PIC16LC925-T/L [MICROCHIP]

64/68-Pin CMOS Microcontrollers with LCD Driver; 六十八分之六十四针CMOS微控制器与LCD驱动器
PIC16LC925-T/L
型号: PIC16LC925-T/L
厂家: MICROCHIP    MICROCHIP
描述:

64/68-Pin CMOS Microcontrollers with LCD Driver
六十八分之六十四针CMOS微控制器与LCD驱动器

驱动器 微控制器 CD
文件: 总182页 (文件大小:3150K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16C925/926  
Data Sheet  
64/68-Pin CMOS Microcontrollers  
with LCD Driver  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A  
“All rights reserved. Copyright © 2001, Microchip Technology  
Incorporated, USA. Information contained in this publication  
regarding device applications and the like is intended through  
suggestion only and may be superseded by updates. No rep-  
resentation or warranty is given and no liability is assumed by  
Microchip Technology Incorporated with respect to the accu-  
racy or use of such information, or infringement of patents or  
other intellectual property rights arising from such use or oth-  
erwise. Use of Microchip’s products as critical components in  
life support systems is not authorized except with express  
written approval by Microchip. No licenses are conveyed,  
implicitly or otherwise, under any intellectual property rights.  
The Microchip logo and name are registered trademarks of  
Microchip Technology Inc. in the U.S.A. and other countries.  
All rights reserved. All other trademarks mentioned herein are  
the property of their respective companies. No licenses are  
conveyed, implicitly or otherwise, under any intellectual prop-  
erty rights.”  
Trademarks  
The Microchip name, logo, PIC, PICmicro, PICMASTER, PIC-  
START, PRO MATE, KEELOQ, SEEVAL, MPLAB and The  
Embedded Control Solutions Company are registered trade-  
marks of Microchip Technology Incorporated in the U.S.A. and  
other countries.  
Total Endurance, ICSP, In-Circuit Serial Programming, Filter-  
Lab, MXDEV, microID, FlexROM, fuzzyLAB, MPASM,  
MPLINK, MPLIB, PICDEM, ICEPIC, Migratable Memory,  
FanSense, ECONOMONITOR, SelectMode and microPort  
are trademarks of Microchip Technology Incorporated in the  
U.S.A.  
Serialized Quick Term Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2001, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999. The  
Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs and microperipheral  
products. In addition, Microchips quality  
system for the design and manufacture of  
development systems is ISO 9001 certified.  
DS39544A - page ii  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
64/68-Pin CMOS Microcontrollers with LCD Driver  
High Performance RISC CPU:  
Analog Features:  
Only 35 single word instructions to learn  
10-bit 5-channel Analog-to-Digital Converter (A/D)  
Brown-out Reset (BOR)  
All single cycle instructions except for program  
branches which are two-cycle  
Special Microcontroller Features:  
Operating speed: DC - 20 MHz clock input  
DC - 200 ns instruction cycle  
Power-on Reset (POR)  
Up to 8K x 14-bit words of EPROM program memory,  
336 bytes general purpose registers (SRAM),  
60 special function registers  
Power-up Timer (PWRT) and Oscillator Start-up  
Timer (OST)  
Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
Pinout compatible with PIC16C923/924  
Programmable code protection  
Selectable oscillator options  
Peripheral Features:  
25 I/O pins with individual direction control and  
25-27 input only pins  
In-Circuit Serial Programming(ICSP) via  
two pins  
Timer0 module: 8-bit timer/counter with program-  
mable 8-bit prescaler  
Processor read access to program memory  
Timer1 module: 16-bit timer/counter, can be incre-  
mented during SLEEP via external crystal/clock  
CMOS Technology:  
Low power, high speed CMOS/EPROM  
technology  
Timer2 module: 8-bit timer/counter with 8-bit  
period register, prescaler, and postscaler  
Fully static design  
One Capture, Compare, PWM module  
Wide operating voltage range: 2.5V to 5.5V  
Commercial and Industrial temperature ranges  
Low power consumption  
Synchronous Serial Port (SSP) module with  
two modes of operation:  
- 3-wire SPI(supports all 4 SPI modes)  
- I2CSlave mode  
Programmable LCD timing module:  
- Multiple LCD timing sources available  
- Can drive LCD panel while in SLEEP mode  
- Static, 1/2, 1/3, 1/4 multiplex  
- Static drive and 1/3 bias capability  
- 16 bytes of dedicated LCD RAM  
- Up to 32 segments, up to 4 commons  
Common  
Segment  
Pixels  
1
2
3
4
32  
31  
30  
29  
32  
62  
90  
116  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 1  
PIC16C925/926  
Pin Diagrams  
PLCC, CLCC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
RA4/T0CKI  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
RD5/SEG29/COM3  
RG6/SEG26  
RG5/SEG25  
RG4/SEG24  
RG3/SEG23  
RG2/SEG22  
RG1/SEG21  
RG0/SEG20  
RG7/SEG28  
RF7/SEG19  
RF6/SEG18  
RF5/SEG17  
RF4/SEG16  
RF3/SEG15  
RF2/SEG14  
RF1/SEG13  
RF0/SEG12  
RA5/AN4/SS  
RB1  
RB0/INT  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
C1  
C2  
VLCD2  
VLCD3  
AVDD  
VDD  
PIC16C92X  
VSS  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
LEGEND:  
Input Pin  
Output Pin  
Input/Output Pin  
Digital Input/LCD Output Pin  
LCD Output Pin  
DS39544A-page 2  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
Pin Diagrams (Continued)  
TQFP  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
RD5/SEG29/COM3  
RG6/SEG26  
RG5/SEG25  
RA4/T0CKI  
RA5/AN4/SS  
RB1  
RB0/INT  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
C1  
RG4/SEG24  
RG3/SEG23  
RG2/SEG22  
RG1/SEG21  
RG0/SEG20  
RF7/SEG19  
RF6/SEG18  
RF5/SEG17  
RF4/SEG16  
RF3/SEG15  
RF2/SEG14  
RF1/SEG13  
RF0/SEG12  
9
C2  
VLCD2  
VLCD3  
PIC16C92X  
10  
11  
12  
13  
14  
15  
16  
VDD  
VSS  
OSC1/CLKIN  
OSC2/CLKOUT  
RC0/T1OSO/T1CKI  
LEGEND:  
Input Pin  
Output Pin  
Input/Output Pin  
Digital Input/LCD Output Pin  
LCD Output Pin  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 3  
PIC16C925/926  
Table of Contents  
1.0 Device Overview ...................................................................................................................................................5  
2.0 Memory Organization ..........................................................................................................................................11  
3.0 Reading Program Memory.................................................................................................................................. 27  
4.0 I/O Ports ..............................................................................................................................................................29  
5.0 Timer0 Module ....................................................................................................................................................41  
6.0 Timer1 Module ....................................................................................................................................................47  
7.0 Timer2 Module ....................................................................................................................................................51  
8.0 Capture/Compare/PWM (CCP) Module ..............................................................................................................53  
9.0 Synchronous Serial Port (SSP) Module ..............................................................................................................59  
10.0 Analog-to-Digital Converter (A/D) Module ...........................................................................................................75  
11.0 LCD Module ........................................................................................................................................................83  
12.0 Special Features of the CPU............................................................................................................................... 97  
13.0 Instruction Set Summary ...................................................................................................................................113  
14.0 Development Support .......................................................................................................................................133  
15.0 Electrical Characteristics ...................................................................................................................................139  
16.0 DC and AC Characteristics Graphs and Tables ................................................................................................159  
17.0 Packaging Information ......................................................................................................................................161  
Appendix A: Revision History.................................................................................................................................... 167  
Appendix B: Device Differences ............................................................................................................................... 167  
Appendix C: Conversion Considerations .................................................................................................................. 168  
Index .......................................................................................................................................................................... 169  
On-Line Support......................................................................................................................................................... 175  
Reader Response ...................................................................................................................................................... 176  
PIC16C925/926 Product Identification System.......................................................................................................... 177  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.  
We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchips Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277  
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include liter-  
ature number) you are using.  
Customer Notification System  
Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.  
DS39544A-page 4  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
These devices come in 64-pin and 68-pin packages, as  
well as die form. Both configurations offer identical  
peripheral devices and other features. The only differ-  
ence between the PIC16C925 and PIC16C926 is the  
additional EPROM and data memory offered in the lat-  
ter. An overview of features is presented in Table 1-1.  
1.0  
DEVICE OVERVIEW  
This document contains device-specific information for  
the following devices:  
1. PIC16C925  
2. PIC16C926  
A UV-erasable, CERQUAD packaged version (compat-  
ible with PLCC) is also available for both the  
PIC16C925 and PIC16C926. This version is ideal for  
cost effective code development.  
The PIC16C925/926 series is a family of low cost, high  
performance, CMOS, fully static, 8-bit microcontrollers  
with an integrated LCD Driver module, in the  
PIC16CXXX mid-range family.  
A block diagram for the PIC16C925/926 family archi-  
tecture is presented in Figure 1-1.  
For the PIC16C925/926 family, there are two device  
typesas indicated in the device number:  
1. C, as in PIC16C926. These devices operate  
over the standard voltage range.  
2. LC, as in PIC16LC926. These devices operate  
over an extended voltage range.  
TABLE 1-1:  
PIC16C925/926 DEVICE FEATURES  
Features  
PIC16C925  
PIC16C926  
Operating Frequency  
DC-20 MHz  
DC-20 MHz  
EPROM Program Memory (words)  
Data Memory (bytes)  
4K  
8K  
176  
336  
Timer Module(s)  
TMR0,TMR1,TMR2  
1
TMR0,TMR1,TMR2  
1
Capture/Compare/PWM Module(s)  
Serial Port(s)  
SPI/I2C  
SPI/I2C  
(SPI/I2C, USART)  
Parallel Slave Port  
A/D Converter (10-bit) Channels  
LCD Module  
5
5
4 Com, 32 Seg  
4 Com, 32 Seg  
Interrupt Sources  
I/O Pins  
9
25  
9
25  
Input Pins  
27  
27  
Voltage Range (V)  
In-Circuit Serial Programming  
Brown-out Reset  
2.5-5.5  
Yes  
Yes  
2.5-5.5  
Yes  
Yes  
64-pin TQFP  
68-pin PLCC  
68-pin CLCC (CERQUAD)  
Die  
64-pin TQFP  
68-pin PLCC  
68-pin CLCC (CERQUAD)  
Die  
Packages  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 5  
PIC16C925/926  
FIGURE 1-1:  
PIC16C925/926 BLOCK DIAGRAM  
13  
8
PORTA  
Data Bus  
Program Counter  
RA0/AN0  
RA1/AN1  
EPROM  
RA2/AN2  
Program  
Memory  
RAM  
RA3/AN3/VREF  
RA4/T0CKI  
RA5/AN4/SS  
8 Level Stack  
(13-bit)  
File  
Registers  
Program  
Bus  
14  
RAM Addr  
PORTB  
9
Addr MUX  
Instruction reg  
RB0/INT  
7
Direct Addr  
Indirect  
Addr  
8
RB1-RB7  
FSR reg  
STATUS reg  
MUX  
PORTC  
8
RC0/T1OSO/T1CKI  
RC1/T1OSI  
RC2/CCP1  
RC3/SCK/SCL  
RC4/SDI/SDA  
RC5/SDO  
3
Power-up  
Timer  
Oscillator  
Start-up Timer  
Instruction  
Decode &  
Control  
ALU  
Power-on  
Reset  
PORTD  
PORTE  
PORTF  
PORTG  
8
Timing  
Generation  
Watchdog  
Timer  
W reg  
RD0-RD4/SEGnn  
OSC1/CLKIN  
OSC2/CLKOUT  
RD5-RD7/SEGnn/COMn  
MCLR  
VDD, VSS  
RE0-RE7/SEGnn  
RF0-RF7/SEGnn  
RG0-RG7/SEGnn  
Timer1, Timer2,  
CCP1  
Timer0  
A/D  
COM0  
VLCD1  
VLCD2  
VLCD3  
C1  
Synchronous  
Serial Port  
LCD  
C2  
VLCDADJ  
DS39544A-page 6  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
TABLE 1-2:  
PIC16C925/926 PINOUT DESCRIPTION  
PLCC,  
CLCC  
Pin#  
TQFP  
Pin#  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
OSC1/CLKIN  
24  
14  
15  
I
ST/CMOS  
Oscillator crystal input or external clock source input. This  
buffer is a Schmitt Trigger input when configured in RC  
oscillator mode and a CMOS input otherwise.  
OSC2/CLKOUT  
MCLR/VPP  
25  
O
Oscillator crystal output. Connects to crystal or resonator in  
crystal oscillator mode. In RC mode, OSC2 pin outputs  
CLKOUT, which has 1/4 the frequency of OSC1 and denotes  
the instruction cycle rate.  
2
57  
I/P  
ST  
Master Clear (Reset) input or programming voltage input. This  
pin is an active low RESET to the device.  
PORTA is a bi-directional I/O port.  
RA0 can also be Analog input0.  
RA1 can also be Analog input1.  
RA2 can also be Analog input2.  
RA0/AN0  
5
6
8
9
60  
61  
63  
64  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA3 can also be Analog input3 or A/D Voltage  
Reference.  
RA4/T0CKI  
10  
11  
1
2
I/O  
I/O  
ST  
RA4 can also be the clock input to the Timer0  
timer/counter. Output is open drain type.  
RA5/AN4/SS  
TTL  
RA5 can be the slave select for the synchronous serial port  
or Analog input4.  
PORTB is a bi-directional I/O port. PORTB can be software  
programmed for internal weak pull-ups on all inputs.  
RB0/INT  
13  
4
I/O  
TTL/ST  
RB0 can also be the external interrupt pin. This buffer is a  
Schmitt Trigger input when configured as an  
external interrupt.  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
12  
4
3
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
59  
58  
56  
55  
53  
3
TTL  
68  
67  
65  
TTL  
Interrupt-on-change pin.  
Interrupt-on-change pin.  
TTL  
TTL/ST  
Interrupt-on-change pin. Serial programming clock. This  
buffer is a Schmitt Trigger input when used in Serial  
Programming mode.  
RB7  
66  
54  
I/O  
TTL/ST  
Interrupt-on-change pin. Serial programming data. This  
buffer is a Schmitt Trigger input when used in Serial  
Programming mode.  
PORTC is a bi-directional I/O port.  
RC0/T1OSO/T1CKI  
26  
16  
I/O  
ST  
RC0 can also be the Timer1 oscillator output or Timer1  
clock input.  
RC1/T1OSI  
RC2/CCP1  
27  
28  
17  
18  
I/O  
I/O  
ST  
ST  
RC1 can also be the Timer1 oscillator input.  
RC2 can also be the Capture1 input/Compare1  
output/PWM1 output.  
RC3/SCK/SCL  
RC4/SDI/SDA  
14  
15  
5
6
I/O  
I/O  
ST  
ST  
ST  
RC3 can also be the synchronous serial clock input/  
output for both SPI and I C modes.  
2
RC4 can also be the SPI Data In (SPI mode) or  
2
data I/O (I C mode).  
RC5/SDO  
16  
17  
18  
63  
7
I/O  
P
RC5 can also be the SPI Data Out (SPI mode).  
LCD Voltage Generation.  
LCD Voltage Generation.  
Common Driver0.  
C1  
8
C2  
9
51  
P
COM0  
L
Legend: I = input  
O = output  
P = power  
L = LCD Driver  
= Not used  
TTL = TTL input  
ST = Schmitt Trigger input  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 7  
PIC16C925/926  
TABLE 1-2:  
PIC16C925/926 PINOUT DESCRIPTION (CONTINUED)  
PLCC,  
CLCC  
Pin#  
TQFP  
Pin#  
Pin  
Type  
Buffer  
Type  
Pin Name  
Description  
PORTD is a digital input/output port. These pins are also used  
as LCD Segment and/or Common Drivers.  
RD0/SEG00  
31  
32  
33  
34  
35  
60  
61  
62  
21  
22  
23  
24  
25  
48  
49  
50  
I/O/L  
I/O/L  
I/O/L  
I/O/L  
I/O/L  
I/L  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Segment Driver 00/Digital input/output.  
Segment Driver 01/Digital input/output.  
Segment Driver 02/Digital input/output.  
Segment Driver 03/Digital input/output.  
Segment Driver04/Digital input/output.  
Segment Driver29/Common Driver 3/Digital input.  
Segment Driver30/Common Driver 2/Digital input.  
Segment Driver31/Common Driver 1/Digital input.  
PORTE is a Digital input or LCD Segment Driver port.  
Segment Driver 05.  
RD1/SEG01  
RD2/SEG02  
RD3/SEG03  
RD4/SEG04  
RD5/SEG29/COM3  
RD6/SEG30/COM2  
RD7/SEG31/COM1  
I/L  
I/L  
RE0/SEG05  
RE1/SEG06  
RE2/SEG07  
RE3/SEG08  
RE4/SEG09  
RE5/SEG10  
RE6/SEG11  
RE7/SEG27  
37  
38  
39  
40  
41  
42  
43  
36  
26  
27  
28  
29  
30  
31  
32  
-
I/L  
I/L  
I/L  
I/L  
I/L  
I/L  
I/L  
I/L  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Segment Driver 06.  
Segment Driver 07.  
Segment Driver 08.  
Segment Driver 09.  
Segment Driver 10.  
Segment Driver 11.  
Segment Driver 27 (not available on 64-pin devices).  
PORTF is a Digital input or LCD Segment Driver port.  
Segment Driver 12.  
RF0/SEG12  
RF1/SEG13  
RF2/SEG14  
RF3/SEG15  
RF4/SEG16  
RF5/SEG17  
RF6/SEG18  
RF7/SEG19  
44  
45  
46  
47  
48  
49  
50  
51  
33  
34  
35  
36  
37  
38  
39  
40  
I/L  
I/L  
I/L  
I/L  
I/L  
I/L  
I/L  
I/L  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Segment Driver 13.  
Segment Driver 14.  
Segment Driver 15.  
Segment Driver 16.  
Segment Driver 17.  
Segment Driver 18.  
Segment Driver 19.  
PORTG is a Digital input or LCD Segment Driver port.  
Segment Driver 20.  
RG0/SEG20  
RG1/SEG21  
RG2/SEG22  
RG3/SEG23  
RG4/SEG24  
RG5/SEG25  
RG6/SEG26  
RG7/SEG28  
VLCDADJ  
AVDD  
53  
54  
41  
42  
I/L  
I/L  
I/L  
I/L  
I/L  
I/L  
I/L  
I/L  
P
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Segment Driver 21.  
55  
43  
Segment Driver 22.  
56  
44  
Segment Driver 23.  
57  
45  
Segment Driver 24.  
58  
46  
Segment Driver 25.  
59  
47  
Segment Driver 26.  
52  
Segment Driver 28 (not available on 64-pin devices).  
LCD Voltage Generation.  
30  
20  
21  
P
Analog Power (PLCC and CLCC packages only).  
LCD Voltage.  
VLCD1  
29  
19  
P
VLCD2  
19  
10  
P
LCD Voltage.  
VLCD3  
20  
11  
P
LCD Voltage.  
VDD  
22, 64  
7, 23  
1
12, 52  
13, 62  
P
Digital power.  
VSS  
P
Ground reference.  
NC  
These pins are not internally connected. These pins should be  
left unconnected.  
Legend: I = input  
O = output  
P = power  
L = LCD Driver  
= Not used  
TTL = TTL input  
ST = Schmitt Trigger input  
DS39544A-page 8  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
1.1  
Clocking Scheme/Instruction  
Cycle  
1.2  
Instruction Flow/Pipelining  
An Instruction Cycleconsists of four Q cycles (Q1,  
Q2, Q3 and Q4). The instruction fetch and execute are  
pipelined, such that fetch takes one instruction cycle,  
while decode and execute takes another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g. GOTO),  
then two cycles are required to complete the instruction  
(Example 1-1).  
The clock input (from OSC1) is internally divided by  
four to generate four non-overlapping quadrature  
clocks, namely Q1, Q2, Q3 and Q4. Internally, the pro-  
gram counter (PC) is incremented every Q1, the  
instruction is fetched from the program memory and  
latched into the instruction register in Q4. The instruc-  
tion is decoded and executed during the following Q1  
through Q4. The clocks and instruction execution flow  
are shown in Figure 1-2.  
A fetch cycle begins with the program counter (PC)  
incrementing in Q1.  
In the execution cycle, the fetched instruction is latched  
into the Instruction Registerin cycle Q1. This instruc-  
tion is then decoded and executed during the Q2, Q3,  
and Q4 cycles. Data memory is read during Q2 (oper-  
and read) and written during Q4 (destination write).  
FIGURE 1-2:  
CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Internal  
Phase  
Clock  
Q4  
PC  
PC  
PC+1  
PC+2  
OSC2/CLKOUT  
(RC mode)  
Fetch INST (PC)  
Execute INST (PC-1)  
Fetch INST (PC+1)  
Execute INST (PC)  
Fetch INST (PC+2)  
Execute INST (PC+1)  
EXAMPLE 1-1:  
INSTRUCTION PIPELINE FLOW  
TCY0  
TCY1  
TCY2  
TCY3  
TCY4  
TCY5  
1. MOVLW 55h  
Fetch 1  
Execute 1  
Fetch 2  
2. MOVWF PORTB  
3. CALL SUB_1  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3 (Forced NOP)  
Flush  
5. Instruction @ address SUB_1  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles, since the fetch instruction  
is flushedfrom the pipeline while the new instruction is being fetched and then executed.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 9  
PIC16C925/926  
NOTES:  
DS39544A-page 10  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
2.0  
2.1  
MEMORY ORGANIZATION  
Program Memory Organization  
The PIC16C925/926 family has a 13-bit program  
counter capable of addressing an 8K x 14 program  
memory space.  
For the PIC16C925, only the first 4K x 14 (0000h-  
0FFFh) are physically implemented. Accessing a loca-  
tion above the physically implemented addresses will  
cause a wraparound. The RESET vector is at 0000h  
and the interrupt vector is at 0004h.  
FIGURE 2-2:  
PROGRAM MEMORY MAP  
AND STACK FOR  
PIC16C926  
FIGURE 2-1:  
PROGRAM MEMORY MAP  
AND STACK FOR  
PIC16C925  
PC<12:0>  
PC<12:0>  
13  
CALL, RETURN  
RETFIE, RETLW  
CALL, RETURN  
RETFIE, RETLW  
13  
Stack Level 1  
Stack Level 2  
Stack Level 1  
Stack Level 2  
Stack Level 8  
RESET Vector  
Stack Level 8  
RESET Vector  
0000h  
0000h  
Interrupt Vector  
Page 0  
0004h  
0005h  
Interrupt Vector  
Page 0  
0004h  
0005h  
07FFh  
0800h  
On-chip  
Program  
Memory  
07FFh  
0800h  
Page 1  
On-chip  
Program  
Memory  
Page 1  
0FFFh  
1000h  
0FFFh  
1000h  
Page 2  
Page 3  
17FFh  
1800h  
Reads  
0000h-0FFFh  
1FFFh  
2000h  
1FFFh  
2000h  
2003h  
ID Locations  
Reserved  
2003h  
2004h  
ID Locations  
Reserved  
2004h  
2007h  
2007h  
Configuration Word  
Configuration Word  
Reserved  
3FFFh  
Reserved  
3FFFh  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 11  
PIC16C925/926  
2.2.1  
GENERAL PURPOSE REGISTER  
FILE  
2.2  
Data Memory Organization  
The data memory is partitioned into four banks which  
contain the General Purpose Registers and the Special  
Function Registers. Bits RP1 and RP0 are the bank  
select bits.  
The register file can be accessed either directly, or indi-  
rectly through the File Select Register FSR  
(Section 2.6).  
The following General Purpose Registers are not phys-  
ically implemented:  
RP1:RP0  
Bank  
(STATUS<6:5>)  
F0h-FFh of Bank 1  
170h-17Fh of Bank 2  
1F0h-1FFh of Bank 3  
11  
10  
01  
00  
3 (180h-1FFh)  
2 (100h-17Fh)  
1 (80h-FFh)  
0 (00h-7Fh)  
These locations are used for common access across  
banks.  
The lower locations of each Bank are reserved for the  
Special Function Registers. Above the Special Func-  
tion Registers are General Purpose Registers imple-  
mented as static RAM. All four banks contain special  
function registers. Some high usespecial function  
registers are mirrored in other banks for code reduction  
and quicker access.  
DS39544A-page 12  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
FIGURE 2-3:  
REGISTER FILE MAP — PIC16C925  
File  
Address  
File  
Address  
File  
Address  
File  
Address  
Indirect addr.(*)  
Indirect addr.(*)  
OPTION  
PCL  
Indirect addr.(*)  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
Indirect addr.(*)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
TMR0  
TMR0  
PCL  
OPTION  
PCL  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PCLATH  
INTCON  
PIR1  
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
TRISB  
TRISF  
TRISG  
PORTB  
PORTF  
PORTG  
PCLATH  
INTCON  
PMCON1  
LCDSE  
PCLATH  
INTCON  
PMDATA  
PCLATH  
INTCON  
PIE1  
PMADR  
PMDATH  
PMADRH  
TMR1L  
TMR1H  
LCDPS  
PCON  
LCDCON  
LCDD00  
T1CON  
TMR2  
LCDD01  
LCDD02  
LCDD03  
LCDD04  
LCDD05  
LCDD06  
LCDD07  
LCDD08  
LCDD09  
LCDD10  
LCDD11  
LCDD12  
LCDD13  
LCDD14  
T2CON  
PR2  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
SSPADD  
SSPSTAT  
ADRESH  
ADCON0  
ADRESL  
ADCON1  
LCDD15  
1A0h  
A0h  
General  
Purpose  
Register  
General  
Purpose  
Register  
1EFh  
1F0h  
EFh  
F0h  
16Fh  
170h  
accesses  
70h - 7Fh  
accesses  
70h - 7Fh  
accesses  
70h - 7Fh  
17Fh  
1FFh  
7Fh  
FFh  
Bank 3  
Bank 1  
Bank 2  
Bank 0  
Unimplemented data memory locations, read as 0.  
* Not a physical register.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 13  
PIC16C925/926  
FIGURE 2-4:  
REGISTER FILE MAPPIC16C926  
File  
Address  
File  
Address  
File  
Address  
File  
Address  
Indirect addr.(*)  
Indirect addr.(*)  
OPTION  
PCL  
Indirect addr.(*)  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
Indirect addr.(*)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
TMR0  
TMR0  
PCL  
OPTION  
PCL  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PCLATH  
INTCON  
PIR1  
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
TRISB  
TRISF  
TRISG  
PORTB  
PORTF  
PORTG  
PCLATH  
INTCON  
PMCON1  
LCDSE  
PCLATH  
INTCON  
PMDATA  
PCLATH  
INTCON  
PIE1  
PMADR  
PMDATH  
PMADRH  
TMR1L  
TMR1H  
LCDPS  
PCON  
LCDCON  
LCDD00  
LCDD01  
LCDD02  
LCDD03  
LCDD04  
LCDD05  
LCDD06  
LCDD07  
LCDD08  
LCDD09  
LCDD10  
LCDD11  
LCDD12  
LCDD13  
LCDD14  
T1CON  
TMR2  
T2CON  
PR2  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
SSPADD  
SSPSTAT  
ADRESL  
ADCON1  
ADRESH  
ADCON0  
LCDD15  
1A0h  
A0h  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
96 Bytes  
General  
Purpose  
Register  
80 Bytes  
BFh  
C0h  
EFh  
F0h  
1EFh  
1F0h  
16Fh  
170h  
accesses  
70h - 7Fh  
accesses  
70h - 7Fh  
accesses  
70h - 7Fh  
17Fh  
1FFh  
7Fh  
FFh  
Bank 3  
Bank 1  
Bank 2  
Bank 0  
Unimplemented data memory locations, read as 0.  
* Not a physical register.  
DS39544A-page 14  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
The special function registers can be classified into two  
sets, core and peripheral. Those registers associated  
with the corefunctions are described in this section.  
Those related to the operation of the peripheral  
features are described in the section of that peripheral  
feature.  
2.3  
Special Function Registers  
The Special Function Registers (SFRs) are registers  
used by the CPU and Peripheral Modules for control-  
ling the desired operation of the device. These regis-  
ters are implemented as static RAM.  
TABLE 2-1:  
SPECIAL FUNCTION REGISTER SUMMARY  
Value on  
Power-on  
Reset  
Details on  
page  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 0  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 Module Register  
0000 0000  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
--0x 0000  
xxxx xxxx  
--xx xxxx  
0000 0000  
0000 0000  
---0 0000  
0000 000x  
00-- 0000  
26  
41  
25  
19  
26  
29  
31  
33  
34  
36  
25  
21  
23  
TMR0  
PCL  
Program Counter (PC) Least Significant Byte  
STATUS  
FSR  
IRP  
Indirect Data Memory Address Pointer  
PORTA Data Latch when written: PORTA pins when read  
PORTB Data Latch when written: PORTB pins when read  
PORTC Data Latch when written: PORTC pins when read  
RP1  
RP0  
TO  
PD  
Z
DC  
C
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PCLATH  
INTCON  
PIR1  
PORTD Data Latch when written: PORTD pins when read  
PORTE pins when read  
TMR0IE  
Write Buffer for the upper 5 bits of the Program Counter  
GIE  
PEIE  
ADIF  
INTE  
RBIE  
TMR0IF  
CCP1IF  
INTF  
RBIF  
LCDIF  
SSPIF  
TMR2IF  
TMR1IF  
Unimplemented  
TMR1L  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
Holding register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx  
xxxx xxxx  
47  
47  
47  
51  
52  
64, 72  
60  
58  
58  
53  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC  
TMR1CS TMR1ON --00 0000  
Timer2 Module Register  
0000 0000  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000  
Synchronous Serial Port Receive Buffer/Transmit Register  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
WCOL  
SSPOV  
SSPEN  
CKP  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
Capture/Compare/PWM Register (LSB)  
Capture/Compare/PWM Register (MSB)  
CCP1X  
CCP1Y  
CCP1M3  
CCP1M2  
CCP1M1  
CCP1M0 --00 0000  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
ADRESH  
A/D Result Register High  
ADCS1 ADCS0  
xxxx xxxx  
80, 81  
1Fh  
ADCON0  
CHS2  
CHS1  
CHS0  
GO/DONE  
ADON  
0000 0000  
75  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as '0'.  
Shaded locations are unimplemented, read as 0.  
Note 1: These pixels do not display, but can be used as general purpose RAM.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 15  
PIC16C925/926  
TABLE 2-1:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on  
Power-on  
Reset  
Details on  
page  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 1  
80h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000  
1111 1111  
0000 0000  
0001 1xxx  
xxxx xxxx  
--11 1111  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
---0 0000  
0000 000x  
26  
20  
25  
19  
26  
29  
31  
33  
34  
36  
25  
21  
24  
81h  
OPTION  
PCL  
RBPU  
Program Counter (PC) Least Significant Byte  
IRP RP1 RP0 TO  
Indirect Data Memory Address Pointer  
PORTA Data Direction Register  
PORTB Data Direction Register  
PORTC Data Direction Register  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
82h  
83h  
STATUS  
FSR  
PD  
Z
DC  
C
84h  
85h  
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
PCLATH  
INTCON  
PIE1  
86h  
87h  
88h  
PORTD Data Direction Register  
PORTE Data Direction Register  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
TMR0IE  
Write Buffer for the upper 5 bits of the PC  
GIE  
PEIE  
ADIE  
INTE  
RBIE  
TMR0IF  
CCP1IE  
INTF  
RBIF  
LCDIE  
SSPIE  
TMR2IE  
TMR1IE 00-- 0000  
Unimplemented  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
PCON  
POR  
BOR  
---- --0-  
24  
Unimplemented  
Unimplemented  
Unimplemented  
PR2  
SSPADD  
Timer2 Period Register  
Synchronous Serial Port (I2C mode) Address Register  
1111 1111  
0000 0000  
51  
69, 72  
94h  
SSPSTAT  
SMP  
CKE  
D/A  
P
S
R/W  
UA  
BF  
0000 0000  
59  
79  
76  
95h  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
Legend:  
ADRESL  
ADCON1  
A/D Result Register Low  
xxxx xxxx  
---- -000  
PCFG2  
PCFG1  
PCFG0  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as '0'.  
Shaded locations are unimplemented, read as 0.  
Note 1: These pixels do not display, but can be used as general purpose RAM.  
DS39544A-page 16  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
TABLE 2-1:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on  
Power-on  
Reset  
Details on  
page  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 2  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
108h  
109h  
10Ah  
10Bh  
10Ch  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 Module Register  
0000 0000  
xxxx xxxx  
0000 0000  
0001 1xxx  
xxxx xxxx  
26  
41  
25  
19  
26  
TMR0  
PCL  
Program Counter (PC) Least Significant Byte  
STATUS  
FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
Unimplemented  
PORTB  
PORTF  
PORTG  
PORTB Data Latch when written: PORTB pins when read  
PORTF pins when read  
xxxx xxxx  
0000 0000  
0000 0000  
31  
37  
38  
PORTG pins when read  
Unimplemented  
PCLATH  
INTCON  
PMCON1  
PEIE  
TMR0IE  
Write Buffer for the upper 5 bits of the PC  
---0 0000  
0000 000x  
1--- ---0  
25  
21  
27  
GIE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
RD  
reserved  
10Dh  
10Eh  
10Fh  
110h  
LCDSE  
SE29  
SE27  
SE20  
SE16  
SE12  
LP3  
SE9  
LP2  
CS0  
SE5  
LP1  
SE0  
1111 1111  
---- 0000  
00-0 0000  
xxxx xxxx  
94  
84  
83  
92  
LCDPS  
LP0  
LCDCON  
LCDD00  
LCDEN  
SLPEN  
VGEN  
CS1  
LMUX1  
LMUX0  
SEG07  
COM0  
SEG06  
COM0  
SEG05  
COM0  
SEG04  
COM0  
SEG03  
COM0  
SEG02  
COM0  
SEG01  
COM0  
SEG00  
COM0  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
Legend:  
LCDD01  
LCDD02  
LCDD03  
LCDD04  
LCDD05  
LCDD06  
LCDD07  
LCDD08  
LCDD09  
LCDD10  
LCDD11  
LCDD12  
LCDD13  
LCDD14  
LCDD15  
SEG15  
COM0  
SEG14  
COM0  
SEG13  
COM0  
SEG12  
COM0  
SEG11  
COM0  
SEG10  
COM0  
SEG09  
COM0  
SEG08  
COM0  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
92  
92  
92  
92  
92  
92  
92  
92  
92  
92  
92  
92  
92  
92  
92  
SEG23  
COM0  
SEG22  
COM0  
SEG21  
COM0  
SEG20  
COM0  
SEG19  
COM0  
SEG18  
COM0  
SEG17  
COM0  
SEG16  
COM0  
SEG31  
COM0  
SEG30  
COM0  
SEG29  
COM0  
SEG28  
COM0  
SEG27  
COM0  
SEG26  
COM0  
SEG25  
COM0  
SEG24  
COM0  
SEG07  
COM1  
SEG06  
COM1  
SEG05  
COM1  
SEG04  
COM1  
SEG03  
COM1  
SEG02  
COM1  
SEG01  
COM1  
SEG00  
COM1  
SEG15  
COM1  
SEG14  
COM1  
SEG13  
COM1  
SEG12  
COM1  
SEG11  
COM1  
SEG10  
COM1  
SEG09  
COM1  
SEG08  
COM1  
SEG23  
COM1  
SEG22  
COM1  
SEG21  
COM1  
SEG20  
COM1  
SEG19  
COM1  
SEG18  
COM1  
SEG17  
COM1  
SEG16  
COM1  
SEG31  
SEG30  
COM1  
SEG29  
COM1  
SEG28  
COM1  
SEG27  
COM1  
SEG26  
COM1  
SEG25  
COM1  
SEG24  
COM1  
COM1(1)  
SEG07  
COM2  
SEG06  
COM2  
SEG05  
COM2  
SEG04  
COM2  
SEG03  
COM2  
SEG02  
COM2  
SEG01  
COM2  
SEG00  
COM2  
SEG15  
COM2  
SEG14  
COM2  
SEG13  
COM2  
SEG12  
COM2  
SEG11  
COM2  
SEG10  
COM2  
SEG09  
COM2  
SEG08  
COM2  
SEG23  
COM2  
SEG22  
COM2  
SEG21  
COM2  
SEG20  
COM2  
SEG19  
COM2  
SEG18  
COM2  
SEG17  
COM2  
SEG16  
COM2  
SEG31  
SEG30  
SEG29  
COM2  
SEG28  
COM2  
SEG27  
COM2  
SEG26  
COM2  
SEG25  
COM2  
SEG24  
COM2  
COM2(1)  
COM2(1)  
SEG07  
COM3  
SEG06  
COM3  
SEG05  
COM3  
SEG04  
COM3  
SEG03  
COM3  
SEG02  
COM3  
SEG01  
COM3  
SEG00  
COM3  
SEG15  
COM3  
SEG14  
COM3  
SEG13  
COM3  
SEG12  
COM3  
SEG11  
COM3  
SEG10  
COM3  
SEG09  
COM3  
SEG08  
COM3  
SEG23  
COM3  
SEG22  
COM3  
SEG21  
COM3  
SEG20  
COM3  
SEG19  
COM3  
SEG18  
COM3  
SEG17  
COM3  
SEG16  
COM3  
SEG31  
SEG30  
SEG29  
SEG28  
COM3  
SEG27  
COM3  
SEG26  
COM3  
SEG25  
COM3  
SEG24  
COM3  
COM3(1)  
COM3(1)  
COM3(1)  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as '0'.  
Shaded locations are unimplemented, read as 0.  
Note 1: These pixels do not display, but can be used as general purpose RAM.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 17  
PIC16C925/926  
TABLE 2-1:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on  
Power-on  
Reset  
Details on  
page  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 3  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
188h  
189h  
18Ah  
18Bh  
18Ch  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000  
1111 1111  
0000 0000  
0001 1xxx  
xxxx xxxx  
26  
20  
25  
19  
26  
OPTION  
PCL  
RBPU  
Program Counters (PC) Least Significant Byte  
IRP RP1 RP0 TO  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
STATUS  
FSR  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
Unimplemented  
TRISB  
TRISF  
TRISG  
PORTB Data Direction Register  
PORTF Data Direction Register  
PORTG Data Direction Register  
Unimplemented  
1111 1111  
1111 1111  
1111 1111  
31  
37  
38  
PCLATH  
INTCON  
PMDATA  
Write Buffer for the upper 5 bits of the PC  
INTE RBIE TMR0IF  
---0 0000  
0000 000x  
xxxx xxxx  
25  
21  
27  
GIE  
PEIE  
TMR0IE  
INTF  
RBIF  
Data Register Low Byte  
18Dh  
18Eh  
18Fh  
PMADR  
Address Register Low Byte  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
27  
27  
27  
PMDATH  
PMADRH  
Data Register High Byte  
Address Register High Byte  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
Legend:  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as '0'.  
Shaded locations are unimplemented, read as 0.  
Note 1: These pixels do not display, but can be used as general purpose RAM.  
DS39544A-page 18  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
For example, CLRF STATUSwill clear the upper-three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
2.3.1  
STATUS REGISTER  
The STATUS register, shown in Register 2-1, contains  
the arithmetic status of the ALU, the RESET status and  
the bank select bits for data memory.  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register because these instructions do not  
affect the Z, C or DC bits from the STATUS register. For  
other instructions, not affecting any status bits, see the  
Instruction Set Summary.”  
The STATUS register can be the destination for any  
instruction, as with any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note: The C and DC bits operate as a borrow  
and digit borrow bit, respectively, in sub-  
traction. See the SUBLW and SUBWF  
instructions for examples.  
REGISTER 2-1:  
STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
bit 7  
bit 0  
bit 7  
IRP: Register Bank Select bit (used for indirect addressing)  
1= Bank 2, 3 (100h - 1FFh)  
0= Bank 0, 1 (00h - FFh)  
bit 6-5  
RP1:RP0: Register Bank Select bits (used for direct addressing)  
11= Bank 3 (180h - 1FFh)  
10= Bank 2 (100h - 17Fh)  
01= Bank 1 (80h - FFh)  
00= Bank 0 (00h - 7Fh)  
bit 4  
bit 3  
bit 2  
bit 1  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction, or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions)  
(for borrow the polarity is reversed)  
1= A carry-out from the 4th low order bit of the result occurred  
0= No carry-out from the 4th low order bit of the result  
bit 0  
C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)  
(for borrow the polarity is reversed)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note: A subtraction is executed by adding the twos complement of the second operand.  
For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order  
bit of the source register.  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
1= Bit is set  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 19  
PIC16C925/926  
2.3.2  
OPTION REGISTER  
Note: To achieve a 1:1 prescaler assignment for  
the TMR0 register, assign the prescaler to  
the Watchdog Timer.  
The OPTION register is a readable and writable regis-  
ter, which contains various control bits to configure the  
TMR0/WDT prescaler, the external RB0/INT pin inter-  
rupt, TMR0, and the weak pull-ups on PORTB.  
REGISTER 2-2:  
OPTION REGISTER (ADDRESS 81h, 181h)  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RBPU: PORTB Pull-up Enable bit  
1= PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual port latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RB0/INT pin  
0= Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1= Transition on RA4/T0CKI pin  
0= Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on RA4/T0CKI pin  
0= Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS2:PS0: Prescaler Rate Select bits  
Bit Value TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
- n = Value at POR  
1= Bit is set  
0= Bit is cleared  
x = Bit is unknown  
DS39544A-page 20  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
2.3.3  
INTCON REGISTER  
Note: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>).  
The INTCON Register is a readable and writable regis-  
ter which contains various enable and flag bits for the  
TMR0 register overflow, RB Port change and external  
RB0/INT pin interrupts.  
REGISTER 2-3:  
INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
R/W-0  
INTF  
R/W-x  
RBIF  
TMR0IE  
TMR0IF  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
GIE: Global Interrupt Enable bit  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
PEIE/GEIL: Peripheral Interrupt Enable bit  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
TMR0IE: TMR0 Overflow Interrupt Enable bit  
1= Enables the TMR0 overflow interrupt  
0= Disables the TMR0 overflow interrupt  
INTE: RB0/INT0 External Interrupt Enable bit  
1= Enables the RB0/INT external interrupt  
0= Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1= Enables the RB port change interrupt  
0= Disables the RB port change interrupt  
TMR0IF: TMR0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: RB0/INT0 External Interrupt Flag bit  
1= The RB0/INT external interrupt occurred (must be cleared in software)  
0= The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1= At least one of the RB7:RB4 pins changed state (must be cleared in software)  
0= None of the RB7:RB4 pins have changed state  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
1= Bit is set  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 21  
PIC16C925/926  
2.3.4  
PIE1 REGISTER  
Note: Bit PEIE (INTCON<6>) must be set to  
This register contains the individual enable bits for the  
peripheral interrupts.  
enable any peripheral interrupt.  
REGISTER 2-4:  
PIE1 REGISTER (ADDRESS 8Ch)  
R/W-0  
LCDIE  
R/W-0  
ADIE  
U-0  
U-0  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
R/W-0  
TMR1IE  
bit 0  
CCP1IE  
TMR2IE  
bit 7  
bit 7  
bit 6  
LCDIE: LCD Interrupt Enable bit  
1= Enables the LCD interrupt  
0= Disables the LCD interrupt  
ADIE: A/D Converter Interrupt Enable bit  
1= Enables the A/D interrupt  
0= Disables the A/D interrupt  
bit 5-4  
bit 3  
Unimplemented: Read as 0’  
SSPIE: Synchronous Serial Port Interrupt Enable bit  
1= Enables the SSP interrupt  
0= Disables the SSP interrupt  
bit 2  
bit 1  
bit 0  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the TMR2 to PR2 match interrupt  
0= Disables the TMR2 to PR2 match interrupt  
TMR1IE: TMR1 Overflow Interrupt Enable bit  
1= Enables the TMR1 overflow interrupt  
0= Disables the TMR1 overflow interrupt  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS39544A-page 22  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
2.3.5  
PIR1 REGISTER  
Note: Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
This register contains the individual flag bits for the  
peripheral interrupts.  
REGISTER 2-5:  
PIR1 REGISTER (ADDRESS 0Ch)  
R/W-0  
LCDIF  
R/W-0  
ADIF  
U-0  
U-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
R/W-0  
CCP1IF TMR2IF TMR1IF  
bit 0  
bit 7  
bit 7  
bit 6  
LCDIF: LCD Interrupt Flag bit  
1= LCD interrupt has occurred (must be cleared in software)  
0= LCD interrupt did not occur  
ADIF: A/D Converter Interrupt Flag bit  
1= An A/D conversion completed (must be cleared in software)  
0= The A/D conversion is not complete  
bit 5-4  
Unimplemented: Read as 0’  
bit 3  
SSPIF: Master Synchronous Serial Port Interrupt Flag bit  
1= The transmission/reception is complete (must be cleared in software)  
0= Waiting to transmit/receive  
bit 2  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A TMR1 register capture occurred (must be cleared in software)  
0= No TMR1 register capture occurred  
Compare mode:  
1= A TMR1 register compare match occurred (must be cleared in software)  
0= No TMR1 register compare match occurred  
PWM mode:  
Unused in this mode  
bit 1  
bit 0  
TMR2IF: TMR2 to PR2 Match Interrupt Flag bit  
1= TMR2 to PR2 match occurred (must be cleared in software)  
0= No TMR2 to PR2 match occurred  
TMR1IF: TMR1 Overflow Interrupt Flag bit  
1= TMR1 register overflowed (must be cleared in software)  
0= TMR1 register did not overflow  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
1= Bit is set  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 23  
PIC16C925/926  
2.3.6  
PCON REGISTER  
The Power Control (PCON) register contains a flag bit  
to allow differentiation between a Power-on Reset  
(POR) to an external MCLR Reset or WDT Reset.  
For various RESET conditions, see Table 12-4 and  
Table 12-5.  
REGISTER 2-6:  
PCON REGISTER (ADDRESS 8Eh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
POR  
R/W-1  
BOR  
bit 7  
bit 0  
bit 7-2  
bit 1  
Unimplemented: Read as '0'  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS39544A-page 24  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
2.4  
PCL and PCLATH  
Note 1: There are no status bits to indicate stack  
The program counter (PC) is 13-bits wide. The low byte  
comes from the PCL register, which is a readable and  
writable register. The upper bits (PC<12:8>) are not  
readable, but are indirectly writable through the  
PCLATH register. On any RESET, the upper bits of the  
PC will be cleared. Figure 2-5 shows the two situations  
for the loading of the PC. The upper example in the fig-  
ure shows how the PC is loaded on a write to PCL  
(PCLATH<4:0> PCH). The lower example in the fig-  
ure shows how the PC is loaded during a CALLor GOTO  
instruction (PCLATH<4:3> PCH).  
overflow or stack underflow conditions.  
2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the  
CALL, RETURN, RETLW, and RETFIE  
instructions, or the vectoring to an  
interrupt address.  
2.5  
Program Memory Paging  
PIC16C925/926 devices are capable of addressing a  
continuous 8K word block of program memory. The  
CALL and GOTO instructions provide only 11-bits of  
address to allow branching within any 2K program  
memory page. When doing a CALLor GOTOinstruction,  
the upper 2-bits of the address are provided by  
PCLATH<4:3>. When doing a CALL or GOTO instruc-  
tion, the user must ensure that the page select bits are  
programmed so that the desired program memory  
page is addressed. If a return from a CALLinstruction  
(or interrupt) is executed, the entire 13-bit PC is pushed  
onto the stack. Therefore, manipulation of the  
PCLATH<4:3> bits is not required for the RETURN  
instructions (which POPs the address from the stack).  
FIGURE 2-5:  
LOADING OF PC IN  
DIFFERENT SITUATIONS  
PCH  
PCL  
12  
8
7
0
Instruction with  
PCL as  
Destination  
PC  
8
PCLATH<4:0>  
PCLATH  
5
ALU Result  
PCH  
12 11 10  
PC  
PCL  
8
7
0
Note: The contents of the PCLATH register are  
unchanged after a RETURN or RETFIE  
instruction is executed. The user must  
rewrite the PCLATH for any subsequent  
CALLor GOTOinstructions.  
GOTO, CALL  
PCLATH<4:3>  
PCLATH  
11  
2
Opcode <10:0>  
Example 2-1 shows the calling of a subroutine in  
page 1 of the program memory. This example assumes  
that PCLATH is saved and restored by the Interrupt  
Service Routine (if interrupts are used).  
2.4.1  
COMPUTED GOTO  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL). When doing a  
table read using a computed GOTO method, care  
should be exercised if the table location crosses a PCL  
memory boundary (each 256 byte block). Refer to the  
application note Implementing a Table Read(AN556).  
EXAMPLE 2-1:  
CALL OF A SUBROUTINE  
IN PAGE 1 FROM PAGE 0  
ORG 0x500  
BCF  
BSF  
PCLATH,4  
PCLATH,3 ;Select page 1 (800h-FFFh)  
2.4.2  
STACK  
CALL  
SUB1_P1  
;Call subroutine in  
;page 1 (800h-FFFh)  
:
:
:
The PIC16CXXX family has an 8-level deep x 13-bit  
wide hardware stack. The stack space is not part of  
either program or data space and the stack pointer is not  
readable or writable. The PC is PUSHed onto the stack  
when a CALL instruction is executed, or an interrupt  
causes a branch. The stack is POPed in the event of a  
RETURN, RETLW or a RETFIE instruction execution.  
PCLATH is not affected by a PUSH or POP operation.  
ORG 0x900  
SUB1_P1:  
;called subroutine  
;page 1 (800h-FFFh)  
:
:
RETURN  
;return to Call subroutine  
;in page 0 (000h-7FFh)  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 25  
PIC16C925/926  
A simple program to clear RAM locations 20h-2Fh  
using indirect addressing is shown in Example 2-2.  
2.6  
Indirect Addressing, INDF and  
FSR Registers  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
EXAMPLE 2-2:  
INDIRECT ADDRESSING  
MOVLW 0x20  
MOVWF FSR  
;initialize pointer  
;to RAM  
;clear INDF register  
;inc pointer  
;all done?  
;no clear next  
Indirect addressing is possible by using the INDF reg-  
ister. Any instruction using the INDF register actually  
accesses the register pointed to by the File Select Reg-  
ister (FSR). Reading the INDF register itself, indirectly  
(FSR = 0), will produce 00h. Writing to the INDF regis-  
ter indirectly results in a no operation (although status  
bits may be affected). An effective 9-bit address is  
obtained by concatenating the 8-bit FSR register and  
the IRP bit (STATUS<7>), as shown in Figure 2-6.  
NEXT  
CLRF INDF  
INCF FSR,F  
BTFSS FSR,4  
GOTO NEXT  
CONTINUE  
:
;yes continue  
FIGURE 2-6:  
DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
Indirect Addressing  
From Opcode  
7
RP1:RP0  
6
0
0
IRP  
FSR Register  
Bank Select  
00h  
Location Select  
Bank Select  
Location Select  
00  
01  
10  
11  
00h  
Data  
Memory  
7Fh  
7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Note: For memory map detail, see Figure 2-3.  
DS39544A-page 26  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
When interfacing to the program memory block, the  
PMDATH:PMDATA registers form a two-byte word,  
which holds the 14-bit data for reads. The  
PMADRH:PMADR registers form a two-byte word,  
which holds the 13-bit address of the location being  
accessed. These devices can have from 4K words to  
8K words of program memory, with an address range  
from 0h to 3FFFh.  
3.0  
READING PROGRAM MEMORY  
The Program Memory is readable during normal oper-  
ation over the entire VDD range. It is indirectly  
addressed through Special Function Registers (SFR).  
Up to 14-bit numbers can be stored in memory for use  
as calibration parameters, serial numbers, packed 7-bit  
ASCII, etc. Executing a program memory location con-  
taining data that forms an invalid instruction results in a  
NOP.  
The unused upper bits in both the PMDATH and  
PMADRH registers are not implemented and read as  
0s.  
There are five SFRs used to read the program and  
memory. These registers are:  
3.1  
PMADR  
PMCON1  
PMDATA  
PMDATH  
PMADR  
The address registers can address up to a maximum of  
8K words of program memory.  
When selecting a program address value, the MSByte  
of the address is written to the PMADRH register and  
the LSByte is written to the PMADR register. The upper  
MSbits of PMADRH must always be clear.  
PMADRH  
The program memory allows word reads. Program  
memory access allows for checksum calculation and  
reading calibration tables.  
3.2  
PMCON1 Register  
PMCON1 is the control register for memory accesses.  
The control bit RD initiates read operations. This bit  
cannot be cleared, only set, in software. It is cleared in  
hardware at the completion of the read operation.  
REGISTER 3-1: PMCON1 REGISTER (ADDRESS 10Ch)  
R-1  
r
U-0  
U-0  
U-0  
U-x  
U-0  
U-0  
R/S-0  
RD  
bit 7  
bit 0  
bit 7  
Reserved: Read as 1’  
bit 6-1  
bit 0  
Unimplemented: Read as 0’  
RD: Read Control bit  
1= Initiates a read, RD is cleared in hardware. The RD bit can only be set (not cleared)  
in software.  
0= Does not initiate a read  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR reset  
1= Bit is set  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 27  
PIC16C925/926  
data is available in the PMDATA and PMDATH regis-  
ters after the NOPinstruction. Therefore, it can be read  
as two bytes in the following instructions. The PMDATA  
and PMDATH registers will hold this value until another  
read operation.  
3.3  
Reading the Program Memory  
A program memory location may be read by writing two  
bytes of the address to the PMADR and PMADRH reg-  
isters, and then setting control bit RD (PMCON1<0>).  
Once the read control bit is set, the microcontroller will  
use the next two instruction cycles to read the data. The  
EXAMPLE 3-1:  
PROGRAM READ  
BSF  
STATUS, RP1  
;
BSF  
STATUS, RP0  
MS_PROG_PM_ADDR  
PMADRH  
LS_PROG_PM_ADDR  
PMADR  
; Bank 3  
;
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BCF  
; MS Byte of Program Address to read  
;
; LS Byte of Program Address to read  
; Bank 2  
STATUS, RP0  
PMCON1, RD  
BSF  
; PM Read  
;
; First instruction after BSF PMCON1,RD executes normally  
; Bank 3  
BSF  
STATUS, RP0  
;
NOP  
; Any instructions here are ignored as program  
; memory is read in second cycle after BSF PMCON1,RD  
;
MOVF  
MOVF  
PMDATA, W  
PMDATH, W  
; W = LS Byte of Program PMDATA  
; W = MS Byte of Program PMDATA  
3.4  
Operation During Code Protect  
If only part of the program memory is code protected,  
the program memory control can read the unprotected  
segment and cannot read the protected segment. The  
protected area cannot be read, because it may be  
possible to write a downloading routine into the  
unprotected segment.  
If the program memory is not code protected, the pro-  
gram memory control can read anywhere within the  
program memory.  
If the entire program memory is code protected, the  
program memory control can read anywhere within the  
program memory.  
TABLE 3-1:  
REGISTERS ASSOCIATED WITH PROGRAM MEMORY  
Value on  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
RESETS  
10Ch  
18Ch  
PMCON1  
(1)  
RD  
1--- ---0 1--- ---0  
xxxx xxxx uuuu uuuu  
PMDATA Data Register Low Byte  
18Dh  
18Eh  
18Fh  
PMADR  
Address Register Low Byte  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
PMDATH  
PMADRH  
Data Register High Byte  
Address Register High Byte  
Legend: x= unknown, u= unchanged, r = reserved, -= unimplemented, read as '0'.  
Shaded cells are not used during FLASH access.  
Note 1: This bit always reads as a 1.  
DS39544A-page 28  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
FIGURE 4-1:  
BLOCK DIAGRAM OF  
PINS RA3:RA0 AND RA5  
4.0  
I/O PORTS  
Some pins for these ports are multiplexed with an alter-  
nate function for the peripheral features on the device.  
In general, when a peripheral is enabled, that pin may  
not be used as a general purpose I/O pin.  
Data  
Bus  
D
Q
VDD  
WR  
Port  
4.1  
PORTA and TRISA Register  
Q
CK  
P
N
Data Latch  
The RA4/T0CKI pin is a Schmitt Trigger input and an  
open drain output. All other RA port pins have TTL  
input levels and full CMOS output drivers. All RA pins  
have data direction bits (TRISA register), which can  
configure these pins as output or input.  
I/O pin(1)  
D
Q
WR  
TRIS  
VSS  
Q
CK  
Setting a bit in the TRISA register puts the correspond-  
ing output driver in a Hi-Impedance mode. Clearing a  
bit in the TRISA register puts the contents of the output  
latch on the selected pin.  
Analog  
Input Mode  
TRIS Latch  
RD  
TRIS  
Reading the PORTA register reads the status of the  
pins, whereas writing to it will write to the port latch. All  
write operations are read-modify-write operations.  
Therefore, a write to a port implies that the port pins are  
read, this value is modified, and then written to the port  
data latch.  
TTL  
Input  
Buffer  
Q
D
EN  
Pin RA4 is multiplexed with the Timer0 module clock  
input to become the RA4/T0CKI pin. The other PORTA  
pins are multiplexed with analog inputs and the analog  
VREF input. The operation of each pin is selected by  
clearing/setting the control bits in the ADCON1 register  
(A/D Control Register1).  
RD Port  
To A/D Converter  
Note 1: I/O pins have protection diodes to VDD and VSS.  
Note: On a Power-on Reset, these pins are con-  
figured as analog inputs and read as 0.  
FIGURE 4-2:  
BLOCK DIAGRAM OF  
RA4/T0CKI PIN  
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
Data  
Bus  
D
Q
Q
WR  
Port  
CK  
EXAMPLE 4-1:  
INITIALIZING PORTA  
I/O pin(1)  
N
BCF  
BCF  
CLRF  
BSF  
STATUS, RP0 ; Select Bank0  
STATUS, RP1  
Data Latch  
D
Q
VSS  
PORTA  
; Initialize PORTA  
WR  
TRIS  
STATUS, RP0 ; Select Bank1  
Schmitt  
Trigger  
Input  
MOVLW 0xCF  
MOVWF TRISA  
; Value used to  
; initialize data  
; direction  
; Set RA<3:0> as inputs  
; RA<5:4> as outputs  
; RA<7:6> are always  
CK  
Q
TRIS Latch  
Buffer  
RD  
TRIS  
; read as ’0’.  
Q
D
EN  
RD Port  
TMR0 Clock Input  
Note 1: I/O pin has protection diodes to VSS only.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 29  
PIC16C925/926  
TABLE 4-1:  
PORTA FUNCTIONS  
Name  
Bit#  
Buffer  
Function  
RA0/AN0  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
TTL  
TTL  
TTL  
TTL  
ST  
Input/output or analog input.  
Input/output or analog input.  
Input/output or analog input.  
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
RA5/AN4/SS  
Input/output or analog input or VREF.  
Input/output or external clock input for Timer0. Output is open drain type.  
Input/output or analog input or slave select input for synchronous serial port.  
TTL  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
TABLE 4-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
Power-on  
Reset  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
05h  
85h  
9Fh  
PORTA  
TRISA  
RA5  
RA4  
RA3  
RA2  
RA1  
RA0  
--0x 0000 --0x 0000  
--11 1111 --11 1111  
PORTA Data Direction Control Register  
ADCON1  
PCFG2 PCFG1 PCFG0 ---- -000 ---- -000  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by PORTA.  
DS39544A-page 30  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
Four of the PORTB pins (RB7:RB4) have an  
interrupt-on-change feature. Only pins configured as  
inputs can cause this interrupt to occur (i.e., any  
RB7:RB4 pin configured as an output is excluded from  
the interrupt-on-change comparison). The input pins (of  
RB7:RB4) are compared with the old value latched on  
the last read of PORTB. The mismatchoutputs of  
RB7:RB4 are ORed together to generate the RB Port  
Change Interrupt with flag bit RBIF (INTCON<0>).  
4.2  
PORTB and TRISB Register  
PORTB is an 8-bit wide, bi-directional port. The corre-  
sponding data direction register is TRISB. Setting a bit  
in the TRISB register puts the corresponding output  
driver in a Hi-Impedance Input mode. Clearing a bit in  
the TRISB register puts the contents of the output latch  
on the selected pin(s).  
EXAMPLE 4-2:  
INITIALIZING PORTB  
STATUS, RP0 ; Select Bank0  
STATUS, RP1  
This interrupt can wake the device from SLEEP. The  
user, in the Interrupt Service Routine, can clear the  
interrupt in the following manner:  
BCF  
BCF  
CLRF  
BSF  
PORTB  
; Initialize PORTB  
STATUS, RP0 ; Select Bank1  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
MOVLW 0xCF  
; Value used to  
; initialize data  
; direction  
b) Clear flag bit RBIF.  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition, and  
allow flag bit RBIF to be cleared.  
MOVWF TRISB  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
This interrupt-on-mismatch feature, together with soft-  
ware configurable pull-ups on these four pins, allow easy  
interface to a keypad and make it possible for wake-up on  
key depression. Refer to the Embedded Control Hand-  
book, Implementing Wake-Up on Key Stroke(AN552).  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is per-  
formed by clearing bit RBPU (OPTION<7>). The weak  
pull-up is automatically turned off when the port pin is  
configured as an output. The pull-ups are also disabled  
on a Power-on Reset.  
The interrupt-on-change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt-on-change  
feature. Polling of PORTB is not recommended while  
using the interrupt-on-change feature.  
FIGURE 4-3:  
BLOCK DIAGRAM OF  
RB3:RB0 PINS  
VDD  
RBPU(2)  
Weak  
FIGURE 4-4:  
BLOCK DIAGRAM OF  
RB7:RB4 PINS  
P
Pull-up  
Data Latch  
Data Bus  
WR Port  
D
Q
VDD  
I/O  
RBPU(2)  
Weak  
P
pin(1)  
CK  
TRIS Latch  
Pull-up  
Data Latch  
Data Bus  
WR Port  
D
Q
Q
D
TTL  
I/O  
pin(1)  
Input  
Buffer  
CK  
TRIS Latch  
WR TRIS  
CK  
D
Q
RD TRIS  
RD Port  
WR TRIS  
RD TRIS  
TTL  
Input  
Buffer  
CK  
ST  
Buffer  
Q
D
EN  
Latch  
Schmitt Trigger  
Buffer  
Q
D
RB0/INT  
RD Port  
EN  
Q1  
RD Port  
Set RBIF  
Note 1: I/O pins have diode protection to VDD and VSS.  
Q
D
2: To enable weak pull-ups, set the appropriate TRIS  
RD Port  
Q3  
bit(s) and clear the RBPU bit (OPTION<7>).  
From other  
RB7:RB4 pins  
EN  
RB7:RB6 in Serial Programming Mode  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: To enable weak pull-ups, set the appropriate TRIS  
bit(s) and clear the RBPU bit (OPTION<7>).  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 31  
PIC16C925/926  
TABLE 4-3:  
PORTB FUNCTIONS  
Name  
Bit#  
Buffer  
Function  
RB0/INT  
bit0  
TTL/ST  
Input/output pin or external interrupt input. Internal software  
programmable weak pull-up. This buffer is a Schmitt Trigger input when  
configured as the external interrupt.  
RB1  
RB2  
RB3  
RB4  
bit1  
bit2  
bit3  
bit4  
TTL  
TTL  
TTL  
TTL  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up.  
RB5  
RB6  
bit5  
bit6  
TTL  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up.  
TTL/ST  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up. Serial programming clock. This buffer is a Schmitt Trigger  
input when used in Serial Programming mode.  
RB7  
bit7  
TTL/ST  
Input/output pin (with interrupt-on-change). Internal software programmable  
weak pull-up. Serial programming data. This buffer is a Schmitt Trigger  
input when used in Serial Programming mode.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
TABLE 4-4:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on  
Power-on  
Reset  
Value on all  
other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
06h, 106h PORTB  
86h, 186h TRISB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
1111 1111 1111 1111  
PORTB Data Direction Control Register  
T0SE  
81h, 181h OPTION RBPU INTEDG T0CS  
PSA  
PS2  
PS1  
PS0  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
DS39544A-page 32  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
FIGURE 4-5:  
PORTC BLOCK DIAGRAM  
(PERIPHERAL OUTPUT  
OVERRIDE)  
4.3  
PORTC and TRISC Register  
PORTC is a 6-bit, bi-directional port. Each pin is individ-  
ually configurable as an input or output through the  
TRISC register. PORTC is multiplexed with several  
peripheral functions (Table 4-5). PORTC pins have  
Schmitt Trigger input buffers.  
VDD  
RBPU(2)  
Weak  
P
Pull-up  
Data Latch  
Data Bus  
WR Port  
When enabling peripheral functions, care should be  
taken in defining TRIS bits for each PORTC pin. Some  
peripherals override the TRIS bit to make a pin an out-  
put, while other peripherals override the TRIS bit to  
make a pin an input. Since the TRIS bit override is in  
effect while the peripheral is enabled, read-  
modify-write instructions (BSF, BCF, XORWF) with  
TRISC as destination should be avoided. The user  
should refer to the corresponding peripheral section for  
the correct TRIS bit settings.  
D
Q
I/O  
pin(1)  
CK  
TRIS Latch  
D
Q
TTL  
Input  
Buffer  
WR TRIS  
CK  
RD TRIS  
RD Port  
Q
D
EXAMPLE 4-3:  
INITIALIZING PORTC  
STATUS,RP0 ; Select Bank0  
BCF  
BCF  
CLRF  
BSF  
EN  
STATUS,RP1  
PORTC  
; Initialize PORTC  
RB0/INT  
STATUS,RP0 ; Select Bank1  
MOVLW 0xCF  
; Value used to  
; initialize data  
; direction  
; Set RC<3:0> as inputs  
; RC<5:4> as outputs  
; RC<7:6> always read 0  
Schmitt Trigger  
Buffer  
RD Port  
Note 1: I/O pins have diode protection to VDD and VSS.  
MOVWF TRISC  
2: To enable weak pull-ups, set the appropriate TRIS  
bit(s) and clear the RBPU bit (OPTION<7>).  
TABLE 4-5:  
Name  
PORTC FUNCTIONS  
Bit# Buffer Type  
Function  
RC0/T1OSO/T1CKI  
RC1/T1OSI  
bit0  
bit1  
bit2  
bit3  
ST  
ST  
ST  
ST  
Input/output port pin or Timer1 oscillator output or Timer1 clock input.  
Input/output port pin or Timer1 oscillator input.  
RC2/CCP1  
Input/output port pin or Capture input/Compare output/PWM output.  
RC3/SCK/SCL  
Input/output port pin or the synchronous serial clock for both SPI and  
I2C modes.  
RC4/SDI/SDA  
bit4  
ST  
ST  
Input/output port pin or the SPI Data In (SPI mode) or data I/O  
(I2C mode).  
RC5/SDO  
bit5  
Input/output port pin or Synchronous Serial Port data out.  
Legend: ST = Schmitt Trigger input  
TABLE 4-6:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on  
Power-on  
Reset  
Value on all  
other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
07h  
87h  
PORTC  
TRISC  
RC5  
RC4  
RC3  
RC2  
RC1  
RC0  
--xx xxxx --uu uuuu  
--11 1111 --11 1111  
PORTC Data Direction Control Register  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by PORTC.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 33  
PIC16C925/926  
FIGURE 4-7:  
PORTD<7:5> BLOCK  
DIAGRAM  
4.4  
PORTD and TRISD Registers  
PORTD is an 8-bit port with Schmitt Trigger input buff-  
ers. The first five pins are configurable as general pur-  
pose I/O pins or LCD segment drivers. Pins RD5, RD6  
and RD7 can be digital inputs, or LCD segment, or  
common drivers.  
LCD  
Segment Data  
LCD Segment  
Output Enable  
TRISD controls the direction of pins RD0 through RD4  
when PORTD is configured as a digital port.  
LCD  
Common Data  
Note 1: On a Power-on Reset, these pins are  
configured as LCD segment drivers.  
Digital Input/  
LCD Output pin  
LCD Common  
Output Enable  
2: To configure the pins as a digital port, the  
corresponding bits in the LCDSE register  
must be cleared. Any bit set in the LCDSE  
register overrides any bit settings in the  
corresponding TRIS register.  
LCDSE<n>  
Schmitt  
Trigger  
Input  
Buffer  
EXAMPLE 4-4:  
INITIALIZING PORTD  
BCF  
BSF  
BCF  
BCF  
BSF  
BCF  
STATUS,RP0  
;Select Bank2  
;
;Make RD<7:5> digital  
;Make RD<4:0> digital  
;Select Bank1  
;
Data Bus  
RD Port  
Q
D
STATUS,RP1  
LCDSE, SE29  
LCDSE, SE0  
STATUS,RP0  
STATUS,RP1  
EN  
MOVLW 0xE0  
MOVWF TRISD  
;Make RD<4:0> outputs  
;Make RD<7:5> inputs  
VDD  
FIGURE 4-6:  
PORTD <4:0> BLOCK  
DIAGRAM  
RD TRIS  
LCD  
Segment Data  
LCD Segment  
Output Enable  
Data  
Bus  
D
Q
WR  
Port  
I/O pin  
CK  
Data Latch  
D
Q
WR  
TRIS  
CK  
TRIS Latch  
Schmitt  
Trigger  
Input  
RD  
TRIS  
Buffer  
LCDSE<n>  
Q
D
EN  
RD  
Port  
DS39544A-page 34  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
TABLE 4-7:  
Name  
PORTD FUNCTIONS  
Buffer  
Bit#  
Function  
Type  
RD0/SEG00  
RD1/SEG01  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Input/output port pin or Segment Driver00.  
Input/output port pin or Segment Driver01.  
RD2/SEG02  
Input/output port pin or Segment Driver02.  
RD3/SEG03  
Input/output port pin or Segment Driver03.  
RD4/SEG04  
Input/output port pin or Segment Driver04.  
RD5/SEG29/COM3  
RD6/SEG30/COM2  
RD7/SEG31/COM1  
Digital input pin or Segment Driver29 or Common Driver3.  
Digital input pin or Segment Driver30 or Common Driver2.  
Digital input pin or Segment Driver31 or Common Driver1.  
Legend: ST = Schmitt Trigger input  
TABLE 4-8:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Value on  
Power-on  
Reset  
Value on all  
other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
08h  
PORTD  
TRISD  
LCDSE  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1111  
88h  
PORTD Data Direction Control Register  
SE29 SE27 SE20 SE16  
10Dh  
SE12  
SE9  
SE5  
SE0  
Legend: Shaded cells are not used by PORTD.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 35  
PIC16C925/926  
FIGURE 17-1: PORTE BLOCK DIAGRAM  
4.5  
PORTE and TRISE Register  
PORTE is a digital input only port. Each pin is multi-  
plexed with an LCD segment driver. These pins have  
Schmitt Trigger input buffers.  
LCD  
Segment Data  
LCD Segment  
Output Enable  
Note 1: On a Power-on Reset, these pins are  
LCD  
Common Data  
configured as LCD segment drivers.  
2: To configure the pins as a digital port, the  
corresponding bits in the LCDSE register  
must be cleared. Any bit set in the LCDSE  
register overrides any bit settings in the  
corresponding TRIS register.  
Digital Input/  
LCD Output pin  
LCD Common  
Output Enable  
LCDSE<n>  
EXAMPLE 4-5:  
INITIALIZING PORTE  
Schmitt  
Trigger  
Input  
BCF STATUS, RP0  
BSF STATUS, RP1  
BCF LCDSE,  
BCF LCDSE,  
BCF LCDSE,  
;Select Bank2  
;
Buffer  
SE27  
;Make all PORTE  
;and PORTG<7>  
;digital inputs  
Data Bus  
RD Port  
SE5  
SE9  
Q
D
EN  
VDD  
RD TRIS  
TABLE 4-9:  
Name  
PORTE FUNCTIONS  
Bit#  
Buffer Type  
Function  
RE0/SEG05  
RE1/SEG06  
RE2/SEG07  
RE3/SEG08  
RE4/SEG09  
RE5/SEG10  
RE6/SEG11  
RE7/SEG27  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Digital input or Segment Driver05.  
Digital input or Segment Driver06.  
Digital input or Segment Driver07.  
Digital input or Segment Driver08.  
Digital input or Segment Driver09.  
Digital input or Segment Driver10.  
Digital input or Segment Driver11.  
Digital input or Segment Driver27 (not available on 64-pin devices).  
Legend: ST = Schmitt Trigger input  
TABLE 4-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on  
Power-on  
Reset  
Value on all  
other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
09h  
PORTE  
TRISE  
LCDSE  
RE7  
RE6  
RE5  
RE4  
RE3  
RE2  
RE1  
RE0  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1111  
89h  
PORTE Data Direction Control Register  
SE29 SE27 SE20 SE16  
10Dh  
SE12  
SE9  
SE5  
SE0  
Legend: Shaded cells are not used by PORTE.  
DS39544A-page 36  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
FIGURE 4-8:  
PORTF BLOCK DIAGRAM  
4.6  
PORTF and TRISF Register  
PORTF is a digital input only port. Each pin is multi-  
plexed with an LCD segment driver. These pins have  
Schmitt Trigger input buffers.  
LCD  
Segment Data  
LCD Segment  
Output Enable  
Note 1: On a Power-on Reset, these pins are  
configured as LCD segment drivers.  
LCD  
Common Data  
2: To configure the pins as a digital port, the  
corresponding bits in the LCDSE register  
must be cleared. Any bit set in the LCDSE  
register overrides any bit settings in the  
corresponding TRIS register.  
LCD Common  
Output Enable  
Digital Input/  
LCD Output pin  
LCDSE<n>  
EXAMPLE 4-6:  
INITIALIZING PORTF  
BCF STATUS, RP0  
BSF STATUS, RP1  
;Select Bank2  
;
;Make all PORTF  
;digital inputs  
Schmitt  
Trigger  
Input  
BCF LCDSE,  
BCF LCDSE,  
SE16  
SE12  
Buffer  
Data Bus  
RD Port  
Q
D
EN  
VDD  
RD TRIS  
TABLE 4-11: PORTF FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
RF0/SEG12  
RF1/SEG13  
RF2/SEG14  
RF3/SEG15  
RF4/SEG16  
RF5/SEG17  
RF6/SEG18  
RF7/SEG19  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Digital input or Segment Driver12.  
Digital input or Segment Driver13.  
Digital input or Segment Driver14.  
Digital input or Segment Driver15.  
Digital input or Segment Driver16.  
Digital input or Segment Driver17.  
Digital input or Segment Driver18.  
Digital input or Segment Driver19.  
Legend: ST = Schmitt Trigger input  
TABLE 4-12: SUMMARY OF REGISTERS ASSOCIATED WITH PORTF  
Value on  
Power-on  
Reset  
Value on all  
other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
RF3  
Bit 2  
RF2  
SE9  
Bit 1  
RF1  
SE5  
Bit 0  
RF0  
SE0  
107h  
187h  
10Dh  
PORTF  
TRISF  
RF7  
RF6  
RF5  
RF4  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1111  
PORTF Data Direction Control Register  
SE29 SE27 SE20 SE16  
LCDSE  
SE12  
Legend: Shaded cells are not used by PORTF.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 37  
PIC16C925/926  
FIGURE 4-9:  
PORTG BLOCK DIAGRAM  
4.7  
PORTG and TRISG Register  
PORTG is a digital input only port. Each pin is multi-  
plexed with an LCD segment driver. These pins have  
Schmitt Trigger input buffers.  
LCD  
Segment Data  
LCD Segment  
Output Enable  
Note 1: On a Power-on Reset, these pins are  
configured as LCD segment drivers.  
LCD  
Common Data  
2: To configure the pins as a digital port, the  
corresponding bits in the LCDSE register  
must be cleared. Any bit set in the LCDSE  
register overrides any bit settings in the  
corresponding TRIS register.  
LCD Common  
Output Enable  
Digital Input/  
LCD Output pin  
LCDSE<n>  
EXAMPLE 4-7:  
INITIALIZING PORTG  
Schmitt  
Trigger  
Input  
BCF  
BSF  
BCF  
BCF  
STATUS,  
STATUS,  
LCDSE,  
LCDSE,  
RP0  
;Select Bank2  
RP1  
;
Buffer  
SE27  
SE20  
;Make all PORTG  
;and PORTE<7>  
;digital inputs  
Data Bus  
RD Port  
Q
D
EN  
VDD  
RD TRIS  
TABLE 4-13: PORTG FUNCTIONS  
Name  
Bit#  
Buffer Type  
Function  
RG0/SEG20  
RG1/SEG21  
RG2/SEG22  
RG3/SEG23  
RG4/SEG24  
RG5/SEG25  
RG6/SEG26  
RG7/SEG28  
bit0  
bit1  
bit2  
bit3  
bit4  
bit5  
bit6  
bit7  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Digital input or Segment Driver20.  
Digital input or Segment Driver21.  
Digital input or Segment Driver22.  
Digital input or Segment Driver23.  
Digital input or Segment Driver24.  
Digital input or Segment Driver25.  
Digital input or Segment Driver26.  
Digital input or Segment Driver28 (not available on 64-pin devices).  
Legend: ST = Schmitt Trigger input  
TABLE 4-14: SUMMARY OF REGISTERS ASSOCIATED WITH PORTG  
Value on  
Power-on  
Reset  
Value on all  
other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
RG3  
Bit 2  
RG2  
SE9  
Bit 1  
RG1  
SE5  
Bit 0  
RG0  
SE0  
108h  
188h  
10Dh  
PORTG  
TRISG  
LCDSE  
RG7  
RG6  
RG5  
RG4  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1111  
PORTG Data Direction Control Register  
SE29 SE27 SE20 SE16  
SE12  
Legend: Shaded cells are not used by PORTG.  
DS39544A-page 38  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
EXAMPLE 4-8:  
READ-MODIFY-WRITE  
INSTRUCTIONS ON AN  
I/O PORT  
4.8  
I/O Programming Considerations  
4.8.1  
BI-DIRECTIONAL I/O PORTS  
;Initial PORT settings: PORTB<7:4> Inputs  
Any instruction which writes, operates internally as a  
read followed by a write operation. The BCFand BSF  
instructions, for example, read the register into the  
CPU, execute the bit operation and write the result  
back to the register. Caution must be used when these  
instructions are applied to a port with both inputs and  
outputs defined. For example, a BSFoperation on bit5  
of PORTB will cause all eight bits of PORTB to be read  
into the CPU. Then the BSFoperation takes place on  
bit5 and PORTB is written to the output latches. If  
another bit of PORTB is used as a bi-directional I/O pin  
(e.g., bit0) and it is defined as an input at this time, the  
input signal present on the pin itself would be read into  
the CPU and rewritten to the data latch of this particular  
pin, overwriting the previous content. As long as the pin  
stays in the input mode, no problem occurs. However,  
if bit0 is switched into output mode later on, the con-  
tents of the data latch may now be unknown.  
;
PORTB<3:0> Outputs  
;PORTB<7:6> have external pull-ups and are  
;not connected to other circuitry  
;
;
;
PORT latch  
----------  
; 01pp pppp  
; 10pp pppp  
PORT pins  
---------  
11pp pppp  
11pp pppp  
BCF PORTB,  
BCF PORTB,  
7
6
BCF STATUS, RP1 ; Select Bank1  
BSF STATUS, RP0 ;  
BCF TRISB,  
BCF TRISB,  
7
6
; 10pp pppp  
; 10pp pppp  
11pp pppp  
10pp pppp  
;
;Note that the user may have expected the  
;pin values to be 00pp ppp. The 2nd BCF  
;caused RB7 to be latched as the pin value  
;(high).  
4.8.2  
SUCCESSIVE OPERATIONS ON I/O  
PORTS  
Reading the port register reads the values of the port  
pins. Writing to the port register, writes the value to the  
port latch. When using read-modify-write instructions  
(e.g. BCF, BSF) on a port, the value of the port pins is  
read, the desired operation is done to this value, and  
this value is then written to the port latch.  
The actual write to an I/O port happens at the end of an  
instruction cycle, whereas for reading, the data must be  
valid at the beginning of the instruction cycle  
(Figure 4-10). Therefore, care must be exercised if a  
write followed by a read operation is carried out on the  
same I/O port. The sequence of instructions should be  
such to allow the pin voltage to stabilize (load depen-  
dent) before the next instruction, which causes that file  
to be read into the CPU, is executed. Otherwise, the  
previous state of that pin may be read into the CPU,  
rather than the new state. When in doubt, it is better to  
separate these instructions with a NOP, or another  
instruction not accessing this I/O port.  
Example 4-8 shows the effect of two sequential  
read-modify-write instructions on an I/O port. A pin  
actively outputting a Low or High should not be driven  
from external devices at the same time, in order to  
change the level on this pin (wired-or, wired-and).  
The resulting high output currents may damage the  
chip.  
FIGURE 4-10:  
SUCCESSIVE I/O OPERATION  
Note:  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
This example shows a write to PORTB  
followed by a read from PORTB.  
PC + 3  
NOP  
PC  
PC  
PC + 1  
PC + 2  
NOP  
MOVWF PORTB MOVF PORTB,W  
write to  
Instruction  
Fetched  
Note that:  
data setup time = (0.25TCY - TPD)  
PORTB  
where TCY  
TPD  
=
=
instruction cycle  
propagation delay  
RB7:RB0  
Therefore, at higher clock frequencies,  
a write followed by a read may be  
problematic.  
Port pin  
sampled here  
TPD  
MOVF PORTB,W  
NOP  
MOVWF PORTB  
write to  
Instruction  
Executed  
PORTB  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 39  
PIC16C925/926  
NOTES:  
DS39544A-page 40  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
bit T0SE selects the rising edge. Restrictions on the  
external clock input are discussed in detail in  
Section 5.2.  
5.0  
TIMER0 MODULE  
The Timer0 module has the following features:  
8-bit timer/counter  
The prescaler is mutually exclusively shared between  
the Timer0 module and the Watchdog Timer. The  
prescaler assignment is controlled in software by con-  
trol bit PSA (OPTION<3>). Clearing bit PSA will assign  
the prescaler to the Timer0 module. The prescaler is  
not readable or writable. When the prescaler is  
assigned to the Timer0 module, prescale values of 1:2,  
1:4,..., 1:256 are selectable. Section 5.3 details the  
operation of the prescaler.  
Readable and writable  
8-bit software programmable prescaler  
Internal or external clock select  
Interrupt-on-overflow from FFh to 00h  
Edge select for external clock  
Figure 5-1 is a simplified block diagram of the Timer0  
module.  
Timer mode is selected by clearing bit T0CS  
(OPTION<5>). In Timer mode, the Timer0 module will  
increment every instruction cycle (without prescaler). If  
the TMR0 register is written, the increment is inhibited  
for the following two instruction cycles (Figure 5-2 and  
Figure 5-3). The user can work around this by writing  
an adjusted value to the TMR0 register.  
5.1  
Timer0 Interrupt  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h. This overflow sets bit  
TMR0IF (INTCON<2>). The interrupt can be masked  
by clearing bit T0IE (INTCON<5>). Bit TMR0IF must be  
cleared in software by the Timer0 module Interrupt Ser-  
vice Routine before re-enabling this interrupt. The  
TMR0 interrupt cannot awaken the processor from  
SLEEP, since the timer is shut-off during SLEEP.  
Figure 5-4 displays the Timer0 interrupt timing.  
Counter mode is selected by setting bit T0CS  
(OPTION<5>). In Counter mode, Timer0 will increment  
either on every rising, or falling edge of pin RA4/T0CKI.  
The incrementing edge is determined by the Timer0  
Source Edge Select bit T0SE (OPTION<4>). Clearing  
FIGURE 5-1:  
TIMER0 BLOCK DIAGRAM  
Data Bus  
FOSC/4  
0
1
PSout  
8
1
0
Sync with  
Internal  
Clocks  
TMR0  
Programmable  
Prescaler  
RA4/T0CKI  
pin  
PSout  
(2 cycle delay)  
T0SE  
3
Set Interrupt  
Flag bit TMR0IF  
on Overflow  
PSA  
PS2, PS1, PS0  
T0CS  
Note 1: T0CS, T0SE, PSA, PS2:PS0 (OPTION<5:0>).  
2: The prescaler is shared with the Watchdog Timer (refer to Figure 5-6 for detailed block diagram).  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 41  
PIC16C925/926  
FIGURE 5-2:  
TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
Instruction  
Fetched  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
T0  
T0+1  
T0+2  
NT0  
NT0  
NT0  
NT0+1  
NT0+2  
TMR0  
Instruction  
Executed  
Read TMR0  
reads NT0 + 1  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 2  
Write TMR0  
executed  
FIGURE 5-3:  
TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
Instruction  
Fetched  
T0  
T0+1  
NT0+1  
NT0  
TMR0  
Instruction  
Executed  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 1  
Write TMR0  
executed  
FIGURE 5-4:  
TIMER0 INTERRUPT TIMING  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
OSC1  
CLKOUT(3)  
Timer0  
FEh  
FFh  
00h  
01h  
02h  
1
1
TMR0IF bit  
(INTCON<2>)  
GIE bit  
(INTCON<7>)  
INSTRUCTION  
FLOW  
PC  
PC  
PC +1  
PC +1  
0004h  
0005h  
Instruction  
Fetched  
Inst (PC)  
Inst (PC+1)  
Inst (0004h)  
Inst (0005h)  
Instruction  
Executed  
Inst (PC-1)  
Dummy cycle  
Dummy cycle  
Inst (0004h)  
Inst (PC)  
Note 1: Interrupt flag bit TMR0IF is sampled here (every Q1).  
2: Interrupt latency = 4TCY where TCY = instruction cycle time.  
3: CLKOUT is available only in RC oscillator mode.  
DS39544A-page 42  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
When a prescaler is used, the external clock input is  
divided by the asynchronous ripple counter type pres-  
caler, so that the prescaler output is symmetrical. For  
the external clock to meet the sampling requirement,  
the ripple counter must be taken into account. There-  
fore, it is necessary for T0CKI to have a period of at  
least 4TOSC (and a small RC delay of 40 ns) divided by  
the prescaler value. The only requirement on T0CKI  
high and low time is that they do not violate the mini-  
mum pulse width requirement of 10 ns. Refer to param-  
eters 40, 41 and 42 in the electrical specification of the  
desired device.  
5.2  
Using Timer0 with an External  
Clock  
When an external clock input is used for Timer0, it must  
meet certain requirements. The requirements ensure  
the external clock can be synchronized with the internal  
phase clock (TOSC). Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
5.2.1  
EXTERNAL CLOCK  
SYNCHRONIZATION  
When no prescaler is used, the external clock input is  
the same as the prescaler output. The synchronization  
of T0CKI with the internal phase clocks is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks (Figure 5-5).  
Therefore, it is necessary for T0CKI to be high for at  
least 2TOSC (and a small RC delay of 20 ns) and low for  
at least 2TOSC (and a small RC delay of 20 ns). Refer  
to the electrical specification of the desired device.  
5.2.2  
TMR0 INCREMENT DELAY  
Since the prescaler output is synchronized with the  
internal clocks, there is a small delay from the time the  
external clock edge occurs to the time the Timer0 mod-  
ule is actually incremented. Figure 5-5 shows the delay  
from the external clock edge to the timer incrementing.  
FIGURE 5-5:  
TIMER0 TIMING WITH EXTERNAL CLOCK  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Small pulse  
misses sampling  
External Clock Input or  
Prescaler Output  
(2)  
(1)  
(3)  
External Clock/Prescaler  
Output after sampling  
Increment Timer0 (Q4)  
Timer0  
T0  
T0 + 1  
T0 + 2  
Note 1: Delay from clock input change to Timer0 increment is 3TOSC to 7TOSC. (Duration of Q = TOSC.) Therefore, the error  
in measuring the interval between two edges on Timer0 input = 4TOSC max.  
2: External clock if no prescaler selected, prescaler output otherwise.  
3: The arrows indicate the points in time where sampling occurs.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 43  
PIC16C925/926  
The PSA and PS2:PS0 bits (OPTION<3:0>) determine  
the prescaler assignment and prescale ratio.  
5.3  
Prescaler  
An 8-bit counter is available as a prescaler for the  
Timer0 module, or as a postscaler for the Watchdog  
Timer (Figure 5-6). For simplicity, this counter is being  
referred to as prescalerthroughout this data sheet.  
Note that the prescaler may be used by either the  
Timer0 module or the WDT, but not both. Thus, a pres-  
caler assignment for the Timer0 module means that  
there is no prescaler for the Watchdog Timer, and vice-  
versa.  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g. CLRF 1, MOVWF 1,  
BSF 1,x....etc.) will clear the prescaler count. When  
assigned to WDT, a CLRWDT instruction will clear the  
prescaler count along with the Watchdog Timer. The  
prescaler is not readable or writable.  
Note: Writing to TMR0 when the prescaler is  
assigned to Timer0, will clear the prescaler  
count, but will not change the prescaler  
assignment.  
FIGURE 5-6:  
BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
CLKOUT (= FOSC/4)  
Data Bus  
8
M
U
X
1
0
0
1
M
U
X
RA4/T0CKI  
pin  
SYNC  
2
TMR0 reg  
Cycles  
T0SE  
T0CS  
Set Flag bit TMR0IF  
PSA  
on Overflow  
0
1
8-bit Prescaler  
M
U
X
8
Watchdog  
Timer  
8 - to - 1 MUX  
PS2:PS0  
PSA  
1
0
WDT Enable bit  
M U X  
PSA  
WDT  
Time-out  
Note: T0CS, T0SE, PSA, PS2:PS0 are (OPTION<5:0>).  
DS39544A-page 44  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
5.3.1  
SWITCHING PRESCALER  
ASSIGNMENT  
Note: To avoid an unintended device RESET,  
the following instruction sequence (shown  
in Example 5-1) must be executed when  
changing the prescaler assignment from  
Timer0 to the WDT. This precaution must  
be followed even if the WDT is disabled.  
The prescaler assignment is fully under software con-  
trol, i.e., it can be changed on the flyduring program  
execution.  
EXAMPLE 5-1:  
CHANGING PRESCALER (TIMER0WDT)  
1) BSF  
STATUS, RP0  
;Select Bank1  
2) MOVLW b’xx0x0xxx’  
3) MOVWF OPTION_REG  
;Select clock source and prescale value of  
Lines 2 and 3 do NOT have to  
be included if the final desired  
prescale value is other than 1:1.  
If 1:1 is final desired value, then  
a temporary prescale value is  
set in lines 2 and 3 and the final  
prescale value will be set in lines  
10 and 11.  
;other than 1:1  
4) BCF  
5) CLRF  
6) BSF  
STATUS, RP0  
TMR0  
;Select Bank0  
;Clear TMR0 and prescaler  
STATUS, RP1  
;Select Bank1  
7) MOVLW b’xxxx1xxx’  
8) MOVWF OPTION_REG  
9) CLRWDT  
;Select WDT, do not change prescale value  
;
;Clears WDT and prescaler  
10) MOVLW b’xxxx1xxx’  
11) MOVWF OPTION_REG  
;Select new prescale value and WDT  
;
12) BCF  
STATUS, RP0  
;Select Bank0  
To change prescaler from the WDT to the Timer0 mod-  
ule use the precaution shown in Example 5-2.  
EXAMPLE 5-2:  
CHANGING PRESCALER (WDTTIMER0)  
CLRWDT  
;Clear WDT and precaler  
STATUS, RP0 ;Select Bank1  
MOVLW b’xxxx0xxx’ ;Select TMR0,  
;new prescale value and  
;clock source  
STATUS, RP0 ;Select Bank0  
BSF  
MOVWF OPTION_REG  
BCF  
TABLE 5-1:  
REGISTERS ASSOCIATED WITH TIMER0  
Value on  
Bit 1 Bit 0 Power-on all other  
Reset RESETS  
Value on  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4 Bit 3  
Bit 2  
xxxx xxxx uuuu uuuu  
0000 000x 0000 000u  
01h, 101h  
TMR0  
Timer0 Module Register  
PEIE TMR0IE INTE RBIE TMR0IF INTF RBIF  
0Bh, 8Bh,  
10Bh, 18Bh  
INTCON GIE  
1111 1111 1111 1111  
--11 1111 --11 1111  
81h, 181h  
85h  
OPTION RBPU INTEDG T0CS  
T0SE PSA  
PS2  
PS1  
PS0  
TRISA PORTA Data Direction Control Register  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'.  
Shaded cells are not used by Timer0.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 45  
PIC16C925/926  
NOTES:  
DS39544A-page 46  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
In Timer mode, Timer1 increments every instruction  
cycle. In Counter mode, it increments on every rising  
edge of the external clock input.  
6.0  
TIMER1 MODULE  
Timer1 is a 16-bit timer/counter consisting of two 8-bit  
registers (TMR1H and TMR1L), which are readable  
and  
(TMR1H:TMR1L) increments from 0000h to FFFFh  
and rolls over to 0000h. The TMR1 Interrupt, if enabled,  
is generated on overflow, which is latched in interrupt  
flag bit, TMR1IF (PIR1<0>). This interrupt can be  
enabled/disabled by setting/clearing TMR1 interrupt  
enable bit, TMR1IE (PIE1<0>).  
Timer1 can be turned on and off using the control bit  
TMR1ON (T1CON<0>).  
writable.  
The  
TMR1  
Register  
pair  
Timer1 also has an internal RESET input. This  
RESET can be generated by the CCP module  
(Section 8.0). Register 6-1 shows the Timer1 control  
register.  
When the Timer1 oscillator is enabled (T1OSCEN is  
set), the RC1/T1OSI and RC0/T1OSO/T1CKI pins  
become inputs, regardless of the TRISC<1:0>. RC1  
and RC0 will be read as 0.  
Timer1 can operate in one of two modes:  
As a timer  
As a counter  
The operating mode is determined by the clock select  
bit, TMR1CS (T1CON<1>).  
REGISTER 6-1:  
T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
bit 0  
bit 7  
bit 7-6  
bit 5-4  
Unimplemented: Read as '0'  
T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: Timer1 Oscillator Enable Control bit  
1 = Oscillator is enabled  
0 = Oscillator is shut-off  
Note: The oscillator inverter and feedback resistor are turned off to eliminate power drain.  
T1SYNC: Timer1 External Clock Input Synchronization Control bit  
TMR1CS = 1:  
1 = Do not synchronize external clock input  
0 = Synchronize external clock input  
TMR1CS = 0:  
This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.  
TMR1CS: Timer1 Clock Source Select bit  
bit 1  
bit 0  
1= External clock from pin T1CKI (on the rising edge)  
0= Internal clock (FOSC/4)  
TMR1ON: Timer1 On bit  
1 = Enables Timer1  
0 = Stops Timer1  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 47  
PIC16C925/926  
6.2.1  
EXTERNAL CLOCK INPUT TIMING  
FOR SYNCHRONIZED COUNTER  
MODE  
6.1  
Timer1 Operation in Timer Mode  
Timer mode is selected by clearing the TMR1CS  
(T1CON<1>) bit. In this mode, the input clock to the  
timer is FOSC/4. The synchronize control bit T1SYNC  
(T1CON<2>) has no effect since the internal clock is  
always in sync.  
When an external clock input is used for Timer1 in Syn-  
chronized Counter mode, it must meet certain require-  
ments. The external clock requirement is due to  
internal phase clock (TOSC) synchronization. Also,  
there is a delay in the actual incrementing of TMR1  
after synchronization.  
6.2  
Timer1 Operation in Synchronized  
Counter Mode  
When the prescaler is 1:1, the external clock input is  
the same as the prescaler output. The synchronization  
of T1CKI with the internal phase clocks is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks. Therefore, it is  
necessary for T1CKI to be high for at least 2TOSC (and  
a small RC delay of 20 ns), and low for at least 2TOSC  
(and a small RC delay of 20 ns). Refer to the appropri-  
ate electrical specifications, parameters 45, 46, and 47.  
Counter mode is selected by setting bit TMR1CS. In  
this mode, the timer increments on every rising edge of  
clock input on pin RC1/T1OSI when bit T1OSCEN is  
set, or pin RC0/T1OSO/T1CKI when bit T1OSCEN is  
cleared.  
If T1SYNC is cleared, then the external clock input is  
synchronized with internal phase clocks. The synchro-  
nization is done after the prescaler stage. The pres-  
caler is an asynchronous ripple counter.  
When a prescaler other than 1:1 is used, the external  
clock input is divided by the asynchronous ripple  
counter type prescaler, so that the prescaler output is  
symmetrical. In order for the external clock to meet the  
sampling requirement, the ripple counter must be taken  
into account. Therefore, it is necessary for T1CKI to  
have a period of at least 4TOSC (and a small RC delay  
of 40 ns), divided by the prescaler value. The only  
requirement on T1CKI high and low time is that they do  
not violate the minimum pulse width requirements of  
10 ns). Refer to the appropriate electrical specifica-  
tions, parameters 40, 42, 45, 46, and 47.  
In this configuration, during SLEEP mode, Timer1 will  
not increment even if the external clock is present,  
since the synchronization circuit is shut-off. The pres-  
caler however will continue to increment.  
FIGURE 6-1:  
TIMER1 BLOCK DIAGRAM  
Set Flag bit  
TMR1IF on  
Overflow  
Synchronized  
0
TMR1  
Clock Input  
TMR1L  
TMR1H  
1
TMR1ON  
On/Off  
T1SYNC  
T1OSC  
RC0/T1OSO/T1CKI  
1
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
T1OSCEN  
Enable  
FOSC/4  
Internal  
Clock  
0
(1)  
Oscillator  
RC1/T1OSI  
2
SLEEP Input  
T1CKPS1:T1CKPS0  
TMR1CS  
Note 1: When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.  
DS39544A-page 48  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
6.3.2  
READING AND WRITING TMR1 IN  
ASYNCHRONOUS COUNTER  
MODE  
6.3  
Timer1 Operation in  
Asynchronous Counter Mode  
If control bit T1SYNC (T1CON<2>) is set, the external  
clock input is not synchronized. The timer continues to  
increment asynchronous to the internal phase clocks.  
The timer will continue to run during SLEEP and can  
generate an interrupt-on-overflow which will wake-up  
the processor. However, special precautions in soft-  
ware are needed to read from, or write to the Timer1  
register pair (TMR1H:TMR1L) (Section 6.3.2).  
Reading TMR1H or TMR1L, while the timer is running  
from an external asynchronous clock, will ensure a  
valid read (taken care of in hardware). However, the  
user should keep in mind that reading the 16-bit timer  
in two 8-bit values itself, poses certain problems, since  
the timer may overflow between the reads.  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write conten-  
tion may occur by writing to the timer registers while the  
register is incrementing. This may produce an unpre-  
dictable value in the timer register.  
In Asynchronous Counter mode, Timer1 cannot be  
used as a time-base for capture or compare opera-  
tions.  
6.3.1  
EXTERNAL CLOCK INPUT TIMING  
WITH UNSYNCHRONIZED CLOCK  
Reading the 16-bit value requires some care.  
Example 6-1 is an example routine to read the 16-bit  
timer value. This is useful if the timer cannot be  
stopped.  
If control bit T1SYNC is set, the timer will increment  
completely asynchronously. The input clock must meet  
certain minimum high time and low time requirements,  
as specified in timing parameters 45, 46, and 47.  
EXAMPLE 6-1:  
READING A 16-BIT FREE-RUNNING TIMER  
; All interrupts are disabled  
;
MOVF  
TMR1H, W  
;Read high byte  
MOVWF TMPH  
;
MOVF  
MOVWF TMPL  
TMR1L, W  
;Read low byte  
;
MOVF  
TMR1H, W  
;Read high byte  
SUBWF TMPH,  
BTFSC STATUS,Z  
GOTO CONTINUE  
W
;Sub 1st read with 2nd read  
;Is result = 0  
;Good 16-bit read  
;
; TMR1L may have rolled over between the read of the high and low bytes.  
; Reading the high and low bytes now will read a good value.  
;
MOVF  
TMR1H, W  
;Read high byte  
MOVWF TMPH  
;
MOVF  
MOVWF TMPL  
TMR1L, W  
;Read low byte  
;
; Re-enable the Interrupt (if required)  
;
CONTINUE  
;Continue with your code  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 49  
PIC16C925/926  
6.4  
Timer1 Oscillator  
6.5  
Resetting Timer1 Using the CCP  
Trigger Output  
A crystal oscillator circuit is built-in between pins T1OSI  
(input) and T1OSO (amplifier output). It is enabled by  
setting control bit T1OSCEN (T1CON<3>). The oscilla-  
tor is a low power oscillator rated up to 200 kHz. It will  
continue to run during SLEEP. It is primarily intended  
for a 32 kHz crystal. Table 6-1 shows the capacitor  
selection for the Timer1 oscillator.  
If the CCP1 module is configured in Compare mode to  
generate a special event trigger(CCP1M3:CCP1M0  
= 1011), this signal will reset Timer1.  
Note: The special event trigger from the CCP1  
module will not set interrupt flag bit  
TMR1IF (PIR1<0>).  
The Timer1 oscillator is identical to the LP oscillator.  
The user must provide a software time delay to ensure  
proper oscillator start-up.  
Timer1 must be configured for either Timer or Synchro-  
nized Counter mode, to take advantage of this feature.  
If Timer1 is running in Asynchronous Counter mode,  
this reset operation may not work.  
TABLE 6-1:  
CAPACITOR SELECTION FOR  
THE TIMER1 OSCILLATOR  
In the event that a write to Timer1 coincides with a  
special event trigger from CCP1, the write will take pre-  
cedence.  
Osc Type  
Freq  
C1  
C2  
In this mode of operation, the CCPR1H:CCPR1L regis-  
ters pair effectively become the period register for  
Timer1.  
LP  
32 kHz  
100 kHz  
200 kHz  
33 pF  
15 pF  
15 pF  
33 pF  
15 pF  
15 pF  
These values are for design guidance only.  
Crystals Tested:  
6.6  
Resetting of Timer1 Register Pair  
(TMR1H:TMR1L)  
32.768 kHz Epson C-001R32.768K-A  
20 PPM  
TMR1H and TMR1L registers are not reset on a POR  
or any other RESET, except by the CCP1 special event  
trigger.  
100 kHz  
200 kHz  
Epson C-2 100.00 KC-P  
STD XTL 200.000 kHz  
20 PPM  
20 PPM  
Note 1: Higher capacitance increases the stability  
of the oscillator but also increases the  
start-up time.  
T1CON register is reset to 00h on a Power-on Reset.  
In any other RESET, the register is unaffected.  
2: Since each resonator/crystal has its own  
characteristics, the user should consult the  
resonator/crystal manufacturer for appro-  
priate values of external components.  
6.7  
Timer1 Prescaler  
The prescaler counter is cleared on writes to the  
TMR1H or TMR1L registers.  
TABLE 6-2:  
REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER  
Value on  
Power-on  
Reset  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh,  
10Bh, 18Bh  
INTCON  
GIE  
PEIE  
TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
8Ch  
0Eh  
0Fh  
10h  
PIR1  
PIE1  
LCDIF  
LCDIE  
ADIF  
ADIE  
SSPIF  
SSPIE  
CCP1IF TMR2IF TMR1IF 00-- 0000 00-- 0000  
CCP1IE TMR2IE TMR1IE 00-- 0000 00-- 0000  
TMR1L Holding register for the Least Significant Byte of the 16-bit TMR1 Register  
TMR1H Holding register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
T1CON  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by theTimer1 module.  
DS39544A-page 50  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
7.1  
Timer2 Prescaler and Postscaler  
7.0  
TIMER2 MODULE  
The prescaler and postscaler counters are cleared  
when any of the following occurs:  
Timer2 is an 8-bit timer with a prescaler and a  
postscaler. It can be used as the PWM time-base for  
the PWM mode of the CCP module. It can also be used  
as a time-base for the Master mode SPI clock. The  
TMR2 register is readable and writable, and is cleared  
on any device RESET.  
a write to the TMR2 register  
a write to the T2CON register  
any device RESET (Power-on Reset, MCLR  
Reset, or Watchdog Timer Reset)  
The input clock (FOSC/4) has a prescale option of 1:1,  
TMR2 will not clear when T2CON is written.  
1:4,  
or  
1:16  
(selected  
by  
control  
bits  
T2CKPS1:T2CKPS0 (T2CON<1:0>)).  
7.2  
Output of TMR2  
The Timer2 module has an 8-bit period register, PR2.  
TMR2 increments from 00h until it matches PR2 and  
then resets to 00h on the next increment cycle. PR2 is  
a readable and writable register. The PR2 register is  
set during RESET.  
The output of TMR2 (before the postscaler) is fed to the  
Synchronous Serial Port module, which optionally uses  
it to generate the shift clock.  
FIGURE 7-1:  
TIMER2 BLOCK DIAGRAM  
The match output of TMR2 goes through a 4-bit  
postscaler (which gives a 1:1 to 1:16 scaling inclusive)  
to generate a TMR2 interrupt (latched in flag bit  
TMR2IF, (PIR1<1>)).  
Sets Flag  
TMR2  
Output(1)  
bit TMR2IF  
RESET  
Prescaler  
1:1, 1:4, 1:16  
Timer2 can be shut-off by clearing control bit TMR2ON  
(T2CON<2>) to minimize power consumption.  
TMR2 reg  
FOSC/4  
Postscaler  
1:16 to 1:1  
2
Comparator  
Figure 7-1 shows the Timer2 control register.  
EQ  
4
PR2 reg  
Note 1: TMR2 register output can be software selected by the  
SSP Module as the source clock.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 51  
PIC16C925/926  
REGISTER 7-1:  
T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
bit 0  
bit 7  
bit 7  
Unimplemented: Read as '0'  
bit 6-3  
TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits  
0000= 1:1 Postscale  
0001= 1:2 Postscale  
1111= 1:16 Postscale  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
TABLE 7-1:  
REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER  
Value on  
Power-on  
Reset  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh,  
INTCON  
GIE  
PEIE  
TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
10Bh, 18Bh  
0Ch  
8Ch  
11h  
12h  
92h  
PIR1  
LCDIF  
LCDIE  
ADIF  
ADIE  
SSPIF  
SSPIE  
CCP1IF  
CCP1IE  
TMR2IF  
TMR2IE  
TMR1IF 00-- 0000 00-- 0000  
TMR1IE 00-- 0000 00-- 0000  
0000 0000 0000 0000  
PIE1  
TMR2  
T2CON  
PR2  
Timer2 Modules Register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
Timer2 Period Register 1111 1111 1111 1111  
Legend: x= unknown, u= unchanged, -= unimplemented, read as 0. Shaded cells are not used by the Timer2 module.  
DS39544A-page 52  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
Register 8-1 shows the CCP1CON register.  
8.0  
CAPTURE/COMPARE/PWM  
(CCP) MODULE  
For use of the CCP module, refer to the Embedded  
Control Handbook, Using the CCP Modules(AN594).  
The CCP (Capture/Compare/PWM) module contains a  
16-bit register which can operate as a 16-bit capture  
register, as a 16-bit compare register, or as a PWM  
master/slave duty cycle register. Table 8-1 shows the  
timer resources used by the CCP module.  
TABLE 8-1:  
CCP MODE - TIMER  
RESOURCE  
CCP Mode  
Timer Resource  
The Capture/Compare/PWM Register1 (CCPR1) is  
comprised of two 8-bit registers: CCPR1L (low byte)  
and CCPR1H (high byte). The CCP1CON register con-  
trols the operation of CCP1. All three are readable and  
writable.  
Capture  
Compare  
PWM  
Timer1  
Timer1  
Timer2  
REGISTER 8-1:  
CCP1CON REGISTER (ADDRESS 17h)  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CCP1X  
CCP1Y  
CCP1M3 CCP1M2 CCP1M1 CCP1M0  
bit 0  
bit 7  
Unimplemented: Read as '0'  
bit 7-6  
bit 5-4  
CCP1X:CCP1Y: PWM Least Significant bits  
Capture mode:  
Unused  
Compare mode:  
Unused  
PWM mode:  
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPR1L.  
bit 3-0  
CCP1M3:CCP1M0: CCP1 Mode Select bits  
0000= Capture/Compare/PWM disabled (resets CCP1 module)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (bit CCP1IF is set)  
1001= Compare mode, clear output on match (bit CCP1IF is set)  
1010= Compare mode, generate software interrupt-on-match (bit CCP1IF is set, CCP1 pin is  
unaffected)  
1011= Compare mode, trigger special event (CCP1IF bit is set; CCP1 resets TMR1)  
11xx= PWM mode  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 53  
PIC16C925/926  
8.1.3  
SOFTWARE INTERRUPT  
8.1  
Capture Mode  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep  
enable bit CCP1IE (PIE1<2>) clear to avoid false inter-  
rupts and should clear flag bit CCP1IF following any  
such change in operating mode.  
In Capture mode, CCPR1H:CCPR1L captures the  
16-bit value of the TMR1 register when an event occurs  
on pin RC2/CCP1 (Figure 8-1). An event can be  
selected to be one of the following:  
Every falling edge  
Every rising edge  
8.1.4  
CCP PRESCALER  
Every 4th rising edge  
Every 16th rising edge  
There are four prescaler settings, specified by bits  
CCP1M3:CCP1M0. Whenever the CCP module is  
turned off, or the CCP module is not in Capture mode,  
the prescaler counter is cleared. This means that any  
RESET will clear the prescaler counter.  
An event is selected by control bits CCP1M3:CCP1M0  
(CCP1CON<3:0>). When a capture is made, the inter-  
rupt request flag bit CCP1IF (PIR1<2>) is set. It must  
be cleared in software. If another capture occurs before  
the value in register CCPR1 is read, the old captured  
value is overwritten with the new captured value.  
Switching from one capture prescaler to another may  
generate an interrupt. Also, the prescaler counter will  
not be cleared, therefore, the first capture may be from  
a non-zero prescaler. Example 8-1 shows the recom-  
mended method for switching between capture pres-  
calers. This example also clears the prescaler counter  
and will not generate the falseinterrupt.  
8.1.1  
CCP PIN CONFIGURATION  
In Capture mode, the RC2/CCP1 pin should be config-  
ured as an input by setting the TRISC<2> bit.  
Note: If the RC2/CCP1 pin is configured as an  
output, a write to the port can cause a cap-  
ture condition.  
EXAMPLE 8-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
; Turn CCP module off  
CLRF  
CCP1CON  
MOVLW NEW_CAPT_PS ; Load the W reg with  
; the new prescaler  
FIGURE 8-1:  
CAPTURE MODE  
OPERATION BLOCK  
DIAGRAM  
; mode value and CCP ON  
MOVWF CCP1CON  
; Load CCP1CON with  
; this value  
CCP  
Prescaler  
Set CCP1IF  
PIR1<2>  
÷ 1, 4, 16  
RC2/CCP1  
pin  
CCPR1H CCPR1L  
Capture  
Enable  
and  
edge detect  
TMR1H  
TMR1L  
CCP1CON<3:0>  
Qs  
8.1.2  
TIMER1 MODE SELECTION  
Timer1 must be running in Timer mode, or Synchro-  
nized Counter mode, for the CCP module to use the  
capture feature. In Asynchronous Counter mode, the  
capture operation may not work.  
DS39544A-page 54  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
8.2.2  
TIMER1 MODE SELECTION  
8.2  
Compare Mode  
Timer1 must be running in Timer mode, or Synchro-  
nized Counter mode, if the CCP module is using the  
compare feature. In Asynchronous Counter mode, the  
compare operation may not work.  
In Compare mode, the 16-bit CCPR1 register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the RC2/CCP1 pin is:  
Driven high  
Driven low  
8.2.3  
SOFTWARE INTERRUPT MODE  
Remains unchanged  
When Generate Software Interrupt is chosen, the  
CCP1 pin is not affected. Only a CCP interrupt is gen-  
erated (if enabled).  
The action on the pin is based on the value of control  
bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the  
same time, a compare interrupt is also generated.  
8.2.4  
SPECIAL EVENT TRIGGER  
FIGURE 8-2:  
COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
In this mode, an internal hardware trigger is generated  
which may be used to initiate an action.  
The special event trigger output of CCP1 resets the  
TMR1 register pair and starts an A/D conversion. This  
allows the CCPR1H:CCPR1L register pair to effectively  
be a 16-bit programmable period register for Timer1.  
Special event trigger will reset Timer1, but not  
set interrupt flag bit TMR1IF (PIR1<0>).  
Set CCP1IF  
PIR1<2>  
Note: The special event triggerfrom the CCP1  
module will not set interrupt flag bit  
TMR1IF (PIR1<0>).  
CCPR1H CCPR1L  
Comparator  
Q
S
R
Output  
Logic  
Match  
RC2/CCP1  
TRISC<2>  
Output Enable  
TMR1H TMR1L  
CCP1CON<3:0>  
Mode Select  
8.2.1  
CCP PIN CONFIGURATION  
The user must configure the RC2/CCP1 pin as an out-  
put by clearing the TRISC<2> bit.  
Note: Clearing the CCP1CON register will force  
the RC2/CCP1 compare output latch to the  
default low level. This is not the PORTC  
I/O data latch.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 55  
PIC16C925/926  
8.3.1  
PWM PERIOD  
8.3  
PWM Mode  
The PWM period is specified by writing to the PR2 reg-  
ister. The PWM period can be calculated using the fol-  
lowing formula:  
In Pulse Width Modulation (PWM) mode, the CCP1 pin  
produces up to a 10-bit resolution PWM output. Since  
the CCP1 pin is multiplexed with the PORTC data latch,  
the TRISC<2> bit must be cleared to make the CCP1  
pin an output.  
PWM period = [ (PR2) + 1 ] • 4 • TOSC •  
(TMR2 prescale value)  
Note: Clearing the CCP1CON register will force  
the CCP1 PWM output latch to the default  
low level. This is not the PORTC I/O data  
latch.  
PWM frequency is defined as 1 / [PWM period].  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
TMR2 is cleared  
Figure 8-3 shows a simplified block diagram of the  
CCP module in PWM mode.  
The CCP1 pin is set (exception: if PWM duty  
cycle = 0%, the CCP1 pin will not be set)  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, see Section 8.3.3.  
The PWM duty cycle is latched from CCPR1L into  
CCPR1H  
FIGURE 8-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
Note: The Timer2 postscaler (Section 7.0) is not  
used in the determination of the PWM fre-  
quency. The postscaler could be used to  
have a servo update rate at a different fre-  
quency than the PWM output.  
CCP1CON<5:4>  
Duty Cycle Registers  
CCPR1L  
8.3.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
CCPR1L register and to the CCP1CON<5:4> bits. Up  
to 10-bit resolution is available; the CCPR1L contains  
the eight MSbs and CCP1CON<5:4> contains the two  
LSbs. This 10-bit value is represented by  
CCPR1L:CCP1CON<5:4>. The following equation is  
used to calculate the PWM duty cycle in time:  
CCPR1H (Slave)  
Comparator  
Q
R
S
RC2/CCP1  
TMR2  
(Note 1)  
PWM duty cycle = (CCPR1L:CCP1CON<5:4>) •  
TOSC (TMR2 prescale value)  
TRISC<2>  
Comparator  
PR2  
Clear Timer,  
CCP1 pin and  
latch D.C.  
CCPR1L and CCP1CON<5:4> can be written to at any  
time, but the duty cycle value is not latched into  
CCPR1H until after a match between PR2 and TMR2  
occurs (i.e., the period is complete). In PWM mode,  
CCPR1H is a read only register.  
Note 1: 8-bit timer is concatenated with 2-bit internal Q clock  
or 2 bits of the prescaler to create 10-bit time-base.  
The CCPR1H register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
A PWM output (Figure 8-4) has a time-base (period)  
and a time that the output stays high (duty cycle). The  
frequency of the PWM is the inverse of the period  
(1/period).  
When the CCPR1H and 2-bit latch match TMR2, con-  
catenated with an internal 2-bit Q clock, or 2 bits of the  
TMR2 prescaler, the CCP1 pin is cleared.  
FIGURE 8-4:  
PWM OUTPUT  
The maximum PWM resolution (bits) for a given PWM  
frequency is given by the equation:  
Period  
FOSC   
---------------  
log  
FPWM  
PWM Resolution (max)  
= ----------------------------- b i t s  
TMR2 = PR2  
log(2)  
Duty Cycle  
TMR2 = Duty Cycle  
TMR2 = PR2  
Note: If the PWM duty cycle value is longer than  
the PWM period, the CCP1 pin will not be  
cleared.  
DS39544A-page 56  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
EQUATION 8-1:  
EXAMPLES OF PWM PERIOD AND DUTY CYCLE CALCULATION  
1. Find the value of the PR2 register, given:  
Desired PWM frequency = 31.25 kHz  
FOSC = 8 MHz  
TMR2 prescale = 1  
From the equation for PWM period in Section 8.3.1,  
1 / 31.25 kHz = [ (PR2) + 1 ] 4 1/8 MHz 1  
or  
32 µs  
PR2  
PR2  
= [ (PR2) + 1 ] 4 125 ns 1 = [ (PR2) + 1 ] 0.5 µs  
= (32 µs / 0.5 µs) - 1  
= 63  
2. Find the maximum resolution of the duty cycle that can be used with a 31.25 kHz frequency and  
8 MHz oscillator.  
From the equation from maximum PWM resolution in Section 8.3.2,  
1 / 31.25 kHz = 2PWM RESOLUTION 1 / 8 MHz 1  
or  
32 µs  
256  
= 2PWM RESOLUTION 125 ns 1  
= 2PWM RESOLUTION  
log(256)  
8.0  
= (PWM Resolution) log(2)  
= PWM Resolution  
At most, an 8-bit resolution duty cycle can be obtained  
from a 31.25 kHz frequency and a 8 MHz oscillator, i.e.,  
0 CCPR1L:CCP1CON<5:4> 255. Any value greater  
than 255 will result in a 100% duty cycle.  
8.3.3  
SET-UP FOR PWM OPERATION  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
1. Set the PWM period by writing to the PR2  
register.  
In order to achieve higher resolution, the PWM fre-  
quency must be decreased. In order to achieve higher  
PWM frequency, the resolution must be decreased.  
2. Set the PWM duty cycle by writing to the  
CCPR1L register and CCP1CON<5:4> bits.  
Table 8-2 lists example PWM frequencies and resolu-  
tions for FOSC = 8 MHz. TMR2 prescaler and PR2 val-  
ues are also shown.  
3. Make the CCP1 pin an output by clearing the  
TRISC<2> bit.  
4. Set the TMR2 prescale value and enable Timer2  
by writing to T2CON.  
5. Configure the CCP module for PWM operation.  
TABLE 8-2:  
EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 8 MHz  
PWM Frequency  
488 Hz  
1.95 kHz  
7.81 kHz 31.25 kHz 62.5 kHz  
250 kHz  
Timer Prescaler (1, 4, 16)  
PR2 Value  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
0x07  
5
0xFF  
10  
0xFF  
10  
Maximum Resolution (bits)  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 57  
PIC16C925/926  
TABLE 8-3:  
REGISTERS ASSOCIATED WITH TIMER1, CAPTURE AND COMPARE  
Value on  
Power-on  
Reset  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh,  
10Bh, 18Bh  
INTCON  
GIE  
PEIE TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
PIR1  
LCDIF ADIF  
LCDIE ADIE  
SSPIF  
SSPIE  
CCP1IF TMR2IF TMR1IF 00-- 0000 00-- 0000  
CCP1IE TMR2IE TMR1IE 00-- 0000 00-- 0000  
8Ch  
PIE1  
87h  
TRISC  
TMR1L  
TMR1H  
T1CON  
CCPR1L  
PORTC Data Direction Control Register  
--11 1111 --11 1111  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0Eh  
Holding register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding register for the Most Significant Byte of the 16-bit TMR1 Register  
0Fh  
10h  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON --00 0000 --uu uuuu  
15h  
Capture/Compare/PWM1 (LSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
16h  
CCPR1H Capture/Compare/PWM1 (MSB)  
CCP1CON CCP1X CCP1Y  
17h  
CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0. Shaded cells are not used in these modes.  
TABLE 8-4:  
REGISTERS ASSOCIATED WITH PWM AND TIMER2  
Value on  
Power-on  
Reset  
Value on  
all other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh,  
10Bh, 18Bh  
INTCON  
GIE  
PEIE  
TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
PIR1  
LCDIF  
LCDIE  
ADIF  
ADIE  
SSPIF  
SSPIE  
CCP1IF TMR2IF TMR1IF 00-- 0000 00-- 0000  
CCP1IE TMR2IE TMR1IE 00-- 0000 00-- 0000  
8Ch  
PIE1  
87h  
TRISC  
TMR2  
PR2  
PORTC Data Direction Control Register  
--11 1111 --11 1111  
0000 0000 0000 0000  
1111 1111 1111 1111  
11h  
Timer2 Module Register  
92h  
Timer2 Module Period Register  
12h  
T2CON  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0 -000 0000 -000 0000  
15h  
CCPR1L Capture/Compare/PWM1 (LSB)  
CCPR1H Capture/Compare/PWM1 (MSB)  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
16h  
17h  
CCP1CON  
CCP1X  
CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0 --00 0000 --00 0000  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0. Shaded cells are not used in this mode.  
DS39544A-page 58  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
Serial Peripheral Interface (SPITM  
Inter-Integrated Circuit (I2CTM  
)
9.0  
SYNCHRONOUS SERIAL PORT  
(SSP) MODULE  
)
Refer to Application Note AN578, "Use of the SSP  
Module in the I 2C Multi-Master Environment.”  
The Synchronous Serial Port (SSP) module is a serial  
interface useful for communicating with other periph-  
eral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The SSP module can  
operate in one of two modes:  
REGISTER 9-1:  
SSPSTAT: SERIAL PORT STATUS REGISTER (ADDRESS 94h)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
bit 7  
bit 6  
SMP: SPI Data Input Sample Phase bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode  
CKE: SPI Clock Edge Select bit (see Figure 9-3, Figure 9-4, and Figure 9-5)  
CKP = 0:  
1= Data transmitted on rising edge of SCK  
0= Data transmitted on falling edge of SCK  
CKP = 1:  
1= Data transmitted on falling edge of SCK  
0= Data transmitted on rising edge of SCK  
2
bit 5  
bit 4  
D/A: Data/Address bit (I C mode only)  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
2
P: STOP bit (I C mode only. This bit is cleared when the SSP module is disabled, or when the START  
bit was detected last.)  
1= Indicates that a STOP bit has been detected last (this bit is 0on RESET)  
0= STOP bit was not detected last  
2
bit 3  
bit 2  
S: START bit (I C mode only. This bit is cleared when the SSP module is disabled, or when the STOP  
bit was detected last.)  
1= Indicates that a START bit has been detected last (this bit is 0on RESET)  
0= START bit was not detected last  
2
R/W: Read/Write bit Information (I C mode only)  
This bit holds the R/W bit information following the last address match. This bit is only valid from the  
address match to the next START bit, STOP bit, or ACK bit.  
1= Read  
0= Write  
2
bit 1  
bit 0  
UA: Update Address (10-bit I C mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
2
Receive (SPI and I C modes):  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
2
Transmit (I C mode only)  
1= Transmit in progress, SSPBUF is full  
0= Transmit complete, SSPBUF is empty  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 59  
PIC16C925/926  
REGISTER 9-2:  
SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
bit 7  
bit 6  
WCOL: Write Collision Detect bit  
1= SSPBUF register is written while still transmitting the previous word (must be cleared in software)  
0= No collision  
SSPOV: Receive Overflow Indicator bit  
In SPI mode:  
1= A new byte is received while SSPBUF is holding previous data. Data in SSPSR is lost on overflow.  
Overflow only occurs in Slave mode. The user must read the SSPBUF, even if only transmitting data,  
to avoid setting overflows. In Master mode, the overflow bit is not set since each operation is initiated  
by writing to the SSPBUF register. (Must be cleared in software.)  
0= No overflow  
2
In I C mode:  
1= A byte is received while the SSPBUF is holding the previous byte. SSPOV is a dont carein transmit  
mode. (Must be cleared in software.)  
0= No overflow  
bit 5  
SSPEN: Synchronous Serial Port Enable bit  
In SPI mode:  
When enabled, these pins must be properly configured as input or output.  
1= Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
2
In I C mode:  
When enabled, these pins must be properly configured as input or output.  
1= Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins  
0= Disables serial port and configures these pins as I/O port pins  
bit 4  
CKP: Clock Polarity Select bit  
In SPI mode:  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
2
In I C mode:  
SCK release control  
1= Enable clock  
0= Holds clock low (clock stretch). (Used to ensure data setup time.)  
bit 3-0  
SSPM3:SSPM0: Synchronous Serial Port Mode Select bits  
0000= SPI Master mode, clock = FOSC/4  
0001= SPI Master mode, clock = FOSC/16  
0010= SPI Master mode, clock = FOSC/64  
0011= SPI Master mode, clock = TMR2 output/2  
0100= SPI Slave mode, clock = SCK pin (SS pin control enabled)  
0101= SPI Slave mode, clock = SCK pin (SS pin control disabled, SS can be used as I/O pin)  
2
0110= I C Slave mode, 7-bit address  
2
0111= I C Slave mode, 10-bit address  
2
1011= I C firmware controlled Master mode (slave idle)  
2
1110= I C firmware controlled Master mode, 7-bit address with START and STOP bit interrupts enabled  
2
1111= I C firmware controlled Master mode, 10-bit address with START and STOP bit interrupts enabled  
1000, 1001, 1010, 1100, 1101= reserved  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS39544A-page 60  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
EXAMPLE 9-1:  
LOADING THE SSPBUF  
(SSPSR) REGISTER  
9.1  
SPI Mode  
The SPI mode allows 8-bits of data to be synchro-  
nously transmitted and received simultaneously. To  
accomplish communication, typically three pins are  
used:  
BCF  
BSF  
STATUS, RP1 ;Select Bank1  
STATUS, RP0  
;
LOOP  
BTFSS SSPSTAT, BF ;Has data been  
;received  
;(transmit  
;complete)?  
;No  
Serial Data Out (SDO) RC5/SDO  
Serial Data In (SDI) RC4/SDI  
Serial Clock (SCK) RC3/SCK  
GOTO LOOP  
BCF STATUS, RP0 ;Select Bank0  
MOVF SSPBUF, W  
;W reg = contents  
;of SSPBUF  
;Save in user RAM  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
MOVWF RXDATA  
Slave Select (SS) RA5/AN4/SS  
MOVF TXDATA, W  
;W reg = contents  
; of TXDATA  
;New data to xmit  
When initializing the SPI, several options need to be  
specified. This is done by programming the appropriate  
control bits in the SSPCON register (SSPCON<5:0>)  
and SSPSTAT<7:6>. These control bits allow the fol-  
lowing to be specified:  
MOVWF SSPBUF  
The block diagram of the SSP module, when in SPI  
mode (Figure 9-1), shows that the SSPSR is not  
directly readable or writable, and can only be accessed  
from addressing the SSPBUF register. Additionally, the  
SSP status register (SSPSTAT) indicates the various  
status conditions.  
Master mode (SCK is the clock output)  
Slave mode (SCK is the clock input)  
Clock Polarity (Idle state of SCK)  
Clock Edge (output data on rising/falling edge of  
SCK)  
FIGURE 9-1:  
SSP BLOCK DIAGRAM  
(SPI MODE)  
Clock Rate (Master mode only)  
Slave Select mode (Slave mode only)  
Internal  
Data Bus  
The SSP consists of a transmit/receive shift register  
(SSPSR) and a buffer register (SSPBUF). The SSPSR  
shifts the data in and out of the device, MSb first. The  
SSPBUF holds the data that was written to the SSPSR,  
until the received data is ready. Once the 8-bits of data  
have been received, that byte is moved to the SSPBUF  
register. Then, the buffer full detect bit, BF  
(SSPSTAT<0>), and interrupt flag bit, SSPIF  
(PIR1<3>), are set. This double buffering of the  
received data (SSPBUF) allows the next byte to start  
reception before reading the data that was just  
received. Any write to the SSPBUF register during  
transmission/reception of data will be ignored, and the  
write collision detect bit, WCOL (SSPCON<7>), will be  
set. User software must clear the WCOL bit so that it  
can be determined if the following write(s) to the  
SSPBUF register completed successfully. When the  
application software is expecting to receive valid data,  
the SSPBUF should be read before the next byte of  
data to transfer is written to the SSPBUF. Buffer full bit,  
BF (SSPSTAT<0>), indicates when SSPBUF has been  
loaded with the received data (transmission is com-  
plete). When the SSPBUF is read, bit BF is cleared.  
This data may be irrelevant if the SPI is only a transmit-  
ter. Generally, the SSP interrupt is used to determine  
when the transmission/reception has completed. The  
SSPBUF must be read and/or written. If the interrupt  
method is not going to be used, then software polling  
can be done to ensure that a write collision does not  
occur. Example 9-1 shows the loading of the SSPBUF  
(SSPSR) for data transmission. The MOVWF RXDATA  
instruction (shaded) is only required if the received data  
is meaningful.  
Read  
Write  
SSPBUF reg  
SSPSR reg  
RC4/SDI/SDA  
RC5/SDO  
Shift  
Clock  
bit0  
Control  
Enable  
SS  
RA5/AN4/SS  
Edge  
Select  
2
Clock Select  
SSPM3:SSPM0  
4
TMR2 Output  
2
Edge  
Select  
TCY  
Prescaler  
4, 16, 64  
RC3/SCK/  
SCL  
TRISC<3>  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 61  
PIC16C925/926  
To enable the serial port, SSP enable bit, SSPEN  
(SSPCON<5>) must be set. To reset or reconfigure  
SPI mode, clear bit SSPEN, re-initialize the SSPCON  
register, and then set bit SSPEN. This configures the  
SDI, SDO, SCK, and SS pins as serial port pins. For the  
pins to behave as the serial port function, they must  
have their data direction bits (in the TRISC register)  
appropriately programmed. That is:  
Master sends dummy data Slave sends data  
The master can initiate the data transfer at any time  
because it controls the SCK. The master determines  
when the slave (Processor 2) is to broadcast data by  
the firmware protocol.  
In Master mode, the data is transmitted/received as  
soon as the SSPBUF register is written to. If the SPI is  
only going to receive, the SCK output could be disabled  
(programmed as an input). The SSPSR register will  
continue to shift in the signal present on the SDI pin at  
the programmed clock rate. As each byte is received, it  
will be loaded into the SSPBUF register as if a normal  
received byte (interrupts and status bits appropriately  
set). This could be useful in receiver applications as a  
line activity monitormode.  
SDI must have TRISC<4> set  
SDO must have TRISC<5> cleared  
SCK (Master mode) must have TRISC<3>  
cleared  
SCK (Slave mode) must have TRISC<3> set  
SS must have TRISA<5> set and ADCON must  
be configured such that RA5 is a digital I/O  
In Slave mode, the data is transmitted and received as  
the external clock pulses appear on SCK. When the  
last bit is latched, the interrupt flag bit SSPIF (PIR1<3>)  
is set.  
Any serial port function that is not desired may be over-  
ridden by programming the corresponding data direc-  
tion (TRIS) register to the opposite value. An example  
would be in Master mode, where you are only sending  
data (to a display driver), then both SDI and SS could  
be used as general purpose outputs by clearing their  
corresponding TRIS register bits.  
The clock polarity is selected by appropriately program-  
ming bit CKP (SSPCON<4>). This then, would give  
waveforms for SPI communication as shown in  
Figure 9-3, Figure 9-4, and Figure 9-5, where the MSB  
is transmitted first. In Master mode, the SPI clock rate  
(bit rate) is user programmable to be one of the  
following:  
Figure 9-2 shows a typical connection between two  
microcontrollers. The master controller (Processor 1)  
initiates the data transfer by sending the SCK signal.  
Data is shifted out of both shift registers on their pro-  
grammed clock edge, and latched on the opposite  
edge of the clock. Both processors should be pro-  
grammed to same Clock Polarity (CKP), then both con-  
trollers would send and receive data at the same time.  
Whether the data is meaningful (or dummy data),  
depends on the application software. This leads to  
three scenarios for data transmission:  
FOSC/4 (or TCY)  
FOSC/16 (or 4 TCY)  
FOSC/64 (or 16 TCY)  
Timer2 output/2  
This allows a maximum bit clock frequency (at 8 MHz)  
of 2 MHz. When in Slave mode, the external clock must  
meet the minimum high and low times.  
Master sends data Slave sends dummy data  
Master sends data Slave sends data  
In SLEEP mode, the slave can transmit and receive  
data and wake the device from SLEEP.  
FIGURE 9-2:  
SPI MASTER/SLAVE CONNECTION  
SPI Master SSPM3:SSPM0 = 00xxb  
SPI Slave SSPM3:SSPM0 = 010xb  
SDO  
SDI  
Serial Input Buffer  
(SSPBUF)  
Serial Input Buffer  
(SSPBUF)  
SDI  
SDO  
Shift Register  
Shift Register  
(SSPSR)  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
SCK  
PROCESSOR 1  
PROCESSOR 2  
DS39544A-page 62  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
The SS pin allows a Synchronous Slave mode. The  
SPI must be in Slave mode (SSPCON<3:0> = 04h)  
and the TRISA<5> bit must be set for the Synchro-  
nous Slave mode to be enabled. When the SS pin  
is low, transmission and reception are enabled and  
the SDO pin is driven. When the SS pin goes high,  
the SDO pin is no longer driven, even if in the mid-  
dle of a transmitted byte and becomes a floating  
output. External pull-up/pull-down resistors may be  
desirable, depending on the application.  
Note 1: When the SPI is in Slave mode with SS  
pin control enabled (SSPCON<3:0> =  
0100), the SPI module will reset if the SS  
pin is set to VDD.  
2: If the SPI is used in Slave mode with  
CKE = 1, then the SS pin control must be  
enabled.  
To emulate two-wire communication, the SDO pin can  
be connected to the SDI pin. When the SPI needs to  
operate as a receiver, the SDO pin can be configured  
as an input. This disables transmissions from the SDO.  
The SDI can always be left as an input (SDI function)  
since it cannot create a bus conflict.  
FIGURE 9-3:  
SPI MODE TIMING, MASTER MODE  
SCK (CKP = 0,  
CKE = 0)  
SCK (CKP = 0,  
CKE = 1)  
SCK (CKP = 1,  
CKE = 0)  
SCK (CKP = 1,  
CKE = 1)  
bit2  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDO  
SDI (SMP = 0)  
bit7  
bit0  
SDI (SMP = 1)  
SSPIF  
bit7  
bit0  
FIGURE 9-4:  
SPI MODE TIMING (SLAVE MODE WITH CKE = 0)  
SS (optional)  
SCK (CKP = 0)  
SCK (CKP = 1)  
bit2  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDO  
SDI (SMP = 0)  
bit7  
bit0  
SSPIF  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 63  
PIC16C925/926  
FIGURE 9-5:  
SPI MODE TIMING (SLAVE MODE WITH CKE = 1)  
SS  
(not optional)  
SCK (CKP = 0)  
SCK (CKP = 1)  
SDO  
bit2  
bit7  
bit6  
bit5  
bit3  
bit1  
bit0  
bit4  
SDI (SMP = 0)  
SSPIF  
bit7  
bit0  
TABLE 9-1:  
REGISTERS ASSOCIATED WITH SPI OPERATION  
Value on  
Power-on  
Reset  
Value on all  
other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh,  
10Bh, 18Bh  
INTCON  
GIE  
PEIE TMR0IE INTE  
RBIE TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
8Ch  
13h  
14h  
85h  
87h  
PIR1  
LCDIF ADIF  
LCDIE ADIE  
SSPIF CCP1IF TMR2IF TMR1IF 00-- 0000 00-- 0000  
SSPIE CCP1IE TMR2IE TMR1IE 00-- 0000 00-- 0000  
PIE1  
SSPBUF  
Synchronous Serial Port Receive Buffer/Transmit Register  
xxxx xxxx uuuu uuuu  
SSPCON WCOL SSPOV SSPEN  
CKP  
SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 0000 0000  
TRISA  
TRISC  
PORTA Data Direction Control Register  
PORTC Data Direction Control Register  
--11 1111 --11 1111  
--11 1111 --11 1111  
94h  
SSPSTAT  
SMP  
CKE  
D/A  
P
S
R/W  
UA  
BF  
0000 0000 0000 0000  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by the SSP in SPI mode.  
DS39544A-page 64  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
2
The output stages of the clock (SCL) and data (SDA)  
lines must have an open drain or open collector, in  
order to perform the wired-AND function of the bus.  
External pull-up resistors are used to ensure a high  
level when no device is pulling the line down. The num-  
ber of devices that may be attached to the I2C bus is  
limited only by the maximum bus loading specification  
of 400 pF.  
9.2  
I C Overview  
This section provides an overview of the Inter-  
Integrated Circuit (I2C) bus, with Section 9.3 discuss-  
ing the operation of the SSP module in I2C mode.  
The I2C bus is a two-wire serial interface developed by  
the Philips Corporation. The original specification, or  
standard mode, was for data transfers of up to 100  
Kbps. An enhanced specification, or fast mode is not  
supported. This device will communicate with fast  
mode devices if attached to the same bus.  
9.2.1  
INITIATING AND TERMINATING  
DATA TRANSFER  
The I2C interface employs a comprehensive protocol to  
ensure reliable transmission and reception of data.  
When transmitting data, one device is the master”  
which initiates transfer on the bus and generates the  
clock signals to permit that transfer, while the other  
device(s) acts as the slave.All portions of the slave  
protocol are implemented in the SSP modules hard-  
ware, except general call support, while portions of the  
master protocol need to be addressed in the  
PIC16CXXX software. Table 9-2 defines some of the  
I2C bus terminology. For additional information on the  
I2C interface specification, refer to the Philips docu-  
ment #939839340011, The I2C bus and how to use it,  
which can be obtained from the Philips Corporation.  
During times of no data transfer (idle time), both the  
clock line (SCL) and the data line (SDA) are pulled high  
through the external pull-up resistors. The START and  
STOP conditions determine the start and stop of data  
transmission. The START condition is defined as a  
high to low transition of the SDA when the SCL is high.  
The STOP condition is defined as a low to high transi-  
tion of the SDA when the SCL is high. Figure 9-6 shows  
the START and STOP conditions. The master gener-  
ates these conditions for starting and terminating data  
transfer. Due to the definition of the START and STOP  
conditions, when data is being transmitted, the SDA  
line can only change state when the SCL line is low.  
In the I2C interface protocol, each device has an  
address. When a master wishes to initiate a data trans-  
fer, it first transmits the address of the device that it  
wishes to talkto. All devices listento see if this is  
their address. Within this address, a bit specifies if the  
master wishes to read from/write to the slave device.  
The master and slave are always in opposite modes  
(transmitter/receiver) of operation during a data trans-  
fer. That is, they can be thought of as operating in either  
of these two relations:  
FIGURE 9-6:  
START AND STOP  
CONDITIONS  
SDA  
S
SCL  
P
Change  
of Data  
Allowed  
Change  
of Data  
Allowed  
START  
Condition  
STOP  
Condition  
Master-transmitter and Slave-receiver  
Slave-transmitter and Master-receiver  
In both cases, the master generates the clock signal.  
TABLE 9-2:  
Term  
I2C BUS TERMINOLOGY  
Description  
Transmitter  
Receiver  
Master  
The device that sends the data to the bus.  
The device that receives the data from the bus.  
The device which initiates the transfer, generates the clock and terminates the transfer.  
The device addressed by a master.  
Slave  
Multi-master  
More than one master device in a system. These masters can attempt to control the bus at the  
same time without corrupting the message.  
Arbitration  
Procedure that ensures that only one of the master devices will control the bus. This ensures that  
the transfer data does not get corrupted.  
Synchronization  
Procedure where the clock signals of two or more devices are synchronized.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 65  
PIC16C925/926  
9.2.2  
ADDRESSING I2C DEVICES  
9.2.3  
TRANSFER ACKNOWLEDGE  
There are two address formats. The simplest is the  
7-bit address format with a R/W bit (Figure 9-7). The  
more complex is the 10-bit address with a R/W bit  
(Figure 9-8). For 10-bit address format, two bytes must  
be transmitted with the first five bits specifying this to be  
a 10-bit address.  
All data must be transmitted per byte, with no limit to  
the number of bytes transmitted per data transfer. After  
each byte, the slave-receiver generates an Acknowl-  
edge bit (ACK) (see Figure 9-9). When a slave-receiver  
doesnt acknowledge the slave address or received  
data, the master must abort the transfer. The slave  
must leave SDA high so that the master can generate  
the STOP condition (Figure 9-6).  
FIGURE 9-7:  
7-BIT ADDRESS FORMAT  
MSb  
LSb  
FIGURE 9-9:  
SLAVE-RECEIVER  
ACKNOWLEDGE  
R/W ACK  
S
Data  
Output by  
Slave Address  
Sent by  
Slave  
Transmitter  
Data  
Output by  
Receiver  
Not Acknowledge  
Acknowledge  
S
R/W  
ACK  
START Condition  
Read/Write pulse  
Acknowledge  
SCL from  
Master  
9
8
1
2
S
Clock Pulse for  
Acknowledgment  
START  
Condition  
FIGURE 9-8:  
I2C 10-BIT ADDRESS  
FORMAT  
If the master is receiving the data (master-receiver), it  
generates an Acknowledge signal for each received  
byte of data, except for the last byte. To signal the end  
of data to the slave-transmitter, the master does not  
generate an Acknowledge (Not Acknowledge). The  
slave then releases the SDA line so the master can  
generate the STOP condition. The master can also  
generate the STOP condition during the Acknowledge  
pulse for valid termination of data transfer.  
S
1 1 1 1 0 A9 A8 R/W ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK  
Sent by Slave  
= 0 for Write  
S
- START Condition  
R/W - Read/Write Pulse  
ACK - Acknowledge  
If the slave needs to delay the transmission of the next  
byte, holding the SCL line low will force the master into  
a wait state. Data transfer continues when the slave  
releases the SCL line. This allows the slave to move  
the received data, or fetch the data it needs to transfer  
before allowing the clock to start. This wait state tech-  
nique can also be implemented at the bit level,  
Figure 9-10. The slave will inherently stretch the clock  
when it is a transmitter, but will not when it is a receiver.  
The slave will have to clear the SSPCON<4> bit to  
enable clock stretching when it is a receiver.  
FIGURE 9-10:  
DATA TRANSFER WAIT STATE  
SDA  
MSB  
Acknowledgment  
Signal from Receiver  
Acknowledgment  
Signal from Receiver  
Byte Complete  
Interrupt with Receiver  
Clock Line Held Low while  
Interrupts are Serviced  
SCL  
S
1
2
7
8
9
1
2
3 8  
9
P
START  
Condition  
STOP  
Condition  
Address  
R/W ACK Wait  
State  
Data  
ACK  
DS39544A-page 66  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
Figure 9-11 and Figure 9-12 show master-transmitter  
and Master-receiver data transfer sequences.  
while SCL is high), but occurs after a data transfer  
Acknowledge pulse (not the bus-free state). This allows  
a master to send commandsto the slave and then  
receive the requested information, or to address a dif-  
ferent slave device. This sequence is shown in  
Figure 9-13.  
When a master does not wish to relinquish the bus (by  
generating a STOP condition), a Repeated START  
condition (Sr) must be generated. This condition is  
identical to the START condition (SDA goes high-to-low  
FIGURE 9-11:  
MASTER-TRANSMITTER SEQUENCE  
For 7-bit address:  
For 10-bit address:  
SSlave AddressR/W A1Slave Address A2  
S Slave AddressR/W A Data A Data A/A P  
First 7 bits  
Second byte  
'0' (write)  
data transferred  
(n bytes - Acknowledge)  
(write)  
A master-transmitter addresses a slave-receiver with a  
7-bit address. The transfer direction is not changed.  
Data A  
Data A/A P  
A = Acknowledge (SDA low)  
A = Not Acknowledge (SDA high)  
From master to slave  
From slave to master  
S = START Condition  
A master-transmitter addresses a slave-receiver  
with a 10-bit address.  
P = STOP Condition  
FIGURE 9-12:  
MASTER-RECEIVER SEQUENCE  
For 7-bit address:  
For 10-bit address:  
SSlave AddressR/W A1Slave Address A2  
First 7 bits Second byte  
(write)  
S Slave AddressR/W A Data A Data  
A P  
'1' (read) data transferred  
(n bytes - Acknowledge)  
A master reads a slave immediately after the first byte.  
SrSlave AddressR/W A3 Data A Data A P  
First 7 bits  
A = Acknowledge (SDA low)  
A = Not Acknowledge (SDA high)  
From master to slave  
(read)  
S = START Condition  
A master-transmitter addresses a slave-receiver  
with a 10-bit address.  
From slave to master  
P = STOP Condition  
FIGURE 9-13:  
COMBINED FORMAT  
(read or write)  
(n bytes + Acknowledge)  
S Slave AddressR/W A Data A/A Sr Slave Address R/W A Data A/A P  
(write)  
Direction of transfer  
may change at this point  
(read)  
Sr = repeated  
START Condition  
Transfer direction of data and Acknowledgment bits depends on R/W bits.  
Combined format:  
SrSlave Address R/W A Slave Address A Data A  
First 7 bits Second byte  
Data A/A Sr Slave Address R/W A Data A  
First 7 bits  
Data A P  
(read)  
(write)  
Combined format - A master addresses a slave with a 10-bit address, then transmits  
data to this slave and reads data from this slave.  
A = Acknowledge (SDA low)  
A = Not Acknowledge (SDA high)  
From master to slave  
S = START Condition  
From slave to master  
P = STOP Condition  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 67  
PIC16C925/926  
9.2.4  
MULTI-MASTER  
9.2.4.2  
Clock synchronization occurs after the devices have  
started arbitration. This is performed using  
Clock Synchronization  
The I2C protocol allows a system to have more than  
one master. This is called multi-master. When two or  
more masters try to transfer data at the same time,  
arbitration and synchronization occur.  
a
wired-AND connection to the SCL line. A high to low  
transition on the SCL line causes the concerned  
devices to start counting off their low period. Once a  
device clock has gone low, it will hold the SCL line low  
until its SCL high state is reached. The low to high tran-  
sition of this clock may not change the state of the SCL  
line, if another device clock is still within its low period.  
The SCL line is held low by the device with the longest  
low period. Devices with shorter low periods enter a  
high wait state, until the SCL line comes high. When the  
SCL line comes high, all devices start counting off their  
high periods. The first device to complete its high  
period will pull the SCL line low. The SCL line high time  
is determined by the device with the shortest high  
period, Figure 9-15.  
9.2.4.1  
Arbitration  
Arbitration takes place on the SDA line, while the SCL  
line is high. The master, which transmits a high when  
the other master transmits a low, loses arbitration  
(Figure 9-14) and turns off its data output stage. A mas-  
ter, which lost arbitration can generate clock pulses  
until the end of the data byte where it lost arbitration.  
When the master devices are addressing the same  
device, arbitration continues into the data.  
FIGURE 9-14:  
MULTI-MASTER  
ARBITRATION  
(TWO MASTERS)  
FIGURE 9-15:  
CLOCK  
SYNCHRONIZATION  
Transmitter 1 Loses Arbitration  
DATA 1 SDA  
Start Counting  
HIGH Period  
Wait  
State  
DATA 1  
DATA 2  
SDA  
CLK  
1
Counter  
Reset  
CLK  
2
SCL  
SCL  
Masters that also incorporate the slave function and  
have lost arbitration, must immediately switch over to  
Slave-Receiver mode. This is because the winning  
master-transmitter may be addressing it.  
Arbitration is not allowed between:  
A Repeated START condition  
A STOP condition and a data bit  
A Repeated START condition and a STOP  
condition  
Care needs to be taken to ensure that these conditions  
do not occur.  
DS39544A-page 68  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
The SSPCON register allows control of the I2C opera-  
tion. Four mode selection bits (SSPCON<3:0>) allow  
one of the following I2C modes to be selected:  
I2C Slave mode (7-bit address)  
I2C Slave mode (10-bit address)  
I2C Slave mode (7-bit address), with START and  
STOP bit interrupts enabled  
I2C Slave mode (10-bit address), with START and  
STOP bit interrupts enabled  
I2C Firmware controlled Master mode, slave is  
2
9.3  
SSP I C Operation  
The SSP module in I2C mode fully implements all slave  
functions, except general call support, and provides  
interrupts on START and STOP bits in hardware to  
facilitate firmware implementations of the master func-  
tions. The SSP module implements the standard mode  
specifications as well as 7-bit and 10-bit addressing.  
Two pins are used for data transfer. These are the  
RC3/SCK/SCL pin, which is the clock (SCL), and the  
RC4/SDI/SDA pin, which is the data (SDA). The user  
must configure these pins as inputs or outputs through  
the TRISC<4:3> bits. The SSP module functions are  
enabled by setting SSP enable bit, SSPEN  
(SSPCON<5>).  
idle  
Selection of any I2C mode, with the SSPEN bit set,  
forces the SCL and SDA pins to be open drain, pro-  
vided these pins are programmed to inputs by setting  
the appropriate TRISC bits.  
FIGURE 9-16:  
SSP BLOCK DIAGRAM  
(I2C MODE)  
The SSPSTAT register gives the status of the data  
transfer. This information includes detection of a  
START or STOP bit, specifies if the received byte was  
data or address, if the next byte is the completion of  
10-bit address, and if this will be a read or write data  
transfer. The SSPSTAT register is read only.  
Internal  
Data Bus  
Read  
Write  
SSPBUF reg  
The SSPBUF is the register to which transfer data is  
written to or read from. The SSPSR register shifts the  
data in or out of the device. In receive operations, the  
SSPBUF and SSPSR create a doubled buffered  
receiver. This allows reception of the next byte to begin  
before reading the last byte of received data. When the  
complete byte is received, it is transferred to the  
SSPBUF register and flag bit SSPIF is set. If another  
complete byte is received before the SSPBUF register  
is read, a receiver overflow has occurred and bit  
SSPOV (SSPCON<6>) is set and the byte in the  
SSPSR is lost.  
RC3/SCK/SCL  
Shift  
Clock  
SSPSR reg  
RC4/  
SDI/  
SDA  
MSb  
LSb  
Addr Match  
Match Detect  
SSPADD reg  
START and  
The SSPADD register holds the slave address. In  
10-bit mode, the user needs to write the high byte of the  
address (1111 0 A9 A8 0). Following the high byte  
address match, the low byte of the address needs to be  
loaded (A7:A0).  
Set, Reset  
S, P bits  
(SSPSTAT reg)  
STOP bit Detect  
The SSP module has five registers for I2C operation.  
These are the:  
SSP Control Register (SSPCON)  
SSP Status Register (SSPSTAT)  
Serial Receive/Transmit Buffer (SSPBUF)  
SSP Shift Register (SSPSR) - Not directly  
accessible  
SSP Address Register (SSPADD)  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 69  
PIC16C925/926  
address is compared on the falling edge of the eighth  
clock (SCL) pulse. If the addresses match, and the BF  
and SSPOV bits are clear, the following events occur:  
9.3.1  
SLAVE MODE  
In Slave mode, the SCL and SDA pins must be config-  
ured as inputs (TRISC<4:3> set). The SSP module will  
override the input state with the output data when  
required (slave-transmitter).  
a) The SSPSR register value is loaded into the  
SSPBUF register.  
b) The buffer full bit, BF is set.  
c) An ACK pulse is generated.  
When an address is matched or the data transfer after  
an address match is received, the hardware automati-  
cally will generate the Acknowledge (ACK) pulse, and  
then load the SSPBUF register with the received value  
currently in the SSPSR register.  
d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set  
(interrupt is generated if enabled) - on the falling  
edge of the ninth SCL pulse.  
In 10-bit Address mode, two address bytes need to be  
received by the slave (Figure 9-8). The five Most Sig-  
nificant bits (MSbs) of the first address byte specify if  
this is a 10-bit address. Bit R/W (SSPSTAT<2>) must  
specify a write so the slave device will receive the sec-  
ond address byte. For a 10-bit address the first byte  
would equal 1111 0 A9 A8 0, where A9and A8are  
the two MSbs of the address. The sequence of events  
for a 10-bit address is as follows, with steps 7- 9 for  
slave-transmitter:  
There are certain conditions that will cause the SSP  
module not to give this ACK pulse. These are if either  
(or both):  
a) The buffer full bit BF (SSPSTAT<0>) was set  
before the transfer was received.  
b) The overflow bit SSPOV (SSPCON<6>) was set  
before the transfer was received.  
In this case, the SSPSR register value is not loaded  
into the SSPBUF, but bit SSPIF (PIR1<3>) is set.  
Table 9-3 shows what happens when a data transfer  
byte is received, given the status of bits BF and  
SSPOV. The shaded cells show the condition where  
user software did not properly clear the overflow condi-  
tion. Flag bit BF is cleared by reading the SSPBUF reg-  
ister while bit SSPOV is cleared through software.  
1. Receive first (high) byte of Address (bits SSPIF,  
BF, and bit UA (SSPSTAT<1>) are set).  
2. Update the SSPADD register with second (low)  
byte of Address (clears bit UA and releases the  
SCL line).  
3. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
The SCL clock input must have a minimum high and  
low time for proper operation. The high and low times  
of the I2C specification as well as the requirement of  
the SSP module is shown in timing parameter #100  
and parameter #101.  
4. Receive second (low) byte of Address (bits  
SSPIF, BF, and UA are set).  
5. Update the SSPADD register with the first (high)  
byte of Address, if match releases SCL line, this  
will clear bit UA.  
9.3.1.1  
Addressing  
6. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
Once the SSP module has been enabled, it waits for a  
START condition to occur. Following the START condi-  
tion, the 8-bits are shifted into the SSPSR register. All  
incoming bits are sampled with the rising edge of the  
clock (SCL) line. The value of register SSPSR<7:1> is  
compared to the value of the SSPADD register. The  
7. Receive Repeated START condition.  
8. Receive first (high) byte of Address (bits SSPIF  
and BF are set).  
9. Read the SSPBUF register (clears bit BF) and  
clear flag bit SSPIF.  
TABLE 9-3:  
DATA TRANSFER RECEIVED BYTE ACTIONS  
Status Bits as Data  
Transfer is Received  
Set bit SSPIF  
Generate ACK  
(SSP Interrupt occurs  
Pulse  
SSPSR SSPBUF  
if enabled)  
BF  
SSPOV  
0
1
1
0
0
0
1
1
Yes  
No  
No  
No  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
DS39544A-page 70  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
When the address byte overflow condition exists, then  
no Acknowledge (ACK) pulse is given. An overflow  
condition is defined as either bit BF (SSPSTAT<0>) is  
set, or bit SSPOV (SSPCON<6>) is set.  
9.3.1.2  
Reception  
When the R/W bit of the address byte is clear and an  
address match occurs, the R/W bit of the SSPSTAT  
register is cleared. The received address is loaded into  
the SSPBUF register.  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF (PIR1<3>) must be cleared in soft-  
ware. The SSPSTAT register is used to determine the  
status of the byte.  
FIGURE 9-17:  
I2C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
Receiving Address  
A7 A6 A5 A4  
R/W=0  
Receiving Data  
Receiving Data  
ACK  
ACK  
9
ACK  
9
SDA  
SCL  
A3 A2 A1  
D5  
D2  
D0  
8
D5  
D2  
D0  
8
D7 D6  
D4 D3  
D1  
7
D7 D6  
D4 D3  
D1  
7
3
7
1
2
4
9
5
4
3
6
5
6
1
2
3
6
1
2
4
8
5
P
S
SSPIF (PIR1<3>)  
Cleared in software  
Bus Master  
terminates  
transfer  
BF (SSPSTAT<0>)  
SSPBUF register is read  
SSPOV (SSPCON<6>)  
Bit SSPOV is set because the SSPBUF register is still full.  
ACK is not sent.  
An SSP interrupt is generated for each data transfer  
byte. Flag bit SSPIF must be cleared in software, and  
the SSPSTAT register is used to determine the status  
of the byte. Flag bit SSPIF is set on the falling edge of  
the ninth clock pulse.  
9.3.1.3  
Transmission  
When the R/W bit of the incoming address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set. The received address is  
loaded into the SSPBUF register. The ACK pulse will  
be sent on the ninth bit, and pin RC3/SCK/SCL is held  
low. The transmit data must be loaded into the  
SSPBUF register, which also loads the SSPSR regis-  
ter. Then, pin RC3/SCK/SCL should be enabled by set-  
ting bit CKP (SSPCON<4>). The master must monitor  
the SCL pin prior to asserting another clock pulse. The  
slave devices may be holding off the master by stretch-  
ing the clock. The eight data bits are shifted out on the  
falling edge of the SCL input. This ensures that the  
SDA signal is valid during the SCL high time  
(Figure 9-18).  
As a slave-transmitter, the ACK pulse from the mas-  
ter-receiver is latched on the rising edge of the ninth  
SCL input pulse. If the SDA line was high (not ACK),  
then the data transfer is complete. When the ACK is  
latched by the slave, the slave logic is reset and the  
slave then monitors for another occurrence of the  
START bit. If the SDA line was low (ACK), the transmit  
data must be loaded into the SSPBUF register, which  
also loads the SSPSR register. Then, pin  
RC3/SCK/SCL should be enabled by setting bit CKP.  
FIGURE 9-18:  
I2C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
Receiving Address  
R/W = 1  
ACK  
Transmitting Data  
ACK  
9
SDA  
A7 A6 A5 A4 A3 A2 A1  
D7 D6 D5 D4 D3 D2 D1 D0  
SCL  
S
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
P
SCL held low  
while CPU  
responds to SSPIF  
Data in  
sampled  
Cleared in software  
SSPIF (PIR1<3>)  
BF (SSPSTAT<0>)  
From SSP Interrupt  
Service Routine  
SSPBUF is written in software  
CKP (SSPCON<4>)  
Set bit after writing to SSPBUF  
(the SSPBUF must be written-to  
before the CKP bit can be set)  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 71  
PIC16C925/926  
9.3.2  
MASTER MODE  
9.3.3  
MULTI-MASTER MODE  
Master mode of operation is supported, in firmware,  
using interrupt generation on the detection of the  
START and STOP conditions. The STOP (P) and  
START (S) bits are cleared from a RESET, or when the  
SSP module is disabled. The STOP and START bits  
will toggle based on the START and STOP conditions.  
Control of the I2C bus may be taken when the P bit is  
set, or the bus is idle with both the S and P bits clear.  
In Multi-Master mode, the interrupt generation on the  
detection of the START and STOP conditions allows  
the determination of when the bus is free. The STOP  
(P) and START (S) bits are cleared from a RESET or  
when the SSP module is disabled. The STOP and  
START bits will toggle based on the START and STOP  
conditions. Control of the I2C bus may be taken when  
bit P (SSPSTAT<4>) is set, or the bus is idle, with both  
the S and P bits clear. When the bus is busy, enabling  
the SSP interrupt will generate the interrupt when the  
STOP condition occurs.  
In Master mode, the SCL and SDA lines are manipu-  
lated by clearing the corresponding TRISC<4:3> bit(s).  
The output level is always low, irrespective of the  
value(s) in PORTC<4:3>. So when transmitting data, a  
1data bit must have the TRISC<4> bit set (input) and  
a 0data bit must have the TRISC<4> bit cleared (out-  
put). The same scenario is true for the SCL line with the  
TRISC<3> bit.  
In multi-master operation, the SDA line must be moni-  
tored to see if the signal level is the expected output  
level. This check only needs to be done when a high  
level is output. If a high level is expected and a low level  
is present, the device needs to release the SDA and  
SCL lines (set TRISC<4:3>). There are two stages  
where this arbitration can be lost, they are:  
The following events will cause SSP Interrupt Flag bit,  
SSPIF, to be set (SSP Interrupt if enabled):  
Address Transfer  
Data Transfer  
START condition  
STOP condition  
When the slave logic is enabled, the slave continues to  
receive. If arbitration was lost during the address trans-  
fer stage, communication to the device may be in  
progress. If addressed, an ACK pulse will be gener-  
ated. If arbitration was lost during the data transfer  
stage, the device will need to re-transfer the data at a  
later time.  
Data transfer byte transmitted/received  
Master mode of operation can be done with either the  
Slave mode idle (SSPM3:SSPM0 = 1011), or with the  
slave active. When both Master and Slave modes are  
enabled, the software needs to differentiate the  
source(s) of the interrupt.  
TABLE 9-4:  
REGISTERS ASSOCIATED WITH I2C OPERATION  
Value on  
Power-on  
Reset  
Value on all  
other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh,  
10Bh, 18Bh  
INTCON  
GIE  
PEIE TMR0IE INTE  
RBIE TMR0IF INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
PIR1  
PIE1  
LCDIF  
LCDIE  
ADIF  
ADIE  
SSPIF CCP1IF TMR2IF TMR1IF 00-- 0000 00-- 0000  
SSPIE CCP1IE TMR2IE TMR1IE 00-- 0000 00-- 0000  
8Ch  
13h  
SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
2
93h  
SSPADD Synchronous Serial Port (I C mode) Address Register  
14h  
SSPCON  
SSPSTAT  
TRISC  
WCOL SSPOV SSPEN  
CKP  
P
SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 0000 0000  
94h  
SMP  
CKE  
D/A  
S
R/W  
UA  
BF  
0000 0000 0000 0000  
87h  
PORTC Data Direction Control Register  
--11 1111 --11 1111  
2
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by SSP in I C mode.  
DS39544A-page 72  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
FIGURE 9-19:  
OPERATION OF THE I2C MODULE IN IDLE_MODE, RCV_MODE OR XMIT_MODE  
IDLE_MODE (7-bit):  
if (Addr_match)  
{
Set interrupt;  
if (R/W = 1)  
{
}
Send ACK = 0;  
set XMIT_MODE;  
else if (R/W = 0) set RCV_MODE;  
}
RCV_MODE:  
if ((SSPBUF = Full) OR (SSPOV = 1))  
{
Set SSPOV;  
Do not acknowledge;  
}
{
else  
transfer SSPSR SSPBUF;  
send ACK = 0;  
}
Receive 8-bits in SSPSR;  
Set interrupt;  
XMIT_MODE:  
While ((SSPBUF = Empty) AND (CKP=0)) Hold SCL Low;  
Send byte;  
Set interrupt;  
if ( ACK Received = 1)  
{
}
End of transmission;  
Go back to IDLE_MODE;  
else if ( ACK Received = 0) Go back to XMIT_MODE;  
IDLE_MODE (10-Bit):  
If (High_byte_addr_match AND (R/W = 0))  
{
PRIOR_ADDR_MATCH = FALSE;  
Set interrupt;  
if ((SSPBUF = Full) OR ((SSPOV = 1))  
{
Set SSPOV;  
Do not acknowledge;  
}
{
else  
Set UA = 1;  
Send ACK = 0;  
While (SSPADD not updated) Hold SCL low;  
Clear UA = 0;  
Receive Low_addr_byte;  
Set interrupt;  
Set UA = 1;  
If (Low_byte_addr_match)  
{
PRIOR_ADDR_MATCH = TRUE;  
Send ACK = 0;  
while (SSPADD not updated) Hold SCL low;  
Clear UA = 0;  
Set RCV_MODE;  
}
}
}
else if (High_byte_addr_match AND (R/W = 1))  
if (PRIOR_ADDR_MATCH)  
{
{
send ACK = 0;  
set XMIT_MODE;  
}
else PRIOR_ADDR_MATCH = FALSE;  
}
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 73  
PIC16C925/926  
NOTES:  
DS39544A-page 74  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
The A/D module has four registers. These registers  
are:  
10.0 ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
A/D Result High Register (ADRESH)  
A/D Result Low Register (ADRESL)  
A/D Control Register0 (ADCON0)  
A/D Control Register1 (ADCON1)  
The Analog-to-Digital (A/D) Converter module has five  
inputs.  
The analog input charges a sample and hold capacitor.  
The output of the sample and hold capacitor is the input  
into the converter. The converter then generates a dig-  
ital result of this analog level via successive approxima-  
tion. The A/D conversion of the analog input signal  
results in a corresponding 10-bit digital number. The  
A/D module has high and low voltage reference input,  
that is software selectable to some combination of VDD,  
VSS, RA2 or RA3.  
The ADCON0 register, shown in Register 10-1, con-  
trols the operation of the A/D module. The ADCON1  
register, shown in Register 10-2, configures the func-  
tions of the port pins. The port pins can be configured  
as analog inputs (RA3 can also be the voltage refer-  
ence), or as digital I/O.  
Additional information on using the A/D module can be  
found in the PICmicroMid-Range MCU Family  
Reference Manual (DS33023).  
The A/D converter has a unique feature of being able  
to operate while the device is in SLEEP mode. To  
operate in SLEEP, the A/D clock must be derived from  
the A/Ds internal RC oscillator.  
REGISTER 10-1: ADCON0 REGISTER (ADDRESS: 1Fh)  
R/W-0  
R/W-0  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
U-0  
R/W-0  
ADON  
ADCS1  
ADCS0  
GO/DONE  
bit 7  
bit 0  
bit 7-6  
bit 5-3  
ADCS<1:0>: A/D Conversion Clock Select bits  
00= FOSC/2  
01= FOSC/8  
10= FOSC/32  
11= FRC (clock derived from the internal A/D module RC oscillator)  
CHS<2:0>: Analog Channel Select bits  
000= channel 0 (RA0/AN0)  
001= channel 1 (RA1/AN1)  
010= channel 2 (RA2/AN2)  
011= channel 3 (RA3/AN3)  
100= channel 4 (RA5/AN4)  
bit 2  
GO/DONE: A/D Conversion Status bit  
If ADON = 1:  
1= A/D conversion in progress (setting this bit starts the A/D conversion)  
0= A/D conversion not in progress (this bit is automatically cleared by hardware when the A/D  
conversion is complete)  
bit 1  
bit 0  
Unimplemented: Read as '0'  
ADON: A/D On bit  
1= A/D converter module is operating  
0= A/D converter module is shut-off and consumes no operating current  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 75  
PIC16C925/926  
REGISTER 10-2: ADCON1 REGISTER (ADDRESS 9Fh)  
U-0  
U-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADFM  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 7  
bit 0  
bit 7  
ADFM: A/D Result Format Select bit  
1= Right justified. 6 Most Significant bits of ADRESH are read as 0.  
0= Left justified. 6 Least Significant bits of ADRESL are read as 0.  
bit 6-4  
bit 3-0  
Unimplemented: Read as '0'  
PCFG<3:0>: A/D Port Configuration Control bits:  
AN4  
RA5  
AN3  
RA3  
AN2  
RA2  
AN1  
RA1  
AN0  
RA0  
CHAN/  
PCFG<3:0>  
VREF+ VREF-  
Refs(1)  
0000  
0001  
0010  
0011  
0100  
0101  
011x  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
A
A
A
A
D
D
D
A
A
A
A
A
D
D
D
A
VREF+  
A
A
A
A
A
D
D
D
A
A
A
A
A
A
D
A
A
A
A
A
A
D
D
A
A
A
A
A
A
D
A
A
A
A
A
A
A
A
VDD  
RA3  
VDD  
RA3  
VDD  
RA3  
VDD  
RA3  
VDD  
RA3  
RA3  
RA3  
RA3  
VDD  
RA3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
RA2  
VSS  
VSS  
RA2  
RA2  
RA2  
VSS  
RA2  
5/0  
4/1  
5/0  
4/1  
3/0  
2/1  
0/0  
3/2  
5/0  
4/1  
3/2  
3/2  
2/2  
1/0  
1/2  
VREF+  
A
VREF+  
D
VREF+ VREF-  
A
A
A
VREF+  
VREF+ VREF-  
VREF+ VREF-  
VREF+ VREF-  
D
D
VREF+ VREF-  
D = Digital I/O  
A = Analog input  
Note 1: This column indicates the number of analog channels available as A/D inputs and  
the number of analog channels used as voltage reference inputs.  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
- n = Value at POR  
1= Bit is set  
0= Bit is cleared  
x = Bit is unknown  
The ADRESH:ADRESL registers contain the 10-bit  
result of the A/D conversion. When the A/D conversion  
is complete, the result is loaded into this A/D result reg-  
ister pair, the GO/DONE bit (ADCON0<2>) is cleared  
and the A/D interrupt flag bit ADIF is set. The block dia-  
gram of the A/D module is shown in Figure 10-1.  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS bits selected as inputs.  
To determine sample time, see Section 10.1. After this  
acquisition time has elapsed, the A/D conversion can  
be started.  
DS39544A-page 76  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
The following steps should be followed for doing an A/D  
conversion:  
3. Wait the required acquisition time.  
4. Start conversion:  
1. Configure the A/D module:  
Set GO/DONE bit (ADCON0)  
5. Wait for A/D conversion to complete, by either:  
Configure analog pins/voltage reference/  
and digital I/O (ADCON1)  
Polling for the GO/DONE bit to be cleared  
Select A/D input channel (ADCON0)  
Select A/D conversion clock (ADCON0)  
Turn on A/D module (ADCON0)  
2. Configure A/D interrupt (if desired):  
Clear ADIF bit  
(interrupts disabled)  
OR  
Waiting for the A/D interrupt  
6. Read  
A/D  
Result  
register  
pair  
(ADRESH:ADRESL), clear bit ADIF if required.  
Set ADIE bit  
7. For next conversion, go to step 1 or step 2 as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2TAD is  
required before next acquisition starts.  
Set PEIE bit  
Set GIE bit  
FIGURE 10-1:  
A/D BLOCK DIAGRAM  
CHS<2:0>  
100  
RA5/AN4  
VAIN  
011  
(Input Voltage)  
RA3/AN3/VREF+  
010  
RA2/AN2/VREF-  
001  
RA1/AN1  
000  
VDD  
RA0/AN0  
VREF+  
A/D  
Converter  
(Reference  
Voltage)  
PCFG<3:0>  
VREF-  
(Reference  
Voltage)  
VSS  
PCFG<3:0>  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 77  
PIC16C925/926  
be decreased. After the analog input channel is  
selected (changed), this acquisition must be done  
before the conversion can be started.  
10.1 A/D Acquisition Requirements  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 10-2. The  
source impedance (RS) and the internal sampling  
switch (RSS) impedance directly affect the time  
required to charge the capacitor CHOLD. The sampling  
switch (RSS) impedance varies over the device voltage  
(VDD), see Figure 10-2. The maximum recom-  
mended impedance for analog sources is 10 k. As  
the impedance is decreased, the acquisition time may  
To calculate the minimum acquisition time,  
Equation 10-1 may be used. This equation assumes  
that 1/2 LSb error is used (1024 steps for the A/D). The  
1/2 LSb error is the maximum error allowed for the A/D  
to meet its specified resolution.  
To calculate the minimum acquisition time, TACQ, see  
the PICmicroMid-Range Reference Manual  
(DS33023).  
EQUATION 10-1: ACQUISITION TIME EXAMPLE  
TACQ  
=
Amplifier Settling Time +  
Hold Capacitor Charging Time +  
Temperature Coefficient  
=
=
=
=
=
=
=
TAMP + TC + TCOFF  
2µS + TC + [(Temperature -25°C)(0.05µS/°C)]  
CHOLD (RIC + RSS + RS) In(1/2047)  
- 120pF (1k+ 7k+ 10k) In(0.0004885)  
16.47µS  
2µS + 16.47µS + [(50°C -25°C)(0.05µS/°C)  
19.72µS  
TC  
TACQ  
Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.  
2: The charge holding capacitor (CHOLD) is not discharged after each conversion.  
3: The maximum recommended impedance for analog sources is 10 k. This is required to meet the pin leak-  
age specification.  
4: After a conversion has completed, a 2.0TAD delay must complete before acquisition can begin again.  
During this time, the holding capacitor is not connected to the selected A/D input channel.  
FIGURE 10-2:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
RS  
CHOLD  
CPIN  
5 pF  
= DAC Capacitance  
= 120 pF  
VA  
I LEAKAGE  
± 500 nA  
VT = 0.6V  
VSS  
Legend CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
I LEAKAGE = leakage current at the pin due to  
various junctions  
RIC  
VDD 4V  
3V  
2V  
= interconnect resistance  
= sampling switch  
SS  
CHOLD  
= sample/hold capacitance (from DAC)  
5 6 7 8 9 1011  
Sampling Switch  
(k)  
DS39544A-page 78  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of 1.6 µs.  
10.2 Selecting the A/D Conversion  
Clock  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires a minimum 12TAD per 10-bit  
conversion. The source of the A/D conversion clock is  
software selected. The four possible options for TAD  
are:  
Table 10-1 shows the resultant TAD times derived from  
the device operating frequencies and the A/D clock  
source selected.  
2TOSC  
8TOSC  
32TOSC  
Internal A/D module RC oscillator  
TABLE 10-1: TAD vs. MAXIMUM DEVICE OPERATING FREQUENCIES (STANDARD DEVICES (C))  
AD Clock Source (TAD)  
Maximum Device Frequency  
Max.  
Operation  
ADCS<1:0>  
2TOSC  
8TOSC  
00  
01  
10  
11  
1.25 MHz  
5 MHz  
32TOSC  
RC(1, 2, 3)  
20 MHz  
(Note 1)  
Note 1: The RC source has a typical TAD time of 4 µs, but can vary between 2-6 µs.  
2: When the device frequencies are greater than 1 MHz, the RC A/D conversion clock source is only recom-  
mended for SLEEP operation.  
3: For extended voltage devices (LC), please refer to the Electrical Specifications section.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 79  
PIC16C925/926  
10.3 Configuring Analog Port Pins  
10.4 A/D Conversions  
The ADCON1 and TRIS registers control the operation  
of the A/D port pins. The port pins that are desired as  
analog inputs must have their corresponding TRIS bits  
set (input). If the TRIS bit is cleared (output), the digital  
output level (VOH or VOL) will be converted.  
Clearing the GO/DONE bit during a conversion will  
abort the current conversion. The A/D result register  
pair will NOT be updated with the partially completed  
A/D conversion sample. That is, the ADRESH:ADRESL  
registers will continue to contain the value of the last  
completed conversion (or the last value written to the  
ADRESH:ADRESL registers). After the A/D conversion  
is aborted, a 2TAD wait is required before the next  
acquisition is started. After this 2TAD wait, acquisition  
on the selected channel is automatically started. After  
this, the GO/DONE bit can be set to start the  
conversion.  
The A/D operation is independent of the state of the  
CHS<2:0> bits and the TRIS bits.  
Note 1: When reading the port register, any pin  
configured as an analog input channel will  
read as cleared (a low level). Pins config-  
ured as digital inputs will convert an ana-  
log input. Analog levels on a digitally  
configured input will not affect the conver-  
sion accuracy.  
In Figure 10-3, after the GO bit is set, the first time seg-  
ment has a minimum of TCY and a maximum of TAD.  
Note: The GO/DONE bit should NOT be set in  
2: Analog levels on any pin that is defined as  
a digital input (including the AN<4:0>  
pins), may cause the input buffer to con-  
sume current that is out of the device  
specifications.  
the same instruction that turns on the A/D.  
FIGURE 10-3:  
A/D CONVERSION TAD CYCLES  
TCY to TAD  
TAD1  
TAD3  
b8  
TAD5 TAD6 TAD7 TAD8 TAD9 TAD10 TAD11  
b6 b5 b4 b3 b2 b1 b0  
TAD2  
b9  
TAD4  
b7  
Conversion Starts  
Holding capacitor is disconnected from analog input (typically 100 ns)  
Set GO bit  
ADRES is loaded,  
GO bit is cleared,  
ADIF bit is set,  
holding capacitor is connected to analog input.  
A 2TAD wait is necessary before the next  
acquisition is started.  
10.4.1  
A/D RESULT REGISTERS  
The ADRESH:ADRESL register pair is the location  
where the 10-bit A/D result is loaded at the completion  
of the A/D conversion. This register pair is 16-bits wide.  
The A/D module gives the flexibility to left or right justify  
the 10-bit result in the 16-bit result register. The A/D  
Format Select bit (ADFM) controls this justification.  
Figure 10-4 shows the operation of the A/D result justi-  
fication. The extra bits are loaded with 0s. When an  
A/D result will not overwrite these locations (A/D dis-  
able), these registers may be used as two general pur-  
pose 8-bit registers.  
DS39544A-page 80  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
FIGURE 10-4:  
A/D RESULT JUSTIFICATION  
10-Bit Result  
ADFM = 0  
ADFM = 1  
0
7
7
2 1 0 7  
0 7 6 5  
0
0000 00  
0000 00  
ADRESH  
ADRESL  
ADRESH  
ADRESL  
10-bit Result  
Right Justified  
10-bit Result  
Left Justified  
Turning off the A/D places the A/D module in its lowest  
current consumption state.  
10.5 A/D Operation During SLEEP  
The A/D module can operate during SLEEP mode. This  
requires that the A/D clock source be set to RC  
(ADCS<1:0> = 11). When the RC clock source is  
selected, the A/D module waits one instruction cycle  
before starting the conversion. This allows the SLEEP  
instruction to be executed, which eliminates all digital  
switching noise from the conversion. When the conver-  
sion is completed, the GO/DONE bit will be cleared and  
the result loaded into the ADRES register. If the A/D  
interrupt is enabled, the device will wake-up from  
SLEEP. If the A/D interrupt is not enabled, the A/D mod-  
ule will then be turned off, although the ADON bit will  
remain set.  
Note: For the A/D module to operate in SLEEP,  
the A/D clock source must be set to RC  
(ADCS<1:0> = 11). To allow the conver-  
sion to occur during SLEEP, ensure the  
SLEEPinstruction immediately follows the  
instruction that sets the GO/DONE bit.  
10.6 Effects of a RESET  
A device RESET forces all registers to their RESET  
state. This forces the A/D module to be turned off, and  
any conversion is aborted. All A/D input pins are con-  
figured as analog inputs.  
When the A/D clock source is another clock option (not  
RC), a SLEEPinstruction will cause the present conver-  
sion to be aborted and the A/D module to be turned off,  
though the ADON bit will remain set.  
The value that is in the ADRESH:ADRESL registers is  
not modified for  
a
Power-on Reset. The  
ADRESH:ADRESL registers will contain unknown data  
after a Power-on Reset.  
TABLE 10-2: REGISTERS/BITS ASSOCIATED WITH A/D  
POR,  
BOR  
MCLR,  
WDT  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh  
0Ch  
8Ch  
1Eh  
9Eh  
1Fh  
9Fh  
85h  
05h  
INTCON  
PIR1  
GIE  
PEIE TMR0IE INTE  
RBIE  
SSPIF  
SSPIE  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
LCDIF  
LCDIE  
ADIF  
ADIE  
(1)  
(1)  
(1)  
(1)  
CCP1IF TMR2IF TMR1IF r0rr 0000 r0rr 0000  
CCP1IE TMR2IE TMR1IE r0rr 0000 r0rr 0000  
xxxx xxxx uuuu uuuu  
PIE1  
ADRESH A/D Result Register High Byte  
ADRESL A/D Result Register Low Byte  
ADCON0 ADCS1 ADCS0 CHS2  
xxxx xxxx uuuu uuuu  
CHS1  
CHS0 GO/DONE  
PCFG3 PCFG2  
ADON 0000 00-0 0000 00-0  
ADCON1  
TRISA  
ADFM  
PCFG1 PCFG0 --0- 0000 --0- 0000  
PORTA Data Direction Register  
PORTA Data Latch when written: PORTA pins when read  
--11 1111 --11 1111  
PORTA  
--0x 0000 --0u 0000  
Legend: x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used for A/D conversion.  
Note 1: These bits are reserved; always maintain these bits clear.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 81  
PIC16C925/926  
NOTES:  
DS39544A-page 82  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
selecting the number of commons required by the LCD  
panel, and then specifying the LCD frame clock rate to  
be used by the panel.  
11.0 LCD MODULE  
The LCD module generates the timing control to drive  
a static or multiplexed LCD panel, with support for up to  
32 segments multiplexed with up to four commons. It  
also provides control of the LCD pixel data.  
Once the module is initialized for the LCD panel, the  
individual bits of the LCD data registers are cleared/set  
to represent a clear/dark pixel, respectively.  
The interface to the module consists of 3 control regis-  
ters (LCDCON, LCDSE, and LCDPS), used to define  
the timing requirements of the LCD panel and up to 16  
LCD data registers (LCD00-LCD15) that represent the  
array of the pixel data. In normal operation, the control  
registers are configured to match the LCD panel being  
used. Primarily, the initialization information consists of  
Once the module is configured, the LCDEN  
(LCDCON<7>) bit is used to enable or disable the LCD  
module. The LCD panel can also operate during  
SLEEP by clearing the SLPEN (LCDCON<6>) bit.  
Figure 11-2 through Figure 11-5 provides waveforms  
for static, half-duty cycle, one-third-duty cycle, and  
quarter-duty cycle drives.  
REGISTER 11-1: LCDCON REGISTER (ADDRESS 10Fh)  
R/W-0  
R/W-0  
R/W-0  
WERR  
R/W-0  
BIAS  
R/W-0  
CS1  
R/W-0  
CS0  
R/W-0  
R/W-0  
LCDEN  
SLPEN  
LMUX1  
LMUX0  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-2  
LCDEN: Module Drive Enable bit  
1= LCD drive enabled  
0= LCD drive disabled  
SLPEN: LCD Display Enabled to SLEEP bit  
1= LCD module will stop driving in SLEEP  
0= LCD module will continue driving in SLEEP  
WERR: Write Failed Error bit  
1= System tried to write LCDD register during disallowed time. (Must be reset in software.)  
0= No error  
BIAS: Bias Generator Enable bit  
0= Internal bias generator powered down, bias is expected to be provided externally  
1= Internal bias generator enabled, powered up  
CS<1:0>: Clock Source bits  
00= FOSC/256  
01= T1CKI (Timer1)  
1x= Internal RC oscillator  
bit 1-0  
LMUX<1:0>: Common Selection bits  
Specifies the number of commons  
00= Static(COM0)  
01= 1/2 (COM0, 1)  
10= 1/3 (COM0, 1, 2)  
11= 1/4 (COM0, 1, 2, 3)  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 83  
PIC16C925/926  
FIGURE 11-1:  
LCD MODULE BLOCK DIAGRAM  
128  
to  
LCD  
RAM  
SEG<31:0>  
Data Bus  
To I/O Pads  
32 x 4  
32  
MUX  
Timing Control  
LCDCON  
LCDPS  
LCDSE  
COM3:COM0  
To I/O Pads  
Internal RC osc  
T1CKI  
Clock  
Source  
Select  
and  
FOSC/4  
Divide  
REGISTER 11-2: LCDPS REGISTER (ADDRESS 10Eh)  
U-0  
U-0  
U-0  
U-0  
R/W-0  
LP3  
R/W-0  
LP2  
R/W-0  
LP1  
R/W-0  
LP0  
bit 7  
bit 0  
bit 7-4  
bit 3-0  
Unimplemented: Read as '0'  
LP<3:0>: Frame Clock Prescale Selection bits (see Section 11.1.2)  
LMUX1:LMUX0  
Multiplex  
Frame Frequency  
00  
01  
10  
11  
Static  
1/2  
Clock source/(128 * (LP3:LP0 + 1))  
Clock source/(128 * (LP3:LP0 + 1))  
Clock source/(96 * (LP3:LP0 + 1))  
Clock source/(128 * (LP3:LP0 + 1))  
1/3  
1/4  
Legend:  
R = Readable bit  
- n = Value at POR  
W = Writable bit  
U = Unimplemented bit, read as 0’  
1= Bit is set  
0= Bit is cleared  
x = Bit is unknown  
DS39544A-page 84  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
FIGURE 11-2:  
WAVEFORMS IN STATIC DRIVE  
Liquid Crystal Display  
and Terminal Connection  
1/1 V  
PIN  
COM0  
0/1 V  
1/1 V  
COM0  
SEG7  
PIN  
SEG0  
0/1 V  
1/1 V  
PIN  
SEG1  
SEG6  
SEG5  
0/1 V  
1/1 V  
COM0 - SEG0  
0/1 V  
Selected Waveform  
-1/1 V  
0/1 V  
1 frame  
t
f
COM0 - SEG1  
Non-selected Waveform  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 85  
PIC16C925/926  
FIGURE 11-3:  
WAVEFORMS IN HALF-DUTY CYCLE DRIVE (B TYPE)  
Liquid Crystal Display  
and Terminal Connection  
2/2 V  
1/2 V  
PIN  
COM0  
0/2 V  
2/2 V  
1/2 V  
COM1  
COM0  
PIN  
COM1  
0/2 V  
2/2 V  
PIN  
SEG0  
0/2 V  
2/2 V  
0/2 V  
PIN  
SEG1  
2/2 V  
1/2 V  
0/2 V  
-1/2 V  
-2/2 V  
COM0 - SEG0  
Selected Waveform  
2/2 V  
0/2 V  
-2/2 V  
COM0 - SEG1  
Non-selected Waveform  
1 frame  
t
f
DS39544A-page 86  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
FIGURE 11-4:  
WAVEFORMS IN ONE-THIRD DUTY CYCLE DRIVE (B TYPE)  
3/3 V  
2/3 V  
Liquid Crystal Display  
and Terminal Connection  
PIN  
COM0  
1/3 V  
0/3 V  
3/3 V  
2/3 V  
1/3 V  
0/3 V  
COM2  
PIN  
COM1  
COM1  
COM0  
3/3 V  
2/3 V  
1/3 V  
PIN  
COM2  
0/3 V  
3/3 V  
2/3 V  
1/3 V  
0/3 V  
PIN  
SEG0  
3/3 V  
2/3 V  
1/3 V  
0/3 V  
SEG0  
SEG2  
SEG1  
PIN  
SEG1  
3/3 V  
2/3 V  
1/3 V  
0/3 V  
-1/3 V  
COM0 - SEG1  
Selected Waveform  
-2/3 V  
-3/3 V  
1/3 V  
0/3 V  
-1/3 V  
COM0 - SEG0  
Non-selected Waveform  
1 frame  
t
f
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 87  
PIC16C925/926  
FIGURE 11-5:  
WAVEFORMS IN QUARTER-DUTY CYCLE DRIVE (B TYPE)  
3/3 V  
2/3 V  
Liquid Crystal Display  
and Terminal Connection  
PIN  
COM0  
COM3  
1/3 V  
0/3 V  
3/3 V  
2/3 V  
1/3 V  
0/3 V  
COM2  
PIN  
COM1  
COM1  
COM0  
3/3 V  
2/3 V  
1/3 V  
PIN  
COM2  
0/3 V  
3/3 V  
PIN  
COM3  
2/3 V  
1/3 V  
0/3 V  
3/3 V  
2/3 V  
1/3 V  
0/3 V  
PIN  
SEG0  
SEG0 SEG1  
3/3 V  
2/3 V  
1/3 V  
0/3 V  
PIN  
SEG1  
3/3 V  
2/3 V  
1/3 V  
0/3 V  
-1/3 V  
COM3 - SEG0  
Selected Waveform  
-2/3 V  
-3/3 V  
1/3 V  
0/3 V  
-1/3 V  
COM0 - SEG0  
Non-selected Waveform  
1 frame  
t
f
DS39544A-page 88  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
The second source is the Timer1 external oscillator.  
This oscillator provides a lower speed clock which may  
be used to continue running the LCD while the proces-  
sor is in SLEEP. It is assumed that the frequency pro-  
vided on this oscillator will be 32 kHz. To use the  
Timer1 oscillator as a LCD module clock source, it is  
only necessary to set the T1OSCEN (T1CON<3>) bit.  
11.1 LCD Timing  
The LCD module has 3 possible clock source inputs  
and supports static, 1/2, 1/3, and 1/4 multiplexing.  
11.1.1  
TIMING CLOCK SOURCE  
SELECTION  
The clock sources for the LCD timing generation are:  
The third source is the system clock divided by 256.  
This divider ratio is chosen to provide about 32 kHz  
output when the external oscillator is 8 MHz. The  
divider is not programmable. Instead the LCDPS regis-  
ter is used to set the LCD frame clock rate.  
Internal RC oscillator  
Timer1 oscillator  
System clock divided by 256  
The first timing source is an internal RC oscillator which  
runs at a nominal frequency of 14 kHz. This oscillator  
provides a lower speed clock which may be used to  
continue running the LCD while the processor is in  
SLEEP. The RC oscillator will power-down when it is  
not selected or when the LCD module is disabled.  
All of the clock sources are selected with bits CS1:CS0  
(LCDCON<3:2>). Refer to Register 11-1 for details of  
the register programming.  
FIGURE 11-6:  
LCD CLOCK GENERATION  
FOSC  
÷256  
CPCLK  
Static  
1/2  
÷4  
÷2  
÷1,2,3,4  
Ring Counter  
÷32  
4-bit Programmable  
Prescaler  
TMR1 32 kHz  
Crystal Oscillator  
1/3  
1/4  
LCDPS<3:0>  
LMUX1:LMUX0  
LMUX1:LMUX0  
Internal RC Oscillator  
Nominal FRC = 14 kHz  
CS1:CS0  
internal  
Data Bus  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 89  
PIC16C925/926  
11.1.2  
MULTIPLEX TIMING GENERATION  
TABLE 11-2: APPROXIMATE FRAME  
FREQUENCY (IN Hz)  
The timing generation circuitry will generate one to four  
common clocks based on the display mode selected.  
The mode is specified by bits LMUX1:LMUX0  
(LCDCON<1:0>). Table 11-1 shows the formulas for  
calculating the frame frequency.  
USING TIMER1 @ 32.768 kHz  
OR FOSC @ 8 MHz  
LP3:LP0  
Static  
1/2  
1/3  
1/4  
2
3
4
5
6
7
85  
64  
51  
43  
37  
32  
85  
64  
51  
43  
37  
32  
114  
85  
68  
57  
49  
43  
85  
64  
51  
43  
37  
32  
TABLE 11-1: FRAME FREQUENCY  
FORMULAS  
Multiplex  
Frame Frequency =  
Static  
1/2  
Clock source/(128 * (LP3:LP0 + 1))  
Clock source/(128 * (LP3:LP0 + 1))  
Clock source/(96 * (LP3:LP0 + 1))  
Clock source/(128 * (LP3:LP0 + 1))  
1/3  
TABLE 11-3: APPROXIMATE FRAME  
FREQUENCY (IN Hz)  
1/4  
USING INTERNAL RC OSC  
@ 14 kHz  
LP3:LP0  
Static  
1/2  
1/3  
1/4  
0
1
2
3
109  
55  
109  
55  
146  
73  
109  
55  
36  
36  
49  
36  
27  
27  
36  
27  
DS39544A-page 90  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
A new frame is defined to begin at the leading edge of  
the COM0 common signal. The interrupt will be set  
immediately after the LCD controller completes  
accessing all pixel data required for a frame. This will  
occur at a fixed interval before the frame boundary  
(TFINT), as shown in Figure 11-7. The LCD controller  
will begin to access data for the next frame within the  
interval from the interrupt to when the controller begins  
to access data after the interrupt (TFWR). New data  
must be written within TFWR, as this is when the LCD  
controller will begin to access the data for the next  
frame.  
11.2 LCD Interrupts  
The LCD timing generation provides an interrupt that  
defines the LCD frame timing. This interrupt can be  
used to coordinate the writing of the pixel data with the  
start of a new frame. Writing pixel data at the frame  
boundary allows a visually crisp transition of the image.  
This interrupt can also be used to synchronize external  
events to the LCD. For example, the interface to an  
external segment driver, such as a Microchip AY0438,  
can be synchronized for segment data update to the  
LCD frame.  
FIGURE 11-7:  
EXAMPLE WAVEFORMS AND INTERRUPT TIMING  
IN QUARTER-DUTY CYCLE DRIVE  
LCD  
Interrupt  
Occurs  
Controller Accesses  
Next Frame Data  
3/3 V  
2/3 V  
1/3 V  
0/3 V  
COM0  
COM1  
3/3 V  
2/3 V  
1/3 V  
0/3 V  
3/3 V  
2/3 V  
1/3 V  
0/3 V  
COM2  
COM3  
3/3 V  
2/3 V  
1/3 V  
0/3 V  
1 Frame  
TFINT  
TFWR  
Frame  
Boundary  
Frame  
Boundary  
TFWR = TFRAME/(LMUX1:LMUX0 + 1) + TCY/2  
TFINT = (TFWR /2 - (2TCY + 40 ns)) minimum = 1.5(TFRAME/4) - (2TCY + 40ns)  
(TFWR /2 - (1TCY + 40 ns)) maximum = 1.5(TFRAME/4) - (1TCY + 40 ns)  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 91  
PIC16C925/926  
Table 11-4 shows the correlation of each bit in the  
LCDD registers to the respective common and seg-  
ment signals.  
11.3 Pixel Control  
11.3.1  
LCDD (PIXEL DATA) REGISTERS  
Any LCD pixel location not being used for display can  
be used as general purpose RAM.  
The pixel registers contain bits which define the state of  
each pixel. Each bit defines one unique pixel.  
REGISTER 11-3: GENERIC LCDD REGISTER LAYOUT  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SEGs  
COMc  
SEGs  
COMc  
SEGs  
COMc  
SEGs  
COMc  
SEGs  
COMc  
SEGs  
COMc  
SEGs  
COMc  
SEGs  
COMc  
bit 7  
bit 0  
bit 7-0  
SEGsCOMc: Pixel Data bit for Segment S and Common C  
1= Pixel on (dark)  
0= Pixel off (clear)  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS39544A-page 92  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
If a SLEEPinstruction is executed and SLPEN = 0, the  
module will continue to display the current contents of  
the LCDD registers. To allow the module to continue  
operation while in SLEEP, the clock source must be  
either the internal RC oscillator or Timer1 external  
oscillator. While in SLEEP, the LCD data cannot be  
changed. The LCD module current consumption will  
not decrease in this mode, however, the overall con-  
sumption of the device will be lower due to shut-down  
of the core and other peripheral functions.  
11.4 Operation During SLEEP  
The LCD module can operate during SLEEP. The  
selection is controlled by bit SLPEN (LCDCON<6>).  
Setting the SLPEN bit allows the LCD module to go to  
SLEEP. Clearing the SLPEN bit allows the module to  
continue to operate during SLEEP.  
If a SLEEPinstruction is executed and SLPEN = 1, the  
LCD module will cease all functions and go into a very  
low current consumption mode. The module will stop  
operation immediately and drive the minimum LCD  
voltage on both segment and common lines. Figure  
11-8 shows this operation. To ensure that the LCD com-  
pletes the frame, the SLEEPinstruction should be exe-  
cuted immediately after a LCD frame boundary. The  
LCD interrupt can be used to determine the frame  
boundary. See Section 11.2 for the formulas to calcu-  
late the delay.  
Note: The internal RC oscillator or external  
Timer1 oscillator must be used to operate  
the LCD module during SLEEP.  
FIGURE 11-8:  
SLEEP ENTRY/EXIT WHEN SLPEN = 1 OR CS1:CS0 = 00  
3/3V  
2/3V  
1/3V  
Pin  
COM0  
0/3V  
3/3V  
2/3V  
1/3V  
0/3V  
3/3V  
2/3V  
Pin  
COM1  
Pin  
COM3  
1/3V  
0/3V  
3/3V  
2/3V  
Pin  
SEG0  
1/3V  
0/3V  
Interrupted  
Frame  
Wake-up  
SLEEPInstruction Execution  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 93  
PIC16C925/926  
11.4.1  
SEGMENT ENABLES  
EXAMPLE 11-1:  
STATIC MUX WITH 32  
SEGMENTS  
The LCDSE register is used to select the pin function  
for groups of pins. The selection allows each group of  
pins to operate as either LCD drivers or digital only  
pins. To configure the pins as a digital port, the corre-  
sponding bits in the LCDSE register must be cleared.  
BCF  
BSF  
BCF  
BCF  
STATUS,RP0  
STATUS,RP1  
LCDCON,LMUX1 ;Select Static MUX  
LCDCON,LMUX0 ;  
;Select Bank 2  
;
MOVLW 0xFF  
MOVWF LCDSE  
. . .  
;Make PortD,E,F,G  
;LCD pins  
;configure rest of LCD  
If the pin is a digital I/O the corresponding TRIS bit con-  
trols the data direction. Any bit set in the LCDSE regis-  
ter overrides any bit settings in the corresponding TRIS  
register.  
EXAMPLE 11-2:  
ONE-THIRD DUTY CYCLE  
WITH 13 SEGMENTS  
Note 1: On a Power-on Reset, these pins are  
BCF  
BSF  
BSF  
BCF  
STATUS,RP0  
STATUS,RP1  
LCDCON,LMUX1 ;Select 1/3 MUX  
LCDCON,LMUX0 ;  
;Select Bank 2  
;
configured as LCD drivers.  
2: The LMUX1:LMUX0 takes precedence  
over the LCDSE bit settings for pins RD7,  
RD6 and RD5.  
MOVLW 0x87  
MOVWF LCDSE  
. . .  
;Make PORTD<7:0> &  
;PORTE<6:0> LCD pins  
;configure rest of LCD  
REGISTER 11-4:  
LCDSE REGISTER (ADDRESS 10Dh)  
R/W-1  
SE29  
R/W-1  
SE27  
R/W-1  
SE20  
R/W-1  
SE16  
R/W-1  
SE12  
R/W-1  
SE9  
R/W-1  
SE5  
R/W-1  
SE0  
bit 7  
bit 0  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
SE29: Pin Function Select RD7/COM1/SEG31 - RD5/COM3/SEG29  
1= Pins have LCD drive function  
0= Pins have digital Input function  
SE27: Pin Function Select RG7/SEG28 and RE7/SEG27  
1= Pins have LCD drive function  
0= Pins have LCD drive function  
SE20: Pin Function Select RG6/SEG26 - RG0/SEG20  
1= Pins have LCD drive function  
0= Pins have digital Input function  
SE16: Pin Function Select RF7/SEG19 - RF4/SEG16  
1= Pins have LCD drive function  
0= Pins have digital Input function  
SE12: Pin Function Select RF3/SEG15 - RF0/SEG12  
1= Pins have LCD drive function  
0= Pins have digital Input function  
SE9: Pin Function Select RE6/SEG11 - RE4/SEG09  
1= Pins have LCD drive function  
0= Pins have digital Input function  
SE5: Pin Function Select RE3/SEG08 - RE0/SEG05  
1= Pins have LCD drive function  
0= Pins have digital Input function  
SE0: Pin Function Select RD4/SEG04 - RD0/SEG00  
1= Pins have LCD drive function  
0= Pins have digital Input function  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as 0’  
0= Bit is cleared x = Bit is unknown  
- n = Value at POR  
1= Bit is set  
DS39544A-page 94  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
pump. The charge pump boosts VLCD1 into VLCD2 =  
2*VLCD1 and VLCD3 = 3 * VLCD1. When the charge  
pump is not operating, Vlcd3 will be internally tied to  
VDD. See the Electrical Specifications section for  
charge pump capacitor and potentiometer values.  
11.5 Voltage Generation  
There are two methods for LCD voltage generation:  
internal charge pump, or external resistor ladder.  
11.5.1  
CHARGE PUMP  
11.5.2  
EXTERNAL R-LADDER  
The LCD charge pump is shown in Figure 11-9. The  
1.0V - 2.3V regulator will establish a stable base volt-  
age from the varying battery voltage. This regulator is  
adjustable through the range by connecting a variable  
external resistor from VLCDADJ to ground. The poten-  
tiometer provides contrast adjustment for the LCD. This  
base voltage is connected to VLCD1 on the charge  
The LCD module can also use an external resistor lad-  
der (R-Ladder) to generate the LCD voltages.  
Figure 11-9 shows external connections for static and  
1/3 bias. The VGEN (LCDCON<4>) bit must be cleared  
to use an external R-Ladder.  
FIGURE 11-9:  
CHARGE PUMP AND RESISTOR LADDER  
CPCLK  
VGEN  
Control  
Logic  
3
2
C
C
VDD  
2
3
10 µA  
C+ VGEN  
VGEN  
2
3
Regulator  
VLCD3  
VLCD2  
VLCD1  
VLCD0  
To  
LCD  
Drivers  
VLCD3  
VLCD2  
VLCD1  
C1 C2  
VLCDADJ  
100 k*  
130 k*  
0.47 µF*  
0.47 µF*  
0.47 µF*  
Connections for  
internal charge  
pump, VGEN = 1  
0.47 µF*  
Connections for  
external R-ladder,  
1/3 Bias,  
10 k*  
10 k*  
10 k*  
10 k*  
5 k*  
VGEN = 0  
VLCD3  
VLCD3  
Connections for  
external R-ladder,  
Static Bias,  
5 k*  
VGEN = 0  
* These values are provided for design guidance only and should be optimized to the application by the designer.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 95  
PIC16C925/926  
4. Write initial values to pixel data registers,  
LCDD00 through LCDD15.  
11.6 Configuring the LCD Module  
The following is the sequence of steps to follow to con-  
figure the LCD module.  
5. Clear LCD interrupt flag, LCDIF (PIR1<7>), and  
if desired, enable the interrupt by setting bit  
LCDIE (PIE1<7>).  
1. Select the frame clock prescale using bits  
LP3:LP0 (LCDPS<3:0>).  
6. Enable the LCD module, by setting bit LCDEN  
(LCDCON<7>).  
2. Configure the appropriate pins to function as  
segment drivers using the LCDSE register.  
3. Configure the LCD module for the following  
using the LCDCON register:  
- Multiplex mode and Bias, bits  
LMUX1:LMUX0  
- Timing source, bits CS1:CS0  
- Voltage generation, bit VGEN  
- SLEEP mode, bit SLPEN  
TABLE 11-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE LCD MODULE  
Value on  
Power-on  
Reset  
Value on all  
other  
RESETS  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0Bh, 8Bh,  
10Bh, 18Bh  
INTCON  
GIE  
PEIE  
TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
0Ch  
8Ch  
PIR1  
PIE1  
LCDIF  
LCDIE  
ADIF  
ADIE  
SSPIF  
SSPIE  
CCP1IF TMR2IF  
CCP1IE TMR2IE  
TMR1IF 00-- 0000 00-- 0000  
TMR1IE 00-- 0000 00-- 0000  
10h  
T1CON  
T1CKPS1 T1CKPS0 T1OSCEN T1SYNC TMR1CS TMR1ON  
--00 0000 --uu uuuu  
xxxx xxxx uuuu uuuu  
SEG07  
COM0  
SEG06  
COM0  
SEG05  
COM0  
SEG04  
COM0  
SEG03  
COM0  
SEG02  
COM0  
SEG01  
COM0  
SEG00  
COM0  
110h  
LCDD00  
SEG15  
COM0  
SEG14  
COM0  
SEG13  
COM0  
SEG12  
COM0  
SEG11  
COM0  
SEG10  
COM0  
SEG09  
COM0  
SEG08  
COM0  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
LCDD01  
LCDD02  
LCDD03  
LCDD04  
LCDD05  
LCDD06  
LCDD07  
LCDD08  
LCDD09  
LCDD10  
LCDD11  
LCDD12  
LCDD13  
LCDD14  
LCDD15  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
SEG23  
COM0  
SEG22  
COM0  
SEG21  
COM0  
SEG20  
COM0  
SEG19  
COM0  
SEG18  
COM0  
SEG17  
COM0  
SEG16  
COM0  
SEG31  
COM0  
SEG30  
COM0  
SEG29  
COM0  
SEG28  
COM0  
SEG27  
COM0  
SEG26  
COM0  
SEG25  
COM0  
SEG24  
COM0  
SEG07  
COM1  
SEG06  
COM1  
SEG05  
COM1  
SEG04  
COM1  
SEG03  
COM1  
SEG02  
COM1  
SEG01  
COM1  
SEG00  
COM1  
SEG15  
COM1  
SEG14  
COM1  
SEG13  
COM1  
SEG12  
COM1  
SEG11  
COM1  
SEG10  
COM1  
SEG09  
COM1  
SEG08  
COM1  
SEG23  
COM1  
SEG22  
COM1  
SEG21  
COM1  
SEG20  
COM1  
SEG19  
COM1  
SEG18  
COM1  
SEG17  
COM1  
SEG16  
COM1  
SEG31  
SEG30  
COM1  
SEG29  
COM1  
SEG28  
COM1  
SEG27  
COM1  
SEG26  
COM1  
SEG25  
COM1  
SEG24  
COM1  
COM1(1)  
SEG07  
COM2  
SEG06  
COM2  
SEG05  
COM2  
SEG04  
COM2  
SEG03  
COM2  
SEG02  
COM2  
SEG01  
COM2  
SEG00  
COM2  
SEG15  
COM2  
SEG14  
COM2  
SEG13  
COM2  
SEG12  
COM2  
SEG11  
COM2  
SEG10  
COM2  
SEG09  
COM2  
SEG08  
COM2  
SEG23  
COM2  
SEG22  
COM2  
SEG21  
COM2  
SEG20  
COM2  
SEG19  
COM2  
SEG18  
COM2  
SEG17  
COM2  
SEG16  
COM2  
SEG31  
SEG30  
SEG29  
COM2  
SEG28  
COM2  
SEG27  
COM2  
SEG26  
COM2  
SEG25  
COM2  
SEG24  
COM2  
COM2(1) COM2(1)  
SEG07  
COM3  
SEG06  
COM3  
SEG05  
COM3  
SEG04  
COM3  
SEG03  
COM3  
SEG02  
COM3  
SEG01  
COM3  
SEG00  
COM3  
SEG15  
COM3  
SEG14  
COM3  
SEG13  
COM3  
SEG12  
COM3  
SEG11  
COM3  
SEG10  
COM3  
SEG09  
COM3  
SEG08  
COM3  
SEG23  
COM3  
SEG22  
COM3  
SEG21  
COM3  
SEG20  
COM3  
SEG19  
COM3  
SEG18  
COM3  
SEG17  
COM3  
SEG16  
COM3  
SEG31  
SEG30  
SEG29  
SEG28  
COM3  
SEG27  
COM3  
SEG26  
COM3  
SEG25  
COM3  
SEG24  
COM3  
COM3(1) COM3(1) COM3(1)  
10Dh  
10Eh  
LCDSE  
LCDPS  
SE29  
SE27  
SE20  
SE16  
SE12  
LP3  
SE9  
LP2  
CS0  
SE5  
LP1  
SE0  
LP0  
1111 1111 1111 1111  
---- 0000 ---- 0000  
00-0 0000 00-0 0000  
10Fh  
LCDCON LCDEN  
SLPEN  
VGEN  
CS1  
LMUX1  
LMUX0  
Legend:  
x= unknown, u= unchanged, -= unimplemented, read as '0'. Shaded cells are not used by the LCD module.  
Note 1: These pixels do not display, but can be used as general purpose RAM.  
DS39544A-page 96  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
RESET while the power supply stabilizes. With these  
two timers on-chip, most applications need no external  
RESET circuitry.  
12.0 SPECIAL FEATURES OF THE  
CPU  
What sets a microcontroller apart from other proces-  
sors are special circuits to deal with the needs of real  
time applications. The PIC16CXXX family has a host of  
such features, intended to maximize system reliability,  
minimize cost through elimination of external compo-  
nents, provide power saving operating modes and offer  
code protection. These are:  
SLEEP mode is designed to offer a very low current  
power-down mode. The user can wake-up from SLEEP  
through external RESET, Watchdog Timer Wake-up, or  
through an interrupt.  
Several oscillator options are also made available to  
allow the part to fit the application. The RC oscillator  
option saves system cost, while the LP crystal option  
saves power. A set of configuration bits are used to  
select various options.  
Oscillator Selection  
RESET  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
- Brown-out Reset (BOR)  
Interrupts  
12.1 Configuration Bits  
The configuration bits can be programmed (read as '0'),  
or left unprogrammed (read as '1'), to select various  
device configurations. These bits are mapped in pro-  
gram memory location 2007h.  
Watchdog Timer (WDT)  
SLEEP  
The user will note that address 2007h is beyond the user  
program memory space and can be accessed only dur-  
ing programming.  
Code Protection  
ID Locations  
In-Circuit Serial Programming  
The PIC16CXXX has a Watchdog Timer which can be  
shut-off only through configuration bits. It runs off its  
own RC oscillator for added reliability.  
There are two timers that offer necessary delays on  
power-up. One is the Oscillator Start-up Timer (OST),  
intended to keep the chip in RESET until the crystal  
oscillator is stable. The other is the Power-up Timer  
(PWRT), which provides a fixed delay of 72 ms (nomi-  
nal) on power-up only, designed to keep the part in  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 97  
PIC16C925/926  
REGISTER 12-1: CONFIGURATION WORD (ADDRESS 2007h)  
BOREN CP1  
CP0 PWRTE WDTE F0SC1 F0SC0  
bit0  
bit13  
bit 13-7  
bit 6  
Unimplemented  
BOREN: Brown-out Reset Enable bit  
1= BOR enabled  
0= BOR disabled  
bit 5-4  
CP1:CP0: Program Memory Code Protection bits  
PIC16C926 (8K program memory):  
11= Code protection off  
10= 0000h to 0FFFh code protected (1/2 protected)  
01= 0000h to 1EFFh code protected (all but last 256 protected)  
00= 0000h to 1FFFh code protected (all protected)  
PIC16C925 (4K program memory):  
11= Code protection off  
10= 0000h to 07FFh code protected (1/2 protected)  
01= 0000h to 0EFFh code protected (all but last 256 protected)  
00= 0000h to 0FFFh code protected (all protected)  
1000h to 1FFFh wraps around to 0000h to 0FFFh  
bit 3  
PWRTE: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
bit 2  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled  
bit 1-0  
FOSC1:FOSC0: Oscillator Selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
DS39544A-page 98  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
TABLE 12-1: CERAMIC RESONATORS  
Ranges Tested:  
12.2 Oscillator Configurations  
12.2.1 OSCILLATOR TYPES  
Mode  
Freq.  
C1  
C2  
The PIC16CXXX can be operated in four different oscil-  
lator modes. The user can program two configuration  
bits (FOSC1 and FOSC0) to select one of these four  
modes:  
455 kHz  
2.0 MHz  
4.0 MHz  
68 - 100 pF 68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
XT  
HS  
15 - 68 pF  
15 - 68 pF  
LP  
XT  
HS  
RC  
Low Power Crystal  
8.0 MHz  
10 - 68 pF  
10 - 68 pF  
Crystal/Resonator  
These values are for design guidance only.  
See notes following Table 12-2.  
High Speed Crystal/Resonator  
Resistor/Capacitor  
TABLE 12-2: CAPACITOR SELECTION FOR  
CRYSTAL OSCILLATOR  
12.2.2  
CRYSTAL OSCILLATOR/CERAMIC  
RESONATORS  
Cap.  
Range  
C2  
Crystal  
Freq.  
Cap. Range  
C1  
In XT, LP, or HS modes a crystal or ceramic resonator  
is connected to the OSC1/CLKIN and OSC2/CLKOUT  
pins to establish oscillation (Figure 12-1). The  
PIC16CXXX oscillator design requires the use of a par-  
allel cut crystal. Use of a series cut crystal may give a  
frequency out of the crystal manufacturers specifica-  
tions. When in XT, LP, or HS modes, the device can  
have an external clock source to drive the  
OSC1/CLKIN pin (Figure 12-2).  
Osc Type  
32 kHz  
200 kHz  
200 kHz  
1 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
LP  
XT  
HS  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
4 MHz  
15 pF  
15 pF  
4 MHz  
15 pF  
15 pF  
FIGURE 12-1:  
CRYSTAL/CERAMIC  
RESONATOROPERATION  
(HS, XT OR LP  
8 MHz  
15-33 pF  
15-33 pF  
These values are for design guidance only.  
See notes following this table.  
OSC CONFIGURATION)  
OSC1  
Note 1: Recommended ranges of C1 and C2 are  
depicted in Table 12-1.  
To Internal  
Logic  
SLEEP  
C1  
2: Higher capacitance increases the stability  
of the oscillator, but also increases the  
start-up time.  
XTAL  
OSC2  
RS  
C2 (Note 1)  
RF  
3: Since each resonator/crystal has its own  
characteristics, the user should consult  
the resonator/crystal manufacturer for  
appropriate values of external compo-  
nents.  
PIC16CXXX  
See Table 12-1 and Table 12-2 for recommended values  
of C1 and C2.  
4: Rs may be required in HS mode, as well  
as XT mode, to avoid overdriving crystals  
with low drive level specification.  
Note 1: A series resistor may be required for AT strip  
cut crystals.  
FIGURE 12-2:  
EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR  
LP OSC  
CONFIGURATION)  
OSC1  
Clock from  
Ext. System  
PIC16CXXX  
OSC2  
Open  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 99  
PIC16C925/926  
12.2.3  
EXTERNAL CRYSTAL OSCILLATOR  
CIRCUIT  
12.2.4  
RC OSCILLATOR  
For timing insensitive applications, the RCdevice  
option offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the resis-  
tor (REXT) and capacitor (CEXT) values, and the operat-  
ing temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal pro-  
cess parameter variation. Furthermore, the difference  
in lead frame capacitance between package types will  
also affect the oscillation frequency, especially for low  
CEXT values. The user also needs to take into account  
variation due to tolerance of external R and C compo-  
nents used. Figure 12-5 shows how the R/C combina-  
tion is connected to the PIC16CXXX. For REXT values  
below 2.2 k, the oscillator operation may become  
unstable, or stop completely. For very high REXT values  
(e.g. 1 M), the oscillator becomes sensitive to noise,  
humidity and leakage. Thus, we recommend to keep  
REXT between 3 kand 100 k.  
Either a prepackaged oscillator can be used, or a sim-  
ple oscillator circuit with TTL gates can be built. Pre-  
packaged oscillators provide a wide operating range  
and better stability. A well designed crystal oscillator  
will provide good performance with TTL gates. Two  
types of crystal oscillator circuits can be used: one with  
series resonance, or one with parallel resonance.  
Figure 12-3 shows implementation of a parallel reso-  
nant oscillator circuit. The circuit is designed to use the  
fundamental frequency of the crystal. The 74AS04  
inverter performs the 180-degree phase shift that a par-  
allel oscillator requires. The 4.7 kresistor provides  
the negative feedback for stability. The 10 kpotenti-  
ometer biases the 74AS04 in the linear region. This  
could be used for external oscillator designs.  
FIGURE 12-3:  
EXTERNAL PARALLEL  
RESONANT CRYSTAL  
OSCILLATOR CIRCUIT  
Although the oscillator will operate with no external  
capacitor (CEXT = 0 pF), we recommend using values  
above 20 pF for noise and stability reasons. With no or  
small external capacitance, the oscillation frequency  
can vary dramatically due to changes in external  
capacitances, such as PCB trace capacitance, or pack-  
age lead frame capacitance.  
+5V  
To Other  
Devices  
10k  
74AS04  
4.7k  
PIC16CXXX  
74AS04  
CLKIN  
See characterization data for desired device for RC fre-  
quency variation from part to part, due to normal pro-  
cess variation. The variation is larger for larger R (since  
leakage current variation will affect RC frequency more  
for large R) and for smaller C (since variation of input  
capacitance will affect RC frequency more).  
10k  
XTAL  
10k  
See characterization data for desired device for varia-  
tion of oscillator frequency, due to VDD for given  
REXT/CEXT values, as well as frequency variation due  
to operating temperature for given R, C, and VDD  
values.  
20 pF  
20 pF  
Figure 12-4 shows a series resonant oscillator circuit.  
This circuit is also designed to use the fundamental fre-  
quency of the crystal. The inverter performs a  
180-degree phase shift in a series resonant oscillator  
circuit. The 330 kresistors provide the negative feed-  
back to bias the inverters in their linear region.  
The oscillator frequency, divided by 4, is available on  
the OSC2/CLKOUT pin, and can be used for test pur-  
poses or to synchronize other logic (see Figure 1-2 for  
waveform).  
FIGURE 12-5:  
RC OSCILLATOR MODE  
FIGURE 12-4:  
EXTERNAL SERIES  
RESONANT CRYSTAL  
OSCILLATOR CIRCUIT  
VDD  
REXT  
Internal  
OSC1  
To Other  
Devices  
330 kΩ  
330 kΩ  
Clock  
74AS04  
74AS04  
74AS04  
CEXT  
VSS  
PIC16CXXX  
CLKIN  
0.1 µF  
OSC2/CLKOUT  
FOSC/4  
XTAL  
PIC16CXXX  
DS39544A-page 100  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
SLEEP. They are not affected by a WDT Wake-up,  
which is viewed as the resumption of normal operation.  
The TO and PD bits are set or cleared differently in dif-  
ferent RESET situations, as indicated in Table 12-4.  
These bits are used in software to determine the nature  
of the RESET. See Table 12-6 for a full description of  
RESET states of all registers.  
12.3 RESET  
The PIC16C9XX differentiates between various kinds  
of RESET:  
Power-on Reset (POR)  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset (normal operation)  
Brown-out Reset (BOR)  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 12-6.  
The devices all have a MCLR noise filter in the MCLR  
Reset path. The filter will detect and ignore small  
pulses.  
Some registers are not affected in any RESET condi-  
tion; their status is unknown on POR and unchanged in  
any other RESET. Most other registers are reset to a  
RESET stateon Power-on Reset (POR), on the  
MCLR and WDT Reset, and on MCLR Reset during  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
FIGURE 12-6:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR  
SLEEP  
WDT  
Module  
WDT  
Time-out  
Reset  
VDD Rise  
Detect  
Power-on  
Reset  
VDD  
Brown-out  
Reset  
S
BOREN  
OST/PWRT  
OST  
Chip_Reset  
10-bit Ripple Counter  
R
Q
OSC1  
(1)  
On-chip  
RC OSC  
PWRT  
10-bit Ripple Counter  
Enable PWRT(2)  
Enable OST(2)  
Note 1: This is a separate oscillator from the RC oscillator of the CLKIN pin.  
2: See Table 12-3 for various time-out situations.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 101  
PIC16C925/926  
12.4.4  
BROWN-OUT RESET (BOR)  
12.4 Power-on Reset (POR),  
Power-up Timer (PWRT),  
The configuration bit, BOREN, can enable or disable  
the Brown-out Reset circuit. If VDD falls below VBOR  
(parameter D005, about 4V) for longer than TBOR  
(parameter #35, about 100µS), the brown-out situation  
will reset the device. If VDD falls below VBOR for less  
than TBOR, a RESET may not occur.  
Brown-out Reset (BOR) and  
Oscillator Start-up Timer (OST)  
12.4.1  
POWER-ON RESET (POR)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected (in the range of 1.5V - 2.1V). To  
take advantage of the POR, just tie the MCLR pin  
directly (or through a resistor) to VDD. This will elimi-  
nate external RC components usually needed to create  
a Power-on Reset. A maximum rise time for VDD is  
specified. See Electrical Specifications for details.  
Once the brown-out occurs, the device will remain in  
Brown-out Reset until VDD rises above VBOR. The  
Power-up Timer, if enabled, then keeps the device in  
RESET for TPWRT (parameter #33, about 72mS). If  
VDD should fall below VBOR during TPWRT, the  
Brown-out Reset process will restart when VDD rises  
above VBOR with the Power-up Timer Reset. The  
Power-up Timer is enabled separately from Brown-out  
Reset.  
When the device starts normal operation (exits the  
RESET condition), device operating parameters (volt-  
age, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in RESET until the operating con-  
ditions are met.  
12.4.5  
TIME-OUT SEQUENCE  
On power-up, the time-out sequence is as follows:  
First, PWRT time-out is invoked after the POR time  
delay has expired. Then, OST is activated. The total  
time-out will vary based on oscillator configuration and  
the status of the PWRT. For example, in RC mode with  
the PWRT disabled, there will be no time-out at all.  
Figure 12-7, Figure 12-8, and Figure 12-9 depict  
time-out sequences on power-up.  
For additional information, refer to Application Note  
AN607, Power-up Trouble Shooting.”  
12.4.2  
POWER-UP TIMER (PWRT)  
The Power-up Timer provides a fixed 72 ms nominal  
time-out on power-up only, from the POR. The  
Power-up Timer operates on an internal RC oscillator.  
The chip is kept in RESET as long as the PWRT is  
active. The PWRTs time delay allows VDD to rise to an  
acceptable level. A configuration bit is provided to  
enable/disable the PWRT.  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then  
bringing MCLR high will begin execution immediately  
(Figure 12-8). This is useful for testing purposes or to  
synchronize more than one PIC16CXXX device oper-  
ating in parallel.  
The power-up time delay will vary from chip to chip due  
to VDD, temperature, and process variation. See DC  
parameters for details.  
Table 12-5 shows the RESET conditions for some spe-  
cial function registers, while Table 12-6 shows the  
RESET conditions for all the registers.  
12.4.3  
OSCILLATOR START-UP TIMER  
(OST)  
12.4.6  
POWER CONTROL/STATUS  
REGISTER (PCON)  
The Oscillator Start-up Timer (OST), if enabled, pro-  
vides 1024 oscillator cycle (from OSC1 input) delay  
after the PWRT delay (if the PWRT is enabled). This  
helps to ensure that the crystal oscillator or resonator  
has started and stabilized.  
The Power Control/Status Register, PCON, has up to  
two bits depending upon the device.  
Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is  
unknown on a Power-on Reset. It must then be set by  
the user and checked on subsequent RESETS to see if  
bit BOR cleared, indicating a BOR occurred. When the  
Brown-out Reset is disabled, the state of the BOR bit is  
unpredictable and is, therefore, not valid at any time.  
The OST time-out is invoked only for XT, LP and HS  
modes and only on Power-on Reset or wake-up from  
SLEEP.  
Bit1 is Power-on Reset Status bit POR. It is cleared on  
a Power-on Reset and unaffected otherwise. The user  
must set this bit following a Power-on Reset.  
TABLE 12-3: TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Oscillator Configuration  
Wake-up from SLEEP  
PWRTE = 0  
PWRTE = 1  
XT, HS, LP  
RC  
1024TOSC  
72 ms + 1024TOSC  
72 ms  
1024 TOSC  
DS39544A-page 102  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
TABLE 12-4: STATUS BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
PD  
Condition  
0
0
0
1
1
1
1
1
x
x
x
0
1
1
1
1
1
0
x
1
0
0
u
1
1
x
0
1
1
0
u
0
Power-on Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during SLEEP or interrupt wake-up from SLEEP  
TABLE 12-5: RESET CONDITION FOR SPECIAL REGISTERS  
Program  
STATUS  
Register  
PCON  
Register  
Condition  
Counter  
Power-on Reset  
000h  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 1uuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
---- --0x  
---- --uu  
---- --uu  
---- --uu  
---- --uu  
---- --u0  
---- --uu  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset  
000h  
000h  
WDT Wake-up  
PC + 1  
Brown-out Reset  
000h  
PC + 1(1)  
Interrupt wake-up from SLEEP  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as 0.  
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 103  
PIC16C925/926  
TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS  
Wake-up via  
WDT or  
Interrupt  
MCLR Resets  
WDT Reset  
Register  
Power-on Reset  
W
xxxx xxxx  
N/A  
uuuu uuuu  
N/A  
uuuu uuuu  
N/A  
INDF  
TMR0  
xxxx xxxx  
0000h  
uuuu uuuu  
uuuu uuuu  
PC + 1(2)  
PCL  
0000h  
STATUS  
FSR  
0001 1xxx  
xxxx xxxx  
--0x 0000  
xxxx xxxx  
--xx xxxx  
0000 0000  
0000 0000  
---0 0000  
0000 000x  
00-- 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
000q quuu(3)  
uuuu uuuu  
--0u 0000  
uuuu uuuu  
--uu uuuu  
0000 0000  
0000 0000  
---0 0000  
0000 000u  
00-- 0000  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
0000 0000  
-000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
uuuu uuuu  
--00 0000  
uuuq quuu(3)  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu(1)  
uu-- uuuu(1)  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PCLATH  
INTCON  
PIR1  
TMR1L  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
ADRES  
xxxx xxxx  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
00-- 0000  
---- --0-  
uuuu uuuu  
0000 00-0  
1111 1111  
--11 1111  
1111 1111  
--11 1111  
1111 1111  
1111 1111  
00-- 0000  
---- --u-  
uuuu uuuu  
uuuu uu-u  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uu-- uuuu  
---- --u-  
ADCON0  
OPTION_REG  
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
PIE1  
PCON  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as 0, q= value depends on condition  
Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 12-5 for RESET value for specific condition.  
DS39544A-page 104  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)  
Wake-up via  
WDT or  
Interrupt  
MCLR Resets  
WDT Reset  
Register  
Power-on Reset  
PR2  
1111 1111  
0000 0000  
0000 0000  
---- -000  
0000 0000  
0000 0000  
1111 1111  
---- 0000  
00-0 0000  
1111 1111  
0000 0000  
0000 0000  
---- -000  
0000 0000  
0000 0000  
1111 1111  
---- 0000  
00-0 0000  
1111 1111  
uuuu uuuu  
uuuu uuuu  
---- -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- uuuu  
uu-u uuuu  
SSPADD  
SSPSTAT  
ADCON1  
PORTF  
PORTG  
LCDSE  
LCDPS  
LCDCON  
LCDD00  
to  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
LCDD15  
TRISF  
TRISG  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
uuuu uuuu  
uuuu uuuu  
Legend: u= unchanged, x= unknown, -= unimplemented bit, read as 0, q= value depends on condition  
Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 12-5 for RESET value for specific condition.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 105  
PIC16C925/926  
FIGURE 12-7:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 12-8:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 12-9:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
DS39544A-page 106  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
The return from interruptinstruction, RETFIE, exits  
the interrupt routine as well as sets the GIE bit, which  
re-enables interrupts.  
12.5 Interrupts  
The PIC16C925/926 family has nine sources of  
interrupt:  
The RB0/INT pin interrupt, the RB port change interrupt  
and the TMR0 overflow interrupt flags are contained in  
the INTCON register.  
External interrupt RB0/INT  
TMR0 overflow interrupt  
PORTB change interrupts  
(pins RB7:RB4)  
The peripheral interrupt flags are contained in the spe-  
cial function register, PIR1. The corresponding inter-  
rupt enable bits are contained in special function  
register, PIE1, and the peripheral interrupt enable bit is  
contained in special function register, INTCON.  
A/D Interrupt  
TMR1 overflow interrupt  
TMR2 matches period interrupt  
CCP1 interrupt  
When an interrupt is responded to, the GIE bit is  
cleared to disable any further interrupts, the return  
address is pushed onto the stack and the PC is loaded  
with 0004h. Once in the Interrupt Service Routine the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bit(s) must be  
cleared in software before re-enabling interrupts to  
avoid recursive interrupts.  
Synchronous serial port interrupt  
LCD module interrupt  
The interrupt control register (INTCON) records individ-  
ual interrupt requests in flag bits. It also has individual  
and global interrupt enable bits.  
Note: Individual interrupt flag bits are set, regard-  
less of the status of their corresponding  
mask bit, or the GIE bit.  
For external interrupt events, such as the RB0/INT pin  
or RB Port change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends when the interrupt event occurs  
(Figure 12-11). The latency is the same for one or two  
cycle instructions. Individual interrupt flag bits are set,  
regardless of the status of their corresponding mask  
bit, PEIE bit, or the GIE bit.  
A global interrupt enable bit, GIE (INTCON<7>),  
enables (if set) all unmasked interrupts, or disables (if  
cleared) all interrupts. When bit GIE is enabled, and an  
interrupts flag bit and mask bit are set, the interrupt will  
vector immediately. Individual interrupts can be dis-  
abled through their corresponding enable bits in vari-  
ous registers. Individual interrupt bits are set,  
regardless of the status of the GIE bit. The GIE bit is  
cleared on RESET.  
FIGURE 12-10:  
INTERRUPT LOGIC  
TMR1IF  
TMR1IE  
Wake-up (If in SLEEP mode)  
TMR0IF  
TMR0IE  
INTF  
INTE  
TMR2IF  
TMR2IE  
Interrupt to CPU  
RBIF  
RBIE  
LCDIF  
LCDIE  
PEIF  
PEIE  
GIE  
CCP1IF  
CCP1IE  
SSPIF  
SSPIE  
ADIF  
ADIE  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 107  
PIC16C925/926  
FIGURE 12-11:  
INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT  
3
4
INT pin  
1
1
INTF Flag  
(INTCON<1>)  
Interrupt Latency  
5
2
GIE bit  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
0004h  
0005h  
PC  
PC+1  
PC+1  
Instruction  
Inst (PC)  
Inst (PC+1)  
Inst (0004h)  
Inst (0005h)  
Inst (0004h)  
Fetched  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC-1)  
Note 1: INTF flag is sampled here (every Q1).  
2: Interrupt latency = 3-4 TCY where TCY = instruction cycle time. Latency is the same whether Inst (PC) is a single  
cycle or a 2-cycle instruction.  
3: CLKOUT is available only in RC oscillator mode.  
4: For minimum width of INT pulse, refer to AC specs.  
5: INTF can be set any time during the Q4-Q1 cycles.  
12.5.1  
INT INTERRUPT  
12.5.2  
TMR0 INTERRUPT  
External interrupt on RB0/INT pin is edge triggered:  
either rising if bit INTEDG (OPTION_REG<6>) is set,  
or falling, if the INTEDG bit is clear. When a valid edge  
appears on the RB0/INT pin, flag bit INTF  
(INTCON<1>) is set. This interrupt can be disabled by  
clearing enable bit INTE (INTCON<4>). Flag bit INTF  
must be cleared in software in the Interrupt Service  
Routine before re-enabling this interrupt. The INT inter-  
rupt can wake-up the processor from SLEEP, if bit INTE  
was set prior to going into SLEEP. The status of global  
interrupt enable bit, GIE, decides whether or not the  
processor branches to the interrupt vector following  
wake-up. See Section 12.8 for details on SLEEP mode.  
An overflow (FFh 00h) in the TMR0 register will set  
flag bit, TMR0IF (INTCON<2>). The interrupt can be  
enabled/disabled by setting/clearing enable bit,  
TMR0IE (INTCON<5>) (Section 5.0).  
12.5.3  
PORTB INTCON CHANGE  
An input change on PORTB<7:4> sets flag bit RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit, RBIE (INTCON<4>)  
(Section 4.2).  
DS39544A-page 108  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
The code in the example:  
12.6 Context Saving During Interrupts  
e) Stores the W register.  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users may wish to save key reg-  
isters during an interrupt, i.e., the W and STATUS reg-  
isters. This will have to be implemented in software.  
f) Stores the STATUS register in bank 0.  
g) Stores the PCLATH register.  
h) Executes the ISR code.  
Example 12-1 stores and restores the STATUS, W, and  
PCLATH registers. The register, W_TEMP, must be  
defined in each bank and must be defined at the same  
offset from the bank base address (i.e., if W_TEMP is  
defined at 0x20 in bank 0, it must also be defined at  
0xA0 in bank 1).  
i) Restores the STATUS register (and bank select  
bit).  
j) Restores the W and PCLATH registers.  
EXAMPLE 12-1:  
SAVING STATUS, W, AND PCLATH REGISTERS IN RAM  
MOVWF  
SWAPF  
CLRF  
MOVWF  
MOVF  
MOVWF  
CLRF  
BCF  
W_TEMP  
STATUS,W  
STATUS  
STATUS_TEMP  
PCLATH, W  
PCLATH_TEMP  
PCLATH  
STATUS, IRP  
FSR, W  
;Copy W to TEMP register, could be bank one or zero  
;Swap status to be saved into W  
;bank 0, regardless of current bank, Clears IRP,RP1,RP0  
;Save status to bank zero STATUS_TEMP register  
;Only required if using pages 1, 2 and/or 3  
;Save PCLATH into W  
;Page zero, regardless of current page  
;Return to Bank 0  
MOVF  
MOVWF  
:
;Copy FSR to W  
;Copy FSR from W to FSR_TEMP  
FSR_TEMP  
:(ISR)  
;Insert user code here  
:
MOVF  
MOVWF  
SWAPF  
PCLATH_TEMP, W  
PCLATH  
STATUS_TEMP,W  
;Restore PCLATH  
;Move W into PCLATH  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 109  
PIC16C925/926  
assigned to the WDT under software control, by writing  
to the OPTION register. Thus, time-out periods up to  
2.3 seconds can be realized.  
12.7 Watchdog Timer (WDT)  
The Watchdog Timer is a free running on-chip RC oscil-  
lator, which does not require any external components.  
This RC oscillator is separate from the RC oscillator of  
the OSC1/CLKIN pin. That means that the WDT will  
run, even if the clock on the OSC1/CLKIN and  
OSC2/CLKOUT pins of the device has been stopped,  
for example, by execution of a SLEEPinstruction. Dur-  
ing normal operation, a WDT time-out generates a  
device RESET (Watchdog Timer Reset). If the device is  
in SLEEP mode, a WDT time-out causes the device to  
wake-up and continue with normal operation (Watch-  
dog Timer Wake-up). The WDT can be permanently  
disabled by clearing configuration bit WDTE  
(Section 12.1).  
The CLRWDT and SLEEP instructions clear the WDT  
and the postscaler, if assigned to the WDT, prevent it  
from timing out and generating a device RESET  
condition.  
The TO bit in the STATUS register will be cleared upon  
a Watchdog Timer time-out.  
12.7.2  
WDT PROGRAMMING  
CONSIDERATIONS  
It should also be taken into account that under worst  
case conditions (VDD = Min., Temperature = Max., and  
Max. WDT prescaler) it may take several seconds  
before a WDT time-out occurs.  
12.7.1  
WDT PERIOD  
Note: When a CLRWDT instruction is executed  
and the prescaler is assigned to the WDT,  
the prescaler count will be cleared, but the  
prescaler assignment is not changed.  
The WDT has a nominal time-out period of 18 ms (with  
no prescaler). The time-out periods vary with tempera-  
DD  
ture, V and process variations from part to part (see  
DC specs). If longer time-out periods are desired, a  
prescaler with a division ratio of up to 1:128 can be  
FIGURE 12-12:  
WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 5-6)  
0
Postscaler  
8
M
1
U
WDT Timer  
X
8 - to - 1 MUX  
PS2:PS0  
PSA  
WDT  
Enable bit  
To TMR0 (Figure 5-6)  
0
1
MUX  
PSA  
WDT  
Time-out  
Note: PSA and PS2:PS0 are bits in the OPTION register.  
FIGURE 12-13:  
Address  
SUMMARY OF WATCHDOG TIMER REGISTERS  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
PWRTE(1) WDTE  
PSA PS2  
Bit 2  
Bit 1  
Bit 0  
2007h  
Config. bits  
OPTION  
(1)  
BOREN(1)  
INTEDG  
CP1  
CP0  
FOSC1 FOSC0  
81h, 181h  
RBPU  
T0CS  
T0SE  
PS1  
PS0  
Legend: Shaded cells are not used by the Watchdog Timer.  
Note 1: See Register 12-1 for operation of these bits.  
DS39544A-page 110  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
Other peripherals can not generate interrupts since  
during SLEEP, no on-chip Q clocks are present.  
12.8 Power-down Mode (SLEEP)  
Power-down mode is entered by executing a SLEEP  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, the  
user should have a NOPafter the SLEEPinstruction.  
instruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit (STATUS<3>) is cleared, the  
TO (STATUS<4>) bit is set, and the oscillator driver is  
turned off. The I/O ports maintain the status they had,  
before the SLEEP instruction was executed (driving  
high, low, or hi-impedance).  
For lowest current consumption in this mode, place all  
I/O pins at either VDD, or VSS, ensure no external cir-  
cuitry is drawing current from the I/O pin, power-down  
the A/D, disable external clocks. Pull all I/O pins that  
are hi-impedance inputs, high or low externally, to avoid  
switching currents caused by floating inputs. The  
T0CKI input should also be at VDD or VSS for lowest  
current consumption. The contribution from on-chip  
pull-ups on PORTB should also be considered.  
12.8.2  
WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
The MCLR pin must be at a logic high level (VIHMC).  
If the interrupt occurs before the execution of a  
SLEEPinstruction, the SLEEPinstruction will com-  
plete as a NOP. Therefore, the WDT and WDT  
postscaler will not be cleared, the TO bit will not  
be set and PD bits will not be cleared.  
12.8.1  
WAKE-UP FROM SLEEP  
The device can wake-up from SLEEP through one of  
the following events:  
If the interrupt occurs during or after the execu-  
tion of a SLEEPinstruction, the device will imme-  
diately wake-up from SLEEP. The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT  
postscaler will be cleared, the TO bit will be set  
and the PD bit will be cleared.  
1. External RESET input on MCLR pin.  
2. Watchdog Timer Wake-up (if WDT was  
enabled).  
3. Interrupt from RB0/INT pin, RB port change, or  
peripheral interrupt.  
External MCLR Reset will cause a device RESET. All  
other events are considered a continuation of program  
execution and cause a wake-up. The TO and PD bits  
in the STATUS register can be used to determine the  
cause of device RESET. The PD bit, which is set on  
power-up is cleared when SLEEPis invoked. The TO bit  
is cleared if a WDT time-out occurred (and caused  
wake-up).  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
To ensure that the WDT is cleared, a CLRWDTinstruc-  
tion should be executed before a SLEEPinstruction.  
The following peripheral interrupts can wake the device  
from SLEEP:  
1. TMR1 interrupt. Timer1 must be operating as an  
asynchronous counter.  
2. SSP (START/STOP) bit detect interrupt.  
3. SSP transmit or receive in Slave mode  
(SPI/I2C).  
4. CCP Capture mode interrupt.  
5. A/D conversion (when A/D clock source is RC).  
6. Special event trigger (Timer1 in Asynchronous  
mode using an external clock).  
7. LCD module.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 111  
PIC16C925/926  
FIGURE 12-14:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
(2)  
TOST  
CLKOUT(4)  
INT pin  
INTF Flag  
Interrupt Latency  
(INTCON<1>)  
(Note 2)  
GIE bit  
Processor in  
SLEEP  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = SLEEP  
Fetched  
Instruction  
Executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 1)  
Inst(PC - 1)  
Inst(0004h)  
Note 1: XT, HS or LP oscillator mode assumed.  
2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.  
3: GIE = 1assumed. In this case after wake-up, the processor jumps to the interrupt routine.  
If GIE = 0, execution will continue in-line.  
4: CLKOUT is not available in these osc modes, but shown here for timing reference.  
After RESET, to place the device into Program/Verify  
mode, the program counter (PC) is at location 00h. A  
6-bit command is then supplied to the device. Depend-  
ing on the command, 14-bits of program data are then  
supplied to or from the device, depending if the com-  
mand was a load or a read. For complete details of  
serial programming, please refer to the PIC16C6X/7X  
Programming Specifications (Literature #DS30228).  
12.9 Program Verification/Code  
Protection  
If the code protection bit(s) have not been pro-  
grammed, the on-chip program memory can be read  
out for verification purposes.  
Note: Microchip does not recommend code pro-  
tecting windowed devices.  
FIGURE 12-15:  
TYPICAL IN-CIRCUIT  
SERIAL PROGRAMMING  
CONNECTION  
12.10 ID Locations  
Four memory locations (2000h - 2003h) are designated  
as ID locations, where the user can store checksum or  
other code identification numbers. These locations are  
not accessible during normal execution, but are read-  
able and writable during program/verify. It is recom-  
mended that only the four Least Significant bits of the  
ID location are used.  
To Normal  
Connections  
External  
Connector  
Signals  
PIC16CXXX  
+5V  
0V  
VDD  
12.11 In-Circuit Serial Programming  
VSS  
VPP  
MCLR/VPP  
PIC16CXXX microcontrollers can be serially pro-  
grammed while in the end application circuit. This is  
simply done with two lines for clock and data, and three  
other lines for power, ground, and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices, and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom firm-  
ware to be programmed.  
RB6  
RB7  
CLK  
Data I/O  
VDD  
To Normal  
Connections  
The device is placed into a Program/Verify mode by  
holding the RB6 and RB7 pins low, while raising the  
MCLR (VPP) pin from VIL to VIHH (see programming  
specification). RB6 becomes the programming clock  
and RB7 becomes the programming data. Both RB6  
and RB7 are Schmitt Trigger inputs in this mode.  
DS39544A-page 112  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
TABLE 13-1: OPCODE FIELD  
13.0 INSTRUCTION SET SUMMARY  
DESCRIPTIONS  
Each PIC16CXXX instruction is a 14-bit word divided  
into an OPCODE which specifies the instruction type  
and one or more operands which further specify the  
operation of the instruction. The PIC16CXXX instruc-  
tion set summary in Table 13-2 lists byte-oriented, bit-  
oriented, and literal and control operations.  
Table 13-1 shows the opcode field descriptions.  
Field  
Description  
f
W
b
k
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Bit address within an 8-bit file register  
Literal field, constant data or label  
The instruction set is highly orthogonal and is grouped  
into three basic categories:  
Dont care location (= 0 or 1).  
The assembler will generate code with x = 0.  
It is the recommended form of use for com-  
patibility with all Microchip software tools.  
x
d
Byte-oriented operations  
Bit-oriented operations  
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1.  
Literal and control operations  
For byte-oriented instructions, 'f' represents a file reg-  
ister designator and 'd' represents a destination desig-  
nator. The file register designator specifies which file  
register is to be used by the instruction.  
label Label name  
TOS  
PC  
Top-of-Stack  
Program Counter  
The destination designator specifies where the result of  
the operation is to be placed. If 'd' is zero, the result is  
placed in the W register. If 'd' is one, the result is placed  
in the file register specified in the instruction.  
PCLATH Program Counter High Latch  
GIE  
WDT  
TO  
Global Interrupt Enable bit  
Watchdog Timer/Counter  
Time-out bit  
For bit-oriented instructions, 'b' represents a bit field  
designator which selects the number of the bit affected  
by the operation, while 'f' represents the address of the  
file in which the bit is located.  
PD  
Power-down bit  
Destination either the W register or the  
specified register file location  
dest  
Options  
For literal and control operations, 'k' represents an  
eight or eleven bit constant or literal value.  
[ ]  
( )  
Contents  
Assigned to  
FIGURE 13-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
Register bit field  
In the set of  
< >  
Byte-oriented file register operations  
13  
User defined term (font is courier)  
8
7
6
0
0
italics  
OPCODE  
d
f (FILE #)  
All instructions are executed within one single instruc-  
tion cycle, unless a conditional test is true, or the pro-  
gram counter is changed, as a result of an instruction.  
In this case, the execution takes two instruction cycles,  
with the second cycle executed as a NOP. One instruc-  
tion cycle consists of four oscillator periods. Thus, for  
an oscillator frequency of 4 MHz, the normal instruction  
execution time is 1 µs. If a conditional test is true, or the  
program counter is changed, as a result of an instruc-  
tion, the instruction execution time is 2 µs.  
d = 0 for destination W  
d = 1 for destination f  
f = 7-bit file register address  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
Table 13-2 lists the instructions recognized by the  
MPASMTM assembler.  
Literal and control operations  
General  
Figure 13-1 shows the general formats that the instruc-  
tions can have.  
13  
8
7
0
0
OPCODE  
k (literal)  
Note: To maintain upward compatibility with  
future PIC16CXXX products, do not use  
the OPTIONand TRISinstructions.  
k = 8-bit immediate value  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
All examples use the format 0xnnto represent a  
hexadecimal number.  
k (literal)  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 113  
PIC16C925/926  
TABLE 13-2: PIC16CXXX INSTRUCTION SET  
14-Bit Opcode  
Mnemonic,  
Description  
Operands  
Status  
Affected  
Cycles  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00 0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
00 0101 dfff ffff  
00 0001 lfff ffff  
00 0001 0xxx xxxx  
00 1001 dfff ffff  
00 0011 dfff ffff  
00 1011 dfff ffff  
00 1010 dfff ffff  
00 1111 dfff ffff  
00 0100 dfff ffff  
00 1000 dfff ffff  
00 0000 lfff ffff  
00 0000 0xx0 0000  
00 1101 dfff ffff  
00 1100 dfff ffff  
Z
Z
Z
Z
Z
-
f, d  
f, d  
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
DECFSZ f, d  
INCF  
f, d  
f, d  
f, d  
f, d  
f
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
1,2  
Move W to f  
No Operation  
-
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
00 0010 dfff ffff C,DC,Z  
00 1110 dfff ffff  
00 0110 dfff ffff  
Z
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
1,2  
1,2  
3
01 00bb bfff ffff  
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
C,DC,Z  
Z
11 111x kkkk kkkk  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
00 0000 0110 0100  
10 1kkk kkkk kkkk  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
00 0000 0110 0011  
11 110x kkkk kkkk  
11 1010 kkkk kkkk  
TO,PD  
Z
Inclusive OR literal with W  
Move literal to W  
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into standby mode  
Subtract W from literal  
Exclusive OR literal with W  
TO,PD  
C,DC,Z  
Z
Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is 1for a pin configured as input and is driven low by an external  
device, the data will be written back with a 0.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if  
assigned to the Timer0 Module.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
DS39544A-page 114  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
13.1 Instruction Descriptions  
ADDWF  
Add W and f  
ADDLW  
Add Literal and W  
Syntax:  
[ label ] ADDWF f [,d]  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Operands:  
0 f 127  
d ∈ [0,1]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
(W) + k (W)  
C, DC, Z  
Operation:  
(W) + (f) (destination)  
Status Affected:  
Encoding:  
C, DC, Z  
11  
111x  
kkkk  
kkkk  
00  
0111  
dfff  
ffff  
Description:  
The contents of the W register are  
added to the eight-bit literal kand  
the result is placed in the W  
register.  
Description:  
Add the contents of the W register  
with register f. If dis 0, the result is  
stored in the W register. If dis 1, the  
result is stored back in register f.  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode Read Process Write to  
Decode  
Read Process Write to  
literal k’  
data  
W
register fdata destination  
ADDLW  
0x15  
Example:  
Example  
ADDWF FSR,  
0
Before Instruction:  
0x10  
Before Instruction:  
W
=
W
FSR  
=
=
0x17  
0xC2  
After Instruction:  
0x25  
W
=
After Instruction:  
W
FSR  
=
=
0xD9  
0xC2  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 115  
PIC16C925/926  
ANDLW  
AND Literal with W  
ANDWF  
AND W with f  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Syntax:  
[ label ] ANDWF f [,d]  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Operands:  
0 f 127  
d ∈ [0,1]  
(W) .AND. (k) (W)  
Z
Operation:  
(W).AND. (f) (destination)  
11  
1001  
kkkk  
kkkk  
Status Affected:  
Encoding:  
Z
Description:  
The contents of W register are  
ANDed with the eight-bit literal 'k'.  
The result is placed in the W  
register.  
00  
0101  
dfff  
ffff  
Description:  
AND the W register with register f.  
If dis 0, the result is stored in the  
W register. If dis 1, the result is  
stored back in register f.  
Words:  
1
1
Cycles:  
Words:  
Cycles:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Read Process Write to  
literal k’  
Decode  
Q1  
Q2  
Q3  
Q4  
data  
W
Q Cycle Activity:  
Read  
Decode register  
'f'  
Process Write to  
data destination  
ANDLW  
0x5F  
Example  
Before Instruction:  
W
=
0xA3  
ANDWF  
FSR,  
Example  
1
After Instruction:  
W
=
0x03  
Before Instruction:  
W
=
0x17  
FSR  
After Instruction  
W
=
0xC2  
=
=
0x17  
0x02  
FSR  
DS39544A-page 116  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
BCF  
Bit Clear f  
BTFSC  
Bit Test, Skip if Clear  
Syntax:  
[ label ] BCF f [,b]  
Syntax:  
[ label ] BTFSC f [,b]  
Operands:  
0 f 127  
0 b 7  
Operands:  
0 f 127  
0 b 7  
Operation:  
0 (f<b>)  
Operation:  
skip if (f<b>) = 0  
Status Affected:  
None  
Status Affected:  
Encoding:  
None  
01  
00bb  
bfff  
ffff  
01  
10bb  
bfff  
ffff  
Encoding:  
Description:  
Words:  
Bit bin register fis cleared.  
Description:  
If bit bin register fis 1, then the  
next instruction is executed.  
If bit bin register fis 0, then the  
next instruction is discarded, and a  
NOPis executed instead, making this a  
2TCY instruction.  
1
1
Cycles:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Read  
Decode register  
1
Process  
data register f’  
Write  
Words:  
f’  
1(2)  
Cycles:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
BCF  
FLAG_REG, 7  
Example  
Read  
register f’  
Process  
data  
No  
Operation  
Decode  
Before Instruction:  
FLAG_REG =  
After Instruction:  
FLAG_REG =  
0xC7  
0x47  
If Skip:  
(2nd Cycle)  
Q1  
Q2  
No  
Q3  
No  
Q4  
No  
No  
Operation Operation Operation Operation  
HERE  
FALSE  
TRUE  
BTFSC  
GOTO  
FLAG,1  
PROCESS_CODE  
Example  
BSF  
Bit Set f  
Syntax:  
[ label ] BSF f [,b]  
Operands:  
0 f 127  
0 b 7  
Before Instruction:  
PC address HERE  
=
Operation:  
1 (f<b>)  
After Instruction:  
if FLAG<1>  
PC  
Status Affected:  
None  
=
=
=
=
0,  
address TRUE  
1,  
address FALSE  
01  
01bb  
bfff  
ffff  
Encoding:  
Description:  
Words:  
if FLAG<1>  
PC  
Bit bin register fis set.  
1
1
Cycles:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Decode Read Process  
Write  
register  
data register f’  
f’  
BSF  
FLAG_REG,  
7
Example  
Before Instruction:  
FLAG_REG  
After Instruction:  
FLAG_REG  
=
=
0x0A  
0x8A  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 117  
PIC16C925/926  
BTFSS  
Bit Test f, Skip if Set  
CALL  
Call Subroutine  
Syntax:  
[ label ] BTFSS f [,b]  
Syntax:  
[ label ] CALL k  
0 k 2047  
Operands:  
0 f 127  
0 b < 7  
Operands:  
Operation:  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
Operation:  
skip if (f<b>) = 1  
None  
Status Affected:  
Status Affected:  
None  
01  
11bb  
bfff  
ffff  
Encoding:  
10  
0kkk  
kkkk  
kkkk  
Encoding:  
Description:  
If bit bin register fis 0, then the  
next instruction is executed.  
If bit bis 1, then the next instruc-  
tion is discarded and a NOPis exe-  
cuted instead, making this a 2TCY  
instruction.  
Description:  
Call Subroutine. First, return  
address (PC+1) is pushed onto the  
stack. The eleven-bit immediate  
address is loaded into PC bits  
<10:0>. The upper bits of the PC are  
loaded from PCLATH. CALLis a  
two-cycle instruction.  
Words:  
1
Cycles:  
1(2)  
Words:  
1
2
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Cycles:  
Decode  
Read  
register f’  
Process  
data  
No  
Operation  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Read  
If Skip:  
(2nd Cycle)  
Q1  
literal k, Process Write to  
Push PC  
to Stack  
Decode  
1st Cycle  
2nd Cycle  
Q2  
No  
Q3  
No  
Q4  
No  
data  
PC  
No  
No  
No  
No  
No  
Operation Operation Operation Operation  
Operation Operation Operation Operation  
HERE  
FALSE  
TRUE  
BTFSC  
GOTO  
FLAG,1  
PROCESS_CODE  
Example  
HERE  
CALL  
THERE  
Example  
Before Instruction:  
PC = Address HERE  
After Instruction:  
Before Instruction:  
PC  
= Address THERE  
= Address HERE+1  
PC  
=
address HERE  
TOS  
After Instruction:  
if FLAG<1>  
PC  
=
=
=
=
0,  
address FALSE  
1,  
address TRUE  
if FLAG<1>  
PC  
DS39544A-page 118  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
CLRF  
Clear f  
CLRW  
Clear W  
Syntax:  
[ label ] CLRF  
0 f 127  
f
Syntax:  
[ label ] CLRW  
Operands:  
Operation:  
Operands:  
Operation:  
None  
00h (f)  
1 Z  
00h (W)  
1 Z  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
Z
00  
0001  
1fff  
ffff  
00  
0001  
0xxx  
xxxx  
Description:  
The contents of register fare  
cleared and the Z bit is set.  
Description:  
W register is cleared. Zero bit (Z) is  
set.  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
No  
Q3  
Q4  
Q Cycle Activity:  
Read  
Decode register  
Write  
register  
f’  
Process  
data  
Process Write to  
Decode  
Operation data  
W
f’  
CLRW  
Example  
CLRF  
FLAG_REG  
Example  
Before Instruction:  
0x5A  
Before Instruction:  
FLAG_REG = 0x5A  
W
=
After Instruction:  
After Instruction:  
FLAG_REG = 0x00  
W
Z
=
=
0x00  
1
Z
=
1
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 119  
PIC16C925/926  
CLRWDT  
Clear Watchdog Timer  
COMF  
Complement f  
Syntax:  
[ label ] CLRWDT  
Syntax:  
[ label ] COMF f [,d]  
Operands:  
Operation:  
None  
Operands:  
0 f 127  
d [0,1]  
00h WDT  
0 WDT prescaler,  
1 TO  
Operation:  
(f) (destination)  
Status Affected:  
Z
1 PD  
00  
1001  
dfff  
ffff  
Encoding:  
Status Affected:  
Encoding:  
TO, PD  
The contents of register fare com-  
plemented. If dis 0, the result is  
stored in W. If dis 1, the result is  
stored back in register f.  
Description:  
00  
0000  
0110  
0100  
CLRWDTinstruction resets the  
Description:  
Watchdog Timer. It also resets the  
prescaler of the WDT. Status bits TO  
and PD are set.  
1
1
Words:  
Cycles:  
1
1
Words:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Cycles:  
Read Process Write to  
Decode  
Q1  
Q2  
No  
Q3  
Q4  
Q Cycle Activity:  
register fdata destination  
Clear  
WDT  
Counter  
Process  
Decode  
Operation data  
COMF  
REG1,0  
Example  
Before Instruction:  
REG1  
=
0x13  
CLRWDT  
Example  
After Instruction:  
Before Instruction:  
REG1  
W
=
=
0x13  
0xEC  
WDT counter  
=
?
After Instruction:  
WDT counter  
WDT prescaler  
TO  
=
=
=
=
0x00  
0
1
1
PD  
DS39544A-page 120  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
DECF  
Decrement f  
DECFSZ  
Decrement f, Skip if 0  
Syntax:  
[ label ] DECF f [,d]  
Syntax:  
[ label ] DECFSZ f [,d]  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (destination)  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
Status Affected:  
Z
Status Affected:  
None  
00  
0011  
dfff  
ffff  
Encoding:  
00  
1011  
dfff  
ffff  
Encoding:  
Decrement register f. If dis 0, the  
result is stored in the W register. If d’  
is 1, the result is stored back in  
register f.  
Description:  
Description:  
The contents of register fare decre-  
mented. If dis 0, the result is placed  
in the W register. If dis 1, the result  
is placed back in register f.  
If the result is 1, the next instruction is  
executed. If the result is 0, then a NOP  
is executed instead, making it a 2TCY  
instruction.  
Words:  
Cycles:  
1
1
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Read  
Process Write to  
data  
Words:  
Cycles:  
1
Decode register  
destination  
f’  
1(2)  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
DECF  
CNT,  
Example  
1
Read  
register f’  
Process Write to  
Decode  
data  
destination  
Before Instruction:  
CNT  
Z
=
=
0x01  
0
If Skip: (2nd Cycle)  
Q1  
Q2  
No  
Q3  
No  
Q4  
No  
After Instruction:  
No  
CNT  
Z
=
=
0x00  
1
Operation Operation Operation Operation  
HERE  
DECFSZ  
GOTO  
CNT, 1  
LOOP  
Example  
CONTINUE •  
Before Instruction:  
PC = address HERE  
After Instruction:  
CNT  
if CNT  
=
=
CNT - 1  
0,  
PC  
if CNT  
PC  
=
=
address CONTINUE  
0,  
address HERE+1  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 121  
PIC16C925/926  
GOTO  
Unconditional Branch  
INCF  
Increment f  
Syntax:  
[ label ] GOTO k  
0 k 2047  
Syntax:  
[ label ] INCF f [,d]  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Encoding:  
None  
Status Affected:  
Z
10  
1kkk  
kkkk  
kkkk  
00  
1010  
dfff  
ffff  
Encoding:  
GOTOis an unconditional branch. The  
eleven-bit immediate value is loaded  
into PC bits <10:0>. The upper bits of  
PC are loaded from PCLATH<4:3>.  
GOTOis a two-cycle instruction.  
The contents of register fare incre-  
mented. If dis 0, the result is placed  
in the W register. If dis 1, the result  
is placed back in register f.  
Description:  
Description:  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
2
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
1st Cycle  
Read  
Decode register  
Process Write to  
data destination  
Decode  
Read  
Process Write to  
f’  
literal k’  
data  
PC  
No  
No  
No  
No  
2nd Cycle  
Operation Operation Operation Operation  
INCF  
CNT, 1  
Example  
Before Instruction:  
GOTO THERE  
Example  
CNT  
Z
=
=
0xFF  
0
After Instruction:  
PC = Address THERE  
After Instruction:  
CNT  
Z
=
=
0x00  
1
DS39544A-page 122  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
INCFSZ  
Increment f, Skip if 0  
IORLW  
Inclusive OR Literal with W  
Syntax:  
[ label ] INCFSZ f [,d]  
Syntax:  
[ label ] IORLW k  
0 k 255  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
(W) .OR. k (W)  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected:  
Encoding:  
Z
11  
1000  
kkkk  
kkkk  
Status Affected:  
Encoding:  
None  
The contents of the W register is  
ORed with the eight-bit literal 'k'.  
The result is placed in the W  
register.  
Description:  
00  
1111  
dfff  
ffff  
The contents of register fare incre-  
mented. If dis 0, the result is placed  
in the W register. If dis 1, the result is  
placed back in register f.  
If the result is 1, the next instruction is  
executed. If the result is 0, a NOPis  
executed instead, making it a 2TCY  
instruction.  
Description:  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Read Process Write to  
literal k’  
Decode  
data  
W
Words:  
Cycles:  
1
1(2)  
IORLW  
0x35  
Example  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Before Instruction:  
0x9A  
Read  
register f’  
Process Write to  
data destination  
W
=
Decode  
After Instruction:  
If Skip: (2nd Cycle)  
W
Z
=
=
0xBF  
0
Q1  
No  
Q2  
No  
Q3  
No  
Q4  
No  
Operation Operation Operation Operation  
HERE  
INCFSZ CNT,  
GOTO LOOP  
1
Example  
CONTINUE •  
Before Instruction:  
PC  
=
address HERE  
After Instruction:  
CNT  
if CNT  
PC  
if CNT  
PC  
=
=
=
=
CNT + 1  
0,  
address CONTINUE  
0,  
address HERE +1  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 123  
PIC16C925/926  
IORWF  
Inclusive OR W with f  
MOVF  
Move f  
Syntax:  
[ label ] IORWF f [,d]  
Syntax:  
[ label ] MOVF f [,d]  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W).OR. (f) (destination)  
Operation:  
(f) (destination)  
Status Affected:  
Z
Status Affected:  
Z
00  
0100  
dfff  
ffff  
00  
1000  
dfff  
ffff  
Encoding:  
Encoding:  
Description:  
Inclusive OR the W register with reg-  
ister f. If dis 0, the result is placed  
in the W register. If dis 1, the result  
is placed back in register f.  
Description:  
The contents of register f are moved  
to a destination dependant upon the  
status of d. If d = 0, the destination is  
W register. If d = 1, the destination is  
file register f itself. d = 1 is useful to  
test a file register, since status flag Z  
is affected.  
Words:  
Cycles:  
1
1
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Words:  
Cycles:  
1
1
Read  
Decode register  
Process Write to  
data destination  
Q1  
Q2  
Q3  
Q4  
f’  
Q Cycle Activity:  
Read  
Decode register  
Process Write to  
data destination  
IORWF  
RESULT, 0  
Example  
f’  
Before Instruction:  
RESULT  
W
=
=
0x13  
0x91  
MOVF  
FSR,  
0
Example  
After Instruction:  
After Instruction:  
RESULT  
W
Z
=
=
=
0x13  
0x93  
0
W
Z
=
=
value in FSR register  
1 if W = 0  
MOVLW  
Move Literal to W  
Syntax:  
[ label ] MOVLW k  
0 k 255  
k (W)  
Operands:  
Operation:  
Status Affected:  
Encoding:  
None  
11  
00xx  
kkkk  
kkkk  
The eight-bit literal kis loaded into  
W register. The dont cares will  
assemble as 0s.  
Description:  
Words:  
Cycles:  
1
1
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Read Process Write to  
Decode  
literal k’  
data  
W
MOVLW  
0x5A  
Example  
After Instruction:  
0x5A  
W
=
DS39544A-page 124  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
MOVWF  
Move W to f  
NOP  
No Operation  
Syntax:  
[ label ] MOVWF  
0 f 127  
(W) (f)  
f
Syntax:  
[ label ] NOP  
None  
Operands:  
Operation:  
Status Affected:  
Operands:  
Operation:  
No operation  
None  
Status Affected:  
Encoding:  
None  
00  
0000  
1fff  
ffff  
00  
0000  
0xx0  
0000  
Encoding:  
Move data from W register to  
register f.  
Description:  
Description:  
Words:  
No operation.  
1
1
Words:  
Cycles:  
1
1
Cycles:  
Q1  
Q2  
Q3  
No  
Q4  
No  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
No  
Decode  
Read  
Decode register  
Operation Operation Operation  
Process  
data register f’  
Write  
f’  
NOP  
Example  
Example  
MOVWF  
OPTION_REG  
Before Instruction:  
OPTION  
Load Option Register  
OPTION  
W
=
=
0xFF  
0x4F  
Syntax:  
[ label ] OPTION  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
After Instruction:  
OPTION  
W
(W) OPTION  
None  
=
=
0x4F  
0x4F  
00  
0000  
0110  
0010  
Description:  
The contents of the W register are  
loaded in the OPTION register.  
This instruction is supported for  
code compatibility with PIC16C5X  
products. Since OPTION is a  
readable/writable register, the user  
can directly address it.  
Words:  
Cycles:  
Example  
1
1
To maintain upward compatibility  
with future PIC16CXXX products,  
do not use this instruction.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 125  
PIC16C925/926  
RETFIE  
Return from Interrupt  
RETLW  
Return with Literal in W  
Syntax:  
[ label ] RETFIE  
Syntax:  
[ label ] RETLW k  
0 k 255  
Operands:  
Operation:  
None  
Operands:  
Operation:  
TOS PC,  
1 GIE  
k (W);  
TOS PC  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
None  
00  
0000  
0000  
1001  
11  
01xx  
kkkk  
kkkk  
Description:  
Return from Interrupt. Stack is POPed  
and Top-of-Stack (TOS) is loaded in  
the PC. Interrupts are enabled by set-  
ting Global Interrupt Enable bit, GIE  
(INTCON<7>). This is a two-cycle  
instruction.  
Description:  
The W register is loaded with the eight-  
bit literal k. The program counter is  
loaded from the top of the stack (the  
return address). This is a two-cycle  
instruction.  
Words:  
Cycles:  
1
2
Words:  
Cycles:  
1
2
Q1  
Q2  
Q3  
No  
Q4  
Q Cycle Activity:  
1st Cycle  
Q1  
Q2  
No  
Q3  
Q4  
Q Cycle Activity:  
1st Cycle  
Write to W,  
Pop from  
the Stack  
Read  
literal kOperation  
Decode  
No  
Decode  
Set the Pop from  
Operation GIE bit the Stack  
No No  
No  
No  
No No No  
2nd Cycle  
Example  
2nd Cycle  
Operation Operation Operation Operation  
Operation Operation Operation Operation  
CALL TABLE ;W contains table  
RETFIE  
Example  
;offset value  
After Interrupt:  
;W now has table value  
PC = TOS  
GIE =  
1
TABLE ADDWF PC  
;W = offset  
;Begin table  
;
RETLW k1  
RETLW k2  
RETLW kn  
; End of table  
Before Instruction:  
0x07  
W
=
After Instruction:  
value of k8  
W
=
DS39544A-page 126  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
RETURN  
Return from Subroutine  
RLF  
Rotate Left f through Carry  
Syntax:  
[ label ] RETURN  
None  
Syntax:  
[ label ] RLF f [,d]  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
TOS PC  
Operation:  
See description below  
Status Affected:  
Encoding:  
None  
Status Affected:  
Encoding:  
C
00  
0000  
0000  
1000  
00  
1101  
dfff  
ffff  
Description:  
Return from subroutine. The stack is  
POPed and the top of the stack (TOS)  
is loaded into the program counter.  
This is a two-cycle instruction.  
Description:  
The contents of register fare rotated  
one bit to the left through the Carry  
Flag. If dis 0, the result is placed in  
the W register. If dis 1, the result is  
stored back in register f.  
Words:  
Cycles:  
1
2
C
Register f  
Q1  
Q2  
No  
Q3  
No  
Q4  
Q Cycle Activity:  
1st Cycle  
Words:  
Cycles:  
1
1
Pop from  
Decode  
No  
Operation Operation the Stack  
No No No  
Q1  
Q2  
Q3  
Q4  
2nd Cycle  
Q Cycle Activity:  
Operation Operation Operation Operation  
Read  
Decode register  
Process Write to  
data destination  
RETURN  
f’  
Example  
After Interrupt:  
PC = TOS  
RLF  
REG1,0  
Example  
Before Instruction:  
REG1  
C
=
=
1110 0110  
0
After Instruction:  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 127  
PIC16C925/926  
RRF  
Rotate Right f through Carry  
SLEEP  
Syntax:  
[ label ] RRF f [,d]  
Syntax:  
[ label ] SLEEP  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
None  
00h WDT,  
0 WDT prescaler,  
1 TO,  
Operation:  
See description below  
C
Status Affected:  
Encoding:  
0 PD  
00  
1100  
dfff  
ffff  
Status Affected:  
Encoding:  
TO, PD  
Description:  
The contents of register fare rotated  
one bit to the right through the Carry  
Flag. If dis 0, the result is placed in  
the W register. If dis 1, the result is  
placed back in register f.  
00  
0000  
0110  
0011  
Description:  
The power-down status bit, PD is  
cleared. Time-out status bit, TO is  
set. Watchdog Timer and its  
prescaler are cleared.  
C
Register f  
The processor is put into SLEEP  
mode with the oscillator stopped.  
See Section 12.8 for more details.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Read  
Decode register  
Q1  
Q2  
No  
Q3  
No  
Q4  
Q Cycle Activity:  
Process Write to  
data destination  
Go to  
f’  
Decode  
Operation Operation Sleep  
RRF  
REG1,0  
Example  
SLEEP  
Example:  
Before Instruction:  
REG1  
C
=
=
1110 0110  
0
After Instruction:  
REG1  
W
C
=
=
=
1110 0110  
0111 0011  
0
DS39544A-page 128  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
SUBLW  
Subtract W from Literal  
SUBWF  
Subtract W from f  
Syntax:  
[ label ] SUBLW k  
0 k 255  
Syntax:  
[ label ] SUBWF f [,d]  
Operands:  
Operands:  
0 f 127  
d [0,1]  
Operation:  
k - (W) → (W)  
Operation:  
(f) - (W) → (destination)  
Status Affected: C, DC, Z  
Status Affected: C, DC, Z  
11  
110x  
kkkk  
kkkk  
Encoding:  
00  
0010  
dfff  
ffff  
Encoding:  
Description:  
The W register is subtracted (2s  
complement method) from the eight-  
bit literal 'k'. The result is placed in the  
W register.  
Description:  
Subtract (2s complement method) W  
register from register 'f'. If 'd' is 0, the  
result is stored in the W register. If 'd' is  
1, the result is stored back in register 'f'.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Read  
literal k’  
Process  
data  
Decode  
Write to W  
Read  
register f’  
Process Write to  
data destination  
Decode  
SUBLW  
0x02  
Example 1:  
Example 1:  
SUBWF REG1,1  
Before Instruction:  
W
C
Z
=
=
=
1
?
?
Before Instruction:  
REG1  
=
=
=
=
3
2
?
?
W
C
Z
After Instruction:  
W
C
Z
=
=
=
1
1; result is positive  
0
After Instruction:  
REG1  
=
=
=
=
1
2
W
C
Z
Example 2:  
1; result is positive  
0
Before Instruction:  
W
C
Z
=
=
=
2
?
?
Example 2:  
Before Instruction:  
REG1  
=
=
=
=
2
2
?
?
After Instruction:  
W
C
Z
W
C
Z
=
=
=
0
1; result is zero  
1
After Instruction:  
Example 3:  
REG1  
=
=
=
=
0
2
Before Instruction:  
W
C
Z
W
C
Z
=
=
=
3
?
?
1; result is zero  
1
Example 3:  
After Instruction:  
Before Instruction:  
W
C
Z
=
=
=
0xFF  
0; result is negative  
0
REG1  
=
=
=
=
1
2
?
?
W
C
Z
After Instruction:  
REG1  
=
=
=
=
0xFF  
2
0; result is negative  
0
W
C
Z
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 129  
PIC16C925/926  
SWAPF  
Syntax:  
Swap Nibbles in f  
TRIS  
Load TRIS Register  
Syntax:  
[ label ] TRIS  
5 f 7  
f
[ label ] SWAPF f [,d]  
Operands:  
Operation:  
Status Affected:  
Operands:  
0 f 127  
d [0,1]  
(W) TRIS register f;  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
None  
00  
0000  
0110  
0fff  
Encoding:  
Status Affected:  
None  
Description:  
The instruction is supported for  
code compatibility with the  
PIC16C5X products. Since TRIS  
registers are readable and writ-  
able, the user can directly address  
them.  
00  
1110  
dfff  
ffff  
Encoding:  
Description:  
The upper and lower nibbles of reg-  
ister fare exchanged. If dis 0, the  
result is placed in W register. If dis  
1, the result is placed in register f.  
Words:  
Cycles:  
Example  
1
1
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
To maintain upward compatibil-  
ity with future PIC16CXXX  
products, do not use this  
instruction.  
Read Process Write to  
register fdata destination  
Decode  
SWAPF  
REG,  
0
Example  
Before Instruction:  
REG1  
=
0xA5  
After Instruction:  
REG1  
W
=
=
0xA5  
0x5A  
DS39544A-page 130  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
XORLW  
Exclusive OR Literal with W  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] XORLW  
0 k 255  
k
Syntax:  
[ label ] XORWF f [,d]  
Operands:  
Operation:  
Status Affected:  
Operands:  
0 f 127  
d [0,1]  
(W) .XOR. k → (W)  
Operation:  
(W) .XOR. (f) → (destination)  
Z
Status Affected:  
Encoding:  
Z
11  
1010  
kkkk  
kkkk  
Encoding:  
00  
0110  
dfff  
ffff  
Description:  
The contents of the W register are  
XORed with the eight-bit literal  
'k'. The result is placed in the W  
register.  
Description:  
Exclusive OR the contents of the W  
register with register 'f'. If 'd' is 0, the  
result is stored in the W register. If  
'd' is 1, the result is stored back in  
register 'f'.  
Words:  
Cycles:  
1
1
Words:  
Cycles:  
1
1
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Decode Read Process Write to  
literal kdata  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
W
Read Process Write to  
register fdata destination  
Decode  
XORLW 0xAF  
Example:  
Before Instruction:  
0xB5  
XORWF  
REG  
1
Example  
W
=
Before Instruction:  
After Instruction:  
0x1A  
REG  
W
=
=
0xAF  
0xB5  
W
=
After Instruction:  
REG  
W
=
=
0x1A  
0xB5  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 131  
PIC16C925/926  
NOTES:  
DS39544A-page 132  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
The MPLAB IDE allows you to:  
14.0 DEVELOPMENT SUPPORT  
Edit your source files (either assembly or C)  
The PICmicro® microcontrollers are supported with a  
full range of hardware and software development tools:  
One touch assemble (or compile) and download  
to PICmicro emulator and simulator tools (auto-  
matically updates all project information)  
Integrated Development Environment  
- MPLAB® IDE Software  
Debug using:  
- source files  
Assemblers/Compilers/Linkers  
- MPASMTM Assembler  
- absolute listing file  
- machine code  
- MPLAB C17 and MPLAB C18 C Compilers  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
The ability to use MPLAB IDE with multiple debugging  
tools allows users to easily switch from the cost-  
effective simulator to a full-featured emulator with  
minimal retraining.  
Simulators  
- MPLAB SIM Software Simulator  
Emulators  
14.2 MPASM Assembler  
- MPLAB ICE 2000 In-Circuit Emulator  
- ICEPICIn-Circuit Emulator  
In-Circuit Debugger  
The MPASM assembler is a full-featured universal  
macro assembler for all PICmicro MCUs.  
- MPLAB ICD for PIC16F87X  
Device Programmers  
- PRO MATE® II Universal Device Programmer  
- PICSTART® Plus Entry-Level Development  
Programmer  
The MPASM assembler has a command line interface  
and a Windows shell. It can be used as a stand-alone  
application on a Windows 3.x or greater system, or it  
can be used through MPLAB IDE. The MPASM assem-  
bler generates relocatable object files for the MPLINK  
object linker, Intel® standard HEX files, MAP files to  
detail memory usage and symbol reference, an abso-  
lute LST file that contains source lines and generated  
machine code, and a COD file for debugging.  
Low Cost Demonstration Boards  
- PICDEMTM 1 Demonstration Board  
- PICDEM 2 Demonstration Board  
- PICDEM 3 Demonstration Board  
- PICDEM 17 Demonstration Board  
- KEELOQ® Demonstration Board  
The MPASM assembler features include:  
Integration into MPLAB IDE projects.  
User-defined macros to streamline assembly  
code.  
14.1 MPLAB Integrated Development  
Environment Software  
Conditional assembly for multi-purpose source  
files.  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. The MPLAB IDE is a Windows®-based  
application that contains:  
Directives that allow complete control over the  
assembly process.  
14.3 MPLAB C17 and MPLAB C18  
C Compilers  
An interface to debugging tools  
- simulator  
The MPLAB C17 and MPLAB C18 Code Development  
Systems are complete ANSI Ccompilers for  
Microchips PIC17CXXX and PIC18CXXX family of  
microcontrollers, respectively. These compilers provide  
powerful integration capabilities and ease of use not  
found with other compilers.  
- programmer (sold separately)  
- emulator (sold separately)  
- in-circuit debugger (sold separately)  
A full-featured editor  
A project manager  
For easier source level debugging, the compilers pro-  
vide symbol information that is compatible with the  
MPLAB IDE memory display.  
Customizable toolbar and key mapping  
A status bar  
On-line help  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 133  
PIC16C925/926  
14.4 MPLINK Object Linker/  
MPLIB Object Librarian  
14.6 MPLAB ICE High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
The MPLINK object linker combines relocatable  
objects created by the MPASM assembler and the  
MPLAB C17 and MPLAB C18 C compilers. It can also  
link relocatable objects from pre-compiled libraries,  
using directives from a linker script.  
The MPLAB ICE universal in-circuit emulator is intended  
to provide the product development engineer with a  
complete microcontroller design tool set for PICmicro  
microcontrollers (MCUs). Software control of the  
MPLAB ICE in-circuit emulator is provided by the  
MPLAB Integrated Development Environment (IDE),  
which allows editing, building, downloading and source  
debugging from a single environment.  
The MPLIB object librarian is a librarian for pre-  
compiled code to be used with the MPLINK object  
linker. When a routine from a library is called from  
another source file, only the modules that contain that  
routine will be linked in with the application. This allows  
large libraries to be used efficiently in many different  
applications. The MPLIB object librarian manages the  
creation and modification of library files.  
The MPLAB ICE 2000 is a full-featured emulator sys-  
tem with enhanced trace, trigger and data monitoring  
features. Interchangeable processor modules allow the  
system to be easily reconfigured for emulation of differ-  
ent processors. The universal architecture of the  
MPLAB ICE in-circuit emulator allows expansion to  
support new PICmicro microcontrollers.  
The MPLINK object linker features include:  
Integration with MPASM assembler and MPLAB  
C17 and MPLAB C18 C compilers.  
The MPLAB ICE in-circuit emulator system has been  
designed as a real-time emulation system, with  
advanced features that are generally found on more  
expensive development tools. The PC platform and  
Microsoft® Windows environment were chosen to best  
make these features available to you, the end user.  
Allows all memory areas to be defined as sections  
to provide link-time flexibility.  
The MPLIB object librarian features include:  
Easier linking because single libraries can be  
included instead of many smaller files.  
Helps keep code maintainable by grouping  
related modules together.  
14.7 ICEPIC In-Circuit Emulator  
Allows libraries to be created and modules to be  
added, listed, replaced, deleted or extracted.  
The ICEPIC low cost, in-circuit emulator is a solution  
for the Microchip Technology PIC16C5X, PIC16C6X,  
PIC16C7X and PIC16CXXX families of 8-bit One-  
Time-Programmable (OTP) microcontrollers. The mod-  
ular system can support different subsets of PIC16C5X  
or PIC16CXXX products through the use of inter-  
changeable personality modules, or daughter boards.  
The emulator is capable of emulating without target  
application circuitry being present.  
14.5 MPLAB SIM Software Simulator  
The MPLAB SIM software simulator allows code devel-  
opment in a PC-hosted environment by simulating the  
PICmicro series microcontrollers on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a file, or user-defined key press, to any of the pins. The  
execution can be performed in single step, execute  
until break, or trace mode.  
The MPLAB SIM simulator fully supports symbolic debug-  
ging using the MPLAB C17 and the MPLAB C18 C com-  
pilers and the MPASM assembler. The software simulator  
offers the flexibility to develop and debug code outside of  
the laboratory environment, making it an excellent multi-  
project software development tool.  
DS39544A-page 134  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
14.8 MPLAB ICD In-Circuit Debugger  
14.11 PICDEM 1 Low Cost PICmicro  
Demonstration Board  
Microchips In-Circuit Debugger, MPLAB ICD, is a pow-  
erful, low cost, run-time development tool. This tool is  
based on the FLASH PIC16F87X and can be used to  
develop for this and other PICmicro microcontrollers  
from the PIC16CXXX family. The MPLAB ICD utilizes  
the in-circuit debugging capability built into the  
PIC16F87X. This feature, along with Microchips  
In-Circuit Serial ProgrammingTM protocol, offers cost-  
effective in-circuit FLASH debugging from the graphical  
user interface of the MPLAB Integrated Development  
Environment. This enables a designer to develop and  
debug source code by watching variables, single-  
stepping and setting break points. Running at full  
speed enables testing hardware in real-time.  
The PICDEM 1 demonstration board is a simple board  
which demonstrates the capabilities of several of  
Microchips microcontrollers. The microcontrollers sup-  
ported are: PIC16C5X (PIC16C54 to PIC16C58A),  
PIC16C61, PIC16C62X, PIC16C71, PIC16C8X,  
PIC17C42, PIC17C43 and PIC17C44. All necessary  
hardware and software is included to run basic demo  
programs. The user can program the sample microcon-  
trollers provided with the PICDEM 1 demonstration  
board on a PRO MATE II device programmer, or a  
PICSTART Plus development programmer, and easily  
test firmware. The user can also connect the  
PICDEM 1 demonstration board to the MPLAB ICE in-  
circuit emulator and download the firmware to the emu-  
lator for testing. A prototype area is available for the  
user to build some additional hardware and connect it  
to the microcontroller socket(s). Some of the features  
include an RS-232 interface, a potentiometer for simu-  
lated analog input, push button switches and eight  
LEDs connected to PORTB.  
14.9 PRO MATE II Universal Device  
Programmer  
The PRO MATE II universal device programmer is a  
full-featured programmer, capable of operating in  
stand-alone mode, as well as PC-hosted mode. The  
PRO MATE II device programmer is CE compliant.  
The PRO MATE II device programmer has program-  
mable VDD and VPP supplies, which allow it to verify  
programmed memory at VDD min and VDD max for max-  
imum reliability. It has an LCD display for instructions  
and error messages, keys to enter commands and a  
modular detachable socket assembly to support various  
package types. In stand-alone mode, the PRO MATE II  
device programmer can read, verify, or program  
PICmicro devices. It can also set code protection in this  
mode.  
14.12 PICDEM 2 Low Cost PIC16CXX  
Demonstration Board  
The PICDEM 2 demonstration board is a simple dem-  
onstration board that supports the PIC16C62,  
PIC16C64, PIC16C65, PIC16C73 and PIC16C74  
microcontrollers. All the necessary hardware and soft-  
ware is included to run the basic demonstration pro-  
grams. The user can program the sample  
microcontrollers provided with the PICDEM 2 demon-  
stration board on a PRO MATE II device programmer,  
or a PICSTART Plus development programmer, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 2 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding additional hardware and  
connecting it to the microcontroller socket(s). Some of  
the features include a RS-232 interface, push button  
switches, a potentiometer for simulated analog input, a  
serial EEPROM to demonstrate usage of the I2CTM bus  
and separate headers for connection to an LCD  
module and a keypad.  
14.10 PICSTART Plus Entry Level  
Development Programmer  
The PICSTART Plus development programmer is an  
easy-to-use, low cost, prototype programmer. It con-  
nects to the PC via a COM (RS-232) port. MPLAB  
Integrated Development Environment software makes  
using the programmer simple and efficient.  
The PICSTART Plus development programmer sup-  
ports all PICmicro devices with up to 40 pins. Larger pin  
count devices, such as the PIC16C92X and  
PIC17C76X, may be supported with an adapter socket.  
The PICSTART Plus development programmer is CE  
compliant.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 135  
PIC16C925/926  
14.13 PICDEM 3 Low Cost PIC16CXXX  
Demonstration Board  
14.14 PICDEM 17 Demonstration Board  
The PICDEM 17 demonstration board is an evaluation  
board that demonstrates the capabilities of several  
Microchip microcontrollers, including PIC17C752,  
PIC17C756A, PIC17C762 and PIC17C766. All neces-  
sary hardware is included to run basic demo programs,  
which are supplied on a 3.5-inch disk. A programmed  
sample is included and the user may erase it and  
program it with the other sample programs using the  
PRO MATE II device programmer, or the PICSTART  
Plus development programmer, and easily debug and  
test the sample code. In addition, the PICDEM 17 dem-  
onstration board supports downloading of programs to  
and executing out of external FLASH memory on board.  
The PICDEM 17 demonstration board is also usable  
with the MPLAB ICE in-circuit emulator, or the  
PICMASTER emulator and all of the sample programs  
can be run and modified using either emulator. Addition-  
ally, a generous prototype area is available for user  
hardware.  
The PICDEM 3 demonstration board is a simple dem-  
onstration board that supports the PIC16C923 and  
PIC16C924 in the PLCC package. It will also support  
future 44-pin PLCC microcontrollers with an LCD Mod-  
ule. All the necessary hardware and software is  
included to run the basic demonstration programs. The  
user can program the sample microcontrollers pro-  
vided with the PICDEM 3 demonstration board on a  
PRO MATE II device programmer, or a PICSTART Plus  
development programmer with an adapter socket, and  
easily test firmware. The MPLAB ICE in-circuit emula-  
tor may also be used with the PICDEM 3 demonstration  
board to test firmware. A prototype area has been pro-  
vided to the user for adding hardware and connecting it  
to the microcontroller socket(s). Some of the features  
include a RS-232 interface, push button switches, a  
potentiometer for simulated analog input, a thermistor  
and separate headers for connection to an external  
LCD module and a keypad. Also provided on the  
PICDEM 3 demonstration board is a LCD panel, with 4  
commons and 12 segments, that is capable of display-  
ing time, temperature and day of the week. The  
PICDEM 3 demonstration board provides an additional  
RS-232 interface and Windows software for showing  
the demultiplexed LCD signals on a PC. A simple serial  
interface allows the user to construct a hardware  
demultiplexer for the LCD signals.  
14.15 KEELOQ Evaluation and  
Programming Tools  
KEELOQ evaluation and programming tools support  
Microchips HCS Secure Data Products. The HCS eval-  
uation kit includes a LCD display to show changing  
codes, a decoder to decode transmissions and a pro-  
gramming interface to program test transmitters.  
DS39544A-page 136  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
TABLE 14-1: DEVELOPMENT TOOLS FROM MICROCHIP  
0 1 5 2 P M C  
X X X C R M F  
H C S X X X  
X X C 9 3  
/ X X C 2 5  
/ X X C 2 4  
X X C 8 2 C 1 P I  
X 7 X 7 C 1 C I P  
X 4 1 7 C I C P  
X 9 X 6 C 1 C I P  
X 8 X 6 F 1 C I P  
X 8 1 6 C I C P  
X 7 X 6 C 1 C I P  
X 7 1 6 C I C P  
X 6 2 1 6 C I F P  
X
X X C 6 C 1 P I  
X 6 1 6 C I C P  
X 5 1 6 C I C P  
0 0 1 4 C I 0 P  
X
X X C 2 C 1 P I  
s o l T e o r a w f t S o s r o t a u l E m e r u b g e g D s m e a r m o g P r r  
s t K l a i E d v n a s d r a B o o m D e  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 137  
PIC16C925/926  
NOTES:  
DS39544A-page 138  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
15.0 ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
Ambient temperature under bias.............................................................................................................-55°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4) ......................................... -0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ............................................................................................................. 0V to +7.5V  
Voltage on MCLR with respect to VSS........................................................................................................ 0V to +13.25V  
Voltage on RA4 with respect to VSS............................................................................................................... 0V to +8.5V  
Voltage on VLCD2, VLCD3 with respect to VSS.............................................................................................. 0V to +10V  
Total power dissipation (Note 1) ..............................................................................................................................1.0 W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD)..................................................................................................................... 20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD) ............................................................................................................. 20 mA  
Maximum output current sunk by any I/O pin .........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ...................................................................................................25 mA  
Maximum current sunk by all Ports combined .....................................................................................................200 mA  
Maximum current sourced by all Ports combined ................................................................................................200 mA  
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - IOH} + {(VDD - VOH) x IOH} + (VOl x IOL)  
NOTICE: Stresses above those listed under Absolute Maximum Ratingsmay cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 139  
PIC16C925/926  
FIGURE 15-1:  
PIC16C925/926 VOLTAGE-FREQUENCY GRAPH  
6.0 V  
5.5 V  
5.0 V  
4.5 V  
4.0 V  
PIC16C925/926  
3.5 V  
3.0 V  
2.5 V  
2.0 V  
20 MHz  
Frequency  
FIGURE 15-2:  
PIC16LC925/926 VOLTAGE-FREQUENCY GRAPH  
6.0 V  
5.5 V  
5.0 V  
4.5 V  
PIC16LC925/926  
4.0 V  
3.5 V  
3.0 V  
2.5 V  
2.0 V  
10 MHz  
4 MHz  
Frequency  
FMAX = (6.0 MHz/V) (VDDAPPMIN - 2.0 V) + 4 MHz  
Note 1: VDDAPPMIN is the minimum voltage of the PICmicro® device in the application.  
Note 2: FMAX has a maximum frequency of 10MHz.  
DS39544A-page 140  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
15.1 DC Characteristics  
Standard Operating Conditions (unless otherwise stated)  
PIC16LC925/926  
(Commercial, Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
0°C TA +70°C for commercial  
Standard Operating Conditions (unless otherwise stated)  
PIC16C925/926  
(Commercial, Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
0°C TA +70°C for commercial  
Param  
No.  
Sym  
Characteristic  
Min TypMax Units  
Conditions  
VDD  
Supply Voltage  
PIC16LC925/926 2.5  
D001  
D001A  
5.5  
5.5  
V
V
LP, XT and RC osc configuration  
HS osc configuration  
4.5  
D001  
D001A  
PIC16C925/926 4.0  
4.5  
5.5  
5.5  
V
V
XT, RC and LP osc configuration  
HS osc configuration  
D002  
D003  
VDR  
RAM Data Retention  
Voltage (Note 1)  
1.5  
V
Device in SLEEP mode  
VPOR  
VDD Start Voltage  
to ensure internal  
VSS  
V
See Power-on Reset section for details  
Power-on Reset signal  
D004  
D005  
SVDD  
VDD Rise Rate  
to ensure internal  
Power-on Reset signal  
0.05  
3.65  
V/ms See Power-on Reset section for details  
(Note 6)  
VBOR  
IDD  
Brown-out Reset  
voltage trip point  
4.35  
V
BODEN bit set  
Supply Current (Note 2)  
D010  
D011  
PIC16LC925/926  
.6  
2.0 mA XT and RC osc configuration  
FOSC = 4 MHz, VDD = 3.0V (Note 4)  
225 48  
µA LP osc configuration  
FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
D010  
D011  
D012  
PIC16C925/926  
2.7  
35  
7
5
mA XT and RC osc configuration  
FOSC = 4 MHz, VDD = 5.5V (Note 4)  
µA LP osc configuration  
FOSC = 32 kHz, VDD = 4.0V  
mA HS osc configuration  
70  
10  
FOSC = 20 MHz, VDD = 5.5V  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin load-  
ing and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on  
the current consumption.The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail;  
all I/O pins tri-stated, pulled to VDD  
MCLR = VDD.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
5: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
6: PWRT must be enabled for slow ramps.  
7: ∆ΙLCDT1 and ∆ΙLCDRC includes the current consumed by the LCD Module and the voltage generation  
circuitry. This does not include current dissipated by the LCD panel.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 141  
PIC16C925/926  
15.1 DC Characteristics (Continued)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LC925/926  
(Commercial, Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
0°C TA +70°C for commercial  
Standard Operating Conditions (unless otherwise stated)  
PIC16C925/926  
(Commercial, Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
0°C TA +70°C for commercial  
Param  
No.  
Sym  
Characteristic  
Min TypMax Units  
Conditions  
IPD  
Power-down Current (Note 3)  
D020  
D020  
PIC16LC925/926  
PIC16C925/926  
0.9  
1.5  
5
µA VDD = 3.0V  
21  
µA VDD = 4.0V  
Module Differential Current (Note 5)  
D021  
D021  
D022  
IWDT  
Watchdog Timer  
PIC16LC925/926  
6.0  
9.0  
36  
20  
25  
50  
µA VDD = 3.0V  
Watchdog Timer  
PIC16C925/926  
µA VDD = 4.0V  
ILCDT1  
LCD Voltage  
Generation with  
µA VDD = 3.0V (Note 7)  
internal RC osc enabled  
PIC16LC925/926  
D022  
LCD Voltage  
Generation with  
40  
55  
µA VDD = 4.0V (Note 7)  
internal RC osc enabled  
PIC16C925/926  
D022A IBOR  
Brown-out Reset  
100 150 µA BODEN bit set, VDD = 5.0  
D024  
ILCDT1  
LCD Voltage  
Generation with  
15  
29  
µA VDD = 3.0V (Note 7)  
Timer1 @ 32.768 kHz  
PIC16LC925/926  
D024  
LCD Voltage  
Generation with  
33  
60  
µA VDD = 4.0V (Note 7)  
Timer1 @ 32.768 kHz  
PIC16C925/926  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin load-  
ing and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on  
the current consumption.The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail;  
all I/O pins tri-stated, pulled to VDD  
MCLR = VDD.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
5: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
6: PWRT must be enabled for slow ramps.  
7: ∆ΙLCDT1 and ∆ΙLCDRC includes the current consumed by the LCD Module and the voltage generation  
circuitry. This does not include current dissipated by the LCD panel.  
DS39544A-page 142  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
15.1 DC Characteristics (Continued)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LC925/926  
(Commercial, Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
0°C TA +70°C for commercial  
Standard Operating Conditions (unless otherwise stated)  
PIC16C925/926  
(Commercial, Industrial)  
Operating temperature  
-40°C TA +85°C for industrial  
0°C TA +70°C for commercial  
Param  
No.  
Sym  
Characteristic  
Min TypMax Units  
Conditions  
D025  
IT1OSC  
Timer1 Oscillator  
PIC16LC925/926  
50  
50  
µA VDD = 3.0V  
D025  
D026  
D026  
Timer1 Oscillator  
PIC16C925/926  
µA VDD = 4.0V  
IAD  
A/D Converter  
PIC16LC925/926  
1.0  
1.0  
µA A/D on, not converting  
µA A/D on, not converting  
A/D Converter  
PIC16C925/926  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin load-  
ing and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on  
the current consumption.The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail;  
all I/O pins tri-stated, pulled to VDD  
MCLR = VDD.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.  
5: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
6: PWRT must be enabled for slow ramps.  
7: ∆ΙLCDT1 and ∆ΙLCDRC includes the current consumed by the LCD Module and the voltage generation  
circuitry. This does not include current dissipated by the LCD panel.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 143  
PIC16C925/926  
15.2 DC Characteristics: PIC16C925/926 (Commercial, Industrial)  
PIC16LC925/926 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for industrial  
0°C TA +70°C for commercial  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec  
Param  
Sym  
No.  
Characteristic  
Min TypMax Units Conditions  
Input Low Voltage  
VIL I/O ports  
with TTL buffer  
D030  
VSS  
Vss  
VSS  
VSS  
VSS  
0.15VDD  
0.8V  
0.2VDD  
0.2VDD  
0.3VDD  
V
V
V
V
V
For entire VDD range  
4.5V VDD 5.5V  
D031  
D032  
D033  
with Schmitt Trigger buffer  
MCLR, OSC1 (in RC mode)  
OSC1 (in XT, HS and LP)  
(Note 1)  
Input High Voltage  
VIH I/O ports  
D040  
D040A  
with TTL buffer  
2.0  
VDD  
VDD  
V
V
4.5V VDD 5.5V  
For entire VDD range  
0.25VDD  
+ 0.8V  
0.8VDD  
0.8VDD  
0.7VDD  
0.9VDD  
D041  
D042  
D042A  
D043  
with Schmitt Trigger buffer  
MCLR  
OSC1 (XT, HS and LP)  
OSC1 (in RC mode)  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
(Note 1)  
D070  
IPURB PORTB Weak Pull-up Current  
50  
250  
400  
µA VDD = 5V, VPIN = VSS  
Input Leakage Current  
(Notes 2, 3)  
D060  
D061  
D063  
IIL I/O ports  
1.0  
5
5
µA Vss VPIN VDD, Pin at hi-Z  
µA Vss VPIN VDD  
MCLR, RA4/T0CKI  
OSC1  
µA Vss VPIN VDD, XT, HS and LP  
osc configuration  
Output Low Voltage  
VOL I/O ports  
D080  
D083  
0.6  
0.6  
V
V
IOL = 4.0 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V  
OSC2/CLKOUT (RC osc mode)  
Output High Voltage  
D090  
D092  
VOH I/O ports (Note 3)  
VDD - 0.7 —  
V
V
IOH = -3.0 mA, VDD = 4.5V  
IOH = -1.3 mA, VDD = 4.5V  
OSC2/CLKOUT (RC osc mode) VDD - 0.7 —  
Capacitive Loading Specs on  
Output Pins  
D100 COSC2 OSC2 pin  
15  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1.  
D101  
D102  
CIO All I/O pins and OSC2 (in RC)  
50  
400  
pF  
pF  
CB SCL, SDA in I2C mode  
D150  
VDD Open Drain High Voltage  
8.5  
V
RA4 pin  
Data in Typcolumn is at 5 V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C925/926 be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
DS39544A-page 144  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
FIGURE 15-3:  
LCD VOLTAGE WAVEFORM  
D223  
D224  
VLCD3  
VLCD2  
VLCD1  
VSS  
TABLE 15-1: LCD MODULE ELECTRICAL SPECIFICATIONS  
Parameter  
Symbol  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
No.  
D200  
VLCD3  
LCD Voltage on pin  
VLCD3  
VDD - 0.3  
Vss + 7.0  
V
D201  
D202  
D220  
D221  
D222  
D223  
VLCD2  
VLCD1  
VOH  
LCD Voltage on pin  
VLCD2  
Vss - 0.3  
Vss - 0.3  
Max VLCDN - 0.1  
Min VLCDN  
5
14  
VLCD3  
VLCD3  
V
V
V
V
LCD Voltage on pin  
VLCD1  
Output High  
Voltage  
Max VLCDN  
Min VLCDN + 0.1  
22  
COM outputs IOH = 25 µA  
SEG outputs IOH = 3 µA  
VOL  
Output Low Voltage  
COM outputs IOL = 25 µA  
SEG outputs IOL = 3 µA  
FLCDRC  
TrLCD  
LCDRC Oscillator  
Frequency  
kHz VDD = 5V, -40°C to +85°C  
Output Rise Time  
200  
µs  
µs  
COM outputs Cload = 5,000 pF  
SEG outputs Cload = 500 pF  
VDD = 5.0V, T = 25°C  
(1)  
D224  
TfLCD  
Output Fall Time  
TrLCD - 0.05  
TrLCD  
TrLCD + 0.05  
TrLCD  
COM outputs Cload = 5,000 pF  
SEG outputs Cload = 500 pF  
VDD = 5.0V, T = 25°C  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: 0 ohm source impedance at VLCD.  
TABLE 15-2: VLCD CHARGE PUMP ELECTRICAL SPECIFICATIONS  
Parameter  
Symbol  
Characteristic  
Min Typ  
Max  
Units Conditions  
No.  
D250  
IVADJ  
VLCDADJ Regulated Current Output  
10  
0.1  
µA  
µA/V  
V
D252  
D265  
IVADJ/VDD VLCDADJ Current VDD Rejection  
VVADJ  
VLCDADJ Voltage  
Limits  
PIC16C925/926  
1.0  
2.3  
PIC16LC925/926 1.0  
VDD - 0.7V  
V
VDD < 3V  
Note 1: For design guidance only.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 145  
PIC16C925/926  
15.3 Timing Parameter Symbology  
The timing parameter symbols have been created fol-  
lowing one of the following formats:  
1. TppS2ppS  
2. TppS  
T
3. TCC:ST (I2C specifications only)  
4. Ts (I2C specifications only)  
F
Frequency  
T
Time  
Lowercase letters (pp) and their meanings:  
pp  
cc  
ck  
cs  
di  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
Fall  
P
R
V
Z
Period  
H
High  
Rise  
I
L
Invalid (Hi-impedance)  
Low  
Valid  
Hi-impedance  
I2C only  
AA  
output access  
Bus free  
High  
Low  
High  
Low  
BUF  
TCC:ST (I2C specifications only)  
CC  
HD  
Hold  
SU  
Setup  
ST  
DAT  
STA  
DATA input hold  
START condition  
STO  
STOP condition  
FIGURE 15-4:  
LOAD CONDITIONS  
Load condition 1  
Load condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL  
CL  
=
=
464 Ω  
50 pF for all pins except OSC2 unless otherwise noted.  
15 pF for OSC2 output  
DS39544A-page 146  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
15.4 Timing Diagrams and Specifications  
FIGURE 15-5:  
EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
4
Q1  
OSC1  
1
3
3
4
2
CLKOUT  
TABLE 15-3: EXTERNAL CLOCK TIMING REQUIREMENTS  
Parameter  
Sym  
Characteristic  
Min Typ†  
Max  
Units  
Conditions  
No.  
FOSC External CLKIN Frequency  
DC  
DC  
DC  
DC  
0.1  
4
4
20  
MHz XT and RC osc mode  
MHz HS osc mode  
kHz LP osc mode  
MHz RC osc mode  
MHz XT osc mode  
MHz HS osc mode  
kHz LP osc mode  
ns XT and RC osc mode  
ns HS osc mode  
µs LP osc mode  
ns RC osc mode  
ns XT osc mode  
ns HS osc mode  
µs LP osc mode  
ns TCY = 4/FOSC  
ns XT oscillator  
(Note 1)  
200  
4
Oscillator Frequency  
(Note 1)  
4
20  
5
200  
1
TOSC  
External CLKIN Period  
250  
125  
5
(Note 1)  
Oscillator Period  
(Note 1)  
250  
250  
125  
5
10,000  
250  
2
3
TCY  
Instruction Cycle Time (Note 1)  
500  
DC  
TosL, External Clock in (OSC1) High or 50  
TosH Low Time  
2.5  
µs LP oscillator  
ns HS oscillator  
10  
4
TosR, External Clock in (OSC1) Rise or  
TosF Fall Time  
25  
ns XT oscillator  
50  
ns LP oscillator  
15  
ns HS oscillator  
Data in Typcolumn is at 5 V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with  
the device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption. All devices are tested to operate at min.values with an  
external clock applied to the OSC1/CLKIN pin.  
When an external clock input is used, the Max.cycle time limit is DC(no clock) for all devices.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 147  
PIC16C925/926  
FIGURE 15-6:  
CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
12  
18  
19  
14  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
new value  
old value  
20, 21  
Refer to Figure 15-4 for load conditions.  
Note:  
TABLE 15-4: CLKOUT AND I/O TIMING REQUIREMENTS  
Parameter  
Symbol  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
No.  
10  
11  
12  
13  
14  
15  
16  
17  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
75  
75  
35  
35  
50  
200  
200  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
(Note 1)  
TckR  
CLKOUT rise time  
100  
TckF  
CLKOUT fall time  
100  
TckL2ioV  
CLKOUT to Port out valid  
0.5TCY + 20  
TioV2ckH Port in valid before CLKOUT ↑  
TckH2ioI Port in hold after CLKOUT ↑  
Tosc + 200  
0
TosH2ioV OSC1(Q1 cycle) to  
150  
Port out valid  
18  
TosH2ioI  
OSC1(Q2 cycle) to  
Port input invalid  
(I/O in hold time)  
PIC16C925/926  
PIC16LC925/926  
100  
200  
ns  
ns  
19  
20  
TioV2osH Port input valid to OSC1(I/O in setup time)  
0
10  
10  
40  
80  
40  
80  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TioR  
Port output rise time  
Port output fall time  
INT pin high or low time  
PIC16C925/926  
PIC16LC925/926  
PIC16C925/926  
PIC16LC925/926  
21  
TioF  
22††  
23††  
Tinp  
Trbp  
TCY  
TCY  
RB7:RB4 change INT high or low time  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
†† These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x TOSC.  
DS39544A-page 148  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
FIGURE 15-7:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
Note:  
Refer to Figure 15-4 for load conditions.  
TABLE 15-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER REQUIREMENTS  
Parameter  
Symbol  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
No.  
30  
31  
TmcL  
TWDT  
MCLR Pulse Width (low)  
2
7
µs  
ms VDD = 5V, -40°C to +85°C  
Watchdog Timer Time-out Period  
(No Prescaler)  
18  
33  
32  
33  
34  
TOST  
TPWRT  
TIOZ  
Oscillation Start-up Timer Period  
Power-up Timer Period  
28  
1024TOSC  
132  
2.1  
TOSC = OSC1 period  
72  
ms VDD = 5V, -40°C to +85°C  
µs  
I/O Hi-impedance from MCLR Low  
or Watchdog Timer Reset  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 149  
PIC16C925/926  
FIGURE 15-8:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
RA4/T0CKI  
41  
46  
40  
45  
42  
RC0/T1OSO/T1CKI  
47  
48  
TMR0 or  
TMR1  
Note: Refer to Figure 15-4 for load conditions.  
TABLE 15-6: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Symbol  
Tt0H  
Characteristic  
Min  
TypMax Units  
Conditions  
40  
41  
42  
T0CKI High Pulse Width  
T0CKI Low Pulse Width  
T0CKI Period  
No Prescaler  
0.5TCY + 20  
10  
ns Must also meet  
parameter 42  
ns Must also meet  
With Prescaler  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
ns  
Tt0L  
Tt0P  
0.5TCY + 20  
10  
parameter 42  
ns  
ns  
TCY + 40  
Greater of:  
TCY + 40  
ns N = prescale value  
(2, 4,..., 256)  
20 or  
N
0.5TCY + 20  
15  
45  
46  
47  
Tt1H  
Tt1L  
Tt1P  
T1CKI High Synchronous, Prescaler = 1  
ns Must also meet  
Time  
parameter 47  
Synchronous, PIC16C925/926  
ns  
ns  
Prescaler =  
2,4,8  
PIC16LC925/926  
25  
Asynchronous PIC16C925/926  
PIC16LC925/926  
30  
50  
ns  
ns  
ns  
ns  
T1CKI Low  
Time  
Synchronous, Prescaler = 1  
Synchronous, PIC16C925/926  
0.5TCY + 20  
15  
Prescaler =  
Must also meet  
parameter 47  
PIC16LC925/926  
25  
ns  
2,4,8  
Asynchronous PIC16C925/926  
PIC16LC925/926  
30  
50  
ns  
ns  
T1CKI Input Synchronous PIC16C925/926  
Period  
Greater of:  
TCY + 40  
N = prescale value  
(1, 2, 4, 8)  
ns  
30 or  
N
Greater of:  
TCY + 40  
PIC16LC925/926  
N = prescale value  
(1, 2, 4, 8)  
50 or  
N
Asynchronous PIC16C925/926  
PIC16LC925/926  
60  
ns  
ns  
100  
Ft1  
Timer1 oscillator input frequency range  
(oscillator enabled by setting bit T1OSCEN)  
DC  
200 kHz  
7Tosc  
48  
TCKEZtmr1 Delay from external clock edge to timer increment  
2Tosc  
Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS39544A-page 150  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
FIGURE 15-9:  
CAPTURE/COMPARE/PWM TIMINGS  
RC2/CCP1  
(Capture Mode)  
50  
51  
52  
RC2/CCP1  
(Compare or PWM Mode)  
53  
54  
Note: Refer to Figure 15-4 for load conditions.  
TABLE 15-7: CAPTURE/COMPARE/PWM REQUIREMENTS  
Parameter  
Symbol  
Characteristic  
Min  
TypMax Units  
Conditions  
No.  
50  
51  
TccL  
Input Low Time No Prescaler  
0.5TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
With Prescaler PIC16C925/926  
PIC16LC925/926  
10  
20  
0.5TCY + 20  
10  
TccH  
Input High Time No Prescaler  
With Prescaler PIC16C925/926  
PIC16LC925/926  
20  
52  
53  
TccP  
TccR  
Input Period  
3TCY + 40  
N
ns N = prescale value  
(1,4 or 16)  
Output Rise Time  
PIC16C925/926  
PIC16LC925/926  
PIC16C925/926  
PIC16LC925/926  
10  
25  
10  
25  
25  
45  
25  
45  
ns  
ns  
ns  
ns  
54  
TccF  
Output Fall Time  
Data in Typcolumn is at 5 V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 151  
PIC16C925/926  
FIGURE 15-10:  
SPI MASTER MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
BIT6 - - - - - -1  
LSb  
SDO  
SDI  
75, 76  
MSb IN  
74  
BIT6 - - - -1  
LSb IN  
73  
Note: Refer to Figure 15-4 for load conditions.  
FIGURE 15-11:  
SPI MASTER MODE TIMING (CKE = 1)  
SS  
81  
SCK  
(CKP = 0)  
71  
72  
79  
78  
73  
SCK  
(CKP = 1)  
80  
LSb  
MSb  
BIT6 - - - - - -1  
BIT6 - - - -1  
SDO  
SDI  
75, 76  
MSb IN  
74  
LSb IN  
Note: Refer to Figure 15-4 for load conditions.  
DS39544A-page 152  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
FIGURE 15-12:  
SPI SLAVE MODE TIMING (CKE = 0)  
SS  
70  
SCK  
(CKP = 0)  
83  
71  
72  
78  
79  
79  
SCK  
(CKP = 1)  
78  
80  
MSb  
LSb  
SDO  
SDI  
BIT6 - - - - - -1  
77  
75, 76  
MSb IN  
74  
BIT6 - - - -1  
LSb IN  
73  
Note:  
Refer to Figure 15-4 for load conditions.  
FIGURE 15-13:  
SPI SLAVE MODE TIMING (CKE = 1)  
82  
SS  
70  
SCK  
83  
(CKP = 0)  
71  
72  
SCK  
(CKP = 1)  
80  
MSb  
BIT6 - - - - - -1  
BIT6 - - - -1  
LSb  
SDO  
SDI  
75, 76  
77  
MSb IN  
74  
LSb IN  
Note: Refer to Figure 15-4 for load conditions.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 153  
PIC16C925/926  
TABLE 15-8: SPI MODE REQUIREMENTS  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
70  
71  
TssL2scH,  
TssL2scL  
SSto SCKor SCKinput  
TCY  
ns  
TscH  
SCK input high time (Slave  
mode)  
Continuous  
Single Byte  
1.25TCY + 30  
40  
ns  
ns  
71A  
72  
TscL  
SCK input low time (Slave  
mode)  
Continuous  
Single Byte  
1.25TCY + 30  
40  
ns  
72A  
73  
TdiV2scH,  
TdiV2scL  
Setup time of SDI data input to SCK edge  
Hold time of SDI data input to SCK edge  
50  
50  
ns  
ns  
74  
TscH2diL,  
TscL2diL  
75  
76  
77  
78  
79  
80  
TdoR  
SDO data output rise time  
10  
10  
10  
10  
10  
25  
25  
50  
25  
25  
50  
ns  
ns  
ns  
ns  
ns  
ns  
TdoF  
SDO data output fall time  
TssH2doZ  
TscR  
SSto SDO output hi-impedance  
SCK output rise time (Master mode)  
SCK output fall time (Master mode)  
SDO data output valid after SCK edge  
TscF  
TscH2doV,  
TscL2doV  
81  
TdoV2scH,  
TdoV2scL  
SDO data output setup to SCK edge  
TCY  
ns  
82  
83  
TssL2doV  
SDO data output valid after SSedge  
SS after SCK edge  
50  
ns  
ns  
TscH2ssH,  
TscL2ssH  
1.5TCY + 40  
84  
Tb2b  
Delay between consecutive bytes  
1.5TCY + 40  
ns  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS39544A-page 154  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
FIGURE 15-14:  
I2C BUS START/STOP BITS TIMING  
SCL  
SDA  
93  
91  
90  
92  
STOP  
Condition  
START  
Condition  
Note: Refer to Figure 15-4 for load conditions.  
TABLE 15-9: I2C BUS START/STOP BITS REQUIREMENTS  
Parameter  
Symbol  
Characteristic  
Min Typ Max Units  
Conditions  
No.  
90  
91  
92  
93  
TSU:STA  
START condition 100 kHz mode  
Setup time  
4700  
4000  
4700  
4000  
ns Only relevant for Repeated  
START condition  
THD:STA  
TSU:STO  
THD:STO  
START condition 100 kHz mode  
Hold time  
ns After this period the first clock  
pulse is generated  
STOP condition  
Setup time  
100 kHz mode  
ns  
STOP condition  
Hold time  
100 kHz mode  
ns  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 155  
PIC16C925/926  
FIGURE 15-15:  
I2C BUS DATA TIMING  
103  
102  
100  
101  
SCL  
90  
106  
107  
91  
92  
SDA  
In  
110  
109  
109  
SDA  
Out  
Note: Refer to Figure 15-4 for load conditions.  
TABLE 15-10: I2C BUS DATA REQUIREMENTS  
Parameter  
Symbol  
Characteristic  
Min  
Max Units  
Conditions  
No.  
100  
101  
THIGH  
Clock high time  
Clock low time  
100 kHz mode  
4.0  
µs  
Device must operate at a  
minimum of 1.5 MHz  
SSP Module  
1.5TCY  
4.7  
TLOW  
100 kHz mode  
µs  
Device must operate at a  
minimum of 1.5 MHz  
SSP Module  
1.5TCY  
102  
103  
90  
TR  
SDA and SCL rise 100 kHz mode  
time  
1000  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
ns  
µs  
TF  
SDA and SCL fall 100 kHz mode  
time  
4.7  
4.0  
0
300  
TSU:STA  
THD:STA  
START condition 100 kHz mode  
setup time  
Only relevant for Repeated  
START condition  
91  
START condition 100 kHz mode  
hold time  
After this period the first  
clock pulse is generated  
106  
107  
92  
THD:DAT Data input hold  
time  
100 kHz mode  
100 kHz mode  
100 kHz mode  
TSU:DAT  
TSU:STO  
TAA  
Data input setup  
time  
250  
4.7  
STOP condition  
setup time  
109  
110  
Output valid from 100 kHz mode  
clock  
3500  
(Note 1)  
TBUF  
Bus free time  
100 kHz mode  
4.7  
Time the bus must be free  
before a new transmission  
can start  
D102  
CB  
Bus capacitive loading  
400  
pF  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region  
(min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.  
DS39544A-page 156  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
TABLE 15-11: A/D CONVERTER CHARACTERISTICS:  
PIC16C925/926 (COMMERCIAL, INDUSTRIAL)  
PIC16LC925/926 (COMMERCIAL, INDUSTRIAL)  
Param  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
A01  
NR  
Resolution  
10-bits  
bit VREF = VDD = 5.12V,  
VSS VAIN VREF  
A02  
A03  
A04  
A05  
A06  
A07  
EABS Total Absolute error  
EIL Integral linearity error  
< ± 1  
< ± 1  
< ± 1  
< ± 1  
< ± 2  
< ± 1  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
EDL Differential linearity error  
EFS Full scale error  
EOFF Offset error  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
EGN Gain error  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
A10  
A20  
Monotonicity  
guaranteed  
VSS VAIN VREF  
VREF Reference voltage  
AVDD -  
2.5V  
AVDD + 0.3  
V
A25  
A30  
VAIN Analog input voltage  
VSS - 0.3  
VREF + 0.3  
10.0  
V
ZAIN Recommended impedance of  
analog voltage source  
kΩ  
A40  
A50  
IAD  
A/D conversion current PIC16C925/926  
220  
90  
µA Average current consump-  
(VDD)  
tion when A/D is on.  
(Note 1)  
PIC16LC925/926  
µA  
IREF VREF input current (Note 2)  
10  
1000  
µA During VAIN acquisition.  
Based on differential of  
VHOLD to VAIN to charge  
CHOLD.  
10  
µA During A/D Conversion  
cycle  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current.  
The power-down current spec includes any such leakage from the A/D module.  
2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 157  
PIC16C925/926  
FIGURE 15-16:  
A/D CONVERSION TIMING  
BSF ADCON0, GO  
134  
131  
Q4  
130  
132  
A/D CLK  
9
8
7
...  
...  
2
1
0
A/D DATA  
NEW_DATA  
OLD_DATA  
ADRES  
ADIF  
GO  
DONE  
133  
SAMPLING STOPPED  
SAMPLE  
133  
TABLE 15-12: A/D CONVERSION REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
130  
TAD  
A/D clock period PIC16C925/926  
1.6  
3.0  
2.0  
3.0  
µs  
µs  
TOSC based, VREF 3.0V  
TOSC based, VREF 2.0V  
PIC16LC925/926  
PIC16C925/926  
PIC16LC925/926  
4.0  
6.0  
6.0  
9.0  
12  
µs A/D RC Mode  
µs A/D RC Mode  
TAD  
131  
132  
TCNV Conversion time (not including S/H time)  
(Note 1)  
TACQ Acquisition time  
(Note 2)  
40  
µs  
10  
µs The minimum time is the amplifier  
settling time. This may be used if  
the newinput voltage has not  
changed by more than 1 LSb (i.e.,  
5 mV @ 5.12V) from the last sam-  
pled voltage (as stated on CHOLD).  
134  
135  
TGO  
Q4 to A/D clock start  
TOSC/2  
If the A/D clock source is selected  
as RC, a time of TCY is added  
before the A/D clock starts. This  
allows the SLEEPinstruction to be  
executed.  
TSWC Switching from convert sample time  
1.5  
TAD  
Data in Typcolumn is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 10.1 for min. conditions.  
DS39544A-page 158  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
16.0 DC AND AC  
CHARACTERISTICS GRAPHS  
AND TABLES  
Graphs and Tables are not available at this time.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 159  
PIC16C925/926  
NOTES:  
DS39544A-page 160  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
17.0 PACKAGING INFORMATION  
17.1 Package Marking Information  
64-Lead TQFP  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC16C925  
-I/PT  
0010017  
68-Lead PLCC  
Example  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXX  
YYWWNNN  
PIC16C926/L  
0010017  
Legend: XX...X Customer specific information*  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week 01)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard OTP marking consists of Microchip part number, year code, week code and traceability code.  
For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office.  
For QTP devices, any special marking adders are included in QTP price.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 161  
PIC16C925/926  
Package Marking Information (Continued)  
68-Lead CERQUAD Windowed  
Example  
XXXXXXXXXXXXXXX  
YYWWNNN  
PIC16C926/CL  
0010017  
DS39544A-page 162  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
17.2 Package Details  
64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)  
E
E1  
#leads=n1  
p
D1  
D
2
1
B
n
°
CH x 45  
α
A
c
A2  
L
φ
β
A1  
(F)  
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
64  
MAX  
n
p
Number of Pins  
Pitch  
64  
.020  
16  
0.50  
16  
Pins per Side  
Overall Height  
n1  
A
.039  
.043  
.039  
.006  
.024  
.039  
3.5  
.047  
1.00  
0.95  
1.10  
1.00  
0.15  
0.60  
1.00  
3.5  
1.20  
Molded Package Thickness  
Standoff  
A2  
A1  
L
(F)  
φ
.037  
.002  
.018  
.041  
.010  
.030  
1.05  
0.25  
0.75  
§
0.05  
0.45  
Foot Length  
Footprint (Reference)  
Foot Angle  
0
.463  
.463  
.390  
.390  
.005  
.007  
.025  
5
7
.482  
.482  
.398  
.398  
.009  
.011  
.045  
15  
0
11.75  
11.75  
9.90  
9.90  
0.13  
0.17  
0.64  
5
7
12.25  
12.25  
10.10  
10.10  
0.23  
0.27  
1.14  
15  
Overall Width  
E
D
.472  
.472  
.394  
.394  
.007  
.009  
.035  
10  
12.00  
12.00  
10.00  
10.00  
0.18  
0.22  
0.89  
10  
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
E1  
D1  
c
Lead Width  
B
CH  
α
Pin 1 Corner Chamfer  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MS-026  
Drawing No. C04-085  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 163  
PIC16C925/926  
68-Lead Plastic Leaded Chip Carrier (L) Square (PLCC)  
E
E1  
#leads=n1  
D1 D  
n 1 2  
°
°
α
CH2 x 45  
CH1 x 45  
A3  
A2  
A
32°  
c
B1  
B
A1  
p
β
D2  
E2  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
68  
MAX  
n
p
Number of Pins  
Pitch  
68  
.050  
17  
1.27  
17  
Pins per Side  
Overall Height  
n1  
A
.165  
.173  
.153  
.028  
.029  
.045  
.005  
.990  
.990  
.954  
.954  
.920  
.920  
.011  
.029  
.020  
5
.180  
4.19  
3.68  
0.51  
0.61  
1.02  
0.00  
25.02  
25.02  
24.13  
24.13  
22.61  
22.61  
0.20  
0.66  
0.33  
0
4.39  
3.87  
0.71  
0.74  
1.14  
0.13  
25.15  
25.15  
24.23  
24.23  
23.37  
23.37  
0.27  
0.74  
0.51  
5
4.57  
Molded Package Thickness  
Standoff  
A2  
A1  
A3  
CH1  
CH2  
E
.145  
.020  
.024  
.040  
.000  
.985  
.985  
.950  
.950  
.890  
.890  
.008  
.026  
.013  
0
.160  
.035  
.034  
.050  
.010  
.995  
.995  
.958  
.958  
.930  
.930  
.013  
.032  
.021  
10  
4.06  
0.89  
0.86  
1.27  
0.25  
25.27  
25.27  
24.33  
24.33  
23.62  
23.62  
0.33  
0.81  
0.53  
10  
§
Side 1 Chamfer Height  
Corner Chamfer 1  
Corner Chamfer (others)  
Overall Width  
Overall Length  
D
Molded Package Width  
Molded Package Length  
Footprint Width  
E1  
D1  
E2  
D2  
c
Footprint Length  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
B1  
B
α
β
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010(0.254mm) per side.  
JEDEC Equivalent: MO-047  
Drawing No. C04-049  
DS39544A-page 164  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
68-Lead Ceramic Leaded (CL) Chip Carrier with Window Square (CERQUAD)  
E
E1  
#leads=n1  
W
D1  
D
n 1 2  
A3  
R
CH1 x 45°  
A2  
A
45°  
c
B1  
B
p
A1  
E2  
D2  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
68  
MAX  
n
p
Number of Pins  
Pitch  
68  
.050  
.175  
.137  
.040  
.035  
.040  
.025  
.988  
.988  
.950  
.950  
.910  
.910  
17  
1.27  
Overall Height  
A
A2  
A1  
A3  
CH1  
R
.165  
.185  
4.19  
3.00  
4.45  
3.48  
1.02  
0.89  
1.02  
0.64  
25.10  
25.10  
24.13  
24.13  
23.11  
23.11  
17  
4.70  
Package Thickness  
Standoff  
.118  
.030  
.030  
.030  
.020  
.983  
.983  
.942  
.942  
.890  
.890  
.155  
.050  
.040  
.050  
.030  
.993  
.993  
.958  
.958  
.930  
.930  
3.94  
1.27  
§
0.76  
0.76  
Side One Chamfer Dim.  
Corner Chamfer (1)  
1.02  
0.76  
1.27  
Corner Radius (Others)  
Overall Package Width  
Overall Package Length  
Ceramic Package Width  
0.51  
0.76  
E
24.97  
24.97  
23.93  
23.93  
22.61  
22.61  
25.22  
25.22  
24.33  
24.33  
23.62  
23.62  
D
E1  
Ceramic Package Length  
Footprint Width  
D1  
E2  
D2  
n1  
c
Footprint Length  
Pins each side  
Lead Thickness  
.008  
.026  
.015  
.370  
.010  
.029  
.018  
.380  
.012  
.031  
.021  
.390  
0.20  
0.66  
0.38  
9.40  
0.25  
0.72  
0.46  
9.65  
0.30  
0.79  
0.53  
9.91  
Upper Lead Width  
Lower Lead Width  
Window Diameter  
B1  
B
W
* Controlling Parameter  
§ Significant Characteristic  
JEDEC Equivalent: MO-087  
Drawing No. C04-097  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 165  
PIC16C925/926  
NOTES:  
DS39544A-page 166  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
APPENDIX A: REVISION HISTORY  
APPENDIX B: DEVICE  
DIFFERENCES  
Version  
Date  
Description  
The differences between the devices listed in this data  
sheet are listed in Table B-1.  
A
February 2001 This is a new data sheet.  
However, these devices  
are similar to those  
TABLE B-1:  
DEVICE DIFFERENCES  
described in the  
PIC16C923/924 data  
Feature  
PIC16C925  
PIC16C926  
sheet (DS30444).  
EPROM Program  
Memory (words)  
4K  
8K  
Data Memory  
(bytes)  
176  
336  
Note: On 64-pin TQFP, pins RG7 and RE7 are not  
available.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 167  
PIC16C925/926  
APPENDIX C: CONVERSION  
CONSIDERATIONS  
Considerations for converting to the devices listed in  
this data sheet from previous device types are summa-  
rized in Table C-1.  
TABLE C-1:  
CONVERSION  
CONSIDERATIONS  
PIC16C923/  
924  
PIC16C925/  
Feature  
926  
Operating  
Frequency  
DC - 8 MHz  
DC - 20 MHz  
EPROM Program  
Memory (words)  
4K (925)  
8K (926)  
4K  
Data Memory  
(bytes)  
176 (925)  
336 (926)  
176  
A/D Converter  
Resolution  
8-bit  
(924 only)  
10-bit  
A/D Converter  
Channels  
none (923)  
5 (924)  
5
8 (923)  
9 (924)  
Interrupt Sources  
Brown-out Reset  
9
No  
Yes  
DS39544A-page 168  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
INDEX  
PORTC ...................................................................... 33  
PORTD  
A
A/D ..................................................................................... 75  
ADCON0 Register ...................................................... 75  
ADCON1 Register ...................................................... 76  
ADIF bit ...................................................................... 76  
Block Diagrams  
Pins <4:0> ......................................................... 34  
Pins <7:5> ......................................................... 34  
PORTE ...................................................................... 36  
PORTF ...................................................................... 37  
PORTG ...................................................................... 38  
PWM Mode ................................................................ 56  
RC Oscillator ........................................................... 100  
SSP  
Analog Input Model ............................................ 78  
Converter ........................................................... 77  
Configuring Analog Port Pins ..................................... 80  
Configuring the Interrupt ............................................ 77  
Configuring the Module .............................................. 77  
Conversion Clock ....................................................... 79  
Conversions ............................................................... 80  
Converter Characteristics ........................................ 157  
Delays ........................................................................ 78  
Effects of a RESET .................................................... 81  
GO/DONE bit ............................................................. 76  
Internal Sampling Switch (Rss) Impedence ............... 78  
Operation During SLEEP ........................................... 81  
Register Initialization States ............................. 104, 105  
Sampling Requirements ............................................. 78  
Source Impedence ..................................................... 78  
Time Delays ............................................................... 78  
Absolute Maximum Ratings ............................................. 139  
ACK Pulse .......................................................................... 66  
ACK pulse .............................................................. 70, 71, 72  
Analog-to-Digital Converter. See A/D  
2
I C Mode ........................................................... 69  
SPI Mode ........................................................... 61  
Timer0 ....................................................................... 41  
Timer0/WDT Prescaler .............................................. 44  
Timer1 ....................................................................... 48  
Timer2 ....................................................................... 51  
Watchdog Timer ...................................................... 110  
BOR. See Brown-out Reset.  
Brown-out Reset (BOR) ..................................... 97, 102, 103  
BOR Status (BOR Bit) ............................................... 24  
C
C (Carry) bit ....................................................................... 19  
Capture Mode (CCP)  
Associated Registers ................................................. 58  
Block Diagram ........................................................... 54  
Changing Between Prescalers .................................. 54  
Pin Configuration ....................................................... 54  
Prescaler ................................................................... 54  
Software Interrupt ...................................................... 54  
Capture/Compare/PWM (CCP)  
CCP1CON Register ................................................... 53  
CCPR1 Register ........................................................ 53  
CCPR1H Register ..................................................... 53  
CCPR1L Register ...................................................... 53  
Register Initialization States .................................... 104  
Timer Resources ....................................................... 53  
CCP. See Capture/Compare/PWM (CCP).  
Appendic C  
Conversion Considerations ...................................... 168  
Appendix A  
Revision History ....................................................... 167  
Appendix B  
Device Differences ................................................... 167  
Application Notes  
AN552 ........................................................................ 31  
AN556 ........................................................................ 25  
AN578 ........................................................................ 59  
AN594 ........................................................................ 53  
AN607 ...................................................................... 102  
Assembler  
Charge Pump (LCD) .......................................................... 95  
CKP (Clock Polarity Select) bit .......................................... 60  
Clocking Scheme ................................................................. 9  
Code Examples  
MPASM Assembler .................................................. 133  
Associated Registers ......................................................... 81  
Call of a Subroutine in Page 1 from Page 0 .............. 25  
Changing Between Capture Prescalers .................... 54  
Changing Prescaler (Timer0 to WDT) ....................... 45  
Changing Prescaler (WDT to Timer0) ....................... 45  
I/O Programming ....................................................... 39  
B
BF bit .................................................................................. 70  
Block Diagrams  
A/D Converter ............................................................ 77  
Analog Input Model .................................................... 78  
Capture Mode ............................................................ 54  
Compare Mode .......................................................... 55  
External Parallel Cystal Oscillator ............................ 100  
External Series Crystal Oscillator ............................ 100  
Interrupt Logic .......................................................... 107  
LCD Charge Pump ..................................................... 95  
LCD Module ............................................................... 84  
LCD Resistor Ladder ................................................. 95  
On-Chip Reset Circuit .............................................. 101  
PIC16C925/926 Architecture ....................................... 6  
PORTA  
2
I C Module Operation ................................................ 73  
Indirect Addressing .................................................... 26  
Initializing PORTA ..................................................... 29  
Initializing PORTB ..................................................... 31  
Initializing PORTC ..................................................... 33  
Initializing PORTD ..................................................... 34  
Initializing PORTE ..................................................... 36  
Initializing PORTF ...................................................... 37  
Initializing PORTG ..................................................... 38  
Loading the SSPBUF Register .................................. 61  
Program Read ........................................................... 28  
Reading a 16-bit Free-running Timer ........................ 49  
Saving STATUS, W and PCLATH Registers  
RA3:RA0 and RA5 Port Pins ............................. 29  
RA4/T0CKI Pin .................................................. 29  
PORTB  
in RAM ............................................................. 109  
Segment Enable  
One-Third-Duty with 13 Segments .................... 94  
Static MUX with 32 Segments ........................... 94  
RB3:RB0 Port Pins ............................................ 31  
RB7:RB4 Port Pins ............................................ 31  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 169  
PIC16C925/926  
Code Protection ......................................................... 97, 112  
Compare Mode (CCP)  
BSF .......................................................................... 117  
BTFSC ..................................................................... 117  
BTFSS ..................................................................... 118  
CALL ........................................................................ 118  
CLRF ....................................................................... 119  
CLRW ...................................................................... 119  
CLRWDT ................................................................. 120  
COMF ...................................................................... 120  
DECF ....................................................................... 121  
DECFSZ .................................................................. 121  
GOTO ...................................................................... 122  
INCF ........................................................................ 122  
INCFSZ .................................................................... 123  
IORLW ..................................................................... 123  
IORWF ..................................................................... 124  
MOVF ...................................................................... 124  
MOVLW ................................................................... 124  
MOVWF ................................................................... 125  
NOP ......................................................................... 125  
OPTION ................................................................... 125  
RETFIE .................................................................... 126  
RETLW .................................................................... 126  
RETURN .................................................................. 127  
RLF .......................................................................... 127  
RRF ......................................................................... 128  
SLEEP ..................................................................... 128  
SUBLW .................................................................... 129  
SUBWF .................................................................... 129  
SWAPF .................................................................... 130  
TRIS ........................................................................ 130  
XORLW ................................................................... 131  
XORWF ................................................................... 131  
Instruction Set Summary ......................................... 113131  
INT Interrupt ..................................................................... 108  
INTCON Register ....................................................... 21, 107  
Initialization States ................................................... 104  
Associated Registers .................................................58  
Block Diagram ............................................................55  
Pin Configuration .......................................................55  
Software Interrupt Mode ............................................55  
Special Event Trigger .................................................55  
Timer1 Mode ..............................................................55  
Computed GOTO ...............................................................25  
Configuration Bits ...............................................................97  
Configuration Word ............................................................98  
D
DC and AC Characteristics Graphs and Tables ...............159  
DC bit .................................................................................19  
Development Support ......................................................133  
Device DC Characteristics .......................................141145  
LC Devices ...............................................................144  
Direct Addressing ...............................................................26  
E
Errata ...................................................................................4  
F
FSR Register ......................................................................26  
Initialization States ...................................................104  
G
GIE bit ..............................................................................107  
I
I/O Programming Considerations .......................................39  
Read-Modify-Write Example ......................................39  
2
I C  
2
Addressing I C Devices .............................................66  
Arbitration ...................................................................68  
BF ........................................................................ 70, 71  
CKP ............................................................................71  
Clock Synchronization ...............................................68  
Combined Format ......................................................67  
Initiating and Terminating Data Transfer ....................65  
Master-Receiver Sequence .......................................67  
Master-Transmitter Sequence ...................................67  
Multi-Master ...............................................................68  
Overview ....................................................................65  
START .......................................................................65  
STOP ................................................................... 65, 66  
Transfer Acknowledge ...............................................66  
ICEPIC In-Circuit Emulator ..............................................134  
IDLE_MODE ......................................................................73  
In-Circuit Serial Programming .................................... 97, 112  
INDF Register ....................................................................26  
Initialization States ...................................................104  
Indirect Addressing ............................................................26  
Instruction Cycle ...................................................................9  
Instruction Flow/Pipelining ...................................................9  
Instruction Format ............................................................113  
Instruction Set  
2
2
Inter-Integrated Circuit (I C). See I C.  
Internal Sampling Switch (Rss) Impedence ....................... 78  
Interrupt Flag ................................................................... 107  
Interrupts .................................................................... 97, 107  
RB7:RB4 Port Change ............................................... 31  
IRP bit ................................................................................ 19  
K
KEELOQ Evaluation and Programming Tools ................... 136  
L
LCD Module  
Associated Registers ................................................. 96  
Block Diagram ........................................................... 84  
Charge Pump ............................................................ 95  
Block Diagram ................................................... 95  
Electrical Specifications ........................................... 145  
External R-Ladder ...................................................... 95  
Block Diagram ................................................... 95  
Generic LCDD Register ............................................. 92  
LCDCON Register ..................................................... 83  
LCDPS Register ........................................................ 84  
LCDSE Register ........................................................ 94  
Register Initialization States .................................... 105  
Voltage Generation .................................................... 95  
Loading PC Register (Diagram) ......................................... 25  
ADDLW ....................................................................115  
ADDWF ....................................................................115  
ANDLW ....................................................................116  
ANDWF ....................................................................116  
BCF ..........................................................................117  
DS39544A-page 170  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
Pin Functions  
M
MCLR/VPP ................................................................... 7  
OSC1/CLKIN ............................................................... 7  
OSC2/CLKOUT ........................................................... 7  
RA0/AN0 ...................................................................... 7  
RA1/AN1 ...................................................................... 7  
RA2/AN2 ...................................................................... 7  
RA3/AN3/VREF ............................................................ 7  
RA4/T0CKI .................................................................. 7  
RA5/AN4/SS ................................................................ 7  
RB0/INT ....................................................................... 7  
RB1 .............................................................................. 7  
RB2 .............................................................................. 7  
RB3 .............................................................................. 7  
RB4 .............................................................................. 7  
RB5 .............................................................................. 7  
RB6 .............................................................................. 7  
RB7 .............................................................................. 7  
RC0/T1OSO/T1CKI ..................................................... 7  
RC1/T1OSI .................................................................. 7  
RC2/CCP1 ................................................................... 7  
RC3/SCK/SCL ............................................................. 7  
RC4/SDI/SDA .............................................................. 7  
RC5/SDO ..................................................................... 7  
RD0/SEG00 ................................................................. 8  
RD1/SEG01 ................................................................. 8  
RD2/SEG02 ................................................................. 8  
RD3/SEG03 ................................................................. 8  
RD4/SEG04 ................................................................. 8  
RD5/SEG29/COM3 ..................................................... 8  
RD6/SEG30/COM2 ..................................................... 8  
RD7/SEG31/COM1 ..................................................... 8  
RE0/SEG05 ................................................................. 8  
RE1/SEG06 ................................................................. 8  
RE2/SEG07 ................................................................. 8  
RE3/SEG08 ................................................................. 8  
RE4/SEG09 ................................................................. 8  
RE5/SEG10 ................................................................. 8  
RE6/SEG11 ................................................................. 8  
RE7/SEG27 ................................................................. 8  
RF0/SEG12 ................................................................. 8  
RF1/SEG13 ................................................................. 8  
RF2/SEG14 ................................................................. 8  
RF3/SEG15 ................................................................. 8  
RF4/SEG16 ................................................................. 8  
RF5/SEG17 ................................................................. 8  
RF6/SEG18 ................................................................. 8  
RF7/SEG19 ................................................................. 8  
RG0/SEG20 ................................................................. 8  
RG1/SEG21 ................................................................. 8  
RG2/SEG22 ................................................................. 8  
RG3/SEG23 ................................................................. 8  
RG4/SEG24 ................................................................. 8  
RG5/SEG25 ................................................................. 8  
RG6/SEG26 ................................................................. 8  
RG7/SEG28 ................................................................. 8  
VDD .............................................................................. 8  
VSS .............................................................................. 8  
PIR1 Register ............................................................ 23, 107  
Initialization States ................................................... 104  
POP ................................................................................... 25  
Master Clear (MCLR) ....................................................... 101  
MCLR Initialization Condition for Registers ............. 104  
MCLR Reset, Normal Operation .............................. 103  
MCLR Reset, SLEEP ............................................... 103  
MCLR. See Master Clear.  
Memory  
Data Memory ............................................................. 12  
Maps, PIC16C9XX ..................................................... 11  
Program Memory ....................................................... 11  
MPLAB C17 and MPLAB C18 C Compilers ..................... 133  
MPLAB ICD In-Circuit Debugger ..................................... 135  
MPLAB ICE High Performance Universal  
In-Circuit Emulator with MPLAB IDE ........................ 134  
MPLAB Integrated Development  
Environment Software .............................................. 133  
MPLINK Object Linker/MPLIB Object Librarian ............... 134  
O
OPCODE ......................................................................... 113  
OPTION_REG Register ..................................................... 20  
Initialization States ................................................... 104  
INTEDG Bit ................................................................ 20  
PS2:PS0 Bits ............................................................. 20  
PSA Bit ....................................................................... 20  
T0CS Bit ..................................................................... 20  
T0SE Bit ..................................................................... 20  
OSC selection .................................................................... 97  
Oscillator  
HS ...................................................................... 99, 102  
LP ....................................................................... 99, 102  
Oscillator Configurations .................................................... 99  
P
Package Details ............................................................... 163  
Package Marking Information .......................................... 161  
Packaging Information ..................................................... 161  
Paging, Program Memory .................................................. 25  
PCL Register ...................................................................... 25  
Initialization States ................................................... 104  
PCLATH Register .............................................................. 25  
Initialization States ................................................... 104  
PCON Register .................................................................. 24  
BOR Bit ...................................................................... 24  
Initialization States ................................................... 104  
POR Bit ...................................................................... 24  
PD bit ......................................................................... 19, 101  
PICDEM 1 Low Cost PICmicro  
Demonstration Board ............................................... 135  
PICDEM 17 Demonstration Board ................................... 136  
PICDEM 2 Low Cost PIC16CXX  
Demonstration Board ............................................... 135  
PICDEM 3 Low Cost PIC16CXXX  
Demonstration Board ............................................... 136  
PICSTART Plus Entry Level  
Development Programmer ....................................... 135  
PIE1 Register ............................................................. 22, 107  
Initialization States ................................................... 104  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 171  
PIC16C925/926  
POR .................................................................................102  
Oscillator Start-up Timer (OST) ......................... 97, 102  
POR Status (POR Bit) ................................................24  
Power Control Register (PCON) ..............................102  
Power-on Reset (POR) .............................. 97, 102, 104  
Power-up Timer (PWRT) ................................... 97, 102  
RESET Condition for Special Registers ...................103  
Time-out Sequence ..................................................102  
Time-out Sequence on Power-up ............................106  
TO ............................................................................101  
Port RB Interrupt ..............................................................108  
PORTA  
Associated Registers .................................................30  
Initialization ................................................................29  
Initialization States ...................................................104  
Pin Functions .............................................................30  
RA3:RA0 and RA5 Port Pins .....................................29  
RA4/T0CKI Pin ...........................................................29  
Register ......................................................................29  
TRISA Register ..........................................................29  
PORTB  
PORTG  
Associated Registers ................................................. 38  
Block Diagram ........................................................... 38  
Initialization ................................................................ 38  
Initialization States ................................................... 105  
Pin Functions ............................................................. 38  
Register ..................................................................... 38  
TRISG Register ......................................................... 38  
Postscaler, WDT  
Assignment (PSA Bit) ................................................ 20  
Rate Select (PS2:PS0 Bits) ....................................... 20  
Power-down Mode (SLEEP) ............................................ 111  
Power-on Reset. See POR.  
PR2 .................................................................................. 105  
Prescaler, Timer0  
Assignment (PSA Bit) ................................................ 20  
Rate Select (PS2:PS0 Bits) ....................................... 20  
Switching Between Timer0 and WDT ........................ 45  
PRO MATE II Universal Device Programmer .................. 135  
Product Identification System .......................................... 177  
Program Counter  
Associated Registers .................................................32  
Initialization ................................................................31  
Initialization States ...................................................104  
Pin Functions .............................................................32  
RB0/INT Edge Select (INTEDG Bit) ...........................20  
RB3:RB0 Port Pins ....................................................31  
RB7:RB4 Port Pins ....................................................31  
Register ......................................................................31  
TRISB Register ..........................................................31  
PORTC  
Associated Registers .................................................33  
Block Diagram (Peripheral Output Override) .............33  
Initialization ................................................................33  
Initialization States ...................................................104  
Pin Functions .............................................................33  
Register ......................................................................33  
TRISC Register ..........................................................33  
PORTD  
Associated Registers .................................................35  
Initialization ................................................................34  
Initialization States ...................................................104  
Pin Functions .............................................................35  
Pins <4:0> ..................................................................34  
Pins <7:5> ..................................................................34  
Register ......................................................................34  
TRISD Register ..........................................................34  
PORTE  
RESET Conditions ................................................... 103  
Program Memory  
Associated Registers ................................................. 28  
Operation During Code Protect ................................. 28  
PMADR Register ....................................................... 27  
PMCON1 Register ..................................................... 27  
Program Read (Code Example) ................................ 28  
Read .......................................................................... 28  
Program Memory and Stack Maps .................................... 11  
PUSH ................................................................................. 25  
PWM Mode (CCP) ............................................................. 56  
Associated Registers ................................................. 58  
Block Diagram ........................................................... 56  
Example Frequencies/Resolutions ............................ 57  
Example Period and Duty Cycle Calculations ........... 57  
R
R/W bit ................................................................... 66, 70, 71  
RBIF bit ...................................................................... 31, 108  
RC Oscillator ...................................................... 99, 100, 102  
RCV_MODE ...................................................................... 73  
Read-Modify-Write ............................................................. 39  
Register File ....................................................................... 12  
Register File Map  
PIC16C925 ................................................................ 13  
PIC16C926 ................................................................ 14  
Registers  
ADCON0 (A/D Control 0) ........................................... 75  
ADCON1 (A/D Control 1) ........................................... 76  
CCP1CON (CCP Control) .......................................... 53  
Flag ............................................................................ 23  
Initialization Conditions .................................... 104105  
INTCON (Interrupt Control) ........................................ 21  
LCDCON (LCD Control) ............................................ 83  
LCDD (LCD Pixel Data, General Format) .................. 92  
LCDPS (LCD Prescale) ............................................. 84  
LCDSE (LCD Segment Enable) ................................. 94  
OPTION_REG ........................................................... 20  
PCON (Power Control) .............................................. 24  
PIE2 (Peripheral Interrupt Enable 1) .......................... 22  
PIR1 (Peripheral Interrupt Request) .......................... 23  
PMCON1 (Program Memory Control) ........................ 27  
SSPCON (Sync Serial Port Control) .......................... 60  
SSPSTAT (Sync Serial Port Status) .......................... 59  
STATUS .................................................................... 19  
Associated Registers .................................................36  
Block Diagram ............................................................36  
Initialization ................................................................36  
Initialization States ...................................................104  
Pin Functions .............................................................36  
Register ......................................................................36  
TRISE Register ..........................................................36  
PORTF  
Associated Registers .................................................37  
Block Diagram ............................................................37  
Initialization ................................................................37  
Initialization States ...................................................105  
Pin Functions .............................................................37  
Register ......................................................................37  
TRISF Register ..........................................................37  
DS39544A-page 172  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
T1CON (Timer1 Control) ............................................ 47  
T2CON (Timer2 Control) ............................................ 52  
RESET ....................................................................... 97, 101  
Block Diagram .......................................................... 101  
RESET Conditions for PCON Register .................... 103  
RESET Conditions for Program Counter ................. 103  
RESET Conditions for STATUS Register ................ 103  
Resistor Ladder (LCD) ....................................................... 95  
RP1:RP0 (Bank Select) bits ......................................... 12, 19  
T
TAD .................................................................................... 79  
Timer0  
Associated Registers ................................................. 45  
Block Diagram ........................................................... 41  
Clock Source Edge Select (T0SE Bit) ....................... 20  
Clock Source Select (T0CS Bit) ................................ 20  
External Clock ........................................................... 43  
Synchronization ................................................. 43  
Timing ................................................................ 43  
Increment Delay ........................................................ 43  
Initialization States ................................................... 104  
Interrupt ..................................................................... 41  
Interrupt Timing ......................................................... 42  
Prescaler ................................................................... 44  
Block Diagram ................................................... 44  
Timing ........................................................................ 42  
TMR0 Interrupt ........................................................ 108  
Timer1  
S
SCL ........................................................................ 70, 71, 72  
SDA .............................................................................. 71, 72  
Slave Mode  
SCL pin ...................................................................... 70  
SDA pin ...................................................................... 70  
SLEEP ....................................................................... 97, 101  
Software Simulator (MPLAB SIM) .................................... 134  
Special Features of the CPU ............................................. 97  
Special Function Registers, Summary ............................... 15  
SPI  
Associated Registers ................................................. 64  
Master Mode .............................................................. 62  
Serial Clock ................................................................ 61  
Serial Data In ............................................................. 61  
Serial Data Out .......................................................... 61  
Serial Peripheral Interface (SPI) ................................ 59  
Slave Select ............................................................... 61  
SPI Clock ................................................................... 62  
SPI Mode ................................................................... 61  
SSP  
Associated Registers ................................................. 50  
Asynchronous Counter Mode .................................... 49  
Block Diagram ........................................................... 48  
Capacitor Selection ................................................... 50  
External Clock Input  
Synchronized Counter Mode ............................. 48  
Timing with Unsynchronized Clock .................... 49  
Unsynchronized Clock Timing ........................... 49  
Oscillator .................................................................... 50  
Prescaler ................................................................... 50  
Reading a Free-running Timer .................................. 49  
Register Initialization States .................................... 104  
Resetting Register Pair .............................................. 50  
Resetting with a CCP Trigger Output ........................ 50  
Switching Prescaler Assignment ............................... 45  
Synchronized Counter Mode ..................................... 48  
T1CON Register ........................................................ 47  
Timer Mode ............................................................... 48  
Timer2  
Block Diagrams  
2
I C Mode ............................................................ 69  
SPI Mode ........................................................... 61  
Register Initialization States ............................. 104, 105  
SSPADD Register ................................................ 69, 70  
SSPBUF Register .................................... 62, 69, 70, 71  
SSPCON Register ............................................... 60, 69  
SSPIF bit ........................................................ 70, 71, 72  
SSPOV bit .................................................................. 70  
SSPSR ....................................................................... 62  
SSPSR Register .................................................. 70, 71  
SSPSTAT ................................................................... 71  
SSPSTAT Register ........................................ 59, 69, 71  
Block Diagram ........................................................... 51  
Output ........................................................................ 51  
Register Initialization States .................................... 104  
T2CON Register ........................................................ 52  
Timing Diagrams (Operational)  
Clock/Instruction Cycle ................................................ 9  
2
SSP I C  
2
I C Clock Synchronization ......................................... 68  
Addressing ................................................................. 70  
Associated Registers ................................................. 72  
Multi-Master Mode ..................................................... 72  
Reception ................................................................... 71  
2
I C Data Transfer Wait State ..................................... 66  
2
I C Multi-Master Arbitration ....................................... 68  
2
I C Reception (7-bit address) .................................... 71  
2
I C Slave-Receiver Acknowledge .............................. 66  
2
SSP I C Operation ..................................................... 69  
2
I C STARTand STOP Conditions .............................. 65  
START ....................................................................... 71  
START (S) ................................................................. 72  
STOP (P) ................................................................... 72  
Transmission .............................................................. 71  
SSPEN (Sync Serial Port Enable) bit ................................. 60  
SSPM3:SSPM0 .................................................................. 60  
SSPOV (Receive Overflow Indicator) bit ........................... 60  
SSPOV bit .......................................................................... 70  
Stack .................................................................................. 25  
Overflows ................................................................... 25  
Underflow ................................................................... 25  
STATUS Register .............................................................. 19  
Initialization States ................................................... 104  
Synchronous Serial Port Mode Select bits,  
2
I C Transmission (7-bit address) ............................... 71  
INT Pin Interrupt Timing .......................................... 108  
LCD Half-Duty Cycle Drive ........................................ 86  
LCD Interrupt Timing in Quarter-Duty Cycle Drive .... 91  
LCD One-Third Duty Cycle Drive .............................. 87  
LCD Quarter-Duty Cycle Drive .................................. 88  
LCD SLEEP Entry/Exit (SLPEN=1) ........................... 93  
LCD Static Drive ........................................................ 85  
SPI (Master Mode) .................................................... 63  
SPI (Slave Mode, CKE = 0) ....................................... 63  
SPI (Slave Mode, CKE = 1) ....................................... 64  
Successive I/O Operation .......................................... 39  
Time-out Sequences on Power-up .......................... 106  
Timer0 Interrupt Timing ............................................. 42  
Timer0 with External Clock ........................................ 43  
SSPM3:SSPM0 .......................................................... 60  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 173  
PIC16C925/926  
Timer0,Internal Timing ...............................................42  
Wake-up from SLEEP through Interrupt ..................112  
Timing Diagrams and Specifications ................................147  
Timing Parameter Symbology ..........................................146  
TO bit .................................................................................19  
TRISA Register ..................................................................29  
Initialization State .....................................................104  
TRISB Register ..................................................................31  
Initialization State .....................................................104  
TRISC Register ..................................................................33  
Initialization State .....................................................104  
TRISD Register ..................................................................34  
Initialization State .....................................................104  
TRISE Register ..................................................................36  
Initialization State .....................................................104  
TRISF Register ..................................................................37  
Initialization States ...................................................105  
TRISG Register ..................................................................38  
Initialization States ...................................................105  
W
W Register  
Initialization States ................................................... 104  
Wake-up from SLEEP ...................................................... 111  
Interrupts ................................................................. 103  
Watchdog Timer (WDT) ..................................... 97, 101, 110  
Associated Registers ............................................... 110  
WDT Reset, Normal Operation ................................ 103  
WDT Reset, SLEEP ................................................. 103  
WCOL ................................................................................ 60  
WDT  
Period ...................................................................... 110  
Programming Considerations .................................. 110  
Timeout .................................................................... 104  
Write Collision Detect bit, WCOL ....................................... 60  
WWW, On-Line Support .............................................. 4, 175  
X
XMIT_MODE ..................................................................... 73  
XT .............................................................................. 99, 102  
Z
Z (Zero) bit ......................................................................... 19  
DS39544A-page 174  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
Systems Information and Upgrade Hot Line  
ON-LINE SUPPORT  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchips development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
Microchip provides on-line support on the Microchip  
World Wide Web (WWW) site.  
The web site is used by Microchip as a means to make  
files and information easily available to customers. To  
view the site, the user must have access to the Internet  
and a web browser, such as Netscape or Microsoft  
Explorer. Files are also available for FTP download  
from our FTP site.  
1-800-755-2345 for U.S. and most of Canada, and  
1-480-792-7302 for the rest of the world.  
013001  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
ftp://ftp.microchip.com  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
Users Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
Design Tips  
Device Errata  
Job Postings  
Microchip Consultant Program Member Listing  
Links to other useful web sites related to  
Microchip Products  
Conferences for products, Development Systems,  
technical information and more  
Listing of seminars and events  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 175  
PIC16C925/926  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS39544A  
Device:  
PIC16C925/926  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS39544A-page 176  
Preliminary  
2001 Microchip Technology Inc.  
PIC16C925/926  
PIC16C925/926 PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
X
/XX  
XXX  
PART NO.  
Device  
Examples:  
Temperature Package  
Range  
Pattern  
a) PIC16C926/P 301 = Commercial  
Temp., normal VDD limits, QTP  
pattern #301  
b) PIC16LC925/PT  
=
Commercial  
Device  
PIC16C92X(1), PIC16C92XT(2)  
VDD range 4.0V to 5.5V  
;
Temp., TQFP package, extended  
VDD limits  
PIC16LC92X(1), PIC16LC92XT(2)  
VDD range 2.5V to 5.5V  
;
c) PIC16C925-I/CL = Industrial Temp.,  
windowed CERQUAD package,  
normal VDD limits  
Temperature  
Range  
I
S
-
=
=
=
=
-40°C to +85°C (Industrial)  
-40°C to +85°C (Industrial, tape/reel)  
0°C to +70°C (Commercial)  
0°C to +70°C (Commercial,  
tape/reel)  
Note 1: C = Standard Voltage range  
T
LC = Wide Voltage Range  
2:  
T
= in tape and reel -  
PLCC and TQFP  
packages only.  
Package  
Pattern  
CL = Windowed CERQUAD(3)  
PT = TQFP (Thin Quad Flatpack)  
3: CL Devices are UV erasable and  
L
=
PLCC  
can be programmed to any  
device  
devices meet the electrical  
requirement of each oscillator  
type (including LC devices).  
configuration.  
CL  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 177  
PIC16C925/926  
NOTES:  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 178  
PIC16C925/926  
NOTES:  
2001 Microchip Technology Inc.  
Preliminary  
DS39544A-page 179  
WORLDWIDE SALES AND SERVICE  
New York  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
AMERICAS  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
ASIA/PACIFIC (continued)  
Korea  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Tel: 631-273-5305 Fax: 631-273-5335  
San Jose  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Rocky Mountain  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
Singapore, 188980  
Tel: 408-436-7950 Fax: 408-436-7955  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-7456  
Toronto  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
Atlanta  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 770-640-0034 Fax: 770-640-0307  
Austin  
Analog Product Sales  
8303 MoPac Expressway North  
Suite A-201  
Austin, TX 78759  
Tel: 512-345-2030 Fax: 512-345-6085  
Tel: 65-334-8870 Fax: 65-334-8850  
Taiwan  
Microchip Technology Taiwan  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
ASIA/PACIFIC  
Australia  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
China - Beijing  
EUROPE  
Denmark  
Microchip Technology Denmark ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Boston  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Microchip Technology Beijing Office  
Unit 915  
New China Hong Kong Manhattan Bldg.  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
Boston  
Analog Product Sales  
Unit A-8-1 Millbrook Tarry Condominium  
97 Lowell Road  
Concord, MA 01742  
France  
China - Shanghai  
Microchip Technology Shanghai Office  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Arizona Microchip Technology SARL  
Parc dActivite du Moulin de Massy  
43 Rue du Saule Trapu  
Tel: 978-371-6400 Fax: 978-371-0050  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423 Fax: 972-818-2924  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann Ring 125  
D-81739 Munich, Germany  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
Hong Kong  
Microchip Asia Pacific  
RM 2101, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Dayton  
Germany  
Analog Product Sales  
Lochhamer Strasse 13  
D-82152 Martinsried, Germany  
Tel: 49-89-895650-0 Fax: 49-89-895650-22  
Two Prestige Place, Suite 130  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
India  
Microchip Technology Inc.  
India Liaison Office  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Divyasree Chambers  
Italy  
1 Floor, Wing A (A3/A4)  
No. 11, OShaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Los Angeles  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Japan  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
Tel: 949-263-1888 Fax: 949-263-1338  
United Kingdom  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Mountain View  
Analog Product Sales  
1300 Terra Bella Avenue  
Mountain View, CA 94043-1836  
Tel: 650-968-9241 Fax: 650-967-1590  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
01/30/01  
All rights reserved. © 2001 Microchip Technology Incorporated. Printed in the USA. 3/01  
Printed on recycled paper.  
Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by  
updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual  
property rights arising from such use or otherwise. Use of Microchips products as critical components in life support systems is not authorized except with  
express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellec-  
tual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights  
reserved. All other trademarks mentioned herein are the property of their respective companies.  
DS39544A-page 180  
Preliminary  
2001 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY