PIC16LC715-20I/SP [MICROCHIP]

8-Bit CMOS Microcontrollers with A/D Converter; 8位CMOS微控制器与A / D转换器
PIC16LC715-20I/SP
型号: PIC16LC715-20I/SP
厂家: MICROCHIP    MICROCHIP
描述:

8-Bit CMOS Microcontrollers with A/D Converter
8位CMOS微控制器与A / D转换器

转换器 微控制器
文件: 总176页 (文件大小:1596K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16C71X  
8-Bit CMOS Microcontrollers with A/D Converter  
Devices included in this data sheet:  
PIC16C71X Peripheral Features:  
• PIC16C710  
• PIC16C71  
• PIC16C711  
• PIC16C715  
• Timer0: 8-bit timer/counter with 8-bit prescaler  
• 8-bit multichannel analog-to-digital converter  
• Brown-out detection circuitry for  
Brown-out Reset (BOR)  
• 13 I/O Pins with Individual Direction Control  
PIC16C71X Microcontroller Core Features:  
PIC16C7X Features  
710 71 711 715  
• High-performance RISC CPU  
• Only 35 single word instructions to learn  
Program Memory (EPROM)  
x 14  
512 1K 1K 2K  
• All single cycle instructions except for program  
branches which are two cycle  
Data Memory (Bytes) x 8  
I/O Pins  
36 36 68 128  
13 13 13 13  
• Operating speed: DC - 20 MHz clock input  
DC - 200 ns instruction cycle  
Timer Modules  
A/D Channels  
1
4
1
4
1
4
1
4
• Up to 2K x 14 words of Program Memory,  
up to 128 x 8 bytes of Data Memory (RAM)  
• Interrupt capability  
In-Circuit Serial Programming Yes Yes Yes Yes  
• Eight level deep hardware stack  
• Direct, indirect, and relative addressing modes  
• Power-on Reset (POR)  
Brown-out Reset  
Interrupt Sources  
Yes  
4
4
Yes Yes  
4
4
• Power-up Timer (PWRT) and  
Oscillator Start-up Timer (OST)  
Pin Diagrams  
• Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
PDIP, SOIC, Windowed CERDIP  
• Programmable code-protection  
• Power saving SLEEP mode  
• Selectable oscillator options  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
MCLR/VPP  
VSS  
• 1  
2
18  
17  
16  
15  
14  
RA1/AN1  
RA0/AN0  
3
OSC1/CLKIN  
OSC2/CLKOUT  
VDD  
4
5
• Low-power, high-speed CMOS EPROM  
technology  
RB0/INT  
RB1  
6
7
8
13  
12  
11  
RB7  
RB6  
RB5  
RB2  
• Fully static design  
RB3  
9
10  
RB4  
• Wide operating voltage range: 2.5V to 6.0V  
• High Sink/Source Current 25/25 mA  
• Commercial, Industrial and Extended temperature  
ranges  
SSOP  
• Program Memory Parity Error Checking Circuitry  
with Parity Error Reset (PER) (PIC16C715)  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
MCLR/VPP  
VSS  
• 1  
2
20  
19  
18  
17  
16  
RA1/AN1  
RA0/AN0  
3
OSC1/CLKIN  
OSC2/CLKOUT  
VDD  
• Low-power consumption:  
- < 2 mA @ 5V, 4 MHz  
4
5
VSS  
RB0/INT  
RB1  
6
7
8
15  
14  
13  
VDD  
RB7  
RB6  
- 15 µA typical @ 3V, 32 kHz  
- < 1 µA typical standby current  
RB2  
9
12  
11  
RB5  
RB4  
RB3  
10  
1997 Microchip Technology Inc.  
DS30272A-page 1  
PIC16C71X  
Table of Contents  
1.0 General Description.................................................................................................................................................................... 3  
2.0 PIC16C71X Device Varieties...................................................................................................................................................... 5  
3.0 Architectural Overview................................................................................................................................................................ 7  
4.0 Memory Organization ............................................................................................................................................................... 11  
5.0 I/O Ports.................................................................................................................................................................................... 25  
6.0 Timer0 Module.......................................................................................................................................................................... 31  
7.0 Analog-to-Digital Converter (A/D) Module ................................................................................................................................ 37  
8.0 Special Features of the CPU .................................................................................................................................................... 47  
9.0 Instruction Set Summary .......................................................................................................................................................... 69  
10.0 Development Support............................................................................................................................................................... 85  
11.0 Electrical Characteristics for PIC16C710 and PIC16C711....................................................................................................... 89  
12.0 DC and AC Characteristics Graphs and Tables for PIC16C710 and PIC16C711.................................................................. 101  
13.0 Electrical Characteristics for PIC16C715................................................................................................................................ 111  
14.0 DC and AC Characteristics Graphs and Tables for PIC16C715 ............................................................................................ 125  
15.0 Electrical Characteristics for PIC16C71.................................................................................................................................. 135  
16.0 DC and AC Characteristics Graphs and Tables for PIC16C71 .............................................................................................. 147  
17.0 Packaging Information............................................................................................................................................................ 155  
Appendix A: ...................................................................................................................................................................................... 161  
Appendix B: Compatibility................................................................................................................................................................. 161  
Appendix C: What’s New.................................................................................................................................................................. 162  
Appendix D: What’s Changed .......................................................................................................................................................... 162  
Index .................................................................................................................................................................................................. 163  
PIC16C71X Product Identification System......................................................................................................................................... 173  
To Our Valued Customers  
We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional  
amount of time to ensure that these documents are correct. However, we realize that we may have missed a few  
things. If you find any information that is missing or appears in error, please use the reader response form in the  
back of this data sheet to inform us. We appreciate your assistance in making this a better document.  
DS30272A-page 2  
1997 Microchip Technology Inc.  
PIC16C71X  
A highly reliable Watchdog Timer with its own on-chip  
RC oscillator provides protection against software lock-  
up.  
1.0  
GENERAL DESCRIPTION  
The PIC16C71X is a family of low-cost, high-perfor-  
mance, CMOS, fully-static, 8-bit microcontrollers with  
integrated analog-to-digital (A/D) converters, in the  
PIC16CXX mid-range family.  
A UV erasable CERDIP packaged version is ideal for  
code development while the cost-effective One-Time-  
Programmable (OTP) version is suitable for production  
in any volume.  
All PIC16/17 microcontrollers employ an advanced  
RISC architecture.The PIC16CXX microcontroller fam-  
ily has enhanced core features, eight-level deep stack,  
and multiple internal and external interrupt sources.  
The separate instruction and data buses of the Harvard  
architecture allow a 14-bit wide instruction word with  
the separate 8-bit wide data. The two stage instruction  
pipeline allows all instructions to execute in a single  
cycle, except for program branches which require two  
cycles. A total of 35 instructions (reduced instruction  
set) are available. Additionally, a large register set gives  
some of the architectural innovations used to achieve a  
very high performance.  
The PIC16C71X family fits perfectly in applications  
ranging from security and remote sensors to appliance  
control and automotive. The EPROM technology  
makes customization of application programs (trans-  
mitter codes, motor speeds, receiver frequencies, etc.)  
extremely fast and convenient. The small footprint  
packages make this microcontroller series perfect for  
all applications with space limitations. Low cost, low  
power, high performance, ease of use and I/O flexibility  
make the PIC16C71X very versatile even in areas  
where no microcontroller use has been considered  
before (e.g. timer functions, serial communication, cap-  
ture and compare, PWM functions and coprocessor  
applications).  
PIC16CXX microcontrollers typically achieve a 2:1  
code compression and a 4:1 speed improvement over  
other 8-bit microcontrollers in their class.  
1.1  
Family and Upward Compatibility  
The PIC16C710/71 devices have 36 bytes of RAM, the  
PIC16C711 has 68 bytes of RAM and the PIC16C715  
has 128 bytes of RAM. Each device has 13 I/O pins. In  
addition a timer/counter is available. Also a 4-channel  
high-speed 8-bit A/D is provided.The 8-bit resolution is  
ideally suited for applications requiring low-cost analog  
interface, e.g. thermostat control, pressure sensing,  
etc.  
Users familiar with the PIC16C5X microcontroller fam-  
ily will realize that this is an enhanced version of the  
PIC16C5X architecture. Please refer to Appendix A for  
a detailed list of enhancements. Code written for the  
PIC16C5X can be easily ported to the PIC16CXX fam-  
ily of devices (Appendix B).  
1.2  
Development Support  
The PIC16C71X family has special features to reduce  
external components, thus reducing cost, enhancing  
system reliability and reducing power consumption.  
There are four oscillator options, of which the single pin  
RC oscillator provides a low-cost solution, the LP oscil-  
lator minimizes power consumption, XT is a standard  
crystal, and the HS is for High Speed crystals. The  
SLEEP (power-down) feature provides a power saving  
mode. The user can wake up the chip from SLEEP  
through several external and internal interrupts and  
resets.  
PIC16C71X devices are supported by the complete  
line of Microchip Development tools.  
Please refer to Section 10.0 for more details about  
Microchip’s development tools.  
1997 Microchip Technology Inc.  
DS30272A-page 3  
PIC16C71X  
TABLE 1-1:  
PIC16C71X FAMILY OF DEVICES  
(1)  
PIC16C710 PIC16C71 PIC16C711 PIC16C715  
PIC16C72 PIC16CR72  
Maximum Frequency  
of Operation (MHz)  
20  
20  
1K  
20  
1K  
20  
2K  
20  
20  
Clock  
EPROM Program Memory  
(x14 words)  
512  
2K  
Memory  
ROM Program Memory  
(14K words)  
2K  
128  
Data Memory (bytes)  
Timer Module(s)  
36  
36  
68  
128  
128  
TMR0  
TMR0  
TMR0  
TMR0  
TMR0,  
TMR1,  
TMR2  
TMR0,  
TMR1,  
TMR2  
Capture/Compare/PWM  
Module(s)  
1
1
Peripherals  
2
2
Serial Port(s)  
SPI/I C  
SPI/I C  
2
(SPI/I C, USART)  
Parallel Slave Port  
A/D Converter (8-bit) Channels 4  
4
4
4
5
5
Interrupt Sources  
I/O Pins  
4
4
4
4
8
8
13  
13  
13  
13  
22  
22  
Voltage Range (Volts)  
2.5-6.0  
3.0-6.0  
Yes  
2.5-6.0  
Yes  
Yes  
2.5-5.5  
Yes  
Yes  
2.5-6.0  
Yes  
Yes  
3.0-5.5  
Yes  
Yes  
In-Circuit Serial Programming Yes  
Features  
Brown-out Reset  
Packages  
Yes  
18-pin DIP, 18-pin DIP, 18-pin DIP, 18-pin DIP, 28-pin SDIP, 28-pin SDIP,  
SOIC;  
SOIC  
SOIC;  
SOIC;  
SOIC, SSOP SOIC, SSOP  
20-pin SSOP  
20-pin SSOP 20-pin SSOP  
PIC16C73A  
PIC16C74A  
PIC16C76  
PIC16C77  
Maximum Frequency  
of Operation (MHz)  
20  
20  
20  
20  
Clock  
EPROM Program Memory  
(x14 words)  
4K  
192  
4K  
192  
8K  
8K  
376  
Memory  
Data Memory (bytes)  
Timer Module(s)  
376  
TMR0,  
TMR1,  
TMR2  
TMR0,  
TMR1,  
TMR2  
TMR0,  
TMR1,  
TMR2  
TMR0,  
TMR1,  
TMR2  
Capture/Compare/PWM  
Module(s)  
2
2
2
2
Peripherals  
2
2
2
2
Serial Port(s)  
(SPI/I C, USART)  
SPI/I C, USART  
SPI/I C, USART  
SPI/I C, USART  
SPI/I C, USART  
2
Parallel Slave Port  
Yes  
8
Yes  
8
A/D Converter (8-bit) Channels 5  
5
Interrupt Sources  
I/O Pins  
11  
12  
11  
12  
22  
33  
22  
33  
Voltage Range (Volts)  
2.5-6.0  
2.5-6.0  
Yes  
Yes  
2.5-6.0  
Yes  
Yes  
2.5-6.0  
Yes  
Yes  
In-Circuit Serial Programming Yes  
Features  
Brown-out Reset  
Packages  
Yes  
28-pin SDIP,  
SOIC  
40-pin DIP;  
44-pin PLCC,  
MQFP, TQFP  
28-pin SDIP,  
SOIC  
40-pin DIP;  
44-pin PLCC,  
MQFP, TQFP  
All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capabil-  
ity. All PIC16C7XX Family devices use serial programming with clock pin RB6 and data pin RB7.  
Note 1: Please contact your local Microchip sales office for availability of these devices.  
DS30272A-page 4  
1997 Microchip Technology Inc.  
PIC16C71X  
2.3  
Quick-Turnaround-Production (QTP)  
Devices  
2.0  
PIC16C71X DEVICE VARIETIES  
A variety of frequency ranges and packaging options  
are available. Depending on application and production  
requirements, the proper device option can be selected  
using the information in the PIC16C71X Product Iden-  
tification System section at the end of this data sheet.  
When placing orders, please use that page of the data  
sheet to specify the correct part number.  
Microchip offers a QTP Programming Service for fac-  
tory production orders. This service is made available  
for users who choose not to program a medium to high  
quantity of units and whose code patterns have stabi-  
lized. The devices are identical to the OTP devices but  
with all EPROM locations and configuration options  
already programmed by the factory. Certain code and  
prototype verification procedures apply before produc-  
tion shipments are available. Please contact your local  
Microchip Technology sales office for more details.  
For the PIC16C71X family, there are two device “types”  
as indicated in the device number:  
1. C, as in PIC16C71. These devices have  
EPROM type memory and operate over the  
standard voltage range.  
2.4  
Serialized Quick-Turnaround  
Production (SQTPSM) Devices  
2. LC, as in PIC16LC71. These devices have  
EPROM type memory and operate over an  
extended voltage range.  
Microchip offers a unique programming service where  
a few user-defined locations in each device are pro-  
grammed with different serial numbers.The serial num-  
bers may be random, pseudo-random, or sequential.  
2.1  
UV Erasable Devices  
The UV erasable version, offered in CERDIP package  
is optimal for prototype development and pilot  
programs. This version can be erased and  
reprogrammed to any of the oscillator modes.  
Serial programming allows each device to have a  
unique number which can serve as an entry-code,  
password, or ID number.  
Microchip's PICSTART  
Plus and PRO MATE II  
programmers both support programming of the  
PIC16C71X.  
2.2  
One-Time-Programmable (OTP)  
Devices  
The availability of OTP devices is especially useful for  
customers who need the flexibility for frequent code  
updates and small volume applications.  
The OTP devices, packaged in plastic packages, per-  
mit the user to program them once. In addition to the  
program memory, the configuration bits must also be  
programmed.  
1997 Microchip Technology Inc.  
DS30272A-page 5  
PIC16C71X  
NOTES:  
DS30272A-page 6  
1997 Microchip Technology Inc.  
PIC16C71X  
PIC16CXX devices contain an 8-bit ALU and working  
register. The ALU is a general purpose arithmetic unit.  
It performs arithmetic and Boolean functions between  
the data in the working register and any register file.  
3.0  
ARCHITECTURAL OVERVIEW  
The high performance of the PIC16CXX family can be  
attributed to a number of architectural features com-  
monly found in RISC microprocessors. To begin with,  
the PIC16CXX uses a Harvard architecture, in which,  
program and data are accessed from separate memo-  
ries using separate buses. This improves bandwidth  
over traditional von Neumann architecture in which pro-  
gram and data are fetched from the same memory  
using the same bus. Separating program and data  
buses further allows instructions to be sized differently  
than the 8-bit wide data word. Instruction opcodes are  
14-bits wide making it possible to have all single word  
instructions. A 14-bit wide program memory access  
bus fetches a 14-bit instruction in a single cycle. A two-  
stage pipeline overlaps fetch and execution of instruc-  
tions (Example 3-1). Consequently, all instructions (35)  
execute in a single cycle (200 ns @ 20 MHz) except for  
program branches.  
The ALU is 8-bits wide and capable of addition, sub-  
traction, shift and logical operations. Unless otherwise  
mentioned, arithmetic operations are two's comple-  
ment in nature. In two-operand instructions, typically  
one operand is the working register (W register). The  
other operand is a file register or an immediate con-  
stant. In single operand instructions, the operand is  
either the W register or a file register.  
The W register is an 8-bit working register used for ALU  
operations. It is not an addressable register.  
Depending on the instruction executed, the ALU may  
affect the values of the Carry (C), Digit Carry (DC), and  
Zero (Z) bits in the STATUS register.The C and DC bits  
operate as a borrow bit and a digit borrow out bit,  
respectively, in subtraction. See the SUBLWand SUBWF  
instructions for examples.  
The table below lists program memory (EPROM) and  
data memory (RAM) for each PIC16C71X device.  
Program  
Memory  
Device  
Data Memory  
PIC16C710  
PIC16C71  
PIC16C711  
PIC16C715  
512 x 14  
1K x 14  
1K x 14  
2K x 14  
36 x 8  
36 x 8  
68 x 8  
128 x 8  
The PIC16CXX can directly or indirectly address its  
register files or data memory. All special function regis-  
ters, including the program counter, are mapped in the  
data memory.The PIC16CXX has an orthogonal (sym-  
metrical) instruction set that makes it possible to carry  
out any operation on any register using any addressing  
mode. This symmetrical nature and lack of ‘special  
optimal situations’ make programming with the  
PIC16CXX simple yet efficient. In addition, the learning  
curve is reduced significantly.  
1997 Microchip Technology Inc.  
DS30272A-page 7  
PIC16C71X  
FIGURE 3-1: PIC16C71X BLOCK DIAGRAM  
Device  
Program Memory Data Memory (RAM)  
PIC16C710  
PIC16C71  
PIC16C711  
PIC16C715  
512 x 14  
1K x 14  
1K x 14  
2K x 14  
36 x 8  
36 x 8  
68 x 8  
128 x 8  
13  
8
PORTA  
Data Bus  
Program Counter  
EPROM  
RA0/AN0  
RA1/AN1  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
Program  
Memory  
RAM  
8 Level Stack  
(13-bit)  
File  
Registers  
Program  
Bus  
14  
RAM Addr (1)  
PORTB  
9
Addr MUX  
Instruction reg  
RB0/INT  
RB7:RB1  
Indirect  
Addr  
7
Direct Addr  
8
FSR reg  
STATUS reg  
8
3
MUX  
Power-up  
Timer  
Instruction  
Decode &  
Control  
Oscillator  
Start-up Timer  
ALU  
8
Power-on  
Reset  
Timing  
Generation  
W reg  
Watchdog  
Timer  
OSC1/CLKIN  
OSC2/CLKOUT  
Brown-out  
Reset(2)  
Timer0  
MCLR VDD, VSS  
A/D  
Note 1: Higher order bits are from the STATUS register.  
2: Brown-out Reset is not available on the PIC16C71.  
DS30272A-page 8  
1997 Microchip Technology Inc.  
PIC16C71X  
TABLE 3-1:  
PIC16C710/71/711/715 PINOUT DESCRIPTION  
SSOP  
DIP  
Pin#  
SOIC I/O/P  
Buffer  
Type  
Pin Name  
Description  
(4)  
Pin#  
Type  
Pin#  
(3)  
OSC1/CLKIN  
16  
18  
17  
16  
15  
I
Oscillator crystal input/external clock source input.  
ST/CMOS  
OSC2/CLKOUT 15  
O
Oscillator crystal output. Connects to crystal or resonator in crystal  
oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has  
1/4 the frequency of OSC1, and denotes the instruction cycle rate.  
4
4
4
I/P  
ST  
Master clear (reset) input or programming voltage input. This pin is  
an active low reset to the device.  
MCLR/VPP  
PORTA is a bi-directional I/O port.  
RA0 can also be analog input0  
RA0/AN0  
17  
18  
1
19  
20  
1
17  
18  
1
I/O  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
ST  
RA1/AN1  
RA1 can also be analog input1  
RA2/AN2  
RA2 can also be analog input2  
RA3/AN3/VREF  
RA4/T0CKI  
2
2
2
RA3 can also be analog input3 or analog reference voltage  
3
3
3
RA4 can also be the clock input to the Timer0 module. Output is  
open drain type.  
PORTB is a bi-directional I/O port. PORTB can be software pro-  
grammed for internal weak pull-up on all inputs.  
(1)  
RB0/INT  
6
7
7
8
6
7
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P
TTL/ST  
TTL  
RB0 can also be the external interrupt pin.  
RB1  
RB2  
8
9
8
TTL  
RB3  
9
10  
11  
12  
13  
14  
4, 6  
9
TTL  
RB4  
10  
11  
12  
13  
5
10  
11  
12  
13  
5
TTL  
Interrupt on change pin.  
RB5  
TTL  
Interrupt on change pin.  
(2)  
RB6  
TTL/ST  
TTL/ST  
Interrupt on change pin. Serial programming clock.  
Interrupt on change pin. Serial programming data.  
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
(2)  
RB7  
VSS  
VDD  
14 15, 16  
O = output  
— = Not used  
14  
P
Legend: I = input  
I/O = input/output  
TTL = TTL input  
P = power  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
3: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
4: The PIC16C71 is not available in SSOP package.  
1997 Microchip Technology Inc.  
DS30272A-page 9  
PIC16C71X  
3.1  
Clocking Scheme/Instruction Cycle  
3.2  
Instruction Flow/Pipelining  
The clock input (from OSC1) is internally divided by  
four to generate four non-overlapping quadrature  
clocks namely Q1, Q2, Q3 and Q4. Internally, the pro-  
gram counter (PC) is incremented every Q1, the  
instruction is fetched from the program memory and  
latched into the instruction register in Q4. The instruc-  
tion is decoded and executed during the following Q1  
through Q4. The clocks and instruction execution flow  
is shown in Figure 3-2.  
An “Instruction Cycle” consists of four Q cycles (Q1,  
Q2, Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle  
while decode and execute takes another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g. GOTO) then  
two cycles are required to complete the instruction  
(Example 3-1).  
A fetch cycle begins with the program counter (PC)  
incrementing in Q1.  
In the execution cycle, the fetched instruction is latched  
into the “Instruction Register” (IR) in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3, and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
FIGURE 3-2: CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Internal  
phase  
clock  
Q4  
PC  
PC  
PC+1  
PC+2  
OSC2/CLKOUT  
(RC mode)  
Fetch INST (PC)  
Execute INST (PC-1)  
Fetch INST (PC+1)  
Execute INST (PC)  
Fetch INST (PC+2)  
Execute INST (PC+1)  
EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW  
Tcy0  
Tcy1  
Tcy2  
Tcy3  
Tcy4  
Tcy5  
1. MOVLW 55h  
2. MOVWF PORTB  
3. CALL SUB_1  
Fetch 1  
Execute 1  
Fetch 2  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF PORTA, BIT3 (Forced NOP)  
5. Instruction @ address SUB_1  
Flush  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch  
instruction is “flushed” from the pipeline while the new instruction is being fetched and then executed.  
DS30272A-page 10  
1997 Microchip Technology Inc.  
 
 
PIC16C71X  
FIGURE 4-2: PIC16C71/711 PROGRAM  
MEMORY MAP AND STACK  
4.0  
MEMORY ORGANIZATION  
4.1  
Program Memory Organization  
PC<12:0>  
The PIC16C71X family has a 13-bit program counter  
capable of addressing an 8K x 14 program memory  
space. The amount of program memory available to  
each device is listed below:  
CALL, RETURN  
RETFIE, RETLW  
13  
Stack Level 1  
Stack Level 8  
Program  
Memory  
Device  
Address Range  
PIC16C710  
PIC16C71  
PIC16C711  
PIC16C715  
512 x 14  
1K x 14  
1K x 14  
2K x 14  
0000h-01FFh  
0000h-03FFh  
0000h-03FFh  
0000h-07FFh  
Reset Vector  
0000h  
For those devices with less than 8K program memory,  
accessing a location above the physically implemented  
address will cause a wraparound.  
Interrupt Vector  
0004h  
0005h  
On-chip Program  
Memory  
The reset vector is at 0000h and the interrupt vector is  
at 0004h.  
03FFh  
0400h  
FIGURE 4-1: PIC16C710 PROGRAM  
MEMORY MAP AND STACK  
PC<12:0>  
1FFFh  
CALL, RETURN  
RETFIE, RETLW  
13  
FIGURE 4-3: PIC16C715 PROGRAM  
MEMORY MAP AND STACK  
Stack Level 1  
Stack Level 8  
PC<12:0>  
CALL, RETURN  
RETFIE, RETLW  
13  
Stack Level 1  
Stack Level 8  
Reset Vector  
0000h  
Interrupt Vector  
0004h  
0005h  
On-chip Program  
Memory  
Reset Vector  
0000h  
01FFh  
0200h  
Interrupt Vector  
0004h  
0005h  
1FFFh  
On-chip Program  
Memory  
07FFh  
0800h  
1FFFh  
1997 Microchip Technology Inc.  
DS30272A-page 11  
PIC16C71X  
4.2  
Data Memory Organization  
FIGURE 4-4: PIC16C710/71 REGISTER FILE  
MAP  
The data memory is partitioned into two Banks which  
contain the General Purpose Registers and the Special  
Function Registers. Bit RP0 is the bank select bit.  
File  
Address  
File  
Address  
RP0 (STATUS<5>) = 1 Bank 1  
RP0 (STATUS<5>) = 0 Bank 0  
(1)  
(1)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
INDF  
INDF  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
TMR0  
PCL  
OPTION  
PCL  
Each Bank extends up to 7Fh (128 bytes). The lower  
locations of each Bank are reserved for the Special  
Function Registers. Above the Special Function Regis-  
ters are General Purpose Registers implemented as  
static RAM. Both Bank 0 and Bank 1 contain special  
function registers. Some "high use" special function  
registers from Bank 0 are mirrored in Bank 1 for code  
reduction and quicker access.  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
TRISA  
TRISB  
(2)  
PCON  
ADCON0  
ADRES  
ADCON1  
ADRES  
4.2.1  
GENERAL PURPOSE REGISTER FILE  
PCLATH  
INTCON  
PCLATH  
INTCON  
The register file can be accessed either directly, or indi-  
rectly through the File Select Register FSR  
(Section 4.5).  
General  
Purpose  
Register  
General  
Purpose  
Register  
Mapped  
(3)  
in Bank 0  
AFh  
B0h  
2Fh  
30h  
FFh  
7Fh  
Bank 0  
Bank 1  
Unimplemented data memory locations, read  
as '0'.  
Note 1: Not a physical register.  
2: The PCON register is not implemented on the  
PIC16C71.  
3: These locations are unimplemented in Bank 1.  
Any access to these locations will access the  
corresponding Bank 0 register.  
DS30272A-page 12  
1997 Microchip Technology Inc.  
 
PIC16C71X  
FIGURE 4-5: PIC16C711 REGISTER FILE  
MAP  
FIGURE 4-6: PIC16C715 REGISTER FILE  
MAP  
File  
File  
File  
File  
Address  
Address  
Address  
Address  
(1)  
(1)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
INDF  
INDF  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
(1)  
(1)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
INDF  
INDF  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
88h  
89h  
8Ah  
8Bh  
8Ch  
TMR0  
PCL  
OPTION  
PCL  
TMR0  
PCL  
OPTION  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
PORTA  
PORTB  
TRISA  
TRISB  
PORTA  
PORTB  
TRISA  
TRISB  
PCON  
ADCON1  
ADCON0  
ADRES  
ADRES  
PCLATH  
INTCON  
PCLATH  
INTCON  
PIR1  
PCLATH  
INTCON  
PIE1  
PCLATH  
INTCON  
General  
Purpose  
Register  
PCON  
General  
Purpose  
Register  
Mapped  
(2)  
in Bank 0  
CFh  
D0h  
4Fh  
50h  
FFh  
7Fh  
Bank 0  
Bank 1  
ADRES  
Unimplemented data memory locations, read  
as '0'.  
ADCON0  
ADCON1  
Note 1: Not a physical register.  
A0h  
General  
Purpose  
Register  
General  
Purpose  
Register  
2: These locations are unimplemented in Bank 1.  
Any access to these locations will access the  
corresponding Bank 0 register.  
BFh  
C0h  
FFh  
7Fh  
Bank 0  
Bank 1  
Unimplemented data memory locations, read  
as '0'.  
Note 1: Not a physical register.  
1997 Microchip Technology Inc.  
DS30272A-page 13  
PIC16C71X  
4.2.2  
SPECIAL FUNCTION REGISTERS  
The special function registers can be classified into two  
sets (core and peripheral). Those registers associated  
with the “core” functions are described in this section,  
and those related to the operation of the peripheral fea-  
tures are described in the section of that peripheral  
feature.  
The Special Function Registers are registers used by  
the CPU and Peripheral Modules for controlling the  
desired operation of the device. These registers are  
implemented as static RAM.  
TABLE 4-1:  
PIC16C710/71/711 SPECIAL FUNCTION REGISTER SUMMARY  
Value on: Value on all  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR  
other resets  
(1)  
Bank 0  
00h(3)  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 module’s register  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
01h  
TMR0  
PCL  
02h(3)  
03h(3)  
Program Counter's (PC) Least Significant Byte  
IRP(5)  
RP1(5)  
STATUS  
RP0  
Indirect data memory address pointer  
PORTA Data Latch when written: PORTA pins when read  
TO  
PD  
Z
DC  
C
04h(3)  
05h  
FSR  
xxxx xxxx uuuu uuuu  
---x 0000 ---u 0000  
xxxx xxxx uuuu uuuu  
PORTA  
PORTB  
06h  
PORTB Data Latch when written: PORTB pins when read  
Unimplemented  
07h  
08h  
ADCON0  
ADRES  
ADCS1  
ADCS0  
(6)  
CHS1  
CHS0  
GO/DONE  
ADIF  
ADON  
00-0 0000 00-0 0000  
xxxx xxxx uuuu uuuu  
09h(3)  
A/D Result Register  
0Ah(2,3)  
PCLATH  
INTCON  
Write Buffer for the upper 5 bits of the Program Counter  
INTE RBIE T0IF INTF RBIF  
---0 0000 ---0 0000  
0000 000x 0000 000u  
0Bh(3)  
GIE  
ADIE  
T0IE  
Bank 1  
80h(3)  
81h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
OPTION  
PCL  
RBPU  
Program Counter's (PC) Least Significant Byte  
RP0 TO  
Indirect data memory address pointer  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
82h(3)  
83h(3)  
IRP(5)  
RP1(5)  
STATUS  
PD  
Z
DC  
C
84h(3)  
85h  
FSR  
xxxx xxxx uuuu uuuu  
---1 1111 ---1 1111  
1111 1111 1111 1111  
---- --qq ---- --uu  
---- --00 ---- --00  
xxxx xxxx uuuu uuuu  
TRISA  
TRISB  
PCON  
ADCON1  
ADRES  
PORTA Data Direction Register  
86h  
PORTB Data Direction Control Register  
87h(4)  
88h  
POR  
BOR  
PCFG1  
PCFG0  
89h(3)  
A/D Result Register  
8Ah(2,3)  
8Bh(3)  
PCLATH  
INTCON  
Write Buffer for the upper 5 bits of the Program Counter  
INTE RBIE T0IF INTF RBIF  
---0 0000 ---0 0000  
0000 000x 0000 000u  
GIE  
ADIE  
T0IE  
Legend: x= unknown, u= unchanged, q= value depends on condition, -= unimplemented read as '0'.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose  
contents are transferred to the upper byte of the program counter.  
3: These registers can be addressed from either bank.  
4: The PCON register is not physically implemented in the PIC16C71, read as ’0’.  
5: The IRP and RP1 bits are reserved on the PIC16C710/71/711, always maintain these bits clear.  
6: Bit5 of ADCON0 is a General Purpose R/W bit for the PIC16C710/711 only. For the PIC16C71, this bit is unimplemented,  
read as '0'.  
DS30272A-page 14  
1997 Microchip Technology Inc.  
PIC16C71X  
TABLE 4-2:  
PIC16C715 SPECIAL FUNCTION REGISTER SUMMARY  
Value on: Value on all  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
BOR, PER  
other resets  
(3)  
Bank 0  
00h(1)  
01h  
INDF  
TMR0  
PCL  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 module’s register  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
---x 0000 ---u 0000  
xxxx xxxx uuuu uuuu  
02h(1)  
03h(1)  
04h(1)  
05h  
Program Counter's (PC) Least Significant Byte  
STATUS  
FSR  
IRP(4)  
Indirect data memory address pointer  
PORTA Data Latch when written: PORTA pins when read  
RP1(4)  
RP0  
TO  
PD  
Z
DC  
C
PORTA  
PORTB  
06h  
PORTB Data Latch when written: PORTB pins when read  
07h  
Unimplemented  
Unimplemented  
Unimplemented  
08h  
09h  
0Ah(1,2) PCLATH  
GIE  
T0IE  
Write Buffer for the upper 5 bits of the Program Counter  
---0 0000 ---0 0000  
0000 000x 0000 000u  
-0-- ---- -0-- ----  
0Bh(1)  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
INTCON  
PEIE  
ADIF  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
PIR1  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
A/D Result Register  
ADRES  
ADCON0  
xxxx xxxx uuuu uuuu  
0000 00-0 0000 00-0  
ADCS1  
ADCS0  
CHS2  
CHS1  
CHS0  
GO/DONE  
ADON  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as '0'.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: These registers can be addressed from either bank.  
2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose  
contents are transferred to the upper byte of the program counter.  
3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
4: The IRP and RP1 bits are reserved on the PIC16C715, always maintain these bits clear.  
1997 Microchip Technology Inc.  
DS30272A-page 15  
PIC16C71X  
TABLE 4-2:  
Address Name  
Bank 1  
PIC16C715 SPECIAL FUNCTION REGISTER SUMMARY (Cont.d)  
Value on: Value on all  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
POR,  
other resets  
(3)  
BOR, PER  
80h(1)  
81h  
INDF  
OPTION  
PCL  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
--11 1111 --11 1111  
1111 1111 1111 1111  
RBPU  
Program Counter's (PC) Least Significant Byte  
IRP(4) RP1(4)  
RP0 TO  
Indirect data memory address pointer  
PORTA Data Direction Register  
INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
82h(1)  
83h(1)  
84h(1)  
85h  
STATUS  
FSR  
PD  
Z
DC  
C
TRISA  
TRISB  
86h  
PORTB Data Direction Register  
Unimplemented  
87h  
88h  
Unimplemented  
89h  
Unimplemented  
8Ah(1,2) PCLATH  
GIE  
T0IE  
Write Buffer for the upper 5 bits of the PC  
---0 0000 ---0 0000  
0000 000x 0000 000u  
-0-- ---- -0-- ----  
8Bh(1)  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
93h  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
INTCON  
PEIE  
ADIE  
INTE  
RBIE  
T0IF  
INTF  
RBIF  
PIE1  
Unimplemented  
MPEEN  
PCON  
PER  
POR  
BOR  
u--- -1qq u--- -1uu  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
ADCON1  
PCFG1  
PCFG0  
---- --00 ---- --00  
Legend: x= unknown, u= unchanged, q= value depends on condition, - = unimplemented read as '0'.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: These registers can be addressed from either bank.  
2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose  
contents are transferred to the upper byte of the program counter.  
3: Other (non power-up) resets include external reset through MCLR and Watchdog Timer Reset.  
4: The IRP and RP1 bits are reserved on the PIC16C715, always maintain these bits clear.  
DS30272A-page 16  
1997 Microchip Technology Inc.  
PIC16C71X  
4.2.2.1  
STATUS REGISTER  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register because these instructions do not  
affect the Z, C or DC bits from the STATUS register. For  
other instructions, not affecting any status bits, see the  
"Instruction Set Summary."  
Applicable Devices 710 71 711 715  
The STATUS register, shown in Figure 4-7, contains  
the arithmetic status of the ALU, the RESET status and  
the bank select bits for data memory.  
Note 1: For those devices that do not use bits IRP  
and RP1 (STATUS<7:6>), maintain these  
bits clear to ensure upward compatibility  
with future products.  
The STATUS register can be the destination for any  
instruction, as with any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled.These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 2: The C and DC bits operate as a borrow  
and digit borrow bit, respectively, in sub-  
traction. See the SUBLW and SUBWF  
instructions for examples.  
For example, CLRF STATUSwill clear the upper-three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
FIGURE 4-7: STATUS REGISTER (ADDRESS 03h, 83h)  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
R = Readable bit  
W = Writable bit  
bit7  
bit0  
U = Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
IRP: Register Bank Select bit (used for indirect addressing)  
1 = Bank 2, 3 (100h - 1FFh)  
0 = Bank 0, 1 (00h - FFh)  
bit 6-5: RP1:RP0: Register Bank Select bits (used for direct addressing)  
11= Bank 3 (180h - 1FFh)  
10= Bank 2 (100h - 17Fh)  
01= Bank 1 (80h - FFh)  
00= Bank 0 (00h - 7Fh)  
Each bank is 128 bytes  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
TO: Time-out bit  
1 = After power-up, CLRWDTinstruction, or SLEEPinstruction  
0 = A WDT time-out occurred  
PD: Power-down bit  
1 = After power-up or by the CLRWDTinstruction  
0 = By execution of the SLEEPinstruction  
Z: Zero bit  
1 = The result of an arithmetic or logic operation is zero  
0 = The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions)(for borrow the polarity is reversed)  
1 = A carry-out from the 4th low order bit of the result occurred  
0 = No carry-out from the 4th low order bit of the result  
C: Carry/borrow bit (ADDWF, ADDLW,SUBLW,SUBWF instructions)  
1 = A carry-out from the most significant bit of the result occurred  
0 = No carry-out from the most significant bit of the result occurred  
Note: For borrow the polarity is reversed. A subtraction is executed by adding the two’s complement of  
the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order  
bit of the source register.  
1997 Microchip Technology Inc.  
DS30272A-page 17  
 
PIC16C71X  
4.2.2.2  
OPTION REGISTER  
Note: To achieve a 1:1 prescaler assignment for  
the TMR0 register, assign the prescaler to  
the Watchdog Timer by setting bit PSA  
(OPTION<3>).  
Applicable Devices 710 71 711 715  
The OPTION register is a readable and writable regis-  
ter which contains various control bits to configure the  
TMR0/WDT prescaler, the External INT Interrupt,  
TMR0, and the weak pull-ups on PORTB.  
FIGURE 4-8: OPTION REGISTER (ADDRESS 81h, 181h)  
R/W-1  
RBPU  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
RBPU: PORTB Pull-up Enable bit  
1 = PORTB pull-ups are disabled  
0 = PORTB pull-ups are enabled by individual port latch values  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
INTEDG: Interrupt Edge Select bit  
1 = Interrupt on rising edge of RB0/INT pin  
0 = Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1 = Transition on RA4/T0CKI pin  
0 = Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1 = Increment on high-to-low transition on RA4/T0CKI pin  
0 = Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1 = Prescaler is assigned to the WDT  
0 = Prescaler is assigned to the Timer0 module  
bit 2-0: PS2:PS0: Prescaler Rate Select bits  
Bit Value  
TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
DS30272A-page 18  
1997 Microchip Technology Inc.  
PIC16C71X  
4.2.2.3  
INTCON REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>).  
Applicable Devices 710 71 711 715  
The INTCON Register is a readable and writable regis-  
ter which contains various enable and flag bits for the  
TMR0 register overflow, RB Port change and External  
RB0/INT pin interrupts.  
FIGURE 4-9: INTCON REGISTER (ADDRESS 0Bh, 8Bh)  
R/W-0  
GIE  
R/W-0  
ADIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-x  
RBIF  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
(1)  
bit 7:  
GIE: Global Interrupt Enable bit  
1 = Enables all un-masked interrupts  
0 = Disables all interrupts  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
ADIE: A/D Converter Interrupt Enable bit  
1 = Enables A/D interrupt  
0 = Disables A/D interrupt  
T0IE: TMR0 Overflow Interrupt Enable bit  
1 = Enables the TMR0 interrupt  
0 = Disables the TMR0 interrupt  
INTE: RB0/INT External Interrupt Enable bit  
1 = Enables the RB0/INT external interrupt  
0 = Disables the RB0/INT external interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1 = Enables the RB port change interrupt  
0 = Disables the RB port change interrupt  
T0IF: TMR0 Overflow Interrupt Flag bit  
1 = TMR0 register has overflowed (must be cleared in software)  
0 = TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1 = The RB0/INT external interrupt occurred (must be cleared in software)  
0 = The RB0/INT external interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)  
0 = None of the RB7:RB4 pins have changed state  
Note 1: For the PIC16C71, if an interrupt occurs while the GIE bit is being cleared, the GIE bit may be uninten-  
tionally re-enabled by the RETFIEinstruction in the user’s Interrupt Service Routine. Refer to Section 8.5  
for a detailed description.  
Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the  
global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to  
enabling an interrupt.  
1997 Microchip Technology Inc.  
DS30272A-page 19  
PIC16C71X  
4.2.2.4  
PIE1 REGISTER  
Note: Bit PEIE (INTCON<6>) must be set to  
enable any peripheral interrupt.  
Applicable Devices 710 71 711 715  
This register contains the individual enable bits for the  
Peripheral interrupts.  
FIGURE 4-10: PIE1 REGISTER (ADDRESS 8Ch)  
U-0  
R/W-0  
ADIE  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as '0'  
bit 6:  
ADIE: A/D Converter Interrupt Enable bit  
1 = Enables the A/D interrupt  
0 = Disables the A/D interrupt  
bit 5-0: Unimplemented: Read as '0'  
DS30272A-page 20  
1997 Microchip Technology Inc.  
PIC16C71X  
4.2.2.5  
PIR1 REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>). User soft-  
ware should ensure the appropriate inter-  
rupt flag bits are clear prior to enabling an  
interrupt.  
Applicable Devices 710 71 711 715  
This register contains the individual flag bits for the  
Peripheral interrupts.  
FIGURE 4-11: PIR1 REGISTER (ADDRESS 0Ch)  
U-0  
R/W-0  
ADIF  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
Unimplemented: Read as '0'  
bit 6:  
ADIF: A/D Converter Interrupt Flag bit  
1 = An A/D conversion completed  
0 = The A/D conversion is not complete  
bit 5-0: Unimplemented: Read as '0'  
1997 Microchip Technology Inc.  
DS30272A-page 21  
PIC16C71X  
4.2.2.6  
PCON REGISTER  
Note: BOR is unknown on Power-on Reset. It  
must then be set by the user and checked  
on subsequent resets to see if BOR is  
clear, indicating a brown-out has occurred.  
The BOR status bit is a don't care and is  
not necessarily predictable if the brown-out  
circuit is disabled (by clearing the BODEN  
bit in the Configuration word).  
Applicable Devices 710 71 711 715  
The Power Control (PCON) register contains a flag bit  
to allow differentiation between a Power-on Reset  
(POR) to an external MCLR Reset or WDT Reset.  
Those devices with brown-out detection circuitry con-  
tain an additional bit to differentiate a Brown-out Reset  
(BOR) condition from a Power-on Reset condition. For  
the PIC16C715 the PCON register also contains status  
bits MPEEN and PER. MPEEN reflects the value of the  
MPEEN bit in the configuration word. PER indicates a  
parity error reset has occurred.  
FIGURE 4-12: PCON REGISTER (ADDRESS 8Eh), PIC16C710/711  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
POR  
R/W-q  
BOR  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7-2: Unimplemented: Read as '0'  
bit 1:  
POR: Power-on Reset Status bit  
1 = No Power-on Reset occurred  
0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0:  
BOR: Brown-out Reset Status bit  
1 = No Brown-out Reset occurred  
0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
FIGURE 4-13: PCON REGISTER (ADDRESS 8Eh), PIC16C715  
R-U  
U-0  
U-0  
U-0  
U-0  
R/W-1  
PER  
R/W-0  
POR  
R/W-q  
(1)  
MPEEN  
BOR  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
MPEEN: Memory Parity Error Circuitry Status bit  
Reflects the value of configuration word bit, MPEEN  
bit 6-3: Unimplemented: Read as '0'  
bit 2:  
bit 1:  
bit 0:  
PER: Memory Parity Error Reset Status bit  
1 = No Error occurred  
0 = Program Memory Fetch Parity Error occurred (must be set in software after a Parity Error Reset)  
POR: Power-on Reset Status bit  
1 = No Power-on Reset occurred  
0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
BOR: Brown-out Reset Status bit  
1 = No Brown-out Reset occurred  
0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)  
DS30272A-page 22  
1997 Microchip Technology Inc.  
PIC16C71X  
4.3.2  
STACK  
4.3  
PCL and PCLATH  
The program counter (PC) is 13-bits wide.The low byte  
comes from the PCL register, which is a readable and  
writable register. The upper bits (PC<12:8>) are not  
readable, but are indirectly writable through the  
PCLATH register. On any reset, the upper bits of the  
PC will be cleared. Figure 4-14 shows the two situa-  
tions for the loading of the PC. The upper example in  
the figure shows how the PC is loaded on a write to  
PCL (PCLATH<4:0> PCH).The lower example in the  
figure shows how the PC is loaded during a CALL or  
GOTOinstruction (PCLATH<4:3> PCH).  
The PIC16CXX family has an 8 level deep x 13-bit wide  
hardware stack. The stack space is not part of either  
program or data space and the stack pointer is not  
readable or writable.The PC is PUSHed onto the stack  
when a CALL instruction is executed or an interrupt  
causes a branch. The stack is POPed in the event of a  
RETURN, RETLW or a RETFIE instruction execution.  
PCLATH is not affected by a PUSH or POP operation.  
The stack operates as a circular buffer.This means that  
after the stack has been PUSHed eight times, the ninth  
push overwrites the value that was stored from the first  
push. The tenth push overwrites the second push (and  
so on).  
FIGURE 4-14: LOADING OF PC IN  
DIFFERENT SITUATIONS  
Note 1: There are no status bits to indicate stack  
PCH  
PCL  
overflow or stack underflow conditions.  
12  
8
7
0
Instruction with  
PCL as  
Destination  
Note 2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the CALL,  
RETURN, RETLW, and RETFIE instruc-  
tions, or the vectoring to an interrupt  
address.  
PC  
8
PCLATH<4:0>  
PCLATH  
5
ALU  
PCH  
12 11 10  
PCL  
4.4  
Program Memory Paging  
8
7
0
The PIC16C71X devices ignore both paging bits  
(PCLATH<4:3>, which are used to access program  
memory when more than one page is available. The  
use of PCLATH<4:3> as general purpose read/write  
bits for the PIC16C71X is not recommended since this  
may affect upward compatibility with future products.  
GOTO, CALL  
PC  
PCLATH<4:3>  
PCLATH  
11  
2
Opcode <10:0>  
4.3.1  
COMPUTED GOTO  
A computed GOTO is accomplished by adding an off-  
set to the program counter (ADDWF PCL).When doing a  
table read using a computed GOTO method, care  
should be exercised if the table location crosses a PCL  
memory boundary (each 256 byte block). Refer to the  
application note “Implementing a Table Read" (AN556).  
1997 Microchip Technology Inc.  
DS30272A-page 23  
 
PIC16C71X  
Example 4-1 shows the calling of a subroutine in  
page 1 of the program memory.This example assumes  
that PCLATH is saved and restored by the interrupt ser-  
vice routine (if interrupts are used).  
4.5  
Indirect Addressing, INDF and FSR  
Registers  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
Indirect addressing is possible by using the INDF reg-  
ister. Any instruction using the INDF register actually  
accesses the register pointed to by the File Select Reg-  
ister, FSR. Reading the INDF register itself indirectly  
(FSR = '0') will read 00h. Writing to the INDF register  
indirectly results in a no-operation (although status bits  
may be affected). An effective 9-bit address is obtained  
by concatenating the 8-bit FSR register and the IRP bit  
(STATUS<7>), as shown in Figure 4-15. However, IRP  
is not used in the PIC16C71X devices.  
EXAMPLE 4-1: CALL OF A SUBROUTINE IN  
PAGE 1 FROM PAGE 0  
ORG 0x500  
BSF  
BCF  
PCLATH,3 ;Select page 1 (800h-FFFh)  
PCLATH,4 ;Only on >4K devices  
CALL  
SUB1_P1  
;Call subroutine in  
;page 1 (800h-FFFh)  
:
:
:
ORG 0x900  
SUB1_P1:  
;called subroutine  
;page 1 (800h-FFFh)  
A simple program to clear RAM locations 20h-2Fh  
using indirect addressing is shown in Example 4-2.  
:
:
RETURN  
;return to Call subroutine  
;in page 0 (000h-7FFh)  
EXAMPLE 4-2: INDIRECT ADDRESSING  
movlw 0x20  
movwf FSR  
;initialize pointer  
;to RAM  
NEXT  
clrf  
incf  
INDF  
;clear INDF register  
FSR,F ;inc pointer  
btfss FSR,4 ;all done?  
goto  
NEXT  
;no clear next  
CONTINUE  
:
;yes continue  
FIGURE 4-15: DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
Indirect Addressing  
(1)  
from opcode  
7
RP1:RP0  
6
0
0
IRP  
FSR register  
bank select  
location select  
bank select  
location select  
00  
01  
80h  
10  
100h  
11  
00h  
180h  
Not  
Used  
Data  
Memory  
7Fh  
FFh  
17Fh  
1FFh  
Bank 0  
Bank 1 Bank 2  
Bank 3  
For register file map detail see Figure 4-4.  
Note 1:  
The RP1 and IRP bits are reserved, always maintain these bits clear.  
DS30272A-page 24  
1997 Microchip Technology Inc.  
 
