PIC16LF722T-E/PT [MICROCHIP]

28/40/44-Pin Flash Microcontrollers with nanoWatt XLP Technology; 28 /40/ 44引脚闪存单片机采用纳瓦XLP技术
PIC16LF722T-E/PT
型号: PIC16LF722T-E/PT
厂家: MICROCHIP    MICROCHIP
描述:

28/40/44-Pin Flash Microcontrollers with nanoWatt XLP Technology
28 /40/ 44引脚闪存单片机采用纳瓦XLP技术

闪存 微控制器
文件: 总302页 (文件大小:4540K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16F72X/PIC16LF72X  
Data Sheet  
28/40/44-Pin Flash Microcontrollers  
with nanoWatt XLP Technology  
© 2009 Microchip Technology Inc.  
DS41341E  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
rfPIC and UNI/O are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
32  
PICtail, PIC logo, REAL ICE, rfLAB, Select Mode, Total  
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA  
are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS41341E-page 2  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
28/40/44-Pin Flash Microcontrollers with nanoWatt XLP Technology  
Devices Included In This Data Sheet:  
Extreme Low-Power Management  
PIC16LF72X with nanoWatt XLP:  
PIC16F72X Devices:  
• Sleep Mode: 20 nA  
• Watchdog Timer: 500 nA  
• Timer1 Oscillator: 600 nA @ 32 kHz  
• PIC16F722  
• PIC16F723  
• PIC16F724  
• PIC16F726  
• PIC16F727  
Analog Features:  
PIC16LF72X Devices:  
• A/D Converter:  
• PIC16LF722  
• PIC16LF723  
• PIC16LF724  
• PIC16LF726  
• PIC16LF727  
- 8-bit resolution and up to 14 channels  
- Conversion available during Sleep  
- Selectable 1.024/2.048/4.096V voltage  
reference  
High-Performance RISC CPU:  
• On-chip 3.2V Regulator (PIC16F72X devices only)  
• Only 35 Instructions to Learn:  
- All single-cycle instructions except branches  
• Operating Speed:  
- DC – 20 MHz oscillator/clock input  
- DC – 200 ns instruction cycle  
• Up to 8K x 14 Words of Flash Program Memory  
• Up to 368 Bytes of Data Memory (RAM)  
• Interrupt Capability  
Peripheral Highlights:  
• Up to 35 I/O Pins and 1 Input-only Pin:  
- High-current source/sink for direct LED drive  
- Interrupt-on-pin change  
- Individually programmable weak pull-ups  
• Timer0: 8-Bit Timer/Counter with 8-Bit Prescaler  
• Enhanced Timer1:  
- Dedicated low-power 32 kHz oscillator  
- 16-bit timer/counter with prescaler  
- External Gate Input mode with toggle and  
single shot modes  
• 8-Level Deep Hardware Stack  
• Direct, Indirect and Relative Addressing modes  
• Processor Read Access to Program Memory  
• Pinout Compatible to other 28/40-pin PIC16CXXX  
and PIC16FXXX Microcontrollers  
- Interrupt-on-gate completion  
• Timer2: 8-Bit Timer/Counter with 8-Bit Period  
Register, Prescaler and Postscaler  
Special Microcontroller Features:  
• Two Capture, Compare, PWM (CCP) Modules:  
- 16-bit Capture, max. resolution 12.5 ns  
- 16-bit Compare, max. resolution 200 ns  
- 10-bit PWM, max. frequency 20 kHz  
• Addressable Universal Synchronous  
Asynchronous Receiver Transmitter (AUSART)  
• Synchronous Serial Port (SSP):  
• Precision Internal Oscillator:  
- 16 MHz or 500 kHz operation  
- Factory calibrated to ±1%, typical  
- Software tunable  
- Software selectable ÷1, ÷2, ÷4 or ÷8 divider  
• 1.8V-5.5V Operation – PIC16F72X  
• 1.8V-3.6V Operation – PIC16LF72X  
• Power-on Reset (POR), Power-up Timer (PWRT)  
and Oscillator Start-up Timer (OST)  
• Brown-out Reset (BOR):  
- SPI (Master/Slave)  
- I2CTM (Slave) with Address Mask  
• mTouchTM Sensing Oscillator Module:  
- Up to 16 input channels  
- Selectable between two trip points  
- Disable in Sleep option  
• Programmable Code Protection  
• In-Circuit Serial ProgrammingTM (ICSPTM) via Two  
Pins  
• Multiplexed Master Clear with Pull-up/Input Pin  
• Industrial and Extended Temperature Range  
• High-Endurance Flash Cell:  
- 1,000 write Flash endurance (typical)  
- Flash retention: > 40 years  
• Power-Saving Sleep mode  
© 2009 Microchip Technology Inc.  
DS41341E-page 3  
PIC16F72X/PIC16LF72X  
Program  
Memory  
Flash  
SRAM  
(bytes)  
8-bit A/D  
(ch)  
Timers  
8/16-bit  
Device  
I/Os  
Interrupts  
AUSART  
CCP  
(words)  
PIC16F722/  
PIC16LF722  
2048  
4096  
4096  
8192  
8192  
128  
192  
192  
368  
368  
25  
25  
36  
25  
36  
12  
12  
12  
12  
12  
11  
11  
14  
11  
14  
Yes  
Yes  
Yes  
Yes  
Yes  
2
2
2
2
2
2/1  
2/1  
2/1  
2/1  
2/1  
PIC16F723/  
PIC16LF723  
PIC16F724/  
PIC16LF724  
PIC16F726/  
PIC16LF726  
PIC16F727/  
PIC16LF727  
DS41341E-page 4  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
Pin Diagrams – 28-PIN PDIP/SOIC/SSOP/QFN/UQFN (PIC16F722/723/726/PIC16LF722/723/726)  
PDIP, SOIC, SSOP  
RB7/ICSPDAT  
28  
27  
26  
25  
1
2
3
4
5
6
VPP/MCLR/RE3  
(3)  
(2)  
RB6/ICSPCLK  
VCAP /SS /AN0/RA0  
RB5/AN13/CPS5/T1G  
RB4/AN11/CPS4  
AN1/RA1  
AN2/RA2  
(1)  
24  
23  
RB3/AN9/CPS3/CCP2  
RB2/AN8/CPS2  
VREF/AN3/RA3  
T0CKI/CPS6/RA4  
(3)  
(2)  
22  
21  
20  
19  
18  
17  
16  
15  
RB1/AN10/CPS1  
VCAP /SS /CPS7/AN4/RA5  
7
8
9
RB0/AN12/CPS0/INT  
VSS  
VDD  
CLKIN/OSC1/RA7  
(3)  
VSS  
10  
11  
VCAP /CLKOUT/OSC2/RA6  
RC7/RX/DT  
T1CKI/T1OSO/RC0  
RC6/TX/CK  
RC5/SDO  
(1)  
12  
13  
14  
CCP2 /T1OSI/RC1  
CCP1/RC2  
RC4/SDI/SDA  
SCL/SCK/RC3  
QFN, UQFN  
(1)  
AN2/RA2  
VREF/AN3/RA3  
1
2
3
4
5
6
7
21  
20  
19  
18  
17  
16  
15  
RB3/AN9/CPS3/CCP2  
RB2/AN8/CPS2  
RB1/AN10/CPS1  
RB0/AN12/CPS0/INT  
VDD  
T0CKI/CPS6/RA4  
PIC16F722/723/726/  
PIC16LF722/723/726  
(3)  
(2)  
VCAP /SS /CPS7/AN4/RA5  
VSS  
CLKIN/OSC1/RA7  
VSS  
(3)  
VCAP /CLKOUT/OSC2/RA6  
RC7/RX/DT  
Note 1: CCP2 pin location may be selected as RB3 or RC1.  
2: SS pin location may be selected as RA5 or RA0.  
3: PIC16F722/723/726 devices only.  
© 2009 Microchip Technology Inc.  
DS41341E-page 5  
PIC16F72X/PIC16LF72X  
TABLE 1:  
28-PIN PDIP/SOIC/SSOP/QFN/UQFN SUMMARY  
(PIC16F722/723/726/PIC16LF722/723/726)  
28-Pin  
28-Pin  
QFN,  
UQFN  
PDIP,  
SOIC,  
SSOP  
I/O  
A/D  
Cap Sensor  
Timers  
CCP  
AUSART  
SSP  
Interrupt Pull-Up  
Basic  
(4)  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RA6  
RA7  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
RE3  
2
3
27  
28  
1
AN0  
AN1  
AN2  
AN3/VREF  
SS(3)  
Y
VCAP  
4
5
2
6
3
CPS6  
CPS7  
T0CKI  
SS(3)  
(4)  
7
4
AN4  
VCAP  
(4)  
10  
9
7
OSC2/CLKOUT/VCAP  
6
OSC1/CLKIN  
21  
22  
23  
24  
25  
26  
27  
28  
11  
12  
13  
14  
15  
16  
17  
18  
1
18  
19  
20  
21  
22  
23  
24  
25  
8
AN12  
AN10  
AN8  
AN9  
AN11  
AN13  
CPS0  
CPS1  
CPS2  
CPS3  
CPS4  
CPS5  
IOC/INT  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
Y
CCP2(2)  
Y
Y
Y
T1G  
Y
Y
ICSPCLK/ICDCLK  
Y
ICSPDAT/ICDDAT  
T1OSO/T1CKI  
Y(1)  
9
T1OSI  
CCP2(2)  
CCP1  
10  
11  
12  
13  
14  
15  
26  
17  
5,16  
SCK/SCL  
SDI/SDA  
SDO  
TX/CK  
RX/DT  
MCLR/VPP  
VDD  
20  
8,19  
VSS  
Note 1:  
Pull-up enabled only with external MCLR configuration.  
2:  
3:  
4:  
RC1 is the default pin location for CCP2. RB3 may be selected by changing the CCP2SEL bit in the APFCON register.  
RA5 is the default pin location for SS. RA0 may be selected by changing the SSSEL bit in the APFCON register.  
PIC16F72X devices only.  
Note:  
The PIC16F72X devices have an internal low dropout voltage regulator. An external capacitor must be  
connected to one of the available VCAP pins to stabilize the regulator. For more information, see  
Section 5.0 “Low Dropout (LDO) Voltage Regulator”. The PIC16LF72X devices do not have the voltage  
regulator and therefore no external capacitor is required.  
DS41341E-page 6  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
Pin Diagrams – 40-PIN PDIP (PIC16F724/727/PIC16LF724/727)  
RB7/ICSPDAT  
40  
39  
38  
37  
36  
35  
1
2
3
4
5
6
VPP/MCLR/RE3  
(3)  
(2)  
RB6/ICSPCLK  
VCAP /SS /AN0/RA0  
AN1/RA1  
RB5/AN13/CPS5/T1G  
RB4/AN11/CPS4  
AN2/RA2  
(1)  
RB3/AN9/CPS3/CCP2  
RB2/AN8/CPS2  
VREF/AN3/RA3  
T0CKI/CPS6/RA4  
(3)  
(2)  
RB1/AN10/CPS1  
VCAP /SS /CPS7/AN4/RA5  
34  
33  
32  
31  
30  
7
8
9
RB0/AN12/CPS0/INT  
AN5/RE0  
VDD  
AN6/RE1  
AN7/RE2  
VDD  
VSS  
10  
11  
RD7/CPS15  
RD6/CPS14  
VSS  
29  
12  
RD5/CPS13  
RD4/CPS12  
RC7/RX/DT  
CLKIN/OSC1/RA7  
28  
27  
26  
25  
13  
14  
15  
16  
(3)  
VCAP /CLKOUT/OSC2/RA6  
T1CKI/T1OSO/RC0  
(1)  
RC6/TX/CK  
RC5/SDO  
CCP2 /T1OSI/RC1  
24  
23  
CCP1/RC2  
17  
18  
RC4/SDI/SDA  
RD3/CPS11  
RD2/CPS10  
SCL/SCK/RC3  
CPS8/RD0  
CPS9/RD1  
22  
21  
19  
20  
Note 1: CCP2 pin location may be selected as RB3 or RC1.  
2: SS pin location may be selected as RA5 or RA0.  
3: PIC16F724/727 devices only.  
© 2009 Microchip Technology Inc.  
DS41341E-page 7  
PIC16F72X/PIC16LF72X  
Pin Diagrams – 44-PIN TQFP (PIC16F724/727/PIC16LF724/727)  
NC  
1
2
3
4
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
DT/RX/RC7  
CPS12/RD4  
CPS13/RD5  
CPS14/RD6  
RC0/T1OSO/T1CKI  
RA6/OSC2/CLKOUT/VCAP  
RA7/OSC1/CLKIN  
VSS  
VDD  
RE2/AN7  
RE1/AN6  
RE0/AN5  
RA5/AN4/CPS7/SS /VCAP  
RA4/CPS6/T0CKI  
(3)  
CPS15/RD7  
VSS  
5
6
7
8
9
PIC16F724/727/  
PIC16LF724/727  
VDD  
INT/CPS0/AN12/RB0  
CPS1/AN10/RB1  
CPS2/AN8/RB2  
(2)  
(3)  
10  
11  
(1)  
CCP2 /CPS3/AN9/RB3  
Note 1: CCP2 pin location may be selected as RB3 or RC1.  
2: SS pin location may be selected as RA5 or RA0.  
3: PIC16F724/727 devices only.  
DS41341E-page 8  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
Pin Diagrams – 44-PIN QFN (PIC16F724/727/PIC16LF724/727)  
(3)  
DT/RX/RC7  
CPS12/RD4  
CPS13/RD5  
CPS14/RD6  
CPS15/RD7  
VSS  
1
2
3
4
5
6
7
8
9
RA6/OSC2/CLKOUT/VCAP  
RA7/OSC1/CLKIN  
VSS  
VSS  
NC  
VDD  
RE2/AN7  
RE1/AN6  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
PIC16F724/727/  
PIC16LF724/727  
VDD  
VDD  
INT/CPS0/AN12/RB0  
CPS1/AN10/RB1  
CPS2/AN8/RB2  
RE0/AN5  
(2)  
(3)  
10  
11  
RA5/AN4/CPS7/SS /VCAP  
RA4/CPS6/T0CKI  
Note 1: CCP2 pin location may be selected as RB3 or RC1.  
2: SS pin location may be selected as RA5 or RA0.  
3: PIC16F724/727 devices only.  
© 2009 Microchip Technology Inc.  
DS41341E-page 9  
PIC16F72X/PIC16LF72X  
TABLE 2:  
40/44-PIN PDIP/TQFP/QFN SUMMARY (PIC16F724/727/PIC16LF724/727)  
40-Pin 44-Pin 44-Pin  
Cap  
Sensor  
I/O  
A/D  
Timers  
CCP  
AUSART  
SSP  
Interrupt Pull-Up  
Basic  
PDIP  
TQFP  
QFN  
(4)  
19  
20  
21  
22  
23  
24  
33  
32  
9
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RA6  
RA7  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
RC0  
2
19  
20  
21  
22  
23  
24  
31  
30  
8
AN0  
AN1  
AN2  
AN3/VREF  
SS(3)  
Y
VCAP  
3
4
5
6
CPS6  
CPS7  
T0CKI  
SS(3)  
(4)  
7
AN4  
VCAP  
(4)  
14  
13  
33  
34  
35  
36  
37  
38  
39  
40  
15  
OSC2/CLKOUT/VCAP  
OSC1/CLKIN  
AN12  
AN10  
AN8  
AN9  
AN11  
AN13  
CPS0  
CPS1  
CPS2  
CPS3  
CPS4  
CPS5  
IOC/INT  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
IOC  
9
10  
11  
12  
14  
15  
16  
17  
34  
Y
10  
11  
14  
15  
16  
17  
32  
CCP2(2)  
Y
Y
Y
T1G  
Y
Y
ICSPCLK/ICDCLK  
ICSPDAT/ICDDAT  
Y
T1OSO/  
T1CKI  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
RE0  
RE1  
RE2  
RE3  
16  
17  
18  
23  
24  
25  
26  
19  
20  
21  
22  
27  
28  
29  
30  
8
35  
36  
37  
42  
43  
44  
1
35  
36  
37  
42  
43  
44  
1
T1OSI CCP2(2)  
Y(1)  
CCP1  
SCK/SCL  
SDI/SDA  
SDO  
TX/CK  
RX/DT  
38  
39  
40  
41  
2
38  
39  
40  
41  
2
CPS8  
CPS9  
CPS10  
CPS11  
CPS12  
CPS13  
CPS14  
CPS15  
3
3
4
4
5
5
25  
26  
27  
18  
7,20  
25  
26  
27  
18  
7,8,28  
AN5  
AN6  
AN7  
9
10  
1
MCLR/VPP  
VDD  
11,32  
12,13  
6,29 6,30,31  
VSS  
Note 1:  
Pull-up enabled only with external MCLR configuration.  
2:  
3:  
4:  
RC1 is the default pin location for CCP2. RB3 may be selected by changing the CCP2SEL bit in the APFCON register.  
RA5 is the default pin location for SS. RA0 may be selected by changing the SSSEL bit in the APFCON register.  
PIC16F72X devices only.  
Note:  
The PIC16F72X devices have an internal low dropout voltage regulator. An external capacitor must be  
connected to one of the available VCAP pins to stabilize the regulator. For more information, see  
Section 5.0 “Low Dropout (LDO) Voltage Regulator”. The PIC16LF72X devices do not have the voltage  
regulator and therefore no external capacitor is required.  
DS41341E-page 10  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
Table of Contents  
1.0 Device Overview ....................................................................................................................................................................... 13  
2.0 Memory Organization................................................................................................................................................................ 19  
3.0 Resets ....................................................................................................................................................................................... 33  
4.0 Interrupts ................................................................................................................................................................................... 43  
5.0 Low Dropout (LDO) Voltage Regulator ..................................................................................................................................... 51  
6.0 I/O Ports .................................................................................................................................................................................... 53  
7.0 Oscillator Module....................................................................................................................................................................... 89  
8.0 Device Configuration................................................................................................................................................................. 95  
9.0 Analog-to-Digital Converter (ADC) Module ............................................................................................................................... 99  
10.0 Fixed Voltage Reference......................................................................................................................................................... 109  
11.0 Timer0 Module ........................................................................................................................................................................ 111  
12.0 Timer1 Module with Gate Control............................................................................................................................................ 115  
13.0 Timer2 Module ........................................................................................................................................................................ 127  
14.0 Capacitive Sensing Module..................................................................................................................................................... 129  
15.0 Capture/Compare/PWM (CCP) Module .................................................................................................................................. 135  
16.0 Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART) .......................................................... 145  
17.0 SSP Module Overview ............................................................................................................................................................ 167  
18.0 Program Memory Read........................................................................................................................................................... 189  
19.0 Power-Down Mode (Sleep) ..................................................................................................................................................... 193  
20.0 In-Circuit Serial Programming™ (ICSP™) .............................................................................................................................. 195  
21.0 Instruction Set Summary......................................................................................................................................................... 197  
22.0 Development Support.............................................................................................................................................................. 207  
23.0 Electrical Specifications........................................................................................................................................................... 211  
24.0 DC and AC Characteristics Graphs and Charts...................................................................................................................... 241  
25.0 Packaging Information............................................................................................................................................................. 277  
Appendix A: Data Sheet Revision History......................................................................................................................................... 291  
®
Appendix B: Migrating From Other PIC Devices............................................................................................................................. 291  
The Microchip Web Site.................................................................................................................................................................... 299  
Customer Change Notification Service ............................................................................................................................................. 299  
Customer Support ............................................................................................................................................................................. 299  
Reader Response............................................................................................................................................................................. 300  
Product Identification System ............................................................................................................................................................ 301  
© 2009 Microchip Technology Inc.  
DS41341E-page 11  
PIC16F72X/PIC16LF72X  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS41341E-page 12  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
1.0  
DEVICE OVERVIEW  
The PIC16F72X/PIC16LF72X devices are covered by  
this data sheet. They are available in 28/40/44-pin  
packages. Figure 1-1 shows a block diagram of the  
PIC16F722/723/726/PIC16LF722/723/726  
devices  
and Figure 1-2 shows block diagram of the  
a
PIC16F724/727/PIC16LF724/727 devices. Table 1-1  
shows the pinout descriptions.  
© 2009 Microchip Technology Inc.  
DS41341E-page 13  
PIC16F72X/PIC16LF72X  
FIGURE 1-1:  
PIC16F722/723/726/PIC16LF722/723/726 BLOCK DIAGRAM  
PORTA  
Configuration  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RA6  
RA7  
13  
8
Data Bus  
Program Counter  
Flash  
Program  
Memory  
8 Level Stack  
(13-bit)  
RAM  
Program  
Bus  
PORTB  
14  
9
RAM Addr  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
Addr MUX  
InstructionReg  
Indirect  
Addr  
7
Direct Addr  
8
FSRReg  
STATUSReg  
PORTC  
8
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
3
MUX  
Power-up  
Timer  
Oscillator  
Start-up Timer  
Instruction  
Decodeand  
Control  
ALU  
Power-on  
Reset  
OSC1/CLKIN  
OSC2/CLKOUT  
PORTE  
8
RE3  
Timing  
Generation  
Watchdog  
Timer  
WReg  
Brown-out  
Reset  
LDO(1)  
Regulator  
Internal  
Oscillator  
Block  
CCP1  
CCP2  
CCP1  
MCLR VDD  
Timer1  
VSS  
CCP2  
T1OSI  
32 kHz  
Oscillator  
T1OSO  
SCK/  
SCL SS  
SDI/  
SDA  
TX/CK RX/DT  
SDO  
T0CKI  
T1G  
T1CKI  
AUSART  
Synchronous  
Serial Port  
Timer0  
Timer2  
Timer1  
VREF  
Capacitive Sensing Module  
Analog-To-Digital Converter  
CPS0 CPS1  
CPS3 CPS4  
CPS5 CPS6 CPS7  
CPS2  
AN0 AN1  
AN3 AN4  
AN8 AN9 AN10 AN11  
AN2  
AN12 AN13  
Note 1:  
PIC16F722/723/726 only.  
DS41341E-page 14  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 1-2:  
PIC16F724/727/PIC16LF724/727 BLOCK DIAGRAM  
PORTA  
Configuration  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RA6  
RA7  
13  
8
Data Bus  
RAM  
Program Counter  
Flash  
Program  
Memory  
8 Level Stack  
(13-bit)  
Program  
Bus  
PORTB  
14  
9
RAM Addr  
RB0  
RB1  
RB2  
Addr MUX  
Instruction Reg  
RB3  
RB4  
Indirect  
Addr  
7
Direct Addr  
8
RB5  
RB6  
RB7  
FSR Reg  
STATUSReg  
PORTC  
8
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
3
MUX  
Power-up  
Timer  
Oscillator  
Start-up Timer  
Instruction  
Decodeand  
Control  
ALU  
Power-on  
Reset  
OSC1/CLKIN  
OSC2/CLKOUT  
PORTD  
8
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
Timing  
Generation  
Watchdog  
Timer  
W Reg  
Brown-out  
Reset  
LDO(1)  
Internal  
Oscillator  
Block  
Regulator  
CCP1  
CCP2  
PORTE  
CCP1  
RE0  
RE1  
RE2  
RE3  
MCLR VDD  
VSS  
CCP2  
Timer1  
32 kHz  
T1OSI  
Oscillator  
T1OSO  
SCK/  
SCL SS  
SDI/  
SDA  
TX/CK RX/DT  
SDO  
T0CKI  
T1G T1CKI  
Timer1  
Synchronous  
Serial Port  
Timer0  
Timer2  
AUSART  
VREF  
Analog-To-Digital Converter  
AN8 AN9 AN10 AN11  
AN12 AN13  
AN0 AN1 AN2 AN3 AN4  
AN7  
AN5 AN6  
Capacitive Sensing Module  
CPS0 CPS1 CPS2 CPS3 CPS4 CPS5 CPS6 CPS7 CPS8 CPS9 CPS10 CPS11 CPS12 CPS13 CPS14 CPS15  
PIC16F724/727 only.  
Note 1:  
© 2009 Microchip Technology Inc.  
DS41341E-page 15  
PIC16F72X/PIC16LF72X  
TABLE 1-1:  
PIC16F72X/PIC16LF72X PINOUT DESCRIPTION  
Input Output  
Function  
Name  
Description  
Type  
Type  
RA0/AN0/SS/VCAP  
RA0  
AN0  
TTL  
AN  
ST  
CMOS General purpose I/O.  
A/D Channel 0 input.  
Slave Select input.  
SS  
VCAP  
RA1  
Power Power Filter capacitor for Voltage Regulator (PIC16F72X only).  
RA1/AN1  
TTL  
AN  
TTL  
AN  
TTL  
AN  
AN  
TTL  
AN  
ST  
CMOS General purpose I/O.  
A/D Channel 1 input.  
CMOS General purpose I/O.  
A/D Channel 2 input.  
CMOS General purpose I/O.  
AN1  
RA2/AN2  
RA2  
AN2  
RA3/AN3/VREF  
RA3  
AN3  
A/D Channel 3 input.  
VREF  
RA4  
A/D Voltage Reference input.  
RA4/CPS6/T0CKI  
CMOS General purpose I/O.  
CPS6  
T0CKI  
RA5  
Capacitive sensing input 6.  
Timer0 clock input.  
RA5/AN4/CPS7/SS/VCAP  
TTL  
AN  
AN  
ST  
CMOS General purpose I/O.  
AN4  
A/D Channel 4 input.  
Capacitive sensing input 7.  
Slave Select input.  
CPS7  
SS  
VCAP  
RA6  
Power Power Filter capacitor for Voltage Regulator (PIC16F72X only).  
RA6/OSC2/CLKOUT/VCAP  
RA7/OSC1/CLKIN  
TTL  
CMOS General purpose I/O.  
OSC2  
CLKOUT  
VCAP  
RA7  
XTAL Crystal/Resonator (LP, XT, HS modes).  
CMOS FOSC/4 output.  
Power Power Filter capacitor for Voltage Regulator (PIC16F72X only).  
TTL  
XTAL  
CMOS  
ST  
CMOS General purpose I/O.  
OSC1  
CLKIN  
CLKIN  
RB0  
Crystal/Resonator (LP, XT, HS modes).  
External clock input (EC mode).  
RC oscillator connection (RC mode).  
RB0/AN12/CPS0/INT  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN12  
CPS0  
INT  
AN  
AN  
ST  
A/D Channel 12 input.  
Capacitive sensing input 0.  
External interrupt.  
RB1/AN10/CPS1  
RB2/AN8/CPS2  
RB1  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN10  
CPS1  
RB2  
AN  
AN  
A/D Channel 10 input.  
Capacitive sensing input 1.  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN8  
CPS2  
RB3  
AN  
AN  
A/D Channel 8 input.  
Capacitive sensing input 2.  
RB3/AN9/CPS3/CCP2  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN9  
CPS3  
CCP2  
AN  
AN  
ST  
A/D Channel 9 input.  
Capacitive sensing input 3.  
CMOS Capture/Compare/PWM2.  
Legend: AN = Analog input or output CMOS= CMOS compatible input or output  
OD = Open Drain  
2
2
TTL = TTL compatible input ST  
HV = High Voltage  
= Schmitt Trigger input with CMOS levels I C™ = Schmitt Trigger input with I C  
levels  
XTAL = Crystal  
DS41341E-page 16  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
TABLE 1-1:  
PIC16F72X/PIC16LF72X PINOUT DESCRIPTION (CONTINUED)  
Input Output  
Name  
Function  
Description  
Type  
Type  
RB4/AN11/CPS4  
RB4  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN11  
CPS4  
RB5  
AN  
AN  
A/D Channel 11 input.  
Capacitive sensing input 4.  
RB5/AN13/CPS5/T1G  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN13  
CPS5  
T1G  
AN  
AN  
ST  
A/D Channel 13 input.  
Capacitive sensing input 5.  
Timer1 Gate input.  
RB6/ICSPCLK/ICDCLK  
RB7/ICSPDAT/ICDDAT  
RB6  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
ICSPCLK  
ICDCLK  
RB7  
ST  
ST  
Serial Programming Clock.  
In-Circuit Debug Clock.  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
ICSPDAT  
ICDDAT  
RC0  
ST  
ST  
CMOS ICSP™ Data I/O.  
In-Circuit Data I/O.  
RC0/T1OSO/T1CKI  
RC1/T1OSI/CCP2  
ST  
CMOS General purpose I/O.  
T1OSO  
T1CKI  
RC1  
XTAL  
ST  
XTAL Timer1 oscillator connection.  
Timer1 clock input.  
ST  
CMOS General purpose I/O.  
XTAL Timer1 oscillator connection.  
CMOS Capture/Compare/PWM2.  
CMOS General purpose I/O.  
CMOS Capture/Compare/PWM1.  
CMOS General purpose I/O.  
T1OSI  
CCP2  
RC2  
XTAL  
ST  
RC2/CCP1  
ST  
CCP1  
RC3  
ST  
RC3/SCK/SCL  
ST  
SCK  
ST  
CMOS SPI clock.  
2
2
SCL  
I C™  
OD  
I C™ clock.  
RC4/SDI/SDA  
RC4  
ST  
ST  
CMOS General purpose I/O.  
SDI  
SPI data input.  
2
2
SDA  
RC5  
I C™  
OD  
I C™ data input/output.  
RC5/SDO  
ST  
CMOS General purpose I/O.  
CMOS SPI data output.  
SDO  
RC6  
RC6/TX/CK  
ST  
CMOS General purpose I/O.  
CMOS USART asynchronous transmit.  
CMOS USART synchronous clock.  
CMOS General purpose I/O.  
TX  
CK  
ST  
ST  
ST  
ST  
ST  
AN  
ST  
AN  
ST  
AN  
RC7/RX/DT  
RC7  
RX  
USART asynchronous input.  
DT  
CMOS USART synchronous data.  
CMOS General purpose I/O.  
RD0/CPS8  
RD1/CPS9  
RD2/CPS10  
RD0  
CPS8  
RD1  
Capacitive sensing input 8.  
CMOS General purpose I/O.  
Capacitive sensing input 9.  
CMOS General purpose I/O.  
Capacitive sensing input 10.  
OD = Open Drain  
CPS9  
RD2  
CPS10  
Legend: AN = Analog input or output CMOS= CMOS compatible input or output  
2
2
TTL = TTL compatible input ST  
= Schmitt Trigger input with CMOS levels I C™ = Schmitt Trigger input with I C  
HV = High Voltage  
XTAL = Crystal levels  
© 2009 Microchip Technology Inc.  
DS41341E-page 17  
PIC16F72X/PIC16LF72X  
TABLE 1-1:  
PIC16F72X/PIC16LF72X PINOUT DESCRIPTION (CONTINUED)  
Input Output  
Name  
Function  
Description  
Type  
Type  
RD3/CPS11  
RD4/CPS12  
RD3  
CPS11  
RD4  
ST  
AN  
CMOS General purpose I/O.  
Capacitive sensing input 11.  
General purpose I/O.  
ST  
CMOS  
CPS12  
RD5  
AN  
Capacitive sensing input 12.  
General purpose I/O.  
RD5/CPS13  
RD6/CPS14  
RD7/CPS15  
ST  
CMOS  
CPS13  
RD6  
AN  
Capacitive sensing input 13.  
General purpose I/O.  
ST  
CMOS  
CPS14  
RD7  
AN  
Capacitive sensing input 14.  
General purpose I/O.  
ST  
CMOS  
CPS15  
RE0  
AN5  
RE1  
AN6  
RE2  
AN7  
RE3  
MCLR  
VPP  
AN  
Capacitive sensing input 15.  
RE0/AN5  
ST  
CMOS General purpose I/O.  
A/D Channel 5 input.  
CMOS General purpose I/O.  
A/D Channel 6 input.  
CMOS General purpose I/O.  
AN  
RE1/AN6  
ST  
AN  
RE2/AN7  
ST  
AN  
A/D Channel 7 input.  
General purpose input.  
Master Clear with internal pull-up.  
Programming voltage.  
Positive supply.  
RE3/MCLR/VPP  
TTL  
ST  
HV  
VDD  
VSS  
VDD  
Power  
Power  
VSS  
Ground reference.  
Legend: AN = Analog input or output CMOS= CMOS compatible input or output  
OD = Open Drain  
2
2
TTL = TTL compatible input ST  
HV = High Voltage  
= Schmitt Trigger input with CMOS levels I C™ = Schmitt Trigger input with I C  
levels  
XTAL = Crystal  
Note:  
The PIC16F72X devices have an internal low dropout voltage regulator. An external capacitor must be  
connected to one of the available VCAP pins to stabilize the regulator. For more information, see  
Section 5.0 “Low Dropout (LDO) Voltage Regulator”. The PIC16LF72X devices do not have the voltage  
regulator and therefore no external capacitor is required.  
DS41341E-page 18  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 2-2:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
PIC16F723/LF723 AND  
PIC16F724/LF724  
2.0  
2.1  
MEMORY ORGANIZATION  
Program Memory Organization  
The PIC16F72X/PIC16LF72X has a 13-bit program  
counter capable of addressing a 2K x 14 program  
memory  
(0000h-07FFh), a 4K x 14 program memory space for  
the PIC16F723/LF723 and PIC16F724/LF724  
PC<12:0>  
space  
for  
the  
PIC16F722/LF722  
CALL, RETURN  
RETFIE, RETLW  
13  
(0000h-0FFFh) and an 8K x 14 program memory space  
for the PIC16F726/LF726 and PIC16F727/LF727  
Stack Level 1  
(0000h-1FFFh). Accessing  
a location above the  
Stack Level 2  
memory boundaries for the PIC16F722/LF722 will  
cause a wrap-around within the first 2K x 14 program  
memory space. Accessing a location above the  
memory boundaries for the PIC16F723/LF723 and  
PIC16F724/LF724 will cause a wrap-around within the  
first 4K x 14 program memory space. The Reset vector  
is at 0000h and the interrupt vector is at 0004h.  
Stack Level 8  
Reset Vector  
0000h  
Interrupt Vector  
Page 0  
0004h  
0005h  
FIGURE 2-1:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
PIC16F722/LF722  
On-chip  
Program  
Memory  
07FFh  
0800h  
Page 1  
PC<12:0>  
0FFFh  
1000h  
CALL, RETURN  
RETFIE, RETLW  
13  
Wraps to Page 0  
17FFh  
1800h  
Stack Level 1  
Wraps to Page 1  
Stack Level 2  
1FFFh  
Stack Level 8  
Reset Vector  
0000h  
Interrupt Vector  
Page 0  
0004h  
0005h  
On-chip  
Program  
Memory  
07FFh  
0800h  
Wraps to Page 0  
Wraps to Page 0  
Wraps to Page 0  
0FFFh  
1000h  
17FFh  
1800h  
1FFFh  
© 2009 Microchip Technology Inc.  
DS41341E-page 19  
PIC16F72X/PIC16LF72X  
FIGURE 2-3:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
PIC16F726/LF726 AND  
PIC16F727/LF727  
2.2  
Data Memory Organization  
The data memory is partitioned into multiple banks  
which contain the General Purpose Registers (GPRs)  
and the Special Function Registers (SFRs). Bits RP0  
and RP1 are bank select bits.  
PC<12:0>  
RP1  
0
RP0  
0
CALL, RETURN  
RETFIE, RETLW  
13  
Bank 0 is selected  
Bank 1 is selected  
Bank 2 is selected  
Bank 3 is selected  
0
1
Stack Level 1  
Stack Level 2  
1
0
1
1
Each bank extends up to 7Fh (128 bytes). The lower  
locations of each bank are reserved for the Special  
Function Registers. Above the Special Function  
Registers are the General Purpose Registers,  
implemented as static RAM. All implemented banks  
contain Special Function Registers. Some frequently  
used Special Function Registers from one bank are  
mirrored in another bank for code reduction and  
quicker access.  
Stack Level 8  
Reset Vector  
0000h  
Interrupt Vector  
Page 0  
0004h  
0005h  
07FFh  
0800h  
2.2.1  
GENERAL PURPOSE REGISTER  
FILE  
Page 1  
On-chip  
Program  
Memory  
0FFFh  
1000h  
The register file is organized as 128 x 8 bits in the  
PIC16F722/LF722, 192 x 8 bits in the PIC16F723/LF723  
and PIC16F724/LF724, and 368 x 8 bits in the  
PIC16F726/LF726 and PIC16F727/LF727. Each  
register is accessed either directly or indirectly through  
the File Select Register (FSR), (Refer to Section 2.5  
“Indirect Addressing, INDF and FSR Registers”).  
Page 2  
Page 3  
17FFh  
1800h  
1FFFh  
2.2.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers are registers used by  
the CPU and peripheral functions for controlling the  
desired operation of the device (refer to Table 2-1).  
These registers are static RAM.  
The Special Function Registers can be classified into  
two sets: core and peripheral. The Special Function  
Registers associated with the “core” are described in  
this section. Those related to the operation of the  
peripheral features are described in the section of that  
peripheral feature.  
DS41341E-page 20  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 2-4:  
PIC16F722/LF722 SPECIAL FUNCTION REGISTERS  
File Address  
(*)  
(*)  
(*)  
(*)  
Indirect addr.  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
Indirect addr.  
OPTION  
PCL  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
Indirect addr.  
TMR0  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
Indirect addr.  
OPTION  
PCL  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
1A0h  
TMR0  
PCL  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
ANSELA  
ANSELB  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
CPSCON0  
CPSCON1  
PCLATH  
PORTE  
PCLATH  
INTCON  
PIR1  
TRISE  
PCLATH  
INTCON  
PIE1  
PCLATH  
INTCON  
PMCON1  
Reserved  
Reserved  
Reserved  
INTCON  
PMDATL  
PMADRL  
PMDATH  
PMADRH  
PIR2  
PIE2  
TMR1L  
PCON  
TMR1H  
T1CON  
TMR2  
T1GCON  
OSCCON  
OSCTUNE  
PR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
SSPADD/SSPMSK 93h  
SSPSTAT  
WPUB  
IOCB  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
TXSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRES  
ADCON0  
SPBRG  
APFCON  
FVRCON  
ADCON1  
General  
Purpose  
Register  
32 Bytes  
General  
Purpose  
Register  
96 Bytes  
BFh  
C0h  
EFh  
F0h  
16Fh  
170h  
1EFh  
1F0h  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
7Fh  
FFh  
17Fh  
1FFh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Legend:  
= Unimplemented data memory locations, read as ‘0’.  
*
= Not a physical register.  
© 2009 Microchip Technology Inc.  
DS41341E-page 21  
PIC16F72X/PIC16LF72X  
FIGURE 2-5:  
PIC16F723/LF723 AND PIC16F724/LF724 SPECIAL FUNCTION REGISTERS  
File Address  
(*)  
(*)  
(*)  
(*)  
Indirect addr.  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
Indirect addr.  
OPTION  
PCL  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
Indirect addr.  
TMR0  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
Indirect addr.  
OPTION  
PCL  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
1A0h  
TMR0  
PCL  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
ANSELA  
ANSELB  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
(1)  
(1)  
(1)  
ANSELD  
CPSCON0  
CPSCON1  
PCLATH  
INTCON  
PORTD  
PORTE  
PCLATH  
INTCON  
PIR1  
TRISD  
(1)  
ANSELE  
TRISE  
PCLATH  
INTCON  
PIE1  
PCLATH  
INTCON  
PMCON1  
Reserved  
Reserved  
Reserved  
PMDATL  
PMADRL  
PMDATH  
PMADRH  
PIR2  
PIE2  
TMR1L  
PCON  
TMR1H  
T1CON  
TMR2  
T1GCON  
OSCCON  
OSCTUNE  
PR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
SSPADD/SSPMSK 93h  
SSPSTAT  
WPUB  
IOCB  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
TXSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRES  
ADCON0  
SPBRG  
APFCON  
FVRCON  
ADCON1  
General Purpose 120h  
Register  
General  
Purpose  
Register  
80 Bytes  
16 Bytes  
12Fh  
130h  
General  
Purpose  
Register  
96 Bytes  
EFh  
F0h  
16Fh  
170h  
1EFh  
1F0h  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
FFh  
17Fh  
1FFh  
7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Legend:  
= Unimplemented data memory locations, read as ‘0’.  
*
= Not a physical register.  
Note 1: PORTD, TRISD, ANSELD and ANSELE are not implemented on the PIC16F723/LF723, read as ‘0’  
DS41341E-page 22  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 2-6:  
PIC16F726/LF726 AND PIC16F727/LF727 SPECIAL FUNCTION REGISTERS  
File Address  
(*)  
(*)  
(*)  
(*)  
Indirect addr.  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
Indirect addr.  
OPTION  
PCL  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
Indirect addr.  
TMR0  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
Indirect addr.  
OPTION  
PCL  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
1A0h  
TMR0  
PCL  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
ANSELA  
ANSELB  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
(1)  
(1)  
(1)  
ANSELD  
CPSCON0  
CPSCON1  
PCLATH  
INTCON  
PORTD  
PORTE  
PCLATH  
INTCON  
PIR1  
TRISD  
(1)  
ANSELE  
TRISE  
PCLATH  
INTCON  
PIE1  
PCLATH  
INTCON  
PMCON1  
Reserved  
Reserved  
Reserved  
PMDATL  
PMADRL  
PMDATH  
PMADRH  
PIR2  
PIE2  
TMR1L  
PCON  
TMR1H  
T1CON  
TMR2  
T1GCON  
OSCCON  
OSCTUNE  
PR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
SSPADD/SSPMSK 93h  
SSPSTAT  
WPUB  
IOCB  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
General  
Purpose  
Register  
16 Bytes  
General  
Purpose  
Register  
16 Bytes  
TXSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRES  
ADCON0  
SPBRG  
APFCON  
FVRCON  
ADCON1  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
96 Bytes  
EFh  
F0h  
16Fh  
170h  
1EFh  
1F0h  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
FFh  
17Fh  
1FFh  
7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Legend:  
= Unimplemented data memory locations, read as ‘0’,  
*
= Not a physical register  
Note 1: PORTD, TRISD, ANSELD and ANSELE are not implemented on the PIC16F726/LF726, read as ‘0’  
© 2009 Microchip Technology Inc.  
DS41341E-page 23  
PIC16F72X/PIC16LF72X  
TABLE 2-1:  
PIC16F72X/PIC16LF72X SPECIAL FUNCTION REGISTER SUMMARY  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 0  
00h(2)  
01h  
02h(2)  
03h(2)  
04h(2)  
05h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 Module Register  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
---- xxxx  
---0 0000  
0000 000x  
31,40  
111,40  
30,40  
27,40  
31,40  
54,40  
63,40  
73,40  
80,40  
85,40  
30,40  
46,40  
49,40  
50,40  
TMR0  
PCL  
Program Counter (PC) Least Significant Byte  
STATUS  
FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
RA7  
RB7  
RC7  
RD7  
RA6  
RB6  
RC6  
RD6  
RA5  
RB5  
RC5  
RD5  
RA4  
RB4  
RC4  
RD4  
RA3  
RB3  
RC3  
RD3  
RE3  
RA2  
RB2  
RA1  
RB1  
RA0  
RB0  
06h  
07h  
08h(3)  
RC2  
RC1  
RC0  
RD2  
RE2(3)  
RD1  
RE1(3)  
RD0  
RE0(3)  
09h  
0Ah(1, 2) PCLATH  
Write Buffer for the upper 5 bits of the Program Counter  
0Bh(2)  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
T0IE  
RCIF  
INTE  
TXIF  
RBIE  
SSPIF  
T0IF  
CCP1IF  
INTF  
TMR2IF  
RBIF  
TMR1GIF  
TMR1IF 0000 0000  
CCP2IF ---- ---0  
PIR2  
TMR1L  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
TMR1CS1 TMR1CS0 T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
Timer2 Module Register  
xxxx xxxx 120,40  
xxxx xxxx 120,40  
TMR1H  
T1CON  
TMR2  
TMR1ON 0000 00-0 124,40  
0000 0000 127,40  
11h  
12h  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRES  
ADCON0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 128,40  
13h  
Synchronous Serial Port Receive Buffer/Transmit Register  
xxxx xxxx 169,40  
0000 0000 186,40  
xxxx xxxx 137,40  
xxxx xxxx 137,40  
14h  
WCOL  
SSPOV  
SSPEN  
CKP  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
15h  
Capture/Compare/PWM Register (LSB)  
Capture/Compare/PWM Register (MSB)  
16h  
17h  
DC1B1  
SREN  
DC1B0  
CREN  
CCP1M3  
ADDEN  
CCP1M2  
FERR  
CCP1M1 CCP1M0 --00 0000 136,40  
18h  
SPEN  
RX9  
OERR  
RX9D  
0000 000x 155,40  
0000 0000 154,40  
0000 0000 152,40  
xxxx xxxx 137,40  
xxxx xxxx 137,40  
19h  
USART Transmit Data Register  
USART Receive Data Register  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
Legend:  
Capture/Compare/PWM Register 2 (LSB)  
Capture/Compare/PWM Register 2 (MSB)  
DC2B1  
DC2B0  
CCP2M3  
CHS1  
CCP2M2  
CHS0  
CCP2M1 CCP2M0 --00 0000 136,40  
xxxx xxxx 105,41  
A/D Result Register  
CHS3  
CHS2  
GO/DONE  
ADON  
--00 0000 104,41  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1:  
The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are  
transferred to the upper byte of the program counter.  
2:  
3:  
4:  
5:  
6:  
These registers can be addressed from any bank.  
These registers/bits are not implemented on PIC16F722/723/726/PIC16LF722/723/726 devices, read as ‘0’.  
Accessible only when SSPM<3:0> = 1001.  
Accessible only when SSPM<3:0> 1001.  
This bit is always ‘1’ as RE3 is input only.  
DS41341E-page 24  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
TABLE 2-1:  
PIC16F72X/PIC16LF72X SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 1  
80h(2)  
81h  
82h(2)  
83h(2)  
84h(2)  
85h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
xxxx xxxx  
1111 1111  
0000 0000  
0001 1xxx  
xxxx xxxx  
1111 1111  
1111 1111  
31,40  
28,41  
30,40  
27,40  
31,40  
54,41  
63,41  
73,41  
81,41  
85,41  
30,40  
46,40  
47,41  
48,41  
29,41  
OPTION_REG  
PCL  
RBPU  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
Program Counter (PC) Least Significant Byte  
STATUS  
FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
TRISA7  
TRISB7  
TRISC7  
TRISD7  
TRISA6  
TRISB6  
TRISC6  
TRISD6  
TRISA5  
TRISB5  
TRISC5  
TRISD5  
TRISA4  
TRISB4  
TRISC4  
TRISD4  
TRISA3  
TRISB3  
TRISC3  
TRISD3  
TRISA2  
TRISB2  
TRISC2  
TRISD2  
TRISA1  
TRISB1  
TRISC1  
TRISD1  
TRISA0  
TRISB0  
86h  
87h  
88h(3)  
TRISC0 1111 1111  
TRISD0 1111 1111  
89h  
TRISE3(6) TRISE2(3) TRISE1(3) TRISE0(3) ---- 1111  
8Ah(1, 2) PCLATH  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000  
0000 000x  
8Bh(2)  
8Ch  
8Dh  
8Eh  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
T0IE  
INTE  
TXIE  
RBIE  
SSPIE  
T0IF  
CCP1IE  
INTF  
TMR2IE  
RBIF  
TMR1GIE  
RCIE  
TMR1IE 0000 0000  
CCP2IE ---- ---0  
PIE2  
PCON  
T1GCON  
POR  
BOR  
---- --qq  
8Fh  
TMR1GE T1GPOL  
T1GTM  
T1GSPM  
T1GGO/  
DONE  
T1GVAL  
T1GSS1  
T1GSS0 0000 0x00 125,41  
90h  
91h  
92h  
93h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
Legend:  
OSCCON  
OSCTUNE  
PR2  
SSPADD(5)  
SSPMSK(4)  
SSPSTAT  
WPUB  
IOCB  
IRCF1  
TUN5  
IRCF0  
TUN4  
ICSL  
ICSS  
--10 qq--  
--00 0000  
91,41  
92,41  
TUN3  
TUN2  
TUN1  
TUN0  
Timer2 Period Register  
Synchronous Serial Port (I2Cmode) Address Register  
Synchronous Serial Port (I2Cmode) Address Mask Register  
1111 1111 127,41  
0000 0000 177,41  
1111 1111 188,41  
0000 0000 187,41  
SMP  
WPUB7  
IOCB7  
CKE  
D/A  
P
S
R/W  
UA  
BF  
WPUB6  
IOCB6  
WPUB5  
IOCB5  
WPUB4  
IOCB4  
WPUB3  
IOCB3  
WPUB2  
IOCB2  
WPUB1  
IOCB1  
WPUB0  
IOCB0  
1111 1111  
0000 0000  
64,41  
64,41  
Unimplemented  
CSRC  
TXSTA  
SPBRG  
TX9  
BRG6  
TXEN  
BRG5  
SYNC  
BRG4  
BRGH  
BRG2  
TRMT  
BRG1  
TX9D  
BRG0  
0000 -010 154,41  
0000 0000 156,41  
BRG7  
BRG3  
Unimplemented  
Unimplemented  
APFCON  
FVRCON  
SSSEL CCP2SEL ---- --00  
53,41  
FVRRDY  
Unimplemented  
ADCS2  
FVREN  
ADFVR1 ADFVR0 q0-- --00 109,41  
ADCON1  
ADCS1  
ADCS0  
ADREF1 ADREF0 0000 --00 105,41  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1:  
The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are  
transferred to the upper byte of the program counter.  
2:  
3:  
4:  
5:  
6:  
These registers can be addressed from any bank.  
These registers/bits are not implemented on PIC16F722/723/726/PIC16LF722/723/726 devices, read as ‘0’.  
Accessible only when SSPM<3:0> = 1001.  
Accessible only when SSPM<3:0> 1001.  
This bit is always ‘1’ as RE3 is input only.  
© 2009 Microchip Technology Inc.  
DS41341E-page 25  
PIC16F72X/PIC16LF72X  
TABLE 2-1:  
PIC16F72X/PIC16LF72X SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Page  
Bank 2  
100h(2)  
101h  
102h(2)  
103h(2)  
104h(2)  
105h  
INDF  
TMR0  
PCL  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 Module Register  
xxxx xxxx  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
31,40  
111,40  
30,40  
27,40  
31,40  
Program Counter’s (PC) Least Significant Byte  
STATUS  
FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
Unimplemented  
106h  
Unimplemented  
107h  
Unimplemented  
108h  
CPSCON0  
CPSON  
CPSRNG1 CPSRNG0 CPSOUT  
CPSCH3 CPSCH2  
T0XCS  
0--- 0000 133,41  
109h  
CPSCON1  
CPSCH1 CPSCH0 ---- 0000 134,41  
10Ah(1, 2) PCLATH  
Write Buffer for the upper 5 bits of the Program Counter  
INTE RBIE T0IF INTF RBIF  
---0 0000  
0000 000x  
30,40  
46,40  
10Bh(2)  
INTCON  
PMDATL  
PMADRL  
PMDATH  
PMADRH  
GIE  
PEIE  
T0IE  
10Ch  
Program Memory Read Data Register Low Byte  
Program Memory Read Address Register Low Byte  
xxxx xxxx 189,41  
xxxx xxxx 189,41  
--xx xxxx 189,41  
---x xxxx 189,41  
10Dh  
10Eh  
Program Memory Read Data Register High Byte  
Program Memory Read Address Register High Byte  
10Fh  
Bank 3  
180h(2)  
181h  
182h(2)  
183h(2)  
184h(2)  
185h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
xxxx xxxx  
1111 1111  
0000 0000  
0001 1xxx  
xxxx xxxx  
--11 1111  
--11 1111  
31,40  
28,41  
30,40  
27,40  
31,40  
55,41  
64,41  
OPTION_REG  
PCL  
RBPU  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
Program Counter (PC) Least Significant Byte  
STATUS  
FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
ANSELA  
ANSELB  
ANSA5  
ANSB5  
ANSA4  
ANSB4  
ANSA3  
ANSB3  
ANSA2  
ANSB2  
ANSA1  
ANSB1  
ANSA0  
ANSB0  
186h  
187h  
Unimplemented  
188h  
189h(3)  
18Ah(1, 2) PCLATH  
18Bh(2)  
ANSELD  
ANSD7  
ANSD6  
ANSD5  
ANSD4  
ANSD3  
ANSD2  
ANSE2  
ANSD1  
ANSE1  
ANSD0  
ANSE0  
1111 1111  
---- -111  
---0 0000  
0000 000x  
81,41  
86,41  
30,40  
46,40  
ANSELE  
Write Buffer for the upper 5 bits of the Program Counter  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
RD  
18Ch  
PMCON1  
Reserved  
1--- ---0 190,41  
18Dh  
Unimplemented  
Unimplemented  
Unimplemented  
18Eh  
18Fh  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1:  
The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are  
transferred to the upper byte of the program counter.  
2:  
3:  
4:  
5:  
6:  
These registers can be addressed from any bank.  
These registers/bits are not implemented on PIC16F722/723/726/PIC16LF722/723/726 devices, read as ‘0’.  
Accessible only when SSPM<3:0> = 1001.  
Accessible only when SSPM<3:0> 1001.  
This bit is always ‘1’ as RE3 is input only.  
DS41341E-page 26  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as ‘000u u1uu’ (where u= unchanged).  
2.2.2.1  
STATUS Register  
The STATUS register, shown in Register 2-1, contains:  
• the arithmetic status of the ALU  
• the Reset status  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect any Status bits. For other instructions not  
affecting any Status bits (Refer to Section 21.0  
“Instruction Set Summary”).  
• the bank select bits for data memory (SRAM)  
The STATUS register can be the destination for any  
instruction, like any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: The C and DC bits operate as Borrow and  
Digit Borrow out bits, respectively, in  
subtraction.  
REGISTER 2-1:  
STATUS: STATUS REGISTER  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC(1)  
R/W-x  
C(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
IRP: Register Bank Select bit (used for indirect addressing)  
1= Bank 2, 3 (100h-1FFh)  
0= Bank 0, 1 (00h-FFh)  
bit 6-5  
RP<1:0>: Register Bank Select bits (used for direct addressing)  
00= Bank 0 (00h-7Fh)  
01= Bank 1 (80h-FFh)  
10= Bank 2 (100h-17Fh)  
11= Bank 3 (180h-1FFh)  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions)(1)  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
C: Carry/Borrow bit(1) (ADDWF, ADDLW, SUBLW, SUBWF instructions)(1)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the  
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order  
bit of the source register.  
© 2009 Microchip Technology Inc.  
DS41341E-page 27  
PIC16F72X/PIC16LF72X  
2.2.2.2  
OPTION register  
Note:  
To achieve a 1:1 prescaler assignment for  
Timer0, assign the prescaler to the WDT by  
setting PSA bit of the OPTION register to  
1’. Refer to Section 12.3 “Timer1  
Prescaler”.  
The OPTION register, shown in Register 2-2, is a  
readable and writable register, which contains various  
control bits to configure:  
• Timer0/WDT prescaler  
• External RB0/INT interrupt  
• Timer0  
• Weak pull-ups on PORTB  
REGISTER 2-2:  
OPTION_REG: OPTION REGISTER  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RBPU: PORTB Pull-up Enable bit  
1= PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual bits in the WPUB register  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RB0/INT pin  
0= Interrupt on falling edge of RB0/INT pin  
T0CS: Timer0 Clock Source Select bit  
1= Transition on RA4/T0CKI pin  
0= Internal instruction cycle clock (FOSC/4)  
T0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on RA4/T0CKI pin  
0= Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
Bit Value  
Timer0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
DS41341E-page 28  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
2.2.2.3  
PCON Register  
The Power Control (PCON) register contains flag bits  
(refer to Table 3-2) to differentiate between a:  
• Power-on Reset (POR)  
• Brown-out Reset (BOR)  
• Watchdog Timer Reset (WDT)  
• External MCLR Reset  
The PCON register also controls the software enable of  
the BOR.  
The PCON register bits are shown in Register 2-3.  
REGISTER 2-3:  
PCON: POWER CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-q  
POR  
R/W-q  
BOR  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
q = Value depends on condition  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset  
occurs)  
Note 1: Set BOREN<1:0> = 01in the Configuration Word register for this bit to control the BOR.  
© 2009 Microchip Technology Inc.  
DS41341E-page 29  
PIC16F72X/PIC16LF72X  
2.3  
PCL and PCLATH  
Note 1: There are no Status bits to indicate stack  
The Program Counter (PC) is 13 bits wide. The low  
byte comes from the PCL register, which is a readable  
and writable register. The high byte (PC<12:8>) is not  
directly readable or writable and comes from  
PCLATH. On any Reset, the PC is cleared. Figure 2-7  
shows the two situations for the loading of the PC. The  
upper example in Figure 2-7 shows how the PC is  
loaded on a write to PCL (PCLATH<4:0> PCH).  
The lower example in Figure 2-7 shows how the PC is  
overflow or stack underflow conditions.  
2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the CALL,  
RETURN, RETLW and RETFIE instruc-  
tions or the vectoring to an interrupt  
address.  
loaded during  
(PCLATH<4:3> PCH).  
a
CALL or GOTO instruction  
2.4  
Program Memory Paging  
All devices are capable of addressing a continuous 8K  
word block of program memory. The CALL and GOTO  
instructions provide only 11 bits of address to allow  
branching within any 2K program memory page. When  
doing a CALL or GOTO instruction, the upper 2 bits of  
the address are provided by PCLATH<4:3>. When  
doing a CALLor GOTOinstruction, the user must ensure  
that the page select bits are programmed so that the  
desired program memory page is addressed. If a return  
from a CALL instruction (or interrupt) is executed, the  
entire 13-bit PC is POPed off the stack. Therefore,  
manipulation of the PCLATH<4:3> bits is not required  
for the RETURNinstructions (which POPs the address  
from the stack).  
FIGURE 2-7:  
LOADING OF PC IN  
DIFFERENT SITUATIONS  
PCH  
PCL  
Instruction with  
12  
8
7
0
PCL as  
Destination  
PC  
8
PCLATH<4:0>  
PCLATH  
5
ALU Result  
PCH  
12 11 10  
PC  
PCL  
8
7
0
GOTO, CALL  
Note:  
The contents of the PCLATH register are  
unchanged after a RETURN or RETFIE  
instruction is executed. The user must  
rewrite the contents of the PCLATH regis-  
ter for any subsequent subroutine calls or  
GOTOinstructions.  
PCLATH<4:3>  
PCLATH  
11  
2
OPCODE<10:0>  
2.3.1  
COMPUTED GOTO  
Example 2-1 shows the calling of a subroutine in  
page 1 of the program memory. This example assumes  
that PCLATH is saved and restored by the Interrupt  
Service Routine (if interrupts are used).  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL). When perform-  
ing a table read using a computed GOTOmethod, care  
should be exercised if the table location crosses a PCL  
memory boundary (each 256-byte block). Refer to the  
Application Note AN556, “Implementing a Table Read”  
(DS00556).  
EXAMPLE 2-1:  
CALL OF A SUBROUTINE  
IN PAGE 1 FROM PAGE 0  
ORG 500h  
PAGESELSUB_P1 ;Select page 1  
;(800h-FFFh)  
2.3.2  
STACK  
All devices have an 8-level x 13-bit wide hardware  
stack (refer to Figures 2-1 and 2-3). The stack space is  
not part of either program or data space and the Stack  
Pointer is not readable or writable. The PC is PUSHed  
onto the stack when a CALLinstruction is executed or  
an interrupt causes a branch. The stack is POPed in  
the event of a RETURN, RETLWor a RETFIEinstruction  
execution. PCLATH is not affected by a PUSH or POP  
operation.  
CALL  
:
:
SUB1_P1;Call subroutine in  
;page 1 (800h-FFFh)  
ORG  
900h  
;page 1 (800h-FFFh)  
SUB1_P1  
:
;called subroutine  
;page 1 (800h-FFFh)  
:
RETURN  
;return to  
;Call subroutine  
;in page 0  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
PUSH overwrites the value that was stored from the  
first PUSH. The tenth PUSH overwrites the second  
PUSH (and so on).  
;(000h-7FFh)  
DS41341E-page 30  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
EXAMPLE 2-2:  
INDIRECT ADDRESSING  
2.5  
Indirect Addressing, INDF and  
FSR Registers  
MOVLW  
MOVWF  
BANKISEL 020h  
020h  
FSR  
;initialize pointer  
;to RAM  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
NEXT CLRF  
INDF  
FSR  
;clear INDF register  
;inc pointer  
INCF  
BTFSS  
GOTO  
Indirect addressing is possible by using the INDF  
register. Any instruction using the INDF register  
actually accesses data pointed to by the File Select  
Register (FSR). Reading INDF itself indirectly will  
produce 00h. Writing to the INDF register indirectly  
results in a no operation (although Status bits may be  
affected). An effective 9-bit address is obtained by  
concatenating the 8-bit FSR register and the IRP bit of  
the STATUS register, as shown in Figure 2-8.  
FSR,4 ;all done?  
NEXT ;no clear next  
;yes continue  
CONTINUE  
A simple program to clear RAM location 020h-02Fh  
using indirect addressing is shown in Example 2-2.  
FIGURE 2-8:  
DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
Indirect Addressing  
From Opcode  
7
RP1  
RP0  
6
0
0
IRP  
File Select Register  
Bank Select  
180h  
Location Select  
Bank Select  
Location Select  
00h  
00  
01  
10  
11  
Data  
Memory  
7Fh  
1FFh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Note:  
For memory map detail, refer to Figures 2-4 and 2-5.  
© 2009 Microchip Technology Inc.  
DS41341E-page 31  
PIC16F72X/PIC16LF72X  
NOTES:  
DS41341E-page 32  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
Most registers are not affected by a WDT wake-up  
since this is viewed as the resumption of normal  
operation. TO and PD bits are set or cleared differently  
in different Reset situations, as indicated in Table 3-3.  
These bits are used in software to determine the nature  
of the Reset.  
