PIC18C858E/PTXXX [MICROCHIP]

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,TQFP,80PIN,PLASTIC;
PIC18C858E/PTXXX
型号: PIC18C858E/PTXXX
厂家: MICROCHIP    MICROCHIP
描述:

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,TQFP,80PIN,PLASTIC

可编程只读存储器 微控制器
文件: 总366页 (文件大小:6058K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC18CXX8  
High-Performance Microcontrollers with CAN Module  
High Performance RISC CPU:  
Advanced Analog Features:  
• C-compiler optimized architecture instruction set  
• Linear program memory addressing to 32 Kbytes  
• Linear data memory addressing to 4 Kbytes  
Program Memory  
• 10-bit Analog-to-Digital Converter module (A/D)  
with:  
-
-
-
-
Fast sampling rate  
Conversion available during SLEEP  
DNL = ±1 LSb, INL = ±1 LSb  
Up to 16 channels available  
On-Chip  
Off-Chip On-Chip  
Device  
RAM  
(bytes)  
• Analog Comparator Module:  
# Single  
Word  
Instructions  
Maximum  
Addressing  
(bytes)  
EPROM  
(bytes)  
-
-
2 Comparators  
Programmable input and output multiplexing  
• Comparator Voltage Reference Module  
PIC18C658 32 K  
PIC18C858 32 K  
16384  
16384  
N/A  
N/A  
1536  
1536  
• Programmable Low Voltage Detection (LVD)  
module  
• Up to 10 MIPS operation:  
- DC - 40 MHz clock input  
-
Supports interrupt on low voltage detection  
• Programmable Brown-out Reset (BOR)  
- 4 MHz - 10 MHz osc./clock input with PLL active  
• 16-bit wide instructions, 8-bit wide data path  
• Priority levels for interrupts  
CAN BUS Module Features:  
• Message bit rates up to 1 Mbps  
• Conforms to CAN 2.0B ACTIVE Spec with:  
- 29-bit Identifier Fields  
• 8 x 8 Single Cycle Hardware Multiplier  
Peripheral Features:  
- 8 byte message length  
• High current sink/source 25 mA/25 mA  
• Up to 76 I/O with individual direction control  
• Four external interrupt pins  
• 3 Transmit Message Buffers with prioritization  
• 2 Receive Message Buffers  
• 6 full 29-bit Acceptance Filters  
• Timer0 module: 8-bit/16-bit timer/counter with  
8-bit programmable prescaler  
• Prioritization of Acceptance Filters  
• Multiple Receive Buffers for High Priority  
Messages to prevent loss due to overflow  
• Timer1 module: 16-bit timer/counter  
• Timer2 module: 8-bit timer/counter with 8-bit  
period register (time base for PWM)  
• Advanced Error Management Features  
Special Microcontroller Features:  
• Power-on Reset (POR), Power-up Timer (PWRT),  
and Oscillator Start-up Timer (OST)  
• Timer3 module: 16-bit timer/counter  
• Secondary oscillator clock option - Timer1/Timer3  
• Two Capture/Compare/PWM (CCP) modules  
CCP pins can be configured as:  
• Watchdog Timer (WDT) with its own on-chip RC  
oscillator  
- Capture input: 16-bit, max resolution 6.25 ns  
- Compare is 16-bit, max resolution 100 ns (TCY)  
- PWM output: PWM resolution is 1- to 10-bit.  
Max. PWM freq. @:8-bit resolution = 156 kHz  
10-bit resolution = 39 kHz  
• Programmable code protection  
• Power saving SLEEP mode  
• Selectable oscillator options, including:  
- 4X Phase Lock Loop (of primary oscillator)  
- Secondary Oscillator (32 kHz) clock input  
• Master Synchronous Serial Port (MSSP) with two  
modes of operation:  
In-Circuit Serial Programming (ICSP™) via two pins  
- 3-wire SPI™ (Supports all 4 SPI modes)  
CMOS Technology:  
• Low power, high speed EPROM technology  
• Fully static design  
- I2C™ Master and Slave mode  
• Addressable USART module: Supports Interrupt  
on Address bit  
• Wide operating voltage range (2.5V to 5.5V)  
• Industrial and Extended temperature ranges  
• Low power consumption  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 1  
PIC18CXX8  
Pin Diagrams  
64-Pin TQFP  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
RB0/INT0  
RB1/INT1  
RB2/INT2  
RB3/INT3  
RB4  
RE1/WR  
RE0/RD  
2
3
RG0/CANTX1  
RG1/CANTX2  
RG2/CANRX  
RG3  
4
5
6
RB5  
7
MCLR/VPP  
RG4  
RB6  
8
VSS  
PIC18C658  
9
VSS  
OSC2/CLKO/RA6  
OSC1/CLKI  
VDD  
10  
11  
12  
13  
14  
15  
16  
VDD  
RF7  
RB7  
RF6/AN11  
RF5/AN10/CVREF  
RF4/AN9  
RC5/SDO  
RC4/SDI/SDA  
RC3/SCK/SCL  
RC2/CCP1  
RF3/AN8  
RF2/AN7/C1OUT  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
DS30475A-page 2  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
Pin Diagrams (Cont.’d)  
68-Pin PLCC  
9
8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61  
10  
11  
60  
59  
RB0/INT0  
RB1/INT1  
RB2/INT2  
RB3/INT3  
RB4  
RE1/WR  
RE0/RD  
RG0/CANTX1  
RG1/CANTX2  
RG2/CANRX  
RG3  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
RB5  
RB6  
MCLR/VPP  
RG4  
VSS  
PIC18C658  
NC  
NC  
VSS  
VDD  
OSC2/CLKO/RA6  
OSC1/CLKI  
VDD  
RF7  
22  
23  
24  
25  
26  
RF6/AN11  
RF5/AN10/CVREF  
RF4/AN9  
RF3/AN8  
RF2/AN7/C1OUT  
48  
47  
46  
45  
44  
RB7  
RC5/SDO  
RC4/SDI/SDA  
RC3/SCK/SCL  
RC2/CCP1  
2728 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 3  
PIC18CXX8  
Pin Diagrams (Cont.d)  
80-Pin TQFP  
80 79 78  
77 76 75 74 73 72 71 70 69 68 67 66 65  
64 63 62 61  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
RJ2  
RH2  
2
RH3  
RJ3  
RB0/INT0  
RB1/INT1  
RB2/INT2  
RB3/INT3  
RB4  
RE1/WR  
RE0/RD  
3
4
RG0/CANTX1  
RG1/CANTX2  
RG2/CANRX  
RG3  
5
6
7
RB5  
8
RB6  
9
MCLR/VPP  
RG4  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
OSC2/CLKO/RA6  
OSC1/CLKI  
VDD  
VSS  
PIC18C858  
VDD  
RF7  
RB7  
RF6/AN11  
RF5/AN10/CVREF  
RF4/AN9  
RC5/SDO  
RC4/SDI/SDA  
RC3/SCK/SCL  
RC2/CCP1  
RK3  
RF3/AN8  
RF2/AN7/C1OUT  
RH7/AN15  
RH6/AN14  
RK2  
40  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39  
DS30475A-page 4  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
Pin Diagrams (Cont.d)  
84-Pin PLCC  
83 82 81  
11  
9 8  
7
6
5
4 3  
2
1
84  
80  
797877 76 75  
10  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
RH2  
RH3  
RE1/WR  
RE0/RD  
RJ2  
RJ3  
RB0/INT0  
74  
73  
72  
71  
70  
69  
68  
67  
66  
RB1/INT1  
RB2/INT2  
RB3/INT3  
RB4  
RG0/CANTX1  
RG1/CANTX2  
RG2/CANRX  
RG3  
RB5  
RB6  
MCLR/VPP  
RG4  
65  
64  
63  
VSS  
NC  
PIC18C858  
NC  
VSS  
VDD  
OSC2/CLKO/RA6  
OSC1/CLKI  
VDD  
62  
61  
60  
59  
RF7  
RF6/AN11  
RF5/AN10/CVREF  
RF4/AN9  
RB7  
RC5/SDO  
58  
57  
56  
RC4/SDI/SDA  
RC3/SCK/SCL  
RC2/CCP1  
RF3/AN8  
RF2/AN7/C1OUT  
RH7/AN15  
RH6/AN14  
55  
54  
RK3  
RK2  
33 3435 36 37 38 39 40 41 42 43 44  
45  
46 47  
48 49  
51  
50  
52 53  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 5  
PIC18CXX8  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 9  
2.0 Oscillator Configurations ............................................................................................................................................................ 21  
3.0 Reset.......................................................................................................................................................................................... 29  
4.0 Memory Organization................................................................................................................................................................. 41  
5.0 Table Reads/Table Writes.......................................................................................................................................................... 65  
6.0 8 X 8 Hardware Multiplier........................................................................................................................................................... 71  
7.0 Interrupts .................................................................................................................................................................................... 75  
8.0 I/O Ports ..................................................................................................................................................................................... 89  
9.0 Parallel Slave Port.................................................................................................................................................................... 109  
10.0 Timer0 Module ......................................................................................................................................................................... 113  
11.0 Timer1 Module ......................................................................................................................................................................... 117  
12.0 Timer2 Module ......................................................................................................................................................................... 121  
13.0 Timer3 Module ......................................................................................................................................................................... 123  
14.0 Capture/Compare/PWM (CCP) Modules ................................................................................................................................. 127  
15.0 Master Synchronous Serial Port (MSSP) Module .................................................................................................................... 135  
16.0 Addressable Universal Synchronous Asynchronous Receiver Transmitter (USART).............................................................. 167  
17.0 CAN Module ............................................................................................................................................................................. 183  
18.0 10-bit Analog-to-Digital Converter (A/D) Module...................................................................................................................... 227  
19.0 Comparator Module.................................................................................................................................................................. 237  
20.0 Comparator Voltage Reference Module................................................................................................................................... 243  
21.0 Low Voltage Detect .................................................................................................................................................................. 247  
22.0 Special Features of the CPU.................................................................................................................................................... 251  
23.0 Instruction Set Summary.......................................................................................................................................................... 261  
24.0 Development Support............................................................................................................................................................... 305  
25.0 Electrical Characteristics.......................................................................................................................................................... 311  
26.0 DC and AC Characteristics Graphs and Tables....................................................................................................................... 341  
27.0 Packaging Information.............................................................................................................................................................. 343  
Appendix A: Data Sheet Revision History...................................................................................................................................... 349  
Appendix B: Device Differences..................................................................................................................................................... 349  
Appendix C: Device Migrations ...................................................................................................................................................... 350  
Appendix D: Migrating from other PICmicro Devices..................................................................................................................... 350  
Appendix E: Development Tool Version Requirements................................................................................................................. 351  
Index .................................................................................................................................................................................................. 353  
On-Line Support................................................................................................................................................................................. 361  
Reader Response .............................................................................................................................................................................. 362  
PIC18CXX8 Product Identification System ........................................................................................................................................ 363  
DS30475A-page 6  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Micro-  
chip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined  
and enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department  
via E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-  
4150. We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchips Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include lit-  
erature number) you are using.  
Customer Notification System  
Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 7  
PIC18CXX8  
NOTES:  
DS30475A-page 8  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
The following two figures are device block diagrams  
sorted by pin count; 64/68-pin for Figure 1-1 and  
80/84-pin for Figure 1-2. The 64/68-pin and 80/84-pin  
pinouts are listed in Table 1-2.  
1.0  
DEVICE OVERVIEW  
This document contains device specific information for  
the following three devices:  
1. PIC18C658  
2. PIC18C858  
The PIC18C658 is available in 64-pin TQFP and 68-pin  
PLCC packages. The PIC18C858 is available in 80-pin  
TQFP and 84-pin PLCC packages.  
An overview of features is shown in Table 1-1.  
TABLE 1-1:  
DEVICE FEATURES  
Features  
PIC18C658  
PIC18C858  
Operating Frequency  
DC - 40 MHz  
32 K  
DC - 40 MHz  
32 K  
Bytes  
Program Memory Internal  
# of Single word  
Instructions  
16384  
16384  
Data Memory (Bytes)  
Interrupt sources  
I/O Ports  
1536  
1536  
21  
21  
Ports A G  
Ports A H, J, K  
Timers  
4
2
4
2
Capture/Compare/PWM modules  
MSSP, CAN  
Addressable USART  
MSSP, CAN  
Addressable USART  
Serial Communications  
Parallel Communications  
10-bit Analog-to-Digital Module  
Analog Comparators  
PSP  
12 input channels  
2
PSP  
16 input channels  
2
POR, BOR,  
POR, BOR,  
RESETInstruction, Stack Full, RESETInstruction, Stack Full,  
RESETS (and Delays)  
Stack Underflow  
(PWRT, OST)  
Stack Underflow  
(PWRT, OST)  
Programmable Low Voltage Detect  
Programmable Brown-out Reset  
CAN Module  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
In-Circuit Serial Programming (ICSP)  
Instruction Set  
Yes  
Yes  
75 Instructions  
75 Instructions  
64-pin TQFP  
68-pin CERQUAD  
(Windowed)  
80-pin TQFP  
84-pin CERQUAD  
(Windowed)  
Packages  
68-pin PLCC  
84-pin PLCC  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 9  
PIC18CXX8  
FIGURE 1-1: PIC18C658 BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
RA0/AN0  
RA1/AN1  
Table Pointer<21>  
21  
Data Latch  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
RA5/AN4/SS/LVDIN  
RA6  
8
8
Data RAM  
( 1.5 K )  
21  
inc/dec logic  
Address Latch  
12  
20  
PCLATU  
PCLATH  
PORTB  
Address<12>  
PCH PCL  
PCU  
RB0/INT0  
RB1/INT1  
RB2/INT2  
RB3/INT3  
Program Counter  
4
BSR  
12  
FSR0  
FSR1  
FSR2  
4
Bank0, F  
Address Latch  
Program Memory  
(32 Kbytes)  
31 Level Stack  
RB7:RB4  
12  
Data Latch  
PORTC  
inc/dec  
logic  
Decode  
RC0/T1OSO/T13CKI  
RC1/T1OSI  
TABLELATCH  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
RC6/TX/CK  
RC7/RX/DT  
8
16  
ROMLATCH  
IR  
PORTD  
PORTE  
8
RD7/PSP7:RD0/PSP0  
PRODH PRODL  
8 x 8 Multiply  
Instruction  
Decode &  
Control  
RE0/RD  
RE1/WR  
RE2/CS  
RE3  
RE4  
RE5  
8
3
WREG  
8
BITOP  
8
8
Power-up  
Timer  
OSC2/CLKO  
OSC1/CLKI  
RE6  
RE7/CCP2  
Timing  
Generation  
Oscillator  
Start-up Timer  
8
ALU<8>  
Power-on  
Reset  
PORTF  
PORTG  
RF7  
8
Watchdog  
Timer  
RF6/AN11:RF0/AN5  
Precision  
Brown-out  
Reset  
Bandgap  
Reference  
RG0/CANTX1  
RG1/CANTX2  
RG2/CANRX  
RG3  
MCLR  
VDD, VSS  
RG4  
BOR  
LVD  
10-bit  
ADC  
Timer3  
USART  
Timer0  
CCP1  
Timer2  
Timer1  
Synchronous  
Serial Port  
Comparator  
CCP2  
CAN Module  
DS30475A-page 10  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
FIGURE 1-2: PIC18C858 BLOCK DIAGRAM  
Data Bus<8>  
PORTA  
RA0/AN0  
RA1/AN1  
Table Pointer<21>  
21  
Data Latch  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
RA5/AN4/SS/LVDIN  
RA6  
8
8
Data RAM  
( 1.5 K )  
21  
inc/dec logic  
Address Latch  
12  
20  
PCLATU  
PCLATH  
PORTB  
Address<12>  
PCH PCL  
PCU  
RB0/INT0  
RB1/INT1  
RB2/INT2  
RB3/INT3  
Program Counter  
4
BSR  
12  
FSR0  
FSR1  
FSR2  
4
Bank0, F  
Address Latch  
Program Memory  
(32 Kbytes)  
31 Level Stack  
RB7:RB4  
12  
Data Latch  
PORTC  
inc/dec  
logic  
Decode  
RC0/T1OSO/T13CKI  
RC1/T1OSI  
TABLELATCH  
RC2/CCP1  
8
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
RC6/TX/CK  
RC7/RX/DT  
16  
ROMLATCH  
IR  
PORTD  
PORTE  
8
RD7/PSP7:RD0/PSP0  
PRODH PRODL  
8 x 8 Multiply  
Instruction  
Decode &  
Control  
RE0/RD  
RE1/WR  
RE2/CS  
RE3  
RE4  
RE5  
8
3
WREG  
8
BITOP  
8
8
Power-up  
Timer  
OSC2/CLKO  
OSC1/CLKI  
RE6  
RE7  
Oscillator  
Start-up Timer  
Timing  
Generation  
8
ALU<8>  
Power-on  
Reset  
PORTF  
PORTG  
RF7  
8
Watchdog  
Timer  
RF6/AN11:RF0/AN5  
Precision  
Brown-out  
Reset  
Bandgap  
Reference  
RG0/CANTX1  
RG1/CANTX2  
RG2/CANRX  
RG3  
MCLR  
VDD, VSS  
RG4  
PORTH  
PORTK  
PORTJ  
RH0  
RH1  
RH2  
RK0  
RK1  
RK2  
RK3  
RJ0  
RJ1  
RJ2  
RJ3  
RH3  
RH7/AN15:RH4/AN12  
BOR  
LVD  
10-bit  
ADC  
Timer3  
Timer0  
CCP1  
Timer2  
Timer1  
Synchronous  
Serial Port  
USART  
Comparator  
CCP2  
CAN Module  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 11  
PIC18CXX8  
TABLE 1-2:  
PINOUT I/O DESCRIPTIONS  
Pin Number  
PIC18C658 PIC18C858  
TQFP PLCC TQFP PLCC  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
MCLR/VPP  
MCLR  
7
16  
9
20  
I
ST  
Master clear (RESET) input. This pin is  
an active low RESET to the device.  
Programming voltage input  
VPP  
NC  
P
1, 18,  
35, 52  
1, 22,  
43, 64  
These pins should be left  
unconnected  
OSC1/CLKI  
OSC1  
39  
50  
49  
62  
I
I
CMOS/ST  
Oscillator crystal input or external  
clock source input. ST buffer when  
configured in RC mode. Otherwise  
CMOS.  
External clock source input. Always  
associated with pin function OSC1  
(see OSC1/CLKI, OSC2/CLKO pins).  
CLKI  
CMOS  
OSC2/CLKO/RA6  
OSC2  
40  
51  
50  
63  
O
O
Oscillator crystal output.  
Connects to crystal or resonator in  
Crystal Oscillator mode.  
In RC mode, OSC2 pin outputs CLKO,  
which has 1/4 the frequency of OSC1  
and denotes the instruction cycle rate  
General purpose I/O pin  
CLKO  
RA6  
I/O  
TTL  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open Drain (no P diode to VDD)  
DS30475A-page 12  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
TABLE 1-2:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PIC18C658  
PIC18C858  
TQFP PLCC TQFP PLCC  
Description  
PORTA is a bi-directional I/O port  
RA0/AN0  
RA0  
24  
23  
22  
34  
33  
32  
30  
29  
28  
42  
41  
40  
I/O  
I
TTL  
Analog  
Digital I/O  
Analog input 0  
AN0  
RA1/AN1  
RA1  
I/O  
I
TTL  
Analog  
Digital I/O  
Analog input 1  
AN1  
RA2/AN2/VREF-  
RA2  
I/O  
TTL  
Digital I/O  
AN2  
VREF-  
I
I
Analog  
Analog  
Analog input 2  
A/D reference voltage (Low) input  
RA3/AN3/VREF+  
RA3  
21  
28  
27  
31  
39  
38  
27  
34  
33  
39  
47  
46  
I/O  
I
I
TTL  
Analog  
Analog  
Digital I/O  
Analog input 3  
A/D reference voltage (High) input  
AN3  
VREF+  
RA4/T0CKI  
RA4  
I/O  
I
ST/OD  
ST  
Digital I/O Open drain when  
configured as output  
Timer0 external clock input  
T0CKI  
RA5/AN4/SS/LVDIN  
RA5  
AN4  
SS  
I/O  
TTL  
Analog  
ST  
Digital I/O  
Analog input 4  
SPI slave select input  
Low voltage detect input  
I
I
I
LVDIN  
Analog  
RA6  
See the OSC2/CLKO/RA6 pin  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open Drain (no P diode to VDD)  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 13  
PIC18CXX8  
TABLE 1-2:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
PIC18C658 PIC18C858  
TQFP PLCC TQFP PLCC  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTB is a bi-directional I/O port.  
PORTB can be software  
programmed for internal weak pull-ups on  
all inputs.  
RB0/INT0  
RB0  
48  
47  
46  
45  
60  
59  
58  
57  
58  
57  
56  
55  
72  
71  
70  
69  
I/O  
I
TTL  
ST  
Digital I/O  
External interrupt 0  
INT0  
RB1/INT1  
RB1  
I/O  
I
TTL  
ST  
Digital I/O  
External interrupt 1  
INT1  
RB2/INT2  
RB2  
I/O  
I
TTL  
ST  
Digital I/O  
External interrupt 2  
INT2  
RB3/INT3  
RB3  
I/O  
I/O  
TTL  
ST  
Digital I/O  
External interrupt 3  
INT3  
RB4  
RB5  
RB6  
44  
43  
42  
56  
55  
54  
54  
53  
52  
68  
67  
66  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
Digital I/O  
Interrupt on change pin  
Digital I/O  
Interrupt-on-change pin  
Digital I/O  
Interrupt-on-change pin  
ICSP programming clock  
I
ST  
RB7  
37  
48  
47  
60  
I/O  
TTL  
Digital I/O  
Interrupt-on-change pin  
ICSP programming data  
I/O  
ST  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open Drain (no P diode to VDD)  
DS30475A-page 14  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
TABLE 1-2:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PIC18C658  
PIC18C858  
TQFP PLCC TQFP PLCC  
Description  
PORTC is a bi-directional I/O port  
RC0/T1OSO/T13CKI  
RC0  
30  
41  
36  
49  
I/O  
O
I
ST  
ST  
Digital I/O  
Timer1 oscillator output  
Timer1/Timer3 external clock input  
T1OSO  
T13CKI  
RC1/T1OSI  
RC1  
29  
33  
40  
44  
35  
43  
48  
56  
I/O  
I
ST  
CMOS  
Digital I/O  
Timer1 oscillator input  
T1OSI  
RC2/CCP1  
RC2  
I/O  
I/O  
ST  
ST  
Digital I/O  
Capture1 input/Compare1  
output/PWM1 output  
CCP1  
RC3/SCK/SCL  
RC3  
34  
35  
45  
46  
44  
45  
57  
58  
I/O  
I/O  
ST  
ST  
Digital I/O  
SCK  
Synchronous serial clock  
input/output for SPI mode  
Synchronous serial clock  
SCL  
I/O  
ST  
2
input/output for I C mode  
RC4/SDI/SDA  
RC4  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O  
SPI data in  
SDI  
SDA  
2
I C data I/O  
RC5/SDO  
RC5  
36  
31  
47  
42  
46  
37  
59  
50  
I/O  
O
ST  
Digital I/O  
SPI data out  
SDO  
RC6/TX/CK  
RC6  
TX  
CK  
I/O  
O
I/O  
ST  
ST  
Digital I/O  
USART asynchronous transmit  
USART synchronous clock  
(See RX/DT)  
RC7/RX/DT  
32  
43  
38  
51  
RC7  
RX  
DT  
I/O  
I
I/O  
ST  
ST  
ST  
Digital I/O  
USART asynchronous receive  
USART synchronous data  
(See TX/CK)  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open Drain (no P diode to VDD)  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 15  
PIC18CXX8  
TABLE 1-2:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
PIC18C658 PIC18C858  
TQFP PLCC TQFP PLCC  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTD is a bi-directional I/O port. These  
pins have TTL input buffers when external  
memory is enabled.  
RD0/PSP0  
RD0  
58  
55  
54  
53  
52  
51  
50  
49  
3
72  
69  
68  
67  
66  
65  
64  
63  
3
I/O  
I/O  
ST  
TTL  
Digital I/O  
Parallel slave port data  
PSP0  
RD1/PSP1  
RD1  
67  
66  
65  
64  
63  
62  
61  
83  
82  
81  
80  
79  
78  
77  
I/O  
I/O  
ST  
TTL  
Digital I/O  
Parallel slave port data  
PSP1  
RD2/PSP2  
RD2  
I/O  
I/O  
ST  
TTL  
Digital I/O  
Parallel slave port data  
PSP2  
RD3/PSP3  
RD3  
I/O  
I/O  
ST  
TTL  
Digital I/O  
Parallel slave port data  
PSP3  
RD4/PSP4  
RD4  
I/O  
I/O  
ST  
TTL  
Digital I/O  
Parallel slave port data  
PSP4  
RD5/PSP5  
RD5  
I/O  
I/O  
ST  
TTL  
Digital I/O  
Parallel slave port data  
PSP5  
RD6/PSP6  
RD6  
I/O  
I/O  
ST  
TTL  
Digital I/O  
Parallel slave port data  
PSP6  
RD7/PSP7  
RD7  
I/O  
I/O  
ST  
TTL  
Digital I/O  
Parallel slave port data  
PSP7  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open Drain (no P diode to VDD)  
DS30475A-page 16  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
TABLE 1-2:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PIC18C658  
PIC18C858  
TQFP PLCC TQFP PLCC  
Description  
PORTE is a bi-directional I/O port  
RE0/RD  
RE0  
2
1
11  
10  
9
4
3
15  
14  
9
I/O  
I
ST  
TTL  
Digital I/O  
Read control for parallel slave port  
(See WR and CS pins)  
RD  
RE1/WR  
RE1  
I/O  
I
ST  
TTL  
Digital I/O  
Write control for parallel slave port  
(See CS and RD pins)  
WR  
RE2/CS  
RE2  
64  
78  
I/O  
I
ST  
TTL  
Digital I/O  
Chip select control for parallel slave  
port (See RD and WR)  
CS  
RE3  
RE4  
RE5  
RE6  
63  
62  
61  
60  
59  
8
7
6
5
4
77  
76  
75  
74  
73  
8
7
6
5
4
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
RE7/CCP2  
RE7  
I/O  
I/O  
ST  
ST  
Digital I/O  
Capture2 input, Compare2 output,  
PWM2 output  
CCP2  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open Drain (no P diode to VDD)  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 17  
PIC18CXX8  
TABLE 1-2:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
PIC18C658 PIC18C858  
TQFP PLCC TQFP PLCC  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTF is a bi-directional I/O port  
RF0/AN5  
RF0  
18  
17  
28  
27  
24  
23  
36  
35  
I/O  
I
ST  
Analog  
Digital I/O  
Analog input 5  
AN5  
RF1/AN6/C2OUT  
RF1  
I/O  
I
O
ST  
Analog  
ST  
Digital I/O  
Analog input 6  
Comparator 2 output  
AN6  
C2OUT  
RF2/AN7/C1OUT  
RF2  
16  
26  
18  
30  
I/O  
I
O
ST  
Analog  
ST  
Digital I/O  
Analog input 7  
Comparator 1 output  
AN7  
C1OUT  
RF3/AN8  
RF1  
15  
14  
13  
25  
24  
23  
17  
16  
15  
29  
28  
27  
I/O  
I
ST  
Analog  
Digital I/O  
Analog input 8  
AN8  
RF4/AN9  
RF1  
I/O  
I
ST  
Analog  
Digital I/O  
Analog input 9  
AN9  
RF5/AN10/CVREF  
RF1  
I/O  
I
O
ST  
Analog  
Analog  
Digital I/O  
Analog input 10  
Comparator VREF output  
AN10  
CVREF  
RF6/AN11  
RF6  
12  
11  
22  
21  
14  
13  
26  
25  
I/O  
I
ST  
Analog  
Digital I/O  
Analog input 11  
AN11  
RF7  
I/O  
ST  
Digital I/O  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open Drain (no P diode to VDD)  
DS30475A-page 18  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
TABLE 1-2:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
Pin  
Type  
Buffer  
Type  
Pin Name  
PIC18C658  
PIC18C858  
TQFP PLCC TQFP PLCC  
Description  
PORTG is a bi-directional I/O port  
RG0/CANTX1  
RG0  
3
4
12  
13  
5
6
16  
17  
I/O  
O
ST  
CAN Bus  
Digital I/O  
CAN bus output  
CANTX1  
RG1/CANTX2  
RG1  
I/O  
O
ST  
CAN Bus  
Digital I/O  
Complimentary CAN bus output  
or CAN bus bit time clock  
CANTX2  
RG2/CANRX  
RG2  
5
14  
7
18  
I/O  
I
ST  
CAN Bus  
Digital I/O  
CAN bus input  
CANRX  
RG3  
RG4  
6
8
15  
17  
8
19  
21  
I/O  
I/O  
ST  
ST  
Digital I/O  
Digital I/O  
10  
PORTH is a bi-directional I/O port.  
Digital I/O  
RH0  
RH1  
RH2  
RH3  
79  
80  
1
10  
11  
12  
13  
34  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
Digital I/O  
Digital I/O  
2
Digital I/O  
RH4/AN12  
RH4  
22  
I/O  
I
ST  
Analog  
Digital I/O  
Analog input 12  
AN12  
RH5/AN13  
RH5  
21  
20  
19  
33  
32  
31  
I/O  
I
ST  
Analog  
Digital I/O  
Analog input 13  
AN13  
RH6/AN14  
RH6  
I/O  
I
ST  
Analog  
Digital I/O  
Analog input 14  
AN14  
RH7/AN15  
RH7  
I/O  
I
ST  
Analog  
Digital I/O  
Analog input 15  
AN15  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open Drain (no P diode to VDD)  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 19  
PIC18CXX8  
TABLE 1-2:  
PINOUT I/O DESCRIPTIONS (CONTINUED)  
Pin Number  
PIC18C658 PIC18C858  
TQFP PLCC TQFP PLCC  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTJ is a bi-directional I/O port  
RJ0  
RJ0  
62  
76  
RJ0  
RJ1  
RJ2  
RJ3  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
Digital I/O  
Digital I/O  
Digital I/O  
RJ1  
RJ1  
61  
75  
RJ2  
RJ2  
60  
74  
RJ3  
RJ3  
59  
73  
Digital I/O  
PORTK is a bi-directional I/O port  
RK0  
RK1  
RK2  
RK3  
VSS  
39  
40  
41  
42  
52  
53  
54  
55  
I/O  
I/O  
I/O  
I/O  
P
ST  
ST  
ST  
ST  
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
9, 25, 19, 36, 11, 31, 23, 44,  
41, 56 53, 68 51, 70 65, 84  
Ground reference for logic and I/O pins  
VDD  
10, 26, 2, 20, 12, 32, 2, 24,  
38, 57 37, 49 48, 71 45, 61  
P
Positive supply for logic and I/O pins  
AVSS  
AVDD  
20  
19  
30  
29  
26  
25  
38  
37  
P
P
Ground reference for analog modules  
Positive supply for analog modules  
Legend: TTL = TTL compatible input  
ST = Schmitt Trigger input with CMOS levels  
CMOS = CMOS compatible input or output  
Analog = Analog input  
I
= Input  
O
= Output  
P
= Power  
OD  
= Open Drain (no P diode to VDD)  
DS30475A-page 20  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
FIGURE 2-1: CRYSTAL/CERAMIC  
2.0  
OSCILLATOR  
CONFIGURATIONS  
RESONATOR OPERATION  
(HS, XT OR LP  
2.1  
Oscillator Types  
OSC CONFIGURATION)  
(1)  
The PIC18CXX8 can be operated in one of eight oscil-  
lator modes, programmable by three configuration bits  
(FOSC2, FOSC1, and FOSC0).  
C1  
C2  
OSC1  
To  
internal  
logic  
(3)  
RF  
XTAL  
1. LP  
2. XT  
3. HS  
4. HS4  
Low Power Crystal  
Crystal/Resonator  
High Speed Crystal/Resonator  
High Speed Crystal/Resonator with  
PLL enabled  
SLEEP  
(2)  
RS  
(1)  
PIC18CXX8  
OSC2  
Note 1: See Table 2-1 and Table 2-2 for recom-  
5. RC  
6. RCIO  
External Resistor/Capacitor  
External Resistor/Capacitor with I/O  
pin enabled  
mended values of C1 and C2.  
2: A series resistor (RS) may be required  
for AT strip cut crystals.  
7. EC  
External Clock  
8. ECIO  
External Clock with I/O pin enabled  
3: RF varies with the crystal chosen.  
2.2  
Crystal Oscillator/Ceramic  
Resonators  
In XT, LP, HS or HS4 (PLL) oscillator modes, a crystal  
or ceramic resonator is connected to the OSC1 and  
OSC2 pins to establish oscillation. Figure 2-1 shows  
the pin connections. An external clock source may also  
be connected to the OSC1 pin, as shown in Figure 2-3  
and Figure 2-4.  
The PIC18CXX8 oscillator design requires the use of a  
parallel cut crystal.  
Note: Use of a series cut crystal may give a fre-  
quency out of the crystal manufacturers  
specifications.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 21  
PIC18CXX8  
TABLE 2-1:  
CERAMIC RESONATORS  
Note 1: Recommended values of C1 and C2 are  
identical to the ranges tested (Table 2-1).  
2: Higher capacitance increases the stability  
of the oscillator, but also increases the  
start-up time.  
Ranges Tested:  
Mode  
Freq  
455 kHz  
2.0 MHz  
4.0 MHz  
OSC1  
OSC2  
XT  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
3: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appropri-  
ate values of external components.  
4: Rs may be required in HS mode, as well as  
XT mode, to avoid overdriving crystals with  
low drive level specification.  
HS  
8.0 MHz  
10 - 68 pF  
10 - 22 pF  
TBD  
10 - 68 pF  
10 - 22 pF  
TBD  
16.0 MHz  
20.0 MHz  
25.0 MHz  
TBD  
TBD  
HS+PLL  
4.0 MHz  
8.0 MHz  
10.0 MHz  
TBD  
10 - 68 pF  
TBD  
TBD  
10 - 68 pF  
TBD  
These values are for design guidance only. See  
notes on this page.  
Resonators Used:  
455 kHz  
2.0 MHz  
4.0 MHz  
8.0 MHz  
Panasonic EFO-A455K04B  
Murata Erie CSA2.00MG  
Murata Erie CSA4.00MG  
Murata Erie CSA8.00MT  
0.3%  
0.5%  
0.5%  
0.5%  
0.5%  
16.0 MHz Murata Erie CSA16.00MX  
All resonators used did not have built-in capacitors.  
TABLE 2-2:  
CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
Crystal  
Freq  
Cap. Range  
C1  
Cap. Range  
C2  
Osc Type  
LP  
32.0 kHz  
200 kHz  
200 kHz  
1.0 MHz  
4.0 MHz  
4.0 MHz  
8.0 MHz  
20.0 MHz  
25.0 MHz  
4.0 MHz  
8.0 MHz  
10.0 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
XT  
HS  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
15-33 pF  
15-33 pF  
TBD  
15-33 pF  
15-33 pF  
TBD  
HS+PLL  
15 pF  
15 pF  
15-33 pF  
TBD  
15-33 pF  
TBD  
These values are for design guidance only. See  
notes on this page.  
Crystals Used  
32.0 kHz  
200 kHz  
1.0 MHz  
4.0 MHz  
8.0 MHz  
20.0 MHz  
Epson C-001R32.768K-A  
STD XTL 200.000KHz  
ECS ECS-10-13-1  
± 20 PPM  
± 20 PPM  
± 50 PPM  
± 50 PPM  
± 30 PPM  
± 30 PPM  
ECS ECS-40-20-1  
EPSON CA-301 8.000M-C  
EPSON CA-301 20.000M-C  
DS30475A-page 22  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
2.3  
RC Oscillator  
2.4  
External Clock Input  
For timing insensitive applications, the RCand  
"RCIO" device options offer additional cost savings.  
The RC oscillator frequency is a function of the supply  
voltage, the resistor (REXT) and capacitor (CEXT) val-  
ues and the operating temperature. In addition to this,  
the oscillator frequency will vary from unit to unit due  
to normal process parameter variation. Furthermore,  
the difference in lead frame capacitance between  
package types will also affect the oscillation frequency,  
especially for low CEXT values. The user also needs to  
take into account variation due to tolerance of external  
R and C components used. Figure 2-2 shows how the  
R/C combination is connected.  
The EC and ECIO oscillator modes require an external  
clock source to be connected to the OSC1 pin. The  
feedback device between OSC1 and OSC2 is turned  
off in these modes to save current. There is no oscilla-  
tor start-up time required after a Power-on Reset or  
after a recovery from SLEEP mode.  
In the EC oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic. Figure 2-3 shows the pin connections for the EC  
oscillator mode.  
FIGURE 2-3: EXTERNAL CLOCK INPUT  
OPERATION  
In the RC oscillator mode, the oscillator frequency  
divided by 4 is available on the OSC2 pin. This signal  
may be used for test purposes or to synchronize other  
logic.  
(EC OSC CONFIGURATION)  
OSC1  
OSC2  
Clock from  
ext. system  
FIGURE 2-2: RC OSCILLATOR MODE  
PIC18CXX8  
FOSC/4  
VDD  
The ECIO oscillator mode functions like the EC mode,  
except that the OSC2 pin becomes an additional gen-  
eral purpose I/O pin. The I/O pin becomes bit 6 of  
PORTA (RA6). Figure 2-4 shows the pin connections  
for the ECIO oscillator mode.  
REXT  
Internal  
OSC1  
clock  
CEXT  
PIC18CXX8  
VSS  
OSC2/CLKO/RA6  
FOSC/4  
or I/O  
FIGURE 2-4: EXTERNAL CLOCK INPUT  
OPERATION  
(ECIO CONFIGURATION)  
Recommended values: 3 kΩ ≤ REXT 100 kΩ  
CEXT > 20pF  
OSC1  
Clock from  
ext. system  
The RCIO oscillator mode functions like the RC mode,  
except that the OSC2 pin becomes an additional gen-  
eral purpose I/O pin. The I/O pin becomes bit 6 of  
PORTA (RA6).  
PIC18CXX8  
I/O (OSC2)  
RA6  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 23  
PIC18CXX8  
The PLL can only be enabled when the oscillator con-  
figuration bits are programmed for HS mode. If they  
are programmed for any other mode, the PLL is not  
enabled and the system clock will come directly from  
OSC1.  
2.5  
HS4 (PLL)  
A Phase Locked Loop circuit is provided as a pro-  
grammable option for users that want to multiply the  
frequency of the incoming crystal oscillator signal by 4.  
For an input clock frequency of 10 MHz, the internal  
clock frequency will be multiplied to 40 MHz. This is  
useful for customers who are concerned with EMI due  
to high frequency crystals.  
The PLL is one of the modes of the FOSC2:FOSC0  
configuration bits. The oscillator mode is specified dur-  
ing device programming.  
A PLL lock timer is used to ensure that the PLL has  
locked before device execution starts. The PLL lock  
timer has a time-out referred to as TPLL.  
FIGURE 2-5: PLL BLOCK DIAGRAM  
FOSC2:FOSC0 = 110’  
Phase  
OSC2  
Comparator  
FIN  
Loop  
Filter  
VCO  
Crystal  
Osc  
SYSCLK  
FOUT  
Divide by 4  
OSC1  
DS30475A-page 24  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
2.6.1  
SYSTEM CLOCK SWITCH BIT  
2.6  
Oscillator Switching Feature  
The system clock source switching is performed under  
software control. The system clock switch bit, SCS  
(OSCCON register), controls the clock switching. When  
the SCS bit is 0, the system clock source comes from  
the main oscillator selected by the FOSC2:FOSC0 con-  
figuration bits. When the SCS bit is set, the system clock  
source will come from the Timer1 oscillator. The SCS bit  
is cleared on all forms of RESET.  
The PIC18CXX8 devices include a feature that allows  
the system clock source to be switched from the main  
oscillator to an alternate low frequency clock source.  
For the PIC18CXX8 devices, this alternate clock  
source is the Timer1 oscillator. If a low frequency crys-  
tal (32 kHz, for example) has been attached to the  
Timer1 oscillator pins and the Timer1 oscillator has  
been enabled, the device can switch to a low power  
execution mode. Figure 2-6 shows a block diagram of  
the system clock sources. The clock switching feature  
is enabled by programming the Oscillator Switching  
Enable (OSCSEN) bit in Configuration register  
CONFIG1H to a 0. Clock switching is disabled in an  
erased device. See Section 9 for further details of the  
Timer1 oscillator. See Section 22.0 for Configuration  
Register details.  
Note: The Timer1 oscillator must be enabled to  
switch the system clock source. The  
Timer1 oscillator is enabled by setting the  
T1OSCEN bit in the Timer1 control register  
(T1CON). If the Timer1 oscillator is not  
enabled, any write to the SCS bit will be  
ignored (SCS bit forced cleared) and the  
main oscillator will continue to be the sys-  
tem clock source.  
FIGURE 2-6: DEVICE CLOCK SOURCES  
PIC18CXX8  
Main Oscillator  
OSC2  
Tosc/4  
4 x PLL  
SLEEP  
TOSC  
TT1P  
TSCLK  
OSC1  
Timer 1 Oscillator  
T1OSO  
T1OSCEN  
Clock  
Source  
Enable  
Oscillator  
T1OSI  
Clock Source option  
for other modules  
Note: I/O pins have diode protection to VDD and VSS.  
REGISTER 2-1:  
OSCCON REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
SCS  
bit 7  
bit 0  
bit 7-1  
bit 0  
Unimplemented: Read as '0'  
SCS: System Clock Switch bit  
when OSCSEN configuration bit = 0and T1OSCEN bit is set:  
1= Switch to Timer1 Oscillator/Clock pin  
0= Use primary Oscillator/Clock input pin  
when OSCSEN is clear or T1OSCEN is clear:  
bit is forced clear  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
- n = Value at POR  
1= Bit is set  
0= Bit is cleared  
x = Bit is unknown  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 25  
PIC18CXX8  
2.6.2  
OSCILLATOR TRANSITIONS  
The sequence of events that takes place when switch-  
ing from the Timer1 oscillator to the main oscillator will  
depend on the mode of the main oscillator. In addition  
to eight clock cycles of the main oscillator, additional  
delays may take place.  
The PIC18CXX8 devices contain circuitry to prevent  
"glitches" when switching between oscillator sources.  
Essentially, the circuitry waits for eight rising edges of  
the clock source that the processor is switching to.  
This ensures that the new clock source is stable and  
that its pulse width will not be less than the shortest  
pulse width of the two clock sources.  
If the main oscillator is configured for an external crys-  
tal (HS, XT, LP), the transition will take place after an  
oscillator start-up time (TOST) has occurred. A timing  
diagram indicating the transition from the Timer1 oscil-  
lator to the main oscillator for HS, XT and LP modes is  
shown in Figure 2-8.  
A timing diagram indicating the transition from the  
main oscillator to the Timer1 oscillator is shown in  
Figure 2-7. The Timer1 oscillator is assumed to be  
running all the time. After the SCS bit is set, the pro-  
cessor is frozen at the next occurring Q1 cycle. After  
eight synchronization cycles are counted from the  
Timer1 oscillator, operation resumes. No additional  
delays are required after the synchronization cycles.  
FIGURE 2-7: TIMING DIAGRAM FOR TRANSITION FROM OSC1 TO TIMER1 OSCILLATOR  
Q1 Q2 Q3 Q4 Q1  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
TT1P  
1
2
3
4
5
6
7
8
T1OSI  
OSC1  
Tscs  
TOSC  
Internal  
System  
Clock  
TDLY  
SCS  
(OSCCON<0>)  
Program  
Counter  
PC  
PC + 2  
PC + 4  
Note 1:  
Delay on internal system clock is eight oscillator cycles for synchronization.  
FIGURE 2-8: TIMING DIAGRAM FOR TRANSITION BETWEEN TIMER1 AND OSC1 (HS,XT,LP)  
Q1 Q2 Q3 Q4 Q1 Q2 Q3  
Q3  
Q4  
Q1  
TT1P  
T1OSI  
OSC1  
1
2
3
4
5
6
7
8
TOST  
TSCS  
OSC2  
TOSC  
Internal System  
Clock  
SCS  
(OSCCON<0>)  
Program Counter  
PC  
PC + 2  
PC + 4  
Note 1:  
TOST = 1024TOSC (drawing not to scale).  
DS30475A-page 26  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
If the main oscillator is configured for HS4 (PLL) mode,  
an oscillator start-up time (TOST) plus an additional PLL  
time-out (TPLL) will occur. The PLL time-out is typically  
2 ms and allows the PLL to lock to the main oscillator  
frequency. A timing diagram indicating the transition  
from the Timer1 oscillator to the main oscillator for HS4  
mode is shown in Figure 2-9.  
If the main oscillator is configured in the RC, RCIO, EC  
or ECIO modes, there is no oscillator start-up time-out.  
Operation will resume after eight cycles of the main  
oscillator have been counted. A timing diagram indicat-  
ing the transition from the Timer1 oscillator to the main  
oscillator for RC, RCIO, EC and ECIO modes is shown  
in Figure 2-10.  
FIGURE 2-9: TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (HS WITH PLL)  
TT1P  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q4  
Q1  
T1OSI  
OSC1  
TOST  
TPLL  
OSC2  
TSCS  
TOSC  
PLL Clock  
Input  
1
2
3
4
5
6
7
8
Internal System  
Clock  
SCS  
(OSCCON<0>)  
Program Counter  
PC  
PC + 2  
PC + 4  
Note 1:  
TOST = 1024TOSC (drawing not to scale).  
FIGURE 2-10: TIMING FOR TRANSITION BETWEEN TIMER1 AND OSC1 (RC, EC)  
Q3  
Q4  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Q1  
TT1P  
T1OSI  
OSC1  
TOSC  
6
1
4
5
7
8
2
3
OSC2  
Internal System  
Clock  
SCS  
(OSCCON<0>)  
TSCS  
Program Counter  
PC  
PC + 2  
PC + 4  
Note 1:  
RC oscillator mode assumed.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 27  
PIC18CXX8  
2.7  
Effects of SLEEP Mode on the  
On-chip Oscillator  
2.8  
Power-up Delays  
Power up delays are controlled by two timers, so that  
no external RESET circuitry is required for most appli-  
cations. The delays ensure that the device is kept in  
RESET until the device power supply and clock are sta-  
ble. For additional information on RESET operation,  
see Section 3.0 RESET.  
When the device executes a SLEEP instruction, the  
on-chip clocks and oscillator are turned off and the  
device is held at the beginning of an instruction cycle  
(Q1 state). With the oscillator off, the OSC1 and OSC2  
signals will stop oscillating. Since all the transistor  
switching currents have been removed, SLEEP mode  
achieves the lowest current consumption of the device  
(only leakage currents). Enabling any on-chip feature  
that will operate during SLEEP will increase the current  
consumed during SLEEP. The user can wake from  
SLEEP through external RESET, Watchdog Timer  
Reset or through an interrupt.  
The first timer is the Power-up Timer (PWRT), which  
optionally provides a fixed delay of TPWRT (parameter  
#33) on power-up only (POR and BOR). The second  
timer is the Oscillator Start-up Timer (OST), intended to  
keep the chip in RESET until the crystal oscillator is  
stable.  
With the PLL enabled (HS4 oscillator mode), the  
time-out sequence following a Power-on Reset is differ-  
ent from other oscillator modes. The time-out sequence  
is as follows: the PWRT time-out is invoked after a POR  
time delay has expired, then the Oscillator Start-up  
Timer (OST) is invoked. However, this is still not a suf-  
ficient amount of time to allow the PLL to lock at high  
frequencies. The PWRT timer is used to provide an  
additional time-out. This time is called TPLL (parameter  
#7) to allow the PLL ample time to lock to the incoming  
clock frequency.  
TABLE 2-3:  
OSC1 AND OSC2 PIN STATES IN SLEEP MODE  
OSC1 Pin  
OSC Mode  
OSC2 Pin  
RC  
Floating, external resistor should pull high At logic low  
RCIO  
Floating, external resistor should pull high Configured as PORTA, bit 6  
ECIO  
Floating  
Floating  
Configured as PORTA, bit 6  
At logic low  
EC  
LP, XT, and HS  
Feedback inverter disabled, at quiescent  
voltage level  
Feedback inverter disabled, at quiescent  
voltage level  
Note: See Table 3-1 in Section 3.0 RESET, for time-outs due to SLEEP and MCLR Reset.  
DS30475A-page 28  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
state on Power-on Reset, MCLR, WDT Reset,  
Brown-out Reset, MCLR Reset during SLEEP and by  
the RESETinstruction.  
3.0  
RESET  
The PIC18CXX8 differentiates between various kinds  
of RESET:  
Most registers are not affected by a WDT wake-up,  
since this is viewed as the resumption of normal oper-  
ation. Status bits from the RCON register, RI, TO, PD,  
POR and BOR are set or cleared differently in different  
RESET situations, as indicated in Table 3-2. These bits  
are used in software to determine the nature of the  
RESET. See Table 3-3 for a full description of the  
RESET states of all registers.  
a) Power-on Reset (POR)  
b) MCLR Reset during normal operation  
c) MCLR Reset during SLEEP  
d) Watchdog Timer (WDT) Reset (during normal  
operation)  
e) Programmable Brown-out Reset (PBOR)  
f) RESETInstruction  
A simplified block diagram of the on-chip RESET circuit  
is shown in Figure 3-1.  
g) Stack Full Reset  
h) Stack Underflow Reset  
The Enhanced MCU devices have a MCLR noise filter  
in the MCLR Reset path. The filter will detect and  
ignore small pulses.  
Most registers are unaffected by a RESET. Their status  
is unknown on POR and unchanged by all other  
RESETs. The other registers are forced to a RESET”  
A WDT Reset does not drive MCLR pin low.  
FIGURE 3-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
RESET  
Instruction  
Stack Full/Underflow Reset  
External Reset  
Stack  
Pointer  
MCLR  
SLEEP  
WDT  
Time-out  
Reset  
WDT  
Module  
VDD Rise  
Detect  
Power-on Reset  
VDD  
Brown-out  
Reset  
BOREN  
S
R
OST/PWRT  
OST  
Chip_Reset  
10-bit Ripple Counter  
10-bit Ripple Counter  
Q
OSC1  
PWRT  
On-chip  
(1)  
RC OSC  
Enable PWRT  
(2)  
Enable OST  
Note 1: This is a separate oscillator from the RC oscillator of the CLKI pin.  
2: See Table 3-1 for time-out situations.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 29  
PIC18CXX8  
3.1  
Power-on Reset (POR)  
3.2  
Power-up Timer (PWRT)  
A Power-on Reset pulse is generated on-chip when a  
VDD rise is detected. To take advantage of the POR cir-  
cuitry, connect the MCLR pin directly (or through a  
resistor) to VDD. This will eliminate external RC compo-  
nents usually needed to create a Power-on Reset  
delay. A minimum rise rate for VDD is specified (param-  
eter D004). For a slow rise time, see Figure 3-2.  
The Power-up Timer provides a fixed nominal time-out  
(parameter #33), only on power-up from the POR. The  
Power-up Timer operates on an internal RC oscillator.  
The chip is kept in RESET as long as the PWRT is  
active. The PWRTs time delay allows VDD to rise to an  
acceptable level. A configuration bit (PWRTEN in  
CONFIG2L register) is provided to enable/disable the  
PWRT.  
When the device starts normal operation (exits the  
RESET condition), device operating parameters (volt-  
age, frequency, temperature,...) must be met to ensure  
operation. If these conditions are not met, the device  
must be held in RESET until the operating conditions  
are met. Brown-out Reset may be used to meet the  
voltage start-up condition.  
The power-up time delay will vary from chip to chip due  
to VDD, temperature and process variation. See DC  
parameter #33 for details.  
3.3  
Oscillator Start-up Timer (OST)  
The Oscillator Start-up Timer (OST) provides 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over (parameter #32). This ensures that  
the crystal oscillator or resonator has started and stabi-  
lized.  
FIGURE 3-2: EXTERNAL POWER-ON  
RESET CIRCUIT (FOR SLOW  
VDD POWER-UP)  
The OST time-out is invoked only for XT, LP, HS and  
HS4 modes and only on Power-on Reset or wake-up  
from SLEEP.  
VDD  
D
R
3.4  
PLL Lock Time-out  
R1  
MCLR  
With the PLL enabled, the time-out sequence following  
a Power-on Reset is different from other oscillator  
modes. A portion of the Power-up Timer is used to pro-  
vide a fixed time-out that is sufficient for the PLL to lock  
to the main oscillator frequency. This PLL lock time-out  
(TPLL) is typically 2 ms and follows the oscillator  
start-up time-out (OST).  
PIC18CXX8  
C
Note 1: External Power-on Reset circuit is required  
only if the VDD power-up slope is too slow.  
The diode D helps discharge the capacitor  
quickly when VDD powers down.  
3.5  
Brown-out Reset (BOR)  
2: R < 40 kis recommended to make sure  
that the voltage drop across R does not  
violate the devices electrical specification.  
3: R1 = 100to 1 kwill limit any current  
flowing into MCLR from external capacitor  
C in the event of MCLR/VPP pin break-  
down due to Electrostatic Discharge  
A
configuration bit, BOREN, can disable (if  
clear/programmed) or enable (if set) the Brown-out  
Reset circuitry. If VDD falls below parameter D005 for  
greater than parameter #35, the brown-out situation  
resets the chip. A RESET may not occur if VDD falls  
below parameter D005 for less than parameter #35.  
The chip will remain in Brown-out Reset until VDD rises  
above BVDD. The Power-up Timer will then be invoked  
and will keep the chip in RESET an additional time  
delay (parameter #33). If VDD drops below BVDD while  
the Power-up Timer is running, the chip will go back  
into a Brown-out Reset and the Power-up Timer will be  
initialized. Once VDD rises above BVDD, the Power-up  
Timer will execute the additional time delay.  
(ESD) or Electrical Overstress (EOS).  
DS30475A-page 30  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire.  
Bringing MCLR high will begin execution immediately  
(Figure 3-5). This is useful for testing purposes or to  
synchronize more than one PIC18CXX8 device operat-  
ing in parallel.  
3.6  
Time-out Sequence  
On power-up, the time-out sequence is as follows:  
First, PWRT time-out is invoked after the POR time  
delay has expired, then OST is activated. The total  
time-out will vary based on oscillator configuration and  
the status of the PWRT. For example, in RC mode with  
the PWRT disabled, there will be no time-out at all.  
Figure 3-3, Figure 3-4, Figure 3-5, Figure 3-6 and  
Figure 3-7 depict time-out sequences on power-up.  
Table 3-2 shows the RESET conditions for some Spe-  
cial Function Registers, while Table 3-3 shows the  
RESET conditions for all registers.  
TABLE 3-1:  
TIME-OUT IN VARIOUS SITUATIONS  
Power-up(2)  
Wake-up from  
SLEEP or  
Oscillator  
Configuration  
Brown-out(2)  
PWRTEN = 0  
PWRTEN = 1  
Oscillator Switch  
HS with PLL enabled(1) 72 ms + 1024Tosc + 2 ms 1024Tosc + 2 ms 72 ms + 1024Tosc + 2 ms 1024Tosc + 2 ms  
HS, XT, LP  
EC  
72 ms + 1024Tosc  
72 ms  
1024Tosc  
72 ms + 1024Tosc  
72 ms  
1024Tosc  
External RC  
72 ms  
72 ms  
Note 1: 2 ms = Nominal time required for the 4X PLL to lock.  
2: 72 ms is the nominal power-up timer delay.  
REGISTER 3-1:  
RCON REGISTER BITS AND POSITIONS  
R/W-0  
IPEN  
R/W-0  
LWRT  
U-0  
R/W-1  
RI  
R/W-1  
TO  
R/W-1  
PD  
R/W-1  
POR  
R/W-1  
BOR  
bit 7  
bit 0  
TABLE 3-2:  
STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION FOR  
RCON REGISTER  
Program  
Counter  
RCON  
Register  
Condition  
RI TO PD POR BOR STKFUL STKUNF  
Power-on Reset  
0000h  
0000h  
00-1 1100  
00-u uuuu  
1
u
1
u
1
u
0
u
0
u
u
u
u
u
MCLR Reset during normal  
operation  
Software Reset during normal  
operation  
0000h  
0000h  
0000h  
0u-0 uuuu  
0u-u uu11  
0u-u uu11  
0
u
u
u
u
u
u
u
u
u
1
1
u
1
1
u
u
1
u
1
u
Stack Full Reset during normal  
operation  
Stack Underflow Reset during  
normal operation  
MCLR Reset during SLEEP  
WDT Reset  
0000h  
0000h  
PC + 2  
0000h  
00-u 10uu  
0u-u 01uu  
uu-u 00uu  
0u-1 11u0  
u
u
u
1
u
1
0
0
1
0
0
1
0
1
0
u
u
u
u
u
u
u
u
0
u
u
u
u
u
u
u
u
u
u
u
WDT Wake-up  
Brown-out Reset  
Interrupt wake-up from SLEEP  
PC + 2(1) uu-u 00uu  
Legend: u= unchanged, x= unknown, - = unimplemented bit, read as '0'  
Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the  
interrupt vector (0x000008h or 0x000018h).  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 31  
PIC18CXX8  
FIGURE 3-3: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 3-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 3-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
DS30475A-page 32  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
FIGURE 3-6: SLOW RISE TIME (MCLR TIED TO VDD)  
5V  
1V  
0V  
VDD  
MCLR  
TDEADTIME  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 3-7: TIME-OUT SEQUENCE ON POR W/ PLL ENABLED (MCLR TIED TO VDD)  
VDD  
MCLR  
IINTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
TPLL  
OST TIME-OUT  
PLL TIME-OUT  
INTERNAL RESET  
TOST = 1024 clock cycles.  
TPLL 2 ms max. First three stages of the PWRT timer.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 33  
PIC18CXX8  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS  
MCLR Reset  
WDT Reset  
RESET Instruction  
Stack Resets  
Applicable  
Devices  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
TOSU  
658  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
1111 1111  
1100 0000  
N/A  
---0 0000  
0000 0000  
0000 0000  
00-0 0000  
---0 0000  
0000 0000  
0000 0000  
--00 0000  
0000 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
0000 000u  
1111 1111  
1100 0000  
N/A  
---0 uuuu(3)  
uuuu uuuu(3)  
uuuu uuuu(3)  
uu-u uuuu(3)  
---u uuuu  
uuuu uuuu  
PC + 2(2)  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu(1)  
uuuu uuuu(1)  
uuuu uuuu(1)  
N/A  
TOSH  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
TOSL  
STKPTR  
PCLATU  
PCLATH  
PCL  
TBLPTRU  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
INTCON  
INTCON2  
INTCON3  
INDF0  
POSTINC0  
POSTDEC0  
PREINC0  
PLUSW0  
FSR0H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- 0000  
xxxx xxxx  
xxxx xxxx  
N/A  
---- 0000  
uuuu uuuu  
uuuu uuuu  
N/A  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
N/A  
FSR0L  
WREG  
INDF1  
POSTINC1  
POSTDEC1  
PREINC1  
PLUSW1  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as 0, q= value depends on condition  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008hor 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware  
stack.  
4: See Table 3-2 for RESET value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other  
oscillator modes, they are disabled and read 0.  
6: The long write enable is only reset on a POR or MCLR.  
7: Available on PIC18C858 only.  
DS30475A-page 34  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
TABLE 3-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Reset  
WDT Reset  
Applicable  
Devices  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
RESET Instruction  
Stack Resets  
FSR1H  
658  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
---- 0000  
xxxx xxxx  
---- 0000  
N/A  
---- 0000  
uuuu uuuu  
---- 0000  
N/A  
---- uuuu  
uuuu uuuu  
---- uuuu  
N/A  
FSR1L  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
BSR  
INDF2  
POSTINC2  
POSTDEC2  
PREINC2  
PLUSW2  
FSR2H  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
---- 0000  
xxxx xxxx  
---x xxxx  
xxxx xxxx  
xxxx xxxx  
1111 1111  
---- ---0  
--00 0101  
---- ---0  
00-1 11q0  
xxxx xxxx  
xxxx xxxx  
0-00 0000  
xxxx xxxx  
1111 1111  
-000 0000  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
---- 0000  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
1111 1111  
---- ---0  
--00 0101  
---- ---0  
00-1 qquu  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
uuuu uuuu  
1111 1111  
-000 0000  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
---- uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- ---u  
--uu uuuu  
---- ---u  
uu-u qquu  
uuuu uuuu  
uuuu uuuu  
u-uu uuuu  
uuuu uuuu  
1111 1111  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
FSR2L  
STATUS  
TMR0H  
TMR0L  
T0CON  
OSCCON  
LVDCON  
WDTCON  
RCON(4, 6)  
TMR1H  
TMR1L  
T1CON  
TMR2  
PR2  
T2CON  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1  
SSPCON2  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as 0, q= value depends on condition  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008hor 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware  
stack.  
4: See Table 3-2 for RESET value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other  
oscillator modes, they are disabled and read 0.  
6: The long write enable is only reset on a POR or MCLR.  
7: Available on PIC18C858 only.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 35  
PIC18CXX8  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Reset  
WDT Reset  
RESET Instruction  
Stack Resets  
Applicable  
Devices  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
CCPR1H  
CCPR1L  
CCP1CON  
CCPR2H  
CCPR2L  
CCP2CON  
CVRCON  
CMCON  
TMR3H  
TMR3L  
T3CON  
PSPCON  
SPBRG  
RCREG  
TXREG  
TXSTA  
658  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
xxxx xxxx  
xxxx xxxx  
--00 0000  
--00 0000  
0--- -000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 ----  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0000 -01x  
0000 000x  
1111 1111  
0000 0000  
0000 0000  
-1-- 1111  
-0-- 0000  
-0-- 0000  
1111 1111  
-111 1111  
0000 0000  
-000 0000  
0000 0000  
-000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
--00 0000  
0--- -000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 ----  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0000 -01u  
0000 000u  
1111 1111  
0000 0000  
0000 0000  
-1-- 1111  
-0-- 0000  
-0-- 0000  
1111 1111  
-111 1111  
0000 0000  
-000 0000  
0000 0000  
-000 0000  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
--uu uuuu  
u--- -uuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu ----  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u-- uuuu  
-u-- uuuu(1)  
-u-- uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu(1)  
-uuu uuuu(1)  
uuuu uuuu  
-uuu uuuu  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
RCSTA  
IPR3  
PIR3  
PIE3  
IPR2  
PIR2  
PIE2  
IPR1  
PIR1  
PIE1  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as 0, q= value depends on condition  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008hor 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware  
stack.  
4: See Table 3-2 for RESET value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other  
oscillator modes, they are disabled and read 0.  
6: The long write enable is only reset on a POR or MCLR.  
7: Available on PIC18C858 only.  
DS30475A-page 36  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
TABLE 3-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Reset  
WDT Reset  
Applicable  
Devices  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
RESET Instruction  
Stack Resets  
TRISJ(7)  
TRISH(7)  
TRISG  
-
858  
1111 1111  
1111 1111  
---1 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
-111 1111(5)  
xxxx xxxx  
xxxx xxxx  
---x xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-xxx xxxx(5)  
xxxx xxxx  
0000 xxxx  
---x xxxx  
x000 0000  
--00 xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
-x0x 0000(5)  
1111 1111  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
1000 ----  
-0-- -000  
0000 0000  
0000 0000  
1111 1111  
1111 1111  
---1 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
-111 1111(5)  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
uuuu uuuu  
0000 uuuu  
---u uuuu  
u000 0000  
uuuu u000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-u0u 0000(5)  
1111 1111  
uuuu uuuu  
uuuu uuuu  
0000 0000  
0000 0000  
0000 0000  
1000 ----  
-0-- -000  
0000 0000  
0000 0000  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
-uuu uuuu(5)  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu ----  
-u-- -uuu  
uuuu uuuu  
uuuu uuuu  
-
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
658  
658  
658  
658  
658  
658  
658  
-
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA(5)  
LATJ(7)  
LATH(7)  
LATG  
-
658  
658  
658  
658  
658  
658  
658  
-
LATF  
LATE  
LATD  
LATC  
LATB  
LATA(5)  
PORTJ(7)  
PORTH(7)  
PORTG  
PORTF  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA(5)  
TRISK  
-
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
LATK  
PORTK  
TXERRCNT  
RXERRCNT  
COMSTAT  
CIOCON  
BRGCON3  
BRGCON2  
BRGCON1  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as 0, q= value depends on condition  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008hor 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware  
stack.  
4: See Table 3-2 for RESET value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other  
oscillator modes, they are disabled and read 0.  
6: The long write enable is only reset on a POR or MCLR.  
7: Available on PIC18C858 only.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 37  
PIC18CXX8  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Reset  
WDT Reset  
RESET Instruction  
Stack Resets  
Applicable  
Devices  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
CANCON  
CANSTAT  
RXB0D7  
RXB0D6  
RXB0D5  
RXB0D4  
RXB0D3  
RXB0D2  
RXB0D1  
RXB0D0  
RXB0DLC  
RXB0EIDL  
RXB0EIDH  
RXB0SIDL  
RXB0SIDH  
RXB0CON  
RXB1D7  
RXB1D6  
RXB1D5  
RXB1D4  
RXB1D3  
RXB1D2  
RXB1D1  
RXB1D0  
RXB1DLC  
RXB1EIDL  
RXB1EIDH  
RXB1SIDL  
RXB1SIDH  
RXB1CON  
TXB0D7  
658  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
xxxx xxx-  
xxx- xxx-  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0xxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx x-xx  
xxxx xxxx  
000- 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0xxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx x0xx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
uuuu uuu-  
uuu- uuu-  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu u-uu  
uuuu uuuu  
000- 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu u0uu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuu-  
uuu- uuu-  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu u-uu  
uuuu uuuu  
uuu- uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
TXB0D6  
TXB0D5  
TXB0D4  
TXB0D3  
TXB0D2  
TXB0D1  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as 0, q= value depends on condition  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008hor 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware  
stack.  
4: See Table 3-2 for RESET value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other  
oscillator modes, they are disabled and read 0.  
6: The long write enable is only reset on a POR or MCLR.  
7: Available on PIC18C858 only.  
DS30475A-page 38  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
TABLE 3-3:  
Register  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Reset  
WDT Reset  
Applicable  
Devices  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
RESET Instruction  
Stack Resets  
TXB0D0  
658  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
xxxx xxxx  
0x00 xxxx  
xxxx xxxx  
xxxx xxxx  
xxx0 x0xx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0x00 xxxx  
xxxx xxxx  
xxxx xxxx  
xxx0 x0xx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
0x00 xxxx  
xxxx xxxx  
xxxx xxxx  
xxx0 x0xx  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
uuuu uuuu  
0u00 uuuu  
uuuu uuuu  
uuuu uuuu  
uuu0 u0uu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0u00 uuuu  
uuuu uuuu  
uuuu uuuu  
uuu0 u0uu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
0u00 uuuu  
uuuu uuuu  
uuuu uuuu  
uuu0 u0uu  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
TXB0DLC  
TXB0EIDL  
TXB0EIDH  
TXB0SIDL  
TXB0SIDH  
TXB0CON  
TXB1D7  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
TXB1D6  
TXB1D5  
TXB1D4  
TXB1D3  
TXB1D2  
TXB1D1  
TXB1D0  
TXB1DLC  
TXB1EIDL  
TXB1EIDH  
TXB1SIDL  
TXB1SIDH  
TXB1CON  
TXB2D7  
TXB2D6  
TXB2D5  
TXB2D4  
TXB2D3  
TXB2D2  
TXB2D1  
TXB2D0  
TXB2DLC  
TXB2EIDL  
TXB2EIDH  
TXB2SIDL  
TXB2SIDH  
TXB2CON  
RXM1EIDL  
RXM1EIDH  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as 0, q= value depends on condition  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008hor 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware  
stack.  
4: See Table 3-2 for RESET value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other  
oscillator modes, they are disabled and read 0.  
6: The long write enable is only reset on a POR or MCLR.  
7: Available on PIC18C858 only.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 39  
PIC18CXX8  
TABLE 3-3:  
INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
MCLR Reset  
WDT Reset  
RESET Instruction  
Stack Resets  
Applicable  
Devices  
Power-on Reset,  
Brown-out Reset  
Wake-up via WDT  
or Interrupt  
Register  
RXM1SIDL  
RXM1SIDH  
RXM0EIDL  
RXM0EIDH  
RXM0SIDL  
RXM0SIDH  
RXF5EIDL  
RXF5EIDH  
RXF5SIDL  
RXF5SIDH  
RXF4EIDL  
RXF4EIDH  
RXF4SIDL  
RXF4SIDH  
RXF3EIDL  
RXF3EIDH  
RXF3SIDL  
RXF3SIDH  
RXF2EIDL  
RXF2EIDH  
RXF2SIDL  
RXF2SIDH  
RXF1EIDL  
RXF1EIDH  
RXF1SIDL  
RXF1SIDH  
RXF0EIDL  
RXF0EIDH  
RXF0SIDL  
RXF0SIDH  
658  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
858  
xxx- --xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- --xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxx- x-xx  
xxxx xxxx  
uuu- --uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- --uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuu- --uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- --uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuu- u-uu  
uuuu uuuu  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
658  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as 0, q= value depends on condition  
Note 1: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt  
vector (0008hor 0018h).  
3: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are  
updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware  
stack.  
4: See Table 3-2 for RESET value for specific condition.  
5: Bit 6 of PORTA, LATA, and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other  
oscillator modes, they are disabled and read 0.  
6: The long write enable is only reset on a POR or MCLR.  
7: Available on PIC18C858 only.  
DS30475A-page 40  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
FIGURE 4-1: PROGRAM MEMORY MAP  
AND STACK FOR  
4.0  
MEMORY ORGANIZATION  
There are two memory blocks in Enhanced MCU  
devices. These memory blocks are:  
PIC18C658/858  
Program Memory  
Data Memory  
PC<20:0>  
21  
Each block has its own bus so that concurrent access  
can occur.  
Stack Level 1  
Stack Level 31  
4.1  
Program Memory Organization  
0000h  
RESET Vector  
The PIC18CXX8 devices have a 21-bit program  
counter that is capable of addressing the 2 Mbyte  
program memory space.  
High Priority Interrupt Vector  
Low Priority Interrupt Vector  
0008h  
0018h  
The reset vector address is at 0000h and the interrupt  
vector addresses are at 0008h and 0018h. Figure 4-1  
shows the diagram for program memory map and stack  
for the PIC18C658 and PIC18C858.  
4.1.1  
INTERNAL PROGRAM MEMORY  
OPERATION  
On-chip  
Program Memory  
All devices have 32 Kbytes of internal EPROM program  
memory. This means that the PIC18CXX8 devices can  
store up to 16K of single word instructions. Accessing  
a location between the physically implemented mem-  
ory and the 2 Mbyte address will cause a read of all '0's  
(a NOPinstruction).  
7FFFh  
8000h  
Read 1’  
1FFFFFh  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 41  
PIC18CXX8  
4.2.2  
RETURN STACK POINTER (STKPTR)  
4.2  
Return Address Stack  
The STKPTR register contains the stack pointer value,  
the STKFUL (stack full) status bit, and the STKUNF  
(stack underflow) status bits. Register 4-1 shows the  
STKPTR register. The value of the stack pointer can be  
0 through 31. The stack pointer increments when val-  
ues are pushed onto the stack and decrements when  
values are popped off the stack. At RESET, the stack  
pointer value will be 0. The user may read and write the  
stack pointer value. This feature can be used by a Real  
Time Operating System for return stack maintenance.  
The return address stack allows any combination of up  
to 31 program calls and interrupts to occur. The PC  
(Program Counter) is pushed onto the stack when a  
PUSH, CALLor RCALLinstruction is executed, or an  
interrupt is acknowledged. The PC value is pulled off  
the stack on a RETURN, RETLWor a RETFIEinstruc-  
tion. PCLATU and PCLATH are not affected by any of  
the return instructions.  
The stack operates as a 31 word by 21-bit stack mem-  
ory and a 5-bit stack pointer, with the stack pointer ini-  
tialized to 00000b after all RESETs. There is no RAM  
associated with stack pointer 00000b. This is only a  
RESET value. During a CALLtype instruction causing  
a push onto the stack, the stack pointer is first incre-  
mented and the RAM location pointed to by the stack  
pointer is written with the contents of the PC. During a  
RETURNtype instruction causing a pop from the stack,  
the contents of the RAM location indicated by the  
STKPTR is transferred to the PC and then the stack  
pointer is decremented.  
After the PC is pushed onto the stack 31 times (without  
popping any values off the stack), the STKFUL bit is  
set. The STKFUL bit can only be cleared in software or  
by a POR.  
The action that takes place when the stack becomes  
full depends on the state of the STVREN (stack over-  
flow RESET enable) configuration bit. Refer to Section  
18 for a description of the device configuration bits. If  
STVREN is set (default) the 31st push will push the  
(PC + 2) value onto the stack, set the STKFUL bit, and  
reset the device. The STKFUL bit will remain set and  
the stack pointer will be set to 0.  
The stack space is not part of either program or data  
space. The stack pointer is readable and writable, and  
the data on the top of the stack is readable and writable  
through SFR registers. Status bits indicate if the stack  
pointer is at or beyond the 31 levels provided.  
If STVREN is cleared, the STKFUL bit will be set on the  
31st push and the stack pointer will increment to 31.  
The 32nd push will overwrite the 31st push (and so on),  
while STKPTR remains at 31.  
4.2.1  
TOP-OF-STACK ACCESS  
When the stack has been popped enough times to  
unload the stack, the next pop will return a value of zero  
to the PC and sets the STKUNF bit, while the stack  
pointer remains at 0. The STKUNF bit will remain set  
until cleared in software or a POR occurs.  
The top of the stack is readable and writable. Three  
register locations, TOSU, TOSH and TOSL allow  
access to the contents of the stack location indicated  
by the STKPTR register. This allows users to imple-  
ment a software stack if necessary. After a CALL,  
RCALLor interrupt, the software can read the pushed  
value by reading the TOSU, TOSH and TOSL registers.  
These values can be placed on a user defined software  
stack. At return time, the software can replace the  
TOSU, TOSH and TOSL and do a return.  
Note: Returning a value of zero to the PC on an  
underflow has the effect of vectoring the  
program to the RESET vector, where the  
stack conditions can be verified and appro-  
priate actions can be taken.  
The user should disable the global interrupt enable bits  
during this time to prevent inadvertent stack opera-  
tions.  
DS30475A-page 42  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
REGISTER 4-1:  
STKPTR - STACK POINTER REGISTER  
R/C-0  
R/C-0  
U-0  
R/W-0  
SP4  
R/W-0  
SP3  
R/W-0  
SP2  
R/W-0  
SP1  
R/W-0  
SP0  
STKFUL  
STKUNF  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
STKFUL: Stack Full Flag bit  
1= Stack became full or overflowed  
0= Stack has not become full or overflowed  
STKUNF: Stack Underflow Flag bit  
1= Stack underflow occurred  
0= Stack underflow did not occur  
Unimplemented: Read as '0'  
bit 4-0  
SP4:SP0: Stack Pointer Location bits  
Note: Bit 7 and bit 6 can only be cleared in user software or by a POR.  
Legend  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared C = Clearable bit  
1= Bit is set  
FIGURE 4-2: RETURN ADDRESS STACK AND ASSOCIATED REGISTERS  
Return Address Stack  
11111  
11110  
11101  
STKPTR<4:0>  
00010  
TOSU  
0x00  
TOSH  
0x1A  
TOSL  
0x34  
00011  
0x001A34 00010  
0x000D58 00001  
0x000000 00000(1)  
Top-of-Stack  
Note 1: No RAM associated with this address; always maintained 0s.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 43  
PIC18CXX8  
4.2.3  
PUSH AND POP INSTRUCTIONS  
4.3  
Fast Register Stack  
Since the Top-of-Stack (TOS) is readable and writable,  
the ability to push values onto the stack and pull values  
off the stack without disturbing normal program execu-  
tion is a desirable option. To push the current PC value  
onto the stack, a PUSH instruction can be executed.  
This will increment the stack pointer and load the cur-  
rent PC value onto the stack. TOSU, TOSH and TOSL  
can then be modified to place a return address on the  
stack.  
A fast returnoption is available for interrupts and  
calls. A fast register stack is provided for the STATUS,  
WREG and BSR registers and is only one layer in  
depth. The stack is not readable or writable and is  
loaded with the current value of the corresponding reg-  
ister when the processor vectors for an interrupt. The  
values in the fast register stack are then loaded back  
into the working registers if the fast returninstruc-  
tion is used to return from the interrupt.  
The POPinstruction discards the current TOS by decre-  
menting the stack pointer. The previous value pushed  
onto the stack then becomes the TOS value.  
A low or high priority interrupt source will push values  
into the stack registers. If both low and high priority  
interrupts are enabled, the stack registers cannot be  
used reliably for low priority interrupts. If a high priority  
interrupt occurs while servicing a low priority interrupt,  
the stack register values stored by the low priority inter-  
rupt will be overwritten.  
4.2.4  
STACK FULL/UNDERFLOW RESETS  
These RESETs are enabled by programming the  
STVREN configuration bit. When the STVREN bit is  
disabled, a full or underflow condition will set the appro-  
priate STKFUL or STKUNF bit, but not cause a device  
RESET. When the STVREN bit is enabled, a full or  
underflow will set the appropriate STKFUL or STKUNF  
bit and then cause a device RESET. The STKFUL or  
STKUNF bits are only cleared by the user software or  
a POR.  
If high priority interrupts are not disabled during low pri-  
ority interrupts, users must save the key registers in  
software during a low priority interrupt.  
If no interrupts are used, the fast register stack can be  
used to restore the STATUS, WREG and BSR registers  
at the end of a subroutine call. To use the fast register  
stack for a subroutine call, a fast call instruction  
must be executed.  
Example 4-1 shows a source code example that uses  
the fast register stack.  
EXAMPLE 4-1: FAST REGISTER STACK  
CODE EXAMPLE  
CALL SUB1, FAST  
;STATUS, WREG, BSR  
;SAVED IN FAST REGISTER  
;STACK  
SUB1  
RETURN FAST  
;RESTORE VALUES SAVED  
;IN FAST REGISTER STACK  
DS30475A-page 44  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
The contents of PCLATH and PCLATU will be trans-  
ferred to the program counter by an operation that  
writes PCL. Similarly, the upper two bytes of the pro-  
gram counter will be transferred to PCLATH and  
PCLATU by an operation that reads PCL. This is useful  
for computed offsets to the PC (See Section 4.8.1).  
4.4  
PCL, PCLATH and PCLATU  
The program counter (PC) specifies the address of the  
instruction to fetch for execution. The PC is 21-bits  
wide. The low byte is called the PCL register. This reg-  
ister is readable and writable. The high byte is called  
the PCH register. This register contains the PC<15:8>  
bits and is not directly readable or writable. Updates to  
the PCH register may be performed through the  
PCLATH register. The upper byte is called PCU. This  
register contains the PC<20:16> bits and is not directly  
readable or writable. Updates to the PCU register may  
be performed through the PCLATU register.  
4.5  
Clocking Scheme/Instruction Cycle  
The clock input (from OSC1) is internally divided by  
four to generate four non-overlapping quadrature  
clocks, namely Q1, Q2, Q3 and Q4. Internally, the pro-  
gram counter (PC) is incremented every Q1, the  
instruction is fetched from the program memory and  
latched into the instruction register in Q4. The instruc-  
tion is decoded and executed during the following Q1  
through Q4. The clocks and instruction execution flow  
are shown in Figure 4-3.  
The PC addresses bytes in the program memory. To  
prevent the PC from becoming misaligned with word  
instructions, the LSb of PCL is fixed to a value of 0.  
The PC increments by 2 to address sequential instruc-  
tions in the program memory.  
The CALL, RCALL, GOTO and program branch  
instructions write to the program counter directly. For  
these instructions, the contents of PCLATH and  
PCLATU are not transferred to the program counter.  
FIGURE 4-3: CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Internal  
phase  
clock  
Q4  
PC  
PC  
PC+2  
PC+4  
OSC2/CLKOUT  
(RC mode)  
Fetch INST (PC)  
Execute INST (PC-2)  
Fetch INST (PC+2)  
Execute INST (PC)  
Fetch INST (PC+4)  
Execute INST (PC+2)  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 45  
PIC18CXX8  
4.6  
Instruction Flow/Pipelining  
4.7  
Instructions in Program Memory  
An Instruction Cycleconsists of four Q cycles (Q1,  
Q2, Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle  
while decode and execute takes another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g., GOTO),  
two cycles are required to complete the instruction  
(Example 4-2).  
The program memory is addressed in bytes. Instruc-  
tions are stored as two bytes or four bytes in program  
memory. The Least Significant Byte of an instruction  
word is always stored in a program memory location  
with an even address (LSB = 0). Figure 4-1 shows an  
example of how instruction words are stored in the pro-  
gram memory. To maintain alignment with instruction  
boundaries, the PC increments in steps of 2 and the  
LSB will always read 0(See Section 4.4).  
A fetch cycle begins with the program counter (PC)  
incrementing in Q1.  
The CALLand GOTOinstructions have an absolute pro-  
gram memory address embedded into the instruction.  
Since instructions are always stored on word bound-  
aries, the data contained in the instruction is a word  
address. The word address is written to PC<20:1>,  
which accesses the desired byte address in program  
memory. Instruction #2 in Figure 4-1 shows how the  
instruction GOTO 000006his encoded in the program  
memory. Program branch instructions that encode a rel-  
ative address offset operate in the same manner. The  
offset value stored in a branch instruction represents the  
number of single word instructions by which the PC will  
be offset. Section 23.0 provides further details of the  
instruction set.  
In the execution cycle, the fetched instruction is latched  
into the Instruction Register(IR) in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3, and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
EXAMPLE 4-2: INSTRUCTION PIPELINE FLOW  
TCY0  
TCY1  
TCY2  
TCY3  
TCY4  
TCY5  
1. MOVLW 55h  
2. MOVWF PORTB  
3. BRA SUB_1  
Fetch 1  
Execute 1  
Fetch 2  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3 (Forced NOP)  
Flush  
5. Instruction @ address SUB_1  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch  
instruction is flushedfrom the pipeline while the new instruction is being fetched and then executed.  
TABLE 4-1:  
INSTRUCTIONS IN PROGRAM MEMORY  
Opcode  
Instruction  
Memory  
Address  
000007h  
000008h  
000009h  
00000Ah  
00000Bh  
00000Ch  
00000Dh  
00000Eh  
00000Fh  
000010h  
000011h  
000012h  
MOVLW 055h  
0E55h  
55h  
0Eh  
03h  
EFh  
00h  
F0h  
23h  
C1h  
56h  
F4h  
GOTO 000006h  
EF03h, F000h  
MOVFF 123h, 456h  
C123h, F456h  
DS30475A-page 46  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
4.7.1  
TWO WORD INSTRUCTIONS  
4.8.1  
COMPUTED GOTO  
The PIC18CXX8 devices have 4 two word instructions:  
MOVFF, CALL, GOTOand LFSR. The second word of  
these instructions has the 4 MSBs set to 1s and is a  
special kind of NOPinstruction. The lower 12 bits of the  
second word contain data to be used by the instruction.  
If the first word of the instruction is executed, the data  
in the second word is accessed. If the second word of  
the instruction is executed by itself (first word was  
skipped), it will execute as a NOP. This action is neces-  
sary when the two word instruction is preceded by a  
conditional instruction that changes the PC. A program  
example that demonstrates this concept is shown in  
Example 4-3. Refer to Section 19.0 for further details of  
the instruction set.  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL).  
A lookup table can be formed with an ADDWF PCL  
instruction and a group of RETLW 0xnn instructions.  
WREG is loaded with an offset into the table before exe-  
cuting a call to that table. The first instruction of the called  
routine is the ADDWF PCLinstruction. The next instruc-  
tion executed will be one of the RETLW 0xnn instruc-  
tions that returns the value 0xnnto the calling function.  
The offset value (value in WREG) specifies the number  
of bytes that the program counter should advance.  
In this method, only one data byte may be stored in  
each instruction location and room on the return  
address stack is required.  
4.8  
Lookup Tables  
Warning: The LSb of PCL is fixed to a value of 0.  
Hence, computed GOTO to an odd  
address is not possible.  
Lookup tables are implemented two ways. These are:  
Computed GOTO  
Table Reads  
4.8.2  
TABLE READS/TABLE WRITES  
A better method of storing data in program memory  
allows 2 bytes of data to be stored in each instruction  
location.  
Lookup table data may be stored as 2 bytes per pro-  
gram word by using table reads and writes. The table  
pointer (TBLPTR) specifies the byte address and the  
table latch (TABLAT) contains the data that is read  
from, or written to, program memory. Data is trans-  
ferred to/from program memory one byte at a time.  
A description of the Table Read/Table Write operation  
is shown in Section 5.0.  
EXAMPLE 4-3: TWO WORD INSTRUCTIONS  
Object Code  
CASE 1:  
Source Code  
0110 0110 0000 0000  
1100 0001 0010 0011  
1111 0100 0101 0110  
0010 0100 0000 0000  
TSTFSZ  
MOVFF  
REG1  
; is RAM location 0?  
REG1, REG2 ; No, execute 2-word instruction  
; 2nd operand holds address of REG2  
REG3  
ADDWF  
; continue code  
CASE 2:  
Object Code  
Source Code  
0110 0110 0000 0000  
1100 0001 0010 0011  
1111 0100 0101 0110  
0010 0100 0000 0000  
TSTFSZ  
MOVFF  
REG1  
; is RAM location 0?  
REG1, REG2 ; Yes  
; 2nd operand becomes NOP  
REG3 ; continue code  
ADDWF  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 47  
PIC18CXX8  
4.9.1  
GENERAL PURPOSE REGISTER FILE  
4.9  
Data Memory Organization  
The register file can be accessed either directly or indi-  
rectly. Indirect addressing operates through the File  
Select Registers (FSR). The operation of indirect  
addressing is shown in Section 4.12.  
The data memory is implemented as static RAM. Each  
register in the data memory has a 12-bit address,  
allowing up to 4096 bytes of data memory. Figure 4-4  
shows the data memory organization for the  
PIC18CXX8 devices.  
Enhanced MCU devices may have banked memory in  
the GPR area. GPRs are not initialized by a Power-on  
Reset and are unchanged on all other RESETS.  
The data memory map is divided into as many as 16  
banks that contain 256 bytes each. The lower 4 bits of  
the Bank Select Register (BSR<3:0>) select which  
bank will be accessed. The upper 4 bits for the BSR are  
not implemented.  
Data RAM is available for use as GPR registers by all  
instructions. Bank 15 (0xF00 to 0xFFF) contains  
SFRs. All other banks of data memory contain GPR  
registers starting with bank 0.  
The data memory contains Special Function Registers  
(SFR) and General Purpose Registers (GPR). The  
SFRs are used for control and status of the controller  
and peripheral functions, while GPRs are used for data  
storage and scratch pad operations in the users appli-  
cation. The SFRs start at the last location of Bank 15  
(0xFFF) and grow downwards. GPRs start at the first  
location of Bank 0 and grow upwards. Any read of an  
unimplemented location will read as 0s.  
4.9.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers (SFRs) are registers  
used by the CPU and Peripheral Modules for control-  
ling the desired operation of the device. These regis-  
ters are implemented as static RAM. A list of these  
registers is given in Table 4-2.  
The SFRs can be classified into two sets: those asso-  
ciated with the corefunction and those related to the  
peripheral functions. Those registers related to the  
coreare described in this section, while those related  
to the operation of the peripheral features are  
described in the section of that peripheral feature.  
The entire data memory may be accessed directly or  
indirectly. Direct addressing may require the use of the  
BSR register. Indirect addressing requires the use of  
the File Select Register (FSR). Each FSR holds a  
12-bit address value that can be used to access any  
location in the Data Memory map without banking.  
The SFRs are typically distributed among the peripher-  
als whose functions they control.  
The instruction set and architecture allow operations  
across all banks. This may be accomplished by indirect  
addressing or by the use of the MOVFFinstruction. The  
MOVFF instruction is a two word/two cycle instruction  
that moves a value from one register to another.  
The unused SFR locations will be unimplemented and  
read as '0's. See Table 4-2 for addresses for the SFRs.  
To ensure that commonly used registers (SFRs and  
select GPRs) can be accessed in a single cycle,  
regardless of the current BSR values, an Access Bank  
is implemented. A segment of Bank 0 and a segment of  
Bank 15 comprise the Access RAM. Section 4.10 pro-  
vides a detailed description of the Access RAM.  
DS30475A-page 48  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
FIGURE 4-4: DATA MEMORY MAP FOR PIC18C658/858  
BSR<3:0>  
= 0000b  
Data Memory Map  
000h  
05Fh  
060h  
0FFh  
00h  
Access GPRs  
GPRs  
Bank 0  
FFh  
00h  
100h  
= 0001b  
= 0010b  
GPRs  
GPRs  
Bank 1  
Bank 2  
Bank 3  
1FFh  
200h  
FFh  
00h  
2FFh  
300h  
FFh  
00h  
= 0011b  
= 0100b  
= 0101b  
GPRs  
FFh  
3FFh  
400h  
Access Bank  
00h  
Bank 4  
Bank 5  
GPRs  
GPRs  
4FFh  
500h  
Access Bank low  
5Fh  
00h  
FFh  
(GPRs)  
5FFh  
600h  
60h  
Access Bank high  
FFh  
(SFRs)  
= 0110b  
= 1110b  
When a = 0,  
Bank 6  
to  
Bank 14  
Unused  
Read 00h’  
the BSR is ignored and the  
Access Bank is used.  
The first 96 bytes are Gen-  
eral Purpose RAM (from  
Bank 0).  
EFFh  
F00h  
F5Fh  
F60h  
FFFh  
The next 160 bytes are  
SpecialFunctionRegisters  
(from Bank 15).  
00h  
FFh  
SFRs  
= 1111b  
Bank 15  
Access SFRs  
When a = 1,  
the BSR is used to specify  
the RAM location that the  
instruction uses.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 49  
PIC18CXX8  
TABLE 4-2:  
Address  
SPECIAL FUNCTION REGISTER MAP  
Name  
Address  
Name  
Address  
Name  
Address  
Name  
FFFh TOSU  
FDFh INDF2(2)  
FBFh CCPR1H  
F9Fh IPR1  
FFEh TOSH  
FDEh POSTINC2(2)  
FDDh POSTDEC2(2)  
FDCh PREINC2(2)  
FDBh PLUSW2(2)  
FDAh FSR2H  
FBEh CCPR1L  
FBDh CCP1CON  
FBCh CCPR2H  
FBBh CCPR2L  
FBAh CCP2CON  
F9Eh PIR1  
F9Dh PIE1  
F9Ch  
FFDh TOSL  
FFCh STKPTR  
FFBh PCLATU  
FFAh PCLATH  
FF9h PCL  
F9Bh  
F9Ah TRISJ(5)  
F99h TRISH(5)  
F98h TRISG  
F97h TRISF  
F96h TRISE  
F95h TRISD  
F94h TRISC  
F93h TRISB  
F92h TRISA  
F91h LATJ(5)  
F90h LATH(5)  
F8Fh LATG  
FD9h FSR2L  
FB9h  
FB8h  
FB7h  
FB6h  
FF8h TBLPTRU  
FF7h TBLPTRH  
FF6h TBLPTRL  
FF5h TABLAT  
FF4h PRODH  
FF3h PRODL  
FD8h STATUS  
FD7h TMR0H  
FD6h TMR0L  
FD5h T0CON  
FB5h CVRCON  
FB4h CMCON  
FB3h TMR3H  
FB2h TMR3L  
FB1h T3CON  
FB0h PSPCON  
FAFh SPBRG  
FAEh RCREG  
FADh TXREG  
FACh TXSTA  
FABh RCSTA  
FD4h  
FD3h OSCCON  
FD2h LVDCON  
FD1h WDTCON  
FD0h RCON  
FF2h INTCON  
FF1h INTCON2  
FF0h INTCON3  
FEFh INDF0(2)  
FEEh POSTINC0(2)  
FEDh POSTDEC0(2)  
FECh PREINC0(2)  
FEBh PLUSW0(2)  
FEAh FSR0H  
FCFh TMR1H  
FCEh TMR1L  
FCDh T1CON  
FCCh TMR2  
F8Eh LATF  
F8Dh LATE  
F8Ch LATD  
F8Bh LATC  
FCBh PR2  
FCAh T2CON  
FC9h SSPBUF  
FC8h SSPADD  
FC7h SSPSTAT  
FC6h SSPCON1  
FC5h SSPCON2  
FC4h ADRESH  
FC3h ADRESL  
FC2h ADCON0  
FC1h ADCON1  
FC0h ADCON2  
FAAh  
F8Ah LATB  
FE9h FSR0L  
FA9h  
F89h LATA  
FE8h WREG  
FA8h  
F88h PORTJ(5)  
F87h PORTH(5)  
F86h PORTG  
F85h PORTF  
F84h PORTE  
F83h PORTD  
F82h PORTC  
F81h PORTB  
F80h PORTA  
FE7h INDF1(2)  
FE6h POSTINC1(2)  
FE5h POSTDEC1(2)  
FE4h PREINC1(2)  
FE3h PLUSW1(2)  
FE2h FSR1H  
FA7h  
FA6h  
FA5h IPR3  
FA4h PIR3  
FA3h PIE3  
FA2h IPR2  
FA1h PIR2  
FA0h PIE2  
FE1h FSR1L  
FE0h BSR  
Note 1: Unimplemented registers are read as 0.  
2: This is not a physical register.  
3: Contents of register is dependent on WIN2:WIN0 bits in CANCON register.  
4: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given  
for each instance of the CANSTAT register due to the Microchip Header file requirement.  
5: Available on PIC18C858 only.  
DS30475A-page 50  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
Address  
F7Fh  
F7Eh  
F7Dh  
F7Ch  
F7Bh  
F7Ah  
F79h  
F78h  
F77h  
F76h  
F75h  
F74h  
F73h  
F72h  
F71h  
F70h  
F6Fh  
F6Eh  
F6Dh  
F6Ch  
F6Bh  
F6Ah  
F69h  
F68h  
F67h  
F66h  
F65h  
F64h  
F63h  
F62h  
F61h  
F60h  
Name  
TRISK(5)  
Address  
F5Fh  
F5Eh  
F5Dh  
F5Ch  
F5Bh  
F5Ah  
F59h  
F58h  
F57h  
F56h  
F55h  
F54h  
F53h  
F52h  
F51h  
F50h  
F4Fh  
F4Eh  
F4Dh  
F4Ch  
F4Bh  
F4Ah  
F49h  
F48h  
F47h  
F46h  
F45h  
F44h  
F43h  
F42h  
F41h  
F40h  
Name  
Address  
F3Fh  
F3Eh  
F3Dh  
F3Ch  
F3Bh  
F3Ah  
F39h  
F38h  
F37h  
F36h  
F35h  
F34h  
F33h  
F32h  
F31h  
F30h  
F2Fh  
F2Eh  
F2Dh  
F2Ch  
F2Bh  
F2Ah  
F29h  
F28h  
F27h  
F26h  
F25h  
F24h  
F23h  
F22h  
F21h  
F20h  
Name  
Address  
F1Fh  
F1Eh  
F1Dh  
F1Ch  
F1Bh  
F1Ah  
F19h  
F18h  
F17h  
F16h  
F15h  
F14h  
F13h  
F12h  
F11h  
F10h  
F0Fh  
F0Eh  
F0Dh  
F0Ch  
F0Bh  
F0Ah  
F09h  
F08h  
F07h  
F06h  
F05h  
F04h  
F03h  
F02h  
F01h  
F00h  
Name  
CANSTATRO0(4)  
RXB1D7  
CANSTATRO2(4)  
TXB1D7  
RXM1EID0  
RXM1EID8  
RXM1SIDL  
RXM1SIDH  
RXM0EID0  
RXM0EID8  
RXM0SIDL  
RXM0SIDH  
RXF5EID0  
RXF5EID8  
RXF5SIDL  
RXF5SIDH  
RXF4EID0  
RXF4EID8  
RXF4SIDL  
RXF4SIDH  
RXF3EID0  
RXF3EID8  
RXF3SIDL  
RXF3SIDH  
RXF2EID0  
RXF2EID8  
RXF2SIDL  
RXF2SIDH  
RXF1EID0  
RXF1EID8  
RXF1SIDL  
RXF1SIDH  
RXF0EIDL  
RXF0EIDH  
RXF0SIDL  
RXF0SIDH  
LATK(5)  
PORTK(5)  
RXB1D6  
TXB1D6  
RXB1D5  
TXB1D5  
RXB1D4  
TXB1D4  
RXB1D3  
TXB1D3  
RXB1D2  
TXB1D2  
RXB1D1  
TXB1D1  
TXERRCNT  
RXERRCNT  
COMSTAT  
CIOCON  
BRGCON3  
BRGCON2  
BRGCON1  
CANCON  
CANSTAT  
RXB0D7(3)  
RXB0D6(3)  
RXB0D5(3)  
RXB0D4(3)  
RXB0D3(3)  
RXB0D2(3)  
RXB0D1(3)  
RXB0D0(3)  
RXB0DLC(3)  
RXB0EIDL(3)  
RXB0EIDH(3)  
RXB0SIDL(3)  
RXB0SIDH(3)  
RXB0CON(3)  
RXB1D0  
TXB1D0  
RXB1DLC  
RXB1EIDL  
RXB1EIDH  
RXB1SIDL  
RXB1SIDH  
RXB1CON  
TXB1DLC  
TXB1EIDL  
TXB1EIDH  
TXB1SIDL  
TXB1SIDH  
TXB1CON  
CANSTATRO1(4)  
CANSTATRO3(4)  
TXB0D7  
TXB2D7  
TXB0D6  
TXB2D6  
TXB0D5  
TXB2D5  
TXB0D4  
TXB2D4  
TXB0D3  
TXB2D3  
TXB0D2  
TXB2D2  
TXB0D1  
TXB2D1  
TXB0D0  
TXB2D0  
TXB0DLC  
TXB0EIDL  
TXB0EIDH  
TXB0SIDL  
TXB0SIDH  
TXB0CON  
TXB2DLC  
TXB2EIDL  
TXB2EIDH  
TXB2SIDL  
TXB2SIDH  
TXB2CON  
Note: Shaded registers are available in Bank 15, while the rest are in Access Bank low.  
Note 1: Unimplemented registers are read as 0.  
2: This is not a physical register.  
3: Contents of register is dependent on WIN2:WIN0 bits in CANCON register.  
4: CANSTAT register is repeated in these locations to simplify application firmware. Unique names are given  
for each instance of the CANSTAT register due to the Microchip Header file requirement.  
5: Available on PIC18C858 only.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 51  
PIC18CXX8  
TABLE 4-3:  
Filename  
REGISTER FILE SUMMARY  
Value on  
POR,  
BOR  
Value on  
all other  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RESETS(3)  
TOSU  
Top-of-Stack upper Byte (TOS<20:16>)  
---0 0000 ---0 0000  
TOSH  
Top-of-Stack High Byte (TOS<15:8>)  
Top-of-Stack Low Byte (TOS<7:0>)  
0000 0000 0000 0000  
0000 0000 0000 0000  
00-0 0000 00-0 0000  
TOSL  
STKPTR  
STKFUL  
STKUNF  
Return Stack Pointer  
PCLATU  
bit 21(3)  
Holding Register for PC<20:16>  
--00 0000 --00 0000  
PCLATH  
PCL  
Holding Register for PC<15:8>  
PC Low Byte (PC<7:0>)  
0000 0000 0000 0000  
0000 0000 0000 0000  
---0 0000 ---0 0000  
TBLPTRU  
bit 21(2)  
Program Memory Table Pointer Upper Byte (TBLPTR<20:16>)  
TBLPTRH  
TBLPTRL  
TABLAT  
PRODH  
PRODL  
Program Memory Table Pointer High Byte (TBLPTR<15:8>)  
Program Memory Table Pointer Low Byte (TBLPTR<7:0>)  
Program Memory Table Latch  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0000 000x 0000 000u  
1111 1111 1111 1111  
1100 0000 1100 0000  
Product Register High Byte  
Product Register Low Byte  
INTCON  
INTCON2  
INTCON3  
INDF0  
GIE/GIEH  
RBPU  
PEIE/GIEL  
INTEDG0  
INT1IP  
TMR0IE  
INTEDG1  
INT3IE  
INT0IE  
INTEDG2  
INT2IE  
RBIE  
INTEDG3  
INT1IE  
TMR0IF  
TMR0IP  
INT3IF  
INT0IF  
INT3IP  
INT2IF  
RBIF  
RBIP  
INT2IP  
INT1IF  
Uses contents of FSR0 to address data memory - value of FSR0 not changed (not a physical register)  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
POSTINC0 Uses contents of FSR0 to address data memory - value of FSR0 post-incremented (not a physical register)  
POSTDEC0 Uses contents of FSR0 to address data memory - value of FSR0 post-decremented (not a physical register)  
PREINC0  
PLUSW0  
Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register)  
Uses contents of FSR0 to address data memory - value of FSR0 pre-incremented (not a physical register) - value  
of FSR0 offset by WREG  
FSR0H  
Indirect Data Memory Address Pointer 0 High  
---- 0000 ---- 0000  
FSR0L  
WREG  
INDF1  
Indirect Data Memory Address Pointer 0 Low Byte  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
Working Register  
Uses contents of FSR1 to address data memory - value of FSR1 not changed (not a physical register)  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
POSTINC1 Uses contents of FSR1 to address data memory - value of FSR1 post-incremented (not a physical register)  
POSTDEC1 Uses contents of FSR1 to address data memory - value of FSR1 post-decremented (not a physical register)  
PREINC1  
PLUSW1  
Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register)  
Uses contents of FSR1 to address data memory - value of FSR1 pre-incremented (not a physical register) - value  
of FSR1 offset by WREG  
FSR1H  
Indirect Data Memory Address Pointer 1 High  
---- 0000 ---- 0000  
FSR1L  
BSR  
Indirect Data Memory Address Pointer 1 Low Byte  
xxxx xxxx uuuu uuuu  
---- 0000 ---- 0000  
Bank Select Register  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
Legend:  
Note 1: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read 0.  
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.  
3: Other (non-power-up) RESETs include external RESET through MCLR and Watchdog Timer Reset.  
4: These registers are reserved on PIC18C658.  
DS30475A-page 52  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
Value on  
POR,  
BOR  
Value on  
Filename  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
RESETS(3)  
INDF2  
Uses contents of FSR2 to address data memory - value of FSR2 not changed (not a physical register)  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
n/a  
POSTINC2 Uses contents of FSR2 to address data memory - value of FSR2 post-incremented (not a physical register)  
POSTDEC2 Uses contents of FSR2 to address data memory - value of FSR2 post-decremented (not a physical register)  
PREINC2  
PLUSW2  
Uses contents of FSR2 to address data memory - value of FSR2 pre-incremented (not a physical register)  
Uses contents of FSR2 to address data memory - value of FSR2 pre-incremented (not a physical register) - value  
of FSR2 offset by WREG  
FSR2H  
Indirect Data Memory Address Pointer 2 High  
---- 0000 ---- 0000  
FSR2L  
Indirect Data Memory Address Pointer 2 Low Byte  
xxxx xxxx uuuu uuuu  
---x xxxx ---u uuuu  
STATUS  
N
OV  
Z
DC  
C
TMR0H  
TMR0L  
Timer0 register high byte  
Timer0 register low byte  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
---- ---0 ---- ---0  
T0CON  
OSCCON  
TMR0ON  
T08BIT  
T0CS  
T0SE  
T0PS3  
T0PS2  
T0PS1  
T0PS0  
SCS  
LVDCON  
WDTCON  
RCON  
IRVST  
LVDEN  
LVDL3  
LVDL2  
LVDL1  
LVDL0  
--00 0101 --00 0101  
---- ---0 ---- ---0  
00-1 11qq 00-q qquu  
SWDTEN  
BOR  
IPEN  
LWRT  
RI  
TO  
PD  
POR  
TMR1H  
TMR1L  
T1CON  
Timer1 Register High Byte  
Timer1 Register Low Byte  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RD16  
T1CKPS1  
TOUTPS2  
T1CKPS0  
TOUTPS1  
T1OSCEN  
TOUTPS0  
T1SYNC  
TMR2ON  
TMR1CS  
T2CKPS1  
TMR1ON 0-00 0000 u-uu uuuu  
TMR2  
PR2  
Timer2 Register  
0000 0000 0000 0000  
1111 1111 1111 1111  
Timer2 Period Register  
T2CON  
TOUTPS3  
T2CKPS0 -000 0000 -000 0000  
SSPBUF  
SSPADD  
SSPSTAT  
SSPCON1  
SSPCON2  
ADRESH  
ADRESL  
ADCON0  
SSP Receive Buffer/Transmit Register  
SSP Address Register in I2C Slave mode. SSP Baud Rate Reload Register in I2C Master mode.  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
SMP  
WCOL  
GCEN  
CKE  
D/A  
P
S
R/W  
SSPM2  
PEN  
UA  
BF  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--00 0000 --00 0000  
SSPOV  
ACKSTAT  
SSPEN  
ACKDT  
CKP  
SSPM3  
RCEN  
SSPM1  
RSEN  
SSPM0  
SEN  
ACKEN  
A/D Result Register High Byte  
A/D Result Register Low Byte  
CHS3  
CHS2  
CHS1  
CHS0  
PCFG2  
ADCS2  
GO/DONE  
PCFG1  
ADON  
PCFG0  
ADCS0  
ADCON1  
VCFG1  
VCFG0  
PCFG3  
-000 0000 -000 0000  
0--- -000 0--- -000  
ADCON2  
Legend:  
ADFM  
ADCS1  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
Note 1: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read 0.  
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.  
3: Other (non-power-up) RESETs include external RESET through MCLR and Watchdog Timer Reset.  
4: These registers are reserved on PIC18C658.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 53  
PIC18CXX8  
Value on  
POR,  
BOR  
Value on  
all other  
Filename  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RESETS(3)  
CCPR1H  
CCPR1L  
CCP1CON  
Capture/Compare/PWM Register 1 High Byte  
Capture/Compare/PWM Register 1 Low Byte  
DC1B1  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--00 0000 --00 0000  
DC1B0  
DC2B0  
CCPM3  
CCPM3  
CCP1M2  
CCP2M2  
CCP1M1  
CCP2M1  
CCP1M0  
CCP2M0  
CCPR2H  
CCPR2L  
CCP2CON  
Capture/Compare/PWM Register 2 High Byte  
Capture/Compare/PWM Register 2 Low Byte  
DC2B1  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
VRCON  
CMCON  
TMR3H  
TMR3L  
VREN  
C2OUT  
VROEN  
C1OUT  
VRR  
VRSS  
C1INV  
VR3  
CIS  
VR2  
CM2  
VR1  
CM1  
VR0  
CM0  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
C2INV  
Timer3 Register High Byte  
Timer3 Register Low Byte  
T3CON  
PSPCON  
RD16  
IBF  
T3CCP2  
OBF  
T3CKPS1  
IBOV  
T3CKPS0  
T3CCP1  
T3SYNC  
TMR3CS  
TMR3ON 0000 0000 uuuu uuuu  
PSPMODE  
0000 ---- 0000 ----  
SPBRG  
RCREG  
TXREG  
TXSTA  
USART Baud Rate Generator  
USART Receive Register  
USART Transmit Register  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
CSRC  
TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
RCSTA  
IPR3  
PIR3  
PIE3  
SPEN  
IRXIP  
IRXIF  
IRXIE  
RX9  
SREN  
ERRIP  
ERRIF  
ERRIE  
CREN  
TXB2IP  
TXB2IF  
TXB2IE  
ADEN  
FERR  
TXB0IP  
TXB0IF  
TXB0IE  
LVDIP  
OERR  
RXB1IP  
RXB1IF  
RXB1IE  
TMR3IP  
RX9D  
0000 000x 0000 000x  
1111 1111 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
-1-- 1111 -1-- 1111  
WAKIP  
WAKIF  
WAKIE  
CMIP  
TXB1IP  
TXB1IF  
TXB1IE  
BCLIP  
RXB0IP  
RXB0IF  
RXB0IE  
CCP2IP  
IPR2  
PIR2  
PIE2  
CMIF  
CMIE  
BCLIF  
BCLIE  
LVDIF  
LVDIE  
TMR3IF  
TMR3IE  
CCP2IF  
CCP2IE  
-0-- 0000 -0-- 0000  
-0-- 0000 -0-- 0000  
IPR1  
PSPIP  
PSPIF  
PSPIE  
ADIP  
ADIF  
ADIE  
RCIP  
RCIF  
RCIE  
TXIP  
TXIF  
TXIE  
SSPIP  
SSPIF  
SSPIE  
CCP1IP  
CCP1IF  
CCP1IE  
TMR2IP  
TMR2IF  
TMR2IE  
TMR1IP  
TMR1IF  
TMR1IE  
1111 1111 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1111  
---1 1111 ---1 1111  
PIR1  
PIE1  
TRISJ(4)  
TRISH(4)  
TRISG  
Data Direction Control Register for PORTJ  
Data Direction Control Register for PORTH  
Data Direction Control Register for PORTG  
TRISF  
TRISE  
TRISD  
TRISC  
TRISB  
TRISA  
Legend:  
Data Direction Control Register for PORTF  
Data Direction Control Register for PORTE  
Data Direction Control Register for PORTD  
Data Direction Control Register for PORTC  
Data Direction Control Register for PORTB  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
--11 1111 --11 1111  
Bit 6(1)  
Data Direction Control Register for PORTA  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
Note 1: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read 0.  
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.  
3: Other (non-power-up) RESETs include external RESET through MCLR and Watchdog Timer Reset.  
4: These registers are reserved on PIC18C658.  
DS30475A-page 54  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
Value on  
POR,  
BOR  
Value on  
Filename  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
RESETS(3)  
LATJ(4)  
LATH(4)  
LATG  
Read PORTJ Data Latch, Write PORTJ Data Latch  
Read PORTH Data Latch, Write PORTH Data Latch  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
---x xxxx ---u uuuu  
Read PORTG Data Latch, Write PORTG Data Latch  
LATF  
LATE  
LATD  
LATC  
LATB  
LATA  
Read PORTF Data Latch, Write PORTF Data Latch  
Read PORTE Data Latch, Write PORTE Data Latch  
Read PORTD Data Latch, Write PORTD Data Latch  
Read PORTC Data Latch, Write PORTC Data Latch  
Read PORTB Data Latch, Write PORTB Data Latch  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--xx xxxx --uu uuuu  
Bit 6(1)  
Read PORTA Data Latch, Write PORTA Data Latch  
PORTJ(4)  
PORTH(4)  
PORTG  
Read PORTJ pins, Write PORTJ Data Latch  
Read PORTH pins, Write PORTH Data Latch  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
---x xxxx uuuu uuuu  
Read PORTG pins, Write PORTG Data Latch  
PORTF  
PORTE  
PORTD  
PORTC  
PORTB  
PORTA  
Read PORTF pins, Write PORTF Data Latch  
Read PORTE pins, Write PORTE Data Latch  
Read PORTD pins, Write PORTD Data Latch  
Read PORTC pins, Write PORTC Data Latch  
Read PORTB pins, Write PORTB Data Latch  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--0x 0000 --0u 0000  
Bit 6(1)  
Read PORTA pins, Write PORTA Data Latch  
TRISK(4)  
Data Direction Control Register for PORTK  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
1000 ---- 1000 ----  
-0-- -000 -0-- -000  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxx- uuuu uuu-  
LATK(4)  
Read PORTK Data Latch, Write PORTK Data Latch  
Read PORTK pins, Write PORTK Data Latch  
PORTK(4)  
TXERRCNT  
RXERRCNT  
COMSTAT  
CIOCON  
TEC7  
REC7  
TEC6  
REC6  
TEC5  
REC5  
TEC4  
REC4  
TEC3  
REC3  
RXBP  
TEC2  
REC2  
TEC1  
REC1  
TEC0  
REC0  
RXB0OVFL RXB1OVFL  
TXBO  
TXBP  
TXWARN  
RXWARN  
EWARN  
TX1SRC  
TX1EN  
WAKFIL  
SAM  
ENDRHI  
CANCAP  
SEG2PH2  
SEG2PH1  
SEG2PH0  
BRGCON3  
BRGCON2  
BRGCON1  
CANCON  
SEG2PHTS  
SEG1PH2  
SEG1PH1  
SEG1PH0  
PRSEG2  
BRP2  
PRSEG1  
BRP1  
PRSEG0  
BRP0  
SJW1  
SJW0  
BRP5  
BRP4  
ABAT  
BRP3  
WIN2  
REQOP2  
REQOP1  
REQOP0  
OPMODE0  
WIN1  
WIN0  
CANSTAT  
OPMODE2 OPMODE1  
ICODE2  
ICODE1  
ICOED0  
xxx- xxx- uuu- uuu-  
Legend:  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
Note 1: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read 0.  
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.  
3: Other (non-power-up) RESETs include external RESET through MCLR and Watchdog Timer Reset.  
4: These registers are reserved on PIC18C658.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 55  
PIC18CXX8  
Value on  
POR,  
BOR  
Value on  
all other  
Filename  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RESETS(3)  
RXB0D77  
RXB0D67  
RXB0D57  
RXB0D47  
RXB0D37  
RXB0D27  
RXB0D17  
RXB0D07  
RXB0D76  
RXB0D66  
RXB0D56  
RXB0D46  
RXB0D36  
RXB0D26  
RXB0D16  
RXB0D06  
RXB0D75  
RXB0D65  
RXB0D55  
RXB0D45  
RXB0D35  
RXB0D25  
RXB0D15  
RXB0D05  
RXB0D74  
RXB0D64  
RXB0D54  
RXB0D44  
RXB0D34  
RXB0D24  
RXB0D14  
RXB0D04  
RXB0D73  
RXB0D63  
RXB0D53  
RXB0D43  
RXB0D33  
RXB0D23  
RXB0D13  
RXB0D03  
RXB0D72  
RXB0D62  
RXB0D52  
RXB0D42  
RXB0D32  
RXB0D22  
RXB0D12  
RXB0D02  
RXB0D71  
RXB0D61  
RXB0D51  
RXB0D41  
RXB0D31  
RXB0D21  
RXB0D11  
RXB0D0?  
RXB0D70  
RXB0D60  
RXB0D50  
RXB0D40  
RXB0D30  
RXB0D20  
RXB0D10  
RXB0D00  
RXB0D7  
RXB0D6  
RXB0D5  
RXB0D4  
RXB0D3  
RXB0D2  
RXB0D1  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RXB0D0  
xxxx xxxx uuuu uuuu  
0xxx xxxx 0uuu uuuu  
RXB0DLC  
RXRTR  
EID6  
RESB1  
EID5  
RESB0  
EID4  
DLC3  
EID3  
DLC2  
EID2  
DLC1  
EID1  
DLC0  
EID0  
EID7  
RXB0EIDL  
RXB0EIDH  
RXB0SIDL  
RXB0SIDH  
RXB0CON  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx x-xx uuuu u-uu  
xxxx xxxx uuuu uuuu  
000- 0000 000- 0000  
EID15  
SID2  
EID14  
SID1  
EID13  
SID0  
EID12  
SRR  
SID7  
EID11  
EXID  
SID6  
EID10  
EID9  
EID17  
SID4  
EID8  
EID16  
SID3  
SID10  
RXFUL  
SID9  
SID8  
SID5  
RXM1  
RXM0  
RXRTRRO RXB0DBEN  
JTOFF  
FILHIT0  
CANSTAT  
OPMODE2 OPMODE1  
OPMODE0  
RXB1D75  
RXB1D65  
RXB1D55  
RXB1D45  
RXB1D35  
RXB1D25  
RXB1D15  
RXB1D05  
ICODE2  
RXB1D73  
RXB1D63  
RXB1D53  
RXB1D43  
RXB1D33  
RXB1D23  
RXB1D13  
RXB1D03  
ICODE1  
RXB1D72  
RXB1D62  
RXB1D52  
RXB1D42  
RXB1D32  
RXB1D22  
RXB1D12  
RXB1D02  
ICODE0  
RXB1D71  
RXB1D61  
RXB1D51  
RXB1D41  
RXB1D31  
RXB1D21  
RXB1D11  
RXB1D01  
xxx- xxx- uuu- uuu-  
RXB1D77  
RXB1D67  
RXB1D57  
RXB1D47  
RXB1D37  
RXB1D27  
RXB1D17  
RXB1D07  
RXB1D76  
RXB1D66  
RXB1D56  
RXB1D46  
RXB1D36  
RXB1D26  
RXB1D16  
RXB1D06  
RXB1D74  
RXB1D70  
RXB1D7  
RXB1D6  
RXB1D5  
RXB1D4  
RXB1D3  
RXB1D2  
RXB1D1  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RXB1D64  
RXB1D54  
RXB1D44  
RXB1D34  
RXB1D24  
RXB1D14  
RXB1D04  
RXB1D60  
RXB1D50  
RXB1D40  
RXB1D30  
RXB1D20  
RXB1D10  
RXB1D00  
RXB1D0  
xxxx xxxx uuuu uuuu  
0xxx xxxx 0uuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RXB1DLC  
RXB1EIDL  
RXB1EIDH  
RXRTR  
EID6  
RESB1  
EID5  
RESB0  
EID4  
DLC3  
EID3  
DLC2  
EID2  
DLC1  
EID1  
EID9  
DLC0  
EID0  
EID8  
EID7  
EID15  
EID14  
EID13  
EID12  
EID11  
EID10  
RXB1SIDL  
RXB1SIDH  
RXB1CON  
SID2  
SID10  
RXFUL  
SID1  
SID9  
SID0  
SID8  
SRR  
SID7  
EXID  
SID6  
EID17  
SID4  
EID16  
SID3  
xxxx x0xx uuuu u0uu  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
SID5  
RXM1  
RXM0  
RXRTRRO  
FILHIT2  
FILHIT1  
FILHIT0  
CANSTAT  
Legend:  
OPMODE2 OPMODE1  
OPMODE0  
ICODE2  
ICODE1  
ICODE0  
xxx- xxx- uuu- uuu-  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
Note 1: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read 0.  
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.  
3: Other (non-power-up) RESETs include external RESET through MCLR and Watchdog Timer Reset.  
4: These registers are reserved on PIC18C658.  
DS30475A-page 56  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
Value on  
POR,  
BOR  
Value on  
Filename  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
RESETS(3)  
TXB0D77  
TXB0D67  
TXB0D57  
TXB0D47  
TXB0D37  
TXB0D27  
TXB0D17  
TXB0D07  
TXB0D76  
TXB0D66  
TXB0D56  
TXB0D46  
TXB0D36  
TXB0D26  
TXB0D16  
TXB0D06  
TXRTR  
TXB0D75  
TXB0D65  
TXB0D55  
TXB0D45  
TXB0D35  
TXB0D25  
TXB0D15  
TXB0D05  
TXB0D74  
TXB0D64  
TXB0D54  
TXB0D44  
TXB0D34  
TXB0D24  
TXB0D14  
TXB0D04  
TXB0D73  
TXB0D63  
TXB0D53  
TXB0D43  
TXB0D33  
TXB0D23  
TXB0D13  
TXB0D03  
DLC3  
TXB0D72  
TXB0D62  
TXB0D52  
TXB0D42  
TXB0D32  
TXB0D22  
TXB0D12  
TXB0D02  
DLC2  
TXB0D71  
TXB0D61  
TXB0D51  
TXB0D41  
TXB0D31  
TXB0D21  
TXB0D11  
TXB0D01  
DLC1  
TXB0D70  
TXB0D60  
TXB0D50  
TXB0D40  
TXB0D30  
TXB0D20  
TXB0D10  
TXB0D00  
DLC0  
TXB0D7  
TXB0D6  
TXB0D5  
TXB0D4  
TXB0D3  
TXB0D2  
TXB0D1  
TXB0D0  
TXB0DLC  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0x00 xxxx 0u00 uuuu  
EID7  
EID6  
EID14  
SID1  
EID5  
EID4  
EID3  
EID11  
EID2  
EID1  
EID9  
EID0  
EID8  
TXB0EIDL  
TXB0EIDH  
TXB0SIDL  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxx0 x0xx uuu0 u0uu  
EID15  
SID2  
EID13  
SID0  
EID12  
EID10  
EXIDEN  
EID17  
EID16  
SID10  
SID9  
SID8  
SID7  
SID6  
SID5  
SID4  
SID3  
TXB0SIDH  
TXB0CON  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
TXABT  
TXLARB  
TXERR  
TXREQ  
TXPRI1  
TXPRI0  
CANSTAT  
OPMODE2 OPMODE1  
OPMODE0  
TXB1D75  
TXB1D65  
TXB1D55  
TXB1D45  
TXB1D35  
TXB1D25  
TXB1D15  
TXB1D05  
ICODE2  
TXB1D73  
TXB1D63  
TXB1D53  
TXB1D43  
TXB1D33  
TXB1D23  
TXB1D13  
TXB1D03  
DLC3  
ICODE1  
TXB1D72  
TXB1D62  
TXB1D52  
TXB1D42  
TXB1D32  
TXB1D22  
TXB1D12  
TXB1D02  
DLC2  
ICODE0  
TXB1D71  
TXB1D61  
TXB1D51  
TXB1D41  
TXB1D31  
TXB1D21  
TXB1D11  
TXB1D01  
DLC1  
xxx- xxx- uuu- uuu-  
TXB1D77  
TXB1D67  
TXB1D57  
TXB1D47  
TXB1D37  
TXB1D27  
TXB1D17  
TXB1D07  
TXB1D76  
TXB1D66  
TXB1D56  
TXB1D46  
TXB1D36  
TXB1D26  
TXB1D16  
TXB1D06  
TXRTR  
TXB1D74  
TXB1D70  
TXB1D7  
TXB1D6  
TXB1D5  
TXB1D4  
TXB1D3  
TXB1D2  
TXB1D1  
TXB1D0  
TXB1DLC  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0x00 xxxx 0u00 uuuu  
TXB1D64  
TXB1D54  
TXB1D44  
TXB1D34  
TXB1D24  
TXB1D14  
TXB1D04  
TXB1D60  
TXB1D50  
TXB1D40  
TXB1D30  
TXB1D20  
TXB1D10  
TXB1D00  
DLC0  
EID7  
EID6  
EID14  
SID1  
EID5  
EID4  
EID3  
EID11  
EXIDE  
EID2  
EID1  
EID9  
EID0  
EID8  
TXB1EIDL  
TXB1EIDH  
TXB1SIDL  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxx0 x0xx uuu0 u0uu  
EID15  
SID2  
EID13  
SID0  
EID12  
EID10  
EID17  
EID16  
SID10  
SID9  
SID8  
SID7  
SID6  
SID5  
SID4  
SID3  
TXB1SIDH  
TXB1CON  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
TXABT  
TXLARB  
TXERR  
TXREQ  
TXPRI1  
TXPRI0  
CANSTAT  
Legend:  
OPMODE2 OPMODE1  
OPMODE0  
ICODE2  
ICODE1  
ICODE0  
xxx- xxx- uuu- uuu-  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
Note 1: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read 0.  
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.  
3: Other (non-power-up) RESETs include external RESET through MCLR and Watchdog Timer Reset.  
4: These registers are reserved on PIC18C658.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 57  
PIC18CXX8  
Value on  
POR,  
BOR  
Value on  
all other  
Filename  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RESETS(3)  
TXB2D77  
TXB2D67  
TXB2D57  
TXB2D47  
TXB2D37  
TXB2D27  
TXB2D17  
TXB2D07  
TXB2D76  
TXB2D66  
TXB2D56  
TXB2D46  
TXB2D36  
TXB2D26  
TXB2D16  
TXB2D06  
TXRTR  
TXB2D75  
TXB2D65  
TXB2D55  
TXB2D45  
TXB2D35  
TXB2D25  
TXB2D15  
TXB2D05  
TXB2D74  
TXB2D64  
TXB2D54  
TXB2D44  
TXB2D34  
TXB2D24  
TXB2D14  
TXB2D04  
TXB2D73  
TXB2D63  
TXB2D53  
TXB2D43  
TXB2D33  
TXB2D23  
TXB2D13  
TXB2D03  
DLC3  
TXB2D72  
TXB2D62  
TXB2D52  
TXB2D42  
TXB2D32  
TXB2D22  
TXB2D12  
TXB2D02  
DLC2  
TXB2D71  
TXB2D61  
TXB2D51  
TXB2D41  
TXB2D31  
TXB2D21  
TXB2D11  
TXB2D01  
DLC1  
TXB2D70  
TXB2D60  
TXB2D50  
TXB2D40  
TXB2D30  
TXB2D20  
TXB2D10  
TXB2D00  
DLC0  
TXB2D7  
TXB2D6  
TXB2D5  
TXB2D4  
TXB2D3  
TXB2D2  
TXB2D1  
TXB2D0  
TXB2DLC  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0x00 xxxx 0u00 uuuu  
EID7  
EID6  
EID14  
SID1  
EID5  
EID4  
EID3  
EID11  
EID2  
EID1  
EID9  
EID0  
EID8  
TXB2EIDL  
TXB2EIDH  
TXB2SIDL  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxx0 x0xx uuu0 u0uu  
EID15  
SID2  
EID13  
SID0  
EID12  
EID10  
EXIDEN  
EID17  
EID16  
SID10  
SID9  
SID8  
SID7  
SID6  
SID5  
SID4  
SID3  
TXB2SIDH  
TXB2CON  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
TXABT  
TXLARB  
TXERR  
TXREQ  
TXPRI1  
TXPRI0  
EID7  
EID6  
EID14  
SID1  
EID5  
EID13  
SID0  
EID4  
EID3  
EID2  
EID1  
EID9  
EID0  
EID8  
RXM1EIDL  
RXM1EIDH  
RXM1SIDL  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxx- --xx uuu- --uu  
EID15  
SID2  
EID12  
EID11  
EID10  
EID17  
EID16  
SID10  
EID7  
SID9  
EID6  
EID14  
SID1  
SID8  
EID5  
EID13  
SID0  
SID7  
SID6  
SID5  
SID4  
EID1  
EID9  
EID17  
SID3  
EID0  
EID8  
EID16  
RXM1SIDH  
RXM0EIDL  
RXM0EIDH  
RXM0SIDL  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxx- --xx uuu- --uu  
EID4  
EID3  
EID2  
EID15  
SID2  
EID12  
EID11  
EID10  
SID10  
EID7  
SID9  
EID6  
EID14  
SID1  
SID8  
EID5  
EID13  
SID0  
SID7  
SID6  
SID5  
SID4  
EID1  
EID9  
EID17  
SID3  
EID0  
EID8  
EID16  
RXM0SIDH  
RXF5EID0  
RXF5EID8  
RXF5SIDL  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxx- x-xx uuu- u-uu  
EID4  
EID3  
EID11  
EID2  
EID15  
SID2  
EID12  
EID10  
EXIDEN  
SID10  
EID7  
SID9  
EID6  
EID14  
SID1  
SID8  
EID5  
EID13  
SID0  
SID7  
SID6  
EID3  
SID5  
SID4  
EID1  
EID9  
EID17  
SID3  
EID0  
EID8  
EID16  
RXF5SIDH  
RXF4EID0  
RXF4EID8  
RXF4SIDL  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxx- x-xx uuu- u-uu  
EID4  
EID2  
EID15  
SID2  
EID12  
EID11  
EXIDEN  
EID10  
SID10  
EID7  
SID9  
EID6  
EID14  
SID1  
SID8  
EID5  
EID13  
SID0  
SID7  
SID6  
EID3  
SID5  
SID4  
EID1  
EID9  
EID17  
SID3  
EID0  
EID8  
EID16  
RXF4SIDH  
RXF3EID0  
RXF3EID8  
RXF3SIDL  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxx- x-xx uuu- u-uu  
EID4  
EID2  
EID15  
SID2  
EID12  
EID11  
EXIDEN  
EID10  
SID10  
SID9  
SID8  
SID7  
SID6  
SID5  
SID4  
SID3  
RXF3SIDH  
Legend:  
xxxx xxxx uuuu uuuu  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
Note 1: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read 0.  
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.  
3: Other (non-power-up) RESETs include external RESET through MCLR and Watchdog Timer Reset.  
4: These registers are reserved on PIC18C658.  
DS30475A-page 58  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
Value on  
POR,  
BOR  
Value on  
Filename  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
RESETS(3)  
EID7  
EID15  
SID2  
EID6  
EID14  
SID1  
EID5  
EID13  
SID0  
EID4  
EID3  
EID11  
EID2  
EID1  
EID9  
EID0  
EID8  
RXF2EID0  
RXF2EID8  
RXF2SIDL  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxx- x-xx uuu- u-uu  
EID12  
EID10  
EXIDEN  
EID17  
EID16  
SID10  
EID7  
SID9  
EID6  
EID14  
SID1  
SID8  
EID5  
EID13  
SID0  
SID7  
SID6  
EID3  
SID5  
SID4  
EID1  
EID9  
EID17  
SID3  
EID0  
EID8  
EID16  
RXF2SIDH  
RXF1EIDL  
RXF1EIDH  
RXF1SIDL  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxx- x-xx uuu- u-uu  
EID4  
EID2  
EID15  
SID2  
EID12  
EID11  
EXIDEN  
EID10  
SID10  
EID7  
SID9  
EID6  
EID14  
SID1  
SID8  
EID5  
EID13  
SID0  
SID7  
SID6  
EID3  
SID5  
SID4  
EID1  
EID9  
EID17  
SID3  
EID0  
EID8  
EID16  
RXF1SIDH  
RXF0EIDL  
RXF0EIDH  
RXF0SIDL  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxx- x-xx uuu- u-uu  
EID4  
EID2  
EID15  
SID2  
EID12  
EID11  
EXIDEN  
EID10  
SID10  
SID9  
SID8  
SID7  
SID6  
SID5  
SID4  
SID3  
RXF0SIDH  
Legend:  
xxxx xxxx uuuu uuuu  
x= unknown, u= unchanged, - = unimplemented, q= value depends on condition  
Note 1: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator modes, they are disabled and read 0.  
2: Bit 21 of the TBLPTRU allows access to the device configuration bits.  
3: Other (non-power-up) RESETs include external RESET through MCLR and Watchdog Timer Reset.  
4: These registers are reserved on PIC18C658.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 59  
PIC18CXX8  
4.10  
Access Bank  
4.11  
Bank Select Register (BSR)  
The Access Bank is an architectural enhancement that  
is very useful for C compiler code optimization. The  
techniques used by the C compiler are also be useful  
for programs written in assembly.  
The need for a large general purpose memory space  
dictates a RAM banking scheme. The data memory is  
partitioned into sixteen banks. When using direct  
addressing, the BSR should be configured for the  
desired bank.  
This data memory region can be used for:  
BSR<3:0> holds the upper 4 bits of the 12-bit RAM  
address. The BSR<7:4> bits will always read 0s, and  
writes will have no effect.  
Intermediate computational values  
Local variables of subroutines  
Faster context saving/switching of variables  
Common variables  
A MOVLBinstruction has been provided in the instruc-  
Faster evaluation/control of SFRs (no banking)  
tion set to assist in selecting banks.  
The Access Bank is comprised of the upper 160 bytes  
in Bank 15 (SFRs) and the lower 96 bytes in Bank 0.  
These two sections will be referred to as Access Bank  
High and Access Bank Low, respectively. Figure 4-4  
indicates the Access Bank areas.  
If the currently selected bank is not implemented, any  
read will return all '0's and all writes are ignored. The  
STATUS register bits will be set/cleared as appropriate  
for the instruction performed.  
Each Bank extends up to FFh (256 bytes). All data  
memory is implemented as static RAM.  
A bit in the instruction word specifies if the operation is  
to occur in the bank specified by the BSR register, or in  
the Access Bank.  
A MOVFFinstruction ignores the BSR, since the 12-bit  
addresses are embedded into the instruction word.  
When forced in the Access Bank (a = 0), the last  
address in Access Bank Low is followed by the first  
address in Access Bank High. Access Bank High maps  
most of the Special Function Registers so that these  
registers can be accessed without any software over-  
head.  
Section 4.12 provides a description of indirect address-  
ing, which allows linear addressing of the entire RAM  
space.  
FIGURE 4-5: DIRECT ADDRESSING  
Direct Addressing  
(3)  
from opcode  
BSR<3:0>  
7
0
(2)  
(3)  
bank select  
location select  
00h  
000h  
01h  
100h  
0Eh  
E00h  
0Fh  
F00h  
Data  
Memory(1)  
0FFh  
1FFh  
EFFh  
FFFh  
Bank 0  
Bank 1  
Bank 14 Bank 15  
Note 1: For register file map detail, see Table 4-2.  
2: The access bit of the instruction can be used to force an override of the selected bank  
(BSR<3:0>) to the registers of the Access Bank.  
3: The MOVFFinstruction embeds the entire 12-bit address in the instruction.  
DS30475A-page 60  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
If an instruction writes a value to INDF0, the value will  
be written to the address indicated by FSR0H:FSR0L.  
A read from INDF1 reads the data from the address  
indicated by FSR1H:FSR1L. INDFn can be used in  
code anywhere an operand can be used.  
4.12  
Indirect Addressing, INDF and FSR  
Registers  
Indirect addressing is a mode of addressing data mem-  
ory, where the data memory address in the instruction  
is not fixed. A SFR register is used as a pointer to the  
data memory location that is to be read or written.  
Since this pointer is in RAM, the contents can be mod-  
ified by the program. This can be useful for data tables  
in the data memory and for software stacks. Figure 4-6  
shows the operation of indirect addressing. This shows  
the moving of the value to the data memory address  
specified by the value of the FSR register.  
If INDF0, INDF1 or INDF2 are read indirectly via an  
FSR, all 0s are read (zero bit is set). Similarly, if  
INDF0, INDF1 or INDF2 are written to indirectly, the  
operation will be equivalent to a NOPinstruction and the  
STATUS bits are not affected.  
4.12.1 INDIRECT ADDRESSING OPERATION  
Each FSR register has an INDF register associated with  
it, plus four additional register addresses. Performing an  
operation on one of these five registers determines how  
the FSR will be modified during indirect addressing.  
Indirect addressing is possible by using one of the  
INDF registers. Any instruction using the INDF register  
actually accesses the register indicated by the File  
Select Register, FSR. Reading the INDF register itself  
indirectly (FSR = 0) will read 00h. Writing to the INDF  
register indirectly results in a no-operation. The FSR  
register contains a 12-bit address, which is shown in  
Figure 4-6.  
When data access is done to one of the five INDFn  
locations, the address selected will configure the FSRn  
register to:  
Do nothing to FSRn after an indirect access (no  
change) - INDFn  
The INDFn (0 n 2) register is not a physical register.  
Addressing INDFn actually addresses the register  
whose address is contained in the FSRn register  
(FSRn is a pointer). This is indirect addressing.  
Auto-decrement FSRn after an indirect access  
(post-decrement) - POSTDECn  
Auto-increment FSRn after an indirect access  
(post-increment) - POSTINCn  
Example 4-4 shows a simple use of indirect addressing  
to clear the RAM in Bank 1 (locations 100h-1FFh) in a  
minimum number of instructions.  
Auto-increment FSRn before an indirect access  
(pre-increment) - PREINCn  
Use the value in the WREG register as an offset  
to FSRn. Do not modify the value of the WREG or  
the FSRn register after an indirect access (no  
change) - PLUSWn  
EXAMPLE 4-4: HOW TO CLEAR RAM  
(BANK 1) USING INDIRECT  
ADDRESSING  
LFSR  
NEXT CLRF  
FSR0, 0x100  
POSTINC0  
;
When using the auto-increment or auto-decrement  
features, the effect on the FSR is not reflected in the  
STATUS register. For example, if the indirect address  
causes the FSR to equal '0', the Z bit will not be set.  
; Clear INDF  
; register  
; & inc pointer  
; All done  
; w/ Bank1?  
; NO, clear next  
;
BTFSS  
FSR0H, 1  
NEXT  
Incrementing or decrementing an FSR affects all 12  
bits. That is, when FSRnL overflows from an increment,  
FSRnH will be incremented automatically.  
GOTO  
CONTINUE  
:
; YES, continue  
Adding these features allows the FSRn to be used as a  
software stack pointer in addition to its uses for table  
operations in data memory.  
There are three indirect addressing registers. To  
address the entire data memory space (4096 bytes),  
these registers are 12-bit wide. To store the 12-bits of  
addressing information, two 8-bit registers are  
required. These indirect addressing registers are:  
Each FSR has an address associated with it that per-  
forms an indexed indirect access. When a data access  
to this INDFn location (PLUSWn) occurs, the FSRn is  
configured to add the 2s complement value in the  
WREG register and the value in FSR to form the  
address before an indirect access. The FSR value is  
not changed.  
1. FSR0: composed of FSR0H:FSR0L  
2. FSR1: composed of FSR1H:FSR1L  
3. FSR2: composed of FSR2H:FSR2L  
If an FSR register contains a value that indicates one of  
the INDFn, an indirect read will read 00h (zero bit is  
set), while an indirect write will be equivalent to a NOP  
(STATUS bits are not affected).  
In addition, there are registers INDF0, INDF1 and  
INDF2, which are not physically implemented. Reading  
or writing to these registers activates indirect address-  
ing, with the value in the corresponding FSR register  
being the address of the data.  
If an indirect addressing operation is done where the  
target address is an FSRnH or FSRnL register, the  
write operation will dominate over the pre- or  
post-increment/decrement functions.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 61  
PIC18CXX8  
FIGURE 4-6: INDIRECT ADDRESSING  
Indirect Addressing  
FSR register  
7
11  
8
0
FSRnH  
FSRnL  
location select  
0000h  
Data  
Memory(1)  
0FFFh  
Note 1: For register file map detail, see Table 4-2.  
DS30475A-page 62  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
4.13  
STATUS Register  
The STATUS register, shown in Register 4-2, contains  
the arithmetic status of the ALU. The STATUS register  
can be the destination for any instruction, as with any  
other register. If the STATUS register is the destination  
for an instruction that affects the Z, DC, C, OV or N bits,  
then the write to these five bits is disabled. These bits  
are set or cleared according to the device logic. There-  
fore, the result of an instruction with the STATUS regis-  
ter as destination may be different than intended.  
It is recommended, therefore, that only BCF, BSF,  
SWAPF, MOVFFand MOVWFinstructions are used to  
alter the STATUS register, because these instruc-  
tions do not affect the Z, C, DC, OV or N bits from the  
STATUS register. For other instructions which do not  
affect the status bits, see Table 23-2.  
Note: The C and DC bits operate as a borrow and  
digit borrow bit respectively, in subtraction.  
REGISTER 4-2:  
STATUS REGISTER  
U-0  
U-0  
U-0  
R/W-x  
N
R/W-x  
OV  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
bit 7  
bit 0  
bit 7-5  
Unimplemented: Read as '0'  
N: Negative bit  
bit 4  
This bit is used for signed arithmetic (2s complement). It indicates whether the result of the ALU  
operation was negative, (ALU MSb = 1)  
1= Result was negative  
0= Result was positive  
bit 3  
OV: Overflow bit  
This bit is used for signed arithmetic (2s complement). It indicates an overflow of the 7-bit mag-  
nitude, which causes the sign bit (bit 7) to change state.  
1= Overflow occurred for signed arithmetic (in this arithmetic operation)  
0= No overflow occurred  
bit 2  
bit 1  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit  
For ADDWF, ADDLW, SUBLW,and SUBWFinstructions  
1= A carry-out from the 4th low order bit of the result occurred  
0= No carry-out from the 4th low order bit of the result  
Note: For borrow, the polarity is reversed. A subtraction is executed by adding the twos  
complement of the second operand. For rotate (RRCF, RRNCF, RLCF, and  
RLNCF) instructions, this bit is loaded with either the bit 4 or bit 3 of the source  
register.  
bit 0  
C: Carry/borrow bit  
For ADDWF, ADDLW, SUBLW,and SUBWF instructions  
1= A carry-out from the most significant bit of the result occurred  
0= No carry-out from the most significant bit of the result occurred  
Note: For borrow, the polarity is reversed. A subtraction is executed by adding the twos  
complement of the second operand. For rotate (RRF, RLF) instructions, this bit is  
loaded with either the high or low order bit of the source register.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 63  
PIC18CXX8  
4.13.1 RCON REGISTER  
Note 1: If the BOREN configuration bit is set, BOR  
is 1on Power-on Reset. If the BOREN  
configuration bit is clear, BOR is unknown  
on Power-on Reset.  
The Reset Control (RCON) register contains flag bits  
that allow differentiation between the sources of a  
device RESET. These flags include the TO, PD, POR,  
BOR and RI bits. This register is readable and writable.  
The BOR status bit is a don't careand is  
not necessarily predictable if the  
brown-out circuit is disabled (the BOREN  
configuration bit is clear). BOR must then  
be set by the user and checked on subse-  
quent RESETs to see if it is clear, indicat-  
ing a brown-out has occurred.  
2: It is recommended that the POR bit be set  
after  
a
Power-on Reset has been  
detected, so that subsequent Power-on  
Resets may be detected.  
REGISTER 4-3:  
RCON REGISTER  
R/W-0  
IPEN  
R/W-0  
LWRT  
U-0  
R/W-1  
RI  
R/W-1  
TO  
R/W-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
bit 7  
bit 6  
IPEN: Interrupt Priority Enable bit  
1 =Enable priority levels on interrupts  
0 =Disable priority levels on interrupts (16CXXX compatibility mode)  
LWRT: Long Write Enable bit  
1 =Enable TBLWT to internal program memory  
Once this bit is set, it can only be cleared by a POR or MCLR Reset  
0 =Disable TBLWTto internal program memory; TBLWTonly to external program memory  
bit 5  
bit 4  
Unimplemented: Read as '0'  
RI: RESETInstruction Flag bit  
1 =The RESETinstruction was not executed  
0 =The RESETinstruction was executed causing a device RESET  
(must be set in software after a Brown-out Reset occurs)  
bit 3  
bit 2  
bit 1  
TO: Watchdog Time-out Flag bit  
1 =After power-up, CLRWDTinstruction, or SLEEPinstruction  
0 =A WDT time-out occurred  
PD: Power-down Detection Flag bit  
1 =After power-up or by the CLRWDTinstruction  
0 =By execution of the SLEEPinstruction  
POR: Power-on Reset Status bit  
1 =A Power-on Reset has not occurred  
0 =A Power-on Reset occurred  
(must be set in software after a Power-on Reset occurs)  
bit 0  
BOR: Brown-out Reset Status bit  
1 =A Brown-out Reset has not occurred  
0 =A Brown-out Reset occurred  
(must be set in software after a Brown-out Reset occurs)  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS30475A-page 64  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
Table Read operations retrieve data from program  
memory and place it into the data memory space.  
Figure 5-1 shows the operation of a Table Read with  
program and data memory.  
5.0  
TABLE READS/TABLE WRITES  
All PICmicro® devices have two memory spaces: the  
program memory space and the data memory space.  
Table Reads and Table Writes have been provided to  
move data between these two memory spaces through  
an 8-bit register (TABLAT).  
Table Write operations store data from the data mem-  
ory space into program memory. Figure 5-2 shows the  
operation of a Table Write with program and data  
memory.  
The operations that allow the processor to move data  
between the data and program memory spaces are:  
Table operations work with byte entities. A table block  
containing data is not required to be word aligned, so a  
table block can start and end at any byte address. If a  
table write is being used to write an executable pro-  
gram to program memory, program instructions will  
need to be word aligned.  
Table Read (TBLRD)  
Table Write (TBLWT)  
FIGURE 5-1: TABLE READ OPERATION  
(1)  
TABLE LATCH (8-bit)  
TABLAT  
TABLE POINTER  
TBLPTRU TBLPTRH TBLPTRL  
PROGRAM MEMORY  
Program Memory  
(TBLPTR)  
Instruction: TBLRD*  
Note 1: Table Pointer points to a byte in program memory.  
FIGURE 5-2: TABLE WRITE OPERATION  
(1)  
TABLE LATCH (8-bit)  
TABLAT  
TABLE POINTER  
TBLPTRU TBLPTRH TBLPTRL  
PROGRAM MEMORY  
Program Memory  
(TBLPTR)  
Instruction: TBLWT*  
Note 1: Table Pointer points to a byte in program memory.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 65  
PIC18CXX8  
5.1.1  
RCON REGISTER  
5.1  
Control Registers  
The LWRT bit specifies the operation of Table Writes to  
internal memory when the VPP voltage is applied to the  
MCLR pin. When the LWRT bit is set, the controller  
continues to execute user code, but long table writes  
are allowed (for programming internal program mem-  
ory) from user mode. The LWRT bit can be cleared only  
by performing either a POR or MCLR Reset.  
Several control registers are used in conjunction with  
the TBLRDand TBLWTinstructions. These include:  
RCON register  
TABLAT register  
TBLPTR registers  
REGISTER 5-1: RCON REGISTER (ADDRESS: 0xFD0h)  
R/W-0  
IPEN  
R/W-0  
LWRT  
U-0  
R/W-1  
RI  
R/W-1  
TO  
R/W-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
bit 7  
bit 0  
bit 7  
bit 6  
IPEN: Interrupt Priority Enable  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (16CXXX compatibility mode)  
LWRT: Long Write Enable  
1= Enable TBLWTto internal program memory  
0= Disable TBLWTto internal program memory.  
Note 1: Only cleared on a POR or MCLR reset.  
This bit has no effect on TBLWTsto external program memory.  
bit 5  
bit 4  
Unimplemented: Read as '0'  
RI: RESETInstruction Flag bit  
1= No RESETinstruction occurred  
0= A RESETinstruction occurred  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset nor POR Reset occurred  
0= A Brown-out Reset or POR Reset occurred  
(must be set in software after a Brown-out Reset occurs)  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS30475A-page 66  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
5.1.2  
TABLAT - TABLE LATCH REGISTER  
address up to 2 Mbytes of program memory space. The  
22nd bit allows read only access to the Device ID, the  
User ID and the Configuration bits.  
The Table Latch (TABLAT) is an 8-bit register mapped  
into the SFR space. The Table Latch is used to hold  
8-bit data during data transfers between program  
memory and data memory.  
The table pointer TBLPTR is used by the TBLRDand  
TBLWTinstructions. These instructions can update the  
TBLPTR in one of four ways based on the table oper-  
ation. These operations are shown in Table 5-1.  
These operations on the TBLPTR only affect the low  
order 21-bits.  
5.1.3  
TBLPTR - TABLE POINTER REGISTER  
The Table Pointer (TBLPTR) addresses a byte within  
the program memory. The TBLPTR is comprised of  
three SFR registers (Table Pointer Upper byte, High  
byte and Low byte). These three registers  
(TBLPTRU:TBLPTRH:TBLPTRL) join to form a 22-bit  
wide pointer. The low order 21-bits allow the device to  
TABLE 5-1:  
Example  
TABLE POINTER OPERATIONS WITH TBLRD AND TBLWT INSTRUCTIONS  
Operation on Table Pointer  
TBLRD*  
TBLWT*  
TBLPTR is not modified  
TBLRD*+  
TBLWT*+  
TBLPTR is incremented after the read/write  
TBLPTR is decremented after the read/write  
TBLPTR is incremented before the read/write  
TBLRD*-  
TBLWT*-  
TBLRD+*  
TBLWT+*  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 67  
PIC18CXX8  
When a Table Write occurs to an even program mem-  
ory address (TBLPTR<0> = 0), the contents of TABLAT  
are transferred to an internal holding register. This is  
performed as a short write and the program memory  
block is not actually programmed at this time. The  
holding register is not accessible by the user.  
5.2  
Program Memory Read/Writes  
TABLE READ OVERVIEW (TBLRD)  
5.2.1  
The TBLRDinstructions are used to read data from pro-  
gram memory to data memory.  
TBLPTR points to a byte address in program space.  
Executing TBLRD places the byte pointed to into  
TABLAT. In addition, TBLPTR can be modified auto-  
matically for the next Table Read operation.  
When a Table Write occurs to an odd program memory  
address (TBLPTR<0> = 1), a long write is started. Dur-  
ing the long write, the contents of TABLAT are written  
to the high byte of the program memory block and the  
contents of the holding register are transferred to the  
low byte of the program memory block.  
Table Reads from program memory are performed one  
byte at a time. The instruction will load TABLAT with the  
one byte from program memory pointed to by TBLPTR.  
Figure 5-3 shows the holding register and the program  
memory write blocks.  
5.2.2  
PROGRAM MEMORY WRITE BLOCK SIZE  
If a single byte is to be programmed, the low (even)  
byte of the destination program word should be read  
using TBLRD*, modified or changed, if required, and  
written back to the same address using TBLWT*+. The  
high (odd) byte should be read using TBLRD*, modified  
or changed if required, and written back to the same  
address using TBLWT. The write to an odd address will  
cause a long write to begin. This process ensures that  
existing data in either byte will not be changed unless  
desired.  
The program memory of PIC18CXX8 devices is written  
in blocks. For PIC18CXX8 devices, the write block size  
is 2 bytes. Consequently, Table Write operations to  
program memory are performed in pairs, one byte at a  
time.  
FIGURE 5-3: HOLDING REGISTER AND THE WRITE  
Program Memory  
Holding Register  
Instruction Execution  
; TABLPTR points to address n  
MOVLW DataLow ; Load low data  
MSB  
LSB  
MOVWF TABLAT  
TBLWT*+  
; byte to TABLAT  
; Write it to LSB  
DataLow  
; of Holding register  
MOVLW DataHigh ; Load high data  
n - 1  
MSB  
LSB  
MOVWF TABLAT  
TBLWT*  
; byte to TABLAT  
; Write it to MSB  
; of Holding  
n
DataLow  
DataHigh  
DataHigh  
DataLow  
n + 1  
n + 2  
; register and  
; begin long  
; write  
EXAMPLE 5-1: TABLE READ CODE EXAMPLE  
; Read a byte from location 0x0020  
CLRF  
TBLPTRU  
; Load upper 5 bits of  
; 0x0020  
CLRF  
TBLPTRH  
; Load higher 8 bits of  
; 0x0020  
MOVLW 0x20  
MOVWF TBLPTRL  
MOVWF TBLRD*  
; Load 0x20 into  
; TBLPTRL  
; Data is in TABLAT  
DS30475A-page 68  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
5.2.2.1  
Long Write Operation  
5.2.2.2  
Sequence of Events  
The long write is what actually programs words of data  
into the internal memory. When a TBLWTto the MSB of  
the write block occurs, instruction execution is halted.  
During this time, programming voltage and the data  
stored in internal latches is applied to program memory.  
The sequence of events for programming an internal  
program memory location should be:  
1. Enable the interrupt that terminates the long  
write. Disable all other interrupts.  
2. Clear the source interrupt flag.  
For a long write to occur:  
3. If Interrupt Service Routine execution is desired  
when the device wakes, enable global  
interrupts.  
1. MCLR/VPP pin must be at the programming  
voltage  
2. LWRT bit must be set  
4. Set LWRT bit in the RCON register.  
3. TBLWT to the address of the MSB of the write  
5. Raise MCLR/VPP pin to the programming  
voltage, VPP.  
block  
6. Clear the WDT (if enabled).  
If the LWRT bit is clear, a short write will occur and pro-  
gram memory will not be changed. If the TBLWTis not  
to the MSB of the write block, then the programming  
phase is not initiated.  
7. Set the interrupt source to interrupt at the  
required time.  
8. Execute the Table Write for the lower (even)  
byte. This will be a short write.  
Setting the LWRT bit enables long writes when the  
MCLR pin is taken to VPP voltage. Once the LWRT bit  
is set, it can be cleared only by performing a POR or  
MCLR Reset.  
9. Execute the Table Write for the upper (odd) byte.  
This will be a long write. The controller will HALT  
while programming. The interrupt wakes the  
controller.  
To ensure that the memory location has been well pro-  
grammed, a minimum programming time is required.  
The long write can be terminated after the program-  
ming time has expired by a RESET or an interrupt.  
Having only one interrupt source enabled to terminate  
the long write, ensures that no unintended interrupts  
will prematurely terminate the long write.  
10. If GIE was set, service the interrupt request.  
11. Go to 7 if more bytes to be programmed.  
12. Lower MCLR/VPP pin to VDD.  
13. Verify the memory location (table read).  
14. Reset the device.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 69  
PIC18CXX8  
5.2.3  
LONG WRITE INTERRUPTS  
5.3  
Unexpected Termination of Write  
Operations  
The long write must be terminated by a RESET or any  
interrupt.  
If a write is terminated by an unplanned event such as  
loss of power, an unexpected RESET, or an interrupt  
that was not disabled, the memory location just pro-  
grammed should be verified and reprogrammed if  
needed.  
The interrupt source must have its interrupt enable bit  
set. When the source sets its interrupt flag, program-  
ming will terminate. This will occur regardless of the  
settings of interrupt priority bits, the GIE/GIEH bit or the  
PIE/GIEL bit.  
Depending on the states of interrupt priority bits, the  
GIE/GIEH bit or the PIE/GIEL bit, program execution  
can either be vectored to the high or low priority Inter-  
rupt Service Routine (ISR), or continue execution from  
where programming commenced.  
In either case, the interrupt flag will not be cleared  
when programming is terminated and will need to be  
cleared by the software.  
TABLE 5-2:  
SLEEP MODE, INTERRUPT ENABLE BITS AND INTERRUPT RESULTS  
GIE/  
GIEH  
PIE/  
GIEL  
Interrupt  
Enable  
Interrupt  
Flag  
Priority  
Action  
X
X
X
0
X
Long write continues even if interrupt flag  
becomes set during SLEEP.  
(default)  
X
X
X
X
1
1
1
0
1
1
Long write continues, will wake when  
the interrupt flag is set.  
0
0
Terminates long write, executes next instruction.  
Interrupt flag not cleared.  
(default)  
(default)  
0
1
1
Terminates long write, executes next instruction.  
Interrupt flag not cleared.  
(default)  
high priority  
(default)  
1
0
0
low  
1
1
1
1
Terminates long write, executes next instruction.  
Interrupt flag not cleared.  
(default)  
0
1
0
low  
Terminates long write, branches to low priority  
interrupt vector.  
(default)  
Interrupt flag can be cleared by ISR.  
1
0
1
1
1
Terminates long write, branches to high priority  
interrupt vector.  
Interrupt flag can be cleared by ISR.  
(default)  
high priority  
(default)  
DS30475A-page 70  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
Making the 8 x 8 multiplier execute in a single cycle  
gives the following advantages:  
6.0  
8 X 8 HARDWARE MULTIPLIER  
An 8 x 8 hardware multiplier is included in the ALU of  
the PIC18CXX8 devices. By making the multiply a  
hardware operation, it completes in a single instruction  
cycle. This is an unsigned multiply that gives a 16-bit  
result. The result is stored into the 16-bit product regis-  
ter pair (PRODH:PRODL). The multiplier does not  
affect any flags in the STATUS register.  
Higher computational throughput  
Reduces code size requirements for multiply algo-  
rithms  
The performance increase allows the device to be used  
in applications previously reserved for Digital Signal  
Processors.  
Table 6-1 shows a performance comparison between  
enhanced devices using the single cycle hardware mul-  
tiply, and performing the same function without the  
hardware multiply.  
TABLE 6-1:  
Routine  
PERFORMANCE COMPARISON  
Program  
Cycles  
(Max)  
Time  
Multiply Method  
Memory  
(Words)  
@ 40 MHz @ 10 MHz @ 4 MHz  
8 x 8 unsigned  
Without hardware multiply  
Hardware multiply  
13  
1
69  
1
6.9 µs  
100 ns  
9.1 µs  
600 ns  
24.2 µs  
2.4 µs  
25.4 µs  
3.6 µs  
27.6 µs  
400 ns  
36.4 µs  
2.4 µs  
69 µs  
1 µs  
8 x 8 signed  
Without hardware multiply  
Hardware multiply  
33  
6
91  
6
91 µs  
6 µs  
16 x 16 unsigned Without hardware multiply  
Hardware multiply  
21  
24  
52  
36  
242  
24  
254  
36  
96.8 µs  
9.6 µs  
242 µs  
24 µs  
254 µs  
36 µs  
16 x 16 signed  
Without hardware multiply  
Hardware multiply  
102.6 µs  
14.4 µs  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 71  
PIC18CXX8  
Example 6-3 shows the sequence to perform a 16 x 16  
unsigned multiply. Equation 6-1 shows the algorithm  
that is used. The 32-bit result is stored in 4 registers  
RES3:RES0.  
6.1  
Operation  
Example 6-1 shows the sequence to perform an 8 x 8  
unsigned multiply. Only one instruction is required  
when one argument of the multiply is already loaded in  
the WREG register.  
EQUATION 6-1:  
16 x 16 UNSIGNED  
MULTIPLICATION  
ALGORITHM  
Example 6-2 shows the sequence to do an 8 x 8 signed  
multiply. To account for the sign bits of the arguments,  
each arguments most significant bit (MSb) is tested  
and the appropriate subtractions are done.  
RES3:RES0  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
16  
(ARG1H ARG2H 2  
)
+
+
+
8
(ARG1H ARG2L 2 )  
8
(ARG1L ARG2H 2 )  
EXAMPLE 6-1: 8 x 8 UNSIGNED MULTIPLY  
ROUTINE  
(ARG1L ARG2L)  
MOVFF  
MULWF  
ARG1, WREG  
ARG2  
;
; ARG1 * ARG2 ->  
;
PRODH:PRODL  
EXAMPLE 6-3: 16 x 16 UNSIGNED  
MULTIPLY ROUTINE  
MOVFF  
MULWF  
ARG1L, WREG  
ARG2L  
; ARG1L * ARG2L ->  
EXAMPLE 6-2: 8 x 8 SIGNED MULTIPLY  
ROUTINE  
;
;
;
PRODH:PRODL  
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
MOVFF  
MULWF  
ARG1, WREG  
ARG2  
; ARG1 * ARG2 ->  
; PRODH:PRODL  
;
;
MOVFF  
MULWF  
ARG1H, WREG  
ARG2H  
BTFSC  
SUBWF  
ARG2, SB  
PRODH, F  
; Test Sign Bit  
; PRODH = PRODH  
; ARG1H * ARG2H ->  
;
;
;
PRODH:PRODL  
;
- ARG1  
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
MOVFF  
BTFSC  
SUBWF  
ARG2, WREG  
ARG1, SB  
PRODH, F  
; Test Sign Bit  
; PRODH = PRODH  
MOVFF  
MULWF  
ARG1L, WREG  
ARG2H  
;
- ARG2  
; ARG1L * ARG2H ->  
;
;
PRODH:PRODL  
MOVF  
ADDWF  
MOVF  
ADDWFC  
CLRF  
ADDWFC  
PRODL, W  
RES1, F  
PRODH, W  
RES2, F  
WREG  
; Add cross  
;
;
;
;
products  
RES3, F  
;
MOVFF  
MULWF  
ARG1H, WREG  
ARG2L  
;
; ARG1H * ARG2L ->  
;
;
PRODH:PRODL  
MOVF  
ADDWF  
MOVF  
ADDWFC  
CLRF  
ADDWFC  
PRODL, W  
RES1, F  
PRODH, W  
RES2, F  
WREG  
; Add cross  
;
;
;
;
products  
RES3, F  
DS30475A-page 72  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
Example 6-4 shows the sequence to perform an 16 x  
16 signed multiply. Equation 6-2 shows the algorithm  
used. The 32-bit result is stored in four registers  
RES3:RES0. To account for the sign bits of the argu-  
ments, each argument pairs most significant bit (MSb)  
is tested and the appropriate subtractions are done.  
EXAMPLE 6-4: 16 x 16 SIGNED MULTIPLY  
ROUTINE  
MOVFF  
MULWF  
ARG1L, WREG  
ARG2L  
; ARG1L * ARG2L ->  
;
;
;
PRODH:PRODL  
MOVFF  
MOVFF  
PRODH, RES1  
PRODL, RES0  
;
;
EQUATION 6-2:  
16 x 16 SIGNED  
MULTIPLICATION  
ALGORITHM  
MOVFF  
MULWF  
ARG1H, WREG  
ARG2H  
; ARG1H * ARG2H ->  
;
;
;
PRODH:PRODL  
RES3:RES0  
MOVFF  
MOVFF  
PRODH, RES3  
PRODL, RES2  
=
=
ARG1H:ARG1L ARG2H:ARG2L  
(ARG1H ARG2H 2  
16  
)
+
+
+
+
8
(ARG1H ARG2L 2 )  
(ARG1L ARG2H 2 )  
(ARG1L ARG2L)  
(-1 ARG2H<7> ARG1H:ARG1L 2  
(-1 ARG1H<7> ARG2H:ARG2L 2  
MOVFF  
MULWF  
ARG1L, WREG  
ARG2H  
8
; ARG1L * ARG2H ->  
;
;
PRODH:PRODL  
16  
16  
)
)
+
MOVF  
ADDWF  
MOVF  
ADDWFC  
CLRF  
ADDWFC  
PRODL, W  
RES1, F  
PRODH, W  
RES2, F  
WREG  
; Add cross  
;
;
;
;
products  
RES3, F  
;
MOVFF  
MULWF  
ARG1H, WREG  
ARG2L  
;
; ARG1H * ARG2L ->  
;
;
PRODH:PRODL  
MOVF  
ADDWF  
MOVF  
ADDWFC  
CLRF  
ADDWFC  
PRODL, W  
RES1, F  
PRODH, W  
RES2, F  
WREG  
; Add cross  
;
;
;
;
products  
RES3, F  
;
;
BTFSS  
GOTO  
MOVFF  
SUBWF  
MOVFF  
SUBWFB  
ARG2H, 7  
SIGN_ARG1  
ARG1L, WREG  
RES2  
ARG1H, WREG  
RES3  
; ARG2H:ARG2L neg?  
; no, check ARG1  
;
;
;
SIGN_ARG1  
BTFSS  
GOTO  
MOVFF  
SUBWF  
MOVFF  
SUBWFB  
;
ARG1H, 7  
CONT_CODE  
ARG2L, WREG  
RES2  
ARG2H, WREG  
RES3  
; ARG1H:ARG1L neg?  
; no, done  
;
;
;
CONT_CODE  
:
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 73  
PIC18CXX8  
NOTES:  
DS30475A-page 74  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
When the IPEN bit is cleared (default state), the inter-  
rupt priority feature is disabled and interrupts are com-  
patible with PICmicro® mid-range devices. In  
Compatibility mode, the interrupt priority bits for each  
source have no effect. The PEIE bit (INTCON register)  
enables/disables all peripheral interrupt sources. The  
GIE bit (INTCON register) enables/disables all interrupt  
sources. All interrupts branch to address 000008h in  
Compatibility mode.  
7.0  
INTERRUPTS  
The PIC18CXX8 devices have multiple interrupt  
sources and an interrupt priority feature that allows  
each interrupt source to be assigned a high priority  
level or a low priority level. The high priority interrupt  
vector is at 000008h and the low priority interrupt vector  
is at 000018h. High priority interrupt events will over-  
ride any low priority interrupts that may be in progress.  
There are 13 registers that are used to control interrupt  
operation. These registers are:  
When an interrupt is responded to, the Global Interrupt  
Enable bit is cleared to disable further interrupts. If the  
IPEN bit is cleared, this is the GIE bit. If interrupt prior-  
ity levels are used, this will be either the GIEH or GIEL  
bit. High priority interrupt sources can interrupt a low  
priority interrupt.  
RCON  
INTCON  
INTCON2  
INTCON3  
The return address is pushed onto the stack and the  
PC is loaded with the interrupt vector address  
(000008h or 000018h). Once in the interrupt service  
routine, the source(s) of the interrupt can be deter-  
mined by polling the interrupt flag bits. The interrupt  
flag bits must be cleared in software before re-enabling  
interrupts to avoid recursive interrupts.  
PIR1, PIR2, PIR3  
PIE1, PIE2, PIE3  
IPR1, IPR2, IPR3  
It is recommended that the Microchip header files sup-  
plied with MPLAB be used for the symbolic bit names  
in these registers. This allows the assembler/compiler  
to automatically take care of the placement of these  
bits within the specified register.  
The "return from interrupt" instruction, RETFIE, exits  
the interrupt routine and sets the GIE bit (GIEH or GIEL  
if priority levels are used), which re-enables interrupts.  
Each interrupt source has three bits to control its oper-  
ation. The functions of these bits are:  
For external interrupt events, such as the INT pins or  
the PORTB input change interrupt, the interrupt latency  
will be three to four instruction cycles. The exact  
latency is the same for one or two cycle instructions.  
Individual interrupt flag bits are set, regardless of the  
status of their corresponding enable bit or the GIE bit.  
Flag bit to indicate that an interrupt event  
occurred  
Enable bit that allows program execution to  
branch to the interrupt vector address when  
the flag bit is set  
Priority bit to select high priority or low priority  
The interrupt priority feature is enabled by setting the  
IPEN bit (RCON register). When interrupt priority is  
enabled, there are two bits that enable interrupts glo-  
bally. Setting the GIEH bit (INTCON register) enables  
all interrupts that have the priority bit set. Setting the  
GIEL bit (INTCON register) enables all interrupts that  
have the priority bit cleared. When the interrupt flag,  
enable bit and appropriate global interrupt enable bit  
are set, the interrupt will vector immediately to address  
000008h or 000018h, depending on the priority level.  
Individual interrupts can be disabled through their cor-  
responding enable bits.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 75  
PIC18CXX8  
FIGURE 7-1: INTERRUPT LOGIC  
TMR0IF  
TMR0IE  
TMR0IP  
RBIF  
RBIE  
RBIP  
Wake-up if in SLEEP mode  
INT0IF  
INT0IE  
INT1IF  
INT1IE  
INT1IP  
INT2IF  
INT2IE  
INT2IP  
Interrupt to CPU  
Vector to location  
0008h  
INT3IF  
INT3IE  
INT3IP  
Peripheral Interrupt Flag bit  
Peripheral Interrupt Enable bit  
Peripheral Interrupt Priority bit  
GIE/GIEH  
TMR1IF  
TMR1IE  
TMR1IP  
IPEN  
IPEN  
GIEL/PEIE  
XXXXIF  
XXXXIE  
XXXXIP  
IPEN  
Additional Peripheral Interrupts  
High Priority Interrupt Generation  
Low Priority Interrupt Generation  
Peripheral Interrupt Flag bit  
Peripheral Interrupt Enable bit  
Peripheral Interrupt Priority bit  
TMR0IF  
TMR0IE  
TMR0IP  
Interrupt to CPU  
Vector to Location  
0018h  
TMR1IF  
TMR1IE  
TMR1IP  
RBIF  
RBIE  
RBIP  
PEIE/GIEL  
XXXXIF  
XXXXIE  
XXXXIP  
INT0IF  
INT0IE  
INT1IF  
INT1IE  
INT1IP  
Additional Peripheral Interrupts  
INT2IF  
INT2IE  
INT2IP  
INT3IF  
INT3IE  
INT3IP  
DS30475A-page 76  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
7.1.1  
INTCON REGISTERS  
7.1  
Control Registers  
The INTCON Registers are readable and writable  
registers, which contain various enable, priority, and  
flag bits.  
This section contains the control and status registers.  
REGISTER 7-1:  
INTCON REGISTER  
R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
RBIE  
R/W-0  
R/W-0  
R/W-x  
RBIF  
GIE/GIEH PEIE/GIEL TMR0IE  
bit 7  
INT0IE  
TMR0IF INT0IF  
bit 0  
bit 7  
GIE/GIEH: Global Interrupt Enable bit  
When IPEN = 0:  
1= Enables all un-masked interrupts  
0= Disables all interrupts  
When IPEN = 1:  
1= Enables all high priority interrupts  
0= Disables all high priority interrupts  
bit 6  
PEIE/GIEL: Peripheral Interrupt Enable bit  
When IPEN = 0:  
1= Enables all un-masked peripheral interrupts  
0= Disables all peripheral interrupts  
When IPEN = 1:  
1= Enables all low priority peripheral interrupts  
0= Disables all priority peripheral interrupts  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMR0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 overflow interrupt  
0= Disables the TMR0 overflow interrupt  
INT0IE: INT0 External Interrupt Enable bit  
1= Enables the INT0 external interrupt  
0= Disables the INT0 external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
TMR0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INT0IF: INT0 External Interrupt Flag bit  
1= The INT0 external interrupt occurred (must be cleared in software by reading PORTB)  
0= The INT0 external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1= At least one of the RB7:RB4 pins changed state (must be cleared in software)  
0= None of the RB7:RB4 pins have changed state  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state  
of its corresponding enable bit or the global enable bit. User software should ensure  
the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature  
allows software polling.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 77  
PIC18CXX8  
REGISTER 7-2:  
INTCON2 REGISTER  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
RBIP  
RBPU  
INTEDG0 INTEDG1 INTEDG2 INTEDG3 TMR0IP INT3IP  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RBPU: PORTB Pull-up Enable bit  
1= All PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG0: External Interrupt 0 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG1: External Interrupt 1 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG2: External Interrupt 2 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
INTEDG3: External Interrupt 3 Edge Select bit  
1= Interrupt on rising edge  
0= Interrupt on falling edge  
TMR0IP: TMR0 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
INT3IP: INT3 External Interrupt Priority bit  
1= High priority  
0= Low priority  
RBIP: RB Port Change Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state  
of its corresponding enable bit or the global enable bit. User software should ensure  
the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature  
allows software polling.  
DS30475A-page 78  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
REGISTER 7-3:  
INTCON3 REGISTER  
R/W-1  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
INT3IF  
R/W-0  
INT2IF  
R/W-0  
INT1IF  
INT2IP  
INT1IP  
INT3IE  
INT2IE  
INT1IE  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
INT2IP: INT2 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT1IP: INT1 External Interrupt Priority bit  
1= High priority  
0= Low priority  
INT3IE: INT3 External Interrupt Enable bit  
1= Enables the INT3 external interrupt  
0= Disables the INT3 external interrupt  
INT2IE: INT2 External Interrupt Enable bit  
1= Enables the INT2 external interrupt  
0= Disables the INT2 external interrupt  
INT1IE: INT1 External Interrupt Enable bit  
1= Enables the INT1 external interrupt  
0= Disables the INT1 external interrupt  
INT3IF: INT3 External Interrupt Flag bit  
1= The INT3 external interrupt occurred  
(must be cleared in software)  
0= The INT3 external interrupt did not occur  
bit 1  
bit 0  
INT2IF: INT2 External Interrupt Flag bit  
1= The INT2 external interrupt occurred  
(must be cleared in software)  
0= The INT2 external interrupt did not occur  
INT1IF: INT1 External Interrupt Flag bit  
1= The INT1 external interrupt occurred  
(must be cleared in software)  
0= The INT1 external interrupt did not occur  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state  
of its corresponding enable bit or the global enable bit. User software should ensure  
the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature  
allows software polling.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 79  
PIC18CXX8  
7.1.2  
PIR REGISTERS  
7.1.3  
PIE REGISTERS  
The Peripheral Interrupt Request (PIR) registers con-  
tain the individual flag bits for the peripheral interrupts  
(Register 7-5). Due to the number of peripheral inter-  
rupt sources, there are three Peripheral Interrupt  
Request (Flag) registers (PIR1, PIR2, PIR3).  
The Peripheral Interrupt Enable (PIE) registers contain  
the individual enable bits for the peripheral interrupts  
(Register 7-5). Due to the number of peripheral inter-  
rupt sources, there are three Peripheral Interrupt  
Enable registers (PIE1, PIE2, PIE3). When IPEN is  
clear, the PEIE bit must be set to enable any of these  
peripheral interrupts.  
Note 1: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON register).  
7.1.4  
IPR REGISTERS  
The Interrupt Priority (IPR) registers contain the individ-  
ual priority bits for the peripheral interrupts  
(Register 7-7). Due to the number of peripheral inter-  
rupt sources, there are three Peripheral Interrupt Prior-  
ity registers (IPR1, IPR2, IPR3). The operation of the  
priority bits requires that the Interrupt Priority Enable bit  
(IPEN) be set.  
2: User software should ensure the appropri-  
ate interrupt flag bits are cleared prior to  
enabling an interrupt, and after servicing  
that interrupt.  
7.1.5  
RCON REGISTER  
The Reset Control (RCON) register contains the bit that  
is used to enable prioritized interrupts (IPEN).  
REGISTER 7-4:  
RCON REGISTER  
R/W-0  
R/W-0  
LWRT  
U-0  
R/W-1  
RI  
R/W-1  
TO  
R/W-1  
PD  
R/W-0  
POR  
R/W-0  
BOR  
IPEN  
bit 7  
bit 0  
bit 7  
bit 6  
IPEN: Interrupt Priority Enable bit  
1= Enable priority levels on interrupts  
0= Disable priority levels on interrupts (16CXXX compatibility mode)  
LWRT: Long Write Enable  
For details of bit operation see Register 4-3  
bit 5  
bit 4  
Unimplemented: Read as '0'  
RI: RESETInstruction Flag bit  
For details of bit operation see Register 4-3  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Watchdog Time-out Flag bit  
For details of bit operation see Register 4-3  
PD: Power-down Detection Flag bit  
For details of bit operation see Register 4-3  
POR: Power-on Reset Status bit  
For details of bit operation see Register 4-3  
BOR: Brown-out Reset Status bit  
For details of bit operation see Register 4-3  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
- n = Value at POR  
1= Bit is set  
0= Bit is cleared  
x = Bit is unknown  
DS30475A-page 80  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
REGISTER 7-5:  
PIR1  
PIR REGISTERS  
R/W-0  
PSPIF  
R/W-0  
R-0  
R-0  
R/W-0  
SSPIF  
R/W-0  
CCP1IF TMR2IF TMR1IF  
bit 0  
R/W-0  
R/W-0  
ADIF  
RCIF  
TXIF  
bit 7  
U-0  
R/W-0  
CMIF  
U-0  
U-0  
R/W-0  
BCLIF  
R/W-0  
LVDIF  
R/W-0  
TMR3IF CCP2IF  
bit 0  
R/W-0  
PIR2  
PIR3  
bit 7  
R/W-0  
IRXIF  
R/W-0  
R/W-0  
ERRIF  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RXB0IF  
bit 0  
WAKIF  
TXB2IF  
TXB1IF  
TXB0IF RXB1IF  
bit 7  
PIR1  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
PSPIF: Parallel Slave Port Read/Write Interrupt Flag bit  
1= A read or a write operation has taken place  
(must be cleared in software)  
0= No read or write has occurred  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed  
(must be cleared in software)  
0= The A/D conversion is not complete  
RCIF: USART Receive Interrupt Flag bit  
1= The USART receive buffer, RCREG, is full  
(cleared when RCREG is read)  
0= The USART receive buffer is empty  
TXIF: USART Transmit Interrupt Flag bit  
1= The USART transmit buffer, TXREG, is empty  
(cleared when TXREG is written)  
0= The USART transmit buffer is full  
SSPIF: Master Synchronous Serial Port Interrupt Flag bit  
1= The transmission/reception is complete  
(must be cleared in software)  
0= Waiting to transmit/receive  
CCP1IF: CCP1 Interrupt Flag bit  
Capture Mode  
1= A TMR1 register capture occurred  
(must be cleared in software)  
0= No TMR1 register capture occurred  
Compare Mode  
1= A TMR1 register compare match occurred  
(must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM Mode  
Unused in this mode  
bit 1  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred  
(must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed  
(must be cleared in software)  
0= TMR1 register did not overflow  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 81  
PIC18CXX8  
REGISTER 7-5:  
PIR REGISTERS (CONTD)  
PIR2  
bit 7  
bit 6  
Unimplemented: Read as0’  
CMIF: Comparator Interrupt Flag bit  
1= Comparator input has changed  
0= Comparator input has not changed  
bit 5-4 Unimplemented: Read as0’  
bit 3  
bit 2  
bit 1  
bit 0  
BCLIF: Bus Collision Interrupt Flag bit  
1= A Bus Collision occurred  
(must be cleared in software)  
0= No Bus Collision occurred  
LVDIF: Low Voltage Detect Interrupt Flag bit  
1= A low voltage condition occurred  
(must be cleared in software)  
0= The device voltage is above the Low Voltage Detect trip point  
TMR3IF: TMR3 Overflow Interrupt Flag bit  
1= TMR3 register overflowed  
(must be cleared in software)  
0= TMR3 register did not overflow  
CCP2IF: CCPx Interrupt Flag bit  
Capture Mode  
1= A TMR1 register capture occurred  
(must be cleared in software)  
0= No TMR1 register capture occurred  
Compare Mode  
1= A TMR1 register compare match occurred  
(must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM Mode  
Unused in this mode  
DS30475A-page 82  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
REGISTER 7-5:  
PIR3  
PIR REGISTERS (CONTD)  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
IRXIF: Invalid Message Received Interrupt Flag bit  
1= An invalid message has occurred on the CAN bus  
0= An invalid message has not occurred on the CAN bus  
WAKIF: Bus Activity Wake-up Interrupt Flag bit  
1= Activity on the CAN bus has occurred  
0= Activity on the CAN bus has not occurred  
ERRIF: CAN Bus Error Interrupt Flag bit  
1= An error has occurred in the CAN module (multiple sources)  
0= An error has not occurred in the CAN module  
TXB2IF: Transmit Buffer 2 Interrupt Flag bit  
1= Transmit Buffer 2 has completed transmission of a message, and may be reloaded  
0= Transmit Buffer 2 has not completed transmission of a message  
TXB1IF: Transmit Buffer 1 Interrupt Flag bit  
1= Transmit Buffer 1 has completed transmission of a message, and may be reloaded  
0= Transmit Buffer 1 has not completed transmission of a message  
TXB0IF: Transmit Buffer 0 Interrupt Flag bit  
1= Transmit Buffer 0 has completed transmission of a message, and may be reloaded  
0= Transmit Buffer 0 has not completed transmission of a message  
RXB1IF: Receive Buffer 1 Interrupt Flag bit  
1= Receive Buffer 1 has received a new message  
0= Receive Buffer 1 has not received a new message  
RXB0IF: Receive Buffer 0 Interrupt Flag bit  
1= Receive Buffer 0 has received a new message  
0= Receive Buffer 0 has not received a new message  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 83  
PIC18CXX8  
REGISTER 7-6:  
PIE REGISTERS  
R/W-0  
PSPIE  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
R/W-0  
SSPIE  
R/W-0  
CCP1IE TMR2IE TMR1IE  
bit 0  
R/W-0  
R/W-0  
PIE1  
bit 7  
U-0  
R/W-0  
CMIE  
U-0  
U-0  
R/W-0  
BCLIE  
R/W-0  
LVDIE  
R/W-0  
TMR3IE CCP2IE  
bit 0  
R/W-0  
PIE2  
PIE3  
bit 7  
R/W-1  
IVRE  
R/W-1  
R/W-1  
ERRIE  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
RXB0IE  
bit 0  
WAKIE  
TXB2IE  
TXB1IE TXB0IE RXB1IE  
bit 7  
PIE1  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PSPIE: Parallel Slave Port Read/Write Interrupt Enable bit  
1= Enables the PSP read/write interrupt  
0= Disables the PSP read/write interrupt  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D interrupt  
0= Disables the A/D interrupt  
RCIE: USART Receive Interrupt Enable bit  
1= Enables the USART receive interrupt  
0= Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1= Enables the USART transmit interrupt  
0= Disables the USART transmit interrupt  
SSPIE: Master Synchronous Serial Port Interrupt Enable bit  
1= Enables the MSSP interrupt  
0= Disables the MSSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
DS30475A-page 84  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
REGISTER 7-6:  
PIE REGISTERS (CONTD)  
Unimplemented: Read as 0’  
PIE2  
bit 7  
bit 6  
CMIE: Comparator Interrupt Enable bit  
1= Enables the comparator interrupt  
0= Disables the comparator interrupt  
bit 5-4 Unimplemented: Read as 0’  
bit 3  
bit 2  
bit 1  
bit 0  
BCLIE: Bus Collision Interrupt Enable bit  
1= Enabled  
0= Disabled  
LVDIE: Low-voltage Detect Interrupt Enable bit  
1= Enabled  
0= Disabled  
TMR3IE: TMR3 Overflow Interrupt Enable bit  
1= Enables the TMR3 overflow interrupt  
0= Disables the TMR3 overflow interrupt  
CCP2IE: CCP2 Interrupt Enable bit  
1= Enables the CCP2 interrupt  
0= Disables the CCP2 interrupt  
PIE3  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
IVRE: Invalid CAN Message Received Interrupt Enable bit  
1= Enables the Invalid CAN Message Received Interrupt  
0= Disables the Invalid CAN Message Received Interrupt  
WAKIE: Bus Activity Wake-up Interrupt Enable bit  
1= Enables the Bus Activity Wake-Up Interrupt  
0= Disables the Bus Activity Wake-Up Interrupt  
ERRIE: CAN Bus Error Interrupt Enable bit  
1= Enables the CAN Bus Error Interrupt  
0= Disables the CAN Bus Error Interrupt  
TXB2IE: Transmit Buffer 2 Interrupt Enable bit  
1= Enables the Transmit Buffer 2 Interrupt  
0= Disables the Transmit Buffer 2 Interrupt  
TXB1IE: Transmit Buffer 1 Interrupt Enable bit  
1= Enables the Transmit Buffer 1 Interrupt  
0= Disables the Transmit Buffer 1 Interrupt  
TXB0IE: Transmit Buffer 0 Interrupt Enable bit  
1= Enables the Transmit Buffer 0 Interrupt  
0= Disables the Transmit Buffer 0 Interrupt  
RXB1IE: Receive Buffer 1 Interrupt Enable bit  
1= Enables the Receive Buffer 1 Interrupt  
0= Disables the Receive Buffer 1 Interrupt  
RXB0IE: Receive Buffer 0 Interrupt Enable bit  
1= Enables the Receive Buffer 0 Interrupt  
0= Disables the Receive Buffer 0 Interrupt  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 85  
PIC18CXX8  
REGISTER 7-7:  
IPR REGISTERS  
R/W-1  
PSPIP  
R/W-1  
ADIP  
R/W-1  
RCIP  
R/W-1  
TXIP  
R/W-1  
SSPIP  
R/W-1  
CCP1IP TMR2IP TMR1IP  
bit 0  
R/W-1  
R/W-1  
IPR1  
bit 7  
U-0  
R/W-1  
CMIP  
U-0  
U-0  
R/W-1  
BCLIP  
R/W-1  
LVDIP  
R/W-1  
TMR3IP CCP2IP  
bit 0  
R/W-1  
IPR2  
IPR3  
bit 7  
R/W-1  
IVRP  
R/W-1  
R/W-1  
ERRIP  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
RXB0IP  
bit 0  
WAKIP  
TXB2IP  
TXB1IP TXB0IP RXB1IP  
bit 7  
IPR1  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PSPIP: Parallel Slave Port Read/Write Interrupt Priority bit  
1= High priority  
0= Low priority  
ADIP: A/D Converter Interrupt Priority bit  
1= High priority  
0= Low priority  
RCIP: USART Receive Interrupt Priority bit  
1= High priority  
0= Low priority  
TXIP: USART Transmit Interrupt Priority bit  
1= High priority  
0= Low priority  
SSPIP: Master Synchronous Serial Port Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP1IP: CCP1 Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR2IP: TMR2 to PR2 Match Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR1IP: TMR1 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
DS30475A-page 86  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
REGISTER 7-7:  
IPR REGISTERS (CONTD)  
Unimplemented: Read as 0’  
IPR2  
bit 7  
bit 6  
CMIP: Comparator Interrupt Priority bit  
1= High priority  
0= Low priority  
bit 5-4 Unimplemented: Read as 0’  
bit 3  
bit 2  
bit 1  
bit 0  
BCLIP: Bus Collision Interrupt Priority bit  
1= High priority  
0= Low priority  
LVDIP: Low Voltage Detect Interrupt Priority bit  
1= High priority  
0= Low priority  
TMR3IP: TMR3 Overflow Interrupt Priority bit  
1= High priority  
0= Low priority  
CCP2IP: CCP2 Interrupt Priority bit  
1= High priority  
0= Low priority  
IPR3  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
IVRP: Invalid Message Received Interrupt Priority bit  
1= High priority  
0= Low priority  
WAKIP: Bus Activity Wake-up Interrupt Priority bit  
1= High priority  
0= Low priority  
ERRIP: CAN Bus Error Interrupt Priority bit  
1= High priority  
0= Low priority  
TXB2IP: Transmit Buffer 2 Interrupt Priority bit  
1= High priority  
0= Low priority  
TXB1IP: Transmit Buffer 1 Interrupt Priority bit  
1= High priority  
0= Low priority  
TXB0IP: Transmit Buffer 0 Interrupt Priority bit  
1= High priority  
0= Low priority  
RXB1IP: Receive Buffer 1 Interrupt Priority bit  
1= High priority  
0= Low priority  
RXB0IP: Receive Buffer 0 Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 87  
PIC18CXX8  
7.1.6  
INT INTERRUPTS  
TMR0H:TMR0L registers will set flag bit TMR0IF. The  
interrupt can be enabled/disabled by setting/clearing  
enable bit TMR0IE (INTCON register). Interrupt priority  
for Timer0 is determined by the value contained in the  
interrupt priority bit TMR0IP (INTCON2 register). See  
Section 10.0 for further details on the Timer0 module.  
External interrupts on the RB0/INT0, RB1/INT1,  
RB2/INT2, and RB3/INT3 pins are edge triggered:  
either rising if the corresponding INTEDGx bit is set in  
the INTCON2 register, or falling, if the INTEDGx bit is  
clear. When a valid edge appears on the RBx/INTx pin,  
the corresponding flag bit INTxIF is set. This interrupt  
can be disabled by clearing the corresponding enable  
bit INTxIE. Flag bit INTxIF must be cleared in software  
in the Interrupt Service Routine before re-enabling the  
interrupt. All external interrupts (INT0, INT1, INT2, and  
INT3) can wake-up the processor from SLEEP, if bit  
INTxIE was set prior to going into SLEEP. If the global  
interrupt enable bit GIE is set, the processor will branch  
to the interrupt vector following wake-up.  
7.1.8  
PORTB INTERRUPT-ON-CHANGE  
An input change on PORTB<7:4> sets flag bit RBIF  
(INTCON register). The interrupt can be enabled/  
disabled by setting/clearing enable bit RBIE (INTCON  
register). Interrupt priority for PORTB interrupt-  
on-change is determined by the value contained in the  
interrupt priority bit RBIP (INTCON2 register).  
7.2  
Context Saving During Interrupts  
Interrupt priority for INT1, INT2 and INT3 is determined  
by the value contained in the interrupt priority bits  
INT1IP (INTCON3 register), INT3IP (INTCON3 regis-  
ter), and INT2IP (INTCON2 register). There is no prior-  
ity bit associated with INT0; it is always a high priority  
interrupt source.  
During an interrupt, the return PC value is saved on the  
stack. Additionally, the WREG, STATUS and BSR reg-  
isters are saved on the fast return stack. If a fast return  
from interrupt is not used (See Section 4.3), the user  
may need to save the WREG, STATUS and BSR regis-  
ters in software. Depending on the users application,  
other registers may also need to be saved.  
Example 7-1 saves and restores the WREG, STATUS  
and BSR registers during an Interrupt Service Routine.  
7.1.7  
TMR0 INTERRUPT  
In 8-bit mode (which is the default), an overflow (FFh →  
00h) in the TMR0 register will set flag bit TMR0IF. In  
16-bit mode, an overflow (FFFFh 0000h) in the  
EXAMPLE 7-1: SAVING STATUS, WREG AND BSR REGISTERS IN RAM  
MOVWF  
MOVFF  
MOVFF  
;
W_TEMP  
STATUS, STATUS_TEMP  
BSR, BSR_TEMP  
; W_TEMP is in Low Access bank  
; STATUS_TEMP located anywhere  
; BSR located anywhere  
; USER ISR CODE  
;
MOVFF  
MOVF  
MOVFF  
BSR_TEMP, BSR  
W_TEMP, W  
STATUS_TEMP, STATUS  
; Restore BSR  
; Restore WREG  
; Restore STATUS  
DS30475A-page 88  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
EXAMPLE 8-1: INITIALIZING PORTA  
8.0  
I/O PORTS  
CLRF  
PORTA  
; Initialize PORTA by  
; clearing output  
; data latches  
Depending on the device selected, there are up to  
eleven ports available. Some pins of the I/O ports are  
multiplexed with an alternate function from the periph-  
eral features on the device. In general, when a periph-  
eral is enabled, that pin may not be used as a general  
purpose I/O pin.  
CLRF  
LATA  
; Alternate method  
; to clear output  
; data latches  
MOVLW 0x07  
MOVWF ADCON1  
MOVLW 0xCF  
; Configure A/D  
; for digital inputs  
; Value used to  
Each port has three registers for its operation. These  
registers are:  
; initialize data  
; direction  
TRIS register (Data Direction register)  
PORT register (reads the levels on the pins of the  
device)  
MOVWF TRISA  
; Set RA3:RA0 as inputs  
; RA5:RA4 as outputs  
LAT register (output latch)  
The data latch (LAT register) is useful for  
read-modify-write operations on the value that the I/O  
pins are driving.  
FIGURE 8-1: RA3:RA0 AND RA5 PINS  
BLOCK DIAGRAM  
8.1  
PORTA, TRISA and LATA Registers  
PORTA is a 6-bit wide, bi-directional port. The corre-  
sponding Data Direction register is TRISA. Setting a  
TRISA bit (=1) will make the corresponding PORTA pin  
an input (i.e., put the corresponding output driver in a  
hi-impedance mode). Clearing a TRISA bit (=0) will  
make the corresponding PORTA pin an output (i.e., put  
the contents of the output latch on the selected pin).  
On a Power-on Reset, these pins are configured as  
inputs and read as '0'.  
RD LATA  
Data  
Bus  
D
Q
VDD  
P
WR LATA  
or  
WR PORTA  
Q
CK  
Data Latch  
I/O Pin(1)  
N
D
Q
Reading the PORTA register reads the status of the  
pins, whereas writing to it will write to the port latch.  
WR TRISA  
VSS  
Analog  
Q
CK  
Read-modify-write operations on the LATA register,  
reads and writes the latched output value for PORTA.  
Input  
Mode  
TRIS Latch  
The RA4 pin is multiplexed with the Timer0 module  
clock input to become the RA4/T0CKI pin. The  
RA4/T0CKI pin is a Schmitt Trigger input and an open  
drain output. All other RA port pins have TTL input lev-  
els and full CMOS output drivers.  
TTL  
RD TRISA  
Q
Input  
Buffer  
D
EN  
The other PORTA pins are multiplexed with analog  
inputs and the analog VREF+ and VREF- inputs. The  
operation of each pin is selected by clearing/setting the  
control bits in the ADCON1 register (A/D Control  
Register1). On a Power-on Reset, these pins are con-  
figured as analog inputs and read as '0'.  
RD PORTA  
SS Input (RA5 only)  
To A/D Converter and LVD Modules  
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
Note 1:  
I/O pins have diode protection to VDD and VSS.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 89  
PIC18CXX8  
FIGURE 8-2: RA4/T0CKI PIN BLOCK  
DIAGRAM  
FIGURE 8-3: RA6 BLOCK DIAGRAM  
ECRA6 or  
RCRA6 Enable  
Data  
Bus  
RD LATA  
Data  
Bus  
RD LATA  
Q
D
D
Q
WR LATA  
or  
VDD  
P
CK  
Q
I/O Pin(1)  
N
WR PORTA  
WR LATA  
or  
Data Latch  
Q
CK  
WR PORTA  
D
Q
Q
VSS  
Data Latch  
I/O Pin(1)  
N
WR TRISA  
D
Q
Q
Schmitt  
Trigger  
Input  
CK  
TRIS Latch  
WR  
TRISA  
VSS  
Buffer  
CK  
ECRA6 or  
TRIS Latch  
RCRA6  
RD TRISA  
Enable  
Data Bus  
Data Bus  
TTL  
Q
D
Input  
Buffer  
RD TRISA  
EN  
RD PORTA  
TMR0 Clock Input  
Note 1: I/O pin has diode protection to VSS only.  
Q
D
EN  
RD PORTA  
Note 1:  
I/O pins have diode protection to VDD and VSS.  
TABLE 8-1:  
Name  
PORTA FUNCTIONS  
Bit#  
Buffer  
Function  
RA0/AN0  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
TTL  
TTL  
TTL  
TTL  
Input/output or analog input.  
Input/output or analog input.  
RA1/AN1  
RA2/AN2/VREF-  
RA3/AN3/VREF+  
RA4/T0CKI  
Input/output or analog input or VREF-.  
Input/output or analog input or VREF+.  
ST/OD Input/output or external clock input for Timer0 output is open drain type.  
RA5/SS/AN4/LVDIN  
TTL  
Input/output or slave select input for synchronous serial port or analog  
input, or low voltage detect input.  
OSC2/CLKO/RA6  
bit6  
TTL  
OSC2 or clock output or I/O pin.  
Legend: TTL = TTL input, ST = Schmitt Trigger input, OD = Open Drain  
TABLE 8-2:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on Value on all  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other  
RESETS  
PORTA  
LATA  
RA6  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
-x0x 0000 -uuu uuuu  
-xxx xxxx -uuu uuuu  
-111 1111 -111 1111  
Latch A Data Output Register  
PORTA Data Direction Register  
TRISA  
ADCON1  
VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0 --00 0000 --uu uuuu  
Legend: x= unknown, u= unchanged, - = unimplemented locations read as '0'.  
Shaded cells are not used by PORTA.  
DS30475A-page 90  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is per-  
formed by clearing bit RBPU (INTCON2 register). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are dis-  
abled on a Power-on Reset.  
8.2  
PORTB, TRISB and LATB Registers  
PORTB is an 8-bit wide bi-directional port. The corre-  
sponding Data Direction register is TRISB. Setting a  
TRISB bit (=1) will make the corresponding PORTB pin  
an input (i.e., put the corresponding output driver in a  
hi-impedance mode). Clearing a TRISB bit (=0) will  
make the corresponding PORTB pin an output ( i.e.,  
put the contents of the output latch on the selected pin).  
Four of PORTBs pins, RB7:RB4, have an  
interrupt-on-change feature. Only pins configured as  
inputs can cause this interrupt to occur (i.e., any  
RB7:RB4 pin configured as an output is excluded from  
the interrupt-on-change comparison). The input pins  
(of RB7:RB4) are compared with the old value latched  
on the last read of PORTB. The mismatchoutputs of  
RB7:RB4 are ORd together to generate the RB Port  
Change Interrupt with flag bit RBIF (INTCON register).  
Read-modify-write operations on the LATB register  
read and write the latched output value for PORTB.  
EXAMPLE 8-2: INITIALIZING PORTB  
CLRF  
PORTB  
; Initialize PORTB by  
; clearing output  
; data latches  
This interrupt can wake the device from SLEEP. The  
user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
CLRF  
LATB  
; Alternate method  
; to clear output  
; data latches  
a) Any read or write of PORTB (except with the  
MOVFF instruction). This will end the mismatch  
condition.  
MOVLW  
MOVWF  
0xCF  
; Value used to  
; initialize data  
; direction  
b) Clear flag bit RBIF.  
TRISB  
; Set RB3:RB0 as inputs  
; RB5:RB4 as outputs  
; RB7:RB6 as inputs  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition and  
allow flag bit RBIF to be cleared.  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt on change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
FIGURE 8-4: RB7:RB4 PINS BLOCK  
DIAGRAM  
VDD  
RBPU(2)  
Weak  
P
Pull-up  
Data Latch  
Data Bus  
FIGURE 8-5: RB3:RB0 PINS BLOCK  
D
Q
DIAGRAM  
I/O pin(1)  
WR LATB  
or  
WR PORTB  
VDD  
CK  
TRIS Latch  
RBPU(2)  
Weak  
P
Pull-up  
D
Q
Data Latch  
Data Bus  
D
Q
WR TRISB  
TTL  
Input  
Buffer  
CK  
I/O Pin(1)  
WR Port  
ST  
Buffer  
CK  
TRIS Latch  
RD TRISB  
RD LATB  
D
Q
TTL  
Input  
Buffer  
WR TRIS  
CK  
Latch  
Q
Q
D
RD TRIS  
RD Port  
EN  
Q1  
RD PORTB  
Set RBIF  
Q
D
EN  
D
From other  
RB7:RB4 pins  
RD PORTB  
Q3  
Schmitt Trigger  
Buffer  
EN  
RBx/INTx  
RBx/INTx  
RD Port  
Note 1:  
2:  
I/O pins have diode protection to VDD and VSS.  
To enable weak pull-ups, set the appropriate TRIS  
bit(s) and clear the RBPU bit (INTCON2 register).  
Note 1:  
2:  
I/O pins have diode protection to VDD and VSS.  
To enable weak pull-ups, set the appropriate TRIS  
bit(s) and clear the RBPU bit (INTCON2 register).  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 91  
PIC18CXX8  
TABLE 8-3:  
Name  
PORTB FUNCTIONS  
Bit#  
Buffer  
Function  
RB0/INT0  
bit0  
TTL/ST(1)  
Input/output pin or external interrupt 0 input. Internal software  
programmable weak pull-up.  
RB1/INT1  
RB2/INT2  
RB3/INT3  
RB4  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
TTL/ST(1)  
TTL/ST(1)  
TTL/ST(1)  
TTL  
Input/output pin or external interrupt 1 input. Internal software  
programmable weak pull-up.  
Input/output pin or external interrupt 2 input. Internal software  
programmable weak pull-up.  
Input/output pin or external interrupt 3 input. Internal software  
programmable weak pull-up.  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up.  
RB5  
TTL  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up.  
RB6  
TTL/ST(2)  
TTL/ST(2)  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up. Serial programming clock.  
RB7  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up. Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.  
TABLE 8-4:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on  
POR,  
BOR  
Value on  
all other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PORTB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
0000 000x 0000 000u  
LATB  
LATB Data Output Register  
TRISB  
INTCON  
PORTB Data Direction Register  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
RBIP  
INTCON2  
RBPU INTEDG0 INTEDG1 INTEDG2 INTEDG3 TMR0IP INT3IP  
INT1IP INT3IE INT2IE INT1IE INT3IF  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
1111 1111 1111 1111  
INTCON3 INT2IP  
INT2IF INT1IF 1100 0000 1100 0000  
DS30475A-page 92  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
put, while other peripherals override the TRIS bit to make  
a pin an input. The user should refer to the correspond-  
ing peripheral section for the correct TRIS bit settings.  
8.3  
PORTC, TRISC and LATC Registers  
PORTC is an 8-bit wide, bi-directional port. The corre-  
sponding Data Direction register is TRISC. Setting a  
TRISC bit (=1) will make the corresponding PORTC pin  
an input (i.e., put the corresponding output driver in a  
hi-impedance mode). Clearing a TRISC bit (=0) will  
make the corresponding PORTC pin an output (i.e., put  
the contents of the output latch on the selected pin).  
The pin override value is not loaded into the TRIS reg-  
ister. This allows read-modify-write of the TRIS register,  
without concern due to peripheral overrides.  
EXAMPLE 8-3: INITIALIZING PORTC  
CLRF  
PORTC  
; Initialize PORTC by  
; clearing output  
; data latches  
Read-modify-write operations on the LATC register,  
read and write the latched output value for PORTC.  
CLRF  
LATC  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
; Set RC3:RC0 as inputs  
; RC5:RC4 as outputs  
; RC7:RC6 as inputs  
PORTC is multiplexed with several peripheral functions  
(Table 8-5). PORTC pins have Schmitt Trigger input  
buffers.  
MOVLW  
MOVWF  
0xCF  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an out-  
TRISC  
FIGURE 8-6: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)  
Peripheral Out Select  
Peripheral Data Out  
VDD  
P
0
1
RD LATC  
Q
Data Bus  
D
I/O Pin  
WR LATC  
or  
WR PORTC  
Q
CK  
Data Latch  
N
D
Q
Q
VSS  
WR TRISC  
TRIS  
CK  
Override  
TRIS Latch  
Schmitt  
Trigger  
RD TRISC  
Peripheral Enable  
Q
D
EN  
RD PORTC  
Peripheral Data In  
TRIS OVERRIDE  
Peripheral  
Pin  
Override  
Yes  
RC0  
RC1  
RC2  
RC3  
Timer1 OSC for Timer1/Timer3  
Timer1 OSC for Timer1/Timer3  
Yes  
No  
2
Yes  
SPI/I C Master Clock  
2
RC4  
Yes  
I C Data Out  
RC5  
RC6  
RC7  
Yes  
Yes  
Yes  
SPI Data Out  
USART Async Xmit, Sync Clock  
USART Sync Data Out  
Note: I/O pins have diode protection to VDD and VSS.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 93  
PIC18CXX8  
TABLE 8-5:  
PORTC FUNCTIONS  
Name  
Bit# Buffer Type  
Function  
RC0/T1OSO/T13CKI  
ST  
Input/output port pin or Timer1 oscillator output or Timer1/Timer3 clock  
input.  
bit0  
RC1/T1OSI  
RC2/CCP1  
ST  
Input/output port pin or Timer1 oscillator input.  
bit1  
ST  
Input/output port pin or Capture1 input/Compare1 output/PWM1  
output.  
bit2  
RC3/SCK/SCL  
RC4/SDI/SDA  
ST  
Input/output port pin or Synchronous Serial clock for SPI/I2C.  
bit3  
ST  
Input/output port pin or SPI Data in (SPI mode) or Data I/O  
(I2C mode).  
bit4  
RC5/SDO  
ST  
Input/output port pin or Synchronous Serial Port data output.  
bit5  
RC6/TX/CK  
ST  
Input/output port pin Addressable USART Asynchronous Transmit or  
Addressable USART Synchronous Clock.  
bit6  
RC7/RX/DT  
ST  
Input/output port pin Addressable USART Asynchronous Receive or  
Addressable USART Synchronous Data.  
bit7  
Legend: ST = Schmitt Trigger input  
TABLE 8-6:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on  
POR,  
Value on all  
other  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOR  
RESETS  
PORTC  
LATC  
RC7  
RC6  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
LATC Data Output Register  
PORTC Data Direction Register  
TRISC  
Legend: x= unknown, u= unchanged  
DS30475A-page 94  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
8.4  
PORTD, TRISD and LATD Registers  
FIGURE 8-7: PORTD BLOCK DIAGRAM  
IN I/O PORT MODE  
PORTD is an 8-bit wide, bi-directional port. The corre-  
sponding Data Direction register is TRISD. Setting a  
TRISD bit (=1) will make the corresponding PORTD pin  
an input (i.e., put the corresponding output driver in a  
hi-impedance mode). Clearing a TRISD bit (=0) will  
make the corresponding PORTD pin an output (i.e., put  
the contents of the output latch on the selected pin).  
RD LATD  
Data  
Bus  
D
Q
I/O Pin  
WR LATD  
or  
WR PORTD  
CK  
Data Latch  
Read-modify-write operations on the LATD register  
reads and writes the latched output value for PORTD.  
D
Q
PORTD is an 8-bit port with Schmitt Trigger input buff-  
ers. Each pin is individually configurable as an input or  
output.  
Schmitt  
Trigger  
Input  
WR TRISD  
CK  
TRIS Latch  
Buffer  
PORTD can be configured as an 8-bit wide micro-  
processor port (parallel slave port), by setting control  
bit PSPMODE (PSPCON register). In this mode, the  
input buffers are TTL. See Section 9.0 for additional  
information on the Parallel Slave Port (PSP).  
RD TRISD  
Q
D
EXAMPLE 8-4: INITIALIZING PORTD  
EN  
CLRF  
PORTD  
; Initialize PORTD by  
; clearing output  
; data latches  
RD PORTD  
CLRF  
LATD  
; Alternate method  
; to clear output  
; data latches  
Note: I/O pins have diode protection to VDD and VSS.  
MOVLW  
MOVWF  
0xCF  
; Value used to  
; initialize data  
; direction  
; Set RD3:RD0 as inputs  
; RD5:RD4 as outputs  
; RD7:RD6 as inputs  
TRISD  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 95  
PIC18CXX8  
TABLE 8-7:  
Name  
PORTD FUNCTIONS  
Bit#  
Buffer Type  
Function  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
RD0/PSP0  
RD1/PSP1  
RD2/PSP2  
RD3/PSP3  
RD4/PSP4  
RD5/PSP5  
RD6/PSP6  
RD7/PSP7  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
Input/output port pin or parallel slave port bit0.  
Input/output port pin or parallel slave port bit1.  
Input/output port pin or parallel slave port bit2.  
Input/output port pin or parallel slave port bit3.  
Input/output port pin or parallel slave port bit4.  
Input/output port pin or parallel slave port bit5.  
Input/output port pin or parallel slave port bit6.  
Input/output port pin or parallel slave port bit7.  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffer when in Parallel Slave Port mode.  
TABLE 8-8:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Value on  
POR,  
Value on all  
other  
Name  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOR  
RESETS  
PORTD  
RD7 RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
0000 ---- 0000 ----  
LATD  
LATD Data Output Register  
PORTD Data Direction Register  
IBF OBF IBOV PSPMODE  
TRISD  
PSPCON  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by PORTD.  
DS30475A-page 96  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
8.5  
PORTE, TRISE and LATE Registers  
EXAMPLE 8-5: INITIALIZING PORTE  
CLRF  
PORTE  
; Initialize PORTE by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
PORTE is an 8-bit wide, bi-directional port. The corre-  
sponding Data Direction register is TRISE. Setting a  
TRISE bit (=1) will make the corresponding PORTE pin  
an input (i.e., put the corresponding output driver in a  
hi-impedance mode). Clearing a TRISE bit (=0) will  
make the corresponding PORTE pin an output (i.e., put  
the contents of the output latch on the selected pin).  
CLRF  
LATE  
MOVLW  
MOVWF  
0x03  
Read-modify-write operations on the LATE register  
reads and writes the latched output value for PORTE.  
TRISE  
; Set RE1:RE0 as inputs  
; RE7:RE2 as outputs  
PORTE is an 8-bit port with Schmitt Trigger input buff-  
ers. Each pin is individually configurable as an input or  
output. PORTE is multiplexed with several peripheral  
functions (Table 8-9).  
FIGURE 8-8: PORTE BLOCK DIAGRAM  
Peripheral Out Select  
Peripheral Data Out  
VDD  
0
1
P
RD LATE  
Data Bus  
D
Q
Q
(1)  
I/O Pin  
WR LATE  
or  
WR PORTE  
CK  
Data Latch  
N
D
Q
Q
VSS  
WR TRISE  
TRIS  
CK  
Override  
TRIS Latch  
Schmitt  
Trigger  
RD TRISE  
Peripheral Enable  
Q
D
EN  
RD PORTE  
Peripheral Data In  
TRIS OVERRIDE  
Peripheral  
Pin  
Override  
RE0  
Yes  
PSP  
PSP  
RE1  
RE2  
Yes  
Yes  
PSP  
RE3  
No  
RE4  
RE5  
RE6  
RE7  
No  
No  
No  
No  
Note 1: I/O pins have diode protection to VDD and VSS.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 97  
PIC18CXX8  
TABLE 8-9:  
Name  
PORTE FUNCTIONS  
Bit#  
Buffer Type  
Function  
RE0/RD  
RE1/WR  
RE2/CS  
bit0  
bit1  
bit2  
ST/TTL(1)  
ST/TTL(1)  
ST/TTL(1)  
Input/output port pin or Read control input in Parallel Slave Port mode.  
Input/output port pin or Write control input in Parallel Slave Port mode.  
Input/output port pin or Chip Select control input in Parallel Slave Port  
mode.  
RE3  
bit3  
bit4  
bit5  
bit6  
bit7  
ST  
ST  
ST  
ST  
ST  
Input/output port pin.  
RE4  
Input/output port pin.  
RE5  
Input/output port pin.  
RE6  
Input/output port pin.  
RE7/CCP2  
Input/output port pin or Capture 2 input/Compare 2 output.  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffer when in Parallel Slave Port mode.  
TABLE 8-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on:  
POR,  
Value on all  
Name  
Bit 7 Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
other  
BOR  
RESETS  
TRISE  
PORTE  
LATE  
PORTE Data Direction Control Register  
Read PORTE pin/Write PORTE Data Latch  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0000 ---- 0000 ----  
Read PORTE Data Latch/Write PORTE Data Latch  
PSPCON IBF OBF IBOV PSPMODE  
Legend: x= unknown, u= unchanged  
DS30475A-page 98  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
8.6  
PORTF, LATF, and TRISF Registers  
EXAMPLE 8-6: INITIALIZING PORTF  
CLRF  
PORTF  
; Initialize PORTF by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
PORTF is an 8-bit wide, bi-directional port. The corre-  
sponding Data Direction register is TRISF. Setting a  
TRISF bit (=1) will make the corresponding PORTF pin  
an input (i.e., put the corresponding output driver in a  
hi-impedance mode). Clearing a TRISF bit (=0) will  
make the corresponding PORTF pin an output (i.e., put  
the contents of the output latch on the selected pin).  
CLRF  
LATF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
0x07  
CMCON  
0x0F  
ADCON1  
0xCF  
;
; Turn off comparators  
;
; Set PORTF as digital I/O  
; Value used to  
; initialize data  
; direction  
; Set RF3:RF0 as inputs  
; RF5:RF4 as outputs  
; RF7:RF6 as inputs  
Read-modify-write operations on the LATF register  
reads and writes the latched output value for PORTF.  
PORTF is multiplexed with several analog peripheral  
functions including the A/D converter inputs and com-  
parator inputs, outputs, and voltage reference.  
MOVWF  
TRISF  
Note 1: On a Power-on Reset, the RF6:RF0 pins  
are configured as inputs and read as 0.  
2: To configure PORTF as digital I/O, turn off  
comparators and set ADCON1 value.  
FIGURE 8-9: PORTF RF1/AN6/C2OUT, RF2/AN5/C1OUT BLOCK DIAGRAM  
PORT/Comparator Select  
Comparator Data Out  
VDD  
P
0
1
RD LATF  
Q
Data Bus  
D
I/O Pin  
WR LATF  
or  
WR PORTF  
Q
CK  
Data Latch  
N
D
Q
Q
VSS  
WR TRISF  
CK  
Analog  
TRIS Latch  
Input  
Mode  
Schmitt  
Trigger  
RD TRISF  
Q
D
EN  
RD PORTF  
To A/D Converter  
Note:  
I/O pins have diode protection to VDD and VSS.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 99  
PIC18CXX8  
FIGURE 8-10: RF6:RF3 AND RF0 PINS  
BLOCK DIAGRAM  
FIGURE 8-11: RF7 PIN BLOCK DIAGRAM  
RD LATF  
Data  
Bus  
RD LATF  
D
Q
Data  
Bus  
D
Q
I/O pin  
WR LATF  
or  
WR PORTF  
CK  
Data Latch  
VDD  
P
WR LATF  
or  
WR PORTF  
CK  
Q
D
Q
Data Latch  
Schmitt  
Trigger  
Input  
N
I/O Pin  
D
Q
WR TRISF  
CK  
TRIS Latch  
Buffer  
WR TRISF  
VSS  
Analog  
CK  
TRIS Latch  
Q
Input  
Mode  
RD TRISF  
ST  
RD TRISF  
Q
Q
D
Input  
Buffer  
D
EN  
RD PORTF  
EN  
RD PORTF  
Note:  
I/O pins have diode protection to VDD and VSS.  
To A/D Converter or Comparator Input  
Note: I/O pins have diode protection to VDD and VSS.  
TABLE 8-11: PORTF FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
RF0/AN5  
bit0  
ST  
ST  
ST  
ST  
ST  
ST  
Input/output port pin or analog input.  
RF1/AN6/C2OUT bit1  
RF2/AN7/C1OUT bit2  
Input/output port pin or analog input or comparator 2 output.  
Input/output port pin or analog input or comparator 1 output.  
Input/output port pin or analog input or comparator input.  
Input/output port pin or analog input or comparator input.  
RF3/AN8  
RF4/AN9  
bit3  
bit4  
bit5  
RF5/AN10/  
CVREF  
Input/output port pin or analog input or comparator input or comparator  
reference output.  
RF6/AN11  
RF7  
bit6  
bit7  
ST  
ST  
Input/output port pin or analog input or comparator input.  
Input/output port pin.  
Legend: ST = Schmitt Trigger input  
TABLE 8-12: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF  
Value on:  
POR,  
BOR  
Value on all  
other RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISF  
PORTF Data Direction Control Register  
Read PORTF pin / Write PORTF Data Latch  
Read PORTF Data Latch/Write PORTF Data Latch  
1111 1111  
xxxx xxxx  
0000 0000  
1111 1111  
uuuu uuuu  
uuuu uuuu  
--00 0000  
0000 0000  
PORTF  
LATF  
ADCON1  
VCFG1 VCFG0 PCFG3 PCFG2 PCFG1 PCFG0 --00 0000  
CMCON C2OUT C1OUT C2INV C1INV  
CIS  
CM2  
CM1  
CM0 0000 0000  
Legend: x= unknown, u= unchanged  
DS30475A-page 100  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
8.7  
PORTG, LATG, and TRISG Registers  
EXAMPLE 8-7: INITIALIZING PORTG  
CLRF  
PORTG  
; Initialize PORTG by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
PORTG is a 5-bit wide, bi-directional port. The corre-  
sponding Data Direction register is TRISG. Setting a  
TRISG bit (=1) will make the corresponding PORTG pin  
an input (i.e., put the corresponding output driver in a  
hi-impedance mode). Clearing a TRISG bit (=0) will  
make the corresponding PORTG pin an output (i.e., put  
the contents of the output latch on the selected pin).  
CLRF  
LATG  
MOVLW  
MOVWF  
0x04  
Read-modify-write operations on the LATG register  
read and write the latched output value for PORTG.  
TRISG  
; Set RG1:RG0 as outputs  
; RG2 as input  
; RG4:RG3 as outputs  
Pins RG0-RG2 on PORTG are multiplexed with the  
CAN peripheral. Refer to "CAN Module", Section 17.0  
for proper settings of TRISG when CAN is enabled.  
FIGURE 8-12: RG0/CANTX0 PIN BLOCK DIAGRAM  
OPMODE2:OPMODE0=000  
TXD  
ENDRHI  
0
VDD  
RD LATG  
1
Data Bus  
D
Q
P
WR PORTG or  
WR LATG  
CK  
Q
Data Latch  
I/O Pin  
D
Q
N
WR TRISG  
RD TRISG  
CK  
Q
VSS  
TRIS Latch  
OPMODE2:OPMODE0 = 000  
Schmitt  
Trigger  
Q
D
EN  
RD PORTG  
Note: I/O pins have diode protection to VDD and VSS.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 101  
PIC18CXX8  
FIGURE 8-13: RG1/CANTX1 PIN BLOCK DIAGRAM  
TX1SRC  
OPMODE2:OPMODE0=000  
TX1EN  
TXD  
0
1
CANCLK  
ENDRHI  
0
1
VDD  
P
RD LATG  
Data Bus  
D
Q
WR PORTG or  
WR LATG  
CK  
Q
Data Latch  
I/O Pin  
D
Q
N
WR TRISG  
RD TRISG  
CK  
Q
TRIS Latch  
VSS  
OPMODE2:OPMODE0 = 000  
Schmitt  
Trigger  
Q
D
EN  
RD PORTG  
Note: I/O pins have diode protection to VDD and VSS.  
FIGURE 8-14: RG2/CANRX PIN BLOCK  
DIAGRAM  
FIGURE 8-15: RG4:RG3 PINS BLOCK  
DIAGRAM  
RD LATG  
RD LATG  
Data  
Bus  
Data  
Bus  
D
Q
D
Q
I/O Pin  
I/O Pin  
WR LATG  
or  
WR PORTG  
WR LATG  
or  
WR PORTG  
CK  
CK  
Data Latch  
Data Latch  
D
Q
D
Q
Schmitt  
Trigger  
Input  
Schmitt  
Trigger  
Input  
WR TRISG  
WR TRISG  
CK  
CK  
TRIS Latch  
Buffer  
Buffer  
TRIS Latch  
RD TRISG  
RD TRISG  
Q
D
Q
D
EN  
EN  
RD PORTG  
CANRX  
Note: I/O pins have diode protection to VDD and VSS.  
RD PORTG  
Note: I/O pins have diode protection to VDD and VSS.  
DS30475A-page 102  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
TABLE 8-13: PORTG FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
RG0/CANTX0  
RG1/CANTX1  
bit0  
bit1  
ST  
ST  
Input/output port pin or CAN bus transmit output.  
Input/output port pin or CAN bus complimentary transmit output or CAN  
bus bit time clock.  
RG2/CANRX  
RG3  
bit2  
bit3  
bit4  
ST  
ST  
ST  
Input/output port pin or CAN bus receive input.  
Input/output port pin.  
RG4  
Input/output port pin.  
Legend: ST = Schmitt Trigger input  
Note: Refer to "CAN Module", Section 17.0 for usage of CAN pin functions.  
TABLE 8-14: SUMMARY OF REGISTERS ASSOCIATED WITH PORTG  
Value on:  
POR,  
Value on all  
other  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3 Bit 2 Bit 1 Bit 0  
BOR  
RESETS  
TRISG  
PORTG  
LATG  
PORTG Data Direction Control Register  
---1 1111  
---x xxxx  
---x xxxx  
0000 ----  
---1 1111  
---u uuuu  
---u uuuu  
0000 ----  
Read PORTG pin / Write PORTG Data Latch  
Read PORTG Data Latch/Write PORTG Data Latch  
CIOCON TX1SRC TX1EN ENDRHI CANCAP  
Legend: x= unknown, u= unchanged  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 103  
PIC18CXX8  
8.8  
PORTH, LATH, and TRISH Registers  
EXAMPLE 8-8: INITIALIZING PORTH  
CLRF  
PORTH  
; Initialize PORTH by  
; clearing output  
; data latches  
; Alternate method  
; to clear output  
; data latches  
;
Note: This port is available on PIC18C858.  
PORTH is a 5-bit wide, bi-directional port available only  
on the PIC18C858 devices. The corresponding Data  
Direction register is TRISH. Setting a TRISH bit (=1)  
will make the corresponding PORTH pin an input (i.e.,  
put the corresponding output driver in a hi-impedance  
mode). Clearing a TRISH bit (=0) will make the corre-  
sponding PORTH pin an output (i.e., put the contents  
of the output latch on the selected pin).  
CLRF  
LATH  
MOVLW  
MOVWF  
MOVLW  
0x0F  
ADCON1  
0xCF  
;
; Value used to  
; initialize data  
; direction  
MOVWF  
TRISH  
; Set RH3:RH0 as inputs  
; RH5:RH4 as outputs  
; RH7:RH6 as inputs  
Read-modify-write operations on the LATH register  
read and write the latched output value for PORTH.  
Pins RH0-RH3 on the PIC18C858 are bi-directional I/O  
pins with ST input buffers. Pins RH4-RH7 on all devices  
are multiplexed with A/D converter inputs.  
FIGURE 8-17: RH7:RH4 PINS BLOCK  
DIAGRAM  
Note: On a Power-on Reset, the RH7:RH4 pins  
are configured as inputs and read as 0.  
FIGURE 8-16: RH3:RH0 PINS BLOCK  
DIAGRAM  
RD LATH  
Data  
Bus  
D
Q
VDD  
P
WR LATH  
or  
WR PORTH  
CK  
Q
RD LATH  
Data Bus  
D
Q
Q
Data Latch  
VDD  
P
WR LATH  
or  
CK  
N
I/O Pin  
D
Q
WR PORTH  
Data Latch  
WR TRISH  
VSS  
CK  
Q
I/O Pin  
D
Q
Q
Analog  
TRIS Latch  
Input  
WR TRISH  
N
Mode  
CK  
TRIS Latch  
VSS  
ST  
Input  
Buffer  
RD TRISH  
RD TRISH  
Schmitt  
Trigger  
Q
D
Q
D
EN  
EN  
RD  
PORTH  
RD PORTH  
To A/D Converter  
Note:  
I/O pins have diode protection to VDD and VSS.  
Note:  
I/O pins have diode protection to VDD and VSS.  
DS30475A-page 104  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
TABLE 8-15: PORTH FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
RH0  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Input/output port pin.  
Input/output port pin.  
Input/output port pin.  
Input/output port pin.  
RH1  
RH2  
RH3  
RH4/AN12  
RH5/AN13  
RH6/AN14  
RH7/AN15  
Input/output port pin or analog input channel 12.  
Input/output port pin or analog input channel 13.  
Input/output port pin or analog input channel 14.  
Input/output port pin or analog input channel 15.  
Legend: ST = Schmitt Trigger input  
TABLE 8-16: SUMMARY OF REGISTERS ASSOCIATED WITH PORTH  
Value on:  
POR,  
Value on all  
other  
Name  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOR  
RESETS  
TRISH  
PORTH  
LATH  
PORTH Data Direction Control Register  
Read PORTH pin/Write PORTH Data Latch  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
Read PORTH Data Latch/Write PORTH Data Latch  
VCFG1 VCFG0 PCFG3 PCFG2 PCFG1  
ADCON1  
PCFG0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, - = unimplemented  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 105  
PIC18CXX8  
8.9  
PORTJ, LATJ, and TRISJ Registers  
EXAMPLE 8-9: INITIALIZING PORTJ  
CLRF  
PORTJ  
; Initialize PORTJ by  
; clearing output  
; data latches  
Note: This port is available on PIC18C858.  
PORTJ is an 8-bit wide, bi-directional port available  
only on the PIC18C858 devices. The corresponding  
Data Direction register is TRISJ. Setting a TRISJ bit  
(=1) will make the corresponding PORTJ pin an input  
CLRF  
LATJ  
; Alternate method  
; to clear output  
; data latches  
; Value used to  
; initialize data  
; direction  
; Set RJ3:RJ0 as inputs  
; RJ5:RJ4 as outputs  
; RJ7:RJ6 as inputs  
MOVLW  
MOVWF  
0xCF  
(i.e., put the corresponding output driver in  
a
hi-impedance mode). Clearing a TRISJ bit (=0) will  
make the corresponding PORTJ pin an output (i.e., put  
the contents of the output latch on the selected pin).  
TRISJ  
Read-modify-write operations on the LATJ register  
read and write the latched output value for PORTJ.  
PORTJ on the PIC18C858 is an 8-bit port with Schmitt  
Trigger input buffers. Each pin is individually config-  
urable as an input or output.  
FIGURE 8-18: PORTJ BLOCK DIAGRAM  
RD LATJ  
Data Bus  
D
Q
VDD  
P
WR LATJ  
or  
CK  
Q
WR PORTJ  
Data Latch  
I/O Pin  
N
D
Q
Q
VSS  
WR TRISJ  
CK  
TRIS Latch  
RD TRISJ  
Schmitt  
Trigger  
Q
D
EN  
RD PORTJ  
Note:  
I/O pins have diode protection to VDD and VSS.  
DS30475A-page 106  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
TABLE 8-17: PORTJ FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
RJ0  
RJ1  
RJ2  
RJ3  
RJ4  
RJ5  
RJ6  
RJ7  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
Input/output port pin.  
Input/output port pin.  
Input/output port pin.  
Input/output port pin.  
Input/output port pin.  
Input/output port pin.  
Input/output port pin.  
Input/output port pin.  
Legend: ST = Schmitt Trigger input, TTL = TTL input  
TABLE 8-18: SUMMARY OF REGISTERS ASSOCIATED WITH PORTJ  
Value on:  
POR,  
Value on all  
other  
Name  
Bit 7 Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOR  
RESETS  
TRISJ  
PORTJ Data Direction Control Register  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
PORTJ Read PORTJ pin/Write PORTJ Data Latch  
LATJ Read PORTJ Data Latch/Write PORTJ Data Latch  
Legend: x= unknown, u= unchanged  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 107  
PIC18CXX8  
8.10  
PORTK, LATK, and TRISK Registers  
FIGURE 8-19: PORTK BLOCK DIAGRAM  
Note: This port is available on PIC18C858.  
RD LATK  
PORTK is an 8-bit wide, bi-directional port available  
only on the PIC18C858 devices. The corresponding  
Data Direction register is TRISK. Setting a TRISK bit  
(=1) will make the corresponding PORTK pin an input  
Data  
Bus  
D
Q
I/O Pin  
WR LATK  
or  
WR PORTK  
CK  
Data Latch  
(i.e., put the corresponding output driver in  
a
hi-impedance mode). Clearing a TRISK bit (=0) will  
make the corresponding PORTK pin an output (i.e., put  
the contents of the output latch on the selected pin).  
D
Q
Schmitt  
Trigger  
Input  
WR TRISK  
Read-modify-write operations on the LATK register  
read and write the latched output value for PORTK.  
CK  
TRIS Latch  
Buffer  
PORTK is an 8-bit port with Schmitt Trigger input buff-  
ers. Each pin is individually configurable as an input or  
output.  
RD TRISK  
EXAMPLE 8-10: INITIALIZING PORTK  
Q
D
CLRF  
PORTK  
; Initialize PORTK by  
; clearing output  
; data latches  
EN  
RD PORTK  
CLRF  
LATK  
; Alternate method  
; to clear output  
; data latches  
MOVLW  
MOVWF  
0xCF  
; Value used to  
; initialize data  
; direction  
; Set RK3:RK0 as inputs  
; RK5:RK4 as outputs  
; RK7:RK6 as inputs  
Note:  
I/O pins have diode protection to VDD and VSS.  
TRISK  
TABLE 8-19: PORTK FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
RK0  
RK1  
RK2  
RK3  
RK4  
RK5  
RK6  
RK7  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Input/output port pin.  
Input/output port pin.  
Input/output port pin.  
Input/output port pin.  
Input/output port pin.  
Input/output port pin.  
Input/output port pin.  
Input/output port pin.  
Legend: ST = Schmitt Trigger input  
TABLE 8-20: SUMMARY OF REGISTERS ASSOCIATED WITH PORTK  
Value on:  
POR, BOR  
Value on all  
other RESETS  
Name  
Bit 7 Bit 6 Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISK PORTK Data Direction Control Register  
PORTK Read PORTK pin / Write PORTK Data Latch  
LATK Read PORTK Data Latch/Write PORTK Data Latch  
1111 1111  
xxxx xxxx  
xxxx xxxx  
1111 1111  
uuuu uuuu  
uuuu uuuu  
Legend: x= unknown, u= unchanged  
DS30475A-page 108  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
FIGURE 9-1: PORTD AND PORTE BLOCK  
DIAGRAM  
9.0  
PARALLEL SLAVE PORT  
The Parallel Slave Port is an 8-bit parallel interface for  
transferring data between the PIC18CXX8 device and  
an external device.  
(PARALLEL SLAVE PORT)  
Data Bus  
PORTD operates as an 8-bit wide Parallel Slave Port,  
or microprocessor port when control bit PSPMODE  
(PSPCON register) is set. In Slave mode, it is asyn-  
chronously readable and writable by the external world  
through RD control input pin RE0/RD and WR control  
input pin RE1/WR.  
D
Q
RDx Pin  
WR LATD  
or  
WR PORTD  
CK  
Data Latch  
TTL  
Q
D
It can directly interface to an 8-bit microprocessor data  
bus. The external microprocessor can read or write the  
PORTD latch as an 8-bit latch. Setting bit PSPMODE  
enables port pin RE0/RD to be the RD input, RE1/WR  
to be the WR input and RE2/CS to be the CS (chip  
select) input. For this functionality, the corresponding  
data direction bits of the TRISE register (TRISE<2:0>)  
must be configured as inputs (set).  
RD PORTD  
EN  
RD LATD  
A write to the PSP occurs when both the CS and WR  
lines are first detected low. A read from the PSP occurs  
when both the CS and RD lines are first detected low.  
One bit of PORTD  
Set Interrupt Flag  
PSPIF (PIR1<7>)  
The PORTE I/O pins become control inputs for the  
microprocessor port when bit PSPMODE (PSPCON  
Register) is set. In this mode, the user must make sure  
that the TRISE<2:0> bits are set (pins are configured  
as digital inputs). In this mode, the input buffers are  
TTL.  
Read  
RD  
CS  
WR  
TTL  
Chip Select  
TTL  
Write  
TTL  
Note:  
I/O pins have diode protection to VDD and VSS.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 109  
PIC18CXX8  
REGISTER 9-1:  
PSPCON REGISTER  
R-0  
IBF  
R-0  
R/W-0  
IBOV  
R/W-0  
U-0  
U-0  
U-0  
U-0  
OBF  
PSPMODE  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
IBF: Input Buffer Full Status bit  
1= A word has been received and waiting to be read by the CPU  
0= No word has been received  
OBF: Output Buffer Full Status bit  
1= The output buffer still holds a previously written word  
0= The output buffer has been read  
IBOV: Input Buffer Overflow Detect bit (in Microprocessor mode)  
1= A write occurred when a previously input word has not been read  
(must be cleared in software)  
0= No overflow occurred  
bit 4  
PSPMODE: Parallel Slave Port Mode Select bit  
1= Parallel Slave Port mode  
0= General purpose I/O mode  
bit 3-0  
Unimplemented: Read as 0’  
Legend  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
- n = Value at POR  
1= Bit is set  
0= Bit is cleared  
x = Bit is unknown  
DS30475A-page 110  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
FIGURE 9-2:  
PARALLEL SLAVE PORT WRITE WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD  
IBF  
OBF  
PSPIF  
FIGURE 9-3: PARALLEL SLAVE PORT READ WAVEFORMS  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
CS  
WR  
RD  
PORTD  
IBF  
OBF  
PSPIF  
TABLE 9-1:  
REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT  
Value on all  
other  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR, BOR  
RESETS  
PORTD Port data latch when written; port pins when read  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
LATD  
LATD Data Output Bits  
TRISD  
PORTE  
LATE  
PORTD Data Direction Bits  
RE7  
RE6  
RE5  
RE4  
RE3  
RE2  
RE1  
RE0  
LATE Data Output Bits  
TRISE  
INTCON  
PORTE Data Direction Bits  
GIE/  
PEIE/ TMR0IE INT0IE RBIE TMR0IF INT0IF  
GIEL  
RBIF 0000 000x 0000 000u  
GIEH  
PIR1  
PIE1  
IPR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
SSPIP CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
Legend: x= unknown, u= unchanged, - = unimplemented, read as 0.  
Shaded cells are not used by the Parallel Slave Port.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 111  
PIC18CXX8  
NOTES:  
DS30475A-page 112  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
Register 10-1 shows the Timer0 Control register  
(T0CON).  
10.0 TIMER0 MODULE  
The Timer0 module has the following features:  
Figure 10-1 shows a simplified block diagram of the  
Timer0 module in 8-bit mode and Figure 10-1 shows a  
simplified block diagram of the Timer0 module in 16-bit  
mode.  
Software selectable as an 8-bit or 16-bit  
timer/counter  
Readable and writable  
Dedicated 8-bit software programmable prescaler  
Clock source selectable to be external or internal  
Interrupt on overflow from FFh to 00h in 8-bit  
mode and FFFFh to 0000h in 16-bit mode  
Edge select for external clock  
The T0CON register is a readable and writable register  
that controls all the aspects of Timer0, including the  
prescale selection.  
Note: Timer0 is enabled on POR.  
REGISTER 10-1: T0CON REGISTER  
R/W-1  
TMR0ON  
bit 7  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
T0PS2  
R/W-1  
T0PS1  
R/W-1  
T0PS0  
T08BIT  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
TMR0ON: Timer0 On/Off Control bit  
1= Enables Timer0  
0= Stops Timer0  
T08BIT: Timer0 8-bit/16-bit Control bit  
1= Timer0 is configured as an 8-bit timer/counter  
0= Timer0 is configured as a 16-bit timer/counter  
T0CS: Timer0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Timer0 Prescaler Assignment bit  
1= TImer0 prescaler is NOT assigned. Timer0 clock input bypasses prescaler.  
0= Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.  
T0PS2:T0PS0: Timer0 Prescaler Select bits  
111= 1:256 prescale value  
110= 1:128 prescale value  
101= 1:64 prescale value  
100= 1:32 prescale value  
011= 1:16 prescale value  
010= 1:8 prescale value  
001= 1:4 prescale value  
000= 1:2 prescale value  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 113  
PIC18CXX8  
FIGURE 10-1: TIMER0 BLOCK DIAGRAM IN 8-BIT MODE  
Data Bus  
FOSC/4  
0
1
8
0
Sync with  
Internal  
Clocks  
TMR0L  
Programmable  
Prescaler  
RA4/T0CKI  
Pin(2)  
1
(2 TCY delay)  
T0SE  
3
PSA  
Set Interrupt  
Flag bit TMR0IF  
on Overflow  
T0PS2, T0PS1, T0PS0  
T0CS(1)  
Note 1:  
2:  
Upon RESET, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
I/O pins have diode protection to VDD and VSS.  
FIGURE 10-2: TIMER0 BLOCK DIAGRAM IN 16-BIT MODE  
FOSC/4  
0
1
0
1
Sync with  
Internal  
Clocks  
Set Interrupt  
Flag bit TMR0IF  
on Overflow  
TMR0  
High Byte  
TMR0L  
T0CKI Pin(2)  
T0SE  
Programmable  
Prescaler  
8
(2 TCY delay)  
3
Read TMR0L  
T0PS2, T0PS1, T0PS0  
Write TMR0L  
T0CS(1)  
PSA  
8
8
TMR0H  
8
Data Bus<7:0>  
Note 1:  
2:  
Upon RESET, Timer0 is enabled in 8-bit mode with clock input from T0CKI max. prescale.  
I/O pins have diode protection to VDD and VSS.  
DS30475A-page 114  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
10.1  
Timer0 Operation  
10.2  
Prescaler  
Timer0 can operate as a timer or as a counter.  
An 8-bit counter is available as a prescaler for the  
Timer0 module. The prescaler is not readable or  
writable.  
Timer mode is selected by clearing the T0CS bit. In  
Timer mode, the Timer0 module will increment every  
instruction cycle (without prescaler). If the TMR0L reg-  
ister is written, the increment is inhibited for the follow-  
ing two instruction cycles. The user can work around  
this by writing an adjusted value to the TMR0L register.  
The PSA and T0PS2:T0PS0 bits determine the  
prescaler assignment and prescale ratio.  
Clearing bit PSA will assign the prescaler to the Timer0  
module. When the prescaler is assigned to the Timer0  
module, prescale values of 1:2, 1:4, ..., 1:256 are  
selectable.  
Counter mode is selected by setting the T0CS bit. In  
Counter mode, Timer0 will increment either on every  
rising or falling edge of pin RA4/T0CKI. The increment-  
ing edge is determined by the Timer0 Source Edge  
Select bit (T0SE). Clearing the T0SE bit selects the ris-  
ing edge. Restrictions on the external clock input are  
discussed below.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g. CLRF TMR0,  
MOVWF TMR0, BSF TMR0, x.... etc.) will clear the  
prescaler count.  
Note: Writing to TMR0 when the prescaler is  
assigned to Timer0, will clear the prescaler  
count but will not change the prescaler  
assignment.  
When an external clock input is used for Timer0, it must  
meet certain requirements. The requirements ensure  
the external clock can be synchronized with the internal  
phase clock (TOSC). Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
10.2.1 SWITCHING PRESCALER ASSIGNMENT  
The prescaler assignment is fully under software con-  
trol (i.e., it can be changed on-the-flyduring program  
execution).  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 115  
PIC18CXX8  
10.3  
Timer0 Interrupt  
10.4  
16-Bit Mode Timer Reads and Writes  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h in 8-bit mode or FFFFh  
to 0000h in 16-bit mode. This overflow sets the TMR0IF  
bit. The interrupt can be masked by clearing the  
TMR0IE bit. The TMR0IF bit must be cleared in soft-  
ware by the Timer0 module interrupt service routine  
before re-enabling this interrupt. The TMR0 interrupt  
cannot awaken the processor from SLEEP, since the  
timer is shut off during SLEEP.  
Timer0 can be set in 16-bit mode by clearing T0CON  
T08BIT. Registers TMR0H and TMR0L are used to  
access 16-bit timer value.  
TMR0H is not the high byte of the timer/counter in  
16-bit mode, but is actually a buffered version of the  
high byte of Timer0 (refer to Figure 10-1). The high byte  
of the Timer0 counter/timer is not directly readable nor  
writable. TMR0H is updated with the contents of the  
high byte of Timer0 during a read of TMR0L. This pro-  
vides the ability to read all 16-bits of Timer0 without  
having to verify that the read of the high and low byte  
were valid due to a rollover between successive reads  
of the high and low byte.  
A write to the high byte of Timer0 must also take place  
through the TMR0H buffer register. Timer0 high byte is  
updated with the contents of buffered value of TMR0H,  
when a write occurs to TMR0L. This allows all 16 bits  
of Timer0 to be updated at once.  
TABLE 10-1: REGISTERS ASSOCIATED WITH TIMER0  
Value on  
all other  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 POR, BOR RESETS  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
TMR0L  
Timer0 Modules Low Byte Register  
TMR0H Timer0 Modules High Byte Register  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF RBIF  
0000 000x 0000 000u  
1111 1111 1111 1111  
T0CON  
TRISA  
TMR0ON  
T08BIT  
T0CS  
T0SE  
PSA  
T0PS2 T0PS1 T0PS0  
PORTA Data Direction Register(1)  
--11 1111 --11 1111  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by Timer0.  
Note 1: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator  
modes, they are disabled and read as 0.  
DS30475A-page 116  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
Register 11-1 shows the Timer1 control register. This  
register controls the operating mode of the Timer1  
module as well as contains the Timer1 oscillator enable  
bit (T1OSCEN). Timer1 can be enabled/disabled by  
setting/clearing control bit TMR1ON (T1CON register).  
11.0 TIMER1 MODULE  
The Timer1 module timer/counter has the following fea-  
tures:  
16-bit timer/counter  
(Two 8-bit registers: TMR1H and TMR1L)  
Figure 11-1 is a simplified block diagram of the Timer1  
module.  
Readable and writable (both registers)  
Internal or external clock select  
Note: Timer1 is disabled on POR.  
Interrupt on overflow from FFFFh to 0000h  
RESET from CCP module special event trigger  
REGISTER 11-1: T1CON REGISTER  
R/W-0  
RD16  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit 0  
bit 7  
bit 7  
RD16: 16-bit Read/Write Mode Enable bit  
1= Enables register Read/Write of TImer1 in one 16-bit operation  
0= Enables register Read/Write of Timer1 in two 8-bit operations  
bit 6  
Unimplemented: Read as '0'  
bit 5-4  
T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable bit  
1= Timer1 Oscillator is enabled  
0= Timer1 Oscillator is shut off  
The oscillator inverter and feedback resistor are turned off to eliminate power drain.  
T1SYNC: Timer1 External Clock Input Synchronization Select bit  
When TMR1CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
bit 1  
bit 0  
TMR1CS: Timer1 Clock Source Select bit  
1= External clock from pin RC0/T1OSO/T13CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 117  
PIC18CXX8  
When TMR1CS is clear, Timer1 increments every  
instruction cycle. When TMR1CS is set, Timer1 incre-  
ments on every rising edge of the external clock input  
or the Timer1 oscillator, if enabled.  
11.1  
Timer1 Operation  
Timer1 can operate in one of these modes:  
As a timer  
As a synchronous counter  
As an asynchronous counter  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins  
become inputs. That is, the TRISC<1:0> value is  
ignored.  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON register).  
Timer1 also has an internal RESET input. This  
RESET can be generated by the CCP module  
(Section 14.0).  
FIGURE 11-1: TIMER1 BLOCK DIAGRAM  
CCP Special Event Trigger  
TMR1IF  
Overflow  
Interrupt  
Synchronized  
TMR1  
0
Clock Input  
CLR  
TMR1L  
Flag Bit  
TMR1H  
T1OSC  
1
TMR1ON  
On/Off  
T1SYNC  
1
T13CKI/T1OSO  
T1OSI  
Synchronize  
det  
T1OSCEN  
Enable  
Oscillator  
Prescaler  
1, 2, 4, 8  
FOSC/4  
(1)  
Internal  
Clock  
0
2
SLEEP Input  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This reduces power drain.  
FIGURE 11-2: TIMER1 BLOCK DIAGRAM: 16-BIT READ/WRITE MODE  
Data Bus<7:0>  
8
TMR1H  
8
8
Write TMR1L  
Special Event Trigger  
Read TMR1L  
Synchronized  
0
TMR1IF  
Overflow  
Interrupt  
TMR1  
8
Clock Input  
Timer 1  
high byte  
TMR1L  
Flag bit  
1
TMR1ON  
On/Off  
T1SYNC  
T1OSC  
T13CKI/T1OSO  
T1OSI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
Fosc/4  
Internal  
Clock  
0
(1)  
2
SLEEP Input  
TMR1CS  
T1CKPS1:T1CKPS0  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This reduces power drain.  
DS30475A-page 118  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
11.2  
Timer1 Oscillator  
11.4  
Resetting Timer1 using a CCP Trigger  
Output  
A crystal oscillator circuit is built-in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON register). The  
oscillator is a low power oscillator rated up to 200 kHz.  
It will continue to run during SLEEP. It is primarily  
intended for a 32 kHz crystal. Table 11-1 shows the  
capacitor selection for the Timer1 oscillator.  
If the CCP module is configured in Compare mode  
to generate special event trigger"  
(CCP1M3:CCP1M0 = 1011), this signal will reset  
Timer1 and start an A/D conversion (if the A/D module  
is enabled).  
a
Note: The special event triggers from the CCP1  
module will not set interrupt flag bit  
TMR1IF (PIR registers).  
The user must provide a software time delay to ensure  
proper start-up of the Timer1 oscillator.  
Timer1 must be configured for either timer or Synchro-  
nized Counter mode to take advantage of this feature.  
If Timer1 is running in Asynchronous Counter mode,  
this RESET operation may not work.  
TABLE 11-1: CAPACITOR SELECTION FOR  
THE ALTERNATE OSCILLATOR  
Osc Type  
Freq  
C1  
C2  
TBD(1)  
TBD(1)  
In the event that a write to Timer1 coincides with a spe-  
cial event trigger from CCP1, the write will take prece-  
dence.  
LP  
32 kHz  
Crystal to be Tested:  
32.768 kHz Epson C-001R32.768K-A  
In this mode of operation, the CCPR1H:CCPR1L regis-  
ters pair, effectively becomes the period register for  
Timer1.  
20 PPM  
Note 1: Microchip suggests 33 pF as a starting  
point in validating the oscillator circuit.  
2: Higher capacitance increases the stability  
of the oscillator, but also increases the  
start-up time.  
11.5  
Timer1 16-Bit Read/Write Mode  
Timer1 can be configured for 16-bit reads and writes  
(see Figure 11-2). When the RD16 control bit (T1CON  
register) is set, the address for TMR1H is mapped to a  
buffer register for the high byte of Timer1. A read from  
TMR1L will load the contents of the high byte of Timer1  
into the Timer1 high byte buffer. This provides the user  
with the ability to accurately read all 16 bits of Timer1,  
without having to determine whether a read of the high  
byte followed by a read of the low byte is valid, due to  
a rollover between reads.  
3: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appropri-  
ate values of external components.  
4: Capacitor values are for design guidance  
only.  
11.3  
Timer1 Interrupt  
The TMR1 Register pair (TMR1H:TMR1L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
TMR1 Interrupt, if enabled, is generated on overflow,  
which is latched in interrupt flag bit TMR1IF (PIR regis-  
ters). This interrupt can be enabled/disabled by set-  
ting/clearing TMR1 interrupt enable bit TMR1IE (PIE  
registers).  
A write to the high byte of Timer1 must also take place  
through the TMR1H buffer register. Timer1 high byte is  
updated with the contents of TMR1H when a write  
occurs to TMR1L. This allows a user to write all 16 bits  
to both the high and low bytes of Timer1 at once.  
The high byte of Timer1 is not directly readable or writ-  
able in this mode. All reads and writes must take place  
through the Timer1 high byte buffer register. Writes to  
TMR1H do not clear the Timer1 prescaler. The  
prescaler is only cleared on writes to TMR1L.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 119  
PIC18CXX8  
TABLE 11-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PIR1  
PIE1  
IPR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TMR2IF  
TMR1IF 0000 0000 0000 0000  
TMR1IE 0000 0000 0000 0000  
TMR1IP 0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
TXIE  
TXIP  
CCP1IE TMR2IE  
CCP1IP TMR2IP  
TMR1L Holding register for the Least Significant Byte of the 16-bit TMR1 register  
TMR1H Holding register for the Most Significant Byte of the 16-bit TMR1 register  
xxxx xxxx uuuu uuuu  
T1CON  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.  
DS30475A-page 120  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
12.1  
Timer2 Operation  
12.0 TIMER2 MODULE  
The Timer2 module timer has the following features:  
Timer2 can be used as the PWM time-base for the  
PWM mode of the CCP module. The TMR2 register is  
readable and writable, and is cleared on any device  
RESET. The input clock (FOSC/4) has a prescale option  
of 1:1, 1:4 or 1:16, selected by control bits  
T2CKPS1:T2CKPS0 (T2CON Register). The match  
output of TMR2 goes through a 4-bit postscaler (which  
gives a 1:1 to 1:16 scaling inclusive) to generate a  
TMR2 interrupt (latched in flag bit TMR2IF, PIR regis-  
ters).  
8-bit timer (TMR2 register)  
8-bit period register (PR2)  
Readable and writable (both registers)  
Software programmable prescaler (1:1, 1:4, 1:16)  
Software programmable postscaler (1:1 to 1:16)  
Interrupt on TMR2 match of PR2  
SSP module optional use of TMR2 output to gen-  
erate clock shift  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
Register 12-1 shows the Timer2 Control register.  
Timer2 can be shut off by clearing control bit TMR2ON  
(T2CON register) to minimize power consumption.  
Figure 12-1 is a simplified block diagram of the Timer2  
module. The prescaler and postscaler selection of  
Timer2 are controlled by this register.  
A write to the TMR2 register  
A write to the T2CON register  
Any device RESET (Power-on Reset, MCLR  
Reset, Watchdog Timer Reset, or Brown-out  
Reset)  
TMR2 is not cleared when T2CON is written.  
Note: Timer2 is disabled on POR.  
REGISTER 12-1: T2CON REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit 0  
bit 7  
bit 7  
Unimplemented: Read as '0'  
bit 6-3  
TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 121  
PIC18CXX8  
12.2  
Timer2 Interrupt  
12.3  
Output of TMR2  
The Timer2 module has an 8-bit period register PR2.  
Timer2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is  
initialized to FFh upon RESET.  
The output of TMR2 (before the postscaler) is a clock  
input to the Synchronous Serial Port module, which  
optionally uses it to generate the shift clock.  
FIGURE 12-1: TIMER2 BLOCK DIAGRAM  
Sets Flag  
TMR2  
bit TMR2IF  
Output(1)  
Prescaler  
RESET  
TMR2  
FOSC/4  
1:1, 1:4, 1:16  
Postscaler  
2
Comparator  
1:16  
1:1 to  
EQ  
T2CKPS1:T2CKPS0  
4
PR2  
TOUTPS3:TOUTPS0  
TMR2 register output can be software selected by the SSP Module as a baud clock.  
Note 1:  
TABLE 12-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on  
all other  
RESETS  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL  
TMR0IE  
RCIF  
INT0IE  
TXIF  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
CCP1IF  
CCP1IE  
CCP1IP  
INT0IF  
TMR2IF  
TMR2IE  
TMR2IP  
RBIF  
0000 000x  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
-000 0000  
1111 1111  
0000 000u  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
-000 0000  
1111 1111  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
TMR1IF  
TMR1IE  
TMR1IP  
PIE1  
RCIE  
TXIE  
TXIP  
IPR1  
RCIP  
TMR2  
T2CON  
PR2  
Timer2 modules register  
TOUTPS3  
Timer2 Period Register  
TOUTPS2  
TOUTPS1  
TOUTPS0  
TMR2ON  
T2CKPS1  
T2CKPS0  
Legend: x= unknown, u= unchanged, -= unimplemented, read as 0. Shaded cells are not used by the Timer2 module.  
DS30475A-page 122  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
Figure 13-1 is a simplified block diagram of the Timer3  
module.  
13.0 TIMER3 MODULE  
The Timer3 module timer/counter has the following  
features:  
Register 13-1 shows the Timer3 Control Register. This  
register controls the operating mode of the Timer3  
module and sets the CCP clock source.  
16-bit timer/counter  
(Two 8-bit registers: TMR3H and TMR3L)  
Register 11-1 shows the Timer1 Control register. This  
register controls the operating mode of the Timer1  
module, as well as contains the Timer1 oscillator  
enable bit (T1OSCEN), which can be a clock source for  
Timer3.  
Readable and writable (both registers)  
Internal or external clock select  
Interrupt on overflow from FFFFh to 0000h  
RESET from CCP module trigger  
Note: Timer3 is disabled on POR.  
REGISTER 13-1: T3CON REGISTER  
R/W-0  
RD16  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3CCP2 T3CKPS1 T3CKPS0 T3CCP1  
T3SYNC TMR3CS TMR3ON  
bit 0  
bit 7  
bit 7  
RD16: 16-bit Read/Write Mode Enable  
1= Enables register Read/Write of Timer3 in one 16-bit operation  
0= Enables register Read/Write of Timer3 in two 8-bit operations  
bit 6,3  
T3CCP2:T3CCP1: Timer3 and Timer1 to CCPx Enable bits  
1x= Timer3 is the clock source for compare/capture CCP modules  
01= Timer3 is the clock source for compare/capture of CCP2,  
Timer1 is the clock source for compare/capture of CCP1  
00= Timer1 is the clock source for compare/capture CCP modules  
bit 5-4  
bit 2  
T3CKPS1:T3CKPS0: Timer3 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
T3SYNC: Timer3 External Clock Input Synchronization Control bit  
(Not usable if the system clock comes from Timer1/Timer3)  
When TMR3CS = 1:  
1= Do not synchronize external clock input  
0= Synchronize external clock input  
When TMR3CS = 0:  
This bit is ignored. Timer3 uses the internal clock when TMR3CS = 0.  
bit 1  
bit 0  
TMR3CS: Timer3 Clock Source Select bit  
1= External clock input from Timer1 oscillator or T1CKI (on the rising edge after the first falling  
edge)  
0= Internal clock (Fosc/4)  
TMR3ON: Timer3 On bit  
1= Enables Timer3  
0= Stops Timer3  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 123  
PIC18CXX8  
When TMR3CS = 0, Timer3 increments every instruc-  
tion cycle. When TMR3CS = 1, Timer3 increments on  
every rising edge of the Timer1 external clock input or  
the Timer1 oscillator, if enabled.  
13.1  
Timer3 Operation  
Timer3 can operate in one of these modes:  
As a timer  
As a synchronous counter  
As an asynchronous counter  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins  
become inputs. That is, the TRISC<1:0> value is  
ignored.  
The operating mode is determined by the clock select  
bit, TMR3CS (T3CON register).  
Timer3 also has an internal RESET input. This  
RESET can be generated by the CCP module  
(Section 13.0).  
FIGURE 13-1: TIMER3 BLOCK DIAGRAM  
CCP Special Trigger  
TMR3IF  
Overflow  
Interrupt  
T3CCPx  
Synchronized  
0
Clock Input  
Flag bit  
CLR  
TMR3L  
TMR3H  
T1OSC  
1
TMR3ON  
on/off  
T3SYNC  
T1OSO/  
T13CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Fosc/4  
Internal  
0
(1)  
T1OSI  
Oscillator  
Clock  
2
SLEEP Input  
TMR3CS  
T3CKPS1:T3CKPS0  
Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
FIGURE 13-2: TIMER3 BLOCK DIAGRAM CONFIGURED IN 16-BIT READ/WRITE MODE  
Data Bus<7:0>  
8
TMR3H  
8
8
Write TMR3L  
Read TMR3L  
CCP Special Trigger  
T3CCPx  
Synchronized  
Clock Input  
8
TMR3  
TMR3IF Overflow  
Interrupt Flag  
bit  
0
CLR  
TMR3H  
TMR3L  
1
To Timer1 Clock Input  
TMR3ON  
On/Off  
T3SYNC  
T1OSC  
T1OSO/  
T13CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
Oscillator  
FOSC/4  
Internal  
Clock  
0
(1)  
T1OSI  
2
SLEEP Input  
T3CKPS1:T3CKPS0  
TMR3CS  
Note 1: When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
DS30475A-page 124  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
13.2  
Timer1 Oscillator  
13.4  
Resetting Timer3 Using a CCP Trigger  
Output  
The Timer1 oscillator may be used as the clock source  
for Timer3. The Timer1 oscillator is enabled by setting  
the T1OSCEN bit (T1CON Register). The oscillator is  
a low power oscillator rated up to 200 kHz. Refer to  
Timer1 Module, Section 11.0 for Timer1 oscillator  
details.  
If the CCP module is configured in Compare mode to  
generate a special event trigger" (CCP1M3:CCP1M0  
= 1011), this signal will reset Timer3.  
Note: The special event triggers from the CCP  
module will not set interrupt flag bit  
TMR3IF (PIR registers).  
13.3  
Timer3 Interrupt  
Timer3 must be configured for either timer or Synchro-  
nized Counter mode to take advantage of this feature. If  
Timer3 is running in Asynchronous Counter mode, this  
RESET operation may not work. In the event that a write  
to Timer3 coincides with a special event trigger from  
CCP1, the write will take precedence. In this mode of  
operation, the CCPR1H:CCPR1L registers pair  
becomes the period register for Timer3. Refer to  
Capture/Compare/PWM (CCP) Modules, Section 14.0  
for CCP details.  
The TMR3 Register pair (TMR3H:TMR3L) increments  
from 0000h to FFFFh and rolls over to 0000h. The  
TMR3 Interrupt, if enabled, is generated on overflow  
which is latched in interrupt flag bit TMR3IF (PIR Reg-  
isters). This interrupt can be enabled/disabled by set-  
ting/clearing TMR3 interrupt enable bit TMR3IE (PIE  
Registers).  
TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER  
Value on  
POR,  
BOR  
Value on  
all other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PIR2  
CMIF  
CMIE  
CMIP  
BCLIF  
BCLIE  
BCLIP  
LVDIF  
LVDIE  
LVDIP  
TMR3IF  
CCP2IF -0-- 0000 -0-- 0000  
PIE2  
TMR3IE CCP2IE -0-- 0000 -0-- 0000  
TMR3IP CCP2IP -0-- 0000 -0-- 0000  
IPR2  
TMR3L  
TMR3H  
T1CON  
T3CON  
Holding register for the Least Significant Byte of the 16-bit TMR3 register  
Holding register for the Most Significant Byte of the 16-bit TMR3 register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu  
T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu  
RD16 T3CCP2 T3CKPS1 T3CKPS0 T3CCP1  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 125  
PIC18CXX8  
NOTES:  
DS30475A-page 126  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
Section 17.0 for CAN operation.) Therefore, operation  
of a CCP module in the following sections is described  
with respect to CCP1.  
14.0 CAPTURE/COMPARE/PWM  
(CCP) MODULES  
Each CCP (Capture/Compare/PWM) module contains  
a 16-bit register that can operate as a 16-bit capture  
register, as a 16-bit compare register, or as a PWM  
Duty Cycle register. Table 14-1 shows the timer  
resources of the CCP module modes.  
Table 14-2 shows the interaction of the CCP modules.  
Register 14-1 shows the CCPx Control registers  
(CCPxCON). For the CCP1 module, the register is  
called CCP1CON and for the CCP2 module, the regis-  
ter is called CCP2CON.  
The operation of CCP1 is identical to that of CCP2, with  
the exception of the special event trigger and the CAN  
message timestamp received. (Refer to CAN Module,  
REGISTER 14-1: CCP1CON REGISTER  
CCP2CON REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CCP1CON  
CCP2CON  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
bit 0  
bit 7  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DC2B1  
DC2B0  
CCP2M3 CCP2M2 CCP2M1 CCP2M0  
bit 0  
bit 7  
bit 7-6  
bit 5-4  
Unimplemented: Read as '0'  
DCxB1:DCxB0: PWM Duty Cycle bit1 and bit0  
Capture Mode:  
Unused  
Compare Mode:  
Unused  
PWM Mode:  
These bits are the two LSbs (bit1 and bit0) of the 10-bit PWM duty cycle. The upper eight bits  
(DCx9:DCx2) of the duty cycle are found in CCPRxL.  
bit 3-0  
CCPxM3:CCPxM0: CCPx Mode Select bits  
0000= Capture/Compare/PWM off (resets CCPx module)  
0001= Reserved  
0010= Compare mode, toggle output on match (CCPxIF bit is set)  
0011= Capture mode, CAN message received (CCP1 only)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode,  
Initialize CCP pin Low, on compare match force CCP pin High (CCPIF bit is set)  
1001= Compare mode,  
Initialize CCP pin High, on compare match force CCP pin Low (CCPIF bit is set)  
1010= Compare mode,  
Generate software interrupt on compare match  
(CCPIF bit is set, CCP pin is unaffected)  
1011= Compare mode,  
Trigger special event (CCPIF bit is set, reset TMR1 or TMR3)  
11xx= PWM mode  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 127  
PIC18CXX8  
14.1  
CCP1 Module  
14.3  
Capture Mode  
Capture/Compare/PWM Register1 (CCPR1) is com-  
prised of two 8-bit registers: CCPR1L (low byte) and  
CCPR1H (high byte). The CCP1CON register controls  
the operation of CCP1. All are readable and writable.  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 or TMR3 registers when an  
event occurs on pin RC2/CCP1. An event is defined as:  
every falling edge  
every rising edge  
14.2  
CCP2 Module  
every 4th rising edge  
every 16th rising edge  
Capture/Compare/PWM Register2 (CCPR2) is com-  
prised of two 8-bit registers: CCPR2L (low byte) and  
CCPR2H (high byte). The CCP2CON register controls  
the operation of CCP2. All are readable and writable.  
An event is selected by control bits CCP1M3:CCP1M0  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit CCP1IF (PIR registers) is set. It  
must be cleared in software. If another capture occurs  
before the value in register CCPR1 is read, the old cap-  
tured value will be lost.  
TABLE 14-1: CCP MODE - TIMER  
RESOURCE  
CCP Mode  
Timer Resource  
14.3.1 CCP PIN CONFIGURATION  
Capture  
Compare  
PWM  
Timer1 or Timer3  
Timer1 or Timer3  
Timer2  
In Capture mode, the RC2/CCP1 pin should be config-  
ured as an input by setting the TRISC<2> bit.  
Note: If the RC2/CCP1 is configured as an out-  
put, a write to the port can cause a capture  
condition.  
14.3.2 TIMER1/TIMER3 MODE SELECTION  
The timers used with the capture feature (either Timer1  
and/or Timer3) must be running in Timer mode or Syn-  
chronized Counter mode. In Asynchronous Counter  
mode, the capture operation may not work. The timer  
used with each CCP module is selected in the T3CON  
register.  
TABLE 14-2: INTERACTION OF TWO CCP MODULES  
CCPx Mode CCPy Mode  
Interaction  
Capture  
Capture  
Capture  
TMR1 or TMR3 time-base. Time-base can be different for each CCP.  
Compare  
The compare could be configured for the special event trigger, which clears either TMR1  
or TMR3, depending upon which time-base is used.  
Compare  
Compare  
The compare(s) could be configured for the special event trigger, which clears TMR1 or  
TMR3 depending upon which time-base is used.  
PWM  
PWM  
PWM  
PWM  
The PWMs will have the same frequency and update rate (TMR2 interrupt).  
Capture  
Compare  
None  
None  
DS30475A-page 128  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
14.3.3 SOFTWARE INTERRUPT  
14.3.5 CAN MESSAGE RECEIVED  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep bit  
CCP1IE (PIE registers) clear to avoid false interrupts  
and should clear the flag bit CCP1IF, following any  
such change in operating mode.  
The CAN capture event occurs when a message is  
received in either receive buffer. The CAN module pro-  
vides a rising edge to the CCP module to cause a cap-  
ture event. This feature is provided to time-stamp the  
received CAN messages.  
14.3.4 CCP PRESCALER  
EXAMPLE 14-1: CHANGING BETWEEN  
CAPTURE PRESCALERS  
There are four prescaler settings, specified by bits  
CCP1M3:CCP1M0. Whenever the CCP module is  
turned off, or the CCP module is not in Capture mode,  
the prescaler counter is cleared. This means that any  
RESET will clear the prescaler counter.  
CLRF  
CCP1CON, F ; Turn CCP module off  
MOVLW NEW_CAPT_PS ; Load WREG with the  
; new prescaler mode  
; value and CCP ON  
MOVWF CCP1CON  
; Load CCP1CON with  
; this value  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared; therefore, the first capture may be from  
a non-zero prescaler. Example 14-1 shows the recom-  
mended method for switching between capture pres-  
calers. This example also clears the prescaler counter  
and will not generate the falseinterrupt.  
FIGURE 14-1: CAPTURE MODE OPERATION BLOCK DIAGRAM  
TMR3H  
TMR3L  
CCPR1L  
TMR1L  
CCP1 Pin  
Set Flag bit CCP1IF  
T3CCP2  
TMR3  
Enable  
Prescaler  
÷ 1, 4, 16  
RXB0IF or  
RXB1IF  
CCPR1H  
TMR1  
Enable  
CCP1CON<3:0>  
and  
edge detect  
T3CCP2  
TMR1H  
CCP1M3:CCP1M0  
Qs  
Set Flag bit CCP2IF  
T3CCP1  
TMR3H  
TMR3L  
CCPR2L  
TMR1L  
T3CCP2  
TMR3  
Enable  
Prescaler  
÷ 1, 4, 16  
CCP2 Pin  
CCPR2H  
TMR1  
Enable  
and  
edge detect  
T3CCP2  
T3CCP1  
TMR1H  
CCP2M3:CCP2M0  
Qs  
Note:  
I/O pins have diode protection to VDD and VSS.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 129  
PIC18CXX8  
14.4.2 TIMER1/TIMER3 MODE SELECTION  
14.4  
Compare Mode  
Timer1 and/or Timer3 must be running in Timer mode  
or Synchronized Counter mode, if the CCP module is  
using the compare feature. In Asynchronous Counter  
mode, the compare operation may not work.  
In Compare mode, the 16-bit CCPR1 (CCPR2) register  
value is constantly compared against either the TMR1  
register pair value, or the TMR3 register pair value.  
When a match occurs, the RC2/CCP1 (RC1/CCP2) pin  
can have one of the following actions:  
14.4.3 SOFTWARE INTERRUPT MODE  
Driven high  
When Generate Software Interrupt is chosen, the  
CCP1 pin is not affected. Only a CCP Interrupt is gen-  
erated (if enabled).  
Driven low  
Toggle output (high to low or low to high)  
Remains unchanged  
14.4.4 SPECIAL EVENT TRIGGER  
The action on the pin is based on the value of control  
bits CCP1M3:CCP1M0 (CCP2M3:CCP2M0). At the  
same time, interrupt flag bit CCP1IF (CCP2IF) is set.  
In this mode, an internal hardware trigger is generated,  
which may be used to initiate an action.  
14.4.1 CCP PIN CONFIGURATION  
The special event trigger output of CCP1 resets the  
TMR1 register pair. This allows the CCPR1 register to  
effectively be a 16-bit programmable period register for  
Timer1.  
The user must configure the CCPx pin as an output by  
clearing the appropriate TRISC bit.  
Note: Clearing the CCP1CON register will force  
the RC2/CCP1 compare output latch to the  
default low level. This is not the data latch.  
The special trigger output of CCPx resets either the  
TMR1 or TMR3 register pair. Additionally, the CCP2  
Special Event Trigger will start an A/D conversion if the  
A/D module is enabled.  
Note: The special event trigger from the CCP2  
module will not set the Timer1 or Timer3  
interrupt flag bits.  
FIGURE 14-2: COMPARE MODE OPERATION BLOCK DIAGRAM  
Special Event Trigger will:  
Reset Timer1 or Timer3 (but not set Timer1 or Timer3 Interrupt Flag bit)  
Set bit GO/DONE, which starts an A/D conversion (CCP2 only)  
Special Event Trigger  
Set Flag bit CCP1IF  
CCPR1H CCPR1L  
Comparator  
Q
S
R
Output  
Logic  
match  
RC2/CCP1  
Pin  
TRISC<2>  
Output Enable  
1
CCP1M3:CCP1M0  
Mode Select  
0
T3CCP2  
TMR1H TMR1L  
TMR3H TMR3L  
Special Event Trigger  
Set Flag bit CCP2IF  
Match  
T3CCP1  
T3CCP2  
0
1
Q
S
R
Output  
Logic  
Comparator  
RC1/CCP2  
Pin  
TRISC<1>  
Output Enable  
CCPR2H CCPR2L  
CCP2M3:CCP2M0  
Mode Select  
Note:  
I/O pins have diode protection to VDD and VSS.  
DS30475A-page 130  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
TABLE 14-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, TIMER1 AND TIMER3  
Value on  
POR,  
BOR  
Value on  
all other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF 0000 000x 0000 000u  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
1111 1111 1111 1111  
PIE1  
IPR1  
TRISC  
TMR1L  
TMR1H  
T1CON  
PORTC Data Direction Register  
Holding register for the Least Significant Byte of the 16-bit TMR1 register  
Holding register for the Most Significant Byte of the 16-bit TMR1register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RD16  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON 0-00 0000 u-uu uuuu  
CCPR1L Capture/Compare/PWM register1 (LSB)  
CCPR1H Capture/Compare/PWM register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP1CON  
DC1B1  
DC1B0 CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
CCPR2L Capture/Compare/PWM register2 (LSB)  
CCPR2H Capture/Compare/PWM register2 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP2CON  
PIR2  
DC2B1  
DC2B0 CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
CMIF  
CMIE  
CMIP  
BCLIF  
BCLIE  
BCLIP  
LVDIF TMR3IF CCP2IF -0-- 0000 -0-- 0000  
LVDIE TMR3IE CCP2IE -0-- 0000 -0-- 0000  
LVDIP TMR3IP CCP2IP -0-- 0000 -0-- 0000  
PIE2  
IPR2  
TMR3L  
TMR3H  
T3CON  
Holding register for the Least Significant Byte of the 16-bit TMR3 register  
Holding register for the Most Significant Byte of the 16-bit TMR3 register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RD16 T3CCP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON 0000 0000 uuuu uuuu  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 131  
PIC18CXX8  
14.5.1 PWM PERIOD  
14.5  
PWM Mode  
The PWM period is specified by writing to the PR2 reg-  
ister. The PWM period can be calculated using the fol-  
lowing formula:  
In Pulse Width Modulation (PWM) mode, the CCP1 pin  
produces up to a 10-bit resolution PWM output. Since  
the CCP1 pin is multiplexed with the PORTC data latch,  
the TRISC<2> bit must be cleared to make the CCP1  
pin an output.  
PWM period = [(PR2) + 1] • 4 • TOSC •  
(TMR2 prescale value)  
Note: Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is not the PORTC I/O data  
latch.  
PWM frequency is defined as 1 / [PWM period].  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
TMR2 is cleared  
Figure 14-3 shows a simplified block diagram of the  
CCP module in PWM mode.  
The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, see Section 14.5.3.  
The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
Note: The Timer2 postscaler (see Section 12.0)  
is not used in the determination of the  
PWM frequency. The postscaler could be  
used to have a servo update rate at a dif-  
ferent frequency than the PWM output.  
FIGURE 14-3: SIMPLIFIED PWM BLOCK  
DIAGRAM  
CCP1CON<5:4>  
Duty Cycle Registers  
CCPR1L (Master)  
14.5.2 PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available. The CCPR1L contains  
the eight MSbs and the CCP1CON<5:4> contains the  
two LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
CCPR1H (Slave)  
Q
R
S
Comparator  
RC2/CCP1  
(Note 1)  
TMR2  
PWM duty cycle = (CCPR1L:CCP1CON<5:4>) •  
TOSC (TMR2 prescale value)  
TRISC<2>  
Comparator  
PR2  
Clear Timer,  
CCP1 pin and  
latch D.C.  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read-only register.  
Note 1:  
8-bit timer is concatenated with 2-bit internal Q  
clock, or 2 bits of the prescaler, to create 10-bit  
time-base.  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
A PWM output (Figure 14-4) has a time-base (period)  
and a time that the output stays high (duty cycle). The  
frequency of the PWM is the inverse of the period  
(1/period).  
When the CCPR1H and 2-bit latch match TMR2, con-  
catenated with an internal 2-bit Q clock or 2 bits of the  
TMR2 prescaler, the CCP1 pin is cleared.  
Maximum PWM resolution (bits) for a given PWM  
frequency:  
FIGURE 14-4: PWM OUTPUT  
Period  
FOSC   
log ---------------  
FPWM  
= ----------------------------- b i t s  
log(2)  
Duty Cycle  
TMR2 = PR2  
Note: If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
TMR2 = Duty Cycle  
TMR2 = PR2  
DS30475A-page 132  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
14.5.3 SETUP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
1. Set the PWM period by writing to the PR2  
register.  
2. Set the PWM duty cycle by writing to the  
CCPR1L register and CCP1CON<5:4> bits.  
3. Make the CCP1 pin an output by clearing the  
TRISC<2> bit.  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
5. Configure the CCP1 module for PWM operation.  
TABLE 14-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz  
PWM Frequency  
2.44 kHz 9.76 kHz 39.06 kHz 156.3 kHz 312.5 kHz 416.6 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
0xFF  
10  
0xFF  
10  
0x17  
5.5  
Maximum Resolution (bits)  
TABLE 14-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
all other  
RESETS  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE  
INT0IE  
RBIE  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF  
SSPIE  
SSPIP  
TMR2IF  
TMR1IF 0000 0000 0000 0000  
TMR1IE 0000 0000 0000 0000  
TMR1IP 0000 0000 0000 0000  
1111 1111 1111 1111  
PIE1  
CCP1IE TMR2IE  
CCP1IP TMR2IP  
IPR1  
TRISC  
TMR2  
PR2  
PORTC Data Direction Register  
Timer2 modules register  
0000 0000 0000 0000  
Timer2 modules period register  
1111 1111 1111 1111  
T2CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
CCPR1L Capture/Compare/PWM register1 (LSB)  
CCPR1H Capture/Compare/PWM register1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
CCP1CON  
DC1B1  
DC1B0  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
xxxx xxxx uuuu uuuu  
CCPR2L Capture/Compare/PWM register2 (LSB)  
CCPR2H Capture/Compare/PWM register2 (MSB)  
xxxx xxxx uuuu uuuu  
CCP2CON  
PIR2  
DC2B1  
DC2B0  
CCP2M3 CCP2M2 CCP2M1 CCP2M0 --00 0000 --00 0000  
CMIF  
CMIE  
CMIP  
BCLIF  
BCLIE  
BCLIP  
LVDIF  
LVDIE  
LVDIP  
TMR3IF  
TMR3IE  
TMR3IP  
CCP2IF -0-- 0000 -0-- 0000  
CCP2IE -0-- 0000 -0-- 0000  
CCP2IP -0-- 0000 -0-- 0000  
PIE2  
IPR2  
Legend: x= unknown, u= unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 133  
PIC18CXX8  
NOTES:  
DS30475A-page 134  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
15.0 MASTER SYNCHRONOUS  
SERIAL PORT (MSSP)  
MODULE  
15.1  
Master SSP (MSSP) Module Overview  
The Master Synchronous Serial Port (MSSP) module is  
a serial interface useful for communicating with other  
peripheral or microcontroller devices. These peripheral  
devices may be Serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The MSSP module  
can operate in one of two modes:  
Serial Peripheral InterfaceTM (SPI)  
Inter-Integrated Circuit (I2C)  
- Full Master mode  
- Slave mode (with general address call)  
The I2C interface supports the following modes in  
hardware:  
Master mode  
Multi-master mode  
Slave mode  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 135  
PIC18CXX8  
Register 15-1 shows the MSSP Status Register  
(SSPSTAT), Register 15-2 shows the MSSP Control  
Register 1 (SSPCON1), and Register 15-3 shows the  
MSSP Control Register 2 (SSPCON2).  
15.2  
Control Registers  
The MSSP module has three associated registers.  
These include a status register and two control registers.  
REGISTER 15-1: SSPSTAT REGISTER  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
bit 7  
SMP: Sample bit  
SPI Master mode  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave mode  
SMP must be cleared when SPI is used in Slave mode  
In I2C Master or Slave mode:  
1= Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)  
0= Slew rate control enabled for high speed mode (400 kHz)  
bit 6  
CKE: SPI Clock Edge Select  
CKP = 0  
1= Data transmitted on rising edge of SCK  
0= Data transmitted on falling edge of SCK  
CKP = 1  
1= Data transmitted on falling edge of SCK  
0= Data transmitted on rising edge of SCK  
bit 5  
bit 4  
D/A: Data/Address bit (I2C mode only)  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
P: STOP bit  
(I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)  
1= Indicates that a STOP bit has been detected last (this bit is 0on RESET)  
0= STOP bit was not detected last  
bit 3  
bit 2  
S: START bit  
(I2C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)  
1= Indicates that a START bit has been detected last (this bit is 0on RESET)  
0= START bit was not detected last  
R/W: Read/Write bit information (I2C mode only)  
This bit holds the R/W bit information following the last address match. This bit is only valid from  
the address match to the next START bit, STOP bit, or not ACK bit.  
In I2C Slave mode:  
1= Read  
0= Write  
In I2C Master mode:  
1=Transmit is in progress  
0=Transmit is not in progress  
OR-ing this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in  
IDLE mode.  
DS30475A-page 136  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
bit 1  
bit 0  
UA: Update Address (10-bit I2C mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
Receive (SPI and I2C modes)  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
Transmit (I2C mode only)  
1= Data Transmit in progress (does not include the ACK and STOP bits), SSPBUF is full  
0= Data Transmit complete (does not include the ACK and STOP bits), SSPBUF is empty  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 137  
PIC18CXX8  
REGISTER 15-2: SSPCON1 REGISTER  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3 SSPM2 SSPM1  
SSPM0  
bit 7  
bit 0  
bit 7  
WCOL: Write Collision Detect bit  
Master mode:  
1= A write to the SSPBUF register was attempted while the I2C conditions were not valid for a  
transmission to be started  
0= No collision  
Slave mode:  
1= The SSPBUF register is written while it is still transmitting the previous word (must be  
cleared in software)  
0= No collision  
bit 6  
SSPOV: Receive Overflow Indicator bit  
In SPI mode:  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case  
of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. In Slave  
mode, the user must read the SSPBUF, even if only transmitting data, to avoid setting  
overflow. In Master mode, the overflow bit is not set since each new reception (and  
transmission) is initiated by writing to the SSPBUF register. (Must be cleared in software.)  
0= No overflow  
In I2C mode:  
1= A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a  
"dont care" in Transmit mode. (Must be cleared in software.)  
0= No overflow  
bit 5  
SSPEN: Synchronous Serial Port Enable bit  
In both modes, when enabled, these pins must be properly configured as input or output.  
In SPI mode:  
1= Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial port  
pins  
0= Disables serial port and configures these pins as I/O port pins  
In I2C mode:  
1= Enables the serial port and configures the SDA and SCL pins as the source of the serial  
port pins  
0= Disables serial port and configures these pins as I/O port pins  
bit 4  
CKP: Clock Polarity Select bit  
In SPI mode:  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
In I2C Slave mode:  
SCK release control  
1= Enable clock  
0= Holds clock low (clock stretch). (Used to ensure data setup time.)  
In I2C Master mode  
Unused in this mode  
DS30475A-page 138  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
bit 3 - 0 SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
0000= SPI Master mode, clock = FOSC/4  
0001= SPI Master mode, clock = FOSC/16  
0010= SPI Master mode, clock = FOSC/64  
0011= SPI Master mode, clock = TMR2 output/2  
0100= SPI Slave mode, clock = SCK pin. SS pin control enabled.  
0101= SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin.  
0110= I2C Slave mode, 7-bit address  
0111= I2C Slave mode, 10-bit address  
1000= I2C Master mode, clock = FOSC / (4 * (SSPADD+1) )  
1001= Reserved  
1010= Reserved  
1011= I2C firmware controlled Master mode (Slave idle)  
1100= Reserved  
1101= Reserved  
1110= I2C Slave mode, 7-bit address with START and STOP bit interrupts enabled  
1111= I2C Slave mode, 10-bit address with START and STOP bit interrupts enabled  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 139  
PIC18CXX8  
REGISTER 15-3: SSPCON2 REGISTER  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
RCEN  
R/W-0  
PEN  
R/W-0  
RSEN  
R/W-0  
SEN  
ACKSTAT  
ACKDT  
ACKEN  
bit 7  
bit 0  
bit 7  
bit 6  
GCEN: General Call Enable bit (In I2C Slave mode only)  
1= Enable interrupt when a general call address (0000h) is received in the SSPSR  
0= General call address disabled  
ACKSTAT: Acknowledge Status bit (In I2C Master mode only)  
In Master Transmit mode:  
1= Acknowledge was not received from slave  
0= Acknowledge was received from slave  
bit 5  
bit 4  
ACKDT: Acknowledge Data bit (In I2C Master mode only)  
In Master Receive mode:  
Value transmitted when the user initiates an Acknowledge sequence at the end of a receive  
1= Not Acknowledge  
0= Acknowledge  
ACKEN: Acknowledge Sequence Enable bit (In I2C Master mode only)  
In Master Receive mode:  
1= Initiate Acknowledge sequence on SDA and SCL pins, and transmit ACKDT data bit.  
Automatically cleared by hardware.  
0= Acknowledge sequence idle  
bit 3  
bit 2  
RCEN: Receive Enable bit (In I2C Master mode only)  
1= Enables Receive mode for I2C  
0= Receive idle  
PEN: STOP Condition Enable bit (In I2C Master mode only)  
SCK release control  
1= Initiate STOP condition on SDA and SCL pins. Automatically cleared by hardware.  
0= STOP condition idle  
bit 1  
bit 0  
RSEN: Repeated START Condition Enabled bit (In I2C Master mode only)  
1= Initiate Repeated START condition on SDA and SCL pins. Automatically cleared  
by hardware.  
0= Repeated START condition idle  
SEN: START Condition Enabled bit (In I2C Master mode only)  
1= Initiate START condition on SDA and SCL pins. Automatically cleared by hardware.  
0= START condition idle  
Note: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I2C module is not in the IDLE  
mode, this bit may not be set (no spooling) and the SSPBUF may not be written (or  
writes to the SSPBUF are disabled).  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS30475A-page 140  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
15.3  
SPI Mode  
FIGURE 15-1: MSSP BLOCK DIAGRAM  
(SPI MODE)  
The SPI mode allows 8 bits of data to be synchronously  
transmitted and received, simultaneously. All four  
modes of SPI are supported. To accomplish communi-  
cation, typically three pins are used:  
Internal  
Data Bus  
Read  
Write  
Serial Data Out (SDO) - RC5/SDO  
Serial Data In (SDI) - RC4/SDI/SDA  
Serial Clock (SCK) - RC3/SCK/SCL/LVOIN  
SSPBUF reg  
SSPSR reg  
Additionally, a fourth pin may be used when in any  
Slave mode of operation:  
Shift  
Clock  
Slave Select (SS) - RA5/SS/AN4  
SDI  
bit0  
15.3.1 OPERATION  
SDO  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits SSPCON1<5:0> and SSPSTAT<7:6>.  
These control bits allow the following to be specified:  
Control  
Enable  
SS  
SS  
Edge  
Select  
Master mode (SCK is the clock output)  
Slave mode (SCK is the clock input)  
Clock polarity (Idle state of SCK)  
Data input sample phase (middle or end of data  
output time)  
2
Clock Select  
Clock edge (output data on rising/falling edge of  
SCK)  
Clock rate (Master mode only)  
Slave Select mode (Slave mode only)  
SSPM3:SSPM0  
SMP:CKE  
2
4
TMR2 Output  
(
)
2
Edge  
Select  
TOSC  
Prescaler  
4, 16, 64  
Figure 15-1 shows the block diagram of the MSSP  
module, when in SPI mode.  
SCK  
Data to TX/RX in SSPSR  
TRIS bit  
Note: I/O pins have diode protection to VDD and  
VSS.  
The MSSP consists of a transmit/receive Shift Register  
(SSPSR) and a buffer register (SSPBUF). The SSPSR  
shifts the data in and out of the device, MSb first. The  
SSPBUF holds the data that was written to the SSPSR,  
until the received data is ready. Once the 8 bits of data  
have been received, that byte is moved to the SSPBUF  
register. Then the buffer full detect bit, BF (SSPSTAT  
register), and the interrupt flag bit, SSPIF (PIR regis-  
ters), are set. This double buffering of the received data  
(SSPBUF) allows the next byte to start reception before  
reading the data that was just received. Any write to the  
SSPBUF register during transmission/reception of data  
will be ignored, and the write collision detect bit, WCOL  
(SSPCON1 register), will be set. User software must  
clear the WCOL bit so that it can be determined if the  
following write(s) to the SSPBUF register completed  
successfully.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 141  
PIC18CXX8  
When the application software is expecting to receive  
valid data, the SSPBUF should be read before the next  
byte of data to transfer is written to the SSPBUF. The  
buffer full (BF) bit (SSPSTAT register) indicates when  
SSPBUF has been loaded with the received data  
(transmission is complete). When the SSPBUF is read,  
the BF bit is cleared. This data may be irrelevant if the  
SPI is only a transmitter. Generally, the MSSP Interrupt  
is used to determine when the transmission/reception  
has completed. The SSPBUF must be read and/or  
written. If the interrupt method is not going to be used,  
then software polling can be done to ensure that a write  
collision does not occur. Example 15-1 shows the  
loading of the SSPBUF (SSPSR) for data transmission.  
15.3.2 ENABLING SPI I/O  
To enable the serial port, SSP Enable bit, SSPEN  
(SSPCON1 register), must be set. To reset or reconfig-  
ure SPI mode, clear the SSPEN bit, re-initialize the  
SSPCON registers, and then set the SSPEN bit. This  
configures the SDI, SDO, SCK, and SS pins as serial  
port pins. For the pins to behave as the serial port func-  
tion, some must have their data direction bits (in the  
TRIS register) appropriately programmed. That is:  
SDI is automatically controlled by the SPI module  
SDO must have TRISC<5> bit cleared  
SCK (Master mode) must have TRISC<3> bit  
cleared  
SCK (Slave mode) must have TRISC<3> bit set  
SS must have TRISC<4> bit set  
The SSPSR is not directly readable or writable, and  
can only be accessed by addressing the SSPBUF reg-  
ister. Additionally, the MSSP status register (SSPSTAT  
register) indicates the various status conditions.  
Any serial port function that is not desired may be over-  
ridden by programming the corresponding data direc-  
tion (TRIS) register to the opposite value.  
EXAMPLE 15-1: LOADING THE SSPBUF (SSPSR) REGISTER  
LOOP BTFSS SSPSTAT, BF  
GOTO LOOP  
;Has data been received (transmit complete)?  
;No  
MOVF SSPBUF, W  
;WREG reg = contents of SSPBUF  
MOVWF RXDATA  
;Save in user RAM, if data is meaningful  
MOVF TXDATA, W  
MOVWF SSPBUF  
;W reg = contents of TXDATA  
;New data to xmit  
DS30475A-page 142  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
15.3.3 MASTER MODE  
shown in Figure 15-2, Figure 15-4, and Figure 15-5,  
where the MSb is transmitted first. In Master mode, the  
SPI clock rate (bit rate) is user programmable to be one  
of the following:  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave is to broadcast data by the software  
protocol.  
FOSC/4 (or TCY)  
FOSC/16 (or 4 TCY)  
FOSC/64 (or 16 TCY)  
Timer2 output/2  
In Master mode, the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI is  
only going to receive, the SDO output could be dis-  
abled (programmed as an input). The SSPSR register  
will continue to shift in the signal present on the SDI pin  
at the programmed clock rate. As each byte is  
received, it will be loaded into the SSPBUF register as  
a normal received byte (interrupts and status bits  
appropriately set). This could be useful in receiver  
applications as a line activity monitormode.  
This allows a maximum data rate (at 40 MHz) of 10.00  
Mbps.  
Figure 15-2 shows the waveforms for Master mode.  
When the CKE bit is set, the SDO data is valid before  
there is a clock edge on SCK. The change of the input  
sample is shown based on the state of the SMP bit. The  
time when the SSPBUF is loaded with the received  
data is shown.  
The clock polarity is selected by appropriately program-  
ming the CKP bit (SSPCON1 register). This, then,  
would give waveforms for SPI communication as  
FIGURE 15-2: SPI MODE WAVEFORM (MASTER MODE)  
Write to  
SSPBUF  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
4 Clock  
Modes  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
bit6  
bit6  
bit2  
bit2  
bit5  
bit5  
bit4  
bit4  
bit1  
bit1  
bit0  
bit0  
SDO  
(CKE = 0)  
bit7  
bit7  
bit3  
bit3  
SDO  
(CKE = 1)  
SDI  
(SMP = 0)  
bit0  
bit7  
Input  
Sample  
(SMP = 0)  
SDI  
(SMP = 1)  
bit0  
bit7  
Input  
Sample  
(SMP = 1)  
SSPIF  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 143  
PIC18CXX8  
15.3.4 SLAVE MODE  
the SDO pin is no longer driven, even if in the mid-  
dle of a transmitted byte, and becomes a floating  
output. External pull-up/pull-down resistors may be  
desirable, depending on the application.  
In Slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched, the SSPIF interrupt flag bit is set.  
Note 1: When the SPI is in Slave mode with SS pin  
control enabled, (SSPCON<3:0> = 0100)  
the SPI module will reset if the SS pin is  
set to VDD.  
While in Slave mode, the external clock is supplied by  
the external clock source on the SCK pin. This external  
clock must meet the minimum high and low times, as  
specified in the electrical specifications.  
2: If the SPI is used in Slave mode with CKE  
set, then the SS pin control must be  
enabled.  
While in SLEEP mode, the slave can transmit/receive  
data. When a byte is received, the device will wake-up  
from SLEEP.  
When the SPI module resets, the bit counter is forced  
to 0. This can be done by either forcing the SS pin to a  
high level, or clearing the SSPEN bit.  
15.3.5 SLAVE SELECT SYNCHRONIZATION  
The SS pin allows a Synchronous Slave mode. The  
SPI must be in Slave mode with SS pin control  
enabled (SSPCON1<3:0> = 04h). The pin must not  
be driven low for the SS pin to function as an input.  
The Data Latch must be high. When the SS pin is  
low, transmission and reception are enabled and  
the SDO pin is driven. When the SS pin goes high,  
To emulate two-wire communication, the SDO pin can  
be connected to the SDI pin. When the SPI needs to  
operate as a receiver, the SDO pin can be configured  
as an input. This disables transmissions from the SDO.  
The SDI can always be left as an input (SDI function),  
since it cannot create a bus conflict.  
FIGURE 15-3: SLAVE SYNCHRONIZATION WAVEFORM  
SS  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit6  
bit7  
bit7  
bit0  
bit0  
SDO  
bit7  
SDI  
(SMP = 0)  
bit7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Next Q4 Cycle  
SSPSR to  
SSPBUF  
after Q2↓  
DS30475A-page 144  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
FIGURE 15-4: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)  
SS  
Optional  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit6  
bit2  
bit5  
bit4  
bit1  
bit0  
SDO  
bit7  
bit3  
SDI  
(SMP = 0)  
bit0  
bit7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
FIGURE 15-5: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)  
SS  
Required  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
Write to  
SSPBUF  
bit6  
bit2  
bit5  
bit4  
bit1  
bit0  
SDO  
bit7  
bit7  
bit3  
SDI  
(SMP = 0)  
bit0  
Input  
Sample  
(SMP = 0)  
SSPIF  
Next Q4 Cycle  
after Q2↓  
SSPSR to  
SSPBUF  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 145  
PIC18CXX8  
15.3.6 SLEEP OPERATION  
15.3.8 BUS MODE COMPATIBILITY  
In Master mode, all module clocks are halted, and the  
transmission/reception will remain in that state until the  
device wakes from SLEEP. After the device returns to  
normal mode, the module will continue to trans-  
mit/receive data.  
Table 15-1 shows the compatibility between the stan-  
dard SPI modes and the states of the CKP and CKE  
control bits.  
TABLE 15-1: SPI BUS MODES  
Control Bits State  
Standard SPI Mode  
In Slave mode, the SPI transmit/receive shift register  
operates asynchronously to the device. This allows the  
device to be placed in SLEEP mode, and data to be  
shifted into the SPI transmit/receive shift register.  
When all eight bits have been received, the MSSP  
interrupt flag bit will be set and, if enabled, will wake the  
device from SLEEP.  
Terminology  
CKP  
CKE  
0, 0  
0, 1  
1, 0  
1, 1  
0
0
1
1
1
0
1
0
There is also a SMP bit that controls when the data will  
be sampled.  
15.3.7 EFFECTS OF A RESET  
A RESET disables the MSSP module and terminates  
the current transfer.  
TABLE 15-2: REGISTERS ASSOCIATED WITH SPI OPERATION  
Value on Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
all other  
RESETS  
0000 000x 0000 000u  
INTCON  
GIE/  
GIEH  
PEIE/ TMR0IE INT0IE  
GIEL  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 0000 0000 0000  
0000 0000 0000 0000  
PIR1  
PIE1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF CCP1IF TMR2IF TMR1IF  
SSPIE CCP1IE TMR2IE TMR1IE  
SSPIP CCP1IP TMR2IP TMR1IP  
0000 0000 0000 0000  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
IPR1  
TRISC  
PORTC Data Direction Register  
SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register  
SSPCON  
TRISA  
WCOL SSPOV SSPEN  
CKP  
PORTA Data Direction Register(1)  
CKE D/A  
SSPM3 SSPM2 SSPM1 SSPM0  
--11 1111 --11 1111  
0000 0000 0000 0000  
SSPSTAT  
SMP  
P
S
R/W  
UA  
BF  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'.  
Shaded cells are not used by the MSSP in SPI mode.  
Note 1: Bit 6 of PORTA, LATA and TRISA are enabled in ECIO and RCIO oscillator modes only. In all other oscillator  
modes, they are disabled and read 0.  
DS30475A-page 146  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
The SSPCON1 register allows control of the I2C oper-  
ation. The SSPM3:SSPM0 mode selection bits  
(SSPCON1 register) allow one of the following I2C  
modes to be selected:  
15.4  
MSSP I2C Operation  
The MSSP module in I2C mode, fully implements all  
master and slave functions (including general call sup-  
port) and provides interrupts on START and STOP bits  
in hardware to determine a free bus (Multi-master  
mode). The MSSP module implements the standard  
mode specifications, as well as 7-bit and 10-bit  
addressing.  
I2C Master mode, clock = OSC/4 (SSPADD +1)  
I2C Slave mode (7-bit address)  
I2C Slave mode (10-bit address)  
I2C Slave mode (7-bit address), with START and  
STOP bit interrupts enabled  
Two pins are used for data transfer. These are the  
RC3/SCK/SCL pin, which is the clock (SCL), and the  
RC4/SDI/SDA pin, which is the data (SDA). The user  
must configure these pins as inputs or outputs through  
the TRISC<4:3> bits.  
I2C Slave mode (10-bit address), with START and  
STOP bit interrupts enabled  
I2C Firmware controlled master operation, slave  
is idle  
Selection of any I2C mode with the SSPEN bit set,  
forces the SCL and SDA pins to be open drain, pro-  
vided these pins are programmed to inputs by setting  
the appropriate TRISC bits.  
The MSSP module functions are enabled by setting  
MSSP Enable bit SSPEN (SSPCON1 register).  
FIGURE 15-6: MSSP BLOCK DIAGRAM  
(I2C MODE)  
15.4.1 SLAVE MODE  
In Slave mode, the SCL and SDA pins must be config-  
ured as inputs (TRISC<4:3> set). The MSSP module  
will override the input state with the output data when  
required (slave-transmitter).  
Internal  
Data Bus  
Read  
Write  
When an address is matched, or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the acknowledge (ACK) pulse and  
load the SSPBUF register with the received value cur-  
rently in the SSPSR register.  
SSPBUF reg  
RC3/SCK/SCL  
Shift  
Clock  
SSPSR reg  
If either or both of the following conditions are true, the  
MSSP module will not give this ACK pulse:  
RC4/  
SDI/  
SDA  
MSb  
LSb  
a) The buffer full bit BF (SSPCON1 register) was  
set before the transfer was received.  
Addr Match  
Match Detect  
b) The overflow bit SSPOV (SSPCON1 register)  
was set before the transfer was received.  
SSPADD reg  
START and  
In this event, the SSPSR register value is not loaded  
into the SSPBUF, but bit SSPIF (PIR registers) is set.  
The BF bit is cleared by reading the SSPBUF register,  
while bit SSPOV is cleared through software.  
Set, RESET  
S, P bits  
(SSPSTAT reg)  
STOP bit detect  
Note:  
I/O pins have diode protection to VDD and VSS.  
The SCL clock input must have a minimum high and  
low for proper operation. The high and low times of the  
I2C specification, as well as the requirement of the  
MSSP module, is shown in timing parameter #100 and  
parameter #101.  
The MSSP module has these six registers for I2C oper-  
ation:  
MSSP Control Register1 (SSPCON1)  
MSSP Control Register2 (SSPCON2)  
MSSP Status Register (SSPSTAT)  
Serial Receive/Transmit Buffer (SSPBUF)  
MSSP Shift Register (SSPSR) - Not directly  
accessible  
MSSP Address Register (SSPADD)  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 147  
PIC18CXX8  
15.4.1.1 Addressing  
The sequence of events for 10-bit addressing is as fol-  
lows, with steps 7- 9 for slave-transmitter:  
Once the MSSP module has been enabled, it waits for  
a START condition to occur. Following the START con-  
dition, the eight bits are shifted into the SSPSR register.  
All incoming bits are sampled with the rising edge of the  
clock (SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match, and the BF  
and SSPOV bits are clear, the following events occur:  
1. Receive first (high) byte of address (the SSPIF,  
BF and UA bits (SSPSTAT register) are set).  
2. Update the SSPADD register with second (low)  
byte of address (clears bit UA and releases the  
SCL line).  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
4. Receive second (low) byte of address (bits  
SSPIF, BF, and UA are set).  
a) The SSPSR register value is loaded into the  
SSPBUF register.  
5. Update the SSPADD register with the first (high)  
byte of address. If match releases SCL line, this  
will clear bit UA.  
b) The buffer full bit BF is set.  
c) An ACK pulse is generated.  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
d) MSSP interrupt flag bit SSPIF (PIR registers) is  
set on the falling edge of the ninth SCL pulse  
(interrupt is generated, if enabled).  
7. Receive repeated START condition.  
8. Receive first (high) byte of address (bits SSPIF  
and BF are set).  
In 10-bit address mode, two address bytes need to be  
received by the slave. The five Most Significant bits  
(MSb) of the first address byte specify if this is a 10-bit  
address. The R/W bit (SSPSTAT register) must specify  
a write so the slave device will receive the second  
address byte. For a 10-bit address, the first byte would  
equal ‘1111 0 A9 A8 0’, where A9and A8are the  
two MSbs of the address.  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
DS30475A-page 148  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
15.4.1.2 Reception  
ter. Then pin RC3/SCK/SCL should be enabled by set-  
ting bit CKP (SSPCON1 register). The master must  
monitor the SCL pin prior to asserting another clock  
pulse. The slave devices may be holding off the master  
by stretching the clock. The eight data bits are shifted  
out on the falling edge of the SCL input. This ensures  
that the SDA signal is valid during the SCL high time  
(Figure 15-8).  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register.  
When the address byte overflow condition exists, then  
no acknowledge (ACK) pulse is given. An overflow con-  
dition is defined as either bit BF (SSPSTAT register) is  
set or bit SSPOV (SSPCON1 register) is set.  
An MSSP interrupt is generated for each data transfer  
byte. The SSPIF bit must be cleared in software and  
the SSPSTAT register is used to determine the status  
of the byte. The SSPIF bit is set on the falling edge of  
the ninth clock pulse.  
An MSSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF (PIR registers) must be cleared in  
software. The SSPSTAT register is used to determine  
the status of the byte.  
As a slave-transmitter, the ACK pulse from the  
master-receiver is latched on the rising edge of the  
ninth SCL input pulse. If the SDA line is high (not ACK),  
then the data transfer is complete. When the ACK is  
latched by the slave, the slave logic is reset (resets  
SSPSTAT register) and the slave monitors for another  
occurrence of the START bit. If the SDA line was low  
(ACK), the transmit data must be loaded into the SSP-  
BUF register, which also loads the SSPSR register. Pin  
RC3/SCK/SCL should be enabled by setting bit CKP.  
15.4.1.3 Transmission  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit and pin RC3/SCK/SCL is held  
low. The transmit data must be loaded into the  
SSPBUF register, which also loads the SSPSR regis-  
FIGURE 15-7: I2C SLAVE MODE WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
Receiving Address  
A7 A6 A5 A4  
R/W=0  
Receiving Data  
Receiving Data  
ACK  
Not ACK  
D0  
ACK  
9
SDA  
A3 A2 A1  
D5  
D2  
D0  
8
D5  
D2  
D7 D6  
D4 D3  
D7 D6  
D4 D3  
D1  
7
D1  
7
1
2
3
4
5
6
9
1
2
3
4
9
8
5
6
1
2
3
4
5
6
7
8
P
SCL  
S
SSPIF  
Bus Master  
Terminates  
Transfer  
BF  
Cleared in software  
SSPBUF register is read  
SSPOV  
Bit SSPOV is set because the SSPBUF register is still full.  
ACK is not sent.  
FIGURE 15-8: I2C SLAVE MODE WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
R/W = 0  
Not ACK  
Receiving Address  
R/W = 1  
ACK  
Transmitting Data  
SDA  
SCL  
A7 A6 A5 A4 A3 A2 A1  
D7 D6 D5 D4 D3 D2 D1 D0  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
S
P
SCL held low  
while CPU  
responds to SSPIF  
Data in  
Sampled  
SSPIF  
BF  
Cleared in software  
SSPBUF is written in software  
From SSP interrupt  
service routine  
CKP  
Set bit after writing to SSPBUF  
(the SSPBUF must be written to  
before the CKP bit can be set)  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 149  
PIC18CXX8  
15.4.2 GENERAL CALL ADDRESS SUPPORT  
If the general call address matches, the SSPSR is  
transferred to the SSPBUF, the BF bit is set (eighth bit),  
and on the falling edge of the ninth bit (ACK bit), the  
SSPIF interrupt flag bit is set.  
The addressing procedure for the I2C bus is such that  
the first byte after the START condition usually deter-  
mines which device will be the slave addressed by the  
master. The exception is the general call address,  
which can address all devices. When this address is  
used, all devices should, in theory, respond with an  
acknowledge.  
When the interrupt is serviced, the source for the inter-  
rupt can be checked by reading the contents of the  
SSPBUF. The value can be used to determine if the  
address was device specific or a general call address.  
In 10-bit mode, the SSPADD is required to be updated  
for the second half of the address to match, and the UA  
bit is set (SSPSTAT register). If the general call address  
is sampled when the GCEN bit is set, and while the  
slave is configured in 10-bit address mode; then, the  
second half of the address is not necessary. The UA bit  
will not be set, and the slave will begin receiving data  
after the Acknowledge (Figure 15-9).  
The general call address is one of eight addresses  
reserved for specific purposes by the I2C protocol. It  
consists of all 0s with R/W = 0.  
The general call address is recognized (enabled) when  
the General Call Enable (GCEN) bit is set (SSPCON2  
register). Following a START bit detect, eight bits are  
shifted into the SSPSR and the address is compared  
against the SSPADD. It is also compared to the general  
call address and fixed in hardware.  
FIGURE 15-9: SLAVE MODE GENERAL CALL ADDRESS SEQUENCE (7 OR 10-BIT ADDRESS)  
Address is compared to General Call Address  
after ACK, set interrupt  
Receiving data  
D5 D4 D3 D2 D1  
ACK  
R/W = 0  
ACK  
General Call Address  
SDA  
SCL  
D7 D6  
D0  
8
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
9
S
SSPIF  
BF  
Cleared in software  
SSPBUF is read  
SSPOV  
GCEN  
0’  
1’  
DS30475A-page 150  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
15.4.3 MASTER MODE  
15.4.4 I2C MASTER MODE SUPPORT  
Master mode of operation is supported by interrupt  
generation on the detection of the START and STOP  
conditions. The STOP (P) and START (S) bits are  
cleared from a RESET, or when the MSSP module is  
disabled. Control of the I2C bus may be taken when the  
P bit is set, or the bus is idle, with both the S and P bits  
clear.  
Master mode is enabled by setting and clearing the  
appropriate SSPM bits in SSPCON1 and by setting the  
SSPEN bit. Once Master mode is enabled, the user  
has the following six options:  
1. Assert a START condition on SDA and SCL.  
2. Assert a Repeated START condition on SDA  
and SCL.  
In Master mode, the SCL and SDA lines are manipu-  
lated by the MSSP hardware.  
3. Write to the SSPBUF register initiating transmis-  
sion of data/address.  
The following events will cause SSP Interrupt Flag bit,  
SSPIF, to be set (SSP Interrupt if enabled):  
4. Generate a STOP condition on SDA and SCL.  
5. Configure the I2C port to receive data.  
START condition  
STOP condition  
6. Generate an Acknowledge condition at the end  
of a received byte of data.  
Data transfer byte transmitted/received  
Acknowledge Transmit  
Repeated START condition  
Note: The MSSP module, when configured in I2C  
Master mode, does not allow queueing of  
events. For instance, the user is not  
allowed to initiate a START condition and  
immediately write the SSPBUF register to  
imitate transmission before the START  
condition is complete. In this case, the  
SSPBUF will not be written to and the  
WCOL bit will be set, indicating that a write  
to the SSPBUF did not occur.  
2
FIGURE 15-10: MSSP BLOCK DIAGRAM (I C MASTER MODE)  
Internal  
Data Bus  
SSPM3:SSPM0  
SSPADD<6:0>  
Read  
Write  
SSPBUF  
SSPSR  
Baud  
Rate  
Generator  
SDA  
Shift  
Clock  
SDA In  
MSb  
LSb  
START bit, STOP bit,  
Acknowledge  
Generate  
SCL  
START bit Detect  
STOP bit Detect  
Write Collision Detect  
Clock Arbitration  
State Counter for  
End of XMIT/RCV  
SCL In  
Bus Collision  
Set/Reset, S, P, WCOL (SSPSTAT)  
Set SSPIF, BCLIF  
Reset ACKSTAT, PEN (SSPCON2)  
Note: I/O pins have diode protection to VDD and VSS.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 151  
PIC18CXX8  
15.4.4.1 I2C Master Mode Operation  
A typical transmit sequence would go as follows:  
a) The user generates a START condition by set-  
ting the START Enable (SEN) bit (SSPCON2  
register).  
The master device generates all of the serial clock  
pulses and the START and STOP conditions. A trans-  
fer is ended with a STOP condition or with a Repeated  
START condition. Since the Repeated START condi-  
tion is also the beginning of the next serial transfer, the  
I2C bus will not be released.  
b) SSPIF is set. The MSSP module will wait the  
required start time before any other operation  
takes place.  
c) The user loads the SSPBUF with the address to  
transmit.  
In Master Transmitter mode, serial data is output  
through SDA, while SCL outputs the serial clock. The  
first byte transmitted contains the slave address of the  
receiving device (7 bits) and the Read/Write (R/W) bit.  
In this case, the R/W bit will be logic 0. Serial data is  
transmitted eight bits at a time. After each byte is trans-  
mitted, an Acknowledge bit is received. START and  
STOP conditions are output to indicate the beginning  
and the end of a serial transfer.  
d) Address is shifted out the SDA pin until all eight  
bits are transmitted.  
e) The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
ACKSTAT bit (SSPCON2 register).  
f) The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
In Master Receive mode, the first byte transmitted con-  
tains the slave address of the transmitting device  
(7 bits) and the R/W bit. In this case, the R/W bit will be  
logic 1. Thus, the first byte transmitted is a 7-bit slave  
address followed by a 1to indicate receive bit. Serial  
data is received via SDA, while SCL outputs the serial  
clock. Serial data is received eight bits at a time. After  
each byte is received, an Acknowledge bit is transmit-  
ted. START and STOP conditions indicate the begin-  
ning and end of transmission.  
g) The user loads the SSPBUF with eight bits of  
data.  
h) Data is shifted out the SDA pin until all eight bits  
are transmitted.  
i) The MSSP module shifts in the ACK bit from the  
slave device and writes its value into the  
ACKSTAT bit (SSPCON2 register).  
j) The MSSP module generates an interrupt at the  
end of the ninth clock cycle by setting the SSPIF  
bit.  
The baud rate generator used for the SPI mode opera-  
tion is now used to set the SCL clock frequency for  
either 100 kHz, 400 kHz, or 1 MHz I2C operation. The  
baud rate generator reload value is contained in the  
lower 7 bits of the SSPADD register. The baud rate  
generator will automatically begin counting on a write to  
the SSPBUF. Once the given operation is complete  
(i.e., transmission of the last data bit is followed by  
ACK), the internal clock will automatically stop counting  
and the SCL pin will remain in its last state.  
k) The user generates a STOP condition by setting  
the STOP Enable bit PEN (SSPCON2 register).  
l) Interrupt is generated once the STOP condition  
is complete.  
DS30475A-page 152  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
15.4.5 BAUD RATE GENERATOR  
remented twice per instruction cycle (TCY) on the Q2  
and Q4 clocks. In I2C Master mode, the BRG is  
reloaded automatically. If Clock Arbitration is taking  
place, for instance, the BRG will be reloaded when the  
SCL pin is sampled high (Figure 15-12).  
In I2C Master mode, the reload value for the BRG is  
located in the lower 7 bits of the SSPADD register  
(Figure 15-11). When the BRG is loaded with this  
value, the BRG counts down to 0 and stops until  
another reload has taken place. The BRG count is dec-  
FIGURE 15-11: BAUD RATE GENERATOR BLOCK DIAGRAM  
SSPM3:SSPM0  
SSPADD<6:0>  
SSPM3:SSPM0  
SCL  
Reload  
Control  
Reload  
BRG Down Counter  
CLKOUT  
Fosc/4  
FIGURE 15-12: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION  
SDA  
DX  
DX-1  
SCL allowed to transition high  
SCL de-asserted but slave holds  
SCL low (clock arbitration)  
SCL  
BRG decrements on  
Q2 and Q4 cycles  
BRG  
value  
03h  
02h  
01h  
00h (hold off)  
03h  
02h  
SCL is sampled high, reload takes  
place and BRG starts its count.  
BRG  
reload  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 153  
PIC18CXX8  
15.4.6 I2C MASTER MODE START CONDITION  
TIMING  
15.4.6.1 WCOL Status Flag  
If the user writes the SSPBUF when a START  
sequence is in progress, the WCOL is set and the con-  
tents of the buffer are unchanged (the write doesnt  
occur).  
To initiate a START condition, the user sets the START  
Condition Enable (SEN) bit (SSPCON2 register). If the  
SDA and SCL pins are sampled high, the baud rate  
generator is re-loaded with the contents of  
SSPADD<6:0> and starts its count. If SCL and SDA are  
both sampled high when the baud rate generator times  
out (TBRG), the SDA pin is driven low. The action of the  
SDA being driven low, while SCL is high, is the START  
condition, and causes the S bit (SSPSTAT register) to  
be set. Following this, the baud rate generator is  
reloaded with the contents of SSPADD<6:0> and  
resumes its count. When the baud rate generator times  
out (TBRG), the SEN bit (SSPCON2 register) will be  
automatically cleared by hardware, the baud rate gen-  
erator is suspended leaving the SDA line held low and  
the START condition is complete.  
Note: Because queueing of events is not  
allowed, writing to the lower 5 bits of  
SSPCON2 is disabled until the START  
condition is complete.  
Note: If at the beginning of the START condition,  
the SDA and SCL pins are already sam-  
pled low, or if during the START condition  
the SCL line is sampled low before the SDA  
line is driven low, a bus collision occurs, the  
Bus Collision Interrupt Flag BCLIF is set,  
the START condition is aborted, and the  
I2C module is reset into its IDLE state.  
FIGURE 15-13: FIRST START BIT TIMING  
Set S bit (SSPSTAT)  
Write to SEN bit occurs here  
SDA = 1,  
At completion of START bit,  
Hardware clears SEN bit  
and sets SSPIF bit  
SCL = 1  
TBRG  
TBRG  
Write to SSPBUF occurs here  
2nd Bit  
1st Bit  
SDA  
TBRG  
SCL  
TBRG  
S
DS30475A-page 154  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
15.4.7 I2C MASTER MODE REPEATED START  
CONDITION TIMING  
Immediately following the SSPIF bit getting set, the  
user may write the SSPBUF with the 7-bit address in  
7-bit mode, or the default first address in 10-bit mode.  
After the first eight bits are transmitted and an ACK is  
received, the user may then transmit an additional  
eight bits of address (10-bit mode) or eight bits of data  
(7-bit mode).  
A Repeated START condition occurs when the RSEN  
bit (SSPCON2 register) is programmed high and the  
I2C logic module is in the IDLE state. When the RSEN  
bit is set, the SCL pin is asserted low. When the SCL  
pin is sampled low, the baud rate generator is loaded  
with the contents of SSPADD<5:0> and begins count-  
ing. The SDA pin is released (brought high) for one  
baud rate generator count (TBRG). When the baud rate  
generator times out, if SDA is sampled high, the SCL  
pin will be de-asserted (brought high). When SCL is  
sampled high, the baud rate generator is re-loaded with  
the contents of SSPADD<6:0> and begins counting.  
SDA and SCL must be sampled high for one TBRG.  
This action is then followed by assertion of the SDA pin  
15.4.7.1 WCOL Status Flag  
If the user writes the SSPBUF when a Repeated  
START sequence is in progress, the WCOL is set and  
the contents of the buffer are unchanged (the write  
doesnt occur).  
Note: Because queueing of events is not  
allowed, writing of the lower 5 bits of  
SSPCON2 is disabled until the Repeated  
START condition is complete.  
(SDA = 0) for one TBRG while SCL is high. Following  
,
this, the RSEN bit (SSPCON2 register) will be automat-  
ically cleared and the baud rate generator will not be  
reloaded, leaving the SDA pin held low. As soon as a  
START condition is detected on the SDA and SCL pins,  
the S bit (SSPSTAT register) will be set. The SSPIF bit  
will not be set until the baud rate generator has  
timed-out.  
Note 1: If RSEN is programmed while any other  
event is in progress, it will not take effect.  
2: A bus collision during the Repeated  
START condition occurs if:  
SDA is sampled low when SCL goes  
from low to high.  
SCL goes low before SDA is  
asserted low. This may indicate that  
another master is attempting to  
transmit a data "1".  
FIGURE 15-14: REPEAT START CONDITION WAVEFORM  
Set S (SSPSTAT<3>)  
Write to SSPCON2  
SDA = 1,  
occurs here.  
At completion of START bit,  
hardware clear RSEN bit  
and set SSPIF  
SCL = 1  
SDA = 1,  
SCL(no change)  
TBRG  
TBRG  
TBRG  
1st Bit  
SDA  
Write to SSPBUF occurs here.  
TBRG  
Falling edge of ninth clock  
End of Xmit  
SCL  
TBRG  
Sr = Repeated START  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 155  
PIC18CXX8  
15.4.8 I2C MASTER MODE TRANSMISSION  
15.4.8.2 WCOL Status Flag  
Transmission of a data byte, a 7-bit address, or the  
other half of a 10-bit address, is accomplished by sim-  
ply writing a value to the SSPBUF register. This action  
will set the Buffer Full bit, BF, and allow the baud rate  
generator to begin counting and start the next transmis-  
sion. Each bit of address/data will be shifted out onto  
the SDA pin after the falling edge of SCL is asserted  
(see data hold time specification parameter 106). SCL  
is held low for one baud rate generator roll over count  
(TBRG). Data should be valid before SCL is released  
high (see data setup time specification parameter 107).  
When the SCL pin is released high, it is held that way  
for TBRG. The data on the SDA pin must remain stable  
for that duration and some hold time after the next fall-  
ing edge of SCL. After the eighth bit is shifted out (the  
falling edge of the eighth clock), the BF bit is cleared  
and the master releases SDA, allowing the slave  
device being addressed to respond with an ACK bit  
during the ninth bit time if an address match occurs, or  
if data was received properly. The status of ACK is  
written into the ACKDT bit on the falling edge of the  
ninth clock. If the master receives an acknowledge, the  
Acknowledge Status bit, ACKSTAT, is cleared. If not,  
the bit is set. After the ninth clock, the SSPIF bit is set  
and the master clock (baud rate generator) is sus-  
pended until the next data byte is loaded into the SSP-  
BUF, leaving SCL low and SDA unchanged  
(Figure 15-15).  
If the user writes the SSPBUF when a transmit is  
already in progress (i.e., SSPSR is still shifting out a  
data byte), the WCOL is set and the contents of the  
buffer are unchanged (the write doesnt occur).  
WCOL must be cleared in software.  
15.4.8.3 ACKSTAT Status Flag  
In Transmit mode, the ACKSTAT bit (SSPCON2  
register) is cleared when the slave has sent an  
acknowledge (ACK = 0), and is set when the slave  
does not acknowledge (ACK = 1). A slave sends an  
acknowledge when it has recognized its address  
(including a general call), or when the slave has  
properly received its data.  
15.4.9 I2C MASTER MODE RECEPTION  
Master mode reception is enabled by programming the  
Receive Enable bit, RCEN (SSPCON2 register).  
Note: The MSSP module must be in an IDLE  
state before the RCEN bit is set, or the  
RCEN bit will be disregarded.  
The baud rate generator begins counting, and on each  
rollover, the state of the SCL pin changes (high to  
low/low to high) and data is shifted into the SSPSR.  
After the falling edge of the eighth clock, the RCEN bit  
is automatically cleared, the contents of the SSPSR are  
loaded into the SSPBUF, the BF bit is set, the SSPIF  
flag bit is set and the baud rate generator is suspended  
from counting, holding SCL low. The MSSP is now in  
IDLE state, awaiting the next command. When the  
buffer is read by the CPU, the BF bit is automatically  
cleared. The user can then send an Acknowledge bit at  
the end of reception, by setting the Acknowledge  
Sequence Enable bit ACKEN (SSPCON2 register).  
After the write to the SSPBUF, each bit of address will  
be shifted out on the falling edge of SCL, until all seven  
address bits and the R/W bit, are completed. On the  
falling edge of the eighth clock, the master will  
de-assert the SDA pin, allowing the slave to respond  
with an acknowledge. On the falling edge of the ninth  
clock, the master will sample the SDA pin to see if the  
address was recognized by a slave. The status of the  
ACK bit is loaded into the ACKSTAT status bit  
(SSPCON2 register). Following the falling edge of the  
ninth clock transmission of the address, the SSPIF is  
set, the BF bit is cleared and the baud rate generator is  
turned off, until another write to the SSPBUF takes  
place, holding SCL low and allowing SDA to float.  
15.4.9.1 BF Status Flag  
In receive operation, the BF bit is set when an address  
or data byte is loaded into SSPBUF from SSPSR. It is  
cleared when the SSPBUF register is read.  
15.4.9.2 SSPOV Status Flag  
15.4.8.1 BF Status Flag  
In receive operation, the SSPOV bit is set when eight  
bits are received into the SSPSR and the BF bit is  
already set from a previous reception.  
In Transmit mode, the BF bit (SSPSTAT register) is set  
when the CPU writes to SSPBUF, and is cleared when  
all eight bits are shifted out.  
15.4.9.3 WCOL Status Flag  
If the user writes the SSPBUF when a receive is  
already in progress (i.e., SSPSR is still shifting in a data  
byte), the WCOL bit is set and the contents of the buffer  
are unchanged (the write doesnt occur).  
DS30475A-page 156  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
2
FIGURE 15-15: I C MASTER MODE WAVEFORM (TRANSMISSION, 7 OR 10-BIT ADDRESS)  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 157  
PIC18CXX8  
2
FIGURE 15-16: I C MASTER MODE WAVEFORM (RECEPTION, 7-BIT ADDRESS)  
DS30475A-page 158  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
15.4.10 ACKNOWLEDGE SEQUENCE TIMING  
15.4.11 STOP CONDITION TIMING  
An acknowledge sequence is enabled by setting the  
Acknowledge Sequence Enable bit ACKEN  
(SSPCON2 register). When this bit is set, the SCL pin  
is pulled low and the contents of the Acknowledge Data  
bit (ACKDT) is presented on the SDA pin. If the user  
wishes to generate an acknowledge, then the ACKDT  
bit should be cleared. If not, the user should set the  
ACKDT bit before starting an acknowledge sequence.  
The baud rate generator then counts for one rollover  
period (TBRG) and the SCL pin is de-asserted (pulled  
high). When the SCL pin is sampled high (clock arbitra-  
tion), the baud rate generator counts for TBRG. The  
SCL pin is then pulled low. Following this, the ACKEN  
bit is automatically cleared, the baud rate generator is  
turned off and the MSSP module then goes into IDLE  
mode (Figure 15-17).  
A STOP bit is asserted on the SDA pin at the end of a  
receive/transmit by setting the Stop Sequence Enable  
bit, PEN (SSPCON2 register). At the end of a  
receive/transmit, the SCL line is held low after the fall-  
ing edge of the ninth clock. When the PEN bit is set, the  
master will assert the SDA line low. When the SDA line  
is sampled low, the baud rate generator is reloaded and  
counts down to 0. When the baud rate generator times  
out, the SCL pin will be brought high, and one TBRG  
(baud rate generator rollover count) later, the SDA pin  
will be de-asserted. When the SDA pin is sampled high  
while SCL is high, the P bit (SSPSTAT register) is set.  
A TBRG later, the PEN bit is cleared and the SSPIF bit  
is set (Figure 15-18).  
15.4.11.1 WCOL Status Flag  
If the user writes the SSPBUF when a STOP sequence  
is in progress, then the WCOL bit is set and the con-  
tents of the buffer are unchanged (the write doesnt  
occur).  
15.4.10.1 WCOL Status Flag  
If the user writes the SSPBUF when an acknowledge  
sequence is in progress, then WCOL is set and the  
contents of the buffer are unchanged (the write doesnt  
occur).  
FIGURE 15-17: ACKNOWLEDGE SEQUENCE WAVEFORM  
Acknowledge sequence starts here,  
Write to SSPCON2  
ACKEN automatically cleared  
ACKEN = 1, ACKDT = 0  
TBRG  
TBRG  
SDA  
SCL  
D0  
ACK  
8
9
SSPIF  
Cleared in  
software  
Set SSPIF at the end  
of receive  
Cleared in  
software  
Set SSPIF at the end  
of Acknowledge sequence  
Note: TBRG = one baud rate generator period.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 159  
PIC18CXX8  
FIGURE 15-18: STOP CONDITION RECEIVE OR TRANSMIT MODE  
SCL = 1 for TBRG, followed by SDA = 1 for TBRG  
after SDA sampled high. P bit (SSPSTAT) is set  
Write to SSPCON2  
Set PEN  
PEN bit (SSPCON2) is cleared by  
hardware and the SSPIF bit is set  
Falling edge of  
9th clock  
TBRG  
SCL  
SDA  
ACK  
P
TBRG  
TBRG  
TBRG  
SCL brought high after TBRG  
SDA asserted low before rising edge of clock  
to set up STOP condition.  
Note: TBRG = one baud rate generator period.  
DS30475A-page 160  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
15.4.12 CLOCK ARBITRATION  
15.4.13 SLEEP OPERATION  
Clock arbitration occurs when the master, during any  
receive, transmit or Repeated START/STOP condition,  
de-asserts the SCL pin (SCL allowed to float high).  
When the SCL pin is allowed to float high, the baud rate  
generator (BRG) is suspended from counting until the  
SCL pin is actually sampled high. When the SCL pin is  
sampled high, the baud rate generator is reloaded with  
the contents of SSPADD<6:0> and begins counting.  
This ensures that the SCL high time will always be at  
least one BRG rollover count, in the event that the clock  
is held low by an external device (Figure 15-19).  
While in SLEEP mode, the I2C module can receive  
addresses or data, and when an address match or  
complete byte transfer occurs, wake the processor  
from SLEEP (if the MSSP interrupt is enabled).  
15.4.14 EFFECT OF A RESET  
A RESET disables the MSSP module and terminates  
the current transfer.  
FIGURE 15-19: CLOCK ARBITRATION TIMING IN MASTER TRANSMIT MODE  
BRG overflow,  
Release SCL,  
If SCL = 1 Load BRG with  
SSPADD<6:0>, and start count  
to measure high time interval.  
BRG overflow occurs,  
Release SCL, Slave device holds SCL low.  
SCL = 1 BRG starts counting  
clock high interval.  
SCL  
SDA  
SCL line sampled once every machine cycle (TOSC² 4).  
Hold off BRG until SCL is sampled high.  
TBRG  
TBRG  
TBRG  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 161  
PIC18CXX8  
15.4.15 MULTI-MASTER MODE  
15.4.16 MULTI -MASTER COMMUNICATION, BUS  
COLLISION, AND BUS ARBITRATION  
In Multi-master mode, the interrupt generation on the  
detection of the START and STOP conditions allows  
the determination of when the bus is free. The STOP  
(P) and START (S) bits are cleared from a RESET, or  
when the MSSP module is disabled. Control of the I2C  
bus may be taken when the P bit (SSPSTAT register) is  
set, or the bus is idle with both the S and P bits clear.  
When the bus is busy, enabling the SSP Interrupt will  
generate the interrupt when the STOP condition  
occurs.  
Multi-master mode support is achieved by bus arbitra-  
tion. When the master outputs address/data bits onto  
the SDA pin, arbitration takes place when the master  
outputs a '1' on SDA, by letting SDA float high and  
another master asserts a '0'. When the SCL pin floats  
high, data should be stable. If the expected data on  
SDA is a '1' and the data sampled on the SDA pin = '0',  
then a bus collision has taken place. The master will set  
the Bus Collision Interrupt Flag (BCLIF) and reset the  
I2C port to its IDLE state. (Figure 15-20).  
In Multi-master operation, the SDA line must be moni-  
tored for arbitration, to see if the signal level is the  
expected output level. This check is performed in hard-  
ware, with the result placed in the BCLIF bit.  
If a transmit was in progress when the bus collision  
occurred, the transmission is halted, the BF bit is  
cleared, the SDA and SCL lines are de-asserted, and  
the SSPBUF can be written to. When the user services  
the bus collision interrupt service routine, and if the I2C  
bus is free, the user can resume communication by  
asserting a START condition.  
Arbitration can be lost in the following states:  
Address transfer  
Data transfer  
A START condition  
A Repeated START condition  
An Acknowledge condition  
If a START, Repeated START, STOP, or Acknowledge  
condition was in progress when the bus collision  
occurred, the condition is aborted, the SDA and SCL  
lines are de-asserted, and the respective control bits in  
the SSPCON2 register are cleared. When the user ser-  
vices the bus collision interrupt service routine, and if  
the I2C bus is free, the user can resume communication  
by asserting a START condition.  
The master will continue to monitor the SDA and SCL  
pins. If a STOP condition occurs, the SSPIF bit will be  
set.  
A write to the SSPBUF will start the transmission of  
data at the first data bit, regardless of where the trans-  
mitter left off when the bus collision occurred.  
In Multi-master mode, the interrupt generation on the  
detection of START and STOP conditions allows the  
determination of when the bus is free. Control of the I2C  
bus can be taken when the P bit is set in the SSPSTAT  
register, or the bus is idle and the S and P bits are  
cleared.  
FIGURE 15-20: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE  
Sample SDA. While SCL is high  
data doesnt match what is driven  
by the master.  
SDA line pulled low  
by another source  
Data changes  
while SCL = 0  
Bus collision has occurred.  
SDA released  
by master  
SDA  
Set bus collision  
interrupt (BCLIF)  
SCL  
BCLIF  
DS30475A-page 162  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
15.4.16.1 Bus Collision During a START Condition  
During a START condition, a bus collision occurs if:  
The START condition begins with the SDA and SCL  
pins de-asserted. When the SDA pin is sampled high,  
the baud rate generator is loaded from SSPADD<6:0>  
and counts down to 0. If the SCL pin is sampled low  
while SDA is high, a bus collision occurs, because it is  
assumed that another master is attempting to drive a  
data 1during the START condition.  
a) SDA or SCL are sampled low at the beginning of  
the START condition (Figure 15-21).  
b) SCL is sampled low before SDA is asserted low  
(Figure 15-22).  
If the SDA pin is sampled low during this count, the  
BRG is reset and the SDA line is asserted early  
(Figure 15-23). If, however, a 1is sampled on the SDA  
pin, the SDA pin is asserted low at the end of the BRG  
count. The baud rate generator is then reloaded and  
counts down to 0, and during this time, if the SCL pin is  
sampled as 0, a bus collision does not occur. At the  
end of the BRG count, the SCL pin is asserted low.  
During a START condition, both the SDA and the SCL  
pins are monitored.  
If:  
the SDA pin is already low  
or the SCL pin is already low,  
then:  
the START condition is aborted,  
and the BCLIF flag is set,  
and the MSSP module is reset to its IDLE state  
(Figure 15-21).  
Note: The reason that bus collision is not a factor  
during a START condition is that no two  
bus masters can assert a START condition  
at the exact same time. Therefore, one  
master will always assert SDA before the  
other. This condition does not cause a bus  
collision, because the two masters must be  
allowed to arbitrate the first address follow-  
ing the START condition. If the address is  
the same, arbitration must be allowed to  
continue into the data portion, Repeated  
START or STOP conditions.  
FIGURE 15-21: BUS COLLISION DURING START CONDITION (SDA ONLY)  
SDA goes low before the SEN bit is set.  
. Set BCLIF,  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
SDA  
SCL  
Set SEN, enable START  
condition if SDA = 1, SCL = 1.  
SEN cleared automatically because of bus collision.  
SSP module reset into IDLE state.  
SEN  
SDA sampled low before  
START condition. Set BCLIF.  
S bit and SSPIF set because  
SDA = 0, SCL = 1.  
BCLIF  
SSPIF and BCLIF are  
cleared in software.  
S
SSPIF  
SSPIF and BCLIF are  
cleared in software.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 163  
PIC18CXX8  
FIGURE 15-22: BUS COLLISION DURING START CONDITION (SCL = 0)  
SDA = 0, SCL = 1  
TBRG  
TBRG  
SDA  
SCL  
SEN  
Set SEN, enable START  
sequence if SDA = 1, SCL = 1  
SCL = 0 before SDA = 0,  
Bus collision occurs, set BCLIF  
SCL = 0 before BRG time-out,  
Bus collision occurs, set BCLIF  
BCLIF  
Interrupt cleared  
in software  
S
0’  
0’  
0’  
0’  
SSPIF  
FIGURE 15-23: BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION  
SDA = 0, SCL = 1  
Set S  
Set SSPIF  
Less than TBRG  
TBRG  
SDA pulled low by other master  
Reset BRG and assert SDA  
SDA  
SCL  
S
SCL pulled low after BRG  
Time-out  
SEN  
Set SEN, enable START  
sequence if SDA = 1, SCL = 1  
BCLIF  
0’  
S
SSPIF  
Interrupts cleared  
in software  
SDA = 0, SCL = 1  
Set SSPIF  
DS30475A-page 164  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
15.4.16.2 Bus Collision During a Repeated START  
Condition  
reloaded and begins counting. If SDA goes from high to  
low before the BRG times out, no bus collision occurs  
because no two masters can assert SDA at exactly the  
same time.  
During a Repeated START condition, a bus collision  
occurs if:  
If SCL goes from high to low before the BRG times out  
and SDA has not already been asserted, a bus collision  
occurs. In this case, another master is attempting to  
transmit a data 1during the Repeated START condi-  
tion (Figure 15-25).  
a) A low level is sampled on SDA when SCL goes  
from low level to high level.  
b) SCL goes low before SDA is asserted low, indi-  
cating that another master is attempting to trans-  
mit a data 1.  
If at the end of the BRG time-out both SCL and SDA are  
still high, the SDA pin is driven low and the BRG is  
reloaded and begins counting. At the end of the count,  
regardless of the status of the SCL pin, the SCL pin is  
driven low and the Repeated START condition is  
complete.  
When the user de-asserts SDA and the pin is allowed  
to float high, the BRG is loaded with SSPADD<6:0>  
and counts down to 0. The SCL pin is then de-asserted,  
and when sampled high, the SDA pin is sampled.  
If SDA is low, a bus collision has occurred (i.e, another  
master is attempting to transmit a data 0, see  
Figure 15-24). If SDA is sampled high, the BRG is  
FIGURE 15-24: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)  
SDA  
SCL  
Sample SDA when SCL goes high.  
If SDA = 0, set BCLIF and release SDA and SCL.  
RSEN  
BCLIF  
Cleared in software.  
'0'  
S
'0'  
SSPIF  
FIGURE 15-25: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)  
TBRG  
TBRG  
SDA  
SCL  
SCL goes low before SDA.  
BCLIF  
RSEN  
Set BCLIF, release SDA and SCL.  
Interrupt cleared  
in software.  
0’  
S
SSPIF  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 165  
PIC18CXX8  
15.4.16.3 Bus Collision During a STOP Condition  
Bus collision occurs during a STOP condition if:  
The STOP condition begins with SDA asserted low.  
When SDA is sampled low, the SCL pin is allowed to  
float. When the pin is sampled high (clock arbitration),  
the baud rate generator is loaded with SSPADD<6:0>  
and counts down to 0. After the BRG times out, SDA is  
sampled. If SDA is sampled low, a bus collision has  
occurred. This is due to another master attempting to  
drive a data 0(Figure 15-26). If the SCL pin is sampled  
low before SDA is allowed to float high, a bus collision  
occurs. This is another case of another master attempt-  
ing to drive a data 0(Figure 15-27).  
a) After the SDA pin has been de-asserted and  
allowed to float high, SDA is sampled low after  
the BRG has timed out.  
b) After the SCL pin is de-asserted, SCL is sam-  
pled low before SDA goes high.  
FIGURE 15-26: BUS COLLISION DURING A STOP CONDITION (CASE 1)  
SDA sampled  
low after TBRG,  
set BCLIF  
TBRG  
TBRG  
TBRG  
SDA  
SDA asserted low  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
FIGURE 15-27: BUS COLLISION DURING A STOP CONDITION (CASE 2)  
TBRG  
TBRG  
TBRG  
SDA  
SCL goes low before SDA goes high,  
set BCLIF  
Assert SDA  
SCL  
PEN  
BCLIF  
P
0’  
0’  
SSPIF  
DS30475A-page 166  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
The USART can be configured in the following modes:  
16.0 ADDRESSABLE UNIVERSAL  
SYNCHRONOUS  
Asynchronous (full duplex)  
Synchronous - Master (half duplex)  
Synchronous - Slave (half duplex)  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (USART)  
The SPEN (RCSTA register) and the TRISC<7> bits  
have to be set, and the TRISC<6> bit must be  
cleared, in order to configure pins RC6/TX/CK and  
RC7/RX/DT as the Universal Synchronous Asynchro-  
nous Receiver Transmitter.  
The Universal Synchronous Asynchronous Receiver  
Transmitter (USART) module is one of the two serial  
I/O modules. (USART is also known as a Serial Com-  
munications Interface or SCI). The USART can be con-  
figured as a full duplex asynchronous system that can  
communicate with peripheral devices, such as CRT ter-  
minals and personal computers, or it can be configured  
as a half duplex synchronous system that can commu-  
nicate with peripheral devices, such as A/D or D/A inte-  
grated circuits, Serial EEPROMs, etc.  
Register 16-1 shows the Transmit Status and Control  
Register (TXSTA) and Register 16-2 shows the  
Receive Status and Control Register (TXSTA).  
REGISTER 16-1: TXSTA REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
TRMT  
bit 7  
bit 0  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode  
Dont care  
Synchronous mode  
1= Master mode (Clock generated internally from BRG)  
0= Slave mode (Clock from external source)  
bit 6  
bit 5  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit  
1= Transmit enabled  
0= Transmit disabled  
Note: SREN/CREN overrides TXEN in SYNC mode.  
bit 4  
SYNC: USART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
bit 3  
bit 2  
Unimplemented: Read as '0'  
BRGH: High Baud Rate Select bit  
Asynchronous mode  
1= High speed  
0= Low speed  
Synchronous mode  
Unused in this mode  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: 9th bit of transmit data. Can be Address/Data bit or a parity bit.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
- n = Value at POR  
1= Bit is set  
0= Bit is cleared  
x = Bit is unknown  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 167  
PIC18CXX8  
REGISTER 16-2: RCSTA REGISTER  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (Configures RX/DT and TX/CK pins as serial port pins)  
0= Serial port disabled  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode  
Dont care  
Synchronous mode - Master  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode - Slave  
Unused in this mode  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode  
1= Enables continuous receive  
0= Disables continuous receive  
Synchronous mode  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1)  
1= Enables address detection, enable interrupt and load of the receive buffer when RSR<8>  
is set  
0= Disables address detection, all bytes are received, and ninth bit can be used as parity bit  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (Can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (Can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: 9th bit of received data, can be Address/Data bit or a parity bit  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS30475A-page 168  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
It may be advantageous to use the high baud rate  
(BRGH = 1), even for slower baud clocks. This is  
because the FOSC/(16(X + 1)) equation can reduce the  
baud rate error in some cases.  
16.1  
USART Baud Rate Generator (BRG)  
The BRG supports both the Asynchronous and Syn-  
chronous modes of the USART. It is a dedicated 8-bit  
baud rate generator. The SPBRG register controls the  
period of a free running 8-bit timer. In Asynchronous  
mode, bit BRGH (TXSTA register) also controls the  
baud rate. In Synchronous mode, bit BRGH is ignored.  
Table 16-1 shows the formula for computation of the  
baud rate for different USART modes, which only apply  
in Master mode (internal clock).  
Writing a new value to the SPBRG register causes the  
BRG timer to be reset (or cleared). This ensures the  
BRG does not wait for a timer overflow before output-  
ting the new baud rate.  
16.1.1 SAMPLING  
The data on the RC7/RX/DT pin is sampled three times  
by a majority detect circuit to determine if a high or a  
low level is present at the RX pin.  
Given the desired baud rate and FOSC, the nearest  
integer value for the SPBRG register can be calculated  
using the formula in Table 16-1. From this, the error in  
baud rate can be determined.  
Example 16-1 shows the calculation of the baud rate  
error for the following conditions:  
FOSC = 16 MHz  
Desired Baud Rate = 9600  
BRGH = 0  
SYNC = 0  
EXAMPLE 16-1: CALCULATING BAUD RATE ERROR  
Desired Baud Rate  
=
FOSC / (64 (X + 1))  
Solving for X:  
X
X
X
=
=
=
( (FOSC / Desired Baud Rate) / 64 ) - 1  
((16000000 / 9600) / 64) - 1  
[25.042] = 25  
Calculated Baud Rate  
=
=
16000000 / (64 (25 + 1))  
9615  
Error  
=
(Calculated Baud Rate - Desired Baud Rate)  
Desired Baud Rate  
=
=
(9615 - 9600) / 9600  
0.16%  
TABLE 16-1: BAUD RATE FORMULA  
SYNC  
BRGH = 0 (Low Speed)  
BRGH = 1 (High Speed)  
0
1
(Asynchronous) Baud Rate = FOSC/(64(X+1))  
(Synchronous) Baud Rate = FOSC/(4(X+1))  
Baud Rate = FOSC/(16(X+1))  
NA  
Legend: X = value in SPBRG (0 to 255)  
TABLE 16-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Value on  
POR,  
Value on all  
other  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BOR  
RESETS  
TXSTA  
RCSTA  
SPBRG  
CSRC  
SPEN  
TX9  
RX9  
TXEN SYNC  
BRGH TRMT TX9D 0000 -010  
0000 -010  
0000 000x  
0000 0000  
SREN CREN ADDEN FERR OERR RX9D 0000 000x  
0000 0000  
Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 169  
PIC18CXX8  
TABLE 16-3: BAUD RATES FOR SYNCHRONOUS MODE  
FOSC = 40 MHz  
33 MHz  
25 MHz  
20 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
KBAUD  
KBAUD  
NA  
KBAUD  
ERROR  
KBAUD ERROR  
ERROR  
ERROR  
0.3  
NA  
-
-
NA  
-
-
-
-
-
-
-
-
NA  
-
-
1.2  
NA  
-
-
NA  
-
-
NA  
-
NA  
-
-
2.4  
NA  
-
-
NA  
-
-
NA  
-
NA  
-
-
9.6  
NA  
-
-
NA  
-
-
NA  
-
NA  
-
-
19.2  
76.8  
96  
NA  
-
-
NA  
-
-
NA  
-
NA  
-
-
76.92  
96.15  
303.03  
500  
+0.16  
129  
103  
32  
19  
0
77.10  
95.93  
294.64  
485.30  
8250  
32.23  
+0.39  
-0.07  
-1.79  
-2.94  
-
106  
85  
27  
16  
0
77.16  
96.15  
297.62  
480.77  
6250  
24.41  
+0.47  
+0.16  
-0.79  
-3.85  
-
80  
64  
20  
12  
0
76.92  
96.15  
294.12  
500  
+0.16  
64  
51  
16  
9
+0.16  
+0.16  
300  
500  
HIGH  
LOW  
+1.01  
-1.96  
0
-
0
-
10000  
39.06  
5000  
19.53  
0
-
255  
-
255  
-
255  
-
255  
FOSC = 16 MHz  
%
10 MHz  
7.15909 MHz  
%
5.0688 MHz  
%
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
KBAUD  
KBAUD  
KBAUD  
KBAUD  
ERROR  
ERROR  
ERROR  
ERROR  
0.3  
NA  
-
-
NA  
-
-
NA  
-
-
NA  
-
-
1.2  
NA  
-
-
NA  
-
-
NA  
-
-
NA  
-
-
2.4  
NA  
-
-
NA  
-
-
NA  
-
-
NA  
-
-
9.6  
NA  
-
-
NA  
-
-
9.62  
+0.23  
+0.23  
+1.32  
-1.88  
-0.57  
-10.51  
-
185  
92  
22  
18  
5
9.60  
0
131  
65  
16  
12  
3
19.2  
76.8  
96  
19.23  
76.92  
95.24  
307.70  
500  
+0.16  
+0.16  
-0.79  
+2.56  
0
207  
51  
41  
12  
7
19.23  
75.76  
96.15  
312.50  
500  
+0.16  
-1.36  
+0.16  
+4.17  
0
129  
32  
25  
7
19.24  
77.82  
94.20  
298.35  
447.44  
1789.80  
6.99  
19.20  
74.54  
97.48  
316.80  
422.40  
1267.20  
4.95  
0
-2.94  
+1.54  
+5.60  
-15.52  
-
300  
500  
HIGH  
LOW  
4
3
2
4000  
15.63  
-
0
2500  
9.77  
-
0
0
0
-
255  
-
255  
-
255  
-
255  
FOSC = 4 MHz  
%
3.579545 MHz  
%
1 MHz  
32.768 kHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
KBAUD  
KBAUD  
KBAUD  
KBAUD  
ERROR  
ERROR  
ERROR  
ERROR  
0.3  
NA  
-
-
NA  
-
-
NA  
-
-
0.30  
1.17  
2.73  
8.20  
NA  
+1.14  
26  
1.2  
NA  
-
-
NA  
-
-
1.20  
2.40  
9.62  
19.23  
83.33  
83.33  
250  
+0.16  
+0.16  
+0.16  
+0.16  
+8.51  
-13.19  
-16.67  
-
207  
103  
25  
12  
2
-2.48  
6
2.4  
NA  
-
-
NA  
-
-
+13.78  
2
9.6  
9.62  
19.23  
76.92  
1000  
333.33  
500  
+0.16  
+0.16  
+0.16  
+4.17  
+11.11  
0
103  
51  
12  
9
9.62  
+0.23  
-0.83  
-2.90  
+3.57  
-0.57  
-10.51  
-
92  
46  
11  
8
-14.67  
0
19.2  
76.8  
96  
19.04  
74.57  
99.43  
298.30  
447.44  
894.89  
3.50  
-
-
-
-
-
-
-
-
NA  
-
2
NA  
-
300  
500  
HIGH  
LOW  
2
2
0
NA  
-
1
1
NA  
-
NA  
-
1000  
3.91  
-
0
0
250  
-
0
8.20  
0.03  
0
-
255  
-
255  
0.98  
-
255  
255  
DS30475A-page 170  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
TABLE 16-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)  
FOSC = 40 MHz  
33 MHz  
25 MHz  
20 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
KBAUD ERROR  
KBAUD  
ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
0.3  
NA  
-
-
NA  
-
-
-
NA  
-
-
-
NA  
-
-
1.2  
NA  
-
-
NA  
-
NA  
-
NA  
-
-
2.4  
NA  
-
-
2.40  
-0.07  
-0.54  
-0.54  
-4.09  
+7.42  
-14.06  
-
214  
53  
26  
6
2.40  
9.53  
19.53  
78.13  
97.66  
NA  
-0.15  
162  
40  
19  
4
2.40  
+0.16  
-1.36  
+1.73  
+1.73  
+8.51  
+4.17  
-
129  
32  
15  
3
9.6  
9.62  
18.94  
78.13  
89.29  
312.50  
625  
+0.16  
-1.36  
+1.73  
-6.99  
+4.17  
+25.00  
-
64  
32  
7
9.55  
-0.76  
9.47  
19.2  
76.8  
96  
19.10  
73.66  
103.13  
257.81  
NA  
+1.73  
19.53  
78.13  
104.17  
312.50  
NA  
+1.73  
6
4
+1.73  
3
2
300  
500  
HIGH  
LOW  
1
1
-
-
-
-
-
0
0
-
NA  
-
-
625  
0
515.63  
2.01  
-
0
390.63  
1.53  
0
312.50  
1.22  
-
0
2.44  
-
255  
-
255  
255  
-
255  
FOSC = 16 MHz  
10 MHz  
7.15909 MHz  
%
5.0688 MHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
KBAUD ERROR  
KBAUD  
ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
0.3  
NA  
-
-
NA  
-
-
NA  
-
-
NA  
-
-
1.2  
1.20  
2.40  
9.62  
19.23  
83.33  
83.33  
250  
+0.16  
+0.16  
+0.16  
+0.16  
+8.51  
-13.19  
-16.67  
-
207  
103  
25  
12  
2
1.20  
+0.16  
+0.16  
+1.73  
+1.73  
+1.73  
-18.62  
-47.92  
-
129  
64  
15  
7
1.20  
2.38  
9.32  
18.64  
111.86  
NA  
+0.23  
92  
46  
11  
5
1.20  
2.40  
9.90  
19.80  
79.20  
NA  
0
65  
32  
7
2.4  
2.40  
-0.83  
0
9.6  
9.77  
-2.90  
+3.13  
19.2  
76.8  
96  
19.53  
78.13  
78.13  
156.25  
NA  
-2.90  
+3.13  
3
1
+45.65  
0
+3.13  
0
2
1
-
-
-
-
-
-
-
-
-
-
-
-
300  
500  
HIGH  
LOW  
0
0
NA  
-
NA  
-
NA  
-
-
NA  
-
NA  
-
250  
-
0
156.25  
0.61  
-
0
111.86  
0.44  
0
79.20  
0.31  
0
0.98  
-
255  
-
255  
255  
255  
FOSC = 4 MHz  
3.579545 MHz  
%
1 MHz  
32.768 kHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
KBAUD ERROR  
KBAUD  
ERROR  
KBAUD  
ERROR  
KBAUD ERROR  
0.3  
0.30  
1.20  
2.40  
8.93  
20.83  
62.50  
NA  
-0.16  
207  
51  
25  
6
0.30  
1.19  
2.43  
9.32  
18.64  
55.93  
NA  
+0.23  
185  
46  
22  
5
0.30  
1.20  
2.23  
7.81  
15.63  
NA  
+0.16  
51  
12  
6
0.26  
NA  
-14.67  
1
1.2  
+1.67  
-0.83  
+0.16  
-
-
-
-
-
-
-
-
-
-
-
2.4  
+1.67  
+1.32  
-6.99  
NA  
-
9.6  
-6.99  
-2.90  
-18.62  
1
NA  
-
19.2  
76.8  
96  
+8.51  
2
-2.90  
2
-18.62  
0
NA  
-
-18.62  
0
-27.17  
0
-
-
-
-
-
-
-
NA  
-
-
-
-
-
-
-
-
-
-
-
-
-
NA  
-
NA  
-
300  
500  
HIGH  
LOW  
NA  
-
NA  
-
NA  
-
NA  
-
NA  
-
NA  
-
NA  
-
NA  
-
62.50  
0.24  
0
55.93  
0.22  
0
15.63  
0.06  
0
0.51  
0.002  
0
255  
255  
255  
255  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 171  
PIC18CXX8  
TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)  
FOSC = 40 MHz  
33 MHz  
25 MHz  
20 MHz  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
BAUD  
RATE  
(Kbps)  
%
%
%
%
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
0.3  
NA  
-
-
-
-
-
NA  
-
-
-
-
NA  
-
-
-
-
NA  
-
-
-
-
1.2  
NA  
-
NA  
-
NA  
-
NA  
-
2.4  
NA  
-
NA  
-
NA  
-
NA  
-
9.6  
NA  
-
9.60  
-0.07  
+0.39  
-0.54  
+2.31  
-1.79  
+3.13  
-
214  
106  
26  
20  
6
9.59  
-0.15  
+0.47  
+1.73  
+1.73  
+4.17  
+4.17  
-
162  
80  
19  
15  
4
9.62  
+0.16  
+0.16  
+1.73  
+0.16  
+4.17  
-16.67  
-
129  
64  
15  
12  
3
19.2  
76.8  
96  
19.23  
75.76  
96.15  
312.50  
500  
+0.16  
-1.36  
+0.16  
+4.17  
0
129  
32  
25  
7
19.28  
76.39  
98.21  
294.64  
515.63  
2062.50  
8,06  
19.30  
78.13  
97.66  
312.50  
520.83  
1562.50  
6.10  
19.23  
78.13  
96.15  
312.50  
416.67  
1250  
4.88  
300  
500  
HIGH  
LOW  
4
3
2
2
2500  
9.77  
-
0
0
0
0
-
255  
-
255  
-
255  
-
255  
FOSC = 16 MHz  
10 MHz  
7.15909 MHz  
5.0688 MHz  
BAUD  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
RATE  
(Kbps)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
%
%
%
%
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
0.3  
NA  
-
-
NA  
-
-
NA  
-
-
NA  
-
-
1.2  
NA  
-
-
NA  
-
-
NA  
-
-
NA  
-
-
2.4  
NA  
-
-
NA  
-
-
2.41  
+0.23  
-0.83  
+1.32  
-2.90  
-6.78  
+49.15  
-10.51  
-
185  
46  
22  
5
2.40  
0
131  
32  
16  
3
9.6  
9.62  
19.23  
76.92  
100  
+0.16  
+0.16  
+0.16  
+4.17  
+11.11  
0
103  
51  
12  
9
9.62  
18.94  
78.13  
89.29  
312.50  
625  
+0.16  
-1.36  
+1.73  
-6.99  
+4.17  
+25.00  
-
64  
32  
7
9.52  
9.60  
0
19.2  
76.8  
96  
19.45  
74.57  
89.49  
447.44  
447.44  
447.44  
1.75  
18.64  
79.20  
105.60  
316.80  
NA  
-2.94  
+3.13  
6
4
+10.00  
2
300  
500  
HIGH  
LOW  
333.33  
500  
2
1
0
+5.60  
0
1
0
0
-
-
-
-
1000  
3.91  
-
0
625  
0
0
316.80  
1.24  
0
-
255  
2.44  
-
255  
-
255  
255  
FOSC = 4 MHz  
3.579545 MHz  
1 MHz  
32.768 kHz  
BAUD  
RATE  
(Kbps)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
SPBRG  
value  
(decimal)  
%
%
%
%
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
KBAUD ERROR  
0.3  
NA  
-
-
NA  
-
-
0.30  
1.20  
2.40  
8.93  
20.83  
62.50  
NA  
+0.16  
207  
51  
25  
6
0.29  
1.02  
2.05  
NA  
-2.48  
6
1.2  
1.20  
2.40  
9.62  
19.23  
NA  
+0.16  
207  
103  
25  
12  
-
1.20  
+0.23  
+0.23  
+1.32  
-2.90  
-2.90  
+16.52  
-25.43  
-
185  
92  
22  
11  
2
+0.16  
-14.67  
1
2.4  
+0.16  
2.41  
+0.16  
-14.67  
0
9.6  
+0.16  
9.73  
-6.99  
-
-
-
-
-
-
-
-
-
19.2  
76.8  
96  
+0.16  
18.64  
74.57  
111.86  
223.72  
NA  
+8.51  
2
NA  
-
-
-
-
-
-
-
-18.62  
0
NA  
-
NA  
-
1
-
-
-
-
-
-
NA  
-
300  
500  
HIGH  
LOW  
NA  
-
0
NA  
-
NA  
-
NA  
-
-
NA  
-
NA  
-
250  
0.98  
0
55.93  
0.22  
-
0
62.50  
0.24  
0
2.05  
0.008  
0
255  
-
255  
255  
255  
DS30475A-page 172  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
Once the TXREG register transfers the data to the TSR  
register (occurs in one TCY), the TXREG register is  
empty and flag bit TXIF (PIR registers) is set. This inter-  
rupt can be enabled/disabled by setting/clearing  
enable bit TXIE (PIE registers). Flag bit TXIF will be  
set, regardless of the state of enable bit TXIE and can-  
not be cleared in software. It will reset only when new  
data is loaded into the TXREG register. While flag bit  
TXIF indicated the status of the TXREG register,  
another bit TRMT (TXSTA register) shows the status of  
the TSR register. Status bit TRMT is a read only bit,  
which is set when the TSR register is empty. No inter-  
rupt logic is tied to this bit, so the user has to poll this  
bit in order to determine if the TSR register is empty.  
16.2  
USART Asynchronous Mode  
In this mode, the USART uses standard  
non-return-to-zero (NRZ) format (one START bit, eight  
or nine data bits and one STOP bit). The most common  
data format is 8-bits. An on-chip dedicated 8-bit baud  
rate generator can be used to derive standard baud  
rate frequencies from the oscillator. The USART trans-  
mits and receives the LSb first. The USARTs transmit-  
ter and receiver are functionally independent, but use  
the same data format and baud rate. The baud rate  
generator produces a clock, either x16 or x64 of the bit  
shift rate, depending on the BRGH bit (TXSTA regis-  
ter). Parity is not supported by the hardware, but can be  
implemented in software (and stored as the ninth data  
bit). Asynchronous mode is stopped during SLEEP.  
Note 1: The TSR register is not mapped in data  
memory, so it is not available to the user.  
Asynchronous mode is selected by clearing the SYNC  
bit (TXSTA register).  
2: Flag bit TXIF is set when enable bit TXEN  
is set.  
The USART Asynchronous module consists of the fol-  
lowing important elements:  
Steps to follow when setting up an Asynchronous  
Transmission:  
Baud Rate Generator  
Sampling Circuit  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH (Section 16.1).  
Asynchronous Transmitter  
Asynchronous Receiver  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
16.2.1 USART ASYNCHRONOUS TRANSMITTER  
3. If interrupts are desired, set enable bit TXIE.  
The USART transmitter block diagram is shown in  
Figure 16-1. The heart of the transmitter is the Transmit  
(serial) Shift Register (TSR). The TSR register obtains  
its data from the Read/Write Transmit Buffer register  
(TXREG). The TXREG register is loaded with data in  
software. The TSR register is not loaded until the STOP  
bit has been transmitted from the previous load. As  
soon as the STOP bit is transmitted, the TSR is loaded  
with new data from the TXREG register (if available).  
4. If 9-bit transmission is desired, set transmit bit  
TX9. Can be used as address/data bit.  
5. Enable the transmission by setting bit TXEN,  
which will also set bit TXIF.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Load data to the TXREG register (starts trans-  
mission).  
FIGURE 16-1: USART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXREG register  
TXIF  
TXIE  
8
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
TSR register  
RC6/TX/CK pin  
Interrupt  
TXEN  
Baud Rate CLK  
TRMT  
SPEN  
SPBRG  
Baud Rate Generator  
TX9  
TX9D  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 173  
PIC18CXX8  
FIGURE 16-2: ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(shift clock)  
RC6/TX/CK (pin)  
START Bit  
Bit 0  
Bit 1  
Word 1  
Bit 7/8  
STOP Bit  
TXIF bit  
(Transmit buffer  
register empty flag)  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit shift  
register empty flag)  
FIGURE 16-3: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)  
Write to TXREG  
Word 2  
Word 1  
BRG Output  
(shift clock)  
RC6/TX/CK (pin)  
START Bit  
START Bit  
Word 2  
Bit 0  
Bit 1  
Bit 7/8  
Bit 0  
STOP Bit  
TXIF bit  
(interrupt reg. flag)  
Word 1  
TRMT bit  
(Transmit shift  
reg. empty flag)  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
Note: This timing diagram shows two consecutive transmissions.  
TABLE 16-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on  
Value on  
all other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE RBIE TMR0IF INT0IF  
RBIF  
0000 000x 0000 000u  
PIR1  
PSPIF  
PSPIE  
PSPIP  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
TXIF SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
TXIE SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
TXIP SSPIP CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
PIE1  
IPR1  
RCSTA  
SREN CREN  
FERR OERR  
RX9D 0000 -00x 0000 -00x  
0000 0000 0000 0000  
TXREG USART Transmit Register  
TXSTA CSRC TX9 TXEN SYNC ADDEN BRGH TRMT  
TX9D 0000 0010 0000 0010  
0000 0000 0000 0000  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented locations read as '0'.  
Shaded cells are not used for Asynchronous Transmission.  
DS30475A-page 174  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
16.2.2 USART ASYNCHRONOUS RECEIVER  
16.2.3 SETTING UP 9-BIT MODE WITH ADDRESS  
DETECT  
The receiver block diagram is shown in Figure 16-4.  
The data is received on the RC7/RX/DT pin and drives  
the data recovery block. The data recovery block is  
actually a high speed shifter, operating at x16 times the  
baud rate, whereas the main receive serial shifter oper-  
ates at the bit rate or at FOSC. This mode would typi-  
cally be used in RS-232 systems.  
This mode would typically be used in RS-485 systems.  
Steps to follow when setting up an Asynchronous  
Reception with Address Detect Enable:  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is required,  
set the BRGH bit.  
Steps to follow when setting up an Asynchronous  
Reception:  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
1. Initialize the SPBRG register for the appropriate  
baud rate. If a high speed baud rate is desired,  
set bit BRGH (Section 16.1).  
3. If interrupts are required, set the RCEN bit and  
select the desired priority level with the RCIP bit.  
4. Set the RX9 bit to enable 9-bit reception.  
5. Set the ADDEN bit to enable address detect.  
6. Enable reception by setting the CREN bit.  
2. Enable the asynchronous serial port by clearing  
bit SYNC and setting bit SPEN.  
3. If interrupts are desired, set enable bit RCIE.  
4. If 9-bit reception is desired, set bit RX9.  
5. Enable the reception by setting bit CREN.  
7. The RCIF bit will be set when reception is com-  
plete. The interrupt will be acknowledged if the  
RCIE and GIE bits are set.  
6. Flag bit RCIF will be set when reception is com-  
plete and an interrupt will be generated if enable  
bit RCIE was set.  
8. Read the RCSTA register to determine if any  
error occurred during reception, as well as read  
bit 9 of data (if applicable).  
7. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read RCREG to determine if the device is being  
addressed.  
10. If any error occurred, clear the CREN bit.  
8. Read the 8-bit received data by reading the  
RCREG register.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and interrupt the CPU.  
9. If any error occurred, clear the error by clearing  
enable bit CREN.  
FIGURE 16-4: USART RECEIVE BLOCK DIAGRAM  
x64 Baud Rate CLK  
FERR  
OERR  
CREN  
SPBRG  
÷ 64  
RSR Register  
LSb  
MSb  
or  
÷ 16  
0
Baud Rate Generator  
1
7
STOP (8)  
START  
• • •  
RC7/RX/DT  
Pin Buffer  
and Control  
Data  
Recovery  
RX9  
RX9D  
SPEN  
RCREG Register  
FIFO  
8
RCIF  
RCIE  
Interrupt  
Data Bus  
Note:  
I/O pins have diode protection to VDD and VSS.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 175  
PIC18CXX8  
FIGURE 16-5: ASYNCHRONOUS RECEPTION  
START  
bit  
START  
bit  
START  
bit7/8 STOP bit  
bit  
RX (pin)  
bit0  
bit1  
STOP  
bit  
STOP  
bit  
bit0  
bit7/8  
bit7/8  
Rcv shift  
reg  
Rcv buffer reg  
Word 2  
RCREG  
Word 1  
RCREG  
Read Rcv  
buffer reg  
RCREG  
RCIF  
(interrupt flag)  
OERR bit  
CREN  
Note: This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,  
causing the OERR (overrun) bit to be set.  
TABLE 16-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on  
POR,  
BOR  
Value on  
all other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF INT0IF  
RBIF  
0000 000x  
0000 000u  
0000 0000  
0000 0000  
0000 0000  
PSPIF  
PSPIE  
PSPIP  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
CREN  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000  
SSPIP CCP1IP TMR2IP TMR1IP 0000 0000  
PIE1  
IPR1  
RCSTA  
FERR  
OERR  
RX9D  
0000 -00x  
0000 0000  
0000 0010  
0000 0000  
0000 -00x  
0000 0000  
0000 0010  
0000 0000  
RCREG  
TXSTA  
SPBRG  
USART Receive Register  
CSRC TX9  
TXEN  
SYNC ADDEN BRGH  
TRMT  
TX9D  
Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented locations read as '0'. Shaded cells are not used for Asynchronous Reception.  
DS30475A-page 176  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
enabled/disabled by setting/clearing enable bit TXIE  
(PIE registers). Flag bit TXIF will be set, regardless of  
the state of enable bit TXIE, and cannot be cleared in  
software. It will reset only when new data is loaded into  
the TXREG register. While flag bit TXIF indicates the  
status of the TXREG register, another bit TRMT  
(TXSTA register) shows the status of the TSR register.  
TRMT is a read only bit, which is set when the TSR is  
empty. No interrupt logic is tied to this bit, so the user  
has to poll this bit in order to determine if the TSR reg-  
ister is empty. The TSR is not mapped in data memory,  
so it is not available to the user.  
16.3  
USART Synchronous Master Mode  
In Synchronous Master mode, the data is transmitted in  
a half-duplex manner (i.e., transmission and reception  
do not occur at the same time). When transmitting data,  
the reception is inhibited and vice versa. Synchronous  
mode is entered by setting bit SYNC (TXSTA register).  
In addition, enable bit SPEN (RCSTA register) is set, in  
order to configure the RC6/TX/CK and RC7/RX/DT I/O  
pins to CK (clock) and DT (data) lines, respectively. The  
Master mode indicates that the processor transmits the  
master clock on the CK line. The Master mode is  
entered by setting bit CSRC (TXSTA register).  
Steps to follow when setting up a Synchronous Master  
Transmission:  
16.3.1 USART SYNCHRONOUS MASTER  
TRANSMISSION  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 16.1).  
The USART transmitter block diagram is shown in  
Figure 16-1. The heart of the transmitter is the Transmit  
(serial) Shift register (TSR). The shift register obtains  
its data from the Read/Write Transmit Buffer register  
(TXREG). The TXREG register is loaded with data in  
software. The TSR register is not loaded until the last  
bit has been transmitted from the previous load. As  
soon as the last bit is transmitted, the TSR is loaded  
with new data from the TXREG (if available). Once the  
TXREG register transfers the data to the TSR register  
(occurs in one TCY), the TXREG is empty and interrupt  
bit TXIF (PIR registers) is set. The interrupt can be  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN, and CSRC.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting bit TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the  
TXREG register.  
TABLE 16-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on  
POR,  
Value on all  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
other  
BOR  
RESETS  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
CCP1IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PIR1  
PSPIF  
PSPIE  
PSPIP  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TMR2IF TMR1IF 0000 0000 0000 0000  
PIE1  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
IPR1  
TXIP  
RCSTA  
TXREG  
TXSTA  
CREN  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 0010 0000 0010  
0000 0000 0000 0000  
USART Transmit Register  
CSRC TX9  
TXEN  
SYNC ADDEN  
BRGH  
TRMT  
TX9D  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Transmission.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 177  
PIC18CXX8  
FIGURE 16-6: SYNCHRONOUS TRANSMISSION  
Q1Q2 Q3Q4 Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2 Q3Q4  
Q3Q4 Q1Q2 Q3Q4 Q1Q2 Q3Q4 Q1Q2 Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4Q1 Q2Q3 Q4  
Bit 0  
Bit 1  
Bit 2  
Bit 7  
Bit 0  
Bit 1  
Word 2  
Bit 7  
RC7/RX/DT  
pin  
Word 1  
RC6/TX/CK  
pin  
Write to  
TXREG reg  
Write Word 1  
Write Word 2  
TXIF bit  
(Interrupt flag)  
TRMT bit  
1’  
1’  
TXEN bit  
Note: Sync Master mode; SPBRG = 0; continuous transmission of two 8-bit words.  
FIGURE 16-7: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RC7/RX/DT pin  
RC6/TX/CK pin  
bit0  
bit2  
bit1  
bit6  
bit7  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
DS30475A-page 178  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
16.3.2 USART SYNCHRONOUS MASTER  
RECEPTION  
Steps to follow when setting up a Synchronous Master  
Reception:  
1. Initialize the SPBRG register for the appropriate  
baud rate (Section 16.1).  
Once Synchronous Master mode is selected, reception  
is enabled by setting either enable bit SREN (RCSTA  
register), or enable bit CREN (RCSTA register). Data is  
sampled on the RC7/RX/DT pin on the falling edge of  
the clock. If enable bit SREN is set, only a single word  
is received. If enable bit CREN is set, the reception is  
continuous until CREN is cleared. If both bits are set,  
then CREN takes precedence.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
3. Ensure bits CREN and SREN are clear.  
4. If interrupts are desired, set enable bit RCIE.  
5. If 9-bit reception is desired, set bit RX9.  
6. If a single reception is required, set bit SREN.  
For continuous reception, set bit CREN.  
7. Interrupt flag bit RCIF will be set when reception  
is complete and an interrupt will be generated if  
the enable bit RCIE was set.  
8. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
9. Read the 8-bit received data by reading the  
RCREG register.  
10. If any error occurred, clear the error by clearing  
bit CREN.  
TABLE 16-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on  
POR,  
BOR  
Value on all  
other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
RBIF  
0000 000x  
0000 000u  
0000 0000  
0000 0000  
0000 0000  
0000 -00x  
0000 0000  
0000 0010  
0000 0000  
PIR1  
PSPIF  
PSPIE  
PSPIP  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
CCP1IF TMR2IF TMR1IF 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000  
CCP1IP TMR2IP TMR1IP 0000 0000  
PIE1  
IPR1  
TXIP  
RCSTA  
CREN  
FERR  
OERR  
RX9D  
0000 -00x  
0000 0000  
0000 0010  
0000 0000  
RCREG USART Receive Register  
TXSTA CSRC TX9  
TXEN  
SYNC  
ADDEN  
BRGH  
TRMT  
TX9D  
SPBRG Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Master Reception.  
FIGURE 16-8: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
RC7/RX/DT pin  
RC6/TX/CK pin  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
Write to  
bit SREN  
SREN bit  
CREN bit  
0’  
0’  
RCIF bit  
(interrupt)  
Read  
RXREG  
Note: Timing diagram demonstrates SYNC Master mode with bit SREN = 1and bit BRGH = 0.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 179  
PIC18CXX8  
16.4.2 USART SYNCHRONOUS SLAVE  
RECEPTION  
16.4  
USART Synchronous Slave Mode  
Synchronous Slave mode differs from the Master  
mode, in that the shift clock is supplied externally at the  
RC6/TX/CK pin (instead of being supplied internally in  
Master mode). This allows the device to transfer or  
receive data while in SLEEP mode. Slave mode is  
entered by clearing bit CSRC (TXSTA register).  
The operation of the Synchronous Master and Slave  
modes is identical, except in the case of the SLEEP  
mode and bit SREN, which is a "dont care" in Slave  
mode.  
If receive is enabled by setting bit CREN prior to the  
SLEEPinstruction, then a word may be received during  
SLEEP. On completely receiving the word, the RSR  
register will transfer the data to the RCREG register,  
and if enable bit RCIE bit is set, the interrupt generated  
will wake the chip from SLEEP. If the global interrupt is  
enabled, the program will branch to the interrupt vector.  
16.4.1 USART SYNCHRONOUS SLAVE  
TRANSMIT  
The operation of the Synchronous Master and Slave  
modes are identical, except in the case of the SLEEP  
mode.  
Steps to follow when setting up a Synchronous Slave  
Reception:  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
1. Enable the synchronous master serial port by  
setting bits SYNC and SPEN and clearing bit  
CSRC.  
a) The first word will immediately transfer to the  
TSR register and transmit.  
b) The second word will remain in TXREG register.  
c) Flag bit TXIF will not be set.  
2. If interrupts are desired, set enable bit RCIE.  
3. If 9-bit reception is desired, set bit RX9.  
4. To enable reception, set enable bit CREN.  
d) When the first word has been shifted out of TSR,  
the TXREG register will transfer the second  
word to the TSR and flag bit TXIF will be set.  
5. Flag bit RCIF will be set when reception is com-  
plete. An interrupt will be generated if enable bit  
RCIE was set.  
e) If enable bit TXIE is set, the interrupt will wake  
the chip from SLEEP. If the global interrupt is  
enabled, the program will branch to the interrupt  
vector.  
6. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
Steps to follow when setting up a Synchronous Slave  
Transmission:  
7. Read the 8-bit received data by reading the  
RCREG register.  
1. Enable the synchronous slave serial port by set-  
ting bits SYNC and SPEN and clearing bit  
CSRC.  
8. If any error occurred, clear the error by clearing  
bit CREN.  
2. Clear bits CREN and SREN.  
3. If interrupts are desired, set enable bit TXIE.  
4. If 9-bit transmission is desired, set bit TX9.  
5. Enable the transmission by setting enable bit  
TXEN.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded in bit TX9D.  
7. Start transmission by loading data to the  
TXREG register.  
DS30475A-page 180  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
TABLE 16-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on  
POR,  
BOR  
Value on all  
other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PSPIF  
PSPIE  
PSPIP  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
CREN  
SSPIF  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
PIE1  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
SSPIP CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
IPR1  
RCSTA  
TXREG  
TXSTA  
SPBRG  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 0010 0000 0010  
0000 0000 0000 0000  
USART Transmit Register  
CSRC TX9  
TXEN  
SYNC ADDEN  
BRGH  
TRMT  
TX9D  
Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Slave transmission.  
TABLE 16-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on  
POR,  
Value on all  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
other  
BOR  
RESETS  
INTCON  
PIR1  
GIE/GIEH PEIE/GIEL TMR0IE INT0IE  
RBIE  
SSPIF  
SSPIE  
SSPIP  
TMR0IF  
INT0IF  
RBIF  
0000 000x 0000 000u  
PSPIF  
PSPIE  
PSPIP  
SPEN  
ADIF  
ADIE  
ADIP  
RX9  
RCIF  
RCIE  
RCIP  
SREN  
TXIF  
TXIE  
TXIP  
CREN  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IP TMR2IP TMR1IP 0000 0000 0000 0000  
PIE1  
IPR1  
RCSTA  
RCREG  
TXSTA  
SPBRG  
FERR  
OERR  
RX9D  
0000 -00x 0000 -00x  
0000 0000 0000 0000  
0000 0010 0000 0010  
0000 0000 0000 0000  
USART Receive Register  
CSRC TX9  
TXEN  
SYNC  
ADDEN  
BRGH  
TRMT  
TX9D  
Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented, read as '0'. Shaded cells are not used for Synchronous Slave reception.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 181  
PIC18CXX8  
NOTES:  
DS30475A-page 182  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
17.1.1 OVERVIEW OF THE MODULE  
17.0 CAN MODULE  
The CAN bus module consists of a Protocol Engine  
and message buffering and control. The CAN protocol  
engine handles all functions for receiving and transmit-  
ting messages on the CAN bus. Messages are trans-  
mitted by first loading the appropriate data registers.  
Status and errors can be checked by reading the  
appropriate registers. Any message detected on the  
CAN bus is checked for errors and then matched  
against filters to see if it should be received and stored  
in one of the 2 receive registers.  
17.1  
Overview  
The Controller Area Network (CAN) module is a serial  
interface, useful for communicating with other peripher-  
als or microcontroller devices. This interface/protocol  
was designed to allow communications within noisy  
environments.  
The CAN module is a communication controller imple-  
menting the CAN 2.0 A/B protocol as defined in the  
BOSCH specification. The module will support CAN  
1.2, CAN 2.0A, CAN2.0B Passive, and CAN 2.0B  
Active versions of the protocol. The module implemen-  
tation is a Full CAN system. The CAN specification is  
not covered within this data sheet. The reader may  
refer to the BOSCH CAN specification for further  
details.  
The CAN Module supports the following Frame types:  
• Standard Data Frame  
• Extended Data Frame  
• Remote Frame  
• Error Frame  
• Overload Frame Reception  
• Interframe Space  
The module features are as follows:  
• Implementation of the CAN protocol CAN1.2,  
CAN2.0A and CAN2.0B  
• Standard and extended data frames  
• 0 - 8 bytes data length  
• Programmable bit rate up to 1 Mbit/sec  
• Support for remote frames  
• Double buffered receiver with two prioritized  
received message storage buffers  
• 6 full (standard/extended identifier) acceptance fil-  
ters, 2 associated with the high priority receive  
buffer, and 4 associated with the low priority  
receive buffer  
• 2 full acceptance filter masks, one each associ-  
ated with the high and low priority receive buffers  
• Three transmit buffers with application specified  
prioritization and abort capability  
• Programmable wake-up functionality with inte-  
grated low-pass filter  
• Programmable Loopback mode supports self-test  
operation  
• Signaling via interrupt capabilities for all CAN  
receiver and transmitter error states  
• Programmable clock source  
• Programmable link to timer module for  
time-stamping and network synchronization  
• Low power SLEEP mode  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 183  
PIC18CXX8  
17.1.2 TRANSMIT/RECEIVE BUFFERS  
The PIC18CXX8 has three transmit and two receive  
buffers, two acceptance masks (one for each receive  
buffer), and a total of six acceptance filters. Figure 17-1  
is a block diagram of these buffers and their connection  
to the protocol engine.  
FIGURE 17-1: CAN BUFFERS AND PROTOCOL ENGINE BLOCK DIAGRAM  
Acceptance Mask  
RXM1  
BUFFERS  
Acceptance Filter  
RXF2  
A
c
c
e
p
t
Acceptance Mask  
Acceptance Filter  
RXF3  
TXB0  
TXB1  
TXB2  
RXM0  
A
c
c
e
p
t
Acceptance Filter  
RXF0  
Acceptance Filter  
RXF4  
Acceptance Filter  
RXF1  
Acceptance Filter  
RXF5  
R
X
B
0
R
X
B
1
M
A
B
Identifier  
Identifier  
Message  
Queue  
Control  
Transmit Byte Sequencer  
Data Field  
Data Field  
Receive  
Error  
Counter  
RXERRCNT  
TXERRCNT  
PROTOCOL  
ENGINE  
Transmit  
Error  
ErrPas  
BusOff  
Counter  
Transmit Shift  
Receive Shift  
CRC Check  
Protocol  
Finite  
State  
CRC Generator  
Machine  
Bit  
Timing  
Logic  
Transmit  
Logic  
Bit Timing  
Generator  
TX  
RX  
DS30475A-page 184  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
17.2.1 CAN CONTROL AND STATUS REGISTERS  
17.2  
Control Registers for the CAN Module  
This section shows the CAN Control and Status  
registers.  
Note: Not all CAN registers are available in the  
access bank.  
There are many registers associated with the CAN  
module. Descriptions of these registers are grouped  
into sections. These sections are:  
• Control and Status Registers  
• Transmit Buffer Registers  
• Receive Buffer Registers  
• Baud Rate Control Registers  
• Interrupt Status and Control Registers  
REGISTER 17-1: CANCON – CAN CONTROL REGISTER  
R/W-1  
R/W-0  
R/W-0  
R/W-0  
ABAT  
R/W-0  
WIN2  
R/W-0  
WIN1  
R/W-0  
WIN0  
U-0  
REQOP2 REQOP1 REQOP0  
bit 7  
bit 0  
bit 7-5  
REQOP2:REQOP0: Request CAN Operation Mode bits  
1xx= Request Configuration mode  
011= Request Listen Only mode  
010= Request Loopback mode  
001= Request Disable mode  
000= Request Normal mode  
bit 4  
ABAT: Abort All Pending Transmissions bit  
1 = Abort all pending transmissions (in all transmit buffers)  
0 = Transmissions proceeding as normal  
bit 3-1  
WIN2:WIN0: Window Address bits  
This selects which of the CAN buffers to switch into the access bank area. This allows access  
to the buffer registers from any data memory bank. After a frame has caused an interrupt, the  
ICODE2:ICODE0 bits can be copied to the WIN2:WIN0 bits to select the correct buffer. See  
Example 17-1 for code example.  
111= Receive Buffer 0  
110= Receive Buffer 0  
101= Receive Buffer 1  
100= Transmit Buffer 0  
011= Transmit Buffer 1  
010= Transmit Buffer 2  
001= Receive Buffer 0  
000= Receive Buffer 0  
bit 0  
Unimplemented: Read as ’0’  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 185  
PIC18CXX8  
REGISTER 17-2: CANSTAT – CAN STATUS REGISTER  
R-1  
R-0  
R-0  
U-0  
R-0  
R-0  
R-0  
U-0  
OPMODE2 OPMODE1 OPMODE0  
bit 7  
ICODE2 ICODE1 ICODE0  
bit 0  
bit 7-5  
OPMODE2:OPMODE0: Operation Mode Status bits  
111= Reserved  
110= Reserved  
101= Reserved  
100= Configuration mode  
011= Listen Only mode  
010= Loopback mode  
001= Disable mode  
000= Normal mode  
Note: Before the device goes into SLEEP mode, select Disable mode.  
bit 4  
Unimplemented: Read as ’0’  
bit 3-1  
ICODE2:ICODE0: Interrupt Code bits  
When an interrupt occurs, a prioritized coded interrupt value will be present in the  
ICODE2:ICODE0 bits. These codes indicate the source of the interrupt. The ICODE2:ICODE0  
bits can be copied to the WIN2:WIN0 bits to select the correct buffer to map into the Access  
Bank area. See Example 17-1 for code example.  
111= Wake-up on Interrupt  
110= RXB0 Interrupt  
101= RXB1 Interrupt  
100= TXB0 Interrupt  
011= TXB1 Interrupt  
010= TXB2 Interrupt  
001= Error Interrupt  
000= No Interrupt  
bit 0  
Unimplemented: Read as ’0’  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30475A-page 186  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
EXAMPLE 17-1: WIN AND ICODE BITS USAGE IN INTERRUPT SERVICE ROUTINE TO ACCESS  
TX/RX BUFFERS  
; Save application required context.  
; Poll interrupt flags and determine source of interrupt  
; This was found to be CAN interrupt  
; TempCANCON and TempCANSTAT are variables defined in Access Bank low  
movff  
CANCON, TempCANCON  
; Save CANCON.WIN bits  
; This is required to prevent CANCON  
; from corrupting CAN buffer access  
; in-progress while this interrupt  
; occurred  
movff  
CANSTAT, TempCANSTAT  
; Save CANSTAT register  
; This is required to make sure that  
; we use same CANSTAT value rather  
; than one changed by another CAN  
; interrupt.  
movf  
andlw  
addwf  
TempCANSTAT, W  
b’00001110’  
PCL, F  
; Retrieve ICODE bits  
; Perform computed GOTO  
; to corresponding interrupt cause  
bra  
bra  
bra  
bra  
bra  
bra  
bra  
NoInterrupt  
; 000 = No interrupt  
ErrorInterrupt  
TXB2Interrupt  
TXB1Interrupt  
TXB0Interrupt  
RXB1Interrupt  
RXB0Interrupt  
; 001 = Error interrupt  
; 010 = TXB2 interrupt  
; 011 = TXB1 interrupt  
; 100 = TXB0 interrupt  
; 101 = RXB1 interrupt  
; 110 = RXB0 interrupt  
; 111 = Wake-up on interrupt  
WakeupInterrupt  
bcf  
PIR3, WAKIF  
; Clear the interrupt flag  
;
; User code to handle wake-up procedure  
;
;
; Continue checking for other interrupt source or return from here  
NoInterrupt  
; PC should never vector here. User may  
; place a trap such as infinite loop or pin/port  
; indication to catch this error.  
ErrorInterrupt  
bcf  
PIR3, ERRIF  
; Clear the interrupt flag  
; Handle error.  
retfie  
TXB2Interrupt  
bcf  
goto  
PIR3, TXB2IF  
AccessBuffer  
; Clear the interrupt flag  
; Clear the interrupt flag  
; Clear the interrupt flag  
; Clear the interrupt flag  
TXB1Interrupt  
bcf  
goto  
PIR3, TXB1IF  
AccessBuffer  
TXB0Interrupt  
bcf  
goto  
PIR3, TXB0IF  
AccessBuffer  
RXB1Interrupt  
bcf  
goto  
PIR3, RXB1IF  
Accessbuffer  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 187  
PIC18CXX8  
RXB0Interrupt  
bcf  
goto  
PIR3, RXB0IF  
AccessBuffer  
; Clear the interrupt flag  
AccessBuffer  
; This is either TX or RX interrupt  
; Copy CANCON.ICODE bits to CANSTAT.WIN bits  
movf  
TempCANCON, W  
; Clear CANCON.WIN bits before copying  
; new ones.  
andlw  
movwf  
b11110001’  
; Use previously saved CANCON value to  
; make sure same value.  
; Copy masked value back to TempCANCON  
TempCANCON  
movf  
TempCANSTAT, W  
; Retrieve ICODE bits  
andlw  
b00001110’  
; Use previously saved CANSTAT value  
; to make sure same value.  
iorwf  
movff  
TempCANCON  
TempCANCON, CANCON  
; Copy ICODE bits to WIN bits.  
; Copy the result to actual CANCON  
; Access current buffer…  
; Your code  
; Restore CANCON.WIN bits  
movf  
andlw  
iorwf  
CANCON, W  
b11110001’  
TempCANCON  
; Preserve current non WIN bits  
; Restore original WIN bits  
; Do not need to restore CANSTAT - it is read-only register.  
; Return from interrupt or check for another module interrupt source  
DS30475A-page 188  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
REGISTER 17-3: COMSTAT – COMMUNICATION STATUS REGISTER  
R/C-0  
R/C-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
RXB0OVFL RXB1OVFL TXBO  
bit 7  
TXBP  
RXBP TXWARN RXWARN EWARN  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RXB0OVFL: Receive Buffer 0 Overflow bit  
1= Receive Buffer 0 overflowed  
0= Receive Buffer 0 has not overflowed  
RXB1OVFL: Receive Buffer 1 Overflow bit  
1= Receive Buffer 1 overflowed  
0= Receive Buffer 1 has not overflowed  
TXB0: Transmitter Bus Off bit  
1= Transmit Error Counter >255  
0= Transmit Error Counter 255  
TXBP: Transmitter Bus Passive bit  
1= Transmission Error Counter >127  
0= Transmission Error Counter 127  
RXBP: Receiver Bus Passive bit  
1= Receive Error Counter >127  
0= Receive Error Counter 127  
TXWARN: Transmitter Warning bit  
1= Transmit Error Counter >95  
0= Transmit Error Counter 95  
RXWARN: Receiver Warning bit  
1= Receive Error Counter >95  
0= Receive Error Counter 95  
EWARN: Error Warning bit  
This bit is a flag of the RXWARN and TXWARN bits  
1= The RXWARN or the TXWARN bits are set  
0= Neither the RXWARN or the TXWARN bits are set  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 189  
PIC18CXX8  
17.2.2 CAN TRANSMIT BUFFER REGISTERS  
This section describes the CAN Transmit Buffer Register  
and the associated Transmit Buffer Control Registers.  
REGISTER 17-4: TXBnCON – TRANSMIT BUFFER n CONTROL REGISTER  
U-0  
R-0  
R-0  
R-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
TXABT  
TXLARB  
TXERR  
TXREQ  
TXPRI1  
TXPRI0  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ’0’  
TXABT: Transmission Aborted Status bit  
1= Message was aborted  
0= Message was not aborted  
bit 5  
bit 4  
bit 3  
TXLARB: Transmission Lost Arbitration Status bit  
1= Message lost arbitration while being sent  
0= Message did not lose arbitration while being sent  
TXERR: Transmission Error Detected Status bit  
1= A bus error occurred while the message was being sent  
0= A bus error did not occur while the message was being sent  
TXREQ: Transmit Request Status bit  
1= Requests sending a message. Clears the TXABT, TLARB, and TXERR bits  
0= Automatically cleared when the message is successfully sent  
Note: Clearing this bit in software, while the bit is set, will request a message abort.  
Unimplemented: Read as ’0’  
bit 2  
bit 1-0  
TXPRI1:TXPRI0: Transmit Priority bits  
11= Priority Level 3 (Highest Priority)  
10= Priority Level 2  
01= Priority Level 1  
00= Priority Level 0 (Lowest Priority)  
Note: These bits set the order in which Transmit buffer will be transferred. They do not  
alter CAN message identifier.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
REGISTER 17-5: TXBnSIDH:TRANSMITBUFFERnSTANDARDIDENTIFIERHIGHBYTEREGISTER  
R/W-x  
SID10  
R/W-x  
SID9  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
bit 7  
bit 0  
bit 7-0  
SID10:SID3: Standard Identifier bits, if EXIDE = 0 (TXBnSID Register).  
Extended Identifier bits EID28:EID21, if EXIDE = 1.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30475A-page 190  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
REGISTER 17-6: TXBnSIDL – TRANSMIT BUFFER n STANDARD IDENTIFIER LOW BYTE  
REGISTER  
R/W-x  
R/W-x  
SID1  
R/W-x  
SID0  
R/W-x  
R/W-x  
EXIDE  
R/W-x  
R/W-x  
EID17  
R/W-x  
EID16  
SID2  
bit 7  
bit 0  
bit 7-5  
SID2:SID0: Standard Identifier bits, if EXIDE = 0.  
Extended Identifier bits EID20:EID18, if EXIDE = 1.  
bit 4  
bit 3  
Unimplemented: Read as ’0’  
EXIDE: Extended Identifier Enable bit  
1= Message will transmit Extended ID, SID10:SID0 becomes EID28:EID18  
0= Message will transmit Standard ID, EID17:EID0 are ignored  
bit 2  
Unimplemented: Read as ’0’  
bit 1-0  
EID17:EID16: Extended Identifier bits  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 17-7: TXBnEIDH – TRANSMIT BUFFER n EXTENDED IDENTIFIER HIGH BYTE  
REGISTER  
R/W-x  
EID15  
R/W-x  
EID14  
R/W-x  
EID13  
R/W-x  
EID12  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
bit 7  
bit 0  
bit 7-0  
EID15:EID8: Extended Identifier bits  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 17-8: TXBnEIDL – TRANSMIT BUFFER n EXTENDED IDENTIFIER LOW BYTE  
REGISTER  
R/W-x  
EID7  
R/W-x  
EID6  
R/W-x  
EID5  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
bit 7  
bit 0  
bit 7-0  
EID7:EID0: Extended Identifier bits  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 191  
PIC18CXX8  
REGISTER 17-9: TXBnDm – TRANSMIT BUFFER n DATA FIELD BYTE m REGISTER  
R/W-x  
TXBnDm7 TXBnDm6 TXBnDm5 TXBnDm4 TXBnDm3 TXBnDm2 TXBnDm1 TXBnDm0  
bit 7 bit 0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
bit 1-0  
TXBnDm7:TXBnDm0: Transmit Buffer n Data Field Byte m bits (where 0n<3 and 0<m<8)  
Each Transmit Buffer has an array of registers. For example, Transmit buffer 0 has 7 registers:  
TXB0D0 to TXB0D7.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 17-10: TXBnDLC – TRANSMIT BUFFER n DATA LENGTH CODE REGISTER  
U-0  
R/W-x  
U-0  
U-0  
R/W-x  
DLC3  
R/W-x  
DLC2  
R/W-x  
DLC1  
R/W-x  
DLC0  
TXRTR  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ’0’  
TXRTR: Transmission Frame Remote Transmission Request bit  
1= Transmitted message will have TXRTR bit set  
0= Transmitted message will have TXRTR bit cleared.  
bit 5-4  
bit 3-0  
Unimplemented: Read as ’0’  
DLC3:DLC0: Data Length Code bits  
1111= Reserved  
1110= Reserved  
1101= Reserved  
1100= Reserved  
1011= Reserved  
1010= Reserved  
1001= Reserved  
1000= Data Length = 8 bytes  
0111= Data Length = 7 bytes  
0110= Data Length = 6 bytes  
0101= Data Length = 5 bytes  
0100= Data Length = 4 bytes  
0011= Data Length = 3 bytes  
0010= Data Length = 2 bytes  
0001= Data Length = 1 bytes  
0000= Data Length = 0 bytes  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR  
’0’ = Bit is cleared  
x = Bit is unknown  
DS30475A-page 192  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
REGISTER 17-11: TXERRCNT – TRANSMIT ERROR COUNT REGISTER  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
TEC7  
TEC6  
TEC5  
TEC4  
TEC3  
TEC2  
TEC1  
TEC0  
bit 7  
bit 0  
bit 7-0  
TEC7:TEC0: Transmit Error Counter bits  
This register contains a value which is derived from the rate at which errors occur. When the  
error count overflows, the bus off state occurs. When the bus has 128 occurrences of 11 con-  
secutive recessive bits, the counter value is cleared.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 193  
PIC18CXX8  
17.2.3 CAN RECEIVE BUFFER REGISTERS  
This section shows the Receive Buffer registers with its  
associated control registers.  
REGISTER 17-12: RXB0CON – RECEIVE BUFFER 0 CONTROL REGISTER  
R/C-0  
R/W-0  
RXM1  
R/W-0  
RXM0  
U-0  
R-0  
R/W-0  
R-0  
R/W-0  
RXFUL  
RXRTRRO RXB0DBEN  
JTOFF  
FILHIT0  
bit 7  
bit 0  
bit 7  
RXFUL: Receive Full Status bit  
1= Receive buffer contains a received message  
0= Receive buffer is open to receive a new message  
Note: This bit is set by the CAN module and should be cleared by software after the buffer  
is read.  
bit 6-5  
RXM1:RXM0: Receive Buffer Mode bits  
11= Receive all messages (including those with errors)  
10= Receive only valid messages with extended identifier  
01= Receive only valid messages with standard identifier  
00= Receive all valid messages  
bit 4  
bit 3  
Unimplemented: Read as ’0’  
RXRTRRO: Receive Remote Transfer Request Read Only bit  
1= Remote transfer request  
0= No remote transfer request  
bit 2  
bit 1  
RXB0DBEN: Receive Buffer 0 Double Buffer Enable bit  
1= Receive Buffer 0 overflow will write to Receive Buffer 1  
0= No Receive Buffer 0 overflow to Receive Buffer 1  
JTOFF: Jump Table Offset bit (read only copy of RX0DBEN)  
1= Allows Jump Table offset between 6 and 7  
0= Allows Jump Table offset between 1 and 0  
Note: This bit allows same filter jump table for both RXB0CON and RXB1CON.  
bit 0  
FILHIT0: Filter Hit bit  
This bit indicates which acceptance filter enabled the message reception into receive buffer 0  
1= Acceptance Filter 1 (RXF1)  
0= Acceptance Filter 0 (RXF0)  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30475A-page 194  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
REGISTER 17-13: RXB1CON – RECEIVE BUFFER 1 CONTROL REGISTER  
R/C-0  
R/W-0  
RXM1  
R/W-0  
RXM0  
U-0  
R-0  
RXRTRRO FILHIT2 FILHIT1 FILHIT0  
bit 0  
R-0  
R-0  
R-0  
RXFUL  
bit 7  
bit 7  
RXFUL: Receive Full Status bit  
1= Receive buffer contains a received message  
0= Receive buffer is open to receive a new message  
Note: This bit is set by the CAN module and should be cleared by software after the buffer  
is read.  
bit 6-5  
RXM1:RXM0: Receive Buffer Mode bits  
11= Receive all messages (including those with errors)  
10= Receive only valid messages with extended identifier  
01= Receive only valid messages with standard identifier  
00= Receive all valid messages  
bit 4  
bit 3  
Unimplemented: Read as ’0’  
RXRTRRO: Receive Remote Transfer Request bit (read only)  
1= Remote transfer request  
0= No remote transfer request  
bit 2-0  
FILHIT2:FILHIT0: Filter Hit bits  
These bits indicate which acceptance filter enabled the last message reception into Receive  
Buffer 1.  
111= Reserved  
110= Reserved  
101= Acceptance Filter 5 (RXF5)  
100= Acceptance Filter 4 (RXF4)  
011= Acceptance Filter 3 (RXF3)  
010= Acceptance Filter 2 (RXF2)  
001= Acceptance Filter 1 (RXF1) only possible when RXB0DBEN bit is set  
000= Acceptance Filter 0 (RXF0) only possible when RXB0DBEN bit is set  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 17-14: RXBnSIDH – RECEIVE BUFFER n STANDARD IDENTIFIER HIGH BYTE  
REGISTER  
R/W-x  
SID10  
R/W-x  
SID9  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
bit 7  
bit 0  
bit 7-0  
SID10:SID3: Standard Identifier bits, if EXID = 0 (RXBnSIDL Register).  
Extended Identifier bits EID28:EID21, if EXID = 1.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 195  
PIC18CXX8  
REGISTER 17-15: RXBnSIDL – RECEIVE BUFFER n STANDARD IDENTIFIER LOW BYTE  
REGISTER  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
R/W-x  
SRR  
R/W-x  
EXID  
U-0  
R/W-x  
EID17  
R/W-x  
EID16  
bit 7  
bit 0  
bit 7-5  
bit 4  
SID2:SID0: Standard Identifier bits, if EXID = 0.  
Extended Identifier bits EID20:EID18, if EXID = 1.  
SRR: Substitute Remove Request bit (only when EXID = ’1’)  
1= Remote transfer request occurred  
0= No remote transfer request occurred  
bit 3  
EXID: Extended Identifier bit  
1= Received message is an Extended Data Frame, SID10:SID0 are EID28:EID18  
0= Received message is a Standard Data Frame  
bit 2  
Unimplemented: Read as ’0’  
bit 1-0  
EID17:EID16: Extended Identifier bits  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 17-16: RXBnEIDH – RECEIVE BUFFER n EXTENDED IDENTIFIER HIGH BYTE  
REGISTER  
R/W-x  
EID15  
R/W-x  
EID14  
R/W-x  
EID13  
R/W-x  
EID12  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
bit 7  
bit 0  
bit 7-0  
EID15:EID8: Extended Identifier bits  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 17-17: RXBnEIDL – RECEIVE BUFFER n EXTENDED IDENTIFIER LOW BYTE  
REGISTER  
R/W-x  
EID7  
R/W-x  
EID6  
R/W-x  
EID5  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
bit 7  
bit 0  
bit 7-0  
EID7:EID0: Extended Identifier bits  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR  
’0’ = Bit is cleared  
x = Bit is unknown  
DS30475A-page 196  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
REGISTER 17-18: RXBnDLC – RECEIVE BUFFER n DATA LENGTH CODE REGISTER  
U-x  
R/W-x  
R/W-x  
RB1  
R/W-x  
RB0  
R/W-x  
DLC3  
R/W-x  
DLC2  
R/W-x  
DLC1  
R/W-x  
DLC0  
RXRTR  
bit 7  
bit 0  
bit 7  
bit 6  
Unimplemented: Read as ’0’  
RXRTR: Receiver Remote Transmission Request bit  
1= Remote transfer request  
0= No remote transfer request  
bit 5  
RB1: Reserved bit 1  
Reserved by CAN Spec and read as ’0’  
bit 4  
RB0: Reserved bit 0  
Reserved by CAN Spec and read as ’0’  
bit 3-0  
DLC3:DLC0: Data Length Code bits  
1111= Invalid  
1110= Invalid  
1101= Invalid  
1100= Invalid  
1011= Invalid  
1010= Invalid  
1001= Invalid  
1000= Data Length = 8 bytes  
0111= Data Length = 7 bytes  
0110= Data Length = 6 bytes  
0101= Data Length = 5 bytes  
0100= Data Length = 4 bytes  
0011= Data Length = 3 bytes  
0010= Data Length = 2 bytes  
0001= Data Length = 1 bytes  
0000= Data Length = 0 bytes  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 17-19: RXBnDm – RECEIVE BUFFER n DATA FIELD BYTE m REGISTER  
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x  
RXBnDm7 RXBnDm6 RXBnDm5 RXBnDm4 RXBnDm3 RXBnDm2 RXBnDm1 RXBnDm0  
bit 7 bit 0  
R/W-x  
bit 7-0  
RXBnDm7:RXBnDm0: Receive Buffer n Data Field Byte m bits (where 0n<1 and 0<m<7)  
Each Receive Buffer has an array of registers. For example, Receive buffer 0 has 8 registers:  
RXB0D0 to RXB0D7.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 197  
PIC18CXX8  
REGISTER 17-20: RXERRCNT – RECEIVE ERROR COUNT REGISTER  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
REC7  
REC6  
REC5  
REC4  
REC3  
REC2  
REC1  
REC0  
bit 7  
bit 0  
bit 7-0  
REC7:REC0: Receive Error Counter bits  
This register contains the Receive Error value as defined by the CAN specifications.  
When RXERRCNT > 127, the module will go into an error passive state. RXERRCNT does not  
have the ability to put the module in “Bus Off” state.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30475A-page 198  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
17.2.4 MESSAGE ACCEPTANCE FILTERS  
This subsection describes the Message Acceptance  
filters.  
REGISTER 17-21: RXFnSIDH – RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER  
HIGH BYTE  
R/W-x  
SID10  
R/W-x  
SID9  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
bit 7  
bit 0  
bit 7-0  
SID10:SID3: Standard Identifier Filter bits, if EXIDEN = 0.  
Extended Identifier Filter bits EID28:EID21, if EXIDEN = 1,  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 17-22: RXFnSIDL – RECEIVE ACCEPTANCE FILTER n STANDARD IDENTIFIER FILTER  
LOW BYTE  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
U-0  
R/W-x  
U-0  
R/W-x  
EID17  
R/W-x  
EID16  
EXIDEN  
bit 7  
bit 0  
bit 7-5  
SID2:SID0: Standard Identifier Filter bits, if EXIDEN = 0.  
Extended Identifier Filter bits EID20:EID18, if EXIDEN = 0.  
bit 4  
bit 3  
Unimplemented: Read as ’0’  
EXIDEN: Extended Identifier Filter Enable bit  
1 = Filter will only accept Extended ID messages  
0 = Filter will only accept Standard ID messages  
bit 2  
Unimplemented: Read as ’0’  
bit 1-0  
EID17:EID16: Extended Identifier Filter bits  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 17-23: RXFnEIDH – RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER HIGH  
BYTE  
R/W-x  
EID15  
R/W-x  
EID14  
R/W-x  
EID13  
R/W-x  
EID12  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
bit 7  
bit 0  
bit 7-0  
EID15:EID8: Extended Identifier Filter bits  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR  
’0’ = Bit is cleared  
x = Bit is unknown  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 199  
PIC18CXX8  
REGISTER 17-24: RXFnEIDL – RECEIVE ACCEPTANCE FILTER n EXTENDED IDENTIFIER LOW  
BYTE REGISTER  
R/W-x  
EID7  
R/W-x  
EID6  
R/W-x  
EID5  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
bit 7  
bit 0  
bit 7-0  
EID7:EID0: Extended Identifier Filter bits  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 17-25: RXMnSIDH – RECEIVE ACCEPTANCE MASK n STANDARD IDENTIFIER MASK  
HIGH BYTE REGISTER  
R/W-x  
SID10  
R/W-x  
SID9  
R/W-x  
SID8  
R/W-x  
SID7  
R/W-x  
SID6  
R/W-x  
SID5  
R/W-x  
SID4  
R/W-x  
SID3  
bit 7  
bit 0  
bit 7-0  
SID10:SID3: Standard Identifier Mask bits, or Extended Identifier Mask bits EID28:EID21  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 17-26: RXMnSIDL – RECEIVE ACCEPTANCE MASK n STANDARD IDENTIFIER MASK  
LOW BYTE REGISTER  
R/W-x  
SID2  
R/W-x  
SID1  
R/W-x  
SID0  
U-0  
U-0  
U-0  
R/W-x  
EID17  
R/W-x  
EID16  
bit 7  
bit 0  
bit 7-5  
bit 4-2  
bit 1-0  
SID2:SID0: Standard Identifier Mask bits, or Extended Identifier Mask bits EID20:EID18  
Unimplemented: Read as ’0’  
EID17:EID16: Extended Identifier Mask bits  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30475A-page 200  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
REGISTER 17-27: RXMnEIDH – RECEIVE ACCEPTANCE MASK n EXTENDED IDENTIFIER MASK  
HIGH BYTE REGISTER  
R/W-x  
EID15  
R/W-x  
EID14  
R/W-x  
EID13  
R/W-x  
EID12  
R/W-x  
EID11  
R/W-x  
EID10  
R/W-x  
EID9  
R/W-x  
EID8  
bit 7  
bit 0  
bit 1-0  
EID15:EID8: Extended Identifier Mask bits  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
REGISTER 17-28: RXMnEIDL – RECEIVE ACCEPTANCE MASK n EXTENDED IDENTIFIER MASK  
LOW BYTE REGISTER  
R/W-x  
EID7  
R/W-x  
EID6  
R/W-x  
EID5  
R/W-x  
EID4  
R/W-x  
EID3  
R/W-x  
EID2  
R/W-x  
EID1  
R/W-x  
EID0  
bit 7  
bit 0  
bit 1-0  
EID7:EID0: Extended Identifier Mask bits  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 201  
PIC18CXX8  
17.2.5 CAN BAUD RATE REGISTERS  
This subsection describes the CAN Baud Rate  
registers.  
REGISTER 17-29: BRGCON1 – BAUD RATE CONTROL REGISTER 1  
R/W-0  
SJW1  
R/W-0  
SJW0  
R/W-0  
BRP5  
R/W-0  
BRP4  
R/W-0  
BRP3  
R/W-0  
BRP2  
R/W-0  
BRP1  
R/W-0  
BRP0  
bit 7  
bit 0  
bit 7-6  
bit 5-0  
SJW1:SJW0: Synchronized Jump Width bits  
11= Synchronization Jump Width Time = 4 x TQ  
10= Synchronization Jump Width Time = 3 x TQ  
01= Synchronization Jump Width Time = 2 x TQ  
00= Synchronization Jump Width Time = 1 x TQ  
BRP5:BRP0: Baud Rate Prescaler bits  
111111= TQ = (2 x 64)/FOSC  
111110= TQ = (2 x 63)/FOSC  
:
:
000001= TQ = (2 x 2)/FOSC  
000000= TQ = (2 x 1)/FOSC  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR  
’0’ = Bit is cleared  
x = Bit is unknown  
Note: This register is only accessible in Configuration mode.  
DS30475A-page 202  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
REGISTER 17-30: BRGCON2 – BAUD RATE CONTROL REGISTER 2  
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0  
SEG2PHTS SAM SEG1PH2 SEG1PH1 SEG1PH0 PRSEG2 PRSEG1 PRSEG0  
R/W-0  
R/W-0  
R/W-0  
bit 7  
bit 0  
bit 7  
SEG2PHTS: Phase Segment 2 Time Select bit  
1= Freely programmable  
0= Maximum of PHEG1 or Information Processing Time (IPT), whichever is greater  
bit 6  
SAM: Sample of the CAN Bus Line bit  
1= Bus line is sampled three times prior to the sample point  
0= Bus line is sampled once at the sample point  
bit 5-3  
SEG1PH2:SEG1PH0: Phase Segment 1 bits  
111= Phase Segment 1 Time = 8 x TQ  
110= Phase Segment 1 Time = 7 x TQ  
101= Phase Segment 1 Time = 6 x TQ  
100= Phase Segment 1 Time = 5 x TQ  
011= Phase Segment 1 Time = 4 x TQ  
010= Phase Segment 1 Time = 3 x TQ  
001= Phase Segment 1 Time = 2 x TQ  
000= Phase Segment 1 Time = 1 x TQ  
bit 2-0  
PRSEG2:PRSEG0: Propagation Time Select bits  
111= Propagation Time = 8 x TQ  
110= Propagation Time = 7 x TQ  
101= Propagation Time = 6 x TQ  
100= Propagation Time = 5 x TQ  
011= Propagation Time = 4 x TQ  
010= Propagation Time = 3 x TQ  
001= Propagation Time = 2 x TQ  
000= Propagation Time = 1 x TQ  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
Note: This register is only accessible in Configuration mode.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 203  
PIC18CXX8  
REGISTER 17-31: BRGCON3 – BAUD RATE CONTROL REGISTER 3  
U-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
WAKFIL  
SEG2PH2 SEG2PH1 SEG2PH0  
bit 0  
bit 7  
bit 7  
bit 6  
Unimplemented: Read as ’0’  
WAKFIL: Selects CAN Bus Line Filter for Wake-up bit  
1= Use CAN bus line filter for wake-up  
0= CAN bus line filter is not used for wake-up  
bit 5-3  
bit 2-0  
Unimplemented: Read as ’0’  
SEG2PH2:SEG2PH0: Phase Segment 2 Time Select bits  
111= Phase Segment 2 Time = 8 x TQ  
110= Phase Segment 2 Time = 7 x TQ  
101= Phase Segment 2 Time = 6 x TQ  
100= Phase Segment 2 Time = 5 x TQ  
011= Phase Segment 2 Time = 4 x TQ  
010= Phase Segment 2 Time = 3 x TQ  
001= Phase Segment 2 Time = 2 x TQ  
000= Phase Segment 2 Time = 1 x TQ  
Note:  
Ignored if SEG2PHTS bit is clear.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
- n = Value at POR  
’0’ = Bit is cleared  
x = Bit is unknown  
DS30475A-page 204  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
17.2.6 CAN MODULE I/O CONTROL REGISTER  
This subsection describes the CAN Module I/O Control  
register.  
REGISTER 17-32: CIOCON – CAN I/O CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
TX1SRC  
TX1EN  
ENDRHI CANCAP  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-0  
TX1SRC: CAN TX1 Pin Data Source  
1= CAN TX1 pin will output the CAN clock  
0= CAN TX1 pin will output TXD  
TX1EN: CAN TX1 Pin Enable  
1= CAN TX1 pin will output TXD or CAN clock  
0= CAN TX1 pin will have digital I/O function  
ENDRHI: Enable Drive High  
1= CAN TX0, CAN TX1 pins will drive VDD when recessive  
0= CAN TX0, CAN TX1 pins will tri-state when recessive  
CANCAP: CAN Message Receive Capture Enable  
1= Enable CAN capture  
0= Disable CAN capture  
Unimplemented: Read as ’0’  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 205  
PIC18CXX8  
17.2.7 CAN INTERRUPT REGISTERS  
REGISTER 17-33: PIR3 – PERIPHERAL INTERRUPT FLAG REGISTER  
R/W-0  
IRXIF  
R/W-0  
R/W-0  
ERRIF  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WAKIF  
TXB2IF  
TXB1IF  
TXB0IF RXB1IF  
RXB0IF  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
IRXIF: CAN Invalid Received Message Interrupt Flag bit  
1= An invalid message has occurred on the CAN bus  
0= No invalid message on CAN bus  
WAKIF: CAN Bus Activity Wake-up Interrupt Flag bit  
1= Activity on CAN bus has occurred  
0= No activity on CAN bus  
ERRIF: CAN Bus Error Interrupt Flag bit  
1= An error has occurred in the CAN module (multiple sources)  
0= No CAN module errors  
TXB2IF: CAN Transmit Buffer 2 Interrupt Flag bit  
1= Transmit Buffer 2 has completed transmission of a message, and may be re-loaded  
0= Transmit Buffer 2 has not completed transmission of a message  
TXB1IF: CAN Transmit Buffer 1 Interrupt Flag bit  
1= Transmit Buffer 1 has completed transmission of a message, and may be re-loaded  
0= Transmit Buffer 1 has not completed transmission of a message  
TXB0IF: CAN Transmit Buffer 0 Interrupt Flag bit  
1= Transmit Buffer 0 has completed transmission of a message, and may be re-loaded  
0= Transmit Buffer 0 has not completed transmission of a message  
RXB1IF: CAN Receive Buffer 1 Interrupt Flag bit  
1= Receive Buffer 1 has received a new message  
0= Receive Buffer 1 has not received a new message  
RXB0IF: CAN Receive Buffer 0 Interrupt Flag bit  
1= Receive Buffer 0 has received a new message  
0= Receive Buffer 0 has not received a new message  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30475A-page 206  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
REGISTER 17-34: PIE3 – PERIPHERAL INTERRUPT ENABLE REGISTER  
R/W-0  
IRXIE  
R/W-0  
R/W-0  
ERRIE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WAKIE  
TXB2IE  
TXB1IE TXB0IE RXB1IE  
RXB0IE  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
IRXIE: CAN Invalid Received Message Interrupt Enable bit  
1= Enable invalid message received interrupt  
0= Disable invalid message received interrupt  
WAKIE: CAN Bus Activity Wake-up Interrupt Enable bit  
1= Enable bus activity wake-up interrupt  
0= Disable bus activity wake-up interrupt  
ERRIE: CAN Bus Error Interrupt Enable bit  
1= Enable CAN bus error interrupt  
0= Disable CAN bus error interrupt  
TXB2IE: CAN Transmit Buffer 2 Interrupt Enable bit  
1= Enable Transmit Buffer 2 interrupt  
0= Disable Transmit Buffer 2 interrupt  
TXB1IE: CAN Transmit Buffer 1 Interrupt Enable bit  
1= Enable Transmit Buffer 1 interrupt  
0= Disable Transmit Buffer 1 interrupt  
TXB0IE: CAN Transmit Buffer 0 Interrupt Enable bit  
1= Enable Transmit Buffer 0 interrupt  
0= Disable Transmit Buffer 0 interrupt  
RXB1IE: CAN Receive Buffer 1 Interrupt Enable bit  
1= Enable Receive Buffer 1 interrupt  
0= Disable Receive Buffer 1 interrupt  
RXB0IE: CAN Receive Buffer 0 Interrupt Enable bit  
1= Enable Receive Buffer 0 interrupt  
0= Disable Receive Buffer 0 interrupt  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 207  
PIC18CXX8  
REGISTER 17-35: IPR3 – PERIPHERAL INTERRUPT PRIORITY REGISTER  
R/W-0  
IRXIP  
R/W-0  
R/W-0  
ERRIP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WAKIP  
TXB2IP  
TXB1IP TXB0IP RXB1IP  
RXB0IP  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
IRXIP: CAN Invalid Received Message Interrupt Priority bit  
1= High priority  
0= Low priority  
WAKIP: CAN Bus Activity Wake-up Interrupt Priority bit  
1= High priority  
0= Low priority  
ERRIP: CAN bus Error Interrupt Priority bit  
1= High priority  
0= Low priority  
TXB2IP: CAN Transmit Buffer 2 Interrupt Priority bit  
1= High priority  
0= Low priority  
TXB1IP: CAN Transmit Buffer 1 Interrupt Priority bit  
1= High priority  
0= Low priority  
TXB0IP: CAN Transmit Buffer 0 Interrupt Priority bit  
1= High priority  
0= Low priority  
RXB1IP: CAN Receive Buffer 1 Interrupt Priority bit  
1= High priority  
0= Low priority  
RXB0IP: CAN Receive Buffer 0 Interrupt Priority bit  
1= High priority  
0= Low priority  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30475A-page 208  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
TABLE 17-1: CAN CONTROLLER REGISTER MAP  
Address  
Name  
Address  
Name  
Address  
Name  
Address  
Name  
F7Fh  
F7Eh  
F7Dh  
F7Ch  
F7Bh  
F7Ah  
F79h  
F78h  
F77h  
F5Fh  
F3Fh  
F1Fh RXM1EIDL  
F1Eh RXM1EIDH  
F1Dh RXM1SIDL  
F1Ch RXM1SIDH  
F1Bh RXM0EIDL  
F1Ah RXM0EIDH  
F19h RXM0SIDL  
F18h RXM0SIDH  
F17h RXF5EIDL  
F16h RXF5EIDH  
F15h RXF5SIDL  
F14h RXF5SIDH  
F13h RXF4EIDL  
F12h RXF4EIDH  
F11h RXF4SIDL  
F10h RXF4SIDH  
F0Fh RXF3EIDL  
F0Eh RXF3EIDH  
F0Dh RXF3SIDL  
F0Ch RXF3SIDH  
F0Bh RXF2EIDL  
F0Ah RXF2EIDH  
F09h RXF2SIDL  
F08h RXF2SIDH  
F07h RXF1EIDL  
F06h RXF1EIDH  
F05h RXF1SIDL  
F04h RXF1SIDH  
F03h RXF0EIDH  
F02h RXF0EIDL  
F01h RXF0SIDL  
F00h RXF0SIDH  
F5Eh CANSTAT  
F5Dh RXB1D7  
F5Ch RXB1D6  
F5Bh RXB1D5  
F5Ah RXB1D4  
F59h RXB1D3  
F58h RXB1D2  
F57h RXB1D1  
F56h RXB1D0  
F55h RXB1DLC  
F54h RXB1EIDL  
F53h RXB1EIDH  
F52h RXB1SIDL  
F51h RXB1SIDH  
F50h RXB1CON  
F4Fh  
F4Eh CANSTAT  
F4Dh TXB0D7  
F4Ch TXB0D6  
F4Bh TXB0D5  
F4Ah TXB0D4  
F49h TXB0D3  
F48h TXB0D2  
F47h TXB0D1  
F46h TXB0D0  
F45h TXB0DLC  
F44h TXB0EIDL  
F43h TXB0EIDH  
F42h TXB0SIDL  
F41h TXB0SIDH  
F40h TXB0CON  
F3Eh CANSTAT  
F3Dh TXB1D7  
F3Ch TXB1D6  
F3Bh TXB1D5  
F3Ah TXB1D4  
F39h TXB1D3  
F38h TXB1D2  
F37h TXB1D1  
F36h TXB1D0  
F35h TXB1DLC  
F34h TXB1EIDL  
F33h TXB1EIDH  
F32h TXB1SIDL  
F31h TXB1SIDH  
F30h TXB1CON  
F2Fh  
F2Eh CANSTAT  
F2Dh TXB2D7  
F2Ch TXB2D6  
F2Bh TXB2D5  
F2Ah TXB2D4  
F29h TXB2D3  
F28h TXB2D2  
F27h TXB2D1  
F26h TXB2D0  
F25h TXB2DLC  
F24h TXB2EIDL  
F23h TXB2EIDH  
F22h TXB2SIDL  
F21h TXB2SIDH  
F20h TXB2CON  
F76h TXERRCNT  
F75h RXERRCNT  
F74h COMSTAT  
F73h CIOCON  
F72h BRGCON3  
F71h BRGCON2  
F70h BRGCON1  
F6Fh CANCON  
F6Eh CANSTAT  
F6Dh RXB0D7  
F6Ch RXB0D6  
F6Bh RXB0D5  
F6Ah RXB0D4  
F69h RXB0D3  
F68h RXB0D2  
F67h RXB0D1  
F66h RXB0D0  
F65h RXB0DLC  
F64h RXB0EIDL  
F63h RXB0EIDH  
F62h RXB0SIDL  
F61h RXB0SIDH  
F60h RXB0CON  
Note: Shaded registers are available in Access Bank Low area while the rest are available in Bank 15.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 209  
PIC18CXX8  
17.3.2 DISABLE MODE  
17.3  
CAN Modes of Operation  
In Disable mode, the module will not transmit or  
receive. The module has the ability to set the WAKIF bit  
due to bus activity, however, any pending interrupts will  
remain and the error counters will retain their value.  
The PIC18CXX8 has the following modes of operation.  
These modes are:  
• Configuration mode  
• Disable mode  
If REQOP<2:0> is set to 001, the module will enter the  
module Disable mode. This mode is similar to dis-  
abling other peripheral modules by turning off the mod-  
ule enables. This causes the module internal clock to  
stop unless the module is active (i.e., receiving or  
transmitting a message). If the module is active, the  
module will wait for 11 recessive bits on the CAN bus,  
detect that condition as an idle bus, then accept the  
module disable command. OPMODE<2:0>=001 indi-  
cates whether the module successfully went into mod-  
ule Disable mode  
• Normal Operation mode  
• Listen Only mode  
• Loopback mode  
• Error Recognition mode (selected through  
CANRXM bits)  
Modes are requested by setting the REQOP bits,  
except the Error Recognition mode, which is requested  
through the CANRXM bits. Entry into a mode is  
acknowledged by monitoring the OPMODE bits.  
When changing modes, the mode will not actually  
change until all pending message transmissions are  
complete. Because of this, the user must verify that the  
device has actually changed into the requested mode  
before further operations are executed.  
The WAKIF interrupt is the only module interrupt that is  
still active in the module Disable mode. If the WAKIE is  
set, the processor will receive an interrupt whenever  
the CAN bus detects a dominant state, as occurs with  
a SOF.  
17.3.1 CONFIGURATION MODE  
The I/O pins will revert to normal I/O function when the  
module is in the module Disable mode.  
The CAN module has to be initialized before the activa-  
tion. This is only possible if the module is in the Config-  
uration mode. The Configuration mode is requested by  
setting REQOP2 bit. Only when the status bit  
OPMODE2 has a high level, the initialization can be  
performed. Afterwards, the configuration registers and  
the acceptance mask registers and the acceptance fil-  
ter registers can be written. The module is activated by  
setting the control bits CFGREQ to zero.  
17.3.3 NORMAL MODE  
This is the standard operating mode of the  
PIC18CXX8. In this mode, the device actively monitors  
all bus messages and generates acknowledge bits,  
error frames, etc. This is also the only mode in which  
the PIC18CXX8 will transmit messages over the CAN  
bus.  
The module will protect the user from accidentally vio-  
lating the CAN protocol through programming errors.  
All registers which control the configuration of the mod-  
ule can not be modified while the module is on-line.  
The CAN module will not be allowed to enter the Con-  
figuration mode while a transmission is taking place.  
The CONFIG bit serves as a lock to protect the follow-  
ing registers.  
17.3.4 LISTEN ONLY MODE  
Listen Only mode provides  
a means for the  
PIC18CXX8 to receive all messages, including mes-  
sages with errors. This mode can be used for bus mon-  
itor applications, or for detecting the baud rate in ‘hot  
plugging’ situations. For auto-baud detection, it is nec-  
essary that there are at least two other nodes which are  
communicating with each other. The baud rate can be  
detected empirically by testing different values until  
valid messages are received. The Listen Only mode is  
a silent mode, meaning no messages will be transmit-  
ted while in this state, including error flags or acknowl-  
edge signals. The filters and masks can be used to  
allow only particular messages to be loaded into the  
receive registers, or the filter masks can be set to all  
zeros to allow a message with any identifier to pass.  
The error counters are reset and deactivated in this  
state. The Listen Only mode is activated by setting the  
mode request bits in the CANCON register.  
• Configuration registers  
• Bus Timing registers  
• Identifier Acceptance Filter registers  
• Identifier Acceptance Mask registers  
In the Configuration mode, the module will not transmit  
or receive. The error counters are cleared and the inter-  
rupt flags remain unchanged. The programmer will  
have access to configuration registers that are access  
restricted in other modes.  
DS30475A-page 210  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
17.3.5 LOOPBACK MODE  
17.4.2 TRANSMIT PRIORITY  
This mode will allow internal transmission of messages  
from the transmit buffers to the receive buffers, without  
actually transmitting messages on the CAN bus. This  
mode can be used in system development and testing.  
In this mode, the ACK bit is ignored and the device will  
allow incoming messages from itself just as if they were  
coming from another node. The Loopback mode is a  
silent mode, meaning no messages will be transmitted  
while in this state, including error flags or acknowledge  
signals. The TXCAN pin will revert to port I/O while the  
device is in this mode. The filters and masks can be  
used to allow only particular messages to be loaded into  
the receive registers. The masks can be set to all zeros  
to provide a mode that accepts all messages. The Loop-  
back mode is activated by setting the mode request bits  
in the CANCON register.  
Transmit priority is a prioritization, within the PIC18CXX8,  
of the pending transmittable messages. This is indepen-  
dent from, and not related to, any prioritization implicit in  
the message arbitration scheme built into the CAN proto-  
col. Prior to sending the SOF, the priority of all buffers that  
are queued for transmission is compared. The transmit  
buffer with the highest priority will be sent first. If two buff-  
ers have the same priority setting, the buffer with the  
highest buffer number will be sent first. There are four lev-  
els of transmit priority. If TXP bits for a particular message  
buffer are set to 11, that buffer has the highest possible  
priority. If TXP bits for a particular message buffer are 00,  
that buffer has the lowest possible priority.  
17.4.3 INITIATING TRANSMISSION  
To initiate message transmission, the TXREQ bit must be  
set for each buffer to be transmitted.  
17.3.6 ERROR RECOGNITION MODE  
When TXREQ is set, the TXABT, TXLARB and TXERR  
bits will be cleared.  
The module can be set to ignore all errors and receive  
any message. The Error Recognition mode is activated  
by setting the RXM<1:0> bits in the RXBnCON regis-  
ters to 11. In this mode, the data which is in the mes-  
sage assembly buffer until the error time, is copied in  
the receive buffer and can be read via the CPU inter-  
face. In addition, the data which was on the internal  
sampling of the CAN bus at the error time and the state  
vector of the protocol state machine and the bit counter  
CntCan, are stored in registers and can be read.  
Setting the TXREQ bit does not initiate a message  
transmission, it merely flags a message buffer as ready  
for transmission. Transmission will start when the  
device detects that the bus is available. The device will  
then begin transmission of the highest priority message  
that is ready.  
When the transmission has completed successfully, the  
TXREQ bit will be cleared, the TXBnIF bit will be set, and  
an interrupt will be generated if the TXBnIE bit is set.  
17.4  
CAN Message Transmission  
If the message transmission fails, the TXREQ will remain  
set indicating that the message is still pending for trans-  
mission and one of the following condition flags will be set.  
If the message started to transmit but encountered an  
error condition, the TXERR and the IRXIF bits will be set  
and an interrupt will be generated. If the message lost  
arbitration, the TXLARB bit will be set.  
17.4.1 TRANSMIT BUFFERS  
The PIC18CXX8 implements three Transmit Buffers.  
Each of these buffers occupies 14 bytes of SRAM and  
are mapped into the device memory maps.  
For the MCU to have write access to the message buffer,  
the TXREQ bit must be clear, indicating that the message  
buffer is clear of any pending message to be transmitted.  
17.4.4 ABORTING TRANSMISSION  
At  
a minimum, the TXBNSIDH, TXBNSIDL, and  
The MCU can request to abort a message by clearing  
the TXBnCON.TXREQ bit associated with the corre-  
sponding message buffer. Setting CANCON.ABAT bit  
will request an abort of all pending messages. If the  
message has not yet started transmission, or if the  
message started but is interrupted by loss of arbitration  
or an error, the abort will be processed. The abort is  
indicated when the module sets TXBnCON.ABTF bits.  
If the message has started to transmit, it will attempt to  
transmit the current message fully. If the current mes-  
sage is transmitted fully and is not lost to arbitration or  
an error, the ABTF bit will not be set, because the mes-  
sage was transmitted successfully. Likewise, if a mes-  
sage is being transmitted during an abort request and  
the message is lost to arbitration or an error, the mes-  
sage will not be re-transmitted and the ABTF bit will be  
set, indicating that the message was successfully  
aborted.  
TXBNDLC registers must be loaded. If data bytes are  
present in the message, the TXBNDm registers must also  
be loaded. If the message is to use extended identifiers,  
the TXBNEIDm registers must also be loaded and the  
EXIDE bit set.  
Prior to sending the message, the MCU must initialize  
the TXINE bit to enable or disable the generation of an  
interrupt when the message is sent. The MCU must  
also initialize the TXP priority bits (see Section 17.4.2).  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 211  
PIC18CXX8  
FIGURE 17-2: TRANSMIT MESSAGE FLOWCHART  
Start  
The message transmission sequence begins when  
the device determines that the TXREQ for any of the  
transmit registers has been set.  
Are any  
TXREQ  
bits = 1  
?
No  
Yes  
Clearing the TXREQ bit while it is set, or setting  
the ABAT bit before the message has started  
transmission will abort the message.  
Clear: TXABT, TXLARB,  
and TXERR  
Is  
Is  
No  
No  
TXREQ = 0  
CAN bus available  
to start transmission  
?
ABAT = 1  
?
Yes  
Yes  
Examine TXPRI <1:0> to  
Determine Highest Priority Message  
Begin transmission (SOF)  
Was  
No  
Set  
TXERR = 1  
Message Transmitted  
Successfully?  
Yes  
Set TXREQ = 0  
Is  
Yes  
Yes  
Arbitration lost during  
transmission  
TXLARB = 1?  
Yes  
Is  
Generate  
Interrupt  
TXIE = 1?  
No  
A message can also be  
aborted if message  
a
error or lost arbitration  
condition occurred during  
transmission.  
is  
TXREQ = 0  
or TXABT = 1  
Set  
TXBUFE = 1  
?
The TXIE bit determines if an inter-  
rupt should be generated when a  
message is successfully transmitted.  
No  
Abort Transmission:  
Set TXABT = 1  
END  
DS30475A-page 212  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
17.5.3 RECEIVE PRIORITY  
17.5  
Message Reception  
RXB0 is the higher priority buffer and has two message  
acceptance filters associated with it. RXB1 is the lower  
priority buffer and has four acceptance filters associ-  
ated with it. The lower number of acceptance filters  
makes the match on RXB0 more restrictive and implies  
a higher priority for that buffer. Additionally, the  
RXB0CON register can be configured such that if  
RXB0 contains a valid message, and another valid  
message is received, an overflow error will not occur  
and the new message will be moved into RXB1,  
regardless of the acceptance criteria of RXB1. There  
are also two programmable acceptance filter masks  
available, one for each receive buffer (see Section 4.5).  
17.5.1 RECEIVE MESSAGE BUFFERING  
The PIC18CXX8 includes two full receive buffers with  
multiple acceptance filters for each. There is also a  
separate Message Assembly Buffer (MAB), which acts  
as a third receive buffer (see Figure 17-3).  
17.5.2 RECEIVE BUFFERS  
Of the three receive buffers, the MAB is always commit-  
ted to receiving the next message from the bus. The  
remaining two receive buffers are called RXB0 and  
RXB1 and can receive a complete message from the  
protocol engine. The MCU can access one buffer while  
the other buffer is available for message reception, or  
holding a previously received message.  
When a message is received, bits <3:0> of the RXBNCON  
register will indicate the acceptance filter number that  
enabled reception, and whether the received message is a  
remote transfer request.  
The MAB assembles all messages received. These  
messages will be transferred to the RXBN buffers, only  
if the acceptance filter criteria are met.  
The RXM bits set special receive modes. Normally,  
these bits are set to 00to enable reception of all valid  
messages, as determined by the appropriate accep-  
tance filters. In this case, the determination of whether  
or not to receive standard or extended messages is  
determined by the EXIDE bit in the acceptance filter  
register. If the RXM bits are set to 01or 10, the receiver  
will accept only messages with standard or extended  
identifiers, respectively. If an acceptance filter has the  
EXIDE bit set such that it does not correspond with the  
RXM mode, that acceptance filter is rendered useless.  
These two modes of RXM bits can be used in systems  
where it is known that only standard or extended mes-  
sages will be on the bus. If the RXM bits are set to 11,  
the buffer will receive all messages, regardless of the  
values of the acceptance filters. Also, if a message has  
an error before the end of frame, that portion of the  
message assembled in the MAB before the error  
frame, will be loaded into the buffer. This mode has  
some value in debugging a CAN system and would not  
be used in an actual system environment.  
Note: The entire contents of the MAB is moved into  
the receive buffer once a message is  
accepted. This means that regardless of the  
type of identifier (standard or extended) and  
the number of data bytes received, the entire  
receive buffer is overwritten with the MAB  
contents. Therefore, the contents of all regis-  
ters in the buffer must be assumed to have  
been modified when any message is  
received.  
When a message is moved into either of the receive  
buffers, the appropriate RXBnIF bit is set. This bit must  
be cleared by the MCU when it has completed process-  
ing the message in the buffer, in order to allow a new  
message to be received into the buffer. This bit pro-  
vides a positive lockout to ensure that the MCU has fin-  
ished with the message before the PIC18CXX8  
attempts to load a new message into the receive buffer.  
If the RXBnIE bit is set, an interrupt will be generated to  
indicate that a valid message has been received.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 213  
PIC18CXX8  
FIGURE 17-3: RECEIVE BUFFER BLOCK DIAGRAM  
Acceptance Mask  
RXM1  
Acceptance Filter  
RXF2  
Acceptance Mask  
RXM0  
Acceptance Filter  
RXF3  
A
c
c
e
p
t
Acceptance Filter  
RXF0  
Acceptance Filter  
RXF4  
A
c
c
Acceptance Filter  
Acceptance Filter  
RXF5  
RXF1  
e
p
t
R
X
B
0
M
A
B
R
X
B
1
Identifier  
Identifier  
Data Field  
Data Field  
DS30475A-page 214  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
FIGURE 17-4: MESSAGE RECEPTION FLOWCHART  
Start  
Detect  
Start of  
Message?  
No  
Yes  
Begin Loading Message into  
Message Assembly Buffer (MAB)  
Valid  
Generate  
Error  
Frame  
No  
Message  
Received?  
Yes  
Yes, meets criteria  
for RXB1  
Yes, meets criteria  
for RXBO  
Message  
Identifier meets  
a filter criteria?  
No  
Go to Start  
The RXRDY bit determines if the  
receive register is empty and  
able to accept a new message.  
The RXB0DBEN bit determines  
if RXB0 can roll over into RXB1  
if it is full.  
Is  
Is  
Yes  
No  
RX0DBEN = 1?  
RXRDY = 0?  
Yes  
No  
Is  
No  
Generate Overrun Error:  
Set RXB1OVFL  
Move message into RXB0  
Set RXRDY = 1  
Generate Overrun Error:  
Set RXB0OVFL  
RXRDY = 0?  
Yes  
Move message into RXB1  
No  
Is  
Set FILHIT <0>  
ERRIE = 1?  
according to which filter criteria  
was met  
Set RXRDY = 1  
Yes  
Go to Start  
Set FILHIT <2:0>  
according to which filter criteria  
was met  
Is  
Is  
Yes  
Generate  
Interrupt  
RXIE = 1?  
RXIE = 1?  
Yes  
No  
No  
Set CANSTAT <3:0> according  
to which receive buffer the  
message was loaded into  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 215  
PIC18CXX8  
The coding of the RXB0DBEN bit enables these three  
bits to be used similarly to the FILHIT bits and to distin-  
guish a hit on filter RXF0 and RXF1, in either RXB0, or  
after a roll over into RXB1.  
17.6  
Message Acceptance Filters and  
Masks  
The Message Acceptance Filters and Masks are used  
to determine if a message in the message assembly  
buffer should be loaded into either of the receive buff-  
ers. Once a valid message has been received into the  
MAB, the identifier fields of the message are compared  
to the filter values. If there is a match, that message will  
be loaded into the appropriate receive buffer. The filter  
masks are used to determine which bits in the identifier  
are examined with the filters. A truth table is shown  
below in Table 17-2 that indicates how each bit in the  
identifier is compared to the masks and filters to deter-  
mine if a the message should be loaded into a receive  
buffer. The mask essentially determines which bits to  
apply the acceptance filters to. If any mask bit is set to  
a zero, then that bit will automatically be accepted,  
regardless of the filter bit.  
111= Acceptance Filter 1 (RXF1)  
110= Acceptance Filter 0 (RXF0)  
001= Acceptance Filter 1 (RXF1)  
000= Acceptance Filter 0  
If the RXB0DBEN bit is clear, there are six codes cor-  
responding to the six filters. If the RXB0DBEN bit is set,  
there are six codes corresponding to the six filters, plus  
two additional codes corresponding to RXF0 and RXF1  
filters that roll over into RXB1.  
If more than one acceptance filter matches, the FILHIT  
bits will encode the binary value of the lowest num-  
bered filter that matched. In other words, if filter RXF2  
and filter RXF4 match, FILHIT will be loaded with the  
value for RXF2. This essentially prioritizes the accep-  
tance filters with a lower number filter having higher pri-  
ority. Messages are compared to filters in ascending  
order of filter number.  
TABLE 17-2: FILTER/MASK TRUTH TABLE  
Message  
Identifier  
bit n001  
Accept or  
Reject  
bit n  
Mask  
bit n  
Filter bit n  
The mask and filter registers can only be modified  
when the PIC18CXX8 is in Configuration mode. The  
mask and filter registers cannot be read outside of Con-  
figuration mode. When outside of Configuration mode,  
all mask and filter registers will be read as ‘0’.  
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
Accept  
Accept  
Reject  
Reject  
Accept  
Legend: X = don’t care  
As shown in the Receive Buffers Block Diagram  
(Figure 17-3), acceptance filters RXF0 and RXF1, and  
filter mask RXM0 are associated with RXB0. Filters  
RXF2, RXF3, RXF4, and RXF5 and mask RXM1 are  
associated with RXB1. When a filter matches and a  
message is loaded into the receive buffer, the filter  
number that enabled the message reception is loaded  
into the FILHIT bit(s). For RXB1, the RXB1CON regis-  
ter contains the FILHIT<2:0> bits. They are coded as  
follows:  
101= Acceptance Filter 5 (RXF5)  
100= Acceptance Filter 4 (RXF4)  
011= Acceptance Filter 3 (RXF3)  
010= Acceptance Filter 2 (RXF2)  
001= Acceptance Filter 1 (RXF1)  
000= Acceptance Filter 0 (RXF0)  
Note: 000 and 001 can only occur if the  
RXB0DBEN bit is set in the RXB0CON  
register, allowing RXB0 messages to roll  
over into RXB1.  
DS30475A-page 216  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
FIGURE 17-5:  
MESSAGE ACCEPTANCE MASK AND FILTER OPERATION  
Acceptance Filter Register  
Acceptance Mask Register  
RXFn0  
RXMn0  
RXMn1  
RxRqst  
RXFn1  
RXFnn  
RXMnn  
Message Assembly Buffer  
Identifier  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 217  
PIC18CXX8  
All devices on the CAN bus must use the same bit rate.  
However, all devices are not required to have the same  
master oscillator clock frequency. For the different  
clock frequencies of the individual devices, the bit rate  
has to be adjusted by appropriately setting the baud  
rate prescaler and number of time quanta in each seg-  
ment.  
17.7  
Baud Rate Setting  
All nodes on a given CAN bus must have the same  
nominal bit rate. The CAN protocol uses  
Non-Return-to-Zero (NRZ) coding, which does not  
encode a clock within the data stream. Therefore, the  
receive clock must be recovered by the receiving  
nodes and synchronized to the transmitters clock.  
The nominal bit rate is the number of bits transmitted  
per second assuming an ideal transmitter with an ideal  
oscillator, in the absence of resynchronization. The  
nominal bit rate is defined to be a maximum of 1Mb/s.  
As oscillators and transmission time may vary from  
node to node, the receiver must have some type of  
Phase Lock Loop (PLL) synchronized to data transmis-  
sion edges, to synchronize and maintain the receiver  
clock. Since the data is NRZ coded, it is necessary to  
include bit stuffing to ensure that an edge occurs at  
least every six bit times, to maintain the Digital Phase  
Lock Loop (DPLL) synchronization.  
Nominal Bit Time is defined as:  
TBIT = 1 / NOMlNAL BlT RATE  
The nominal bit time can be thought of as being divided  
into separate non-overlapping time segments. These  
segments are shown in Figure 17-6.  
The bit timing of the PIC18CXX8 is implemented using  
a DPLL that is configured to synchronize to the incom-  
ing data, and provide the nominal timing for the trans-  
mitted data. The DPLL breaks each bit time into  
multiple segments, made up of minimal periods of time  
called the time quanta (TQ).  
• Synchronization Segment (Sync_Seg)  
• Propagation Time Segment (Prop_Seg)  
• Phase Buffer Segment 1 (Phase_Seg1)  
• Phase Buffer Segment 2 [Phase_Seg2)  
Nominal Bit Time = TQ * (Sync_Seg + Prop_Seg +  
Phase_Seg1 + Phase_Seg2)  
Bus timing functions executed within the bit time frame,  
such as synchronization to the local oscillator, network  
transmission delay compensation, and sample point  
positioning, are defined by the programmable bit timing  
logic of the DPLL.  
The time segments and also, the nominal bit time, are  
made up of integer units of time called time quanta or  
TQ (see Figure 17-6). By definition, the nominal bit time  
is programmable from a minimum of 8 TQ to a maxi-  
mum of 25 TQ. Also by definition, the minimum nominal  
bit time is 1 µs, corresponding to a maximum 1 Mb/s  
rate.  
FIGURE 17-6: BIT TIME PARTITIONING  
Input Signal  
Prop  
Sync  
Phase  
Segment 1  
Phase  
Segment 2  
Segment  
Sample Point  
TQ  
DS30475A-page 218  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
17.7.1 TIME QUANTA  
17.7.4 PHASE BUFFER SEGMENTS  
The Time Quanta is a fixed unit of time derived from the  
oscillator period. There is a programmable baud rate  
prescaler, with integral values ranging from 1 to 64, in  
addition to a fixed divide by two for clock generation.  
The Phase Buffer Segments are used to optimally locate  
the sampling point of the received bit, within the nominal  
bit time. The sampling point occurs between phase seg-  
ment 1 and phase segment 2. These segments can be  
lengthened or shortened by the resynchronization pro-  
cess. The end of phase segment 1 determines the sam-  
pling point within a bit time. Phase segment 1 is  
programmable from 1 TQ to 8 TQ in duration. Phase seg-  
ment 2 provides delay before the next transmitted data  
transition and is also programmable from 1 TQ to 8 TQ in  
duration (however, due to IPT requirements the actual  
minimum length of phase segment 2 is 2 TQ, or it may be  
defined to be equal to the greater of phase segment 1 or  
the Information Processing Time (IPT) ).  
EXAMPLE 17-2: CALCULATION FOR  
FOSC = 16MHz  
If Fosc = 16 MHz, BRP<5:0> = 00h, and Nominal Bit  
Time = 8 TQ; then TQ = 125 nsec and Nominal Bit  
Rate = 1 Mb/s  
EXAMPLE 17-3: CALCULATION FOR  
FOSC = 20MHz  
17.7.5 SAMPLE POINT  
If FOSC = 20 MHz, BRP<5:0> = 01h, and Nominal Bit  
Time = 8 TQ; then TQ = 200nsec and Nominal Bit  
Rate = 625 Kb/s  
The Sample Point is the point of time at which the bus  
level is read and value of the received bit is determined.  
The sampling point occurs at the end of phase  
segment 1. If the bit timing is slow and contains many  
TQ, it is possible to specify multiple sampling of the bus  
line at the sample point. The value of the received bit is  
determined to be the value of the majority decision of  
three values. The three samples are taken at the sam-  
ple point, and twice before with a time of TQ/2 between  
each sample.  
EXAMPLE 17-4: CALCULATION FOR  
FOSC = 25MHz  
If Fosc = 25 MHz, BRP<5:0> = 3Fh, and Nominal Bit  
Time = 25 TQ; then TQ = 5.12 usec and Nominal Bit  
Rate = 7.8 Kb/s  
The frequencies of the oscillators in the different nodes  
must be coordinated in order to provide a system-wide  
specified nominal bit time. This means that all oscilla-  
tors must have a TOSC that is a integral divisor of TQ. It  
should also be noted that although the number of TQ is  
programmable from 4 to 25, the usable minimum is  
8 TQ. A bit time of less than 8 TQ in length is not guar-  
anteed to operate correctly.  
17.7.6 INFORMATION PROCESSING TIME  
The Information Processing Time (IPT) is the time seg-  
ment, starting at the sample point, that is reserved for  
calculation of the subsequent bit level. The CAN speci-  
fication defines this time to be less than or equal to 2 TQ.  
The PIC18CXX8 defines this time to be 2 TQ. Thus,  
phase segment 2 must be at least 2 TQ long.  
17.7.2 SYNCHRONIZATION SEGMENT  
This part of the bit time is used to synchronize the var-  
ious CAN nodes on the bus. The edge of the input sig-  
nal is expected to occur during the sync segment. The  
duration is 1 TQ.  
17.7.3 PROPAGATION SEGMENT  
This part of the bit time is used to compensate for phys-  
ical delay times within the network. These delay times  
consist of the signal propagation time on the bus line  
and the internal delay time of the nodes. The length of  
the Propagation Segment can be programmed from  
1 TQ to 8 TQ by setting the PRSEG2:PRSEG0 bits.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 219  
PIC18CXX8  
The phase error of an edge is given by the position of  
the edge relative to Sync Seg, measured in TQ. The  
phase error is defined in magnitude of TQ as follows:  
17.8  
Synchronization  
To compensate for phase shifts between the oscillator  
frequencies of each of the nodes on the bus, each CAN  
controller must be able to synchronize to the relevant  
signal edge of the incoming signal. When an edge in  
the transmitted data is detected, the logic will compare  
the location of the edge to the expected time (Sync  
Seg). The circuit will then adjust the values of phase  
segment 1 and phase segment 2, as necessary. There  
are two mechanisms used for synchronization.  
• e = 0 if the edge lies within SYNCESEG.  
• e > 0 if the edge lies before the SAMPLE POINT.  
• e < 0 if the edge lies after the SAMPLE POINT of  
the previous bit.  
If the magnitude of the phase error is less than, or equal  
to, the programmed value of the synchronization jump  
width, the effect of a resynchronization is the same as  
that of a hard synchronization.  
17.8.1 HARD SYNCHRONIZATION  
If the magnitude of the phase error is larger than the  
synchronization jump width, and if the phase error is  
positive, then phase segment 1 is lengthened by an  
amount equal to the synchronization jump width.  
Hard Synchronization is only done when there is a  
recessive to dominant edge during a BUS IDLE condi-  
tion, indicating the start of a message. After hard syn-  
chronization, the bit time counters are restarted with  
Sync Seg. Hard synchronization forces the edge, which  
has occurred to lie within the synchronization segment  
of the restarted bit time. Due to the rules of synchroni-  
zation, if a hard synchronization occurs, there will not  
be a resynchronization within that bit time.  
If the magnitude of the phase error is larger than the  
resynchronization jump width, and if the phase error is  
negative, then phase segment 2 is shortened by an  
amount equal to the synchronization jump width.  
17.8.3 SYNCHRONIZATION RULES  
17.8.2 RESYNCHRONIZATION  
• Only one synchronization within one bit time is  
allowed.  
As a result of Resynchronization, phase segment 1  
may be lengthened, or phase segment 2 may be short-  
ened. The amount of lengthening or shortening of the  
phase buffer segments has an upper bound given by  
the Synchronization Jump Width (SJW). The value of  
the SJW will be added to phase segment 1 (see  
Figure 17-7), or subtracted from phase segment 2 (see  
Figure 17-8). The SJW is programmable between 1 TQ  
and 4 TQ.  
• An edge will be used for synchronization only if  
the value detected at the previous sample point  
(previously read bus value) differs from the bus  
value immediately after the edge.  
• All other recessive to dominant edges, fulfilling  
rules 1 and 2, will be used for resynchronization  
with the exception that a node transmitting a dom-  
inant bit will not perform a resynchronization, as a  
result of a recessive to dominant edge with a pos-  
itive phase error.  
Clocking information will only be derived from reces-  
sive to dominant transitions. The property that only a  
fixed maximum number of successive bits have the  
same value, ensures resynchronization to the bit  
stream during a frame.  
DS30475A-page 220  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
FIGURE 17-7: LENGTHENING A BIT PERIOD  
Input Signal  
Prop  
Segment  
Phase  
Segment 1  
Phase  
Segment 2  
Sync  
SJW  
Actual Bit  
Length  
Nominal  
Bit Length  
Sample  
Point  
TQ  
FIGURE 17-8:  
SHORTENING A BIT PERIOD  
Input Signal  
Prop  
Segment  
Phase  
Segment 1  
Phase  
Segment 2  
Sync  
SJW  
Sample  
Point  
Actual  
Bit Length  
Nominal  
Bit Length  
TQ  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 221  
PIC18CXX8  
17.9  
Programming Time Segments  
17.11 Bit Timing Configuration Registers  
Some requirements for programming of the time  
segments:  
The configuration registers (BRGCON1, BRGCON2,  
BRGCON3) control the bit timing for the CAN bus inter-  
face. These registers can only be modified when the  
PIC18CXX8 is in Configuration mode.  
• Prop Seg + Phase Seg 1 Phase Seg 2  
• Phase Seg 2 Sync Jump Width  
17.11.1 BRGCON1  
For example, assuming that a 125 kHz CAN baud rate  
with FOSC = 20 MHz is desired:  
The BRP bits control the baud rate prescaler. The  
SJW<1:0> bits select the synchronization jump width in  
terms of number of TQ’s.  
TOSC = 50nsec, choose BRP<5:0> = 04h, then  
TQ = 500nsec. To obtain 125 kHz, the bit time must be  
16 TQ.  
17.11.2 BRGCON2  
Sync Seg = 1 TQ; Prop Seg = 2 TQ; So, setting Phase  
Seg 1 = 7 TQ would place the sample at 10 TQ after the  
transition. This would leave 6 TQ for Phase Seg 2.  
The PRSEG bits set the length, in TQ’s, of the propaga-  
tion segment. The SEG1PH bits set the length, in TQ’s,  
of phase segment 1. The SAM bit controls how many  
times the RXCAN pin is sampled. Setting this bit to a ‘1’  
causes the bus to be sampled three times; twice at  
TQ/2 before the sample point, and once at the normal  
sample point (which is at the end of phase segment 1).  
The value of the bus is determined to be the value read  
during at least two of the samples. If the SAM bit is set  
to a ‘0’, then the RXCAN pin is sampled only once at  
the sample point. The SEG2PHTS bit controls how the  
length of phase segment 2 is determined. If this bit is  
set to a ‘1’, then the length of phase segment 2 is deter-  
mined by the SEG2PH bits of BRGCON3. If the  
SEG2PHTS bit is set to a ‘0’, then the length of phase  
segment 2 is the greater of phase segment 1 and the  
information processing time (which is fixed at 2 TQ for  
the PIC18CXX8).  
Since Phase Seg 2 is 6, by the rules, SJW could be the  
maximum of 4 TQ. However, normally a large SJW is  
only necessary when the clock generation of the differ-  
ent nodes is inaccurate or unstable, such as using  
ceramic resonators. So an SJW of 1 is typically  
enough.  
17.10 Oscillator Tolerance  
The bit timing requirements allow ceramic resonators  
to be used in applications with transmission rates of up  
to 125 kbit/sec, as a rule of thumb. For the full bus  
speed range of the CAN protocol, a quartz oscillator is  
required. A maximum node-to-node oscillator variation  
of 1.7% is allowed.  
17.11.3 BRGCON3  
The PHSEG2<2:0> bits set the length, in TQ’s, of  
phase segment 2, if the SEG2PHTS bit is set to a ‘1’. If  
the SEG2PHTS bit is set to  
PHSEG2<2:0> bits have no effect.  
a ‘0’, then the  
DS30475A-page 222  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
17.12.6 ERROR STATES  
17.12 Error Detection  
Detected errors are made public to all other nodes via  
error frames. The transmission of the erroneous mes-  
sage is aborted and the frame is repeated as soon as  
possible. Furthermore, each CAN node is in one of the  
three error states “error-active”, “error-passive” or  
“bus-off” according to the value of the internal error  
counters. The error-active state is the usual state,  
where the bus node can transmit messages and active  
error frames (made of dominant bits), without any  
restrictions. In the error-passive state, messages and  
passive error frames (made of recessive bits) may be  
transmitted. The bus-off state makes it temporarily  
impossible for the station to participate in the bus com-  
munication. During this state, messages can neither be  
received nor transmitted.  
The CAN protocol provides sophisticated error detec-  
tion mechanisms. The following errors can be detected.  
17.12.1 CRC ERROR  
With the Cyclic Redundancy Check (CRC), the trans-  
mitter calculates special check bits for the bit  
sequence, from the start of a frame until the end of the  
data field. This CRC sequence is transmitted in the  
CRC Field. The receiving node also calculates the  
CRC sequence using the same formula and performs  
a comparison to the received sequence. If a mismatch  
is detected, a CRC error has occurred and an error  
frame is generated. The message is repeated.  
17.12.2 ACKNOWLEDGE ERROR  
17.12.7 ERROR MODES AND ERROR COUNTERS  
In the acknowledge field of a message, the transmitter  
checks if the acknowledge slot (which has sent out as  
a recessive bit) contains a dominant bit. If not, no other  
node has received the frame correctly. An acknowl-  
edge error has occurred; an error frame is generated  
and the message will have to be repeated.  
The PIC18CXX8 contains two error counters: the  
Receive Error Counter (RXERRCNT), and the Trans-  
mit Error Counter (TXERRCNT). The values of both  
counters can be read by the MCU. These counters are  
incremented or decremented in accordance with the  
CAN bus specification.  
17.12.3 FORM ERROR  
The PIC18CXX8 is error-active if both error counters  
are below the error-passive limit of 128. It is  
error-passive if at least one of the error counters equals  
or exceeds 128. It goes to bus-off if the transmit error  
counter equals or exceeds the bus-off limit of 256. The  
device remains in this state, until the bus-off recovery  
sequence is received. The bus-off recovery sequence  
consists of 128 occurrences of 11 consecutive reces-  
sive bits (see Figure 17-9). Note that the CAN module,  
after going bus-off, will recover back to error-active,  
without any intervention by the MCU, if the bus remains  
idle for 128 X 11 bit times. If this is not desired, the error  
interrupt service routine should address this. The cur-  
rent error mode of the CAN module can be read by the  
MCU via the COMSTAT register.  
lf a node detects a dominant bit in one of the four seg-  
ments, including end of frame, interframe space,  
acknowledge delimiter, or CRC delimiter, then a form  
error has occurred and an error frame is generated.  
The message is repeated.  
17.12.4 BIT ERROR  
A Bit Error occurs if a transmitter sends a dominant bit  
and detects a recessive bit, or if it sends a recessive bit  
and detects a dominant bit, when monitoring the actual  
bus level and comparing it to the just transmitted bit. In  
the case where the transmitter sends a recessive bit  
and a dominant bit is detected during the arbitration  
field and the acknowledge slot, no bit error is generated  
because normal arbitration is occurring.  
Additionally, there is an error state warning flag bit,  
EWARN, which is set if at least one of the error  
counters equals or exceeds the error warning limit of  
96. EWARN is reset if both error counters are less than  
the error warning limit.  
17.12.5 STUFF BIT ERROR  
lf, between the start of frame and the CRC delimiter, six  
consecutive bits with the same polarity are detected,  
the bit stuffing rule has been violated. A Stuff Bit Error  
occurs and an error frame is generated. The message  
is repeated.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 223  
PIC18CXX8  
FIGURE 17-9: ERROR MODES STATE DIAGRAM  
RESET  
Error  
RXERRCNT < 127 or  
TXERRCNT < 127  
Active  
128 occurrences of  
11 consecutive  
"recessive" bits  
RXERRCNT > 127 or  
TXERRCNT > 127  
Error  
Passive  
TXERRCNT > 255  
Bus  
Off  
DS30475A-page 224  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
17.13.2 TRANSMIT INTERRUPT  
17.13 CAN Interrupts  
When the Transmit Interrupt is enabled, an interrupt will  
be generated when the associated transmit buffer  
becomes empty and is ready to be loaded with a new  
message. The TXBnIF bit will be set to indicate the  
source of the interrupt. The interrupt is cleared by the  
MCU resetting the TXBnIF bit to a ‘0’.  
The module has several sources of interrupts. Each of  
these interrupts can be individually enabled or dis-  
abled. The CANINTF register contains interrupt flags.  
The CANINTE register contains the enables for the 8  
main interrupts. A special set of read only bits in the  
CANSTAT register (ICODE bits) can be used in combi-  
nation with a jump table for efficient handling of inter-  
rupts.  
17.13.3 RECEIVE INTERRUPT  
All interrupts have one source, with the exception of the  
Error Interrupt. Any of the Error Interrupt sources can  
set the Error Interrupt Flag. The source of the Error  
Interrupt can be determined by reading the Communi-  
cation Status register COMSTAT.  
When the Receive Interrupt is enabled, an interrupt will  
be generated when a message has been successfully  
received and loaded into the associated receive buffer.  
This interrupt is activated immediately after receiving the  
EOF field. The RXBnIF bit will be set to indicate the  
source of the interrupt. The interrupt is cleared by the  
MCU resetting the RXBnIF bit to a ‘0’.  
The interrupts can be broken up into two categories:  
receive and transmit interrupts.  
The receive related interrupts are:  
17.13.4 MESSAGE ERROR INTERRUPT  
• Receive Interrupts  
When an error occurs during transmission or reception  
of a message, the message error flag IRXIF will be set  
and, if the IRXIE bit is set, an interrupt will be gener-  
ated. This is intended to be used to facilitate baud rate  
determination when used in conjunction with Listen  
Only mode.  
• Wake-up Interrupt  
• Receiver Overrun Interrupt  
• Receiver Warning Interrupt  
• Receiver Error Passive Interrupt  
The Transmit related interrupts are  
17.13.5 BUS ACTIVITY WAKE-UP INTERRUPT  
• Transmit Interrupts  
• Transmitter Warning Interrupt  
• Transmitter Error Passive Interrupt  
• Bus Off Interrupt  
When the PIC18CXX8 is in SLEEP mode and the bus  
activity wake-up interrupt is enabled, an interrupt will be  
generated, and the WAKIF bit will be set, when activity  
is detected on the CAN bus. This interrupt causes the  
PIC18CXX8 to exit SLEEP mode. The interrupt is reset  
by the MCU clearing the WAKIF bit.  
17.13.1 INTERRUPT CODE BITS  
The source of a pending interrupt is indicated in the  
ICODE (interrupt code) bits. Interrupts are internally  
prioritized, such that the lower the ICODE value, the  
higher the interrupt priority. Once the highest priority  
interrupt condition has been cleared, the code for the  
next highest priority interrupt that is pending (if any),  
will be reflected by the ICODE bits (see Table 17-3).  
Note that only those interrupt sources that have their  
associated CANINTE enable bit set will be reflected in  
the ICODE bits.  
TABLE 17-3: ICODE<2:0> DECODE  
ICODE<2:0>  
Boolean Expression  
000  
001  
010  
011  
100  
101  
110  
111  
ERR•WAK•TX0•TX1•TX2•RX0•RX1  
ERR  
ERR•WAK  
ERR•WAK•TX0  
ERR•WAK•TX0•TX1  
ERR•WAK•TX0•TX1•TX2  
ERR•WAK•TX0•TX1•TX2•RX0  
ERR•WAK•TX0•TX1•TX2•RX0•RX1  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 225  
PIC18CXX8  
17.13.6 ERROR INTERRUPT  
17.13.6.4 Receiver Bus-Passive  
When the error interrupt is enabled, an interrupt is gen-  
erated if an overflow condition occurs, or if the error  
state of transmitter or receiver has changed. The Error  
Flags in COMSTAT will indicate one of the following  
conditions.  
The receive error counter has exceeded the  
error-passive limit of 127 and the device has gone to  
error-passive state.  
17.13.6.5 Transmitter Bus-Passive  
The transmit error counter has exceeded the error-  
passive limit of 127 and the device has gone to error-  
passive state.  
17.13.6.1 Receiver Overflow  
An overflow condition occurs when the MAB has assem-  
bled a valid received message (the message meets the  
criteria of the acceptance filters) and the receive buffer  
associated with the filter is not available for loading of a  
new message. The associated COMSTAT.RXNOVFL bit  
will be set to indicate the overflow condition. This bit  
must be cleared by the MCU.  
17.13.6.6 Bus-Off  
The transmit error counter has exceeded 255 and the  
device has gone to bus-off state.  
17.13.7 INTERRUPT ACKNOWLEDGE  
17.13.6.2 Receiver Warning  
Interrupts are directly associated with one or more sta-  
tus flags in the PIF register. Interrupts are pending as  
long as one of the flags is set. Once an interrupt flag is  
set by the device, the flag can not be reset by the MCU  
until the interrupt condition is removed.  
The receive error counter has reached the MCU warn-  
ing limit of 96.  
17.13.6.3 Transmitter Warning  
The transmit error counter has reached the MCU warn-  
ing limit of 96.  
DS30475A-page 226  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
The A/D module has five registers:  
18.0 10-BIT ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
The analog-to-digital (A/D) converter module has  
twelve inputs for the PIC18C658 devices and sixteen  
for the PIC18C858 devices. This module has the  
ADCON0, ADCON1, and ADCON2 registers.  
• A/D Result High Register (ADRESH)  
• A/D Result Low Register (ADRESL)  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
• A/D Control Register 2 (ADCON2)  
The A/D allows conversion of an analog input signal to  
a corresponding 10-bit digital number.  
The ADCON0 register, shown in Register 18-1, con-  
trols the operation of the A/D module. The ADCON1  
register, shown in Register 18-2, configures the func-  
tions of the port pins. The ADCON2, shown in Register  
16-3, configures the A/D clock source and justification.  
REGISTER 18-1: ADCON0 REGISTER  
U-0  
U-0  
R/W-0  
CHS3  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
GO/DONE ADON  
bit 0  
R/W-0  
bit 7  
bit 7-6  
bit 5-2  
Unimplemented: Read as '0'  
CHS3:CHS0: Analog Channel Select bits  
0000= channel 00, (AN0)  
0001= channel 01, (AN1)  
0010= channel 02, (AN2)  
0011= channel 03, (AN3)  
0100= channel 04, (AN4)  
0101= channel 05, (AN5)  
0110= channel 06, (AN6)  
0111= channel 07, (AN7)  
1000= channel 08, (AN8)  
1001= channel 09, (AN9)  
1010= channel 10, (AN10)  
1011= channel 11, (AN11)  
1100= channel 12, (AN12)(1)  
1101= channel 13, (AN13)(1)  
1110= channel 14, (AN14)(1)  
1111= channel 15, (AN15)(1)  
Note 1: These channels are not available on the PIC18C658 devices.  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
When ADON = 1  
1= A/D conversion in progress. Setting this bit starts an A/D conversion cycle. This bit is auto-  
matically cleared by hardware when the A/D conversion is complete.  
0= A/D conversion not in progress  
ADON: A/D On bit  
1= A/D converter module is operating  
0= A/D converter module is shut off and consumes no operating current  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 227  
PIC18CXX8  
REGISTER 18-2: ADCON1 REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
VCFG1  
VCFG0  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
bit 7-6 Unimplemented: Read as '0'  
bit 5-4 VCFG1:VCFG0: Voltage Reference Configuration bits  
A/D VREF+  
A/D VREF-  
00  
01  
10  
11  
AVDD  
AVSS  
External VREF+  
AVDD  
AVSS  
External VREF-  
External VREF-  
External VREF+  
bit 3:0 PCFG3:PCFG0: A/D Port Configuration Control bits  
AN15 AN14 AN13 AN12 AN11 AN10 AN9 AN8 AN7 AN6 AN5 AN4 AN3 AN2 AN1 AN0  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
A
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
A
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
A
A
D
D
D
D
D
D
D
D
D
D
D
D
D
D
A
A
A
D
D
D
D
D
D
D
D
D
D
D
D
D
A
A
A
A
D
D
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
D
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
D
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
D
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
D
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
D
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
D
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
D
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
D
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
D
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
A
D
D
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
D
A = Analog input  
D = Digital I/O  
Shaded cells = additional A/D channels available on the PIC18C858 devices.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
Note: Channels AN15 through AN12 are not available on the 68-pin devices.  
DS30475A-page 228  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
REGISTER 18-3: ADCON2 REGISTER  
R/W-0  
ADFM  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
ADCS0  
bit 0  
ADCS2  
ADCS1  
bit 7  
bit 7  
ADFM: A/D Result Format Select bit  
1= Right justified  
0= Left justified  
bit 6-3  
bit 2-0  
Unimplemented: Read as '0'  
ADCS1:ADCS0: A/D Conversion Clock Select bits  
000= FOSC/2  
001= FOSC/8  
010= FOSC/32  
011= FRC (clock derived from an RC oscillator = 1 MHz max)  
100= FOSC/4  
101= FOSC/16  
110= FOSC/64  
111= FRC (clock derived from an RC oscillator = 1 MHz max)  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 229  
PIC18CXX8  
The analog reference voltage is software selectable to  
either the device’s positive and negative supply voltage  
(VDD and VSS), or the voltage level on the  
RA3/AN3/VREF+ pin and RA2/AN2/VREF-.  
Each port pin associated with the A/D converter can  
be configured as an analog input (RA3 can also be a  
voltage reference), or as a digital I/O.  
The ADRESH and ADRESL registers contain the result  
of the A/D conversion. When the A/D conversion is  
The A/D converter has a unique feature of being able to  
operate while the device is in SLEEP mode. To operate  
in SLEEP, the A/D conversion clock must be derived  
from the A/D’s internal RC oscillator.  
complete,  
the  
result  
is  
loaded  
into  
the  
ADRESH/ADRESL registers, the GO/DONE bit  
(ADCON0 register) is cleared, and A/D interrupt flag bit  
ADIF is set. The block diagram of the A/D module is  
shown in Figure 18-1.  
The output of the sample and hold is the input into the  
converter, which generates the result via successive  
approximation.  
A device RESET forces all registers to their RESET  
state. This forces the A/D module to be turned off and  
any conversion is aborted.  
FIGURE 18-1: A/D BLOCK DIAGRAM  
CHS3:CHS0  
1111  
AN15 (1)  
1110  
AN14 (1)  
1101  
AN13 (1)  
1100  
AN12 (1)  
1011  
AN11  
1010  
AN10  
1001  
AN9  
1000  
AN8  
0111  
AN7  
0110  
AN6  
0101  
AN5  
0100  
AN4  
VAIN  
0011  
AN3  
(Input Voltage)  
10-bit  
Converter  
A/D  
0010  
AN2  
0001  
AN1  
VCFG1:VCFG0  
0000  
AN0  
VDD  
VREF+  
VREF-  
Reference  
Voltage  
VSS  
Note 1: Channels AN15 through AN12 are not available on the PIC18C658.  
2: I/O pins have diode protection to VDD and VSS.  
DS30475A-page 230  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
The value in the ADRESH/ADRESL registers is not  
modified for a Power-on Reset. The ADRESH/ADRESL  
registers will contain unknown data after a Power-on  
Reset.  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
• Set ADIE bit  
• Set GIE bit  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS bits selected as an  
input. To determine acquisition time, see Section 18.1.  
After this acquisition time has elapsed, the A/D conver-  
sion can be started. The following steps should be fol-  
lowed to do an A/D conversion:  
3. Wait the required acquisition time.  
4. Start conversion:  
• Set GO/DONE bit (ADCON0 register)  
5. Wait for A/D conversion to complete, by either:  
• Polling for the GO/DONE bit to be cleared  
OR  
• Waiting for the A/D interrupt  
1. Configure the A/D module:  
6. Read A/D Result registers (ADRESH:ADRESL);  
clear bit ADIF, if required.  
• Configure analog pins, voltage reference and  
digital I/O (ADCON1)  
7. For next conversion, go to step 1 or step 2, as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2TAD is  
required before next acquisition starts.  
• Select A/D input channel (ADCON0)  
• Select A/D conversion clock (ADCON2)  
• Turn on A/D module (ADCON0)  
FIGURE 18-2: ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6 V  
ANx  
Rs  
SS  
RIC 1 k  
RSS  
CPIN  
VAIN  
I leakage  
± 500 nA  
CHOLD = 120 pF  
VT = 0.6 V  
5 pF  
VSS  
Legend: CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
VDD 4V  
3V  
I LEAKAGE = leakage current at the pin due to  
various junctions  
RIC  
= interconnect resistance  
= sampling switch  
2V  
SS  
CHOLD  
RSS  
= sample/hold capacitance (from DAC)  
= sampling switch resistance  
5
6
7
8 9 10 11  
Sampling Switch ( k)  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 231  
PIC18CXX8  
To calculate the minimum acquisition time,  
Equation 18-1 may be used. This equation assumes  
that 1/2 LSb error is used (1024 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified resolution.  
18.1  
A/D Acquisition Requirements  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 18-2. The  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD). The source impedance affects the offset voltage  
at the analog input (due to pin leakage current). The  
maximum recommended impedance for analog  
sources is 2.5k. After the analog input channel is  
selected (changed), this acquisition must be done  
before the conversion can be started.  
Example 18-1 shows the calculation of the minimum  
required acquisition time TACQ. This calculation is  
based on the following application system assump-  
tions:  
CHOLD  
Rs  
Conversion Error  
VDD  
Temperature  
VHOLD  
=
=
=
=
=
120 pF  
2.5 kΩ  
1/2 LSb  
5V Rss = 7 kΩ  
50°C (system max.)  
0V @ time = 0  
Note: When the conversion is started, the hold-  
ing capacitor is disconnected from the  
input pin.  
EQUATION 18-1: ACQUISITION TIME  
TACQ  
=
Amplifier Settling Time +  
Holding Capacitor Charging Time +  
Temperature Coefficient  
=
TAMP + TC + TCOFF  
EQUATION 18-2: A/D MINIMUM CHARGING TIME  
VHOLD  
or  
=
(VREF - (VREF/2048)) • (1 - e(-Tc/CHOLD(RIC + RSS + RS))  
)
Tc  
=
-(120 pF)(1 k+ RSS + RS) ln(1/2047)  
EXAMPLE 18-1: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME  
TACQ =  
TAMP + TC + TCOFF  
Temperature coefficient is only required for temperatures > 25°C.  
TACQ =  
TC =  
2 µs + Tc + [(Temp - 25°C)(0.05 µs/°C)]  
-CHOLD (RIC + RSS + RS) ln(1/2047)  
-120 pF (1 k+ 7 k+ 2.5 k) ln(0.0004885)  
-120 pF (10.5 k) ln(0.0004885)  
-1.26 µs (-7.6241)  
9.61 µs  
TACQ =  
2 µs + 9.61 µs + [(50°C - 25°C)(0.05 µs/°C)]  
11.61 µs + 1.25 µs  
12.86 µs  
DS30475A-page 232  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
18.2  
Selecting the A/D Conversion Clock  
18.3  
Configuring Analog Port Pins  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 12 TAD per 10-bit conversion.  
The source of the A/D conversion clock is software  
selectable. There are seven possible options for TAD:  
The ADCON1, TRISA, TRISF and TRISH registers  
control the operation of the A/D port pins. The port pins  
needed as analog inputs must have their correspond-  
ing TRIS bits set (input). If the TRIS bit is cleared (out-  
put), the digital output level (VOH or VOL) will be  
converted.  
• 2TOSC  
• 4TOSC  
• 8TOSC  
• 16TOSC  
The A/D operation is independent of the state of the  
CHS3:CHS0 bits and the TRIS bits.  
• 32TOSC  
• 64TOSC  
• Internal RC oscillator  
Note 1: When reading the port register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins config-  
ured as digital inputs will convert an ana-  
log input. Analog levels on a digitally  
configured input will not affect the conver-  
sion accuracy.  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of 1.6 µs.  
Table 18-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
2: Analog levels on any pin defined as a dig-  
ital input may cause the input buffer to  
consume current out of the device’s spec-  
ification limits.  
TABLE 18-1: TAD vs. DEVICE OPERATING FREQUENCIES  
AD Clock Source (TAD)  
ADCS2:ADCS0  
Maximum Device Frequency  
PIC18CXX8  
PIC18LCXX8(6)  
Operation  
2TOSC  
4TOSC  
8TOSC  
16TOSC  
32TOSC  
64TOSC  
RC  
000  
100  
001  
101  
010  
110  
x11  
1.25 MHz  
2.50 MHz  
5.00 MHz  
10.0 MHz  
20.0 MHz  
40.0 MHz  
666 kHz  
1.33 MHz  
2.67 MHz  
5.33 MHz  
10.67 MHz  
21.33 MHz  
Note 1: The RC source has a typical TAD time of 4 ms.  
2: The RC source has a typical TAD time of 6 ms.  
3: These values violate the minimum required TAD time.  
4: For faster conversion times, the selection of another clock source is recommended.  
5: For device frequencies above 1 MHz, the device must be in SLEEP for the entire conversion or the A/D  
accuracy may be out of specification.  
6: This column is for the LC devices only.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 233  
PIC18CXX8  
18.4  
A/D Conversions  
18.5  
Use of the CCP2 Trigger  
Figure 18-3 shows the operation of the A/D converter  
after the GO bit has been set. Clearing the GO/DONE  
bit during a conversion will abort the current conver-  
sion. The A/D result register pair will NOT be updated  
with the partially completed A/D conversion sample.  
That is, the ADRESH:ADRESL registers will continue  
to contain the value of the last completed conversion  
(or the last value written to the ADRESH:ADRESL reg-  
isters). After the A/D conversion is aborted, a 2TAD wait  
is required before the next acquisition is started. After  
this 2TAD wait, acquisition on the selected channel is  
automatically started.  
An A/D conversion can be started by the “special event  
trigger” of the CCP2 module. This requires that the  
CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be pro-  
grammed as 1011and that the A/D module is enabled  
(ADON bit is set). When the trigger occurs, the  
GO/DONE bit will be set, starting the A/D conversion,  
and the Timer1 (or Timer3) counter will be reset to zero.  
Timer1 (or Timer3) is reset to automatically repeat the  
A/D acquisition period with minimal software overhead  
(moving ADRESH/ADRESL to the desired location).  
The appropriate analog input channel must be selected  
and the minimum acquisition done before the “special  
event trigger” sets the GO/DONE bit (starts a conver-  
sion).  
Note: The GO/DONE bit should NOT be set in  
the same instruction that turns on the A/D.  
If the A/D module is not enabled (ADON is cleared), the  
“special event trigger” will be ignored by the A/D mod-  
ule, but will still reset the Timer1 (or Timer3) counter.  
FIGURE 18-3: A/D CONVERSION TAD CYCLES  
Tcy - TAD  
TAD8 TAD9 TAD10 TAD11  
TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7  
b4  
b3  
b2  
b1  
b0  
b0  
b7  
b6  
b5  
b8  
b9  
Conversion Starts  
Holding capacitor is disconnected from analog input (typically 100 ns)  
Set GO bit  
Next Q4: ADRESH/ADRESL is loaded, GO bit is cleared,  
ADIF bit is set, holding capacitor is connected to analog input.  
DS30475A-page 234  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
TABLE 18-2: SUMMARY OF A/D REGISTERS  
Value on all  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
other  
POR, BOR  
RESETS  
INTCON  
GIE/  
GIEH  
PEIE/  
GIEL  
TMR0IE INT0IE  
RBIE  
TMR0IF  
INT0IF  
RBIF  
0000 000x  
0000 000u  
PIR1  
PSPIF  
PSPIE  
PSPIP  
ADIF  
ADIE  
ADIP  
CMIF  
CMIE  
CMIP  
RCIF  
RCIE  
RCIP  
TXIF  
TXIE  
TXIP  
SSPIF CCP1IF  
SSPIE CCP1IE  
SSPIP CCP1IP  
TMR2IF  
TMR2IE  
TMR2IP  
TMR3IF  
TMR3IE  
TMR3IP  
TMR1IF 0000 0000  
TMR1IE 0000 0000  
TMR1IP 0000 0000  
CCP2IF -0-- 0000  
CCP2IE -0-- 0000  
CCP2IP -0-- 0000  
xxxx xxxx  
0000 0000  
0000 0000  
0000 0000  
-0-- 0000  
-0-- 0000  
-0-- 0000  
uuuu uuuu  
uuuu uuuu  
0000 00-0  
---- -000  
0--- -000  
--0u 0000  
--11 1111  
u000 0000  
uuuu uuuu  
1111 1111  
0000 xxxx  
uuuu uuuu  
1111 1111  
PIE1  
IPR1  
PIR2  
BCLIF  
BCLIE  
BCLIP  
LVDIF  
LVDIE  
LVDIP  
PIE2  
IPR2  
ADRESH  
ADRESL  
ADCON0  
ADCON1  
ADCON2  
PORTA  
TRISA  
PORTF  
LATF  
A/D Result Register  
A/D Result Register  
xxxx xxxx  
CHS3  
CHS3  
CHS1  
CHS0  
GO/DONE  
PCFG1  
ADCS1  
RA1  
ADON  
PCFG0  
ADCS0  
RA0  
0000 00-0  
---- -000  
0--- -000  
--0x 0000  
--11 1111  
x000 0000  
xxxx xxxx  
1111 1111  
0000 xxxx  
xxxx xxxx  
1111 1111  
VCFG1 VCFG0 PCFG3 PCFG2  
ADFM  
ADCS2  
RA2  
RA6  
RA5  
RA4  
RA3  
PORTA Data Direction Register  
RF7  
LATF7  
RF6  
RF5  
RF4  
RF3  
RF2  
RF1  
RF0  
LATF6  
LATF5  
LATF4  
LATF3  
LATF2  
LATF1  
LATF0  
TRISF  
PORTF Data Direction Control Register  
(1)  
PORTH  
RH7  
RH6  
RH5  
RH4  
RH3  
RH2  
RH1  
RH0  
(1)  
LATH  
LATH7  
LATH6  
LATH5  
LATH4 LATH3  
LATH2  
LATH1  
LATH0  
(1)  
TRISH  
PORTH Data Direction Control Register  
Legend: x= unknown, u= unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.  
Note 1: Only available on PIC18C858 devices.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 235  
PIC18CXX8  
NOTES:  
DS30475A-page 236  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
The CMCON register, shown as Register 19-1, con-  
trols the comparator input and output multiplexers. A  
block diagram of the comparator is shown in  
Figure 19-1.  
19.0 COMPARATOR MODULE  
The comparator module contains two analog compara-  
tors. The inputs to the comparators are multiplexed  
with the RF1 through RF6 pins. The on-chip Voltage  
Reference (Section 20.0) can also be an input to the  
comparators.  
REGISTER 19-1: CMCON REGISTER  
R-0  
R-0  
R/W-0  
C2INV  
R/W-0  
C1INV  
R/W-0  
CIS  
R/W-0  
CM2  
R/W-0  
CM1  
R/W-0  
CM0  
C2OUT  
C1OUT  
bit 7  
bit 0  
bit 7  
C2OUT: Comparator 2 Output  
When C2INV = 0:  
1= C2 VIN+ > C2 VIN–  
0= C2 VIN+ < C2 VIN–  
When C2INV = 1:  
1= C2 VIN+ < C2 VIN–  
0= C2 VIN+ > C2 VIN–  
bit 6  
C1OUT: Comparator 1 Output  
When C1INV = 0:  
1= C1 VIN+ > C1 VIN–  
0= C1 VIN+ < C1 VIN–  
When C1INV = 1:  
1= C1 VIN+ < C1 VIN–  
0= C1 VIN+ > C1 VIN–  
bit 5  
bit 4  
bit 3  
C2INV: Comparator 2 Output Inversion  
1= C2 output inverted  
0= C2 output not inverted  
C1INV: Comparator 1 Output Inversion  
1= C1 Output inverted  
0= C1 Output not inverted  
CIS: Comparator Input Switch  
When CM2:CM0 = 110:  
1= C1 VIN– connects to RF5/AN10  
C2 VIN– connects to RF3/AN8  
0= C1 VIN– connects to RF6/AN11  
C2 VIN– connects to RF4/AN9  
bit 2-0 CM2:CM0: Comparator Mode  
Figure 19-1 shows the Comparator modes and CM2:CM0 bit settings  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 237  
PIC18CXX8  
mode is changed, the comparator output level may not  
be valid for the specified mode change delay shown in  
Electrical Specifications (Section 25.0).  
19.1  
Comparator Configuration  
There are eight modes of operation for the compara-  
tors. The CMCON register is used to select these  
modes. Figure 19-1 shows the eight possible modes.  
The TRISF register controls the data direction of the  
comparator pins for each mode. If the Comparator  
Note: Comparator interrupts should be disabled  
during a Comparator mode change. Other-  
wise, a false interrupt may occur.  
FIGURE 19-1: COMPARATOR I/O OPERATING MODES  
Comparators Reset (POR Default Value)  
Comparators Off  
CM2:CM0 = 000  
CM2:CM0 = 111  
A
D
VIN-  
VIN-  
RF6/AN11  
RF5/AN10  
RF6/AN11  
Off (Read as ’0’)  
Off (Read as ’0’)  
Off (Read as ’0’)  
Off (Read as ’0’)  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
A
D
RF5/AN10  
A
A
D
VIN-  
VIN-  
RF4/AN9  
RF3/AN8  
RF4/AN9  
VIN+  
VIN+  
D
RF3/AN8  
Two Independent Comparators with Outputs  
CM2:CM0 = 011  
Two Independent Comparators  
CM2:CM0 = 010  
A
VIN-  
A
VIN-  
RF6/AN11  
RF5/AN10  
RF6/AN11  
RF5/AN10  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
C1OUT  
C2OUT  
C1  
C2  
VIN+  
A
RF2/AN7/C1OUT  
A
A
VIN-  
A
VIN-  
RF4/AN9  
RF3/AN8  
RF4/AN9  
VIN+  
VIN+  
A
RF3/AN8  
RF1/AN6/C2OUT  
Two Common Reference Comparators  
Two Common Reference Comparators with Outputs  
CM2:CM0 = 100  
CM2:CM0 = 101  
A
A
VIN-  
VIN-  
RF6/AN11  
RF5/AN10  
RF6/AN11  
RF5/AN10  
C1OUT  
C2OUT  
C1OUT  
C1  
C2  
C1  
C2  
VIN+  
VIN+  
A
A
RF2/AN7/C1OUT  
A
D
VIN-  
RF4/AN9  
RF3/AN8  
A
VIN-  
VIN+  
RF4/AN9  
C2OUT  
VIN+  
D
RF3/AN8  
RF1/AN6/C2OUT  
Four Inputs Multiplexed to Two Comparators  
One Independent Comparator with Output  
CM2:CM0 = 110  
CM2:CM0 = 001  
A
A
A
VIN-  
RF6/AN11  
RF6/AN11  
RF5/AN10  
CIS = 0  
CIS = 1  
VIN-  
A
C1OUT  
C1  
C2  
VIN+  
RF5/AN10  
C1OUT  
C2OUT  
C1  
C2  
VIN+  
RF2/AN7/C1OUT  
A
A
RF4/AN9  
RF3/AN8  
VIN-  
CIS = 0  
CIS = 1  
VIN+  
D
VIN-  
RF4/AN9  
Off (Read as ’0’)  
VIN+  
D
RF3/AN8  
CVREF  
From VREF Module  
A = Analog Input, port reads zeros always.  
D = Digital Input.  
CIS (CMCON<3>) is the Comparator Input Switch.  
DS30475A-page 238  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
19.2  
Comparator Operation  
19.4  
Comparator Response Time  
A single comparator is shown in Figure 19-2 along with  
the relationship between the analog input levels and  
the digital output. When the analog input at VIN+ is less  
than the analog input VIN–, the output of the  
comparator is a digital low level. When the analog input  
at VIN+ is greater than the analog input VIN–, the output  
of the comparator is a digital high level. The shaded  
areas of the output of the comparator in Figure 19-2  
represent the uncertainty due to input offsets and  
response time.  
Response time is the minimum time, after selecting a  
new reference voltage or input source, before the  
comparator output has a valid level. If the internal ref-  
erence is changed, the maximum delay of the internal  
voltage reference must be considered when using the  
comparator outputs. Otherwise the maximum delay of  
the comparators should be used (Section 25.0).  
19.5  
Comparator Outputs  
The comparator outputs are read through the CMCON  
Register. These bits are read-only. The comparator  
outputs may also be directly output to the RF1 and RF2  
I/O pins. When enabled, multiplexors in the output path  
of the RF1 and RF2 pins will switch and the output of  
each pin will be the unsynchronized output of the com-  
parator. The uncertainty of each of the comparators is  
related to the input offset voltage and the response  
time given in the specifications. Figure 19-3 shows the  
comparator output block diagram.  
19.3  
Comparator Reference  
An external or internal reference signal may be used  
depending on the comparator operating mode. The  
analog signal present at VIN– is compared to the signal  
at VIN+, and the digital output of the comparator is  
adjusted accordingly (Figure 19-2).  
FIGURE 19-2: SINGLE COMPARATOR  
The TRISA bits will still function as an output  
enable/disable for the RF1 and RF2 pins while in this  
mode.  
VIN+  
+
Output  
The polarity of the comparator outputs can be changed  
using the C2INV and C1INV bits (CMCON<4:5>).  
VIN–  
Note 1: When reading the PORT register, all pins  
configured as analog inputs will read as a  
‘0’. Pins configured as digital inputs will  
convert an analog input, according to the  
Schmitt Trigger input specification.  
VIN–  
2: Analog levels on any pin defined as a dig-  
ital input, may cause the input buffer to  
consume more current than is specified.  
VIN+  
Output  
19.3.1  
EXTERNAL REFERENCE SIGNAL  
When external voltage references are used, the  
comparator module can be configured to have the com-  
parators operate from the same, or different reference  
sources. However, threshold detector applications may  
require the same reference. The reference signal must  
be between VSS and VDD, and can be applied to either  
pin of the comparator(s).  
19.3.2  
INTERNAL REFERENCE SIGNAL  
The comparator module also allows the selection of an  
internally generated voltage reference for the  
comparators. Section 20.0 contains a detailed descrip-  
tion of the Comparator Voltage Reference Module that  
provides this signal. The internal reference signal is  
used when comparators are in mode CM<2:0> = 110  
(Figure 19-1). In this mode, the internal voltage refer-  
ence is applied to the VIN+ pin of both comparators.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 239  
PIC18CXX8  
FIGURE 19-3: COMPARATOR OUTPUT BLOCK DIAGRAM  
Port Pins  
MULTIPLEX  
+
-
CxINV  
To RF1 or  
RF2 Pin  
Bus  
Data  
Q
D
Read CMCON  
EN  
Q
Set  
CMIF  
bit  
D
From  
Other  
Comparator  
EN  
CL  
Read CMCON  
RESET  
DS30475A-page 240  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
19.6  
Comparator Interrupts  
19.7  
Comparator Operation During SLEEP  
The comparator interrupt flag is set whenever there is  
a change in the output value of either comparator.  
Software will need to maintain information about the  
status of the output bits, as read from CMCON<7:6>, to  
determine the actual change that occurred. The CMIF  
bit (PIR registers) is the comparator interrupt flag. The  
CMIF bit must be RESET by clearing ‘0’. Since it is also  
possible to write a '1' to this register, a simulated inter-  
rupt may be initiated.  
When a comparator is active and the device is placed  
in SLEEP mode, the comparator remains active and  
the interrupt is functional if enabled. This interrupt will  
wake-up the device from SLEEP mode, when enabled.  
While the comparator is powered up, higher SLEEP  
currents than shown in the power-down current  
specification will occur. Each operational comparator  
will consume additional current, as shown in the com-  
parator specifications. To minimize power consumption  
while in SLEEP mode, turn off the comparators,  
CM<2:0> = 111, before entering SLEEP. If the device  
wakes up from SLEEP, the contents of the CMCON  
register are not affected.  
The CMIE bit (PIE registers) and the PEIE bit (INTCON  
register) must be set to enable the interrupt. In addition,  
the GIE bit must also be set. If any of these bits are  
clear, the interrupt is not enabled, though the CMIF bit  
will still be set if an interrupt condition occurs.  
19.8  
Effects of a RESET  
.
A device RESET forces the CMCON register to its  
RESET state, causing the comparator module to be in  
the comparator RESET mode, CM<2:0> = 000. This  
ensures that all potential inputs are analog inputs.  
Device current is minimized when analog inputs are  
present at RESET time. The comparators will be  
powered down during the RESET interval.  
Note: If a change in the CMCON register  
(C1OUT or C2OUT) should occur when a  
read operation is being executed (start of  
the Q2 cycle), then the CMIF (PIR regis-  
ters) interrupt flag may not get set.  
The user, in the interrupt service routine, can clear the  
interrupt in the following manner:  
a) Any read or write of CMCON will end the mis-  
match condition.  
b) Clear flag bit CMIF.  
A mismatch condition will continue to set flag bit CMIF.  
Reading CMCON will end the mismatch condition, and  
allow flag bit CMIF to be cleared.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 241  
PIC18CXX8  
19.9  
Analog Input Connection  
Considerations  
A simplified circuit for an analog input is shown in  
Figure 19-4. Since the analog pins are connected to a  
digital output, they have reverse biased diodes to VDD  
and VSS. The analog input, therefore, must be between  
VSS and VDD. If the input voltage deviates from this  
range by more than 0.6 V in either direction, one of the  
diodes is forward biased and a latch-up condition may  
occur. A maximum source impedance of 10 kis rec-  
ommended for the analog sources. Any external com-  
ponent connected to an analog input pin, such as a  
capacitor or a Zener diode, should have very little leak-  
age current.  
FIGURE 19-4: ANALOG INPUT MODEL  
VDD  
VT = 0.6 V  
RIC  
RS < 10k  
AIN  
ILEAKAGE  
500 nA  
CPIN  
5 pF  
VA  
VT = 0.6 V  
VSS  
Legend:  
CPIN  
VT  
ILEAKAGE  
RIC  
RS  
=
=
=
=
=
=
Input Capacitance  
Threshold Voltage  
Leakage Current at the pin due to various junctions  
Interconnect Resistance  
Source Impedance  
Analog Voltage  
VA  
TABLE 19-1: REGISTERS ASSOCIATED WITH COMPARATOR MODULE  
Value on  
All Other  
RESETS  
Value on  
POR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CMCON C2OUT C1OUT C2INV C1INV  
CIS  
CM2  
VR2  
CM1  
VR1  
CM0  
VR0  
0000 0000 0000 0000  
0000 0000 0000 0000  
VRCON  
VREN  
VROE  
VRR  
VRSS  
VR3  
GIE/  
GIEH  
PEIE/  
GIEL  
INTCON  
TMR0IE INTIE  
RBIE TMR0IF INTIF  
RBIF  
0000 000x 0000 000u  
PIR2  
CMIF  
CMIE  
CMIP  
RF6  
BCLIF LVDIF TMR3IF CCP2IF -0-- 0000 -0-- 0000  
BCLIE LVDIE TMR3IE CCP2IE -0-- 0000 -0-- 0000  
BCLIP LVDIP TMR3IP CCP2IP -1-- 1111 -1-- 1111  
PIE2  
IPR2  
PORTF  
LATF  
TRISF  
RF7  
LATF7  
RF5  
RF4  
RF3  
RF2  
RF1  
RF0  
x000 0000 u000 0000  
LATF6 LATF5 LATF4 LATF3 LATF2  
LATF1  
LATF0 xxxx xxxx uuuu uuuu  
PORTF Data Direction Register  
1111 1111 1111 1111  
Legend: x= unknown, u= unchanged, - = unimplemented, read as "0"  
DS30475A-page 242  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
20.1  
Configuring the Comparator Voltage  
Reference  
20.0 COMPARATOR VOLTAGE  
REFERENCE MODULE  
The Comparator Voltage Reference is a 16-tap resistor  
ladder network that provides a selectable voltage refer-  
ence. The resistor ladder is segmented to provide two  
ranges of CVREF values and has a power-down func-  
tion to conserve power when the reference is not being  
used. The CVRCON register controls the operation of  
the reference as shown in Register 20-1. The block dia-  
gram is given in Figure 20-1.  
The Comparator Voltage Reference can output 16 dis-  
tinct voltage levels for each range. The equations used  
to calculate the output of the Comparator Voltage Ref-  
erence are as follows:  
If CVRR = 1:  
CVREF= (CVR<3:0>/24) x CVRSRC  
If CVRR = 0:  
CVREF = (CVDD x 1/4) + (CVR<3:0>/32) x CVRSRC  
The comparator reference supply voltage can come  
from either VDD or VSS, or the external VREF+ and  
VREF- that are multiplexed with RA3 and RA2. The  
comparator reference supply voltage is controlled by  
the CVRSS bit.  
The settling time of the Comparator Voltage Reference  
must be considered when changing the CVREF output  
(Section 25.0).  
REGISTER 20-1: VRCON REGISTER  
R/W-0  
VREN  
R/W-0  
VROE  
R/W-0  
VRR  
R/W-0  
VRSS  
R/W-0  
VR3  
R/W-0  
VR2  
R/W-0  
VR1  
R/W-0  
VR0  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
VREN: Comparator Voltage Reference Enable  
1= CVREF circuit powered on  
0= CVREF circuit powered down  
VROE: Comparator VREF Output Enable  
1= CVREF voltage level is also output on the RF5/AN10/CVREF pin  
0= CVREF voltage is disconnected from the RF5/AN10/CVREF pin  
VRR: Comparator VREF Range Selection  
1= 0.00 CVRSRC to 0.75 CVRSRC, with CVRSRC/24 step size  
0= 0.25 CVRSRC to 0.75 CVRSRC, with CVRSRC/32 step size  
VRSS: Comparator VREF Source Selection  
1= Comparator reference source CVRSRC = VREF+-VREF-  
0= Comparator reference source CVRSRC = VDD-VSS  
bit 3-0 VR3:VR0: Comparator VREF Value Selection 0 VR3:VR0 15  
When VRR = 1:  
CVREF = (VR<3:0>/ 24) (CVRSRC)  
When VRR = 0:  
CVREF = 1/4 (CVRSRC) + (VR3:VR0/ 32) (CVRSRC)  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 243  
PIC18CXX8  
FIGURE 20-1: VOLTAGE REFERENCE BLOCK DIAGRAM  
VDD  
VREF+  
16 Stages  
CVRSS=1  
CVRSS=0  
CVREN  
R
R
R
R
8R  
CVRR  
VRSS=0  
8R  
VRSS=1  
VREF-  
(From VRCON<3:0>)  
CVR3  
CVR0  
CVREF  
16-1 Analog Mux  
Note: R is defined in Section 25.0.  
DS30475A-page 244  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
20.2  
Voltage Reference Accuracy/Error  
20.5  
Connection Considerations  
The full range of voltage reference cannot be realized  
due to the construction of the module. The transistors  
on the top and bottom of the resistor ladder network  
(Figure 20-1) keep VREF from approaching the refer-  
ence source rails. The voltage reference is derived  
from the reference source; therefore, the VREF output  
changes with fluctuations in that source. The tested  
absolute accuracy of the voltage reference can be  
found in Section 25.0.  
The voltage reference module operates independently  
of the comparator module. The output of the reference  
generator may be connected to the RF5 pin if the  
TRISF<5> bit is set and the VROE bit (VRCON regis-  
ter) is set. Enabling the voltage reference output onto  
the RF5 pin, with an input signal present, will increase  
current consumption. Connecting RF5 as a digital  
output with VRSS enabled will also increase current  
consumption.  
The RF5 pin can be used as a simple D/A output with  
limited drive capability. Due to the limited current drive  
capability, a buffer must be used on the voltage refer-  
ence output for external connections to VREF.  
Figure 20-2 shows an example buffering technique.  
20.3  
Operation During SLEEP  
When the device wakes up from SLEEP through an  
interrupt or a Watchdog Timer time-out, the contents of  
the VRCON register are not affected. To minimize  
current consumption in SLEEP mode, the voltage  
reference should be disabled.  
20.4  
Effects of a RESET  
A device RESET disables the voltage reference by  
clearing bit VREN (VRCON register). This RESET also  
disconnects the reference from the RA2 pin by clearing  
bit VROE (VRCON register) and selects the high volt-  
age range by clearing bit CVRR (VRCON register). The  
VRSS value select bits, CVRCON<3:0>, are also  
cleared.  
FIGURE 20-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE  
(1)  
R
RF5  
CVREF  
Module  
+
CVREF Output  
Voltage  
Reference  
Output  
Impedance  
Note 1: R is dependent upon the Voltage Reference Configuration VRCON<3:0> and VRCON<5>.  
TABLE 20-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE  
Value On  
Value On  
All Other  
RESETS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR  
VRCON  
VREN  
VROE  
VRR  
VRSS  
VR3  
CIS  
VR2  
CM2  
VR1  
CM1  
VR0  
CM0  
0000 0000 0000 0000  
0000 0000 0000 0000  
CMCON C2OUT C1OUT C2INV C1INV  
TRISF  
TRISF7 TRISF6 TRISF5 TRISF4 TRISF3 TRISF2 TRISF1 TRISF0 1111 1111 1111 1111  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 245  
PIC18CXX8  
NOTES:  
DS30475A-page 246  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
Figure 21-2 shows the block diagram for the LVD mod-  
ule. A comparator uses an internally generated refer-  
ence voltage as the set point. When the selected tap  
output of the device voltage crosses the set point (is  
lower than), the LVDIF bit (PIR registers) is set.  
21.0 LOW VOLTAGE DETECT  
In many applications, the ability to determine if the  
device voltage (VDD) is below a specified voltage level  
is a desirable feature. A window of operation for the  
application can be created, where the application soft-  
ware can do "housekeeping tasks" before the device  
voltage exits the valid operating range. This can be  
done using the Low Voltage Detect module.  
Each node in the resister divider represents a “trip  
point” voltage. The “trip point” voltage is the minimum  
supply voltage level at which the device can operate  
before the LVD module asserts an interrupt. When the  
supply voltage is equal to the trip point, the voltage  
tapped off of the resistor array (or external LVDIN input  
pin) is equal to the voltage generated by the internal  
voltage reference module. The comparator then gener-  
ates an interrupt signal setting the LVDIF bit. This volt-  
age is software programmable to any one of 16 values  
(See Figure 21-2). The trip point is selected by pro-  
gramming the LVDL3:LVDL0 bits (LVDCON<3:0>).  
This module is software programmable circuitry, where  
a device voltage trip point can be specified (internal ref-  
erence voltage or external voltage input). When the  
voltage of the device becomes lower than the specified  
point, an interrupt flag is set. If the interrupt is enabled,  
the program execution will branch to the interrupt vec-  
tor address and the software can then respond to that  
interrupt source.  
The Low Voltage Detect circuitry is completely under  
software control. This allows the circuitry to be "turned  
off" by the software, which minimizes the current con-  
sumption for the device.  
FIGURE 21-2: LOW VOLTAGE DETECT  
(LVD) BLOCK DIAGRAM  
Figure 21-1 shows a possible application voltage curve  
(typically for batteries). Over time, the device voltage  
decreases. When the device voltage equals voltage  
VA, the LVD logic generates an interrupt. This occurs at  
time TA. The application software then has the time,  
until the device voltage is no longer in valid operating  
range, to shut down the system. Voltage point VB is the  
minimum valid operating voltage specification. This  
occurs at time TB. TB - TA is the total time for shutdown.  
VDD LVDIN  
LVD Control  
Register  
FIGURE 21-1: TYPICAL LOW VOLTAGE  
DETECT APPLICATION  
LVDIF  
VA  
VB  
LVDEN  
Internally Generated  
Reference Voltage  
TB  
TA  
Time  
Legend:  
VA = LVD trip point  
VB = Minimum valid device operating range  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 247  
PIC18CXX8  
21.1  
Control Register  
The Low Voltage Detect Control register (Register 21-1)  
controls the operation of the Low Voltage Detect  
circuitry.  
REGISTER 21-1: LVDCON REGISTER  
U-0  
U-0  
R-0  
R/W-0  
R/W-0  
LVDL3  
R/W-1  
LVDL2  
R/W-0  
LVDL1  
R/W-1  
LVDL0  
IRVST  
LVDEN  
bit 7  
bit 0  
bit 7-6  
bit 5  
Unimplemented: Read as '0'  
IRVST: Internal Reference Voltage Stable Flag bit  
1= Indicates that the Low Voltage Detect logic will generate the interrupt flag at the specified  
voltage range  
0= Indicates that the Low Voltage Detect logic will not generate the interrupt flag at the spec-  
ified voltage range and the LVD interrupt should not be enabled  
bit 4  
LVDEN: Low Voltage Detect Power Enable bit  
1= Enables LVD, powers up LVD circuit  
0= Disables LVD, powers down LVD circuit  
bit 3-0  
LVDL3:LVDL0: Low Voltage Detection Limit bits  
1111= External analog input is used (input comes from the LVDIN pin)  
1110= 4.5V min - 4.77V max.  
1101= 4.2V min - 4.45V max.  
1100= 4.0V min - 4.24V max.; Reserved on PIC18CXX8  
1011= 3.8V min - 4.03V max.; Reserved on PIC18CXX8  
1010= 3.6V min - 3.82V max.; Reserved on PIC18CXX8  
1001= 3.5V min - 3.71V max.; Reserved on PIC18CXX8  
1000= 3.3V min - 3.50V max.; Reserved on PIC18CXX8  
0111= 3.0V min - 3.18V max.; Reserved on PIC18CXX8  
0110= 2.8V min - 2.97V max.; Reserved on PIC18CXX8  
0101= 2.7V min - 2.86V max.; Reserved on PIC18CXX8  
0100= 2.5V min - 2.65V max.; Reserved on PIC18CXX8  
0011= Reserved on PIC18CXX8 and PIC18LCXX8  
0010= Reserved on PIC18CXX8 and PIC18LCXX8  
0001= Reserved on PIC18CXX8 and PIC18LCXX8  
0000= Reserved on PIC18CXX8 and PIC18LCXX8  
Note: LVDL3:LVDL0 modes which result in a trip point below the valid operating voltage of  
the device are not tested.  
Legend:  
R = Readable bit  
W = Writable bit  
’1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
’0’ = Bit is cleared x = Bit is unknown  
- n = Value at POR  
DS30475A-page 248  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
The following steps are needed to setup the LVD  
module:  
21.2  
Operation  
Depending on the power source for the device voltage,  
the voltage normally decreases relatively slowly. This  
means that the LVD module does not need to be con-  
stantly operating. To decrease current consumption,  
the LVD circuitry only needs to be enabled for short  
periods, where the voltage is checked. After doing the  
check, the LVD module may be disabled.  
1. Write the value to the LVDL3:LVDL0 bits  
(LVDCON register), which selects the desired  
LVD Trip Point.  
2. Ensure that LVD interrupts are disabled (the  
LVDIE bit is cleared or the GIE bit is cleared).  
3. Enable the LVD module (set the LVDEN bit in  
the LVDCON register).  
Each time that the LVD module is enabled, the circuitry  
requires some time to stabilize. After the circuitry has  
stabilized, all status flags may be cleared. The module  
will then indicate the proper state of the system.  
4. Wait for the LVD module to stabilize (the IRVST  
bit to become set).  
5. Clear the LVD interrupt flag, which may have  
falsely become set, until the LVD module has  
stabilized (clear the LVDIF bit).  
6. Enable the LVD interrupt (set the LVDIE and the  
GIE bits).  
Figure 21-3 shows typical waveforms that the LVD  
module may be used to detect.  
FIGURE 21-3: LOW VOLTAGE DETECT WAVEFORMS  
CASE 1:  
LVDIF may not be set  
VDD  
.
VLVD  
LVDIF  
Enable LVD  
50 ms  
Internally Generated  
Reference Stable  
LVDIF cleared in software  
CASE 2:  
VDD  
VLVD  
LVDIF  
Enable LVD  
50 ms  
Internally Generated  
Reference Stable  
LVDIF cleared in software  
LVDIF cleared in software,  
LVDIF remains set since LVD condition still exists  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 249  
PIC18CXX8  
21.2.1 REFERENCE VOLTAGE SET POINT  
21.4  
Operation During SLEEP  
The Internal Reference Voltage of the LVD module may  
be used by other internal circuitry (the programmable  
Brown-out Reset). If these circuits are disabled (lower  
current consumption), the reference voltage circuit  
requires time to become stable before a low voltage  
condition can be reliably detected. This time is invariant  
of system clock speed. This start-up time is specified in  
electrical specification parameter #36. The low voltage  
interrupt flag will not be enabled until a stable reference  
voltage is reached. Refer to the waveform in  
Figure 21-3.  
When enabled, the LVD circuitry continues to operate  
during SLEEP. If the device voltage crosses the trip  
point, the LVDIF bit will be set and the device will wake-  
up from SLEEP. Device execution will continue from  
the interrupt vector address if interrupts have been glo-  
bally enabled.  
21.5  
Effects of a RESET  
A device RESET forces all registers to their RESET  
state. This forces the LVD module to be turned off.  
21.2.2 CURRENT CONSUMPTION  
When the module is enabled, the LVD comparator and  
voltage divider are enabled and will consume static cur-  
rent. The voltage divider can be tapped from multiple  
places in the resistor array. Total current consumption,  
when enabled, is specified in electrical specification  
parameter #D022B.  
21.3  
External Analog Voltage Input  
The LVD module has an additional feature that allows  
the user to supply the trip point voltage to the module  
from an external source (the LVDIN pin). The LVDIN pin  
is used as the trip point when the LVDL3:LVDL0 bits =  
1111’. This state connects the LVDIN pin voltage to  
the comparator. The other comparator input is con-  
nected to an internal reference voltage source.  
DS30475A-page 250  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
SLEEP mode is designed to offer a very low current  
Power-down mode. The user can wake-up from  
SLEEP through external RESET, Watchdog Timer  
Wake-up or through an interrupt. Several oscillator  
options are also made available to allow the part to fit  
the application. The RC oscillator option saves system  
cost, while the LP crystal option saves power. A set of  
configuration bits are used to select various options.  
22.0 SPECIAL FEATURES OF THE  
CPU  
There are several features intended to maximize sys-  
tem reliability, minimize cost through elimination of  
external components, provide power saving operating  
modes and offer code protection:  
• OSC Selection  
• RESET  
22.1  
Configuration Bits  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Programmable Brown-out Reset (BOR)  
• Interrupts  
The configuration bits can be programmed (read as '0'),  
or left unprogrammed (read as '1'), to select various  
device configurations. These bits are mapped starting  
at program memory location 300000h.  
The user will note that address 300000h is beyond the  
user program memory space. In fact, it belongs to the  
configuration memory space (300000h - 3FFFFFh),  
which can only be accessed using table reads and  
table writes.  
• Watchdog Timer (WDT)  
• SLEEP  
• Code Protection  
• ID Locations  
• In-circuit Serial Programming  
PIC18CXX8 devices have a Watchdog Timer, which is  
permanently enabled via the configuration bits or it can  
be software-controlled. It runs off its own RC oscillator  
for added reliability. There are two timers that offer nec-  
essary delays on power-up. One is the Oscillator  
Start-up Timer (OST), intended to keep the chip in  
RESET until the crystal oscillator is stable. The other is  
the Power-up Timer (PWRT), which provides a fixed  
delay on power-up only, designed to keep the part in  
RESET while the power supply stabilizes. With these  
two timers on-chip, most applications need no external  
RESET circuitry.  
TABLE 22-1: CONFIGURATION BITS AND DEVICE ID’S  
Default/  
Unprogrammed  
Value  
Filename  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
300000h CONFIG1L  
300001h CONFIG1H  
300002h CONFIG2L  
300003h CONFIG2H  
300006h CONFIG4L  
3FFFFEh DEVID1  
CP  
r
CP  
r
CP  
OSCSEN  
CP  
CP  
CP  
CP  
CP  
1111 1111  
111- -111  
---- 1111  
---- 1111  
---- --11  
1111 1111  
1111 1111  
FOSC2  
BORV0  
FOSC1  
FOSC0  
BORV1  
BODEN PWRTEN  
WDTPS2 WDTPS1 WDTPS0 WDTEN  
r
STVREN  
REV0  
DEV2 DEV1  
DEV10 DEV9  
DEV0  
DEV8  
REV4  
DEV7  
REV3  
DEV6  
REV2  
DEV5  
REV1  
DEV4  
3FFFFFh DEVID2  
DEV3  
Legend: x= unknown, u= unchanged, - = unimplemented, q= value depends on condition, r = reserved.  
Grayed cells are unimplemented, read as ’0’.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 251  
PIC18CXX8  
REGISTER 22-1: CONFIGURATION REGISTER 1 LOW (CONFIG1L: BYTE ADDRESS 0x300000)  
R/P-1  
CP  
R/P-1  
CP  
R/P-1  
CP  
R/P-1  
CP  
R/P-1  
CP  
R/P-1  
CP  
R/P-1  
CP  
R/P-1  
CP  
bit 7  
bit 0  
bit 7-0  
CP: Code Protection bits (apply when in Code Protected Microcontroller mode)  
1= Program memory code protection off  
0= All of program memory code protected  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
REGISTER 22-2: CONFIGURATION REGISTER 1 HIGH (CONFIG1H: BYTE ADDRESS 0x300001)  
R/P-1  
R/P-1  
R/P-1  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
Reserved Reserved OSCSEN  
bit 7  
FOSC2 FOSC1  
FOSC0  
bit 0  
bit 7-6  
bit 5  
Reserved: Maintain this bit set  
OSCSEN: Oscillator System Clock Switch Enable bit  
1= Oscillator system clock switch option is disabled (Main oscillator is source)  
0= Oscillator system clock switch option is enabled (Oscillator switching is enabled)  
bit 4-3  
bit 2-0  
Unimplemented: Read as ’0’  
FOSC2:FOSC0: Oscillator Selection bits  
111= RC oscillator w/ OSC2 configured as RA6  
110= HS4 oscillator with PLL enabled/Clock frequency = (4 x Fosc)  
101= EC oscillator w/ OSC2 configured as RA6  
100= EC oscillator w/ OSC2 configured as divide by 4 clock output  
011= RC oscillator  
010= HS oscillator  
001= XT oscillator  
000= LP oscillator  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
- n = Value when device is unprogrammed  
DS30475A-page 252  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
REGISTER 22-3: CONFIGURATIONREGISTER2LOW(CONFIG2L:BYTEADDRESS0x300002)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
BORV1  
BORV0 BOREN PWRTEN  
bit 0  
bit 7  
bit 7-4  
bit 3-2  
Unimplemented: Read as ’0’  
BORV1:BORV0: Brown-out Reset Voltage bits  
11=VBOR set to 2.5V  
10=VBOR set to 2.7V  
01=VBOR set to 4.2V  
00=VBOR set to 4.5V  
bit 1  
bit 0  
BOREN: Brown-out Reset Enable bit(1)  
1= Brown-out Reset enabled  
0= Brown-out Reset disabled  
PWRTEN: Power-up Timer Enable bit(1)  
1= PWRT disabled  
0= PWRT enabled  
Note 1: Enabling Brown-out Reset automatically enables the Power-up Timer (PWRT),  
regardless of the value of bit PWRTEN. Ensure the Power-up Timer is enabled any  
time Brown-out Reset is enabled.  
Legend:  
R = Readable bit  
- n = Value when device is unprogrammed  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
u = Unchanged from programmed state  
REGISTER 22-4:  
CONFIGURATIONREGISTER2HIGH(CONFIG2H:BYTEADDRESS0x300003)  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
WDTPS2 WDTPS1 WDTPS0 WDTEN  
bit 0  
bit 7  
bit 7-4  
bit 3-1  
Unimplemented: Read as ’0’  
WDTPS2:WDTPS0: Watchdog Timer Postscale Select bits  
000= 1:128  
001= 1:64  
010= 1:32  
011= 1:16  
100= 1:8  
101= 1:4  
110= 1:2  
111= 1:1  
bit 0  
WDTEN: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled (control is placed on the SWDTEN bit)  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 253  
PIC18CXX8  
REGISTER 22-5: CONFIGURATION REGISTER 4 LOW (CONFIG4L: BYTE ADDRESS 0x300006)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/P-1  
R/P-1  
Reserved STVREN  
bit 0  
bit 7  
bit 7-2  
bit 1  
Unimplemented: Read as ’0’  
Reserved: Maintain this bit set  
bit 0  
STVREN: Stack Full/Underflow RESET Enable bit  
1= Stack Full/Underflow will cause RESET  
0= Stack Full/Underflow will not cause RESET  
Legend:  
R = Readable bit  
P = Programmable bit U = Unimplemented bit, read as ‘0’  
- n = Value when device is unprogrammed  
u = Unchanged from programmed state  
DS30475A-page 254  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
The WDT time-out period values may be found in the  
Electrical Specifications section under parameter #31.  
Values for the WDT postscaler may be assigned using  
the configuration bits.  
22.2  
Watchdog Timer (WDT)  
The Watchdog Timer is a free running on-chip RC oscil-  
lator, which does not require any external components.  
This RC oscillator is separate from the RC oscillator of  
the OSC1/CLKI pin. That means that the WDT will run,  
even if the clock on the OSC1/CLKI and  
OSC2/CLKO/RA6 pins of the device has been stopped;  
for example, by execution of a SLEEPinstruction.  
Note: The CLRWDTand SLEEPinstructions clear  
the WDT and the postscaler if assigned to  
the WDT, and prevent it from timing out  
and generating a device RESET condition.  
During normal operation, a WDT time-out generates a  
device RESET (Watchdog Timer Reset). If the device is  
in SLEEP mode, a WDT time-out causes the device to  
wake-up and continue with normal operation (Watch-  
dog Timer Wake-up). The TO bit in the RCON register  
will be cleared upon a WDT time-out.  
Note: When a CLRWDT instruction is executed  
and the prescaler is assigned to the WDT,  
the prescaler count will be cleared, but the  
prescaler assignment is not changed.  
22.2.1 CONTROL REGISTER  
The Watchdog Timer is enabled/disabled by a device  
configuration bit. If the WDT is enabled, software exe-  
cution may not disable this function. When the WDTEN  
configuration bit is cleared, the SWDTEN bit  
enables/disables the operation of the WDT.  
Register 22-6 shows the WDTCON register. This is a  
readable and writable register, which contains a control  
bit that allows software to override the WDT enable  
configuration bit, only when the configuration bit has  
disabled the WDT.  
REGISTER 22-6: WDTCON REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SWDTEN  
bit 0  
bit 7  
bit 7-1  
bit 0  
Unimplemented: Read as ’0’  
SWDTEN: Software Controlled Watchdog Timer Enable bit  
1= Watchdog Timer is on  
0= Watchdog Timer is turned off if the WDTEN configuration bit in the configuration register = ’0’  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’ - n = Value at POR  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 255  
PIC18CXX8  
22.2.2 WDT POSTSCALER  
The WDT has a postscaler that can extend the WDT  
Reset period. The postscaler is selected at the time of  
the device programming, by the value written to the  
CONFIG2H configuration register.  
FIGURE 22-1: WATCHDOG TIMER BLOCK DIAGRAM  
WDT Timer  
Postscaler  
8
8 - to - 1 MUX  
WDTPS2:WDTPS0  
WDTEN  
SWDTEN bit  
Configuration bit  
WDT  
Time-out  
Note: WDPS2:WDPS0 are bits in a configuration register.  
TABLE 22-2: SUMMARY OF WATCHDOG TIMER REGISTERS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CONFIG2H  
RCON  
IPEN  
LWRT  
RI  
WDTPS2  
TO  
WDTPS2  
PD  
WDTPS0  
POR  
WDTEN  
BOR  
WDTCON  
SWDTEN  
Legend: Shaded cells are not used by the Watchdog Timer.  
DS30475A-page 256  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
The following peripheral interrupts can wake the device  
from SLEEP:  
22.3  
Power-down Mode (SLEEP)  
Power-down mode is entered by executing a SLEEP  
instruction.  
1. PSP read or write.  
2. TMR1 interrupt. Timer1 must be operating as  
an asynchronous counter.  
Upon entering into Power-down mode, the following  
actions are performed:  
3. TMR3 interrupt. Timer3 must be operating as  
an asynchronous counter.  
1. Watchdog Timer is cleared and kept running.  
2. PD bit in RCON register is cleared.  
3. TO bit in RCON register is set.  
4. CCP Capture mode interrupt.  
5. Special event trigger (Timer1 in Asynchronous  
mode using an external clock).  
4. Oscillator driver is turned off.  
5. I/O ports maintain the status they had before the  
6. MSSP (START/STOP) bit detect interrupt.  
SLEEPinstruction was executed.  
7. MSSP transmit or receive in Slave mode  
(SPI/I2C).  
To achieve lowest current consumption, follow these  
steps before switching to Power-down mode:  
8. USART RX or TX (Synchronous Slave mode).  
9. A/D conversion (when A/D clock source is RC).  
10. Activity on CAN bus receive line.  
1. Place all I/O pins at either VDD or VSS and  
ensure no external circuitry is drawing current  
from I/O pin.  
Other peripherals cannot generate interrupts, since  
during SLEEP, no on-chip clocks are present.  
2. Power-down A/D and external clocks.  
3. Pull all hi-impedance inputs to high or low  
externally.  
External MCLR Reset will cause a device RESET. All  
other events are considered a continuation of program  
execution and will cause a "wake-up". The TO and PD  
bits in the RCON register can be used to determine the  
cause of the device RESET. The PD bit, which is set on  
power-up, is cleared when SLEEPis invoked. The TO  
bit is cleared, if a WDT time-out occurred (and caused  
wake-up).  
4. Place T0CKI at VSS or VDD.  
5. Current consumption by PORTB on-chip  
pull-ups should be taken into account and dis-  
abled if necessary.  
The MCLR pin must be at a logic high level (VIHMC).  
22.3.1 WAKE-UP FROM SLEEP  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 2) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the inter-  
rupt address. In cases where the execution of the  
instruction following SLEEP is not desirable, the user  
should have a NOPafter the SLEEPinstruction.  
The device can wake-up from SLEEP through one of  
the following events:  
1. External RESET input on MCLR pin.  
2. Watchdog Timer Wake-up (if WDT was  
enabled).  
3. Interrupt from INT pin, RB port change or a  
Peripheral Interrupt.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 257  
PIC18CXX8  
22.3.2 WAKE-UP USING INTERRUPTS  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
• If an interrupt condition (interrupt flag bit and inter-  
rupt enable bits are set) occurs before the execu-  
tion of a SLEEPinstruction, the SLEEPinstruction  
will complete as a NOP. Therefore, the WDT and  
WDT postscaler will not be cleared, the TO bit will  
not be set and PD bits will not be cleared.  
To ensure that the WDT is cleared, a CLRWDTinstruc-  
tion should be executed before a SLEEPinstruction.  
• If the interrupt condition occurs during or after  
the execution of a SLEEPinstruction, the device  
will immediately wake-up from sleep. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT  
postscaler will be cleared, the TO bit will be set  
and the PD bit will be cleared.  
FIGURE 22-2: WAKE-UP FROM SLEEP THROUGH INTERRUPT(1,2)  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
(2)  
TOST  
INTIF bit  
GIEH bit  
Interrupt Latency(3)  
Processor in  
SLEEP  
INSTRUCTION FLOW  
PC  
PC  
PC+2  
PC+4  
PC+4  
PC + 4  
0008h  
000Ah  
Instruction  
Inst(0008h)  
Inst(PC + 2)  
Inst(PC + 4)  
Inst(000Ah)  
Inst(PC) = SLEEP  
Inst(PC - 1)  
fetched  
Instruction  
executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 2)  
Inst(0008h)  
Note 1:  
2:  
XT, HS or LP oscillator mode assumed.  
GIE set is assumed. In this case, after wake- up, the processor jumps to the interrupt routine.  
If GIE is cleared, execution will continue in-line.  
3:  
4:  
TOST = 1024TOSC (drawing not to scale). This delay will not occur for RC and EC osc modes.  
CLKOUT is not available in these oscillator modes, but shown here for timing reference.  
DS30475A-page 258  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
22.4  
Program Verification/Code Protection  
22.6  
In-Circuit Serial Programming  
If the code protection bit(s) have not been pro-  
grammed, the on-chip program memory can be read  
out for verification purposes.  
PIC18CXX8 microcontrollers can be serially pro-  
grammed while in the end application circuit. This is  
simply done with two lines for clock and data, and three  
other lines for power, ground and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices, and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom firm-  
ware to be programmed.  
Note: Microchip Technology does not recom-  
mend code protecting windowed devices.  
22.5  
ID Locations  
Five memory locations (200000h - 200004h) are desig-  
nated as ID locations, where the user can store check-  
sum or other code identification numbers. These  
locations are accessible during normal execution  
through the TBLRDinstruction, or during program/ver-  
ify. The ID locations can be read when the device is  
code protected.  
22.7  
Device ID Bits  
Device ID bits are located in program memory at  
3FFFFEh and 3FFFFFh. The Device ID bits are used  
by programmers to retrieve part number and revision  
information about a device. These registers may also  
be accessed using a TBLRDinstruction (Register 22-8  
and Register 22-7).  
REGISTER 22-7: DEVID1 ID REGISTER FOR THE PIC18CXX8 DEVICE (0x3FFFFE)  
R/P-1  
DEV2  
R/P-1  
DEV1  
R/P-1  
DEV0  
R/P-1  
REV4  
R/P-1  
REV3  
R/P-1  
REV2  
R/P-1  
REV1  
R/P-1  
REV0  
bit 7  
bit 0  
bit 7-5 DEV2:DEV0: Device ID bits  
These bits are used with the DEV10:DEV3 bits in the Device ID register 2  
to identify the part number  
bit 4-0 REV4:REV0: Revision ID bits  
These bits are used to indicate the revision of the device  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Unprogrammed Value  
(x = unknown)  
REGISTER 22-8: DEVID2 ID REGISTER FOR THE PIC18CXX8 DEVICE (0x3FFFFF)  
R/P-1  
R/P-1  
DEV9  
R/P-1  
DEV8  
R/P-1  
DEV7  
R/P-1  
DEV6  
R/P-1  
DEV5  
R/P-1  
DEV4  
R/P-1  
DEV3  
DEV10  
bit 7  
bit 0  
bit 7-0 DEV10:DEV3: Device ID bits  
These bits are used with the DEV2:DEV0 bits in the Device ID register 1  
to identify the part number  
Legend:  
R = Readable bit  
P = Programmable bit  
U = Unimplemented bit, read as ‘0’  
- n = Unprogrammed Value  
(x = unknown)  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 259  
PIC18CXX8  
NOTES:  
DS30475A-page 260  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
The control instructions may use some of the following  
operands:  
23.0 INSTRUCTION SET SUMMARY  
The PIC18CXX8 instruction set adds many enhance-  
ments to the previous PICmicro® instruction sets, while  
maintaining an easy migration from these PICmicro  
instruction sets.  
• A program memory address (specified by the  
value of ’n’)  
• The mode of the Call or Return instructions (spec-  
ified by the value of ’s’)  
• The mode of the Table Read and Table Write  
instructions (specified by the value of ’m’)  
• No operand required  
Most instructions are a single program memory word  
(16-bits), but there are three instructions that require  
two program memory locations.  
Each single word instruction is a 16-bit word divided  
into an OPCODE, which specifies the instruction type  
and one or more operands, which further specify the  
operation of the instruction.  
(specified by the value of ’—’)  
All instructions are a single word, except for four double  
word instructions. These three instructions were made  
double word instructions so that all the required infor-  
mation is available in these 32-bits. In the second word,  
the 4-MSb’s are 1’s. If this second word is executed as  
an instruction (by itself), it will execute as a NOP.  
The instruction set is highly orthogonal and is grouped  
into four basic categories:  
Byte-oriented operations  
Bit-oriented operations  
Literal operations  
All single word instructions are executed in a single  
instruction cycle, unless a conditional test is true or the  
program counter is changed as a result of the instruc-  
tion. In these cases, the execution takes two instruction  
cycles with the additional instruction cycle(s) executed  
as a NOP.  
Control operations  
The PIC18CXX8 instruction set summary in  
Table 23-2 lists byte-oriented, bit-oriented, literal  
and control operations. Table 23-1 shows the opcode  
field descriptions.  
The double word instructions execute in two instruction  
cycles.  
Most byte-oriented instructions have three operands:  
One instruction cycle consists of four oscillator periods.  
Thus, for an oscillator frequency of 4 MHz, the normal  
instruction execution time is 1 µs. If a conditional test is  
true or the program counter is changed as a result of an  
instruction, the instruction execution time is 2 µs. Two  
word branch instructions (if true) would take 3 µs.  
1. The file register (specified by the value of ’f’)  
2. The destination of the result  
(specified by the value of ’d’)  
3. The accessed memory  
(specified by the value of ’a’)  
'f' represents a file register designator and 'd' repre-  
sents a destination designator. The file register desig-  
nator specifies which file register is to be used by the  
instruction.  
Figure 23-1 shows the general formats that the instruc-  
tions can have.  
All examples use the following format to represent a  
hexadecimal number:  
The destination designator specifies where the result of  
the operation is to be placed. If 'd' is zero, the result is  
placed in the WREG register. If 'd' is one, the result is  
placed in the file register specified in the instruction.  
0xhh  
where h signifies a hexadecimal digit.  
The Instruction Set Summary, shown in Table 23-2,  
lists the instructions recognized by the Microchip  
assembler (MPASMTM).  
All bit-oriented instructions have three operands:  
1. The file register (specified by the value of ’f’)  
Section 23.1 provides a description of each instruction.  
2. The bit in the file register  
(specified by the value of ’b’)  
3. The accessed memory  
(specified by the value of ’a’)  
'b' represents a bit field designator which selects the  
number of the bit affected by the operation, while 'f' rep-  
resents the number of the file in which the bit is located.  
The literal instructions may use some of the following  
operands:  
• A literal value to be loaded into a file register  
(specified by the value of ’k’)  
• The desired FSR register to load the literal value  
into (specified by the value of ’f’)  
• No operand required  
(specified by the value of ’—’)  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 261  
PIC18CXX8  
TABLE 23-1: OPCODE FIELD DESCRIPTIONS  
Field  
Description  
a
RAM access bit  
a = 0: RAM location in Access RAM (BSR register is ignored)  
a = 1: RAM bank is specified by BSR register  
ACCESS = 0: RAM access bit symbol  
ACCESS  
BANKED  
bbb  
BANKED = 1: RAM access bit symbol  
Bit address within an 8-bit file register (0 to 7)  
Bank Select Register. Used to select the current RAM bank.  
Destination select bit;  
BSR  
d
d = 0: store result in WREG,  
d = 1: store result in file register f.  
dest  
f
Destination either the WREG register or the specified register file location  
8-bit Register file address (0x00 to 0xFF)  
fs  
12-bit Register file address (0x000 to 0xFFF). This is the source address.  
fd  
12-bit Register file address (0x000 to 0xFFF). This is the destination address.  
k
Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value)  
Label name  
label  
mm  
The mode of the TBLPTR register for the Table Read and Table Write instructions  
Only used with Table Read and Table Write instructions:  
No Change to register (such as TBLPTR with Table reads and writes)  
Post-Increment register (such as TBLPTR with Table reads and writes)  
Post-Decrement register (such as TBLPTR with Table reads and writes)  
Pre-Increment register (such as TBLPTR with Table reads and writes)  
The relative address (2’s complement number) for relative branch instructions, or the direct  
address for Call/Branch and Return instructions  
Product of Multiply high byte (Register at address 0xFF4)  
Product of Multiply low byte (Register at address 0xFF3)  
Fast Call / Return mode select bit.  
*
*+  
*-  
+*  
n
PRODH  
PRODL  
s
s = 0: do not update into/from shadow registers  
s = 1: certain registers loaded into/from shadow registers (Fast mode)  
Unused or Unchanged (Register at address 0xFE8)  
W = 0: Destination select bit symbol  
u
W
WREG  
x
Working register (accumulator) (Register at address 0xFE8)  
Don't care (0 or 1)  
The assembler will generate code with x = 0. It is the recommended form of use for compatibility  
with all Microchip software tools.  
TBLPTR  
TABLAT  
TOS  
21-bit Table Pointer (points to a Program Memory location) (Register at address 0xFF6)  
8-bit Table Latch (Register at address 0xFF5)  
Top-of-Stack  
PC  
Program Counter  
PCL  
Program Counter Low Byte (Register at address 0xFF9)  
Program Counter High Byte  
PCH  
PCLATH  
PCLATU  
GIE  
Program Counter High Byte Latch (Register at address 0xFFA)  
Program Counter Upper Byte Latch (Register at address 0xFFB)  
Global Interrupt Enable bit  
WDT  
Watchdog Timer  
TO  
Time-out bit  
PD  
Power-down bit  
C, DC, Z, OV, N ALU status bits Carry, Digit Carry, Zero, Overflow, Negative  
[ ]  
Optional  
( )  
Contents  
Assigned to  
< >  
Register bit field  
In the set of  
italics  
User defined term (font is courier)  
DS30475A-page 262  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
FIGURE 23-1: GENERAL FORMAT FOR INSTRUCTIONS  
Byte-oriented file register operations  
Example Instruction  
15  
10  
9
d
8
7
0
OPCODE  
a
f (FILE #)  
ADDWF MYREG, W, B  
d = 0 for result destination to be WREG register  
d = 1 for result destination to be file register (f)  
a = 0 to force Access Bank  
a = 1 for BSR to select Bank  
f = 8-bit file register address  
Byte to Byte move operations (2-word)  
15  
12 11  
0
0
OPCODE  
f (Source FILE #)  
MOVFF MYREG1, MYREG2  
15  
12 11  
1111  
f (Destination FILE #)  
f = 12-bit file register address  
Bit-oriented file register operations  
15 12 11  
9
8
7
0
OPCODE b (BIT #)  
a
f (FILE #)  
BSF MYREG, bit, B  
b = 3-bit position of bit in file register (f)  
a = 0 to force Access Bank  
a = 1 for BSR to select Bank  
f = 8-bit file register address  
Literal operations  
15  
8
7
0
OPCODE  
k (literal)  
MOVLW 0x7F  
k = 8-bit immediate value  
Control operations  
CALL, GOTO and Branch operations  
15  
8 7  
0
0
OPCODE  
12 11  
n<7:0> (literal)  
GOTO Label  
15  
1111  
n<19:8> (literal)  
n = 20-bit immediate value  
8 7  
15  
15  
0
0
CALL MYFUNC  
OPCODE  
12 11  
n<7:0> (literal)  
S
1111  
n<19:8> (literal)  
S = Fast bit  
11 10  
15  
0
0
BRA MYFUNC  
BC MYFUNC  
OPCODE  
15  
OPCODE  
n<10:0> (literal)  
n<7:0> (literal)  
4
8 7  
15  
6
0
LFSR FSR0, 0x100  
OPCODE  
f
k (literal)  
15  
11  
0000  
7
0
1111  
k (literal)  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 263  
PIC18CXX8  
TABLE 23-2: PIC18CXX8 INSTRUCTION SET  
16-Bit Instruction Word  
MSb LSb  
Mnemonic,  
Status  
Affected  
Description  
Cycles  
Notes  
Operands  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF f [,d] [,a] Add WREG and f  
1
1
1
1
1
0010 01da ffff ffff C, DC, Z, OV, N 1, 2, 6  
0010 00da ffff ffff C, DC, Z, OV, N 1, 2, 6  
0001 01da ffff ffff Z, N  
0110 101a ffff ffff Z  
0001 11da ffff ffff Z, N  
ADDWFC f [,d] [,a] Add WREG and Carry bit to f  
ANDWF  
CLRF  
COMF  
f [,d] [,a] AND WREG with f  
f [,a] Clear f  
f [,d] [,a] Complement f  
1,2, 6  
2, 6  
1, 2, 6  
4, 6  
4, 6  
1, 2, 6  
CPFSEQ f [,a]  
CPFSGT f [,a]  
CPFSLT f [,a]  
Compare f with WREG, skip =  
Compare f with WREG, skip >  
Compare f with WREG, skip <  
1 (2 or 3) 0110 001a ffff ffff None  
1 (2 or 3) 0110 010a ffff ffff None  
1 (2 or 3) 0110 000a ffff ffff None  
DECF  
f [,d] [,a] Decrement f  
1
0000 01da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4, 6  
DECFSZ f [,d] [,a] Decrement f, Skip if 0  
DCFSNZ f [,d] [,a] Decrement f, Skip if Not 0  
1 (2 or 3) 0010 11da ffff ffff None  
1 (2 or 3) 0100 11da ffff ffff None  
1, 2, 3, 4, 6  
1, 2, 6  
INCF  
f [,d] [,a] Increment f  
1
0010 10da ffff ffff C, DC, Z, OV, N 1, 2, 3, 4, 6  
INCFSZ  
INFSNZ  
IORWF  
MOVF  
f [,d] [,a] Increment f, Skip if 0  
f [,d] [,a] Increment f, Skip if Not 0  
f [,d] [,a] Inclusive OR WREG with f  
f [,d] [,a] Move f  
1 (2 or 3) 0011 11da ffff ffff None  
1 (2 or 3) 0100 10da ffff ffff None  
4, 6  
1, 2, 6  
1, 2, 6  
1, 6  
1
1
2
0001 00da ffff ffff Z, N  
0101 00da ffff ffff Z, N  
1100 ffff ffff ffff None  
1111 ffff ffff ffff  
MOVFF  
f , f  
Move f (source) to 1st word  
s
d
s
f (destination)2nd word  
d
MOVWF f [,a]  
Move WREG to f  
Multiply WREG with f  
Negate f  
1
1
1
1
1
1
1
1
1
0110 111a ffff ffff None  
0000 001a ffff ffff None  
0110 110a ffff ffff C, DC, Z, OV, N 1, 2, 6  
0011 01da ffff ffff C, Z, N  
0100 01da ffff ffff Z, N  
0011 00da ffff ffff C, Z, N  
0100 00da ffff ffff Z, N  
0110 100a ffff ffff None  
6
6
MULWF  
NEGF  
RLCF  
RLNCF  
RRCF  
RRNCF  
SETF  
f [,a]  
f [,a]  
f [,d] [,a] Rotate Left f through Carry  
f [,d] [,a] Rotate Left f (No Carry)  
f [,d] [,a] Rotate Right f through Carry  
f [,d] [,a] Rotate Right f (No Carry)  
6
1, 2, 6  
6
6
6
f [,a]  
Set f  
SUBFWB f [,d] [,a] Subtract f from WREG with  
borrow  
0101 01da ffff ffff C, DC, Z, OV, N 1, 2, 6  
SUBWF  
f [,d] [,a] Subtract WREG from f  
1
1
0101 11da ffff ffff C, DC, Z, OV, N  
0101 10da ffff ffff C, DC, Z, OV, N 1, 2, 6  
6
SUBWFB f [,d] [,a] Subtract WREG from f with  
borrow  
SWAPF  
TSTFSZ f [,a]  
XORWF f [,d] [,a] Exclusive OR WREG with f  
BIT-ORIENTED FILE REGISTER OPERATIONS  
f [,d] [,a] Swap nibbles in f  
1
0011 10da ffff ffff None  
4, 6  
1, 2, 6  
6
Test f, skip if 0  
1 (2 or 3) 0110 011a ffff ffff None  
1
0001 10da ffff ffff Z, N  
BCF  
BSF  
BTFSC  
BTFSS  
BTG  
f, b [,a] Bit Clear f  
f, b [,a] Bit Set f  
f, b [,a] Bit Test f, Skip if Clear  
f, b [,a] Bit Test f, Skip if Set  
f [,d] [,a] Bit Toggle f  
1
1
1001 bbba ffff  
1000 bbba ffff  
ffff None  
ffff None  
ffff None  
ffff None  
ffff None  
1, 2, 6  
1, 2, 6  
3, 4, 6  
3, 4, 6  
1, 2, 6  
1 (2 or 3) 1011 bbba ffff  
1 (2 or 3) 1010 bbba ffff  
1
0111 bbba ffff  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value  
present on the pins themselves. For example, if the data latch is ’1’ for a pin configured as input and is driven low by an  
external device, the data will be written back with a ’0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
4: Some instructions are 2 word instructions. The second word of these instructions will be executed as a NOP, unless the  
first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory  
locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
6: Microchip Assembler MASM automatically defaults destination bit ’d’ to ’1’, while access bit ’a’ defaults to ’1’ or ’0’  
according to address of register being used.  
DS30475A-page 264  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
TABLE 23-2: PIC18CXX8 INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
CONTROL OPERATIONS  
BC  
BN  
n
n
n
n
n
n
n
n
Branch if Carry  
Branch if Negative  
Branch if Not Carry  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
Branch if Overflow  
Branch Unconditionally  
Branch if Zero  
Call subroutine1st word  
2nd word  
Clear Watchdog Timer  
Decimal Adjust WREG  
Go to address1st word  
2nd word  
1 (2)  
1110 0010 nnnn  
1110 0110 nnnn  
1110 0011 nnnn  
1110 0111 nnnn  
1110 0101 nnnn  
1110 0001 nnnn  
1110 0100 nnnn  
1101 0nnn nnnn  
1110 0000 nnnn  
1110 110s kkkk  
1111 kkkk kkkk  
0000 0000 0000  
0000 0000 0000  
1110 1111 kkkk  
1111 kkkk kkkk  
0000 0000 0000  
1111 xxxx xxxx  
0000 0000 0000  
0000 0000 0000  
1101 1nnn nnnn  
0000 0000 1111  
0000 0000 0001  
nnnn None  
nnnn None  
nnnn None  
nnnn None  
nnnn None  
nnnn None  
nnnn None  
nnnn None  
nnnn None  
kkkk None  
kkkk  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
1 (2)  
1 (2)  
1 (2)  
2
BNC  
BNN  
BNOV  
BNZ  
BOV  
BRA  
BZ  
n
n, s  
CALL  
CLRWDT  
DAW  
GOTO  
n
1
1
2
0100 TO, PD  
0111  
C
kkkk None  
kkkk  
NOP  
NOP  
POP  
PUSH  
RCALL  
RESET  
RETFIE  
n
No Operation  
1
1
1
1
2
1
2
0000 None  
xxxx None  
0110 None  
0101 None  
nnnn None  
1111 All  
No Operation (Note 4)  
Pop top of return stack (TOS)  
Push top of return stack (TOS)  
Relative Call  
Software device RESET  
Return from interrupt enable  
s
000s GIE/GIEH,  
PEIE/GIEL  
RETLW  
RETURN  
SLEEP  
k
s
Return with literal in WREG  
Return from Subroutine  
Go into Standby mode  
2
2
1
0000 1100 kkkk  
0000 0000 0001  
0000 0000 0000  
kkkk None  
001s None  
0011 TO, PD  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value  
present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an  
external device, the data will be written back with a '0'.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
4: Some instructions are 2 word instructions. The second word of these instructions will be executed as a NOP, unless the  
first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory  
locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
6: Microchip Assembler MASM automatically defaults destination bit ’d’ to ’1’, while access bit ’a’ defaults to ’1’ or ’0’  
according to address of register being used.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 265  
PIC18CXX8  
TABLE 23-2: PIC18CXX8 INSTRUCTION SET (CONTINUED)  
16-Bit Instruction Word  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
LITERAL OPERATIONS  
ADDLW  
ANDLW  
IORLW  
LFSR  
k
k
k
f, k  
Add literal and WREG  
AND literal with WREG  
Inclusive OR literal with WREG  
Load FSR(f) with a 12-bit  
literal (k)  
Move literal to BSR<3:0>  
Move literal to WREG  
Multiply literal with WREG  
Return with literal in WREG  
Subtract WREG from literal  
1
1
1
2
0000 1111 kkkk  
0000 1011 kkkk  
0000 1001 kkkk  
1110 1110 00ff  
1111 0000 kkkk  
0000 0001 0000  
0000 1110 kkkk  
0000 1101 kkkk  
0000 1100 kkkk  
0000 1000 kkkk  
0000 1010 kkkk  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
kkkk Z, N  
kkkk None  
kkkk  
kkkk None  
kkkk None  
kkkk None  
kkkk None  
kkkk C, DC, Z, OV, N  
kkkk Z, N  
MOVLB  
MOVLW  
MULLW  
RETLW  
SUBLW  
XORLW  
k
k
k
k
k
k
1
1
1
2
1
Exclusive OR literal with WREG 1  
DATA MEMORY PROGRAM MEMORY OPERATIONS  
TBLRD*  
Table Read  
2
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
0000 0000 0000  
1000 None  
1001 None  
1010 None  
1011 None  
1100 None  
1101 None  
1110 None  
1111 None  
TBLRD*+  
TBLRD*-  
TBLRD+*  
TBLWT*  
TBLWT*+  
TBLWT*-  
TBLWT+*  
Table Read with post-increment  
Table Read with post-decrement  
Table Read with pre-increment  
Table Write  
Table Write with post-increment  
Table Write with post-decrement  
Table Write with pre-increment  
2 (5)  
Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value  
present on the pins themselves. For example, if the data latch is ’1’ for a pin configured as input and is driven low by an  
external device, the data will be written back with a ’0’.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if  
assigned.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
4: Some instructions are 2 word instructions. The second word of these instructions will be executed as a NOP, unless the  
first word of the instruction retrieves the information embedded in these 16-bits. This ensures that all program memory  
locations have a valid instruction.  
5: If the table write starts the write cycle to internal memory, the write will continue until terminated.  
6: Microchip Assembler MASM automatically defaults destination bit ’d’ to ’1’, while access bit ’a’ defaults to ’1’ or ’0’  
according to address of register being used.  
DS30475A-page 266  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
23.1  
Instruction Set  
ADDLW  
ADDWF  
ADD literal to W  
ADD W to f  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Syntax:  
[ label ] ADDWF f [,d] [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(WREG) + k WREG  
N,OV, C, DC, Z  
Operation:  
(WREG) + (f) dest  
0000  
1111  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
Description:  
The contents of WREG are added  
to the 8-bit literal ’k’ and the result is  
placed in WREG.  
0010  
01da  
ffff  
ffff  
Description:  
Add WREG to register ’f’. If ’d’ is 0,  
the result is stored in WREG. If ’d’  
is 1, the result is stored back in reg-  
ister 'f' (default). If ’a’ is 0, the  
Access Bank will be selected. If ’a’  
is 1, the Bank will be selected as  
per the BSR value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ’k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
ADDLW  
0x15  
Example:  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
WREG  
N
OV  
C
DC  
Z
=
=
=
=
=
=
0x10  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
?
?
?
?
?
ADDWF  
REG, W  
Example:  
Before Instruction  
After Instruction  
WREG  
REG  
N
OV  
C
=
0x17  
0xC2  
WREG  
N
OV  
C
DC  
Z
=
=
=
=
=
=
0x25  
=
=
=
=
=
=
0
0
0
0
0
?
?
?
?
?
DC  
Z
After Instruction  
WREG  
REG  
N
OV  
C
=
=
=
=
=
=
=
0xD9  
0xC2  
1
0
0
0
0
DC  
Z
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 267  
PIC18CXX8  
ADDWFC  
Syntax:  
ADD WREG and Carry bit to f  
ANDLW  
AND literal with WREG  
[ label ] ADDWFC f [ ,d [,a] ]  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
(WREG) .AND. k WREG  
N,Z  
Operation:  
(WREG) + (f) + (C) dest  
0000  
1011  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
Description:  
The contents of WREG are AND’ed  
with the 8-bit literal 'k'. The result is  
placed in WREG.  
0010  
00da  
ffff  
ffff  
Description:  
Add WREG, the Carry Flag and data  
memory location ’f’. If ’d’ is 0, the  
result is placed in WREG. If ’d’ is 1,  
the result is placed in data memory  
location 'f'. If ’a’ is 0, the Access  
Bank will be selected. If ’a’ is 1, the  
Bank will be selected as per the  
BSR value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
’k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
ANDLW  
0x5F  
Example:  
Q Cycle Activity:  
Q1  
Before Instruction  
WREG  
=
=
=
0xA3  
?
?
Q2  
Q3  
Q4  
N
Z
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
After Instruction  
WREG  
N
Z
=
=
=
0x03  
0
0
ADDWFC  
REG, W  
Example:  
Before Instruction  
C
=
1
REG  
WREG  
N
OV  
DC  
Z
=
=
=
=
=
=
0x02  
0x4D  
?
?
?
?
After Instruction  
C
=
=
=
=
=
=
=
0
0x02  
0x50  
0
0
0
0
REG  
WREG  
N
OV  
DC  
Z
DS30475A-page 268  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
ANDWF  
Syntax:  
AND WREG with f  
BC  
Branch if Carry  
[ label ] BC  
[ label ] ANDWF f [ ,d [,a] ]  
Syntax:  
Operands:  
Operation:  
n
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
-128 n 127  
if carry bit is ’1’  
(PC) + 2 + 2n PC  
Operation:  
(WREG) .AND. (f) dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N,Z  
1110  
0010  
nnnn  
nnnn  
0001  
01da  
ffff  
ffff  
Description:  
If the Carry bit is ’1’, then the pro-  
gram will branch.  
Description:  
The contents of WREG are AND’ed  
with register 'f'. If 'd' is 0, the result  
is stored in WREG. If 'd' is 1, the  
result is stored back in register 'f'  
(default). If ’a’ is 0, the Access  
Bank will be selected. If ’a’ is 1, the  
bank will be selected as per the  
BSR value.  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
ANDWF  
REG, W  
Example:  
If No Jump:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
WREG  
REG  
N
=
0x17  
0xC2  
?
=
=
=
Decode  
Read literal  
’n’  
Process  
Data  
No  
operation  
Z
?
After Instruction  
HERE  
BC  
5
Example:  
WREG  
REG  
N
=
=
=
=
0x02  
0xC2  
0
Before Instruction  
PC  
=
address (HERE)  
Z
0
After Instruction  
If Carry  
=
=
=
=
1;  
PC  
If Carry  
PC  
address (HERE+12)  
0;  
address (HERE+2)  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 269  
PIC18CXX8  
BCF  
Bit Clear f  
BN  
Branch if Negative  
[ label ] BN  
Syntax:  
Operands:  
[ label ] BCF f, b [,a]  
Syntax:  
Operands:  
Operation:  
n
0 f 255  
0 b 7  
a [0,1]  
-128 n 127  
if negative bit is ’1’  
(PC) + 2 + 2n PC  
Operation:  
0 f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0110  
nnnn  
nnnn  
1001  
bbba  
ffff  
ffff  
Description:  
If the Negative bit is ’1’, then the  
program will branch.  
Description:  
Bit 'b' in register 'f' is cleared. If ’a’  
is 0, the Access Bank will be  
selected, overriding the BSR value.  
If ’a’ = 1, the Bank will be selected  
as per the BSR value.  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
Q Cycle Activity:  
Q1  
1(2)  
Q2  
Q3  
Q4  
Q Cycle Activity:  
If Jump:  
Decode  
Read  
register ’f’  
Process  
Data  
Write  
register ’f’  
Q1  
Q2  
Q3  
Q4  
BCF  
FLAG_REG,  
7
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
Example:  
Before Instruction  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
FLAG_REG = 0xC7  
After Instruction  
If No Jump:  
Q1  
FLAG_REG = 0x47  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
No  
operation  
HERE  
BN Jump  
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Negative  
PC  
=
=
=
=
1;  
address (Jump)  
0;  
address (HERE+2)  
If Negative  
PC  
DS30475A-page 270  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
BNC  
Branch if Not Carry  
BNN  
Branch if Not Negative  
Syntax:  
[ label ] BNC  
-128 n 127  
if carry bit is ’0’  
n
Syntax:  
[ label ] BNN  
-128 n 127  
n
Operands:  
Operation:  
Operands:  
Operation:  
if negative bit is ’0’  
(PC) + 2 + 2n PC  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0011  
nnnn  
nnnn  
1110  
0111  
nnnn  
nnnn  
Description:  
If the Carry bit is ’0’, then the pro-  
gram will branch.  
Description:  
If the Negative bit is ’0’, then the  
program will branch.  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
’n’  
Process  
Data  
No  
operation  
HERE  
BNC Jump  
HERE  
BNN Jump  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
After Instruction  
If Negative  
PC  
If Carry  
=
=
=
=
0;  
=
=
=
=
0;  
PC  
If Carry  
PC  
address (Jump)  
1;  
address (HERE+2)  
address (Jump)  
1;  
address (HERE+2)  
If Negative  
PC  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 271  
PIC18CXX8  
BNOV  
Branch if Not Overflow  
BNZ  
Branch if Not Zero  
Syntax:  
[ label ] BNOV  
-128 n 127  
n
Syntax:  
[ label ] BNZ  
-128 n 127  
if zero bit is ’0’  
n
Operands:  
Operation:  
Operands:  
Operation:  
if overflow bit is ’0’  
(PC) + 2 + 2n PC  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0101  
nnnn  
nnnn  
1110  
0001  
nnnn  
nnnn  
Description:  
If the Overflow bit is ’0’, then the  
program will branch.  
Description:  
If the Zero bit is ’0’, then the pro-  
gram will branch.  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Q Cycle Activity:  
If Jump:  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If No Jump:  
Q1  
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
No  
operation  
Decode  
Read literal  
’n’  
Process  
Data  
No  
operation  
HERE  
BNOV Jump  
HERE  
BNZ Jump  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
address (HERE)  
PC  
=
address (HERE)  
After Instruction  
If Overflow  
PC  
After Instruction  
=
=
=
=
0;  
If Zero  
=
=
=
=
0;  
address (Jump)  
1;  
address (HERE+2)  
PC  
If Zero  
PC  
address (Jump)  
1;  
address (HERE+2)  
If Overflow  
PC  
DS30475A-page 272  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
BRA  
Unconditional Branch  
[ label ] BRA  
BSF  
Bit Set f  
Syntax:  
n
Syntax:  
Operands:  
[ label ] BSF f, b [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
-1024 n 1023  
(PC) + 2 + 2n PC  
None  
0 f 255  
0 b 7  
a [0,1]  
Operation:  
1 f<b>  
1101  
0nnn  
nnnn  
nnnn  
Status Affected:  
Encoding:  
None  
Add the 2’s complement number  
’2n’ to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is a two-  
cycle instruction.  
1000  
bbba  
ffff  
ffff  
Description:  
Bit 'b' in register 'f' is set. If ’a’ is 0  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ is 1, the  
Bank will be selected as per the  
BSR value (default).  
Words:  
Cycles:  
1
2
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
Decode  
Read  
register ’f’  
Process  
Data  
Write  
register ’f’  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
BSF  
FLAG_REG, 7, 1  
Example:  
Before Instruction  
HERE  
BRA Jump  
Example:  
FLAG_REG  
=
=
0x0A  
Before Instruction  
After Instruction  
FLAG_REG  
PC  
=
=
address (HERE)  
address (Jump)  
0x8A  
After Instruction  
PC  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 273  
PIC18CXX8  
BTFSC  
Bit Test File, Skip if Clear  
BTFSS  
Bit Test File, Skip if Set  
Syntax:  
[ label ] BTFSC f, b [,a]  
Syntax:  
[ label ] BTFSS f, b [,a]  
Operands:  
0 f 255  
0 b 7  
a [0,1]  
Operands:  
0 f 255  
0 b < 7  
a [0,1]  
Operation:  
skip if (f<b>) = 0  
None  
Operation:  
skip if (f<b>) = 1  
None  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
1011  
bbba  
ffff  
ffff  
1010  
bbba  
ffff  
ffff  
Description:  
If bit 'b' in register ’f' is 0, then the  
next instruction is skipped.  
Description:  
If bit 'b' in register 'f' is 1 then the next  
instruction is skipped.  
If bit 'b' is 0, then the next instruction  
fetched during the current instruction  
execution is discarded, and a NOPis  
executed instead, making this a two-  
cycle instruction. If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ is 1, the  
Bank will be selected as per the BSR  
value.  
If bit 'b' is 1, then the next instruction  
fetched during the current instruc-  
tion execution, is discarded and an  
NOPis executed instead, making this  
a two-cycle instruction. If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ is 1, the  
Bank will be selected as per the BSR  
value.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
No  
operation  
Decode  
Read  
register ’f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
HERE  
FALSE  
TRUE  
BTFSC  
:
:
FLAG, 1, ACCESS  
HERE  
FALSE  
TRUE  
BTFSS  
:
:
FLAG, 1, ACCESS  
Example:  
Example:  
Before Instruction  
PC  
Before Instruction  
PC  
=
address (HERE)  
=
address (HERE)  
After Instruction  
If FLAG<1>  
PC  
After Instruction  
If FLAG<1>  
PC  
=
=
=
=
0;  
=
=
=
=
0;  
address (TRUE)  
1;  
address (FALSE)  
address (FALSE)  
1;  
address (TRUE)  
If FLAG<1>  
PC  
If FLAG<1>  
PC  
DS30475A-page 274  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
BTG  
Bit Toggle f  
BOV  
Branch if Overflow  
Syntax:  
Operands:  
[ label ] BTG f, b [,a]  
Syntax:  
[ label ] BOV  
-128 n 127  
n
0 f 255  
0 b < 7  
a [0,1]  
Operands:  
Operation:  
if overflow bit is ’1’  
(PC) + 2 + 2n PC  
Operation:  
(f<b>) f<b>  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
1110  
0100  
nnnn  
nnnn  
0111  
bbba  
ffff  
ffff  
Description:  
If the Overflow bit is ’1’, then the  
program will branch.  
Description:  
Bit ’b’ in data memory location ’f’ is  
inverted. If ’a’ is 0, the Access Bank  
will be selected, overriding the BSR  
value. If ’a’ is 1, the Bank will be  
selected as per the BSR value.  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
Q Cycle Activity:  
Q1  
1(2)  
Q2  
Q3  
Q4  
Q Cycle Activity:  
If Jump:  
Decode  
Read  
register ’f’  
Process  
Data  
Write  
register ’f’  
Q1  
Q2  
Q3  
Q4  
BTG  
PORTC,  
4
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
Example:  
Before Instruction:  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
PORTC  
=
0111 0101[0x75]  
After Instruction:  
If No Jump:  
Q1  
PORTC  
=
0110 0101[0x65]  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
No  
operation  
HERE  
BOV Jump  
Example:  
Before Instruction  
PC  
=
address (HERE)  
After Instruction  
If Overflow  
PC  
=
=
=
=
1;  
address (Jump)  
0;  
address (HERE+2)  
If Overflow  
PC  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 275  
PIC18CXX8  
BZ  
Branch if Zero  
[ label ] BZ  
CALL  
Subroutine Call  
Syntax:  
Operands:  
Operation:  
n
Syntax:  
Operands:  
[ label ] CALL k [,s]  
-128 n 127  
0 k 1048575  
s [0,1]  
if Zero bit is ’1’  
(PC) + 2 + 2n PC  
Operation:  
(PC) + 4 TOS,  
k PC<20:1>,  
if s = 1  
(WREG) WS,  
(STATUS) STATUSS,  
(BSR) BSRS  
Status Affected:  
Encoding:  
None  
1110  
0000  
nnnn  
nnnn  
Description:  
If the Zero bit is ’1’, then the pro-  
gram will branch.  
The 2’s complement number ’2n’ is  
added to the PC. Since the PC will  
have incremented to fetch the next  
instruction, the new address will be  
PC+2+2n. This instruction is then  
a two-cycle instruction.  
Status Affected:  
None  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
1110  
1111  
110s  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
19  
Description:  
Subroutine call of entire 2M byte  
memory range. First, return  
Words:  
Cycles:  
1
address (PC+ 4) is pushed onto the  
return stack. If ’s’ = 1, the WREG,  
STATUS and BSR registers are  
also pushed into their respective  
shadow registers, WS, STATUSS  
and BSRS. If 's' = 0, no update  
occurs (default). Then the 20-bit  
value ’k’ is loaded into PC<20:1>.  
CALLis a two-cycle instruction.  
1(2)  
Q Cycle Activity:  
If Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
No  
operation  
No  
No  
No  
operation  
operation  
operation  
Words:  
Cycles:  
2
2
If No Jump:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
No  
operation  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal Push PC to Read literal  
HERE  
BZ Jump  
Example:  
’k’<7:0>,  
stack  
’k’<19:8>,  
Write to PC  
Before Instruction  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
PC  
=
address (HERE)  
After Instruction  
If Zero  
=
=
=
=
1;  
HERE  
CALL THERE, FAST  
Example:  
PC  
If Zero  
PC  
address (Jump)  
0;  
address (HERE+2)  
Before Instruction  
PC  
=
Address(HERE)  
After Instruction  
PC  
TOS  
WS  
=
=
=
=
Address(THERE)  
Address (HERE + 4)  
WREG  
BSRS  
BSR  
STATUSS = STATUS  
DS30475A-page 276  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
CLRF  
Clear f  
CLRWDT  
Syntax:  
Clear Watchdog Timer  
[ label ] CLRWDT  
None  
Syntax:  
Operands:  
[label] CLRF f [,a]  
0 f 255  
a [0,1]  
Operands:  
Operation:  
000h WDT,  
000h WDT postscaler,  
1 TO,  
Operation:  
000h f  
1 Z  
1 PD  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
TO, PD  
0110  
101a  
ffff  
ffff  
0000  
0000  
0000  
0100  
Description:  
Clears the contents of the specified  
register. If ’a’ is 0, the Access Bank  
will be selected, overriding the BSR  
value. If ’a’ is 1, the Bank will be  
selected as per the BSR value.  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
postscaler of the WDT. Status bits  
TO and PD are set.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write  
register ’f’  
Decode  
No  
operation  
Process  
Data  
No  
operation  
CLRF  
FLAG_REG  
CLRWDT  
Example:  
Example:  
Before Instruction  
Before Instruction  
FLAG_REG  
Z
=
=
0x5A  
?
WDT counter  
WDT postscaler  
TO  
=
=
=
=
?
?
?
?
After Instruction  
PD  
FLAG_REG  
Z
=
=
0x00  
0
After Instruction  
WDT counter  
WDT postscaler  
TO  
=
=
=
=
0x00  
0
1
1
PD  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 277  
PIC18CXX8  
Compare f with WREG,  
skip if f = WREG  
CPFSEQ  
COMF  
Complement f  
Syntax:  
[ label ] CPFSEQ f [,a]  
Syntax:  
Operands:  
[ label ] COMF f [ ,d [,a] ]  
Operands:  
0 f 255  
a [0,1]  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – (WREG),  
skip if (f) = (WREG)  
(unsigned comparison)  
Operation:  
(f) dest  
Status Affected:  
Encoding:  
N,Z  
Status Affected:  
Encoding:  
None  
0001  
11da  
ffff  
ffff  
0110  
001a  
ffff  
ffff  
Description:  
The contents of register ’f’ are com-  
plemented. If ’d’ is 0 the result is  
stored in W. If ’d’ is 1 the result is  
stored back in register ’f’ (default).  
If ’a’ is 0, the Access Bank will be  
selected, overriding the BSR value.  
If ’a’ is 1, the Bank will be selected  
as per the BSR value.  
Description:  
Compares the contents of data  
memory location 'f' to the contents  
of W by performing an unsigned  
subtraction.  
If 'f' = WREG, then the fetched  
instruction is discarded and an NOP  
is executed instead making this a  
two-cycle instruction. If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ is 1, the  
Bank will be selected as per the  
BSR value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
COMF  
REG  
Example:  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register ’f’  
Process  
Data  
No  
operation  
REG  
N
Z
=
=
=
0x13  
?
?
If skip:  
Q1  
Q2  
Q3  
Q4  
After Instruction  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
REG  
WREG  
N
=
=
=
=
0x13  
0xEC  
1
If skip and followed by 2-word instruction:  
Z
0
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
CPFSEQ REG  
Example:  
NEQUAL  
EQUAL  
:
:
Before Instruction  
PC Address  
WREG  
=
=
=
HERE  
?
?
REG  
After Instruction  
If REG  
PC  
If REG  
PC  
=
WREG;  
Address (EQUAL)  
WREG;  
=
=
Address (NEQUAL)  
DS30475A-page 278  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
Compare f with WREG,  
skip if f > WREG  
Compare f with WREG,  
skip if f < WREG  
CPFSGT  
CPFSLT  
Syntax:  
[ label ] CPFSGT f [,a]  
Syntax:  
[ label ] CPFSLT f [,a]  
Operands:  
0 f 255  
a [0,1]  
Operands:  
0 f 255  
a [0,1]  
Operation:  
(f) − (WREG),  
Operation:  
(f) – (WREG),  
skip if (f) > (WREG)  
(unsigned comparison)  
skip if (f) < (WREG)  
(unsigned comparison)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0110  
010a  
ffff  
ffff  
0110  
000a  
ffff  
ffff  
Description:  
Compares the contents of data  
memory location ’f’ to the contents  
of the WREG by performing an  
unsigned subtraction.  
Description:  
Compares the contents of data  
memory location 'f' to the contents  
of W by performing an unsigned  
subtraction.  
If the contents of ’f’ are greater than  
the contents of , then the fetched  
instruction is discarded and a NOP  
is executed instead making this a  
two-cycle instruction. If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ is 1, the  
Bank will be selected as per the  
BSR value.  
If the contents of 'f' are less than  
the contents of WREG, then the  
fetched instruction is discarded and  
a NOPis executed instead making  
this a two-cycle instruction. If ’a’ is  
0, the Access Bank will be  
selected. If ’a’ is 1, the Bank will be  
selected as per the BSR value.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note:3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
No  
operation  
Decode  
Read  
register ’f’  
Process  
Data  
No  
operation  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
NLESS  
LESS  
CPFSLT REG  
:
:
Example:  
HERE  
NGREATER  
GREATER  
CPFSGT REG  
:
:
Example:  
Before Instruction  
PC  
WREG  
=
=
Address (HERE)  
?
Before Instruction  
PC  
WREG  
=
=
Address (HERE)  
?
After Instruction  
After Instruction  
If REG  
PC  
If REG  
PC  
If REG  
PC  
If REG  
PC  
<
=
=
WREG;  
Address (LESS)  
WREG;  
>
=
=
WREG;  
Address (GREATER)  
WREG;  
Address (NLESS)  
Address (NGREATER)  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 279  
PIC18CXX8  
DAW  
Decimal Adjust WREG Register  
DECF  
Decrement f  
Syntax:  
[label] DAW  
Syntax:  
Operands:  
[ label ] DECF f [ ,d [,a] ]  
Operands:  
Operation:  
None  
0 f 255  
d [0,1]  
a [0,1]  
If [WREG<3:0> >9] or [DC = 1]  
then  
(WREG<3:0>) + 6 W<3:0>;  
Operation:  
(f) – 1 dest  
else  
Status Affected:  
Encoding:  
C,DC,N,OV,Z  
(WREG<3:0>) W<3:0>;  
0000  
01da  
ffff  
ffff  
Description:  
Decrement register 'f'. If 'd' is 0, the  
result is stored in WREG. If 'd' is 1,  
the result is stored back in register  
'f' (default). If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ is 1, the Bank  
will be selected as per the BSR  
value.  
If [WREG<7:4> >9] or [C = 1] then  
(WREG<7:4>) + 6 WREG<7:4>;  
else  
(WREG<7:4>) WREG<7:4>;  
Status Affected:  
Encoding:  
C
0000  
0000  
0000  
0111  
Description:  
DAW adjusts the eight bit value in  
WREG resulting from the earlier  
addition of two variables (each in  
packed BCD format) and produces  
a correct packed BCD result.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
Cycles:  
1
1
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
Q Cycle Activity:  
Q1  
DECF  
CNT  
Example:  
Q2  
Q3  
Q4  
Decode  
Read  
register WREG  
Process  
Data  
Write  
WREG  
Before Instruction  
CNT  
=
0x01  
0
Z
=
DAW  
Example1:  
After Instruction  
Before Instruction  
CNT  
=
0x00  
1
WREG  
=
=
=
0xA5  
0
0
Z
=
C
DC  
After Instruction  
WREG  
C
DC  
=
=
=
0x05  
1
0
Example 2:  
Before Instruction  
WREG  
C
DC  
=
=
=
0xCE  
0
0
After Instruction  
WREG  
C
DC  
=
=
=
0x34  
1
0
DS30475A-page 280  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
DECFSZ  
Syntax:  
Decrement f, skip if 0  
DCFSNZ  
Syntax:  
Decrement f, skip if not 0  
[ label ] DECFSZ f [ ,d [,a] ]  
[label] DCFSNZ f [ ,d [,a] ]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) – 1 dest,  
skip if result = 0  
Operation:  
(f) – 1 dest,  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0010  
11da  
ffff  
ffff  
0100  
11da  
ffff  
ffff  
Description:  
The contents of register 'f' are dec-  
remented. If 'd' is 0, the result is  
placed in WREG. If 'd' is 1, the  
result is placed back in register 'f'  
(default).  
Description:  
The contents of register 'f' are dec-  
remented. If 'd' is 0, the result is  
placed in WREG. If 'd' is 1, the  
result is placed back in register 'f'  
(default).  
If the result is 0, the next instruc-  
tion, which is already fetched, is  
discarded, and a NOPis executed  
instead making it a two-cycle  
instruction. If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ is 1, the Bank  
will be selected as per the BSR  
value.  
If the result is not 0, the next  
instruction, which is already  
fetched, is discarded, and a NOPis  
executed instead making it a two-  
cycle instruction. If ’a’ is 0, the  
Access Bank will be selected,  
overriding the BSR value. If ’a’ is  
1, the Bank will be selected as per  
the BSR value.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
HERE  
DECFSZ  
GOTO  
CNT  
LOOP  
HERE  
ZERO  
NZERO  
DCFSNZ TEMP  
:
:
Example:  
Example:  
CONTINUE  
Before Instruction  
Before Instruction  
TEMP  
PC  
=
Address (HERE)  
=
?
After Instruction  
After Instruction  
TEMP  
CNT  
=
=
=
=
CNT - 1  
0;  
Address (CONTINUE)  
0;  
=
=
=
=
TEMP - 1,  
0;  
Address (ZERO)  
0;  
If CNT  
If TEMP  
PC  
If TEMP  
PC  
PC  
If CNT  
PC  
Address (HERE+2)  
Address (NZERO)  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 281  
PIC18CXX8  
GOTO  
Unconditional Branch  
INCF  
Increment f  
Syntax:  
[ label ] GOTO k  
0 k 1048575  
k PC<20:1>  
None  
Syntax:  
Operands:  
[ label ] INCF f [ ,d [,a] ]  
Operands:  
Operation:  
Status Affected:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest  
Encoding:  
1st word (k<7:0>)  
2nd word(k<19:8>)  
Status Affected:  
Encoding:  
C,DC,N,OV,Z  
1110  
1111  
1111  
k kkk  
kkkk  
kkkk  
7
0
8
k
kkk kkkk  
0010  
10da  
ffff  
ffff  
19  
Description:  
GOTOallows an unconditional  
Description:  
The contents of register ’f’ are  
incremented. If ’d’ is 0, the result is  
placed in WREG. If ’d’ is 1, the  
result is placed back in register ’f’  
(default). If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ is 1, the Bank  
will be selected as per the BSR  
value.  
branch anywhere within entire 2M  
byte memory range. The 20-bit  
value ’k’ is loaded into PC<20:1>.  
GOTOis always a two-cycle  
instruction.  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
Read literal  
’k’<7:0>,  
No  
operation  
Read literal  
’k’<19:8>,  
Write to PC  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
No  
operation  
No  
operation  
No  
operation  
No  
operation  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
GOTO THERE  
Example:  
INCF  
CNT  
Example:  
After Instruction  
Before Instruction  
PC  
=
Address (THERE)  
CNT  
=
0xFF  
Z
C
DC  
=
=
=
0
?
?
After Instruction  
CNT  
Z
C
DC  
=
=
=
=
0x00  
1
1
1
DS30475A-page 282  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
INCFSZ  
Syntax:  
Increment f, skip if 0  
INFSNZ  
Syntax:  
Increment f, skip if not 0  
[ label ] INCFSZ f [ ,d [,a] ]  
[label] INFSNZ f [, d [,a] ]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f) + 1 dest,  
skip if result = 0  
Operation:  
(f) + 1 dest,  
skip if result 0  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
0011  
11da  
ffff  
ffff  
0100  
10da  
ffff  
ffff  
Description:  
The contents of register ’f’ are  
incremented. If ’d’ is 0, the result is  
placed in WREG. If ’d’ is 1, the  
result is placed back in register ’f’  
(default).  
Description:  
The contents of register 'f' are  
incremented. If 'd' is 0, the result is  
placed in WREG. If 'd' is 1, the  
result is placed back in register 'f'  
(default).  
If the result is 0, the next instruc-  
tion, which is already fetched, is  
discarded, and a NOPis executed  
instead making it a two-cycle  
instruction. If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ is 1, the Bank  
will be selected as per the BSR  
value.  
If the result is not 0, the next  
instruction, which is already  
fetched, is discarded, and a NOPis  
executed instead making it a two-  
cycle instruction. If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ is 1, the  
Bank will be selected as per the  
BSR value.  
Words:  
Cycles:  
1
Words:  
Cycles:  
1
1(2)  
1(2)  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Note: 3 cycles if skip and followed  
by a 2-word instruction.  
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
If skip:  
Q1  
If skip:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
operation  
HERE  
NZERO  
ZERO  
INCFSZ  
:
:
CNT  
HERE  
ZERO  
NZERO  
INFSNZ REG  
Example:  
Example:  
Before Instruction  
Before Instruction  
PC  
=
Address (HERE)  
PC  
=
Address (HERE)  
After Instruction  
After Instruction  
CNT  
If CNT  
PC  
If CNT  
PC  
=
=
=
=
CNT + 1  
0;  
Address(ZERO)  
0;  
Address(NZERO)  
REG  
If REG  
PC  
If REG  
PC  
=
=
=
=
REG + 1  
0;  
Address (NZERO)  
0;  
Address (ZERO)  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 283  
PIC18CXX8  
IORLW  
Inclusive OR literal with WREG  
IORWF  
Inclusive OR WREG with f  
Syntax:  
[ label ] IORLW k  
0 k 255  
Syntax:  
[ label ] IORWF f [ ,d [,a] ]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
(WREG) .OR. k WREG  
N,Z  
Operation:  
(WREG) .OR. (f) dest  
0000  
1001  
kkkk  
kkkk  
Status Affected:  
Encoding:  
N,Z  
The contents of WREG are OR’ed  
with the eight bit literal 'k'. The  
result is placed in WREG.  
0001  
00da  
ffff  
ffff  
Description:  
Inclusive OR W with register 'f'. If 'd'  
is 0, the result is placed in WREG.  
If 'd' is 1, the result is placed back  
in register 'f' (default). If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ is 1, the  
Bank will be selected as per the  
BSR value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ’k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
IORLW  
0x35  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
WREG  
=
=
=
0x9A  
?
?
Q2  
Q3  
Q4  
N
Z
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
After Instruction  
WREG  
N
Z
=
=
=
0xBF  
1
0
IORWF RESULT, W  
Example:  
Before Instruction  
RESULT =  
0x13  
0x91  
?
WREG  
=
=
=
N
Z
?
After Instruction  
RESULT =  
0x13  
0x93  
1
WREG  
=
=
=
N
Z
0
DS30475A-page 284  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
LFSR  
Load FSR  
MOVF  
Move f  
Syntax:  
Operands:  
[ label ] LFSR f,k  
Syntax:  
Operands:  
[ label ] MOVF f [ ,d [,a] ]  
0 f 2  
0 k 4095  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
k FSRf  
Operation:  
f dest  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
N,Z  
1110  
1111  
1110  
0000  
00ff  
k kkk  
11  
kkkk  
k kkk  
0101  
00da  
ffff  
ffff  
7
Description:  
The 12-bit literal ’k’ is loaded into  
the file select register pointed to  
by ’f’  
Description:  
The contents of register ’f’ is moved  
to a destination dependent upon  
the status of ’d’. If 'd' is 0, the result  
is placed in WREG. If 'd' is 1, the  
result is placed back in register 'f'  
(default). Location 'f' can be any-  
where in the 256 byte Bank. If ’a’ is  
0, the Access Bank will be  
Words:  
Cycles:  
2
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
selected, overriding the BSR value.  
If ’a’ is 1, the Bank will be selected  
as per the BSR value.  
Decode  
Read literal  
’k’ MSB  
Process  
Data  
Write  
literal ’k’  
MSB to  
FSRfH  
Words:  
Cycles:  
1
1
Decode  
Read literal  
’k’ LSB  
Process  
Data  
Write literal  
’k’ to FSRfL  
Q Cycle Activity:  
Q1  
LFSR FSR2, 0x3AB  
Example:  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write W  
After Instruction  
FSR2H  
=
=
0x03  
0xAB  
FSR2L  
MOVF  
REG, W  
Example:  
Before Instruction  
REG  
WREG  
N
=
=
=
=
0x22  
0xFF  
?
Z
?
After Instruction  
REG  
WREG  
N
=
=
=
=
0x22  
0x22  
0
Z
0
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 285  
PIC18CXX8  
MOVFF  
Move f to f  
MOVLB  
Move literal to low nibble in BSR  
Syntax:  
[label] MOVFF fs,fd  
Syntax:  
[ label ] MOVLB k  
0 k 255  
k BSR  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
0 fs 4095  
0 fd 4095  
None  
Operation:  
(fs) fd  
0000  
0001  
kkkk  
kkkk  
Status Affected:  
None  
The 8-bit literal ’k’ is loaded into  
the Bank Select Register (BSR).  
Encoding:  
1st word (source)  
2nd word (destin.)  
1100  
1111  
ffff  
ffff  
ffff  
ffff  
ffffs  
ffffd  
Words:  
Cycles:  
1
1
Description:  
The contents of source register ’fs’  
are moved to destination register  
’fd’. Location of source ’fs’ can be  
anywhere in the 4096 byte data  
space (000h to FFFh), and location  
of destination ’fd’ can also be any-  
where from 000h to FFFh.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read literal  
’k’  
Process  
Data  
Write  
literal ’k’ to  
BSR  
Either source or destination can be  
WREG (a useful special situation).  
MOVLB  
0x05  
Example:  
Before Instruction  
MOVFFis particularly useful for  
transferring a data memory location  
to a peripheral register (such as the  
transmit buffer or an I/O port).  
BSR register  
=
=
0x02  
After Instruction  
BSR register  
0x05  
The MOVFFinstruction cannot use  
the PCL, TOSU, TOSH or TOSL as  
the destination register.  
Words:  
Cycles:  
2
2 (3)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
(src)  
Process  
Data  
No  
operation  
Decode  
No  
operation  
No  
operation  
Write  
register ’f’  
(dest)  
No dummy  
read  
MOVFF  
REG1, REG2  
Example:  
Before Instruction  
REG1  
=
=
0x33  
0x11  
REG2  
After Instruction  
REG1  
=
=
0x33,  
0x33  
REG2  
DS30475A-page 286  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
MOVLW  
Move literal to WREG  
[ label ] MOVLW k  
0 k 255  
MOVWF  
Syntax:  
Move WREG to f  
Syntax:  
[ label ] MOVWF f [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
0 f 255  
a [0,1]  
k WREG  
Operation:  
(WREG) f  
None  
Status Affected:  
Encoding:  
None  
0000  
1110  
kkkk  
kkkk  
0110  
111a  
ffff  
ffff  
The eight bit literal ’k’ is loaded into  
WREG.  
Description:  
Move data from WREG to register  
’f’. Location ’f’ can be anywhere in  
the 256 byte Bank. If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ is 1, the  
Bank will be selected as per the  
BSR value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ’k’  
Process  
Data  
Write to W  
Words:  
Cycles:  
1
1
MOVLW  
0x5A  
Example:  
Q Cycle Activity:  
Q1  
After Instruction  
Q2  
Q3  
Q4  
WREG  
=
0x5A  
Decode  
Read  
register ’f’  
Process  
Data  
Write  
register ’f’  
MOVWF  
REG  
Example:  
Before Instruction  
WREG  
REG  
=
=
0x4F  
0xFF  
After Instruction  
WREG  
REG  
=
=
0x4F  
0x4F  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 287  
PIC18CXX8  
MULLW  
Multiply Literal with WREG  
MULWF  
Syntax:  
Multiply WREG with f  
Syntax:  
[ label ] MULLW  
0 k 255  
k
[ label ] MULWF f [,a]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
0 f 255  
a [0,1]  
(WREG) x k PRODH:PRODL  
Operation:  
(WREG) x (f) PRODH:PRODL  
None  
Status Affected:  
Encoding:  
None  
0000  
1101  
kkkk  
kkkk  
0000  
001a  
ffff  
ffff  
An unsigned multiplication is car-  
ried out between the contents of  
WREG and the 8-bit literal ’k’.  
The 16-bit result is placed in  
PRODH:PRODL register pair.  
PRODH contains the high byte.  
Description:  
An unsigned multiplication is car-  
ried out between the contents of  
WREG and the register file loca-  
tion ’f’. The 16-bit result is stored  
in the PRODH:PRODL register  
pair. PRODH contains the high  
byte.  
WREG is unchanged.  
None of the status flags are  
affected.  
Both WREG and ’f’ are  
unchanged.  
Note that neither overflow nor  
carry is possible in this opera-  
tion. A zero result is possible but  
not detected.  
None of the status flags are  
affected.  
Note that neither overflow nor  
carry is possible in this opera-  
tion. A zero result is possible but  
not detected. If ’a’ is 0, the  
Access Bank will be selected,  
overriding the BSR value. If ’a’ is  
1, the Bank will be selected as  
per the BSR value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ’k’  
Process  
Data  
Write  
registers  
PRODH:  
PRODL  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
MULLW  
0xC4  
Example:  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register ’f’  
Process  
Data  
Write  
WREG  
PRODH  
PRODL  
=
=
=
0xE2  
registers  
PRODH:  
PRODL  
?
?
After Instruction  
WREG  
=
=
=
0xE2  
0xAD  
0x08  
MULWF  
REG  
Example:  
PRODH  
PRODL  
Before Instruction  
WREG  
REG  
PRODH  
PRODL  
=
=
=
=
0xC4  
0xB5  
?
?
After Instruction  
WREG  
=
=
=
=
0xC4  
0xB5  
0x8A  
0x94  
REG  
PRODH  
PRODL  
DS30475A-page 288  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
NEGF  
Negate f  
NOP  
No Operation  
Syntax:  
Operands:  
[label] NEGF f [,a]  
Syntax:  
[ label ] NOP  
None  
0 f 255  
a [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
No operation  
None  
Operation:  
( f ) + 1 f  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
0000  
1111  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0110  
110a  
ffff  
ffff  
Description:  
Words:  
No operation.  
Description:  
Location ’f’ is negated using two’s  
complement. The result is placed in  
the data memory location 'f'. If ’a’ is  
0, the Access Bank will be  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
selected, overriding the BSR value.  
If ’a’ is 1, the Bank will be selected  
as per the BSR value.  
Q2  
No  
Q3  
No  
Q4  
Decode  
No  
operation  
operation  
operation  
Words:  
Cycles:  
1
1
Example:  
None.  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write  
register ’f’  
NEGF  
REG  
Example:  
Before Instruction  
REG  
N
OV  
C
DC  
Z
=
=
=
=
=
=
0011 1010[0x3A]  
?
?
?
?
?
After Instruction  
REG  
N
OV  
C
DC  
Z
=
=
=
=
=
=
1100 0110[0xC6]  
1
0
0
0
0
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 289  
PIC18CXX8  
POP  
Pop Top of Return Stack  
PUSH  
Push Top of Return Stack  
[ label ] PUSH  
None  
Syntax:  
[ label ] POP  
None  
Syntax:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
(TOS) bit bucket  
None  
(PC+2) TOS  
None  
0000  
0000  
0000  
0110  
0000  
0000  
0000  
0101  
The TOS value is pulled off the  
return stack and is discarded. The  
TOS value then becomes the previ-  
ous value that was pushed onto the  
return stack.  
The PC+2 is pushed onto the top of  
the return stack. The previous TOS  
value is pushed down on the stack.  
This instruction allows implement-  
ing a software stack by modifying  
TOS, and then push it onto the  
return stack.  
This instruction is provided to  
enable the user to properly manage  
the return stack to incorporate a  
software stack.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Push PC+2  
onto return  
stack  
No  
operation  
No  
operation  
Q2  
Q3  
Q4  
Decode  
No  
operation  
Pop TOS  
value  
No  
operation  
PUSH  
Example:  
POP  
GOTO  
Example:  
Before Instruction  
NEW  
TOS  
=
=
00345Ah  
000124h  
PC  
Before Instruction  
TOS  
=
=
0031A2h  
014332h  
Stack (1 level down)  
After Instruction  
PC  
TOS  
=
=
=
000126h  
000126h  
00345Ah  
After Instruction  
Stack (1 level down)  
TOS  
PC  
=
=
014332h  
NEW  
DS30475A-page 290  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
RCALL  
Relative Call  
RESET  
Reset  
Syntax:  
[ label ] RCALL  
-1024 n 1023  
(PC) + 2 TOS,  
n
Syntax:  
[ label ] RESET  
Operands:  
Operation:  
Operands:  
Operation:  
None  
Reset all registers and flags that  
are affected by a MCLR Reset.  
(PC) + 2 + 2n PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
All  
1101  
1nnn  
nnnn  
nnnn  
0000  
0000  
1111  
1111  
Description:  
Subroutine call with a jump up to  
1K from the current location. First,  
return address (PC+2) is pushed  
onto the stack. Then, add the 2’s  
complement number ’2n’ to the PC.  
Since the PC will have incremented  
to fetch the next instruction, the  
new address will be PC+2+2n.  
This instruction is a two-cycle  
instruction.  
Description:  
This instruction provides a way to  
execute a MCLR Reset in software.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Start  
reset  
No  
operation  
No  
operation  
Words:  
Cycles:  
1
2
RESET  
Example:  
After Instruction  
Registers =  
Reset Value  
Reset Value  
Q Cycle Activity:  
Q1  
Flags*  
=
Q2  
Q3  
Q4  
Decode  
Read literal  
’n’  
Process  
Data  
Write to PC  
Push PC to  
stack  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
RCALL  
Jump  
Example:  
Before Instruction  
PC  
=
Address(HERE)  
After Instruction  
PC  
=
Address(Jump)  
TOS =  
Address (HERE+2)  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 291  
PIC18CXX8  
RETFIE  
Return from Interrupt  
RETLW  
Return Literal to WREG  
[ label ] RETLW k  
0 k 255  
Syntax:  
[ label ] RETFIE [s]  
s [0,1]  
Syntax:  
Operands:  
Operation:  
Operands:  
Operation:  
(TOS) PC,  
1 GIE/GIEH or PEIE/GIEL,  
if s = 1  
k W,  
(TOS) PC,  
PCLATU, PCLATH are unchanged  
(WS) W,  
(STATUSS) STATUS,  
(BSRS) BSR,  
Status Affected:  
Encoding:  
None  
0000  
1100  
kkkk  
kkkk  
PCLATU, PCLATH are unchanged.  
Description:  
W is loaded with the eight bit literal  
'k'. The program counter is loaded  
from the top of the stack (the return  
address). The high address latch  
(PCLATH) remains unchanged.  
Status Affected:  
Encoding:  
None  
0000  
0000  
0001  
000s  
Description:  
Return from Interrupt. Stack is  
popped and Top-of-Stack (TOS)  
is loaded into the PC. Interrupts  
are enabled by setting the either  
the high or low priority global  
interrupt enable bit. If ’s’ = 1, the  
contents of the shadow registers  
WS, STATUSS and BSRS are  
loaded into their corresponding  
registers, WREG, STATUS and  
BSR. If ’s’ = 0, no update of  
these registers occurs (default).  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ’k’  
Process  
Data  
Pop PC from  
stack, write  
to W  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
Words:  
Cycles:  
1
2
Example:  
CALL TABLE ; WREG contains table  
Q Cycle Activity:  
Q1  
;
;
;
offset value  
WREG now has  
table value  
Q2  
Q3  
Q4  
Decode  
No  
operation  
No  
operation  
Pop PC from  
stack  
:
TABLE  
Set GIEH or  
GIEL  
ADDWF PCL  
; WREG = offset  
; Begin table  
;
RETLW k0  
RETLW k1  
:
No  
operation  
No  
operation  
No  
operation  
No  
operation  
:
RETFIE  
1
Example:  
RETLW kn  
; End of table  
After Interrupt  
PC  
=
=
=
=
=
TOS  
WS  
BSRS  
STATUSS  
1
Before Instruction  
WREG  
BSR  
STATUS  
GIE/GIEH, PEIE/GIEL  
WREG  
=
0x07  
After Instruction  
WREG  
=
value of kn  
DS30475A-page 292  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
RETURN  
Syntax:  
Return from Subroutine  
[ label ] RETURN [s]  
s [0,1]  
RLCF  
Rotate Left f through Carry  
Syntax:  
Operands:  
[ label ] RLCF f [ ,d [,a] ]  
Operands:  
Operation:  
0 f 255  
d [0,1]  
a [0,1]  
(TOS) PC,  
if s = 1  
(WS) W,  
Operation:  
(f<n>) dest<n+1>,  
(f<7>) C,  
(STATUSS) STATUS,  
(BSRS) BSR,  
PCLATU, PCLATH are unchanged  
(C) dest<0>  
Status Affected:  
Encoding:  
C,N,Z  
Status Affected:  
Encoding:  
None  
0011  
01da  
ffff  
ffff  
0000  
0000  
0001  
001s  
Description:  
The contents of register 'f' are  
rotated one bit to the left through  
the Carry Flag. If 'd' is 0 the result is  
placed in WREG. If 'd' is 1 the  
result is stored back in register 'f'  
(default). If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ is 1, the Bank  
will be selected as per the BSR  
value.  
Description:  
Return from subroutine. The  
stack is popped and the top of the  
stack (TOS) is loaded into the  
program counter. If ’s’ = 1, the  
contents of the shadow registers  
WS, STATUSS and BSRS are  
loaded into their corresponding  
registers, WREG, STATUS and  
BSR. If ’s’ = 0, no update of  
these registers occurs (default).  
register f  
C
Words:  
Cycles:  
1
2
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Decode  
No  
Process  
Data  
Pop PC from  
stack  
operation  
Decode  
Read  
Process  
Write to  
No  
No  
No  
No  
register ’f’  
Data  
destination  
operation  
operation  
operation  
operation  
RLCF  
REG, W  
Example:  
Before Instruction  
RETURN  
Example:  
REG  
=
1110 0110  
C
N
Z
=
=
=
0
?
?
After Call  
PC  
=
TOS  
RETURN FAST  
After Instruction  
Before Instruction  
REG  
WREG  
C
N
Z
=
=
=
=
=
1110 0110  
1100 1100  
1
1
0
WRG  
STATUS =  
BSR  
=
0x04  
0x00  
0x00  
=
After Instruction  
WREG  
STATUS =  
BSR  
PC  
=
0x04  
0x00  
0x00  
TOS  
=
=
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 293  
PIC18CXX8  
RLNCF  
Rotate Left f (no carry)  
RRCF  
Rotate Right f through Carry  
Syntax:  
[ label ] RLNCF f [ ,d [,a] ]  
Syntax:  
Operands:  
[ label ] RRCF f [ ,d [,a] ]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<n>) dest<n+1>,  
(f<7>) dest<0>  
Operation:  
(f<n>) dest<n-1>,  
(f<0>) C,  
(C) dest<7>  
Status Affected:  
Encoding:  
N,Z  
Status Affected:  
Encoding:  
C,N,Z  
0100  
01da  
ffff  
ffff  
0011  
00da  
ffff  
ffff  
Description:  
The contents of register ’f’ are  
rotated one bit to the left. If ’d’ is 0  
the result is placed in WREG. If ’d’  
is 1, the result is stored back in reg-  
ister 'f' (default). If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ is 1, the  
Bank will be selected as per the  
BSR value.  
Description:  
The contents of register 'f' are  
rotated one bit to the right through  
the Carry Flag. If 'd' is 0, the result  
is placed in WREG. If 'd' is 1, the  
result is placed back in register 'f'  
(default). If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ is 1, the Bank  
will be selected as per the BSR  
value.  
register f  
Words:  
Cycles:  
1
1
register f  
C
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
RLNCF  
REG  
Example:  
Before Instruction  
RRCF  
REG, W  
Example:  
REG  
=
1010 1011  
N
Z
=
=
?
?
Before Instruction  
REG  
=
1110 0110  
C
N
Z
=
=
=
0
?
?
After Instruction  
REG  
N
Z
=
=
=
0101 0111  
0
0
After Instruction  
REG  
WREG  
C
N
Z
=
=
=
=
=
1110 0110  
0111 0011  
0
0
0
DS30475A-page 294  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
RRNCF  
Syntax:  
Rotate Right f (no carry)  
SETF  
Set f  
[ label ] RRNCF f [ ,d [,a] ]  
Syntax:  
Operands:  
[label] SETF f [,a]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
0 f 255  
a [0,1]  
Operation:  
FFh f  
Operation:  
(f<n>) dest<n-1>,  
(f<0>) dest<7>  
Status Affected:  
Encoding:  
None  
0110  
100a  
ffff  
ffff  
Status Affected:  
Encoding:  
N,Z  
Description:  
The contents of the specified regis-  
ter are set to FFh. If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ is 1, the  
Bank will be selected as per the  
BSR value.  
0100  
00da  
ffff  
ffff  
Description:  
The contents of register ’f’ are  
rotated one bit to the right. If ’d’ is 0,  
the result is placed in WREG. If ’d’  
is 1, the result is placed back in  
register 'f' (default). If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ is 1, the  
Bank will be selected as per the  
BSR value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
register f  
Decode  
Read  
register ’f’  
Process  
Data  
Write  
register ’f’  
Words:  
Cycles:  
1
1
SETF  
REG  
Example:  
Before Instruction  
Q Cycle Activity:  
Q1  
REG  
=
0x5A  
0xFF  
Q2  
Q3  
Q4  
After Instruction  
REG  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
=
RRNCF  
REG  
Example 1:  
Before Instruction  
REG  
N
Z
=
=
=
1101 0111  
?
?
After Instruction  
REG  
N
Z
=
=
=
1110 1011  
1
0
RRNCF  
REG, 0, 0  
Example 2:  
Before Instruction  
WREG  
REG  
N
=
=
=
=
?
1101 0111  
?
?
Z
After Instruction  
WREG  
REG  
N
=
=
=
=
1110 1011  
1101 0111  
1
0
Z
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 295  
PIC18CXX8  
SLEEP  
SUBFWB  
Syntax:  
Enter SLEEP mode  
[ label ] SLEEP  
None  
Subtract f from WREG with borrow  
Syntax:  
[ label ] SUBFWB f [ ,d [,a] ]  
Operands:  
Operation:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
00h WDT,  
0 WDT postscaler,  
1 TO,  
Operation:  
(WREG) – (f) – (C) dest  
0 PD  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
Status Affected:  
Encoding:  
TO, PD  
0101  
01da  
ffff  
ffff  
0000  
0000  
0000  
0011  
Description:  
Subtract register 'f' and carry flag  
(borrow) from WREG (2’s comple-  
ment method). If 'd' is 0, the result  
is stored in WREG. If 'd' is 1, the  
result is stored in register 'f'  
(default) . If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ is 1, the Bank  
will be selected as per the BSR  
value.  
Description:  
The power-down status bit (PD) is  
cleared. The time-out status bit  
(TO) is set. Watchdog Timer and  
its postscaler are cleared.  
The processor is put into SLEEP  
mode with the oscillator stopped.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Words:  
Cycles:  
1
1
Q2  
Q3  
Q4  
Decode  
No  
operation  
Process  
Data  
Go to  
sleep  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
SLEEP  
Example:  
Before Instruction  
TO  
=
?
PD  
=
?
After Instruction  
TO  
=
1 †  
PD  
=
0
† If WDT causes wake-up, this bit is cleared.  
DS30475A-page 296  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
SUBFWB (Cont.)  
SUBLW  
Subtract WREG from literal  
[ label ] SUBLW k  
0 k 255  
SUBFWB  
REG  
Example 1:  
Syntax:  
Before Instruction  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
REG  
WREG  
C
=
=
=
3
2
1
k – (WREG) WREG  
N,OV, C, DC, Z  
After Instruction  
0000  
1000  
kkkk  
kkkk  
REG  
WREG  
C
Z
N
=
=
=
=
=
0xFF  
WREG is subtracted from the  
eight bit literal 'k'. The result is  
placed in WREG.  
2
0
0
1
; result is negative  
Words:  
Cycles:  
1
1
SUBFWB  
REG  
Example 2:  
Q Cycle Activity:  
Q1  
Before Instruction  
Q2  
Q3  
Q4  
REG  
WREG  
C
=
=
=
2
5
1
Decode  
Read  
literal ’k’  
Process  
Data  
Write to W  
After Instruction  
SUBLW 0x02  
Example 1:  
REG  
=
=
=
=
=
2
3
1
0
0
Before Instruction  
WREG  
WREG  
C
=
=
1
?
C
Z
N
; result is positive  
After Instruction  
WREG  
C
Z
=
=
=
=
1
SUBFWB  
REG  
Example 3:  
1
0
0
; result is positive  
Before Instruction  
REG  
WREG  
C
=
=
=
1
2
0
N
SUBLW 0x02  
Example 2:  
After Instruction  
Before Instruction  
REG  
WREG  
C
Z
N
=
=
=
=
=
0
2
1
1
0
WREG  
C
=
=
2
?
; result is zero  
After Instruction  
WREG  
C
Z
=
=
=
=
0
1
1
0
; result is zero  
N
SUBLW 0x02  
Example 3:  
Before Instruction  
WREG  
C
=
=
3
?
After Instruction  
WREG  
C
Z
=
=
=
=
0xFF ; (2’s complement)  
0
0
1
; result is negative  
N
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 297  
PIC18CXX8  
SUBWF  
Subtract WREG from f  
SUBWF  
Subtract WREG from f (cont’d)  
SUBWF  
REG  
Syntax:  
[ label ] SUBWF f [ ,d [,a] ]  
Example 1:  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Before Instruction  
REG  
WREG  
C
=
=
=
3
2
?
Operation:  
(f) – (WREG) dest  
After Instruction  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
REG  
WREG  
C
Z
N
=
=
=
=
=
1
2
1
0
0
0101  
11da  
ffff  
ffff  
; result is positive  
Description:  
Subtract WREG from register 'f'  
(2’s complement method). If 'd' is  
0, the result is stored in WREG. If  
'd' is 1, the result is stored back in  
register 'f' (default). If ’a’ is 0, the  
Access Bank will be selected,  
overriding the BSR value. If ’a’ is  
1, the Bank will be selected as per  
the BSR value.  
SUBWF  
REG, W  
Example 2:  
Before Instruction  
REG  
WREG  
C
=
=
=
2
2
?
After Instruction  
REG  
WREG  
C
Z
N
=
=
=
=
=
2
0
1
1
0
Words:  
Cycles:  
1
1
; result is zero  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
SUBWF  
REG  
Example 3:  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
Before Instruction  
REG  
WREG  
C
=
=
=
1
2
?
After Instruction  
REG  
WREG  
C
Z
N
=
=
=
=
=
0xFF ;(2’s complement)  
2
0
0
1
; result is negative  
DS30475A-page 298  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
Subtract WREG from f with  
Borrow  
Subtract WREG from f with  
Borrow (cont’d)  
SUBWFB  
Syntax:  
SUBWFB  
SUBWFB REG  
[ label ]  
Example 1:  
SUBWFB f [ ,d [,a] ]  
Before Instruction  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
REG  
=
=
=
0x19  
0x0D  
1
(0001 1001)  
(0000 1101)  
WREG  
C
Operation:  
(f) – (WREG) – (C) dest  
After Instruction  
Status Affected:  
Encoding:  
N,OV, C, DC, Z  
REG  
WREG  
C
Z
N
=
=
=
=
=
0x0C  
0x0D  
1
0
0
(0000 1011)  
(0000 1101)  
0101  
10da  
ffff  
ffff  
Description:  
Subtract WREG and the carry flag  
(borrow) from register 'f' (2’s com-  
plement method). If 'd' is 0, the  
result is stored in WREG. If 'd' is  
1, the result is stored back in reg-  
ister 'f' (default). If ’a’ is 0, the  
Access Bank will be selected,  
overriding the BSR value. If ’a’ is  
1, the Bank will be selected as per  
the BSR value.  
; result is positive  
Example 2:  
Before Instruction  
SUBWFB REG, W  
REG  
WREG  
C
=
=
=
0x1B  
0x1A  
0
(0001 1011)  
(0001 1010)  
After Instruction  
REG  
WREG  
C
Z
N
=
=
=
=
=
0x1B  
0x00  
1
1
0
(0001 1011)  
Words:  
Cycles:  
1
1
; result is zero  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Example 3:  
Before Instruction  
SUBWFB REG  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
REG  
WREG  
C
=
=
=
0x03  
0x0E  
1
(0000 0011)  
(0000 1101)  
After Instruction  
REG  
WREG  
C
Z
N
=
=
=
=
=
0xF5  
0x0E  
0
0
1
(1111 0100) [2’s comp]  
(0000 1101)  
; result is negative  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 299  
PIC18CXX8  
SWAPF  
Syntax:  
Swap nibbles in f  
[ label ] SWAPF f [ ,d [,a] ]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(f<3:0>) dest<7:4>,  
(f<7:4>) dest<3:0>  
Status Affected:  
Encoding:  
None  
0011  
10da  
ffff  
ffff  
Description:  
The upper and lower nibbles of reg-  
ister ’f’ are exchanged. If ’d’ is 0, the  
result is placed in WREG. If ’d’ is 1,  
the result is placed in register ’f’  
(default). If ’a’ is 0, the Access  
Bank will be selected, overriding  
the BSR value. If ’a’ is 1, the Bank  
will be selected as per the BSR  
value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
SWAPF  
REG  
Example:  
Before Instruction  
REG  
=
0x53  
0x35  
After Instruction  
REG  
=
DS30475A-page 300  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
TBLRD  
Table Read  
TBLRD  
Table Read (cont’d)  
TBLRD *+ ;  
Syntax:  
[ label ] TBLRD ( *; *+; *-; +*)  
Example 1:  
Operands:  
Operation:  
None  
Before Instruction  
TABLAT  
TBLPTR  
MEMORY(0x00A356)  
=
=
=
0x55  
0x00A356  
0x34  
if TBLRD *,  
(Prog Mem (TBLPTR)) TABLAT;  
TBLPTR - No Change;  
if TBLRD *+,  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) +1 TBLPTR;  
if TBLRD *-,  
After Instruction  
TABLAT  
TBLPTR  
=
=
0x34  
0x00A357  
TBLRD +* ;  
Example 2:  
(Prog Mem (TBLPTR)) TABLAT;  
(TBLPTR) -1 TBLPTR;  
if TBLRD +*,  
(TBLPTR) +1 TBLPTR;  
(Prog Mem (TBLPTR)) TABLAT;  
Before Instruction  
TABLAT  
=
=
=
=
0xAA  
0x01A357  
0x12  
TBLPTR  
MEMORY(0x01A357)  
MEMORY(0x01A358)  
0x34  
After Instruction  
Status Affected: None  
TABLAT  
TBLPTR  
=
=
0x34  
0x01A358  
0000  
0000  
0000  
10nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
Encoding:  
Description:  
This instruction is used to read the  
contents of Program Memory (P.M.).  
To address the program memory, a  
pointer called Table Pointer (TBLPTR)  
is used.  
The TBLPTR (a 21-bit pointer) points  
to each byte in the program memory.  
TBLPTR has a 2 Mbyte address range.  
TBLPTR[0] = 0: Least Significant  
Byte of Program  
Memory Word  
TBLPTR[0] = 1: Most Significant  
Byte of Program  
Memory Word  
The TBLRDinstruction can modify the  
value of TBLPTR as follows:  
• no change  
• post-increment  
• post-decrement  
• pre-increment  
Words:  
Cycles:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
No  
No  
No  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
(Read  
operation  
operation  
(Write  
Program  
Memory)  
TABLAT)  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 301  
PIC18CXX8  
TBLWT  
Table Write  
TBLWT  
Table Write (Continued)  
TBLWT *+;  
Syntax:  
[ label ]  
TBLWT ( *; *+; *-; +*)  
Example 1:  
Operands:  
Operation:  
None  
Before Instruction  
TABLAT  
TBLPTR  
MEMORY(0x00A356)  
=
=
=
0x55  
0x00A356  
0xFF  
if TBLWT*,  
(TABLAT) Prog Mem (TBLPTR) or  
Holding Register;  
TBLPTR - No Change;  
if TBLWT*+,  
(TABLAT) Prog Mem (TBLPTR) or  
Holding Register;  
(TBLPTR) +1 TBLPTR;  
if TBLWT*-,  
(TABLAT) Prog Mem (TBLPTR) or  
Holding Register;  
(TBLPTR) -1 TBLPTR;  
if TBLWT+*,  
After Instructions (table write completion)  
TABLAT  
TBLPTR  
MEMORY(0x00A356)  
=
=
=
0x55  
0x00A357  
0x55  
TBLWT +*;  
Example 2:  
Before Instruction  
TABLAT  
TBLPTR  
MEMORY(0x01389A)  
MEMORY(0x01389B)  
=
=
=
=
0x34  
0x01389A  
0xFF  
0xFF  
(TBLPTR) +1 TBLPTR;  
(TABLAT) Prog Mem (TBLPTR) or  
Holding Register;  
After Instruction (table write completion)  
TABLAT  
=
=
=
=
0x34  
TBLPTR  
MEMORY(0x01389A)  
MEMORY(0x01389B)  
0x01389B  
0xFF  
0x34  
Status Affected:  
Encoding:  
None  
0000  
0000  
0000  
11nn  
nn=0 *  
=1 *+  
=2 *-  
=3 +*  
Description:  
This instruction is used to program the  
contents of Program Memory (P.M.).  
The TBLPTR (a 21-bit pointer) points  
to each byte in the program memory.  
TBLPTR has a 2 MBtye address  
range. The LSb of the TBLPTR  
selects which byte of the program  
memory location to access.  
TBLPTR[0] = 0:Least Significant  
Byte of Program  
Memory Word  
TBLPTR[0] = 1:Most Significant  
Byte of Program  
Memory Word  
The TBLWTinstruction can modify the  
value of TBLPTR as follows:  
• no change  
• post-increment  
• post-decrement  
• pre-increment  
Words:  
Cycles:  
1
2 (many if long write is to on-chip  
EPROM program memory)  
Q Cycle Activity:  
Q1  
Q2  
No  
Q3  
No  
Q4  
Decode  
No  
operation operation  
operation  
No  
No No  
No  
operation  
operation operation  
(Read  
TABLAT)  
operation  
(Write to Holding  
Register or Memory)  
DS30475A-page 302  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
TSTFSZ  
Syntax:  
Test f, skip if 0  
XORLW  
Exclusive OR literal with WREG  
[ label ] TSTFSZ f [,a]  
Syntax:  
[ label ]  
XORLW k  
Operands:  
0 f 255  
a [0,1]  
Operands:  
0 k 255  
Operation:  
(WREG) .XOR. k WREG  
Operation:  
skip if f = 0  
None  
Status Affected:  
Encoding:  
N,Z  
Status Affected:  
Encoding:  
0000  
1010  
kkkk  
kkkk  
0110  
011a  
ffff  
ffff  
Description:  
The contents of WREG are  
XOR’ed with the 8-bit literal 'k'.  
The result is placed in WREG.  
Description:  
If ’f’ = 0, the next instruction,  
fetched during the current instruc-  
tion execution, is discarded and a  
NOPis executed making this a two-  
cycle instruction. If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ is 1, the  
Bank will be selected as per the  
BSR value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal ’k’  
Process  
Data  
Write to  
WREG  
Words:  
Cycles:  
1
1(2)  
Example:  
XORLW 0xAF  
Note: 3 cycles if skip and followed  
by a 2-word instruction  
Before Instruction  
WREG  
N
Z
=
=
=
0xB5  
?
?
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
After Instruction  
Decode  
Read  
register ’f’  
Process  
Data  
No  
operation  
WREG  
=
=
=
0x1A  
0
0
N
Z
If skip:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
If skip and followed by 2-word instruction:  
Q1  
Q2  
Q3  
Q4  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
No  
No  
No  
No  
operation  
operation  
operation  
operation  
HERE  
NZERO  
ZERO  
TSTFSZ CNT  
:
:
Example:  
Before Instruction  
PC  
=
Address (HERE)  
After Instruction  
If CNT  
=
=
=
0x00,  
Address (ZERO)  
0x00,  
PC  
If CNT  
PC  
Address (NZERO)  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 303  
PIC18CXX8  
XORWF  
Syntax:  
Exclusive OR WREG with f  
[ label ] XORWF f [ ,d [,a] ]  
Operands:  
0 f 255  
d [0,1]  
a [0,1]  
Operation:  
(WREG) .XOR. (f) dest  
Status Affected:  
Encoding:  
N,Z  
0001  
10da  
ffff  
ffff  
Description:  
Exclusive OR the contents of  
WREG with register ’f’. If ’d’ is 0, the  
result is stored in WREG. If ’d’ is 1,  
the result is stored back in the reg-  
ister 'f' (default). If ’a’ is 0, the  
Access Bank will be selected, over-  
riding the BSR value. If ’a’ is 1, the  
Bank will be selected as per the  
BSR value.  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register ’f’  
Process  
Data  
Write to  
destination  
Example:  
XORWF  
REG  
Before Instruction  
REG  
WREG  
N
=
0xAF  
0xB5  
?
=
=
=
Z
?
After Instruction  
REG  
WREG  
N
=
=
=
=
0x1A  
0xB5  
0
Z
0
DS30475A-page 304  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
The MPLAB IDE allows you to:  
24.0 DEVELOPMENT SUPPORT  
The PICmicro® microcontrollers are supported with a  
• Edit your source files (either assembly or ‘C’)  
• One touch assemble (or compile) and download  
to PICmicro tools (automatically updates all  
project information)  
full range of hardware and software development tools:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• Debug using:  
- source files  
• Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
- absolute listing file  
- object code  
- MPLAB C17 and MPLAB C18 C Compilers  
- MPLINKTM Linker/MPLIBTM Librarian  
• Simulators  
The ability to use MPLAB IDE with Microchip’s MPLAB  
SIM simulator, allows a consistent platform and the  
ability to easily switch from the cost effective simulator  
to the full featured emulator with minimal retraining.  
- MPLAB SIM Software Simulator  
• Emulators  
- MPLAB ICE 2000 In-Circuit Emulator  
- ICEPIC™ In-Circuit Emulator  
• In-Circuit Debugger  
24.2  
MPASM Assembler  
The MPASM assembler is a full featured universal  
macro assembler for all PICmicro MCU’s. It can pro-  
duce absolute code directly in the form of HEX files for  
device programmers, or it can generate relocatable  
objects for the MPLINK object linker.  
- MPLAB ICD for PIC16F877  
• Device Programmers  
- PRO MATE® II Universal Device Programmer  
- PICSTART® Plus Entry-Level Development  
The MPASM assembler has a command line interface  
and a Windows shell and can be used as a stand-alone  
application on a Windows 3.x, or greater, system. The  
MPASM assembler generates relocatable object files,  
Intel® standard HEX files, MAP files to detail memory  
usage and symbol reference, an absolute LST file,  
which contains source lines and generated machine  
code, and a COD file for debugging.  
Programmer  
• Low Cost Demonstration Boards  
- PICDEMTM 1 Demonstration Board  
- PICDEM 2 Demonstration Board  
- PICDEM 3 Demonstration Board  
- PICDEM 17 Demonstration Board  
- KEELOQ® Demonstration Board  
The MPASM assembler features include:  
24.1  
MPLAB Integrated Development  
Environment Software  
• MPASM assembler and MPLINK object linker are  
integrated into MPLAB IDE projects.  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. The MPLAB IDE is a Windows®-based  
application which contains:  
• MPASM assembler allows user defined macros to  
be created for streamlined assembly.  
• MPASM assembler allows conditional assembly  
for multi-purpose source files.  
• Multiple functionality  
- editor  
• MPASM assembler directives allow complete  
control over the assembly process.  
- simulator  
24.3  
MPLAB C17 and MPLAB C18  
C Compilers  
- programmer (sold separately)  
- emulator (sold separately)  
• A full featured editor  
• A project manager  
• Customizable tool bar and key mapping  
• A status bar  
The MPLAB C17 and MPLAB C18 Code Development  
Systems are complete ANSI ‘C’ compilers and inte-  
grated development environments for Microchip’s  
PIC17CXXX and PIC18CXXX family of microcontrol-  
lers, respectively. These compilers provide powerful  
integration capabilities and ease of use not found with  
other compilers.  
• On-line help  
For easier source level debugging, the compilers pro-  
vide symbol information that is compatible with the  
MPLAB IDE memory display.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 305  
PIC18CXX8  
24.4  
MPLINK Linker/MPLIB Librarian  
24.6  
MPLAB ICE High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
The MPLINK object linker is a relocatable linker for the  
MPASM assembler and the MPLAB C17 and MPLAB  
C18 C compilers. It can link relocatable objects from  
assembly or C source files, along with pre-compiled  
libraries, using directives from a linker script.  
The MPLAB ICE universal in-circuit emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PICmicro  
microcontrollers (MCUs). Software control of the  
MPLAB ICE in-circuit emulator is provided by the  
MPLAB Integrated Development Environment (IDE),  
which allows editing, “make” and download and source  
debugging from a single environment.  
The MPLIB object librarian is a librarian for pre-  
compiled code to be used with the MPLINK object  
linker. When a routine from a library is called from  
another source file, only the modules that contain that  
routine will be linked in with the application. This allows  
large libraries to be used efficiently in many different  
applications. The MPLIB object librarian manages the  
creation and modification of library files.  
Interchangeable processor modules allow the system  
to be easily reconfigured for emulation of different pro-  
cessors. The universal architecture of the MPLAB ICE  
in-circuit emulator allows expansion to support new  
PICmicro microcontrollers.  
The MPLINK object linker features include:  
• MPLINK object linker works with MPASM assem-  
bler and MPLAB C17 and MPLAB C18 C compilers.  
The MPLAB ICE in-circuit emulator system has been  
designed as a real-time emulation system, with  
advanced features that are generally found on more  
expensive development tools. The PC platform and  
Microsoft® Windows 3.x/95/98 environment were cho-  
sen to best make these features available to you, the  
end user.  
• MPLINK object linker allows all memory areas to  
be defined as sections to provide link-time  
flexibility.  
The MPLIB object librarian features include:  
• MPLIB object librarian makes linking easier  
because single libraries can be included instead  
of many smaller files.  
The MPLAB ICE in-circuit emulator is available in two  
versions: MPLAB ICE 1000 and MPLAB ICE 2000.  
The MPLAB ICE 1000 is a basic, low cost emulator  
system with simple trace capabilities. The MPLAB ICE  
2000 is a full featured emulator system with enhanced  
trace, trigger and data monitoring features. Both sys-  
tems use the same processor modules and will operate  
across the full operating speed range of the PICmicro  
MCU.  
• MPLIB object librarian helps keep code maintain-  
able by grouping related modules together.  
• MPLIB object librarian commands allow libraries  
to be created and modules to be added, listed,  
replaced, deleted or extracted.  
24.5  
MPLAB SIM Software Simulator  
The MPLAB SIM software simulator allows code devel-  
opment in a PC host environment by simulating the  
PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user-defined key press, to any of the pins. The  
execution can be performed in single step, execute  
until break, or trace mode.  
24.7  
ICEPIC In-Circuit Emulator  
The ICEPIC low cost, in-circuit emulator is a solution  
for the Microchip Technology PIC16C5X, PIC16C6X,  
PIC16C7X and PIC16CXXX families of 8-bit One-  
Time-Programmable (OTP) microcontrollers. The mod-  
ular system can support different subsets of PIC16C5X  
or PIC16CXXX products through the use of inter-  
changeable personality modules, or daughter boards.  
The emulator is capable of emulating without target  
application circuitry being present.  
The MPLAB SIM simulator fully supports symbolic  
debugging using the MPLAB C17 and the MPLAB C18  
C compilers and the MPASM assembler. The software  
simulator offers the flexibility to develop and debug  
code outside of the laboratory environment, making it  
an excellent multi-project software development tool.  
DS30475A-page 306  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
24.8  
MPLAB ICD In-Circuit Debugger  
24.11 PICDEM 1 Low Cost PICmicro  
Demonstration Board  
Microchip’s In-Circuit Debugger, MPLAB ICD, is a pow-  
erful, low cost, run-time development tool. This tool is  
based on the FLASH PIC16F877 and can be used to  
develop this and other PICmicro microcontrollers from  
the PIC16CXXX family. The MPLAB ICD utilizes the in-  
circuit debugging capability built into the PIC16F87X.  
This feature, along with Microchip’s In-Circuit Serial  
ProgrammingTM protocol, offers cost effective in-circuit  
FLASH programming and debugging from the graphical  
user interface of the MPLAB Integrated Development  
Environment. This enables a designer to develop and  
debug source code by watching variables, single-step-  
ping and setting break points. Running at full speed  
enables testing hardware in real-time. The MPLAB ICD  
is also a programmer for the FLASH PIC16F87X family.  
The PICDEM 1 demonstration board is a simple board  
which demonstrates the capabilities of several of  
Microchip’s microcontrollers. The microcontrollers sup-  
ported are: PIC16C5X (PIC16C54 to PIC16C58A),  
PIC16C61, PIC16C62X, PIC16C71, PIC16C8X,  
PIC17C42, PIC17C43 and PIC17C44. All necessary  
hardware and software is included to run basic demo  
programs. The user can program the sample microcon-  
trollers provided with the PICDEM 1 demonstration  
board on a PRO MATE II device programmer, or a  
PICSTART Plus development programmer, and easily  
test firmware. The user can also connect the  
PICDEM 1 demonstration board to the MPLAB ICE in-  
circuit emulator and download the firmware to the emu-  
lator for testing. A prototype area is available for the  
user to build some additional hardware and connect it  
to the microcontroller socket(s). Some of the features  
include an RS-232 interface, a potentiometer for simu-  
lated analog input, push button switches and eight  
LEDs connected to PORTB.  
24.9  
PRO MATE II Universal Device  
Programmer  
The PRO MATE II universal device programmer is a full  
featured programmer, capable of operating in stand-  
alone mode, as well as PC-hosted mode. The  
PRO MATE II device programmer is CE compliant.  
24.12 PICDEM 2 Low Cost PIC16CXX  
Demonstration Board  
The PRO MATE II device programmer has program-  
mable VDD and VPP supplies, which allow it to verify  
programmed memory at VDD min and VDD max for  
maximum reliability. It has an LCD display for instruc-  
tions and error messages, keys to enter commands  
and a modular detachable socket assembly to support  
various package types. In stand-alone mode, the PRO  
MATE II device programmer can read, verify, or pro-  
gram PICmicro devices. It can also set code-protect  
bits in this mode.  
The PICDEM 2 demonstration board is a simple dem-  
onstration board that supports the PIC16C62,  
PIC16C64, PIC16C65, PIC16C73 and PIC16C74  
microcontrollers. All the necessary hardware and soft-  
ware is included to run the basic demonstration pro-  
grams. The user can program the sample  
microcontrollers provided with the PICDEM 2 demon-  
stration board on a PRO MATE II device programmer,  
or a PICSTART Plus development programmer and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 2 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding additional hardware and  
connecting it to the microcontroller socket(s). Some of  
the features include a RS-232 interface, push button  
switches, a potentiometer for simulated analog input, a  
Serial EEPROM to demonstrate usage of the I2CTM bus  
and separate headers for connection to an LCD  
module and a keypad.  
24.10 PICSTART Plus Entry Level  
Development Programmer  
The PICSTART Plus development programmer is an  
easy-to-use, low cost, prototype programmer. It con-  
nects to the PC via one of the COM (RS-232) ports.  
MPLAB Integrated Development Environment software  
makes using the programmer simple and efficient.  
The PICSTART Plus development programmer sup-  
ports all PICmicro devices with up to 40 pins. Larger pin  
count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus development programmer is CE  
compliant.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 307  
PIC18CXX8  
24.13 PICDEM 3 Low Cost PIC16CXXX  
Demonstration Board  
24.14 PICDEM 17 Demonstration Board  
The PICDEM 17 demonstration board is an evaluation  
board that demonstrates the capabilities of several  
Microchip microcontrollers, including PIC17C752,  
PIC17C756, PIC17C762 and PIC17C766. All neces-  
sary hardware is included to run basic demo programs,  
which are supplied on a 3.5-inch disk. A programmed  
sample is included and the user may erase it and  
program it with the other sample programs using the  
PRO MATE II device programmer, or the PICSTART  
Plus development programmer, and easily debug and  
test the sample code. In addition, the PICDEM 17 dem-  
onstration board supports down-loading of programs to  
and executing out of external FLASH memory on board.  
The PICDEM 17 demonstration board is also usable  
with the MPLAB ICE in-circuit emulator, or the  
PICMASTER emulator and all of the sample programs  
can be run and modified using either emulator. Addition-  
ally, a generous prototype area is available for user  
hardware.  
The PICDEM 3 demonstration board is a simple dem-  
onstration board that supports the PIC16C923 and  
PIC16C924 in the PLCC package. It will also support  
future 44-pin PLCC microcontrollers with an LCD Mod-  
ule. All the necessary hardware and software is  
included to run the basic demonstration programs. The  
user can program the sample microcontrollers pro-  
vided with the PICDEM 3 demonstration board on a  
PRO MATE II device programmer, or a PICSTART Plus  
development programmer with an adapter socket, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 3 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding hardware and connecting it  
to the microcontroller socket(s). Some of the features  
include an RS-232 interface, push button switches, a  
potentiometer for simulated analog input, a thermistor  
and separate headers for connection to an external  
LCD module and a keypad. Also provided on the  
PICDEM 3 demonstration board is an LCD panel, with  
4 commons and 12 segments, that is capable of dis-  
playing time, temperature and day of the week. The  
PICDEM 3 demonstration board provides an additional  
RS-232 interface and Windows 3.1 software for show-  
ing the demultiplexed LCD signals on a PC. A simple  
serial interface allows the user to construct a hardware  
demultiplexer for the LCD signals.  
24.15 KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchip’s HCS Secure Data Products. The HCS  
evaluation kit includes an LCD display to show chang-  
ing codes, a decoder to decode transmissions and a  
programming interface to program test transmitters.  
DS30475A-page 308  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
TABLE 24-1: DEVELOPMENT TOOLS FROM MICROCHIP  
0 1 5 2 P M C  
X X X C R M F  
H C S X X X  
X X C 9 3  
/ X X C 2 5  
/ X X C 2 4  
X X C 8 2 C 1 P I  
X 7 X 7 C 1 C I P  
X 4 1 7 C I C P  
X 9 X 6 C 1 C I P  
X 8 X 6 F 1 C I P  
X 8 1 6 C I C P  
X 7 X 6 C 1 C I P  
X 7 1 6 C I C P  
X 6 2 1 6 C I F P  
X
X X C 6 C 1 P I  
X 6 1 6 C I C P  
X 5 1 6 C I C P  
0 0 1 4 C I 0 P  
X
X X C 2 C 1 P I  
s o l T e o r a w f t S o s r o t a u l E m e r u b g e g D s m e a r m o g P r r  
s t K l a i E d v n a s d r a B o o m D e  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 309  
PIC18CXX8  
NOTES:  
DS30475A-page 310  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
25.0 ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings (†)  
Ambient temperature under bias.............................................................................................................-55°C to +125°C  
Storage temperature.............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4) ......................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +7.5V  
Voltage on MCLR with respect to VSS (Note 2)......................................................................................... 0V to +13.25V  
Voltage on RA4 with respect to Vss............................................................................................................... 0V to +8.5V  
Total power dissipation (Note 1) ...............................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)...................................................................................................................... 20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) .............................................................................................................. 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by all ports (combined) ....................................................................................................200 mA  
Maximum current sourced by all ports (combined) ...............................................................................................200 mA  
Note 1: Power dissipation is calculated as follows:  
Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)  
2: Voltage spikes below VSS at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up.  
Thus, a series resistor of 50-100should be used when applying a “low” level to the MCLR/VPP pin, rather  
than pulling this pin directly to VSS.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 311  
PIC18CXX8  
FIGURE 25-1: PIC18CXX8 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0 V  
5.5 V  
5.0 V  
4.5 V  
4.0 V  
PIC18CXX8  
4.2V  
3.5 V  
3.0 V  
2.5 V  
2.0 V  
40 MHz  
Frequency  
FIGURE 25-2: PIC18LCXX8 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)  
6.0 V  
5.5 V  
5.0 V  
PIC18LCXX8  
4.5 V  
4.2V  
4.0 V  
3.5 V  
3.0 V  
2.5 V  
2.0 V  
40 MHz  
6 MHz  
Frequency  
FMAX = (20.0 MHz/V) (VDDAPPMIN - 2.5 V) + 6 MHz  
Note: VDDAPPMIN is the minimum voltage of the PICmicro® device in the application.  
DS30475A-page 312  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
25.1  
DC Characteristics  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
PIC18LCXX8  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
PIC18CXX8  
(Industrial, Extended)  
Param Symbol  
No.  
Characteristic/  
Device  
Min Typ Max Units  
Conditions  
D001  
VDD  
Supply Voltage  
PIC18LCXX8 2.5  
PIC18CXX8 4.2  
5.5  
5.5  
V
V
V
V
HS, XT, RC and LP osc mode  
D001  
D002  
D003  
VDR  
RAM Data Retention Voltage(1)  
1.5  
VPOR  
VDD Start Voltage to ensure inter-  
0.7  
See section on Power-on Reset for  
details  
nal Power-on Reset signal  
D004  
D005  
SVDD  
VBOR  
VDD Rise Rate to ensure internal  
Power-on Reset signal  
0.05  
V/ms See section on Power-on Reset for  
details  
Brown-out Reset Voltage  
PIC18LCXX8 BORV1:BORV0 = 11 2.5  
BORV1:BORV0 = 10 2.7  
2.66  
2.86  
4.46  
4.78  
N.A.  
4.46  
4.78  
V
V
V
V
BORV1:BORV0 = 01 4.2  
BORV1:BORV0 = 00 4.5  
D005  
PIC18CXX8 BORV1:BORV0 = 1x N.A.  
BORV1:BORV0 = 01 4.2  
V
V
V
Not in operating voltage range of device  
BORV1:BORV0 = 00 4.5  
Legend: Rows are shaded for improved readability.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode or during a device RESET without losing RAM  
data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact  
on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is mea-  
sured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS, and all fea-  
tures that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 313  
PIC18CXX8  
25.1  
DC Characteristics (cont’d)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature-40°CTA +85°C for industrial  
PIC18LCXX8  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
PIC18CXX8  
(Industrial, Extended)  
Param Symbol  
No.  
Characteristic/  
Device  
Supply Current(2,4)  
Min Typ Max Units  
Conditions  
D010 IDD  
PIC18LCXX8  
XT, RC, RCIO osc configurations  
4
mA FOSC = 4 MHz, VDD = 2.5V  
D010  
PIC18CXX8  
PIC18LCXX8  
PIC18CXX8  
PIC18LCXX8  
PIC18CXX8  
PIC18LCXX8  
XT, RC, RCIO osc configurations  
TBD mA FOSC = 4 MHz, VDD = 4.2V  
D010A  
D010A  
D010C  
D010C  
D013  
48  
µA LP osc configuration  
FOSC = 32 kHz, VDD = 2.5V  
TBD µA LP osc configuration  
FOSC = 32 kHz, VDD = 4.2V  
mA EC, ECIO osc configurations,  
45  
45  
Fosc = 40 MHz, VDD = 5.5V  
mA EC, ECIO osc configurations,  
Fosc = 40 MHz, VDD = 5.5V  
HS osc configurations  
TBD mA Fosc = 6 MHz, VDD = 2.5V  
50  
50  
mA Fosc = 25 MHz, VDD = 5.5V  
mA HS + PLL osc configuration  
Fosc = 10 MHz, VDD = 5.5V  
D013  
PIC18CXX8  
50  
50  
mA HS osc configurations  
Fosc = 25 MHz, VDD = 5.5V  
mA HS + PLL osc configuration  
Fosc = 10 MHz, VDD = 5.5V  
D014  
D014  
PIC18LCXX8  
PIC18CXX8  
Timer1 osc configuration  
µA FOSC = 32 kHz, VDD = 2.5V  
TBD µA FOSC = 32 kHz, VDD = 2.5V, 25°C  
48  
OSCB osc configuration  
TBD µA FOSC = 32 kHz, VDD = 4.2V  
TBD µA FOSC = 32 kHz, VDD = 4.2V, 25°C  
Legend: Rows are shaded for improved readability.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode or during a device RESET without losing RAM  
data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS, and  
all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
DS30475A-page 314  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
25.1  
DC Characteristics (cont’d)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature-40°CTA +85°C for industrial  
PIC18LCXX8  
(Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
PIC18CXX8  
(Industrial, Extended)  
Param Symbol  
No.  
Characteristic/  
Device  
Power-down Current(3)  
Min Typ Max Units  
Conditions  
D020  
IPD  
PIC18LCXX8  
<2.5  
5
36  
µA VDD = 2.5V, -40°C to +85°C  
µA VDD = 5.5V, -40°C to +85°C  
TBD µA VDD = 2.5V, 25°C  
D020  
PIC18CXX8  
<1 TBD µA VDD = 4.2V, -40°C to +85°C  
36  
µA VDD = 5.5V, -40°C to +85°C  
D020A  
D021B  
TBD µA VDD = 4.2V, 25°C  
TBD TBD µA VDD = 4.2V, -40°C to +125°C  
42  
VDD = 5.5V, -40°C to +125°C  
D022  
IWDT  
Module Differential Current  
PIC18LCXX8  
Watchdog Timer  
12  
25  
µA VDD = 2.5V  
µA VDD = 5.5V  
TBD µA VDD = 2.5V, 25°C  
25 µA VDD = 5.5V, -40°C to +85°C  
TBD µA VDD = 5.5V, -40°C to +125°C  
TBD µA VDD = 4.2V, 25°C  
D022  
PIC18CXX8  
Watchdog Timer  
D022A IBOR  
PIC18LCXX8  
Brown-out Reset  
50  
TBD µA VDD = 2.5V, 25°C  
50 µA VDD = 5.5V, -40°C to +85°C  
TBD µA VDD = 5.5V, -40°C to +125°  
TBD µA VDD = 4.2V, 25°C  
µA VDD = 5.5V  
D022A  
PIC18CXX8  
Brown-out Reset  
D022B ILVD  
PIC18LCXX8  
Low Voltage Detect  
50  
µA VDD = 2.5V  
TBD µA VDD = 2.5V, 25°C  
D022B  
PIC18CXX8  
Low Voltage Detect  
TBD µA VDD = 4.2V, -40°C to +85°C  
TBD µA VDD = 4.2V, -40°C to +125°C  
TBD µA VDD = 4.2V, 25°C  
D025  
D025  
IOSCB  
PIC18LCXX8  
Timer1 Oscillator  
3
µA VDD = 2.5V  
TBD µA VDD = 2.5V, 25°C  
PIC18CXX8  
Timer1 Oscillator  
TBD µA VDD = 4.2V, -40°C to +85°C  
TBD µA VDD = 4.2V, -40°C to +125°C  
TBD µA VDD = 4.2V, 25°C  
Legend: Rows are shaded for improved readability.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode or during a device RESET without losing RAM  
data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tri-stated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS, and  
all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, ...).  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 315  
PIC18CXX8  
25.2  
DC Characteristics: PIC18CXX8 (Industrial, Extended) and PIC18LCXX8 (Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Param Symbol  
No.  
Characteristic/  
Device  
Min  
Max  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O ports:  
with TTL buffer  
D030  
D030A  
D031  
VSS  
0.15VDD  
0.8  
V
V
VDD < 4.5V  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
RC3 and RC4  
VSS  
VSS  
0.2VDD  
0.3VDD  
V
V
D032  
MCLR  
VSS  
VSS  
0.2VDD  
0.3VDD  
V
V
D032A  
OSC1 (in XT, HS and LP modes)  
and T1OSI  
D033  
OSC1(in RC mode)(1)  
Input High Voltage  
I/O ports:  
VSS  
0.2VDD  
V
VIH  
D040  
with TTL buffer  
0.25VDD +  
0.8V  
VDD  
VDD  
V
V
VDD < 4.5V  
D040A  
D041  
2.0  
4.5V VDD 5.5V  
with Schmitt Trigger buffer  
RC3 and RC4  
0.8VDD  
0.7VDD  
VDD  
VDD  
V
V
D042  
MCLR  
0.8VDD  
0.7VDD  
VDD  
VDD  
V
V
D042A  
OSC1 (in XT, HS and LP modes)  
and T1OSI  
OSC1 (RC mode)(1)  
D043  
D050  
D060  
0.9VDD  
VDD  
TBD  
1
V
V
VHYS  
IIL  
Hysteresis of Schmitt Trigger Inputs  
TBD  
Input Leakage Current(2,3)  
I/O ports  
µA VSS VPIN VDD,  
Pin at hi-impedance  
D061  
D063  
MCLR  
5
5
µA Vss VPIN VDD  
µA Vss VPIN VDD  
OSC1  
IPU  
Weak Pull-up Current  
PORTB weak pull-up current  
D070 IPURB  
50  
400  
µA VDD = 5V, VPIN = VSS  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PICmicro device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
DS30475A-page 316  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
25.2  
DC Characteristics: PIC18CXX8 (Industrial, Extended) and PIC18LCXX8 (Industrial) (cont’d)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param Symbol  
No.  
Characteristic/  
Device  
Min  
Max  
Units  
Conditions  
VOL  
VOH  
VOD  
Output Low Voltage  
D080  
I/O ports  
0.6  
0.6  
0.6  
0.6  
V
V
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 7.0 mA, VDD = 4.5V,  
-40°C to +125°C  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.2 mA, VDD = 4.5V,  
-40°C to +125°C  
D080A  
D083  
OSC2/CLKO  
(RC mode)  
D083A  
Output High Voltage(3)  
D090  
I/O ports  
VDD - 0.7  
VDD - 0.7  
VDD - 0.7  
VDD - 0.7  
V
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -2.5 mA, VDD = 4.5V,  
-40°C to +125°C  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.0 mA, VDD = 4.5V,  
-40°C to +125°C  
D090A  
D092  
OSC2/CLKO  
(RC mode)  
D092A  
Open-drain High Voltage  
D150  
7.5  
V
RA4 pin  
Capacitive Loading Specs on Output Pins  
D101  
D102  
CIO  
CB  
All I/O pins and OSC2  
(in RC mode)  
50  
pF To meet the AC Timing Specifications  
pF In I2C mode  
SCL, SDA  
400  
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the  
PICmicro device be driven with an external clock while in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 317  
PIC18CXX8  
FIGURE 25-3:  
LOW VOLTAGE DETECT CHARACTERISTICS  
VDD  
(LVDIF can be  
cleared in software)  
VLVD  
(LVDIF set by hardware)  
LVDIF  
TABLE 25-1: LOW VOLTAGE DETECT CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
No.  
Symbol  
Characteristic/  
Min  
Max  
Units  
Conditions  
D420  
VLVD  
LVDL<3:0> = 0100  
2.5  
2.7  
2.8  
3.0  
3.3  
3.5  
3.6  
3.8  
4.0  
4.2  
4.5  
2.66  
2.86  
2.98  
3.2  
3.52  
3.72  
3.84  
4.04  
4.26  
4.46  
4.78  
V
V
V
V
V
V
V
V
V
V
V
LVD Voltage  
LVDL<3:0> = 0101  
LVDL<3:0> = 0110  
LVDL<3:0> = 0111  
LVDL<3:0> = 1000  
LVDL<3:0> = 1001  
LVDL<3:0> = 1010  
LVDL<3:0> = 1011  
LVDL<3:0> = 1100  
LVDL<3:0> = 1101  
LVDL<3:0> = 1110  
DS30475A-page 318  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
TABLE 25-2: EPROM PROGRAMMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +40°C  
DC CHARACTERISTICS  
Param.  
No.  
Sym  
Characteristic  
Min  
Max Units  
Conditions  
Internal Program Memory Programming Specs (Note 1)  
D110  
VPP  
Voltage on MCLR/VPP pin  
12.75  
4.75  
13.25  
5.25  
V
V
(Note 2)  
D111  
VDDP Supply voltage during  
programming  
D112  
D113  
IPP  
Current into MCLR/VPP pin  
50  
30  
mA  
mA  
IDDP  
Supply current during  
programming  
D114  
D115  
TPROG Programming pulse width  
100  
1000  
µs Terminated via internal/external  
interrupt or a RESET  
TERASE EPROM erase time  
Device operation 3V  
Device operation 3V  
4
TBD  
hrs  
hrs  
Note 1: These specifications are for the programming of the on-chip program memory EPROM through the use of the  
table write instructions. The complete programming specifications can be found in: PIC18CXX8 Program-  
ming Specifications (Literature number DS39028).  
2: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 319  
PIC18CXX8  
25.3  
AC (Timing) Characteristics  
25.3.1 TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created fol-  
lowing one of the following formats:  
1. TppS2ppS  
2. TppS  
T
3. TCC:ST  
4. Ts  
(I2C specifications only)  
(I2C specifications only)  
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKO  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data-in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
ST  
DAT  
STA  
Hold  
SU  
Setup  
DATA input hold  
START condition  
STO  
STOP condition  
DS30475A-page 320  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
25.3.2 TIMING CONDITIONS  
The temperature and voltages specified in Table 25-3  
apply to all timing specifications, unless otherwise  
noted. Figure 25-4 specifies the load conditions for the  
timing specifications.  
TABLE 25-3: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
AC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 25.1.  
LC parts operate for industrial temperatures only.  
FIGURE 25-4: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load condition 1 Load condition 2  
VDD/2  
CL  
RL  
Pin  
VSS  
CL  
Pin  
RL = 464Ω  
CL = 50 pF for all pins except OSC2/CLKO  
and including D and E outputs as ports  
VSS  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 321  
PIC18CXX8  
25.3.3 TIMING DIAGRAMS AND SPECIFICATIONS  
FIGURE 25-5: EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
4
Q1  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 25-4: EXTERNAL CLOCK TIMING REQUIREMENTS  
Param. No. Symbol  
1A Fosc  
Characteristic  
Min  
Max  
Units  
Conditions  
External CLKIN  
DC  
DC  
4
DC  
DC  
40  
40  
10  
40  
40  
MHz XT osc  
MHz HS osc  
MHz HS + PLL osc  
kHz LP osc  
MHz EC  
Frequency(1)  
Oscillator Frequency(1)  
DC  
0.1  
4
4
5
4
4
25  
10  
200  
MHz RC osc  
MHz XT osc  
MHz HS osc  
MHz HS + PLL osc  
kHz LP osc mode  
1
Tosc  
External CLKIN Period(1)  
Oscillator Period(1)  
250  
40  
100  
5
ns  
ns  
ns  
µs  
ns  
XT and RC osc  
HS osc  
HS + PLL osc  
LP osc  
5
EC  
250  
250  
100  
40  
ns  
ns  
ns  
ns  
µs  
RC osc  
XT osc  
HS osc  
HS + PLL osc  
LP osc  
10,000  
10,000  
100  
5
2
3
TCY  
TosL,  
TosH  
Instruction Cycle Time(1)  
External Clock in (OSC1)  
High or Low Time  
100  
30  
2.5  
10  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
TCY = 4/FOSC  
XT osc  
LP osc  
HS osc  
XT osc  
LP osc  
4
TosR,  
TosF  
External Clock in (OSC1)  
Rise or Fall Time  
20  
50  
7.5  
HS osc  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with the  
device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption. All devices are tested to operate at "Min." values with an external  
clock applied to the OSC1/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC"  
(no clock) for all devices.  
DS30475A-page 322  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
TABLE 25-5: PLL CLOCK TIMING SPECIFICATION (VDD = 4.2V - 5.5V)  
Param  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
7
TPLL  
PLL Start-up Time  
(Lock Time)  
2
ms  
%
CLK  
CLKOUT Stability (Jitter) using PLL  
-2  
+2  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 323  
PIC18CXX8  
FIGURE 25-6: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
12  
19  
18  
14  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
new value  
old value  
20, 21  
Note: Refer to Figure 25-4 for load conditions.  
TABLE 25-6: CLKOUT AND I/O TIMING REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units Conditions  
No.  
(1)  
10  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
75  
75  
35  
35  
50  
200  
200  
100  
100  
ns  
(1)  
11  
ns  
(1)  
12  
13  
14  
15  
16  
17  
18  
18A  
TckR  
CLKOUT rise time  
ns  
(1)  
TckF  
CLKOUT fall time  
ns  
(1)  
TckL2ioV CLKOUT to Port out valid  
0.5TCY + 20 ns  
(1)  
(1)  
TioV2ckH Port in valid before CLKOUT ↑  
TckH2ioI Port in hold after CLKOUT ↑  
TosH2ioV OSC1(Q1 cycle) to Port out valid  
TosH2ioI OSC1(Q2 cycle) to PIC18CXX8  
0.25TCY + 25  
ns  
ns  
ns  
ns  
ns  
0
150  
100  
200  
Port input invalid  
(I/O in hold time)  
PIC18LCXX8  
19  
TioV2osH Port input valid to OSC1↑  
0
ns  
(I/O in setup time)  
20  
TioR  
TioF  
Port output rise time  
Port output fall time  
INT pin high or low time  
PIC18CXX8  
PIC18LCXX8  
PIC18CXX8  
PIC18LCXX8  
10  
10  
25  
60  
25  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20A  
21  
21A  
22††  
23††  
24††  
TINP  
TCY  
TCY  
20  
TRBP  
TRCP  
RB7:RB4 change INT high or low time  
RC7:RC4 change INT high or low time  
††These parameters are asynchronous events, not related to any internal clock edges.  
Note 1: Measurements are taken in RC mode where CLKO pin output is 4 x TOSC.  
DS30475A-page 324  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
FIGURE 25-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
Reset  
Watchdog  
Timer  
Reset  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 25-4 for load conditions.  
FIGURE 25-8: BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
VBGAP = 1.2V  
VIRVST  
Enable Internal Reference Voltage  
Internal Reference Voltage stable  
36  
TABLE 25-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
30  
TmcL  
TWDT  
MCLR Pulse Width (low)  
2
7
µs  
31  
Watchdog Timer Time-out Period  
(No Prescaler)  
18  
33  
ms  
32  
33  
34  
TOST  
TPWRT  
TIOZ  
Oscillation Start-up Timer Period  
Power up Timer Period  
1024TOSC  
72  
2
1024TOSC  
132  
ms  
µs  
TOSC = OSC1 period  
28  
I/O Hi-impedance from MCLR Low  
or Watchdog Timer Reset  
35  
36  
TBOR  
Brown-out Reset Pulse Width  
200  
µs  
µs  
VDD BVDD (See  
D005)  
TIVRST  
Time for Internal Reference  
Voltage to become stable  
20  
50  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 325  
PIC18CXX8  
FIGURE 25-9: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
41  
40  
42  
T1OSO/T1CKI  
46  
45  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 25-4 for load conditions.  
TABLE 25-8: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min  
Max Units Conditions  
No.  
40  
Tt0H  
T0CKI High Pulse Width No Prescaler  
With Prescaler  
0.5TCY + 20  
10  
ns  
ns  
ns  
ns  
ns  
41  
42  
Tt0L  
Tt0P  
T0CKI Low Pulse Width No Prescaler  
With Prescaler  
0.5TCY + 20  
10  
T0CKI Period  
No Prescaler  
TCY + 10  
With Prescaler  
Greater of:  
20 nS or TCY + 40  
N
ns N = prescale  
value  
(1, 2, 4,..., 256)  
45  
46  
Tt1H  
Tt1L  
T1CKI Synchronous, no prescaler  
0.5TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
High  
Time  
Synchronous,  
with prescaler  
PIC18CXX8  
10  
PIC18LCXX8  
25  
30  
Asynchronous PIC18CXX8  
PIC18LCXX8  
50  
T1CKI Synchronous, no prescaler  
0.5TCY + 5  
10  
Low  
Time  
Synchronous,  
with prescaler  
PIC18CXX8  
PIC18LCXX8  
25  
Asynchronous PIC18CXX8  
PIC18LCXX8  
30  
TBD  
TBD  
47  
48  
Tt1P  
Ft1  
T1CKI Synchronous  
Input  
Period  
Greater of:  
20 nS or TCY + 40  
N
ns N = prescale  
value  
(1, 2, 4, 8)  
Asynchronous  
60  
DC  
50  
ns  
kHz  
T1CKI oscillator input frequency range  
Tcke2tmrI Delay from external T1CKI clock edge to  
timer increment  
2Tosc  
7Tosc  
DS30475A-page 326  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
FIGURE 25-10: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)  
CCPx  
(Capture Mode)  
50  
51  
52  
54  
CCPx  
(Compare or PWM Mode)  
53  
Note: Refer to Figure 25-4 for load conditions.  
TABLE 25-9: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
50  
TccL  
CCPx input low No Prescaler  
0.5TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
time  
With  
PIC18CXX8  
10  
Prescaler  
PIC18LCXX8  
20  
0.5TCY + 20  
10  
51  
TccH  
CCPx input  
high time  
No Prescaler  
With  
PIC18CXX8  
Prescaler  
PIC18LCXX8  
20  
52  
53  
TccP  
TccR  
CCPx input period  
3TCY + 40  
N
N = prescale  
value (1,4 or 16)  
CCPx output fall time  
PIC18CXX8  
PIC18LCXX8  
PIC18CXX8  
PIC18LCXX8  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
54  
TccF  
CCPx output fall time  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 327  
PIC18CXX8  
FIGURE 25-11: PARALLEL SLAVE PORT TIMING (PIC18C658 AND PIC18C858)  
RE2/CS  
RE0/RD  
RE1/WR  
65  
RD7:RD0  
62  
64  
63  
Note: Refer to Figure 25-4 for load conditions.  
TABLE 25-10: PARALLEL SLAVE PORT REQUIREMENTS (PIC18C658 AND PIC18C858)  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
62  
TdtV2wrH Data-in valid before WRor CS↑  
20  
25  
ns  
ns  
(setup time)  
Extended Temp range  
63  
64  
TwrH2dtI  
WRor CSto data-in invalid PIC18CXX8  
(hold time)  
20  
35  
ns  
ns  
PIC18LCXX8  
TrdL2dtV RDand CSto data-out valid  
80  
90  
ns  
ns  
Extended Temp range  
65  
66  
TrdH2dtI  
TibfINH  
RDor CSto data-out invalid  
Inhibit the IBF flag bit being cleared from  
10  
30  
ns  
ns  
3TCY  
WRor CS↑  
DS30475A-page 328  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
FIGURE 25-12: EXAMPLE SPI MASTER MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
Bit6 - - - - - -1  
Bit6 - - - -1  
MSb  
LSb  
SDO  
SDI  
75, 76  
MSb In  
74  
LSb In  
73  
Note: Refer to Figure 25-4 for load conditions.  
TABLE 25-11: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)  
Param.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
No.  
70  
TssL2scH, SSto SCKor SCKinput  
TssL2scL  
TCY  
ns  
71  
TscH  
SCK input high time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
71A  
72  
40  
1.25TCY + 30  
40  
ns (Note 1)  
TscL  
SCK input low time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TdiV2scH, Setup time of SDI data input to SCK edge  
TdiV2scL  
100  
ns  
73A  
74  
TB2B  
Last clock edge of Byte1 to the 1st clock edge of  
Byte2  
1.5TCY + 40  
100  
ns (Note 2)  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
ns  
75  
TdoR  
SDO data output rise time  
PIC18CXX8  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC18LCXX8  
76  
78  
TdoF  
TscR  
SDO data output fall time  
SCK output rise time  
(Master mode)  
PIC18CXX8  
PIC18LCXX8  
79  
80  
TscF  
SCK output fall time (Master mode)  
TscH2doV, SDO data output valid after  
TscL2doV SCK edge  
PIC18CXX8  
PIC18LCXX8  
Note 1: Requires the use of parameter # 73A.  
2: Only if parameter #s 71A and 72A are used.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 329  
PIC18CXX8  
FIGURE 25-13: EXAMPLE SPI MASTER MODE TIMING (CKE = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
LSb  
MSb  
Bit6 - - - - - -1  
Bit6 - - - -1  
SDO  
SDI  
75, 76  
MSb In  
74  
LSb In  
Note: Refer to Figure 25-4 for load conditions.  
TABLE 25-12: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)  
Param.  
Symbol  
TscH  
Characteristic  
Min  
Max Units Conditions  
No.  
71  
SCK input high time  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
(Slave mode)  
71A  
72  
40  
1.25TCY + 30  
40  
ns (Note 1)  
TscL  
SCK input low time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TdiV2scH, Setup time of SDI data input to SCK edge  
TdiV2scL  
100  
ns  
73A  
74  
TB2B  
Last clock edge of Byte1 to the 1st clock edge of  
Byte2  
1.5TCY + 40  
100  
ns (Note 2)  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
ns  
75  
TdoR  
SDO data output rise time  
PIC18CXX8  
25  
45  
25  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC18LCXX8  
76  
78  
TdoF  
TscR  
SDO data output fall time  
SCK output rise time  
(Master mode)  
PIC18CXX8  
PIC18LCXX8  
79  
80  
TscF  
SCK output fall time (Master mode)  
TscH2doV, SDO data output valid after  
TscL2doV SCK edge  
PIC18CXX8  
PIC18LCXX8  
81  
TdoV2scH, SDO data output setup to SCK edge  
TdoV2scL  
TCY  
Note 1: Requires the use of parameter # 73A.  
2: Only if parameter #s 71A and 72A are used.  
DS30475A-page 330  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
FIGURE 25-14: EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
LSb  
SDO  
SDI  
Bit6 - - - - - -1  
77  
75, 76  
MSb In  
74  
Bit6 - - - -1  
LSb In  
73  
Note: Refer to Figure 25-4 for load conditions.  
TABLE 25-13: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING (CKE = 0))  
Parm.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
No.  
70  
TssL2scH, SSto SCKor SCKinput  
TssL2scL  
TCY  
ns  
71  
TscH  
SCK input high time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
71A  
72  
40  
1.25TCY + 30  
40  
ns (Note 1)  
TscL  
SCK input low time  
(Slave mode)  
ns  
72A  
73  
ns (Note 1)  
TdiV2scH, Setup time of SDI data input to SCK edge  
TdiV2scL  
100  
ns  
73A  
74  
TB2B  
Last clock edge of Byte1 to the 1st clock edge of Byte2 1.5TCY + 40  
ns (Note 2)  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
ns  
75  
TdoR  
SDO data output rise time  
PIC18CXX8  
25  
45  
25  
50  
25  
45  
25  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC18LCXX8  
76  
77  
78  
TdoF  
SDO data output fall time  
10  
TssH2doZ SSto SDO output hi-impedance  
TscR  
SCK output rise time  
(Master mode)  
PIC18CXX8  
PIC18LCXX8  
79  
80  
TscF  
SCK output fall time (Master mode)  
TscH2doV, SDO data output valid after SCK  
TscL2doV edge  
PIC18CXX8  
PIC18LCXX8  
83  
TscH2ssH, SS after SCK edge  
TscL2ssH  
1.5TCY + 40  
Note 1: Requires the use of parameter # 73A.  
2: Only if parameter #s 71A and 72A are used.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 331  
PIC18CXX8  
FIGURE 25-15: EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
Bit6 - - - - - -1  
Bit6 - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
MSb In  
74  
LSb In  
Note: Refer to Figure 25-4 for load conditions.  
TABLE 25-14: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)  
Parm.  
Symbol  
Characteristic  
Min  
Max Units Conditions  
No.  
70  
TssL2scH, SSto SCKor SCKinput  
TssL2scL  
TCY  
ns  
71  
TscH  
TscL  
TB2B  
SCK input high time  
(Slave mode)  
Continuous  
Single Byte  
Continuous  
Single Byte  
1.25TCY + 30  
ns  
71A  
72  
40  
1.25TCY + 30  
40  
ns (Note 1)  
ns  
SCK input low time  
(Slave mode)  
72A  
73A  
74  
ns (Note 1)  
ns (Note 2)  
ns  
Last clock edge of Byte1 to the 1st clock edge of Byte2 1.5TCY + 40  
TscH2diL, Hold time of SDI data input to SCK edge  
TscL2diL  
100  
75  
TdoR  
SDO data output rise time  
PIC18CXX8  
25  
45  
25  
50  
25  
45  
25  
50  
100  
50  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PIC18LCXX8  
76  
77  
78  
TdoF  
SDO data output fall time  
TssH2doZ SSto SDO output hi-impedance  
10  
TscR  
SCK output rise time  
(Master mode)  
PIC18CXX8  
PIC18LCXX8  
79  
80  
TscF  
SCK output fall time (Master mode)  
TscH2doV, SDO data output valid after SCK  
TscL2doV edge  
PIC18CXX8  
PIC18LCXX8  
PIC18CXX8  
PIC18LCXX8  
82  
83  
TssL2doV SDO data output valid after SS↓  
edge  
TscH2ssH, SS after SCK edge  
TscL2ssH  
1.5TCY + 40  
Note 1: Requires the use of parameter # 73A.  
2: Only if parameter #s 71A and 72A are used.  
DS30475A-page 332  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
FIGURE 25-16: I2C BUS START/STOP BITS TIMING  
SCL  
91  
93  
90  
92  
SDA  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 25-4 for load conditions.  
TABLE 25-15: I2C BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)  
Parm.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
90  
TSU:STA START condition  
Setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns  
ns  
ns  
ns  
Only relevant for Repeated  
START condition  
91  
92  
93  
THD:STA START condition  
Hold time  
4000  
600  
After this period, the first  
clock pulse is generated  
TSU:STO STOP condition  
Setup time  
4700  
600  
THD:STO STOP condition  
Hold time  
4000  
600  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 333  
PIC18CXX8  
FIGURE 25-17: I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 25-4 for load conditions.  
TABLE 25-16: I2C BUS DATA REQUIREMENTS (SLAVE MODE)  
Param.  
No.  
Symbol  
Characteristic  
100 kHz mode  
Min  
Max  
Units  
Conditions  
100  
THIGH  
Clock high time  
4.0  
µs  
PIC18CXX8 must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
0.6  
µs  
PIC18CXX8 must operate at a  
minimum of 10 MHz  
SSP Module  
1.5TCY  
4.7  
101  
TLOW  
Clock low time  
100 kHz mode  
µs  
µs  
PIC18CXX8 must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
1.3  
PIC18CXX8 must operate at a  
minimum of 10 MHz  
SSP module  
1.5TCY  
ns  
ns  
ns  
102  
103  
TR  
TF  
SDA and SCL rise  
time  
100 kHz mode  
400 kHz mode  
1000  
300  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
SDA and SCL fall  
time  
100 kHz mode  
400 kHz mode  
300  
300  
ns  
ns  
20 + 0.1Cb  
Cb is specified to be from  
10 to 400 pF  
90  
TSU:STA  
THD:STA  
THD:DAT  
TSU:DAT  
TSU:STO  
TAA  
START condition  
setup time  
100 kHz mode  
400 kHz mode  
4.7  
0.6  
4.0  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
µs  
Only relevant for repeated  
START condition  
91  
START condition hold 100 kHz mode  
time  
After this period the first clock  
pulse is generated  
400 kHz mode  
106  
107  
92  
Data input hold time  
100 kHz mode  
400 kHz mode  
0
0.9  
Data input setup time 100 kHz mode  
400 kHz mode  
250  
100  
4.7  
0.6  
(Note 2)  
STOP condition  
setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
109  
110  
Output valid from  
clock  
3500  
(Note 1)  
TBUF  
Bus free time  
4.7  
1.3  
Time the bus must be free  
before a new transmission can  
start  
D102  
Cb  
Bus capacitive loading  
400  
pF  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of  
the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
2
2
2: A fast mode I C bus device can be used in a standard mode I C bus system, but the requirement tsu;DAT 250 ns must  
then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a  
device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line.  
2
Before the SCL line is released, TR max. + tsu;DAT = 1000 + 250 = 1250 ns (according to the standard mode I C bus  
specification).  
DS30475A-page 334  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
FIGURE 25-18: MASTER SSP I2C BUS START/STOP BITS TIMING WAVEFORMS  
SCL  
SDA  
93  
91  
90  
92  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 25-4 for load conditions.  
TABLE 25-17: MASTER SSP I2C BUS START/STOP BITS REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
TSU:STA START condition  
Setup time  
100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
100 kHz mode 2(TOSC)(BRG + 1)  
400 kHz mode 2(TOSC)(BRG + 1)  
1 MHz mode(1) 2(TOSC)(BRG + 1)  
Only relevant for  
Repeated START  
condition  
90  
ns  
ns  
ns  
ns  
91  
92  
93  
THD:STA START condition  
Hold time  
After this period, the  
first clock pulse is  
generated  
TSU:STO STOP condition  
Setup time  
THD:STO STOP condition  
Hold time  
Note 1: Maximum pin capacitance = 10 pF for all I2C pins.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 335  
PIC18CXX8  
FIGURE 25-19: MASTER SSP I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
91  
92  
107  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 25-4 for load conditions.  
TABLE 25-18: MASTER SSP I2C BUS DATA REQUIREMENTS  
Param.  
Symbol Characteristic  
Min  
Max Units Conditions  
No.  
THIGH  
TLOW  
TR  
Clock high time  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
ms  
100  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
ms  
ms  
Clock low time  
101  
102  
103  
90  
2(TOSC)(BRG + 1)  
1000  
300  
ms  
ns  
ns  
SDA and SCL  
rise time  
Cb is specified to be from  
10 to 400 pF  
20 + 0.1Cb  
300  
300  
300  
ns  
ns  
ns  
TF  
SDA and SCL  
fall time  
Cb is specified to be from  
10 to 400 pF  
20 + 0.1Cb  
1 MHz mode(1)  
100  
ns  
ms  
ms  
TSU:STA  
START condition 100 kHz mode  
setup time  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
Only relevant for  
Repeated START  
condition  
400 kHz mode  
1 MHz mode(1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ms  
THD:STA START condition 100 kHz mode  
ms After this period the first  
ms  
91  
hold time  
clock pulse is generated  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
2(TOSC)(BRG + 1)  
0.9  
ms  
ns  
ms  
THD:DAT Data input  
hold time  
0
0
106  
107  
92  
TBD  
250  
100  
ns  
ns  
ns  
TSU:DAT  
TSU:STO  
TAA  
Data input  
setup time  
(Note 2)  
1 MHz mode(1)  
TBD  
2(TOSC)(BRG + 1)  
2(TOSC)(BRG + 1)  
ns  
ms  
ms  
STOP condition 100 kHz mode  
setup time  
400 kHz mode  
1 MHz mode(1)  
Output valid from 100 kHz mode  
2(TOSC)(BRG + 1)  
3500  
1000  
ms  
ns  
ns  
109  
110  
clock  
400 kHz mode  
1 MHz mode(1)  
100 kHz mode  
400 kHz mode  
4.7  
1.3  
ns  
TBUF  
Bus free time  
ms Time the bus must be free  
ms  
before a new transmis-  
sion can start  
1 MHz mode(1)  
TBD  
400  
ms  
pF  
D102 Cb  
Bus capacitive loading  
Note 1: Maximum pin capacitance = 10 pF for all I2C pins.  
2: A fast mode I2C bus device can be used in a standard mode I2C bus system, but parameter #107 250 ns must  
then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal.  
If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line.  
Before the SCL line is released, parameter #102+ parameter #107 = 1000 + 250 = 1250 ns (for 100 kHz mode).  
DS30475A-page 336  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
FIGURE 25-20: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
RC6/TX/CK  
pin  
121  
121  
RC7/RX/DT  
pin  
120  
Note: Refer to Figure 25-4 for load conditions.  
122  
TABLE 25-19: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units Conditions  
No.  
120  
TckH2dtV SYNC XMIT (Master & Slave)  
Clock high to data-out valid  
PIC18CXX8  
PIC18LCXX8  
PIC18CXX8  
PIC18LCXX8  
PIC18CXX8  
PIC18LCXX8  
40  
100  
20  
ns  
ns  
ns  
ns  
ns  
ns  
121  
122  
Tckrf  
Tdtrf  
Clock out rise time and fall time  
(Master mode)  
50  
Data-out rise time and fall time  
20  
50  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 337  
PIC18CXX8  
FIGURE 25-21: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
RC6/TX/CK  
125  
pin  
RC7/RX/DT  
pin  
126  
Note: Refer to Figure 25-4 for load conditions.  
TABLE 25-20: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
125  
TdtV2ckl SYNC RCV (Master & Slave)  
Data-hold before CK (DT hold time)  
Data-hold after CK (DT hold time)  
10  
15  
ns  
ns  
126  
TckL2dtl  
DS30475A-page 338  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
TABLE 25-21: A/D CONVERTER CHARACTERISTICS: PIC18CXX8 (INDUSTRIAL, EXTENDED)  
PIC18LCXX8 (INDUSTRIAL)  
Param  
No.  
Symbol  
Characteristic  
Resolution  
Min  
Typ  
Max  
Units  
Conditions  
A01  
NR  
10  
TBD  
bit VREF = VDD 3.0V  
bit VREF = VDD < 3.0V  
A03  
A04  
A05  
A06  
EIL  
Integral linearity error  
Differential linearity error  
Full scale error  
<±1  
TBD  
LSb VREF = VDD 3.0V  
LSb VREF = VDD < 3.0V  
EDL  
EFS  
EOFF  
<±1  
TBD  
LSb VREF = VDD 3.0V  
LSb VREF = VDD < 3.0V  
<±1  
TBD  
LSb VREF = VDD 3.0V  
LSb VREF = VDD < 3.0V  
Offset error  
<±1  
TBD  
LSb VREF = VDD 3.0V  
LSb VREF = VDD < 3.0V  
A10  
A20  
A20A  
A21  
A22  
A25  
A30  
Monotonicity  
guaranteed(3)  
V
VSS VAIN VREF  
VREF  
Reference voltage  
(VREFH - VREFL)  
0V  
3V  
V
For 10-bit resolution  
VREFH  
VREFL  
VAIN  
Reference voltage High  
Reference voltage Low  
Analog input voltage  
AVSS  
AVDD + 0.3V  
AVDD  
V
AVSS - 0.3V  
AVSS - 0.3V  
V
VREF + 0.3V  
10.0  
V
ZAIN  
Recommended impedance of  
analog voltage source  
kΩ  
A40  
A50  
IAD  
A/D conversion PIC18CXX8  
180  
90  
µA Average current  
current (VDD)  
consumption when  
PIC18LCXXX  
µA  
A/D is on(1)  
.
IREF  
VREF input current(2)  
10  
1000  
µA During VAIN acquisition.  
Based on differential of  
VHOLD to VAIN. To charge  
CHOLD see Section 18.0.  
During A/D conversion  
µA cycle.  
10  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec  
includes any such leakage from the A/D module.  
VREF current is from RA2/AN2/VREF- and RA3/AN3/VREF+ pins or AVDD and AVSS pins, whichever is selected  
as reference input.  
2: VSS VAIN VREF  
3: The A/D conversion result either increases or remains constant as the analog input increases.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 339  
PIC18CXX8  
FIGURE 25-22: A/D CONVERSION TIMING  
BSF ADCON0, GO  
Note 2  
131  
130  
Q4  
132  
A/D CLK  
. . .  
. . .  
9
8
7
2
1
0
A/D DATA  
NEW_DATA  
TCY  
OLD_DATA  
ADRES  
ADIF  
GO  
DONE  
SAMPLING STOPPED  
SAMPLE  
Note 1:  
2:  
If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts.This allows the SLEEPinstruction to  
be executed.  
This is a minimal RC delay (typically 100 ns), which also disconnects the holding capacitor from the analog input.  
TABLE 25-22: A/D CONVERSION REQUIREMENTS  
Param Sym-  
Characteristic  
Min  
Max  
Units  
Conditions  
No.  
bol  
20(5)  
µs  
TOSC based, VREF 3.0V  
130  
TAD  
A/D clock period  
PIC18CXX8  
1.6  
PIC18LCXX8  
PIC18CXX8  
PIC18LCXX8  
3.0  
2.0  
3.0  
11  
20(5)  
6.0  
9.0  
12  
µs TOSC based, VREF full range  
µs A/D RC mode  
µs A/D RC mode  
TAD  
131  
132  
TCNV Conversion time  
(not including acquisition time)(1)  
TACQ Acquisition time(3)  
15  
10  
µs -40°C Temp 125°C  
µs  
0°C Temp 125°C  
135  
136  
TSWC Switching time from convert sample  
1
(Note 4)  
TAMP Amplifier settling time (Note 2)  
µs This may be used if the  
“new” input voltage has not  
changed by more than 1 LSb  
(i.e., 5 mV @ 5.12V) from  
the last sampled voltage (as  
stated on CHOLD).  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 18.0 for minimum conditions, when input voltage has changed more than 1 LSb.  
3: The time for the holding capacitor to acquire the “New” input voltage, when the voltage changes full scale  
after the conversion (AVDD to AVSS, or AVSS to AVDD). The source impedance (RS) on the input channels is  
50 .  
4: On the next Q4 cycle of the device clock.  
5: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.  
DS30475A-page 340  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
26.0 DC AND AC  
CHARACTERISTICS GRAPHS  
AND TABLES  
Graphs and Tables are not available at this time.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 341  
PIC18CXX8  
NOTES:  
DS30475A-page 342  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
27.0 PACKAGING INFORMATION  
27.1  
Package Marking Information  
64-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
PIC18C658-I/PT  
YYWWNNN  
0017017  
68-Lead PLCC  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC18C658-I/L  
0017017  
80-Lead TQFP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
PIC18C858-I/PT  
0017017  
Legend: XX...X Customer specific information*  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard OTP marking consists of Microchip part number, year code, week code and traceability code.  
For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales  
Office. For QTP devices, any special marking adders are included in QTP price.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 343  
PIC18CXX8  
Package Marking Information (Cont’d)  
84-Lead PLCC  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC18C858-I/L  
0017017  
DS30475A-page 344  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
E
E1  
#leads=n1  
p
D1  
D
2
1
B
n
°
CH x 45  
α
A
c
L
A2  
φ
β
A1  
(F)  
Units  
INCHES  
NOM  
MILLIMETERS*  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
64  
64  
.020  
16  
0.50  
16  
Pins per Side  
Overall Height  
n1  
A
.039  
.043  
.039  
.006  
.024  
.039  
3.5  
.047  
1.00  
1.10  
1.00  
0.15  
0.60  
1.00  
3.5  
1.20  
Molded Package Thickness  
Standoff  
A2  
A1  
L
(F)  
φ
.037  
.002  
.018  
.041  
.010  
.030  
0.95  
0.05  
0.45  
1.05  
0.25  
0.75  
§
Foot Length  
Footprint (Reference)  
Foot Angle  
0
.463  
.463  
.390  
.390  
.005  
.007  
.025  
5
7
.482  
.482  
.398  
.398  
.009  
.011  
.045  
15  
0
11.75  
11.75  
9.90  
9.90  
0.13  
0.17  
0.64  
5
7
12.25  
12.25  
10.10  
10.10  
0.23  
0.27  
1.14  
15  
Overall Width  
E
D
.472  
.472  
.394  
.394  
.007  
.009  
.035  
10  
12.00  
12.00  
10.00  
10.00  
0.18  
0.22  
0.89  
10  
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
E1  
D1  
c
Lead Width  
B
CH  
α
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-026  
Drawing No. C04-085  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 345  
PIC18CXX8  
68-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)  
E
E1  
#leads=n1  
D1 D  
n 1 2  
°
°
α
CH2 x 45  
CH1 x 45  
A3  
A2  
A
32°  
c
B1  
B
A1  
p
β
D2  
E2  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
68  
MAX  
n
p
Number of Pins  
Pitch  
68  
.050  
17  
1.27  
17  
Pins per Side  
Overall Height  
n1  
A
.165  
.173  
.153  
.028  
.029  
.045  
.005  
.990  
.990  
.954  
.954  
.920  
.920  
.011  
.029  
.020  
5
.180  
4.19  
3.68  
0.51  
0.61  
1.02  
0.00  
25.02  
25.02  
24.13  
24.13  
22.61  
22.61  
0.20  
0.66  
0.33  
0
4.39  
3.87  
0.71  
0.74  
1.14  
0.13  
25.15  
25.15  
24.23  
24.23  
23.37  
23.37  
0.27  
0.74  
0.51  
5
4.57  
Molded Package Thickness  
Standoff  
A2  
A1  
A3  
CH1  
CH2  
E
.145  
.020  
.024  
.040  
.000  
.985  
.985  
.950  
.950  
.890  
.890  
.008  
.026  
.013  
0
.160  
.035  
.034  
.050  
.010  
.995  
.995  
.958  
.958  
.930  
.930  
.013  
.032  
.021  
10  
4.06  
0.89  
0.86  
1.27  
0.25  
25.27  
25.27  
24.33  
24.33  
23.62  
23.62  
0.33  
0.81  
0.53  
10  
§
Side 1 Chamfer Height  
Corner Chamfer 1  
Corner Chamfer (others)  
Overall Width  
Overall Length  
D
Molded Package Width  
Molded Package Length  
Footprint Width  
E1  
D1  
E2  
D2  
c
Footprint Length  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
B1  
B
α
β
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-047  
Drawing No. C04-049  
DS30475A-page 346  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
80-Lead Plastic Thin Quad Flatpack (PT) 12x12x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
E
E1  
#leads=n1  
p
D1  
D
2
B
c
1
n
°
CH x 45  
A
α
A2  
φ
β
L
A1  
(F)  
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
80  
MAX  
n
p
Number of Pins  
Pitch  
80  
.020  
20  
0.50  
20  
Pins per Side  
Overall Height  
n1  
A
.039  
.037  
.002  
.018  
.043  
.039  
.004  
.024  
.039  
3.5  
.047  
1.00  
0.95  
1.10  
1.00  
0.10  
0.60  
1.00  
3.5  
1.20  
Molded Package Thickness  
Standoff  
A2  
A1  
L
(F)  
φ
.041  
.006  
.030  
1.05  
0.15  
0.75  
§
0.05  
0.45  
Foot Length  
Footprint (Reference)  
Foot Angle  
0
.541  
.541  
.463  
.463  
.004  
.007  
.025  
5
7
.561  
.561  
.482  
.482  
.008  
.011  
.045  
15  
0
13.75  
13.75  
11.75  
11.75  
0.09  
0.17  
0.64  
5
7
14.25  
14.25  
12.25  
12.25  
0.20  
0.27  
1.14  
15  
Overall Width  
E
D
.551  
.551  
.472  
.472  
.006  
.009  
.035  
10  
14.00  
14.00  
12.00  
12.00  
0.15  
0.22  
0.89  
10  
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
E1  
D1  
c
Lead Width  
B
CH  
α
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-026  
Drawing No. C04-092  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 347  
PIC18CXX8  
84-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)  
E
E1  
#leads=n1  
D1 D  
n 1 2  
α
CH2 x 45°  
CH1 x 45°  
A3  
A2  
A
32°  
c
B1  
B
A1  
p
β
D2  
E2  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
68  
MAX  
n
p
Number of Pins  
Pitch  
68  
.050  
17  
1.27  
17  
Pins per Side  
Overall Height  
n1  
A
.165  
.173  
.153  
.028  
.029  
.045  
.005  
.990  
.990  
.954  
.954  
.920  
.920  
.011  
.029  
.020  
5
.180  
4.19  
3.68  
0.51  
0.61  
1.02  
0.00  
25.02  
25.02  
24.13  
24.13  
22.61  
22.61  
0.20  
0.66  
0.33  
0
4.39  
3.87  
0.71  
0.74  
1.14  
0.13  
25.15  
25.15  
24.23  
24.23  
23.37  
23.37  
0.27  
0.74  
0.51  
5
4.57  
Molded Package Thickness  
Standoff  
A2  
A1  
A3  
CH1  
CH2  
E
.145  
.020  
.024  
.040  
.000  
.985  
.985  
.950  
.950  
.890  
.890  
.008  
.026  
.013  
0
.160  
.035  
.034  
.050  
.010  
.995  
.995  
.958  
.958  
.930  
.930  
.013  
.032  
.021  
10  
4.06  
0.89  
0.86  
1.27  
0.25  
25.27  
25.27  
24.33  
24.33  
23.62  
23.62  
0.33  
0.81  
0.53  
10  
§
Side 1 Chamfer Height  
Corner Chamfer 1  
Corner Chamfer (others)  
Overall Width  
Overall Length  
D
Molded Package Width  
Molded Package Length  
Footprint Width  
E1  
D1  
E2  
D2  
c
Footprint Length  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
B1  
B
α
β
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-047  
Drawing No. C04-093  
DS30475A-page 348  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
APPENDIX A: DATA SHEET  
REVISION HISTORY  
APPENDIX B: DEVICE  
DIFFERENCES  
The differences between the PIC18CXX8 devices  
listed in this data sheet are shown in Table B-1.  
Revision A  
This is a new data sheet.  
TABLE B-1:  
DEVICE DIFFERENCES  
Feature  
PIC18C658  
32K  
PIC18C858  
Program Memory (Bytes)  
Data Memory (Bytes)  
A/D Channels  
32K  
1.5K  
1.5K  
16  
12  
Parallel Slave Port (PSP)  
Yes  
Yes  
External Memory Capability No  
No  
Package  
Types  
TQFP  
64-pin  
68-pin  
68-pin  
80-pin  
84-pin  
84-pin  
PLCC  
JCERPACK  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 349  
PIC18CXX8  
APPENDIX C: DEVICE MIGRATIONS  
APPENDIX D: MIGRATING FROM  
OTHER PICMICRO  
This section is intended to describe the functional and  
electrical specification differences when migrating  
between functionally similar devices (such as from a  
PIC16C74A to a PIC16C74B).  
DEVICES  
This discusses some of the issues in migrating from  
other PICmicro devices to the PIC18CXXX family of  
devices.  
Not Applicable  
D.1  
PIC16CXXX to PIC18CXXX  
See application note AN716.  
D.2  
PIC17CXXX to PIC18CXXX  
See application note AN726.  
DS30475A-page 350  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
APPENDIX E: DEVELOPMENT  
TOOL VERSION  
REQUIREMENTS  
This lists the minimum requirements (software/firm-  
ware) of the specified development tool to support the  
devices listed in this data sheet.  
MPLAB-IDE:  
version 5.11  
version 7.10  
MPLAB-SIM:  
MPLAB-ICE 2000:  
PIC18CXX8 Processor Module:  
Part Number -  
PCM 18XB0  
PIC18CXX8 Device Adapter:  
Socket  
Part Number  
64-pin TQFP  
68-pin PLCC  
80-pin TQFP  
84-pin PLCC  
DVD18P2640  
DVD18XL680  
DVD18PQ800  
DVD18XL840  
MPLAB-ICD:  
Not Available  
version 5.20  
version 2.20  
version 2.50  
version 1.00  
PROMATE II:  
PICSTART Plus:  
MPASM:  
MPLAB-C18:  
CAN-TOOL:  
Not available at time of  
printing.  
Note: Please read all associated README.TXT  
files that are supplied with the develop-  
ment tools. These "read me" files will dis-  
cuss product support and any known  
limitations.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 351  
PIC18CXX8  
NOTES:  
DS30475A-page 352  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
INDEX  
BSF .......................... 269, 270, 271, 272, 273, 275, 276, 291  
BTFSC ............................................................................. 274  
BTFSS ............................................................................. 274  
BTG ................................................................................. 275  
Bus Activity Wake-up Interrupt ........................................ 225  
Bus Collision During a RESTART Condition ................... 165  
Bus Collision During a START Condition ........................ 163  
Bus Collision During a STOP Condition .......................... 166  
Bus Off ............................................................................. 226  
A
A/D ................................................................................... 227  
A/D Converter Flag (ADIF Bit) ................................. 230  
A/D Converter Interrupt, Configuring ....................... 231  
ADCON0 Register ............................................ 227, 229  
ADCON1 Register ............................................ 227, 228  
ADCON2 Register .................................................... 227  
ADRES Register .............................................. 227, 230  
Analog Port Pins, Configuring .................................. 233  
Block Diagram .......................................................... 230  
Block Diagram, Analog Input Model ......................... 231  
Configuring the Module ............................................ 231  
Conversion Clock (TAD) ........................................... 233  
Conversion Status (GO/DONE Bit) .......................... 230  
Conversions ............................................................. 234  
Converter Characteristics ........................................ 339  
converter characteristics .......................................... 318  
Effects of a RESET .................................................. 250  
Equations ................................................................. 232  
Operation During SLEEP ......................................... 250  
Sampling Requirements ........................................... 232  
Sampling Time ......................................................... 232  
Special Event Trigger (CCP) ............................ 130, 234  
Timing Diagram ........................................................ 340  
Absolute Maximum Ratings ............................................. 311  
Acknowledge Error ........................................................... 223  
ADCON0 Register .................................................... 227, 229  
GO/DONE Bit ........................................................... 230  
ADCON1 Register .................................................... 227, 228  
ADCON2 Register ............................................................ 227  
ADDLW ............................................................................ 267  
ADDWF ............................................................................ 267  
ADDWFC ......................................................................... 268  
ADRES Register ...................................................... 227, 230  
AKS .................................................................................. 156  
Analog-to-Digital Converter. See A/D  
C
CALL ................................................................................ 276  
CAN Buffers and Protocol Engine Block Diagram ........... 184  
Capture (CCP Module) .................................................... 128  
Block Diagram ......................................................... 129  
CCP Pin Configuration ............................................ 128  
CCPR1H:CCPR1L Registers .................................. 128  
Changing Between Capture Prescalers .................. 129  
Software Interrupt .................................................... 129  
Timer1 Mode Selection ............................................ 128  
Capture/Compare/PWM (CCP) ....................................... 127  
Capture Mode. See Capture  
CCP1 ....................................................................... 128  
CCPR1H Register ........................................... 128  
CCPR1L Register ............................................ 128  
CCP2 ....................................................................... 128  
CCPR2H Register ........................................... 128  
CCPR2L Register ............................................ 128  
Compare Mode. See Compare  
Interaction of Two CCP Modules ............................. 128  
PWM Mode. See PWM  
Timer Resources ..................................................... 128  
Timing Diagram ....................................................... 327  
Clocking Scheme ............................................................... 45  
CLRF ....................................................................... 277, 295  
CLRWDT ......................................................................... 277  
Code Examples  
ANDLW ............................................................................ 268  
ANDWF ............................................................................ 269  
Assembler  
Loading the SSPBUF Register ................................ 142  
Code Protection ....................................................... 251, 259  
COMF .............................................................................. 278  
Comparator Interrupts ...................................................... 241  
Comparator Operation ..................................................... 239  
Comparator Reference .................................................... 239  
Compare (CCP Module) .................................................. 130  
Block Diagram ......................................................... 130  
CCP Pin Configuration ............................................ 130  
CCPR1H:CCPR1L Registers .................................. 130  
Software Interrupt .................................................... 130  
Special Event Trigger ...................... 119, 125, 130, 234  
Timer1 Mode Selection ............................................ 130  
Configuration Bits ............................................................ 251  
Configuration Mode ......................................................... 210  
Configuring the Voltage Reference .................................. 243  
CPFSEQ .......................................................................... 278  
CPFSGT .......................................................................... 279  
CPFSLT ........................................................................... 279  
CRC Error ........................................................................ 223  
CVRCON Register ........................................................... 243  
MPASM Assembler .................................................. 305  
B
Baud Rate Generator ....................................................... 153  
BCF .................................................................................. 270  
BF .................................................................................... 156  
Bit Error ............................................................................ 223  
Bit Timing ......................................................................... 218  
Bit Timing Configuration Registers .................................. 222  
Block Diagrams  
Baud Rate Generator ............................................... 153  
Comparator I/O Operating Modes ............................ 238  
PORTK ..................................................................... 108  
SSP (SPI Mode) ....................................................... 141  
Timer3 ...................................................................... 124  
BOR. See Brown-out Reset  
BRG ................................................................................. 153  
Brown-out Reset (BOR) ............................................. 30, 251  
Timing Diagram ........................................................ 325  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 353  
PIC18CXX8  
Bus Collision timing ................................................. 162  
Clock Arbitration ...................................................... 161  
Clock Arbitration Timing (Master Transmit) ............. 161  
General Call Address Support ................................. 150  
Master Mode 7-bit Reception timing ........................ 158  
Master Mode Operation ........................................... 152  
Master Mode Start Condition ................................... 154  
Master Mode Transmission ..................................... 156  
Master Mode Transmit Sequence ............................ 152  
Multi-Master Mode ................................................... 162  
Repeat START Condition timing .............................. 155  
STOP Condition Receive or Transmit timing ........... 160  
STOP Condition timing ............................................ 159  
Waveforms for 7-bit Reception ................................ 149  
Waveforms for 7-bit Transmission ........................... 149  
ID Locations ............................................................. 251, 259  
INCF ................................................................................ 282  
INCFSNZ ......................................................................... 283  
INCFSZ ............................................................................ 283  
In-Circuit Serial Programming (ICSP) ...................... 251, 259  
Indirect Addressing ............................................................ 62  
FSR Register ............................................................. 61  
Information Processing Time ........................................... 219  
Initiating Message Transmission ..................................... 211  
Instruction Cycle ................................................................ 45  
Instruction Flow/Pipelining ................................................. 46  
Instruction Format ............................................................ 263  
Instruction Set .................................................................. 261  
ADDLW .................................................................... 267  
ADDWF .................................................................... 267  
ADDWFC ................................................................. 268  
ANDLW .................................................................... 268  
ANDWF .................................................................... 269  
BCF ......................................................................... 270  
BSF .................. 269, 270, 271, 272, 273, 275, 276, 291  
BTFSC ..................................................................... 274  
BTFSS ..................................................................... 274  
BTG ......................................................................... 275  
CALL ........................................................................ 276  
CLRF ............................................................... 277, 295  
CLRWDT ................................................................. 277  
COMF ...................................................................... 278  
CPFSEQ .................................................................. 278  
CPFSGT .................................................................. 279  
CPFSLT ................................................................... 279  
DAW ........................................................................ 280  
DECF ....................................................................... 280  
DECFSNZ ................................................................ 281  
DECFSZ .................................................................. 281  
GOTO ...................................................................... 282  
INCF ........................................................................ 282  
INCFSNZ ................................................................. 283  
INCFSZ .................................................................... 283  
IORLW ..................................................................... 284  
IORWF ..................................................................... 284  
MOVFP .................................................................... 286  
MOVLB .................................................................... 285  
MOVLR ............................................................ 285, 286  
MOVLW ................................................................... 287  
MOVWF ................................................................... 287  
MULLW .................................................................... 288  
MULWF .................................................................... 288  
NEGW ..................................................................... 289  
NOP ......................................................................... 289  
RETFIE ............................................................ 291, 292  
RETLW .................................................................... 292  
D
Data Memory ......................................................................48  
General Purpose Registers ........................................48  
Special Function Registers ........................................48  
DAW .................................................................................280  
DC Characteristics ...........................313, 314, 315, 316, 317  
DECF ...............................................................................280  
DECFSNZ ........................................................................281  
DECFSZ ...........................................................................281  
Device Differences ...........................................................349  
Device Functionality .........................................................184  
Direct Addressing ...............................................................62  
E
Electrical Characteristics ..................................................311  
Errata ...................................................................................7  
Error Detection .................................................................223  
Error Interrupt ...................................................................226  
Error Modes .....................................................................224  
Error Modes and Error Counters ......................................223  
Error States ......................................................................223  
F
Filter/Mask Truth Table ....................................................216  
Firmware Instructions .......................................................261  
Form Error ........................................................................223  
G
General Call Address Sequence ......................................150  
General Call Address Support .........................................150  
GOTO ...............................................................................282  
H
Hard Synchronization .......................................................220  
I
I/O Ports .............................................................................89  
2
I C (SSP Module) .............................................................147  
ACK Pulse ................................................147, 148, 149  
Addressing ...............................................................148  
Block Diagram ..........................................................147  
Read/Write Bit Information (R/W Bit) ............... 148, 149  
Reception .................................................................149  
Serial Clock (RC3/SCK/SCL) ...................................149  
Slave Mode ..............................................................147  
Timing Diagram, Data ..............................................334  
Timing Diagram, Start/Stop Bits ...............................333  
Transmission ............................................................149  
2
I C Master Mode Reception .............................................156  
2
I C Master Mode Restart Condition .................................155  
2
I C Module  
Acknowledge Sequence timing ................................159  
Baud Rate Generator ...............................................153  
BRG Block Diagram .................................................153  
BRG Reset due to SDA Collision .............................164  
BRG Timing .............................................................153  
Bus Collision  
Acknowledge ....................................................162  
Restart Condition .............................................165  
Restart Condition Timing (Case1) ....................165  
Restart Condition Timing (Case2) ....................165  
START Condition .............................................163  
Start Condition Timing ............................. 163, 164  
STOP Condition ...............................................166  
STOP Condition Timing (Case1) .....................166  
STOP Condition Timing (Case2) .....................166  
Transmit Timing ...............................................162  
DS30475A-page 354  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
RETURN .................................................................. 293  
RLCF ........................................................................ 293  
RLNCF ..................................................................... 294  
RRCF ....................................................................... 294  
RRNCF .................................................................... 295  
SLEEP ..................................................................... 296  
SUBLW .................................................................... 297  
SUBWF ............................................................ 297, 298  
SUBWFB .................................................................. 299  
SWAPF .................................................................... 300  
TABLRD ................................................................... 301  
TABLWT .................................................................. 302  
TSTFSZ ................................................................... 303  
XORLW .................................................................... 303  
XORWF .................................................................... 304  
Summary Table ........................................................ 264  
INT Interrupt (RB0/INT). See Interrupt Sources  
MPLAB Integrated Development  
Environment Software ..................................................... 305  
MULLW ............................................................................ 288  
Multi-Master Mode ........................................................... 162  
Multiply Examples  
16 x 16 Routine ......................................................... 72  
16 x 16 Signed Routine ............................................. 73  
8 x 8 Routine ............................................................. 72  
8 x 8 Signed Routine ................................................. 72  
MULWF ............................................................................ 288  
N
NEGW ............................................................................. 289  
NOP ................................................................................. 289  
Normal Mode ................................................................... 210  
O
OPTION_REG Register ..................................................... 64  
PS2:PS0 Bits ........................................................... 115  
PSA Bit .................................................................... 115  
T0CS Bit .................................................................. 115  
T0SE Bit .................................................................. 115  
OSCCON ........................................................................... 25  
OSCCON Register ............................................................. 25  
Oscillator Configuration ............................................. 21, 251  
HS .............................................................................. 21  
HS + PLL ................................................................... 21  
LP .............................................................................. 21  
RC ....................................................................... 21, 23  
RCIO .......................................................................... 21  
XT .............................................................................. 21  
Oscillator Tolerance ......................................................... 222  
Oscillator, Timer1 ............................................. 117, 119, 123  
Oscillator, Timer3 ............................................................. 125  
Oscillator, WDT ................................................................ 255  
Overview .......................................................................... 183  
INTCON Register  
RBIF Bit ...................................................................... 91  
2
Inter-Integrated Circuit. See I C  
Interrupt Acknowledge ..................................................... 226  
Interrupt Sources ....................................................... 75, 251  
A/D Conversion Complete ....................................... 231  
Capture Complete (CCP) ......................................... 129  
Compare Complete (CCP) ....................................... 130  
Interrupt-on-Change (RB7:RB4 ) ............................... 91  
RB0/INT Pin, External ................................................ 88  
SSP Receive/Transmit Complete ............................ 135  
TMR0 Overflow ........................................................ 116  
TMR1 Overflow ................................................ 117, 119  
TMR2 to PR2 Match ................................................ 122  
TMR2 to PR2 Match (PWM) ............................ 121, 132  
TMR3 Overflow ................................................ 123, 125  
USART Receive/Transmit Complete ....................... 167  
Interrupts .......................................................................... 225  
Interrupts, Enable Bits  
CCP1 Enable (CCP1IE Bit) ...................................... 129  
Interrupts, Flag Bits  
P
Packaging ........................................................................ 343  
Parallel Slave Port (PSP) ........................................... 95, 109  
Block Diagram ......................................................... 109  
RE0/RD ................................................................... 109  
RE1/WR ................................................................... 109  
RE2/CS .................................................................... 109  
Read Waveforms ..................................................... 111  
Select (PSPMODE Bit) ...................................... 95, 109  
Timing Diagram ....................................................... 328  
Write Waveforms ..................................................... 111  
Phase Buffer Segments ................................................... 219  
PICDEM 1 Low Cost PICmicro Demo Board ................... 307  
PICDEM 2 Low Cost PIC16CXX Demo Board ................ 307  
PICDEM 3 Low Cost PIC16CXXX Demo Board .............. 308  
PICSTART Plus Entry Level Development System ......... 307  
Pin Functions  
A/D Converter Flag (ADIF Bit) ................................. 230  
CCP1 Flag (CCP1IF Bit) .......................... 128, 129, 130  
Interrupt on Change (RB7:RB4) Flag (RBIF Bit) ........ 91  
IORLW ............................................................................. 284  
IORWF ............................................................................. 284  
K
KEELOQ Evaluation and Programming Tools ................... 308  
L
Lengthening a Bit Period .................................................. 221  
Listen Only Mode ............................................................. 210  
Loopback Mode ............................................................... 211  
M
Memory Organization  
Data Memory ............................................................. 48  
Program Memory ....................................................... 41  
Message Acceptance Filter .............................................. 217  
Message Acceptance Filters and Masks ......................... 216  
Message Reception ......................................................... 213  
Message Reception Flowchart ......................................... 215  
MOVFP ............................................................................ 286  
MOVLB ............................................................................ 285  
MOVLR .................................................................... 285, 286  
MOVLW ........................................................................... 287  
MOVWF ........................................................................... 287  
AVDD .......................................................................... 20  
AVSS .......................................................................... 20  
MCLR/VPP ................................................................. 12  
OSC1/CLKI ................................................................ 12  
OSC2/CLKO .............................................................. 12  
RA0/AN0 .................................................................... 13  
RA1/AN1 .................................................................... 13  
RA2/AN2/VREF- ......................................................... 13  
RA3/AN3/VREF+ ........................................................ 13  
RA4/T0CKI ................................................................ 13  
RA5/AN4/SS/LVDIN .................................................. 13  
RA6 ............................................................................ 13  
RB0/INT0 ................................................................... 14  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 355  
PIC18CXX8  
RB1/INT1 ...................................................................14  
RB2/INT2 ...................................................................14  
RB3/INT3 ...................................................................14  
RB4 ............................................................................14  
RB5 ............................................................................14  
RB6 ............................................................................14  
RB7 ............................................................................14  
RC0/T1OSO/T1CKI ...................................................15  
RC1/T1OSI ................................................................15  
RC2/CCP1 .................................................................15  
RC3/SCK/SCL ...........................................................15  
RC4/SDI/SDA ............................................................15  
RC5/SDO ...................................................................15  
RC6/TX/CK ................................................................15  
RC7/RX/DT ................................................................15  
RD0/AD0 ....................................................................16  
RD0/PSP0 ..................................................................16  
RD1/AD1 ....................................................................16  
RD1/PSP1 ..................................................................16  
RD2/AD2 ....................................................................16  
RD2/PSP2 ..................................................................16  
RD3/AD3 ....................................................................16  
RD3/PSP3 ..................................................................16  
RD4/AD4 ....................................................................16  
RD4/PSP4 ..................................................................16  
RD5/AD5 ....................................................................16  
RD5/PSP5 ..................................................................16  
RD6/AD6 ....................................................................16  
RD6/PSP6 ..................................................................16  
RD7/AD7 ....................................................................16  
RD7/PSP7 ..................................................................16  
RE0/ALE ....................................................................17  
RE0/RD ......................................................................17  
RE1/OE ......................................................................17  
RE1/WR .....................................................................17  
RE2/CS ......................................................................17  
RE2/WRL ...................................................................17  
RE3/WRH ..................................................................17  
RE4 ............................................................................17  
RE5 ............................................................................17  
RE6 ............................................................................17  
RE7/CCP2 .................................................................17  
RF0/AN5 ....................................................................18  
RF1/AN6 ....................................................................18  
RF2/AN7 ....................................................................18  
RF3/AN8 ....................................................................18  
RF4/AN9 ....................................................................18  
RF5/AN10 ..................................................................18  
RF6/AN11 ..................................................................18  
RF7 ............................................................................18  
RG0/CANTX1 ............................................................19  
RG1/CANTX2 ............................................................19  
RG2/CANRX ..............................................................19  
RG3 ............................................................................19  
RG4 ............................................................................19  
RH0/A16 ....................................................................19  
RH1/A17 ....................................................................19  
RH2/A18 ....................................................................19  
RH3/A19 ....................................................................19  
RH4/AN12 ..................................................................19  
RH5/AN13 ..................................................................19  
RH6/AN14 ..................................................................19  
RH7/AN15 ..................................................................19  
RJ0/AD8 .....................................................................20  
RJ1/AD9 .....................................................................20  
RJ2/AD10 ...................................................................20  
RJ3/AD11 ...................................................................20  
RK0 ............................................................................ 20  
RK1 ............................................................................ 20  
RK2 ............................................................................ 20  
RK3 ............................................................................ 20  
VDD ............................................................................ 20  
VSS ............................................................................ 20  
Pointer, FSR ...................................................................... 61  
POR. See Power-on Reset  
PORTA  
Initialization ................................................................ 89  
PORTA Register ........................................................ 89  
RA3:RA0 and RA5 Port Pins ..................................... 89  
RA4/T0CKI Pin .......................................................... 90  
TRISA Register .......................................................... 89  
PORTB  
Initialization ................................................................ 91  
PORTB Register ........................................................ 91  
RB0/INT Pin, External ................................................ 88  
RB3:RB0 Port Pins .................................................... 91  
RB7:RB4 Interrupt on Change Flag (RBIF Bit) .......... 91  
RB7:RB4 Port Pins .................................................... 91  
TRISB Register .......................................................... 91  
PORTC  
Block Diagram ........................................................... 93  
Initialization ................................................................ 93  
PORTC Register ........................................................ 93  
RC3/SCK/SCL Pin ................................................... 149  
RC7/RX/DT Pin ........................................................ 169  
TRISC Register .................................................. 93, 167  
PORTD ............................................................................ 109  
Block Diagram ........................................................... 95  
Initialization ................................................................ 95  
Parallel Slave Port (PSP) Function ............................ 95  
PORTD Register ........................................................ 95  
TRISD Register .......................................................... 95  
PORTE  
Block Diagram ........................................................... 97  
Initialization ................................................................ 97  
PORTE Register ........................................................ 97  
PSP Mode Select (PSPMODE Bit) .................... 95, 109  
RE0/RD ................................................................... 109  
RE1/WR ................................................................... 109  
RE2/CS .................................................................... 109  
TRISE Register .......................................................... 97  
PORTF  
Block Diagram ........................................................... 99  
Block Diagram of RF7 Pin ....................................... 100  
C1OUT, C2OUT ........................................................ 99  
Initialization ................................................................ 99  
PORTF Register ........................................................ 99  
RF6/RF3 and RF0 Pins Block Diagram ................... 100  
TRISF ........................................................................ 99  
PORTG  
Initialization .............................................................. 101  
PORTG .................................................................... 101  
RG0/CANTX0 Pin Block Diagram ............................ 101  
RG1/CANTX1 Pin Block Diagram ............................ 102  
RG2 Pin Block Diagram ........................................... 102  
RG4/RG3 Pins Block Diagram ................................. 102  
TRISG ...................................................................... 101  
PORTH  
Initialization .............................................................. 104  
PORTH .................................................................... 104  
RH3/RH0 Pins Block Diagram ................................. 104  
RH7/RH4 Pins Block Diagram ................................. 104  
TRISH ...................................................................... 104  
DS30475A-page 356  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
PORTJ  
Initialization .............................................................. 106  
PORTJ ..................................................................... 106  
TRISJ ....................................................................... 106  
PORTJ Block Diagram ..................................................... 106  
PORTK  
Initialization .............................................................. 108  
PORTK ..................................................................... 108  
TRISK ...................................................................... 108  
Postscaler, WDT  
Assignment (PSA Bit) .............................................. 115  
Rate Select (PS2:PS0 Bits) ..................................... 115  
Switching Between Timer0 and WDT ...................... 115  
Power-down Mode. See SLEEP  
Power-on Reset (POR) .............................................. 30, 251  
Oscillator Start-up Timer (OST) ......................... 30, 251  
Power-up Timer (PWRT) ................................... 30, 251  
Time-out Sequence .................................................... 31  
Time-out Sequence on Power-up ........................ 32, 33  
Timing Diagram ........................................................ 325  
Prescaler, Capture ........................................................... 129  
Prescaler, Timer0 ............................................................. 115  
Assignment (PSA Bit) .............................................. 115  
Rate Select (PS2:PS0 Bits) ..................................... 115  
Switching Between Timer0 and WDT ...................... 115  
Prescaler, Timer1 ............................................................. 118  
Prescaler, Timer2 ............................................................. 132  
PRO MAT“ II Universal Programmer ............................... 307  
Program Counter  
PCL Register .............................................................. 45  
PCLATH Register ...................................................... 45  
Program Memory ............................................................... 41  
Program Verification ........................................................ 259  
Programmable ................................................................. 251  
Programming Time Segments ......................................... 222  
Programming, Device Instructions ................................... 261  
Propagation Segment ...................................................... 219  
PSPCON Register  
Registers  
SSPSTAT ................................................................ 136  
T3CON  
Diagram ........................................................... 123  
Section ............................................................ 123  
RESET ....................................................................... 29, 251  
Timing Diagram ....................................................... 325  
Resynchronization ........................................................... 220  
RETFIE .................................................................... 291, 292  
RETLW ............................................................................ 292  
RETURN .......................................................................... 293  
Revision History ............................................................... 349  
RLCF ............................................................................... 293  
RLNCF ............................................................................. 294  
RRCF ............................................................................... 294  
RRNCF ............................................................................ 295  
S
Sample Point ................................................................... 219  
SCI. See USART  
SCK ................................................................................. 141  
SDI ................................................................................... 141  
SDO ................................................................................. 141  
Serial Clock, SCK ............................................................ 141  
Serial Communication Interface. See USART  
Serial Data In, SDI ........................................................... 141  
Serial Data Out, SDO ...................................................... 141  
Serial Peripheral Interface. See SPI  
Shortening a Bit Period .................................................... 221  
Simplified Block Diagram of On-Chip Reset Circuit ........... 29  
Slave Select Synchronization .......................................... 144  
Slave Select, SS .............................................................. 141  
SLEEP ............................................................. 251, 257, 296  
Software Simulator (MPLAB-SIM) ................................... 306  
Special Event Trigger. See Compare  
Special Features of the CPU ................................... 247, 251  
Special Function Registers ................................................ 48  
SPI  
Master Mode ............................................................ 143  
Serial Clock ............................................................. 141  
Serial Data In ........................................................... 141  
Serial Data Out ........................................................ 141  
Slave Select ............................................................. 141  
SPI Clock ................................................................. 143  
SPI Mode ................................................................. 141  
SPI Module  
PSPMODE Bit .................................................... 95, 109  
PWM (CCP Module) ........................................................ 132  
Block Diagram .......................................................... 132  
CCPR1H:CCPR1L Registers ................................... 132  
Duty Cycle ................................................................ 132  
Example Frequencies/Resolutions .......................... 133  
Output Diagram ........................................................ 132  
Period ....................................................................... 132  
Setup for PWM Operation ........................................ 133  
TMR2 to PR2 Match ........................................ 121, 132  
Slave Mode .............................................................. 144  
Slave Select Synchronization .................................. 144  
Slave Synch Timing ................................................. 144  
Slave Timing with CKE = 0 ...................................... 145  
Slave Timing with CKE = 1 ...................................... 145  
SS .................................................................................... 141  
SSP ................................................................................. 135  
Block Diagram (SPI Mode) ...................................... 141  
Q
Q-Clock ............................................................................ 132  
R
RAM. See Data Memory  
RCSTA Register  
2
2
I C Mode. See I C  
SPEN Bit .................................................................. 167  
Receive Buffers ................................................................ 213  
Receive Buffers Diagram ................................................. 214  
Receive Interrupt .............................................................. 225  
Receive Message Buffering ............................................. 213  
Receiver Error Passive .................................................... 226  
Receiver Overrun ............................................................. 226  
Receiver Warning ............................................................ 226  
Register File ....................................................................... 48  
SPI Mode ................................................................. 141  
SPI Mode. See SPI  
SSPBUF .................................................................. 143  
SSPCON1 ............................................................... 138  
SSPCON2 ............................................................... 140  
SSPSR .................................................................... 143  
SSPSTAT ................................................................ 136  
TMR2 Output for Clock Shift ............................ 121, 122  
SSP Module  
SPI Master Mode ..................................................... 143  
SPI Slave Mode ....................................................... 144  
SSPCON1 ....................................................................... 138  
SSPCON2 ....................................................................... 140  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 357  
PIC18CXX8  
SSPOV .............................................................................156  
SSPSTAT .........................................................................136  
SSPSTAT Register  
Master Mode Transmit Clock Arbitration ................. 161  
Repeat Start Condition ............................................ 155  
Slave Synchronization ............................................. 144  
Slow Rise Time .......................................................... 33  
SPI Mode Timing (Master Mode) SPI Mode  
R/W Bit ............................................................. 148, 149  
Stuff Error .........................................................................223  
SUBLW ............................................................................297  
SUBWF .................................................................... 297, 298  
SUBWFB ..........................................................................299  
SWAPF ............................................................................300  
Synchronization ................................................................220  
Synchronization Rules .....................................................220  
Synchronization Segment ................................................219  
Synchronous Serial Port. See SSP  
Master Mode Timing Diagram ......................... 143  
SPI Mode Timing (Slave Mode with CKE = 0) ......... 145  
SPI Mode Timing (Slave Mode with CKE = 1) ......... 145  
Stop Condition Receive or Transmit ........................ 160  
Time-out Sequence on Power-up .............................. 32  
USART Asynchronous Master Transmission .......... 174  
USART Asynchronous Reception ............................ 176  
USART Synchronous Reception ............................. 179  
USART Synchronous Transmission ........................ 178  
Wake-up from SLEEP via Interrupt .......................... 258  
Timing Diagrams and Specifications ............................... 322  
A/D Conversion ........................................................ 340  
Brown-out Reset (BOR) ........................................... 325  
Capture/Compare/PWM (CCP) ............................... 327  
CLKOUT and I/O ..................................................... 324  
External Clock .......................................................... 322  
T
TABLRD ...........................................................................301  
TABLWT ...........................................................................302  
Time Quanta ....................................................................219  
Timer Modules  
Timer3  
Block Diagram ..................................................124  
Timer0 ..............................................................................113  
Clock Source Edge Select (T0SE Bit) ......................115  
Clock Source Select (T0CS Bit) ...............................115  
Overflow Interrupt ....................................................116  
Prescaler. See Prescaler, Timer0  
Timing Diagram ........................................................326  
Timer1 ..............................................................................117  
Block Diagram ..........................................................118  
Oscillator .......................................................... 117, 119  
Overflow Interrupt ............................................ 117, 119  
Prescaler. See Prescaler, Timer1  
Special Event Trigger (CCP) ............................ 119, 130  
Timing Diagram ........................................................326  
TMR1H Register ......................................................117  
TMR1L Register .......................................................117  
TMR3L Register .......................................................123  
Timer2  
2
I C Bus Data ............................................................ 334  
2
I C Bus START/STOP Bits ...................................... 333  
Oscillator Start-up Timer (OST) ............................... 325  
Parallel Slave Port (PSP) ......................................... 328  
Power-up Timer (PWRT) ......................................... 325  
Reset ....................................................................... 325  
Timer0 and Timer1 .................................................. 326  
USART Synchronous Receive ( Master/Slave) ....... 338  
USART Synchronous Transmission ( Master/Slave) 337  
Watchdog Timer (WDT) ........................................... 325  
Transmit Interrupt ............................................................ 225  
Transmit Message Aborting ............................................. 211  
Transmit Message Buffering ............................................ 211  
Transmit Message Buffers ............................................... 211  
Transmit Message flowchart ............................................ 212  
Transmit Message Priority ............................................... 211  
Transmitter Error Passive ................................................ 226  
Transmitter Warning ........................................................ 226  
TRISE Register .................................................................. 97  
TSTFSZ ........................................................................... 303  
TXSTA Register  
Block Diagram ..........................................................122  
Postscaler. See Postscaler, Timer2  
PR2 Register .................................................... 121, 132  
Prescaler. See Prescaler, Timer2  
SSP Clock Shift ................................................ 121, 122  
TMR2 Register .........................................................121  
TMR2 to PR2 Match Interrupt ..................121, 122, 132  
Timer3 ..............................................................................123  
Oscillator .......................................................... 123, 125  
Overflow Interrupt ............................................ 123, 125  
Special Event Trigger (CCP) ....................................125  
TMR3H Register ......................................................123  
Timing Diagrams  
BRGH Bit ................................................................. 169  
U
Universal Synchronous Asynchronous Receiver  
Transmitter. See USART  
USART ............................................................................. 167  
Asynchronous Mode ................................................ 173  
Master Transmission ....................................... 174  
Receive Block Diagram ................................... 175  
Reception ........................................................ 176  
Transmit Block Diagram .................................. 173  
Baud Rate Generator (BRG) ................................... 169  
Baud Rate Error, Calculating ........................... 169  
Baud Rate Formula ......................................... 169  
High Baud Rate Select (BRGH Bit) ................. 169  
Sampling .......................................................... 169  
Serial Port Enable (SPEN Bit) ................................. 167  
Synchronous Master Mode ...................................... 177  
Reception ........................................................ 179  
Timing Diagram, Synchronous Receive .......... 338  
Timing Diagram, Synchronous Transmission .. 337  
Transmission ................................................... 178  
Synchronous Slave Mode ........................................ 180  
Acknowledge Sequence Timing ...............................159  
Baud Rate Generator with Clock Arbitration ............153  
BRG Reset Due to SDA Collision ............................164  
Bus Collision  
START Condition Timing .................................163  
Bus Collision During a RESTART Condition  
(Case 1) ...................................................................165  
Bus Collision During a RESTART Condition  
(Case2) ....................................................................165  
Bus Collision During a START Condition (SCL = 0) 164  
Bus Collision During a STOP Condition ...................166  
Bus Collision for Transmit and Acknowledge ...........162  
2
I C Bus Data ............................................................336  
2
I C Master Mode First Start bit timing ......................154  
2
I C Master Mode Reception timing ..........................158  
2
I C Master Mode Transmission timing .....................157  
DS30475A-page 358  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
W
Wake-up from SLEEP .............................................. 251, 257  
Timing Diagram ........................................................ 258  
Watchdog Timer (WDT) ........................................... 251, 255  
Block Diagram .......................................................... 256  
Postscaler. See Postscaler, WDT  
Programming Considerations .................................. 255  
RC Oscillator ............................................................ 255  
Time-out Period ....................................................... 255  
Timing Diagram ........................................................ 325  
Waveform for General Call Address Sequence ............... 150  
WCOL .............................................................. 154, 156, 159  
WCOL Status Flag ........................................................... 154  
WWW, On-Line Support ...................................................... 7  
X
XORLW ............................................................................ 303  
XORWF ............................................................................ 304  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 359  
PIC18CXX8  
NOTES:  
DS30475A-page 360  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip’s development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-480-792-7302 for the rest of the world.  
ConnectingtotheMicrochipInternetWebSite  
001024  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User’s Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
Trademarks: The Microchip name, logo, PIC, PICmicro,  
PICMASTER, PICSTART, PRO MATE, KEELOQ, SEEVAL,  
MPLAB and The Embedded Control Solutions Company  
are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
Total Endurance, ICSP, In-Circuit Serial Programming,  
FilterLab, MXDEV, microID, FlexROM, fuzzyLAB, MPASM,  
MPLINK, MPLIB, PICDEM, ICEPIC and Migratable  
Memory are trademarks and SQTP is a service mark of  
Microchip in the U.S.A.  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
• Job Postings  
• Microchip Consultant Program Member Listing  
All other trademarks mentioned herein are the property of  
their respective companies.  
• Links to other useful web sites related to  
Microchip Products  
• Conferences for products, Development Systems,  
technical information and more  
• Listing of seminars and events  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 361  
PIC18CXX8  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS30475A  
Device:  
PIC18CXX8  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS30475A-page362  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
PIC18CXX8 PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales offic.e  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature Package  
Range  
Pattern  
a)  
PIC18LC658 - I/L 301 = Industrial temp., PLCC  
package, Extended VDD limits, QTP pattern  
#301.  
b)  
c)  
PIC18LC858 - I/PT = Industrial temp., TQFP  
package, Extended VDD limits.  
Device  
PIC18CXX8(1), PIC18CXX8T(2)  
VDD range 4.2V to 5.5V  
;
PIC18C658 - E/L = Extended temp., PLCC  
package, normal VDD limits.  
PIC18LCXX5(1), PIC18LCXX8T(2)  
VDD range 2.5V to 5.5V  
;
Temperature Range  
Package  
I
E
=
=
-40°C to +85°C (Industrial)  
-40°C to +125°C (Extended)  
Note 1:  
C
LC  
T
=
=
=
Standard Voltage Range  
Wide Voltage Range  
in tape and reel PLCC, and TQFP  
packages only.  
CL  
PT  
L
=
=
=
Windowed JCERPACK  
TQFP (Thin Quad Flatpack)  
PLCC  
2:  
3:  
CL devices are UV erasable and can be pro-  
grammed to any device configuration. CL  
devices meet the electrical requirement of  
each oscillator type (including LC devices).  
Pattern  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of  
each oscillator type.  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 363  
PIC18CXX8  
NOTES:  
DS30475A-page 364  
Advanced Information  
2000 Microchip Technology Inc.  
PIC18CXX8  
NOTES:  
2000 Microchip Technology Inc.  
Advanced Information  
DS30475A-page 365  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC (continued)  
Corporate Office  
China - Beijing  
Microchip Technology Beijing Office  
Unit 915  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
New China Hong Kong Manhattan Bldg.  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
#07-02 Prime Centre  
Singapore, 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Rocky Mountain  
Taiwan  
Microchip Technology Taiwan  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
China - Shanghai  
Microchip Technology Shanghai Office  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-7456  
Atlanta  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3838 Fax: 978-692-3821  
EUROPE  
Denmark  
Microchip Technology Denmark ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
Hong Kong  
Microchip Asia Pacific  
RM 2101, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
France  
India  
Arizona Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Microchip Technology Inc.  
India Liaison Office  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
Divyasree Chambers  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann Ring 125  
D-81739 Munich, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Italy  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Tel: 972-818-7423 Fax: 972-818-2924  
Dayton  
Two Prestige Place, Suite 130  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
Japan  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Korea  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Los Angeles  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
United Kingdom  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Tel: 949-263-1888 Fax: 949-263-1338  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
New York  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
San Jose  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
10/01/00  
Tel: 408-436-7950 Fax: 408-436-7955  
Toronto  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999. The  
Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs and microperipheral  
products. In addition, Microchip’s quality  
system for the design and manufacture of  
development systems is ISO 9001 certified.  
All rights reserved. © 2000 Microchip Technology Incorporated. Printed in the USA. 11/00  
Printed on recycled paper.  
Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by  
updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual  
property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with  
express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellec-  
tual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights  
reserved. All other trademarks mentioned herein are the property of their respective companies.  
DS30475A-page 366  
Advanced Information  
2000 Microchip Technology Inc.  

相关型号:

PIC18C858I/CLXXX

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,LDCC,84PIN,CERAMIC
MICROCHIP

PIC18C858I/LXXX

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,LDCC,84PIN,PLASTIC
MICROCHIP

PIC18C858I/PTXXX

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,TQFP,80PIN,PLASTIC
MICROCHIP

PIC18C858T

High-Performance Microcontrollers with CAN Module
MICROCHIP

PIC18C858T-E/CL

High-Performance Microcontrollers with CAN Module
MICROCHIP

PIC18C858T-E/L

High-Performance Microcontrollers with CAN Module
MICROCHIP

PIC18C858T-E/PT

High-Performance Microcontrollers with CAN Module
MICROCHIP

PIC18C858T-I/CL

High-Performance Microcontrollers with CAN Module
MICROCHIP

PIC18C858T-I/L

High-Performance Microcontrollers with CAN Module
MICROCHIP

PIC18C858T-I/PT

High-Performance Microcontrollers with CAN Module
MICROCHIP

PIC18C858TE/LXXX

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,LDCC,84PIN,PLASTIC
MICROCHIP

PIC18C858TE/PTXXX

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,TQFP,80PIN,PLASTIC
MICROCHIP