4.2V, -40°C to +125°C, FOSC = 4 MHz  
RCIO oscillator configuration  
1.8  
1.8  
1.8  
4
5
5
mA VDD = 4.2V, +25°C, FOSC = 4 MHz  
mA VDD = 4.2V, -40°C to +85°C, FOSC = 4 MHz  
mA VDD = 4.2V, -40°C to +125°C, FOSC = 4 MHz  
D010A  
D010A  
PIC18LFXX8  
PIC18FXX8  
LP oscillator, FOSC = 32 kHz, WDT disabled  
μA VDD = 2.0V, -40°C to +85°C  
18  
40  
LP oscillator, FOSC = 32 kHz, WDT disabled  
μA VDD = 4.2V, -40°C to +85°C  
μA VDD = 4.2V, -40°C to +125°C  
60  
60  
150  
180  
Legend: Rows are shaded for improved readability.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM  
data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have  
an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD and VSS  
and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).  
4: For RC oscillator configuration, current through REXT is not included. The current through the resistor can  
be estimated by the formula Ir = VDD/2 REXT (mA) with REXT in kOhm.  
5: The LVD and BOR modules share a large portion of circuitry. The ΔIBOR and ΔILVD currents are not  
additive. Once one of these modules is enabled, the other may also be enabled without further penalty.  
© 2006 Microchip Technology Inc.  
DS41159E-page 333  
PIC18FXX8  
27.1 DC Characteristics (Continued)  
PIC18LFXX8  
Standard Operating Conditions (unless otherwise stated)  
(Industrial)  
Operating temperature -40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
PIC18FXX8  
(Industrial, Extended)  
Param  
Symbol  
No.  
Characteristic/  
Device  
Min Typ Max Units  
Conditions  
IDD  
Supply Current(2,3,4)  
D010C  
D010C  
PIC18LFXX8  
EC, ECIO oscillator configurations  
mA VDD = 4.2V, -40°C to +85°C  
21  
21  
28  
30  
PIC18FXX8  
EC, ECIO oscillator configurations  
mA VDD = 4.2V, -40°C to +125°C,  
FOSC = 25 MHz  
D013  
D013  
PIC18LFXX8  
HS oscillator configurations  
mA FOSC = 6 MHz, VDD = 2.0V  
mA FOSC = 25 MHz, VDD = 5.5V  
HS + PLL osc configuration  
1.3  
18  
3
28  
28  
40  
mA FOSC = 10 MHz, VDD = 5.5V  
PIC18FXX8  
HS oscillator configurations  
mA FOSC = 25 MHz, VDD = 5.5V  
HS + PLL osc configuration  
18  
28  
28  
40  
mA FOSC = 10 MHz, VDD = 5.5V  
D014  
D014  
PIC18LFXX8  
PIC18FXX8  
Timer1 oscillator configuration  
μA FOSC = 32 kHz, VDD = 2.0V  
32  
65  
Timer1 oscillator configuration  
62  
62  
250  
310  
μA FOSC = 32 kHz, VDD = 4.2V, -40°C to +85°C  
μA FOSC = 32 kHz, VDD = 4.2V, -40°C to +125°C  
IPD  
Power-Down Current(3)  
D020  
PIC18LFXX8  
0.3  
2
4
10  
μA VDD = 2.0V, -40°C to +85°C  
μA VDD = 4.2V, -40°C to +85°C  
D020  
PIC18FXX8  
2
6
10  
40  
μA VDD = 4.2V, -40°C to +85°C  
μA VDD = 4.2V, -40°C to +125°C  
D021B  
Legend: Rows are shaded for improved readability.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM  
data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have  
an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD and VSS  
and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).  
4: For RC oscillator configuration, current through REXT is not included. The current through the resistor can  
be estimated by the formula Ir = VDD/2 REXT (mA) with REXT in kOhm.  
5: The LVD and BOR modules share a large portion of circuitry. The ΔIBOR and ΔILVD currents are not  
additive. Once one of these modules is enabled, the other may also be enabled without further penalty.  
DS41159E-page 334  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
27.1 DC Characteristics (Continued)  
PIC18LFXX8  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
PIC18FXX8  
(Industrial, Extended)  
Param  
Symbol  
No.  
Characteristic/  
Device  
Min Typ Max Units  
Conditions  
ΔIWDT  
Module Differential Current  
D022  
D022  
Watchdog Timer  
0.75 1.5  
μA VDD = 2.5V, +25°C  
μA VDD = 2.0V, -40°C to +85°C  
μA VDD = 4.2V, -40°C to +85°C  
μA VDD = 4.2V, +25°C  
μA VDD = 4.2V, -40°C to +85°C  
μA VDD = 4.2V, -40°C to +125°C  
μA VDD = 2.0V, +25°C  
μA VDD = 2.0V, -40°C to +85°C  
μA VDD = 4.2V, -40°C to +85°C  
μA VDD = 4.2V, +25°C  
μA VDD = 4.2V, -40°C to +85°C  
μA VDD = 4.2V, -40°C to +125°C  
μA VDD = 2.0V, +25°C  
μA VDD = 2.0V, -40°C to +85°C  
μA VDD = 4.2V, -40°C to +85°C  
μA VDD = 4.2V, +25°C  
μA VDD = 4.2V, -40°C to +85°C  
μA VDD = 4.2V, -40°C to +125°C  
PIC18LFXX8  
0.8  
7
8
25  
Watchdog Timer  
7
7
7
25  
25  
45  
PIC18FXX8  
D022A ΔIBOR  
D022A  
Brown-out Reset(5)  
38  
42  
49  
50  
55  
65  
PIC18LFXX8  
Brown-out Reset(5)  
46  
49  
50  
65  
65  
75  
PIC18FXX8  
D022B ΔILVD  
D022B  
Low-Voltage Detect(5)  
36  
40  
47  
50  
55  
65  
PIC18LFXX8  
Low-Voltage Detect(5)  
44  
47  
47  
65  
65  
75  
PIC18FXX8  
D025  
D025  
ΔITMR1  
Timer1 Oscillator  
6.2  
6.2  
7.5  
40  
45  
55  
μA VDD = 2.0V, +25°C  
μA VDD = 2.0V, -40°C to +85°C  
μA VDD = 4.2V, -40°C to +85°C  
μA VDD = 4.2V, +25°C  
μA VDD = 4.2V, -40°C to +85°C  
μA VDD = 4.2V, -40°C to +125°C  
PIC18LFXX8  
Timer1 Oscillator  
7.5  
7.5  
7.5  
55  
55  
65  
PIC18FXX8  
Legend: Rows are shaded for improved readability.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM  
data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have  
an impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is  
measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD and VSS  
and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).  
4: For RC oscillator configuration, current through REXT is not included. The current through the resistor can  
be estimated by the formula Ir = VDD/2 REXT (mA) with REXT in kOhm.  
5: The LVD and BOR modules share a large portion of circuitry. The ΔIBOR and ΔILVD currents are not  
additive. Once one of these modules is enabled, the other may also be enabled without further penalty.  
© 2006 Microchip Technology Inc.  
DS41159E-page 335  
PIC18FXX8  
27.2 DC Characteristics: PIC18FXX8 (Industrial, Extended)  
PIC18LFXX8 (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
Symbol  
No.  
Characteristic/  
Device  
Min  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O ports:  
D030  
D030A  
D031  
with TTL buffer  
VSS  
0.15 VDD  
0.8  
V
V
VDD < 4.5V  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
RC3 and RC4  
VSS  
VSS  
0.2 VDD  
0.3 VDD  
V
V
D032  
MCLR  
VSS  
VSS  
0.2 VDD  
0.3 VDD  
V
V
D032A  
OSC1 (in XT, HS and LP modes)  
and T1OSI  
D033  
OSC1 (in RC mode)(1)  
Input High Voltage  
I/O ports:  
VSS  
0.2 VDD  
V
VIH  
D040  
D040A  
D041  
with TTL buffer  
0.25 VDD + 0.8V  
2.0  
VDD  
VDD  
V
V
VDD < 4.5V  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
RC3 and RC4  
0.8 VDD  
0.7 VDD  
VDD  
VDD  
V
V
D042  
MCLR  
0.8 VDD  
0.7 VDD  
VDD  
VDD  
V
V
D042A  
OSC1 (in XT, HS and LP modes)  
and T1OSI  
D043  
D060  
OSC1 (RC mode)(1)  
Input Leakage Current(2,3)  
I/O ports  
0.9 VDD  
VDD  
1
V
IIL  
μA VSS VPIN VDD,  
Pin at high-impedance  
D061  
D063  
MCLR  
5
5
μA Vss VPIN VDD  
μA Vss VPIN VDD  
OSC1  
IPU  
Weak Pull-up Current  
PORTB weak pull-up current  
D070 IPURB  
50  
450  
μA VDD = 5V, VPIN = VSS  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PICmicro® device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
DS41159E-page 336  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
27.2 DC Characteristics: PIC18FXX8 (Industrial, Extended)  
PIC18LFXX8 (Industrial) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Param  
Symbol  
No.  
Characteristic/  
Device  
Min  
Max  
Units  
Conditions  
VOL  
Output Low Voltage  
D080  
I/O ports  
0.6  
0.6  
0.6  
0.6  
V
V
V
V
IOL = 8.5 mA, VDD = 4.2V,  
-40°C to +85°C  
D080A  
D083  
IOL = 7.0 mA, VDD = 4.2V,  
-40°C to +125°C  
OSC2/CLKO  
(RC mode)  
IOL = 1.6 mA, VDD = 4.2V,  
-40°C to +85°C  
D083A  
IOL = 1.2 mA, VDD = 4.2V,  
-40°C to +125°C  
VOH  
Output High Voltage(3)  
D090  
I/O ports  
VDD – 0.7  
VDD – 0.7  
VDD – 0.7  
VDD – 0.7  
V
V
V
V
V
IOH = -3.0 mA, VDD = 4.2V,  
-40°C to +85°C  
D090A  
D092  
IOH = -2.5 mA, VDD = 4.2V,  
-40°C to +125°C  
OSC2/CLKO  
(RC mode)  
IOH = -1.3 mA, VDD = 4.2V,  
-40°C to +85°C  
IOH = -1.0 mA, VDD = 4.2V,  
-40°C to +125°C  
D092A  
D150 VOD  
Open-Drain High Voltage  
7.5  
RA4 pin  
Capacitive Loading Specs on  
Output Pins  
D101 CIO  
D102 CB  
All I/O pins and OSC2  
(in RC mode)  
50  
pF To meet the AC Timing  
Specifications  
pF In I2C™ mode  
SCL, SDA  
400  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PICmicro® device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
© 2006 Microchip Technology Inc.  
DS41159E-page 337  
PIC18FXX8  
FIGURE 27-4:  
LOW-VOLTAGE DETECT CHARACTERISTICS  
VDD  
(LVDIF can be  
cleared in software)  
VLVD  
(LVDIF set by hardware)  
37  
LVDIF  
TABLE 27-1: LOW-VOLTAGE DETECT CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Low-Voltage Detect Characteristics  
Param  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units Conditions  
No.  
D420 VLVD  
LVD Voltage  
LVV = 0001  
LVV = 0010  
LVV = 0011  
LVV = 0100  
LVV = 0101  
LVV = 0110  
LVV = 0111  
LVV = 1000  
LVV = 1001  
LVV = 1010  
LVV = 1011  
LVV = 1100  
LVV = 1101  
LVV = 1110  
1.96  
2.16  
2.35  
2.43  
2.64  
2.75  
2.95  
3.24  
3.43  
3.53  
3.72  
3.92  
4.07  
4.36  
2.06  
2.27  
2.47  
2.58  
2.78  
2.89  
3.1  
2.16  
2.38  
2.59  
2.69  
2.92  
3.03  
3.26  
3.58  
3.79  
3.91  
4.12  
4.34  
4.59  
4.92  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
T 25°C  
T 25°C  
T 25°C  
3.41  
3.61  
3.72  
3.92  
4.13  
4.33  
4.64  
DS41159E-page 338  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
TABLE 27-2: DC CHARACTERISTICS: EEPROM AND ENHANCED FLASH  
DC Characteristics  
Standard Operating Conditions  
Param  
Sym  
No.  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
Internal Program Memory  
Programming Specifications  
D110  
D113  
VPP  
Voltage on MCLR/VPP pin  
9.00  
13.25  
10  
V
IDDP  
Supply Current during  
Programming  
mA  
Data EEPROM Memory  
Cell Endurance  
D120  
ED  
100K  
10K  
1M  
100K  
E/W -40°C to +85°C  
E/W +85°C to +125°C  
D120A ED  
Byte Endurance  
D121  
VDRW VDD for Read/Write  
VMIN  
5.5  
V
Using EECON to read/write  
VMIN = Minimum operating voltage  
D122  
D123  
TDEW Erase/Write Cycle Time  
TRETD Characteristic Retention  
4
ms  
40  
Year Provided no other specifications  
are violated  
D124  
TREF  
Number of Total Erase/Write  
Cycles to Data EEPROM before  
Refresh*  
1M  
10M  
1M  
Cycles -40°C to +85°C  
D124A TREF Number of Total Erase/Write  
Cycles before Refresh*  
100K  
Cycles +85°C to +125°C  
Program Flash Memory  
D130  
EP  
Cell Endurance  
Cell Endurance  
VDD for Read  
10K  
1000  
VMIN  
4.5  
100K  
10K  
E/W -40°C to +85°C  
E/W +85°C to +125°C  
D130A EP  
D131  
D132  
VPR  
VIE  
5.5  
5.5  
5.5  
V
V
V
VMIN = Minimum operating voltage  
Using ICSP™ port  
VDD for Block Erase  
D132A VIW  
VDD for Externally Timed Erase  
or Write  
4.5  
Using ICSP port  
D132B VPEW VDD for Self-Timed Write  
VMIN  
4
5.5  
V
VMIN = Minimum operating voltage  
D133  
TIE  
ICSP Erase Cycle Time  
ms VDD 4.5V  
ms VDD 4.5V  
D133A TIW  
ICSP Erase or Write Cycle Time  
(externally timed)  
1
D133A TIW  
Self-Timed Write Cycle Time  
2
ms  
D134  
TRETD Characteristic Retention  
40  
Year Provided no other specifications  
are violated  
*
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
See Section 5.8 “Using the Data EEPROM” for more information.  
© 2006 Microchip Technology Inc.  
DS41159E-page 339  
PIC18FXX8  
TABLE 27-3: COMPARATOR SPECIFICATIONS  
Operating Conditions: VDD range as described in Section 27.1 “DC Characteristics”, -40°C < TA < +125°C  
Param  
No.  
Sym  
Characteristics  
Min  
Typ  
Max  
Units  
Comments  
D300  
VIOFF  
Input Offset Voltage  
Input Common Mode Voltage  
CMRR CMRR  
0
5.0  
10  
VDD – 1.5  
mV  
V
D301  
D302  
D300  
VICM  
+55*  
db  
TRESP  
Response Time(1)  
300*  
350*  
400*  
600*  
ns  
ns  
PIC18FXX8  
PIC18LFXX8  
D301  
TMC2OV Comparator Mode Change to  
Output Valid  
10*  
μs  
*
These parameters are characterized but not tested.  
Note 1: Response time measured with one comparator input at (VDD – 1.5)/2 while the other input transitions from  
VSS to VDD.  
TABLE 27-4: VOLTAGE REFERENCE SPECIFICATIONS  
Operating Conditions: VDD range as described in Section 27.1 “DC Characteristics”, -40°C < TA < +125°C  
Param No.  
Sym  
Characteristics  
Resolution  
Min  
Typ  
Max  
Units  
Comments  
D310  
D311  
D312  
D310  
*
VRES  
VDD/24  
VDD/32  
0.5  
LSB  
LSB  
Ω
VRAA  
VRUR  
TSET  
Absolute Accuracy  
Unit Resistor Value (R)  
Settling Time(1)  
2K*  
10*  
μs  
These parameters are characterized but not tested.  
Note 1: Settling time measured while CVRR = 1and CVR<3:0> transitions from 0000to 1111.  
DS41159E-page 340  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
27.3 AC (Timing) Characteristics  
27.3.1 TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created  
using one of the following formats:  
1. TppS2ppS  
2. TppS  
3. TCC:ST  
4. Ts  
(I2C specifications only)  
(I2C specifications only)  
T
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
ck  
cs  
di  
CCP1  
CLKO  
CS  
osc  
rd  
OSC1  
RD  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (High-Impedance)  
Low  
Valid  
L
High-Impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
ST  
Hold  
SU  
Setup  
DAT  
STA  
DATA input hold  
Start condition  
STO  
Stop condition  
© 2006 Microchip Technology Inc.  
DS41159E-page 341  
PIC18FXX8  
27.3.2  
TIMING CONDITIONS  
The temperature and voltages specified in Table 27-5  
apply to all timing specifications unless otherwise  
noted. Figure 27-5 specifies the load conditions for the  
timing specifications.  
TABLE 27-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Operating voltage VDD range as described in DC specification,  
AC CHARACTERISTICS  
Section 27.1 “DC Characteristics”.  
LF parts operate for industrial temperatures only.  
FIGURE 27-5:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 Load Condition 2  
VDD/2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2/CLKO  
and including D and E outputs as ports  
VSS  
DS41159E-page 342  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
27.3.3  
TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 27-6:  
EXTERNAL CLOCK TIMING  
Q4  
Q1  
1
Q2  
Q3  
Q4  
4
Q1  
OSC1  
CLKO  
3
4
3
2
TABLE 27-6: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
1A  
FOSC  
External CLKI Frequency(1)  
Oscillator Frequency(1)  
DC  
DC  
DC  
0.1  
4
40  
25  
MHz EC, ECIO oscillator, -40°C to +85°C  
MHz EC, ECIO oscillator, +85°C to +125°C  
MHz RC oscillator  
4
4
MHz XT oscillator  
25  
MHz HS oscillator, -40°C to +85°C  
MHz HS oscillator, +85°C to +125°C  
MHz HS + PLL oscillator, -40°C to +85°C  
MHz HS + PLL oscillator, +85°C to +125°C  
kHz LP oscillator  
4
25  
4
10  
4
6.25  
200  
DC  
25  
40  
250  
250  
40  
40  
100  
160  
5
1
TOSC  
External CLKI Period(1)  
Oscillator Period(1)  
ns EC, ECIO oscillator, -40°C to +85°C  
ns EC, ECIO oscillator, +85°C to +125°C  
ns RC oscillator  
10,000  
ns XT oscillator  
ns HS oscillator, -40°C to +85°C  
ns HS oscillator, +85°C to +125°C  
ns HS + PLL oscillator, -40°C to +85°C  
ns HS + PLL oscillator, +85°C to +125°C  
μs LP oscillator  
250  
250  
200  
2
3
TCY  
Instruction Cycle Time(1)  
100  
160  
ns TCY = 4/FOSC, -40°C to +85°C  
ns TCY = 4/FOSC, +85°C to +125°C  
TosL,  
TosH  
External Clock in (OSC1)  
High or Low Time  
30  
2.5  
10  
ns XT oscillator  
ns LP oscillator  
μs HS oscillator  
ns XT oscillator  
ns LP oscillator  
ns HS oscillator  
4
TosR,  
TosF  
External Clock in (OSC1)  
Rise or Fall Time  
20  
50  
7.5  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values  
are based on characterization data for that particular oscillator type under standard operating conditions  
with the device executing code. Exceeding these specified limits may result in an unstable oscillator  
operation and/or higher than expected current consumption. All devices are tested to operate at “Min.”  
values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the  
“Max.” cycle time limit is “DC” (no clock) for all devices.  
© 2006 Microchip Technology Inc.  
DS41159E-page 343  
PIC18FXX8  
TABLE 27-7: PLL CLOCK TIMING SPECIFICATIONS (VDD = 4.2 TO 5.5V)  
Param No. Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
FOSC Oscillator Frequency Range  
4
10  
40  
2
MHz HS mode only  
FSYS On-Chip VCO System Frequency  
16  
-2  
MHz HS mode only  
trc  
PLL Start-up Time (Lock Time)  
ms  
%
ΔCLK CLKO Stability (Jitter)  
+2  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
FIGURE 27-7:  
CLKO AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKO  
12  
13  
14  
19  
18  
16  
I/O Pin  
(Input)  
15  
17  
I/O Pin  
(Output)  
New Value  
Old Value  
20, 21  
Note: Refer to Figure 27-5 for load conditions.  
TABLE 27-8: CLKO AND I/O TIMING REQUIREMENTS  
Param No. Symbol  
Characteristic  
TosH2ckL OSC1 to CLKO ↓  
TosH2ckH OSC1 to CLKO ↑  
Min  
Typ  
Max  
Units Conditions  
10  
75  
75  
35  
35  
50  
10  
10  
200  
200  
100  
100  
ns  
ns  
ns  
ns  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
11  
12  
TckR  
TckF  
CLKO Rise Time  
CLKO Fall Time  
13  
14  
TckL2ioV CLKO to Port Out Valid  
TioV2ckH Port In Valid before CLKO ↑  
TckH2ioI Port In Hold after CLKO ↑  
TosH2ioV OSC1 (Q1 cycle) to Port Out Valid  
0.5 TCY + 20 ns  
15  
0.25 TCY + 25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
16  
0
17  
150  
18  
TosH2ioI OSC1 (Q2 cycle) to Port  
PIC18FXX8  
PIC18LFXX8  
100  
200  
0
Input Invalid (I/O in hold time)  
18A  
19  
TioV2osH Port Input Valid to OSC1 (I/O in setup time)  
20  
TIOR  
Port Output Rise Time  
Port Output Fall Time  
INT pin High or Low Time  
PIC18FXX8  
PIC18LFXX8  
PIC18FXX8  
PIC18LFXX8  
25  
60  
25  
60  
20A  
21  
TIOF  
21A  
22†  
23†  
24†  
TINP  
TCY  
TCY  
20  
TRBP  
TRCP  
RB7:RB4 Change INT High or Low Time  
RC7:RC4 Change INT High or Low Time  
These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC mode where CLKO pin output is 4 x TOSC.  
DS41159E-page 344  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 27-8:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND  
POWER-UP TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
Oscillator  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 27-5 for load conditions.  
FIGURE 27-9:  
BROWN-OUT RESET AND LOW-VOLTAGE DETECT TIMING  
BVDD (for 35)  
VDD  
VLVD (for 37)  
35, 37  
VBGAP = 1.2V  
VIRVST  
Enable Internal  
Reference Voltage  
Internal Reference  
Voltage Stable  
36  
TABLE 27-9: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,  
BROWN-OUT RESET AND LOW-VOLTAGE DETECT REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
30  
TmcL  
TWDT  
MCLR Pulse Width (low)  
2
7
μs  
31  
Watchdog Timer Time-out Period  
(no prescaler)  
18  
33  
ms  
32  
33  
34  
TOST  
Oscillation Start-up Timer Period  
Power-up Timer Period  
1024 TOSC  
72  
2
1024 TOSC  
ms  
μs  
TOSC = OSC1 period  
TPWRT  
28  
132  
TIOZ  
I/O High-Impedance from MCLR Low  
or Watchdog Timer Reset  
35  
36  
TBOR  
Brown-out Reset Pulse Width  
200  
μs  
μs  
For VDD BVDD (see D005)  
For VDD VLVD (see D420)  
TIRVST  
Time for Internal Reference  
Voltage to become stable  
20  
50  
37  
TLVD  
Low-Voltage Detect Pulse Width  
200  
μs  
© 2006 Microchip Technology Inc.  
DS41159E-page 345  
PIC18FXX8  
FIGURE 27-10:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
41  
40  
42  
T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 27-5 for load conditions.  
TABLE 27-10: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
40  
Tt0H  
T0CKI High Pulse Width  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
No prescaler  
With prescaler  
0.5 TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
41  
42  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
0.5 TCY + 20  
10  
TCY + 10  
Greater of:  
20 ns or TCY + 40  
N
ns N = prescale value  
(1, 2, 4,..., 256)  
45  
46  
Tt1H  
Tt1L  
T1CKI  
High Time  
Synchronous, no prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Synchronous, PIC18FXX8  
10  
with prescaler  
PIC18LFXX8  
25  
Asynchronous PIC18FXX8  
PIC18LFXX8  
30  
50  
0.5 TCY + 5  
10  
T1CKI  
Low Time  
Synchronous, no prescaler  
Synchronous, PIC18FXX8  
with prescaler  
PIC18LFXX8  
25  
Asynchronous PIC18FXX8  
PIC18LFXX8  
30  
TBD  
TBD  
47  
48  
Tt1P  
Ft1  
T1CKI  
Input Period  
Synchronous  
Greater of:  
20 ns or TCY + 40  
N
ns N = prescale value  
(1, 2, 4, 8)  
Asynchronous  
60  
DC  
50  
ns  
kHz  
T1CKI Oscillator Input Frequency Range  
Tcke2tmrI Delay from External T1CKI Clock Edge to  
Timer Increment  
2 TOSC  
7 TOSC  
Legend: TBD = To Be Determined  
DS41159E-page 346  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 27-11:  
CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND ECCP1)  
CCPx  
(Capture Mode)  
50  
51  
52  
54  
CCPx  
(Compare or PWM Mode)  
53  
Note: Refer to Figure 27-5 for load conditions.  
TABLE 27-11: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND ECCP1)  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
50  
TccL  
CCPx Input Low Time No prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
With  
prescaler  
PIC18FXX8  
PIC18LFXX8  
10  
20  
51  
TccH  
CCPx Input High Time No prescaler  
0.5 TCY + 20  
With  
PIC18FXX8  
10  
20  
prescaler  
PIC18LFXX8  
52  
53  
TccP  
TccR  
CCPx Input Period  
3 TCY + 40  
N
N = prescale  
value (1, 4 or 16)  
CCPx Output Fall Time  
PIC18FXX8  
PIC18LFXX8  
PIC18FXX8  
PIC18LFXX8  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
54  
TccF  
CCPx Output Fall Time  
© 2006 Microchip Technology Inc.  
DS41159E-page 347  
PIC18FXX8  
FIGURE 27-12:  
PARALLEL SLAVE PORT TIMING (PIC18F248 AND PIC18F458)  
RE2/CS  
RE0/RD  
RE1/WR  
65  
RD7:RD0  
62  
64  
63  
Note: Refer to Figure 27-5 for load conditions.  
TABLE 27-12: PARALLEL SLAVE PORT REQUIREMENTS (PIC18F248 AND PIC18F458)  
Param  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
62  
TdtV2wrH Data-In Valid before WR or CS ↑  
20  
25  
ns  
(setup time)  
ns Extended Temp. range  
63  
64  
TwrH2dtI  
WR or CS to Data-In Invalid PIC18FXX8  
20  
35  
ns  
ns  
(hold time)  
PIC18LFXX8  
TrdL2dtV RD and CS to Data-Out Valid  
80  
90  
ns  
ns Extended Temp. range  
65  
66  
TrdH2dtI  
TibfINH  
RD or CS to Data-Out Invalid  
10  
30  
ns  
ns  
Inhibit the IBF flag bit being cleared from  
3 TCY  
WR or CS ↑  
DS41159E-page 348  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 27-13:  
EXAMPLE SPI™ MASTER MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
Bit 6 - - - - - -1  
LSb  
SDO  
SDI  
75, 76  
MSb In  
74  
Bit 6 - - - -1  
LSb In  
73  
Note: Refer to Figure 27-5 for load conditions.  
TABLE 27-13: EXAMPLE SPI™ MODE REQUIREMENTS (MASTER MODE, CKE = 0)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TssL2scH, SS to SCK or SCK Input  
TssL2scL  
TCY  
ns  
71  
TscH  
SCK Input High Time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
TscL  
SCK Input Low Time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TdiV2scH, Setup Time of SDI Data Input to SCK Edge  
TdiV2scL  
100  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the 1st Clock Edge 1.5 TCY + 40  
of Byte 2  
ns (Note 2)  
TscH2diL, Hold Time of SDI Data Input to SCK Edge  
TscL2diL  
100  
ns  
75  
TdoR  
SDO Data Output Rise Time PIC18FXX8  
PIC18LFXX8  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
76  
78  
TdoF  
TscR  
SDO Data Output Fall Time  
SCK Output Rise Time  
(Master mode)  
PIC18FXX8  
PIC18LFXX8  
79  
80  
TscF  
SCK Output Fall Time (Master mode)  
TscH2doV, SDO Data Output Valid after PIC18FXX8  
TscL2doV SCK Edge  
PIC18LFXX8  
Note 1: Requires the use of parameter #73A.  
2: Only if parameter #71A and #72A are used.  
© 2006 Microchip Technology Inc.  
DS41159E-page 349  
PIC18FXX8  
FIGURE 27-14:  
EXAMPLE SPI™ MASTER MODE TIMING (CKE = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
LSb  
MSb  
Bit 6 - - - - - -1  
SDO  
SDI  
75, 76  
MSb In  
74  
LSb In  
Bit 6 - - - -1  
Note: Refer to Figure 27-5 for load conditions.  
TABLE 27-14: EXAMPLE SPI™ MODE REQUIREMENTS (MASTER MODE, CKE = 1)  
Param  
No.  
Symbol  
TscH  
TscL  
Characteristic  
Min  
Max Units Conditions  
71  
SCK Input High Time  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
(Slave mode)  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
SCK Input Low Time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TdiV2scH, Setup Time of SDI Data Input to SCK Edge  
TdiV2scL  
100  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the 1st Clock Edge 1.5 TCY + 40  
of Byte 2  
ns (Note 2)  
TscH2diL, Hold Time of SDI Data Input to SCK Edge  
TscL2diL  
100  
ns  
75  
TdoR  
SDO Data Output Rise Time PIC18FXX8  
PIC18LFXX8  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
76  
78  
TdoF  
TscR  
SDO Data Output Fall Time  
SCK Output Rise Time  
(Master mode)  
PIC18FXX8  
PIC18LFXX8  
79  
80  
TscF  
SCK Output Fall Time (Master mode)  
TscH2doV, SDO Data Output Valid after PIC18FXX8  
TscL2doV SCK Edge  
PIC18LFXX8  
81  
TdoV2scH, SDO Data Output Setup to SCK Edge  
TdoV2scL  
TCY  
Note 1: Requires the use of parameter #73A.  
2: Only if parameter #71A and #72A are used.  
DS41159E-page 350  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 27-15:  
EXAMPLE SPI™ SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
SDO  
SDI  
MSb  
Bit 6 - - - - - -1  
LSb  
77  
75, 76  
MSb In  
74  
Bit 6 - - - -1  
LSb In  
73  
Note: Refer to Figure 27-5 for load conditions.  
TABLE 27-15: EXAMPLE SPI™ MODE REQUIREMENTS, SLAVE MODE TIMING (CKE = 0)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TssL2scH, SS to SCK or SCK Input  
TssL2scL  
TCY  
ns  
71  
TscH  
SCK Input High Time (Slave mode)  
SCK Input Low Time (Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
TscL  
ns  
72A  
73  
ns (Note 1)  
TdiV2scH, Setup Time of SDI Data Input to SCK Edge  
TdiV2scL  
100  
ns  
73A  
74  
TB2B  
Last Clock Edge of Byte 1 to the 1st Clock Edge of Byte 2 1.5 TCY + 40  
ns (Note 2)  
TscH2diL, Hold Time of SDI Data Input to SCK Edge  
TscL2diL  
100  
ns  
75  
TdoR  
SDO Data Output Rise Time  
PIC18FXX8  
25  
45  
25  
50  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC18LFXX8  
76  
77  
78  
TdoF  
SDO Data Output Fall Time  
10  
TssH2doZ SS to SDO Output High-Impedance  
TscR  
SCK Output Rise Time (Master mode) PIC18FXX8  
PIC18LFXX8  
79  
80  
TscF  
SCK Output Fall Time (Master mode)  
TscH2doV, SDO Data Output Valid after SCK  
TscL2doV Edge  
PIC18FXX8  
PIC18LFXX8  
83  
TscH2ssH, SS after SCK Edge  
TscL2ssH  
1.5 TCY + 40  
Note 1: Requires the use of parameter #73A.  
2: Only if parameter #71A and #72A are used.  
© 2006 Microchip Technology Inc.  
DS41159E-page 351  
PIC18FXX8  
FIGURE 27-16:  
EXAMPLE SPI™ SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
LSb  
MSb  
Bit 6 - - - - - -1  
SDO  
SDI  
77  
75, 76  
MSb In  
74  
Bit 6 - - - -1  
LSb In  
Note: Refer to Figure 27-5 for load conditions.  
TABLE 27-16: EXAMPLE SPI™ SLAVE MODE REQUIREMENTS (CKE = 1)  
Param  
No.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
70  
TssL2scH, SS to SCK or SCK Input  
TssL2scL  
TCY  
ns  
71  
TscH  
TscL  
TB2B  
SCK Input High Time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25 TCY + 30  
ns  
71A  
72  
40  
1.25 TCY + 30  
40  
ns (Note 1)  
ns  
SCK Input Low Time  
(Slave mode)  
72A  
73A  
74  
ns (Note 1)  
ns (Note 2)  
ns  
Last Clock Edge of Byte 1 to the 1st Clock Edge of Byte 2 1.5 TCY + 40  
TscH2diL, Hold Time of SDI Data Input to SCK Edge  
TscL2diL  
100  
75  
TdoR  
SDO Data Output Rise Time  
PIC18FXX8  
25  
45  
25  
50  
25  
45  
25  
50  
100  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC18LFXX8  
76  
77  
78  
TdoF  
SDO Data Output Fall Time  
TssH2doZ SS to SDO Output High-Impedance  
10  
TscR  
SCK Output Rise Time  
(Master mode)  
PIC18FXX8  
PIC18LFXX8  
79  
80  
TscF  
SCK Output Fall Time (Master mode)  
TscH2doV, SDO Data Output Valid after SCK  
TscL2doV Edge  
PIC18FXX8  
PIC18LFXX8  
PIC18FXX8  
PIC18LFXX8  
82  
83  
TssL2doV SDO Data Output Valid after SS ↓  
Edge  
TscH2ssH, SS after SCK Edge  
TscL2ssH  
1.5 TCY + 40  
Note 1: Requires the use of parameter #73A.  
2: Only if parameter #71A and #72A are used.  
DS41159E-page 352  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 27-17:  
I2C™ BUS START/STOP BITS TIMING  
SCL  
SDA  
91  
93  
90  
92  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 27-5 for load conditions.  
TABLE 27-17: I2C™ BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
90  
TSU:STA Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns  
Only relevant for Repeated  
Start condition  
91  
92  
93  
THD:STA Start Condition  
Hold Time  
4000  
600  
ns  
ns  
ns  
After this period, the first  
clock pulse is generated  
TSU:STO Stop Condition  
Setup Time  
4700  
600  
THD:STO Stop Condition  
Hold Time  
4000  
600  
FIGURE 27-18:  
I2C™ BUS DATA TIMING  
103  
102  
100  
101  
106  
SCL  
90  
107  
92  
91  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 27-5 for load conditions.  
© 2006 Microchip Technology Inc.  
DS41159E-page 353  
PIC18FXX8  
TABLE 27-18: I2C™ BUS DATA REQUIREMENTS (SLAVE MODE)  
Param  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
100  
THIGH  
Clock High Time  
100 kHz mode  
4.0  
μs  
μs  
PIC18FXX8 must operate  
at a minimum of 1.5 MHz  
400 kHz mode  
0.6  
PIC18FXX8 must operate  
at a minimum of 10 MHz  
SSP Module  
1.5 TCY  
4.7  
101  
TLOW  
Clock Low Time  
100 kHz mode  
μs  
μs  
PIC18FXX8 must operate  
at a minimum of 1.5 MHz  
400 kHz mode  
SSP module  
1.3  
PIC18FXX8 must operate  
at a minimum of 10 MHz  
1.5 TCY  
ns  
ns  
ns  
102  
103  
TR  
TF  
SDA and SCL Rise 100 kHz mode  
Time  
1000  
400 kHz mode  
20 + 0.1 CB 300  
CB is specified to be from  
10 to 400 pF  
SDA and SCL Fall 100 kHz mode  
Time  
300  
ns  
ns  
400 kHz mode  
20 + 0.1 CB 300  
CB is specified to be from  
10 to 400 pF  
90  
TSU:STA  
THD:STA  
Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
μs  
μs  
μs  
μs  
ns  
μs  
ns  
ns  
μs  
μs  
ns  
ns  
μs  
μs  
Only relevant for Repeated  
Start condition  
91  
Start Condition  
Hold Time  
After this period the first  
clock pulse is generated  
106  
107  
92  
THD:DAT Data Input Hold  
Time  
0
0.9  
TSU:DAT  
TSU:STO  
TAA  
Data Input Setup  
Time  
250  
100  
4.7  
0.6  
(Note 2)  
Stop Condition  
Setup Time  
109  
110  
Output Valid from  
Clock  
3500  
(Note 1)  
TBUF  
Bus Free Time  
4.7  
1.3  
Time the bus must be free  
before a new transmission  
can start  
D102  
CB  
Bus Capacitive Loading  
400  
pF  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region  
(min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.  
2: A Fast mode I2C™ bus device can be used in a Standard mode I2C bus system, but the requirement  
TSU;DAT 250 ns must then be met. This will automatically be the case if the device does not stretch the  
low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output  
the next data bit to the SDA line.  
Before the SCL line is released, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard  
mode I2C bus specification).  
DS41159E-page 354  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 27-19:  
MASTER SSP I2C™ BUS START/STOP BITS TIMING WAVEFORMS  
SCL  
SDA  
93  
91  
90  
92  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 27-5 for load conditions.  
TABLE 27-19: MASTER SSP I2C™ BUS START/STOP BITS REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
90  
TSU:STA Start Condition  
Setup Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ns Only relevant for  
Repeated Start  
condition  
91  
92  
93  
THD:STA Start Condition  
Hold Time  
100 kHz mode  
2(TOSC)(BRG + 1)  
ns After this period, the  
first clock pulse is  
generated  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
TSU:STO Stop Condition  
Setup Time  
100 kHz mode  
2(TOSC)(BRG + 1)  
ns  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
THD:STO Stop Condition  
Hold Time  
100 kHz mode  
2(TOSC)(BRG + 1)  
ns  
400 kHz mode  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
Note 1: Maximum pin capacitance = 10 pF for all I2C™ pins.  
FIGURE 27-20:  
MASTER SSP I2C™ BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
91  
92  
107  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 27-5 for load conditions.  
© 2006 Microchip Technology Inc.  
DS41159E-page 355  
PIC18FXX8  
TABLE 27-20: MASTER SSP I2C™ BUS DATA REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
100  
THIGH  
Clock High Time 100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
ms  
ms  
ms  
ms  
ms  
ms  
ns  
2(TOSC)(BRG + 1)  
1 MHz mode(1)  
2(TOSC)(BRG + 1)  
101  
102  
103  
90  
TLOW  
TR  
Clock Low Time 100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
1 MHz mode(1)  
2(TOSC)(BRG + 1)  
SDA and SCL  
Rise Time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
1000  
300  
300  
300  
300  
100  
CB is specified to be  
from 10 to 400 pF  
20 + 0.1 CB  
ns  
ns  
TF  
SDA and SCL  
Fall Time  
ns  
CB is specified to be  
from 10 to 400 pF  
20 + 0.1 CB  
ns  
ns  
TSU:STA  
THD:STA  
Start Condition 100 kHz mode  
2(TOSC)(BRG + 1)  
ms Only relevant for  
Setup Time  
Repeated Start  
400 kHz mode  
2(TOSC)(BRG + 1)  
ms  
condition  
ms  
1 MHz mode(1)  
2(TOSC)(BRG + 1)  
91  
Start Condition 100 kHz mode  
2(TOSC)(BRG + 1)  
ms After this period, the  
Hold Time  
first clock pulse is  
generated  
ms  
400 kHz mode  
1 MHz mode(1)  
2(TOSC)(BRG + 1)  
ms  
2(TOSC)(BRG + 1)  
106  
107  
92  
THD:DAT Data Input  
Hold Time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
0
ns  
0
0.9  
ms  
TSU:DAT  
Data Input  
250  
ns  
ns  
(Note 2)  
Setup Time  
100  
TSU:STO  
Stop Condition  
Setup Time  
2(TOSC)(BRG + 1)  
ms  
ms  
ms  
ns  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
109  
110  
TAA  
Output Valid  
from Clock  
3500  
1000  
ns  
ns  
TBUF  
Bus Free Time  
4.7  
1.3  
ms  
ms  
Time the bus must be  
free before a new  
transmission can start  
D102 CB  
Bus Capacitive Loading  
400  
pF  
Note 1: Maximum pin capacitance = 10 pF for all I2C™ pins.  
2: A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but parameter #107 250 ns  
must then be met. This will automatically be the case if the device does not stretch the low period of the SCL  
signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the  
SDA line.  
Before the SCL line is released, parameter #102 + parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode).  
DS41159E-page 356  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 27-21:  
USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
121  
121  
RC7/RX/DT  
pin  
120  
Note: Refer to Figure 27-5 for load conditions.  
122  
TABLE 27-21: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units Conditions  
No.  
120  
TckH2dtV SYNC XMIT (Master & Slave)  
Clock High to Data-Out Valid  
PIC18FXX8  
50  
150  
25  
ns  
ns  
ns  
ns  
ns  
ns  
PIC18LFXX8  
121  
122  
Tckrf  
Tdtrf  
Clock Out Rise Time and Fall Time PIC18FXX8  
(Master mode)  
PIC18LFXX8  
60  
Data-Out Rise Time and Fall Time  
PIC18FXX8  
25  
PIC18LFXX8  
60  
FIGURE 27-22:  
USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
125  
RC7/RX/DT  
pin  
126  
Note: Refer to Figure 27-5 for load conditions.  
TABLE 27-22: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
125  
TdtV2ckl SYNC RCV (Master & Slave)  
Data-Hold before CK (DT hold time)  
10  
15  
ns  
ns  
126  
TckL2dtl  
Data-Hold after CK (DT hold time)  
© 2006 Microchip Technology Inc.  
DS41159E-page 357  
PIC18FXX8  
TABLE 27-23: A/D CONVERTER CHARACTERISTICS: PIC18FXX8 (INDUSTRIAL, EXTENDED)  
PIC18LFXX8 (INDUSTRIAL)  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
A01  
NR  
Resolution  
10  
< 1  
bit VREF = VDD 3.0V  
LSb VREF = VDD 3.0V  
LSb VREF = VDD 3.0V  
LSb VREF = VDD 3.0V  
LSb VREF = VDD 3.0V  
A03  
A04  
A05  
A06  
A10  
A20  
A20A  
A21  
A22  
A25  
A30  
EIL  
Integral Linearity Error  
Differential Linearity Error  
Full Scale Error  
EDL  
EFS  
EOFF  
< 1  
< 1  
Offset Error  
Monotonicity(3)  
< 1.5  
guaranteed  
V
VSS VAIN VREF  
VREF  
Reference Voltage  
(VREFH – VREFL)  
0V  
3V  
V
For 10-bit resolution  
VREFH  
VREFL  
VAIN  
Reference Voltage High  
Reference Voltage Low  
Analog Input Voltage  
VSS  
VDD + 0.3V  
VDD  
V
VSS – 0.3V  
VSS – 0.3V  
V
VREF + 0.3V  
10.0  
V
ZAIN  
Recommended Impedance of  
Analog Voltage Source  
kΩ  
A40  
A50  
IAD  
A/D Conversion PIC18FXX8  
180  
90  
μA Average current  
Current (VDD)  
consumption when  
PIC18LFXX8  
μA  
A/D is on (Note 1)  
IREF  
VREF Input Current (Note 2)  
0
5
μA During VAIN acquisition.  
Based on differential of  
VHOLD to VAIN. To  
charge CHOLD.  
150  
μA During A/D conversion  
cycle.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current  
specification includes any such leakage from the A/D module.  
VREF current is from RA2/AN2/VREF- and RA3/AN3/VREF+ pins or VDD and VSS pins, whichever is selected  
as reference input.  
2: VSS VAIN VREF  
3: The A/D conversion result never decreases with an increase in the input voltage and has no missing  
codes.  
DS41159E-page 358  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 27-23:  
A/D CONVERSION TIMING  
BSF ADCON0, GO  
(Note 2)  
131  
130  
Q4  
132  
A/D CLK  
. . .  
. . .  
9
8
7
2
1
0
A/D DATA  
ADRES  
NEW_DATA  
TCY  
OLD_DATA  
ADIF  
GO  
DONE  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEPinstruction  
to be executed.  
2: This is a minimal RC delay (typically 100 ns) which also disconnects the holding capacitor from the analog input.  
TABLE 27-24: A/D CONVERSION REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
130  
TAD  
A/d Clock Period  
PIC18FXX8  
1.6  
3.0  
2.0  
3.0  
11  
20(5)  
20(5)  
6.0  
μs TOSC based, VREF 3.0V  
μs TOSC based, VREF full range  
μs A/D RC mode  
PIC18LFXX8  
PIC18FXX8  
PIC18LFXX8  
9.0  
μs A/D RC mode  
131  
132  
TCNV  
TACQ  
Conversion Time  
(not including acquisition time) (Note 1)  
Acquisition Time (Note 3)  
12  
TAD  
15  
10  
μs -40°C Temp +125°C  
μs 0°C Temp +125°C  
135  
136  
TSWC  
TAMP  
Switching Time from Convert Sample  
Amplifier Settling Time (Note 2)  
1
(Note 4)  
μs This may be used if the  
“new” input voltage has not  
changed by more than 1 LSb  
(i.e., 5 mV @ 5.12V) from the  
last sampled voltage (as  
stated on CHOLD).  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 20.0 “Compatible 10-Bit Analog-to-Digital Converter (A/D) Module” for minimum  
conditions when input voltage has changed more than 1 LSb.  
3: The time for the holding capacitor to acquire the “New” input voltage when the voltage changes full scale  
after the conversion (AVDD to AVSS or AVSS to AVDD). The source impedance (RS) on the input channels  
is 50Ω.  
4: On the next Q4 cycle of the device clock.  
5: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.  
© 2006 Microchip Technology Inc.  
DS41159E-page 359  
PIC18FXX8  
NOTES:  
DS41159E-page 360  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
28.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
“Typical” represents the mean of the distribution at 25°C. “Maximum” or “minimum” represents (mean + 3σ) or (mean – 3σ)  
respectively, where σ is a standard deviation, over the whole temperature range.  
FIGURE 28-1:  
TYPICAL IDD vs. FOSC OVER VDD (HS MODE)  
24  
5.5V  
5.0V  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
22  
20  
18  
16  
14  
12  
10  
8
4.5V  
4.0V  
3.5V  
6
3.0V  
4
2.5V  
2
2.0V  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FOSC (MHz)  
FIGURE 28-2:  
MAXIMUM IDD vs. FOSC OVER VDD (HS MODE)  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
5.5V  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
6
4
2.5V  
2
2.0V  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FOSC (MHz)  
© 2006 Microchip Technology Inc.  
DS41159E-page 361  
PIC18FXX8  
FIGURE 28-3:  
TYPICAL IDD vs. FOSC OVER VDD (HS/PLL MODE)  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
5.5V  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
5.0V  
4.5V  
4.2V  
6
4
2
0
4
5
6
7
8
9
10  
FOSC (MHz)  
FIGURE 28-4:  
MAXIMUM IDD vs. FOSC OVER VDD (HS/PLL MODE)  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
5.5V  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
5.0V  
4.5V  
4.2V  
6
4
2
0
4
5
6
7
8
9
10  
FOSC (MHz)  
DS41159E-page 362  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 28-5:  
TYPICAL IDD vs. FOSC OVER VDD (XT MODE)  
3.5  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
5.5V  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
(MHz)  
2.5  
3.0  
3.5  
4.0  
F
OSC  
FIGURE 28-6:  
MAXIMUM IDD vs. FOSC OVER VDD (XT MODE)  