3.0  
RESETS  
The PIC16F72X/PIC16LF72X differentiates between  
various kinds of Reset:  
a) Power-on Reset (POR)  
b) WDT Reset during normal operation  
c) WDT Reset during Sleep  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 3-1.  
d) MCLR Reset during normal operation  
e) MCLR Reset during Sleep  
f) Brown-out Reset (BOR)  
The MCLR Reset path has a noise filter to detect and  
ignore small pulses. See Section 23.0 “Electrical  
Specifications” for pulse width specifications.  
Some registers are not affected in any Reset condition;  
their status is unknown on POR and unchanged in any  
other Reset. Most other registers are reset to a “Reset  
state” on:  
• Power-on Reset (POR)  
• MCLR Reset  
• MCLR Reset during Sleep  
• WDT Reset  
• Brown-out Reset (BOR)  
FIGURE 3-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
MCLRE  
MCLR/VPP  
Sleep  
WDT  
WDT  
Module  
Time-out  
Reset  
POR  
Power-on Reset  
VDD  
Brown-out(1)  
Reset  
BOREN  
OST/PWRT  
OST  
10-bit Ripple Counter  
Chip_Reset  
OSC1/  
CLKIN  
PWRT  
11-bit Ripple Counter  
WDTOSC  
Enable PWRT  
Enable OST  
Note 1: Refer to the Configuration Word Register 1 (Register 8-1).  
© 2009 Microchip Technology Inc.  
DS41341E-page 33  
PIC16F72X/PIC16LF72X  
TABLE 3-1:  
STATUS BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
PD  
Condition  
0
0
0
1
1
1
1
1
x
x
x
0
1
1
1
1
1
0
x
1
0
0
u
1
1
x
0
1
1
0
u
0
Power-on Reset or LDO Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during Sleep or interrupt wake-up from Sleep  
TABLE 3-2:  
RESET CONDITION FOR SPECIAL REGISTERS(2)  
Program  
STATUS  
Register  
PCON  
Register  
Condition  
Counter  
Power-on Reset  
0000h  
0001 1xxx  
000u uuuu  
---- --0x  
---- --uu  
MCLR Reset during normal operation  
0000h  
MCLR Reset during Sleep  
WDT Reset  
0000h  
0000h  
0001 0uuu  
0000 1uuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
---- --uu  
---- --uu  
---- --uu  
---- --u0  
---- --uu  
WDT Wake-up  
PC + 1  
Brown-out Reset  
0000h  
PC + 1(1)  
Interrupt Wake-up from Sleep  
Legend: u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’.  
Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on  
the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.  
2: If a Status bit is not implemented, that bit will be read as ‘0’.  
DS41341E-page 34  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
3.1  
MCLR  
3.3  
Power-up Timer (PWRT)  
The PIC16F72X/PIC16LF72X has a noise filter in the  
MCLR Reset path. The filter will detect and ignore  
small pulses.  
The Power-up Timer provides a fixed 64 ms (nominal)  
time-out on power-up only, from POR or Brown-out  
Reset. The Power-up Timer operates from the WDT  
oscillator. For more information, see Section 7.3  
“Internal Clock Modes”. The chip is kept in Reset as  
long as PWRT is active. The PWRT delay allows the  
VDD to rise to an acceptable level. A Configuration bit,  
PWRTE, can disable (if set) or enable (if cleared or pro-  
grammed) the Power-up Timer. The Power-up Timer  
should be enabled when Brown-out Reset is enabled,  
although it is not required.  
It should be noted that a Reset does not drive the  
MCLR pin low.  
Voltages applied to the pin that exceed its specification  
can result in both MCLR Resets and excessive current  
beyond the device specification during the ESD event.  
For this reason, Microchip recommends that the MCLR  
pin no longer be tied directly to VDD. The use of an RC  
network, as shown in Figure 3-2, is suggested.  
The Power-up Timer delay will vary from chip-to-chip  
and vary due to:  
An internal MCLR option is enabled by clearing the  
MCLRE bit in the Configuration Word register. When  
MCLRE = 0, the Reset signal to the chip is generated  
internally. When the MCLRE = 1, the RE3/MCLR pin  
becomes an external Reset input. In this mode, the  
RE3/MCLR pin has a weak pull-up to VDD. In-Circuit  
Serial Programming is not affected by selecting the  
internal MCLR option.  
• VDD variation  
Temperature variation  
• Process variation  
See DC parameters for details (Section 23.0  
“Electrical Specifications”).  
Note:  
The Power-up Timer is enabled by the  
PWRTE bit in the Configuration Word.  
FIGURE 3-2:  
RECOMMENDED MCLR  
CIRCUIT  
3.4  
Watchdog Timer (WDT)  
VDD  
R1  
PIC® MCU  
The WDT has the following features:  
• Shares an 8-bit prescaler with Timer0  
10 kΩ  
• Time-out period is from 17 ms to 2.2 seconds,  
nominal  
MCLR  
• Enabled by a Configuration bit  
WDT is cleared under certain conditions described in  
Table 3-1.  
C1  
0.1 μF  
3.4.1  
WDT OSCILLATOR  
The WDT derives its time base from 31 kHz internal  
oscillator.  
3.2  
Power-on Reset (POR)  
Note:  
When the Oscillator Start-up Timer (OST)  
is invoked, the WDT is held in Reset,  
because the WDT Ripple Counter is used  
by the OST to perform the oscillator delay  
count. When the OST count has expired,  
the WDT will begin counting (if enabled).  
The on-chip POR circuit holds the chip in Reset until VDD  
has reached a high enough level for proper operation. A  
maximum rise time for VDD is required. See  
Section 23.0 “Electrical Specifications” for details. If  
the BOR is enabled, the maximum rise time specification  
does not apply. The BOR circuitry will keep the device in  
Reset until VDD reaches VBOR (see Section 3.5  
“Brown-Out Reset (BOR)”).  
When the device starts normal operation (exits the  
Reset condition), device operating parameters (i.e.,  
voltage, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in Reset until the operating  
conditions are met.  
For additional information, refer to Application Note  
AN607, “Power-up Trouble Shooting” (DS00607).  
© 2009 Microchip Technology Inc.  
DS41341E-page 35  
PIC16F72X/PIC16LF72X  
3.4.2  
WDT CONTROL  
The WDTE bit is located in the Configuration Word  
Register 1. When set, the WDT runs continuously.  
The PSA and PS<2:0> bits of the OPTION register  
control the WDT period. See Section 11.0 “Timer0  
Module” for more information.  
FIGURE 3-1: WATCHDOG TIMER BLOCK DIAGRAM  
T1GSS = 11  
TMR1GE  
From TMR0  
Clock Source  
WDTE  
Low-Power  
WDT OSC  
0
1
Postscaler  
8
Divide by  
512  
PS<2:0>  
TO TMR0  
0
1
PSA  
WDT Reset  
To T1G  
WDTE  
TABLE 3-1:  
WDT STATUS  
Conditions  
WDT  
Cleared  
WDTE = 0  
CLRWDTCommand  
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK  
Exit Sleep + System Clock = XT, HS, LP  
Cleared until the end of OST  
DS41341E-page 36  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
If VDD falls below VBOR for greater than parameter  
(TBOR) (see Section 23.0 “Electrical Specifica-  
tions”), the Brown-out situation will reset the device.  
This will occur regardless of VDD slew rate. A Reset is  
not ensured to occur if VDD falls below VBOR for more  
than parameter (TBOR).  
3.5  
Brown-Out Reset (BOR)  
Brown-out Reset is enabled by programming the  
BOREN<1:0> bits in the Configuration register. The  
brown-out trip point is selectable from two trip points  
via the BORV bit in the Configuration register.  
Between the POR and BOR, complete voltage range  
coverage for execution protection can be imple-  
mented.  
If VDD drops below VBOR while the Power-up Timer is  
running, the chip will go back into a Brown-out Reset  
and the Power-up Timer will be re-initialized. Once VDD  
rises above VBOR, the Power-up Timer will execute a  
64 ms Reset.  
Two bits are used to enable the BOR. When  
BOREN = 11, the BOR is always enabled. When  
BOREN = 10, the BOR is enabled, but disabled during  
Sleep. When BOREN = 0X, the BOR is disabled.  
Note:  
When erasing Flash program memory, the  
BOR is forced to enabled at the minimum  
BOR setting to guarantee that any code  
protection circuitry is operating properly.  
FIGURE 3-3:  
BROWN-OUT SITUATIONS  
VDD  
VBOR  
Internal  
Reset  
(1)  
64 ms  
VDD  
VBOR  
Internal  
Reset  
< 64 ms  
(1)  
64 ms  
VDD  
VBOR  
Internal  
Reset  
(1)  
64 ms  
Note 1: 64 ms delay only if PWRTE bit is programmed to ‘0’.  
© 2009 Microchip Technology Inc.  
DS41341E-page 37  
PIC16F72X/PIC16LF72X  
3.6  
Time-out Sequence  
3.7  
Power Control (PCON) Register  
On power-up, the time-out sequence is as follows: first,  
PWRT time-out is invoked after POR has expired, then  
OST is activated after the PWRT time-out has expired.  
The total time-out will vary based on oscillator configu-  
ration and PWRTE bit status. For example, in EC mode  
with PWRTE bit = 1(PWRT disabled), there will be no  
time-out at all. Figure 3-4, Figure 3-5 and Figure 3-6  
depict time-out sequences.  
The Power Control (PCON) register has two Status bits  
to indicate what type of Reset that last occurred.  
Bit 0 is BOR (Brown-out Reset). BOR is unknown on  
Power-on Reset. It must then be set by the user and  
checked on subsequent Resets to see if BOR = 0,  
indicating that a Brown-out has occurred. The BOR  
Status bit is a “don’t care” and is not necessarily  
predictable if the brown-out circuit is disabled  
(BOREN<1:0> = 00in the Configuration Word register).  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then,  
bringing MCLR high will begin execution immediately  
(see Figure 3-5). This is useful for testing purposes or  
to synchronize more than one PIC16F72X/  
PIC16LF72X device operating in parallel.  
Bit 1 is POR (Power-on Reset). It is a ‘0’ on Power-on  
Reset and unaffected otherwise. The user must write a  
1’ to this bit following a Power-on Reset. On a  
subsequent Reset, if POR is ‘0’, it will indicate that a  
Power-on Reset has occurred (i.e., VDD may have  
gone too low).  
Table 3-3 shows the Reset conditions for some special  
registers.  
For more information, see Section 3.5 “Brown-Out  
Reset (BOR)”.  
TABLE 3-2:  
TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Brown-out Reset  
Wake-up from  
Oscillator Configuration  
Sleep  
PWRTE = 0  
PWRTE = 1  
PWRTE = 0  
PWRTE = 1  
XT, HS, LP(1)  
TPWRT + 1024 •  
TOSC  
1024 • TOSC  
TPWRT + 1024 •  
TOSC  
1024 • TOSC  
1024 • TOSC  
RC, EC, INTOSC  
TPWRT  
TPWRT  
Note 1: LP mode with T1OSC disabled.  
TABLE 3-3:  
POR  
RESET BITS AND THEIR SIGNIFICANCE  
BOR  
TO  
PD  
Condition  
0
1
u
u
u
0
u
u
1
1
0
0
1
1
u
0
Power-on Reset  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
u
u
u
u
u
1
u
0
MCLR Reset during normal operation  
MCLR Reset during Sleep  
Legend: u= unchanged, x= unknown  
DS41341E-page 38  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 3-4:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 1  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 3-5:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 2  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 3-6:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR WITH VDD): CASE 3  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
© 2009 Microchip Technology Inc.  
DS41341E-page 39  
PIC16F72X/PIC16LF72X  
TABLE 3-4:  
Register  
INITIALIZATION CONDITION FOR REGISTERS  
Power-on Reset/  
MCLR Reset/  
WDT Reset  
Wake-up from Sleep through  
Interrupt/Time-out  
Address  
Brown-out Reset(1)  
W
xxxx xxxx  
xxxx xxxx  
uuuu uuuu  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
INDF  
00h/80h/  
100h/180h  
TMR0  
PCL  
01h/101h  
xxxx xxxx  
0000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
PC + 1(3)  
02h/82h/  
102h/182h  
STATUS  
FSR  
03h/83h/  
103h/183h  
0001 1xxx  
xxxx xxxx  
000q quuu(4)  
uuuu uuuu  
uuuq quuu(4)  
uuuu uuuu  
04h/84h/  
104h/184h  
PORTA  
PORTB  
PORTC  
PORTD(6)  
PORTE  
PCLATH  
05h  
06h  
07h  
08h  
09h  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
---- xxxx  
---0 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
---- xxxx  
---0 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- uuuu  
---u uuuu  
0Ah/8Ah/  
10Ah/18Ah  
INTCON  
0Bh/8Bh/  
0000 000x  
0000 000x  
uuuu uuuu(2)  
10Bh/18Bh  
PIR1  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
0000 0000  
---- ---0  
xxxx xxxx  
xxxx xxxx  
0000 00-0  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 000x  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
---- ---0  
uuuu uuuu  
uuuu uuuu  
uuuu uu-u  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 000x  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
uuuu uuuu(2)  
---- ---u  
uuuu uuuu  
uuuu uuuu  
uuuu uu-u  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
PIR2  
TMR1L  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
Legend: u= unchanged, x= unknown, - = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 and PIR2 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt  
vector (0004h).  
4: See Table 3-5 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
6: PIC16F724/727/PIC16LF724/727 only.  
DS41341E-page 40  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
TABLE 3-4:  
Register  
INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)  
Power-on Reset/  
MCLR Reset/  
WDT Reset  
Wake-up from Sleep through  
Interrupt/Time-out  
Address  
Brown-out Reset(1)  
ADRES  
1Eh  
1Fh  
xxxx xxxx  
--00 0000  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
---- 1111  
0000 0000  
---- ---0  
---- --qq  
0000 0x00  
--10 qq--  
--00 0000  
1111 1111  
0000 0000  
1111 1111  
0000 0000  
1111 1111  
0000 0000  
0000 -010  
0000 0000  
---- --00  
q000 --00  
-000 --00  
0--- 0000  
---- 0000  
xxxx xxxx  
xxxx xxxx  
--xx xxxx  
---x xxxx  
--11 1111  
--11 1111  
1111 1111  
---- -111  
1--- ---0  
uuuu uuuu  
--00 0000  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
---- 1111  
0000 0000  
---- ---0  
---- --uu(1,5)  
uuuu uxuu  
--10 qq--  
--uu uuuu  
1111 1111  
0000 0000  
1111 1111  
0000 0000  
1111 1111  
0000 0000  
0000 -010  
0000 0000  
---- --00  
q000 --00  
-000 --00  
0--- 0000  
---- 0000  
xxxx xxxx  
xxxx xxxx  
--xx xxxx  
---x xxxx  
--11 1111  
--11 1111  
1111 1111  
---- -111  
1--- ---0  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- uuuu  
uuuu uuuu  
---- ---u  
---- --uu  
uuuu uxuu  
--uu qq--  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -uuu  
uuuu uuuu  
---- --uu  
uuuu --uu  
-uuu --uu  
u--- uuuu  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
---u uuuu  
--uu uuuu  
--uu uuuu  
uuuu uuuu  
---- -uuu  
u--- ---u  
ADCON0  
OPTION_REG 81h/181h  
TRISA  
85h  
86h  
TRISB  
TRISC  
TRISD(6)  
87h  
88h  
TRISE  
89h  
PIE1  
8Ch  
8Dh  
8Eh  
8Fh  
PIE2  
PCON  
T1GCON  
OSCCON  
OSCTUNE  
PR2  
90h  
91h  
92h  
SSPADD  
SSPMSK  
SSPSTAT  
WPUB  
93h  
93h  
94h  
95h  
IOCB  
96h  
TXSTA  
98h  
SPBRG  
APFCON  
FVRCON  
ADCON1  
CPSCON0  
CPSCON1  
PMDATL  
PMADRL  
PMDATH  
PMADRH  
ANSELA  
ANSELB  
ANSELD(6)  
ANSELE  
PMCON1  
99h  
9Ch  
9Dh  
9Fh  
108h  
109h  
10Ch  
10Dh  
10Eh  
10Fh  
185h  
186h  
188h  
189h  
18Ch  
Legend: u= unchanged, x= unknown, - = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 and PIR2 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt  
vector (0004h).  
4: See Table 3-5 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
6: PIC16F724/727/PIC16LF724/727 only.  
© 2009 Microchip Technology Inc.  
DS41341E-page 41  
PIC16F72X/PIC16LF72X  
TABLE 3-5:  
INITIALIZATION CONDITION FOR SPECIAL REGISTERS  
Program  
Counter  
STATUS  
Register  
PCON  
Register  
Condition  
Power-on Reset  
0000h  
0000h  
0001 1xxx  
000u uuuu  
---- --0x  
---- --uu  
MCLR Reset during normal operation  
MCLR Reset during Sleep  
WDT Reset  
0000h  
0000h  
0001 0uuu  
0000 uuuu  
uuu0 0uuu  
0001 1xxx  
uuu1 0uuu  
---- --uu  
---- --uu  
---- --uu  
---- --10  
---- --uu  
WDT Wake-up  
PC + 1  
Brown-out Reset  
0000h  
PC + 1(1)  
Interrupt Wake-up from Sleep  
Legend: u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’.  
Note 1: When the wake-up is due to an interrupt and Global Interrupt Enable bit, GIE, is set, the PC is loaded with  
the interrupt vector (0004h) after execution of PC + 1.  
TABLE 3-6:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH RESETS  
Value on  
all other  
Resets(1)  
Value on  
POR, BOR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
STATUS  
PCON  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
0001 1xxx 000q quuu  
---- --qq ---- --uu  
POR  
BOR  
Legend:  
u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’, q= value depends on condition. Shaded cells are not  
used by Resets.  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
DS41341E-page 42  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
The PIC16F72X/PIC16LF72X device family has 12  
interrupt sources, differentiated by corresponding  
interrupt enable and flag bits:  
4.0  
INTERRUPTS  
The PIC16F72X/PIC16LF72X device family features  
an interruptible core, allowing certain events to  
preempt normal program flow. An Interrupt Service  
Routine (ISR) is used to determine the source of the  
interrupt and act accordingly. Some interrupts can be  
configured to wake the MCU from Sleep mode.  
• Timer0 Overflow Interrupt  
• External Edge Detect on INT Pin Interrupt  
• PORTB Change Interrupt  
• Timer1 Gate Interrupt  
• A/D Conversion Complete Interrupt  
• AUSART Receive Interrupt  
• AUSART Transmit Interrupt  
• SSP Event Interrupt  
• CCP1 Event Interrupt  
• Timer2 Match with PR2 Interrupt  
• Timer1 Overflow Interrupt  
• CCP2 Event Interrupt  
A block diagram of the interrupt logic is shown in  
Figure 4-1.  
FIGURE 4-1:  
INTERRUPT LOGIC  
IOC-RB0  
IOCB0  
IOC-RB1  
IOCB1  
SSPIF  
SSPIE  
IOC-RB2  
IOCB2  
TXIF  
TXIE  
IOC-RB3  
IOCB3  
RCIF  
RCIE  
(1)  
Wake-up (If in Sleep mode)  
IOC-RB4  
IOCB4  
T0IF  
T0IE  
TMR2IF  
TMR2IE  
Interrupt to CPU  
IOC-RB5  
IOCB5  
INTF  
INTE  
RBIF  
TMR1IF  
TMR1IE  
IOC-RB6  
IOCB6  
RBIE  
ADIF  
ADIE  
PEIE  
GIE  
IOC-RB7  
IOCB7  
TMR1GIF  
TMR1GIE  
CCP1IF  
CCP1IE  
CCP2IF  
CCP2IE  
Note 1: Some peripherals depend upon the  
system clock for operation. Since the  
system clock is suspended during  
Sleep, these peripherals will not wake  
the part from Sleep. See Section 19.1  
“Wake-up from Sleep”.  
© 2009 Microchip Technology Inc.  
DS41341E-page 43  
PIC16F72X/PIC16LF72X  
repeated interrupts. Because the GIE bit is cleared, any  
interrupt that occurs while executing the ISR will be  
recorded through its Interrupt Flag, but will not cause  
the processor to redirect to the interrupt vector.  
4.1  
Operation  
Interrupts are disabled upon any device Reset. They  
are enabled by setting the following bits:  
• GIE bit of the INTCON register  
The RETFIE instruction exits the ISR by popping the  
• Interrupt Enable bit(s) for the specific interrupt  
event(s)  
previous address from the stack and setting the GIE bit.  
For additional information on a specific interrupt’s  
operation, refer to its peripheral chapter.  
• PEIE bit of the INTCON register (if the Interrupt  
Enable bit of the interrupt event is contained in the  
PIE1 and PIE2 registers)  
Note 1: Individual Interrupt Flag bits are set,  
regardless of the state of any other  
enable bits.  
The INTCON, PIR1 and PIR2 registers record individ-  
ual interrupts via Interrupt Flag bits. Interrupt Flag bits  
will be set, regardless of the status of the GIE, PEIE  
and individual Interrupt Enable bits.  
2: All interrupts will be ignored while the GIE  
bit is cleared. Any interrupt occurring  
while the GIE bit is clear will be serviced  
when the GIE bit is set again.  
The following events happen when an interrupt event  
occurs while the GIE bit is set:  
• Current prefetched instruction is flushed  
• GIE bit is cleared  
4.2  
Interrupt Latency  
Interrupt latency is defined as the time from when the  
interrupt event occurs to the time code execution at the  
interrupt vector begins. The latency for synchronous  
interrupts is 3 instruction cycles. For asynchronous  
interrupts, the latency is 3 to 4 instruction cycles,  
depending on when the interrupt occurs. See Figure 4-2  
for timing details.  
• Current Program Counter (PC) is pushed onto the  
stack  
• PC is loaded with the interrupt vector 0004h  
The ISR determines the source of the interrupt by  
polling the Interrupt Flag bits. The Interrupt Flag bits  
must be cleared before exiting the ISR to avoid  
FIGURE 4-2:  
INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
(3)  
CLKOUT  
(4)  
INT pin  
(1)  
(1)  
(2)  
(5)  
Interrupt Latency  
INTF flag  
(INTCON<1>)  
GIE bit  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
PC + 1  
0004h  
0005h  
PC  
Inst (PC)  
PC + 1  
Instruction  
Fetched  
Inst (0004h)  
Inst (PC + 1)  
Inst (0005h)  
Inst (0004h)  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC – 1)  
Note 1: INTF flag is sampled here (every Q1).  
2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time. Latency  
is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.  
3: CLKOUT is available only in INTOSC and RC Oscillator modes.  
4: For minimum width of INT pulse, refer to AC specifications in Section 23.0 “Electrical Specifications”.  
5: INTF is enabled to be set any time during the Q4-Q1 cycles.  
DS41341E-page 44  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
following the ISR from using invalid data. Examples of  
key registers include the W, STATUS, FSR and  
PCLATH registers.  
4.3  
Interrupts During Sleep  
Some interrupts can be used to wake from Sleep. To  
wake from Sleep, the peripheral must be able to  
operate without the system clock. The interrupt source  
must have the appropriate Interrupt Enable bit(s) set  
prior to entering Sleep.  
Note:  
The microcontroller does not normally  
require saving the PCLATH register.  
However, if computed GOTO’s are used,  
the PCLATH register must be saved at the  
beginning of the ISR and restored when  
the ISR is complete to ensure correct  
program flow.  
On waking from Sleep, if the GIE bit is also set, the  
processor will branch to the interrupt vector. Otherwise,  
the processor will continue executing instructions after  
the SLEEPinstruction. The instruction directly after the  
SLEEP instruction will always be executed before  
branching to the ISR. Refer to the Section 19.0  
“Power-Down Mode (Sleep)” for more details.  
The code shown in Example 4-1 can be used to do the  
following.  
• Save the W register  
• Save the STATUS register  
• Save the PCLATH register  
• Execute the ISR program  
• Restore the PCLATH register  
• Restore the STATUS register  
• Restore the W register  
4.4  
INT Pin  
The external interrupt, INT pin, causes an  
asynchronous, edge-triggered interrupt. The INTEDG bit  
of the OPTION register determines on which edge the  
interrupt will occur. When the INTEDG bit is set, the  
rising edge will cause the interrupt. When the INTEDG  
bit is clear, the falling edge will cause the interrupt. The  
INTF bit of the INTCON register will be set when a valid  
edge appears on the INT pin. If the GIE and INTE bits  
are also set, the processor will redirect program  
execution to the interrupt vector. This interrupt is  
disabled by clearing the INTE bit of the INTCON register.  
Since most instructions modify the W register, it must  
be saved immediately upon entering the ISR. The  
SWAPF instruction is used when saving and restoring  
the W and STATUS registers because it will not affect  
any bits in the STATUS register. It is useful to place  
W_TEMP in shared memory because the ISR cannot  
predict which bank will be selected when the interrupt  
occurs.  
4.5  
Context Saving  
The processor will branch to the interrupt vector by  
loading the PC with 0004h. The PCLATH register will  
remain unchanged. This requires the ISR to ensure  
that the PCLATH register is set properly before using  
an instruction that causes PCLATH to be loaded into  
the PC. See Section 2.3 “PCL and PCLATH” for  
details on PC operation.  
When an interrupt occurs, only the return PC value is  
saved to the stack. If the ISR modifies or uses an  
instruction that modifies key registers, their values  
must be saved at the beginning of the ISR and restored  
when the ISR completes. This prevents instructions  
EXAMPLE 4-1:  
SAVING W, STATUS AND PCLATH REGISTERS IN RAM  
;Copy W to W_TEMP register  
MOVWF  
SWAPF  
W_TEMP  
STATUS,W  
;Swap status to be saved into W  
;Swaps are used because they do not affect the status bits  
;Select regardless of current bank  
BANKSEL STATUS_TEMP  
MOVWF  
MOVF  
MOVWF  
:
STATUS_TEMP  
PCLATH,W  
PCLATH_TEMP  
;Copy status to bank zero STATUS_TEMP register  
;Copy PCLATH to W register  
;Copy W register to PCLATH_TEMP  
:(ISR)  
:
;Insert user code here  
BANKSEL STATUS_TEMP  
;Select regardless of current bank  
;
;Restore PCLATH  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVF  
MOVWF  
SWAPF  
PCLATH_TEMP,W  
PCLATH  
STATUS_TEMP,W  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
© 2009 Microchip Technology Inc.  
DS41341E-page 45  
PIC16F72X/PIC16LF72X  
4.5.1  
INTCON REGISTER  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE of the INTCON register.  
User software should ensure the appropri-  
ate interrupt flag bits are clear prior to  
enabling an interrupt.  
The INTCON register is a readable and writable  
register, which contains the various enable and flag bits  
for TMR0 register overflow, PORTB change and  
external RB0/INT/SEG0 pin interrupts.  
REGISTER 4-1:  
INTCON: INTERRUPT CONTROL REGISTER  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RBIE(1)  
R/W-0  
T0IF(2)  
R/W-0  
INTF  
R/W-x  
RBIF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
GIE: Global Interrupt Enable bit  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
T0IE: Timer0 Overflow Interrupt Enable bit  
1= Enables the Timer0 interrupt  
0= Disables the Timer0 interrupt  
INTE: RB0/INT External Interrupt Enable bit  
1= Enables the RB0/INT external interrupt  
0= Disables the RB0/INT external interrupt  
RBIE: PORTB Change Interrupt Enable bit(1)  
1= Enables the PORTB change interrupt  
0= Disables the PORTB change interrupt  
T0IF: Timer0 Overflow Interrupt Flag bit(2)  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1= The RB0/INT external interrupt occurred (must be cleared in software)  
0= The RB0/INT external interrupt did not occur  
RBIF: PORTB Change Interrupt Flag bit  
1= When at least one of the PORTB general purpose I/O pins changed state (must be cleared in soft-  
ware)  
0= None of the PORTB general purpose I/O pins have changed state  
Note 1: The appropriate bits in the IOCB register must also be set.  
2: T0IF bit is set when Timer0 rolls over. Timer0 is unchanged on Reset and should be initialized before  
clearing T0IF bit.  
DS41341E-page 46  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
4.5.2  
PIE1 REGISTER  
The PIE1 register contains the interrupt enable bits, as  
shown in Register 4-2.  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
REGISTER 4-2:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
R/W-0  
TMR1GIE  
bit 7  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
R/W-0  
CCP1IE  
TMR2IE  
TMR1IE  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMR1GIE: Timer1 Gate Interrupt Enable bit  
1= Enable the Timer1 Gate Acquisition complete interrupt  
0= Disable the Timer1 Gate Acquisition complete interrupt  
ADIE: A/D Converter (ADC) Interrupt Enable bit  
1= Enables the ADC interrupt  
0= Disables the ADC interrupt  
RCIE: USART Receive Interrupt Enable bit  
1= Enables the USART receive interrupt  
0= Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1= Enables the USART transmit interrupt  
0= Disables the USART transmit interrupt  
SSPIE: Synchronous Serial Port (SSP) Interrupt Enable bit  
1= Enables the SSP interrupt  
0= Disables the SSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the Timer2 to PR2 match interrupt  
0= Disables the Timer2 to PR2 match interrupt  
TMR1IE: Timer1 Overflow Interrupt Enable bit  
1= Enables the Timer1 overflow interrupt  
0= Disables the Timer1 overflow interrupt  
© 2009 Microchip Technology Inc.  
DS41341E-page 47  
PIC16F72X/PIC16LF72X  
4.5.3  
PIE2 REGISTER  
The PIE2 register contains the interrupt enable bits, as  
shown in Register 4-3.  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
REGISTER 4-3:  
PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CCP2IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-1  
bit 0  
Unimplemented: Read as ‘0’  
CCP2IE: CCP2 Interrupt Enable bit  
1= Enables the CCP2 interrupt  
0= Disables the CCP2 interrupt  
DS41341E-page 48  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
4.5.4  
PIR1 REGISTER  
The PIR1 register contains the interrupt flag bits, as  
shown in Register 4-4.  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Enable bit, GIE of the INTCON register.  
User software should ensure the  
appropriate interrupt flag bits are clear prior  
to enabling an interrupt.  
REGISTER 4-4:  
PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1  
R/W-0  
TMR1GIF  
bit 7  
R/W-0  
ADIF  
R-0  
R-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
R/W-0  
RCIF  
TXIF  
CCP1IF  
TMR2IF  
TMR1IF  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
TMR1GIF: Timer1 Gate Interrupt Flag bit  
1= Timer1 Gate is inactive  
0= Timer1 Gate is active  
ADIF: A/D Converter Interrupt Flag bit  
1= A/D conversion complete (must be cleared in software)  
0= A/D conversion has not completed or has not been started  
RCIF: USART Receive Interrupt Flag bit  
1= The USART receive buffer is full (cleared by reading RCREG)  
0= The USART receive buffer is not full  
TXIF: USART Transmit Interrupt Flag bit  
1= The USART transmit buffer is empty (cleared by writing to TXREG)  
0= The USART transmit buffer is full  
SSPIF: Synchronous Serial Port (SSP) Interrupt Flag bit  
1= The Transmission/Reception is complete (must be cleared in software)  
0= Waiting to Transmit/Receive  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode  
bit 1  
bit 0  
TMR2IF: Timer2 to PR2 Interrupt Flag bit  
1= A Timer2 to PR2 match occurred (must be cleared in software)  
0= No Timer2 to PR2 match occurred  
TMR1IF: Timer1 Overflow Interrupt Flag bit  
1= The TMR1 register overflowed (must be cleared in software)  
0= The TMR1 register did not overflow  
© 2009 Microchip Technology Inc.  
DS41341E-page 49  
PIC16F72X/PIC16LF72X  
4.5.5  
PIR2 REGISTER  
The PIR2 register contains the interrupt flag bits, as  
shown in Register 4-5.  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Enable bit, GIE of the INTCON register.  
User software should ensure the  
appropriate interrupt flag bits are clear prior  
to enabling an interrupt.  
REGISTER 4-5:  
PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CCP2IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-1  
bit 0  
Unimplemented: Read as ‘0’  
CCP2IF: CCP2 Interrupt Flag bit  
Capture Mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare Mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode  
TABLE 4-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000x  
1111 1111 1111 1111  
0000 0000 0000 0000  
---- ---0 ---- ---0  
0000 0000 0000 0000  
---- ---0 ---- ---0  
OPTION_REG  
PIE1  
RBPU  
TMR1GIE  
INTEDG  
ADIE  
T0CS  
RCIE  
T0SE  
TXIE  
PSA  
SSPIE  
PS2  
CCP1IE  
PS1  
TMR2IE  
PS0  
TMR1IE  
CCP2IE  
TMR1IF  
CCP2IF  
PIE2  
PIR1  
TMR1GIF  
ADIF  
RCIF  
TXIF  
SSPIF  
CCP1IF  
TMR2IF  
PIR2  
Legend: -= Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the Capture, Compare and PWM.  
DS41341E-page 50  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
5.0  
LOW DROPOUT (LDO)  
VOLTAGE REGULATOR  
The PIC16F72X devices differ from the PIC16LF72X  
devices due to an internal Low Dropout (LDO) voltage  
regulator. The PIC16F72X contain an internal LDO,  
while the PIC16LF72X do not.  
The lithography of the die allows a maximum operating  
voltage of 3.6V on the internal digital logic. In order to  
continue to support 5.0V designs, a LDO voltage  
regulator is integrated on the die. The LDO voltage  
regulator allows for the internal digital logic to operate  
at 3.2V, while I/O’s operate at 5.0V (VDD).  
The LDO voltage regulator requires an external bypass  
capacitor for stability. One of three pins, denoted as  
VCAP, can be configured for the external bypass  
capacitor. It is recommended that the capacitor be a  
ceramic cap between 0.1 to 1.0 µF. The VCAP pin is not  
intended to supply power to external loads. An external  
voltage regulator should be used if this functionality is  
required. In addition, external devices should not  
supply power to the VCAP pin.  
On power-up, the external capacitor will look like a  
large load on the LDO voltage regulator. To prevent  
erroneous operation, the device is held in Reset while  
a
constant current source charges the external  
capacitor. After the cap is fully charged, the device is  
released from Reset. For more information, refer to  
Section 23.0 “Electrical Specifications”.  
See Configuration Word 2 register (Register 8-2) for  
VCAP enable bits.  
© 2009 Microchip Technology Inc.  
DS41341E-page 51  
PIC16F72X/PIC16LF72X  
NOTES:  
DS41341E-page 52  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
6.0  
I/O PORTS  
There are as many as thirty-five general purpose I/O  
pins available. Depending on which peripherals are  
enabled, some or all of the pins may not be available as  
general purpose I/O. In general, when a peripheral is  
enabled, the associated pin may not be used as a  
general purpose I/O pin.  
6.1  
Alternate Pin Function  
The Alternate Pin Function Control (APFCON) register  
is used to steer specific peripheral input and output  
functions between different pins. The APFCON register  
is shown in Register 6-1. For this device family, the  
following functions can be moved between different  
pins.  
• SS (Slave Select)  
• CCP2  
REGISTER 6-1:  
APFCON: ALTERNATE PIN FUNCTION CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
SSSEL  
CCP2SEL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’.  
SSSEL: SS Input Pin Selection bit  
0= SS function is on RA5/AN4/CPS7/SS/VCAP  
1= SS function is on RA0/AN0/SS/VCAP  
bit 0  
CCP2SEL: CCP2 Input/Output Pin Selection bit  
0= CCP2 function is on RC1/T1OSI/CCP2  
1= CCP2 function is on RB3/CCP2  
© 2009 Microchip Technology Inc.  
DS41341E-page 53  
PIC16F72X/PIC16LF72X  
The TRISA register (Register 6-3) controls the PORTA  
pin output drivers, even when they are being used as  
analog inputs. The user should ensure the bits in the  
TRISA register are maintained set when using them as  
analog inputs. I/O pins configured as analog input  
always read ‘0’.  
6.2  
PORTA and the TRISA Registers  
PORTA is  
a 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISA  
(Register 6-3). Setting a TRISA bit (= 1) will make the  
corresponding PORTA pin an input (i.e., disable the  
output driver). Clearing a TRISA bit (= 0) will make the  
corresponding PORTA pin an output (i.e., enables  
output driver and puts the contents of the output latch  
on the selected pin). Example 6-1 shows how to  
initialize PORTA.  
Note:  
The ANSELA register must be initialized to  
configure an analog channel as a digital  
input. Pins configured as analog inputs will  
read ‘0’.  
Reading the PORTA register (Register 6-2) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then  
written to the PORT data latch.  
EXAMPLE 6-1:  
INITIALIZING PORTA  
BANKSELPORTA  
;
CLRF  
BANKSELANSELA  
CLRF ANSELA  
BANKSELTRISA  
PORTA  
;Init PORTA  
;
;digital I/O  
;
;Set RA<3:2> as inputs  
;and set RA<7:4,1:0>  
;as outputs  
MOVLW  
MOVWF  
0Ch  
TRISA  
REGISTER 6-2:  
PORTA: PORTA REGISTER  
R/W-x  
RA7  
R/W-x  
RA6  
R/W-x  
RA5  
R/W-x  
RA4  
R/W-x  
RA3  
R/W-x  
RA2  
R/W-x  
RA1  
R/W-x  
RA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7-0  
RA<7:0>: PORTA I/O Pin bit  
1= Port pin is > VIH  
0= Port pin is < VIL  
REGISTER 6-3:  
TRISA: PORTA TRI-STATE REGISTER  
R/W-1  
TRISA7  
bit 7  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TRISA6  
TRISA5  
TRISA4  
TRISA3  
TRISA2  
TRISA1  
TRISA0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
TRISA<7:0>: PORTA Tri-State Control bit  
1= PORTA pin configured as an input (tri-stated)  
0= PORTA pin configured as an output  
DS41341E-page 54  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
6.2.1  
ANSELA REGISTER  
The ANSELA register (Register 6-4) is used to  
configure the Input mode of an I/O pin to analog.  
Setting the appropriate ANSELA bit high will cause all  
digital reads on the pin to be read as ‘0’ and allow  
analog functions on the pin to operate correctly.  
The state of the ANSELA bits has no affect on digital  
output functions. A pin with TRIS clear and ANSEL set  
will still operate as a digital output, but the Input mode  
will be analog. This can cause unexpected behavior  
when executing read-modify-write instructions on the  
affected port.  
REGISTER 6-4:  
ANSELA: PORTA ANALOG SELECT REGISTER  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
ANSA5  
ANSA4  
ANSA3  
ANSA2  
ANSA1  
ANSA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
ANSA<5:0>: Analog Select between Analog or Digital Function on pins RA<5:0>, respectively  
0= Digital I/O. Pin is assigned to port or Digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital Input buffer disabled.  
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to  
allow external control of the voltage on the pin.  
© 2009 Microchip Technology Inc.  
DS41341E-page 55  
PIC16F72X/PIC16LF72X  
6.2.2  
PIN DESCRIPTIONS AND  
DIAGRAMS  
6.2.2.6  
RA5/AN4/CPS7/SS/VCAP  
Figure 6-4 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
Each PORTA pin is multiplexed with other functions. The  
pins and their combined functions are briefly described  
here. For specific information about individual functions  
such as the A/D Converter (ADC), refer to the  
appropriate section in this data sheet.  
• a general purpose I/O  
• an analog input for the ADC  
• a capacitive sensing input  
• a slave select input for the SSP(1)  
6.2.2.1  
RA0/AN0/SS/VCAP  
• a Voltage Regulator Capacitor pin (PIC16F72X  
only)  
Figure 6-1 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
Note 1: SS pin location may be selected as RA5  
or RA0.  
• a general purpose I/O  
• an analog input for the ADC  
• a slave select input for the SSP(1)  
6.2.2.7  
RA6/OSC2/CLKOUT/VCAP  
Figure 6-5 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a Voltage Regulator Capacitor pin (PIC16F72X  
only)  
• a general purpose I/O  
• a crystal/resonator connection  
• a clock output  
Note 1: SS pin location may be selected as RA5  
or RA0.  
6.2.2.2  
RA1/AN1  
• a Voltage Regulator Capacitor pin (PIC16F72X  
only)  
Figure 6-2 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
6.2.2.8  
RA7/OSC1/CLKIN  
• a general purpose I/O  
Figure 6-6 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• an analog input for the ADC  
6.2.2.3  
RA2/AN2  
• a general purpose I/O  
• a crystal/resonator connection  
• a clock input  
Figure 6-2 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• an analog input for the ADC  
6.2.2.4  
RA3/AN3/VREF  
Figure 6-2 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• an analog input for the ADC  
• a voltage reference input for the ADC  
6.2.2.5  
RA4/CPS6/T0CKI  
Figure 6-3 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• a capacitive sensing input  
• a clock input for Timer0  
The Timer0 clock input function works independently  
of any TRIS register setting. Effectively, if TRISA4 = 0,  
the PORTA4 register bit will output to the pad and  
Clock Timer0 at the same time.  
DS41341E-page 56  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 6-1:  
BLOCK DIAGRAM OF RA0  
PIC16F72X only  
To Voltage Regulator  
VCAPEN = 00  
VDD  
Data Bus  
D
Q
I/O Pin  
WR  
PORTA  
CK  
Q
VSS  
D
Q
Q
WR  
TRISA  
CK  
RD  
TRISA  
ANSA0  
RD  
PORTA  
To SSP SS Input  
To A/D Converter  
© 2009 Microchip Technology Inc.  
DS41341E-page 57  
PIC16F72X/PIC16LF72X  
FIGURE 6-2:  
RA<3:1> BLOCK DIAGRAM  
VDD  
Data Bus  
D
Q
Q
I/O Pin  
WR  
PORTA  
CK  
VSS  
D
Q
Q
WR  
TRISA  
CK  
RD  
TRISA  
ANSAx  
RD  
PORTA  
To A/D Converter  
FIGURE 6-3:  
BLOCK DIAGRAM OF RA4  
VDD  
Data Bus  
D
Q
Q
I/O Pin  
WR  
CK  
PORTA  
VSS  
D
Q
Q
WR  
TRISA  
CK  
RD  
TRISA  
ANSA4  
RD  
PORTA  
To Timer0 Clock MUX  
To Cap Sensor  
DS41341E-page 58  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 6-4:  
BLOCK DIAGRAM OF RA5  
PIC16F72X only  
To Voltage Regulator  
VCAPEN = 01  
VDD  
Data Bus  
D
Q
Q
I/O Pin  
WR  
CK  
PORTA  
VSS  
D
Q
Q
WR  
TRISA  
CK  
RD  
TRISA  
ANSA5  
RD  
PORTA  
To SSP SS Input  
To A/D Converter  
To Cap Sensor  
© 2009 Microchip Technology Inc.  
DS41341E-page 59  
PIC16F72X/PIC16LF72X  
FIGURE 6-5:  
BLOCK DIAGRAM OF RA6  
PIC16F72X only  
To Voltage Regulator  
VCAPEN = 10  
Oscillator  
Circuit  
CLKOUT(1)  
Enable  
VDD  
RA7/OSC1  
Data Bus  
I/O Pin  
FOSC/4  
Q
1
0
D
WR  
CK  
Q
PORTA  
VSS  
D
Q
Q
WR  
TRISA  
CK  
RD  
TRISA  
FOSC = LP or XT or HS  
(00XOR 010)  
RD  
PORTA  
Note 1: CLKOUT Enable = 1When FOSC = RC or INTOSC (No I/O Selected).  
FIGURE 6-6:  
BLOCK DIAGRAM OF RA7  
Oscillator  
Circuit  
VDD  
Data Bus  
RA6/OSC2  
I/O Pin  
D
Q
Q
WR  
PORTA  
CK  
VSS  
D
Q
Q
WR  
TRISA  
CK  
RD  
TRISA  
OSC = INTOSC or  
INTOSCIO  
RD  
PORTA  
DS41341E-page 60  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
TABLE 6-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON0  
CHS3  
CHS2  
CHS1  
CHS0  
ADON  
0000 0000  
0000 0000  
GO/DONE  
ADREF1  
ANSA1  
ADCON1  
ANSELA  
ADCS2  
ADCS1  
ANSA5  
ADCS0  
ANSA4  
ANSA3  
ANSA2  
ADREF0  
ANSA0  
-000 --00  
--11 1111  
-000 --00  
--11 1111  
---- --00  
0--- 0000  
---- 0000  
APFCON  
CPSCON0  
CPSCON1  
CONFIG2(1)  
OPTION_REG  
PORTA  
SSSEL  
CCP2SEL ---- --00  
CPSON  
CPSRNG1 CPSRNG0 CPSOUT  
T0XCS  
CPSCH0  
0--- 0000  
---- 0000  
CPSCH3  
CPSCH2  
CPSCH1  
VCAPEN1 VCAPEN0  
RBPU  
RA7  
WCOL  
TRISA7  
INTEDG  
RA6  
SSPOV  
TRISA6  
T0CS  
RA5  
T0SE  
RA4  
PSA  
PS2  
PS1  
PS0  
1111 1111  
xxxx xxxx  
0000 0000  
1111 1111  
1111 1111  
xxxx xxxx  
0000 0000  
1111 1111  
RA3  
RA2  
RA1  
RA0  
SSPCON  
TRISA  
SSPEN  
TRISA5  
CKP  
SSPM3  
TRISA3  
SSPM2  
TRISA2  
SSPM1  
TRISA1  
SSPM0  
TRISA0  
TRISA4  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTA.  
Note 1:  
PIC16F72X only.  
© 2009 Microchip Technology Inc.  
DS41341E-page 61  
PIC16F72X/PIC16LF72X  
6.3.1  
ANSELB REGISTER  
6.3  
PORTB and TRISB Registers  
The ANSELB register (Register 6-9) is used to  
configure the Input mode of an I/O pin to analog.  
Setting the appropriate ANSELB bit high will cause all  
digital reads on the pin to be read as ‘0’ and allow  
analog functions on the pin to operate correctly.  
PORTB is an 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISB  
(Register 6-6). Setting a TRISB bit (= 1) will make the  
corresponding PORTB pin an input (i.e., put the  
corresponding output driver in a High-Impedance mode).  
Clearing a TRISB bit (= 0) will make the corresponding  
PORTB pin an output (i.e., enable the output driver and  
put the contents of the output latch on the selected pin).  
Example 6-2 shows how to initialize PORTB.  
The state of the ANSELB bits has no affect on digital  
output functions. A pin with TRIS clear and ANSELB  
set will still operate as a digital output, but the Input  
mode will be analog. This can cause unexpected  
behavior  
instructions on the affected port.  
when  
executing  
read-modify-write  
Reading the PORTB register (Register 6-5) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then written  
to the PORT data latch.  
6.3.2  
WEAK PULL-UPS  
Each of the PORTB pins has an individually configurable  
internal weak pull-up. Control bits WPUB<7:0> enable or  
disable each pull-up (see Register 6-7). Each weak  
pull-up is automatically turned off when the port pin is  
configured as an output. All pull-ups are disabled on a  
Power-on Reset by the RBPU bit of the OPTION register.  
The TRISB register (Register 6-6) controls the PORTB  
pin output drivers, even when they are being used as  
analog inputs. The user should ensure the bits in the  
TRISB register are maintained set when using them as  
analog inputs. I/O pins configured as analog input always  
read ‘0’. Example 6-2 shows how to initialize PORTB.  
6.3.3  
INTERRUPT-ON-CHANGE  
All of the PORTB pins are individually configurable as an  
interrupt-on-change pin. Control bits IOCB<7:0> enable  
or disable the interrupt function for each pin. Refer to  
Register 6-8. The interrupt-on-change feature is  
disabled on a Power-on Reset.  
EXAMPLE 6-2:  
INITIALIZING PORTB  
BANKSEL PORTB  
;
CLRF  
BANKSEL ANSELB  
CLRF ANSELB  
BANKSEL TRISB  
PORTB  
;Init PORTB  
For enabled interrupt-on-change pins, the present value  
is compared with the old value latched on the last read  
of PORTB to determine which bits have changed or  
mismatched the old value. The ‘mismatch’ outputs of  
the last read are OR’d together to set the PORTB  
Change Interrupt flag bit (RBIF) in the INTCON register.  
;Make RB<7:0> digital  
;
MOVLW  
B11110000;Set RB<7:4> as inputs  
;and RB<3:0> as outputs  
;
MOVWF  
TRISB  
This interrupt can wake the device from Sleep. The user,  
in the Interrupt Service Routine, clears the interrupt by:  
Note:  
The ANSELB register must be initialized to  
configure an analog channel as a digital  
input. Pins configured as analog inputs will  
read ‘0’.  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
b) Clear the flag bit RBIF.  
A mismatch condition will continue to set flag bit RBIF.  
Reading or writing PORTB will end the mismatch  
condition and allow flag bit RBIF to be cleared. The latch  
holding the last read value is not affected by a MCLR nor  
Brown-out Reset. After these Resets, the RBIF flag will  
continue to be set if a mismatch is present.  
Note:  
When a pin change occurs at the same  
time as a read operation on PORTB, the  
RBIF flag will always be set. If multiple  
PORTB pins are configured for the  
interrupt-on-change, the user may not be  
able to identify which pin changed state.  
DS41341E-page 62  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
REGISTER 6-5:  
PORTB: PORTB REGISTER  
R/W-x  
RB7  
R/W-x  
RB6  
R/W-x  
RB5  
R/W-x  
RB4  
R/W-x  
RB3  
R/W-x  
RB2  
R/W-x  
RB1  
R/W-x  
RB0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
RB<7:0>: PORTB I/O Pin bit  
1= Port pin is > VIH  
0= Port pin is < VIL  
REGISTER 6-6:  
TRISB: PORTB TRI-STATE REGISTER  
R/W-1  
TRISB7  
bit 7  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TRISB6  
TRISB5  
TRISB4  
TRISB3  
TRISB2  
TRISB1  
TRISB0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
TRISB<7:0>: PORTB Tri-State Control bit  
1= PORTB pin configured as an input (tri-stated)  
0= PORTB pin configured as an output  
© 2009 Microchip Technology Inc.  
DS41341E-page 63  
PIC16F72X/PIC16LF72X  
REGISTER 6-7:  
WPUB: WEAK PULL-UP PORTB REGISTER  
R/W-1  
WPUB7  
bit 7  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
WPUB6  
WPUB5  
WPUB4  
WPUB3  
WPUB2  
WPUB1  
WPUB0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
WPUB<7:0>: Weak Pull-up Register bits  
1= Pull-up enabled  
0= Pull-up disabled  
Note 1: Global RBPU bit of the OPTION register must be cleared for individual pull-ups to be enabled.  
2: The weak pull-up device is automatically disabled if the pin is in configured as an output.  
REGISTER 6-8:  
IOCB: INTERRUPT-ON-CHANGE PORTB REGISTER  
R/W-0  
IOCB7  
bit 7  
R/W-0  
IOCB6  
R/W-0  
IOCB5  
R/W-0  
IOCB4  
R/W-0  
IOCB3  
R/W-0  
IOCB2  
R/W-0  
IOCB1  
R/W-0  
IOCB0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
IOCB<7:0>: Interrupt-on-Change PORTB Control bits  
1= Interrupt-on-change enabled  
0= Interrupt-on-change disabled  
REGISTER 6-9:  
ANSELB: PORTB ANALOG SELECT REGISTER  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
ANSB5  
ANSB4  
ANSB3  
ANSB2  
ANSB1  
ANSB0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
ANSB<5:0>: Analog Select between Analog or Digital Function on Pins RB<5:0>, respectively  
0= Digital I/O. Pin is assigned to port or Digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital Input buffer disabled.  
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to  
allow external control of the voltage on the pin.  
DS41341E-page 64  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
6.3.4  
PIN DESCRIPTIONS AND  
DIAGRAMS  
6.3.4.6  
RB5/AN13/CPS5/T1G  
Figure 6-10 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
Each PORTB pin is multiplexed with other functions. The  
pins and their combined functions are briefly described  
here. For specific information about individual functions  
such as the SSP, I2C or interrupts, refer to the appropriate  
section in this data sheet.  
• a general purpose I/O  
• an analog input for the ADC  
• a capacitive sensing input  
• a Timer1 gate input  
6.3.4.1  
RB0/AN12/CPS0/INT  
6.3.4.7  
RB6/ICSPCLK  
Figure 6-7 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
Figure 6-11 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• a general purpose I/O  
• an analog input for the ADC  
• a capacitive sensing input  
• an external edge triggered interrupt  
• In-Circuit Serial Programming clock  
6.3.4.8  
RB7/ICSPDAT  
Figure 6-12 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
6.3.4.2  
RB1/AN10/CPS1  
Figure 6-8 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• In-Circuit Serial Programming data  
• a general purpose I/O  
• an analog input for the ADC  
• a capacitive sensing input  
6.3.4.3  
RB2/AN8/CPS2  
Figure 6-8 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• an analog input for the ADC  
• a capacitive sensing input  
6.3.4.4  
RB3/AN9/CPS3/CCP2  
Figure 6-9 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• an analog input for the ADC  
• a capacitive sensing input  
• a Capture 2 input, Compare 2 output, and PWM2  
output  
Note:  
CCP2 pin location may be selected as  
RB3 or RC1.  
6.3.4.5  
RB4/AN11/CPS4  
Figure 6-8 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• an analog input for the ADC  
• a capacitive sensing input  
© 2009 Microchip Technology Inc.  
DS41341E-page 65  
PIC16F72X/PIC16LF72X  
FIGURE 6-7:  
BLOCK DIAGRAM OF RB0  
Data Bus  
D
Q
Q
VDD  
Weak  
WR  
WPUB  
CK  
VDD  
RBPU  
RD  
WPUB  
D
Q
Q
I/O Pin  
WR  
CK  
PORTB  
VSS  
D
Q
Q
WR  
TRISB  
CK  
RD  
TRISB  
ANSB0  
RD  
PORTB  
D
Q
Q
Q
Q
D
CK  
WR  
IOCB  
EN  
Q3  
RD  
IOCB  
D
EN  
Interrupt-on-  
Change  
RD PORTB  
To External Interrupt Logic  
To A/D Converter  
To Cap Sensor  
DS41341E-page 66  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 6-8:  
BLOCK DIAGRAM OF RB4, RB<2:1>  
Data Bus  
D
Q
Q
VDD  
WR  
WPUB  
CK  
Weak  
VDD  
RBPU  
RD  
WPUB  
D
Q
Q
I/O Pin  
WR  
CK  
PORTB  
VSS  
D
Q
Q
WR  
TRISB  
CK  
RD  
TRISB  
ANSB<4,2,1>  
RD  
PORTB  
D
Q
Q
Q
Q
D
CK  
WR  
IOCB  
EN  
Q3  
To A/D Converter  
To Cap Sensor  
RD  
IOCB  
D
EN  
Interrupt-on-  
Change  
RD PORTB  
© 2009 Microchip Technology Inc.  
DS41341E-page 67  
PIC16F72X/PIC16LF72X  
FIGURE 6-9:  
BLOCK DIAGRAM OF RB3  
Data Bus  
D
Q
Q
VDD  
Weak  
WR  
WPUB  
CK  
CCP2OUT  
Enable  
VDD  
RBPU  
RD  
WPUB  
CCP2OUT  
1
0
D
Q
Q
I/O Pin  
WR  
CK  
PORTB  
VSS  
D
Q
Q
WR  
TRISB  
CK  
RD  
TRISB  
ANSB<5,3>  
RD  
PORTB  
D
Q
Q
Q
Q
D
CK  
WR  
IOCB  
EN  
Q3  
RD  
IOCB  
D
EN  
Interrupt-on-  
Change  
RD PORTB  
To CCP2(1)  
To A/D Converter  
To Cap Sensor  
Note 1: CCP2 input is controlled by CCP2SEL in the APFCON register.  
DS41341E-page 68  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 6-10:  
BLOCK DIAGRAM OF RB5  
Data Bus  
D
Q
Q
VDD  
WR  
WPUB  
CK  
Weak  
CCP2OUT  
VDD  
Enable  
RBPU  
RD  
WPUB  
CCP2OUT  
1
0
D
Q
Q
I/O Pin  
WR  
CK  
PORTB  
VSS  
D
Q
Q
WR  
TRISB  
CK  
RD  
TRISB  
ANSB<5,3>  
RD  
PORTB  
D
Q
Q
Q
Q
D
EN  
CK  
WR  
IOCB  
Q3  
RD  
IOCB  
D
EN  
Interrupt-on-  
Change  
RD PORTB  
To Timer1 Gate  
To A/D Converter  
To Cap Sensor  
© 2009 Microchip Technology Inc.  
DS41341E-page 69  
PIC16F72X/PIC16LF72X  
FIGURE 6-11:  
BLOCK DIAGRAM OF RB6  
ICSP™ MODE  
DEBUG  
Data Bus  
D
Q
Q
VDD  
Weak  
WR  
WPUB  
CK  
VDD  
RBPU  
PORT_ICDCLK  
RD  
WPUB  
1
0
D
Q
Q
I/O Pin  
WR  
CK  
PORTB  
VSS  
D
Q
Q
0
1
WR  
TRISB  
CK  
RD  
TRISB  
TRIS_ICDCLK  
RD  
PORTB  
D
Q
Q
Q
Q
D
CK  
WR  
IOCB  
EN  
Q3  
RD  
IOCB  
D
EN  
Interrupt-on-  
Change  
RD PORTB  
ICSPCLK  
DS41341E-page 70  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 6-12:  
BLOCK DIAGRAM OF RB7  
ICSP™ MODE  
DEBUG  
Data Bus  
D
Q
Q
VDD  
WR  
WPUB  
CK  
Weak  
VDD  
RBPU  
RD  
WPUB  
PORT_ICDDAT  
1
0
D
Q
Q
I/O Pin  
WR  
CK  
PORTB  
VSS  
D
Q
Q
0
1
WR  
TRISB  
CK  
RD  
TRISB  
TRIS_ICDDAT  
RD  
PORTB  
D
Q
Q
Q
Q
D
CK  
WR  
IOCB  
EN  
Q3  
RD  
IOCB  
D
EN  
Interrupt-on-  
Change  
RD PORTB  
ICSPDAT_IN  
© 2009 Microchip Technology Inc.  
DS41341E-page 71  
PIC16F72X/PIC16LF72X  
TABLE 6-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON0  
ANSELB  
APFCON  
CCP2CON  
CPSCON0  
CPSCON1  
INTCON  
IOCB  
CHS3  
ANSB5  
CHS2  
ANSB4  
CHS1  
ANSB3  
CHS0  
ANSB2  
GO/DONE  
ANSB1  
ADON  
--00 0000 --00 0000  
--11 1111 --11 1111  
ANSB0  
SSSEL  
CCP2SEL ---- --00 ---- --00  
CCP2M0 --00 0000 --00 0000  
DC2B1  
DC2B0  
CCP2M3  
CCP2M2  
CCP2M1  
CPSON  
CPSRNG1 CPSRNG0 CPSOUT  
T0XCS  
0--- 0000 0--- 0000  
CPSCH3  
RBIE  
CPSCH2  
T0IF  
CPSCH1  
INTF  
CPSCH0 ---- 0000 ---- 0000  
GIE  
IOCB7  
PEIE  
IOCB6  
T0IE  
IOCB5  
INTE  
IOCB4  
RBIF  
0000 000x 0000 000X  
0000 0000 0000 0000  
IOCB3  
IOCB2  
IOCB1  
IOCB0  
OPTION_REG  
PORTB  
RBPU  
RB7  
INTEDG  
RB6  
T0CS  
RB5  
T0SE  
RB4  
PSA  
RB3  
PS2  
RB2  
PS1  
RB1  
PS0  
RB0  
1111 1111 1111 1111  
xxxx xxxx xxxx xxxx  
0000 0x00 uuuu uxuu  
T1GCON  
TMR1GE  
T1GPOL  
T1GTM  
T1GSPM  
T1GGO/  
DONE  
T1GVAL  
T1GSS1  
T1GSS0  
TRISB  
TRISB7  
WPUB7  
TRISB6  
WPUB6  
TRISB5  
WPUB5  
TRISB4  
WPUB4  
TRISB3  
WPUB3  
TRISB2  
WPUB2  
TRISB1  
WPUB1  
TRISB0  
WPUB0  
1111 1111 1111 1111  
1111 1111 1111 1111  
WPUB  
Legend:  
x= unknown, u= unchanged, -= unimplemented locations read as ‘0’. Shaded cells are not used by Port B.  
DS41341E-page 72  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
The TRISC register (Register 6-11) controls the PORTC  
pin output drivers, even when they are being used as  
analog inputs. The user should ensure the bits in the  
TRISC register are maintained set when using them as  
analog inputs. I/O pins configured as analog input always  
read ‘0’.  
6.4  
PORTC and TRISC Registers  
PORTC is  
a 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISC  
(Register 6-11). Setting a TRISC bit (= 1) will make the  
corresponding PORTC pin an input (i.e., put the  
corresponding output driver in a High-Impedance mode).  
Clearing a TRISC bit (= 0) will make the corresponding  
PORTC pin an output (i.e., enable the output driver and  
put the contents of the output latch on the selected pin).  
Example 6-3 shows how to initialize PORTC.  
EXAMPLE 6-3:  
INITIALIZING PORTC  
BANKSELPORTC  
;
CLRF  
BANKSELTRISC  
PORTC  
;Init PORTC  
;
Reading the PORTC register (Register 6-10) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then written  
to the PORT data latch.  
MOVLW  
MOVWF  
B‘00001100’ ;Set RC<3:2> as inputs  
TRISC  
;and set RC<7:4,1:0>  
;as outputs  
The location of the CCP2 function is controlled by the  
CCP2SEL bit in the APFCON register (refer to  
Register 6-1)  
REGISTER 6-10: PORTC: PORTC REGISTER  
R/W-x  
RC7  
R/W-x  
RC6  
R/W-x  
RC5  
R/W-x  
RC4  
R/W-x  
RC3  
R/W-x  
RC2  
R/W-x  
RC1  
R/W-x  
RC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
RC<7:0>: PORTC General Purpose I/O Pin bits  
1= Port pin is > VIH  
0= Port pin is < VIL  
REGISTER 6-11: TRISC: PORTC TRI-STATE REGISTER  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TRISC7  
TRISC6  
TRISC5  
TRISC4  
TRISC3  
TRISC2  
TRISC1  
TRISC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
TRISC<7:0>: PORTC Tri-State Control bits  
1= PORTC pin configured as an input (tri-stated)  
0= PORTC pin configured as an output  
© 2009 Microchip Technology Inc.  
