PIC16LF1906-I/MV [MICROCHIP]

8-BIT, FLASH, 20 MHz, RISC MICROCONTROLLER, PQCC28, 4 X 4 MM, 0.50 MM HEIGHT, LEAD FREE, PLASTIC, UQFN-28;
PIC16LF1906-I/MV
型号: PIC16LF1906-I/MV
厂家: MICROCHIP    MICROCHIP
描述:

8-BIT, FLASH, 20 MHz, RISC MICROCONTROLLER, PQCC28, 4 X 4 MM, 0.50 MM HEIGHT, LEAD FREE, PLASTIC, UQFN-28

时钟 微控制器 外围集成电路
文件: 总265页 (文件大小:3106K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16LF1904/6/7  
28/40/44-Pin 8-Bit Flash Microcontrollers with XLP Technology  
• Extended Watchdog Timer (WDT)  
High-Performance RISC CPU:  
• In-Circuit Serial Programming™ (ICSP™) via  
Two Pins  
• C Compiler Optimized Architecture  
• Only 49 Instructions  
• In-Circuit Debug (ICD) via Two Pins  
• Up to 14 Kbytes Self-Write/Read Flash Program  
• Enhanced Low-Voltage Programming (LVP)  
Memory Addressing  
• Programmable Code Protection  
• Up to 256 Bytes Data Memory Addressing  
• Power-Saving Sleep mode  
• Operating Speed:  
- DC – 20 MHz clock input @ 3.6V  
eXtreme Low-Power (XLP) Features  
(PIC16LF1904/6/7):  
- DC – 16 MHz clock input @ 1.8V  
- DC – 200 ns instruction cycle  
• Sleep Current:  
• Interrupt Capability with Automatic Context  
- 30 nA @ 1.8V, typical  
• Watchdog Timer Current:  
- 300 nA @ 1.8V, typical  
• Secondary Oscillator:  
Saving  
• 16-Level Deep Hardware Stack with Optional  
Overflow/Underflow Reset  
• Direct, Indirect and Relative Addressing modes:  
- Two full 16-bit File Select Registers (FSRs)  
- FSRs can read program and data memory  
- 500 nA @ 32 kHz, 1.8V, typical  
Analog Features:  
Memory  
Analog-to-Digital Converter (ADC):  
- 10-bit resolution, up to 14 channels  
- Conversion available during Sleep  
- Dedicated ADC RC oscillator  
• Up to 14 Kbytes Self-Write/Read Flash Program  
Memory Addressing  
• Up to 256 Bytes Data Memory Addressing  
• High-Endurance Flash Data Memory (HEF)  
- 128B of nonvolatile data storage  
- 100K erase/write cycles  
- Fixed Voltage Reference (FVR) as channel  
• Integrated Temperature Indicator  
• Voltage Reference module:  
- Fixed Voltage Reference (FVR) with 1.024V  
and 2.048V output levels  
Flexible Oscillator Structure:  
• 16 MHz Internal Oscillator Block:  
- Accuracy to ± 3%, typical  
Peripheral Highlights:  
- Software selectable frequency range from  
16 MHz to 31.25 kHz  
• Up to 36 I/O Pins and 1 Input-only Pin:  
- High current 25 mA sink/source  
• 31 kHz Low-Power Internal Oscillator  
• Three External Clock modes up to 20 MHz  
• Two-Speed Oscillator Start-up  
- Individually programmable weak pull-ups  
- Individually programmable interrupt-on-  
change (IOC) pins  
• Low-Power RTC Implementation via LPT1OSC  
• Integrated LCD Controller:  
- At least 19 segment pins and as many as 116  
total segments  
Special Microcontroller Features:  
- Variable clock input  
• Operating Voltage Range:  
- 1.8V-3.6V  
- Contrast control  
- Internal voltage reference selections  
• Self-Programmable under Software Control  
• Power-on Reset (POR)  
• Timer0: 8-Bit Timer/Counter with 8-Bit  
Programmable Prescaler  
• Power-up Timer (PWRT)  
• Low-Power Brown-Out Reset (LPBOR)  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 1  
PIC16LF1904/6/7  
• Enhanced Timer1:  
- 16-bit timer/counter with prescaler  
- External Gate Input mode  
- Dedicated low-power 32 kHz oscillator driver  
• Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART):  
- RS-232, RS-485 and LIN compatible  
- Auto-Baud Detect  
- Auto-wake-up on start  
PIC16LF190X Family Types  
LCD  
Device  
PIC16LF1902  
PIC16LF1903  
PIC16LF1904  
PIC16LF1906  
PIC16LF1907  
(1)  
(1)  
(2)  
(2)  
(2)  
2048  
4096  
4096  
8192  
8192  
128  
256  
256  
512  
512  
128  
128  
128  
128  
128  
25  
25  
36  
25  
36  
11  
11  
14  
11  
14  
1/1  
1/1  
1/1  
1/1  
1/1  
1
4
4
4
4
4
19 72(3)  
19 72(3)  
29 116  
H
H
Y
Y
Y
Y
Y
I/H  
1
19 72(3) I/H  
1
29  
116  
I/H  
Note 1: Debugging Methods: (I) – Integrated on Chip; (H) – using Debug Header; (E) – using Emulation Header.  
2: One pin is input-only.  
3: COM3 and SEG15 share a pin, so the total segments are limited to 72 for 28-pin devices.  
Data Sheet Index: (Unshaded devices are described in this document.)  
1: DS40001455  
2: DS40001569  
PIC16LF1902/3 Data Sheet, 28-Pin Flash, 8-bit Microcontrollers.  
PIC16LF1904/6/7 Data Sheet, 28/40/44-Pin Flash, 8-bit Microcontrollers.  
Note:  
For other small form-factor package availability and marking information, please visit  
http://www.microchip.com/packaging or contact your local sales office.  
DS40001569D-page 2  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
FIGURE 1:  
28-PIN PDIP, SOIC, SSOP PACKAGE DIAGRAM FOR PIC16LF1906  
RB7/ICSPDAT/ICDDAT/SEG13  
RB6/ICSPCLK/ICDCLK/SEG14  
RB5/AN13/COM1  
28  
27  
26  
25  
1
2
3
4
5
6
VPP/MCLR/RE3  
SEG12/AN0/RA0  
SEG7/AN1/RA1  
RB4/AN11/COM0  
COM2/AN2/RA2  
24  
23  
RB3/AN9/SEG26/VLCD3  
RB2/AN8/SEG25/VLCD2  
RB1/AN10/SEG24/VLCD1  
RB0/AN12/INT/SEG0  
SEG15/COM3/VREF+/AN3/RA3  
SEG4/T0CKI/RA4  
22  
21  
20  
19  
18  
17  
16  
15  
SEG5/AN4/RA5  
VSS  
7
8
9
VDD  
SEG2/CLKIN/RA7  
SEG1/CLKOUT/RA6  
T1CKI/T1OSO/RC0  
VSS  
10  
11  
RC7/RX/DT/SEG8  
RC6/TX/CK/SEG9  
RC5/SEG10  
12  
13  
14  
T1OSI/RC1  
SEG3/RC2  
RC4/T1G/SEG11  
SEG6/RC3  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 3  
PIC16LF1904/6/7  
FIGURE 2:  
28-PIN UQFN PACKAGE DIAGRAM FOR PIC16LF1906  
COM2/AN2/RA2  
SEG15/COM3/VREF+/AN3/RA3  
SEG4/T0CKI/RA4  
RB3/AN9/SEG26/VLCD3  
1
2
3
4
5
6
7
21  
20 RB2/AN8/SEG25/VLCD2  
19 RB1/AN10/SEG24/VLCD1  
PIC16LF1906  
SEG5/AN4/RA5  
18  
17  
16  
15  
RB0/AN12/INT/SEG0  
VSS  
VDD  
SEG2/CLKIN/RA7  
SEG1/CLKOUT/RA6  
VSS  
RC7/RX/DT/SEG8  
DS40001569D-page 4  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
FIGURE 3:  
40-PIN PDIP PACKAGE DIAGRAM FOR PIC16LF1904/7  
RB7/ICSPDAT/ICDDAT/SEG13  
RB6/ICSPCLK/ICDCLK/SEG14  
RB5/AN13/COM1  
VPP/MCLR/RE3  
SEG12/AN0/RA0  
40  
39  
38  
37  
36  
35  
1
2
3
4
5
6
SEG7/AN1/RA1  
COM2/AN2/RA2  
RB4/AN11/COM0  
RB3/AN9/SEG26/VLCD3  
SEG15/VREF+/AN3/RA3  
SEG4/T0CKI/RA4  
RB2/AN8/SEG25/VLCD2  
RB1/AN10/SEG24/VLCD1  
RB0/AN12/INT/SEG0  
SEG5/AN4/RA5  
SEG21/AN5/RE0  
34  
33  
32  
31  
30  
7
8
9
VDD  
SEG22/AN6/RE1  
SEG23/AN7/RE2  
VDD  
VSS  
10  
11  
RD7/SEG20  
RD6/SEG19  
VSS  
29  
12  
SEG2/CLKIN/RA7  
RD5/SEG18  
28  
27  
26  
25  
13  
14  
15  
16  
RD4/SEG17  
SEG1/CLKOUT/RA6  
T1CKI/T1OSO/RC0  
T1OSI/RC1  
RC7/RX/DT/SEG8  
RC6/TX/CK/SEG9  
RC5/SEG10  
SEG3/RC2  
SEG6/RC3  
24  
23  
17  
18  
RC4/T1G/SEG11  
RD3/SEG16  
COM3/RD0  
SEG27/RD1  
22  
21  
19  
20  
RD2/SEG28  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 5  
PIC16LF1904/6/7  
FIGURE 4:  
44-PIN TQFP (10X10) PACKAGE DIAGRAM FOR PIC16LF1904/7  
SEG8/DT/RX/RC7  
SEG17/RD4  
33  
32  
31  
30  
NC  
1
RC0/T1OSO/T1CKI  
RA6/CLKOUT/SEG1  
RA7/CLKIN/SEG2  
2
3
4
SEG18/RD5  
SEG19/RD6  
SEG20/RD7  
VSS  
VDD  
29  
28  
5
6
PIC16LF1904/7  
VSS  
RE2/AN7/SEG23  
RE1/AN6/SEG22  
RE0/AN5/SEG21  
RA5/AN4/SEG5  
RA4/T0CKI/SEG4  
27  
26  
25  
24  
23  
VDD  
7
8
SEG0/INT/AN12/RB0  
VLCD1/SEG24/AN10/RB1  
VLCD2/SEG25/AN8/RB2  
VLCD3/SEG26/AN9/RB3  
9
10  
11  
DS40001569D-page 6  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
FIGURE 5:  
40-PIN UQFN (5X5) PACKAGE DIAGRAM FOR PIC16LF1904/7  
SEG8/DT/RX/RC7  
SEG17/RD4  
1
2
30 RC0/T1OSO/T1CKI  
SEG18/RD5  
3
29  
28  
27  
26  
25  
24  
23  
22  
21  
RA6/CLKOUT/SEG1  
RA7/CLKIN/SEG2  
VSS  
4
SEG19/RD6  
SEG20/RD7  
5
PIC16LF1904/7  
VSS  
VDD  
6
VDD  
RE2/AN7/SEG23  
RE1/AN6/SEG22  
RE0/AN5/SEG21  
RA5/AN4/SEG5  
RA4/T0CKI/SEG4  
7
SEG0/INT/AN12/RB0  
VLCD1/SEG24/AN10/RB1  
VLCD2/SEG25/AN8/RB2  
8
9
10  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 7  
PIC16LF1904/6/7  
TABLE 1:  
28/40/44-PIN ALLOCATION TABLE (PIC16LF1904/6/7)  
RA0  
RA1  
RA2  
RA3  
2
3
4
5
27  
28  
1
2
3
4
5
19  
20  
21  
22  
17  
18  
19  
20  
AN0  
AN1  
AN2  
SEG12  
SEG7  
COM2  
2
AN3/  
VREF+  
SEG15/  
COM3(2)  
RA4  
RA5  
6
7
3
4
6
23  
24  
31  
30  
8
21  
22  
29  
28  
8
AN4  
T0CKI  
SEG4  
SEG5  
SEG1  
SEG2  
SEG0  
Y
7
RA6  
RA7  
RB0  
10  
9
7
14  
13  
33  
CLKOUT  
CLKIN  
6
21  
18  
AN12  
INT/  
IOC  
RB1  
RB2  
RB3  
22  
23  
24  
19  
20  
21  
34  
35  
36  
9
9
AN10  
AN8  
AN9  
VLCD1/  
SEG24  
IOC  
IOC  
IOC  
Y
Y
Y
10  
11  
10  
11  
VLCD2/  
SEG25  
VLCD3/  
SEG26  
RB4  
RB5  
RB6  
25  
26  
27  
22  
23  
24  
37  
38  
39  
14  
15  
16  
12  
13  
14  
AN11  
AN13  
COM0  
COM1  
SEG14  
IOC  
IOC  
IOC  
Y
Y
Y
ICSPCLK/  
ICDCLK  
RB7  
RC0  
28  
11  
25  
8
40  
15  
17  
32  
15  
30  
SEG13  
IOC  
Y
ICSPDAT/  
ICDDAT  
T1OSO/  
T1CKI  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
RE0  
RE1  
RE2  
12  
13  
14  
15  
16  
17  
18  
9
16  
17  
18  
23  
24  
25  
26  
19  
20  
21  
22  
27  
28  
29  
30  
8
35  
36  
37  
42  
43  
44  
1
31  
32  
33  
38  
39  
40  
1
T1OSI  
10  
11  
12  
13  
14  
15  
SEG3  
SEG6  
T1G  
SEG11  
SEG10  
SEG9  
TX/CK  
RX/DT  
SEG8  
38  
39  
40  
41  
2
34  
35  
36  
37  
2
COM3(3)  
SEG27  
SEG28  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
3
3
4
4
5
5
25  
26  
27  
23  
24  
25  
AN5(4)  
AN6(4)  
AN7(4)  
9
10  
RE3  
VDD  
Vss  
NC  
1
20  
26  
17  
1
18  
16  
7, 26  
6, 27  
Y(1)  
MCLR/VPP  
VDD  
11,32  
12,31  
7,28  
6,29  
8,19  
5,16  
VSS  
12,13,  
33,34  
VDD  
Note 1: Weak pull-up always enabled when MCLR is enabled, otherwise the pull-up is under user control.  
2: 28-pin only pin location (PIC16LF1906). Location different on 40/44-pin device.  
3: 40/44-pin only pin location (PIC16LF1904/7). Location different on 28-pin device.  
4: ADC channel is reserved on the PIC16LF1906 28-pin devices.  
DS40001569D-page 8  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
Table of Contents  
1.0 Device Overview ........................................................................................................................................................................ 10  
2.0 Enhanced Mid-range CPU ......................................................................................................................................................... 15  
3.0 Memory Organization................................................................................................................................................................. 16  
4.0 Device Configuration.................................................................................................................................................................. 38  
5.0 Resets ........................................................................................................................................................................................ 43  
6.0 Oscillator Module........................................................................................................................................................................ 51  
7.0 Interrupts .................................................................................................................................................................................... 60  
8.0 Power-Down Mode (Sleep) ........................................................................................................................................................ 71  
9.0 Watchdog Timer ......................................................................................................................................................................... 73  
10.0 Flash Program Memory Control ................................................................................................................................................. 77  
11.0 I/O Ports ..................................................................................................................................................................................... 93  
12.0 Interrupt-On-Change ................................................................................................................................................................ 109  
13.0 Fixed Voltage Reference (FVR) ............................................................................................................................................... 112  
14.0 Temperature Indicator Module.................................................................................................................................................. 114  
15.0 Analog-to-Digital Converter (ADC) Module .............................................................................................................................. 115  
16.0 Timer0 Module ......................................................................................................................................................................... 128  
17.0 Timer1 Module with Gate Control............................................................................................................................................. 130  
18.0 Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) ............................................................... 142  
19.0 Liquid Crystal Display (LCD) Driver Module............................................................................................................................. 171  
20.0 In-Circuit Serial Programming™ (ICSP™) ............................................................................................................................... 205  
21.0 Instruction Set Summary.......................................................................................................................................................... 207  
22.0 Electrical Specifications............................................................................................................................................................ 221  
23.0 DC and AC Characteristics Graphs and Charts....................................................................................................................... 238  
24.0 Development Support............................................................................................................................................................... 239  
25.0 Packaging Information.............................................................................................................................................................. 243  
Appendix A: Data Sheet Revision History.......................................................................................................................................... 261  
The Microchip WebSite...................................................................................................................................................................... 262  
Customer Change Notification Service .............................................................................................................................................. 262  
Customer Support.............................................................................................................................................................................. 262  
Product Identification System ............................................................................................................................................................ 263  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com. We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Website; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our website at www.microchip.com to receive the most current information on all of our products.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 9  
PIC16LF1904/6/7  
1.0  
DEVICE OVERVIEW  
The PIC16LF1904/6/7 are described within this data  
sheet. They are available in 28, 40 and 44-pin  
packages. Figure 1-1 shows a block diagram of the  
PIC16LF1904/6/7 devices. Table 1-2 shows the pinout  
descriptions.  
Reference Table 1-1 for peripherals available per  
device.  
TABLE 1-1:  
DEVICE PERIPHERAL  
SUMMARY  
Peripheral  
ADC  
EUSART  
Fixed Voltage Reference (FVR)  
LCD  
Temperature Indicator  
Timers  
Timer0  
Timer1  
DS40001569D-page 10  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
FIGURE 1-1:  
PIC16LF1904/6/7 BLOCK DIAGRAM  
Program  
Flash Memory  
RAM  
PORTA  
PORTB  
CLKOUT  
CLKIN  
Timing  
Generation  
CPU  
PORTC  
PORTD  
PORTE  
INTRC  
Oscillator  
Figure 2-1  
MCLR  
LCD  
Timer1  
EUSART  
Timer0  
Temp.  
Indicator  
ADC  
10-Bit  
FVR  
Note 1: See applicable chapters for more information on peripherals.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 11  
PIC16LF1904/6/7  
TABLE 1-2:  
PIC16LF1904/6/7 PINOUT DESCRIPTION  
Input Output  
Name  
Function  
Description  
Type  
Type  
RA0/AN0/SEG12  
RA1/AN1/SEG7  
RA2/AN2/COM2  
RA0  
AN0  
TTL  
AN  
CMOS General purpose I/O.  
A/D Channel 0 input.  
LCD Analog output.  
SEG12  
AN  
RA1  
AN1  
TTL  
AN  
CMOS General purpose I/O.  
A/D Channel 1 input.  
LCD Analog output.  
SEG7  
AN  
RA2  
AN2  
TTL  
AN  
CMOS General purpose I/O.  
A/D Channel 2 input.  
LCD Analog output.  
COM2  
RA3  
AN  
(2)  
RA3/AN3/VREF+/COM3  
SEG15  
/
TTL  
AN  
AN  
CMOS General purpose I/O.  
AN3  
A/D Channel 3 input.  
VREF+  
COM3  
SEG15  
A/D Voltage Reference input.  
LCD Analog output.  
AN  
AN  
LCD Analog output.  
RA4/T0CKI/SEG4  
RA5/AN4/SEG5  
RA4  
TTL  
ST  
CMOS General purpose I/O.  
T0CKI  
SEG4  
Timer0 clock input.  
LCD Analog output.  
AN  
RA5  
AN4  
TTL  
AN  
CMOS General purpose I/O.  
A/D Channel 4 input.  
LCD Analog output.  
SEG5  
AN  
RA6/CLKOUT/SEG1  
RA6  
CLKOUT  
SEG1  
TTL  
CMOS General purpose I/O.  
CMOS FOSC/4 output.  
AN  
LCD Analog output.  
RA7/CLKIN/SEG2  
RA7  
CLKIN  
SEG2  
RB0  
TTL  
CMOS  
CMOS General purpose I/O.  
External clock input (EC mode).  
LCD Analog output.  
AN  
RB0/AN12/INT/SEG0  
TTL  
AN  
CMOS General purpose I/O.  
AN12  
INT  
A/D Channel 12 input.  
External interrupt.  
ST  
SEG0  
RB1  
AN  
LCD Analog output.  
(1)  
RB1 /AN10/SEG24/VLCD1  
TTL  
AN  
CMOS General purpose I/O.  
AN10  
SEG24  
VLCD1  
RB2  
AN  
A/D Channel 10 input.  
LCD Analog output.  
LCD analog input.  
AN  
(1)  
RB2 /AN8/SEG25/VLCD2  
TTL  
AN  
CMOS General purpose I/O.  
AN8  
AN  
A/D Channel 8 input.  
LCD Analog output.  
LCD analog input.  
SEG25  
VLCD2  
AN  
Legend: AN = Analog input or output CMOS= CMOS compatible input or output  
OD = Open-Drain  
2
2
TTL = TTL compatible input ST  
HV = High Voltage  
= Schmitt Trigger input with CMOS levels I C = Schmitt Trigger input with I C  
levels  
XTAL = Crystal  
Note 1: These pins have interrupt-on-change functionality.  
2: PIC16LF1906/7 only.  
DS40001569D-page 12  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
TABLE 1-2:  
PIC16LF1904/6/7 PINOUT DESCRIPTION (CONTINUED)  
Input Output  
Name  
Function  
Description  
Type  
Type  
(1)  
RB3 /AN9/SEG26/VLCD3  
RB3  
AN9  
TTL  
AN  
CMOS General purpose I/O.  
AN  
A/D Channel 9 input.  
LCD Analog output.  
LCD analog input.  
SEG26  
VLCD3  
AN  
(1)  
RB4 /AN11/COM0  
RB4  
AN11  
COM0  
TTL  
AN  
CMOS General purpose I/O.  
A/D Channel 11 input.  
LCD Analog output.  
AN  
(1)  
RB5 /AN13/COM1  
RB5  
AN13  
COM1  
TTL  
AN  
CMOS General purpose I/O.  
A/D Channel 13 input.  
LCD Analog output.  
AN  
(1)  
RB6 /ICSPCLK/ICDCLK/  
RB6  
TTL  
ST  
ST  
CMOS General purpose I/O.  
SEG14  
ICSPCLK  
ICDCLK  
SEG14  
Serial Programming Clock.  
In-Circuit Debug Clock.  
LCD Analog output.  
AN  
(1)  
RB7 /ICSPDAT/ICDDAT/  
RB7  
TTL  
ST  
ST  
CMOS General purpose I/O.  
Serial Programming Clock.  
CMOS In-Circuit Data I/O.  
AN LCD Analog output.  
CMOS General purpose I/O.  
XTAL Timer1 oscillator connection.  
Timer1 clock input.  
SEG13  
ICSPDAT  
ICDDAT  
SEG13  
RC0/T1OSO/T1CKI  
RC0  
TTL  
XTAL  
ST  
T1OSO  
T1CKI  
RC1/T1OSI  
RC2/SEG3  
RC1  
TTL  
CMOS General purpose I/O.  
T1OSI  
XTAL  
XTAL Timer1 oscillator connection.  
RC2  
TTL  
CMOS General purpose I/O.  
SEG3  
AN  
CMOS General purpose I/O.  
AN LCD Analog output.  
LCD Analog output.  
RC3/SEG6  
RC3  
TTL  
SEG6  
RC4/T1G/SEG11  
RC4  
T1G  
TTL  
XTAL  
CMOS General purpose I/O.  
XTAL Timer1 oscillator connection.  
SEG11  
AN  
CMOS General purpose I/O.  
AN LCD Analog output.  
LCD Analog output.  
RC5/SEG10  
RC5  
TTL  
SEG10  
RC6/TX/CK/SEG9  
RC6  
TX  
TTL  
CMOS General purpose I/O.  
CMOS USART asynchronous transmit.  
CMOS USART synchronous clock.  
CK  
ST  
SEG9  
AN  
LCD Analog output.  
RC7/RX/DT/SEG8  
RC7  
RX  
TTL  
ST  
ST  
CMOS General purpose I/O.  
USART asynchronous input.  
DT  
CMOS USART synchronous data.  
SEG8  
AN  
LCD Analog output.  
Legend: AN = Analog input or output CMOS= CMOS compatible input or output  
OD = Open-Drain  
2
2
TTL = TTL compatible input ST  
HV = High Voltage  
= Schmitt Trigger input with CMOS levels I C = Schmitt Trigger input with I C  
levels  
XTAL = Crystal  
Note 1: These pins have interrupt-on-change functionality.  
2: PIC16LF1906/7 only.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 13  
PIC16LF1904/6/7  
TABLE 1-2:  
PIC16LF1904/6/7 PINOUT DESCRIPTION (CONTINUED)  
Input Output  
Name  
Function  
Description  
Type  
Type  
(2)  
RD0 /COM3  
RD0  
TTL  
CMOS General purpose I/O.  
COM3  
AN  
CMOS General purpose I/O.  
AN LCD Analog output.  
CMOS General purpose I/O.  
AN LCD Analog output.  
CMOS General purpose I/O.  
AN LCD Analog output.  
CMOS General purpose I/O.  
AN LCD Analog output.  
CMOS General purpose I/O.  
AN LCD Analog output.  
CMOS General purpose I/O.  
AN LCD Analog output.  
CMOS General purpose I/O.  
AN LCD Analog output.  
CMOS General purpose I/O.  
LCD Analog output.  
(2)  
RD1 /SEG27  
RD1  
TTL  
SEG27  
(2)  
RD2 /SEG28  
RD2  
TTL  
SEG28  
(2)  
RD3 /SEG16  
RD3  
TTL  
SEG16  
(2)  
RD4 /SEG17  
RD4  
TTL  
SEG17  
(2)  
RD5 /SEG18  
RD5  
TTL  
SEG18  
(2)  
RD6 /SEG19  
RD6  
TTL  
SEG19  
(2)  
RD7 /SEG20  
RD7  
TTL  
SEG20  
(2)  
RE0 /AN5/SEG21  
RE0  
AN5  
TTL  
AN  
A/D Channel 5 input.  
LCD Analog output.  
SEG21  
AN  
(2)  
RE1 /AN6/SEG22  
RE1  
AN6  
TTL  
AN  
CMOS General purpose I/O.  
A/D Channel 6 input.  
LCD Analog output.  
SEG22  
AN  
(2)  
RE2 /AN7/SEG23  
RE2  
AN7  
TTL  
AN  
CMOS General purpose I/O.  
A/D Channel 7 input.  
LCD Analog output.  
SEG23  
AN  
RE3/MCLR/VPP  
RE3  
MCLR  
VPP  
TTL  
ST  
CMOS General purpose I/O.  
Master Clear with internal pull-up.  
HV  
Programming voltage.  
Positive supply.  
VDD  
VSS  
VDD  
Power  
Power  
VSS  
Ground reference.  
Legend: AN = Analog input or output CMOS= CMOS compatible input or output  
OD = Open-Drain  
2
2
TTL = TTL compatible input ST  
HV = High Voltage  
= Schmitt Trigger input with CMOS levels I C = Schmitt Trigger input with I C  
levels  
XTAL = Crystal  
Note 1: These pins have interrupt-on-change functionality.  
2: PIC16LF1906/7 only.  
DS40001569D-page 14  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
2.0  
ENHANCED MID-RANGE CPU  
This family of devices contain an enhanced mid-range  
8-bit CPU core. The CPU has 49 instructions. Interrupt  
capability includes automatic context saving. The  
hardware stack is 16 levels deep and has Overflow and  
Underflow Reset capability. Direct, Indirect, and  
Relative addressing modes are available. Two File  
Select Registers (FSRs) provide the ability to read  
program and data memory.  
• Automatic Interrupt Context Saving  
• 16-level Stack with Overflow and Underflow  
• File Select Registers  
• Instruction Set  
2.1  
Automatic Interrupt Context  
Saving  
During interrupts, certain registers are automatically  
saved in shadow registers and restored when returning  
from the interrupt. This saves stack space and user  
code. See Section 7.5 “Automatic Context Saving”,  
for more information.  
2.2  
16-Level Stack with Overflow and  
Underflow  
These devices have an external stack memory 15 bits  
wide and 16 words deep. A Stack Overflow or Under-  
flow will set the appropriate bit (STKOVF or STKUNF)  
in the PCON register, and if enabled, will cause a soft-  
ware Reset. See Section 3.4 “Stack” for more details.  
2.3  
File Select Registers  
There are two 16-bit File Select Registers (FSR). FSRs  
can access all file registers and program memory,  
which allows one Data Pointer for all memory. When an  
FSR points to program memory, there is one additional  
instruction cycle in instructions using INDF to allow the  
data to be fetched. General purpose memory can now  
also be addressed linearly, providing the ability to  
access contiguous data larger than 80 bytes. There are  
also new instructions to support the FSRs. See  
Section 3.5 “Indirect Addressing” for more details.  
2.4  
Instruction Set  
There are 49 instructions for the enhanced mid-range  
CPU to support the features of the CPU. See  
Section 21.0 “Instruction Set Summary” for more  
details.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 15  
PIC16LF1904/6/7  
FIGURE 2-1:  
CORE BLOCK DIAGRAM  
15  
Configuration  
8
15  
Data Bus  
RAM  
Program Counter  
Flash  
Program  
Memory  
16-LevelStack  
(15-bit)  
Program  
Bus  
14  
RAM Addr  
Program Memory  
Read (PMR)  
12  
Addr MUX  
InstructionReg  
Indirect  
Addr  
7
Direct Addr  
12  
12  
5
BSR Reg  
15  
FSR0 Reg  
FSR1 Reg  
15  
STATUSReg  
8
3
MUX  
Power-up  
Timer  
Oscillator  
Instruction  
Decodeand  
Control  
Start-up Timer  
ALU  
Power-on  
Reset  
CLKIN  
8
Timing  
Generation  
Watchdog  
Timer  
W Reg  
CLKOUT  
Brown-out  
Reset  
Internal  
Oscillator  
Block  
VDD  
VSS  
DS40001569D-page 16  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
3.1  
Program Memory Organization  
3.0  
MEMORY ORGANIZATION  
The enhanced mid-range core has a 15-bit program  
counter capable of addressing 32K x 14 program  
memory space. Table 3-1 shows the memory sizes  
implemented for the PIC16LF1904/6/7 family. Accessing  
a location above these boundaries will cause a wrap-  
around within the implemented memory space. The  
Reset vector is at 0000h and the interrupt vector is at  
0004h (see Figures 3-1, and 3-2).  
These devices contain the following types of memory:  
• Program Memory  
- Configuration Words  
- Device ID  
- User ID  
- Flash Program Memory  
• Data Memory  
- Core Registers  
- Special Function Registers  
- General Purpose RAM  
- Common RAM  
The following features are associated with access and  
control of program memory and data memory:  
• PCL and PCLATH  
• Stack  
• Indirect Addressing  
TABLE 3-1:  
Device  
DEVICE SIZES AND ADDRESSES  
Program Memory  
Space (Words)  
Last Program Memory  
Address  
High-Endurance Flash  
Memory Address Range (1)  
PIC16LF1904  
4,096  
8,192  
0FFFh  
1FFFh  
0F80h-0FFFh  
1F80h-1FFFh  
PIC16LF1906/7  
Note 1: High-endurance Flash applies to low byte of each address in the range.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 17  
 
 
PIC16LF1904/6/7  
FIGURE 3-1:  
PROGRAM MEMORY MAP  
AND STACK FOR  
PIC16LF1904  
FIGURE 3-2:  
PROGRAM MEMORY MAP  
AND STACK FOR  
PIC16LF1906/7  
PC<14:0>  
15  
PC<14:0>  
CALL, CALLW  
RETURN, RETLW  
Interrupt, RETFIE  
CALL, CALLW  
RETURN, RETLW  
Interrupt, RETFIE  
15  
Stack Level 0  
Stack Level 1  
Stack Level 0  
Stack Level 1  
Stack Level 15  
Reset Vector  
Stack Level 15  
Reset Vector  
0000h  
0000h  
Interrupt Vector  
Page 0  
0004h  
0005h  
Interrupt Vector  
Page 0  
0004h  
0005h  
On-chip  
Program  
Memory  
07FFh  
0800h  
07FFh  
0800h  
Page 1  
Page 1  
Page 2  
On-chip  
Program  
Memory  
0FFFh  
1000h  
0FFFh  
1000h  
Rollover to Page 0  
17FFh  
1800h  
Page 3  
1FFFh  
2000h  
Rollover to Page 0  
Rollover to Page 1  
Rollover to Page 3  
7FFFh  
7FFFh  
DS40001569D-page 18  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
3.1.1  
READING PROGRAM MEMORY AS  
DATA  
EXAMPLE 3-2:  
ACCESSING PROGRAM  
MEMORY VIA FSR  
constants  
RETLW DATA0  
There are two methods of accessing constants in pro-  
gram memory. The first method is to use tables of  
RETLW instructions. The second method is to set an  
FSR to point to the program memory.  
;Index0 data  
;Index1 data  
RETLW DATA1  
RETLW DATA2  
RETLW DATA3  
my_function  
;… LOTS OF CODE…  
3.1.1.1  
RETLWInstruction  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
LOW constants  
FSR1L  
HIGH constants  
FSR1H  
The RETLWinstruction can be used to provide access  
to tables of constants. The recommended way to create  
such a table is shown in Example 3-1.  
MOVIW 0[FSR1]  
;THE PROGRAM MEMORY IS IN W  
EXAMPLE 3-1:  
RETLW INSTRUCTION  
constants  
BRW  
;Add Index in W to  
;program counter to  
;select data  
RETLW DATA0  
RETLW DATA1  
RETLW DATA2  
RETLW DATA3  
;Index0 data  
;Index1 data  
my_function  
;… LOTS OF CODE…  
MOVLW DATA_INDEX  
call constants  
;… THE CONSTANT IS IN W  
The BRWinstruction makes this type of table very sim-  
ple to implement. If your code must remain portable  
with previous generations of microcontrollers, then the  
BRWinstruction is not available so the older table read  
method must be used.  
3.1.1.2  
Indirect Read with FSR  
The program memory can be accessed as data by set-  
ting bit 7 of the FSRxH register and reading the match-  
ing INDFx register. The MOVIWinstruction will place the  
lower eight bits of the addressed word in the W register.  
Writes to the program memory cannot be performed via  
the INDF registers. Instructions that access the pro-  
gram memory via the FSR require one extra instruction  
cycle to complete. Example 3-2 demonstrates access-  
ing the program memory via an FSR.  
The HIGH directive will set bit<7> if a label points to a  
location in program memory.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 19  
 
 
PIC16LF1904/6/7  
3.2.1  
CORE REGISTERS  
3.2  
Data Memory Organization  
The core registers contain the registers that directly  
affect the basic operation. The core registers occupy  
the first 12 addresses of every data memory bank  
(addresses x00h/x08h through x0Bh/x8Bh). These  
registers are listed below in Table 3-2. For detailed  
information, see Table 3-4.  
The data memory is partitioned in 32 memory banks  
with 128 bytes in a bank. Each bank consists of  
(Figure 3-3):  
• 12 core registers  
• 20 Special Function Registers (SFR)  
• Up to 80 bytes of General Purpose RAM (GPR)  
• 16 bytes of common RAM  
TABLE 3-2:  
CORE REGISTERS  
The active bank is selected by writing the bank number  
into the Bank Select Register (BSR). Unimplemented  
memory will read as ‘0’. All data memory can be  
accessed either directly (via instructions that use the  
file registers) or indirectly via the two File Select  
Registers (FSR). See Section 3.5 “Indirect  
Addressing” for more information.  
Addresses  
BANKx  
x00h or x80h  
x01h or x81h  
x02h or x82h  
x03h or x83h  
x04h or x84h  
x05h or x85h  
x06h or x86h  
x07h or x87h  
x08h or x88h  
x09h or x89h  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
Data memory uses a 12-bit address. The upper seven  
bits of the address define the Bank Address and the  
lower five bits select the registers/RAM in that bank.  
WREG  
PCLATH  
INTCON  
x0Ah or x8Ah  
x0Bh or x8Bh  
DS40001569D-page 20  
2011-2016 Microchip Technology Inc.  
 
 
PIC16LF1904/6/7  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as ‘000u u1uu’ (where u= unchanged).  
3.2.1.1  
STATUS Register  
The STATUS register, shown in Register 3-1, contains:  
• the arithmetic status of the ALU  
• the Reset status  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect any Status bits. For other instructions not  
affecting any Status bits (Refer to Section 21.0  
“Instruction Set Summary”).  
The STATUS register can be the destination for any  
instruction, like any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note:  
The C and DC bits operate as Borrow and  
Digit Borrow out bits, respectively, in  
subtraction.  
REGISTER 3-1:  
STATUS: STATUS REGISTER  
U-0  
U-0  
U-0  
R-1/q  
TO  
R-1/q  
PD  
R/W-0/u  
Z
R/W-0/u  
DC(1)  
R/W-0/u  
C(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
q = Value depends on condition  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
bit 3  
bit 2  
bit 1  
bit 0  
PD: Power-Down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW, SUBLW, SUBWFinstructions)(1)  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
C: Carry/Borrow bit(1) (ADDWF, ADDLW, SUBLW, SUBWF instructions)(1)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the  
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order  
bit of the source register.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 21  
 
 
PIC16LF1904/6/7  
3.2.2  
SPECIAL FUNCTION REGISTER  
FIGURE 3-3:  
BANKED MEMORY  
PARTITIONING  
The Special Function Registers are registers used by  
the application to control the desired operation of  
peripheral functions in the device. The Special Function  
Registers occupy the 20 bytes after the core registers of  
every data memory bank (addresses x0Ch/x8Ch  
through x1Fh/x9Fh). The registers associated with the  
operation of the peripherals are described in the  
appropriate peripheral chapter of this data sheet.  
Memory Region  
7-bit Bank Offset  
00h  
Core Registers  
(12 bytes)  
0Bh  
0Ch  
3.2.3  
GENERAL PURPOSE RAM  
Special Function Registers  
(20 bytes maximum)  
There are up to 80 bytes of GPR in each data memory  
bank. The Special Function Registers occupy the 20  
bytes after the core registers of every data memory  
bank (addresses x0Ch/x8Ch through x1Fh/x9Fh).  
1Fh  
20h  
3.2.3.1  
Linear Access to GPR  
The general purpose RAM can be accessed in a non-  
banked method via the FSRs. This can simplify access  
to large memory structures. See Section 3.5.2 “Linear  
Data Memory” for more information.  
General Purpose RAM  
(80 bytes maximum)  
3.2.4  
COMMON RAM  
There are 16 bytes of common RAM accessible from all  
banks.  
6Fh  
70h  
Common RAM  
(16 bytes)  
7Fh  
3.2.5  
DEVICE MEMORY MAPS  
The memory maps for PIC16LF1904/6/7 are as shown  
in Table 3-3.  
DS40001569D-page 22  
2011-2016 Microchip Technology Inc.  
TABLE 3-3:  
PIC16LF1904/6/7 MEMORY MAP  
BANK 0  
BANK 1  
BANK 2  
BANK 3  
BANK 4  
BANK 5  
BANK 6  
BANK 7  
000h  
080h  
100h  
180h  
200h  
280h  
300h  
380h  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
00Bh  
00Ch  
00Dh  
00Eh  
08Bh  
08Ch  
08Dh  
08Eh  
10Bh  
10Ch  
10Dh  
10Eh  
18Bh  
18Ch  
18Dh  
18Eh  
20Bh  
20Ch  
20Dh  
20Eh  
28Bh  
28Ch  
28Dh  
28Eh  
30Bh  
30Ch  
30Dh  
30Eh  
38Bh  
38Ch  
38Dh  
38Eh  
PORTA  
PORTB  
PORTC  
TRISA  
TRISB  
TRISC  
LATA  
LATB  
LATC  
ANSELA  
ANSELB  
WPUB  
00Fh  
PORTD(1)  
08Fh  
TRISD(1)  
10Fh  
LATD(1)  
18Fh  
20Fh  
28Fh  
30Fh  
38Fh  
010h  
011h  
012h  
013h  
014h  
015h  
016h  
017h  
018h  
019h  
01Ah  
01Bh  
01Ch  
01Dh  
01Eh  
PORTE  
PIR1  
PIR2  
090h  
091h  
092h  
093h  
094h  
TRISE(1)  
PIE1  
PIE2  
110h  
111h  
112h  
113h  
114h  
LATE(1)  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
ANSELE(1)  
PMADRL  
PMADRH  
PMDATL  
PMDATH  
PMCON1  
PMCON2  
210h  
211h  
212h  
213h  
214h  
215h  
216h  
217h  
218h  
219h  
21Ah  
21Bh  
21Ch  
21Dh  
21Eh  
WPUE  
290h  
291h  
292h  
293h  
294h  
295h  
296h  
297h  
298h  
299h  
29Ah  
29Bh  
29Ch  
29Dh  
29Eh  
310h  
311h  
312h  
313h  
314h  
315h  
316h  
317h  
318h  
319h  
31Ah  
31Bh  
31Ch  
31Dh  
31Eh  
390h  
391h  
392h  
393h  
394h  
395h  
396h  
397h  
398h  
399h  
39Ah  
39Bh  
39Ch  
39Dh  
39Eh  
IOCBP  
IOCBN  
IOCBF  
TMR0  
TMR1L  
TMR1H  
T1CON  
T1GCON  
095h OPTION_REG 115h  
096h  
097h  
098h  
099h  
09Ah  
09Bh  
09Ch  
09Dh  
09Eh  
PCON  
WDTCON  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
BORCON  
FVRCON  
OSCCON  
OSCSTAT  
ADRESL  
ADRESH  
ADCON0  
ADCON1  
RCREG  
TXREG  
SPBRG  
SPBRGH  
RCSTA  
TXSTA  
01Fh  
020h  
09Fh  
0A0h  
11Fh  
120h  
19Fh  
1A0h  
BAUDCON  
21Fh  
220h  
29Fh  
2A0h  
31Fh  
320h  
39Fh  
3A0h  
General Purpose  
Register  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
General  
Purpose  
General  
Purpose  
32 Bytes(2)  
13Fh  
140h  
Unimplemented  
Read as ‘0’  
Register  
Register  
Register  
General  
Purpose  
Register  
96 Bytes  
80 Bytes(2)  
80 Bytes(2)  
80 Bytes(2)  
Unimplemented  
Read as ‘0’  
36Fh  
370h  
3EFh  
3F0h  
06Fh  
070h  
0EFh  
0F0h  
16Fh  
170h  
1EFh  
1F0h  
26Fh  
270h  
2EFh  
2F0h  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
07Fh  
0FFh  
17Fh  
1FFh  
27Fh  
2FFh  
37Fh  
3FFh  
Legend:  
= Unimplemented data memory locations, read as ‘0’.  
Note 1: PIC16LF1904/7 only.  
2: PIC16LF1906/7 only.  
TABLE 3-3:  
PIC16LF1904/6/7 MEMORY MAP (CONTINUED)  
BANK 8  
BANK 9  
BANK 10  
BANK 11  
BANK 12  
BANK 13  
BANK 14  
400h  
480h  
500h  
580h  
600h  
680h  
700h  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
40Bh  
40Ch  
48Bh  
48Ch  
50Bh  
50Ch  
58Bh  
58Ch  
60Bh  
60Ch  
68Bh  
68Ch  
70Bh  
70Ch  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
46Fh  
470h  
4EFh  
4F0h  
56Fh  
570h  
5EFh  
5F0h  
66Fh  
670h  
6EFh  
6F0h  
76Fh  
770h  
Common RAM  
(Accesses  
Common RAM  
(Accesses  
Common RAM  
(Accesses  
Common RAM  
(Accesses  
Common RAM  
(Accesses  
Common RAM  
(Accesses  
Common RAM  
(Accesses  
70h – 7Fh)  
70h – 7Fh)  
70h – 7Fh)  
70h – 7Fh)  
70h – 7Fh)  
70h – 7Fh)  
70h – 7Fh)  
4FFh  
880h  
57Fh  
900h  
47Fh  
800h  
5FFh  
980h  
67Fh  
A00h  
6FFh  
A80h  
77Fh  
B00h  
BANK 16  
BANK 17  
BANK 18  
BANK 19  
BANK 20  
BANK 21  
BANK 22  
BANK 23  
B80h  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
80Bh  
80Ch  
88Bh  
88Ch  
90Bh  
90Ch  
98Bh  
98Ch  
A0Bh  
A0Ch  
A8Bh  
A8Ch  
B0Bh  
B0Ch  
B8Bh  
B8Ch  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
9EFh  
9F0h  
AEFh  
AF0h  
BEFh  
BF0h  
86Fh  
870h  
8EFh  
8F0h  
96Fh  
970h  
A6Fh  
A70h  
B6Fh  
B70h  
Common RAM  
(Accesses  
Common RAM  
(Accesses  
Common RAM  
(Accesses  
Common RAM  
(Accesses  
Common RAM  
(Accesses  
Common RAM  
(Accesses  
Common RAM  
(Accesses  
Common RAM  
(Accesses  
70h – 7Fh)  
70h – 7Fh)  
70h – 7Fh)  
70h – 7Fh)  
70h – 7Fh)  
70h – 7Fh)  
70h – 7Fh)  
70h – 7Fh)  
87Fh  
C00h  
8FFh  
C80h  
97Fh  
D00h  
9FFh  
D80h  
A7Fh  
E00h  
AFFh  
E80h  
B7Fh  
F00h  
BFFh  
BANK 24  
BANK 25  
BANK 26  
BANK 27  
BANK 28  
BANK 29  
BANK 30  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
C0Bh  
C0Ch  
C8Bh  
C8Ch  
D0Bh  
D0Ch  
D8Bh  
D8Ch  
E0Bh  
E0Ch  
E8Bh  
E8Ch  
F0Bh  
F0Ch  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
C6Fh  
C70h  
CEFh  
CF0h  
D6Fh  
D70h  
DEFh  
DF0h  
E6Fh  
E70h  
EEFh  
EF0h  
F6Fh  
F70h  
Common RAM  
(Accesses  
Common RAM  
(Accesses  
Common RAM  
(Accesses  
Common RAM  
(Accesses  
Common RAM  
(Accesses  
Common RAM  
(Accesses  
Common RAM  
(Accesses  
70h – 7Fh)  
70h – 7Fh)  
70h – 7Fh)  
70h – 7Fh)  
70h – 7Fh)  
70h – 7Fh)  
70h – 7Fh)  
CFFh  
D7Fh  
DFFh  
E7Fh  
EFFh  
F7Fh  
C7Fh  
Legend:  
= Unimplemented data memory locations, read as ‘0’  
PIC16LF1904/6/7  
TABLE 3-3:  
PIC16LF1904/6/7 MEMORY MAP (CONTINUED)  
BANK 15  
BANK 31  
780h  
F80h  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
78Bh  
78Ch  
F8Bh  
F8Ch  
Unimplemented  
Unimplemented  
Read as ‘0’  
Read as ‘0’  
790h  
791h  
792h  
793h  
794h  
795h  
796h  
797h  
798h  
799h  
FE3h  
FE4h  
FE5h  
FE6h  
FE7h  
FE8h  
FE9h  
FEAh  
FEBh  
FECh  
STATUS_SHAD  
WREG_SHAD  
BSR_SHAD  
PCLATH_SHAD  
FSR0L_SHAD  
FSR0H_SHAD  
FSR1L_SHAD  
FSR1H_SHAD  
LCDCON  
LCDPS  
LCDREF  
LCDCST  
LCDRL  
LCDSE0  
LCDSE1  
LCDSE2(1)  
79Ah  
79Bh  
79Ch  
FEDh  
FEEh  
FEFh  
FF0h  
STKPTR  
TOSL  
LCDSE3  
TOSH  
Unimplemented  
Read as ‘0’  
Common RAM  
(Accesses  
70h – 7Fh)  
79Fh  
7A0h  
7A1h  
7A2h  
7A3h  
7A4h  
7A5h  
7A6h  
7A7h  
7A8h  
7A9h  
7AAh  
7ABh  
7ACh  
7ADh  
7AEh  
7AFh  
7B0h  
7B1h  
7B2h  
7B3h  
7B4h  
7B5h  
7B6h  
7B7h  
7B8h  
LCDDATA0  
LCDDATA1  
LCDDATA2(1)  
LCDDATA3  
LCDDATA4  
LCDDATA5(1)  
LCDDATA6  
LCDDATA7  
LCDDATA8(1)  
LCDDATA9  
LCDDATA10  
LCDDATA11(1)  
LCDDATA12  
FFFh  
LCDDATA15  
LCDDATA18  
LCDDATA21  
Unimplemented  
Read as ‘0’  
7EFh  
Legend:  
= Unimplemented data memory locations, read as ‘0’.  
Note 1: PIC16LF1904/7 only.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 25  
PIC16LF1904/6/7  
3.2.6  
CORE FUNCTION REGISTERS  
SUMMARY  
The Core Function registers listed in Table 3-4 can be  
addressed from any Bank.  
TABLE 3-4:  
CORE FUNCTION REGISTERS SUMMARY  
Value on  
POR, BOR other Resets  
Value on all  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 0-31  
x00h or  
x80h  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
INDF0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 0000 0000 0000  
x01h or  
x81h  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
INDF1  
PCL  
x02h or  
x82h  
Program Counter (PC) Least Significant Byte  
x03h or  
x83h  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
x04h or  
x84h  
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
x05h or  
x85h  
x06h or  
x86h  
x07h or  
x87h  
x08h or  
x88h  
BSR4  
BSR3  
BSR2  
BSR1  
INTF  
BSR0  
IOCIF  
x09h or  
x89h  
WREG  
PCLATH  
INTCON  
Working Register  
x0Ahor  
x8Ah  
Write Buffer for the upper 7 bits of the Program Counter  
PEIE TMR0IE INTE IOCIE TMR0IF  
x0Bhor  
x8Bh  
GIE  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
DS40001569D-page 26  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
TABLE 3-5:  
SPECIAL FUNCTION REGISTER SUMMARY  
Value on all  
Value on  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
other  
POR, BOR  
Resets  
Bank 0  
00Ch PORTA  
00Dh PORTB  
00Eh PORTC  
00Fh PORTD(3)  
010h PORTE  
011h PIR1  
PORTA Data Latch when written: PORTA pins when read  
PORTB Data Latch when written: PORTB pins when read  
PORTC Data Latch when written: PORTC pins when read  
PORTD Data Latch when written: PORTD pins when read  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
RE3  
RE2(2)  
RE1(2)  
RE0(2) ---- xxxx ---- uuuu  
TMR1GIF  
ADIF  
RCIF  
TXIF  
TMR1IF 0000 ---0 0000 ---0  
012h PIR2  
LCDIF  
---0 -0-- ---0 -0--  
013h  
014h  
Unimplemented  
Unimplemented  
015h TMR0  
Timer0 Module Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
016h TMR1L  
017h TMR1H  
018h T1CON  
019h T1GCON  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
TMR1CS1 TMR1CS0 T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1ON 0000 00-0 uuuu uu-u  
T1GSS0 0000 0x00 uuuu uxuu  
TMR1GE T1GPOL  
T1GTM  
T1GSPM  
T1GGO/  
DONE  
T1GVAL  
T1GSS1  
01Ah  
to  
Unimplemented  
01Fh  
Bank 1  
08Ch TRISA  
08Dh TRISB  
08Eh TRISC  
08Fh TRISD(3)  
090h TRISE  
091h PIE1  
PORTA Data Direction Register  
PORTB Data Direction Register  
PORTC Data Direction Register  
PORTD Data Direction Register  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
(2)  
TRISE2(3) TRISE1(3) TRISE0(3) ---- 1111 ---- 1111  
TMR1GIE  
ADIE  
RCIE  
TXIE  
TMR1IE 0000 ---0 0000 ---0  
092h PIE2  
LCDIE  
---- -0-- ---- -0--  
093h  
094h  
Unimplemented  
Unimplemented  
095h OPTION_REG  
096h PCON  
WPUEN  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
RI  
PS1  
PS0  
1111 1111 1111 1111  
00-1 11qq qq-q qquu  
STKOVF STKUNF  
RWDT  
RMCLR  
POR  
BOR  
097h WDTCON  
WDTPS4 WDTPS3  
WDTPS2 WDTPS1 WDTPS0 SWDTEN --01 0110 --01 0110  
098h  
Unimplemented  
099h OSCCON  
09Ah OSCSTAT  
09Bh ADRESL  
09Ch ADRESH  
09Dh ADCON0  
09Eh ADCON1  
IRCF3  
IRCF2  
OSTS  
IRCF1  
IRCF0  
SCS1  
SCS0  
-011 1-00 -011 1-00  
T1OSCR  
HFIOFR  
LFIOFR  
HFIOFS 0-q0 --00 q-qq --0q  
xxxx xxxx uuuu uuuu  
A/D Result Register Low  
A/D Result Register High  
xxxx xxxx uuuu uuuu  
CHS4  
CHS3  
CHS2  
CHS1  
CHS0  
GO/DONE  
ADON  
-000 0000 -000 0000  
ADFM  
ADCS2  
ADCS1  
ADCS0  
ADPREF1 ADPREF0 0000 ---- 0000 ----  
09Fh  
Unimplemented  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
These registers can be addressed from any bank.  
Unimplemented, read as ‘1’.  
Note 1:  
2:  
3:  
PIC16LF1904/7 only.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 27  
PIC16LF1904/6/7  
TABLE 3-5:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 2  
10Ch LATA  
10Dh LATB  
10Eh LATC  
10Eh LATD(3)  
10Eh LATE(3)  
111h  
PORTA Data Latch  
PORTB Data Latch  
PORTC Data Latch  
PORTD Data Latch  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
LATE2  
LATE1  
LATE0 ---- -xxx ---- -uuu  
to  
Unimplemented  
115h  
116h BORCON  
117h FVRCON  
118h  
SBOREN  
FVREN  
BORFS  
BORRDY 10-- ---q uu-- ---u  
FVRRDY  
TSEN  
TSRNG  
ADFVR1 ADFVR0 0q00 --00 0q00 --00  
to  
11Fh  
Unimplemented  
Bank 3  
18Ch ANSELA  
18Dh ANSELB  
ANSA5  
ANSB5  
ANSA3  
ANSB3  
ANSA2  
ANSB2  
ANSA1  
ANSB1  
ANSA0 --1- 1111 --11 1111  
ANSB0 --11 1111 --11 1111  
ANSB4  
18Eh  
18Fh  
Unimplemented  
Unimplemented  
190h ANSELE(3)  
191h PMADRL  
192h PMADRH  
193h PMDATL  
194h PMDATH  
195h PMCON1  
196h PMCON2  
ANSE2  
ANSE1  
ANSE0 ---- -111 ---- -111  
0000 0000 0000 0000  
1000 0000 1000 0000  
xxxx xxxx uuuu uuuu  
--xx xxxx --uu uuuu  
Program Memory Address Register Low Byte  
(2)  
Program Memory Address Register High Byte  
Program Memory Read Data Register Low Byte  
Program Memory Read Data Register High Byte  
(2)  
CFGS  
LWLO  
FREE  
WRERR  
WREN  
WR  
RD  
1000 x000 1000 q000  
0000 0000 0000 0000  
Program Memory Control Register 2  
Unimplemented  
197h  
198h  
Unimplemented  
199h RCREG  
19Ah TXREG  
19Bh SPBRG  
19Ch SPBRGH  
19Dh RCSTA  
19Eh TXSTA  
19Fh BAUD1CON  
Bank 4  
USART Receive Data Register  
USART Transmit Data Register  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 000x 0000 000x  
0000 0010 0000 0010  
BRG<7:0>  
BRG<15:8>  
SPEN  
CSRC  
RX9  
TX9  
SREN  
TXEN  
CREN  
ADDEN  
SENDB  
BRG16  
FERR  
BRGH  
OERR  
TRMT  
WUE  
RX9D  
TX9D  
SYNC  
SCKP  
ABDOVF  
RCIDL  
ABDEN 01-0 0-00 01-0 0-00  
20Ch  
Unimplemented  
20Dh WPUB  
WPUB7  
WPUB6  
WPUB5  
WPUB4  
WPUB3  
WPUE3  
WPUB2  
WPUB1  
WPUB0 1111 1111 1111 1111  
20Eh  
20Fh  
Unimplemented  
Unimplemented  
210h WPUE  
---- 1--- ---- 1---  
211h  
to  
Unimplemented  
21Fh  
Bank 5  
28Ch  
Unimplemented  
29Fh  
Bank 6  
30Ch  
Unimplemented  
31Fh  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
These registers can be addressed from any bank.  
Unimplemented, read as ‘1’.  
Note 1:  
2:  
3:  
PIC16LF1904/7 only.  
DS40001569D-page 28  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
TABLE 3-5:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 7  
38Ch  
Unimplemented  
393h  
394h IOCBP  
395h IOCBN  
396h IOCBF  
IOCBP7  
IOCBN7  
IOCBF7  
IOCBP6  
IOCBP5  
IOCBN5  
IOCBF5  
IOCBP4  
IOCBN4  
IOCBF4  
IOCBP3  
IOCBN3  
IOCBF3  
IOCBP2  
IOCBN2  
IOCBF2  
IOCBP1  
IOCBN1  
IOCBF1  
IOCBP0 0000 0000 0000 0000  
IOCBN0 0000 0000 0000 0000  
IOCBF0 0000 0000 0000 0000  
IOCBN6  
IOCBF6  
397h  
Unimplemented  
39Fh  
Bank 8-14  
x0Ch  
or  
x8Ch  
to  
x1Fh  
or  
Unimplemented  
Unimplemented  
x9Fh  
Bank 15  
78Ch  
790h  
791h LCDCON  
792h LCDPS  
793h LCDREF  
794h LCDCST  
795h LCDRL  
LCDEN  
WFT  
SLPEN  
WERR  
LCDA  
LCDIRI  
WA  
CS1  
LP3  
CS0  
LP2  
LMUX1  
LP1  
LMUX0 000- 0011 000- 0011  
BIASMD  
LP0  
0000 0000 0000 0000  
0-0- 000- 0-0- 000-  
LCDIRE  
VLCD3PE VLCD2PE VLCD1PE  
LCDCST2 LCDCST1 LCDCST0 ---- -000 ---- -000  
LRLAP1  
LRLAP0  
LRLBP1  
LRLBP0  
LRLAT2  
LRLAT1  
LRLAT0 0000 -000 0000 -000  
796h  
797h  
Unimplemented  
Unimplemented  
798h LCDSE0  
799h LCDSE1  
79Ah LCDSE2  
79Bh LCDSE3  
SE7  
SE15  
SE23  
SE6  
SE5  
SE13  
SE21  
SE4  
SE12  
SE20  
SE28  
SE3  
SE11  
SE19  
SE27  
SE2  
SE10  
SE18  
SE26  
SE1  
SE9  
SE0  
SE8  
0000 0000 uuuu uuuu  
0000 0000 uuuu uuuu  
0000 0000 uuuu uuuu  
---0 0000 ---u uuuu  
SE14  
SE22  
SE17  
SE25  
SE16  
SE24  
79Dh  
Unimplemented  
79Fh  
7A0h LCDDATA0  
7A1h LCDDATA1  
7A2h LCDDATA2(3)  
7A3h LCDDATA3  
7A4h LCDDATA4  
7A5h LCDDATA5(3)  
7A6h LCDDATA6  
7A7h LCDDATA7  
7A8h LCDDATA8(3)  
SEG7  
COM0  
SEG6  
COM0  
SEG5  
COM0  
SEG4  
COM0  
SEG3  
COM0  
SEG2  
COM0  
SEG1  
COM0  
SEG0  
COM0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
SEG15  
COM0  
SEG14  
COM0  
SEG13  
COM0  
SEG12  
COM0  
SEG11  
COM0  
SEG10  
COM0  
SEG9  
COM0  
SEG8  
COM0  
SEG23  
COM0  
SEG22  
COM0  
SEG21  
COM0  
SEG20  
COM0  
SEG19  
COM0  
SEG18  
COM0  
SEG17  
COM0  
SEG16 xxxx xxxx uuuu uuuu  
COM0  
SEG7  
COM1  
SEG6  
COM1  
SEG5  
COM1  
SEG4  
COM1  
SEG3  
COM1  
SEG2  
COM1  
SEG1  
COM1  
SEG0  
COM1  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
SEG15  
COM1  
SEG14  
COM1  
SEG13  
COM1  
SEG12  
COM1  
SEG11  
COM1  
SEG10  
COM1  
SEG9  
COM1  
SEG8  
COM1  
SEG23  
COM1  
SEG22  
COM1  
SEG21  
COM1  
SEG20  
COM1  
SEG19  
COM1  
SEG18  
COM1  
SEG17  
COM1  
SEG16 xxxx xxxx uuuu uuuu  
COM1  
SEG7  
COM2  
SEG6  
COM2  
SEG5  
COM2  
SEG4  
COM2  
SEG3  
COM2  
SEG2  
COM2  
SEG1  
COM2  
SEG0  
COM2  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
SEG15  
COM2  
SEG14  
COM2  
SEG13  
COM2  
SEG12  
COM2  
SEG11  
COM2  
SEG10  
COM2  
SEG9  
COM2  
SEG8  
COM2  
SEG23  
COM2  
SEG22  
COM2  
SEG21  
COM2  
SEG20  
COM2  
SEG19  
COM2  
SEG18  
COM2  
SEG17  
COM2  
SEG16 xxxx xxxx uuuu uuuu  
COM2  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
These registers can be addressed from any bank.  
Unimplemented, read as ‘1’.  
Note 1:  
2:  
3:  
PIC16LF1904/7 only.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 29  
PIC16LF1904/6/7  
TABLE 3-5:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 15 (Continued)  
7A9h LCDDATA9  
SEG7  
COM3  
SEG6  
COM3  
SEG5  
COM3  
SEG4  
COM3  
SEG3  
COM3  
SEG2  
COM3  
SEG1  
COM3  
SEG0  
COM3  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
7AAh LCDDATA10  
7ABh LCDDATA11(3)  
7ACh LCDDATA12  
SEG15  
COM3  
SEG14  
COM3  
SEG13  
COM3  
SEG12  
COM3  
SEG11  
COM3  
SEG10  
COM3  
SEG9  
COM3  
SEG8  
COM3  
SEG23  
COM3  
SEG22  
COM3  
SEG20  
COM3  
SEG19  
COM3  
SEG18  
COM3  
SEG17  
COM3  
SEG16  
COM3  
SEG15 xxxx xxxx uuuu uuuu  
COM3  
SEG28  
COM0  
SEG27  
COM0  
SEG26  
COM0  
SEG25  
COM0  
SEG24 ---x xxxx ---u uuuu  
COM0  
7ADh  
7AEh  
Unimplemented  
Unimplemented  
7AFh LCDDATA15  
SEG28  
COM1  
SEG27  
COM1  
SEG26  
COM1  
SEG25  
COM1  
SEG24 ---x xxxx ---u uuuu  
COM1  
7B0h  
7B1h  
Unimplemented  
Unimplemented  
7B2h LCDDATA18  
SEG28  
COM2  
SEG27  
COM2  
SEG26  
COM2  
SEG25  
COM2  
SEG24 ---x xxxx ---u uuuu  
COM2  
7B3h  
7B4h  
Unimplemented  
Unimplemented  
7B5h LCDDATA21  
SEG28  
COM3  
SEG27  
COM3  
SEG26  
COM3  
SEG25  
COM3  
SEG24 ---x xxxx ---u uuuu  
COM3  
7B6h  
7EFh  
Unimplemented  
Unimplemented  
Bank 16-30  
x0Ch  
or  
x8Ch  
to  
x1Fh  
or  
x9Fh  
Bank 31  
F8Ch  
FE3h  
Unimplemented  
FE4h STATUS_SHAD  
FE5h WREG_SHAD  
FE6h BSR_SHAD  
FE7h PCLATH_SHAD  
FE8h FSR0L_SHAD  
FE9h FSR0H_SHAD  
FEAh FSR1L_SHAD  
FEBh FSR1H_SHAD  
FECh —  
Z_SHAD DC_SHAD C_SHAD ---- -xxx ---- -uuu  
Working Register Normal (Non-ICD) Shadow  
xxxx xxxx uuuu uuuu  
Bank Select Register Normal (Non-ICD) Shadow  
---x xxxx ---u uuuu  
-xxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
Program Counter Latch High Register Normal (Non-ICD) Shadow  
Indirect Data Memory Address 0 Low Pointer Normal (Non-ICD) Shadow  
Indirect Data Memory Address 0 High Pointer Normal (Non-ICD) Shadow  
Indirect Data Memory Address 1 Low Pointer Normal (Non-ICD) Shadow  
Indirect Data Memory Address 1 High Pointer Normal (Non-ICD) Shadow  
Unimplemented  
FEDh  
FEEh  
FEFh  
Current Stack Pointer  
---1 1111 ---1 1111  
xxxx xxxx uuuu uuuu  
-xxx xxxx -uuu uuuu  
STKPTR  
TOSL  
Top of Stack Low byte  
Top of Stack High byte  
TOSH  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
These registers can be addressed from any bank.  
Unimplemented, read as ‘1’.  
Note 1:  
2:  
3:  
PIC16LF1904/7 only.  
DS40001569D-page 30  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
3.3.2  
COMPUTED GOTO  
3.3  
PCL and PCLATH  
A computed GOTOis accomplished by adding an offset to  
the program counter (ADDWF PCL). When performing a  
table read using a computed GOTOmethod, care should  
be exercised if the table location crosses a PCL memory  
boundary (each 256-byte block). Refer to Application  
Note AN556, “Implementing a Table Read” (DS00556).  
The Program Counter (PC) is 15 bits wide. The low byte  
comes from the PCL register, which is a readable and  
writable register. The high byte (PC<14:8>) is not directly  
readable or writable and comes from PCLATH. On any  
Reset, the PC is cleared. Figure 3-4 shows the five  
situations for the loading of the PC.  
3.3.3  
COMPUTED FUNCTION CALLS  
FIGURE 3-4:  
LOADING OF PC IN  
A computed function CALLallows programs to maintain  
tables of functions and provide another way to execute  
state machines or look-up tables. When performing a  
table read using a computed function CALL, care  
should be exercised if the table location crosses a PCL  
memory boundary (each 256-byte block).  
DIFFERENT SITUATIONS  
Instruction with  
14  
0
PCH  
7
PCL  
PCL as  
PC  
Destination  
8
6
0
PCLATH  
ALU Result  
If using the CALLinstruction, the PCH<2:0> and PCL  
registers are loaded with the operand of the CALL  
instruction. PCH<6:3> is loaded with PCLATH<6:3>.  
14  
0
PCH  
PCL  
GOTO, CALL  
PC  
The CALLWinstruction enables computed calls by com-  
bining PCLATH and W to form the destination address.  
A computed CALLWis accomplished by loading the W  
register with the desired address and executing CALLW.  
The PCL register is loaded with the value of W and  
PCH is loaded with PCLATH.  
11  
4
6
0
PCLATH  
OPCODE <10:0>  
14  
0
PCH  
7
PCL  
CALLW  
PC  
3.3.4  
BRANCHING  
8
6
0
PCLATH  
W
The branching instructions add an offset to the PC.  
This allows relocatable code and code that crosses  
page boundaries. There are two forms of branching,  
BRW and BRA. The PC will have incremented to fetch  
the next instruction in both cases. When using either  
branching instruction, a PCL memory boundary may be  
crossed.  
14  
0
PCH  
PCL  
PC  
BRW  
15  
PC + W <8:0>  
If using BRW, load the W register with the desired  
unsigned address and execute BRW. The entire PC will  
be loaded with the address PC + 1 + W.  
14  
0
PCH  
PCL  
PC  
BRA  
15  
PC + OPCODE <8:0>  
If using BRA, the entire PC will be loaded with PC + 1 +,  
the signed value of the operand of the BRAinstruction.  
3.3.1  
MODIFYING PCL  
Executing any instruction with the PCL register as the  
destination simultaneously causes the Program  
Counter PC<14:8> bits (PCH) to be replaced by the  
contents of the PCLATH register. This allows the entire  
contents of the program counter to be changed by writ-  
ing the desired upper seven bits to the PCLATH regis-  
ter. When the lower eight bits are written to the PCL  
register, all 15 bits of the program counter will change  
to the values contained in the PCLATH register and  
those being written to the PCL register.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 31  
 
PIC16LF1904/6/7  
3.4.1  
ACCESSING THE STACK  
3.4  
Stack  
The stack is available through the TOSH, TOSL and  
STKPTR registers. STKPTR is the current value of the  
Stack Pointer. TOSH:TOSL register pair points to the  
TOP of the stack. Both registers are read/writable. TOS  
is split into TOSH and TOSL due to the 15-bit size of the  
PC. To access the stack, adjust the value of STKPTR,  
which will position TOSH:TOSL, then read/write to  
TOSH:TOSL. STKPTR is five bits to allow detection of  
overflow and underflow.  
All devices have a 16-level x 15-bit wide hardware  
stack (refer to Figure 3-5). The stack space is not part  
of either program or data space. The PC is PUSHed  
onto the stack when CALL or CALLW instructions are  
executed or an interrupt causes a branch. The stack is  
POPed in the event of a RETURN, RETLWor a RETFIE  
instruction execution. PCLATH is not affected by a  
PUSH or POP operation.  
The stack operates as a circular buffer if the STVREN  
bit is programmed to ‘0‘ (Configuration Word 2). This  
means that after the stack has been PUSHed sixteen  
times, the seventeenth PUSH overwrites the value that  
was stored from the first PUSH. The eighteenth PUSH  
overwrites the second PUSH (and so on). The  
STKOVF and STKUNF flag bits will be set on an Over-  
flow/Underflow, regardless of whether the Reset is  
enabled.  
Note:  
Care should be taken when modifying the  
STKPTR while interrupts are enabled.  
During normal program operation, CALL, CALLW and  
Interrupts will increment STKPTR while RETLW,  
RETURN, and RETFIEwill decrement STKPTR. At any  
time STKPTR can be inspected to see how much stack  
is left. The STKPTR always points at the currently used  
place on the stack. Therefore, a CALL or CALLW will  
increment the STKPTR and then write the PC, and a  
return will unload the PC and then decrement the  
STKPTR.  
Note:  
There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the CALL,  
CALLW, RETURN, RETLW and RETFIE  
instructions or the vectoring to an interrupt  
address.  
Reference Figure 3-5 through Figure 3-8 for examples  
of accessing the stack.  
FIGURE 3-5:  
ACCESSING THE STACK EXAMPLE 1  
Stack Reset Disabled  
(STVREN = 0)  
TOSH:TOSL  
0x0F  
0x0E  
0x0D  
0x0C  
0x0B  
0x0A  
0x09  
0x08  
0x07  
0x06  
0x05  
0x04  
0x03  
0x02  
0x01  
0x00  
0x1F  
STKPTR = 0x1F  
Initial Stack Configuration:  
After Reset, the stack is empty. The  
empty stack is initialized so the Stack  
Pointer is pointing at 0x1F. If the Stack  
Overflow/Underflow Reset is enabled, the  
TOSH/TOSL registers will return ‘0’. If  
the Stack Overflow/Underflow Reset is  
disabled, the TOSH/TOSL registers will  
return the contents of stack address 0x0F.  
Stack Reset Enabled  
STKPTR = 0x1F  
TOSH:TOSL  
0x0000  
(STVREN = 1)  
DS40001569D-page 32  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
FIGURE 3-6:  
ACCESSING THE STACK EXAMPLE 2  
0x0F  
0x0E  
0x0D  
0x0C  
0x0B  
0x0A  
0x09  
0x08  
0x07  
0x06  
0x05  
0x04  
0x03  
0x02  
0x01  
This figure shows the stack configuration  
after the first CALLor a single interrupt.  
If a RETURN instruction is executed, the  
return address will be placed in the  
Program Counter and the Stack Pointer  
decremented to the empty state (0x1F).  
TOSH:TOSL  
0x00  
Return Address  
STKPTR = 0x00  
FIGURE 3-7:  
ACCESSING THE STACK EXAMPLE 3  
0x0F  
0x0E  
0x0D  
0x0C  
0x0B  
0x0A  
0x09  
0x08  
0x07  
After seven CALLs or six CALLs and an  
interrupt, the stack looks like the figure  
on the left. A series of RETURNinstructions  
will repeatedly place the return addresses  
into the Program Counter and pop the stack.  
STKPTR = 0x06  
TOSH:TOSL  
0x06  
0x05  
0x04  
0x03  
0x02  
0x01  
0x00  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 33  
PIC16LF1904/6/7  
FIGURE 3-8:  
ACCESSING THE STACK EXAMPLE 4  
0x0F  
0x0E  
0x0D  
0x0C  
0x0B  
0x0A  
0x09  
0x08  
0x07  
0x06  
0x05  
0x04  
0x03  
0x02  
0x01  
0x00  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
When the stack is full, the next CALLor  
an interrupt will set the Stack Pointer to  
0x10. This is identical to address 0x00  
so the stack will wrap and overwrite the  
return address at 0x00. If the Stack  
Overflow/Underflow Reset is enabled, a  
Reset will occur and location 0x00 will  
not be overwritten.  
TOSH:TOSL  
STKPTR = 0x10  
3.4.2  
OVERFLOW/UNDERFLOW RESET  
If the STVREN bit in Configuration Word 2 is  
programmed to ‘1’, the device will be reset if the stack  
is PUSHed beyond the sixteenth level or POPed  
beyond the first level, setting the appropriate bits  
(STKOVF or STKUNF, respectively) in the PCON  
register.  
3.5  
Indirect Addressing  
The INDFn registers are not physical registers. Any  
instruction that accesses an INDFn register actually  
accesses the register at the address specified by the  
File Select Registers (FSR). If the FSRn address  
specifies one of the two INDFn registers, the read will  
return ‘0’ and the write will not occur (though Status bits  
may be affected). The FSRn register value is created  
by the pair FSRnH and FSRnL.  
The FSR registers form a 16-bit address that allows an  
addressing space with 65536 locations. These locations  
are divided into three memory regions:  
• Traditional Data Memory  
• Linear Data Memory  
• Program Flash Memory  
DS40001569D-page 34  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
FIGURE 3-9:  
INDIRECT ADDRESSING  
0x0000  
0x0000  
Traditional  
Data Memory  
0x0FFF  
0x0FFF  
0x1000  
0x1FFF  
0x2000  
Reserved  
Linear  
Data Memory  
0x29AF  
0x29B0  
Reserved  
0x0000  
FSR  
Address  
Range  
0x7FFF  
0x8000  
Program  
Flash Memory  
0xFFFF  
0x7FFF  
Note:  
Not all memory regions are completely implemented. Consult device memory tables for memory limits.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 35  
PIC16LF1904/6/7  
3.5.1  
TRADITIONAL DATA MEMORY  
The traditional data memory is a region from FSR  
address 0x000 to FSR address 0xFFF. The addresses  
correspond to the absolute addresses of all SFR, GPR  
and common registers.  
FIGURE 3-10:  
TRADITIONAL DATA MEMORY MAP  
Direct Addressing  
From Opcode  
Indirect Addressing  
4
BSR  
6
7
FSRxH  
0
7
FSRxL  
0
0
0
0
0
0
0
Location Select  
Bank Select  
Bank Select  
Location Select  
00000 00001 00010  
11111  
0x00  
0x7F  
Bank 0 Bank 1 Bank 2  
Bank 31  
DS40001569D-page 36  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
3.5.2  
LINEAR DATA MEMORY  
3.5.3  
PROGRAM FLASH MEMORY  
The linear data memory is the region from FSR  
address 0x2000 to FSR address 0x29AF. This region is  
a virtual region that points back to the 80-byte blocks of  
GPR memory in all the banks.  
To make constant data access easier, the entire  
program Flash memory is mapped to the upper half of  
the FSR address space. When the MSB of FSRnH is  
set, the lower 15 bits are the address in program  
memory which will be accessed through INDF. Only the  
lower eight bits of each memory location is accessible  
via INDF. Writing to the program Flash memory cannot  
be accomplished via the FSR/INDF interface. All  
instructions that access program Flash memory via the  
FSR/INDF interface will require one additional  
instruction cycle to complete.  
Unimplemented memory reads as 0x00. Use of the  
linear data memory region allows buffers to be larger  
than 80 bytes because incrementing the FSR beyond  
one bank will go directly to the GPR memory of the next  
bank.  
The 16 bytes of common memory are not included in  
the linear data memory region.  
FIGURE 3-12:  
PROGRAM FLASH  
MEMORY MAP  
FIGURE 3-11:  
LINEAR DATA MEMORY  
MAP  
7
7
0
0
FSRnH  
FSRnL  
7
1
7
0
0
FSRnH  
FSRnL  
0
1
0
Location Select  
0x8000  
0x0000  
Location Select  
0x2000  
0x020  
Bank 0  
0x06F  
0x0A0  
Bank 1  
0x0EF  
0x120  
Program  
Flash  
Memory  
(low 8  
bits)  
Bank 2  
0x16F  
0xF20  
Bank 30  
0x7FFF  
0xFFFF  
0xF6F  
0x29AF  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 37  
PIC16LF1904/6/7  
4.0  
DEVICE CONFIGURATION  
Device Configuration consists of Configuration Word 1  
and Configuration Word 2, Code Protection and Device  
ID.  
4.1  
Configuration Words  
There are several Configuration Word bits that allow  
different oscillator and memory protection options.  
These are implemented as Configuration Word 1 at  
8007h and Configuration Word 2 at 8008h.  
Note:  
The DEBUG bit in Configuration Words is  
managed automatically by device  
development tools including debuggers  
and programmers. For normal device  
operation, this bit should be maintained as  
a ‘1’.  
DS40001569D-page 38  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
REGISTER 4-1:  
CONFIGURATION WORD 1  
U-1  
U-1  
R/P-1  
R/P-1  
R/P-1  
U-1  
CLKOUTEN  
BOREN<1:0>  
bit 13  
bit 8  
R/P-1  
CP  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
U-1  
R/P-1 R/P-1  
FOSC<1:0>  
MCLRE  
PWRTE  
WDTE<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
P = Programmable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘1’  
-n = Value when blank or after Bulk Erase  
‘0’ = Bit is cleared  
bit 13-12  
bit 11  
Unimplemented: Read as ‘1’  
CLKOUTEN: Clock Out Enable bit  
1= CLKOUT function is disabled. I/O function on the CLKOUT pin.  
0= CLKOUT function is enabled on the CLKOUT pin  
bit 10-9  
BOREN<1:0>: Brown-out Reset Enable bits  
11= BOR enabled  
10= BOR enabled during operation and disabled in Sleep  
01= BOR controlled by SBOREN bit of the BORCON register  
00= BOR disabled  
bit 8  
bit 7  
Unimplemented: Read as ‘1’  
CP: Code Protection bit  
1= Program memory code protection is disabled  
0= Program memory code protection is enabled  
bit 6  
MCLRE: MCLR/VPP Pin Function Select bit  
If LVP bit = 1:  
This bit is ignored.  
If LVP bit = 0:  
1= MCLR/VPP pin function is MCLR; Weak pull-up enabled.  
0= MCLR/VPP pin function is digital input; MCLR internally disabled; Weak pull-up under control of  
WPUE3 bit.  
bit 5  
PWRTE: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
bit 4-3  
WDTE<1:0>: Watchdog Timer Enable bit  
11= WDT enabled  
10= WDT enabled while running and disabled in Sleep  
01= WDT controlled by the SWDTEN bit in the WDTCON register  
00= WDT disabled  
bit 2  
Unimplemented: Read as ‘1’  
bit 1-0  
FOSC<1:0>: Oscillator Selection bits  
00= INTOSC oscillator: I/O function on CLKIN pin  
01= ECL: External Clock, Low-Power mode (0-0.5 MHz): device clock supplied to CLKIN pin  
10= ECM: External Clock, Medium-Power mode (0.5-4 MHz): device clock supplied to CLKIN pin  
11= ECH: External Clock, High-Power mode (4-20 MHz): device clock supplied to CLKIN pin  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 39  
 
PIC16LF1904/6/7  
REGISTER 4-2:  
CONFIGURATION WORD 2  
R/P-1  
LVP(1)  
R/P-1  
DEBUG(3)  
R/P-1  
R/P-1  
BORV(2)  
R/P-1  
U-1  
STVREN  
LPBOR  
bit 13  
bit 8  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
R/P-1  
R/P-1  
WRT<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
‘0’ = Bit is cleared  
P = Programmable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘1’  
-n = Value when blank or after Bulk Erase  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
LVP: Low-Voltage Programming Enable bit(1)  
1= Low-voltage programming enabled  
0= High-voltage on MCLR must be used for programming  
DEBUG: In-Circuit Debugger Mode bit(3)  
1= In-Circuit Debugger disabled, ICSPCLK and ICSPDAT are general purpose I/O pins  
0= In-Circuit Debugger enabled, ICSPCLK and ICSPDAT are dedicated to the debugger  
LPBOR: Low-Power BOR bit  
1= Low-Power BOR is disabled  
0= Low-Power BOR is enabled  
BORV: Brown-out Reset Voltage Selection bit(2)  
1= Brown-out Reset voltage (VBOR), low trip point selected  
0= Brown-out Reset voltage (VBOR), high trip point selected  
STVREN: Stack Overflow/Underflow Reset Enable bit  
1= Stack Overflow or Underflow will cause a Reset  
0= Stack Overflow or Underflow will not cause a Reset  
bit 8-2  
bit 1-0  
Unimplemented: Read as ‘1’  
WRT<1:0>: Flash Memory Self-Write Protection bits  
4 kW Flash memory (PIC16LF1904 only):  
11= Write protection off  
10= 000h to 1FFh write-protected, 200h to FFFh may be modified by PMCON control  
01= 000h to 7FFh write-protected, 800h to FFFh may be modified by PMCON control  
00= 000h to FFFh write-protected, no addresses may be modified by PMCON control  
8 kW Flash memory (PIC16LF1906/7 only):  
11= Write protection off  
10= 0000h to 01FFh write-protected, 200h to 1FFFh may be modified by PMCON control  
01= 0000h to 0FFFh write-protected, 1000h to 1FFFh may be modified by PMCON control  
00= 0000h to 1FFFh write-protected, no addresses may be modified by PMCON control  
Note 1: The LVP bit cannot be programmed to ‘0’ when Programming mode is entered via LVP.  
2: See VBOR parameter for specific trip point voltages.  
3: The DEBUG bit in Configuration Words is managed automatically by device development tools including  
debuggers and programmers. For normal device operation, this bit should be maintained as a ‘1’.  
DS40001569D-page 40  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
4.2  
Code Protection  
Code protection allows the device to be protected from  
unauthorized access. Program memory protection is  
controlled independently. Internal access to the  
program memory is unaffected by any code protection  
setting.  
4.2.1  
PROGRAM MEMORY PROTECTION  
The entire program memory space is protected from  
external reads and writes by the CP bit in Configuration  
Word 1. When CP = 0, external reads and writes of  
program memory are inhibited and a read will return all  
0’s. The CPU can continue to read program memory,  
regardless of the protection bit settings. Writing the  
program memory is dependent upon the write  
protection  
setting.  
See  
Section 4.3  
“Write  
Protection” for more information.  
4.3  
Write Protection  
Write protection allows the device to be protected from  
unintended self-writes. Applications, such as boot  
loader software, can be protected while allowing other  
regions of the program memory to be modified.  
The WRT<1:0> bits in Configuration Word 2 define the  
size of the program memory block that is protected.  
4.4  
User ID  
Four memory locations (8000h-8003h) are designated  
as ID locations where the user can store checksum or  
other code identification numbers. These locations are  
readable and writable during normal execution. See  
Section 10.4 “User ID, Device ID and Configuration  
Word Access” for more information on accessing  
these memory locations. For more information on  
checksum  
PIC16F193X/LF193X/PIC16F194X/LF194X/PIC16LF  
190X Memory Programming Specification”  
(DS41397).  
calculation,  
see  
the  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 41  
 
PIC16LF1904/6/7  
4.5  
Device ID and Revision ID  
The memory location 8006h is where the Device ID and  
Revision ID are stored. The upper nine bits hold the  
Device ID. The lower five bits hold the Revision ID. See  
Section 10.4 “User ID, Device ID and Configuration  
Word Access” for more information on accessing  
these memory locations.  
Development tools, such as device programmers and  
debuggers, may be used to read the Device ID and  
Revision ID.  
REGISTER 4-3:  
DEVICEID: DEVICE ID REGISTER  
R
R
R
R
R
R
R
R
R
R
DEV<8:3>  
bit 13  
bit 8  
bit 0  
R
R
R
R
DEV<2:0>  
REV<4:0>  
bit 7  
Legend:  
R = Readable bit  
U = Unimplemented bit, read as ‘1’  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
u = Bit is unchanged  
‘1’ = Bit is set  
-n/n = Value at POR and BOR/Value at all other Resets  
P = Programmable bit  
bit 13-5  
DEV<8:0>: Device ID bits  
DEVICEID<13:0> Values  
Device  
DEV<8:0>  
REV<4:0>  
PIC16LF1904  
PIC16LF1906  
PIC16LF1907  
10 1100 100  
10 1100 011  
10 1100 010  
x xxxx  
x xxxx  
x xxxx  
bit 4-0  
REV<4:0>: Revision ID bits  
These bits are used to identify the revision (see Table under DEV<8:0> above).  
DS40001569D-page 42  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 5-1.  
5.0  
RESETS  
There are multiple ways to reset this device:  
• Power-on Reset (POR)  
• Brown-out Reset (BOR)  
• Low-Power Brown-out Reset (LPBOR)  
• MCLR Reset  
• WDT Reset  
RESETinstruction  
• Stack Overflow  
• Stack Underflow  
• Programming mode exit  
To allow VDD to stabilize, an optional Power-up Timer  
can be enabled to extend the Reset time after a BOR  
or POR event.  
FIGURE 5-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
Programming Mode Exit  
RESET Instruction  
Stack Overflow/Underflow Reset  
Stack  
Pointer  
External Reset  
MCLRE  
MCLR  
Sleep  
WDT  
Time-out  
Device  
Reset  
Power-on  
Reset  
VDD  
Brown-out  
Reset  
LPBOR  
Reset  
BOR  
Enable  
PWRT  
72 ms  
Zero  
LFINTOSC  
PWRTEN  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 43  
 
PIC16LF1904/6/7  
5.1  
Power-on Reset (POR)  
5.2  
Brown-Out Reset (BOR)  
The POR circuit holds the device in Reset until VDD has  
reached an acceptable level for minimum operation.  
Slow rising VDD, fast operating speeds or analog  
performance may require greater than minimum VDD.  
The PWRT, BOR or MCLR features can be used to  
extend the start-up period until all device operation  
conditions have been met.  
The BOR circuit holds the device in Reset when VDD  
reaches a selectable minimum level. Between the  
POR and BOR, complete voltage range coverage for  
execution protection can be implemented.  
The Brown-out Reset module has four operating  
modes controlled by the BOREN<1:0> bits in Configu-  
ration Word 1. The four operating modes are:  
• BOR is always on  
5.1.1  
POWER-UP TIMER (PWRT)  
• BOR is off when in Sleep  
• BOR is controlled by software  
• BOR is always off  
The Power-up Timer provides a nominal 64 ms  
time-out on POR or Brown-out Reset.  
The device is held in Reset as long as PWRT is active.  
The PWRT delay allows additional time for the VDD to  
rise to an acceptable level. The Power-up Timer is  
enabled by clearing the PWRTE bit in Configuration  
Word 1.  
Refer to Table 5-1 for more information.  
The Brown-out Reset voltage level is selectable by  
configuring the BORV bit in Configuration Word 2.  
A VDD noise rejection filter prevents the BOR from trig-  
gering on small events. If VDD falls below VBOR for a  
duration greater than parameter TBORDC, the device  
will reset. See Figure 5-2 for more information.  
The Power-up Timer starts after the release of the POR  
and BOR.  
For additional information, refer to Application Note  
AN607, “Power-up Trouble Shooting” (DS00607).  
TABLE 5-1:  
BOREN<1:0>  
BOR OPERATING MODES  
Device Operation  
Device Operation  
upon release of POR  
SBOREN  
Device Mode  
BOR Mode  
upon wake- up from  
Sleep  
11  
10  
X
X
X
Awake  
Sleep  
X
Active  
Active  
Waits for BOR ready(1)  
Waits for BOR ready  
Disabled  
Active  
1
0
X
Waits for BOR ready(1)  
Begins immediately  
Begins immediately  
01  
00  
X
Disabled  
Disabled  
X
Note 1: In these specific cases, “release of POR” and “wake-up from Sleep,” there is no delay in start-up. The BOR  
ready flag, (BORRDY = 1), will be set before the CPU is ready to execute instructions because the BOR  
circuit is forced on by the BOREN<1:0> bits.  
5.2.1  
BOR IS ALWAYS ON  
5.2.3  
BOR CONTROLLED BY SOFTWARE  
When the BOREN bits of Configuration Word 1 are set  
to ‘11’, the BOR is always on. The device start-up will  
be delayed until the BOR is ready and VDD is higher  
than the BOR threshold.  
When the BOREN bits of Configuration Word 1 are set  
to ‘01’, the BOR is controlled by the SBOREN bit of the  
BORCON register. The device start-up is not delayed  
by the BOR ready condition or the VDD level.  
BOR protection is active during Sleep. The BOR does  
not delay wake-up from Sleep.  
BOR protection begins as soon as the BOR circuit is  
ready. The status of the BOR circuit is reflected in the  
BORRDY bit of the BORCON register.  
5.2.2  
BOR IS OFF IN SLEEP  
BOR protection is unchanged by Sleep.  
When the BOREN bits of Configuration Word 1 are set  
to ‘10’, the BOR is on, except in Sleep. The device  
start-up will be delayed until the BOR is ready and VDD  
is higher than the BOR threshold.  
BOR protection is not active during Sleep. The device  
wake-up will be delayed until the BOR is ready.  
DS40001569D-page 44  
2011-2016 Microchip Technology Inc.  
 
 
PIC16LF1904/6/7  
FIGURE 5-2:  
BROWN-OUT SITUATIONS  
VDD  
VBOR  
Internal  
Reset  
(1)  
TPWRT  
VDD  
VBOR  
Internal  
Reset  
< TPWRT  
(1)  
TPWRT  
VDD  
VBOR  
Internal  
Reset  
(1)  
TPWRT  
Note 1: TPWRT delay only if PWRTE bit is programmed to ‘0’.  
REGISTER 5-1:  
BORCON: BROWN-OUT RESET CONTROL REGISTER  
R/W-1/u  
SBOREN  
bit 7  
R/W-0/u  
BORFS  
U-0  
U-0  
U-0  
U-0  
U-0  
R-q/u  
BORRDY  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
u = Bit is unchanged  
‘1’ = Bit is set  
-n/n = Value at POR and BOR/Value at all other Resets  
q = Value depends on condition  
bit 7  
bit 6  
SBOREN: Software Brown-out Reset Enable bit  
If BOREN <1:0> in Configuration Word 1 01:  
SBOREN is read/write, but has no effect on the BOR.  
If BOREN <1:0> in Configuration Word 1 = 01:  
1= BOR Enabled  
0= BOR Disabled  
(1)  
BORFS: Brown-out Reset Fast Start bit  
If BOREN<1:0> = 11 (Always on) or BOREN<1:0> = 00 (Always off)  
BORFS is Read/Write, but has no effect.  
If BOREN <1:0> = 10 (Disabled in Sleep) or BOREN<1:0> = 01 (Under software control):  
1= Band gap is forced on always (covers Sleep/wake-up/operating cases)  
0= Band gap operates normally, and may turn off  
bit 5-1  
bit 0  
Unimplemented: Read as ‘0’  
BORRDY: Brown-out Reset Circuit Ready Status bit  
1= The Brown-out Reset circuit is active  
0= The Brown-out Reset circuit is inactive  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 45  
 
PIC16LF1904/6/7  
5.3  
Low-Power Brown-out Reset  
(LPBOR)  
5.5  
Watchdog Timer (WDT) Reset  
The Watchdog Timer generates a Reset if the firmware  
does not issue a CLRWDTinstruction within the time-out  
period. The TO and PD bits in the STATUS register are  
changed to indicate the WDT Reset. See Section 9.0  
“Watchdog Timer” for more information.  
The Low-Power Brown-Out Reset (LPBOR) is an  
essential part of the Reset subsystem. Refer to  
Figure 5-1 to see how the BOR interacts with other  
modules.  
The LPBOR is used to monitor the external VDD pin.  
When too low of a voltage is detected, the device is  
held in Reset. When this occurs, a register bit (BOR) is  
changed to indicate that a BOR Reset has occurred.  
The same bit is set for both the BOR and the LPBOR.  
Refer to Register 5-2.  
5.6  
RESET Instruction  
A RESETinstruction will cause a device Reset. The RI  
bit in the PCON register will be set to ‘0’. See Table 5-4  
for default conditions after a RESET instruction has  
occurred.  
5.3.1  
ENABLING LPBOR  
5.7  
Stack Overflow/Underflow Reset  
The LPBOR is controlled by the LPBOR bit of  
Configuration Word 2. When the device is erased, the  
LPBOR module defaults to disabled.  
The device can reset when the Stack Overflows or  
Underflows. The STKOVF or STKUNF bits of the PCON  
register indicate the Reset condition. These Resets are  
enabled by setting the STVREN bit in Configuration Word  
2. See Section 5.7 “Stack Overflow/Underflow Reset”  
for more information.  
5.3.1.1  
LPBOR Module Output  
The output of the LPBOR module is a signal indicating  
whether or not a Reset is to be asserted. This signal is  
to be OR’d together with the Reset signal of the BOR  
module to provide the generic BOR signal, which goes  
to the PCON register and to the power control block.  
5.8  
Programming Mode Exit  
Upon exit of Programming mode, the device will  
behave as if a POR had just occurred.  
5.4  
MCLR  
5.9  
Power-Up Timer  
The MCLR is an optional external input that can reset  
the device. The MCLR function is controlled by the  
MCLRE bit of Configuration Word 1 and the LVP bit of  
Configuration Word 2 (Table 5-2).  
The Power-up Timer optionally delays device execution  
after a BOR or POR event. This timer is typically used to  
allow VDD to stabilize before allowing the device to start  
running.  
TABLE 5-2:  
MCLRE  
MCLR CONFIGURATION  
The Power-up Timer is controlled by the PWRTE bit of  
Configuration Word 1.  
LVP  
MCLR  
0
1
x
0
0
1
Disabled  
Enabled  
Enabled  
5.10 Start-up Sequence  
Upon the release of a POR or BOR, the following must  
occur before the device will begin executing:  
1. Power-up Timer runs to completion (if enabled).  
5.4.1  
MCLR ENABLED  
2. Oscillator start-up timer runs to completion (if  
required for oscillator source).  
When MCLR is enabled and the pin is held low, the  
device is held in Reset. The MCLR pin is connected to  
VDD through an internal weak pull-up.  
3. MCLR must be released (if enabled).  
The total time-out will vary based on oscillator configu-  
ration and Power-up Timer configuration. See  
Section 6.0 “Oscillator Module” for more informa-  
tion.  
The device has a noise filter in the MCLR Reset path.  
The filter will detect and ignore small pulses.  
Note:  
A Reset does not drive the MCLR pin low.  
The Power-up Timer and oscillator start-up timer run  
independently of MCLR Reset. If MCLR is kept low  
long enough, the Power-up Timer and oscillator  
start-up timer will expire. Upon bringing MCLR high, the  
device will begin execution immediately (see  
Figure 5-3). This is useful for testing purposes or to  
synchronize more than one device operating in parallel.  
5.4.2  
MCLR DISABLED  
When MCLR is disabled, the pin functions as a general  
purpose input and the internal weak pull-up is under  
software control. See Section 11.5 “PORTE Regis-  
ters” for more information.  
DS40001569D-page 46  
2011-2016 Microchip Technology Inc.  
 
 
 
PIC16LF1904/6/7  
FIGURE 5-3:  
RESET START-UP SEQUENCE  
VDD  
Internal POR  
TPWRT  
Power-Up Timer  
MCLR  
TMCLR  
Internal RESET  
Oscillator Modes  
External Crystal  
TOST  
Oscillator Start-Up Timer  
Oscillator  
FOSC  
Internal Oscillator  
Oscillator  
FOSC  
External Clock (EC)  
CLKIN  
FOSC  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 47  
PIC16LF1904/6/7  
5.11 Determining the Cause of a Reset  
Upon any Reset, multiple bits in the STATUS and  
PCON registers are updated to indicate the cause of  
the Reset. Table 5-3 and Table 5-4 show the Reset  
conditions of these registers.  
TABLE 5-3:  
RESET STATUS BITS AND THEIR SIGNIFICANCE  
STKOVF STKUNF RWDT RMCLR  
RI  
POR  
BOR  
TO  
PD  
Condition  
Power-on Reset  
0
0
0
0
u
u
u
u
u
u
1
u
0
0
0
0
u
u
u
u
u
u
u
1
1
1
1
u
0
u
u
u
u
u
u
u
1
1
1
1
u
u
u
0
0
u
u
u
1
1
1
1
u
u
u
u
u
0
u
u
0
0
0
u
u
u
u
u
u
u
u
u
x
x
x
0
u
u
u
u
u
u
u
u
1
0
x
1
0
0
1
u
1
u
u
u
1
x
0
1
u
0
0
u
0
u
u
u
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up from Sleep  
Interrupt Wake-up from Sleep  
MCLR Reset during normal operation  
MCLR Reset during Sleep  
RESETInstruction Executed  
Stack Overflow Reset (STVREN = 1)  
Stack Underflow Reset (STVREN = 1)  
TABLE 5-4:  
RESET CONDITION FOR SPECIAL REGISTERS(2)  
Program  
STATUS  
Register  
PCON  
Register  
Condition  
Counter  
Power-on Reset  
0000h  
---1 1000  
---u uuuu  
00-1 110x  
uu-u 0uuu  
MCLR Reset during normal operation  
0000h  
MCLR Reset during Sleep  
WDT Reset  
0000h  
0000h  
---1 0uuu  
---0 uuuu  
---0 0uuu  
---1 1uuu  
---1 0uuu  
---u uuuu  
---u uuuu  
---u uuuu  
uu-u 0uuu  
uu-0 uuuu  
uu-u uuuu  
00-1 11u0  
uu-u uuuu  
uu-u u0uu  
1u-u uuuu  
u1-u uuuu  
WDT Wake-up from Sleep  
Brown-out Reset  
PC + 1  
0000h  
Interrupt Wake-up from Sleep  
RESETInstruction Executed  
Stack Overflow Reset (STVREN = 1)  
Stack Underflow Reset (STVREN = 1)  
PC + 1(1)  
0000h  
0000h  
0000h  
Legend: u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’.  
Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on  
the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.  
2: If a Status bit is not implemented, that bit will be read as ‘0’.  
DS40001569D-page 48  
2011-2016 Microchip Technology Inc.  
 
 
 
PIC16LF1904/6/7  
The PCON register bits are shown in Register 5-2.  
5.12 Power Control (PCON) Register  
The Power Control (PCON) register contains flag bits  
to differentiate between a:  
• Power-on Reset (POR)  
• Brown-out Reset (BOR)  
• Reset Instruction Reset (RI)  
• MCLR Reset (RMCLR)  
• Watchdog Timer Reset (RWDT)  
• Stack Underflow Reset (STKUNF)  
• Stack Overflow Reset (STKOVF)  
REGISTER 5-2:  
PCON: POWER CONTROL REGISTER  
R/W/HS-0/q R/W/HS-0/q  
U-0  
R/W/HC-1/q R/W/HC-1/q R/W/HC-1/q R/W/HC-q/u R/W/HC-q/u  
STKOVF  
bit 7  
STKUNF  
RWDT  
RMCLR  
RI  
POR  
BOR  
bit 0  
Legend:  
HC = Bit is cleared by hardware  
HS = Bit is set by hardware  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
-m/n = Value at POR and BOR/Value at all other Resets  
q = Value depends on condition  
bit 7  
bit 6  
STKOVF: Stack Overflow Flag bit  
1= A Stack Overflow occurred  
0= A Stack Overflow has not occurred or set to ‘0’ by firmware  
STKUNF: Stack Underflow Flag bit  
1= A Stack Underflow occurred  
0= A Stack Underflow has not occurred or set to ‘0’ by firmware  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
RWDT: Watchdog Timer Reset Flag bit  
1= A Watchdog Timer Reset has not occurred or set to ‘1’ by firmware  
0= A Watchdog Timer Reset has occurred (set to ‘0’ in hardware when a Watchdog Timer Reset)  
bit 3  
bit 2  
bit 1  
bit 0  
RMCLR: MCLR Reset Flag bit  
1= A MCLR Reset has not occurred or set to ‘1’ by firmware  
0= A MCLR Reset has occurred (set to ‘0’ in hardware when a MCLR Reset occurs)  
RI: RESETInstruction Flag bit  
1= A RESETinstruction has not been executed or set to ‘1’ by firmware  
0= A RESETinstruction has been executed (set to ‘0’ in hardware upon executing a RESETinstruction)  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset  
occurs)  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 49  
 
PIC16LF1904/6/7  
TABLE 5-5:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH RESETS  
Register  
on Page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BORCON SBOREN BORFS  
RWDT  
TO  
RMCLR  
PD  
RI  
Z
POR  
DC  
BORRDY  
BOR  
45  
49  
21  
75  
PCON  
STKOVF STKUNF  
STATUS  
WDTCON  
C
WDTPS<4:0>  
SWDTEN  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by Resets.  
DS40001569D-page 50  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
6.0  
6.1  
OSCILLATOR MODULE  
Overview  
The oscillator module has a wide variety of clock  
sources and selection features that allow it to be used  
in a wide range of applications while maximizing perfor-  
mance and minimizing power consumption. Figure 6-1  
illustrates a block diagram of the oscillator module.  
Clock sources can be supplied from external clock  
circuits. In addition, the system clock source can be  
supplied from one of two internal oscillators, with a  
choice of speeds selectable via software. Additional  
clock features include:  
• Selectable system clock source between external  
or internal sources via software.  
• Fast start-up oscillator allows internal circuits to  
power up and stabilize before switching to the 16  
MHz HFINTOSC  
The oscillator module can be configured in one of the  
following clock modes:  
1. ECL – External Clock Low-Power mode  
(0 MHz to 0.5 MHz)  
2. ECM – External Clock Medium-Power mode  
(0.5 MHz to 4 MHz)  
3. ECH – External Clock High-Power mode  
(4 MHz to 20 MHz)  
4. INTOSC – Internal oscillator (31 kHz to 16 MHz).  
Clock Source modes are selected by the FOSC<1:0>  
bits in the Configuration Word 1. The FOSC bits  
determine the type of oscillator that will be used when  
the device is first powered.  
The EC clock mode relies on an external logic level  
signal as the device clock source.  
The INTOSC internal oscillator block produces a low  
and high-frequency clock source, designated  
LFINTOSC and HFINTOSC (see Internal Oscillator  
Block, Figure 6-1). A wide selection of device clock  
frequencies may be derived from these two clock  
sources.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 51  
 
PIC16LF1904/6/7  
FIGURE 6-1:  
SIMPLIFIED PIC® MCU CLOCK SOURCE BLOCK DIAGRAM  
Low Power Mode  
Event Switch  
(SCS<1:0>)  
CLKIN  
EC  
2
CLKIN  
Primary Clock  
00  
01  
Secondary Oscillator  
T1CKI/  
T1OSO  
Secondary  
Oscillator  
(T1OSC)  
Secondary Clock  
T1OSI  
INTOSC  
1x  
Internal Oscillator  
IRCF<3:0>  
4
4
HF-16 MHz  
HF-8 MHz  
HF-4 MHz  
HF-2 MHz  
HF-1 MHz  
Start-up  
Control  
Logic  
1111  
1110  
1101  
1100  
1011  
/1  
/2  
/4  
/8  
/16  
16 MHz  
Primary Osc  
HF-500 kHz 1010/  
/32  
/64  
0111  
HF-250 kHz 1001/  
Start-Up Osc  
0110  
HF-125 kHz  
HF-62.5 kHz  
1000/  
0101  
/128  
/256  
0100  
HF-31.25 kHz 0011  
/512  
0010  
LF-31 kHz  
LF-INTOSC  
(31 kHz)  
0001  
0000  
DS40001569D-page 52  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
The Oscillator Start-up Timer (OST) is disabled when  
EC mode is selected. Therefore, there is no delay in  
operation after a Power-on Reset (POR) or wake-up  
from Sleep. Because the PIC® MCU design is fully  
static, stopping the external clock input will have the  
effect of halting the device while leaving all data intact.  
Upon restarting the external clock, the device will  
resume operation as if no time had elapsed.  
6.2  
Clock Source Types  
Clock sources can be classified as external or internal.  
External clock sources rely on external circuitry for the  
clock source to function. An example is: oscillator mod-  
ule (EC mode) circuit.  
Internal clock sources are contained internally within the  
oscillator module. The internal oscillator block has two  
internal oscillators that are used to generate the internal  
system clock sources: the 16 MHz High-Frequency  
Internal Oscillator and the 31 kHz Low-Frequency  
Internal Oscillator (LFINTOSC).  
FIGURE 6-2:  
EXTERNAL CLOCK (EC)  
MODE OPERATION  
The system clock can be selected between external or  
internal clock sources via the System Clock Select  
(SCS) bits in the OSCCON register. See Section 6.3  
“Clock Switching” for additional information.  
CLKIN  
Clock from  
Ext. System  
PIC® MCU  
CLKOUT  
(1)  
FOSC/4 or  
I/O  
6.2.1  
EXTERNAL CLOCK SOURCES  
An external clock source can be used as the device  
system clock by performing one of the following  
actions:  
Note 1: Output depends upon CLKOUTEN bit of the  
Configuration Word 1.  
• Program the FOSC<1:0> bits in the Configuration  
Word 1 to select an external clock source that will  
be used as the default system clock upon a  
device Reset.  
• Write the SCS<1:0> bits in the OSCCON register  
to switch the system clock source to:  
- Secondary oscillator during run-time, or  
- An external clock source determined by the  
value of the FOSC bits.  
See Section 6.3 “Clock Switching”for more informa-  
tion.  
6.2.1.1  
EC Mode  
The External Clock (EC) mode allows an externally  
generated logic level signal to be the system clock  
source. When operating in this mode, an external clock  
source is connected to the CLKIN input. CLKOUT is  
available for general purpose I/O or CLKOUT.  
Figure 6-2 shows the pin connections for EC mode.  
EC mode has three power modes to select from through  
Configuration Word 1:  
• High power, 4-20 MHz (FOSC = 11)  
• Medium power, 0.5-4 MHz (FOSC = 10)  
• Low power, 0-0.5 MHz (FOSC = 01)  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 53  
 
PIC16LF1904/6/7  
6.2.1.2  
Secondary Oscillator  
6.2.2  
INTERNAL CLOCK SOURCES  
The secondary oscillator is a separate crystal oscillator  
that is associated with the Timer1 peripheral. It is opti-  
mized for timekeeping operations with a 32.768 kHz  
crystal connected between the T1CKI/T1OSO and  
T1OSI device pins.  
The device may be configured to use the internal oscil-  
lator block as the system clock by performing one of the  
following actions:  
• Program the FOSC<1:0> bits in Configuration  
Word 1 to select the INTOSC clock source, which  
will be used as the default system clock upon a  
device Reset.  
The secondary oscillator can be used as an alternate  
system clock source and can be selected during  
run-time using clock switching. Refer to Section 6.3  
“Clock Switching” for more information.  
• Write the SCS<1:0> bits in the OSCCON register  
to switch the system clock source to the internal  
oscillator during run-time. See Section 6.3  
“Clock Switching”for more information.  
FIGURE 6-3:  
QUARTZ CRYSTAL  
OPERATION  
In INTOSC mode, CLKIN is available for general  
purpose I/O. CLKOUT is available for general purpose  
I/O or CLKOUT.  
(SECONDARY  
OSCILLATOR)  
The function of the CLKOUT pin is determined by the  
state of the CLKOUTEN bit in Configuration Word 1.  
PIC® MCU  
The internal oscillator block has two independent  
oscillators that provides the internal system clock  
source.  
T1CKI/T1OSO  
C1  
C2  
To Internal  
Logic  
1. The HFINTOSC (High-Frequency Internal  
Oscillator) is factory calibrated and operates at  
16 MHz.  
32.768 kHz  
Quartz  
Crystal  
2. The LFINTOSC (Low-Frequency Internal  
Oscillator) is uncalibrated and operates at  
31 kHz.  
T1OSI  
6.2.2.1  
HFINTOSC  
The High-Frequency Internal Oscillator (HFINTOSC) is  
a factory calibrated 16 MHz internal clock source.  
Note 1: Quartz  
crystal  
characteristics  
vary  
according to type, package and  
manufacturer. The user should consult the  
manufacturer data sheets for specifications  
and recommended application.  
The output of the HFINTOSC connects to a postscaler  
and multiplexer (see Figure 6-1). The frequency derived  
from the HFINTOSC can be selected via software using  
the IRCF<3:0> bits of the OSCCON register. See  
Section 6.2.2.4 “Internal Oscillator Clock Switch  
Timing” for more information.  
2: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
The HFINTOSC is enabled by:  
3: For oscillator design assistance, reference  
the following Microchip Applications Notes:  
• Configure the IRCF<3:0> bits of the OSCCON  
register for the desired HF frequency, and  
• AN826, “Crystal Oscillator Basics and  
Crystal Selection for rfPIC® and PIC®  
Devices” (DS00826)  
• AN849, “Basic PIC® Oscillator Design”  
• FOSC<1:0> = 11, or  
• Set the System Clock Source (SCS) bits of the  
OSCCON register to ‘1x’.  
(DS00849)  
• AN943, “Practical PIC® Oscillator  
Analysis and Design” (DS00943)  
The High-Frequency Internal Oscillator Ready bit  
(HFIOFR) of the OSCSTAT register indicates when the  
HFINTOSC is running and can be utilized.  
• AN949, “Making Your Oscillator Work”  
(DS00949)  
The High-Frequency Internal Oscillator Status Stable  
bit (HFIOFS) of the OSCSTAT register indicates when  
the HFINTOSC is running within 0.5% of its final value.  
• TB097, “Interfacing a Micro Crystal  
MS1V-T1K 32.768 kHz Tuning Fork  
Crystal to a PIC16F690/SS” (DS91097)  
• AN1288, “Design Practices for  
Low-Power External Oscillators”  
(DS01288)  
DS40001569D-page 54  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
6.2.2.2  
LFINTOSC  
The Low-Frequency Internal Oscillator (LFINTOSC) is  
an uncalibrated 31 kHz internal clock source.  
Note:  
Following any Reset, the IRCF<3:0> bits  
of the OSCCON register are set to ‘0111’  
and the frequency selection is set to  
500 kHz. The user can modify the IRCF  
bits to select a different frequency.  
The output of the LFINTOSC connects to a multiplexer  
(see Figure 6-1). Select 31 kHz, via software, using the  
IRCF<3:0> bits of the OSCCON register. See  
Section 6.2.2.4 “Internal Oscillator Clock Switch  
Timing” for more information. The LFINTOSC is also  
the frequency for the Power-up Timer (PWRT) and  
Watchdog Timer (WDT).  
The IRCF<3:0> bits of the OSCCON register allow  
duplicate selections for some frequencies. These dupli-  
cate choices can offer system design trade-offs. Lower  
power consumption can be obtained when changing  
oscillator sources for a given frequency. Faster transi-  
tion times can be obtained between frequency changes  
that use the same oscillator source.  
The LFINTOSC is enabled by selecting 31 kHz  
(IRCF<3:0> bits of the OSCCON register = 000) as the  
system clock source (SCS bits of the OSCCON  
register = 1x), or when any of the following are enabled:  
6.2.2.4  
Internal Oscillator Clock Switch  
Timing  
• Configure the IRCF<3:0> bits of the OSCCON  
register for the desired LF frequency, and  
When switching between the HFINTOSC and the  
LFINTOSC, the new oscillator may already be shut  
down to save power (see Figure 6-4). If this is the case,  
there is a delay after the IRCF<3:0> bits of the  
OSCCON register are modified before the frequency  
selection takes place. The OSCSTAT register will  
reflect the current active status of the HFINTOSC and  
LFINTOSC oscillators. The sequence of a frequency  
selection is as follows:  
• FOSC<1:0> = 01, or  
• Set the System Clock Source (SCS) bits of the  
OSCCON register to ‘1x’  
Peripherals that use the LFINTOSC are:  
• Power-up Timer (PWRT)  
• Watchdog Timer (WDT)  
The Low-Frequency Internal Oscillator Ready bit  
(LFIOFR) of the OSCSTAT register indicates when the  
LFINTOSC is running and can be utilized.  
1. IRCF<3:0> bits of the OSCCON register are  
modified.  
2. If the new clock is shut down, a clock start-up  
delay is started.  
6.2.2.3  
Internal Oscillator Frequency  
Selection  
3. Clock switch circuitry waits for a falling edge of  
the current clock.  
The system clock speed can be selected via software  
using the Internal Oscillator Frequency Select bits  
IRCF<3:0> of the OSCCON register.  
4. The current clock is held low and the clock  
switch circuitry waits for a rising edge in the new  
clock.  
The output of the 16 MHz HFINTOSC and 31 kHz  
LFINTOSC connects to a postscaler and multiplexer  
(see Figure 6-1). The Internal Oscillator Frequency  
Select bits IRCF<3:0> of the OSCCON register select  
the frequency output of the internal oscillators. One of  
the following frequencies can be selected via software:  
5. The new clock is now active.  
6. The OSCSTAT register is updated as required.  
7. Clock switch is complete.  
See Figure 6-4 for more details.  
• 16 MHz  
If the internal oscillator speed is switched between two  
clocks of the same source, there is no start-up delay  
before the new frequency is selected. Clock switching  
time delays are shown in Table 6-2.  
• 8 MHz  
• 4 MHz  
• 2 MHz  
• 1 MHz  
Start-up delay specifications are located in the  
oscillator tables of Section 22.0 “Electrical  
Specifications”.  
• 500 kHz (default after Reset)  
• 250 kHz  
• 125 kHz  
• 62.5 kHz  
• 31.25 kHz  
• 31 kHz (LFINTOSC)  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 55  
 
PIC16LF1904/6/7  
FIGURE 6-4:  
INTERNAL OSCILLATOR SWITCH TIMING  
HFINTOSC  
LFINTOSC (WDT disabled)  
HFINTOSC  
(1)  
Oscillator Delay  
2-cycle Sync  
Running  
LFINTOSC  
0  
0  
IRCF <3:0>  
System Clock  
HFINTOSC  
LFINTOSC (WDT enabled)  
HFINTOSC  
2-cycle Sync  
Running  
LFINTOSC  
IRCF <3:0>  
0  
0  
System Clock  
LFINTOSC  
HFINTOSC  
LFINTOSC turns off unless WDT is enabled  
Running  
LFINTOSC  
Oscillator Delay(1) 2-cycle Sync  
HFINTOSC  
IRCF <3:0>  
= 0  
0  
System Clock  
Note 1: See Table 6-1, “Oscillator Switching Delays” for more information.  
TABLE 6-1:  
OSCILLATOR SWITCHING DELAYS  
Switch To  
Switch From  
Oscillator Delay  
LFINTOSC  
1 cycle of each clock source  
2 s (approx.)  
HFINTOSC  
Any clock source  
ECH, ECM, ECL  
Secondary Oscillator  
2 cycles  
1024 Secondary Oscillator Cycles  
DS40001569D-page 56  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
6.3.3  
SECONDARY OSCILLATOR  
6.3  
Clock Switching  
The secondary oscillator is a separate crystal oscillator  
associated with the Timer1 peripheral. It is optimized  
for timekeeping operations with a 32.768 kHz crystal  
connected between the T1OSI and T1CKI/T1OSO  
device pins.  
The system clock source can be switched between  
external and internal clock sources via software using  
the System Clock Select (SCS) bits of the OSCCON  
register. The following clock sources can be selected  
using the SCS bits:  
The secondary oscillator is enabled using the  
T1OSCEN control bit in the T1CON register. See  
Section 17.0 “Timer1 Module with Gate Control” for  
more information about the Timer1 peripheral.  
• Default system oscillator determined by FOSC  
bits in Configuration Word 1  
• Secondary oscillator 32 kHz crystal  
• Internal Oscillator Block (INTOSC)  
6.3.4  
SECONDARY OSCILLATOR READY  
(T1OSCR) BIT  
6.3.1  
SYSTEM CLOCK SELECT (SCS)  
BITS  
The user must ensure that the secondary oscillator is  
ready to be used before it is selected as a system clock  
source. The Secondary Oscillator Ready (T1OSCR) bit  
of the OSCSTAT register indicates whether the  
secondary oscillator is ready to be used. After the  
T1OSCR bit is set, the SCS bits can be configured to  
select the secondary oscillator.  
The System Clock Select (SCS) bits of the OSCCON  
register selects the system clock source that is used for  
the CPU and peripherals.  
• When the SCS bits of the OSCCON register = 00,  
the system clock source is determined by value of  
the FOSC<1:0> bits in the Configuration Word 1.  
• When the SCS bits of the OSCCON register = 01,  
the system clock source is the secondary  
oscillator.  
• When the SCS bits of the OSCCON register = 1x,  
the system clock source is chosen by the internal  
oscillator frequency selected by the IRCF<3:0>  
bits of the OSCCON register. After a Reset, the  
SCS bits of the OSCCON register are always  
cleared.  
When switching between clock sources, a delay is  
required to allow the new clock to stabilize. These oscil-  
lator delays are shown in Table 6-2.  
6.3.2  
OSCILLATOR START-UP TIME-OUT  
STATUS (OSTS) BIT  
The Oscillator Start-up Time-out Status (OSTS) bit of  
the OSCSTAT register indicates whether the system  
clock is running from the external clock source, as  
defined by the FOSC<1:0> bits in the Configuration  
Word 1, or from the internal clock source. The OST  
does not reflect the status of the secondary oscillator.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 57  
PIC16LF1904/6/7  
6.4  
Oscillator Control Registers  
REGISTER 6-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
R/W-0/0 R/W-1/1 R/W-1/1 R/W-1/1  
IRCF<3:0>  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
SCS<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3  
IRCF<3:0>: Internal Oscillator Frequency Select bits  
000x= 31 kHz LF  
001x= 31.25 kHz  
0100= 62.5 kHz  
0101= 125 kHz  
0110= 250 kHz  
0111= 500 kHz (default upon Reset)  
1000= 125 kHz(1)  
1001= 250 kHz(1)  
1010= 500 kHz(1)  
1011= 1 MHz  
1100= 2 MHz  
1101= 4 MHz  
1110= 8 MHz  
1111= 16 MHz  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
SCS<1:0>: System Clock Select bits  
1x= Internal oscillator block  
01= Secondary oscillator  
00= Clock determined by FOSC<1:0> in Configuration Word 1.  
Note 1: Duplicate frequency derived from HFINTOSC.  
DS40001569D-page 58  
2011-2016 Microchip Technology Inc.  
 
 
PIC16LF1904/6/7  
REGISTER 6-2:  
OSCSTAT: OSCILLATOR STATUS REGISTER  
R-1/q  
T1OSCR  
bit 7  
U-0  
R-q/q  
R-0/q  
U-0  
U-0  
R-0/0  
R-0/q  
OSTS  
HFIOFR  
LFIOFR  
HFIOFS  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
-n/n = Value at POR and BOR/Value at all other Resets  
q = Conditional  
bit 7  
T1OSCR: Timer1 Oscillator Ready bit  
If T1OSCEN = 1:  
1= Timer1 oscillator is ready  
0= Timer1 oscillator is not ready  
If T1OSCEN = 0:  
1= Timer1 clock source is always ready  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
OSTS: Oscillator Start-up Time-out Status bit  
1= Running from the external clock source (EC)  
0= Running from an internal oscillator (FOSC<1:0> = 00)  
bit 4  
HFIOFR: High-Frequency Internal Oscillator Ready bit  
1= HFINTOSC is ready  
0= HFINTOSC is not ready  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
LFIOFR: Low-Frequency Internal Oscillator Ready bit  
1= LFINTOSC is ready  
0= LFINTOSC is not ready  
bit 0  
HFIOFS: High-Frequency Internal Oscillator Stable bit  
1= HFINTOSC 16 MHz oscillator is stable and is driving the INTOSC  
0= HFINTOSC 16 MHz oscillator is not stable, the start-up oscillator is driving INTOSC  
TABLE 6-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OSCCON  
OSCSTAT  
T1CON  
IRCF<3:0>  
SCS<1:0>  
58  
59  
T1OSCR  
OSTS  
HFIOFR  
LFIOFR  
HFIOFS  
TMR1CS<1:0>  
T1CKPS<1:0>  
T1OSCEN  
T1SYNC  
TMR1ON  
139  
Legend:  
— = unimplemented location, read as ‘0’. Shaded cells are not used by clock sources.  
TABLE 6-3:  
SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES  
Register  
on Page  
Name  
Bits  
Bit -/7  
Bit -/6  
Bit 13/5  
Bit 12/4  
Bit 11/3  
Bit 10/2  
Bit 9/1  
Bit 8/0  
CLKOUTEN  
BOREN<1:0>  
13:8  
7:0  
CONFIG1  
39  
CP  
MCLRE  
PWRTE  
WDTE<1:0>  
FOSC<1:0>  
Legend:  
— = unimplemented location, read as ‘0’. Shaded cells are not used by clock sources.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 59  
 
PIC16LF1904/6/7  
A block diagram of the interrupt logic is shown in  
Figure 7.1.  
7.0  
INTERRUPTS  
The interrupt feature allows certain events to preempt  
normal program flow. Firmware is used to determine  
the source of the interrupt and act accordingly. Some  
interrupts can be configured to wake the MCU from  
Sleep mode.  
This chapter contains the following information for  
Interrupts:  
• Operation  
• Interrupt Latency  
• Interrupts During Sleep  
• INT Pin  
• Automatic Context Saving  
Many peripherals produce Interrupts. Refer to the  
corresponding chapters for details.  
FIGURE 7-1:  
INTERRUPT LOGIC  
TMR0IF  
TMR0IE  
Wake-up  
(If in Sleep mode)  
INTF  
INTE  
Peripheral Interrupts  
(TMR1IF) PIR1<0>  
(TMR1IF) PIR1<0>  
IOCIF  
IOCIE  
Interrupt  
to CPU  
PEIE  
GIE  
PIRn<7>  
PIEn<7>  
DS40001569D-page 60  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
7.1  
Operation  
7.2  
Interrupt Latency  
Interrupts are disabled upon any device Reset. They  
are enabled by setting the following bits:  
Interrupt latency is defined as the time from when the  
interrupt event occurs to the time code execution at the  
interrupt vector begins. The latency for synchronous  
interrupts is three or four instruction cycles. For asyn-  
chronous interrupts, the latency is three to five instruc-  
tion cycles, depending on when the interrupt occurs.  
See Figure 7-2 and Figure 7.3 for more details.  
• GIE bit of the INTCON register  
• Interrupt Enable bit(s) for the specific interrupt  
event(s)  
• PEIE bit of the INTCON register (if the Interrupt  
Enable bit of the interrupt event is contained in the  
PIE1 and PIE2 registers)  
The INTCON, PIR1 and PIR2 registers record individ-  
ual interrupts via interrupt flag bits. Interrupt flag bits will  
be set, regardless of the status of the GIE, PEIE and  
individual interrupt enable bits.  
The following events happen when an interrupt event  
occurs while the GIE bit is set:  
• Current prefetched instruction is flushed  
• GIE bit is cleared  
• Current Program Counter (PC) is pushed onto the  
stack  
• Critical registers are automatically saved to the  
shadow registers (See Section 7.5 “Automatic  
Context Saving”)  
• PC is loaded with the interrupt vector 0004h  
The firmware within the Interrupt Service Routine (ISR)  
should determine the source of the interrupt by polling  
the interrupt flag bits. The interrupt flag bits must be  
cleared before exiting the ISR to avoid repeated  
interrupts. Because the GIE bit is cleared, any interrupt  
that occurs while executing the ISR will be recorded  
through its interrupt flag, but will not cause the  
processor to redirect to the interrupt vector.  
The RETFIE instruction exits the ISR by popping the  
previous address from the stack, restoring the saved  
context from the shadow registers and setting the GIE  
bit.  
For additional information on a specific interrupt’s  
operation, refer to its peripheral chapter.  
Note 1: Individual interrupt flag bits are set,  
regardless of the state of any other  
enable bits.  
2: All interrupts will be ignored while the GIE  
bit is cleared. Any interrupt occurring  
while the GIE bit is clear will be serviced  
when the GIE bit is set again.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 61  
PIC16LF1904/6/7  
FIGURE 7-2:  
INTERRUPT LATENCY  
CLKIN  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
CLKOUT  
Interrupt Sampled  
during Q1  
Interrupt  
GIE  
PC-1  
PC  
PC+1  
0004h  
0005h  
PC  
1 Cycle Instruction at PC  
Execute  
Inst(PC)  
NOP  
NOP  
Inst(0004h)  
Interrupt  
GIE  
PC+1/FSR  
ADDR  
New PC/  
PC+1  
PC-1  
PC  
0004h  
0005h  
PC  
Execute  
2 Cycle Instruction at PC  
Inst(PC)  
NOP  
NOP  
Inst(0004h)  
Interrupt  
GIE  
PC-1  
PC  
FSR ADDR  
INST(PC)  
PC+1  
PC+2  
0004h  
0005h  
PC  
Execute  
3 Cycle Instruction at PC  
NOP  
NOP  
NOP  
Inst(0004h)  
Inst(0005h)  
Interrupt  
GIE  
PC-1  
PC  
FSR ADDR  
INST(PC)  
PC+1  
PC+2  
0004h  
0005h  
PC  
NOP  
Execute  
3 Cycle Instruction at PC  
NOP  
NOP  
NOP  
Inst(0004h)  
DS40001569D-page 62  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
FIGURE 7-3:  
INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
CLKIN  
(3)  
CLKOUT  
(4)  
INT pin  
INTF  
(1)  
(1)  
(2)  
(5)  
Interrupt Latency  
GIE  
INSTRUCTION FLOW  
PC  
PC + 1  
0004h  
0005h  
PC  
Inst (PC)  
PC + 1  
Instruction  
Fetched  
Inst (PC + 1)  
Inst (0004h)  
Inst (0005h)  
Inst (0004h)  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC – 1)  
Note 1: INTF flag is sampled here (every Q1).  
2: Asynchronous interrupt latency = 3-5 TCY. Synchronous latency = 3-4 TCY, where TCY = instruction cycle time.  
Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.  
3: CLKOUT not available in all Oscillator modes.  
4: For minimum width of INT pulse, refer to AC specifications in Section 22.0 “Electrical Specifications”.  
5: INTF is enabled to be set any time during the Q4-Q1 cycles.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 63  
PIC16LF1904/6/7  
7.3  
Interrupts During Sleep  
Some interrupts can be used to wake from Sleep. To  
wake from Sleep, the peripheral must be able to  
operate without the system clock. The interrupt source  
must have the appropriate interrupt enable bit(s) set  
prior to entering Sleep.  
On waking from Sleep, if the GIE bit is also set, the  
processor will branch to the interrupt vector. Otherwise,  
the processor will continue executing instructions after  
the SLEEPinstruction. The instruction directly after the  
SLEEP instruction will always be executed before  
branching to the ISR. Refer to Section 8.0  
“Power-Down Mode (Sleep)” for more details.  
7.4  
INT Pin  
The INT pin can be used to generate an asynchronous  
edge-triggered interrupt. This interrupt is enabled by  
setting the INTE bit of the INTCON register. The  
INTEDG bit of the OPTION_REG register determines on  
which edge the interrupt will occur. When the INTEDG  
bit is set, the rising edge will cause the interrupt. When  
the INTEDG bit is clear, the falling edge will cause the  
interrupt. The INTF bit of the INTCON register will be set  
when a valid edge appears on the INT pin. If the GIE and  
INTE bits are also set, the processor will redirect  
program execution to the interrupt vector.  
7.5  
Automatic Context Saving  
Upon entering an interrupt, the return PC address is  
saved on the stack. Additionally, the following registers  
are automatically saved in the shadow registers:  
• W register  
• STATUS register (except for TO and PD)  
• BSR register  
• FSR registers  
• PCLATH register  
Upon exiting the Interrupt Service Routine, these regis-  
ters are automatically restored. Any modifications to  
these registers during the ISR will be lost. If modifica-  
tions to any of these registers are desired, the corre-  
sponding shadow register should be modified and the  
value will be restored when exiting the ISR. The  
shadow registers are available in Bank 31 and are  
readable and writable. Depending on the user’s appli-  
cation, other registers may also need to be saved.  
DS40001569D-page 64  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
7.6  
Interrupt Control Registers  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Enable bit, GIE of the INTCON register.  
User software should ensure the  
appropriate interrupt flag bits are clear  
prior to enabling an interrupt.  
7.6.1  
INTCON REGISTER  
The INTCON register is a readable and writable  
register, which contains the various enable and flag bits  
for TMR0 register overflow, interrupt-on-change and  
external INT pin interrupts.  
REGISTER 7-1:  
INTCON: INTERRUPT CONTROL REGISTER  
R/W-0/0  
GIE  
R/W-0/0  
PEIE  
R/W-0/0  
TMR0IE  
R/W-0/0  
INTE  
R/W-0/0  
IOCIE  
R/W-0/0  
TMR0IF  
R/W-0/0  
INTF  
R-0/0  
IOCIF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
GIE: Global Interrupt Enable bit  
1= Enables all active interrupts  
0= Disables all interrupts  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all active peripheral interrupts  
0= Disables all peripheral interrupts  
TMR0IE: Timer0 Overflow Interrupt Enable bit  
1= Enables the Timer0 interrupt  
0= Disables the Timer0 interrupt  
INTE: INT External Interrupt Enable bit  
1= Enables the INT external interrupt  
0= Disables the INT external interrupt  
IOCIE: Interrupt-on-Change Interrupt Enable bit  
1= Enables the interrupt-on-change interrupt  
0= Disables the interrupt-on-change interrupt  
TMR0IF: Timer0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed  
0= TMR0 register did not overflow  
INTF: INT External Interrupt Flag bit  
1= The INT external interrupt occurred  
0= The INT external interrupt did not occur  
IOCIF: Interrupt-on-Change Interrupt Flag bit  
1= When at least one of the interrupt-on-change pins changed state  
0= None of the interrupt-on-change pins have changed state  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 65  
 
 
 
PIC16LF1904/6/7  
7.6.2  
PIE1 REGISTER  
The PIE1 register contains the interrupt enable bits, as  
shown in Register 7-2.  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
REGISTER 7-2:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
R/W-0/0  
TMR1GIE  
bit 7  
R/W-0/0  
ADIE  
R/W-0/0  
RCIE  
R/W-0/0  
TXIE  
U-0  
U-0  
U-0  
R/W-0/0  
TMR1IE  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
bit 5  
bit 4  
TMR1GIE: Timer1 Gate Interrupt Enable bit  
1= Enables the Timer1 gate acquisition interrupt  
0= Disables the Timer1 gate acquisition interrupt  
ADIE: A/D Converter (ADC) Interrupt Enable bit  
1= Enables the ADC interrupt  
0= Disables the ADC interrupt  
RCIE: USART Receive Interrupt Enable bit  
1= Enables the USART receive interrupt  
0= Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1= Enables the USART transmit interrupt  
0= Disables the USART transmit interrupt  
bit 3-1  
bit 0  
Unimplemented: Read as ‘0’  
TMR1IE: Timer1 Overflow Interrupt Enable bit  
1= Enables the Timer1 overflow interrupt  
0= Disables the Timer1 overflow interrupt  
.
DS40001569D-page 66  
2011-2016 Microchip Technology Inc.  
 
 
 
 
PIC16LF1904/6/7  
7.6.3  
PIE2 REGISTER  
The PIE2 register contains the interrupt enable bits, as  
shown in Register 7-3.  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
REGISTER 7-3:  
PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0/0  
LCDIE  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-3  
bit 2  
Unimplemented: Read as ‘0’  
LCDIE: LCD Module Interrupt Enable bit  
1= Enables the LCD module interrupt  
0= Disables the LCD module interrupt  
bit 1-0  
Unimplemented: Read as ‘0’  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 67  
 
 
PIC16LF1904/6/7  
7.6.4  
PIR1 REGISTER  
The PIR1 register contains the interrupt flag bits, as  
shown in Register 7-4.  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Enable bit, GIE, of the INTCON register.  
User software should ensure the  
appropriate interrupt flag bits are clear prior  
to enabling an interrupt.  
REGISTER 7-4:  
PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1  
R/W-0/0  
TMR1GIF  
bit 7  
R/W-0/0  
ADIF  
R/W-0/0  
RCIF  
R/W-0/0  
TXIF  
U-0  
U-0  
U-0  
R/W-0/0  
TMR1IF  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
bit 6  
bit 5  
bit 4  
TMR1GIF: Timer1 Gate Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
ADIF: A/D Converter Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
RCIF: USART Receive Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
TXIF: USART Transmit Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
bit 3-1  
bit 0  
Unimplemented: Read as ‘0’  
TMR1IF: Timer1 Overflow Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
DS40001569D-page 68  
2011-2016 Microchip Technology Inc.  
 
 
 
PIC16LF1904/6/7  
7.6.5  
PIR2 REGISTER  
The PIR2 register contains the interrupt flag bits, as  
shown in Register 7-5.  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Enable bit, GIE, of the INTCON register.  
User software should ensure the  
appropriate interrupt flag bits are clear prior  
to enabling an interrupt.  
REGISTER 7-5:  
PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0/0  
LCDIF  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-3  
bit 2  
Unimplemented: Read as ‘0’  
LCDIF: LCD Module Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
bit 1-0  
Unimplemented: Read as ‘0’  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 69  
 
 
 
PIC16LF1904/6/7  
TABLE 7-1:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS  
Register  
on Page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE  
PEIE  
TMR0IE  
T0CS  
RCIE  
INTE  
T0SE  
TXIE  
IOCIE  
PSA  
TMR0IF  
INTF  
IOCIF  
65  
130  
66  
OPTION_REG WPUEN INTEDG  
PS<2:0>  
PIE1  
PIE2  
PIR1  
PIR2  
TMR1GIE  
ADIE  
TMR1IE  
LCDIE  
67  
TMR1GIF  
ADIF  
RCIF  
TXIF  
TMR1IF  
68  
LCDIF  
69  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by Interrupts.  
DS40001569D-page 70  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
8.1  
Wake-up from Sleep  
8.0  
POWER-DOWN MODE (SLEEP)  
The device can wake-up from Sleep through one of the  
following events:  
The Power-Down mode is entered by executing a  
SLEEPinstruction.  
1. External Reset input on MCLR pin, if enabled  
2. BOR Reset, if enabled  
Upon entering Sleep mode, the following conditions  
exist:  
3. POR Reset  
1. WDT will be cleared but keeps running, if  
enabled for operation during Sleep.  
4. Watchdog Timer, if enabled  
5. Any external interrupt  
2. PD bit of the STATUS register is cleared.  
3. TO bit of the STATUS register is set.  
4. CPU clock is disabled.  
6. Interrupts by peripherals capable of running  
during Sleep (see individual peripheral for more  
information)  
5. 31 kHz LFINTOSC is unaffected and peripherals  
that operate from it may continue operation in  
Sleep.  
The first three events will cause a device Reset. The  
last three events are considered a continuation of pro-  
gram execution. To determine whether a device Reset  
or wake-up event occurred, refer to Section 5.11,  
Determining the Cause of a Reset.  
6. Secondary oscillator is unaffected and peripher-  
als that operate from it may continue operation  
in Sleep.  
7. ADC is unaffected, if the dedicated FRC clock is  
selected.  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is prefetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be enabled. Wake-up will  
occur regardless of the state of the GIE bit. If the GIE  
bit is disabled, the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
enabled, the device executes the instruction after the  
SLEEPinstruction, the device will call the Interrupt Ser-  
vice Routine. In cases where the execution of the  
instruction following SLEEP is not desirable, the user  
should have a NOPafter the SLEEPinstruction.  
8. Capacitive Sensing oscillator is unaffected.  
9. I/O ports maintain the status they had before  
SLEEP was executed (driving high, low or  
high-impedance).  
10. Resets other than WDT are not affected by  
Sleep mode.  
Refer to individual chapters for more details on  
peripheral operation during Sleep.  
To minimize current consumption, the following condi-  
tions should be considered:  
The WDT is cleared when the device wakes up from  
Sleep, regardless of the source of wake-up.  
• I/O pins should not be floating  
• External circuitry sinking current from I/O pins  
• Internal circuitry sourcing current from I/O pins  
• Current draw from pins with internal weak pull-ups  
• Modules using 31 kHz LFINTOSC  
• Modules using Secondary oscillator  
I/O pins that are high-impedance inputs should be  
pulled to VDD or VSS externally to avoid switching cur-  
rents caused by floating inputs.  
Examples of internal circuitry that might be sourcing  
current include the FVR module. See 13.0 “Fixed Volt-  
age Reference (FVR)” for more information.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 71  
PIC16LF1904/6/7  
• If the interrupt occurs during or after the execu-  
tion of a SLEEPinstruction  
8.1.1  
WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
- SLEEPinstruction will be completely  
executed  
- Device will immediately wake-up from Sleep  
- WDT and WDT prescaler will be cleared  
- TO bit of the STATUS register will be set  
- PD bit of the STATUS register will be cleared.  
• If the interrupt occurs before the execution of a  
SLEEPinstruction  
- SLEEPinstruction will execute as a NOP.  
- WDT and WDT prescaler will not be cleared  
- TO bit of the STATUS register will not be set  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
- PD bit of the STATUS register will not be  
cleared.  
FIGURE 8-1:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
CLKIN(1)  
CLKOUT(2)  
Interrupt Latency(1)  
Interrupt flag  
GIE bit  
(INTCON reg.)  
Processor in  
Sleep  
Instruction Flow  
PC  
PC  
PC + 1  
PC + 2  
PC + 2  
PC + 2  
0004h  
0005h  
Instruction  
Fetched  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = Sleep  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Sleep  
Inst(PC + 1)  
Inst(PC - 1)  
Inst(0004h)  
Note 1:  
GIE = 1assumed. In this case after wake-up, the processor calls the ISR at 0004h. If GIE = 0, execution will continue in-line.  
TABLE 8-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE  
Register on  
Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
IOCBF  
IOCBN  
IOCBP  
PIE1  
GIE  
PEIE  
IOCBF6  
IOCBN6  
IOCBP6  
ADIE  
TMR0IE  
IOCBF5  
IOCBN5  
IOCBP5  
RCIE  
INTE  
IOCBF4  
IOCBN4  
IOCBP4  
TXIE  
IOCIE  
TMR0IF  
IOCBF2  
IOCBN2  
IOCBP2  
INTF  
IOCBF1  
IOCBN1  
IOCBP1  
IOCIF  
IOCBF0  
IOCBN0  
IOCBP0  
TMR1IE  
65  
110  
110  
110  
66  
IOCBF7  
IOCBN7  
IOCBP7  
TMR1GIE  
IOCBF3  
IOCBN3  
IOCBP3  
PIE2  
LCDIE  
67  
TMR1GIF  
ADIF  
TMR1IF  
PIR1  
RCIF  
TXIF  
68  
PIR2  
PD  
LCDIF  
Z
C
69  
STATUS  
WDTCON  
TO  
DC  
21  
WDTPS<4:0>  
SWDTEN  
75  
Legend:  
— = unimplemented location, read as ‘0’. Shaded cells are not used in Power-down mode.  
DS40001569D-page 72  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
9.0  
WATCHDOG TIMER  
The Watchdog Timer is a system timer that generates  
a Reset if the firmware does not issue a CLRWDT  
instruction within the time-out period. The Watchdog  
Timer is typically used to recover the system from  
unexpected events.  
The WDT has the following features:  
• Independent clock source  
• Multiple operating modes  
- WDT is always on  
- WDT is off when in Sleep  
- WDT is controlled by software  
- WDT is always off  
• Configurable time-out period is from 1 ms to 256  
seconds (typical)  
• Multiple Reset conditions  
• Operation during Sleep  
FIGURE 9-1:  
WATCHDOG TIMER BLOCK DIAGRAM  
WDTE<1:0> = 01  
SWDTEN  
23-bit Programmable  
WDT Time-out  
WDTE<1:0> = 11  
LFINTOSC  
Prescaler WDT  
WDTE<1:0> = 10  
Sleep  
WDTPS<4:0>  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 73  
PIC16LF1904/6/7  
9.1  
Independent Clock Source  
9.3  
Time-Out Period  
The WDT derives its time base from the 31 kHz  
LFINTOSC internal oscillator. Time intervals in this  
chapter are based on a nominal interval of 1ms. See  
Section 22.0 “Electrical Specifications” for the  
LFINTOSC tolerances.  
The WDTPS bits of the WDTCON register set the  
time-out period from 1 ms to 256 seconds (nominal).  
After a Reset, the default time-out period is two  
seconds.  
9.4  
Clearing the WDT  
9.2  
WDT Operating Modes  
The WDT is cleared when any of the following condi-  
tions occur:  
The Watchdog Timer module has four operating modes  
controlled by the WDTE<1:0> bits in Configuration  
Word 1. See Table 9-1.  
• Any Reset  
CLRWDTinstruction is executed  
• Device enters Sleep  
9.2.1  
WDT IS ALWAYS ON  
• Device wakes up from Sleep  
• Oscillator fail event  
When the WDTE bits of Configuration Word 1 are set to  
11’, the WDT is always on.  
• WDT is disabled  
WDT protection is active during Sleep.  
• Oscillator Start-up TImer (OST) is running  
9.2.2  
WDT IS OFF IN SLEEP  
See Table 9-2 for more information.  
When the WDTE bits of Configuration Word 1 are set to  
10’, the WDT is on, except in Sleep.  
9.5  
Operation During Sleep  
WDT protection is not active during Sleep.  
When the device enters Sleep, the WDT is cleared. If  
the WDT is enabled during Sleep, the WDT resumes  
counting.  
9.2.3  
WDT CONTROLLED BY SOFTWARE  
When the WDTE bits of Configuration Word 1 are set to  
01’, the WDT is controlled by the SWDTEN bit of the  
WDTCON register.  
When the device exits Sleep, the WDT is cleared  
again. The WDT remains clear until the OST, if  
enabled, completes. See Section 6.0 “Oscillator  
Module” for more information on the OST.  
WDT protection is unchanged by Sleep. See Table 9-1  
for more details.  
When a WDT time-out occurs while the device is in  
Sleep, no Reset is generated. Instead, the device  
wakes up and resumes operation. The TO and PD bits  
in the STATUS register are changed to indicate the  
event. See Section 3.0 “Memory Organization” and  
STATUS register (Register 3-1) for more information.  
TABLE 9-1:  
WDTE<1:0>  
WDT OPERATING MODES  
Device  
Mode  
WDT  
Mode  
SWDTEN  
11  
10  
X
X
X
Active  
Active  
Awake  
Sleep Disabled  
1
0
X
Active  
X
01  
Disabled  
00  
X
Disabled  
TABLE 9-2:  
WDT CLEARING CONDITIONS  
Conditions  
WDT  
WDTE<1:0> = 00  
WDTE<1:0> = 01 and SWDTEN = 0  
WDTE<1:0> = 10 and enter Sleep  
CLRWDTCommand  
Cleared  
Oscillator Fail Detected  
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK  
Change INTOSC divider (IRCF bits)  
Unaffected  
DS40001569D-page 74  
2011-2016 Microchip Technology Inc.  
 
 
PIC16LF1904/6/7  
9.6  
Watchdog Control Register  
REGISTER 9-1:  
WDTCON: WATCHDOG TIMER CONTROL REGISTER  
U-0  
U-0  
R/W-0/0  
R/W-1/1  
R/W-0/0  
R/W-1/1  
R/W-1/1  
R/W-0/0  
WDTPS<4:0>  
SWDTEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-m/n = Value at POR and BOR/Value at all other Resets  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-6  
bit 5-1  
Unimplemented: Read as ‘0’  
WDTPS<4:0>: Watchdog Timer Period Select bits(1)  
Bit Value = Prescale Rate  
00000 = 1:32 (Interval 1 ms nominal)  
00001 = 1:64 (Interval 2 ms nominal)  
00010 = 1:128 (Interval 4 ms nominal)  
00011 = 1:256 (Interval 8 ms nominal)  
00100 = 1:512 (Interval 16 ms nominal)  
00101 = 1:1024 (Interval 32 ms nominal)  
00110 = 1:2048 (Interval 64 ms nominal)  
00111 = 1:4096 (Interval 128 ms nominal)  
01000 = 1:8192 (Interval 256 ms nominal)  
01001 = 1:16384 (Interval 512 ms nominal)  
01010 = 1:32768 (Interval 1s nominal)  
01011 = 1:65536 (Interval 2s nominal) (Reset value)  
01100 = 1:131072 (217) (Interval 4s nominal)  
01101 = 1:262144 (218) (Interval 8s nominal)  
01110 = 1:524288 (219) (Interval 16s nominal)  
01111 = 1:1048576 (220) (Interval 32s nominal)  
10000 = 1:2097152 (221) (Interval 64s nominal)  
10001 = 1:4194304 (222) (Interval 128s nominal)  
10010 = 1:8388608 (223) (Interval 256s nominal)  
10011 = Reserved. Results in minimum interval (1:32)  
11111 = Reserved. Results in minimum interval (1:32)  
bit 0  
SWDTEN: Software Enable/Disable for Watchdog Timer bit  
If WDTE<1:0> = 00:  
This bit is ignored.  
If WDTE<1:0> = 01:  
1= WDT is turned on  
0= WDT is turned off  
If WDTE<1:0> = 1x:  
This bit is ignored.  
Note 1: Times are approximate. WDT time is based on 31 kHz LFINTOSC.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 75  
 
PIC16LF1904/6/7  
TABLE 9-3:  
SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OSCCON  
STATUS  
IRCF<3:0>  
Z
SCS<1:0>  
DC  
58  
21  
75  
TO  
PD  
C
WDTCON  
WDTPS<4:0>  
SWDTEN  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by Watchdog Timer.  
TABLE 9-4:  
SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER  
Register  
on Page  
Name  
Bits  
Bit -/7  
Bit -/6  
Bit 13/5  
Bit 12/4  
Bit 11/3  
Bit 10/2  
Bit 9/1  
Bit 8/0  
13:8  
7:0  
CLKOUTEN  
BOREN<1:0>  
CONFIG1  
39  
CP  
MCLRE  
PWRTE  
WDTE<1:0>  
FOSC<1:0>  
Legend:  
— = unimplemented location, read as ‘0’. Shaded cells are not used by Watchdog Timer.  
DS40001569D-page 76  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
10.1.1  
PMCON1 AND PMCON2  
REGISTERS  
10.0 FLASH PROGRAM MEMORY  
CONTROL  
PMCON1 is the control register for Flash Program  
Memory accesses.  
The Flash Program Memory is readable and writable  
during normal operation over the full VDD range.  
Program memory is indirectly addressed using Special  
Function Registers (SFRs). The SFRs used to access  
program memory are:  
Control bits RD and WR initiate read and write,  
respectively. These bits cannot be cleared, only set, in  
software. They are cleared by hardware at completion  
of the read or write operation. The inability to clear the  
WR bit in software prevents the accidental, premature  
termination of a write operation.  
• PMCON1  
• PMCON2  
• PMDATL  
• PMDATH  
• PMADRL  
• PMADRH  
The WREN bit, when set, will allow a write operation to  
occur. On power-up, the WREN bit is clear. The  
WRERR bit is set when a write operation is interrupted  
by a Reset during normal operation. In these situations,  
following Reset, the user can check the WRERR bit  
and execute the appropriate error handling routine.  
When accessing the program memory, the  
PMDATH:PMDATL register pair forms a 2-byte word  
that holds the 14-bit data for read/write, and the  
PMADRH:PMADRL register pair forms a 2-byte word  
that holds the 15-bit address of the program memory  
location being read.  
The PMCON2 register is a write-only register. Attempting  
to read the PMCON2 register will return all ‘0’s.  
To enable writes to the program memory, a specific  
pattern (the unlock sequence), must be written to the  
PMCON2 register. The required unlock sequence  
prevents inadvertent writes to the program memory  
write latches and Flash Program Memory.  
The write time is controlled by an on-chip timer. The  
write/erase voltages are generated by an on-chip charge  
pump rated to operate over the operating voltage range  
of the device.  
10.2 Flash Program Memory Overview  
The Flash Program Memory can be protected in two  
ways; by code protection (CP bit in Configuration Word 1)  
and write protection (WRT<1:0> bits in Configuration  
Word 2).  
Code protection (CP = 0)(1), disables access, reading  
and writing, to the Flash Program Memory via external  
device programmers. Code protection does not affect  
the self-write and erase functionality. Code protection  
can only be reset by a device programmer performing  
a Bulk Erase to the device, clearing all Flash Program  
Memory, Configuration bits and User IDs.  
It is important to understand the Flash Program Memory  
structure for erase and programming operations. Flash  
Program Memory is arranged in rows. A row consists of  
a fixed number of 14-bit program memory words. A row  
is the minimum size that can be erased by user software.  
After a row has been erased, the user can reprogram  
all or a portion of this row. Data to be written into the  
program memory row is written to 14-bit wide data write  
latches. These write latches are not directly accessible  
to the user, but may be loaded via sequential writes to  
the PMDATH:PMDATL register pair.  
Write protection prohibits self-write and erase to a  
portion or all of the Flash Program Memory as defined  
by the bits WRT<1:0>. Write protection does not affect  
a device programmers ability to read, write or erase the  
device.  
Note:  
If the user wants to modify only a portion  
of a previously programmed row, then the  
contents of the entire row must be read  
and saved in RAM prior to the erase.  
Then, new data and retained data can be  
written into the write latches to reprogram  
the row of Flash Program Memory. How-  
ever, any unprogrammed locations can be  
written without first erasing the row. In this  
case, it is not necessary to save and  
rewrite the other previously programmed  
locations.  
Note 1: Code protection of the entire Flash  
Program Memory array is enabled by  
clearing the CP bit of Configuration Word 1.  
10.1 PMADRL and PMADRH Registers  
The PMADRH:PMADRL register pair can address up  
to a maximum of 32K words of program memory. When  
selecting a program address value, the MSB of the  
address is written to the PMADRH register and the LSB  
is written to the PMADRL register.  
See Table 10-1 for Erase Row size and the number of  
write latches for Flash program memory.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 77  
PIC16LF1904/6/7  
FIGURE 10-1:  
FLASH PROGRAM  
MEMORY READ  
FLOWCHART  
TABLE 10-1: FLASH MEMORY  
ORGANIZATION BY DEVICE  
Write  
Latches  
(words)  
Row Erase  
(words)  
Device  
Start  
Read Operation  
PIC16LF1904/6/7  
32  
32  
Select  
10.2.1  
READING THE FLASH PROGRAM  
MEMORY  
Program or Configuration Memory  
(CFGS)  
To read a program memory location, the user must:  
1. Write the desired address to the  
PMADRH:PMADRL register pair.  
2. Clear the CFGS bit of the PMCON1 register.  
Select  
Word Address  
(PMADRH:PMADRL)  
3. Then, set control bit RD of the PMCON1 register.  
Once the read control bit is set, the program memory  
Flash controller will use the second instruction cycle to  
read the data. This causes the second instruction  
immediately following the “BSF PMCON1,RD” instruction  
to be ignored. The data is available in the very next cycle,  
in the PMDATH:PMDATL register pair; therefore, it can  
be read as two bytes in the following instructions.  
Initiate Read operation  
(RD = 1)  
Instruction Fetched ignored  
NOPexecution forced  
PMDATH:PMDATL register pair will hold this value until  
another read or until it is written to by the user.  
Instruction Fetched ignored  
Note:  
The two instructions following a program  
memory read are required to be NOPs.  
This prevents the user from executing a  
2-cycle instruction on the next instruction  
after the RD bit is set.  
NOPexecution forced  
Data read now in  
PMDATH:PMDATL  
End  
Read Operation  
DS40001569D-page 78  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
FIGURE 10-2:  
FLASH PROGRAM MEMORY READ CYCLE EXECUTION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
PC + 1  
PMADRH,PMADRL  
PC + 3  
PC + 4  
PC + 5  
Flash ADDR  
Flash Data  
INSTR (PC)  
INSTR (PC + 1)  
PMDATH,PMDATL  
INSTR (PC + 3)  
INSTR (PC + 4)  
INSTR(PC + 1)  
INSTR(PC + 2)  
instruction ignored instruction ignored  
BSF PMCON1,RD  
executed here  
INSTR(PC - 1)  
executed here  
INSTR(PC + 3)  
executed here  
INSTR(PC + 4)  
executed here  
Forced NOP  
Forced NOP  
executed here  
executed here  
RD bit  
PMDATH  
PMDATL  
Register  
EXAMPLE 10-1:  
FLASH PROGRAM MEMORY READ  
* This code block will read 1 word of program  
* memory at the memory address:  
PROG_ADDR_HI : PROG_ADDR_LO  
*
*
data will be returned in the variables;  
PROG_DATA_HI, PROG_DATA_LO  
BANKSEL PMADRL  
; Select Bank for PMCON registers  
MOVLW  
MOVWF  
MOVLW  
MOVWL  
PROG_ADDR_LO  
PMADRL  
PROG_ADDR_HI  
PMADRH  
;
; Store LSB of address  
;
; Store MSB of address  
BCF  
BSF  
NOP  
NOP  
PMCON1,CFGS  
PMCON1,RD  
; Do not select Configuration Space  
; Initiate read  
; Ignored (Figure 10-1)  
; Ignored (Figure 10-1)  
MOVF  
PMDATL,W  
; Get LSB of word  
MOVWF  
MOVF  
PROG_DATA_LO  
PMDATH,W  
; Store in user location  
; Get MSB of word  
MOVWF  
PROG_DATA_HI  
; Store in user location  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 79  
 
PIC16LF1904/6/7  
10.2.2  
FLASH MEMORY UNLOCK  
SEQUENCE  
FIGURE 10-3:  
FLASH PROGRAM  
MEMORY UNLOCK  
SEQUENCE FLOWCHART  
The unlock sequence is a mechanism that protects the  
Flash Program Memory from unintended self-write pro-  
gramming or erasing. The sequence must be executed  
and completed without interruption to successfully  
complete any of the following operations:  
Start  
Unlock Sequence  
• Row Erase  
• Load program memory write latches  
Write 055h to  
PMCON2  
• Write of program memory write latches to  
program memory  
• Write of program memory write latches to User  
IDs  
Write 0AAh to  
PMCON2  
The unlock sequence consists of the following steps:  
1. Write 55h to PMCON2  
Initiate  
Write or Erase operation  
(WR = 1)  
2. Write AAh to PMCON2  
3. Set the WR bit in PMCON1  
4. NOPinstruction  
5. NOPinstruction  
Instruction Fetched ignored  
NOP execution forced  
Once the WR bit is set, the processor will always force  
two NOP instructions. When an Erase Row or Program  
Row operation is being performed, the processor will stall  
internal operations (typical 2 ms), until the operation is  
complete and then resume with the next instruction.  
When the operation is loading the program memory write  
latches, the processor will always force the two NOP  
instructions and continue uninterrupted with the next  
instruction.  
Instruction Fetched ignored  
NOP execution forced  
End  
Unlock Sequence  
Since the unlock sequence must not be interrupted,  
global interrupts should be disabled prior to the unlock  
sequence and re-enabled after the unlock sequence is  
completed.  
DS40001569D-page 80  
2011-2016 Microchip Technology Inc.  
 
 
PIC16LF1904/6/7  
10.2.3  
ERASING FLASH PROGRAM  
MEMORY  
FIGURE 10-4:  
FLASH PROGRAM  
MEMORY ERASE  
FLOWCHART  
While executing code, program memory can only be  
erased by rows. To erase a row:  
1. Load the PMADRH:PMADRL register pair with  
any address within the row to be erased.  
Start  
Erase Operation  
2. Clear the CFGS bit of the PMCON1 register.  
3. Set the FREE and WREN bits of the PMCON1  
register.  
Disable Interrupts  
(GIE = 0)  
4. Write 55h, then AAh, to PMCON2 (Flash  
programming unlock sequence).  
5. Set control bit WR of the PMCON1 register to  
begin the erase operation.  
Select  
Program or Configuration Memory  
(CFGS)  
See Example 10-2.  
After the “BSF PMCON1,WR” instruction, the processor  
requires two cycles to set up the erase operation. The  
user must place two NOPinstructions after the WR bit is  
set. The processor will halt internal operations for the  
typical 2 ms erase time. This is not Sleep mode as the  
clocks and peripherals will continue to run. After the  
erase cycle, the processor will resume operation with  
the third instruction after the PMCON1 write instruction.  
Select Row Address  
(PMADRH:PMADRL)  
Select Erase Operation  
(FREE = 1)  
Enable Write/Erase Operation  
(WREN = 1)  
Unlock Sequence  
Figure 10-3  
CPU stalls while  
Erase operation completes  
(2 ms typical)  
Disable Write/Erase Operation  
(WREN = 0)  
Re-enable Interrupts  
(GIE = 1)  
End  
Erase Operation  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 81  
 
PIC16LF1904/6/7  
EXAMPLE 10-2:  
ERASING ONE ROW OF PROGRAM MEMORY  
; This row erase routine assumes the following:  
; 1. A valid address within the erase row is loaded in ADDRH:ADDRL  
; 2. ADDRH and ADDRL are located in shared data memory 0x70 - 0x7F (common RAM)  
BCF  
INTCON,GIE  
PMADRL  
ADDRL,W  
PMADRL  
ADDRH,W  
; Disable ints so required sequences will execute properly  
; Load lower 8 bits of erase address boundary  
; Load upper 6 bits of erase address boundary  
BANKSEL  
MOVF  
MOVWF  
MOVF  
MOVWF  
BCF  
PMADRH  
PMCON1,CFGS  
PMCON1,FREE  
PMCON1,WREN  
; Not configuration space  
; Specify an erase operation  
; Enable writes  
BSF  
BSF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
55h  
PMCON2  
0AAh  
PMCON2  
PMCON1,WR  
; Start of required sequence to initiate erase  
; Write 55h  
;
; Write AAh  
; Set WR bit to begin erase  
NOP  
NOP  
; NOP instructions are forced as processor starts  
; row erase of program memory.  
;
; The processor stalls until the erase process is complete  
; after erase processor continues with 3rd instruction  
BCF  
BSF  
PMCON1,WREN  
INTCON,GIE  
; Disable writes  
; Enable interrupts  
DS40001569D-page 82  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
The following steps should be completed to load the  
write latches and program a row of program memory.  
These steps are divided into two parts. First, each write  
latch is loaded with data from the PMDATH:PMDATL  
using the unlock sequence with LWLO = 1. When the  
last word to be loaded into the write latch is ready, the  
LWLO bit is cleared and the unlock sequence  
executed. This initiates the programming operation,  
writing all the latches into Flash Program Memory.  
10.2.4  
WRITING TO FLASH PROGRAM  
MEMORY  
Program memory is programmed using the following  
steps:  
1. Load the address in PMADRH:PMADRL of the  
row to be programmed.  
2. Load each write latch with data.  
3. Initiate a programming operation.  
4. Repeat steps 1 through 3 until all data is written.  
Note:  
The special unlock sequence is required  
to load a write latch with data or initiate a  
Flash programming operation. If the  
unlock sequence is interrupted, writing to  
the latches or program memory will not be  
initiated.  
Before writing to program memory, the word(s) to be  
written must be erased or previously unwritten. Pro-  
gram memory can only be erased one row at a time. No  
automatic erase occurs upon the initiation of the write.  
Program memory can be written one or more words at  
a time. The maximum number of words written at one  
time is equal to the number of write latches. See  
Figure 10-2 (row writes to program memory with 32  
write latches) for more details.  
1. Set the WREN bit of the PMCON1 register.  
2. Clear the CFGS bit of the PMCON1 register.  
3. Set the LWLO bit of the PMCON1 register.  
When the LWLO bit of the PMCON1 register is  
1’, the write sequence will only load the write  
latches and will not initiate the write to Flash  
Program Memory.  
The write latches are aligned to the Flash row address  
boundary defined by the upper ten bits of  
PMADRH:PMADRL, (PMADRH<6:0>:PMADRL<7:5>)  
with the lower five bits of PMADRL, (PMADRL<4:0>)  
determining the write latch being loaded. Write opera-  
tions do not cross these boundaries. At the completion  
of a program memory write operation, the data in the  
write latches is reset to contain 0x3FFF.  
4. Load the PMADRH:PMADRL register pair with  
the address of the location to be written.  
5. Load the PMDATH:PMDATL register pair with  
the program memory data to be written.  
6. Execute the unlock sequence (Section 10.2.2  
“Flash Memory Unlock Sequence”). The write  
latch is now loaded.  
7. Increment the PMADRH:PMADRL register pair  
to point to the next location.  
8. Repeat steps 5 through 7 until all but the last  
write latch has been loaded.  
9. Clear the LWLO bit of the PMCON1 register.  
When the LWLO bit of the PMCON1 register is  
0’, the write sequence will initiate the write to  
Flash Program Memory.  
10. Load the PMDATH:PMDATL register pair with  
the program memory data to be written.  
11. Execute the unlock sequence (Section 10.2.2  
“Flash Memory Unlock Sequence”). The  
entire program memory latch content is now  
written to Flash Program Memory.  
Note:  
The program memory write latches are  
reset to the blank state (0x3FFF) at the  
completion of every write or erase  
operation. As a result, it is not necessary  
to load all the program memory write  
latches. Unloaded latches will remain in  
the blank state.  
An example of the complete write sequence is shown in  
Example 10-3. The initial address is loaded into the  
PMADRH:PMADRL register pair; the data is loaded  
using indirect addressing.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 83  
FIGURE 10-5:  
BLOCK WRITES TO FLASH PROGRAM MEMORY WITH 32 WRITE LATCHES  
7
6
0 7  
5 4  
0
7
5
0
7
0
-
-
PMADRH  
PMADRL  
PMDATH  
6
PMDATL  
8
-
r9 r8 r7 r6 r5 r4 r3 r2 r1 r0 c4 c3 c2 c1 c0  
14  
Program Memory Write Latches  
10  
5
14  
14  
14  
14  
Write Latch #0  
00h  
Write Latch #1  
01h  
Write Latch #30 Write Latch #31  
1Eh 1Fh  
PMADRL<4:0>  
14  
14  
14  
14  
Row  
000h  
001h  
002h  
Addr  
Addr  
Addr  
Addr  
0000h  
0020h  
0040h  
0001h  
0021h  
0041h  
001Eh  
003Eh  
005Eh  
001Fh  
003Fh  
005Fh  
CFGS = 0  
3FEh  
3FFh  
7FC0h  
7FE0h  
7FC1h  
7FE1h  
7FDEh  
7FFEh  
7FDFh  
7FFFh  
Row  
Address  
Decode  
PMADRH<6:0>  
:PMADRL<7:5>  
Flash Program Memory  
400h  
8000h - 8003h  
USER ID 0 - 3  
8004h - 8005h  
reserved  
8006h  
8007h - 8008h  
8009h - 801Fh  
reserved  
DEVICEID  
REVID  
Configuration  
Words  
CFGS = 1  
Configuration Memory  
 
PIC16LF1904/6/7  
FIGURE 10-6:  
FLASH PROGRAM MEMORY WRITE FLOWCHART  
Start  
Write Operation  
Determine number of words  
to be written into Program or  
Configuration Memory.  
The number of words cannot  
exceed the number of words  
per row.  
Enable Write/Erase  
Operation (WREN = 1)  
Load the value to write  
(PMDATH:PMDATL)  
(word_cnt)  
Update the word counter  
(word_cnt--)  
Write Latches to Flash  
Disable Interrupts  
(LWLO = 0)  
(GIE = 0)  
Unlock Sequence  
Figure 10-3  
Select  
Program or Config. Memory  
(CFGS)  
Yes  
Last word to  
write ?  
CPU stalls while Write  
operation completes  
(2 ms typical)  
No  
Select Row Address  
(PMADRH:PMADRL)  
Unlock Sequence  
Figure 10-3  
Select Write Operation  
(FREE = 0)  
Disable  
Write/Erase Operation  
(WREN = 0)  
No delay when writing to  
Program Memory Latches  
Load Write Latches Only  
(LWLO = 1)  
Re-enable Interrupts  
(GIE = 1)  
Increment Address  
(PMADRH:PMADRL++)  
End  
Write Operation  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 85  
PIC16LF1904/6/7  
EXAMPLE 10-3:  
WRITING TO FLASH PROGRAM MEMORY  
; This write routine assumes the following:  
; 1. 64 bytes of data are loaded, starting at the address in DATA_ADDR  
; 2. Each word of data to be written is made up of two adjacent bytes in DATA_ADDR,  
;
stored in little endian format  
; 3. A valid starting address (the least significant bits = 00000) is loaded in ADDRH:ADDRL  
; 4. ADDRH and ADDRL are located in shared data memory 0x70 - 0x7F (common RAM)  
;
BCF  
INTCON,GIE  
PMADRH  
ADDRH,W  
PMADRH  
ADDRL,W  
PMADRL  
; Disable ints so required sequences will execute properly  
; Bank 3  
; Load initial address  
;
;
;
BANKSEL  
MOVF  
MOVWF  
MOVF  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BCF  
LOW DATA_ADDR ; Load initial data address  
FSR0L  
HIGH DATA_ADDR ; Load initial data address  
;
FSR0H  
;
PMCON1,CFGS  
PMCON1,WREN  
PMCON1,LWLO  
; Not configuration space  
; Enable writes  
; Only Load Write Latches  
BSF  
BSF  
LOOP  
MOVIW  
MOVWF  
MOVIW  
MOVWF  
FSR0++  
PMDATL  
FSR0++  
PMDATH  
; Load first data byte into lower  
;
; Load second data byte into upper  
;
MOVF  
PMADRL,W  
0x1F  
0x1F  
STATUS,Z  
START_WRITE  
; Check if lower bits of address are '00000'  
; Check if we're on the last of 32 addresses  
;
; Exit if last of 32 words,  
;
XORLW  
ANDLW  
BTFSC  
GOTO  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
55h  
PMCON2  
0AAh  
PMCON2  
PMCON1,WR  
; Start of required write sequence:  
; Write 55h  
;
; Write AAh  
; Set WR bit to begin write  
; NOP instructions are forced as processor  
; loads program memory write latches  
;
NOP  
NOP  
INCF  
GOTO  
PMADRL,F  
LOOP  
; Still loading latches Increment address  
; Write next latches  
START_WRITE  
BCF  
PMCON1,LWLO  
; No more loading latches - Actually start Flash program  
; memory write  
MOVLW  
55h  
PMCON2  
0AAh  
PMCON2  
PMCON1,WR  
; Start of required write sequence:  
; Write 55h  
;
MOVWF  
MOVLW  
MOVWF  
BSF  
; Write AAh  
; Set WR bit to begin write  
; NOP instructions are forced as processor writes  
; all the program memory write latches simultaneously  
; to program memory.  
NOP  
NOP  
; After NOPs, the processor  
; stalls until the self-write process in complete  
; after write processor continues with 3rd instruction  
; Disable writes  
BCF  
BSF  
PMCON1,WREN  
INTCON,GIE  
; Enable interrupts  
DS40001569D-page 86  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
FIGURE 10-7:  
FLASH PROGRAM  
MEMORY MODIFY  
FLOWCHART  
10.3 Modifying Flash Program Memory  
When modifying existing data in a program memory  
row, and data within that row must be preserved, it must  
first be read and saved in a RAM image. Program  
memory is modified using the following steps:  
Start  
Modify Operation  
1. Load the starting address of the row to be  
modified.  
2. Read the existing data from the row into a RAM  
image.  
Read Operation  
Figure 10-1  
3. Modify the RAM image to contain the new data  
to be written into program memory.  
4. Load the starting address of the row to be  
rewritten.  
An image of the entire row read  
must be stored in RAM  
5. Erase the program memory row.  
6. Load the write latches with data from the RAM  
image.  
7. Initiate a programming operation.  
Modify Image  
The words to be modified are  
changed in the RAM image  
Erase Operation  
Figure 10-4  
Write Operation  
use RAM image  
Figure 10-5  
End  
Modify Operation  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 87  
PIC16LF1904/6/7  
10.4 User ID, Device ID and  
Configuration Word Access  
Instead of accessing program memory, the User ID’s,  
Device ID/Revision ID and Configuration Words can be  
accessed when CFGS = 1 in the PMCON1 register.  
This is the region that would be pointed to by  
PC<15> = 1, but not all addresses are accessible.  
Different access may exist for reads and writes. Refer  
to Table 10-2.  
When read access is initiated on an address outside  
the  
parameters  
listed  
in  
Table 10-2,  
the  
PMDATH:PMDATL register pair is cleared, reading  
back ‘0’s.  
TABLE 10-2: USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS (CFGS = 1)  
Address  
Function  
Read Access  
Write Access  
8000h-8003h  
8006h  
User IDs  
Yes  
Yes  
Yes  
Yes  
No  
No  
Device ID/Revision ID  
8007h-8008h  
Configuration Words 1 and 2  
EXAMPLE 10-4:  
CONFIGURATION WORD AND DEVICE ID ACCESS  
* This code block will read 1 word of program memory at the memory address:  
*
*
PROG_ADDR_LO (must be 00h-08h) data will be returned in the variables;  
PROG_DATA_HI, PROG_DATA_LO  
BANKSEL PMADRL  
; Select correct Bank  
;
; Store LSB of address  
; Clear MSB of address  
MOVLW  
MOVWF  
CLRF  
PROG_ADDR_LO  
PMADRL  
PMADRH  
BSF  
BCF  
BSF  
NOP  
NOP  
BSF  
PMCON1,CFGS  
INTCON,GIE  
PMCON1,RD  
; Select Configuration Space  
; Disable interrupts  
; Initiate read  
; Executed (See Figure 10-1)  
; Ignored (See Figure 10-1)  
; Restore interrupts  
INTCON,GIE  
MOVF  
PMDATL,W  
; Get LSB of word  
MOVWF  
MOVF  
PROG_DATA_LO  
PMDATH,W  
; Store in user location  
; Get MSB of word  
MOVWF  
PROG_DATA_HI  
; Store in user location  
DS40001569D-page 88  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
10.5 Write Verify  
It is considered good programming practice to verify that  
program memory writes agree with the intended value.  
Since program memory is stored as a full page then the  
stored program memory contents are compared with the  
intended data stored in RAM after the last write is  
complete.  
FIGURE 10-8:  
FLASH PROGRAM  
MEMORY VERIFY  
FLOWCHART  
Start  
Verify Operation  
This routine assumes that the last row  
of data written was from an image  
saved in RAM. This image will be used  
to verify the data currently stored in  
Flash program memory.  
Read Operation  
Figure 10-1  
PMDAT =  
RAM image  
?
No  
Fail  
Verify Operation  
Yes  
No  
Last  
Word ?  
Yes  
End  
Verify Operation  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 89  
PIC16LF1904/6/7  
10.6 Flash Program Memory Control Registers  
REGISTER 10-1: PMDATL: PROGRAM MEMORY DATA LOW BYTE REGISTER  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
PMDAT<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-0  
PMDAT<7:0>: Read/write value for Least Significant bits of program memory  
REGISTER 10-2: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER  
U-0  
U-0  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
PMDAT<13:8>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
PMDAT<13:8>: Read/write value for Most Significant bits of program memory  
REGISTER 10-3: PMADRL: PROGRAM MEMORY ADDRESS LOW BYTE REGISTER  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
PMADR<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-0  
PMADR<7:0>: Specifies the Least Significant bits for program memory address  
REGISTER 10-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER  
U-1  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
PMADR<14:8>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
Unimplemented: Read as ‘1’  
PMADR<14:8>: Specifies the Most Significant bits for program memory address  
bit 6-0  
DS40001569D-page 90  
2011-2016 Microchip Technology Inc.  
 
 
 
 
PIC16LF1904/6/7  
REGISTER 10-5: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER  
U-1(1)  
R/W-0/0  
CFGS  
R/W-0/0  
LWLO  
R/W/HC-0/0 R/W/HC-x/q(2)  
FREE WRERR  
R/W-0/0  
WREN  
R/S/HC-0/0  
WR  
R/S/HC-0/0  
RD  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
S = Bit can only be set  
‘1’ = Bit is set  
-n/n = Value at POR and BOR/Value at all other Resets  
HC = Bit is cleared by hardware  
bit 7  
bit 6  
Unimplemented: Read as ‘1’  
CFGS: Configuration Select bit  
1= Access Configuration, User ID and Device ID registers  
0= Access Flash Program Memory  
bit 5  
LWLO: Load Write Latches Only bit(3)  
1= Only the addressed program memory write latch is loaded/updated on the next WR command  
0= The addressed program memory write latch is loaded/updated and a write of all program memory write latches  
will be initiated on the next WR command  
bit 4  
bit 3  
FREE: Program Flash Erase Enable bit  
1= Performs an erase operation on the next WR command (hardware cleared upon completion)  
0= Performs a write operation on the next WR command  
WRERR: Program/Erase Error Flag bit  
1= Condition indicates an improper program or erase sequence attempt or termination (bit is set automatically  
on any set attempt (write ‘1’) of the WR bit).  
0= The program or erase operation completed normally.  
bit 2  
bit 1  
WREN: Program/Erase Enable bit  
1= Allows program/erase cycles  
0= Inhibits programming/erasing of program Flash  
WR: Write Control bit  
1= Initiates a program Flash program/erase operation.  
The operation is self-timed and the bit is cleared by hardware once operation is complete.  
The WR bit can only be set (not cleared) in software.  
0= Program/erase operation to the Flash is complete and inactive.  
bit 0  
RD: Read Control bit  
1= Initiates a program Flash read. Read takes one cycle. RD is cleared in hardware. The RD bit can only be set  
(not cleared) in software.  
0= Does not initiate a program Flash read.  
Note 1: Unimplemented bit, read as ‘1’.  
2: The WRERR bit is automatically set by hardware when a program memory write or erase operation is started (WR = 1) .  
3: The LWLO bit is ignored during a program memory erase operation (FREE = 1).  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 91  
 
PIC16LF1904/6/7  
REGISTER 10-6: PMCON2: PROGRAM MEMORY CONTROL 2 REGISTER  
W-0/0  
W-0/0  
W-0/0  
W-0/0  
W-0/0  
W-0/0  
W-0/0  
W-0/0  
bit 0  
Program Memory Control Register 2  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
S = Bit can only be set  
‘1’ = Bit is set  
bit 7-0  
Flash Memory Unlock Pattern bits  
To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the  
PMCON1 register. The value written to this register is used to unlock the writes. There are specific  
timing requirements on these writes.  
TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH FLASH PROGRAM MEMORY  
Register on  
Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(1)  
PMCON1  
PMCON2  
PMADRL  
CFGS  
LWLO  
FREE  
WRERR  
WREN  
WR  
RD  
91  
92  
90  
90  
90  
90  
65  
Program Memory Control Register 2  
PMADRL<7:0>  
(1)  
PMADRH  
PMDATL  
PMADRH<6:0>  
PMDATL<7:0>  
PMDATH  
INTCON  
Legend:  
PMDATH<5:0>  
GIE  
PEIE  
TMR0IE  
INTE  
IOCIE  
TMR0IF  
INTF  
IOCIF  
= unimplemented location, read as ‘0’. Shaded cells are not used by the Flash Program Memory module.  
Note 1: Unimplemented, read as ‘1’.  
TABLE 10-4: SUMMARY OF CONFIGURATION WORD WITH FLASH PROGRAM MEMORY  
Register  
on Page  
Name  
Bits  
Bit -/7  
Bit -/6  
Bit 13/5  
Bit 12/4  
Bit 11/3  
Bit 10/2  
Bit 9/1  
Bit 8/0  
13:8  
7:0  
CP  
MCLRE  
PWRTE  
LVP  
CLKOUTEN  
BOREN<1:0>  
CONFIG1  
39  
40  
WDTE<1:0>  
BORV  
FOSC<1:0>  
13:8  
7:0  
DEBUG  
LPBOR  
STVREN  
WRT<1:0>  
CONFIG2  
Legend:  
— = unimplemented location, read as ‘0’. Shaded cells are not used by the Flash Program Memory.  
DS40001569D-page 92  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
FIGURE 11-1:  
GENERIC I/O PORT  
OPERATION  
11.0 I/O PORTS  
In general, when a peripheral is enabled on a port pin,  
that pin cannot be used as a general purpose output.  
However, the pin can still be read.  
Each port has three standard registers for its operation.  
These registers are:  
Read LATx  
TRISx  
D
Q
• TRISx registers (data direction)  
• PORTx registers (reads the levels on the pins of  
the device)  
Write LATx  
Write PORTx  
CK  
Data Register  
VDD  
• LATx registers (output latch)  
Some ports may have one or more of the following  
additional registers. These registers are:  
Data Bus  
I/O pin  
• ANSELx (analog select)  
• WPUx (weak pull-up)  
Read PORTx  
To peripherals  
VSS  
ANSELx  
TABLE 11-1: PORT AVAILABILITY PER  
DEVICE  
EXAMPLE 11-1:  
INITIALIZING PORTA  
Device  
; This code example illustrates  
; initializing the PORTA register. The  
; other ports are initialized in the same  
; manner.  
PIC16LF1906  
PIC16LF1904/7  
BANKSEL PORTA  
CLRF PORTA  
BANKSEL LATA  
CLRF LATA  
BANKSEL ANSELA  
CLRF ANSELA  
BANKSEL TRISA  
;
The data latch (LATA register) is useful for  
read-modify-write operations on the value that the I/O  
pins are driving.  
;Init PORTA  
;Data Latch  
;
;
;digital I/O  
;
A write operation to the LATA register has the same  
affect as a write to the corresponding PORTA register.  
A read of the LATA register reads of the values held in  
the I/O port latches, while a read of the PORTA register  
reads the actual I/O pin value.  
MOVLW  
MOVWF  
B'00111000' ;Set RA<5:3> as inputs  
TRISA  
;and set RA<2:0> as  
;outputs  
Ports that support analog inputs have an associated  
ANSELx register. When an ANSEL bit is set, the digital  
input buffer associated with that bit is disabled.  
Disabling the input buffer prevents analog signal levels  
on the pin between a logic high and low from causing  
excessive current in the logic input circuitry. A  
simplified model of a generic I/O port, without the  
interfaces to other peripherals, is shown in Figure 11-1.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 93  
 
 
 
PIC16LF1904/6/7  
11.1.2  
PORTA FUNCTIONS AND OUTPUT  
PRIORITIES  
11.1 PORTA Registers  
PORTA is an 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISA  
(Register 11-2). Setting a TRISA bit (= 1) will make the  
corresponding PORTA pin an input (i.e., disable the  
output driver). Clearing a TRISA bit (= 0) will make the  
corresponding PORTA pin an output (i.e., enables  
output driver and puts the contents of the output latch  
on the selected pin). The exception is RA3, which is  
input only and its TRIS bit will always read as ‘1’.  
Example 11-1 shows how to initialize PORTA.  
Each PORTA pin is multiplexed with other functions. The  
pins, their combined functions and their output priorities  
are shown in Table 11-2.  
When multiple outputs are enabled, the actual pin  
control goes to the peripheral with the highest priority.  
Analog input functions, such as ADC, comparator and  
CapSense inputs, are not shown in the priority lists.  
These inputs are active when the I/O pin is set for  
Analog mode using the ANSELx registers. Digital  
output functions may control the pin when it is in Analog  
mode with the priority shown in Table 11-2.  
Reading the PORTA register (Register 11-1) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then  
written to the PORT data latch (LATA).  
TABLE 11-2: PORTA OUTPUT PRIORITY  
Pin Name  
Function Priority(1)  
The TRISA register (Register 11-2) controls the  
PORTA pin output drivers, even when they are being  
used as analog inputs. The user should ensure the bits  
in the TRISA register are maintained set when using  
them as analog inputs. I/O pins configured as analog  
input always read ‘0’.  
RA0  
SEG12 (LCD)  
AN0  
RA0  
RA1  
RA2  
RA3  
SEG7  
AN1  
RA1  
11.1.1  
ANSELA REGISTER  
COM2  
AN2  
RA2  
The ANSELA register (Register 11-4) is used to  
configure the Input mode of an I/O pin to analog.  
Setting the appropriate ANSELA bit high will cause all  
digital reads on the pin to be read as ‘0’ and allow  
analog functions on the pin to operate correctly.  
VREF+  
COM3  
SEG15  
AN3  
The state of the ANSELA bits has no effect on digital  
output functions. A pin with TRIS clear and ANSEL set  
will still operate as a digital output, but the Input mode  
will be analog. This can cause unexpected behavior  
when executing read-modify-write instructions on the  
affected port.  
RA3  
RA4  
RA5  
RA6  
RA7  
SEG4  
T0CKI  
RA4  
SEG5  
AN4  
RA5  
Note:  
The ANSELA bits default to the Analog  
mode after Reset. To use any pins as  
digital general purpose or peripheral  
inputs, the corresponding ANSEL bits  
must be initialized to ‘0’ by user software.  
CLKOUT  
SEG1  
RA6  
CLKIN  
SEG2  
RA7  
Note 1: Priority listed from highest to lowest.  
DS40001569D-page 94  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
REGISTER 11-1: PORTA: PORTA REGISTER  
R/W-x/x  
RA7  
R/W-x/x  
RA6  
R/W-x/x  
RA5  
R/W-x/x  
RA4  
R-x/x  
RA3  
R/W-x/x  
RA2  
R/W-x/x  
RA1  
R/W-x/x  
RA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
(1)  
bit 7-0  
RA<7:0>: PORTA I/O Value bits  
1= Port pin is > VIH  
0= Port pin is < VIL  
Note 1: Writes to PORTA are actually written to the corresponding LATA register. Reads from the PORTA register is  
return of actual I/O pin values.  
REGISTER 11-2: TRISA: PORTA TRI-STATE REGISTER  
R/W-1/1  
TRISA7  
R/W-1/1  
TRISA6  
R/W-1/1  
TRISA5  
R/W-1/1  
TRISA4  
R-1/1  
R/W-1/1  
TRISA2  
R/W-1/1  
TRISA1  
R/W-1/1  
TRISA0  
bit 0  
TRISA3  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
bit 7-4  
TRISA<7:4>: PORTA Tri-State Control bits  
1= PORTA pin configured as an input (tri-stated)  
0= PORTA pin configured as an output  
bit 3  
TRISA3: RA3 Port Tri-State Control bit  
This bit is always ‘1’ as RA3 is an input only  
bit 2-0  
TRISA<2:0>: PORTA Tri-State Control bits  
1= PORTA pin configured as an input (tri-stated)  
0= PORTA pin configured as an output  
REGISTER 11-3: LATA: PORTA DATA LATCH REGISTER  
R/W-x/u  
LATA7  
R/W-x/u  
LATA6  
R/W-x/u  
LATA5  
R/W-x/u  
LATA4  
R/W-x/u  
LATA3  
R/W-x/u  
LATA2  
R/W-x/u  
LATA1  
R/W-x/u  
LATA0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
u = Bit is unchanged  
‘1’ = Bit is set  
-n/n = Value at POR and BOR/Value at all other Resets  
(1)  
bit 7-4  
LATA<7:0>: RA<7:4> Output Latch Value bits  
Note 1: Writes to PORTA are actually written to the corresponding LATA register. Reads from the PORTA register is  
return of actual I/O pin values.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 95  
 
 
 
 
PIC16LF1904/6/7  
REGISTER 11-4: ANSELA: PORTA ANALOG SELECT REGISTER  
U-0  
U-0  
R/W-1/1  
ANSA5  
U-0  
R/W-1/1  
ANSA3  
R/W-1/1  
ANSA2  
R/W-1/1  
ANSA1  
R/W-1/1  
ANSA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
ANSA5: Analog Select between Analog or Digital Function on pins RA5, respectively  
0= Digital I/O. Pin is assigned to port or digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.  
bit 4  
Unimplemented: Read as ‘0’  
bit 3-0  
ANSA<3:0>: Analog Select between Analog or Digital Function on pins RA<3:0>, respectively  
0= Digital I/O. Pin is assigned to port or digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.  
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to  
allow external control of the voltage on the pin.  
TABLE 11-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Register  
on Page  
Name  
ANSELA  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSA5  
LATA5  
ANSA3  
LATA3  
PSA  
ANSA2  
LATA2  
ANSA1  
LATA1  
PS<2:0>  
RA1  
ANSA0  
LATA0  
96  
95  
LATA  
LATA7  
WPUEN  
RA7  
LATA6  
INTEDG  
RA6  
LATA4  
TMR0SE  
RA4  
OPTION_REG  
PORTA  
TMR0CS  
RA5  
130  
95  
RA3  
RA2  
RA0  
TRISA  
TRISA7  
TRISA6  
TRISA5  
TRISA4  
TRISA3  
TRISA2  
TRISA1  
TRISA0  
95  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTA.  
TABLE 11-4: SUMMARY OF CONFIGURATION WORD WITH PORTA  
Register  
on Page  
Name  
Bits  
Bit -/7  
Bit -/6  
Bit 13/5  
Bit 12/4  
Bit 11/3  
Bit 10/2  
Bit 9/1  
Bit 8/0  
13:8  
7:0  
CLKOUTEN  
BOREN<1:0>  
CONFIG1  
39  
CP  
MCLRE  
PWRTE  
WDTE<1:0>  
FOSC<1:0>  
Legend:  
— = unimplemented location, read as ‘0’. Shaded cells are not used by PORTA.  
DS40001569D-page 96  
2011-2016 Microchip Technology Inc.  
 
 
PIC16LF1904/6/7  
11.2.2  
PORTB FUNCTIONS AND OUTPUT  
PRIORITIES  
11.2 PORTB Registers  
PORTB is an 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISB  
(Register 11-6). Setting a TRISB bit (= 1) will make the  
corresponding PORTB pin an input (i.e., put the  
corresponding output driver in a High-Impedance mode).  
Clearing a TRISB bit (= 0) will make the corresponding  
PORTB pin an output (i.e., enable the output driver and  
put the contents of the output latch on the selected pin).  
Example 11-1 shows how to initialize an I/O port.  
Each PORTB pin is multiplexed with other functions. The  
pins, their combined functions and their output priorities  
are shown in Table 11-5.  
When multiple outputs are enabled, the actual pin  
control goes to the peripheral with the highest priority.  
Analog input and some digital input functions are not  
included in the list below. These input functions can  
remain active when the pin is configured as an output.  
Certain digital input functions override other port  
functions and are included in Table 11-5.  
Reading the PORTB register (Register 11-5) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then written  
to the PORT data latch (LATB).  
TABLE 11-5: PORTB OUTPUT PRIORITY  
Pin Name  
Function Priority(1)  
RB0  
SEG0  
AN12  
INT  
IOC  
RB0  
The TRISB register (Register 11-6) controls the PORTB  
pin output drivers, even when they are being used as  
analog inputs. The user should ensure the bits in the  
TRISB register are maintained set when using them as  
analog inputs. I/O pins configured as analog input always  
read ‘0’.  
RB1  
RB2  
RB3  
SEG24  
AN10  
VLCD1  
IOC  
11.2.1  
ANSELB REGISTER  
The ANSELB register (Register 11-8) is used to  
configure the Input mode of an I/O pin to analog.  
Setting the appropriate ANSELB bit high will cause all  
digital reads on the pin to be read as ‘0’ and allow  
analog functions on the pin to operate correctly.  
RB1  
SEG25  
AN8  
VLCD2  
IOC  
The state of the ANSELB bits has no effect on digital out-  
put functions. A pin with TRIS clear and ANSELB set will  
still operate as a digital output, but the Input mode will be  
analog. This can cause unexpected behavior when exe-  
cuting read-modify-write instructions on the affected  
port.  
RB2  
SEG26  
AN9  
VLCD3  
IOC  
RB3  
Note:  
The ANSELB bits default to the Analog  
mode after reset. To use any pins as  
digital general purpose or peripheral  
inputs, the corresponding ANSEL bits  
must be initialized to ‘0’ by user software.  
RB4  
RB5  
RB6  
RB7  
COM0  
AN11  
IOC  
RB4  
COM1  
AN13  
IOC  
RB5  
ICDCLK  
SEG14  
IOC  
RB6  
ICDDAT  
SEG13  
IOC  
RB7  
Note 1: Priority listed from highest to lowest.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 97  
 
PIC16LF1904/6/7  
REGISTER 11-5: PORTB: PORTB REGISTER  
R/W-x/u  
RB7  
R/W-x/u  
RB6  
R/W-x/u  
RB5  
R/W-x/u  
RB4  
R/W-x/u  
RB3  
R/W-x/u  
RB2  
R/W-x/u  
RB1  
R/W-x/u  
RB0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
RB<7:0>: PORTB General Purpose I/O Pin bits(1)  
1= Port pin is > VIH  
0= Port pin is < VIL  
Note 1: Writes to PORTB are actually written to the corresponding LATB register. Reads from the PORTB register is  
return of actual I/O pin values.  
REGISTER 11-6: TRISB: PORTB TRI-STATE REGISTER  
R/W-1/1  
TRISB7  
R/W-1/1  
TRISB6  
R/W-1/1  
TRISB5  
R/W-1/1  
TRISB4  
R/W-1/1  
TRISB3  
R/W-1/1  
TRISB2  
R/W-1/1  
TRISB1  
R/W-1/1  
TRISB0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
TRISB<7:0>: PORTB Tri-State Control bits  
1= PORTB pin configured as an input (tri-stated)  
0= PORTB pin configured as an output  
REGISTER 11-7: LATB: PORTB DATA LATCH REGISTER  
R/W-x/u  
LATB7  
R/W-x/u  
LATB6  
R/W-x/u  
LATB5  
R/W-x/u  
LATB4  
R/W-x/u  
LATB3  
R/W-x/u  
LATB2  
R/W-x/u  
LATB1  
R/W-x/u  
LATB0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
LATB<7:0>: PORTB Output Latch Value bits(1)  
Note 1: Writes to PORTB are actually written to the corresponding LATB register. Reads from the PORTB register  
is return of actual I/O pin values.  
DS40001569D-page 98  
2011-2016 Microchip Technology Inc.  
 
 
 
 
 
PIC16LF1904/6/7  
REGISTER 11-8: ANSELB: PORTB ANALOG SELECT REGISTER  
U-0  
U-0  
R/W-1/1  
ANSB5  
R/W-1/1  
ANSB4  
R/W-1/1  
ANSB3  
R/W-1/1  
ANSB2  
R/W-1/1  
ANSB1  
R/W-1/1  
ANSB0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
ANSB<5:0>: Analog Select between Analog or Digital Function on pins RB<5:0>, respectively  
0= Digital I/O. Pin is assigned to port or digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.  
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external  
control of the voltage on the pin.  
REGISTER 11-9: WPUB: WEAK PULL-UP PORTB REGISTER  
R/W-1/1  
WPUB7  
R/W-1/1  
WPUB6  
R/W-1/1  
WPUB5  
R/W-1/1  
WPUB4  
R/W-1/1  
WPUB3  
R/W-1/1  
WPUB2  
R/W-1/1  
WPUB1  
R/W-1/1  
WPUB0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-0  
WPUB<7:0>: Weak Pull-up Register bits  
1= Pull-up enabled  
0= Pull-up disabled  
Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.  
2: The weak pull-up device is automatically disabled if the pin is in configured as an output.  
TABLE 11-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELB  
ANSB5  
LATB5  
RB5  
ANSB4  
LATB4  
RB4  
ANSB3  
LATB3  
RB3  
ANSB2  
LATB2  
RB2  
ANSB1  
LATB1  
RB1  
ANSB0  
LATB0  
RB0  
99  
98  
98  
98  
99  
LATB  
LATB7  
RB7  
LATB6  
RB6  
PORTB  
TRISB  
TRISB7  
WPUB7  
TRISB6  
WPUB6  
TRISB5  
WPUB5  
TRISB4  
WPUB4  
TRISB3  
WPUB3  
TRISB2  
WPUB2  
TRISB1  
WPUB1  
TRISB0  
WPUB0  
WPUB  
Legend:  
x = unknown, u = unchanged, - = unimplemented locations read as ‘0’. Shaded cells are not used by PORTB.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 99  
 
 
 
PIC16LF1904/6/7  
11.3.1  
PORTC FUNCTIONS AND OUTPUT  
PRIORITIES  
11.3 PORTC Registers  
PORTC is an 8-bit wide bidirectional port. The  
corresponding data direction register is TRISC  
(Register 11-6). Setting a TRISC bit (= 1) will make the  
corresponding PORTC pin an input (i.e., put the  
corresponding output driver in a High-Impedance mode).  
Clearing a TRISC bit (= 0) will make the corresponding  
PORTC pin an output (i.e., enable the output driver and  
put the contents of the output latch on the selected pin).  
Example 11-1 shows how to initialize an I/O port.  
Each PORTC pin is multiplexed with other functions. The  
pins, their combined functions and their output priorities  
are shown in Table 11-7.  
When multiple outputs are enabled, the actual pin  
control goes to the peripheral with the highest priority.  
Analog input and some digital input functions are not  
included in the list below. These input functions can  
remain active when the pin is configured as an output.  
Certain digital input functions override other port  
functions and are included in Table 11-7.  
Reading the PORTC register (Register 11-5) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then written  
to the PORT data latch (LATC).  
TABLE 11-7: PORTC OUTPUT PRIORITY  
Pin Name  
Function Priority(1)  
RC0  
T1OSO  
T1CKI  
RC0  
The TRISC register (Register 11-6) controls the PORTC  
pin output drivers, even when they are being used as  
analog inputs. The user should ensure the bits in the  
TRISC register are maintained set when using them as  
analog inputs. I/O pins configured as analog input always  
read ‘0’.  
RC1  
RC2  
RC3  
RC4  
T1OSI  
RC1  
SEG2  
RC2  
SEG6  
RC3  
SEG11  
T1G  
RC4  
RC5  
RC6  
SEG10  
RC5  
SEG9  
RC6  
TX/CK  
RC7  
SEG8  
RC7  
RX/DT  
Note 1: Priority listed from highest to lowest.  
DS40001569D-page 100  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
REGISTER 11-10: PORTC: PORTC REGISTER  
R/W-x/u  
RC7  
R/W-x/u  
RC6  
R/W-x/u  
RC5  
R/W-x/u  
RC4  
R/W-x/u  
RC3  
R/W-x/u  
RC2  
R/W-x/u  
RC1  
R/W-x/u  
RC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
RC<7:0>: PORTC General Purpose I/O Pin bits(1)  
1= Port pin is > VIH  
0= Port pin is < VIL  
Note 1: Writes to PORTC are actually written to the corresponding LATC register. Reads from the PORTC register is  
return of actual I/O pin values.  
REGISTER 11-11: TRISC: PORTC TRI-STATE REGISTER  
R/W-1/1  
TRISC7  
R/W-1/1  
TRISC6  
R/W-1/1  
TRISC5  
R/W-1/1  
TRISC4  
R/W-1/1  
TRISC3  
R/W-1/1  
TRISC2  
R/W-1/1  
TRISC1  
R/W-1/1  
TRISC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
TRISC<7:0>: PORTC Tri-State Control bits  
1= PORTC pin configured as an input (tri-stated)  
0= PORTC pin configured as an output  
REGISTER 11-12: LATC: PORTC DATA LATCH REGISTER  
R/W-x/u  
LATC7  
R/W-x/u  
LATC6  
R/W-x/u  
LATC5  
R/W-x/u  
LATC4  
R/W-x/u  
LATC3  
R/W-x/u  
LATC2  
R/W-x/u  
LATC1  
R/W-x/u  
LATC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
LATC<7:0>: PORTC Output Latch Value bits(1)  
Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is  
return of actual I/O pin values.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 101  
 
PIC16LF1904/6/7  
TABLE 11-8: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LATC  
LATC7  
RC7  
LATC6  
RC6  
LATC5  
RC5  
LATC4  
RC4  
LATC3  
RC3  
LATC2  
RC2  
LATC1  
RC1  
LATC0  
RC0  
98  
98  
98  
PORTC  
TRISC  
TRISC7  
TRISC6  
TRISC5  
TRISC4  
TRISC3  
TRISC2  
TRISC1  
TRISC0  
Legend:  
x = unknown, u = unchanged, - = unimplemented locations read as ‘0’. Shaded cells are not used by PORTC.  
DS40001569D-page 102  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
11.4.1  
PORTD FUNCTIONS AND OUTPUT  
PRIORITIES  
11.4 PORTD Registers  
(PIC16LF1904/7 only)  
Each PORTD pin is multiplexed with other functions. The  
pins, their combined functions and their output priorities  
are shown in Table 11-9.  
PORTD is  
a 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISD  
(Register 11-14). Setting a TRISD bit (= 1) will make the  
corresponding PORTD pin an input (i.e., put the  
corresponding output driver in a High-Impedance mode).  
Clearing a TRISD bit (= 0) will make the corresponding  
PORTD pin an output (i.e., enable the output driver and  
put the contents of the output latch on the selected pin).  
Example 11-1 shows how to initialize an I/O port.  
When multiple outputs are enabled, the actual pin  
control goes to the peripheral with the highest priority.  
Analog input and some digital input functions are not  
included in the list below. These input functions can  
remain active when the pin is configured as an output.  
Certain digital input functions override other port  
functions and are included in Table 11-9.  
Reading the PORTD register (Register 11-13) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then written  
to the PORT data latch (LATD).  
TABLE 11-9: PORTD OUTPUT PRIORITY  
Pin Name  
Function Priority(1)  
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
The TRISD register (Register 11-14) controls the  
PORTD pin output drivers, even when they are being  
used as analog inputs. The user should ensure the bits in  
the TRISD register are maintained set when using them  
as analog inputs. I/O pins configured as analog input  
always read ‘0’.  
Note 1: Priority listed from highest to lowest.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 103  
 
PIC16LF1904/6/7  
REGISTER 11-13: PORTD: PORTD REGISTER  
R/W-x/u  
RD7  
R/W-x/u  
RD6  
R/W-x/u  
RD5  
R/W-x/u  
RD4  
R/W-x/u  
RD3  
R/W-x/u  
RD2  
R/W-x/u  
RD1  
R/W-x/u  
RD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
RD<7:0>: PORTD General Purpose I/O Pin bits(1)  
1= Port pin is > VIH  
0= Port pin is < VIL  
Note 1: Writes to PORTD are actually written to the corresponding LATD register. Reads from the PORTD register  
is return of actual I/O pin values.  
REGISTER 11-14: TRISD: PORTD TRI-STATE REGISTER  
R/W-1/1  
TRISD7  
R/W-1/1  
TRISD6  
R/W-1/1  
TRISD5  
R/W-1/1  
TRISD4  
R/W-1/1  
TRISD5  
R/W-1/1  
TRISD5  
R/W-1/1  
TRISD5  
R/W-1/1  
TRISD4  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
TRISD<7:0>: PORTD Tri-State Control bits  
1= PORTD pin configured as an input (tri-stated)  
0= PORTD pin configured as an output  
REGISTER 11-15: LATD: PORTB DATA LATCH REGISTER  
R/W-x/u  
LATD7  
R/W-x/u  
LATD6  
R/W-x/u  
LATD5  
R/W-x/u  
LATD4  
R/W-x/u  
LATD3  
R/W-x/u  
LATD2  
R/W-x/u  
LATD1  
R/W-x/u  
LATD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
LATD<7:0>: PORTD Output Latch Value bits(1)  
Note 1: Writes to PORTD are actually written to the corresponding LATD register. Reads from the PORTD register  
is return of actual I/O pin values.  
DS40001569D-page 104  
2011-2016 Microchip Technology Inc.  
 
 
 
PIC16LF1904/6/7  
TABLE 11-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD(1)  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LATD  
LATD7  
RD7  
LATD6  
RD6  
LATD5  
RD5  
LATD4  
RD4  
LATD3  
RD3  
LATD2  
RD2  
LATD1  
RD1  
LATD0  
RD0  
104  
104  
104  
PORTD  
TRISD  
TRISD7  
TRISD6  
TRISD5  
TRISD4  
TRISD3  
TRISD2  
TRISD1  
TRISD0  
Legend:  
x = unknown, u = unchanged, - = unimplemented locations read as ‘0’. Shaded cells are not used by PORTD.  
Note 1: PIC16LF1904/7 only.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 105  
PIC16LF1904/6/7  
11.5.1  
PORTE FUNCTIONS AND OUTPUT  
PRIORITIES  
11.5 PORTE Registers  
RE3 is input only, and also functions as MCLR. The  
MCLR feature can be disabled via a configuration fuse.  
RE3 also supplies the programming voltage. The TRIS bit  
for RE3 (TRISE3) always reads ‘1’.  
No output priorities, RE3 is an input only pin.  
REGISTER 11-16: PORTE: PORTE REGISTER  
U-0  
U-0  
U-0  
U-0  
R-x/u  
RE3  
U-0  
RE2(1)  
U-0  
RE1(1)  
U-0  
RE0(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-4  
bit 3-0  
Unimplemented: Read as ‘0’  
RE<3:0>: PORTE Input Pin bit(1)  
1= Port pin is > VIH  
0= Port pin is < VIL  
2: RE<2:0> are not implemented on the PIC16LF1906. Read as ‘0’. Writes to RE<2:0> are actually written to  
the corresponding LATE register. Reads from the PORTE register is the return of actual I/O pin values.  
REGISTER 11-17: TRISE: PORTE TRI-STATE REGISTER  
U-0  
U-0  
U-0  
U-0  
U-1(1)  
R/W-1/1(2)  
TRISE2  
R/W-1/1(2)  
TRISE1  
R/W-1/1(2)  
TRISE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
Unimplemented: Read as ‘1’  
bit 2-0  
TRISE<2:0>: PORTE Tri-State Control bits(2)  
1= Port output driver is disabled  
0= Port output driver is enabled  
Note 1: Unimplemented, read as ‘1’.  
2: TRISE<2:0> are not implemented on the PIC16LF1906. Read as ‘0’.  
DS40001569D-page 106  
2011-2016 Microchip Technology Inc.  
 
 
PIC16LF1904/6/7  
REGISTER 11-18: LATE: PORTE DATA LATCH REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-x/u  
LATE2(2)  
R/W-x/u  
LATE1(2)  
R/W-x/u  
LATE0(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-3  
bit 2-0  
Unimplemented: Read as ‘0’  
LATE<2:0>: PORTE Output Latch Value bits(1)  
Note 1: Writes to PORTE are actually written to the corresponding LATE register. Reads from the PORTE register  
is return of actual I/O pin values.  
2: LATE<2:0> are not implemented on the PIC16LF1906. Read as ‘0’.  
REGISTER 11-19: ANSELE: PORTE ANALOG SELECT REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1/1  
ANSE2(2)  
R/W-1/1  
ANSE1(2)  
R/W-1/1  
ANSE0(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
bit 7-3  
bit 2-0  
Unimplemented: Read as ‘0’  
ANSE<2:0>: Analog Select between Analog or Digital Function on pins RE<2:0>, respectively  
0= Digital I/O. Pin is assigned to port or digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.  
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to  
allow external control of the voltage on the pin.  
2: ANSE<2:0> are not implemented on the PIC16LF1906. Read as ‘0’.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 107  
PIC16LF1904/6/7  
REGISTER 11-20: WPUE: WEAK PULL-UP PORTE REGISTER  
U-0  
U-0  
U-0  
U-0  
R/W-1/1  
WPUE3  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
WPUE3: Weak Pull-up Register bit  
1= Pull-up enabled  
0= Pull-up disabled  
bit 2-0  
Unimplemented: Read as ‘0’  
Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.  
2: The weak pull-up device is automatically disabled if the pin is in configured as an output.  
TABLE 11-11: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CHS<4:0>  
121  
99  
ADCON0  
ANSELE  
LATE  
GO/DONE  
ADON  
(2)  
(2)  
(2)  
ANSE2  
ANSE1  
ANSE0  
(2)  
(2)  
(2)  
LATE2  
LATE1  
LATE0  
106  
106  
106  
108  
(2)  
(2)  
(2)  
PORTE  
TRISE  
RE3  
RE2  
RE1  
RE0  
(1)  
TRISE2(2) TRISE1(2) TRISE0(2)  
WPUE  
WPUE3  
Legend: x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTE.  
Note 1: Unimplemented, read as ‘1’.  
2: PIC16LF1904/7 only.  
DS40001569D-page 108  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
12.3 Interrupt Flags  
12.0 INTERRUPT-ON-CHANGE  
The IOCBFx bits located in the IOCBF register are  
status flags that correspond to the interrupt-on-change  
pins of PORTB. If an expected edge is detected on an  
appropriately enabled pin, then the status flag for that pin  
will be set, and an interrupt will be generated if the IOCIE  
bit is set. The IOCIF bit of the INTCON register reflects  
the status of all IOCBFx bits.  
The PORTB pins can be configured to operate as  
Interrupt-On-Change (IOC) pins. An interrupt can be  
generated by detecting a signal that has either a rising  
edge or a falling edge. Any individual PORTB pin, or  
combination of PORTB pins, can be configured to  
generate an interrupt. The interrupt-on-change module  
has the following features:  
• Interrupt-on-Change enable (Master Switch)  
• Individual pin configuration  
12.4 Clearing Interrupt Flags  
• Rising and falling edge detection  
• Individual pin interrupt flags  
The individual status flags, (IOCBFx bits), can be  
cleared by resetting them to zero. If another edge is  
detected during this clearing operation, the associated  
status flag will be set at the end of the sequence,  
regardless of the value actually being written.  
Figure 12-1 is a block diagram of the IOC module.  
12.1 Enabling the Module  
In order to ensure that no detected edge is lost while  
clearing flags, only AND operations masking out known  
changed bits should be performed. The following  
sequence is an example of what should be performed.  
To allow individual PORTB pins to generate an interrupt,  
the IOCIE bit of the INTCON register must be set. If the  
IOCIE bit is disabled, the edge detection on the pin will  
still occur, but an interrupt will not be generated.  
EXAMPLE 12-1:  
12.2 Individual Pin Configuration  
MOVLW 0xff  
XORWF IOCBF, W  
ANDWF IOCBF, F  
For each PORTB pin, a rising edge detector and a falling  
edge detector are present. To enable a pin to detect a  
rising edge, the associated IOCBPx bit of the IOCBP  
register is set. To enable a pin to detect a falling edge,  
the associated IOCBNx bit of the IOCBN register is set.  
12.5 Operation in Sleep  
The interrupt-on-change interrupt sequence will wake  
the device from Sleep mode, if the IOCIE bit is set.  
A pin can be configured to detect rising and falling  
edges simultaneously by setting both the IOCBPx bit  
and the IOCBNx bit of the IOCBP and IOCBN registers,  
respectively.  
If an edge is detected while in Sleep mode, the IOCBF  
register will be updated prior to the first instruction  
executed out of Sleep.  
FIGURE 12-1:  
INTERRUPT-ON-CHANGE BLOCK DIAGRAM  
IOCIE  
IOCBFx  
IOCBNx  
D
Q
From all other IOCBFx  
individual pin detectors  
CK  
R
IOC Interrupt to  
CPU Core  
RBx  
IOCBPx  
D
Q
CK  
R
Q2 Clock Cycle  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 109  
PIC16LF1904/6/7  
12.6 Interrupt-On-Change Registers  
REGISTER 12-1: IOCBP: INTERRUPT-ON-CHANGE POSITIVE EDGE REGISTER  
R/W-0/0  
IOCBP7  
R/W-0/0  
IOCBP6  
R/W-0/0  
IOCBP5  
R/W-0/0  
IOCBP4  
R/W-0/0  
IOCBP3  
R/W-0/0  
IOCBP2  
R/W-0/0  
IOCBP1  
R/W-0/0  
IOCBP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
IOCBP<7:0>: Interrupt-on-Change Positive Edge Enable bits  
1= Interrupt-on-Change enabled on the pin for a positive going edge. Associated Status bit and  
interrupt flag will be set upon detecting an edge.  
0= Interrupt-on-Change disabled for the associated pin.  
REGISTER 12-2: IOCBN: INTERRUPT-ON-CHANGE NEGATIVE EDGE REGISTER  
R/W-0/0  
IOCBN7  
R/W-0/0  
IOCBN6  
R/W-0/0  
IOCBN5  
R/W-0/0  
IOCBN4  
R/W-0/0  
IOCBN3  
R/W-0/0  
IOCBN2  
R/W-0/0  
IOCBN1  
R/W-0/0  
IOCBN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
IOCBN<7:0>: Interrupt-on-Change Negative Edge Enable bits  
1= Interrupt-on-Change enabled on the pin for a negative going edge. Associated Status bit and  
interrupt flag will be set upon detecting an edge.  
0= Interrupt-on-Change disabled for the associated pin.  
REGISTER 12-3: IOCBF: INTERRUPT-ON-CHANGE FLAG REGISTER  
R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0  
IOCBF7  
bit 7  
IOCBF6  
IOCBF5  
IOCBF4  
IOCBF3  
IOCBF2  
IOCBF1  
IOCBF0  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
-n/n = Value at POR and BOR/Value at all other Resets  
HS - Bit is set in hardware  
bit 7-0  
IOCBF<7:0>: Interrupt-on-Change Flag bits  
1= An enabled change was detected on the associated pin.  
Set when IOCBPx = 1and a rising edge was detected on RBx, or when IOCBNx = 1and a falling  
edge was detected on RBx.  
0= No change was detected, or the user cleared the detected change.  
DS40001569D-page 110  
2011-2016 Microchip Technology Inc.  
 
 
 
PIC16LF1904/6/7  
TABLE 12-1:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE  
Register  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page  
ANSELB  
INTCON  
IOCBF  
ANSB5  
ANSB4  
INTE  
ANSB3  
IOCIE  
ANSB2  
ANSB1  
INTF  
ANSB0  
IOCIF  
99  
65  
GIE  
PEIE  
TMR0IE  
TMR0IF  
IOCBF7 IOCBF6 IOCBF5 IOCBF4 IOCBF3 IOCBF2 IOCBF1 IOCBF0  
IOCBN7 IOCBN6 IOCBN5 IOCBN4 IOCBN3 IOCBN2 IOCBN1 IOCBN0  
IOCBP7 IOCBP6 IOCBP5 IOCBP4 IOCBP3 IOCBP2 IOCBP1 IOCBP0  
TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0  
110  
110  
110  
98  
IOCBN  
IOCBP  
TRISB  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by interrupt-on-change.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 111  
PIC16LF1904/6/7  
13.1 Independent Gain Amplifiers  
13.0 FIXED VOLTAGE REFERENCE  
(FVR)  
The output of the FVR supplied to the ADC is routed  
through two independent programmable gain  
amplifiers. Each amplifier can be configured to amplify  
the reference voltage by 1x or 2x, to produce the two  
possible voltage levels.  
The Fixed Voltage Reference (FVR) is a stable voltage  
reference, independent of VDD, with 1.024V or 2.048V  
selectable output levels. The output of the FVR can be  
configured as the FVR input channel on the ADC.  
The ADFVR<1:0> bits of the FVRCON register are  
used to enable and configure the gain amplifier settings  
for the reference supplied to the ADC module. Refer-  
ence Section 15.0 “Analog-to-Digital Converter  
(ADC) Module” for additional information.  
The FVR can be enabled by setting the FVREN bit of  
the FVRCON register.  
13.2 FVR Stabilization Period  
When the Fixed Voltage Reference module is enabled, it  
requires time for the reference and amplifier circuits to  
stabilize. Once the circuits stabilize and are ready for use,  
the FVRRDY bit of the FVRCON register will be set. See  
Section 22.0 “Electrical Specifications” for the  
minimum delay requirement.  
FIGURE 13-1:  
VOLTAGE REFERENCE BLOCK DIAGRAM  
ADFVR<1:0>  
2
x1  
x2  
FVR BUFFER1  
(To ADC Module)  
1.024V Fixed  
Reference  
+
-
FVREN  
FVRRDY  
Any peripheral requiring  
the Fixed Reference  
(See Table 13-1)  
TABLE 13-1: PERIPHERALS REQUIRING THE FIXED VOLTAGE REFERENCE (FVR)  
Peripheral  
Conditions  
Description  
HFINTOSC  
FOSC<2:0> = 100and  
IRCF<3:0> = 000x  
INTOSC is active and device is not in Sleep.  
BOREN<1:0> = 11  
BOR always enabled.  
BOR  
BOREN<1:0> = 10and BORFS = 1  
BOREN<1:0> = 01and BORFS = 1  
BOR disabled in Sleep mode, BOR Fast Start enabled.  
BOR under software control, BOR Fast Start enabled.  
DS40001569D-page 112  
2011-2016 Microchip Technology Inc.  
 
 
PIC16LF1904/6/7  
13.3 FVR Control Registers  
REGISTER 13-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER  
R/W-0/0  
FVREN  
R-q/q  
FVRRDY(1)  
R/W-0/0  
TSEN  
R/W-0/0  
TSRNG  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
ADFVR<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
-n/n = Value at POR and BOR/Value at all other Resets  
q = Value depends on condition  
bit 7  
bit 6  
bit 5  
bit 4  
FVREN: Fixed Voltage Reference Enable bit  
0= Fixed Voltage Reference is disabled  
1= Fixed Voltage Reference is enabled  
FVRRDY: Fixed Voltage Reference Ready Flag bit(1)  
0= Fixed Voltage Reference output is not ready or not enabled  
1= Fixed Voltage Reference output is ready for use  
TSEN: Temperature Indicator Enable bit  
0= Temperature Indicator is disabled  
1= Temperature Indicator is enabled  
TSRNG: Temperature Indicator Range Selection bit  
0= VOUT = VDD - 2VT (Low Range)  
1= VOUT = VDD - 4VT (High Range)  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
ADFVR<1:0>: ADC Fixed Voltage Reference Selection bit  
00= ADC Fixed Voltage Reference Peripheral output is off.  
01= ADC Fixed Voltage Reference Peripheral output is 1x (1.024V)  
10= ADC Fixed Voltage Reference Peripheral output is 2x (2.048V)(2)  
11= Reserved  
Note 1: FVRRDY will output the true state of the band gap.  
2: Fixed Voltage Reference output cannot exceed VDD.  
TABLE 13-2: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE  
Register  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FVRCON  
FVREN  
FVRRDY  
TSEN  
TSRNG  
ADFVR1  
ADFVR0  
113  
Legend:  
Shaded cells are not used with the Fixed Voltage Reference.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 113  
 
 
PIC16LF1904/6/7  
FIGURE 14-1:  
TEMPERATURE CIRCUIT  
DIAGRAM  
14.0 TEMPERATURE INDICATOR  
MODULE  
This family of devices is equipped with a temperature  
circuit designed to measure the operating temperature  
of the silicon die. The circuit’s range of operating  
temperature falls between of -40°C and +85°C. The  
output is a voltage that is proportional to the device  
temperature. The output of the temperature indicator is  
internally connected to the device ADC.  
VDD  
TSEN  
TSRNG  
The circuit may be used as a temperature threshold  
detector or a more accurate temperature indicator,  
depending on the level of calibration performed. A one-  
point calibration allows the circuit to indicate a  
temperature closely surrounding that point. A two-point  
calibration allows the circuit to sense the entire range  
of temperature more accurately. Reference Application  
Note AN1333, “Use and Calibration of the Internal  
Temperature Indicator” (DS01333) for more details  
regarding the calibration process.  
VOUT  
ADC  
MUX  
ADC  
n
CHS bits  
(ADCON0 register)  
14.1 Circuit Operation  
14.2 Minimum Operating VDD vs.  
Minimum Sensing Temperature  
Figure 14-1 shows a simplified block diagram of the  
temperature circuit. The proportional voltage output is  
achieved by measuring the forward voltage drop across  
multiple silicon junctions.  
When the temperature circuit is operated in low range,  
the device may be operated at any operating voltage  
that is within specifications.  
Equation 14-1 describes the output characteristics of  
the temperature indicator.  
When the temperature circuit is operated in high range,  
the device operating voltage, VDD, must be high  
enough to ensure that the temperature circuit is  
correctly biased.  
EQUATION 14-1: VOUT RANGES  
High Range: VOUT = VDD - 4VT  
Low Range: VOUT = VDD - 2VT  
Table 14-1 shows the recommended minimum VDD vs.  
range setting.  
TABLE 14-1: RECOMMENDED VDD VS.  
RANGE  
The temperature sense circuit is integrated with the  
Fixed Voltage Reference (FVR) module. See  
Section 13.0 “Fixed Voltage Reference (FVR)” for  
more information.  
Min. VDD, TSRNG = 1  
Min. VDD, TSRNG = 0  
3.6V  
1.8V  
The circuit is enabled by setting the TSEN bit of the  
FVRCON register. When disabled, the circuit draws no  
current.  
14.3 Temperature Output  
The output of the circuit is measured using the internal  
Analog-to-Digital Converter. A channel is reserved for  
the temperature circuit output. Refer to Section 15.0  
“Analog-to-Digital Converter (ADC) Module” for  
detailed information.  
The circuit operates in either high or low range. The high  
range, selected by setting the TSRNG bit of the  
FVRCON register, provides a wider output voltage. This  
provides more resolution over the temperature range,  
but may be less consistent from part to part. This range  
requires a higher bias voltage to operate and thus, a  
higher VDD is needed.  
14.4 ADC Acquisition Time  
To ensure accurate temperature measurements, the  
user must wait at least 200 s after the ADC input  
multiplexer is connected to the temperature indicator  
output before the conversion is performed. In addition,  
the user must wait 200 s between sequential  
conversions of the temperature indicator output.  
The low range is selected by clearing the TSRNG bit of  
the FVRCON register. The low range generates a lower  
voltage drop and thus, a lower bias voltage is needed to  
operate the circuit. The low range is provided for low  
voltage operation.  
DS40001569D-page 114  
2011-2016 Microchip Technology Inc.  
 
 
 
 
PIC16LF1904/6/7  
The ADC can generate an interrupt upon completion of  
a conversion. This interrupt can be used to wake-up the  
device from Sleep.  
15.0 ANALOG-TO-DIGITAL  
CONVERTER (ADC) MODULE  
The Analog-to-Digital Converter (ADC) allows  
conversion of an analog input signal to a 10-bit binary  
representation of that signal. This device uses analog  
inputs, which are multiplexed into a single sample and  
hold circuit. The output of the sample and hold is  
connected to the input of the converter. The converter  
generates a 10-bit binary result via successive  
approximation and stores the conversion result into the  
ADC result registers (ADRESH:ADRESL register pair).  
Figure 15-1 shows the block diagram of the ADC.  
The ADC voltage reference is software selectable to be  
either internally generated or externally supplied.  
FIGURE 15-1:  
ADC BLOCK DIAGRAM  
VDD  
ADPREF = 00  
VREF+  
ADPREF = 10  
AN0  
AN1  
AN2  
00000  
00001  
00010  
00011  
00100  
00101  
VREF+/AN3  
AN4  
AN5(3)  
AN6(3)  
AN7(3)  
AN8  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
ADC  
AN9  
10  
GO/DONE  
AN10  
AN11  
0= Left Justify  
1= Right Justify  
ADFM  
AN12  
AN13  
ADON(1)  
16  
ADRESH ADRESL  
VSS  
11101  
11110  
11111  
Temperature Indicator  
Reserved  
FVR Buffer1  
CHS<4:0>(2)  
Note 1: When ADON = 0, all multiplexer inputs are disconnected.  
2: See ADCON0 register (Example 15-1) for detailed analog channel selection per device.  
3: ADC channel is reserved on the PIC16LF1906 28-pin device.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 115  
 
PIC16LF1904/6/7  
15.1.4  
CONVERSION CLOCK  
15.1 ADC Configuration  
The source of the conversion clock is software select-  
able via the ADCS bits of the ADCON1 register. There  
are seven possible clock options:  
When configuring and using the ADC the following  
functions must be considered:  
• Port configuration  
• FOSC/2  
• Channel selection  
• FOSC/4  
• ADC voltage reference selection  
• ADC conversion clock source  
• Interrupt control  
• FOSC/8  
• FOSC/16  
• FOSC/32  
• Result formatting  
• FOSC/64  
15.1.1  
PORT CONFIGURATION  
• FRC (dedicated internal oscillator)  
The ADC can be used to convert both analog and  
digital signals. When converting analog signals, the I/O  
pin should be configured for analog by setting the  
associated TRIS and ANSEL bits. Refer to  
Section 11.0 “I/O Ports” for more information.  
The time to complete one bit conversion is defined as  
TAD. One full 10-bit conversion requires 11.5 TAD  
periods as shown in Figure 15-2.  
For correct conversion, the appropriate TAD specifica-  
tion must be met. Refer to the A/D conversion require-  
ments in Section 22.0 “Electrical Specifications” for  
more information. Table 15-1 gives examples of  
appropriate ADC clock selections.  
Note:  
Analog voltages on any pin that is defined  
as a digital input may cause the input  
buffer to conduct excess current.  
Note:  
Unless using the FRC, any changes in the  
system clock frequency will change the  
ADC clock frequency, which may  
adversely affect the ADC result.  
15.1.2  
CHANNEL SELECTION  
There are up to 11 channel selections available:  
• AN<13:0> pins  
Temperature Indicator  
• FVR (Fixed Voltage Reference) Output  
Refer to Section 13.0 “Fixed Voltage Reference  
(FVR)” and Section 14.0 “Temperature Indicator  
Module” for more information on these channel selec-  
tions.  
The CHS bits of the ADCON0 register determine which  
channel is connected to the sample and hold circuit.  
When changing channels, a delay is required before  
starting the next conversion. Refer to Section 15.2  
“ADC Operation” for more information.  
15.1.3  
ADC VOLTAGE REFERENCE  
The ADPREF bits of the ADCON1 register provides  
control of the positive voltage reference. The positive  
voltage reference can be:  
• VREF+ pin  
• VDD  
DS40001569D-page 116  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
TABLE 15-1: ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES  
ADC Clock Period (TAD)  
Device Frequency (FOSC)  
ADC  
Clock Source  
ADCS<2:0>  
20 MHz  
16 MHz  
8 MHz  
4 MHz  
1 MHz  
FOSC/2  
000  
100  
001  
101  
010  
110  
x11  
100 ns(2)  
200 ns(2)  
400 ns(2)  
800 ns  
125 ns(2)  
250 ns(2)  
0.5 s(2)  
1.0 s  
250 ns(2)  
500 ns(2)  
1.0 s  
500 ns(2)  
1.0 s  
2.0 s  
4.0 s  
8.0 s(3)  
16.0 s(3)  
32.0 s(3)  
64.0 s(3)  
1.0-6.0 s(1,4)  
FOSC/4  
FOSC/8  
FOSC/16  
FOSC/32  
FOSC/64  
FRC  
2.0 s  
2.0 s  
4.0 s  
1.6 s  
2.0 s  
4.0 s  
8.0 s(3)  
1.0-6.0 s(1,4)  
8.0 s(3)  
16.0 s(3)  
1.0-6.0 s(1,4)  
3.2 s  
1.0-6.0 s(1,4)  
4.0 s  
1.0-6.0 s(1,4)  
Legend:  
Shaded cells are outside of recommended range.  
Note 1: The FRC source has a typical TAD time of 1.6 s for VDD.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the  
system clock FOSC. However, the FRC clock source must be used when conversions are to be performed with the  
device in Sleep mode.  
FIGURE 15-2:  
ANALOG-TO-DIGITAL CONVERSION TAD CYCLES  
TCY - TAD  
TAD8 TAD9 TAD10 TAD11  
TAD1 TAD2 TAD3 TAD4 TAD5 TAD6 TAD7  
b4  
b1  
b0  
b9  
b8  
b7  
b6  
b5  
b3  
b2  
Conversion starts  
Holding capacitor is disconnected from analog input (typically 100 ns)  
Set GO bit  
On the following cycle:  
ADRESH:ADRESL is loaded, GO bit is cleared,  
ADIF bit is set, holding capacitor is connected to analog input.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 117  
PIC16LF1904/6/7  
15.1.5  
INTERRUPTS  
15.1.6  
RESULT FORMATTING  
The ADC module allows for the ability to generate an  
interrupt upon completion of an Analog-to-Digital  
conversion. The ADC Interrupt Flag is the ADIF bit in  
the PIR1 register. The ADC Interrupt Enable is the  
ADIE bit in the PIE1 register. The ADIF bit must be  
cleared in software.  
The 10-bit A/D conversion result can be supplied in two  
formats, left justified or right justified. The ADFM bit of  
the ADCON1 register controls the output format.  
Figure 15-3 shows the two output formats.  
Note 1: The ADIF bit is set at the completion of  
every conversion, regardless of whether  
or not the ADC interrupt is enabled.  
2: The ADC operates during Sleep only  
when the FRC oscillator is selected.  
This interrupt can be generated while the device is  
operating or while in Sleep. If the device is in Sleep, the  
interrupt will wake-up the device. Upon waking from  
Sleep, the next instruction following the SLEEPinstruc-  
tion is always executed. If the user is attempting to  
wake-up from Sleep and resume in-line code execu-  
tion, the GIE and PEIE bits of the INTCON register  
must be disabled. If the GIE and PEIE bits of the  
INTCON register are enabled, execution will switch to  
the Interrupt Service Routine.  
FIGURE 15-3:  
10-BIT A/D CONVERSION RESULT FORMAT  
ADRESH  
ADRESL  
LSB  
(ADFM = 0)  
MSB  
bit 7  
bit 0  
bit 0  
bit 7  
bit 7  
bit 0  
10-bit A/D Result  
Unimplemented: Read as ‘0’  
(ADFM = 1)  
MSB  
LSB  
bit 0  
bit 7  
Unimplemented: Read as ‘0’  
10-bit A/D Result  
DS40001569D-page 118  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
15.2.4  
ADC OPERATION DURING SLEEP  
15.2 ADC Operation  
The ADC module can operate during Sleep. This  
requires the ADC clock source to be set to the FRC  
option. When the FRC clock source is selected, the  
ADC waits one additional instruction before starting the  
conversion. This allows the SLEEP instruction to be  
executed, which can reduce system noise during the  
conversion. If the ADC interrupt is enabled, the device  
will wake-up from Sleep when the conversion  
completes. If the ADC interrupt is disabled, the ADC  
module is turned off after the conversion completes,  
although the ADON bit remains set.  
15.2.1  
STARTING A CONVERSION  
To enable the ADC module, the ADON bit of the  
ADCON0 register must be set to a ‘1’. Setting the  
GO/DONE bit of the ADCON0 register to a ‘1’ will start  
the Analog-to-Digital conversion.  
Note:  
The GO/DONE bit should not be set in the  
same instruction that turns on the ADC.  
Refer to Section 15.2.5 “A/D Conversion  
Procedure”.  
When the ADC clock source is something other than  
FRC, a SLEEP instruction causes the present conver-  
sion to be aborted and the ADC module is turned off,  
although the ADON bit remains set.  
15.2.2  
COMPLETION OF A CONVERSION  
When the conversion is complete, the ADC module will:  
• Clear the GO/DONE bit  
• Set the ADIF Interrupt Flag bit  
• Update the ADRESH and ADRESL registers with  
new conversion result  
15.2.3  
TERMINATING A CONVERSION  
If a conversion must be terminated before completion,  
the GO/DONE bit can be cleared in software. The  
ADRESH and ADRESL registers will be updated with  
the partially complete Analog-to-Digital conversion  
sample. Incomplete bits will match the last bit  
converted.  
Note:  
A device Reset forces all registers to their  
Reset state. Thus, the ADC module is  
turned off and any pending conversion is  
terminated.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 119  
PIC16LF1904/6/7  
15.2.5  
A/D CONVERSION PROCEDURE  
EXAMPLE 15-1:  
A/D CONVERSION  
This is an example procedure for using the ADC to  
perform an Analog-to-Digital conversion:  
;This code block configures the ADC  
;for polling, Vdd and Vss references, Frc  
;clock and AN0 input.  
;
;Conversion start & polling for completion  
; are included.  
;
1. Configure Port:  
• Disable pin output driver (Refer to the TRIS  
register)  
• Configure pin as analog (Refer to the ANSEL  
register)  
BANKSEL  
MOVLW  
ADCON1  
;
B’11110000’ ;Right justify, Frc  
;clock  
2. Configure the ADC module:  
• Select ADC conversion clock  
• Configure voltage reference  
• Select ADC input channel  
• Turn on ADC module  
MOVWF  
BANKSEL  
BSF  
BANKSEL  
BSF  
BANKSEL  
MOVLW  
MOVWF  
CALL  
ADCON1  
TRISA  
TRISA,0  
ANSEL  
ANSEL,0  
ADCON0  
;Vdd and Vss Vref  
;
;Set RA0 to input  
;
;Set RA0 to analog  
;
3. Configure ADC interrupt (optional):  
• Clear ADC interrupt flag  
B’00000001’ ;Select channel AN0  
ADCON0  
SampleTime  
;Turn ADC On  
;Acquisiton delay  
• Enable ADC interrupt  
• Enable peripheral interrupt  
• Enable global interrupt(1)  
4. Wait the required acquisition time(2)  
BSF  
BTFSC  
GOTO  
BANKSEL  
MOVF  
MOVWF  
BANKSEL  
MOVF  
ADCON0,ADGO ;Start conversion  
ADCON0,ADGO ;Is conversion done?  
$-1  
ADRESH  
;No, test again  
;
.
5. Start conversion by setting the GO/DONE bit.  
ADRESH,W  
RESULTHI  
ADRESL  
;Read upper 2 bits  
;store in GPR space  
;
6. Wait for ADC conversion to complete by one of  
the following:  
ADRESL,W  
RESULTLO  
;Read lower 8 bits  
;Store in GPR space  
• Polling the GO/DONE bit  
MOVWF  
• Waiting for the ADC interrupt (interrupts  
enabled)  
7. Read ADC Result.  
8. Clear the ADC interrupt flag (required if interrupt  
is enabled).  
Note 1: The global interrupt can be disabled if the  
user is attempting to wake-up from Sleep  
and resume in-line code execution.  
2: Refer to Section 15.3 “A/D Acquisition  
Requirements”.  
DS40001569D-page 120  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
15.2.6  
ADC REGISTER DEFINITIONS  
The following registers are used to control the  
operation of the ADC.  
REGISTER 15-1: ADCON0: A/D CONTROL REGISTER 0  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
ADON  
CHS<4:0>  
GO/DONE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-2  
CHS<4:0>: Analog Channel Select bits  
00000= AN0  
00001= AN1  
00010= AN2  
00011= AN3  
00100= AN4  
00101= AN5(3)  
00110= AN6(3)  
00111= AN7(3)  
01000= AN8  
01001= AN9  
01010= AN10  
01011= AN11  
01100= AN12  
01101= AN13  
01110= Reserved. No channel connected.  
11100= Reserved. No channel connected.  
11101= Temperature Indicator(2)  
11110= Reserved. No channel connected.  
11111=FVR (Fixed Voltage Reference) Buffer 1 Output(1)  
GO/DONE: A/D Conversion Status bit  
bit 1  
bit 0  
1= A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.  
This bit is automatically cleared by hardware when the A/D conversion has completed.  
0= A/D conversion completed/not in progress  
ADON: ADC Enable bit  
1= ADC is enabled  
0= ADC is disabled and consumes no operating current  
Note 1: See Section 13.0 “Fixed Voltage Reference (FVR)” for more information.  
2: See Section 14.0 “Temperature Indicator Module” for more information.  
3: ADC channel is reserved on the PIC16LF1906 28-pin device.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 121  
 
PIC16LF1904/6/7  
REGISTER 15-2: ADCON1: A/D CONTROL REGISTER 1  
R/W-0/0  
ADFM  
R/W-0/0  
R/W-0/0  
R/W-0/0  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
ADCS<2:0>  
ADPREF<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
ADFM: A/D Result Format Select bit  
1= Right justified. Six Most Significant bits of ADRESH are set to ‘0’ when the conversion result is  
loaded.  
0= Left justified. Six Least Significant bits of ADRESL are set to ‘0’ when the conversion result is  
loaded.  
bit 6-4  
ADCS<2:0>: A/D Conversion Clock Select bits  
000= FOSC/2  
001= FOSC/8  
010= FOSC/32  
011= FRC (clock supplied from a dedicated RC oscillator)  
100= FOSC/4  
101= FOSC/16  
110= FOSC/64  
111= FRC (clock supplied from a dedicated RC oscillator)  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
ADPREF<1:0>: A/D Positive Voltage Reference Configuration bits  
00= VREF+ is connected to VDD  
01= Reserved  
10= VREF+ is connected to external VREF+ pin(1)  
11= Reserved  
Note 1: When selecting the FVR or the VREF+ pin as the source of the positive reference, be aware that a  
minimum voltage specification exists. See Section 22.0 “Electrical Specifications” for details.  
DS40001569D-page 122  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
REGISTER 15-3: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
bit 0  
ADRES<9:2>  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
ADRES<9:2>: ADC Result Register bits  
Upper eight bits of 10-bit conversion result  
REGISTER 15-4: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
ADRES<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-6  
bit 5-0  
ADRES<1:0>: ADC Result Register bits  
Lower two bits of 10-bit conversion result  
Reserved: Do not use.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 123  
 
 
PIC16LF1904/6/7  
REGISTER 15-5: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
ADRES<9:8>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-2  
bit 1-0  
Reserved: Do not use.  
ADRES<9:8>: ADC Result Register bits  
Upper two bits of 10-bit conversion result  
REGISTER 15-6: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
bit 0  
ADRES<7:0>  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-0  
ADRES<7:0>: ADC Result Register bits  
Lower eight bits of 10-bit conversion result  
DS40001569D-page 124  
2011-2016 Microchip Technology Inc.  
 
 
PIC16LF1904/6/7  
source impedance is decreased, the acquisition time  
may be decreased. After the analog input channel is  
selected (or changed), an A/D acquisition must be  
done before the conversion can be started. To calculate  
the minimum acquisition time, Equation 15-1 may be  
used. This equation assumes that 1/2 LSb error is used  
(1,024 steps for the ADC). The 1/2 LSb error is the  
maximum error allowed for the ADC to meet its  
specified resolution.  
15.3 A/D Acquisition Requirements  
For the ADC to meet its specified accuracy, the charge  
holding capacitor (CHOLD) must be allowed to fully  
charge to the input channel voltage level. The Analog  
Input model is shown in Figure 15-4. The source  
impedance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge  
the capacitor CHOLD. The sampling switch (RSS)  
impedance varies over the device voltage (VDD), refer  
to Figure 15-4. The maximum recommended  
impedance for analog sources is 10 k. As the  
EQUATION 15-1: ACQUISITION TIME EXAMPLE  
Temperature = 50°C and external impedance of 10k5.0V VDD  
Assumptions:  
TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient  
= TAMP + TC + TCOFF  
= 2µs + TC + Temperature - 25°C0.05µs/°C  
The value for TC can be approximated with the following equations:  
1
;[1] VCHOLD charged to within 1/2 lsb  
VAPPLIED1 -------------------------- = VCHOLD  
2n + 11  
TC  
---------  
RC  
VAPPLIED 1 e  
= VCHOLD  
;[2] VCHOLD charge response to VAPPLIED  
;combining [1] and [2]  
Tc  
--------  
RC  
1
= VAPPLIED1 --------------------------  
2n + 11  
VAPPLIED 1 e  
Note: Where n = number of bits of the ADC.  
Solving for TC:  
TC = CHOLDRIC + RSS + RSln(1/2047)  
= 12.5pF1k+ 7k+ 10kln(0.0004885)  
= 1.715µs  
Therefore:  
TACQ = 2µs + 1.715µs + 50°C- 25°C0.05µs/°C  
= 4.96µs  
Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.  
2: The charge holding capacitor (CHOLD) is not discharged after each conversion.  
3: The maximum recommended impedance for analog sources is 10 k. This is required to meet the pin  
leakage specification.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 125  
 
PIC16LF1904/6/7  
FIGURE 15-4:  
ANALOG INPUT MODEL  
Rev. 10-000070B  
8/5/2014  
VDD  
Sampling  
switch  
Analog  
VT § 0.6V  
VT § 0.6V  
SS  
Input pin  
RS  
RIC ” 1K  
RSS  
(1)  
ILEAKAGE  
CHOLD = 12.5 pF  
Ref-  
CPIN  
5pF  
VA  
6V  
5V  
Legend: CHOLD  
CPIN  
= Sample/Hold Capacitance  
= Input Capacitance  
VDD 4V  
3V  
RSS  
ILEAKAGE = Leakage Current at the pin due to varies injunctions  
2V  
RIC  
RSS  
SS  
VT  
= Interconnect Resistance  
= Resistance of Sampling switch  
= Sampling Switch  
5 6 7 8 91011  
Sampling Switch  
= Threshold Voltage  
(kŸ )  
Note 1: Refer to Section 22.0 “Electrical Specifications”.  
FIGURE 15-5:  
ADC TRANSFER FUNCTION  
Full-Scale Range  
3FFh  
3FEh  
3FDh  
3FCh  
3FBh  
03h  
02h  
01h  
00h  
Analog Input Voltage  
1.5 LSB  
0.5 LSB  
Zero-Scale  
Transition  
VREF-  
Full-Scale  
Transition  
VREF+  
DS40001569D-page 126  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
TABLE 15-2: SUMMARY OF REGISTERS ASSOCIATED WITH ADC  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
121  
122  
ADCON0  
ADCON1  
ADRESH  
CHS4  
CHS3  
CHS2  
CHS1  
CHS0  
GO/DONE  
ADON  
ADFM  
ADCS2  
ADCS1  
ADCS0  
ADPREF1 ADPREF0  
A/D Result Register High  
A/D Result Register Low  
123, 124  
123, 124  
96  
ADRESL  
ANSELA  
ANSELB  
INTCON  
ANSA5  
ANSB5  
TMR0IE  
ANSA3  
ANSB3  
IOCIE  
ANSA2  
ANSB2  
TMR0IF  
ANSA1  
ANSB1  
INTF  
ANSA0  
ANSB0  
IOCIF  
ANSB4  
INTE  
99  
GIE  
PEIE  
65  
TMR1GIE  
TMR1GIF  
TRISA7  
TRISB7  
FVREN  
PIE1  
ADIE  
ADIF  
RCIE  
RCIF  
TXIE  
TXIF  
TMR1IE  
TMR1IF  
TRISA0  
TRISB0  
ADFVR0  
66  
PIR1  
68  
TRISA  
TRISB  
FVRCON  
Legend:  
TRISA6  
TRISB6  
FVRRDY  
TRISA5  
TRISB5  
TSEN  
TRISA4  
TRISB4  
TSRNG  
TRISA3  
TRISB3  
TRISA2  
TRISB2  
TRISA1  
TRISB1  
ADFVR1  
95  
98  
113  
x= unknown, u= unchanged, = unimplemented read as ‘0’, q= value depends on condition. Shaded cells are not  
used for ADC module.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 127  
PIC16LF1904/6/7  
16.1.2  
8-BIT COUNTER MODE  
16.0 TIMER0 MODULE  
In 8-Bit Counter mode, the Timer0 module will increment  
on every rising or falling edge of the T0CKI pin.  
The Timer0 module is an 8-bit timer/counter with the  
following features:  
8-Bit Counter mode using the T0CKI pin is selected by  
setting the TMR0CS bit in the OPTION_REG register to  
1’ .  
• 8-bit timer/counter register (TMR0)  
• 8-bit prescaler (independent of Watchdog Timer)  
• Programmable internal or external clock source  
• Programmable external clock edge selection  
• Interrupt on overflow  
The rising or falling transition of the incrementing edge  
is determined by the TMR0SE bit in the OPTION_REG  
register.  
• TMR0 can be used to gate Timer1  
Figure 16-1 is a block diagram of the Timer0 module.  
16.1 Timer0 Operation  
The Timer0 module can be used as either an 8-bit timer  
or an 8-bit counter.  
16.1.1  
8-BIT TIMER MODE  
The Timer0 module will increment every instruction  
cycle, if used without a prescaler. 8-Bit Timer mode is  
selected by clearing the TMR0CS bit of the  
OPTION_REG register.  
When TMR0 is written, the increment is inhibited for  
two instruction cycles immediately following the write.  
Note:  
The value written to the TMR0 register  
can be adjusted, in order to account for  
the two instruction cycle delay when  
TMR0 is written.  
FIGURE 16-1:  
BLOCK DIAGRAM OF THE TIMER0  
FOSC/4  
Data Bus  
0
1
8
T0CKI  
1
Sync  
TMR0  
2 TCY  
0
Set Flag bit TMR0IF  
on Overflow  
PSA  
TMR0SE  
TMR0CS  
8-bit  
Prescaler  
Overflow to Timer1  
8
PS<2:0>  
DS40001569D-page 128  
2011-2016 Microchip Technology Inc.  
 
 
PIC16LF1904/6/7  
16.1.3  
SOFTWARE PROGRAMMABLE  
PRESCALER  
A software programmable prescaler is available for  
exclusive use with Timer0. The prescaler is enabled by  
clearing the PSA bit of the OPTION_REG register.  
Note:  
The Watchdog Timer (WDT) uses its own  
independent prescaler.  
There are eight prescaler options for the Timer0 mod-  
ule ranging from 1:2 to 1:256. The prescale values are  
selectable via the PS<2:0> bits of the OPTION_REG  
register. In order to have a 1:1 prescaler value for the  
Timer0 module, the prescaler must be disabled by set-  
ting the PSA bit of the OPTION_REG register.  
The prescaler is not readable or writable. All instructions  
writing to the TMR0 register will clear the prescaler.  
16.1.4  
TIMER0 INTERRUPT  
Timer0 will generate an interrupt when the TMR0  
register overflows from FFh to 00h. The TMR0IF  
interrupt flag bit of the INTCON register is set every  
time the TMR0 register overflows, regardless of  
whether or not the Timer0 interrupt is enabled. The  
TMR0IF bit can only be cleared in software. The Timer0  
interrupt enable is the TMR0IE bit of the INTCON  
register.  
Note:  
The Timer0 interrupt cannot wake the pro-  
cessor from Sleep since the timer is fro-  
zen during Sleep.  
16.1.5  
8-BIT COUNTER MODE  
SYNCHRONIZATION  
When in 8-Bit Counter mode, the incrementing edge on  
the T0CKI pin must be synchronized to the instruction  
clock. Synchronization can be accomplished by  
sampling the prescaler output on the Q2 and Q4 cycles  
of the instruction clock. The high and low periods of the  
external clocking source must meet the timing  
requirements as shown in Section 22.0 “Electrical  
Specifications”.  
16.1.6  
OPERATION DURING SLEEP  
Timer0 cannot operate while the processor is in Sleep  
mode. The contents of the TMR0 register will remain  
unchanged while the processor is in Sleep mode.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 129  
PIC16LF1904/6/7  
REGISTER 16-1: OPTION_REG: OPTION REGISTER  
R/W-1/1  
WPUEN  
R/W-1/1  
INTEDG  
R/W-1/1  
R/W-1/1  
R/W-1/1  
PSA  
R/W-1/1  
R/W-1/1  
PS<2:0>  
R/W-1/1  
bit 0  
TMR0CS  
TMR0SE  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
WPUEN: Weak Pull-up Enable bit  
1= All weak pull-ups are disabled (except MCLR, if it is enabled)  
0= Weak pull-ups are enabled by individual WPUx latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of INT pin  
0= Interrupt on falling edge of INT pin  
TMR0CS: Timer0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (FOSC/4)  
TMR0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is not assigned to the Timer0 module  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
Bit Value  
Timer0 Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
TABLE 16-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0  
Register  
on Page  
Name  
INTCON  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
GIE  
PEIE  
TMR0IE  
INTE  
IOCIE  
PSA  
TMR0IF  
INTF  
IOCIF  
65  
130  
128*  
95  
OPTION_REG WPUEN INTEDG TMR0CS TMR0SE  
PS<2:0>  
TMR0  
TRISA  
Timer0 Module Register  
TRISA7 TRISA6 TRISA5 TRISA4  
TRISA3  
TRISA2  
TRISA1 TRISA0  
Legend: — = Unimplemented location, read as ‘0’. Shaded cells are not used by the Timer0 module.  
Page provides register information.  
*
DS40001569D-page 130  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
Figure 17-1 is a block diagram of the Timer1 module.  
17.0 TIMER1 MODULE WITH GATE  
CONTROL  
The Timer1 module is a 16-bit timer/counter with the  
following features:  
• 16-bit timer/counter register pair (TMR1H:TMR1L)  
• Programmable internal or external clock source  
• 2-bit prescaler  
• Dedicated 32 kHz oscillator circuit  
• Multiple Timer1 gate (count enable) sources  
• Interrupt on overflow  
• Wake-up on overflow (external clock,  
Asynchronous mode only)  
• Selectable Gate Source Polarity  
• Gate Toggle mode  
• Gate Single-pulse mode  
• Gate Value Status  
• Gate Event Interrupt  
FIGURE 17-1:  
T1GSS<1:0>  
T1G  
TIMER1 BLOCK DIAGRAM  
T1GSPM  
0
From Timer0  
Overflow  
0
1
T1G_IN  
D
Data Bus  
T1GVAL  
0
1
D
Q
Single Pulse  
Acq. Control  
RD  
1
T1GCON  
Q1 EN  
Q
Q
Interrupt  
Set  
TMR1GIF  
T1GGO/DONE  
CK  
R
TMR1ON  
T1GTM  
det  
T1GPOL  
TMR1GE  
Set flag bit  
TMR1IF on  
Overflow  
TMR1ON  
TMR1(2)  
EN  
D
Synchronized  
clock input  
0
T1CLK  
TMR1H  
TMR1L  
Q
1
TMR1CS<1:0>  
Reserved  
T1SYNC  
T1OSO  
T1OSI  
OUT  
11  
10  
Synchronize(3)  
det  
T1OSC  
EN  
Prescaler  
1, 2, 4, 8  
1
0
2
T1CKPS<1:0>  
FOSC  
Internal  
Clock  
01  
00  
FOSC/2  
Internal  
Clock  
T1OSCEN  
Sleep input  
FOSC/4  
Internal  
Clock  
(1)  
T1CKI  
To LCD and Clock Switching Modules  
Note 1: ST Buffer is high speed type when using T1CKI.  
2: Timer1 register increments on rising edge.  
3: Synchronize does not operate while in Sleep.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 131  
 
PIC16LF1904/6/7  
17.1 Timer1 Operation  
17.2 Clock Source Selection  
The Timer1 module is a 16-bit incrementing counter  
which is accessed through the TMR1H:TMR1L register  
pair. Writes to TMR1H or TMR1L directly update the  
counter.  
The TMR1CS<1:0> and T1OSCEN bits of the T1CON  
register are used to select the clock source for Timer1.  
Table 17-2 displays the clock source selections.  
17.2.1  
INTERNAL CLOCK SOURCE  
When used with an internal clock source, the module is  
a timer and increments on every instruction cycle.  
When used with an external clock source, the module  
can be used as either a timer or counter and incre-  
ments on every selected edge of the external source.  
When the internal clock source is selected, the  
TMR1H:TMR1L register pair will increment on multiples  
of FOSC as determined by the Timer1 prescaler.  
When the FOSC internal clock source is selected, the  
Timer1 register value will increment by four counts every  
instruction clock cycle. Due to this condition, a 2 LSB  
error in resolution will occur when reading the Timer1  
value. To utilize the full resolution of Timer1, an  
asynchronous input signal must be used to gate the  
Timer1 clock input.  
Timer1 is enabled by configuring the TMR1ON and  
TMR1GE bits in the T1CON and T1GCON registers,  
respectively. Table 17-1 displays the Timer1 enable  
selections.  
TABLE 17-1: TIMER1 ENABLE  
SELECTIONS  
The following asynchronous source may be used:  
• Asynchronous event on the T1G pin to Timer1  
gate  
Timer1  
Operation  
TMR1ON  
TMR1GE  
17.2.2  
EXTERNAL CLOCK SOURCE  
0
0
1
1
0
1
0
1
Off  
Off  
When the external clock source is selected, the Timer1  
module may work as a timer or a counter.  
Always On  
When enabled to count, Timer1 is incremented on the  
rising edge of the external clock input T1CKI or the  
capacitive sensing oscillator signal. Either of these  
external clock sources can be synchronized to the  
microcontroller system clock or they can run  
asynchronously.  
Count Enabled  
When used as a timer with a clock oscillator, an  
external 32.768 kHz crystal can be used in conjunction  
with the dedicated internal oscillator circuit.  
Note:  
In Counter mode, a falling edge must be  
registered by the counter prior to the first  
incrementing rising edge after any one or  
more of the following conditions:  
• Timer1 enabled after POR  
• Write to TMR1H or TMR1L  
• Timer1 is disabled  
• Timer1 is disabled (TMR1ON = 0)  
when T1CKI is high then Timer1 is  
enabled (TMR1ON = 1) when T1CKI  
is low.  
TABLE 17-2: CLOCK SOURCE SELECTIONS  
TMR1CS1  
TMR1CS0  
T1OSCEN  
Clock Source  
0
0
1
1
1
0
1
0
0
1
x
x
0
1
x
Instruction Clock (FOSC/4)  
System Clock (FOSC)  
External Clocking on T1CKI Pin  
Osc. Circuit on T1OSI/T1OSO Pins  
Reserved  
DS40001569D-page 132  
2011-2016 Microchip Technology Inc.  
 
 
PIC16LF1904/6/7  
17.5.1  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER  
MODE  
17.3 Timer1 Prescaler  
Timer1 has four prescaler options allowing 1, 2, 4 or 8  
divisions of the clock input. The T1CKPS bits of the  
T1CON register control the prescale counter. The  
prescale counter is not directly readable or writable;  
however, the prescaler counter is cleared upon a write to  
TMR1H or TMR1L.  
Reading TMR1H or TMR1L while the timer is running  
from an external asynchronous clock will ensure a valid  
read (taken care of in hardware). However, the user  
should keep in mind that reading the 16-bit timer in two  
8-bit values itself, poses certain problems, since the  
timer may overflow between the reads.  
17.4 Timer1 Oscillator  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write  
contention may occur by writing to the timer registers,  
while the register is incrementing. This may produce an  
unpredictable value in the TMR1H:TMR1L register pair.  
A dedicated low-power 32.768 kHz oscillator circuit is  
built-in between pins T1OSI (input) and T1OSO. This  
internal circuit is to be used in conjunction with an  
external 32.768 kHz crystal.  
The oscillator circuit is enabled by setting the  
T1OSCEN bit of the T1CON register. The oscillator will  
continue to run during Sleep.  
17.6 Timer1 Gate  
Timer1 can be configured to count freely or the count  
can be enabled and disabled using Timer1 gate  
circuitry. This is also referred to as Timer1 Gate Enable.  
Note:  
The oscillator requires a start-up and  
stabilization time before use. Thus,  
T1OSCEN should be set and a suitable  
delay observed prior to using Timer1. A  
suitable delay similar to the OST delay  
can be implemented in software by  
clearing the TMR1IF bit then presetting  
the TMR1H:TMR1L register pair to  
FC00h. The TMR1IF flag will be set when  
1024 clock cycles have elapsed, thereby  
indicating that the oscillator is running and  
reasonably stable.  
Timer1 gate can also be driven by multiple selectable  
sources.  
17.6.1  
TIMER1 GATE ENABLE  
The Timer1 Gate Enable mode is enabled by setting  
the TMR1GE bit of the T1GCON register. The polarity  
of the Timer1 Gate Enable mode is configured using  
the T1GPOL bit of the T1GCON register.  
When Timer1 Gate Enable mode is enabled, Timer1  
will increment on the rising edge of the Timer1 clock  
source. When Timer1 Gate Enable mode is disabled,  
no incrementing will occur and Timer1 will hold the  
current count. See Figure 17-3 for timing details.  
17.5 Timer1 Operation in  
Asynchronous Counter Mode  
If control bit T1SYNC of the T1CON register is set, the  
external clock input is not synchronized. The timer  
increments asynchronously to the internal phase  
clocks. If the external clock source is selected then the  
timer will continue to run during Sleep and can  
generate an interrupt on overflow, which will wake-up  
the processor. However, special precautions in  
software are needed to read/write the timer (see  
Section 17.5.1 “Reading and Writing Timer1 in  
Asynchronous Counter Mode”).  
TABLE 17-3: TIMER1 GATE ENABLE  
SELECTIONS  
T1CLK T1GPOL  
T1G  
Timer1 Operation  
0
0
1
1
0
1
0
1
Counts  
Holds Count  
Holds Count  
Counts  
Note:  
When switching from synchronous to  
asynchronous operation, it is possible to  
skip an increment. When switching from  
asynchronous to synchronous operation,  
it is possible to produce an additional  
increment.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 133  
 
PIC16LF1904/6/7  
17.6.2  
TIMER1 GATE SOURCE  
SELECTION  
17.6.4  
TIMER1 GATE SINGLE-PULSE  
MODE  
The Timer1 gate source can be selected from one of  
four different sources. Source selection is controlled by  
the T1GSS bits of the T1GCON register. The polarity  
for each available source is also selectable. Polarity  
selection is controlled by the T1GPOL bit of the  
T1GCON register.  
When Timer1 Gate Single-Pulse mode is enabled, it is  
possible to capture a single pulse gate event. Timer1  
Gate Single-Pulse mode is first enabled by setting the  
T1GSPM bit in the T1GCON register. Next, the  
T1GGO/DONE bit in the T1GCON register must be set.  
The Timer1 will be fully enabled on the next incrementing  
edge. On the next trailing edge of the pulse, the  
T1GGO/DONE bit will automatically be cleared. No other  
gate events will be allowed to increment Timer1 until the  
T1GGO/DONE bit is once again set in software. See  
Figure 17-5 for timing details.  
TABLE 17-4: TIMER1 GATE SOURCES  
T1GSS  
Timer1 Gate Source  
Timer1 Gate Pin  
00  
01  
Overflow of Timer0  
If the Single Pulse Gate mode is disabled by clearing the  
T1GSPM bit in the T1GCON register, the T1GGO/DONE  
bit should also be cleared.  
(TMR0 increments from FFh to 00h)  
17.6.2.1  
T1G Pin Gate Operation  
Enabling the Toggle mode and the Single-Pulse mode  
simultaneously will permit both sections to work  
together. This allows the cycle times on the Timer1 gate  
source to be measured. See Figure 17-6 for timing  
details.  
The T1G pin is one source for Timer1 gate control. It  
can be used to supply an external source to the Timer1  
gate circuitry.  
17.6.2.2  
Timer0 Overflow Gate Operation  
17.6.5  
TIMER1 GATE VALUE STATUS  
When Timer0 increments from FFh to 00h,  
a
When Timer1 Gate Value Status is utilized, it is possible  
to read the most current level of the gate control value.  
The value is stored in the T1GVAL bit in the T1GCON  
register. The T1GVAL bit is valid even when the Timer1  
gate is not enabled (TMR1GE bit is cleared).  
low-to-high pulse will automatically be generated and  
internally supplied to the Timer1 gate circuitry.  
17.6.3  
TIMER1 GATE TOGGLE MODE  
When Timer1 Gate Toggle mode is enabled, it is possi-  
ble to measure the full-cycle length of a Timer1 gate  
signal, as opposed to the duration of a single level  
pulse.  
17.6.6  
TIMER1 GATE EVENT INTERRUPT  
When Timer1 Gate Event Interrupt is enabled, it is pos-  
sible to generate an interrupt upon the completion of a  
gate event. When the falling edge of T1GVAL occurs,  
the TMR1GIF flag bit in the PIR1 register will be set. If  
the TMR1GIE bit in the PIE1 register is set, then an  
interrupt will be recognized.  
The Timer1 gate source is routed through a flip-flop that  
changes state on every incrementing edge of the  
signal. See Figure 17-4 for timing details.  
Timer1 Gate Toggle mode is enabled by setting the  
T1GTM bit of the T1GCON register. When the T1GTM  
bit is cleared, the flip-flop is cleared and held clear. This  
is necessary in order to control which edge is  
measured.  
The TMR1GIF flag bit operates even when the Timer1  
gate is not enabled (TMR1GE bit is cleared).  
Note:  
Enabling Toggle mode at the same time  
as changing the gate polarity may result in  
indeterminate operation.  
DS40001569D-page 134  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
17.7 Timer1 Interrupt  
17.8 Timer1 Operation During Sleep  
The Timer1 register pair (TMR1H:TMR1L) increments  
to FFFFh and rolls over to 0000h. When Timer1 rolls  
over, the Timer1 interrupt flag bit of the PIR1 register is  
set. To enable the interrupt on rollover, you must set  
these bits:  
Timer1 can only operate during Sleep when setup in  
Asynchronous Counter mode. In this mode, an external  
crystal or clock source can be used to increment the  
counter. To set up the timer to wake the device:  
• TMR1ON bit of the T1CON register must be set  
• TMR1IE bit of the PIE1 register must be set  
• PEIE bit of the INTCON register must be set  
• T1SYNC bit of the T1CON register must be set  
• TMR1ON bit of the T1CON register  
• TMR1IE bit of the PIE1 register  
• PEIE bit of the INTCON register  
• GIE bit of the INTCON register  
• TMR1CS bits of the T1CON register must be  
configured  
The interrupt is cleared by clearing the TMR1IF bit in  
the Interrupt Service Routine.  
• T1OSCEN bit of the T1CON register must be  
configured  
Note:  
The TMR1H:TMR1L register pair and the  
TMR1IF bit should be cleared before  
enabling interrupts.  
The device will wake-up on an overflow and execute  
the next instructions. If the GIE bit of the INTCON  
register is set, the device will call the Interrupt Service  
Routine.  
Timer1 oscillator will continue to operate in Sleep  
regardless of the T1SYNC bit setting.  
FIGURE 17-2:  
TIMER1 INCREMENTING EDGE  
T1CKI = 1  
when TMR1  
Enabled  
T1CKI = 0  
when TMR1  
Enabled  
Note 1: Arrows indicate counter increments.  
2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 135  
 
PIC16LF1904/6/7  
FIGURE 17-3:  
TIMER1 GATE ENABLE MODE  
TMR1GE  
T1GPOL  
T1G_IN  
T1CKI  
T1GVAL  
Timer1  
N
N + 1  
N + 2  
N + 3  
N + 4  
FIGURE 17-4:  
TIMER1 GATE TOGGLE MODE  
TMR1GE  
T1GPOL  
T1GTM  
T1G_IN  
T1CKI  
T1GVAL  
Timer1  
N
N + 1 N + 2 N + 3 N + 4  
N + 5 N + 6 N + 7 N + 8  
DS40001569D-page 136  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
FIGURE 17-5:  
TIMER1 GATE SINGLE-PULSE MODE  
TMR1GE  
T1GPOL  
T1GSPM  
Cleared by hardware on  
falling edge of T1GVAL  
T1GGO/  
DONE  
Set by software  
Counting enabled on  
rising edge of T1G  
T1G_IN  
T1CKI  
T1GVAL  
Timer1  
N
N + 1  
N + 2  
Cleared by  
software  
Set by hardware on  
falling edge of T1GVAL  
Cleared by software  
TMR1GIF  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 137  
PIC16LF1904/6/7  
FIGURE 17-6:  
TMR1GE  
T1GPOL  
TIMER1 GATE SINGLE-PULSE AND TOGGLE COMBINED MODE  
T1GSPM  
T1GTM  
Cleared by hardware on  
falling edge of T1GVAL  
T1GGO/  
DONE  
Set by software  
Counting enabled on  
rising edge of T1G  
T1G_IN  
T1CKI  
T1GVAL  
Timer1  
N + 4  
N + 2 N + 3  
N
N + 1  
Set by hardware on  
falling edge of T1GVAL  
Cleared by  
software  
Cleared by software  
TMR1GIF  
DS40001569D-page 138  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
17.9 Timer1 Control Register  
The Timer1 Control register (T1CON), shown in  
Register 17-1, is used to control Timer1 and select the  
various features of the Timer1 module.  
REGISTER 17-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0/u  
R/W-0/u  
R/W-0/u  
R/W-0/u  
R/W-0/u  
R/W-0/u  
T1SYNC  
U-0  
R/W-0/u  
TMR1CS<1:0>  
T1CKPS<1:0>  
T1OSCEN  
TMR1ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-6  
TMR1CS<1:0>: Timer1 Clock Source Select bits  
11=Reserved  
10=Timer1 clock source is pin or oscillator:  
If T1OSCEN = 0:  
External clock from T1CKI pin (on the rising edge)  
If T1OSCEN = 1:  
Crystal oscillator on T1OSI/T1OSO pins  
01=Timer1 clock source is system clock (FOSC)  
00=Timer1 clock source is instruction clock (FOSC/4)  
bit 5-4  
T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: LP Oscillator Enable Control bit  
1= Dedicated Timer1 oscillator circuit enabled  
0= Dedicated Timer1 oscillator circuit disabled  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS<1:0> = 1X  
1= Do not synchronize external clock input  
0= Synchronize external clock input with system clock (FOSC)  
TMR1CS<1:0> = 0X  
This bit is ignored. Timer1 uses the internal clock when TMR1CS<1:0> = 1X.  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1  
Clears Timer1 gate flip-flop  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 139  
 
 
PIC16LF1904/6/7  
17.10 Timer1 Gate Control Register  
The Timer1 Gate Control register (T1GCON), shown in  
Register 17-2, is used to control Timer1 gate.  
REGISTER 17-2: T1GCON: TIMER1 GATE CONTROL REGISTER  
R/W-0/u  
R/W-0/u  
T1GPOL  
R/W-0/u  
T1GTM  
R/W-0/u  
R/W/HC-0/u  
R-x/x  
R/W-0/u  
R/W-0/u  
TMR1GE  
T1GSPM  
T1GGO/  
DONE  
T1GVAL  
T1GSS<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
-n/n = Value at POR and BOR/Value at all other Resets  
HC = Bit is cleared by hardware  
bit 7  
TMR1GE: Timer1 Gate Enable bit  
If TMR1ON = 0:  
This bit is ignored  
If TMR1ON = 1:  
1= Timer1 counting is controlled by the Timer1 gate function  
0= Timer1 counts regardless of Timer1 gate function  
bit 6  
bit 5  
T1GPOL: Timer1 Gate Polarity bit  
1= Timer1 gate is active-high (Timer1 counts when gate is high)  
0= Timer1 gate is active-low (Timer1 counts when gate is low)  
T1GTM: Timer1 Gate Toggle Mode bit  
1= Timer1 Gate Toggle mode is enabled  
0= Timer1 Gate Toggle mode is disabled and toggle flip-flop is cleared  
Timer1 gate flip-flop toggles on every rising edge.  
bit 4  
T1GSPM: Timer1 Gate Single-Pulse Mode bit  
1= Timer1 gate Single-Pulse mode is enabled and is controlling Timer1 gate  
0= Timer1 gate Single-Pulse mode is disabled  
bit 3  
T1GGO/DONE: Timer1 Gate Single-Pulse Acquisition Status bit  
1= Timer1 gate single-pulse acquisition is ready, waiting for an edge  
0= Timer1 gate single-pulse acquisition has completed or has not been started  
bit 2  
T1GVAL: Timer1 Gate Current State bit  
Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L.  
Unaffected by Timer1 Gate Enable (TMR1GE).  
bit 1-0  
T1GSS<1:0>: Timer1 Gate Source Select bits  
00= Timer1 gate pin  
01= Timer0 overflow output  
10= Reserved  
11= Reserved  
DS40001569D-page 140  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
TABLE 17-5: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE  
PEIE  
ADIE  
ADIF  
TMR0IE  
RCIE  
INTE  
TXIE  
TXIF  
IOCIE  
TMR0IF  
INTF  
IOCIF  
TMR1IE  
TMR1IF  
65  
66  
TMR1GIE  
TMR1GIF  
PIE1  
PIR1  
RCIF  
68  
TMR1H  
TMR1L  
TRISC  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
135*  
135*  
101  
139  
140  
TRISC7  
TRISC6  
TRISC5  
TRISC4  
TRISC3  
TRISC2 TRISC1 TRISC0  
TMR1ON  
TMR1CS1 TMR1CS0  
TMR1GE T1GPOL  
T1CKPS<1:0>  
T1OSCEN T1SYNC  
T1CON  
T1GTM T1GSPM T1GGO/ T1GVAL T1GSS1 T1GSS0  
DONE  
T1GCON  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by the Timer1 module.  
Page provides register information.  
*
2011-2016 Microchip Technology Inc.  
DS40001569D-page 141  
PIC16LF1904/6/7  
The EUSART module includes the following capabilities:  
18.0 ENHANCED UNIVERSAL  
SYNCHRONOUS  
• Full-duplex asynchronous transmit and receive  
• Two-character input buffer  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (EUSART)  
• One-character output buffer  
• Programmable 8-bit or 9-bit character length  
• Address detection in 9-bit mode  
The Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART) module is a serial I/O  
communications peripheral. It contains all the clock  
generators, shift registers and data buffers necessary  
to perform an input or output serial data transfer  
independent of device program execution. The  
EUSART, also known as a Serial Communications  
Interface (SCI), can be configured as a full-duplex  
asynchronous system or half-duplex synchronous  
• Input buffer overrun error detection  
• Received character framing error detection  
• Half-duplex synchronous master  
• Half-duplex synchronous slave  
• Programmable clock and data polarity  
The EUSART module implements the following  
additional features, making it ideally suited for use in  
Local Interconnect Network (LIN) bus systems:  
system.  
Full-Duplex  
mode  
is  
useful  
for  
communications with peripheral systems, such as CRT  
terminals and personal computers. Half-Duplex  
Synchronous mode is intended for communications  
with peripheral devices, such as A/D or D/A integrated  
circuits, serial EEPROMs or other microcontrollers.  
These devices typically do not have internal clocks for  
baud rate generation and require the external clock  
signal provided by a master synchronous device.  
• Automatic detection and calibration of the baud rate  
• Wake-up on Break reception  
• 13-bit Break character transmit  
Block diagrams of the EUSART transmitter and  
receiver are shown in Figure 18-1 and Figure 18-2.  
FIGURE 18-1:  
EUSART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIE  
Interrupt  
TXIF  
TXREG Register  
8
TX/CK pin  
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
• • •  
Transmit Shift Register (TSR)  
TXEN  
TRMT  
Baud Rate Generator  
BRG16  
FOSC  
÷ n  
TX9  
n
+ 1  
Multiplier x4  
x16 x64  
TX9D  
SYNC  
BRGH  
BRG16  
1
X
X
X
1
1
0
1
0
0
0
1
0
0
0
SPBRGH SPBRGL  
DS40001569D-page 142  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
FIGURE 18-2:  
EUSART RECEIVE BLOCK DIAGRAM  
CREN  
OERR  
RCIDL  
RX/DT pin  
RSR Register  
MSb  
Stop (8)  
LSb  
0
START  
Pin Buffer  
and Control  
Data  
Recovery  
7
1
• • •  
Baud Rate Generator  
FOSC  
RX9  
÷ n  
BRG16  
n
+ 1  
Multiplier x4  
x16 x64  
SYNC  
BRGH  
BRG16  
1
X
X
X
1
1
0
1
0
0
0
1
0
0
0
FIFO  
SPBRGH SPBRGL  
RX9D  
FERR  
RCREG Register  
8
Data Bus  
RCIF  
RCIE  
Interrupt  
The operation of the EUSART module is controlled  
through three registers:  
• Transmit Status and Control (TXSTA)  
• Receive Status and Control (RCSTA)  
• Baud Rate Control (BAUDCON)  
These registers are detailed in Register 18-1,  
Register 18-2 and Register 18-3, respectively.  
For all modes of EUSART operation, the TRIS control  
bits corresponding to the RX/DT and TX/CK pins should  
be set to ‘1’. The EUSART control will automatically  
reconfigure the pin from input to output, as needed.  
When the receiver or transmitter section is not enabled  
then the corresponding RX/DT or TX/CK pin may be  
used for general purpose input and output.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 143  
 
PIC16LF1904/6/7  
18.1.1.2  
Transmitting Data  
18.1 EUSART Asynchronous Mode  
A transmission is initiated by writing a character to the  
TXREG register. If this is the first character, or the  
previous character has been completely flushed from  
the TSR, the data in the TXREG is immediately  
transferred to the TSR register. If the TSR still contains  
all or part of a previous character, the new character  
data is held in the TXREG until the Stop bit of the  
previous character has been transmitted. The pending  
character in the TXREG is then transferred to the TSR  
in one TCY immediately following the Stop bit  
transmission. The transmission of the Start bit, data bits  
and Stop bit sequence commences immediately  
following the transfer of the data to the TSR from the  
TXREG.  
The EUSART transmits and receives data using the  
standard non-return-to-zero (NRZ) format. NRZ is  
implemented with two levels: a VOH Mark state which  
represents a ‘1’ data bit, and a VOL Space state which  
represents a ‘0’ data bit. NRZ refers to the fact that  
consecutively transmitted data bits of the same value  
stay at the output level of that bit without returning to a  
neutral level between each bit transmission. An NRZ  
transmission port idles in the Mark state. Each character  
transmission consists of one Start bit followed by eight  
or nine data bits and is always terminated by one or  
more Stop bits. The Start bit is always a space and the  
Stop bits are always marks. The most common data  
format is eight bits. Each transmitted bit persists for a  
period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-  
bit Baud Rate Generator is used to derive standard  
baud rate frequencies from the system oscillator. See  
Table 18-5 for examples of baud rate configurations.  
18.1.1.3  
Transmit Data Polarity  
The polarity of the transmit data can be controlled with  
the SCKP bit of the BAUDCON register. The default  
state of this bit is ‘0’ which selects high true transmit  
Idle and data bits. Setting the SCKP bit to ‘1’ will invert  
the transmit data resulting in low true Idle and data bits.  
The SCKP bit controls transmit data polarity only in  
Asynchronous mode. In Synchronous mode the SCKP  
bit has a different function. See Section 18.5.1.2  
“Clock Polarity”.  
The EUSART transmits and receives the LSb first. The  
EUSART’s transmitter and receiver are functionally  
independent, but share the same data format and baud  
rate. Parity is not supported by the hardware, but can  
be implemented in software and stored as the ninth  
data bit.  
18.1.1  
EUSART ASYNCHRONOUS  
TRANSMITTER  
18.1.1.4  
Transmit Interrupt Flag  
The TXIF interrupt flag bit of the PIR1 register is set  
whenever the EUSART transmitter is enabled and no  
character is being held for transmission in the TXREG.  
In other words, the TXIF bit is only clear when the TSR  
is busy with a character and a new character has been  
queued for transmission in the TXREG. The TXIF flag bit  
is not cleared immediately upon writing TXREG. TXIF  
becomes valid in the second instruction cycle following  
the write execution. Polling TXIF immediately following  
the TXREG write will return invalid results. The TXIF bit  
is read-only, it cannot be set or cleared by software.  
The EUSART transmitter block diagram is shown in  
Figure 18-1. The heart of the transmitter is the serial  
Transmit Shift Register (TSR), which is not directly  
accessible by software. The TSR obtains its data from  
the transmit buffer, which is the TXREG register.  
18.1.1.1  
Enabling the Transmitter  
The EUSART transmitter is enabled for asynchronous  
operations by configuring the following three control  
bits:  
• TXEN = 1  
• SYNC = 0  
• SPEN = 1  
The TXIF interrupt can be enabled by setting the TXIE  
interrupt enable bit of the PIE1 register. However, the  
TXIF flag bit will be set whenever the TXREG is empty,  
regardless of the state of the TXIE enable bit.  
All other EUSART control bits are assumed to be in  
their default state.  
To use interrupts when transmitting data, set the TXIE  
bit only when there is more data to send. Clear the  
TXIE interrupt enable bit upon writing the last character  
of the transmission to the TXREG.  
Setting the TXEN bit of the TXSTA register enables the  
transmitter circuitry of the EUSART. Clearing the SYNC  
bit of the TXSTA register configures the EUSART for  
asynchronous operation. Setting the SPEN bit of the  
RCSTA register enables the EUSART. The programmer  
must set the corresponding TRIS bit to configure the TX/  
CK I/O pin as an output. If the TX/CK pin is shared with  
an analog peripheral, the analog I/O function must be  
disabled by clearing the corresponding ANSEL bit.  
Note:  
The TXIF transmitter interrupt flag is set  
when the TXEN enable bit is set.  
DS40001569D-page 144  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
18.1.1.5  
TSR Status  
18.1.1.7  
Asynchronous Transmission Set-up:  
The TRMT bit of the TXSTA register indicates the  
status of the TSR register. This is a read-only bit. The  
TRMT bit is set when the TSR register is empty and is  
cleared when a character is transferred to the TSR  
register from the TXREG. The TRMT bit remains clear  
until all bits have been shifted out of the TSR register.  
No interrupt logic is tied to this bit, so the user needs to  
poll this bit to determine the TSR status.  
1. Initialize the SPBRGH:SPBRGL register pair and  
the BRGH and BRG16 bits to achieve the desired  
baud rate (see Section 18.4 “EUSART Baud  
Rate Generator (BRG)”).  
2. Set the RX/DT and TX/CK TRIS controls to ‘1’.  
3. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
4. If 9-bit transmission is desired, set the TX9  
control bit. A set ninth data bit will indicate that  
the eight Least Significant data bits are an  
address when the receiver is set for address  
detection.  
Note:  
The TSR register is not mapped in data  
memory, so it is not available to the user.  
18.1.1.6  
Transmitting 9-Bit Characters  
The EUSART supports 9-bit character transmissions.  
When the TX9 bit of the TXSTA register is set, the  
EUSART will shift 9 bits out for each character transmit-  
ted. The TX9D bit of the TXSTA register is the ninth,  
and Most Significant, data bit. When transmitting 9-bit  
data, the TX9D data bit must be written before writing  
the eight Least Significant bits into the TXREG. All nine  
bits of data will be transferred to the TSR shift register  
immediately after the TXREG is written.  
5. Set the SCKP control bit if inverted transmit data  
polarity is desired.  
6. Enable the transmission by setting the TXEN  
control bit. This will cause the TXIF interrupt bit  
to be set.  
7. If interrupts are desired, set the TXIE interrupt  
enable bit. An interrupt will occur immediately  
provided that the GIE and PEIE bits of the  
INTCON register are also set.  
A special 9-bit Address mode is available for use with  
multiple receivers. See Section 18.1.2.7 “Address  
Detection” for more information on the Address mode.  
8. If 9-bit transmission is selected, the ninth bit  
should be loaded into the TX9D data bit.  
9. Load 8-bit data into the TXREG register. This  
will start the transmission.  
FIGURE 18-3:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(Shift Clock)  
TX/CK pin  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
Stop bit  
TXIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
1 TCY  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 145  
PIC16LF1904/6/7  
FIGURE 18-4:  
ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)  
Write to TXREG  
Word 2  
Start bit  
Word 1  
BRG Output  
(Shift Clock)  
TX/CK  
pin  
Start bit  
Word 2  
bit 0  
bit 1  
bit 7/8  
bit 0  
Stop bit  
Word 2  
1 TCY  
Word 1  
TXIF bit  
(Interrupt Reg. Flag)  
1 TCY  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Word 1  
Transmit Shift Reg  
Transmit Shift Reg  
Note:  
This timing diagram shows two consecutive transmissions.  
TABLE 18-1: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Register  
on page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUD1CON ABDOVF  
BAUD2CON ABDOVF  
RCIDL  
RCIDL  
PEIE  
SCKP  
SCKP  
INTE  
BRG16  
BRG16  
IOCIE  
WUE  
WUE  
INTF  
ABDEN  
ABDEN  
IOCIF  
153  
153  
65  
INTCON  
PIE1  
GIE  
TMR0IE  
TMR0IF  
(1)  
(1)  
TMR1GIE  
TMR1GIF  
SPEN  
ADIE  
ADIF  
RX9  
RCIE  
TXIE  
TMR1IE  
TMR1IF  
RX9D  
66  
(1)  
(1)  
PIR1  
RCIF  
TXIF  
68  
RCSTA  
SPBRGL  
SPBRGH  
TXREG  
TXSTA  
SREN  
CREN  
ADDEN  
FERR  
OERR  
152  
154*  
154*  
144*  
151  
EUSART Baud Rate Generator, Low Byte  
EUSART Baud Rate Generator, High Byte  
EUSART Transmit Register  
CSRC  
TX9  
TXEN  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used for asynchronous transmission.  
Page provides register information.  
*
Note 1: PIC16LF1904/7 only.  
DS40001569D-page 146  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
18.1.2  
EUSART ASYNCHRONOUS  
RECEIVER  
18.1.2.2  
Receiving Data  
The receiver data recovery circuit initiates character  
reception on the falling edge of the first bit. The first bit,  
also known as the Start bit, is always a zero. The data  
recovery circuit counts one-half bit time to the center of  
the Start bit and verifies that the bit is still a zero. If it is  
not a zero then the data recovery circuit aborts  
character reception, without generating an error, and  
resumes looking for the falling edge of the Start bit. If  
the Start bit zero verification succeeds then the data  
recovery circuit counts a full bit time to the center of the  
next bit. The bit is then sampled by a majority detect  
circuit and the resulting ‘0’ or ‘1’ is shifted into the RSR.  
This repeats until all data bits have been sampled and  
shifted into the RSR. One final bit time is measured and  
the level sampled. This is the Stop bit, which is always  
a ‘1’. If the data recovery circuit samples a ‘0’ in the  
Stop bit position then a framing error is set for this  
character, otherwise the framing error is cleared for this  
character. See Section 18.1.2.4 “Receive Framing  
Error” for more information on framing errors.  
The Asynchronous mode would typically be used in  
RS-232 systems. The receiver block diagram is shown  
in Figure 18-2. The data is received on the RX/DT pin  
and drives the data recovery block. The data recovery  
block is actually a high-speed shifter operating at 16  
times the baud rate, whereas the serial Receive Shift  
Register (RSR) operates at the bit rate. When all eight  
or nine bits of the character have been shifted in, they  
are immediately transferred to a two character First-In-  
First-Out (FIFO) memory. The FIFO buffering allows  
reception of two complete characters and the start of a  
third character before software must start servicing the  
EUSART receiver. The FIFO and RSR registers are not  
directly accessible by software. Access to the received  
data is via the RCREG register.  
18.1.2.1  
Enabling the Receiver  
The EUSART receiver is enabled for asynchronous  
operation by configuring the following three control bits:  
Immediately after all data bits and the Stop bit have  
been received, the character in the RSR is transferred  
to the EUSART receive FIFO and the RCIF interrupt  
flag bit of the PIR1 register is set. The top character in  
the FIFO is transferred out of the FIFO by reading the  
RCREG register.  
• CREN = 1  
• SYNC = 0  
• SPEN = 1  
All other EUSART control bits are assumed to be in  
their default state.  
Setting the CREN bit of the RCSTA register enables the  
receiver circuitry of the EUSART. Clearing the SYNC bit  
of the TXSTA register configures the EUSART for  
asynchronous operation. Setting the SPEN bit of the  
RCSTA register enables the EUSART. The programmer  
must set the corresponding TRIS bit to configure the  
RX/DT I/O pin as an input.  
Note:  
If the receive FIFO is overrun, no additional  
characters will be received until the overrun  
condition is cleared. See Section 18.1.2.5  
“Receive Overrun Error” for more  
information on overrun errors.  
Note 1: If the RX/DT function is on an analog pin,  
the corresponding ANSEL bit must be  
cleared for the receiver to function.  
If the RX/DT pin is shared with an analog peripheral the  
analog I/O function must be disabled by clearing the  
corresponding ANSEL bit.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 147  
 
PIC16LF1904/6/7  
18.1.2.3  
Receive Interrupts  
18.1.2.6  
Receiving 9-bit Characters  
The RCIF interrupt flag bit of the PIR1 register is set  
whenever the EUSART receiver is enabled and there is  
an unread character in the receive FIFO. The RCIF  
interrupt flag bit is read-only, it cannot be set or cleared  
by software.  
The EUSART supports 9-bit character reception. When  
the RX9 bit of the RCSTA register is set, the EUSART  
will shift nine bits into the RSR for each character  
received. The RX9D bit of the RCSTA register is the  
ninth and Most Significant data bit of the top unread  
character in the receive FIFO. When reading 9-bit data  
from the receive FIFO buffer, the RX9D data bit must  
be read before reading the eight Least Significant bits  
from the RCREG.  
RCIF interrupts are enabled by setting the following  
bits:  
• RCIE interrupt enable bit of the PIE1 register  
• PEIE peripheral interrupt enable bit of the INTCON  
register  
18.1.2.7  
Address Detection  
• GIE global interrupt enable bit of the INTCON  
register  
A special Address Detection mode is available for use  
when multiple receivers share the same transmission  
line, such as in RS-485 systems. Address detection is  
enabled by setting the ADDEN bit of the RCSTA  
register.  
The RCIF interrupt flag bit will be set when there is an  
unread character in the FIFO, regardless of the state of  
interrupt enable bits.  
Address detection requires 9-bit character reception.  
When address detection is enabled, only characters  
with the ninth data bit set will be transferred to the  
receive FIFO buffer, thereby setting the RCIF interrupt  
bit. All other characters will be ignored.  
18.1.2.4  
Receive Framing Error  
Each character in the receive FIFO buffer has a  
corresponding framing error Status bit. A framing error  
indicates that a Stop bit was not seen at the expected  
time. The framing error status is accessed via the  
FERR bit of the RCSTA register. The FERR bit  
represents the status of the top unread character in the  
receive FIFO. Therefore, the FERR bit must be read  
before reading the RCREG.  
Upon receiving an address character, user software  
determines if the address matches its own. Upon  
address match, user software must disable address  
detection by clearing the ADDEN bit before the next  
Stop bit occurs. When user software detects the end of  
the message, determined by the message protocol  
used, software places the receiver back into the  
Address Detection mode by setting the ADDEN bit.  
The FERR bit is read-only and only applies to the top  
unread character in the receive FIFO. A framing error  
(FERR = 1) does not preclude reception of additional  
characters. It is not necessary to clear the FERR bit.  
Reading the next character from the FIFO buffer will  
advance the FIFO to the next character and the next  
corresponding framing error.  
The FERR bit can be forced clear by clearing the SPEN  
bit of the RCSTA register which resets the EUSART.  
Clearing the CREN bit of the RCSTA register does not  
affect the FERR bit. A framing error by itself does not  
generate an interrupt.  
Note:  
If all receive characters in the receive  
FIFO have framing errors, repeated reads  
of the RCREG will not clear the FERR bit.  
18.1.2.5  
Receive Overrun Error  
The receive FIFO buffer can hold two characters. An  
overrun error will be generated If a third character, in its  
entirety, is received before the FIFO is accessed. When  
this happens the OERR bit of the RCSTA register is set.  
The characters already in the FIFO buffer can be read  
but no additional characters will be received until the  
error is cleared. The error must be cleared by either  
clearing the CREN bit of the RCSTA register or by  
resetting the EUSART by clearing the SPEN bit of the  
RCSTA register.  
DS40001569D-page 148  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
18.1.2.8  
Asynchronous Reception Set-up:  
18.1.2.9  
9-bit Address Detection Mode Set-up  
1. Initialize the SPBRGH:SPBRGL register pair  
and the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 18.4 “EUSART  
Baud Rate Generator (BRG)”).  
This mode would typically be used in RS-485 systems.  
To set up an asynchronous reception with address  
detect enable:  
1. Initialize the SPBRGH, SPBRGL register pair  
and the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 18.4 “EUSART  
Baud Rate Generator (BRG)”).  
2. Set the RX/DT and TX/CK TRIS controls to ‘1’.  
3. Enable the serial port by setting the SPEN bit  
and the RX/DT pin TRIS bit. The SYNC bit must  
be clear for asynchronous operation.  
2. Set the RX/DT and TX/CK TRIS controls to ‘1’.  
4. If interrupts are desired, set the RCIE interrupt  
enable bit and set the GIE and PEIE bits of the  
INTCON register.  
3. Enable the serial port by setting the SPEN bit.  
The SYNC bit must be clear for asynchronous  
operation.  
5. If 9-bit reception is desired, set the RX9 bit.  
6. Enable reception by setting the CREN bit.  
4. If interrupts are desired, set the RCIE interrupt  
enable bit and set the GIE and PEIE bits of the  
INTCON register.  
7. The RCIF interrupt flag bit will be set when a  
character is transferred from the RSR to the  
receive buffer. An interrupt will be generated if  
the RCIE interrupt enable bit was also set.  
5. Enable 9-bit reception by setting the RX9 bit.  
6. Enable address detection by setting the ADDEN  
bit.  
8. Read the RCSTA register to get the error flags  
and, if 9-bit data reception is enabled, the ninth  
data bit.  
7. Enable reception by setting the CREN bit.  
8. The RCIF interrupt flag bit will be set when a  
character with the ninth bit set is transferred  
from the RSR to the receive buffer. An interrupt  
will be generated if the RCIE interrupt enable bit  
was also set.  
9. Get the received eight Least Significant data bits  
from the receive buffer by reading the RCREG  
register.  
10. If an overrun occurred, clear the OERR flag by  
clearing the CREN receiver enable bit.  
9. Read the RCSTA register to get the error flags.  
The ninth data bit will always be set.  
10. Get the received eight Least Significant data bits  
from the receive buffer by reading the RCREG  
register. Software determines if this is the  
device’s address.  
11. If an overrun occurred, clear the OERR flag by  
clearing the CREN receiver enable bit.  
12. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and generate interrupts.  
FIGURE 18-5:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX/DT pin  
bit 7/8  
bit 7/8  
bit 0 bit 1  
Stop  
bit  
Stop  
bit  
Stop  
bit  
bit 0  
bit 7/8  
Rcv Shift  
Reg  
Rcv Buffer Reg  
Word 2  
RCREG  
Word 1  
RCREG  
RCIDL  
Read Rcv  
Buffer Reg  
RCREG  
RCIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note:  
This timing diagram shows three words appearing on the RX/DT input. The RCREG (receive buffer) is read after the third word,  
causing the OERR (overrun) bit to be set.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 149  
PIC16LF1904/6/7  
TABLE 18-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUD1CON  
BAUD2CON  
INTCON  
PIE1  
ABDOVF  
ABDOVF  
GIE  
RCIDL  
RCIDL  
PEIE  
SCKP  
SCKP  
INTE  
BRG16  
BRG16  
IOCIE  
WUE  
WUE  
INTF  
ABDEN  
ABDEN  
IOCIF  
153  
153  
65  
TMR0IE  
TMR0IF  
(1)  
(1)  
TMR1GIE  
TMR1GIF  
ADIE  
ADIF  
RCIE  
TXIE  
TMR1IE  
TMR1IF  
66  
(1)  
(1)  
PIR1  
RCIF  
TXIF  
68  
RCREG  
RCSTA  
EUSART Receive Register  
CREN ADDEN  
147*  
152  
154*  
154*  
101  
151  
SPEN  
RX9  
SREN  
FERR  
OERR  
RX9D  
SPBRGL  
SPBRGH  
TRISC  
EUSART Baud Rate Generator, Low Byte  
EUSART Baud Rate Generator, High Byte  
TRISC7  
CSRC  
TRISC6  
TX9  
TRISC5 TRISC4 TRISC3  
TXEN SYNC SENDB  
TRISC2  
BRGH  
TRISC1  
TRMT  
TRISC0  
TX9D  
TXSTA  
Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used for asynchronous reception.  
Page provides register information.  
*
Note 1: PIC16LF1904/7 only.  
DS40001569D-page 150  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
The Auto-Baud Detect feature (see Section 18.4.1  
“Auto-Baud Detect”) can be used to compensate for  
changes in the INTOSC frequency.  
18.2 Clock Accuracy with  
Asynchronous Operation  
The factory calibrates the internal oscillator block  
output (INTOSC). However, the INTOSC frequency  
may drift as VDD or temperature changes, and this  
directly affects the asynchronous baud rate.  
There may not be fine enough resolution when  
adjusting the Baud Rate Generator to compensate for  
a gradual change in the peripheral clock frequency.  
18.3 Register Definitions: EUSART Control  
REGISTER 18-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN(1)  
R/W-0  
SYNC  
R/W-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
SENDB  
TRMT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
bit 4  
bit 3  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit(1)  
1= Transmit enabled  
0= Transmit disabled  
SYNC: EUSART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
SENDB: Send Break Character bit  
Asynchronous mode:  
1= Send Sync Break on next transmission (cleared by hardware upon completion)  
0= Sync Break transmission completed  
Synchronous mode:  
Don’t care  
bit 2  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: Ninth bit of Transmit Data  
Can be address/data bit or a parity bit.  
Note 1: SREN/CREN overrides TXEN in Sync mode.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 151  
 
PIC16LF1904/6/7  
REGISTER 18-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port enabled (configures RX/DT and TX/CK pins as serial port pins)  
0= Serial port disabled (held in Reset)  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave  
Don’t care  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
Asynchronous mode 8-bit (RX9 = 0):  
Don’t care  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: Ninth bit of Received Data  
This can be address/data bit or a parity bit and must be calculated by user firmware.  
DS40001569D-page 152  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
REGISTER 18-3: BAUDCON: BAUD RATE CONTROL REGISTER  
R-0/0  
R-1/1  
U-0  
R/W-0/0  
SCKP  
R/W-0/0  
BRG16  
U-0  
R/W-0/0  
WUE  
R/W-0/0  
ABDEN  
ABDOVF  
RCIDL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
ABDOVF: Auto-Baud Detect Overflow bit  
Asynchronous mode:  
1= Auto-baud timer overflowed  
0= Auto-baud timer did not overflow  
Synchronous mode:  
Don’t care  
RCIDL: Receive Idle Flag bit  
Asynchronous mode:  
1= Receiver is Idle  
0= Start bit has been received and the receiver is receiving  
Synchronous mode:  
Don’t care  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
SCKP: Synchronous Clock Polarity Select bit  
Asynchronous mode:  
1= Transmit inverted data to the TX/CK pin  
0= Transmit non-inverted data to the TX/CK pin  
Synchronous mode:  
1= Data is clocked on rising edge of the clock  
0= Data is clocked on falling edge of the clock  
bit 3  
BRG16: 16-bit Baud Rate Generator bit  
1= 16-bit Baud Rate Generator is used  
0= 8-bit Baud Rate Generator is used  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
WUE: Wake-up Enable bit  
Asynchronous mode:  
1= Receiver is waiting for a falling edge. No character will be received, byte RCIF will be set. WUE  
will automatically clear after RCIF is set.  
0= Receiver is operating normally  
Synchronous mode:  
Don’t care  
bit 0  
ABDEN: Auto-Baud Detect Enable bit  
Asynchronous mode:  
1= Auto-Baud Detect mode is enabled (clears when auto-baud is complete)  
0= Auto-Baud Detect mode is disabled  
Synchronous mode:  
Don’t care  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 153  
 
PIC16LF1904/6/7  
If the system clock is changed during an active receive  
operation, a receive error or data loss may result. To  
avoid this problem, check the status of the RCIDL bit to  
make sure that the receive operation is Idle before  
changing the system clock.  
18.4 EUSART Baud Rate Generator  
(BRG)  
The Baud Rate Generator (BRG) is an 8-bit or 16-bit  
timer that is dedicated to the support of both the  
asynchronous and synchronous EUSART operation.  
By default, the BRG operates in 8-bit mode. Setting the  
BRG16 bit of the BAUDCON register selects 16-bit  
mode.  
EXAMPLE 18-1:  
CALCULATING BAUD  
RATE ERROR  
For a device with FOSC of 16 MHz, desired baud rate  
of 9600, Asynchronous mode, 8-bit BRG:  
The SPBRGH:SPBRGL register pair determines the  
period of the free running baud rate timer. In  
Asynchronous mode the multiplier of the baud rate  
period is determined by both the BRGH bit of the TXSTA  
register and the BRG16 bit of the BAUDCON register. In  
Synchronous mode, the BRGH bit is ignored.  
FOSC  
Desired Baud Rate = --------------------------------------------------------------------  
64[SPBRGH:SPBRG] + 1  
Solving for SPBRGH:SPBRGL:  
FOSC  
---------------------------------------------  
Example 18-1 provides a sample calculation for deter-  
mining the desired baud rate, actual baud rate, and  
baud rate % error.  
Desired Baud Rate  
SPBRGH: SPBRGL = --------------------------------------------- 1  
64  
16000000  
-----------------------  
9600  
Typical baud rates and error values for various  
Asynchronous modes have been computed for your  
convenience and are shown in Table 18-5. It may be  
advantageous to use the high baud rate (BRGH = 1),  
or the 16-bit BRG (BRG16 = 1) to reduce the baud rate  
error. The 16-bit BRG mode is used to achieve slow  
baud rates for fast oscillator frequencies.  
= ----------------------- 1  
64  
= 25.042= 25  
16000000  
ActualBaudRate = --------------------------  
6425 + 1  
= 9615  
Writing a new value to the SPBRGH, SPBRGL register  
pair causes the BRG timer to be reset (or cleared). This  
ensures that the BRG does not wait for a timer overflow  
before outputting the new baud rate.  
Calc. Baud Rate Desired Baud Rate  
Baud Rate % Error =--------------------------------------------------------------------------------------------  
Desired Baud Rate  
9615 9600  
= ---------------------------------- = 0 . 1 6 %  
9600  
TABLE 18-3: BAUD RATE FORMULAS  
Configuration Bits  
Baud Rate Formula  
BRG/EUSART Mode  
SYNC  
BRG16  
BRGH  
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
x
x
8-bit/Asynchronous  
8-bit/Asynchronous  
16-bit/Asynchronous  
16-bit/Asynchronous  
8-bit/Synchronous  
16-bit/Synchronous  
FOSC/[64 (n+1)]  
FOSC/[16 (n+1)]  
FOSC/[4 (n+1)]  
Legend:  
x= Don’t care, n = value of SPBRGH, SPBRGL register pair  
DS40001569D-page 154  
2011-2016 Microchip Technology Inc.  
 
 
PIC16LF1904/6/7  
TABLE 18-4: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Reset  
Valueson  
page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUD1CON  
BAUD2CON  
RCSTA  
ABDOVF  
ABDOVF  
SPEN  
RCIDL  
RCIDL  
RX9  
SCKP  
SCKP  
CREN  
BRG16  
BRG16  
ADDEN  
WUE  
WUE  
ABDEN  
ABDEN  
RX9D  
153  
153  
152  
154*  
154*  
151  
SREN  
FERR  
OERR  
SPBRGL  
SPBRGH  
TXSTA  
EUSART Baud Rate Generator, Low Byte  
EUSART Baud Rate Generator, High Byte  
CSRC  
TX9  
TXEN  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
Legend:  
— = unimplemented, read as ‘0’. Shaded bits are not used by the BRG.  
*
Page provides register information.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 155  
PIC16LF1904/6/7  
TABLE 18-5: BAUD RATES FOR ASYNCHRONOUS MODES  
SYNC = 0, BRGH = 0, BRG16 = 0  
FOSC = 20.000 MHz  
FOSC = 18.432 MHz  
FOSC = 16.000 MHz  
FOSC = 11.0592 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
255  
129  
32  
239  
119  
29  
207  
103  
25  
143  
71  
17  
16  
8
1221  
2404  
9470  
10417  
19.53k  
1.73  
0.16  
-1.36  
0.00  
1.73  
1200  
2400  
9600  
10286  
19.20k  
0.00  
0.00  
0.00  
-1.26  
0.00  
0.00  
1202  
2404  
9615  
10417  
19.23k  
0.16  
0.16  
0.16  
0.00  
0.16  
1200  
2400  
9600  
10165  
19.20k  
0.00  
0.00  
0.00  
-2.42  
0.00  
0.00  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
29  
27  
23  
15  
14  
12  
2
57.60k  
7
57.60k  
SYNC = 0, BRGH = 0, BRG16 = 0  
FOSC = 4.000 MHz FOSC = 3.6864 MHz  
FOSC = 8.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
0.00  
0.00  
0.00  
0.00  
300  
1200  
1202  
2404  
9615  
10417  
0.16  
0.16  
0.16  
0.00  
103  
51  
12  
11  
300  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
300  
1200  
2400  
9600  
191  
47  
23  
5
300  
1202  
0.16  
0.16  
51  
12  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
10417  
0.00  
2
19.20k  
0.00  
0.00  
0
57.60k  
SYNC = 0, BRGH = 1, BRG16 = 0  
FOSC = 18.432 MHz FOSC = 16.000 MHz  
FOSC = 20.000 MHz  
FOSC = 11.0592 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
71  
65  
35  
11  
5
9615  
10417  
19.23k  
56.82k  
0.16  
0.00  
0.16  
-1.36  
129  
119  
64  
9600  
10378  
19.20k  
57.60k  
115.2k  
0.00  
-0.37  
0.00  
0.00  
0.00  
119  
110  
59  
19  
9
9615  
10417  
19.23k  
58.82k  
111.1k  
0.16  
0.00  
0.16  
2.12  
-3.55  
103  
95  
51  
16  
8
9600  
0.00  
0.53  
0.00  
0.00  
0.00  
10473  
19.20k  
57.60k  
115.2k  
21  
115.2k 113.64k -1.36  
10  
DS40001569D-page 156  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
TABLE 18-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 1, BRG16 = 0  
FOSC = 4.000 MHz FOSC = 3.6864 MHz  
FOSC = 8.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
300  
1200  
1202  
2404  
9615  
10417  
19.23k  
207  
103  
25  
191  
95  
23  
21  
11  
3
300  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
0.16  
0.16  
0.16  
0.00  
0.16  
1200  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
2400  
2404  
9615  
10417  
19231  
55556  
0.16  
0.16  
0.00  
0.16  
-3.55  
207  
51  
47  
25  
8
2400  
9600  
9600  
10417  
19.2k  
57.6k  
115.2k  
23  
10473  
19.2k  
57.60k  
115.2k  
10417  
0.00  
12  
1
SYNC = 0, BRGH = 0, BRG16 = 1  
FOSC = 18.432 MHz FOSC = 16.000 MHz  
FOSC = 20.000 MHz  
FOSC = 11.0592 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
300.0  
1200  
-0.01  
-0.03  
-0.03  
0.16  
0.00  
0.16  
-1.36  
4166  
1041  
520  
129  
119  
64  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
-0.37  
0.00  
0.00  
0.00  
3839  
959  
479  
119  
110  
59  
300.03  
1200.5  
2398  
0.01  
0.04  
-0.08  
0.16  
0.00  
0.16  
2.12  
3332  
832  
416  
103  
95  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
2303  
575  
287  
71  
2399  
2400  
2400  
9615  
9600  
9615  
9600  
10417  
19.23k  
56.818  
10378  
19.20k  
57.60k  
115.2k  
10417  
19.23k  
58.82k  
10473  
19.20k  
57.60k  
115.2k  
65  
51  
35  
21  
19  
16  
11  
115.2k 113.636 -1.36  
10  
9
111.11k -3.55  
8
5
SYNC = 0, BRGH = 0, BRG16 = 1  
FOSC = 4.000 MHz FOSC = 3.6864 MHz  
FOSC = 8.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
value  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
Error  
(decimal)  
(decimal)  
(decimal)  
300  
1200  
299.9  
1199  
-0.02  
-0.08  
0.16  
0.16  
0.00  
0.16  
-3.55  
1666  
416  
207  
51  
300.1  
1202  
2404  
9615  
10417  
19.23k  
0.04  
0.16  
0.16  
0.16  
0.00  
0.16  
832  
207  
103  
25  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
767  
191  
95  
23  
21  
11  
3
300.5  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
2400  
2404  
9615  
10417  
19.23k  
55556  
2400  
9600  
9600  
10417  
19.2k  
57.6k  
115.2k  
47  
23  
10473  
19.20k  
57.60k  
115.2k  
10417  
0.00  
25  
12  
8
1
2011-2016 Microchip Technology Inc.  
DS40001569D-page 157  
PIC16LF1904/6/7  
TABLE 18-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 20.000 MHz  
FOSC = 18.432 MHz  
FOSC = 16.000 MHz  
FOSC = 11.0592 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
300.0  
1200  
0.00  
-0.01  
0.02  
-0.03  
0.00  
0.16  
-0.22  
0.94  
16665  
4166  
2082  
520  
479  
259  
86  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.08  
0.00  
0.00  
0.00  
15359  
3839  
1919  
479  
441  
239  
79  
300.0  
1200.1  
2399.5  
9592  
0.00  
0.01  
-0.02  
-0.08  
0.00  
0.16  
0.64  
13332  
3332  
1666  
416  
383  
207  
68  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.16  
0.00  
0.00  
0.00  
9215  
2303  
1151  
287  
264  
143  
47  
2400  
2400  
2400  
2400  
9600  
9597  
9600  
9600  
10417  
19.2k  
57.6k  
115.2k  
10417  
19.23k  
57.47k  
116.3k  
10425  
19.20k  
57.60k  
115.2k  
10417  
19.23k  
57.97k  
10433  
19.20k  
57.60k  
115.2k  
42  
39  
114.29k -0.79  
34  
23  
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 4.000 MHz FOSC = 3.6864 MHz  
FOSC = 8.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
300.0  
1200  
0.00  
-0.02  
0.04  
0.16  
0
6666  
1666  
832  
207  
191  
103  
34  
300.0  
1200  
0.01  
0.04  
0.08  
0.16  
0.00  
0.16  
2.12  
-3.55  
3332  
832  
416  
103  
95  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
3071  
767  
383  
95  
300.1  
1202  
2404  
9615  
10417  
19.23k  
0.04  
0.16  
0.16  
0.16  
0.00  
0.16  
832  
207  
103  
25  
2400  
2401  
2398  
2400  
9600  
9615  
9615  
9600  
10417  
19.2k  
57.6k  
115.2k  
10417  
19.23k  
57.14k  
117.6k  
10417  
19.23k  
58.82k  
111.1k  
10473  
19.20k  
57.60k  
115.2k  
87  
23  
0.16  
-0.79  
2.12  
51  
47  
12  
16  
15  
16  
8
7
DS40001569D-page 158  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
and SPBRGL registers are clocked at 1/8th the BRG  
base clock rate. The resulting byte measurement is the  
average bit time when clocked at full speed.  
18.4.1  
AUTO-BAUD DETECT  
The EUSART module supports automatic detection  
and calibration of the baud rate.  
Note 1: If the WUE bit is set with the ABDEN bit,  
auto-baud detection will occur on the byte  
following the Break character (see  
Section 18.4.3 “Auto-Wake-up on  
Break”).  
In the Auto-Baud Detect (ABD) mode, the clock to the  
BRG is reversed. Rather than the BRG clocking the  
incoming RX signal, the RX signal is timing the BRG.  
The Baud Rate Generator is used to time the period of  
a received 55h (ASCII “U”) which is the Sync character  
for the LIN bus. The unique feature of this character is  
that it has five rising edges including the Stop bit edge.  
2: It is up to the user to determine that the  
incoming character baud rate is within the  
range of the selected BRG clock source.  
Some combinations of oscillator frequency  
and EUSART baud rates are not possible.  
Setting the ABDEN bit of the BAUDCON register starts  
the auto-baud calibration sequence (Figure 18.4.2).  
While the ABD sequence takes place, the EUSART  
state machine is held in Idle. On the first rising edge of  
the receive line, after the Start bit, the SPBRGL begins  
counting up using the BRG counter clock as shown in  
Table 18-6. The fifth rising edge will occur on the RX/  
DT pin at the end of the eighth bit period. At that time,  
an accumulated value totaling the proper BRG period  
is left in the SPBRGH:SPBRGL register pair, the  
ABDEN bit is automatically cleared, and the RCIF  
interrupt flag is set. A read operation on the RCREG  
needs to be performed to clear the RCIF interrupt.  
RCREG content should be discarded. When calibrating  
for modes that do not use the SPBRGH register the  
user can verify that the SPBRGL register did not  
overflow by checking for 00h in the SPBRGH register.  
3: During the auto-baud process, the auto-  
baud counter starts counting at 1. Upon  
completion of the auto-baud sequence, to  
achieve maximum accuracy, subtract 1  
from the SPBRGH:SPBRGL register pair.  
TABLE 18-6: BRG COUNTER CLOCK  
RATES  
BRG Base  
Clock  
BRG ABD  
Clock  
BRG16 BRGH  
0
0
0
1
FOSC/64  
FOSC/16  
FOSC/512  
FOSC/128  
The BRG auto-baud clock is determined by the BRG16  
and BRGH bits as shown in Table 18-6. During ABD,  
both the SPBRGH and SPBRGL registers are used as  
a 16-bit counter, independent of the BRG16 bit setting.  
While calibrating the baud rate period, the SPBRGH  
1
1
0
1
FOSC/16  
FOSC/4  
FOSC/128  
FOSC/32  
Note:  
During the ABD sequence, SPBRGL and  
SPBRGH registers are both used as a 16-  
bit counter, independent of BRG16 setting.  
FIGURE 18-6:  
AUTOMATIC BAUD RATE CALIBRATION  
XXXXh  
0000h  
001Ch  
BRG Value  
Edge #5  
Stop bit  
Edge #1  
bit 1  
Edge #2  
bit 3  
Edge #3  
bit 5  
bit 4  
Edge #4  
bit 7  
RX/DT pin  
BRG Clock  
Start  
bit 0  
bit 2  
bit 6  
Auto Cleared  
Set by User  
ABDEN bit  
RCIDL  
RCIF bit  
(Interrupt)  
Read  
RCREG  
XXh  
XXh  
1Ch  
00h  
SPBRGL  
SPBRGH  
Note 1: The ABD sequence requires the EUSART module to be configured in Asynchronous mode.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 159  
 
PIC16LF1904/6/7  
18.4.2  
AUTO-BAUD OVERFLOW  
18.4.3.1  
Special Considerations  
During the course of automatic baud detection, the  
ABDOVF bit of the BAUDCON register will be set if the  
baud rate counter overflows before the fifth rising edge  
is detected on the RX pin. The ABDOVF bit indicates  
that the counter has exceeded the maximum count that  
can fit in the 16 bits of the SPBRGH:SPBRGL register  
pair. After the ABDOVF has been set, the counter con-  
tinues to count until the fifth rising edge is detected on  
the RX/DT pin. Upon detecting the fifth RX/DT edge,  
the hardware will set the RCIF interrupt flag and clear  
the ABDEN bit of the BAUDCON register. The RCIF  
flag can be subsequently cleared by reading the  
RCREG. The ABDOVF flag can be cleared by software  
directly.  
Break Character  
To avoid character errors or character fragments during  
a wake-up event, the wake-up character must be all  
zeros.  
When the wake-up is enabled the function works  
independent of the low time on the data stream. If the  
WUE bit is set and a valid non-zero character is  
received, the low time from the Start bit to the first rising  
edge will be interpreted as the wake-up event. The  
remaining bits in the character will be received as a  
fragmented character and subsequent characters can  
result in framing or overrun errors.  
Therefore, the initial character in the transmission must  
be all ‘0’s. This must be ten or more bit times, 13-bit  
times recommended for LIN bus, or any number of bit  
times for standard RS-232 devices.  
To terminate the auto-baud process before the RCIF  
flag is set, clear the ABDEN bit then clear the ABDOVF  
bit. The ABDOVF bit will remain set if the ABDEN bit is  
not cleared first.  
Oscillator Startup Time  
Oscillator start-up time must be considered, especially  
in applications using oscillators with longer start-up  
intervals (i.e., LP, XT or HS/PLL mode). The Sync  
Break (or wake-up signal) character must be of  
sufficient length, and be followed by a sufficient  
interval, to allow enough time for the selected oscillator  
to start and provide proper initialization of the EUSART.  
18.4.3  
AUTO-WAKE-UP ON BREAK  
During Sleep mode, all clocks to the EUSART are  
suspended. Because of this, the Baud Rate Generator  
is inactive and a proper character reception cannot be  
performed. The Auto-Wake-up feature allows the  
controller to wake-up due to activity on the RX/DT line.  
This feature is available only in Asynchronous mode.  
WUE Bit  
The Auto-Wake-up feature is enabled by setting the  
WUE bit of the BAUDCON register. Once set, the normal  
receive sequence on RX/DT is disabled, and the  
EUSART remains in an Idle state, monitoring for a wake-  
up event independent of the CPU mode. A wake-up  
event consists of a high-to-low transition on the RX/DT  
line. (This coincides with the start of a Sync Break or a  
wake-up signal character for the LIN protocol.)  
The wake-up event causes a receive interrupt by  
setting the RCIF bit. The WUE bit is cleared by  
hardware by a rising edge on RX/DT. The interrupt  
condition is then cleared by software by reading the  
RCREG register and discarding its contents.  
To ensure that no actual data is lost, check the RCIDL  
bit to verify that a receive operation is not in process  
before setting the WUE bit. If a receive operation is not  
occurring, the WUE bit may then be set just prior to  
entering the Sleep mode.  
The EUSART module generates an RCIF interrupt  
coincident with the wake-up event. The interrupt is  
generated synchronously to the Q clocks in normal CPU  
operating modes (Figure 18-7), and asynchronously if  
the device is in Sleep mode (Figure 18-8). The interrupt  
condition is cleared by reading the RCREG register.  
The WUE bit is automatically cleared by the low-to-high  
transition on the RX line at the end of the Break. This  
signals to the user that the Break event is over. At this  
point, the EUSART module is in Idle mode waiting to  
receive the next character.  
DS40001569D-page 160  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
FIGURE 18-7:  
AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3Q4 Q1 Q2 Q3 Q4 Q1Q2 Q3Q4  
OSC1  
Auto Cleared  
Bit set by user  
WUE bit  
RX/DT Line  
RCIF  
Cleared due to User Read of RCREG  
Note 1: The EUSART remains in Idle while the WUE bit is set.  
FIGURE 18-8:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP  
Q4  
Q1Q2Q3 Q4 Q1Q2 Q3Q4 Q1Q2Q3  
Q1  
Q2 Q3Q4 Q1Q2Q3 Q4 Q1Q2Q3Q4 Q1Q2Q3 Q4 Q1Q2 Q3Q4  
Auto Cleared  
OSC1  
Bit Set by User  
WUE bit  
RX/DT Line  
RCIF  
Note 1  
Cleared due to User Read of RCREG  
Sleep Command Executed  
Sleep Ends  
Note 1: If the wake-up event requires long oscillator warm-up time, the automatic clearing of the WUE bit can occur while the stposcsignal is  
still active. This sequence should not depend on the presence of Q clocks.  
2: The EUSART remains in Idle while the WUE bit is set.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 161  
PIC16LF1904/6/7  
When the TXREG becomes empty, as indicated by the  
TXIF, the next data byte can be written to TXREG.  
18.4.4  
BREAK CHARACTER SEQUENCE  
The EUSART module has the capability of sending the  
special Break character sequences that are required by  
the LIN bus standard. A Break character consists of a  
Start bit, followed by 12 ‘0’ bits and a Stop bit.  
18.4.5  
RECEIVING A BREAK CHARACTER  
The Enhanced EUSART module can receive a Break  
character in two ways.  
To send a Break character, set the SENDB and TXEN  
bits of the TXSTA register. The Break character trans-  
mission is then initiated by a write to the TXREG. The  
value of data written to TXREG will be ignored and all  
0’s will be transmitted.  
The first method to detect a Break character uses the  
FERR bit of the RCSTA register and the Received data  
as indicated by RCREG. The Baud Rate Generator is  
assumed to have been initialized to the expected baud  
rate.  
The SENDB bit is automatically reset by hardware after  
the corresponding Stop bit is sent. This allows the user  
to preload the transmit FIFO with the next transmit byte  
following the Break character (typically, the Sync  
character in the LIN specification).  
A Break character has been received when;  
• RCIF bit is set  
• FERR bit is set  
• RCREG = 00h  
The TRMT bit of the TXSTA register indicates when the  
transmit operation is active or Idle, just as it does during  
normal transmission. See Figure 18-9 for the timing of  
the Break character sequence.  
The second method uses the Auto-Wake-up feature  
described in Section 18.4.3 “Auto-Wake-up on  
Break”. By enabling this feature, the EUSART will  
sample the next two transitions on RX/DT, cause an  
RCIF interrupt, and receive the next data byte followed  
by another interrupt.  
18.4.4.1  
Break and Sync Transmit Sequence  
The following sequence will start a message frame  
header made up of a Break, followed by an auto-baud  
Sync byte. This sequence is typical of a LIN bus  
master.  
Note that following a Break character, the user will  
typically want to enable the Auto-Baud Detect feature.  
For both methods, the user can set the ABDEN bit of  
the BAUDCON register before placing the EUSART in  
Sleep mode.  
1. Configure the EUSART for the desired mode.  
2. Set the TXEN and SENDB bits to enable the  
Break sequence.  
3. Load the TXREG with a dummy character to  
initiate transmission (the value is ignored).  
4. Write ‘55h’ to TXREG to load the Sync character  
into the transmit FIFO buffer.  
5. After the Break has been sent, the SENDB bit is  
reset by hardware and the Sync character is  
then transmitted.  
FIGURE 18-9:  
SEND BREAK CHARACTER SEQUENCE  
Write to TXREG  
Dummy Write  
BRG Output  
(Shift Clock)  
TX/CK (pin)  
Start bit  
bit 0  
bit 1  
Break  
bit 11  
Stop bit  
TXIF bit  
(Transmit  
interrupt Flag)  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
SENDB Sampled Here  
Auto Cleared  
SENDB  
(send Break  
control bit)  
DS40001569D-page 162  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
18.5.1.2  
Clock Polarity  
18.5 EUSART Synchronous Mode  
A clock polarity option is provided for Microwire  
compatibility. Clock polarity is selected with the SCKP  
bit of the BAUDCON register. Setting the SCKP bit sets  
the clock Idle state as high. When the SCKP bit is set,  
the data changes on the falling edge of each clock and  
is sampled on the rising edge of each clock. Clearing  
the SCKP bit sets the Idle state as low. When the SCKP  
bit is cleared, the data changes on the rising edge of  
each clock and is sampled on the falling edge of each  
clock.  
Synchronous serial communications are typically used  
in systems with a single master and one or more  
slaves. The master device contains the necessary  
circuitry for baud rate generation and supplies the clock  
for all devices in the system. Slave devices can take  
advantage of the master clock by eliminating the  
internal clock generation circuitry.  
There are two signal lines in Synchronous mode: a  
bidirectional data line and a clock line. Slaves use the  
external clock supplied by the master to shift the serial  
data into and out of their respective receive and  
transmit shift registers. Since the data line is  
bidirectional, synchronous operation is half-duplex  
only. Half-duplex refers to the fact that master and  
slave devices can receive and transmit data but not  
both simultaneously. The EUSART can operate as  
either a master or slave device.  
18.5.1.3  
Synchronous Master Transmission  
Data is transferred out of the device on the RX/DT pin.  
The RX/DT and TX/CK pin output drivers are automat-  
ically enabled when the EUSART is configured for  
synchronous master transmit operation.  
A transmission is initiated by writing a character to the  
TXREG register. If the TSR still contains all or part of a  
previous character the new character data is held in the  
TXREG until the last bit of the previous character has  
been transmitted. If this is the first character, or the pre-  
vious character has been completely flushed from the  
TSR, the data in the TXREG is immediately transferred  
to the TSR. The transmission of the character com-  
mences immediately following the transfer of the data  
to the TSR from the TXREG.  
Start and Stop bits are not used in synchronous  
transmissions.  
18.5.1  
SYNCHRONOUS MASTER MODE  
The following bits are used to configure the EUSART  
for synchronous master operation:  
• SYNC = 1  
• CSRC = 1  
Each data bit changes on the leading edge of the  
master clock and remains valid until the subsequent  
leading clock edge.  
• SREN = 0(for transmit); SREN = 1(for receive)  
• CREN = 0(for transmit); CREN = 1(for receive)  
• SPEN = 1  
Note:  
The TSR register is not mapped in data  
memory, so it is not available to the user.  
Setting the SYNC bit of the TXSTA register configures  
the device for synchronous operation. Setting the CSRC  
bit of the TXSTA register configures the device as a  
master. Clearing the SREN and CREN bits of the RCSTA  
register ensures that the device is in the Transmit mode,  
otherwise the device will be configured to receive. Setting  
the SPEN bit of the RCSTA register enables the  
EUSART. If the RX/DT or TX/CK pins are shared with an  
analog peripheral the analog I/O functions must be  
disabled by clearing the corresponding ANSEL bits.  
18.5.1.4  
Synchronous Master Transmission  
Set-up:  
1. Initialize the SPBRGH, SPBRGL register pair  
and the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 18.4 “EUSART  
Baud Rate Generator (BRG)”).  
2. Set the RX/DT and TX/CK TRIS controls to ‘1’.  
The TRIS bits corresponding to the RX/DT and TX/CK  
pins should be set.  
3. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC. Set the  
TRIS bits corresponding to the RX/DT and TX/  
CK I/O pins.  
18.5.1.1  
Master Clock  
Synchronous data transfers use a separate clock line,  
which is synchronous with the data. A device configured  
as a master transmits the clock on the TX/CK line. The  
TX/CK pin output driver is automatically enabled when  
the EUSART is configured for synchronous transmit or  
receive operation. Serial data bits change on the leading  
edge to ensure they are valid at the trailing edge of each  
clock. One clock cycle is generated for each data bit.  
Only as many clock cycles are generated as there are  
data bits.  
4. Disable Receive mode by clearing bits SREN  
and CREN.  
5. Enable Transmit mode by setting the TXEN bit.  
6. If 9-bit transmission is desired, set the TX9 bit.  
7. If interrupts are desired, set the TXIE, GIE and  
PEIE interrupt enable bits.  
8. If 9-bit transmission is selected, the ninth bit  
should be loaded in the TX9D bit.  
9. Start transmission by loading data to the TXREG  
register.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 163  
 
PIC16LF1904/6/7  
FIGURE 18-10:  
SYNCHRONOUS TRANSMISSION  
RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
Word 2  
bit 7  
Word 1  
TX/CK pin  
(SCKP = 0)  
TX/CK pin  
(SCKP = 1)  
Write to  
TXREG Reg  
Write Word 1  
Write Word 2  
TXIF bit  
(Interrupt Flag)  
TRMT bit  
1’  
1’  
TXEN bit  
Note:  
Sync Master mode, SPBRGL = 0, continuous transmission of two 8-bit words.  
FIGURE 18-11:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RX/DT pin  
bit 0  
bit 2  
bit 1  
bit 6  
bit 7  
TX/CK pin  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
DS40001569D-page 164  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
TABLE 18-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUD1CON ABDOVF  
BAUD2CON ABDOVF  
RCIDL  
RCIDL  
PEIE  
ADIE  
ADIF  
RX9  
SCKP  
SCKP  
INTE  
BRG16  
BRG16  
IOCIE  
WUE  
WUE  
INTF  
ABDEN  
ABDEN  
IOCIF  
153  
153  
65  
INTCON  
PIE1  
GIE  
TMR0IE  
TMR0IF  
(1)  
(1)  
TMR1GIE  
TMR1GIF  
SPEN  
RCIE  
TXIE  
TMR1IE  
TMR1IF  
RX9D  
66  
(1)  
(1)  
PIR1  
RCIF  
TXIF  
68  
RCSTA  
SPBRGL  
SPBRGH  
TRISC  
TRISG  
TXREG  
TXSTA  
SREN  
CREN  
ADDEN  
FERR  
OERR  
152  
154*  
154*  
98  
EUSART Baud Rate Generator, Low Byte  
EUSART Baud Rate Generator, High Byte  
TRISC7  
TRISC6  
TRISC5  
TRISC4  
TRISG4  
TRISC3  
TRISG3  
TRISC2  
TRISG2  
TRISC1  
TRISG1  
TRISC0  
TRISG0  
98  
EUSART Transmit Register  
SYNC SENDB  
144*  
151  
CSRC  
TX9  
TXEN  
BRGH  
TRMT  
TX9D  
Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used for synchronous master transmission.  
Page provides register information.  
*
Note 1: PIC16LF1904/7 only.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 165  
PIC16LF1904/6/7  
If the overrun occurred when the CREN bit is set then  
the error condition is cleared by either clearing the  
CREN bit of the RCSTA register or by clearing the  
SPEN bit which resets the EUSART.  
18.5.1.5  
Synchronous Master Reception  
Data is received at the RX/DT pin. The RX/DT pin  
output driver must be disabled by setting the  
corresponding TRIS bits when the EUSART is  
configured for synchronous master receive operation.  
18.5.1.8  
Receiving 9-bit Characters  
In Synchronous mode, reception is enabled by setting  
either the Single Receive Enable bit (SREN of the  
RCSTA register) or the Continuous Receive Enable bit  
(CREN of the RCSTA register).  
The EUSART supports 9-bit character reception. When  
the RX9 bit of the RCSTA register is set the EUSART  
will shift nine bits into the RSR for each character  
received. The RX9D bit of the RCSTA register is the  
ninth, and Most Significant, data bit of the top unread  
character in the receive FIFO. When reading 9-bit data  
from the receive FIFO buffer, the RX9D data bit must  
be read before reading the eight Least Significant bits  
from the RCREG.  
When SREN is set and CREN is clear, only as many  
clock cycles are generated as there are data bits in a  
single character. The SREN bit is automatically cleared  
at the completion of one character. When CREN is set,  
clocks are continuously generated until CREN is  
cleared. If CREN is cleared in the middle of a character  
the CK clock stops immediately and the partial charac-  
ter is discarded. If SREN and CREN are both set, then  
SREN is cleared at the completion of the first character  
and CREN takes precedence.  
18.5.1.9  
Synchronous Master Reception Set-  
up:  
1. Initialize the SPBRGH, SPBRGL register pair for  
the appropriate baud rate. Set or clear the  
BRGH and BRG16 bits, as required, to achieve  
the desired baud rate.  
To initiate reception, set either SREN or CREN. Data is  
sampled at the RX/DT pin on the trailing edge of the  
TX/CK clock pin and is shifted into the Receive Shift  
Register (RSR). When a complete character is  
received into the RSR, the RCIF bit is set and the  
character is automatically transferred to the two  
character receive FIFO. The Least Significant eight bits  
of the top character in the receive FIFO are available in  
RCREG. The RCIF bit remains set as long as there are  
un-read characters in the receive FIFO.  
2. Set the RX/DT and TX/CK TRIS controls to ‘1’.  
3. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC. Disable  
RX/DT and TX/CK output drivers by setting the  
corresponding TRIS bits.  
4. Ensure bits CREN and SREN are clear.  
5. If using interrupts, set the GIE and PEIE bits of  
the INTCON register and set RCIE.  
18.5.1.6  
Slave Clock  
6. If 9-bit reception is desired, set bit RX9.  
7. Start reception by setting the SREN bit or for  
continuous reception, set the CREN bit.  
Synchronous data transfers use a separate clock line,  
which is synchronous with the data. A device configured  
as a slave receives the clock on the TX/CK line. The TX/  
CK pin output driver must be disabled by setting the  
associated TRIS bit when the device is configured for  
synchronous slave transmit or receive operation. Serial  
data bits change on the leading edge to ensure they are  
valid at the trailing edge of each clock. One data bit is  
transferred for each clock cycle. Only as many clock  
cycles should be received as there are data bits.  
8. Interrupt flag bit RCIF will be set when reception  
of a character is complete. An interrupt will be  
generated if the enable bit RCIE was set.  
9. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
10. Read the 8-bit received data by reading the  
RCREG register.  
11. If an overrun error occurs, clear the error by  
either clearing the CREN bit of the RCSTA  
register or by clearing the SPEN bit which resets  
the EUSART.  
18.5.1.7  
Receive Overrun Error  
The receive FIFO buffer can hold two characters. An  
overrun error will be generated if a third character, in its  
entirety, is received before RCREG is read to access  
the FIFO. When this happens the OERR bit of the  
RCSTA register is set. Previous data in the FIFO will  
not be overwritten. The two characters in the FIFO  
buffer can be read, however, no additional characters  
will be received until the error is cleared. The OERR bit  
can only be cleared by clearing the overrun condition.  
If the overrun error occurred when the SREN bit is set  
and CREN is clear then the error is cleared by reading  
RCREG.  
DS40001569D-page 166  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
FIGURE 18-12:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
TX/CK pin  
(SCKP = 0)  
TX/CK pin  
(SCKP = 1)  
Write to  
bit SREN  
SREN bit  
0’  
0’  
CREN bit  
RCIF bit  
(Interrupt)  
Read  
RCREG  
Note:  
Timing diagram demonstrates Sync Master mode with bit SREN = 1and bit BRGH = 0.  
TABLE 18-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUD1CON  
BAUD2CON  
INTCON  
PIE1  
ABDOVF  
ABDOVF  
GIE  
RCIDL  
RCIDL  
PEIE  
SCKP  
SCKP  
INTE  
BRG16  
BRG16  
IOCIE  
WUE  
WUE  
INTF  
ABDEN  
ABDEN  
IOCIF  
153  
153  
65  
TMR0IE  
TMR0IF  
(1)  
(1)  
TMR1GIE  
TMR1GIF  
ADIE  
RCIE  
TXIE  
TXIF  
TMR1IE  
TMR1IF  
66  
(1)  
(1)  
PIR1  
ADIF  
RCIF  
68  
RCREG  
RCSTA  
EUSART Receive Register  
CREN ADDEN  
147*  
152  
154*  
154*  
151  
SPEN  
CSRC  
RX9  
TX9  
SREN  
FERR  
OERR  
RX9D  
SPBRGL  
SPBRGH  
TXSTA  
EUSART Baud Rate Generator, Low Byte  
EUSART Baud Rate Generator, High Byte  
TXEN  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used for synchronous master reception.  
Page provides register information.  
*
Note 1: PIC16LF1904/7 only.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 167  
PIC16LF1904/6/7  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
18.5.2  
SYNCHRONOUS SLAVE MODE  
The following bits are used to configure the EUSART  
for Synchronous slave operation:  
1. The first character will immediately transfer to  
the TSR register and transmit.  
• SYNC = 1  
2. The second word will remain in TXREG register.  
3. The TXIF bit will not be set.  
• CSRC = 0  
• SREN = 0(for transmit); SREN = 1(for receive)  
• CREN = 0(for transmit); CREN = 1(for receive)  
• SPEN = 1  
4. After the first character has been shifted out of  
TSR, the TXREG register will transfer the second  
character to the TSR and the TXIF bit will now be  
set.  
Setting the SYNC bit of the TXSTA register configures the  
device for synchronous operation. Clearing the CSRC bit  
of the TXSTA register configures the device as a slave.  
Clearing the SREN and CREN bits of the RCSTA register  
ensures that the device is in the Transmit mode,  
otherwise the device will be configured to receive. Setting  
the SPEN bit of the RCSTA register enables the  
EUSART. If the RX/DT or TX/CK pins are shared with an  
analog peripheral the analog I/O functions must be  
disabled by clearing the corresponding ANSEL bits.  
5. If the PEIE and TXIE bits are set, the interrupt  
will wake the device from Sleep and execute the  
next instruction. If the GIE bit is also set, the  
program will call the Interrupt Service Routine.  
18.5.2.2  
Synchronous Slave Transmission  
Set-up:  
1. Set the SYNC and SPEN bits and clear the  
CSRC bit.  
RX/DT and TX/CK pin output drivers must be disabled  
by setting the corresponding TRIS bits.  
2. Set the RX/DT and TX/CK TRIS controls to ‘1’.  
3. Clear the CREN and SREN bits.  
4. If using interrupts, ensure that the GIE and PEIE  
bits of the INTCON register are set and set the  
TXIE bit.  
18.5.2.1  
EUSART Synchronous Slave  
Transmit  
The operation of the Synchronous Master and Slave  
modes are identical (see Section 18.5.1.3  
“Synchronous Master Transmission”), except in the  
5. If 9-bit transmission is desired, set the TX9 bit.  
6. Enable transmission by setting the TXEN bit.  
7. If 9-bit transmission is selected, insert the Most  
Significant bit into the TX9D bit.  
case of the Sleep mode.  
8. Start transmission by writing the Least  
Significant eight bits to the TXREG register.  
DS40001569D-page 168  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
TABLE 18-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUD1CON ABDOVF  
BAUD2CON ABDOVF  
RCIDL  
RCIDL  
PEIE  
ADIE  
ADIF  
RX9  
SCKP  
SCKP  
INTE  
BRG16  
BRG16  
IOCIE  
WUE  
WUE  
INTF  
ABDEN  
ABDEN  
IOCIF  
153  
153  
65  
INTCON  
PIE1  
GIE  
TMR0IE  
TMR0IF  
(1)  
(1)  
TMR1GIE  
TMR1GIF  
SPEN  
RCIE  
TXIE  
TMR1IE  
TMR1IF  
RX9D  
66  
(1)  
(1)  
PIR1  
RCIF  
TXIF  
68  
RCSTA  
SPBRGL  
SPBRGH  
TRISC  
TXREG  
TXSTA  
SREN  
CREN  
ADDEN  
FERR  
OERR  
152  
154*  
154*  
98  
EUSART Baud Rate Generator, Low Byte  
EUSART Baud Rate Generator, High Byte  
TRISC7  
CSRC  
TRISC6  
TX9  
TRISC5  
EUSART Transmit Register  
SYNC SENDB  
TRISC4 TRISC3  
TRISC2  
TRISC1  
TRMT  
TRISC0  
TX9D  
144*  
151  
TXEN  
BRGH  
Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used for synchronous slave transmission.  
Page provides register information.  
*
Note 1: PIC16LF1904/7 only.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 169  
PIC16LF1904/6/7  
18.5.2.3  
EUSART Synchronous Slave  
Reception  
18.5.2.4  
Synchronous Slave Reception Set-  
up:  
The operation of the Synchronous Master and Slave  
modes is identical (Section 18.5.1.5 “Synchronous  
Master Reception”), with the following exceptions:  
1. Set the SYNC and SPEN bits and clear the  
CSRC bit.  
2. Set the RX/DT and TX/CK TRIS controls to ‘1’.  
• Sleep  
3. If using interrupts, ensure that the GIE and PEIE  
bits of the INTCON register are set and set the  
RCIE bit.  
• CREN bit is always set, therefore the receiver is  
never Idle  
4. If 9-bit reception is desired, set the RX9 bit.  
5. Set the CREN bit to enable reception.  
• SREN bit, which is a “don’t care” in Slave mode  
A character may be received while in Sleep mode by  
setting the CREN bit prior to entering Sleep. Once the  
word is received, the RSR register will transfer the data  
to the RCREG register. If the RCIE enable bit is set, the  
interrupt generated will wake the device from Sleep  
and execute the next instruction. If the GIE bit is also  
set, the program will branch to the interrupt vector.  
6. The RCIF bit will be set when reception is  
complete. An interrupt will be generated if the  
RCIE bit was set.  
7. If 9-bit mode is enabled, retrieve the Most  
Significant bit from the RX9D bit of the RCSTA  
register.  
8. Retrieve the eight Least Significant bits from the  
receive FIFO by reading the RCREG register.  
9. If an overrun error occurs, clear the error by  
either clearing the CREN bit of the RCSTA  
register or by clearing the SPEN bit which resets  
the EUSART.  
TABLE 18-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUD1CON  
BAUD2CON  
INTCON  
PIE1  
ABDOVF  
ABDOVF  
GIE  
RCIDL  
RCIDL  
PEIE  
SCKP  
SCKP  
INTE  
TXIE  
TXIF  
BRG16  
BRG16  
IOCIE  
WUE  
WUE  
INTF  
ABDEN  
ABDEN  
IOCIF  
153  
153  
65  
TMR0IE  
RCIE  
RCIF  
TMR0IF  
TMR1GIE  
TMR1GIF  
ADIE  
TMR1IE  
TMR1IF  
66  
PIR1  
ADIF  
68  
RCREG  
RCSTA  
EUSART Receive Register  
CREN ADDEN  
147*  
152  
154*  
154*  
151  
SPEN  
RX9  
SREN  
FERR  
OERR  
RX9D  
SPBRGL  
SPBRGH  
TXSTA  
EUSART Baud Rate Generator, Low Byte  
EUSART Baud Rate Generator, High Byte  
CSRC  
TX9  
TXEN  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
Legend: — = unimplemented locations, read as ‘0’. Shaded bits are not used for synchronous slave reception.  
Page provides register information.  
*
DS40001569D-page 170  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
19.1 LCD Registers  
19.0 LIQUID CRYSTAL DISPLAY  
(LCD) DRIVER MODULE  
The module contains the following registers:  
The Liquid Crystal Display (LCD) driver module  
generates the timing control to drive a static or  
multiplexed LCD panel. In the PIC16LF1904/6/7  
device, the module drives the panels of up to four  
commons and up to 116 total segments. The LCD  
module also provides control of the LCD pixel data.  
• LCD Control register (LCDCON)  
• LCD Phase register (LCDPS)  
• LCD Reference Ladder register (LCDRL)  
• LCD Contrast Control register (LCDCST)  
• LCD Reference Voltage Control register  
(LCDREF)  
The LCD driver module supports:  
• Up to 4 LCD Segment Enable registers (LCDSEn)  
• Up to 16 LCD data registers (LCDDATAn)  
• Direct driving of LCD panel  
• Three LCD clock sources with selectable prescaler  
• Up to four common pins:  
- Static (1 common)  
- 1/2 multiplex (2 commons)  
- 1/3 multiplex (3 commons)  
- 1/4 multiplex (4 commons)  
• 19 Segment pins (PIC16LF1906 only)  
• 29 Segment pins (PIC16LF1904/7 only)  
• Static, 1/2 or 1/3 LCD Bias  
Note:  
COM3 and SEG15 share the same  
physical pin on the PIC16LF1906,  
therefore SEG15 is not available when  
using 1/4 multiplex displays.  
FIGURE 19-1:  
LCD DRIVER MODULE BLOCK DIAGRAM  
SEG<28:0>(2)  
LCDDATAx  
Registers  
Data Bus  
To I/O Pads(1)  
MUX  
Timing Control  
LCDCON  
LCDPS  
COM<3:0>  
To I/O Pads(1)  
LCDSEn  
FOSC/256  
Clock Source  
Select and  
Prescaler  
T1OSC  
LFINTOSC  
Note 1: These are not directly connected to the I/O pads, but may be tri-stated, depending on the configuration of  
the LCD module.  
2: COM3 and SEG15 share the same physical pin, therefore SEG15 is not available when using 1/4 multi-  
plex displays. For the PIC16LF1906 device only.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 171  
PIC16LF1904/6/7  
TABLE 19-1: LCD SEGMENT AND DATA  
REGISTERS  
# of LCD Registers  
Device  
Segment  
Enable  
Data  
PIC16LF1904/7  
PIC16LF1906  
3
4
16  
12  
The LCDCON register (Register 19-1) controls the  
operation of the LCD driver module. The LCDPS regis-  
ter (Register 19-2) configures the LCD clock source  
prescaler and the type of waveform; Type-A or Type-B.  
The LCDSEn registers (Register 19-5) configure the  
functions of the port pins.  
The following LCDSEn registers are available:  
• LCDSE0 SE<7:0>  
• LCDSE1 SE<15:8>  
• LCDSE2 SE<23:16>(1)  
• LCDSE3 SE<28:24>(1) (SE<26:24>(2)  
)
Once the module is initialized for the LCD panel, the  
individual bits of the LCDDATAn registers are  
cleared/set to represent a clear/dark pixel, respectively:  
• LCDDATA0 SEG<7:0>COM0  
• LCDDATA1 SEG<15:8>COM0  
• LCDDATA2 SEG<23:16>COM0(1)  
• LCDDATA3 SEG<7:0>COM1  
• LCDDATA4 SEG<15:8>COM1  
• LCDDATA5 SEG<23:16>COM1(1)  
• LCDDATA6 SEG<7:0>COM2  
• LCDDATA7 SEG<15:8>COM2  
• LCDDATA8 SEG<23:16>COM2(1)  
• LCDDATA9 SEG<7:0>COM3  
• LCDDATA10 SEG<15:8>COM3  
• LCDDATA11 SEG<23:16>COM3(1)  
• LCDDATA12 SEG<28:24>COM0(1)  
(SEG<26:24>)(2)  
• LCDDATA15 SEG<28:24>COM1(1)  
(SEG<26:24>)(2)  
• LCDDATA18 SEG<28:24>COM2(1)  
(SEG<26:24>)(2)  
• LCDDATA21 SEG<28:24>COM3(1)  
(SEG<26:24>)(2)  
Note 1: PIC16LF1904/7 only.  
2: PIC16LF1906 only.  
As an example, LCDDATAn is detailed in  
Register 19-6.  
Once the module is configured, the LCDEN bit of the  
LCDCON register is used to enable or disable the LCD  
module. The LCD panel can also operate during Sleep  
by clearing the SLPEN bit of the LCDCON register.  
DS40001569D-page 172  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
REGISTER 19-1: LCDCON: LIQUID CRYSTAL DISPLAY (LCD) CONTROL REGISTER  
R/W-0/0  
LCDEN  
R/W-0/0  
SLPEN  
R/C-0/0  
WERR  
U-0  
R/W-0/0  
R/W-0/0  
R/W-1/1  
R/W-1/1  
CS<1:0>  
LMUX<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
u = Bit is unchanged  
‘1’ = Bit is set  
-n/n = Value at POR and BOR/Value at all other Resets  
C = Only clearable bit  
bit 7  
bit 6  
bit 5  
LCDEN: LCD Driver Enable bit  
1= LCD driver module is enabled  
0= LCD driver module is disabled  
SLPEN: LCD Driver Enable in Sleep Mode bit  
1= LCD driver module is disabled in Sleep mode  
0= LCD driver module is enabled in Sleep mode  
WERR: LCD Write Failed Error bit  
1 = LCDDATAn register written while the WA bit of the LCDPS register = 0 (must be cleared in  
software)  
0= No LCD write error  
bit 4  
Unimplemented: Read as ‘0’  
bit 3-2  
CS<1:0>: Clock Source Select bits  
00= FOSC/256  
01= T1OSC (Timer1)  
1x= LFINTOSC (31 kHz)  
bit 1-0  
LMUX<1:0>: Commons Select bits  
Maximum Number of Pixels  
LMUX<1:0>  
Multiplex  
Bias  
PIC16LF1906 PIC16LF1904/7  
00  
01  
10  
11  
Static (COM0)  
1/2 (COM<1:0>)  
1/3 (COM<2:0>)  
1/4 (COM<3:0>)  
19  
38  
29  
58  
Static  
1/2 or 1/3  
1/2 or 1/3  
1/3  
57  
72(1)  
87  
116  
Note 1: On these devices, COM3 and SEG15 are shared on one pin, limiting the device from driving 72 segments.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 173  
 
PIC16LF1904/6/7  
REGISTER 19-2: LCDPS: LCD PHASE REGISTER  
R/W-0/0  
WFT  
R/W-0/0  
BIASMD  
R-0/0  
LCDA  
R-0/0  
WA  
R/W-0/0  
R/W-0/0  
R/W-1/1  
R/W-1/1  
bit 0  
LP<3:0>  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
u = Bit is unchanged  
‘1’ = Bit is set  
-n/n = Value at POR and BOR/Value at all other Resets  
C = Only clearable bit  
bit 7  
bit 6  
WFT: Waveform Type bit  
1= Type-B phase changes on each frame boundary  
0= Type-A phase changes within each common type  
BIASMD: Bias Mode Select bit  
When LMUX<1:0> = 00:  
0= Static Bias mode (do not set this bit to ‘1’)  
When LMUX<1:0> = 01:  
1= 1/2 Bias mode  
0= 1/3 Bias mode  
When LMUX<1:0> = 10:  
1= 1/2 Bias mode  
0= 1/3 Bias mode  
When LMUX<1:0> = 11:  
0= 1/3 Bias mode (do not set this bit to ‘1’)  
LCDA: LCD Active Status bit  
bit 5  
1= LCD driver module is active  
0= LCD driver module is inactive  
bit 4  
WA: LCD Write Allow Status bit  
1= Writing to the LCDDATAn registers is allowed  
0= Writing to the LCDDATAn registers is not allowed  
bit 3-0  
LP<3:0>: LCD Prescaler Selection bits  
1111= 1:16  
1110= 1:15  
1101= 1:14  
1100= 1:13  
1011= 1:12  
1010= 1:11  
1001= 1:10  
1000= 1:9  
0111= 1:8  
0110= 1:7  
0101= 1:6  
0100= 1:5  
0011= 1:4  
0010= 1:3  
0001= 1:2  
0000= 1:1  
DS40001569D-page 174  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
REGISTER 19-3: LCDREF: LCD REFERENCE VOLTAGE CONTROL REGISTER  
R/W-0/0  
LCDIRE  
U-0  
R/W-0/0  
LCDIRI  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
U-0  
VLCD3PE  
VLCD2PE  
VLCD1PE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
C = Only clearable bit  
bit 7  
LCDIRE: LCD Internal Reference Enable bit  
1= Internal LCD Reference is enabled and connected to the Internal Contrast Control circuit  
0= Internal LCD Reference is disabled  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
LCDIRI: LCD Internal Reference Ladder Idle Enable bit  
Allows the Internal FVR buffer to shut down when the LCD Reference Ladder is in power mode ‘B’  
1= When the LCD Reference Ladder is in power mode ‘B’, the LCD Internal FVR buffer is disabled.  
0= The LCD Internal FVR Buffer ignores the LCD Reference Ladder Power mode.  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
VLCD3PE: VLCD3 Pin Enable bit  
1= The VLCD3 pin is connected to the internal bias voltage LCDBIAS3(1)  
0= The VLCD3 pin is not connected  
bit 2  
bit 1  
bit 0  
VLCD2PE: VLCD2 Pin Enable bit  
1= The VLCD2 pin is connected to the internal bias voltage LCDBIAS2(1)  
0= The VLCD2 pin is not connected  
VLCD1PE: VLCD1 Pin Enable bit  
1= The VLCD1 pin is connected to the internal bias voltage LCDBIAS1(1)  
0= The VLCD1 pin is not connected  
Unimplemented: Read as ‘0’  
Note 1: Normal pin controls of TRISx and ANSELx are unaffected.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 175  
 
PIC16LF1904/6/7  
REGISTER 19-4: LCDCST: LCD CONTRAST CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
bit 0  
LCDCST<2:0>  
bit 7  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
C = Only clearable bit  
bit 7-3  
bit 2-0  
Unimplemented: Read as ‘0’  
LCDCST<2:0>: LCD Contrast Control bits  
Selects the resistance of the LCD contrast control resistor ladder  
Bit Value = Resistor ladder  
000= Minimum Resistance (Maximum contrast). Resistor ladder is shorted.  
001= Resistor ladder is at 1/7th of maximum resistance  
010= Resistor ladder is at 2/7th of maximum resistance  
011= Resistor ladder is at 3/7th of maximum resistance  
100= Resistor ladder is at 4/7th of maximum resistance  
101= Resistor ladder is at 5/7th of maximum resistance  
110= Resistor ladder is at 6/7th of maximum resistance  
111= Resistor ladder is at maximum resistance (Minimum contrast).  
DS40001569D-page 176  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
REGISTER 19-5: LCDSEn: LCD SEGMENT ENABLE REGISTERS  
R/W-0/0  
SEn  
R/W-0/0  
SEn  
R/W-0/0  
SEn  
R/W-0/0  
SEn  
R/W-0/0  
SEn  
R/W-0/0  
SEn  
R/W-0/0  
SEn  
R/W-0/0  
SEn  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-0  
SEn: Segment Enable bits  
1= Segment function of the pin is enabled  
0= I/O function of the pin is enabled  
REGISTER 19-6: LCDDATAn: LCD DATA REGISTERS  
R/W-x/u R/W-x/u R/W-x/u R/W-x/u R/W-x/u  
SEGx-COMy SEGx-COMy SEGx-COMy SEGx-COMy SEGx-COMy SEGx-COMy SEGx-COMy SEGx-COMy  
R/W-x/u  
R/W-x/u  
R/W-x/u  
bit 0  
bit 7  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-0  
SEGx-COMy: Pixel On bits  
1= Pixel on (dark)  
0= Pixel off (clear)  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 177  
 
 
PIC16LF1904/6/7  
Using bits CS<1:0> of the LCDCON register can select  
any of these clock sources.  
19.2 LCD Clock Source Selection  
The LCD module has three possible clock sources:  
19.2.1  
LCD PRESCALER  
• FOSC/256  
• T1OSC  
A 4-bit counter is available as a prescaler for the LCD  
clock. The prescaler is not directly readable or writable;  
its value is set by the LP<3:0> bits of the LCDPS register,  
which determine the prescaler assignment and prescale  
ratio.  
• LFINTOSC  
The first clock source is the system clock divided by  
256 (FOSC/256). This divider ratio is chosen to provide  
about 1 kHz output when the system clock is 8 MHz.  
The divider is not programmable. Instead, the LCD  
prescaler bits LP<3:0> of the LCDPS register are used  
to set the LCD frame clock rate.  
The prescale values are selectable from 1:1 through  
1:16.  
The second clock source is the T1OSC. This also gives  
about 1 kHz when a 32.768 kHz crystal is used with the  
Timer1 oscillator. To use the Timer1 oscillator as a  
clock source, the T1OSCEN bit of the T1CON register  
should be set.  
The third clock source is the 31 kHz LFINTOSC, which  
provides approximately 1 kHz output.  
The second and third clock sources may be used to  
continue running the LCD while the processor is in  
Sleep.  
FIGURE 19-2:  
LCD CLOCK GENERATION  
FOSC  
÷256  
To Ladder  
Power Control  
Static  
÷4  
÷2  
T1OSC 32 kHz  
Crystal Osc.  
Segment  
÷1, 2, 3, 4  
Ring Counter  
4-bit Prog  
Prescaler  
÷ 32  
Counter  
1/2  
Clock  
1/3,  
1/4  
LFINTOSC  
Nominal = 31 kHz  
LP<3:0>  
CS<1:0>  
LMUX<1:0>  
DS40001569D-page 178  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
TABLE 19-2: LCD BIAS VOLTAGES  
19.3 LCD Bias Voltage Generation  
Static Bias  
1/2 Bias  
1/3 Bias  
The LCD module can be configured for one of three  
bias types:  
LCD Bias 0  
LCD Bias 1  
LCD Bias 2  
LCD Bias 3  
VSS  
VSS  
VSS  
1/2 VDD  
1/2 VDD  
VLCD3  
1/3 VDD  
2/3 VDD  
VLCD3  
• Static Bias (2 voltage levels: VSS and VLCD)  
• 1/2 Bias (3 voltage levels: VSS, 1/2 VLCD and  
VLCD)  
VLCD3  
• 1/3 Bias (4 voltage levels: VSS, 1/3 VLCD,  
2/3 VLCD and VLCD)  
So that the user is not forced to place external compo-  
nents and use up to three pins for bias voltage generation,  
internal contrast control and an internal reference ladder  
are provided internally to the PIC16LF1904/6/7. Both of  
these features may be used in conjunction with the exter-  
nal VLCD<3:1> pins, to provide maximum flexibility. Refer  
to Figure 19-3.  
FIGURE 19-3:  
LCD BIAS VOLTAGE GENERATION BLOCK DIAGRAM  
LCDIRE  
LCDA  
VDD  
Power Mode Switching  
(LRLAP or LRLBP)  
A
B
2
2
2
LCDCST<2:0>  
VLCD3PE  
VLCD2PE  
VLCD1PE  
LCDA  
VLCD3  
VLCD2  
VLCD1  
lcdbias3  
lcdbias2  
BIASMD  
lcdbias1  
lcdbias0  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 179  
 
PIC16LF1904/6/7  
19.4.2  
POWER MODES  
19.4 LCD Bias Internal Reference  
Ladder  
The internal reference ladder may be operated in one of  
three power modes. This allows the user to trade off LCD  
contrast for power in the specific application. The larger  
the LCD glass, the more capacitance is present on a  
physical LCD segment, requiring more current to  
maintain the same contrast level.  
The internal reference ladder can be used to divide the  
LCD bias voltage two or three equally spaced voltages  
that will be supplied to the LCD segment pins. To create  
this, the reference ladder consists of three matched  
resistors. Refer to Figure 19-3.  
Three different power modes are available, LP, MP and  
HP. The internal reference ladder can also be turned off  
for applications that wish to provide an external ladder  
or to minimize power consumption. Disabling the  
internal reference ladder results in all of the ladders  
being disconnected, allowing external voltages to be  
supplied.  
19.4.1  
BIAS MODE INTERACTION  
When in 1/2 Bias mode (BIASMD = 1), then the middle  
resistor of the ladder is shorted out so that only two  
voltages are generated. The current consumption of the  
ladder is higher in this mode, with the one resistor  
removed.  
Whenever the LCD module is inactive (LCDA = 0), the  
internal reference ladder will be turned off.  
TABLE 19-3:  
LCD INTERNAL LADDER  
POWER MODES (1/3 BIAS)  
Power  
Mode  
Nominal Resistance of  
Entire Ladder  
Nominal  
IDD  
Low  
3 Mohm  
300 kohm  
30 kohm  
1 µA  
10 µA  
100 µA  
Medium  
High  
DS40001569D-page 180  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
The LCDRL register allows switching between two  
power modes, designated ‘A’ and ‘B’. ‘A’ Power mode  
is active for a programmable time, beginning at the  
time when the LCD segments transition. ‘B’ Power  
mode is the remaining time before the segments or  
commons change again. The LRLAT<2:0> bits select  
how long, if any, that the ‘A’ Power mode is active.  
Refer to Figure 19-4.  
19.4.3  
AUTOMATIC POWER MODE  
SWITCHING  
As an LCD segment is electrically only a capacitor, cur-  
rent is drawn only during the interval where the voltage  
is switching. To minimize total device current, the LCD  
internal reference ladder can be operated in a different  
power mode for the transition portion of the duration.  
This is controlled by the LCDRL Register  
(Register 19-7).  
To implement this, the 5-bit prescaler used to divide  
the 32 kHz clock down to the LCD controller’s 1 kHz  
base rate is used to select the power mode.  
FIGURE 19-4:  
LCD INTERNAL REFERENCE LADDER POWER MODE SWITCHING DIAGRAM –  
TYPE A  
Single Segment Time  
32 kHz Clock  
Ladder Power  
Control  
‘H00 ‘H01 ‘H02 ‘H03 ‘H04 ‘H05 ‘H06 ‘H07  
‘H0E ‘H0F ‘H00 ‘H01  
Segment Clock  
LRLAT<2:0>  
‘H3  
Segment Data  
LRLAT<2:0>  
Power Mode  
COM0  
Power Mode A  
Power Mode B  
Mode A  
V1  
V0  
V1  
V0  
SEG0  
V1  
V0  
COM0-SEG0  
-V1  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 181  
 
FIGURE 19-5:  
LCD INTERNAL REFERENCE LADDER POWER MODE SWITCHING DIAGRAM – TYPE A WAVEFORM (1/2 MUX, 1/2 BIAS DRIVE)  
Single Segment Time  
Single Segment Time  
32 kHz Clock  
Ladder Power  
Control  
‘H00  
‘H02 ‘H03 ‘H04 ‘H05 ‘H06 ‘H07  
‘H0E ‘H0F  
‘H00 ‘H01 ‘H02 ‘H03 ‘H04 ‘H05 ‘H06 ‘H07  
‘H01  
‘H0E ‘H0F  
Segment Clock  
Segment Data  
Power Mode  
Power Mode A  
Power Mode B  
Power Mode A  
Power Mode B  
LRLAT<2:0> = 011  
LRLAT<2:0> = 011  
V
V
V
2
1
0
COM0-SEG0  
-V  
1
2
-V  
FIGURE 19-6:  
LCD INTERNAL REFERENCE LADDER POWER MODE SWITCHING DIAGRAM – TYPE B WAVEFORM (1/2 MUX, 1/2 BIAS DRIVE)  
Single Segment Time  
Single Segment Time  
Single Segment Time  
Single Segment Time  
32 kHz Clock  
Ladder Power  
Control  
‘H00  
‘H02 ‘H03  
‘H0E ‘H0F ‘H10  
‘H12 ‘H13  
‘H1E ‘H1F ‘H00  
‘H02 ‘H03  
‘H0E ‘H0F ‘H10  
‘H12 ‘H13  
‘H11  
‘H1E ‘H1F  
‘H01  
‘H11  
‘H01  
Segment Clock  
Segment Data  
Power Mode  
Power Mode A  
LRLAT<2:0> 011  
Power Mode A  
LRLAT<2:0> 011  
Power  
Mode B  
Power  
Mode B  
Power  
Mode B  
Power  
Mode B  
Power Mode A  
LRLAT<2:0> 011  
Power Mode A  
LRLAT<2:0> 011  
=
=
=
=
V2  
V1  
V0  
COM0-SEG0  
-V1  
-V2  
PIC16LF1904/6/7  
REGISTER 19-7: LCDRL: LCD REFERENCE LADDER CONTROL REGISTERS  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
LRLAP<1:0>  
LRLBP<1:0>  
LRLAT<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-6  
bit 5-4  
LRLAP<1:0>: LCD Reference Ladder A Time Power Control bits  
During Time interval A (Refer to Figure 19-4):  
00= Internal LCD Reference Ladder is powered down and unconnected  
01= Internal LCD Reference Ladder is powered in low-power mode  
10= Internal LCD Reference Ladder is powered in medium-power mode  
11= Internal LCD Reference Ladder is powered in high-power mode  
LRLBP<1:0>: LCD Reference Ladder B Time Power Control bits  
During Time interval B (Refer to Figure 19-4):  
00= Internal LCD Reference Ladder is powered down and unconnected  
01= Internal LCD Reference Ladder is powered in low-power mode  
10= Internal LCD Reference Ladder is powered in medium-power mode  
11= Internal LCD Reference Ladder is powered in high-power mode  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
LRLAT<2:0>: LCD Reference Ladder A Time Interval Control bits  
Sets the number of 32 kHz clocks that the A Time interval power mode is active  
For type A waveforms (WFT = 0):  
000= Internal LCD Reference Ladder is always in ‘B’ Power mode  
001= Internal LCD Reference Ladder is in ‘A’ Power mode for 1 clock and ‘B’ Power mode for 15 clocks  
010= Internal LCD Reference Ladder is in ‘A’ Power mode for 2 clocks and ‘B’ Power mode for 14 clocks  
011= Internal LCD Reference Ladder is in ‘A’ Power mode for 3 clocks and ‘B’ Power mode for 13 clocks  
100= Internal LCD Reference Ladder is in ‘A’ Power mode for 4 clocks and ‘B’ Power mode for 12 clocks  
101= Internal LCD Reference Ladder is in ‘A’ Power mode for 5 clocks and ‘B’ Power mode for 11 clocks  
110= Internal LCD Reference Ladder is in ‘A’ Power mode for 6 clocks and ‘B’ Power mode for 10 clocks  
111= Internal LCD Reference Ladder is in ‘A’ Power mode for 7 clocks and ‘B’ Power mode for 9 clocks  
For type B waveforms (WFT = 1):  
000= Internal LCD Reference Ladder is always in ‘B’ Power mode.  
001= Internal LCD Reference Ladder is in ‘A’ Power mode for 1 clock and ‘B’ Power mode for 31 clocks  
010= Internal LCD Reference Ladder is in ‘A’ Power mode for 2 clocks and ‘B’ Power mode for 30 clocks  
011= Internal LCD Reference Ladder is in ‘A’ Power mode for 3 clocks and ‘B’ Power mode for 29 clocks  
100= Internal LCD Reference Ladder is in ‘A’ Power mode for 4 clocks and ‘B’ Power mode for 28 clocks  
101= Internal LCD Reference Ladder is in ‘A’ Power mode for 5 clocks and ‘B’ Power mode for 27 clocks  
110= Internal LCD Reference Ladder is in ‘A’ Power mode for 6 clocks and ‘B’ Power mode for 26 clocks  
111= Internal LCD Reference Ladder is in ‘A’ Power mode for 7 clocks and ‘B’ Power mode for 25 clocks  
DS40001569D-page 184  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
The contrast control circuit is used to decrease the  
output voltage of the signal source by a total of  
approximately 10%, when LCDCST = 111.  
19.4.4  
CONTRAST CONTROL  
The LCD contrast control circuit consists of a  
seven-tap resistor ladder, controlled by the LCDCST  
bits. Refer to Figure 19-7.  
Whenever the LCD module is inactive (LCDA = 0), the  
contrast control ladder will be turned off (open).  
FIGURE 19-7:  
INTERNAL REFERENCE AND CONTRAST CONTROL BLOCK DIAGRAM  
7 Stages  
VDD  
R
R
R
R
Analog  
MUX  
7
0
To top of  
Reference Ladder  
LCDCST<2:0>  
3
Internal Reference  
INTERNAL REFERENCE  
Contrast control  
19.4.5  
19.4.6  
VLCD<3:1> PINS  
Under firmware control, an internal reference for the  
LCD bias voltages can be enabled. When enabled, the  
source of this voltage can be VDD. When no internal  
reference is selected, the LCD contrast control circuit is  
disabled and LCD bias must be provided externally.  
The VLCD<3:1> pins provide the ability for an external  
LCD bias network to be used instead of the internal lad-  
der. Use of the VLCD<3:1> pins does not prevent use  
of the internal ladder. Each VLCD pin has an indepen-  
dent control in the LCDREF register (Register 19-3),  
allowing access to any or all of the LCD Bias signals.  
This architecture allows for maximum flexibility in differ-  
ent applications  
Whenever the LCD module is inactive (LCDA = 0), the  
internal reference will be turned off.  
When the internal reference is enabled and the Fixed  
Voltage Reference is selected, the LCDIRI bit can be  
used to minimize power consumption by tying into the  
LCD reference ladder automatic power mode switching.  
When LCDIRI = 1 and the LCD reference ladder is in  
Power mode ‘B’, the LCD internal FVR buffer is  
disabled.  
For example, the VLCD<3:1> pins may be used to add  
capacitors to the internal reference ladder, increasing  
the drive capacity.  
For applications where the internal contrast control is  
insufficient, the firmware can choose to only enable the  
VLCD3 pin, allowing an external contrast control circuit  
to use the internal reference divider.  
Note:  
The LCD module automatically turns on the  
Fixed Voltage Reference when needed.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 185  
 
PIC16LF1904/6/7  
TABLE 19-5: FRAME FREQUENCY  
19.5 LCD Multiplex Types  
FORMULAS  
The LCD driver module can be configured into one of  
four multiplex types:  
(2)  
Multiplex  
Frame Frequency  
=
Static  
1/2  
Clock source(1)/(4 x (LCD Prescaler) x 32 x 1))  
Clock source(1)/(2 x (LCD Prescaler) x 32 x 2))  
Clock source(1)/(1 x (LCD Prescaler) x 32 x 3))  
Clock source(1)/(1 x (LCD Prescaler) x 32 x 4))  
• Static (only COM0 is used)  
• 1/2 multiplex (COM<1:0> are used)  
• 1/3 multiplex (COM<2:0> are used)  
• 1/4 multiplex (COM<3:0> are used)  
1/3  
1/4  
Note 1: Clock source is FOSC/256, T1OSC or LFIN-  
The LMUX<1:0> bit setting of the LCDCON register  
decides which of the LCD common pins are used (see  
Table 19-4 for details).  
TOSC.  
2: See Figure 19-2.  
If the pin is a digital I/O, the corresponding TRIS bit  
controls the data direction. If the pin is a COM drive,  
then the TRIS setting of that pin is overridden.  
TABLE 19-6: APPROXIMATE FRAME  
FREQUENCY (IN Hz) USING  
FOSC @ 8 MHz, TIMER1 @  
32.768 kHz OR LFINTOSC  
TABLE 19-4: COMMON PIN USAGE  
LP<3:0>  
Static  
1/2  
1/3  
1/4  
LMUX  
<1:0>  
Multiplex  
COM3  
COM2  
COM1  
COM1  
2
3
4
5
6
7
122  
81  
61  
49  
41  
35  
122  
81  
61  
49  
41  
35  
162  
108  
81  
122  
81  
61  
49  
41  
35  
Static  
1/2  
00  
01  
10  
11  
Unused Unused Unused Active  
Unused Unused Active  
Active  
Active  
Active  
1/3  
Unused Active  
Active Active  
Active  
Active  
65  
1/4  
54  
47  
19.6 Segment Enables  
The LCDSEn registers are used to select the pin  
function for each segment pin. The selection allows  
each pin to operate as either an LCD segment driver or  
as one of the pin’s alternate functions. To configure the  
pin as a segment pin, the corresponding bits in the  
LCDSEn registers must be set to ‘1’.  
If the pin is a digital I/O, the corresponding TRIS bit  
controls the data direction. Any bit set in the LCDSEn  
registers overrides any bit settings in the corresponding  
TRIS register.  
Note:  
On a Power-on Reset, these pins are  
configured as normal I/O, not LCD pins.  
19.7 Pixel Control  
The LCDDATAx registers contain bits which define the  
state of each pixel. Each bit defines one unique pixel.  
Register 19-6 shows the correlation of each bit in the  
LCDDATAx registers to the respective common and  
segment signals.  
Any LCD pixel location not being used for display can  
be used as general purpose RAM.  
19.8 LCD Frame Frequency  
The rate at which the COM and SEG outputs change is  
called the LCD frame frequency.  
DS40001569D-page 186  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
The LCDs can be driven by two types of waveform:  
Type-A and Type-B. In Type-A waveform, the phase  
changes within each common type, whereas in Type-B  
waveform, the phase changes on each frame  
boundary. Thus, Type-A waveform maintains 0 VDC  
over a single frame, whereas Type-B waveform takes  
two frames.  
19.9 LCD Waveform Generation  
LCD waveforms are generated so that the net AC  
voltage across the dark pixel should be maximized and  
the net AC voltage across the clear pixel should be  
minimized. The net DC voltage across any pixel should  
be zero.  
The COM signal represents the time slice for each  
common, while the SEG contains the pixel data.  
Note 1: If Sleep has to be executed with LCD  
Sleep disabled (LCDCON<SLPEN> is  
1’), then care must be taken to execute  
Sleep only when VDC on all the pixels is  
0’.  
The pixel signal (COM-SEG) will have no DC  
component and it can take only one of the two RMS  
values. The higher RMS value will create a dark pixel  
and a lower RMS value will create a clear pixel.  
2: When the LCD clock source is FOSC/256,  
if Sleep is executed, irrespective of the  
LCDCON<SLPEN> setting, the LCD  
immediately goes into Sleep. Thus, take  
care to see that VDC on all pixels is ‘0’  
when Sleep is executed.  
As the number of commons increases, the delta  
between the two RMS values decreases. The delta  
represents the maximum contrast that the display can  
have.  
Figure 19-8 through Figure 19-18 provide waveforms  
for static, half-multiplex, 1/3-multiplex and 1/4-multiplex  
drives for Type-A and Type-B waveforms.  
FIGURE 19-8:  
TYPE-A/TYPE-B WAVEFORMS IN STATIC DRIVE  
V1  
COM0 pin  
SEG0 pin  
SEG1 pin  
V0  
V1  
COM0  
V0  
V1  
V0  
V1  
V0  
COM0-SEG0  
segment voltage  
(active)  
-V1  
COM0-SEG1  
segment voltage  
(inactive)  
V0  
1 Frame  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 187  
 
PIC16LF1904/6/7  
FIGURE 19-9:  
TYPE-A WAVEFORMS IN 1/2 MUX, 1/2 BIAS DRIVE  
V2  
V1  
V0  
COM0 pin  
COM1 pin  
COM1  
V2  
V1  
V0  
COM0  
V2  
V1  
V0  
SEG0 pin  
SEG1 pin  
V2  
V1  
V0  
V2  
V1  
V0  
COM0-SEG0  
segment voltage  
(active)  
-V1  
-V2  
V2  
V1  
V0  
COM0-SEG1  
segment voltage  
(inactive)  
-V1  
-V2  
1 Frame  
1 Segment Time  
Note:  
1 Frame = 2 single segment times.  
DS40001569D-page 188  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
FIGURE 19-10:  
TYPE-B WAVEFORMS IN 1/2 MUX, 1/2 BIAS DRIVE  
V2  
V1  
V0  
COM1  
COM0 pin  
COM0  
V2  
V1  
V0  
COM1 pin  
SEG0 pin  
V2  
V1  
V0  
V2  
V1  
V0  
SEG1 pin  
V2  
V1  
V0  
COM0-SEG0  
segment voltage  
(active)  
-V1  
-V2  
V2  
V1  
V0  
COM0-SEG1  
segment voltage  
(inactive)  
-V1  
-V2  
2 Frames  
1 Segment Time  
Note:  
1 Frame = 2 single segment times.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 189  
PIC16LF1904/6/7  
FIGURE 19-11:  
TYPE-A WAVEFORMS IN 1/2 MUX, 1/3 BIAS DRIVE  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
COM1  
COM0 pin  
COM0  
COM1 pin  
SEG0 pin  
SEG1 pin  
V3  
V2  
V1  
V0  
COM0-SEG0  
segment voltage  
(active)  
-V1  
-V2  
-V3  
V3  
V2  
V1  
V0  
COM0-SEG1  
segment voltage  
(inactive)  
-V1  
-V2  
-V3  
1 Frame  
1 Segment Time  
Note:  
1 Frame = 2 single segment times.  
DS40001569D-page 190  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
FIGURE 19-12:  
TYPE-B WAVEFORMS IN 1/2 MUX, 1/3 BIAS DRIVE  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
COM1  
COM0 pin  
COM0  
COM1 pin  
SEG0 pin  
SEG1 pin  
V3  
V2  
V1  
V0  
COM0-SEG0  
segment voltage  
(active)  
-V1  
-V2  
-V3  
V3  
V2  
V1  
V0  
COM0-SEG1  
segment voltage  
(inactive)  
-V1  
-V2  
-V3  
2 Frames  
1 Segment Time  
Note:  
1 Frame = 2 single segment times.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 191  
PIC16LF1904/6/7  
FIGURE 19-13:  
TYPE-A WAVEFORMS IN 1/3 MUX, 1/2 BIAS DRIVE  
V2  
V1  
V0  
COM0 pin  
V2  
V1  
V0  
COM2  
COM1 pin  
COM2 pin  
COM1  
COM0  
V2  
V1  
V0  
V2  
V1  
V0  
SEG0 and  
SEG2 pins  
V2  
V1  
V0  
SEG1 pin  
V2  
V1  
V0  
COM0-SEG0  
segment voltage  
(inactive)  
-V1  
-V2  
V2  
V1  
V0  
COM0-SEG1  
segment voltage  
(active)  
-V1  
-V2  
1 Frame  
1 Segment Time  
Note:  
1 Frame = 2 single segment times.  
DS40001569D-page 192  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
FIGURE 19-14:  
TYPE-B WAVEFORMS IN 1/3 MUX, 1/2 BIAS DRIVE  
V2  
V1  
V0  
COM0 pin  
COM1 pin  
COM2 pin  
SEG0 pin  
SEG1 pin  
COM2  
V2  
V1  
V0  
COM1  
COM0  
V2  
V1  
V0  
V2  
V1  
V0  
V2  
V1  
V0  
V2  
V1  
V0  
COM0-SEG0  
segment voltage  
(inactive)  
-V1  
-V2  
V2  
V1  
V0  
COM0-SEG1  
segment voltage  
(active)  
-V1  
-V2  
2 Frames  
1 Segment Time  
Note:  
1 Frame = 2 single segment times.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 193  
PIC16LF1904/6/7  
FIGURE 19-15:  
TYPE-A WAVEFORMS IN 1/3 MUX, 1/3 BIAS DRIVE  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
-V1  
-V2  
-V3  
V3  
V2  
V1  
V0  
-V1  
-V2  
-V3  
COM0 pin  
COM1 pin  
COM2 pin  
COM2  
COM1  
COM0  
SEG0 and  
SEG2 pins  
SEG1 pin  
COM0-SEG0  
segment voltage  
(inactive)  
COM0-SEG1  
segment voltage  
(active)  
1 Frame  
1 Segment Time  
Note:  
1 Frame = 2 single segment times.  
DS40001569D-page 194  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
FIGURE 19-16:  
TYPE-B WAVEFORMS IN 1/3 MUX, 1/3 BIAS DRIVE  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
-V1  
-V2  
-V3  
V3  
V2  
V1  
V0  
-V1  
-V2  
-V3  
COM0 pin  
COM1 pin  
COM2 pin  
SEG0 pin  
SEG1 pin  
COM2  
COM1  
COM0  
COM0-SEG0  
segment voltage  
(inactive)  
COM0-SEG1  
segment voltage  
(active)  
2 Frames  
1 Segment Time  
Note:  
1 Frame = 2 single segment times.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 195  
PIC16LF1904/6/7  
FIGURE 19-17:  
TYPE-A WAVEFORMS IN 1/4 MUX, 1/3 BIAS DRIVE  
COM3  
V
V
V
V
3
2
1
0
COM0 pin  
COM1 pin  
COM2  
V
V
V
V
3
2
1
0
COM1  
COM0  
V
V
V
V
3
2
1
0
COM2 pin  
COM3 pin  
SEG0 pin  
SEG1 pin  
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
V
V
V
V
-V  
-V  
-V  
3
2
1
0
COM0-SEG0  
segment voltage  
(active)  
1
2
3
V
V
V
V
-V  
-V  
-V  
3
2
1
0
COM0-SEG1  
segment voltage  
(inactive)  
1
2
3
1 Frame  
1 Segment Time  
Note:  
1 Frame = 2 single segment times.  
DS40001569D-page 196  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
FIGURE 19-18:  
COM3  
TYPE-B WAVEFORMS IN 1/4 MUX, 1/3 BIAS DRIVE  
V
V
V
V
3
2
1
0
COM0 pin  
COM1 pin  
COM2  
V
V
V
V
3
2
1
0
COM1  
COM0  
V
V
V
V
3
2
1
0
COM2 pin  
COM3 pin  
SEG0 pin  
SEG1 pin  
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
V
V
V
V
-V  
-V  
-V  
3
2
1
0
COM0-SEG0  
segment voltage  
(active)  
1
2
3
V
V
V
V
-V  
-V  
-V  
3
2
1
0
COM0-SEG1  
segment voltage  
(inactive)  
1
2
3
2 Frames  
1 Segment Time  
Note:  
1 Frame = 2 single segment times.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 197  
PIC16LF1904/6/7  
19.10 LCD Interrupts  
The LCD module provides an interrupt in two cases. An  
interrupt when the LCD controller goes from active to  
inactive controller. An interrupt also provides unframe  
boundaries for Type B waveform. The LCD timing gen-  
eration provides an interrupt that defines the LCD  
frame timing.  
19.10.1 LCD INTERRUPT ON MODULE  
SHUTDOWN  
An LCD interrupt is generated when the module com-  
pletes shutting down (LCDA goes from ‘1’ to ‘0’).  
19.10.2 LCD FRAME INTERRUPTS  
A new frame is defined to begin at the leading edge of  
the COM0 common signal. The interrupt will be set  
immediately after the LCD controller completes access-  
ing all pixel data required for a frame. This will occur at  
a fixed interval before the frame boundary (TFINT), as  
shown in Figure 19-19. The LCD controller will begin to  
access data for the next frame within the interval from  
the interrupt to when the controller begins to access  
data after the interrupt (TFWR). New data must be writ-  
ten within TFWR, as this is when the LCD controller will  
begin to access the data for the next frame.  
When the LCD driver is running with Type-B waveforms  
and the LMUX<1:0> bits are not equal to ‘00’ (static  
drive), there are some additional issues that must be  
addressed. Since the DC voltage on the pixel takes two  
frames to maintain zero volts, the pixel data must not  
change between subsequent frames. If the pixel data  
were allowed to change, the waveform for the odd  
frames would not necessarily be the complement of the  
waveform generated in the even frames and a DC  
component would be introduced into the panel.  
Therefore, when using Type-B waveforms, the user  
must synchronize the LCD pixel updates to occur within  
a subframe after the frame interrupt.  
To correctly sequence writing while in Type-B, the  
interrupt will only occur on complete phase intervals. If  
the user attempts to write when the write is disabled,  
the WERR bit of the LCDCON register is set and the  
write does not occur.  
Note:  
The LCD frame interrupt is not generated  
when the Type-A waveform is selected  
and when the Type-B with no multiplex  
(static) is selected.  
DS40001569D-page 198  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
FIGURE 19-19:  
WAVEFORMS AND INTERRUPT TIMING IN QUARTER-DUTY CYCLE DRIVE  
(EXAMPLE – TYPE-B, NON-STATIC)  
LCD  
Interrupt  
Occurs  
Controller Accesses  
Next Frame Data  
V
V
V
V
3
2
1
0
COM0  
COM1  
V
V
V
V
3
2
1
0
V
V
V
V
3
2
1
0
COM2  
COM3  
V
V
V
V
3
2
1
0
2 Frames  
Frame  
TFINT  
TFWR  
Frame  
Boundary  
Frame  
Boundary  
Boundary  
TFWR = TFRAME/2*(LMUX<1:0> + 1) + TCY/2  
TFINT = (TFWR/2 – (2 TCY + 40 ns)) minimum = 1.5(TFRAME/4) – (2 TCY + 40 ns)  
(TFWR/2 – (1 TCY + 40 ns)) maximum = 1.5(TFRAME/4) – (1 TCY + 40 ns)  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 199  
PIC16LF1904/6/7  
Table 19-7 shows the status of the LCD module during  
a Sleep while using each of the three available clock  
sources.  
19.11 Operation During Sleep  
The LCD module can operate during Sleep. The  
selection is controlled by bit SLPEN of the LCDCON  
register. Setting the SLPEN bit allows the LCD module  
to go to Sleep. Clearing the SLPEN bit allows the  
module to continue to operate during Sleep.  
Note:  
When the LCDEN bit is cleared, the LCD  
module will be disabled at the completion  
of frame. At this time, the port pins will  
revert to digital functionality. To minimize  
power consumption due to floating digital  
inputs, the LCD pins should be driven low  
using the PORT and TRIS registers.  
If a SLEEPinstruction is executed and SLPEN = 1, the  
LCD module will cease all functions and go into a very  
low-current Consumption mode. The module will stop  
operation immediately and drive the minimum LCD  
voltage on both segment and common lines.  
Figure 19-20 shows this operation.  
If a SLEEPinstruction is executed and SLPEN = 0, the  
module will continue to display the current contents of  
the LCDDATA registers. To allow the module to  
continue operation while in Sleep, the clock source  
must be either the LFINTOSC or T1OSC external  
oscillator. While in Sleep, the LCD data cannot be  
changed. The LCD module current consumption will  
not decrease in this mode; however, the overall  
consumption of the device will be lower due to shut  
down of the core and other peripheral functions.  
The LCD module can be configured to operate during  
Sleep. The selection is controlled by bit SLPEN of the  
LCDCON register. Clearing SLPEN and correctly con-  
figuring the LCD module clock will allow the LCD mod-  
ule to operate during Sleep. Setting SLPEN and  
correctly executing the LCD module shutdown will dis-  
able the LCD module during Sleep and save power.  
If a SLEEPinstruction is executed and SLPEN = 1, the  
LCD module will immediately cease all functions, drive  
the outputs to Vss and go into a very low-current mode.  
The SLEEP instruction should only be executed after  
the LCD module has been disabled and the current  
cycle completed, thus ensuring that there are no DC  
voltages on the glass. To disable the LCD module,  
clear the LCDEN bit. The LCD module will complete the  
disabling process after the current frame, clear the  
LCDA bit and optionally cause an interrupt.  
Table 19-7 shows the status of the LCD module during  
Sleep while using each of the three available clock  
sources:  
TABLE 19-7: LCD MODULE STATUS  
DURING SLEEP  
Operational  
During Sleep  
Clock Source  
T1OSC  
SLPEN  
0
1
0
1
0
1
Yes  
No  
Yes  
No  
No  
No  
The steps required to properly enter Sleep with the  
LCD disabled are:  
• Clear LCDEN  
LFINTOSC  
FOSC/4  
• Wait for LCDA = 0either by polling or by interrupt  
• Execute SLEEP  
If SLPEN = 0 and SLEEP is executed while the LCD  
module clock source is FOSC/4, then the LCD module  
will halt with the pin driving the last LCD voltage pat-  
tern. Prolonged exposure to a fixed LCD voltage pat-  
tern will cause damage to the LCD glass. To prevent  
LCD glass damage, either perform the proper LCD  
module shutdown prior to Sleep, or change the LCD  
module clock to allow the LCD module to continue  
operation during Sleep.  
Note:  
The LFINTOSC or external T1OSC  
oscillator must be used to operate the  
LCD module during Sleep.  
If LCD interrupts are being generated (Type-B wave-  
form with a Multiplex mode not static) and LCDIE = 1,  
the device will awaken from Sleep on the next frame  
boundary.  
If a SLEEPinstruction is executed and SLPEN = 0and  
the LCD module clock is either T1OSC or LFINTOSC,  
the module will continue to display the current contents  
of the LCDDATA registers. While in Sleep, the LCD  
data cannot be changed. If the LCDIE bit is set, the  
device will wake from Sleep on the next LCD frame  
boundary. The LCD module current consumption will  
not decrease in this mode; however, the overall device  
power consumption will be lower due to the shutdown  
of the CPU and other peripherals.  
DS40001569D-page 200  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
FIGURE 19-20:  
SLEEP ENTRY/EXIT WHEN SLPEN = 1  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
V3  
V2  
V1  
V0  
COM0  
COM1  
COM2  
SEG0  
2 Frames  
Wake-up  
SLEEPInstruction Execution  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 201  
PIC16LF1904/6/7  
19.12 Configuring the LCD Module  
19.14 LCD Current Consumption  
The following is the sequence of steps to configure the  
LCD module.  
When using the LCD module the current consumption  
consists of the following three factors:  
1. Select the frame clock prescale using bits  
LP<3:0> of the LCDPS register.  
• Oscillator Selection  
• LCD Bias Source  
2. Configure the appropriate pins to function as  
segment drivers using the LCDSEn registers.  
• Capacitance of the LCD segments  
The current consumption of just the LCD module can  
be considered negligible compared to these other  
factors.  
3. Configure the LCD module for the following  
using the LCDCON register:  
- Multiplex and Bias mode, bits LMUX<1:0>  
- Timing source, bits CS<1:0>  
- Sleep mode, bit SLPEN  
19.14.1 OSCILLATOR SELECTION  
The current consumed by the clock source selected  
must be considered when using the LCD module. See  
Section 22.0 “Electrical Specifications” for oscillator  
current consumption information.  
4. Write initial values to pixel data registers, LCD-  
DATA0 through LCDDATA21.  
5. Clear LCD Interrupt Flag, LCDIF bit of the PIR2  
register and if desired, enable the interrupt by  
setting bit LCDIE of the PIE2 register.  
19.14.2 LCD BIAS SOURCE  
The LCD bias source, internal or external, can contrib-  
ute significantly to the current consumption. Use the  
highest possible resistor values while maintaining  
contrast to minimize current.  
6. Configure bias voltages by setting the LCDRL,  
LCDREF and the associated ANSELx  
registers as needed.  
7. Enable the LCD module by setting bit LCDEN of  
the LCDCON register.  
19.14.3 CAPACITANCE OF THE LCD  
SEGMENTS  
19.13 Disabling the LCD Module  
The LCD segments which can be modeled as capaci-  
tors which must be both charged and discharged every  
frame. The size of the LCD segment and its technology  
determines the segment’s capacitance.  
To disable the LCD module, write all ‘0’s to the  
LCDCON register.  
DS40001569D-page 202  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
TABLE 19-8: SUMMARY OF REGISTERS ASSOCIATED WITH LCD OPERATION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE  
LCDEN  
PEIE  
SLPEN  
TMR0IE  
WERR  
INTE  
IOCIE  
CS1  
TMR0IF  
CS0  
INTF  
IOCIF  
65  
LCDCON  
LCDCST  
LMUX<1:0>  
173  
176  
177  
LCDCST<2:0>  
LCDDATA0  
SEG7  
COM0  
SEG6  
COM0  
SEG5  
COM0  
SEG4  
COM0  
SEG3  
COM0  
SEG2  
COM0  
SEG1  
COM0  
SEG0  
COM0  
LCDDATA1  
LCDDATA2(1)  
LCDDATA3  
LCDDATA4  
LCDDATA5(1)  
LCDDATA6  
LCDDATA7  
LCDDATA8(1)  
LCDDATA9  
LCDDATA10  
LCDDATA11(1)  
LCDDATA12  
LCDDATA15  
LCDDATA18  
LCDDATA21  
SEG15  
COM0  
SEG14  
COM0  
SEG13  
COM0  
SEG12  
COM0  
SEG11  
COM0  
SEG10  
COM0  
SEG9  
COM0  
SEG8  
COM0  
177  
177  
177  
177  
177  
177  
177  
177  
177  
177  
177  
177  
177  
177  
177  
SEG23  
COM0  
SEG22  
COM0  
SEG21  
COM0  
SEG20  
COM0  
SEG19  
COM0  
SEG18  
COM0  
SEG17  
COM0  
SEG16  
COM0  
SEG7  
COM1  
SEG6  
COM1  
SEG5  
COM1  
SEG4  
COM1  
SEG3  
COM1  
SEG2  
COM1  
SEG1  
COM1  
SEG0  
COM1  
SEG15  
COM1  
SEG14  
COM1  
SEG13  
COM1  
SEG12  
COM1  
SEG11  
COM1  
SEG10  
COM1  
SEG9  
COM1  
SEG8  
COM1  
SEG23  
COM1  
SEG22  
COM1  
SEG21  
COM1  
SEG20  
COM1  
SEG19  
COM1  
SEG18  
COM1  
SEG17  
COM1  
SEG16  
COM1  
SEG7  
COM2  
SEG6  
COM2  
SEG5  
COM2  
SEG4  
COM2  
SEG3  
COM2  
SEG2  
COM2  
SEG1  
COM2  
SEG0  
COM2  
SEG15  
COM2  
SEG14  
COM2  
SEG13  
COM2  
SEG12  
COM2  
SEG11  
COM2  
SEG10  
COM2  
SEG9  
COM2  
SEG8  
COM2  
SEG23  
COM2  
SEG22  
COM2  
SEG21  
COM2  
SEG20  
COM2  
SEG19  
COM2  
SEG18  
COM2  
SEG17  
COM2  
SEG16  
COM2  
SEG7  
COM3  
SEG6  
COM3  
SEG5  
COM3  
SEG4  
COM3  
SEG3  
COM3  
SEG2  
COM3  
SEG1  
COM3  
SEG0  
COM3  
SEG15  
COM3  
SEG14  
COM3  
SEG13  
COM3  
SEG12  
COM3  
SEG11  
COM3  
SEG10  
COM3  
SEG9  
COM3  
SEG8  
COM3  
SEG23  
COM3  
SEG22  
COM3  
SEG20  
COM3  
SEG19  
COM3  
SEG18  
COM3  
SEG17  
COM3  
SEG16  
COM3  
SEG15  
COM3  
SEG28  
COM0  
SEG27  
COM0  
SEG26  
COM0  
SEG25  
COM0  
SEG24  
COM0  
SEG28  
COM1  
SEG27  
COM1  
SEG26  
COM1  
SEG25  
COM1  
SEG24  
COM1  
SEG28  
COM2  
SEG27  
COM2  
SEG26  
COM2  
SEG25  
COM2  
SEG24  
COM2  
SEG28  
COM3  
SEG27  
COM3  
SEG26  
COM3  
SEG25  
COM3  
SEG24  
COM3  
LCDPS  
LCDREF  
LCDRL  
LCDSE0  
LCDSE1  
LCDSE2  
LCDSE3  
PIE2  
WFT  
BIASMD  
LCDA  
WA  
LP<3:0>  
VLCD3PE VLCD2PE VLCD1PE  
174  
175  
184  
177  
177  
177  
177  
67  
LCDIRE  
LCDIRI  
LRLAP<1:0>  
LRLBP<1:0>  
LRLAT<2:0>  
SE<7:0>  
SE<15:8>  
SE<23:16>  
SE<28:24>  
LCDIE  
PIR2  
LCDIF  
69  
T1CON  
TMR1CS1 TMR1CS0 T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1ON  
139  
Legend:  
— = unimplemented location, read as ‘0’. Shaded cells are not used by the LCD module.  
Note 1: PIC16LF1904/7 only.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 203  
PIC16LF1904/6/7  
20.3 Common Programming Interfaces  
20.0 IN-CIRCUIT SERIAL  
PROGRAMMING™ (ICSP™)  
Connection to a target device is typically done through  
an ICSP™ header. A commonly found connector on  
development tools is the RJ-11 in the 6P6C (6-pin, 6  
connector) configuration. See Figure 20-1.  
ICSP™ programming allows customers to manufacture  
circuit boards with unprogrammed devices. Programming  
can be done after the assembly process, allowing the  
device to be programmed with the most recent firmware  
or a custom firmware. Five pins are needed for ICSP™  
programming:  
FIGURE 20-1:  
ICD RJ-11 STYLE  
CONNECTOR INTERFACE  
• ICSPCLK  
• ICSPDAT  
• MCLR/VPP  
• VDD  
ICSPDAT  
• VSS  
NC  
2 4 6  
VDD  
In Program/Verify mode the program memory, User IDs  
and the Configuration Words are programmed through  
serial communications. The ICSPDAT pin is  
bidirectional I/O used for transferring the serial data and  
the ICSPCLK pin is the clock input. For more  
ICSPCLK  
1 3  
5
Target  
PC Board  
Bottom Side  
a
VPP/MCLR  
VSS  
information  
on  
ICSP™  
refer  
to  
the  
PIC16F193X/LF193X/PIC16F194X/LF194X/PIC16LF  
190X Memory Programming Specification(DS41397).  
Pin Description*  
1 = VPP/MCLR  
2 = VDD Target  
3 = VSS (ground)  
4 = ICSPDAT  
20.1 High-Voltage Programming Entry  
Mode  
5 = ICSPCLK  
The device is placed into High-Voltage Programming  
Entry mode by holding the ICSPCLK and ICSPDAT  
pins low then raising the voltage on MCLR/VPP to VIHH.  
6 = No Connect  
Another connector often found in use with the PICkit™  
programmers is a standard 6-pin header with 0.1 inch  
spacing. Refer to Figure 20-2.  
20.2 Low-Voltage Programming Entry  
Mode  
For additional interface recommendations, refer to your  
specific device programmer manual prior to PCB  
design.  
The Low-Voltage Programming Entry mode allows the  
PIC® Flash MCUs to be programmed using VDD only,  
without high voltage. When the LVP bit of Configuration  
Words is set to ‘1’, the low-voltage ICSP programming  
entry is enabled. To disable the Low-Voltage ICSP  
mode, the LVP bit must be programmed to ‘0’.  
It is recommended that isolation devices be used to  
separate the programming pins from other circuitry.  
The type of isolation is highly dependent on the specific  
application and may include devices such as resistors,  
diodes, or even jumpers. See Figure 20-3 for more  
information.  
Entry into the Low-Voltage Programming Entry mode  
requires the following steps:  
1. MCLR is brought to VIL.  
2.  
A
32-bit key sequence is presented on  
ICSPDAT, while clocking ICSPCLK.  
Once the key sequence is complete, MCLR must be  
held at VIL for as long as Program/Verify mode is to be  
maintained.  
If low-voltage programming is enabled (LVP = 1), the  
MCLR Reset function is automatically enabled and  
cannot be disabled. See Section 5.4 “MCLR” for more  
information.  
The LVP bit can only be reprogrammed to ‘0’ by using  
the High-Voltage Programming mode.  
DS40001569D-page 204  
2011-2016 Microchip Technology Inc.  
 
PIC16LF1904/6/7  
FIGURE 20-2:  
PICkit™ PROGRAMMER STYLE CONNECTOR INTERFACE  
Pin 1 Indicator  
Pin Description*  
1 = VPP/MCLR  
2 = VDD Target  
3 = VSS (ground)  
4 = ICSPDAT  
1
2
3
4
5
6
5 = ICSPCLK  
6 = No Connect  
*
The 6-pin header (0.100" spacing) accepts 0.025" square pins.  
FIGURE 20-3:  
TYPICAL CONNECTION FOR ICSP™ PROGRAMMING  
External  
Programming  
Signals  
Device to be  
Programmed  
VDD  
VDD  
VDD  
VPP  
VSS  
MCLR/VPP  
VSS  
Data  
ICSPDAT  
ICSPCLK  
Clock  
*
*
*
To Normal Connections  
Isolation devices (as required).  
*
2011-2016 Microchip Technology Inc.  
DS40001569D-page 205  
PIC16LF1904/6/7  
21.1 Read-Modify-Write Operations  
21.0 INSTRUCTION SET SUMMARY  
Any instruction that specifies a file register as part of  
the instruction performs a Read-Modify-Write (R-M-W)  
operation. The register is read, the data is modified,  
and the result is stored according to either the instruc-  
tion, or the destination designator ‘d’. A read operation  
is performed on a register even if the instruction writes  
to that register.  
Each PIC16 instruction is a 14-bit word containing the  
operation code (opcode) and all required operands.  
The opcodes are broken into three broad categories.  
• Byte Oriented  
• Bit Oriented  
• Literal and Control  
The literal and control category contains the most var-  
ied instruction word format.  
TABLE 21-1: OPCODE FIELD  
DESCRIPTIONS  
Table 21-3 lists the instructions recognized by the  
MPASMTM assembler.  
Field  
Description  
All instructions are executed within a single instruction  
cycle, with the following exceptions, which may take  
two or three cycles:  
f
W
b
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Bit address within an 8-bit file register  
Literal field, constant data or label  
• Subroutine takes two cycles (CALL, CALLW)  
• Returns from interrupts or subroutines take two  
cycles (RETURN, RETLW, RETFIE)  
k
x
Don’t care location (= 0or 1).  
• Program branching takes two cycles (GOTO, BRA,  
BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)  
• One additional instruction cycle will be used when  
any instruction references an indirect file register  
and the file select register is pointing to program  
memory.  
The assembler will generate code with x = 0.  
It is the recommended form of use for  
compatibility with all Microchip software tools.  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1.  
One instruction cycle consists of 4 oscillator cycles; for  
an oscillator frequency of 4 MHz, this gives a nominal  
instruction execution rate of 1 MHz.  
n
FSR or INDF number. (0-1)  
mm  
Pre-post increment-decrement mode  
selection  
All instruction examples use the format ‘0xhh’ to  
represent a hexadecimal number, where ‘h’ signifies a  
hexadecimal digit.  
TABLE 21-2: ABBREVIATION  
DESCRIPTIONS  
Field  
Description  
PC  
TO  
C
Program Counter  
Time-out bit  
Carry bit  
DC  
Z
Digit carry bit  
Zero bit  
PD  
Power-down bit  
DS40001569D-page 206  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
FIGURE 21-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
Byte-oriented file register operations  
13  
8
7
6
0
OPCODE  
d
f (FILE #)  
d = 0for destination W  
d = 1for destination f  
f = 7-bit file register address  
Bit-oriented file register operations  
13 10 9  
7 6  
0
OPCODE  
b (BIT #)  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
Literal and control operations  
General  
13  
8
7
0
OPCODE  
k (literal)  
k = 8-bit immediate value  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
0
k (literal)  
k = 11-bit immediate value  
MOVLPinstruction only  
13  
7
6
0
0
OPCODE  
k (literal)  
k = 7-bit immediate value  
MOVLBinstruction only  
13  
5 4  
OPCODE  
k (literal)  
k = 5-bit immediate value  
BRAinstruction only  
13  
9
8
0
OPCODE  
k (literal)  
k = 9-bit immediate value  
FSR Offset instructions  
13  
7
6
5
0
0
OPCODE  
n
k (literal)  
n = appropriate FSR  
k = 6-bit immediate value  
FSRIncrement instructions  
13  
3
2
n
1
OPCODE  
m (mode)  
n = appropriate FSR  
m = 2-bit mode value  
OPCODE only  
13  
0
OPCODE  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 207  
PIC16LF1904/6/7  
TABLE 21-3: PIC16LF1904/6/7 ENHANCED INSTRUCTION SET  
14-Bit Opcode  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ADDWFC f, d  
ANDWF  
ASRF  
LSLF  
f, d  
Add W and f  
Add with Carry W and f  
AND W with f  
Arithmetic Right Shift  
Logical Left Shift  
Logical Right Shift  
Clear f  
Clear W  
Complement f  
Decrement f  
Increment f  
Inclusive OR W with f  
Move f  
Move W to f  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Subtract with Borrow W from f  
Swap nibbles in f  
Exclusive OR W with f  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
00 0111 dfff ffff C, DC, Z  
11 1101 dfff ffff C, DC, Z  
00 0101 dfff ffff Z  
11 0111 dfff ffff C, Z  
11 0101 dfff ffff C, Z  
11 0110 dfff ffff C, Z  
2
2
2
2
2
2
2
f, d  
f, d  
f, d  
f, d  
f
LSRF  
CLRF  
CLRW  
COMF  
DECF  
INCF  
IORWF  
MOVF  
MOVWF  
RLF  
RRF  
SUBWF  
SUBWFB f, d  
SWAPF  
XORWF  
00 0001 lfff ffff  
00 0001 0000 00xx  
00 1001 dfff ffff  
00 0011 dfff ffff  
00 1010 dfff ffff  
00 0100 dfff ffff  
00 1000 dfff ffff  
00 0000 1fff ffff  
00 1101 dfff ffff  
00 1100 dfff ffff  
Z
Z
Z
Z
Z
Z
Z
f, d  
f, d  
f, d  
f, d  
f, d  
f
f, d  
f, d  
f, d  
2
2
2
2
2
2
2
2
2
2
2
2
C
C
00 0010 dfff ffff C, DC, Z  
11 1011 dfff ffff C, DC, Z  
00 1110 dfff ffff  
f, d  
f, d  
00 0110 dfff ffff  
Z
BYTE ORIENTED SKIP OPERATIONS  
f, d  
f, d  
Decrement f, Skip if 0  
Increment f, Skip if 0  
1(2)  
1(2)  
00  
00  
1011 dfff ffff  
1111 dfff ffff  
1, 2  
1, 2  
DECFSZ  
INCFSZ  
BIT-ORIENTED FILE REGISTER OPERATIONS  
f, b  
f, b  
Bit Clear f  
Bit Set f  
1
1
01  
01  
00bb bfff ffff  
01bb bfff ffff  
2
2
BCF  
BSF  
BIT-ORIENTED SKIP OPERATIONS  
BTFSC  
BTFSS  
f, b  
f, b  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1 (2)  
1 (2)  
01  
01  
10bb bfff ffff  
11bb bfff ffff  
1, 2  
1, 2  
LITERAL OPERATIONS  
ADDLW  
ANDLW  
IORLW  
MOVLB  
MOVLP  
MOVLW  
SUBLW  
XORLW  
k
k
k
k
k
k
k
k
Add literal and W  
AND literal with W  
Inclusive OR literal with W  
Move literal to BSR  
Move literal to PCLATH  
Move literal to W  
1
1
1
1
1
1
1
1
11  
11  
11  
00  
11  
11  
11  
11  
1110 kkkk kkkk C, DC, Z  
1001 kkkk kkkk  
1000 kkkk kkkk  
0000 001k kkkk  
0001 1kkk kkkk  
0000 kkkk kkkk  
Z
Z
Subtract W from literal  
Exclusive OR literal with W  
1100 kkkk kkkk C, DC, Z  
1010 kkkk kkkk  
Z
Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle  
is executed as a NOP.  
2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one  
additional instruction cycle.  
DS40001569D-page 208  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
TABLE 21-3: PIC16LF1904/6/7 ENHANCED INSTRUCTION SET (CONTINUED)  
14-Bit Opcode  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
CONTROL OPERATIONS  
BRA  
BRW  
CALL  
CALLW  
GOTO  
RETFIE  
RETLW  
RETURN  
k
Relative Branch  
Relative Branch with W  
Call Subroutine  
Call Subroutine with W  
Go to address  
Return from interrupt  
Return with literal in W  
Return from Subroutine  
2
2
2
2
2
2
2
2
11  
00  
10  
00  
10  
00  
11  
00  
001k kkkk kkkk  
0000 0000 1011  
0kkk kkkk kkkk  
0000 0000 1010  
1kkk kkkk kkkk  
0000 0000 1001  
0100 kkkk kkkk  
0000 0000 1000  
k
k
k
k
INHERENT OPERATIONS  
CLRWDT  
NOP  
OPTION  
RESET  
SLEEP  
TRIS  
f
Clear Watchdog Timer  
No Operation  
Load OPTION_REG register with W  
Software device Reset  
Go into Standby mode  
Load TRIS register with W  
1
1
1
1
1
1
00  
00  
00  
00  
00  
00  
0000 0110 0100 TO, PD  
0000 0000 0000  
0000 0110 0010  
0000 0000 0001  
0000 0110 0011 TO, PD  
0000 0110 0fff  
C-COMPILER OPTIMIZED  
ADDFSR n, k  
Add Literal k to FSRn  
Move Indirect FSRn to W with pre/post inc/dec  
modifier, mm  
1
1
11 0001 0nkk kkkk  
00 0000 0001 0nmm  
MOVIW  
n mm  
Z
Z
2, 3  
k[n]  
n mm  
Move INDFn to W, Indexed Indirect.  
Move W to Indirect FSRn with pre/post inc/dec  
modifier, mm  
1
1
11 1111 0nkk kkkk  
00 0000 0001 1nmm  
2
2, 3  
MOVWI  
k[n]  
Move W to INDFn, Indexed Indirect.  
1
11 1111 1nkk kkkk  
2
Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle  
is executed as a NOP.  
2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require  
one additional instruction cycle.  
3: See Table in the MOVIW and MOVWI instruction descriptions.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 209  
PIC16LF1904/6/7  
21.2 Instruction Descriptions  
ADDFSR  
Add Literal to FSRn  
ANDLW  
AND literal with W  
Syntax:  
[ label ] ADDFSR FSRn, k  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
-32 k 31  
n [ 0, 1]  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .AND. (k) (W)  
Operation:  
FSR(n) + k FSR(n)  
Z
Status Affected:  
Description:  
None  
The contents of W register are  
AND’ed with the 8-bit literal ‘k’. The  
result is placed in the W register.  
The signed 6-bit literal ‘k’ is added to  
the contents of the FSRnH:FSRnL  
register pair.  
FSRn is limited to the range 0000h -  
FFFFh. Moving beyond these bounds  
will cause the FSR to wrap-around.  
ANDWF  
AND W with f  
ADDLW  
Add literal and W  
Syntax:  
[ label ] ANDWF f,d  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Operands:  
0 f 127  
d 0,1  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) + k (W)  
C, DC, Z  
Operation:  
(W) .AND. (f) (destination)  
Status Affected:  
Description:  
Z
The contents of the W register are  
added to the 8-bit literal ‘k’ and the  
result is placed in the W register.  
AND the W register with register ‘f’. If  
‘d’ is ‘0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is stored  
back in register ‘f’.  
ASRF  
Arithmetic Right Shift  
ADDWF  
Add W and f  
Syntax:  
[ label ] ASRF f {,d}  
Syntax:  
[ label ] ADDWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d 0,1  
Operation:  
(f<7>)dest<7>  
(f<7:1>) dest<6:0>,  
(f<0>) C,  
Operation:  
(W) + (f) (destination)  
Status Affected:  
Description:  
C, DC, Z  
Add the contents of the W register  
with register ‘f’. If ‘d’ is ‘0’, the result is  
stored in the W register. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’.  
Status Affected:  
Description:  
C, Z  
The contents of register ‘f’ are shifted  
one bit to the right through the Carry  
flag. The MSb remains unchanged. If  
‘d’ is ‘0’, the result is placed in W. If ‘d’  
is ‘1’, the result is stored back in reg-  
ister ‘f’.  
ADDWFC  
ADD W and CARRY bit to f  
C
register f  
Syntax:  
[ label ] ADDWFC  
f {,d}  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) + (f) + (C) dest  
Status Affected:  
Description:  
C, DC, Z  
Add W, the Carry flag and data mem-  
ory location ‘f’. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed in data memory location ‘f’.  
DS40001569D-page 210  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
BTFSC  
Bit Test f, Skip if Clear  
BCF  
Bit Clear f  
Syntax:  
[ label ] BTFSC f,b  
Syntax:  
[ label ] BCF f,b  
Operands:  
0 f 127  
0 b 7  
Operands:  
0 f 127  
0 b 7  
Operation:  
skip if (f<b>) = 0  
Operation:  
0(f<b>)  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
None  
If bit ‘b’ in register ‘f’ is ‘1’, the next  
instruction is executed.  
Bit ‘b’ in register ‘f’ is cleared.  
If bit ‘b’, in register ‘f’, is ‘0’, the next  
instruction is discarded, and a NOPis  
executed instead, making this a  
2-cycle instruction.  
BTFSS  
Bit Test f, Skip if Set  
BRA  
Relative Branch  
Syntax:  
[ label ] BTFSS f,b  
Syntax:  
[ label ] BRA label  
[ label ] BRA $+k  
Operands:  
0 f 127  
0 b < 7  
Operands:  
-256 label - PC + 1 255  
-256 k 255  
Operation:  
skip if (f<b>) = 1  
Operation:  
(PC) + 1 + k PC  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
None  
If bit ‘b’ in register ‘f’ is ‘0’, the next  
instruction is executed.  
If bit ‘b’ is ‘1’, then the next  
instruction is discarded and a NOPis  
executed instead, making this a  
2-cycle instruction.  
Add the signed 9-bit literal ‘k’ to the  
PC. Since the PC will have incre-  
mented to fetch the next instruction,  
the new address will be PC + 1 + k.  
This instruction is a 2-cycle instruc-  
tion. This branch has a limited range.  
BRW  
Relative Branch with W  
Syntax:  
[ label ] BRW  
None  
Operands:  
Operation:  
Status Affected:  
Description:  
(PC) + (W) PC  
None  
Add the contents of W (unsigned) to  
the PC. Since the PC will have incre-  
mented to fetch the next instruction,  
the new address will be PC + 1 + (W).  
This instruction is a 2-cycle instruc-  
tion.  
BSF  
Bit Set f  
Syntax:  
[ label ] BSF f,b  
Operands:  
0 f 127  
0 b 7  
Operation:  
1(f<b>)  
Status Affected:  
Description:  
None  
Bit ‘b’ in register ‘f’ is set.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 211  
PIC16LF1904/6/7  
CALL  
Call Subroutine  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
[ label ] CALL  
0 k 2047  
k
Syntax:  
[ label ] CLRWDT  
Operands:  
Operation:  
Operands:  
Operation:  
None  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<6:3>) PC<14:11>  
00h WDT  
0WDT prescaler,  
1TO  
1PD  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
TO, PD  
Call Subroutine. First, return address  
(PC + 1) is pushed onto the stack.  
The 11-bit immediate address is  
loaded into PC bits <10:0>. The upper  
bits of the PC are loaded from  
PCLATH. CALLis a 2-cycle instruc-  
tion.  
CLRWDTinstruction resets the Watch-  
dog Timer. It also resets the prescaler  
of the WDT. Status bits TO and PD  
are set.  
COMF  
Complement f  
CALLW  
Subroutine Call With W  
Syntax:  
[ label ] COMF f,d  
Syntax:  
[ label ] CALLW  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
None  
(PC) +1 TOS,  
(W) PC<7:0>,  
Operation:  
(f) (destination)  
(PCLATH<6:0>) PC<14:8>  
Status Affected:  
Description:  
Z
The contents of register ‘f’ are com-  
plemented. If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
Status Affected:  
Description:  
None  
Subroutine call with W. First, the  
return address (PC + 1) is pushed  
onto the return stack. Then, the con-  
tents of W is loaded into PC<7:0>,  
and the contents of PCLATH into  
PC<14:8>. CALLWis a 2-cycle  
instruction.  
DECF  
Decrement f  
CLRF  
Clear f  
Syntax:  
[ label ] DECF f,d  
Syntax:  
[ label ] CLRF  
0 f 127  
f
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
00h (f)  
1Z  
Operation:  
(f) - 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Decrement register ‘f’. If ‘d’ is ‘0’, the  
result is stored in the W register. If ‘d’  
is ‘1’, the result is stored back in regis-  
ter ‘f’.  
The contents of register ‘f’ are cleared  
and the Z bit is set.  
CLRW  
Clear W  
Syntax:  
[ label ] CLRW  
Operands:  
Operation:  
None  
00h (W)  
1Z  
Status Affected:  
Description:  
Z
W register is cleared. Zero bit (Z) is  
set.  
DS40001569D-page 212  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
DECFSZ  
Decrement f, Skip if 0  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
[ label ] DECFSZ f,d  
Syntax:  
[ label ] INCFSZ f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
None  
The contents of register ‘f’ are decre-  
mented. If ‘d’ is ‘0’, the result is placed  
in the W register. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’.  
The contents of register ‘f’ are incre-  
mented. If ‘d’ is ‘0’, the result is placed  
in the W register. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’.  
If the result is ‘1’, the next instruction is  
executed. If the result is ‘0’, then a  
NOPis executed instead, making it a  
2-cycle instruction.  
If the result is ‘1’, the next instruction is  
executed. If the result is ‘0’, a NOPis  
executed instead, making it a 2-cycle  
instruction.  
GOTO  
Unconditional Branch  
IORLW  
Inclusive OR literal with W  
Syntax:  
[ label ] GOTO  
0 k 2047  
k
Syntax:  
[ label ] IORLW  
0 k 255  
(W) .OR. k (W)  
Z
k
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
k PC<10:0>  
PCLATH<6:3> PC<14:11>  
Status Affected:  
Description:  
None  
The contents of the W register are  
OR’ed with the 8-bit literal ‘k’. The  
result is placed in the W register.  
GOTOis an unconditional branch. The  
11-bit immediate value is loaded into  
PC bits <10:0>. The upper bits of PC  
are loaded from PCLATH<4:3>. GOTO  
is a 2-cycle instruction.  
INCF  
Increment f  
IORWF  
Inclusive OR W with f  
Syntax:  
[ label ] INCF f,d  
Syntax:  
[ label ] IORWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) + 1 (destination)  
Operation:  
(W) .OR. (f) (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
The contents of register ‘f’ are incre-  
mented. If ‘d’ is ‘0’, the result is placed  
in the W register. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’.  
Inclusive OR the W register with regis-  
ter ‘f’. If ‘d’ is ‘0’, the result is placed in  
the W register. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 213  
PIC16LF1904/6/7  
LSLF  
Logical Left Shift  
MOVF  
Move f  
Syntax:  
[ label ] LSLF f {,d}  
Syntax:  
[ label ] MOVF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f<7>) C  
Operation:  
(f) (dest)  
(f<6:0>) dest<7:1>  
0 dest<0>  
Status Affected:  
Description:  
Z
The contents of register f is moved to  
a destination dependent upon the  
status of d. If d = 0, destination is W  
register. If d = 1, the destination is file  
register f itself. d = 1is useful to test a  
file register since status flag Z is  
affected.  
Status Affected:  
Description:  
C, Z  
The contents of register ‘f’ are shifted  
one bit to the left through the Carry flag.  
A ‘0’ is shifted into the LSb. If ‘d’ is ‘0’,  
the result is placed in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’.  
Words:  
1
1
C
register f  
0
Cycles:  
Example:  
MOVF  
FSR, 0  
After Instruction  
LSRF  
Logical Right Shift  
W
Z
=
=
value in FSR register  
1
Syntax:  
[ label ] LSRF f {,d}  
Operands:  
0 f 127  
d [0,1]  
Operation:  
0 dest<7>  
(f<7:1>) dest<6:0>,  
(f<0>) C,  
Status Affected:  
Description:  
C, Z  
The contents of register ‘f’ are shifted  
one bit to the right through the Carry  
flag. A ‘0’ is shifted into the MSb. If ‘d’ is  
0’, the result is placed in W. If ‘d’ is ‘1’,  
the result is stored back in register ‘f’.  
0
C
register f  
DS40001569D-page 214  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
MOVIW  
Move INDFn to W  
MOVLP  
Move literal to PCLATH  
Syntax:  
[ label ] MOVIW ++FSRn  
[ label ] MOVIW --FSRn  
[ label ] MOVIW FSRn++  
[ label ] MOVIW FSRn--  
[ label ] MOVIW k[FSRn]  
Syntax:  
[ label ] MOVLP  
0 k 127  
k PCLATH  
None  
k
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
Operation:  
n [0,1]  
mm [00,01, 10, 11]  
-32 k 31  
The 7-bit literal ‘k’ is loaded into the  
PCLATH register.  
INDFn W  
Effective address is determined by  
MOVLW  
Move literal to W  
FSR + 1 (preincrement)  
FSR - 1 (predecrement)  
FSR + k (relative offset)  
Syntax:  
[ label ] MOVLW  
0 k 255  
k (W)  
k
Operands:  
Operation:  
Status Affected:  
Description:  
After the Move, the FSR value will be  
either:  
None  
FSR + 1 (all increments)  
FSR - 1 (all decrements)  
Unchanged  
The 8-bit literal ‘k’ is loaded into W reg-  
ister. The “don’t cares” will assemble as  
0’s.  
Status Affected:  
Z
Words:  
1
1
Cycles:  
Example:  
Mode  
Syntax  
mm  
00  
01  
10  
11  
MOVLW  
0x5A  
Preincrement  
Predecrement  
Postincrement  
Postdecrement  
++FSRn  
--FSRn  
FSRn++  
FSRn--  
After Instruction  
W
=
0x5A  
MOVWF  
Move W to f  
[ label ] MOVWF  
0 f 127  
(W) (f)  
Syntax:  
f
Description:  
This instruction is used to move data  
between W and one of the indirect  
registers (INDFn). Before/after this  
move, the pointer (FSRn) is updated by  
pre/post incrementing/decrementing it.  
Operands:  
Operation:  
Status Affected:  
Description:  
None  
Move data from W register to register  
‘f’.  
Note: The INDFn registers are not  
physical registers. Any instruction that  
accesses an INDFn register actually  
accesses the register at the address  
specified by the FSRn.  
Words:  
1
1
Cycles:  
Example:  
MOVWF  
Before Instruction  
OPTION_REG = 0xFF  
W = 0x4F  
OPTION_REG  
FSRn is limited to the range 0000h -  
FFFFh. Incrementing/decrementing it  
beyond these bounds will cause it to  
wrap-around.  
After Instruction  
OPTION_REG = 0x4F  
W = 0x4F  
MOVLB  
Move literal to BSR  
Syntax:  
[ label ] MOVLB  
0 k 15  
k BSR  
None  
k
Operands:  
Operation:  
Status Affected:  
Description:  
The 5-bit literal ‘k’ is loaded into the  
Bank Select Register (BSR).  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 215  
PIC16LF1904/6/7  
NOP  
No Operation  
MOVWI  
Move W to INDFn  
Syntax:  
[ label ] NOP  
Syntax:  
[ label ] MOVWI ++FSRn  
[ label ] MOVWI --FSRn  
[ label ] MOVWI FSRn++  
[ label ] MOVWI FSRn--  
[ label ] MOVWI k[FSRn]  
Operands:  
Operation:  
Status Affected:  
Description:  
Words:  
None  
No operation  
None  
No operation.  
Operands:  
Operation:  
n [0,1]  
mm [00,01, 10, 11]  
-32 k 31  
1
Cycles:  
1
W INDFn  
Effective address is determined by  
Example:  
NOP  
FSR + 1 (preincrement)  
FSR - 1 (predecrement)  
FSR + k (relative offset)  
After the Move, the FSR value will be  
either:  
Load OPTION_REG Register  
with W  
OPTION  
FSR + 1 (all increments)  
FSR - 1 (all decrements)  
Syntax:  
[ label ] OPTION  
None  
Unchanged  
Operands:  
Operation:  
Status Affected:  
Description:  
Status Affected:  
None  
(W) OPTION_REG  
None  
Mode  
Syntax  
mm  
00  
01  
10  
11  
Move data from W register to  
OPTION_REG register.  
Preincrement  
Predecrement  
Postincrement  
Postdecrement  
++FSRn  
--FSRn  
FSRn++  
FSRn--  
Words:  
1
Cycles:  
Example:  
1
OPTION  
Before Instruction  
OPTION_REG = 0xFF  
W = 0x4F  
After Instruction  
OPTION_REG = 0x4F  
W = 0x4F  
Description:  
This instruction is used to move data  
between W and one of the indirect  
registers (INDFn). Before/after this  
move, the pointer (FSRn) is updated by  
pre/post incrementing/decrementing it.  
Note: The INDFn registers are not  
physical registers. Any instruction that  
accesses an INDFn register actually  
accesses the register at the address  
specified by the FSRn.  
RESET  
Software Reset  
Syntax:  
[ label ] RESET  
Operands:  
Operation:  
None  
FSRn is limited to the range 0000h -  
FFFFh. Incrementing/decrementing it  
beyond these bounds will cause it to  
wrap-around.  
Execute a device Reset. Resets the  
RI flag of the PCON register.  
Status Affected:  
Description:  
None  
This instruction provides a way to  
execute a hardware Reset by soft-  
ware.  
The increment/decrement operation on  
FSRn WILL NOT affect any Status bits.  
DS40001569D-page 216  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
RETURN  
Return from Subroutine  
RETFIE  
Syntax:  
Return from Interrupt  
[ label ] RETFIE  
None  
Syntax:  
[ label ] RETURN  
None  
Operands:  
Operation:  
Operands:  
Operation:  
TOS PC  
TOS PC,  
1GIE  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
None  
Return from subroutine. The stack is  
POPed and the top of the stack (TOS)  
is loaded into the program counter.  
This is a 2-cycle instruction.  
Return from Interrupt. Stack is POPed  
and Top-of-Stack (TOS) is loaded in  
the PC. Interrupts are enabled by  
setting Global Interrupt Enable bit,  
GIE (INTCON<7>). This is a 2-cycle  
instruction.  
Words:  
1
Cycles:  
Example:  
2
RETFIE  
After Interrupt  
PC  
=
TOS  
GIE =  
1
RETLW  
Syntax:  
Return with literal in W  
RLF  
Rotate Left f through Carry  
[ label ] RETLW  
0 k 255  
k
Syntax:  
Operands:  
[ label ]  
RLF f,d  
Operands:  
Operation:  
0 f 127  
d [0,1]  
k (W);  
TOS PC  
Operation:  
See description below  
C
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
The W register is loaded with the 8-bit  
literal ‘k’. The program counter is  
loaded from the top of the stack (the  
return address). This is a 2-cycle  
instruction.  
The contents of register ‘f’ are rotated  
one bit to the left through the Carry  
flag. If ‘d’ is ‘0’, the result is placed in  
the W register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
Words:  
1
2
C
Register f  
Cycles:  
Example:  
CALL TABLE;W contains table  
;offset value  
Words:  
1
1
Cycles:  
Example:  
;W now has table value  
TABLE  
RLF  
REG1,0  
Before Instruction  
ADDWF PC ;W = offset  
RETLW k1 ;Begin table  
REG1  
C
=
=
1110 0110  
0
RETLW k2  
;
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
RETLW kn ; End of table  
Before Instruction  
W
=
0x07  
After Instruction  
W
=
value of k8  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 217  
PIC16LF1904/6/7  
SUBLW  
Subtract W from literal  
RRF  
Rotate Right f through Carry  
Syntax:  
[ label ] SUBLW  
0 k 255  
k
Syntax:  
[ label ] RRF f,d  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
0 f 127  
d [0,1]  
k - (W) W)  
C, DC, Z  
Operation:  
See description below  
C
The W register is subtracted (2’s com-  
plement method) from the 8-bit literal  
‘k’. The result is placed in the W regis-  
ter.  
Status Affected:  
Description:  
The contents of register ‘f’ are rotated  
one bit to the right through the Carry  
flag. If ‘d’ is ‘0’, the result is placed in  
the W register. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’.  
C = 0  
W k  
C = 1  
W k  
C
Register f  
DC = 0  
DC = 1  
W<3:0> k<3:0>  
W<3:0> k<3:0>  
SUBWF  
Subtract W from f  
SLEEP  
Enter Sleep mode  
[ label ] SLEEP  
None  
Syntax:  
[ label ] SUBWF f,d  
Syntax:  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
00h WDT,  
0WDT prescaler,  
1TO,  
Operation:  
(f) - (W) destination)  
Status Affected:  
Description:  
C, DC, Z  
0PD  
Subtract (2’s complement method) W  
register from register ‘f’. If ‘d’ is ‘0’, the  
result is stored in the W  
register. If ‘d’ is ‘1’, the result is stored  
back in register ‘f.  
Status Affected:  
Description:  
TO, PD  
The power-down Status bit, PD is  
cleared. Time-out Status bit, TO is  
set. Watchdog Timer and its pres-  
caler are cleared.  
C = 0  
W f  
The processor is put into Sleep mode  
with the oscillator stopped.  
C = 1  
W f  
DC = 0  
DC = 1  
W<3:0> f<3:0>  
W<3:0> f<3:0>  
SUBWFB  
Subtract W from f with Borrow  
Syntax:  
SUBWFB f {,d}  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) – (W) – (B) dest  
Status Affected:  
Description:  
C, DC, Z  
Subtract W and the BORROW flag  
(CARRY) from register ‘f’ (2’s comple-  
ment method). If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
DS40001569D-page 218  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
SWAPF  
Swap Nibbles in f  
XORLW  
Exclusive OR literal with W  
Syntax:  
[ label ] SWAPF f,d  
Syntax:  
[ label ] XORLW  
0 k 255  
k
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .XOR. k W)  
Z
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
The contents of the W register are  
XOR’ed with the 8-bit literal ‘k’. The  
result is placed in the W register.  
Status Affected:  
Description:  
None  
The upper and lower nibbles of regis-  
ter ‘f’ are exchanged. If ‘d’ is ‘0’, the  
result is placed in the W register. If ‘d’  
is ‘1’, the result is placed in register ‘f’.  
XORWF  
Exclusive OR W with f  
TRIS  
Load TRIS Register with W  
Syntax:  
[ label ] XORWF f,d  
Syntax:  
[ label ] TRIS f  
5 f 7  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
Status Affected:  
Description:  
Operation:  
(W) .XOR. (f) destination)  
(W) TRIS register ‘f’  
None  
Status Affected:  
Description:  
Z
Exclusive OR the contents of the W  
register with register ‘f’. If ‘d’ is ‘0’, the  
result is stored in the W register. If ‘d’  
is ‘1’, the result is stored back in regis-  
ter ‘f’.  
Move data from W register to TRIS  
register.  
When ‘f’ = 5, TRISA is loaded.  
When ‘f’ = 6, TRISB is loaded.  
When ‘f’ = 7, TRISC is loaded.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 219  
PIC16LF1904/6/7  
NOTES:  
DS40001569D-page 220  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
22.0 ELECTRICAL SPECIFICATIONS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias....................................................................................................... -40°C to +125°C  
Storage temperature ........................................................................................................................ -65°C to +150°C  
Voltage on pins with respect to VSS  
on VDD ................................................................................................................................... -0.3V to +4.0V  
on MCLR ................................................................................................................................ -0.3V to +9.0V  
on all other pins ........................................................................................................... -0.3V to (VDD + 0.3V)  
Total power dissipation(1) ...............................................................................................................................800 mW  
Maximum current  
out of VSS pin  
-40°C TA +85°C for industrial ......................................................................................... 300 mA  
-40°C TA +125°C for extended......................................................................................... 95 mA  
into VDD pin  
-40°C TA +85°C for industrial ......................................................................................... 250 mA  
-40°C TA +125°C for extended......................................................................................... 70 mA  
Clamp current, IK (VPIN < 0 or VPIN > VDD)20 mA  
Maximum output current  
sunk by any I/O pin.............................................................................................................................. 25 mA  
sourced by any I/O pin......................................................................................................................... 25 mA  
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOl x IOL).  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for  
extended periods may affect device reliability.  
22.1 Standard Operating Conditions  
The standard operating conditions for any device are defined as:  
Operating Voltage:  
Operating Temperature:  
VDDMIN VDD VDDMAX  
TA_MIN TA TA_MAX  
VDD — Operating Supply Voltage(2)  
VDDMIN (Fosc 16 MHz) ......................................................................................................... +1.8V  
VDDMIN (Fosc 20 MHz) ......................................................................................................... +2.3V  
VDDMAX .................................................................................................................................... +3.6V  
TA — Operating Ambient Temperature Range  
Industrial Temperature  
TA_MIN...................................................................................................................................... -40°C  
TA_MAX.................................................................................................................................... +85°C  
Extended Temperature  
TA_MIN...................................................................................................................................... -40°C  
TA_MAX.................................................................................................................................. +125°C  
Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be  
limited by the device package power dissipation characterizations, see Section TABLE 22-6: “Thermal  
Considerations” to calculate device specifications.  
2: See Parameter D001, DS Characteristics: Supply Voltage.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 221  
 
PIC16LF1904/6/7  
FIGURE 22-1:  
VOLTAGE FREQUENCY GRAPH, -40°C TA +125°C  
3.6  
EC Mode  
Only  
2.5  
2.3  
Internal Oscillator  
or EC Mode  
2.0  
1.8  
20  
0
4
10  
Frequency (MHz)  
16  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: Refer to Table 22-7 for each Oscillator mode’s supported frequencies.  
FIGURE 22-2:  
HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE  
125  
- 15% to + 12.5%  
85  
60  
± 8%  
± 6.5%  
25  
0
-20  
- 15% to + 12.5%  
-40  
1.8  
2.0  
2.5  
3.5  
3.6  
3.0  
VDD (V)  
DS40001569D-page 222  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
22.2  
DC Characteristics  
TABLE 22-1: SUPPLY VOLTAGE  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF1904/6/7  
Param.  
No.  
Sym.  
Characteristic  
Min.  
Typ† Max.  
Units  
Conditions  
D001  
VDD  
1.8  
2.3  
3.6  
3.6  
V
V
FOSC 16 MHz  
FOSC 20 MHz (EC mode only)  
(1)  
D002*  
VDR  
RAM Data Retention Voltage  
1.5  
1.54  
1.64  
1.7  
1.74  
V
V
Device in Sleep mode  
D002A* VPOR*  
D002B* VPORR*  
Power-on Reset Release Voltage  
Power-on Reset Rearm Voltage  
V
Device in Sleep mode  
D003  
VADFVR  
Fixed Voltage Reference Voltage for  
ADC, Initial Accuracy  
6
7
7
8
4
4
6
6
%
1.024V, VDD 1.8V, 85°C  
1.024V, VDD 1.8V, 125°C  
2.048V, VDD 2.5V, 85°C  
2.048V, VDD 2.5V, 125°C  
D003A  
VCDAFVR  
Fixed Voltage Reference Voltage for  
Comparator and DAC, Initial  
Accuracy  
7
8
8
9
5
5
7
7
%
1.024V, VDD 1.8V, 85°C  
1.024V, VDD 1.8V, 125°C  
2.048V, VDD 2.5V, 85°C  
2.048V, VDD 2.5V, 125°C  
D003B  
VLCDFVR  
Fixed Voltage Reference Voltage for  
LCD Bias, Initial Accuracy  
9
9.5  
9
9
%
3.072V, VDD 3.6V, 85°C  
3.072V, VDD 3.6V, 125°C  
D003C* TCVFVR  
Temperature Coefficient, Fixed  
Voltage Reference  
-130  
0.270  
ppm/°C  
%/V  
D003D* VFVR/  
VIN  
Line Regulation, Fixed Voltage  
Reference  
D004*  
SVDD  
VDD Rise Rate to ensure internal  
0.05  
V/ms  
See Section 5.1 “Power-on Reset  
(POR)” for details.  
Power-on Reset signal  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.  
This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.  
Note 1:  
FIGURE 22-3:  
POR AND POR REARM WITH SLOW RISING VDD  
VDD  
VPOR  
VPORR  
VSS  
NPOR  
POR REARM  
VSS  
(3)  
(2)  
TPOR  
TVLOW  
Note 1: When NPOR is low, the device is held in Reset.  
2: TPOR 1 s typical.  
3: TVLOW 2.7 s typical.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 223  
PIC16LF1904/6/7  
TABLE 22-2: SUPPLY CURRENT (IDD)(1,2)  
Standard Operating Conditions (unless otherwise stated)  
Conditions  
Note  
PIC16LF1904/6/7  
Param  
Device  
Min.  
Typ†  
Max.  
Units  
No.  
Characteristics  
VDD  
(1, 2)  
Supply Current (IDD)  
D010  
58  
115  
133  
130  
245  
290  
218  
283  
314  
233  
309  
347  
305  
433  
500  
395  
600  
700  
567  
915  
1087  
2.7  
75  
140  
176  
200  
300  
350  
275  
375  
395  
325  
425  
475  
360  
520  
600  
480  
720  
850  
670  
1100  
1300  
7.2  
A  
A  
A  
A  
A  
A  
A  
A  
A  
1.8  
3.0  
3.6  
1.8  
3.0  
3.6  
1.8  
3.0  
3.6  
FOSC = 1 MHz  
EC Oscillator mode  
High Power mode  
D011  
D012  
FOSC = 4 MHz  
EC Oscillator mode  
High Power mode  
FOSC = 500 kHz  
HFINTOSC mode  
D013  
D014  
D015  
D016  
D017  
D017A  
D018  
D018A  
A  
A  
A  
1.8  
3.0  
3.6  
FOSC = 1 MHz  
HFINTOSC mode  
A  
A  
A  
1.8  
3.0  
3.6  
FOSC = 4 MHz  
HFINTOSC mode  
A  
A  
A  
1.8  
3.0  
3.6  
FOSC = 8 MHz  
HFINTOSC mode  
A  
A  
A  
1.8  
3.0  
3.6  
FOSC = 16 MHz  
HFINTOSC mode  
A  
A  
A  
1.8  
3.0  
3.6  
FOSC = 31 kHz  
LFINTOSC mode  
-40°C TA +125°C  
4.5  
9.7  
5.2  
12.0  
6.5  
2.7  
A  
A  
A  
1.8  
3.0  
3.6  
FOSC = 31 kHz  
LFINTOSC mode  
-40°C TA +85°C  
4.5  
9.0  
5.2  
11.0  
6.7  
2.4  
A  
A  
A  
1.8  
3.0  
3.6  
FOSC = 32 kHz  
EC Oscillator mode, Low-Power mode  
-40°C TA +125°C  
4.2  
9.2  
4.8  
11.5  
6.0  
2.4  
A  
A  
A  
1.8  
3.0  
3.6  
FOSC = 32 kHz  
EC Oscillator mode, Low-Power mode  
-40°C TA +85°C  
4.2  
8.5  
4.8  
10.5  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from  
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current  
consumption.  
3: FVR and BOR are disabled.  
DS40001569D-page 224  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
TABLE 22-3: POWER-DOWN CURRENTS (IPD)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF1904/6/7  
Conditions  
Param  
No.  
Max.  
+85°C +125°C  
Max.  
Device Characteristics  
Min.  
Typ†  
Units  
VDD  
Note  
(2)  
Power-down Base Current (IPD)  
D023  
0.15  
0.16  
0.65  
0.27  
0.56  
0.75  
17.5  
17.7  
17.8  
0.15  
0.21  
7.0  
1.0  
2.0  
3.0  
2.0  
3.0  
4.0  
31  
3.0  
4.0  
5.0  
4.0  
5.0  
6.0  
35  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
1.8  
3.0  
3.6  
1.8  
3.0  
3.6  
1.8  
3.0  
3.6  
3.0  
3.6  
3.0  
3.6  
1.8  
3.0  
3.6  
1.8  
3.0  
3.6  
1.8  
3.0  
3.6  
WDT, BOR, FVR, and T1OSC  
disabled, all Peripherals Inactive  
D024  
D025  
WDT Current (Note 1)  
FVR current  
33  
38  
35  
41  
2.30  
3.40  
10  
3.56  
4.70  
12  
LPBOR current  
BOR Current  
D026  
D027  
D028  
7.5  
12  
14  
0.50  
0.60  
0.70  
0.40  
0.70  
0.90  
2.0  
3.0  
4.0  
2.0  
3.0  
4.0  
250  
250  
250  
4.0  
5.0  
6.0  
4.0  
5.0  
6.0  
T1OSC Current  
D029  
D030  
D031  
ADC Current (Note 1, Note 3),  
no conversion in progress  
ADC Current (Note 1, Note 3),  
conversion in progress  
LCD Bias Ladder  
Low power  
1
2
6
A  
A  
A  
1.8  
3.0  
3.6  
Medium Power  
High Power  
10  
13  
21  
100  
111  
120  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is  
enabled. The peripheral current can be determined by subtracting the base IDD or IPD current from this limit. Max  
values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
3: A/D oscillator source is FRC.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 225  
PIC16LF1904/6/7  
TABLE 22-4: I/O PORTS  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Param  
No.  
Sym.  
Characteristic  
Min.  
Typ†  
Max.  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O PORT:  
D032  
D033  
D034  
with TTL buffer  
with Schmitt Trigger buffer  
MCLR, OSC1  
0.15 VDD  
0.2 VDD  
0.2 VDD  
V
V
V
1.8V VDD 3.6V  
1.8V VDD 3.6V  
VIH  
Input High Voltage  
I/O ports:  
D040  
with TTL buffer  
0.25 VDD +  
0.8  
V
1.8V VDD 3.6V  
1.8V VDD 3.6V  
D041  
D042  
with Schmitt Trigger buffer  
MCLR  
0.8 VDD  
0.8 VDD  
V
V
(2)  
IIL  
Input Leakage Current  
D060  
I/O ports  
± 5  
± 125  
nA  
VSS VPIN VDD, Pin at  
high-impedance @ 85°C  
± 5  
± 1000  
± 200  
nA 125°C  
D061  
D070*  
D080  
MCLR(3)  
± 50  
nA  
VSS VPIN VDD @ 85°C  
IPUR  
VOL  
Weak Pull-up Current  
25  
100  
200  
0.6  
A  
VDD = 3.3V, VPIN = VSS  
Output Low Voltage  
I/O ports  
IOL = 6mA, VDD = 3.3V  
IOL = 1.8mA, VDD = 1.8V  
V
VOH  
Output High Voltage  
D090  
I/O ports  
IOH = 3mA, VDD = 3.3V  
IOH = 1mA, VDD = 1.8V  
VDD - 0.7  
V
Capacitive Loading Specs on Output Pins  
All I/O pins  
D101*  
CIO  
50  
pF  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: Negative current is defined as current sourced by the pin.  
DS40001569D-page 226  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
TABLE 22-5: MEMORY PROGRAMMING REQUIREMENTS  
DC CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Param  
Sym.  
No.  
Characteristic  
Min.  
Typ†  
Max.  
Units  
Conditions  
Program Memory Programming  
Specifications  
D110  
D111  
D112  
VIHH  
IDDP  
Voltage on MCLR/VPP/RE3 pin  
Supply Current during Programming  
VDD for Bulk Erase  
8.0  
9.0  
10  
V
mA  
V
(Note 2)  
2.7  
VDD  
max.  
D113  
VPEW  
VDD for Write or Row Erase  
VDD  
min.  
VDD  
max.  
V
D114  
D115  
IPPPGM Current on MCLR/VPP during  
Erase/Write  
1.0  
5.0  
mA  
mA  
IDDPGM Current on VDD during Erase/Write  
Program Flash Memory  
D121  
D122  
EP  
Cell Endurance  
VDD for Read  
1K  
10K  
E/W -40C to +85C (Note 1)  
VPR  
VDD  
min.  
VDD  
max.  
V
D123  
D124  
TIW  
Self-timed Write Cycle Time  
2
2.5  
ms  
TRETD Characteristic Retention  
40  
Year Provided no other  
specifications are violated  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: Self-write and Block Erase.  
2: Required only if single-supply programming is disabled.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 227  
PIC16LF1904/6/7  
TABLE 22-6: THERMAL CONSIDERATIONS  
Standard Operating Conditions (unless otherwise stated)  
Param  
Sym.  
Characteristic  
Typ.  
Units  
Conditions  
28-pin SPDIP package  
No.  
TH01  
JA  
Thermal Resistance Junction to Ambient  
60  
80  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C  
28-pin SOIC package  
90  
28-pin SSOP package  
27.5  
47.2  
41.0  
46.0  
31.4  
24  
28-pin UQFN 4x4mm package  
40-pin PDIP package  
40-pin UQFN 5x5mm package  
44-pin TQFP package  
TH02  
JC  
Thermal Resistance Junction to Case  
28-pin SPDIP package  
28-pin SOIC package  
24  
28-pin SSOP package  
24  
28-pin UQFN 4x4mm package  
40-pin PDIP package  
24.7  
50.5  
14.5  
150  
40-pin UQFN 5x5mm package  
44-pin TQFP package  
TH03  
TH04  
TH05  
TH06  
TH07  
TJMAX  
PD  
Maximum Junction Temperature  
Power Dissipation  
W
PD = PINTERNAL + PI/O  
(1)  
PINTERNAL Internal Power Dissipation  
W
PINTERNAL = IDD x VDD  
PI/O  
I/O Power Dissipation  
Derated Power  
W
PI/O = (IOL * VOL) + (IOH * (VDD - VOH))  
(2)  
PDER  
W
PDER = PDMAX (TJ - TA)/JA  
Note 1: IDD is current to run the chip alone without driving any load on the output pins.  
2: TA = Ambient Temperature  
3: TJ = Junction Temperature  
DS40001569D-page 228  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
22.3  
AC Characteristics  
The timing parameter symbols have been created with  
one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O PORT  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (High-impedance)  
Low  
Valid  
L
High-impedance  
FIGURE 22-4:  
LOAD CONDITIONS  
Load Condition  
Pin  
CL  
VSS  
Legend: CL = 50 pF for all pins, 15 pF for  
OSC2 output  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 229  
PIC16LF1904/6/7  
TABLE 22-7: CLOCK OSCILLATOR TIMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Param  
Sym.  
Characteristic  
Min.  
Typ†  
Max.  
Units  
Conditions  
No.  
OS01  
FOSC  
External CLKIN Frequency(1)  
DC  
DC  
0.5  
4
MHz External Clock (ECL)  
MHz  
MHz  
External Clock (ECM)  
DC  
20  
External Clock (ECH)  
External Clock (EC)  
TCY = 4/FOSC  
OS02  
OS03  
TOSC  
TCY  
External CLKIN Period(1)  
Instruction Cycle Time(1)  
50  
ns  
ns  
200  
TCY  
DC  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing code.  
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-  
sumption. All devices are tested to operate at “min” values with an external clock applied to OSC1 pin. When an external  
clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
TABLE 22-8: OSCILLATOR PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Param.  
No.  
Freq.  
Tolerance  
Sym.  
Characteristic  
Min. Typ† Max. Units  
Conditions  
OS08  
HFOSC  
Internal Calibrated HFINTOSC  
Frequency(2)  
8%  
±6.5%  
16  
16  
MHz 0°C TA +85°C  
MHz VDD = 3.0V @ +25°C  
OS10A* TIOSC ST HFINTOSC 16 MHz  
Oscillator Wake-up from Sleep  
Start-up Time  
5
5
15  
15  
s  
s  
VDD = 2.0V, -40°C to +85°C  
VDD = 3.0V, -40°C to +85°C  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing  
code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current  
consumption. All devices are tested to operate at “min” values with an external clock applied to the OSC1 pin. When an  
external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
2: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as  
possible. 0.1 F and 0.01 F values in parallel are recommended.  
DS40001569D-page 230  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
FIGURE 22-5:  
CLKOUT AND I/O TIMING  
Cycle  
Write  
Q4  
Fetch  
Q1  
Read  
Q2  
Execute  
Q3  
FOSC  
OS12  
OS11  
OS20  
OS21  
CLKOUT  
OS19  
OS13  
OS18  
OS16  
OS17  
I/O pin  
(Input)  
OS14  
OS15  
I/O pin  
(Output)  
New Value  
Old Value  
OS18, OS19  
TABLE 22-9: CLKOUT AND I/O TIMING PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Param  
No.  
Sym.  
Characteristic  
Min.  
Typ† Max. Units  
Conditions  
OS11 TosH2ckL FOSCto CLKOUT(1)  
OS12 TosH2ckH FOSCto CLKOUT(1)  
OS13 TckL2ioV CLKOUTto Port out valid(1)  
70  
72  
20  
ns VDD = 3.3-5.0V  
ns VDD = 3.3-5.0V  
ns  
OS14 TioV2ckH Port input valid before CLKOUT(1)  
OS15 TosH2ioV Fosc(Q1 cycle) to Port out valid  
TOSC + 200 ns  
50  
70*  
ns  
ns VDD = 3.3-5.0V  
ns VDD = 3.3-5.0V  
OS16 TosH2ioI  
Fosc(Q2 cycle) to Port input invalid  
50  
(I/O in hold time)  
OS17 TioV2osH Port input valid to Fosc(Q2 cycle)  
20  
ns  
(I/O in setup time)  
OS18 TioR  
OS19 TioF  
Port output rise time  
40  
15  
72  
32  
ns  
ns  
VDD = 1.8V  
VDD = 3.3-5.0V  
Port output fall time  
28  
15  
55  
30  
VDD = 1.8V  
VDD = 3.3-5.0V  
OS20* Tinp  
OS21* Tioc  
INT pin input high or low time  
25  
25  
ns  
ns  
Interrupt-on-change new input level  
time  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25C unless otherwise stated.  
Note 1: Measurements are taken in EC mode where CLKOUT output is 4 x TOSC.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 231  
PIC16LF1904/6/7  
FIGURE 22-6:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Start-Up Time  
Internal Reset(1)  
Watchdog Timer  
Reset(1)  
31  
34  
34  
I/O pins  
Note 1: Asserted low.  
FIGURE 22-7:  
BROWN-OUT RESET TIMING AND CHARACTERISTICS  
VDD  
VBOR and VHYST  
VBOR  
(Device in Brown-out Reset)  
(Device not in Brown-out Reset)  
37  
Reset  
33(1)  
(due to BOR)  
Note 1: 64 ms delay only if PWRTE bit in the Configuration Word register is programmed to ‘0’.  
2 ms delay if PWRTE = 0and VREGEN = 1.  
DS40001569D-page 232  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
FIGURE 22-8:  
MINIMUM PULSE WIDTH FOR LPBOR DETECTION  
VDD  
(Monitored Voltage)  
VLPBOR  
500 nVs < VBPW  
10 nVs < VBPW < 500 nVs  
Maybe Detected  
VBPW < 10 nVs  
Pulse Rejected  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 233  
PIC16LF1904/6/7  
TABLE 22-10: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Param  
Sym.  
Characteristic  
Min. Typ† Max. Units  
Conditions  
No.  
30  
TMCL  
MCLR Pulse Width (low)  
2
5
s VDD = 3.0V, -40°C to +85°C  
s VDD = 3.0V  
31  
FWDTLP Low Frequency Internal Oscillator  
Frequency  
19  
33  
52  
kHz  
32  
TOST  
Oscillator Start-up Timer Period(1)  
1024  
2048  
Tosc (Note 2)  
33*  
34*  
TPWRT Power-up Timer Period, PWRTE = 0  
Tosc Clocked by LFINTOSC  
TIOZ  
I/O High-Impedance from MCLR  
Low or Watchdog Timer Reset  
2.0  
s  
35  
VBOR  
Brown-out Reset Voltage: BORV = 0 2.55 2.70 2.85  
BORV = 1 1.80 1.90 2.05  
V
V
35A* VHYST  
Brown-out Reset Hysteresis  
25  
50  
75  
100  
mV -40°C to +85°C  
mV -40°C to +125°C  
35B* TBORDC Brown-out Reset DC Response  
Time  
1
3
5
10  
s VDD VBOR, -40°C to +85°C  
s VDD VBOR  
35C  
TBORAC Brown-out Reset AC Response  
Time  
100  
ns Transient Response immunity  
for a noise spike that goes  
from VDD to VSS and back with  
10 ns rise and fall times.  
Guidance only.  
36  
TFVRS  
Fixed Voltage Reference Turn-on  
Time  
5
s Turn on to specified stability  
37  
VLPBOR Low-Power Brown-out Reset  
Voltage  
1.85 1.95 2.10  
V
-40°C to +85°C  
38*  
39*  
VZPHYST Zero-Power Brown-out Reset  
Hysteresis  
0
25  
60  
mV -40°C to +85°C  
TZPBPW Zero-Power Brown-out Reset AC  
Response Time for BOR detection  
10  
500  
nVs VDD VBOR, -40°C to +85°C  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with the  
device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption. All devices are tested to operate at “min” values with an external  
clock applied to the OSC1 pin. When an external clock input is used, the “max” cycle time limit is “DC” (no  
clock) for all devices.  
2: Period of the slower clock.  
3: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as  
possible. 0.1 F and 0.01 F values in parallel are recommended.  
DS40001569D-page 234  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
FIGURE 22-9:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
40  
41  
42  
T1CKI  
45  
46  
49  
47  
TMR0 or  
TMR1  
TABLE 22-11: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Standard Operating Conditions(unless otherwise stated)  
Param  
Sym.  
TT0H  
Characteristic  
Min.  
Typ†  
Max.  
Units  
Conditions  
No.  
40*  
T0CKI High Pulse Width  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
10  
0.5 TCY + 20  
10  
41*  
42*  
TT0L  
TT0P  
T0CKI Low Pulse Width  
T0CKI Period  
Greater of:  
20 or TCY + 40  
N
ns N = prescale value  
(2, 4, ..., 256)  
45*  
TT1H  
T1CKI High Synchronous, No Prescaler  
0.5 TCY + 20  
15  
ns  
ns  
Time  
Synchronous,  
with Prescaler  
Asynchronous  
30  
ns  
ns  
ns  
ns  
46*  
47*  
TT1L  
TT1P  
T1CKI Low Synchronous, No Prescaler  
0.5 TCY + 20  
Time  
Synchronous, with Prescaler  
Asynchronous  
15  
30  
T1CKI Input Synchronous  
Period  
Greater of:  
30 or TCY + 40  
N
ns N = prescale value  
(1, 2, 4, 8)  
Asynchronous  
60  
ns  
48  
FT1  
Timer1 Oscillator Input Frequency Range  
(oscillator enabled by setting bit T1OSCEN)  
32.4  
32.768  
33.1  
kHz  
49*  
TCKEZTMR1 Delay from External Clock Edge to Timer  
Increment  
2 TOSC  
7 TOSC  
Timers in Sync  
mode  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 235  
PIC16LF1904/6/7  
TABLE 22-12: PIC16LF1904/6/7 A/D CONVERTER (ADC) CHARACTERISTICS:  
Operating Conditions (unless otherwise stated)  
VDD = 3.0V, TA = 25°C  
Param  
No.  
Sym.  
Characteristic  
Resolution  
Min.  
Typ†  
Max. Units  
Conditions  
AD01 NR  
AD02 EIL  
AD03 EDL  
±1  
±1  
10  
±1.7  
±1  
bit  
Integral Error  
LSb VREF = 3.0V  
Differential Error  
LSb No missing codes  
VREF = 3.0V  
AD04 EOFF Offset Error  
±1  
±1  
±2  
±1.5  
VDD  
VREF  
10  
LSb VREF = 3.0V  
LSb VREF = 3.0V  
AD05 EGN Gain Error  
AD06 VREF Reference Voltage(3)  
1.8  
VSS  
V
V
VREF = (VRPOS - VRNEG)  
AD07 VAIN Full-Scale Range  
AD08 ZAIN Recommended Impedance of  
Analog Voltage Source  
kCan go higher if external 0.01F capacitor is  
present on input pin.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Total Absolute Error includes integral, differential, offset and gain errors.  
2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
3: ADC VREF is from external VREF, VDD pin or FVREF, whichever is selected as reference input.  
4: When ADC is off, it will not consume any current other than leakage current. The power-down current specification  
includes any such leakage from the ADC module.  
TABLE 22-13: PIC16LF1902/3 A/D CONVERSION REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Param.  
No.  
Sym.  
Characteristic  
Min.  
Typ†  
Max. Units  
Conditions  
AD130* TAD  
ADC Clock Period (TADC)  
ADC Internal FRC Oscillator Period (TFRC)  
AD131 TCNV Conversion Time  
(not including Acquisition Time)(1)  
1.0  
1.0  
2.0  
11  
6.0  
6.0  
s FOSC-based  
s ADCS<2:0> = x11(ADC FRC mode)  
TAD Set GO/DONE bit to conversion  
complete  
AD132* TACQ Acquisition Time  
5.0  
s  
AD133* THCD Holding Capacitor Disconnect Time  
1/2 TAD  
1/2 TAD + 1TCY  
FOSC-based  
ADCS<2:0> = x11(ADC FRC mode)  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: The ADRES register may be read on the following TCY cycle.  
DS40001569D-page 236  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
FIGURE 22-10:  
PIC16LF1904/6/7 A/D CONVERSION TIMING (NORMAL MODE)  
BSF ADCON0, GO  
1 TCY  
(TOSC/2(1)  
)
AD131  
Q4  
AD130  
A/D CLK  
7
6
5
4
3
2
1
0
A/D Data  
ADRES  
NEW_DATA  
1 TCY  
OLD_DATA  
ADIF  
GO  
DONE  
Sampling Stopped  
AD132  
Sample  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
FIGURE 22-11:  
PIC16LF1904/6/7 A/D CONVERSION TIMING (SLEEP MODE)  
BSF ADCON0, GO  
(1)  
(TOSC/2 + TCY  
1 TCY  
)
AD131  
Q4  
AD130  
A/D CLK  
A/D Data  
7
6
5
3
2
1
0
4
NEW_DATA  
1 TCY  
OLD_DATA  
ADRES  
ADIF  
GO  
DONE  
Sampling Stopped  
AD132  
Sample  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 237  
PIC16LF1904/6/7  
23.0 DC AND AC  
CHARACTERISTICS GRAPHS  
AND CHARTS  
Graphs and charts are not available at this time.  
DS40001569D-page 238  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
24.1 MPLAB X Integrated Development  
Environment Software  
24.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers (MCU) and dsPIC® digital  
signal controllers (DSC) are supported with a full range  
of software and hardware development tools:  
The MPLAB X IDE is a single, unified graphical user  
interface for Microchip and third-party software, and  
hardware development tool that runs on Windows®,  
Linux and Mac OS® X. Based on the NetBeans IDE,  
MPLAB X IDE is an entirely new IDE with a host of free  
software components and plug-ins for high-  
performance application development and debugging.  
Moving between tools and upgrading from software  
simulators to hardware debugging and programming  
tools is simple with the seamless user interface.  
• Integrated Development Environment  
- MPLAB® X IDE Software  
• Compilers/Assemblers/Linkers  
- MPLAB XC Compiler  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
With complete project management, visual call graphs,  
a configurable watch window and a feature-rich editor  
that includes code completion and context menus,  
MPLAB X IDE is flexible and friendly enough for new  
users. With the ability to support multiple tools on  
multiple projects with simultaneous debugging, MPLAB  
X IDE is also suitable for the needs of experienced  
users.  
• Simulators  
- MPLAB X SIM Software Simulator  
• Emulators  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers/Programmers  
- MPLAB ICD 3  
Feature-Rich Editor:  
- PICkit™ 3  
• Color syntax highlighting  
• Device Programmers  
- MPLAB PM3 Device Programmer  
• Smart code completion makes suggestions and  
provides hints as you type  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits and Starter Kits  
• Automatic code formatting based on user-defined  
rules  
• Third-party development tools  
• Live parsing  
User-Friendly, Customizable Interface:  
• Fully customizable interface: toolbars, toolbar  
buttons, windows, window placement, etc.  
• Call graph window  
Project-Based Workspaces:  
• Multiple projects  
• Multiple tools  
• Multiple configurations  
• Simultaneous debugging sessions  
File History and Bug Tracking:  
• Local file history feature  
• Built-in support for Bugzilla issue tracker  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 239  
PIC16LF1904/6/7  
24.2 MPLAB XC Compilers  
24.4 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB XC Compilers are complete ANSI C  
compilers for all of Microchip’s 8, 16, and 32-bit MCU  
and DSC devices. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use. MPLAB XC Compilers run on Windows,  
Linux or MAC OS X.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler. It can link  
relocatable objects from precompiled libraries, using  
directives from a linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
debug information that is optimized to the MPLAB X  
IDE.  
The free MPLAB XC Compiler editions support all  
devices and commands, with no time or memory  
restrictions, and offer sufficient code optimization for  
most applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
MPLAB XC Compilers include an assembler, linker and  
utilities. The assembler generates relocatable object  
files that can then be archived or linked with other relo-  
catable object files and archives to create an execut-  
able file. MPLAB XC Compiler uses the assembler to  
produce its object file. Notable features of the assem-  
bler include:  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
24.5 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command-line interface  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC DSC devices. MPLAB XC Compiler  
uses the assembler to produce its object file. The  
assembler generates relocatable object files that can  
then be archived or linked with other relocatable object  
files and archives to create an executable file. Notable  
features of the assembler include:  
• Rich directive set  
• Flexible macro language  
• MPLAB X IDE compatibility  
24.3 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command-line interface  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code, and COFF files for  
debugging.  
• Rich directive set  
• Flexible macro language  
• MPLAB X IDE compatibility  
The MPASM Assembler features include:  
• Integration into MPLAB X IDE projects  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multipurpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS40001569D-page 240  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
24.6 MPLAB X SIM Software Simulator  
24.8 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB X SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
The MPLAB ICD 3 In-Circuit Debugger System is  
Microchip’s most cost-effective, high-speed hardware  
debugger/programmer for Microchip Flash DSC and  
MCU devices. It debugs and programs PIC Flash  
microcontrollers and dsPIC DSCs with the powerful,  
yet easy-to-use graphical user interface of the MPLAB  
IDE.  
The MPLAB ICD 3 In-Circuit Debugger probe is  
connected to the design engineer’s PC using a high-  
speed USB 2.0 interface and is connected to the target  
with a connector compatible with the MPLAB ICD 2 or  
MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3  
supports all MPLAB ICD 2 headers.  
The MPLAB X SIM Software Simulator fully supports  
symbolic debugging using the MPLAB XC Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
24.9 PICkit 3 In-Circuit Debugger/  
Programmer  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC and dsPIC Flash microcontrollers at a most  
affordable price point using the powerful graphical user  
interface of the MPLAB IDE. The MPLAB PICkit 3 is  
connected to the design engineer’s PC using a full-  
speed USB interface and can be connected to the tar-  
get via a Microchip debug (RJ-11) connector (compati-  
ble with MPLAB ICD 3 and MPLAB REAL ICE). The  
connector uses two device I/O pins and the Reset line  
to implement in-circuit debugging and In-Circuit Serial  
Programming™ (ICSP™).  
24.7 MPLAB REAL ICE In-Circuit  
Emulator System  
The MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs all 8, 16 and 32-bit MCU, and DSC devices  
with the easy-to-use, powerful graphical user interface of  
the MPLAB X IDE.  
The emulator is connected to the design engineer’s  
PC using a high-speed USB 2.0 interface and is  
connected to the target with either a connector  
compatible with in-circuit debugger systems (RJ-11)  
or with the new high-speed, noise tolerant, Low-  
Voltage Differential Signal (LVDS) interconnection  
(CAT5).  
24.10 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages, and a mod-  
ular, detachable socket assembly to support various  
package types. The ICSP cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices, and incorporates an MMC card for file  
storage and data applications.  
The emulator is field upgradable through future firmware  
downloads in MPLAB X IDE. MPLAB REAL ICE offers  
significant advantages over competitive emulators  
including full-speed emulation, run-time variable  
watches, trace analysis, complex breakpoints, logic  
probes, a ruggedized probe interface and long (up to  
three meters) interconnection cables.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 241  
PIC16LF1904/6/7  
24.11 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
24.12 Third-Party Development Tools  
Microchip also offers a great collection of tools from  
third-party vendors. These tools are carefully selected  
to offer good value and unique functionality.  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully  
functional systems. Most boards include prototyping  
areas for adding custom circuitry and provide applica-  
tion firmware and source code for examination and  
modification.  
• Device Programmers and Gang Programmers  
from companies, such as SoftLog and CCS  
• Software Tools from companies, such as Gimpel  
and Trace Systems  
• Protocol Analyzers from companies, such as  
Saleae and Total Phase  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
• Demonstration Boards from companies, such as  
MikroElektronika, Digilent® and Olimex  
• Embedded Ethernet Solutions from companies,  
such as EZ Web Lynx, WIZnet and IPLogika®  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™  
demonstration/development board series of circuits,  
Microchip has a line of evaluation kits and demonstra-  
®
tion software for analog filter design, KEELOQ security  
ICs, CAN, IrDA®, PowerSmart battery management,  
SEEVAL® evaluation system, Sigma-Delta ADC, flow  
rate sensing, plus many more.  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS40001569D-page 242  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
25.0 PACKAGING INFORMATION  
25.1 Package Marking Information  
28-Lead PDIP (600 mil)  
Example  
XXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXX  
YYWWNNN  
PIC16LF1906-I/P  
1048017  
28-Lead SOIC (7.50 mm)  
Example  
PIC16LF1906  
-E/SO  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXXXX  
e
3
1048017  
YYWWNNN  
28-Lead SSOP (5.30 mm)  
Example  
PIC16LF1906  
e
3
-E/SS  
1048017  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 243  
PIC16LF1904/6/7  
Package Marking Information (Continued)  
28-Lead UQFN (4x4x0.5 mm)  
Example  
PIN 1  
PIN 1  
PIC16  
LF1906  
e
3
E/MV  
048017  
40-Lead PDIP (600 mil)  
Example  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
PIC16LF1904  
-I/P  
e
3
1010017  
YYWWNNN  
40-Lead UQFN (5x5x0.5 mm)  
Example  
PIN 1  
PIN 1  
PIC16  
F1904  
e
3
-I/MV  
1010017  
Example  
44-Lead TQFP (10x10x1 mm)  
PIC16F1907  
-E/PT  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
e
3
1048017  
DS40001569D-page 244  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
25.2 Package Details  
The following sections give the technical details of the packages.  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢇꢐꢑꢂꢃꢌꢑꢄꢇꢒꢈꢓꢇꢔꢇꢕꢖꢖꢇꢗꢌꢉꢇꢘꢙꢆꢚꢇꢛꢈꢎꢐꢈꢜ  
ꢝꢙꢋꢄꢞ ꢬꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢡꢉꢖꢭꢉꢜꢌꢅꢋꢐꢉꢗꢃꢄꢜꢇꢓꢅꢡꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅꢢꢃꢖꢐꢕꢖꢘꢃꢡꢅꢂꢉꢖꢭꢉꢜꢃꢄꢜꢅꢛꢡꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢡꢪꢮꢮꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢡꢁꢖꢕꢑꢮꢡꢉꢖꢭꢉꢜꢃꢄꢜ  
N
E1  
NOTE 1  
1
2 3  
D
E
A2  
A
L
c
b1  
A1  
e
eB  
b
ꢯꢄꢃꢏꢇ  
ꢰꢱꢝꢲꢠꢛ  
ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢅꢳꢃꢑꢃꢏꢇ  
ꢢꢰꢱ  
ꢱꢴꢢ  
ꢢꢦꢵ  
ꢱꢈꢑꢔꢌꢐꢅꢕꢎꢅꢂꢃꢄꢇ  
ꢂꢃꢏꢖꢘ  
ꢙꢶ  
ꢁꢀꢣꢣꢅꢩꢛꢝ  
ꢡꢅꢏꢕꢅꢛꢌꢉꢏꢃꢄꢜꢅꢂꢊꢉꢄꢌ  
ꢁꢙꢨꢣ  
ꢁꢀꢸꢨ  
ꢢꢕꢊꢋꢌꢋꢅꢂꢉꢖꢭꢉꢜꢌꢅꢫꢘꢃꢖꢭꢄꢌꢇꢇ  
ꢩꢉꢇꢌꢅꢏꢕꢅꢛꢌꢉꢏꢃꢄꢜꢅꢂꢊꢉꢄꢌ  
ꢛꢘꢕꢈꢊꢋꢌꢐꢅꢏꢕꢅꢛꢘꢕꢈꢊꢋꢌꢐꢅꢹꢃꢋꢏꢘ  
ꢢꢕꢊꢋꢌꢋꢅꢂꢉꢖꢭꢉꢜꢌꢅꢹꢃꢋꢏꢘ  
ꢴꢆꢌꢐꢉꢊꢊꢅꢳꢌꢄꢜꢏꢘ  
ꢫꢃꢡꢅꢏꢕꢅꢛꢌꢉꢏꢃꢄꢜꢅꢂꢊꢉꢄꢌ  
ꢳꢌꢉꢋꢅꢫꢘꢃꢖꢭꢄꢌꢇꢇ  
ꢯꢡꢡꢌꢐꢅꢳꢌꢉꢋꢅꢹꢃꢋꢏꢘ  
ꢦꢙ  
ꢦꢀ  
ꢠꢀ  
ꢔꢀ  
ꢌꢩ  
ꢁꢀꢙꢨ  
ꢁꢣꢀꢨ  
ꢁꢨꢸꢣ  
ꢁꢥꢶꢨ  
ꢀꢁꢞꢶꢣ  
ꢁꢀꢀꢨ  
ꢁꢣꢣꢶ  
ꢁꢣꢞꢣ  
ꢁꢣꢀꢥ  
ꢁꢺꢙꢨ  
ꢁꢨꢶꢣ  
ꢀꢁꢨꢺꢨ  
ꢁꢙꢣꢣ  
ꢁꢣꢀꢨ  
ꢁꢣꢻꢣ  
ꢁꢣꢙꢙ  
ꢁꢻꢣꢣ  
ꢳꢕꢗꢌꢐꢅꢳꢌꢉꢋꢅꢹꢃꢋꢏꢘ  
ꢴꢆꢌꢐꢉꢊꢊꢅꢼꢕꢗꢅꢛꢡꢉꢖꢃꢄꢜꢅꢅꢚ  
ꢝꢙꢋꢄꢊꢞ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃꢇꢈꢉꢊꢅꢃꢄꢋꢌꢍꢅꢎꢌꢉꢏꢈꢐꢌꢅꢑꢉꢒꢅꢆꢉꢐꢒꢓꢅꢔꢈꢏꢅꢑꢈꢇꢏꢅꢔꢌꢅꢊꢕꢖꢉꢏꢌꢋꢅꢗꢃꢏꢘꢃꢄꢅꢏꢘꢌꢅꢘꢉꢏꢖꢘꢌꢋꢅꢉꢐꢌꢉꢁ  
ꢙꢁ ꢚꢅꢛꢃꢜꢄꢃꢎꢃꢖꢉꢄꢏꢅꢝꢘꢉꢐꢉꢖꢏꢌꢐꢃꢇꢏꢃꢖꢁ  
ꢞꢁ ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢇꢅꢟꢅꢉꢄꢋꢅꢠꢀꢅꢋꢕꢅꢄꢕꢏꢅꢃꢄꢖꢊꢈꢋꢌꢅꢑꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢡꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢁꢅꢢꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢡꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢅꢇꢘꢉꢊꢊꢅꢄꢕꢏꢅꢌꢍꢖꢌꢌꢋꢅꢁꢣꢀꢣꢤꢅꢡꢌꢐꢅꢇꢃꢋꢌꢁ  
ꢥꢁ ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢃꢄꢜꢅꢉꢄꢋꢅꢏꢕꢊꢌꢐꢉꢄꢖꢃꢄꢜꢅꢡꢌꢐꢅꢦꢛꢢꢠꢅꢧꢀꢥꢁꢨꢢꢁ  
ꢩꢛꢝꢪ ꢩꢉꢇꢃꢖꢅꢟꢃꢑꢌꢄꢇꢃꢕꢄꢁꢅꢫꢘꢌꢕꢐꢌꢏꢃꢖꢉꢊꢊꢒꢅꢌꢍꢉꢖꢏꢅꢆꢉꢊꢈꢌꢅꢇꢘꢕꢗꢄꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢇꢁ  
ꢢꢃꢖꢐꢕꢖꢘꢃꢡ ꢖꢘꢄꢕꢊꢕꢜꢒ ꢟꢐꢉꢗꢃꢄꢜ ꢝꢣꢥꢽꢣꢻꢸꢩ  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 245  
PIC16LF1904/6/7  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS40001569D-page 246  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 247  
PIC16LF1904/6/7  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS40001569D-page 248  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢟꢠꢡꢌꢑꢢꢇꢟꢗꢅꢉꢉꢇꢣꢏꢋꢉꢌꢑꢄꢇꢒꢟꢟꢓꢇꢔꢇꢤꢥꢦꢖꢇꢗꢗꢇꢘꢙꢆꢚꢇꢛꢟꢟꢣꢈꢜ  
ꢝꢙꢋꢄꢞ ꢬꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢡꢉꢖꢭꢉꢜꢌꢅꢋꢐꢉꢗꢃꢄꢜꢇꢓꢅꢡꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅꢢꢃꢖꢐꢕꢖꢘꢃꢡꢅꢂꢉꢖꢭꢉꢜꢃꢄꢜꢅꢛꢡꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢡꢪꢮꢮꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢡꢁꢖꢕꢑꢮꢡꢉꢖꢭꢉꢜꢃꢄꢜ  
D
N
E
E1  
1
2
b
NOTE 1  
e
c
A2  
A
φ
A1  
L
L1  
ꢯꢄꢃꢏꢇ  
ꢢꢰꢳꢳꢰꢢꢠꢫꢠꢼꢛ  
ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢅꢳꢃꢑꢃꢏꢇ  
ꢢꢰꢱ  
ꢱꢴꢢ  
ꢢꢦꢵ  
ꢱꢈꢑꢔꢌꢐꢅꢕꢎꢅꢂꢃꢄꢇ  
ꢂꢃꢏꢖꢘ  
ꢙꢶ  
ꢣꢁꢺꢨꢅꢩꢛꢝ  
ꢴꢆꢌꢐꢉꢊꢊꢅꢲꢌꢃꢜꢘꢏ  
ꢢꢕꢊꢋꢌꢋꢅꢂꢉꢖꢭꢉꢜꢌꢅꢫꢘꢃꢖꢭꢄꢌꢇꢇ  
ꢛꢏꢉꢄꢋꢕꢎꢎꢅ  
ꢴꢆꢌꢐꢉꢊꢊꢅꢹꢃꢋꢏꢘ  
ꢢꢕꢊꢋꢌꢋꢅꢂꢉꢖꢭꢉꢜꢌꢅꢹꢃꢋꢏꢘ  
ꢴꢆꢌꢐꢉꢊꢊꢅꢳꢌꢄꢜꢏꢘ  
ꢬꢕꢕꢏꢅꢳꢌꢄꢜꢏꢘ  
ꢬꢕꢕꢏꢡꢐꢃꢄꢏ  
ꢳꢌꢉꢋꢅꢫꢘꢃꢖꢭꢄꢌꢇꢇ  
ꢬꢕꢕꢏꢅꢦꢄꢜꢊꢌ  
ꢀꢁꢻꢨ  
ꢻꢁꢶꢣ  
ꢨꢁꢞꢣ  
ꢀꢣꢁꢙꢣ  
ꢣꢁꢻꢨ  
ꢀꢁꢙꢨꢅꢼꢠꢬ  
ꢙꢁꢣꢣ  
ꢀꢁꢶꢨ  
ꢶꢁꢙꢣ  
ꢨꢁꢺꢣ  
ꢀꢣꢁꢨꢣ  
ꢣꢁꢸꢨ  
ꢦꢙ  
ꢦꢀ  
ꢠꢀ  
ꢳꢀ  
ꢀꢁꢺꢨ  
ꢣꢁꢣꢨ  
ꢻꢁꢥꢣ  
ꢨꢁꢣꢣ  
ꢸꢁꢸꢣ  
ꢣꢁꢨꢨ  
ꢣꢁꢣꢸ  
ꢣꢾ  
ꢣꢁꢙꢨ  
ꢶꢾ  
ꢥꢾ  
ꢳꢌꢉꢋꢅꢹꢃꢋꢏꢘ  
ꢣꢁꢙꢙ  
ꢣꢁꢞꢶ  
ꢝꢙꢋꢄꢊꢞ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃꢇꢈꢉꢊꢅꢃꢄꢋꢌꢍꢅꢎꢌꢉꢏꢈꢐꢌꢅꢑꢉꢒꢅꢆꢉꢐꢒꢓꢅꢔꢈꢏꢅꢑꢈꢇꢏꢅꢔꢌꢅꢊꢕꢖꢉꢏꢌꢋꢅꢗꢃꢏꢘꢃꢄꢅꢏꢘꢌꢅꢘꢉꢏꢖꢘꢌꢋꢅꢉꢐꢌꢉꢁ  
ꢙꢁ ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢇꢅꢟꢅꢉꢄꢋꢅꢠꢀꢅꢋꢕꢅꢄꢕꢏꢅꢃꢄꢖꢊꢈꢋꢌꢅꢑꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢡꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢁꢅꢢꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢡꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢅꢇꢘꢉꢊꢊꢅꢄꢕꢏꢅꢌꢍꢖꢌꢌꢋꢅꢣꢁꢙꢣꢅꢑꢑꢅꢡꢌꢐꢅꢇꢃꢋꢌꢁ  
ꢞꢁ ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢃꢄꢜꢅꢉꢄꢋꢅꢏꢕꢊꢌꢐꢉꢄꢖꢃꢄꢜꢅꢡꢌꢐꢅꢦꢛꢢꢠꢅꢧꢀꢥꢁꢨꢢꢁ  
ꢩꢛꢝꢪ ꢩꢉꢇꢃꢖꢅꢟꢃꢑꢌꢄꢇꢃꢕꢄꢁꢅꢫꢘꢌꢕꢐꢌꢏꢃꢖꢉꢊꢊꢒꢅꢌꢍꢉꢖꢏꢅꢆꢉꢊꢈꢌꢅꢇꢘꢕꢗꢄꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢇꢁ  
ꢼꢠꢬꢪ ꢼꢌꢎꢌꢐꢌꢄꢖꢌꢅꢟꢃꢑꢌꢄꢇꢃꢕꢄꢓꢅꢈꢇꢈꢉꢊꢊꢒꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢓꢅꢎꢕꢐꢅꢃꢄꢎꢕꢐꢑꢉꢏꢃꢕꢄꢅꢡꢈꢐꢡꢕꢇꢌꢇꢅꢕꢄꢊꢒꢁ  
ꢢꢃꢖꢐꢕꢖꢘꢃꢡ ꢖꢘꢄꢕꢊꢕꢜꢒ ꢟꢐꢉꢗꢃꢄꢜ ꢝꢣꢥꢽꢣꢻꢞꢩ  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 249  
PIC16LF1904/6/7  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS40001569D-page 250  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 251  
PIC16LF1904/6/7  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS40001569D-page 252  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 253  
PIC16LF1904/6/7  
ꢧꢖꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢇꢐꢑꢂꢃꢌꢑꢄꢇꢒꢈꢓꢇꢔꢇꢕꢖꢖꢇꢗꢌꢉꢇꢘꢙꢆꢚꢇꢛꢈꢎꢐꢈꢜ  
ꢝꢙꢋꢄꢞ ꢬꢕꢐꢅꢏꢘꢌꢅꢑꢕꢇꢏꢅꢖꢈꢐꢐꢌꢄꢏꢅꢡꢉꢖꢭꢉꢜꢌꢅꢋꢐꢉꢗꢃꢄꢜꢇꢓꢅꢡꢊꢌꢉꢇꢌꢅꢇꢌꢌꢅꢏꢘꢌꢅꢢꢃꢖꢐꢕꢖꢘꢃꢡꢅꢂꢉꢖꢭꢉꢜꢃꢄꢜꢅꢛꢡꢌꢖꢃꢎꢃꢖꢉꢏꢃꢕꢄꢅꢊꢕꢖꢉꢏꢌꢋꢅꢉꢏꢅ  
ꢘꢏꢏꢡꢪꢮꢮꢗꢗꢗꢁꢑꢃꢖꢐꢕꢖꢘꢃꢡꢁꢖꢕꢑꢮꢡꢉꢖꢭꢉꢜꢃꢄꢜ  
N
NOTE 1  
E1  
1 2 3  
D
E
A2  
A
L
c
b1  
b
A1  
e
eB  
ꢯꢄꢃꢏꢇ  
ꢰꢱꢝꢲꢠꢛ  
ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢅꢳꢃꢑꢃꢏꢇ  
ꢢꢰꢱ  
ꢱꢴꢢ  
ꢢꢦꢵ  
ꢱꢈꢑꢔꢌꢐꢅꢕꢎꢅꢂꢃꢄꢇ  
ꢂꢃꢏꢖꢘ  
ꢥꢣ  
ꢁꢀꢣꢣꢅꢩꢛꢝ  
ꢡꢅꢏꢕꢅꢛꢌꢉꢏꢃꢄꢜꢅꢂꢊꢉꢄꢌ  
ꢢꢕꢊꢋꢌꢋꢅꢂꢉꢖꢭꢉꢜꢌꢅꢫꢘꢃꢖꢭꢄꢌꢇꢇ  
ꢩꢉꢇꢌꢅꢏꢕꢅꢛꢌꢉꢏꢃꢄꢜꢅꢂꢊꢉꢄꢌ  
ꢛꢘꢕꢈꢊꢋꢌꢐꢅꢏꢕꢅꢛꢘꢕꢈꢊꢋꢌꢐꢅꢹꢃꢋꢏꢘ  
ꢢꢕꢊꢋꢌꢋꢅꢂꢉꢖꢭꢉꢜꢌꢅꢹꢃꢋꢏꢘ  
ꢴꢆꢌꢐꢉꢊꢊꢅꢳꢌꢄꢜꢏꢘ  
ꢫꢃꢡꢅꢏꢕꢅꢛꢌꢉꢏꢃꢄꢜꢅꢂꢊꢉꢄꢌ  
ꢳꢌꢉꢋꢅꢫꢘꢃꢖꢭꢄꢌꢇꢇ  
ꢯꢡꢡꢌꢐꢅꢳꢌꢉꢋꢅꢹꢃꢋꢏꢘ  
ꢁꢙꢨꢣ  
ꢁꢀꢸꢨ  
ꢦꢙ  
ꢦꢀ  
ꢠꢀ  
ꢔꢀ  
ꢌꢩ  
ꢁꢀꢙꢨ  
ꢁꢣꢀꢨ  
ꢁꢨꢸꢣ  
ꢁꢥꢶꢨ  
ꢀꢁꢸꢶꢣ  
ꢁꢀꢀꢨ  
ꢁꢣꢣꢶ  
ꢁꢣꢞꢣ  
ꢁꢣꢀꢥ  
ꢁꢺꢙꢨ  
ꢁꢨꢶꢣ  
ꢙꢁꢣꢸꢨ  
ꢁꢙꢣꢣ  
ꢁꢣꢀꢨ  
ꢁꢣꢻꢣ  
ꢁꢣꢙꢞ  
ꢁꢻꢣꢣ  
ꢳꢕꢗꢌꢐꢅꢳꢌꢉꢋꢅꢹꢃꢋꢏꢘ  
ꢴꢆꢌꢐꢉꢊꢊꢅꢼꢕꢗꢅꢛꢡꢉꢖꢃꢄꢜꢅꢅꢚ  
ꢝꢙꢋꢄꢊꢞ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃꢇꢈꢉꢊꢅꢃꢄꢋꢌꢍꢅꢎꢌꢉꢏꢈꢐꢌꢅꢑꢉꢒꢅꢆꢉꢐꢒꢓꢅꢔꢈꢏꢅꢑꢈꢇꢏꢅꢔꢌꢅꢊꢕꢖꢉꢏꢌꢋꢅꢗꢃꢏꢘꢃꢄꢅꢏꢘꢌꢅꢘꢉꢏꢖꢘꢌꢋꢅꢉꢐꢌꢉꢁ  
ꢙꢁ ꢚꢅꢛꢃꢜꢄꢃꢎꢃꢖꢉꢄꢏꢅꢝꢘꢉꢐꢉꢖꢏꢌꢐꢃꢇꢏꢃꢖꢁ  
ꢞꢁ ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢇꢅꢟꢅꢉꢄꢋꢅꢠꢀꢅꢋꢕꢅꢄꢕꢏꢅꢃꢄꢖꢊꢈꢋꢌꢅꢑꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢡꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢁꢅꢢꢕꢊꢋꢅꢎꢊꢉꢇꢘꢅꢕꢐꢅꢡꢐꢕꢏꢐꢈꢇꢃꢕꢄꢇꢅꢇꢘꢉꢊꢊꢅꢄꢕꢏꢅꢌꢍꢖꢌꢌꢋꢅꢁꢣꢀꢣꢤꢅꢡꢌꢐꢅꢇꢃꢋꢌꢁ  
ꢥꢁ ꢟꢃꢑꢌꢄꢇꢃꢕꢄꢃꢄꢜꢅꢉꢄꢋꢅꢏꢕꢊꢌꢐꢉꢄꢖꢃꢄꢜꢅꢡꢌꢐꢅꢦꢛꢢꢠꢅꢧꢀꢥꢁꢨꢢꢁ  
ꢩꢛꢝꢪ ꢩꢉꢇꢃꢖꢅꢟꢃꢑꢌꢄꢇꢃꢕꢄꢁꢅꢫꢘꢌꢕꢐꢌꢏꢃꢖꢉꢊꢊꢒꢅꢌꢍꢉꢖꢏꢅꢆꢉꢊꢈꢌꢅꢇꢘꢕꢗꢄꢅꢗꢃꢏꢘꢕꢈꢏꢅꢏꢕꢊꢌꢐꢉꢄꢖꢌꢇꢁ  
ꢢꢃꢖꢐꢕꢖꢘꢃꢡ ꢖꢘꢄꢕꢊꢕꢜꢒ ꢟꢐꢉꢗꢃꢄꢜ ꢝꢣꢥꢽꢣꢀꢺꢩ  
DS40001569D-page 254  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
A
D1  
B
E
NOTE 2  
(DATUM A)  
(DATUM B)  
E1  
A
A
NOTE 1  
2X  
N
0.20 H A B  
2X  
1 2 3  
0.20 H A B  
4X 11 TIPS  
TOP VIEW  
0.20 C A B  
A
A2  
C
SEATING PLANE  
0.10 C  
A1  
SIDE VIEW  
1 2 3  
N
NOTE 1  
44 X b  
0.20  
C A B  
e
BOTTOM VIEW  
Microchip Technology Drawing C04-076C Sheet 1 of 2  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 255  
PIC16LF1904/6/7  
44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
H
c
θ
L
(L1)  
SECTION A-A  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
44  
0.80 BSC  
-
MAX  
Number of Leads  
Lead Pitch  
Overall Height  
Standoff  
N
e
A
A1  
-
1.20  
0.15  
1.05  
0.05  
0.95  
-
Molded Package Thickness  
Overall Width  
A2  
E
1.00  
12.00 BSC  
10.00 BSC  
12.00 BSC  
10.00 BSC  
0.37  
Molded Package Width  
Overall Length  
E1  
D
Molded Package Length  
Lead Width  
D1  
b
c
0.30  
0.09  
0.45  
0.45  
0.20  
0.75  
Lead Thickness  
Lead Length  
Footprint  
-
L
L1  
θ
0.60  
1.00 REF  
3.5°  
Foot Angle  
0°  
7°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Exact shape of each corner is optional.  
3. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-076C Sheet 2 of 2  
DS40001569D-page 256  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
44-Lead Plastic Thin Quad Flatpack (PT) - 10X10X1 mm Body, 2.00 mm Footprint [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
C1  
44  
1
2
G
C2  
Y1  
X1  
E
SILK SCREEN  
RECOMMENDED LAND PATTERN  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
0.25  
NOM  
0.80 BSC  
11.40  
MAX  
Contact Pitch  
Contact Pad Spacing  
Contact Pad Spacing  
E
C1  
C2  
11.40  
Contact Pad Width (X44)  
Contact Pad Length (X44)  
Distance Between Pads  
X1  
Y1  
G
0.55  
1.50  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing No. C04-2076B  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 257  
PIC16LF1904/6/7  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS40001569D-page 258  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 259  
PIC16LF1904/6/7  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS40001569D-page 260  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
APPENDIX A: DATA SHEET  
REVISION HISTORY  
Revision A (03/2011)  
Original release.  
Revision B (08/2014)  
Added Tables 9-3 and 9-4.  
Updated PIC16LF190X Family Types Table.  
Updated Equation 15-1; Example 3-2; Figures 1  
through 5, 6-4, 15-1, 15-4, 19-7 22-2, 22-8; Registers  
4-1, 4-2, 11-17, 15-1; Sections 4.1, 6.2.2.2, 10.0, 13.0,  
15.1.3, 18.1.1.2, 18.1.1.3, 18.1.1.7, 18.1.2.9,  
18.1.2.10, 18.2, 18.4.1.2, 19.1, 19.4.5, 22.0, 22.1, 22.5,  
22.6, 22.7, 22-8, 22-10; Tables 1, 3-1, 3-3, 3-5, 5-1, 9-2,  
10-3, 10-4, 17-2, 19-1, 22-2, 22-3, 22-4, 22-5, 22-6,  
22-7, 22-8, 22-12.  
Updated Package Marking Information.  
Removed Section 18.1.2.3: Receive Data Polarity and  
Section 18.4.1.4: Data Polarity.  
Data sheet went from Preliminary to Final data sheet.  
Revision C (01/2016)  
Added ‘Memory’ section and updated the  
‘PIC16LF190X Family Types’ table; Other minor  
corrections.  
Revision D (05/2016)  
Minor changes to Figure 22-2, Table 22-8, and Table  
22-10, in Electrical Specifications chapter; Updated  
Packaging: 28L SOIC, 44L TQFP, 28L UQFN, 40L  
UQFN. Removed Table 19-7, LCD Worksheet.  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 261  
PIC16LF1904/6/7  
THE MICROCHIP WEBSITE  
CUSTOMER SUPPORT  
Microchip provides online support via our website at  
www.microchip.com. This website is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the website contains the following information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
Customers  
should  
contact  
their  
distributor,  
representative or Field Application Engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the website  
at: http://microchip.com/support  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip website at  
www.microchip.com. Under “Support”, click on  
“Customer Change Notification” and follow the  
registration instructions.  
DS40001569D-page 262  
2011-2016 Microchip Technology Inc.  
PIC16LF1904/6/7  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
(1)  
[X]  
PART NO.  
X
/XX  
XXX  
-
Examples:  
Device Tape and Reel  
Option  
Temperature  
Range  
Package  
Pattern  
a)  
PIC16LF1904T - I/MV 301  
Tape and Reel,  
Industrial temperature,  
UQFN package,  
QTP pattern #301  
b)  
c)  
PIC16LF1906 - I/P  
Industrial temperature  
PDIP package  
Device:  
PIC16LF1904, PIC16LF1906, PIC16LF1907  
Blank = Standard packaging (tube or tray)  
Tape and Reel  
Option:  
PIC16LF1906 - E/SS  
Extended temperature,  
SSOP package  
T
= Tape and Reel(1)  
Temperature  
Range:  
I
E
=
=
-40C to +85C (Industrial)  
-40C to +125C (Extended)  
Package:  
MV  
P
= UQFN (4x4x0.5)  
= PDIP  
PT  
SO  
SS  
= TQFP (44-pin)  
= SOIC  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This  
identifier is used for ordering purposes and is  
not printed on the device package. Check  
with your Microchip Sales Office for package  
availability with the Tape and Reel option.  
= SSOP  
Pattern:  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 263  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate,  
dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq,  
KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST,  
MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo,  
RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O  
are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
ETHERSYNCH, Hyper Speed Control, HyperLight Load,  
IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut,  
BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN,  
EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip  
Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi,  
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,  
MPLINK, MultiTRAK, NetDetach, Omniscient Code  
Generation, PICDEM, PICDEM.net, PICkit, PICtail,  
PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker,  
Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total  
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,  
WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
GestIC is a registered trademarks of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
© 2011-2016, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
ISBN: 978-1-5224-0545-0  
== ISO/TS 16949 ==  
DS40001569D-page 264  
2011-2016 Microchip Technology Inc.  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Germany - Dusseldorf  
Tel: 49-2129-3766400  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Karlsruhe  
Tel: 49-721-625370  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Dongguan  
Tel: 86-769-8702-9880  
Italy - Venice  
Tel: 39-049-7625286  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
Cleveland  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Poland - Warsaw  
Tel: 48-22-3325737  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Novi, MI  
UK - Wokingham  
Tel: 44-118-921-5800  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Tel: 248-848-4000  
Fax: 44-118-921-5820  
Houston, TX  
Tel: 281-894-5983  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
San Jose, CA  
Tel: 408-735-9110  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Canada - Toronto  
Tel: 905-673-0699  
Fax: 905-673-6509  
07/14/15  
2011-2016 Microchip Technology Inc.  
DS40001569D-page 265  

相关型号:

PIC16LF1906-IMVQTP

28/40/44-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt XLP Technology
MICROCHIP

PIC16LF1906-IMVSQTP

28/40/44-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt XLP Technology
MICROCHIP

PIC16LF1906-IPQTP

28/40/44-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt XLP Technology
MICROCHIP

PIC16LF1906-IPSQTP

28/40/44-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt XLP Technology
MICROCHIP

PIC16LF1906-IPTQTP

28/40/44-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt XLP Technology
MICROCHIP

PIC16LF1906-IPTSQTP

28/40/44-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt XLP Technology
MICROCHIP

PIC16LF1906-ISOQTP

28/40/44-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt XLP Technology
MICROCHIP

PIC16LF1906-ISOSQTP

28/40/44-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt XLP Technology
MICROCHIP

PIC16LF1906-ISSQTP

28/40/44-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt XLP Technology
MICROCHIP

PIC16LF1906-ISSSQTP

28/40/44-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt XLP Technology
MICROCHIP

PIC16LF1907

28/40/44-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt XLP Technology
MICROCHIP

PIC16LF1907-EMVQTP

28/40/44-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt XLP Technology
MICROCHIP