4.0  
5.5V  
5.0V  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
FOSC (MHz)  
© 2006 Microchip Technology Inc.  
DS41159E-page 363  
PIC18FXX8  
FIGURE 28-7:  
TYPICAL IDD vs. FOSC OVER VDD (LP MODE)  
700  
5.5V  
5.0V  
4.5V  
600  
500  
400  
300  
200  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
Typical:  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
statistical mean @ 25°C  
100  
0
20  
30  
40  
50  
60  
70  
80  
90  
100  
FOSC (kHz)  
FIGURE 28-8:  
MAXIMUM IDD vs. FOSC OVER VDD (LP MODE)  
900  
800  
700  
600  
500  
400  
300  
200  
100  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
0
20  
30  
40  
50  
60  
70  
80  
90  
100  
FOSC (kHz)  
DS41159E-page 364  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 28-9:  
TYPICAL IDD vs. FOSC OVER VDD (EC MODE)  
24  
22  
5.5V  
5.0V  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
20  
18  
16  
14  
12  
10  
8
4.5V  
4.2V  
4.0V  
3.5V  
6
3.0V  
4
2.5V  
2
2.0V  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FOSC (MHz)  
FIGURE 28-10:  
MAXIMUM IDD vs. FOSC OVER VDD (EC MODE)  
28  
26  
5.5V  
5.0V  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
24  
22  
20  
18  
16  
14  
12  
10  
8
4.5V  
4.2V  
4.0V  
3.5V  
3.0V  
6
4
2.5V  
2
2.0V  
0
4
8
12  
16  
20  
24  
28  
32  
36  
40  
FOSC (MHz)  
© 2006 Microchip Technology Inc.  
DS41159E-page 365  
PIC18FXX8  
FIGURE 28-11:  
TYPICAL AND MAXIMUM IDD vs. VDD  
(TIMER1 AS MAIN OSCILLATOR 32.768 kHz, C1 AND C2 = 47 pF)  
1200  
1000  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-10°C to +70°C)  
Minimum: mean – 3σ (-10°C to +70°C)  
800  
600  
400  
200  
0
Max (70°C)  
Typ (25°C)  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 28-12:  
AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R  
(RC MODE, C = 20 pF, +25°C)  
4,500  
4,000  
3,500  
3,000  
2,500  
2,000  
1,500  
1,000  
500  
Operation above 4 MHz is not recommended.  
Ω
3.3k  
Ω
5.1k  
Ω
10k  
Ω
100k  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41159E-page 366  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 28-13:  
AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R  
(RC MODE, C = 100 pF, +25°C)  
2,000  
1,800  
1,600  
1,400  
1,200  
1,000  
800  
Ω
3.3k  
Ω
5.1k  
600  
Ω
10k  
400  
200  
Ω
100k  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 28-14:  
AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R  
(RC MODE, C = 300 pF, +25°C)  
800  
700  
600  
500  
400  
300  
200  
100  
Ω
Ω
3.3k  
5.1k  
Ω
10k  
Ω
100k  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2006 Microchip Technology Inc.  
DS41159E-page 367  
PIC18FXX8  
FIGURE 28-15:  
IPD vs. VDD, -40°C TO +125°C (SLEEP MODE, ALL PERIPHERALS DISABLED)  
100  
Max  
(-40°C to +125°C)  
10  
Max  
(+85°C)  
1
Typ (+25°C)  
0.1  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
0.01  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VD D (V)  
FIGURE 28-16:  
ΔIBOR vs. VDD OVER TEMPERATURE (BOR ENABLED, VBOR = 2.00-2.16V)  
90  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
80  
70  
60  
50  
40  
30  
20  
10  
0
Minimum: mean – 3σ (-40°C to +125°C)  
Max (+125°C)  
Device  
Held in  
Reset  
Max (+85°C)  
Typ (+25°C)  
C
Device  
in  
Sleep  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41159E-page 368  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 28-17:  
TYPICAL AND MAXIMUM ΔITMR1 vs. VDD OVER TEMPERATURE (-10°C TO +70°C,  
TIMER1 WITH OSCILLATOR, XTAL = 32 kHz, C1 AND C2 = 47 pF)  
14  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-10°C to +70°C)  
Minimum: mean – 3σ (-10°C to +70°C)  
12  
10  
8
Max (+70°C)  
Typ (+25°C)  
Typ (25C)  
6
4
2
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 28-18:  
TYPICAL AND MAXIMUM ΔIWDT vs. VDD OVER TEMPERATURE (WDT ENABLED)  
70  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
60  
50  
40  
30  
20  
10  
0
Max (+125°C)  
x
Max (+85°C)  
Typ (+25°C)  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2006 Microchip Technology Inc.  
DS41159E-page 369  
PIC18FXX8  
FIGURE 28-19:  
TYPICAL, MINIMUM AND MAXIMUM WDT PERIOD vs. VDD (-40°C TO +125°C)  
50  
Typical:  
statistical mean @ 25°C  
45  
40  
35  
30  
25  
20  
15  
10  
5
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
Max  
(+125°C)  
Max  
(+85°C)  
Typ  
Typ  
(+25°C)  
Min  
(-40°C)  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 28-20:  
ΔILVD vs. VDD OVER TEMPERATURE (LVD ENABLED, VLVD = 4.5 - 4.78V)  
90  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
80  
70  
60  
50  
40  
30  
20  
10  
0
Minimum: mean – 3σ (-40°C to +125°C)  
Max (+125°C)  
Max (+125°C)  
Typ (+25°C)  
Typ (+25°C)  
(5)  
LVDIF can be  
cleared by  
firmware  
LVDIF state  
is unknown  
LVDIF is set  
by hardware  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
DS41159E-page 370  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 28-21:  
TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO +125°C)  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Max  
Typ (+25°C)  
Typ (25C)  
Min  
Min  
0.0  
0
5
10  
15  
20  
25  
IOH (-mA)  
FIGURE 28-22:  
TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 3V, -40°C TO +125°C)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
Max  
Typ (+25°C)  
Min  
0.0  
0
5
10  
15  
20  
25  
IOH (-mA)  
© 2006 Microchip Technology Inc.  
DS41159E-page 371  
PIC18FXX8  
FIGURE 28-23:  
TYPICAL AND MAXIMUM VOL vs. IOL (VDD = 5V, -40°C TO +125°C)  
1.8  
1.6  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Max  
Max  
TyTpy(p+(2255°CC))  
0
5
10  
15  
20  
25  
IOL (-mA)  
FIGURE 28-24:  
TYPICAL AND MAXIMUM VOL vs. IOL (VDD = 3V, -40°C TO +125°C)  
2.5  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
2.0  
1.5  
1.0  
0.5  
0.0  
Max  
Typ (+25°C)  
Typ (25C)  
0
5
10  
15  
20  
25  
IOL (-mA)  
DS41159E-page 372  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 28-25:  
MINIMUM AND MAXIMUM VIN vs. VDD (ST INPUT, -40°C TO +125°C)  
4.0  
Typical:  
statistical mean @ 25°C  
VIH Max  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIH Min  
VIL Max  
VIL Min  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 28-26:  
MINIMUM AND MAXIMUM VIN vs. VDD (TTL INPUT, -40°C TO +125°C)  
1.6  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
Minimum: mean – 3σ (-40°C to +125°C)  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VTH (Max)  
VTH (Min)  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
© 2006 Microchip Technology Inc.  
DS41159E-page 373  
PIC18FXX8  
FIGURE 28-27:  
MINIMUM AND MAXIMUM VIN vs. VDD (I2C™ INPUT, -40°C TO +125°C)  
3.5  
VIH Max  
Typical:  
statistical mean @ 25°C  
Maximum: mean + 3σ (-40°C to +125°C)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Minimum: mean – 3σ (-40°C to +125°C)  
VIL Max  
x  
VIH Min  
VIL Min  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (V)  
FIGURE 28-28:  
A/D NONLINEARITY vs. VREFH (VDD = VREFH, -40°C TO +125°C)  
4
3.5  
3
-40°C  
+25°C  
25C  
2.5  
2
+85°C  
85C  
1.5  
1
0.5  
0
+125°C  
125C  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VDD and VREFH (V)  
DS41159E-page 374  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
FIGURE 28-29:  
A/D NONLINEARITY vs. VREFH (VDD = 5V, -40°C TO +125°C)  
3
2.5  
2
1.5  
1
Max (-40°C to +125°C)  
)  
TTyypp((+2255C°)C)  
0.5  
0
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VREFH (V)  
© 2006 Microchip Technology Inc.  
DS41159E-page 375  
PIC18FXX8  
NOTES:  
DS41159E-page 376  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
29.0 PACKAGING INFORMATION  
29.1 Package Marking Information  
28-Lead SPDIP  
Example  
Example  
e
3
PIC18F258-I/SP  
0610017  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
28-Lead SOIC  
e
3
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
PIC18F248-E/SO  
0610017  
YYWWNNN  
40-Lead PDIP  
Example  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
e3  
PIC18F448-I/P  
0610017  
YYWWNNN  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e
3
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2006 Microchip Technology Inc.  
DS41159E-page 377  
PIC18FXX8  
29.1 Package Marking Information (Continued)  
44-Lead PLCC  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC18F458  
-I/L  
0610017  
e
3
44-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC18F448  
3
e
-I/PT  
0610017  
DS41159E-page 378  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
29.2 Package Details  
The following sections give the technical details of the packages.  
28-Lead Skinny Plastic Dual In-line (SP) – 300 mil Body (PDIP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E1  
D
2
n
1
α
E
A2  
L
A
c
B1  
β
A1  
eB  
B
p
Units  
INCHES  
*
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
28  
MAX  
MIN  
NOM  
28  
MAX  
n
p
Number of Pins  
Pitch  
.100  
2.54  
Top to Seating Plane  
A
.140  
.150  
.130  
.160  
3.56  
3.18  
3.81  
3.30  
4.06  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.125  
.015  
.300  
.275  
1.345  
.125  
.008  
.040  
.016  
.320  
.135  
3.43  
0.38  
7.62  
6.99  
34.16  
3.18  
0.20  
1.02  
0.41  
8.13  
5
.310  
.285  
1.365  
.130  
.012  
.053  
.019  
.350  
10  
.325  
.295  
1.385  
.135  
.015  
.065  
.022  
.430  
15  
7.87  
7.24  
34.67  
3.30  
0.29  
1.33  
0.48  
8.89  
10  
8.26  
7.49  
35.18  
3.43  
0.38  
1.65  
0.56  
10.92  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
B1  
B
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
5
β
5
10  
15  
5
10  
15  
*
Controlling Parameter  
§
Significant Characteristic  
Notes:  
Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC Equivalent: MO-095  
Drawing No. C04-070  
© 2006 Microchip Technology Inc.  
DS41159E-page 379  
PIC18FXX8  
28-Lead Plastic Small Outline (SO) – Wide, 300 mil Body (SOIC)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
p
D
B
2
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
28  
MAX  
MIN  
NOM  
28  
MAX  
n
p
Number of Pins  
Pitch  
.050  
1.27  
Overall Height  
Molded Package Thickness  
A
.093  
.099  
.091  
.008  
.407  
.295  
.704  
.020  
.033  
4
.104  
2.36  
2.50  
2.31  
0.20  
10.34  
7.49  
17.87  
0.50  
0.84  
4
2.64  
A2  
A1  
E
.088  
.004  
.394  
.288  
.695  
.010  
.016  
0
.094  
.012  
.420  
.299  
.712  
.029  
.050  
8
2.24  
0.10  
10.01  
7.32  
17.65  
0.25  
0.41  
0
2.39  
0.30  
10.67  
7.59  
18.08  
0.74  
1.27  
8
Standoff  
Overall Width  
§
Molded Package Width  
Overall Length  
Chamfer Distance  
Foot Length  
Foot Angle Top  
Lead Thickness  
Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
E1  
D
h
L
φ
c
.009  
.014  
0
.011  
.017  
12  
.013  
.020  
15  
0.23  
0.36  
0
0.28  
0.42  
12  
0.33  
0.51  
15  
B
α
β
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC Equivalent: MS-013  
Drawing No. C04-052  
DS41159E-page 380  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
40-Lead Plastic Dual In-line (P) – 600 mil Body (PDIP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E1  
D
2
1
α
n
E
A2  
A
L
c
B1  
B
β
A1  
p
eB  
Units  
Dimension Limits  
INCHES*  
NOM  
40  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
40  
MAX  
n
p
Number of Pins  
Pitch  
.100  
2.54  
Top to Seating Plane  
A
.160  
.175  
.190  
.160  
4.06  
3.56  
4.45  
3.81  
4.83  
4.06  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
A2  
A1  
E
.140  
.015  
.595  
.530  
2.045  
.120  
.008  
.030  
.014  
.620  
5
.150  
0.38  
15.11  
13.46  
51.94  
3.05  
0.20  
0.76  
0.36  
15.75  
5
.600  
.545  
2.058  
.130  
.012  
.050  
.018  
.650  
10  
.625  
.560  
2.065  
.135  
.015  
.070  
.022  
.680  
15  
15.24  
13.84  
52.26  
3.30  
0.29  
1.27  
0.46  
16.51  
10  
15.88  
14.22  
52.45  
3.43  
0.38  
1.78  
0.56  
17.27  
15  
E1  
D
Tip to Seating Plane  
Lead Thickness  
L
c
Upper Lead Width  
Lower Lead Width  
B1  
B
Overall Row Spacing  
§
eB  
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
5
10  
15  
5
10  
15  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC Equivalent: MO-011  
Drawing No. C04-016  
© 2006 Microchip Technology Inc.  
DS41159E-page 381  
PIC18FXX8  
44-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
#leads=n1  
D
D1  
n 1 2  
CH2 x 45°  
CH1 x 45°  
α
A3  
A2  
A
35°  
B1  
B
c
A1  
β
p
E2  
D2  
Units  
INCHES*  
NOM  
44  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
44  
MAX  
n
p
Number of Pins  
Pitch  
.050  
1.27  
11  
Pins per Side  
Overall Height  
n1  
A
11  
.173  
.153  
.028  
.029  
.045  
.005  
.690  
.690  
.653  
.653  
.620  
.620  
.011  
.029  
.020  
5
.165  
.145  
.020  
.024  
.040  
.000  
.685  
.685  
.650  
.650  
.590  
.590  
.008  
.026  
.013  
0
.180  
4.19  
3.68  
0.51  
0.61  
1.02  
0.00  
17.40  
17.40  
16.51  
16.51  
14.99  
14.99  
0.20  
0.66  
0.33  
0
4.39  
3.87  
0.71  
0.74  
1.14  
0.13  
17.53  
17.53  
16.59  
16.59  
15.75  
15.75  
0.27  
0.74  
0.51  
5
4.57  
Molded Package Thickness  
A2  
A1  
A3  
CH1  
CH2  
E
.160  
.035  
.034  
.050  
.010  
.695  
.695  
.656  
.656  
.630  
.630  
.013  
.032  
.021  
10  
4.06  
0.89  
0.86  
1.27  
0.25  
17.65  
17.65  
16.66  
16.66  
16.00  
16.00  
0.33  
0.81  
0.53  
10  
Standoff  
§
Side 1 Chamfer Height  
Corner Chamfer 1  
Corner Chamfer (others)  
Overall Width  
Overall Length  
D
Molded Package Width  
Molded Package Length  
Footprint Width  
E1  
D1  
E2  
D2  
c
Footprint Length  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
B1  
B
α
β
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC Equivalent: MO-047  
Drawing No. C04-048  
DS41159E-page 382  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
#leads=n1  
p
D1  
D
2
1
B
n
CH x 45°  
α
A
c
φ
β
A1  
A2  
L
F
Units  
Dimension Limits  
INCHES  
NOM  
44  
MILLIMETERS  
*
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
44  
.031  
11  
0.80  
11  
Pins per Side  
n1  
A
Overall Height  
.039  
.043  
.039  
.004  
.024  
.039 REF.  
3.5  
.047  
1.00  
1.10  
1.20  
Molded Package Thickness  
Standoff  
A2  
A1  
L
.037  
.002  
.018  
.041  
.006  
.030  
0.95  
0.05  
0.45  
1.00  
0.10  
0.60  
1.05  
0.15  
0.75  
Foot Length  
Footprint (Reference)  
Foot Angle  
F
φ
1.00 REF.  
3.5  
12.00  
0
7
0
7
Overall Width  
E
D
.463  
.463  
.390  
.390  
.004  
.012  
.025  
.472  
.472  
.394  
.394  
.006  
.015  
.035  
10  
.482  
.482  
.398  
.398  
.008  
.017  
.045  
11.75  
11.75  
9.90  
9.90  
0.09  
0.30  
0.64  
12.25  
12.25  
10.10  
10.10  
0.20  
Overall Length  
12.00  
10.00  
10.00  
0.15  
0.38  
0.89  
10  
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
E1  
D1  
c
B
CH  
α
0.44  
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
1.14  
5
15  
15  
5
15  
15  
β
5
10  
5
10  
*
Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
See ASME Y14.5M  
JEDEC Equivalent: MS-026  
Revised 07-22-05  
Drawing No. C04-076  
© 2006 Microchip Technology Inc.  
DS41159E-page 383  
PIC18FXX8  
NOTES:  
DS41159E-page 384  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
APPENDIX A: DATA SHEET  
REVISION HISTORY  
APPENDIX B: DEVICE  
DIFFERENCES  
The differences between the devices listed in this data  
sheet are shown in Table B-1.  
Revision A (June 2001)  
Original data sheet for the PIC18FXX8 family.  
Revision B (May 2002)  
Updated information on CAN module, device memory  
and register maps, I/O ports and Enhanced CCP.  
Revision C (January 2003)  
This revision includes the DC and AC Characteristics  
Graphs and Tables (see Section 28.0 “DC and AC  
Characteristics Graphs and Tables”), Section 27.0  
“Electrical Characteristics” have been updated and  
CAN certification information has been added.  
Revision D (September 2004)  
Data Sheet Errata (DS80134 and DS80161) issues  
have been addressed and corrected along with minor  
corrections to the data sheet text.  
Revision E (October 2006)  
Packaging diagrams updated.  
TABLE B-1:  
DEVICE DIFFERENCES  
Features  
PIC18F248  
PIC18F258  
PIC18F448  
PIC18F458  
Internal  
Program  
Memory  
Bytes  
16K  
32K  
16K  
32K  
# of Single-Word  
Instructions  
8192  
16384  
8192  
16384  
Data Memory (Bytes)  
I/O Ports  
768  
Ports A, B, C  
1536  
Ports A, B, C  
768  
1536  
Ports A, B, C, D, E Ports A, B, C, D, E  
Enhanced Capture/Compare/PWM  
Modules  
1
1
Parallel Slave Port  
No  
No  
Yes  
Yes  
10-bit Analog-to-Digital Converter  
Analog Comparators  
5 input channels 5 input channels 8 input channels 8 input channels  
No  
No  
2
2
Analog Comparators VREF Output  
Packages  
N/A  
N/A  
Yes  
Yes  
28-pin SPDIP  
28-pin SOIC  
28-pin SPDIP  
28-pin SOIC  
40-pin PDIP  
44-pin PLCC  
44-pin TQFP  
40-pin PDIP  
44-pin PLCC  
44-pin TQFP  
© 2006 Microchip Technology Inc.  
DS41159E-page 385  
PIC18FXX8  
APPENDIX C: DEVICE MIGRATIONS  
APPENDIX D: MIGRATING FROM  
OTHER PICmicro®  
This section is intended to describe the functional and  
electrical specification differences when migrating  
between functionally similar devices (such as from a  
PIC16C74A to a PIC16C74B).  
DEVICES  
This discusses some of the issues in migrating from  
other PICmicro devices to the PIC18FXX8 family of  
devices.  
Not Applicable  
D.1  
PIC16CXXX to PIC18FXX8  
See Application Note AN716 “Migrating Designs from  
PIC16C74A/74B to PIC18C442” (DS00716).  
D.2  
PIC17CXXX to PIC18FXX8  
See Application Note AN726 “PIC17CXXX to  
PIC18CXXX Migration” (DS00726).  
DS41159E-page 386  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
INDEX  
Block Diagrams  
A
A/D............................................................................ 243  
Analog Input Model........................................... 244, 253  
Baud Rate Generator ............................................... 169  
CAN Buffers and Protocol Engine ............................ 200  
CAN Receive Buffer ................................................. 230  
CAN Transmit Buffer ................................................ 227  
Capture Mode Operation.......................................... 125  
Comparator I/O Operating Modes ............................ 250  
Comparator Output................................................... 252  
Comparator Voltage Reference  
A/D.................................................................................... 241  
A/D Converter Flag (ADIF Bit) .................................. 243  
A/D Converter Interrupt, Configuring ........................ 244  
Acquisition Requirements ......................................... 244  
Acquisition Time........................................................ 245  
ADCON0 Register..................................................... 241  
ADCON1 Register..................................................... 241  
ADRESH Register..................................................... 241  
ADRESH/ADRESL Registers ................................... 243  
ADRESL Register ..................................................... 241  
Analog Port Pins, Configuring................................... 246  
Associated Registers Summary................................ 248  
Calculating the Minimum Required  
Output Buffer Example ..................................... 257  
Compare (CCP Module) Mode Operation ................ 126  
Enhanced PWM........................................................ 134  
Interrupt Logic............................................................. 78  
Low-Voltage Detect (LVD)........................................ 260  
Low-Voltage Detect with External Input.................... 260  
Acquisition Time ............................................... 245  
Configuring the Module............................................. 244  
Conversion Clock (TAD) ............................................ 246  
Conversion Status (GO/DONE Bit)........................... 243  
Conversion TAD Cycles............................................. 248  
Conversions.............................................................. 247  
Minimum Charging Time........................................... 245  
Result Registers........................................................ 247  
Selecting the Conversion Clock................................ 246  
Special Event Trigger (CCP)..................................... 126  
Special Event Trigger (ECCP) .......................... 133, 248  
TAD vs. Device Operating Frequencies  
2
MSSP (I C Master Mode)......................................... 167  
2
MSSP (I C Mode)..................................................... 152  
MSSP (SPI Mode) .................................................... 143  
On-Chip Reset Circuit................................................. 25  
OSC2/CLKO/RA6 Pin................................................. 94  
PIC18F248/258 Architecture ........................................ 8  
PIC18F448/458 Architecture ........................................ 9  
PLL ............................................................................. 19  
PORTC (Peripheral Output Override)....................... 100  
PORTD and PORTE (Parallel Slave Port)................ 107  
PORTD in I/O Port Mode.......................................... 102  
PORTE ..................................................................... 104  
PWM (CCP Module)................................................. 128  
RA3:RA0 and RA5 Pins.............................................. 94  
RA4/T0CKI Pin ........................................................... 94  
RB1:RB0 Pins............................................................. 97  
RB2/CANTX/INT2 Pin ................................................ 98  
RB3/CANRX Pin......................................................... 98  
RB7:RB4 Pins............................................................. 97  
Reads from Flash Program Memory .......................... 69  
Table Read Operation ................................................ 65  
Table Write Operation ................................................ 66  
Table Writes to Flash Program Memory..................... 71  
Timer0 in 16-bit Mode............................................... 110  
Timer0 in 8-bit Mode................................................. 110  
Timer1 ...................................................................... 114  
Timer1 (16-bit Read/Write Mode)............................. 114  
Timer2 ...................................................................... 118  
Timer3 ...................................................................... 120  
Timer3 (16-bit Read/Write Mode)............................. 120  
USART Receive ....................................................... 191  
USART Transmit ...................................................... 189  
Voltage Reference.................................................... 256  
Watchdog Timer ....................................................... 273  
BN..................................................................................... 290  
BNC .................................................................................. 291  
BNN .................................................................................. 291  
BNOV ............................................................................... 292  
BNZ .................................................................................. 292  
BOR. See Brown-out Reset.  
(For Extended, LF Devices) (table)................... 246  
TAD vs. Device Operating  
Frequencies (table)........................................... 246  
Use of the ECCP Trigger .......................................... 248  
Absolute Maximum Ratings .............................................. 329  
AC (Timing) Characteristics.............................................. 341  
Parameter Symbology .............................................. 341  
Access Bank ....................................................................... 54  
ACKSTAT ......................................................................... 173  
ACKSTAT Status Flag ...................................................... 173  
ADCON0 Register............................................................. 241  
GO/DONE Bit............................................................ 243  
ADCON1 Register............................................................. 241  
ADDLW ............................................................................. 287  
Addressable Universal Synchronous Asynchronous  
Receiver Transmitter. See USART.  
ADDWF............................................................................. 287  
ADDWFC .......................................................................... 288  
ADRESH Register............................................................. 241  
ADRESH/ADRESL Registers ........................................... 243  
ADRESL Register ............................................................. 241  
Analog-to-Digital Converter. See A/D.  
ANDLW ............................................................................. 288  
ANDWF............................................................................. 289  
Assembler  
MPASM Assembler................................................... 323  
Associated Registers ................................................ 192, 197  
B
Bank Select Register (BSR)................................................ 54  
Baud Rate Generator........................................................ 169  
BC ..................................................................................... 289  
BCF................................................................................... 290  
BF ..................................................................................... 173  
BF Status Flag .................................................................. 173  
BOV .................................................................................. 295  
BRA .................................................................................. 293  
BRG. See Baud Rate Generator.  
Brown-out Reset (BOR).............................................. 26, 265  
© 2006 Microchip Technology Inc.  
DS41159E-page 387  
PIC18FXX8  
BSF ...................................................................................293  
BTFSC ..............................................................................294  
BTFSS...............................................................................294  
BTG...................................................................................295  
BZ......................................................................................296  
Listen Only Mode...................................................... 226  
Loopback Mode ........................................................ 227  
Message Acceptance Filters  
and Masks ................................................ 215, 232  
Message Acceptance Mask and  
Filter Operation (diagram) ................................ 232  
Message Reception.................................................. 230  
Message Time-Stamping.......................................... 230  
Message Transmission............................................. 227  
Modes of Operation .................................................. 226  
Normal Mode ............................................................ 226  
Oscillator Tolerance.................................................. 236  
Overview................................................................... 199  
Phase Buffer Segments............................................ 234  
Programming Time Segments.................................. 236  
Propagation Segment............................................... 234  
Receive Buffer Registers.......................................... 210  
Receive Buffers ........................................................ 230  
Receive Message Buffering...................................... 230  
Receive Priority......................................................... 230  
Registers .................................................................. 201  
Resynchronization .................................................... 235  
Sample Point ............................................................ 234  
Shortening a Bit Period (diagram) ............................ 236  
Stuff Bit Error ............................................................ 237  
Synchronization ........................................................ 235  
Synchronization Rules.............................................. 235  
Synchronization Segment......................................... 234  
Time Quanta............................................................. 234  
Transmit Buffer Registers......................................... 206  
Transmit Buffers ....................................................... 227  
Transmit Priority........................................................ 227  
Transmit/Receive Buffers ......................................... 199  
Values for ICODE (table).......................................... 239  
Capture (CCP Module) ..................................................... 124  
CAN Message Time-Stamp...................................... 125  
CCP Pin Configuration.............................................. 124  
CCP1 Prescaler........................................................ 125  
CCPR1H:CCPR1L Registers.................................... 124  
Software Interrupt ..................................................... 125  
Timer1/Timer3 Mode Selection................................. 124  
Capture (ECCP Module)................................................... 133  
CAN Message Time-Stamp...................................... 133  
Capture/Compare/PWM (CCP) ........................................ 123  
Capture Mode. See Capture  
C
C Compilers  
MPLAB C17 ..............................................................324  
MPLAB C18 ..............................................................324  
MPLAB C30 ..............................................................324  
CALL .................................................................................296  
CAN Module  
Aborting Transmission ..............................................228  
Acknowledge Error....................................................237  
Baud Rate Registers.................................................218  
Baud Rate Setting.....................................................233  
Bit Error.....................................................................237  
Bit Time Partitioning (diagram) .................................233  
Bit Timing Configuration Registers ...........................236  
BRGCON1 ........................................................236  
BRGCON2 ........................................................236  
BRGCON3 ........................................................236  
Calculating TQ, Nominal Bit Rate and  
Nominal Bit Time...............................................234  
Configuration Mode...................................................226  
Control and Status Registers....................................201  
Controller Register Map ............................................225  
CRC Error .................................................................237  
Disable Mode ............................................................226  
Error Detection..........................................................237  
Error Modes and Error Counters...............................237  
Error Modes State (diagram) ....................................238  
Error Recognition Mode ............................................227  
Error States...............................................................237  
Filter/Mask Truth (table)............................................232  
Form Error.................................................................237  
Hard Synchronization................................................235  
I/O Control Register ..................................................221  
Information Processing Time ....................................234  
Initiating Transmission ..............................................228  
Internal Message Reception  
Flowchart ..........................................................231  
Internal Transmit Message  
Flowchart ..........................................................229  
Interrupt Acknowledge ..............................................239  
Interrupt Registers ....................................................222  
Interrupts...................................................................238  
Bus Activity Wake-up........................................239  
Bus-Off..............................................................239  
Code Bits ..........................................................238  
Error..................................................................239  
Message Error ..................................................239  
Receive.............................................................238  
Receiver Bus Passive.......................................239  
Receiver Overflow.............................................239  
Receiver Warning .............................................239  
Transmit............................................................238  
Transmitter Bus Passive...................................239  
Transmitter Warning .........................................239  
Lengthening a Bit Period  
(CCP Module).  
CCP1 Module ........................................................... 124  
Timer Resources .............................................. 124  
CCPR1H Register..................................................... 124  
CCPR1L Register ..................................................... 124  
Compare Mode. See Compare  
(CCP Module).  
Interaction of CCP1 and  
ECCP1 Modules............................................... 124  
PWM Mode. See PWM (CCP Module).  
Ceramic Resonators  
Ranges Tested ........................................................... 17  
Clocking Scheme................................................................ 41  
CLRF ................................................................................ 297  
CLRWDT .......................................................................... 297  
(diagram)...........................................................235  
DS41159E-page 388  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
Code Examples  
16 x 16 Signed Multiply Routine ................................. 76  
CPFSGT ........................................................................... 299  
CPFSLT............................................................................ 299  
Crystal Oscillator  
16 x 16 Unsigned Multiply Routine ............................. 76  
8 x 8 Signed Multiply Routine ..................................... 75  
8 x 8 Unsigned Multiply Routine ................................. 75  
Changing Between Capture Prescalers.................... 125  
Data EEPROM Read .................................................. 61  
Data EEPROM Refresh Routine................................. 62  
Data EEPROM Write .................................................. 61  
Erasing a Flash Program Memory Row...................... 70  
Fast Register Stack..................................................... 40  
How to Clear RAM (Bank 1) Using  
Indirect Addressing ............................................. 55  
Initializing PORTA....................................................... 93  
Initializing PORTB....................................................... 96  
Initializing PORTC..................................................... 100  
Initializing PORTD..................................................... 102  
Initializing PORTE..................................................... 104  
Loading the SSPBUF Register ................................. 146  
Reading a Flash Program  
Capacitor Selection .................................................... 18  
D
Data EEPROM Memory...................................................... 59  
Associated Registers.................................................. 63  
EEADR Register......................................................... 59  
EECON1 Register ...................................................... 59  
EECON2 Register ...................................................... 59  
Operation During Code-Protect.................................. 62  
Protection Against Spurious Writes............................ 62  
Reading ...................................................................... 61  
Usage ......................................................................... 62  
Write Verify................................................................. 62  
Writing to .................................................................... 61  
Data Memory ...................................................................... 44  
General Purpose Registers ........................................ 44  
Special Function Registers......................................... 44  
Data Memory Map  
Memory Word ..................................................... 69  
Saving Status, WREG and BSR  
Registers in RAM................................................ 92  
WIN and ICODE Bits Usage in  
PIC18F248/448 .......................................................... 45  
PIC18F258/458 .......................................................... 46  
DAW ................................................................................. 300  
DC and AC Characteristics  
Interrupt Service Routine to  
Graphs and Tables................................................... 361  
DC Characteristics............................................................ 332  
EEPROM and Enhanced Flash................................ 339  
PIC18FXX8 (Ind., Ext.) and  
PIC18LFXX8 (Ind.)........................................... 336  
DCFSNZ ........................................................................... 301  
DECF................................................................................ 300  
DECFSZ ........................................................................... 301  
Demonstration Boards  
PICDEM 1................................................................. 326  
PICDEM 17............................................................... 327  
PICDEM 18R............................................................ 327  
PICDEM 2 Plus......................................................... 326  
PICDEM 3................................................................. 326  
PICDEM 4................................................................. 326  
PICDEM LIN............................................................. 327  
PICDEM USB ........................................................... 327  
PICDEM.net Internet/Ethernet.................................. 326  
Development Support....................................................... 323  
Device Differences............................................................ 385  
Device Migrations ............................................................. 386  
Device Overview................................................................... 7  
Features ....................................................................... 7  
Direct Addressing ............................................................... 56  
Disable Mode (CAN Module)............................................ 226  
Access TX/RX Buffers ...................................... 203  
Writing to Flash Program Memory ........................ 72–73  
Code Protection ................................................................ 265  
COMF ............................................................................... 298  
Comparator Module .......................................................... 249  
Analog Input Connection Considerations.................. 253  
Associated Registers ................................................ 254  
Configuration............................................................. 250  
Effects of a Reset...................................................... 253  
External Reference Signal ........................................ 251  
Internal Reference Signal ......................................... 251  
Interrupts................................................................... 252  
Operation .................................................................. 251  
Operation During Sleep ............................................ 253  
Outputs ..................................................................... 251  
Reference ................................................................. 251  