DS41341E-page 73  
PIC16F72X/PIC16LF72X  
6.4.1  
RC0/T1OSO/T1CKI  
6.4.8  
RC7/RX/DT  
Figure 6-13 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
Figure 6-20 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• a Timer1 oscillator output  
• a Timer1 clock input  
• a general purpose I/O  
• an asynchronous serial input  
• a synchronous serial data I/O  
6.4.2  
RC1/T1OSI/CCP2  
Figure 6-14 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• a Timer1 oscillator input  
• a Capture 2 input, Compare 2 output, and PWM2  
output  
Note:  
CCP2 pin location may be selected as  
RB3 or RC1.  
6.4.3  
RC2/CCP1  
Figure 6-15 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• a Capture 1 input, Compare 1 output, and PWM1  
output  
6.4.4  
RC3/SCK/SCL  
Figure 6-16 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• a SPI clock  
• an I2C™ clock  
6.4.5  
RC4/SDI/SDA  
Figure 6-17 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• a SPI data input  
• an I2C data I/O  
6.4.6  
RC5/SDO  
Figure 6-18 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• a SPI data output  
6.4.7  
RC6/TX/CK  
Figure 6-19 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• an asynchronous serial output  
• a synchronous clock I/O  
DS41341E-page 74  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 6-13:  
BLOCK DIAGRAM OF RC0  
Oscillator  
Circuit  
VDD  
Data Bus  
RC1/T1OSI  
D
Q
Q
I/O Pin  
WR  
CK  
PORTC  
VSS  
D
Q
Q
WR  
TRISC  
CK  
RD  
TRISC  
T1OSCEN  
RD  
PORTC  
To Timer1 CLK Input  
FIGURE 6-14:  
BLOCK DIAGRAM OF RC1  
CCP2OUT  
Enable  
Oscillator  
Circuit  
VDD  
Data Bus  
RC0/T1OSO  
CCP2OUT  
1
0
D
Q
Q
I/O Pin  
WR  
CK  
PORTC  
VSS  
D
Q
Q
WR  
TRISC  
CK  
RD  
TRISC  
T1OSCEN  
RD  
PORTC  
To CCP2(1) Input  
Note 1: CCP2 input is controlled by CCP2SEL in the APFCON register.  
© 2009 Microchip Technology Inc.  
DS41341E-page 75  
PIC16F72X/PIC16LF72X  
FIGURE 6-15:  
BLOCK DIAGRAM OF RC2  
CCP1OUT  
Enable  
VDD  
Data Bus  
CCP1OUT  
1
0
D
Q
Q
I/O Pin  
WR  
CK  
PORTC  
VSS  
D
Q
Q
WR  
TRISC  
CK  
RD  
TRISC  
RD  
PORTC  
To CCP1 Input  
FIGURE 6-16:  
BLOCK DIAGRAM OF RC3  
SSPM = SPI MODE  
VDD  
SCK_MASTER  
Data Bus  
1
0
SSPEN  
1
0
D
Q
Q
(2)  
I/O Pin  
WR  
CK  
PORTC  
VSS  
SCL  
D
Q
Q
WR  
TRISC  
CK  
RD  
TRISC  
To SSP SPI  
Clock Input  
1
0
RD  
PORTC  
0
1
SSPEN  
SSPM = I2CMODE  
To SSP I2C™  
SCL Input  
I2C(1)  
Note 1: I2CSchmitt Trigger has special input levels.  
2: I2CSlew Rate limiting controlled by SMP bit of SSPSTAT register.  
DS41341E-page 76  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 6-17:  
BLOCK DIAGRAM OF RC4  
SSPEN  
SSPM = I2CMODE  
VDD  
Data Bus  
1
0
D
Q
(2)  
I/O Pin  
WR  
CK  
Q
PORTC  
VSS  
D
Q
Q
WR  
TRISC  
CK  
RD  
TRISC  
To SSP SPI  
Data Input  
1
0
RD  
PORTC  
0
1
SDA FROM SSP  
To SSP I2C™  
SDA Input  
I2C(1)  
Note 1: I2CSchmitt Trigger has special input levels.  
2: I2CSlew Rate limiting controlled by SMP bit of SSPSTAT register.  
FIGURE 6-18:  
BLOCK DIAGRAM OF RC5  
SSPEN  
SSPM = SPI MODE  
VDD  
Data Bus  
SDO  
1
0
D
Q
Q
I/O Pin  
WR  
CK  
PORTC  
VSS  
D
Q
Q
SDO  
EN  
WR  
TRISC  
CK  
RD  
TRISC  
RD  
PORTC  
© 2009 Microchip Technology Inc.  
DS41341E-page 77  
PIC16F72X/PIC16LF72X  
FIGURE 6-19:  
BLOCK DIAGRAM OF RC6  
SYNC  
USART_TX  
USART_CK  
0
1
VDD  
1
0
Data Bus  
D
Q
Q
I/O Pin  
WR  
PORTC  
CK  
VSS  
D
Q
Q
WR  
TRISC  
CK  
RD  
TRISC  
RD  
PORTC  
SPEN  
0
1
TXEN  
CSRC  
SYNC  
To USART  
Sync Clock Input  
FIGURE 6-20:  
BLOCK DIAGRAM OF RC7  
SPEN  
SYNC  
VDD  
Data Bus  
USART_DT  
Q
1
0
D
I/O Pin  
WR  
CK  
Q
PORTC  
VSS  
D
Q
Q
WR  
TRISC  
CK  
RD  
TRISC  
RD  
PORTC  
SPEN  
SYNC  
TXEN  
SREN  
CREN  
To USART Data Input  
DS41341E-page 78  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
TABLE 6-3:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
APFCON  
CCP1CON  
CCP2CON  
PORTC  
DC1B0  
DC2B0  
RC4  
SSSEL  
CCP1M1  
CCP2M1  
RC1  
CCP2SEL ---- --00 ---- --00  
CCP1M0 --00 0000 --00 0000  
CCP2M0 --00 0000 --00 0000  
DC1B1  
DC2B1  
RC5  
CCP1M3  
CCP2M3  
RC3  
CCP1M2  
CCP2M2  
RC2  
RC7  
SPEN  
WCOL  
SMP  
RC6  
RX9  
SSPOV  
CKE  
RC0  
RX9D  
SSPM0  
BF  
xxxx xxxx xxxx xxxx  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
RCSTA  
SREN  
SSPEN  
D/A  
CREN  
CKP  
ADDEN  
SSPM3  
S
FERR  
SSPM2  
R/W  
OERR  
SSPM1  
UA  
SSPCON  
SSPSTAT  
P
T1CON  
TXSTA  
TRISC  
TMR1CS1 TMR1CS0 T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1ON 0000 00-0 uuuu uu-u  
CSRC  
TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
1111 1111 1111 1111  
TRISC7  
TRISC6  
TRISC5  
TRISC4  
TRISC3  
TRISC2  
TRISC1  
TRISC0  
Legend:  
x = unknown, u = unchanged, - = unimplemented locations read as ‘0’. Shaded cells are not used by Port B.  
© 2009 Microchip Technology Inc.  
DS41341E-page 79  
PIC16F72X/PIC16LF72X  
EXAMPLE 6-4:  
INITIALIZING PORTD  
6.5  
PORTD and TRISD Registers  
PORTD(1) is a 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISD  
(Register 6-13). Setting a TRISD bit (= 1) will make the  
corresponding PORTD pin an input (i.e., put the  
corresponding output driver in a High-Impedance mode).  
Clearing a TRISD bit (= 0) will make the corresponding  
PORTD pin an output (i.e., enable the output driver and  
put the contents of the output latch on the selected pin).  
Example 6-4 shows how to initialize PORTD.  
BANKSELPORTD  
;
CLRF  
BANKSELANSELD  
CLRF ANSELD  
BANKSELTRISD  
PORTD  
;Init PORTD  
;Make PORTD digital  
;
MOVLW  
MOVWF  
B‘00001100’ ;Set RD<3:2> as inputs  
TRISD  
;and set RD<7:4,1:0>  
;as outputs  
6.5.1  
ANSELD REGISTER  
Reading the PORTD register (Register 6-12) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then written  
to the PORT data latch.  
The ANSELD register (Register 6-9) is used to  
configure the Input mode of an I/O pin to analog.  
Setting the appropriate ANSELD bit high will cause all  
digital reads on the pin to be read as ‘0’ and allow  
analog functions on the pin to operate correctly.  
The state of the ANSELD bits has no affect on digital  
output functions. A pin with TRIS clear and ANSEL set  
will still operate as a digital output, but the Input mode  
will be analog. This can cause unexpected behavior  
when executing read-modify-write instructions on the  
affected port.  
Note 1: PORTD is available on PIC16F724/LF724  
and PIC16F727/LF727 only.  
The TRISD register (Register 6-13) controls the  
PORTD pin output drivers, even when they are being  
used as analog inputs. The user should ensure the bits  
in the TRISD register are maintained set when using  
them as analog inputs. I/O pins configured as analog  
input always read ‘0’.  
Note:  
The ANSELD register must be initialized  
to configure an analog channel as a digital  
input. Pins configured as analog inputs will  
read ‘0’.  
REGISTER 6-12: PORTD: PORTD REGISTER(1)  
R/W-x  
RD7  
R/W-x  
RD6  
R/W-x  
RD5  
R/W-x  
RD4  
R/W-x  
RD3  
R/W-x  
RD2  
R/W-x  
RD1  
R/W-x  
RD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
RD<7:0>: PORTD General Purpose I/O Pin bits  
1= Port pin is > VIH  
0= Port pin is < VIL  
Note 1: PORTD is not implemented on PIC16F722/723/726/PIC16LF722/723/726 devices, read as ‘0’.  
DS41341E-page 80  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
REGISTER 6-13: TRISD: PORTD TRI-STATE REGISTER(1)  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TRISD7  
TRISD6  
TRISD5  
TRISD4  
TRISD3  
TRISD2  
TRISD1  
TRISD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
TRISD<7:0>: PORTD Tri-State Control bits  
1= PORTD pin configured as an input (tri-stated)  
0= PORTD pin configured as an output  
Note 1: TRISD is not implemented on PIC16F722/723/726/PIC16LF722/723/726 devices, read as ‘0’.  
REGISTER 6-14: ANSELD: PORTD ANALOG SELECT REGISTER(2)  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
ANSD7  
ANSD6  
ANSD5  
ANSD4  
ANSD3  
ANSD2  
ANSD1  
ANSD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
ANSD<7:0>: Analog Select between Analog or Digital Function on Pins RD<7:0>, respectively  
0= Digital I/O. Pin is assigned to port or Digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital Input buffer disabled.  
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to  
allow external control of the voltage on the pin.  
2: ANSELD register is not implemented on the PIC16F722/723/726/PIC16LF722/723/726. Read as ‘0’.  
© 2009 Microchip Technology Inc.  
DS41341E-page 81  
PIC16F72X/PIC16LF72X  
6.5.6  
RD4/CPS12  
Note:  
PORTD is available on PIC16F724/LF724  
and PIC16F727/LF727 only.  
Figure 6-21 shows the diagram for these pins. They are  
configurable to function as one of the following:  
• a general purpose I/O  
6.5.2  
RD0/CPS8  
• a capacitive sensing input  
Figure 6-21 shows the diagram for these pins. They are  
configurable to function as one of the following:  
6.5.7  
RD5/CPS13  
• a general purpose I/O  
Figure 6-21 shows the diagram for these pins. They are  
configurable to function as one of the following:  
• a capacitive sensing input  
• a general purpose I/O  
6.5.3  
RD1/CPS9  
• a capacitive sensing input  
Figure 6-21 shows the diagram for these pins. They are  
configurable to function as one of the following:  
6.5.8  
RD6/CPS14  
• a general purpose I/O  
Figure 6-21 shows the diagram for these pins. They are  
configurable to function as one of the following:  
• a capacitive sensing input  
• a general purpose I/O  
6.5.4  
RD2/CPS10  
• a capacitive sensing input  
Figure 6-21 shows the diagram for these pins. They are  
configurable to function as one of the following:  
6.5.9  
RD7/CPS15  
• a general purpose I/O  
Figure 6-21 shows the diagram for these pins. They are  
configurable to function as one of the following:  
• a capacitive sensing input  
• a general purpose I/O  
6.5.5  
RD3/CPS11  
• a capacitive sensing input  
Figure 6-21 shows the diagram for these pins. They are  
configurable to function as one of the following:  
• a general purpose I/O  
• a capacitive sensing input  
FIGURE 6-21:  
BLOCK DIAGRAM OF RD<7:0>  
VDD  
Data Bus  
D
Q
Q
I/O Pin  
WR  
CK  
PORTD  
VSS  
D
Q
Q
WR  
TRISD  
CK  
RD  
TRISD  
ANSD<7:0>  
RD  
PORTD  
To Cap Sensor  
Note:  
PORTD is available on PIC16F724/LF724 and PIC16F727/LF727 only.  
DS41341E-page 82  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
TABLE 6-4:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTD(1)  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELD  
ANSD7 ANSD6 ANSD5 ANSD4  
ANSD3  
ANSD2  
ANSD1  
ANSD0 1111 1111 1111 1111  
CPSCON0 CPSON  
CPSRNG1 CPSRNG0 CPSOUT T0XCS 0--- 0000 0--- 0000  
CPSCON1  
PORTD  
TRISD  
CPSCH3  
RD3  
CPSCH2  
RD2  
CPSCH1 CPSCH0 ---- 0000 ---- 0000  
RD7  
RD6  
RD5  
RD4  
RD1  
RD0  
xxxx xxxx xxxx xxxx  
TRISD7 TRISD6 TRISD5 TRISD4  
TRISD3  
TRISD2  
TRISD1  
TRISD0 1111 1111 1111 1111  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTD.  
Note 1: These registers are not implemented on the PIC16F722/723/726/PIC16LF722/723/726 devices, read as ‘0’.  
© 2009 Microchip Technology Inc.  
DS41341E-page 83  
PIC16F72X/PIC16LF72X  
6.6  
PORTE and TRISE Registers  
PORTE(1) is a 4-bit wide, bidirectional port. The  
corresponding data direction register is TRISE. Setting a  
TRISE bit (= 1) will make the corresponding PORTE pin  
an input (i.e., put the corresponding output driver in a  
High-Impedance mode). Clearing a TRISE bit (= 0) will  
make the corresponding PORTE pin an output (i.e.,  
enable the output driver and put the contents of the  
output latch on the selected pin). The exception is RE3,  
which is input only and its TRIS bit will always read as  
1’. Example 6-5 shows how to initialize PORTE.  
Reading the PORTE register (Register 6-15) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then  
written to the PORT data latch. RE3 reads ‘0’ when  
MCLRE = 1.  
Note 1: RE<2:0> and TRISE<2:0> are not  
implemented on the PIC16F722/723/726/  
PIC16LF722/723/726. Read as ‘0’.  
The TRISE register (Register 6-16) controls the PORTE  
pin output drivers, even when they are being used as  
analog inputs. The user should ensure the bits in the  
TRISE register are maintained set when using them as  
analog inputs. I/O pins configured as analog input always  
read ‘0’.  
Note:  
The ANSELE register must be initialized to  
configure an analog channel as a digital  
input. Pins configured as analog inputs will  
read ‘0’.  
EXAMPLE 6-5:  
INITIALIZING PORTE  
BANKSELPORTE  
;
CLRF  
BANKSELANSELE  
CLRF ANSELE  
BANKSELTRISE  
PORTE  
;Init PORTE  
;
;digital I/O  
;
MOVLW  
MOVWF  
B‘00001100’ ;Set RE<2> as an input  
TRISE  
;and set RE<1:0>  
;as outputs  
DS41341E-page 84  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
REGISTER 6-15: PORTE: PORTE REGISTER  
U-0  
U-0  
U-0  
U-0  
R-x  
R/W-x  
RE2(1)  
R/W-x  
RE1(1)  
R/W-x  
RE0(1)  
RE3  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
bit 3-0  
Unimplemented: Read as ‘0’  
RE<3:0>: PORTE I/O Pin bits(1)  
1= Port pin is > VIH  
0= Port pin is < VIL  
Note 1: RE<2:0> are not implemented on the PIC16F722/723/726/PIC16LF722/723/726. Read as ‘0’.  
REGISTER 6-16: TRISE: PORTE TRI-STATE REGISTER  
U-0  
U-0  
U-0  
U-0  
R-1  
R/W-1  
TRISE2(1)  
R/W-1  
TRISE1(1)  
R/W-1  
TRISE0(1)  
TRISE3  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
TRISE3: RE3 Port Tri-state Control bit  
This bit is always ‘1’ as RE3 is an input only  
bit 2-0  
TRISE<2:0>: RE<2:0> Tri-State Control bits(1)  
1= PORTE pin configured as an input (tri-stated)  
0= PORTE pin configured as an output  
Note 1: TRISE<2:0> are not implemented on the PIC16F722/723/726/PIC16LF722/723/726. Read as ‘0’.  
© 2009 Microchip Technology Inc.  
DS41341E-page 85  
PIC16F72X/PIC16LF72X  
REGISTER 6-17: ANSELE: PORTE ANALOG SELECT REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
ANSE2(2)  
R/W-1  
ANSE1(2)  
R/W-1  
ANSE0(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-3  
bit 2-0  
Unimplemented: Read as ‘0’  
ANSE<2:0>: Analog Select between Analog or Digital Function on Pins RE<2:0>, respectively  
0= Digital I/O. Pin is assigned to port or Digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital Input buffer disabled.  
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to  
allow external control of the voltage on the pin.  
2: ANSELE register is not implemented on the PIC16F722/723/726/PIC16LF722/723/726. Read as ‘0’  
TABLE 6-5:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON0  
ANSELE  
PORTE  
TRISE  
CHS3  
CHS2  
CHS1  
CHS0  
ANSE2  
RE2  
GO/DONE  
ANSE1  
RE1  
ADON  
ANSE0  
RE0  
--00 0000 --00 0000  
---- -111 ---- -111  
---- xxxx ---- xxxx  
---- 1111 ---- 1111  
RE3  
(2)  
(1)  
(1)  
(1)  
TRISE3  
TRISE2  
TRISE1  
TRISE0  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTE  
Note 1: These registers are not implemented on the PIC16F722/723/726/PIC16LF722/723/726 devices, read as ‘0’.  
2: This bit is always ‘1’ as RE3 is input only.  
DS41341E-page 86  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
6.6.1  
RE0/AN5(1)  
Figure 6-22 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• an analog input for the ADC  
Note 1: RE0/AN5  
is  
available  
on  
PIC16F724/LF724 and PIC16F727/LF727  
only.  
6.6.2  
RE1/AN6(1)  
Figure 6-22 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• an analog input for the ADC  
Note 1: RE1/AN6  
is  
available  
on  
PIC16F724/LF724 and PIC16F727/LF727  
only.  
6.6.3  
RE2/AN7(1)  
Figure 6-22 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose I/O  
• an analog input for the ADC  
Note 1: RE2/AN7  
is  
available  
on  
PIC16F724/LF724 and PIC16F727/LF727  
only.  
6.6.4  
RE3/MCLR/VPP  
Figure 6-23 shows the diagram for this pin. This pin is  
configurable to function as one of the following:  
• a general purpose input  
• as Master Clear Reset with weak pull-up  
• a programming voltage reference input  
© 2009 Microchip Technology Inc.  
DS41341E-page 87  
PIC16F72X/PIC16LF72X  
FIGURE 6-22:  
BLOCK DIAGRAM OF RE<2:0>  
VDD  
Data Bus  
D
Q
Q
I/O Pin  
WR  
CK  
PORTE  
VSS  
D
Q
Q
WR  
TRISE  
CK  
RD  
TRISE  
ANSE<0:2>  
RD  
PORTE  
To A/D Converter  
Note: RE<2:0> are not implemented on PIC16F722/723/726/PIC16LF722/723/726.  
FIGURE 6-23:  
BLOCK DIAGRAM OF RE3  
VDD  
Weak  
ICSP™ Mode Detect  
In-Circuit Serial Programming™ mode  
High-Voltage  
Detect  
I/O Pin  
MCLR Circuit  
Data Bus  
MCLR  
Pulse Filter  
VSS  
RD  
TRISE  
VSS  
RD  
PORTE  
Power for Programming Flash  
DS41341E-page 88  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
Clock source modes are configured by the FOSC bits  
in Configuration Word 1 (CONFIG1). The oscillator  
module can be configured for one of eight modes of  
operation.  
7.0  
7.1  
OSCILLATOR MODULE  
Overview  
The oscillator module has a wide variety of clock sources  
and selection features that allow it to be used in a wide  
range of applications while maximizing performance and  
minimizing power consumption. Figure 7-1 illustrates a  
block diagram of the oscillator module.  
1. RC – External Resistor-Capacitor (RC) with  
FOSC/4 output on OSC2/CLKOUT.  
2. RCIO – External Resistor-Capacitor (RC) with  
I/O on OSC2/CLKOUT.  
3. INTOSC – Internal oscillator with FOSC/4 output  
on OSC2 and I/O on OSC1/CLKIN.  
Clock sources can be configured from external  
oscillators, quartz crystal resonators, ceramic resonators  
and Resistor-Capacitor (RC) circuits. In addition, the  
system can be configured to use an internal calibrated  
high-frequency oscillator as clock source, with a choice  
of selectable speeds via software.  
4. INTOSCIO – Internal oscillator with I/O on  
OSC1/CLKIN and OSC2/CLKOUT.  
5. EC – External clock with I/O on OSC2/CLKOUT.  
6. HS – High Gain Crystal or Ceramic Resonator  
mode.  
7. XT  
– Medium Gain Crystal or Ceramic  
Resonator Oscillator mode.  
8. LP – Low-Power Crystal mode.  
FIGURE 7-1:  
SIMPLIFIED PIC® MCU CLOCK SOURCE BLOCK DIAGRAM  
FOSC<2:0>  
(Configuration Word 1)  
External Oscillator  
OSC2  
OSC1  
Sleep  
LP, XT, HS, RC, EC  
System Clock  
(CPU and Peripherals)  
Internal Oscillator  
500 kHz  
IRCF<1:0>  
(OSCCON Register)  
INTOSC  
0
1
16 MHz/500 kHz  
11  
10  
01  
00  
32x  
PLL  
8 MHz/250 kHz  
4 MHz/125 kHz  
2 MHz/62.5 kHz  
PLLEN  
(Configuration Word 1)  
© 2009 Microchip Technology Inc.  
DS41341E-page 89  
PIC16F72X/PIC16LF72X  
7.3.2  
FREQUENCY SELECT BITS (IRCF)  
7.2  
Clock Source Modes  
The output of the 500 kHz INTOSC and 16 MHz  
INTOSC, with Phase Locked Loop enabled, connect to  
a postscaler and multiplexer (see Figure 7-1). The  
Internal Oscillator Frequency Select bits (IRCF) of the  
OSCCON register select the frequency output of the  
internal oscillator. Depending upon the PLLEN bit, one  
of four frequencies of two frequency sets can be  
selected via software:  
Clock source modes can be classified as external or  
internal.  
• Internal clock source (INTOSC) is contained  
within the oscillator module and derived from a  
500 kHz high precision oscillator. The oscillator  
module has eight selectable output frequencies,  
with a maximum internal frequency of 16 MHz.  
• External clock modes rely on external circuitry for  
the clock source. Examples are: oscillator mod-  
ules (EC mode), quartz crystal resonators or  
ceramic resonators (LP, XT and HS modes) and  
Resistor-Capacitor (RC) mode circuits.  
If PLLEN = 1, frequency selection is as follows:  
• 16 MHz  
• 8 MHz (Default after Reset)  
• 4 MHz  
The system clock can be selected between external or  
internal clock sources via the FOSC bits of the  
Configuration Word 1.  
• 2 MHz  
If PLLEN = 0, frequency selection is as follows:  
• 500 kHz  
• 250 kHz (Default after Reset)  
• 125 kHz  
7.3  
Internal Clock Modes  
The oscillator module has eight output frequencies  
derived from a 500 kHz high precision oscillator. The  
IRCF bits of the OSCCON register select the  
postscaler applied to the clock source dividing the  
frequency by 1, 2, 4 or 8. Setting the PLLEN bit of the  
Configuration Word 1 locks the internal clock source to  
16 MHz before the postscaler is selected by the IRCF  
bits. The PLLEN bit must be set or cleared at the time  
of programming; therefore, only the upper or low four  
clock source frequencies are selectable in software.  
• 62.5 kHz  
Note:  
Following any Reset, the IRCF<1:0> bits of  
the OSCCON register are set to ‘10’ and  
the frequency selection is set to 8 MHz or  
250 kHz. The user can modify the IRCF  
bits to select a different frequency.  
There is no start-up delay before a new frequency  
selected in the IRCF bits takes effect. This is because  
the old and new frequencies are derived from INTOSC  
via the postscaler and multiplexer.  
7.3.1  
INTOSC AND INTOSCIO MODES  
Start-up delay specifications are located in the  
The INTOSC and INTOSCIO modes configure the  
internal oscillators as the system clock source when  
the device is programmed using the oscillator selection  
or the FOSC<2:0> bits in the CONFIG1 register. See  
Section 8.0 “Device Configuration” for more  
information.  
Table 23-2  
in  
Section 23.0  
“Electrical  
Specifications”.  
In INTOSC mode, OSC1/CLKIN is available for general  
purpose I/O. OSC2/CLKOUT outputs the selected  
internal oscillator frequency divided by 4. The CLKOUT  
signal may be used to provide a clock for external  
circuitry, synchronization, calibration, test or other  
application requirements.  
In  
INTOSCIO  
mode,  
OSC1/CLKIN  
and  
OSC2/CLKOUT are available for general purpose I/O.  
DS41341E-page 90  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
7.4  
Oscillator Control  
The Oscillator Control (OSCCON) register (Figure 7-1)  
displays the status and allows frequency selection of the  
internal oscillator (INTOSC) system clock. The  
OSCCON register contains the following bits:  
• Frequency selection bits (IRCF)  
• Status Locked bits (ICSL)  
• Status Stable bits (ICSS)  
REGISTER 7-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
U-0  
U-0  
R/W-1  
IRCF1  
R/W-0  
IRCF0  
R-q  
R-q  
U-0  
U-0  
ICSL  
ICSS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
q = Value depends on condition  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
IRCF<1:0>: Internal Oscillator Frequency Select bits  
When PLLEN = 1 (16 MHz INTOSC)  
11= 16 MHz  
10= 8 MHz (POR value)  
01= 4 MHz  
00= 2 MHz  
When PLLEN = 0 (500 kHz INTOSC)  
11= 500 kHz  
10= 250 kHz (POR value)  
01= 125 kHz  
00= 62.5 kHz  
bit 3  
ICSL: Internal Clock Oscillator Status Locked bit (2% Stable)  
1= 16 MHz/500 kHz Internal Oscillator (HFIOSC) is in lock.  
0= 16 MHz/500 kHz Internal Oscillator (HFIOSC) has not yet locked.  
bit 2  
ICSS: Internal Clock Oscillator Status Stable bit (0.5% Stable)  
1= 16 MHz/500 kHz Internal Oscillator (HFIOSC) has stabilized to its maximum accuracy  
0= 16 MHz/500 kHz Internal Oscillator (HFIOSC) has not yet reached its maximum accuracy  
bit 1-0  
Unimplemented: Read as ‘0’  
© 2009 Microchip Technology Inc.  
DS41341E-page 91  
PIC16F72X/PIC16LF72X  
When the OSCTUNE register is modified, the INTOSC  
frequency will begin shifting to the new frequency. Code  
execution continues during this shift. There is no  
indication that the shift has occurred.  
7.5  
Oscillator Tuning  
The INTOSC is factory calibrated but can be adjusted  
in software by writing to the OSCTUNE register  
(Register 7-2).  
The default value of the OSCTUNE register is ‘0’. The  
value is a 6-bit two’s complement number.  
REGISTER 7-2:  
OSCTUNE: OSCILLATOR TUNING REGISTER  
U-0  
U-0  
R/W-0  
TUN5  
R/W-0  
TUN4  
R/W-0  
TUN3  
R/W-0  
TUN2  
R/W-0  
TUN1  
R/W-0  
TUN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN<5:0>: Frequency Tuning bits  
01 1111= Maximum frequency  
01 1110=  
00 0001=  
00 0000= Oscillator module is running at the factory-calibrated frequency.  
11 1111=  
10 0000= Minimum frequency  
DS41341E-page 92  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
XT Oscillator mode selects the intermediate gain  
setting of the internal inverter-amplifier. XT mode  
current consumption is the medium of the three modes.  
This mode is best suited to drive resonators with a  
medium drive level specification.  
7.6  
External Clock Modes  
7.6.1 OSCILLATOR START-UP TIMER  
(OST)  
If the oscillator module is configured for LP, XT or HS  
modes, the Oscillator Start-up Timer (OST) counts  
1024 oscillations on the OSC1 pin before the device is  
released from Reset. This occurs following a Power-on  
Reset (POR) and when the Power-up Timer (PWRT)  
has expired (if configured), or a wake-up from Sleep.  
During this time, the program counter does not  
increment and program execution is suspended. The  
OST ensures that the oscillator circuit, using a quartz  
crystal resonator or ceramic resonator, has started and  
is providing a stable system clock to the oscillator  
module.  
HS Oscillator mode selects the highest gain setting of the  
internal inverter-amplifier. HS mode current consumption  
is the highest of the three modes. This mode is best  
suited for resonators that require a high drive setting.  
Figure 7-3 and Figure 7-4 show typical circuits for  
quartz crystal and ceramic resonators, respectively.  
FIGURE 7-3:  
QUARTZ CRYSTAL  
OPERATION (LP, XT OR  
HS MODE)  
PIC® MCU  
7.6.2  
EC MODE  
The External Clock (EC) mode allows an externally  
generated logic level as the system clock source. When  
operating in this mode, an external clock source is  
connected to the OSC1 input and the OSC2 is available  
for general purpose I/O. Figure 7-2 shows the pin  
connections for EC mode.  
OSC1/CLKIN  
C1  
To Internal  
Logic  
Quartz  
Crystal  
(2)  
Sleep  
RF  
The Oscillator Start-up Timer (OST) is disabled when  
EC mode is selected. Therefore, there is no delay in  
operation after a Power-on Reset (POR) or wake-up  
from Sleep. Because the PIC® MCU design is fully  
static, stopping the external clock input will have the  
effect of halting the device while leaving all data intact.  
Upon restarting the external clock, the device will  
resume operation as if no time had elapsed.  
OSC2/CLKOUT  
(1)  
C2  
RS  
Note 1: A series resistor (RS) may be required for  
quartz crystals with low drive level.  
2: The value of RF varies with the Oscillator mode  
selected.  
Note 1: Quartz crystal characteristics vary according  
to type, package and manufacturer. The  
user should consult the manufacturer data  
sheets for specifications and recommended  
application.  
FIGURE 7-2:  
EXTERNAL CLOCK (EC)  
MODE OPERATION  
OSC1/CLKIN  
Clock from  
Ext. System  
PIC® MCU  
2: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
(1)  
I/O  
OSC2/CLKOUT  
3: For oscillator design assistance, reference  
the following Microchip Applications Notes:  
Note 1: Alternate pin functions are described in  
Section 6.1 “Alternate Pin Function”.  
• AN826, “Crystal Oscillator Basics and  
Crystal Selection for rfPIC® and PIC®  
Devices” (DS00826)  
7.6.3  
LP, XT, HS MODES  
• AN849, “Basic PIC® Oscillator Design”  
(DS00849)  
• AN943, “Practical PIC® Oscillator  
Analysis and Design” (DS00943)  
The LP, XT and HS modes support the use of quartz  
crystal resonators or ceramic resonators connected to  
OSC1 and OSC2 (Figure 7-3). The mode selects a low,  
medium or high gain setting of the internal  
inverter-amplifier to support various resonator types  
and speed.  
• AN949, “Making Your Oscillator Work”  
(DS00949)  
LP Oscillator mode selects the lowest gain setting of the  
internal inverter-amplifier. LP mode current consumption  
is the least of the three modes. This mode is best suited  
to drive resonators with a low drive level specification, for  
example, tuning fork type crystals.  
© 2009 Microchip Technology Inc.  
DS41341E-page 93  
PIC16F72X/PIC16LF72X  
FIGURE 7-4:  
CERAMIC RESONATOR  
OPERATION  
FIGURE 7-5:  
EXTERNAL RC MODES  
(XT OR HS MODE)  
VDD  
PIC® MCU  
PIC® MCU  
REXT  
OSC1/CLKIN  
Internal  
Clock  
OSC1/CLKIN  
CEXT  
VSS  
C1  
To Internal  
Logic  
(3)  
(2)  
RP  
RF  
Sleep  
(1)  
FOSC/4 or  
I/O  
OSC2/CLKOUT  
(2)  
OSC2/CLKOUT  
(1)  
C2  
RS  
Ceramic  
Resonator  
Recommended values: 10 kΩ ≤ REXT 100 kΩ, <3V  
3 kΩ ≤ REXT 100 kΩ, 3-5V  
CEXT > 20 pF, 2-5V  
Note 1: A series resistor (RS) may be required for  
Note 1: Alternate pin functions are described in  
Section 6.1 “Alternate Pin Function”.  
ceramic resonators with low drive level.  
2: The value of RF varies with the Oscillator mode  
2: Output depends upon RC or RCIO clock mode.  
selected.  
3: An additional parallel feedback resistor (RP)  
may be required for proper ceramic resonator  
operation.  
In RCIO mode, the RC circuit is connected to OSC1.  
OSC2 becomes an additional general purpose I/O pin.  
The RC oscillator frequency is a function of the supply  
voltage, the resistor (REXT) and capacitor (CEXT) values  
and the operating temperature. Other factors affecting  
the oscillator frequency are:  
7.6.4  
EXTERNAL RC MODES  
The external Resistor-Capacitor (RC) modes support  
the use of an external RC circuit. This allows the  
designer maximum flexibility in frequency choice while  
keeping costs to a minimum when clock accuracy is not  
required. There are two modes: RC and RCIO.  
• threshold voltage variation  
• component tolerances  
• packaging variations in capacitance  
The user also needs to take into account variation due  
to tolerance of external RC components used.  
In RC mode, the RC circuit connects to OSC1.  
OSC2/CLKOUT outputs the RC oscillator frequency  
divided by 4. This signal may be used to provide a clock  
for external circuitry, synchronization, calibration, test  
or other application requirements. Figure 7-5 shows  
the external RC mode connections.  
TABLE 7-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES  
Value on  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
POR, BOR  
(1)  
Resets  
(1)  
CONFIG1  
CP  
MCLRE PWRTE  
WDTE  
ICSL  
FOSC2  
ICSS  
FOSC1  
FOSC0  
OSCCON  
IRCF1  
TUN5  
IRCF0  
TUN4  
--10 qq-- --10 qq--  
--00 0000 --uu uuuu  
OSCTUNE  
TUN3  
TUN2  
TUN1  
TUN0  
Legend:  
x= unknown, u= unchanged, = unimplemented locations read as ‘0’. Shaded cells are not used by oscillators.  
Note 1: See Configuration Word 1 (Register 8-1) for operation of all bits.  
DS41341E-page 94  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
8.1  
Configuration Words  
8.0  
DEVICE CONFIGURATION  
There are several Configuration Word bits that allow  
different oscillator and memory protection options.  
These are implemented as Configuration Word 1  
register at 2007h and Configuration Word 2 register at  
2008h. These registers are only accessible during  
programming.  
Device Configuration consists of Configuration Word 1  
and Configuration Word 2 registers, Code Protection  
and Device ID.  
REGISTER 8-1:  
CONFIG1: CONFIGURATION WORD REGISTER 1  
(4)  
R/P-1  
R/P-1  
U-1  
R/P-1  
R/P-1  
R/P-1  
DEBUG  
PLLEN  
BORV  
BOREN1  
BOREN0  
bit 15  
bit 8  
(4)  
U-1  
R/P-1  
CP  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
MCLRE  
PWRTE  
WDTE  
FOSC2  
FOSC1  
FOSC0  
bit 7  
bit 0  
Legend:  
P = Programmable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 13  
bit 12  
DEBUG: In-Circuit Debugger Mode bit  
1= In-Circuit Debugger disabled, RB6/ICSPCLK and RB7/ICSPDAT are general purpose I/O pins  
0= In-Circuit Debugger enabled, RB6/ICSPCLK and RB7/ICSPDAT are dedicated to the debugger  
PLLEN: INTOSC PLL Enable bit  
0= INTOSC Frequency is 500 kHz  
1= INTOSC Frequency is 16 MHz (32x)  
bit 11  
bit 10  
Unimplemented: Read as ‘1’  
BORV: Brown-out Reset Voltage selection bit  
0= Brown-out Reset Voltage (VBOR) set to 2.5 V nominal  
1= Brown-out Reset Voltage (VBOR) set to 1.9 V nominal  
(1)  
bit 9-8  
BOREN<1:0>: Brown-out Reset Selection bits  
0x= BOR disabled (Preconditioned State)  
10= BOR enabled during operation and disabled in Sleep  
11= BOR enabled  
bit 7  
bit 6  
Unimplemented: Read as ‘1’  
(2)  
CP: Code Protection bit  
1= Program memory code protection is disabled  
0= Program memory code protection is enabled  
(3)  
bit 5  
bit 4  
bit 3  
MCLRE: RE3/MCLR pin function select bit  
1= RE3/MCLR pin function is MCLR  
0= RE3/MCLR pin function is digital input, MCLR internally tied to VDD  
PWRTE: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled  
Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer.  
2: The entire program memory will be erased when the code protection is turned off.  
3: When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.  
®
4: MPLAB IDE masks unimplemented Configuration bits to ‘0’.  
© 2009 Microchip Technology Inc.  
DS41341E-page 95  
PIC16F72X/PIC16LF72X  
REGISTER 8-1:  
CONFIG1: CONFIGURATION WORD REGISTER 1 (CONTINUED)  
bit 2-0  
FOSC<2:0>: Oscillator Selection bits  
111= RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, RC on RA7/OSC1/CLKIN  
110= RCIO oscillator: I/O function on RA6/OSC2/CLKOUT pin, RC on RA7/OSC1/CLKIN  
101= INTOSC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN  
100= INTOSCIO oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN  
011= EC: I/O function on RA6/OSC2/CLKOUT pin, CLKIN on RA7/OSC1/CLKIN  
010= HS oscillator: High-speed crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN  
001= XT oscillator: Crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN  
000= LP oscillator: Low-power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN  
Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer.  
2: The entire program memory will be erased when the code protection is turned off.  
3: When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.  
®
4: MPLAB IDE masks unimplemented Configuration bits to ‘0’.  
REGISTER 8-2:  
CONFIG2: CONFIGURATION WORD REGISTER 2  
U-1(1)  
U-1(1)  
U-1(1)  
U-1(1)  
U-1(1)  
U-1(1)  
bit 15  
bit 8  
U-1(1)  
U-1(1)  
R/P-1  
R/P-1  
U-1(1)  
U-1(1)  
U-1(1)  
U-1(1)  
VCAPEN1  
VCAPEN0  
bit 7  
bit 0  
Legend:  
P = Programmable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 13-6  
bit 5-4  
Unimplemented: Read as ‘1’  
VCAPEN<1:0>: Voltage Regulator Capacitor Enable bits  
For the PIC16LF72X:  
These bits are ignored. All VCAP pin functions are disabled.  
For the PIC16F72X:  
00= VCAP functionality is enabled on RA0  
01= VCAP functionality is enabled on RA5  
10= VCAP functionality is enabled on RA6  
11= All VCAP functions are disabled (not recommended)  
bit 3-0  
Unimplemented: Read as ‘1’  
Note 1: MPLAB® IDE masks unimplemented Configuration bits to ‘0’.  
DS41341E-page 96  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
8.2  
Code Protection  
If the code protection bit(s) have not been  
programmed, the on-chip program memory can be  
read out using ICSP™ for verification purposes.  
Note:  
The entire Flash program memory will be  
erased when the code protection is turned  
off. See the “PIC16F72X/PIC16LF72X  
Memory Programming Specification”  
(DS41332) for more information.  
8.3  
User ID  
Four memory locations (2000h-2003h) are designated  
as ID locations where the user can store checksum or  
other code identification numbers. These locations are  
not accessible during normal execution, but are read-  
able and writable during Program/Verify mode. Only  
the Least Significant 7 bits of the ID locations are  
reported when using MPLAB IDE. See the  
PIC16F72X/PIC16LF72X Memory Programming  
Specification” (DS41332) for more information.  
© 2009 Microchip Technology Inc.  
DS41341E-page 97  
PIC16F72X/PIC16LF72X  
NOTES:  
DS41341E-page 98  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
9.0  
ANALOG-TO-DIGITAL  
CONVERTER (ADC) MODULE  
The Analog-to-Digital Converter (ADC) allows  
conversion of an analog input signal to a 8-bit binary  
representation of that signal. This device uses analog  
inputs, which are multiplexed into a single sample and  
hold circuit. The output of the sample and hold is  
connected to the input of the converter. The converter  
generates  
a 8-bit binary result via successive  
approximation and stores the conversion result into the  
ADC result register (ADRES). Figure 9-1 shows the  
block diagram of the ADC.  
The ADC voltage reference is software selectable to be  
either internally generated or externally supplied.  
The ADC can generate an interrupt upon completion of  
a conversion. This interrupt can be used to wake-up the  
device from Sleep.  
FIGURE 9-1:  
ADC BLOCK DIAGRAM  
AVDD  
ADREF = 0x  
ADREF = 11  
VREF+  
ADREF = 10  
0000  
AN0  
AN1  
0001  
0010  
0011  
0100  
0101  
AN2  
AN3  
AN4  
AN5  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
AN6  
AN7  
ADC  
AN8  
8
GO/DONE  
ADON  
AN9  
AN10  
AN11  
AN12  
AN13  
Reserved  
FVREF  
ADRES  
VSS  
CHS<3:0>  
© 2009 Microchip Technology Inc.  
DS41341E-page 99  
PIC16F72X/PIC16LF72X  
For correct conversion, the appropriate TAD specifica-  
tion must be met. Refer to the A/D conversion require-  
ments in Section 23.0 “Electrical Specifications” for  
more information. Table 9-1 gives examples of appro-  
priate ADC clock selections.  
9.1  
ADC Configuration  
When configuring and using the ADC the following  
functions must be considered:  
• Port configuration  
• Channel selection  
Note:  
Unless using the FRC, any changes in the  
system clock frequency will change the  
ADC clock frequency, which may  
adversely affect the ADC result.  
• ADC voltage reference selection  
• ADC conversion clock source  
• Interrupt control  
• Results formatting  
9.1.1  
PORT CONFIGURATION  
The ADC can be used to convert both analog and  
digital signals. When converting analog signals, the I/O  
pin should be configured for analog by setting the  
associated TRIS and ANSEL bits. Refer to Section 6.0  
“I/O Ports” for more information.  
Note:  
Analog voltages on any pin that is defined  
as a digital input may cause the input  
buffer to conduct excess current.  
9.1.2  
CHANNEL SELECTION  
The CHS bits of the ADCON0 register determine which  
channel is connected to the sample and hold circuit.  
When changing channels, a delay is required before  
starting the next conversion. Refer to Section 9.2  
“ADC Operation” for more information.  
9.1.3  
ADC VOLTAGE REFERENCE  
The ADREF bits of the ADCON1 register provides  
control of the positive voltage reference. The positive  
voltage reference can be either VDD, an external  
voltage source or the internal Fixed Voltage Reference.  
The negative voltage reference is always connected to  
the ground reference. See Section 10.0 “Fixed  
Voltage Reference” for more details on the Fixed  
Voltage Reference.  
9.1.4  
CONVERSION CLOCK  
The source of the conversion clock is software select-  
able via the ADCS bits of the ADCON1 register. There  
are seven possible clock options:  
• FOSC/2  
• FOSC/4  
• FOSC/8  
• FOSC/16  
• FOSC/32  
• FOSC/64  
• FRC (dedicated internal oscillator)  
The time to complete one bit conversion is defined as  
TAD. One full 8-bit conversion requires 10 TAD periods  
as shown in Figure 9-2.  
DS41341E-page 100  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
TABLE 9-1:  
ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES  
ADC Clock Period (TAD)  
Device Frequency (FOSC)  
ADC  
Clock Source  
ADCS<2:0>  
20 MHz  
16 MHz  
8 MHz  
4 MHz  
1 MHz  
Fosc/2  
Fosc/4  
Fosc/8  
Fosc/16  
Fosc/32  
Fosc/64  
FRC  
000  
100  
001  
101  
010  
110  
x11  
100 ns(2)  
200 ns(2)  
400 ns(2)  
800 ns  
125 ns(2)  
250 ns(2)  
0.5 μs(2)  
1.0 μs  
250 ns(2)  
500 ns(2)  
1.0 μs  
500 ns(2)  
1.0 μs  
2.0 μs  
4.0 μs  
8.0 μs(3)  
16.0 μs(3)  
32.0 μs(3)  
64.0 μs(3)  
2.0 μs  
2.0 μs  
4.0 μs  
1.6 μs  
2.0 μs  
4.0 μs  
8.0 μs(3)  
8.0 μs(3)  
16.0 μs(3)  
3.2 μs  
4.0 μs  
1.0-6.0 μs(1,4) 1.0-6.0 μs(1,4) 1.0-6.0 μs(1,4) 1.0-6.0 μs(1,4) 1.0-6.0 μs(1,4)  
Legend: Shaded cells are outside of recommended range.  
Note 1: The FRC source has a typical TAD time of 1.6 μs for VDD.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the  
conversion will be performed during Sleep.  
FIGURE 9-2:  
ANALOG-TO-DIGITAL CONVERSION TAD CYCLES  
Tcy to TAD  
TAD0  
TAD1  
TAD2  
b7  
TAD3  
b6  
TAD4  
TAD5  
b4  
TAD6  
b3  
TAD7  
TAD8  
TAD9  
b5  
b2  
b1  
b0  
Conversion Starts  
Holding Capacitor is Disconnected from Analog Input (typically 100 ns)  
Set GO/DONE bit  
ADRES register is loaded,  
GO/DONE bit is cleared,  
ADIF bit is set,  
Holding capacitor is connected to analog input  
© 2009 Microchip Technology Inc.  
DS41341E-page 101  
PIC16F72X/PIC16LF72X  
9.1.5  
INTERRUPTS  
9.2.3  
TERMINATING A CONVERSION  
The ADC module allows for the ability to generate an  
interrupt upon completion of an Analog-to-Digital  
conversion. The ADC interrupt flag is the ADIF bit in the  
PIR1 register. The ADC interrupt enable is the ADIE bit  
in the PIE1 register. The ADIF bit must be cleared in  
software.  
If a conversion must be terminated before completion,  
the GO/DONE bit can be cleared in software. The  
ADRES register will be updated with the partially com-  
plete Analog-to-Digital conversion sample. Incomplete  
bits will match the last bit converted.  
Note:  
A device Reset forces all registers to their  
Reset state. Thus, the ADC module is  
turned off and any pending conversion is  
terminated.  
Note 1: The ADIF bit is set at the completion of  
every conversion, regardless of whether  
or not the ADC interrupt is enabled.  
2: The ADC operates during Sleep only  
9.2.4  
ADC OPERATION DURING SLEEP  
when the FRC oscillator is selected.  
The ADC module can operate during Sleep. This  
requires the ADC clock source to be set to the FRC  
option. When the FRC clock source is selected, the  
ADC waits one additional instruction before starting the  
conversion. This allows the SLEEP instruction to be  
executed, which can reduce system noise during the  
conversion. If the ADC interrupt is enabled, the device  
will wake-up from Sleep when the conversion  
completes. If the ADC interrupt is disabled, the ADC  
module is turned off after the conversion completes,  
although the ADON bit remains set.  
This interrupt can be generated while the device is  
operating or while in Sleep. If the device is in Sleep, the  
interrupt will wake-up the device. Upon waking from  
Sleep, the next instruction following the SLEEPinstruc-  
tion is always executed. If the user is attempting to  
wake-up from Sleep and resume in-line code execu-  
tion, the GIE and PEIE bits of the INTCON register  
must be disabled. If the GIE and PEIE bits of the INT-  
CON register are enabled, execution will switch to the  
Interrupt Service Routine.  
Please refer to Section 9.1.5 “Interrupts” for more  
information.  
When the ADC clock source is something other than  
FRC, a SLEEP instruction causes the present conver-  
sion to be aborted and the ADC module is turned off,  
although the ADON bit remains set.  
9.2  
ADC Operation  
9.2.1  
STARTING A CONVERSION  
9.2.5  
SPECIAL EVENT TRIGGER  
To enable the ADC module, the ADON bit of the  
ADCON0 register must be set to a ‘1’. Setting the GO/  
DONE bit of the ADCON0 register to a ‘1’ will start the  
Analog-to-Digital conversion.  
The Special Event Trigger of the CCP module allows  
periodic ADC measurements without software inter-  
vention. When this trigger occurs, the GO/DONE bit is  
set by hardware and the Timer1 counter resets to zero.  
Note:  
The GO/DONE bit should not be set in the  
same instruction that turns on the ADC.  
Refer to Section 9.2.6 “A/D Conversion  
Procedure”.  
Using the Special Event Trigger does not assure proper  
ADC timing. It is the user’s responsibility to ensure that  
the ADC timing requirements are met.  
Refer to Section 15.0 “Capture/Compare/PWM  
(CCP) Module” for more information.  
9.2.2  
COMPLETION OF A CONVERSION  
When the conversion is complete, the ADC module will:  
• Clear the GO/DONE bit  
• Set the ADIF Interrupt Flag bit  
• Update the ADRES register with new conversion  
result  
DS41341E-page 102  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
9.2.6  
A/D CONVERSION PROCEDURE  
EXAMPLE 9-1:  
A/D CONVERSION  
This is an example procedure for using the ADC to  
perform an Analog-to-Digital conversion:  
;This code block configures the ADC  
;for polling, Vdd reference, Frc clock  
;and AN0 input.  
;
1. Configure Port:  
• Disable pin output driver (Refer to the TRIS  
register)  
;Conversion start & polling for completion  
; are included.  
;
• Configure pin as analog (Refer to the ANSEL  
register)  
BANKSEL  
MOVLW  
ADCON1  
;
B’01110000;ADC Frc clock,  
;VDD reference  
2. Configure the ADC module:  
• Select ADC conversion clock  
• Configure voltage reference  
• Select ADC input channel  
• Turn on ADC module  
MOVWF  
BANKSEL  
BSF  
BANKSEL  
BSF  
BANKSEL  
MOVLW  
MOVWF  
CALL  
BSF  
BTFSC  
GOTO  
BANKSEL  
MOVF  
MOVWF  
ADCON1  
TRISA  
TRISA,0  
ANSELA  
ANSELA,0  
ADCON0  
B’00000001’;AN0, On  
ADCON0  
SampleTime ;Acquisiton delay  
ADCON0,GO ;Start conversion  
ADCON0,GO ;Is conversion done?  
;
;
;Set RA0 to input  
;
;Set RA0 to analog  
;
3. Configure ADC interrupt (optional):  
• Clear ADC interrupt flag  
;
• Enable ADC interrupt  
• Enable peripheral interrupt  
• Enable global interrupt(1)  
$-1  
;No, test again  
;
;Read result  
;store in GPR space  
4. Wait the required acquisition time(2)  
.
ADRES  
ADRES,W  
RESULT  
5. Start conversion by setting the GO/DONE bit.  
6. Wait for ADC conversion to complete by one of  
the following:  
• Polling the GO/DONE bit  
• Waiting for the ADC interrupt (interrupts  
enabled)  
7. Read ADC Result.  
8. Clear the ADC interrupt flag (required if interrupt  
is enabled).  
Note 1: The global interrupt can be disabled if the  
user is attempting to wake-up from Sleep  
and resume in-line code execution.  
2: Refer to Section 9.3 “A/D Acquisition  
Requirements”.  
© 2009 Microchip Technology Inc.  
DS41341E-page 103  
PIC16F72X/PIC16LF72X  
9.2.7  
ADC REGISTER DEFINITIONS  
The following registers are used to control the  
operation of the ADC.  
REGISTER 9-1:  
ADCON0: A/D CONTROL REGISTER 0  
U-0  
U-0  
R/W-0  
CHS3  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
R/W-0  
ADON  
GO/DONE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-2  
Unimplemented: Read as ‘0’  
CHS<3:0>: Analog Channel Select bits  
0000= AN0  
0001= AN1  
0010= AN2  
0011= AN3  
0100= AN4  
0101= AN5  
0110= AN6  
0111= AN7  
1000= AN8  
1001= AN9  
1010= AN10  
1011= AN11  
1100= AN12  
1101= AN13  
1110= Reserved  
1111= Fixed Voltage Reference (FVREF)  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
1= A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.  
This bit is automatically cleared by hardware when the A/D conversion has completed.  
0= A/D conversion completed/not in progress  
ADON: ADC Enable bit  
1= ADC is enabled  
0= ADC is disabled and consumes no operating current  
DS41341E-page 104  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
REGISTER 9-2:  
ADCON1: A/D CONTROL REGISTER 1  
U-0  
R/W-0  
ADCS2  
R/W-0  
ADCS1  
R/W-0  
ADCS0  
U-0  
U-0  
R/W-0  
R/W-0  
ADREF1  
ADREF0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
ADCS<2:0>: A/D Conversion Clock Select bits  
000=FOSC/2  
001=FOSC/8  
010=FOSC/32  
011=FRC (clock supplied from a dedicated RC oscillator)  
100=FOSC/4  
101=FOSC/16  
110=FOSC/64  
111=FRC (clock supplied from a dedicated RC oscillator)  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
ADREF<1:0>: Voltage Reference Configuration bits  
0x= VREF is connected to VDD  
10= VREF is connected to external VREF (RA3/AN3)  
11= VREF is connected to internal Fixed Voltage Reference  
REGISTER 9-3:  
R/W-x  
ADRES: ADC RESULT REGISTER  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES7  
bit 7  
ADRES6  
ADRES5  
ADRES4  
ADRES3  
ADRES2  
ADRES1  
ADRES0  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7-0  
ADRES<7:0>: ADC Result Register bits  
8-bit conversion result.  
© 2009 Microchip Technology Inc.  
DS41341E-page 105  
PIC16F72X/PIC16LF72X  
impedance is decreased, the acquisition time may be  
decreased. After the analog input channel is selected  
(or changed), an A/D acquisition must be done before  
the conversion can be started. To calculate the mini-  
mum acquisition time, Equation 9-1 may be used. This  
equation assumes that 1/2 LSb error is used (256 steps  
for the ADC). The 1/2 LSb error is the maximum error  
allowed for the ADC to meet its specified resolution.  
9.3  
A/D Acquisition Requirements  
For the ADC to meet its specified accuracy, the charge  
holding capacitor (CHOLD) must be allowed to fully  
charge to the input channel voltage level. The Analog  
Input model is shown in Figure 9-3. The source imped-  
ance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge  
the capacitor CHOLD. The sampling switch (RSS)  
impedance varies over the device voltage (VDD), refer  
to Figure 9-3. The maximum recommended imped-  
ance for analog sources is 10 kΩ. As the source  
EQUATION 9-1:  
ACQUISITION TIME EXAMPLE  
Temperature = 50°C and external impedance of 10kΩ 5.0V VDD  
Assumptions:  
TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient  
= TAMP + TC + TCOFF  
= 2µs + TC + [(Temperature - 25°C)(0.05µs/°C)]  
The value for TC can be approximated with the following equations:  
1
;[1] VCHOLD charged to within 1/2 lsb  
VAPPLIED 1 -------------------------- = VCHOLD  
(2n + 1) 1  
TC  
---------  
VAPPLIED 1 e RC = VCHOLD  
;[2] VCHOLD charge response to VAPPLIED  
;combining [1] and [2]  
Tc  
--------  
1
VAPPLIED 1 eRC = VAPPLIED 1 --------------------------  
(2n + 1) 1  
Note: Where n = number of bits of the ADC.  
Solving for TC:  
TC = CHOLD(RIC + RSS + RS) ln(1/511)  
= 10pF(1kΩ + 7kΩ + 10kΩ) ln(0.001957)  
= 1.12µs  
Therefore:  
TACQ = 2ΜS + 1.12ΜS + [(50°C- 25°C)(0.05ΜS/°C)]  
= 4.42ΜS  
Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.  
2: The charge holding capacitor (CHOLD) is not discharged after each conversion.  
3: The maximum recommended impedance for analog sources is 10 kΩ. This is required to meet the pin  
leakage specification.  
DS41341E-page 106  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 9-3:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT 0.6V  
ANx  
SS  
RIC 1k  
Rss  
Rs  
(1)  
CPIN  
5 pF  
VA  
I LEAKAGE  
CHOLD = 10 pF  
VSS/VREF-  
VT 0.6V  
6V  
5V  
RSS  
VDD 4V  
3V  
Legend:  
CHOLD  
CPIN  
= Sample/Hold Capacitance  
= Input Capacitance  
2V  
I LEAKAGE = Leakage current at the pin due to  
various junctions  
5 6 7 8 9 1011  
Sampling Switch  
RIC  
RSS  
SS  
VT  
= Interconnect Resistance  
= Resistance of Sampling Switch  
= Sampling Switch  
(kΩ)  
= Threshold Voltage  
Note 1: Refer to Section 23.0 “Electrical Specifications”.  
FIGURE 9-4:  
ADC TRANSFER FUNCTION  
Full-Scale Range  
FFh  
FEh  
FDh  
FCh  
FBh  
1 LSB ideal  
Full-Scale  
Transition  
04h  
03h  
02h  
01h  
00h  
Analog Input Voltage  
1 LSB ideal  
Zero-Scale  
Transition  
VREF  
VSS  
© 2009 Microchip Technology Inc.  
DS41341E-page 107  
PIC16F72X/PIC16LF72X  
TABLE 9-2:  
SUMMARY OF ASSOCIATED ADC REGISTERS  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON0  
ADCON1  
ANSELA  
ANSELB  
ANSELE  
ADRES  
ADCS2  
CHS3  
ADCS1  
ANSA5  
ANSB5  
CHS2  
ADCS0  
ANSA4  
ANSB4  
CHS1  
CHS0  
GO/DONE  
ADREF1  
ANSA1  
ADON  
ADREF0  
ANSA0  
ANSB0  
ANSE0  
--00 0000  
-000 --00  
--11 1111  
--11 1111  
---- -111  
xxxx xxxx  
--00 0000  
q0-- --00  
0000 000x  
0000 0000  
0000 0000  
1111 1111  
1111 1111  
---- 1111  
--00 0000  
-000 --00  
--11 1111  
--11 1111  
---- -111  
uuuu uuuu  
--00 0000  
q0-- --00  
0000 000x  
0000 0000  
0000 0000  
1111 1111  
1111 1111  
---- 1111  
ANSA3  
ANSB3  
ANSA2  
ANSB2  
ANSE2  
ANSB1  
ANSE1  
A/D Result Register Byte  
CCP2CON  
DC2B1  
DC2B0  
CCP2M3  
CCP2M2  
CCP2M1  
ADFVR1  
INTF  
CCP2M0  
ADFVR0  
RBIF  
FVRCON  
INTCON  
PIE1  
FVRRDY  
GIE  
FVREN  
PEIE  
T0IE  
INTE  
TXIE  
TXIF  
TRISA4  
TRISB4  
RBIE  
T0IF  
TMR1GIE  
TMR1GIF  
TRISA7  
TRISB7  
ADIE  
ADIF  
RCIE  
RCIF  
TRISA5  
TRISB5  
SSPIE  
SSPIF  
TRISA3  
TRISB3  
TRISE3  
CCP1IE  
CCP1IF  
TRISA2  
TRISB2  
TRISE2  
TMR2IE  
TMR2IF  
TRISA1  
TRISB1  
TRISE1  
TMR1IE  
TMR1IF  
TRISA0  
TRISB0  
TRISE0  
PIR1  
TRISA  
TRISB  
TRISE  
Legend:  
TRISA6  
TRISB6  
x= unknown, u= unchanged, = unimplemented read as ‘0’, q= value depends on condition. Shaded cells are not used for ADC  
module.  
DS41341E-page 108  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
10.0 FIXED VOLTAGE REFERENCE  
This device contains an internal voltage regulator. To  
provide a reference for the regulator, a band gap refer-  
ence is provided. This band gap is also user accessible  
via an A/D converter channel.  
User level band gap functions are controlled by the  
FVRCON register, which is shown in Register 10-1.  
REGISTER 10-1: FVRCON: FIXED VOLTAGE REFERENCE REGISTER  
R-q  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
FVRRDY  
FVREN  
ADFVR1  
ADFVR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
q = Value depends on condition  
bit 7  
bit 6  
FVRRDY(1): Fixed Voltage Reference Ready Flag bit  
0= Fixed Voltage Reference output is not active or stable  
1= Fixed Voltage Reference output is ready for use  
FVREN(2): Fixed Voltage Reference Enable bit  
0= Fixed Voltage Reference is disabled  
1= Fixed Voltage Reference is enabled  
bit 5-2  
bit 1-0  
Unimplemented: Read as ‘0’  
ADFVR<1:0>: A/D Converter Fixed Voltage Reference Selection bits  
00= A/D Converter Fixed Voltage Reference Peripheral output is off.  
01= A/D Converter Fixed Voltage Reference Peripheral output is 1x (1.024V)  
10= A/D Converter Fixed Voltage Reference Peripheral output is 2x (2.048V)(2)  
11= A/D Converter Fixed Voltage Reference Peripheral output is 4x (4.096V)(2)  
Note 1: FVRRDY is always ‘1’ for the PIC16F72X devices.  
2: Fixed Voltage Reference output cannot exceed VDD.  
© 2009 Microchip Technology Inc.  
DS41341E-page 109  
PIC16F72X/PIC16LF72X  
NOTES:  
DS41341E-page 110  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
When TMR0 is written, the increment is inhibited for  
two instruction cycles immediately following the write.  
11.0 TIMER0 MODULE  
The Timer0 module is an 8-bit timer/counter with the  
following features:  
Note:  
The value written to the TMR0 register can  
be adjusted, in order to account for the two  
instruction cycle delay when TMR0 is  
written.  