 
 
PIC16C71X  
FIGURE 5-1: BLOCK DIAGRAM OF  
5.0  
I/O PORTS  
RA3:RA0 PINS  
Applicable Devices 710 71 711 715  
Data  
bus  
Some pins for these I/O ports are multiplexed with an  
alternate function for the peripheral features on the  
device. In general, when a peripheral is enabled, that  
pin may not be used as a general purpose I/O pin.  
D
Q
Q
VDD  
P
WR  
Port  
CK  
5.1  
PORTA and TRISA Registers  
Data Latch  
PORTA is a 5-bit latch.  
I/O pin(1)  
N
D
Q
The RA4/T0CKI pin is a Schmitt Trigger input and an  
open drain output. All other RA port pins have TTL  
input levels and full CMOS output drivers. All pins have  
data direction bits (TRIS registers) which can configure  
these pins as output or input.  
WR  
TRIS  
VSS  
Analog  
Q
CK  
input  
mode  
TRIS Latch  
Setting aTRISA register bit puts the corresponding out-  
put driver in a hi-impedance mode. Clearing a bit in the  
TRISA register puts the contents of the output latch on  
the selected pin(s).  
TTL  
input  
buffer  
RD TRIS  
Reading the PORTA register reads the status of the  
pins whereas writing to it will write to the port latch. All  
write operations are read-modify-write operations.  
Therefore a write to a port implies that the port pins are  
read, this value is modified, and then written to the port  
data latch.  
Q
D
EN  
RD PORT  
Pin RA4 is multiplexed with the Timer0 module clock  
input to become the RA4/T0CKI pin.  
To A/D Converter  
Other PORTA pins are multiplexed with analog inputs  
and analog VREF input. The operation of each pin is  
selected by clearing/setting the control bits in the  
ADCON1 register (A/D Control Register1).  
Note 1: I/O pins have protection diodes to VDD and  
VSS.  
FIGURE 5-2: BLOCK DIAGRAM OF RA4/  
T0CKI PIN  
Note: On a Power-on Reset, these pins are con-  
figured as analog inputs and read as '0'.  
Data  
bus  
The TRISA register controls the direction of the RA  
pins, even when they are being used as analog inputs.  
The user must ensure the bits in the TRISA register are  
maintained set when using them as analog inputs.  
D
Q
Q
WR  
PORT  
CK  
I/O pin(1)  
N
Data Latch  
EXAMPLE 5-1: INITIALIZING PORTA  
D
Q
VSS  
BCF  
CLRF  
STATUS, RP0  
PORTA  
;
WR  
TRIS  
; Initialize PORTA by  
; clearing output  
; data latches  
Schmitt  
Trigger  
input  
Q
CK  
TRIS Latch  
buffer  
BSF  
STATUS, RP0 ; Select Bank 1  
MOVLW 0xCF  
; Value used to  
; initialize data  
; direction  
RD TRIS  
MOVWF TRISA  
; Set RA<3:0> as inputs  
; RA<4> as outputs  
; TRISA<7:5> are always  
; read as '0'.  
Q
D
EN  
RD PORT  
TMR0 clock input  
Note 1: I/O pin has protection diodes to VSS only.  
1997 Microchip Technology Inc.  
DS30272A-page 25  
PIC16C71X  
TABLE 5-1:  
Name  
PORTA FUNCTIONS  
Bit#  
Buffer Function  
RA0/AN0  
bit0  
bit1  
bit2  
bit3  
bit4  
TTL  
TTL  
TTL  
TTL  
ST  
Input/output or analog input  
RA1/AN1  
Input/output or analog input  
Input/output or analog input  
Input/output or analog input/VREF  
RA2/AN2  
RA3/AN3/VREF  
RA4/T0CKI  
Input/output or external clock input for Timer0  
Output is open drain type  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
TABLE 5-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address Name  
Bit 7 Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
05h  
85h  
9Fh  
PORTA  
TRISA  
RA4  
RA3  
RA2  
RA1  
RA0  
---x 0000 ---u 0000  
---1 1111 ---1 1111  
PORTA Data Direction Register  
ADCON1  
PCFG1 PCFG0 ---- --00 ---- --00  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by PORTA.  
DS30272A-page 26  
1997 Microchip Technology Inc.  
PIC16C71X  
Four of PORTB’s pins, RB7:RB4, have an interrupt on  
change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e. any RB7:RB4 pin con-  
figured as an output is excluded from the interrupt on  
change comparison). The input pins (of RB7:RB4) are  
compared with the old value latched on the last read of  
PORTB. The “mismatch” outputs of RB7:RB4 are  
OR’ed together to generate the RB Port Change Inter-  
rupt with flag bit RBIF (INTCON<0>).  
5.2  
PORTB and TRISB Registers  
PORTB is an 8-bit wide bi-directional port. The corre-  
sponding data direction register is TRISB. Setting a bit  
in the TRISB register puts the corresponding output  
driver in a hi-impedance input mode. Clearing a bit in  
the TRISB register puts the contents of the output latch  
on the selected pin(s).  
EXAMPLE 5-2: INITIALIZING PORTB  
This interrupt can wake the device from SLEEP. The  
user, in the interrupt service routine, can clear the inter-  
rupt in the following manner:  
BCF  
CLRF  
STATUS, RP0  
PORTB  
;
; Initialize PORTB by  
; clearing output  
; data latches  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
BSF  
MOVLW 0xCF  
STATUS, RP0 ; Select Bank 1  
; Value used to  
; initialize data  
; direction  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
b) Clear flag bit RBIF.  
A mismatch condition will continue to set flag bit RBIF.  
Reading PORTB will end the mismatch condition, and  
allow flag bit RBIF to be cleared.  
MOVWF TRISB  
This interrupt on mismatch feature, together with soft-  
ware configurable pull-ups on these four pins allow  
easy interface to a keypad and make it possible for  
wake-up on key-depression. Refer to the Embedded  
Control Handbook, "Implementing Wake-Up on Key  
Stroke" (AN552).  
Each of the PORTB pins has a weak internal pull-up. A  
single control bit can turn on all the pull-ups. This is  
performed by clearing bit RBPU (OPTION<7>). The  
weak pull-up is automatically turned off when the port  
pin is configured as an output. The pull-ups are dis-  
abled on a Power-on Reset.  
Note: For the PIC16C71  
FIGURE 5-3: BLOCK DIAGRAM OF  
if a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then interrupt flag bit  
RBIF may not get set.  
RB3:RB0 PINS  
VDD  
RBPU(2)  
weak  
P
pull-up  
Data Latch  
Data bus  
The interrupt on change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt on change  
feature. Polling of PORTB is not recommended while  
using the interrupt on change feature.  
D
Q
I/O  
pin(1)  
WR Port  
CK  
TRIS Latch  
D
Q
TTL  
Input  
Buffer  
WR TRIS  
CK  
RD TRIS  
RD Port  
Q
D
EN  
RB0/INT  
Schmitt Trigger  
Buffer  
RD Port  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: TRISB = ’1’ enables weak pull-up if  
RBPU = ’0’ (OPTION<7>).  
1997 Microchip Technology Inc.  
DS30272A-page 27  
PIC16C71X  
FIGURE 5-4: BLOCK DIAGRAM OF  
RB7:RB4 PINS  
FIGURE 5-5: BLOCK DIAGRAM OF  
RB7:RB4 PINS  
(PIC16C71)  
(PIC16C710/711/715)  
VDD  
VDD  
RBPU(2)  
RBPU(2)  
weak  
weak  
P
P
pull-up  
pull-up  
Data Latch  
Data Latch  
Data bus  
WR Port  
Data bus  
WR Port  
D
Q
D
Q
I/O  
pin(1)  
I/O  
pin(1)  
CK  
TRIS Latch  
CK  
TRIS Latch  
D
Q
D
Q
WR TRIS  
WR TRIS  
TTL  
Input  
Buffer  
TTL  
Input  
Buffer  
CK  
CK  
ST  
Buffer  
ST  
Buffer  
RD TRIS  
RD Port  
RD TRIS  
RD Port  
Latch  
Latch  
Q
D
Q
Q
D
EN  
EN  
Q1  
Set RBIF  
Set RBIF  
From other  
RB7:RB4 pins  
Q
D
D
From other  
RB7:RB4 pins  
RD Port  
Q3  
EN  
EN  
RD Port  
RB7:RB6 in serial programming mode  
RB7:RB6 in serial programming mode  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: TRISB = ’1’ enables weak pull-up if  
RBPU = ’0’ (OPTION<7>).  
Note 1: I/O pins have diode protection to VDD and VSS.  
2: TRISB = ’1’ enables weak pull-up if  
RBPU = ’0’ (OPTION<7>).  
TABLE 5-3:  
PORTB FUNCTIONS  
Name  
Bit#  
Buffer  
Function  
(1)  
RB0/INT  
bit0  
TTL/ST  
Input/output pin or external interrupt input. Internal software  
programmable weak pull-up.  
RB1  
RB2  
RB3  
RB4  
bit1  
bit2  
bit3  
bit4  
TTL  
TTL  
TTL  
TTL  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up.  
RB5  
RB6  
RB7  
bit5  
bit6  
bit7  
TTL  
TTL/ST  
TTL/ST  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up.  
(2)  
(2)  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up. Serial programming clock.  
Input/output pin (with interrupt on change). Internal software programmable  
weak pull-up. Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
DS30272A-page 28  
1997 Microchip Technology Inc.  
PIC16C71X  
TABLE 5-4:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on:  
Value on all  
POR,  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3 Bit 2 Bit 1 Bit 0  
other resets  
BOR  
06h, 106h  
86h, 186h  
81h, 181h  
PORTB  
TRISB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
PS1  
RB0  
PS0  
xxxx xxxx  
1111 1111  
1111 1111  
uuuu uuuu  
1111 1111  
1111 1111  
PORTB Data Direction Register  
RBPU INTEDG T0CS T0SE PSA  
OPTION  
PS2  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
1997 Microchip Technology Inc.  
DS30272A-page 29  
PIC16C71X  
5.3  
I/O Programming Considerations  
EXAMPLE 5-3: READ-MODIFY-WRITE  
INSTRUCTIONS ON AN I/O  
PORT  
5.3.1  
BI-DIRECTIONAL I/O PORTS  
;Initial PORT settings: PORTB<7:4> Inputs  
Any instruction which writes, operates internally as a  
read followed by a write operation. The BCF and BSF  
instructions, for example, read the register into the  
CPU, execute the bit operation and write the result  
back to the register. Caution must be used when these  
instructions are applied to a port with both inputs and  
outputs defined. For example, a BSFoperation on bit5  
of PORTB will cause all eight bits of PORTB to be read  
into the CPU. Then the BSF operation takes place on  
bit5 and PORTB is written to the output latches. If  
another bit of PORTB is used as a bi-directional I/O pin  
(e.g., bit0) and it is defined as an input at this time, the  
input signal present on the pin itself would be read into  
the CPU and rewritten to the data latch of this particular  
pin, overwriting the previous content. As long as the pin  
stays in the input mode, no problem occurs. However,  
if bit0 is switched to an output, the content of the data  
latch may now be unknown.  
;
PORTB<3:0> Outputs  
;PORTB<7:6> have external pull-ups and are  
;not connected to other circuitry  
;
;
;
PORT latch PORT pins  
---------- ---------  
BCF PORTB, 7  
BCF PORTB, 6  
BSF STATUS, RP0  
BCF TRISB, 7  
BCF TRISB, 6  
; 01pp pppp  
; 10pp pppp  
;
11pp pppp  
11pp pppp  
; 10pp pppp  
; 10pp pppp  
11pp pppp  
10pp pppp  
;
;Note that the user may have expected the  
;pin values to be 00pp ppp. The 2nd BCF  
;caused RB7 to be latched as the pin value  
;(high).  
A pin actively outputting a Low or High should not be  
driven from external devices at the same time in order  
to change the level on this pin (“wired-or”, “wired-and”).  
The resulting high output currents may damage the  
chip.  
Reading the port register, reads the values of the port  
pins. Writing to the port register writes the value to the  
port latch. When using read-modify-write instructions  
(ex. BCF, BSF, etc.) on a port, the value of the port pins  
is read, the desired operation is done to this value, and  
this value is then written to the port latch.  
5.3.2  
SUCCESSIVE OPERATIONS ON I/O PORTS  
The actual write to an I/O port happens at the end of an  
instruction cycle, whereas for reading, the data must be  
valid at the beginning of the instruction cycle  
(Figure 5-6). Therefore, care must be exercised if a  
write followed by a read operation is carried out on the  
same I/O port. The sequence of instructions should be  
such to allow the pin voltage to stabilize (load depen-  
dent) before the next instruction which causes that file  
to be read into the CPU is executed. Otherwise, the  
previous state of that pin may be read into the CPU  
rather than the new state. When in doubt, it is better to  
separate these instructions with a NOP or another  
instruction not accessing this I/O port.  
Example 5-3 shows the effect of two sequential read-  
modify-write instructions on an I/O port.  
FIGURE 5-6: SUCCESSIVE I/O OPERATION  
Q4  
Q4  
Q4  
Q1 Q2  
Q4  
Q3  
Q3  
Q3  
Q3  
Q1 Q2  
PC  
Q1 Q2  
Q1 Q2  
Note:  
This example shows a write to PORTB  
followed by a read from PORTB.  
PC + 3  
NOP  
PC  
Instruction  
fetched  
PC + 1  
PC + 2  
NOP  
MOVWF PORTB MOVF PORTB,W  
write to  
PORTB  
Note that:  
data setup time = (0.25TCY - TPD)  
RB7:RB0  
where TCY = instruction cycle  
TPD = propagation delay  
Port pin  
sampled here  
TPD  
Therefore, at higher clock frequencies,  
a write followed by a read may be  
problematic.  
Instruction  
executed  
NOP  
MOVWF PORTB  
write to  
MOVF PORTB,W  
PORTB  
DS30272A-page 30  
1997 Microchip Technology Inc.  
 
 
PIC16C71X  
bit T0SE selects the rising edge. Restrictions on the  
external clock input are discussed in detail in  
Section 6.2.  
6.0  
TIMER0 MODULE  
Applicable Devices 710 71 711 715  
The Timer0 module timer/counter has the following fea-  
tures:  
The prescaler is mutually exclusively shared between  
the Timer0 module and the Watchdog Timer. The pres-  
caler assignment is controlled in software by control bit  
PSA (OPTION<3>). Clearing bit PSA will assign the  
prescaler to the Timer0 module. The prescaler is not  
readable or writable.When the prescaler is assigned to  
the Timer0 module, prescale values of 1:2, 1:4, ...,  
1:256 are selectable. Section 6.3 details the operation  
of the prescaler.  
• 8-bit timer/counter  
• Readable and writable  
• 8-bit software programmable prescaler  
• Internal or external clock select  
• Interrupt on overflow from FFh to 00h  
• Edge select for external clock  
Figure 6-1 is a simplified block diagram of the Timer0  
module.  
6.1  
Timer0 Interrupt  
The TMR0 interrupt is generated when the TMR0 reg-  
ister overflows from FFh to 00h. This overflow sets bit  
T0IF (INTCON<2>). The interrupt can be masked by  
clearing bit T0IE (INTCON<5>). Bit T0IF must be  
cleared in software by the Timer0 module interrupt ser-  
vice routine before re-enabling this interrupt. The  
TMR0 interrupt cannot awaken the processor from  
SLEEP since the timer is shut off during SLEEP. See  
Figure 6-4 for Timer0 interrupt timing.  
Timer mode is selected by clearing bit T0CS  
(OPTION<5>). In timer mode, the Timer0 module will  
increment every instruction cycle (without prescaler). If  
the TMR0 register is written, the increment is inhibited  
for the following two instruction cycles (Figure 6-2 and  
Figure 6-3). The user can work around this by writing  
an adjusted value to the TMR0 register.  
Counter mode is selected by setting bit T0CS  
(OPTION<5>). In counter mode, Timer0 will increment  
either on every rising or falling edge of pin RA4/T0CKI.  
The incrementing edge is determined by the Timer0  
Source Edge Select bit T0SE (OPTION<4>). Clearing  
FIGURE 6-1: TIMER0 BLOCK DIAGRAM  
Data bus  
FOSC/4  
0
1
PSout  
8
1
0
Sync with  
Internal  
clocks  
TMR0  
Programmable  
Prescaler  
RA4/T0CKI  
pin  
PSout  
(2 cycle delay)  
T0SE  
3
Set interrupt  
flag bit T0IF  
on overflow  
PS2, PS1, PS0  
PSA  
T0CS  
Note 1: T0CS, T0SE, PSA, PS2:PS0 (OPTION<5:0>).  
2: The prescaler is shared with Watchdog Timer (refer to Figure 6-6 for detailed block diagram).  
FIGURE 6-2: TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
Instruction  
Fetch  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
T0  
T0+1  
T0+2  
NT0  
NT0  
NT0  
NT0+1  
NT0+2  
TMR0  
Instruction  
Executed  
Read TMR0  
reads NT0 + 1  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 2  
Write TMR0  
executed  
1997 Microchip Technology Inc.  
DS30272A-page 31  
 
 
PIC16C71X  
FIGURE 6-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
(Program  
Counter)  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
Instruction  
Fetch  
T0  
T0+1  
NT0+1  
6  
NT0  
TMR0  
Instruction  
Execute  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 1  
Write TMR0  
executed  
FIGURE 6-4: TIMER0 INTERRUPT TIMING  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
OSC1  
CLKOUT(3)  
Timer0  
FEh  
FFh  
00h  
01h  
02h  
1
1
T0IF bit  
(INTCON<2>)  
GIE bit  
(INTCON<7>)  
INSTRUCTION  
FLOW  
PC  
PC  
PC +1  
PC +1  
0004h  
0005h  
Instruction  
fetched  
Inst (PC)  
Inst (PC+1)  
Inst (0004h)  
Inst (0005h)  
Instruction  
executed  
Inst (PC-1)  
Dummy cycle  
Dummy cycle  
Inst (0004h)  
Inst (PC)  
Note 1: Interrupt flag bit T0IF is sampled here (every Q1).  
2: Interrupt latency = 4Tcy where Tcy = instruction cycle time.  
3: CLKOUT is available only in RC oscillator mode.  
DS30272A-page 32  
1997 Microchip Technology Inc.  
PIC16C71X  
caler so that the prescaler output is symmetrical. For  
the external clock to meet the sampling requirement,  
the ripple-counter must be taken into account. There-  
fore, it is necessary for T0CKI to have a period of at  
least 4Tosc (and a small RC delay of 40 ns) divided by  
the prescaler value. The only requirement on T0CKI  
high and low time is that they do not violate the mini-  
mum pulse width requirement of 10 ns. Refer to param-  
eters 40, 41 and 42 in the electrical specification of the  
desired device.  
6.2  
Using Timer0 with an External Clock  
When an external clock input is used for Timer0, it must  
meet certain requirements. The requirements ensure  
the external clock can be synchronized with the internal  
phase clock (TOSC). Also, there is a delay in the actual  
incrementing of Timer0 after synchronization.  
6.2.1  
EXTERNAL CLOCK SYNCHRONIZATION  
When no prescaler is used, the external clock input is  
the same as the prescaler output. The synchronization  
of T0CKI with the internal phase clocks is accom-  
plished by sampling the prescaler output on the Q2 and  
Q4 cycles of the internal phase clocks (Figure 6-5).  
Therefore, it is necessary for T0CKI to be high for at  
least 2Tosc (and a small RC delay of 20 ns) and low for  
at least 2Tosc (and a small RC delay of 20 ns). Refer to  
the electrical specification of the desired device.  
6.2.2  
TMR0 INCREMENT DELAY  
Since the prescaler output is synchronized with the  
internal clocks, there is a small delay from the time the  
external clock edge occurs to the time the Timer0 mod-  
ule is actually incremented. Figure 6-5 shows the delay  
from the external clock edge to the timer incrementing.  
When a prescaler is used, the external clock input is  
divided by the asynchronous ripple-counter type pres-  
FIGURE 6-5: TIMER0 TIMING WITH EXTERNAL CLOCK  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Small pulse  
misses sampling  
External Clock Input or  
(2)  
Prescaler output  
(1)  
(3)  
External Clock/Prescaler  
Output after sampling  
Increment Timer0 (Q4)  
Timer0  
T0  
T0 + 1  
T0 + 2  
Note 1: Delay from clock input change to Timer0 increment is 3Tosc to 7Tosc. (Duration of Q = Tosc).  
Therefore, the error in measuring the interval between two edges on Timer0 input = ±4Tosc max.  
2: External clock if no prescaler selected, Prescaler output otherwise.  
3: The arrows indicate the points in time where sampling occurs.  
1997 Microchip Technology Inc.  
DS30272A-page 33  
 
PIC16C71X  
When assigned to the Timer0 module, all instructions  
writing to the TMR0 register (e.g. CLRF 1, MOVWF 1,  
6.3  
Prescaler  
An 8-bit counter is available as a prescaler for the  
Timer0 module, or as a postscaler for the Watchdog  
Timer, respectively (Figure 6-6). For simplicity, this  
counter is being referred to as “prescaler” throughout  
this data sheet. Note that there is only one prescaler  
available which is mutually exclusively shared between  
the Timer0 module and the Watchdog Timer. Thus, a  
prescaler assignment for the Timer0 module means  
that there is no prescaler for the Watchdog Timer, and  
vice-versa.  
BSF  
1,x....etc.) will clear the prescaler. When  
assigned to WDT, a CLRWDT instruction will clear the  
prescaler along with the Watchdog Timer. The pres-  
caler is not readable or writable.  
Note: Writing to TMR0 when the prescaler is  
assigned to Timer0 will clear the prescaler  
count, but will not change the prescaler  
assignment.  
The PSA and PS2:PS0 bits (OPTION<3:0>) determine  
the prescaler assignment and prescale ratio.  
FIGURE 6-6: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
Data Bus  
8
CLKOUT (=Fosc/4)  
M
U
X
1
0
0
1
M
U
X
RA4/T0CKI  
pin  
SYNC  
2
Cycles  
TMR0 reg  
T0SE  
T0CS  
Set flag bit T0IF  
on Overflow  
PSA  
0
1
8-bit Prescaler  
M
U
X
Watchdog  
Timer  
8
8 - to - 1MUX  
PS2:PS0  
PSA  
1
0
WDT Enable bit  
M U X  
PSA  
WDT  
Time-out  
Note: T0CS, T0SE, PSA, PS2:PS0 are (OPTION<5:0>).  
DS30272A-page 34  
1997 Microchip Technology Inc.  
 
PIC16C71X  
6.3.1  
SWITCHING PRESCALER ASSIGNMENT  
Note: To avoid an unintended device RESET, the  
following instruction sequence (shown in  
Example 6-1) must be executed when  
changing the prescaler assignment from  
Timer0 to the WDT.This sequence must be  
followed even if the WDT is disabled.  
The prescaler assignment is fully under software con-  
trol, i.e., it can be changed “on the fly” during program  
execution.  
EXAMPLE 6-1: CHANGING PRESCALER (TIMER0WDT)  
BCF  
STATUS, RP0 ;Bank 0  
CLRF  
BSF  
TMR0  
;Clear TMR0 & Prescaler  
STATUS, RP0 ;Bank 1  
CLRWDT  
;Clears WDT  
MOVLW b'xxxx1xxx' ;Selects new prescale value  
MOVWF OPTION_REG ;and assigns the prescaler to the WDT  
STATUS, RP0 ;Bank 0  
BCF  
To change prescaler from the WDT to the Timer0  
module use the sequence shown in Example 6-2.  
EXAMPLE 6-2: CHANGING PRESCALER (WDTTIMER0)  
CLRWDT  
BSF  
;Clear WDT and prescaler  
STATUS, RP0 ;Bank 1  
MOVLW  
MOVWF  
BCF  
b'xxxx0xxx' ;Select TMR0, new prescale value and  
OPTION_REG ;clock source  
STATUS, RP0 ;Bank 0  
TABLE 6-1:  
REGISTERS ASSOCIATED WITH TIMER0  
Value on:  
POR,  
BOR  
Value on all  
other resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01h  
TMR0  
INTCON GIE  
OPTION RBPU INTEDG  
TRISA  
Timer0 module’s register  
xxxx xxxx uuuu uuuu  
RBIF 0000 000x 0000 000u  
0Bh,8Bh,  
81h  
ADIE  
T0IE  
T0CS  
INTE  
T0SE  
RBIE  
PSA  
T0IF  
PS2  
INTF  
PS1  
PS0  
1111 1111 1111 1111  
---1 1111 ---1 1111  
85h  
PORTA Data Direction Register  
Legend: x= unknown, u= unchanged, -= unimplemented locations read as '0'. Shaded cells are not used by Timer0.  
1997 Microchip Technology Inc.  
DS30272A-page 35  
 
 
PIC16C71X  
NOTES:  
DS30272A-page 36  
1997 Microchip Technology Inc.  
PIC16C71X  
The A/D converter has a unique feature of being able  
to operate while the device is in SLEEP mode.To oper-  
ate in sleep, the A/D conversion clock must be derived  
from the A/D’s internal RC oscillator.  
7.0  
ANALOG-TO-DIGITAL  
CONVERTER (A/D) MODULE  
Applicable Devices 710 71 711 715  
The A/D module has three registers. These registers  
are:  
The analog-to-digital (A/D) converter module has four  
analog inputs.  
• A/D Result Register (ADRES)  
• A/D Control Register 0 (ADCON0)  
• A/D Control Register 1 (ADCON1)  
The A/D allows conversion of an analog input signal to  
a corresponding 8-bit digital number (refer to Applica-  
tion Note AN546 for use of A/D Converter). The output  
of the sample and hold is the input into the converter,  
which generates the result via successive approxima-  
tion. The analog reference voltage is software select-  
able to either the device’s positive supply voltage (VDD)  
or the voltage level on the RA3/AN3/VREF pin.  
The ADCON0 register, shown in Figure 7-1 and  
Figure 7-2, controls the operation of the A/D module.  
The ADCON1 register, shown in Figure 7-3 configures  
the functions of the port pins.The port pins can be con-  
figured as analog inputs (RA3 can also be a voltage ref-  
erence) or as digital I/O.  
FIGURE 7-1: ADCON0 REGISTER (ADDRESS 08h), PIC16C710/71/711  
R/W-0 R/W-0  
ADCS1 ADCS0  
U-0  
R/W-0  
CHS1  
R/W-0  
R/W-0  
R/W-0  
ADIF  
R/W-0  
ADON  
(1)  
CHS0 GO/DONE  
R =Readable bit  
W = Writable bit  
U =Unimplemented  
bit, read as ‘0’  
bit7  
bit0  
- n =Value at POR reset  
bit 7-6: ADCS1:ADCS0: A/D Conversion Clock Select bits  
00= FOSC/2  
01= FOSC/8  
10= FOSC/32  
11= FRC (clock derived from an RC oscillation)  
bit 5:  
Unimplemented: Read as '0'.  
bit 4-3: CHS1:CHS0: Analog Channel Select bits  
00= channel 0, (RA0/AN0)  
01= channel 1, (RA1/AN1)  
10= channel 2, (RA2/AN2)  
11= channel 3, (RA3/AN3)  
bit 2:  
GO/DONE: A/D Conversion Status bit  
If ADON = 1:  
1 = A/D conversion in progress (setting this bit starts the A/D conversion)  
0 = A/D conversion not in progress (This bit is automatically cleared by hardware when the A/D conver-  
sion is complete)  
bit 1:  
bit 0:  
ADIF: A/D Conversion Complete Interrupt Flag bit  
1 = conversion is complete (must be cleared in software)  
0 = conversion is not complete  
ADON: A/D On bit  
1 = A/D converter module is operating  
0 = A/D converter module is shutoff and consumes no operating current  
Note 1: Bit5 of ADCON0 is a General Purpose R/W bit for the PIC16C710/711 only. For the PIC16C71, this bit is  
unimplemented, read as '0'.  
1997 Microchip Technology Inc.  
DS30272A-page 37  
 
PIC16C71X  
FIGURE 7-2: ADCON0 REGISTER (ADDRESS 1Fh), PIC16C715  
R/W-0 R/W-0 R/W-0  
R/W-0  
CHS1  
R/W-0  
R/W-0  
U-0  
R/W-0  
ADON  
ADCS1 ADCS0  
bit7  
CHS0 GO/DONE  
R =Readable bit  
W = Writable bit  
U =Unimplemented bit,  
read as ‘0’  
bit0  
- n = Value at POR reset  
bit 7-6: ADCS1:ADCS0: A/D Conversion Clock Select bits  
00= FOSC/2  
01= FOSC/8  
10= FOSC/32  
11= FRC (clock derived from an RC oscillation)  
bit 5:  
Unused  
bit 6-3: CHS1:CHS0: Analog Channel Select bits  
000= channel 0, (RA0/AN0)  
001= channel 1, (RA1/AN1)  
010= channel 2, (RA2/AN2)  
011= channel 3, (RA3/AN3)  
100= channel 0, (RA0/AN0)  
101= channel 1, (RA1/AN1)  
110= channel 2, (RA2/AN2)  
111= channel 3, (RA3/AN3)  
bit 2:  
GO/DONE: A/D Conversion Status bit  
If ADON = 1  
1 = A/D conversion in progress (setting this bit starts the A/D conversion)  
0 = A/D conversion not in progress (This bit is automatically cleared by hardware when the A/D conver-  
sion is complete)  
bit 1:  
bit 0:  
Unimplemented: Read as '0'  
ADON: A/D On bit  
1 = A/D converter module is operating  
0 = A/D converter module is shutoff and consumes no operating current  
FIGURE 7-3: ADCON1 REGISTER, PIC16C710/71/711 (ADDRESS 88h),  
PIC16C715 (ADDRESS 9Fh)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
PCFG1  
PCFG0  
R =Readable bit  
W = Writable bit  
bit7  
bit0  
U =Unimplemented  
bit, read as ‘0’  
- n =Value at POR reset  
bit 7-2: Unimplemented: Read as '0'  
bit 1-0: PCFG1:PCFG0: A/D Port Configuration Control bits  
PCFG1:PCFG0 RA1 & RA0  
RA2  
RA3  
VREF  
00  
01  
10  
11  
A
A
A
D
A
A
D
D
A
VDD  
RA3  
VDD  
VDD  
VREF  
D
D
A = Analog input  
D = Digital I/O  
DS30272A-page 38  
1997 Microchip Technology Inc.  
PIC16C71X  
The ADRES register contains the result of the A/D con-  
version. When the A/D conversion is complete, the  
result is loaded into the ADRES register, the GO/DONE  
bit (ADCON0<2>) is cleared, and A/D interrupt flag bit  
ADIF is set. The block diagram of the A/D module is  
shown in Figure 7-4.  
2. Configure A/D interrupt (if desired):  
• Clear ADIF bit  
• Set ADIE bit  
• Set GIE bit  
3. Wait the required acquisition time.  
4. Start conversion:  
After the A/D module has been configured as desired,  
the selected channel must be acquired before the con-  
version is started. The analog input channels must  
have their corresponding TRIS bits selected as an  
input. To determine acquisition time, see Section 7.1.  
After this acquisition time has elapsed the A/D conver-  
sion can be started. The following steps should be fol-  
lowed for doing an A/D conversion:  
• Set GO/DONE bit (ADCON0)  
5. Wait for A/D conversion to complete, by either:  
• Polling for the GO/DONE bit to be cleared  
OR  
• Waiting for the A/D interrupt  
6. Read A/D Result register (ADRES), clear bit  
ADIF if required.  
1. Configure the A/D module:  
7. For next conversion, go to step 1 or step 2 as  
required. The A/D conversion time per bit is  
defined as TAD. A minimum wait of 2TAD is  
required before next acquisition starts.  
• Configure analog pins / voltage reference /  
and digital I/O (ADCON1)  
• Select A/D input channel (ADCON0)  
• Select A/D conversion clock (ADCON0)  
Turn on A/D module (ADCON0)  
FIGURE 7-4: A/D BLOCK DIAGRAM  
CHS1:CHS0  
11  
RA3/AN3/VREF  
VIN  
10  
(Input voltage)  
RA2/AN2  
01  
A/D  
Converter  
RA1/AN1  
00  
RA0/AN0  
VDD  
00or  
10or  
11  
VREF  
(Reference  
voltage)  
01  
PCFG1:PCFG0  
1997 Microchip Technology Inc.  
DS30272A-page 39  
 
PIC16C71X  
7.1  
A/D Acquisition Requirements  
Note 1: The reference voltage (VREF) has no  
effect on the equation, since it cancels  
itself out.  
For the A/D converter to meet its specified accuracy,  
the charge holding capacitor (CHOLD) must be allowed  
to fully charge to the input channel voltage level. The  
analog input model is shown in Figure 7-5. The source  
impedance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge  
the capacitor CHOLD. The sampling switch (RSS)  
impedance varies over the device voltage (VDD),  
Figure 7-5. The source impedance affects the offset  
voltage at the analog input (due to pin leakage current).  
The maximum recommended impedance for ana-  
log sources is 10 k. After the analog input channel is  
selected (changed) this acquisition must be done  
before the conversion can be started.  
Note 2: The charge holding capacitor (CHOLD) is  
not discharged after each conversion.  
Note 3: The maximum recommended impedance  
for analog sources is 10 k. This is  
required to meet the pin leakage specifi-  
cation.  
Note 4: After a conversion has completed, a  
2.0TAD delay must complete before acqui-  
sition can begin again. During this time the  
holding capacitor is not connected to the  
selected A/D input channel.  
To calculate the minimum acquisition time, Equation 7-  
1 may be used.This equation calculates the acquisition  
time to within 1/2 LSb error is used (512 steps for the  
A/D). The 1/2 LSb error is the maximum error allowed  
for the A/D to meet its specified accuracy.  
EXAMPLE 7-1: CALCULATING THE  
MINIMUM REQUIRED  
AQUISITION TIME  
TACQ = Amplifier Settling Time +  
Holding Capacitor Charging Time +  
Temperature Coefficient  
EQUATION 7-1:  
A/D MINIMUM CHARGING  
TIME  
(-TCAP/CHOLD(RIC + RSS + RS))  
TACQ = 5 µs + TCAP + [(Temp - 25°C)(0.05 µs/°C)]  
TCAP = -CHOLD (RIC + RSS + RS) ln(1/511)  
-51.2 pF (1 k+ 7 k+ 10 k) ln(0.0020)  
-51.2 pF (18 k) ln(0.0020)  
VHOLD = (VREF - (VREF/512)) • (1 - e  
)
Given: VHOLD = (VREF/512), for 1/2 LSb resolution  
The above equation reduces to:  
TCAP = -(51.2 pF)(1 k+ RSS + RS) ln(1/511)  
Example 7-1 shows the calculation of the minimum  
required acquisition time TACQ. This calculation is  
based on the following system assumptions.  
-0.921 µs (-6.2364)  
5.747 µs  
TACQ = 5 µs + 5.747 µs + [(50°C - 25°C)(0.05 µs/°C)]  
10.747 µs + 1.25 µs  
CHOLD = 51.2 pF  
Rs = 10 kΩ  
11.997 µs  
1/2 LSb error  
VDD = 5V Rss = 7 kΩ  
Temp (application system max.) = 50°C  
VHOLD = 0 @ t = 0  
FIGURE 7-5: ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT = 0.6V  
ANx  
SS  
RIC 1k  
RSS  
Rs  
CHOLD  
= DAC capacitance  
= 51.2 pF  
CPIN  
5 pF  
VA  
I leakage  
± 500 nA  
VT = 0.6V  
VSS  
Legend CPIN  
VT  
= input capacitance  
= threshold voltage  
6V  
5V  
I leakage = leakage current at the pin due to  
various junctions  
VDD 4V  
3V  
2V  
RIC  
SS  
= interconnect resistance  
= sampling switch  
CHOLD  
= sample/hold capacitance (from DAC)  
5 6 7 8 9 10 11  
Sampling Switch  
( k)  
DS30272A-page 40  
1997 Microchip Technology Inc.  
 