Response Time......................................................... 251  
Comparator Specifications................................................ 340  
Comparator Voltage Reference Module ........................... 255  
Accuracy/Error .......................................................... 256  
Associated Registers ................................................ 257  
Configuring................................................................ 255  
Connection Considerations....................................... 256  
Effects of a Reset...................................................... 256  
Operation During Sleep ............................................ 256  
Compare (CCP Module) ................................................... 126  
CCP1 Pin Configuration............................................ 126  
CCPR1 and ECCPR1 Registers............................... 126  
Registers Associated with Capture,  
E
Electrical Characteristics .................................................. 329  
Enhanced Capture/Compare/PWM (ECCP)..................... 131  
Auto-Shutdown......................................................... 142  
Capture Mode. See Capture  
Compare, Timer1 and Timer3........................... 127  
Software Interrupt ..................................................... 126  
Special Event Trigger........................ 115, 121, 126, 248  
Timer1/Timer3 Mode Selection................................. 126  
Compare (ECCP Module)................................................. 133  
Registers Associated with Enhanced  
Capture, Compare, Timer1 and Timer3............ 133  
Special Event Trigger................................................ 133  
Compatible 10-Bit Analog-to-Digital  
(ECCP Module).  
Compare Mode. See Compare  
(ECCP Module).  
ECCPR1H Register.................................................. 132  
ECCPR1L Register................................................... 132  
Interaction of CCP1 and  
ECCP1 Modules............................................... 132  
Pin Assignments for Various Modes......................... 132  
PWM Mode. See PWM (ECCP Module).  
Timer Resources ...................................................... 132  
Converter (A/D) Module. See A/D.  
Configuration Mode (CAN Module)................................... 226  
CPFSEQ ........................................................................... 298  
© 2006 Microchip Technology Inc.  
DS41159E-page 389  
PIC18FXX8  
Enhanced CCP Auto-Shutdown........................................142  
Enhanced PWM Mode.  
Slave Mode............................................................... 156  
Addressing........................................................ 156  
See PWM (ECCP Module).  
Reception ......................................................... 157  
Errata ....................................................................................5  
Error Recognition Mode (CAN Module) ............................226  
Evaluation and Programming Tools..................................327  
External Clock Input............................................................19  
Transmission .................................................... 157  
Sleep Operation........................................................ 177  
Stop Condition Timing .............................................. 176  
ID Locations.............................................................. 265, 279  
INCF ................................................................................. 302  
INCFSZ............................................................................. 303  
In-Circuit Debugger........................................................... 279  
In-Circuit Serial Programming (ICSP)....................... 265, 279  
Indirect Addressing............................................................. 56  
FSR Register.............................................................. 55  
INDF Register............................................................. 55  
Operation.................................................................... 55  
INFSNZ............................................................................. 303  
Initialization Conditions for All Registers............................. 30  
Instruction Cycle ................................................................. 41  
Instruction Flow/Pipelining.................................................. 41  
Instruction Format............................................................. 283  
Instruction Set................................................................... 281  
ADDLW..................................................................... 287  
ADDWF..................................................................... 287  
ADDWFC.................................................................. 288  
ANDLW..................................................................... 288  
ANDWF..................................................................... 289  
BC............................................................................. 289  
BCF .......................................................................... 290  
BN............................................................................. 290  
BNC .......................................................................... 291  
BNN .......................................................................... 291  
BNOV ....................................................................... 292  
BNZ .......................................................................... 292  
BOV .......................................................................... 295  
BRA .......................................................................... 293  
BSF........................................................................... 293  
BTFSC...................................................................... 294  
BTFSS ...................................................................... 294  
BTG .......................................................................... 295  
BZ ............................................................................. 296  
CALL......................................................................... 296  
CLRF ........................................................................ 297  
CLRWDT .................................................................. 297  
COMF ....................................................................... 298  
CPFSEQ................................................................... 298  
CPFSGT ................................................................... 299  
CPFSLT.................................................................... 299  
DAW ......................................................................... 300  
DCFSNZ ................................................................... 301  
DECF........................................................................ 300  
DECFSZ ................................................................... 301  
GOTO ....................................................................... 302  
INCF ......................................................................... 302  
INCFSZ..................................................................... 303  
INFSNZ..................................................................... 303  
IORLW...................................................................... 304  
IORWF...................................................................... 304  
LFSR ........................................................................ 305  
MOVF ....................................................................... 305  
MOVFF ..................................................................... 306  
MOVLB..................................................................... 306  
MOVLW .................................................................... 307  
MOVWF.................................................................... 307  
MULLW..................................................................... 308  
MULWF..................................................................... 308  
F
Firmware Instructions........................................................281  
Flash Program Memory.......................................................65  
Associated Registers ..................................................74  
Control Registers ........................................................66  
Erase Sequence .........................................................70  
Erasing........................................................................70  
Operation During Code-Protect ..................................73  
Reading.......................................................................69  
TABLAT (Table Latch) Register..................................68  
Table Pointer  
Boundaries Based on Operation.........................68  
Table Pointer Boundaries ...........................................68  
Table Reads and Table Writes ...................................65  
TBLPTR (Table Pointer) Register ...............................68  
Write Sequence ..........................................................71  
Writing to.....................................................................71  
Protection Against Spurious Writes ....................73  
Unexpected Termination.....................................73  
Write Verify .........................................................73  
G
GOTO................................................................................302  
H
Hardware Multiplier .............................................................75  
Operation ....................................................................75  
Performance Comparison (table)................................75  
HS4 (PLL) ...........................................................................19  
I
I/O Ports..............................................................................93  
2
I C Mode...........................................................................152  
ACK Pulse......................................................... 156, 157  
Acknowledge Sequence Timing................................176  
Baud Rate Generator................................................169  
Bus Collision During a  
Repeated Start Condition..................................180  
Bus Collision During a Start Condition......................178  
Bus Collision During a Stop Condition ......................181  
Clock Arbitration........................................................170  
Clock Stretching........................................................162  
Effect of a Reset .......................................................177  
General Call Address Support ..................................166  
Master Mode.............................................................167  
Operation ..........................................................168  
Reception..........................................................173  
Repeated Start Condition Timing......................172  
Start Condition Timing ......................................171  
Transmission.....................................................173  
Multi-Master Mode ....................................................177  
Communication, Bus Collision  
and Bus Arbitration ...................................177  
Operation ..................................................................156  
Read/Write Bit Information (R/W Bit) ................ 156, 157  
Registers...................................................................152  
Serial Clock (RC3/SCK/SCL)....................................157  
DS41159E-page 390  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
NEGF........................................................................ 309  
NOP .......................................................................... 309  
POP .......................................................................... 310  
PUSH........................................................................ 310  
RCALL ...................................................................... 311  
RESET...................................................................... 311  
RETFIE ..................................................................... 312  
RETLW ..................................................................... 312  
RETURN................................................................... 313  
RLCF......................................................................... 313  
RLNCF...................................................................... 314  
RRCF........................................................................ 314  
RRNCF ..................................................................... 315  
SETF......................................................................... 315  
SLEEP ...................................................................... 316  
SUBFWB................................................................... 316  
SUBLW ..................................................................... 317  
SUBWF..................................................................... 317  
SUBWFB................................................................... 318  
SWAPF ..................................................................... 318  
TBLRD ...................................................................... 319  
TBLWT...................................................................... 320  
TSTFSZ .................................................................... 321  
XORLW..................................................................... 321  
XORWF..................................................................... 322  
Summary Table......................................................... 284  
Low-Voltage Detect .......................................................... 259  
Characteristics.......................................................... 338  
Current Consumption ............................................... 263  
Effects of a Reset ..................................................... 263  
Operation.................................................................. 262  
Operation During Sleep............................................ 263  
Reference Voltage Set Point .................................... 263  
Typical Application.................................................... 259  
Low-Voltage ICSP Programming...................................... 279  
LVD. See Low-Voltage Detect.  
M
Master Synchronous Serial Port (MSSP).  
See MSSP.  
Master Synchronous Serial Port.  
See MSSP.  
Memory Organization ......................................................... 37  
Data Memory.............................................................. 44  
Internal Program Memory Operation.......................... 37  
Program Memory........................................................ 37  
Migrating from other PICmicro Devices............................ 386  
MOVF ............................................................................... 305  
MOVFF ............................................................................. 306  
MOVLB............................................................................. 306  
MOVLW ............................................................................ 307  
MOVWF............................................................................ 307  
MPLAB ASM30 Assembler,  
INTCON Register  
Linker, Librarian........................................................ 324  
MPLAB ICD 2 In-Circuit Debugger................................... 325  
MPLAB ICE 2000 High-Performance  
RBIF Bit....................................................................... 96  
Inter-Integrated Circuit. See I C.  
Interrupt Sources  
2
Universal In-Circuit Emulator.................................... 325  
MPLAB ICE 4000 High-Performance  
Universal In-Circuit Emulator.................................... 325  
MPLAB Integrated Development  
Environment Software .............................................. 323  
MPLAB PM3 Device Programmer .................................... 325  
MPLINK Object Linker/  
A/D Conversion Complete ........................................ 244  
CAN Module.............................................................. 238  
Capture Complete (CCP).......................................... 125  
Compare Complete (CCP)........................................ 126  
Interrupt-on-Change (RB7:RB4) ................................. 96  
TMR0 Overflow......................................................... 111  
TMR1 Overflow................................................. 113, 115  
TMR2 to PR2 Match ................................................. 118  
TMR2 to PR2 Match (PWM) ............................. 117, 128  
TMR3 Overflow................................................. 119, 121  
Interrupt-on-Change (RB7:RB4) Flag  
(RBIF Bit) .................................................................... 96  
Interrupts..................................................................... 77, 265  
Context Saving During................................................ 92  
Enable Registers......................................................... 85  
Flag Registers............................................................. 82  
INT .............................................................................. 92  
PORTB Interrupt-on-Change ...................................... 92  
Priority Registers......................................................... 88  
TMR0 .......................................................................... 92  
Interrupts, Flag Bits  
MPLIB Object Librarian ............................................ 324  
MSSP ............................................................................... 143  
Control Registers...................................................... 143  
Enabling SPI I/O....................................................... 147  
Operation.................................................................. 146  
Overview................................................................... 143  
SPI Master Mode...................................................... 148  
SPI Master/Slave Connection................................... 147  
SPI Mode.................................................................. 143  
SPI Slave Mode........................................................ 149  
TMR2 Output for Clock Shift............................. 117, 118  
Typical Connection................................................... 147  
2
MSSP. See also I C Mode, SPI Mode.  
MULLW............................................................................. 308  
MULWF............................................................................. 308  
A/D Converter Flag (ADIF Bit) .................................. 243  
CCP1 Flag (CCP1IF Bit)........................... 124, 125, 126  
IORLW .............................................................................. 304  
IORWF .............................................................................. 304  
N
NEGF................................................................................ 309  
NOP.................................................................................. 309  
Normal Operation Mode (CAN Module)............................ 226  
L
LFSR................................................................................. 305  
Listen Only Mode (CAN Module) ...................................... 226  
Look-up Tables ................................................................... 43  
Computed GOTO........................................................ 43  
Table Reads/Table Writes .......................................... 43  
Loopback Mode (CAN Module)......................................... 226  
© 2006 Microchip Technology Inc.  
DS41159E-page 391  
PIC18FXX8  
RD0/PSP0/C1IN+....................................................... 14  
RD1/PSP1/C1IN-........................................................ 14  
RD2/PSP2/C2IN+....................................................... 14  
RD3/PSP3/C2IN-........................................................ 14  
RD4/PSP4/ECCP1/P1A.............................................. 14  
RD5/PSP5/P1B .......................................................... 14  
RD6/PSP6/P1C .......................................................... 14  
RD7/PSP7/P1D .......................................................... 14  
RE0/AN5/RD............................................................... 15  
RE1/AN6/WR/C1OUT................................................. 15  
RE2/AN7/CS/C2OUT.................................................. 15  
VDD ............................................................................. 15  
VSS ............................................................................. 15  
Pinout I/O Descriptions....................................................... 10  
Pointer, FSRn ..................................................................... 55  
POP .................................................................................. 310  
POR. See Power-on Reset.  
O
Opcode Field Descriptions................................................282  
Oscillator  
Effects of Sleep Mode.................................................23  
Power-up Delays.........................................................23  
Switching Feature .......................................................20  
System Clock Switch Bit .............................................20  
Transitions ..................................................................21  
Oscillator Configurations.....................................................17  
Crystal Oscillator, Ceramic Resonators ......................17  
EC ...............................................................................17  
ECIO ...........................................................................17  
HS...............................................................................17  
HS4 .............................................................................17  
LP................................................................................17  
RC......................................................................... 17, 18  
RCIO...........................................................................17  
XT ...............................................................................17  
Oscillator Selection ...........................................................265  
Oscillator, Timer1..............................................113, 115, 121  
Oscillator, WDT.................................................................272  
PORTA  
Associated Register Summary ................................... 95  
Functions .................................................................... 95  
LATA Register ............................................................ 93  
PORTA Register......................................................... 93  
TRISA Register........................................................... 93  
PORTB  
P
Packaging Information ......................................................377  
Details.......................................................................379  
Marking .....................................................................377  
Parallel Slave Port (PSP).......................................... 102, 107  
Associated Registers ................................................108  
PORTD .....................................................................107  
PSP Mode Select (PSPMODE) Bit ...........................102  
RE2/AN7/CS/C2OUT................................................107  
PIC18FXX8 Voltage-Frequency  
Associated Register Summary ................................... 99  
Functions .................................................................... 99  
LATB Register ............................................................ 96  
PORTB Register......................................................... 96  
RB7:RB4 Interrupt-on-Change  
Flag (RBIF Bit).................................................... 96  
TRISB Register........................................................... 96  
PORTC  
Associated Register Summary ................................. 101  
Functions .................................................................. 101  
LATC Register.......................................................... 100  
PORTC Register....................................................... 100  
RC3/SCK/SCL Pin.................................................... 157  
RC7/RX/DT pin......................................................... 185  
TRISC Register................................................. 100, 183  
PORTD  
Associated Register Summary ................................. 103  
Functions .................................................................. 103  
LATD Register.......................................................... 102  
Parallel Slave Port (PSP) Function........................... 102  
PORTD Register....................................................... 102  
TRISD Register......................................................... 102  
PORTE  
Associated Register Summary ................................. 106  
Functions .................................................................. 106  
LATE Register .......................................................... 104  
PORTE Register....................................................... 104  
PSP Mode Select (PSPMODE) Bit........................... 102  
RE2/AN7/CS/C2OUT................................................ 107  
TRISE Register......................................................... 104  
Power-Down Mode. See Sleep.  
Power-on Reset (POR)............................................... 26, 265  
MCLR ......................................................................... 26  
Oscillator Start-up Timer (OST).......................... 26, 265  
PLL Lock Time-out...................................................... 26  
Power-up Timer (PWRT).................................... 26, 265  
Time-out Sequence .................................................... 27  
Power-up Delays  
Graph (Industrial)......................................................330  
PIC18LFXX8 Voltage-Frequency  
Graph (Industrial)......................................................331  
PICkit 1 Flash Starter Kit...................................................327  
PICSTART Plus Development  
Programmer ..............................................................326  
Pin Functions  
MCLR/VPP...................................................................10  
OSC1/CLKI .................................................................10  
OSC2/CLKO/RA6 .......................................................10  
RA0/AN0/CVREF .........................................................11  
RA1/AN1 .....................................................................11  
RA2/AN2/VREF-...........................................................11  
RA3/AN3/VREF+..........................................................11  
RA4/T0CKI..................................................................11  
RA5/AN4/SS/LVDIN....................................................11  
RA6 .............................................................................11  
RB0/INT0 ....................................................................12  
RB1/INT1 ....................................................................12  
RB2/CANTX/INT2.......................................................12  
RB3/CANRX ...............................................................12  
RB4 .............................................................................12  
RB5/PGM....................................................................12  
RB6/PGC ....................................................................12  
RB7/PGD ....................................................................12  
RC0/T1OSO/T1CKI ....................................................13  
RC1/T1OSI .................................................................13  
RC2/CCP1 ..................................................................13  
RC3/SCK/SCL ............................................................13  
RC4/SDI/SDA .............................................................13  
RC5/SDO ....................................................................13  
RC6/TX/CK .................................................................13  
RC7/RX/DT.................................................................13  
OSC1 and OSC2 Pin States  
in Sleep Mode..................................................... 23  
Prescaler, Timer0 ............................................................. 111  
DS41159E-page 392  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
Prescaler, Timer2.............................................................. 128  
PRO MATE II Universal Device  
Register File Summary ....................................................... 49  
Registers  
Programmer.............................................................. 325  
Program Counter  
ADCON0 (A/D Control 0).......................................... 241  
ADCON1 (A/D Control 1).......................................... 242  
BRGCON1 (Baud Rate Control 1)............................ 218  
BRGCON2 (Baud Rate Control 2)............................ 219  
BRGCON3 (Baud Rate Control 3)............................ 220  
CANCON (CAN Control) .......................................... 201  
CANSTAT (CAN Status)........................................... 202  
CCP1CON (CCP1 Control) ...................................... 123  
CIOCON (CAN I/O Control)...................................... 221  
CMCON (Comparator Control)................................. 249  
COMSTAT (CAN  
Communication Status) .................................... 205  
CONFIG1H (Configuration 1 High)........................... 266  
CONFIG2H (Configuration 2 High)........................... 267  
CONFIG2L (Configuration 2 Low) ............................ 266  
CONFIG4L (Configuration 4 Low) ............................ 267  
CONFIG5H (Configuration 5 High)........................... 268  
CONFIG5L (Configuration 5 Low) ............................ 268  
CONFIG6H (Configuration 6 High)........................... 269  
CONFIG6L (Configuration 6 Low) ............................ 269  
CONFIG7H (Configuration 7 High)........................... 270  
CONFIG7L (Configuration 7 Low) ............................ 270  
CVRCON (Comparator Voltage  
Reference Control)........................................... 255  
DEVID1 (Device ID 1)............................................... 271  
DEVID2 (Device ID 2)............................................... 271  
ECCP1CON (ECCP1 Control).................................. 131  
ECCP1DEL (PWM Delay) ........................................ 140  
ECCPAS (Enhanced Capture/Compare/PWM  
Auto-Shutdown Control)................................... 142  
EECON1 (EEPROM Control 1) ............................ 60, 67  
INTCON (Interrupt Control) ........................................ 79  
INTCON2 (Interrupt Control 2) ................................... 80  
INTCON3 (Interrupt Control 3) ................................... 81  
IPR1 (Peripheral Interrupt Priority 1) .......................... 88  
IPR2 (Peripheral Interrupt Priority 2) .......................... 89  
IPR3 (Peripheral Interrupt Priority 3) .................. 90, 224  
LVDCON (LVD Control)............................................ 261  
OSCCON (Oscillator Control)..................................... 20  
PIE1 (Peripheral Interrupt Enable 1) .......................... 85  
PIE2 (Peripheral Interrupt Enable 2) .......................... 86  
PIE3 (Peripheral Interrupt Enable 3) .................. 87, 223  
PIR1 (Peripheral Interrupt Request  
PCL Register............................................................... 40  
PCLATH Register ....................................................... 40  
PCLATU Register ....................................................... 40  
Program Memory ................................................................ 37  
Fast Register Stack..................................................... 40  
Instructions.................................................................. 41  
Two-Word ........................................................... 43  
Map and Stack for PIC18F248/448............................. 37  
Map and Stack for PIC18F258/458............................. 37  
PUSH and POP Instructions....................................... 40  
Return Address Stack................................................. 38  
Return Stack Pointer (STKPTR) ................................. 38  
Stack Full/Underflow Resets....................................... 40  
Top-of-Stack Access................................................... 38  
Program Verification and  
Code Protection ........................................................ 276  
Associated Registers Summary................................ 276  
Configuration Register Protection............................. 279  
Data EEPROM Code Protection............................... 279  
Program Memory Code Protection ........................... 277  
Programming, Device Instructions .................................... 281  
PUSH ................................................................................ 310  
PWM (CCP Module) ......................................................... 128  
CCPR1H:CCPR1L Registers.................................... 128  
Duty Cycle................................................................. 128  
Example Frequencies/Resolutions ........................... 129  
Period........................................................................ 128  
Registers Associated with  
PWM and Timer2.............................................. 129  
Setup for PWM Operation......................................... 129  
TMR2 to PR2 Match ......................................... 117, 128  
PWM (ECCP Module) ....................................................... 134  
Full-Bridge Application Example............................... 138  
Full-Bridge Mode....................................................... 137  
Direction Change .............................................. 138  
Half-Bridge Mode...................................................... 136  
Half-Bridge Output Mode  
Applications Example ....................................... 136  
Output Configurations............................................... 134  
Output Polarity Configuration.................................... 140  
Output Relationships Diagram.................................. 135  
Programmable Dead-Band Delay............................. 140  
Registers Associated with Enhanced PWM  
(Flag) 1).............................................................. 82  
PIR2 (Peripheral Interrupt Request  
and Timer2........................................................ 141  
Setup for PWM Operation......................................... 141  
Standard Mode ......................................................... 134  
Start-up Considerations ............................................ 140  
System Implementation ............................................ 140  
(Flag) 2).............................................................. 83  
PIR3 (Peripheral Interrupt Request  
(Flag) 3)...................................................... 84, 222  
RCON (Reset Control).......................................... 58, 91  
RCSTA (Receive Status and Control) ...................... 184  
RXB0CON (Receive Buffer 0 Control)...................... 210  
RXB1CON (Receive Buffer 1 Control)...................... 211  
RXBnDLC (Receive Buffer n  
Q
Q Clock ............................................................................. 128  
Data Length Code)........................................... 213  
RXBnDm (Receive Buffer n  
Data Field Byte m)............................................ 214  
RXBnEIDH (Receive Buffer n  
Extended Identifier, High Byte)......................... 212  
RXBnEIDL (Receive Buffer n  
R
RAM. See Data Memory.  
RCALL .............................................................................. 311  
RCON Register  
Significance of Status Bits vs.  
Initialization Condition......................................... 27  
RCSTA Register ............................................................... 183  
SPEN Bit................................................................... 183  
Receiver Warning ............................................................. 239  
Register File........................................................................ 44  
Extended Identifier, Low Byte).......................... 213  
RXBnSIDH (Receive Buffer n  
Standard Identifier, High Byte) ......................... 212  
© 2006 Microchip Technology Inc.  
DS41159E-page 393  
PIC18FXX8  
RXBnSIDL (Receive Buffer n  
S
Standard Identifier, Low Byte)...........................212  
RXERRCNT (Receive Error Count) ..........................214  
RXFnEIDH (Receive Acceptance Filter n  
Extended Identifier, High Byte) .........................216  
RXFnEIDL (Receive Acceptance Filter n  
Extended Identifier, Low Byte)..........................216  
RXFnSIDH (Receive Acceptance Filter n  
Standard Identifier Filter, High Byte).................215  
RXFnSIDL (Receive Acceptance Filter n  
Standard Identifier Filter, Low Byte)..................215  
RXMnEIDH (Receive Acceptance Mask n  
Extended Identifier Mask, High Byte)................217  
RXMnEIDL (Receive Acceptance Mask n  
Extended Identifier Mask, Low Byte) ................217  
RXMnSIDH (Receive Acceptance Mask n  
SCI. See USART.  
SCK Pin ............................................................................ 143  
SDI Pin.............................................................................. 143  
SDO Pin............................................................................ 143  
Serial Clock (SCK) Pin...................................................... 143  
Serial Communication Interface.  
See USART.  
Serial Peripheral Interface. See SPI.  
SETF................................................................................. 315  
Slave Select (SS) Pin ....................................................... 143  
Slave Select, SS Pin......................................................... 143  
SLEEP .............................................................................. 316  
Sleep......................................................................... 265, 274  
Software Simulator (MPLAB SIM) .................................... 324  
Software Simulator (MPLAB SIM30) ................................ 324  
Special Event Trigger. See Compare.  
Special Features of the CPU ............................................ 265  
Configuration Bits ..................................................... 265  
Configuration Bits and  
Device IDs ........................................................ 265  
Configuration Registers.................................... 266–271  
Special Function Register Map........................................... 47  
Special Function Registers................................................. 44  
SPI Mode  
Associated Registers................................................ 151  
Bus Mode Compatibility............................................ 151  
Effects of a Reset ..................................................... 151  
Master Mode............................................................. 148  
Master/Slave Connection.......................................... 147  
Registers .................................................................. 144  
Serial Clock............................................................... 143  
Serial Data In (SDI) Pin ............................................ 143  
Serial Data Out (SDO) Pin........................................ 143  
Slave Select.............................................................. 143  
Slave Select Synchronization ................................... 149  
Sleep Operation........................................................ 151  
SPI Clock.................................................................. 148  
SSPBUF Register..................................................... 148  
SSPSR Register ....................................................... 148  
SSPOV ............................................................................. 173  
SSPOV Status Flag .......................................................... 173  
SSPSTAT Register  
Standard Identifier Mask, High Byte) ................216  
RXMnSIDL (Receive Acceptance Mask n  
Standard Identifier Mask, Low Byte).................217  
SSPCON1 (MSSP Control 1, I C Mode) ..................154  
2
SSPCON1 (MSSP Control 1, SPI Mode)..................145  
2
SSPCON2 (MSSP Control 2, I C Mode) ..................155  
2
SSPSTAT (MSSP Status, I C Mode)........................153  
SSPSTAT (MSSP Status, SPI Mode) .......................144  
Status..........................................................................57  
STKPTR (Stack Pointer).............................................39  
T0CON (Timer0 Control)...........................................109  
T1CON (Timer1 Control)...........................................113  
T2CON (Timer2 Control)...........................................117  
T3CON (Timer3 Control)...........................................119  
TRISE (PORTE Direction/PSP Control)....................105  
TXBnCON (Transmit Buffer n Control) .....................206  
TXBnDLC (Transmit Buffer n  
Data Length Code)............................................209  
TXBnDm (Transmit Buffer n  
Data Field Byte m) ............................................208  
TXBnEIDH (Transmit Buffer n  
Extended Identifier, High Byte) .........................207  
TXBnEIDL (Transmit Buffer n  
Extended Identifier, Low Byte)..........................208  
TXBnSIDH (Transmit Buffer n  
Standard Identifier, High Byte)..........................207  
TXBnSIDL (Transmit Buffer n  
Standard Identifier, Low Byte)...........................207  
TXERRCNT (Transmit Error Count)..........................209  
TXSTA (Transmit Status and Control) ......................183  
WDTCON (Watchdog Timer Control)........................272  
RESET ..............................................................................311  
Reset........................................................................... 25, 265  
MCLR Reset During Normal Operation ......................25  
MCLR Reset During Sleep..........................................25  
Power-on Reset (POR)...............................................25  
Programmable Brown-out Reset (PBOR)...................25  
RESET Instruction ......................................................25  
Stack Full Reset..........................................................25  
Stack Underflow Reset ...............................................25  
Watchdog Timer (WDT) Reset....................................25  
RETFIE .............................................................................312  
RETLW..............................................................................312  
RETURN ...........................................................................313  
Revision History ................................................................385  
RLCF.................................................................................313  
RLNCF ..............................................................................314  
RRCF ................................................................................314  
RRNCF..............................................................................315  
R/W Bit ............................................................. 156, 157  
SUBFWB .......................................................................... 316  
SUBLW............................................................................. 317  
SUBWF............................................................................. 317  
SUBWFB .......................................................................... 318  
SWAPF............................................................................. 318  
T
Table Pointer Operations (table)......................................... 68  
TBLRD.............................................................................. 319  
TBLWT.............................................................................. 320  
Timer0............................................................................... 109  
16-bit Mode Timer Reads and Writes....................... 111  
Associated Registers................................................ 111  
Operation.................................................................. 111  
Overflow Interrupt ..................................................... 111  
Prescaler .................................................................. 111  
Prescaler. See Prescaler, Timer0.  
Switching Prescaler Assignment .............................. 111  
DS41159E-page 394  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
Timer1............................................................................... 113  
16-bit Read/Write Mode............................................ 115  
Associated Registers ................................................ 116  
Operation .................................................................. 114  
Oscillator........................................................... 113, 115  
Overflow Interrupt ............................................. 113, 115  
Special Event Trigger (CCP)............................. 115, 126  
Special Event Trigger (ECCP) .................................. 133  
TMR1H Register ....................................................... 113  
TMR1L Register........................................................ 113  
TMR3L Register........................................................ 119  
Timer2............................................................................... 117  
Associated Registers ................................................ 118  
Operation .................................................................. 117  
Postscaler. See Postscaler, Timer2.  
Half-Bridge PWM Output.......................................... 136  
2
I C Bus Data............................................................. 353  
2
I C Bus Start/Stop Bits ............................................. 353  
2
I C Master Mode (Reception,  
7-bit Address) ................................................... 175  
I C Master Mode (Transmission,  
2
7 or 10-bit Address).......................................... 174  
I C Slave Mode (Transmission,  
2
10-bit Address) ................................................. 161  
I C Slave Mode (Transmission,  
2
7-bit Address) ................................................... 159  
I C Slave Mode with SEN = 0 (Reception,  
2
10-bit Address) ................................................. 160  
I C Slave Mode with SEN = 0 (Reception,  
2
7-bit Address) ................................................... 158  
I C Slave Mode with SEN = 1 (Reception,  
2
PR2 Register..................................................... 117, 128  
Prescaler. See Prescaler, Timer2.  
10-bit Address) ................................................. 165  
I C Slave Mode with SEN = 1 (Reception,  
2
SSP Clock Shift................................................. 117, 118  
TMR2 Register.......................................................... 117  
TMR2 to PR2 Match Interrupt................... 117, 118, 128  
Timer3............................................................................... 119  
Associated Registers ................................................ 121  
Operation .................................................................. 120  
Oscillator................................................................... 121  
Overflow Interrupt ............................................. 119, 121  
Special Event Trigger (CCP)..................................... 121  
TMR3H Register ....................................................... 119  
Timing Conditions ............................................................. 342  
Load Conditions for Device  
7-bit Address) ................................................... 164  
Low-Voltage Detect .................................................. 262  
2
Master SSP I C Bus Data ........................................ 355  
2
Master SSP I C Bus Start/Stop Bits......................... 355  
Parallel Slave Port (PIC18F248  
and PIC18F458)............................................... 348  
Parallel Slave Port Read .......................................... 108  
Parallel Slave Port Write........................................... 107  
PWM Direction Change............................................ 139  
PWM Direction Change at Near  
100% Duty Cycle.............................................. 139  
PWM Output............................................................. 128  
Repeated Start Condition ......................................... 172  
Reset, Watchdog Timer (WDT),  
Timing Specifications........................................ 342  
Temperature and Voltage  
Specifications – AC........................................... 342  
Timing Diagrams  
Oscillator Start-up Timer (OST),  
A/D Conversion......................................................... 359  
Acknowledge Sequence ........................................... 176  
Baud Rate Generator with  
Clock Arbitration ............................................... 170  
BRG Reset Due to SDA Arbitration  
During Start Condition ...................................... 179  
Brown-out Reset (BOR) and  
Low-Voltage Detect .......................................... 345  
Bus Collision During a Repeated  
Start Condition (Case 1) ................................... 180  
Bus Collision During a Repeated  
Start Condition (Case2) .................................... 180  
Bus Collision During a Stop  
Power-up Timer (PWRT).................................. 345  
Slave Mode General Call Address Sequence  
(7 or 10-bit Address Mode)............................... 166  
Slave Synchronization.............................................. 149  
Slow Rise Time (MCLR Tied to VDD) ......................... 29  
SPI Master Mode...................................................... 148  
SPI Master Mode Example (CKE = 0)...................... 349  
SPI Master Mode Example (CKE = 1)...................... 350  
SPI Slave Mode (with CKE = 0)................................ 150  
SPI Slave Mode (with CKE = 1)................................ 150  
SPI Slave Mode Example (CKE = 0)........................ 351  
SPI Slave Mode Example (CKE = 1)........................ 352  
Stop Condition Receive or  
Condition (Case 1)............................................ 181  
Bus Collision During a  
Stop Condition (Case 2) ................................... 181  
Bus Collision During  
Transmit Mode.................................................. 176  
Time-out Sequence on POR w/PLL Enabled  
(MCLR Tied to VDD) ........................................... 29  
Time-out Sequence on Power-up  
Start Condition (SCL = 0).................................. 179  
Bus Collision During  
Start Condition (SDA Only)............................... 178  
Bus Collision for Transmit and  
(MCLR Not Tied to VDD)  
Case 1 ................................................................ 28  
Case 2 ................................................................ 28  
Time-out Sequence on Power-up  
Acknowledge .................................................... 177  
Capture/Compare/PWM  
(MCLR Tied to VDD) ........................................... 28  
Timer0 and Timer1 External Clock........................... 346  
Transition Between Timer1 and  
OSC1 (HS with PLL)........................................... 22  
Transition Between Timer1 and  
(CCP1 and ECCP1).......................................... 347  
CLKO and I/O ........................................................... 344  
Clock Synchronization .............................................. 163  
Clock/Instruction Cycle ............................................... 41  
External Clock........................................................... 343  
First Start Bit ............................................................. 171  
Full-Bridge PWM Output........................................... 137  
OSC1 (HS, XT, LP) ............................................ 21  
Transition Between Timer1 and  
OSC1 (RC, EC).................................................. 22  
© 2006 Microchip Technology Inc.  
DS41159E-page 395  
PIC18FXX8  
Transition from OSC1 to  
U
Timer1 Oscillator.................................................21  
USART.............................................................................. 183  
Asynchronous Mode................................................. 189  
Reception ......................................................... 191  
Setting Up 9-Bit Mode with  
USART Asynchronous Reception.............................192  
USART Asynchronous Transmission........................190  
USART Asynchronous Transmission  
(Back to Back)...................................................190  
USART Synchronous Receive  
(Master/Slave)...................................................357  
USART Synchronous Reception  
(Master Mode, SREN).......................................195  
USART Synchronous Transmission .........................194  
USART Synchronous Transmission  
Address Detect......................................... 191  
Transmission .................................................... 189  
Asynchronous Reception.......................................... 192  
Asynchronous Transmission  
Associated Registers........................................ 190  
Baud Rate Generator (BRG) .................................... 185  
Associated Registers........................................ 185  
Baud Rate Error, Calculating............................ 185  
Baud Rate Formula .......................................... 185  
Baud Rates for Asynchronous Mode  
(Master/Slave)...................................................357  
USART Synchronous Transmission  
(Through TXEN)................................................194  
Wake-up from Sleep via Interrupt .............................275  
Timing Diagrams and Specifications.................................343  
A/D Conversion Requirements .................................359  
A/D Converter Characteristics ..................................358  
Capture/Compare/PWM Requirements  
(BRGH = 0)............................................... 187  
Baud Rates for Asynchronous Mode  
(BRGH = 1)............................................... 188  
Baud Rates for Synchronous Mode.................. 186  
High Baud Rate Select (BRGH Bit) .................. 185  
Sampling........................................................... 185  
Serial Port Enable (SPEN) Bit .................................. 183  
Synchronous Master Mode....................................... 193  
Reception ......................................................... 195  
Transmission .................................................... 193  
Synchronous Master Reception  
(CCP1 and ECCP1)..........................................347  
CLKO and I/O Timing  
Requirements....................................................344  
Example SPI Mode Requirements  
(Master Mode, CKE = 0)...................................349  
Example SPI Mode Requirements  
(Master Mode, CKE = 1)...................................350  
Example SPI Mode Requirements  
Associated Registers........................................ 195  
Synchronous Master Transmission  
(Slave Mode, CKE = 0).....................................351  
Example SPI Slave Mode  
Associated Registers........................................ 193  
Synchronous Slave Mode......................................... 196  
Reception ......................................................... 196  
Transmission .................................................... 196  
Synchronous Slave Reception.................................. 197  
Synchronous Slave Transmission  
Requirements (CKE = 1)...................................352  
External Clock Timing Requirements........................343  
2
I C Bus Data Requirements  
(Slave Mode).....................................................354  
I C Bus Start/Stop Bits Requirements  
2
Associated Registers........................................ 197  
(Slave Mode).....................................................353  
2
Master SSP I C Bus Data  
V
Requirements....................................................356  
Voltage Reference Specifications..................................... 340  
2
Master SSP I C Bus Start/Stop Bits  
W
Requirements....................................................355  
Parallel Slave Port Requirements  
Wake-up from Sleep................................................. 265, 274  
Using Interrupts ........................................................ 274  
Watchdog Timer (WDT)............................................ 265, 272  
Associated Registers................................................ 273  
Control Register........................................................ 272  
Postscaler................................................................. 273  
Programming Considerations ................................... 272  
RC Oscillator............................................................. 272  
Time-out Period ........................................................ 272  
WCOL....................................................... 171, 172, 173, 176  
WCOL Status Flag.................................... 171, 172, 173, 176  
WDT. See Watchdog Timer.  
(PIC18F248 and PIC18F458) ...........................348  
PLL Clock..................................................................344  
Reset, Watchdog Timer, Oscillator  
Start-up Timer, Power-up Timer,  
Brown-out Reset and Low-Voltage  
Detect Requirements ........................................345  
Timer0 and Timer1 External  
Clock Requirements..........................................346  
USART Synchronous Receive  
Requirements....................................................357  
USART Synchronous Transmission  
Requirements....................................................357  
TSTFSZ.............................................................................321  
TXSTA Register  
WWW, On-Line Support ....................................................... 5  
X
BRGH Bit ..................................................................185  
XORLW............................................................................. 321  
XORWF ............................................................................ 322  
DS41159E-page 396  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
© 2006 Microchip Technology Inc.  
Advance Information  
DS41159E-page 397  
PIC18FXX8  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC18FXX8  
DS41159E  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS41159E-page 398  
Advance Information  
© 2006 Microchip Technology Inc.  
PIC18FXX8  
PIC18FXX8 PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature Package  
Range  
Pattern  
a)  
PIC18LF258-I/L 301 = Industrial temp., PLCC  
package, Extended VDD limits, QTP pattern  
#301.  
b)  
c)  
PIC18LF458-I/PT = Industrial temp., TQFP  
package, Extended VDD limits.  
Device  
PIC18F248/258(1), PIC18F448/458(1), PIC18F248/258T(2)  
PIC18F448/458T(2)  
,
PIC18F258-E/L = Extended temp., PLCC  
package, normal VDD limits.  
;
VDD range 4.2V to 5.5V  
PIC18LF248/258(1), PIC18LF448/458(1), PIC18LF248/258T(2)  
PIC18LF448/458T(2);  
,
VDD range 2.0V to 5.5V  
Temperature Range  
Package  
I
E
= -40°C to +85°C (Industrial)  
= -40°C to +125°C (Extended)  
Note 1:  
2:  
F
LF  
T
=
=
=
Standard Voltage Range  
Wide Voltage Range  
in tape and reel PLCC and TQFP  
packages only.  
PT  
L
SO  
SP  
P
=
=
=
=
=
TQFP (Thin Quad Flatpack)  
PLCC  
SOIC  
Skinny Plastic DIP  
PDIP  
Pattern  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
© 2006 Microchip Technology Inc.  
DS41159E-page 399  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-3910  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
08/29/06  
DS41159E-page 400  
© 2006 Microchip Technology Inc.  

相关型号:

PIC18F258-I/SOVAO

8-BIT, FLASH, 40 MHz, RISC MICROCONTROLLER, PDSO28, 0.300 INCH, PLASTIC, MS-013, SOIC-28
MICROCHIP

PIC18F258-I/SOVAOG

8-BIT, OTPROM, 40 MHz, RISC MICROCONTROLLER, PDSO28, 0.300 INCH, PLASTIC, MS-013, SOIC-28
MICROCHIP

PIC18F258-I/SP

28/40-Pin High-Performance, Enhanced Flash Microcontrollers with CAN Module
MICROCHIP

PIC18F258-I/SPQTP

28/40-Pin High-Performance, Enhanced Flash Microcontrollers with CAN Module
MICROCHIP

PIC18F258-I/SPSQTP

28/40-Pin High-Performance, Enhanced Flash Microcontrollers with CAN Module
MICROCHIP

PIC18F2580

28/40/44-Pin Enhanced Flash Microcontrollers with ECAN Technology, 10-Bit A/D and nanoWatt Technology
MICROCHIP

PIC18F2580-E/ML

28/40/44-Pin Enhanced Flash Microcontrollers with ECAN Technology, 10-Bit A/D and nanoWatt Technology
MICROCHIP

PIC18F2580-E/P

28/40/44-Pin Enhanced Flash Microcontrollers with ECAN Technology, 10-Bit A/D and nanoWatt Technology
MICROCHIP

PIC18F2580-E/PT

28/40/44-Pin Enhanced Flash Microcontrollers with ECAN Technology, 10-Bit A/D and nanoWatt Technology
MICROCHIP

PIC18F2580-E/SO

28/40/44-Pin Enhanced Flash Microcontrollers with ECAN Technology, 10-Bit A/D and nanoWatt Technology
MICROCHIP

PIC18F2580-E/SOVAO

Microcontroller, 8-Bit, FLASH, 40MHz, CMOS, PDSO28
MICROCHIP

PIC18F2580-E/SP

28/40/44-Pin Enhanced Flash Microcontrollers with ECAN Technology, 10-Bit A/D and nanoWatt Technology
MICROCHIP