• 8-bit timer/counter register (TMR0)  
• 8-bit prescaler (shared with Watchdog Timer)  
• Programmable internal or external clock source  
• Programmable external clock edge selection  
• Interrupt on overflow  
11.1.2  
8-BIT COUNTER MODE  
In 8-Bit Counter mode, the Timer0 module will  
increment on every rising or falling edge of the T0CKI  
pin or the Capacitive Sensing Oscillator (CPSOSC)  
signal.  
• TMR0 can be used to gate Timer1  
Figure 11-1 is a block diagram of the Timer0 module.  
8-Bit Counter Mode using the T0CKI pin is selected by  
setting the T0CS bit in the OPTION register to ‘1’ and  
resetting the T0XCS bit in the CPSCON0 register to ‘0’.  
11.1 Timer0 Operation  
The Timer0 module can be used as either an 8-bit timer  
or an 8-bit counter.  
8-Bit Counter Mode using the Capacitive Sensing  
Oscillator (CPSOSC) signal is selected by setting the  
T0CS bit in the OPTION register to ‘1’ and setting the  
T0XCS bit in the CPSCON0 register to ‘1’.  
11.1.1  
8-BIT TIMER MODE  
The Timer0 module will increment every instruction  
cycle, if used without a prescaler. 8-Bit Timer mode is  
selected by clearing the T0CS bit of the OPTION  
register.  
The rising or falling transition of the incrementing edge  
for either input source is determined by the T0SE bit in  
the OPTION register.  
FIGURE 11-1:  
BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
FOSC/4  
Data Bus  
T0XCS  
0
1
8
T0CKI  
1
Sync  
0
1
TMR0  
2 TCY  
0
Set Flag bit T0IF  
on Overflow  
Cap. Sensing  
Oscillator  
0
1
T0CS  
T0SE  
8-bit  
Prescaler  
PSA  
Overflow to Timer1  
T1GSS = 11  
TMR1GE  
PSA  
8
WDTE  
Low-Power  
WDT OSC  
PS<2:0>  
1
WDT  
Time-out  
Divide by  
512  
0
PSA  
© 2009 Microchip Technology Inc.  
DS41341E-page 111  
PIC16F72X/PIC16LF72X  
11.1.3  
SOFTWARE PROGRAMMABLE  
PRESCALER  
A single software programmable prescaler is available  
for use with either Timer0 or the Watchdog Timer  
(WDT), but not both simultaneously. The prescaler  
assignment is controlled by the PSA bit of the OPTION  
register. To assign the prescaler to Timer0, the PSA bit  
must be cleared to a ‘0’.  
There are 8 prescaler options for the Timer0 module  
ranging from 1:2 to 1:256. The prescale values are  
selectable via the PS<2:0> bits of the OPTION register.  
In order to have a 1:1 prescaler value for the Timer0  
module, the prescaler must be assigned to the WDT  
module.  
The prescaler is not readable or writable. When  
assigned to the Timer0 module, all instructions writing to  
the TMR0 register will clear the prescaler.  
Note:  
When the prescaler is assigned to WDT, a  
CLRWDTinstruction will clear the prescaler  
along with the WDT.  
11.1.4  
TIMER0 INTERRUPT  
Timer0 will generate an interrupt when the TMR0  
register overflows from FFh to 00h. The T0IF interrupt  
flag bit of the INTCON register is set every time the  
TMR0 register overflows, regardless of whether or not  
the Timer0 interrupt is enabled. The T0IF bit can only  
be cleared in software. The Timer0 interrupt enable is  
the T0IE bit of the INTCON register.  
Note:  
The Timer0 interrupt cannot wake the  
processor from Sleep since the timer is  
frozen during Sleep.  
11.1.5  
8-BIT COUNTER MODE  
SYNCHRONIZATION  
When in 8-Bit Counter Mode, the incrementing edge on  
the T0CKI pin must be synchronized to the instruction  
clock. Synchronization can be accomplished by  
sampling the prescaler output on the Q2 and Q4 cycles  
of the instruction clock. The high and low periods of the  
external clocking source must meet the timing  
requirements as shown in Section 23.0 “Electrical  
Specifications”.  
DS41341E-page 112  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
REGISTER 11-1: OPTION_REG: OPTION REGISTER  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RBPU: PORTB Pull-up Enable bit  
1= PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of INT pin  
0= Interrupt on falling edge of INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on T0CKI pin or CPSOSC signal  
0= Internal instruction cycle clock (FOSC/4)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
BIT VALUE TMR0 RATE  
WDT RATE  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 1  
1 : 4  
1 : 2  
1 : 8  
1 : 4  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
TABLE 11-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CPSCON0  
INTCON  
OPTION_REG  
TMR0  
CPSON  
GIE  
CPSRNG1 CPSRNG0 CPSOUT  
T0XCS  
RBIF  
PS0  
0--- 0000  
0000 000x  
1111 1111  
xxxx xxxx  
1111 1111  
0--- 0000  
0000 000x  
1111 1111  
uuuu uuuu  
1111 1111  
PEIE  
T0IE  
T0CS  
INTE  
T0SE  
RBIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
RBPU  
INTEDG  
Timer0 Module Register  
TRISA7 TRISA6  
TRISA  
TRISA5  
TRISA4  
TRISA3  
TRISA2  
TRISA1  
TRISA0  
Legend:  
– = Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the Timer0 module.  
© 2009 Microchip Technology Inc.  
DS41341E-page 113  
PIC16F72X/PIC16LF72X  
NOTES:  
DS41341E-page 114  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
• Selectable Gate Source Polarity  
• Gate Toggle Mode  
12.0 TIMER1 MODULE WITH GATE  
CONTROL  
• Gate Single-pulse Mode  
• Gate Value Status  
The Timer1 module is a 16-bit timer/counter with the  
following features:  
• Gate Event Interrupt  
• 16-bit timer/counter register pair (TMR1H:TMR1L)  
• Programmable internal or external clock source  
• 3-bit prescaler  
Figure 12-1 is a block diagram of the Timer1 module.  
• Dedicated LP oscillator circuit  
• Synchronous or asynchronous operation  
• Multiple Timer1 gate (count enable) sources  
• Interrupt on overflow  
• Wake-up on overflow (external clock,  
Asynchronous mode only)  
• Time base for the Capture/Compare function  
• Special Event Trigger (with CCP)  
FIGURE 12-1:  
TIMER1 BLOCK DIAGRAM  
T1GSS<1:0>  
T1G  
T1GSPM  
00  
0
01  
From Timer0  
Overflow  
T1G_IN  
Data Bus  
T1GVAL  
0
D
Q
From Timer2  
Match PR2  
RD  
Single Pulse  
Acq. Control  
10  
11  
1
T1GCON  
Q1 EN  
1
D
Q
Q
From WDT  
Overflow  
Interrupt  
Set  
TMR1GIF  
T1GGO/DONE  
CK  
R
TMR1ON  
T1GTM  
det  
T1GPOL  
TMR1GE  
Set flag bit  
TMR1IF on  
Overflow  
TMR1ON  
TMR1(2)  
EN  
D
Synchronized  
clock input  
0
T1CLK  
TMR1H  
TMR1L  
Q
1
TMR1CS<1:0>  
T1SYNC  
T1OSO/T1CKI  
OUT  
Cap. Sensing  
Oscillator  
11  
10  
Synchronize(3)  
det  
T1OSC  
EN  
Prescaler  
1, 2, 4, 8  
1
0
T1OSI  
2
T1CKPS<1:0>  
FOSC  
Internal  
Clock  
01  
00  
FOSC/2  
Internal  
Clock  
T1OSCEN  
T1CKI  
Sleep input  
FOSC/4  
Internal  
Clock  
(1)  
Note 1: ST Buffer is high speed type when using T1CKI.  
2: Timer1 register increments on rising edge.  
3: Synchronize does not operate while in Sleep.  
© 2009 Microchip Technology Inc.  
DS41341E-page 115  
PIC16F72X/PIC16LF72X  
12.1 Timer1 Operation  
12.2 Clock Source Selection  
The Timer1 module is a 16-bit incrementing counter  
which is accessed through the TMR1H:TMR1L register  
pair. Writes to TMR1H or TMR1L directly update the  
counter.  
The TMR1CS<1:0> and T1OSCEN bits of the T1CON  
register are used to select the clock source for Timer1.  
Table 12-2 displays the clock source selections.  
12.2.1  
INTERNAL CLOCK SOURCE  
When used with an internal clock source, the module is  
a timer and increments on every instruction cycle.  
When used with an external clock source, the module  
can be used as either a timer or counter and incre-  
ments on every selected edge of the external source.  
When the internal clock source is selected the  
TMR1H:TMR1L register pair will increment on multiples  
of FOSC as determined by the Timer1 prescaler.  
12.2.2  
EXTERNAL CLOCK SOURCE  
Timer1 is enabled by configuring the TMR1ON and  
TMR1GE bits in the T1CON and T1GCON registers,  
respectively. Table 12-1 displays the Timer1 enable  
selections.  
When the external clock source is selected, the Timer1  
module may work as a timer or a counter.  
When enabled to count, Timer1 is incremented on the  
rising edge of the external clock input T1CKI or the  
capacitive sensing oscillator signal. Either of these  
external clock sources can be synchronized to the  
microcontroller system clock or they can run  
asynchronously.  
TABLE 12-1: TIMER1 ENABLE  
SELECTIONS  
Timer1  
Operation  
TMR1ON  
TMR1GE  
When used as a timer with a clock oscillator, an  
external 32.768 kHz crystal can be used in conjunction  
with the dedicated internal oscillator circuit.  
0
0
1
1
0
1
0
1
Off  
Off  
Note:  
In Counter mode, a falling edge must be  
registered by the counter prior to the first  
incrementing rising edge after any one or  
more of the following conditions:  
Always On  
Count Enabled  
• Timer1 enabled after POR reset  
• Write to TMR1H or TMR1L  
• Timer1 is disabled  
• Timer1 is disabled (TMR1ON = 0)  
when T1CKI is high then Timer1 is  
enabled (TMR1ON=1) when T1CKI is  
low.  
TABLE 12-2: CLOCK SOURCE SELECTIONS  
TMR1CS1  
TMR1CS0  
T1OSCEN  
Clock Source  
0
0
1
1
1
1
0
1
0
0
x
x
x
0
1
System Clock (FOSC)  
Instruction Clock (FOSC/4)  
Capacitive Sensing Oscillator  
External Clocking on T1CKI Pin  
Oscillator Circuit on T1OSI/T1OSO Pins  
DS41341E-page 116  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
12.5.1  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER  
MODE  
12.3 Timer1 Prescaler  
Timer1 has four prescaler options allowing 1, 2, 4 or 8  
divisions of the clock input. The T1CKPS bits of the  
T1CON register control the prescale counter. The  
prescale counter is not directly readable or writable;  
however, the prescaler counter is cleared upon a write to  
TMR1H or TMR1L.  
Reading TMR1H or TMR1L while the timer is running  
from an external asynchronous clock will ensure a valid  
read (taken care of in hardware). However, the user  
should keep in mind that reading the 16-bit timer in two  
8-bit values itself, poses certain problems, since the  
timer may overflow between the reads.  
12.4 Timer1 Oscillator  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write  
contention may occur by writing to the timer registers,  
while the register is incrementing. This may produce an  
unpredictable value in the TMR1H:TMR1L register  
pair.  
A dedicated low-power 32.768 kHz oscillator circuit is  
built-in between pins T1OSI (input) and T1OSO  
(amplifier output). This internal circuit is to be used in  
conjunction with an external 32.768 kHz crystal.  
The oscillator circuit is enabled by setting the  
T1OSCEN bit of the T1CON register. The oscillator will  
continue to run during Sleep.  
Note:  
The oscillator requires a start-up and  
stabilization time before use. Thus,  
T1OSCEN should be set and a suitable  
delay observed prior to enabling Timer1.  
12.5 Timer1 Operation in  
Asynchronous Counter Mode  
If control bit T1SYNC of the T1CON register is set, the  
external clock input is not synchronized. The timer  
increments asynchronously to the internal phase  
clocks. If external clock source is selected then the  
timer will continue to run during Sleep and can  
generate an interrupt on overflow, which will wake-up  
the processor. However, special precautions in  
software are needed to read/write the timer (see  
Section 12.5.1 “Reading and Writing Timer1 in  
Asynchronous Counter Mode”).  
Note:  
When switching from synchronous to  
asynchronous operation, it is possible to  
skip an increment. When switching from  
asynchronous to synchronous operation,  
it is possible to produce an additional  
increment.  
© 2009 Microchip Technology Inc.  
DS41341E-page 117  
PIC16F72X/PIC16LF72X  
12.6.2.1  
T1G Pin Gate Operation  
12.6 Timer1 Gate  
The T1G pin is one source for Timer1 Gate Control. It  
can be used to supply an external source to the Timer1  
Gate circuitry.  
Timer1 can be configured to count freely or the count  
can be enabled and disabled using Timer1 Gate  
circuitry. This is also referred to as Timer1 Gate Count  
Enable.  
12.6.2.2  
Timer0 Overflow Gate Operation  
Timer1 Gate can also be driven by multiple selectable  
sources.  
When Timer0 increments from FFh to 00h,  
a
low-to-high pulse will automatically be generated and  
internally supplied to the Timer1 Gate circuitry.  
12.6.1  
TIMER1 GATE COUNT ENABLE  
The Timer1 Gate is enabled by setting the TMR1GE bit  
of the T1GCON register. The polarity of the Timer1  
Gate is configured using the T1GPOL bit of the  
T1GCON register.  
12.6.2.3  
Timer2 Match Gate Operation  
The TMR2 register will increment until it matches the  
value in the PR2 register. On the very next increment  
cycle, TMR2 will be reset to 00h. When this Reset  
occurs, a low-to-high pulse will automatically be  
generated and internally supplied to the Timer1 Gate  
circuitry.  
When Timer1 Gate (T1G) input is active, Timer1 will  
increment on the rising edge of the Timer1 clock  
source. When Timer1 Gate input is inactive, no  
incrementing will occur and Timer1 will hold the current  
count. See Figure 12-3 for timing details.  
12.6.2.4  
Watchdog Overflow Gate Operation  
The Watchdog Timer oscillator, prescaler and counter  
will be automatically turned on when TMR1GE = 1 and  
T1GSS selects the WDT as a gate source for Timer1  
(T1GSS = 11). TMR1ON does not factor into the oscil-  
lator, prescaler and counter enable. See Table 12-5.  
TABLE 12-3: TIMER1 GATE ENABLE  
SELECTIONS  
T1CLK T1GPOL  
T1G  
Timer1 Operation  
0
0
1
1
0
1
0
1
Counts  
The PSA and PS bits of the OPTION register still  
control what time-out interval is selected. Changing the  
prescaler during operation may result in a spurious  
capture.  
Holds Count  
Holds Count  
Counts  
Enabling the Watchdog Timer oscillator does not  
automatically enable a Watchdog Reset or Wake-up  
from Sleep upon counter overflow.  
12.6.2  
TIMER1 GATE SOURCE  
SELECTION  
Note:  
When using the WDT as a gate source for  
Timer1, operations that clear the Watchdog  
Timer (CLRWDT, SLEEP instructions) will  
affect the time interval being measured for  
capacitive sensing. This includes waking  
from Sleep. All other interrupts that might  
wake the device from Sleep should be  
disabled to prevent them from disturbing  
the measurement period.  
The Timer1 Gate source can be selected from one of  
four different sources. Source selection is controlled by  
the T1GSS bits of the T1GCON register. The polarity  
for each available source is also selectable. Polarity  
selection is controlled by the T1GPOL bit of the  
T1GCON register.  
TABLE 12-4: TIMER1 GATE SOURCES  
T1GSS  
Timer1 Gate Source  
Timer1 Gate Pin  
As the gate signal coming from the WDT counter will  
generate different pulse widths depending on if the  
WDT is enabled, when the CLRWDT instruction is  
executed, and so on, Toggle mode must be used. A  
specific sequence is required to put the device into the  
correct state to capture the next WDT counter interval.  
00  
01  
Overflow of Timer0  
(TMR0 increments from FFh to 00h)  
10  
11  
Timer2 match PR2  
(TMR2 increments to match PR2)  
Count Enabled by WDT Overflow  
(Watchdog Time-out interval expired)  
DS41341E-page 118  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
TABLE 12-5: WDT/TIMER1 GATE INTERACTION  
TMR1GE = 1  
and  
T1GSS = 11  
WDT Oscillator  
Enable  
WDT Available for  
T1G Source  
WDTE  
WDT Reset  
Wake-up  
1
1
0
0
N
Y
Y
N
Y
Y
Y
N
Y
Y
N
N
Y
Y
N
N
N
Y
Y
N
12.6.3  
TIMER1 GATE TOGGLE MODE  
12.6.4  
TIMER1 GATE SINGLE-PULSE  
MODE  
When Timer1 Gate Toggle mode is enabled, it is pos-  
sible to measure the full-cycle length of a Timer1 gate  
signal, as opposed to the duration of a single level  
pulse.  
When Timer1 Gate Single-Pulse mode is enabled, it is  
possible to capture a single pulse gate event. Timer1  
Gate Single-Pulse mode is first enabled by setting the  
T1GSPM bit in the T1GCON register. Next, the  
T1GGO/DONE bit in the T1GCON register must be set.  
The Timer1 will be fully enabled on the next  
incrementing edge. On the next trailing edge of the  
pulse, the T1GGO/DONE bit will automatically be  
cleared. No other gate events will be allowed to  
increment Timer1 until the T1GGO/DONE bit is once  
again set in software.  
The Timer1 Gate source is routed through a flip-flop  
that changes state on every incrementing edge of the  
signal. See Figure 12-4 for timing details.  
Timer1 Gate Toggle mode is enabled by setting the  
T1GTM bit of the T1GCON register. When the T1GTM  
bit is cleared, the flip-flop is cleared and held clear. This  
is necessary in order to control which edge is  
measured.  
Clearing the T1GSPM bit of the T1GCON register will  
also clear the T1GGO/DONE bit. See Figure 12-5 for  
timing details.  
Note:  
Enabling Toggle mode at the same time as  
changing the gate polarity may result in  
indeterminate operation.  
Enabling the Toggle mode and the Single-Pulse mode  
simultaneously will permit both sections to work  
together. This allows the cycle times on the Timer1  
Gate source to be measured. See Figure 12-6 for  
timing details.  
12.6.5  
TIMER1 GATE VALUE STATUS  
When Timer1 Gate Value Status is utilized, it is possi-  
ble to read the most current level of the gate control  
value. The value is stored in the T1GVAL bit in the  
T1GCON register. The T1GVAL bit is valid even when  
the Timer1 Gate is not enabled (TMR1GE bit is  
cleared).  
12.6.6  
TIMER1 GATE EVENT INTERRUPT  
When Timer1 Gate Event Interrupt is enabled, it is pos-  
sible to generate an interrupt upon the completion of a  
gate event. When the falling edge of T1GVAL occurs,  
the TMR1GIF flag bit in the PIR1 register will be set. If  
the TMR1GIE bit in the PIE1 register is set, then an  
interrupt will be recognized.  
The TMR1GIF flag bit operates even when the Timer1  
Gate is not enabled (TMR1GE bit is cleared).  
© 2009 Microchip Technology Inc.  
DS41341E-page 119  
PIC16F72X/PIC16LF72X  
12.7 Timer1 Interrupt  
12.9 CCP Capture/Compare Time Base  
The Timer1 register pair (TMR1H:TMR1L) increments  
to FFFFh and rolls over to 0000h. When Timer1 rolls  
over, the Timer1 interrupt flag bit of the PIR1 register is  
set. To enable the interrupt on rollover, you must set  
these bits:  
The CCP module uses the TMR1H:TMR1L register  
pair as the time base when operating in Capture or  
Compare mode.  
In Capture mode, the value in the TMR1H:TMR1L  
register pair is copied into the CCPR1H:CCPR1L  
register pair on a configured event.  
• TMR1ON bit of the T1CON register  
• TMR1IE bit of the PIE1 register  
• PEIE bit of the INTCON register  
• GIE bit of the INTCON register  
In Compare mode, an event is triggered when the value  
CCPR1H:CCPR1L register pair matches the value in  
the TMR1H:TMR1L register pair. This event can be a  
Special Event Trigger.  
The interrupt is cleared by clearing the TMR1IF bit in  
the Interrupt Service Routine.  
For  
more  
information,  
see  
Section 15.0  
“Capture/Compare/PWM (CCP) Module”.  
Note:  
The TMR1H:TMR1L register pair and the  
TMR1IF bit should be cleared before  
enabling interrupts.  
12.10 CCP Special Event Trigger  
When the CCP is configured to trigger a special event,  
the trigger will clear the TMR1H:TMR1L register pair.  
This special event does not cause a Timer1 interrupt.  
The CCP module may still be configured to generate a  
CCP interrupt.  
12.8 Timer1 Operation During Sleep  
Timer1 can only operate during Sleep when setup in  
Asynchronous Counter mode. In this mode, an external  
crystal or clock source can be used to increment the  
counter. To set up the timer to wake the device:  
In this mode of operation, the CCPR1H:CCPR1L  
register pair becomes the period register for Timer1.  
• TMR1ON bit of the T1CON register must be set  
• TMR1IE bit of the PIE1 register must be set  
• PEIE bit of the INTCON register must be set  
• T1SYNC bit of the T1CON register must be set  
Timer1 should be synchronized to the FOSC/4 to utilize  
the Special Event Trigger. Asynchronous operation of  
Timer1 can cause a Special Event Trigger to be  
missed.  
• TMR1CS bits of the T1CON register must be  
configured  
In the event that a write to TMR1H or TMR1L coincides  
with a Special Event Trigger from the CCP, the write will  
take precedence.  
• T1OSCEN bit of the T1CON register must be  
configured  
For more information, see Section 9.2.5 “Special  
Event Trigger”.  
• TMR1GIE bit of the T1GCON register must be  
configured  
The device will wake-up on an overflow and execute  
the next instructions. If the GIE bit of the INTCON  
register is set, the device will call the Interrupt Service  
Routine (0004h).  
FIGURE 12-2:  
TIMER1 INCREMENTING EDGE  
T1CKI = 1  
when TMR1  
Enabled  
T1CKI = 0  
when TMR1  
Enabled  
Note 1: Arrows indicate counter increments.  
2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.  
DS41341E-page 120  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 12-3:  
TIMER1 GATE COUNT ENABLE MODE  
TMR1GE  
T1GPOL  
T1G_IN  
T1CKI  
T1GVAL  
TIMER1  
N
N + 1  
N + 2  
N + 3  
N + 4  
FIGURE 12-4:  
TIMER1 GATE TOGGLE MODE  
TMR1GE  
T1GPOL  
T1GTM  
T1G_IN  
T1CKI  
T1GVAL  
TIMER1  
N
N + 1 N + 2 N + 3 N + 4  
N + 5 N + 6 N + 7 N + 8  
© 2009 Microchip Technology Inc.  
DS41341E-page 121  
PIC16F72X/PIC16LF72X  
FIGURE 12-5:  
TIMER1 GATE SINGLE-PULSE MODE  
TMR1GE  
T1GPOL  
T1GSPM  
Cleared by hardware on  
falling edge of T1GVAL  
T1GGO/  
DONE  
Set by software  
Counting enabled on  
rising edge of T1G  
T1G_IN  
T1CKI  
T1GVAL  
TIMER1  
N
N + 1  
N + 2  
Cleared by  
software  
Set by hardware on  
falling edge of T1GVAL  
Cleared by software  
TMR1GIF  
DS41341E-page 122  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 12-6:  
TMR1GE  
T1GPOL  
TIMER1 GATE SINGLE-PULSE AND TOGGLE COMBINED MODE  
T1GSPM  
T1GTM  
Cleared by hardware on  
falling edge of T1GVAL  
T1GGO/  
DONE  
Set by software  
Counting enabled on  
rising edge of T1G  
T1G_IN  
T1CKI  
T1GVAL  
TIMER1  
N + 4  
N + 2 N + 3  
N
N + 1  
Set by hardware on  
falling edge of T1GVAL  
Cleared by  
software  
Cleared by software  
TMR1GIF  
© 2009 Microchip Technology Inc.  
DS41341E-page 123  
PIC16F72X/PIC16LF72X  
12.11 Timer1 Control Register  
The Timer1 Control register (T1CON), shown in  
Register 12-1, is used to control Timer1 and select the  
various features of the Timer1 module.  
REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
TMR1CS1  
TMR1CS0  
T1CKPS1  
T1CKPS0  
T1OSCEN  
T1SYNC  
TMR1ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7-6  
TMR1CS<1:0>: Timer1 Clock Source Select bits  
11=Timer1 clock source is Capacitive Sensing Oscillator (CAPOSC)  
10=Timer1 clock source is pin or oscillator:  
If T1OSCEN = 0:  
External clock from T1CKI pin (on the rising edge)  
If T1OSCEN = 1:  
Crystal oscillator on T1OSI/T1OSO pins  
01=Timer1 clock source is system clock (FOSC)  
00=Timer1 clock source is instruction clock (FOSC/4)  
bit 5-4  
T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: LP Oscillator Enable Control bit  
1= Dedicated Timer1 oscillator circuit enabled  
0= Dedicated Timer1 oscillator circuit disabled  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS<1:0> = 1X  
1= Do not synchronize external clock input  
0= Synchronize external clock input with system clock (FOSC)  
TMR1CS<1:0> = 0X  
This bit is ignored. Timer1 uses the internal clock when TMR1CS<1:0> = 1X.  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Clears Timer1 Gate flip-flop  
DS41341E-page 124  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
12.12 Timer1 Gate Control Register  
The Timer1 Gate Control register (T1GCON), shown in  
Register 12-2, is used to control Timer1 Gate.  
REGISTER 12-2: T1GCON: TIMER1 GATE CONTROL REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R-x  
R/W-0  
R/W-0  
TMR1GE  
T1GPOL  
T1GTM  
T1GSPM  
T1GGO/  
DONE  
T1GVAL  
T1GSS1  
T1GSS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
TMR1GE: Timer1 Gate Enable bit  
If TMR1ON = 0:  
This bit is ignored  
If TMR1ON = 1:  
1= Timer1 counting is controlled by the Timer1 gate function  
0= Timer1 counts regardless of Timer1 gate function  
bit 6  
bit 5  
T1GPOL: Timer1 Gate Polarity bit  
1= Timer1 gate is active-high (Timer1 counts when gate is high)  
0= Timer1 gate is active-low (Timer1 counts when gate is low)  
T1GTM: Timer1 Gate Toggle Mode bit  
1= Timer1 Gate Toggle mode is enabled.  
0= Timer1 Gate Toggle mode is disabled and toggle flip flop is cleared  
Timer1 gate flip flop toggles on every rising edge.  
bit 4  
bit 3  
T1GSPM: Timer1 Gate Single Pulse Mode bit  
1= Timer1 gate Single-Pulse mode is enabled and is controlling Timer1 gate  
0= Timer1 gate Single-Pulse mode is disabled  
T1GGO/DONE: Timer1 Gate Single-Pulse Acquisition Status bit  
1= Timer1 gate single-pulse acquisition is ready, waiting for an edge  
0= Timer1 gate single-pulse acquisition has completed or has not been started  
This bit is automatically cleared when T1GSPM is cleared.  
bit 2  
T1GVAL: Timer1 Gate Current State bit  
Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L.  
Unaffected by Timer1 Gate Enable (TMR1GE).  
bit 1-0  
T1GSS<1:0>: Timer1 Gate Source Select bits  
00= Timer1 Gate pin  
01= Timer0 Overflow output  
10= TMR2 Match PR2 output  
11= Watchdog Timer scaler overflow  
Watchdog Timer oscillator is turned on if TMR1GE = 1, regardless of the state of TMR1ON  
© 2009 Microchip Technology Inc.  
DS41341E-page 125  
PIC16F72X/PIC16LF72X  
TABLE 12-6: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELB  
CCP1CON  
CCP2CON  
INTCON  
PIE1  
ANSB5  
DC1B1  
DC2B1  
T0IE  
ANSB4  
DC1B0  
DC2B0  
INTE  
ANSB3  
CCP1M3  
CCP2M3  
RBIE  
ANSB2  
CCP1M2  
CCP2M2  
T0IF  
ANSB1  
CCP1M1  
CCP2M1  
INTF  
ANSB0  
CCP1M0  
CCP2M0  
RBIF  
--11 1111  
--00 0000  
--00 0000  
0000 000x  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
1111 1111  
--11 1111  
--00 0000  
--00 0000  
0000 000x  
0000 0000  
0000 0000  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
GIE  
PEIE  
ADIE  
ADIF  
RB6  
TMR1GIE  
TMR1GIF  
RB7  
RCIE  
TXIE  
SSPIE  
SSPIF  
RB3  
CCP1IE  
CCP1IF  
RB2  
TMR2IE  
TMR2IF  
RB1  
TMR1IE  
TMR1IF  
RB0  
PIR1  
RCIF  
TXIF  
PORTB  
TMR1H  
TMR1L  
TRISB  
RB5  
RB4  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
TRISB7  
TRISC7  
TRISB6  
TRISC6  
TRISB5  
TRISC5  
TRISB4  
TRISC4  
TRISB3  
TRISC3  
TRISB2  
TRISC2  
TRISB1  
TRISC1  
TRISB0  
TRISC0  
TMR1ON  
T1GSS0  
1111 1111  
1111 1111  
uuuu uu-u  
uuuu uxuu  
TRISC  
1111 1111  
0000 00-0  
0000 0x00  
TMR1CS1 TMR1CS0 T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
T1CON  
TMR1GE  
T1GPOL  
T1GTM  
T1GSPM  
T1GGO/  
DONE  
T1GVAL  
T1GSS1  
T1GCON  
Legend:  
x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used by the Timer1 module.  
DS41341E-page 126  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
The TMR2 and PR2 registers are both fully readable  
and writable. On any Reset, the TMR2 register is set to  
00h and the PR2 register is set to FFh.  
13.0 TIMER2 MODULE  
The Timer2 module is an 8-bit timer with the following  
features:  
Timer2 is turned on by setting the TMR2ON bit in the  
T2CON register to a ‘1’. Timer2 is turned off by clearing  
the TMR2ON bit to a ‘0’.  
• 8-bit timer register (TMR2)  
• 8-bit period register (PR2)  
• Interrupt on TMR2 match with PR2  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
The Timer2 prescaler is controlled by the T2CKPS bits  
in the T2CON register. The Timer2 postscaler is  
controlled by the TOUTPS bits in the T2CON register.  
The prescaler and postscaler counters are cleared  
when:  
See Figure 13-1 for a block diagram of Timer2.  
• A write to TMR2 occurs.  
• A write to T2CON occurs.  
13.1 Timer2 Operation  
The clock input to the Timer2 module is the system  
instruction clock (FOSC/4). The clock is fed into the  
Timer2 prescaler, which has prescale options of 1:1,  
1:4 or 1:16. The output of the prescaler is then used to  
increment the TMR2 register.  
• Any device Reset occurs (Power-on Reset, MCLR  
Reset, Watchdog Timer Reset, or Brown-out  
Reset).  
Note:  
TMR2 is not cleared when T2CON is  
written.  
The values of TMR2 and PR2 are constantly compared  
to determine when they match. TMR2 will increment  
from 00h until it matches the value in PR2. When a  
match occurs, two things happen:  
• TMR2 is reset to 00h on the next increment cycle.  
• The Timer2 postscaler is incremented.  
The match output of the Timer2/PR2 comparator is  
then fed into the Timer2 postscaler. The postscaler has  
postscale options of 1:1 to 1:16 inclusive. The output of  
the Timer2 postscaler is used to set the TMR2IF  
interrupt flag bit in the PIR1 register.  
FIGURE 13-1:  
TIMER2 BLOCK DIAGRAM  
Sets Flag  
bit TMR2IF  
TMR2  
Output  
Prescaler  
Reset  
EQ  
TMR2  
FOSC/4  
1:1, 1:4, 1:16  
Postscaler  
1:1 to 1:16  
2
Comparator  
PR2  
T2CKPS<1:0>  
4
TOUTPS<3:0>  
© 2009 Microchip Technology Inc.  
DS41341E-page 127  
PIC16F72X/PIC16LF72X  
REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3  
TOUTPS2  
TOUTPS1  
TOUTPS0  
TMR2ON  
T2CKPS1  
T2CKPS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3  
TOUTPS<3:0>: Timer2 Output Postscaler Select bits  
0000= 1:1 Postscaler  
0001= 1:2 Postscaler  
0010= 1:3 Postscaler  
0011= 1:4 Postscaler  
0100= 1:5 Postscaler  
0101= 1:6 Postscaler  
0110= 1:7 Postscaler  
0111= 1:8 Postscaler  
1000= 1:9 Postscaler  
1001= 1:10 Postscaler  
1010= 1:11 Postscaler  
1011= 1:12 Postscaler  
1100= 1:13 Postscaler  
1101= 1:14 Postscaler  
1110= 1:15 Postscaler  
1111= 1:16 Postscaler  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS<1:0>: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
TABLE 13-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
INTE  
TXIE  
TXIF  
RBIE  
SSPIE  
SSPIF  
T0IF  
INTF  
RBIF  
0000 000x  
0000 0000  
0000 0000  
0000 000x  
0000 0000  
0000 0000  
TMR1GIE  
TMR1GIF  
CCP1IE  
CCP1IF  
TMR2IE  
TMR2IF  
TMR1IE  
TMR1IF  
PIR1  
PR2  
Timer2 Module Period Register  
Holding Register for the 8-bit TMR2 Register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0  
1111 1111  
0000 0000  
-000 0000  
1111 1111  
0000 0000  
-000 0000  
TMR2  
T2CON  
Legend:  
TMR2ON  
T2CKPS1  
T2CKPS0  
x= unknown, u= unchanged, -= unimplemented read as ‘0’. Shaded cells are not used for Timer2 module.  
DS41341E-page 128  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
sensing module. The capacitive sensing module  
requires software and at least one timer resource to  
determine the change in frequency. Key features of this  
module include:  
14.0 CAPACITIVE SENSING  
MODULE  
The capacitive sensing module allows for an interaction  
with an end user without a mechanical interface. In a  
typical application, the capacitive sensing module is  
attached to a pad on a printed circuit board (PCB), which  
is electrically isolated from the end user. When the end  
user places their finger over the PCB pad, a capacitive  
load is added, causing a frequency shift in the capacitive  
• Analog MUX for monitoring multiple inputs  
• Capacitive sensing oscillator  
• Multiple timer resources  
• Software control  
• Operation during Sleep  
FIGURE 14-1:  
CAPACITIVE SENSING BLOCK DIAGRAM  
Timer0 Module  
Set  
T0IF  
T0CS  
T0XCS  
T0CKI  
FOSC/4  
0
1
Overflow  
0
1
TMR0  
CPSCH<3:0>(2)  
CPSON(3)  
CPS0  
CPS1  
CPS2  
CPS3  
Timer1 Module  
CPS4  
CPSON  
T1CS<1:0>  
CPS5  
FOSC  
CPS6  
Capacitive  
Sensing  
Oscillator  
FOSC/4  
CPS7  
CPSCLK  
TMR1H:TMR1L  
CPS8(1)  
CPS9(1)  
CPS10(1)  
CPS11(1)  
CPS12(1)  
CPS13(1)  
CPS14(1)  
CPS15(1)  
EN  
T1OSC/  
T1CKI  
CPSOSC  
CPSOUT  
T1GSEL<1:0>  
T1G  
CPSRNG<1:0>  
Timer1 Gate  
Control Logic  
Timer2 Module  
Watchdog Timer Module  
WDT  
Event  
Overflow  
Set  
TMR2IF  
TMR2  
Postscaler  
Overflow  
LP WDT  
OSC  
WDT  
Scaler  
PS<2:0>  
Note 1: Channels CPS<15:8> are implemented on PIC16F724/727/PIC16LF724/727 only.  
2: CPSCH3 is not implemented on PIC16F722/723/726/PIC16LF722/723/726.  
3: If CPSON = 0, disabling capacitive sensing, no channel is selected.  
© 2009 Microchip Technology Inc.  
41341E-page 129  
PIC16F72X/PIC16LF72X  
14.4.1  
TIMER0  
14.1 Analog MUX  
To select Timer0 as the timer resource for the capacitive  
sensing module:  
The capacitive sensing module can monitor up to 16  
inputs. The capacitive sensing inputs are defined as  
CPS<15:0>. To determine if a frequency change has  
occurred the user must:  
• Set the T0XCS bit of the CPSCON0 register  
• Clear the T0CS bit of the OPTION register  
• Select the appropriate CPS pin by setting the  
CPSCH<3:0> bits of the CPSCON1 register  
When Timer0 is chosen as the timer resource, the  
capacitive sensing oscillator will be the clock source for  
Timer0. Refer to Section 11.0 “Timer0 Module” for  
additional information.  
• Set the corresponding ANSEL bit  
• Set the corresponding TRIS bit  
• Run the software algorithm  
14.4.2  
TIMER1  
Selection of the CPSx pin while the module is enabled  
will cause the capacitive sensing oscillator to be on the  
CPSx pin. Failure to set the corresponding ANSEL and  
TRIS bits can cause the capacitive sensing oscillator to  
stop, leading to false frequency readings.  
To select Timer1 as the timer resource for the  
capacitive sensing module, set the TMR1CS<1:0> of  
the T1CON register to ‘11’. When Timer1 is chosen as  
the timer resource, the capacitive sensing oscillator will  
be the clock source for Timer1. Because the Timer1  
module has a gate control, developing a time base for  
the frequency measurement can be simplified using  
either:  
14.2 Capacitive Sensing Oscillator  
The capacitive sensing oscillator consists of a constant  
current source and a constant current sink, to produce  
• The Timer0 overflow flag  
• The Timer2 overflow flag  
• The WDT overflow flag  
a
triangle waveform. The CPSOUT bit of the  
CPSCON0 register shows the status of the capacitive  
sensing oscillator, whether it is a sinking or sourcing  
current. The oscillator is designed to drive a capacitive  
load (single PCB pad) and at the same time, be a clock  
source to either Timer0 or Timer1. The oscillator has  
three different current settings as defined by  
CPSRNG<1:0> of the CPSCON0 register. The different  
current settings for the oscillator serve two purposes:  
It is recommend that one of these flags, in conjunction  
with the toggle mode of the Timer1 Gate, is used to  
develop the fixed time base required by the software  
portion of the capacitive sensing module. Refer to  
Section 12.0 “Timer1 Module with Gate Control” for  
additional information.  
• Maximize the number of counts in a timer for a  
fixed time base  
TABLE 14-1: TIMER1 ENABLE FUNCTION  
TMR1ON  
TMR1GE  
Timer1 Operation  
• Maximize the count differential in the timer during  
a change in frequency  
0
0
1
0
1
0
Off  
Off  
On  
14.3 Timer resources  
To measure the change in frequency of the capacitive  
sensing oscillator, a fixed time base is required. For the  
period of the fixed time base, the capacitive sensing  
oscillator is used to clock either Timer0 or Timer1. The  
frequency of the capacitive sensing oscillator is equal  
to the number of counts in the timer divided by the  
period of the fixed time base.  
1
1
Count Enabled by input  
14.4 Fixed Time Base  
To measure the frequency of the capacitive sensing  
oscillator, a fixed time base is required. Any timer  
resource or software loop can be used to establish the  
fixed time base. It is up to the end user to determine the  
method in which the fixed time base is generated.  
Note:  
The fixed time base can not be generated  
by timer resource the capacitive sensing  
oscillator is clocking.  
41341E-page 130  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
14.5.3  
FREQUENCY THRESHOLD  
14.5 Software Control  
The frequency threshold should be placed midway  
between the value of nominal frequency and the  
reduced frequency of the capacitive sensing oscillator.  
Refer to Application Note AN1103, “Software Handling  
for Capacitive Sensing” (DS01103) for more detailed  
information the software required for capacitive  
sensing module.  
The software portion of the capacitive sensing module  
is required to determine the change in frequency of the  
capacitive sensing oscillator. This is accomplished by  
the following:  
• Setting a fixed time base to acquire counts on  
Timer0 or Timer1  
• Establishing the nominal frequency for the  
capacitive sensing oscillator  
Note:  
For more information on general Capacitive  
Sensing refer to Application Notes:  
• Establishing the reduced frequency for the  
capacitive sensing oscillator due to an additional  
capacitive load  
• AN1101, Introduction to Capacitive  
Sensing” (DS01101)  
• AN1102, Layout and Physical Design  
Guidelines for Capacitive Sensing”  
(DS01102)  
• Set the frequency threshold  
14.5.1  
NOMINAL FREQUENCY  
(NO CAPACITIVE LOAD)  
To determine the nominal frequency of the capacitive  
sensing oscillator:  
• Remove any extra capacitive load on the selected  
CPSx pin  
• At the start of the fixed time base, clear the timer  
resource  
• At the end of the fixed time base save the value in  
the timer resource  
The value of the timer resource is the number of  
oscillations of the capacitive sensing oscillator for the  
given time base. The frequency of the capacitive  
sensing oscillator is equal to the number of counts on  
in the timer divided by the period of the fixed time base.  
14.5.2  
REDUCED FREQUENCY  
(ADDITIONAL CAPACITIVE LOAD)  
The extra capacitive load will cause the frequency of the  
capacitive sensing oscillator to decrease. To determine  
the reduced frequency of the capacitive sensing  
oscillator:  
• Add a typical capacitive load on the selected  
CPSx pin  
• Use the same fixed time base as the nominal  
frequency measurement  
• At the start of the fixed time base, clear the timer  
resource  
• At the end of the fixed time base save the value in  
the timer resource  
The value of the timer resource is the number of oscil-  
lations of the capacitive sensing oscillator with an addi-  
tional capacitive load. The frequency of the capacitive  
sensing oscillator is equal to the number of counts on  
in the timer divided by the period of the fixed time base.  
This frequency should be less than the value obtained  
during the nominal frequency measurement.  
© 2009 Microchip Technology Inc.  
41341E-page 131  
PIC16F72X/PIC16LF72X  
14.6 Operation during Sleep  
The capacitive sensing oscillator will continue to run as  
long as the module is enabled, independent of the part  
being in Sleep. In order for the software to determine if  
a frequency change has occurred, the part must be  
awake. However, the part does not have to be awake  
when the timer resource is acquiring counts. One way  
to acquire the Timer1 counts while in Sleep is to have  
Timer1 gated with the overflow of the Watchdog Timer.  
This can be accomplished using the following steps:  
1. Configure the Watchdog Time-out overflow as  
the Timer1’s gate source T1GSS<1:0> = 11.  
2. Set Timer1 Gate to toggle mode by setting the  
T1GTM bit of the T1GCON register.  
3. Set the TMR1GE bit of the T1GCON register.  
4. Set TMR1ON bit of the T1CON register.  
5. Enable capacitive sensing module with the  
appropriate current settings and pin selection.  
6. Clear Timer1.  
7. Put the part to Sleep.  
8. On the first WDT overflow, the capacitive sens-  
ing oscillator will begin to increment Timer1.  
Then put the part to Sleep.  
9. On the second WDT overflow Timer1 will stop  
incrementing. Then run the software routine to  
determine if a frequency change has occurred.  
Refer to Section 12.0 “Timer1 Module with Gate  
Control” for additional information.  
Note 1: When using the WDT to set the interval  
on Timer1, any other source that wakes  
the part up early will cause the WDT over-  
flow to be delayed, affecting the value  
captured by Timer1.  
2: Timer0 does not operate when in Sleep,  
and therefore cannot be used for  
capacitive sense measurements in Sleep.  
41341E-page 132  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
REGISTER 14-1: CPSCON0: CAPACITIVE SENSING CONTROL REGISTER 0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R-0  
R/W-0  
CPSON  
CPSRNG1  
CPSRNG0  
CPSOUT  
T0XCS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
CPSON: Capacitive Sensing Module Enable bit  
1= Capacitive sensing module is operating  
0= Capacitive sensing module is shut off and consumes no operating current  
bit 6-4  
bit 3-2  
Unimplemented: Read as ‘0’  
CPSRNG<1:0>: Capacitive Sensing Oscillator Range bits  
00= Oscillator is off.  
01= Oscillator is in low range. Charge/discharge current is nominally 0.1 µA.  
10= Oscillator is in medium range. Charge/discharge current is nominally 1.2 µA.  
11= Oscillator is in high range. Charge/discharge current is nominally 18 µA.  
bit 1  
bit 0  
CPSOUT: Capacitive Sensing Oscillator Status bit  
1= Oscillator is sourcing current (Current flowing out the pin)  
0= Oscillator is sinking current (Current flowing into the pin)  
T0XCS: Timer0 External Clock Source Select bit  
If T0CS = 1  
The T0XCS bit controls which clock external to the core/Timer0 module supplies Timer0:  
1= Timer0 Clock Source is the capacitive sensing oscillator  
0= Timer0 Clock Source is the T0CKI pin  
If T0CS = 0  
Timer0 clock source is controlled by the core/Timer0 module and is FOSC/4.  
© 2009 Microchip Technology Inc.  
41341E-page 133  
PIC16F72X/PIC16LF72X  
REGISTER 14-2: CPSCON1: CAPACITIVE SENSING CONTROL REGISTER 1  
U-0  
U-0  
U-0  
U-0  
R/W-0(2)  
CPSCH3  
R/W-0  
R/W-0  
R/W-0  
CPSCH2  
CPSCH1  
CPSCH0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
bit 3-0  
Unimplemented: Read as ‘0’  
CPSCH<3:0>: Capacitive Sensing Channel Select bits  
If CPSON = 0:  
These bits are ignored. No channel is selected.  
If CPSON = 1:  
0000= channel 0, (CPS0)  
0001= channel 1, (CPS1)  
0010= channel 2, (CPS2)  
0011= channel 3, (CPS3)  
0100= channel 4, (CPS4)  
0101= channel 5, (CPS5)  
0110= channel 6, (CPS6)  
0111= channel 7, (CPS7)  
1000= channel 8, (CPS8(1)  
1001= channel 9, (CPS9(1)  
)
)
1010= channel 10, (CPS10(1)  
)
)
)
)
)
)
1011= channel 11, (CPS11(1)  
1100= channel 12, (CPS12(1)  
1101= channel 13, (CPS13(1)  
1110= channel 14, (CPS14(1)  
1111= channel 15, (CPS15(1)  
Note 1: These channels are not implemented on the PIC16F722/723/726/PIC16LF722/723/726.  
2: This bit is not implemented on PIC16F722/723/726/PIC16LF722/723/726, Read as ‘0’  
TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH CAPACITIVE SENSING  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELA  
ANSA5  
ANSB5  
ANSD5  
ANSA4  
ANSB4  
ANSD4  
ANSA3  
ANSB3  
ANSD3  
ANSA2  
ANSB2  
ANSD2  
ANSA1  
ANSB1  
ANSD1  
ANSA0  
ANSB0  
ANSD0  
--11 1111 --11 1111  
--11 1111 --11 1111  
1111 1111 1111 1111  
ANSELB  
ANSELD  
ANSD7  
ANSD6  
OPTION_REG  
PIE1  
RBPU  
INTEDG  
ADIE  
T0CS  
RCIE  
RCIF  
T0SE  
TXIE  
TXIF  
PSA  
PS2  
PS1  
TMR2IE  
TMR2IF  
PS0  
1111 1111 1111 1111  
0000 0000 0000 0000  
0000 0000 0000 0000  
TMR1GIE  
TMR1GIF  
SSPIE  
SSPIF  
CCP1IE  
CCP1IF  
TMR1IE  
TMR1IF  
PIR1  
ADIF  
T1CON  
T2CON  
TRISA  
TMR1CS1 TMR1CS0 T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1ON 0000 00-0 0000 00-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
TRISA7  
TRISB7  
TRISD7  
TRISA6  
TRISB6  
TRISD6  
TRISA5  
TRISB5  
TRISD5  
TRISA4  
TRISB4  
TRISD4  
TRISA3  
TRISB3  
TRISD3  
TRISA2  
TRISB2  
TRISD2  
TRISA1  
TRISB1  
TRISD1  
TRISA0  
TRISB0  
TRISD0  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
TRISB  
TRISD  
Legend: -= Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the capacitive sensing module.  
41341E-page 134  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
TABLE 15-1: CCP MODE – TIMER  
RESOURCES REQUIRED  
15.0 CAPTURE/COMPARE/PWM  
(CCP) MODULE  
CCP Mode  
Capture  
Timer Resource  
The Capture/Compare/PWM module is a peripheral  
which allows the user to time and control different  
events. In Capture mode, the peripheral allows the  
timing of the duration of an event. The Compare mode  
allows the user to trigger an external event when a  
predetermined amount of time has expired. The PWM  
mode can generate a Pulse-Width Modulated signal of  
varying frequency and duty cycle.  
Timer1  
Timer1  
Timer2  
Compare  
PWM  
The timer resources used by the module are shown in  
Table 15-1.  
Additional information on CCP modules is available in  
the Application Note AN594, “Using the CCP Modules”  
(DS00594).  
TABLE 15-2: INTERACTION OF TWO CCP MODULES  
CCP1 Mode CCP2 Mode  
Capture Capture  
Interaction  
Same TMR1 time base  
Capture  
Compare  
PWM  
Compare  
Compare  
PWM  
Same TMR1 time base(1, 2)  
Same TMR1 time base(1, 2)  
The PWMs will have the same frequency and update rate (TMR2 interrupt).  
The rising edges will be aligned.  
PWM  
PWM  
Capture  
None  
None  
Compare  
Note 1: If CCP2 is configured as a Special Event Trigger, CCP1 will clear Timer1, affecting the value captured on  
the CCP2 pin.  
2: If CCP1 is in Capture mode and CCP2 is configured as a Special Event Trigger, CCP2 will clear Timer1,  
affecting the value captured on the CCP1 pin.  
Note:  
CCPRx and CCPx throughout this  
document refer to CCPR1 or CCPR2 and  
CCP1 or CCP2, respectively.  
© 2009 Microchip Technology Inc.  
DS41341E-page 135  
PIC16F72X/PIC16LF72X  
REGISTER 15-1: CCPxCON: CCPx CONTROL REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DCxB1  
DCxB0  
CCPxM3  
CCPxM2  
CCPxM1  
CCPxM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
DCxB<1:0>: PWM Duty Cycle Least Significant bits  
Capture mode:  
Unused  
Compare mode:  
Unused  
PWM mode:  
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.  
bit 3-0  
CCPxM<3:0>: CCP Mode Select bits  
0000= Capture/Compare/PWM off (resets CCP module)  
0001= Unused (reserved)  
0010= Compare mode, toggle output on match (CCPxIF bit of the PIRx register is set)  
0011= Unused (reserved)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCPxIF bit of the PIRx register is set)  
1001= Compare mode, clear output on match (CCPxIF bit of the PIRx register is set)  
1010= Compare mode, generate software interrupt on match (CCPxIF bit is set of the PIRx register,  
CCPx pin is unaffected)  
1011= Compare mode, trigger special event (CCPxIF bit of the PIRx register is set, TMR1 is reset  
and A/D conversion(1) is started if the ADC module is enabled. CCPx pin is unaffected.)  
11xx= PWM mode.  
Note 1: A/D conversion start feature is available only on CCP2.  
DS41341E-page 136  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
15.1.3  
SOFTWARE INTERRUPT  
15.1 Capture Mode  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep the  
CCPxIE interrupt enable bit of the PIEx register clear to  
avoid false interrupts. Additionally, the user should  
clear the CCPxIF interrupt flag bit of the PIRx register  
following any change in operating mode.  
In Capture mode, CCPRxH:CCPRxL captures the  
16-bit value of the TMR1 register when an event occurs  
on pin CCPx. An event is defined as one of the  
following and is configured by the CCPxM<3:0> bits of  
the CCPxCON register:  
• Every falling edge  
• Every rising edge  
Note:  
Clocking Timer1 from the system clock  
(FOSC) should not be used in Capture  
Mode. In order for Capture Mode to  
recognize the trigger event on the CCPx  
pin, Timer1 must be clocked from the  
Instruction Clock (FOSC/4) or from an  
external clock source.  
• Every 4th rising edge  
• Every 16th rising edge  
When a capture is made, the Interrupt Request Flag bit  
CCPxIF of the PIRx register is set. The interrupt flag  
must be cleared in software. If another capture occurs  
before the value in the CCPRxH, CCPRxL register pair  
is read, the old captured value is overwritten by the new  
captured value (refer to Figure 15-1).  
15.1.4  
CCP PRESCALER  
There are four prescaler settings specified by the  
CCPxM<3:0> bits of the CCPxCON register. Whenever  
the CCP module is turned off, or the CCP module is not  
in Capture mode, the prescaler counter is cleared. Any  
Reset will clear the prescaler counter.  
15.1.1  
CCPx PIN CONFIGURATION  
In Capture mode, the CCPx pin should be configured  
as an input by setting the associated TRIS control bit.  
Either RC1 or RB3 can be selected as the CCP2 pin.  
Refer to Section 6.1 “Alternate Pin Function” for  
more information.  
Switching from one capture prescaler to another does not  
clear the prescaler and may generate a false interrupt. To  
avoid this unexpected operation, turn the module off by  
clearing the CCPxCON register before changing the  
prescaler (refer to Example 15-1).  
Note:  
If the CCPx pin is configured as an output,  
a write to the port can cause a capture  
condition.  
EXAMPLE 15-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
FIGURE 15-1:  
CAPTURE MODE  
OPERATION BLOCK  
DIAGRAM  
BANKSELCCP1CON  
;Set Bank bits to point  
;to CCP1CON  
;Turn CCP module off  
CLRF  
CCP1CON  
Set Flag bit CCPxIF  
(PIRx register)  
MOVLW  
NEW_CAPT_PS;Load the W reg with  
; the new prescaler  
Prescaler  
÷ 1, 4, 16  
; move value and CCP ON  
MOVWF  
CCP1CON  
;Load CCP1CON with this  
; value  
CCPx  
CCPRxH  
CCPRxL  
Capture  
Enable  
and  
Edge Detect  
15.1.5  
CAPTURE DURING SLEEP  
TMR1H  
TMR1L  
Capture mode depends upon the Timer1 module for  
proper operation. There are two options for driving the  
Timer1 module in Capture mode. It can be driven by  
the instruction clock (FOSC/4), or by an external clock  
source.  
CCPxCON<3:0>  
System Clock (FOSC)  
15.1.2  
TIMER1 MODE SELECTION  
Timer1 must be running in Timer mode or Synchronized  
Counter mode for the CCP module to use the capture  
feature. In Asynchronous Counter mode or when  
Timer1 is clocked at FOSC, the capture operation may  
not work.  
If Timer1 is clocked by FOSC/4, then Timer1 will not  
increment during Sleep. When the device wakes from  
Sleep, Timer1 will continue from its previous state.  
If Timer1 is clocked by an external clock source, then  
Capture mode will operate as defined in Section 15.1  
“Capture Mode”.  
© 2009 Microchip Technology Inc.  
DS41341E-page 137  
PIC16F72X/PIC16LF72X  
TABLE 15-3: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELB  
APFCON  
CCP1CON  
CCP2CON  
CCPRxL  
CCPRxH  
INTCON  
ANSB5  
ANSB4  
ANSB3  
ANSB2  
ANSB1  
SSSEL  
ANSB0  
--11 1111  
--11 1111  
---- --00  
--00 0000  
--00 0000  
uuuu uuuu  
uuuu uuuu  
CCP2SEL ---- --00  
DC1B1  
DC2B1  
DC1B0  
DC2B0  
CCP1M3  
CCP2M3  
CCP1M2  
CCP2M2  
CCP1M1  
CCP2M1  
CCP1M0  
CCP2M0  
--00 0000  
--00 0000  
xxxx xxxx  
xxxx xxxx  
Capture/Compare/PWM Register X Low Byte  
Capture/Compare/PWM Register X High Byte  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x  
0000 0000  
---- ---0  
0000 0000  
---- ---0  
0000 000x  
0000 0000  
---- ---0  
0000 0000  
---- ---0  
PIE1  
PIE2  
PIR1  
PIR2  
TMR1GIE  
ADIE  
RCIE  
TXIE  
SSPIE  
CCP1IE  
TMR2IE  
TMR1IE  
CCP2IE  
TMR1GIF  
ADIF  
RCIF  
TXIF  
SSPIF  
CCP1IF  
TMR2IF  
TMR1IF  
CCP2IF  
TMR1ON  
TMR1CS1 TMR1CS0 T1CKPS1  
TMR1GE T1GPOL T1GTM  
T1CKPS0 T1OSCEN  
T1SYNC  
T1CON  
0000 00-0  
0000 0x00  
uuuu uu-u  
0000 0x00  
T1GCON  
T1GSPM  
T1GGO/  
DONE  
T1GVAL  
T1GSS1  
T1GSS0  
TMR1L  
TMR1H  
TRISB  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx  
xxxx xxxx  
1111 1111  
uuuu uuuu  
uuuu uuuu  
1111 1111  
1111 1111  
TRISB7  
TRISC7  
TRISB6  
TRISC6  
TRISB5  
TRISC5  
TRISB4  
TRISC4  
TRISB3  
TRISC3  
TRISB2  
TRISC2  
TRISB1  
TRISC1  
TRISB0  
TRISC0  
TRISC  
1111 1111  
Legend: -= Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the Capture.  
DS41341E-page 138  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
15.2.2  
TIMER1 MODE SELECTION  
15.2 Compare Mode  
In Compare mode, Timer1 must be running in either  
Timer mode or Synchronized Counter mode. The  
compare operation may not work in Asynchronous  
Counter mode.  
In Compare mode, the 16-bit CCPRx register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the CCPx module may:  
Toggle the CCPx output  
• Set the CCPx output  
Note:  
Clocking Timer1 from the system clock  
(FOSC) should not be used in Compare  
mode. For the Compare operation of the  
TMR1 register to the CCPRx register to  
occur, Timer1 must be clocked from the  
Instruction Clock (FOSC/4) or from an  
external clock source.  
• Clear the CCPx output  
• Generate a Special Event Trigger  
• Generate a Software Interrupt  
The action on the pin is based on the value of the  
CCPxM<3:0> control bits of the CCPxCON register.  
All Compare modes can generate an interrupt.  
15.2.3  
SOFTWARE INTERRUPT MODE  
When Software Interrupt mode is chosen  
(CCPxM<3:0> = 1010), the CCPxIF bit in the PIRx  
register is set and the CCPx module does not assert  
control of the CCPx pin (refer to the CCPxCON  
register).  
FIGURE 15-2:  
COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
CCPxCON<3:0>  
Mode Select  
15.2.4  
SPECIAL EVENT TRIGGER  
Set CCPxIF Interrupt Flag  
(PIRx)  
When Special Event Trigger mode is chosen  
(CCPxM<3:0> = 1011), the CCPx module does the  
following:  
4
CCPRxH CCPRxL  
Comparator  
CCPx  
Q
S
R
Output  
Logic  
• Resets Timer1  
Match  
• Starts an ADC conversion if ADC is enabled  
(CCP2 only)  
TMR1H TMR1L  
TRIS  
Output Enable  
The CCPx module does not assert control of the CCPx  
pin in this mode (refer to the CCPxCON register).  
Special Event Trigger  
Special Event Trigger will:  
The Special Event Trigger output of the CCP occurs  
immediately upon a match between the TMR1H,  
TMR1L register pair and the CCPRxH, CCPRxL  
register pair. The TMR1H, TMR1L register pair is not  
reset until the next rising edge of the Timer1 clock. This  
allows the CCPRxH, CCPRxL register pair to  
effectively provide a 16-bit programmable period  
register for Timer1.  
Clear TMR1H and TMR1L registers.  
NOT set interrupt flag bit TMR1IF of the PIR1 register.  
Set the GO/DONE bit to start the ADC conversion  
(CCP2 only).  
15.2.1  
CCPx PIN CONFIGURATION  
The user must configure the CCPx pin as an output by  
clearing the associated TRIS bit.  
Note 1: The Special Event Trigger from the CCP  
module does not set interrupt flag bit  
TMR1IF of the PIR1 register.  
Either RC1 or RB3 can be selected as the CCP2 pin.  
Refer to Section 6.1 “Alternate Pin Function” for  
more information.  
2: Removing the match condition by  
changing the contents of the CCPRxH  
and CCPRxL register pair, between the  
clock edge that generates the Special  
Event Trigger and the clock edge that  
generates the Timer1 Reset, will preclude  
the Reset from occurring.  
Note:  
Clearing the CCPxCON register will force  
the CCPx compare output latch to the  
default low level. This is not the PORT I/O  
data latch.  
15.2.5  
COMPARE DURING SLEEP  
The Compare Mode is dependent upon the system  
clock (FOSC) for proper operation. Since FOSC is shut  
down during Sleep mode, the Compare mode will not  
function properly during Sleep.  
© 2009 Microchip Technology Inc.  
DS41341E-page 139  
PIC16F72X/PIC16LF72X  
TABLE 15-4: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARE  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON0  
ANSELB  
APFCON  
CCP1CON  
CCP2CON  
CCPRxL  
CCPRxH  
INTCON  
CHS3  
ANSB5  
CHS2  
ANSB4  
CHS1  
ANSB3  
CHS0  
ANSB2  
GO/DONE  
ANSB1  
ADON  
--00 0000  
--11 1111  
--00 0000  
--11 1111  
---- --00  
--00 0000  
--00 0000  
uuuu uuuu  
uuuu uuuu  
0000 000x  
ANSB0  
SSSEL  
CCP2SEL ---- --00  
DC1B1  
DC2B1  
DC1B0  
DC2B0  
CCP1M3  
CCP2M3  
CCP1M2  
CCP2M2  
CCP1M1  
CCP2M1  
CCP1M0  
CCP2M0  
--00 0000  
--00 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
Capture/Compare/PWM Register X Low Byte  
Capture/Compare/PWM Register X High Byte  
GIE  
PEIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
PIE1  
PIE2  
TMR1GIE  
ADIE  
RCIE  
TXIE  
SSPIE  
CCP1IE  
TMR2IE  
TMR1IE  
CCP2IE  
0000 0000  
---- ---0  
0000 0000  
---- ---0  
PIR1  
TMR1GIF  
ADIF  
RCIF  
TXIF  
SSPIF  
CCP1IF  
TMR2IF  
TMR1IF  
CCP2IF  
TMR1ON  
T1GSS0  
0000 0000  
---- ---0  
0000 00-0  
0000 0x00  
0000 0000  
---- ---0  
uuuu uu-u  
0000 0x00  
PIR2  
TMR1CS1 TMR1CS0 T1CKPS1  
TMR1GE T1GPOL T1GTM  
T1CKPS0 T1OSCEN  
T1SYNC  
T1GVAL  
T1CON  
T1GCON  
T1GSPM  
T1GGO/  
DONE  
T1GSS1  
TMR1L  
TMR1H  
TRISB  
TRISC  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx  
xxxx xxxx  
1111 1111  
1111 1111  
uuuu uuuu  
uuuu uuuu  
1111 1111  
1111 1111  
TRISB7  
TRISC7  
TRISB6  
TRISC6  
TRISB5  
TRISC5  
TRISB4  
TRISC4  
TRISB3  
TRISC3  
TRISB2  
TRISC2  
TRISB1  
TRISC1  
TRISB0  
TRISC0  
Legend: -= Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the Compare.  
DS41341E-page 140  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
The PWM output (Figure 15-4) has a time base  
(period) and a time that the output stays high (duty  
cycle).  
15.3 PWM Mode  
The PWM mode generates a Pulse-Width Modulated  
signal on the CCPx pin. The duty cycle, period and  
resolution are determined by the following registers:  
FIGURE 15-4:  
CCP PWM OUTPUT  
• PR2  
Period  
• T2CON  
• CCPRxL  
• CCPxCON  
Pulse Width  
TMR2 = PR2  
TMR2 = CCPRxL:CCPxCON<5:4>  
In Pulse-Width Modulation (PWM) mode, the CCP  
module produces up to a 10-bit resolution PWM output  
on the CCPx pin.  
TMR2 = 0  
Figure 15-3 shows a simplified block diagram of PWM  
operation.  
15.3.1  
CCPX PIN CONFIGURATION  
In PWM mode, the CCPx pin is multiplexed with the  
PORT data latch. The user must configure the CCPx  
pin as an output by clearing the associated TRIS bit.  
Figure 15-4 shows a typical waveform of the PWM  
signal.  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, refer to Section 15.3.8  
“Setup for PWM Operation”.  
Either RC1 or RB3 can be selected as the CCP2 pin.  
Refer to Section 6.1 “Alternate Pin Function” for  
more information.  
FIGURE 15-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
Note:  
Clearing the CCPxCON register will  
relinquish CCPx control of the CCPx pin.  
CCPxCON<5:4>  
Duty Cycle Registers  
CCPRxL  
CCPRxH(2) (Slave)  
CCPx  
R
S
Q
Comparator  
(1)  
TMR2  
TRIS  
Comparator  
PR2  
Clear Timer2,  
toggle CCPx pin and  
latch duty cycle  
Note 1: The 8-bit timer TMR2 register is concatenated  
with the 2-bit internal system clock (FOSC), or  
2 bits of the prescaler, to create the 10-bit time  
base.  
2: In PWM mode, CCPRxH is a read-only register.  
© 2009 Microchip Technology Inc.  
DS41341E-page 141  
PIC16F72X/PIC16LF72X  
15.3.2  
PWM PERIOD  
EQUATION 15-2: PULSE WIDTH  
The PWM period is specified by the PR2 register of  
Timer2. The PWM period can be calculated using the  
formula of Equation 15-1.  
Pulse Width = (CCPRxL:CCPxCON<5:4>) •  
TOSC (TMR2 Prescale Value)  
EQUATION 15-1: PWM PERIOD  
Note: TOSC = 1/FOSC  
PWM Period = [(PR2) + 1] • 4 TOSC •  
EQUATION 15-3: DUTY CYCLE RATIO  
(TMR2 Prescale Value)  
(CCPRxL:CCPxCON<5:4>)  
Duty Cycle Ratio = ----------------------------------------------------------------------  
4(PR2 + 1)  
Note:  
TOSC = 1/FOSC  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
The CCPRxH register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
• TMR2 is cleared  
• The CCPx pin is set. (Exception: If the PWM duty  
cycle = 0%, the pin will not be set.)  
The 8-bit timer TMR2 register is concatenated with  
either the 2-bit internal system clock (FOSC), or 2 bits of  
the prescaler, to create the 10-bit time base. The system  
clock is used if the Timer2 prescaler is set to 1:1.  
• The PWM duty cycle is latched from CCPRxL into  
CCPRxH.  
When the 10-bit time base matches the CCPRxH and  
2-bit latch, then the CCPx pin is cleared (refer to  
Figure 15-3).  
Note:  
The  
Timer2  
postscaler  
(refer  
to  
Section 13.1 “Timer2 Operation”) is not  
used in the determination of the PWM  
frequency.  
15.3.3  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing a 10-bit value  
to multiple registers: CCPRxL register and DCxB<1:0>  
bits of the CCPxCON register. The CCPRxL contains  
the eight MSbs and the DCxB<1:0> bits of the  
CCPxCON register contain the two LSbs. CCPRxL and  
DCxB<1:0> bits of the CCPxCON register can be written  
to at any time. The duty cycle value is not latched into  
CCPRxH until after the period completes (i.e., a match  
between PR2 and TMR2 registers occurs). While using  
the PWM, the CCPRxH register is read-only.  
Equation 15-2 is used to calculate the PWM pulse  
width.  
Equation 15-3 is used to calculate the PWM duty cycle  
ratio.  
DS41341E-page 142  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
15.3.4  
PWM RESOLUTION  
EQUATION 15-4: PWM RESOLUTION  
The resolution determines the number of available duty  
cycles for a given period. For example, a 10-bit resolution  
will result in 1024 discrete duty cycles, whereas an 8-bit  
resolution will result in 256 discrete duty cycles.  
log[4(PR2 + 1)]  
Resolution = ----------------------------------------- bits  
log(2)  
The maximum PWM resolution is 10 bits when PR2 is  
255. The resolution is a function of the PR2 register  
value as shown by Equation 15-4.  
Note:  
If the pulse width value is greater than the  
period the assigned PWM pin(s) will  
remain unchanged.  
TABLE 15-5: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 20 MHz)  
PWM Frequency  
1.22 kHz  
4.88 kHz  
19.53 kHz  
78.12 kHz  
156.3 kHz  
208.3 kHz  
Timer Prescale (1, 4, 16)  
PR2 Value  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
0xFF  
10  
0xFF  
10  
0x17  
6.6  
Maximum Resolution (bits)  
TABLE 15-6: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 8 MHz)  
PWM Frequency  
1.22 kHz  
4.90 kHz  
19.61 kHz  
76.92 kHz  
153.85 kHz 200.0 kHz  
Timer Prescale (1, 4, 16)  
PR2 Value  
16  
0x65  
8
4
0x65  
8
1
0x65  
8
1
0x19  
6
1
0x0C  
5
1
0x09  
5
Maximum Resolution (bits)  
15.3.5  
OPERATION IN SLEEP MODE  
15.3.8  
SETUP FOR PWM OPERATION  
In Sleep mode, the TMR2 register will not increment  
and the state of the module will not change. If the CCPx  
pin is driving a value, it will continue to drive that value.  
When the device wakes up, TMR2 will continue from its  
previous state.  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
1. Disable the PWM pin (CCPx) output driver(s) by  
setting the associated TRIS bit(s).  
2. Load the PR2 register with the PWM period value.  
3. Configure the CCP module for the PWM mode  
by loading the CCPxCON register with the  
appropriate values.  
15.3.6  
CHANGES IN SYSTEM CLOCK  
FREQUENCY  
The PWM frequency is derived from the system clock  
frequency (FOSC). Any changes in the system clock fre-  
quency will result in changes to the PWM frequency.  
Refer to Section 7.0 “Oscillator Module” for  
additional details.  
4. Load the CCPRxL register and the DCxBx bits of  
the CCPxCON register, with the PWM duty cycle  
value.  
5. Configure and start Timer2:  
Clear the TMR2IF interrupt flag bit of the PIR1  
register. See Note below.  
15.3.7  
EFFECTS OF RESET  
Configure the T2CKPS bits of the T2CON  
register with the Timer2 prescale value.  
Any Reset will force all ports to Input mode and the  
CCP registers to their Reset states.  
Enable Timer2 by setting the TMR2ON bit of  
the T2CON register.  
6. Enable PWM output pin:  
Wait until Timer2 overflows, TMR2IF bit of the  
PIR1 register is set. See Note below.  
Enable the PWM pin (CCPx) output driver(s) by  
clearing the associated TRIS bit(s).  
Note:  
In order to send a complete duty cycle and  
period on the first PWM output, the above  
steps must be included in the setup  
sequence. If it is not critical to start with a  
complete PWM signal on the first output,  
then step 6 may be ignored.  
© 2009 Microchip Technology Inc.  
DS41341E-page 143  
PIC16F72X/PIC16LF72X  
TABLE 15-7: SUMMARY OF REGISTERS ASSOCIATED WITH PWM  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELB  
APFCON  
CCP1CON  
CCP2CON  
CCPRxL  
ANSB5  
ANSB4  
ANSB3  
ANSB2  
ANSB1  
SSSEL  
ANSB0  
--11 1111  
--11 1111  
---- --00  
--00 0000  
--00 0000  
uuuu uuuu  
uuuu uuuu  
CCP2SEL ---- --00  
DC1B1  
DC2B1  
DC1B0  
DC2B0  
CCP1M3  
CCP2M3  
CCP1M2  
CCP2M2  
CCP1M1  
CCP2M1  
CCP1M0  
CCP2M0  
--00 0000  
--00 0000  
xxxx xxxx  
xxxx xxxx  
1111 1111  
Capture/Compare/PWM Register X Low Byte  
Capture/Compare/PWM Register X High Byte  
Timer2 Period Register  
CCPRxH  
PR2  
1111 1111  
-000 0000  
0000 0000  
1111 1111  
1111 1111  
-000 0000  
0000 0000  
1111 1111  
T2CON  
TMR2  
TRISB  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 Module Register  
TRISB7  
TRISC7  
TRISB6  
TRISC6  
TRISB5  
TRISC5  
TRISB4  
TRISC4  
TRISB3  
TRISC3  
TRISB2  
TRISC2  
TRISB1  
TRISC1  
TRISB0  
TRISC0  
TRISC  
1111 1111  
Legend: -= Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the PWM.  
DS41341E-page 144  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
The AUSART module includes the following capabilities:  
16.0 ADDRESSABLE UNIVERSAL  
SYNCHRONOUS  
• Full-duplex asynchronous transmit and receive  
• Two-character input buffer  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (AUSART)  
• One-character output buffer  
• Programmable 8-bit or 9-bit character length  
• Address detection in 9-bit mode  
• Input buffer overrun error detection  
• Received character framing error detection  
• Half-duplex synchronous master  
• Half-duplex synchronous slave  
• Sleep operation  
The  
Addressable  
Universal  
Synchronous  
Asynchronous Receiver Transmitter (AUSART)  
module is a serial I/O communications peripheral. It  
contains all the clock generators, shift registers and  
data buffers necessary to perform an input or output  
serial data transfer independent of device program  
execution. The AUSART, also known as a Serial  
Communications Interface (SCI), can be configured as  
a full-duplex asynchronous system or half-duplex  
synchronous system. Full-Duplex mode is useful for  
communications with peripheral systems, such as CRT  
terminals and personal computers. Half-Duplex  
Synchronous mode is intended for communications  
with peripheral devices, such as A/D or D/A integrated  
circuits, serial EEPROMs or other microcontrollers.  
These devices typically do not have internal clocks for  
baud rate generation and require the external clock  
signal provided by a master synchronous device.  
Block diagrams of the AUSART transmitter and  
receiver are shown in Figure 16-1 and Figure 16-2.  
FIGURE 16-1:  
AUSART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIE  
Interrupt  
TXIF  
TXREG Register  
8
TX/CK  
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
• • •  
Transmit Shift Register (TSR)  
TXEN  
TRMT  
SPEN  
Baud Rate Generator  
FOSC  
÷ n  
TX9  
n
+ 1  
Multiplier x4 x16 x64  
TX9D  
SYNC  
BRGH  
1
x
0
1
0
0
SPBRG  
© 2009 Microchip Technology Inc.  
DS41341E-page 145  
PIC16F72X/PIC16LF72X  
FIGURE 16-2:  
AUSART RECEIVE BLOCK DIAGRAM  
SPEN  
CREN  
OERR  
RX/DT  
RSR Register  
MSb  
Stop (8)  
LSb  
Pin Buffer  
and Control  
Data  
Recovery  
7
1
0
START  
• • •  
Baud Rate Generator  
FOSC  
RX9  
÷ n  
n
+ 1  
Multiplier x4 x16 x64  
SYNC  
BRGH  
1
x
0
1
0
0
FIFO  
SPBRG  
RX9D  
FERR  
RCREG Register  
8
Data Bus  
RCIF  
RCIE  
Interrupt  
The operation of the AUSART module is controlled  
through two registers:  
• Transmit Status and Control (TXSTA)  
• Receive Status and Control (RCSTA)  
These registers are detailed in Register 16-1 and  
Register 16-2, respectively.  
DS41341E-page 146  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
16.1 AUSART Asynchronous Mode  
Note 1: When the SPEN bit is set the RX/DT I/O pin  
is automatically configured as an input,  
regardless of the state of the corresponding  
TRIS bit and whether or not the AUSART  
receiver is enabled. The RX/DT pin data  
can be read via a normal PORT read but  
PORT latch data output is precluded.  
The AUSART transmits and receives data using the  
standard non-return-to-zero (NRZ) format. NRZ is  
implemented with two levels: a VOH mark state which  
represents a ‘1’ data bit, and a VOL space state which  
represents a ‘0’ data bit. NRZ refers to the fact that  
consecutively transmitted data bits of the same value  
stay at the output level of that bit without returning to a  
neutral level between each bit transmission. An NRZ  
transmission port idles in the mark state. Each character  
transmission consists of one Start bit followed by eight  
or nine data bits and is always terminated by one or  
more Stop bits. The Start bit is always a space and the  
Stop bits are always marks. The most common data  
format is 8 bits. Each transmitted bit persists for a period  
of 1/(Baud Rate). An on-chip dedicated 8-bit Baud Rate  
Generator is used to derive standard baud rate  
frequencies from the system oscillator. Refer to  
Table 16-5 for examples of baud rate configurations.  
2: The TXIF transmitter interrupt flag is set  
when the TXEN enable bit is set.  
16.1.1.2  
Transmitting Data  
A transmission is initiated by writing a character to the  
TXREG register. If this is the first character, or the  
previous character has been completely flushed from  
the TSR, the data in the TXREG is immediately  
transferred to the TSR register. If the TSR still contains  
all or part of a previous character, the new character  
data is held in the TXREG until the Stop bit of the  
previous character has been transmitted. The pending  
character in the TXREG is then transferred to the TSR  
in one TCY immediately following the Stop bit  
transmission. The transmission of the Start bit, data bits  
and Stop bit sequence commences immediately  
following the transfer of the data to the TSR from the  
TXREG.  
The AUSART transmits and receives the LSb first. The  
AUSART’s transmitter and receiver are functionally  
independent, but share the same data format and baud  
rate. Parity is not supported by the hardware, but can  
be implemented in software and stored as the ninth  
data bit.  
16.1.1  
AUSART ASYNCHRONOUS  
TRANSMITTER  
16.1.1.3  
Transmit Interrupt Flag  
The AUSART transmitter block diagram is shown in  
Figure 16-1. The heart of the transmitter is the serial  
Transmit Shift Register (TSR), which is not directly  
accessible by software. The TSR obtains its data from  
the transmit buffer, which is the TXREG register.  
The TXIF interrupt flag bit of the PIR1 register is set  
whenever the AUSART transmitter is enabled and no  
character is being held for transmission in the TXREG.  
In other words, the TXIF bit is only clear when the TSR  
is busy with a character and a new character has been  
queued for transmission in the TXREG. The TXIF flag  
bit is not cleared immediately upon writing TXREG.  
TXIF becomes valid in the second instruction cycle  
following the write execution. Polling TXIF immediately  
following the TXREG write will return invalid results. The  
TXIF bit is read-only, it cannot be set or cleared by  
software.  
16.1.1.1  
Enabling the Transmitter  
The AUSART transmitter is enabled for asynchronous  
operations by configuring the following three control  
bits:  
• TXEN = 1  
• SYNC = 0  
• SPEN = 1  
The TXIF interrupt can be enabled by setting the TXIE  
interrupt enable bit of the PIE1 register. However, the  
TXIF flag bit will be set whenever the TXREG is empty,  
regardless of the state of TXIE enable bit.  
All other AUSART control bits are assumed to be in  
their default state.  
Setting the TXEN bit of the TXSTA register enables the  
transmitter circuitry of the AUSART. Clearing the SYNC  
bit of the TXSTA register configures the AUSART for  
asynchronous operation. Setting the SPEN bit of the  
RCSTA register enables the AUSART and  
automatically configures the TX/CK I/O pin as an output.  
To use interrupts when transmitting data, set the TXIE  
bit only when there is more data to send. Clear the  
TXIE interrupt enable bit upon writing the last character  
of the transmission to the TXREG.  
© 2009 Microchip Technology Inc.  
DS41341E-page 147  
PIC16F72X/PIC16LF72X  
16.1.1.4  
TSR Status  
16.1.1.6  
Asynchronous Transmission Set-up:  
The TRMT bit of the TXSTA register indicates the  
status of the TSR register. This is a read-only bit. The  
TRMT bit is set when the TSR register is empty and is  
cleared when a character is transferred to the TSR  
register from the TXREG. The TRMT bit remains clear  
until all bits have been shifted out of the TSR register.  
No interrupt logic is tied to this bit, so the user has to  
poll this bit to determine the TSR status.  
1. Initialize the SPBRG register and the BRGH bit to  
achieve the desired baud rate (Refer to  
Section 16.2 “AUSART Baud Rate Generator  
(BRG)”).  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
3. If 9-bit transmission is desired, set the TX9 con-  
trol bit. A set ninth data bit will indicate that the 8  
Least Significant data bits are an address when  
the receiver is set for address detection.  
Note:  
The TSR register is not mapped in data  
memory, so it is not available to the user.  
4. Enable the transmission by setting the TXEN  
control bit. This will cause the TXIF interrupt bit  
to be set.  
16.1.1.5  
Transmitting 9-Bit Characters  
The AUSART supports 9-bit character transmissions.  
When the TX9 bit of the TXSTA register is set the  
AUSART will shift 9 bits out for each character transmit-  
ted. The TX9D bit of the TXSTA register is the ninth,  
and Most Significant, data bit. When transmitting 9-bit  
data, the TX9D data bit must be written before writing  
the 8 Least Significant bits into the TXREG. All nine bits  
of data will be transferred to the TSR shift register  
immediately after the TXREG is written.  
5. If interrupts are desired, set the TXIE interrupt  
enable bit of the PIE1 register. An interrupt will  
occur immediately provided that the GIE and  
PEIE bits of the INTCON register are also set.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded into the TX9D data bit.  
7. Load 8-bit data into the TXREG register. This  
will start the transmission.  
A special 9-bit Address mode is available for use with  
multiple receivers. Refer to Section 16.1.2.7 “Address  
Detection” for more information on the Address mode.  
FIGURE 16-3:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(Shift Clock)  
TX/CK pin  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
Stop bit  
TXIF bit  
(Transmit Buffer  
Empty Flag)  
1 TCY  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
FIGURE 16-4:  
ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)  
Write to TXREG  
Word 2  
Start bit  
Word 1  
BRG Output  
(Shift Clock)  
TX/CK pin  
Start bit  
Word 2  
bit 0  
bit 1  
bit 7/8  
bit 0  
Stop bit  
TXIF bit  
(Transmit Buffer  
Empty Flag)  
1 TCY  
Word 1  
1 TCY  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
Note:  
This timing diagram shows two consecutive transmissions.  
DS41341E-page 148  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
TABLE 16-1: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
RX9  
T0IE  
RCIE  
RCIF  
SREN  
BRG5  
INTE  
TXIE  
RBIE  
SSPIE  
SSPIF  
ADDEN  
BRG3  
T0IF  
INTF  
RBIF  
0000 000x 0000 000x  
TMR1GIE  
TMR1GIF  
SPEN  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
PIR1  
TXIF  
RCSTA  
SPBRG  
TRISC  
TXREG  
TXSTA  
Legend:  
CREN  
BRG4  
FERR  
BRG2  
OERR  
BRG1  
RX9D  
BRG0  
0000 000x 0000 000x  
0000 0000 0000 0000  
BRG7  
BRG6  
TRISC7  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
AUSART Transmit Data Register  
CSRC TX9 TXEN  
0000 0000 0000 0000  
0000 -010 0000 -010  
SYNC  
BRGH  
TRMT  
TX9D  
x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for Asynchronous Transmission.  
© 2009 Microchip Technology Inc.  
DS41341E-page 149  
PIC16F72X/PIC16LF72X  
16.1.2  
AUSART ASYNCHRONOUS  
RECEIVER  
16.1.2.2  
Receiving Data  
The receiver data recovery circuit initiates character  
reception on the falling edge of the first bit. The first bit,  
also known as the Start bit, is always a zero. The data  
recovery circuit counts one-half bit time to the center of  
the Start bit and verifies that the bit is still a zero. If it is  
not a zero then the data recovery circuit aborts  
character reception, without generating an error, and  
resumes looking for the falling edge of the Start bit. If  
the Start bit zero verification succeeds then the data  
recovery circuit counts a full bit time to the center of the  
next bit. The bit is then sampled by a majority detect  
circuit and the resulting ‘0’ or ‘1’ is shifted into the RSR.  
This repeats until all data bits have been sampled and  
shifted into the RSR. One final bit time is measured and  
the level sampled. This is the Stop bit, which is always  
a ‘1’. If the data recovery circuit samples a ‘0’ in the  
Stop bit position then a framing error is set for this  
character, otherwise the framing error is cleared for this  
character. Refer to Section 16.1.2.4 “Receive  
Framing Error” for more information on framing  
errors.  
The Asynchronous mode is typically used in RS-232  
systems. The receiver block diagram is shown in  
Figure 16-2. The data is received on the RX/DT pin and  
drives the data recovery block. The data recovery block  
is actually a high-speed shifter operating at 16 times  
the baud rate, whereas the serial Receive Shift  
Register (RSR) operates at the bit rate. When all 8 or 9  
bits of the character have been shifted in, they are  
immediately transferred to a two character First-In  
First-Out (FIFO) memory. The FIFO buffering allows  
reception of two complete characters and the start of a  
third character before software must start servicing the  
AUSART receiver. The FIFO and RSR registers are not  
directly accessible by software. Access to the received  
data is via the RCREG register.  
16.1.2.1  
Enabling the Receiver  
The AUSART receiver is enabled for asynchronous  
operation by configuring the following three control bits:  
• CREN = 1  
• SYNC = 0  
• SPEN = 1  
Immediately after all data bits and the Stop bit have  
been received, the character in the RSR is transferred  
to the AUSART receive FIFO and the RCIF interrupt  
flag bit of the PIR1 register is set. The top character in  
the FIFO is transferred out of the FIFO by reading the  
RCREG register.  
All other AUSART control bits are assumed to be in  
their default state.  
Setting the CREN bit of the RCSTA register enables the  
receiver circuitry of the AUSART. Clearing the SYNC bit  
of the TXSTA register configures the AUSART for  
asynchronous operation. Setting the SPEN bit of the  
RCSTA register enables the AUSART and  
automatically configures the RX/DT I/O pin as an input.  
Note:  
If the receive FIFO is overrun, no additional  
characters will be received until the overrun  
condition  
is  
cleared.  
Refer  
to  
Section 16.1.2.5  
“Receive  
Overrun  
Error” for more information on overrun  
errors.  
Note:  
When the SPEN bit is set the TX/CK I/O  
pin is automatically configured as an  
output, regardless of the state of the  
corresponding TRIS bit and whether or not  
the AUSART transmitter is enabled. The  
PORT latch is disconnected from the  
output driver so it is not possible to use the  
TX/CK pin as a general purpose output.  
16.1.2.3  
Receive Interrupts  
The RCIF interrupt flag bit of the PIR1 register is set  
whenever the AUSART receiver is enabled and there is  
an unread character in the receive FIFO. The RCIF  
interrupt flag bit is read-only, it cannot be set or cleared  
by software.  
RCIF interrupts are enabled by setting all of the  
following bits:  
• RCIE interrupt enable bit of the PIE1 register  
• PEIE peripheral interrupt enable bit of the  
INTCON register  
• GIE global interrupt enable bit of the INTCON  
register  
The RCIF interrupt flag bit of the PIR1 register will be  
set when there is an unread character in the FIFO,  
regardless of the state of interrupt enable bits.  
DS41341E-page 150  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
16.1.2.4  
Receive Framing Error  
16.1.2.7  
Address Detection  
Each character in the receive FIFO buffer has a  
corresponding framing error Status bit. A framing error  
indicates that a Stop bit was not seen at the expected  
time. The framing error status is accessed via the  
FERR bit of the RCSTA register. The FERR bit  
represents the status of the top unread character in the  
receive FIFO. Therefore, the FERR bit must be read  
before reading the RCREG.  
A special Address Detection mode is available for use  
when multiple receivers share the same transmission  
line, such as in RS-485 systems. Address detection is  
enabled by setting the ADDEN bit of the RCSTA  
register.  
Address detection requires 9-bit character reception.  
When address detection is enabled, only characters  
with the ninth data bit set will be transferred to the  
receive FIFO buffer, thereby setting the RCIF interrupt  
bit of the PIR1 register. All other characters will be  
ignored.  
The FERR bit is read-only and only applies to the top  
unread character in the receive FIFO. A framing error  
(FERR = 1) does not preclude reception of additional  
characters. It is not necessary to clear the FERR bit.  
Reading the next character from the FIFO buffer will  
advance the FIFO to the next character and the next  
corresponding framing error.  
Upon receiving an address character, user software  
determines if the address matches its own. Upon  
address match, user software must disable address  
detection by clearing the ADDEN bit before the next  
Stop bit occurs. When user software detects the end of  
the message, determined by the message protocol  
used, software places the receiver back into the  
Address Detection mode by setting the ADDEN bit.  
The FERR bit can be forced clear by clearing the SPEN  
bit of the RCSTA register which resets the AUSART.  
Clearing the CREN bit of the RCSTA register does not  
affect the FERR bit. A framing error by itself does not  
generate an interrupt.  
Note:  
If all receive characters in the receive  
FIFO have framing errors, repeated reads  
of the RCREG will not clear the FERR bit.  
16.1.2.5  
Receive Overrun Error  
The receive FIFO buffer can hold two characters. An  
overrun error will be generated if a third character, in its  
entirety, is received before the FIFO is accessed. When  
this happens the OERR bit of the RCSTA register is  
set. The characters already in the FIFO buffer can be  
read but no additional characters will be received until  
the error is cleared. The error must be cleared by either  
clearing the CREN bit of the RCSTA register or by  
setting the AUSART by clearing the SPEN bit of the  
RCSTA register.  
16.1.2.6  
Receiving 9-bit Characters  
The AUSART supports 9-bit character reception. When  
the RX9 bit of the RCSTA register is set the AUSART  
will shift 9 bits into the RSR for each character  
received. The RX9D bit of the RCSTA register is the  
ninth and Most Significant data bit of the top unread  
character in the receive FIFO. When reading 9-bit data  
from the receive FIFO buffer, the RX9D data bit must  
be read before reading the 8 Least Significant bits from  
the RCREG.  
© 2009 Microchip Technology Inc.  
DS41341E-page 151  
PIC16F72X/PIC16LF72X  
16.1.2.8  
Asynchronous Reception Set-up:  
16.1.2.9  
9-bit Address Detection Mode Set-up  
1. Initialize the SPBRG register and the BRGH bit  
to achieve the desired baud rate (refer to  
Section 16.2 “AUSART Baud Rate Generator  
(BRG)”).  
This mode would typically be used in RS-485 systems.  
To set up an Asynchronous Reception with Address  
Detect Enable:  
1. Initialize the SPBRG register and the BRGH bit  
to achieve the desired baud rate (refer to  
Section 16.2 “AUSART Baud Rate Generator  
(BRG)”).  
2. Enable the serial port by setting the SPEN bit.  
The SYNC bit must be clear for asynchronous  
operation.  
3. If interrupts are desired, set the RCIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
2. Enable the serial port by setting the SPEN bit.  
The SYNC bit must be clear for asynchronous  
operation.  
4. If 9-bit reception is desired, set the RX9 bit.  
5. Enable reception by setting the CREN bit.  
3. If interrupts are desired, set the RCIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
6. The RCIF interrupt flag bit of the PIR1 register  
will be set when a character is transferred from  
the RSR to the receive buffer. An interrupt will be  
generated if the RCIE bit of the PIE1 register  
was also set.  
4. Enable 9-bit reception by setting the RX9 bit.  
5. Enable address detection by setting the ADDEN  
bit.  
6. Enable reception by setting the CREN bit.  
7. Read the RCSTA register to get the error flags  
and, if 9-bit data reception is enabled, the ninth  
data bit.  
7. The RCIF interrupt flag bit of the PIR1 register  
will be set when a character with the ninth bit set  
is transferred from the RSR to the receive buffer.  
An interrupt will be generated if the RCIE inter-  
rupt enable bit of the PIE1 register was also set.  
8. Get the received 8 Least Significant data bits  
from the receive buffer by reading the RCREG  
register.  
8. Read the RCSTA register to get the error flags.  
The ninth data bit will always be set.  
9. If an overrun occurred, clear the OERR flag by  
clearing the CREN receiver enable bit.  
9. Get the received 8 Least Significant data bits  
from the receive buffer by reading the RCREG  
register. Software determines if this is the  
device’s address.  
10. If an overrun occurred, clear the OERR flag by  
clearing the CREN receiver enable bit.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and generate interrupts.  
FIGURE 16-5:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX/DT pin  
bit 7/8  
bit 7/8  
bit 0 bit 1  
Stop  
bit  
Stop  
bit  
Stop  
bit  
bit 0  
bit 7/8  
Rcv Shift  
Reg  
Rcv Buffer Reg  
Word 2  
RCREG  
Word 1  
RCREG  
Read Rcv  
Buffer Reg  
RCREG  
RCIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note:  
This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,  
causing the OERR (overrun) bit to be set.  
DS41341E-page 152  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
TABLE 16-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
INTE  
TXIE  
TXIF  
RBIE  
SSPIE  
SSPIF  
T0IF  
INTF  
RBIF  
0000 000x 0000 000x  
TMR1GIE  
TMR1GIF  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
0000 0000 0000 0000  
PIR1  
RCREG  
RCSTA  
SPBRG  
TRISC  
TXSTA  
Legend:  
AUSART Receive Data Register  
SPEN  
BRG7  
RX9  
SREN  
BRG5  
CREN  
BRG4  
ADDEN  
BRG3  
FERR  
BRG2  
OERR  
BRG1  
RX9D  
BRG0  
0000 000x 0000 000x  
0000 0000 0000 0000  
BRG6  
TRISC7  
CSRC  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
TX9 TXEN SYNC BRGH TRMT TX9D 0000 -010 0000 -010  
x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for Asynchronous Reception.  
© 2009 Microchip Technology Inc.  
DS41341E-page 153  
PIC16F72X/PIC16LF72X  
REGISTER 16-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN(1)  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
TRMT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
bit 4  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit(1)  
1= Transmit enabled  
0= Transmit disabled  
SYNC: AUSART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: Ninth bit of Transmit Data  
Can be address/data bit or a parity bit.  
Note 1: SREN/CREN overrides TXEN in Synchronous mode.  
DS41341E-page 154  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
REGISTER 16-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit(1)  
1= Serial port enabled (configures RX/DT and TX/CK pins as serial port pins)  
0= Serial port disabled (held in Reset)  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave:  
Don’t care  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
Asynchronous mode 8-bit (RX9 = 0):  
Don’t care  
Synchronous mode:  
Must be set to ‘0’  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: Ninth bit of Received Data  
This can be address/data bit or a parity bit and must be calculated by user firmware.  
Note 1: The AUSART module automatically changes the pin from tri-state to drive as needed. Configure  
TRISx = 1.  
© 2009 Microchip Technology Inc.  
DS41341E-page 155  
PIC16F72X/PIC16LF72X  
EXAMPLE 16-1:  
CALCULATING BAUD  
RATE ERROR  
16.2 AUSART Baud Rate Generator  
(BRG)  
For a device with FOSC of 16 MHz, desired baud rate of  
9600, and Asynchronous mode with SYNC = 0and BRGH  
= 0(as seen in Table 16-3):  
The Baud Rate Generator (BRG) is an 8-bit timer that  
is dedicated to the support of both the asynchronous  
and synchronous AUSART operation.  
FOSC  
Desired Baud Rate = ---------------------------------------  
64(SPBRG + 1)  
The SPBRG register determines the period of the free  
running baud rate timer. In Asynchronous mode the  
multiplier of the baud rate period is determined by the  
BRGH bit of the TXSTA register. In Synchronous mode,  
the BRGH bit is ignored.  
Solving for SPBRG:  
FOSC  
--------------------------------------------------------  
SPBRG =  
=
1  
Table 16-3 contains the formulas for determining the  
baud rate. Example 16-1 provides a sample calculation  
for determining the baud rate and baud rate error.  
64(Desired Baud Rate)  
16000000  
64(9600)  
------------------------  
1  
Typical baud rates and error values for various  
asynchronous modes have been computed for your  
convenience and are shown in Table 16-3. It may be  
advantageous to use the high baud rate (BRGH = 1), to  
reduce the baud rate error.  
= [25.042] = 25  
16000000  
Actual Baud Rate = --------------------------  
64(25 + 1)  
= 9615  
Writing a new value to the SPBRG register causes the  
BRG timer to be reset (or cleared). This ensures that  
the BRG does not wait for a timer overflow before  
outputting the new baud rate.  
Actual Baud Rate Desired Baud Rate  
% Error = ------------------------------------------------------------------------------------------------- 100  
Desired Baud Rate  
9615 9600  
-----------------------------  
=
100 = 0.16%  
9600  
TABLE 16-3: BAUD RATE FORMULAS  
Configuration Bits  
AUSART Mode  
Baud Rate Formula  
SYNC  
BRGH  
0
0
1
0
1
x
Asynchronous  
Asynchronous  
Synchronous  
FOSC/[64 (n+1)]  
FOSC/[16 (n+1)]  
FOSC/[4 (n+1)]  
Legend:  
x= Don’t care, n = value of SPBRG register  
TABLE 16-4: REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RCSTA  
SPBRG  
TXSTA  
SPEN  
BRG7  
CSRC  
RX9  
BRG6  
TX9  
SREN  
BRG5  
TXEN  
CREN  
BRG4  
SYNC  
ADDEN  
BRG3  
FERR  
BRG2  
BRGH  
OERR  
BRG1  
TRMT  
RX9D  
BRG0  
TX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 -010 0000 -010  
Legend:  
x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for the Baud Rate Generator.  
DS41341E-page 156  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES  
SYNC = 0, BRGH = 0  
FOSC = 18.432 MHz FOSC = 16.0000 MHz  
FOSC = 20.000 MHz  
FOSC = 11.0592 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
1201  
2403  
9615  
10416  
19.23k  
0.08  
0.16  
0.16  
-0.01  
0.16  
207  
103  
25  
300  
1200  
255  
129  
32  
239  
119  
29  
143  
71  
17  
16  
8
1221  
2404  
9470  
10417  
19.53k  
1.73  
0.16  
-1.36  
0.00  
1.73  
1200  
2400  
9600  
10286  
19.20k  
0.00  
0.00  
0.00  
-1.26  
0.00  
0.00  
1200  
2400  
9600  
10165  
19.20k  
0.00  
0.00  
0.00  
-2.42  
0.00  
0.00  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
29  
27  
23  
15  
14  
12  
2
57.60k  
7
57.60k  
SYNC = 0, BRGH = 0  
FOSC = 4.000 MHz FOSC = 3.6864 MHz  
FOSC = 8.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
0.00  
0.00  
0.00  
0.00  
300  
1200  
1202  
2404  
9615  
10417  
0.16  
0.16  
0.16  
0.00  
103  
51  
12  
11  
300  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
300  
1200  
2400  
9600  
191  
47  
23  
5
300  
1202  
0.16  
0.16  
51  
12  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
10417  
0.00  
2
19.20k  
0.00  
0.00  
0
57.60k  
SYNC = 0, BRGH = 1  
FOSC = 18.432 MHz FOSC = 16.0000 MHz  
FOSC = 20.000 MHz  
FOSC = 11.0592 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
71  
65  
35  
11  
5
9615  
10417  
19.23k  
56.82k  
0.16  
0.00  
0.16  
-1.36  
129  
119  
64  
9600  
10378  
19.20k  
57.60k  
115.2k  
0.00  
-0.37  
0.00  
0.00  
0.00  
119  
110  
59  
19  
9
9615  
10417  
19.23k  
58.8k  
0.16  
0.00  
0.16  
2.12  
103  
95  
51  
16  
9600  
0.00  
0.53  
0.00  
0.00  
0.00  
10473  
19.20k  
57.60k  
115.2k  
21  
115.2k 113.64k -1.36  
10  
© 2009 Microchip Technology Inc.  
DS41341E-page 157  
PIC16F72X/PIC16LF72X  
TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES  
SYNC = 0, BRGH = 1  
FOSC = 8.000 MHz  
FOSC = 4.000 MHz  
FOSC = 3.6864 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
1202  
2404  
9615  
10417  
19.23k  
207  
103  
25  
191  
95  
23  
21  
11  
3
300  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
0.16  
0.16  
0.16  
0.00  
0.16  
1200  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
2400  
2404  
9615  
10417  
19231  
55556  
0.16  
0.16  
0.00  
0.16  
-3.55  
207  
51  
47  
25  
8
2400  
9600  
9600  
10417  
19.2k  
57.6k  
115.2k  
23  
10473  
19.2k  
57.60k  
115.2k  
10417  
0.00  
12  
1
DS41341E-page 158  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
16.3.1.2  
Synchronous Master Transmission  
16.3 AUSART Synchronous Mode  
Data is transferred out of the device on the RX/DT pin.  
The RX/DT and TX/CK pin output drivers are automat-  
ically enabled when the AUSART is configured for  
synchronous master transmit operation.  
Synchronous serial communications are typically used  
in systems with a single master and one or more  
slaves. The master device contains the necessary cir-  
cuitry for baud rate generation and supplies the clock  
for all devices in the system. Slave devices can take  
advantage of the master clock by eliminating the  
internal clock generation circuitry.  
A transmission is initiated by writing a character to the  
TXREG register. If the TSR still contains all or part of a  
previous character, the new character data is held in  
the TXREG until the last bit of the previous character  
has been transmitted. If this is the first character, or the  
previous character has been completely flushed from  
the TSR, the data in the TXREG is immediately trans-  
ferred to the TSR. The transmission of the character  
commences immediately following the transfer of the  
data to the TSR from the TXREG.  
There are two signal lines in Synchronous mode: a  
bidirectional data line and a clock line. Slaves use the  
external clock supplied by the master to shift the serial  
data into and out of their respective receive and trans-  
mit shift registers. Since the data line is bidirectional,  
synchronous operation is half-duplex only. Half-duplex  
refers to the fact that master and slave devices can  
receive and transmit data but not both simultaneously.  
The AUSART can operate as either a master or slave  
device.  
Each data bit changes on the leading edge of the  
master clock and remains valid until the subsequent  
leading clock edge.  
Start and Stop bits are not used in synchronous  
transmissions.  
Note:  
The TSR register is not mapped in data  
memory, so it is not available to the user.  
16.3.1  
SYNCHRONOUS MASTER MODE  
16.3.1.3  
Synchronous Master Transmission  
Set-up:  
The following bits are used to configure the AUSART  
for Synchronous Master operation:  
1. Initialize the SPBRG register and the BRGH bit  
to achieve the desired baud rate (refer to  
Section 16.2 “AUSART Baud Rate Generator  
(BRG)”).  
• SYNC = 1  
• CSRC = 1  
• SREN = 0(for transmit); SREN = 1(for receive)  
• CREN = 0(for transmit); CREN = 1(for receive)  
• SPEN = 1  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN, and CSRC.  
3. Disable Receive mode by clearing bits SREN  
and CREN.  
Setting the SYNC bit of the TXSTA register configures  
the device for synchronous operation. Setting the CSRC  
bit of the TXSTA register configures the device as a  
master. Clearing the SREN and CREN bits of the RCSTA  
register ensures that the device is in the Transmit mode,  
otherwise the device will be configured to receive. Setting  
the SPEN bit of the RCSTA register enables the  
AUSART.  
4. Enable Transmit mode by setting the TXEN bit.  
5. If 9-bit transmission is desired, set the TX9 bit.  
6. If interrupts are desired, set the TXIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
7. If 9-bit transmission is selected, the ninth bit  
should be loaded in the TX9D bit.  
16.3.1.1  
Master Clock  
8. Start transmission by loading data to the  
TXREG register.  
Synchronous data transfers use a separate clock line,  
which is synchronous with the data. A device config-  
ured as a master transmits the clock on the TX/CK line.  
The TX/CK pin output driver is automatically enabled  
when the AUSART is configured for synchronous  
transmit or receive operation. Serial data bits change  
on the leading edge to ensure they are valid at the trail-  
ing edge of each clock. One clock cycle is generated  
for each data bit. Only as many clock cycles are  
generated as there are data bits.  
© 2009 Microchip Technology Inc.  
DS41341E-page 159  
PIC16F72X/PIC16LF72X  
FIGURE 16-6:  
SYNCHRONOUS TRANSMISSION  
RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
Word 2  
bit 7  
Word 1  
TX/CK pin  
Write to  
TXREG Reg  
Write Word 1  
Write Word 2  
TXIF bit  
(Interrupt Flag)  
TRMT bit  
1’  
1’  
TXEN bit  
Note:  
Synchronous Master mode, SPBRG = 0, continuous transmission of two 8-bit words.  
FIGURE 16-7:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RX/DT pin  
bit 0  
bit 2  
bit 1  
bit 6  
bit 7  
TX/CK pin  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
TABLE 16-6: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
RX9  
T0IE  
RCIE  
RCIF  
SREN  
BRG5  
INTE  
TXIE  
RBIE  
SSPIE  
SSPIF  
ADDEN  
BRG3  
T0IF  
INTF  
RBIF  
0000 000x 0000 000x  
TMR1GIE  
TMR1GIF  
SPEN  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
PIR1  
TXIF  
RCSTA  
SPBRG  
TRISC  
TXREG  
TXSTA  
Legend:  
CREN  
BRG4  
FERR  
BRG2  
OERR  
BRG1  
RX9D  
BRG0  
0000 000x 0000 000x  
0000 0000 0000 0000  
BRG7  
BRG6  
TRISC7  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
AUSART Transmit Data Register  
CSRC TX9 TXEN  
0000 0000 0000 0000  
0000 -010 0000 -010  
SYNC  
BRGH  
TRMT  
TX9D  
x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for Synchronous Master Transmission.  
DS41341E-page 160  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
16.3.1.4  
Synchronous Master Reception  
16.3.1.7  
Receiving 9-bit Characters  
Data is received at the RX/DT pin. The RX/DT pin  
output driver is automatically disabled when the  
AUSART is configured for synchronous master receive  
operation.  
The AUSART supports 9-bit character reception. When  
the RX9 bit of the RCSTA register is set, the AUSART  
will shift 9-bits into the RSR for each character  
received. The RX9D bit of the RCSTA register is the  
ninth, and Most Significant, data bit of the top unread  
character in the receive FIFO. When reading 9-bit data  
from the receive FIFO buffer, the RX9D data bit must  
be read before reading the 8 Least Significant bits from  
the RCREG.  
In Synchronous mode, reception is enabled by setting  
either the Single Receive Enable bit (SREN of the  
RCSTA register) or the Continuous Receive Enable bit  
(CREN of the RCSTA register).  
When SREN is set and CREN is clear, only as many  
clock cycles are generated as there are data bits in a  
single character. The SREN bit is automatically cleared  
at the completion of one character. When CREN is set,  
clocks are continuously generated until CREN is  
cleared. If CREN is cleared in the middle of a character  
the CK clock stops immediately and the partial charac-  
ter is discarded. If SREN and CREN are both set, then  
SREN is cleared at the completion of the first character  
and CREN takes precedence.  
Address detection in Synchronous modes is not  
supported, therefore the ADDEN bit of the RCSTA  
register must be cleared.  
16.3.1.8  
Synchronous Master Reception Set-  
up:  
1. Initialize the SPBRG register for the appropriate  
baud rate. Set or clear the BRGH bit, as  
required, to achieve the desired baud rate.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
To initiate reception, set either SREN or CREN. Data is  
sampled at the RX/DT pin on the trailing edge of the  
TX/CK clock pin and is shifted into the Receive Shift  
3. Ensure bits CREN and SREN are clear.  
Register (RSR). When  
a complete character is  
4. If interrupts are desired, set the RCIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
received into the RSR, the RCIF bit of the PIR1 register  
is set and the character is automatically transferred to  
the two character receive FIFO. The Least Significant  
eight bits of the top character in the receive FIFO are  
available in RCREG. The RCIF bit remains set as long  
as there are un-read characters in the receive FIFO.  
5. If 9-bit reception is desired, set bit RX9.  
6. Verify address detection is disabled by clearing  
the ADDEN bit of the RCSTA register.  
7. Start reception by setting the SREN bit or for  
continuous reception, set the CREN bit.  
16.3.1.5  
Slave Clock  
8. Interrupt flag bit RCIF of the PIR1 register will be  
set when reception of a character is complete.  
An interrupt will be generated if the RCIE inter-  
rupt enable bit of the PIE1 register was set.  
Synchronous data transfers use a separate clock line,  
which is synchronous with the data. A device configured  
as a slave receives the clock on the TX/CK line. The TX/  
CK pin output driver is automatically disabled when the  
device is configured for synchronous slave transmit or  
receive operation. Serial data bits change on the leading  
edge to ensure they are valid at the trailing edge of each  
clock. One data bit is transferred for each clock cycle.  
Only as many clock cycles should be received as there  
are data bits.  
9. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
10. Read the 8-bit received data by reading the  
RCREG register.  
11. If an overrun error occurs, clear the error by  
either clearing the CREN bit of the RCSTA  
register or by clearing the SPEN bit, which  
resets the AUSART.  
16.3.1.6  
Receive Overrun Error  
The receive FIFO buffer can hold two characters. An  
overrun error will be generated if a third character, in its  
entirety, is received before RCREG is read to access  
the FIFO. When this happens the OERR bit of the  
RCSTA register is set. Previous data in the FIFO will  
not be overwritten. The two characters in the FIFO  
buffer can be read, however, no additional characters  
will be received until the error is cleared. The OERR bit  
can only be cleared by clearing the overrun condition.  
If the overrun error occurred when the SREN bit is set  
and CREN is clear then the error is cleared by reading  
RCREG. If the overrun occurred when the CREN bit is  
set then the error condition is cleared by either clearing  
the CREN bit of the RCSTA register.  
© 2009 Microchip Technology Inc.  
DS41341E-page 161  
PIC16F72X/PIC16LF72X  
FIGURE 16-8:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
TX/CK pin  
Write to  
bit SREN  
SREN bit  
0’  
0’  
CREN bit  
RCIF bit  
(Interrupt)  
Read  
RCREG  
Note:  
Timing diagram demonstrates Synchronous Master mode with bit SREN = 1and bit BRGH = 0.  
TABLE 16-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
INTE  
TXIE  
TXIF  
RBIE  
SSPIE  
SSPIF  
T0IF  
INTF  
RBIF  
0000 000x 0000 000x  
TMR1GIE  
TMR1GIF  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
0000 0000 0000 0000  
PIR1  
RCREG  
RCSTA  
TRISC  
TXSTA  
Legend:  
AUSART Receive Data Register  
SPEN  
TRISC7  
CSRC  
RX9  
SREN  
CREN  
ADDEN  
FERR  
OERR  
RX9D  
0000 000X 0000 000X  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
TX9 TXEN SYNC BRGH TRMT TX9D 0000 -010 0000 -010  
x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for Synchronous Master Reception.  
DS41341E-page 162  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
16.3.2  
SYNCHRONOUS SLAVE MODE  
The following bits are used to configure the AUSART  
for Synchronous slave operation:  
1. The first character will immediately transfer to  
the TSR register and transmit.  
• SYNC = 1  
2. The second word will remain in TXREG register.  
3. The TXIF bit will not be set.  
• CSRC = 0  
• SREN = 0(for transmit); SREN = 1(for receive)  
• CREN = 0(for transmit); CREN = 1(for receive)  
• SPEN = 1  
4. After the first character has been shifted out of  
TSR, the TXREG register will transfer the second  
character to the TSR and the TXIF bit will now be  
set.  
Setting the SYNC bit of the TXSTA register configures  
the device for synchronous operation. Clearing the  
CSRC bit of the TXSTA register configures the device as  
a slave. Clearing the SREN and CREN bits of the RCSTA  
register ensures that the device is in the Transmit mode,  
otherwise the device will be configured to receive. Setting  
the SPEN bit of the RCSTA register enables the  
AUSART.  
5. If the PEIE and TXIE bits are set, the interrupt  
will wake the device from Sleep and execute the  
next instruction. If the GIE bit is also set, the  
program will call the Interrupt Service Routine.  
16.3.2.2  
Synchronous Slave Transmission  
Set-up:  
1. Set the SYNC and SPEN bits and clear the  
CSRC bit.  
16.3.2.1  
AUSART Synchronous Slave  
Transmit  
2. Clear the CREN and SREN bits.  
The operation of the Synchronous Master and Slave  
modes are identical (refer to Section 16.3.1.2  
“Synchronous Master Transmission”), except in the  
case of the Sleep mode.  
3. If using interrupts, ensure that the GIE and PEIE  
bits of the INTCON register are set and set the  
TXIE bit.  
4. If 9-bit transmission is desired, set the TX9 bit.  
5. Enable transmission by setting the TXEN bit.  
6. Verify address detection is disabled by clearing  
the ADDEN bit of the RCSTA register.  
7. If 9-bit transmission is selected, insert the Most  
Significant bit into the TX9D bit.  
8. Start transmission by writing the Least  
Significant 8 bits to the TXREG register.  
TABLE 16-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
RX9  
T0IE  
RCIE  
RCIF  
SREN  
INTE  
TXIE  
RBIE  
SSPIE  
SSPIF  
ADDEN  
T0IF  
INTF  
RBIF  
0000 000x 0000 000x  
TMR1GIE  
TMR1GIF  
SPEN  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
PIR1  
TXIF  
RCSTA  
TRISC  
TXREG  
TXSTA  
Legend:  
CREN  
FERR  
OERR  
RX9D  
0000 000X 0000 000X  
TRISC7  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
AUSART Transmit Data Register  
CSRC TX9 TXEN  
0000 0000 0000 0000  
0000 -010 0000 -010  
SYNC  
BRGH  
TRMT  
TX9D  
x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for Synchronous Slave Transmission.  
© 2009 Microchip Technology Inc.  
DS41341E-page 163  
PIC16F72X/PIC16LF72X  
16.3.2.3  
AUSART Synchronous Slave  
Reception  
16.3.2.4  
Synchronous Slave Reception Set-  
up:  
The operation of the Synchronous Master and Slave  
modes is identical (Section 16.3.1.4 “Synchronous  
Master Reception”), with the following exceptions:  
1. Set the SYNC and SPEN bits and clear the  
CSRC bit.  
2. If interrupts are desired, set the RCIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
• Sleep  
• CREN bit is always set, therefore the receiver is  
never Idle  
3. If 9-bit reception is desired, set the RX9 bit.  
4. Verify address detection is disabled by clearing  
the ADDEN bit of the RCSTA register.  
• SREN bit, which is a “don’t care” in Slave mode  
A character may be received while in Sleep mode by  
setting the CREN bit prior to entering Sleep. Once the  
word is received, the RSR register will transfer the data  
to the RCREG register. If the RCIE interrupt enable bit  
of the PIE1 register is set, the interrupt generated will  
wake the device from Sleep and execute the next  
instruction. If the GIE bit is also set, the program will  
branch to the interrupt vector.  
5. Set the CREN bit to enable reception.  
6. The RCIF bit of the PIR1 register will be set  
when reception is complete. An interrupt will be  
generated if the RCIE bit of the PIE1 register  
was set.  
7. If 9-bit mode is enabled, retrieve the Most  
Significant bit from the RX9D bit of the RCSTA  
register.  
8. Retrieve the 8 Least Significant bits from the  
receive FIFO by reading the RCREG register.  
9. If an overrun error occurs, clear the error by  
either clearing the CREN bit of the RCSTA  
register.  
TABLE 16-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
INTE  
TXIE  
TXIF  
RBIE  
SSPIE  
SSPIF  
T0IF  
INTF  
RBIF  
0000 000x 0000 000x  
TMR1GIE  
TMR1GIF  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
0000 0000 0000 0000  
PIR1  
RCREG  
RCSTA  
TRISC  
TXSTA  
Legend:  
AUSART Receive Data Register  
SPEN  
TRISC7  
CSRC  
RX9  
SREN  
CREN  
ADDEN  
FERR  
OERR  
RX9D  
0000 000X 0000 000X  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
TX9 TXEN SYNC BRGH TRMT TX9D 0000 -010 0000 -010  
x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for Synchronous Slave Reception.  
DS41341E-page 164  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
16.4.2  
SYNCHRONOUS TRANSMIT  
DURING SLEEP  
16.4 AUSART Operation During Sleep  
The AUSART will remain active during Sleep only in the  
Synchronous Slave mode. All other modes require the  
system clock and therefore cannot generate the  
necessary signals to run the Transmit or Receive Shift  
registers during Sleep.  
To transmit during Sleep, all the following conditions  
must be met before entering Sleep mode:  
• RCSTA and TXSTA Control registers must be  
configured for Synchronous Slave Transmission  
(refer to Section 16.3.2.2 “Synchronous Slave  
Transmission Set-up:”).  
Synchronous Slave mode uses an externally generated  
clock to run the Transmit and Receive Shift registers.  
• The TXIF interrupt flag must be cleared by writing  
the output data to the TXREG, thereby filling the  
TSR and transmit buffer.  
16.4.1  
SYNCHRONOUS RECEIVE DURING  
SLEEP  
• If interrupts are desired, set the TXIE bit of the  
PIE1 register and the PEIE bit of the INTCON  
register.  
To receive during Sleep, all the following conditions  
must be met before entering Sleep mode:  
• RCSTA and TXSTA Control registers must be  
configured for Synchronous Slave Reception  
(refer to Section 16.3.2.4 “Synchronous Slave  
Reception Set-up:”).  
Upon entering Sleep mode, the device will be ready to  
accept clocks on TX/CK pin and transmit data on the  
RX/DT pin. When the data word in the TSR has been  
completely clocked out by the external device, the  
pending byte in the TXREG will transfer to the TSR and  
the TXIF flag will be set. Thereby, waking the processor  
from Sleep. At this point, the TXREG is available to  
accept another character for transmission, which will  
clear the TXIF flag.  
• If interrupts are desired, set the RCIE bit of the  
PIE1 register and the PEIE bit of the INTCON  
register.  
• The RCIF interrupt flag must be cleared by read-  
ing RCREG to unload any pending characters in  
the receive buffer.  
Upon waking from Sleep, the instruction following the  
SLEEP instruction will be executed. If the GIE global  
interrupt enable bit is also set then the Interrupt Service  
Routine at address 0004h will be called.  
Upon entering Sleep mode, the device will be ready to  
accept data and clocks on the RX/DT and TX/CK pins,  
respectively. When the data word has been completely  
clocked in by the external device, the RCIF interrupt  
flag bit of the PIR1 register will be set. Thereby, waking  
the processor from Sleep.  
Upon waking from Sleep, the instruction following the  
SLEEP instruction will be executed. If the GIE global  
interrupt enable bit of the INTCON register is also set,  
then the Interrupt Service Routine at address 0004h  
will be called.  
© 2009 Microchip Technology Inc.  
DS41341E-page 165  
PIC16F72X/PIC16LF72X  
NOTES:  
DS41341E-page 166  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
A typical SPI connection between microcontroller  
devices is shown in Figure 17-1. Addressing of more  
than one slave device is accomplished via multiple  
hardware slave select lines. External hardware and  
additional I/O pins must be used to support multiple  
slave select addressing. This prevents extra overhead  
in software for communication.  
17.0 SSP MODULE OVERVIEW  
The Synchronous Serial Port (SSP) module is a serial  
interface useful for communicating with other peripher-  
als or microcontroller devices. These peripheral  
devices may be serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The SSP module can  
operate in one of two modes:  
For SPI communication, typically three pins are used:  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C™)  
• Serial Data Out (SDO)  
• Serial Data In (SDI)  
• Serial Clock (SCK)  
17.1 SPI Mode  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
The SPI mode allows 8 bits of data to be synchronously  
transmitted and received, simultaneously. The SSP  
module can be operated in one of two SPI modes:  
• Slave Select (SS)  
• Master mode  
• Slave mode  
SPI is a full-duplex protocol, with all communication  
being bidirectional and initiated by a master device. All  
clocking is provided by the master device and all bits  
are transmitted, MSb first. Care must be taken to  
ensure that all devices on the SPI bus are setup to  
allow all controllers to send and receive data at the  
same time.  
FIGURE 17-1:  
TYPICAL SPI MASTER/SLAVE CONNECTION  
SPI Master SSPM<3:0> = 00xx  
SPI Slave SSPM<3:0> = 010x  
SDO  
SDI  
Serial Input Buffer  
(SSPBUF)  
Serial Input Buffer  
(SSPBUF)  
SDI  
SDO  
Shift Register  
(SSPSR)  
Shift Register  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
SCK  
SS  
Slave Select  
(optional)  
General I/O  
Processor 2  
Processor 1  
© 2009 Microchip Technology Inc.  
DS41341E-page 167  
PIC16F72X/PIC16LF72X  
FIGURE 17-2:  
SPI MODE BLOCK  
DIAGRAM  
Internal  
Data Bus  
Read  
Write  
SSPBUF Reg  
SSPSR Reg  
SDI  
bit 0  
bit 7  
Shift  
Clock  
SDO  
SS  
Control  
Enable  
RA5/SS  
RA0/SS  
SSSEL  
2
Clock Select  
Edge  
Select  
TMR2  
Output  
÷2  
Edge  
Select  
FOSC  
Prescaler  
4, 16, 64  
SCK  
4
TRISx  
SSPM<3:0>  
DS41341E-page 168  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
17.1.1  
MASTER MODE  
17.1.1.3  
Master Mode Setup  
In Master mode, data transfer can be initiated at any  
time because the master controls the SCK line. Master  
mode determines when the slave (Figure 17-1,  
Processor 2) transmits data via control of the SCK line.  
In Master mode, the data is transmitted/received as  
soon as the SSPBUF register is loaded with a byte  
value. If the master is only going to receive, SDO output  
could be disabled (programmed and used as an input).  
The SSPSR register will continue to shift in the signal  
present on the SDI pin at the programmed clock rate.  
17.1.1.1  
Master Mode Operation  
The SSP consists of a transmit/receive shift register  
(SSPSR) and a buffer register (SSPBUF). The SSPSR  
register shifts the data in and out of the device, MSb  
first. The SSPBUF register holds the data that is written  
out of the master until the received data is ready. Once  
the eight bits of data have been received, the byte is  
moved to the SSPBUF register. The Buffer Full Status  
bit, BF of the SSPSTAT register, and the SSP Interrupt  
Flag bit, SSPIF of the PIR1 register, are then set.  
When initializing SPI Master mode operation, several  
options need to be specified. This is accomplished by  
programming the appropriate control bits in the  
SSPCON and SSPSTAT registers. These control bits  
allow the following to be specified:  
• SCK as clock output  
• Idle state of SCK (CKP bit)  
• Data input sample phase (SMP bit)  
• Output data on rising/falling edge of SCK (CKE bit)  
• Clock bit rate  
Any write to the SSPBUF register during  
transmission/reception of data will be ignored and the  
Write Collision Detect bit, WCOL of the SSPCON  
register, will be set. User software must clear the WCOL  
bit so that it can be determined if the following write(s)  
to the SSPBUF register completed successfully.  
In Master mode, the SPI clock rate (bit rate) is user  
selectable to be one of the following:  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 TCY)  
• FOSC/64 (or 16 TCY)  
• (Timer2 output)/2  
When the application software is expecting to receive  
valid data, the SSPBUF should be read before the next  
byte of data is written to the SSPBUF. The BF bit of the  
SSPSTAT register is set when SSPBUF has been  
loaded with the received data (transmission is  
complete). When the SSPBUF is read, the BF bit is  
cleared. This data may be irrelevant if the SPI is only a  
transmitter. The SSP interrupt may be used to  
determine when the transmission/reception is  
complete and the SSPBUF must be read and/or  
written. If interrupts are not used, then software polling  
can be done to ensure that a write collision does not  
occur. Example 17-1 shows the loading of the SSPBUF  
(SSPSR) for data transmission.  
This allows  
a maximum data rate of 5 Mbps  
(at FOSC = 20 MHz).  
Figure 17-3 shows the waveforms for Master mode.  
The clock polarity is selected by appropriately program-  
ming the CKP bit of the SSPCON register. When the  
CKE bit is set, the SDO data is valid before there is a  
clock edge on SCK. The sample time of the input data  
is shown based on the state of the SMP bit and can  
occur at the middle or end of the data output time. The  
time when the SSPBUF is loaded with the received  
data is shown.  
Note:  
The SSPSR is not directly readable or  
writable and can only be accessed by  
addressing the SSPBUF register.  
17.1.1.4  
Sleep in Master Mode  
In Master mode, all module clocks are halted and the  
transmission/reception will remain in their current state,  
paused, until the device wakes from Sleep. After the  
device wakes up from Sleep, the module will continue  
to transmit/receive data.  
17.1.1.2  
Enabling Master I/O  
To enable the serial port, the SSPEN bit of the  
SSPCON register, must be set. To reset or reconfigure  
SPI mode, clear the SSPEN bit, re-initialize the  
SSPCON register and then set the SSPEN bit. If a  
Master mode of operation is selected in the SSPM bits  
of the SSPCON register, the SDI, SDO and SCK pins  
will be assigned as serial port pins.  
For these pins to function as serial port pins, they must  
have their corresponding data direction bits set or  
cleared in the associated TRIS register as follows:  
• SDI configured as input  
• SDO configured as output  
• SCK configured as output  
© 2009 Microchip Technology Inc.  
DS41341E-page 169  
PIC16F72X/PIC16LF72X  
FIGURE 17-3:  
SPI MASTER MODE WAVEFORM  
Write to  
SSPBUF  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
4 Clock  
Modes  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
SDO  
(CKE = 0)  
bit 6  
bit 6  
bit 2  
bit 2  
bit 5  
bit 5  
bit 4  
bit 4  
bit 1  
bit 1  
bit 0  
bit 0  
bit 7  
bit 7  
bit 3  
bit 3  
SDO  
(CKE = 1)  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SDI  
(SMP = 1)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 1)  
SSPIF  
SSPSR to  
SSPBUF  
EXAMPLE 17-1:  
LOADING THE SSPBUF (SSPSR) REGISTER  
BANKSEL  
SSPSTAT  
;
LOOP  
BTFSS  
GOTO  
SSPSTAT, BF ;Has data been received(transmit complete)?  
LOOP  
;No  
BANKSEL  
MOVF  
MOVWF  
MOVF  
SSPBUF  
SSPBUF, W  
RXDATA  
TXDATA, W  
SSPBUF  
;
;WREG reg = contents of SSPBUF  
;Save in user RAM, if data is meaningful  
;W reg = contents of TXDATA  
;New data to xmit  
MOVWF  
DS41341E-page 170  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
17.1.2  
SLAVE MODE  
17.1.2.2  
Enabling Slave I/O  
For any SPI device acting as a slave, the data is  
transmitted and received as external clock pulses  
appear on SCK pin. This external clock must meet the  
minimum high and low times as specified in the  
electrical specifications.  
To enable the serial port, the SSPEN bit of the  
SSPCON register must be set. If a Slave mode of  
operation is selected in the SSPM bits of the SSPCON  
register, the SDI, SDO, SCK pins will be assigned as  
serial port pins.  
For these pins to function as serial port pins, they must  
have their corresponding data direction bits set or  
cleared in the associated TRIS register as follows:  
17.1.2.1  
Slave Mode Operation  
The SSP consists of a transmit/receive shift register  
(SSPSR) and a buffer register (SSPBUF). The SSPSR  
shifts the data in and out of the device, MSb first. The  
SSPBUF holds the data that was written to the SSPSR  
until the received data is ready.  
• SDI configured as input  
• SDO configured as output  
• SCK configured as input  
Optionally, a fourth pin, Slave Select (SS) may be used  
in Slave mode. Slave Select may be configured to  
operate on one of the following pins via the SSSEL bit in  
the APFCON register.  
The slave has no control as to when data will be  
clocked in or out of the device. All data that is to be  
transmitted, to a master or another slave, must be  
loaded into the SSPBUF register before the first clock  
pulse is received.  
• RA5/AN4/SS  
• RA0/AN0/SS  
Once eight bits of data have been received:  
• Received byte is moved to the SSPBUF register  
• BF bit of the SSPSTAT register is set  
• SSPIF bit of the PIR1 register is set  
Upon selection of a Slave Select pin, the appropriate  
bits must be set in the ANSELA and TRISA registers.  
Slave Select must be set as an input by setting the  
corresponding bit in TRISA, and digital I/O must be  
enabled on the SS pin by clearing the corresponding bit  
of the ANSELA register.  
Any write to the SSPBUF register during  
transmission/reception of data will be ignored and the  
Write Collision Detect bit, WCOL of the SSPCON  
register, will be set. User software must clear the  
WCOL bit so that it can be determined if the following  
write(s) to the SSPBUF register completed  
successfully.  
17.1.2.3  
Slave Mode Setup  
When initializing the SSP module to SPI Slave mode,  
compatibility must be ensured with the master device.  
This is done by programming the appropriate control  
bits of the SSPCON and SSPSTAT registers. These  
control bits allow the following to be specified:  
The user’s firmware must read SSPBUF, clearing the  
BF flag, or the SSPOV bit of the SSPCON register will  
be set with the reception of the next byte and  
communication will be disabled.  
• SCK as clock input  
• Idle state of SCK (CKP bit)  
A SPI module transmits and receives at the same time,  
• Data input sample phase (SMP bit)  
• Output data on rising/falling edge of SCK (CKE bit)  
occasionally  
causing  
dummy  
data  
to  
be  
transmitted/received. It is up to the user to determine  
which data is to be used and what can be discarded.  
Figure 17-4 and Figure 17-5 show example waveforms  
of Slave mode operation.  
© 2009 Microchip Technology Inc.  
DS41341E-page 171  
PIC16F72X/PIC16LF72X  
FIGURE 17-4:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)  
SS  
Optional  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 3  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
SSPSR to  
SSPBUF  
FIGURE 17-5:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)  
SS  
Not Optional  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 3  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
SSPSR to  
SSPBUF  
DS41341E-page 172  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
When the SPI module resets, the bit counter is cleared  
to ‘0’. This can be done by either forcing the SS pin to  
a high level or clearing the SSPEN bit. Figure 17-6  
shows the timing waveform for such a synchronization  
event.  
17.1.2.4  
Slave Select Operation  
The SS pin allows Synchronous Slave mode operation.  
The SPI must be in Slave mode with SS pin control  
enabled (SSPM<3:0> = 0100). The associated TRIS bit  
for the SS pin must be set, making SS an input.  
Note:  
SSPSR must be reinitialized by writing to  
the SSPBUF register before the data can  
be clocked out of the slave again.  
In Slave Select mode, when:  
• SS = 0, The device operates as specified in  
Section 17.1.2 “Slave Mode”.  
• SS = 1, The SPI module is held in Reset and the  
SDO pin will be tri-stated.  
17.1.2.5  
Sleep in Slave Mode  
While in Sleep mode, the slave can transmit/receive  
data. The SPI Transmit/Receive Shift register operates  
asynchronously to the device on the externally supplied  
clock source. This allows the device to be placed in  
Sleep mode and data to be shifted into the SPI Trans-  
mit/Receive Shift register. When all 8 bits have been  
received, the SSP Interrupt Flag bit will be set and if  
enabled, will wake the device from Sleep.  
Note 1: When the SPI is in Slave mode with SS pin  
control enabled (SSPM<3:0> = 0100), the  
SPI module will reset if the SS pin is driven  
high.  
2: If the SPI is used in Slave mode with CKE  
set, the SS pin control must be enabled.  
FIGURE 17-6:  
SLAVE SELECT SYNCHRONIZATION WAVEFORM  
SS  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
SSPSR must be reinitialized by writing to  
the SSPBUF register before the data can  
be clocked out of the slave again.  
bit 6  
bit 7  
bit 7  
bit 0  
SDO  
bit 7  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
SSPSR to  
SSPBUF  
© 2009 Microchip Technology Inc.  
DS41341E-page 173  
PIC16F72X/PIC16LF72X  
REGISTER 17-1: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (SPI MODE)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
WCOL: Write Collision Detect bit  
1= The SSPBUF register is written while it is still transmitting the previous word (must be cleared in  
software)  
0= No collision  
bit 6  
SSPOV: Receive Overflow Indicator bit  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case of  
overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read  
the SSPBUF, even if only transmitting data, to avoid setting overflow. In Master mode, the over-  
flow bit is not set since each new reception (and transmission) is initiated by writing to the  
SSPBUF register.  
0= No overflow  
bit 5  
SSPEN: Synchronous Serial Port Enable bit  
1= Enables serial port and configures SCK, SDO and SDI as serial port pins(1)  
0= Disables serial port and configures these pins as I/O port pins  
bit 4  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
bit 3-0  
SSPM<3:0>: Synchronous Serial Port Mode Select bits  
0000= SPI Master mode, clock = FOSC/4  
0001= SPI Master mode, clock = FOSC/16  
0010= SPI Master mode, clock = FOSC/64  
0011= SPI Master mode, clock = TMR2 output/2  
0100= SPI Slave mode, clock = SCK pin. SS pin control enabled.  
0101= SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin.  
Note 1: When enabled, these pins must be properly configured as input or output.  
DS41341E-page 174  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
REGISTER 17-2: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (SPI MODE)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
SMP: SPI Data Input Sample Phase bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode  
CKE: SPI Clock Edge Select bit  
SPI mode, CKP = 0:  
1= Data stable on rising edge of SCK  
0= Data stable on falling edge of SCK  
SPI mode, CKP = 1:  
1= Data stable on falling edge of SCK  
0= Data stable on rising edge of SCK  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
D/A: Data/Address bit  
Used in I2C mode only.  
P: Stop bit  
Used in I2C mode only.  
S: Start bit  
Used in I2C mode only.  
R/W: Read/Write Information bit  
Used in I2C mode only.  
UA: Update Address bit  
Used in I2C mode only.  
BF: Buffer Full Status bit  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
© 2009 Microchip Technology Inc.  
DS41341E-page 175  
PIC16F72X/PIC16LF72X  
TABLE 17-1: SUMMARY OF REGISTERS ASSOCIATED WITH SPI OPERATION  
Value on  
POR, BOR  
Value on all  
other Resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELA  
APFCON  
ANSA5  
ANSA4  
ANSA3  
ANSA2  
ANSA1  
SSSEL  
ANSA0  
--11 1111  
---- --00  
--11 1111  
---- --00  
CCP2SEL  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
T0IE  
RCIE  
RCIF  
INTE  
TXIE  
TXIF  
RBIE  
SSPIE  
SSPIF  
T0IF  
INTF  
RBIF  
0000 000x  
0000 0000  
0000 0000  
1111 1111  
xxxx xxxx  
0000 0000  
0000 000x  
0000 0000  
0000 0000  
1111 1111  
uuuu uuuu  
0000 0000  
TMR1GIE  
TMR1GIF  
CCP1IE  
CCP1IF  
TMR2IE  
TMR2IF  
TMR1IE  
TMR1IF  
PIR1  
PR2  
Timer2 Period Register  
Synchronous Serial Port Receive Buffer/Transmit Register  
SSPBUF  
SSPCON  
WCOL  
SSPOV  
SSPEN  
CKP  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
SSPSTAT  
TRISA  
SMP  
TRISA7  
TRISC7  
CKE  
D/A  
P
S
R/W  
UA  
BF  
0000 0000  
1111 1111  
1111 1111  
-000 0000  
0000 0000  
1111 1111  
1111 1111  
-000 0000  
TRISA6  
TRISC6  
TRISA5  
TRISC5  
TRISA4  
TRISC4  
TRISA3  
TRISC3  
TRISA2  
TRISC2  
TRISA1  
TRISC1  
TRISA0  
TRISC0  
TRISC  
T2CON  
Legend:  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used by the SSP in SPI mode.  
DS41341E-page 176  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
2
FIGURE 17-8:  
TYPICAL I2C™  
CONNECTIONS  
17.2 I C Mode  
The SSP module, in I2C mode, implements all slave  
functions, except general call support. It provides  
interrupts on Start and Stop bits in hardware to facilitate  
firmware implementations of the master functions. The  
SSP module implements the I2C Standard mode  
specifications:  
VDD VDD  
Slave 1  
Master  
SDA  
• I2C Slave mode (7-bit address)  
• I2C Slave mode (10-bit address)  
SDA  
SCL  
SCL  
• Start and Stop bit interrupts enabled to support  
firmware Master mode  
Slave 2  
• Address masking  
SDA  
Two pins are used for data transfer; the SCL pin (clock  
line) and the SDA pin (data line). The user must  
configure the two pin’s data direction bits as inputs in  
the appropriate TRIS register. Upon enabling I2C  
mode, the I2C slew rate limiters in the I/O pads are  
controlled by the SMP bit of SSPSTAT register. The  
SSP module functions are enabled by setting the  
SSPEN bit of SSPCON register.  
SCL  
(optional)  
The SSP module has six registers for I2C operation.  
They are:  
• SSP Control (SSPCON) register  
Data is sampled on the rising edge and shifted out on  
the falling edge of the clock. This ensures that the SDA  
signal is valid during the SCL high time. The SCL clock  
input must have minimum high and low times for proper  
operation. Refer to Section 23.0 “Electrical  
Specifications”.  
• SSP Status (SSPSTAT) register  
• Serial Receive/Transmit Buffer (SSPBUF) register  
• SSP Shift Register (SSPSR), not directly  
accessible  
• SSP Address (SSPADD) register  
• SSP Address Mask (SSPMSK) register  
FIGURE 17-7:  
I2C™ MODE BLOCK  
DIAGRAM  
17.2.1  
HARDWARE SETUP  
Selection of I2C mode, with the SSPEN bit of the  
SSPCON register set, forces the SCL and SDA pins to  
be open drain, provided these pins are programmed as  
inputs by setting the appropriate TRISC bits. The SSP  
module will override the input state with the output  
data, when required, such as for Acknowledge and  
slave-transmitter sequences.  
Internal  
Data Bus  
Read  
Write  
SSPBUF Reg  
SCL  
SDA  
Shift  
Clock  
Note:  
Pull-up resistors must be provided  
externally to the SCL and SDA pins for  
proper operation of the I2C module.  
SSPSR Reg  
MSb  
LSb  
SSPMSK Reg  
Match Detect  
SSPADD Reg  
Addr Match  
Start and  
Stop bit Detect  
© 2009 Microchip Technology Inc.  
DS41341E-page 177  
PIC16F72X/PIC16LF72X  
Figure 17-9 shows the Start and Stop conditions. A  
master device generates these conditions for starting  
and terminating data transfer. Due to the definition of  
the Start and Stop conditions, when data is being trans-  
mitted, the SDA line can only change state when the  
SCL line is low.  
17.2.2  
START AND STOP CONDITIONS  
During times of no data transfer (Idle time), both the  
clock line (SCL) and the data line (SDA) are pulled high  
through external pull-up resistors. The Start and Stop  
conditions determine the start and stop of data trans-  
mission. The Start condition is defined as a high-to-low  
transition of the SDA line while SCL is high. The Stop  
condition is defined as a low-to-high transition of the  
SDA line while SCL is high.  
FIGURE 17-9:  
START AND STOP CONDITIONS  
SDA  
SCL  
S
P
Change of  
Change of  
Data Allowed  
Start  
Data Allowed  
Stop  
Condition  
Condition  
In such a case, the SSPSR register value is not loaded  
into the SSPBUF, but bit SSPIF of the PIR1 register is  
set. Table 17-2 shows the results of when a data  
transfer byte is received, given the status of bits BF and  
SSPOV. Flag bit BF is cleared by reading the SSPBUF  
register, while bit SSPOV is cleared through software.  
17.2.3  
ACKNOWLEDGE  
After the valid reception of an address or data byte, the  
hardware automatically will generate the Acknowledge  
(ACK) pulse and load the SSPBUF register with the  
received value currently in the SSPSR register. There  
are certain conditions that will cause the SSP module  
not to generate this ACK pulse. They include any or all  
of the following:  
• The Buffer Full bit, BF of the SSPSTAT register,  
was set before the transfer was received.  
• The SSP Overflow bit, SSPOV of the SSPCON  
register, was set before the transfer was received.  
• The SSP Module is being operated in Firmware  
Master mode.  
TABLE 17-2: DATA TRANSFER RECEIVED BYTE ACTIONS  
Status Bits as Data  
Set bit SSPIF  
(SSP Interrupt occurs  
if enabled)  
Generate ACK  
Transfer is Received  
SSPSR SSPBUF  
Pulse  
BF  
SSPOV  
0
1
1
0
0
0
1
1
Yes  
No  
No  
No  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
Note 1: Shaded cells show the conditions where the user software did not properly clear the overflow condition.  
DS41341E-page 178  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
The sequence of events for 10-bit address is as follows  
for reception:  
17.2.4  
ADDRESSING  
Once the SSP module has been enabled, it waits for a  
Start condition to occur. Following the Start condition,  
the 8 bits are shifted into the SSPSR register. All  
incoming bits are sampled with the rising edge of the  
clock line (SCL).  
1. Load SSPADD register with high byte of address.  
2. Receive first (high) byte of address (bits SSPIF,  
BF and UA of the SSPSTAT register are set).  
3. Read the SSPBUF register (clears bit BF).  
4. Clear the SSPIF flag bit.  
17.2.4.1  
7-bit Addressing  
5. Update the SSPADD register with second (low)  
byte of address (clears UA bit and releases the  
SCL line).  
In 7-bit Addressing mode (Figure 17-10), the value of  
register SSPSR<7:1> is compared to the value of reg-  
ister SSPADD<7:1>. The address is compared on the  
falling edge of the eighth clock (SCL) pulse. If the  
addresses match, and the BF and SSPOV bits are  
clear, the following events occur:  
6. Receive low byte of address (bits SSPIF, BF and  
UA are set).  
7. Update the SSPADD register with the high byte  
of address. If match releases SCL line, this will  
clear bit UA.  
• The SSPSR register value is loaded into the  
SSPBUF register.  
8. Read the SSPBUF register (clears bit BF).  
9. Clear flag bit SSPIF.  
• The BF bit is set.  
• An ACK pulse is generated.  
If data is requested by the master, once the slave has  
been addressed:  
• SSP interrupt flag bit, SSPIF of the PIR1 register,  
is set (interrupt is generated if enabled) on the  
falling edge of the ninth SCL pulse.  
1. Receive repeated Start condition.  
2. Receive repeat of high byte address with  
17.2.4.2  
10-bit Addressing  
R/W = 1, indicating a read.  
In 10-bit Address mode, two address bytes need to be  
received by the slave (Figure 17-11). The five Most Sig-  
nificant bits (MSbs) of the first address byte specify if it  
is a 10-bit address. The R/W bit of the SSPSTAT regis-  
ter must specify a write so the slave device will receive  
the second address byte. For a 10-bit address, the first  
byte would equal ‘1111 0 A9 A8 0’, where A9 and  
A8 are the two MSbs of the address.  
3. BF bit is set and the CKP bit is cleared, stopping  
SCL and indicating a read request.  
4. SSPBUF is written, setting BF, with the data to  
send to the master device.  
5. CKP is set in software, releasing the SCL line.  
17.2.4.3  
Address Masking  
The Address Masking register (SSPMSK) is only  
accessible while the SSPM bits of the SSPCON  
register are set to ‘1001’. In this register, the user can  
select which bits of a received address the hardware  
will compare when determining an address match. Any  
bit that is set to a zero in the SSPMSK register, the  
corresponding bit in the received address byte and  
SSPADD register are ignored when determining an  
address match. By default, the register is set to all  
ones, requiring a complete match of a 7-bit address or  
the lower eight bits of a 10-bit address.  
© 2009 Microchip Technology Inc.  
DS41341E-page 179  
PIC16F72X/PIC16LF72X  
17.2.5  
RECEPTION  
When the R/W bit of the received address byte is clear,  
the master will write data to the slave. If an address  
match occurs, the received address is loaded into the  
SSPBUF register. An address byte overflow will occur  
if that loaded address is not read from the SSPBUF  
before the next complete byte is received.  
An SSP interrupt is generated for each data transfer byte.  
The BF, R/W and D/A bits of the SSPSTAT register are  
used to determine the status of the last received byte.  
FIGURE 17-10:  
I2C™ WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
R/W = 0  
ACK  
Receiving Address  
A7 A6 A5 A4 A3 A2  
Receiving Data  
Receiving Data  
ACK  
9
ACK  
9
SDA  
A1  
7
D2 D1 D0  
D4  
D3  
D7 D6 D5 D4 D3 D2 D1 D0  
D7  
1
D6 D5  
1
2
3
4
5
6
8
9
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
P
SCL  
S
SSPIF  
Cleared in software  
Bus Master  
sends Stop  
condition  
BF  
SSPBUF register is read  
SSPOV  
Bit SSPOV is set because the SSPBUF register is still full.  
ACK is not sent.  
DS41341E-page 180  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 17-11:  
I2C™ SLAVE MODE TIMING (RECEPTION, 10-BIT ADDRESS)  
© 2009 Microchip Technology Inc.  
DS41341E-page 181  
PIC16F72X/PIC16LF72X  
Following the 8th falling clock edge, control of the SDA  
line is released back to the master so that the master  
can acknowledge or not acknowledge the response. If  
the master sends a not acknowledge, the slave’s  
transmission is complete and the slave must monitor for  
the next Start condition. If the master acknowledges,  
control of the bus is returned to the slave to transmit  
another byte of data. Just as with the previous byte, the  
clock is stretched by the slave, data must be loaded into  
the SSPBUF and CKP must be set to release the clock  
line (SCL).  
17.2.6  
TRANSMISSION  
When the R/W bit of the received address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set and the slave will respond to  
the master by reading out data. After the address match,  
an ACK pulse is generated by the slave hardware and  
the SCL pin is held low (clock is automatically stretched)  
until the slave is ready to respond. See Section 17.2.7  
“Clock Stretching”. The data the slave will transmit  
must be loaded into the SSPBUF register, which sets  
the BF bit. The SCL line is released by setting the CKP  
bit of the SSPCON register.  
An SSP interrupt is generated for each transferred data  
byte. The SSPIF flag bit of the PIR1 register initiates an  
SSP interrupt, and must be cleared by software before  
the next byte is transmitted. The BF bit of the SSPSTAT  
register is cleared on the falling edge of the 8th  
received clock pulse. The SSPIF flag bit is set on the  
falling edge of the ninth clock pulse.  
FIGURE 17-12:  
I2C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
Receiving Address  
A7 A6 A5 A4 A3 A2 A1  
R/W  
Transmitting Data  
ACK  
9
SDA  
SCL  
ACK  
D7 D6 D5 D4 D3 D2 D1 D0  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
S
P
SCL held low  
while CPU  
responds to SSPIF  
Data in  
sampled  
Cleared in software  
SSPIF  
BF  
Dummy read of SSPBUF  
to clear BF flag  
From SSP Interrupt  
Service Routine  
SSPBUF is written in software  
CKP  
Set bit after writing to SSPBUF  
(the SSPBUF must be written to  
before the CKP bit can be set)  
DS41341E-page 182  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
2
FIGURE 17-13:  
I C SLAVE MODE TIMING (TRANSMISSION 10-BIT ADDRESS)  
© 2009 Microchip Technology Inc.  
DS41341E-page 183  
PIC16F72X/PIC16LF72X  
Refer to Application Note AN554, “Software  
Implementation of I2C™ Bus Master” (DS00554) for more  
information.  
17.2.7  
CLOCK STRETCHING  
During any SCL low phase, any device on the I2C bus  
may hold the SCL line low and delay, or pause, the  
transmission of data. This “stretching” of a transmission  
allows devices to slow down communication on the  
bus. The SCL line must be constantly sampled by the  
master to ensure that all devices on the bus have  
released SCL for more data.  
17.2.9  
MULTI-MASTER MODE  
In Multi-Master mode, the interrupt generation on the  
detection of the Start and Stop conditions allow the  
determination of when the bus is free. The Stop (P) and  
Start (S) bits are cleared from a Reset or when the SSP  
module is disabled. The Stop (P) and Start (S) bits will  
toggle based on the Start and Stop conditions. Control  
of the I2C bus may be taken when the P bit of the  
SSPSTAT register is set or when the bus is Idle, and  
both the S and P bits are clear. When the bus is busy,  
enabling the SSP Interrupt will generate the interrupt  
when the Stop condition occurs.  
Stretching usually occurs after an ACK bit of a  
transmission, delaying the first bit of the next byte. The  
SSP module hardware automatically stretches for two  
conditions:  
• After a 10-bit address byte is received (update  
SSPADD register)  
• Anytime the CKP bit of the SSPCON register is  
cleared by hardware  
In Multi-Master operation, the SDA line must be moni-  
tored to see if the signal level is the expected output  
level. This check only needs to be done when a high  
level is output. If a high level is expected and a low level  
is present, the device needs to release the SDA and  
SCL lines (set TRIS bits). There are two stages where  
this arbitration of the bus can be lost. They are the  
Address Transfer and Data Transfer stages.  
The module will hold SCL low until the CKP bit is set.  
This allows the user slave software to update SSPBUF  
with data that may not be readily available. In 10-bit  
addressing modes, the SSPADD register must be  
updated after receiving the first and second address  
bytes. The SSP module will hold the SCL line low until  
the SSPADD has a byte written to it. The UA bit of the  
SSPSTAT register will be set, along with SSPIF,  
indicating an address update is needed.  
When the slave logic is enabled, the slave continues to  
receive. If arbitration was lost during the address  
transfer stage, communication to the device may be in  
progress. If addressed, an ACK pulse will be  
generated. If arbitration was lost during the data  
transfer stage, the device will need to re-transfer the  
data at a later time.  
17.2.8  
FIRMWARE MASTER MODE  
Master mode of operation is supported in firmware  
using interrupt generation on the detection of the Start  
and Stop conditions. The Stop (P) and Start (S) bits of  
the SSPSTAT register are cleared from a Reset or  
when the SSP module is disabled (SSPEN cleared).  
The Stop (P) and Start (S) bits will toggle based on the  
Start and Stop conditions. Control of the I2C bus may  
be taken when the P bit is set or the bus is Idle and both  
the S and P bits are clear.  
Refer to Application Note AN578, “Use of the SSP  
Module in the I2C™ Multi-Master Environment”  
(DS00578) for more information.  
In Firmware Master mode, the SCL and SDA lines are  
manipulated by setting/clearing the corresponding TRIS  
bit(s). The output level is always low, irrespective of the  
value(s) in the corresponding PORT register bit(s).  
When transmitting a ‘1’, the TRIS bit must be set (input)  
and a ‘0’, the TRIS bit must be clear (output).  
The following events will cause the SSP Interrupt Flag  
bit, SSPIF, to be set (SSP Interrupt will occur if  
enabled):  
• Start condition  
• Stop condition  
• Data transfer byte transmitted/received  
Firmware Master Mode of operation can be done with  
either the Slave mode Idle (SSPM<3:0> = 1011), or  
with either of the Slave modes in which interrupts are  
enabled. When both master and slave functionality is  
enabled, the software needs to differentiate the  
source(s) of the interrupt.  
DS41341E-page 184  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
17.2.10 CLOCK SYNCHRONIZATION  
17.2.11 SLEEP OPERATION  
When the CKP bit is cleared, the SCL output is held low  
once it is sampled low. therefore, the CKP bit will not  
stretch the SCL line until an external I2C master device  
has already asserted the SCL line low. The SCL output  
will remain low until the CKP bit is set and all other  
devices on the I2C bus have released SCL. This  
ensures that a write to the CKP bit will not violate the  
While in Sleep mode, the I2C module can receive  
addresses of data, and when an address match or  
complete byte transfer occurs, wake the processor  
from Sleep (if SSP interrupt is enabled).  
minimum  
high  
time  
requirement  
for  
SCL  
(Figure 17-14).  
FIGURE 17-14:  
CLOCK SYNCHRONIZATION TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
SDA  
SCL  
DX  
DX-1  
Master device  
asserts clock  
CKP  
Master device  
deasserts clock  
WR  
SSPCON  
© 2009 Microchip Technology Inc.  
DS41341E-page 185  
PIC16F72X/PIC16LF72X  
REGISTER 17-3: SSPCON: SYNCHRONOUS SERIAL PORT CONTROL REGISTER (I2C MODE)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
WCOL: Write Collision Detect bit  
1= The SSPBUF register is written while it is still transmitting the previous word (must be cleared in  
software)  
0= No collision  
bit 6  
SSPOV: Receive Overflow Indicator bit  
1= A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a “don’t  
care” in Transmit mode. SSPOV must be cleared in software in either mode.  
0= No overflow  
bit 5  
SSPEN: Synchronous Serial Port Enable bit  
1= Enables the serial port and configures the SDA and SCL pins as serial port pins(2)  
0= Disables serial port and configures these pins as I/O port pins  
bit 4  
CKP: Clock Polarity Select bit  
1= Release control of SCL  
0= Holds clock low (clock stretch). (Used to ensure data setup time.)  
bit 3-0  
SSPM<3:0>: Synchronous Serial Port Mode Select bits  
0110= I2C Slave mode, 7-bit address  
0111= I2C Slave mode, 10-bit address  
1000= Reserved  
1001= Load SSPMSK register at SSPADD SFR Address(1)  
1010= Reserved  
1011= I2C Firmware Controlled Master mode (Slave Idle)  
1100= Reserved  
1101= Reserved  
1110= I2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled  
1111= I2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled  
Note 1: When this mode is selected, any reads or writes to the SSPADD SFR address accesses the SSPMSK register.  
2: When enabled, these pins must be properly configured as input or output using the associated TRIS bit.  
DS41341E-page 186  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
REGISTER 17-4: SSPSTAT: SYNCHRONOUS SERIAL PORT STATUS REGISTER (I2C MODE)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7  
SMP: SPI Data Input Sample Phase bit  
1= Slew Rate Control (limiting) disabled. Operating in I C Standard Mode (100 kHz and 1 MHz).  
0= Slew Rate Control (limiting) enabled. Operating in I C Fast Mode (400 kHz).  
2
2
bit 6  
bit 5  
CKE: SPI Clock Edge Select bit  
This bit must be maintained clear. Used in SPI mode only.  
2
D/A: DATA/ADDRESS bit (I C mode only)  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
bit 4  
bit 3  
bit 2  
P: Stop bit  
This bit is cleared when the SSP module is disabled, or when the Start bit is detected last.  
1= Indicates that a Stop bit has been detected last (this bit is ‘0’ on Reset)  
0= Stop bit was not detected last  
S: Start bit  
This bit is cleared when the SSP module is disabled, or when the Stop bit is detected last.  
1= Indicates that a Start bit has been detected last (this bit is ‘0’ on Reset)  
0= Start bit was not detected last  
R/W: READ/WRITE bit Information  
This bit holds the R/W bit information following the last address match. This bit is only valid from the address match  
to the next Start bit, Stop bit or ACK bit.  
1= Read  
0= Write  
2
bit 1  
bit 0  
UA: Update Address bit (10-bit I C mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
Receive:  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
Transmit:  
1= Transmit in progress, SSPBUF is full  
0= Transmit complete, SSPBUF is empty  
© 2009 Microchip Technology Inc.  
DS41341E-page 187  
PIC16F72X/PIC16LF72X  
REGISTER 17-5: SSPMSK: SSP MASK REGISTER  
R/W-1  
MSK7  
R/W-1  
MSK6  
R/W-1  
MSK5  
R/W-1  
MSK4  
R/W-1  
MSK3  
R/W-1  
MSK2  
R/W-1  
MSK1  
R/W-1  
MSK0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-1  
bit 0  
MSK<7:1>: Mask bits  
2
1= The received address bit n is compared to SSPADD<n> to detect I C address match  
0= The received address bit n is not used to detect I C address match  
2
2
MSK<0>: Mask bit for I C Slave Mode, 10-bit Address  
2
I C Slave Mode, 10-bit Address (SSPM<3:0> = 0111):  
2
1= The received address bit ‘0’ is compared to SSPADD<0> to detect I C address match  
0= The received address bit ‘0’ is not used to detect I C address match  
2
All other SSP modes: this bit has no effect.  
REGISTER 17-6: SSPADD: SSP I2C ADDRESS REGISTER  
R/W-0  
ADD7  
R/W-0  
ADD6  
R/W-0  
ADD5  
R/W-0  
ADD4  
R/W-0  
ADD3  
R/W-0  
ADD2  
R/W-0  
ADD1  
R/W-0  
ADD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7-0  
ADD<7:0>: Address bits  
Received address  
TABLE 17-7: REGISTERS ASSOCIATED WITH I2C OPERATION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
ADIE  
T0IE  
RCIF  
RCIE  
INTE  
TXIF  
TXIE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
TMR1GIF  
TMR1GIE  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
PIE1  
SSPBUF  
SSPADD  
SSPCON  
Synchronous Serial Port Receive Buffer/Transmit Register  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
2
Synchronous Serial Port (I C mode) Address Register  
WCOL  
SSPOV SSPEN  
CKP  
SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 0000 0000  
(2)  
2
SSPMSK  
SSPSTAT  
TRISC  
Synchronous Serial Port (I C mode) Address Mask Register  
1111 1111 1111 1111  
0000 0000 0000 0000  
(1)  
(1)  
SMP  
TRISC7  
CKE  
D/A  
P
S
R/W  
UA  
BF  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
2
Legend:  
x= unknown, u= unchanged, -= unimplemented locations read as ‘0’. Shaded cells are not used by SSP module in I C  
mode.  
2
Note 1: Maintain these bits clear in I C mode.  
2: Accessible only when SSPM<3:0> = 1001.  
DS41341E-page 188  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
The value written to the PMADRH:PMADRL register  
pair determines which program memory location is  
read. The read operation will be initiated by setting the  
RD bit of the PMCON1 register. The program memory  
flash controller takes two instructions to complete the  
read, causing the second instruction after the setting  
the RD bit will be ignored. To avoid conflict with pro-  
gram execution, it is recommended that the two instruc-  
tions following the setting of the RD bit are NOP. When  
the read completes, the result is placed in the  
18.0 PROGRAM MEMORY READ  
The Flash program memory is readable during normal  
operation over the full VDD range of the device. To read  
data from Program Memory, five Special Function  
Registers (SFRs) are used:  
• PMCON1  
• PMDATL  
• PMDATH  
• PMADRL  
• PMADRH  
PMDATLH:PMDATL  
register  
pair.  
Refer  
to  
Example 18-1 for sample code.  
Note:  
Code-protect does not effect the CPU  
from performing a read operation on the  
program memory. For more information,  
refer to Section 8.2 “Code Protection”  
EXAMPLE 18-1:  
PROGRAM MEMORY READ  
BANKSEL PMADRL  
;
MOVF  
MS_PROG_ADDR, W;  
MOVWF  
MOVF  
MOVWF  
PMADRH  
LS_PROG_ADDR, W;  
PMADRL ;LS Byte of Program Address to read  
;MS Byte of Program Address to read  
BANKSEL PMCON1  
;
BSF  
NOP  
NOP  
PMCON1, RD  
;Initiate Read  
;Any instructions here are ignored as program  
;memory is read in second cycle after BSF  
BANKSEL PMDATL  
;
MOVF  
PMDATL, W  
;W = LS Byte of Program Memory Read  
MOVWF  
MOVF  
MOVWF  
LOWPMBYTE  
PMDATH, W  
HIGHPMBYTE  
;
;W = MS Byte of Program Memory Read  
;
© 2009 Microchip Technology Inc.  
DS41341E-page 189  
PIC16F72X/PIC16LF72X  
REGISTER 18-1: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER  
R-1  
U-0  
U-0  
—l  
U-0  
U-0  
U-0  
U-0  
R/S-0  
RD  
Reserved  
bit 7  
bit 0  
Legend:  
S = Setable bit, cleared in hardware  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7  
Reserved: Read as ‘1’. Maintain this bit set.  
Unimplemented: Read as ‘0’  
RD: Read Control bit  
bit 6-1  
bit 0  
1= Initiates an program memory read (The RD is cleared in hardware; the RD bit can only be set (not  
cleared) in software).  
0= Does not initiate a program memory read  
REGISTER 18-2: PMDATH: PROGRAM MEMORY DATA HIGH REGISTER  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
PMD9  
R/W-x  
PMD8  
PMD13  
PMD12  
PMD11  
PMD10  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
PMD<13:8>: The value of the program memory word pointed to by PMADRH and PMADRL after a  
program memory read command.  
REGISTER 18-3: PMDATL: PROGRAM MEMORY DATA LOW REGISTER  
R/W-x  
PMD7  
R/W-x  
PMD6  
R/W-x  
PMD5  
R/W-x  
PMD4  
R/W-x  
PMD3  
R/W-x  
PMD2  
R/W-x  
PMD1  
R/W-x  
PMD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
PMD<7:0>: The value of the program memory word pointed to by PMADRH and PMADRL after a  
program memory read command.  
DS41341E-page 190  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
REGISTER 18-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH REGISTER  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
PMA9  
R/W-x  
PMA8  
PMA12  
PMA11  
PMA10  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
PMA<12:8>: Program Memory Read Address bits  
REGISTER 18-5: PMADRL: PROGRAM MEMORY ADDRESS LOW REGISTER  
R/W-x  
PMA7  
R/W-x  
PMA6  
R/W-x  
PMA5  
R/W-x  
PMA4  
R/W-x  
PMA3  
R/W-x  
PMA2  
R/W-x  
PMA1  
R/W-x  
PMA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
PMA<7:0>: Program Memory Read Address bits  
TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH PROGRAM MEMORY READ  
Value on  
POR, BOR  
Value on all  
other Resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMCON1  
PMADRH  
PMADRL  
PMDATH  
PMDATL  
Legend:  
Reserved  
RD  
1--- ---0  
1--- ---0  
---x xxxx  
xxxx xxxx  
--xx xxxx  
xxxx xxxx  
Program Memory Read Address Register High Byte ---x xxxx  
Program Memory Read Address Register Low Byte  
Program Memory Read Data Register High Byte  
Program Memory Read Data Register Low Byte  
xxxx xxxx  
--xx xxxx  
xxxx xxxx  
x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used by the Program Memory  
Read.  
© 2009 Microchip Technology Inc.  
DS41341E-page 191  
PIC16F72X/PIC16LF72X  
NOTES:  
DS41341E-page 192  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
The following peripheral interrupts can wake the device  
from Sleep:  
19.0 POWER-DOWN MODE (SLEEP)  
The Power-down mode is entered by executing a  
SLEEPinstruction.  
1. TMR1 Interrupt. Timer1 must be operating as an  
asynchronous counter.  
If the Watchdog Timer is enabled:  
2. USART Receive Interrupt (Synchronous Slave  
mode only)  
• WDT will be cleared but keeps running.  
• PD bit of the STATUS register is cleared.  
• TO bit of the STATUS register is set.  
• Oscillator driver is turned off.  
3. A/D conversion (when A/D clock source is RC)  
4. Interrupt-on-change  
5. External Interrupt from INT pin  
6. Capture event on CCP1 or CCP2  
7. SSP Interrupt in SPI or I2C Slave mode  
• Timer1 oscillator is unaffected  
• I/O ports maintain the status they had before  
SLEEPwas executed (driving high, low or high-  
impedance).  
Other peripherals cannot generate interrupts since  
during Sleep, no on-chip clocks are present.  
For lowest current consumption in this mode, all I/O  
pins should be either at VDD or VSS, with no external  
circuitry drawing current from the I/O pin. I/O pins that  
are high-impedance inputs should be pulled high or low  
externally to avoid switching currents caused by float-  
ing inputs. The T0CKI input should also be at VDD or  
VSS for lowest current consumption. The contribution  
from on-chip pull-ups on PORTB should be considered.  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is prefetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction, then branches to the interrupt  
address (0004h). In cases where the execution of the  
instruction following SLEEP is not desirable, the user  
should have a NOPafter the SLEEPinstruction.  
The MCLR pin must be at a logic high level when  
external MCLR is enabled.  
Note:  
A Reset generated by a WDT time-out  
does not drive MCLR pin low.  
Note:  
If the global interrupts are disabled (GIE is  
cleared), but any interrupt source has both  
its interrupt enable bit and the correspond-  
ing interrupt flag bits set, the device will  
immediately wake-up from Sleep. The  
SLEEPinstruction is completely executed.  
19.1 Wake-up from Sleep  
The device can wake-up from Sleep through one of the  
following events:  
1. External Reset input on MCLR pin.  
2. Watchdog Timer wake-up (if WDT was  
enabled).  
The WDT is cleared when the device wakes up from  
Sleep, regardless of the source of wake-up.  
3. Interrupt from RB0/INT pin, PORTB change or a  
peripheral interrupt.  
The first event will cause a device Reset. The two latter  
events are considered a continuation of program  
execution. The TO and PD bits in the STATUS register  
can be used to determine the cause of device Reset.  
The PD bit, which is set on power-up, is cleared when  
Sleep is invoked. TO bit is cleared if WDT wake-up  
occurred.  
© 2009 Microchip Technology Inc.  
DS41341E-page 193  
PIC16F72X/PIC16LF72X  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEP instruction completes.  
To determine whether a SLEEP instruction executed,  
test the PD bit. If the PD bit is set, the SLEEPinstruction  
was executed as a NOP.  
19.2 Wake-up Using Interrupts  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
• If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will  
complete as a NOP. Therefore, the WDT and WDT  
prescaler and postscaler (if enabled) will not be  
cleared, the TO bit will not be set and the PD bit  
will not be cleared.  
To ensure that the WDT is cleared, a CLRWDTinstruction  
should be executed before a SLEEPinstruction.  
• If the interrupt occurs during or after the  
execution of a SLEEPinstruction, the device will  
immediately wake-up from Sleep. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT prescaler  
and postscaler (if enabled) will be cleared, the TO  
bit will be set and the PD bit will be cleared.  
FIGURE 19-1:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1(1)  
CLKOUT(4)  
INT pin  
(2)  
TOST  
INTF flag  
(INTCON reg.)  
Interrupt Latency(3)  
GIE bit  
(INTCON reg.)  
Processor in  
Sleep  
Instruction Flow  
PC  
PC  
PC + 1  
PC + 2  
PC + 2  
PC + 2  
0004h  
0005h  
Instruction  
Fetched  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = Sleep  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Sleep  
Inst(PC + 1)  
Inst(PC - 1)  
Inst(0004h)  
Note 1:  
XT, HS or LP Oscillator mode assumed.  
TOST = 1024 TOSC (drawing not to scale). This delay does not apply to EC and RC Oscillator modes.  
GIE = 1assumed. In this case after wake-up, the processor jumps to 0004h. If GIE = 0, execution will continue in-line.  
2:  
3:  
4:  
CLKOUT is not available in XT, HS, LP or EC Oscillator modes, but shown here for timing reference.  
TABLE 19-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE  
Value on  
POR, BOR  
Value on all  
other Resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IOCB  
IOCB7  
IOCB6  
IOCB5  
IOCB4  
IOCB3  
IOCB2  
IOCB1  
IOCB0  
0000 0000  
0000 0000  
0000 0000  
---- ---0  
0000 0000  
---- ---0  
0000 0000  
0000 0000  
0000 0000  
---- ---0  
0000 0000  
---- ---0  
INTCON  
PIE1  
GIE  
TMR1GIE  
PEIE  
ADIE  
T0IE  
RCIE  
INTE  
TXIE  
RBIE  
SSPIE  
T0IF  
CCP1IE  
INTF  
TMR2IE  
RBIF  
TMR1IE  
CCP2IE  
TMR1IF  
CCP2IF  
PIE2  
PIR1  
TMR1GIF  
ADIF  
RCIF  
TXIF  
SSPIF  
CCP1IF  
TMR2IF  
PIR2  
Legend:  
x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used in Power-Down mode.  
DS41341E-page 194  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
The device is placed into Program/Verify mode by  
holding the ICSPCLK and ICSPDAT pins low then  
raising the voltage on MCLR/VPP from 0v to VPP. In  
Program/Verify mode the Program Memory, User IDs  
and the Configuration Words are programmed through  
20.0 IN-CIRCUIT SERIAL  
PROGRAMMING™ (ICSP™)  
ICSP™ programming allows customers to manufacture  
circuit boards with unprogrammed devices. Programming  
can be done after the assembly process allowing the  
device to be programmed with the most recent firmware  
or a custom firmware. Five pins are needed for ICSP™  
programming:  
serial communications. The ICSPDAT pin is  
a
bidirectional I/O used for transferring the serial data and  
the ISCPCLK pin is the clock input. For more information  
on ICSP™ refer to the “PIC16F72x/PIC16LF72x  
Programming Specification” (DS41332).  
• ICSPCLK  
• ICSPDAT  
• MCLR/VPP  
• VDD  
Note:  
The ICD 2 produces a VPP voltage greater  
than the maximum VPP specification of the  
PIC16F72X/PIC16LF72X. When using  
this programmer, an external circuit, such  
as the AC164112 MPLAB ICD 2 VPP volt-  
age limiter, is required to keep the VPP  
voltage within the device specifications.  
• VSS  
FIGURE 20-1:  
TYPICAL CONNECTION FOR ICSP™ PROGRAMMING  
External  
Programming  
Signals  
Device to be  
Programmed  
VDD  
VDD  
VDD  
10k  
VPP  
MCLR/VPP  
VSS  
GND  
Data  
ICSPDAT  
ICSPCLK  
Clock  
*
*
*
To Normal Connections  
Isolation devices (as required).  
*
© 2009 Microchip Technology Inc.  
DS41341E-page 195  
PIC16F72X/PIC16LF72X  
NOTES:  
DS41341E-page 196  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
TABLE 21-1: OPCODE FIELD  
DESCRIPTIONS  
21.0 INSTRUCTION SET SUMMARY  
The PIC16F72X/PIC16LF72X instruction set is highly  
orthogonal and is comprised of three basic categories:  
Field  
Description  
f
W
b
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Byte-oriented operations  
Bit-oriented operations  
Literal and control operations  
Bit address within an 8-bit file register  
Literal field, constant data or label  
k
Each PIC16 instruction is a 14-bit word divided into an  
opcode, which specifies the instruction type and one or  
more operands, which further specify the operation of  
the instruction. The formats for each of the categories  
is presented in Figure 21-1, while the various opcode  
fields are summarized in Table 21-1.  
x
Don’t care location (= 0or 1).  
The assembler will generate code with x = 0.  
It is the recommended form of use for  
compatibility with all Microchip software tools.  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1.  
Table 21-2 lists the instructions recognized by the  
MPASMTM assembler.  
For byte-oriented instructions, ‘f’ represents a file  
register designator and ‘d’ represents a destination  
designator. The file register designator specifies which  
file register is to be used by the instruction.  
PC  
TO  
C
Program Counter  
Time-out bit  
Carry bit  
DC  
Z
Digit carry bit  
Zero bit  
The destination designator specifies where the result of  
the operation is to be placed. If ‘d’ is zero, the result is  
placed in the W register. If ‘d’ is one, the result is placed  
in the file register specified in the instruction.  
PD  
Power-down bit  
FIGURE 21-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
For bit-oriented instructions, ‘b’ represents a bit field  
designator, which selects the bit affected by the  
operation, while ‘f’ represents the address of the file in  
which the bit is located.  
Byte-oriented file register operations  
13  
8
7
6
0
For literal and control operations, ‘k’ represents an  
8-bit or 11-bit constant, or literal value.  
OPCODE  
d
f (FILE #)  
d = 0for destination W  
d = 1for destination f  
f = 7-bit file register address  
One instruction cycle consists of four oscillator periods;  
for an oscillator frequency of 4 MHz, this gives a  
nominal instruction execution time of 1 μs. All  
instructions are executed within a single instruction  
cycle, unless a conditional test is true, or the program  
counter is changed as a result of an instruction. When  
this occurs, the execution takes two instruction cycles,  
with the second cycle executed as a NOP.  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
0
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
All instruction examples use the format ‘0xhh’ to  
represent a hexadecimal number, where ‘h’ signifies a  
hexadecimal digit.  
Literal and control operations  
General  
13  
8
7
0
0
21.1 Read-Modify-Write Operations  
OPCODE  
k (literal)  
Any instruction that specifies a file register as part of  
the instruction performs a Read-Modify-Write (R-M-W)  
operation. The register is read, the data is modified,  
and the result is stored according to either the instruc-  
tion, or the destination designator ‘d’. A read operation  
is performed on a register even if the instruction writes  
to that register.  
k = 8-bit immediate value  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
k (literal)  
For example, a CLRF PORTB instruction will read  
PORTB, clear all the data bits, then write the result  
back to PORTB. This example would have the unin-  
tended consequence of clearing the condition that set  
the RBIF flag.  
© 2009 Microchip Technology Inc.  
DS41341E-page 197  
PIC16F72X/PIC16LF72X  
TABLE 21-2: PIC16F72X/PIC16LF72X INSTRUCTION SET  
14-Bit Opcode  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
DECFSZ  
INCF  
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00 0111 dfff ffff C, DC, Z  
1, 2  
1, 2  
2
00 0101 dfff ffff  
00 0001 lfff ffff  
00 0001 0xxx xxxx  
00 1001 dfff ffff  
00 0011 dfff ffff  
00 1011 dfff ffff  
00 1010 dfff ffff  
00 1111 dfff ffff  
00 0100 dfff ffff  
00 1000 dfff ffff  
00 0000 lfff ffff  
00 0000 0xx0 0000  
00 1101 dfff ffff  
00 1100 dfff ffff  
Z
Z
Z
Z
Z
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1, 2  
1, 2  
1, 2, 3  
1, 2  
1, 2, 3  
1, 2  
1, 2  
Z
Z
Z
Move W to f  
No Operation  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
00 0010 dfff ffff C, DC, Z  
00 1110 dfff ffff  
00 0110 dfff ffff  
Z
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
1, 2  
1, 2  
3
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
k
k
k
k
k
k
Add literal and W  
AND literal with W  
Call Subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C, DC, Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
Z
00 0000 0110 0100 TO, PD  
10 1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into Standby mode  
Subtract W from literal  
Exclusive OR literal with W  
00 0000 0110 0011 TO, PD  
11 110x kkkk kkkk C, DC, Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTA, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an external  
device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if  
assigned to the Timer0 module.  
3: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
DS41341E-page 198  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
21.2 Instruction Descriptions  
BCF  
Bit Clear f  
ADDLW  
Add literal and W  
Syntax:  
[ label ] BCF f,b  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) + k (W)  
C, DC, Z  
Operation:  
0(f<b>)  
Status Affected:  
Description:  
None  
The contents of the W register  
are added to the eight-bit literal ‘k’  
and the result is placed in the  
W register.  
Bit ‘b’ in register ‘f’ is cleared.  
BSF  
Bit Set f  
ADDWF  
Add W and f  
Syntax:  
[ label ] BSF f,b  
Syntax:  
[ label ] ADDWF f,d  
Operands:  
0 f 127  
0 b 7  
Operands:  
0 f 127  
d ∈ [0,1]  
Operation:  
1(f<b>)  
Operation:  
(W) + (f) (destination)  
Status Affected:  
Description:  
None  
Status Affected: C, DC, Z  
Bit ‘b’ in register ‘f’ is set.  
Description:  
Add the contents of the W register  
with register ‘f’. If ‘d’ is ‘0’, the  
result is stored in the W register. If  
‘d’ is ‘1’, the result is stored back  
in register ‘f’.  
BTFSC  
Bit Test f, Skip if Clear  
ANDLW  
AND literal with W  
Syntax:  
[ label ] BTFSC f,b  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .AND. (k) (W)  
Operation:  
skip if (f<b>) = 0  
Z
Status Affected: None  
The contents of W register are  
AND’ed with the eight-bit literal  
‘k’. The result is placed in the W  
register.  
Description: If bit ‘b’ in register ‘f’ is ‘1’, the next  
instruction is executed.  
If bit ‘b’, in register ‘f’, is ‘0’, the  
next instruction is discarded, and  
a NOPis executed instead, making  
this a 2-cycle instruction.  
ANDWF  
AND W with f  
Syntax:  
[ label ] ANDWF f,d  
Operands:  
0 f 127  
d ∈ [0,1]  
Operation:  
(W) .AND. (f) (destination)  
Status Affected:  
Description:  
Z
AND the W register with register  
‘f’. If ‘d’ is ‘0’, the result is stored in  
the W register. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’.  
© 2009 Microchip Technology Inc.  
DS41341E-page 199  
PIC16F72X/PIC16LF72X  
CLRWDT  
Clear Watchdog Timer  
BTFSS  
Bit Test f, Skip if Set  
Syntax:  
[ label ] CLRWDT  
Syntax:  
[ label ] BTFSS f,b  
Operands:  
Operation:  
None  
Operands:  
0 f 127  
0 b < 7  
00h WDT  
0WDT prescaler,  
1TO  
Operation:  
skip if (f<b>) = 1  
Status Affected: None  
1PD  
Description:  
If bit ‘b’ in register ‘f’ is ‘0’, the next  
instruction is executed.  
Status Affected: TO, PD  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
prescaler of the WDT.  
If bit ‘b’ is ‘1’, then the next  
instruction is discarded and a NOP  
is executed instead, making this a  
2-cycle instruction.  
Status bits TO and PD are set.  
CALL  
Call Subroutine  
COMF  
Complement f  
Syntax:  
[ label ] CALL k  
0 k 2047  
Syntax:  
[ label ] COMF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
Operation:  
(f) (destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
The contents of register ‘f’ are  
complemented. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’,  
the result is stored back in  
register ‘f’.  
Description:  
Call Subroutine. First, return  
address (PC + 1) is pushed onto  
the stack. The eleven-bit  
immediate address is loaded into  
PC bits <10:0>. The upper bits of  
the PC are loaded from PCLATH.  
CALLis a two-cycle instruction.  
CLRF  
Clear f  
DECF  
Decrement f  
Syntax:  
[ label ] CLRF  
0 f 127  
f
Syntax:  
[ label ] DECF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
00h (f)  
1Z  
Operation:  
(f) - 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
The contents of register ‘f’ are  
cleared and the Z bit is set.  
Decrement register ‘f’. If ‘d’ is ‘0’,  
the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
CLRW  
Clear W  
Syntax:  
[ label ] CLRW  
Operands:  
Operation:  
None  
00h (W)  
1Z  
Status Affected:  
Description:  
Z
W register is cleared. Zero bit (Z)  
is set.  
DS41341E-page 200  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
DECFSZ  
Decrement f, Skip if 0  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
[ label ] DECFSZ f,d  
Syntax:  
[ label ] INCFSZ f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected: None  
Status Affected: None  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
If the result is ‘1’, the next  
instruction is executed. If the  
result is ‘0’, then a NOPis  
executed instead, making it a  
2-cycle instruction.  
If the result is ‘1’, the next  
instruction is executed. If the  
result is ‘0’, a NOPis executed  
instead, making it a 2-cycle  
instruction.  
GOTO  
Unconditional Branch  
IORLW  
Inclusive OR literal with W  
Syntax:  
[ label ] GOTO  
0 k 2047  
k
Syntax:  
[ label ] IORLW k  
0 k 255  
Operands:  
Operands:  
Operation:  
Status Affected:  
Description:  
Operation:  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
(W) .OR. k (W)  
Z
Status Affected: None  
The contents of the W register are  
OR’ed with the eight-bit literal ‘k’.  
The result is placed in the  
W register.  
Description:  
GOTOis an unconditional branch.  
The eleven-bit immediate value is  
loaded into PC bits <10:0>. The  
upper bits of PC are loaded from  
PCLATH<4:3>. GOTOis a  
two-cycle instruction.  
IORWF  
Inclusive OR W with f  
INCF  
Increment f  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
[ label ] INCF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) .OR. (f) (destination)  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Inclusive OR the W register with  
register ‘f’. If ‘d’ is ‘0’, the result is  
placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
© 2009 Microchip Technology Inc.  
DS41341E-page 201  
PIC16F72X/PIC16LF72X  
MOVWF  
Move W to f  
[ label ] MOVWF  
0 f 127  
(W) (f)  
MOVF  
Move f  
Syntax:  
f
Syntax:  
Operands:  
[ label ] MOVF f,d  
Operands:  
Operation:  
Status Affected:  
Description:  
0 f 127  
d [0,1]  
Operation:  
(f) (dest)  
None  
Status Affected:  
Description:  
Z
Move data from W register to  
register ‘f’.  
The contents of register f is  
moved to a destination dependent  
upon the status of d. If d = 0,  
destination is W register. If d = 1,  
the destination is file register f  
itself. d = 1is useful to test a file  
register since status flag Z is  
affected.  
Words:  
1
1
Cycles:  
Example:  
MOVW  
F
OPTION  
Before Instruction  
OPTION = 0xFF  
Words:  
1
1
W
=
0x4F  
After Instruction  
Cycles:  
Example:  
OPTION = 0x4F  
W
MOVF  
FSR, 0  
=
0x4F  
After Instruction  
W
=
value in FSR  
register  
Z
=
1
MOVLW  
Syntax:  
Move literal to W  
NOP  
No Operation  
[ label ] MOVLW k  
0 k 255  
Syntax:  
[ label ] NOP  
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
Words:  
None  
k (W)  
No operation  
Status Affected: None  
None  
Description:  
The eight-bit literal ‘k’ is loaded into  
W register. The “don’t cares” will  
assemble as ‘0’s.  
No operation.  
1
Cycles:  
1
Words:  
1
1
NOP  
Example:  
Cycles:  
Example:  
MOVLW  
0x5A  
After Instruction  
W
=
0x5A  
DS41341E-page 202  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
RETFIE  
Return from Interrupt  
[ label ] RETFIE  
None  
RETLW  
Return with literal in W  
[ label ] RETLW k  
0 k 255  
Syntax:  
Syntax:  
Operands:  
Operation:  
Operands:  
Operation:  
TOS PC,  
1GIE  
k (W);  
TOS PC  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
None  
Return from Interrupt. Stack is  
POPed and Top-of-Stack (TOS) is  
loaded in the PC. Interrupts are  
enabled by setting Global  
Interrupt Enable bit, GIE  
The W register is loaded with the  
eight bit literal ‘k’. The program  
counter is loaded from the top of  
the stack (the return address).  
This is a two-cycle instruction.  
(INTCON<7>). This is a two-cycle  
instruction.  
Words:  
1
2
Cycles:  
Example:  
Words:  
1
CALL TABLE;W contains  
table  
Cycles:  
Example:  
2
RETFIE  
;offset value  
;W now has table value  
TABLE  
After Interrupt  
PC = TOS  
GIE =  
1
ADDWF PC ;W = offset  
RETLW k1 ;Begin table  
RETLW k2  
;
RETLW kn ; End of table  
Before Instruction  
W
=
0x07  
After Instruction  
W
=
value of k8  
RETURN  
Return from Subroutine  
Syntax:  
[ label ] RETURN  
None  
Operands:  
Operation:  
TOS PC  
Status Affected: None  
Description: Return from subroutine. The stack  
is POPed and the top of the stack  
(TOS) is loaded into the program  
counter. This is a two-cycle  
instruction.  
© 2009 Microchip Technology Inc.  
DS41341E-page 203  
PIC16F72X/PIC16LF72X  
RLF  
Rotate Left f through Carry  
SLEEP  
Enter Sleep mode  
[ label ] SLEEP  
None  
Syntax:  
Operands:  
[ label ]  
RLF f,d  
Syntax:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
00h WDT,  
0WDT prescaler,  
1TO,  
Operation:  
See description below  
C
Status Affected:  
Description:  
0PD  
The contents of register ‘f’ are  
rotated one bit to the left through  
the Carry flag. If ‘d’ is ‘0’, the  
result is placed in the W register.  
If ‘d’ is ‘1’, the result is stored  
back in register ‘f’.  
Status Affected:  
Description:  
TO, PD  
The power-down Status bit, PD is  
cleared. Time-out Status bit, TO  
is set. Watchdog Timer and its  
prescaler are cleared.  
The processor is put into Sleep  
mode with the oscillator stopped.  
C
Register f  
Words:  
1
1
Cycles:  
Example:  
RLF  
REG1,0  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
SUBLW  
Subtract W from literal  
RRF  
Rotate Right f through Carry  
Syntax:  
[ label ] SUBLW k  
0 k 255  
Syntax:  
[ label ] RRF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
k - (W) → (W)  
Operation:  
See description below  
C
Status Affected: C, DC, Z  
Status Affected:  
Description:  
Description: The W register is subtracted (2’s  
complement method) from the  
eight-bit literal ‘k’. The result is  
placed in the W register.  
The contents of register ‘f’ are  
rotated one bit to the right through  
the Carry flag. If ‘d’ is ‘0’, the  
result is placed in the W register.  
If ‘d’ is ‘1’, the result is placed  
back in register ‘f’.  
C = 0  
W > k  
C = 1  
W k  
DC = 0  
DC = 1  
W<3:0> > k<3:0>  
W<3:0> k<3:0>  
C
Register f  
DS41341E-page 204  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
SUBWF  
Subtract W from f  
XORLW  
Exclusive OR literal with W  
Syntax:  
[ label ] SUBWF f,d  
Syntax:  
[ label ] XORLW k  
0 k 255  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .XOR. k → (W)  
Z
Operation:  
(f) - (W) → (destination)  
Status Affected: C, DC, Z  
The contents of the W register  
are XOR’ed with the eight-bit  
literal ‘k’. The result is placed in  
the W register.  
Description:  
Subtract (2’s complement method)  
W register from register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f.  
C = 0  
W > f  
C = 1  
W f  
DC = 0  
DC = 1  
W<3:0> > f<3:0>  
W<3:0> f<3:0>  
SWAPF  
Swap Nibbles in f  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] SWAPF f,d  
Syntax:  
[ label ] XORWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
Operation:  
(W) .XOR. (f) → (destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
Exclusive OR the contents of the  
W register with register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
Description: The upper and lower nibbles of  
register ‘f’ are exchanged. If ‘d’ is  
0’, the result is placed in the W  
register. If ‘d’ is ‘1’, the result is  
placed in register ‘f’.  
© 2009 Microchip Technology Inc.  
DS41341E-page 205  
PIC16F72X/PIC16LF72X  
NOTES:  
DS41341E-page 206  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
1.1  
MPLAB Integrated Development  
Environment Software  
1.0  
DEVELOPMENT SUPPORT  
The PIC® microcontrollers and dsPIC® digital signal  
controllers are supported with a full range of software  
and hardware development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16/32-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• A single graphical interface to all debugging tools  
- Simulator  
• Compilers/Assemblers/Linkers  
- MPLAB C Compiler for Various Device  
Families  
- Programmer (sold separately)  
- In-Circuit Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- HI-TECH C for Various Device Families  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
• Customizable data windows with direct edit of  
contents  
• Simulators  
• High-level source code debugging  
• Mouse over variable inspection  
- MPLAB SIM Software Simulator  
• Emulators  
• Drag and drop variables from source to watch  
windows  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers  
• Extensive on-line help  
• Integration of select third party tools, such as  
IAR C Compilers  
- MPLAB ICD 3  
- PICkit™ 3 Debug Express  
• Device Programmers  
- PICkit™ 2 Programmer  
- MPLAB PM3 Device Programmer  
The MPLAB IDE allows you to:  
• Edit your source files (either C or assembly)  
• One-touch compile or assemble, and download to  
emulator and simulator tools (automatically  
updates all project information)  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits, and Starter Kits  
• Debug using:  
- Source files (C or assembly)  
- Mixed C and assembly  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
© 2009 Microchip Technology Inc.  
DS41341E-page 207  
PIC16F72X/PIC16LF72X  
1.2  
MPLAB C Compilers for Various  
Device Families  
1.5  
MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC18,  
PIC24 and PIC32 families of microcontrollers and the  
dsPIC30 and dsPIC33 families of digital signal control-  
lers. These compilers provide powerful integration  
capabilities, superior code optimization and ease of  
use.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
1.3  
HI-TECH C for Various Device  
Families  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The HI-TECH C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC  
family of microcontrollers and the dsPIC family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, omniscient code generation  
and ease of use.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
1.6  
MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The compilers include a macro assembler, linker, pre-  
processor, and one-step driver, and can run on multiple  
platforms.  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC devices. MPLAB C Compiler uses  
the assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
1.4  
MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• Rich directive set  
• Flexible macro language  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• MPLAB IDE compatibility  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multi-purpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS41341E-page 208  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
1.7  
MPLAB SIM Software Simulator  
1.9  
MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
MPLAB ICD 3 In-Circuit Debugger System is Micro-  
chip's most cost effective high-speed hardware  
debugger/programmer for Microchip Flash Digital Sig-  
nal Controller (DSC) and microcontroller (MCU)  
devices. It debugs and programs PIC® Flash microcon-  
trollers and dsPIC® DSCs with the powerful, yet easy-  
to-use graphical user interface of MPLAB Integrated  
Development Environment (IDE).  
The MPLAB ICD 3 In-Circuit Debugger probe is con-  
nected to the design engineer's PC using a high-speed  
USB 2.0 interface and is connected to the target with a  
connector compatible with the MPLAB ICD 2 or MPLAB  
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all  
MPLAB ICD 2 headers.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
1.10 PICkit 3 In-Circuit Debugger/  
Programmer and  
1.8  
MPLAB REAL ICE In-Circuit  
Emulator System  
PICkit 3 Debug Express  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC® and dsPIC® Flash microcontrollers at a  
most affordable price point using the powerful graphical  
user interface of the MPLAB Integrated Development  
Environment (IDE). The MPLAB PICkit 3 is connected  
to the design engineer's PC using a full speed USB  
interface and can be connected to the target via an  
Microchip debug (RJ-11) connector (compatible with  
MPLAB ICD 3 and MPLAB REAL ICE). The connector  
uses two device I/O pins and the reset line to imple-  
ment in-circuit debugging and In-Circuit Serial Pro-  
gramming™.  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The emulator is connected to the design engineer’s PC  
using a high-speed USB 2.0 interface and is connected  
to the target with either a connector compatible with in-  
circuit debugger systems (RJ11) or with the new high-  
speed, noise tolerant, Low-Voltage Differential Signal  
(LVDS) interconnection (CAT5).  
The PICkit 3 Debug Express include the PICkit 3, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
The emulator is field upgradable through future firmware  
downloads in MPLAB IDE. In upcoming releases of  
MPLAB IDE, new devices will be supported, and new  
features will be added. MPLAB REAL ICE offers signifi-  
cant advantages over competitive emulators including  
low-cost, full-speed emulation, run-time variable  
watches, trace analysis, complex breakpoints, a rugge-  
dized probe interface and long (up to three meters) inter-  
connection cables.  
© 2009 Microchip Technology Inc.  
DS41341E-page 209  
PIC16F72X/PIC16LF72X  
1.11 PICkit 2 Development  
Programmer/Debugger and  
PICkit 2 Debug Express  
1.13 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
The PICkit™ 2 Development Programmer/Debugger is  
a low-cost development tool with an easy to use inter-  
face for programming and debugging Microchip’s Flash  
families of microcontrollers. The full featured  
Windows® programming interface supports baseline  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
(PIC10F,  
PIC12F5xx,  
PIC16F5xx),  
midrange  
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,  
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit  
microcontrollers, and many Microchip Serial EEPROM  
products. With Microchip’s powerful MPLAB Integrated  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
Development Environment (IDE) the PICkit™  
2
enables in-circuit debugging on most PIC® microcon-  
trollers. In-Circuit-Debugging runs, halts and single  
steps the program while the PIC microcontroller is  
embedded in the application. When halted at a break-  
point, the file registers can be examined and modified.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
The PICkit 2 Debug Express include the PICkit 2, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
1.12 MPLAB PM3 Device Programmer  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an MMC card for file  
storage and data applications.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS41341E-page 210  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
23.0 ELECTRICAL SPECIFICATIONS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias....................................................................................................... -40°C to +125°C  
Storage temperature ........................................................................................................................ -65°C to +150°C  
Voltage on VDD with respect to VSS, PIC16F72X ............................................................................... -0.3V to +6.5V  
Voltage on VCAP pin with respect to VSS, PIC16F72X ....................................................................... -0.3V to +4.0V  
Voltage on VDD with respect to VSS, PIC16LF72X ............................................................................. -0.3V to +4.0V  
Voltage on MCLR with respect to Vss ................................................................................................. -0.3V to +9.0V  
Voltage on all other pins with respect to VSS ........................................................................... -0.3V to (VDD + 0.3V)  
Total power dissipation(1) ...............................................................................................................................800 mW  
Maximum current out of VSS pin ...................................................................................................................... 95 mA  
Maximum current into VDD pin ......................................................................................................................... 70 mA  
Clamp current, IK (VPIN < 0 or VPIN > VDD)................................................................................................................± 20 mA  
Maximum output current sunk by any I/O pin....................................................................................................25 mA  
Maximum output current sourced by any I/O pin .............................................................................................. 25 mA  
Maximum current sunk by all ports(2), -40°C TA +85°C for industrial ........................................................ 200 mA  
Maximum current sunk by all ports(2), -40°C TA +125°C for extended........................................................ 90 mA  
Maximum current sourced by all ports(2), 40°C TA +85°C for industrial ................................................... 140 mA  
Maximum current sourced by all ports(2), -40°C TA +125°C for extended................................................... 65 mA  
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOl x  
IOL).  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for  
extended periods may affect device reliability.  
© 2009 Microchip Technology Inc.  
DS41341E-page 211  
PIC16F72X/PIC16LF72X  
23.1 DC Characteristics: PIC16F72X/PIC16LF72X-I/E (Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF72X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
PIC16F72X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param.  
No.  
Sym.  
Characteristic  
Supply Voltage  
Min.  
Typ† Max. Units  
Conditions  
D001  
VDD  
PIC16LF72X  
1.8  
1.8  
2.3  
2.5  
3.6  
3.6  
3.6  
3.6  
V
FOSC 16 MHz: HFINTOSC, EC  
FOSC 4 MHz  
FOSC 20 MHz, EC  
FOSC 20 MHz, HS  
V
V
V
D001  
PIC16F72X  
1.8  
1.8  
2.3  
2.5  
5.5  
5.5  
5.5  
5.5  
V
V
V
V
FOSC 16 MHz: HFINTOSC, EC  
FOSC 4 MHz  
FOSC 20 MHz, EC  
FOSC 20 MHz, HS  
(1)  
D002*  
D002*  
VDR  
RAM Data Retention Voltage  
PIC16LF72X  
1.5  
1.7  
V
V
V
Device in Sleep mode  
Device in Sleep mode  
PIC16F72X  
VPOR*  
Power-on Reset Release Voltage  
1.6  
VPORR* Power-on Reset Rearm Voltage  
PIC16LF72X  
0.8  
1.7  
V
V
Device in Sleep mode  
Device in Sleep mode  
PIC16F72X  
D003  
VFVR  
Fixed Voltage Reference Voltage,  
Initial Accuracy  
-5.5  
-5.5  
-5.5  
5.5  
5.5  
5.5  
%
%
%
VFVR = 1.024V, VDD 2.5V  
VFVR = 2.048V, VDD 2.5V  
VFVR = 4.096V, VDD 4.75V;  
-40 TA 85°C  
-6  
-6  
-6  
6
6
6
%
%
%
VFVR = 1.024V, VDD 2.5V  
VFVR = 2.048V, VDD 2.5V  
VFVR = 4.096V, VDD 4.75V;  
-40 TA 125°C  
D004*  
SVDD  
VDD Rise Rate to ensure internal  
Power-on Reset signal  
0.05  
V/ms See Section 3.2 “Power-on Reset  
(POR)” for details.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.  
DS41341E-page 212  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 23-1:  
POR AND POR REARM WITH SLOW RISING VDD  
VDD  
VPOR  
VPORR  
VSS  
NPOR  
POR REARM  
VSS  
(3)  
(2)  
TPOR  
TVLOW  
Note 1: When NPOR is low, the device is held in Reset.  
2: TPOR 1 μs typical.  
3: TVLOW 2.7 μs typical.  
© 2009 Microchip Technology Inc.  
DS41341E-page 213  
PIC16F72X/PIC16LF72X  
23.2 DC Characteristics: PIC16F72X/PIC16LF72X-I/E (Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF72X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
PIC16F72X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Param  
No.  
Device  
Characteristics  
Min.  
Typ†  
Max.  
Units  
VDD  
Note  
(1, 2)  
Supply Current (IDD)  
LDO Regulator  
D009  
350  
μA  
HS, EC OR INTOSC/INTOSCIO (8-16 MHZ)  
Clock modes with all VCAP pins disabled  
50  
30  
5
μA  
μA  
μA  
All VCAP pins disabled  
VCAP enabled on RA0, RA5 or RA6  
LP Clock mode and Sleep (requires FVR and  
BOR to be disabled)  
D010  
D010  
7.0  
9.0  
12  
14  
μA  
μA  
1.8  
3.0  
FOSC = 32 kHz  
LP Oscillator mode (Note 4),  
-40°C TA +85°C  
11  
14  
20  
22  
24  
12  
18  
μA  
μA  
μA  
μA  
μA  
1.8  
3.0  
5.0  
1.8  
3.0  
FOSC = 32 kHz  
LP Oscillator mode (Note 4),  
-40°C TA +85°C  
15  
D011  
D011  
7.0  
9.0  
FOSC = 32 kHz  
LP Oscillator mode  
-40°C TA +125°C  
11  
21  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
FOSC = 32 kHz  
LP Oscillator mode (Note 4)  
-40°C TA +125°C  
14  
25  
15  
27  
D011  
D011  
110  
150  
120  
180  
240  
230  
400  
250  
420  
500  
125  
230  
150  
225  
250  
150  
215  
175  
250  
300  
300  
600  
350  
650  
750  
180  
270  
205  
320  
410  
FOSC = 1 MHz  
XT Oscillator mode  
FOSC = 1 MHz  
XT Oscillator mode (Note 5)  
D012  
D012  
FOSC = 4 MHz  
XT Oscillator mode  
FOSC = 4 MHz  
XT Oscillator mode (Note 5)  
D013  
D013  
FOSC = 1 MHz  
EC Oscillator mode  
FOSC = 1 MHz  
EC Oscillator mode (Note 5)  
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from  
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current  
consumption.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended  
by the formula IR = VDD/2REXT (mA) with REXT in kΩ.  
4: FVR and BOR are disabled.  
5: 0.1 μF capacitor on VCAP (RA0).  
DS41341E-page 214  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
23.2 DC Characteristics: PIC16F72X/PIC16LF72X-I/E (Industrial, Extended) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF72X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
PIC16F72X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Param  
No.  
Device  
Characteristics  
Min.  
Typ†  
Max.  
Units  
VDD  
Note  
(1, 2)  
Supply Current (IDD)  
D014  
D014  
290  
460  
300  
450  
500  
100  
120  
115  
135  
150  
650  
1000  
625  
1000  
1100  
1.0  
330  
500  
430  
655  
730  
130  
150  
195  
200  
220  
800  
1200  
850  
1200  
1500  
1.2  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
mA  
mA  
mA  
mA  
μA  
μA  
μA  
μA  
μA  
mA  
mA  
mA  
mA  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
3.0  
3.6  
3.0  
5.0  
FOSC = 4 MHz  
EC Oscillator mode  
FOSC = 4 MHz  
EC Oscillator mode (Note 5)  
D015  
D015  
FOSC = 500 kHz  
MFINTOSC mode  
FOSC = 500 kHz  
MFINTOSC mode (Note 5)  
D016  
D016  
FOSC = 8 MHz  
HFINTOSC mode  
FOSC = 8 MHz  
HFINTOSC mode (Note 5)  
D017  
D017  
FOSC = 16 MHz  
HFINTOSC mode  
1.5  
1.85  
1.2  
1
FOSC = 16 MHz  
HFINTOSC mode (Note 5)  
1.5  
1.7  
1.7  
2.1  
D018  
D018  
210  
340  
225  
360  
410  
1.6  
240  
380  
320  
445  
650  
1.9  
FOSC = 4 MHz  
EXTRC mode (Note 3, Note 5)  
FOSC = 4 MHz  
EXTRC mode (Note 3, Note 5)  
D019  
D019  
FOSC = 20 MHz  
HS Oscillator mode  
2.0  
2.8  
1.6  
2
FOSC = 20 MHz  
HS Oscillator mode (Note 5)  
1.9  
3.2  
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from  
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current  
consumption.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended  
by the formula IR = VDD/2REXT (mA) with REXT in kΩ.  
4: FVR and BOR are disabled.  
5: 0.1 μF capacitor on VCAP (RA0).  
© 2009 Microchip Technology Inc.  
DS41341E-page 215  
PIC16F72X/PIC16LF72X  
23.3 DC Characteristics: PIC16F72X/PIC16LF72X-I/E (Power-Down)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF72X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
PIC16F72X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Param  
No.  
Max.  
+85°C +125°C  
Max.  
Device Characteristics  
Min.  
Typ†  
Units  
VDD  
Note  
(2)  
Power-down Base Current (IPD)  
D020  
D020  
0.02  
0.08  
4.3  
5
0.7  
1.0  
10.2  
10.5  
11.8  
1.7  
2.5  
13.5  
14.5  
16  
3.9  
4.3  
17  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
WDT, BOR, FVR, and T1OSC  
disabled, all Peripherals Inactive  
WDT, BOR, FVR, and T1OSC  
disabled, all Peripherals Inactive  
18  
5.5  
0.5  
0.8  
6
21  
D021  
D021  
4.1  
4.8  
16.4  
16.8  
18.7  
19  
LPWDT Current (Note 1)  
LPWDT Current (Note 1)  
6.5  
7.5  
8.5  
8.5  
23  
25  
26  
D021A  
D021A  
14  
FVR current (Note 1. Note 3)  
14  
20  
44  
48  
FVR current (Note 1, Note 3,  
Note 5)  
45  
55  
60  
70  
D022  
D022  
BOR Current (Note 1, Note 3)  
7.5  
12  
22  
BOR Current (Note 1, Note 3,  
Note 5)  
23  
25  
0.6  
1.8  
4.5  
6
42  
49  
46  
50  
D026  
D026  
2
T1OSC Current (Note 1)  
T1OSC Current (Note 1)  
3.0  
11.1  
12.5  
13.5  
7
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is  
enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max  
values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
3: Fixed Voltage Reference is automatically enabled whenever the BOR is enabled  
4: A/D oscillator source is FRC  
5: 0.1 μF capacitor on VCAP (RA0).  
DS41341E-page 216  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
23.3 DC Characteristics: PIC16F72X/PIC16LF72X-I/E (Power-Down) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF72X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
PIC16F72X  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Param  
No.  
Max.  
+85°C +125°C  
Max.  
Device Characteristics  
Min.  
Typ†  
Units  
VDD  
Note  
(2)  
Power-down Base Current (IPD)  
D027  
D027  
0.06  
0.08  
6
0.7  
1.0  
10.7  
10.6  
11.9  
400  
400  
430  
430  
430  
3.2  
4.4  
13  
5.0  
5.5  
18  
20  
22  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
A/D Current (Note 1, Note 4), no  
conversion in progress  
A/D Current (Note 1, Note 4), no  
conversion in progress  
7
7.2  
250  
250  
280  
280  
280  
2.2  
3.3  
6.5  
8
D027A  
D027A  
A/D Current (Note 1, Note 4),  
conversion in progress  
A/D Current (Note 1, Note 4,  
Note 5), conversion in progress  
D028  
D028  
14.4  
15.6  
21  
23  
25  
17  
18  
23  
24  
27  
25  
44  
31  
50  
58  
Cap Sense Low Power  
Oscillator mode  
Cap Sense Low Power  
Oscillator mode  
14  
8
14  
D028A  
D028A  
4.2  
6
6
Cap Sense Medium Power  
Oscillator mode  
7
8.5  
11  
15.5  
17  
Cap Sense Medium Power  
Oscillator mode  
11  
18  
D028B  
D028B  
12  
14  
Cap Sense High Power  
Oscillator mode  
32  
35  
16  
20  
Cap Sense High Power  
Oscillator mode  
36  
41  
42  
49  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is  
enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max  
values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
3: Fixed Voltage Reference is automatically enabled whenever the BOR is enabled  
4: A/D oscillator source is FRC  
5: 0.1 μF capacitor on VCAP (RA0).  
© 2009 Microchip Technology Inc.  
DS41341E-page 217  
PIC16F72X/PIC16LF72X  
23.4 DC Characteristics: PIC16F72X/PIC16LF72X-I/E  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param  
No.  
Sym.  
Characteristic  
Min.  
Typ†  
Max.  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O PORT:  
D030  
D030A  
D031  
with TTL buffer  
0.8  
V
V
V
V
V
V
4.5V VDD 5.5V  
0.15 VDD  
0.2 VDD  
0.3 VDD  
0.2 VDD  
0.3 VDD  
1.8V VDD 4.5V  
2.0V VDD 5.5V  
with Schmitt Trigger buffer  
2
with I C™ levels  
(1)  
D032  
MCLR, OSC1 (RC mode)  
D033A  
OSC1 (HS mode)  
Input High Voltage  
I/O ports:  
VIH  
D040  
with TTL buffer  
2.0  
V
V
4.5V VDD 5.5V  
1.8V VDD 4.5V  
D040A  
0.25 VDD +  
0.8  
D041  
with Schmitt Trigger buffer  
0.8 VDD  
0.7 VDD  
0.8 VDD  
0.7 VDD  
0.9 VDD  
V
V
V
V
V
2.0V VDD 5.5V  
2
with I C™ levels  
D042  
MCLR  
D043A  
D043B  
OSC1 (HS mode)  
OSC1 (RC mode)  
(Note 1)  
(2)  
IIL  
Input Leakage Current  
D060  
I/O ports  
± 5  
± 125  
nA  
VSS VPIN VDD, Pin at high-  
impedance, 85°C  
± 5  
± 1000  
± 200  
nA 125°C  
(3)  
D061  
MCLR  
± 50  
nA  
μA  
V
VSS VPIN VDD, 85°C  
IPUR  
VOL  
PORTB Weak Pull-up Current  
D070*  
25  
25  
100  
140  
200  
300  
VDD = 3.3V, VPIN = VSS  
VDD = 5.0V, VPIN = VSS  
(4)  
Output Low Voltage  
D080  
D090  
D101*  
I/O ports  
IOL = 8mA, VDD = 5V  
IOL = 6mA, VDD = 3.3V  
IOL = 1.8mA, VDD = 1.8V  
0.6  
(4)  
VOH  
Output High Voltage  
I/O ports  
IOH = 3.5mA, VDD = 5V  
IOH = 3mA, VDD = 3.3V  
IOH = 1mA, VDD = 1.8V  
VDD - 0.7  
V
Capacitive Loading Specs on Output Pins  
COSC2 OSC2 pin  
15  
50  
pF  
pF  
In XT, HS and LP modes when  
external clock is used to drive  
OSC1  
D101A* CIO  
All I/O pins  
TBD = To Be Determined  
These parameters are characterized but not tested.  
Legend:  
*
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external  
clock in RC mode.  
2: Negative current is defined as current sourced by the pin.  
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent  
normal operating conditions. Higher leakage current may be measured at different input voltages.  
4: Including OSC2 in CLKOUT mode.  
DS41341E-page 218  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
23.4 DC Characteristics: PIC16F72X/PIC16LF72X-I/E (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Param  
No.  
Sym.  
Characteristic  
Min.  
Typ†  
Max.  
Units  
Conditions  
Program Flash Memory  
D130  
D131  
EP  
Cell Endurance  
100  
1k  
E/W Temperature during programming:  
10°C TA 40°C  
VDD for Read  
VMIN  
8.0  
V
Temperature during programming:  
10°C TA 40°C  
Voltage on MCLR/VPP during  
Erase/Program  
9.0  
V
V
V
VDD for Bulk Erase  
2.7  
2.7  
3
Temperature during programming:  
10°C TA 40°C  
D132  
VPEW  
VDD for Write or Row Erase  
VMIN = Minimum operating voltage  
VMAX = Maximum operating  
voltage  
Temperature during programming:  
10°C TA 40°C  
IPPPGM Current on MCLR/VPP during  
Erase/Write  
40  
5.0  
mA  
mA  
IDDPGM Current on VDD during Erase/  
Write  
Temperature during programming:  
10°C TA 40°C  
5.0  
2.8  
D133  
D134  
TPEW  
Erase/Write cycle time  
ms Temperature during programming:  
10°C TA 40°C  
TRETD  
Characteristic Retention  
Year Provided no other specifications  
are violated  
VCAP Capacitor Charging  
D135  
Charging current  
200  
0.0  
μA  
mA  
D135A  
Source/sink capability when  
charging complete  
Legend:  
TBD = To Be Determined  
These parameters are characterized but not tested.  
*
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external  
clock in RC mode.  
2: Negative current is defined as current sourced by the pin.  
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent  
normal operating conditions. Higher leakage current may be measured at different input voltages.  
4: Including OSC2 in CLKOUT mode.  
© 2009 Microchip Technology Inc.  
DS41341E-page 219  
PIC16F72X/PIC16LF72X  
23.5 Thermal Considerations  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C  
Param  
No.  
Sym.  
Characteristic  
Typ.  
Units  
Conditions  
28-pin SPDIP package  
TH01  
θJA  
Thermal Resistance Junction to Ambient  
60  
80  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C  
28-pin SOIC package  
90  
28-pin SSOP package  
27.5  
27.5  
47.2  
46  
28-pin UQFN 4x4mm package  
28-pin QFN 6x6mm package  
40-pin PDIP package  
44-pin TQFP package  
24.4  
31.4  
24  
44-pin QFN 8x8mm package  
28-pin SPDIP package  
28-pin SOIC package  
TH02  
θJC  
Thermal Resistance Junction to Case  
24  
28-pin SSOP package  
24  
28-pin UQFN 4x4mm package  
28-pin QFN 6x6mm package  
40-pin PDIP package  
24  
24.7  
14.5  
20  
44-pin TQFP package  
44-pin QFN 8x8mm package  
TH03  
TH04  
TH05  
TH06  
TH07  
TJMAX  
PD  
Maximum Junction Temperature  
Power Dissipation  
150  
W
PD = PINTERNAL + PI/O  
(1)  
PINTERNAL Internal Power Dissipation  
W
PINTERNAL = IDD x VDD  
PI/O  
I/O Power Dissipation  
Derated Power  
W
PI/O = Σ (IOL * VOL) + Σ (IOH * (VDD - VOH))  
(2)  
PDER  
W
PDER = PDMAX (TJ - TA)/θJA  
Note 1: IDD is current to run the chip alone without driving any load on the output pins.  
2: TA = Ambient Temperature  
3: TJ = Junction Temperature  
DS41341E-page 220  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
23.6  
Timing Parameter Symbology  
The timing parameter symbols have been created with  
one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O PORT  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (High-impedance)  
Low  
Valid  
L
High-impedance  
FIGURE 23-2:  
LOAD CONDITIONS  
Load Condition  
Pin  
CL  
VSS  
Legend: CL = 50 pF for all pins, 15 pF for  
OSC2 output  
© 2009 Microchip Technology Inc.  
DS41341E-page 221  
PIC16F72X/PIC16LF72X  
23.7 AC Characteristics: PIC16F72X-I/E  
FIGURE 23-3:  
CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
OSC1/CLKIN  
OS02  
OS04  
OS04  
OS03  
OSC2/CLKOUT  
(LP,XT,HS Modes)  
OSC2/CLKOUT  
(CLKOUT Mode)  
FIGURE 23-4:  
PIC16F72X VOLTAGE FREQUENCY GRAPH, -40°C TA +125°C  
5.5  
3.6  
2.5  
2.3  
2.0  
1.8  
0
4
10  
16  
20  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: Refer to Table 23-1 for each Oscillator mode’s supported frequencies.  
DS41341E-page 222  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 23-5:  
PIC16LF72X VOLTAGE FREQUENCY GRAPH, -40°C TA +125°C  
3.6  
2.5  
2.3  
2.0  
1.8  
0
4
10  
16  
20  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: Refer to Table 23-1 for each Oscillator mode’s supported frequencies.  
FIGURE 23-6:  
HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE  
+ 5%  
125  
85  
60  
± 2%  
25  
0
-20  
+ 5%  
3.3(2)3.5  
-40  
1.8  
2.0  
2.5  
4.0  
4.5  
5.0  
5.5  
3.0  
VDD (V)  
Note 1: This chart covers both regulator enabled and regulator disabled states.  
2: Regulator Nominal voltage  
© 2009 Microchip Technology Inc.  
DS41341E-page 223  
PIC16F72X/PIC16LF72X  
TABLE 23-1: CLOCK OSCILLATOR TIMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym.  
No.  
Characteristic  
Min.  
Typ†  
Max.  
Units  
Conditions  
LP Oscillator mode  
(1)  
OS01  
FOSC  
TOSC  
TCY  
External CLKIN Frequency  
DC  
DC  
DC  
DC  
37  
4
kHz  
MHz XT Oscillator mode  
MHz HS Oscillator mode  
MHz EC Oscillator mode  
20  
20  
4
(1)  
Oscillator Frequency  
32.768  
kHz  
LP Oscillator mode  
0.1  
1
MHz XT Oscillator mode  
MHz HS Oscillator mode  
MHz RC Oscillator mode  
20  
4
DC  
27  
250  
50  
50  
(1)  
OS02  
External CLKIN Period  
μs  
ns  
ns  
ns  
μs  
ns  
ns  
ns  
ns  
μs  
ns  
ns  
ns  
ns  
ns  
LP Oscillator mode  
XT Oscillator mode  
HS Oscillator mode  
EC Oscillator mode  
LP Oscillator mode  
XT Oscillator mode  
HS Oscillator mode  
RC Oscillator mode  
TCY = 4/FOSC  
(1)  
Oscillator Period  
30.5  
10,000  
1,000  
DC  
250  
50  
250  
200  
2
(1)  
OS03  
Instruction Cycle Time  
TCY  
OS04*  
TosH,  
TosL  
External CLKIN High,  
External CLKIN Low  
LP oscillator  
100  
20  
0
XT oscillator  
HS oscillator  
OS05*  
TosR,  
TosF  
External CLKIN Rise,  
External CLKIN Fall  
LP oscillator  
0
XT oscillator  
0
HS oscillator  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing code.  
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-  
sumption. All devices are tested to operate at “min” values with an external clock applied to OSC1 pin. When an external  
clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
DS41341E-page 224  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
TABLE 23-2: OSCILLATOR PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param  
Sym.  
No.  
Freq.  
Tolerance  
Characteristic  
Min. Typ† Max. Units  
Conditions  
OS08  
HFOSC  
Internal Calibrated HFINTOSC  
Frequency  
±2%  
16.0  
MHz 0°C TA +85°C,  
VDD ≥ 2.5V  
(2)  
±5%  
±2%  
16.0  
500  
MHz -40°C TA +125°C  
OS08A MFOSC  
OS10* TIOSC ST  
Internal Calibrated MFINTOSC  
Frequency  
kHz 0°C TA +85°C  
VDD ≥ 2.5V  
(2)  
±5%  
500  
5
10  
8
kHz -40°C TA +125°C  
μs  
HFINTOSC Wake-up from Sleep  
Start-up Time  
MFINTOSC  
20  
30  
μs  
Wake-up from Sleep  
Start-up Time  
These parameters are characterized but not tested.  
*
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing  
code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current  
consumption. All devices are tested to operate at “min” values with an external clock applied to the OSC1 pin. When an  
external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
2: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as  
possible. 0.1 μF and 0.01 μF values in parallel are recommended.  
3: By design.  
FIGURE 23-7:  
CLKOUT AND I/O TIMING  
Cycle  
Write  
Q4  
Fetch  
Q1  
Read  
Q2  
Execute  
Q3  
FOSC  
OS12  
OS11  
OS20  
OS21  
CLKOUT  
OS19  
OS13  
OS18  
OS16  
OS17  
I/O pin  
(Input)  
OS14  
OS15  
I/O pin  
(Output)  
New Value  
Old Value  
OS18, OS19  
© 2009 Microchip Technology Inc.  
DS41341E-page 225  
PIC16F72X/PIC16LF72X  
TABLE 23-3: CLKOUT AND I/O TIMING PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym.  
Characteristic  
Min.  
Typ† Max. Units  
Conditions  
OS11 TosH2ckL Foscto CLKOUT(1)  
OS12 TosH2ckH Foscto CLKOUT(1)  
OS13 TckL2ioV CLKOUTto Port out valid(1)  
OS14 TioV2ckH Port input valid before CLKOUT(1)  
70  
72  
20  
ns VDD = 3.3-5.0V  
ns VDD = 3.3-5.0V  
ns  
ns  
TOSC + 200  
ns  
OS15 TosH2ioV Fosc(Q1 cycle) to Port out valid  
50  
70*  
ns VDD = 3.3-5.0V  
ns VDD = 3.3-5.0V  
OS16 TosH2ioI  
Fosc(Q2 cycle) to Port input invalid  
50  
(I/O in hold time)  
OS17 TioV2osH Port input valid to Fosc(Q2 cycle)  
20  
ns  
(I/O in setup time)  
OS18 TioR  
OS19 TioF  
Port output rise time(2)  
40  
15  
72  
32  
ns  
ns  
VDD = 2.0V  
VDD = 3.3-5.0V  
Port output fall time(2)  
28  
15  
55  
30  
VDD = 2.0V  
VDD = 3.3-5.0V  
OS20* Tinp  
OS21* Trbp  
INT pin input high or low time  
25  
ns  
ns  
PORTB interrupt-on-change new input  
level time  
TCY  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated.  
Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x TOSC.  
2: Includes OSC2 in CLKOUT mode.  
FIGURE 23-8:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Start-Up Time  
(1)  
Internal Reset  
Watchdog Timer  
(1)  
Reset  
31  
34  
34  
I/O pins  
Note 1: Asserted low.  
DS41341E-page 226  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 23-9:  
BROWN-OUT RESET TIMING AND CHARACTERISTICS  
VDD  
VBOR and VHYST  
VBOR  
(Device in Brown-out Reset)  
(Device not in Brown-out Reset)  
37  
Reset  
(1)  
33  
(due to BOR)  
Note 1: 64 ms delay only if PWRTE bit in the Configuration Word register is programmed to ‘0’. 2 ms  
delay if PWRTE = 0and VREGEN = 1.  
© 2009 Microchip Technology Inc.  
DS41341E-page 227  
PIC16F72X/PIC16LF72X  
TABLE 23-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,  
AND BROWN-OUT RESET PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym.  
TMCL  
Characteristic  
Min. Typ† Max. Units  
Conditions  
30  
MCLR Pulse Width (low)  
2
5
μs VDD = 3.3-5V, -40°C to +85°C  
μs VDD = 3.3-5V  
31  
32  
TWDTLP Low Power Watchdog Timer Time-  
out Period (No Prescaler)  
10  
18  
27  
ms VDD = 3.3V-5V  
TOST  
Oscillator Start-up Timer Period(1),  
1024  
Tosc (Note 3)  
(2)  
33*  
34*  
TPWRT Power-up Timer Period, PWRTE = 0 40  
65  
140  
2.0  
ms  
TIOZ  
I/O high-impedance from MCLR Low  
or Watchdog Timer Reset  
μs  
35  
VBOR  
VHYST  
Brown-out Reset Voltage  
2.38  
1.80  
2.5  
1.9  
2.73  
2.11  
V
BORV=2.5V  
BORV=1.9V  
36*  
37*  
Brown-out Reset Hysteresis  
0
1
25  
3
50  
mV -40°C to +85°C  
TBORDC Brown-out Reset DC Response  
Time  
5
10  
μs VDD VBOR, -40°C to +85°C  
VDD VBOR  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with the  
device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption. All devices are tested to operate at “min” values with an external  
clock applied to the OSC1 pin. When an external clock input is used, the “max” cycle time limit is “DC” (no  
clock) for all devices.  
2: By design.  
3: Period of the slower clock.  
4: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as  
possible. 0.1 μF and 0.01 μF values in parallel are recommended.  
DS41341E-page 228  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 23-10:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
40  
41  
42  
T1CKI  
45  
46  
49  
47  
TMR0 or  
TMR1  
TABLE 23-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym.  
TT0H  
Characteristic  
T0CKI High Pulse Width  
Min.  
Typ†  
Max.  
Units  
Conditions  
40*  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
10  
0.5 TCY + 20  
10  
41*  
42*  
TT0L  
TT0P  
T0CKI Low Pulse Width  
T0CKI Period  
Greater of:  
20 or TCY + 40  
N
ns N = prescale value  
(2, 4, ..., 256)  
45*  
46*  
47*  
TT1H  
TT1L  
TT1P  
T1CKI High Synchronous, No Prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
Time  
Synchronous, with Prescaler  
Asynchronous  
15  
30  
T1CKI Low Synchronous, No Prescaler  
0.5 TCY + 20  
Time  
Synchronous, with Prescaler  
Asynchronous  
15  
30  
T1CKI Input Synchronous  
Period  
Greater of:  
30 or TCY + 40  
N
ns N = prescale value  
(1, 2, 4, 8)  
Asynchronous  
60  
ns  
48  
FT1  
Timer1 Oscillator Input Frequency Range  
(oscillator enabled by setting bit T1OSCEN)  
32.4  
32.768  
33.1  
kHz  
49*  
TCKEZTMR1 Delay from External Clock Edge to Timer  
Increment  
2 TOSC  
7 TOSC  
Timers in Sync mode  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
© 2009 Microchip Technology Inc.  
DS41341E-page 229  
PIC16F72X/PIC16LF72X  
FIGURE 23-11:  
CAPTURE/COMPARE/PWM TIMINGS (CCP)  
CCPx  
(Capture mode)  
CC01  
CC02  
CC03  
Note: Refer to Figure 23-2 for load conditions.  
TABLE 23-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym.  
Characteristic  
Min.  
Typ† Max. Units  
Conditions  
CC01* TccL CCPx Input Low Time  
CC02* TccH CCPx Input High Time  
CC03* TccP CCPx Input Period  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5TCY + 20  
ns  
ns  
ns  
ns  
ns  
20  
0.5TCY + 20  
20  
3TCY + 40  
N
N = prescale value (1, 4 or 16)  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
TABLE 23-7: PIC16F72X A/D CONVERTER (ADC) CHARACTERISTICS:  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C  
Param  
No.  
Sym.  
Characteristic  
Min.  
Typ†  
Max. Units  
Conditions  
AD01 NR  
AD02 EIL  
AD03 EDL  
Resolution  
8
bit  
Integral Error  
±1.7  
±1  
LSb VREF = 3.0V  
Differential Error  
LSb No missing codes  
VREF = 3.0V  
AD04 EOFF Offset Error  
±2.2  
±1.5  
VDD  
VREF  
50  
LSb VREF = 3.0V  
AD05 EGN Gain Error  
LSb VREF = 3.0V  
(3)  
AD06 VREF Reference Voltage  
AD07 VAIN Full-Scale Range  
1.8  
VSS  
V
V
AD08 ZAIN Recommended Impedance of  
Analog Voltage Source  
kΩ Can go higher if external 0.01μF capacitor is  
present on input pin.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Total Absolute Error includes integral, differential, offset and gain errors.  
2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
3: When ADC is off, it will not consume any current other than leakage current. The power-down current specification  
includes any such leakage from the ADC module.  
DS41341E-page 230  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
TABLE 23-8: PIC16F72X A/D CONVERSION REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym.  
No.  
Characteristic  
Min.  
Typ†  
Max. Units  
Conditions  
AD130* TAD  
A/D Clock Period  
1.0  
1.0  
9.0  
6.0  
μs  
μs  
TOSC-based  
ADCS<1:0> = 11(ADRC mode)  
A/D Internal RC Oscillator  
Period  
2.0  
AD131 TCNV Conversion Time (not including  
10.5  
1.0  
TAD Set GO/DONE bit to conversion  
complete  
(1)  
Acquisition Time)  
AD132* TACQ Acquisition Time  
μs  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: The ADRES register may be read on the following TCY cycle.  
FIGURE 23-12:  
PIC16F72X A/D CONVERSION TIMING (NORMAL MODE)  
BSF ADCON0, GO  
1 TCY  
(1)  
(TOSC/2  
AD134  
Q4  
)
AD131  
AD130  
A/D CLK  
7
6
5
4
3
2
1
0
A/D Data  
ADRES  
NEW_DATA  
1 TCY  
OLD_DATA  
ADIF  
GO  
DONE  
Sampling Stopped  
AD132  
Sample  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
© 2009 Microchip Technology Inc.  
DS41341E-page 231  
PIC16F72X/PIC16LF72X  
FIGURE 23-13:  
PIC16F72X A/D CONVERSION TIMING (SLEEP MODE)  
BSF ADCON0, GO  
AD134  
Q4  
(1)  
(TOSC/2 + TCY  
1 TCY  
)
AD131  
AD130  
A/D CLK  
A/D Data  
7
6
5
3
2
1
0
4
NEW_DATA  
1 TCY  
OLD_DATA  
ADRES  
ADIF  
GO  
DONE  
Sampling Stopped  
AD132  
Sample  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
FIGURE 23-14:  
USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
CK  
DT  
US121  
US121  
US122  
US120  
Refer to Figure 23-2 for load conditions.  
Note:  
TABLE 23-9: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param.  
Symbol  
No.  
Characteristic  
Min.  
Max.  
Units Conditions  
US120 TCKH2DTV SYNC XMIT (Master and Slave)  
Clock high to data-out valid  
3.0-5.5V  
1.8-5.5V  
3.0-5.5V  
1.8-5.5V  
3.0-5.5V  
1.8-5.5V  
80  
100  
45  
ns  
ns  
ns  
ns  
ns  
ns  
US121 TCKRF  
Clock out rise time and fall time  
(Master mode)  
50  
US122 TDTRF  
Data-out rise time and fall time  
45  
50  
DS41341E-page 232  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 23-15:  
USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
CK  
DT  
US125  
US126  
Note: Refer to Figure 23-2 for load conditions.  
TABLE 23-10: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param.  
Symbol  
No.  
Characteristic  
Min.  
Max. Units  
Conditions  
US125 TDTV2CKL SYNC RCV (Master and Slave)  
Data-hold before CK (DT hold time)  
10  
15  
ns  
ns  
US126 TCKL2DTL Data-hold after CK (DT hold time)  
© 2009 Microchip Technology Inc.  
DS41341E-page 233  
PIC16F72X/PIC16LF72X  
FIGURE 23-16:  
SPI MASTER MODE TIMING (CKE = 0, SMP = 0)  
SS  
SP70  
SCK  
(CKP = 0)  
SP71  
SP72  
SP78  
SP79  
SP79  
SCK  
(CKP = 1)  
SP78  
LSb  
SP80  
MSb  
bit 6 - - - - - -1  
SDO  
SDI  
SP75, SP76  
bit 6 - - - -1  
MSb In  
LSb In  
SP74  
SP73  
Note: Refer to Figure 23-2 for load conditions.  
FIGURE 23-17:  
SPI MASTER MODE TIMING (CKE = 1, SMP = 1)  
SS  
SP81  
SCK  
(CKP = 0)  
SP71  
SP73  
SP72  
SP79  
SCK  
(CKP = 1)  
SP80  
SP78  
LSb  
MSb  
bit 6 - - - - - -1  
SDO  
SDI  
SP75, SP76  
bit 6 - - - -1  
MSb In  
SP74  
Note: Refer to Figure 23-2 for load conditions.  
LSb In  
DS41341E-page 234  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 23-18:  
SPI SLAVE MODE TIMING (CKE = 0)  
SS  
SP70  
SCK  
(CKP = 0)  
SP83  
SP71  
SP72  
SP78  
SP79  
SP79  
SCK  
(CKP = 1)  
SP78  
LSb  
SP80  
MSb  
SDO  
SDI  
bit 6 - - - - - -1  
SP77  
SP75, SP76  
bit 6 - - - -1  
MSb In  
SP74  
SP73  
LSb In  
Note: Refer to Figure 23-2 for load conditions.  
FIGURE 23-19:  
SPI SLAVE MODE TIMING (CKE = 1)  
SP82  
SP70  
SS  
SP83  
SCK  
(CKP = 0)  
SP72  
SP71  
SCK  
(CKP = 1)  
SP80  
MSb  
bit 6 - - - - - -1  
LSb  
SDO  
SDI  
SP77  
SP75, SP76  
bit 6 - - - -1  
MSb In  
SP74  
LSb In  
Note: Refer to Figure 23-2 for load conditions.  
© 2009 Microchip Technology Inc.  
DS41341E-page 235  
PIC16F72X/PIC16LF72X  
TABLE 23-11: SPI MODE REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min.  
Typ† Max. Units Conditions  
SP70* TSSL2SCH, SSto SCKor SCKinput  
TCY  
ns  
TSSL2SCL  
SP71* TSCH  
SP72* TSCL  
SCK input high time (Slave mode)  
SCK input low time (Slave mode)  
TCY + 20  
TCY + 20  
100  
ns  
ns  
ns  
SP73* TDIV2SCH, Setup time of SDI data input to SCK edge  
TDIV2SCL  
SP74* TSCH2DIL, Hold time of SDI data input to SCK edge  
TSCL2DIL  
100  
ns  
SP75* TDOR  
SDO data output rise time  
3.0-5.5V  
1.8-5.5V  
10  
Tcy  
10  
25  
10  
10  
25  
10  
25  
50  
25  
50  
25  
50  
25  
50  
145  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SP76* TDOF  
SDO data output fall time  
SP77* TSSH2DOZ SSto SDO output high-impedance  
SP78* TSCR  
SCK output rise time  
(Master mode)  
3.0-5.5V  
1.8-5.5V  
SP79* TSCF  
SCK output fall time (Master mode)  
SP80* TSCH2DOV, SDO data output valid after  
TSCL2DOV SCK edge  
3.0-5.5V  
1.8-5.5V  
SP81* TDOV2SCH, SDO data output setup to SCK edge  
TDOV2SCL  
SP82* TSSL2DOV SDO data output valid after SSedge  
50  
ns  
ns  
SP83* TSCH2SSH, SS after SCK edge  
1.5TCY + 40  
TSCL2SSH  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
FIGURE 23-20:  
I2C™ BUS START/STOP BITS TIMING  
SCL  
SP93  
SP91  
SP90  
SP92  
SDA  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 23-2 for load conditions.  
DS41341E-page 236  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
TABLE 23-12: I2C™ BUS START/STOP BITS REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min. Typ Max. Units  
Conditions  
SP90* TSU:STA Start condition  
Setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns Only relevant for Repeated  
Start condition  
SP91* THD:STA Start condition  
Hold time  
4000  
600  
ns After this period, the first  
clock pulse is generated  
SP92* TSU:STO Stop condition  
Setup time  
4700  
600  
ns  
SP93 THD:STO Stop condition  
Hold time  
4000  
600  
ns  
*
These parameters are characterized but not tested.  
FIGURE 23-21:  
I2C™ BUS DATA TIMING  
SP100  
SP103  
SP102  
SP101  
SCL  
SP90  
SP106  
SP107  
SP92  
SP91  
SDA  
In  
SP110  
SP109  
SP109  
SDA  
Out  
Note: Refer to Figure 23-2 for load conditions.  
© 2009 Microchip Technology Inc.  
DS41341E-page 237  
PIC16F72X/PIC16LF72X  
TABLE 23-13: I2C™ BUS DATA REQUIREMENTS  
Param.  
No.  
Symbol  
Characteristic  
Min.  
Max. Units  
Conditions  
SP100* THIGH  
Clock high time  
100 kHz mode  
4.0  
μs  
μs  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
0.6  
Device must operate at a  
minimum of 10 MHz  
SSP Module  
1.5TCY  
4.7  
SP101* TLOW  
Clock low time  
100 kHz mode  
μs  
μs  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
SSP Module  
1.3  
Device must operate at a  
minimum of 10 MHz  
1.5TCY  
SP102* TR  
SP103* TF  
SDA and SCL rise 100 kHz mode  
time  
1000  
ns  
ns  
400 kHz mode  
20 + 0.1CB 300  
CB is specified to be from  
10-400 pF  
SDA and SCL fall  
time  
100 kHz mode  
400 kHz mode  
250  
ns  
ns  
20 + 0.1CB 250  
CB is specified to be from  
10-400 pF  
SP106* THD:DAT Data input hold time 100 kHz mode  
400 kHz mode  
0
0.9  
ns  
μs  
ns  
ns  
ns  
ns  
μs  
μs  
0
SP107* TSU:DAT Data input setup  
time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
250  
100  
(Note 2)  
(Note 1)  
SP109* TAA  
Output valid from  
clock  
3500  
SP110* TBUF  
Bus free time  
4.7  
1.3  
Time the bus must be free  
before a new transmission  
can start  
SP111 CB  
Bus capacitive loading  
400  
pF  
*
These parameters are characterized but not tested.  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region  
(min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.  
2: A Fast mode (400 kHz) I2Cbus device can be used in a Standard mode (100 kHz) I2C bus system, but  
the requirement TSU:DAT 250 ns must then be met. This will automatically be the case if the device does  
not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal,  
it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to  
the Standard mode I2C bus specification), before the SCL line is released.  
DS41341E-page 238  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
TABLE 23-14: CAP SENSE OSCILLATOR SPECIFICATIONS  
Param.  
No.  
Symbol  
Characteristic  
Min.  
Typ†  
Max. Units  
Conditions  
CS01  
CS02  
CS03  
ISRC  
Current Source  
High  
-6  
-3.2  
-0.9  
6
μA  
μA  
μA  
μA  
μA  
μA  
mV  
mV  
mV  
-5.8  
-1.1  
-0.2  
6.6  
-40, -85°C  
Medium  
Low  
ISNK  
Current Sink  
High  
-40, -85°C  
Medium  
Low  
1.3  
3.2  
0.9  
0.24  
525  
375  
280  
VCHYST  
Cap Hysteresis  
High  
VCTH-VCTL  
Medium  
Low  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
FIGURE 23-22:  
CAP SENSE OSCILLATOR  
VCTH  
VCTL  
ISRC  
Enabled  
ISNK  
Enabled  
© 2009 Microchip Technology Inc.  
DS41341E-page 239  
PIC16F72X/PIC16LF72X  
NOTES:  
DS41341E-page 240  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
24.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS  
FIGURE 24-1:  
PIC16F72X MAXIMUM IDD vs. FOSC OVER VDD, EC MODE, VCAP = 0.1µF  
2,200.00  
2,000.00  
1,800.00  
1,600.00  
1,400.00  
1,200.00  
1,000.00  
800.00  
5V  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
3.6V  
3V  
2.5V  
1.8V  
600.00  
400.00  
200.00  
0.00  
1 MHz  
4 MHz  
8 MHz  
12 MHz  
16 MHz  
20 MHz  
VDD (V)  
FIGURE 24-2:  
PIC16LF72X MAXIMUM IDD vs. FOSC OVER VDD, EC MODE  
2,400  
2,200  
2,000  
1,800  
1,600  
1,400  
1,200  
1,000  
800  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
3.6V  
3.3V  
3V  
2.5V  
2V  
1.8V  
600  
400  
200  
0
1 MHz  
4 MHz  
8 MHz  
12 MHz  
16 MHz  
20 MHz  
FOSC  
© 2009 Microchip Technology Inc.  
DS41341E-page 241  
PIC16F72X/PIC16LF72X  
FIGURE 24-3:  
PIC16F72X TYPICAL IDD vs. FOSC OVER VDD, EC MODE, VCAP = 0.1µF  
2,000  
1,800  
1,600  
1,400  
1,200  
1,000  
800  
5V  
3.6V  
3V  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
2.5V  
1.8V  
600  
400  
200  
0
1 MHz  
4 MHz  
8 MHz  
12 MHz  
16 MHz  
20 MHz  
FOSC  
FIGURE 24-4:  
PIC16LF72X TYPICAL IDD vs. FOSC OVER VDD, EC MODE  
2,200  
2,000  
1,800  
1,600  
1,400  
1,200  
1,000  
800  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
3.6V  
3.3V  
3V  
2.5V  
2V  
1.8V  
600  
400  
200  
0
1 MHz  
4 MHz  
8 MHz  
12 MHz  
16 MHz  
20 MHz  
FOSC  
DS41341E-page 242  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 24-5:  
PIC16F72X MAXIMUM IDD vs. VDD OVER FOSC, EXTRC MODE, VCAP = 0.1µF  
600  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
4 MHz  
(-40°C to 125°C)  
500  
400  
300  
200  
100  
0
1 MHz  
1.8  
2
2.5  
3
3.3  
3.6  
4.2  
4.5  
5
VDD (V)  
FIGURE 24-6:  
PIC16LF72X MAXIMUM IDD vs. VDD OVER FOSC, EXTRC MODE  
500  
4 MHz  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
450  
400  
350  
300  
250  
200  
150  
100  
50  
1 MHz  
0
1.8  
2
2.5  
3
3.3  
3.6  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41341E-page 243  
PIC16F72X/PIC16LF72X  
FIGURE 24-7:  
PIC16F72X TYPICAL IDD vs. VDD OVER FOSC, EXTRC MODE, VCAP = 0.1µF  
450  
Typical: Statistical Mean @25°C  
4 MHz  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
400  
350  
300  
250  
200  
150  
100  
50  
1 MHz  
0
1.8  
2
2.5  
3
3.3  
3.6  
4.2  
4.5  
5
VDD (V)  
FIGURE 24-8:  
PIC16LF72X TYPICAL IDD vs. VDD OVER FOSC, EXTRC MODE  
450  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
4 MHz  
400  
350  
300  
250  
200  
150  
100  
50  
1 MHz  
0
1.8  
2
2.5  
3
3.3  
3.6  
VDD (V)  
DS41341E-page 244  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 24-9:  
PIC16F72X MAXIMUM IDD vs. FOSC OVER VDD, HS MODE, VCAP = 0.1µF  
2.4  
2.2  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
5V  
4.5V  
2
1.8  
1.6  
1.4  
1.2  
1
3.6V  
3V  
0.8  
0.6  
0.4  
0.2  
0
4 MHz  
6 MHz  
8 MHz  
10 MHz  
13 MHz  
16 MHz  
20 MHz  
Fosc  
FIGURE 24-10:  
PIC16LF72X MAXIMUM IDD vs. FOSC OVER VDD, HS MODE  
2.50  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
3.6V  
3.3V  
2.00  
1.50  
1.00  
0.50  
0.00  
3V  
2.5V  
4 MHz  
6 MHz  
8 MHz  
10 MHz  
13 MHz  
16 MHz  
20 MHz  
Fosc  
© 2009 Microchip Technology Inc.  
DS41341E-page 245  
PIC16F72X/PIC16LF72X  
FIGURE 24-11:  
PIC16F72X TYPICAL IDD vs. FOSC OVER VDD, HS MODE, VCAP = 0.1µF  
Typical: Statistical Mean @25°C  
2.00  
1.50  
1.00  
0.50  
0.00  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
5V  
4.5V  
3.6V  
3V  
4 MHz  
6 MHz  
8 MHz  
10 MHz  
13 MHz  
16 MHz  
20 MHz  
Fosc  
FIGURE 24-12:  
PIC16LF72X TYPICAL IDD vs. FOSC OVER VDD, HS MODE  
2.50  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
2.00  
1.50  
1.00  
0.50  
0.00  
3.6V  
3.3V  
3V  
2.5V  
4 MHz  
6 MHz  
8 MHz  
10 MHz  
13 MHz  
16 MHz  
20 MHz  
Fosc  
DS41341E-page 246  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 24-13:  
PIC16F72X MAXIMUM IDD vs. VDD OVER FOSC, XT MODE, VCAP = 0.1µF  
600  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
4 MHz  
500  
400  
300  
200  
100  
0
1 MHz  
1.8  
2
2.5  
3
3.3  
3.6  
4.2  
4.5  
5
VDD (V)  
FIGURE 24-14:  
PIC16LF72X MAXIMUM IDD vs. VDD OVER FOSC, XT MODE  
600  
Typical: Statistical Mean @25°C  
4 MHz  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
500  
400  
300  
200  
100  
0
1 MHz  
1.8  
2
2.5  
3
3.3  
3.6  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41341E-page 247  
PIC16F72X/PIC16LF72X  
FIGURE 24-15:  
PIC16F72X TYPICAL IDD vs. VDD OVER FOSC, XT MODE, VCAP = 0.1µF  
600  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
500  
400  
300  
200  
100  
0
4 MHz  
1 MHz  
1.8  
2
2.5  
3
3.3  
3.6  
4.2  
4.5  
5
VDD (V)  
FIGURE 24-16:  
PIC16LF72X TYPICAL IDD vs. VDD OVER FOSC, XT MODE  
600  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
500  
400  
300  
200  
100  
0
4 MHz  
1 MHz  
1.8  
2
2.5  
3
3.3  
3.6  
VDD (V)  
DS41341E-page 248  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 24-17:  
PIC16F72X IDD vs. VDD, LP MODE, VCAP = 0.1µF  
20.0  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
17.5  
15.0  
12.5  
10.0  
32 kHz Maximum  
VDD (V)  
32 kHz Typical  
1.8  
3
5
VDD (V)  
FIGURE 24-18:  
PIC16LF72X IDD vs. VDD, LP MODE  
30  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
25  
20  
15  
10  
5
32 kHz Maximum  
32 kHz Typical  
1.8  
3
3.3  
3.6  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41341E-page 249  
PIC16F72X/PIC16LF72X  
FIGURE 24-19:  
PIC16F72X MAXIMUM IDD vs. FOSC OVER VDD, INTOSC MODE, VCAP = 0.1µF  
210  
Typical: Statistical Mean @25°C  
200  
190  
180  
170  
160  
150  
140  
130  
120  
110  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
5V  
3.6V  
2.5V  
1.8V  
62.5 kHz  
125 kHz  
250 kHz  
500 kHz  
FOSC  
FIGURE 24-20:  
PIC16LF72X MAXIMUM IDD vs. FOSC OVER VDD, INTOSC MODE  
170  
Typical: Statistical Mean @25°C  
3.6V  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
160  
150  
140  
130  
120  
110  
100  
3V  
2.5V  
1.8V  
62.5 KHz  
125 KHz  
250 KHz  
500 KHz  
FOSC  
DS41341E-page 250  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 24-21:  
PIC16F72X MAXIMUM IDD vs. FOSC OVER VDD, INTOSC MODE, VCAP = 0.1µF  
2,000  
5V  
Typical: Statistical Mean @25°C  
1,800  
1,600  
1,400  
1,200  
1,000  
800  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
3.6V  
2.5V  
1.8V  
600  
400  
200  
0
2 MHz  
4 MHz  
8 MHz  
16 MHz  
FOSC  
FIGURE 24-22:  
PIC16LF72X MAXIMUM IDD vs. FOSC OVER VDD, INTOSC MODE  
2,250  
Typical: Statistical Mean @25°C  
3.6V  
Maximum: Mean (Worst-Case Temp) + 3σ  
2,000  
1,750  
1,500  
1,250  
1,000  
750  
(-40°C to 125°C)  
3V  
2.5V  
1.8V  
500  
250  
0
2 MHz  
4 MHz  
8 MHz  
16 MHz  
FOSC  
© 2009 Microchip Technology Inc.  
DS41341E-page 251  
PIC16F72X/PIC16LF72X  
FIGURE 24-23:  
PIC16F72X TYPICAL IDD vs. FOSC OVER VDD, INTOSC MODE, VCAP = 0.1µF  
160  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
150  
140  
130  
120  
110  
100  
90  
5V  
3.6V  
2.5V  
1.8V  
80  
62.5 kHz  
125 kHz  
250 kHz  
500 kHz  
FOSC  
FIGURE 24-24:  
PIC16LF72X TYPICAL IDD vs. FOSC OVER VDD, INTOSC MODE  
140  
3.6V  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
130  
120  
110  
100  
90  
3V  
2.5V  
1.8V  
80  
70  
62.5 kHz  
125 kHz  
250 kHz  
500 kHz  
FOSC  
DS41341E-page 252  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 24-25:  
PIC16F72X TYPICAL IDD vs. FOSC OVER VDD, INTOSC MODE, VCAP = 0.1µF  
2,000  
Typical: Statistical Mean @25°C  
1,800  
1,600  
1,400  
1,200  
1,000  
800  
5V  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
3.6V  
2.5V  
1.8V  
600  
400  
200  
0
2 MHz  
4 MHz  
8 MHz  
16 MHz  
FOSC  
FIGURE 24-26:  
PIC16LF72X TYPICAL IDD vs. FOSC OVER VDD, INTOSC MODE  
2,000  
3.6V  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
1,800  
1,600  
1,400  
1,200  
1,000  
800  
3V  
2.5V  
1.8V  
600  
400  
200  
0
2 MHz  
4 MHz  
8 MHz  
16 MHz  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41341E-page 253  
PIC16F72X/PIC16LF72X  
FIGURE 24-27:  
PIC16F72X MAXIMUM BASE IPD vs. VDD, VCAP = 0.1µF  
25  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
20  
15  
10  
5
125°C  
85°C  
0
1.8V  
2V  
3V  
3.6V  
4V  
5V  
5.5V  
VDD (V)  
FIGURE 24-28:  
PIC16LF72X MAXIMUM BASE IPD vs. VDD  
7
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
6
5
4
3
2
1
0
125°C  
85°C  
1.8V  
2V  
2.5V  
3V  
3.6V  
VDD (V)  
DS41341E-page 254  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 24-29:  
PIC16F72X TYPICAL BASE IPD vs. VDD, VCAP = 0.1µF  
8
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
7
6
5
4
3
2
25°C  
1.8V  
2V  
3V  
3.6V  
4V  
5V  
5.5V  
VDD (V)  
FIGURE 24-30:  
PIC16LF72X TYPICAL BASE IPD vs. VDD  
250  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
200  
150  
100  
50  
25°C  
0
1.8V  
2V  
2.5V  
3V  
3.6V  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41341E-page 255  
PIC16F72X/PIC16LF72X  
FIGURE 24-31:  
PIC16F72X FIXED VOLTAGE REFERENCE IPD vs. VDD, VCAP = 0.1µF  
70  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
Max. 125°C  
60  
50  
40  
30  
20  
10  
0
(-40°C to 125°C)  
Max. 85°C  
Typ. 25°C  
1.8V  
2V  
3V  
3.6V  
5V  
5.5V  
VDD (V)  
FIGURE 24-32:  
PIC16LF72X FIXED VOLTAGE REFERENCE IPD vs. VDD  
25  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
Max. 125°C  
20  
15  
10  
5
Max. 85°C  
Typ. 25°C  
0
1.8V  
2V  
2.5V  
3V  
3.6V  
VDD (V)  
DS41341E-page 256  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 24-33:  
PIC16F72X BOR IPD vs. VDD, VCAP = 0.1µF  
70  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
60  
50  
40  
30  
20  
10  
0
Max. 125°C  
Max. 85°C  
Typ. 25°C  
2V  
3V  
3.6V  
5V  
5.5V  
VDD (V)  
FIGURE 24-34:  
PIC16LF72X BOR IPD vs. VDD  
30  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
25  
20  
15  
10  
5
Max. 125°C  
Max. 85°C  
Typ. 25°C  
0
2V  
2.5V  
3V  
3.6V  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41341E-page 257  
PIC16F72X/PIC16LF72X  
FIGURE 24-35:  
PIC16F72X CAP SENSE HIGH POWER IPD vs. VDD, VCAP = 0.1µF  
70  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
Max. 125°C  
60  
50  
40  
30  
20  
10  
0
Max. 85°C  
Typ. 25°C  
1.8V  
2V  
3V  
3.6V  
5V  
5.5V  
VDD (V)  
FIGURE 24-36:  
PIC16LF72X CAP SENSE HIGH POWER IPD vs. VDD  
60  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
50  
40  
30  
20  
10  
0
Max. 125°C  
Max. 85°C  
Typ. 25°C  
1.8V  
2V  
2.5V  
3V  
3.6V  
VDD (V)  
DS41341E-page 258  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 24-37:  
PIC16F72X CAP SENSE MEDIUM POWER IPD vs. VDD, VCAP = 0.1µF  
30  
Max. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
25  
20  
15  
10  
5
Max. 85°C  
Typ. 25°C  
0
1.8V  
2V  
3V  
3.6V  
5V  
5.5V  
VDD (V)  
FIGURE 24-38:  
PIC16LF72X CAP SENSE MEDIUM POWER IPD vs. VDD  
20  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
Max. 125°C  
18  
16  
14  
12  
10  
8
Max. 85°C  
Typ. 25°C  
6
4
2
0
1.8V  
2V  
2.5V  
3V  
3.6V  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41341E-page 259  
PIC16F72X/PIC16LF72X  
FIGURE 24-39:  
PIC16F72X CAP SENSE LOW POWER IPD vs. VDD, VCAP = 0.1µF  
30  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
Max. 125°C  
(-40°C to 125°C)  
25  
20  
15  
10  
5
Max. 85°C  
Typ. 25°C  
0
1.8V  
2V  
3V  
3.6V  
5V  
5.5V  
VDD (V)  
FIGURE 24-40:  
PIC16LF72X CAP SENSE LOW POWER IPD vs. VDD  
18  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
Max. 125°C  
16  
14  
12  
10  
8
6
Max. 85°C  
Typ. 25°C  
4
2
0
1.8V  
2V  
2.5V  
3V  
3.6V  
VDD (V)  
DS41341E-page 260  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 24-41:  
PIC16F72X T1OSC 32 KHZ IPD vs. VDD, VCAP = 0.1µF  
16  
Typical: Statistical Mean @25°C  
Max. 85°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
14  
12  
10  
8
Typ. 25° C  
6
4
2
0
1.8V  
2V  
3V  
3.6V  
5V  
5.5V  
VDD (V)  
FIGURE 24-42:  
PIC16LF72X T1OSC 32 KHZ IPD vs. VDD  
4.0  
Max. 85°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Typ.  
1.8V  
2V  
2.5V  
3V  
3.6V  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41341E-page 261  
PIC16F72X/PIC16LF72X  
FIGURE 24-43:  
PIC16F72X TYPICAL ADC IPD vs. VDD, VCAP = 0.1µF  
7.5  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
Typ. 25°C  
7.0  
6.5  
6.0  
5.5  
5.0  
1.8V  
2V  
3V  
3.6V  
5V  
5.5V  
VDD (V)  
FIGURE 24-44:  
PIC16LF72X TYPICAL ADC IPD vs. VDD  
250  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
Typ. 25°C  
200  
150  
100  
50  
0
1.8V  
2V  
2.5V  
3V  
3.6V  
VDD (V)  
DS41341E-page 262  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 24-45:  
PIC16F72X ADC IPD vs. VDD, VCAP = 0.1µF  
25  
Typical: Statistical Mean @25°C  
Max. 125°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
20  
15  
10  
5
Max. 85°C  
1.8V  
2V  
3V  
3.6V  
5V  
5.5V  
VDD (V)  
FIGURE 24-46:  
PIC16LF72X ADC IPD vs. VDD  
8
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
7
6
5
4
3
2
1
0
Max. 125°C  
Max. 85°C  
1.8V  
2V  
2.5V  
3V  
3.6V  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41341E-page 263  
PIC16F72X/PIC16LF72X  
FIGURE 24-47:  
PIC16F72X WDT IPD vs. VDD, VCAP = 0.1µF  
18  
Typical: Statistical Mean @25°C  
Max. 85°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
16  
14  
12  
10  
8
(-40°C to 125°C)  
Typ. 25°C  
6
4
2
0
1.8V  
2V  
3V  
3.6V  
5V  
5.5V  
VDD (V)  
FIGURE 24-48:  
PIC16LF72X WDT IPD vs. VDD  
3.5  
Typical: Statistical Mean @25°C  
Max. 85°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Typ. 25°C  
1.8V  
2V  
2.5V  
3V  
3.6V  
VDD (V)  
DS41341E-page 264  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 24-49:  
TTL INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE  
1.8  
Maximum: Mean + 3σ (-40°C to 125°C)  
Typical: Mean @25°C  
1.6  
1.4  
1.2  
1
Minimum: Mean - 3σ (-40°C to 125°C)  
Max. -40°  
Typ. 25°  
Min. 125°  
0.8  
0.6  
0.4  
1.8  
3.6  
5.5  
VDD (V)  
FIGURE 24-50:  
SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE  
3.5  
Maximum: Mean + 3σ (-40°C to 125°C)  
Typical: Mean @25°C  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Minimum: Mean - 3σ (-40°C to 125°C)  
VIHMax. -40°C  
VIHMin. 125°C  
1.8  
3.6  
5.5  
VDD (V)  
© 2009 Microchip Technology Inc.  
DS41341E-page 265  
PIC16F72X/PIC16LF72X  
FIGURE 24-51:  
SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE  
3.0  
Maximum: Mean + 3σ (-40°C to 125°C)  
Typical: Mean @25°C  
Minimum: Mean - 3σ (-40°C to 125°C)  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIL Max. -40°C  
VIL Min. 125°C  
1.8  
3.6  
5.5  
VDD (V)  
FIGURE 24-52:  
VOH vs. IOH OVER TEMPERATURE, VDD = 5.5V  
5.6  
Maximum: Mean + 3σ (-40°C to 125°C)  
Typical: Mean @25°C  
5.5  
5.4  
5.3  
5.2  
5.1  
5
Minimum: Mean - 3σ (-40°C to 125°C)  
Max. -40°  
Typ. 25°  
Min. 125°  
-0.2  
-1.0  
-1.8  
-2.6  
-3.4  
-4.2  
-5.0  
IOH (mA)  
DS41341E-page 266  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 24-53:  
VOH vs. IOH OVER TEMPERATURE, VDD = 3.6V  
3.8  
Maximum: Mean + 3σ (-40°C to 125°C)  
Typical: Mean @25°C  
Minimum: Mean - 3σ (-40°C to 125°C)  
3.6  
3.4  
3.2  
3
Max. -40°  
Typ. 25°  
Min. 125°  
2.8  
2.6  
-0.2  
-1.0  
-1.8  
-2.6  
-3.4  
-4.2  
-5.0  
IOH (mA)  
FIGURE 24-54:  
VOH vs. IOH OVER TEMPERATURE, VDD = 1.8V  
2
Maximum: Mean + 3σ (-40°C to 125°C)  
Typical: Mean @25°C  
1.8  
1.6  
1.4  
1.2  
1
Minimum: Mean - 3σ (-40°C to 125°C)  
Max. -40°  
Typ. 25°  
0.8  
0.6  
0.4  
0.2  
Min. 125°  
0
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-1.4  
-1.6  
-1.8  
-2.0  
IOH (mA)  
© 2009 Microchip Technology Inc.  
DS41341E-page 267  
PIC16F72X/PIC16LF72X  
FIGURE 24-55:  
VOL vs. IOL OVER TEMPERATURE, VDD = 5.5V  
0.5  
Maximum: Mean + 3σ (-40°C to 125°C)  
0.45  
0.4  
Typical: Mean @25°C  
Minimum: Mean - 3σ (-40°C to 125°C)  
0.35  
0.3  
Max. 125°  
0.25  
0.2  
Typ. 25°  
0.15  
0.1  
Min. -40°  
0.05  
0
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
IOL (mA)  
FIGURE 24-56:  
VOL vs. IOL OVER TEMPERATURE, VDD = 3.6  
0.9  
Maximum: Mean + 3σ (-40°C to 125°C)  
Typical: Mean @25°C  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Minimum: Mean - 3σ (-40°C to 125°C)  
Max. 125°  
Typ. 25°  
Min. -40°  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
IOL (mA)  
DS41341E-page 268  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 24-57:  
VOL vs. IOL OVER TEMPERATURE, VDD = 1.8V  
1.2  
Maximum: Mean + 3σ (-40°C to 125°C)  
Typical: Mean @25°C  
Minimum: Mean - 3σ (-40°C to 125°C)  
1
0.8  
0.6  
0.4  
0.2  
0
Max. 125°  
Min. -40°  
0.0  
0.4  
0.8  
1.2  
1.6  
IOL (mA)  
2.0  
2.4  
2.8  
FIGURE 24-58:  
PIC16F72X PWRT PERIOD  
105  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
95  
85  
75  
65  
55  
45  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
1.8V  
2V  
2.2V  
2.4V  
3V  
3.6V  
4V  
4.5V  
5V  
5.5V  
VDD  
© 2009 Microchip Technology Inc.  
DS41341E-page 269  
PIC16F72X/PIC16LF72X  
FIGURE 24-59:  
PIC16F72X WDT TIME-OUT PERIOD  
24.00  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
22.00  
20.00  
18.00  
16.00  
14.00  
12.00  
10.00  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
1.8V  
2V  
2.2V  
2.4V  
3V  
3.6V  
4V  
4.5V  
5V  
VDD  
FIGURE 24-60:  
PIC16F72X HFINTOSC WAKE-UP FROM SLEEP START-UP TIME  
6.0  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
Max.  
Typ.  
1.8V  
2V  
3V  
3.6V  
4V  
4.5V  
5V  
5.5V  
VDD  
DS41341E-page 270  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 24-61:  
PIC16F72X A/D INTERNAL RC OSCILLATOR PERIOD  
6.0  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3σ  
(-40°C to 125°C)  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
Max.  
Min.  
1.8V  
3.6V  
5.5V  
VDD(V)  
FIGURE 24-62:  
PIC16F72X CAP SENSE OUTPUT CURRENT, POWER MODE = HIGH  
20000  
Min. Sink -40°C  
Typ. Sink 25°C  
15000  
10000  
5000  
Max. Sink 85°C  
0
Min. Source 85°C  
Typ. Source 25°C  
-5000  
-10000  
-15000  
Max. Source -40°C  
1.8  
2
2.5  
3
3.2  
3.6  
4
4.5  
5
5.5  
VDD(V)  
© 2009 Microchip Technology Inc.  
DS41341E-page 271  
PIC16F72X/PIC16LF72X  
FIGURE 24-63:  
PIC16F72X CAP SENSE OUTPUT CURRENT, POWER MODE = MEDIUM  
3000  
Max. Sink -40°C  
Typ. Sink 25°C  
2000  
1000  
0
Min. Sink 85°C  
Min. Source 85°C  
Typ. Source 25°C  
-1000  
-2000  
-3000  
Max. Source -40°C  
1.8  
2
2.5  
3
3.2  
3.6  
4
4.5  
5
5.5  
VDD(V)  
FIGURE 24-64:  
PIC16F72X CAP SENSE OUTPUT CURRENT, POWER MODE = LOW  
600  
Max. Sink 85°C  
Typ. Sink 25°C  
400  
200  
0
Min. Sink -40°C  
Min. Source 85°C  
Typ. Source 25°C  
-200  
-400  
-600  
-800  
Max. Source -40°C  
1.8  
2
2.5  
3
3.2  
3.6  
4
4.5  
5
5.5  
VDD(V)  
DS41341E-page 272  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 24-65:  
PIC16F72X CAP SENSOR HYSTERESIS, POWER MODE = HIGH  
700  
Max. 125°C  
Max. 85°C  
600  
500  
400  
Typ. 25°C  
Min. 0°C  
Min. -40°C  
300  
1.8  
2.0  
2.5  
3.0  
3.2  
3.6  
4.0  
4.5  
5.0  
5.5  
VDD(V)  
FIGURE 24-66:  
PIC16F72X CAP SENSOR HYSTERESIS, POWER MODE = MEDIUM  
550  
500  
450  
400  
350  
300  
Max. 125°C  
Max. 85°C  
Typ. 25°C  
Min. 0°C  
Min. -40°C  
250  
1.8  
2.0  
2.5  
3.0  
3.2  
3.6  
4.0  
4.5  
5.0  
5.5  
VDD(V)  
© 2009 Microchip Technology Inc.  
DS41341E-page 273  
PIC16F72X/PIC16LF72X  
FIGURE 24-67:  
PIC16F72X CAP SENSOR HYSTERESIS, POWER MODE = LOW  
450  
Max. 125°C  
Max. 85°C  
400  
350  
300  
250  
200  
150  
Typ. 25°C  
Min. 0°C  
Min -40°C  
1.8  
2.0  
2.5  
3.0  
3.2  
3.6  
4.0  
4.5  
5.0  
5.5  
VDD(V)  
FIGURE 24-68:  
TYPICAL FVR (X1 AND X2) VS. SUPPLY VOLTAGE (V) NORMALIZED AT 3.0V  
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
1.8  
2.5  
3
3.6  
4.2  
5.5  
Voltage  
DS41341E-page 274  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
FIGURE 24-69:  
TYPICAL FVR CHANGE VS. TEMPERATURE NORMALIZED AT 25°C  
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
-40  
0
45  
85  
125  
Temperature (°C)  
© 2009 Microchip Technology Inc.  
DS41341E-page 275  
PIC16F72X/PIC16LF72X  
NOTES:  
DS41341E-page 276  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
25.0 PACKAGING INFORMATION  
25.1 Package Marking Information  
28-Lead SPDIP  
Example  
PIC16F722  
-I/SP  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
e
3
YYWWNNN  
0810017  
40-Lead PDIP  
Example  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC16F724  
-I/P  
e
3
0810017  
Example  
-I/ML  
28-Lead QFN/UQFN  
16F722  
XXXXXXXX  
XXXXXXXX  
YYWWNNN  
e
3
0810017  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
*
Standard PICmicro® device marking consists of Microchip part number, year code, week code and  
traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check  
with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP  
price.  
© 2009 Microchip Technology Inc.  
DS41341E-page 277  
PIC16F72X/PIC16LF72X  
Package Marking Information (Continued)  
44-Lead QFN  
Example  
-I/ML  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC16F724  
e
3
0810017  
28-Lead SOIC  
Example  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
PIC16F722  
-I/SO  
e
3
0810017  
YYWWNNN  
28-Lead SSOP  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
PIC16F722  
-I/SS  
e
3
YYWWNNN  
0810017  
44-Lead TQFP  
Example  
-I/PT  
XXXXXXXXXXX  
XXXXXXXXXXX  
XXXXXXXXXXX  
YYWWNNN  
PIC16F727  
e
3
0810017  
DS41341E-page 278  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
25.2 Package Details  
The following sections give the technical details of the packages.  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢊꢋꢋꢌꢇꢍꢎꢅꢏꢐꢊꢑꢇꢒꢓꢅꢎꢇꢔꢋꢂꢃꢊꢋꢄꢇꢕꢈꢍꢖꢇMꢇꢗꢘꢘꢇꢙꢊꢎꢇꢚꢛꢆꢌꢇꢜꢈꢍꢒꢔꢍ  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
N
NOTE 1  
E1  
1
2 3  
D
E
A2  
A
L
c
b1  
A1  
b
e
eB  
6ꢄꢃ&!  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢚ7,8.ꢐ  
7:ꢔ  
ꢎ<  
ꢁꢀꢕꢕꢅ1ꢐ,  
M
ꢔꢚ7  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
ꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
M
ꢁꢎꢕꢕ  
ꢁꢀꢘꢕ  
M
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
1ꢆ!ꢈꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢐꢍꢋ"ꢇ#ꢈꢉꢅ&ꢋꢅꢐꢍꢋ"ꢇ#ꢈꢉꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
ꢙꢃꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
6ꢓꢓꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
ꢗꢎ  
ꢗꢀ  
.
.ꢀ  
9
)ꢀ  
)
ꢈ1  
ꢁꢀꢎꢕ  
ꢁꢕꢀꢘ  
ꢁꢎꢛꢕ  
ꢁꢎꢖꢕ  
ꢀꢁ-ꢖꢘ  
ꢁꢀꢀꢕ  
ꢁꢕꢕ<  
ꢁꢕꢖꢕ  
ꢁꢕꢀꢖ  
M
ꢁꢀ-ꢘ  
M
ꢁ-ꢀꢕ  
ꢁꢎ<ꢘ  
ꢀꢁ-?ꢘ  
ꢁꢀ-ꢕ  
ꢁꢕꢀꢕ  
ꢁꢕꢘꢕ  
ꢁꢕꢀ<  
M
ꢁ--ꢘ  
ꢁꢎꢛꢘ  
ꢀꢁꢖꢕꢕ  
ꢁꢀꢘꢕ  
ꢁꢕꢀꢘ  
ꢁꢕꢜꢕ  
ꢁꢕꢎꢎ  
ꢁꢖ-ꢕ  
9ꢋ*ꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅꢝꢋ*ꢅꢐꢓꢆꢌꢃꢄꢑꢅꢅꢏ  
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢁꢕꢀꢕ/ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢜꢕ1  
© 2009 Microchip Technology Inc.  
DS41341E-page 279  
PIC16F72X/PIC16LF72X  
#ꢘꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇꢒꢓꢅꢎꢇꢔꢋꢂꢃꢊꢋꢄꢇꢕꢍꢖꢇMꢇ$ꢘꢘꢇꢙꢊꢎꢇꢚꢛꢆꢌꢇꢜꢍꢒꢔꢍ  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
N
NOTE 1  
E1  
1 2 3  
D
E
A2  
A
L
c
b1  
b
A1  
e
eB  
6ꢄꢃ&!  
ꢚ7,8.ꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
ꢖꢕ  
ꢁꢀꢕꢕꢅ1ꢐ,  
ꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
1ꢆ!ꢈꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢐꢍꢋ"ꢇ#ꢈꢉꢅ&ꢋꢅꢐꢍꢋ"ꢇ#ꢈꢉꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
ꢙꢃꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
6ꢓꢓꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
M
M
M
M
M
M
M
M
M
M
M
M
ꢁꢎꢘꢕ  
ꢁꢀꢛꢘ  
M
ꢗꢎ  
ꢗꢀ  
.
.ꢀ  
9
)ꢀ  
)
ꢈ1  
ꢁꢀꢎꢘ  
ꢁꢕꢀꢘ  
ꢁꢘꢛꢕ  
ꢁꢖ<ꢘ  
ꢀꢁꢛ<ꢕ  
ꢁꢀꢀꢘ  
ꢁꢕꢕ<  
ꢁꢕ-ꢕ  
ꢁꢕꢀꢖ  
M
ꢁ?ꢎꢘ  
ꢁꢘ<ꢕ  
ꢎꢁꢕꢛꢘ  
ꢁꢎꢕꢕ  
ꢁꢕꢀꢘ  
ꢁꢕꢜꢕ  
ꢁꢕꢎ-  
ꢁꢜꢕꢕ  
9ꢋ*ꢈꢉꢅ9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅꢝꢋ*ꢅꢐꢓꢆꢌꢃꢄꢑꢅꢅꢏ  
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢁꢕꢀꢕ/ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢀ?1  
DS41341E-page 280  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
ꢀꢁꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ%ꢓꢅꢆꢇ&ꢎꢅꢐ'ꢇ!ꢛꢇꢃꢄꢅꢆꢇꢍꢅꢑꢉꢅ(ꢄꢇꢕ)ꢃꢖꢇMꢇ$*$ꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜ%&!  
+ꢊꢐ,ꢇꢘ-..ꢇꢙꢙꢇ/ꢛꢋꢐꢅꢑꢐꢇꢃꢄꢋ(ꢐ,  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
D2  
EXPOSED  
PAD  
e
E
b
E2  
2
1
2
1
K
N
N
NOTE 1  
L
BOTTOM VIEW  
TOP VIEW  
A
A3  
A1  
6ꢄꢃ&!  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
7:ꢔ  
ꢔꢚ7  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢐ&ꢆꢄ#ꢋ%%ꢅ  
,ꢋꢄ&ꢆꢌ&ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ>ꢃ#&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢞ&ꢋꢞ.$ꢓꢋ!ꢈ#ꢅꢂꢆ#  
7
ꢗꢀ  
ꢗ-  
.
.ꢎ  
ꢎ<  
ꢕꢁ?ꢘꢅ1ꢐ,  
ꢕꢁꢛꢕ  
ꢕꢁ<ꢕ  
ꢕꢁꢕꢕ  
ꢀꢁꢕꢕ  
ꢕꢁꢕꢘ  
ꢕꢁꢕꢎ  
ꢕꢁꢎꢕꢅꢝ.3  
?ꢁꢕꢕꢅ1ꢐ,  
-ꢁꢜꢕ  
?ꢁꢕꢕꢅ1ꢐ,  
-ꢁꢜꢕ  
ꢕꢁ-ꢕ  
ꢕꢁꢘꢘ  
M
-ꢁ?ꢘ  
ꢖꢁꢎꢕ  
ꢒꢎ  
)
9
-ꢁ?ꢘ  
ꢕꢁꢎ-  
ꢕꢁꢘꢕ  
ꢕꢁꢎꢕ  
ꢖꢁꢎꢕ  
ꢕꢁ-ꢘ  
ꢕꢁꢜꢕ  
M
@
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢂꢆꢌ4ꢆꢑꢈꢅꢃ!ꢅ!ꢆ*ꢅ!ꢃꢄꢑ"ꢇꢆ&ꢈ#ꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢀꢕꢘ1  
© 2009 Microchip Technology Inc.  
DS41341E-page 281  
PIC16F72X/PIC16LF72X  
ꢀꢁꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ%ꢓꢅꢆꢇ&ꢎꢅꢐ'ꢇ!ꢛꢇꢃꢄꢅꢆꢇꢍꢅꢑꢉꢅ(ꢄꢇꢕ)ꢃꢖꢇMꢇ$*$ꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜ%&!  
+ꢊꢐ,ꢇꢘ-..ꢇꢙꢙꢇ/ꢛꢋꢐꢅꢑꢐꢇꢃꢄꢋ(ꢐ,  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
DS41341E-page 282  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
##ꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ%ꢓꢅꢆꢇ&ꢎꢅꢐ'ꢇ!ꢛꢇꢃꢄꢅꢆꢇꢍꢅꢑꢉꢅ(ꢄꢇꢕ)ꢃꢖꢇMꢇꢁ*ꢁꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜ%&!  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D2  
D
EXPOSED  
PAD  
e
b
K
E
E2  
2
1
2
1
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A
A3  
A1  
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢖꢖ  
ꢕꢁ?ꢘꢅ1ꢐ,  
ꢕꢁꢛꢕ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢐ&ꢆꢄ#ꢋ%%ꢅ  
,ꢋꢄ&ꢆꢌ&ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
7
ꢗꢀ  
ꢗ-  
.
.ꢎ  
ꢕꢁ<ꢕ  
ꢕꢁꢕꢕ  
ꢀꢁꢕꢕ  
ꢕꢁꢕꢘ  
ꢕꢁꢕꢎ  
ꢕꢁꢎꢕꢅꢝ.3  
<ꢁꢕꢕꢅ1ꢐ,  
?ꢁꢖꢘ  
<ꢁꢕꢕꢅ1ꢐ,  
?ꢁꢖꢘ  
ꢕꢁ-ꢕ  
ꢕꢁꢖꢕ  
M
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ>ꢃ#&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ9ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢞ&ꢋꢞ.$ꢓꢋ!ꢈ#ꢅꢂꢆ#  
?ꢁ-ꢕ  
?ꢁ<ꢕ  
ꢒꢎ  
)
9
?ꢁ-ꢕ  
ꢕꢁꢎꢘ  
ꢕꢁ-ꢕ  
ꢕꢁꢎꢕ  
?ꢁ<ꢕ  
ꢕꢁ-<  
ꢕꢁꢘꢕ  
M
@
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢂꢆꢌ4ꢆꢑꢈꢅꢃ!ꢅ!ꢆ*ꢅ!ꢃꢄꢑ"ꢇꢆ&ꢈ#ꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢀꢕ-1  
© 2009 Microchip Technology Inc.  
DS41341E-page 283  
PIC16F72X/PIC16LF72X  
##ꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ%ꢓꢅꢆꢇ&ꢎꢅꢐ'ꢇ!ꢛꢇꢃꢄꢅꢆꢇꢍꢅꢑꢉꢅ(ꢄꢇꢕ)ꢃꢖꢇMꢇꢁ*ꢁꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜ%&!  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
DS41341E-page 284  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
ꢀꢁꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇꢈꢙꢅꢎꢎꢇ0ꢓꢐꢎꢊꢋꢄꢇꢕꢈ0ꢖꢇMꢇ1ꢊꢆꢄ'ꢇ2-.ꢘꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜꢈ0ꢔ/  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
N
E
E1  
NOTE 1  
1
2
3
e
b
h
α
h
c
φ
A2  
A
L
A1  
L1  
β
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
ꢎ<  
ꢀꢁꢎꢜꢅ1ꢐ,  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅꢅꢏ  
M
ꢎꢁꢕꢘ  
ꢕꢁꢀꢕ  
M
M
M
ꢎꢁ?ꢘ  
M
ꢕꢁ-ꢕ  
ꢗꢎ  
ꢗꢀ  
.
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
ꢀꢕꢁ-ꢕꢅ1ꢐ,  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
,ꢍꢆ'%ꢈꢉꢅAꢋꢓ&ꢃꢋꢄꢆꢇB  
3ꢋꢋ&ꢅ9ꢈꢄꢑ&ꢍ  
.ꢀ  
ꢜꢁꢘꢕꢅ1ꢐ,  
ꢀꢜꢁꢛꢕꢅ1ꢐ,  
ꢕꢁꢎꢘ  
ꢕꢁꢖꢕ  
M
M
ꢕꢁꢜꢘ  
ꢀꢁꢎꢜ  
9
3ꢋꢋ&ꢓꢉꢃꢄ&  
9ꢀ  
ꢀꢁꢖꢕꢅꢝ.3  
3ꢋꢋ&ꢅꢗꢄꢑꢇꢈꢅ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ1ꢋ&&ꢋ'  
ꢕꢟ  
ꢕꢁꢀ<  
ꢕꢁ-ꢀ  
ꢘꢟ  
M
M
M
M
M
<ꢟ  
)
ꢕꢁ--  
ꢕꢁꢘꢀ  
ꢀꢘꢟ  
ꢘꢟ  
ꢀꢘꢟ  
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢀꢘꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢘꢎ1  
© 2009 Microchip Technology Inc.  
DS41341E-page 285  
PIC16F72X/PIC16LF72X  
ꢀꢁꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇꢈ,3ꢊꢋꢉꢇꢈꢙꢅꢎꢎꢇ0ꢓꢐꢎꢊꢋꢄꢇꢕꢈꢈꢖꢇMꢇ.-ꢗꢘꢇꢙꢙꢇꢚꢛꢆꢌꢇꢜꢈꢈ0ꢍ  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
N
E
E1  
1
2
b
NOTE 1  
e
c
A2  
A
φ
A1  
L
L1  
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
7
ꢎ<  
ꢕꢁ?ꢘꢅ1ꢐ,  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅ  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
3ꢋꢋ&ꢅ9ꢈꢄꢑ&ꢍ  
3ꢋꢋ&ꢓꢉꢃꢄ&  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
3ꢋꢋ&ꢅꢗꢄꢑꢇꢈ  
M
M
ꢀꢁꢜꢘ  
M
ꢜꢁ<ꢕ  
ꢘꢁ-ꢕ  
ꢀꢕꢁꢎꢕ  
ꢕꢁꢜꢘ  
ꢀꢁꢎꢘꢅꢝ.3  
M
ꢎꢁꢕꢕ  
ꢀꢁ<ꢘ  
M
<ꢁꢎꢕ  
ꢘꢁ?ꢕ  
ꢀꢕꢁꢘꢕ  
ꢕꢁꢛꢘ  
ꢗꢎ  
ꢗꢀ  
.
.ꢀ  
9
9ꢀ  
ꢀꢁ?ꢘ  
ꢕꢁꢕꢘ  
ꢜꢁꢖꢕ  
ꢘꢁꢕꢕ  
ꢛꢁꢛꢕ  
ꢕꢁꢘꢘ  
ꢕꢁꢕꢛ  
ꢕꢟ  
ꢕꢁꢎꢘ  
<ꢟ  
ꢖꢟ  
9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
)
ꢕꢁꢎꢎ  
M
ꢕꢁ-<  
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢎꢕꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢜ-1  
DS41341E-page 286  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
##ꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ4,ꢊꢋꢇ%ꢓꢅꢆꢇ&ꢎꢅꢐ5ꢅꢑꢉꢇꢕꢍ4ꢖꢇMꢇ6ꢘ*6ꢘ*6ꢇꢙꢙꢇꢚꢛꢆꢌ'ꢇꢀ-ꢘꢘꢇꢙꢙꢇꢜ4%&ꢍ  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
D
D1  
E
e
E1  
N
b
NOTE 1  
1 2 3  
NOTE 2  
α
A
c
φ
A2  
β
A1  
L
L1  
6ꢄꢃ&!  
ꢔꢚ99ꢚꢔ.ꢙ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ9ꢃ'ꢃ&!  
ꢔꢚ7  
7:ꢔ  
ꢖꢖ  
ꢕꢁ<ꢕꢅ1ꢐ,  
M
ꢀꢁꢕꢕ  
M
ꢔꢗ;  
7"')ꢈꢉꢅꢋ%ꢅ9ꢈꢆ#!  
9ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
: ꢈꢉꢆꢇꢇꢅ8ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅꢙꢍꢃꢌ4ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ9ꢈꢄꢑ&ꢍ  
7
ꢗꢎ  
ꢗꢀ  
9
M
ꢀꢁꢎꢕ  
ꢀꢁꢕꢘ  
ꢕꢁꢀꢘ  
ꢕꢁꢜꢘ  
ꢕꢁꢛꢘ  
ꢕꢁꢕꢘ  
ꢕꢁꢖꢘ  
ꢕꢁ?ꢕ  
3ꢋꢋ&ꢓꢉꢃꢄ&  
3ꢋꢋ&ꢅꢗꢄꢑꢇꢈ  
9ꢀ  
ꢀꢁꢕꢕꢅꢝ.3  
-ꢁꢘꢟ  
ꢕꢟ  
ꢜꢟ  
: ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
: ꢈꢉꢆꢇꢇꢅ9ꢈꢄꢑ&ꢍ  
.
.ꢀ  
ꢒꢀ  
ꢀꢎꢁꢕꢕꢅ1ꢐ,  
ꢀꢎꢁꢕꢕꢅ1ꢐ,  
ꢀꢕꢁꢕꢕꢅ1ꢐ,  
ꢀꢕꢁꢕꢕꢅ1ꢐ,  
M
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢑꢈꢅ9ꢈꢄꢑ&ꢍ  
9ꢈꢆ#ꢅꢙꢍꢃꢌ4ꢄꢈ!!  
9ꢈꢆ#ꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ1ꢋ&&ꢋ'  
ꢕꢁꢕꢛ  
ꢕꢁ-ꢕ  
ꢀꢀꢟ  
ꢕꢁꢎꢕ  
ꢕꢁꢖꢘ  
ꢀ-ꢟ  
)
ꢕꢁ-ꢜ  
ꢀꢎꢟ  
ꢀꢎꢟ  
ꢀꢀꢟ  
ꢀ-ꢟ  
!ꢛꢐꢄꢏ"  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ,ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢓ&ꢃꢋꢄꢆꢇDꢅ!ꢃEꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢎꢘꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁꢘꢔꢁ  
1ꢐ,2 1ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢙꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.32 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢜ?1  
© 2009 Microchip Technology Inc.  
DS41341E-page 287  
PIC16F72X/PIC16LF72X  
##ꢂꢃꢄꢅꢆꢇꢍꢎꢅꢏꢐꢊꢑꢇ4,ꢊꢋꢇ%ꢓꢅꢆꢇ&ꢎꢅꢐ5ꢅꢑꢉꢇꢕꢍ4ꢖꢇMꢇ6ꢘ*6ꢘ*6ꢇꢙꢙꢇꢚꢛꢆꢌ'ꢇꢀ-ꢘꢘꢇꢙꢙꢇꢜ4%&ꢍ  
!ꢛꢐꢄ" 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ4ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ4ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'5ꢓꢆꢌ4ꢆꢑꢃꢄꢑ  
DS41341E-page 288  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2009 Microchip Technology Inc.  
DS41341E-page 289  
PIC16F72X/PIC16LF72X  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS41341E-page 290  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
APPENDIX A: DATA SHEET  
REVISION HISTORY  
APPENDIX B: MIGRATING FROM  
OTHER PIC®  
DEVICES  
Revision A  
This discusses some of the issues in migrating from  
other PIC® devices to the PIC16F72X family of  
devices.  
Original release.  
Revision B  
B.1  
TABLE B-1:  
Feature  
PIC16F77 to PIC16F72X  
Electrical Specification updates; Package Drawings;  
miscellaneous updates.  
FEATURE COMPARISON  
PIC16F77  
PIC16F727  
Revision C  
Max. Operating Speed  
20 MHz  
8K  
20 MHz  
8K  
Revised data sheet title; Revised Low-Power Features  
section; Revised Section 6.2.2.4 RA3/AN3/VREF;  
Revised Figure 16-8 Synchronous Reception.  
Max. Program  
Memory (Words)  
Max. SRAM (Bytes)  
A/D Resolution  
Timers (8/16-bit)  
Oscillator Modes  
Brown-out Reset  
Internal Pull-ups  
Interrupt-on-change  
Comparator  
368  
368  
8-bit  
8-bit  
Revision D  
2/1  
2/1  
Removed the Preliminary Label; Updated the  
“Electrical Characteristics” section; Added charts in the  
“Char. Data” section; Deleted “Based 8-Bit CMOS”  
from title; Updated the “Special Microcontroller  
Features” section and the “Peripheral Features”  
section; Changed the title of the “Low Power Features”  
section into “Extreme Low-Power Management  
PIC16LF72X with nanoWatt XLP” and updated this  
section; Inserted new section – “Analog Features”  
(page 1); Changed the title of the “Peripheral Features”  
section into “Peripheral Highlights” and updated the  
section.  
4
8
Y
Y
RB<7:0>  
RB<7:0>  
RB<7:4>  
RB<7:0>  
0
Y
N
N
0
Y
N
N
USART  
Extended WDT  
Software Control  
Option of WDT/BOR  
INTOSC Frequencies  
Clock Switching  
None  
N
500 kHz -  
16 MHz  
Revision E  
N
Added paragraph to section 5.0 (LDO Voltage  
Regulator); Updated the Electrical Specifications  
section (Added another absolute Maximum Rating;  
Updated section 23.1 and Table 23-4); Updated the Pin  
Diagrams with the UQFN package; Updated Table 1,  
adding UQFN; Updated section 23.5 (Thermal  
Considerations); Updated the Packaging Information  
section adding the UQFN Package; Updated the  
Product Identification System section.  
© 2009 Microchip Technology Inc.  
DS41341E-page 291  
PIC16F72X/PIC16LF72X  
NOTES:  
DS41341E-page 292  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
INDEX  
Receive .................................................... 164  
Transmit ................................................... 163  
Reception ......................................................... 164  
Transmission .................................................... 163  
A
A/D  
Specifications.................................................... 230, 231  
Absolute Maximum Ratings .............................................. 211  
AC Characteristics  
B
Industrial and Extended ............................................ 222  
Load Conditions........................................................ 221  
ADC .................................................................................... 99  
Acquisition Requirements ......................................... 106  
Associated registers.................................................. 108  
Block Diagram............................................................. 99  
Calculating Acquisition Time..................................... 106  
Channel Selection..................................................... 100  
Configuration............................................................. 100  
Configuring Interrupt ................................................. 103  
Conversion Clock...................................................... 100  
Conversion Procedure .............................................. 103  
Internal Sampling Switch (RSS) Impedance.............. 106  
Interrupts................................................................... 102  
Operation .................................................................. 102  
Operation During Sleep ............................................ 102  
Port Configuration..................................................... 100  
Reference Voltage (VREF)......................................... 100  
Source Impedance.................................................... 106  
Special Event Trigger................................................ 102  
ADCON0 Register....................................................... 24, 104  
ADCON1 Register....................................................... 25, 105  
Addressable Universal Synchronous Asynchronous  
Receiver Transmitter (AUSART)............................... 145  
ADRES Register ......................................................... 24, 105  
Alternate Pin Function......................................................... 53  
Analog-to-Digital Converter. See ADC  
BF bit ........................................................................ 175, 187  
Block Diagram  
Capacitive Sensing................................................... 129  
Block Diagrams  
(CCP) Capture Mode Operation............................... 137  
ADC............................................................................ 99  
ADC Transfer Function............................................. 107  
Analog Input Model................................................... 107  
AUSART Receive..................................................... 146  
AUSART Transmit.................................................... 145  
CCP PWM ................................................................ 141  
Clock Source .............................................................. 89  
Compare................................................................... 139  
Crystal Operation........................................................ 93  
External RC Mode ...................................................... 94  
Interrupt Logic............................................................. 43  
MCLR Circuit .............................................................. 35  
On-Chip Reset Circuit................................................. 33  
PIC16F722/723/726/PIC16LF722/723/726 ................ 14  
PIC16F724/727/PIC16LF724/727 .............................. 15  
RA0 Pins..................................................................... 57  
RA4 Pin ...................................................................... 58  
RA5 Pin ...................................................................... 59  
RA6 Pin ...................................................................... 60  
RA7 Pin ...................................................................... 60  
RB0 Pin ...................................................................... 66  
RB3 Pin ...................................................................... 68  
RB4, RB2, RB1 Pins................................................... 67  
RB5 Pin ...................................................................... 69  
RB6 Pin ...................................................................... 70  
RB7 Pin ...................................................................... 71  
RC0 Pin ...................................................................... 75  
RC1 Pin ...................................................................... 75  
RC2 Pin ...................................................................... 76  
RC3 Pin ...................................................................... 76  
RC4 Pin ...................................................................... 77  
RC5 Pin ...................................................................... 77  
RC6 Pin ...................................................................... 78  
RC7 Pin ...................................................................... 78  
RD Pins ...................................................................... 82  
RE Pins....................................................................... 88  
RE3 Pin ...................................................................... 88  
Resonator Operation .................................................. 94  
SPI Mode.................................................................. 168  
ANSELA Register ............................................................... 55  
ANSELB Register ............................................................... 64  
ANSELD Register ............................................................... 81  
ANSELE Register ............................................................... 86  
APFCON Register......................................................... 25, 53  
Assembler  
MPASM Assembler................................................... 208  
AUSART ........................................................................... 145  
Associated Registers  
Baud Rate Generator........................................ 156  
Asynchronous Mode ................................................. 147  
Associated Registers  
Receive..................................................... 153  
Transmit.................................................... 149  
Baud Rate Generator (BRG) ............................ 156  
Receiver............................................................ 150  
Setting up 9-bit Mode with Address Detect....... 152  
Transmitter........................................................ 147  
Baud Rate Generator (BRG)  
Baud Rate Error, Calculating ............................ 156  
Baud Rates, Asynchronous Modes .................. 157  
Formulas........................................................... 156  
High Baud Rate Select (BRGH Bit) .................. 156  
Synchronous Master Mode............................... 159, 163  
Associated Registers  
2
SSP (I C Mode)........................................................ 177  
Timer1 .............................................. 115, 121, 122, 123  
Timer2 ...................................................................... 127  
TMR0/WDT Prescaler .............................................. 111  
Brown-out Reset (BOR)...................................................... 37  
Specifications ........................................................... 228  
Timing and Characteristics....................................... 227  
Receive..................................................... 162  
Transmit.................................................... 160  
Reception.......................................................... 161  
Transmission .................................................... 159  
Synchronous Slave Mode  
C
C Compilers  
MPLAB C18.............................................................. 208  
MPLAB C30.............................................................. 208  
Capacitive Sensing........................................................... 129  
Associated registers w/ Capacitive Sensing............. 134  
Associated Registers  
© 2009 Microchip Technology Inc.  
DS41341E-page 293  
PIC16F72X/PIC16LF72X  
Capture Module. See Capture/Compare/PWM (CCP)  
Capture/Compare/PWM (CCP).........................................135  
Associated registers w/ Capture ...............................138  
Associated registers w/ Compare .............................140  
Associated registers w/ PWM ...................................144  
Capture Mode ...........................................................137  
CCPx Pin Configuration ............................................137  
Compare Mode .........................................................139  
CCPx Pin Configuration....................................139  
Software Interrupt Mode ........................... 137, 139  
Special Event Trigger........................................139  
Timer1 Mode Selection............................. 137, 139  
Interaction of Two CCP Modules (table) ...................135  
Prescaler...................................................................137  
PWM Mode ...............................................................141  
Duty Cycle.........................................................142  
Effects of Reset.................................................143  
Example PWM Frequencies and  
Customer Notification Service .......................................... 299  
Customer Support............................................................. 299  
D
D/A bit............................................................................... 187  
Data Memory ...................................................................... 20  
Data/Address bit (D/A)...................................................... 187  
DC and AC Characteristics............................................... 241  
DC Characteristics  
Extended and Industrial............................................ 218  
Industrial and Extended............................................ 212  
Development Support....................................................... 207  
Device Configuration .......................................................... 95  
Code Protection.......................................................... 97  
Configuration Word..................................................... 95  
User ID ....................................................................... 97  
Device Overview................................................................. 13  
E
Resolutions, 20 MHZ ................................143  
Example PWM Frequencies and  
Effects of Reset  
PWM mode............................................................... 143  
Electrical Specifications.................................................... 211  
Enhanced Capture/Compare/PWM (ECCP)  
Specifications ........................................................... 230  
Errata.................................................................................. 12  
Resolutions, 8 MHz...................................143  
Operation in Sleep Mode ..................................143  
Setup for Operation...........................................143  
System Clock Frequency Changes...................143  
PWM Period..............................................................142  
Setup for PWM Operation.........................................143  
Timer Resources.......................................................135  
CCP. See Capture/Compare/PWM (CCP)  
CCP1CON Register ............................................................24  
CCP2CON Register ............................................................24  
CCPR1H Register...............................................................24  
CCPR1L Register................................................................24  
CCPR2H Register...............................................................24  
CCPR2L Register................................................................24  
CCPxCON Register ..........................................................136  
CKE bit...................................................................... 175, 187  
CKP bit...................................................................... 174, 186  
Clock Sources  
F
Firmware Instructions ....................................................... 197  
Fixed Voltage Reference. See FVR  
FSR Register ................................................................ 24, 25  
Fuses. See Configuration Bits  
FVR................................................................................... 109  
FVRCON Register ...................................................... 25, 109  
G
General Purpose Register File ........................................... 20  
I
2
I C Mode  
External Modes...........................................................93  
EC.......................................................................93  
HS.......................................................................93  
LP........................................................................93  
OST.....................................................................93  
RC.......................................................................94  
XT .......................................................................93  
Code Examples  
Associated Registers................................................ 188  
INDF Register............................................................... 24, 25  
Indirect Addressing, INDF and FSR Registers ................... 31  
Instruction Format............................................................. 197  
Instruction Set................................................................... 197  
ADDLW..................................................................... 199  
ADDWF..................................................................... 199  
ANDLW..................................................................... 199  
ANDWF..................................................................... 199  
MOVF ....................................................................... 202  
BCF .......................................................................... 199  
BSF........................................................................... 199  
BTFSC...................................................................... 199  
BTFSS ...................................................................... 200  
CALL......................................................................... 200  
CLRF ........................................................................ 200  
CLRW ....................................................................... 200  
CLRWDT .................................................................. 200  
COMF ....................................................................... 200  
DECF........................................................................ 200  
DECFSZ ................................................................... 201  
GOTO ....................................................................... 201  
INCF ......................................................................... 201  
INCFSZ..................................................................... 201  
IORLW...................................................................... 201  
IORWF...................................................................... 201  
MOVLW .................................................................... 202  
A/D Conversion.........................................................103  
Call of a Subroutine in Page 1 from Page 0................30  
Changing Between Capture Prescalers....................137  
Indirect Addressing .....................................................31  
Initializing PORTA.......................................................54  
Initializing PORTB.......................................................62  
Initializing PORTC.......................................................73  
Initializing PORTD.......................................................80  
Initializing PORTE.......................................................84  
Loading the SSPBUF (SSPSR) Register..................170  
Saving W, STATUS and PCLATH Registers  
in RAM ................................................................45  
Comparators  
C2OUT as T1 Gate ...................................................118  
Compare Module. See Capture/Compare/PWM (CCP)  
CONFIG1 Register........................................................ 95, 96  
CPSCON0 Register ..........................................................133  
CPSCON1 Register ..........................................................134  
Customer Change Notification Service .............................299  
DS41341E-page 294  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
MOVWF .................................................................... 202  
NOP .......................................................................... 202  
RETFIE ..................................................................... 203  
RETLW ..................................................................... 203  
RETURN................................................................... 203  
RLF ........................................................................... 204  
RRF........................................................................... 204  
SLEEP ...................................................................... 204  
SUBLW ..................................................................... 204  
SUBWF..................................................................... 205  
SWAPF ..................................................................... 205  
XORLW..................................................................... 205  
XORWF..................................................................... 205  
Summary Table......................................................... 198  
INTCON Register................................................................ 46  
Internal Oscillator Block  
Oscillator Specifications.................................................... 224  
Oscillator Start-up Timer (OST)  
Specifications ........................................................... 228  
OSCTUNE Register............................................................ 92  
P
P (Stop) bit........................................................................ 187  
Packaging......................................................................... 277  
Marking............................................................. 277, 278  
PDIP Details ............................................................. 279  
Paging, Program Memory................................................... 30  
PCL and PCLATH............................................................... 30  
Computed GOTO ....................................................... 30  
Stack........................................................................... 30  
PCL Register ................................................................ 24, 25  
PCLATH Register ......................................................... 24, 25  
PCON Register....................................................... 25, 29, 38  
PICSTART Plus Development Programmer..................... 210  
PIE1 Register ............................................................... 25, 47  
PIE2 Register ............................................................... 25, 48  
Pin Diagram  
INTOSC  
Specifications.................................................... 225  
Internal Sampling Switch (RSS) Impedance...................... 106  
Internet Address................................................................ 299  
Interrupts............................................................................. 43  
ADC .......................................................................... 103  
Associated registers w/ Interrupts............................... 50  
Interrupt-on-Change.................................................... 62  
TMR1 ........................................................................ 120  
INTOSC Specifications ..................................................... 225  
IOCB Register..................................................................... 64  
PIC16F722/723/726, 28-pin PDIP/SOIC/  
SSOP/QFN/UQFN................................................ 5  
PIC16F724/727, 40-pin PDIP....................................... 7  
PIC16F724/727, 44-pin QFN........................................ 9  
PIC16F724/727, 44-pin TQFP...................................... 8  
Pinout Descriptions  
PIC16F72X/PIC16LF72X ........................................... 16  
PIR1 Register ............................................................... 24, 49  
PIR2 Register ............................................................... 24, 50  
PMADRH Register............................................................ 191  
PMADRL Register ............................................................ 191  
PMCON1 Register.............................................. 26, 190, 191  
PMDATH Register............................................................ 190  
PMDATL Register............................................................. 190  
PORTA ............................................................................... 54  
ANSELA Register....................................................... 55  
Associated Registers.................................................. 61  
Pin Descriptions and Diagrams .................................. 56  
PORTA Register......................................................... 24  
RA0............................................................................. 56  
RA1............................................................................. 56  
RA2............................................................................. 56  
RA3............................................................................. 56  
RA4............................................................................. 56  
RA5............................................................................. 56  
RA6............................................................................. 56  
RA7............................................................................. 56  
Specifications ........................................................... 226  
PORTA Register................................................................. 54  
PORTB ............................................................................... 62  
Additional Pin Functions  
L
Load Conditions................................................................ 221  
M
MCLR.................................................................................. 35  
Internal........................................................................ 35  
Memory Organization.......................................................... 19  
Data ............................................................................ 20  
Program ...................................................................... 19  
Microchip Internet Web Site.............................................. 299  
Migrating from other PIC Microcontroller Devices............. 291  
MPLAB ASM30 Assembler, Linker, Librarian ................... 208  
MPLAB ICD 2 In-Circuit Debugger ................................... 209  
MPLAB ICE 2000 High-Performance Universal  
In-Circuit Emulator .................................................... 209  
MPLAB Integrated Development Environment Software .. 207  
MPLAB PM3 Device Programmer .................................... 209  
MPLAB REAL ICE In-Circuit Emulator System................. 209  
MPLINK Object Linker/MPLIB Object Librarian ................ 208  
O
OPCODE Field Descriptions............................................. 197  
OPTION Register................................................................ 28  
OPTION_REG Register .................................................... 113  
OSCCON Register.............................................................. 91  
Oscillator  
ANSELB Register............................................... 62  
Weak Pull-up ...................................................... 62  
Associated Registers.................................................. 72  
Interrupt-on-Change ................................................... 62  
P1B/P1C/P1D.See Enhanced Capture/Compare/  
PWM+ (ECCP+) ................................................. 62  
Pin Descriptions and Diagrams .................................. 65  
PORTB Register......................................................... 24  
RB0............................................................................. 65  
RB1............................................................................. 65  
RB2............................................................................. 65  
RB3............................................................................. 65  
RB4............................................................................. 65  
RB5............................................................................. 65  
Associated registers............................................ 94, 126  
Oscillator Module  
EC............................................................................... 89  
HS............................................................................... 89  
INTOSC ...................................................................... 89  
INTOSCIO................................................................... 89  
LP................................................................................ 89  
Oscillator Tuning......................................................... 92  
RC............................................................................... 89  
RCIO........................................................................... 89  
XT ............................................................................... 89  
Oscillator Parameters ....................................................... 225  
© 2009 Microchip Technology Inc.  
DS41341E-page 295  
PIC16F72X/PIC16LF72X  
RB6 .............................................................................65  
RB7 .............................................................................65  
PORTB Register .................................................................63  
PORTC................................................................................73  
Associated Registers ..................................................79  
P1A.See Enhanced Capture/Compare/PWM+  
(ECCP+) .............................................................73  
PORTC Register.........................................................24  
RC0.............................................................................74  
RC2.............................................................................74  
RC3.............................................................................74  
RC4.............................................................................74  
RC5.............................................................................74  
RC6.............................................................................74  
RC7.............................................................................74  
Specifications............................................................226  
PORTC Register .................................................................73  
PORTD................................................................................80  
Additional Pin Functions  
ADRES (ADC Result) ............................................... 105  
ANSELA (PORTA Analog Select)............................... 55  
ANSELB (PORTB Analog Select)............................... 64  
ANSELD (PORTD Analog Select) .............................. 81  
ANSELE (PORTE Analog Select)............................... 86  
APFCON (Alternate Pin Function Control) ................. 53  
CCPxCON (CCP Operation)..................................... 136  
CONFIG1 (Configuration Word Register 1).......... 95, 96  
CPSCON0 (Capacitive Sensing Control Register 0) 133  
CPSCON1 (Capacitive Sensing Control Register 1) 134  
FVRCON (Fixed Voltage Reference Register) ......... 109  
INTCON (Interrupt Control)......................................... 46  
IOCB (Interrupt-on-Change PORTB).......................... 64  
OPTION_REG (OPTION)........................................... 28  
OPTION_REG (Option) ............................................ 113  
OSCCON (Oscillator Control)..................................... 91  
OSCTUNE (Oscillator Tuning).................................... 92  
PCON (Power Control Register)................................. 29  
PCON (Power Control) ............................................... 38  
PIE1 (Peripheral Interrupt Enable 1)........................... 47  
PIE2 (Peripheral Interrupt Enable 2)........................... 48  
PIR1 (Peripheral Interrupt Register 1) ........................ 49  
PIR2 (Peripheral Interrupt Request 2) ........................ 50  
PMADRH (Program Memory Address High) ............ 191  
PMADRL (Program Memory Address Low).............. 191  
PMCON1 (Program Memory Control 1).................... 190  
PMDATH (Program Memory Data High) .................. 190  
PMDATL (Program Memory Data Low).................... 190  
PORTA ....................................................................... 54  
PORTB ....................................................................... 63  
PORTC ....................................................................... 73  
PORTD ....................................................................... 80  
PORTE ....................................................................... 85  
RCSTA (Receive Status and Control) ...................... 155  
Reset Values .............................................................. 40  
Reset Values (Special Registers)............................... 42  
Special Function Register Map  
ANSELD Register ...............................................80  
Associated Registers ..................................................83  
P1B/P1C/P1D.See Enhanced Capture/Compare/  
PWM+ (ECCP+)..................................................80  
PORTD Register.........................................................24  
RD6.............................................................................82  
PORTD Register .................................................................80  
PORTE................................................................................84  
Associated Registers ..................................................86  
PORTE Register .........................................................24  
RE0 .............................................................................87  
RE1 .............................................................................87  
RE2 .............................................................................87  
RE3 .............................................................................87  
PORTE Register .................................................................85  
Power-Down Mode (Sleep)...............................................193  
Associated Registers ................................................194  
Power-on Reset ..................................................................35  
Power-up Timer (PWRT).....................................................35  
Specifications............................................................228  
PR2 Register............................................................... 25, 176  
Precision Internal Oscillator Parameters...........................225  
Prescaler  
PIC16F722/LF722 .............................................. 21  
PIC16F723/LF723 and PIC16F724/LF724......... 22  
PIC16F726/LF726 and PIC16F727/LF727......... 23  
Special Function, Summary........................................ 24  
SSPCON (Sync Serial Port Control) Register .. 174, 186  
SSPSTAT (Sync Serial Port Status) Register... 175, 187  
STATUS ..................................................................... 27  
T1CON (Timer1 Control) .......................................... 124  
T1GCON (Timer1 Gate Control)............................... 125  
T2CON ..................................................................... 128  
TRISA (Tri-State PORTA)........................................... 54  
TRISB (Tri-State PORTB)........................................... 63  
TRISC (Tri-State PORTC) .......................................... 73  
TRISD (Tri-State PORTD) .......................................... 81  
TRISE (Tri-State PORTE)........................................... 85  
TXSTA (Transmit Status and Control)...................... 154  
WPUB (Weak Pull-up PORTB)................................... 64  
Reset .................................................................................. 33  
Resets  
Shared WDT/Timer0 .................................................112  
Product Identification System............................................301  
Program Memory ................................................................19  
Map and Stack (PIC16F722/LF722) ...........................19  
Map and Stack (PIC16F723/LF723 and  
PIC16F724/LF724) .............................................19  
Map and Stack (PIC16F726/LF726 and  
PIC16F727/LF727) .............................................20  
Paging.........................................................................30  
Program Memory Read (PMR) .........................................189  
Associated Registers ................................................191  
Programming, Device Instructions ....................................197  
R
R/W bit ..............................................................................187  
RCREG .............................................................................152  
RCREG Register.................................................................24  
RCSTA Register.......................................................... 24, 155  
Reader Response .............................................................300  
Read-Modify-Write Operations..........................................197  
Receive Overflow Indicator bit (SSPOV)................... 174, 186  
Registers  
Associated Registers.................................................. 42  
Revision History................................................................ 291  
S
S (Start) bit........................................................................ 187  
SMP bit ..................................................................... 175, 187  
Software Simulator (MPLAB SIM) .................................... 208  
SPBRG ............................................................................. 156  
SPBRG Register................................................................. 25  
Special Event Trigger ....................................................... 102  
ADCON0 (ADC Control 0) ........................................104  
ADCON1 (ADC Control 1) ........................................105  
DS41341E-page 296  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
Special Function Registers ................................................. 20  
Special Function Registers (SFRs)..................................... 24  
SPI Mode .......................................................................... 173  
Associated Registers ................................................ 176  
Typical Master/Slave Connection ............................. 167  
SSP................................................................................... 167  
T1GCON........................................................... 125  
Timer2  
T2CON ............................................................. 128  
Timing Diagrams  
A/D Conversion ........................................................ 231  
A/D Conversion (Sleep Mode).................................. 232  
Asynchronous Reception.......................................... 152  
Asynchronous Transmission .................................... 148  
Asynchronous Transmission (Back-to-Back)............ 148  
Brown-out Reset (BOR)............................................ 227  
Brown-out Reset Situations........................................ 37  
CLKOUT and I/O ...................................................... 225  
Clock Synchronization.............................................. 185  
Clock Timing............................................................. 222  
Enhanced Capture/Compare/PWM (ECCP)............. 230  
2
I C Mode................................................................... 177  
Acknowledge .................................................... 178  
Addressing........................................................ 179  
Clock Stretching................................................ 184  
Clock Synchronization ...................................... 185  
Firmware Master Mode..................................... 184  
Hardware Setup................................................ 177  
Multi-Master Mode ............................................ 184  
Reception.......................................................... 180  
Sleep Operation................................................ 185  
2
I C Bus Data............................................................. 237  
2
Start/Stop Conditions........................................ 178  
Transmission .................................................... 182  
I C Bus Start/Stop Bits ............................................. 236  
2
I C Reception (7-bit Address)................................... 180  
2
Master Mode............................................................. 169  
SPI Mode .................................................................. 167  
Slave Mode....................................................... 171  
I C Slave Mode with SEN = 0 (Reception,  
10-bit Address) ................................................. 181  
I C Transmission (7-bit Address) ............................. 182  
2
Typical SPI Master/Slave Connection....................... 167  
SSPADD Register............................................................... 25  
SSPBUF Register ............................................................... 24  
SSPCON Register .............................................. 24, 174, 186  
SSPEN bit................................................................. 174, 186  
SSPM bits ................................................................. 174, 186  
SSPMSK Register............................................................... 25  
SSPOV bit................................................................. 174, 186  
SSPSTAT Register ............................................. 25, 175, 187  
STATUS Register ............................................................... 27  
Synchronous Serial Port Enable bit (SSPEN)........... 174, 186  
Synchronous Serial Port Mode Select bits (SSPM).. 174, 186  
INT Pin Interrupt ......................................................... 44  
Reset, WDT, OST and Power-up Timer................... 226  
Slave Select Synchronization................................... 173  
SPI Master Mode...................................................... 170  
SPI Master Mode (CKE = 1, SMP = 1)..................... 234  
SPI Mode (Slave Mode with CKE = 0)...................... 172  
SPI Mode (Slave Mode with CKE = 1)...................... 172  
SPI Slave Mode (CKE = 0)....................................... 235  
SPI Slave Mode (CKE = 1)....................................... 235  
Synchronous Reception (Master Mode, SREN)....... 162  
Synchronous Transmission ...................................... 160  
Synchronous Transmission (Through TXEN)........... 160  
Time-out Sequence  
T
Case 1 ................................................................ 39  
Case 2 ................................................................ 39  
Case 3 ................................................................ 39  
Timer0 and Timer1 External Clock........................... 229  
Timer1 Incrementing Edge ....................................... 120  
USART Synchronous Receive (Master/Slave)......... 233  
USART Synchronous Transmission (Master/Slave). 232  
Wake-up from Interrupt............................................. 194  
Timing Parameter Symbology .......................................... 221  
Timing Requirements  
T1CON Register ......................................................... 24, 124  
TMR1ON Bit.............................................................. 125  
T1GCON Register............................................................. 125  
T2CON Register ................................................. 24, 128, 176  
Thermal Considerations.................................................... 220  
Time-out Sequence............................................................. 38  
Timer0............................................................................... 111  
Associated Registers ................................................ 113  
Interrupt..................................................................... 113  
Operation .......................................................... 111, 116  
Specifications............................................................ 229  
Timer1............................................................................... 115  
Associated registers.................................................. 126  
Asynchronous Counter Mode ................................... 117  
Reading and Writing ......................................... 117  
Interrupt..................................................................... 120  
Modes of Operation .................................................. 116  
Module On/Off (TMR1ON Bit)................................... 125  
Operation During Sleep ............................................ 120  
Oscillator................................................................... 117  
Prescaler................................................................... 117  
Specifications............................................................ 229  
Timer1 Gate  
2
I C Bus Data............................................................. 238  
I2C Bus Start/Stop Bits............................................. 237  
SPI Mode.................................................................. 236  
TMR0 Register.................................................................... 24  
TMR1H Register................................................................. 24  
TMR1L Register.................................................................. 24  
TMR2 Register.................................................................... 24  
TMRO Register................................................................... 26  
TRISA ................................................................................. 54  
TRISA Register............................................................. 25, 54  
TRISB ................................................................................. 62  
TRISB Register............................................................. 25, 63  
TRISC................................................................................. 73  
TRISC Register............................................................. 25, 73  
TRISD................................................................................. 80  
TRISD Register............................................................. 25, 81  
TRISE ................................................................................. 84  
TRISE Register............................................................. 25, 85  
TXREG ............................................................................. 147  
TXREG Register................................................................. 24  
TXSTA Register.......................................................... 25, 154  
Selecting Source............................................... 118  
TMR1H Register ....................................................... 115  
TMR1L Register........................................................ 115  
Timer2  
Associated registers.................................................. 128  
Timers  
Timer1  
T1CON.............................................................. 124  
© 2009 Microchip Technology Inc.  
DS41341E-page 297  
PIC16F72X/PIC16LF72X  
BRGH Bit ..................................................................156  
U
UA .....................................................................................187  
Update Address bit, UA.....................................................187  
USART  
Synchronous Master Mode  
Requirements, Synchronous Receive...............233  
Requirements, Synchronous Transmission ......232  
Timing Diagram, Synchronous Receive............233  
Timing Diagram, Synchronous Transmission ...232  
V
VREF. SEE ADC Reference Voltage  
W
Wake-up Using Interrupts .................................................194  
Watchdog Timer (WDT) ......................................................35  
Clock Source...............................................................35  
Modes .........................................................................36  
Period..........................................................................35  
Specifications............................................................228  
WCOL bit................................................................... 174, 186  
WPUB Register...................................................................64  
Write Collision Detect bit (WCOL)............................. 174, 186  
WWW Address..................................................................299  
WWW, On-Line Support......................................................12  
DS41341E-page 298  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
© 2009 Microchip Technology Inc.  
DS41341E-page 299  
PIC16F72X/PIC16LF72X  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC16F72X/PIC16LF72X  
DS41341E  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS41341E-page 300  
© 2009 Microchip Technology Inc.  
PIC16F72X/PIC16LF72X  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature  
Range  
Package  
Pattern  
a)  
PIC16F722-E/SP 301  
= Extended Temp.,  
skinny PDIP package, QTP pattern #301  
b)  
PIC16F722-I/SO  
package  
= Industrial Temp., SOIC  
Device:  
PIC16F722, PIC16LF722, PIC16F722T, PIC16LF722T(1)  
PIC16F723, PIC16LF723, PIC16F723T, PIC16LF723T(1)  
PIC16F724, PIC16LF724, PIC16F724T, PIC16LF724T(1)  
PIC16F726, PIC16LF726, PIC16F726T, PIC16LF726T(1)  
PIC16F727, PIC16LF727, PIC16F727T, PIC16LF727T(1)  
Temperature  
Range:  
I
E
MV  
=
=
=
-40°C to +85°C  
-40°C to +125°C  
Micro Lead Frame (UQFN)  
Package:  
ML  
P
PT  
SO  
SP  
SS  
=
=
=
=
=
=
Micro Lead Frame (QFN)  
Plastic DIP  
TQFP (Thin Quad Flatpack)  
SOIC  
Skinny Plastic DIP  
SSOP  
Note 1:  
T
= In tape and reel.  
Pattern:  
3-Digit Pattern Code for QTP (blank otherwise)  
© 2009 Microchip Technology Inc.  
DS41341E-page 301  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
03/26/09  
DS41341E-page 302  
© 2009 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY