PIC16F707T-I/PT [MICROCHIP]

40/44-Pin, Flash Microcontrollers with nanoWatt XLP and mTouch™ Technology;
PIC16F707T-I/PT
型号: PIC16F707T-I/PT
厂家: MICROCHIP    MICROCHIP
描述:

40/44-Pin, Flash Microcontrollers with nanoWatt XLP and mTouch™ Technology

微控制器
文件: 总284页 (文件大小:3135K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC16F707/PIC16LF707  
Data Sheet  
40/44-Pin, Flash Microcontrollers  
with nanoWatt XLP and  
mTouch™ Technology  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,  
TSHARC, UniWinDriver, WiperLock and ZENA are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2010, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-60932-148-2  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
DS41418A-page 2  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
40/44-Pin, Flash Microcontrollers with  
nanoWatt XLP and mTouch™ Technology  
Devices included in this data sheet:  
Extreme Low-Power Management  
PIC16LF707 with nanoWatt XLP:  
• PIC16F707  
• PIC16LF707  
• Sleep mode: 20 nA @ 1.8V, typical  
• Watchdog Timer: 500 nA @ 1.8V, typical  
• Timer1 Oscillator: 600 nA @ 1.8V, typical  
@ 32 kHz  
High-Performance RISC CPU:  
• Only 35 Single-Word Instructions to Learn:  
- All single-cycle instructions except branches  
• Operating Speed:  
- DC – 20 MHz clock input  
- DC – 200 ns instruction cycle  
• 8K x 14 Words of Flash Program Memory  
• 363 Bytes of Data Memory (SRAM)  
• Interrupt Capability  
mTouch™ Technology Features:  
• Up to 32 Channels  
• Two Capacitive Sensing modules:  
- Acquire 2 samples simultaneously  
• Multiple Power modes:  
- Operation during Sleep  
- Proximity sensing with ultra low µA current  
• Adjustable Waveform Min. and Max. for Optimal  
Noise Performance  
• 1.8V to 5.5V Operation (3.6V max. for  
PIC16LF707)  
• 8-Level Deep Hardware Stack  
• Direct, Indirect and Relative Addressing modes  
• Processor Read Access to Program Memory  
• Pinout Compatible to other 40-pin PIC16CXXX  
and PIC16FXXX Microcontrollers  
Analog Features:  
Special Microcontroller Features:  
• A/D Converter:  
• Precision Internal Oscillator:  
- 16 MHz or 500 kHz operation  
- Factory calibrated to ±1%, typical  
- Software selectable ÷1, ÷2, ÷4 or ÷8 divider  
• 31 kHz Low-Power Internal Oscillator  
• External Oscillator Block with:  
- 3 crystal/resonator modes up to 20 MHz  
- 3 external clock modes up to 20 MHz  
• Power-on Reset (POR)  
• Power-up Timer (PWRT)  
• Oscillator Start-Up Timer (OST)  
• Brown-out Reset (BOR):  
- Selectable between two trip points  
- Disabled in Sleep option  
- 8-bit resolution and up to 14 channels  
- Conversion available during Sleep  
- Selectable 1.024V/2.048V/4.096V voltage  
reference  
• On-chip 3.2V Regulator (PIC16F707 device only)  
Peripheral Highlights:  
• Up to 35 I/O Pins and 1 Input-only Pin:  
- High current source/sink for direct LED drive  
- Interrupt-on-pin change  
- Individually programmable weak pull-ups  
• Timer0/A/B: 8-Bit Timer/Counter with 8-Bit  
Prescaler  
• Watchdog Timer (WDT)  
• Enhanced Timer1/3:  
• Programmable Code Protection  
• In-Circuit Serial Programming™ (ICSP™) via two  
pins  
• In-Circuit Debug (ICD) via Two Pins  
• Multiplexed Master Clear with Pull-up/Input Pin  
• Industrial and Extended Temperature Range  
• High-Endurance Flash Cell:  
- 1,000 Write Flash Endurance (typical)  
- Flash Retention: >40 years  
- Power-Saving Sleep mode  
- Dedicated low-power 32 kHz oscillator driver  
- 16-bit timer/counter with prescaler  
- External Gate Input mode with toggle and  
single shot modes  
- Interrupt-on-gate completion  
• Timer2: 8-Bit Timer/Counter with 8-Bit Period  
Register, Prescaler and Postscaler  
• Two Capture, Compare, PWM modules (CCP):  
- 16-bit Capture, max. resolution 12.5 ns  
- 16-bit Compare, max. resolution 200 ns  
- 10-bit PWM, max. frequency 20 kHz  
• Addressable Universal Synchronous  
Asynchronous Receiver Transmitter (AUSART)  
• Operating Voltage Range:  
- 1.8V to 3.6V (PIC16LF707)  
• 1.8V to 5.5V (PIC16F707)  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 3  
PIC16F707/PIC16LF707  
• Synchronous Serial Port (SSP):  
- SPI (Master/Slave)  
- I2C™ (Slave) with Address Mask  
• Voltage Reference module:  
- Fixed voltage reference (FVR) with 1.024V,  
2.048V and 4.096V output levels  
- 5-bit rail-to-rail resistive DAC with positive  
reference selection  
Program  
Memory Flash  
(words)  
Timers  
8/16-bit  
SRAM  
(bytes)  
Capacitive Touch 8-bit A/D  
Device  
I/Os  
AUSART CCP  
Channels  
(ch)  
PIC16F707  
8192  
8192  
363  
363  
36  
36  
32  
32  
14  
14  
Yes  
Yes  
2
2
4/2  
4/2  
PIC16LF707  
Pin Diagrams  
40-PIN PDIP  
RB7/CPSB15/ICSPDAT  
RB6/CPSB14/ICSPCLK  
40  
39  
38  
37  
36  
35  
1
2
3
4
5
6
VPP/MCLR/RE3  
(3)  
(2)  
VCAP /SS /AN0/RA0  
CPSA0/AN1/RA1  
RB5/AN13/CPSB13/T1G/T3CKI  
RB4/AN11/CPSB12  
DACOUT/CPSA1/AN2/RA2  
CPSA2/VREF/AN3/RA3  
TACKI/T0CKI/CPSA3/RA4  
(1)  
RB3/AN9/CPSB11/CCP2  
RB2/AN8/CPSB10  
RB1/AN10/CPSB9  
RB0/AN12/CPSB8/INT  
(3)  
(2)  
VCAP /SS /CPSA4/AN4/RA5  
CPSA5/AN5/RE0  
34  
33  
32  
31  
30  
7
8
9
VDD  
CPSA6/AN6/RE1  
CPSA7/AN7/RE2  
VDD  
VSS  
10  
11  
RD7/CPSA15  
RD6/CPSA14  
VSS  
29  
12  
RD5/CPSA13  
CLKIN/OSC1/CPSB0/RA7  
28  
27  
26  
25  
13  
14  
15  
16  
(3)  
RD4/CPSA12  
VCAP /CLKOUT/OSC2/CPSB1/RA6  
RC7/CPSA11/RX/DT  
T1CKI/T1OSO/CPSB2/RC0  
(1)  
RC6/CPSA10/TX/CK  
RC5/CPSA9/SDO  
RC4/SDI/SDA  
CCP2 /T1OSI/CPSB3/RC1  
24  
23  
TBCKI/CCP1/CPSB4/RC2  
SCL/SCK/RC3  
17  
18  
RD3/CPSA8  
T3G/CPSB5/RD0  
CPSB6/RD1  
22  
21  
19  
20  
RD2/CPSB7  
Note 1: CCP2 pin location may be selected as RB3 or RC1.  
2: SS pin location may be selected as RA5 or RA0.  
3: PIC16F707 only.  
DS41418A-page 4  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
Pin Diagrams  
44-PIN QFN (8x8x0.9)  
(3)  
DT/RX/CPSA11/RC7  
1
2
RA6/OSC2/CLKOUT/CPSB1/VCAP  
RA7/OSC1/CLKIN/CPSB0  
VSS  
VSS  
NC  
VDD  
33  
32  
31  
30  
29  
28  
27  
26  
CPSA12/RD4  
CPSA13/RD5  
CPSA14/RD6  
CPSA15/RD7  
VSS  
3
4
5
PIC16F707  
6
7
8
9
10  
11  
VDD  
VDD  
PIC16LF707  
RE2/AN7/CPSA7  
RE1/AN6/CPSA6  
RE0/AN5/CPSA5  
INT/CPSB8/AN12/RB0  
CPSB9/AN10/RB1  
CPSB10/AN8/RB2  
25  
24  
23  
(3)  
RA5/AN4/CPSA4/SS(2)/VCAP  
RA4/CPSA3/T0CKI/TACKI  
Note 1: CCP2 pin location may be selected as RB3 or RC1.  
2: SS pin location may be selected as RA5 or RA0.  
3: PIC16F707 only.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 5  
PIC16F707/PIC16LF707  
Pin Diagrams  
44-PIN TQFP  
NC  
1
2
3
4
33  
32  
31  
30  
29  
28  
27  
DT/RX/CPSA11/RC7  
CPSA12/RD4  
RC0/T1OSO/T1CKI/CPSB2  
RA6/OSC2/CLKOUT/CPSB1/VCAP  
RA7/OSC1/CLKIN/CPSB0  
VSS  
(3)  
CPSA13/RD5  
CPSA14/RD6  
CPSA15/RD7  
VSS  
5
PIC16F707  
VDD  
6
PIC16LF707  
RE2/AN7/CPSA7  
RE1/AN6/CPSA6  
RE0/AN5/CPSA5  
7
VDD  
8
26  
INT/CPSB8/AN12/RB0  
CPSB9/AN10/RB1  
CPSB10/AN8/RB2  
CCP2(1)/CPSB11/AN9/RB3  
9
25  
24  
23  
RA5/AN4/CPSA4/SS(2)/VCAP  
(3)  
10  
11  
RA4/CPSA3/T0CKI/TACKI  
Note 1: CCP2 pin location may be selected as RB3 or RC1.  
2: SS pin location may be selected as RA5 or RA0.  
3: PIC16F707 only.  
DS41418A-page 6  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
TABLE 1:  
40/44-PIN ALLOCATION TABLE FOR PIC16F707/PIC16LF707  
(4)  
SS(3)  
RA0  
2
19  
19  
Y
AN0  
AN1  
VCAP  
RA1  
RA2  
RA3  
3
4
5
20  
21  
22  
20  
21  
22  
Y
Y
Y
CPSA0  
AN2 DACOUT CPSA1  
AN3/  
VREF  
VREF  
CPSA2  
RA4  
6
23  
23  
Y
CPSA3  
T0CKI/  
TACKI  
SS(3)  
VCAP  
(4)  
RA5  
RA6  
7
24  
31  
24  
33  
Y
Y
AN4  
CPSA4  
CPSB1  
14  
OSC2/  
CLKOUT/  
(4)  
VCAP  
RA7  
13  
30  
32  
Y
CPSB0  
OSC1/  
CLKIN  
RB0  
RB1  
RB2  
RB3  
RB4  
RB5  
33  
34  
35  
36  
37  
38  
8
9
Y
Y
Y
Y
Y
Y
AN12  
AN10  
AN8  
CPSB8  
CPSB9  
IOC/INT  
IOC  
Y
Y
Y
Y
Y
Y
9
10  
11  
12  
14  
15  
10  
11  
14  
15  
CPSB10  
CPSB11  
CPSB12  
CPSB13  
CCP2(2)  
IOC  
AN9  
IOC  
AN11  
AN13  
IOC  
T1G/  
IOC  
T3CKI  
RB6  
RB7  
RC0  
39  
40  
15  
16  
17  
32  
16  
17  
34  
Y
Y
Y
CPSB14  
CPSB15  
CPSB2  
IOC  
IOC  
Y
Y
ICSPCLK/  
ICDCLK  
ICSPDAT/  
ICDDAT  
T1OSO/  
T1CKI  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
RE0  
RE1  
RE2  
16  
17  
18  
23  
24  
25  
26  
19  
20  
21  
22  
27  
28  
29  
30  
8
35  
36  
37  
42  
43  
44  
1
35  
36  
37  
42  
43  
44  
1
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
CPSB3  
CPSB4  
T1OSI  
TBCKI  
CCP2(2)  
CCP1  
SCK/SCL  
SDI/SDA  
SDO  
CPSA9  
CPSA10  
CPSA11  
CPSB5  
CPSB6  
CPSB7  
CPSA8  
CPSA12  
CPSA13  
CPSA14  
CPSA15  
CPSA5  
CPSA6  
CPSA7  
TX/CK  
RX/DT  
38  
39  
40  
41  
2
38  
39  
40  
41  
2
T3G  
3
3
4
4
5
5
25  
26  
27  
25  
26  
27  
AN5  
AN6  
AN7  
9
10  
RE3  
1
18  
18  
Y(1)  
MCLR/  
VPP  
VDD  
Vss  
11, 32 7, 28  
7,8,28  
VDD  
VSS  
12, 31 6, 29 6, 30, 31  
Note 1: Pull-up activated only with external MCLR configuration.  
2: RC1 is the default pin location for CCP2. RB3 may be selected by changing the CCP2SEL bit in the APFCON register.  
3: RA5 is the default pin location for SS. RA0 may be selected by changing the SSSEL bit in the APFCON register.  
4: PIC16F707 only. VCAP functionality is selectable by the VCAPEN bits in Configuration Word 2.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 7  
PIC16F707/PIC16LF707  
Table of Contents  
1.0 Device Overview ....................................................................................................................................................................... 11  
2.0 Memory Organization................................................................................................................................................................ 17  
3.0 Resets ....................................................................................................................................................................................... 29  
4.0 Interrupts ................................................................................................................................................................................... 39  
5.0 Low Dropout (LDO) Voltage Regulator ..................................................................................................................................... 49  
6.0 I/O Ports .................................................................................................................................................................................... 51  
7.0 Oscillator Module....................................................................................................................................................................... 69  
8.0 Device Configuration ................................................................................................................................................................. 75  
9.0 Analog-to-Digital Converter (ADC) Module ............................................................................................................................... 79  
10.0 Fixed Voltage Reference........................................................................................................................................................... 89  
11.0 Digital-to-Analog Converter (DAC) Module ............................................................................................................................... 91  
12.0 Timer0 Module .......................................................................................................................................................................... 95  
13.0 Timer1/3 Modules with Gate Control......................................................................................................................................... 99  
14.0 TimerA/B Modules................................................................................................................................................................... 111  
15.0 Timer2 Module ........................................................................................................................................................................ 115  
16.0 Capacitive Sensing Module..................................................................................................................................................... 117  
17.0 Capture/Compare/PWM (CCP) Module .................................................................................................................................. 127  
18.0 Addressable Universal Synchronous Asynchronous Receiver Transmitter (AUSART) .......................................................... 137  
19.0 SSP Module Overview ............................................................................................................................................................ 157  
20.0 Program Memory Read ........................................................................................................................................................... 179  
21.0 Power-Down Mode (Sleep) ..................................................................................................................................................... 183  
22.0 In-Circuit Serial Programming™ (ICSP™) .............................................................................................................................. 185  
23.0 Instruction Set Summary......................................................................................................................................................... 187  
24.0 Development Support.............................................................................................................................................................. 197  
25.0 Electrical Specifications........................................................................................................................................................... 201  
26.0 DC and AC Characteristics Graphs and Charts...................................................................................................................... 231  
27.0 Packaging Information............................................................................................................................................................. 267  
Appendix A: Data Sheet Revision History......................................................................................................................................... 273  
Appendix B: Migrating From Other PIC® Devices ............................................................................................................................ 273  
The Microchip Web Site.................................................................................................................................................................... 281  
Customer Change Notification Service ............................................................................................................................................. 281  
Customer Support ............................................................................................................................................................................. 281  
Reader Response ............................................................................................................................................................................. 282  
Product Identification System............................................................................................................................................................. 283  
DS41418A-page 8  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 9  
PIC16F707/PIC16LF707  
NOTES:  
DS41418A-page 10  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
1.0  
DEVICE OVERVIEW  
The PIC16F707/PIC16LF707 devices are covered by  
this data sheet. They are available in 40/44-pin  
packages. Figure 1-1 shows a block diagram of the  
PIC16F707/PIC16LF707 devices. Table 1-1 shows the  
pinout descriptions.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 11  
PIC16F707/PIC16LF707  
FIGURE 1-1:  
PIC16F707/PIC16LF707 BLOCK DIAGRAM  
PORTA  
Configuration  
RA0  
RA1  
RA2  
RA3  
RA4  
RA5  
RA6  
RA7  
13  
8
Data Bus  
Program Counter  
Flash  
Program  
Memory  
8 Level Stack  
(13-bit)  
RAM  
Program  
Bus  
PORTB  
14  
9
RAM Addr  
RB0  
RB1  
RB2  
Addr MUX  
Instruction Reg  
RB3  
RB4  
RB5  
RB6  
RB7  
Indirect  
Addr  
7
Direct Addr  
8
FSR Reg  
STATUSReg  
PORTC  
8
RC0  
RC1  
RC2  
RC3  
RC4  
RC5  
RC6  
RC7  
3
MUX  
Power-up  
Timer  
Oscillator  
Start-up Timer  
Instruction  
Decodeand  
Control  
ALU  
Power-on  
Reset  
OSC1/CLKIN  
OSC2/CLKOUT  
PORTD  
8
RD0  
RD1  
RD2  
RD3  
RD4  
Timing  
Generation  
Watchdog  
Timer  
W Reg  
Brown-out  
Reset  
LDO  
Regulator  
RD5  
RD6  
RD7  
Internal  
Oscillator  
Block  
CCP1  
CCP2  
PORTE  
CCP1  
RE0  
RE1  
MCLR VDD  
VSS  
RE2  
RE3  
CCP2  
Timer1  
32 kHz  
T1OSI  
T1OSO  
Oscillator  
SCK/  
SDI/  
SDO  
SCL SS  
SDA  
TX/CK RX/DT  
TBCKI  
T0CKI  
Timer0  
T1G  
T3G T3CKI TACKI  
T1CKI  
Synchronous  
Serial Port  
Timer1  
Timer2  
Timer3  
TimerA TimerB  
AUSART  
VREF  
Digital-To-Analog  
Analog-To-Digital Converter  
Converter  
AN8 AN9 AN10 AN11  
AN0 AN1  
AN3 AN4  
AN5 AN6 AN7  
AN2  
AN12 AN13  
DACOUT  
Capacitive Sensing Module A  
CPSA0 CPSA1 CPSA2 CPSA3 CPSA4 CPSA5 CPSA6  
CPSA7 CPSA8 CPSA9 CPSA10 CPSA11 CPSA12 CPSA13 CPSA14 CPSA15  
Capacitive Sensing Module B  
CPSB0 CPSB1 CPSB2 CPSB3 CPSB4 CPSB5 CPSB6  
CPSB7 CPSB8 CPSB9 CPSB10 CPSB11 CPSB12 CPSB13 CPSB14 CPSB15  
DS41418A-page 12  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
TABLE 1-1:  
PIC16F707/PIC16LF707 PINOUT DESCRIPTION  
Input Output  
Name  
Function  
Description  
Type  
Type  
RA0/AN0/SS/VCAP  
RA0  
AN0  
TTL  
AN  
ST  
CMOS General purpose I/O.  
A/D Channel 0 input.  
Slave Select input.  
SS  
VCAP  
RA1  
Power Power Filter capacitor for Voltage Regulator (PIC16F only).  
RA1/AN1/CPSA0  
TTL  
AN  
AN  
TTL  
AN  
AN  
CMOS General purpose I/O.  
AN1  
A/D Channel 1 input.  
CPSA0  
RA2  
Capacitive sensing A input 0.  
RA2/AN2/CPSA1/DACOUT  
CMOS General purpose I/O.  
AN2  
A/D Channel 2 input.  
CPSA1  
DACOUT  
RA3  
Capacitive sensing A input 1.  
Voltage Reference Output.  
AN  
RA3/AN3/VREF/CPSA2  
TTL  
AN  
AN  
AN  
TTL  
AN  
ST  
CMOS General purpose I/O.  
AN3  
A/D Channel 3 input.  
VREF  
A/D Voltage Reference input.  
Capacitive sensing A input 2.  
CPSA2  
RA4  
RA4/CPSA3/T0CKI/TACKI  
RA5/AN4/CPSA4/SS/VCAP  
CMOS General purpose I/O.  
CPSA3  
T0CKI  
TACKI  
RA5  
Capacitive sensing A input 3.  
Timer0 clock input.  
TimerA clock input.  
ST  
TTL  
AN  
AN  
ST  
CMOS General purpose I/O.  
AN4  
A/D Channel 4 input.  
Capacitive sensing A input 4.  
Slave Select input.  
CPSA4  
SS  
VCAP  
RA6  
Power Power Filter capacitor for Voltage Regulator (PIC16F only).  
RA6/OSC2/CLKOUT/VCAP/  
CPSB1  
TTL  
CMOS General purpose I/O.  
OSC2  
CLKOUT  
VCAP  
CPSB1  
RA7  
XTAL Crystal/Resonator (LP, XT, HS modes).  
CMOS FOSC/4 output.  
Power Power Filter capacitor for Voltage Regulator (PIC16F only).  
AN  
TTL  
Capacitive sensing B input 1.  
RA7/OSC1/CLKIN/CPSB0  
CMOS General purpose I/O.  
OSC1  
CLKIN  
CLKIN  
CPSB0  
RB0  
XTAL  
CMOS  
ST  
Crystal/Resonator (LP, XT, HS modes).  
External clock input (EC mode).  
RC oscillator connection (RC mode).  
Capacitive sensing B input 0.  
AN  
RB0/AN12/CPSB8/INT  
RB1/AN10/CPSB9  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN12  
CPSB8  
INT  
AN  
AN  
ST  
A/D Channel 12 input.  
Capacitive sensing B input 8.  
External interrupt.  
RB1  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN10  
AN  
AN  
A/D Channel 10 input.  
CPSB9  
Capacitive sensing B input 9.  
Legend: AN = Analog input or output CMOS= CMOS compatible input or output  
OD = Open Drain  
2
2
TTL = TTL compatible input ST  
= Schmitt Trigger input with CMOS levels I C™ = Schmitt Trigger input with I C  
HV = High Voltage  
XTAL = Crystal levels  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 13  
PIC16F707/PIC16LF707  
TABLE 1-1:  
PIC16F707/PIC16LF707 PINOUT DESCRIPTION (CONTINUED)  
Input Output  
Name  
Function  
Description  
Type  
Type  
RB2/AN8/CPSB10  
RB2  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN8  
CPSB10  
RB3  
AN  
AN  
A/D Channel 8 input.  
Capacitive sensing B input 10.  
RB3/AN9/CPSB11/CCP2  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN9  
CPSB11  
CCP2  
RB4  
AN  
AN  
ST  
A/D Channel 9 input.  
Capacitive sensing B input 11.  
CMOS Capture/Compare/PWM2.  
RB4/AN11/CPSB12  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN11  
CPSB12  
RB5  
AN  
AN  
A/D Channel 11 input.  
Capacitive sensing B input 12.  
RB5/AN13/CPSB13/T1G/T3CKI  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
AN13  
CPSB13  
T1G  
AN  
AN  
ST  
A/D Channel 13 input.  
Capacitive sensing B input 13.  
Timer1 gate input.  
T3CKI  
RB6  
ST  
Timer3 clock input.  
RB6/ICSPCLK/ICDCLK/CPSB14  
RB7/ICSPDAT/ICDDAT/CPSB15  
TTL  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
ICSPCLK  
ICDCLK  
CPSB14  
RB7  
ST  
ST  
Serial Programming Clock.  
In-Circuit Debug Clock.  
AN  
TTL  
Capacitive sensing B input 14.  
CMOS General purpose I/O. Individually controlled interrupt-on-change.  
Individually enabled pull-up.  
ICSPDAT  
ICDDAT  
CPSB15  
RC0  
ST  
ST  
CMOS ICSP™ Data I/O.  
In-Circuit Data I/O.  
AN  
ST  
Capacitive sensing B input 15.  
RC0/T1OSO/T1CKI/CPSB2  
RC1/T1OSI/CCP2/CPSB3  
RC2/CCP1/CPSB4/TBCKI  
RC3/SCK/SCL  
CMOS General purpose I/O.  
T1OSO  
T1CKI  
CPSB2  
RC1  
XTAL  
ST  
XTAL Timer1 oscillator connection.  
Timer1 clock input.  
AN  
ST  
Capacitive sensing B input 2.  
CMOS General purpose I/O.  
T1OSI  
CCP2  
CPSB3  
RC2  
XTAL  
ST  
XTAL Timer1 oscillator connection.  
CMOS Capture/Compare/PWM2.  
AN  
ST  
Capacitive sensing B input 3.  
CMOS General purpose I/O.  
CCP1  
CPSB4  
TBCKI  
RC3  
ST  
CMOS Capture/Compare/PWM1.  
AN  
ST  
Capacitive sensing B input 4.  
TimerB clock input.  
ST  
CMOS General purpose I/O.  
SCK  
ST  
CMOS SPI clock.  
2
2
SCL  
I C™  
OD  
I C™ clock.  
Legend: AN = Analog input or output CMOS= CMOS compatible input or output  
OD = Open Drain  
2
2
TTL = TTL compatible input ST  
HV = High Voltage  
= Schmitt Trigger input with CMOS levels I C™ = Schmitt Trigger input with I C  
levels  
XTAL = Crystal  
DS41418A-page 14  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
TABLE 1-1:  
PIC16F707/PIC16LF707 PINOUT DESCRIPTION (CONTINUED)  
Input Output  
Name  
Function  
Description  
Type  
Type  
RC4/SDI/SDA  
RC4  
SDI  
ST  
ST  
CMOS General purpose I/O.  
SPI data input.  
2
2
SDA  
I C™  
OD  
I C™ data input/output.  
RC5/SDO/CPSA9  
RC6/TX/CK/CPSA10  
RC5  
ST  
CMOS General purpose I/O.  
CMOS SPI data output.  
SDO  
CPSA9  
RC6  
AN  
ST  
Capacitive sensing A input 9.  
CMOS General purpose I/O.  
TX  
CMOS USART asynchronous transmit.  
CMOS USART synchronous clock.  
CK  
ST  
AN  
ST  
ST  
ST  
AN  
ST  
AN  
ST  
ST  
AN  
ST  
AN  
ST  
AN  
ST  
AN  
ST  
AN  
ST  
AN  
ST  
AN  
ST  
AN  
AN  
ST  
AN  
AN  
ST  
AN  
AN  
TTL  
ST  
HV  
Power  
CPSA10  
RC7  
Capacitive sensing A input 10.  
RC7/RX/DT/CPSA11  
RD0/CPSB5/T3G  
CMOS General purpose I/O.  
RX  
USART asynchronous input.  
DT  
CMOS USART synchronous data.  
CPSA11  
RD0  
Capacitive sensing A input 11.  
CMOS General purpose I/O.  
CPSB5  
T3G  
Capacitive sensing B input 5.  
Timer3 Gate input.  
RD1/CPSB6  
RD2/CPSB7  
RD3/CPSA8  
RD4/CPSA12  
RD1  
CMOS General purpose I/O.  
CPSB6  
RD2  
Capacitive sensing B input 6.  
CMOS General purpose I/O.  
CPSB7  
RD3  
Capacitive sensing B input 7.  
CMOS General purpose I/O.  
CPSA8  
RD4  
Capacitive sensing A input 8.  
General purpose I/O.  
CMOS  
CPSA12  
RD5  
Capacitive sensing A input 12.  
General purpose I/O.  
RD5/CPSA13  
RD6/CPSA14  
RD7/CPSA15  
RE0/AN5/CPSA5  
CMOS  
CPSA13  
RD6  
Capacitive sensing A input 13.  
General purpose I/O.  
CMOS  
CPSA14  
RD7  
Capacitive sensing A input 14.  
General purpose I/O.  
CMOS  
CPSA15  
RE0  
Capacitive sensing A input 15.  
CMOS General purpose I/O.  
AN5  
A/D Channel 5 input.  
CPSA5  
RE1  
Capacitive sensing A input 5.  
RE1/AN6/CPSA6  
RE2/AN7/CPSA7  
RE3/MCLR/VPP  
VDD  
CMOS General purpose I/O.  
AN6  
A/D Channel 6 input.  
CPSA6  
RE2  
Capacitive sensing A input 6.  
CMOS General purpose I/O.  
AN7  
A/D Channel 7 input.  
CPSA7  
RE3  
Capacitive sensing A input 7.  
General purpose input.  
Master Clear with internal pull-up.  
Programming voltage.  
Positive supply.  
MCLR  
VPP  
VDD  
Legend: AN = Analog input or output CMOS= CMOS compatible input or output  
OD = Open Drain  
2
2
TTL = TTL compatible input ST  
= Schmitt Trigger input with CMOS levels I C™ = Schmitt Trigger input with I C  
HV = High Voltage  
XTAL = Crystal levels  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 15  
PIC16F707/PIC16LF707  
TABLE 1-1:  
PIC16F707/PIC16LF707 PINOUT DESCRIPTION (CONTINUED)  
Input Output  
Name  
Function  
Description  
Type  
Type  
VSS  
VSS  
Power  
Ground reference.  
Legend: AN = Analog input or output CMOS= CMOS compatible input or output  
OD = Open Drain  
2
2
TTL = TTL compatible input ST  
HV = High Voltage  
= Schmitt Trigger input with CMOS levels I C™ = Schmitt Trigger input with I C  
levels  
XTAL = Crystal  
Note:  
The PIC16F707 devices have an internal low dropout voltage regulator. An external capacitor must be  
connected to one of the available VCAP pins to stabilize the regulator. For more information, see  
Section 5.0 “Low Dropout (LDO) Voltage Regulator”. The PIC16LF707 devices do not have the voltage  
regulator and therefore no external capacitor is required.  
DS41418A-page 16  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
2.2  
Data Memory Organization  
2.0  
2.1  
MEMORY ORGANIZATION  
Program Memory Organization  
The data memory is partitioned into multiple banks  
which contain the General Purpose Registers (GPRs)  
and the Special Function Registers (SFRs). Bits RP0  
and RP1 are bank select bits.  
The PIC16F707/PIC16LF707 has a 13-bit program  
counter capable of addressing an 8K x 14 program  
memory space. The Reset vector is at 0000h and the  
interrupt vector is at 0004h.  
RP1  
0
RP0  
0
Bank 0 is selected  
Bank 1 is selected  
Bank 2 is selected  
Bank 3 is selected  
0
1
FIGURE 2-1:  
PROGRAM MEMORY MAP  
AND STACK FOR THE  
PIC16F707/PIC16LF707  
1
0
1
1
Each bank extends up to 7Fh (128 bytes). The lower  
locations of each bank are reserved for the Special  
Function Registers. Above the Special Function  
Registers are the General Purpose Registers,  
implemented as static RAM. All implemented banks  
contain Special Function Registers. Some frequently  
used Special Function Registers from one bank are  
mirrored in another bank for code reduction and  
quicker access.  
PC<12:0>  
CALL, RETURN  
RETFIE, RETLW  
13  
Stack Level 1  
Stack Level 2  
Stack Level 8  
Reset Vector  
2.2.1  
GENERAL PURPOSE REGISTER  
FILE  
0000h  
The register file is organized as 363 x 8 bits. Each  
register is accessed either directly or indirectly through  
the File Select Register (FSR), (Refer to Section 2.5  
“Indirect Addressing, INDF and FSR Registers”).  
Interrupt Vector  
Page 0  
0004h  
0005h  
07FFh  
0800h  
2.2.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers are registers used by  
the CPU and peripheral functions for controlling the  
desired operation of the device (refer to Table 2-2).  
These registers are static RAM.  
Page 1  
On-chip  
Program  
Memory  
0FFFh  
1000h  
Page 2  
Page 3  
The Special Function Registers can be classified into  
two sets: core and peripheral. The Special Function  
Registers associated with the “core” are described in  
this section. Those related to the operation of the  
peripheral features are described in the section of that  
peripheral feature.  
17FFh  
1800h  
1FFFh  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 17  
PIC16F707/PIC16LF707  
TABLE 2-1:  
DATA MEMORY MAP FOR PIC16F707/PIC16LF707  
File Address  
(*)  
(*)  
(*)  
(*)  
Indirect addr.  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
Indirect addr.  
OPTION  
PCL  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
87h  
Indirect addr.  
TMR0  
100h  
101h  
102h  
103h  
104h  
105h  
106h  
107h  
Indirect addr.  
OPTION  
PCL  
180h  
181h  
182h  
183h  
184h  
185h  
186h  
187h  
TMR0  
PCL  
PCL  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
STATUS  
FSR  
ANSELA  
ANSELB  
PORTA  
PORTB  
PORTC  
TRISA  
TACON  
CPSBCON0  
CPSBCON1  
CPSACON0  
CPSACON1  
TRISB  
TRISC  
ANSELC  
ANSELD  
PORTD  
PORTE  
PCLATH  
INTCON  
PIR1  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
TRISD  
TRISE  
88h  
89h  
8Ah  
8Bh  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
91h  
92h  
108h  
109h  
10Ah  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
115h  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
188h  
189h  
18Ah  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
1A0h  
ANSELE  
PCLATH  
INTCON  
PIE1  
PCLATH  
INTCON  
PMDATL  
PMADRL  
PMDATH  
PMADRH  
TMRA  
PCLATH  
INTCON  
PMCON1  
Reserved  
Reserved  
Reserved  
PIR2  
PIE2  
TMR1L  
PCON  
TMR1H  
T1CON  
TMR2  
T1GCON  
OSCCON  
OSCTUNE  
PR2  
TBCON  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TMRB  
SSPADD/SSPMSK 93h  
DACCON0  
DACCON1  
SSPSTAT  
WPUB  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
9Fh  
A0h  
IOCB  
General  
Purpose  
Register  
16 Bytes  
T3CON  
TXSTA  
General  
Purpose  
Register  
11 Bytes  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
SPBRG  
TMR3L  
TMR3H  
APFCON  
FVRCON  
T3GCON  
ADCON1  
ADRES  
ADCON0  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
96 Bytes  
EFh  
F0h  
16Fh  
170h  
1EFh  
1F0h  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
Accesses  
70h – 7Fh  
FFh  
17Fh  
1FFh  
7Fh  
BANK 0  
BANK 1  
BANK 2  
BANK 3  
Legend:  
= Unimplemented data memory locations, read as ‘0’,  
*
= Not a physical register  
DS41418A-page 18  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
TABLE 2-2:  
SPECIAL FUNCTION REGISTER SUMMARY  
Value on all  
other  
resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 0  
00h( 2)  
01h  
02h( 2)  
03h( 2)  
04h( 2)  
05h  
INDF  
TMR0  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 Module Register  
xxxx xxxx xxxx xxxx  
0000 0000 0000 0000  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
---- xxxx ---- uuuu  
---0 0000 ---0 0000  
0000 000x 0000 000u  
0000 0000 0000 0000  
0000 ---0 0000 ---0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
PCL  
Program Counter (PC) Least Significant Byte  
STATUS  
FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PORTA Data Latch when written: PORTA pins when read  
PORTB Data Latch when written: PORTB pins when read  
PORTC Data Latch when written: PORTC pins when read  
PORTD Data Latch when written: PORTD pins when read  
06h  
07h  
08h  
09h  
RE3  
RE2  
RE1  
RE0  
0Ah( 1),( 2) PCLATH  
Write Buffer for the upper 5 bits of the Program Counter  
0Bh( 2)  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
TMR3IF  
TMR0IE  
RCIF  
INTE  
TXIF  
RBIE  
SSPIF  
TMR0IF  
CCP1IF  
INTF  
TMR2IF  
RBIF  
TMR1GIF  
TMR3GIF  
TMR1IF  
CCP2IF  
PIR2  
TMRBIF  
TMRAIF  
TMR1L  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
TMR1H  
T1CON  
TMR2  
TMR1CS1 TMR1CS0 T1CKPS1 T1CKPS0 T1OSCEN  
Timer2 Module Register  
T1SYNC  
TMR1ON 0000 00-0 uuuu uu-u  
11h  
0000 0000 0000 0000  
12h  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0  
TMR2ON  
T2CKPS1 T2CKPS0 -000 0000 -000 0000  
13h  
Synchronous Serial Port Receive Buffer/Transmit Register  
SSPEN CKP SSPM3 SSPM2  
xxxx xxxx uuuu uuuu  
14h  
WCOL  
SSPOV  
SSPM1  
SSPM0  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
15h  
Capture/Compare/PWM Register 1 (LSB)  
Capture/Compare/PWM Register 1 (MSB)  
16h  
17h  
DC1B1  
SREN  
DC1B0  
CREN  
CCP1M3  
ADDEN  
CCP1M2  
FERR  
CCP1M1  
OERR  
CCP1M0 --00 0000 --00 0000  
18h  
SPEN  
RX9  
RX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
19h  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRES  
ADCON0  
USART Transmit Data Register  
USART Receive Data Register  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
Legend:  
Capture/Compare/PWM Register 2 (LSB)  
Capture/Compare/PWM Register 2 (MSB)  
DC2B1  
DC2B0  
A/D Result Register  
CHS2 CHS1  
CCP2M3  
CCP2M2  
CCP2M1  
CCP2M0 --00 0000 --00 0000  
xxxx xxxx uuuu uuuu  
CHS3  
CHS0  
GO/DONE  
ADON  
--00 0000 --00 0000  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the  
upper byte of the program counter.  
2: These registers can be addressed from any bank.  
3: Accessible only when SSPM<3:0> = 1001.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 19  
PIC16F707/PIC16LF707  
TABLE 2-2:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 1  
80h( 2)  
81h  
82h( 2)  
83h( 2)  
84h( 2)  
85h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
xxxx xxxx xxxx xxxx  
1111 1111 1111 1111  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
---- 1111 ---- 1111  
---0 0000 ---0 0000  
0000 000x 0000 000u  
0000 0000 0000 0000  
0000 ---0 0000 ---0  
---- --qq ---- --uu  
0000 0x00 uuuu uxuu  
OPTION_REG  
PCL  
RBPU  
INTEDG  
TMR0CS TMR0SE  
PSA  
PS2  
PS1  
PS0  
Program Counter (PC) Least Significant Byte  
STATUS  
FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
PORTA Data Direction Register  
PORTB Data Direction Register  
PORTC Data Direction Register  
PORTD Data Direction Register  
TRISA  
TRISB  
TRISC  
TRISD  
TRISE  
86h  
87h  
88h  
89h  
‘1’  
TRISE2  
TRISE1  
TRISE0  
8Ah( 1),( 2) PCLATH  
8Bh( 2)  
Write Buffer for the upper 5 bits of the Program Counter  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
TMR3IE  
TMR0IE  
RCIE  
TMRBIE  
INTE  
TXIE  
RBIE  
SSPIE  
TMR0IF  
CCP1IE  
INTF  
TMR2IE  
RBIF  
TMR1IE  
CCP2IE  
BOR  
8Ch  
TMR1GIE  
TMR3GIE  
8Dh  
PIE2  
TMRAIE  
8Eh  
PCON  
T1GCON  
POR  
8Fh  
TMR1GE  
T1GPOL  
T1GTM  
T1GSPM  
T1GGO/  
DONE  
T1GVAL  
T1GSS1  
T1GSS0  
90h  
91h  
92h  
93h  
93h(3)  
94h  
95h  
96h  
97h  
98h  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Eh  
OSCCON  
OSCTUNE  
PR2  
IRCF1  
TUN5  
IRCF0  
TUN4  
ICSL  
ICSS  
--10 00-- --10 uu--  
--00 0000 --00 0000  
1111 1111 1111 1111  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0000  
TUN3  
TUN2  
TUN1  
TUN0  
Timer2 Period Register  
Synchronous Serial Port (I2C mode) Address Register  
Synchronous Serial Port (I2C mode) Address Mask Register  
SSPADD  
SSPMSK  
SSPSTAT  
WPUB  
SMP  
WPUB7  
IOCB7  
CKE  
D/A  
P
S
WPUB3  
IOCB3  
R/W  
WPUB2  
IOCB2  
T3SYNC  
BRGH  
BRG2  
UA  
WPUB1  
IOCB1  
BF  
WPUB6  
IOCB6  
WPUB5  
IOCB5  
WPUB4  
IOCB4  
WPUB0  
IOCB0  
IOCB  
T3CON  
TXSTA  
TMR3CS1 TMR3CS0 T3CKPS1 T3CKPS0  
TMR3ON 0000 -0-0 uuuu -u-u  
CSRC  
BRG7  
TX9  
TXEN  
BRG5  
SYNC  
BRG4  
TRMT  
BRG1  
TX9D  
BRG0  
0000 -010 0000 -010  
0000 0000 0000 0000  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
SPBRG  
TMR3L  
BRG6  
BRG3  
Holding Register for the Least Significant Byte of the 16-bit TMR3 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR3 Register  
TMR3H  
APFCON  
FVRCON  
T3GCON  
SSSEL  
ADFVR1  
T3GSS1  
CCP2SEL ---- --00 ---- --00  
FVRRDY  
TMR3GE  
FVREN  
T3GPOL  
CDAFVR1  
CDAFVR0  
T3GVAL  
ADFVR0  
T3GSS0  
x000 0000 x000 0000  
0000 0x00 uuuu uxuu  
T3GTM  
T3GSPM  
T3GGO/  
DONE  
9Fh  
ADCON1  
ADCS2  
ADCS1  
ADCS0  
ADREF1  
ADREF0 -000 --00 -000 --00  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the  
upper byte of the program counter.  
2: These registers can be addressed from any bank.  
3: Accessible only when SSPM<3:0> = 1001.  
DS41418A-page 20  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
TABLE 2-2:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 2  
100h( 2)  
101h  
102h( 2)  
103h( 2)  
104h( 2)  
105h  
INDF  
TMR0  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
Timer0 Module Register  
xxxx xxxx xxxx xxxx  
0000 0000 0000 0000  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
0-00 0000 0-00 0000  
00-- 0000 00-- 0000  
PCL  
Program Counter’s (PC) Least Significant Byte  
STATUS  
FSR  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
Indirect Data Memory Address Pointer  
TACON  
TMRAON  
TACS  
TASE  
TAPSA  
TAPS2  
TAPS1  
TAPS0  
TBXCS  
106h  
CPSBCON0  
CPSBCON1  
CPSACON0  
CPSACON1  
CPSBON CPSBRM  
CPSBRNG1 CPSBRNG0 CPSBOUT  
CPSBCH3  
CPSARNG1 CPSARNG0 CPSAOUT  
CPSACH3 CPSACH2 CPSACH1 CPSACH0 ---- 0000 ---- 0000  
107h  
CPSBCH2 CPSBCH1 CPSBCH0 ---- 0000 ---- 0000  
TAXCS 0--- 0000 0--- 0000  
108h  
CPSAON CPSARM  
109h  
10Ah( 1),(2) PCLATH  
Write Buffer for the upper 5 bits of the Program Counter  
INTE RBIE TMR0IF INTF  
---0 0000 ---0 0000  
0000 000x 0000 000u  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
--xx xxxx --uu uuuu  
---x xxxx ---u uuuu  
0000 0000 0000 0000  
0-00 0000 0-00 0000  
0000 0000 0000 0000  
000- 00-- 000- 00--  
---0 0000 ---0 0000  
10Bh( 2)  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
INTCON  
PMDATL  
PMADRL  
PMDATH  
PMADRH  
TMRA  
GIE  
PEIE  
TMR0IE  
RBIF  
Program Memory Read Data Register Low Byte  
Program Memory Read Address Register Low Byte  
Program Memory Read Data Register High Byte  
Program Memory Read Address Register High Byte  
TimerA Module Register  
111h  
TBCON  
TMRBON  
TBCS  
TBSE  
TBPSA  
TBPS2  
TBPS1  
TBPS0  
112h  
TMRB  
TimerB Module Register  
113h  
DACCON0  
DACCON1  
DACEN  
DACLPS  
DACOE  
DACPSS1  
DACR3  
DACPSS0  
DACR2  
114h  
DACR4  
DACR1  
DACR0  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the  
upper byte of the program counter.  
2: These registers can be addressed from any bank.  
3: Accessible only when SSPM<3:0> = 1001.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 21  
PIC16F707/PIC16LF707  
TABLE 2-2:  
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on all  
other  
resets  
Value on:  
POR, BOR  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 3  
180h( 2)  
181h  
182h( 2)  
183h( 2)  
184h( 2)  
185h  
INDF  
Addressing this location uses contents of FSR to address data memory (not a physical register)  
xxxx xxxx xxxx xxxx  
1111 1111 1111 1111  
0000 0000 0000 0000  
0001 1xxx 000q quuu  
xxxx xxxx uuuu uuuu  
1111 1111 1111 1111  
1111 1111 1111 1111  
111- -111 111- -111  
1111 1111 1111 1111  
---- -111 ---- -111  
---0 0000 ---0 0000  
0000 000x 0000 000u  
1--- ---0 1--- ---0  
OPTION_REG  
PCL  
RBPU  
INTEDG  
TMR0CS TMR0SE  
Program Counter (PC) Least Significant Byte  
RP0 TO PD  
Indirect Data Memory Address Pointer  
PSA  
PS2  
PS1  
PS0  
STATUS  
FSR  
IRP  
RP1  
Z
DC  
C
ANSELA  
ANSELB  
ANSELC  
ANSELD  
ANSELE  
ANSA7  
ANSB7  
ANSC7  
ANSD7  
ANSA6  
ANSB6  
ANSC6  
ANSD6  
ANSA5  
ANSB5  
ANSC5  
ANSD5  
ANSA4  
ANSB4  
ANSA3  
ANSB3  
ANSA2  
ANSB2  
ANSC2  
ANSD2  
ANSE2  
ANSA1  
ANSB1  
ANSC1  
ANSD1  
ANSE1  
ANSA0  
ANSB0  
ANSC0  
ANSD0  
ANSE0  
186h  
187h  
188h  
ANSD4  
ANSD3  
189h  
18Ah( 1),(2) PCLATH  
18Bh( 2)  
Write Buffer for the upper 5 bits of the Program Counter  
INTCON  
GIE  
PEIE  
TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
RD  
18Ch  
PMCON1  
18Dh  
Reserved  
18Eh  
Reserved  
Reserved  
18Fh  
Legend:  
x= unknown, u= unchanged, q= value depends on condition, - = unimplemented, read as ‘0’, r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the  
upper byte of the program counter.  
2: These registers can be addressed from any bank.  
3: Accessible only when SSPM<3:0> = 1001.  
DS41418A-page 22  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as ‘000u u1uu’ (where u= unchanged).  
2.2.2.1  
STATUS Register  
The STATUS register, shown in Register 2-1, contains:  
• the arithmetic status of the ALU  
• the Reset status  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect any Status bits. For other instructions not  
affecting any Status bits (Refer to Section 23.0  
“Instruction Set Summary”).  
• the bank select bits for data memory (SRAM)  
The STATUS register can be the destination for any  
instruction, like any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: The C and DC bits operate as Borrow and  
Digit Borrow out bits, respectively, in  
subtraction.  
REGISTER 2-1:  
STATUS: STATUS REGISTER  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC(1)  
R/W-x  
C(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
IRP: Register Bank Select bit (used for indirect addressing)  
1= Bank 2, 3 (100h-1FFh)  
0= Bank 0, 1 (00h-FFh)  
bit 6-5  
RP<1:0>: Register Bank Select bits (used for direct addressing)  
00= Bank 0 (00h-7Fh)  
01= Bank 1 (80h-FFh)  
10= Bank 2 (100h-17Fh)  
11= Bank 3 (180h-1FFh)  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
PD: Power-down bit  
1= After power-up or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW,SUBLW,SUBWFinstructions)(1)  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
C: Carry/Borrow bit(1) (ADDWF, ADDLW, SUBLW, SUBWF instructions)(1)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the  
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order  
bit of the source register.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 23  
PIC16F707/PIC16LF707  
2.2.2.2  
OPTION register  
Note:  
To achieve a 1:1 prescaler assignment for  
Timer0, assign the prescaler to the WDT by  
setting PSA bit of the OPTION register to  
1’. Refer to Section 13.3 “Timer1/3  
Prescaler”.  
The OPTION register, shown in Register 2-2, is a  
readable and writable register, which contains various  
control bits to configure:  
• Timer0/WDT prescaler  
• External RB0/INT interrupt  
• Timer0  
• Weak pull-ups on PORTB  
REGISTER 2-2:  
OPTION_REG: OPTION REGISTER  
R/W-1  
RBPU  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
TMR0CS  
TMR0SE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RBPU: PORTB Pull-up Enable bit  
1= PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual bits in the WPUB register  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of RB0/INT pin  
0= Interrupt on falling edge of RB0/INT pin  
TMR0CS: Timer0 Clock Source Select bit  
1= Transition on RA4/T0CKI pin  
0= Internal instruction cycle clock (FOSC/4)  
TMR0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on RA4/T0CKI pin  
0= Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
Bit Value  
Timer0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
DS41418A-page 24  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
2.2.2.3  
PCON Register  
The Power Control (PCON) register contains flag bits  
(refer to Table 3-4) to differentiate between a:  
• Power-on Reset (POR)  
• Brown-out Reset (BOR)  
The PCON register bits are shown in Register 2-3.  
REGISTER 2-3:  
PCON: POWER CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-q  
POR  
R/W-q  
BOR  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
q = Value depends on condition  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
bit 0  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset  
occurs)  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 25  
PIC16F707/PIC16LF707  
2.3  
PCL and PCLATH  
Note 1: There are no Status bits to indicate stack  
The Program Counter (PC) is 13 bits wide. The low  
byte comes from the PCL register, which is a readable  
and writable register. The high byte (PC<12:8>) is not  
directly readable or writable and comes from  
PCLATH. On any Reset, the PC is cleared. Figure 2-2  
shows the two situations for the loading of the PC. The  
upper example in Figure 2-2 shows how the PC is  
loaded on a write to PCL (PCLATH<4:0> PCH).  
The lower example in Figure 2-2 shows how the PC is  
overflow or stack underflow conditions.  
2: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the CALL,  
RETURN, RETLW and RETFIE instruc-  
tions or the vectoring to an interrupt  
address.  
loaded during  
(PCLATH<4:3> PCH).  
a
CALL or GOTO instruction  
2.4  
Program Memory Paging  
All devices are capable of addressing a continuous 8K  
word block of program memory. The CALL and GOTO  
instructions provide only 11 bits of address to allow  
branching within any 2K program memory page. When  
doing a CALL or GOTO instruction, the upper 2 bits of  
the address are provided by PCLATH<4:3>. When  
doing a CALLor GOTOinstruction, the user must ensure  
that the page select bits are programmed so that the  
desired program memory page is addressed. If a return  
from a CALL instruction (or interrupt) is executed, the  
entire 13-bit PC is POPed off the stack. Therefore,  
manipulation of the PCLATH<4:3> bits is not required  
for the RETURNinstructions (which POPs the address  
from the stack).  
FIGURE 2-2:  
LOADING OF PC IN  
DIFFERENT SITUATIONS  
PCH  
PCL  
Instruction with  
12  
8
7
0
PCL as  
Destination  
PC  
8
PCLATH<4:0>  
PCLATH  
5
ALU Result  
PCH  
12 11 10  
PC  
PCL  
8
7
0
GOTO, CALL  
Note:  
The contents of the PCLATH register are  
unchanged after a RETURN or RETFIE  
instruction is executed. The user must  
rewrite the contents of the PCLATH regis-  
ter for any subsequent subroutine calls or  
GOTOinstructions.  
PCLATH<4:3>  
PCLATH  
11  
2
OPCODE<10:0>  
2.3.1  
A computed GOTOis accomplished by adding an offset  
to the program counter (ADDWF PCL). When  
COMPUTED GOTO  
Example 2-1 shows the calling of a subroutine in  
page 1 of the program memory. This example assumes  
that PCLATH is saved and restored by the Interrupt  
Service Routine (if interrupts are used).  
performing a table read using a computed GOTO  
method, care should be exercised if the table location  
crosses a PCL memory boundary (each 256-byte  
block). Refer to Application Note AN556,  
“Implementing a Table Read” (DS00556).  
EXAMPLE 2-1:  
CALL OF A SUBROUTINE  
IN PAGE 1 FROM PAGE 0  
ORG 500h  
PAGESELSUB_P1 ;Select page 1  
;(800h-FFFh)  
2.3.2  
STACK  
All devices have an 8-level x 13-bit wide hardware  
stack (refer to Figure 2-1). The stack space is not part  
of either program or data space and the Stack Pointer  
is not readable or writable. The PC is PUSHed onto the  
stack when a CALL instruction is executed or an  
interrupt causes a branch. The stack is POPed in the  
event of a RETURN, RETLW or a RETFIE instruction  
execution. PCLATH is not affected by a PUSH or POP  
operation.  
CALL  
:
:
SUB1_P1;Call subroutine in  
;page 1 (800h-FFFh)  
ORG  
900h  
;page 1 (800h-FFFh)  
SUB1_P1  
:
;called subroutine  
;page 1 (800h-FFFh)  
:
RETURN  
;return to  
;Call subroutine  
;in page 0  
The stack operates as a circular buffer. This means that  
after the stack has been PUSHed eight times, the ninth  
PUSH overwrites the value that was stored from the  
first PUSH. The tenth PUSH overwrites the second  
PUSH (and so on).  
;(000h-7FFh)  
DS41418A-page 26  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
EXAMPLE 2-2:  
INDIRECT ADDRESSING  
2.5  
Indirect Addressing, INDF and  
FSR Registers  
MOVLW  
MOVWF  
BANKISEL 020h  
020h  
FSR  
;initialize pointer  
;to RAM  
The INDF register is not a physical register. Addressing  
the INDF register will cause indirect addressing.  
NEXT CLRF  
INDF  
FSR  
;clear INDF register  
;inc pointer  
INCF  
BTFSS  
GOTO  
Indirect addressing is possible by using the INDF  
register. Any instruction using the INDF register  
actually accesses data pointed to by the File Select  
Register (FSR). Reading INDF itself indirectly will  
produce 00h. Writing to the INDF register indirectly  
results in a no operation (although Status bits may be  
affected). An effective 9-bit address is obtained by  
concatenating the 8-bit FSR register and the IRP bit of  
the STATUS register, as shown in Figure 2-3.  
FSR,4 ;all done?  
NEXT ;no clear next  
;yes continue  
CONTINUE  
A simple program to clear RAM location 020h-02Fh  
using indirect addressing is shown in Example 2-2.  
FIGURE 2-3:  
DIRECT/INDIRECT ADDRESSING  
Direct Addressing  
Indirect Addressing  
From Opcode  
7
RP1  
RP0  
6
0
0
IRP  
File Select Register  
Bank Select  
180h  
Location Select  
Bank Select  
Location Select  
00h  
00  
01  
10  
11  
Data  
Memory  
7Fh  
1FFh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
Note:  
For memory map detail, refer to Table 2-2.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 27  
PIC16F707/PIC16LF707  
NOTES:  
DS41418A-page 28  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
Most registers are not affected by a WDT wake-up  
since this is viewed as the resumption of normal  
operation. TO and PD bits are set or cleared differently  
in different Reset situations, as indicated in Table 3-3.  
These bits are used in software to determine the nature  
of the Reset.  
3.0  
RESETS  
The PIC16F707/PIC16LF707 differentiates between  
various kinds of Reset:  
a) Power-on Reset (POR)  
b) WDT Reset during normal operation  
c) WDT Reset during Sleep  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 3-1.  
d) MCLR Reset during normal operation  
e) MCLR Reset during Sleep  
f) Brown-out Reset (BOR)  
The MCLR Reset path has a noise filter to detect and  
ignore small pulses. See Section 25.0 “Electrical  
Specifications” for pulse width specifications.  
Some registers are not affected in any Reset condition;  
their status is unknown on POR and unchanged in any  
other Reset. Most other registers are reset to a “Reset  
state” on:  
• Power-on Reset (POR)  
• MCLR Reset  
• MCLR Reset during Sleep  
• WDT Reset  
• Brown-out Reset (BOR)  
FIGURE 3-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
MCLRE  
MCLR/VPP  
Sleep  
WDT  
WDT  
Module  
Time-out  
Reset  
POR  
Power-on Reset  
VDD  
Brown-out(1)  
Reset  
BOREN  
OST/PWRT  
OST  
10-bit Ripple Counter  
Chip_Reset  
OSC1/  
CLKIN  
PWRT  
11-bit Ripple Counter  
WDTOSC  
Enable PWRT  
Enable OST  
Note 1: Refer to the Configuration Word Register 1 (Register 8-1).  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 29  
PIC16F707/PIC16LF707  
TABLE 3-1:  
STATUS BITS AND THEIR SIGNIFICANCE  
POR  
BOR  
TO  
PD  
Condition  
0
0
0
1
1
1
1
1
x
x
x
0
1
1
1
1
1
0
x
1
0
0
u
1
1
x
0
1
1
0
u
0
Power-on Reset or LDO Reset  
Illegal, TO is set on POR  
Illegal, PD is set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during Sleep or interrupt wake-up from Sleep  
TABLE 3-2:  
RESET CONDITION FOR SPECIAL REGISTERS(2)  
Program  
STATUS  
Register  
PCON  
Register  
Condition  
Counter  
Power-on Reset  
0000h  
0001 1xxx  
000u uuuu  
---- --0x  
---- --uu  
MCLR Reset during normal operation  
0000h  
MCLR Reset during Sleep  
WDT Reset  
0000h  
0000h  
0001 0uuu  
0000 1uuu  
uuu0 0uuu  
0001 1uuu  
uuu1 0uuu  
---- --uu  
---- --uu  
---- --uu  
---- --u0  
---- --uu  
WDT Wake-up  
PC + 1  
Brown-out Reset  
0000h  
PC + 1(1)  
Interrupt Wake-up from Sleep  
Legend: u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’.  
Note 1: When the wake-up is due to an interrupt and global enable bit (GIE) is set, the return address is pushed on  
the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.  
2: If a Status bit is not implemented, that bit will be read as ‘0’.  
DS41418A-page 30  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
3.1  
MCLR  
3.3  
Power-up Timer (PWRT)  
The PIC16F707/PIC16LF707 has a noise filter in the  
MCLR Reset path. The filter will detect and ignore  
small pulses.  
The Power-up Timer provides a fixed 64 ms (nominal)  
time-out on power-up only, from POR or Brown-out  
Reset. The Power-up Timer operates from the WDT  
oscillator. For more information, see Section 7.3  
“Internal Clock Modes”. The chip is kept in Reset as  
long as PWRT is active. The PWRT delay allows the  
VDD to rise to an acceptable level. A Configuration bit,  
PWRTE, can disable (if set) or enable (if cleared or pro-  
grammed) the Power-up Timer. The Power-up Timer  
should be enabled when Brown-out Reset is enabled,  
although it is not required.  
It should be noted that a Reset does not drive the  
MCLR pin low.  
Voltages applied to the pin that exceed its specification  
can result in both MCLR Resets and excessive current  
beyond the device specification during the ESD event.  
For this reason, Microchip recommends that the MCLR  
pin no longer be tied directly to VDD. The use of an RC  
network, as shown in Figure 3-2, is suggested.  
The Power-up Timer delay will vary from chip-to-chip  
and vary due to:  
An internal MCLR option is enabled by clearing the  
MCLRE bit in the Configuration Word register. When  
MCLRE = 0, the Reset signal to the chip is generated  
internally. When the MCLRE = 1, the RE3/MCLR pin  
becomes an external Reset input. In this mode, the  
RE3/MCLR pin has a weak pull-up to VDD. In-Circuit  
Serial Programming is not affected by selecting the  
internal MCLR option.  
• VDD variation  
Temperature variation  
• Process variation  
See DC parameters for details (Section 25.0  
“Electrical Specifications”).  
Note:  
The Power-up Timer is enabled by the  
PWRTE bit in the Configuration Word 1.  
FIGURE 3-2:  
RECOMMENDED MCLR  
CIRCUIT  
3.4  
Watchdog Timer (WDT)  
VDD  
R1  
PIC® MCU  
The WDT has the following features:  
• Shares an 8-bit prescaler with Timer0  
10 k  
• Time-out period is from 17 ms to 2.2 seconds,  
nominal  
MCLR  
• Enabled by a Configuration bit  
WDT is cleared under certain conditions described in  
Table 3-3.  
C1  
0.1 F  
3.4.1  
WDT OSCILLATOR  
The WDT derives its time base from 31 kHz internal  
oscillator.  
3.2  
Power-on Reset (POR)  
Note:  
When the Oscillator Start-up Timer (OST)  
is invoked, the WDT is held in Reset,  
because the WDT Ripple Counter is used  
by the OST to perform the oscillator delay  
count. When the OST count has expired,  
the WDT will begin counting (if enabled).  
The on-chip POR circuit holds the chip in Reset until VDD  
has reached a high enough level for proper operation. A  
maximum rise time for VDD is required. See  
Section 25.0 “Electrical Specifications” for details. If  
the BOR is enabled, the maximum rise time specification  
does not apply. The BOR circuitry will keep the device in  
Reset until VDD reaches VBOR (see Section 3.5  
“Brown-Out Reset (BOR)”).  
When the device starts normal operation (exits the  
Reset condition), device operating parameters (i.e.,  
voltage, frequency, temperature, etc.) must be met to  
ensure operation. If these conditions are not met, the  
device must be held in Reset until the operating  
conditions are met.  
For additional information, refer to Application Note  
AN607, “Power-up Trouble Shooting” (DS00607).  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 31  
PIC16F707/PIC16LF707  
3.4.2  
WDT CONTROL  
The WDTE bit is located in the Configuration Word  
Register 1. When set, the WDT runs continuously.  
The PSA and PS<2:0> bits of the OPTION register  
control the WDT period. See Section 12.0 “Timer0  
Module” for more information.  
FIGURE 3-3:  
WATCHDOG TIMER BLOCK DIAGRAM  
TxGSS = 11  
TMRxGE  
From TMR0  
Clock Source  
WDTE  
Low-Power  
WDT OSC  
0
1
Postscaler  
8
Divide by  
512  
PS<2:0>  
TO TMR0  
0
1
PSA  
WDT Reset  
To TxG  
WDTE  
TABLE 3-3:  
WDT STATUS  
Conditions  
WDT  
Cleared  
WDTE = 0  
CLRWDTCommand  
Exit Sleep + System Clock = EXTRC, INTOSC, EXTCLK  
Exit Sleep + System Clock = XT, HS, LP  
Cleared until the end of OST  
DS41418A-page 32  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
If VDD falls below VBOR for greater than parameter  
(TBOR) (see Section 25.0 “Electrical Specifica-  
tions”), the brown-out situation will reset the device.  
This will occur regardless of VDD slew rate. A Reset is  
not ensured to occur if VDD falls below VBOR for more  
than parameter (TBOR).  
3.5  
Brown-Out Reset (BOR)  
Brown-out Reset is enabled by programming the  
BOREN<1:0> bits in the Configuration register. The  
brown-out trip point is selectable from two trip points  
via the BORV bit in the Configuration register.  
Between the POR and BOR, complete voltage range  
coverage for execution protection can be imple-  
mented.  
If VDD drops below VBOR while the Power-up Timer is  
running, the chip will go back into a Brown-out Reset  
and the Power-up Timer will be re-initialized. Once VDD  
rises above VBOR, the Power-up Timer will execute a  
64 ms Reset.  
Two bits are used to enable the BOR. When  
BOREN = 11, the BOR is always enabled. When  
BOREN = 10, the BOR is enabled, but disabled during  
Sleep. When BOREN = 0X, the BOR is disabled.  
Note:  
When erasing Flash program memory, the  
BOR is forced to enabled at the minimum  
BOR setting to ensure that any code  
protection circuitry is operating properly.  
FIGURE 3-4:  
BROWN-OUT SITUATIONS  
VDD  
VBOR  
Internal  
Reset  
(1)  
64 ms  
VDD  
VBOR  
Internal  
Reset  
< 64 ms  
(1)  
64 ms  
VDD  
VBOR  
Internal  
Reset  
(1)  
64 ms  
Note 1: 64 ms delay only if PWRTE bit is programmed to ‘0’.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 33  
PIC16F707/PIC16LF707  
3.6  
Time-out Sequence  
3.7  
Power Control (PCON) Register  
On power-up, the time-out sequence is as follows: first,  
PWRT time-out is invoked after POR has expired, then  
OST is activated after the PWRT time-out has expired.  
The total time-out will vary based on oscillator configu-  
ration and PWRTE bit status. For example, in EC mode  
with PWRTE bit = 1(PWRT disabled), there will be no  
time-out at all. Figure 3-5, Figure 3-6 and Figure 3-7  
depict time-out sequences.  
The Power Control (PCON) register has two Status bits  
to indicate what type of Reset that last occurred.  
Bit 0 is BOR (Brown-out Reset). BOR is unknown on  
Power-on Reset. It must then be set by the user and  
checked on subsequent Resets to see if BOR = 0,  
indicating that a brown-out has occurred. The BOR  
Status bit is a “don’t care” and is not necessarily  
predictable if the brown-out circuit is disabled  
(BOREN<1:0> = 00in the Configuration Word register).  
Since the time-outs occur from the POR pulse, if MCLR  
is kept low long enough, the time-outs will expire. Then,  
bringing MCLR high will begin execution immediately  
(see Figure 3-6). This is useful for testing purposes or  
to synchronize more than one PIC16F707/  
PIC16LF707 device operating in parallel.  
Bit 1 is POR (Power-on Reset). It is a ‘0’ on Power-on  
Reset and unaffected otherwise. The user must write a  
1’ to this bit following a Power-on Reset. On a  
subsequent Reset, if POR is ‘0’, it will indicate that a  
Power-on Reset has occurred (i.e., VDD may have  
gone too low).  
Table 3-2 shows the Reset conditions for some special  
registers.  
For more information, see Section 3.5 “Brown-Out  
Reset (BOR)”.  
TABLE 3-4:  
TIME-OUT IN VARIOUS SITUATIONS  
Power-up  
Brown-out Reset  
Wake-up from  
Oscillator Configuration  
Sleep  
PWRTE = 0  
PWRTE = 1  
PWRTE = 0  
PWRTE = 1  
TPWRT + 1024 •  
TOSC  
1024 • TOSC  
TPWRT + 1024 •  
TOSC  
1024 • TOSC  
1024 • TOSC  
XT, HS, LP  
RC, EC, INTOSC  
TPWRT  
TPWRT  
FIGURE 3-5:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 1  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
DS41418A-page 34  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 3-6:  
TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 2  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
FIGURE 3-7:  
TIME-OUT SEQUENCE ON POWER-UP (MCLR WITH VDD): CASE 3  
VDD  
MCLR  
Internal POR  
TPWRT  
PWRT Time-out  
OST Time-out  
Internal Reset  
TOST  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 35  
PIC16F707/PIC16LF707  
TABLE 3-5:  
Register  
INITIALIZATION CONDITION FOR REGISTERS  
Power-on Reset/  
MCLR Reset/  
WDT Reset  
Wake-up from Sleep through  
Interrupt/Time-out  
Address  
Brown-out Reset(1)  
W
xxxx xxxx  
xxxx xxxx  
uuuu uuuu  
xxxx xxxx  
uuuu uuuu  
uuuu uuuu  
INDF  
00h/80h/  
100h/180h  
TMR0  
PCL  
01h/101h  
xxxx xxxx  
0000 0000  
uuuu uuuu  
0000 0000  
uuuu uuuu  
PC + 1(3)  
02h/82h/  
102h/182h  
STATUS  
FSR  
03h/83h/  
103h/183h  
0001 1xxx  
xxxx xxxx  
000q quuu(4)  
uuuu uuuu  
uuuq quuu(4)  
uuuu uuuu  
04h/84h/  
104h/184h  
PORTA  
PORTB  
PORTC  
PORTD  
PORTE  
PCLATH  
05h  
06h  
07h  
08h  
09h  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
---- xxxx  
---0 0000  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
---- xxxx  
---0 0000  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- uuuu  
---u uuuu  
0Ah/8Ah/  
10Ah/18Ah  
INTCON  
0Bh/8Bh/  
0000 000x  
0000 000x  
uuuu uuuu(2)  
10Bh/18Bh  
PIR1  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
0000 0000  
0000 ---0  
xxxx xxxx  
xxxx xxxx  
0000 00-0  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 000x  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
xxxx xxxx  
0000 0000  
0000 ---0  
uuuu uuuu  
uuuu uuuu  
uuuu uu-u  
0000 0000  
-000 0000  
xxxx xxxx  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
0000 000x  
0000 0000  
0000 0000  
xxxx xxxx  
xxxx xxxx  
--00 0000  
uuuu uuuu  
uuuu uuuu(2)  
uuuu ---u(2)  
uuuu uuuu  
uuuu uuuu  
uuuu uu-u  
uuuu uuuu  
-uuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
uuuu uuuu  
PIR2  
TMR1L  
TMR1H  
T1CON  
TMR2  
T2CON  
SSPBUF  
SSPCON  
CCPR1L  
CCPR1H  
CCP1CON  
RCSTA  
TXREG  
RCREG  
CCPR2L  
CCPR2H  
CCP2CON  
ADRES  
Legend: u= unchanged, x= unknown, - = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 and PIR2 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt  
vector (0004h).  
4: See Table 3-2 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
DS41418A-page 36  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
TABLE 3-5:  
Register  
INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)  
Power-on Reset/  
MCLR Reset/  
WDT Reset  
Wake-up from Sleep through  
Interrupt/Time-out  
Address  
Brown-out Reset(1)  
ADCON0  
1Fh  
--00 0000  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
---- 1111  
0000 0000  
0000 ---0  
---- --qq  
0000 0x00  
--10 qq--  
--00 0000  
1111 1111  
0000 0000  
1111 1111  
0000 0000  
1111 1111  
0000 0000  
0000 -0-0  
0000 -010  
0000 0000  
xxxx xxxx  
xxxx xxxx  
---- --00  
q000 0000  
-000 --00  
0-00 0000  
00-- 0000  
---- 0000  
00-- 0000  
---- 0000  
xxxx xxxx  
xxxx xxxx  
--xx xxxx  
---x xxxx  
0000 0000  
--00 0000  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
---- 1111  
0000 0000  
0000 ---0  
---- --uu(1,5)  
uuuu uxuu  
--10 qq--  
--uu uuuu  
1111 1111  
0000 0000  
1111 1111  
0000 0000  
1111 1111  
0000 0000  
0000 -0-0  
0000 -010  
0000 0000  
uuuu uuuu  
uuuu uuuu  
---- --00  
q000 0000  
-000 --00  
0-00 0000  
00-- 0000  
---- 0000  
00-- 0000  
---- 0000  
xxxx xxxx  
xxxx xxxx  
--xx xxxx  
---x xxxx  
0000 0000  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- uuuu  
uuuu uuuu  
uuuu ---u  
---- --uu  
uuuu uxuu  
--uu qq--  
--uu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu -u-u  
uuuu -uuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- --uu  
q000 0000  
-uuu --uu  
u-uu uuuu  
uu-- uuuu  
---- uuuu  
uu-- uuuu  
---- uuuu  
uuuu uuuu  
uuuu uuuu  
--uu uuuu  
---u uuuu  
uuuu uuuu  
OPTION_REG 81h/181h  
TRISA  
85h  
86h  
TRISB  
TRISC  
87h  
TRISD  
88h  
TRISE  
89h  
PIE1  
8Ch  
8Dh  
8Eh  
8Fh  
90h  
PIE2  
PCON  
T1GCON  
OSCCON  
OSCTUNE  
PR2  
91h  
92h  
SSPADD  
SSPMSK  
SSPSTAT  
WPUB  
93h  
93h  
94h  
95h  
IOCB  
96h  
T3CON  
TXSTA  
97h  
98h  
SPBRG  
TMR3L  
99h  
9Ah  
9Bh  
9Ch  
9Dh  
9Fh  
105h  
106h  
107h  
108h  
109h  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
TMR3H  
APFCON  
FVRCON  
ADCON1  
TACON  
CPSBCON0  
CPSBCON1  
CPSACON0  
CPSACON1  
PMDATL  
PMADRL  
PMDATH  
PMADRH  
TMRA  
Legend: u= unchanged, x= unknown, - = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 and PIR2 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt  
vector (0004h).  
4: See Table 3-2 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 37  
PIC16F707/PIC16LF707  
TABLE 3-5:  
Register  
INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)  
Power-on Reset/  
MCLR Reset/  
WDT Reset  
Wake-up from Sleep through  
Interrupt/Time-out  
Address  
Brown-out Reset(1)  
TBCON  
111h  
112h  
113h  
114h  
185h  
186h  
187h  
188h  
189h  
18Ch  
0-00 0000  
0000 0000  
000- 00--  
---0 0000  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
---- -111  
1--- ---0  
0-00 0000  
0000 0000  
000- 00--  
---0 0000  
1111 1111  
1111 1111  
1111 1111  
1111 1111  
---- -111  
1--- ---0  
u-uu uuuu  
uuuu uuuu  
uuu- uu--  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---- -uuu  
u--- ---u  
TMRB  
DACCON0  
DACCON1  
ANSELA  
ANSELB  
ANSELC  
ANSELD  
ANSELE  
PMCON1  
Legend: u= unchanged, x= unknown, - = unimplemented bit, reads as ‘0’, q= value depends on condition.  
Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.  
2: One or more bits in INTCON and/or PIR1 and PIR2 will be affected (to cause wake-up).  
3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt  
vector (0004h).  
4: See Table 3-2 for Reset value for specific condition.  
5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.  
TABLE 3-6:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH RESETS  
Value on  
all other  
Resets(1)  
Value on  
POR, BOR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
STATUS  
PCON  
IRP  
RP1  
RP0  
TO  
PD  
Z
DC  
C
0001 1xxx 000q quuu  
---- --qq ---- --uu  
POR  
BOR  
Legend:  
u= unchanged, x= unknown, -= unimplemented bit, reads as ‘0’, q= value depends on condition. Shaded cells are  
not used by Resets.  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
DS41418A-page 38  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
• AUSART Receive Interrupt  
• AUSART Transmit Interrupt  
• SSP Event Interrupt  
4.0  
INTERRUPTS  
The PIC16F707/PIC16LF707 device family features an  
interruptible core, allowing certain events to preempt  
normal program flow. An Interrupt Service Routine  
(ISR) is used to determine the source of the interrupt  
and act accordingly. Some interrupts can be configured  
to wake the MCU from Sleep mode.  
• CCP1 Event Interrupt  
• Timer2 Match with PR2 Interrupt  
• Timer1 Overflow Interrupt  
• CCP2 Event Interrupt  
The PIC16F707 family has 16 interrupt sources,  
differentiated by corresponding interrupt enable and  
flag bits:  
• TimerA Overflow Interrupt  
• TimerB Overflow Interrupt  
• Timer3 Overflow Interrupt  
• Timer3 Gate Interrupt  
• Timer0 Overflow Interrupt  
• External Edge Detect on INT Pin Interrupt  
• PORTB Change Interrupt  
A block diagram of the interrupt logic is shown in  
Figure 4-1.  
• Timer1 Gate Interrupt  
• A/D Conversion Complete Interrupt  
FIGURE 4-1:  
INTERRUPT LOGIC  
IOC-RB0  
IOCB0  
IOC-RB1  
IOCB1  
SSPIF  
SSPIE  
IOC-RB2  
IOCB2  
TXIF  
TXIE  
IOC-RB3  
IOCB3  
RCIF  
RCIE  
(1)  
Wake-up (If in Sleep mode)  
IOC-RB4  
IOCB4  
TMR0IF  
TMR0IE  
TMR2IF  
TMR2IE  
Interrupt to CPU  
IOC-RB5  
IOCB5  
INTF  
INTE  
RBIF  
TMR1IF  
TMR1IE  
IOC-RB6  
IOCB6  
RBIE  
ADIF  
ADIE  
PEIE  
GIE  
IOC-RB7  
IOCB7  
TMR1GIF  
TMR1GIE  
CCP1IF  
CCP1IE  
CCP2IF  
CCP2IE  
TMRAIF  
TMRAIE  
Note 1: Some peripherals depend upon the  
system clock for operation. Since the  
system clock is suspended during  
Sleep, these peripherals will not wake  
the part from Sleep. See Section 21.1  
“Wake-up from Sleep”.  
TMRBIF  
TMRBIE  
TMR3IF  
TMR3IE  
TMR3GIF  
TMR3GIE  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 39  
PIC16F707/PIC16LF707  
interrupts. Because the GIE bit is cleared, any interrupt  
that occurs while executing the ISR will be recorded  
through its interrupt flag, but will not cause the  
processor to redirect to the interrupt vector.  
4.1  
Operation  
Interrupts are disabled upon any device Reset. They  
are enabled by setting the following bits:  
• GIE bit of the INTCON register  
The RETFIE instruction exits the ISR by popping the  
• Interrupt enable bit(s) for the specific interrupt  
event(s)  
previous address from the stack and setting the GIE bit.  
For additional information on a specific interrupt’s  
operation, refer to its peripheral chapter.  
• PEIE bit of the INTCON register (if the interrupt  
enable bit of the interrupt event is contained in the  
PIE1 and PIE2 registers)  
Note 1: Individual interrupt flag bits are set,  
regardless of the state of any other  
enable bits.  
The INTCON, PIR1 and PIR2 registers record individ-  
ual interrupts via interrupt flag bits. Interrupt flag bits will  
be set, regardless of the status of the GIE, PEIE and  
individual Interrupt Enable bits.  
2: All interrupts will be ignored while the GIE  
bit is cleared. Any interrupt occurring  
while the GIE bit is clear will be serviced  
when the GIE bit is set again.  
The following events happen when an interrupt event  
occurs while the GIE bit is set:  
• Current prefetched instruction is flushed  
• GIE bit is cleared  
4.2  
Interrupt Latency  
Interrupt latency is defined as the time from when the  
interrupt event occurs to the time code execution at the  
interrupt vector begins. The latency for synchronous  
interrupts is 3 instruction cycles. For asynchronous  
interrupts, the latency is 3 to 4 instruction cycles,  
depending on when the interrupt occurs. See Figure 4-2  
for timing details.  
• Current Program Counter (PC) is pushed onto the  
stack  
• PC is loaded with the interrupt vector 0004h  
The ISR determines the source of the interrupt by  
polling the interrupt flag bits. The interrupt flag bits must  
be cleared before exiting the ISR to avoid repeated  
FIGURE 4-2:  
INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
(3)  
CLKOUT  
(4)  
INT pin  
(1)  
(1)  
(2)  
(5)  
Interrupt Latency  
INTF flag  
(INTCON<1>)  
GIE bit  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
PC + 1  
0004h  
0005h  
PC  
Inst (PC)  
PC + 1  
Instruction  
Fetched  
Inst (0004h)  
Inst (PC + 1)  
Inst (0005h)  
Inst (0004h)  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC – 1)  
Note 1: INTF flag is sampled here (every Q1).  
2: Asynchronous interrupt latency = 3-4 TCY. Synchronous latency = 3 TCY, where TCY = instruction cycle time.  
Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.  
3: CLKOUT is available only in INTOSC and RC Oscillator modes.  
4: For minimum width of INT pulse, refer to AC specifications in Section 25.0 “Electrical Specifications”.  
5: INTF is enabled to be set any time during the Q4-Q1 cycles.  
DS41418A-page 40  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
following the ISR from using invalid data. Examples of  
key registers include the W, STATUS, FSR and  
PCLATH registers.  
4.3  
Interrupts During Sleep  
Some interrupts can be used to wake from Sleep. To  
wake from Sleep, the peripheral must be able to  
operate without the system clock. The interrupt source  
must have the appropriate interrupt enable bit(s) set  
prior to entering Sleep.  
Note:  
The microcontroller does not normally  
require saving the PCLATH register.  
However, if computed GOTO’s are used,  
the PCLATH register must be saved at the  
beginning of the ISR and restored when  
the ISR is complete to ensure correct  
program flow.  
On waking from Sleep, if the GIE bit is also set, the  
processor will branch to the interrupt vector. Otherwise,  
the processor will continue executing instructions after  
the SLEEPinstruction. The instruction directly after the  
SLEEP instruction will always be executed before  
branching to the ISR. Refer to Section 21.0 “Power-  
Down Mode (Sleep)” for more details.  
The code shown in Example 4-1 can be used to do the  
following.  
• Save the W register  
• Save the STATUS register  
• Save the PCLATH register  
• Execute the ISR program  
• Restore the PCLATH register  
• Restore the STATUS register  
• Restore the W register  
4.4  
INT Pin  
The external interrupt, INT pin, causes an  
asynchronous, edge-triggered interrupt. The INTEDG bit  
of the OPTION register determines on which edge the  
interrupt will occur. When the INTEDG bit is set, the  
rising edge will cause the interrupt. When the INTEDG  
bit is clear, the falling edge will cause the interrupt. The  
INTF bit of the INTCON register will be set when a valid  
edge appears on the INT pin. If the GIE and INTE bits  
are also set, the processor will redirect program  
execution to the interrupt vector. This interrupt is  
disabled by clearing the INTE bit of the INTCON register.  
Since most instructions modify the W register, it must  
be saved immediately upon entering the ISR. The  
SWAPF instruction is used when saving and restoring  
the W and STATUS registers because it will not affect  
any bits in the STATUS register. It is useful to place  
W_TEMP in shared memory because the ISR cannot  
predict which bank will be selected when the interrupt  
occurs.  
4.5  
Context Saving  
The processor will branch to the interrupt vector by  
loading the PC with 0004h. The PCLATH register will  
remain unchanged. This requires the ISR to ensure  
that the PCLATH register is set properly before using  
an instruction that causes PCLATH to be loaded into  
the PC. See Section 2.3 “PCL and PCLATH” for  
details on PC operation.  
When an interrupt occurs, only the return PC value is  
saved to the stack. If the ISR modifies or uses an  
instruction that modifies key registers, their values  
must be saved at the beginning of the ISR and restored  
when the ISR completes. This prevents instructions  
EXAMPLE 4-1:  
SAVING W, STATUS AND PCLATH REGISTERS IN RAM  
;Copy W to W_TEMP register  
MOVWF  
SWAPF  
W_TEMP  
STATUS,W  
;Swap status to be saved into W  
;Swaps are used because they do not affect the status bits  
;Select regardless of current bank  
BANKSEL STATUS_TEMP  
MOVWF  
MOVF  
MOVWF  
:
STATUS_TEMP  
PCLATH,W  
PCLATH_TEMP  
;Copy status to bank zero STATUS_TEMP register  
;Copy PCLATH to W register  
;Copy W register to PCLATH_TEMP  
:(ISR)  
:
;Insert user code here  
BANKSEL STATUS_TEMP  
;Select regardless of current bank  
;
;Restore PCLATH  
;Swap STATUS_TEMP register into W  
;(sets bank to original state)  
;Move W into STATUS register  
;Swap W_TEMP  
MOVF  
MOVWF  
SWAPF  
PCLATH_TEMP,W  
PCLATH  
STATUS_TEMP,W  
MOVWF  
SWAPF  
SWAPF  
STATUS  
W_TEMP,F  
W_TEMP,W  
;Swap W_TEMP into W  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 41  
PIC16F707/PIC16LF707  
4.5.1  
INTCON REGISTER  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE of the INTCON register.  
User software should ensure the appropri-  
ate interrupt flag bits are clear prior to  
enabling an interrupt.  
The INTCON register is a readable and writable  
register, which contains the various enable and flag bits  
for TMR0 register overflow, PORTB change and  
external RB0/INT/SEG0 pin interrupts.  
REGISTER 4-1:  
INTCON: INTERRUPT CONTROL REGISTER  
R/W-0  
GIE  
R/W-0  
PEIE  
R/W-0  
R/W-0  
INTE  
R/W-0  
RBIE(1)  
R/W-0  
TMR0IF(2)  
R/W-0  
INTF  
R/W-x  
RBIF  
TMR0IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
GIE: Global Interrupt Enable bit  
1= Enables all unmasked interrupts  
0= Disables all interrupts  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
PEIE: Peripheral Interrupt Enable bit  
1= Enables all unmasked peripheral interrupts  
0= Disables all peripheral interrupts  
TMR0IE: Timer0 Overflow Interrupt Enable bit  
1= Enables the Timer0 interrupt  
0= Disables the Timer0 interrupt  
INTE: RB0/INT External Interrupt Enable bit  
1= Enables the RB0/INT external interrupt  
0= Disables the RB0/INT external interrupt  
RBIE: PORTB Change Interrupt Enable bit(1)  
1= Enables the PORTB change interrupt  
0= Disables the PORTB change interrupt  
TMR0IF: Timer0 Overflow Interrupt Flag bit(2)  
1= TMR0 register has overflowed (must be cleared in software)  
0= TMR0 register did not overflow  
INTF: RB0/INT External Interrupt Flag bit  
1= The RB0/INT external interrupt occurred (must be cleared in software)  
0= The RB0/INT external interrupt did not occur  
RBIF: PORTB Change Interrupt Flag bit  
1 = When at least one of the PORTB general purpose I/O pins changed state (must be cleared in  
software)  
0= None of the PORTB general purpose I/O pins have changed state  
Note 1: The appropriate bits in the IOCB register must also be set.  
2: TMR0IF bit is set when Timer0 rolls over. Timer0 is unchanged on Reset and should be initialized before  
clearing TMR0IF bit.  
DS41418A-page 42  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
4.5.2  
PIE1 REGISTER  
The PIE1 register contains the interrupt enable bits, as  
shown in Register 4-2.  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
REGISTER 4-2:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
R/W-0  
TMR1GIE  
bit 7  
R/W-0  
ADIE  
R/W-0  
RCIE  
R/W-0  
TXIE  
R/W-0  
SSPIE  
R/W-0  
R/W-0  
R/W-0  
CCP1IE  
TMR2IE  
TMR1IE  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
TMR1GIE: Timer1 Gate Interrupt Enable bit  
1= Enable the Timer1 gate acquisition complete interrupt  
0= Disable the Timer1 gate acquisition complete interrupt  
ADIE: A/D Converter (ADC) Interrupt Enable bit  
1= Enables the ADC interrupt  
0= Disables the ADC interrupt  
RCIE: USART Receive Interrupt Enable bit  
1= Enables the USART receive interrupt  
0= Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit  
1= Enables the USART transmit interrupt  
0= Disables the USART transmit interrupt  
SSPIE: Synchronous Serial Port (SSP) Interrupt Enable bit  
1= Enables the SSP interrupt  
0= Disables the SSP interrupt  
CCP1IE: CCP1 Interrupt Enable bit  
1= Enables the CCP1 interrupt  
0= Disables the CCP1 interrupt  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the Timer2 to PR2 match interrupt  
0= Disables the Timer2 to PR2 match interrupt  
TMR1IE: Timer1 Overflow Interrupt Enable bit  
1= Enables the Timer1 overflow interrupt  
0= Disables the Timer1 overflow interrupt  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 43  
PIC16F707/PIC16LF707  
4.5.3  
PIE2 REGISTER  
The PIE2 register contains the interrupt enable bits, as  
shown in Register 4-3.  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
REGISTER 4-3:  
R/W-0  
PIE2 – PERIPHERAL INTERRUPT ENABLE REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
TMR3GIE  
bit 7  
TMR3IE  
TMRBIE  
TMRAIE  
CCP2IE  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
u = bit is unchanged  
x = Bit is unknown  
-n/n = Value at POR and BOR/Value at all other  
Resets  
‘1’ = Bit is set  
‘0’ = Bit is cleared  
bit 7  
bit 6  
bit 5  
bit 4  
TMR3GIE: Timer3 Gate Interrupt Flag bit  
1= Enable the Timer3 gate acquisition complete interrupt  
0= Disable the Timer3 gate acquisition complete interrupt  
TMR3IE: Timer3 Overflow Interrupt Enable bit  
1= Enables the Timer3 overflow interrupt  
0= Disables the Timer3 overflow interrupt  
TMRBIE: TimerB Overflow Interrupt Enable bit  
1= Enables the TimerB interrupt  
0= Disables the TimerB interrupt  
TMRAIE: TimerA Overflow Interrupt Enable bit  
1= Enables the TimerA interrupt  
0= Disables the TimerA interrupt  
bit 3-1  
bit 0  
Unimplemented: Read as '0'  
CCP2IE: CCP2 Interrupt Enable bit  
1= Enables the CCP2 interrupt  
0= Disables the CCP2 interrupt  
DS41418A-page 44  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
4.5.4  
PIR1 REGISTER  
The PIR1 register contains the interrupt flag bits, as  
shown in Register 4-4.  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE of the INTCON register.  
User software should ensure the  
appropriate interrupt flag bits are clear prior  
to enabling an interrupt.  
REGISTER 4-4:  
PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1  
R/W-0  
TMR1GIF  
bit 7  
R/W-0  
ADIF  
R-0  
R-0  
R/W-0  
SSPIF  
R/W-0  
R/W-0  
R/W-0  
RCIF  
TXIF  
CCP1IF  
TMR2IF  
TMR1IF  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
TMR1GIF: Timer1 Gate Interrupt Flag bit  
1= Timer1 gate is inactive  
0= Timer1 gate is active  
ADIF: A/D Converter Interrupt Flag bit  
1= A/D conversion complete (must be cleared in software)  
0= A/D conversion has not completed or has not been started  
RCIF: USART Receive Interrupt Flag bit  
1= The USART receive buffer is full (cleared by reading RCREG)  
0= The USART receive buffer is not full  
TXIF: USART Transmit Interrupt Flag bit  
1= The USART transmit buffer is empty (cleared by writing to TXREG)  
0= The USART transmit buffer is full  
SSPIF: Synchronous Serial Port (SSP) Interrupt Flag bit  
1= The Transmission/Reception is complete (must be cleared in software)  
0= Waiting to Transmit/Receive  
CCP1IF: CCP1 Interrupt Flag bit  
Capture mode:  
1= A Timer1 register capture occurred (must be cleared in software)  
0= No Timer1 register capture occurred  
Compare mode:  
1= A Timer1 register compare match occurred (must be cleared in software)  
0= No Timer1 register compare match occurred  
PWM mode:  
Unused in this mode  
bit 1  
bit 0  
TMR2IF: Timer2 to PR2 Interrupt Flag bit  
1= A Timer2 to PR2 match occurred (must be cleared in software)  
0= No Timer2 to PR2 match occurred  
TMR1IF: Timer1 Overflow Interrupt Flag bit  
1= The Timer1 register overflowed (must be cleared in software)  
0= The Timer1 register did not overflow  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 45  
PIC16F707/PIC16LF707  
4.5.5  
PIR2 REGISTER  
The PIR2 register contains the interrupt flag bits, as  
shown in Register 4-5.  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE of the INTCON register.  
User software should ensure the  
appropriate interrupt flag bits are clear prior  
to enabling an interrupt.  
REGISTER 4-5:  
PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2  
R/W-0  
TMR3GIF  
bit 7  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
TMR3IF  
TMRBIF  
TMRAIF  
CCP2IF  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
TMR3GIF: Timer3 Gate Interrupt Flag bit  
1= Timer3 gate is inactive  
0= Timer3 gate is active  
TMR3IF: Timer3 Overflow Interrupt Flag bit  
1= Timer3 register overflowed (must be cleared in software)  
0= Timer3 register did not overflow  
TMRBIF: TimerB Overflow Interrupt Flag bit  
1= TimerB register has overflowed (must be cleared in software)  
0= TimerB register did not overflow  
TMRAIF: TimerA Overflow Interrupt Flag bit  
1= TimerA register has overflowed (must be cleared in software)  
0= TimerA register did not overflow  
bit 3-1  
bit 0  
Unimplemented: Read as ‘0’  
CCP2IF: CCP2 Interrupt Flag bit  
Capture Mode  
1= A Timer1 register capture occurred (must be cleared in software)  
0= No Timer1 register capture occurred  
Compare Mode  
1= A Timer1 register compare match occurred (must be cleared in software)  
0= No Timer1 register compare match occurred  
PWM Mode  
Unused in this mode  
DS41418A-page 46  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
TABLE 4-1:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE  
PEIE  
TMR0IE  
INTE  
RBIE  
PSA  
TMR0IF  
PS2  
INTF  
PS1  
RBIF  
PS0  
0000 000x  
1111 1111  
0000 0000  
0000 ---0  
0000 0000  
0000 ---0  
0000 000x  
1111 1111  
OPTION_REG  
PIE1  
RBPU  
INTEDG TMR0CS TMR0SE  
ADIE RCIE TXIE  
TMR1GIE  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000  
CCP2IE 0000 ---0  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000  
CCP2IF 0000 ---0  
PIE2  
TMR3GIE TMR3IE TMRBIE TMRAIE  
TMR1GIF ADIF RCIF TXIF  
TMR3GIF TMR3IF TMRBIF TMRAIF  
PIR1  
PIR2  
Legend: -= Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by interrupts.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 47  
PIC16F707/PIC16LF707  
NOTES:  
DS41418A-page 48  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
On power-up, the external capacitor will load the LDO  
voltage regulator. To prevent erroneous operation, the  
device is held in Reset while a constant current source  
charges the external capacitor. After the cap is fully  
charged, the device is released from Reset. For more  
information on recommended capacitor values and the  
constant current rate, refer to the LDO Regulator  
Characteristics Table in Section 25.0 “Electrical  
Specifications”.  
5.0  
LOW DROPOUT (LDO)  
VOLTAGE REGULATOR  
The PIC16F707 has an internal Low Dropout Regulator  
(LDO) which provides operation above 3.6V. The LDO  
regulates a voltage for the internal device logic while  
permitting the VDD and I/O pins to operate at a higher  
voltage. There is no user enable/disable control  
available for the LDO, it is always active. The  
PIC16LF707 operates at a maximum VDD of 3.6V and  
does not incorporate an LDO.  
A device I/O pin may be configured as the LDO voltage  
output, identified as the VCAP pin. Although not  
required, an external low-ESR capacitor may be  
connected to the VCAP pin for additional regulator  
stability.  
The VCAPEN<1:0> bits of Configuration Word 2  
determines which pin is assigned as the VCAP pin.  
Refer to Table 5-1.  
TABLE 5-1:  
VCAPEN<1:0>  
00  
VCAPEN<1:0> SELECT BITS  
Pin  
RA0  
RA5  
01  
10  
11  
RA6  
No VCAP  
TABLE 5-2:  
SUMMARY OF CONFIGURATION WORD WITH LDO  
Register  
on Page  
Name  
Bits  
Bit -/7  
Bit -/6  
Bit 13/5  
Bit 12/4  
Bit 11/3  
Bit 10/2  
Bit 9/1  
Bit 8/0  
13:8  
7:0  
CONFIG2  
76  
(1)  
(1)  
VCAPEN1  
VCAPEN0  
Legend:  
— = unimplemented locations read as ‘0’. Shaded cells are not used by LDO.  
Note 1: PIC16F707 only.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 49  
PIC16F707/PIC16LF707  
NOTES:  
DS41418A-page 50  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 6-1:  
GENERIC I/O PORT  
OPERATION  
6.0  
I/O PORTS  
There are thirty-five general purpose I/O pins available.  
Depending on which peripherals are enabled, some or  
all of the pins may not be available as general purpose  
I/O. In general, when a peripheral is enabled, the  
associated pin may not be used as a general purpose  
I/O pin.  
TRISx  
D
Q
Each port has two registers for its operation. These  
registers are:  
Write PORTx  
Data Bus  
CK  
Data Register  
VDD  
• TRISx registers (data direction register)  
• PORTx registers (port read/write register)  
Ports with analog functions also have an ANSELx  
register which can disable the digital input and save  
power. A simplified model of a generic I/O port, without  
the interfaces to other peripherals, is shown in  
Figure 6-1.  
I/O pin  
Read PORTx  
To peripherals  
VSS  
ANSELx  
6.1  
Alternate Pin Function  
The Alternate Pin Function Control (APFCON) register  
is used to steer specific peripheral input and output  
functions between different pins. The APFCON register  
is shown in Register 6-1. For this device family, the  
following functions can be moved between different  
pins.  
• SS (Slave Select)  
• CCP2  
REGISTER 6-1:  
APFCON: ALTERNATE PIN FUNCTION CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
SSSEL  
CCP2SEL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’.  
SSSEL: SS Input Pin Selection bit  
0= SS function is on RA5/AN4/CPS7/SS/VCAP  
1= SS function is on RA0/AN0/SS/VCAP  
bit 0  
CCP2SEL: CCP2 Input/Output Pin Selection bit  
0= CCP2 function is on RC1/T1OSI/CCP2  
1= CCP2 function is on RB3/CCP2  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 51  
PIC16F707/PIC16LF707  
The TRISA register (Register 6-3) controls the PORTA  
pin output drivers, even when they are being used as  
analog inputs. The user should ensure the bits in the  
TRISA register are maintained set when using them as  
analog inputs. I/O pins configured as analog input  
always read ‘0’.  
6.2  
PORTA and TRISA Registers  
PORTA is  
a 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISA  
(Register 6-3). Setting a TRISA bit (= 1) will make the  
corresponding PORTA pin an input (i.e., disable the  
output driver). Clearing a TRISA bit (= 0) will make the  
corresponding PORTA pin an output (i.e., enables  
output driver and puts the contents of the output latch  
on the selected pin). Example 6-1 shows how to  
initialize PORTA.  
Note:  
The ANSELA register must be initialized to  
configure an analog channel as a digital  
input. Pins configured as analog inputs will  
read ‘0’.  
Reading the PORTA register (Register 6-2) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then  
written to the PORT data latch.  
EXAMPLE 6-1:  
INITIALIZING PORTA  
BANKSELPORTA  
;
CLRF  
BANKSELANSELA  
CLRF ANSELA  
BANKSELTRISA  
PORTA  
;Init PORTA  
;
;digital I/O  
;
;Set RA<3:2> as inputs  
;and set RA<7:4,1:0>  
;as outputs  
MOVLW  
MOVWF  
0Ch  
TRISA  
REGISTER 6-2:  
PORTA: PORTA REGISTER  
R/W-x  
RA7  
R/W-x  
RA6  
R/W-x  
RA5  
R/W-x  
RA4  
R/W-x  
RA3  
R/W-x  
RA2  
R/W-x  
RA1  
R/W-x  
RA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7-0  
RA<7:0>: PORTA I/O Pin bits  
1= Port pin is > VIH  
0= Port pin is < VIL  
REGISTER 6-3:  
TRISA: PORTA TRI-STATE REGISTER  
R/W-1  
TRISA7  
bit 7  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TRISA6  
TRISA5  
TRISA4  
TRISA3  
TRISA2  
TRISA1  
TRISA0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
TRISA<7:0>: PORTA Tri-State Control bits  
1= PORTA pin configured as an input (tri-stated)  
0= PORTA pin configured as an output  
DS41418A-page 52  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
6.2.1  
ANSELA REGISTER  
The ANSELA register (Register 6-4) is used to  
configure the Input mode of an I/O pin to analog.  
Setting the appropriate ANSELA bit high will cause all  
digital reads on the pin to be read as ‘0’ and allow  
analog functions on the pin to operate correctly.  
The state of the ANSELA bits has no affect on digital  
output functions. A pin with TRIS clear and ANSEL set  
will still operate as a digital output, but the Input mode  
will be analog. This can cause unexpected behavior  
when executing read-modify-write instructions on the  
affected port.  
REGISTER 6-4:  
ANSELA: PORTA ANALOG SELECT REGISTER  
R/W-1  
ANSA7  
bit 7  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
ANSA6  
ANSA5  
ANSA4  
ANSA3  
ANSA2  
ANSA1  
ANSA0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7-0  
ANSA<7:0>: Analog Select between Analog or Digital Function on pins RA<7:0>, respectively  
0= Digital I/O. Pin is assigned to port or digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital Input buffer disabled.  
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to  
allow external control of the voltage on the pin.  
6.2.2  
PIN DESCRIPTIONS  
6.2.2.2  
RA1/AN1/CPSA0  
Each PORTA pin is multiplexed with other functions. The  
pins and their combined functions are briefly described  
here. For specific information about individual functions  
such as the A/D Converter (ADC), refer to the  
appropriate section in this data sheet.  
The RA1 pin is configurable to function as one of the  
following:  
• General purpose I/O  
• Analog input for the A/D  
• Capacitive sensing input  
6.2.2.1  
RA0/AN0/VCAP  
6.2.2.3  
RA2/AN2/CPSA1/DACOUT  
The RA0 pin is configurable to function as one of the  
following:  
The RA2 pin is configurable to function as one of the  
following:  
• General purpose I/O  
• General purpose I/O  
• Analog input for the A/D  
• Capacitive sensing input  
• DAC Output  
• Analog input for the A/D  
• Slave Select input for the SSP(1)  
• Voltage Regulator Capacitor pin (PIC16F707  
only)  
Note 1: SS pin location may be selected as RA5  
or RA0.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 53  
PIC16F707/PIC16LF707  
6.2.2.4  
RA3/AN3/VREF+/CPSA2  
6.2.2.7  
RA6/CPSB1/OSC2/CLKOUT/VCAP  
The RA3 pin is configurable to function as one of the  
following:  
The RA6 pin is configurable to function as one of the  
following:  
• General purpose I/O  
• General purpose I/O  
• Crystal/resonator connection  
• Clock Output  
• Analog input for the A/D  
• Voltage Reference input for the A/D  
• Capacitive sensing input  
Voltage Regulator Capacitor pin (PIC16F707  
only)  
6.2.2.5  
RA4/CPSA3/T0CKI/TACKI  
• Capacitive sensing input  
The RA4 pin is configurable to function as one of the  
following:  
6.2.2.8  
RA7/CPSB0/OSC1/CLKIN  
The RA7 pin is configurable to function as one of the  
following:  
• General purpose I/O  
• Capacitive sensing input  
• Clock input for Timer0  
• Clock input for TimerA  
• General purpose I/O  
• Crystal/resonator connection  
• Clock Input  
The Timer0 clock input function works independently  
of any TRIS register setting. Effectively, if TRISA4 = 0,  
the PORTA4 register bit will output to the pad and  
clock Timer0 at the same time.  
• Capacitive sensing input.  
6.2.2.6  
RA5/AN4/CPSA4/SS/VCAP  
The RA5 pin is configurable to function as one of the  
following:  
• General purpose I/O  
• Capacitive sensing input  
• Analog input for the A/D  
• Slave Select input for the SSP(1)  
Voltage Regulator Capacitor pin (PIC16F707  
only)  
Note 1: SS pin location may be selected as RA5  
or RA0.  
TABLE 6-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
ADCON0  
ADCS2  
ANSA6  
CHS3  
ADCS1  
ANSA5  
CHS2  
ADCS0  
ANSA4  
CHS1  
CHS0  
ADON  
ADREF0  
ANSA0  
--00 0000  
-000 --00  
1111 1111  
--00 0000  
-000 --00  
1111 1111  
---- --00  
00-- 0000  
---- 0000  
00-- 0000  
---- 0000  
GO/DONE  
ADREF1  
ANSA1  
ADCON1  
ANSELA  
ANSA7  
ANSA3  
ANSA2  
APFCON  
SSSEL  
CCP2SEL ---- --00  
TAXCS 00-- 0000  
CPSACH1 CPSACH0 ---- 0000  
CPSBRNG1 CPSBRNG0 CPSBOUT TBXCS 00-- 0000  
CPSACON0  
CPSACON1  
CPSBCON0  
CPSBCON1  
CONFIG2(1)  
CPSAON  
CPSARM  
CPSARNG1 CPSARNG0 CPSAOUT  
CPSACH3 CPSACH2  
CPSBON  
CPSBRM  
CPSBCH3  
CPSBCH2  
CPSBCH1 CPSBCH0 ---- 0000  
VCAPEN1 VCAPEN0  
PSA  
PS2  
PS1  
PS0  
OPTION_REG  
PORTA  
RBPU  
INTEDG TMR0CS TMR0SE  
1111 1111  
xxxx xxxx  
0000 0000  
1111 1111  
0-00 0000  
000- 00--  
1111 1111  
xxxx xxxx  
0000 0000  
1111 1111  
0-00 0000  
000- 00--  
RA7  
RA6  
SSPOV  
TRISA6  
RA5  
RA4  
CKP  
RA3  
RA2  
RA1  
RA0  
SSPCON  
TRISA  
WCOL  
TRISA7  
TMRAON  
DACEN  
SSPEN  
TRISA5  
TACS  
SSPM3  
TRISA3  
TAPSA  
DACPSS1  
SSPM2  
TRISA2  
TAPS2  
DACPSS0  
SSPM1  
TRISA1  
TAPS1  
SSPM0  
TRISA0  
TAPS0  
TRISA4  
TASE  
TACON  
DACCON0  
DACLPS  
DACOE  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTA.  
Note 1:  
PIC16F707 only.  
DS41418A-page 54  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
6.3.1  
ANSELB REGISTER  
6.3  
PORTB and TRISB Registers  
The ANSELB register (Register 6-9) is used to  
configure the Input mode of an I/O pin to analog.  
Setting the appropriate ANSELB bit high will cause all  
digital reads on the pin to be read as ‘0’ and allow  
analog functions on the pin to operate correctly.  
PORTB is an 8-bit wide, bidirectional port. The  
corresponding data direction register is TRISB  
(Register 6-6). Setting a TRISB bit (= 1) will make the  
corresponding PORTB pin an input (i.e., put the  
corresponding output driver in a High-Impedance mode).  
Clearing a TRISB bit (= 0) will make the corresponding  
PORTB pin an output (i.e., enable the output driver and  
put the contents of the output latch on the selected pin).  
Example 6-2 shows how to initialize PORTB.  
The state of the ANSELB bits has no affect on digital  
output functions. A pin with TRIS clear and ANSELB  
set will still operate as a digital output, but the Input  
mode will be analog. This can cause unexpected  
behavior  
instructions on the affected port.  
when  
executing  
read-modify-write  
Reading the PORTB register (Register 6-5) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then written  
to the PORT data latch.  
6.3.2  
WEAK PULL-UPS  
Each of the PORTB pins has an individually configurable  
internal weak pull-up. Control bits WPUB<7:0> enable or  
disable each pull-up (see Register 6-7). Each weak pull-  
up is automatically turned off when the port pin is  
configured as an output. All pull-ups are disabled on a  
Power-on Reset by the RBPU bit of the OPTION register.  
The TRISB register (Register 6-6) controls the PORTB  
pin output drivers, even when they are being used as  
analog inputs. The user should ensure the bits in the  
TRISB register are maintained set when using them as  
analog inputs. I/O pins configured as analog input always  
read ‘0’. Example 6-2 shows how to initialize PORTB.  
6.3.3  
INTERRUPT-ON-CHANGE  
All of the PORTB pins are individually configurable as an  
interrupt-on-change pin. Control bits IOCB<7:0> enable  
or disable the interrupt function for each pin. Refer to  
Register 6-8. The interrupt-on-change feature is  
disabled on a Power-on Reset.  
EXAMPLE 6-2:  
INITIALIZING PORTB  
BANKSEL PORTB  
;
CLRF  
BANKSEL ANSELB  
CLRF ANSELB  
BANKSEL TRISB  
PORTB  
;Init PORTB  
For enabled interrupt-on-change pins, the present value  
is compared with the old value latched on the last read  
of PORTB to determine which bits have changed or  
mismatched the old value. The ‘mismatch’ outputs of  
the last read are OR’d together to set the PORTB  
Change Interrupt Flag bit (RBIF) in the INTCON  
register.  
;Make RB<7:0> digital  
;
MOVLW  
B11110000;Set RB<7:4> as inputs  
;and RB<3:0> as outputs  
;
MOVWF  
TRISB  
This interrupt can wake the device from Sleep. The user,  
in the Interrupt Service Routine, clears the interrupt by:  
Note:  
The ANSELB register must be initialized to  
configure an analog channel as a digital  
input. Pins configured as analog inputs will  
read ‘0’.  
a) Any read or write of PORTB. This will end the  
mismatch condition.  
b) Clear the flag bit RBIF.  
A mismatch condition will continue to set flag bit RBIF.  
Reading or writing PORTB will end the mismatch  
condition and allow flag bit RBIF to be cleared. The latch  
holding the last read value is not affected by a MCLR nor  
Brown-out Reset. After these Resets, the RBIF flag will  
continue to be set if a mismatch is present.  
Note:  
When a pin change occurs at the same  
time as a read operation on PORTB, the  
RBIF flag will always be set. If multiple  
PORTB pins are configured for the  
interrupt-on-change, the user may not be  
able to identify which pin changed state.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 55  
PIC16F707/PIC16LF707  
REGISTER 6-5:  
PORTB: PORTB REGISTER  
R/W-x  
RB7  
R/W-x  
RB6  
R/W-x  
RB5  
R/W-x  
RB4  
R/W-x  
RB3  
R/W-x  
RB2  
R/W-x  
RB1  
R/W-x  
RB0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
RB<7:0>: PORTB I/O Pin bit  
1= Port pin is > VIH  
0= Port pin is < VIL  
REGISTER 6-6:  
TRISB: PORTB TRI-STATE REGISTER  
R/W-1  
TRISB7  
bit 7  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TRISB6  
TRISB5  
TRISB4  
TRISB3  
TRISB2  
TRISB1  
TRISB0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
TRISB<7:0>: PORTB Tri-State Control bit  
1= PORTB pin configured as an input (tri-stated)  
0= PORTB pin configured as an output  
REGISTER 6-7:  
WPUB: WEAK PULL-UP PORTB REGISTER  
R/W-1  
WPUB7  
bit 7  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
WPUB6  
WPUB5  
WPUB4  
WPUB3  
WPUB2  
WPUB1  
WPUB0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
WPUB<7:0>: Weak Pull-up Register bits  
1= Pull-up enabled  
0= Pull-up disabled  
Note 1: Global RBPU bit of the OPTION register must be cleared for individual pull-ups to be enabled.  
2: The weak pull-up device is automatically disabled if the pin is in configured as an output.  
DS41418A-page 56  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
REGISTER 6-8:  
IOCB: INTERRUPT-ON-CHANGE PORTB REGISTER  
R/W-0  
IOCB7  
bit 7  
R/W-0  
IOCB6  
R/W-0  
IOCB5  
R/W-0  
IOCB4  
R/W-0  
IOCB3  
R/W-0  
IOCB2  
R/W-0  
IOCB1  
R/W-0  
IOCB0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
IOCB<7:0>: Interrupt-on-Change PORTB Control bits  
1= Interrupt-on-change enabled  
0= Interrupt-on-change disabled  
REGISTER 6-9:  
ANSELB: PORTB ANALOG SELECT REGISTER  
R/W-1  
ANSB7  
bit 7  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
ANSB6  
ANSB5  
ANSB4  
ANSB3  
ANSB2  
ANSB1  
ANSB0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
ANSB<7:0>: Analog Select between Analog or Digital Function on Pins RB<7:0>, respectively  
0= Digital I/O. Pin is assigned to port or digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.  
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to  
allow external control of the voltage on the pin.  
6.3.4  
PIN DESCRIPTIONS  
6.3.4.2  
RB1/AN10/CPSB9  
Each PORTB pin is multiplexed with other functions. The  
pins and their combined functions are briefly described  
here. For specific information about individual functions  
such as the SSP, I2C or interrupts, refer to the appropriate  
section in this data sheet.  
These pins are configurable to function as one of the  
following:  
• General purpose I/O  
• Analog input for the ADC  
• Capacitive sensing input  
6.3.4.1  
RB0/AN12/CPSB8/INT  
6.3.4.3  
RB2/AN8/CPSB10  
These pins are configurable to function as one of the  
following:  
These pins are configurable to function as one of the  
following:  
• General purpose I/O  
• General purpose I/O  
• Analog input for the ADC  
• Capacitive sensing input  
• External edge triggered interrupt  
• Analog input for the ADC  
• Capacitive sensing input  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 57  
PIC16F707/PIC16LF707  
6.3.4.4  
RB3/AN9/CPSB11/CCP2  
6.3.4.6  
RB5/AN13/CPSB13/T1G/T3CKI  
These pins are configurable to function as one of the  
following:  
These pins are configurable to function as one of the  
following:  
• General purpose I/O  
• General purpose I/O  
• Analog input for the ADC  
• Capacitive sensing input  
• Timer1 gate input  
• Analog input for the ADC  
• Capacitive sensing input  
• Capture 2 input, Compare 2 output, and PWM2  
output  
• Timer3 clock input  
Note:  
CCP2 pin location may be selected as  
RB3 or RC1.  
6.3.4.7  
RB6/ICSPCLK/CPSB14  
These pins are configurable to function as one of the  
following:  
6.3.4.5  
RB4/AN11/CPSB12  
These pins are configurable to function as one of the  
following:  
• General purpose I/O  
• In-Circuit Serial Programming clock  
• Capacitive sensing input  
• General purpose I/O  
• Analog input for the ADC  
• Capacitive sensing input  
6.3.4.8  
RB7/ICSPDAT/CPSB15  
These pins are configurable to function as one of the  
following:  
• General purpose I/O  
• In-Circuit Serial Programming data  
• Capacitive sensing input  
TABLE 6-2:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on all  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
other  
POR, BOR  
Resets  
ADCON0  
ANSELB  
APFCON  
CCP2CON  
CPSBCON0  
CPSBCON1  
INTCON  
ANSB7  
ANSB6  
CHS3  
ANSB5  
CHS2  
ANSB4  
CHS1  
ANSB3  
CHS0  
ANSB2  
GO/DONE  
ANSB1  
ADON  
--00 0000 --00 0000  
1111 1111 1111 1111  
ANSB0  
SSSEL  
CCP2SEL ---- --00 ---- --00  
CCP2M0 --00 0000 --00 0000  
DC2B1  
DC2B0  
CCP2M3  
CCP2M2  
CCP2M1  
CPSBON CPSBRM  
CPSBRNG1 CPSBRNG0 CPSBOUT  
TBXCS  
00-- 0000 00-- 0000  
CPSBCH3  
RBIE  
CPSBCH2  
TMR0IF  
IOCB2  
CPSBCH1 CPSBCH0 ---- 0000 ---- 0000  
GIE  
PEIE  
IOCB6  
TMR0IE  
IOCB5  
INTE  
IOCB4  
INTF  
RBIF  
0000 000x 0000 000X  
0000 0000 0000 0000  
IOCB  
IOCB7  
IOCB3  
IOCB1  
IOCB0  
OPTION_REG  
PORTB  
RBPU  
RB7  
INTEDG  
RB6  
TMR0CS  
RB5  
TMR0SE  
RB4  
PSA  
RB3  
PS2  
RB2  
PS1  
RB1  
PS0  
RB0  
1111 1111 1111 1111  
xxxx xxxx xxxx xxxx  
T3CON  
TMR3CS1 TMR3CS0 T3CKPS1 T3CKPS0  
T3SYNC  
T1GVAL  
TMR3ON 0000 -0-0 0000 -0-0  
T1GCON  
TMR1GE  
T1GPOL  
T1GTM  
T1GSPM  
T1GGO/  
DONE  
T1GSS1  
T1GSS0  
0000 0x00 uuuu uxuu  
TRISB  
TRISB7  
WPUB7  
TRISB6  
WPUB6  
TRISB5  
WPUB5  
TRISB4  
WPUB4  
TRISB3  
WPUB3  
TRISB2  
WPUB2  
TRISB1  
WPUB1  
TRISB0  
WPUB0  
1111 1111 1111 1111  
1111 1111 1111 1111  
WPUB  
Legend:  
x= unknown, u= unchanged, -= unimplemented locations read as ‘0’. Shaded cells are not used by PORTB.  
DS41418A-page 58  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
EXAMPLE 6-3:  
INITIALIZING PORTC  
6.4  
PORTC and TRISC Registers  
BANKSELPORTC  
;
PORTC is  
a 8-bit wide, bidirectional port. The  
CLRF  
PORTC  
;Init PORTC  
;
corresponding data direction register is TRISC  
(Register 6-11). Setting a TRISC bit (= 1) will make the  
corresponding PORTC pin an input (i.e., put the  
corresponding output driver in a High-Impedance mode).  
Clearing a TRISC bit (= 0) will make the corresponding  
PORTC pin an output (i.e., enable the output driver and  
put the contents of the output latch on the selected pin).  
Example 6-3 shows how to initialize PORTC.  
BANKSELTRISC  
MOVLW  
MOVWF  
B‘00001100’ ;Set RC<3:2> as inputs  
TRISC  
;and set RC<7:4,1:0>  
;as outputs  
The location of the CCP2 function is controlled by the  
CCP2SEL bit in the APFCON register (see Register 6-1).  
Reading the PORTC register (Register 6-10) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then written  
to the PORT data latch.  
The TRISC register (Register 6-11) controls the PORTC  
pin output drivers, even when they are being used as  
analog inputs. The user should ensure the bits in the  
TRISC register are maintained set when using them as  
analog inputs. I/O pins configured as analog input always  
read ‘0’.  
REGISTER 6-10: PORTC: PORTC REGISTER  
R/W-x  
RC7  
R/W-x  
RC6  
R/W-x  
RC5  
R/W-x  
RC4  
R/W-x  
RC3  
R/W-x  
RC2  
R/W-x  
RC1  
R/W-x  
RC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
RC<7:0>: PORTC General Purpose I/O Pin bits  
1= Port pin is > VIH  
0= Port pin is < VIL  
REGISTER 6-11: TRISC: PORTC TRI-STATE REGISTER  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TRISC7  
TRISC6  
TRISC5  
TRISC4  
TRISC3  
TRISC2  
TRISC1  
TRISC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
TRISC<7:0>: PORTC Tri-State Control bits  
1= PORTC pin configured as an input (tri-stated)  
0= PORTC pin configured as an output  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 59  
PIC16F707/PIC16LF707  
6.4.1  
ANSELC REGISTER  
The ANSELC register (Register 6-12) is used to  
configure the Input mode of an I/O pin to analog.  
Setting the appropriate ANSELC bit high will cause all  
digital reads on the pin to be read as ‘0’ and allow  
analog functions on the pin to operate correctly.  
The state of the ANSELC bits has no affect on digital  
output functions. A pin with TRIS clear and ANSELC  
set will still operate as a digital output, but the Input  
mode will be analog. This can cause unexpected  
behavior when executing read-modify-write instruc-  
tions on the affected port.  
Note:  
The ANSELC register must be initialized  
to configure an analog channel as a digital  
input. Pins configured as analog inputs will  
read ‘0’.  
REGISTER 6-12: ANSELC: PORTC ANALOG SELECT REGISTER  
R/W-1  
R/W-1  
R/W-1  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
ANSC7  
ANSC6  
ANSC5  
ANSC2  
ANSC1  
ANSC0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
ANSC<7:5>: Analog Select between Analog or Digital Function on Pins RC<7:5>, respectively  
0= Digital I/O. Pin is assigned to port or digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.  
bit 4-3  
bit 2-0  
Unimplemented: Read as ‘0’  
ANSC<2:0>: Analog Select between Analog or Digital Function on Pins RC<2:0>, respectively  
0= Digital I/O. Pin is assigned to port or digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.  
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to  
allow external control of the voltage on the pin.  
6.4.2  
PIN DESCRIPTIONS  
6.4.2.2  
RC1/T1OSi/CCP2/CPSB3  
Each PORTC pin is multiplexed with other functions. The  
pins and their combined functions are briefly described  
here. For specific information about individual functions  
such as the SSP, I2C or interrupts, refer to the appropriate  
section in this data sheet.  
These pins are configurable to function as one of the  
following:  
• General purpose I/O  
• Timer1 oscillator input  
• Capture 2 input, Compare 2 output, and PWM2  
output  
6.4.2.1  
RC0/T1OSO/T1CKI/CPSB2  
• Capacitive sensing input  
These pins are configurable to function as one of the  
following:  
Note:  
CCP2 pin location may be selected as  
RB3 or RC1.  
• General purpose I/O  
• Timer1 oscillator output  
• Timer1 clock input  
• Capacitive sensing input  
DS41418A-page 60  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
6.4.2.3  
RC2/CCP1/CPSB4/TBCKI  
6.4.2.6  
RC5/SDO/CPSA9  
These pins are configurable to function as one of the  
following:  
These pins are configurable to function as one of the  
following:  
• General purpose I/O  
• General purpose I/O  
• SPI data output  
• Capture 1 input, Compare 1 output, and PWM1  
output  
• Capacitive sensing input  
• Capacitive sensing input  
• TimerB Clock input  
6.4.2.7  
RC6/TX/CK/CPSA10  
These pins are configurable to function as one of the  
following:  
6.4.2.4  
RC3/SCK/SCL  
These pins are configurable to function as one of the  
following:  
• General purpose I/O  
• Asynchronous serial output  
• Synchronous clock I/O  
• Capacitive sensing input  
• General purpose I/O  
• SPI clock  
• I2C™ clock  
6.4.2.8  
RC7/RX/DT/CPSA11  
6.4.2.5  
RC4/SDI/SDA  
These pins are configurable to function as one of the  
following:  
These pins are configurable to function as one of the  
following:  
• General purpose I/O  
• General purpose I/O  
• SPI data input  
• I2C data I/O  
• Asynchronous serial input  
• Synchronous serial data I/O  
• Capacitive sensing input  
TABLE 6-3:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTC  
Value on all  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
other  
POR, BOR  
Resets  
ANSELC  
ANSC7  
ANSC6  
ANSC5  
ANSC2  
ANSC1  
SSSEL  
ANSC0  
111- -111 111- -111  
APFCON  
CCP2SEL ---- --00 ---- --00  
CCP1M0 --00 0000 --00 0000  
CCP2M0 --00 0000 --00 0000  
CCP1CON  
CCP2CON  
CPSACON0  
CPSACON1  
CPSBCON0  
CPSBCON1  
PORTC  
DC1B1  
DC2B1  
DC1B0  
DC2B0  
CCP1M3  
CCP2M3  
CCP1M2  
CCP2M2  
CCP1M1  
CCP2M1  
CPSAON  
CPSARM  
CPSARNG1 CPSARNG0 CPSAOUT  
CPSACH3 CPSACH2 CPSACH1 CPSACH0 ---- 0000 ---- 0000  
CPSBRNG1 CPSBRNG0 CPSBOUT TBXCS 00-- 0000 00-- 0000  
CPSBCH1 CPSBCH0 ---- 0000 ---- 0000  
TAXCS  
00-- 0000 00-- 0000  
CPSBON  
CPSBRM  
CPSBCH3  
RC3  
CPSBCH2  
RC2  
RC7  
RC6  
RC5  
SREN  
SSPEN  
D/A  
RC4  
CREN  
CKP  
P
RC1  
OERR  
SSPM1  
UA  
RC0  
RX9D  
SSPM0  
BF  
xxxx xxxx xxxx xxxx  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 0000 0000 0000  
RCSTA  
SPEN  
WCOL  
SMP  
RX9  
ADDEN  
SSPM3  
S
FERR  
SSPM2  
R/W  
SSPCON  
SSPSTAT  
SSPOV  
CKE  
T1CON  
TBCON  
TMR1CS1 TMR1CS0 T1CKPS1 T1CKPS0 T1OSCEN  
T1SYNC  
TBPS2  
TMR1ON 0000 00-0 uuuu uu-u  
TMRBON  
TBCS  
TBSE  
TBPSA  
TBPS1  
TBPS0  
0-00 0000 0-00 0000  
TXSTA  
TRISC  
CSRC  
TX9  
TXEN  
SYNC  
BRGH  
TRMT  
TX9D  
0000 -010 0000 -010  
1111 1111 1111 1111  
TRISC7  
TRISC6  
TRISC5  
TRISC4  
TRISC3  
TRISC2  
TRISC1  
TRISC0  
Legend:  
x = unknown, u = unchanged, - = unimplemented locations read as ‘0’. Shaded cells are not used by PORTC.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 61  
PIC16F707/PIC16LF707  
EXAMPLE 6-4:  
INITIALIZING PORTD  
6.5  
PORTD and TRISD Registers  
BANKSELPORTD  
;
PORTD is  
a 8-bit wide, bidirectional port. The  
CLRF  
BANKSELANSELD  
CLRF ANSELD  
BANKSELTRISD  
PORTD  
;Init PORTD  
corresponding data direction register is TRISD  
(Register 6-14). Setting a TRISD bit (= 1) will make the  
corresponding PORTD pin an input (i.e., put the  
corresponding output driver in a High-Impedance mode).  
Clearing a TRISD bit (= 0) will make the corresponding  
PORTD pin an output (i.e., enable the output driver and  
put the contents of the output latch on the selected pin).  
Example 6-4 shows how to initialize PORTD.  
;Make PORTD digital  
;
MOVLW  
MOVWF  
B‘00001100’ ;Set RD<3:2> as inputs  
TRISD  
;and set RD<7:4,1:0>  
;as outputs  
6.5.1  
ANSELD REGISTER  
Reading the PORTD register (Register 6-13) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then written  
to the PORT data latch.  
The ANSELD register (Register 6-15) is used to  
configure the Input mode of an I/O pin to analog.  
Setting the appropriate ANSELD bit high will cause all  
digital reads on the pin to be read as ‘0’ and allow  
analog functions on the pin to operate correctly.  
The state of the ANSELD bits has no affect on digital  
output functions. A pin with TRIS clear and ANSEL set  
will still operate as a digital output, but the Input mode  
will be analog. This can cause unexpected behavior  
when executing read-modify-write instructions on the  
affected port.  
The TRISD register (Register 6-14) controls the  
PORTD pin output drivers, even when they are being  
used as analog inputs. The user should ensure the bits  
in the TRISD register are maintained set when using  
them as analog inputs. I/O pins configured as analog  
input always read ‘0’.  
Note:  
The ANSELD register must be initialized  
to configure an analog channel as a digital  
input. Pins configured as analog inputs will  
read ‘0’.  
REGISTER 6-13: PORTD: PORTD REGISTER  
R/W-x  
RD7  
R/W-x  
RD6  
R/W-x  
RD5  
R/W-x  
RD4  
R/W-x  
RD3  
R/W-x  
RD2  
R/W-x  
RD1  
R/W-x  
RD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
RD<7:0>: PORTD General Purpose I/O Pin bits  
1= Port pin is > VIH  
0= Port pin is < VIL  
DS41418A-page 62  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
REGISTER 6-14: TRISD: PORTD TRI-STATE REGISTER  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
TRISD7  
TRISD6  
TRISD5  
TRISD4  
TRISD3  
TRISD2  
TRISD1  
TRISD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
TRISD<7:0>: PORTD Tri-State Control bits  
1= PORTD pin configured as an input (tri-stated)  
0= PORTD pin configured as an output  
REGISTER 6-15: ANSELD: PORTD ANALOG SELECT REGISTER  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
ANSD7  
ANSD6  
ANSD5  
ANSD4  
ANSD3  
ANSD2  
ANSD1  
ANSD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
ANSD<7:0>: Analog Select between Analog or Digital Function on Pins RD<7:0>, respectively  
0= Digital I/O. Pin is assigned to port or digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.  
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to  
allow external control of the voltage on the pin.  
6.5.2  
PIN DESCRIPTIONS  
6.5.2.3  
RD2/CPSB7  
Each PORTD pin is multiplexed with other functions. The  
pins and their combined functions are briefly described  
here. For specific information about individual functions  
such as the SSP, I2C or interrupts, refer to the appropriate  
section in this data sheet.  
These pins are configurable to function as one of the  
following:  
• General purpose I/O  
• Capacitive sensing input  
6.5.2.4  
RD3/CPSA8  
6.5.2.1  
RD0/CPSB5/T3G  
These pins are configurable to function as one of the  
following:  
These pins are configurable to function as one of the  
following:  
• General purpose I/O  
• General purpose I/O  
• Capacitive sensing input  
• Timer3 Gate input  
• Capacitive sensing input  
6.5.2.5  
RD4/CPSA12  
These pins are configurable to function as one of the  
following:  
6.5.2.2  
RD1/CPSB6  
These pins are configurable to function as one of the  
following:  
• General purpose I/O  
• Capacitive sensing input  
• General purpose I/O  
• Capacitive sensing input  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 63  
PIC16F707/PIC16LF707  
6.5.2.6  
RD5/CPSA13  
6.5.2.8  
RD7/CPSA15  
These pins are configurable to function as one of the  
following:  
These pins are configurable to function as one of the  
following:  
• General purpose I/O  
• General purpose I/O  
• Capacitive sensing input  
• Capacitive sensing input  
6.5.2.7  
RD6/CPSA14  
These pins are configurable to function as one of the  
following:  
• General purpose I/O  
• Capacitive sensing input  
TABLE 6-4:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTD  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
ANSELD  
ANSD7  
ANSD6  
ANSD5  
ANSD4  
ANSD3  
ANSD2  
ANSD1  
ANSD0  
TAXCS  
1111 1111  
00-- 0000  
1111 1111  
00-- 0000  
---- 0000  
00-- 0000  
---- 0000  
uuuu uxuu  
CPSACON0 CPSAON CPSARM  
CPSACON1  
CPSBCON0 CPSBON CPSBRM  
CPSARNG1 CPSARNG0 CPSAOUT  
CPSACH3 CPSACH2  
CPSBRNG1 CPSBRNG0 CPSBOUT  
CPSACH1 CPSACH0 ---- 0000  
TBXCS 00-- 0000  
CPSBCH1 CPSBCH0 ---- 0000  
CPSBCON1  
T3GCON  
CPSBCH3  
CPSBCH2  
T3GVAL  
TMR3GE T3GPOL T3GTM T3GSPM  
T3GGO/  
DONE  
T3GSS1  
T3GSS0  
0000 0x00  
PORTD  
TRISD  
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
xxxx xxxx  
1111 1111  
xxxx xxxx  
1111 1111  
TRISD7  
TRISD6  
TRISD5 TRISD4  
TRISD3  
TRISD2  
TRISD1  
TRISD0  
Legend:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTD.  
DS41418A-page 64  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
EXAMPLE 6-5:  
INITIALIZING PORTE  
6.6  
PORTE and TRISE Registers  
BANKSELPORTE  
;
PORTE is  
a 4-bit wide, bidirectional port. The  
CLRF  
BANKSELANSELE  
CLRF ANSELE  
BANKSELTRISE  
PORTE  
;Init PORTE  
;
;digital I/O  
;
corresponding data direction register is TRISE. Setting a  
TRISE bit (= 1) will make the corresponding PORTE pin  
an input (i.e., put the corresponding output driver in a  
High-Impedance mode). Clearing a TRISE bit (= 0) will  
make the corresponding PORTE pin an output (i.e.,  
enable the output driver and put the contents of the  
output latch on the selected pin). The exception is RE3,  
which is input only and its TRIS bit will always read as  
1’. Example 6-5 shows how to initialize PORTE.  
MOVLW  
MOVWF  
B‘00001100’ ;Set RE<2> as an input  
TRISE  
;and set RE<1:0>  
;as outputs  
6.6.1  
ANSELE REGISTER  
The ANSELE register (Register 6-18) is used to  
configure the Input mode of an I/O pin to analog.  
Setting the appropriate ANSELE bit high will cause all  
digital reads on the pin to be read as ‘0’ and allow  
analog functions on the pin to operate correctly.  
Reading the PORTE register (Register 6-16) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are read-modify-write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then  
written to the PORT data latch. RE3 reads ‘0’ when  
MCLRE = 1.  
The state of the ANSELE bits has no affect on digital  
output functions. A pin with TRIS clear and ANSELE  
set will still operate as a digital output, but the Input  
mode will be analog. This can cause unexpected  
The TRISE register (Register 6-17) controls the PORTE  
pin output drivers, even when they are being used as  
analog inputs. The user should ensure the bits in the  
TRISE register are maintained set when using them as  
analog inputs. I/O pins configured as analog input always  
read ‘0’.  
behavior  
when  
executing  
read-modify-write  
instructions on the affected port.  
Note:  
The ANSELE register must be initialized to  
configure an analog channel as a digital  
input. Pins configured as analog inputs will  
read ‘0’.  
REGISTER 6-16: PORTE: PORTE REGISTER  
U-0  
U-0  
U-0  
U-0  
R-x  
R/W-x  
RE2  
R/W-x  
RE1  
R/W-x  
RE0  
RE3  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
bit 3-0  
Unimplemented: Read as ‘0’  
RE<3:0>: PORTE I/O Pin bits  
1= Port pin is > VIH  
0= Port pin is < VIL  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 65  
PIC16F707/PIC16LF707  
REGISTER 6-17: TRISE: PORTE TRI-STATE REGISTER  
U-0  
U-0  
U-0  
U-0  
R-1  
R/W-1  
R/W-1  
R/W-1  
TRISE3  
TRISE2  
TRISE1  
TRISE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
TRISE3: RE3 Port Tri-state Control bit  
This bit is always ‘1’ as RE3 is an input only  
bit 2-0  
TRISE<2:0>: RE<2:0> Tri-State Control bits(1)  
1= PORTE pin configured as an input (tri-stated)  
0= PORTE pin configured as an output  
REGISTER 6-18: ANSELE: PORTE ANALOG SELECT REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-1  
R/W-1  
ANSE2  
ANSE1  
ANSE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-3  
bit 2-0  
Unimplemented: Read as ‘0’  
ANSE<2:0>: Analog Select between Analog or Digital Function on Pins RE<2:0>, respectively  
0= Digital I/O. Pin is assigned to port or digital special function.  
1= Analog input. Pin is assigned as analog input(1). Digital input buffer disabled.  
Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to  
allow external control of the voltage on the pin.  
6.6.2  
PIN DESCRIPTIONS  
6.6.2.2  
RE1/AN6/CPSA6  
Each PORTE pin is multiplexed with other functions. The  
pins and their combined functions are briefly described  
here. For specific information about individual functions  
such as the SSP, I2C or interrupts, refer to the appropriate  
section in this data sheet.  
These pins are configurable to function as one of the  
following:  
• General purpose I/O  
• Analog input for the ADC  
• Capacitive sensing input  
6.6.2.1  
RE0/AN5/CPSA5  
6.6.2.3  
RE2/AN7/CPSA7  
These pins are configurable to function as one of the  
following:  
These pins are configurable to function as one of the  
following:  
• General purpose I/O  
• General purpose I/O  
• Analog input for the ADC  
• Capacitive sensing input  
• Analog input for the ADC  
• Capacitive sensing input  
DS41418A-page 66  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
6.6.2.4  
RE3/MCLR/VPP  
These pins are configurable to function as one of the  
following:  
• General purpose input  
• Master Clear Reset with weak pull-up  
• Programming voltage reference input  
TABLE 6-5:  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTE  
Value on  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
Resets  
ADCON0  
ANSELE  
CHS3  
CHS2  
CHS1  
CHS0  
GO/DONE  
ANSE1  
ADON  
ANSE0  
--00 0000  
---- -111  
00-- 0000  
---- 0000  
---- xxxx  
---- 1111  
--00 0000  
---- -111  
00-- 0000  
---- 0000  
---- xxxx  
---- 1111  
ANSE2  
CPSACON0 CPSAON CPSARM  
CPSARNG1 CPSARNG0 CPSAOUT  
TAXCS  
CPSACON1  
CPSACH3  
CPSACH2  
CPSACH1  
CPSACH0  
PORTE  
TRISE  
RE3  
RE2  
RE1  
RE0  
TRISE3(1)  
TRISE2  
TRISE1  
TRISE0  
Legend:  
Note 1:  
x= unknown, u= unchanged, – = unimplemented locations read as ‘0’. Shaded cells are not used by PORTE.  
This bit is always ‘1’ as RE3 is input only.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 67  
PIC16F707/PIC16LF707  
NOTES:  
DS41418A-page 68  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
Clock source modes are configured by the FOSC bits  
in Configuration Word 1 (CONFIG1). The oscillator  
module can be configured for one of eight modes of  
operation.  
7.0  
7.1  
OSCILLATOR MODULE  
Overview  
The oscillator module has a wide variety of clock sources  
and selection features that allow it to be used in a wide  
range of applications while maximizing performance and  
minimizing power consumption. Figure 7-1 illustrates a  
block diagram of the oscillator module.  
1. RC – External Resistor-Capacitor (RC) with  
FOSC/4 output on OSC2/CLKOUT.  
2. RCIO – External Resistor-Capacitor (RC) with  
I/O on OSC2/CLKOUT.  
3. INTOSC – Internal oscillator with FOSC/4 output  
on OSC2 and I/O on OSC1/CLKIN.  
Clock sources can be configured from external  
oscillators, quartz crystal resonators, ceramic resonators  
and Resistor-Capacitor (RC) circuits. In addition, the  
system can be configured to use an internal calibrated  
high-frequency oscillator as clock source, with a choice  
of selectable speeds via software.  
4. INTOSCIO – Internal oscillator with I/O on  
OSC1/CLKIN and OSC2/CLKOUT.  
5. EC – External clock with I/O on OSC2/CLKOUT.  
6. HS – High Gain Crystal or Ceramic Resonator  
mode.  
7. XT  
– Medium Gain Crystal or Ceramic  
Resonator Oscillator mode.  
8. LP – Low-Power Crystal mode.  
FIGURE 7-1:  
SIMPLIFIED PIC® MCU CLOCK SOURCE BLOCK DIAGRAM  
FOSC<2:0>  
(Configuration Word 1)  
External Oscillator  
OSC2  
OSC1  
Sleep  
LP, XT, HS, RC, EC  
System Clock  
(CPU and Peripherals)  
Internal Oscillator  
500 kHz  
IRCF<1:0>  
(OSCCON Register)  
INTOSC  
0
1
16 MHz/500 kHz  
11  
10  
01  
00  
32x  
PLL  
8 MHz/250 kHz  
4 MHz/125 kHz  
2 MHz/62.5 kHz  
PLLEN  
(Configuration Word 1)  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 69  
PIC16F707/PIC16LF707  
7.3.2  
FREQUENCY SELECT BITS (IRCF)  
7.2  
Clock Source Modes  
The output of the 500 kHz INTOSC and 16 MHz  
INTOSC, with Phase Locked Loop enabled, connect to  
a postscaler and multiplexer (see Figure 7-1). The  
Internal Oscillator Frequency Select bits (IRCF) of the  
OSCCON register select the frequency output of the  
internal oscillator. Depending upon the PLLEN bit, one  
of four frequencies of two frequency sets can be  
selected via software:  
Clock source modes can be classified as external or  
internal.  
• Internal clock source (INTOSC) is contained  
within the oscillator module and derived from a  
500 kHz high precision oscillator. The oscillator  
module has eight selectable output frequencies,  
with a maximum internal frequency of 16 MHz.  
• External clock modes rely on external circuitry for  
the clock source. Examples are: oscillator mod-  
ules (EC mode), quartz crystal resonators or  
ceramic resonators (LP, XT and HS modes) and  
Resistor-Capacitor (RC) mode circuits.  
If PLLEN = 1, frequency selection is as follows:  
• 16 MHz  
• 8 MHz (Default after Reset)  
• 4 MHz  
The system clock can be selected between external or  
internal clock sources via the FOSC bits of the  
Configuration Word 1.  
• 2 MHz  
If PLLEN = 0, frequency selection is as follows:  
• 500 kHz  
• 250 kHz (Default after Reset)  
• 125 kHz  
7.3  
Internal Clock Modes  
The oscillator module has eight output frequencies  
derived from a 500 kHz high precision oscillator. The  
IRCF bits of the OSCCON register select the  
postscaler applied to the clock source dividing the  
frequency by 1, 2, 4 or 8. Setting the PLLEN bit of the  
Configuration Word 1 locks the internal clock source to  
16 MHz before the postscaler is selected by the IRCF  
bits. The PLLEN bit must be set or cleared at the time  
of programming; therefore, only the upper or low four  
clock source frequencies are selectable in software.  
• 62.5 kHz  
Note:  
Following any Reset, the IRCF<1:0> bits of  
the OSCCON register are set to ‘10’ and  
the frequency selection is set to 8 MHz or  
250 kHz. The user can modify the IRCF  
bits to select a different frequency.  
There is no start-up delay before a new frequency  
selected in the IRCF bits takes effect. This is because  
the old and new frequencies are derived from INTOSC  
via the postscaler and multiplexer.  
7.3.1  
INTOSC AND INTOSCIO MODES  
Start-up delay specifications are located in the  
The INTOSC and INTOSCIO modes configure the  
internal oscillators as the system clock source when  
the device is programmed using the oscillator selection  
or the FOSC<2:0> bits in the CONFIG1 register. See  
Section 8.0 “Device Configuration” for more  
information.  
Table 25-4  
in  
Section 25.0  
“Electrical  
Specifications”.  
In INTOSC mode, OSC1/CLKIN is available for general  
purpose I/O. OSC2/CLKOUT outputs the selected  
internal oscillator frequency divided by 4. The CLKOUT  
signal may be used to provide a clock for external  
circuitry, synchronization, calibration, test or other  
application requirements.  
In INTOSCIO mode, OSC1/CLKIN and OSC2/  
CLKOUT are available for general purpose I/O.  
DS41418A-page 70  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
7.4  
Oscillator Control  
The Oscillator Control (OSCCON) register (Figure 7-1)  
displays the status and allows frequency selection of the  
internal oscillator (INTOSC) system clock. The  
OSCCON register contains the following bits:  
• Frequency selection bits (IRCF)  
• Status Locked bits (ICSL)  
• Status Stable bits (ICSS)  
REGISTER 7-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
U-0  
U-0  
R/W-1  
IRCF1  
R/W-0  
IRCF0  
R-q  
R-q  
U-0  
U-0  
ICSL  
ICSS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
q = Value depends on condition  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
IRCF<1:0>: Internal Oscillator Frequency Select bits  
When PLLEN = 1 (16 MHz INTOSC)  
11= 16 MHz  
10= 8 MHz (POR value)  
01= 4 MHz  
00= 2 MHz  
When PLLEN = 0 (500 kHz INTOSC)  
11= 500 kHz  
10= 250 kHz (POR value)  
01= 125 kHz  
00= 62.5 kHz  
bit 3  
ICSL: Internal Clock Oscillator Status Locked bit (2% Stable)  
1= 16 MHz/500 kHz Internal Oscillator (HFIOSC) is in lock.  
0= 16 MHz/500 kHz Internal Oscillator (HFIOSC) has not yet locked.  
bit 2  
ICSS: Internal Clock Oscillator Status Stable bit (0.5% Stable)  
1= 16 MHz/500 kHz Internal Oscillator (HFIOSC) has stabilized to its maximum accuracy  
0= 16 MHz/500 kHz Internal Oscillator (HFIOSC) has not yet reached its maximum accuracy  
bit 1-0  
Unimplemented: Read as ‘0’  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 71  
PIC16F707/PIC16LF707  
When the OSCTUNE register is modified, the INTOSC  
frequency will begin shifting to the new frequency. Code  
execution continues during this shift. There is no  
indication that the shift has occurred.  
7.5  
Oscillator Tuning  
The INTOSC is factory calibrated but can be adjusted  
in software by writing to the OSCTUNE register  
(Register 7-2).  
The default value of the OSCTUNE register is ‘0’. The  
value is a 6-bit two’s complement number.  
REGISTER 7-2:  
OSCTUNE: OSCILLATOR TUNING REGISTER  
U-0  
U-0  
R/W-0  
TUN5  
R/W-0  
TUN4  
R/W-0  
TUN3  
R/W-0  
TUN2  
R/W-0  
TUN1  
R/W-0  
TUN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN<5:0>: Frequency Tuning bits  
01 1111= Maximum frequency  
01 1110=  
00 0001=  
00 0000= Oscillator module is running at the factory-calibrated frequency.  
11 1111=  
10 0000= Minimum frequency  
DS41418A-page 72  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
XT Oscillator mode selects the intermediate gain  
setting of the internal inverter-amplifier. XT mode  
current consumption is the medium of the three modes.  
This mode is best suited to drive resonators with a  
medium drive level specification.  
7.6  
External Clock Modes  
7.6.1 OSCILLATOR START-UP TIMER  
(OST)  
If the oscillator module is configured for LP, XT or HS  
modes, the Oscillator Start-up Timer (OST) counts  
1024 oscillations on the OSC1 pin before the device is  
released from Reset. This occurs following a Power-on  
Reset (POR) and when the Power-up Timer (PWRT)  
has expired (if configured), or a wake-up from Sleep.  
During this time, the program counter does not  
increment and program execution is suspended. The  
OST ensures that the oscillator circuit, using a quartz  
crystal resonator or ceramic resonator, has started and  
is providing a stable system clock to the oscillator  
module.  
HS Oscillator mode selects the highest gain setting of the  
internal inverter-amplifier. HS mode current consumption  
is the highest of the three modes. This mode is best  
suited for resonators that require a high drive setting.  
Figure 7-3 and Figure 7-4 show typical circuits for  
quartz crystal and ceramic resonators, respectively.  
FIGURE 7-3:  
QUARTZ CRYSTAL  
OPERATION (LP, XT OR  
HS MODE)  
PIC® MCU  
7.6.2  
EC MODE  
The External Clock (EC) mode allows an externally  
generated logic level as the system clock source. When  
operating in this mode, an external clock source is  
connected to the OSC1 input and the OSC2 is available  
for general purpose I/O. Figure 7-2 shows the pin  
connections for EC mode.  
OSC1/CLKIN  
C1  
To Internal  
Logic  
Quartz  
Crystal  
(2)  
Sleep  
RF  
The Oscillator Start-up Timer (OST) is disabled when  
EC mode is selected. Therefore, there is no delay in  
operation after a Power-on Reset (POR) or wake-up  
from Sleep. Because the PIC® MCU design is fully  
static, stopping the external clock input will have the  
effect of halting the device while leaving all data intact.  
Upon restarting the external clock, the device will  
resume operation as if no time had elapsed.  
OSC2/CLKOUT  
(1)  
C2  
RS  
Note 1: A series resistor (RS) may be required for  
quartz crystals with low drive level.  
2: The value of RF varies with the Oscillator mode  
selected.  
Note 1: Quartz crystal characteristics vary according  
to type, package and manufacturer. The  
user should consult the manufacturer data  
sheets for specifications and recommended  
application.  
FIGURE 7-2:  
EXTERNAL CLOCK (EC)  
MODE OPERATION  
OSC1/CLKIN  
Clock from  
Ext. System  
PIC® MCU  
2: Always verify oscillator performance over  
the VDD and temperature range that is  
expected for the application.  
(1)  
I/O  
OSC2/CLKOUT  
3: For oscillator design assistance, reference  
the following Microchip Applications Notes:  
Note 1: Alternate pin functions are described in  
Section 6.1 “Alternate Pin Function”.  
• AN826, “Crystal Oscillator Basics and  
Crystal Selection for rfPIC® and PIC®  
Devices” (DS00826)  
7.6.3  
LP, XT, HS MODES  
• AN849, “Basic PIC® Oscillator Design”  
(DS00849)  
• AN943, “Practical PIC® Oscillator  
Analysis and Design” (DS00943)  
The LP, XT and HS modes support the use of quartz  
crystal resonators or ceramic resonators connected to  
OSC1 and OSC2 (Figure 7-3). The mode selects a low,  
medium or high gain setting of the internal inverter-  
amplifier to support various resonator types and speed.  
• AN949, “Making Your Oscillator Work”  
(DS00949)  
LP Oscillator mode selects the lowest gain setting of the  
internal inverter-amplifier. LP mode current consumption  
is the least of the three modes. This mode is best suited  
to drive resonators with a low drive level specification, for  
example, tuning fork type crystals.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 73  
PIC16F707/PIC16LF707  
FIGURE 7-4:  
CERAMIC RESONATOR  
OPERATION  
FIGURE 7-5:  
EXTERNAL RC MODES  
(XT OR HS MODE)  
VDD  
PIC® MCU  
PIC® MCU  
REXT  
OSC1/CLKIN  
Internal  
Clock  
OSC1/CLKIN  
CEXT  
VSS  
C1  
To Internal  
Logic  
(3)  
(2)  
RP  
RF  
Sleep  
(1)  
FOSC/4 or  
I/O  
OSC2/CLKOUT  
(2)  
OSC2/CLKOUT  
(1)  
C2  
RS  
Ceramic  
Resonator  
Recommended values: 10 k  REXT 100 k, <3V  
3 k  REXT 100 k, 3-5V  
CEXT > 20 pF, 2-5V  
Note 1: A series resistor (RS) may be required for  
Note 1: Alternate pin functions are described in  
Section 6.1 “Alternate Pin Function”.  
ceramic resonators with low drive level.  
2: The value of RF varies with the Oscillator mode  
2: Output depends upon RC or RCIO clock mode.  
selected.  
3: An additional parallel feedback resistor (RP)  
may be required for proper ceramic resonator  
operation.  
In RCIO mode, the RC circuit is connected to OSC1.  
OSC2 becomes an additional general purpose I/O pin.  
The RC oscillator frequency is a function of the supply  
voltage, the resistor (REXT) and capacitor (CEXT) values  
and the operating temperature. Other factors affecting  
the oscillator frequency are:  
7.6.4  
EXTERNAL RC MODES  
The external Resistor-Capacitor (RC) modes support  
the use of an external RC circuit. This allows the  
designer maximum flexibility in frequency choice while  
keeping costs to a minimum when clock accuracy is not  
required. There are two modes: RC and RCIO.  
• threshold voltage variation  
• component tolerances  
• packaging variations in capacitance  
The user also needs to take into account variation due  
to tolerance of external RC components used.  
In RC mode, the RC circuit connects to OSC1. OSC2/  
CLKOUT outputs the RC oscillator frequency divided  
by 4. This signal may be used to provide a clock for  
external circuitry, synchronization, calibration, test or  
other application requirements. Figure 7-5 shows the  
external RC mode connections.  
TABLE 7-1:  
SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES  
Value on  
Value on  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
all other  
POR, BOR  
(1)  
Resets  
(1)  
CONFIG1  
CP  
MCLRE PWRTE  
WDTE  
ICSL  
FOSC2  
ICSS  
FOSC1  
FOSC0  
OSCCON  
IRCF1  
TUN5  
IRCF0  
TUN4  
--10 qq-- --10 qq--  
--00 0000 --uu uuuu  
OSCTUNE  
TUN3  
TUN2  
TUN1  
TUN0  
Legend:  
x= unknown, u= unchanged, = unimplemented locations read as ‘0’. Shaded cells are not used by oscillators.  
Note 1: See Configuration Word 1 (Register 8-1) for operation of all bits.  
DS41418A-page 74  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
8.1  
Configuration Words  
8.0  
DEVICE CONFIGURATION  
There are several Configuration Word bits that allow  
different oscillator and memory protection options.  
These are implemented as Configuration Word 1  
register at 2007h and Configuration Word 2 register at  
2008h. These registers are only accessible during  
programming.  
Device Configuration consists of Configuration Word 1  
and Configuration Word 2 registers, Code Protection  
and Device ID.  
REGISTER 8-1:  
CONFIG1: CONFIGURATION WORD REGISTER 1  
(4)  
R/P-1  
R/P-1  
U-1  
R/P-1  
R/P-1  
R/P-1  
DEBUG  
PLLEN  
BORV  
BOREN1  
BOREN0  
bit 15  
bit 8  
(4)  
U-1  
R/P-1  
CP  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
MCLRE  
PWRTE  
WDTE  
FOSC2  
FOSC1  
FOSC0  
bit 7  
bit 0  
Legend:  
P = Programmable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 13  
bit 12  
DEBUG: In-Circuit Debugger Mode bit  
1= In-Circuit Debugger disabled, RB6/ICSPCLK and RB7/ICSPDAT are general purpose I/O pins  
0= In-Circuit Debugger enabled, RB6/ICSPCLK and RB7/ICSPDAT are dedicated to the debugger  
PLLEN: INTOSC PLL Enable bit  
0= INTOSC Frequency is 500 kHz  
1= INTOSC Frequency is 16 MHz (32x)  
bit 11  
bit 10  
Unimplemented: Read as ‘1’  
BORV: Brown-out Reset Voltage Selection bit  
0= Brown-out Reset Voltage (VBOR) set to 2.5 V nominal  
1= Brown-out Reset Voltage (VBOR) set to 1.9 V nominal  
(1)  
bit 9-8  
BOREN<1:0>: Brown-out Reset Selection bits  
0x= BOR disabled (Preconditioned State)  
10= BOR enabled during operation and disabled in Sleep  
11= BOR enabled  
bit 7  
bit 6  
Unimplemented: Read as ‘1’  
(2)  
CP: Code Protection bit  
1= Program memory code protection is disabled  
0= Program memory code protection is enabled  
(3)  
bit 5  
bit 4  
bit 3  
MCLRE: RE3/MCLR Pin Function Select bit  
1= RE3/MCLR pin function is MCLR  
0= RE3/MCLR pin function is digital input, MCLR internally tied to VDD  
PWRTE: Power-up Timer Enable bit  
1= PWRT disabled  
0= PWRT enabled  
WDTE: Watchdog Timer Enable bit  
1= WDT enabled  
0= WDT disabled  
Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer.  
2: The entire program memory will be erased when the code protection is turned off.  
3: When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.  
®
4: MPLAB IDE masks unimplemented Configuration bits to ‘0’.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 75  
PIC16F707/PIC16LF707  
REGISTER 8-1:  
CONFIG1: CONFIGURATION WORD REGISTER 1 (CONTINUED)  
bit 2-0  
FOSC<2:0>: Oscillator Selection bits  
111= RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, RC on RA7/OSC1/CLKIN  
110= RCIO oscillator: I/O function on RA6/OSC2/CLKOUT pin, RC on RA7/OSC1/CLKIN  
101= INTOSC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN  
100= INTOSCIO oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN  
011= EC: I/O function on RA6/OSC2/CLKOUT pin, CLKIN on RA7/OSC1/CLKIN  
010= HS oscillator: High-speed crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN  
001= XT oscillator: Crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN  
000= LP oscillator: Low-power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN  
Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer.  
2: The entire program memory will be erased when the code protection is turned off.  
3: When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled.  
®
4: MPLAB IDE masks unimplemented Configuration bits to ‘0’.  
REGISTER 8-2:  
CONFIG2: CONFIGURATION WORD REGISTER 2  
U-1(1)  
U-1(1)  
U-1(1)  
U-1(1)  
U-1(1)  
U-1(1)  
U-1(1)  
U-1(1)  
bit 15  
bit 8  
U-1(1)  
U-1(1)  
R/P-1  
R/P-1  
U-1(1)  
U-1(1)  
U-1(1)  
U-1(1)  
VCAPEN1  
VCAPEN0  
bit 7  
bit 0  
Legend:  
P = Programmable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-4  
Unimplemented: Read as ‘1’  
VCAPEN<1:0>: Voltage Regulator Capacitor Enable bits  
For the PIC16LF707:  
These bits are ignored. All VCAP pin functions are disabled.  
For the PIC16F707:  
00= VCAP functionality is enabled on RA0  
01= VCAP functionality is enabled on RA5  
10= VCAP functionality is enabled on RA6  
11= All VCAP functions are disabled (not recommended)  
bit 3-0  
Unimplemented: Read as ‘1’  
Note 1: MPLAB® IDE masks unimplemented Configuration bits to ‘0’.  
DS41418A-page 76  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
8.2  
Code Protection  
If the code protection bit(s) have not been  
programmed, the on-chip program memory can be  
read out using ICSP™ for verification purposes.  
Note:  
The entire Flash program memory will be  
erased when the code protection is turned  
off. See the “PIC16F707/PIC16LF707  
Memory Programming Specification”  
(DS41332) for more information.  
8.3  
User ID  
Four memory locations (2000h-2003h) are designated  
as ID locations where the user can store checksum or  
other code identification numbers. These locations are  
not accessible during normal execution, but are read-  
able and writable during Program/Verify mode. Only  
the Least Significant 7 bits of the ID locations are  
reported when using MPLAB IDE. See the  
PIC16F707/PIC16LF707  
Memory  
Programming  
Specification” (DS41332) for more information.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 77  
PIC16F707/PIC16LF707  
NOTES:  
DS41418A-page 78  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
9.0  
ANALOG-TO-DIGITAL  
CONVERTER (ADC) MODULE  
The Analog-to-Digital Converter (ADC) allows  
conversion of an analog input signal to a 8-bit binary  
representation of that signal. This device uses analog  
inputs, which are multiplexed into a single sample and  
hold circuit. The output of the sample and hold is  
connected to the input of the converter. The converter  
generates  
a 8-bit binary result via successive  
approximation and stores the conversion result into the  
ADC result register (ADRES). Figure 9-1 shows the  
block diagram of the ADC.  
The ADC voltage reference is software selectable to be  
either internally generated or externally supplied.  
The ADC can generate an interrupt upon completion of  
a conversion. This interrupt can be used to wake-up the  
device from Sleep.  
FIGURE 9-1:  
ADC BLOCK DIAGRAM  
AVDD  
ADREF = 0x  
ADREF = 11  
ADREF = 10  
VREF+  
0000  
AN0  
AN1  
0001  
0010  
0011  
0100  
0101  
AN2  
AN3  
AN4  
AN5  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
AN6  
AN7  
ADC  
AN8  
8
GO/DONE  
ADON  
AN9  
AN10  
AN11  
AN12  
AN13  
Reserved  
FVREF  
ADRES  
VSS  
CHS<3:0>  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 79  
PIC16F707/PIC16LF707  
9.1.3  
ADC VOLTAGE REFERENCE  
9.1  
ADC Configuration  
The ADREF bits of the ADCON1 register provides  
control of the positive voltage reference. The positive  
voltage reference can be either VDD, an external  
voltage source or the internal Fixed Voltage Reference.  
The negative voltage reference is always connected to  
the ground reference. See Section 10.0 “Fixed  
Voltage Reference” for more details on the Fixed  
Voltage Reference.  
When configuring and using the ADC the following  
functions must be considered:  
• Port configuration  
• Channel selection  
• ADC voltage reference selection  
• ADC conversion clock source  
• Interrupt control  
• Results formatting  
9.1.4  
CONVERSION CLOCK  
The source of the conversion clock is software select-  
able via the ADCS bits of the ADCON1 register. There  
are seven possible clock options:  
9.1.1  
PORT CONFIGURATION  
The ADC can be used to convert both analog and  
digital signals. When converting analog signals, the I/O  
pin should be configured for analog by setting the  
associated TRIS and ANSEL bits. Refer to Section 6.0  
“I/O Ports” for more information.  
• FOSC/2  
• FOSC/4  
• FOSC/8  
• FOSC/16  
Note:  
Analog voltages on any pin that is defined  
as a digital input may cause the input  
buffer to conduct excess current.  
• FOSC/32  
• FOSC/64  
• FRC (dedicated internal oscillator)  
9.1.2  
CHANNEL SELECTION  
The time to complete one bit conversion is defined as  
TAD. One full 8-bit conversion requires 10 TAD periods  
as shown in Figure 9-2.  
The CHS bits of the ADCON0 register determine which  
channel is connected to the sample and hold circuit.  
When changing channels, a delay is required before  
starting the next conversion. Refer to Section 9.2  
“ADC Operation” for more information.  
For correct conversion, the appropriate TAD  
specification must be met. Refer to the A/D conversion  
requirements  
in  
Section 25.0  
“Electrical  
Specifications” for more information. Table 9-1 gives  
examples of appropriate ADC clock selections.  
Note:  
Unless using the FRC, any changes in the  
system clock frequency will change the  
ADC clock frequency, which may  
adversely affect the ADC result.  
TABLE 9-1:  
ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES  
ADC Clock Period (TAD)  
Device Frequency (FOSC)  
ADC  
Clock Source  
ADCS<2:0>  
20 MHz  
16 MHz  
8 MHz  
4 MHz  
1 MHz  
Fosc/2  
Fosc/4  
Fosc/8  
Fosc/16  
Fosc/32  
Fosc/64  
FRC  
000  
100  
001  
101  
010  
110  
x11  
100 ns(2)  
200 ns(2)  
400 ns(2)  
800 ns  
125 ns(2)  
250 ns(2)  
0.5 s(2)  
1.0 s  
250 ns(2)  
500 ns(2)  
1.0 s  
500 ns(2)  
1.0 s  
2.0 s  
4.0 s  
8.0 s(3)  
16.0 s(3)  
32.0 s(3)  
64.0 s(3)  
2.0 s  
2.0 s  
4.0 s  
1.6 s  
2.0 s  
4.0 s  
8.0 s(3)  
8.0 s(3)  
16.0 s(3)  
3.2 s  
4.0 s  
1.0-6.0 s(1,4) 1.0-6.0 s(1,4) 1.0-6.0 s(1,4) 1.0-6.0 s(1,4) 1.0-6.0 s(1,4)  
Legend: Shaded cells are outside of recommended range.  
Note 1: The FRC source has a typical TAD time of 1.6 s for VDD.  
2: These values violate the minimum required TAD time.  
3: For faster conversion times, the selection of another clock source is recommended.  
4: When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the  
conversion will be performed during Sleep.  
DS41418A-page 80  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 9-2:  
ANALOG-TO-DIGITAL CONVERSION TAD CYCLES  
Tcy to TAD  
TAD0  
TAD1  
TAD2  
b7  
TAD3  
b6  
TAD4  
TAD5  
b4  
TAD6  
b3  
TAD7  
TAD8  
TAD9  
b5  
b2  
b1  
b0  
Conversion Starts  
Holding capacitor is disconnected from analog input (typically 100 ns)  
Set GO/DONE bit  
ADRES register is loaded,  
GO/DONE bit is cleared,  
ADIF bit is set,  
Holding capacitor is connected to analog input  
9.1.5  
INTERRUPTS  
The ADC module allows for the ability to generate an  
interrupt upon completion of an Analog-to-Digital  
conversion. The ADC interrupt flag is the ADIF bit in the  
PIR1 register. The ADC Interrupt Enable is the ADIE bit  
in the PIE1 register. The ADIF bit must be cleared in  
software.  
Note 1: The ADIF bit is set at the completion of  
every conversion, regardless of whether  
or not the ADC interrupt is enabled.  
2: The ADC operates during Sleep only  
when the FRC oscillator is selected.  
This interrupt can be generated while the device is  
operating or while in Sleep. If the device is in Sleep, the  
interrupt will wake-up the device. Upon waking from  
Sleep, the next instruction following the SLEEPinstruc-  
tion is always executed. If the user is attempting to  
wake-up from Sleep and resume in-line code execu-  
tion, the GIE and PEIE bits of the INTCON register  
must be disabled. If the GIE and PEIE bits of the  
INTCON register are enabled, execution will switch to  
the Interrupt Service Routine.  
Please refer to Section 9.1.5 “Interrupts” for more  
information.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 81  
PIC16F707/PIC16LF707  
9.2.5  
SPECIAL EVENT TRIGGER  
9.2  
ADC Operation  
The Special Event Trigger of the CCP module allows  
periodic ADC measurements without software inter-  
vention. When this trigger occurs, the GO/DONE bit is  
set by hardware and the Timer1 counter resets to zero.  
9.2.1  
STARTING A CONVERSION  
To enable the ADC module, the ADON bit of the  
ADCON0 register must be set to a ‘1’. Setting the GO/  
DONE bit of the ADCON0 register to a ‘1’ will start the  
Analog-to-Digital conversion.  
Using the Special Event Trigger does not assure proper  
ADC timing. It is the user’s responsibility to ensure that  
the ADC timing requirements are met.  
Note:  
The GO/DONE bit should not be set in the  
same instruction that turns on the ADC.  
Refer to Section 9.2.6 “A/D Conversion  
Procedure”.  
Refer to Section 17.0 “Capture/Compare/PWM  
(CCP) Module” for more information.  
9.2.6  
A/D CONVERSION PROCEDURE  
9.2.2  
COMPLETION OF A CONVERSION  
This is an example procedure for using the ADC to  
perform an Analog-to-Digital conversion:  
When the conversion is complete, the ADC module will:  
• Clear the GO/DONE bit  
1. Configure Port:  
• Set the ADIF interrupt flag bit  
• Disable pin output driver (Refer to the TRIS  
register)  
• Update the ADRES register with new conversion  
result  
• Configure pin as analog (Refer to the ANSEL  
register)  
9.2.3  
TERMINATING A CONVERSION  
2. Configure the ADC module:  
• Select ADC conversion clock  
• Configure voltage reference  
• Select ADC input channel  
• Turn on ADC module  
If a conversion must be terminated before completion,  
the GO/DONE bit can be cleared in software. The  
ADRES register will be updated with the partially com-  
plete Analog-to-Digital conversion sample. Incomplete  
bits will match the last bit converted.  
3. Configure ADC interrupt (optional):  
• Clear ADC interrupt flag  
Note:  
A device Reset forces all registers to their  
Reset state. Thus, the ADC module is  
turned off and any pending conversion is  
terminated.  
• Enable ADC interrupt  
• Enable peripheral interrupt  
• Enable global interrupt(1)  
4. Wait the required acquisition time(2)  
.
9.2.4  
ADC OPERATION DURING SLEEP  
The ADC module can operate during Sleep. This  
requires the ADC clock source to be set to the FRC  
option. When the FRC clock source is selected, the  
ADC waits one additional instruction before starting the  
conversion. This allows the SLEEP instruction to be  
executed, which can reduce system noise during the  
conversion. If the ADC interrupt is enabled, the device  
will wake-up from Sleep when the conversion  
completes. If the ADC interrupt is disabled, the ADC  
module is turned off after the conversion completes,  
although the ADON bit remains set.  
5. Start conversion by setting the GO/DONE bit.  
6. Wait for ADC conversion to complete by one of  
the following:  
• Polling the GO/DONE bit  
• Waiting for the ADC interrupt (interrupts  
enabled)  
7. Read ADC Result.  
8. Clear the ADC interrupt flag (required if interrupt  
is enabled).  
When the ADC clock source is something other than  
FRC, a SLEEP instruction causes the present conver-  
sion to be aborted and the ADC module is turned off,  
although the ADON bit remains set.  
Note 1: The global interrupt can be disabled if the  
user is attempting to wake-up from Sleep  
and resume in-line code execution.  
2: Refer to Section 9.3 “A/D Acquisition  
Requirements”.  
DS41418A-page 82  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
EXAMPLE 9-1:  
A/D CONVERSION  
;This code block configures the ADC  
;for polling, Vdd reference, Frc clock  
;and AN0 input.  
;
;Conversion start & polling for completion  
; are included.  
;
BANKSEL  
MOVLW  
ADCON1  
;
B’01110000;ADC Frc clock,  
;VDD reference  
MOVWF  
BANKSEL  
BSF  
BANKSEL  
BSF  
BANKSEL  
MOVLW  
MOVWF  
CALL  
BSF  
BTFSC  
GOTO  
BANKSEL  
MOVF  
MOVWF  
ADCON1  
TRISA  
TRISA,0  
ANSELA  
ANSELA,0  
ADCON0  
B’00000001’;AN0, On  
ADCON0  
SampleTime ;Acquisiton delay  
ADCON0,GO ;Start conversion  
ADCON0,GO ;Is conversion done?  
;
;
;Set RA0 to input  
;
;Set RA0 to analog  
;
;
$-1  
;No, test again  
;
;Read result  
;store in GPR space  
ADRES  
ADRES,W  
RESULT  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 83  
PIC16F707/PIC16LF707  
9.2.7  
ADC REGISTER DEFINITIONS  
The following registers are used to control the  
operation of the ADC.  
REGISTER 9-1:  
ADCON0: A/D CONTROL REGISTER 0  
U-0  
U-0  
R/W-0  
CHS3  
R/W-0  
CHS2  
R/W-0  
CHS1  
R/W-0  
CHS0  
R/W-0  
R/W-0  
ADON  
GO/DONE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-2  
Unimplemented: Read as ‘0’  
CHS<3:0>: Analog Channel Select bits  
0000= AN0  
0001= AN1  
0010= AN2  
0011= AN3  
0100= AN4  
0101= AN5  
0110= AN6  
0111= AN7  
1000= AN8  
1001= AN9  
1010= AN10  
1011= AN11  
1100= AN12  
1101= AN13  
1110= Reserved  
1111= Fixed Voltage Reference (FVREF)  
bit 1  
bit 0  
GO/DONE: A/D Conversion Status bit  
1= A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle.  
This bit is automatically cleared by hardware when the A/D conversion has completed.  
0= A/D conversion completed/not in progress  
ADON: ADC Enable bit  
1= ADC is enabled  
0= ADC is disabled and consumes no operating current  
DS41418A-page 84  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
REGISTER 9-2:  
ADCON1: A/D CONTROL REGISTER 1  
U-0  
R/W-0  
ADCS2  
R/W-0  
ADCS1  
R/W-0  
ADCS0  
U-0  
U-0  
R/W-0  
R/W-0  
ADREF1  
ADREF0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
ADCS<2:0>: A/D Conversion Clock Select bits  
000= FOSC/2  
001= FOSC/8  
010= FOSC/32  
011= FRC (clock supplied from a dedicated RC oscillator)  
100= FOSC/4  
101= FOSC/16  
110= FOSC/64  
111= FRC (clock supplied from a dedicated RC oscillator)  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
ADREF<1:0>: Voltage Reference Configuration bits  
0x= VREF is connected to VDD  
10= VREF is connected to external VREF (RA3/AN3)  
11= VREF is connected to internal Fixed Voltage Reference  
REGISTER 9-3:  
R/W-x  
ADRES: ADC RESULT REGISTER  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
ADRES7  
bit 7  
ADRES6  
ADRES5  
ADRES4  
ADRES3  
ADRES2  
ADRES1  
ADRES0  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7-0  
ADRES<7:0>: ADC Result Register bits  
8-bit conversion result.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 85  
PIC16F707/PIC16LF707  
source impedance is decreased, the acquisition time  
may be decreased. After the analog input channel is  
selected (or changed), an A/D acquisition must be  
done before the conversion can be started. To calculate  
the minimum acquisition time, Equation 9-1 may be  
used. This equation assumes that 1/2 LSb error is used  
(256 steps for the ADC). The 1/2 LSb error is the  
maximum error allowed for the ADC to meet its  
specified resolution.  
9.3  
A/D Acquisition Requirements  
For the ADC to meet its specified accuracy, the charge  
holding capacitor (CHOLD) must be allowed to fully  
charge to the input channel voltage level. The analog  
input model is shown in Figure 9-3. The source  
impedance (RS) and the internal sampling switch (RSS)  
impedance directly affect the time required to charge  
the capacitor CHOLD. The sampling switch (RSS)  
impedance varies over the device voltage (VDD), refer  
to Figure 9-3. The maximum recommended  
impedance for analog sources is 10 k. As the  
EQUATION 9-1:  
ACQUISITION TIME EXAMPLE  
Temperature = 50°C and external impedance of 10k5.0V VDD  
Assumptions:  
TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient  
= TAMP + TC + TCOFF  
= 2µs + TC + Temperature - 25°C0.05µs/°C  
The value for TC can be approximated with the following equations:  
1
;[1] VCHOLD charged to within 1/2 lsb  
VAPPLIED1 -------------------------- = VCHOLD  
2n + 11  
TC  
---------  
RC  
VAPPLIED 1 e  
= VCHOLD  
;[2] VCHOLD charge response to VAPPLIED  
;combining [1] and [2]  
Tc  
--------  
RC  
1
= VAPPLIED1 --------------------------  
2n + 11  
VAPPLIED 1 e  
Note: Where n = number of bits of the ADC.  
Solving for TC:  
TC = CHOLDRIC + RSS + RSln(1/511)  
= 10pF1k+ 7k+ 10kln(0.001957)  
= 1.12µs  
Therefore:  
TACQ = 2µs + 1.12µs + 50°C- 25°C0.05µs/°C  
= 4.42µs  
Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.  
2: The charge holding capacitor (CHOLD) is not discharged after each conversion.  
3: The maximum recommended impedance for analog sources is 10 k. This is required to meet the pin  
leakage specification.  
DS41418A-page 86  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 9-3:  
ANALOG INPUT MODEL  
VDD  
Sampling  
Switch  
VT 0.6V  
ANx  
SS  
RIC 1k  
Rss  
Rs  
(1)  
CPIN  
5 pF  
VA  
I LEAKAGE  
CHOLD = 10 pF  
VSS/VREF-  
VT 0.6V  
6V  
5V  
RSS  
VDD 4V  
3V  
Legend:  
CHOLD  
CPIN  
= Sample/Hold Capacitance  
= Input Capacitance  
2V  
I LEAKAGE = Leakage current at the pin due to  
various junctions  
5 6 7 8 9 1011  
Sampling Switch  
RIC  
RSS  
SS  
VT  
= Interconnect Resistance  
= Resistance of Sampling Switch  
= Sampling Switch  
(k)  
= Threshold Voltage  
Note 1: Refer to Section 25.0 “Electrical Specifications”.  
FIGURE 9-4:  
ADC TRANSFER FUNCTION  
Full-Scale Range  
FFh  
FEh  
FDh  
FCh  
FBh  
1 LSB ideal  
Full-Scale  
Transition  
04h  
03h  
02h  
01h  
00h  
Analog Input Voltage  
1 LSB ideal  
Zero-Scale  
Transition  
VREF  
VSS  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 87  
PIC16F707/PIC16LF707  
TABLE 9-2:  
SUMMARY OF ASSOCIATED ADC REGISTERS  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON0  
ADCON1  
ANSELA  
ANSELB  
ANSELE  
ADRES  
CHS3  
ADCS1  
ANSA5  
ANSB5  
CHS2  
ADCS0  
ANSA4  
ANSB4  
CHS1  
CHS0  
GO/DONE  
ADREF1  
ANSA1  
ADON  
ADREF0  
ANSA0  
ANSB0  
ANSE0  
--00 0000  
-000 --00  
1111 1111  
1111 1111  
---- -111  
xxxx xxxx  
--00 0000  
q000 0000  
0000 000x  
0000 0000  
0000 0000  
1111 1111  
1111 1111  
---- 1111  
--00 0000  
-000 --00  
1111 1111  
1111 1111  
---- -111  
uuuu uuuu  
--00 0000  
q000 0000  
0000 000x  
0000 0000  
0000 0000  
1111 1111  
1111 1111  
---- 1111  
ADCS2  
ANSA6  
ANSB6  
ANSA7  
ANSB7  
ANSA3  
ANSB3  
ANSA2  
ANSB2  
ANSE2  
ANSB1  
ANSE1  
A/D Result Register Byte  
CCP2CON  
DC2B1  
DC2B0  
CCP2M3  
CCP2M2  
CCP2M1  
ADFVR1  
INTF  
CCP2M0  
ADFVR0  
RBIF  
FVRCON  
INTCON  
PIE1  
FVRRDY  
GIE  
FVREN  
PEIE  
CDAFVR1 CDAFVR0  
TMR0IE  
RCIE  
RCIF  
INTE  
TXIE  
TXIF  
TRISA4  
TRISB4  
RBIE  
TMR0IF  
CCP1IE  
CCP1IF  
TRISA2  
TRISB2  
TRISE2  
TMR1GIE  
TMR1GIF  
TRISA7  
TRISB7  
ADIE  
ADIF  
SSPIE  
SSPIF  
TMR2IE  
TMR2IF  
TRISA1  
TRISB1  
TRISE1  
TMR1IE  
TMR1IF  
TRISA0  
TRISB0  
TRISE0  
PIR1  
TRISA  
TRISB  
TRISE  
Legend:  
TRISA6  
TRISB6  
TRISA5  
TRISB5  
TRISA3  
TRISB3  
TRISE3  
x= unknown, u= unchanged, = unimplemented read as ‘0’, q= value depends on condition. Shaded cells are not used for ADC  
module.  
DS41418A-page 88  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
10.1 Independent Gain Amplifiers  
10.0 FIXED VOLTAGE REFERENCE  
The output of the FVR supplied to the ADC and  
CSM/DAC modules is routed through the two  
independent programmable gain amplifiers. Each  
amplifier can be configured to amplify the reference  
voltage by 1x, 2x or 4x.  
The Fixed Voltage Reference, or FVR, is a stable  
voltage reference independent of VDD with 1.024V,  
2.048V or 4.096V selectable output levels. The output  
of the FVR can be configured to supply a reference  
voltage to the following:  
The ADFVR<1:0> bits of the FVRCON register are  
used to enable and configure the gain amplifier settings  
for the reference supplied to the ADC module. Refer-  
ence Section 9.0 “Analog-to-Digital Converter  
(ADC) Module” for additional information on selecting  
the appropriate input channel.  
• ADC input channel  
• ADC positive reference  
• Digital-to-Analog Converter (DAC)  
• Capacitive Sensing Modules (CSM)  
The FVR can be enabled by setting the FVREN bit of  
the FVRCON register.  
The CDAFVR<1:0> bits of the FVRCON register are  
used to enable and configure the gain amplifier settings  
for the reference supplied to the capacitive sensing and  
digital-to-analog converter modules. Reference  
Section 16.0 “Capacitive Sensing Module” and  
Section 11.0 “Digital-to-Analog Converter (DAC)  
Module” for additional information.  
10.2 FVR Stabilization Period  
When the Fixed Voltage Reference module is enabled, it  
requires time for the reference and amplifier circuits to  
stabilize. Once the circuits stabilize and are ready for  
use, the FVRRDY bit of the FVRCON register will be set.  
See Section 25.0 “Electrical Specifications” for the  
minimum delay requirement.  
FIGURE 10-1:  
VOLTAGE REFERENCE BLOCK DIAGRAM  
ADFVR<1:0>  
2
X1  
X2  
X4  
FVR BUFFER1  
(To ADC Module)  
CDAFVR<1:0>  
2
X1  
X2  
X4  
FVR BUFFER2  
(To Cap Sense, DAC)  
+
_
FVREN  
FVRRDY  
1.024V Fixed  
Reference  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 89  
PIC16F707/PIC16LF707  
REGISTER 10-1: FVRCON: FIXED VOLTAGE REFERENCE REGISTER  
R-q  
FVRRDY(1)  
R/W-0/0  
FVREN  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
CDAFVR1(2) CDAFVR0(2) ADFVR1(2) ADFVR0(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared  
x = Bit is unknown  
q = Value depends on condition  
bit 7  
bit 6  
FVRRDY: Fixed Voltage Reference Ready Flag bit(1)  
0= Fixed Voltage Reference output is not active or stable  
1= Fixed Voltage Reference output is ready for use  
FVREN: Fixed Voltage Reference Enable bit  
0= Fixed Voltage Reference is disabled  
1= Fixed Voltage Reference is enabled  
bit 5-4  
bit 3-2  
Reserved: Read as ‘0’. Maintain these bits clear  
CDAFVR<1:0>: Cap Sense and D/A Converter Fixed Voltage Reference Selection bit(2)  
00= CSM and D/A Converter Fixed Voltage Reference Peripheral output is off.  
01= CSM and D/A Converter Fixed Voltage Reference Peripheral output is 1x (1.024V)  
10= CSM and D/A Converter Fixed Voltage Reference Peripheral output is 2x (2.048V)  
11= CSM and D/A Converter Fixed Voltage Reference Peripheral output is 4x (4.096V)  
bit 1-0  
ADFVR<1:0>: A/D Converter Fixed Voltage Reference Selection bit(2)  
00= A/D Converter Fixed Voltage Reference Peripheral output is off.  
01= A/D Converter Fixed Voltage Reference Peripheral output is 1x (1.024V)  
10= A/D Converter Fixed Voltage Reference Peripheral output is 2x (2.048V)  
11= A/D Converter Fixed Voltage Reference Peripheral output is 4x (4.096V)  
Note 1: FVRRDY is always ‘1’ on PIC16F707 devices.  
2: Fixed Voltage Reference output cannot exceed VDD.  
TABLE 10-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FVRCON FVRRDY FVREN Reserved Reserved CDAFVR1 CDAFVR0 ADFVR1 ADFVR0 q000 0000 q000 0000  
Legend: Shaded cells are not used by the voltage reference module.  
DS41418A-page 90  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
11.1 Output Voltage Selection  
11.0 DIGITAL-TO-ANALOG  
CONVERTER (DAC) MODULE  
The DAC has 32 voltage level ranges. The 32 levels  
are set with the DACR<4:0> bits of the DACCON1  
register.  
The Digital-to-Analog Converter supplies a variable  
voltage reference, ratiometric with VDD, with 32  
selectable output levels. The output of the DAC can be  
configured to supply a reference voltage to the  
following:  
The DAC output voltage is determined by the following  
equation:  
• DACOUT device pin  
• Capacitive sensing modules  
The Digital-to-Analog Converter (DAC) can be enabled  
by setting the DACEN bit of the DACCON0 register.  
EQUATION 11-1:  
IF DACEN = 1  
DACR[4:0]  
-
-
+
VOUT = VSOURCE VSOURCE x ----------------------------- + VSOURCE  
5
2
IF DACEN = 0 & DACLPS = 1 & DACR[4:0] = 11111  
+
VOUT = VSOURCE  
IF DACEN = 0 & DACLPS = 0 & DACR[4:0] = 00000  
-
VOUT = VSOURCE  
VSOURCE+ = VDD, VREF, or FVR BUFFER 2  
VSOURCE- = VSS  
Due to the limited current drive capability, a buffer must  
be used on the voltage reference output for external  
connections to DACOUT. Example 11-1 shows an  
example buffering technique.  
11.2 Output Clamped to VSS  
The DAC output voltage can be set to VSS with no  
power consumption by setting the DACEN bit of the  
DACCON0 register to ‘0’.  
11.5 Operation During Sleep  
11.3 Output Ratiometric to VDD  
When the device wakes up from Sleep through an  
interrupt or a Watchdog Timer time-out, the contents of  
the DACCON0 register are not affected. To minimize  
current consumption in Sleep mode, the voltage  
reference should be disabled.  
The DAC is VDD derived and therefore, the DAC output  
changes with fluctuations in VDD. The tested absolute  
accuracy of the DAC can be found in Section 25.0  
“Electrical Specifications”.  
11.4 Voltage Reference Output  
11.6 Effects of a Reset  
The DAC can be output to the device DACOUT pin by  
setting the DACOE bit of the DACCON0 register to ‘1’.  
Selecting the reference voltage for output on the  
DACOUT pin automatically overrides the digital output  
buffer and digital input threshold detector functions of  
that pin. Reading the DACOUT pin when it has been  
configured for reference voltage output will always  
return a ‘0’.  
A device Reset affects the following:  
• Voltage reference is disabled  
• Fixed voltage reference is disabled  
• DAC is removed from the DACOUT pin  
• The DACR<4:0> range select bits are cleared  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 91  
PIC16F707/PIC16LF707  
FIGURE 11-1:  
DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM  
DACEN  
DACLPS  
DACPSS[1:0] = 00  
VDD  
DACPSS[1:0] = 01  
DACPSS[1:0] = 10  
VREF  
DACR<4:0>  
FVR  
R
R
BUFFER 2  
R
R
R
(To Capacitive  
Sensing Module)  
DAC  
32 Steps  
DACOE  
R
R
R
DACOUT pin  
DACEN  
DACLPS  
EXAMPLE 11-1:  
VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE  
PIC16F707/  
PIC16LF707  
DAC  
Module  
R
+
Buffered DAC Output  
DACOUT  
Voltage  
Reference  
Output  
Impedance  
DS41418A-page 92  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
REGISTER 11-1: DACCON0: VOLTAGE REFERENCE CONTROL REGISTER 0  
R/W-0/0  
DACEN  
R/W-0/0  
DACLPS  
R/W-0/0  
DACOE  
U-0  
R/W-0/0  
R/W-0/0  
U-0  
U-0  
DACPSS1  
DACPSS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
u = bit is unchanged  
‘1’ = Bit is set  
-n/n = Value at POR and BOR/Value at all other Resets  
q = Value depends on condition  
bit 7  
bit 6  
bit 5  
DACEN: Digital-to-Analog Converter Enable bit  
0= Digital-to-Analog Converter is disabled  
1= Digital-to-Analog Converter is enabled  
DACLPS: DAC Low-Power Voltage State Select bit  
0= VDAC = DAC negative reference source selected  
1= VDAC = DAC positive reference source selected  
DACOE: DAC Voltage Output Enable bit  
0= DAC voltage level is output on the DACOUT pin  
1= DAC voltage level is disconnected from the DACOUT pin  
bit 4  
Unimplemented: Read as ‘0’  
bit 3-2  
DACPSS<1:0>: DAC Positive Source Select bits  
00= VDD  
01= VREF  
10= FVR Buffer 2 output  
11= Reserved, do not use  
bit 1-0  
Unimplemented: Read as ‘0’  
REGISTER 11-2: DACCON1: VOLTAGE REFERENCE CONTROL REGISTER 1  
U-0  
U-0  
U-0  
R/W-0/0  
DACR4  
R/W-0/0  
DACR3  
R/W-0/0  
DACR2  
R/W-0/0  
DACR1  
R/W-0/0  
DACR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
DACR<4:0>: DAC Voltage Output Select bits  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 93  
PIC16F707/PIC16LF707  
TABLE 11-1: REGISTERS ASSOCIATED WITH THE DIGITAL-TO-ANALOG CONVERTER  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FVRCON  
FVRRDY  
FVREN  
DACLPS  
Reserved  
DACOE  
Reserved  
CDAFVR1  
DACPSS1  
DACR3  
CDAFVR0  
DACPSS0  
DACR2  
ADFVR1  
ADFVR0  
q000 0000 q000 0000  
000- 00-- 000- 00--  
---0 0000 ---0 0000  
DACCON0 DACEN  
DACCON1  
DACR4  
DACR1  
DACR0  
Legend:  
— = Unimplemented locations, read as ‘0’. Shaded cells are not used by the DAC module.  
DS41418A-page 94  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
12.0 TIMER0 MODULE  
The Timer0 module is an 8-bit timer/counter with the  
following features:  
• 8-bit timer/counter register (TMR0)  
• 8-bit prescaler (shared with Watchdog Timer)  
• Programmable internal or external clock source  
• Programmable external clock edge selection  
• Interrupt on overflow  
Figure 12-1 is a block diagram of the Timer0 module.  
FIGURE 12-1:  
BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER  
FOSC/4  
Data Bus  
0
1
T0CKI  
pin  
8
1
Sync  
TMR0  
2 TCY  
0
0
1
TMR0SE  
Set Flag bit TMR0IF  
8-bit  
TMR0CS  
on Overflow  
Prescaler  
PSA  
T1GSS = 11  
TMR1GE  
PSA  
8
WDTE  
PS<2:0>  
1
0
WDT  
Time-out  
Divide by  
512  
PSA  
Note 1: TMR0SE, TMR0CS, PSA, PS<2:0> are bits in the OPTION register.  
2: WDTE bit is in Configuration Word 1.  
3: T1GSS and TMR1GE are in the T1GCON register.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 95  
PIC16F707/PIC16LF707  
12.1.4  
TIMER0 INTERRUPT  
12.1 Timer0 Operation  
Timer0 will generate an interrupt when the TMR0  
register overflows from FFh to 00h. The TMR0IF  
interrupt flag bit of the INTCON register is set every  
time the TMR0 register overflows, regardless of  
whether or not the Timer0 interrupt is enabled. The  
TMR0IF bit can only be cleared in software. The  
Timer0 interrupt enable is the TMR0IE bit of the  
INTCON register.  
The Timer0 module can be used as either an 8-bit timer  
or an 8-bit counter.  
12.1.1  
8-BIT TIMER MODE  
The Timer0 module will increment every instruction  
cycle, if used without a prescaler. 8-bit Timer mode is  
selected by clearing the TMR0CS bit of the OPTION  
register.  
Note:  
The Timer0 interrupt cannot wake the  
processor from Sleep since the timer is  
frozen during Sleep.  
When TMR0 is written, the increment is inhibited for  
two instruction cycles immediately following the write.  
Note:  
The value written to the TMR0 register can  
be adjusted, in order to account for the two  
instruction cycle delay when TMR0 is  
written.  
12.1.5  
USING TIMER0 WITH AN  
EXTERNAL CLOCK  
When Timer0 is in Counter mode, the synchronization  
of the T0CKI input and the Timer0 register is  
accomplished by sampling the prescaler output on the  
Q2 and Q4 cycles of the internal phase clocks.  
Therefore, the high and low periods of the external  
clock source must meet the timing requirements as  
shown in Section 25.0 “Electrical Specifications”.  
12.1.2  
8-BIT COUNTER MODE  
In 8-bit Counter mode, the Timer0 module will increment  
on every rising or falling edge of the T0CKI pin. 8-bit  
Counter mode using the T0CKI pin is selected by setting  
the TMR0CS bit of the OPTION register to ‘1’.  
The rising or falling transition of the incrementing edge  
for either input source is determined by the TMR0SE bit  
in the OPTION register.  
12.1.6  
TIMER ENABLE  
Operation of Timer0 is always enabled and the module  
will operate according to the settings of the OPTION  
register.  
12.1.3  
SOFTWARE PROGRAMMABLE  
PRESCALER  
12.1.7  
OPERATION DURING SLEEP  
A single software programmable prescaler is available  
for use with either Timer0 or the Watchdog Timer  
(WDT), but not both simultaneously. The prescaler  
assignment is controlled by the PSA bit of the OPTION  
register. To assign the prescaler to Timer0, the PSA bit  
must be cleared to a ‘0’.  
Timer0 cannot operate while the processor is in Sleep  
mode. The contents of the TMR0 register will remain  
unchanged while the processor is in Sleep mode.  
There are 8 prescaler options for the Timer0 module  
ranging from 1:2 to 1:256. The prescale values are  
selectable via the PS<2:0> bits of the OPTION register.  
In order to have a 1:1 prescaler value for the Timer0  
module, the prescaler must be assigned to the WDT  
module.  
The prescaler is not readable or writable. When the  
prescaler is enabled or assigned to the Timer0 module,  
all instructions writing to the TMR0 register will clear the  
prescaler.  
Note:  
When the prescaler is assigned to WDT, a  
CLRWDTinstruction will clear the prescaler  
along with the WDT.  
DS41418A-page 96  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
REGISTER 12-1: OPTION_REG: OPTION REGISTER  
R/W-1  
RBPU  
R/W-1  
R/W-1  
R/W-1  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
TMR0CS  
TMR0SE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
RBPU: PORTB Pull-up Enable bit  
1= PORTB pull-ups are disabled  
0= PORTB pull-ups are enabled by individual PORT latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of INT pin  
0= Interrupt on falling edge of INT pin  
TMR0CS: TMR0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (FOSC/4)  
TMR0SE: TMR0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is assigned to the WDT  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
BIT VALUE TMR0 RATE  
WDT RATE  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 1  
1 : 4  
1 : 2  
1 : 8  
1 : 4  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
TABLE 12-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE  
PEIE  
TMR0IE  
INTE  
RBIE  
PSA  
TMR0IF  
PS2  
INTF  
PS1  
RBIF  
PS0  
0000 000x 0000 000x  
OPTION_REG  
TMR0  
RBPU  
INTEDG  
TMR0CS  
TMR0SE  
1111 1111 1111 1111  
xxxx xxxx uuuu uuuu  
Timer0 Module Register  
TRISA4 TRISA3  
TRISA  
TRISA7  
TRISA6  
TRISA5  
TRISA2  
TRISA1  
TRISA0 1111 1111 1111 1111  
Legend:  
– = Unimplemented locations, read as ‘0’. Shaded cells are not used by the Timer0 module.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 97  
PIC16F707/PIC16LF707  
NOTES:  
DS41418A-page 98  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
13.0 TIMER1/3 MODULES WITH  
GATE CONTROL  
The Timer1 and Timer3 modules are 16-bit timers/  
counters with the following features:  
• 16-bit timer/counter register pair (TMRxH:TMRxL)  
• Programmable internal or external clock source  
• 3-bit prescaler  
• Dedicated LP oscillator circuit (Timer1 only)  
• Synchronous or asynchronous operation  
• Multiple Timer1/3 gate (count enable) sources  
• Interrupt on overflow  
• Wake-up on overflow (external clock,  
Asynchronous mode only)  
• Time base for the Capture/Compare function  
(Timer1 only)  
• Special Event Trigger with CCP (Timer1 only)  
• Selectable Gate Source Polarity  
• Gate Toggle mode  
• Gate Single-pulse mode  
• Gate Value Status  
• Gate Event Interrupt  
Figure 13-1 is a block diagram of the Timer1/3  
modules.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 99  
PIC16F707/PIC16LF707  
FIGURE 13-1:  
TIMER1/TIMER3 BLOCK DIAGRAM  
TxGSS<1:0>  
TxGSPM  
00  
TxG  
0
1
01  
10  
11  
From TimerA/B  
(4)  
TxG_IN  
D
Data Bus  
Overflow  
TxGVAL  
Q1  
0
1
D
Q
From Timer2  
Match PR2  
RD  
TXGCON  
Single Pulse  
Acq. Control  
EN  
Q
Q
From WDT  
Overflow  
Interrupt  
det  
Set  
TMRxGIF  
TxGGO/DONE  
CK  
R
TxGPOL  
TMRxGE  
TxGTM  
Set flag bit  
TMRxIF on  
Overflow  
TMRxON  
(2)  
TMRx  
TMRxH  
EN  
Synchronized  
clock input  
0
TxCLK  
TMRxL  
Q
D
1
TMRxCS<1:0>  
TxSYNC  
(5)  
Cap. Sense  
(3)  
11  
Synchronize  
det  
Prescaler  
1, 2, 4, 8  
Oscillator A/B  
1
0
T1OSO/T1CKI  
OUT  
10  
00  
(6)  
T1OSC  
2
TxCKPS<1:0>  
FOSC  
Internal  
Clock  
T1OSI  
EN  
FOSC/2  
Internal  
Clock  
Sleep input  
FOSC/4  
Internal  
Clock  
00  
T1OSCEN  
TxCKI  
(1)  
Note 1: ST Buffer is high speed type when using TxCKI.  
2: Timer1/3 register increments on rising edge.  
3: Synchronize does not operate while in Sleep.  
4: Timer1 gate source is TimerA. Timer3 gate source is TimerB. Refer to Table 13-1.  
5: Timer1 clock source is CPSAOSC. Timer3 clock source is CPSBOSC. Refer to Table 13-1.  
6: Timer3 does not have a T3OSC circuit. There is no T3OSCEN bit. Timer3 can operate from T1OSC.  
TABLE 13-1: CPSOSC/TIMER  
ASSOCIATION  
Period  
Measurement  
Cap Sense  
Oscillator  
Divider Timer  
(Gate Source)  
Timer1  
Timer3  
CPS A  
CPS B  
TimerA  
TimerB  
DS41418A-page 100  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
13.1 Timer1/3 Operation  
13.2 Clock Source Selection  
The Timer1 and Timer3 modules are 16-bit increment-  
ing counters which are accessed through the  
TMRxH:TMRxL register pair. Writes to TMRxH or  
TMRxL directly update the counter.  
The TMRxCS<1:0> bits of the TxCON register and the  
T1OSCEN bit of the T1CON register are used to select  
the clock source for Timer1/3. Table 13-3 displays the  
clock source selections.  
When used with an internal clock source, the module is  
a timer and increments on every instruction cycle.  
When used with an external clock source, the module  
can be used as either a timer or counter and incre-  
ments on every selected edge of the external source.  
13.2.1  
INTERNAL CLOCK SOURCE  
When the internal clock source is selected, the  
TMRxH:TMRxL register pair will increment on multiples  
of FOSC as determined by the Timer1/3 prescaler.  
Timer1/3 is enabled by configuring the TMRxON and  
TMRxGE bits in the TxCON and TxGCON registers,  
respectively. Table 13-2 displays the Timer1/3 enable  
selections.  
13.2.2  
EXTERNAL CLOCK SOURCE  
When the external clock source is selected, the  
Timer1/3 modules may work as a timer or a counter.  
When enabled to count, Timer1/3 is incremented on the  
rising edge of the external clock input TxCKI or a  
capacitive sensing oscillator signal. Either of these  
external clock sources can be synchronized to the  
microcontroller system clock or they can be run  
asynchronously. If set for the capacitive sensing  
oscillator signal, Timer1 will use the CPS A signal and  
Timer3 will use the CPS B signal (see Table 13-1).  
TABLE 13-2: TIMER1/3 ENABLE  
SELECTIONS  
Timer1/3  
TMRxON  
TMRxGE  
Operation  
0
0
1
1
0
1
0
1
Off  
Off  
When used as a timer with a clock oscillator, an  
external 32.768 kHz crystal can be used in conjunction  
with the dedicated internal oscillator circuit. Only one  
dedicated internal oscillator circuit is available. See  
Section 13.4 “Timer1/3 Oscillator” for more  
information.  
Always On  
Count Enabled  
Note:  
In Counter mode, a falling edge must be  
registered by the counter prior to the first  
incrementing rising edge after any one or  
more of the following conditions:  
• Timer1/3 enabled after POR reset  
• Write to TMRxH or TMRxL  
• Timer1/3 is disabled  
• Timer1/3 is disabled (TMRxON = 0)  
when TxCKI is high, then Timer1/3 is  
enabled (TMRxON=1) when TxCKI is  
low.  
TABLE 13-3: CLOCK SOURCE SELECTIONS  
TMRxCS1  
TMRxCS0  
T1OSCEN  
Timer1 Clock Source  
System Clock (FOSC)  
Instruction Clock (FOSC/4)  
Timer3 Clock Source  
0
0
1
1
1
1
0
1
0
0
x
x
x
0
1
System Clock (FOSC)  
Instruction Clock (FOSC/4)  
Capacitive Sensing A Oscillator  
External Clocking on T1CKI Pin  
Capacitive Sensing B Oscillator  
External Clocking on T3CKI Pin  
Oscillator Circuit on T1OSI/  
T1OSO Pins  
Oscillator Circuit on T1OSI/  
T1OSO Pins  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 101  
PIC16F707/PIC16LF707  
13.5.1  
READING AND WRITING TIMER1/3  
IN ASYNCHRONOUS COUNTER  
MODE  
13.3 Timer1/3 Prescaler  
Timer1 and Timer3 have four prescaler options allowing  
1, 2, 4 or 8 divisions of the clock input. The TxCKPS bits  
of the TxCON register control the prescale counter. The  
prescale counter is not directly readable or writable;  
however, the prescaler counter is cleared upon a write to  
TMRxH or TMRxL.  
Reading TMRxH or TMRxL while the timer is running  
from an external asynchronous clock will ensure a valid  
read (taken care of in hardware). However, the user  
should keep in mind that reading the 16-bit timer in two  
8-bit values itself poses certain problems, since the  
timer may overflow between the reads.  
13.4 Timer1/3 Oscillator  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write  
contention may occur by writing to the timer registers,  
while the register is incrementing. This may produce an  
unpredictable value in the TMRxH:TMRxL register pair.  
A dedicated low-power 32.768 kHz oscillator circuit is  
built-in between pins T1OSI (input) and T1OSO  
(amplifier output). This internal circuit is to be used in  
conjunction with an external 32.768 kHz crystal.  
The oscillator circuit is enabled by setting the  
T1OSCEN bit of the T1CON register. The oscillator can  
provide a clock source to Timer1 and/or Timer3. The  
oscillator will continue to run during Sleep.  
13.6 Timer1/3 Gate  
Timer1/3 can be configured to count freely or the count  
can be enabled and disabled using Timer1/3 gate  
circuitry. This is also referred to as Timer1/3 gate count  
enable.  
Note:  
The oscillator requires a start-up and  
stabilization time before use. Thus,  
T1OSCEN should be set and a suitable  
delay observed prior to enabling Timer1/3.  
Timer1/3 gate can also be driven by multiple selectable  
sources.  
13.5 Timer1/3 Operation in  
Asynchronous Counter Mode  
13.6.1  
TIMER1/3 GATE COUNT ENABLE  
The Timer1/3 gate is enabled by setting the TMRxGE bit  
of the TxGCON register. The polarity of the Timer1/3  
gate is configured using the TxGPOL bit of the TxGCON  
register.  
If control bit TxSYNC of the TxCON register is set, the  
external clock input is not synchronized. The timer  
increments asynchronously to the internal phase  
clocks. If external clock source is selected, then the  
timer will continue to run during Sleep and can  
generate an interrupt on overflow, which will wake-up  
the processor. However, special precautions in  
software are needed to read/write the timer (see  
Section 13.5.1 “Reading and Writing Timer1/3 in  
Asynchronous Counter Mode”).  
When Timer1/3 gate (TxG) input is active, Timer1/3 will  
increment on the rising edge of the Timer1/3 clock  
source. When Timer1/3 gate input is inactive, no incre-  
menting will occur and Timer1/3 will hold the current  
count. See Figure 13-3 for timing details.  
TABLE 13-4: TIMER1/3 GATE ENABLE  
SELECTIONS  
TxCLK TxGPOL TxG  
Timer1/3 Operation  
0
0
1
1
0
1
0
1
Counts  
Holds Count  
Holds Count  
Counts  
13.6.2  
TIMER1/3 GATE SOURCE  
SELECTION  
The Timer1/3 gate source can be selected from one of  
four different sources. Source selection is controlled by  
the TxGSS bits of the TxGCON register. The polarity  
for each available source is also selectable. Polarity  
selection is controlled by the TxGPOL bit of the  
TxGCON register.  
DS41418A-page 102  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
TABLE 13-5: TIMER1/3 GATE SOURCES  
TxGSS  
Timer1 Gate Source  
Timer1 Gate Pin  
Timer3 Gate Source  
00  
01  
Timer3 Gate Pin  
Overflow of TimerA  
Overflow of TimerB  
(TMRA increments from FFh to 00h)  
(TMRB increments from FFh to 00h)  
10  
11  
Timer2 match PR2  
(TMR2 increments to match PR2)  
Timer2 match PR2  
(TMR2 increments to match PR2)  
Count Enabled by WDT Overflow  
Count Enabled by WDT Overflow  
(Watchdog Time-out interval expired)  
(Watchdog Time-out interval expired)  
13.6.3  
TxG PIN GATE OPERATION  
13.6.6  
WATCHDOG OVERFLOW GATE  
OPERATION  
The TxG pin is one source for Timer1/3 gate control.  
It can be used to supply an external source to the  
Timer1/3 gate circuitry. Timer1 gate can be configured  
for the T1G pin and Timer3 gate can be configured for  
the T3G pin.  
The Watchdog Timer oscillator, prescaler and counter  
will be automatically turned on when TMRxGE = 1and  
TxGSS selects the WDT as a gate source for Timer1/3  
(TxGSS = 11). TMRxON does not factor into the oscil-  
lator, prescaler and counter enable. See Table 13-6.  
Both Timer1 gate and Timer3 gate can be configured  
for Watchdog overflow.  
13.6.4  
TIMERA/B OVERFLOW GATE  
OPERATION  
When TimerA/B increments from FFh to 00h a low-to-  
high pulse will automatically be generated and  
internally supplied to the Timer1/3 gate circuitry. Timer1  
gate can be configured for TimerA overflow and Timer3  
gate can be configured for TimerB overflow.  
The PSA and PS bits of the OPTION register still  
control what time-out interval is selected. Changing the  
prescaler during operation may result in a spurious  
capture.  
Enabling the Watchdog Timer oscillator does not  
automatically enable a Watchdog Reset or wake-up  
from Sleep upon counter overflow.  
13.6.5  
TIMER2 MATCH GATE OPERATION  
The TMR2 register will increment until it matches the  
value in the PR2 register. On the very next increment  
cycle, TMR2 will be reset to 00h. When this Reset  
occurs, a low-to-high pulse will automatically be gener-  
ated and internally supplied to the Timer1/3 gate cir-  
cuitry. Both Timer1 gate and Timer3 gate can be  
configured for the Timer2 match.  
Note:  
When using the WDT as a gate source for  
Timer1/3, operations that clear the  
Watchdog Timer (CLRWDT, SLEEP  
instructions) will affect the time interval  
being measured for capacitive sensing.  
This includes waking from Sleep. All other  
interrupts that might wake the device from  
Sleep should be disabled to prevent them  
from disturbing the measurement period.  
As the gate signal coming from the WDT counter will  
generate different pulse widths, depending on if the  
WDT is enabled, when the CLRWDTinstruction is exe-  
cuted, and so on, Toggle mode must be used. A spe-  
cific sequence is required to put the device into the  
correct state to capture the next WDT counter interval.  
TABLE 13-6: WDT/TIMER1/3 GATE INTERRACTION  
TMRxGE = 1 and  
TxGSS = 11  
WDT Oscillator  
Enable  
WDT Available for  
WDTE  
WDT Reset  
Wake-up  
TxG Source  
1
1
0
0
N
Y
Y
N
Y
Y
Y
N
Y
Y
N
N
Y
Y
N
N
N
Y
Y
N
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 103  
PIC16F707/PIC16LF707  
Clearing the TxGSPM bit of the TxGCON register will  
also clear the TxGGO/DONE bit. See Figure 13-5 for  
timing details.  
13.6.7  
TIMER1/3 GATE TOGGLE MODE  
When Timer1/3 Gate Toggle mode is enabled, it is  
possible to measure the full-cycle length of a Timer1/3  
gate signal, as opposed to the duration of a single level  
pulse.  
Enabling the Toggle mode and the Single-Pulse mode  
simultaneously will permit both sections to work  
together. This allows the cycle times on the Timer1/3  
gate source to be measured. See Figure 13-6 for timing  
details.  
The Timer1/3 gate source is routed through a flip-flop  
that changes state on every incrementing edge of the  
signal. See Figure 13-4 for timing details.  
Timer1/3 Gate Toggle mode is enabled by setting the  
TxGTM bit of the TxGCON register. When the TxGTM  
bit is cleared, the flip-flop is cleared and held clear. This  
is necessary in order to control which edge is  
measured.  
13.6.9  
TIMER1/3 GATE VALUE STATUS  
When Timer1/3 gate value status is utilized, it is  
possible to read the most current level of the gate  
control value. The value is stored in the TxGVAL bit in  
the TxGCON register. The TxGVAL bit is valid even  
when the Timer1/3 gate is not enabled (TMRxGE bit is  
cleared).  
Note:  
Enabling Toggle mode at the same time  
as changing the gate polarity may result in  
indeterminate operation.  
13.6.10 TIMER1/3 GATE EVENT  
INTERRUPT  
When Timer1/3 gate event interrupt is enabled, it is  
possible to generate an interrupt upon the completion  
of a gate event. When the falling edge of TxGVAL  
occurs, the TMRxGIF flag bit in the PIRx register will be  
set. If the TMRxGIE bit in the PIEx register is set, then  
an interrupt will be recognized. See Table 13-7 for  
interrupt bit locations.  
13.6.8  
TIMER1/3 GATE SINGLE-PULSE  
MODE  
When Timer1/3 Gate Single-Pulse mode is enabled, it  
is possible to capture a single pulse gate event.  
Timer1/3 Gate Single-Pulse mode is first enabled by  
setting the TxGSPM bit in the TxGCON register. Next,  
the TxGGO/DONE bit in the TxGCON register must be  
set. The Timer1/3 will be fully enabled on the next  
incrementing edge. On the next trailing edge of the  
pulse, the TxGGO/DONE bit will automatically be  
cleared. No other gate events will be allowed to incre-  
ment Timer1/3 until the TxGGO/DONE bit is once  
again set in software.  
The TMRxGIF flag bit operates even when the  
Timer1/3 gate is not enabled (TMRxGE bit is cleared).  
TABLE 13-7: TIMER1/3 INTERRUPT BIT LOCATIONS  
Timer1  
Timer3  
Interrupt Flag  
TMR1IF bit in PIR1 register  
TMR1IE bit in PIE1 register  
TMR3IF bit in PIR2 register  
TMR3IE bit in PIE2 register  
Interrupt Enable  
Gate Interrupt Flag  
Gate Interrupt Enable  
TMR1GIF bit in PIR1 register  
TMR1GIE bit in PIE1 register  
TMR3GIF bit in PIR2 register  
TMR3GIE bit in PIE2 register  
13.7 Timer1/3 Interrupt  
Note:  
The TMRxH:TMRxL register pair and the  
TMRxIF bit should be cleared before  
enabling interrupts.  
The Timer1/3 register pair (TMRxH:TMRxL)  
increments to FFFFh and rolls over to 0000h. When  
Timer1/3 rolls over, the Timer1/3 interrupt flag bit of the  
PIRx register is set. See Table 13-7 for interrupt bit  
locations.  
To enable the interrupt on rollover, you must set these  
bits:  
• TMRxON bit of the TxCON register  
• TMRxIE bit of the PIEx register  
• PEIE bit of the INTCON register  
• GIE bit of the INTCON register  
The interrupt is cleared by clearing the TMRxIF bit in  
the Interrupt Service Routine.  
DS41418A-page 104  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
In Capture mode, the value in the TMR1H:TMR1L  
register pair is copied into the CCPR1H:CCPR1L  
register pair on a configured event.  
13.8 Timer1/3 Operation During Sleep  
Timer1/3 can only operate during Sleep when setup in  
Asynchronous Counter mode. In this mode, an external  
crystal or clock source can be used to increment the  
counter. To set up the timer to wake the device:  
In Compare mode, an event is triggered when the value  
CCPR1H:CCPR1L register pair matches the value in  
the TMR1H:TMR1L register pair. This event can be a  
Special Event Trigger.  
• TMRxON bit of the TxCON register must be set  
• TMRxIE bit of the PIEx register must be set  
• PEIE bit of the INTCON register must be set  
• TxSYNC bit of the TxCON register must be set  
For more information, see Section 17.0 “Capture/  
Compare/PWM (CCP) Module”.  
• TMRxCS bits of the TxCON register must be  
configured  
13.10 CCP Special Event Trigger  
(Timer1 only)  
• T1OSCEN bit of the T1CON register must be  
configured  
When the CCP is configured to trigger a special event,  
the trigger will clear the TMR1H:TMR1L register pair.  
This special event does not cause a Timer1 interrupt.  
The CCP module may still be configured to generate a  
CCP interrupt.  
• TMRxGIE bit of the TxGCON register must be  
configured  
The device will wake-up on an overflow and execute  
the next instructions. If the GIE bit of the INTCON  
register is set, the device will call the Interrupt Service  
Routine (0004h).  
In this mode of operation, the CCPR1H:CCPR1L  
register pair becomes the period register for Timer1.  
Timer1 should be synchronized to the FOSC/4 to utilize  
the Special Event Trigger. Asynchronous operation of  
Timer1 can cause a Special Event Trigger to be  
missed.  
13.9 CCP Capture/Compare Time Base  
(Timer1 Only)  
The CCP module uses the TMR1H:TMR1L register  
pair as the time base when operating in Capture or  
Compare mode.  
In the event that a write to TMR1H or TMR1L coincides  
with a Special Event Trigger from the CCP, the write will  
take precedence.  
For more information, see Section 17.2.4 “Special  
Event Trigger”.  
FIGURE 13-2:  
TIMER1/TIMER3 INCREMENTING EDGE  
TxCKI = 1  
when TMR1/3  
Enabled  
TxCKI = 0  
when TMR1/3  
Enabled  
Note 1: Arrows indicate counter increments.  
2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge of the clock.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 105  
PIC16F707/PIC16LF707  
FIGURE 13-3:  
TIMER1/TIMER3 GATE COUNT ENABLE MODE  
TMRxGE  
TxGPOL  
TxG_IN  
TxCKI  
TxGVAL  
Timer1/3  
N
N + 1  
N + 2  
N + 3  
N + 4  
FIGURE 13-4:  
TIMER1/TIMER3 GATE TOGGLE MODE  
TMRxGE  
TxGPOL  
TxGTM  
TxG_IN  
TxCKI  
TxGVAL  
TIMER1/3  
N
N + 1 N + 2 N + 3 N + 4  
N + 5 N + 6 N + 7 N + 8  
DS41418A-page 106  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 13-5:  
TIMER1/TIMER3 GATE SINGLE-PULSE MODE  
TMRxGE  
TxGPOL  
TxGSPM  
Cleared by hardware on  
falling edge of TxGVAL  
TxGGO/  
DONE  
Set by software  
Counting enabled on  
rising edge of TxG  
TxG_IN  
TxCKI  
TxGVAL  
TIMER1/3  
TMRxGIF  
N
N + 1  
N + 2  
Cleared by  
software  
Set by hardware on  
falling edge of TxGVAL  
Cleared by software  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 107  
PIC16F707/PIC16LF707  
FIGURE 13-6:  
TMRxGE  
TxGPOL  
TIMER1/TIMER3 GATE SINGLE-PULSE AND TOGGLE COMBINED MODE  
TxGSPM  
TxGTM  
Cleared by hardware on  
falling edge of TxGVAL  
TxGGO/  
DONE  
Set by software  
Counting enabled on  
rising edge of TxG  
TxG_IN  
TxCKI  
TxGVAL  
TIMER1/3  
TMRxGIF  
N + 4  
N + 2 N + 3  
N
N + 1  
Set by hardware on  
falling edge of TxGVAL  
Cleared by  
software  
Cleared by software  
DS41418A-page 108  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
13.11 Timer1/3 Control Register  
The Timer1/3 Control register (TxCON), shown in  
Register 13-1, is used to control Timer1/3 and select  
the various features of the Timer1/3 module.  
REGISTER 13-1: TxCON: TIMER1/TIMER3 CONTROL REGISTER  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
TxSYNC  
U-0  
R/W-0/0  
TMRxCS1  
TMRxCS0  
TxCKPS1  
TxCKPS0 T1OSCEN(1)  
TMRxON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
bit 7-6  
TMRxCS<1:0>: Timerx Clock Source Select bits  
11=Timerx clock source is Capacitive Sensing Oscillator (CPSxOSC)  
10=Timerx clock source is pin or oscillator:  
If T1OSCEN = 0:  
External clock from TxCKI pin (on the rising edge)  
If T1OSCEN = 1:  
Crystal oscillator on T1OSI/T1OSO pins  
01=Timerx clock source is system clock (FOSC)  
00=Timerx clock source is instruction clock (FOSC/4)  
bit 5-4  
TxCKPS<1:0>: Timerx Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
T1OSCEN: LP Oscillator Enable Control bit(1)  
1= Dedicated Timer1/3 oscillator circuit enabled  
0= Dedicated Timer1/3 oscillator circuit disabled  
TxSYNC: Timerx External Clock Input Synchronization Control bit  
If TMRxCS<1:0> = 1X  
1= Do not synchronize external clock input  
0= Synchronize external clock input with system clock (FOSC)  
If TMRxCS<1:0> = 0X  
This bit is ignored. Timerx uses the internal clock when TMR1CS<1:0> = 0X.  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
TMRxON: Timerx on bit  
1= Enables Timerx  
0= Stops Timerx  
Clears Timerx gate flip-flop  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 109  
PIC16F707/PIC16LF707  
REGISTER 13-2: TxGCON: TIMER1/TIMER3 GATE CONTROL REGISTER  
R/W-0/0  
R/W-0/0  
TxGPOL  
R/W-0/0  
TxGTM  
R/W-0/0  
R/W-0/0  
R-0/0  
R/W-0/0  
TxGSS1  
R/W-0/0  
TxGSS0  
TMRxGE  
TxGSPM  
TxGGO/  
DONE  
TxGVAL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
-n/n = Value at POR and BOR/Value at all other Resets  
HC = Bit is cleared by hardware  
bit 7  
TMRxGE: Timerx Gate Enable bit  
If TMRxON = 0:  
This bit is ignored.  
If TMRxON = 1:  
1= Timerx counting is controlled by the Timerx gate function  
0= Timerx counts regardless of Timerx gate function  
bit 6  
bit 5  
TxGPOL: Timerx Gate Polarity bit  
1= Timerx gate is active-high (Timerx counts when gate is high)  
0= Timerx gate is active-low (Timerx counts when gate is low)  
TxGTM: Timerx Gate Toggle Mode bit  
1= Timerx Gate Toggle mode is enabled  
0= Timerx Gate Toggle mode is disabled and toggle flip-flop is cleared  
Timerx gate flip-flop toggles on every rising edge.  
bit 4  
bit 3  
TxGSPM: Timerx Gate Single-Pulse Mode bit  
1= Timerx gate Single-Pulse mode is enabled and is controlling Timerx gate  
0= Timerx gate Single-Pulse mode is disabled  
TxGGO/DONE: Timerx Gate Single-Pulse Acquisition Status bit  
1= Timerx gate single-pulse acquisition is ready, waiting for an edge  
0= Timerx gate single-pulse acquisition has completed or has not been started  
This bit is automatically cleared when T1GSPM is cleared.  
bit 2  
TxGVAL: Timerx Gate Current State bit  
Indicates the current state of the Timerx gate that could be provided to TMRxH:TMRxL.  
Unaffected by Timerx Gate Enable (TMRxGE).  
bit 1-0  
TxGSS<1:0>: Timerx Gate Source Select bits  
00= Timerx gate pin  
01= TimerA/B overflow output  
10= TMR2 Match PR2 output  
11= Watchdog Timer scaler overflow  
Watchdog Timer oscillator is turned on if TMRxGE = 1, regardless of the state of TMR1ON.  
DS41418A-page 110  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
14.0 TIMERA/B MODULES  
TimerA and TimerB are two more Timer0-type  
modules. Timers A and B are available as general-  
purpose timers/counters, and are closely integrated  
with the capacitive sensing modules.  
The TimerA/B modules incorporate the following  
features:  
• 8-bit timer/counter register (TMRx)  
• 8-bit prescaler  
• Programmable internal or external clock source  
• Programmable external clock edge selection  
• Interrupt on overflow  
• TMRA can be used to gate Timer1  
• TMRB can be used to gate Timer3  
Figure 14-1 is a block diagram of the TimerA/TimerB  
modules.  
FIGURE 14-1:  
BLOCK DIAGRAM OF THE TIMERA/TIMERB PRESCALER  
FOSC/4  
Data Bus  
TxCKI  
pin  
0
1
8
0
1
1
Sync  
TMRx  
2 Tcy  
From  
CPSxOSC  
0
Set Flag bit TMRxIF  
on Overflow  
TMRxCS  
TMRxSE  
TxXCS  
8-bit  
Prescaler  
TMRxPSA  
Overflow to Timer1/3  
8
TMRxPS<2:0>  
Note 1: TxXCS is in the CPSxCON0 register.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 111  
PIC16F707/PIC16LF707  
14.1.3  
SOFTWARE PROGRAMMABLE  
PRESCALER  
14.1 TimerA/B Operation  
The TimerA/B modules can be used as either 8-bit tim-  
ers or 8-bit counters. Additionally, the modules can also  
be used to set Timer1’s/Timer3’s period of measure-  
ment for the capacitive sensing modules via Timer1’s  
or Timer3’s gate feature.  
For TimerA/B modules, the software programmable  
prescaler is exclusive to the Timer. The prescaler is  
enabled by clearing the TMRxPSA bit of the TxCON  
register.  
There are 8 prescaler options for TimerA/B modules  
ranging from 1:2 to 1:256. The prescale values are  
selectable via the TMRxPS<2:0> bits of the TxCON  
register for TimerA/B. In order to have a 1:1 prescaler  
value for the TimerA/B modules, the prescaler must be  
disabled.  
TABLE 14-1: CPSOSC/TIMER  
ASSOCIATION  
Cap Sense  
Oscillator  
Divider  
Timer  
Period  
Measurement  
The prescaler is not readable or writable. When the  
prescaler is enabled or assigned to the Timer module, all  
instructions writing to the TMRx register will clear the  
prescaler. Enabling the TimerA/B modules also clears  
the prescaler.  
CPS A  
CPS B  
TimerA  
TimerB  
Timer1  
Timer3  
14.1.1  
8-BIT TIMER MODE  
The TimerA/B modules will increment every instruction  
cycle, if used without a prescaler. 8-bit Timer mode is  
selected by clearing the TMRxCS bit of the TxCON  
registers.  
14.1.4  
TIMERA/B INTERRUPT  
TimerA/B will generate an interrupt when the  
corresponding TMR register overflows from FFh to  
00h. The TMRxIF interrupt flag bit of the PIR2 register  
is set every time the TMRx register overflows. These  
interrupt flag bits are set regardless of whether or not  
the relative Timer interrupt is enabled. The interrupt  
flag bits can only be cleared in software. The TimerA/B  
interrupt enable bits are the TMRxIE in the PIE2  
register.  
When TMRx is written, the increment is inhibited for  
two instruction cycles immediately following the write.  
Note:  
The value written to the TMRx register can  
be adjusted, in order to account for the two  
instruction cycle delay when TMRx is  
written.  
14.1.2  
8-BIT COUNTER MODE  
Note:  
TimerA/B interrupts cannot wake the  
processor from Sleep since the timer is  
frozen during Sleep.  
In 8-bit Counter mode, the TimerA/B modules will  
increment on every rising or falling edge of the TxCKI  
pin or the Capacitive Sensing Oscillator (CPSxOSC)  
signal. 8-bit Counter mode using the TxCKI pin is  
selected by setting the TMRxCS bit of the TxCON  
register to ‘1’ and resetting the TxXCS bit in the  
CPSxCON0 register to ‘0’. 8-bit Counter mode using the  
Capacitive Sensing Oscillator (CPSxOSC) signal is  
selected by setting the TMRxCS bit in the TxCON  
register to ‘1’ and setting the TxXCS bit in the  
CPSxCON0 register to ‘1’.  
14.1.5  
USING TIMERA/B WITH AN  
EXTERNAL CLOCK  
When TimerA/B is in Counter mode, the  
synchronization of the TxCKI input and the TMRx  
register is accomplished by sampling the prescaler  
output on the Q2 and Q4 cycles of the internal phase  
clocks. Therefore, the high and low periods of the  
external clock source must meet the timing  
requirements as shown in Section 25.0 “Electrical  
Specifications”.  
The rising or falling transition of the incrementing edge  
for either input source is determined by the TMRxSE bit  
in the TxCON register.  
14.1.6  
TIMER ENABLE  
Operation of TimerA/B is enabled by setting the  
TMRxON bit of the TxCON register. When the module  
is disabled, the value in the TMRx register is  
maintained. Enabling the TMRx module will reset the  
prescaler used by the counter.  
14.1.7  
OPERATION DURING SLEEP  
TimerA and TimerB cannot operate while the processor  
is in Sleep mode. The contents of the TMRx registers  
will remain unchanged while the processor is in Sleep  
mode.  
DS41418A-page 112  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
REGISTER 14-1: TxCON: TIMERA/TIMERB CONTROL REGISTER  
R/W-0/0  
U-0  
R/W-0/0  
R/W-0/0  
TMRxSE  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
TMRxON  
TMRxCS  
TMRxPSA  
TMRxPS2  
TMRxPS1  
TMRxPS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
TMRxON: TimerA/TimerB On/Off Control bit  
1= Timerx is enabled  
0= Timerx is disabled  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
TMRxCS: TMRx Clock Source Select bit  
1= Transition on TxCKI pin or CPSxOSC signal  
0= Internal instruction cycle clock (FOSC/4)  
bit 4  
TMRxSE: TMRx Source Edge Select bit  
1= Increment on high-to-low transition on TxCKI pin  
0= Increment on low-to-high transition on TxCKI pin  
bit 3  
TMRxPSA: Prescaler Assignment bit  
1= Prescaler is disabled. Timer clock input bypasses prescaler.  
0= Prescaler is enabled. Timer clock input comes from the prescaler output.  
bit 2-0  
TMRxPS<2:0>: Prescaler Rate Select bits  
BIT VALUE TMRx RATE  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH TIMERA/B  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CPSACON0 CPSAON  
CPSBCON0 CPSBON  
CPSARM  
CPSBRM  
TMR3IE  
TMR3IF  
CPSARNG1 CPSARNG0 CPSAOUT  
CPSBRNG1 CPSBRNG0 CPSBOUT  
TAXCS  
TBXCS  
CCP2IE  
CCP2IF  
TAPS0  
TBPS0  
00-- 0000 00-- 0000  
00-- 0000 00-- 0000  
0000 ---0 0000 ---0  
0000 ---0 0000 ---0  
0-00 0000 0-00 0000  
0-00 0000 0-00 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
1111 1111 1111 1111  
1111 1111 1111 1111  
PIE2  
TMR3GIE  
TMR3GIF  
TMRAON  
TMRBON  
TMRBIE  
TMRBIF  
TACS  
TBCS  
TMRAIE  
TMRAIF  
TASE  
TBSE  
PIR2  
TACON  
TBCON  
TMRA  
TMRB  
TRISA  
TRISC  
Legend:  
TAPSA  
TBPSA  
TAPS2  
TBPS2  
TAPS1  
TBPS1  
TimerA Module Register  
TimerB Module Register  
TRISA7  
TRISC7  
TRISA6  
TRISC6  
TRISA5  
TRISC5  
TRISA4  
TRISC4  
TRISA3  
TRISC3  
TRISA2  
TRISC2  
TRISA1  
TRISC1  
TRISA0  
TRISC0  
– = Unimplemented locations, read as ‘0’. Shaded cells are not used by the TimerA/B modules.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 113  
PIC16F707/PIC16LF707  
NOTES:  
DS41418A-page 114  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
The TMR2 and PR2 registers are both fully readable  
and writable. On any Reset, the TMR2 register is set to  
00h and the PR2 register is set to FFh.  
15.0 TIMER2 MODULE  
The Timer2 module is an 8-bit timer with the following  
features:  
Timer2 is turned on by setting the TMR2ON bit in the  
T2CON register to a ‘1’. Timer2 is turned off by clearing  
the TMR2ON bit to a ‘0’.  
• 8-bit timer register (TMR2)  
• 8-bit period register (PR2)  
• Interrupt on TMR2 match with PR2  
• Software programmable prescaler (1:1, 1:4, 1:16)  
• Software programmable postscaler (1:1 to 1:16)  
The Timer2 prescaler is controlled by the T2CKPS bits  
in the T2CON register. The Timer2 postscaler is  
controlled by the TOUTPS bits in the T2CON register.  
The prescaler and postscaler counters are cleared  
when:  
See Figure 15-1 for a block diagram of Timer2.  
• A write to TMR2 occurs.  
• A write to T2CON occurs.  
15.1 Timer2 Operation  
The clock input to the Timer2 module is the system  
instruction clock (FOSC/4). The clock is fed into the  
Timer2 prescaler, which has prescale options of 1:1,  
1:4 or 1:16. The output of the prescaler is then used to  
increment the TMR2 register.  
• Any device Reset occurs (Power-on Reset, MCLR  
Reset, Watchdog Timer Reset, or Brown-out  
Reset).  
Note:  
TMR2 is not cleared when T2CON is  
written.  
The values of TMR2 and PR2 are constantly compared  
to determine when they match. TMR2 will increment  
from 00h until it matches the value in PR2. When a  
match occurs, two things happen:  
• TMR2 is reset to 00h on the next increment cycle.  
• The Timer2 postscaler is incremented.  
The match output of the Timer2/PR2 comparator is  
then fed into the Timer2 postscaler. The postscaler has  
postscale options of 1:1 to 1:16 inclusive. The output of  
the Timer2 postscaler is used to set the TMR2IF  
interrupt flag bit in the PIR1 register.  
FIGURE 15-1:  
TIMER2 BLOCK DIAGRAM  
Sets Flag  
bit TMR2IF  
TMR2  
Output  
Prescaler  
Reset  
EQ  
TMR2  
FOSC/4  
1:1, 1:4, 1:16  
Postscaler  
1:1 to 1:16  
2
Comparator  
PR2  
T2CKPS<1:0>  
4
TOUTPS<3:0>  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 115  
PIC16F707/PIC16LF707  
REGISTER 15-1: T2CON: TIMER2 CONTROL REGISTER  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
TOUTPS3  
TOUTPS2  
TOUTPS1  
TOUTPS0  
TMR2ON  
T2CKPS1  
T2CKPS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3  
TOUTPS<3:0>: Timer2 Output Postscaler Select bits  
0000= 1:1 Postscaler  
0001= 1:2 Postscaler  
0010= 1:3 Postscaler  
0011= 1:4 Postscaler  
0100= 1:5 Postscaler  
0101= 1:6 Postscaler  
0110= 1:7 Postscaler  
0111= 1:8 Postscaler  
1000= 1:9 Postscaler  
1001= 1:10 Postscaler  
1010= 1:11 Postscaler  
1011= 1:12 Postscaler  
1100= 1:13 Postscaler  
1101= 1:14 Postscaler  
1110= 1:15 Postscaler  
1111= 1:16 Postscaler  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS<1:0>: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
1x= Prescaler is 16  
TABLE 15-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
TMR0IE  
RCIE  
INTE  
TXIE  
TXIF  
RBIE  
SSPIE  
SSPIF  
TMR0IF  
CCP1IE  
CCP1IF  
INTF  
RBIF  
0000 000x  
0000 0000  
0000 000x  
0000 0000  
TMR1GIE  
TMR1GIF  
TMR2IE  
TMR2IF  
TMR1IE  
TMR1IF  
PIR1  
0000 0000  
1111 1111  
0000 0000  
-000 0000  
0000 0000  
1111 1111  
0000 0000  
-000 0000  
RCIF  
PR2  
Timer2 Module Period Register  
Holding Register for the 8-bit TMR2 Register  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON  
TMR2  
T2CON  
Legend:  
T2CKPS1  
T2CKPS0  
x= unknown, u= unchanged, -= unimplemented read as ‘0’. Shaded cells are not used for Timer2 module.  
DS41418A-page 116  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
• Software control  
16.0 CAPACITIVE SENSING  
MODULE  
• Operation during sleep  
• Acquire two samples simultaneously (when using  
both CSM modules)  
The capacitive sensing modules (CSM) allow for an  
interaction with an end user without a mechanical  
interface. In a typical application, the capacitive  
sensing module is attached to a pad on a Printed  
Circuit Board (PCB), which is electrically isolated from  
the end user. When the end user places their finger  
over the PCB pad, a capacitive load is added, causing  
a frequency shift in the capacitive sensing module. The  
capacitive sensing module requires software and at  
least one timer resource to determine the change in  
frequency. Key features of this module include:  
Two identical capacitive sensing modules are  
implemented on the PIC16F707/PIC16LF707. The  
modules are named CPSA and CPSB. The timer  
module integration for both capacitive sensing modules  
is shown in Table 16-1. A block diagram of the  
capacitive sensing module is shown in Figure 16-1 and  
Figure 16-2.  
• Analog MUX for monitoring multiple inputs  
• Capacitive sensing oscillator  
• Multiple Power modes  
• High power range with variable voltage  
references  
• Multiple timer resources  
TABLE 16-1: CPSOSC TIMER USAGE  
Cap Sense Oscillator  
Mode  
Frequency Measurement  
Duration Control  
TimerA/Software  
Timer1/Software  
Timer1/TimerA  
TimerB/Software  
Timer3/Software  
Timer3/TimerB  
TimerA  
Timer1  
Timer1  
TimerB  
Timer3  
Timer3  
Software  
Software  
TimerA  
Cap Sense Oscillator A  
Software  
Software  
TimerB  
Cap Sense Oscillator B  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 117  
PIC16F707/PIC16LF707  
FIGURE 16-1:  
CAPACITIVE SENSING BLOCK DIAGRAM  
TimerA/B Module  
TMRxCS  
Set  
TMRxIF  
CPSxCH<3:0>  
TxXCS  
CPSxON(1)  
FOSC/4  
0
1
Overflow  
CPSx0  
CPSx1  
CPSx2  
CPSx3  
CPSx4  
CPSx5  
CPSx6  
CPSx7  
CPSx8  
CPSx9  
CPSx10  
CPSx11  
CPSx12  
CPSx13  
CPSx14  
CPSx15  
TxCKI  
0
1
TMRx  
CPSxRNG<1:0>  
CPSxON  
Capacitive  
Sensing  
Oscillator  
Timer1/3 Module  
TMRxCS<1:0>  
CPSxOSC  
FOSC  
FOSC/4  
CPSxCLK  
CPSxOUT  
0
1
Int.  
Ref.  
TMRxH:TMRxL  
EN  
Ref-  
T1OSC/  
TxCKI  
DAC  
0
TxGSS<1:0>  
TxG  
Ref+  
1
FVR  
Timer1/3 Gate  
Control Logic  
CPSxRM  
Watchdog Timer Module  
Timer2 Module  
Postscaler  
WDT  
Event  
Overflow  
Set  
TMR2IF  
TMR2  
LP WDT  
OSC  
Overflow  
WDT  
Scaler  
PS<2:0>  
Note 1: If CPSxON = 0, disabling capacitive sensing, no channel is selected.  
DS41418A-page 118  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 16-2:  
CAPACITIVE SENSING OSCILLATOR BLOCK DIAGRAM  
Oscillator Module  
VDD  
(1)  
(2)  
(2)  
+
-
S
R
Q
CPSxCLK  
CPSx  
(1)  
Analog Pin  
-
+
Internal  
References  
0
1
0
Ref-  
Ref+  
(3)  
(3)  
FVR  
1
DAC  
CPSxRM  
Note 1: Module Enable and Power mode selections are not shown.  
2: Comparators remain active in Noise Detection mode.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 119  
PIC16F707/PIC16LF707  
16.1 Analog MUX  
16.3 Voltage References  
Each capacitive sensing module can monitor up to 16  
inputs, providing 32 capacitive sensing inputs in total.  
The capacitive sensing inputs are defined as  
CPSA<15:0> for capacitive sensing module A, and  
CPSB<15:0> for capacitive sensing module B. To  
determine if a frequency change has occurred the use  
must:  
The capacitive sensing oscillator uses voltage  
references to provide two voltage thresholds for  
oscillation. The upper voltage threshold is referred to  
as Ref+ and the lower voltage threshold is referred to  
as Ref-.  
The user can elect to use fixed voltage references,  
which are internal to the capacitive sensing oscillator,  
or variable voltage references, which are supplied by  
the Fixed Voltage Reference (FVR) module and the  
Digital-to-Analog Converter (DAC) module.  
• Select the appropriate CPS pin by setting the  
CPSxCH<3:0> bits of the CPSxCON1 register.  
• Set the corresponding ANSEL bit.  
• Set the corresponding TRIS bit.  
• Run the software algorithm.  
When the fixed voltage references are used, the VSS  
voltage determines the lower threshold level (Ref-) and  
the VDD voltage determines the upper threshold level  
(Ref+).  
Selection of the CPSx pin while the module is enabled  
will cause the capacitive sensing oscillator to be on the  
CPSx pin. Failure to set the corresponding ANSEL and  
TRIS bits can cause the capacitive sensing oscillator to  
stop, leading to false frequency readings.  
When the variable voltage references are used, the  
DAC voltage determines the lower threshold level  
(Ref-) and the FVR voltage determines the upper  
threshold level (Ref+). An advantage of using these ref-  
erence sources is that oscillation frequency remains  
constant with changes in VDD.  
16.2 Capacitive Sensing Oscillator  
The capacitive sensing oscillator consists of a constant  
current source and a constant current sink, to produce  
Different oscillation frequencies can be obtained  
through the use of these variable voltage references.  
The more the upper voltage reference level is lowered  
and the more the lower voltage reference level is  
raised, the higher the capacitive sensing oscillator  
frequency becomes.  
a
triangle waveform. The CPSxOUT bit of the  
CPSxCON0 register shows the status of the capacitive  
sensing oscillator, whether it is sinking or sourcing  
current. The oscillator is designed to drive a capacitive  
load (single PCB pad) and at the same time, be a clock  
source to either TimerA/B or Timer1/3. The oscillator  
has three different current settings as defined by  
CPSxRNG<1:0> of the CPSxCON0 register. The  
different current settings for the oscillator serve two  
purposes:  
Selection between the voltage references is controlled  
by the CPSxRM bit of the CPSxCON0 register. Setting  
this bit selects the variable voltage references and  
clearing this bit selects the fixed voltage references.  
Please see Section 10.0 “Fixed Voltage Reference”  
and Section 11.0 “Digital-to-Analog Converter  
(DAC) Module” for more information on configuring  
the variable voltage levels.  
• Maximize the number of counts in a timer for a  
fixed time base.  
• Maximize the count differential in the timer during  
a change in frequency.  
DS41418A-page 120  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
The remaining mode is a Noise Detection mode that  
resides within the high range. The Noise Detection  
mode is unique in that it disables the sinking and sourc-  
ing of current on the analog pin but leaves the rest of  
the oscillator circuitry active. This reduces the oscilla-  
tion frequency on the analog pin to zero and also  
greatly reduces the current consumed by the oscillator  
module.  
16.4 Power Modes  
The capacitive sensing oscillator can operate in one of  
seven different power modes. The power modes are  
separated into two ranges; the low range and the high  
range.  
When the oscillator's low range is selected, the fixed  
internal voltage references of the capacitive sensing  
oscillator are being used. When the oscillator's high  
range is selected, the variable voltage references  
supplied by the FVR and DAC modules are being used.  
Selection between the voltage references is controlled  
by the CPSxRM bit of the CPSxCON0 register. See  
Section 16.3 “Voltage References” for more  
information.  
When noise is introduced onto the pin, the oscillator is  
driven at the frequency determined by the noise. This  
produces a detectable signal at the comparator output,  
indicating the presence of activity on the pin.  
Figure 16-2 shows a more detailed drawing of the  
current sources and comparators associated with the  
oscillator.  
Within each range there are three distinct power  
modes; Low, Medium and High. Current consumption  
is dependent upon the range and mode selected.  
Selecting power modes within each range is accom-  
plished by configuring the CPSxRNG <1:0> bits in the  
CPSxCON0 register. See Table 16-2 for proper power  
mode selection.  
TABLE 16-2: POWER MODE SELECTION  
CPSxRM  
Range  
CPSxRNG<1:0>  
Mode  
Nominal Current (1)  
00  
01  
10  
11  
00  
01  
10  
11  
Off  
Low  
0.0 µA  
0.1 µA  
1.2 µA  
18 µA  
0.0 µA  
9 µA  
0
Low  
Medium  
High  
Noise Detection  
Low  
1
High  
Medium  
High  
30 µA  
100 µA  
Note:  
See Section 25.0 “Electrical Specifications” for more information.  
16.5  
Timer Resources  
16.6 Fixed Time Base  
To measure the change in frequency of the capacitive  
sensing oscillator, a fixed time base is required. For the  
period of the fixed time base, the capacitive sensing  
oscillator is used to clock either TimerA/B or Timer1/3  
(for CPSA/B, respectively). The frequency of the  
capacitive sensing oscillator is equal to the number of  
counts in the timer divided by the period of the fixed  
time base.  
To measure the frequency of the capacitive sensing  
oscillator, a fixed time base is required. Any timer  
resource or software loop can be used to establish the  
fixed time base. It is up to the end user to determine the  
method in which the fixed time base is generated.  
Note:  
The fixed time base can not be generated  
by the timer resource that the capacitive  
sensing oscillator is clocking.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 121  
PIC16F707/PIC16LF707  
16.6.1  
TIMERA/B  
16.7 Software Control  
To select TimerA/B as the timer resource for the  
capacitive sensing module:  
The software portion of the capacitive sensing module  
is required to determine the change in frequency of the  
capacitive sensing oscillator. This is accomplished by  
the following:  
• Set the TAXCS/TBXCS bit of the CPSACON0/  
CPSBCON0 register.  
• Clear the TMRACS/TMRBCS bit of the TACON/  
TBCON register.  
• Setting a fixed time base to acquire counts on  
TimerA/B or Timer1/3.  
• Establishing the nominal frequency for the  
capacitive sensing oscillator.  
When TimerA/B is chosen as the timer resource, the  
capacitive sensing oscillator will be the clock source for  
TimerA/B. Refer to Section 14.0 “TimerA/B Mod-  
ules” for additional information.  
• Establishing the reduced frequency for the  
capacitive sensing oscillator due to an additional  
capacitive load.  
16.6.2  
TIMER1/3  
• Set the frequency threshold.  
To select Timer1/3 as the timer resource for the  
capacitive sensing module, set the TMRxCS<1:0> of  
the TxCON register to ‘11’. When Timer1/3 is chosen  
as the timer resource, the capacitive sensing oscilla-  
tor will be the clock source for Timer1/3. Because the  
Timer1/3 module has a gate control, developing a  
time base for the frequency measurement can be  
simplified by using the TimerA/B overflow flag.  
16.7.1  
NOMINAL FREQUENCY (NO  
CAPACITIVE LOAD)  
To determine the nominal frequency of the capacitive  
sensing oscillator:  
• Remove any extra capacitive load on the selected  
CPSx pin.  
• At the start of the fixed time base, clear the timer  
resource.  
It is recommend that the TimerA/B overflow flag, in  
conjunction with the Toggle mode of the Timer1/3 gate,  
be used to develop the fixed time base required by the  
software portion of the capacitive sensing module.  
Refer to Section 13.11 “Timer1/3 Control Register ”  
for additional information.  
• At the end of the fixed time base, save the value  
in the timer resource.  
The value of the timer resource is the number of  
oscillations of the capacitive sensing oscillator for the  
given time base. The frequency of the capacitive  
sensing oscillator is equal to the number of counts on  
the timer divided by the period of the fixed time base.  
TABLE 16-3: TIMER1/3 ENABLE FUNCTION  
TMRxON  
TMRxGE  
Timerx Operation  
16.7.2  
REDUCED FREQUENCY  
(ADDITIONAL CAPACITIVE LOAD)  
0
0
1
1
0
1
0
1
Off  
Off  
On  
The extra capacitive load will cause the frequency of  
the capacitive sensing oscillator to decrease. To  
determine the reduced frequency of the capacitive  
sensing oscillator:  
Count Enabled by Input  
• Add a typical capacitive load on the selected  
CPSx pin.  
• Use the same fixed time base as the nominal  
frequency measurement.  
• At the start of the fixed time base, clear the timer  
resource.  
• At the end of the fixed time base, save the value  
in the timer resource.  
The value of the timer resource is the number of  
oscillations of the capacitive sensing oscillator with an  
additional capacitive load. The frequency of the  
capacitive sensing oscillator is equal to the number of  
counts on the timer divided by the period of the fixed  
time base. This frequency should be less than the  
value obtained during the nominal frequency  
measurement.  
DS41418A-page 122  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
16.7.3  
FREQUENCY THRESHOLD  
16.8 Operation during Sleep  
The frequency threshold should be placed midway  
between the value of nominal frequency and the  
reduced frequency of the capacitive sensing oscillator.  
Refer to Application Note AN1103, “Software Handling  
for Capacitive Sensing” (DS01103) for more detailed  
information on the software required for capacitive  
sensing module.  
The capacitive sensing oscillator will continue to run as  
long as the module is enabled, independent of the part  
being in Sleep. In order for the software to determine if  
a frequency change has occurred, the part must be  
awake. However, the part does not have to be awake  
when the timer resource is acquiring counts.  
Note:  
TimerA/B does not operate when in Sleep,  
and therefore cannot be used for  
capacitive sense measurements in Sleep.  
Note:  
For more information on general  
capacitive sensing refer to Application  
Notes:  
AN1101, “Introduction to Capacitive  
Sensing” (DS01101)  
• AN1102, “Layout and Physical  
Design Guidelines for Capacitive  
Sensing” (DS01102).  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 123  
PIC16F707/PIC16LF707  
REGISTER 16-1: CPSxCON0: CAPACITIVE SENSING CONTROL REGISTER 0  
R/W-0/0  
R/W-0/0  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
R-0/0  
R/W-0/0  
TxXCS  
CPSxON  
CPSxRM  
CPSxRNG1 CPSxRNG0  
CPSxOUT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = bit is unchanged  
‘1’ = Bit is set  
bit 7  
bit 6  
CPSxON: Capacitive Sensing Module Enable bit  
1= Capacitive sensing module is enabled  
0= Capacitive sensing module is disabled  
CPSxRM: Capacitive Sensing Reference Mode bit  
1= Capacitive sensing module is in high range. DAC and FVR provide oscillator voltage references.  
0= Capacitive sensing module is in low range. Internal oscillator voltage references are used.  
bit 5-4  
bit 3-2  
Unimplemented: Read as ‘0’  
CPSxRNG<1:0>: Capacitive Sensing Current Range bits  
If CPSxRM = 0(low range):  
11= Oscillator is in high range: Charge/discharge current is nominally 18 µA.  
10= Oscillator is in medium range. Charge/discharge current is nominally 1.2 µA.  
01= Oscillator is in low range. Charge/discharge current is nominally 0.1 µA.  
00= Oscillator is off.  
If CPSxRM = 1(high range):  
11= Oscillator is in high range: Charge/discharge current is nominally 100 µA.  
10= Oscillator is in medium range. Charge/discharge current is nominally 30 µA.  
01= Oscillator is in low range. Charge/discharge current is nominally 9 µA.  
00=Oscillator is on; Noise Detection mode; No charge/discharge current is supplied.  
bit 1  
bit 0  
CPSxOUT: Capacitive Sensing Oscillator Status bit  
1= Oscillator is sourcing current (Current flowing out of the pin)  
0= Oscillator is sinking current (Current flowing into the pin)  
TxXCS: TimerA/B External Clock Source Select bit  
If TMRxCS = 1:  
The TxXCS bit controls which clock external to the core/TimerA/B module supplies TimerA/B:  
1= TimerA/B clock source is the capacitive sensing oscillator  
0= TimerA/B clock source is the TxCKI pin  
If TMRxCS = 0:  
TimerA/B clock source is controlled by the core/TimerA/B module and is FOSC/4.  
DS41418A-page 124  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
REGISTER 16-2: CPSxCON1: CAPACITIVE SENSING CONTROL REGISTER 1  
U-0  
U-0  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
CPSxCH3  
CPSxCH2  
CPSxCH1  
CPSxCH0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-4  
bit 3-0  
Unimplemented: Read as ‘0’  
CPSxCH<3:0>: Capacitive Sensing Channel Select bits  
If CPSxON = 0:  
These bits are ignored. No channel is selected.  
If CPSxON = 1:  
0000= channel 0, (CPSx0)  
0001= channel 1, (CPSx1)  
0010= channel 2, (CPSx2)  
0011= channel 3, (CPSx3)  
0100= channel 4, (CPSx4)  
0101= channel 5, (CPSx5)  
0110= channel 6, (CPSx6)  
0111= channel 7, (CPSx7)  
1000= channel 8, (CPSx8)  
1001= channel 9, (CPSx9)  
1010= channel 10, (CPSx10)  
1011= channel 11, (CPSx11)  
1100= channel 12, (CPSx12)  
1101= channel 13, (CPSx13)  
1110= channel 14, (CPSx14)  
1111= channel 15, (CPSx15)  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 125  
PIC16F707/PIC16LF707  
TABLE 16-4: SUMMARY OF REGISTERS ASSOCIATED WITH CAPACITIVE SENSING  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELA  
ANSELB  
ANSELC  
ANSELD  
ANSELE  
CPSACON0  
CPSACON1  
CPSBCON0  
CPSBCON1  
TACON  
ANSA7  
ANSB7  
ANSC7  
ANSD7  
ANSA6  
ANSB6  
ANSC6  
ANSD6  
ANSA5  
ANSB5  
ANSC5  
ANSD5  
ANSA4  
ANSB4  
ANSA3  
ANSB3  
ANSA2  
ANSB2  
ANSC2  
ANSD2  
ANSE2  
ANSA1  
ANSB1  
ANSC1  
ANSD1  
ANSE1  
ANSA0  
ANSB0  
ANSC0  
ANSD0  
ANSE0  
TAXCS  
1111 1111 1111 1111  
1111 1111 1111 1111  
111- -111 111- -111  
1111 1111 1111 1111  
---- -111 ---- -111  
00-- 0000 00-- 0000  
ANSD4  
ANSD3  
CPSAON  
CPSARM  
CPSARNG1 CPSARNG0 CPSAOUT  
CPSACH3 CPSACH2  
CPSBRNG1 CPSBRNG0 CPSBOUT  
CPSACH1 CPSACH0 ---- 0000 ---- 0000  
TBXCS 00-- 0000 00-- 0000  
CPSBCH1 CPSBCH0 ---- 0000 ---- 0000  
CPSBON  
CPSBRM  
CPSBCH3  
TAPSA  
CPSBCH2  
TAPS2  
TMRAON  
TMRBON  
TACS  
TBCS  
TASE  
TBSE  
TAPS1  
TBPS1  
TAPS0  
TBPS0  
0-00 0000 0-00 0000  
0-00 0000 0-00 0000  
TBCON  
TBPSA  
TBPS2  
T1CON  
TMR1CS1 TMR1CS0 T1CKPS1 T1CKPS0 T1OSCEN  
T1SYNC  
T3SYNC  
TRISA2  
TRISB2  
TRISC2  
TRISD2  
TRISE2  
TMR1ON 0000 00-0 0000 00-0  
TMR3ON 0000 -0-0 0000 -0-0  
T3CON  
TMR3CS1 TMR3CS0 T3CKPS1 T3CKPS0  
TRISA  
TRISA7  
TRISB7  
TRISC7  
TRISD7  
TRISA6  
TRISB6  
TRISC6  
TRISD6  
TRISA5  
TRISB5  
TRISC5  
TRISD5  
TRISA4  
TRISB4  
TRISC4  
TRISD4  
TRISA3  
TRISB3  
TRISC3  
TRISD3  
TRISE3  
TRISA1  
TRISB1  
TRISC1  
TRISD1  
TRISE1  
TRISA0  
TRISB0  
TRISC0  
TRISD0  
TRISE0  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
1111 1111 1111 1111  
---- 1111 ---- 1111  
TRISB  
TRISC  
TRISD  
TRISE  
Legend:  
— = Unimplemented locations, read as ‘0’. Shaded cells are not used by the capacitive sensing modules.  
DS41418A-page 126  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
17.0 CAPTURE/COMPARE/PWM  
(CCP) MODULE  
TABLE 17-1: CCP MODE – TIMER  
RESOURCES REQUIRED  
The Capture/Compare/PWM module is a peripheral  
which allows the user to time and control different  
events. In Capture mode, the peripheral allows the  
timing of the duration of an event. The Compare mode  
allows the user to trigger an external event when a  
predetermined amount of time has expired. The PWM  
mode can generate a pulse-width modulated signal of  
varying frequency and duty cycle.  
CCP Mode  
Capture  
Timer Resource  
Timer1  
Timer1  
Timer2  
Compare  
PWM  
Note:  
Timer3 has no connection to either CCP.  
The timer resources used by the module are shown in  
Table 17-2.  
Additional information on CCP modules is available in  
Application Note AN594, “Using the CCP Modules”  
(DS00594).  
TABLE 17-2: INTERACTION OF TWO CCP MODULES  
CCP1 Mode CCP2 Mode  
Capture Capture  
Interaction  
Same TMR1 time base  
Capture  
Compare  
PWM  
Compare  
Compare  
PWM  
Same TMR1 time base(1, 2)  
Same TMR1 time base(1, 2)  
The PWMs will have the same frequency and update rate (TMR2 interrupt).  
The rising edges will be aligned.  
PWM  
PWM  
Capture  
None  
None  
Compare  
Note 1: If CCP2 is configured as a Special Event Trigger, CCP1 will clear Timer1, affecting the value captured on  
the CCP2 pin.  
2: If CCP1 is in Capture mode and CCP2 is configured as a Special Event Trigger, CCP2 will clear Timer1,  
affecting the value captured on the CCP1 pin.  
Note:  
CCPRx and CCPx throughout this  
document refer to CCPR1 or CCPR2 and  
CCP1 or CCP2, respectively.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 127  
PIC16F707/PIC16LF707  
REGISTER 17-1: CCPxCON: CCPx CONTROL REGISTER  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DCxB1  
DCxB0  
CCPxM3  
CCPxM2  
CCPxM1  
CCPxM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
DCxB<1:0>: PWM Duty Cycle Least Significant bits  
Capture mode:  
Unused  
Compare mode:  
Unused  
PWM mode:  
These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.  
bit 3-0  
CCPxM<3:0>: CCP Mode Select bits  
0000= Capture/Compare/PWM off (resets CCP module)  
0001= Unused (reserved)  
0010= Compare mode, toggle output on match (CCPxIF bit of the PIRx register is set)  
0011= Unused (reserved)  
0100= Capture mode, every falling edge  
0101= Capture mode, every rising edge  
0110= Capture mode, every 4th rising edge  
0111= Capture mode, every 16th rising edge  
1000= Compare mode, set output on match (CCPxIF bit of the PIRx register is set)  
1001= Compare mode, clear output on match (CCPxIF bit of the PIRx register is set)  
1010= Compare mode, generate software interrupt on match (CCPxIF bit is set of the PIRx register,  
CCPx pin is unaffected)  
1011= Compare mode, trigger special event (CCPxIF bit of the PIRx register is set, TMR1 is reset  
and A/D conversion(1) is started if the ADC module is enabled. CCPx pin is unaffected.)  
11xx= PWM mode.  
Note 1: A/D conversion start feature is available only on CCP2.  
DS41418A-page 128  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
17.1.3  
SOFTWARE INTERRUPT  
17.1 Capture Mode  
When the Capture mode is changed, a false capture  
interrupt may be generated. The user should keep the  
CCPxIE interrupt enable bit of the PIEx register clear to  
avoid false interrupts. Additionally, the user should  
clear the CCPxIF interrupt flag bit of the PIRx register  
following any change in operating mode.  
In Capture mode, CCPRxH:CCPRxL captures the  
16-bit value of the TMR1 register when an event occurs  
on pin CCPx. An event is defined as one of the  
following and is configured by the CCPxM<3:0> bits of  
the CCPxCON register:  
• Every falling edge  
• Every rising edge  
Note:  
Clocking Timer1 from the system clock  
(FOSC) should not be used in Capture  
mode. In order for Capture mode to  
recognize the trigger event on the CCPx  
pin, Timer1 must be clocked from the  
instruction clock (FOSC/4) or from an  
external clock source.  
• Every 4th rising edge  
• Every 16th rising edge  
When a capture is made, the interrupt request flag bit  
CCPxIF of the PIRx register is set. The interrupt flag  
must be cleared in software. If another capture occurs  
before the value in the CCPRxH, CCPRxL register pair  
is read, the old captured value is overwritten by the new  
captured value (refer to Figure 17-1).  
17.1.4  
CCP PRESCALER  
There are four prescaler settings specified by the  
CCPxM<3:0> bits of the CCPxCON register. Whenever  
the CCP module is turned off, or the CCP module is not  
in Capture mode, the prescaler counter is cleared. Any  
Reset will clear the prescaler counter.  
17.1.1  
CCPx PIN CONFIGURATION  
In Capture mode, the CCPx pin should be configured  
as an input by setting the associated TRIS control bit.  
Either RC1 or RB3 can be selected as the CCP2 pin.  
Refer to Section 6.1 “Alternate Pin Function” for  
more information.  
Switching from one capture prescaler to another does not  
clear the prescaler and may generate a false interrupt. To  
avoid this unexpected operation, turn the module off by  
clearing the CCPxCON register before changing the  
prescaler (refer to Example 17-1).  
Note:  
If the CCPx pin is configured as an output,  
a write to the port can cause a capture  
condition.  
EXAMPLE 17-1:  
CHANGING BETWEEN  
CAPTURE PRESCALERS  
FIGURE 17-1:  
CAPTURE MODE  
OPERATION BLOCK  
DIAGRAM  
BANKSELCCP1CON  
;Set Bank bits to point  
;to CCP1CON  
;Turn CCP module off  
CLRF  
CCP1CON  
Set Flag bit CCPxIF  
(PIRx register)  
MOVLW  
NEW_CAPT_PS;Load the W reg with  
; the new prescaler  
Prescaler  
1, 4, 16  
; move value and CCP ON  
MOVWF  
CCP1CON  
;Load CCP1CON with this  
; value  
CCPx  
CCPRxH  
CCPRxL  
Capture  
Enable  
and  
Edge Detect  
17.1.5  
CAPTURE DURING SLEEP  
TMR1H  
TMR1L  
Capture mode depends upon the Timer1 module for  
proper operation. There are two options for driving the  
Timer1 module in Capture mode. It can be driven by  
the instruction clock (FOSC/4), or by an external clock  
source.  
CCPxCON<3:0>  
System Clock (FOSC)  
17.1.2  
TIMER1 MODE SELECTION  
Timer1 must be running in Timer mode or Synchronized  
Counter mode for the CCP module to use the capture  
feature. In Asynchronous Counter mode or when  
Timer1 is clocked at FOSC, the capture operation may  
not work.  
If Timer1 is clocked by FOSC/4, then Timer1 will not  
increment during Sleep. When the device wakes from  
Sleep, Timer1 will continue from its previous state.  
If Timer1 is clocked by an external clock source, then  
Capture mode will operate as defined in Section 17.1  
“Capture Mode”.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 129  
PIC16F707/PIC16LF707  
TABLE 17-3: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELB  
ANSELC  
APFCON  
CCP1CON  
CCP2CON  
CCPRxL  
CCPRxH  
INTCON  
ANSB7  
ANSC7  
ANSB6  
ANSC6  
ANSB5  
ANSC5  
ANSB4  
ANSB3  
ANSB2  
ANSC2  
ANSB1  
ANSC1  
SSSEL  
ANSB0  
ANSC0  
1111 1111  
111- -111  
1111 1111  
111- -111  
---- --00  
--00 0000  
--00 0000  
uuuu uuuu  
uuuu uuuu  
CCP2SEL ---- --00  
DC1B1  
DC2B1  
DC1B0  
DC2B0  
CCP1M3  
CCP2M3  
CCP1M2  
CCP2M2  
CCP1M1  
CCP2M1  
CCP1M0  
CCP2M0  
--00 0000  
--00 0000  
xxxx xxxx  
xxxx xxxx  
Capture/Compare/PWM Register X Low Byte  
Capture/Compare/PWM Register X High Byte  
GIE  
PEIE  
TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
0000 000x  
0000 0000  
0000 ---0  
0000 0000  
0000 ---0  
0000 000x  
0000 0000  
0000 ---0  
0000 0000  
0000 ---0  
PIE1  
PIE2  
PIR1  
PIR2  
TMR1GIE  
TMR3GIE  
ADIE  
RCIE  
TXIE  
SSPIE  
CCP1IE  
TMR2IE  
TMR1IE  
TMR3IE  
TMRBIE  
TMRAIE  
CCP2IE  
TMR1IF  
CCP2IF  
TMR1ON  
TMR1GIF  
TMR3GIF  
ADIF  
RCIF  
TXIF  
SSPIF  
CCP1IF  
TMR2IF  
TMR3IF  
TMRBIF  
TMRAIF  
TMR1CS1 TMR1CS0 T1CKPS1  
T1CKPS0 T1OSCEN  
T1SYNC  
T1CON  
0000 00-0  
0000 0x00  
uuuu uu-u  
0000 0x00  
T1GCON  
TMR1GE  
T1GPOL  
T1GTM  
T1GSPM  
T1GGO/  
DONE  
T1GVAL  
T1GSS1  
T1GSS0  
TMR1L  
TMR1H  
TRISB  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx  
xxxx xxxx  
1111 1111  
uuuu uuuu  
uuuu uuuu  
1111 1111  
1111 1111  
TRISB7  
TRISC7  
TRISB6  
TRISC6  
TRISB5  
TRISC5  
TRISB4  
TRISC4  
TRISB3  
TRISC3  
TRISB2  
TRISC2  
TRISB1  
TRISC1  
TRISB0  
TRISC0  
TRISC  
1111 1111  
Legend: -= Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the Capture.  
DS41418A-page 130  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
17.2.2  
TIMER1 MODE SELECTION  
17.2 Compare Mode  
In Compare mode, Timer1 must be running in either  
Timer mode or Synchronized Counter mode. The  
compare operation may not work in Asynchronous  
Counter mode.  
In Compare mode, the 16-bit CCPRx register value is  
constantly compared against the TMR1 register pair  
value. When a match occurs, the CCPx module may:  
Toggle the CCPx output  
• Set the CCPx output  
Note:  
Clocking Timer1 from the system clock  
(FOSC) should not be used in Compare  
mode. For the Compare operation of the  
TMR1 register to the CCPRx register to  
occur, Timer1 must be clocked from the  
instruction clock (FOSC/4) or from an  
external clock source.  
• Clear the CCPx output  
• Generate a Special Event Trigger  
• Generate a Software Interrupt  
The action on the pin is based on the value of the  
CCPxM<3:0> control bits of the CCPxCON register.  
All Compare modes can generate an interrupt.  
17.2.3  
SOFTWARE INTERRUPT MODE  
When Software Interrupt mode is chosen  
(CCPxM<3:0> = 1010), the CCPxIF bit in the PIRx  
register is set and the CCPx module does not assert  
control of the CCPx pin (refer to the CCPxCON  
register).  
FIGURE 17-2:  
COMPARE MODE  
OPERATION BLOCK  
DIAGRAM  
CCPxCON<3:0>  
Mode Select  
17.2.4  
SPECIAL EVENT TRIGGER  
Set CCPxIF Interrupt Flag  
(PIRx)  
When Special Event Trigger mode is chosen  
(CCPxM<3:0> = 1011), the CCPx module does the  
following:  
4
CCPRxH CCPRxL  
Comparator  
CCPx  
Q
S
R
Output  
Logic  
• Resets Timer1  
Match  
• Starts an ADC conversion if ADC is enabled  
(CCP2 only)  
TMR1H TMR1L  
TRIS  
Output Enable  
The CCPx module does not assert control of the CCPx  
pin in this mode (refer to the CCPxCON register).  
Special Event Trigger  
Special Event Trigger will:  
The Special Event Trigger output of the CCP occurs  
immediately upon a match between the TMR1H,  
TMR1L register pair and the CCPRxH, CCPRxL  
register pair. The TMR1H, TMR1L register pair is not  
reset until the next rising edge of the Timer1 clock. This  
allows the CCPRxH, CCPRxL register pair to  
effectively provide a 16-bit programmable period  
register for Timer1.  
Clear TMR1H and TMR1L registers.  
NOT set interrupt flag bit TMR1IF of the PIR1 register.  
Set the GO/DONE bit to start the ADC conversion  
(CCP2 only).  
17.2.1  
CCPx PIN CONFIGURATION  
The user must configure the CCPx pin as an output by  
clearing the associated TRIS bit.  
Note 1: The Special Event Trigger from the CCP  
module does not set interrupt flag bit  
TMR1IF of the PIR1 register.  
Either RC1 or RB3 can be selected as the CCP2 pin.  
Refer to Section 6.1 “Alternate Pin Function” for  
more information.  
2: Removing the match condition by  
changing the contents of the CCPRxH  
and CCPRxL register pair, between the  
clock edge that generates the Special  
Event Trigger and the clock edge that  
generates the Timer1 Reset, will preclude  
the Reset from occurring.  
Note:  
Clearing the CCPxCON register will force  
the CCPx compare output latch to the  
default low level. This is not the PORT I/O  
data latch.  
17.2.5  
COMPARE DURING SLEEP  
The Compare mode is dependent upon the system  
clock (FOSC) for proper operation. Since FOSC is shut  
down during Sleep mode, the Compare mode will not  
function properly during Sleep.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 131  
PIC16F707/PIC16LF707  
TABLE 17-4: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARE  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON0  
ANSELB  
ANSELC  
APFCON  
CCP1CON  
CCP2CON  
CCPRxL  
CCPRxH  
INTCON  
ANSB7  
ANSC7  
ANSB6  
ANSC6  
CHS3  
ANSB5  
ANSC5  
CHS2  
ANSB4  
CHS1  
ANSB3  
CHS0  
ANSB2  
ANSC2  
GO/DONE  
ANSB1  
ADON  
ANSB0  
ANSC0  
--00 0000  
1111 1111  
111- -111  
--00 0000  
1111 1111  
111- -111  
---- --00  
--00 0000  
--00 0000  
uuuu uuuu  
uuuu uuuu  
0000 000x  
ANSC1  
SSSEL  
CCP2SEL ---- --00  
DC1B1  
DC2B1  
DC1B0  
DC2B0  
CCP1M3  
CCP2M3  
CCP1M2  
CCP2M2  
CCP1M1  
CCP2M1  
CCP1M0  
CCP2M0  
--00 0000  
--00 0000  
xxxx xxxx  
xxxx xxxx  
0000 000x  
Capture/Compare/PWM Register X Low Byte  
Capture/Compare/PWM Register X High Byte  
GIE  
PEIE  
TMR0IE  
INTE  
RBIE  
TMR0IF  
INTF  
RBIF  
PIE1  
PIE2  
TMR1GIE  
TMR3GIE  
ADIE  
RCIE  
TXIE  
SSPIE  
CCP1IE  
TMR2IE  
TMR1IE  
CCP2IE  
0000 0000  
0000 ---0  
0000 0000  
0000 ---0  
TMR3IE  
TMRBIE  
TMRAIE  
PIR1  
TMR1GIF  
TMR3GIF  
ADIF  
RCIF  
TXIF  
SSPIF  
CCP1IF  
TMR2IF  
TMR1IF  
CCP2IF  
TMR1ON  
T1GSS0  
0000 0000  
0000 ---0  
0000 00-0  
0000 0x00  
0000 0000  
0000 ---0  
uuuu uu-u  
0000 0x00  
TMR3IF  
TMRBIF  
TMRAIF  
PIR2  
TMR1CS1 TMR1CS0 T1CKPS1  
T1CKPS0 T1OSCEN  
T1SYNC  
T1GVAL  
T1CON  
T1GCON  
TMR1GE  
T1GPOL  
T1GTM  
T1GSPM  
T1GGO/  
DONE  
T1GSS1  
TMR1L  
TMR1H  
TRISB  
TRISC  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Register  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Register  
xxxx xxxx  
xxxx xxxx  
1111 1111  
1111 1111  
uuuu uuuu  
uuuu uuuu  
1111 1111  
1111 1111  
TRISB7  
TRISC7  
TRISB6  
TRISC6  
TRISB5  
TRISC5  
TRISB4  
TRISC4  
TRISB3  
TRISC3  
TRISB2  
TRISC2  
TRISB1  
TRISC1  
TRISB0  
TRISC0  
Legend: -= Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the Compare.  
DS41418A-page 132  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
The PWM output (Figure 17-4) has a time base  
(period) and a time that the output stays high (duty  
cycle).  
17.3 PWM Mode  
The PWM mode generates a pulse-width modulated  
signal on the CCPx pin. The duty cycle, period and  
resolution are determined by the following registers:  
FIGURE 17-4:  
CCP PWM OUTPUT  
• PR2  
Period  
• T2CON  
• CCPRxL  
• CCPxCON  
Pulse Width  
TMR2 = PR2  
TMR2 = CCPRxL:CCPxCON<5:4>  
In Pulse-Width Modulation (PWM) mode, the CCP  
module produces up to a 10-bit resolution PWM output  
on the CCPx pin.  
TMR2 = 0  
Figure 17-3 shows a simplified block diagram of PWM  
operation.  
17.3.1  
CCPX PIN CONFIGURATION  
In PWM mode, the CCPx pin is multiplexed with the  
PORT data latch. The user must configure the CCPx  
pin as an output by clearing the associated TRIS bit.  
Figure 17-4 shows a typical waveform of the PWM  
signal.  
For a step-by-step procedure on how to set up the CCP  
module for PWM operation, refer to Section 17.3.8  
“Setup for PWM Operation”.  
Either RC1 or RB3 can be selected as the CCP2 pin.  
Refer to Section 6.1 “Alternate Pin Function” for  
more information.  
FIGURE 17-3:  
SIMPLIFIED PWM BLOCK  
DIAGRAM  
Note:  
Clearing the CCPxCON register will  
relinquish CCPx control of the CCPx pin.  
CCPxCON<5:4>  
Duty Cycle Registers  
CCPRxL  
CCPRxH(2) (Slave)  
CCPx  
R
S
Q
Comparator  
(1)  
TMR2  
TRIS  
Comparator  
PR2  
Clear Timer2,  
toggle CCPx pin and  
latch duty cycle  
Note 1: The 8-bit timer TMR2 register is concatenated  
with the 2-bit internal system clock (FOSC), or  
2 bits of the prescaler, to create the 10-bit time  
base.  
2: In PWM mode, CCPRxH is a read-only register.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 133  
PIC16F707/PIC16LF707  
17.3.2  
PWM PERIOD  
EQUATION 17-2: PULSE WIDTH  
The PWM period is specified by the PR2 register of  
Timer2. The PWM period can be calculated using the  
formula of Equation 17-1.  
Pulse Width = CCPRxL:CCPxCON<5:4>  
TOSC (TMR2 Prescale Value)  
EQUATION 17-1: PWM PERIOD  
Note: TOSC = 1/FOSC  
PWM Period = PR2+ 1  4 TOSC   
EQUATION 17-3: DUTY CYCLE RATIO  
(TMR2 Prescale Value)  
CCPRxL:CCPxCON<5:4>  
Duty Cycle Ratio = ----------------------------------------------------------------------  
4PR2 + 1  
Note:  
TOSC = 1/FOSC  
When TMR2 is equal to PR2, the following three events  
occur on the next increment cycle:  
The CCPRxH register and a 2-bit internal latch are  
used to double buffer the PWM duty cycle. This double  
buffering is essential for glitchless PWM operation.  
• TMR2 is cleared  
• The CCPx pin is set. (Exception: If the PWM duty  
cycle = 0%, the pin will not be set.)  
The 8-bit timer TMR2 register is concatenated with  
either the 2-bit internal system clock (FOSC), or 2 bits of  
the prescaler, to create the 10-bit time base. The system  
clock is used if the Timer2 prescaler is set to 1:1.  
• The PWM duty cycle is latched from CCPRxL into  
CCPRxH.  
When the 10-bit time base matches the CCPRxH and  
2-bit latch, then the CCPx pin is cleared (refer to  
Figure 17-3).  
Note:  
The  
Timer2  
postscaler  
(refer  
to  
Section 15.1 “Timer2 Operation”) is not  
used in the determination of the PWM  
frequency.  
17.3.3  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing a 10-bit value  
to multiple registers: CCPRxL register and DCxB<1:0>  
bits of the CCPxCON register. The CCPRxL contains  
the eight MSbs and the DCxB<1:0> bits of the  
CCPxCON register contain the two LSbs. CCPRxL and  
DCxB<1:0> bits of the CCPxCON register can be written  
to at any time. The duty cycle value is not latched into  
CCPRxH until after the period completes (i.e., a match  
between PR2 and TMR2 registers occurs). While using  
the PWM, the CCPRxH register is read-only.  
Equation 17-2 is used to calculate the PWM pulse  
width.  
Equation 17-3 is used to calculate the PWM duty cycle  
ratio.  
DS41418A-page 134  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
17.3.4  
PWM RESOLUTION  
EQUATION 17-4: PWM RESOLUTION  
The resolution determines the number of available duty  
cycles for a given period. For example, a 10-bit resolution  
will result in 1024 discrete duty cycles, whereas an 8-bit  
resolution will result in 256 discrete duty cycles.  
log4PR2 + 1  
Resolution = ----------------------------------------- bits  
log2  
The maximum PWM resolution is 10 bits when PR2 is  
255. The resolution is a function of the PR2 register  
value as shown by Equation 17-4.  
Note:  
If the pulse width value is greater than the  
period the assigned PWM pin(s) will  
remain unchanged.  
TABLE 17-5: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 20 MHz)  
PWM Frequency  
1.22 kHz  
4.88 kHz  
19.53 kHz  
78.12 kHz  
156.3 kHz  
208.3 kHz  
Timer Prescale (1, 4, 16)  
PR2 Value  
16  
0xFF  
10  
4
1
1
0x3F  
8
1
0x1F  
7
1
0xFF  
10  
0xFF  
10  
0x17  
6.6  
Maximum Resolution (bits)  
TABLE 17-6: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (FOSC = 8 MHz)  
PWM Frequency  
1.22 kHz  
4.90 kHz  
19.61 kHz  
76.92 kHz  
153.85 kHz 200.0 kHz  
Timer Prescale (1, 4, 16)  
PR2 Value  
16  
0x65  
8
4
0x65  
8
1
0x65  
8
1
0x19  
6
1
0x0C  
5
1
0x09  
5
Maximum Resolution (bits)  
17.3.5  
OPERATION IN SLEEP MODE  
17.3.8  
SETUP FOR PWM OPERATION  
In Sleep mode, the TMR2 register will not increment  
and the state of the module will not change. If the CCPx  
pin is driving a value, it will continue to drive that value.  
When the device wakes up, TMR2 will continue from its  
previous state.  
The following steps should be taken when configuring  
the CCP module for PWM operation:  
1. Disable the PWM pin (CCPx) output driver(s) by  
setting the associated TRIS bit(s).  
2. Load the PR2 register with the PWM period value.  
3. Configure the CCP module for the PWM mode  
by loading the CCPxCON register with the  
appropriate values.  
17.3.6  
CHANGES IN SYSTEM CLOCK  
FREQUENCY  
The PWM frequency is derived from the system clock  
frequency (FOSC). Any changes in the system clock fre-  
quency will result in changes to the PWM frequency.  
Refer to Section 7.0 “Oscillator Module” for  
additional details.  
4. Load the CCPRxL register and the DCxBx bits of  
the CCPxCON register, with the PWM duty cycle  
value.  
5. Configure and start Timer2:  
Clear the TMR2IF interrupt flag bit of the PIR1  
register. See Note below.  
17.3.7  
EFFECTS OF RESET  
Configure the T2CKPS bits of the T2CON  
register with the Timer2 prescale value.  
Any Reset will force all ports to Input mode and the  
CCP registers to their Reset states.  
Enable Timer2 by setting the TMR2ON bit of  
the T2CON register.  
6. Enable PWM output pin:  
Wait until Timer2 overflows, TMR2IF bit of the  
PIR1 register is set. See Note below.  
Enable the PWM pin (CCPx) output driver(s) by  
clearing the associated TRIS bit(s).  
Note:  
In order to send a complete duty cycle and  
period on the first PWM output, the above  
steps must be included in the setup  
sequence. If it is not critical to start with a  
complete PWM signal on the first output,  
then step 6 may be ignored.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 135  
PIC16F707/PIC16LF707  
TABLE 17-7: SUMMARY OF REGISTERS ASSOCIATED WITH PWM  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELB  
ANSELC  
APFCON  
CCP1CON  
CCP2CON  
CCPRxL  
CCPRxH  
ANSB7  
ANSC7  
ANSB6  
ANSC6  
ANSB5  
ANSC5  
ANSB4  
ANSB3  
ANSB2  
ANSC2  
ANSB1  
ANSC1  
SSSEL  
ANSB0  
ANSC0  
1111 1111  
111- -111  
1111 1111  
111- -111  
---- --00  
--00 0000  
--00 0000  
uuuu uuuu  
uuuu uuuu  
CCP2SEL ---- --00  
DC1B1  
DC2B1  
DC1B0  
DC2B0  
CCP1M3  
CCP2M3  
CCP1M2  
CCP2M2  
CCP1M1  
CCP2M1  
CCP1M0  
CCP2M0  
--00 0000  
--00 0000  
xxxx xxxx  
xxxx xxxx  
1111 1111  
Capture/Compare/PWM Register X Low Byte  
Capture/Compare/PWM Register X High Byte  
Timer2 Period Register  
PR2  
1111 1111  
-000 0000  
0000 0000  
1111 1111  
1111 1111  
-000 0000  
0000 0000  
1111 1111  
T2CON  
TMR2  
TRISB  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
Timer2 Module Register  
TRISB7  
TRISC7  
TRISB6  
TRISC6  
TRISB5  
TRISC5  
TRISB4  
TRISC4  
TRISB3  
TRISC3  
TRISB2  
TRISC2  
TRISB1  
TRISC1  
TRISB0  
TRISC0  
TRISC  
1111 1111  
Legend: -= Unimplemented locations, read as ‘0’, u= unchanged, x= unknown. Shaded cells are not used by the PWM.  
DS41418A-page 136  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
The AUSART module includes the following capabilities:  
18.0 ADDRESSABLE UNIVERSAL  
SYNCHRONOUS  
• Full-duplex asynchronous transmit and receive  
• Two-character input buffer  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (AUSART)  
• One-character output buffer  
• Programmable 8-bit or 9-bit character length  
• Address detection in 9-bit mode  
• Input buffer overrun error detection  
• Received character framing error detection  
• Half-duplex synchronous master  
• Half-duplex synchronous slave  
• Sleep operation  
The  
Addressable  
Universal  
Synchronous  
Asynchronous Receiver Transmitter (AUSART)  
module is a serial I/O communications peripheral. It  
contains all the clock generators, shift registers and  
data buffers necessary to perform an input or output  
serial data transfer independent of device program  
execution. The AUSART, also known as a Serial  
Communications Interface (SCI), can be configured as  
a full-duplex asynchronous system or half-duplex  
synchronous system. Full-Duplex mode is useful for  
communications with peripheral systems, such as CRT  
terminals and personal computers. Half-Duplex  
Synchronous mode is intended for communications  
with peripheral devices, such as A/D or D/A integrated  
circuits, serial EEPROMs or other microcontrollers.  
These devices typically do not have internal clocks for  
baud rate generation and require the external clock  
signal provided by a master synchronous device.  
Block diagrams of the AUSART transmitter and  
receiver are shown in Figure 18-1 and Figure 18-2.  
FIGURE 18-1:  
AUSART TRANSMIT BLOCK DIAGRAM  
Data Bus  
TXIE  
Interrupt  
TXIF  
TXREG Register  
8
TX/CK  
MSb  
(8)  
LSb  
0
Pin Buffer  
and Control  
• • •  
Transmit Shift Register (TSR)  
TXEN  
TRMT  
SPEN  
Baud Rate Generator  
FOSC  
÷ n  
TX9  
n
+ 1  
Multiplier x4 x16 x64  
TX9D  
SYNC  
BRGH  
1
x
0
1
0
0
SPBRG  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 137  
PIC16F707/PIC16LF707  
FIGURE 18-2:  
AUSART RECEIVE BLOCK DIAGRAM  
SPEN  
CREN  
OERR  
RX/DT  
RSR Register  
MSb  
Stop (8)  
LSb  
Pin Buffer  
and Control  
Data  
Recovery  
7
1
0
START  
• • •  
Baud Rate Generator  
FOSC  
RX9  
÷ n  
n
+ 1  
Multiplier x4 x16 x64  
SYNC  
BRGH  
1
x
0
1
0
0
FIFO  
SPBRG  
RX9D  
FERR  
RCREG Register  
8
Data Bus  
RCIF  
RCIE  
Interrupt  
The operation of the AUSART module is controlled  
through two registers:  
• Transmit Status and Control (TXSTA)  
• Receive Status and Control (RCSTA)  
These registers are detailed in Register 18-1 and  
Register 18-2, respectively.  
DS41418A-page 138  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
18.1 AUSART Asynchronous Mode  
Note 1: When the SPEN bit is set, the RX/DT I/O  
pin is automatically configured as an input,  
regardless of the state of the corresponding  
TRIS bit and whether or not the AUSART  
receiver is enabled. The RX/DT pin data  
can be read via a normal PORT read but  
PORT latch data output is precluded.  
The AUSART transmits and receives data using the  
standard non-return-to-zero (NRZ) format. NRZ is  
implemented with two levels: a VOH mark state which  
represents a ‘1’ data bit, and a VOL space state which  
represents a ‘0’ data bit. NRZ refers to the fact that  
consecutively transmitted data bits of the same value  
stay at the output level of that bit without returning to a  
neutral level between each bit transmission. An NRZ  
transmission port idles in the mark state. Each character  
transmission consists of one Start bit followed by eight  
or nine data bits and is always terminated by one or  
more Stop bits. The Start bit is always a space and the  
Stop bits are always marks. The most common data  
format is 8 bits. Each transmitted bit persists for a period  
of 1/(Baud Rate). An on-chip dedicated 8-bit Baud Rate  
Generator is used to derive standard baud rate  
frequencies from the system oscillator. Refer to  
Table 18-5 for examples of baud rate configurations.  
2: The corresponding ANSEL bit must be  
cleared for the RX/DT port pin to ensure  
proper AUSART functionality.  
3: The TXIF transmitter interrupt flag is set  
when the TXEN enable bit is set.  
18.1.1.2  
Transmitting Data  
A transmission is initiated by writing a character to the  
TXREG register. If this is the first character, or the  
previous character has been completely flushed from  
the TSR, the data in the TXREG is immediately  
transferred to the TSR register. If the TSR still contains  
all or part of a previous character, the new character  
data is held in the TXREG until the Stop bit of the  
previous character has been transmitted. The pending  
character in the TXREG is then transferred to the TSR  
in one TCY immediately following the Stop bit  
transmission. The transmission of the Start bit, data bits  
and Stop bit sequence commences immediately  
following the transfer of the data to the TSR from the  
TXREG.  
The AUSART transmits and receives the LSb first. The  
AUSART’s transmitter and receiver are functionally  
independent, but share the same data format and baud  
rate. Parity is not supported by the hardware, but can  
be implemented in software and stored as the ninth  
data bit.  
18.1.1  
AUSART ASYNCHRONOUS  
TRANSMITTER  
The AUSART transmitter block diagram is shown in  
Figure 18-1. The heart of the transmitter is the serial  
Transmit Shift Register (TSR), which is not directly  
accessible by software. The TSR obtains its data from  
the transmit buffer, which is the TXREG register.  
18.1.1.3  
Transmit Interrupt Flag  
The TXIF interrupt flag bit of the PIR1 register is set  
whenever the AUSART transmitter is enabled and no  
character is being held for transmission in the TXREG.  
In other words, the TXIF bit is only clear when the TSR  
is busy with a character and a new character has been  
queued for transmission in the TXREG. The TXIF flag  
bit is not cleared immediately upon writing TXREG.  
TXIF becomes valid in the second instruction cycle  
following the write execution. Polling TXIF immediately  
following the TXREG write will return invalid results. The  
TXIF bit is read-only, it cannot be set or cleared by  
software.  
18.1.1.1  
Enabling the Transmitter  
The AUSART transmitter is enabled for asynchronous  
operations by configuring the following three control  
bits:  
• TXEN = 1  
• SYNC = 0  
• SPEN = 1  
All other AUSART control bits are assumed to be in  
their default state.  
The TXIF interrupt can be enabled by setting the TXIE  
interrupt enable bit of the PIE1 register. However, the  
TXIF flag bit will be set whenever the TXREG is empty,  
regardless of the state of TXIE enable bit.  
Setting the TXEN bit of the TXSTA register enables the  
transmitter circuitry of the AUSART. Clearing the SYNC  
bit of the TXSTA register configures the AUSART for  
asynchronous operation. Setting the SPEN bit of the  
RCSTA register enables the AUSART and  
automatically configures the TX/CK I/O pin as an output.  
To use interrupts when transmitting data, set the TXIE  
bit only when there is more data to send. Clear the  
TXIE interrupt enable bit upon writing the last character  
of the transmission to the TXREG.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 139  
PIC16F707/PIC16LF707  
18.1.1.4  
TSR Status  
18.1.1.6  
Asynchronous Transmission Set-up:  
The TRMT bit of the TXSTA register indicates the  
status of the TSR register. This is a read-only bit. The  
TRMT bit is set when the TSR register is empty and is  
cleared when a character is transferred to the TSR  
register from the TXREG. The TRMT bit remains clear  
until all bits have been shifted out of the TSR register.  
No interrupt logic is tied to this bit, so the user has to  
poll this bit to determine the TSR status.  
1. Initialize the SPBRG register and the BRGH bit to  
achieve the desired baud rate (Refer to  
Section 18.2 “AUSART Baud Rate Generator  
(BRG)”).  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
3. If 9-bit transmission is desired, set the TX9 con-  
trol bit. A set ninth data bit will indicate that the 8  
Least Significant data bits are an address when  
the receiver is set for address detection.  
Note:  
The TSR register is not mapped in data  
memory, so it is not available to the user.  
4. Enable the transmission by setting the TXEN  
control bit. This will cause the TXIF interrupt bit  
to be set.  
18.1.1.5  
Transmitting 9-Bit Characters  
The AUSART supports 9-bit character transmissions.  
When the TX9 bit of the TXSTA register is set the  
AUSART will shift 9 bits out for each character transmit-  
ted. The TX9D bit of the TXSTA register is the ninth,  
and Most Significant, data bit. When transmitting 9-bit  
data, the TX9D data bit must be written before writing  
the 8 Least Significant bits into the TXREG. All nine bits  
of data will be transferred to the TSR shift register  
immediately after the TXREG is written.  
5. If interrupts are desired, set the TXIE interrupt  
enable bit of the PIE1 register. An interrupt will  
occur immediately provided that the GIE and  
PEIE bits of the INTCON register are also set.  
6. If 9-bit transmission is selected, the ninth bit  
should be loaded into the TX9D data bit.  
7. Load 8-bit data into the TXREG register. This  
will start the transmission.  
A special 9-bit Address mode is available for use with  
multiple receivers. Refer to Section 18.1.2.7 “Address  
Detection” for more information on the Address mode.  
FIGURE 18-3:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(Shift Clock)  
TX/CK pin  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
Stop bit  
TXIF bit  
(Transmit Buffer  
Empty Flag)  
1 TCY  
Word 1  
Transmit Shift Reg  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
FIGURE 18-4:  
ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)  
Write to TXREG  
Word 2  
Start bit  
Word 1  
BRG Output  
(Shift Clock)  
TX/CK pin  
Start bit  
Word 2  
bit 0  
bit 1  
bit 7/8  
bit 0  
Stop bit  
TXIF bit  
(Transmit Buffer  
Empty Flag)  
1 TCY  
Word 1  
1 TCY  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
Note:  
This timing diagram shows two consecutive transmissions.  
DS41418A-page 140  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
TABLE 18-1: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
RX9  
TMR0IE  
RCIE  
INTE  
TXIE  
RBIE  
SSPIE  
SSPIF  
ADDEN  
BRG3  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000x  
TMR1GIE  
TMR1GIF  
SPEN  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
PIR1  
RCIF  
TXIF  
RCSTA  
SPBRG  
TRISC  
TXREG  
TXSTA  
Legend:  
SREN  
BRG5  
CREN  
BRG4  
FERR  
BRG2  
OERR  
BRG1  
RX9D  
BRG0  
0000 000x 0000 000x  
0000 0000 0000 0000  
BRG7  
BRG6  
TRISC7  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
AUSART Transmit Data Register  
TXEN SYNC BRGH  
0000 0000 0000 0000  
0000 -010 0000 -010  
CSRC  
TX9  
TRMT  
TX9D  
x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for asynchronous transmission.  
18.1.2  
AUSART ASYNCHRONOUS  
RECEIVER  
18.1.2.1  
Enabling the Receiver  
The AUSART receiver is enabled for asynchronous  
operation by configuring the following three control bits:  
The Asynchronous mode is typically used in RS-232  
systems. The receiver block diagram is shown in  
Figure 18-2. The data is received on the RX/DT pin and  
drives the data recovery block. The data recovery block  
is actually a high-speed shifter operating at 16 times  
the baud rate, whereas the serial Receive Shift  
Register (RSR) operates at the bit rate. When all 8 or 9  
bits of the character have been shifted in, they are  
immediately transferred to a two character First-In  
First-Out (FIFO) memory. The FIFO buffering allows  
reception of two complete characters and the start of a  
third character before software must start servicing the  
AUSART receiver. The FIFO and RSR registers are not  
directly accessible by software. Access to the received  
data is via the RCREG register.  
• CREN = 1  
• SYNC = 0  
• SPEN = 1  
All other AUSART control bits are assumed to be in  
their default state.  
Setting the CREN bit of the RCSTA register enables the  
receiver circuitry of the AUSART. Clearing the SYNC bit  
of the TXSTA register configures the AUSART for  
asynchronous operation. Setting the SPEN bit of the  
RCSTA register enables the AUSART and  
automatically configures the RX/DT I/O pin as an input.  
Note 1: When the SPEN bit is set, the TX/CK I/O  
pin is automatically configured as an out-  
put, regardless of the state of the corre-  
sponding TRIS bit and whether or not the  
AUSART transmitter is enabled. The  
PORT latch is disconnected from the out-  
put driver so it is not possible to use the  
TX/CK pin as a general purpose output.  
2: The corresponding ANSEL bit must be  
cleared for the RX/DT port pin to ensure  
proper AUSART functionality.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 141  
PIC16F707/PIC16LF707  
18.1.2.2  
Receiving Data  
18.1.2.4  
Receive Framing Error  
The receiver data recovery circuit initiates character  
reception on the falling edge of the first bit. The first bit,  
also known as the Start bit, is always a zero. The data  
recovery circuit counts one-half bit time to the center of  
the Start bit and verifies that the bit is still a zero. If it is  
not a zero then the data recovery circuit aborts  
character reception, without generating an error, and  
resumes looking for the falling edge of the Start bit. If  
the Start bit zero verification succeeds then the data  
recovery circuit counts a full bit time to the center of the  
next bit. The bit is then sampled by a majority detect  
circuit and the resulting ‘0’ or ‘1’ is shifted into the RSR.  
This repeats until all data bits have been sampled and  
shifted into the RSR. One final bit time is measured and  
the level sampled. This is the Stop bit, which is always  
a ‘1’. If the data recovery circuit samples a ‘0’ in the  
Stop bit position then a framing error is set for this  
character, otherwise the framing error is cleared for this  
character. Refer to Section 18.1.2.4 “Receive  
Framing Error” for more information on framing  
errors.  
Each character in the receive FIFO buffer has a  
corresponding framing error Status bit. A framing error  
indicates that a Stop bit was not seen at the expected  
time. The framing error status is accessed via the  
FERR bit of the RCSTA register. The FERR bit  
represents the status of the top unread character in the  
receive FIFO. Therefore, the FERR bit must be read  
before reading the RCREG.  
The FERR bit is read-only and only applies to the top  
unread character in the receive FIFO. A framing error  
(FERR = 1) does not preclude reception of additional  
characters. It is not necessary to clear the FERR bit.  
Reading the next character from the FIFO buffer will  
advance the FIFO to the next character and the next  
corresponding framing error.  
The FERR bit can be forced clear by clearing the SPEN  
bit of the RCSTA register which resets the AUSART.  
Clearing the CREN bit of the RCSTA register does not  
affect the FERR bit. A framing error by itself does not  
generate an interrupt.  
Note:  
If all receive characters in the receive  
FIFO have framing errors, repeated reads  
of the RCREG will not clear the FERR bit.  
Immediately after all data bits and the Stop bit have  
been received, the character in the RSR is transferred  
to the AUSART receive FIFO and the RCIF interrupt  
flag bit of the PIR1 register is set. The top character in  
the FIFO is transferred out of the FIFO by reading the  
RCREG register.  
18.1.2.5  
Receive Overrun Error  
The receive FIFO buffer can hold two characters. An  
overrun error will be generated if a third character, in its  
entirety, is received before the FIFO is accessed. When  
this happens the OERR bit of the RCSTA register is  
set. The characters already in the FIFO buffer can be  
read but no additional characters will be received until  
the error is cleared. The error must be cleared by either  
clearing the CREN bit of the RCSTA register or by  
setting the AUSART by clearing the SPEN bit of the  
RCSTA register.  
Note:  
If the receive FIFO is overrun, no additional  
characters will be received until the overrun  
condition  
is  
cleared.  
Refer  
to  
Section 18.1.2.5  
“Receive  
Overrun  
Error” for more information on overrun  
errors.  
18.1.2.3  
Receive Interrupts  
The RCIF interrupt flag bit of the PIR1 register is set  
whenever the AUSART receiver is enabled and there is  
an unread character in the receive FIFO. The RCIF  
interrupt flag bit is read-only, it cannot be set or cleared  
by software.  
18.1.2.6  
Receiving 9-bit Characters  
The AUSART supports 9-bit character reception. When  
the RX9 bit of the RCSTA register is set the AUSART  
will shift 9 bits into the RSR for each character  
received. The RX9D bit of the RCSTA register is the  
ninth and Most Significant data bit of the top unread  
character in the receive FIFO. When reading 9-bit data  
from the receive FIFO buffer, the RX9D data bit must  
be read before reading the 8 Least Significant bits from  
the RCREG.  
RCIF interrupts are enabled by setting all of the  
following bits:  
• RCIE, Receive Interrupt Enable bit of the PIE1  
register  
• PEIE, Peripheral Interrupt Enable bit of the  
INTCON register  
• GIE, Global Interrupt Enable bit of the INTCON  
register  
The RCIF interrupt flag bit of the PIR1 register will be  
set when there is an unread character in the FIFO,  
regardless of the state of interrupt enable bits.  
DS41418A-page 142  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
18.1.2.7  
Address Detection  
18.1.2.9  
9-bit Address Detection Mode Set-  
up  
A special Address Detection mode is available for use  
when multiple receivers share the same transmission  
line, such as in RS-485 systems. Address detection is  
enabled by setting the ADDEN bit of the RCSTA  
register.  
This mode would typically be used in RS-485 systems.  
To set up an asynchronous reception with address  
detect enable:  
1. Initialize the SPBRG register and the BRGH bit  
to achieve the desired baud rate (refer to  
Section 18.2 “AUSART Baud Rate Generator  
(BRG)”).  
Address detection requires 9-bit character reception.  
When address detection is enabled, only characters  
with the ninth data bit set will be transferred to the  
receive FIFO buffer, thereby setting the RCIF interrupt  
bit of the PIR1 register. All other characters will be  
ignored.  
2. Enable the serial port by setting the SPEN bit.  
The SYNC bit must be clear for asynchronous  
operation.  
Upon receiving an address character, user software  
determines if the address matches its own. Upon  
address match, user software must disable address  
detection by clearing the ADDEN bit before the next  
Stop bit occurs. When user software detects the end of  
the message, determined by the message protocol  
used, software places the receiver back into the  
Address Detection mode by setting the ADDEN bit.  
3. If interrupts are desired, set the RCIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
4. Enable 9-bit reception by setting the RX9 bit.  
5. Enable address detection by setting the ADDEN  
bit.  
6. Enable reception by setting the CREN bit.  
7. The RCIF interrupt flag bit of the PIR1 register  
will be set when a character with the ninth bit set  
is transferred from the RSR to the receive buffer.  
An interrupt will be generated if the RCIE inter-  
rupt enable bit of the PIE1 register was also set.  
18.1.2.8  
Asynchronous Reception Set-up:  
1. Initialize the SPBRG register and the BRGH bit  
to achieve the desired baud rate (refer to  
Section 18.2 “AUSART Baud Rate Generator  
(BRG)”).  
8. Read the RCSTA register to get the error flags.  
The ninth data bit will always be set.  
2. Enable the serial port by setting the SPEN bit.  
The SYNC bit must be clear for asynchronous  
operation.  
9. Get the received 8 Least Significant data bits  
from the receive buffer by reading the RCREG  
register. Software determines if this is the  
device’s address.  
3. If interrupts are desired, set the RCIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
10. If an overrun occurred, clear the OERR flag by  
clearing the CREN receiver enable bit.  
4. If 9-bit reception is desired, set the RX9 bit.  
5. Enable reception by setting the CREN bit.  
11. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and generate interrupts.  
6. The RCIF interrupt flag bit of the PIR1 register  
will be set when a character is transferred from  
the RSR to the receive buffer. An interrupt will be  
generated if the RCIE bit of the PIE1 register  
was also set.  
7. Read the RCSTA register to get the error flags  
and, if 9-bit data reception is enabled, the ninth  
data bit.  
8. Get the received 8 Least Significant data bits  
from the receive buffer by reading the RCREG  
register.  
9. If an overrun occurred, clear the OERR flag by  
clearing the CREN receiver enable bit.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 143  
PIC16F707/PIC16LF707  
FIGURE 18-5:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX/DT pin  
bit 7/8  
bit 7/8  
bit 0 bit 1  
Stop  
bit  
Stop  
bit  
Stop  
bit  
bit 0  
bit 7/8  
Rcv Shift  
Reg  
Rcv Buffer Reg  
Word 2  
RCREG  
Word 1  
RCREG  
Read Rcv  
Buffer Reg  
RCREG  
RCIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note:  
This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,  
causing the OERR (overrun) bit to be set.  
TABLE 18-2: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELC  
INTCON  
PIE1  
ANSC7  
GIE  
ANSC6  
PEIE  
ANSC5  
TMR0IE  
RCIE  
ANSC2  
TMR0IF  
ANSC1  
INTF  
ANSC0 111- -111 111- -111  
RBIF 0000 000x 0000 000x  
INTE  
TXIE  
TXIF  
RBIE  
SSPIE  
SSPIF  
TMR1GIE  
TMR1GIF  
ADIE  
ADIF  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
PIR1  
RCIF  
RCREG  
RCSTA  
SPBRG  
TRISC  
TXSTA  
Legend:  
AUSART Receive Data Register  
0000 0000 0000 0000  
0000 000x 0000 000x  
0000 0000 0000 0000  
SPEN  
BRG7  
RX9  
SREN  
BRG5  
CREN  
BRG4  
ADDEN  
BRG3  
FERR  
BRG2  
OERR  
BRG1  
RX9D  
BRG0  
BRG6  
TRISC7  
CSRC  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
TX9 TXEN SYNC BRGH TRMT TX9D 0000 -010 0000 -010  
x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for asynchronous reception.  
DS41418A-page 144  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
REGISTER 18-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER  
R/W-0  
CSRC  
R/W-0  
TX9  
R/W-0  
TXEN(1)  
R/W-0  
SYNC  
U-0  
R/W-0  
BRGH  
R-1  
R/W-0  
TX9D  
TRMT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
bit 4  
TX9: 9-bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit(1)  
1= Transmit enabled  
0= Transmit disabled  
SYNC: AUSART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR empty  
0= TSR full  
TX9D: Ninth bit of Transmit Data  
Can be address/data bit or a parity bit.  
Note 1: SREN/CREN overrides TXEN in Synchronous mode.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 145  
PIC16F707/PIC16LF707  
REGISTER 18-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER  
R/W-0  
SPEN  
R/W-0  
RX9  
R/W-0  
SREN  
R/W-0  
CREN  
R/W-0  
R-0  
R-0  
R-x  
ADDEN  
FERR  
OERR  
RX9D  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit(1)  
1= Serial port enabled (configures RX/DT and TX/CK pins as serial port pins)  
0= Serial port disabled (held in Reset)  
RX9: 9-bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave:  
Don’t care  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
Asynchronous mode 8-bit (RX9 = 0):  
Don’t care  
Synchronous mode:  
Must be set to ‘0’  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG register and receive next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit CREN)  
0= No overrun error  
RX9D: Ninth bit of Received Data  
This can be address/data bit or a parity bit and must be calculated by user firmware.  
Note 1: The AUSART module automatically changes the pin from tri-state to drive as needed. Configure  
TRISx = 1.  
DS41418A-page 146  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
EXAMPLE 18-1:  
CALCULATING BAUD  
RATE ERROR  
18.2 AUSART Baud Rate Generator  
(BRG)  
For a device with FOSC of 16 MHz, desired baud rate of  
9600, and Asynchronous mode with SYNC = 0and BRGH  
= 0(as seen in Table 18-5):  
The Baud Rate Generator (BRG) is an 8-bit timer that  
is dedicated to the support of both the asynchronous  
and synchronous AUSART operation.  
FOSC  
Desired Baud Rate = ---------------------------------------  
64SPBRG + 1  
The SPBRG register determines the period of the free  
running baud rate timer. In Asynchronous mode the  
multiplier of the baud rate period is determined by the  
BRGH bit of the TXSTA register. In Synchronous mode,  
the BRGH bit is ignored.  
Solving for SPBRG:  
FOSC  
--------------------------------------------------------  
SPBRG =  
=
1  
Table 18-3 contains the formulas for determining the  
baud rate. Example 18-1 provides a sample calculation  
for determining the baud rate and baud rate error.  
64Desired Baud Rate  
16000000  
649600  
------------------------  
1  
Typical baud rates and error values for various  
Asynchronous modes have been computed for your  
convenience and are shown in Table 18-5. It may be  
advantageous to use the high baud rate (BRGH = 1), to  
reduce the baud rate error.  
= 25.042= 25  
16000000  
Actual Baud Rate = --------------------------  
6425 + 1  
= 9615  
Writing a new value to the SPBRG register causes the  
BRG timer to be reset (or cleared). This ensures that  
the BRG does not wait for a timer overflow before  
outputting the new baud rate.  
Actual Baud Rate Desired Baud Rate  
% Error = ------------------------------------------------------------------------------------------------- 100  
Desired Baud Rate  
9615 9600  
-----------------------------  
=
100 = 0.16%  
9600  
TABLE 18-3: BAUD RATE FORMULAS  
Configuration Bits  
Baud Rate Formula  
AUSART Mode  
SYNC  
BRGH  
0
0
1
0
1
x
Asynchronous  
Asynchronous  
Synchronous  
FOSC/[64 (n+1)]  
FOSC/[16 (n+1)]  
FOSC/[4 (n+1)]  
Legend: x= Don’t care, n = value of SPBRG register  
TABLE 18-4: REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RCSTA  
SPBRG  
TXSTA  
SPEN  
BRG7  
CSRC  
RX9  
BRG6  
TX9  
SREN  
BRG5  
TXEN  
CREN  
BRG4  
SYNC  
ADDEN  
BRG3  
FERR  
BRG2  
BRGH  
OERR  
BRG1  
TRMT  
RX9D  
BRG0  
TX9D  
0000 000x 0000 000x  
0000 0000 0000 0000  
0000 -010 0000 -010  
Legend:  
x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for the Baud Rate Generator.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 147  
PIC16F707/PIC16LF707  
TABLE 18-5: BAUD RATES FOR ASYNCHRONOUS MODES  
SYNC = 0, BRGH = 0  
FOSC = 20.000 MHz  
FOSC = 18.432 MHz  
FOSC = 16.0000 MHz  
FOSC = 11.0592 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
1201  
2403  
9615  
10416  
19.23k  
0.08  
0.16  
0.16  
-0.01  
0.16  
207  
103  
25  
300  
1200  
255  
129  
32  
239  
119  
29  
143  
71  
17  
16  
8
1221  
2404  
9470  
10417  
19.53k  
1.73  
0.16  
-1.36  
0.00  
1.73  
1200  
2400  
9600  
10286  
19.20k  
0.00  
0.00  
0.00  
-1.26  
0.00  
0.00  
1200  
2400  
9600  
10165  
19.20k  
0.00  
0.00  
0.00  
-2.42  
0.00  
0.00  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
29  
27  
23  
15  
14  
12  
2
57.60k  
7
57.60k  
SYNC = 0, BRGH = 0  
FOSC = 4.000 MHz FOSC = 3.6864 MHz  
FOSC = 8.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
0.00  
0.00  
0.00  
0.00  
300  
1200  
1202  
2404  
9615  
10417  
0.16  
0.16  
0.16  
0.00  
103  
51  
12  
11  
300  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
300  
1200  
2400  
9600  
191  
47  
23  
5
300  
1202  
0.16  
0.16  
51  
12  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
10417  
0.00  
2
19.20k  
0.00  
0.00  
0
57.60k  
SYNC = 0, BRGH = 1  
FOSC = 18.432 MHz FOSC = 16.0000 MHz  
FOSC = 20.000 MHz  
FOSC = 11.0592 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
value  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
71  
65  
35  
11  
5
9615  
10417  
19.23k  
56.82k  
0.16  
0.00  
0.16  
-1.36  
129  
119  
64  
9600  
10378  
19.20k  
57.60k  
115.2k  
0.00  
-0.37  
0.00  
0.00  
0.00  
119  
110  
59  
19  
9
9615  
10417  
19.23k  
58.8k  
0.16  
0.00  
0.16  
2.12  
103  
95  
51  
16  
9600  
0.00  
0.53  
0.00  
0.00  
0.00  
10473  
19.20k  
57.60k  
115.2k  
21  
115.2k 113.64k -1.36  
10  
DS41418A-page 148  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
TABLE 18-5: BAUD RATES FOR ASYNCHRONOUS MODES  
SYNC = 0, BRGH = 1  
FOSC = 4.000 MHz FOSC = 3.6864 MHz  
FOSC = 8.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
value  
SPBRG  
value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
value  
(decimal)  
value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
300  
1200  
1202  
2404  
9615  
10417  
19.23k  
207  
103  
25  
191  
95  
23  
21  
11  
3
300  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
0.16  
0.16  
0.16  
0.00  
0.16  
1200  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
2400  
2404  
9615  
10417  
19231  
55556  
0.16  
0.16  
0.00  
0.16  
-3.55  
207  
51  
47  
25  
8
2400  
9600  
9600  
10417  
19.2k  
57.6k  
115.2k  
23  
10473  
19.2k  
57.60k  
115.2k  
10417  
0.00  
12  
1
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 149  
PIC16F707/PIC16LF707  
18.3.1.2  
Synchronous Master Transmission  
18.3 AUSART Synchronous Mode  
Data is transferred out of the device on the RX/DT pin.  
The RX/DT and TX/CK pin output drivers are  
automatically enabled when the AUSART is configured  
for synchronous master transmit operation.  
Synchronous serial communications are typically used  
in systems with a single master and one or more  
slaves. The master device contains the necessary cir-  
cuitry for baud rate generation and supplies the clock  
for all devices in the system. Slave devices can take  
advantage of the master clock by eliminating the  
internal clock generation circuitry.  
A transmission is initiated by writing a character to the  
TXREG register. If the TSR still contains all or part of a  
previous character, the new character data is held in  
the TXREG until the last bit of the previous character  
has been transmitted. If this is the first character, or the  
previous character has been completely flushed from  
the TSR, the data in the TXREG is immediately trans-  
ferred to the TSR. The transmission of the character  
commences immediately following the transfer of the  
data to the TSR from the TXREG.  
There are two signal lines in Synchronous mode: a  
bidirectional data line and a clock line. Slaves use the  
external clock supplied by the master to shift the serial  
data into and out of their respective receive and trans-  
mit shift registers. Since the data line is bidirectional,  
synchronous operation is half-duplex only. Half-duplex  
refers to the fact that master and slave devices can  
receive and transmit data but not both simultaneously.  
The AUSART can operate as either a master or slave  
device.  
Each data bit changes on the leading edge of the  
master clock and remains valid until the subsequent  
leading clock edge.  
Start and Stop bits are not used in synchronous  
transmissions.  
Note:  
The TSR register is not mapped in data  
memory, so it is not available to the user.  
18.3.1  
SYNCHRONOUS MASTER MODE  
18.3.1.3  
Synchronous Master Transmission  
Set-up:  
The following bits are used to configure the AUSART  
for Synchronous Master operation:  
1. Initialize the SPBRG register and the BRGH bit  
to achieve the desired baud rate (refer to  
Section 18.2 “AUSART Baud Rate Generator  
(BRG)”).  
• SYNC = 1  
• CSRC = 1  
• SREN = 0(for transmit); SREN = 1(for receive)  
• CREN = 0(for transmit); CREN = 1(for receive)  
• SPEN = 1  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN, and CSRC.  
3. Disable Receive mode by clearing bits SREN  
and CREN.  
Setting the SYNC bit of the TXSTA register configures  
the device for synchronous operation. Setting the CSRC  
bit of the TXSTA register configures the device as a  
master. Clearing the SREN and CREN bits of the RCSTA  
register ensures that the device is in the Transmit mode,  
otherwise the device will be configured to receive. Setting  
the SPEN bit of the RCSTA register enables the  
AUSART.  
4. Enable Transmit mode by setting the TXEN bit.  
5. If 9-bit transmission is desired, set the TX9 bit.  
6. If interrupts are desired, set the TXIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
7. If 9-bit transmission is selected, the ninth bit  
should be loaded in the TX9D bit.  
18.3.1.1  
Master Clock  
8. Start transmission by loading data to the  
TXREG register.  
Synchronous data transfers use a separate clock line,  
which is synchronous with the data. A device config-  
ured as a master transmits the clock on the TX/CK line.  
The TX/CK pin output driver is automatically enabled  
when the AUSART is configured for synchronous  
transmit or receive operation. Serial data bits change  
on the leading edge to ensure they are valid at the trail-  
ing edge of each clock. One clock cycle is generated  
for each data bit. Only as many clock cycles are  
generated as there are data bits.  
DS41418A-page 150  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 18-6:  
SYNCHRONOUS TRANSMISSION  
RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 7  
bit 0  
bit 1  
Word 2  
bit 7  
Word 1  
TX/CK pin  
Write to  
TXREG Reg  
Write Word 1  
Write Word 2  
TXIF bit  
(Interrupt Flag)  
TRMT bit  
1’  
1’  
TXEN bit  
Note:  
Synchronous Master mode, SPBRG = 0, continuous transmission of two 8-bit words.  
FIGURE 18-7:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RX/DT pin  
bit 0  
bit 2  
bit 1  
bit 6  
bit 7  
TX/CK pin  
Write to  
TXREG reg  
TXIF bit  
TRMT bit  
TXEN bit  
TABLE 18-6: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
RX9  
TMR0IE  
RCIE  
INTE  
TXIE  
RBIE  
SSPIE  
SSPIF  
ADDEN  
BRG3  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000x  
TMR1GIE  
TMR1GIF  
SPEN  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
PIR1  
RCIF  
TXIF  
RCSTA  
SPBRG  
TRISC  
TXREG  
TXSTA  
Legend:  
SREN  
BRG5  
CREN  
BRG4  
FERR  
BRG2  
OERR  
BRG1  
RX9D  
BRG0  
0000 000x 0000 000x  
0000 0000 0000 0000  
BRG7  
BRG6  
TRISC7  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
AUSART Transmit Data Register  
TXEN SYNC BRGH  
0000 0000 0000 0000  
0000 -010 0000 -010  
CSRC  
TX9  
TRMT  
TX9D  
x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for synchronous master transmission.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 151  
PIC16F707/PIC16LF707  
18.3.1.4  
Synchronous Master Reception  
18.3.1.7  
Receiving 9-bit Characters  
Data is received at the RX/DT pin. The RX/DT pin  
output driver is automatically disabled when the  
AUSART is configured for synchronous master receive  
operation.  
The AUSART supports 9-bit character reception. When  
the RX9 bit of the RCSTA register is set, the AUSART  
will shift 9-bits into the RSR for each character  
received. The RX9D bit of the RCSTA register is the  
ninth, and Most Significant, data bit of the top unread  
character in the receive FIFO. When reading 9-bit data  
from the receive FIFO buffer, the RX9D data bit must  
be read before reading the 8 Least Significant bits from  
the RCREG.  
In Synchronous mode, reception is enabled by setting  
either the Single Receive Enable bit (SREN of the  
RCSTA register) or the Continuous Receive Enable bit  
(CREN of the RCSTA register).  
When SREN is set and CREN is clear, only as many  
clock cycles are generated as there are data bits in a  
single character. The SREN bit is automatically cleared  
at the completion of one character. When CREN is set,  
clocks are continuously generated until CREN is  
cleared. If CREN is cleared in the middle of a character  
the CK clock stops immediately and the partial charac-  
ter is discarded. If SREN and CREN are both set, then  
SREN is cleared at the completion of the first character  
and CREN takes precedence.  
Address detection in Synchronous modes is not  
supported, therefore the ADDEN bit of the RCSTA  
register must be cleared.  
18.3.1.8  
Synchronous Master Reception  
Set-up:  
1. Initialize the SPBRG register for the appropriate  
baud rate. Set or clear the BRGH bit, as  
required, to achieve the desired baud rate.  
2. Enable the synchronous master serial port by  
setting bits SYNC, SPEN and CSRC.  
To initiate reception, set either SREN or CREN. Data is  
sampled at the RX/DT pin on the trailing edge of the  
TX/CK clock pin and is shifted into the Receive Shift  
3. Ensure bits CREN and SREN are clear.  
Register (RSR). When  
a complete character is  
4. If interrupts are desired, set the RCIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
received into the RSR, the RCIF bit of the PIR1 register  
is set and the character is automatically transferred to  
the two character receive FIFO. The Least Significant  
eight bits of the top character in the receive FIFO are  
available in RCREG. The RCIF bit remains set as long  
as there are un-read characters in the receive FIFO.  
5. If 9-bit reception is desired, set bit RX9.  
6. Verify address detection is disabled by clearing  
the ADDEN bit of the RCSTA register.  
7. Start reception by setting the SREN bit or for  
continuous reception, set the CREN bit.  
18.3.1.5  
Synchronous data transfers use a separate clock line,  
which is synchronous with the data. device  
Slave Clock  
8. Interrupt flag bit RCIF of the PIR1 register will be  
set when reception of a character is complete.  
An interrupt will be generated if the RCIE inter-  
rupt enable bit of the PIE1 register was set.  
A
configured as a slave receives the clock on the TX/CK  
line. The TX/CK pin output driver is automatically  
disabled when the device is configured for  
synchronous slave transmit or receive operation. Serial  
data bits change on the leading edge to ensure they are  
valid at the trailing edge of each clock. One data bit is  
transferred for each clock cycle. Only as many clock  
cycles should be received as there are data bits.  
9. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
10. Read the 8-bit received data by reading the  
RCREG register.  
11. If an overrun error occurs, clear the error by  
either clearing the CREN bit of the RCSTA  
register or by clearing the SPEN bit, which  
resets the AUSART.  
18.3.1.6  
Receive Overrun Error  
The receive FIFO buffer can hold two characters. An  
overrun error will be generated if a third character, in its  
entirety, is received before RCREG is read to access  
the FIFO. When this happens the OERR bit of the  
RCSTA register is set. Previous data in the FIFO will  
not be overwritten. The two characters in the FIFO  
buffer can be read, however, no additional characters  
will be received until the error is cleared. The OERR bit  
can only be cleared by clearing the overrun condition.  
If the overrun error occurred when the SREN bit is set  
and CREN is clear then the error is cleared by reading  
RCREG. If the overrun occurred when the CREN bit is  
set then the error condition is cleared by either clearing  
the CREN bit of the RCSTA register.  
DS41418A-page 152  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 18-8:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
RX/DT  
pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
TX/CK pin  
Write to  
bit SREN  
SREN bit  
0’  
0’  
CREN bit  
RCIF bit  
(Interrupt)  
Read  
RCREG  
Note:  
Timing diagram demonstrates Synchronous Master mode with bit SREN = 1and bit BRGH = 0.  
TABLE 18-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELC  
INTCON  
PIE1  
ANSC7  
GIE  
ANSC6  
PEIE  
ANSC5  
TMR0IE  
RCIE  
ANSC2  
TMR0IF  
ANSC1  
INTF  
ANSC0 111- -111 111- -111  
RBIF 0000 000x 0000 000x  
INTE  
TXIE  
TXIF  
RBIE  
SSPIE  
SSPIF  
TMR1GIE  
TMR1GIF  
ADIE  
ADIF  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
PIR1  
RCIF  
RCREG  
RCSTA  
TRISC  
TXSTA  
Legend:  
AUSART Receive Data Register  
SREN CREN ADDEN FERR  
0000 0000 0000 0000  
0000 000X 0000 000X  
SPEN  
TRISC7  
CSRC  
RX9  
OERR  
RX9D  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
TX9 TXEN SYNC BRGH TRMT TX9D 0000 -010 0000 -010  
x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for synchronous master reception.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 153  
PIC16F707/PIC16LF707  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
18.3.2  
SYNCHRONOUS SLAVE MODE  
The following bits are used to configure the AUSART  
for synchronous slave operation:  
1. The first character will immediately transfer to  
the TSR register and transmit.  
• SYNC = 1  
2. The second word will remain in TXREG register.  
3. The TXIF bit will not be set.  
• CSRC = 0  
• SREN = 0(for transmit); SREN = 1(for receive)  
• CREN = 0(for transmit); CREN = 1(for receive)  
• SPEN = 1  
4. After the first character has been shifted out of  
TSR, the TXREG register will transfer the second  
character to the TSR and the TXIF bit will now be  
set.  
Setting the SYNC bit of the TXSTA register configures  
the device for synchronous operation. Clearing the  
CSRC bit of the TXSTA register configures the device as  
a slave. Clearing the SREN and CREN bits of the RCSTA  
register ensures that the device is in the Transmit mode,  
otherwise the device will be configured to receive. Setting  
the SPEN bit of the RCSTA register enables the  
AUSART.  
5. If the PEIE and TXIE bits are set, the interrupt  
will wake the device from Sleep and execute the  
next instruction. If the GIE bit is also set, the  
program will call the Interrupt Service Routine.  
18.3.2.2  
Synchronous Slave Transmission  
Set-up:  
1. Set the SYNC and SPEN bits and clear the  
CSRC bit.  
18.3.2.1  
AUSART Synchronous Slave  
Transmit  
2. Clear the CREN and SREN bits.  
The operation of the Synchronous Master and Slave  
modes are identical (refer to Section 18.3.1.2  
“Synchronous Master Transmission”), except in the  
case of the Sleep mode.  
3. If using interrupts, ensure that the GIE and PEIE  
bits of the INTCON register are set and set the  
TXIE bit.  
4. If 9-bit transmission is desired, set the TX9 bit.  
5. Enable transmission by setting the TXEN bit.  
6. Verify address detection is disabled by clearing  
the ADDEN bit of the RCSTA register.  
7. If 9-bit transmission is selected, insert the Most  
Significant bit into the TX9D bit.  
8. Start transmission by writing the Least  
Significant 8 bits to the TXREG register.  
TABLE 18-8: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELC  
INTCON  
PIE1  
ANSC7  
GIE  
ANSC6  
PEIE  
ADIE  
ADIF  
RX9  
ANSC5  
TMR0IE  
RCIE  
ANSC2  
TMR0IF  
ANSC1  
INTF  
ANSC0 111- -111 111- -111  
RBIF 0000 000x 0000 000x  
INTE  
TXIE  
TXIF  
CREN  
RBIE  
TMR1GIE  
TMR1GIF  
SPEN  
SSPIE  
SSPIF  
ADDEN  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
PIR1  
RCIF  
RCSTA  
TRISC  
TXREG  
TXSTA  
Legend:  
SREN  
FERR  
OERR  
RX9D  
0000 000X 0000 000X  
TRISC7  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
AUSART Transmit Data Register  
TXEN SYNC BRGH  
0000 0000 0000 0000  
0000 -010 0000 -010  
CSRC  
TX9  
TRMT  
TX9D  
x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for synchronous slave transmission.  
DS41418A-page 154  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
18.3.2.3  
AUSART Synchronous Slave  
Reception  
18.3.2.4  
Synchronous Slave Reception Set-  
up:  
The operation of the Synchronous Master and Slave  
modes is identical (Section 18.3.1.4 “Synchronous  
Master Reception”), with the following exceptions:  
1. Set the SYNC and SPEN bits and clear the  
CSRC bit.  
2. If interrupts are desired, set the RCIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
• Sleep  
• CREN bit is always set, therefore the receiver is  
never Idle  
3. If 9-bit reception is desired, set the RX9 bit.  
4. Verify address detection is disabled by clearing  
the ADDEN bit of the RCSTA register.  
• SREN bit, which is a “don’t care” in Slave mode  
A character may be received while in Sleep mode by  
setting the CREN bit prior to entering Sleep. Once the  
word is received, the RSR register will transfer the data  
to the RCREG register. If the RCIE interrupt enable bit  
of the PIE1 register is set, the interrupt generated will  
wake the device from Sleep and execute the next  
instruction. If the GIE bit is also set, the program will  
branch to the interrupt vector.  
5. Set the CREN bit to enable reception.  
6. The RCIF bit of the PIR1 register will be set  
when reception is complete. An interrupt will be  
generated if the RCIE bit of the PIE1 register  
was set.  
7. If 9-bit mode is enabled, retrieve the Most  
Significant bit from the RX9D bit of the RCSTA  
register.  
8. Retrieve the 8 Least Significant bits from the  
receive FIFO by reading the RCREG register.  
9. If an overrun error occurs, clear the error by  
either clearing the CREN bit of the RCSTA  
register.  
TABLE 18-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELC  
INTCON  
PIE1  
ANSC7  
GIE  
ANSC6  
PEIE  
ANSC5  
TMR0IE  
RCIE  
ANSC2  
TMR0IF  
ANSC1  
INTF  
ANSC0 111- -111 111- -111  
RBIF 0000 000x 0000 000x  
INTE  
TXIE  
TXIF  
RBIE  
SSPIE  
SSPIF  
TMR1GIE  
TMR1GIF  
ADIE  
ADIF  
CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
PIR1  
RCIF  
RCREG  
RCSTA  
TRISC  
TXSTA  
Legend:  
AUSART Receive Data Register  
SREN CREN ADDEN FERR  
0000 0000 0000 0000  
0000 000X 0000 000X  
SPEN  
TRISC7  
CSRC  
RX9  
OERR  
RX9D  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
TX9 TXEN SYNC BRGH TRMT TX9D 0000 -010 0000 -010  
x= unknown, -= unimplemented read as ‘0’. Shaded cells are not used for synchronous slave reception.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 155  
PIC16F707/PIC16LF707  
18.4.2  
SYNCHRONOUS TRANSMIT  
DURING SLEEP  
18.4 AUSART Operation During Sleep  
The AUSART will remain active during Sleep only in the  
Synchronous Slave mode. All other modes require the  
system clock and therefore cannot generate the  
necessary signals to run the transmit or receive shift  
registers during Sleep.  
To transmit during Sleep, all the following conditions  
must be met before entering Sleep mode:  
• RCSTA and TXSTA control registers must be  
configured for synchronous slave transmission  
(refer to Section 18.3.2.2 “Synchronous Slave  
Transmission Set-up:”).  
Synchronous Slave mode uses an externally generated  
clock to run the transmit and receive shift registers.  
• The TXIF interrupt flag must be cleared by writing  
the output data to the TXREG, thereby filling the  
TSR and transmit buffer.  
18.4.1  
SYNCHRONOUS RECEIVE DURING  
SLEEP  
• If interrupts are desired, set the TXIE bit of the  
PIE1 register and the PEIE bit of the INTCON  
register.  
To receive during Sleep, all the following conditions  
must be met before entering Sleep mode:  
• RCSTA and TXSTA control registers must be  
configured for synchronous slave reception (refer  
to Section 18.3.2.4 “Synchronous Slave  
Reception Set-up:”).  
Upon entering Sleep mode, the device will be ready to  
accept clocks on TX/CK pin and transmit data on the  
RX/DT pin. When the data word in the TSR has been  
completely clocked out by the external device, the  
pending byte in the TXREG will transfer to the TSR and  
the TXIF flag will be set. Thereby, waking the processor  
from Sleep. At this point, the TXREG is available to  
accept another character for transmission, which will  
clear the TXIF flag.  
• If interrupts are desired, set the RCIE bit of the  
PIE1 register and the PEIE bit of the INTCON  
register.  
• The RCIF interrupt flag must be cleared by read-  
ing RCREG to unload any pending characters in  
the receive buffer.  
Upon waking from Sleep, the instruction following the  
SLEEP instruction will be executed. If the Global  
Interrupt Enable (GIE) bit is also set then the Interrupt  
Service Routine at address 0004h will be called.  
Upon entering Sleep mode, the device will be ready to  
accept data and clocks on the RX/DT and TX/CK pins,  
respectively. When the data word has been completely  
clocked in by the external device, the RCIF interrupt  
flag bit of the PIR1 register will be set. Thereby, waking  
the processor from Sleep.  
Upon waking from Sleep, the instruction following the  
SLEEP instruction will be executed. If the Global  
Interrupt Enable (GIE) bit of the INTCON register is  
also set, then the Interrupt Service Routine at address  
0004h will be called.  
DS41418A-page 156  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
A typical SPI connection between microcontroller  
devices is shown in Figure 19-1. Addressing of more  
than one slave device is accomplished via multiple  
hardware slave select lines. External hardware and  
additional I/O pins must be used to support multiple  
slave select addressing. This prevents extra overhead  
in software for communication.  
19.0 SSP MODULE OVERVIEW  
The Synchronous Serial Port (SSP) module is a serial  
interface useful for communicating with other peripher-  
als or microcontroller devices. These peripheral  
devices may be serial EEPROMs, shift registers, dis-  
play drivers, A/D converters, etc. The SSP module can  
operate in one of two modes:  
For SPI communication, typically three pins are used:  
• Serial Peripheral Interface (SPI)  
• Inter-Integrated Circuit (I2C™)  
• Serial Data Out (SDO)  
• Serial Data In (SDI)  
• Serial Clock (SCK)  
19.1 SPI Mode  
Additionally, a fourth pin may be used when in a Slave  
mode of operation:  
The SPI mode allows 8 bits of data to be synchronously  
transmitted and received, simultaneously. The SSP  
module can be operated in one of two SPI modes:  
• Slave Select (SS)  
• Master mode  
• Slave mode  
SPI is a full-duplex protocol, with all communication  
being bidirectional and initiated by a master device. All  
clocking is provided by the master device and all bits  
are transmitted, MSb first. Care must be taken to  
ensure that all devices on the SPI bus are setup to  
allow all controllers to send and receive data at the  
same time.  
FIGURE 19-1:  
TYPICAL SPI MASTER/SLAVE CONNECTION  
SPI Master SSPM<3:0> = 00xx  
SPI Slave SSPM<3:0> = 010x  
SDO  
SDI  
Serial Input Buffer  
(SSPBUF)  
Serial Input Buffer  
(SSPBUF)  
SDI  
SDO  
Shift Register  
(SSPSR)  
Shift Register  
(SSPSR)  
LSb  
MSb  
MSb  
LSb  
Serial Clock  
SCK  
SCK  
SS  
Slave Select  
(optional)  
General I/O  
Processor 2  
Processor 1  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 157  
PIC16F707/PIC16LF707  
FIGURE 19-2:  
SPI MODE BLOCK  
DIAGRAM  
19.1.1  
MASTER MODE  
In Master mode, data transfer can be initiated at any  
time because the master controls the SCK line. Master  
mode determines when the slave (Figure 19-1,  
Processor 2) transmits data via control of the SCK line.  
Internal  
Data Bus  
Read  
Write  
19.1.1.1  
Master Mode Operation  
SSPBUF Reg  
SSPSR Reg  
The SSP consists of a transmit/receive shift register  
(SSPSR) and a buffer register (SSPBUF). The SSPSR  
register shifts the data in and out of the device, MSb  
first. The SSPBUF register holds the data that is written  
out of the master until the received data is ready. Once  
the eight bits of data have been received, the byte is  
moved to the SSPBUF register. The Buffer Full Status  
bit, BF of the SSPSTAT register, and the SSP Interrupt  
Flag bit, SSPIF of the PIR1 register, are then set.  
SDI  
bit 0  
bit 7  
Shift  
Clock  
SDO  
Any write to the SSPBUF register during transmission/  
reception of data will be ignored and the Write Collision  
Detect bit, WCOL of the SSPCON register, will be set.  
User software must clear the WCOL bit so that it can be  
determined if the following write(s) to the SSPBUF  
register completed successfully.  
SS  
Control  
Enable  
RA5/SS  
RA0/SS  
SSSEL  
When the application software is expecting to receive  
valid data, the SSPBUF should be read before the next  
byte of data is written to the SSPBUF. The BF bit of the  
SSPSTAT register is set when SSPBUF has been  
loaded with the received data (transmission is  
complete). When the SSPBUF is read, the BF bit is  
cleared. This data may be irrelevant if the SPI is only a  
transmitter. The SSP interrupt may be used to  
determine when the transmission/reception is  
complete and the SSPBUF must be read and/or  
written. If interrupts are not used, then software polling  
can be done to ensure that a write collision does not  
occur. Example 19-1 shows the loading of the SSPBUF  
(SSPSR) for data transmission.  
2
Clock Select  
Edge  
Select  
TMR2  
2  
Output  
Edge  
Select  
FOSC  
Prescaler  
4, 16, 64  
SCK  
4
TRISx  
Note:  
The SSPSR is not directly readable or  
writable and can only be accessed by  
addressing the SSPBUF register.  
SSPM<3:0>  
19.1.1.2  
Enabling Master I/O  
To enable the serial port, the SSPEN bit of the  
SSPCON register, must be set. To reset or reconfigure  
SPI mode, clear the SSPEN bit, re-initialize the  
SSPCON register and then set the SSPEN bit. If a  
Master mode of operation is selected in the SSPM bits  
of the SSPCON register, the SDI, SDO and SCK pins  
will be assigned as serial port pins.  
For these pins to function as serial port pins, they must  
have their corresponding data direction bits set or  
cleared in the associated TRIS register as follows:  
• SDI configured as input  
• SDO configured as output  
• SCK configured as output  
DS41418A-page 158  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
19.1.1.3  
Master Mode Setup  
In Master mode, the data is transmitted/received as  
soon as the SSPBUF register is loaded with a byte  
value. If the master is only going to receive, SDO output  
could be disabled (programmed and used as an input).  
The SSPSR register will continue to shift in the signal  
present on the SDI pin at the programmed clock rate.  
When initializing SPI Master mode operation, several  
options need to be specified. This is accomplished by  
programming the appropriate control bits in the  
SSPCON and SSPSTAT registers. These control bits  
allow the following to be specified:  
• SCK as clock output  
• Idle state of SCK (CKP bit)  
• Data input sample phase (SMP bit)  
• Output data on rising/falling edge of SCK (CKE bit)  
• Clock bit rate  
In Master mode, the SPI clock rate (bit rate) is user  
selectable to be one of the following:  
• FOSC/4 (or TCY)  
• FOSC/16 (or 4 TCY)  
• FOSC/64 (or 16 TCY)  
• (Timer2 output)/2  
This allows  
a maximum data rate of 5 Mbps  
(at FOSC = 20 MHz).  
Figure 19-3 shows the waveforms for Master mode.  
The clock polarity is selected by appropriately program-  
ming the CKP bit of the SSPCON register. When the  
CKE bit is set, the SDO data is valid before there is a  
clock edge on SCK. The sample time of the input data  
is shown based on the state of the SMP bit and can  
occur at the middle or end of the data output time. The  
time when the SSPBUF is loaded with the received  
data is shown.  
19.1.1.4  
Sleep in Master Mode  
In Master mode, all module clocks are halted and the  
transmission/reception will remain in their current state,  
paused, until the device wakes from Sleep. After the  
device wakes up from Sleep, the module will continue  
to transmit/receive data.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 159  
PIC16F707/PIC16LF707  
FIGURE 19-3:  
SPI MASTER MODE WAVEFORM  
Write to  
SSPBUF  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
4 Clock  
Modes  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
SDO  
(CKE = 0)  
bit 6  
bit 6  
bit 2  
bit 2  
bit 5  
bit 5  
bit 4  
bit 4  
bit 1  
bit 1  
bit 0  
bit 0  
bit 7  
bit 7  
bit 3  
bit 3  
SDO  
(CKE = 1)  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SDI  
(SMP = 1)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 1)  
SSPIF  
SSPSR to  
SSPBUF  
EXAMPLE 19-1:  
LOADING THE SSPBUF (SSPSR) REGISTER  
BANKSEL  
SSPSTAT  
;
LOOP  
BTFSS  
GOTO  
SSPSTAT, BF ;Has data been received(transmit complete)?  
LOOP  
;No  
BANKSEL  
MOVF  
MOVWF  
MOVF  
SSPBUF  
SSPBUF, W  
RXDATA  
TXDATA, W  
SSPBUF  
;
;WREG reg = contents of SSPBUF  
;Save in user RAM, if data is meaningful  
;W reg = contents of TXDATA  
;New data to xmit  
MOVWF  
DS41418A-page 160  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
19.1.2  
SLAVE MODE  
19.1.2.2  
Enabling Slave I/O  
For any SPI device acting as a slave, the data is  
transmitted and received as external clock pulses  
appear on the SCK pin. This external clock must meet  
the minimum high and low times as specified in the  
electrical specifications.  
To enable the serial port, the SSPEN bit of the  
SSPCON register must be set. If a Slave mode of  
operation is selected in the SSPM bits of the SSPCON  
register, the SDI, SDO and SCK pins will be assigned  
as serial port pins.  
For these pins to function as serial port pins, they must  
have their corresponding data direction bits set or  
cleared in the associated TRIS register as follows:  
19.1.2.1  
Slave Mode Operation  
The SSP consists of a transmit/receive shift register  
(SSPSR) and a buffer register (SSPBUF). The SSPSR  
shifts the data in and out of the device, MSb first. The  
SSPBUF holds the data that was written to the SSPSR  
until the received data is ready.  
• SDI configured as input  
• SDO configured as output  
• SCK configured as input  
Optionally, a fourth pin, Slave Select (SS) may be used  
in Slave mode. Slave Select may be configured to  
operate on one of the following pins via the SSSEL bit in  
the APFCON register.  
The slave has no control as to when data will be  
clocked in or out of the device. All data that is to be  
transmitted, to a master or another slave, must be  
loaded into the SSPBUF register before the first clock  
pulse is received.  
• RA5/AN4/SS  
• RA0/AN0/SS  
Once eight bits of data have been received:  
• Received byte is moved to the SSPBUF register  
• BF bit of the SSPSTAT register is set  
• SSPIF bit of the PIR1 register is set  
Upon selection of a Slave Select pin, the appropriate  
bits must be set in the ANSELA and TRISA registers.  
Slave Select must be set as an input by setting the  
corresponding bit in TRISA, and digital I/O must be  
enabled on the SS pin by clearing the corresponding bit  
of the ANSELA register.  
Any write to the SSPBUF register during transmission/  
reception of data will be ignored and the Write Collision  
Detect bit, WCOL of the SSPCON register, will be set.  
User software must clear the WCOL bit so that it can be  
determined if the following write(s) to the SSPBUF  
register completed successfully.  
19.1.2.3  
Slave Mode Setup  
When initializing the SSP module to SPI Slave mode,  
compatibility must be ensured with the master device.  
This is done by programming the appropriate control  
bits of the SSPCON and SSPSTAT registers. These  
control bits allow the following to be specified:  
The user’s firmware must read SSPBUF, clearing the  
BF flag, or the SSPOV bit of the SSPCON register will  
be set with the reception of the next byte and  
communication will be disabled.  
• SCK as clock input  
A SPI module transmits and receives at the same time,  
occasionally causing dummy data to be transmitted/  
received. It is up to the user to determine which data is  
to be used and what can be discarded.  
• Idle state of SCK (CKP bit)  
• Data input sample phase (SMP bit)  
• Output data on rising/falling edge of SCK (CKE bit)  
Figure 19-4 and Figure 19-5 show example waveforms  
of Slave mode operation.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 161  
PIC16F707/PIC16LF707  
FIGURE 19-4:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)  
SS  
Optional  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 3  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
SSPSR to  
SSPBUF  
FIGURE 19-5:  
SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)  
SS  
Not Optional  
SCK  
(CKP = 0  
CKE = 1)  
SCK  
(CKP = 1  
CKE = 1)  
Write to  
SSPBUF  
bit 6  
bit 2  
bit 5  
bit 4  
bit 1  
bit 0  
SDO  
bit 7  
bit 3  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
SSPSR to  
SSPBUF  
DS41418A-page 162  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
When the SPI module resets, the bit counter is cleared  
to ‘0’. This can be done by either forcing the SS pin to  
a high level or clearing the SSPEN bit. Figure 19-6  
shows the timing waveform for such a synchronization  
event.  
19.1.2.4  
Slave Select Operation  
The SS pin allows Synchronous Slave mode operation.  
The SPI must be in Slave mode with SS pin control  
enabled (SSPM<3:0> = 0100). The associated TRIS bit  
for the SS pin must be set, making SS an input.  
Note:  
SSPSR must be reinitialized by writing to  
the SSPBUF register before the data can  
be clocked out of the slave again.  
In Slave Select mode, when:  
• SS = 0, The device operates as specified in  
Section 19.1.2 “Slave Mode”.  
• SS = 1, The SPI module is held in Reset and the  
SDO pin will be tri-stated.  
19.1.2.5  
Sleep in Slave Mode  
While in Sleep mode, the slave can transmit/receive  
data. The SPI Transmit/Receive Shift register operates  
asynchronously to the device on the externally supplied  
clock source. This allows the device to be placed in  
Sleep mode and data to be shifted into the SPI Trans-  
mit/Receive Shift register. When all 8 bits have been  
received, the SSP interrupt flag bit will be set and if  
enabled, will wake the device from Sleep.  
Note 1: When the SPI is in Slave mode with SS pin  
control enabled (SSPM<3:0> = 0100), the  
SPI module will reset if the SS pin is driven  
high.  
2: If the SPI is used in Slave mode with CKE  
set, the SS pin control must be enabled.  
FIGURE 19-6:  
SLAVE SELECT SYNCHRONIZATION WAVEFORM  
SS  
SCK  
(CKP = 0  
CKE = 0)  
SCK  
(CKP = 1  
CKE = 0)  
Write to  
SSPBUF  
SSPSR must be reinitialized by writing to  
the SSPBUF register before the data can  
be clocked out of the slave again.  
bit 6  
bit 7  
bit 7  
bit 0  
SDO  
bit 7  
SDI  
(SMP = 0)  
bit 0  
bit 7  
Input  
Sample  
(SMP = 0)  
SSPIF  
Interrupt  
Flag  
SSPSR to  
SSPBUF  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 163  
PIC16F707/PIC16LF707  
REGISTER 19-1: SSPCON: SYNC SERIAL PORT CONTROL REGISTER (SPI MODE)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
WCOL: Write Collision Detect bit  
1= The SSPBUF register is written while it is still transmitting the previous word (must be cleared in  
software)  
0= No collision  
bit 6  
SSPOV: Receive Overflow Indicator bit  
1= A new byte is received while the SSPBUF register is still holding the previous data. In case of  
overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read  
the SSPBUF, even if only transmitting data, to avoid setting overflow. In Master mode, the over-  
flow bit is not set since each new reception (and transmission) is initiated by writing to the  
SSPBUF register.  
0= No overflow  
bit 5  
SSPEN: Synchronous Serial Port Enable bit  
1= Enables serial port and configures SCK, SDO and SDI as serial port pins(1)  
0= Disables serial port and configures these pins as I/O port pins  
bit 4  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level  
0= Idle state for clock is a low level  
bit 3-0  
SSPM<3:0>: Synchronous Serial Port Mode Select bits  
0000= SPI Master mode, clock = FOSC/4  
0001= SPI Master mode, clock = FOSC/16  
0010= SPI Master mode, clock = FOSC/64  
0011= SPI Master mode, clock = TMR2 output/2  
0100= SPI Slave mode, clock = SCK pin. SS pin control enabled.  
0101= SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin.  
Note 1: When enabled, these pins must be properly configured as input or output.  
DS41418A-page 164  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
REGISTER 19-2: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (SPI MODE)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
bit 6  
SMP: SPI Data Input Sample Phase bit  
SPI Master mode:  
1= Input data sampled at end of data output time  
0= Input data sampled at middle of data output time  
SPI Slave mode:  
SMP must be cleared when SPI is used in Slave mode  
CKE: SPI Clock Edge Select bit  
SPI mode, CKP = 0:  
1= Data stable on rising edge of SCK  
0= Data stable on falling edge of SCK  
SPI mode, CKP = 1:  
1= Data stable on falling edge of SCK  
0= Data stable on rising edge of SCK  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
D/A: Data/Address bit  
Used in I2C mode only.  
P: Stop bit  
Used in I2C mode only.  
S: Start bit  
Used in I2C mode only.  
R/W: Read/Write Information bit  
Used in I2C mode only.  
UA: Update Address bit  
Used in I2C mode only.  
BF: Buffer Full Status bit  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 165  
PIC16F707/PIC16LF707  
TABLE 19-1: SUMMARY OF REGISTERS ASSOCIATED WITH SPI OPERATION  
Value on  
POR, BOR  
Value on all  
other Resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELA  
APFCON  
INTCON  
PIE1  
ANSA7  
ANSA6  
ANSA5  
ANSA4  
ANSA3  
ANSA2  
ANSA1  
SSSEL  
INTF  
ANSA0  
CCP2SEL  
RBIF  
1111 1111  
---- --00  
0000 000x  
0000 0000  
0000 0000  
1111 1111  
---- --00  
0000 000x  
0000 0000  
0000 0000  
GIE  
PEIE  
ADIE  
TMR0IE  
RCIE  
INTE  
TXIE  
RBIE  
SSPIE  
TMR0IF  
CCP1IE  
TMR1GIE  
TMR2IE  
TMR1IE  
PIR1  
TMR1GIF  
ADIF  
RCIF  
TXIF  
SSPIF  
CCP1IF  
TMR2IF  
TMR1IF  
PR2  
Timer2 Period Register  
Synchronous Serial Port Receive Buffer/Transmit Register  
1111 1111  
xxxx xxxx  
0000 0000  
0000 0000  
1111 1111  
1111 1111  
-000 0000  
1111 1111  
uuuu uuuu  
0000 0000  
0000 0000  
1111 1111  
1111 1111  
-000 0000  
SSPBUF  
SSPCON  
SSPSTAT  
TRISA  
WCOL  
SMP  
SSPOV  
CKE  
SSPEN  
D/A  
CKP  
P
SSPM3  
S
SSPM2  
R/W  
SSPM1  
UA  
SSPM0  
BF  
TRISA7  
TRISC7  
TRISA6  
TRISC6  
TRISA5  
TRISC5  
TRISA4  
TRISC4  
TRISA3  
TRISC3  
TRISA2  
TRISC2  
TRISA1  
TRISC1  
TRISA0  
TRISC0  
TRISC  
T2CON  
Legend:  
TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0  
x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used by the SSP in SPI mode.  
DS41418A-page 166  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
2
FIGURE 19-8:  
TYPICAL I2C™  
CONNECTIONS  
19.2 I C Mode  
The SSP module, in I2C mode, implements all slave  
functions, except general call support. It provides  
interrupts on Start and Stop bits in hardware to facilitate  
firmware implementations of the master functions. The  
SSP module implements the I2C Standard mode  
specifications:  
VDD VDD  
Slave 1  
Master  
SDA  
• I2C Slave mode (7-bit address)  
• I2C Slave mode (10-bit address)  
SDA  
SCL  
SCL  
• Start and Stop bit interrupts enabled to support  
firmware Master mode  
Slave 2  
• Address masking  
SDA  
Two pins are used for data transfer; the SCL pin (clock  
line) and the SDA pin (data line). The user must  
configure the two pin’s data direction bits as inputs in  
the appropriate TRIS register. Upon enabling I2C  
mode, the I2C slew rate limiters in the I/O pads are  
controlled by the SMP bit of the SSPSTAT register. The  
SSP module functions are enabled by setting the  
SSPEN bit of the SSPCON register.  
SCL  
(optional)  
The SSP module has six registers for I2C operation.  
They are:  
• SSP Control (SSPCON) register  
Data is sampled on the rising edge and shifted out on  
the falling edge of the clock. This ensures that the SDA  
signal is valid during the SCL high time. The SCL clock  
input must have minimum high and low times for proper  
operation. Refer to Section 25.0 “Electrical  
Specifications”.  
• SSP Status (SSPSTAT) register  
• Serial Receive/Transmit Buffer (SSPBUF) register  
• SSP Shift Register (SSPSR), not directly  
accessible  
• SSP Address (SSPADD) register  
• SSP Address Mask (SSPMSK) register  
FIGURE 19-7:  
I2C™ MODE BLOCK  
DIAGRAM  
19.2.1  
HARDWARE SETUP  
Selection of I2C mode, with the SSPEN bit of the  
SSPCON register set, forces the SCL and SDA pins to  
be open drain, provided these pins are programmed as  
inputs by setting the appropriate TRISC bits. The SSP  
module will override the input state with the output  
data, when required, such as for Acknowledge and  
slave-transmitter sequences.  
Internal  
Data Bus  
Read  
Write  
SSPBUF Reg  
SCL  
SDA  
Shift  
Clock  
Note:  
Pull-up resistors must be provided  
externally to the SCL and SDA pins for  
proper operation of the I2C module.  
SSPSR Reg  
MSb  
LSb  
SSPMSK Reg  
Match Detect  
SSPADD Reg  
Addr Match  
Start and  
Stop bit Detect  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 167  
PIC16F707/PIC16LF707  
Figure 19-9 shows the Start and Stop conditions. A  
master device generates these conditions for starting  
and terminating data transfer. Due to the definition of  
the Start and Stop conditions, when data is being trans-  
mitted, the SDA line can only change state when the  
SCL line is low.  
19.2.2  
START AND STOP CONDITIONS  
During times of no data transfer (Idle time), both the  
clock line (SCL) and the data line (SDA) are pulled high  
through external pull-up resistors. The Start and Stop  
conditions determine the start and stop of data trans-  
mission. The Start condition is defined as a high-to-low  
transition of the SDA line while SCL is high. The Stop  
condition is defined as a low-to-high transition of the  
SDA line while SCL is high.  
FIGURE 19-9:  
START AND STOP CONDITIONS  
SDA  
SCL  
S
P
Change of  
Change of  
Data Allowed  
Start  
Data Allowed  
Stop  
Condition  
Condition  
In such a case, the SSPSR register value is not loaded  
into the SSPBUF, but bit SSPIF of the PIR1 register is  
set. Table 19-2 shows the results of when a data  
transfer byte is received, given the status of bits BF and  
SSPOV. Flag bit BF is cleared by reading the SSPBUF  
register, while bit SSPOV is cleared through software.  
19.2.3  
ACKNOWLEDGE  
After the valid reception of an address or data byte, the  
hardware automatically will generate the Acknowledge  
(ACK) pulse and load the SSPBUF register with the  
received value currently in the SSPSR register. There  
are certain conditions that will cause the SSP module  
not to generate this ACK pulse. They include any or all  
of the following:  
• The Buffer Full bit, BF of the SSPSTAT register,  
was set before the transfer was received.  
• The SSP Overflow bit, SSPOV of the SSPCON  
register, was set before the transfer was received.  
• The SSP Module is being operated in Firmware  
Master mode.  
TABLE 19-2: DATA TRANSFER RECEIVED BYTE ACTIONS  
Status Bits as Data  
Set bit SSPIF  
(SSP Interrupt occurs  
if enabled)  
Generate ACK  
Transfer is Received  
SSPSR SSPBUF  
Pulse  
BF  
SSPOV  
0
0
0
1
1
Yes  
No  
No  
No  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
1
1
0
Note:  
Shaded cells show the conditions where the user software did not properly clear the overflow condition.  
DS41418A-page 168  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
The sequence of events for 10-bit address is as follows  
for reception:  
19.2.4  
ADDRESSING  
Once the SSP module has been enabled, it waits for a  
Start condition to occur. Following the Start condition,  
the 8 bits are shifted into the SSPSR register. All  
incoming bits are sampled with the rising edge of the  
clock line (SCL).  
1. Load SSPADD register with high byte of address.  
2. Receive first (high) byte of address (bits SSPIF,  
BF and UA of the SSPSTAT register are set).  
3. Read the SSPBUF register (clears bit BF).  
4. Clear the SSPIF flag bit.  
19.2.4.1  
7-bit Addressing  
5. Update the SSPADD register with second (low)  
byte of address (clears UA bit and releases the  
SCL line).  
In 7-bit Addressing mode (Figure 19-10), the value of  
register SSPSR<7:1> is compared to the value of  
register SSPADD<7:1>. The address is compared on  
the falling edge of the eighth clock (SCL) pulse. If the  
addresses match, and the BF and SSPOV bits are  
clear, the following events occur:  
6. Receive low byte of address (bits SSPIF, BF and  
UA are set).  
7. Update the SSPADD register with the high byte  
of address. If match releases SCL line, this will  
clear bit UA.  
• The SSPSR register value is loaded into the  
SSPBUF register.  
8. Read the SSPBUF register (clears bit BF).  
9. Clear flag bit SSPIF.  
• The BF bit is set.  
• An ACK pulse is generated.  
If data is requested by the master, once the slave has  
been addressed:  
• SSP interrupt flag bit, SSPIF of the PIR1 register,  
is set (interrupt is generated if enabled) on the  
falling edge of the ninth SCL pulse.  
1. Receive repeated Start condition.  
2. Receive repeat of high byte address with R/W = 1,  
19.2.4.2  
10-bit Addressing  
indicating a read.  
In 10-bit Address mode, two address bytes need to be  
received by the slave (Figure 19-11). The five Most Sig-  
nificant bits (MSbs) of the first address byte specify if it  
is a 10-bit address. The R/W bit of the SSPSTAT regis-  
ter must specify a write so the slave device will receive  
the second address byte. For a 10-bit address, the first  
byte would equal ‘1111 0 A9 A8 0’, where A9 and  
A8 are the two MSbs of the address.  
3. BF bit is set and the CKP bit is cleared, stopping  
SCL and indicating a read request.  
4. SSPBUF is written, setting BF, with the data to  
send to the master device.  
5. CKP is set in software, releasing the SCL line.  
19.2.4.3  
Address Masking  
The Address Masking register (SSPMSK) is only  
accessible while the SSPM bits of the SSPCON  
register are set to ‘1001’. In this register, the user can  
select which bits of a received address the hardware  
will compare when determining an address match. Any  
bit that is set to a zero in the SSPMSK register, the  
corresponding bit in the received address byte and  
SSPADD register are ignored when determining an  
address match. By default, the register is set to all  
ones, requiring a complete match of a 7-bit address or  
the lower eight bits of a 10-bit address.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 169  
PIC16F707/PIC16LF707  
19.2.5  
RECEPTION  
When the R/W bit of the received address byte is clear,  
the master will write data to the slave. If an address  
match occurs, the received address is loaded into the  
SSPBUF register. An address byte overflow will occur  
if that loaded address is not read from the SSPBUF  
before the next complete byte is received.  
An SSP interrupt is generated for each data transfer byte.  
The BF, R/W and D/A bits of the SSPSTAT register are  
used to determine the status of the last received byte.  
FIGURE 19-10:  
I2C™ WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)  
R/W = 0  
ACK  
Receiving Address  
A7 A6 A5 A4 A3 A2  
Receiving Data  
Receiving Data  
ACK  
9
ACK  
9
SDA  
A1  
7
D2 D1 D0  
D4  
D3  
D7 D6 D5 D4 D3 D2 D1 D0  
D7  
1
D6 D5  
1
2
3
4
5
6
8
9
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
P
SCL  
S
SSPIF  
Cleared in software  
Bus Master  
sends Stop  
condition  
BF  
SSPBUF register is read  
SSPOV  
Bit SSPOV is set because the SSPBUF register is still full.  
ACK is not sent.  
DS41418A-page 170  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 19-11:  
I2C™ SLAVE MODE TIMING (RECEPTION, 10-BIT ADDRESS)  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 171  
PIC16F707/PIC16LF707  
Following the 8th falling clock edge, control of the SDA  
line is released back to the master so that the master  
can acknowledge or not acknowledge the response. If  
the master sends a not acknowledge, the slave’s  
transmission is complete and the slave must monitor for  
the next Start condition. If the master acknowledges,  
control of the bus is returned to the slave to transmit  
another byte of data. Just as with the previous byte, the  
clock is stretched by the slave, data must be loaded into  
the SSPBUF and CKP must be set to release the clock  
line (SCL).  
19.2.6  
TRANSMISSION  
When the R/W bit of the received address byte is set  
and an address match occurs, the R/W bit of the  
SSPSTAT register is set and the slave will respond to  
the master by reading out data. After the address match,  
an ACK pulse is generated by the slave hardware and  
the SCL pin is held low (clock is automatically stretched)  
until the slave is ready to respond. See Section 19.2.7  
“Clock Stretching”. The data the slave will transmit  
must be loaded into the SSPBUF register, which sets  
the BF bit. The SCL line is released by setting the CKP  
bit of the SSPCON register.  
An SSP interrupt is generated for each transferred data  
byte. The SSPIF flag bit of the PIR1 register initiates an  
SSP interrupt, and must be cleared by software before  
the next byte is transmitted. The BF bit of the SSPSTAT  
register is cleared on the falling edge of the 8th  
received clock pulse. The SSPIF flag bit is set on the  
falling edge of the ninth clock pulse.  
FIGURE 19-12:  
I2C™ WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)  
Receiving Address  
A7 A6 A5 A4 A3 A2 A1  
R/W  
Transmitting Data  
ACK  
9
SDA  
SCL  
ACK  
D7 D6 D5 D4 D3 D2 D1 D0  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
S
P
SCL held low  
while CPU  
responds to SSPIF  
Data in  
sampled  
Cleared in software  
SSPIF  
BF  
Dummy read of SSPBUF  
to clear BF flag  
From SSP Interrupt  
Service Routine  
SSPBUF is written in software  
CKP  
Set bit after writing to SSPBUF  
(the SSPBUF must be written to  
before the CKP bit can be set)  
DS41418A-page 172  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
2
FIGURE 19-13:  
I C™ SLAVE MODE TIMING (TRANSMISSION 10-BIT ADDRESS)  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 173  
PIC16F707/PIC16LF707  
Refer to Application Note AN554, “Software  
Implementation of I2C™ Bus Master” (DS00554) for more  
information.  
19.2.7  
CLOCK STRETCHING  
During any SCL low phase, any device on the I2C bus  
may hold the SCL line low and delay, or pause, the  
transmission of data. This “stretching” of a transmission  
allows devices to slow down communication on the  
bus. The SCL line must be constantly sampled by the  
master to ensure that all devices on the bus have  
released SCL for more data.  
19.2.9  
MULTI-MASTER MODE  
In Multi-Master mode, the interrupt generation on the  
detection of the Start and Stop conditions allow the  
determination of when the bus is free. The Stop (P) and  
Start (S) bits are cleared from a Reset or when the SSP  
module is disabled. The Stop (P) and Start (S) bits will  
toggle based on the Start and Stop conditions. Control  
of the I2C bus may be taken when the P bit of the  
SSPSTAT register is set or when the bus is Idle, and  
both the S and P bits are clear. When the bus is busy,  
enabling the SSP interrupt will generate the interrupt  
when the Stop condition occurs.  
Stretching usually occurs after an ACK bit of a  
transmission, delaying the first bit of the next byte. The  
SSP module hardware automatically stretches for two  
conditions:  
• After a 10-bit address byte is received (update  
SSPADD register)  
• Anytime the CKP bit of the SSPCON register is  
cleared by hardware  
In Multi-Master operation, the SDA line must be moni-  
tored to see if the signal level is the expected output  
level. This check only needs to be done when a high  
level is output. If a high level is expected and a low level  
is present, the device needs to release the SDA and  
SCL lines (set TRIS bits). There are two stages where  
this arbitration of the bus can be lost. They are the  
Address Transfer and Data Transfer stages.  
The module will hold SCL low until the CKP bit is set.  
This allows the user slave software to update SSPBUF  
with data that may not be readily available. In 10-bit  
addressing modes, the SSPADD register must be  
updated after receiving the first and second address  
bytes. The SSP module will hold the SCL line low until  
the SSPADD has a byte written to it. The UA bit of the  
SSPSTAT register will be set, along with SSPIF,  
indicating an address update is needed.  
When the slave logic is enabled, the slave continues to  
receive. If arbitration was lost during the address  
transfer stage, communication to the device may be in  
progress. If addressed, an ACK pulse will be  
generated. If arbitration was lost during the data  
transfer stage, the device will need to re-transfer the  
data at a later time.  
19.2.8  
FIRMWARE MASTER MODE  
Master mode of operation is supported in firmware  
using interrupt generation on the detection of the Start  
and Stop conditions. The Stop (P) and Start (S) bits of  
the SSPSTAT register are cleared from a Reset or  
when the SSP module is disabled (SSPEN cleared).  
The Stop (P) and Start (S) bits will toggle based on the  
Start and Stop conditions. Control of the I2C bus may  
be taken when the P bit is set or the bus is Idle and both  
the S and P bits are clear.  
Refer to Application Note AN578, “Use of the SSP  
Module in the I2C™ Multi-Master Environment”  
(DS00578) for more information.  
In Firmware Master mode, the SCL and SDA lines are  
manipulated by setting/clearing the corresponding TRIS  
bit(s). The output level is always low, irrespective of the  
value(s) in the corresponding PORT register bit(s).  
When transmitting a ‘1’, the TRIS bit must be set (input)  
and a ‘0’, the TRIS bit must be clear (output).  
The following events will cause the SSP Interrupt Flag  
bit, SSPIF, to be set (SSP Interrupt will occur if  
enabled):  
• Start condition  
• Stop condition  
• Data transfer byte transmitted/received  
Firmware Master mode of operation can be done with  
either the Slave mode Idle (SSPM<3:0> = 1011), or  
with either of the Slave modes in which interrupts are  
enabled. When both master and slave functionality is  
enabled, the software needs to differentiate the  
source(s) of the interrupt.  
DS41418A-page 174  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
19.2.10 CLOCK SYNCHRONIZATION  
19.2.11 SLEEP OPERATION  
When the CKP bit is cleared, the SCL output is held  
low once it is sampled low. Therefore, the CKP bit will  
not stretch the SCL line until an external I2C master  
device has already asserted the SCL line low. The  
SCL output will remain low until the CKP bit is set and  
all other devices on the I2C bus have released SCL.  
This ensures that a write to the CKP bit will not violate  
the minimum high time requirement for SCL  
(Figure 19-14).  
While in Sleep mode, the I2C module can receive  
addresses of data, and when an address match or  
complete byte transfer occurs, wake the processor  
from Sleep (if SSP interrupt is enabled).  
FIGURE 19-14:  
CLOCK SYNCHRONIZATION TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
SDA  
SCL  
DX  
DX-1  
Master device  
asserts clock  
CKP  
Master device  
deasserts clock  
WR  
SSPCON  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 175  
PIC16F707/PIC16LF707  
REGISTER 19-3: SSPCON: SYNCHRONOUS SERIAL PORT CONTROL REGISTER (I2C MODE)  
R/W-0  
WCOL  
R/W-0  
R/W-0  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SSPOV  
SSPEN  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
WCOL: Write Collision Detect bit  
1= The SSPBUF register is written while it is still transmitting the previous word (must be cleared in  
software)  
0= No collision  
bit 6  
SSPOV: Receive Overflow Indicator bit  
1= A byte is received while the SSPBUF register is still holding the previous byte. SSPOV is a “don’t  
care” in Transmit mode. SSPOV must be cleared in software in either mode.  
0= No overflow  
bit 5  
SSPEN: Synchronous Serial Port Enable bit  
1= Enables the serial port and configures the SDA and SCL pins as serial port pins(2)  
0= Disables serial port and configures these pins as I/O port pins  
bit 4  
CKP: Clock Polarity Select bit  
1= Release control of SCL  
0= Holds clock low (clock stretch). (Used to ensure data setup time.)  
bit 3-0  
SSPM<3:0>: Synchronous Serial Port Mode Select bits  
0110= I2C Slave mode, 7-bit address  
0111= I2C Slave mode, 10-bit address  
1000= Reserved  
1001= Load SSPMSK register at SSPADD SFR Address(1)  
1010= Reserved  
1011= I2C Firmware Controlled Master mode (Slave Idle)  
1100= Reserved  
1101= Reserved  
1110= I2C Slave mode, 7-bit address with Start and Stop bit interrupts enabled  
1111= I2C Slave mode, 10-bit address with Start and Stop bit interrupts enabled  
Note 1: When this mode is selected, any reads or writes to the SSPADD SFR address accesses the SSPMSK register.  
2: When enabled, these pins must be properly configured as input or output using the associated TRIS bit.  
DS41418A-page 176  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
REGISTER 19-4: SSPSTAT: SYNCHRONOUS SERIAL PORT STATUS REGISTER (I2C MODE)  
R/W-0  
SMP  
R/W-0  
CKE  
R-0  
D/A  
R-0  
P
R-0  
S
R-0  
R-0  
UA  
R-0  
BF  
R/W  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7  
SMP: SPI Data Input Sample Phase bit  
1= Slew Rate Control (limiting) disabled. Operating in I2C Standard mode (100 kHz and 1 MHz).  
0= Slew Rate Control (limiting) enabled. Operating in I2C Fast mode (400 kHz).  
bit 6  
bit 5  
CKE: SPI Clock Edge Select bit  
This bit must be maintained clear. Used in SPI mode only.  
D/A: DATA/ADDRESS bit (I2C mode only)  
1= Indicates that the last byte received or transmitted was data  
0= Indicates that the last byte received or transmitted was address  
bit 4  
bit 3  
bit 2  
P: Stop bit  
This bit is cleared when the SSP module is disabled, or when the Start bit is detected last.  
1= Indicates that a Stop bit has been detected last (this bit is ‘0’ on Reset)  
0= Stop bit was not detected last  
S: Start bit  
This bit is cleared when the SSP module is disabled, or when the Stop bit is detected last.  
1= Indicates that a Start bit has been detected last (this bit is ‘0’ on Reset)  
0= Start bit was not detected last  
R/W: READ/WRITE bit Information  
This bit holds the R/W bit information following the last address match. This bit is only valid from the  
address match to the next Start bit, Stop bit or ACK bit.  
1= Read  
0= Write  
bit 1  
bit 0  
UA: Update Address bit (10-bit I2C mode only)  
1= Indicates that the user needs to update the address in the SSPADD register  
0= Address does not need to be updated  
BF: Buffer Full Status bit  
Receive:  
1= Receive complete, SSPBUF is full  
0= Receive not complete, SSPBUF is empty  
Transmit:  
1= Transmit in progress, SSPBUF is full  
0= Transmit complete, SSPBUF is empty  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 177  
PIC16F707/PIC16LF707  
REGISTER 19-5: SSPMSK: SSP MASK REGISTER  
R/W-1  
MSK7  
R/W-1  
MSK6  
R/W-1  
MSK5  
R/W-1  
MSK4  
R/W-1  
MSK3  
R/W-1  
MSK2  
R/W-1  
MSK1  
R/W-1  
MSK0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-1  
bit 0  
MSK<7:1>: Mask bits  
1= The received address bit n is compared to SSPADD<n> to detect I2C address match  
0= The received address bit n is not used to detect I2C address match  
MSK<0>: Mask bit for I2C Slave Mode, 10-bit Address  
I2C Slave Mode, 10-bit Address (SSPM<3:0> = 0111):  
1= The received address bit ‘0’ is compared to SSPADD<0> to detect I2C address match  
0= The received address bit ‘0’ is not used to detect I2C address match  
All other SSP modes: this bit has no effect.  
REGISTER 19-6: SSPADD: SSP I2C™ ADDRESS REGISTER  
R/W-0  
ADD7  
R/W-0  
ADD6  
R/W-0  
ADD5  
R/W-0  
ADD4  
R/W-0  
ADD3  
R/W-0  
ADD2  
R/W-0  
ADD1  
R/W-0  
ADD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
ADD<7:0>: Address bits  
Received address  
TABLE 19-3: REGISTERS ASSOCIATED WITH I2C™ OPERATION  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIR1  
GIE  
PEIE  
ADIF  
ADIE  
TMR0IE  
RCIF  
INTE  
TXIF  
TXIE  
RBIE  
TMR0IF  
INTF  
RBIF  
0000 000x 0000 000u  
TMR1GIF  
TMR1GIE  
SSPIF CCP1IF TMR2IF TMR1IF 0000 0000 0000 0000  
SSPIE CCP1IE TMR2IE TMR1IE 0000 0000 0000 0000  
PIE1  
RCIE  
SSPBUF  
SSPADD  
SSPCON  
SSPMSK  
Synchronous Serial Port Receive Buffer/Transmit Register  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
2
Synchronous Serial Port (I C mode) Address Register  
WCOL  
SSPOV SSPEN  
CKP  
SSPM3 SSPM2 SSPM1 SSPM0 0000 0000 0000 0000  
(2)  
2
Synchronous Serial Port (I C mode) Address Mask Register  
1111 1111 1111 1111  
0000 0000 0000 0000  
(1)  
(1)  
SSPSTAT  
TRISC  
SMP  
CKE  
D/A  
P
S
R/W  
UA  
BF  
TRISC7  
TRISC6 TRISC5 TRISC4 TRISC3 TRISC2 TRISC1 TRISC0 1111 1111 1111 1111  
Legend:  
x= unknown, u= unchanged, -= unimplemented locations read as ‘0’. Shaded cells are not used by SSP module in  
2
I C mode.  
2
Note 1: Maintain these bits clear in I C mode.  
2: Accessible only when SSPM<3:0> = 1001.  
DS41418A-page 178  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
The value written to the PMADRH:PMADRL register  
pair determines which program memory location is  
read. The read operation will be initiated by setting the  
RD bit of the PMCON1 register. The program memory  
flash controller takes two instructions to complete the  
read. As a consequence, after the RD bit has been set,  
the next two instructions will be ignored. To avoid  
conflict with program execution, it is recommended that  
the two instructions following the setting of the RD bit  
are NOP. When the read completes, the result is placed  
in the PMDATLH:PMDATL register pair. Refer to  
Example 20-1 for sample code.  
20.0 PROGRAM MEMORY READ  
The Flash program memory is readable during normal  
operation over the full VDD range of the device. To read  
data from Program Memory, five Special Function  
Registers (SFRs) are used:  
• PMCON1  
• PMDATL  
• PMDATH  
• PMADRL  
• PMADRH  
Note:  
Code-protect does not effect the CPU  
from performing a read operation on the  
program memory. For more information,  
refer to Section 8.2 “Code Protection”  
EXAMPLE 20-1:  
PROGRAM MEMORY READ  
BANKSEL PMADRL  
;
MOVF  
MS_PROG_ADDR, W;  
MOVWF  
MOVF  
MOVWF  
PMADRH  
LS_PROG_ADDR, W;  
PMADRL ;LS Byte of Program Address to read  
;MS Byte of Program Address to read  
BANKSEL PMCON1  
;
BSF  
NOP  
NOP  
PMCON1, RD  
;Initiate Read  
;Any instructions here are ignored as program  
;memory is read in second cycle after BSF  
BANKSEL PMDATL  
;
MOVF  
PMDATL, W  
;W = LS Byte of Program Memory Read  
MOVWF  
MOVF  
MOVWF  
LOWPMBYTE  
PMDATH, W  
HIGHPMBYTE  
;
;W = MS Byte of Program Memory Read  
;
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 179  
PIC16F707/PIC16LF707  
REGISTER 20-1: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER  
U-1  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/S-0  
RD  
bit 7  
bit 0  
Legend:  
S = Setable bit, cleared in hardware  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 7  
Unimplemented: Read as ‘1’  
Unimplemented: Read as ‘0’  
RD: Read Control bit  
bit 6-1  
bit 0  
1= Initiates a program memory read (The RD is cleared in hardware; the RD bit can only be set (not  
cleared) in software).  
0= Does not initiate a program memory read  
REGISTER 20-2: PMDATH: PROGRAM MEMORY DATA HIGH REGISTER  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
PMD9  
R/W-x  
PMD8  
PMD13  
PMD12  
PMD11  
PMD10  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
PMD<13:8>: The value of the program memory word pointed to by PMADRH and PMADRL after a  
program memory read command.  
REGISTER 20-3: PMDATL: PROGRAM MEMORY DATA LOW REGISTER  
R/W-x  
PMD7  
R/W-x  
PMD6  
R/W-x  
PMD5  
R/W-x  
PMD4  
R/W-x  
PMD3  
R/W-x  
PMD2  
R/W-x  
PMD1  
R/W-x  
PMD0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
PMD<7:0>: The value of the program memory word pointed to by PMADRH and PMADRL after a  
program memory read command.  
DS41418A-page 180  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
REGISTER 20-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH REGISTER  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
PMA9  
R/W-x  
PMA8  
PMA12  
PMA11  
PMA10  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
PMA<12:8>: Program Memory Read Address bits  
REGISTER 20-5: PMADRL: PROGRAM MEMORY ADDRESS LOW REGISTER  
R/W-x  
PMA7  
R/W-x  
PMA6  
R/W-x  
PMA5  
R/W-x  
PMA4  
R/W-x  
PMA3  
R/W-x  
PMA2  
R/W-x  
PMA1  
R/W-x  
PMA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-0  
PMA<7:0>: Program Memory Read Address bits  
TABLE 20-1: SUMMARY OF REGISTERS ASSOCIATED WITH PROGRAM MEMORY READ  
Value on  
POR, BOR  
Value on all  
other Resets  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMCON1  
PMADRH  
PMADRL  
PMDATH  
PMDATL  
Legend:  
RD  
1--- ---0  
1--- ---0  
---x xxxx  
xxxx xxxx  
--xx xxxx  
xxxx xxxx  
Program Memory Read Address Register High Byte ---x xxxx  
Program Memory Read Address Register Low Byte  
xxxx xxxx  
--xx xxxx  
xxxx xxxx  
Program Memory Read Data Register High Byte  
Program Memory Read Data Register Low Byte  
x= unknown, u= unchanged, = unimplemented, read as ‘0’. Shaded cells are not used by the program memory read.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 181  
PIC16F707/PIC16LF707  
NOTES:  
DS41418A-page 182  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
21.1 Wake-up from Sleep  
21.0 POWER-DOWN MODE (SLEEP)  
The device can wake-up from Sleep through one of the  
following events:  
The Power-down mode is entered by executing a  
SLEEPinstruction.  
1. External Reset input on MCLR pin, if enabled  
2. BOR Reset, if enabled  
Upon entering Sleep mode, the following conditions  
exist:  
3. POR Reset  
1. WDT will be cleared but keeps running, if  
enabled.  
4. Watchdog Timer, if enabled  
5. Any external interrupt  
2. PD bit of the STATUS register is cleared.  
3. TO bit of the STATUS register is set.  
4. CPU clock is disabled.  
6. Interrupts by peripherals capable of running  
during Sleep (see individual peripheral for more  
information)  
5. 31 kHz LFINTOSC is unaffected and peripherals  
that operate from it may continue operation in  
Sleep.  
The first three events will cause a device Reset. The  
last three events are considered a continuation of  
program execution.  
6. Timer1/3 oscillator is unaffected and peripherals  
that operate from it may continue operation in  
Sleep.  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is prefetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be enabled. Wake-up will  
occur regardless of the state of the GIE bit. If the GIE  
bit is disabled, the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
enabled, the device executes the instruction after the  
SLEEP instruction, the device will call the Interrupt  
Service Routine. In cases where the execution of the  
instruction following SLEEP is not desirable, the user  
should have a NOPafter the SLEEPinstruction.  
7. ADC is unaffected, if the dedicated FRC clock is  
selected.  
8. Capacitive Sensing oscillators are unaffected.  
9. I/O ports maintain the status they had before  
SLEEPwas executed (driving high, low or high-  
impedance).  
10. Resets other than WDT are not affected by  
Sleep mode.  
Refer to individual chapters for more details on  
peripheral operation during Sleep.  
The WDT is cleared when the device wakes up from  
Sleep, regardless of the source of wake-up.  
To minimize current consumption, the following  
conditions should be considered:  
• I/O pins should not be floating  
• External circuitry sinking current from I/O pins  
• Internal circuitry sourcing current from I/O pins  
• Current draw from pins with internal weak pull-ups  
• Modules using 31 kHz LFINTOSC  
• Modules using Timer1/3 oscillator  
I/O pins that are high-impedance inputs should be  
pulled to VDD or VSS externally to avoid switching cur-  
rents caused by floating inputs.  
Examples of internal circuitry that might be sourcing  
current include modules such as the DAC and FVR  
modules. See Section 11.0 “Digital-to-Analog Con-  
verter (DAC) Module” and Section 10.0 “Fixed Volt-  
age Reference” for more information on these  
modules.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 183  
PIC16F707/PIC16LF707  
• If the interrupt occurs during or after the execu-  
tion of a SLEEPinstruction  
21.1.1  
WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
- SLEEPinstruction will be completely exe-  
cuted  
- Device will immediately wake-up from Sleep  
- WDT and WDT prescaler will be cleared  
- TO bit of the STATUS register will be set  
- PD bit of the STATUS register will be cleared.  
• If the interrupt occurs before the execution of a  
SLEEPinstruction  
- SLEEPinstruction will execute as a NOP.  
- WDT and WDT prescaler will not be cleared  
- TO bit of the STATUS register will not be set  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEP instruction completes.  
To determine whether a SLEEP instruction executed,  
test the PD bit. If the PD bit is set, the SLEEPinstruction  
was executed as a NOP.  
- PD bit of the STATUS register will not be  
cleared.  
FIGURE 21-1:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1(1)  
(3)  
CLKOUT(2)  
TOST  
Interrupt Latency(4)  
Interrupt flag  
GIE bit  
(INTCON reg.)  
Processor in  
Sleep  
Instruction Flow  
PC  
PC  
PC + 1  
PC + 2  
PC + 2  
PC + 2  
0004h  
0005h  
Instruction  
Fetched  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = Sleep  
Instruction  
Executed  
Dummy Cycle  
Dummy Cycle  
Sleep  
Inst(PC + 1)  
Inst(PC - 1)  
Inst(0004h)  
Note 1:  
XT, HS or LP Oscillator mode assumed.  
CLKOUT is not available in XT, HS, or LP Oscillator modes, but shown here for timing reference.  
TOST = 1024 TOSC (drawing not to scale). This delay applies only to XT, HS or LP Oscillator modes.  
GIE = 1assumed. In this case after wake-up, the processor calls the ISR at 0004h. If GIE = 0, execution will continue in-line.  
2:  
3:  
4:  
TABLE 21-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE  
Value on all  
other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
IOCBF  
PIE1  
GIE  
PEIE  
TMR0IE  
INTE  
IOCIE  
TMR0IF  
INTF  
IOCIF  
0000 000x  
0000 0000  
0000 0000  
0000 ---0  
0000 0000  
0000 ---0  
0001 1xxx  
0000 000x  
0000 0000  
0000 0000  
0000 ---0  
0000 0000  
0000 ---0  
000q quuu  
IOCBF7  
TMR1GIE  
IOCBF6 IOCBF5 IOCBF4 IOCBF3 IOCBF2 IOCBF1 IOCBF0  
ADIE  
RCIE  
TXIE  
SSPIE  
CCP1IE TMR2IE TMR1IE  
CCP2IE  
CCP1IF TMR2IF TMR1IF  
PIE2  
TMR3GIE TMR3IE TMRBIE TMRAIE  
TMR1GIF ADIF RCIF TXIF  
TMR3GIF TMR3IF TMRBIF TMRAIF  
IRP RP1 RP0 TO  
SSPIF  
PIR1  
PIR2  
Z
CCP2IF  
C
STATUS  
Legend:  
PD  
DC  
— = unimplemented location, read as ‘0’. Shaded cells are not used in Power-down mode.  
DS41418A-page 184  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
The device is placed into Program/Verify mode by  
holding the ICSPCLK and ICSPDAT pins low then  
raising the voltage on MCLR/VPP from 0v to VPP. In  
Program/Verify mode the program memory, user IDs and  
the Configuration Words are programmed through serial  
communications. The ICSPDAT pin is a bidirectional I/O  
used for transferring the serial data and the ISCPCLK pin  
is the clock input. For more information on ICSP™ refer  
22.0 IN-CIRCUIT SERIAL  
PROGRAMMING™ (ICSP™)  
ICSP™ programming allows customers to manufacture  
circuit boards with unprogrammed devices. Programming  
can be done after the assembly process allowing the  
device to be programmed with the most recent firmware  
or a custom firmware. Five pins are needed for ICSP™  
programming:  
to  
the  
PIC16F707/PIC16LF707  
Programming  
Specification” (DS41405A).  
• ICSPCLK  
• ICSPDAT  
• MCLR/VPP  
• VDD  
Note:  
The ICD 2 produces a VPP voltage greater  
than the maximum VPP specification of the  
PIC16F707/PIC16LF707. When using this  
programmer, an external circuit, such as  
the AC164112 MPLAB® ICD 2 VPP volt-  
age limiter, is required to keep the VPP  
voltage within the device specifications.  
• VSS  
FIGURE 22-1:  
TYPICAL CONNECTION FOR ICSP™ PROGRAMMING  
External  
Programming  
Signals  
Device to be  
Programmed  
VDD  
VDD  
VDD  
10k  
VPP  
MCLR/VPP  
VSS  
GND  
Data  
ICSPDAT  
ICSPCLK  
Clock  
*
*
*
To Normal Connections  
Isolation devices (as required).  
*
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 185  
PIC16F707/PIC16LF707  
NOTES:  
DS41418A-page 186  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
TABLE 23-1: OPCODE FIELD  
DESCRIPTIONS  
23.0 INSTRUCTION SET SUMMARY  
The PIC16F707/PIC16LF707 instruction set is highly  
orthogonal and is comprised of three basic categories:  
Field  
Description  
f
W
b
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Byte-oriented operations  
Bit-oriented operations  
Literal and control operations  
Bit address within an 8-bit file register  
Literal field, constant data or label  
k
Each PIC16 instruction is a 14-bit word divided into an  
opcode, which specifies the instruction type and one or  
more operands, which further specify the operation of  
the instruction. The formats for each of the categories  
is presented in Figure 23-1, while the various opcode  
fields are summarized in Table 23-1.  
x
Don’t care location (= 0or 1).  
The assembler will generate code with x = 0.  
It is the recommended form of use for  
compatibility with all Microchip software tools.  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1.  
Table 23-2 lists the instructions recognized by the  
MPASMTM assembler.  
For byte-oriented instructions, ‘f’ represents a file  
register designator and ‘d’ represents a destination  
designator. The file register designator specifies which  
file register is to be used by the instruction.  
PC  
TO  
C
Program Counter  
Time-out bit  
Carry bit  
DC  
Z
Digit carry bit  
Zero bit  
The destination designator specifies where the result of  
the operation is to be placed. If ‘d’ is zero, the result is  
placed in the W register. If ‘d’ is one, the result is placed  
in the file register specified in the instruction.  
PD  
Power-down bit  
FIGURE 23-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
For bit-oriented instructions, ‘b’ represents a bit field  
designator, which selects the bit affected by the  
operation, while ‘f’ represents the address of the file in  
which the bit is located.  
Byte-oriented file register operations  
13  
8
7
6
0
For literal and control operations, ‘k’ represents an  
8-bit or 11-bit constant, or literal value.  
OPCODE  
d
f (FILE #)  
d = 0for destination W  
d = 1for destination f  
f = 7-bit file register address  
One instruction cycle consists of four oscillator periods;  
for an oscillator frequency of 4 MHz, this gives a  
nominal instruction execution time of 1 s. All  
instructions are executed within a single instruction  
cycle, unless a conditional test is true, or the program  
counter is changed as a result of an instruction. When  
this occurs, the execution takes two instruction cycles,  
with the second cycle executed as a NOP.  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
0
OPCODE  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
All instruction examples use the format ‘0xhh’ to  
represent a hexadecimal number, where ‘h’ signifies a  
hexadecimal digit.  
Literal and control operations  
General  
13  
8
7
0
0
23.1 Read-Modify-Write Operations  
OPCODE  
k (literal)  
Any instruction that specifies a file register as part of  
the instruction performs a Read-Modify-Write (R-M-W)  
operation. The register is read, the data is modified,  
and the result is stored according to either the instruc-  
tion, or the destination designator ‘d’. A read operation  
is performed on a register even if the instruction writes  
to that register.  
k = 8-bit immediate value  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
k (literal)  
For example, a CLRF PORTB instruction will read  
PORTB, clear all the data bits, then write the result  
back to PORTB. This example would have the unin-  
tended consequence of clearing the condition that set  
the RBIF flag.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 187  
PIC16F707/PIC16LF707  
TABLE 23-2: PIC16F707/PIC16LF707 INSTRUCTION SET  
14-Bit Opcode  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
DECFSZ  
INCF  
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00 0111 dfff ffff C, DC, Z  
1, 2  
1, 2  
2
00 0101 dfff ffff  
00 0001 lfff ffff  
00 0001 0xxx xxxx  
00 1001 dfff ffff  
00 0011 dfff ffff  
00 1011 dfff ffff  
00 1010 dfff ffff  
00 1111 dfff ffff  
00 0100 dfff ffff  
00 1000 dfff ffff  
00 0000 lfff ffff  
00 0000 0xx0 0000  
00 1101 dfff ffff  
00 1100 dfff ffff  
Z
Z
Z
Z
Z
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1, 2  
1, 2  
1, 2, 3  
1, 2  
1, 2, 3  
1, 2  
1, 2  
Z
Z
Z
Move W to f  
No Operation  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
00 0010 dfff ffff C, DC, Z  
00 1110 dfff ffff  
00 0110 dfff ffff  
Z
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
1, 2  
1, 2  
3
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
k
k
k
k
k
k
Add literal and W  
AND literal with W  
Call Subroutine  
Clear Watchdog Timer  
Go to address  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C, DC, Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
Z
00 0000 0110 0100 TO, PD  
10 1kkk kkkk kkkk  
Inclusive OR literal with W  
Move literal to W  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
Z
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into Standby mode  
Subtract W from literal  
Exclusive OR literal with W  
00 0000 0110 0011 TO, PD  
11 110x kkkk kkkk C, DC, Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTA, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and is driven low by an external  
device, the data will be written back with a ‘0’.  
2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if  
assigned to the Timer0 module.  
3: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second  
cycle is executed as a NOP.  
DS41418A-page 188  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
23.2 Instruction Descriptions  
BCF  
Bit Clear f  
ADDLW  
Add literal and W  
Syntax:  
[ label ] BCF f,b  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) + k (W)  
C, DC, Z  
Operation:  
0(f<b>)  
Status Affected:  
Description:  
None  
The contents of the W register  
are added to the eight-bit literal ‘k’  
and the result is placed in the  
W register.  
Bit ‘b’ in register ‘f’ is cleared.  
BSF  
Bit Set f  
ADDWF  
Add W and f  
Syntax:  
[ label ] BSF f,b  
Syntax:  
[ label ] ADDWF f,d  
Operands:  
0 f 127  
0 b 7  
Operands:  
0 f 127  
d 0,1  
Operation:  
1(f<b>)  
Operation:  
(W) + (f) (destination)  
Status Affected:  
Description:  
None  
Status Affected: C, DC, Z  
Bit ‘b’ in register ‘f’ is set.  
Description:  
Add the contents of the W register  
with register ‘f’. If ‘d’ is ‘0’, the  
result is stored in the W register. If  
‘d’ is ‘1’, the result is stored back  
in register ‘f’.  
BTFSC  
Bit Test f, Skip if Clear  
ANDLW  
AND literal with W  
Syntax:  
[ label ] BTFSC f,b  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
0 f 127  
0 b 7  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .AND. (k) (W)  
Operation:  
skip if (f<b>) = 0  
Z
Status Affected: None  
The contents of W register are  
AND’ed with the eight-bit literal  
‘k’. The result is placed in the W  
register.  
Description: If bit ‘b’ in register ‘f’ is ‘1’, the next  
instruction is executed.  
If bit ‘b’, in register ‘f’, is ‘0’, the  
next instruction is discarded, and  
a NOPis executed instead, making  
this a 2-cycle instruction.  
ANDWF  
AND W with f  
Syntax:  
[ label ] ANDWF f,d  
Operands:  
0 f 127  
d 0,1  
Operation:  
(W) .AND. (f) (destination)  
Status Affected:  
Description:  
Z
AND the W register with register  
‘f’. If ‘d’ is ‘0’, the result is stored in  
the W register. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 189  
PIC16F707/PIC16LF707  
CLRWDT  
Clear Watchdog Timer  
BTFSS  
Bit Test f, Skip if Set  
Syntax:  
[ label ] CLRWDT  
Syntax:  
[ label ] BTFSS f,b  
Operands:  
Operation:  
None  
Operands:  
0 f 127  
0 b < 7  
00h WDT  
0WDT prescaler,  
1TO  
Operation:  
skip if (f<b>) = 1  
Status Affected: None  
1PD  
Description:  
If bit ‘b’ in register ‘f’ is ‘0’, the next  
instruction is executed.  
Status Affected: TO, PD  
Description:  
CLRWDTinstruction resets the  
Watchdog Timer. It also resets the  
prescaler of the WDT.  
If bit ‘b’ is ‘1’, then the next  
instruction is discarded and a NOP  
is executed instead, making this a  
2-cycle instruction.  
Status bits TO and PD are set.  
CALL  
Call Subroutine  
COMF  
Complement f  
Syntax:  
[ label ] CALL k  
0 k 2047  
Syntax:  
[ label ] COMF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
Operation:  
(f) (destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
The contents of register ‘f’ are  
complemented. If ‘d’ is ‘0’, the  
result is stored in W. If ‘d’ is ‘1’,  
the result is stored back in  
register ‘f’.  
Description:  
Call Subroutine. First, return  
address (PC + 1) is pushed onto  
the stack. The eleven-bit  
immediate address is loaded into  
PC bits <10:0>. The upper bits of  
the PC are loaded from PCLATH.  
CALLis a two-cycle instruction.  
CLRF  
Clear f  
DECF  
Decrement f  
Syntax:  
[ label ] CLRF  
0 f 127  
f
Syntax:  
[ label ] DECF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
00h (f)  
1Z  
Operation:  
(f) - 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
The contents of register ‘f’ are  
cleared and the Z bit is set.  
Decrement register ‘f’. If ‘d’ is ‘0’,  
the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
CLRW  
Clear W  
Syntax:  
[ label ] CLRW  
Operands:  
Operation:  
None  
00h (W)  
1Z  
Status Affected:  
Description:  
Z
W register is cleared. Zero bit (Z)  
is set.  
DS41418A-page 190  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
DECFSZ  
Decrement f, Skip if 0  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
[ label ] DECFSZ f,d  
Syntax:  
[ label ] INCFSZ f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected: None  
Status Affected: None  
Description:  
The contents of register ‘f’ are  
Description:  
The contents of register ‘f’ are  
decremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
If the result is ‘1’, the next  
instruction is executed. If the  
result is ‘0’, then a NOPis  
executed instead, making it a  
2-cycle instruction.  
If the result is ‘1’, the next  
instruction is executed. If the  
result is ‘0’, a NOPis executed  
instead, making it a 2-cycle  
instruction.  
GOTO  
Unconditional Branch  
IORLW  
Inclusive OR literal with W  
Syntax:  
[ label ] GOTO  
0 k 2047  
k
Syntax:  
[ label ] IORLW k  
0 k 255  
Operands:  
Operands:  
Operation:  
Status Affected:  
Description:  
Operation:  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
(W) .OR. k (W)  
Z
Status Affected: None  
The contents of the W register are  
OR’ed with the eight-bit literal ‘k’.  
The result is placed in the  
W register.  
Description:  
GOTOis an unconditional branch.  
The eleven-bit immediate value is  
loaded into PC bits <10:0>. The  
upper bits of PC are loaded from  
PCLATH<4:3>. GOTOis a  
two-cycle instruction.  
IORWF  
Inclusive OR W with f  
INCF  
Increment f  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
[ label ] INCF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) .OR. (f) (destination)  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Inclusive OR the W register with  
register ‘f’. If ‘d’ is ‘0’, the result is  
placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
The contents of register ‘f’ are  
incremented. If ‘d’ is ‘0’, the result  
is placed in the W register. If ‘d’ is  
1’, the result is placed back in  
register ‘f’.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 191  
PIC16F707/PIC16LF707  
MOVWF  
Move W to f  
[ label ] MOVWF  
0 f 127  
(W) (f)  
MOVF  
Move f  
Syntax:  
f
Syntax:  
Operands:  
[ label ] MOVF f,d  
Operands:  
Operation:  
Status Affected:  
Description:  
0 f 127  
d [0,1]  
Operation:  
(f) (dest)  
None  
Status Affected:  
Description:  
Z
Move data from W register to  
register ‘f’.  
The contents of register f is  
moved to a destination dependent  
upon the status of d. If d = 0,  
destination is W register. If d = 1,  
the destination is file register f  
itself. d = 1is useful to test a file  
register since status flag Z is  
affected.  
Words:  
1
1
Cycles:  
Example:  
MOVW  
F
OPTION  
Before Instruction  
OPTION = 0xFF  
Words:  
1
1
W
=
0x4F  
After Instruction  
Cycles:  
Example:  
OPTION = 0x4F  
W
MOVF  
FSR, 0  
=
0x4F  
After Instruction  
W
=
value in FSR  
register  
Z
=
1
MOVLW  
Syntax:  
Move literal to W  
NOP  
No Operation  
[ label ] MOVLW k  
0 k 255  
Syntax:  
[ label ] NOP  
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
Words:  
None  
k (W)  
No operation  
Status Affected: None  
None  
Description:  
The eight-bit literal ‘k’ is loaded into  
W register. The “don’t cares” will  
assemble as ‘0’s.  
No operation.  
1
Cycles:  
1
Words:  
1
1
NOP  
Example:  
Cycles:  
Example:  
MOVLW  
0x5A  
After Instruction  
W
=
0x5A  
DS41418A-page 192  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
RETFIE  
Return from Interrupt  
[ label ] RETFIE  
None  
RETLW  
Return with literal in W  
[ label ] RETLW k  
0 k 255  
Syntax:  
Syntax:  
Operands:  
Operation:  
Operands:  
Operation:  
TOS PC,  
1GIE  
k (W);  
TOS PC  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
None  
Return from Interrupt. Stack is  
POPed and Top-of-Stack (TOS) is  
loaded in the PC. Interrupts are  
enabled by setting Global  
Interrupt Enable bit, GIE  
The W register is loaded with the  
eight bit literal ‘k’. The program  
counter is loaded from the top of  
the stack (the return address).  
This is a two-cycle instruction.  
(INTCON<7>). This is a two-cycle  
instruction.  
Words:  
1
2
Cycles:  
Example:  
Words:  
1
CALL TABLE;W contains  
table  
Cycles:  
Example:  
2
RETFIE  
;offset value  
;W now has table value  
TABLE  
After Interrupt  
PC = TOS  
GIE =  
1
ADDWF PC ;W = offset  
RETLW k1 ;Begin table  
RETLW k2  
;
RETLW kn ; End of table  
Before Instruction  
W
=
0x07  
After Instruction  
W
=
value of k8  
RETURN  
Return from Subroutine  
Syntax:  
[ label ] RETURN  
None  
Operands:  
Operation:  
TOS PC  
Status Affected: None  
Description: Return from subroutine. The stack  
is POPed and the top of the stack  
(TOS) is loaded into the program  
counter. This is a two-cycle  
instruction.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 193  
PIC16F707/PIC16LF707  
RLF  
Rotate Left f through Carry  
SLEEP  
Enter Sleep mode  
[ label ] SLEEP  
None  
Syntax:  
Operands:  
[ label ]  
RLF f,d  
Syntax:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
00h WDT,  
0WDT prescaler,  
1TO,  
Operation:  
See description below  
C
Status Affected:  
Description:  
0PD  
The contents of register ‘f’ are  
rotated one bit to the left through  
the Carry flag. If ‘d’ is ‘0’, the  
result is placed in the W register.  
If ‘d’ is ‘1’, the result is stored  
back in register ‘f’.  
Status Affected:  
Description:  
TO, PD  
The power-down Status bit, PD is  
cleared. Time-out Status bit, TO  
is set. Watchdog Timer and its  
prescaler are cleared.  
The processor is put into Sleep  
mode with the oscillator stopped.  
C
Register f  
Words:  
1
1
Cycles:  
Example:  
RLF  
REG1,0  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
SUBLW  
Subtract W from literal  
RRF  
Rotate Right f through Carry  
Syntax:  
[ label ] SUBLW k  
0 k 255  
Syntax:  
[ label ] RRF f,d  
Operands:  
Operation:  
Operands:  
0 f 127  
d [0,1]  
k - (W) W)  
Operation:  
See description below  
C
Status Affected: C, DC, Z  
Status Affected:  
Description:  
Description: The W register is subtracted (2’s  
complement method) from the  
eight-bit literal ‘k’. The result is  
placed in the W register.  
The contents of register ‘f’ are  
rotated one bit to the right through  
the Carry flag. If ‘d’ is ‘0’, the  
result is placed in the W register.  
If ‘d’ is ‘1’, the result is placed  
back in register ‘f’.  
C = 0  
W k  
C = 1  
W k  
DC = 0  
DC = 1  
W<3:0> k<3:0>  
W<3:0> k<3:0>  
C
Register f  
DS41418A-page 194  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
SUBWF  
Subtract W from f  
XORLW  
Exclusive OR literal with W  
Syntax:  
[ label ] SUBWF f,d  
Syntax:  
[ label ] XORLW k  
0 k 255  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .XOR. k W)  
Z
Operation:  
(f) - (W) destination)  
Status Affected: C, DC, Z  
The contents of the W register  
are XOR’ed with the eight-bit  
literal ‘k’. The result is placed in  
the W register.  
Description:  
Subtract (2’s complement method)  
W register from register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f.  
C = 0  
W f  
C = 1  
W f  
DC = 0  
DC = 1  
W<3:0> f<3:0>  
W<3:0> f<3:0>  
SWAPF  
Swap Nibbles in f  
XORWF  
Exclusive OR W with f  
Syntax:  
[ label ] SWAPF f,d  
Syntax:  
[ label ] XORWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
Operation:  
(W) .XOR. (f) destination)  
Status Affected:  
Description:  
Z
Status Affected: None  
Exclusive OR the contents of the  
W register with register ‘f’. If ‘d’ is  
0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
Description: The upper and lower nibbles of  
register ‘f’ are exchanged. If ‘d’ is  
0’, the result is placed in the W  
register. If ‘d’ is ‘1’, the result is  
placed in register ‘f’.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 195  
PIC16F707/PIC16LF707  
NOTES:  
DS41418A-page 196  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
24.1 MPLAB Integrated Development  
Environment Software  
24.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers and dsPIC® digital signal  
controllers are supported with a full range of software  
and hardware development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16/32-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• A single graphical interface to all debugging tools  
- Simulator  
• Compilers/Assemblers/Linkers  
- MPLAB C Compiler for Various Device  
Families  
- Programmer (sold separately)  
- In-Circuit Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- HI-TECH C for Various Device Families  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
• Customizable data windows with direct edit of  
contents  
• Simulators  
• High-level source code debugging  
• Mouse over variable inspection  
- MPLAB SIM Software Simulator  
• Emulators  
• Drag and drop variables from source to watch  
windows  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers  
• Extensive on-line help  
• Integration of select third party tools, such as  
IAR C Compilers  
- MPLAB ICD 3  
- PICkit™ 3 Debug Express  
• Device Programmers  
- PICkit™ 2 Programmer  
- MPLAB PM3 Device Programmer  
The MPLAB IDE allows you to:  
• Edit your source files (either C or assembly)  
• One-touch compile or assemble, and download to  
emulator and simulator tools (automatically  
updates all project information)  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits, and Starter Kits  
• Debug using:  
- Source files (C or assembly)  
- Mixed C and assembly  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 197  
PIC16F707/PIC16LF707  
24.2 MPLAB C Compilers for Various  
Device Families  
24.5 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC18,  
PIC24 and PIC32 families of microcontrollers and the  
dsPIC30 and dsPIC33 families of digital signal control-  
lers. These compilers provide powerful integration  
capabilities, superior code optimization and ease of  
use.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
24.3 HI-TECH C for Various Device  
Families  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The HI-TECH C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC  
family of microcontrollers and the dsPIC family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, omniscient code generation  
and ease of use.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
24.6 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The compilers include a macro assembler, linker, pre-  
processor, and one-step driver, and can run on multiple  
platforms.  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC devices. MPLAB C Compiler uses  
the assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
24.4 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• Rich directive set  
• Flexible macro language  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• MPLAB IDE compatibility  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multi-purpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS41418A-page 198  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
24.7 MPLAB SIM Software Simulator  
24.9 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
MPLAB ICD 3 In-Circuit Debugger System is Micro-  
chip's most cost effective high-speed hardware  
debugger/programmer for Microchip Flash Digital Sig-  
nal Controller (DSC) and microcontroller (MCU)  
devices. It debugs and programs PIC® Flash microcon-  
trollers and dsPIC® DSCs with the powerful, yet easy-  
to-use graphical user interface of MPLAB Integrated  
Development Environment (IDE).  
The MPLAB ICD 3 In-Circuit Debugger probe is con-  
nected to the design engineer's PC using a high-speed  
USB 2.0 interface and is connected to the target with a  
connector compatible with the MPLAB ICD 2 or MPLAB  
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all  
MPLAB ICD 2 headers.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
24.10 PICkit 3 In-Circuit Debugger/  
Programmer and  
24.8 MPLAB REAL ICE In-Circuit  
Emulator System  
PICkit 3 Debug Express  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC® and dsPIC® Flash microcontrollers at a  
most affordable price point using the powerful graphical  
user interface of the MPLAB Integrated Development  
Environment (IDE). The MPLAB PICkit 3 is connected  
to the design engineer's PC using a full speed USB  
interface and can be connected to the target via an  
Microchip debug (RJ-11) connector (compatible with  
MPLAB ICD 3 and MPLAB REAL ICE). The connector  
uses two device I/O pins and the reset line to imple-  
ment in-circuit debugging and In-Circuit Serial Pro-  
gramming™.  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The emulator is connected to the design engineer’s PC  
using a high-speed USB 2.0 interface and is connected  
to the target with either a connector compatible with in-  
circuit debugger systems (RJ11) or with the new high-  
speed, noise tolerant, Low-Voltage Differential Signal  
(LVDS) interconnection (CAT5).  
The PICkit 3 Debug Express include the PICkit 3, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
The emulator is field upgradable through future firmware  
downloads in MPLAB IDE. In upcoming releases of  
MPLAB IDE, new devices will be supported, and new  
features will be added. MPLAB REAL ICE offers signifi-  
cant advantages over competitive emulators including  
low-cost, full-speed emulation, run-time variable  
watches, trace analysis, complex breakpoints, a rugge-  
dized probe interface and long (up to three meters) inter-  
connection cables.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 199  
PIC16F707/PIC16LF707  
24.11 PICkit 2 Development  
Programmer/Debugger and  
PICkit 2 Debug Express  
24.13 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
The PICkit™ 2 Development Programmer/Debugger is  
a low-cost development tool with an easy to use inter-  
face for programming and debugging Microchip’s Flash  
families of microcontrollers. The full featured  
Windows® programming interface supports baseline  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
(PIC10F,  
PIC12F5xx,  
PIC16F5xx),  
midrange  
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,  
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit  
microcontrollers, and many Microchip Serial EEPROM  
products. With Microchip’s powerful MPLAB Integrated  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
Development Environment (IDE) the PICkit™  
2
enables in-circuit debugging on most PIC® microcon-  
trollers. In-Circuit-Debugging runs, halts and single  
steps the program while the PIC microcontroller is  
embedded in the application. When halted at a break-  
point, the file registers can be examined and modified.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
The PICkit 2 Debug Express include the PICkit 2, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta ADC, flow rate  
sensing, plus many more.  
24.12 MPLAB PM3 Device Programmer  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an MMC card for file  
storage and data applications.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS41418A-page 200  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
25.0 ELECTRICAL SPECIFICATIONS  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias....................................................................................................... -40°C to +125°C  
Storage temperature ........................................................................................................................ -65°C to +150°C  
Voltage on VDD with respect to VSS, PIC16F707 ............................................................................... -0.3V to +6.5V  
Voltage on VCAP pin with respect to VSS, PIC16F707 ....................................................................... -0.3V to +4.0V  
Voltage on VDD with respect to VSS, PIC16LF707 ............................................................................. -0.3V to +4.0V  
Voltage on MCLR with respect to Vss ................................................................................................. -0.3V to +9.0V  
Voltage on all other pins with respect to VSS ........................................................................... -0.3V to (VDD + 0.3V)  
Total power dissipation(1) ...............................................................................................................................800 mW  
Maximum current out of VSS pin ...................................................................................................................... 95 mA  
Maximum current into VDD pin ......................................................................................................................... 70 mA  
Clamp current, IK (VPIN < 0 or VPIN > VDD)20 mA  
Maximum output current sunk by any I/O pin....................................................................................................25 mA  
Maximum output current sourced by any I/O pin .............................................................................................. 25 mA  
Maximum current sunk by all ports(2), -40°C TA +85°C for industrial ........................................................ 200 mA  
Maximum current sunk by all ports(2), -40°C TA +125°C for extended........................................................ 90 mA  
Maximum current sourced by all ports(2), 40°C TA +85°C for industrial ................................................... 140 mA  
Maximum current sourced by all ports(2), -40°C TA +125°C for extended................................................... 65 mA  
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOl x IOL).  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for  
extended periods may affect device reliability.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 201  
PIC16F707/PIC16LF707  
25.1 DC Characteristics: PIC16F707/PIC16LF707-I/E (Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF707  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
PIC16F707  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Param.  
No.  
Sym.  
Characteristic  
Supply Voltage  
Min.  
Typ† Max. Units  
Conditions  
D001  
VDD  
PIC16LF707  
1.8  
1.8  
2.3  
2.5  
3.6  
3.6  
3.6  
3.6  
V
FOSC 16 MHz: HFINTOSC, EC  
FOSC 4 MHz  
FOSC 20 MHz, EC  
FOSC 20 MHz, HS  
V
V
V
D001  
PIC16F707  
1.8  
1.8  
2.3  
2.5  
5.5  
5.5  
5.5  
5.5  
V
V
V
V
FOSC 16 MHz: HFINTOSC, EC  
FOSC 4 MHz  
FOSC 20 MHz, EC  
FOSC 20 MHz, HS  
(1)  
D002*  
D002*  
VDR  
RAM Data Retention Voltage  
PIC16LF707  
1.5  
1.7  
V
V
V
Device in Sleep mode  
Device in Sleep mode  
PIC16F707  
VPOR*  
Power-on Reset Release Voltage  
1.6  
VPORR* Power-on Reset Rearm Voltage  
PIC16LF707  
0.8  
1.7  
V
V
Device in Sleep mode  
Device in Sleep mode  
PIC16F707  
D003  
VFVR  
Fixed Voltage Reference Voltage,  
Initial Accuracy  
-5.5  
-5.5  
-5.5  
5.5  
5.5  
5.5  
%
%
%
VFVR = 1.024V, VDD 2.5V  
VFVR = 2.048V, VDD 2.5V  
VFVR = 4.096V, VDD 4.75V;  
-40 TA85°C  
-6  
-6  
-6  
6
6
6
%
%
%
VFVR = 1.024V, VDD 2.5V  
VFVR = 2.048V, VDD 2.5V  
VFVR = 4.096V, VDD 4.75V;  
-40 TA125°C  
D004*  
SVDD  
VDD Rise Rate to ensure internal  
Power-on Reset signal  
0.05  
V/ms See Section 3.2 “Power-on Reset  
(POR)” for details.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.  
DS41418A-page 202  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 25-1:  
POR AND POR REARM WITH SLOW RISING VDD  
VDD  
VPOR  
VPORR  
VSS  
NPOR  
POR REARM  
VSS  
(3)  
(2)  
TPOR  
TVLOW  
Note 1: When NPOR is low, the device is held in Reset.  
2: TPOR 1 s typical.  
3: TVLOW 2.7 s typical.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 203  
PIC16F707/PIC16LF707  
25.2 DC Characteristics: PIC16F707/PIC16LF707-I/E (Industrial, Extended)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF707  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
PIC16F707  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Param  
No.  
Device  
Characteristics  
Min.  
Typ†  
Max.  
Units  
VDD  
Note  
(1, 2)  
Supply Current (IDD)  
LDO Regulator  
D009  
350  
A  
HS, EC OR INTOSC/INTOSCIO (8-16 MHZ)  
Clock modes with all VCAP pins disabled  
50  
30  
5
A  
A  
A  
All VCAP pins disabled  
VCAP enabled on RA0, RA5 or RA6  
LP Clock mode and Sleep (requires FVR and  
BOR to be disabled)  
D010  
D010  
7.0  
9.0  
12  
14  
A  
A  
1.8  
3.0  
FOSC = 32 kHz  
LP Oscillator mode (Note 4),  
-40°C TA +85°C  
11  
14  
20  
22  
24  
12  
18  
A  
A  
A  
A  
A  
1.8  
3.0  
5.0  
1.8  
3.0  
FOSC = 32 kHz  
LP Oscillator mode (Note 4),  
-40°C TA +85°C  
15  
D011  
D011  
7.0  
9.0  
FOSC = 32 kHz  
LP Oscillator mode  
-40°C TA +125°C  
11  
21  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
FOSC = 32 kHz  
LP Oscillator mode (Note 4)  
-40°C TA +125°C  
14  
25  
15  
27  
D011  
D011  
110  
150  
120  
180  
240  
230  
400  
250  
420  
500  
125  
230  
150  
225  
250  
150  
215  
175  
250  
300  
300  
600  
350  
650  
750  
180  
270  
205  
320  
410  
FOSC = 1 MHz  
XT Oscillator mode  
FOSC = 1 MHz  
XT Oscillator mode (Note 5)  
D012  
D012  
FOSC = 4 MHz  
XT Oscillator mode  
FOSC = 4 MHz  
XT Oscillator mode (Note 5)  
D013  
D013  
FOSC = 1 MHz  
EC Oscillator mode  
FOSC = 1 MHz  
EC Oscillator mode (Note 5)  
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from  
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current  
consumption.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended  
by the formula IR = VDD/2REXT (mA) with REXT in k  
4: FVR and BOR are disabled.  
5: 0.1 F capacitor on VCAP (RA0).  
DS41418A-page 204  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
25.2 DC Characteristics: PIC16F707/PIC16LF707-I/E (Industrial, Extended) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF707  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
PIC16F707  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Param  
No.  
Device  
Characteristics  
Min.  
Typ†  
Max.  
Units  
VDD  
Note  
(1, 2)  
Supply Current (IDD)  
D014  
D014  
290  
460  
300  
450  
500  
100  
120  
115  
135  
150  
650  
1000  
625  
1000  
1100  
1.0  
330  
500  
430  
655  
730  
130  
150  
195  
200  
220  
800  
1200  
850  
1200  
1500  
1.2  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
mA  
mA  
mA  
mA  
mA  
A  
A  
A  
A  
A  
mA  
mA  
mA  
mA  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
3.0  
3.6  
3.0  
5.0  
FOSC = 4 MHz  
EC Oscillator mode  
FOSC = 4 MHz  
EC Oscillator mode (Note 5)  
D015  
D015  
FOSC = 500 kHz  
MFINTOSC mode  
FOSC = 500 kHz  
MFINTOSC mode (Note 5)  
D016  
D016  
FOSC = 8 MHz  
HFINTOSC mode  
FOSC = 8 MHz  
HFINTOSC mode (Note 5)  
D017  
D017  
FOSC = 16 MHz  
HFINTOSC mode  
1.5  
1.85  
1.2  
1
FOSC = 16 MHz  
HFINTOSC mode (Note 5)  
1.5  
1.7  
1.7  
2.1  
D018  
D018  
210  
340  
225  
360  
410  
1.6  
240  
380  
320  
445  
650  
1.9  
FOSC = 4 MHz  
EXTRC mode (Note 3, Note 5)  
FOSC = 4 MHz  
EXTRC mode (Note 3, Note 5)  
D019  
D019  
FOSC = 20 MHz  
HS Oscillator mode  
2.0  
2.8  
1.6  
2
FOSC = 20 MHz  
HS Oscillator mode (Note 5)  
1.9  
3.2  
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from  
rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading  
and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current  
consumption.  
3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended  
by the formula IR = VDD/2REXT (mA) with REXT in k  
4: FVR and BOR are disabled.  
5: 0.1 F capacitor on VCAP (RA0).  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 205  
PIC16F707/PIC16LF707  
25.3 DC Characteristics: PIC16F707/PIC16LF707-I/E (Power-Down)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF707  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
PIC16F707  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Param  
No.  
Max.  
+85°C +125°C  
Max.  
Device Characteristics  
Min.  
Typ†  
Units  
VDD  
Note  
(2)  
Power-down Base Current (IPD)  
D020  
D020  
0.02  
0.08  
4.3  
5
0.7  
1.0  
10.2  
10.5  
11.8  
1.7  
2.5  
13.5  
14.5  
16  
3.9  
4.3  
17  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
WDT, BOR, FVR, and T1OSC  
disabled, all Peripherals Inactive  
WDT, BOR, FVR, and T1OSC  
disabled, all Peripherals Inactive  
18  
5.5  
0.5  
0.8  
6
21  
D021  
D021  
4.1  
4.8  
16.4  
16.8  
18.7  
22  
LPWDT Current (Note 1)  
LPWDT Current (Note 1)  
6.5  
7.5  
8.5  
8.5  
23  
25  
26  
D021A  
D021A  
18  
FVR current (Note 1, Note 3)  
18  
22  
44  
48  
FVR current (Note 1, Note 3,  
Note 5)  
45  
55  
60  
70  
D022  
D022  
BOR Current (Note 1, Note 3)  
7.5  
12  
22  
BOR Current (Note 1, Note 3,  
Note 5)  
23  
25  
0.6  
1.8  
4.5  
6
42  
49  
46  
50  
D026  
D026  
3
7
T1OSC Current (Note 1)  
T1OSC Current (Note 1)  
6
8.75  
11.1  
12.5  
13.5  
7
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is  
enabled. The peripheral current can be determined by subtracting the base IDD or IPD current from this limit. Max  
values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
3: Fixed Voltage Reference is automatically enabled whenever the BOR is enabled.  
4: A/D oscillator source is FRC.  
5: 0.1 F capacitor on VCAP (RA0).  
6: Includes FVR IPD and DAC IPD.  
DS41418A-page 206  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
25.3 DC Characteristics: PIC16F707/PIC16LF707-I/E (Power-Down) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF707  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
PIC16F707  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Param  
No.  
Max.  
+85°C +125°C  
Max.  
Device Characteristics  
Min.  
Typ†  
Units  
VDD  
Note  
(2)  
Power-down Base Current (IPD)  
D027  
D027  
0.06  
0.08  
6
0.7  
1.0  
10.7  
10.6  
11.9  
400  
400  
430  
430  
430  
3.2  
4.4  
13  
5.0  
5.5  
18  
20  
22  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
1.8  
3.0  
A/D Current (Note 1, Note 4), no  
conversion in progress  
A/D Current (Note 1, Note 4), no  
conversion in progress  
7
7.2  
250  
250  
280  
280  
280  
2.2  
3.3  
6.5  
8
D027A  
D027A  
A/D Current (Note 1, Note 4),  
conversion in progress  
A/D Current (Note 1, Note 4,  
Note 5), conversion in progress  
D028  
D028  
14.4  
15.6  
21  
23  
25  
17  
18  
23  
24  
27  
25  
44  
31  
50  
58  
Cap Sense Low Range  
Low Power  
Cap Sense Low Range  
Low Power  
14  
8
14  
D028A  
D028A  
4.2  
6
6
Cap Sense Low Range  
Medium Power  
7
8.5  
11  
15.5  
17  
Cap Sense Low Range  
Medium Power  
11  
18  
D028B  
D028B  
12  
14  
Cap Sense Low Range  
High Power  
32  
35  
16  
20  
Cap Sense Low Range  
High Power  
36  
41  
42  
49  
D028C  
D028C  
115  
120  
135  
140  
150  
125  
130  
Cap Sense HighRange  
Low Power (Note 6)  
Cap Sense High Range  
Low Power (Note 6)  
D028D  
Cap Sense HighRange  
Medium Power (Note 6)  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is  
enabled. The peripheral current can be determined by subtracting the base IDD or IPD current from this limit. Max  
values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
3: Fixed Voltage Reference is automatically enabled whenever the BOR is enabled.  
4: A/D oscillator source is FRC.  
5: 0.1 F capacitor on VCAP (RA0).  
6: Includes FVR IPD and DAC IPD.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 207  
PIC16F707/PIC16LF707  
25.3 DC Characteristics: PIC16F707/PIC16LF707-I/E (Power-Down) (Continued)  
Standard Operating Conditions (unless otherwise stated)  
PIC16LF707  
PIC16F707  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
Conditions  
Param  
No.  
Max.  
+85°C +125°C  
Max.  
Device Characteristics  
Min.  
Typ†  
Units  
VDD  
Note  
D028D  
145  
150  
160  
150  
170  
180  
190  
200  
A  
A  
A  
A  
A  
A  
A  
A  
1.8  
3.0  
5.0  
1.8  
3.0  
1.8  
3.0  
5.0  
Cap Sense High Range  
Medium Power (Note 6)  
D028E  
D028E  
Cap Sense HighRange  
High Power (Note 6)  
Cap Sense High Range  
High Power (Note 6)  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is  
enabled. The peripheral current can be determined by subtracting the base IDD or IPD current from this limit. Max  
values should be used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.  
3: Fixed Voltage Reference is automatically enabled whenever the BOR is enabled.  
4: A/D oscillator source is FRC.  
5: 0.1 F capacitor on VCAP (RA0).  
6: Includes FVR IPD and DAC IPD.  
DS41418A-page 208  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
25.4 DC Characteristics: PIC16F707/PIC16LF707-I/E  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Param  
No.  
Sym.  
Characteristic  
Min.  
Typ†  
Max.  
Units  
Conditions  
VIL  
Input Low Voltage  
I/O PORT:  
D030  
D030A  
D031  
with TTL buffer  
0.8  
V
V
V
V
V
V
4.5V VDD 5.5V  
0.15 VDD  
0.2 VDD  
0.3 VDD  
0.2 VDD  
0.3 VDD  
1.8V VDD 4.5V  
2.0V VDD 5.5V  
with Schmitt Trigger buffer  
2
with I C™ levels  
(1)  
D032  
MCLR, OSC1 (RC mode)  
D033A  
OSC1 (HS mode)  
Input High Voltage  
I/O ports:  
VIH  
D040  
with TTL buffer  
2.0  
V
V
4.5V VDD 5.5V  
1.8V VDD 4.5V  
D040A  
0.25 VDD +  
0.8  
D041  
with Schmitt Trigger buffer  
0.8 VDD  
0.7 VDD  
0.8 VDD  
0.7 VDD  
0.9 VDD  
V
V
V
V
V
2.0V VDD 5.5V  
2
with I C™ levels  
D042  
MCLR  
D043A  
D043B  
OSC1 (HS mode)  
OSC1 (RC mode)  
(Note 1)  
(2)  
IIL  
Input Leakage Current  
D060  
I/O ports  
± 5  
± 125  
nA  
VSS VPIN VDD, Pin at high-  
impedance, 85°C  
± 5  
± 1000  
± 200  
nA 125°C  
(3)  
D061  
MCLR  
± 50  
nA  
A  
V
VSS VPIN VDD, 85°C  
IPUR  
VOL  
PORTB Weak Pull-up Current  
D070*  
25  
25  
100  
140  
200  
300  
VDD = 3.3V, VPIN = VSS  
VDD = 5.0V, VPIN = VSS  
(4)  
Output Low Voltage  
D080  
D090  
D101*  
I/O ports  
IOL = 8mA, VDD = 5V  
IOL = 6mA, VDD = 3.3V  
IOL = 1.8mA, VDD = 1.8V  
0.6  
(4)  
VOH  
Output High Voltage  
I/O ports  
IOH = 3.5mA, VDD = 5V  
IOH = 3mA, VDD = 3.3V  
IOH = 1mA, VDD = 1.8V  
VDD - 0.7  
V
Capacitive Loading Specs on Output Pins  
COSC2 OSC2 pin  
15  
50  
pF  
pF  
In XT, HS and LP modes when  
external clock is used to drive  
OSC1  
D101A* CIO  
All I/O pins  
Program Flash Memory  
Legend:  
TBD = To Be Determined  
These parameters are characterized but not tested.  
*
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external  
clock in RC mode.  
2: Negative current is defined as current sourced by the pin.  
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent  
normal operating conditions. Higher leakage current may be measured at different input voltages.  
4: Including OSC2 in CLKOUT mode.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 209  
PIC16F707/PIC16LF707  
25.4 DC Characteristics: PIC16F707/PIC16LF707-I/E (Continued)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +85°C for industrial  
-40°C TA +125°C for extended  
DC CHARACTERISTICS  
Param  
No.  
Sym.  
EP  
Characteristic  
Min.  
Typ†  
Max.  
Units  
Conditions  
D130  
Cell Endurance  
100  
1k  
E/W Temperature during programming:  
10°C TA 40°C  
D131  
VDD for Read  
VMIN  
8.0  
V
Temperature during programming:  
10°C TA 40°C  
Voltage on MCLR/VPP during  
Erase/Program  
9.0  
V
V
V
VDD for Bulk Erase  
2.7  
2.7  
3
Temperature during programming:  
10°C TA 40°C  
D132  
VPEW  
VDD for Write or Row Erase  
VMIN = Minimum operating voltage  
VMAX = Maximum operating  
voltage  
Temperature during programming:  
10°C TA 40°C  
IPPPGM Current on MCLR/VPP during  
Erase/Write  
40  
5.0  
mA  
mA  
IDDPGM Current on VDD during Erase/  
Write  
Temperature during programming:  
10°C TA 40°C  
5.0  
2.8  
D133  
D134  
TPEW  
Erase/Write cycle time  
ms Temperature during programming:  
10°C TA 40°C  
TRETD  
Characteristic Retention  
Year Provided no other specifications  
are violated  
VCAP Capacitor Charging  
D135  
Charging current  
200  
0.0  
A  
mA  
D135A  
Source/sink capability when  
charging complete  
Legend:  
TBD = To Be Determined  
These parameters are characterized but not tested.  
*
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external  
clock in RC mode.  
2: Negative current is defined as current sourced by the pin.  
3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent  
normal operating conditions. Higher leakage current may be measured at different input voltages.  
4: Including OSC2 in CLKOUT mode.  
DS41418A-page 210  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
25.5 Thermal Considerations  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C  
Param  
No.  
Sym.  
Characteristic  
Typ.  
Units  
Conditions  
28-pin SPDIP package  
TH01  
JA  
Thermal Resistance Junction to Ambient  
60  
80  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C  
28-pin SOIC package  
90  
28-pin SSOP package  
27.5  
27.5  
47.2  
46  
28-pin UQFN 4x4mm package  
28-pin QFN 6x6mm package  
40-pin PDIP package  
44-pin TQFP package  
24.4  
31.4  
24  
44-pin QFN 8x8mm package  
28-pin SPDIP package  
28-pin SOIC package  
TH02  
JC  
Thermal Resistance Junction to Case  
24  
28-pin SSOP package  
24  
28-pin UQFN 4x4mm package  
28-pin QFN 6x6mm package  
40-pin PDIP package  
24  
24.7  
14.5  
20  
44-pin TQFP package  
44-pin QFN 8x8mm package  
TH03  
TH04  
TH05  
TH06  
TH07  
TJMAX  
PD  
Maximum Junction Temperature  
Power Dissipation  
150  
W
PD = PINTERNAL + PI/O  
(1)  
PINTERNAL Internal Power Dissipation  
W
PINTERNAL = IDD x VDD  
PI/O  
I/O Power Dissipation  
Derated Power  
W
PI/O = (IOL * VOL) + (IOH * (VDD - VOH))  
(2)  
PDER  
W
PDER = PDMAX (TJ - TA)/JA  
Note 1: IDD is current to run the chip alone without driving any load on the output pins.  
2: TA = Ambient Temperature  
3: TJ = Junction Temperature  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 211  
PIC16F707/PIC16LF707  
25.6  
Timing Parameter Symbology  
The timing parameter symbols have been created with  
one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
OSC1  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCK  
SDI  
do  
dt  
SDO  
SS  
Data in  
I/O PORT  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (High-impedance)  
Low  
Valid  
L
High-impedance  
FIGURE 25-2:  
LOAD CONDITIONS  
Load Condition  
Pin  
CL  
VSS  
Legend: CL = 50 pF for all pins, 15 pF for  
OSC2 output  
DS41418A-page 212  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
25.7 AC Characteristics: PIC16F707-I/E  
FIGURE 25-3:  
CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
OSC1/CLKIN  
OS02  
OS04  
OS04  
OS03  
OSC2/CLKOUT  
(LP,XT,HS Modes)  
OSC2/CLKOUT  
(CLKOUT Mode)  
FIGURE 25-4:  
PIC16F707 VOLTAGE FREQUENCY GRAPH, -40°C TA +125°C  
5.5  
3.6  
2.5  
2.3  
2.0  
1.8  
0
4
10  
16  
20  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: Refer to Table 25-1 for each Oscillator mode’s supported frequencies.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 213  
PIC16F707/PIC16LF707  
FIGURE 25-5:  
PIC16LF707 VOLTAGE FREQUENCY GRAPH, -40°C TA +125°C  
3.6  
2.5  
2.3  
2.0  
1.8  
0
4
10  
16  
20  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: Refer to Table 25-1 for each Oscillator mode’s supported frequencies.  
FIGURE 25-6:  
HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE  
+ 5%  
125  
85  
± 3%  
± 2%  
60  
25  
0
-20  
+ 5%  
-40  
1.8  
2.0  
2.5  
3.3(2)3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
3.0  
Note 1: This chart covers both regulator enabled and regulator disabled states.  
2: Regulator Nominal voltage.  
DS41418A-page 214  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
TABLE 25-1: CLOCK OSCILLATOR TIMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym.  
No.  
Characteristic  
Min.  
Typ†  
Max.  
Units  
Conditions  
LP Oscillator mode  
(1)  
OS01  
FOSC  
TOSC  
TCY  
External CLKIN Frequency  
DC  
DC  
DC  
DC  
37  
4
kHz  
MHz XT Oscillator mode  
MHz HS Oscillator mode  
MHz EC Oscillator mode  
20  
20  
(1)  
Oscillator Frequency  
32.768  
kHz  
LP Oscillator mode  
0.1  
1
4
MHz XT Oscillator mode  
4
MHz  
MHz  
HS Oscillator mode, VDD 2.7V  
HS Oscillator mode, VDD 2.7V  
1
20  
4
DC  
27  
250  
50  
50  
MHz RC Oscillator mode  
(1)  
OS02  
External CLKIN Period  
s  
ns  
ns  
ns  
s  
ns  
ns  
ns  
ns  
ns  
s  
ns  
ns  
ns  
ns  
ns  
LP Oscillator mode  
XT Oscillator mode  
HS Oscillator mode  
EC Oscillator mode  
LP Oscillator mode  
XT Oscillator mode  
HS Oscillator mode, VDD 2.7V  
HS Oscillator mode, VDD 2.7V  
RC Oscillator mode  
TCY = 4/FOSC  
(1)  
Oscillator Period  
30.5  
250  
250  
50  
250  
200  
2
10,000  
1,000  
1,000  
(1)  
OS03  
Instruction Cycle Time  
TCY  
DC  
OS04*  
TosH,  
TosL  
External CLKIN High,  
External CLKIN Low  
LP oscillator  
100  
20  
0
XT oscillator  
HS oscillator  
OS05*  
TosR,  
TosF  
External CLKIN Rise,  
External CLKIN Fall  
LP oscillator  
0
XT oscillator  
0
HS oscillator  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing  
code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current  
consumption. All devices are tested to operate at “min” values with an external clock applied to OSC1 pin. When an  
external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 215  
PIC16F707/PIC16LF707  
TABLE 25-2: OSCILLATOR PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param  
Sym.  
No.  
Freq.  
Tolerance  
Characteristic  
Min. Typ† Max. Units  
Conditions  
OS08  
HFOSC  
Internal Calibrated HFINTOSC  
Frequency  
2%  
16.0  
MHz 0°C TA +85°C,  
VDD V  
(2)  
5%  
2%  
16.0  
500  
MHz -40°C TA +125°C  
OS08A MFOSC  
OS10* TIOSC ST  
Internal Calibrated MFINTOSC  
Frequency  
kHz 0°C TA +85°C  
VDD V  
(2)  
5%  
500  
5
10  
8
kHz -40°C TA +125°C  
s  
HFINTOSC Wake-up from Sleep  
Start-up Time  
MFINTOSC  
20  
30  
s  
Wake-up from Sleep  
Start-up Time  
These parameters are characterized but not tested.  
*
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing  
code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current  
consumption. All devices are tested to operate at “min” values with an external clock applied to the OSC1 pin. When an  
external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
2: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as  
possible. 0.1 F and 0.01 F values in parallel are recommended.  
3: By design.  
FIGURE 25-7:  
CLKOUT AND I/O TIMING  
Cycle  
Write  
Q4  
Fetch  
Q1  
Read  
Q2  
Execute  
Q3  
FOSC  
OS12  
OS11  
OS20  
OS21  
CLKOUT  
OS19  
OS13  
OS18  
OS16  
OS17  
I/O pin  
(Input)  
OS14  
OS15  
I/O pin  
(Output)  
New Value  
Old Value  
OS18, OS19  
DS41418A-page 216  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
TABLE 25-3: CLKOUT AND I/O TIMING PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym.  
Characteristic  
Min.  
Typ† Max. Units  
Conditions  
OS11 TosH2ckL Foscto CLKOUT(1)  
OS12 TosH2ckH Foscto CLKOUT(1)  
OS13 TckL2ioV CLKOUTto Port out valid(1)  
70  
72  
20  
ns VDD = 3.3-5.0V  
ns VDD = 3.3-5.0V  
ns  
OS14 TioV2ckH Port input valid before CLKOUT(1)  
OS15 TosH2ioV Fosc(Q1 cycle) to Port out valid  
TOSC + 200 ns  
50  
70*  
ns  
ns VDD = 3.3-5.0V  
ns VDD = 3.3-5.0V  
OS16 TosH2ioI  
Fosc(Q2 cycle) to Port input invalid  
50  
(I/O in hold time)  
OS17 TioV2osH Port input valid to Fosc(Q2 cycle)  
20  
ns  
(I/O in setup time)  
OS18 TioR  
OS19 TioF  
Port output rise time(2)  
40  
15  
72  
32  
ns  
ns  
VDD = 2.0V  
VDD = 3.3-5.0V  
Port output fall time(2)  
28  
15  
55  
30  
VDD = 2.0V  
VDD = 3.3-5.0V  
OS20* Tinp  
OS21* Trbp  
INT pin input high or low time  
25  
ns  
ns  
PORTB interrupt-on-change new input  
level time  
TCY  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25C unless otherwise stated.  
Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x TOSC.  
2: Includes OSC2 in CLKOUT mode.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 217  
PIC16F707/PIC16LF707  
FIGURE 25-8:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Start-Up Time  
(1)  
Internal Reset  
Watchdog Timer  
(1)  
Reset  
31  
34  
34  
I/O pins  
Note 1: Asserted low.  
FIGURE 25-9:  
BROWN-OUT RESET TIMING AND CHARACTERISTICS  
VDD  
VBOR and VHYST  
VBOR  
(Device in Brown-out Reset)  
(Device not in Brown-out Reset)  
37  
Reset  
(1)  
33  
(due to BOR)  
Note 1: 64 ms delay only if PWRTE bit in the Configuration Word register is programmed to ‘0’. 2 ms  
delay if PWRTE = 0and VREGEN = 1.  
DS41418A-page 218  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
TABLE 25-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,  
AND BROWN-OUT RESET PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym.  
Characteristic  
Min. Typ† Max. Units  
Conditions  
30  
TMCL  
MCLR Pulse Width (low)  
2
5
s VDD = 3.3-5V, -40°C to +85°C  
s VDD = 3.3-5V  
31  
TWDTLP Low Power Watchdog Timer Time-  
out Period (No Prescaler)  
10  
40  
18  
1024  
65  
27  
ms VDD = 3.3V-5V  
32  
TOST  
Oscillator Start-up Timer Period(1),  
Tosc (Note 3)  
(2)  
33*  
34*  
35  
TPWRT Power-up Timer Period,  
140  
2.0  
ms  
PWRTE = 0  
TIOZ  
I/O high-impedance from MCLR  
s  
Low or Watchdog Timer Reset  
VBOR  
Brown-out Reset Voltage  
2.38  
1.80  
2.5  
1.9  
2.73  
2.11  
V
BORV=2.5V  
BORV=1.9V  
36*  
37*  
VHYST  
Brown-out Reset Hysteresis  
0
1
25  
3
50  
mV  
-40°C to +85°C  
TBORDC Brown-out Reset DC Response  
Time  
5
10  
s VDD VBOR, -40°C to +85°C  
VDD VBOR  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with the  
device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or  
higher than expected current consumption. All devices are tested to operate at “min” values with an external  
clock applied to the OSC1 pin. When an external clock input is used, the “max” cycle time limit is “DC” (no  
clock) for all devices.  
2: By design.  
3: Period of the slower clock.  
4: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as  
possible. 0.1 F and 0.01 F values in parallel are recommended.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 219  
PIC16F707/PIC16LF707  
FIGURE 25-10:  
TIMER0/A/B AND TIMER1/3 EXTERNAL CLOCK TIMINGS  
T0CKI/TACKI/TBCKI  
40  
41  
42  
T1CKI/T3CKI  
45  
46  
49  
47  
TMRx  
TABLE 25-5: TIMER0/A/B AND TIMER1/3 EXTERNAL CLOCK REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym.  
TT0H  
Characteristic  
Min.  
Typ†  
Max.  
Units  
Conditions  
40*  
T0CKI/TACKI/TBCKI High No Prescaler  
0.5 TCY + 20  
10  
ns  
ns  
Pulse Width  
With Pres-  
caler  
41*  
TT0L  
T0CKI/TACKI/TBCKI Low  
Pulse Width  
No Prescaler  
0.5 TCY + 20  
10  
ns  
ns  
With Pres-  
caler  
42*  
45*  
TT0P  
TT1H  
T0CKI/TACKI/TBCKI Period  
Greater of:  
20 or TCY + 40  
N
ns  
N = prescale value  
(2, 4, ..., 256)  
T1CKI/  
T3CKI High  
Time  
Synchronous, No Prescaler  
Synchronous, with Prescaler  
Asynchronous  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
15  
30  
46*  
47*  
TT1L  
TT1P  
T1CKI/  
T3CKI Low  
Time  
Synchronous, No Prescaler  
Synchronous, with Prescaler  
Asynchronous  
0.5 TCY + 20  
15  
30  
T1CKI/  
Synchronous  
Greater of:  
30 or TCY + 40  
N
N = prescale value  
(1, 2, 4, 8)  
T3CKIInput  
Period  
Asynchronous  
60  
ns  
48  
FT1  
Timer1 Oscillator Input Frequency Range  
(oscillator enabled by setting bit  
T1OSCEN)  
32.4  
32.76  
8
33.1  
kHz  
49*  
TCKEZTMR Delay from External Clock Edge to Timer  
2 TOSC  
7 TOSC  
Timers in Sync  
mode  
1
Increment  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
DS41418A-page 220  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 25-11:  
CAPTURE/COMPARE/PWM TIMINGS (CCP)  
CCPx  
(Capture mode)  
CC01  
CC02  
CC03  
Note: Refer to Figure 25-2 for load conditions.  
TABLE 25-6: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature -40°C TA +125°C  
Param  
No.  
Sym.  
Characteristic  
Min.  
Typ† Max. Units  
Conditions  
CC01* TccL CCPx Input Low Time  
CC02* TccH CCPx Input High Time  
CC03* TccP CCPx Input Period  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5TCY + 20  
ns  
ns  
ns  
ns  
ns  
20  
0.5TCY + 20  
20  
3TCY + 40  
N
N = prescale value (1, 4 or 16)  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
TABLE 25-7: PIC16F707 A/D CONVERTER (ADC) CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature -40°C TA +125°C  
Param  
No.  
Sym.  
Characteristic  
Min.  
Typ†  
Max. Units  
Conditions  
AD01  
AD02  
AD03  
NR  
Resolution  
8
bit  
EIL  
EDL  
Integral Error  
±1.7  
±1  
LSb VREF = 3.0V  
Differential Error  
LSb No missing codes  
VREF = 3.0V  
AD04 EOFF Offset Error  
±2.2  
±1.5  
VDD  
VREF  
50  
LSb VREF = 3.0V  
AD05 EGN Gain Error  
LSb VREF = 3.0V  
(3)  
AD06 VREF Reference Voltage  
AD07 VAIN Full-Scale Range  
1.8  
VSS  
V
V
AD08 ZAIN Recommended Impedance of  
Analog Voltage Source  
kCan go higher if external 0.01F capacitor is  
present on input pin.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: Total Absolute Error includes integral, differential, offset and gain errors.  
2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
3: When ADC is off, it will not consume any current other than leakage current. The power-down current specification  
includes any such leakage from the ADC module.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 221  
PIC16F707/PIC16LF707  
TABLE 25-8: PIC16F707 A/D CONVERSION REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature  
-40°C TA +125°C  
Param  
Sym.  
No.  
Characteristic  
Min.  
Typ†  
Max. Units  
Conditions  
AD130* TAD  
A/D Clock Period  
1.0  
1.0  
9.0  
6.0  
s  
s  
TOSC-based  
ADCS<1:0> = 11(ADRC mode)  
A/D Internal RC Oscillator  
Period  
2.0  
AD131 TCNV Conversion Time (not including  
10.5  
1.0  
TAD Set GO/DONE bit to conversion  
complete  
(1)  
Acquisition Time)  
AD132* TACQ Acquisition Time  
s  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: The ADRES register may be read on the following TCY cycle.  
FIGURE 25-12:  
PIC16F707 A/D CONVERSION TIMING (NORMAL MODE)  
BSF ADCON0, GO  
1 TCY  
(1)  
(TOSC/2  
AD134  
Q4  
)
AD131  
AD130  
A/D CLK  
7
6
5
4
3
2
1
0
A/D Data  
ADRES  
NEW_DATA  
1 TCY  
OLD_DATA  
ADIF  
GO  
DONE  
Sampling Stopped  
AD132  
Sample  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
DS41418A-page 222  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 25-13:  
PIC16F707 A/D CONVERSION TIMING (SLEEP MODE)  
BSF ADCON0, GO  
AD134  
(1)  
(TOSC/2 + TCY  
1 TCY  
)
AD131  
Q4  
AD130  
A/D CLK  
A/D Data  
7
6
5
3
2
1
0
4
NEW_DATA  
1 TCY  
OLD_DATA  
ADRES  
ADIF  
GO  
DONE  
Sampling Stopped  
AD132  
Sample  
Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the  
SLEEPinstruction to be executed.  
FIGURE 25-14:  
USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
CK  
DT  
US121  
US121  
US122  
US120  
Refer to Figure 25-2 for load conditions.  
Note:  
TABLE 25-9: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param.  
Symbol  
No.  
Characteristic  
Min.  
Max.  
Units Conditions  
US120 TCKH2DTV SYNC XMIT (Master and Slave)  
Clock high to data-out valid  
3.0-5.5V  
1.8-5.5V  
3.0-5.5V  
1.8-5.5V  
3.0-5.5V  
1.8-5.5V  
80  
100  
45  
ns  
ns  
ns  
ns  
ns  
ns  
US121 TCKRF  
Clock out rise time and fall time  
(Master mode)  
50  
US122 TDTRF  
Data-out rise time and fall time  
45  
50  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 223  
PIC16F707/PIC16LF707  
FIGURE 25-15:  
USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
CK  
DT  
US125  
US126  
Note: Refer to Figure 25-2 for load conditions.  
TABLE 25-10: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Operating Temperature  
-40°C TA +125°C  
Param.  
Symbol  
No.  
Characteristic  
Min.  
Max.  
Units  
Conditions  
US125 TDTV2CKL SYNC RCV (Master and Slave)  
Data-hold before CK (DT hold time)  
10  
15  
ns  
ns  
US126 TCKL2DTL Data-hold after CK (DT hold time)  
FIGURE 25-16:  
SPI MASTER MODE TIMING (CKE = 0, SMP = 0)  
SS  
SP70  
SCK  
(CKP = 0)  
SP71  
SP72  
SP78  
SP79  
SP79  
SCK  
(CKP = 1)  
SP78  
LSb  
SP80  
bit 6 - - - - - -1  
MSb  
SDO  
SDI  
SP75, SP76  
bit 6 - - - -1  
MSb In  
LSb In  
SP74  
SP73  
Note: Refer to Figure 25-2 for load conditions.  
DS41418A-page 224  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 25-17:  
SPI MASTER MODE TIMING (CKE = 1, SMP = 1)  
SS  
SP81  
SCK  
(CKP = 0)  
SP71  
SP73  
SP72  
SP79  
SP78  
SCK  
(CKP = 1)  
SP80  
bit 6 - - - - - -1  
LSb  
MSb  
SDO  
SDI  
SP75, SP76  
bit 6 - - - -1  
MSb In  
SP74  
Note: Refer to Figure 25-2 for load conditions.  
LSb In  
FIGURE 25-18:  
SPI SLAVE MODE TIMING (CKE = 0)  
SS  
SP70  
SCK  
(CKP = 0)  
SP83  
SP71  
SP72  
SP78  
SP79  
SCK  
(CKP = 1)  
SP78  
LSb  
SP79  
SP80  
MSb  
SDO  
SDI  
bit 6 - - - - - -1  
SP77  
SP75, SP76  
MSb In  
SP74  
SP73  
bit 6 - - - -1  
LSb In  
Note: Refer to Figure 25-2 for load conditions.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 225  
PIC16F707/PIC16LF707  
FIGURE 25-19:  
SPI SLAVE MODE TIMING (CKE = 1)  
SP82  
SP70  
SS  
SP83  
SCK  
(CKP = 0)  
SP72  
SP71  
SCK  
(CKP = 1)  
SP80  
MSb  
bit 6 - - - - - -1  
LSb  
SDO  
SDI  
SP77  
SP75, SP76  
bit 6 - - - -1  
MSb In  
SP74  
LSb In  
Note: Refer to Figure 25-2 for load conditions.  
DS41418A-page 226  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
TABLE 25-11: SPI MODE REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min.  
Typ† Max. Units Conditions  
No.  
SP70* TSSL2SCH, SSto SCKor SCKinput  
TCY  
ns  
TSSL2SCL  
SP71* TSCH  
SP72* TSCL  
SCK input high time (Slave mode)  
SCK input low time (Slave mode)  
TCY + 20  
TCY + 20  
100  
ns  
ns  
ns  
SP73* TDIV2SCH, Setup time of SDI data input to SCK edge  
TDIV2SCL  
SP74* TSCH2DIL, Hold time of SDI data input to SCK edge  
TSCL2DIL  
100  
ns  
SP75* TDOR  
SDO data output rise time  
3.0-5.5V  
1.8-5.5V  
10  
Tcy  
10  
25  
10  
10  
25  
10  
25  
50  
25  
50  
25  
50  
25  
50  
145  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SP76* TDOF  
SDO data output fall time  
SP77* TSSH2DOZ SSto SDO output high-impedance  
SP78* TSCR  
SCK output rise time  
(Master mode)  
3.0-5.5V  
1.8-5.5V  
SP79* TSCF  
SCK output fall time (Master mode)  
SP80* TSCH2DOV, SDO data output valid after  
TSCL2DOV SCK edge  
3.0-5.5V  
1.8-5.5V  
SP81* TDOV2SCH SDO data output setup to SCK edge  
,
TDOV2SCL  
SP82* TSSL2DOV SDO data output valid after SSedge  
50  
ns  
ns  
SP83* TSCH2SSH, SS after SCK edge  
1.5TCY +  
40  
TSCL2SSH  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
FIGURE 25-20:  
I2C™ BUS START/STOP BITS TIMING  
SCL  
SP93  
SP91  
SP90  
SP92  
SDA  
Stop  
Condition  
Start  
Condition  
Note: Refer to Figure 25-2 for load conditions.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 227  
PIC16F707/PIC16LF707  
TABLE 25-12: I2C™ BUS START/STOP BITS REQUIREMENTS  
Param  
Symbol  
Characteristic  
Min. Typ Max. Units  
Conditions  
No.  
SP90* TSU:STA Start condition  
Setup time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
4700  
600  
ns Only relevant for Repeated  
Start condition  
SP91* THD:STA Start condition  
Hold time  
4000  
600  
ns After this period, the first  
clock pulse is generated  
SP92* TSU:STO Stop condition  
Setup time  
4700  
600  
ns  
SP93 THD:STO Stop condition  
Hold time  
4000  
600  
ns  
*
These parameters are characterized but not tested.  
FIGURE 25-21:  
I2C™ BUS DATA TIMING  
SP100  
SP103  
SP102  
SP101  
SCL  
SP90  
SP106  
SP107  
SP92  
SP91  
SDA  
In  
SP110  
SP109  
SP109  
SDA  
Out  
Note: Refer to Figure 25-2 for load conditions.  
DS41418A-page 228  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
TABLE 25-13: I2C™ BUS DATA REQUIREMENTS  
Param.  
Symbol  
Characteristic  
Min.  
Max. Units  
Conditions  
No.  
SP100* THIGH  
Clock high time  
100 kHz mode  
4.0  
s  
s  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
0.6  
Device must operate at a  
minimum of 10 MHz  
SSP Module  
1.5TCY  
4.7  
SP101* TLOW  
Clock low time  
100 kHz mode  
s  
s  
Device must operate at a  
minimum of 1.5 MHz  
400 kHz mode  
SSP Module  
1.3  
Device must operate at a  
minimum of 10 MHz  
1.5TCY  
SP102* TR  
SP103* TF  
SDA and SCL rise 100 kHz mode  
time  
1000  
300  
ns  
ns  
400 kHz mode  
20 +  
0.1CB  
CB is specified to be from  
10-400 pF  
SDA and SCL fall  
time  
100 kHz mode  
400 kHz mode  
250  
250  
ns  
ns  
20 +  
0.1CB  
CB is specified to be from  
10-400 pF  
SP106* THD:DAT Data input hold  
time  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
100 kHz mode  
400 kHz mode  
0
0.9  
ns  
s  
ns  
ns  
ns  
ns  
s  
s  
0
SP107* TSU:DAT Data input setup  
time  
250  
100  
(Note 2)  
(Note 1)  
SP109* TAA  
Output valid from  
clock  
3500  
SP110* TBUF  
Bus free time  
4.7  
1.3  
Time the bus must be free  
before a new transmis-  
sion can start  
SP111 CB  
Bus capacitive loading  
400  
pF  
*
These parameters are characterized but not tested.  
Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region  
(min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.  
2: A Fast mode (400 kHz) I2Cbus device can be used in a Standard mode (100 kHz) I2C bus system, but  
the requirement TSU:DAT 250 ns must then be met. This will automatically be the case if the device does  
not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal,  
it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to  
the Standard mode I2C bus specification), before the SCL line is released.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 229  
PIC16F707/PIC16LF707  
TABLE 25-14: CAP SENSE OSCILLATOR SPECIFICATIONS  
Param.  
Symbol  
Characteristic  
Min.  
Typ†  
Max. Units  
Conditions  
No.  
CS01  
ISRC  
Current Source  
High  
-6  
-3.2  
-0.9  
6
A  
A  
A  
A  
A  
A  
mV  
mV  
mV  
-5.8  
-1.1  
-0.2  
6.6  
-40, -85°C  
Medium  
Low  
CS02  
CS03  
ISNK  
Current Sink  
High  
-40, -85°C  
Medium  
Low  
1.3  
3.2  
0.9  
0.24  
525  
375  
280  
VCHYST  
Cap Hysteresis  
High  
VCTH-VCTL  
Medium  
Low  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
FIGURE 25-22:  
CAP SENSE OSCILLATOR  
VCTH  
VCTL  
ISRC  
Enabled  
ISNK  
Enabled  
DS41418A-page 230  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
26.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein are  
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
“Typical” represents the mean of the distribution at 25C. “Maximum” or “minimum” represents (mean + 3) or  
(mean - 3) respectively, where is a standard deviation, over the whole temperature range.  
FIGURE 26-1:  
PIC16F707 MAXIMUM IDD vs. FOSC OVER VDD, EC MODE, VCAP = 0.1µF  
2,200.00  
2,000.00  
1,800.00  
1,600.00  
1,400.00  
1,200.00  
1,000.00  
800.00  
5V  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
3.6V  
3V  
2.5V  
1.8V  
600.00  
400.00  
200.00  
0.00  
1 MHz  
4 MHz  
8 MHz  
12 MHz  
16 MHz  
20 MHz  
VDD (V)  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 231  
PIC16F707/PIC16LF707  
FIGURE 26-2:  
PIC16LF707 MAXIMUM IDD vs. FOSC OVER VDD, EC MODE  
2,400  
2,200  
2,000  
1,800  
1,600  
1,400  
1,200  
1,000  
800  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
3.6V  
3.3V  
3V  
2.5V  
2V  
1.8V  
600  
400  
200  
0
1 MHz  
4 MHz  
8 MHz  
12 MHz  
16 MHz  
20 MHz  
FOSC  
FIGURE 26-3:  
PIC16F707 TYPICAL IDD vs. FOSC OVER VDD, EC MODE, VCAP = 0.1µF  
2,000  
1,800  
1,600  
1,400  
1,200  
1,000  
800  
5V  
3.6V  
3V  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
2.5V  
1.8V  
600  
400  
200  
0
1 MHz  
4 MHz  
8 MHz  
12 MHz  
16 MHz  
20 MHz  
FOSC  
DS41418A-page 232  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 26-4:  
PIC16LF707 TYPICAL IDD vs. FOSC OVER VDD, EC MODE  
2,200  
2,000  
1,800  
1,600  
1,400  
1,200  
1,000  
800  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
3.6V  
3.3V  
3V  
2.5V  
2V  
1.8V  
600  
400  
200  
0
1 MHz  
4 MHz  
8 MHz  
12 MHz  
16 MHz  
20 MHz  
FOSC  
FIGURE 26-5:  
PIC16F707 MAXIMUM IDD vs. VDD OVER FOSC, EXTRC MODE, VCAP = 0.1µF  
600  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
4 MHz  
(-40°C to 125°C)  
500  
400  
300  
200  
100  
0
1 MHz  
1.8  
2
2.5  
3
3.3  
3.6  
4.2  
4.5  
5
VDD (V)  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 233  
PIC16F707/PIC16LF707  
FIGURE 26-6:  
PIC16LF707 MAXIMUM IDD vs. VDD OVER FOSC, EXTRC MODE  
500  
4 MHz  
Typical: Statistical Mean @25°C  
450  
400  
350  
300  
250  
200  
150  
100  
50  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
1 MHz  
0
1.8  
2
2.5  
3
3.3  
3.6  
VDD (V)  
FIGURE 26-7:  
PIC16F707 TYPICAL IDD vs. VDD OVER FOSC, EXTRC MODE, VCAP = 0.1µF  
450  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
4 MHz  
400  
350  
300  
250  
200  
150  
100  
50  
1 MHz  
0
1.8  
2
2.5  
3
3.3  
3.6  
4.2  
4.5  
5
VDD (V)  
DS41418A-page 234  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 26-8:  
PIC16LF707 TYPICAL IDD vs. VDD OVER FOSC, EXTRC MODE  
450  
Typical: Statistical Mean @25°C  
4 MHz  
Maximum: Mean (Worst-Case Temp) + 3  
400  
350  
300  
250  
200  
150  
100  
50  
(-40°C to 125°C)  
1 MHz  
0
1.8  
2
2.5  
3
3.3  
3.6  
VDD (V)  
FIGURE 26-9:  
PIC16F707 MAXIMUM IDD vs. FOSC OVER VDD, HS MODE, VCAP = 0.1µF  
2.4  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
2.2  
2
5V  
4.5V  
3.6V  
3V  
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
4 MHz  
6 MHz  
8 MHz  
10 MHz  
13 MHz  
16 MHz  
20 MHz  
Fosc  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 235  
PIC16F707/PIC16LF707  
FIGURE 26-10:  
PIC16LF707 MAXIMUM IDD vs. FOSC OVER VDD, HS MODE  
2.50  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
3.6V  
3.3V  
2.00  
1.50  
1.00  
0.50  
0.00  
3V  
2.5V  
4 MHz  
6 MHz  
8 MHz  
10 MHz  
13 MHz  
16 MHz  
20 MHz  
Fosc  
FIGURE 26-11:  
PIC16F707 TYPICAL IDD vs. FOSC OVER VDD, HS MODE, VCAP = 0.1µF  
Typical: Statistical Mean @25°C  
2.00  
1.50  
1.00  
0.50  
0.00  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
5V  
4.5V  
3.6V  
3V  
4 MHz  
6 MHz  
8 MHz  
10 MHz  
13 MHz  
16 MHz  
20 MHz  
Fosc  
DS41418A-page 236  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 26-12:  
PIC16LF707 TYPICAL IDD vs. FOSC OVER VDD, HS MODE  
2.50  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
2.00  
1.50  
1.00  
0.50  
0.00  
3.6V  
3.3V  
3V  
2.5V  
4 MHz  
6 MHz  
8 MHz  
10 MHz  
13 MHz  
16 MHz  
20 MHz  
Fosc  
FIGURE 26-13:  
PIC16F707 MAXIMUM IDD vs. VDD OVER FOSC, XT MODE, VCAP = 0.1µF  
600  
Typical: Statistical Mean @25°C  
4 MHz  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
500  
400  
300  
200  
100  
0
1 MHz  
1.8  
2
2.5  
3
3.3  
3.6  
4.2  
4.5  
5
VDD (V)  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 237  
PIC16F707/PIC16LF707  
FIGURE 26-14:  
PIC16LF707 MAXIMUM IDD vs. VDD OVER FOSC, XT MODE  
600  
Typical: Statistical Mean @25°C  
4 MHz  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
500  
400  
300  
200  
100  
0
1 MHz  
1.8  
2
2.5  
3
3.3  
3.6  
VDD (V)  
FIGURE 26-15:  
PIC16F707 TYPICAL IDD vs. VDD OVER FOSC, XT MODE, VCAP = 0.1µF  
600  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
500  
400  
300  
200  
100  
0
4 MHz  
1 MHz  
1.8  
2
2.5  
3
3.3  
3.6  
4.2  
4.5  
5
VDD (V)  
DS41418A-page 238  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 26-16:  
PIC16LF707 TYPICAL IDD vs. VDD OVER FOSC, XT MODE  
600  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
500  
400  
300  
200  
100  
0
4 MHz  
1 MHz  
1.8  
2
2.5  
3
3.3  
3.6  
VDD (V)  
FIGURE 26-17:  
PIC16F707 IDD vs. VDD, LP MODE, VCAP = 0.1µF  
20.0  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
17.5  
15.0  
12.5  
10.0  
32 kHz Maximum  
VDD (V)  
32 kHz Typical  
1.8  
3
5
VDD (V)  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 239  
PIC16F707/PIC16LF707  
FIGURE 26-18:  
PIC16LF707 IDD vs. VDD, LP MODE  
30  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
25  
20  
15  
10  
5
32 kHz Maximum  
32 kHz Typical  
1.8  
3
3.3  
3.6  
VDD (V)  
FIGURE 26-19:  
PIC16F707 MAXIMUM IDD vs. FOSC OVER VDD, INTOSC MODE, VCAP = 0.1µF  
210  
Typical: Statistical Mean @25°C  
200  
190  
180  
170  
160  
150  
140  
130  
120  
110  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
5V  
3.6V  
2.5V  
1.8V  
62.5 kHz  
125 kHz  
250 kHz  
500 kHz  
FOSC  
DS41418A-page 240  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 26-20:  
PIC16LF707 MAXIMUM IDD vs. FOSC OVER VDD, INTOSC MODE  
170  
Typical: Statistical Mean @25°C  
3.6V  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
160  
150  
140  
130  
120  
110  
100  
3V  
2.5V  
1.8V  
62.5 kHz  
125 kHz  
250 kHz  
500 kHz  
FOSC  
FIGURE 26-21:  
PIC16F707 MAXIMUM IDD vs. FOSC OVER VDD, INTOSC MODE, VCAP = 0.1µF  
2,000  
5V  
Typical: Statistical Mean @25°C  
1,800  
1,600  
1,400  
1,200  
1,000  
800  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
3.6V  
2.5V  
1.8V  
600  
400  
200  
0
2 MHz  
4 MHz  
8 MHz  
16 MHz  
FOSC  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 241  
PIC16F707/PIC16LF707  
FIGURE 26-22:  
PIC16LF707 MAXIMUM IDD vs. FOSC OVER VDD, INTOSC MODE  
2,250  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
3.6V  
2,000  
1,750  
1,500  
1,250  
1,000  
750  
3V  
2.5V  
1.8V  
500  
250  
0
2 MHz  
4 MHz  
8 MHz  
16 MHz  
FOSC  
FIGURE 26-23:  
PIC16F707 TYPICAL IDD vs. FOSC OVER VDD, INTOSC MODE, VCAP = 0.1µF  
160  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
150  
140  
130  
120  
110  
100  
90  
5V  
3.6V  
2.5V  
1.8V  
80  
62.5 kHz  
125 kHz  
250 kHz  
500 kHz  
FOSC  
DS41418A-page 242  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 26-24:  
PIC16LF707 TYPICAL IDD vs. FOSC OVER VDD, INTOSC MODE  
140  
3.6V  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
130  
120  
110  
100  
90  
3V  
2.5V  
1.8V  
80  
70  
62.5 kHz  
125 kHz  
250 kHz  
500 kHz  
FOSC  
FIGURE 26-25:  
PIC16F707 TYPICAL IDD vs. FOSC OVER VDD, INTOSC MODE, VCAP = 0.1µF  
2,000  
Typical: Statistical Mean @25°C  
1,800  
1,600  
1,400  
1,200  
1,000  
800  
5V  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
3.6V  
2.5V  
1.8V  
600  
400  
200  
0
2 MHz  
4 MHz  
8 MHz  
16 MHz  
FOSC  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 243  
PIC16F707/PIC16LF707  
FIGURE 26-26:  
PIC16LF707 TYPICAL IDD vs. FOSC OVER VDD, INTOSC MODE  
2,000  
3.6V  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
1,800  
1,600  
1,400  
1,200  
1,000  
800  
3V  
2.5V  
1.8V  
600  
400  
200  
0
2 MHz  
4 MHz  
8 MHz  
16 MHz  
VDD (V)  
FIGURE 26-27:  
PIC16F707 MAXIMUM BASE IPD vs. VDD, VCAP = 0.1µF  
25  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
20  
15  
10  
5
125°C  
85°C  
0
1.8V  
2V  
3V  
3.6V  
4V  
5V  
5.5V  
VDD (V)  
DS41418A-page 244  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 26-28:  
PIC16LF707 MAXIMUM BASE IPD vs. VDD  
7
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
6
5
4
3
2
1
0
125°C  
85°C  
1.8V  
2V  
2.5V  
3V  
3.6V  
VDD (V)  
FIGURE 26-29:  
PIC16F707 TYPICAL BASE IPD vs. VDD, VCAP = 0.1µF  
8
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
7
6
5
4
3
2
25°C  
1.8V  
2V  
3V  
3.6V  
4V  
5V  
5.5V  
VDD (V)  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 245  
PIC16F707/PIC16LF707  
FIGURE 26-30:  
PIC16LF707 TYPICAL BASE IPD vs. VDD  
250  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
200  
150  
100  
50  
25°C  
0
1.8V  
2V  
2.5V  
3V  
3.6V  
VDD (V)  
FIGURE 26-31:  
PIC16F707 FIXED VOLTAGE REFERENCE IPD vs. VDD, VCAP = 0.1µF  
70  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
Max. 125°C  
60  
50  
40  
30  
20  
10  
0
(-40°C to 125°C)  
Max. 85°C  
Typ. 25°C  
1.8V  
2V  
3V  
3.6V  
5V  
5.5V  
VDD (V)  
DS41418A-page 246  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 26-32:  
PIC16LF707 FIXED VOLTAGE REFERENCE IPD vs. VDD  
25  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
Max. 125°C  
20  
15  
10  
5
Max. 85°C  
Typ. 25°C  
0
1.8V  
2V  
2.5V  
3V  
3.6V  
VDD (V)  
FIGURE 26-33:  
PIC16F707 BOR IPD vs. VDD, VCAP = 0.1µF  
70  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
60  
50  
40  
30  
20  
10  
0
Max. 125°C  
Max. 85°C  
Typ. 25°C  
2V  
3V  
3.6V  
5V  
5.5V  
VDD (V)  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 247  
PIC16F707/PIC16LF707  
FIGURE 26-34:  
PIC16LF707 BOR IPD vs. VDD  
30  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
25  
20  
15  
10  
5
Max. 125°C  
Max. 85°C  
Typ. 25°C  
0
2V  
2.5V  
3V  
3.6V  
VDD (V)  
FIGURE 26-35:  
PIC16F707 CAP SENSE HIGH POWER IPD vs. VDD, VCAP = 0.1µF  
70  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
Max. 125°C  
60  
50  
40  
30  
20  
10  
0
Max. 85°C  
Typ. 25°C  
1.8V  
2V  
3V  
3.6V  
5V  
5.5V  
VDD (V)  
DS41418A-page 248  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 26-36:  
PIC16LF707 CAP SENSE HIGH POWER IPD vs. VDD  
60  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
50  
40  
30  
20  
10  
0
Max. 125°C  
Max. 85°C  
Typ. 25°C  
1.8V  
2V  
2.5V  
3V  
3.6V  
VDD (V)  
FIGURE 26-37:  
PIC16F707 CAP SENSE MEDIUM POWER IPD vs. VDD, VCAP = 0.1µF  
30  
Max. 125°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
25  
20  
15  
10  
5
Max. 85°C  
Typ. 25°C  
0
1.8V  
2V  
3V  
3.6V  
5V  
5.5V  
VDD (V)  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 249  
PIC16F707/PIC16LF707  
FIGURE 26-38:  
PIC16LF707 CAP SENSE MEDIUM POWER IPD vs. VDD  
20  
Typical: Statistical Mean @25°C  
Max. 125°C  
Maximum: Mean (Worst-Case Temp) + 3  
18  
16  
14  
12  
10  
8
(-40°C to 125°C)  
Max. 85°C  
Typ. 25°C  
6
4
2
0
1.8V  
2V  
2.5V  
3V  
3.6V  
VDD (V)  
FIGURE 26-39:  
PIC16F707 CAP SENSE LOW POWER IPD vs. VDD, VCAP = 0.1µF  
30  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
Max. 125°C  
25  
20  
15  
10  
5
Max. 85°C  
Typ. 25°C  
0
1.8V  
2V  
3V  
3.6V  
5V  
5.5V  
VDD (V)  
DS41418A-page 250  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 26-40:  
PIC16LF707 CAP SENSE LOW POWER IPD vs. VDD  
18  
Typical: Statistical Mean @25°C  
Max. 125°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
16  
14  
12  
10  
8
6
Max. 85°C  
Typ. 25°C  
4
2
0
1.8V  
2V  
2.5V  
3V  
3.6V  
VDD (V)  
FIGURE 26-41:  
PIC16F707 T1OSC 32 kHz IPD vs. VDD, VCAP = 0.1µF  
16  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
Max. 85°C  
14  
12  
10  
8
Typ. 25° C  
6
4
2
0
1.8V  
2V  
3V  
3.6V  
5V  
5.5V  
VDD (V)  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 251  
PIC16F707/PIC16LF707  
FIGURE 26-42:  
PIC16LF707 T1OSC 32 kHz IPD vs. VDD  
4.0  
Max. 85°C  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Typ.  
1.8V  
2V  
2.5V  
3V  
3.6V  
VDD (V)  
FIGURE 26-43:  
PIC16F707 TYPICAL ADC IPD vs. VDD, VCAP = 0.1µF  
7.5  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
Typ. 25°C  
7.0  
6.5  
6.0  
5.5  
5.0  
1.8V  
2V  
3V  
3.6V  
5V  
5.5V  
VDD (V)  
DS41418A-page 252  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 26-44:  
PIC16LF707 TYPICAL ADC IPD vs. VDD  
250  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
Typ. 25°C  
200  
150  
100  
50  
0
1.8V  
2V  
2.5V  
3V  
3.6V  
VDD (V)  
FIGURE 26-45:  
PIC16F707 ADC IPD vs. VDD, VCAP = 0.1µF  
25  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
Max. 125°C  
20  
15  
10  
5
Max. 85°C  
1.8V  
2V  
3V  
3.6V  
5V  
5.5V  
VDD (V)  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 253  
PIC16F707/PIC16LF707  
FIGURE 26-46:  
PIC16LF707 ADC IPD vs. VDD  
8
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
7
6
5
4
3
2
1
0
Max. 125°C  
Max. 85°C  
1.8V  
2V  
2.5V  
3V  
3.6V  
VDD (V)  
FIGURE 26-47:  
PIC16F707 WDT IPD vs. VDD, VCAP = 0.1µF  
18  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
Max. 85°C  
16  
14  
12  
10  
8
Typ. 25°C  
6
4
2
0
1.8V  
2V  
3V  
3.6V  
5V  
5.5V  
VDD (V)  
DS41418A-page 254  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 26-48:  
PIC16LF707 WDT IPD vs. VDD  
3.5  
Typical: Statistical Mean @25°C  
Max. 85°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Typ. 25°C  
1.8V  
2V  
2.5V  
3V  
3.6V  
VDD (V)  
FIGURE 26-49:  
TTL INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE  
1.8  
Maximum: Mean + 3(-40°C to 125°C)  
Typical: Mean @25°C  
1.6  
1.4  
1.2  
1
Minimum: Mean - 3(-40°C to 125°C)  
Max. -40°  
Typ. 25°  
Min. 125°  
0.8  
0.6  
0.4  
1.8  
3.6  
5.5  
VDD (V)  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 255  
PIC16F707/PIC16LF707  
FIGURE 26-50:  
SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE  
3.5  
Maximum: Mean + 3(-40°C to 125°C)  
Typical: Mean @25°C  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Minimum: Mean - 3(-40°C to 125°C)  
VIHMax. -40°C  
VIHMin. 125°C  
1.8  
3.6  
5.5  
VDD (V)  
FIGURE 26-51:  
SCHMITT TRIGGER INPUT THRESHOLD VIN vs. VDD OVER TEMPERATURE  
3.0  
Maximum: Mean + 3(-40°C to 125°C)  
Typical: Mean @25°C  
Minimum: Mean - 3(-40°C to 125°C)  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIL Max. -40°C  
VIL Min. 125°C  
1.8  
3.6  
5.5  
VDD (V)  
DS41418A-page 256  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 26-52:  
VOH vs. IOH OVER TEMPERATURE, VDD = 5.5V  
5.6  
Maximum: Mean + 3(-40°C to 125°C)  
Typical: Mean @25°C  
5.5  
5.4  
5.3  
5.2  
5.1  
5
Minimum: Mean - 3(-40°C to 125°C)  
Max. -40°  
Typ. 25°  
Min. 125°  
-0.2  
-1.0  
-1.8  
-2.6  
-3.4  
-4.2  
-5.0  
IOH (mA)  
FIGURE 26-53:  
VOH vs. IOH OVER TEMPERATURE, VDD = 3.6V  
3.8  
Maximum: Mean + 3(-40°C to 125°C)  
Typical: Mean @25°C  
Minimum: Mean - 3(-40°C to 125°C)  
3.6  
3.4  
3.2  
3
Max. -40°  
Typ. 25°  
Min. 125°  
2.8  
2.6  
-0.2  
-1.0  
-1.8  
-2.6  
-3.4  
-4.2  
-5.0  
IOH (mA)  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 257  
PIC16F707/PIC16LF707  
FIGURE 26-54:  
VOH vs. IOH OVER TEMPERATURE, VDD = 1.8V  
2
Maximum: Mean + 3(-40°C to 125°C)  
Typical: Mean @25°C  
1.8  
1.6  
1.4  
1.2  
1
Minimum: Mean - 3(-40°C to 125°C)  
Max. -40°  
Typ. 25°  
0.8  
0.6  
0.4  
0.2  
Min. 125°  
0
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-1.4  
-1.6  
-1.8  
-2.0  
IOH (mA)  
FIGURE 26-55:  
VOL vs. IOL OVER TEMPERATURE, VDD = 5.5V  
0.5  
Maximum: Mean + 3(-40°C to 125°C)  
Typical: Mean @25°C  
0.45  
0.4  
Minimum: Mean - 3(-40°C to 125°C)  
0.35  
0.3  
Max. 125°  
0.25  
0.2  
Typ. 25°  
0.15  
0.1  
Min. -40°  
0.05  
0
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
IOL (mA)  
DS41418A-page 258  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 26-56:  
VOL vs. IOL OVER TEMPERATURE, VDD = 3.6  
0.9  
Maximum: Mean + 3(-40°C to 125°C)  
Typical: Mean @25°C  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
Minimum: Mean - 3(-40°C to 125°C)  
Max. 125°  
Typ. 25°  
Min. -40°  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
IOL (mA)  
FIGURE 26-57:  
VOL vs. IOL OVER TEMPERATURE, VDD = 1.8V  
1.2  
Maximum: Mean + 3(-40°C to 125°C)  
Typical: Mean @25°C  
Minimum: Mean - 3(-40°C to 125°C)  
1
0.8  
0.6  
0.4  
0.2  
0
Max. 125°  
Min. -40°  
0.0  
0.4  
0.8  
1.2  
1.6  
IOL (mA)  
2.0  
2.4  
2.8  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 259  
PIC16F707/PIC16LF707  
FIGURE 26-58:  
PIC16F707 PWRT PERIOD  
105  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
95  
85  
75  
65  
55  
45  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
1.8V  
2V  
2.2V  
2.4V  
3V  
3.6V  
4V  
4.5V  
5V  
5.5V  
VDD  
FIGURE 26-59:  
PIC16F707 WDT TIME-OUT PERIOD  
24.00  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
22.00  
20.00  
18.00  
16.00  
14.00  
12.00  
10.00  
Max. -40°C  
Typ. 25°C  
Min. 125°C  
1.8V  
2V  
2.2V  
2.4V  
3V  
3.6V  
4V  
4.5V  
5V  
VDD  
DS41418A-page 260  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 26-60:  
PIC16F707 HFINTOSC WAKE-UP FROM SLEEP START-UP TIME  
6.0  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
Max.  
Typ.  
1.8V  
2V  
3V  
3.6V  
4V  
4.5V  
5V  
5.5V  
VDD  
FIGURE 26-61:  
PIC16F707 A/D INTERNAL RC OSCILLATOR PERIOD  
6.0  
Typical: Statistical Mean @25°C  
Maximum: Mean (Worst-Case Temp) + 3  
(-40°C to 125°C)  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
Max.  
Min.  
1.8V  
3.6V  
5.5V  
VDD(V)  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 261  
PIC16F707/PIC16LF707  
FIGURE 26-62:  
PIC16F707 CAP SENSE OUTPUT CURRENT, POWER MODE = HIGH  
20000  
Min. Sink -40°C  
Typ. Sink 25°C  
15000  
10000  
5000  
Max. Sink 85°C  
0
Min. Source 85°C  
Typ. Source 25°C  
-5000  
-10000  
-15000  
Max. Source -40°C  
1.8  
2
2.5  
3
3.2  
3.6  
4
4.5  
5
5.5  
VDD(V)  
FIGURE 26-63:  
PIC16F707 CAP SENSE OUTPUT CURRENT, POWER MODE = MEDIUM  
3000  
Max. Sink -40°C  
2000  
1000  
0
Typ. Sink 25°C  
Min. Sink 85°C  
Min. Source 85°C  
Typ. Source 25°C  
-1000  
-2000  
-3000  
Max. Source -40°C  
1.8  
2
2.5  
3
3.2  
3.6  
4
4.5  
5
5.5  
VDD(V)  
DS41418A-page 262  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 26-64:  
PIC16F707 CAP SENSE OUTPUT CURRENT, POWER MODE = LOW  
600  
Max. Sink 85°C  
Typ. Sink 25°C  
400  
200  
0
Min. Sink -40°C  
Min. Source 85°C  
Typ. Source 25°C  
-200  
-400  
-600  
-800  
Max. Source -40°C  
1.8  
2
2.5  
3
3.2  
3.6  
4
4.5  
5
5.5  
VDD(V)  
FIGURE 26-65:  
PIC16F707 CAP SENSOR HYSTERESIS, POWER MODE = HIGH  
700  
Max. 125°C  
Max. 85°C  
600  
500  
400  
Typ. 25°C  
Min. 0°C  
Min. -40°C  
300  
1.8  
2.0  
2.5  
3.0  
3.2  
3.6  
4.0  
4.5  
5.0  
5.5  
VDD(V)  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 263  
PIC16F707/PIC16LF707  
FIGURE 26-66:  
PIC16F707 CAP SENSOR HYSTERESIS, POWER MODE = MEDIUM  
550  
500  
450  
400  
350  
300  
Max. 125°C  
Max. 85°C  
Typ. 25°C  
Min. 0°C  
Min. -40°C  
250  
1.8  
2.0  
2.5  
3.0  
3.2  
3.6  
4.0  
4.5  
5.0  
5.5  
VDD(V)  
FIGURE 26-67:  
PIC16F707 CAP SENSOR HYSTERESIS, POWER MODE = LOW  
450  
Max. 125°C  
Max. 85°C  
400  
350  
300  
250  
200  
150  
Typ. 25°C  
Min. 0°C  
Min -40°C  
1.8  
2.0  
2.5  
3.0  
3.2  
3.6  
4.0  
4.5  
5.0  
5.5  
VDD(V)  
DS41418A-page 264  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
FIGURE 26-68:  
TYPICAL FVR (X1 AND X2) VS. SUPPLY VOLTAGE (V) NORMALIZED AT 3.0V  
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
1.8  
2.5  
3
3.6  
4.2  
5.5  
Voltage  
FIGURE 26-69:  
TYPICAL FVR CHANGE VS. TEMPERATURE NORMALIZED AT 25°C  
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
-40  
0
45  
85  
125  
Temperature (°C)  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 265  
PIC16F707/PIC16LF707  
NOTES:  
DS41418A-page 266  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
27.0 PACKAGING INFORMATION  
27.1 Package Marking Information  
40-Lead PDIP  
Example  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
XXXXXXXXXXXXXXXXXX  
PIC16F707  
e
3
-I/P  
10033K1  
YYWWNNN  
44-Lead QFN  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC16F707  
-I/ML  
10033K1  
e
3
44-Lead TQFP  
Example  
XXXXXXXXXXX  
XXXXXXXXXXX  
XXXXXXXXXXX  
YYWWNNN  
PIC16F707  
e
3
-I/PT  
10033K1  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
*
Standard PICmicro® device marking consists of Microchip part number, year code, week code and  
traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check  
with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP  
price.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 267  
PIC16F707/PIC16LF707  
27.2 Package Details  
The following sections give the technical details of the packages.  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢅꢉꢇꢐꢑꢂꢃꢌꢑꢄꢇꢒꢈꢓꢇMꢇꢔꢁꢁꢇꢕꢌꢉꢇꢖꢗꢆꢘꢇꢙꢈꢎꢐꢈꢚ  
ꢛꢗꢋꢄꢜ 4ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ5ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ5ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ366***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'6ꢓꢆꢌ5ꢆꢑꢃꢄꢑ  
N
NOTE 1  
E1  
1 2 3  
D
E
A2  
A
L
c
b1  
b
A1  
e
eB  
7ꢄꢃ&!  
ꢙ8,9.ꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ:ꢃ'ꢃ&!  
ꢔꢙ8  
8;ꢔ  
ꢔꢗ<  
8"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
8
ꢖꢕ  
ꢁꢀꢕꢕꢅ2ꢐ,  
ꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ5ꢆꢑꢈꢅꢘꢍꢃꢌ5ꢄꢈ!!  
2ꢆ!ꢈꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
ꢐꢍꢋ"ꢇ#ꢈꢉꢅ&ꢋꢅꢐꢍꢋ"ꢇ#ꢈꢉꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ5ꢆꢑꢈꢅ>ꢃ#&ꢍ  
; ꢈꢉꢆꢇꢇꢅ:ꢈꢄꢑ&ꢍ  
ꢘꢃꢓꢅ&ꢋꢅꢐꢈꢆ&ꢃꢄꢑꢅꢂꢇꢆꢄꢈ  
:ꢈꢆ#ꢅꢘꢍꢃꢌ5ꢄꢈ!!  
7ꢓꢓꢈꢉꢅ:ꢈꢆ#ꢅ>ꢃ#&ꢍ  
M
M
M
M
M
M
M
M
M
M
M
M
ꢁꢎ1ꢕ  
ꢁꢀꢚ1  
M
ꢗꢎ  
ꢗꢀ  
.
.ꢀ  
:
)ꢀ  
)
ꢈ2  
ꢁꢀꢎ1  
ꢁꢕꢀ1  
ꢁ1ꢚꢕ  
ꢁꢖ?1  
ꢀꢁꢚ?ꢕ  
ꢁꢀꢀ1  
ꢁꢕꢕ?  
ꢁꢕ-ꢕ  
ꢁꢕꢀꢖ  
M
ꢁꢛꢎ1  
ꢁ1?ꢕ  
ꢎꢁꢕꢚ1  
ꢁꢎꢕꢕ  
ꢁꢕꢀ1  
ꢁꢕꢜꢕ  
ꢁꢕꢎ-  
ꢁꢜꢕꢕ  
:ꢋ*ꢈꢉꢅ:ꢈꢆ#ꢅ>ꢃ#&ꢍ  
; ꢈꢉꢆꢇꢇꢅꢝꢋ*ꢅꢐꢓꢆꢌꢃꢄꢑꢅꢅꢏ  
ꢛꢗꢋꢄꢊꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢏꢅꢐꢃꢑꢄꢃ%ꢃꢌꢆꢄ&ꢅ,ꢍꢆꢉꢆꢌ&ꢈꢉꢃ!&ꢃꢌꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢁꢕꢀꢕ/ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁ1ꢔꢁ  
2ꢐ,3 2ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢀꢛ2  
DS41418A-page 268  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
ꢀꢀꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ ꢏꢅꢆꢇ!ꢉꢅꢋ"ꢇꢛꢗꢇꢃꢄꢅꢆꢇꢈꢅꢍ#ꢅ$ꢄꢇꢒ%ꢃꢓꢇMꢇ&'&ꢇꢕꢕꢇꢖꢗꢆꢘꢇꢙ !ꢛꢚ  
ꢛꢗꢋꢄꢜ 4ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ5ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ5ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ366***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'6ꢓꢆꢌ5ꢆꢑꢃꢄꢑ  
D2  
D
EXPOSED  
PAD  
e
b
K
E
E2  
2
1
2
1
N
N
NOTE 1  
L
TOP VIEW  
BOTTOM VIEW  
A
A3  
A1  
7ꢄꢃ&!  
ꢔꢙ::ꢙꢔ.ꢘ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ:ꢃ'ꢃ&!  
ꢔꢙ8  
8;ꢔ  
ꢖꢖ  
ꢕꢁꢛ1ꢅ2ꢐ,  
ꢕꢁꢚꢕ  
ꢔꢗ<  
8"')ꢈꢉꢅꢋ%ꢅꢂꢃꢄ!  
ꢂꢃ&ꢌꢍ  
; ꢈꢉꢆꢇꢇꢅ9ꢈꢃꢑꢍ&  
ꢐ&ꢆꢄ#ꢋ%%ꢅ  
,ꢋꢄ&ꢆꢌ&ꢅꢘꢍꢃꢌ5ꢄꢈ!!  
; ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
8
ꢗꢀ  
ꢗ-  
.
.ꢎ  
ꢕꢁ?ꢕ  
ꢕꢁꢕꢕ  
ꢀꢁꢕꢕ  
ꢕꢁꢕ1  
ꢕꢁꢕꢎ  
ꢕꢁꢎꢕꢅꢝ.4  
?ꢁꢕꢕꢅ2ꢐ,  
ꢛꢁꢖ1  
?ꢁꢕꢕꢅ2ꢐ,  
ꢛꢁꢖ1  
ꢕꢁ-ꢕ  
ꢕꢁꢖꢕ  
M
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ>ꢃ#&ꢍ  
; ꢈꢉꢆꢇꢇꢅ:ꢈꢄꢑ&ꢍ  
.$ꢓꢋ!ꢈ#ꢅꢂꢆ#ꢅ:ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ>ꢃ#&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢅ:ꢈꢄꢑ&ꢍ  
,ꢋꢄ&ꢆꢌ&ꢞ&ꢋꢞ.$ꢓꢋ!ꢈ#ꢅꢂꢆ#  
ꢛꢁ-ꢕ  
ꢛꢁ?ꢕ  
ꢒꢎ  
)
:
ꢛꢁ-ꢕ  
ꢕꢁꢎ1  
ꢕꢁ-ꢕ  
ꢕꢁꢎꢕ  
ꢛꢁ?ꢕ  
ꢕꢁ-?  
ꢕꢁ1ꢕ  
M
@
ꢛꢗꢋꢄꢊꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ꢂꢆꢌ5ꢆꢑꢈꢅꢃ!ꢅ!ꢆ*ꢅ!ꢃꢄꢑ"ꢇꢆ&ꢈ#ꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁ1ꢔꢁ  
2ꢐ,3 2ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.43 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢀꢕ-2  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 269  
PIC16F707/PIC16LF707  
ꢀꢀꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ ꢏꢅꢆꢇ!ꢉꢅꢋ"ꢇꢛꢗꢇꢃꢄꢅꢆꢇꢈꢅꢍ#ꢅ$ꢄꢇꢒ%ꢃꢓꢇMꢇ&'&ꢇꢕꢕꢇꢖꢗꢆꢘꢇꢙ !ꢛꢚ  
ꢛꢗꢋꢄꢜ 4ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ5ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ5ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ366***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'6ꢓꢆꢌ5ꢆꢑꢃꢄꢑ  
DS41418A-page 270  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
ꢀꢀꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ()ꢌꢑꢇ ꢏꢅꢆꢇ!ꢉꢅꢋ*ꢅꢍ#ꢇꢒꢈ(ꢓꢇMꢇ+ꢁ'+ꢁ'+ꢇꢕꢕꢇꢖꢗꢆꢘ"ꢇ,-ꢁꢁꢇꢕꢕꢇꢙ( !ꢈꢚ  
ꢛꢗꢋꢄꢜ 4ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ5ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ5ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ366***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'6ꢓꢆꢌ5ꢆꢑꢃꢄꢑ  
D
D1  
E
e
E1  
N
b
NOTE 1  
1 2 3  
NOTE 2  
α
A
c
φ
A2  
β
A1  
L
L1  
7ꢄꢃ&!  
ꢔꢙ::ꢙꢔ.ꢘ.ꢝꢐ  
ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢅ:ꢃ'ꢃ&!  
ꢔꢙ8  
8;ꢔ  
ꢖꢖ  
ꢕꢁ?ꢕꢅ2ꢐ,  
M
ꢀꢁꢕꢕ  
M
ꢔꢗ<  
8"')ꢈꢉꢅꢋ%ꢅ:ꢈꢆ#!  
:ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
; ꢈꢉꢆꢇꢇꢅ9ꢈꢃꢑꢍ&  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ5ꢆꢑꢈꢅꢘꢍꢃꢌ5ꢄꢈ!!  
ꢐ&ꢆꢄ#ꢋ%%ꢅꢅ  
4ꢋꢋ&ꢅ:ꢈꢄꢑ&ꢍ  
8
ꢗꢎ  
ꢗꢀ  
:
M
ꢀꢁꢎꢕ  
ꢀꢁꢕ1  
ꢕꢁꢀ1  
ꢕꢁꢜ1  
ꢕꢁꢚ1  
ꢕꢁꢕ1  
ꢕꢁꢖ1  
ꢕꢁꢛꢕ  
4ꢋꢋ&ꢓꢉꢃꢄ&  
4ꢋꢋ&ꢅꢗꢄꢑꢇꢈ  
:ꢀ  
ꢀꢁꢕꢕꢅꢝ.4  
-ꢁ1ꢟ  
ꢕꢟ  
ꢜꢟ  
; ꢈꢉꢆꢇꢇꢅ>ꢃ#&ꢍ  
; ꢈꢉꢆꢇꢇꢅ:ꢈꢄꢑ&ꢍ  
.
.ꢀ  
ꢒꢀ  
ꢀꢎꢁꢕꢕꢅ2ꢐ,  
ꢀꢎꢁꢕꢕꢅ2ꢐ,  
ꢀꢕꢁꢕꢕꢅ2ꢐ,  
ꢀꢕꢁꢕꢕꢅ2ꢐ,  
M
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ5ꢆꢑꢈꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢈ#ꢅꢂꢆꢌ5ꢆꢑꢈꢅ:ꢈꢄꢑ&ꢍ  
:ꢈꢆ#ꢅꢘꢍꢃꢌ5ꢄꢈ!!  
:ꢈꢆ#ꢅ>ꢃ#&ꢍ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ  
ꢔꢋꢇ#ꢅꢒꢉꢆ%&ꢅꢗꢄꢑꢇꢈꢅ2ꢋ&&ꢋ'  
ꢕꢁꢕꢚ  
ꢕꢁ-ꢕ  
ꢀꢀꢟ  
ꢕꢁꢎꢕ  
ꢕꢁꢖ1  
ꢀ-ꢟ  
)
ꢕꢁ-ꢜ  
ꢀꢎꢟ  
ꢀꢎꢟ  
ꢀꢀꢟ  
ꢀ-ꢟ  
ꢛꢗꢋꢄꢊꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ ,ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢓ&ꢃꢋꢄꢆꢇAꢅ!ꢃBꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
-ꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢒꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢔꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢓꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢕꢁꢎ1ꢅ''ꢅꢓꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢖꢁ ꢒꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢑꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢑꢅꢓꢈꢉꢅꢗꢐꢔ.ꢅ0ꢀꢖꢁ1ꢔꢁ  
2ꢐ,3 2ꢆ!ꢃꢌꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢝ.43 ꢝꢈ%ꢈꢉꢈꢄꢌꢈꢅꢒꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢓ"ꢉꢓꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢔꢃꢌꢉꢋꢌꢍꢃꢓ ꢌꢍꢄꢋꢇꢋꢑꢊ ꢒꢉꢆ*ꢃꢄꢑ ,ꢕꢖꢞꢕꢜꢛ2  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 271  
PIC16F707/PIC16LF707  
ꢀꢀꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ()ꢌꢑꢇ ꢏꢅꢆꢇ!ꢉꢅꢋ*ꢅꢍ#ꢇꢒꢈ(ꢓꢇMꢇ+ꢁ'+ꢁ'+ꢇꢕꢕꢇꢖꢗꢆꢘ"ꢇ,-ꢁꢁꢇꢕꢕꢇꢙ( !ꢈꢚ  
ꢛꢗꢋꢄꢜ 4ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢓꢆꢌ5ꢆꢑꢈꢅ#ꢉꢆ*ꢃꢄꢑ!(ꢅꢓꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢔꢃꢌꢉꢋꢌꢍꢃꢓꢅꢂꢆꢌ5ꢆꢑꢃꢄꢑꢅꢐꢓꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢓ366***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢓꢁꢌꢋ'6ꢓꢆꢌ5ꢆꢑꢃꢄꢑ  
DS41418A-page 272  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
APPENDIX A: DATA SHEET  
REVISION HISTORY  
APPENDIX B: MIGRATING FROM  
OTHER PIC®  
DEVICES  
Revision A (April 2010)  
This discusses some of the issues in migrating from  
other PIC® devices to the PIC16F707 family of devices.  
Original release of this data sheet.  
Note:  
This device has been designed to perform  
to the parameters of its data sheet. It has  
been tested to an electrical specification  
designed to determine its conformance  
with these parameters. Due to process  
differences in the manufacture of this  
device, this device may have different  
performance characteristics than its ealier  
version. These differences may cause this  
device to perform differently in your  
application than the earlier version of this  
device.  
Note:  
The user should verify that the device  
oscillator starts and performs as expected.  
Adjusting the loading capacitor values  
and/or the oscillator mode may be  
required.  
B.1  
PIC16F77 to PIC16F707  
TABLE B-1:  
Feature  
FEATURE COMPARISON  
PIC16F77  
PIC16F707  
Max. Operating Speed  
20 MHz  
8K  
20 MHz  
8K  
Max. Program  
Memory (Words)  
Max. SRAM (Bytes)  
A/D Resolution  
Timers (8/16-bit)  
Oscillator Modes  
Brown-out Reset  
Internal Pull-ups  
Interrupt-on-change  
Comparator  
368  
363  
8-bit  
8-bit  
2/1  
4/2  
4
8
Y
Y
RB<7:0>  
RB<7:0>  
RB<7:4>  
RB<7:0>  
0
Y
N
N
0
Y
N
N
USART  
Extended WDT  
Software Control  
Option of WDT/BOR  
INTOSC Frequencies  
Clock Switching  
None  
N
500 kHz -  
16 MHz  
N
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 273  
PIC16F707/PIC16LF707  
NOTES:  
DS41418A-page 274  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
INDEX  
Receive .................................................... 155  
Transmit ................................................... 154  
Reception ......................................................... 155  
Transmission .................................................... 154  
A
A/D  
Specifications.................................................... 220, 221  
Absolute Maximum Ratings .............................................. 201  
AC Characteristics  
B
Industrial and Extended ............................................ 212  
Load Conditions........................................................ 211  
ADC .................................................................................... 79  
Acquisition Requirements ........................................... 86  
Associated registers.................................................... 88  
Block Diagram............................................................. 79  
Calculating Acquisition Time....................................... 86  
Channel Selection....................................................... 80  
Configuration............................................................... 80  
Configuring Interrupt ................................................... 82  
Conversion Clock........................................................ 80  
Conversion Procedure ................................................ 82  
Internal Sampling Switch (RSS) IMPEDANCE ................ 86  
Interrupts..................................................................... 81  
Operation .................................................................... 82  
Operation During Sleep .............................................. 82  
Port Configuration....................................................... 80  
Reference Voltage (VREF)........................................... 80  
Source Impedance...................................................... 86  
Special Event Trigger.................................................. 82  
ADCON0 Register......................................................... 19, 84  
ADCON1 Register......................................................... 20, 85  
Addressable Universal Synchronous Asynchronous  
Receiver Transmitter (AUSART)............................... 137  
ADRES Register ................................................................. 85  
ADRESH Register............................................................... 19  
Alternate Pin Function......................................................... 51  
Analog-to-Digital Converter. See ADC  
BF bit ........................................................................ 165, 177  
Block Diagrams  
(CCP) Capture Mode Operation............................... 129  
ADC............................................................................ 79  
ADC Transfer Function............................................... 87  
Analog Input Model..................................................... 87  
AUSART Receive..................................................... 138  
AUSART Transmit.................................................... 137  
CCP PWM ................................................................ 133  
Clock Source .............................................................. 69  
Compare................................................................... 131  
Crystal Operation........................................................ 73  
Digital-to-Analog Converter (DAC) ............................. 92  
External RC Mode ...................................................... 74  
Interrupt Logic............................................................. 39  
MCLR Circuit .............................................................. 31  
On-Chip Reset Circuit................................................. 29  
Resonator Operation .................................................. 74  
SPI Mode.................................................................. 158  
2
SSP (I C Mode)........................................................ 167  
Timer1 ...................................................................... 100  
Timer2 ...................................................................... 115  
TMR0/WDT Prescaler ........................................ 95, 111  
Voltage Reference...................................................... 92  
Voltage Reference Output Buffer Example ................ 92  
Brown-out Reset (BOR)...................................................... 33  
Specifications ........................................................... 218  
Timing and Characteristics....................................... 217  
ANSELA Register ............................................................... 53  
ANSELB Register ......................................................... 57, 60  
ANSELD Register ............................................................... 63  
ANSELE Register ............................................................... 66  
APFCON Register............................................................... 51  
Assembler  
MPASM Assembler................................................... 198  
AUSART ........................................................................... 137  
Associated Registers  
C
C Compilers  
MPLAB C18.............................................................. 198  
Capacitive Sensing........................................................... 117  
Capture Module. See Capture/Compare/PWM (CCP)  
Capture/Compare/PWM (CCP) ........................................ 127  
Associated registers w/ Capture............................... 130  
Associated registers w/ Compare............................. 132  
Associated registers w/ PWM................................... 136  
Capture Mode........................................................... 129  
CCPx Pin Configuration............................................ 129  
Compare Mode......................................................... 131  
CCPx Pin Configuration.................................... 131  
Software Interrupt Mode........................... 129, 131  
Special Event Trigger....................................... 131  
Timer1 Mode Selection............................. 129, 131  
Interaction of Two CCP Modules (table)................... 127  
Prescaler .................................................................. 129  
PWM Mode............................................................... 133  
Duty Cycle ........................................................ 134  
Effects of Reset................................................ 135  
Example PWM Frequencies and  
Baud Rate Generator........................................ 147  
Asynchronous Mode ................................................. 139  
Associated Registers  
Receive..................................................... 144  
Transmit.................................................... 141  
Baud Rate Generator (BRG) ............................ 147  
Receiver............................................................ 141  
Setting up 9-bit Mode with Address Detect....... 143  
Transmitter........................................................ 139  
Baud Rate Generator (BRG)  
Baud Rate Error, Calculating ............................ 147  
Formulas........................................................... 147  
High Baud Rate Select (BRGH Bit) .................. 147  
Synchronous Master Mode............................... 150, 154  
Associated Registers  
Receive..................................................... 153  
Transmit.................................................... 151  
Reception.......................................................... 152  
Transmission .................................................... 150  
Synchronous Slave Mode  
Resolutions, 20 MHZ................................ 135  
Example PWM Frequencies and  
Resolutions, 8 MHz .................................. 135  
Operation in Sleep Mode.................................. 135  
Setup for Operation .......................................... 135  
System Clock Frequency Changes .................. 135  
PWM Period ............................................................. 134  
Associated Registers  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 275  
PIC16F707/PIC16LF707  
Setup for PWM Operation.........................................135  
Timer Resources.......................................................127  
CCP. See Capture/Compare/PWM (CCP)  
Electrical Specifications.................................................... 201  
Enhanced Capture/Compare/PWM (ECCP)  
Specifications ........................................................... 220  
Errata.................................................................................... 9  
CCP1CON Register ............................................................19  
CCP2CON Register ............................................................19  
CCPR1H Register...............................................................19  
CCPR1L Register................................................................19  
CCPR2H Register...............................................................19  
CCPR2L Register................................................................19  
CCPxCON Register ..........................................................128  
CKE bit...................................................................... 165, 177  
CKP bit...................................................................... 164, 176  
Clock Sources  
External Modes...........................................................73  
EC.......................................................................73  
HS.......................................................................73  
LP........................................................................73  
OST.....................................................................73  
RC.......................................................................74  
XT .......................................................................73  
Code Examples  
F
Firmware Instructions ....................................................... 187  
Fixed Voltage Reference. See FVR  
FSR Register ................................................................ 19, 20  
Fuses. See Configuration Bits  
FVR..................................................................................... 89  
FVRCON Register .............................................................. 90  
G
General Purpose Register File ........................................... 17  
I
2
I C Mode  
Associated Registers................................................ 178  
INDF Register............................................................... 19, 20  
Indirect Addressing, INDF and FSR Registers ................... 27  
Instruction Format............................................................. 187  
Instruction Set................................................................... 187  
ADDLW..................................................................... 189  
ADDWF..................................................................... 189  
ANDLW..................................................................... 189  
ANDWF..................................................................... 189  
MOVF ....................................................................... 192  
BCF .......................................................................... 189  
BSF........................................................................... 189  
BTFSC...................................................................... 189  
BTFSS ...................................................................... 190  
CALL......................................................................... 190  
CLRF ........................................................................ 190  
CLRW ....................................................................... 190  
CLRWDT .................................................................. 190  
COMF ....................................................................... 190  
DECF........................................................................ 190  
DECFSZ ................................................................... 191  
GOTO ....................................................................... 191  
INCF ......................................................................... 191  
INCFSZ..................................................................... 191  
IORLW...................................................................... 191  
IORWF...................................................................... 191  
MOVLW .................................................................... 192  
MOVWF.................................................................... 192  
NOP.......................................................................... 192  
RETFIE..................................................................... 193  
RETLW ..................................................................... 193  
RETURN................................................................... 193  
RLF........................................................................... 194  
RRF .......................................................................... 194  
SLEEP ...................................................................... 194  
SUBLW..................................................................... 194  
SUBWF..................................................................... 195  
SWAPF..................................................................... 195  
XORLW .................................................................... 195  
XORWF .................................................................... 195  
Summary Table ........................................................ 188  
INTCON Register................................................................ 42  
Internal Oscillator Block  
A/D Conversion...........................................................83  
Call of a Subroutine in Page 1 from Page 0................26  
Changing Between Capture Prescalers....................129  
Indirect Addressing .....................................................27  
Initializing PORTA.......................................................52  
Initializing PORTB.......................................................55  
Initializing PORTC.......................................................59  
Initializing PORTD.......................................................62  
Initializing PORTE.......................................................65  
Loading the SSPBUF (SSPSR) Register..................160  
Saving W, STATUS and PCLATH Registers  
in RAM ...............................................................41  
Compare Module. See Capture/Compare/PWM (CCP)  
CONFIG1 Register........................................................ 75, 76  
Customer Change Notification Service .............................281  
Customer Notification Service...........................................281  
Customer Support.............................................................281  
D
D/A bit ...............................................................................177  
DACCON0 (Digital-to-Analog Converter Control 0)  
Register.......................................................................93  
DACCON1 (Digital-to-Analog Converter Control 1)  
Register.......................................................................93  
Data Memory.......................................................................17  
Data/Address bit (D/A) ......................................................177  
DC and AC Characteristics ...............................................231  
DC Characteristics  
Extended and Industrial ............................................208  
Industrial and Extended ............................................202  
Development Support .......................................................197  
Device Configuration...........................................................75  
Code Protection ..........................................................77  
Configuration Word .....................................................75  
User ID........................................................................77  
Device Overview .................................................................11  
Digital-to-Analog Converter (DAC)......................................91  
Associated Registers ..................................................94  
Effects of a Reset........................................................91  
Operation During Sleep ..............................................91  
INTOSC  
E
Specifications ................................................... 215  
Internal Sampling Switch (RSS) IMPEDANCE ........................ 86  
Internet Address ............................................................... 281  
Interrupts............................................................................. 39  
EECON1 Register...............................................................22  
Effects of Reset  
PWM mode ...............................................................135  
DS41418A-page 276  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
ADC ............................................................................ 82  
Associated registers w/ Interrupts............................... 47  
Configuration Word w/ LDO........................................ 49  
Interrupt-on-Change.................................................... 55  
Synchronous Serial Port Interrupt............................... 46  
INTOSC Specifications ..................................................... 215  
IOCB Register..................................................................... 57  
PMADRH Register............................................................ 181  
PMADRL Register ............................................................ 181  
PMCON1 Register.................................................... 180, 181  
PMDATH Register............................................................ 180  
PMDATL Register............................................................. 180  
PORTA ............................................................................... 52  
ANSELA Register....................................................... 53  
Associated Registers.................................................. 54  
Pin Descriptions and Diagrams .................................. 53  
PORTA Register......................................................... 19  
RA0............................................................................. 53  
RA3............................................................................. 54  
RA4............................................................................. 54  
RA5............................................................................. 54  
RA6............................................................................. 54  
RA7............................................................................. 54  
Specifications ........................................................... 216  
PORTA Register................................................................. 52  
PORTB ............................................................................... 55  
Additional Pin Functions  
L
Load Conditions................................................................ 211  
M
MCLR.................................................................................. 31  
Internal........................................................................ 31  
Memory Organization.......................................................... 17  
Data ............................................................................ 17  
Program ...................................................................... 17  
Microchip Internet Web Site.............................................. 281  
Migrating from other PIC Microcontroller Devices............. 273  
MPLAB ASM30 Assembler, Linker, Librarian ................... 198  
MPLAB Integrated Development Environment Software .. 197  
MPLAB PM3 Device Programmer .................................... 200  
MPLAB REAL ICE In-Circuit Emulator System................. 199  
MPLINK Object Linker/MPLIB Object Librarian ................ 198  
ANSELB Register................................... 55, 60, 65  
Weak Pull-up ...................................................... 55  
Associated Registers.................................................. 58  
Interrupt-on-Change ................................................... 55  
P1B/P1C/P1D.See Enhanced Capture/Compare/  
O
PWM+ (ECCP+) ................................................. 55  
Pin Descriptions and Diagrams .................................. 57  
PORTB Register......................................................... 19  
RB0............................................................................. 57  
RB1............................................................................. 57  
RB2............................................................................. 57  
RB3............................................................................. 58  
RB4............................................................................. 58  
RB5............................................................................. 58  
RB6............................................................................. 58  
RB7............................................................................. 58  
PORTB Register................................................................. 56  
PORTC ............................................................................... 59  
Associated Registers.................................................. 61  
P1A.See Enhanced Capture/Compare/PWM+  
(ECCP+)............................................................. 59  
PORTC Register......................................................... 19  
RC0 ............................................................................ 60  
RC2 ............................................................................ 61  
RC3 ............................................................................ 61  
RC4 ............................................................................ 61  
RC5 ............................................................................ 61  
RC6 ............................................................................ 61  
RC7 ............................................................................ 61  
Specifications ........................................................... 216  
PORTC Register................................................................. 59  
PORTD ............................................................................... 62  
Additional Pin Functions  
OPCODE Field Descriptions............................................. 187  
OPTION Register................................................................ 24  
OPTION_REG Register ...................................................... 97  
OSCCON Register.............................................................. 71  
Oscillator  
Associated registers............................................ 74, 115  
Oscillator Module  
EC............................................................................... 69  
HS............................................................................... 69  
INTOSC ...................................................................... 69  
INTOSCIO................................................................... 69  
LP................................................................................ 69  
Oscillator Tuning......................................................... 72  
RC............................................................................... 69  
RCIO........................................................................... 69  
XT ............................................................................... 69  
Oscillator Parameters ....................................................... 215  
Oscillator Specifications.................................................... 214  
Oscillator Start-up Timer (OST)  
Specifications............................................................ 218  
OSCTUNE Register ............................................................ 72  
P
P (Stop) bit........................................................................ 177  
Packaging ......................................................................... 267  
Marking ..................................................................... 267  
PDIP Details.............................................................. 268  
Paging, Program Memory................................................... 26  
PCL and PCLATH............................................................... 26  
Computed GOTO........................................................ 26  
Stack........................................................................... 26  
PCL Register................................................................. 19, 20  
PCLATH Register ......................................................... 19, 20  
PCON Register ....................................................... 20, 25, 34  
PIE1 Register................................................................ 20, 43  
PIE2 Register...................................................................... 20  
Pinout Descriptions  
ANSELD Register............................................... 62  
Associated Registers.................................................. 64  
P1B/P1C/P1D.See Enhanced Capture/Compare/  
PWM+ (ECCP+) ................................................. 62  
PORTD Register......................................................... 19  
RD6 ...................................................................... 63, 64  
PORTD Register................................................................. 62  
PORTE ............................................................................... 65  
Associated Registers.................................................. 67  
PORTE Register......................................................... 19  
RE0............................................................................. 66  
RE1............................................................................. 66  
PIC16F707/PIC16LF707............................................. 13  
PIR1 Register................................................................ 19, 45  
PIR2 Register................................................................ 19, 46  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 277  
PIC16F707/PIC16LF707  
RE2 .............................................................................66  
RE3 .............................................................................67  
PORTE Register .................................................................65  
Power-Down Mode (Sleep)...............................................183  
Associated Registers ................................................184  
Power-on Reset ..................................................................31  
Power-up Timer (PWRT).....................................................31  
Specifications............................................................218  
PR2 Register............................................................... 20, 166  
Precision Internal Oscillator Parameters...........................215  
Prescaler  
Shared WDT/Timer0 ...........................................96, 112  
Product Identification System............................................283  
Program ..............................................................................17  
Program Memory ................................................................17  
Map and Stack (PIC16F707/PIC16LF707) .................17  
Paging.........................................................................26  
Program Memory Read (PMR) .........................................179  
Associated Registers ................................................181  
Programming, Device Instructions ....................................187  
Reset Values (Special Registers)............................... 38  
SSPCON (Sync Serial Port Control) Register .. 164, 176  
SSPSTAT (Sync Serial Port Status) Register... 165, 177  
STATUS ..................................................................... 23  
T2CON ..................................................................... 116  
TRISA (Tri-State PORTA)........................................... 52  
TRISB (Tri-State PORTB)........................................... 56  
TRISC (Tri-State PORTC) .......................................... 59  
TRISD (Tri-State PORTD) .......................................... 63  
TRISE (Tri-State PORTE)........................................... 66  
TXSTA (Transmit Status and Control)...................... 145  
WPUB (Weak Pull-up PORTB)................................... 56  
Reset .................................................................................. 29  
Resets  
Associated Registers.................................................. 38  
Revision History................................................................ 273  
S
S (Start) bit........................................................................ 177  
SMP bit ..................................................................... 165, 177  
Software Simulator (MPLAB SIM) .................................... 199  
SPBRG ............................................................................. 147  
SPBRG Register................................................................. 20  
Special Event Trigger ......................................................... 82  
Special Function Registers................................................. 17  
SPI Mode.......................................................................... 163  
Associated Registers................................................ 166  
Typical Master/Slave Connection ............................. 157  
SSP................................................................................... 157  
R
R/W bit ..............................................................................177  
RCREG .............................................................................143  
RCREG Register.................................................................19  
RCSTA Register.......................................................... 19, 146  
Reader Response .............................................................282  
Read-Modify-Write Operations..........................................187  
Receive Overflow Indicator bit (SSPOV)................... 164, 176  
Registers  
2
I C Mode .................................................................. 167  
ADCON0 (ADC Control 0) ..........................................84  
ADCON1 (ADC Control 1) ..........................................85  
ADRES (ADC Result) .................................................85  
ANSELA (PORTA Analog Select)...............................53  
ANSELB (PORTB Analog Select)......................... 57, 60  
ANSELD (PORTD Analog Select) ..............................63  
ANSELE (PORTE Analog Select)...............................66  
APFCON (Alternate Pin Function Control)..................51  
CCPxCON (CCP Operation).....................................128  
CONFIG1 (Configuration Word Register 1) .......... 75, 76  
DACCON0 ..................................................................93  
DACCON1 ..................................................................93  
FVRCON (Fixed Voltage Reference Register) ...........90  
INTCON (Interrupt Control).........................................42  
IOCB (Interrupt-on-Change PORTB) ..........................57  
OPTION_REG (OPTION) ...........................................24  
OPTION_REG (Option) ..............................................97  
OSCCON (Oscillator Control) .....................................71  
OSCTUNE (Oscillator Tuning)....................................72  
PCON (Power Control Register).................................25  
PCON (Power Control) ...............................................34  
PIE1 (Peripheral Interrupt Enable 1)...........................43  
PIR1 (Peripheral Interrupt Register 1) ........................45  
PIR2 (Peripheral Interrupt Request 2) ........................46  
PMADRH (Program Memory Address High).............181  
PMADRL (Program Memory Address Low) ..............181  
PMCON1 (Program Memory Control 1)....................180  
PMDATH (Program Memory Data High)...................180  
PMDATL (Program Memory Data Low) ....................180  
PORTA........................................................................52  
PORTB........................................................................56  
PORTC .......................................................................59  
PORTD .......................................................................62  
PORTE........................................................................65  
RCSTA (Receive Status and Control).......................146  
Reset Values...............................................................36  
Acknowledge .................................................... 168  
Addressing........................................................ 169  
Clock Stretching ............................................... 174  
Clock Synchronization...................................... 175  
Firmware Master Mode..................................... 174  
Hardware Setup................................................ 167  
Multi-Master Mode............................................ 174  
Reception ......................................................... 170  
Sleep Operation................................................ 175  
Start/Stop Conditions........................................ 168  
Transmission .................................................... 172  
Master Mode............................................................. 158  
SPI Mode.................................................................. 157  
Slave Mode....................................................... 161  
Typical SPI Master/Slave Connection ...................... 157  
SSPADD Register............................................................... 20  
SSPBUF Register............................................................... 19  
SSPCON Register .............................................. 19, 164, 176  
SSPEN bit................................................................. 164, 176  
SSPIF ................................................................................. 46  
SSPM bits................................................................. 164, 176  
SSPOV bit................................................................. 164, 176  
SSPSTAT Register............................................. 20, 165, 177  
STATUS Register ............................................................... 23  
Synchronous Serial Port Enable bit (SSPEN) .......... 164, 176  
Synchronous Serial Port Interrupt....................................... 46  
Synchronous Serial Port Mode Select bits (SSPM).. 164, 176  
T
T1CON Register ........................................................... 19, 20  
T2CON Register ................................................. 19, 116, 166  
Thermal Considerations.................................................... 210  
Time-out Sequence ............................................................ 34  
Timer0................................................................................. 95  
Associated Registers.......................................... 97, 113  
Interrupt ...................................................................... 97  
DS41418A-page 278  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
Operation .................................................... 96, 101, 112  
Specifications............................................................ 219  
Timer1................................................................................. 99  
Asynchronous Counter Mode ................................... 102  
Reading and Writing ......................................... 102  
Modes of Operation .................................................. 101  
Oscillator................................................................... 102  
Prescaler................................................................... 102  
Specifications............................................................ 219  
TMR1H Register ......................................................... 99  
TMR1L Register.......................................................... 99  
Timer2  
TRISA Register............................................................. 20, 52  
TRISB ................................................................................. 55  
TRISB Register............................................................. 20, 56  
TRISC................................................................................. 59  
TRISC Register............................................................. 20, 59  
TRISD................................................................................. 62  
TRISD Register............................................................. 20, 63  
TRISE ................................................................................. 65  
TRISE Register............................................................. 20, 66  
TXREG ............................................................................. 139  
TXREG Register................................................................. 19  
TXSTA Register.......................................................... 20, 145  
BRGH Bit.................................................................. 147  
Associated registers.................................................. 116  
Timers  
U
Timer2  
UA..................................................................................... 177  
Update Address bit, UA.................................................... 177  
USART  
T2CON.............................................................. 116  
Timing Diagrams  
A/D Conversion......................................................... 221  
A/D Conversion (Sleep Mode) .................................. 222  
Asynchronous Reception.......................................... 144  
Asynchronous Transmission..................................... 140  
Asynchronous Transmission (Back-to-Back)............ 140  
Brown-out Reset (BOR)............................................ 217  
Brown-out Reset Situations ........................................ 33  
CLKOUT and I/O....................................................... 215  
Clock Synchronization .............................................. 175  
Clock Timing ............................................................. 212  
Enhanced Capture/Compare/PWM (ECCP)............. 220  
Synchronous Master Mode  
Requirements, Synchronous Receive .............. 223  
Requirements, Synchronous Transmission...... 222  
Timing Diagram, Synchronous Receive ........... 223  
Timing Diagram, Synchronous Transmission... 222  
V
VREF. SEE ADC Reference Voltage  
W
2
Wake-up Using Interrupts................................................. 184  
Watchdog Timer (WDT)...................................................... 31  
Clock Source .............................................................. 31  
Modes......................................................................... 32  
Period ......................................................................... 31  
Specifications ........................................................... 218  
WCOL bit .................................................................. 164, 176  
WPUB Register................................................................... 56  
Write Collision Detect bit (WCOL) ............................ 164, 176  
WWW Address ................................................................. 281  
WWW, On-Line Support ....................................................... 9  
I C Bus Data............................................................. 227  
2
I C Bus Start/Stop Bits.............................................. 226  
2
I C Reception (7-bit Address)................................... 170  
2
I C Slave Mode with SEN = 0 (Reception,  
10-bit Address) ................................................. 171  
I C Transmission (7-bit Address).............................. 172  
2
INT Pin Interrupt.......................................................... 40  
Reset, WDT, OST and Power-up Timer ................... 217  
Slave Select Synchronization ................................... 163  
SPI Master Mode ...................................................... 160  
SPI Master Mode (CKE = 1, SMP = 1) ..................... 224  
SPI Mode (Slave Mode with CKE = 0)...................... 162  
SPI Mode (Slave Mode with CKE = 1)...................... 162  
SPI Slave Mode (CKE = 0) ....................................... 224  
SPI Slave Mode (CKE = 1) ....................................... 225  
Synchronous Reception (Master Mode, SREN) ....... 153  
Synchronous Transmission....................................... 151  
Synchronous Transmission (Through TXEN) ........... 151  
Time-out Sequence  
Case 1 ................................................................ 34  
Case 2 ................................................................ 35  
Case 3 ................................................................ 35  
Timer0 and Timer1 External Clock ........................... 219  
USART Synchronous Receive (Master/Slave) ......... 223  
USART Synchronous Transmission (Master/Slave). 222  
Wake-up from Interrupt............................................. 184  
Timing Parameter Symbology........................................... 211  
Timing Requirements  
2
I C Bus Data............................................................. 228  
I2C Bus Start/Stop Bits ............................................. 227  
SPI Mode .................................................................. 226  
TMR0 Register.................................................................... 19  
TMR1H Register ........................................................... 19, 20  
TMR1L Register............................................................ 19, 20  
TMR2 Register.................................................................... 19  
TMRO Register ................................................................... 21  
TRISA ................................................................................. 52  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 279  
PIC16F707/PIC16LF707  
NOTES:  
DS41418A-page 280  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://support.microchip.com  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com, click on Customer Change  
Notification and follow the registration instructions.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 281  
PIC16F707/PIC16LF707  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip prod-  
uct. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation  
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
PIC16F707/PIC16LF707  
DS41418A  
Literature Number:  
Device:  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS41418A-page 282  
Preliminary  
2010 Microchip Technology Inc.  
PIC16F707/PIC16LF707  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XXX  
Examples:  
Temperature  
Range  
Package  
Pattern  
a)  
PIC16F707-E/P 301 = Extended Temp., PDIP  
package, QTP pattern #301  
b)  
PIC16F707-I/ML  
package  
= Industrial Temp., QFN  
Device:  
PIC16F707, PIC16LF707, PIC16F707T, PIC16LF707T(1)  
Temperature  
Range:  
I
E
=
=
-40C to +85C  
-40C to +125C  
Package:  
MV  
ML  
P
=
=
=
=
Micro Lead Frame (UQFN)  
Micro Lead Frame (QFN)  
Plastic DIP  
PT  
TQFP (Thin Quad Flatpack)  
Pattern:  
3-Digit Pattern Code for QTP (blank otherwise)  
Note 1:  
T
= In tape and reel.  
2010 Microchip Technology Inc.  
Preliminary  
DS41418A-page 283  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
01/05/10  
DS41418A-page 284  
Preliminary  
2010 Microchip Technology Inc.  

相关型号:

PIC16F716

8-bit Flash-based Microcontroller with A/D Converter and Enhanced Capture/Compare/PWM
MICROCHIP

PIC16F716-E/ML

18/20-Pin Low Power FLASH Microcontroller with ECCP, -40C to +125C, 28-QFN, TUBE
MICROCHIP

PIC16F716-E/SO

8-BIT, FLASH, 20 MHz, RISC MICROCONTROLLER, PDSO18, 7.50 MM, PLASTIC, SOIC-18
MICROCHIP

PIC16F716-E/SOVAO

RISC Microcontroller, 8-Bit, FLASH, 20MHz, CMOS, PDSO18
MICROCHIP

PIC16F716-E/SS

8-BIT, FLASH, 20 MHz, RISC MICROCONTROLLER, PDSO20, 5.30 MM, PLASTIC, SSOP-20
MICROCHIP

PIC16F716-E/SSVAO

RISC Microcontroller, 8-Bit, FLASH, 20MHz, CMOS, PDSO20
MICROCHIP

PIC16F716-ESO

8-bit Flash-based Microcontroller with A/D Converter and Enhanced Capture/Compare/PWM
MICROCHIP

PIC16F716-I

8-bit Flash-based Microcontroller with A/D Converter and Enhanced Capture/Compare/PWM
MICROCHIP

PIC16F716-I-P

8-bit Flash-based Microcontroller with A/D Converter and Enhanced Capture/Compare/PWM
MICROCHIP

PIC16F716-I/P

8-BIT, FLASH, 20 MHz, RISC MICROCONTROLLER, PDIP18, 0.300 INCH, PLASTIC, DIP-18
MICROCHIP

PIC16F716-I/P4AP

FLASH-Based 8-Bit CMOS Microcontroller, -40C to +85C, 18-PDIP, TUBE
MICROCHIP

PIC16F716-I/SOG

FLASH-Based 8-Bit CMOS Microcontroller, -40C to +85C, 18-SOIC 300mil, TUBE
MICROCHIP