 
 
PIC16C71X  
7.2  
Selecting the A/D Conversion Clock  
7.3  
Configuring Analog Port Pins  
The A/D conversion time per bit is defined as TAD. The  
A/D conversion requires 9.5TAD per 8-bit conversion.  
The source of the A/D conversion clock is software  
selectable. The four possible options for TAD are:  
The ADCON1 and TRISA registers control the opera-  
tion of the A/D port pins. The port pins that are desired  
as analog inputs must have their corresponding TRIS  
bits set (input). If the TRIS bit is cleared (output), the  
digital output level (VOH or VOL) will be converted.  
• 2TOSC  
The A/D operation is independent of the state of the  
CHS2:CHS0 bits and the TRIS bits.  
• 8TOSC  
• 32TOSC  
• Internal RC oscillator  
Note 1: When reading the port register, all pins  
configured as analog input channels will  
read as cleared (a low level). Pins config-  
ured as digital inputs, will convert an ana-  
log input. Analog levels on a digitally  
configured input will not affect the conver-  
sion accuracy.  
For correct A/D conversions, the A/D conversion clock  
(TAD) must be selected to ensure a minimum TAD time  
of:  
2.0 µs for the PIC16C71  
1.6 µs for all other PIC16C71X devices  
Note 2: Analog levels on any pin that is defined as  
a digital input (including the AN7:AN0  
pins), may cause the input buffer to con-  
sume current that is out of the devices  
specification.  
Table 7-1 and Table 7-2 and show the resultant TAD  
times derived from the device operating frequencies  
and the A/D clock source selected.  
TABLE 7-1:  
TAD vs. DEVICE OPERATING FREQUENCIES, PIC16C71  
AD Clock Source (TAD)  
Device Frequency  
Operation  
2TOSC  
ADCS1:ADCS0  
20 MHz  
16 MHz  
4 MHz  
1 MHz  
2.0 µs  
8.0 µs  
333.33 kHz  
(2)  
(2)  
(2)  
00  
01  
10  
11  
6 µs  
100 ns  
125 ns  
500 ns  
(2)  
(2)  
(3)  
8TOSC  
2.0 µs  
400 ns  
500 ns  
24 µs  
(2)  
(3)  
(3)  
32TOSC  
2.0 µs  
8.0 µs  
1.6 µs  
32.0 µs  
2 - 6 µs  
96 µs  
(5)  
(1,4)  
(1,4)  
(1,4)  
(1)  
(1)  
RC  
2 - 6 µs  
2 - 6 µs  
2 - 6 µs  
2 - 6 µs  
Legend: Shaded cells are outside of recommended range.  
Note 1: The RC source has a typical TAD time of 4 µs.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for  
sleep operation only.  
5: For extended voltage devices (LC), please refer to Electrical Specifications section.  
TABLE 7-2:  
TAD vs. DEVICE OPERATING FREQUENCIES, PIC16C710/711, PIC16C715  
Device Frequency  
5 MHz 1.25 MHz  
AD Clock Source (TAD)  
Operation  
2TOSC  
ADCS1:ADCS0  
20 MHz  
333.33 kHz  
(2)  
(2)  
00  
01  
10  
11  
1.6 µs  
6.4 µs  
6 µs  
100 ns  
400 ns  
(2)  
(3)  
8TOSC  
1.6 µs  
400 ns  
24 µs  
(3)  
(3)  
32TOSC  
1.6 µs  
6.4 µs  
25.6 µs  
96 µs  
(5)  
(1,4)  
(1,4)  
(1,4)  
(1)  
RC  
2 - 6 µs  
2 - 6 µs  
2 - 6 µs  
2 - 6 µs  
Legend: Shaded cells are outside of recommended range.  
Note 1: The RC source has a typical TAD time of 4 µs.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for  
sleep operation only.  
5: For extended voltage devices (LC), please refer to Electrical Specifications section.  
1997 Microchip Technology Inc.  
DS30272A-page 41  
 
 
PIC16C71X  
7.4  
A/D Conversions  
Note: The GO/DONE bit should NOT be set in  
Example 7-2 shows how to perform an A/D conversion.  
The RA pins are configured as analog inputs.The ana-  
log reference (VREF) is the device VDD. The A/D inter-  
rupt is enabled, and the A/D conversion clock is FRC.  
The conversion is performed on the RA0 pin (channel  
0).  
the same instruction that turns on the A/D.  
Clearing the GO/DONE bit during a conversion will  
abort the current conversion. The ADRES register will  
NOT be updated with the partially completed A/D con-  
version sample. That is, the ADRES register will con-  
tinue to contain the value of the last completed  
conversion (or the last value written to the ADRES reg-  
ister). After the A/D conversion is aborted, a 2TAD wait  
is required before the next acquisition is started. After  
this 2TAD wait, an acquisition is automatically started  
on the selected channel.  
EXAMPLE 7-2: A/D CONVERSION  
BSF  
CLRF  
BCF  
MOVLW  
MOVWF  
BSF  
STATUS, RP0  
ADCON1  
STATUS, RP0  
0xC1  
ADCON0  
INTCON, ADIE  
INTCON, GIE  
; Select Bank 1  
; Configure A/D inputs  
; Select Bank 0  
; RC Clock, A/D is on, Channel 0 is selected  
;
; Enable A/D Interrupt  
; Enable all interrupts  
BSF  
;
;
;
;
Ensure that the required sampling time for the selected input channel has elapsed.  
Then the conversion may be started.  
BSF  
:
ADCON0, GO  
; Start A/D Conversion  
; The ADIF bit will be set and the GO/DONE bit  
:
;
is cleared upon completion of the A/D Conversion.  
DS30272A-page 42  
1997 Microchip Technology Inc.  
 
PIC16C71X  
7.4.1  
FASTER CONVERSION - LOWER  
RESOLUTION TRADE-OFF  
Since the TAD is based from the device oscillator, the  
user must use some method (a timer, software loop,  
etc.) to determine when the A/D oscillator may be  
changed. Example 7-3 shows a comparison of time  
required for a conversion with 4-bits of resolution, ver-  
sus the 8-bit resolution conversion. The example is for  
devices operating at 20 MHz and 16 MHz (The A/D  
clock is programmed for 32TOSC), and assumes that  
immediately after 6TAD, the A/D clock is programmed  
for 2TOSC.  
Not all applications require a result with 8-bits of reso-  
lution, but may instead require a faster conversion time.  
The A/D module allows users to make the trade-off of  
conversion speed to resolution. Regardless of the res-  
olution required, the acquisition time is the same. To  
speed up the conversion, the clock source of the A/D  
module may be switched so that the TAD time violates  
the minimum specified time (see the applicable electri-  
cal specification). Once the TAD time violates the mini-  
mum specified time, all the following A/D result bits are  
not valid (see A/D Conversion Timing in the Electrical  
Specifications section.) The clock sources may only be  
switched between the three oscillator versions (cannot  
be switched from/to RC). The equation to determine  
the time before the oscillator can be switched is as  
follows:  
The 2TOSC violates the minimum TAD time since the  
last 4-bits will not be converted to correct values.  
Conversion time = 2TAD + N • TAD + (8 - N)(2TOSC)  
Where: N = number of bits of resolution required.  
EXAMPLE 7-3: 4-BIT vs. 8-BIT CONVERSION TIMES  
Resolution  
(1)  
Freq. (MHz)  
4-bit  
8-bit  
TAD  
20  
16  
20  
16  
20  
16  
1.6 µs  
2.0 µs  
50 ns  
1.6 µs  
2.0 µs  
50 ns  
TOSC  
62.5 ns  
10 µs  
62.5 ns  
16 µs  
2TAD + N • TAD + (8 - N)(2TOSC)  
12.5 µs  
20 µs  
Note 1: The PIC16C71 has a minimum TAD time of 2.0 µs.  
All other PIC16C71X devices have a minimum TAD time of 1.6 µs.  
1997 Microchip Technology Inc.  
DS30272A-page 43  
 
PIC16C71X  
full scale error is that full scale does not take offset error  
into account. Gain error can be calibrated out in soft-  
ware.  
7.5  
A/D Operation During Sleep  
The A/D module can operate during SLEEP mode.This  
requires that the A/D clock source be set to RC  
(ADCS1:ADCS0 = 11). When the RC clock source is  
selected, the A/D module waits one instruction cycle  
before starting the conversion. This allows the SLEEP  
instruction to be executed, which eliminates all digital  
switching noise from the conversion. When the conver-  
sion is completed the GO/DONE bit will be cleared, and  
the result loaded into the ADRES register. If the A/D  
interrupt is enabled, the device will wake-up from  
SLEEP. If the A/D interrupt is not enabled, the A/D mod-  
ule will then be turned off, although the ADON bit will  
remain set.  
Linearity error refers to the uniformity of the code  
changes. Linearity errors cannot be calibrated out of  
the system. Integral non-linearity error measures the  
actual code transition versus the ideal code transition  
adjusted by the gain error for each code.  
Differential non-linearity measures the maximum  
actual code width versus the ideal code width. This  
measure is unadjusted.  
In systems where the device frequency is low, use of  
the A/D RC clock is preferred. At moderate to high fre-  
quencies, TAD should be derived from the device oscil-  
lator. TAD must not violate the minimum and should be  
8 µs for preferred operation. This is because TAD,  
when derived from TOSC, is kept away from on-chip  
phase clock transitions.This reduces, to a large extent,  
the effects of digital switching noise.This is not possible  
with the RC derived clock. The loss of accuracy due to  
digital switching noise can be significant if many I/O  
pins are active.  
When the A/D clock source is another clock option (not  
RC), a SLEEPinstruction will cause the present conver-  
sion to be aborted and the A/D module to be turned off,  
though the ADON bit will remain set.  
Turning off the A/D places the A/D module in its lowest  
current consumption state.  
Note: For the A/D module to operate in SLEEP,  
the A/D clock source must be set to RC  
(ADCS1:ADCS0 = 11). To perform an A/D  
conversion in SLEEP, ensure the SLEEP  
instruction immediately follows the instruc-  
tion that sets the GO/DONE bit.  
In systems where the device will enter SLEEP mode  
after the start of the A/D conversion, the RC clock  
source selection is required. In this mode, the digital  
noise from the modules in SLEEP are stopped. This  
method gives high accuracy.  
7.6  
A/D Accuracy/Error  
7.7  
Effects of a RESET  
The absolute accuracy specified for the A/D converter  
includes the sum of all contributions for quantization  
error, integral error, differential error, full scale error, off-  
set error, and monotonicity. It is defined as the maxi-  
mum deviation from an actual transition versus an ideal  
transition for any code. The absolute error of the A/D  
converter is specified at < ±1 LSb for VDD = VREF (over  
the device’s specified operating range). However, the  
accuracy of the A/D converter will degrade as VDD  
diverges from VREF.  
A device reset forces all registers to their reset state.  
This forces the A/D module to be turned off, and any  
conversion is aborted.  
The value that is in the ADRES register is not modified  
for a Power-on Reset. The ADRES register will contain  
unknown data after a Power-on Reset.  
7.8  
Connection Considerations  
If the input voltage exceeds the rail values (VSS or VDD)  
by greater than 0.2V, then the accuracy of the conver-  
sion is out of specification.  
For a given range of analog inputs, the output digital  
code will be the same.This is due to the quantization of  
the analog input to a digital code. Quantization error is  
typically ± 1/2 LSb and is inherent in the analog to dig-  
ital conversion process.The only way to reduce quanti-  
zation error is to increase the resolution of the A/D  
converter.  
Note: Care must be taken when using the RA0  
pin in A/D conversions due to its proximity  
to the OSC1 pin.  
An external RC filter is sometimes added for anti-alias-  
ing of the input signal. The R component should be  
selected to ensure that the total source impedance is  
kept under the 10 krecommended specification. Any  
external components connected (via hi-impedance) to  
an analog input pin (capacitor, zener diode, etc.) should  
have very little leakage current at the pin.  
Offset error measures the first actual transition of a  
code versus the first ideal transition of a code. Offset  
error shifts the entire transfer function. Offset error can  
be calibrated out of a system or introduced into a sys-  
tem through the interaction of the total leakage current  
and source impedance at the analog input.  
Gain error measures the maximum deviation of the last  
actual transition and the last ideal transition adjusted  
for offset error.This error appears as a change in slope  
of the transfer function. The difference in gain error to  
DS30272A-page 44  
1997 Microchip Technology Inc.  
PIC16C71X  
7.9  
Transfer Function  
FIGURE 7-6: A/D TRANSFER FUNCTION  
The ideal transfer function of the A/D converter is as fol-  
lows: the first transition occurs when the analog input  
voltage (VAIN) is Analog VREF/256 (Figure 7-6).  
7.10  
References  
FFh  
FEh  
A very good reference for understanding A/D convert-  
ers is the "Analog-Digital Conversion Handbook" third  
edition, published by Prentice Hall (ISBN 0-13-03-  
2848-0).  
04h  
03h  
02h  
01h  
00h  
Analog input voltage  
FIGURE 7-7: FLOWCHART OF A/D OPERATION  
ADON = 0  
Yes  
ADON = 0?  
No  
Acquire  
Selected Channel  
Yes  
GO = 0?  
No  
Yes  
Yes  
Start of A/D  
Conversion Delayed  
1 Instruction Cycle  
Finish Conversion  
SLEEP  
Instruction?  
A/D Clock  
= RC?  
GO = 0  
ADIF = 1  
No  
No  
Yes  
Yes  
Abort Conversion  
GO = 0  
Wake-up  
From Sleep?  
Finish Conversion  
Device in  
SLEEP?  
Wait 2 TAD  
GO = 0  
ADIF = 1  
ADIF = 0  
No  
No  
SLEEP  
Power-down A/D  
Finish Conversion  
Stay in Sleep  
Power-down A/D  
Wait 2 TAD  
GO = 0  
ADIF = 1  
Wait 2 TAD  
1997 Microchip Technology Inc.  
DS30272A-page 45  
 
PIC16C71X  
TABLE 7-3:  
REGISTERS/BITS ASSOCIATED WITH A/D, PIC16C710/71/711  
Value on:  
POR,  
BOR  
Value on  
all other  
Resets  
Address  
Name  
Bit 7  
Bit 6 Bit 5 Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
ADRES  
GIE  
ADIE T0IE INTE  
RBIE  
T0IF  
INTF  
RBIF  
0000 000x 0000 000u  
xxxx xxxx uuuu uuuu  
0Bh,8Bh  
89h  
A/D Result Register  
ADCON0 ADCS1 ADCS0  
CHS1 CHS0 GO/DONE ADIF  
ADON 00-0 0000 00-0 0000  
08h  
ADCON1  
PCFG1 PCFG0 ---- --00 ---- --00  
88h  
---x 0000 ---u 0000  
---1 1111 ---1 1111  
05h  
PORTA  
TRISA  
RA4  
RA3  
RA2  
RA1  
RA0  
85h  
PORTA Data Direction Register  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used for A/D conversion.  
TABLE 7-4:  
REGISTERS/BITS ASSOCIATED WITH A/D, PIC16C715  
Value on:  
POR,  
BOR  
Value on  
all other  
Resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE  
PEIE  
ADIF  
ADIE  
T0IE  
INTE  
RBIE  
T0IF  
INTF  
RBIF 0000 000x 0000 000u  
0Bh/8Bh  
0Ch  
PIR1  
-0-- ---- -0-- ----  
-0-- ---- -0-- ----  
xxxx xxxx uuuu uuuu  
PIE1  
8Ch  
ADRES  
A/D Result Register  
1Eh  
ADCON  
0
ADCS ADCS CHS2  
CHS1  
CHS0  
GO/  
DONE  
ADON 0000 00-0 0000 00-0  
1Fh  
1
0
ADCON  
1
PCFG1 PCFG0 ---- --00 ---- --00  
9Fh  
---x 0000 ---u 0000  
---1 1111 ---1 1111  
TRISA2 TRISA1 TRISA0  
05h  
85h  
PORTA  
TRISA  
RA4  
RA3  
RA2  
RA1  
RA0  
TRISA4  
TRISA  
3
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are not used for A/D conversion.  
DS30272A-page 46  
1997 Microchip Technology Inc.  
PIC16C71X  
fixed delay of 72 ms (nominal) on power-up only,  
designed to keep the part in reset while the power sup-  
ply stabilizes. With these two timers on-chip, most  
applications need no external reset circuitry.  
8.0  
SPECIAL FEATURES OF THE  
CPU  
Applicable Devices 710 71 711 715  
SLEEP mode is designed to offer a very low current  
power-down mode.The user can wake-up from SLEEP  
through external reset, Watchdog Timer Wake-up, or  
through an interrupt. Several oscillator options are also  
made available to allow the part to fit the application.  
The RC oscillator option saves system cost while the  
LP crystal option saves power. A set of configuration  
bits are used to select various options.  
What sets a microcontroller apart from other proces-  
sors are special circuits to deal with the needs of real-  
time applications. The PIC16CXX family has a host of  
such features intended to maximize system reliability,  
minimize cost through elimination of external compo-  
nents, provide power saving operating modes and offer  
code protection. These are:  
• Oscillator selection  
• Reset  
8.1  
Configuration Bits  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
The configuration bits can be programmed (read as '0')  
or left unprogrammed (read as '1') to select various  
device configurations. These bits are mapped in pro-  
gram memory location 2007h.  
- Brown-out Reset (BOR)  
(PIC16C710/711/715)  
The user will note that address 2007h is beyond the  
user program memory space. In fact, it belongs to the  
special test/configuration memory space (2000h -  
3FFFh), which can be accessed only during program-  
ming.  
- Parity Error Reset (PER) (PIC16C715)  
• Interrupts  
• Watchdog Timer (WDT)  
• SLEEP  
• Code protection  
• ID locations  
• In-circuit serial programming  
The PIC16CXX has a Watchdog Timer which can be  
shut off only through configuration bits. It runs off its  
own RC oscillator for added reliability. There are two  
timers that offer necessary delays on power-up. One is  
the Oscillator Start-up Timer (OST), intended to keep  
the chip in reset until the crystal oscillator is stable.The  
other is the Power-up Timer (PWRT), which provides a  
FIGURE 8-1: CONFIGURATION WORD FOR PIC16C71  
CP0 PWRTE WDTE FOSC1 FOSC0  
bit0  
Register: CONFIG  
Address 2007h  
bit13  
bit 13-5: Unimplemented: Read as '1'  
bit 4:  
bit 3:  
bit 2:  
CP0: Code protection bit  
1 = Code protection off  
0 = All memory is code protected, but 00h - 3Fh is writable  
PWRTE: Power-up Timer Enable bit  
1 = Power-up Timer enabled  
0 = Power-up Timer disabled  
WDTE: Watchdog Timer Enable bit  
1 = WDT enabled  
0 = WDT disabled  
bit 1-0: FOSC1:FOSC0: Oscillator Selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
1997 Microchip Technology Inc.  
DS30272A-page 47  
 
 
PIC16C71X  
FIGURE 8-2: CONFIGURATION WORD, PIC16C710/711  
CP0  
CP0 CP0 CP0 CP0 CP0 CP0 BODEN CP0  
CP0 PWRTE WDTE FOSC1 FOSC0  
bit0  
Register: CONFIG  
Address 2007h  
bit13  
(2)  
bit 13-7 CP0: Code protection bits  
5-4: 1 = Code protection off  
0 = All memory is code protected, but 00h - 3Fh is writable  
(1)  
bit 6:  
bit 3:  
bit 2:  
BODEN: Brown-out Reset Enable bit  
1 = BOR enabled  
0 = BOR disabled  
(1)  
PWRTE: Power-up Timer Enable bit  
1 = PWRT disabled  
0 = PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1 = WDT enabled  
0 = WDT disabled  
bit 1-0: FOSC1:FOSC0: Oscillator Selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the value of bit PWRTE.  
Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.  
2: All of the CP0 bits have to be given the same value to enable the code protection scheme listed.  
FIGURE 8-3: CONFIGURATION WORD, PIC16C715  
CP1 CP0 CP1 CP0 CP1 CP0 MPEEN BODEN CP1  
bit13  
CP0 PWRTE WDTE FOSC1 FOSC0  
bit0  
Register: CONFIG  
Address 2007h  
(2)  
bit 13-8 CP1:CP0: Code Protection bits  
5-4: 11= Code protection off  
10= Upper half of program memory code protected  
01= Upper 3/4th of program memory code protected  
00= All memory is code protected  
bit 7:  
bit 6:  
bit 3:  
bit 2:  
MPEEN: Memory Parity Error Enable  
1 = Memory Parity Checking is enabled  
0 = Memory Parity Checking is disabled  
(1)  
BODEN: Brown-out Reset Enable bit  
1 = BOR enabled  
0 = BOR disabled  
(1)  
PWRTE: Power-up Timer Enable bit  
1 = PWRT disabled  
0 = PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1 = WDT enabled  
0 = WDT disabled  
bit 1-0: FOSC1:FOSC0: Oscillator Selection bits  
11= RC oscillator  
10= HS oscillator  
01= XT oscillator  
00= LP oscillator  
Note 1: Enabling Brown-out Reset automatically enables Power-up Timer (PWRT) regardless of the value of bit PWRTE.  
Ensure the Power-up Timer is enabled anytime Brown-out Reset is enabled.  
2: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.  
DS30272A-page 48  
1997 Microchip Technology Inc.  
 
 
PIC16C71X  
8.2  
Oscillator Configurations  
TABLE 8-1:  
CERAMIC RESONATORS,  
PIC16C71  
8.2.1  
OSCILLATOR TYPES  
Ranges Tested:  
The PIC16CXX can be operated in four different oscil-  
lator modes. The user can program two configuration  
bits (FOSC1 and FOSC0) to select one of these four  
modes:  
Mode  
XT  
Freq  
OSC1  
OSC2  
455 kHz  
2.0 MHz  
4.0 MHz  
47 - 100 pF 47 - 100 pF  
15 - 68 pF 15 - 68 pF  
15 - 68 pF 15 - 68 pF  
• LP  
• XT  
• HS  
• RC  
Low Power Crystal  
Crystal/Resonator  
HS  
8.0 MHz  
15 - 68 pF 15 - 68 pF  
10 - 47 pF 10 - 47 pF  
16.0 MHz  
High Speed Crystal/Resonator  
Resistor/Capacitor  
These values are for design guidance only. See  
notes at bottom of page.  
8.2.2  
CRYSTAL OSCILLATOR/CERAMIC  
RESONATORS  
Resonators Used:  
455 kHz  
Panasonic EFO-A455K04B ± 0.3%  
In XT, LP or HS modes a crystal or ceramic resonator  
is connected to the OSC1/CLKIN and OSC2/CLKOUT  
pins to establish oscillation (Figure 8-4). The  
PIC16CXX Oscillator design requires the use of a par-  
allel cut crystal. Use of a series cut crystal may give a  
frequency out of the crystal manufacturers specifica-  
tions. When in XT, LP or HS modes, the device can  
have an external clock source to drive the OSC1/  
CLKIN pin (Figure 8-5).  
2.0 MHz Murata Erie CSA2.00MG  
4.0 MHz Murata Erie CSA4.00MG  
8.0 MHz Murata Erie CSA8.00MT  
± 0.5%  
± 0.5%  
± 0.5%  
16.0 MHz Murata Erie CSA16.00MX ± 0.5%  
All resonators used did not have built-in capacitors.  
TABLE 8-2:  
CAPACITOR SELECTION  
FOR CRYSTAL OSCILLATOR,  
PIC16C71  
FIGURE 8-4: CRYSTAL/CERAMIC  
RESONATOR OPERATION  
(HS, XT OR LP  
Mode  
Freq  
OSC1  
OSC2  
LP  
32 kHz  
200 kHz  
33 - 68 pF  
15 - 47 pF  
33 - 68 pF  
15 - 47 pF  
OSC CONFIGURATION)  
XT  
100 kHz  
500 kHz  
1 MHz  
2 MHz  
4 MHz  
47 - 100 pF  
20 - 68 pF  
15 - 68 pF  
15 - 47 pF  
15 - 33 pF  
47 - 100 pF  
20 - 68 pF  
15 - 68 pF  
15 - 47 pF  
15 - 33 pF  
OSC1  
C1  
XTAL  
OSC2  
SLEEP  
PIC16CXXX  
RF  
HS  
8 MHz  
20 MHz  
15 - 47 pF  
15 - 47 pF  
15 - 47 pF  
15 - 47 pF  
To internal  
logic  
RS  
(2)  
C2  
Note1  
These values are for design guidance only. See  
notes at bottom of page.  
See Table 8-1 and Table 8-1 for recommended values of  
C1 and C2.  
Note 1: A series resistor may be required for AT strip  
cut crystals.  
2: The buffer is on the OSC2 pin.  
FIGURE 8-5: EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR LP  
OSC CONFIGURATION)  
OSC1  
OSC2  
Clock from  
ext. system  
PIC16CXXX  
Open  
1997 Microchip Technology Inc.  
DS30272A-page 49  
 
 
 
 
PIC16C71X  
TABLE 8-3:  
CERAMIC RESONATORS,  
PIC16C710/711/715  
TABLE 8-4:  
CAPACITOR SELECTION  
FOR CRYSTAL OSCILLATOR,  
PIC16C710/711/715  
Ranges Tested:  
Crystal  
Freq  
Cap. Range  
C1  
Cap. Range  
C2  
Osc Type  
Mode  
XT  
Freq  
455 kHz  
2.0 MHz  
4.0 MHz  
OSC1  
OSC2  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
68 - 100 pF  
15 - 68 pF  
15 - 68 pF  
LP  
32 kHz  
200 kHz  
200 kHz  
1 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
XT  
HS  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
HS  
8.0 MHz  
16.0 MHz  
10 - 68 pF  
10 - 22 pF  
10 - 68 pF  
10 - 22 pF  
4 MHz  
15 pF  
15 pF  
These values are for design guidance only. See  
notes at bottom of page.  
4 MHz  
15 pF  
15 pF  
8 MHz  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
Resonators Used:  
20 MHz  
455 kHz Panasonic EFO-A455K04B ± 0.3%  
These values are for design guidance only. See  
notes at bottom of page.  
2.0 MHz Murata Erie CSA2.00MG  
4.0 MHz Murata Erie CSA4.00MG  
8.0 MHz Murata Erie CSA8.00MT  
16.0 MHz Murata Erie CSA16.00MX  
± 0.5%  
± 0.5%  
± 0.5%  
± 0.5%  
Crystals Used  
32 kHz  
200 kHz  
1 MHz  
Epson C-001R32.768K-A  
STD XTL 200.000KHz  
ECS ECS-10-13-1  
± 20 PPM  
± 20 PPM  
± 50 PPM  
± 50 PPM  
± 30 PPM  
± 30 PPM  
All resonators used did not have built-in capacitors.  
4 MHz  
ECS ECS-40-20-1  
8 MHz  
EPSON CA-301 8.000M-C  
EPSON CA-301 20.000M-C  
20 MHz  
Note 1: Recommended values of C1 and C2 are identical to the ranges tested table.  
2: Higher capacitance increases the stability of oscillator but also increases the start-up time.  
3: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal man-  
ufacturer for appropriate values of external components.  
4: Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low drive level speci-  
fication.  
DS30272A-page 50  
1997 Microchip Technology Inc.  
PIC16C71X  
8.2.3  
EXTERNAL CRYSTAL OSCILLATOR  
CIRCUIT  
8.2.4  
RC OSCILLATOR  
For timing insensitive applications the “RC” device  
option offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the resis-  
tor (Rext) and capacitor (Cext) values, and the operat-  
ing temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal pro-  
cess parameter variation. Furthermore, the difference  
in lead frame capacitance between package types will  
also affect the oscillation frequency, especially for low  
Cext values. The user also needs to take into account  
variation due to tolerance of external R and C compo-  
nents used. Figure 8-8 shows how the R/C combina-  
tion is connected to the PIC16CXX. For Rext values  
below 2.2 k, the oscillator operation may become  
unstable, or stop completely. For very high Rext values  
(e.g. 1 M), the oscillator becomes sensitive to noise,  
humidity and leakage. Thus, we recommend to keep  
Rext between 3 kand 100 k.  
Either a prepackaged oscillator can be used or a simple  
oscillator circuit with TTL gates can be built. Prepack-  
aged oscillators provide a wide operating range and  
better stability. A well-designed crystal oscillator will  
provide good performance with TTL gates.Two types of  
crystal oscillator circuits can be used; one with series  
resonance, or one with parallel resonance.  
Figure 8-6 shows implementation of a parallel resonant  
oscillator circuit. The circuit is designed to use the fun-  
damental frequency of the crystal.The 74AS04 inverter  
performs the 180-degree phase shift that a parallel  
oscillator requires. The 4.7 kresistor provides the  
negative feedback for stability. The 10 kpotentiome-  
ter biases the 74AS04 in the linear region. This could  
be used for external oscillator designs.  
FIGURE 8-6: EXTERNAL PARALLEL  
RESONANT CRYSTAL  
Although the oscillator will operate with no external  
capacitor (Cext = 0 pF), we recommend using values  
above 20 pF for noise and stability reasons. With no or  
small external capacitance, the oscillation frequency  
can vary dramatically due to changes in external  
capacitances, such as PCB trace capacitance or pack-  
age lead frame capacitance.  
OSCILLATOR CIRCUIT  
+5V  
To Other  
Devices  
10k  
74AS04  
PIC16CXXX  
4.7k  
CLKIN  
74AS04  
See characterization data for desired device for RC fre-  
quency variation from part to part due to normal pro-  
cess variation.The variation is larger for larger R (since  
leakage current variation will affect RC frequency more  
for large R) and for smaller C (since variation of input  
capacitance will affect RC frequency more).  
10k  
XTAL  
10k  
See characterization data for desired device for varia-  
tion of oscillator frequency due to VDD for given Rext/  
Cext values as well as frequency variation due to oper-  
ating temperature for given R, C, and VDD values.  
20 pF  
20 pF  
Figure 8-7 shows a series resonant oscillator circuit.  
This circuit is also designed to use the fundamental fre-  
quency of the crystal. The inverter performs a 180-  
degree phase shift in a series resonant oscillator cir-  
cuit. The 330 kresistors provide the negative feed-  
back to bias the inverters in their linear region.  
The oscillator frequency, divided by 4, is available on  
the OSC2/CLKOUT pin, and can be used for test pur-  
poses or to synchronize other logic (see Figure 3-2 for  
waveform).  
FIGURE 8-8: RC OSCILLATOR MODE  
FIGURE 8-7: EXTERNAL SERIES  
RESONANT CRYSTAL  
VDD  
OSCILLATOR CIRCUIT  
Rext  
Internal  
OSC1  
To Other  
clock  
Devices  
330 kΩ  
330 kΩ  
Cext  
74AS04  
74AS04  
74AS04  
PIC16CXXX  
PIC16CXXX  
VSS  
CLKIN  
0.1 µF  
OSC2/CLKOUT  
Fosc/4  
XTAL  
1997 Microchip Technology Inc.  
DS30272A-page 51  
 
 
 
PIC16C71X  
WDT Reset, on MCLR reset during SLEEP, and Brown-  
out Reset (BOR). They are not affected by a WDT  
Wake-up, which is viewed as the resumption of normal  
operation.The TO and PD bits are set or cleared differ-  
ently in different reset situations as indicated in Table 8-  
7, Table 8-8 and Table 8-9. These bits are used in soft-  
ware to determine the nature of the reset. See Table 8-  
10 and Table 8-11 for a full description of reset states  
of all registers.  
8.3  
Reset  
Applicable Devices 710 71 711 715  
The PIC16CXX differentiates between various kinds of  
reset:  
• Power-on Reset (POR)  
• MCLR reset during normal operation  
• MCLR reset during SLEEP  
A simplified block diagram of the on-chip reset circuit is  
shown in Figure 8-9.  
• WDT Reset (normal operation)  
• Brown-out Reset (BOR) (PIC16C710/711/715)  
• Parity Error Reset (PIC16C715)  
The PIC16C710/711/715 have a MCLR noise filter in  
the MCLR reset path. The filter will detect and ignore  
small pulses.  
Some registers are not affected in any reset condition;  
their status is unknown on POR and unchanged in any  
other reset. Most other registers are reset to a “reset  
state” on Power-on Reset (POR), on the MCLR and  
It should be noted that a WDT Reset does not drive  
MCLR pin low.  
FIGURE 8-9: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR/VPP Pin  
MPEEN  
Program  
Memory  
Parity  
(3)  
WDT  
Module  
SLEEP  
WDT Time-out  
Power-on Reset  
VDD rise  
detect  
VDD  
Brown-out  
(2)  
S
R
Reset  
BODEN  
OST/PWRT  
OST  
10-bit Ripple-counter  
Chip_Reset  
Q
OSC1/  
CLKIN  
Pin  
PWRT  
10-bit Ripple-counter  
(1)  
On-chip  
RC OSC  
Enable PWRT  
Enable OST  
See Table 8-6 for time-out situations.  
Note 1: This is a separate oscillator from the RC oscillator of the CLKIN pin.  
2: Brown-out Reset is implemented on the PIC16C710/711/715.  
3: Parity Error Reset is implemented on the PIC16C715.  
DS30272A-page 52  
1997 Microchip Technology Inc.  
 
PIC16C71X  
The power-up time delay will vary from chip to chip due  
to VDD, temperature, and process variation. See DC  
parameters for details.  
8.4  
Power-on Reset (POR), Power-up  
Timer (PWRT) and Oscillator Start-up  
Timer (OST), and Brown-out Reset  
(BOR)  
8.4.3  
OSCILLATOR START-UP TIMER (OST)  
8.4.1  
POWER-ON RESET (POR)  
Applicable Devices 710 71 711 715  
Applicable Devices 710 71 711 715  
The Oscillator Start-up Timer (OST) provides 1024  
oscillator cycle (from OSC1 input) delay after the  
PWRT delay is over.This ensures that the crystal oscil-  
lator or resonator has started and stabilized.  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected (in the range of 1.5V - 2.1V). To  
take advantage of the POR, just tie the MCLR pin  
directly (or through a resistor) to VDD.This will eliminate  
external RC components usually needed to create a  
Power-on Reset. A maximum rise time for VDD is spec-  
ified. See Electrical Specifications for details.  
The OST time-out is invoked only for XT, LP and HS  
modes and only on Power-on Reset or wake-up from  
SLEEP.  
8.4.4  
BROWN-OUT RESET (BOR)  
When the device starts normal operation (exits the  
reset condition), device operating parameters (voltage,  
frequency, temperature, ...) must be met to ensure  
operation. If these conditions are not met, the device  
must be held in reset until the operating conditions are  
met. Brown-out Reset may be used to meet the startup  
conditions.  
Applicable Devices 710 71 711 715  
A configuration bit, BODEN, can disable (if clear/pro-  
grammed) or enable (if set) the Brown-out Reset cir-  
cuitry. If VDD falls below 4.0V (3.8V - 4.2V range) for  
greater than parameter #35, the brown-out situation will  
reset the chip. A reset may not occur if VDD falls below  
4.0V for less than parameter #35. The chip will remain  
in Brown-out Reset until VDD rises above BVDD. The  
Power-up Timer will now be invoked and will keep the  
chip in RESET an additional 72 ms. If VDD drops below  
BVDD while the Power-up Timer is running, the chip will  
go back into a Brown-out Reset and the Power-up  
Timer will be initialized. Once VDD rises above BVDD,  
the Power-up Timer will execute a 72 ms time delay.  
The Power-up Timer should always be enabled when  
Brown-out Reset is enabled. Figure 8-10 shows typical  
brown-out situations.  
For additional information, refer to Application Note  
AN607, "Power-up Trouble Shooting."  
8.4.2  
POWER-UP TIMER (PWRT)  
Applicable Devices 710 71 711 715  
The Power-up Timer provides a fixed 72 ms nominal  
time-out on power-up only, from the POR. The Power-  
up Timer operates on an internal RC oscillator. The  
chip is kept in reset as long as the PWRT is active.The  
PWRT’s time delay allows VDD to rise to an acceptable  
level. A configuration bit is provided to enable/disable  
the PWRT.  
FIGURE 8-10: BROWN-OUT SITUATIONS  
VDD  
BVDD  
Internal  
Reset  
72 ms  
VDD  
BVDD  
Internal  
Reset  
<72 ms  
72 ms  
VDD  
BVDD  
Internal  
Reset  
72 ms  
1997 Microchip Technology Inc.  
DS30272A-page 53  
 
PIC16C71X  
8.4.5  
TIME-OUT SEQUENCE  
Bit1 is POR (Power-on Reset Status bit). It is cleared  
on a Power-on Reset and unaffected otherwise. The  
user must set this bit following a Power-on Reset.  
Applicable Devices 710 71 711 715  
For the PIC16C715, bit2 is PER (Parity Error Reset). It  
is cleared on a Parity Error Reset and must be set by  
user software. It will also be set on a Power-on Reset.  
On power-up the time-out sequence is as follows: First  
PWRT time-out is invoked after the POR time delay has  
expired. Then OST is activated. The total time-out will  
vary based on oscillator configuration and the status of  
the PWRT. For example, in RC mode with the PWRT  
disabled, there will be no time-out at all. Figure 8-11,  
Figure 8-12, and Figure 8-13 depict time-out  
sequences on power-up.  
For the PIC16C715, bit7 is MPEEN (Memory Parity  
Error Enable).This bit reflects the status of the MPEEN  
bit in configuration word. It is unaffected by any reset of  
interrupt.  
8.4.7  
PARITY ERROR RESET (PER)  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then  
bringing MCLR high will begin execution immediately  
(Figure 8-12). This is useful for testing purposes or to  
synchronize more than one PIC16CXX device operat-  
ing in parallel.  
Applicable Devices 710 71 711 715  
The PIC16C715 has on-chip parity bits that can be  
used to verify the contents of program memory. Parity  
bits may be useful in applications in order to increase  
overall reliability of a system.  
Table 8-10 and Table 8-11 show the reset conditions for  
some special function registers, while Table 8-12 and  
Table 8-13 show the reset conditions for all the  
registers.  
There are two parity bits for each word of Program  
Memory. The parity bits are computed on alternating  
bits of the program word. One computation is per-  
formed using even parity, the other using odd parity. As  
a program executes, the parity is verified.The even par-  
ity bit is XOR’d with the even bits in the program mem-  
ory word. The odd parity bit is negated and XOR’d with  
the odd bits in the program memory word. When an  
error is detected, a reset is generated and the PER flag  
bit 2 in the PCON register is cleared (logic0’).This indi-  
cation can allow software to act on a failure. However,  
there is no indication of the program memory location  
of the failure in Program Memory. This flag can only be  
set (logic ‘1’) by software.  
8.4.6  
POWER CONTROL/STATUS REGISTER  
(PCON)  
Applicable Devices 710 71 711 715  
The Power Control/Status Register, PCON has up to  
two bits, depending upon the device.  
Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is  
unknown on a Power-on Reset. It must then be set by  
the user and checked on subsequent resets to see if bit  
BOR cleared, indicating a BOR occurred. The BOR bit  
is a "Don’t Care" bit and is not necessarily predictable  
if the Brown-out Reset circuitry is disabled (by clearing  
bit BODEN in the Configuration Word).  
The parity array is user selectable during programming.  
Bit 7 of the configuration word located at address  
2007h can be programmed (read as ‘0’) to disable par-  
ity. If left unprogrammed (read as ‘1’), parity is enabled.  
TABLE 8-5:  
TIME-OUT IN VARIOUS SITUATIONS, PIC16C71  
Oscillator Configuration  
Power-up  
Wake-up from SLEEP  
PWRTE = 1  
72 ms + 1024TOSC  
72 ms  
PWRTE = 0  
1024TOSC  
XT, HS, LP  
RC  
1024 TOSC  
TABLE 8-6:  
TIME-OUT IN VARIOUS SITUATIONS, PIC16C710/711/715  
Oscillator Configuration  
Power-up  
PWRTE = 0  
Wake-up from SLEEP  
Brown-out  
PWRTE = 1  
1024TOSC  
XT, HS, LP  
RC  
72 ms + 1024TOSC  
72 ms  
72 ms + 1024TOSC  
72 ms  
1024TOSC  
DS30272A-page 54  
1997 Microchip Technology Inc.  
PIC16C71X  
TABLE 8-7:  
TO  
STATUS BITS AND THEIR SIGNIFICANCE, PIC16C71  
PD  
1
0
x
0
0
u
1
1
x
0
1
0
u
0
Power-on Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during SLEEP or interrupt wake-up from SLEEP  
TABLE 8-8:  
STATUS BITS AND THEIR SIGNIFICANCE, PIC16C710/711  
POR  
BOR  
TO  
PD  
0
0
0
1
1
1
1
1
x
x
x
0
1
1
1
1
1
0
x
x
0
0
u
1
1
x
0
x
1
0
u
0
Power-on Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during SLEEP or interrupt wake-up from SLEEP  
TABLE 8-9:  
STATUS BITS AND THEIR SIGNIFICANCE, PIC16C715  
PER  
POR  
BOR  
TO  
PD  
1
x
x
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
0
x
x
x
x
0
1
1
1
1
1
x
0
1
0
x
x
0
0
u
1
1
x
x
1
x
0
x
1
0
u
0
1
x
x
Power-on Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during SLEEP or interrupt wake-up from SLEEP  
Parity Error Reset  
Illegal, PER is set on POR  
Illegal, PER is set on BOR  
1997 Microchip Technology Inc.  
DS30272A-page 55  
PIC16C71X  
TABLE 8-10: RESET CONDITION FOR SPECIAL REGISTERS, PIC16C710/71/711  
Program  
Counter  
STATUS  
Register  
PCON  
Register  
Condition  
PIC16C710/711  
Power-on Reset  
000h  
000h  
000h  
000h  
PC + 1  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 1uuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
---- --0x  
---- --uu  
---- --uu  
---- --uu  
---- --uu  
---- --u0  
---- --uu  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset  
WDT Wake-up  
Brown-out Reset (PIC16C710/711)  
Interrupt wake-up from SLEEP  
(1)  
PC + 1  
Legend: u= unchanged, x= unknown, -= unimplemented bit read as '0'.  
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded  
with the interrupt vector (0004h).  
TABLE 8-11: RESET CONDITION FOR SPECIAL REGISTERS, PIC16C715  
Program  
Counter  
STATUS  
Register  
PCON  
Register  
Condition  
Power-on Reset  
000h  
000h  
000h  
000h  
PC + 1  
000h  
000h  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 1uuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
uuu1 0uuu  
u--- -10x  
u--- -uuu  
u--- -uuu  
u--- -uuu  
u--- -uuu  
u--- -uu0  
u--- -0uu  
u--- -uuu  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset  
WDT Wake-up  
Brown-out Reset  
Parity Error Reset  
(1)  
Interrupt wake-up from SLEEP  
PC + 1  
Legend: u= unchanged, x= unknown, -= unimplemented bit read as '0'.  
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
DS30272A-page 56  
1997 Microchip Technology Inc.  
 
 
PIC16C71X  
TABLE 8-12: INITIALIZATION CONDITIONS FOR ALL REGISTERS, PIC16C710/71/711  
Register  
Power-on Reset,  
MCLR Resets  
WDT Reset  
Wake-up via  
WDT or  
Interrupt  
(5)  
Brown-out Reset  
W
xxxx xxxx  
N/A  
uuuu uuuu  
N/A  
uuuu uuuu  
N/A  
INDF  
TMR0  
PCL  
xxxx xxxx  
0000h  
uuuu uuuu  
0000h  
uuuu uuuu  
(2)  
PC + 1  
(3)  
(3)  
STATUS  
0001 1xxx  
000q quuu  
uuuq quuu  
FSR  
xxxx xxxx  
---x 0000  
xxxx xxxx  
---0 0000  
0000 000x  
uuuu uuuu  
---u 0000  
uuuu uuuu  
---0 0000  
0000 000u  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
---u uuuu  
PORTA  
PORTB  
PCLATH  
INTCON  
(1)  
uuuu uuuu  
ADRES  
ADCON0  
OPTION  
TRISA  
xxxx xxxx  
00-0 0000  
1111 1111  
---1 1111  
1111 1111  
---- --0u  
uuuu uuuu  
00-0 0000  
1111 1111  
---1 1111  
1111 1111  
---- --uu  
uuuu uuuu  
uu-u uuuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
---- --uu  
TRISB  
(4)  
PCON  
ADCON1  
---- --00  
---- --00  
---- --uu  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q= value depends on condition  
Note 1: One or more bits in INTCON will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 8-10 for reset value for specific condition.  
4: The PCON register is not implemented on the PIC16C71.  
5: Brown-out reset is not implemented on the PIC16C71.  
1997 Microchip Technology Inc.  
DS30272A-page 57  
PIC16C71X  
TABLE 8-13: INITIALIZATION CONDITIONS FOR ALL REGISTERS, PIC16C715  
Register  
Power-on Reset,  
Brown-out Reset  
Parity Error Reset  
MCLR Resets  
WDT Reset  
Wake-up via  
WDT or  
Interrupt  
W
xxxx xxxx  
N/A  
uuuu uuuu  
N/A  
uuuu uuuu  
N/A  
INDF  
TMR0  
PCL  
xxxx xxxx  
0000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
(2)  
PC + 1  
(3)  
(3)  
STATUS  
0001 1xxx  
000q quuu  
uuuq quuu  
FSR  
xxxx xxxx  
---x 0000  
xxxx xxxx  
---0 0000  
0000 000x  
uuuu uuuu  
---u 0000  
uuuu uuuu  
---0 0000  
0000 000u  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
---u uuuu  
PORTA  
PORTB  
PCLATH  
INTCON  
(1)  
uuuu uuuu  
(1)  
-0-- ----  
-0-- ----  
PIR1  
-u-- ----  
ADCON0  
OPTION  
TRISA  
TRISB  
PIE1  
0000 00-0  
1111 1111  
---1 1111  
1111 1111  
-0-- ----  
---- -qqq  
---- --00  
0000 00-0  
1111 1111  
---1 1111  
1111 1111  
-0-- ----  
---- -1uu  
---- --00  
uuuu uu-u  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
-u-- ----  
---- -1uu  
---- --uu  
PCON  
ADCON1  
Legend: u = unchanged, x = unknown, -= unimplemented bit, read as '0', q= value depends on condition  
Note 1: One or more bits in INTCON and PIR1 will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: See Table 8-11 for reset value for specific condition.  
DS30272A-page 58  
1997 Microchip Technology Inc.  
PIC16C71X  
FIGURE 8-11: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 8-12: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
FIGURE 8-13: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
1997 Microchip Technology Inc.  
DS30272A-page 59  
PIC16C71X  
FIGURE 8-14: EXTERNAL POWER-ON  
RESET CIRCUIT (FOR SLOW  
VDD POWER-UP)  
FIGURE 8-15: EXTERNAL BROWN-OUT  
PROTECTION CIRCUIT 1  
VDD  
VDD  
33k  
VDD  
10k  
MCLR  
D
R
R1  
40k  
PIC16CXX  
MCLR  
PIC16CXX  
C
Note 1: This circuit will activate reset when VDD  
goes below (Vz + 0.7V) where Vz = Zener  
voltage.  
Note 1: External Power-on Reset circuit is  
required only if VDD power-up slope is too  
slow. The diode D helps discharge the  
capacitor quickly when VDD powers down.  
2: Internal brown-out detection on the  
PIC16C710/711/715 should be disabled  
when using this circuit.  
2: R < 40 kis recommended to make sure  
that voltage drop across R does not violate  
the device’s electrical specification.  
3: Resistors should be adjusted for the char-  
acteristics of the transistor.  
3: R1 = 100to 1 kwill limit any current  
flowing into MCLR from external capacitor  
C in the event of MCLR/VPP pin break-  
down due to Electrostatic Discharge  
(ESD) or Electrical Overstress (EOS).  
FIGURE 8-16: EXTERNAL BROWN-OUT  
PROTECTION CIRCUIT 2  
VDD  
VDD  
R1  
R2  
Q1  
MCLR  
40k  
PIC16CXX  
Note 1: This brown-out circuit is less expensive,  
albeit less accurate. Transistor Q1 turns  
off when VDD is below a certain level  
such that:  
R1  
= 0.7V  
VDD •  
R1 + R2  
2: Internal brown-out detection on the  
PIC16C710/711/715 should be disabled  
when using this circuit.  
3: Resistors should be adjusted for the  
characteristics of the transistor.  
DS30272A-page 60  
1997 Microchip Technology Inc.  
PIC16C71X  
For external interrupt events, such as the INT pin or  
PORTB change interrupt, the interrupt latency will be  
three or four instruction cycles. The exact latency  
depends when the interrupt event occurs (Figure 8-19).  
The latency is the same for one or two cycle instruc-  
tions. Individual interrupt flag bits are set regardless of  
the status of their corresponding mask bit or the GIE  
bit.  
8.5  
Interrupts  
Applicable Devices 710 71 711 715  
The PIC16C71X family has 4 sources of interrupt.  
Interrupt Sources  
External interrupt RB0/INT  
TMR0 overflow interrupt  
PORTB change interrupts (pins RB7:RB4)  
A/D Interrupt  
Note: For the PIC16C71  
If an interrupt occurs while the Global Inter-  
rupt Enable (GIE) bit is being cleared, the  
GIE bit may unintentionally be re-enabled  
by the user’s Interrupt Service Routine (the  
RETFIE instruction). The events that  
would cause this to occur are:  
The interrupt control register (INTCON) records indi-  
vidual interrupt requests in flag bits. It also has individ-  
ual and global interrupt enable bits.  
Note: Individual interrupt flag bits are set regard-  
less of the status of their corresponding  
mask bit or the GIE bit.  
1. An instruction clears the GIE bit while  
an interrupt is acknowledged.  
2. The program branches to the Interrupt  
vector and executes the Interrupt Ser-  
vice Routine.  
A global interrupt enable bit, GIE (INTCON<7>)  
enables (if set) all un-masked interrupts or disables (if  
cleared) all interrupts. When bit GIE is enabled, and an  
interrupt’s flag bit and mask bit are set, the interrupt will  
vector immediately. Individual interrupts can be dis-  
abled through their corresponding enable bits in vari-  
ous registers. Individual interrupt bits are set  
regardless of the status of the GIE bit. The GIE bit is  
cleared on reset.  
3. The Interrupt Service Routine com-  
pletes with the execution of the RET-  
FIE instruction. This causes the GIE  
bit to be set (enables interrupts), and  
the program returns to the instruction  
after the one which was meant to dis-  
able interrupts.  
The “return from interrupt” instruction, RETFIE, exits  
the interrupt routine as well as sets the GIE bit, which  
re-enables interrupts.  
Perform the following to ensure that inter-  
rupts are globally disabled:  
LOOP BCF  
INTCON, GIE ; Disable global  
interrupt bit  
BTFSC INTCON, GIE ; Global interrupt  
disabled?  
; NO, try again  
The RB0/INT pin interrupt, the RB port change inter-  
rupt and the TMR0 overflow interrupt flags are con-  
tained in the INTCON register.  
;
;
The peripheral interrupt flags are contained in the spe-  
cial function registers PIR1 and PIR2.The correspond-  
ing interrupt enable bits are contained in special  
function registers PIE1 and PIE2, and the peripheral  
interrupt enable bit is contained in special function reg-  
ister INTCON.  
GOTO LOOP  
:
;
;
;
Yes, continue  
with program  
flow  
When an interrupt is responded to, the GIE bit is  
cleared to disable any further interrupt, the return  
address is pushed onto the stack and the PC is loaded  
with 0004h. Once in the interrupt service routine the  
source(s) of the interrupt can be determined by polling  
the interrupt flag bits. The interrupt flag bit(s) must be  
cleared in software before re-enabling interrupts to  
avoid recursive interrupts.  
1997 Microchip Technology Inc.  
DS30272A-page 61  
PIC16C71X  
FIGURE 8-17: INTERRUPT LOGIC, PIC16C710, 71, 711  
Wakeup  
(If in SLEEP mode)  
T0IF  
T0IE  
INTF  
INTE  
Interrupt to CPU  
RBIF  
RBIE  
ADIF  
ADIE  
GIE  
FIGURE 8-18: INTERRUPT LOGIC, PIC16C715  
Wakeup  
(If in SLEEP mode)  
T0IF  
T0IE  
INTF  
INTE  
Interrupt to CPU  
RBIF  
RBIE  
ADIF  
ADIF  
ADIE  
GIE  
DS30272A-page 62  
1997 Microchip Technology Inc.  
PIC16C71X  
8.5.1  
INT INTERRUPT  
8.5.2  
TMR0 INTERRUPT  
External interrupt on RB0/INT pin is edge triggered:  
either rising if bit INTEDG (OPTION<6>) is set, or fall-  
ing, if the INTEDG bit is clear. When a valid edge  
appears on the RB0/INT pin, flag bit INTF  
(INTCON<1>) is set. This interrupt can be disabled by  
clearing enable bit INTE (INTCON<4>). Flag bit INTF  
must be cleared in software in the interrupt service rou-  
tine before re-enabling this interrupt. The INT interrupt  
can wake-up the processor from SLEEP, if bit INTE was  
set prior to going into SLEEP.The status of global inter-  
rupt enable bit GIE decides whether or not the proces-  
sor branches to the interrupt vector following wake-up.  
See Section 8.8 for details on SLEEP mode.  
An overflow (FFh 00h) in the TMR0 register will set  
flag bit T0IF (INTCON<2>). The interrupt can be  
enabled/disabled by setting/clearing enable bit T0IE  
(INTCON<5>). (Section 6.0)  
8.5.3  
PORTB INTCON CHANGE  
An input change on PORTB<7:4> sets flag bit RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit RBIE (INTCON<4>).  
(Section 5.2)  
Note: For the PIC16C71  
if a change on the I/O pin should occur  
when the read operation is being executed  
(start of the Q2 cycle), then the RBIF inter-  
rupt flag may not get set.  
FIGURE 8-19: INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT  
3
4
INT pin  
1
1
Interrupt Latency  
INTF flag  
(INTCON<1>)  
5
2
GIE bit  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
0004h  
PC+1  
PC+1  
0005h  
PC  
Instruction  
fetched  
Inst (PC)  
Inst (PC+1)  
Inst (0004h)  
Inst (0005h)  
Inst (0004h)  
Instruction  
executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC-1)  
Note  
1: INTF flag is sampled here (every Q1).  
2: Interrupt latency = 3-4 Tcy where Tcy = instruction cycle time.  
Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.  
3: CLKOUT is available only in RC oscillator mode.  
4: For minimum width of INT pulse, refer to AC specs.  
5: INTF is enabled to be set anytime during the Q4-Q1 cycles.  
1997 Microchip Technology Inc.  
DS30272A-page 63  
PIC16C71X  
8.6  
Context Saving During Interrupts  
During an interrupt, only the return PC value is saved  
on the stack.Typically, users may wish to save key reg-  
isters during an interrupt i.e., W register and STATUS  
register. This will have to be implemented in software.  
Example 8-1 stores and restores the STATUS and W  
registers. The user register, STATUS_TEMP, must be  
defined in bank 0.  
The example:  
a) Stores the W register.  
b) Stores the STATUS register in bank 0.  
c) Executes the ISR code.  
d) Restores the STATUS register (and bank select  
bit).  
e) Restores the W register.  
EXAMPLE 8-1: SAVING STATUS AND W REGISTERS IN RAM  
MOVWF  
SWAPF  
MOVWF  
:
W_TEMP  
STATUS,W  
STATUS_TEMP  
;Copy W to TEMP register, could be bank one or zero  
;Swap status to be saved into W  
;Save status to bank zero STATUS_TEMP register  
:(ISR)  
:
SWAPF  
STATUS_TEMP,W  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
DS30272A-page 64  
1997 Microchip Technology Inc.  
 
PIC16C71X  
assigned to the WDT under software control by writing  
to the OPTION register. Thus, time-out periods up to  
2.3 seconds can be realized.  
8.7  
Watchdog Timer (WDT)  
Applicable Devices 710 71 711 715  
The CLRWDTand SLEEPinstructions clear the WDT and  
the postscaler, if assigned to the WDT, and prevent it  
from timing out and generating a device RESET condi-  
tion.  
The Watchdog Timer is as a free running on-chip RC  
oscillator which does not require any external compo-  
nents.This RC oscillator is separate from the RC oscil-  
lator of the OSC1/CLKIN pin.That means that the WDT  
will run, even if the clock on the OSC1/CLKIN and  
OSC2/CLKOUT pins of the device has been stopped,  
for example, by execution of a SLEEPinstruction. Dur-  
ing normal operation, a WDT time-out generates a  
device RESET (Watchdog Timer Reset). If the device is  
in SLEEP mode, a WDT time-out causes the device to  
wake-up and continue with normal operation (Watch-  
dog Timer Wake-up). The WDT can be permanently  
disabled by clearing configuration bit WDTE  
(Section 8.1).  
The TO bit in the STATUS register will be cleared upon  
a Watchdog Timer time-out.  
8.7.2  
WDT PROGRAMMING CONSIDERATIONS  
It should also be taken into account that under worst  
case conditions (VDD = Min., Temperature = Max., and  
max. WDT prescaler) it may take several seconds  
before a WDT time-out occurs.  
Note: When a CLRWDT instruction is executed  
and the prescaler is assigned to the WDT,  
the prescaler count will be cleared, but the  
prescaler assignment is not changed.  
8.7.1  
WDT PERIOD  
The WDT has a nominal time-out period of 18 ms, (with  
no prescaler). The time-out periods vary with tempera-  
DD  
ture, V and process variations from part to part (see  
DC specs). If longer time-out periods are desired, a  
prescaler with a division ratio of up to 1:128 can be  
FIGURE 8-20: WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 6-6)  
0
Postscaler  
8
M
1
U
WDT Timer  
X
8 - to - 1 MUX  
PS2:PS0  
PSA  
WDT  
Enable Bit  
To TMR0 (Figure 6-6)  
0
1
MUX  
PSA  
WDT  
Time-out  
Note: PSA and PS2:PS0 are bits in the OPTION register.  
FIGURE 8-21: SUMMARY OF WATCHDOG TIMER REGISTERS  
Address  
2007h  
Name  
Bit 7  
(1)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
WDTE  
PS2  
Bit 1  
FOSC1  
PS1  
Bit 0  
FOSC0  
PS0  
(1)  
(1)  
Config. bits  
OPTION  
CP1  
CP0  
BODEN  
PWRTE  
PSA  
81h,181h  
RBPU  
INTEDG  
T0CS T0SE  
Legend: Shaded cells are not used by the Watchdog Timer.  
Note 1: See Figure 8-1, Figure 8-2 and Figure 8-3 for operation of these bits.  
1997 Microchip Technology Inc.  
DS30272A-page 65  
PIC16C71X  
Other peripherals cannot generate interrupts since dur-  
ing SLEEP, no on-chip Q clocks are present.  
8.8  
Power-down Mode (SLEEP)  
Power-down mode is entered by executing a SLEEP  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up is  
regardless of the state of the GIE bit. If the GIE bit is  
clear (disabled), the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
set (enabled), the device executes the instruction after  
the SLEEP instruction and then branches to the inter-  
rupt address (0004h). In cases where the execution of  
the instruction following SLEEP is not desirable, the  
user should have a NOPafter the SLEEPinstruction.  
instruction.  
If enabled, the Watchdog Timer will be cleared but  
keeps running, the PD bit (STATUS<3>) is cleared, the  
TO (STATUS<4>) bit is set, and the oscillator driver is  
turned off. The I/O ports maintain the status they had,  
before the SLEEP instruction was executed (driving  
high, low, or hi-impedance).  
For lowest current consumption in this mode, place all  
I/O pins at either VDD, or VSS, ensure no external cir-  
cuitry is drawing current from the I/O pin, power-down  
the A/D, disable external clocks. Pull all I/O pins, that  
are hi-impedance inputs, high or low externally to avoid  
switching currents caused by floating inputs. The  
T0CKI input should also be at VDD or VSS for lowest  
current consumption. The contribution from on-chip  
pull-ups on PORTB should be considered.  
8.8.2  
WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
The MCLR pin must be at a logic high level (VIHMC).  
• If the interrupt occurs before the the execution of  
a SLEEPinstruction, the SLEEPinstruction will  
complete as a NOP.Therefore, the WDT and WDT  
postscaler will not be cleared, the TO bit will not  
be set and PD bits will not be cleared.  
8.8.1  
WAKE-UP FROM SLEEP  
The device can wake up from SLEEP through one of  
the following events:  
1. External reset input on MCLR pin.  
• If the interrupt occurs during or after the execu-  
tion of a SLEEPinstruction, the device will immedi-  
ately wake up from sleep . The SLEEPinstruction  
will be completely executed before the wake-up.  
Therefore, the WDT and WDT postscaler will be  
cleared, the TO bit will be set and the PD bit will  
be cleared.  
2. Watchdog Timer Wake-up (if WDT was  
enabled).  
3. Interrupt from INT pin, RB port change, or some  
Peripheral Interrupts.  
External MCLR Reset will cause a device reset. All  
other events are considered a continuation of program  
execution and cause a "wake-up". The TO and PD bits  
in the STATUS register can be used to determine the  
cause of device reset. The PD bit, which is set on  
power-up, is cleared when SLEEPis invoked.The TO bit  
is cleared if a WDT time-out occurred (and caused  
wake-up).  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes.To  
determine whether a SLEEP instruction executed, test  
the PD bit. If the PD bit is set, the SLEEPinstruction was  
executed as a NOP.  
To ensure that the WDT is cleared, a CLRWDTinstruc-  
tion should be executed before a SLEEPinstruction.  
The following peripheral interrupts can wake the device  
from SLEEP:  
1. TMR1 interrupt. Timer1 must be operating as  
an asynchronous counter.  
2. A/D conversion (when A/D clock source is RC).  
DS30272A-page 66  
1997 Microchip Technology Inc.  
PIC16C71X  
FIGURE 8-22: WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
TOST(2)  
INTF flag  
(INTCON<1>)  
Interrupt Latency  
(Note 2)  
GIE bit  
(INTCON<7>)  
Processor in  
SLEEP  
INSTRUCTION FLOW  
PC  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = SLEEP  
Inst(PC - 1)  
fetched  
Instruction  
executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 1)  
Inst(0004h)  
Note 1: XT, HS or LP oscillator mode assumed.  
2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.  
3: GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.  
4: CLKOUT is not available in these osc modes, but shown here for timing reference.  
The device is placed into a program/verify mode by  
holding the RB6 and RB7 pins low while raising the  
MCLR (VPP) pin from VIL to VIHH (see programming  
specification). RB6 becomes the programming clock  
and RB7 becomes the programming data. Both RB6  
and RB7 are Schmitt Trigger inputs in this mode.  
8.9  
Program Verification/Code Protection  
If the code protection bit(s) have not been pro-  
grammed, the on-chip program memory can be read  
out for verification purposes.  
Note: Microchip does not recommend code pro-  
tecting windowed devices.  
After reset, to place the device into programming/verify  
mode, the program counter (PC) is at location 00h. A 6-  
bit command is then supplied to the device. Depending  
on the command, 14-bits of program data are then sup-  
plied to or from the device, depending if the command  
was a load or a read. For complete details of serial pro-  
gramming, please refer to the PIC16C6X/7X Program-  
ming Specifications (Literature #DS30228).  
8.10  
ID Locations  
Four memory locations (2000h - 2003h) are designated  
as ID locations where the user can store checksum or  
other code-identification numbers. These locations are  
not accessible during normal execution but are read-  
able and writable during program/verify. It is recom-  
mended that only the 4 least significant bits of the ID  
location are used.  
FIGURE 8-23: TYPICAL IN-CIRCUIT SERIAL  
PROGRAMMING  
8.11  
In-Circuit Serial Programming  
CONNECTION  
PIC16CXX microcontrollers can be serially pro-  
grammed while in the end application circuit. This is  
simply done with two lines for clock and data, and three  
other lines for power, ground, and the programming  
voltage. This allows customers to manufacture boards  
with unprogrammed devices, and then program the  
microcontroller just before shipping the product. This  
also allows the most recent firmware or a custom firm-  
ware to be programmed.  
To Normal  
Connections  
External  
Connector  
Signals  
PIC16CXX  
+5V  
0V  
VDD  
VSS  
VPP  
MCLR/VPP  
RB6  
RB7  
CLK  
Data I/O  
VDD  
To Normal  
Connections  
1997 Microchip Technology Inc.  
DS30272A-page 67  
PIC16C71X  
NOTES:  
DS30272A-page 68  
1997 Microchip Technology Inc.  
PIC16C71X  
Byte-oriented operations  
9.0  
INSTRUCTION SET SUMMARY  
Bit-oriented operations  
Each PIC16CXX instruction is a 14-bit word divided  
into an OPCODE which specifies the instruction type  
and one or more operands which further specify the  
operation of the instruction. The PIC16CXX instruction  
set summary in Table 9-2 lists byte-oriented, bit-ori-  
ented, and literal and control operations. Table 9-1  
shows the opcode field descriptions.  
Literal and control operations  
All instructions are executed within one single instruc-  
tion cycle, unless a conditional test is true or the pro-  
gram counter is changed as a result of an instruction.  
In this case, the execution takes two instruction cycles  
with the second cycle executed as a NOP. One instruc-  
tion cycle consists of four oscillator periods. Thus, for  
an oscillator frequency of 4 MHz, the normal instruction  
execution time is 1 µs. If a conditional test is true or the  
program counter is changed as a result of an instruc-  
tion, the instruction execution time is 2 µs.  
For byte-oriented instructions, 'f' represents a file reg-  
ister designator and 'd' represents a destination desig-  
nator. The file register designator specifies which file  
register is to be used by the instruction.  
The destination designator specifies where the result of  
the operation is to be placed. If 'd' is zero, the result is  
placed in the W register. If 'd' is one, the result is placed  
in the file register specified in the instruction.  
Table 9-2 lists the instructions recognized by the  
MPASM assembler.  
Figure 9-1 shows the general formats that the instruc-  
tions can have.  
For bit-oriented instructions, 'b' represents a bit field  
designator which selects the number of the bit affected  
by the operation, while 'f' represents the number of the  
file in which the bit is located.  
Note: To maintain upward compatibility with  
future PIC16CXX products, do not use the  
OPTIONand TRISinstructions.  
For literal and control operations, 'k' represents an  
eight or eleven bit constant or literal value.  
All examples use the following format to represent a  
hexadecimal number:  
TABLE 9-1:  
OPCODE FIELD  
DESCRIPTIONS  
0xhh  
where h signifies a hexadecimal digit.  
Field  
Description  
FIGURE 9-1: GENERAL FORMAT FOR  
INSTRUCTIONS  
f
W
b
k
x
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Byte-oriented file register operations  
13  
8
7
6
0
0
Bit address within an 8-bit file register  
Literal field, constant data or label  
OPCODE  
d
f (FILE #)  
Don't care location (= 0 or 1)  
d = 0 for destination W  
d = 1 for destination f  
f = 7-bit file register address  
The assembler will generate code with x = 0. It is the  
recommended form of use for compatibility with all  
Microchip software tools.  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
OPCODE  
f (FILE #)  
label Label name  
TOS Top of Stack  
PC Program Counter  
b = 3-bit bit address  
f = 7-bit file register address  
PCLATH  
Program Counter High Latch  
Literal and control operations  
GIE Global Interrupt Enable bit  
WDT Watchdog Timer/Counter  
TO Time-out bit  
General  
13  
8
7
0
0
PD Power-down bit  
OPCODE  
k (literal)  
dest Destination either the W register or the specified  
register file location  
k = 8-bit immediate value  
[ ] Options  
Contents  
( )  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
Assigned to  
Register bit field  
In the set of  
< >  
k (literal)  
User defined term (font is courier)  
italics  
The instruction set is highly orthogonal and is grouped  
into three basic categories:  
1997 Microchip Technology Inc.  
DS30272A-page 69  
 
PIC16C71X  
TABLE 9-2:  
PIC16CXX INSTRUCTION SET  
Mnemonic,  
Operands  
Description  
Cycles  
14-Bit Opcode  
Status  
Affected  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
0101 dfff ffff  
0001 lfff ffff  
0001 0xxx xxxx  
1001 dfff ffff  
0011 dfff ffff  
1011 dfff ffff  
1010 dfff ffff  
1111 dfff ffff  
0100 dfff ffff  
1000 dfff ffff  
0000 lfff ffff  
0000 0xx0 0000  
1101 dfff ffff  
1100 dfff ffff  
Z
Z
Z
Z
Z
-
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
DECFSZ  
INCF  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
1,2  
Move W to f  
No Operation  
-
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
0010 dfff ffff C,DC,Z  
1110 dfff ffff  
0110 dfff ffff Z  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
01  
01  
00bb bfff ffff  
01bb bfff ffff  
10bb bfff ffff  
11bb bfff ffff  
1,2  
1,2  
3
1 (2) 01  
1 (2) 01  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11  
11  
10  
00  
10  
11  
11  
00  
11  
00  
00  
11  
11  
111x kkkk kkkk C,DC,Z  
1001 kkkk kkkk  
0kkk kkkk kkkk  
Z
0000 0110 0100 TO,PD  
1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
1000 kkkk kkkk  
00xx kkkk kkkk  
0000 0000 1001  
01xx kkkk kkkk  
0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into standby mode  
Subtract W from literal  
Exclusive OR literal with W  
0000 0110 0011 TO,PD  
110x kkkk kkkk C,DC,Z  
1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external  
device, the data will be written back with a '0'.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned  
to the Timer0 Module.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
DS30272A-page 70  
1997 Microchip Technology Inc.  
PIC16C71X  
9.1  
Instruction Descriptions  
Add Literal and W  
ANDLW  
AND Literal with W  
ADDLW  
Syntax:  
[label] ANDLW  
k
Syntax:  
[label] ADDLW  
0 k 255  
k
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
(W) .AND. (k) (W)  
(W) + k (W)  
C, DC, Z  
Z
11  
1001  
kkkk  
kkkk  
11  
111x  
kkkk  
kkkk  
The contents of W register are  
AND’ed with the eight bit literal 'k'.The  
result is placed in the W register.  
The contents of the W register are  
added to the eight bit literal 'k' and the  
result is placed in the W register.  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal "k"  
Process  
data  
Write to  
W
Decode  
Read  
literal 'k'  
Process  
data  
Write to  
W
ANDLW  
0x5F  
ADDLW  
0x15  
Example  
Example:  
Before Instruction  
Before Instruction  
W
=
0xA3  
0x03  
W
=
0x10  
0x25  
After Instruction  
After Instruction  
W
=
W
=
ADDWF  
Syntax:  
Add W and f  
ANDWF  
Syntax:  
AND W with f  
[label] ADDWF f,d  
[label] ANDWF f,d  
Operands:  
0 f 127  
Operands:  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
(W) + (f) (dest)  
Operation:  
(W) .AND. (f) (dest)  
Status Affected:  
Encoding:  
C, DC, Z  
Status Affected:  
Encoding:  
Z
00  
0111  
dfff  
ffff  
00  
0101  
dfff  
ffff  
Add the contents of the W register  
with register 'f'. If 'd' is 0 the result is  
stored in the W register. If 'd' is 1 the  
result is stored back in register 'f'.  
AND the W register with register 'f'. If  
'd' is 0 the result is stored in the W  
register. If 'd' is 1 the result is stored  
back in register 'f'.  
Description:  
Description:  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
Dest  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
Dest  
ADDWF  
FSR,  
0
ANDWF  
FSR, 1  
Example  
Example  
Before Instruction  
Before Instruction  
W
FSR =  
=
0x17  
0xC2  
W
FSR =  
=
0x17  
0xC2  
After Instruction  
After Instruction  
W
FSR =  
=
0xD9  
0xC2  
W
FSR =  
=
0x17  
0x02  
1997 Microchip Technology Inc.  
DS30272A-page 71  
PIC16C71X  
BCF  
Bit Clear f  
BTFSC  
Bit Test, Skip if Clear  
Syntax:  
Operands:  
[label] BCF f,b  
Syntax:  
[label] BTFSC f,b  
0 f 127  
0 b 7  
Operands:  
0 f 127  
0 b 7  
Operation:  
Status Affected:  
Encoding:  
0 (f<b>)  
Operation:  
skip if (f<b>) = 0  
None  
None  
Status Affected:  
Encoding:  
01  
00bb  
bfff  
ffff  
01  
10bb  
bfff  
ffff  
If bit 'b' in register 'f' is '1' then the next  
instruction is executed.  
If bit 'b', in register 'f', is '0' then the next  
instruction is discarded, and a NOP is  
executed instead, making this a 2TCY  
instruction.  
Description:  
Words:  
Bit 'b' in register 'f' is cleared.  
Description:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write  
register 'f'  
Words:  
1
Cycles:  
1(2)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
BCF  
FLAG_REG, 7  
Example  
Decode  
Read  
register 'f'  
Process  
data  
NOP  
Before Instruction  
FLAG_REG = 0xC7  
If Skip:  
(2nd Cycle)  
Q1  
After Instruction  
FLAG_REG = 0x47  
Q2  
Q3  
Q4  
NOP  
NOP  
NOP  
NOP  
HERE  
FALSE  
TRUE  
BTFSC FLAG,1  
Example  
GOTO  
PROCESS_CODE  
Before Instruction  
PC  
=
address HERE  
After Instruction  
if FLAG<1> = 0,  
PC =  
if FLAG<1>=1,  
address TRUE  
BSF  
Bit Set f  
Syntax:  
Operands:  
[label] BSF f,b  
PC =  
address FALSE  
0 f 127  
0 b 7  
Operation:  
Status Affected:  
Encoding:  
1 (f<b>)  
None  
01  
01bb  
bfff  
ffff  
Bit 'b' in register 'f' is set.  
Description:  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write  
register 'f'  
BSF  
FLAG_REG,  
7
Example  
Before Instruction  
FLAG_REG = 0x0A  
After Instruction  
FLAG_REG = 0x8A  
DS30272A-page 72  
1997 Microchip Technology Inc.  
PIC16C71X  
BTFSS  
Bit Test f, Skip if Set  
CALL  
Call Subroutine  
Syntax:  
[label] BTFSS f,b  
Syntax:  
[ label ] CALL k  
Operands:  
0 f 127  
0 b < 7  
Operands:  
Operation:  
0 k 2047  
(PC)+ 1TOS,  
Operation:  
skip if (f<b>) = 1  
None  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
None  
01  
11bb  
bfff  
ffff  
10  
0kkk  
kkkk  
kkkk  
If bit 'b' in register 'f' is '0' then the next  
instruction is executed.  
If bit 'b' is '1', then the next instruction is  
discarded and a NOP is executed  
instead, making this a 2TCY instruction.  
Description:  
Call Subroutine. First, return address  
(PC+1) is pushed onto the stack. The  
eleven bit immediate address is loaded  
into PC bits <10:0>. The upper bits of  
the PC are loaded from PCLATH.  
CALLis a two cycle instruction.  
Description:  
Words:  
1
Cycles:  
1(2)  
Words:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Cycles:  
Decode  
Read  
register 'f'  
Process  
data  
NOP  
Q Cycle Activity:  
1st Cycle  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
Process  
data  
Write to  
PC  
If Skip:  
(2nd Cycle)  
Q1  
literal 'k',  
Push PC  
to Stack  
Q2  
Q3  
Q4  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
2nd Cycle  
Example  
HERE  
FALSE  
TRUE  
BTFSC FLAG,1  
GOTO  
Example  
HERE  
CALL THERE  
PROCESS_CODE  
Before Instruction  
PC  
= Address HERE  
After Instruction  
PC  
= Address THERE  
Before Instruction  
TOS = Address HERE+1  
PC  
=
address HERE  
After Instruction  
if FLAG<1> = 0,  
PC =  
address FALSE  
if FLAG<1> = 1,  
PC =  
address TRUE  
1997 Microchip Technology Inc.  
DS30272A-page 73  
PIC16C71X  
CLRF  
Clear f  
CLRW  
Clear W  
Syntax:  
[label] CLRF  
0 f 127  
f
Syntax:  
[ label ] CLRW  
None  
Operands:  
Operation:  
Operands:  
Operation:  
00h (f)  
1 Z  
00h (W)  
1 Z  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
Z
00  
0001  
1fff  
ffff  
00  
0001  
0xxx  
xxxx  
The contents of register 'f' are cleared  
and the Z bit is set.  
Description:  
W register is cleared. Zero bit (Z) is  
set.  
Description:  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write  
register 'f'  
Decode  
NOP  
Process  
data  
Write to  
W
CLRW  
Example  
CLRF  
FLAG_REG  
Example  
Before Instruction  
Before Instruction  
FLAG_REG  
After Instruction  
W
=
0x5A  
=
0x5A  
After Instruction  
W
=
0x00  
1
FLAG_REG  
Z
=
=
0x00  
1
Z
=
CLRWDT  
Syntax:  
Clear Watchdog Timer  
[ label ] CLRWDT  
None  
Operands:  
Operation:  
00h WDT  
0 WDT prescaler,  
1 TO  
1 PD  
Status Affected:  
Encoding:  
TO, PD  
00  
0000  
0110  
0100  
CLRWDTinstruction resets the Watch-  
dog Timer. It also resets the prescaler  
of the WDT. Status bits TO and PD  
are set.  
Description:  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
NOP  
Process  
data  
Clear  
WDT  
Counter  
CLRWDT  
Example  
Before Instruction  
After Instruction  
WDT counter  
=
=
?
WDT counter  
0x00  
WDT prescaler=  
0
1
1
TO  
PD  
=
=
DS30272A-page 74  
1997 Microchip Technology Inc.  
PIC16C71X  
COMF  
Complement f  
[ label ] COMF f,d  
0 f 127  
DECFSZ  
Syntax:  
Decrement f, Skip if 0  
[ label ] DECFSZ f,d  
0 f 127  
Syntax:  
Operands:  
Operands:  
d
[0,1]  
d
[0,1]  
Operation:  
(f) (dest)  
Operation:  
(f) - 1 (dest); skip if result = 0  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
None  
00  
1001  
dfff  
ffff  
00  
1011  
dfff  
ffff  
The contents of register 'f' are comple-  
mented. If 'd' is 0 the result is stored in  
W. If 'd' is 1 the result is stored back in  
register 'f'.  
Description:  
The contents of register 'f' are decre-  
mented. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
Description:  
If the result is 1, the next instruction, is  
executed. If the result is 0, then a NOP is  
executed instead making it a 2TCY  
instruction.  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Words:  
1
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
dest  
Cycles:  
1(2)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
dest  
COMF  
REG1,0  
Example  
Before Instruction  
REG1  
After Instruction  
REG1  
=
0x13  
If Skip:  
(2nd Cycle)  
Q1  
Q2  
Q3  
Q4  
=
=
0x13  
0xEC  
NOP  
NOP  
NOP  
NOP  
W
DECF  
Decrement f  
[label] DECF f,d  
0 f 127  
HERE  
DECFSZ  
GOTO  
CNT, 1  
LOOP  
Example  
Syntax:  
Operands:  
CONTINUE •  
d
[0,1]  
Before Instruction  
Operation:  
(f) - 1 (dest)  
PC  
=
address HERE  
Status Affected:  
Encoding:  
Z
After Instruction  
CNT  
if CNT =  
PC  
if CNT ≠  
PC  
=
CNT - 1  
0,  
address CONTINUE  
0,  
address HERE+1  
00  
0011  
dfff  
ffff  
Decrement register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd'  
is 1 the result is stored back in register  
'f'.  
Description:  
=
=
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
dest  
DECF  
CNT, 1  
Example  
Before Instruction  
CNT  
=
0x01  
Z
=
0
After Instruction  
CNT  
Z
=
=
0x00  
1
1997 Microchip Technology Inc.  
DS30272A-page 75  
PIC16C71X  
INCF  
Increment f  
GOTO  
Unconditional Branch  
Syntax:  
Operands:  
[ label ] INCF f,d  
Syntax:  
[ label ] GOTO k  
0 f 127  
Operands:  
Operation:  
0 k 2047  
d
[0,1]  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
Operation:  
(f) + 1 (dest)  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
None  
00  
1010  
dfff  
ffff  
10  
1kkk  
kkkk  
kkkk  
The contents of register 'f' are incre-  
mented. If 'd' is 0 the result is placed  
in the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
Description:  
GOTOis an unconditional branch. The  
eleven bit immediate value is loaded  
into PC bits <10:0>. The upper bits of  
PC are loaded from PCLATH<4:3>.  
GOTOis a two cycle instruction.  
Description:  
Words:  
1
1
Words:  
1
2
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
1st Cycle  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
dest  
Decode  
Read  
literal 'k'  
Process  
data  
Write to  
PC  
NOP  
NOP  
NOP  
NOP  
2nd Cycle  
Example  
INCF  
CNT, 1  
Example  
GOTO THERE  
Before Instruction  
CNT  
Z
=
=
0xFF  
0
After Instruction  
PC  
=
Address THERE  
After Instruction  
CNT  
Z
=
=
0x00  
1
DS30272A-page 76  
1997 Microchip Technology Inc.  
PIC16C71X  
INCFSZ  
Syntax:  
Increment f, Skip if 0  
[ label ] INCFSZ f,d  
0 f 127  
IORLW  
Inclusive OR Literal with W  
[ label ] IORLW k  
0 k 255  
Syntax:  
Operands:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
d
[0,1]  
(W) .OR. k (W)  
Z
Operation:  
(f) + 1 (dest), skip if result = 0  
Status Affected:  
Encoding:  
None  
11  
1000  
kkkk  
kkkk  
00  
1111  
dfff  
ffff  
The contents of the W register is  
OR’ed with the eight bit literal 'k'. The  
result is placed in the W register.  
The contents of register 'f' are incre-  
mented. If 'd' is 0 the result is placed  
in the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
If the result is 1, the next instruction is  
executed. If the result is 0, a NOP is  
executed instead making it a 2TCY  
instruction.  
Description:  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal 'k'  
Process  
data  
Write to  
W
Words:  
1
Cycles:  
1(2)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
IORLW  
0x35  
Example  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
dest  
Before Instruction  
W
=
0x9A  
After Instruction  
If Skip:  
(2nd Cycle)  
Q1  
W
=
0xBF  
1
Z
=
Q2  
Q3  
Q4  
NOP  
NOP  
NOP  
NOP  
HERE  
INCFSZ  
GOTO  
CNT, 1  
LOOP  
Example  
CONTINUE •  
Before Instruction  
PC  
=
address HERE  
After Instruction  
CNT  
=
CNT + 1  
if CNT=  
0,  
PC  
if CNT≠  
=
address CONTINUE  
0,  
PC  
=
address HERE +1  
1997 Microchip Technology Inc.  
DS30272A-page 77  
PIC16C71X  
IORWF  
Inclusive OR W with f  
MOVLW  
Move Literal to W  
[ label ] MOVLW k  
0 k 255  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
Operands:  
0 f 127  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
d
[0,1]  
k (W)  
Operation:  
(W) .OR. (f) (dest)  
None  
Status Affected:  
Encoding:  
Z
11  
00xx  
kkkk  
kkkk  
00  
0100  
dfff  
ffff  
The eight bit literal 'k' is loaded into W  
register.The don’t cares will assemble  
as 0’s.  
Inclusive OR the W register with regis-  
ter 'f'. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
Description:  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal 'k'  
Process  
data  
Write to  
W
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
dest  
MOVLW  
0x5A  
Example  
After Instruction  
IORWF  
RESULT, 0  
Example  
W
=
0x5A  
Before Instruction  
RESULT =  
0x13  
0x91  
W
=
After Instruction  
RESULT =  
0x13  
0x93  
1
W
Z
=
=
MOVWF  
Move W to f  
MOVF  
Move f  
Syntax:  
[ label ] MOVWF  
0 f 127  
(W) (f)  
f
Syntax:  
Operands:  
[ label ] MOVF f,d  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 f 127  
d
[0,1]  
None  
Operation:  
(f) (dest)  
00  
0000  
1fff  
ffff  
Status Affected:  
Encoding:  
Z
Move data from W register to register  
'f'.  
00  
1000  
dfff  
ffff  
The contents of register f is moved to  
a destination dependant upon the sta-  
tus of d. If d = 0, destination is W reg-  
ister. If d = 1, the destination is file  
register f itself. d = 1 is useful to test a  
file register since status flag Z is  
affected.  
Description:  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write  
register 'f'  
Words:  
1
1
Cycles:  
MOVWF  
OPTION_REG  
Example  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Before Instruction  
OPTION =  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
dest  
0xFF  
0x4F  
W
=
After Instruction  
OPTION =  
0x4F  
0x4F  
MOVF  
FSR, 0  
Example  
W
=
After Instruction  
W = value in FSR register  
Z
= 1  
DS30272A-page 78  
1997 Microchip Technology Inc.  
PIC16C71X  
NOP  
No Operation  
[ label ] NOP  
None  
RETFIE  
Return from Interrupt  
[ label ] RETFIE  
None  
Syntax:  
Syntax:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
Operands:  
Operation:  
No operation  
None  
TOS PC,  
1 GIE  
Status Affected:  
Encoding:  
None  
00  
0000  
0xx0  
0000  
00  
0000  
0000  
1001  
No operation.  
Return from Interrupt. Stack is POPed  
and Top of Stack (TOS) is loaded in  
the PC. Interrupts are enabled by set-  
ting Global Interrupt Enable bit, GIE  
(INTCON<7>). This is a two cycle  
instruction.  
Description:  
1
Cycles:  
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
NOP  
NOP  
NOP  
Words:  
1
2
NOP  
Example  
Cycles:  
Q Cycle Activity:  
1st Cycle  
Q1  
Q2  
Q3  
Q4  
Decode  
NOP  
Set the Pop from  
GIE bit the Stack  
NOP  
NOP  
NOP  
NOP  
2nd Cycle  
Example  
RETFIE  
After Interrupt  
PC  
=
TOS  
GIE =  
1
OPTION  
Syntax:  
Load Option Register  
[ label ] OPTION  
None  
Operands:  
Operation:  
(W) OPTION  
Status Affected: None  
00  
0000  
0110  
0010  
Encoding:  
The contents of the W register are  
loaded in the OPTION register. This  
instruction is supported for code com-  
patibility with PIC16C5X products.  
Since OPTION is a readable/writable  
register, the user can directly address  
it.  
Description:  
Words:  
Cycles:  
Example  
1
1
To maintain upward compatibility  
with future PIC16CXX products, do  
not use this instruction.  
1997 Microchip Technology Inc.  
DS30272A-page 79  
PIC16C71X  
RETLW  
Return with Literal in W  
RETURN  
Return from Subroutine  
[ label ] RETURN  
None  
Syntax:  
[ label ] RETLW k  
Syntax:  
Operands:  
Operation:  
0 k 255  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
k (W);  
TOS PC  
TOS PC  
None  
Status Affected:  
Encoding:  
None  
00  
0000  
0000  
1000  
11  
01xx  
kkkk  
kkkk  
Return from subroutine. The stack is  
POPed and the top of the stack (TOS)  
is loaded into the program counter.  
This is a two cycle instruction.  
The W register is loaded with the eight  
bit literal 'k'. The program counter is  
loaded from the top of the stack (the  
return address). This is a two cycle  
instruction.  
Description:  
Words:  
1
2
Cycles:  
Words:  
1
2
Q Cycle Activity:  
1st Cycle  
Q1  
Q2  
Q3  
Q4  
Cycles:  
Decode  
NOP  
NOP  
Pop from  
the Stack  
Q Cycle Activity:  
1st Cycle  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
NOP  
Write to  
W, Pop  
from the  
Stack  
NOP  
NOP  
NOP  
NOP  
2nd Cycle  
Example  
literal 'k'  
RETURN  
NOP  
NOP  
NOP  
NOP  
2nd Cycle  
Example  
After Interrupt  
PC  
=
TOS  
CALL TABLE ;W contains table  
;offset value  
;W now has table value  
TABLE  
ADDWF PC  
RETLW k1  
RETLW k2  
;W = offset  
;Begin table  
;
RETLW kn  
; End of table  
Before Instruction  
W
=
0x07  
After Instruction  
W
=
value of k8  
DS30272A-page 80  
1997 Microchip Technology Inc.  
PIC16C71X  
RLF  
Rotate Left f through Carry  
RRF  
Rotate Right f through Carry  
[ label ] RRF f,d  
0 f 127  
Syntax:  
Operands:  
[ label ]  
RLF f,d  
Syntax:  
Operands:  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
See description below  
C
Operation:  
See description below  
C
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
00  
1101  
dfff  
ffff  
00  
1100  
dfff  
ffff  
The contents of register 'f' are rotated  
one bit to the left through the Carry  
Flag. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
stored back in register 'f'.  
The contents of register 'f' are rotated  
one bit to the right through the Carry  
Flag. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
Description:  
Description:  
C
Register f  
C
Register f  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
dest  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
dest  
RLF  
REG1,0  
Example  
RRF  
REG1,0  
Example  
Before Instruction  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
REG1  
C
=
=
1110 0110  
0
After Instruction  
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
REG1  
W
C
=
=
=
1110 0110  
0111 0011  
0
1997 Microchip Technology Inc.  
DS30272A-page 81  
PIC16C71X  
SLEEP  
SUBLW  
Subtract W from Literal  
Syntax:  
[ label ]  
SUBLW k  
Syntax:  
[ label ] SLEEP  
Operands:  
Operation:  
0 k 255  
Operands:  
Operation:  
None  
k - (W) → (W)  
00h WDT,  
0 WDT prescaler,  
1 TO,  
Status Affected: C, DC, Z  
Encoding:  
11  
110x  
kkkk  
kkkk  
0 PD  
The W register is subtracted (2’s comple-  
ment method) from the eight bit literal 'k'.  
The result is placed in the W register.  
Description:  
Status Affected:  
Encoding:  
TO, PD  
00  
0000  
0110  
0011  
Words:  
1
1
The power-down status bit, PD is  
cleared. Time-out status bit, TO is  
set. Watchdog Timer and its pres-  
caler are cleared.  
Description:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
The processor is put into SLEEP  
mode with the oscillator stopped.  
See Section 8.8 for more details.  
Decode  
Read  
literal 'k'  
Process Write to W  
data  
Words:  
1
1
Example 1:  
SUBLW  
0x02  
Cycles:  
Before Instruction  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
W
C
Z
=
=
=
1
?
?
Decode  
NOP  
NOP  
Go to  
Sleep  
After Instruction  
Example:  
SLEEP  
W
C
Z
=
=
=
1
1; result is positive  
0
Example 2:  
Before Instruction  
W
C
Z
=
=
=
2
?
?
After Instruction  
W
C
Z
=
=
=
0
1; result is zero  
1
Example 3:  
Before Instruction  
W
C
Z
=
=
=
3
?
?
After Instruction  
W
C
=
=
0xFF  
0; result is nega-  
tive  
Z
=
0
DS30272A-page 82  
1997 Microchip Technology Inc.  
PIC16C71X  
SUBWF  
Syntax:  
Subtract W from f  
SWAPF  
Syntax:  
Swap Nibbles in f  
[ label ] SWAPF f,d  
[ label ]  
SUBWF f,d  
Operands:  
0 f 127  
Operands:  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
(f<3:0>) (dest<7:4>),  
(f<7:4>) (dest<3:0>)  
Operation:  
(f) - (W) → (dest)  
Status Affected: C, DC, Z  
Status Affected:  
Encoding:  
None  
Encoding:  
00  
0010  
dfff  
ffff  
00  
1110  
dfff  
ffff  
Subtract (2’s complement method) W reg-  
ister from register 'f'. If 'd' is 0 the result is  
stored in the W register. If 'd' is 1 the  
result is stored back in register 'f'.  
Description:  
The upper and lower nibbles of regis-  
ter 'f' are exchanged. If 'd' is 0 the  
result is placed in W register. If 'd' is 1  
the result is placed in register 'f'.  
Description:  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register 'f'  
Process  
data  
Write to  
dest  
Decode  
Read  
register 'f'  
Process Write to  
data dest  
Example 1:  
SUBWF  
REG1,1  
SWAPF REG,  
0
Example  
Before Instruction  
Before Instruction  
REG1  
REG1  
=
=
=
=
3
2
?
?
W
C
Z
=
0xA5  
After Instruction  
REG1  
W
=
=
0xA5  
0x5A  
After Instruction  
REG1  
=
1
2
W
C
Z
=
=
=
1; result is positive  
0
Example 2:  
Before Instruction  
TRIS  
Load TRIS Register  
REG1  
=
=
=
=
2
2
?
?
Syntax:  
[label] TRIS  
f
W
C
Z
Operands:  
Operation:  
5 f 7  
(W) TRIS register f;  
Status Affected: None  
After Instruction  
00  
Encoding:  
0000 0110  
0fff  
REG1  
=
0
W
C
Z
=
=
=
2
The instruction is supported for code  
compatibility with the PIC16C5X prod-  
ucts. Since TRIS registers are read-  
able and writable, the user can directly  
address them.  
Description:  
1; result is zero  
1
Example 3:  
Before Instruction  
REG1  
=
=
=
=
1
2
?
?
Words:  
Cycles:  
Example  
1
1
W
C
Z
After Instruction  
To maintain upward compatibility  
with future PIC16CXX products, do  
not use this instruction.  
REG1  
=
0xFF  
2
0; result is negative  
0
W
C
Z
=
=
=
1997 Microchip Technology Inc.  
DS30272A-page 83  
PIC16C71X  
XORLW  
Exclusive OR Literal with W  
[label] XORLW k  
XORWF  
Syntax:  
Exclusive OR W with f  
[label] XORWF f,d  
0 f 127  
Syntax:  
Operands:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
0 k 255  
d
[0,1]  
(W) .XOR. k → (W)  
Operation:  
(W) .XOR. (f) → (dest)  
Z
Status Affected:  
Encoding:  
Z
11  
1010 kkkk kkkk  
00  
0110  
dfff  
ffff  
The contents of the W register are  
XOR’ed with the eight bit literal 'k'.  
The result is placed in the W regis-  
ter.  
Description:  
Exclusive OR the contents of the W  
register with register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd'  
is 1 the result is stored back in register  
'f'.  
Description:  
Words:  
1
1
Cycles:  
Words:  
1
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Cycles:  
Decode  
Read  
literal 'k'  
Process Write to  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
data  
W
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
dest  
Example:  
XORLW  
0xAF  
Before Instruction  
REG  
1
Example  
XORWF  
W
=
0xB5  
0x1A  
Before Instruction  
After Instruction  
REG  
W
=
=
0xAF  
0xB5  
W
=
After Instruction  
REG  
W
=
=
0x1A  
0xB5  
DS30272A-page 84  
1997 Microchip Technology Inc.  
PIC16C71X  
10.3  
ICEPIC: Low-Cost PIC16CXXX  
In-Circuit Emulator  
10.0 DEVELOPMENT SUPPORT  
10.1  
Development Tools  
ICEPIC is a low-cost in-circuit emulator solution for the  
Microchip PIC16C5X and PIC16CXXX families of 8-bit  
OTP microcontrollers.  
The PICmicrο microcontrollers are supported with a  
full range of hardware and software development tools:  
• PICMASTER/PICMASTER CE Real-Time  
In-Circuit Emulator  
ICEPIC is designed to operate on PC-compatible  
machines ranging from 286-AT through Pentium  
based machines under Windows 3.x environment.  
ICEPIC features real time, non-intrusive emulation.  
• ICEPIC Low-Cost PIC16C5X and PIC16CXXX  
In-Circuit Emulator  
• PRO MATE II Universal Programmer  
10.4  
PRO MATE II: Universal Programmer  
• PICSTART Plus Entry-Level Prototype  
Programmer  
The PRO MATE II Universal Programmer is a full-fea-  
tured programmer capable of operating in stand-alone  
mode as well as PC-hosted mode.  
• PICDEM-1 Low-Cost Demonstration Board  
• PICDEM-2 Low-Cost Demonstration Board  
• PICDEM-3 Low-Cost Demonstration Board  
• MPASM Assembler  
The PRO MATE II has programmable VDD and VPP  
supplies which allows it to verify programmed memory  
at VDD min and VDD max for maximum reliability. It has  
an LCD display for displaying error messages, keys to  
enter commands and a modular detachable socket  
assembly to support various package types. In stand-  
alone mode the PRO MATE II can read, verify or pro-  
• MPLAB SIM Software Simulator  
• MPLAB-C (C Compiler)  
• Fuzzy Logic Development System  
(fuzzyTECH MP)  
gram  
PIC12CXXX,  
PIC14C000,  
PIC16C5X,  
10.2  
PICMASTER: High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
PIC16CXXX and PIC17CXX devices. It can also set  
configuration and code-protect bits in this mode.  
10.5  
PICSTART Plus Entry Level  
Development System  
The PICMASTER Universal In-Circuit Emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for all  
microcontrollers in the PIC12CXXX, PIC14C000,  
PIC16C5X, PIC16CXXX and PIC17CXX families.  
PICMASTER is supplied with the MPLAB Integrated  
Development Environment (IDE), which allows editing,  
“make” and download, and source debugging from a  
single environment.  
The PICSTART programmer is an easy-to-use, low-  
cost prototype programmer. It connects to the PC via  
one of the COM (RS-232) ports. MPLAB Integrated  
Development Environment software makes using the  
programmer simple and efficient. PICSTART Plus is  
not recommended for production programming.  
PICSTART Plus supports all PIC12CXXX, PIC14C000,  
PIC16C5X, PIC16CXXX and PIC17CXX devices with  
up to 40 pins. Larger pin count devices such as the  
PIC16C923 and PIC16C924 may be supported with an  
adapter socket.  
Interchangeable target probes allow the system to be  
easily reconfigured for emulation of different proces-  
sors. The universal architecture of the PICMASTER  
allows expansion to support all new Microchip micro-  
controllers.  
The PICMASTER Emulator System has been  
designed as a real-time emulation system with  
advanced features that are generally found on more  
expensive development tools. The PC compatible 386  
(and higher) machine platform and Microsoft Windows  
3.x environment were chosen to best make these fea-  
tures available to you, the end user.  
A CE compliant version of PICMASTER is available for  
European Union (EU) countries.  
1997 Microchip Technology Inc.  
DS30272A-page 85  
PIC16C71X  
an RS-232 interface, push-button switches, a potenti-  
ometer for simulated analog input, a thermistor and  
separate headers for connection to an external LCD  
module and a keypad. Also provided on the PICDEM-3  
board is an LCD panel, with 4 commons and 12 seg-  
ments, that is capable of displaying time, temperature  
and day of the week. The PICDEM-3 provides an addi-  
tional RS-232 interface and Windows 3.1 software for  
showing the demultiplexed LCD signals on a PC. A sim-  
ple serial interface allows the user to construct a hard-  
ware demultiplexer for the LCD signals.  
10.6  
PICDEM-1 Low-Cost PIC16/17  
Demonstration Board  
The PICDEM-1 is a simple board which demonstrates  
the capabilities of several of Microchip’s microcontrol-  
lers. The microcontrollers supported are: PIC16C5X  
(PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X,  
PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and  
PIC17C44. All necessary hardware and software is  
included to run basic demo programs. The users can  
program the sample microcontrollers provided with  
the PICDEM-1 board, on a PRO MATE II or  
PICSTART-Plus programmer, and easily test firm-  
ware. The user can also connect the PICDEM-1  
board to the PICMASTER emulator and download  
the firmware to the emulator for testing. Additional pro-  
totype area is available for the user to build some addi-  
tional hardware and connect it to the microcontroller  
socket(s). Some of the features include an RS-232  
interface, a potentiometer for simulated analog input,  
push-button switches and eight LEDs connected to  
PORTB.  
10.9  
MPLAB Integrated Development  
Environment Software  
The MPLAB IDE Software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. MPLAB is a windows based application  
which contains:  
• A full featured editor  
• Three operating modes  
- editor  
- emulator  
- simulator  
• A project manager  
• Customizable tool bar and key mapping  
• A status bar with project information  
• Extensive on-line help  
10.7  
PICDEM-2 Low-Cost PIC16CXX  
Demonstration Board  
The PICDEM-2 is a simple demonstration board that  
supports the PIC16C62, PIC16C64, PIC16C65,  
PIC16C73 and PIC16C74 microcontrollers. All the  
necessary hardware and software is included to  
run the basic demonstration programs. The user  
can program the sample microcontrollers provided  
with the PICDEM-2 board, on a PRO MATE II pro-  
grammer or PICSTART-Plus, and easily test firmware.  
The PICMASTER emulator may also be used with the  
PICDEM-2 board to test firmware. Additional prototype  
area has been provided to the user for adding addi-  
tional hardware and connecting it to the microcontroller  
socket(s). Some of the features include a RS-232 inter-  
face, push-button switches, a potentiometer for simu-  
lated analog input, a Serial EEPROM to demonstrate  
MPLAB allows you to:  
• Edit your source files (either assembly or ‘C’)  
• One touch assemble (or compile) and download  
to PIC16/17 tools (automatically updates all  
project information)  
• Debug using:  
- source files  
- absolute listing file  
Transfer data dynamically via DDE (soon to be  
replaced by OLE)  
• Run up to four emulators on the same PC  
The ability to use MPLAB with Microchip’s simulator  
allows a consistent platform and the ability to easily  
switch from the low cost simulator to the full featured  
emulator with minimal retraining due to development  
tools.  
2
usage of the I C bus and separate headers for connec-  
tion to an LCD module and a keypad.  
10.8  
PICDEM-3 Low-Cost PIC16CXXX  
Demonstration Board  
10.10 Assembler (MPASM)  
The PICDEM-3 is a simple demonstration board that  
supports the PIC16C923 and PIC16C924 in the PLCC  
package. It will also support future 44-pin PLCC  
microcontrollers with a LCD Module. All the neces-  
sary hardware and software is included to run the  
basic demonstration programs. The user can pro-  
gram the sample microcontrollers provided with  
the PICDEM-3 board, on a PRO MATE II program-  
mer or PICSTART Plus with an adapter socket, and  
easily test firmware. The PICMASTER emulator may  
also be used with the PICDEM-3 board to test firm-  
ware. Additional prototype area has been provided to  
the user for adding hardware and connecting it to the  
microcontroller socket(s). Some of the features include  
The MPASM Universal Macro Assembler is a PC-  
hosted symbolic assembler. It supports all microcon-  
troller series including the PIC12C5XX, PIC14000,  
PIC16C5X, PIC16CXXX, and PIC17CXX families.  
MPASM offers full featured Macro capabilities, condi-  
tional assembly, and several source and listing formats.  
It generates various object code formats to support  
Microchip's development tools as well as third party  
programmers.  
MPASM allows full symbolic debugging from  
PICMASTER, Microchip’s Universal Emulator  
System.  
DS30272A-page 86  
1997 Microchip Technology Inc.  
PIC16C71X  
MPASM has the following features to assist in develop-  
ing software for specific use applications.  
10.14 MP-DriveWay – Application Code  
Generator  
• Provides translation of Assembler source code to  
object code for all Microchip microcontrollers.  
MP-DriveWay is an easy-to-use Windows-based Appli-  
cation Code Generator. With MP-DriveWay you can  
visually configure all the peripherals in a PIC16/17  
device and, with a click of the mouse, generate all the  
initialization and many functional code modules in C  
language. The output is fully compatible with Micro-  
chip’s MPLAB-C C compiler. The code produced is  
highly modular and allows easy integration of your own  
code. MP-DriveWay is intelligent enough to maintain  
your code through subsequent code generation.  
• Macro assembly capability.  
• Produces all the files (Object, Listing, Symbol,  
and special) required for symbolic debug with  
Microchip’s emulator systems.  
• Supports Hex (default), Decimal and Octal source  
and listing formats.  
MPASM provides a rich directive language to support  
programming of the PIC16/17. Directives are helpful in  
making the development of your assemble source code  
shorter and more maintainable.  
10.15 SEEVAL Evaluation and  
Programming System  
10.11 Software Simulator (MPLAB-SIM)  
The SEEVAL SEEPROM Designer’s Kit supports all  
Microchip 2-wire and 3-wire Serial EEPROMs. The kit  
includes everything necessary to read, write, erase or  
program special features of any Microchip SEEPROM  
product including Smart Serials and secure serials.  
The Total Endurance Disk is included to aid in trade-  
off analysis and reliability calculations. The total kit can  
significantly reduce time-to-market and result in an  
optimized system.  
The MPLAB-SIM Software Simulator allows code  
development in a PC host environment. It allows the  
user to simulate the PIC16/17 series microcontrollers  
on an instruction level. On any given instruction, the  
user may examine or modify any of the data areas or  
provide external stimulus to any of the pins. The input/  
output radix can be set by the user and the execution  
can be performed in; single step, execute until break, or  
in a trace mode.  
10.16 KEELOQ Evaluation and  
Programming Tools  
MPLAB-SIM fully supports symbolic debugging using  
MPLAB-C and MPASM. The Software Simulator offers  
the low cost flexibility to develop and debug code out-  
side of the laboratory environment making it an excel-  
lent multi-project software development tool.  
KEELOQ evaluation and programming tools support  
Microchips HCS Secure Data Products.The HCS eval-  
uation kit includes an LCD display to show changing  
codes, a decoder to decode transmissions, and a pro-  
gramming interface to program test transmitters.  
10.12 C Compiler (MPLAB-C)  
The MPLAB-C Code Development System is a  
complete ‘C’ compiler and integrated development  
environment for Microchip’s PIC16/17 family of micro-  
controllers. The compiler provides powerful integration  
capabilities and ease of use not found with other  
compilers.  
For easier source level debugging, the compiler pro-  
vides symbol information that is compatible with the  
MPLAB IDE memory display.  
10.13 Fuzzy Logic Development System  
(fuzzyTECH-MP)  
fuzzyTECH-MP fuzzy logic development tool is avail-  
able in two versions - a low cost introductory version,  
MP Explorer, for designers to gain a comprehensive  
working knowledge of fuzzy logic system design; and a  
full-featured version, fuzzyTECH-MP, edition for imple-  
menting more complex systems.  
Both versions include Microchip’s fuzzyLAB demon-  
stration board for hands-on experience with fuzzy logic  
systems implementation.  
1997 Microchip Technology Inc.  
DS30272A-page 87  
PIC16C71X  
TABLE 10-1: DEVELOPMENT TOOLS FROM MICROCHIP  
ufzy  
D e m o B o a r d s  
E m u l a t o r P r o d u c t s  
S o f t w a r e T o o l s  
P r o g r a m m e r s  
DS30272A-page 88  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
11.0 ELECTRICAL CHARACTERISTICS FOR PIC16C710 AND PIC16C711  
Absolute Maximum Ratings †  
Ambient temperature under bias.................................................................................................................-55 to +125˚C  
Storage temperature .............................................................................................................................. -65˚C to +150˚C  
Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4)..........................................-0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ........................................................................................................... -0.3 to +7.5V  
Voltage on MCLR with respect to VSS................................................................................................................0 to +14V  
Voltage on RA4 with respect to Vss ...................................................................................................................0 to +14V  
Total power dissipation (Note 1)................................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD).....................................................................................................................± 20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD).............................................................................................................± 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by PORTA ........................................................................................................................200 mA  
Maximum current sourced by PORTA...................................................................................................................200 mA  
Maximum current sunk by PORTB........................................................................................................................200 mA  
Maximum current sourced by PORTB...................................................................................................................200 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD - VOH) x IOH} + (VOl x IOL)  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device.This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
TABLE 11-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS  
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
PIC16C710-04  
PIC16C711-04  
PIC16C710-10  
PIC16C711-10  
PIC16C710-20  
PIC16C711-20  
PIC16LC710-04  
PIC16LC711-04  
PIC16C710/JW  
PIC16C711/JW  
OSC  
VDD: 4.0V to 6.0V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 2.5V to 6.0V  
VDD: 4.0V to 6.0V  
IDD: 5 mA max. at 5.5V IDD: 2.7 mA typ. at 5.5V IDD: 2.7 mA typ. at 5.5V IDD: 3.8 mA typ. at 3.0V IDD: 5 mA max. at 5.5V  
RC  
IPD: 21 µA max. at 4V IPD: 1.5 µA typ. at 4V  
IPD: 1.5 µA typ. at 4V  
IPD: 5.0 µA typ. at 3V  
IPD: 21 µA max. at 4V  
Freq:4 MHz max.  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
Freq:4 MHz max.  
VDD: 4.0V to 6.0V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 2.5V to 6.0V  
VDD: 4.0V to 6.0V  
IDD: 5 mA max. at 5.5V IDD: 2.7 mA typ. at 5.5V IDD: 2.7 mA typ. at 5.5V IDD: 3.8 mA typ. at 3.0V IDD: 5 mA max. at 5.5V  
XT  
HS  
IPD: 21 µA max. at 4V IPD: 1.5 µA typ. at 4V  
IPD: 1.5 µA typ. at 4V  
IPD: 5.0 µA typ. at 3V  
IPD: 21 µA max. at 4V  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD:4.5V to 5.5V  
VDD: 4.5V to 5.5V  
IDD: 13.5 mA typ. at  
5.5V  
IDD: 30 mA max. at  
5.5V  
IDD: 30 mA max. at  
5.5V  
IDD: 30 mA max. at  
5.5V  
Not recommended for  
use in HS mode  
IPD: 1.5 µA typ. at 4.5V IPD: 1.5 µA typ. at 4.5V IPD: 1.5 µA typ. at 4.5V  
IPD: 1.5 µA typ. at 4.5V  
Freq: 4 MHz max.  
Freq: 10 MHz max.  
Freq:20 MHz max.  
Freq: 10 MHz max.  
VDD: 4.0V to 6.0V  
IDD: 52.5 µA typ. at  
32 kHz, 4.0V  
IPD: 0.9 µA typ. at 4.0V  
Freq: 200 kHz max.  
VDD: 2.5V to 6.0V  
IDD: 48 µA max. at  
32 kHz, 3.0V  
IPD: 5.0 µA max. at 3.0V IPD: 5.0 µA max. at  
Freq: 200 kHz max.  
VDD: 2.5V to 6.0V  
IDD: 48 µA max. at  
32 kHz, 3.0V  
Not recommended for  
use in LP mode  
Not recommended for  
use in LP mode  
LP  
3.0V  
Freq: 200 kHz max.  
1997 Microchip Technology Inc.  
DS30272A-page 89  
PIC16C71X  
Applicable Devices 710 71 711 715  
11.1  
DC Characteristics:  
PIC16C710-04 (Commercial, Industrial, Extended)  
PIC16C711-04 (Commercial, Industrial, Extended)  
PIC16C710-10 (Commercial, Industrial, Extended)  
PIC16C711-10 (Commercial, Industrial, Extended)  
PIC16C710-20 (Commercial, Industrial, Extended)  
PIC16C711-20 (Commercial, Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0˚C  
-40˚C  
-40˚C  
TA +70˚C (commercial)  
TA +85˚C (industrial)  
TA +125˚C (extended)  
DC CHARACTERISTICS  
Param.  
No.  
Characteristic  
Sym Min Typ† Max Units  
Conditions  
D001  
D001A  
Supply Voltage  
VDD  
4.0  
4.5  
-
-
6.0  
5.5  
V
V
XT, RC and LP osc configuration  
HS osc configuration  
D002*  
D003  
RAM Data Retention  
Voltage (Note 1)  
VDR  
-
1.5  
-
V
VDD start voltage to  
ensure internal Power-  
on Reset signal  
VPOR  
-
VSS  
-
V
See section on Power-on Reset for details  
D004*  
VDD rise rate to ensure  
internal Power-on Reset  
signal  
SVDD 0.05  
-
-
V/ms See section on Power-on Reset for details  
D005  
D010  
Brown-out Reset Voltage BVDD 3.7 4.0 4.3  
3.7 4.0 4.4  
V
V
BODEN configuration bit is enabled  
Extended Range Only  
Supply Current (Note 2)  
IDD  
-
2.7  
5
mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 5.5V (Note 4)  
D013  
D015  
-
-
13.5 30  
mA HS osc configuration  
FOSC = 20 MHz, VDD = 5.5V  
Brown-out Reset Current IBOR  
300* 500 µA BOR enabled VDD = 5.0V  
(Note 5)  
D020  
D021  
D021A  
D021B  
Power-down Current  
(Note 3)  
IPD  
-
-
-
-
10.5 42 µA VDD = 4.0V, WDT enabled, -40°C to +85°C  
1.5  
1.5  
1.5  
21  
24  
30  
µA VDD = 4.0V, WDT disabled, -0°C to +70°C  
µA VDD = 4.0V, WDT disabled, -40°C to +85°C  
µA VDD = 4.0V, WDT disabled, -40°C to +125°C  
D023  
Brown-out Reset Current IBOR  
-
300* 500 µA BOR enabled VDD = 5.0V  
(Note 5)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
DS30272A-page 90  
1997 Microchip Technology Inc.  
 
PIC16C71X  
Applicable Devices 710 71 711 715  
11.2  
DC Characteristics: PIC16LC710-04 (Commercial, Industrial, Extended)  
PIC16LC711-04 (Commercial, Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0˚C  
-40˚C  
-40˚C  
Sym Min Typ† Max Units  
TA +70˚C (commercial)  
TA +85˚C (industrial)  
TA +125˚C (extended)  
DC CHARACTERISTICS  
Param  
No.  
Characteristic  
Conditions  
D001  
Supply Voltage  
Commercial/Industrial  
Extended  
VDD  
VDD  
2.5  
3.0  
-
-
6.0  
6.0  
V
V
LP, XT, RC osc configuration (DC - 4 MHz)  
LP, XT, RC osc configuration (DC - 4 MHz)  
D002*  
D003  
RAM Data Retention  
Voltage (Note 1)  
VDR  
-
1.5  
-
V
VDD start voltage to  
ensure internal Power-  
on Reset signal  
VPOR  
-
VSS  
-
V
See section on Power-on Reset for details  
D004*  
VDD rise rate to ensure SVDD 0.05  
-
-
V/ms See section on Power-on Reset for details  
internal Power-on  
Reset  
signal  
D005  
D010  
Brown-out Reset  
Voltage  
BVDD  
IDD  
3.7  
-
4.0  
2.0  
4.3  
3.8  
V
BODEN configuration bit is enabled  
Supply Current  
(Note 2)  
mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 3.0V (Note 4)  
D010A  
D015  
-
-
22.5 48  
300* 500  
µA LP osc configuration  
FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
µA BOR enabled VDD = 5.0V  
Brown-out Reset  
Current (Note 5)  
IBOR  
D020  
D021  
D021A  
D021B  
D023  
Power-down Current  
(Note 3)  
IPD  
-
-
-
-
-
7.5  
0.9  
0.9  
0.9  
30  
5
5
µA VDD = 3.0V, WDT enabled, -40°C to +85°C  
µA VDD = 3.0V, WDT disabled, 0°C to +70°C  
µA VDD = 3.0V, WDT disabled, -40°C to +85°C  
µA VDD = 3.0V, WDT disabled, -40°C to +125°C  
µA BOR enabled VDD = 5.0V  
10  
Brown-out Reset  
Current (Note 5)  
IBOR  
300* 500  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
1997 Microchip Technology Inc.  
DS30272A-page 91  
 
PIC16C71X  
Applicable Devices 710 71 711 715  
11.3  
DC Characteristics:  
PIC16C710-04 (Commercial, Industrial, Extended)  
PIC16C711-04 (Commercial, Industrial, Extended)  
PIC16C710-10 (Commercial, Industrial, Extended)  
PIC16C711-10 (Commercial, Industrial, Extended)  
PIC16C710-20 (Commercial, Industrial, Extended)  
PIC16C711-20 (Commercial, Industrial, Extended)  
PIC16LC710-04 (Commercial, Industrial, Extended)  
PIC16LC711-04 (Commercial, Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0˚C  
-40˚C  
-40˚C  
TA +70˚C (commercial)  
TA +85˚C (industrial)  
TA +125˚C (extended)  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 11.1 and  
Section 11.2.  
Param  
No.  
Characteristic  
Sym  
Min Typ Max Units  
Conditions  
Input Low Voltage  
I/O ports  
VIL  
D030  
with TTL buffer  
VSS  
VSS  
VSS  
VSS  
-
-
-
-
0.15VDD  
0.8V  
0.2VDD  
0.2VDD  
V
V
V
V
For entire VDD range  
4.5 VDD 5.5V  
D030A  
D031  
D032  
with Schmitt Trigger buffer  
MCLR, OSC1  
(in RC mode)  
D033  
OSC1 (in XT, HS and LP)  
Input High Voltage  
I/O ports  
VSS  
-
0.3VDD  
V
Note1  
VIH  
-
-
-
D040  
D040A  
with TTL buffer  
2.0  
VDD  
VDD  
V
V
4.5 VDD 5.5V  
For entire VDD range  
0.25VDD  
+ 0.8V  
0.8VDD  
0.8VDD  
0.7VDD  
0.9VDD  
50  
D041  
D042  
with Schmitt Trigger buffer  
MCLR, RB0/INT  
-
-
-
-
VDD  
VDD  
VDD  
VDD  
V
V
V
V
For entire VDD range  
Note1  
D042A OSC1 (XT, HS and LP)  
D043  
D070  
OSC1 (in RC mode)  
PORTB weak pull-up current  
Input Leakage Current (Notes 2, 3)  
I/O ports  
IPURB  
IIL  
250 400  
µA VDD = 5V, VPIN = VSS  
D060  
-
-
±1  
µA Vss VPIN VDD, Pin at hi-  
impedance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
-
-
-
-
±5  
±5  
µA Vss VPIN VDD  
µA Vss VPIN VDD, XT, HS and LP  
osc configuration  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C7X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
DS30272A-page 92  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0˚C  
-40˚C  
-40˚C  
TA +70˚C (commercial)  
TA +85˚C (industrial)  
TA +125˚C (extended)  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 11.1 and  
Section 11.2.  
Param  
No.  
Characteristic  
Sym  
Min Typ Max Units  
Conditions  
Output Low Voltage  
D080  
I/O ports  
VOL  
-
-
-
-
-
-
-
-
0.6  
0.6  
0.6  
0.6  
V
V
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 7.0 mA, VDD = 4.5V,  
-40°C to +125°C  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.2 mA, VDD = 4.5V,  
-40°C to +125°C  
D080A  
D083  
OSC2/CLKOUT (RC osc config)  
D083A  
Output High Voltage  
D090  
I/O ports (Note 3)  
VOH VDD - 0.7 -  
VDD - 0.7 -  
-
-
V
V
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -2.5 mA, VDD = 4.5V,  
-40°C to +125°C  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.0 mA, VDD = 4.5V,  
-40°C to +125°C  
D090A  
D092  
OSC2/CLKOUT (RC osc config)  
VDD - 0.7 -  
-
D092A  
D130*  
VDD - 0.7 -  
-
Open-Drain High Voltage  
Capacitive Loading Specs on  
Output Pins  
VOD  
-
-
-
-
-
-
14  
RA4 pin  
D100  
D101  
OSC2 pin  
COSC2  
15  
50  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1.  
All I/O pins and OSC2 (in RC mode) CIO  
pF  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C7X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
1997 Microchip Technology Inc.  
DS30272A-page 93  
PIC16C71X  
Applicable Devices 710 71 711 715  
11.4  
Timing Parameter Symbology  
The timing parameter symbols have been created following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
FIGURE 11-1: LOAD CONDITIONS  
Load condition 1  
Load condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 50 pF for all pins except OSC2  
15 pF for OSC2 output  
DS30272A-page 94  
1997 Microchip Technology Inc.  
 
PIC16C71X  
Applicable Devices 710 71 711 715  
11.5  
Timing Diagrams and Specifications  
FIGURE 11-2: EXTERNAL CLOCK TIMING  
Q4  
Q1  
1
Q2  
Q3  
Q4  
4
Q1  
OSC1  
3
3
4
2
CLKOUT  
TABLE 11-2: EXTERNAL CLOCK TIMING REQUIREMENTS  
Parameter Sym Characteristic  
No.  
Min  
Typ†  
Max  
Units Conditions  
Fosc External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
DC  
0.1  
4
4
MHz XT osc mode  
(Note 1)  
MHz HS osc mode (-04)  
MHz HS osc mode (-10)  
MHz HS osc mode (-20)  
kHz LP osc mode  
10  
20  
200  
4
Oscillator Frequency  
(Note 1)  
MHz RC osc mode  
4
MHz XT osc mode  
4
5
20  
200  
MHz HS osc mode  
kHz LP osc mode  
1
Tosc External CLKIN Period  
250  
250  
100  
50  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
XT osc mode  
(Note 1)  
HS osc mode (-04)  
HS osc mode (-10)  
HS osc mode (-20)  
LP osc mode  
5
Oscillator Period  
(Note 1)  
250  
250  
250  
RC osc mode  
10,000  
250  
XT osc mode  
HS osc mode (-04)  
100  
50  
250  
250  
ns  
ns  
HS osc mode (-10)  
HS osc mode (-20)  
5
DC  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
LP osc mode  
TCY = 4/FOSC  
XT oscillator  
LP oscillator  
HS oscillator  
XT oscillator  
LP oscillator  
HS oscillator  
2
3
TCY  
Instruction Cycle Time (Note 1) 200  
TosL, External Clock in (OSC1) High  
TosH or Low Time  
50  
2.5  
10  
4
TosR, External Clock in (OSC1) Rise  
TosF or Fall Time  
25  
50  
15  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing  
code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current  
consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.  
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected  
(has no loading) for the PIC16C710/711.  
1997 Microchip Technology Inc.  
DS30272A-page 95  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 11-3: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
14  
12  
18  
19  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
new value  
old value  
(output)  
20, 21  
Note: Refer to Figure 11-1 for load conditions.  
TABLE 11-3: CLKOUT AND I/O TIMING REQUIREMENTS  
Parameter Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
10*  
11*  
12*  
13*  
14*  
15*  
16*  
17*  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
15  
15  
5
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
30  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
15  
15  
5
TckL2ioV CLKOUT to Port out valid  
TioV2ckH Port in valid before CLKOUT ↑  
0.5TCY + 20  
0.25TCY + 25  
TckH2ioI  
Port in hold after CLKOUT ↑  
0
TosH2ioV OSC1(Q1 cycle) to  
80 - 100  
Port out valid  
18*  
TosH2ioI  
OSC1(Q2 cycle) to  
TBD  
ns  
Port input invalid (I/O in hold time)  
19*  
20*  
TioV2osH Port input valid to OSC1(I/O in setup time)  
TBD  
10  
10  
25  
60  
25  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TioR  
Port output rise time  
Port output fall time  
INT pin high or low time  
PIC16C710/711  
PIC16LC710/711  
PIC16C710/711  
PIC16LC710/711  
21*  
TioF  
22††*  
23††*  
Tinp  
Trbp  
20  
20  
RB7:RB4 change INT high or low time  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
†† These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
DS30272A-page 96  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 11-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 11-1 for load conditions.  
FIGURE 11-5: BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
TABLE 11-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,  
AND BROWN-OUT RESET REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
31  
TmcL MCLR Pulse Width (low)  
1
µs VDD = 5V, -40˚C to +125˚C  
Twdt  
Watchdog Timer Time-out Period  
7*  
18  
33*  
ms VDD = 5V, -40˚C to +125˚C  
(No Prescaler)  
32  
33  
34  
Tost  
Oscillation Start-up Timer Period  
28*  
1024TOSC  
132*  
1.1  
TOSC = OSC1 period  
Tpwrt Power up Timer Period  
72  
ms VDD = 5V, -40˚C to +125˚C  
TIOZ  
I/O Hi-impedance from MCLR Low  
µs  
or Watchdog Timer Reset  
35  
TBOR  
Brown-out Reset pulse width  
100  
µs 3.8V VDD 4.2V  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1997 Microchip Technology Inc.  
DS30272A-page 97  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 11-6: TIMER0 EXTERNAL CLOCK TIMINGS  
RA4/T0CKI  
41  
40  
42  
TMR0  
Note: Refer to Figure 11-1 for load conditions.  
TABLE 11-5: TIMER0 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units Conditions  
40  
Tt0H  
T0CKI High Pulse Width  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5TCY + 20*  
10*  
ns Must also meet  
parameter 42  
ns  
41  
42  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
0.5TCY + 20*  
10*  
ns  
ns  
Must also meet  
parameter 42  
Greater of:  
20 ns or TCY + 40*  
N
ns N = prescale value  
(2, 4,..., 256)  
48  
Tcke2tmrI Delay from external clock edge to timer increment  
These parameters are characterized but not tested.  
2Tosc  
7Tosc  
*
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30272A-page 98  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
TABLE 11-6: A/D CONVERTER CHARACTERISTICS:  
PIC16C710/711-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)  
PIC16C710/711-10 (COMMERCIAL, INDUSTRIAL, EXTENDED)  
PIC16C710/711-20 (COMMERCIAL, INDUSTRIAL, EXTENDED)  
PIC16LC710/711-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)  
Param Sym Characteristic  
No.  
Min  
Typ†  
Max  
Units  
Conditions  
A01  
NR Resolution  
8-bits  
< ± 1  
< ± 1  
< ± 1  
< ± 1  
bit VREF = VDD, VSS AIN VREF  
VREF = VDD, VSS AIN VREF  
VREF = VDD, VSS AIN VREF  
VREF = VDD, VSS AIN VREF  
VREF = VDD, VSS AIN VREF  
VREF = VDD, VSS AIN VREF  
VSS VAIN VREF  
A02 EABS Absolute error  
LSb  
LSb  
LSb  
LSb  
A03  
A04  
A05  
EIL Integral linearity error  
EDL Differential linearity error  
EFS Full scale error  
A06 EOFF Offset error  
A10 Monotonicity  
A20 VREF Reference voltage  
< ± 1  
LSb  
V
2.5V  
guaranteed  
VDD + 0.3  
VREF + 0.3  
10.0  
A25  
A30  
VAIN Analog input voltage  
VSS - 0.3  
V
ZAIN Recommended impedance of  
analog voltage source  
kΩ  
A40  
A50  
IAD A/D conversion current (VDD)  
180  
µA Average current consumption  
when A/D is on. (Note 1)  
IREF VREF input current (Note 2)  
10  
1000  
µA During VAIN acquisition.  
Based on differential of VHOLD to VAIN.  
To charge CHOLD see Section 7.1.  
µA During A/D Conversion cycle  
10  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current.  
The power-down current spec includes any such leakage from the A/D module.  
2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
1997 Microchip Technology Inc.  
DS30272A-page 99  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 11-7: A/D CONVERSION TIMING  
BSF ADCON0, GO  
(TOSC/2) (1)  
1 Tcy  
131  
130  
Q4  
132  
A/D CLK  
7
6
5
4
3
2
1
0
A/D DATA  
NEW_DATA  
DONE  
OLD_DATA  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 11-7: A/D CONVERSION REQUIREMENTS  
Param Sym Characteristic  
No.  
Min  
Typ†  
Max Units  
Conditions  
130  
TAD A/D clock period PIC16C710/711  
1.6  
2.0  
2.0*  
3.0*  
µs TOSC based, VREF 3.0V  
µs TOSC based, VREF full range  
µs A/D RC mode  
PIC16LC710/711  
PIC16C710/711  
PIC16LC710/711  
4.0  
6.0  
9.5  
6.0  
9.0  
µs A/D RC mode  
131  
132  
TCNV Conversion time  
(not including S/H time). (Note 1)  
TACQ Acquisition time  
TAD  
Note 2  
5*  
20  
µs  
µs The minimum time is the amplifier  
settling time. This may be used if the  
"new" input voltage has not changed  
by more than 1 LSb (i.e., 19.5 mV @  
5.12V) from the last sampled voltage  
(as stated on CHOLD).  
134  
135  
TGO Q4 to AD clock start  
TOSC/2§  
If the A/D clock source is selected as  
RC, a time of TCY is added before the  
A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TSWC Switching from convert sample time 1.5§  
TAD  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
§
This specification ensured by design.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 7.1 for min conditions.  
DS30272A-page 100  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
12.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C710  
AND PIC16C711  
The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.  
In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD  
range). This is for information only and devices are guaranteed to operate properly only within the specified  
range.  
Note: The data presented in this section is a statistical summary of data collected on units from different lots over  
a period of time and matrix samples. 'Typical' represents the mean of the distribution at, 25°C, while 'max'  
or 'min' represents (mean +3σ) and (mean -3σ) respectively where σ is standard deviation.  
FIGURE 12-1: TYPICAL IPD vs. VDD (WDT DISABLED, RC MODE)  
35  
30  
25  
20  
15  
10  
5
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD(Volts)  
FIGURE 12-2: MAXIMUM IPD vs. VDD (WDT DISABLED, RC MODE)  
10.000  
85°C  
70°C  
1.000  
0.100  
25°C  
0°C  
-40°C  
0.010  
0.001  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD(Volts)  
1997 Microchip Technology Inc.  
DS30272A-page 101  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 12-3: TYPICAL IPD vs. VDD @ 25°C  
FIGURE 12-5: TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD  
(WDT ENABLED, RC MODE)  
Cext = 22 pF,T = 25°C  
6.0  
25  
20  
15  
10  
5
5.5  
5.0  
4.5  
R = 5k  
4.0  
3.5  
3.0  
R = 10k  
2.5  
2.0  
1.5  
1.0  
R = 100k  
0
2.5  
0.5  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD(Volts)  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD(Volts)  
Shaded area is beyond recommended range.  
FIGURE 12-4: MAXIMUM IPD vs. VDD (WDT  
ENABLED, RC MODE)  
FIGURE 12-6: TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD  
35  
-40°C  
Cext = 100 pF,T = 25°C  
30  
0°C  
2.4  
2.2  
25  
20  
R = 3.3k  
2.0  
1.8  
1.6  
70°C  
15  
R = 5k  
1.4  
85°C  
1.2  
10  
1.0  
R = 10k  
5
0
0.8  
0.6  
0.4  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
R = 100k  
0.2  
VDD(Volts)  
0.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD(Volts)  
FIGURE 12-7: TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD  
Cext = 300 pF,T = 25°C  
1000  
900  
800  
R = 3.3k  
700  
600  
R = 5k  
500  
400  
R = 10k  
300  
200  
R = 100k  
5.5 6.0  
100  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
VDD(Volts)  
DS30272A-page 102  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 12-8: TYPICAL IPD vs. VDD BROWN-  
OUT DETECT ENABLED (RC  
MODE)  
FIGURE 12-10: TYPICAL IPD vs.TIMER1  
ENABLED (32 kHz, RC0/RC1 =  
33 pF/33 pF, RC MODE)  
1400  
1200  
1000  
30  
25  
20  
15  
10  
5
Device NOT in  
Brown-out Reset  
800  
600  
400  
200  
0
Device in  
Brown-out  
Reset  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD(Volts)  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
The shaded region represents the built-in hysteresis of the  
brown-out reset circuitry.  
VDD(Volts)  
FIGURE 12-9: MAXIMUM IPD vs. VDD  
BROWN-OUT DETECT  
ENABLED  
FIGURE 12-11: MAXIMUM IPD vs.TIMER1  
ENABLED  
(32 kHz, RC0/RC1 = 33 pF/33  
(85°C TO -40°C, RC MODE)  
pF, 85°C TO -40°C, RC MODE)  
1600  
1400  
1200  
45  
40  
35  
30  
1000  
Device NOT in  
Brown-out Reset  
800  
600  
400  
200  
0
Device in  
Brown-out  
Reset  
25  
20  
15  
10  
5
4.3  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD(Volts)  
0
The shaded region represents the built-in hysteresis of the  
brown-out reset circuitry.  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD(Volts)  
1997 Microchip Technology Inc.  
DS30272A-page 103  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 12-12: TYPICAL IDD vs. FREQUENCY (RC MODE @ 22 pF, 25°C)  
2000  
1800  
1600  
1400  
1200  
1000  
800  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
600  
400  
200  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
Frequency(MHz)  
Shaded area is  
beyond recommended range  
FIGURE 12-13: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 22 pF, -40°C TO 85°C)  
2000  
6.0V  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
Frequency(MHz)  
Shaded area is  
beyond recommended range  
DS30272A-page 104  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 12-14: TYPICAL IDD vs. FREQUENCY (RC MODE @ 100 pF, 25°C)  
1600  
1400  
1200  
1000  
800  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
600  
400  
200  
0
0
200  
Shaded area is  
beyond recommended range  
400  
600  
800  
1000  
1200  
1400  
1600  
1800  
Frequency(kHz)  
FIGURE 12-15: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 100 pF, -40°C TO 85°C)  
1600  
6.0V  
5.5V  
1400  
1200  
1000  
800  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
600  
400  
200  
0
0
200  
Shaded area is  
beyond recommended range  
400  
600  
800  
1000  
1200  
1400  
1600  
1800  
Frequency(kHz)  
1997 Microchip Technology Inc.  
DS30272A-page 105  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 12-16: TYPICAL IDD vs. FREQUENCY (RC MODE @ 300 pF, 25°C)  
1200  
6.0V  
5.5V  
1000  
800  
600  
400  
200  
0
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0
100  
200  
300  
400  
500  
600  
700  
Frequency(kHz)  
FIGURE 12-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO 85°C)  
1200  
6.0V  
5.5V  
1000  
800  
600  
400  
200  
0
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0
100  
200  
300  
400  
500  
600  
700  
Frequency(kHz)  
DS30272A-page 106  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 12-18: TYPICAL IDD vs.  
CAPACITANCE @ 500 kHz  
FIGURE 12-19: TRANSCONDUCTANCE(gm)  
OF HS OSCILLATOR vs. VDD  
(RC MODE)  
600  
500  
400  
300  
200  
100  
4.0  
Max -40°C  
5.0V  
3.5  
3.0  
4.0V  
3.0V  
2.5  
Typ 25°C  
2.0  
Min 85°C  
1.5  
1.0  
0.5  
0.0  
0
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
20 pF  
100 pF  
300 pF  
VDD(Volts)  
Capacitance(pF)  
Shaded area is  
beyond recommended range  
TABLE 12-1: RC OSCILLATOR  
FREQUENCIES  
FIGURE 12-20: TRANSCONDUCTANCE(gm)  
OF LP OSCILLATOR vs. VDD  
Average  
110  
Cext  
Rext  
100  
Max -40°C  
Fosc @ 5V, 25°C  
90  
80  
70  
22 pF  
5k  
10k  
100k  
3.3k  
5k  
4.12 MHz  
2.35 MHz  
268 kHz  
1.80 MHz  
1.27 MHz  
688 kHz  
77.2 kHz  
707 kHz  
501 kHz  
269 kHz  
28.3 kHz  
± 1.4%  
± 1.4%  
60  
50  
40  
30  
20  
10  
0
Typ 25°C  
± 1.1%  
± 1.0%  
± 1.0%  
± 1.2%  
± 1.0%  
± 1.4%  
± 1.2%  
± 1.6%  
± 1.1%  
100 pF  
300 pF  
10k  
100k  
3.3k  
5k  
Min 85°C  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
VDD(Volts)  
Shaded areas are  
beyond recommended range  
10k  
100k  
FIGURE 12-21: TRANSCONDUCTANCE(gm)  
OF XT OSCILLATOR vs. VDD  
The percentage variation indicated here is part to  
part variation due to normal process distribution.The  
variation indicated is ±3 standard deviation from  
average value for VDD = 5V.  
1000  
900  
Max -40°C  
800  
700  
600  
500  
400  
300  
200  
100  
0
Typ 25°C  
Min 85°C  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
VDD(Volts)  
Shaded areas are  
beyond recommended range  
1997 Microchip Technology Inc.  
DS30272A-page 107  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 12-22: TYPICAL XTAL STARTUP  
FIGURE 12-24: TYPICAL XTAL STARTUP  
TIME vs. VDD (LP MODE, 25°C)  
TIME vs. VDD (XT MODE, 25°C)  
3.5  
3.0  
2.5  
70  
60  
50  
2.0  
40  
200 kHz, 68 pF/68 pF  
32 kHz, 33 pF/33 pF  
1.5  
30  
200 kHz, 47 pF/47 pF  
20  
1.0  
1 MHz, 15 pF/15 pF  
10  
4 MHz, 15 pF/15 pF  
0.5  
0.0  
200 kHz, 15 pF/15 pF  
0
2.5  
3.0  
3.5  
4.0  
VDD(Volts)  
4.5  
5.0  
5.5  
6.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD(Volts)  
FIGURE 12-23: TYPICAL XTAL STARTUP  
TIME vs. VDD (HS MODE,  
25°C)  
TABLE 12-2: CAPACITOR SELECTION  
FOR CRYSTAL  
OSCILLATORS  
Crystal  
Freq  
Cap. Range  
C1  
Cap. Range  
C2  
7
6
Osc Type  
LP  
32 kHz  
200 kHz  
200 kHz  
1 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
20 MHz, 33 pF/33 pF  
5
XT  
HS  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
4
8 MHz, 33 pF/33 pF  
4 MHz  
15 pF  
15 pF  
3
20 MHz, 15 pF/15 pF  
4 MHz  
15 pF  
15 pF  
8 MHz, 15 pF/15 pF  
2
8 MHz  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
20 MHz  
1
4.0  
4.5  
5.0  
5.5  
6.0  
VDD(Volts)  
Crystals  
Used  
32 kHz  
200 kHz  
1 MHz  
Epson C-001R32.768K-A  
STD XTL 200.000KHz  
ECS ECS-10-13-1  
± 20 PPM  
± 20 PPM  
± 50 PPM  
± 50 PPM  
± 30 PPM  
± 30 PPM  
4 MHz  
ECS ECS-40-20-1  
8 MHz  
EPSON CA-301 8.000M-C  
EPSON CA-301 20.000M-C  
20 MHz  
DS30272A-page 108  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 12-25: TYPICAL IDD vs. FREQUENCY  
FIGURE 12-27: TYPICAL IDD vs. FREQUENCY  
(LP MODE, 25°C)  
(XT MODE, 25°C)  
1800  
1600  
6.0V  
120  
100  
80  
5.5V  
1400  
5.0V  
1200  
4.5V  
1000  
800  
600  
4.0V  
3.5V  
60  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
40  
20  
0
3.0V  
2.5V  
3.0V  
2.5V  
400  
200  
0
50  
100  
150  
200  
Frequency(kHz)  
0
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
Frequency(MHz)  
FIGURE 12-26: MAXIMUM IDD vs.  
FREQUENCY  
FIGURE 12-28: MAXIMUM IDD vs.  
FREQUENCY  
(LP MODE, 85°C TO -40°C)  
(XT MODE, -40°C TO 85°C)  
1800  
1600  
1400  
1200  
6.0V  
5.5V  
5.0V  
4.5V  
140  
120  
100  
80  
4.0V  
1000  
3.5V  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
60  
800  
600  
3.0V  
40  
2.5V  
20  
400  
200  
3.0V  
2.5V  
0
0
50  
100  
150  
200  
0
Frequency(kHz)  
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
Frequency(MHz)  
1997 Microchip Technology Inc.  
DS30272A-page 109  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 12-29: TYPICAL IDD vs. FREQUENCY  
FIGURE 12-30: MAXIMUM IDD vs.  
FREQUENCY  
(HS MODE, 25°C)  
(HS MODE, -40°C TO 85°C)  
7.0  
6.0  
5.0  
4.0  
3.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
6.0V  
2.0  
5.5V  
5.0V  
4.5V  
4.0V  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
1.0  
0.0  
1
2
4
6
8
10  
12  
14  
16  
18  
20  
1
2
4
6
8
10  
12  
14  
16  
18  
20  
Frequency(MHz)  
Frequency(MHz)  
DS30272A-page 110  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
13.0 ELECTRICAL CHARACTERISTICS FOR PIC16C715  
Absolute Maximum Ratings †  
Ambient temperature under bias.................................................................................................................-55 to +125˚C  
Storage temperature .............................................................................................................................. -65˚C to +150˚C  
Voltage on any pin with respect to VSS (except VDD and MCLR)....................................................-0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS ................................................................................................................ 0 to +7.5V  
Voltage on MCLR with respect to VSS................................................................................................................0 to +14V  
Voltage on RA4 with respect to Vss ...................................................................................................................0 to +14V  
Total power dissipation (Note 1)................................................................................................................................1.0W  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin ..............................................................................................................................250 mA  
Input clamp current, IIK (VI < 0 or VI > VDD).....................................................................................................................± 20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD).............................................................................................................± 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by PORTA ........................................................................................................................200 mA  
Maximum current sourced by PORTA...................................................................................................................200 mA  
Maximum current sunk by PORTB........................................................................................................................200 mA  
Maximum current sourced by PORTB...................................................................................................................200 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD - VOH) x IOH} + (VOl x IOL).  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device.This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
1997 Microchip Technology Inc.  
DS30272A-page 111  
OSC  
PIC16C715-04  
VDD: 4.0V to 5.5V  
IDD: 5 mA max. at 5.5V  
IPD: 21 µA max. at 4V  
PIC16C715-10  
PIC16C715-20  
PIC16LC715-04  
VDD: 2.5V to 5.5V  
PIC16C715/JW  
VDD: 4.0V to 5.5V  
IDD: 5 mA max. at 5.5V  
IPD: 21 µA max. at 4V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
IDD:  
IPD:  
2.7 mA typ. at 5.5V  
1.5 µA typ. at 4V  
IDD:  
IPD:  
2.7 mA typ. at 5.5V IDD: 2.0 mA typ. at 3.0V  
1.5 µA typ. at 4V IPD: 0.9 µA typ. at 3V  
RC  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
VDD: 4.0V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 2.5V to 5.5V  
VDD: 4.0V to 5.5V  
IDD: 5 mA max. at 5.5V  
IDD:  
IPD:  
2.7 mA typ. at 5.5V  
1.5 µA typ. at 4V  
IDD:  
IPD:  
2.7 mA typ. at 5.5V IDD: 2.0 mA typ. at 3.0V  
1.5 µA typ. at 4V IPD: 0.9 µA typ. at 3V  
IDD: 5 mA max. at 5.5V  
XT  
HS  
LP  
IPD:  
21 µA max. at 4V  
IPD:  
21 µA max. at 4V  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
Freq: 4 MHz max.  
Do not use in HS mode  
VDD: 2.5V to 5.5V  
Freq: 4 MHz max.  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
IDD: 13.5 mA typ. at 5.5V  
IDD:  
IPD:  
30 mA max. at 5.5V  
1.5 µA typ. at 4.5V  
IDD: 30 mA max. at 5.5V  
IDD: 30 mA max. at 5.5V  
IPD:  
1.5 µA typ. at 4.5V  
IPD:  
1.5 µA typ. at 4.5V  
IPD:  
1.5 µA typ. at 4.5V  
Freq: 4 MHz max.  
Freq: 10 MHz max.  
Freq: 20 MHz max.  
Freq: 10 MHz max.  
VDD: 2.5V to 5.5V  
VDD: 4.0V to 5.5V  
IDD: 52.5 µA typ. at 32 kHz, 4.0V  
IDD:  
IPD:  
48 µA max. at 32 kHz, 3.0V IDD: 48 µA max. at 32 kHz, 3.0V  
5.0 µA max. at 3.0V IPD: 5.0 µA max. at 3.0V  
Freq: 200 kHz max.  
Do not use in LP mode  
Do not use in LP mode  
IPD:  
0.9 µA typ. at 4.0V  
Freq: 200 kHz max.  
Freq: 200 kHz max.  
The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device type  
that ensures the specifications required.  
PIC16C71X  
Applicable Devices 710 71 711 715  
13.1  
DC Characteristics:  
PIC16C715-04 (Commercial, Industrial, Extended)  
PIC16C715-10 (Commercial, Industrial, Extended)  
PIC16C715-20 (Commercial, Industrial, Extended))  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0˚C  
-40˚C  
-40˚C  
TA +70˚C (commercial)  
TA +85˚C (industrial)  
TA +125˚C (extended)  
DC CHARACTERISTICS  
Param.  
No.  
Characteristic  
Sym Min Typ† Max Units  
Conditions  
D001  
D001A  
Supply Voltage  
VDD  
4.0  
4.5  
-
-
5.5  
5.5  
V
V
XT, RC and LP osc configuration  
HS osc configuration  
D002*  
D003  
RAM Data Retention  
Voltage (Note 1)  
VDR  
-
1.5  
-
V
Device in SLEEP mode  
VDD start voltage to  
ensure internal Power-  
on Reset signal  
VPOR  
-
VSS  
-
V
See section on Power-on Reset for details  
D004*  
VDD rise rate to ensure  
internal Power-on Reset  
signal  
SVDD 0.05  
-
-
V/ms See section on Power-on Reset for details  
D005  
D010  
Brown-out Reset Voltage BVDD 3.7 4.0 4.3  
V
BODEN configuration bit is enabled  
Supply Current (Note 2)  
IDD  
-
2.7  
5
mA XT, RC osc configuration (PIC16C715-04)  
FOSC = 4 MHz, VDD = 5.5V (Note 4)  
D013  
D015  
-
-
13.5 30  
mA HS osc configuration (PIC16C715-20)  
FOSC = 20 MHz, VDD = 5.5V  
Brown-out Reset Current IBOR  
300* 500 µA BOR enabled VDD = 5.0V  
(Note 5)  
D020  
D021  
D021A  
D021B  
Power-down Current  
(Note 3)  
IPD  
-
-
-
-
10.5 42 µA VDD = 4.0V, WDT enabled, -40°C to +85°C  
1.5  
1.5  
1.5  
21  
24  
30  
µA VDD = 4.0V, WDT disabled, -0°C to +70°C  
µA VDD = 4.0V, WDT disabled, -40°C to +85°C  
µA VDD = 4.0V, WDT disabled, -40°C to +125°C  
D023  
Brown-out Reset Current IBOR  
-
300* 500 µA BOR enabled VDD = 5.0V  
(Note 5)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be  
estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
1997 Microchip Technology Inc.  
DS30272A-page 113  
 
PIC16C71X  
Applicable Devices 710 71 711 715  
13.2  
DC Characteristics: PIC16LC715-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature 0˚C  
-40˚C  
Sym Min Typ† Max Units  
TA +70˚C (commercial)  
TA +85˚C (industrial)  
Param  
No.  
Characteristic  
Conditions  
D001  
Supply Voltage  
VDD  
2.5  
-
-
5.5  
-
V
V
LP, XT, RC osc configuration (DC - 4 MHz)  
Device in SLEEP mode  
D002*  
RAM Data Retention VDR  
Voltage (Note 1)  
1.5  
D003  
VDD start voltage to  
ensure internal  
Power-on Reset  
signal  
VPOR  
-
VSS  
-
V
See section on Power-on Reset for details  
D004*  
VDD rise rate to  
ensure internal  
Power-on Reset  
signal  
SVDD  
0.05  
-
-
V/ms See section on Power-on Reset for details  
D005  
D010  
Brown-out Reset  
Voltage  
BVDD  
IDD  
3.7  
-
4.0  
2.0  
4.3  
3.8  
V
BODEN configuration bit is enabled  
Supply Current  
(Note 2)  
mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 3.0V (Note 4)  
D010A  
D015  
-
-
22.5 48  
300* 500  
µA LP osc configuration  
FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
Brown-out Reset  
Current (Note 5)  
IBOR  
µA BOR enabled VDD = 5.0V  
D020  
D021  
D021A  
Power-down Current IPD  
(Note 3)  
-
-
-
7.5  
0.9  
0.9  
30  
5
5
µA VDD = 3.0V, WDT enabled, -40°C to +85°C  
µA VDD = 3.0V, WDT disabled, 0°C to +70°C  
µA VDD = 3.0V, WDT disabled, -40°C to +85°C  
D023  
Brown-out Reset  
Current (Note 5)  
IBOR  
-
300* 500  
µA BOR enabled VDD = 5.0V  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
5: The current is the additional current consumed when this peripheral is enabled. This current should be  
added to the base IDD or IPD measurement.  
DS30272A-page 114  
1997 Microchip Technology Inc.  
 
PIC16C71X  
Applicable Devices 710 71 711 715  
13.3  
DC Characteristics:  
PIC16C715-04 (Commercial, Industrial, Extended)  
PIC16C715-10 (Commercial, Industrial, Extended)  
PIC16C715-20 (Commercial, Industrial, Extended)  
PIC16LC715-04 (Commercial, Industrial))  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0˚C  
-40˚C  
-40˚C  
TA +70˚C (commercial)  
TA +85˚C (industrial)  
TA +125˚C (extended)  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 13.1  
and Section 13.2.  
Param  
No.  
Characteristic  
Sym  
Min Typ Max Units  
Conditions  
Input Low Voltage  
I/O ports  
VIL  
D030  
D031  
D032  
with TTL buffer  
VSS  
VSS  
VSS  
-
-
-
0.5V  
0.2VDD  
0.2VDD  
V
V
V
with Schmitt Trigger buffer  
MCLR, RA4/T0CKI,OSC1  
(in RC mode)  
D033  
OSC1 (in XT, HS and LP)  
Input High Voltage  
I/O ports  
VSS  
-
0.3VDD  
V
Note1  
VIH  
-
-
-
-
-
-
-
D040  
D040A  
D041  
D042  
with TTL buffer  
2.0  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
V
V
V
V
V
V
4.5 VDD 5.5V  
For VDD > 5.5V or VDD < 4.5V  
For entire VDD range  
0.8VDD  
0.8VDD  
0.8VDD  
0.7VDD  
0.9VDD  
50  
with Schmitt Trigger buffer  
MCLR, RA4/T0CKI RB0/INT  
D042A OSC1 (XT, HS and LP)  
D043  
D070  
Note1  
OSC1 (in RC mode)  
PORTB weak pull-up current  
Input Leakage Current (Notes 2, 3)  
I/O ports  
IPURB  
IIL  
250 400  
µA VDD = 5V, VPIN = VSS  
D060  
-
-
±1  
µA Vss VPIN VDD, Pin at hi-  
impedance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
-
-
-
-
±5  
±5  
µA Vss VPIN VDD  
µA Vss VPIN VDD, XT, HS and LP  
osc configuration  
Output Low Voltage  
D080  
D080A  
D083  
D083A  
I/O ports  
VOL  
-
-
-
-
-
-
-
-
0.6  
0.6  
0.6  
0.6  
V
V
V
V
IOL = 8.5 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 7.0 mA, VDD = 4.5V,  
-40°C to +125°C  
IOL = 1.6 mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.2 mA, VDD = 4.5V,  
-40°C to +125°C  
OSC2/CLKOUT (RC osc config)  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C7X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as coming out of the pin.  
1997 Microchip Technology Inc.  
DS30272A-page 115  
PIC16C71X  
Applicable Devices 710 71 711 715  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0˚C  
-40˚C  
-40˚C  
TA +70˚C (commercial)  
TA +85˚C (industrial)  
TA +125˚C (extended)  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 13.1  
and Section 13.2.  
Param  
No.  
Characteristic  
Output High Voltage  
Sym  
Min Typ Max Units  
Conditions  
D090  
I/O ports (Note 3)  
VOH VDD - 0.7 -  
VDD - 0.7 -  
-
-
-
-
V
V
V
V
IOH = -3.0 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -2.5 mA, VDD = 4.5V,  
-40°C to +125°C  
IOH = -1.3 mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.0 mA, VDD = 4.5V,  
-40°C to +125°C  
D090A  
D092  
OSC2/CLKOUT (RC osc config)  
VDD - 0.7 -  
D092A  
VDD - 0.7 -  
Capacitive Loading Specs on  
Output Pins  
D100  
OSC2 pin  
COSC2  
-
-
-
-
15  
50  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1.  
D101  
All I/O pins and OSC2 (in RC mode) CIO  
pF  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C7X be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as coming out of the pin.  
DS30272A-page 116  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
13.4  
Timing Parameter Symbology  
The timing parameter symbols have been created following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
FIGURE 13-1: LOAD CONDITIONS  
Load condition 1  
Load condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 50 pF for all pins except OSC2  
15 pF for OSC2 output  
1997 Microchip Technology Inc.  
DS30272A-page 117  
 
PIC16C71X  
Applicable Devices 710 71 711 715  
13.5  
Timing Diagrams and Specifications  
FIGURE 13-2: EXTERNAL CLOCK TIMING  
Q4  
Q1  
1
Q2  
Q3  
Q4  
4
Q1  
OSC1  
3
3
4
2
CLKOUT  
TABLE 13-2: CLOCK TIMING REQUIREMENTS  
Parameter Sym Characteristic  
No.  
Min  
Typ†  
Max  
Units Conditions  
Fos External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
0.1  
4
4
4
MHz XT osc mode  
(Note 1)  
MHz HS osc mode (PIC16C715-04)  
MHz HS osc mode (PIC16C715-20)  
kHz LP osc mode  
20  
200  
4
Oscillator Frequency  
(Note 1)  
MHz RC osc mode  
4
MHz XT osc mode  
4
MHz HS osc mode (PIC16C715-04)  
MHz HS osc mode (PIC16C715-10)  
4
10  
4
20  
MHz HS osc mode (PIC16C715-20)  
kHz LP osc mode  
5
200  
1
Tosc External CLKIN Period  
250  
250  
100  
50  
ns  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
XT osc mode  
(Note 1)  
HS osc mode (PIC16C715-04)  
HS osc mode (PIC16C715-10)  
HS osc mode (PIC16C715-20)  
LP osc mode  
5
Oscillator Period  
(Note 1)  
250  
250  
250  
100  
RC osc mode  
10,000  
250  
250  
XT osc mode  
HS osc mode (PIC16C715-04)  
HS osc mode (PIC16C715-10)  
50  
5
250  
ns  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
HS osc mode (PIC16C715-20)  
LP osc mode  
2
3
TCY  
Instruction Cycle Time (Note 1) 200  
DC  
TCY = 4/FOSC  
XT oscillator  
TosL, External Clock in (OSC1) High  
TosH or Low Time  
50  
2.5  
10  
LP oscillator  
HS oscillator  
4
TosR, External Clock in (OSC1) Rise  
TosF or Fall Time  
25  
50  
15  
XT oscillator  
LP oscillator  
HS oscillator  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing code.  
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-  
sumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.  
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected  
(has no loading) for the PIC16C715.  
DS30272A-page 118  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 13-3: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
14  
12  
18  
19  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
new value  
old value  
(output)  
20, 21  
Note: Refer to Figure 13-1 for load conditions.  
TABLE 13-3: CLKOUT AND I/O TIMING REQUIREMENTS  
Parameter Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
10*  
11*  
12*  
13*  
14*  
15*  
16*  
17*  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
15  
15  
5
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
30  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
15  
15  
5
TckL2ioV CLKOUT to Port out valid  
TioV2ckH Port in valid before CLKOUT ↑  
0.5TCY + 20  
0.25TCY + 25  
TckH2ioI  
Port in hold after CLKOUT ↑  
0
TosH2ioV OSC1(Q1 cycle) to  
80 - 100  
Port out valid  
18*  
TosH2ioI  
OSC1(Q2 cycle) to  
TBD  
ns  
Port input invalid (I/O in hold time)  
19*  
20*  
TioV2osH Port input valid to OSC1(I/O in setup time)  
TBD  
10  
10  
25  
60  
25  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TioR  
Port output rise time  
Port output fall time  
INT pin high or low time  
PIC16C715  
PIC16LC715  
PIC16C715  
PIC16LC715  
21*  
TioF  
22††*  
23††*  
Tinp  
Trbp  
20  
20  
RB7:RB4 change INT high or low time  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
†† These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
1997 Microchip Technology Inc.  
DS30272A-page 119  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 13-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Timeout  
32  
OSC  
Timeout  
Internal  
RESET  
Parity  
Error  
Reset  
36  
Watchdog  
Timer  
RESET  
34  
31  
34  
I/O Pins  
FIGURE 13-5: BROWN-OUT RESET TIMING  
BVDD  
VDD  
35  
TABLE 13-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,  
AND BROWN-OUT RESET REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
TmcL MCLR Pulse Width (low)  
2
7
µs VDD = 5V, -40˚C to +125˚C  
31*  
Twdt  
Watchdog Timer Time-out Period  
18  
33  
ms VDD = 5V, -40˚C to +125˚C  
(No Prescaler)  
32  
33*  
34  
Tost  
Oscillation Start-up Timer Period  
28  
1024TOSC  
132  
2.1  
TOSC = OSC1 period  
Tpwrt Power up Timer Period  
72  
ms VDD = 5V, -40˚C to +125˚C  
TIOZ  
I/O Hi-impedance from MCLR Low  
µs  
or Watchdog Timer Reset  
Brown-out Reset pulse width  
Parity Error Reset  
35  
36  
TBOR  
TPER  
100  
µs  
µs  
VDD BVDD (D005)  
TBD  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30272A-page 120  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 13-6: TIMER0 CLOCK TIMINGS  
RA4/T0CKI  
41  
40  
42  
TMR0  
Note: Refer to Figure 13-1 for load conditions.  
TABLE 13-5: TIMER0 CLOCK REQUIREMENTS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ† Max Units Conditions  
40  
Tt0H  
T0CKI High Pulse Width  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5TCY + 20*  
10*  
ns  
ns  
ns  
ns  
41  
42  
Tt0L  
Tt0P  
T0CKI Low Pulse Width  
T0CKI Period  
0.5TCY + 20*  
10*  
Greater of:  
ns N = prescale value  
(1, 2, 4,..., 256)  
20µs or TCY + 40*  
N
48  
Tcke2tmrI Delay from external clock edge to timer increment  
These parameters are characterized but not tested.  
2Tosc  
7Tosc  
*
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1997 Microchip Technology Inc.  
DS30272A-page 121  
PIC16C71X  
Applicable Devices 710 71 711 715  
TABLE 13-6: A/D CONVERTER CHARACTERISTICS:  
PIC16C715-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)  
PIC16C715-10 (COMMERCIAL, INDUSTRIAL, EXTENDED)  
PIC16C715-20 (COMMERCIAL, INDUSTRIAL, EXTENDED)  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
NR  
Resolution  
8-bits  
VREF = VDD, VSS AIN VREF  
VREF = VDD, VSS AIN VREF  
NINT Integral error  
less than  
±1 LSb  
NDIF Differential error  
less than  
±1 LSb  
VREF = VDD, VSS AIN VREF  
VREF = VDD, VSS AIN VREF  
VREF = VDD, VSS AIN VREF  
VSS AIN VREF  
NFS  
Full scale error  
less than  
±1 LSb  
NOFF Offset error  
less than  
±1 LSb  
Monotonicity  
guaranteed  
V
VREF Reference voltage  
2.5V  
VDD + 0.3  
VREF + 0.3  
10.0  
VAIN Analog input voltage VSS - 0.3  
V
ZAIN Recommended  
impedance of analog  
kΩ  
voltage source  
IAD  
A/D conversion cur-  
rent (VDD)  
180  
µA Average current consumption when  
A/D is on. (Note 1)  
IREF  
VREF input current  
(Note 2)  
1
10  
mA During sampling  
µA All other times  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes  
any such leakage from the A/D module.  
2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
DS30272A-page 122  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
TABLE 13-7: A/D CONVERTER CHARACTERISTICS:  
PIC16LC715-04 (COMMERCIAL, INDUSTRIAL)  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
NR  
Resolution  
8-bits  
VREF = VDD, VSS AIN VREF  
VREF = VDD, VSS AIN VREF  
NINT  
Integral error  
less than  
±1 LSb  
NDIF  
NFS  
Differential error  
Full scale error  
less than  
±1 LSb  
VREF = VDD, VSS AIN VREF  
VREF = VDD, VSS AIN VREF  
VREF = VDD, VSS AIN VREF  
VSS AIN VREF  
less than  
±1 LSb  
NOFF Offset error  
less than  
±1 LSb  
Monotonicity  
guaranteed  
V
VREF Reference voltage  
2.5V  
VDD + 0.3  
VREF + 0.3  
10.0  
VAIN  
ZAIN  
Analog input voltage VSS - 0.3  
V
Recommended  
kΩ  
impedance of ana-  
log voltage source  
IAD  
A/D conversion cur-  
rent (VDD)  
90  
µA Average current consumption when  
A/D is on. (Note 1)  
IREF  
VREF input current  
(Note 2)  
1
10  
mA During sampling  
µA All other times  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes  
any such leakage from the A/D module.  
2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
1997 Microchip Technology Inc.  
DS30272A-page 123  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 13-7: A/D CONVERSION TIMING  
BSF ADCON0, GO  
(TOSC/2) (1)  
1 Tcy  
131  
130  
Q4  
132  
A/D CLK  
7
6
5
4
3
2
1
0
A/D DATA  
NEW_DATA  
DONE  
OLD_DATA  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 13-8: A/D CONVERSION REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
VREF 3.0V  
130  
TAD  
TAD  
A/D clock period  
1.6  
2.0  
µs  
µs VREF full range  
130  
A/D Internal RC  
Oscillator source  
ADCS1:ADCS0 = 11  
(RC oscillator source)  
µs PIC16LC715, VDD = 3.0V  
µs PIC16C715  
3.0  
2.0  
6.0  
4.0  
9.0  
6.0  
131  
132  
TCNV Conversion time  
(not including S/H  
time). Note 1  
9.5TAD  
TACQ Acquisition time  
Note 2  
20  
µs  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: ADRES register may be read on the following TCY cycle.  
DS30272A-page 124  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
14.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES FOR PIC16C715  
The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.  
In some graphs or tables the data presented are outside specified operating range (i.e., outside specified VDD  
range). This is for information only and devices are guaranteed to operate properly only within the specified  
range.  
Note: The data presented in this section is a statistical summary of data collected on units from different lots over  
a period of time and matrix samples. 'Typical' represents the mean of the distribution at, 25°C, while 'max'  
or 'min' represents (mean +3σ) and (mean -3σ) respectively where σ is standard deviation.  
FIGURE 14-1: TYPICAL IPD vs. VDD (WDT DISABLED, RC MODE)  
35  
30  
25  
20  
15  
10  
Shaded area is beyond  
recommended range.  
5
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD(Volts)  
FIGURE 14-2: MAXIMUM IPD vs. VDD (WDT DISABLED, RC MODE)  
10.000  
85°C  
70°C  
1.000  
0.100  
25°C  
0°C  
-40°C  
0.010  
0.001  
Shaded area is beyond  
recommended range.  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD(Volts)  
1997 Microchip Technology Inc.  
DS30272A-page 125  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 14-3: TYPICAL IPD vs. VDD @ 25°C  
FIGURE 14-5: TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD  
(WDT ENABLED, RC MODE)  
Cext = 22 pF,T = 25°C  
6.0  
25  
20  
15  
10  
5
5.5  
5.0  
4.5  
R = 5k  
4.0  
3.5  
3.0  
R = 10k  
2.5  
2.0  
1.5  
1.0  
0
R = 100k  
2.5  
3.0  
3.5  
4.0  
VDD(Volts)  
Shaded area is beyond recommended range.  
4.5  
5.0  
5.5  
6.0  
0.5  
0.0  
2.5  
3.0  
3.5  
4.0  
VDD(Volts)  
4.5  
5.0  
5.5  
6.0  
Shaded area is beyond recommended range.  
FIGURE 14-4: MAXIMUM IPD vs. VDD (WDT  
ENABLED, RC MODE)  
FIGURE 14-6: TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD  
35  
-40°C  
Cext = 100 pF,T = 25°C  
2.4  
30  
0°C  
2.2  
R = 3.3k  
25  
20  
2.0  
1.8  
1.6  
R = 5k  
70°C  
1.4  
15  
1.2  
85°C  
10  
1.0  
R = 10k  
0.8  
5
0
0.6  
0.4  
R = 100k  
2.5  
3.0  
3.5  
4.0  
VDD(Volts)  
Shaded area is beyond recommended range.  
4.5  
5.0  
5.5  
6.0  
0.2  
0.0  
2.5  
3.0  
3.5  
4.0  
VDD(Volts)  
Shaded area is beyond recommended range.  
4.5  
5.0  
5.5  
6.0  
FIGURE 14-7: TYPICAL RC OSCILLATOR  
FREQUENCY vs. VDD  
Cext = 300 pF,T = 25°C  
1000  
900  
800  
R = 3.3k  
700  
600  
R = 5k  
500  
400  
R = 10k  
300  
200  
R = 100k  
5.5 6.0  
100  
0
2.5  
3.0  
3.5  
4.0  
VDD(Volts)  
Shaded area is beyond recommended range.  
4.5  
5.0  
DS30272A-page 126  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 14-8: TYPICAL IPD vs. VDD BROWN-  
OUT DETECT ENABLED (RC  
MODE)  
FIGURE 14-10: TYPICAL IPD vs.TIMER1  
ENABLED (32 kHz, RC0/RC1 =  
33 pF/33 pF, RC MODE)  
1400  
1200  
1000  
30  
25  
20  
15  
10  
5
Device NOT in  
Brown-out Reset  
800  
600  
400  
200  
0
Device in  
Brown-out  
Reset  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD(Volts)  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
This shaded region represents the built-in hysteresis of  
the brown-out reset circuitry.  
VDD(Volts)  
Shaded area is beyond recommended range.  
Shaded area is beyond recommended range.  
FIGURE 14-11: MAXIMUM IPD vs.TIMER1  
ENABLED  
FIGURE 14-9: MAXIMUM IPD vs. VDD  
BROWN-OUT DETECT  
ENABLED  
(32 kHz, RC0/RC1 = 33 pF/33  
pF, 85°C TO -40°C, RC MODE)  
(85°C TO -40°C, RC MODE)  
1600  
1400  
1200  
45  
40  
35  
30  
1000  
Device NOT in  
25  
20  
15  
10  
5
Brown-out Reset  
800  
600  
400  
200  
0
Device in  
Brown-out  
Reset  
4.3  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD(Volts)  
VDD(Volts)  
Shaded area is beyond recommended range.  
This shaded region represents the built-in hysteresis of  
the brown-out reset circuitry.  
Shaded area is beyond recommended range.  
1997 Microchip Technology Inc.  
DS30272A-page 127  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 14-12: TYPICAL IDD vs. FREQUENCY (RC MODE @ 22 pF, 25°C)  
2000  
1800  
1600  
1400  
1200  
1000  
800  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
600  
400  
200  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
Frequency(MHz)  
Shaded area is  
beyond recommended range  
FIGURE 14-13: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 22 pF, -40°C TO 85°C)  
2000  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
Frequency(MHz)  
Shaded area is  
beyond recommended range  
DS30272A-page 128  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 14-14: TYPICAL IDD vs. FREQUENCY (RC MODE @ 100 pF, 25°C)  
1600  
1400  
1200  
1000  
800  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
600  
400  
200  
0
0
200  
Shaded area is  
beyond recommended range  
400  
600  
800  
1000  
1200  
1400  
1600  
1800  
Frequency(kHz)  
FIGURE 14-15: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 100 pF, -40°C TO 85°C)  
1600  
1400  
1200  
1000  
800  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
600  
400  
200  
0
0
200  
Shaded area is  
beyond recommended range  
400  
600  
800  
1000  
1200  
1400  
1600  
1800  
Frequency(kHz)  
1997 Microchip Technology Inc.  
DS30272A-page 129  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 14-16: TYPICAL IDD vs. FREQUENCY (RC MODE @ 300 pF, 25°C)  
1200  
5.5V  
1000  
800  
600  
400  
200  
0
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0
100  
200  
300  
400  
500  
600  
700  
Frequency(kHz)  
FIGURE 14-17: MAXIMUM IDD vs. FREQUENCY (RC MODE @ 300 pF, -40°C TO 85°C)  
1200  
5.5V  
1000  
800  
600  
400  
200  
0
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
0
100  
200  
300  
400  
500  
600  
700  
Frequency(kHz)  
DS30272A-page 130  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 14-18: TYPICAL IDD vs.  
CAPACITANCE @ 500 kHz  
FIGURE 14-19: TRANSCONDUCTANCE(gm)  
OF HS OSCILLATOR vs. VDD  
(RC MODE)  
600  
500  
400  
300  
200  
100  
4.0  
Max -40°C  
5.0V  
3.5  
3.0  
4.0V  
3.0V  
2.5  
Typ 25°C  
2.0  
Min 85°C  
1.5  
1.0  
0.5  
0.0  
0
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
20 pF  
100 pF  
300 pF  
VDD(Volts)  
Capacitance(pF)  
Shaded area is beyond recommended range.  
TABLE 14-1: RC OSCILLATOR  
FREQUENCIES  
FIGURE 14-20: TRANSCONDUCTANCE(gm)  
OF LP OSCILLATOR vs. VDD  
Average  
Cext  
Rext  
110  
Fosc @ 5V, 25°C  
100  
Max -40°C  
90  
80  
70  
22 pF  
5k  
10k  
100k  
3.3k  
5k  
4.12 MHz  
2.35 MHz  
268 kHz  
1.80 MHz  
1.27 MHz  
688 kHz  
77.2 kHz  
707 kHz  
501 kHz  
269 kHz  
28.3 kHz  
± 1.4%  
± 1.4%  
± 1.1%  
± 1.0%  
± 1.0%  
± 1.2%  
± 1.0%  
± 1.4%  
± 1.2%  
± 1.6%  
± 1.1%  
60  
50  
40  
30  
20  
10  
0
Typ 25°C  
Min 85°C  
100 pF  
300 pF  
10k  
100k  
3.3k  
5k  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
VDD(Volts)  
10k  
100k  
Shaded area is beyond recommended range.  
FIGURE 14-21: TRANSCONDUCTANCE(gm)  
OF XT OSCILLATOR vs. VDD  
The percentage variation indicated here is part to  
part variation due to normal process distribution.The  
variation indicated is ±3 standard deviation from  
average value for VDD = 5V.  
1000  
900  
Max -40°C  
800  
700  
600  
500  
400  
300  
200  
100  
0
Typ 25°C  
Min 85°C  
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
VDD(Volts)  
Shaded area is beyond recommended range.  
1997 Microchip Technology Inc.  
DS30272A-page 131  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 14-22: TYPICAL XTAL STARTUP  
FIGURE 14-24: TYPICAL XTAL STARTUP  
TIME vs. VDD (LP MODE, 25°C)  
TIME vs. VDD (XT MODE, 25°C)  
3.5  
3.0  
2.5  
70  
60  
50  
2.0  
40  
200 kHz, 68 pF/68 pF  
32 kHz, 33 pF/33 pF  
1.5  
30  
200 kHz, 47 pF/47 pF  
20  
1.0  
1 MHz, 15 pF/15 pF  
10  
4 MHz, 15 pF/15 pF  
0.5  
0.0  
200 kHz, 15 pF/15 pF  
0
2.5  
3.0  
3.5  
4.0  
VDD(Volts)  
4.5  
5.0  
5.5  
6.0  
2.5  
3.0  
3.5  
4.0  
VDD(Volts)  
Shaded area is beyond recommended range.  
4.5  
5.0  
5.5  
6.0  
Shaded area is beyond recommended range.  
TABLE 14-2: CAPACITOR SELECTION  
FOR CRYSTAL  
FIGURE 14-23: TYPICAL XTAL STARTUP  
TIME vs. VDD (HS MODE,  
25°C)  
OSCILLATORS  
Crystal  
Freq  
Cap. Range  
C1  
Cap. Range  
C2  
Osc Type  
7
6
LP  
32 kHz  
200 kHz  
200 kHz  
1 MHz  
33 pF  
15 pF  
33 pF  
15 pF  
XT  
HS  
47-68 pF  
15 pF  
47-68 pF  
15 pF  
20 MHz, 33 pF/33 pF  
5
4 MHz  
15 pF  
15 pF  
4
4 MHz  
15 pF  
15 pF  
8 MHz, 33 pF/33 pF  
3
8 MHz  
15-33 pF  
15-33 pF  
15-33 pF  
15-33 pF  
20 MHz, 15 pF/15 pF  
20 MHz  
8 MHz, 15 pF/15 pF  
2
1
4.0  
Crystals  
Used  
4.5  
5.0  
5.5  
6.0  
VDD(Volts)  
32 kHz  
200 kHz  
1 MHz  
Epson C-001R32.768K-A  
STD XTL 200.000KHz  
ECS ECS-10-13-1  
± 20 PPM  
± 20 PPM  
± 50 PPM  
± 50 PPM  
± 30 PPM  
± 30 PPM  
Shaded area is beyond recommended range.  
4 MHz  
ECS ECS-40-20-1  
8 MHz  
EPSON CA-301 8.000M-C  
EPSON CA-301 20.000M-C  
20 MHz  
DS30272A-page 132  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 14-25: TYPICAL IDD vs. FREQUENCY  
FIGURE 14-27: TYPICAL IDD vs. FREQUENCY  
(LP MODE, 25°C)  
(XT MODE, 25°C)  
1800  
1600  
120  
100  
80  
5.5V  
1400  
5.0V  
1200  
4.5V  
1000  
800  
600  
4.0V  
3.5V  
60  
5.5V  
40  
20  
0
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
3.0V  
2.5V  
400  
200  
0
50  
100  
150  
200  
Frequency(kHz)  
0
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
Frequency(MHz)  
FIGURE 14-26: MAXIMUM IDD vs.  
FREQUENCY  
FIGURE 14-28: MAXIMUM IDD vs.  
FREQUENCY  
(LP MODE, 85°C TO -40°C)  
(XT MODE, -40°C TO 85°C)  
1800  
140  
120  
100  
80  
1600  
1400  
1200  
5.5V  
5.0V  
4.5V  
4.0V  
1000  
3.5V  
60  
800  
600  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
40  
2.5V  
20  
400  
200  
3.0V  
2.5V  
0
0
50  
100  
150  
200  
0
Frequency(kHz)  
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
Frequency(MHz)  
1997 Microchip Technology Inc.  
DS30272A-page 133  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 14-29: TYPICAL IDD vs. FREQUENCY  
FIGURE 14-30: MAXIMUM IDD vs.  
FREQUENCY  
(HS MODE, 25°C)  
(HS MODE, -40°C TO 85°C)  
7.0  
6.0  
5.0  
4.0  
3.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
2.0  
5.5V  
5.0V  
4.5V  
4.0V  
5.5V  
5.0V  
4.5V  
4.0V  
1.0  
0.0  
1
2
4
6
8
10  
12  
14  
16  
18  
20  
1
2
4
6
8
10  
12  
14  
16  
18  
20  
Frequency(MHz)  
Frequency(MHz)  
DS30272A-page 134  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
15.0 ELECTRICAL CHARACTERISTICS FOR PIC16C71  
Absolute Maximum Ratings †  
Ambient temperature under bias.................................................................................................................-55 to +125˚C  
Storage temperature .............................................................................................................................. -65˚C to +150˚C  
Voltage on any pin with respect to VSS (except VDD, MCLR, and RA4)..........................................-0.3V to (VDD + 0.3V)  
Voltage on VDD with respect to VSS .......................................................................................................... -0.3 to +7.5V  
Voltage on MCLR with respect to VSS (Note 2)..................................................................................................0 to +14V  
Voltage on RA4 with respect to Vss ...................................................................................................................0 to +14V  
Total power dissipation (Note 1)...........................................................................................................................800 mW  
Maximum current out of VSS pin ...........................................................................................................................150 mA  
Maximum current into VDD pin ..............................................................................................................................100 mA  
Input clamp current, IIK (VI < 0 or VI > VDD).....................................................................................................................± 20 mA  
Output clamp current, IOK (VO < 0 or VO > VDD).............................................................................................................± 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................20 mA  
Maximum current sunk by PORTA ..........................................................................................................................80 mA  
Maximum current sourced by PORTA.....................................................................................................................50 mA  
Maximum current sunk by PORTB........................................................................................................................150 mA  
Maximum current sourced by PORTB...................................................................................................................100 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)  
Note 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up.Thus,  
a series resistor of 50-100should be used when applying a “low” level to the MCLR pin rather than pulling  
this pin directly to VSS.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device.This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
TABLE 15-1: CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS  
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
OSC  
PIC16C71-04  
VDD: 4.0V to 6.0V  
PIC16C71-20  
PIC16LC71-04  
VDD: 3.0V to 6.0V  
JW Devices  
VDD: 4.0V to 6.0V  
VDD: 4.5V to 5.5V  
IDD: 3.3 mA max. at 5.5V  
IPD: 14 µA max. at 4V  
Freq:4 MHz max.  
IDD: 1.8 mA typ. at 5.5V  
IPD: 1.0 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 1.4 mA typ. at 3.0V  
IPD: 0.6 µA typ. at 3V  
Freq: 4 MHz max.  
IDD: 3.3 mA max. at 5.5V  
IPD: 14 µA max. at 4V  
Freq:4 MHz max.  
RC  
VDD: 4.0V to 6.0V  
VDD: 4.5V to 5.5V  
VDD: 3.0V to 6.0V  
VDD: 4.0V to 6.0V  
IDD: 3.3 mA max. at 5.5V  
IPD: 14 µA max. at 4V  
Freq: 4 MHz max.  
IDD: 1.8 mA typ. at 5.5V  
IPD: 1.0 µA typ. at 4V  
Freq: 4 MHz max.  
IDD: 1.4 mA typ. at 3.0V  
IPD: 0.6 µA typ. at 3V  
Freq: 4 MHz max.  
IDD: 3.3 mA max. at 5.5V  
IPD: 14 µA max. at 4V  
Freq: 4 MHz max.  
XT  
HS  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
IDD: 13.5 mA typ. at 5.5V  
IPD: 1.0 µA typ. at 4.5V  
Freq: 4 MHz max.  
IDD: 30 mA max. at 5.5V  
IPD: 1.0 µA typ. at 4.5V  
Freq: 20 MHz max.  
IDD: 30 mA max. at 5.5V  
IPD: 1.0 µA typ. at 4.5V  
Freq: 20 MHz max.  
Not recommended for use in  
HS mode  
VDD: 4.0V to 6.0V  
IDD: 15 µA typ. at 32 kHz,  
4.0V  
IPD: 0.6 µA typ. at 4.0V  
Freq: 200 kHz max.  
VDD: 3.0V to 6.0V  
IDD: 32 µA max. at 32 kHz,  
3.0V  
IPD: 9 µA max. at 3.0V  
Freq: 200 kHz max.  
VDD: 3.0V to 6.0V  
IDD: 32 µA max. at 32 kHz,  
3.0V  
IPD: 9 µA max. at 3.0V  
Freq: 200 kHz max.  
Not recommended for use  
in LP mode  
LP  
The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recom-  
mended that the user select the device type that ensures the specifications required.  
1997 Microchip Technology Inc.  
DS30272A-page 135  
PIC16C71X  
Applicable Devices 710 71 711 715  
15.1  
DC Characteristics:  
PIC16C71-04 (Commercial, Industrial)  
PIC16C71-20 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature 0˚C  
-40˚C  
TA +70˚C (commercial)  
TA +85˚C (industrial)  
Param  
No.  
Characteristic  
Sym Min Typ† Max Units  
Conditions  
D001 Supply Voltage  
D001A  
VDD  
4.0  
4.5  
-
-
6.0  
5.5  
V
V
XT, RC and LP osc configuration  
HS osc configuration  
D002* RAM Data Retention  
Voltage (Note 1)  
VDR  
-
1.5  
-
V
D003 VDD start voltage to  
ensure internal Power-on  
Reset signal  
VPOR  
-
VSS  
-
V
See section on Power-on Reset for details  
D004* VDD rise rate to ensure  
internal Power-on Reset  
signal  
SVDD 0.05  
-
-
V/ms See section on Power-on Reset for details  
D010 Supply Current (Note 2)  
IDD  
IPD  
-
-
1.8 3.3 mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 5.5V (Note 4)  
D013  
13.5 30  
mA HS osc configuration  
FOSC = 20 MHz, VDD = 5.5V  
D020 Power-down Current  
D021 (Note 3)  
D021A  
-
-
-
7
1.0  
1.0  
28  
14  
16  
µA VDD = 4.0V, WDT enabled, -40°C to +85°C  
µA VDD = 4.0V, WDT disabled, -0°C to +70°C  
µA VDD = 4.0V, WDT disabled, -40°C to +85°C  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
DS30272A-page 136  
1997 Microchip Technology Inc.  
 
PIC16C71X  
Applicable Devices 710 71 711 715  
15.2  
DC Characteristics:  
PIC16LC71-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC CHARACTERISTICS  
OOperating temperature 0˚C  
-40˚C  
Sym Min Typ† Max Units  
TA +70˚C (commercial)  
TA +85˚C (industrial)  
Param  
No.  
Characteristic  
Conditions  
D001  
Supply Voltage  
VDD  
VDR  
3.0  
-
-
6.0  
-
V
V
XT, RC, and LP osc configuration  
D002* RAM Data Retention  
Voltage (Note 1)  
1.5  
D003  
VDD start voltage to  
ensure internal Power-on  
Reset signal  
VPOR  
-
VSS  
-
-
-
V
See section on Power-on Reset for details  
D004*  
VDD rise rate to ensure  
internal Power-on Reset  
signal  
SVDD 0.05  
V/ms See section on Power-on Reset for details  
D010  
Supply Current (Note 2)  
IDD  
IPD  
-
-
1.4  
15  
2.5  
32  
mA XT, RC osc configuration  
FOSC = 4 MHz, VDD = 3.0V (Note 4)  
D010A  
µA LP osc configuration  
FOSC = 32 kHz, VDD = 3.0V, WDT disabled  
D020  
D021  
D021A  
Power-down Current  
(Note 3)  
-
-
-
5
0.6  
0.6  
20  
9
12  
µA VDD = 3.0V, WDT enabled, -40°C to +85°C  
µA VDD = 3.0V, WDT disabled, 0°C to +70°C  
µA VDD = 3.0V, WDT disabled, -40°C to +85°C  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be esti-  
mated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.  
1997 Microchip Technology Inc.  
DS30272A-page 137  
 
PIC16C71X  
Applicable Devices 710 71 711 715  
15.3  
DC Characteristics:  
PIC16C71-04 (Commercial, Industrial)  
PIC16C71-20 (Commercial, Industrial)  
PIC16LC71-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
OOperating temperature 0˚C  
-40˚C  
TA +70˚C (commercial)  
TA +85˚C (industrial)  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 15.1  
and Section 15.2.  
Param  
No.  
Characteristic  
Sym  
Min Typ Max Units  
Conditions  
Input Low Voltage  
I/O ports  
VIL  
D030  
with TTL buffer  
VSS  
VSS  
VSS  
VSS  
-
-
-
-
0.15V  
0.8V  
0.2VDD  
0.3VDD  
V
V
V
V
For entire VDD range  
4.5 VDD 5.5V  
D031  
D032  
D033  
with Schmitt Trigger buffer  
MCLR, OSC1 (in RC mode)  
OSC1 (in XT, HS and LP)  
Input High Voltage  
I/O ports (Note 4)  
Note1  
VIH  
-
-
-
D040  
D040A  
with TTL buffer  
2.0  
VDD  
VDD  
V
4.5 VDD 5.5V  
For entire VDD range  
0.25VDD  
+ 0.8V  
0.85VDD  
0.85VDD  
0.7VDD  
0.9VDD  
50  
D041  
D042  
D042A  
D043  
D070  
with Schmitt Trigger buffer  
MCLR, RB0/INT  
OSC1 (XT, HS and LP)  
OSC1 (in RC mode)  
PORTB weak pull-up current  
Input Leakage Current (Notes 2, 3)  
I/O ports  
-
-
-
-
VDD  
VDD  
VDD  
VDD  
For entire VDD range  
Note1  
V
V
V
IPURB  
IIL  
250 †400  
µA VDD = 5V, VPIN = VSS  
D060  
-
-
±1  
µA Vss VPIN VDD, Pin at hi-  
impedance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1  
-
-
-
-
±5  
±5  
µA Vss VPIN VDD  
µA Vss VPIN VDD, XT, HS and  
LP osc configuration  
Output Low Voltage  
D080  
D083  
I/O ports  
VOL  
-
-
-
-
0.6  
0.6  
V
V
IOL = 8.5mA, VDD = 4.5V,  
-40°C to +85°C  
IOL = 1.6mA, VDD = 4.5V,  
-40°C to +85°C  
OSC2/CLKOUT (RC osc config)  
Output High Voltage  
D090  
D092  
I/O ports (Note 3)  
VOH VDD - 0.7 -  
VDD - 0.7 -  
-
-
V
V
V
IOH = -3.0mA, VDD = 4.5V,  
-40°C to +85°C  
IOH = -1.3mA, VDD = 4.5V,  
-40°C to +85°C  
OSC2/CLKOUT (RC osc config)  
D130*  
Open-Drain High Voltage  
VOD  
-
-
14  
RA4 pin  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt trigger input. It is not recommended that the  
PIC16C71 be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
4: PIC16C71 Rev. "Ax" INT pin has a TTL input buffer. PIC16C71 Rev. "Bx" INT pin has a Schmitt Trigger input  
buffer.  
DS30272A-page 138  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
Standard Operating Conditions (unless otherwise stated)  
OOperating temperature 0˚C  
-40˚C  
TA +70˚C (commercial)  
TA +85˚C (industrial)  
DC CHARACTERISTICS  
Operating voltage VDD range as described in DC spec Section 15.1  
and Section 15.2.  
Param  
No.  
Characteristic  
Sym  
Min Typ Max Units  
Conditions  
Capacitive Loading Specs on  
Output Pins  
D100  
OSC2 pin  
COSC2  
15  
50  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1.  
D101  
All I/O pins and OSC2 (in RC mode) CIO  
pF  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt trigger input. It is not recommended that the  
PIC16C71 be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as current sourced by the pin.  
4: PIC16C71 Rev. "Ax" INT pin has a TTL input buffer. PIC16C71 Rev. "Bx" INT pin has a Schmitt Trigger input  
buffer.  
1997 Microchip Technology Inc.  
DS30272A-page 139  
PIC16C71X  
Applicable Devices 710 71 711 715  
15.4  
Timing Parameter Symbology  
The timing parameter symbols have been created following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O port  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
FIGURE 15-1: LOAD CONDITIONS  
Load condition 1  
Load condition 2  
VDD/2  
RL  
CL  
CL  
Pin  
Pin  
VSS  
VSS  
RL = 464Ω  
CL = 50 pF for all pins except OSC2/CLKOUT  
15 pF for OSC2 output  
DS30272A-page 140  
1997 Microchip Technology Inc.  
 
PIC16C71X  
Applicable Devices 710 71 711 715  
15.5  
Timing Diagrams and Specifications  
FIGURE 15-2: EXTERNAL CLOCK TIMING  
Q1  
1
Q2  
Q3  
Q4  
Q1  
Q4  
OSC1  
3
3
4
4
2
CLKOUT  
TABLE 15-2: EXTERNAL CLOCK TIMING REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units Conditions  
Fosc External CLKIN Frequency  
DC  
DC  
DC  
DC  
DC  
0.1  
1
TCY  
4
4
MHz XT osc mode  
MHz HS osc mode (-04)  
MHz HS osc mode (-20)  
kHz LP osc mode  
MHz RC osc mode  
MHz XT osc mode  
MHz HS osc mode  
MHz HS osc mode  
(Note 1)  
20  
200  
4
Oscillator Frequency  
(Note 1)  
4
4
1
20  
1
Tosc External CLKIN Period  
250  
250  
50  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
µs  
ns  
ns  
ns  
ns  
XT osc mode  
HS osc mode (-04)  
HS osc mode (-20)  
LP osc mode  
RC osc mode  
XT osc mode  
HS osc mode (-04)  
HS osc mode (-20)  
LP osc mode  
TCY = 4/Fosc  
XT oscillator  
(Note 1)  
5
Oscillator Period  
(Note 1)  
250  
250  
250  
50  
10,000  
1,000  
1,000  
5
2
3
TCY  
Instruction Cycle Time (Note 1)  
1.0  
50  
DC  
TosL, External Clock in (OSC1) High or  
TosH Low Time  
2.5  
10  
LP oscillator  
HS oscillator  
4
TosR, External Clock in (OSC1) Rise or  
TosF Fall Time  
25  
XT oscillator  
50  
LP oscillator  
15  
HS oscillator  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing code.  
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-  
sumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.  
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices. OSC2 is disconnected  
(has no loading) for the PIC16C71.  
1997 Microchip Technology Inc.  
DS30272A-page 141  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 15-3: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
CLKOUT  
13  
12  
19  
18  
14  
16  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
new value  
old value  
20, 21  
Note: Refer to Figure 15-1 for load conditions.  
TABLE 15-3: CLKOUT AND I/O TIMING REQUIREMENTS  
Parameter Sym  
No.  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
10*  
11*  
12*  
13*  
14*  
15*  
16*  
17*  
TosH2ckL OSC1to CLKOUT↓  
TosH2ckH OSC1to CLKOUT↑  
15  
15  
5
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
30  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
15  
15  
5
TckL2ioV CLKOUT to Port out valid  
TioV2ckH Port in valid before CLKOUT ↑  
0.5TCY + 20  
0.25TCY + 25  
TckH2ioI  
Port in hold after CLKOUT ↑  
0
TosH2ioV OSC1(Q1 cycle) to  
80 - 100  
Port out valid  
18*  
TosH2ioI  
OSC1(Q2 cycle) to  
Port input invalid (I/O in  
hold time)  
PIC16C71  
100  
200  
ns  
ns  
PIC16LC71  
19*  
20*  
TioV2osH Port input valid to OSC1(I/O in setup time)  
0
10  
10  
25  
60  
25  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TioR  
Port output rise time  
Port output fall time  
INT pin high or low time  
PIC16C71  
PIC16LC71  
PIC16C71  
PIC16LC71  
20  
20  
21*  
TioF  
22††*  
23††*  
Tinp  
Trbp  
RB7:RB4 change INT high or low time  
* These parameters are characterized but not tested.  
†Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
†† These parameters are asynchronous events not related to any internal clock edges.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
DS30272A-page 142  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 15-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
Note: Refer to Figure 15-1 for load conditions.  
TABLE 15-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
31  
TmcL MCLR Pulse Width (low)  
200  
7*  
ns  
VDD = 5V, -40˚C to +85˚C  
VDD = 5V, -40˚C to +85˚C  
Twdt  
Watchdog Timer Time-out Period  
18  
33*  
ms  
(No Prescaler)  
32  
33  
34  
Tost  
Oscillation Start-up Timer Period  
28*  
1024 TOSC  
ms  
ns  
TOSC = OSC1 period  
Tpwrt Power-up Timer Period  
I/O High Impedance from MCLR  
Low  
72  
132*  
100  
VDD = 5V, -40˚C to +85˚C  
TIOZ  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated.These parameters are for design guidance only  
and are not tested.  
1997 Microchip Technology Inc.  
DS30272A-page 143  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 15-5: TIMER0 EXTERNAL CLOCK TIMINGS  
RA4/T0CKI  
41  
40  
42  
TMR0  
Note: Refer to Figure 15-1 for load conditions.  
TABLE 15-5: TIMER0 EXTERNAL CLOCK REQUIREMENTS  
Param  
No.  
Sym Characteristic  
Min  
Typ† Max Units Conditions  
40*  
Tt0H T0CKI High Pulse Width  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5TCY + 20  
10  
ns Must also meet  
parameter 42  
ns  
41*  
42*  
Tt0L T0CKI Low Pulse Width  
Tt0P T0CKI Period  
0.5TCY + 20  
10  
ns  
ns  
Must also meet  
parameter 42  
TCY + 40  
ns N = prescale value  
(2, 4,..., 256)  
Greater of:  
20 ns or TCY + 40  
N
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30272A-page 144  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
TABLE 15-6: A/D CONVERTER CHARACTERISTICS  
Param Sym Characteristic  
No.  
Min  
Typ†  
Max  
8 bits  
< ±1  
Units  
Conditions  
A01  
NR Resolution  
bits VREF = VDD = 5.12V,  
VSS VAIN VREF  
A02  
EABS Absolute error  
LSb VREF = VDD = 5.12V,  
PIC16C71  
PIC16LC71  
PIC16C71  
PIC16LC71  
PIC16C71  
PIC16LC71  
PIC16C71  
PIC16LC71  
PIC16C71  
PIC16LC71  
VSS VAIN VREF  
< ±2  
< ±1  
LSb VREF = VDD = 3.0V (Note 3)  
A03  
A04  
A05  
A06  
EIL Integral linearity error  
EDL Differential linearity error  
EFS Full scale error  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
< ±2  
< ±1  
LSb VREF = VDD = 3.0V (Note 3)  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
< ±2  
< ±1  
LSb VREF = VDD = 3.0V (Note 3)  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
< ±2  
< ±1  
LSb VREF = VDD = 3.0V (Note 3)  
EOFF Offset error  
LSb VREF = VDD = 5.12V,  
VSS VAIN VREF  
< ±2  
LSb VREF = VDD = 3.0V (Note 3)  
A10  
A20  
A25  
A30  
Monotonicity  
guaranteed  
V
VSS VAIN VREF  
VREF Reference voltage  
VAIN Analog input voltage  
3.0V  
VSS - 0.3  
VDD + 0.3  
VREF  
V
ZAIN Recommended impedance of analog  
voltage source  
10.0  
kΩ  
A40  
A50  
IAD A/D conversion current (VDD)  
180  
µA Average current consump-  
tion when A/D is on. (Note 1)  
IREF VREF input current (Note 2)  
10  
1000  
µA During VAIN acquisition.  
Based on differential of  
VHOLD to VAIN.  
PIC16C71  
To charge CHOLD see  
Section 7.1.  
40  
1
µA During A/D Conversion cycle  
mA During VAIN acquisition.  
Based on differential of  
VHOLD to VAIN.  
PIC16LC71  
To charge CHOLD see  
Section 7.1.  
10  
µA During A/D Conversion cycle  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes  
any such leakage from the A/D module.  
2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.  
3: These specifications apply if VREF = 3.0V and if VDD 3.0V. VAIN must be between VSS and VREF.  
1997 Microchip Technology Inc.  
DS30272A-page 145  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 15-6: A/D CONVERSION TIMING  
BSF ADCON0, GO  
(TOSC/2) (1)  
1 Tcy  
131  
130  
Q4  
132  
A/D CLK  
7
6
5
4
3
2
1
0
A/D DATA  
NEW_DATA  
DONE  
OLD_DATA  
ADRES  
ADIF  
GO  
SAMPLING STOPPED  
SAMPLE  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
TABLE 15-7: A/D CONVERSION REQUIREMENTS  
Param  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units  
Conditions  
PIC16C71  
PIC16LC71  
PIC16C71  
PIC16LC71  
130  
TAD  
A/D clock period  
2.0  
2.0  
2.0  
3.0  
µs  
TOSC based, VREF 3.0V  
µs TOSC based, VREF full range  
µs A/D RC Mode  
µs A/D RC Mode  
TAD  
4.0  
6.0  
9.5  
6.0  
9.0  
131  
132  
TCNV Conversion time  
(not including S/H time) (Note 1)  
TACQ Acquisition time  
Note 2  
5*  
20  
µs  
µs The minimum time is the ampli-  
fier settling time. This may be  
used if the "new" input voltage  
has not changed by more than  
1 LSb (i.e., 19.5 mV @ 5.12V)  
from the last sampled voltage  
(as stated on CHOLD).  
134  
135  
TGO  
Q4 to A/D clock start  
Tosc/2§  
If the A/D clock source is  
selected as RC, a time of TCY is  
added before the A/D clock  
starts. This allows the SLEEP  
instruction to be executed.  
TSWC Switching from convert sample time  
1.5§  
TAD  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
§
These specifications ensured by design.  
Note 1: ADRES register may be read on the following TCY cycle.  
2: See Section 7.1 for min conditions.  
DS30272A-page 146  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 16-2: TYPICAL RC OSCILLATOR  
FREQUENCY VS. VDD  
16.0 DC AND AC  
CHARACTERISTICS GRAPHS  
5.0  
AND TABLES FOR PIC16C71  
R = 4.7k  
The graphs and tables provided in this section are for  
design guidance and are not tested or guaranteed. In  
some graphs or tables the data presented are out-  
side specified operating range (e.g. outside speci-  
fied VDD range). This is for information only and  
devices are guaranteed to operate properly only  
within the specified range.  
4.5  
4.0  
3.5  
3.0  
Note: The data presented in this section is a sta-  
tistical summary of data collected on units  
from different lots over a period of time and  
matrix samples. 'Typical' represents the  
mean of the distribution while 'max' or 'min'  
represents (mean + 3σ) and (mean - 3σ)  
respectively where σ is standard deviation.  
R = 10k  
2.5  
2.0  
1.5  
Cext = 20 pF, T = 25°C  
FIGURE 16-1: TYPICAL RC OSCILLATOR  
FREQUENCY VS.  
1.0  
R = 100k  
TEMPERATURE  
0.5  
Fosc  
Fosc (25°C)  
Frequency Normalized to 25°C  
0.0  
3.0  
1.050  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
1.025  
1.000  
Rext = 10k  
Cext = 100 pF  
FIGURE 16-3: TYPICAL RC OSCILLATOR  
FREQUENCY VS. VDD  
VDD = 5.5V  
0.975  
0.950  
2.0  
R = 3.3k  
1.8  
VDD = 3.5V  
0.925  
0.900  
0.875  
0.850  
1.6  
1.4  
R = 4.7k  
0
10  
20  
30  
40  
50  
60  
70  
1.2  
1.0  
0.8  
T(°C)  
R = 10k  
0.6  
Cext = 100 pF, T = 25°C  
0.4  
0.2  
0.0  
R = 100k  
5.5  
3.0  
3.5  
4.0  
4.5  
5.0  
6.0  
VDD (Volts)  
1997 Microchip Technology Inc.  
DS30272A-page 147  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 16-4: TYPICAL RC OSCILLATOR  
FREQUENCY VS. VDD  
TABLE 16-1: RC OSCILLATOR  
FREQUENCIES  
.8  
Average  
R = 3.3k  
Cext  
20 pF  
Rext  
4.7k  
10k  
100k  
FOSC @ 5V, 25°C  
.7  
4.52 MHz  
2.47 MHz  
±17.35%  
±10.10%  
R = 4.7k  
.6  
.5  
290.86 kHz ±11.90%  
100 pF  
300 pF  
3.3k  
4.7k  
10k  
1.92 MHz  
1.49 MHz  
±9.43%  
±9.83%  
788.77 kHz ±10.92%  
88.11 kHz ±16.03%  
100k  
3.3k  
4.7k  
10k  
726.89 kHz ±10.97%  
573.95 kHz ±10.14%  
307.31 kHz ±10.43%  
.4  
.3  
.2  
.1  
R = 10k  
100k  
33.82 kHz  
±11.24%  
The percentage variation indicated here is part to part  
variation due to normal process distribution. The varia-  
tion indicated is ±3 standard deviation from average  
value for VDD = 5V.  
Cext = 300 pF, T = 25°C  
R = 100k  
5.5  
FIGURE 16-6: TYPICAL IPD VS. VDD  
WATCHDOGTIMER ENABLED  
25°C  
0
3.0  
3.5  
4.0  
4.5  
5.0  
6.0  
VDD (Volts)  
14  
FIGURE 16-5: TYPICAL IPD VS. VDD  
WATCHDOG TIMER  
DISABLED 25°C  
12  
10  
0.6  
0.5  
0.4  
0.3  
0.2  
8
6
4
2
0
0.1  
0.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5 6.0  
VDD (Volts)  
DS30272A-page 148  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 16-7: MAXIMUM IPD VS. VDD  
WATCHDOG DISABLED  
FIGURE 16-8: MAXIMUM IPD VS. VDD  
WATCHDOG ENABLED  
45  
25  
-55°C  
40  
35  
30  
25  
20  
-40°C  
125°C  
20  
15  
125°C  
0°C  
15  
10  
5
70°C  
85°C  
10  
5
85°C  
70°C  
0
3.0 3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
0°C  
-40°C  
-55°C  
VDD (Volts)  
IPD, with Watchdog Timer enabled, has two components:  
The leakage current which increases with higher tempera-  
ture and the operating current of the Watchdog Timer logic  
which increases with lower temperature. At -40°C, the latter  
dominates explaining the apparently anomalous behavior.  
0
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
FIGURE 16-9: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS VS. VDD  
2.00  
1.80  
Max (-40˚C to 85˚C)  
1.60  
25˚C, TYP  
1.40  
1.20  
Min (-40˚C to 85˚C)  
1.00  
0.80  
0.60  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
1997 Microchip Technology Inc.  
DS30272A-page 149  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 16-10: VIH, VIL OF MCLR,T0CKI AND OSC1 (IN RC MODE) VS. VDD  
4.50  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
VIH, Max (-40°C to 85°C)  
VIH, Typ (25°C)  
VIH, Min (-40°C to 85°C)  
VIL, Max (-40°C to 85°C)  
VIL, Typ (25°C)  
VIL, Min (-40°C to 85°C)  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
Note: These input pins have a Schmitt Trigger input buffer.  
FIGURE 16-11: VTH (INPUT THRESHOLD VOLTAGE) OF OSC1 INPUT (IN XT, HS, AND LP MODES)  
VS. VDD  
Min (-40°C to 85°C)  
3.60  
TYP (25°C)  
3.40  
3.20  
3.00  
2.80  
2.60  
2.40  
2.20  
2.00  
1.80  
1.60  
1.40  
1.20  
1.00  
Max (-40°C to 85°C)  
Min (-40°C to 85°C)  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
VDD (Volts)  
DS30272A-page 150  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 16-12: TYPICAL IDD VS. FREQ (EXT CLOCK, 25°C)  
10,000  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
1,000  
100  
10  
1
100,000,000  
10,000,000  
1,000,000  
10,000  
100,000  
Frequency (Hz)  
FIGURE 16-13: MAXIMUM, IDD VS. FREQ (EXT CLOCK, -40° TO +85°C)  
10,000  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
1,000  
100  
10  
100,000,000  
1,000,000  
Frequency (Hz)  
10,000  
10,000,000  
100,000  
1997 Microchip Technology Inc.  
DS30272A-page 151  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 16-14: MAXIMUM IDD VS. FREQ WITH A/D OFF (EXT CLOCK, -55° TO +125°C)  
10,000  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
1,000  
100  
10  
100,000,000  
10,000  
100,000  
1,000,000  
10,000,000  
Frequency (Hz)  
FIGURE 16-15: WDT TIMER TIME-OUT  
PERIOD VS. VDD  
FIGURE 16-16: TRANSCONDUCTANCE (gm)  
OF HS OSCILLATOR VS. VDD  
9000  
8000  
50  
45  
7000  
40  
Max, -40°C  
6000  
35  
Max, 85°C  
5000  
Max, 70°C  
30  
4000  
Typ, 25°C  
25  
20  
3000  
Min, 85°C  
2000  
Typ, 25°C  
Min, 0°C  
1000  
0
15  
10  
5
2
3
4
5
6
7
Min, -40°C  
VDD (Volts)  
2
3
4
5
6
7
VDD (Volts)  
DS30272A-page 152  
1997 Microchip Technology Inc.  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 16-17: TRANSCONDUCTANCE (gm)  
OF LP OSCILLATOR VS. VDD  
FIGURE 16-19: IOH VS. VOH, VDD = 3V  
0
225  
200  
-5  
Max, -40°C  
Min, 85°C  
175  
150  
-10  
Typ, 25°C  
125  
Typ, 25°C  
100  
75  
Min, 85°C  
-15  
Max, -40°C  
50  
-20  
25  
0
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
-25  
VDD (Volts)  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VOH (Volts)  
FIGURE 16-20: IOH VS. VOH, VDD = 5V  
FIGURE 16-18: TRANSCONDUCTANCE (gm)  
OF XT OSCILLATOR VS. VDD  
0
-5  
2500  
Max, -40°C  
-10  
-15  
2000  
Typ, 25°C  
-20  
Min @ 85°C  
1500  
-25  
Typ @ 25°C  
-30  
1000  
-35  
-40  
Max @ -40°C  
Min, 85°C  
500  
-45  
-50  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
VOH (Volts)  
0
2
3
4
5
6
7
VDD (Volts)  
1997 Microchip Technology Inc.  
DS30272A-page 153  
PIC16C71X  
Applicable Devices 710 71 711 715  
FIGURE 16-22: IOL VS. VOL, VDD = 5V  
FIGURE 16-21: IOL VS. VOL, VDD = 3V  
35  
90  
Max @ -40°C  
80  
30  
Max @ -40°C  
70  
60  
25  
Typ @ 25°C  
Typ @ 25°C  
20  
50  
40  
Min @ +85°C  
15  
Min @ +85°C  
30  
20  
10  
5
10  
0
0
0.0  
1.0  
VOL (Volts)  
0.5  
1.5  
2.0  
2.5  
3.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
VOL (Volts)  
DS30272A-page 154  
1997 Microchip Technology Inc.  
PIC16C71X  
17.0 PACKAGING INFORMATION  
17.1  
18-Lead Ceramic CERDIP Dual In-line with Window (300 mil) (JW)  
N
α
C
E1  
E
eA  
eB  
Pin No. 1  
Indicator  
Area  
D
S
S1  
e1  
Base  
Plane  
Seating  
Plane  
L
B1  
B
A
A3  
A2  
A1  
D1  
Package Group: Ceramic CERDIP Dual In-Line (CDP)  
Millimeters  
Inches  
Symbol  
Min  
Max  
Notes  
Min  
Max  
Notes  
α
0°  
10°  
0°  
10°  
A
5.080  
1.7780  
4.699  
4.445  
0.585  
1.651  
0.381  
23.622  
20.320  
8.382  
7.874  
2.540  
8.128  
10.160  
3.810  
18  
0.200  
0.070  
0.185  
0.175  
0.023  
0.065  
0.015  
0.930  
0.800  
0.330  
0.310  
0.100  
0.320  
0.400  
0.150  
18  
A1  
A2  
A3  
B
0.381  
3.810  
3.810  
0.355  
1.270  
0.203  
22.352  
20.320  
7.620  
5.588  
2.540  
7.366  
7.620  
3.175  
18  
0.015  
0.150  
0.150  
0.014  
0.050  
0.008  
0.880  
0.800  
0.300  
0.220  
0.100  
0.290  
0.300  
0.125  
18  
B1  
C
Typical  
Typical  
Typical  
Typical  
D
D1  
E
Reference  
Reference  
E1  
e1  
eA  
eB  
L
Reference  
Typical  
Reference  
Typical  
N
S
0.508  
0.381  
1.397  
1.270  
0.020  
0.015  
0.055  
0.050  
S1  
1997 Microchip Technology Inc.  
DS30272A-page 155  
PIC16C71X  
17.2  
18-Lead Plastic Dual In-line (300 mil) (P)  
N
α
C
E1  
E
eA  
eB  
Pin No. 1  
Indicator  
Area  
D
S
S1  
e1  
Base  
Plane  
Seating  
Plane  
L
B1  
B
A
A2  
A1  
D1  
Package Group: Plastic Dual In-Line (PLA)  
Millimeters  
Inches  
Symbol  
Min  
Max  
Notes  
Min  
Max  
Notes  
α
0°  
10°  
4.064  
0°  
10°  
0.160  
A
A1  
A2  
B
0.381  
3.048  
0.355  
1.524  
0.203  
22.479  
20.320  
7.620  
6.096  
2.489  
7.620  
7.874  
3.048  
18  
0.015  
0.120  
0.014  
0.060  
0.008  
0.885  
0.800  
0.300  
0.240  
0.098  
0.300  
0.310  
0.120  
18  
3.810  
0.559  
1.524  
0.381  
23.495  
20.320  
8.255  
7.112  
2.591  
7.620  
9.906  
3.556  
18  
0.150  
0.022  
0.060  
0.015  
0.925  
0.800  
0.325  
0.280  
0.102  
0.300  
0.390  
0.140  
18  
B1  
C
Reference  
Typical  
Reference  
Typical  
D
D1  
E
Reference  
Reference  
E1  
e1  
eA  
eB  
L
Typical  
Typical  
Reference  
Reference  
N
S
0.889  
0.127  
0.035  
0.005  
S1  
DS30272A-page 156  
1997 Microchip Technology Inc.  
PIC16C71X  
17.3  
18-Lead Plastic Surface Mount (SOIC - Wide, 300 mil Body)(SO)  
e
B
h x 45°  
N
Index  
Area  
E
H
α
C
Chamfer  
h x 45°  
L
1
2
3
D
Base  
Plane  
CP  
Seating  
Plane  
A1  
A
Package Group: Plastic SOIC (SO)  
Millimeters  
Max  
Inches  
Max  
Symbol  
Min  
0°  
Notes  
Min  
Notes  
α
A
8°  
0°  
8°  
2.362  
0.101  
0.355  
0.241  
11.353  
7.416  
1.270  
10.007  
0.381  
0.406  
18  
2.642  
0.300  
0.483  
0.318  
11.735  
7.595  
1.270  
10.643  
0.762  
1.143  
18  
0.093  
0.004  
0.014  
0.009  
0.447  
0.292  
0.050  
0.394  
0.015  
0.016  
18  
0.104  
0.012  
0.019  
0.013  
0.462  
0.299  
0.050  
0.419  
0.030  
0.045  
18  
A1  
B
C
D
E
e
Reference  
Reference  
H
h
L
N
CP  
0.102  
0.004  
1997 Microchip Technology Inc.  
DS30272A-page 157  
PIC16C71X  
17.4  
20-Lead Plastic Surface Mount (SSOP - 209 mil Body 5.30 mm) (SS)  
N
Index  
area  
E
H
α
C
L
1 2 3  
e
B
A
Base plane  
CP  
Seating plane  
D
A1  
Package Group: Plastic SSOP  
Millimeters  
Max  
Inches  
Max  
Symbol  
Min  
Notes  
Min  
Notes  
α
A
0°  
8°  
0°  
8°  
1.730  
0.050  
0.250  
0.130  
7.070  
5.200  
0.650  
7.650  
0.550  
20  
1.990  
0.210  
0.380  
0.220  
7.330  
5.380  
0.650  
7.900  
0.950  
20  
0.068  
0.002  
0.010  
0.005  
0.278  
0.205  
0.026  
0.301  
0.022  
20  
0.078  
0.008  
0.015  
0.009  
0.289  
0.212  
0.026  
0.311  
0.037  
20  
A1  
B
C
D
E
e
Reference  
Reference  
H
L
N
CP  
-
0.102  
-
0.004  
Note 1: Dimensions D1 and E1 do not include mold protrusion. Allowable mold protrusion is 0.25m/m (0.010”) per  
side. D1 and E1 dimensions including mold mismatch.  
2: Dimension “b” does not include Dambar protrusion, allowable Dambar protrusion shall be 0.08m/m  
(0.003”)max.  
3: This outline conforms to JEDEC MS-026.  
DS30272A-page 158  
1997 Microchip Technology Inc.  
PIC16C71X  
17.5  
Package Marking Information  
18-Lead PDIP  
Example  
PIC16C711-04/P  
9452CBA  
MMMMMMMMMMMMM  
XXXXXXXXXXXXXXXX  
AABBCDE  
18-Lead SOIC  
Example  
PIC16C715  
MMMMMMMMMM  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
-20/50  
AABBCDE  
9447CBA  
18-Lead CERDIP Windowed  
Example  
MMMMMM  
XXXXXXXX  
PIC16C71  
/JW  
AABBCDE  
945/CBT  
20-Lead SSOP  
Example  
XXXXXXXX  
XXXXXXXX  
PIC16C710  
20I/SS025  
AABBCAE  
9517SBP  
Legend:  
MM...M  
XX...X  
AA  
Microchip part number information  
Customer specific information*  
Year code (last 2 digits of calender year)  
Week code (week of January 1 is week '01’)  
BB  
C
Facility code of the plant at which wafer is manufactured.  
C = Chandler, Arizona, U.S.A.  
S = Tempe, Arizona, U.S.A.  
D
1
E
Mask revision number for microcontroller  
Assembly code of the plant or country of origin in which  
part was assembled.  
In the event the full Microchip part number cannot be marked on one  
line, it will be carried over to the next line thus limiting the number of  
available characters for customer specific information.  
Note:  
*
Standard OTP marking consists of Microchip part number, year code, week code,  
facility code, mask revision number, and assembly code. For OTP marking beyond  
this, certain price adders apply. Please check with your Microchip Sales Office.  
For QTP devices, any special marking adders are included in QTP price.  
1997 Microchip Technology Inc.  
DS30272A-page 159  
PIC16C71X  
NOTES:  
DS30272A-page 160  
1997 Microchip Technology Inc.  
PIC16C71X  
APPENDIX A:  
APPENDIX B: COMPATIBILITY  
The following are the list of modifications over the  
PIC16C5X microcontroller family:  
To convert code written for PIC16C5X to PIC16CXX,  
the user should take the following steps:  
1. Instruction word length is increased to 14-bits.  
This allows larger page sizes both in program  
memory (1K now as opposed to 512 before) and  
register file (68 bytes now versus 32 bytes  
before).  
1. Remove any program memory page select  
operations (PA2, PA1, PA0 bits) for CALL, GOTO.  
2. Revisit any computed jump operations (write to  
PC or add to PC, etc.) to make sure page bits  
are set properly under the new scheme.  
2. A PC high latch register (PCLATH) is added to  
handle program memory paging. Bits PA2, PA1,  
PA0 are removed from STATUS register.  
3. Eliminate any data memory page switching.  
Redefine data variables to reallocate them.  
4. Verify all writes to STATUS, OPTION, and FSR  
registers since these have changed.  
3. Data memory paging is redefined slightly.  
STATUS register is modified.  
5. Change reset vector to 0000h.  
4. Four new instructions have been added:  
RETURN, RETFIE, ADDLW, and SUBLW.  
Two instructions TRIS and OPTION are being  
phased out although they are kept for compati-  
bility with PIC16C5X.  
5. OPTION and TRIS registers are made address-  
able.  
6. Interrupt capability is added. Interrupt vector is  
at 0004h.  
7. Stack size is increased to 8 deep.  
8. Reset vector is changed to 0000h.  
9. Reset of all registers is revisited. Five different  
reset (and wake-up) types are recognized. Reg-  
isters are reset differently.  
10. Wake up from SLEEP through interrupt is  
added.  
11. Two separate timers, Oscillator Start-up Timer  
(OST) and Power-up Timer (PWRT) are  
included for more reliable power-up. These tim-  
ers are invoked selectively to avoid unneces-  
sary delays on power-up and wake-up.  
12. PORTB has weak pull-ups and interrupt on  
change feature.  
13. T0CKI pin is also a port pin (RA4) now.  
14. FSR is made a full eight bit register.  
15. “In-circuit serial programming” is made possible.  
The user can program PIC16CXX devices using  
only five pins: VDD, VSS, MCLR/VPP, RB6 (clock)  
and RB7 (data in/out).  
16. PCON status register is added with a Power-on  
Reset status bit (POR).  
17. Code protection scheme is enhanced such that  
portions of the program memory can be pro-  
tected, while the remainder is unprotected.  
18. Brown-out protection circuitry has been added.  
Controlled by configuration word bit BODEN.  
Brown-out reset ensures the device is placed in  
a reset condition if VDD dips below a fixed set-  
point.  
1997 Microchip Technology Inc.  
DS30272A-page 161  
PIC16C71X  
APPENDIX C: WHAT’S NEW  
APPENDIX D: WHAT’S CHANGED  
1. Consolidated all pin compatible 18-pin A/D  
based devices into one data sheet.  
1. Minor changes, spelling and grammatical  
changes.  
2. Low voltage operation on the PIC16LC710/711/  
715 has been reduced from 3.0V to 2.5V.  
3. Part numbers of the PIC16C70 and PIC16C71A  
have changed to PIC16C710 and PIC16C711,  
respectively.  
DS30272A-page 162  
1997 Microchip Technology Inc.  
PIC16C71X  
RB7:RB4 Port Pins .....................................................28  
Timer0 ........................................................................31  
Timer0/WDT Prescaler ...............................................34  
Watchdog Timer .........................................................65  
BODEN bit ..........................................................................48  
BOR bit ........................................................................ 22, 54  
Brown-out Reset (BOR) ......................................................53  
INDEX  
A
A/D  
Accuracy/Error ........................................................... 44  
ADIF bit ...................................................................... 39  
Analog Input Model Block Diagram ............................ 40  
Analog-to-Digital Converter ........................................ 37  
Configuring Analog Port Pins ..................................... 41  
Configuring the Interrupt ............................................ 39  
Configuring the Module .............................................. 39  
Connection Considerations ........................................ 44  
Conversion Clock ....................................................... 41  
Conversion Time ........................................................ 43  
Conversions ............................................................... 42  
Converter Characteristics .......................... 99, 122, 145  
Delays ........................................................................ 40  
Effects of a Reset ....................................................... 44  
Equations ................................................................... 40  
Faster Conversion - Lower Resolution Trade-off ....... 43  
Flowchart of A/D Operation ........................................ 45  
GO/DONE bit ............................................................. 39  
Internal Sampling Switch (Rss) Impedence ............... 40  
Minimum Charging Time ............................................ 40  
Operation During Sleep ............................................. 44  
Sampling Requirements ............................................. 40  
Source Impedence ..................................................... 40  
Time Delays ............................................................... 40  
Transfer Function ....................................................... 45  
Absolute Maximum Ratings ............................... 89, 111, 135  
AC Characteristics  
C
C bit ....................................................................................17  
C16C71 ..............................................................................47  
Carry bit ................................................................................7  
CHS0 bit .............................................................................37  
CHS1 bit .............................................................................37  
Clocking Scheme ................................................................10  
Code Examples  
Call of a Subroutine in Page 1 from Page 0 ...............24  
Changing Prescaler (Timer0 to WDT) ........................35  
Changing Prescaler (WDT to Timer0) ........................35  
Doing an A/D Conversion ...........................................42  
I/O Programming ........................................................30  
Indirect Addressing .....................................................24  
Initializing PORTA ......................................................25  
Initializing PORTB ......................................................27  
Saving STATUS and W Registers in RAM .................64  
Code Protection ........................................................... 47, 67  
Computed GOTO ...............................................................23  
Configuration Bits ...............................................................47  
CP0 bit ......................................................................... 47, 48  
CP1 bit ................................................................................48  
D
PIC16C710 .............................................................. 101  
PIC16C711 .............................................................. 101  
PIC16C715 .............................................................. 125  
ADCON0 Register .............................................................. 37  
ADCON1 ............................................................................ 37  
ADCON1 Register ........................................................ 14, 37  
ADCS0 bit .......................................................................... 37  
ADCS1 bit .......................................................................... 37  
ADIE bit ........................................................................ 19, 20  
ADIF bit ........................................................................ 21, 37  
ADON bit ............................................................................ 37  
ADRES Register .................................................... 15, 37, 39  
ALU ...................................................................................... 7  
Application Notes  
DC bit ..................................................................................17  
DC Characteristics ........................................................... 147  
PIC16C71 ................................................................ 136  
PIC16C710 ........................................................ 90, 101  
PIC16C711 ........................................................ 90, 101  
PIC16C715 ...................................................... 113, 125  
Development Support .................................................... 3, 85  
Development Tools .............................................................85  
Diagrams - See Block Diagrams  
Digit Carry bit ........................................................................7  
Direct Addressing ...............................................................24  
E
Electrical Characteristics  
AN546 ........................................................................ 37  
AN552 ........................................................................ 27  
AN556 ........................................................................ 23  
AN607, Power-up Trouble Shooting .......................... 53  
Architecture  
Harvard ........................................................................ 7  
Overview ...................................................................... 7  
von Neumann ............................................................... 7  
Assembler  
PIC16C71 ................................................................ 135  
PIC16C710 .................................................................89  
PIC16C711 .................................................................89  
PIC16C715 .............................................................. 111  
External Brown-out Protection Circuit .................................60  
External Power-on Reset Circuit ........................................60  
F
Family of Devices  
MPASM Assembler .................................................... 86  
PIC16C71X ...................................................................4  
FOSC0 bit .................................................................... 47, 48  
FOSC1 bit .................................................................... 47, 48  
FSR Register ......................................................... 15, 16, 24  
Fuzzy Logic Dev. System (fuzzyTECH -MP) .....................87  
B
Block Diagrams  
Analog Input Model .................................................... 40  
On-Chip Reset Circuit ................................................ 52  
PIC16C71X .................................................................. 8  
RA3/RA0 Port Pins .................................................... 25  
RA4/T0CKI Pin ........................................................... 25  
RB3:RB0 Port Pins .................................................... 27  
RB7:RB4 Pins ............................................................ 28  
G
General Description ..............................................................3  
GIE bit .......................................................................... 19, 61  
GO/DONE bit ......................................................................37  
1997 Microchip Technology Inc.  
DS30390D-page 163  
PIC16C71X  
TMR0 Overflow .......................................................... 61  
INTF bit .............................................................................. 19  
IRP bit ................................................................................ 17  
I
I/O Ports  
PORTA .......................................................................25  
PORTB .......................................................................27  
Section .......................................................................25  
I/O Programming Considerations .......................................30  
ICEPIC Low-Cost PIC16CXXX In-Circuit Emulator ...........85  
In-Circuit Serial Programming ......................................47, 67  
INDF Register ........................................................14, 16, 24  
Indirect Addressing ............................................................24  
Instruction Cycle .................................................................10  
Instruction Flow/Pipelining .................................................10  
Instruction Format ..............................................................69  
Instruction Set  
K
KeeLoq Evaluation and Programming Tools ................... 87  
L
Loading of PC .................................................................... 23  
LP ...................................................................................... 54  
M
MCLR ........................................................................... 52, 56  
Memory  
Data Memory ............................................................. 12  
Program Memory ....................................................... 11  
Register File Maps  
ADDLW ......................................................................71  
ADDWF ......................................................................71  
ANDLW ......................................................................71  
ANDWF ......................................................................71  
BCF ............................................................................72  
BSF ............................................................................72  
BTFSC .......................................................................72  
BTFSS .......................................................................73  
CALL ..........................................................................73  
CLRF ..........................................................................74  
CLRW ........................................................................74  
CLRWDT ....................................................................74  
COMF ........................................................................75  
DECF .........................................................................75  
DECFSZ .....................................................................75  
GOTO ........................................................................76  
INCF ...........................................................................76  
INCFSZ ......................................................................77  
IORLW .......................................................................77  
IORWF .......................................................................78  
MOVF .........................................................................78  
MOVLW .....................................................................78  
MOVWF .....................................................................78  
NOP ...........................................................................79  
OPTION .....................................................................79  
RETFIE ......................................................................79  
RETLW ......................................................................80  
RETURN ....................................................................80  
RLF ............................................................................81  
RRF ............................................................................81  
SLEEP .......................................................................82  
SUBLW ......................................................................82  
SUBWF ......................................................................83  
SWAPF ......................................................................83  
TRIS ...........................................................................83  
XORLW ......................................................................84  
XORWF ......................................................................84  
Section .......................................................................69  
Summary Table ..........................................................70  
INT Interrupt .......................................................................63  
INTCON Register ...............................................................19  
INTE bit ..............................................................................19  
INTEDG bit ...................................................................18, 63  
Internal Sampling Switch (Rss) Impedence .......................40  
Interrupts ............................................................................47  
A/D .............................................................................61  
External ......................................................................61  
PORTB Change .........................................................61  
PortB Change ............................................................63  
RB7:RB4 Port Change ...............................................27  
Section .......................................................................61  
TMR0 .........................................................................63  
PIC16C71 .......................................................... 12  
PIC16C710 ........................................................ 12  
PIC16C711 ........................................................ 13  
PIC16C715 ........................................................ 13  
MP-DriveWay - Application Code Generator .................. 87  
MPEEN bit ................................................................... 22, 48  
MPLAB C ........................................................................ 87  
MPLAB Integrated Development Environment  
Software ............................................................................. 86  
O
OPCODE ........................................................................... 69  
OPTION Register ............................................................... 18  
Orthogonal ........................................................................... 7  
OSC selection .................................................................... 47  
Oscillator  
HS ........................................................................ 49, 54  
LP ........................................................................ 49, 54  
RC ............................................................................. 49  
XT ........................................................................ 49, 54  
Oscillator Configurations .................................................... 49  
Oscillator Start-up Timer (OST) ......................................... 53  
P
Packaging  
18-Lead CERDIP w/Window ................................... 155  
18-Lead PDIP .......................................................... 156  
18-Lead SOIC .......................................................... 157  
20-Lead SSOP ........................................................ 158  
Paging, Program Memory .................................................. 23  
PCL Register ................................................... 14, 15, 16, 23  
PCLATH ....................................................................... 57, 58  
PCLATH Register ............................................ 14, 15, 16, 23  
PCON Register ............................................................ 22, 54  
PD bit ..................................................................... 17, 52, 55  
PER bit ............................................................................... 22  
PIC16C71 ........................................................................ 147  
AC Characteristics ................................................... 147  
PICDEM-1 Low-Cost PIC16/17 Demo Board .................... 86  
PICDEM-2 Low-Cost PIC16CXX Demo Board .................. 86  
PICDEM-3 Low-Cost PIC16CXXX Demo Board ............... 86  
PICMASTER In-Circuit Emulator ..................................... 85  
PICSTART Plus Entry Level Development System ......... 85  
PIE1 Register ..................................................................... 20  
Pin Functions  
MCLR/VPP ................................................................... 9  
OSC1/CLKIN ............................................................... 9  
OSC2/CLKOUT ........................................................... 9  
RA0/AN0 ...................................................................... 9  
RA1/AN1 ...................................................................... 9  
DS30390D-page 164  
1997 Microchip Technology Inc.  
PIC16C71X  
RA2/AN2 ...................................................................... 9  
RA3/AN3/VREF ............................................................. 9  
RA4/T0CKI ................................................................... 9  
RB0/INT ....................................................................... 9  
RB1 .............................................................................. 9  
RB2 .............................................................................. 9  
RB3 .............................................................................. 9  
RB4 .............................................................................. 9  
RB5 .............................................................................. 9  
RB6 .............................................................................. 9  
RB7 .............................................................................. 9  
VDD .............................................................................. 9  
VSS ............................................................................... 9  
PIC16C711 .........................................................13  
PIC16C715 .........................................................13  
Reset Conditions ........................................................56  
Summary ............................................................. 14–??  
Reset ........................................................................... 47, 52  
Reset Conditions for Special Registers ..............................56  
RP0 bit ......................................................................... 12, 17  
RP1 bit ................................................................................17  
S
SEEVAL Evaluation and Programming System ...............87  
Services  
One-Time-Programmable (OTP) Devices ....................5  
Quick-Turnaround-Production (QTP) Devices ..............5  
Serialized Quick-Turnaround Production (SQTP)  
Devices .........................................................................5  
SLEEP ......................................................................... 47, 52  
Software Simulator (MPLAB SIM) ...................................87  
Special Features of the CPU ..............................................47  
Special Function Registers  
PIC16C71 ...................................................................14  
PIC16C710 .................................................................14  
PIC16C711 .................................................................14  
Special Function Registers, Section ...................................14  
Stack ...................................................................................23  
Overflows ....................................................................23  
Underflow ...................................................................23  
STATUS Register ...............................................................17  
Pinout Descriptions  
PIC16C71 .................................................................... 9  
PIC16C710 .................................................................. 9  
PIC16C711 .................................................................. 9  
PIC16C715 .................................................................. 9  
PIR1 Register ..................................................................... 21  
POP ................................................................................... 23  
POR ............................................................................. 53, 54  
Oscillator Start-up Timer (OST) ........................... 47, 53  
Power Control Register (PCON) ................................ 54  
Power-on Reset (POR) ............................ 47, 53, 57, 58  
Power-up Timer (PWRT) ..................................... 47, 53  
Time-out Sequence .................................................... 54  
Time-out Sequence on Power-up .............................. 59  
TO ........................................................................ 52, 55  
POR bit ........................................................................ 22, 54  
Port RB Interrupt ................................................................ 63  
PORTA ......................................................................... 57, 58  
PORTA Register .................................................... 14, 15, 25  
PORTB ......................................................................... 57, 58  
PORTB Register .................................................... 14, 15, 27  
Power-down Mode (SLEEP) .............................................. 66  
Prescaler, Switching Between Timer0 and WDT ............... 35  
PRO MATE II Universal Programmer .............................. 85  
Program Branches ............................................................... 7  
Program Memory  
T
T0CS bit ..............................................................................18  
T0IE bit ...............................................................................19  
T0IF bit ...............................................................................19  
TAD .....................................................................................41  
Timer0  
RTCC ................................................................... 57, 58  
Timers  
Timer0  
Block Diagram ....................................................31  
External Clock ....................................................33  
External Clock Timing ........................................33  
Increment Delay .................................................33  
Interrupt ..............................................................31  
Interrupt Timing ..................................................32  
Prescaler ............................................................34  
Prescaler Block Diagram ....................................34  
Section ...............................................................31  
Switching Prescaler Assignment ........................35  
Synchronization ..................................................33  
T0CKI .................................................................33  
T0IF ....................................................................63  
Timing .................................................................31  
TMR0 Interrupt ...................................................63  
Timing Diagrams  
Paging ........................................................................ 23  
Program Memory Maps  
PIC16C71 .................................................................. 11  
PIC16C710 ................................................................ 11  
PIC16C711 ................................................................ 11  
PIC16C715 ................................................................ 11  
Program Verification .......................................................... 67  
PS0 bit ............................................................................... 18  
PS1 bit ............................................................................... 18  
PS2 bit ............................................................................... 18  
PSA bit ............................................................................... 18  
PUSH ................................................................................. 23  
PWRT  
Power-up Timer (PWRT) ........................................... 53  
PWRTE bit ................................................................... 47, 48  
A/D Conversion ....................................... 100, 124, 146  
Brown-out Reset .................................................. 53, 97  
CLKOUT and I/O ....................................... 96, 119, 142  
External Clock Timing ................................ 95, 118, 141  
Power-up Timer ................................................. 97, 143  
Reset ................................................................. 97, 143  
Start-up Timer .................................................... 97, 143  
Time-out Sequence ....................................................59  
Timer0 ................................................. 31, 98, 121, 144  
Timer0 Interrupt Timing ..............................................32  
Timer0 with External Clock .........................................33  
Wake-up from SLEEP through Interrupt .....................67  
Watchdog Timer ................................................ 97, 143  
R
RBIE bit .............................................................................. 19  
RBIF bit .................................................................. 19, 27, 63  
RBPU bit ............................................................................ 18  
RC ...................................................................................... 54  
RC Oscillator ................................................................ 51, 54  
Read-Modify-Write ............................................................. 30  
Register File ....................................................................... 12  
Registers  
Maps  
PIC16C71 .......................................................... 12  
PIC16C710 ........................................................ 12  
1997 Microchip Technology Inc.  
DS30390D-page 165  
PIC16C71X  
TO bit .................................................................................17  
TOSE bit .............................................................................18  
TRISA Register ......................................................14, 16, 25  
TRISB Register ......................................................14, 16, 27  
Two’s Complement ..............................................................7  
LIST OF EXAMPLES  
Example 3-1: Instruction Pipeline Flow........................... 10  
Example 4-1: Call of a Subroutine in Page 1 from  
Page 0 ...................................................... 24  
Example 4-2: Indirect Addressing................................... 24  
Example 5-1: Initializing PORTA..................................... 25  
Example 5-2: Initializing PORTB..................................... 27  
Example 5-3: Read-Modify-Write Instructions  
U
Upward Compatibility ...........................................................3  
UV Erasable Devices ...........................................................5  
on an I/O Port ........................................... 30  
W
Example 6-1: Changing Prescaler (Timer0WDT)........ 35  
Example 6-2: Changing Prescaler (WDTTimer0)........ 35  
Equation 7-1: A/D Minimum Charging Time.................... 40  
Example 7-1: Calculating the Minimum Required  
Aquisition Time ......................................... 40  
Example 7-2: A/D Conversion......................................... 42  
Example 7-3: 4-bit vs. 8-bit Conversion Times ............... 43  
Example 8-1: Saving STATUS and W Registers  
in RAM...................................................... 64  
W Register  
ALU ..............................................................................7  
Wake-up from SLEEP ........................................................66  
Watchdog Timer (WDT) ...................................47, 52, 56, 65  
WDT ...................................................................................56  
Block Diagram ............................................................65  
Programming Considerations ....................................65  
Timeout ................................................................57, 58  
WDT Period ........................................................................65  
WDTE bit ......................................................................47, 48  
LIST OF FIGURES  
Z
Figure 3-1:  
Figure 3-2:  
Figure 4-1:  
PIC16C71X Block Diagram ........................ 8  
Clock/Instruction Cycle ............................. 10  
PIC16C710 Program Memory Map  
Z bit ....................................................................................17  
Zero bit .................................................................................7  
and Stack.................................................. 11  
PIC16C71/711 Program Memory Map  
and Stack.................................................. 11  
PIC16C715 Program Memory Map  
Figure 4-2:  
Figure 4-3:  
and Stack.................................................. 11  
PIC16C710/71 Register File Map............. 12  
PIC16C711 Register File Map.................. 13  
PIC16C715 Register File Map.................. 13  
Status Register (Address 03h, 83h).......... 17  
OPTION Register (Address 81h, 181h).... 18  
INTCON Register (Address 0Bh, 8Bh) ..... 19  
PIE1 Register (Address 8Ch) ................... 20  
PIR1 Register (Address 0Ch) ................... 21  
PCON Register (Address 8Eh),  
Figure 4-4:  
Figure 4-5:  
Figure 4-6:  
Figure 4-7:  
Figure 4-8:  
Figure 4-9:  
Figure 4-10:  
Figure 4-11:  
Figure 4-12:  
PIC16C710/711 ........................................ 22  
PCON Register (Address 8Eh),  
Figure 4-13:  
PIC16C715 ............................................... 22  
Loading of PC In Different Situations........ 23  
Direct/Indirect Addressing......................... 24  
Block Diagram of RA3:RA0 Pins .............. 25  
Block Diagram of RA4/T0CKI Pin............. 25  
Block Diagram of RB3:RB0 Pins .............. 27  
Block Diagram of RB7:RB4 Pins  
Figure 4-14:  
Figure 4-15:  
Figure 5-1:  
Figure 5-2:  
Figure 5-3:  
Figure 5-4:  
(PIC16C71)............................................... 28  
Block Diagram of RB7:RB4 Pins  
Figure 5-5:  
(PIC16C710/711/715)............................... 28  
Successive I/O Operation......................... 30  
Timer0 Block Diagram .............................. 31  
Timer0 Timing: Internal Clock/  
Figure 5-6:  
Figure 6-1:  
Figure 6-2:  
No Prescale .............................................. 31  
Timer0 Timing: Internal Clock/  
Figure 6-3:  
Prescale 1:2.............................................. 32  
Timer0 Interrupt Timing ............................ 32  
Timer0 Timing with External Clock ........... 33  
Block Diagram of the Timer0/  
Figure 6-4:  
Figure 6-5:  
Figure 6-6:  
WDT Prescaler ......................................... 34  
ADCON0 Register (Address 08h),  
PIC16C710/71/711 ................................... 37  
ADCON0 Register (Address 1Fh),  
Figure 7-1:  
Figure 7-2:  
PIC16C715 ............................................... 38  
DS30390D-page 166  
1997 Microchip Technology Inc.  
PIC16C71X  
Figure 7-3:  
ADCON1 Register, PIC16C710/71/711  
(Address 88h),  
Figure 12-9:  
Maximum IPD vs. VDD Brown-out Detect  
Enabled (85°C to -40°C, RC Mode)........ 103  
PIC16C715 (Address 9Fh)........................ 38  
A/D Block Diagram.................................... 39  
Analog Input Model ................................... 40  
A/D Transfer Function............................... 45  
Flowchart of A/D Operation....................... 45  
Configuration Word for PIC16C71 ............ 47  
Configuration Word, PIC16C710/711........ 48  
Configuration Word, PIC16C715............... 48  
Crystal/Ceramic Resonator Operation  
(HS, XT or LP OSC Configuration) ........... 49  
External Clock Input Operation  
(HS, XT or LP OSC Configuration) ........... 49  
External Parallel Resonant Crystal  
Oscillator Circuit........................................ 51  
External Series Resonant Crystal  
Oscillator Circuit........................................ 51  
RC Oscillator Mode................................... 51  
Simplified Block Diagram of On-chip  
Reset Circuit.............................................. 52  
Brown-out Situations................................. 53  
Time-out Sequence on Power-up  
Figure 12-10: Typical IPD vs. Timer1 Enabled  
(32 kHz, RC0/RC1 = 33 pF/33 pF,  
RC Mode) ............................................... 103  
Figure 12-11: Maximum IPD vs. Timer1 Enabled  
(32 kHz, RC0/RC1 = 33 pF/33 pF,  
Figure 7-4:  
Figure 7-5:  
Figure 7-6:  
Figure 7-7:  
Figure 8-1:  
Figure 8-2:  
Figure 8-3:  
Figure 8-4:  
85°C to -40°C, RC Mode)....................... 103  
Figure 12-12: Typical IDD vs. Frequency  
(RC Mode @ 22 pF, 25°C) ..................... 104  
Figure 12-13: Maximum IDD vs. Frequency  
(RC Mode @ 22 pF, -40°C to 85°C)....... 104  
Figure 12-14: Typical IDD vs. Frequency  
(RC Mode @ 100 pF, 25°C) ................... 105  
Figure 12-15: Maximum IDD vs. Frequency  
(RC Mode @ 100 pF, -40°C to 85°C)..... 105  
Figure 12-16: Typical IDD vs. Frequency  
(RC Mode @ 300 pF, 25°C) ................... 106  
Figure 12-17: Maximum IDD vs. Frequency  
(RC Mode @ 300 pF, -40°C to 85°C)..... 106  
Figure 12-18: Typical IDD vs. Capacitance  
@ 500 kHz (RC Mode) ........................... 107  
Figure 12-19: Transconductance(gm) of  
HS Oscillator vs. VDD.............................. 107  
Figure 12-20: Transconductance(gm) of  
LP Oscillator vs. VDD .............................. 107  
Figure 12-21: Transconductance(gm) of  
XT Oscillator vs. VDD .............................. 107  
Figure 12-22: Typical XTAL Startup Time vs.  
VDD (LP Mode, 25°C) ............................. 108  
Figure 12-23: Typical XTAL Startup Time vs.  
VDD (HS Mode, 25°C)............................. 108  
Figure 12-24: Typical XTAL Startup Time vs.  
VDD (XT Mode, 25°C) ............................. 108  
Figure 12-25: Typical IDD vs. Frequency  
(LP Mode, 25°C)..................................... 109  
Figure 12-26: Maximum IDD vs. Frequency  
(LP Mode, 85°C to -40°C)....................... 109  
Figure 12-27: Typical IDD vs. Frequency  
(XT Mode, 25°C)..................................... 109  
Figure 12-28: Maximum IDD vs. Frequency  
(XT Mode, -40°C to 85°C) ...................... 109  
Figure 12-29: Typical IDD vs. Frequency  
(HS Mode, 25°C) .................................... 110  
Figure 12-30: Maximum IDD vs. Frequency  
(HS Mode, -40°C to 85°C)...................... 110  
Figure 8-5:  
Figure 8-6:  
Figure 8-7:  
Figure 8-8:  
Figure 8-9:  
Figure 8-10:  
Figure 8-11:  
(MCLR not Tied to VDD): Case 1............... 59  
Time-out Sequence on Power-up  
(MCLR Not Tied To VDD): Case 2............. 59  
Time-out Sequence on Power-up  
(MCLR Tied to VDD).................................. 59  
External Power-on Reset Circuit  
Figure 8-12:  
Figure 8-13:  
Figure 8-14:  
(for Slow VDD Power-up)........................... 60  
External Brown-out Protection Circuit 1 .... 60  
External Brown-out Protection Circuit 2 .... 60  
Interrupt Logic, PIC16C710, 71, 711......... 62  
Interrupt Logic, PIC16C715....................... 62  
INT Pin Interrupt Timing............................ 63  
Watchdog Timer Block Diagram ............... 65  
Summary of Watchdog Timer Registers ... 65  
Wake-up from Sleep Through Interrupt..... 67  
Typical In-Circuit Serial Programming  
Connection................................................ 67  
General Format for Instructions ................ 69  
Load Conditions ........................................ 94  
External Clock Timing ............................... 95  
CLKOUT and I/O Timing........................... 96  
Reset, Watchdog Timer, Oscillator  
Figure 8-15:  
Figure 8-16:  
Figure 8-17:  
Figure 8-18:  
Figure 8-19:  
Figure 8-20:  
Figure 8-21:  
Figure 8-22:  
Figure 8-23:  
Figure 9-1:  
Figure 11-1:  
Figure 11-2:  
Figure 11-3:  
Figure 11-4:  
Start-up Timer and Power-up Timer  
Timing ....................................................... 97  
Brown-out Reset Timing............................ 97  
Timer0 External Clock Timings ................. 98  
A/D Conversion Timing ........................... 100  
Typical IPD vs. VDD  
(WDT Disabled, RC Mode) ..................... 101  
Maximum IPD vs. VDD  
(WDT Disabled, RC Mode) ..................... 101  
Typical IPD vs. VDD @ 25°C  
(WDT Enabled, RC Mode) ...................... 102  
Maximum IPD vs. VDD  
(WDT Enabled, RC Mode) ...................... 102  
Typical RC Oscillator Frequency  
vs. VDD .................................................... 102  
Typical RC Oscillator Frequency  
vs. VDD .................................................... 102  
Typical RC Oscillator Frequency  
Figure 13-1:  
Figure 13-2:  
Figure 13-3:  
Figure 13-4:  
Load Conditions...................................... 117  
External Clock Timing............................. 118  
CLKOUT and I/O Timing......................... 119  
Reset, Watchdog Timer, Oscillator  
Start-Up Timer, and Power-Up Timer  
Timing..................................................... 120  
Brown-out Reset Timing ......................... 120  
Timer0 Clock Timings............................. 121  
A/D Conversion Timing........................... 124  
Typical IPD vs. VDD  
(WDT Disabled, RC Mode)..................... 125  
Maximum IPD vs. VDD  
(WDT Disabled, RC Mode)..................... 125  
Typical IPD vs. VDD @ 25°C  
(WDT Enabled, RC Mode)...................... 126  
Maximum IPD vs. VDD  
(WDT Enabled, RC Mode)...................... 126  
Typical RC Oscillator Frequency vs.  
VDD ......................................................... 126  
Figure 11-5:  
Figure 11-6:  
Figure 11-7:  
Figure 12-1:  
Figure 12-2:  
Figure 12-3:  
Figure 12-4:  
Figure 12-5:  
Figure 12-6:  
Figure 12-7:  
Figure 12-8:  
Figure 13-5:  
Figure 13-6:  
Figure 13-7:  
Figure 14-1:  
Figure 14-2:  
Figure 14-3:  
Figure 14-4:  
Figure 14-5:  
vs. VDD .................................................... 102  
Typical IPD vs. VDD Brown-out Detect  
Enabled (RC Mode) ................................ 103  
1997 Microchip Technology Inc.  
DS30390D-page 167  
PIC16C71X  
Figure 14-6:  
Figure 14-7:  
Figure 14-8:  
Figure 14-9:  
Typical RC Oscillator Frequency vs.  
Figure 16-4:  
Figure 16-5:  
Figure 16-6:  
Figure 16-7:  
Figure 16-8:  
Figure 16-9:  
Typical RC Oscillator Frequency vs.  
VDD..........................................................126  
Typical RC Oscillator Frequency vs.  
VDD..........................................................126  
Typical IPD vs. VDD Brown-out Detect  
Enabled (RC Mode) ................................127  
Maximum IPD vs. VDD Brown-out Detect  
Enabled  
VDD ......................................................... 148  
Typical Ipd vs. VDD Watchdog Timer  
Disabled 25°C......................................... 148  
Typical Ipd vs. VDD Watchdog Timer  
Enabled 25°C.......................................... 148  
Maximum Ipd vs. VDD Watchdog  
Disabled.................................................. 149  
Maximum Ipd vs. VDD Watchdog  
Enabled................................................... 149  
Vth (Input Threshold Voltage) of  
(85°C to -40°C, RC Mode) ......................127  
Figure 14-10: Typical IPD vs. Timer1 Enabled (32 kHz,  
RC0/RC1 = 33 pF/33 pF, RC Mode).......127  
Figure 14-11: Maximum IPD vs. Timer1 Enabled  
(32 kHz, RC0/RC1 = 33 pF/33 pF,  
I/O Pins vs. VDD...................................... 149  
Figure 16-10: VIH, VIL of MCLR, T0CKI and OSC1  
(in RC Mode) vs. VDD ............................. 150  
85°C to -40°C, RC Mode)........................127  
Figure 14-12: Typical IDD vs. Frequency  
(RC Mode @ 22 pF, 25°C)......................128  
Figure 14-13: Maximum IDD vs. Frequency  
(RC Mode @ 22 pF, -40°C to 85°C)........128  
Figure 14-14: Typical IDD vs. Frequency  
(RC Mode @ 100 pF, 25°C)....................129  
Figure 14-15: Maximum IDD vs. Frequency  
(RC Mode @ 100 pF, -40°C to 85°C)......129  
Figure 14-16: Typical IDD vs. Frequency  
(RC Mode @ 300 pF, 25°C)....................130  
Figure 14-17: Maximum IDD vs. Frequency  
(RC Mode @ 300 pF, -40°C to 85°C)......130  
Figure 14-18: Typical IDD vs. Capacitance @ 500 kHz  
(RC Mode)...............................................131  
Figure 14-19: Transconductance(gm) of  
HS Oscillator vs. VDD ..............................131  
Figure 14-20: Transconductance(gm) of  
LP Oscillator vs. VDD...............................131  
Figure 14-21: Transconductance(gm) of  
XT Oscillator vs. VDD ..............................131  
Figure 14-22: Typical XTAL Startup Time vs.  
VDD (LP Mode, 25°C)..............................132  
Figure 14-23: Typical XTAL Startup Time vs.  
VDD (HS Mode, 25°C) .............................132  
Figure 14-24: Typical XTAL Startup Time vs.  
VDD (XT Mode, 25°C)..............................132  
Figure 14-25: Typical IDD vs. Frequency  
(LP Mode, 25°C) .....................................133  
Figure 14-26: Maximum IDD vs. Frequency  
(LP Mode, 85°C to -40°C) .......................133  
Figure 14-27: Typical IDD vs. Frequency  
(XT Mode, 25°C) .....................................133  
Figure 14-28: Maximum IDD vs. Frequency  
(XT Mode, -40°C to 85°C).......................133  
Figure 14-29: Typical IDD vs. Frequency  
(HS Mode, 25°C).....................................134  
Figure 14-30: Maximum IDD vs. Frequency  
(HS Mode, -40°C to 85°C).......................134  
Figure 16-11: VTH (Input Threshold Voltage)  
of OSC1 Input (in XT, HS, and  
LP Modes) vs. VDD ................................. 150  
Figure 16-12: Typical IDD vs. Freq (Ext Clock, 25°C).... 151  
Figure 16-13: Maximum, IDD vs. Freq (Ext Clock,  
-40° to +85°C)......................................... 151  
Figure 16-14: Maximum IDD vs. Freq with A/D Off  
(Ext Clock, -55° to +125°C) .................... 152  
Figure 16-15: WDT Timer Time-out Period vs. VDD...... 152  
Figure 16-16: Transconductance (gm) of  
HS Oscillator vs. VDD.............................. 152  
Figure 16-17: Transconductance (gm) of  
LP Oscillator vs. VDD .............................. 153  
Figure 16-18: Transconductance (gm) of  
XT Oscillator vs. VDD .............................. 153  
Figure 16-19: IOH vs. VOH, VDD = 3V.......................... 153  
Figure 16-20: IOH vs. VOH, VDD = 5V.......................... 153  
Figure 16-21: IOL vs. VOL, VDD = 3V ........................... 154  
Figure 16-22: IOL vs. VOL, VDD = 5V ........................... 154  
Figure 15-1:  
Figure 15-2:  
Figure 15-3:  
Figure 15-4:  
Load Conditions ......................................140  
External Clock Timing .............................141  
CLKOUT and I/O Timing.........................142  
Reset, Watchdog Timer, Oscillator  
Start-up Timer and Power-up Timer  
Timing .....................................................143  
Timer0 External Clock Timings ...............144  
A/D Conversion Timing ...........................146  
Typical RC Oscillator Frequency vs.  
Figure 15-5:  
Figure 15-6:  
Figure 16-1:  
Temperature............................................147  
Typical RC Oscillator Frequency vs.  
VDD..........................................................147  
Typical RC Oscillator Frequency vs.  
Figure 16-2:  
Figure 16-3:  
VDD..........................................................147  
DS30390D-page 168  
1997 Microchip Technology Inc.  
PIC16C71X  
Table 11-6:  
A/D Converter Characteristics:  
PIC16C710/711-04  
LIST OF TABLES  
(Commercial, Industrial, Extended)  
PIC16C710/711-10  
Table 1-1:  
Table 3-1:  
PIC16C71X Family of Devices.................... 4  
PIC16C710/71/711/715 Pinout  
(Commercial, Industrial, Extended)  
PIC16C710/711-20  
(Commercial, Industrial, Extended  
Description .................................................. 9  
PIC16C710/71/711 Special Function  
Table 4-1:  
Table 4-2:  
)
Register Summary .................................... 14  
PIC16C715 Special Function Register  
Summary................................................... 15  
PORTA Functions ..................................... 26  
Summary of Registers Associated with  
PORTA...................................................... 26  
PORTB Functions ..................................... 28  
Summary of Registers Associated with  
PORTB...................................................... 29  
Registers Associated with Timer0............. 35  
TAD vs. Device Operating Frequencies,  
PIC16C71.................................................. 41  
TAD vs. Device Operating Frequencies,  
PIC16C710/711, PIC16C715.................... 41  
Registers/Bits Associated with A/D,  
PIC16C710/71/711.................................... 46  
Registers/Bits Associated with A/D,  
PIC16C715................................................ 46  
Ceramic Resonators, PIC16C71............... 49  
Capacitor Selection For Crystal  
Oscillator, PIC16C71................................. 49  
Ceramic Resonators,  
PIC16C710/711/715.................................. 50  
Capacitor Selection for Crystal  
PIC16LC710/711-04  
(Commercial, Industrial, Extended) ...........99  
A/D Conversion Requirements ............... 100  
RC Oscillator Frequencies...................... 107  
Capacitor Selection for Crystal  
Oscillators............................................... 108  
Cross Reference of Device Specs for  
Oscillator Configurations and  
Table 11-7:  
Table 12-1:  
Table 12-2:  
Table 5-1:  
Table 5-2:  
Table 5-3:  
Table 5-4:  
Table 13-1:  
Frequencies of Operation  
Table 6-1:  
Table 7-1:  
(Commercial Devices) ............................ 112  
Clock Timing Requirements.................... 118  
CLKOUT and I/O Timing Requirements . 119  
Reset, Watchdog Timer, Oscillator  
Start-up Timer, Power-up Timer,  
and Brown-out Reset Requirements....... 120  
Timer0 Clock Requirements ................... 121  
A/D Converter Characteristics:  
PIC16C715-04  
(Commercial, Industrial, Extended)  
PIC16C715-10  
(Commercial, Industrial, Extended)  
PIC16C715-20  
(Commercial, Industrial, Extended) ........ 122  
A/D Converter Characteristics:  
Table 13-2:  
Table 13-3:  
Table 13-4:  
Table 7-2:  
Table 7-3:  
Table 7-4:  
Table 13-5:  
Table 13-6:  
Table 8-1:  
Table 8-2:  
Table 8-3:  
Table 8-4:  
Table 8-5:  
Table 8-6:  
Table 8-7:  
Table 8-8:  
Table 8-9:  
Table 8-10:  
Table 8-11:  
Table 8-12:  
Table 8-13:  
Table 13-7:  
Oscillator, PIC16C710/711/715................. 50  
Time-out in Various Situations,  
PIC16C71.................................................. 54  
Time-out in Various Situations,  
PIC16C710/711/715.................................. 54  
Status Bits and Their Significance,  
PIC16C71.................................................. 55  
Status Bits and Their Significance,  
PIC16LC715-04 (Commercial,  
Industrial)................................................ 123  
A/D Conversion Requirements ............... 124  
RC Oscillator Frequencies...................... 131  
Capacitor Selection for Crystal  
Oscillators............................................... 132  
Cross Reference of Device Specs  
for Oscillator Configurations and  
Table 13-8:  
Table 14-1:  
Table 14-2:  
Table 15-1:  
PIC16C710/711......................................... 55  
Status Bits and Their Significance,  
Frequencies of Operation  
(Commercial Devices) ............................ 135  
External Clock Timing Requirements ..... 141  
CLKOUT and I/O Timing Requirements . 142  
Reset, Watchdog Timer, Oscillator  
Start-up Timer and Power-up Timer  
Requirements ......................................... 143  
Timer0 External Clock Requirements..... 144  
A/D Converter Characteristics ................ 145  
A/D Conversion Requirements ............... 146  
RC Oscillator Frequencies...................... 148  
PIC16C715................................................ 55  
Reset Condition for Special Registers,  
PIC16C710/71/711.................................... 56  
Reset Condition for Special Registers,  
PIC16C715................................................ 56  
Initialization Conditions For All Registers,  
PIC16C710/71/711.................................... 57  
Initialization Conditions for All Registers,  
PIC16C715................................................ 58  
Opcode Field Descriptions........................ 69  
PIC16CXX Instruction Set......................... 70  
Development Tools From Microchip ......... 88  
Cross Reference of Device Specs for  
Oscillator Configurations and  
Table 15-2:  
Table 15-3:  
Table 15-4:  
Table 15-5:  
Table 15-6:  
Table 15-7:  
Table 16-1:  
Table 9-1:  
Table 9-2:  
Table 10-1:  
Table 11-1:  
Frequencies of Operation  
(Commercial Devices)............................... 89  
External Clock Timing Requirements........ 95  
CLKOUT and I/O Timing Requirements.... 96  
Reset, Watchdog Timer, Oscillator  
Table 11-2:  
Table 11-3:  
Table 11-4:  
Start-up Timer, Power-up Timer,  
and Brown-out Reset Requirements......... 97  
Timer0 External Clock Requirements ....... 98  
Table 11-5:  
1997 Microchip Technology Inc.  
DS30390D-page 169  
PIC16C71X  
NOTES:  
DS30390D-page 170  
1997 Microchip Technology Inc.  
PIC16C71X  
The procedure to connect will vary slightly from country  
to country. Please check with your local CompuServe  
agent for details if you have a problem. CompuServe  
service allow multiple users various baud rates  
depending on the local point of access.  
ON-LINE SUPPORT  
Microchip provides two methods of on-line support.  
These are the Microchip BBS and the Microchip World  
Wide Web (WWW) site.  
Use Microchip's Bulletin Board Service (BBS) to get  
current information and help about Microchip products.  
Microchip provides the BBS communication channel  
for you to use in extending your technical staff with  
microcontroller and memory experts.  
The following connect procedure applies in most loca-  
tions.  
1. Set your modem to 8-bit, No parity, and One stop  
(8N1). This is not the normal CompuServe setting  
which is 7E1.  
To provide you with the most responsive service possible,  
the Microchip systems team monitors the BBS, posts  
the latest component data and software tool updates,  
provides technical help and embedded systems  
insights, and discusses how Microchip products pro-  
vide project solutions.  
2. Dial your local CompuServe access number.  
3. Depress the <Enter> key and a garbage string will  
appear because CompuServe is expecting a 7E1  
setting.  
4. Type +, depress the <Enter> key and “Host Name:”  
will appear.  
The web site, like the BBS, is used by Microchip as a  
means to make files and information easily available to  
customers.To view the site, the user must have access  
to the Internet and a web browser, such as Netscape or  
Microsoft Explorer. Files are also available for FTP  
download from our FTP site.  
5. Type MCHIPBBS, depress the <Enter> key and you  
will be connected to the Microchip BBS.  
In the United States, to find the CompuServe phone  
number closest to you, set your modem to 7E1 and dial  
(800) 848-4480 for 300-2400 baud or (800) 331-7166  
for 9600-14400 baud connection. After the system  
responds with “Host Name:”, type NETWORK, depress  
the <Enter> key and follow CompuServe's directions.  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
For voice information (or calling from overseas), you  
may call (614) 723-1550 for your local CompuServe  
number.  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
Microchip regularly uses the Microchip BBS to distribute  
technical information, application notes, source code,  
errata sheets, bug reports, and interim patches for  
Microchip systems software products. For each SIG, a  
moderator monitors, scans, and approves or disap-  
proves files submitted to the SIG. No executable files  
are accepted from the user community in general to  
limit the spread of computer viruses.  
ftp://ftp.futureone.com/pub/microchip  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User's Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
Systems Information and Upgrade Hot Line  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip's development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
1-800-755-2345 for U.S. and most of Canada, and  
1-602-786-7302 for the rest of the world.  
970301  
Trademarks: The Microchip name, logo, PIC, PICSTART,  
PICMASTER and PRO MATE are registered trademarks  
of Microchip Technology Incorporated in the U.S.A. and  
other countries. FlexROM, MPLAB and fuzzyLAB, are  
trademarks and SQTP is a service mark of Microchip in  
the U.S.A.  
Connecting to the Microchip BBS  
Connect worldwide to the Microchip BBS using either  
the Internet or the CompuServe communications net-  
work.  
Internet:  
fuzzyTECH is a registered trademark of Inform Software  
Corporation. IBM, IBM PC-AT are registered trademarks  
of International Business Machines Corp. Pentium is a  
trademark of Intel Corporation. Windows is a trademark  
and MS-DOS, Microsoft Windows are registered trade-  
marks of Microsoft Corporation. CompuServe is a regis-  
tered trademark of CompuServe Incorporated.  
You can telnet or ftp to the Microchip BBS at the  
address: mchipbbs.microchip.com  
CompuServe Communications Network:  
When using the BBS via the Compuserve Network,  
in most cases, a local call is your only expense. The  
Microchip BBS connection does not use CompuServe  
membership services, therefore you do not need  
CompuServe membership to join Microchip's BBS.  
There is no charge for connecting to the Microchip BBS.  
All other trademarks mentioned herein are the property of  
their respective companies.  
1997 Microchip Technology Inc.  
DS30272A-page 171  
PIC16C71X  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Literature Number:  
DS30272A  
Device:  
PIC16C71X  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS30272A-page 172  
1997 Microchip Technology Inc.  
PIC16C71X  
PIC16C71X PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office.  
Examples  
PART NO. -XX X /XX XXX  
Pattern:  
QTP, SQTP, Code or Special Requirements  
a)  
PIC16C71 - 04/P 301  
Commercial Temp.,  
PDIP Package, 4 MHz,  
normal VDD limits, QTP  
pattern #301  
Package:  
JW  
SO  
SP  
P
= Windowed CERDIP  
= SOIC  
= Skinny plastic dip  
= PDIP  
SS  
= SSOP  
Temperature  
Range:  
-
= 0°C to +70°C  
= -40°C to +85°C  
= -40°C to +125°C  
I
E
Frequency  
Range:  
04  
04  
10  
20  
= 200 kHz (PIC16C7X-04)  
= 4 MHz  
= 10 MHz  
= 20 MHz  
Device  
PIC16C7X  
:VDD range 4.0V to 6.0V  
PIC16C7XT :VDD range 4.0V to 6.0V (Tape/Reel)  
PIC16LC7X :VDD range 2.5V to 6.0V  
PIC16LC7XT :VDD range 2.5V to 6.0V (Tape/Reel)  
* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of  
each oscillator type (including LC devices).  
Sales and Support  
Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office (see below)  
2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277  
3. The Microchip’s Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.  
1997 Microchip Technology Inc.  
DS30272A-page 173  
PIC16C71X  
NOTES:  
DS30272A-page 174  
1997 Microchip Technology Inc.  
PIC16C71X  
NOTES:  
1997 Microchip Technology Inc.  
DS30272A-page 175  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
AMERICAS (continued)  
ASIA/PACIFIC (continued)  
Corporate Office  
Toronto  
Singapore  
Microchip Technology Inc.  
Microchip Technology Inc.  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-786-7200 Fax: 480-786-7277  
Technical Support: 480-786-7627  
Web Address: http://www.microchip.com  
5925 Airport Road, Suite 200  
Mississauga, Ontario L4V 1W1, Canada  
Tel: 905-405-6279 Fax: 905-405-6253  
#07-02 Prime Centre  
Singapore 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Taiwan, R.O.C  
Microchip Technology Taiwan  
10F-1C 207  
Tung Hua North Road  
Taipei, Taiwan, ROC  
ASIA/PACIFIC  
Hong Kong  
Microchip Asia Pacific  
Unit 2101, Tower 2  
Atlanta  
Microchip Technology Inc.  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2-401-1200 Fax: 852-2-401-3431  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
EUROPE  
Microchip Technology Inc.  
5 Mount Royal Avenue  
Marlborough, MA 01752  
Tel: 508-480-9990 Fax: 508-480-8575  
Beijing  
United Kingdom  
Microchip Technology, Beijing  
Unit 915, 6 Chaoyangmen Bei Dajie  
Dong Erhuan Road, Dongcheng District  
New China Hong Kong Manhattan Building  
Beijing 100027 PRC  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5858 Fax: 44-118 921-5835  
Denmark  
Microchip Technology Denmark ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Chicago  
Microchip Technology Inc.  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 86-10-85282100 Fax: 86-10-85282104  
India  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
Microchip Technology Inc.  
4570 Westgrove Drive, Suite 160  
Addison, TX 75248  
Microchip Technology Inc.  
India Liaison Office  
No. 6, Legacy, Convent Road  
Bangalore 560 025, India  
Tel: 91-80-229-0061 Fax: 91-80-229-0062  
Tel: 972-818-7423 Fax: 972-818-2924  
Dayton  
Microchip Technology Inc.  
Two Prestige Place, Suite 150  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
Detroit  
Microchip Technology Inc.  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Japan  
France  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
Arizona Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa 222-0033 Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann-Ring 125  
D-81739 München, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Korea  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Shanghai  
Microchip Technology  
RM 406 Shanghai Golden Bridge Bldg.  
2077 Yan’an Road West, Hong Qiao District  
Shanghai, PRC 200335  
Italy  
Los Angeles  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Microchip Technology Inc.  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
New York  
Microchip Technology Inc.  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
Tel: 86-21-6275-5700 Fax: 86 21-6275-5060  
11/15/99  
San Jose  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999. The  
Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs and microperipheral  
products. In addition, Microchips quality  
system for the design and manufacture of  
development systems is ISO 9001 certified.  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
All rights reserved. © 1999 Microchip Technology Incorporated. Printed in the USA. 11/99  
Printed on recycled paper.  
Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed  
by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchips products  
as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip  
logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.  
1999 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY