PIC16C84-04I/PXXX [MICROCHIP]

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,DIP,18PIN,PLASTIC;
PIC16C84-04I/PXXX
型号: PIC16C84-04I/PXXX
厂家: MICROCHIP    MICROCHIP
描述:

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,DIP,18PIN,PLASTIC

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 微控制器 光电二极管 外围集成电路
文件: 总110页 (文件大小:960K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M
PIC16C84  
8-bit CMOS EERPOM Microcontroller  
High Performance RISC CPU Features:  
Pin Diagram  
• Only 35 single word instructions to learn  
PDIP, SOIC  
• All instructions single cycle (400 ns @ 10 MHz)  
except for program branches which are two-cycle  
• Operating speed: DC - 10 MHz clock input  
DC - 400 ns instruction cycle  
RA2  
RA3  
1  
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
RA1  
RA0  
RA4/T0CKI  
MCLR  
VSS  
OSC1/CLKIN  
OSC2/CLKOUT  
VDD  
• 14-bit wide instructions  
• 8-bit wide data path  
• 1K x 14 EEPROM program memory  
• 36 x 8 general purpose registers (SRAM)  
• 64 x 8 on-chip EEPROM data memory  
• 15 special function hardware registers  
• Eight-level deep hardware stack  
• Direct, indirect and relative addressing modes  
• Four interrupt sources:  
RB0/INT  
RB1  
RB7  
RB6  
RB2  
RB5  
RB3  
RB4  
- External RB0/INT pin  
CMOS Technology:  
- TMR0 timer overflow  
• Low-power, high-speed CMOS EEPROM  
technology  
- PORTB<7:4> interrupt on change  
- Data EEPROM write complete  
• Fully static design  
• 1,000,000 data memory EEPROM  
ERASE/WRITE cycles  
• Wide operating voltage range:  
- Commercial: 2.0V to 6.0V  
• EEPROM Data Retention > 40 years  
- Industrial:  
2.0V to 6.0V  
Peripheral Features:  
• Low power consumption:  
- < 2 mA typical @ 5V, 4 MHz  
- 60 µA typical @ 2V, 32 kHz  
- 26 µA typical standby current @ 2V  
• 13 I/O pins with individual direction control  
• High current sink/source for direct LED drive  
- 25 mA sink max. per pin  
- 20 mA source max. per pin  
• TMR0: 8-bit timer/counter with 8-bit  
programmable prescaler  
Special Microcontroller Features:  
• Power-on Reset (POR)  
• Power-up Timer (PWRT)  
• Oscillator Start-up Timer (OST)  
• Watchdog Timer (WDT) with its own on-chip RC  
oscillator for reliable operation  
• Code protection  
• Power saving SLEEP mode  
• Selectable oscillator options  
• Serial In-System Programming - via two pins  
1997 Microchip Technology Inc.  
DS30445C-page 1  
PIC16C84  
Table of Contents  
1.0 General Description ....................................................................................................................................................................... 3  
2.0 PIC16C84 Device Varieties ........................................................................................................................................................... 5  
3.0 Architectural Overview................................................................................................................................................................... 7  
4.0 Memory Organization................................................................................................................................................................... 11  
5.0 I/O Ports....................................................................................................................................................................................... 19  
6.0 Timer0 Module and TMR0 Register............................................................................................................................................. 25  
7.0 Data EEPROM Memory............................................................................................................................................................... 31  
8.0 Special Features of the CPU ....................................................................................................................................................... 35  
9.0 Instruction Set Summary.............................................................................................................................................................. 51  
10.0 Development Support .................................................................................................................................................................. 67  
11.0 Electrical Characteristics for PIC16C84....................................................................................................................................... 71  
12.0 DC & AC Characteristics Graphs/Tables for PIC16C84 .............................................................................................................. 83  
13.0 Packaging Information ................................................................................................................................................................. 97  
Appendix A: Feature Improvements - From PIC16C5X To PIC16C84 ............................................................................................ 99  
Appendix B: Code Compatibility - from PIC16C5X to PIC16C84.................................................................................................... 99  
Appendix C: What’s New In This Data Sheet................................................................................................................................. 100  
Appendix D: What’s Changed In This Data Sheet ......................................................................................................................... 100  
Appendix E: Conversion Considerations - PIC16C84 to PIC16F83/F84 And PIC16CR83/CR84.................................................. 101  
Index .................................................................................................................................................................................................. 103  
On-Line Support................................................................................................................................................................................. 105  
PIC16C84 Product Identification System........................................................................................................................................... 107  
Sales and Support.............................................................................................................................................................................. 107  
To Our Valued Customers  
We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of  
time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you  
find any information that is missing or appears in error, please use the reader response form in the back of this data  
sheet to inform us. We appreciate your assistance in making this a better document.  
DS30445C-page 2  
1997 Microchip Technology Inc.  
PIC16C84  
The PIC16C84 fits perfectly in applications ranging  
from high speed automotive and appliance motor  
control to low-power remote sensors, electronic locks,  
security devices and smart cards. The EEPROM  
technology makes customization of application  
programs (transmitter codes, motor speeds, receiver  
frequencies, security codes, etc.) extremely fast and  
convenient. The small footprint packages make this  
microcontroller series perfect for all applications with  
space limitations. Low cost, low power, high  
performance, ease of use and I/O flexibility make the  
PIC16C84 very versatile even in areas where no  
microcontroller use has been considered before  
(e.g., timer functions, serial communication, capture  
and compare, PWM functions and co-processor  
applications).  
1.0  
GENERAL DESCRIPTION  
The PIC16C84 is a low-cost, high-performance,  
CMOS, fully-static, 8-bit microcontroller.  
All PIC16/17 microcontrollers employ an advanced  
RISC architecture. PIC16CXX devices have enhanced  
core features, eight-level deep stack, and multiple inter-  
nal and external interrupt sources. The separate  
instruction and data buses of the Harvard architecture  
allow a 14-bit wide instruction word with a separate  
8-bit wide data bus. The two stage instruction pipeline  
allows all instructions to execute in a single cycle,  
except for program branches (which require two  
cycles). A total of 35 instructions (reduced instruction  
set) are available. Additionally, a large register set is  
used to achieve a very high performance level.  
PIC16CXX microcontrollers typically achieve a 2:1  
code compression and up to a 2:1 speed improvement  
(at 10 MHz) over other 8-bit microcontrollers in their  
class.  
The serial in-system programming feature (via two  
pins) offers flexibility of customizing the product after  
complete assembly and testing. This feature can be  
used to serialize a product, store calibration data, or  
program the device with the current firmware before  
shipping.  
The PIC16C84 has 36 bytes of RAM, 64 bytes of Data  
EEPROM memory, and 13 I/O pins. A timer/counter is  
also available.  
1.1  
Family and Upward Compatibility  
The PIC16CXX family has special features to reduce  
external components, thus reducing cost, enhancing  
system reliability and reducing power consumption.  
There are four oscillator options, of which the single pin  
RC oscillator provides a low-cost solution, the LP  
oscillator minimizes power consumption, XT is a  
standard crystal, and the HS is for High Speed crystals.  
The SLEEP (power-down) mode offers power savings.  
The user can wake the chip from sleep through several  
external and internal interrupts and resets.  
Those users familiar with the PIC16C5X family of  
microcontrollers will realize that this is an enhanced  
version of the PIC16C5X architecture. Please refer to  
Appendix A for a detailed list of enhancements. Code  
written for PIC16C5X can be easily ported to the  
PIC16C84 (Appendix B).  
1.2  
Development Support  
The PIC16CXX family is supported by a full-featured  
macro assembler, a software simulator, an in-circuit  
emulator, a low-cost development programmer and a  
full-featured programmer. A “C” compiler and fuzzy  
logic support tools are also available.  
A highly reliable Watchdog Timer with its own on-chip  
RC oscillator provides protection against software lock-  
up.  
The PIC16C84 EEPROM program memory allows the  
same device package to be used for prototyping and  
production. In-circuit reprogrammability allows the  
code to be updated without the device being removed  
from the end application. This is useful in the  
development of many applications where the device  
may not be easily accessible, but the prototypes may  
require code updates. This is also useful for remote  
applications where the code may need to be updated  
(such as rate information).  
Table 1-1 lists the features of the PIC16C84. A simpli-  
fied block diagram of the PIC16C84 is shown in  
Figure 3-1.  
1997 Microchip Technology Inc.  
DS30445C-page 3  
PIC16C84  
TABLE 1-1  
PIC16C8X FAMILY OF DEVICES  
PIC16F83  
PIC16CR83  
PIC16F84  
PIC16CR84  
Maximum Frequency  
of Operation (MHz)  
10  
10  
10  
10  
Clock  
Flash Program Memory  
EEPROM Program Memory  
ROM Program Memory  
Data Memory (bytes)  
512  
1K  
68  
64  
1K  
68  
64  
Memory  
512  
36  
36  
64  
Data EEPROM (bytes)  
64  
Peripherals Timer Module(s)  
Interrupt Sources  
I/O Pins  
TMR0  
4
TMR0  
4
TMR0  
4
TMR0  
4
13  
13  
13  
13  
Features  
Voltage Range (Volts)  
Packages  
2.0-6.0  
2.0-6.0  
2.0-6.0  
2.0-6.0  
18-pin DIP,  
SOIC  
18-pin DIP,  
SOIC  
18-pin DIP,  
SOIC  
18-pin DIP,  
SOIC  
All PICmicro™ Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capa-  
bility. All PIC16C8X Family devices use serial programming with clock pin RB6 and data pin RB7.  
DS30445C-page 4  
1997 Microchip Technology Inc.  
PIC16C84  
2.0  
PIC16C84 DEVICE VARIETIES  
A variety of frequency ranges and packaging options  
are available. Depending on application and production  
requirements the proper device option can be selected  
using the information in this section. When placing  
orders, please use the “PIC16C84 Product  
Identification System” at the back of this data sheet to  
specify the correct part number.  
There are two device “types” as indicated in the device  
number.  
1. C, as in PIC16C84. These devices have  
EEPROM program memory and operate over  
the standard voltage range.  
2. LC, as in PIC16LC84. These devices have  
EEPROM program memory and operate over an  
extended voltage range.  
When discussing memory maps and other architectural  
features, the use of C also implies the LC versions.  
2.1  
Electrically Erasable Devices  
These devices are offered in the lower cost plastic  
package, even though the device can be erased and  
reprogrammed.This allows the same device to be used  
for prototype development and pilot programs as well  
as production.  
A further advantage of the electrically erasable version  
is that they can be erased and reprogrammed in-circuit,  
or by device programmers, such as Microchip's  
PICSTART Plus or PRO MATE II programmers.  
1997 Microchip Technology Inc.  
DS30445C-page 5  
PIC16C84  
NOTES:  
DS30445C-page 6  
1997 Microchip Technology Inc.  
PIC16C84  
PIC16CXX devices contain an 8-bit ALU and working  
register. The ALU is a general purpose arithmetic unit.  
It performs arithmetic and Boolean functions between  
data in the working register and any register file.  
3.0  
ARCHITECTURAL OVERVIEW  
The high performance of the PIC16CXX family can be  
attributed to a number of architectural features  
commonly found in RISC microprocessors. To begin  
with, the PIC16CXX uses a Harvard architecture. This  
architecture has the program and data accessed from  
separate memories. So the device has a program  
memory bus and a data memory bus. This improves  
bandwidth over traditional von Neumann architecture  
where program and data are fetched from the same  
memory (accesses over the same bus). Separating  
program and data memory further allows instructions  
to be sized differently than the 8-bit wide data word.  
PIC16CXX opcodes are 14-bits wide, enabling single  
word instructions.The full 14-bit wide program memory  
bus fetches a 14-bit instruction in a single cycle. A two-  
stage pipeline overlaps fetch and execution of instruc-  
tions (Example 3-1). Consequently, all instructions exe-  
cute in a single cycle (400 ns @ 10 MHz) except for  
program branches.  
The ALU is 8-bits wide and capable of addition,  
subtraction, shift and logical operations. Unless  
otherwise mentioned, arithmetic operations are two's  
complement in nature. In two-operand instructions,  
typically one operand is the working register  
(W register), and the other operand is a file register or  
an immediate constant. In single operand instructions,  
the operand is either the W register or a file register.  
The W register is an 8-bit working register used for ALU  
operations. It is not an addressable register.  
Depending on the instruction executed, the ALU may  
affect the values of the Carry (C), Digit Carry (DC), and  
Zero (Z) bits in the STATUS register.The C and DC bits  
operate as a borrow and digit borrow out bit,  
respectively, in subtraction. See the SUBLWand SUBWF  
instructions for examples.  
The PIC16C84 addresses 1K x 14 program memory.  
All program memory is internal.  
A simplified block diagram for the PIC16C84 is shown  
in Figure 3-1, its corresponding pin description is  
shown in Table 3-1.  
PIC16CXX devices can directly or indirectly address its  
register files or data memory. All special function  
registers including the program counter are mapped in  
the data memory. An orthogonal (symmetrical)  
instruction set that makes it possible to carry out any  
operation on any register using any addressing mode.  
This symmetrical nature and lack of ‘special optimal  
situations’ make programming with the PIC16CXX  
simple yet efficient. In addition, the learning curve is  
reduced significantly.  
The PIC16C84 has 36 x 8 SRAM and 64 x 8 EEPROM  
data memory.  
1997 Microchip Technology Inc.  
DS30445C-page 7  
PIC16C84  
FIGURE 3-1: PIC16C84 BLOCK DIAGRAM  
13  
Data Bus 8  
Program Counter  
EEPROM Data Memory  
EEPROM  
Program  
Memory  
RAM  
EEPROM  
Data Memory  
64 x 8  
1K x 14  
File Registers  
8 Level Stack  
EEDATA  
(13-bit)  
36 x 8  
Program  
Bus 14  
7
RAM Addr  
EEADR  
Addr Mux  
Instruction reg  
TMR0  
7
Indirect  
Addr  
5
Direct Addr  
FSR reg  
RA4/T0CKI  
STATUS reg  
MUX  
8
Power-up  
Timer  
I/O Ports  
Instruction  
Decode &  
Control  
Oscillator  
Start-up Timer  
ALU  
Power-on  
Reset  
RA3:RA0  
RB7:RB1  
Watchdog  
Timer  
Timing  
Generation  
W reg  
RB0/INT  
MCLR  
OSC2/CLKOUT  
OSC1/CLKIN  
VDD, VSS  
DS30445C-page 8  
1997 Microchip Technology Inc.  
PIC16C84  
TABLE 3-1  
PIC16C8X PINOUT DESCRIPTION  
DIP  
No.  
SOIC  
No.  
I/O/P  
Type  
Buffer  
Type  
Pin Name  
Description  
(1)  
OSC1/CLKIN  
16  
15  
16  
15  
I
ST/CMOS  
Oscillator crystal input/external clock source input.  
OSC2/CLKOUT  
O
Oscillator crystal output. Connects to crystal or resonator in crys-  
tal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which  
has 1/4 the frequency of OSC1, and denotes the instruction cycle  
rate.  
MCLR  
4
4
I/P  
ST  
Master clear (reset) input/programming voltage input. This pin is an  
active low reset to the device.  
PORTA is a bi-directional I/O port.  
RA0  
17  
18  
1
17  
18  
1
I/O  
I/O  
I/O  
I/O  
I/O  
TTL  
TTL  
TTL  
TTL  
ST  
RA1  
RA2  
RA3  
2
2
RA4/T0CKI  
3
3
Can also be selected to be the clock input to the TMR0 timer/  
counter. Output is open drain type.  
PORTB is a bi-directional I/O port. PORTB can be software pro-  
grammed for internal weak pull-up on all inputs.  
RB0/INT  
6
7
6
7
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
P
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
RB0/INT can also be selected as an external interrupt pin.  
RB1  
RB2  
8
8
RB3  
9
9
RB4  
10  
11  
12  
13  
5
10  
11  
12  
13  
5
Interrupt on change pin.  
RB5  
Interrupt on change pin.  
(2)  
RB6  
TTL/ST  
TTL/ST  
Interrupt on change pin. Serial programming clock.  
Interrupt on change pin. Serial programming data.  
Ground reference for logic and I/O pins.  
Positive supply for logic and I/O pins.  
(2)  
RB7  
VSS  
VDD  
14  
14  
P
Legend: I= input  
O = output  
— = Not used  
I/O = Input/Output  
TTL = TTL input  
P = power  
ST = Schmitt Trigger input  
Note 1: This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.  
2: This buffer is a Schmitt Trigger input when used in serial programming mode.  
1997 Microchip Technology Inc.  
DS30445C-page 9  
PIC16C84  
3.1  
Clocking Scheme/Instruction Cycle  
3.2  
Instruction Flow/Pipelining  
The clock input (from OSC1) is internally divided by  
four to generate four non-overlapping quadrature  
clocks namely Q1, Q2, Q3 and Q4. Internally, the  
program counter (PC) is incremented every Q1, the  
instruction is fetched from the program memory and  
latched into the instruction register in Q4. The  
instruction is decoded and executed during the  
following Q1 through Q4. The clocks and instruction  
execution flow is shown in Figure 3-2.  
An “Instruction Cycle” consists of four Q cycles (Q1,  
Q2, Q3 and Q4). The instruction fetch and execute are  
pipelined such that fetch takes one instruction cycle  
while decode and execute takes another instruction  
cycle. However, due to the pipelining, each instruction  
effectively executes in one cycle. If an instruction  
causes the program counter to change (e.g., GOTO)  
then two cycles are required to complete the instruction  
(Example 3-1).  
A fetch cycle begins with the Program Counter (PC)  
incrementing in Q1.  
In the execution cycle, the fetched instruction is latched  
into the “Instruction Register” in cycle Q1. This  
instruction is then decoded and executed during the  
Q2, Q3, and Q4 cycles. Data memory is read during Q2  
(operand read) and written during Q4 (destination  
write).  
FIGURE 3-2: CLOCK/INSTRUCTION CYCLE  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q2  
Q3  
Q4  
Q1  
Q1  
Q1  
OSC1  
Q1  
Q2  
Q3  
Q4  
PC  
Internal  
phase  
clock  
PC  
PC+1  
PC+2  
OSC2/CLKOUT  
(RC mode)  
Fetch INST (PC)  
Execute INST (PC-1)  
Fetch INST (PC+1)  
Execute INST (PC)  
Fetch INST (PC+2)  
Execute INST (PC+1)  
EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW  
1. MOVLW 55h  
Fetch 1  
Execute 1  
Fetch 2  
2. MOVWF PORTB  
3. CALL SUB_1  
Execute 2  
Fetch 3  
Execute 3  
Fetch 4  
4. BSF  
PORTA, BIT3  
Flush  
Fetch SUB_1 Execute SUB_1  
All instructions are single cycle, except for any program branches. These take two cycles since the fetch  
instruction is “flushed” from the pipeline while the new instruction is being fetched and then executed.  
DS30445C-page 10  
1997 Microchip Technology Inc.  
PIC16C84  
FIGURE 4-1: PROGRAM MEMORY MAP  
AND STACK  
4.0  
MEMORY ORGANIZATION  
There are two memory blocks in the PIC16C84. These  
are the program memory and the data memory. Each  
block has its own bus, so that access to each block can  
occur during the same oscillator cycle.  
PC<12:0>  
13  
CALL, RETURN  
RETFIE, RETLW  
Stack Level 1  
The data memory can further be broken down into the  
general purpose RAM and the Special Function  
Registers (SFRs). The operation of the SFRs that  
control the “core” are described here. The SFRs used  
to control the peripheral modules are described in the  
section discussing each individual peripheral module.  
Stack Level 8  
Reset Vector  
0000h  
0004h  
Peripheral Interrupt Vector  
The data memory area also contains the data  
EEPROM memory.This memory is not directly mapped  
into the data memory, but is indirectly mapped. That is  
an indirect address pointer specifies the address of the  
data EEPROM memory to read/write. The 64 bytes of  
data EEPROM memory have the address range  
0h-3Fh. More details on the EEPROM memory can be  
found in Section 7.0.  
4.1  
Program Memory Organization  
The PIC16CXX has a 13-bit program counter capable  
of addressing an 8K x 14 program memory space. For  
the PIC16C84, only the first 1K x 14 (0000h-03FFh) are  
physically implemented (Figure 4-1). Accessing a loca-  
tion above the physically implemented address will  
cause a wraparound. For example, locations 20h,  
420h, 820h, C20h, 1020h, 1420h, 1820h, and 1C20h  
will be the same instruction.  
3FFh  
1FFFh  
The reset vector is at 0000h and the interrupt vector is  
at 0004h.  
1997 Microchip Technology Inc.  
DS30445C-page 11  
 
PIC16C84  
4.2  
Data Memory Organization  
FIGURE 4-2: REGISTER FILE MAP  
File Address  
The data memory is partitioned into two areas.The first  
is the Special Function Registers (SFR) area, while the  
second is the General Purpose Registers (GPR) area.  
The SFRs control the operation of the device.  
File Address  
80h  
(1)  
(1)  
00h  
Indirect addr.  
Indirect addr.  
01h  
02h  
TMR0  
PCL  
OPTION  
PCL  
81h  
82h  
Portions of data memory are banked. This is for both  
the SFR area and the GPR area. The GPR area is  
banked to allow greater than 116 bytes of general  
purpose RAM.The banked areas of the SFR are for the  
registers that control the peripheral functions. Banking  
requires the use of control bits for bank selection.  
These control bits are located in the STATUS Register.  
Figure 4-2 shows the data memory map organization.  
03h  
04h  
05h  
06h  
STATUS  
FSR  
STATUS  
FSR  
83h  
84h  
85h  
86h  
PORTA  
PORTB  
TRISA  
TRISB  
07h  
08h  
09h  
87h  
88h  
89h  
EEDATA  
EEADR  
EECON1  
(1)  
Instructions MOVWFand MOVFcan move values from the  
W register to any location in the register file (“F”), and  
vice-versa.  
EECON2  
0Ah  
PCLATH  
INTCON  
PCLATH  
INTCON  
8Ah  
0Bh  
0Ch  
8Bh  
8Ch  
The entire data memory can be accessed either  
directly using the absolute address of each register file  
or indirectly through the File Select Register (FSR)  
(Section 4.5). Indirect addressing uses the present  
value of the RP1:RP0 bits for access into the banked  
areas of data memory.  
36  
General  
Purpose  
registers  
(SRAM)  
Mapped  
(accesses)  
in Bank 0  
2Fh  
30h  
AFh  
B0h  
Data memory is partitioned into two banks which  
contain the general purpose registers and the special  
function registers. Bank 0 is selected by clearing the  
RP0 bit (STATUS<5>). Setting the RP0 bit selects  
Bank 1. Each Bank extends up to 7Fh (128 bytes). The  
first twelve locations of each Bank are reserved for the  
Special Function Registers. The remainder are Gen-  
eral Purpose Registers implemented as static RAM.  
4.2.1  
GENERAL PURPOSE REGISTER FILE  
All devices have some amount of General Purpose  
Register (GPR) area. Each GPR is 8 bits wide and is  
accessed either directly or indirectly through the FSR  
(Section 4.5).  
7Fh  
FFh  
Bank 0  
Bank 1  
The GPR addresses in bank 1 are mapped to  
addresses in bank 0. As an example, addressing loca-  
tion 0Ch or 8Ch will access the same GPR.  
Unimplemented data memory location; read as '0'.  
Note 1: Not a physical register.  
4.2.2  
SPECIAL FUNCTION REGISTERS  
The Special Function Registers (Figure 4-2 and  
Table 4-1) are used by the CPU and Peripheral  
functions to control the device operation. These  
registers are static RAM.  
The special function registers can be classified into two  
sets, core and peripheral. Those associated with the  
core functions are described in this section. Those  
related to the operation of the peripheral features are  
described in the section for that specific feature.  
DS30445C-page 12  
1997 Microchip Technology Inc.  
 
PIC16C84  
TABLE 4-1  
REGISTER FILE SUMMARY  
Value on  
Power-on  
Reset  
Value on all  
other resets  
(Note3)  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 0  
00h  
01h  
02h  
INDF  
Uses contents of FSR to address data memory (not a physical register)  
8-bit real-time clock/counter  
---- ----  
xxxx xxxx  
0000 0000  
---- ----  
uuuu uuuu  
0000 0000  
TMR0  
PCL  
Low order 8 bits of the Program Counter (PC)  
(2)  
TO  
Indirect data memory address pointer 0  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
STATUS  
FSR  
IRP  
RP1  
RP0  
PD  
Z
DC  
C
0001 1xxx  
xxxx xxxx  
---x xxxx  
000q quuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
---- ----  
uuuu uuuu  
uuuu uuuu  
PORTA  
PORTB  
RA4/T0CKI  
RB4  
RA3  
RB3  
RA2  
RB2  
RA1  
RB1  
RA0  
RB7  
RB6  
RB5  
RB0/INT xxxx xxxx  
---- ----  
Unimplemented location, read as '0'  
EEDATA  
EEADR  
EEPROM data register  
xxxx xxxx  
EEPROM address register  
xxxx xxxx  
(1)  
0Ah  
0Bh  
PCLATH  
INTCON  
Write buffer for upper 5 bits of the PC  
INTE RBIE T0IF INTF  
Bank 1  
Uses contents of FSR to address data memory (not a physical register)  
---0 0000  
---0 0000  
0000 000u  
GIE  
EEIE  
T0IE  
RBIF  
0000 000x  
80h  
INDF  
---- ----  
1111 1111  
---- ----  
1111 1111  
OPTION_  
REG  
81h  
82h  
RBPU INTEDG  
T0CS  
T0SE  
PSA  
PS2  
PS1  
PS0  
C
PCL  
Low order 8 bits of Program Counter (PC)  
RP0 TO PD  
Indirect data memory address pointer 0  
0000 0000  
0000 0000  
(2)  
83h  
84h  
85h  
86h  
STATUS  
FSR  
IRP  
RP1  
Z
DC  
0001 1xxx  
xxxx xxxx  
---1 1111  
1111 1111  
---- ----  
000q quuu  
uuuu uuuu  
---1 1111  
1111 1111  
---- ----  
TRISA  
TRISB  
PORTA data direction register  
PORTB data direction register  
Unimplemented location, read as '0'  
87h  
88h  
EECON1  
EECON2  
EEIF  
WRERR  
WREN  
WR  
RD  
---0 x000  
---- ----  
---0 q000  
---- ----  
89h  
EEPROM control register 2 (not a physical register)  
(1)  
0Ah  
0Bh  
PCLATH  
INTCON  
Write buffer for upper 5 bits of the PC  
INTE RBIE T0IF INTF  
---0 0000  
0000 000x  
---0 0000  
0000 000u  
GIE  
EEIE  
T0IE  
RBIF  
Legend: x= unknown, u= unchanged. -= unimplemented read as '0', q= value depends on condition.  
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a slave register for PC<12:8>. The contents  
of PCLATH can be transferred to the upper byte of the program counter, but the contents of PC<12:8> is never transferred  
to PCLATH.  
2: The TO and PD status bits in the STATUS register are not affected by a MCLR reset.  
3: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.  
1997 Microchip Technology Inc.  
DS30445C-page 13  
PIC16C84  
4.2.2.1  
STATUS REGISTER  
Only the BCF, BSF, SWAPF and MOVWF instructions  
should be used to alter the STATUS register (Table 9-2)  
because these instructions do not affect any status bit.  
The STATUS register contains the arithmetic status of  
the ALU, the RESET status and the bank select bit for  
data memory.  
Note 1: The IRP and RP1 bits (STATUS<7:6>) are  
not used by the PIC16C84 and should be  
programmed as cleared. Use of these bits  
as general purpose R/W bits is NOT  
recommended, since this may affect  
upward compatibility with future products.  
As with any register, the STATUS register can be the  
destination for any instruction. If the STATUS register is  
the destination for an instruction that affects the Z, DC  
or C bits, then the write to these three bits is disabled.  
These bits are set or cleared according to device logic.  
Furthermore, the TO and PD bits are not writable.  
Therefore, the result of an instruction with the STATUS  
register as destination may be different than intended.  
Note 2: The C and DC bits operate as a borrow  
and digit borrow out bit, respectively, in  
subtraction. See the SUBLW and SUBWF  
instructions for examples.  
For example, CLRF STATUSwill clear the upper-three  
bits and set the Z bit. This leaves the STATUS register  
as 000u u1uu(where u= unchanged).  
Note 3: When the STATUS register is the  
destination for an instruction that affects  
the Z, DC or C bits, then the write to these  
three bits is disabled. The specified bit(s)  
will be updated according to device logic  
FIGURE 4-3: STATUS REGISTER (ADDRESS 03h, 83h)  
R/W-0  
IRP  
R/W-0  
RP1  
R/W-0  
RP0  
R-1  
TO  
R-1  
PD  
R/W-x  
Z
R/W-x  
DC  
R/W-x  
C
R = Readable bit  
W = Writable bit  
U = Unimplemented bit,  
read as ‘0’  
bit7  
bit0  
- n = Value at POR reset  
bit 7:  
IRP: Register Bank Select bit (used for indirect addressing)  
0 = Bank 0, 1 (00h - FFh)  
1 = Bank 2, 3 (100h - 1FFh)  
The IRP bit is not used by the PIC16C8X. IRP should be maintained clear.  
bit 6-5: RP1:RP0: Register Bank Select bits (used for direct addressing)  
00 = Bank 0 (00h - 7Fh)  
01 = Bank 1 (80h - FFh)  
10 = Bank 2 (100h - 17Fh)  
11 = Bank 3 (180h - 1FFh)  
Each bank is 128 bytes. Only bit RP0 is used by the PIC16C8X. RP1 should be maintained clear.  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
TO: Time-out bit  
1 = After power-up, CLRWDTinstruction, or SLEEPinstruction  
0 = A WDT time-out occurred  
PD: Power-down bit  
1 = After power-up or by the CLRWDTinstruction  
0 = By execution of the SLEEPinstruction  
Z: Zero bit  
1 = The result of an arithmetic or logic operation is zero  
0 = The result of an arithmetic or logic operation is not zero  
DC: Digit carry/borrow bit (for ADDWFand ADDLWinstructions) (For borrow the polarity is reversed)  
1 = A carry-out from the 4th low order bit of the result occurred  
0 = No carry-out from the 4th low order bit of the result  
C: Carry/borrow bit (for ADDWFand ADDLWinstructions)  
1 = A carry-out from the most significant bit of the result occurred  
0 = No carry-out from the most significant bit of the result occurred  
Note: For borrow the polarity is reversed. A subtraction is executed by adding the two’s complement of  
the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or  
low order bit of the source register.  
DS30445C-page 14  
1997 Microchip Technology Inc.  
PIC16C84  
4.2.2.2  
OPTION_REG REGISTER  
Note: When the prescaler is assigned to  
the WDT (PSA = '1'), TMR0 has a 1:1  
prescaler assignment.  
The OPTION_REG register is a readable and writable  
register which contains various control bits to configure  
the TMR0/WDT prescaler, the external INT interrupt,  
TMR0, and the weak pull-ups on PORTB.  
FIGURE 4-4: OPTION_REG REGISTER (ADDRESS 81h)  
R/W-1  
RBPU  
bit7  
R/W-1  
R/W-1  
T0CS  
R/W-1  
T0SE  
R/W-1  
PSA  
R/W-1  
PS2  
R/W-1  
PS1  
R/W-1  
PS0  
INTEDG  
R
= Readable bit  
W = Writable bit  
U
bit0  
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
RBPU: PORTB Pull-up Enable bit  
1 = PORTB pull-ups are disabled  
0 = PORTB pull-ups are enabled (by individual port latch values)  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
INTEDG: Interrupt Edge Select bit  
1 = Interrupt on rising edge of RB0/INT pin  
0 = Interrupt on falling edge of RB0/INT pin  
T0CS: TMR0 Clock Source Select bit  
1 = Transition on RA4/T0CKI pin  
0 = Internal instruction cycle clock (CLKOUT)  
T0SE: TMR0 Source Edge Select bit  
1 = Increment on high-to-low transition on RA4/T0CKI pin  
0 = Increment on low-to-high transition on RA4/T0CKI pin  
PSA: Prescaler Assignment bit  
1 = Prescaler assigned to the WDT  
0 = Prescaler assigned to TMR0  
bit 2-0: PS2:PS0: Prescaler Rate Select bits  
Bit Value  
TMR0 Rate WDT Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 1  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
1997 Microchip Technology Inc.  
DS30445C-page 15  
PIC16C84  
4.2.2.3  
INTCON REGISTER  
Note: Interrupt flag bits get set when an interrupt  
condition occurs regardless of the state of  
its corresponding enable bit or the global  
enable bit, GIE (INTCON<7>).  
The INTCON register is a readable and writable  
register which contains the various enable bits for all  
interrupt sources.  
FIGURE 4-5:  
INTCON REGISTER (ADDRESS 0Bh, 8Bh)  
R/W-0  
GIE  
R/W-0  
EEIE  
R/W-0  
T0IE  
R/W-0  
INTE  
R/W-0  
RBIE  
R/W-0  
T0IF  
R/W-0  
INTF  
R/W-x  
RBIF  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
U
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:  
GIE: Global Interrupt Enable bit  
1 = Enables all un-masked interrupts  
0 = Disables all interrupts  
Note: For the operation of the interrupt structure, please refer to Section 8.5.  
bit 6:  
bit 5:  
bit 4:  
bit 3:  
bit 2:  
bit 1:  
bit 0:  
EEIE: EE Write Complete Interrupt Enable bit  
1 = Enables the EE write complete interrupt  
0 = Disables the EE write complete interrupt  
T0IE: TMR0 Overflow Interrupt Enable bit  
1 = Enables the TMR0 interrupt  
0 = Disables the TMR0 interrupt  
INTE: RB0/INT Interrupt Enable bit  
1 = Enables the RB0/INT interrupt  
0 = Disables the RB0/INT interrupt  
RBIE: RB Port Change Interrupt Enable bit  
1 = Enables the RB port change interrupt  
0 = Disables the RB port change interrupt  
T0IF: TMR0 overflow interrupt flag bit  
1 = TMR0 has overflowed (must be cleared in software)  
0 = TMR0 did not overflow  
INTF: RB0/INT Interrupt Flag bit  
1 = The RB0/INT interrupt occurred  
0 = The RB0/INT interrupt did not occur  
RBIF: RB Port Change Interrupt Flag bit  
1 = When at least one of the RB7:RB4 pins changed state (must be cleared in software)  
0 = None of the RB7:RB4 pins have changed state  
DS30445C-page 16  
1997 Microchip Technology Inc.  
PIC16C84  
4.3  
Program Counter: PCL and PCLATH  
Note: The PIC16C84 ignores the PCLATH<4:3>  
bits, which are used for program memory  
pages 1, 2 and 3 (0800h - 1FFFh).The use  
of PCLATH<4:3> as general purpose R/W  
bits is not recommended since this may  
affect upward compatibility with future  
products.  
The Program Counter (PC) is 13-bits wide. The low  
byte is the PCL register, which is a readable and  
writable register.The high byte of the PC (PC<12:8>) is  
not directly readable nor writable and comes from the  
PCLATH register.The PCLATH (PC latch high) register  
is a holding register for PC<12:8>. The contents of  
PCLATH are transferred to the upper byte of the  
program counter when the PC is loaded with a new  
value. This occurs during a CALL, GOTOor a write to  
PCL. The high bits of PC are loaded from PCLATH as  
shown in Figure 4-6.  
4.4  
Stack  
The PIC16C84 has an 8 deep x 13-bit wide hardware  
stack (Figure 4-1). The stack space is not part of either  
program or data space and the stack pointer is not  
readable or writable.  
FIGURE 4-6: LOADING OF PC IN  
DIFFERENT SITUATIONS  
The entire 13-bit PC is “pushed” onto the stack when a  
CALLinstruction is executed or an interrupt is acknowl-  
edged.The stack is “popped” in the event of a RETURN,  
RETLW or a RETFIE instruction execution. PCLATH is  
not affected by a push or a pop operation.  
PCH  
PCL  
12  
8
7
0
INST with PCL  
as dest  
PC  
8
PCLATH<4:0>  
PCLATH  
5
ALU result  
Note: There are no instruction mnemonics called  
push or pop. These are actions that occur  
from the execution of the CALL, RETURN,  
RETLW, and RETFIE instructions, or the  
vectoring to an interrupt address.  
PCH  
12 11 10  
PCL  
8
7
0
The stack operates as a circular buffer. That is, after the  
stack has been pushed eight times, the ninth push over-  
writes the value that was stored from the first push. The  
tenth push overwrites the second push (and so on).  
GOTO, CALL  
PC  
11  
PCLATH<4:3>  
PCLATH  
2
Opcode <10:0>  
If the stack is effectively popped nine times, the PC  
value is the same as the value from the first pop.  
4.3.1  
COMPUTED GOTO  
Note: There are no status bits to indicate stack  
overflow or stack underflow conditions.  
A computed GOTO is accomplished by adding an offset  
to the program counter (ADDWF PCL). When doing a  
table read using a computed GOTO method, care  
should be exercised if the table location crosses a PCL  
memory boundary (each 256 word block). Refer to the  
application note “Implementing a Table Read” (AN556).  
4.3.2  
PROGRAM MEMORY PAGING  
The PIC16C84 has 1K of program memory. The CALL  
and GOTO instructions have an 11-bit address range.  
This 11-bit address range allows a branch within a 2K  
program memory page size. For future PIC16CXX  
program memory expansion, there must be another  
two bits to specify the program memory page. These  
paging bits come from the PCLATH<4:3> bits  
(Figure 4-6). When doing a CALLor a GOTOinstruction,  
the user must ensure that these page bits  
(PCLATH<4:3>) are programmed to the desired  
program memory page. If a CALL instruction (or  
interrupt) is executed, the entire 13-bit PC is “pushed”  
onto the stack (see next section). Therefore, manipula-  
tion of the PCLATH<4:3> is not required for the return  
instructions (which “pops” the PC from the stack).  
1997 Microchip Technology Inc.  
DS30445C-page 17  
 
PIC16C84  
A simple program to clear RAM locations 20h-2Fh  
using indirect addressing is shown in Example 4-2.  
4.5  
Indirect Addressing; INDF and FSR  
Registers  
The INDF register is not a physical register. Address-  
ing INDF actually addresses the register whose  
address is contained in the FSR register (FSR is a  
pointer). This is indirect addressing.  
EXAMPLE 4-2: HOW TO CLEAR RAM  
USING INDIRECT  
ADDRESSING  
movlw 0x20 ;initialize pointer  
movwf FSR  
clrf  
incf  
;
to RAM  
INDF ;clear INDF register  
FSR ;inc pointer  
EXAMPLE 4-1: INDIRECT ADDRESSING  
• Register file 05 contains the value 10h  
• Register file 06 contains the value 0Ah  
• Load the value 05 into the FSR register  
• A read of the INDF register will return the value of  
10h  
NEXT  
btfss FSR,4 ;all done?  
goto  
NEXT ;NO, clear next  
CONTINUE  
:
;YES, continue  
• Increment the value of the FSR register by one  
(FSR = 06)  
• A read of the INDF register now will return the  
value of 0Ah.  
An effective 9-bit address is obtained by concatenating  
the 8-bit FSR register and the IRP bit (STATUS<7>), as  
shown in Figure 4-7. However, IRP is not used in the  
PIC16C84.  
Reading INDF itself indirectly (FSR = 0) will produce  
00h. Writing to the INDF register indirectly results in a  
no-operation (although STATUS bits may be affected).  
FIGURE 4-7: DIRECT/INDIRECT ADDRESSING  
Indirect Addressing  
Direct Addressing  
RP1 RP0  
6
0
IRP  
7
(FSR)  
0
from opcode  
bank select  
location select  
bank select  
00h  
location select  
00  
01  
10  
11  
00h  
not used not used  
0Bh  
0Ch  
Addresses  
map back  
to Bank 0  
Data  
Memory  
2Fh  
30h  
7Fh  
7Fh  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
DS30445C-page 18  
1997 Microchip Technology Inc.  
 
 
PIC16C84  
EXAMPLE 5-1: INITIALIZING PORTA  
5.0  
I/O PORTS  
CLRF  
PORTA  
; Initialize PORTA by  
; setting output  
; data latches  
The PIC16C84 has two ports, PORTA and PORTB.  
Some port pins are multiplexed with an alternate func-  
tion for other features on the device.  
BSF  
STATUS, RP0 ; Select Bank 1  
MOVLW 0x0F  
; Value used to  
; initialize data  
; direction  
5.1  
PORTA and TRISA Registers  
PORTA is a 5-bit wide latch. RA4 is a Schmitt Trigger  
input and an open drain output. All other RA port pins  
have TTL input levels and full CMOS output drivers. All  
pins have data direction bits (TRIS registers) which can  
configure these pins as output or input.  
MOVWF TRISA  
; Set RA<3:0> as inputs  
; RA4 as outputs  
; TRISA<7:5> are always  
; read as '0'.  
FIGURE 5-2: BLOCK DIAGRAM OF PIN RA4  
Setting a TRISA bit (=1) will make the corresponding  
PORTA pin an input, i.e., put the corresponding output  
driver in a hi-impedance mode. Clearing a TRISA bit  
(=0) will make the corresponding PORTA pin an output,  
i.e., put the contents of the output latch on the selected  
pin.  
Data  
bus  
D
Q
Q
WR  
PORT  
CK  
RA4 pin  
N
Reading the PORTA register reads the status of the pins  
whereas writing to it will write to the port latch. All write  
operations are read-modify-write operations. So a write  
to a port implies that the port pins are first read, then this  
value is modified and written to the port data latch.  
Data Latch  
VSS  
D
Q
Q
WR  
TRIS  
CK  
The RA4 pin is multiplexed with the TMR0 clock input.  
Schmitt  
Trigger  
input  
TRIS Latch  
FIGURE 5-1: BLOCK DIAGRAM OF PINS  
RA3:RA0  
buffer  
Data  
bus  
RD TRIS  
D
Q
Q
Q
D
VDD  
P
WR  
Port  
CK  
EN  
RD PORT  
Data Latch  
Q
N
I/O pin  
TMR0 clock input  
D
Note: I/O pin has protection diodes to VSS only.  
WR  
TRIS  
VSS  
Q
CK  
TRIS Latch  
Note: For crystal oscillator configurations  
operating below 500 kHz, the device may  
generate a spurious internal Q-clock when  
PORTA<0> switches state. This does not  
occur with an external clock in RC mode.  
To avoid this, the RA0 pin should be kept  
static, i.e. in input/output mode, pin RA0  
should not be toggled.  
TTL  
input  
buffer  
RD TRIS  
Q
D
EN  
RD PORT  
Note: I/O pins have protection diodes to VDD and VSS.  
1997 Microchip Technology Inc.  
DS30445C-page 19  
PIC16C84  
TABLE 5-1  
Name  
PORTA FUNCTIONS  
Bit0  
Buffer Type  
Function  
RA0  
bit0  
bit1  
bit2  
bit3  
bit4  
TTL  
TTL  
TTL  
TTL  
ST  
Input/output  
Input/output  
Input/output  
Input/output  
RA1  
RA2  
RA3  
RA4/T0CKI  
Input/output or external clock input for TMR0.  
Output is open drain type.  
Legend: TTL = TTL input, ST = Schmitt Trigger input  
TABLE 5-2  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Value on  
Power-on  
Reset  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
05h  
85h  
PORTA  
TRISA  
RA4/T0CKI  
TRISA4  
RA3  
RA2  
RA1  
RA0  
---x xxxx  
---1 1111  
---u uuuu  
---1 1111  
TRISA3  
TRISA2 TRISA1 TRISA0  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0'. Shaded cells are unimplemented, read as '0'  
DS30445C-page 20  
1997 Microchip Technology Inc.  
PIC16C84  
This interrupt can wake the device from SLEEP. The  
user, in the interrupt service routine, can clear the  
interrupt in the following manner:  
5.2  
PORTB and TRISB Registers  
PORTB is an 8-bit wide bi-directional port. The  
corresponding data direction register is TRISB. A '1' on  
any bit in the TRISB register puts the corresponding  
output driver in a hi-impedance mode. A '0' on any bit  
in the TRISB register puts the contents of the output  
latch on the selected pin(s).  
a) Read (or write) PORTB. This will end the mis-  
match condition.  
b) Clear flag bit RBIF.  
A mismatch condition will continue to set the RBIF bit.  
Reading PORTB will end the mismatch condition, and  
allow the RBIF bit to be cleared.  
Each of the PORTB pins have a weak internal pull-up.  
A single control bit can turn on all the pull-ups. This is  
done by clearing the RBPU (OPTION_REG<7>) bit.  
The weak pull-up is automatically turned off when the  
port pin is configured as an output. The pull-ups are  
disabled on a Power-on Reset.  
This interrupt on mismatch feature, together with  
software configurable pull-ups on these four pins allow  
easy interface to a key pad and make it possible for  
wake-up on key-depression (see AN552 in the  
Embedded Control Handbook).  
Four of PORTB’s pins, RB7:RB4, have an interrupt on  
change feature. Only pins configured as inputs can  
cause this interrupt to occur (i.e., any RB7:RB4 pin  
configured as an output is excluded from the interrupt  
on change comparison). The pins value in input mode  
are compared with the old value latched on the last  
read of PORTB.The “mismatch” outputs of the pins are  
OR’ed together to generate the RB port  
change interrupt.  
Note 1: If a change on the I/O pin should occur  
when a read operation of PORTB is being  
executed (start of the Q2 cycle), the RBIF  
interrupt flag bit may not be set.  
The interrupt on change feature is recommended for  
wake-up on key depression operation and operations  
where PORTB is only used for the interrupt on change  
feature. Polling of PORTB is not recommended while  
using the interrupt on change feature.  
FIGURE 5-3: BLOCK DIAGRAM OF PINS  
RB7:RB4  
FIGURE 5-4: BLOCK DIAGRAM OF PINS  
RB3:RB0  
VDD  
VDD  
RBPU(1)  
RBPU(1)  
weak  
P
weak  
pull-up  
P
pull-up  
Data Latch  
Data bus  
Data Latch  
Data bus  
D
Q
D
Q
I/O  
pin(2)  
I/O  
WR Port  
CK  
TRIS Latch  
pin(2)  
WR Port  
CK  
TRIS Latch  
D
Q
D
Q
WR TRIS  
TTL  
WR TRIS  
TTL  
CK  
CK  
Input  
Input  
Buffer  
Buffer  
Latch  
RD TRIS  
RD Port  
RD TRIS  
RD Port  
Q
D
Q
D
EN  
EN  
Set RBIF  
RB0/INT  
From other  
RB7:RB4 pins  
Q
D
RD Port  
EN  
Note 1: TRISB = '1' enables weak pull-up  
(if RBPU = '0' in the OPTION_REG register).  
RD Port  
2: I/O pins have diode protection to VDD and VSS.  
Note 1: TRISB = '1' enables weak pull-up  
(if RBPU = '0' in the OPTION_REG register).  
2: I/O pins have diode protection to VDD and VSS.  
1997 Microchip Technology Inc.  
DS30445C-page 21  
PIC16C84  
EXAMPLE 5-1: INITIALIZING PORTB  
CLRF  
PORTB  
; Initialize PORTB by  
; setting output  
; data latches  
BSF  
STATUS, RP0 ; Select Bank 1  
MOVLW 0xCF  
; Value used to  
; initialize data  
; direction  
MOVWF TRISB  
; Set RB<3:0> as inputs  
; RB<5:4> as outputs  
; RB<7:6> as inputs  
TABLE 5-3  
PORTB FUNCTIONS  
Name  
Bit  
Buffer Type  
I/O Consistency Function  
RB0/INT  
bit0  
TTL  
Input/output pin or external interrupt input. Internal software  
programmable weak pull-up.  
RB1  
RB2  
RB3  
RB4  
bit1  
bit2  
bit3  
bit4  
TTL  
TTL  
TTL  
TTL  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin. Internal software programmable weak pull-up.  
Input/output pin (with interrupt on change). Internal software programma-  
ble weak pull-up.  
RB5  
RB6  
RB7  
bit5  
bit6  
bit7  
TTL  
Input/output pin (with interrupt on change). Internal software programma-  
ble weak pull-up.  
(1)  
TTL/ST  
Input/output pin (with interrupt on change). Internal software programma-  
ble weak pull-up. Serial programming clock.  
(1)  
TTL/ST  
Input/output pin (with interrupt on change). Internal software programma-  
ble weak pull-up. Serial programming data.  
Legend: TTL = TTL input, ST = Schmitt Trigger.  
Note 1: This buffer is a Schmitt Trigger input when used in serial programming mode.  
TABLE 5-4  
SUMMARY OF REGISTERS ASSOCIATED WITH PORTB  
Value on  
Power-on  
Reset  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
06h  
86h  
PORTB  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0/INT xxxx xxxx  
uuuu uuuu  
1111 1111  
1111 1111  
TRISB  
TRISB7 TRISB6 TRISB5  
RBPU INTEDG T0CS  
TRISB4  
TRISB3  
TRISB2 TRISB1 TRISB0  
PS2 PS1 PS0  
1111 1111  
1111 1111  
OPTION_  
REG  
81h  
T0SE  
PSA  
Legend: x= unknown, u= unchanged. Shaded cells are not used by PORTB.  
DS30445C-page 22  
1997 Microchip Technology Inc.  
PIC16C84  
5.3.2  
SUCCESSIVE OPERATIONS ON I/O PORTS  
5.3  
I/O Programming Considerations  
The actual write to an I/O port happens at the end of an  
instruction cycle, whereas for reading, the data must be  
valid at the beginning of the instruction cycle (Figure 5-  
5).Therefore, care must be exercised if a write followed  
by a read operation is carried out on the same I/O port.  
The sequence of instructions should be such that the  
pin voltage stabilizes (load dependent) before the next  
instruction which causes that file to be read into the  
CPU is executed. Otherwise, the previous state of that  
pin may be read into the CPU rather than the new state.  
When in doubt, it is better to separate these instruc-  
tions with a NOP or another instruction not accessing  
this I/O port.  
5.3.1  
BI-DIRECTIONAL I/O PORTS  
Any instruction which writes, operates internally as a  
read followed by a write operation. The BCF and BSF  
instructions, for example, read the register into the  
CPU, execute the bit operation and write the result back  
to the register. Caution must be used when these  
instructions are applied to a port with both inputs and  
outputs defined. For example, a BSFoperation on bit5  
of PORTB will cause all eight bits of PORTB to be read  
into the CPU. Then the BSF operation takes place on  
bit5 and PORTB is written to the output latches. If  
another bit of PORTB is used as a bi-directional I/O pin  
(i.e., bit0) and it is defined as an input at this time, the  
input signal present on the pin itself would be read into  
the CPU and rewritten to the data latch of this particular  
pin, overwriting the previous content. As long as the pin  
stays in the input mode, no problem occurs. However,  
if bit0 is switched into output mode later on, the content  
of the data latch is unknown.  
Example 5-1 shows the effect of two sequential read-  
modify-write instructions (e.g., BCF, BSF, etc.) on an  
I/O port.  
EXAMPLE 5-1: READ-MODIFY-WRITE  
INSTRUCTIONS ON AN  
I/O PORT  
Reading the port register, reads the values of the port  
pins. Writing to the port register writes the value to the  
port latch. When using read-modify-write instructions  
(i.e., BCF, BSF, etc.) on a port, the value of the port pins  
is read, the desired operation is done to this value, and  
this value is then written to the port latch.  
;Initial PORT settings: PORTB<7:4> Inputs  
;
PORTB<3:0> Outputs  
;PORTB<7:6> have external pull-ups and are  
;not connected to other circuitry  
;
;
;
PORT latch PORT pins  
---------- ---------  
A pin actively outputting a Low or High should not be  
driven from external devices at the same time in order  
to change the level on this pin (“wired-or”, “wired-and”).  
The resulting high output current may damage the chip.  
BCF PORTB, 7  
BCF PORTB, 6  
BSF STATUS, RP0  
BCF TRISB, 7  
BCF TRISB, 6  
; 01pp ppp  
; 10pp ppp  
;
; 10pp ppp  
; 10pp ppp  
11pp ppp  
11pp ppp  
11pp ppp  
10pp ppp  
;
;Note that the user may have expected the  
;pin values to be 00pp ppp. The 2nd BCF  
;caused RB7 to be latched as the pin value  
;(high).  
FIGURE 5-5: SUCCESSIVE I/O OPERATION  
Q4  
Q4  
Q4  
Q1 Q2  
Q4  
Q3  
Q3  
Q3  
Q3  
Q1 Q2  
PC  
Q1 Q2  
Q1 Q2  
Note:  
This example shows a write to PORTB  
followed by a read from PORTB.  
PC + 3  
NOP  
PC  
Instruction  
fetched  
PC + 1  
PC + 2  
NOP  
MOVWF PORTB MOVF PORTB,W  
write to  
PORTB  
Note that:  
data setup time = (0.25TCY - TPD)  
RB7:RB0  
where TCY = instruction cycle  
TPD = propagation delay  
Port pin  
sampled here  
TPD  
Therefore, at higher clock frequencies,  
a write followed by a read may be  
problematic.  
Instruction  
executed  
NOP  
MOVWF PORTB  
write to  
MOVF PORTB,W  
PORTB  
1997 Microchip Technology Inc.  
DS30445C-page 23  
 
 
PIC16C84  
NOTES:  
DS30445C-page 24  
1997 Microchip Technology Inc.  
PIC16C84  
edge select bit, T0SE (OPTION<4>). Clearing bit T0SE  
selects the rising edge. Restrictions on the external  
clock input are discussed in detail in Section 6.2.  
6.0  
TIMER0 MODULE AND TMR0  
REGISTER  
The Timer0 module timer/counter has the following  
features:  
The prescaler is shared between the Timer0 Module  
and the Watchdog Timer. The prescaler assignment is  
controlled, in software, by control bit PSA  
(OPTION<3>). Clearing bit PSA will assign the  
prescaler to the Timer0 Module. The prescaler is not  
readable or writable. When the prescaler (Section 6.3)  
is assigned to the Timer0 Module, the prescale value  
(1:2, 1:4, ..., 1:256) is software selectable.  
• 8-bit timer/counter  
• Readable and writable  
• 8-bit software programmable prescaler  
• Internal or external clock select  
• Interrupt on overflow from FFh to 00h  
• Edge select for external clock  
6.1  
TMR0 Interrupt  
Timer mode is selected by clearing the T0CS bit  
(OPTION<5>). In timer mode, the Timer0 module  
(Figure 6-1) will increment every instruction cycle  
(without prescaler). If the TMR0 register is written, the  
increment is inhibited for the following two cycles  
(Figure 6-2 and Figure 6-3). The user can work around  
this by writing an adjusted value to the TMR0 register.  
The TMR0 interrupt is generated when the TMR0  
register overflows from FFh to 00h. This overflow sets  
the T0IF bit (INTCON<2>). The interrupt can be  
masked by clearing enable bit T0IE (INTCON<5>).The  
T0IF bit must be cleared in software by the Timer0  
Module interrupt service routine before re-enabling this  
interrupt.The TMR0 interrupt (Figure 6-4) cannot wake  
the processor from SLEEP since the timer is shut off  
during SLEEP.  
Counter mode is selected by setting the T0CS bit  
(OPTION<5>). In this mode TMR0 will increment either  
on every rising or falling edge of pin RA4/T0CKI. The  
incrementing edge is determined by the T0 source  
FIGURE 6-1: TMR0 BLOCK DIAGRAM  
Data bus  
FOSC/4  
0
1
PSout  
8
1
0
Sync with  
Internal  
clocks  
TMR0 register  
RA4/T0CKI  
pin  
Programmable  
Prescaler  
PSout  
(2 cycle delay)  
T0SE  
3
Set bit T0IF  
on Overflow  
PS2, PS1, PS0  
PSA  
T0CS  
Note 1: Bits T0CS, T0SE, PS2, PS1, PS0 and PSA are located in the OPTION register.  
2: The prescaler is shared with the Watchdog Timer (Figure 6-6)  
FIGURE 6-2: TMR0 TIMING: INTERNAL CLOCK/NO PRESCALER  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
PC  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
Instruction  
Fetch  
T0  
T0+1  
T0+2  
NT0  
NT0  
NT0  
NT0+1  
NT0+2  
TMR0  
Instruction  
Executed  
Read TMR0  
reads NT0 + 1  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 2  
Write TMR0  
executed  
1997 Microchip Technology Inc.  
DS30445C-page 25  
 
 
PIC16C84  
FIGURE 6-3: TMR0 TIMING: INTERNAL CLOCK/PRESCALE 1:2  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC-1  
PC  
PC+1  
PC+2  
PC+3  
PC+4  
PC+5  
PC+6  
PC  
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W  
MOVWF TMR0  
Instruction  
Fetch  
T0  
T0+1  
NT0+1  
NT0  
TMR0  
Instruction  
Execute  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0  
Read TMR0  
reads NT0 + 1  
Write TMR0  
executed  
FIGURE 6-4: TMR0 INTERRUPT TIMING  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
Q1 Q2 Q3  
Q4  
OSC1  
CLKOUT(3)  
TMR0 timer  
FEh  
1
FFh  
1
00h  
01h  
02h  
4
T0IF bit  
(INTCON<2>)  
GIE bit  
(INTCON<7>)  
Interrupt Latency(2)  
PC +1  
INSTRUCTION FLOW  
PC  
PC  
PC +1  
0004h  
0005h  
Instruction  
fetched  
Inst (PC)  
Inst (PC+1)  
Inst (0004h)  
Inst (0005h)  
Instruction  
executed  
Inst (PC-1)  
Dummy cycle  
Dummy cycle  
Inst (0004h)  
Inst (PC)  
Note 1: T0IF interrupt flag is sampled here (every Q1).  
2: Interrupt latency = 3.25Tcy, where Tcy = instruction cycle time.  
3: CLKOUT is available only in RC oscillator mode.  
4: The timer clock (after the synchronizer circuit) which increments the timer from FFh to 00h immediately sets the T0IF bit.  
The TMR0 register will roll over 3 Tosc cycles later.  
DS30445C-page 26  
1997 Microchip Technology Inc.  
PIC16C84  
6.2.2  
TMR0 INCREMENT DELAY  
6.2  
Using TMR0 with External Clock  
Since the prescaler output is synchronized with the  
internal clocks, there is a small delay from the time the  
external clock edge occurs to the time the Timer0  
Module is actually incremented. Figure 6-5 shows the  
delay from the external clock edge to the timer  
incrementing.  
When an external clock input is used for TMR0, it must  
meet certain requirements. The external clock  
requirement is due to internal phase clock (TOSC)  
synchronization. Also, there is a delay in the actual  
incrementing  
of  
the  
TMR0  
register  
after  
synchronization.  
6.3  
Prescaler  
6.2.1  
EXTERNAL CLOCK SYNCHRONIZATION  
When no prescaler is used, the external clock input is  
the same as the prescaler output. The synchronization  
of pin RA4/T0CKI with the internal phase clocks is  
accomplished by sampling the prescaler output on the  
Q2 and Q4 cycles of the internal phase clocks  
(Figure 6-5). Therefore, it is necessary for T0CKI to be  
high for at least 2Tosc (plus a small RC delay) and low  
for at least 2Tosc (plus a small RC delay). Refer to the  
electrical specification of the desired device.  
An 8-bit counter is available as a prescaler for the  
Timer0 Module, or as a postscaler for the Watchdog  
Timer (Figure 6-6). For simplicity, this counter is being  
referred to as “prescaler” throughout this data sheet.  
Note that there is only one prescaler available which is  
mutually exclusive between the Timer0 Module and the  
Watchdog Timer. Thus, a prescaler assignment for the  
Timer0 Module means that there is no prescaler for the  
Watchdog Timer, and vice-versa.  
When a prescaler is used, the external clock input is  
divided by an asynchronous ripple counter type  
prescaler so that the prescaler output is symmetrical.  
For the external clock to meet the sampling  
requirement, the ripple counter must be taken into  
account. Therefore, it is necessary for T0CKI to have a  
period of at least 4Tosc (plus a small RC delay) divided  
by the prescaler value. The only requirement on T0CKI  
high and low time is that they do not violate the  
minimum pulse width requirement of 10 ns. Refer to  
parameters 40, 41 and 42 in the AC Electrical  
Specifications of the desired device.  
The PSA and PS2:PS0 bits (OPTION<3:0>) determine  
the prescaler assignment and prescale ratio.  
When assigned to the Timer0 Module, all instructions  
writing to the Timer0 Module (e.g., CLRF 1, MOVWF 1,  
BSF 1,x ....etc.) will clear the prescaler. When  
assigned to WDT, a CLRWDT instruction will clear the  
prescaler along with the Watchdog Timer. The  
prescaler is not readable or writable.  
FIGURE 6-5: TIMER0 TIMING WITH EXTERNAL CLOCK  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Ext. Clock Input or  
Prescaler Out (Note 2)  
(Note 3)  
Ext. Clock/Prescaler  
Output After Sampling  
Increment TMR0 (Q4)  
TMR0  
T0  
T0 + 1  
T0 + 2  
Note 1: Delay from clock input change to TMR0 increment is 3Tosc to 7Tosc. (Duration of Q = Tosc).  
Therefore, the error in measuring the interval between two edges on TMR0 input = ± 4Tosc max.  
2: External clock if no prescaler selected, Prescaler output otherwise.  
3: The arrows indicate where sampling occurs. A small clock pulse may be missed by sampling.  
1997 Microchip Technology Inc.  
DS30445C-page 27  
 
PIC16C84  
FIGURE 6-6: BLOCK DIAGRAM OF THE TMR0/WDT PRESCALER  
Data Bus  
CLKOUT (= Fosc/4)  
8
M
U
X
1
0
0
1
M
U
X
RA4/T0CKI  
pin  
SYNC  
2
Cycles  
TMR0 register  
T0SE  
T0CS  
Set bit T0IF  
on overflow  
PSA  
0
1
8-bit Prescaler  
M
U
X
Watchdog  
Timer  
8
8 - to - 1MUX  
PS2:PS0  
PSA  
1
0
WDT Enable bit  
M U X  
PSA  
WDT  
time-out  
Note: T0CS, T0SE, PSA, PS2:PS0 are bits in the OPTION register.  
DS30445C-page 28  
1997 Microchip Technology Inc.  
PIC16C84  
6.3.1  
SWITCHING PRESCALER ASSIGNMENT  
EXAMPLE 6-1: CHANGING PRESCALER  
(TIMER0WDT)  
The prescaler assignment is fully under software  
control (i.e., it can be changed “on the fly” during  
program execution).  
BCF  
CLRF  
STATUS, RP0 ;Bank 0  
TMR0 ;Clear TMR0  
; and Prescaler  
STATUS, RP0 ;Bank 1  
;Clears WDT  
b'xxxx1xxx' ;Select new  
BSF  
Note: To avoid an unintended device RESET, the  
CLRWDT  
MOVLW  
MOVWF  
BCF  
following  
instruction  
sequence  
(Example 6-1) must be executed when  
changing the prescaler assignment from  
Timer0 to the WDT.This sequence must be  
taken even if the WDT is disabled. To  
change prescaler from the WDT to the  
Timer0 module use the sequence shown in  
Example 6-2.  
OPTION  
; prescale value  
STATUS, RP0 ;Bank 0  
EXAMPLE 6-2: CHANGING PRESCALER  
(WDTTIMER0)  
CLRWDT  
;Clear WDT and  
; prescaler  
BSF  
STATUS, RP0 ;Bank 1  
MOVLW  
b'xxxx0xxx' ;Select TMR0, new  
; prescale value  
’ and clock source  
MOVWF  
BCF  
OPTION  
STATUS, RP0 ;Bank 0  
;
TABLE 6-1  
REGISTERS ASSOCIATED WITH TIMER0  
Value on  
Power-on  
Reset  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
01h  
0Bh  
TMR0  
Timer0 module’s register  
xxxx xxxx  
0000 000x  
uuuu uuuu  
0000 0000  
INTCON  
GIE  
EEIE  
T0IE  
INTE  
RBIE  
T0IF  
PS2  
INTF  
PS1  
RBIF  
PS0  
81h  
85h  
OPTION  
TRISA  
RBPU INTEDG  
T0CS  
T0SE  
PSA  
1111 1111  
---1 1111  
1111 1111  
---1 1111  
TRISA4  
TRISA3  
TRISA2 TRISA1 TRISA0  
Legend: x= unknown, u= unchanged. -= unimplemented read as '0'. Shaded cells are not associated with Timer0.  
1997 Microchip Technology Inc.  
DS30445C-page 29  
 
 
PIC16C84  
NOTES:  
DS30445C-page 30  
1997 Microchip Technology Inc.  
PIC16C84  
When the device is code protected, the CPU may  
continue to read and write the data EEPROM memory.  
The device programmer can no longer access  
this memory.  
7.0  
DATA EEPROM MEMORY  
The EEPROM data memory is readable and writable  
during normal operation (full VDD range). This memory  
is not directly mapped in the register file space. Instead  
it is indirectly addressed through the Special Function  
Registers. There are four SFRs used to read and write  
this memory. These registers are:  
7.1  
EEADR  
The EEADR register can address up to a maximum of  
256 bytes of data EEPROM. Only the first 64 bytes of  
data EEPROM are implemented.  
• EECON1  
• EECON2  
• EEDATA  
• EEADR  
The upper two bits are address decoded. This means  
that these two bits must always be '0' to ensure that the  
address is in the 64 byte memory space.  
EEDATA holds the 8-bit data for read/write, and EEADR  
holds the address of the EEPROM location being  
accessed. PIC16C84 devices have 64 bytes of data  
EEPROM with an address range from 0h to 3Fh.  
The EEPROM data memory allows byte read and write.  
A byte write automatically erases the location and  
writes the new data (erase before write).The EEPROM  
data memory is rated for high erase/write cycles. The  
write time is controlled by an on-chip timer. The write-  
time will vary with voltage and temperature as well as  
from chip to chip. Please refer to AC specifications for  
exact limits.  
FIGURE 7-1: EECON1 REGISTER (ADDRESS 88h)  
U
U
U
R/W-0  
EEIF  
R/W-x  
R/W-0  
WREN  
R/S-0  
WR  
R/S-x  
RD  
WRERR  
R
= Readable bit  
W = Writable bit  
bit7  
bit0  
S
U
= Settable bit  
= Unimplemented bit,  
read as ‘0’  
- n = Value at POR reset  
bit 7:5 Unimplemented: Read as '0'  
bit 4  
EEIF: EEPROM Write Operation Interrupt Flag bit  
1 = The write operation completed (must be cleared in software)  
0 = The write operation is not complete or has not been started  
bit 3  
WRERR: EEPROM Error Flag bit  
1 = A write operation is prematurely terminated  
(any MCLR reset or any WDT reset during normal operation)  
0 = The write operation completed  
bit 2  
bit 1  
WREN: EEPROM Write Enable bit  
1 = Allows write cycles  
0 = Inhibits write to the data EEPROM  
WR: Write Control bit  
1 = initiates a write cycle. (The bit is cleared by hardware once write is complete. The WR bit can only  
be set (not cleared) in software.  
0 = Write cycle to the data EEPROM is complete  
bit 0  
RD: Read Control bit  
1 = Initiates an EEPROM read (read takes one cycle. RD is cleared in hardware. The RD bit can only  
be set (not cleared) in software).  
0 = Does not initiate an EEPROM read  
1997 Microchip Technology Inc.  
DS30445C-page 31  
PIC16C84  
7.2  
EECON1 and EECON2 Registers  
7.4  
Writing to the EEPROM Data Memory  
EECON1 is the control register with five low order bits  
physically implemented. The upper-three bits are non-  
existent and read as '0's.  
To write an EEPROM data location, the user must first  
write the address to the EEADR register and the data  
to the EEDATA register. Then the user must follow a  
specific sequence to initiate the write for each byte.  
Control bits RD and WR initiate read and write,  
respectively. These bits cannot be cleared, only set, in  
software.They are cleared in hardware at completion of  
the read or write operation.The inability to clear the WR  
bit in software prevents the accidental, premature ter-  
mination of a write operation.  
EXAMPLE 7-1: DATA EEPROM WRITE  
BSF  
STATUS, RP0 ; Bank 1  
BCF  
BSF  
INTCON, GIE ; Disable INTs.  
EECON1, WREN ; Enable Write  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
55h  
EECON2  
AAh  
EECON2  
EECON1,WR  
;
The WREN bit, when set, will allow a write operation.  
On power-up, the WREN bit is clear.The WRERR bit is  
set when a write operation is interrupted by a MCLR  
reset or a WDT time-out reset during normal operation.  
In these situations, following reset, the user can check  
the WRERR bit and rewrite the location. The data and  
address will be unchanged in the EEDATA and  
EEADR registers.  
; Write 55h  
;
; Write AAh  
; Set WR bit  
;
begin write  
BSF  
INTCON, GIE ; Enable INTs.  
The write will not initiate if the above sequence is not  
exactly followed (write 55h to EECON2, write AAh to  
EECON2, then set WR bit) for each byte. We strongly  
recommend that interrupts be disabled during this  
code segment.  
Interrupt flag bit EEIF is set when write is complete. It  
must be cleared in software.  
EECON2 is not a physical register. Reading EECON2  
will read all '0's. The EECON2 register is used  
exclusively in the Data EEPROM write sequence.  
Additionally, the WREN bit in EECON1 must be set to  
enable write. This mechanism prevents accidental  
writes to data EEPROM due to errant (unexpected)  
code execution (i.e., lost programs). The user should  
keep the WREN bit clear at all times, except when  
updating EEPROM. The WREN bit is not cleared  
by hardware  
7.3  
Reading the EEPROM Data Memory  
To read a data memory location, the user must write  
the address to the EEADR register and then set control  
bit RD (EECON1<0>).The data is available, in the very  
next cycle, in the EEDATA register; therefore it can be  
read in the next instruction. EEDATA will hold this value  
until another read or until it is written to by the user  
(during a write operation).  
After a write sequence has been initiated, clearing the  
WREN bit will not affect this write cycle.The WR bit will  
be inhibited from being set unless the WREN bit is set.  
At the completion of the write cycle, the WR bit is  
cleared in hardware and the EE Write Complete  
Interrupt Flag bit (EEIF) is set. The user can either  
enable this interrupt or poll this bit. EEIF must be  
cleared by software.  
EXAMPLE 7-1: DATA EEPROM READ  
BCF  
STATUS, RP0 ; Bank 0  
MOVLW  
MOVWF  
BSF  
BSF  
BCF  
CONFIG_ADDR  
EEADR  
STATUS, RP0 ; Bank 1  
EECON1, RD ; EE Read  
STATUS, RP0 ; Bank 0  
EEDATA, W ; W = EEDATA  
;
; Address to read  
Note: The data EEPROM memory E/W cycle  
time may occasionally exceed the 10 ms  
specification (typical). To ensure that the  
write cycle is complete, use the EE  
interrupt or poll the WR bit (EECON1<1>).  
Both these events signify the completion of  
the write cycle.  
MOVF  
DS30445C-page 32  
1997 Microchip Technology Inc.  
PIC16C84  
7.5  
Write Verify  
7.6  
Protection Against Spurious Writes  
Depending on the application, good programming  
practice may dictate that the value written to the Data  
EEPROM should be verified (Example 7-1) to the  
desired value to be written. This should be used in  
applications where an EEPROM bit will be stressed  
near the specification limit. The Total Endurance disk  
will help determine your comfort level.  
There are conditions when the device may not want to  
write to the data EEPROM memory. To protect against  
spurious EEPROM writes, various mechanisms have  
been built in. On power-up, WREN is cleared. Also, the  
Power-up Timer (72 ms duration) prevents  
EEPROM write.  
The write initiate sequence and the WREN bit together  
help prevent an accidental write during brown-out,  
power glitch, or software malfunction.  
Generally the EEPROM write failure will be a bit which  
was written as a '1', but reads back as a '0' (due to  
leakage off the bit).  
7.7  
Data EEPROM Operation during Code  
Protect  
EXAMPLE 7-1: WRITE VERIFY  
When the device is code protected, the CPU is able to  
read and write unscrambled data to the Data  
EEPROM.  
BCF  
:
:
STATUS, RP0 ; Bank 0  
; Any code can go here  
;
MOVF EEDATA, W  
; Must be in Bank 0  
For ROM devices, there are two code protection bits  
(Section 8.1). One for the ROM program memory and  
one for the Data EEPROM memory.  
BSF  
BSF  
BCF  
STATUS, RP0 ; Bank 1  
READ  
EECON1, RD ; YES, Read the  
;
value written  
7.8  
Power Consumption Considerations  
STATUS, RP0 ; Bank 0  
;
Note: It is recommended that the EEADR<7:6>  
bits be cleared.When either of these bits is  
set, the maximum IDD for the device is  
higher than when both are cleared. The  
specification is 400 µA. With EEADR<7:6>  
cleared, the maximum is approximately  
150 µA.  
; Is the value written (in W reg) and  
;
;
read (in EEDATA) the same?  
SUBWF EEDATA, W  
;
BTFSS STATUS, Z  
GOTO WRITE_ERR  
:
:
; Is difference 0?  
; NO, Write error  
; YES, Good write  
; Continue program  
TABLE 7-1  
REGISTERS/BITS ASSOCIATED WITH DATA EEPROM  
Value on  
Power-on  
Reset  
Value on all  
other resets  
Address  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
08h  
09h  
88h  
89h  
EEDATA EEPROM data register  
xxxx xxxx  
xxxx xxxx  
---0 x000  
---- ----  
uuuu uuuu  
uuuu uuuu  
---0 q000  
---- ----  
EEADR  
EEPROM address register  
EECON1  
EEIF  
WRERR  
WREN  
WR  
RD  
EECON2 EEPROM control register 2  
Legend: x= unknown, u= unchanged, -= unimplemented read as '0', q= value depends upon condition. Shaded cells are not  
used by Data EEPROM.  
1997 Microchip Technology Inc.  
DS30445C-page 33  
 
PIC16C84  
NOTES:  
DS30445C-page 34  
1997 Microchip Technology Inc.  
PIC16C84  
the chip in reset until the crystal oscillator is stable.The  
other is the Power-up Timer (PWRT), which provides a  
fixed delay of 72 ms (nominal) on power-up only. This  
design keeps the device in reset while the power supply  
stabilizes. With these two timers on-chip, most  
applications need no external reset circuitry.  
8.0  
SPECIAL FEATURES OF THE  
CPU  
What sets  
a
microcontroller apart from other  
processors are special circuits to deal with the needs of  
real time applications. The PIC16C84 has a host of  
such features intended to maximize system reliability,  
minimize cost through elimination of external  
components, provide power saving operating modes  
and offer code protection. These features are:  
SLEEP mode offers a very low current power-down  
mode. The user can wake-up from SLEEP through  
external reset, Watchdog Timer time-out or through an  
interrupt. Several oscillator options are provided to  
allow the part to fit the application. The RC oscillator  
option saves system cost while the LP crystal option  
saves power. A set of configuration bits are used to  
select the various options.  
• OSC selection  
• Reset  
- Power-on Reset (POR)  
- Power-up Timer (PWRT)  
- Oscillator Start-up Timer (OST)  
• Interrupts  
8.1  
Configuration Bits  
The configuration bits can be programmed (read as '0')  
or left unprogrammed (read as '1') to select various  
device configurations. These bits are mapped in  
program memory location 2007h.  
• Watchdog Timer (WDT)  
• SLEEP  
• Code protection  
• ID locations  
Address 2007h is beyond the user program memory  
space and it belongs to the special test/configuration  
memory space (2000h - 3FFFh). This space can only  
be accessed during programming.  
• In-circuit serial programming  
The PIC16C84 has a Watchdog Timer which can be  
shut off only through configuration bits. It runs off its  
own RC oscillator for added reliability. There are two  
timers that offer necessary delays on power-up. One is  
the Oscillator Start-up Timer (OST), intended to keep  
To nd out how to program the PIC16C84, refer to  
PIC16C84 EEPROM Memory Programming Specifica-  
tion (DS30189).  
FIGURE 8-1: CONFIGURATION WORD  
U-1  
U-1  
U-1  
U-1  
U-1 U-1 U-1  
U-1 U-1 R/P-u  
CP  
R/P-u  
R/P-u R/P-u  
R/P-u  
PWRTE WDTE FOSC1 FOSC0  
bit0  
bit13  
R
P
U
= Readable bit  
= Programmable bit  
= Unimplemented bit,  
read as ‘1’  
- n = Value at POR reset  
u = unchanged  
bit 13:5 Unimplemented: Read as '1'  
bit 4  
bit 3  
bit 2  
CP: Code Protection bit  
1 = Code protection off  
0 = All memory is code protected  
PWRTE: Power-up Timer Enable bit  
1 = Power-up timer is enabled  
0 = Power-up timer is disabled  
WDTE: Watchdog Timer Enable bit  
1 = WDT enabled  
0 = WDT disabled  
bit 1:0 FOSC1:FOSC0: Oscillator Selection bits  
11 =RC oscillator  
10 = HS oscillator  
01 = XT oscillator  
00 = LP oscillator  
1997 Microchip Technology Inc.  
DS30445C-page 35  
 
 
PIC16C84  
8.2  
Oscillator Configurations  
TABLE 8-1  
CAPACITOR SELECTION  
FORCERAMICRESONATORS  
8.2.1  
OSCILLATOR TYPES  
The PIC16C84 can be operated in four different  
oscillator modes. The user can program two  
configuration bits (FOSC1 and FOSC0) to select one of  
these four modes:  
Ranges Tested:  
Mode  
Freq  
OSC1/C1  
OSC2/C2  
XT  
455 kHz  
2.0 MHz  
4.0 MHz  
47 - 100 pF 47 - 100 pF  
15 - 33 pF 15 - 33 pF  
15 - 33 pF 15 - 33 pF  
• LP  
• XT  
• HS  
• RC  
Low Power Crystal  
Crystal/Resonator  
HS  
8.0 MHz  
15 - 33 pF 15 - 33 pF  
15 - 33 pF 15 - 33 pF  
High Speed Crystal/Resonator  
Resistor/Capacitor  
10.0 MHz  
Note: Recommended values of C1 and C2 are identical to  
the ranges tested table.  
8.2.2  
CRYSTAL OSCILLATOR / CERAMIC  
RESONATORS  
Higher capacitance increases the stability of the  
oscillator but also increases the start-up time.  
These values are for design guidance only. Since  
each resonator has its own characteristics, the user  
should consult the resonator manufacturer for the  
appropriate values of external components.  
In XT, LP or HS modes a crystal or ceramic resonator  
is connected to the OSC1/CLKIN and OSC2/CLKOUT  
pins to establish oscillation (Figure 8-2).  
FIGURE 8-2: CRYSTAL/CERAMIC  
RESONATOR OPERATION  
(HS, XT OR LP OSC  
Resonators Tested:  
455 kHz  
2.0 MHz  
4.0 MHz  
8.0 MHz  
Panasonic EFO-A455K04B  
Murata Erie CSA2.00MG  
Murata Erie CSA4.00MG  
Murata Erie CSA8.00MT  
± 0.3%  
± 0.5%  
± 0.5%  
± 0.5%  
± 0.5%  
CONFIGURATION)  
(1)  
C1  
OSC1  
10.0 MHz Murata Erie CSA10.00MTZ  
To  
internal  
logic  
None of the resonators had built-in capacitors.  
XTAL  
(3)  
RF  
TABLE 8-2  
CAPACITOR SELECTION  
OSC2  
SLEEP  
PIC16CXX  
FOR CRYSTAL OSCILLATOR  
(2)  
RS  
(1)  
C2  
Mode  
Freq  
OSC1/C1  
OSC2/C2  
Note1: See Table 8-1 and Table 8-2 for recom-  
mended values of C1 and C2.  
LP  
32 kHz  
200 kHz  
68 - 100 pF  
15 - 33 pF  
68 - 100 pF  
15 - 33 pF  
2: A series resistor (RS) may be required for  
AT strip cut crystals.  
3: RF varies with the crystal chosen.  
XT  
HS  
100 kHz  
2 MHz  
4 MHz  
100 - 150 pF 100 - 150 pF  
15 - 33 pF  
15 - 33 pF  
15 - 33 pF  
15 - 33 pF  
4 MHz  
10 MHz  
15 - 33 pF  
15 - 33 pF  
15 - 33 pF  
15 - 33 pF  
The PIC16C84 oscillator design requires the use of a  
parallel cut crystal. Use of a series cut crystal may give  
Note: Higher capacitance increases the stability of  
oscillator but also increases the start-up time.  
These values are for design guidance only. Rs may  
be required in HS mode as well as XT mode to  
avoid overdriving crystals with low drive level spec-  
ification. Since each crystal has its own  
a
frequency out of the crystal manufacturers  
specifications.When in XT, LP or HS modes, the device  
can have an external clock source to drive the OSC1/  
CLKIN pin (Figure 8-3).  
FIGURE 8-3: EXTERNAL CLOCK INPUT  
OPERATION (HS, XT OR LP  
characteristics, the user should consult the crystal  
manufacturer for appropriate values of external  
components.  
OSC CONFIGURATION)  
For VDD > 4.5V, C1 = C2 30 pF is recommended.  
Crystals Tested:  
OSC1  
OSC2  
Clock from  
ext. system  
PIC16CXX  
32.768 kHz Epson C-001R32.768K-A ± 20 PPM  
Open  
100 kHz  
200 kHz  
1.0 MHz  
2.0 MHz  
4.0 MHz  
10.0 MHz  
Epson C-2 100.00 KC-P ± 20 PPM  
STD XTL 200.000 KHz  
ECS ECS-10-13-2  
ECS ECS-20-S-2  
ECS ECS-40-S-4  
ECS ECS-100-S-4  
± 20 PPM  
± 50 PPM  
± 50 PPM  
± 50 PPM  
± 50 PPM  
DS30445C-page 36  
1997 Microchip Technology Inc.  
 
 
 
 
PIC16C84  
8.2.3  
EXTERNAL CRYSTAL OSCILLATOR  
CIRCUIT  
8.2.4  
RC OSCILLATOR  
For timing insensitive applications the RC device option  
offers additional cost savings. The RC oscillator  
frequency is a function of the supply voltage, the  
resistor (Rext) values, capacitor (Cext) values, and the  
operating temperature. In addition to this, the oscillator  
frequency will vary from unit to unit due to normal  
process parameter variation. Furthermore, the  
difference in lead frame capacitance between package  
types also affects the oscillation frequency, especially  
for low Cext values. The user needs to take into  
account variation due to tolerance of the external  
R and C components. Figure 8-6 shows how an R/C  
combination is connected to the PIC16C84. For Rext  
values below 2.2 k, the oscillator operation may  
become unstable, or stop completely. For very high  
Rext values (e.g., 1 M), the oscillator becomes  
sensitive to noise, humidity and leakage. Thus, we  
recommend keeping Rext between 3 kand 100 k.  
Either a prepackaged oscillator can be used or a simple  
oscillator circuit with TTL gates can be built.  
Prepackaged oscillators provide a wide operating  
range and better stability. A well-designed crystal  
oscillator will provide good performance with TTL  
gates. Two types of crystal oscillator circuits are  
available; one with series resonance, and one with  
parallel resonance.  
Figure 8-4 shows a parallel resonant oscillator circuit.  
The circuit is designed to use the fundamental  
frequency of the crystal.The 74AS04 inverter performs  
the 180-degree phase shift that a parallel oscillator  
requires. The 4.7 kresistor provides negative  
feedback for stability. The 10 kpotentiometer biases  
the 74AS04 in the linear region. This could be used for  
external oscillator designs.  
FIGURE 8-4: EXTERNAL PARALLEL  
RESONANT CRYSTAL  
Although the oscillator will operate with no external  
capacitor (Cext = 0 pF), we recommend using values  
above 20 pF for noise and stability reasons. With little  
or no external capacitance, the oscillation frequency  
can vary dramatically due to changes in external  
capacitances, such as PCB trace capacitance or  
package lead frame capacitance.  
OSCILLATOR CIRCUIT  
+5V  
To Other  
Devices  
PIC16CXX  
10k  
74AS04  
4.7k  
See the electrical specification section for RC  
frequency variation from part to part due to normal  
process variation. The variation is larger for larger R  
(since leakage current variation will affect RC  
frequency more for large R) and for smaller C (since  
variation of input capacitance has a greater affect on  
RC frequency).  
CLKIN  
74AS04  
10k  
XTAL  
10k  
See the electrical specification section for variation of  
oscillator frequency due to VDD for given Rext/Cext  
values as well as frequency variation due to  
operating temperature.  
20 pF  
20 pF  
Figure 8-5 shows a series resonant oscillator circuit.  
This circuit is also designed to use the fundamental  
frequency of the crystal. The inverter performs a 180-  
degree phase shift. The 330 kresistors provide the  
negative feedback to bias the inverters in their linear  
region.  
The oscillator frequency, divided by 4, is available on  
the OSC2/CLKOUT pin, and can be used for test  
purposes or to synchronize other logic (see Figure 3-2  
for waveform).  
FIGURE 8-6: RC OSCILLATOR MODE  
FIGURE 8-5: EXTERNAL SERIES  
RESONANT CRYSTAL  
VDD  
OSCILLATOR CIRCUIT  
Rext  
Internal  
OSC1  
clock  
To Other  
Devices  
Cext  
330 kΩ  
330 kΩ  
PIC16CXX  
PIC16CXX  
VSS  
74AS04  
74AS04  
74AS04  
OSC2/CLKOUT  
Fosc/4  
CLKIN  
0.1 µF  
Recommended values: 3 kΩ ≤ Rext 100 kΩ  
XTAL  
Cext > 20pF  
Note: When the device oscillator is in RC mode,  
do not drive the OSC1 pin with an external  
clock or you may damage the device.  
1997 Microchip Technology Inc.  
DS30445C-page 37  
 
 
 
PIC16C84  
Some registers are not affected in any reset condition;  
their status is unknown on a POR reset and unchanged  
in any other reset. Most other registers are reset to a  
“reset state” on POR, MCLR or WDT reset during  
normal operation and on MCLR reset during SLEEP.  
They are not affected by a WDT reset during SLEEP,  
since this reset is viewed as the resumption of normal  
operation.  
8.3  
Reset  
The PIC16C84 differentiates between various kinds  
of reset:  
• Power-on Reset (POR)  
• MCLR reset during normal operation  
• MCLR reset during SLEEP  
• WDT Reset (during normal operation)  
• WDT Wake-up (during SLEEP)  
Table 8-3 gives a description of reset conditions for the  
program counter (PC) and the STATUS register.  
Table 8-4 gives a full description of reset states for all  
registers.  
Figure 8-7 shows a simplified block diagram of the on-  
chip reset circuit. The electrical specifications state the  
pulse width requirements for the MCLR pin.  
The TO and PD bits are set or cleared differently in dif-  
ferent reset situations (Section 8.7). These bits are  
used in software to determine the nature of the reset.  
FIGURE 8-7: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
External  
Reset  
MCLR  
SLEEP  
WDT  
WDT  
Module  
Time_Out  
Reset  
VDD rise  
detect  
S
R
Power_on_Reset  
VDD  
OST/PWRT  
OST  
Chip_Reset  
Q
10-bit Ripple counter  
10-bit Ripple counter  
OSC1/  
CLKIN  
PWRT  
On-chip  
(1)  
RC OSC  
Enable PWRT  
Enable OST  
See Table 8-5  
Note 1: This is a separate oscillator from the  
RC oscillator of the CLKIN pin.  
DS30445C-page 38  
1997 Microchip Technology Inc.  
 
PIC16C84  
TABLE 8-3  
RESET CONDITION FOR PROGRAM COUNTER AND THE STATUS REGISTER  
Program Counter  
STATUS Register  
Condition  
Power-on Reset  
000h  
000h  
000h  
000h  
PC + 1  
0001 1xxx  
000u uuuu  
0001 0uuu  
0000 1uuu  
uuu0 0uuu  
MCLR Reset during normal operation  
MCLR Reset during SLEEP  
WDT Reset (during normal operation)  
WDT Wake-up  
(1)  
Interrupt wake-up from SLEEP  
PC + 1  
uuu1 0uuu  
Legend: u= unchanged, x= unknown.  
Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
TABLE 8-4  
Register  
RESET CONDITIONS FOR ALL REGISTERS  
MCLR Reset during:  
Wake-up from SLEEP:  
– through interrupt  
– through WDT time-out  
– normal operation  
– SLEEP  
Address  
Power-on Reset  
WDT Reset during nor-  
mal operation  
W
xxxx xxxx  
---- ----  
xxxx xxxx  
0000h  
uuuu uuuu  
---- ----  
uuuu uuuu  
0000h  
uuuu uuuu  
---- ----  
uuuu uuuu  
INDF  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
08h  
09h  
0Ah  
0Bh  
80h  
81h  
82h  
83h  
84h  
85h  
86h  
88h  
89h  
8Ah  
8Bh  
TMR0  
(2)  
PCL  
PC + 1  
(3)  
(3)  
STATUS  
FSR  
0001 1xxx  
xxxx xxxx  
---x xxxx  
xxxx xxxx  
xxxx xxxx  
xxxx xxxx  
---0 0000  
0000 000x  
---- ----  
1111 1111  
0000h  
000q quuu  
uuuq quuu  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---0 0000  
0000 000u  
---- ----  
1111 1111  
0000h  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
uuuu uuuu  
uuuu uuuu  
---u uuuu  
PORTA  
PORTB  
EEDATA  
EEADR  
PCLATH  
INTCON  
INDF  
(1)  
uuuu uuuu  
---- ----  
uuuu uuuu  
PC + 1  
OPTION_REG  
PCL  
(3)  
(3)  
STATUS  
FSR  
0001 1xxx  
xxxx xxxx  
---1 1111  
1111 1111  
---0 x000  
---- ----  
---0 0000  
0000 000x  
000q quuu  
uuuq quuu  
uuuu uuuu  
---1 1111  
1111 1111  
---0 q000  
---- ----  
---0 0000  
0000 000u  
uuuu uuuu  
---u uuuu  
uuuu uuuu  
---0 uuuu  
---- ----  
---u uuuu  
TRISA  
TRISB  
EECON1  
EECON2  
PCLATH  
INTCON  
(1)  
uuuu uuuu  
Legend: u = unchanged, x = unknown, -= unimplemented bit read as '0',  
q= value depends on condition.  
Note 1: One or more bits in INTCON will be affected (to cause wake-up).  
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector  
(0004h).  
3: Table 8-3 lists the reset value for each specific condition.  
1997 Microchip Technology Inc.  
DS30445C-page 39  
 
 
PIC16C84  
8.4  
Power-on Reset (POR)  
FIGURE 8-8: EXTERNAL POWER-ON  
RESET CIRCUIT (FOR SLOW  
VDD POWER-UP)  
A Power-on Reset pulse is generated on-chip when  
VDD rise is detected (in the range of 1.2V - 1.7V). To  
take advantage of the POR, just tie the MCLR pin  
directly (or through a resistor) to VDD.This will eliminate  
external RC components usually needed to create  
Power-on Reset. A minimum rise time for VDD must be  
met for this to operate properly. See Electrical Specifi-  
cations for details.  
VDD  
VDD  
D
R
R1  
MCLR  
PIC16CXX  
When the device starts normal operation (exits the  
reset condition), device operating parameters (voltage,  
frequency, temperature, ...) must be meet to ensure  
operation. If these conditions are not met, the device  
must be held in reset until the operating conditions  
are met.  
C
Note 1: External Power-on Reset circuit is required  
only if VDD power-up rate is too slow. The  
diode D helps discharge the capacitor  
quickly when VDD powers down.  
For additional information, refer to Application Note  
AN607, Power-up Trouble Shooting.  
2: R < 40 kis recommended to make sure  
that voltage drop across R does not exceed  
0.2V (max leakage current spec on MCLR  
pin is 5 µA). A larger voltage drop will  
degrade VIH level on the MCLR pin.  
The POR circuit does not produce an internal reset  
when VDD declines.  
8.5  
Power-up Timer (PWRT)  
3: R1 = 100to 1 kwill limit any current  
flowing into MCLR from external  
The Power-up Timer (PWRT) provides a fixed 72 ms  
nominal time-out (TPWRT) from POR (Figure 8-9,  
Figure 8-10, Figure 8-11 and Figure 8-12). The Power-  
up Timer operates on an internal RC oscillator. The  
chip is kept in reset as long as the PWRT is active.The  
PWRT delay allows the VDD to rise to an acceptable  
level (Possible exception shown in Figure 8-12).  
capacitor C in the event of an MCLR pin  
breakdown due to ESD or EOS.  
A configuration bit, PWRTE, can enable/disable the  
PWRT (Figure 8-1).  
The power-up time delay TPWRT will vary from chip to  
chip due to VDD, temperature, and process variation.  
See DC parameters for details.  
8.6  
Oscillator Start-up Timer (OST)  
The Oscillator Start-up Timer (OST) provides a 1024  
oscillator cycle delay (from OSC1 input) after the  
PWRT delay ends (Figure 8-9, Figure 8-10, Figure 8-  
11 and Figure 8-12). This ensures the crystal oscillator  
or resonator has started and stabilized.  
The OST time-out (TOST) is invoked only for XT, LP and  
HS modes and only on Power-on Reset or wake-up  
from SLEEP.  
When VDD rises very slowly, it is possible that the  
TPWRT time-out and TOST time-out will expire before  
VDD has reached its final value. In this case (Figure 8-  
12), an external power-on reset circuit may be neces-  
sary (Figure 8-8).  
DS30445C-page 40  
1997 Microchip Technology Inc.  
 
PIC16C84  
FIGURE 8-9: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 8-10: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
TOST  
OST TIME-OUT  
INTERNAL RESET  
1997 Microchip Technology Inc.  
DS30445C-page 41  
 
 
PIC16C84  
FIGURE 8-11: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): FAST VDD RISE TIME  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
FIGURE 8-12: TIME-OUT SEQUENCE ON POWER-UP (MCLRTIED TO VDD): SLOW VDD RISETIME  
V1  
VDD  
MCLR  
INTERNAL POR  
TPWRT  
PWRT TIME-OUT  
OST TIME-OUT  
TOST  
INTERNAL RESET  
When VDD rises very slowly, it is possible that the TPWRT time-out and TOST time-out will expire before VDD  
has reached its final value. In this example, the chip will reset properly if, and only if, V1 VDD min.  
DS30445C-page 42  
1997 Microchip Technology Inc.  
 
 
PIC16C84  
8.7  
Time-out Sequence and Power Down  
Status Bits (TO/PD)  
8.8  
Reset on Brown-Out  
A brown-out is a condition where device power (VDD)  
dips below its minimum value, but not to zero, and then  
recovers. The device should be reset in the event of a  
brown-out.  
On power-up (Figure 8-9, Figure 8-10, Figure 8-11 and  
Figure 8-12) the time-out sequence is as follows: First  
PWRT time-out is invoked after a POR has expired.  
Then the OST is activated. The total time-out will vary  
based on oscillator configuration and PWRTE  
configuration bit status. For example, in RC mode with  
the PWRT disabled, there will be no time-out at all.  
To reset PIC16C84 devices when a brown-out occurs,  
external brown-out protection circuits may be built, as  
shown in Figure 8-13 and Figure 8-14.  
FIGURE 8-13: BROWN-OUT PROTECTION  
CIRCUIT 1  
TABLE 8-5  
TIME-OUT IN VARIOUS  
SITUATIONS  
VDD  
Oscillator  
Power-up  
Wake-up  
VDD  
Configuration  
from  
SLEEP  
PWRT  
Enabled  
PWRT  
Disabled  
33k  
XT, HS, LP  
RC  
72 ms +  
1024TOSC  
1024TOSC  
1024TOSC  
10k  
MCLR  
72 ms  
40k  
PIC16CXX  
Since the time-outs occur from the POR reset pulse, if  
MCLR is kept low long enough, the time-outs will  
expire. Then bringing MCLR high, execution will begin  
immediately (Figure 8-9). This is useful for testing  
purposes or to synchronize more than one PIC16CXX  
device when operating in parallel.  
This circuit will activate reset when VDD goes below  
(Vz + 0.7V) where Vz = Zener voltage.  
Table 8-6 shows the significance of the TO and PD bits.  
Table 8-3 lists the reset conditions for some special  
registers, while Table 8-4 lists the reset conditions for  
all the registers.  
FIGURE 8-14: BROWN-OUT PROTECTION  
CIRCUIT 2  
TABLE 8-6  
STATUS BITS AND THEIR  
SIGNIFICANCE  
VDD  
VDD  
TO  
PD  
Condition  
R1  
1
0
x
0
0
1
1
1
x
0
1
0
1
0
Power-on Reset  
Q1  
Illegal, TO is set on POR  
MCLR  
R2  
Illegal, PD is set on POR  
40k  
PIC16CXX  
WDT Reset (during normal operation)  
WDT Wake-up  
MCLR Reset during normal operation  
MCLR Reset during SLEEP or interrupt  
wake-up from SLEEP  
This brown-out circuit is less expensive, although less  
accurate. Transistor Q1 turns off when VDD is below a  
certain level such that:  
R1  
= 0.7V  
VDD •  
R1 + R2  
1997 Microchip Technology Inc.  
DS30445C-page 43  
 
 
 
PIC16C84  
When an interrupt is responded to; the GIE bit is  
cleared to disable any further interrupt, the return  
address is pushed onto the stack and the PC is loaded  
with 0004h. For external interrupt events, such as the  
RB0/INT pin or PORTB change interrupt, the interrupt  
latency will be three to four instruction cycles.The exact  
latency depends when the interrupt event occurs  
(Figure 8-16).The latency is the same for both one and  
two cycle instructions. Once in the interrupt service  
routine the source(s) of the interrupt can be determined  
by polling the interrupt flag bits. The interrupt flag bit(s)  
must be cleared in software before re-enabling  
interrupts to avoid infinite interrupt requests.  
8.9  
Interrupts  
The PIC16C84 has 4 sources of interrupt:  
• External interrupt RB0/INT pin  
• TMR0 overflow interrupt  
• PORTB change interrupts (pins RB7:RB4)  
• EEPROM write complete interrupt  
The interrupt control register (INTCON) records  
individual interrupt requests in flag bits. It also contains  
the individual and global interrupt enable bits.  
The global interrupt enable bit, GIE (INTCON<7>)  
enables (if set) all un-masked interrupts or disables (if  
cleared) all interrupts. Individual interrupts can be  
disabled through their corresponding enable bits in  
INTCON register. Bit GIE is cleared on reset.  
Note 1: Individual interrupt flag bits are set  
regardless of the status of their  
corresponding mask bit or the GIE bit.  
The “return from interrupt” instruction, RETFIE, exits  
interrupt routine as well as sets the GIE bit, which re-  
enable interrupts.  
Note 2: If an interrupt occurs while the Global  
Interrupt Enable (GIE) bit is being cleared,  
the GIE bit may unintentionally be  
re-enabled by the user’s Interrupt Service  
Routine (the RETFIE instruction). The  
events that would cause this to occur are:  
The RB0/INT pin interrupt, the RB port change inter-  
rupt and the TMR0 overflow interrupt flags are con-  
tained in the INTCON register.  
1. An instruction clears the GIE bit while  
an interrupt is acknowledged  
2. The program branches to the  
Interrupt vector and executes the  
Interrupt Service Routine.  
3. The Interrupt Service Routine  
completes with the execution of the  
RETFIE instruction. This causes the  
GIE bit to be set (enables interrupts),  
and the program returns to the  
instruction after the one which was  
meant to disable interrupts.  
The method to ensure that interrupts are  
globally disabled is:  
1. Ensure that the GIE bit is cleared by  
the instruction, as shown in the  
following code:  
LOOP BCF  
INTCON,GIE ;Disable All  
Interrupts  
BTFSC INTCON,GIE ;All Interrupts  
Disabled?  
;NO, try again  
;
;
GOTO LOOP  
;
;
;
Yes, continue  
with program  
flow  
DS30445C-page 44  
1997 Microchip Technology Inc.  
PIC16C84  
FIGURE 8-15: INTERRUPT LOGIC  
Wake-up  
(If in SLEEP mode)  
T0IF  
T0IE  
INTF  
INTE  
Interrupt to CPU  
RBIF  
RBIE  
EEIF  
EEIE  
GIE  
FIGURE 8-16: INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT  
3
4
INT pin  
1
1
Interrupt Latency  
INTF flag  
(INTCON<1>)  
5
2
GIE bit  
(INTCON<7>)  
INSTRUCTION FLOW  
PC  
0004h  
PC+1  
PC+1  
0005h  
PC  
Instruction  
fetched  
Inst (PC)  
Inst (PC+1)  
Inst (0004h)  
Inst (0005h)  
Inst (0004h)  
Instruction  
executed  
Dummy Cycle  
Dummy Cycle  
Inst (PC)  
Inst (PC-1)  
Note  
1: INTF flag is sampled here (every Q1).  
2: Interrupt latency = 3-4Tcy where Tcy = instruction cycle time.  
Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.  
3: CLKOUT is available only in RC oscillator mode.  
4: For minimum width of INT pulse, refer to AC specs.  
5: INTF is enabled to be set anytime during the Q4-Q1 cycles.  
1997 Microchip Technology Inc.  
DS30445C-page 45  
PIC16C84  
8.9.1  
INT INTERRUPT  
8.10  
Context Saving During Interrupts  
External interrupt on RB0/INT pin is edge triggered:  
either rising if INTEDG bit (OPTION_REG<6>) is set,  
or falling, if INTEDG bit is clear. When a valid edge  
appears on the RB0/INT pin, the INTF bit  
(INTCON<1>) is set. This interrupt can be disabled by  
clearing control bit INTE (INTCON<4>). Flag bit INTF  
must be cleared in software via the interrupt service  
routine before re-enabling this interrupt. The INT  
interrupt can wake the processor from SLEEP  
(Section 8.12) only if the INTE bit was set prior to going  
into SLEEP. The status of the GIE bit decides whether  
the processor branches to the interrupt vector  
following wake-up.  
During an interrupt, only the return PC value is saved  
on the stack. Typically, users wish to save key register  
values during an interrupt (e.g., W register and STATUS  
register). This is implemented in software.  
Example 8-1 stores and restores the STATUS and W  
register’s values.The User defined registers, W_TEMP  
and STATUS_TEMP are the temporary storage  
locations for the W and STATUS registers values.  
Example 8-1 does the following:  
a) Stores the W register.  
b) Stores the STATUS register in STATUS_TEMP.  
c) Executes the Interrupt Service Routine code.  
8.9.2  
TMR0 INTERRUPT  
d) Restores the STATUS (and bank select bit)  
register.  
An overflow (FFh 00h) in TMR0 will set flag bit T0IF  
(INTCON<2>). The interrupt can be enabled/disabled  
by setting/clearing enable bit T0IE (INTCON<5>)  
(Section 6.0).  
e) Restores the W register.  
8.9.3  
PORT RB INTERRUPT  
An input change on PORTB<7:4> sets flag bit RBIF  
(INTCON<0>). The interrupt can be enabled/disabled  
by setting/clearing enable bit RBIE (INTCON<3>)  
(Section 5.2).  
Note 1: If a change on an I/O pin should occur  
when a read operation of PORTB is being  
executed (start of the Q2 cycle), the RBIF  
interrupt flag bit may not get set.  
EXAMPLE 8-1: SAVING STATUS AND W REGISTERS IN RAM  
PUSH  
MOVWF  
SWAPF  
MOVWF  
:
W_TEMP  
STATUS, W  
STATUS_TEMP  
; Copy W to TEMP register,  
; Swap status to be saved into W  
; Save status to STATUS_TEMP register  
:
ISR  
:
; Interrupt Service Routine  
:
:
;
;
should configure Bank as required  
POP  
SWAPF  
STATUS_TEMP, W ; Swap nibbles in STATUS_TEMP register  
; and place result into W  
MOVWF  
STATUS  
; Move W into STATUS register  
(sets bank to original state)  
;
SWAPF  
SWAPF  
W_TEMP, F  
W_TEMP, W  
; Swap nibbles in W_TEMP and place result in W_TEMP  
; Swap nibbles in W_TEMP and place result into W  
DS30445C-page 46  
1997 Microchip Technology Inc.  
 
PIC16C84  
part (see DC specs). If longer time-out periods are  
desired, a prescaler with a division ratio of up to 1:128  
can be assigned to the WDT under software control by  
writing to the OPTION_REG register. Thus, time-out  
periods up to 2.3 seconds can be realized.  
8.11  
Watchdog Timer (WDT)  
The Watchdog Timer is a free running on-chip RC  
oscillator which does not require any external  
components. This RC oscillator is separate from the  
RC oscillator of the OSC1/CLKIN pin. That means that  
the WDT will run even if the clock on the OSC1/CLKIN  
and OSC2/CLKOUT pins of the device has been  
stopped, for example, by execution of a SLEEP  
instruction. During normal operation a WDT time-out  
generates a device RESET. If the device is in SLEEP  
mode, a WDT Wake-up causes the device to wake-up  
and continue with normal operation. The WDT can be  
permanently disabled by programming configuration bit  
WDTE as a '0' (Section 8.1).  
The CLRWDTand SLEEPinstructions clear the WDT and  
the postscaler (if assigned to the WDT) and prevent it  
from timing out and generating  
RESET condition.  
a
device  
The TO bit in the STATUS register will be cleared upon  
a WDT time-out.  
8.11.2 WDT PROGRAMMING CONSIDERATIONS  
It should also be taken into account that under worst  
case conditions (VDD = Min., Temperature = Max., max.  
WDT prescaler) it may take several seconds before a  
WDT time-out occurs.  
8.11.1 WDT PERIOD  
The WDT has a nominal time-out period of 18 ms, (with  
no prescaler). The time-out periods vary with  
temperature, VDD and process variations from part to  
FIGURE 8-17: WATCHDOG TIMER BLOCK DIAGRAM  
From TMR0 Clock Source  
(Figure 6-6)  
0
M
U
X
Postscaler  
8
1
WDT Timer  
PS2:PS0  
To TMR0 (Figure 6-6)  
PSA  
8 - to -1 MUX  
PSA  
WDT  
Enable Bit  
1
0
MUX  
WDT  
Time-out  
Note: PSA and PS2:PS0 are bits in the OPTION_REG register.  
TABLE 8-7  
SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER  
Value on  
Power-on  
Reset  
Value on all  
other resets  
Address Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
2007h  
81h  
Config. bits  
CP  
PWRTE  
PSA  
WDTE  
PS2  
FOSC1  
PS1  
FOSC0  
PS0  
OPTION_  
REG  
1111 1111  
1111 1111  
RBPU  
INTEDG  
T0CS  
T0SE  
Legend: x= unknown. Shaded cells are not used by the WDT.  
1997 Microchip Technology Inc.  
DS30445C-page 47  
PIC16C84  
8.12.2 WAKE-UP FROM SLEEP  
8.12  
Power-down Mode (SLEEP)  
The device can wake-up from SLEEP through one of  
the following events:  
A device may be powered down (SLEEP) and later  
powered up (Wake-up from SLEEP).  
1. External reset input on MCLR pin.  
2. WDT Wake-up (if WDT was enabled).  
8.12.1 SLEEP  
The Power-down mode is entered by executing the  
SLEEPinstruction.  
3. Interrupt from RB0/INT pin, RB port change, or  
data EEPROM write complete.  
If enabled, the Watchdog Timer is cleared (but keeps  
running), the PD bit (STATUS<3>) is cleared, the TO bit  
(STATUS<4>) is set, and the oscillator driver is turned  
off. The I/O ports maintain the status they had before  
the SLEEPinstruction was executed (driving high, low,  
or hi-impedance).  
Peripherals cannot generate interrupts during SLEEP,  
since no on-chip Q clocks are present.  
The first event (MCLR reset) will cause a device reset.  
The two latter events are considered a continuation of  
program execution.The TO and PD bits can be used to  
determine the cause of a device reset. The PD bit,  
which is set on power-up, is cleared when SLEEP is  
invoked. The TO bit is cleared if a WDT time-out  
occurred (and caused wake-up).  
For the lowest current consumption in SLEEP mode,  
place all I/O pins at either at VDD or VSS, with no  
external circuitry drawing current from the I/O pins, and  
disable external clocks. I/O pins that are hi-impedance  
inputs should be pulled high or low externally to avoid  
switching currents caused by floating inputs. The  
T0CKI input should also be at VDD or VSS. The  
contribution from on-chip pull-ups on PORTB should be  
considered.  
While the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is pre-fetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be set (enabled). Wake-up  
occurs regardless of the state of the GIE bit. If the GIE  
bit is clear (disabled), the device continues execution at  
the instruction after the SLEEPinstruction. If the GIE bit  
is set (enabled), the device executes the instruction  
after the SLEEP instruction and then branches to the  
interrupt address (0004h). In cases where the  
execution of the instruction following SLEEP is not  
desirable, the user should have a NOP after the  
SLEEPinstruction.  
The MCLR pin must be at a logic high level (VIHMC).  
It should be noted that a RESET generated by a WDT  
time-out does not drive the MCLR pin low.  
FIGURE 8-18: WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
OSC1  
CLKOUT(4)  
INT pin  
TOST(2)  
INTF flag  
(INTCON<1>)  
Interrupt Latency  
(Note 2)  
GIE bit  
(INTCON<7>)  
Processor in  
SLEEP  
INSTRUCTION FLOW  
PC  
PC  
PC+1  
PC+2  
PC+2  
PC + 2  
0004h  
0005h  
Instruction  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = SLEEP  
Inst(PC - 1)  
fetched  
Instruction  
executed  
Dummy cycle  
Dummy cycle  
SLEEP  
Inst(PC + 1)  
Inst(0004h)  
Note 1: XT, HS or LP oscillator mode assumed.  
2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.  
3: GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.  
4: CLKOUT is not available in these osc modes, but shown here for timing reference.  
DS30445C-page 48  
1997 Microchip Technology Inc.  
PIC16C84  
8.12.3 WAKE-UP USING INTERRUPTS  
8.15  
In-Circuit Serial Programming  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
PIC16C84  
microcontrollers  
can  
be  
serially  
programmed while in the end application circuit.This is  
simply done with two lines for clock and data, and three  
other lines for power, ground, and the programming  
voltage. Customers can manufacture boards with  
unprogrammed devices, and then program the  
microcontroller just before shipping the product,  
allowing the most recent firmware or custom firmware  
to be programmed.  
• If the interrupt occurs before the execution of a  
SLEEP instruction, the SLEEP instruction will  
complete as a NOP.Therefore, the WDT and WDT  
postscaler will not be cleared, the TO bit will not  
be set and PD bits will not be cleared.  
• If the interrupt occurs during or after the execu-  
tion of a SLEEP instruction, the device will imme-  
diately wake up from sleep . The SLEEP  
instruction will be completely executed before the  
wake-up. Therefore, the WDT and WDT  
The device is placed into a program/verify mode by  
holding the RB6 and RB7 pins low, while raising the  
MCLR pin from VIL to VIHH (see PIC16C84 EEPROM  
Memory Programming Specification (DS30189)). RB6  
becomes the programming clock and RB7 becomes  
the programming data. Both RB6 and RB7 are Schmitt  
Trigger inputs in this mode.  
postscaler will be cleared, the TO bit will be set  
and the PD bit will be cleared.  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEP instruction completes.  
To determine whether a SLEEP instruction executed,  
test the PD bit. If the PD bit is set, the SLEEP instruc-  
tion was executed as a NOP.  
After reset, to place the device into programming/verify  
mode, the program counter (PC) points to location 00h.  
A 6-bit command is then supplied to the device, 14-bits  
of program data is then supplied to or from the device,  
using load or read-type instructions. For complete  
details of serial programming, please refer to the In-Cir-  
cuit Serial Programming Guide (DS30277).  
To ensure that the WDT is cleared, a CLRWDT instruc-  
tion should be executed before a SLEEP instruction.  
For ROM devices, both the program memory and Data  
EEPROM memory may be read, but only the Data  
EEPROM memory may be programmed.  
8.13  
Program Verification/Code Protection  
If the code protection bit(s) have not been  
programmed, the on-chip program memory can be  
read out for verification purposes.  
FIGURE 8-19: TYPICAL IN-SYSTEM SERIAL  
PROGRAMMING  
CONNECTION  
Note: Microchip does not recommend code pro-  
tecting windowed devices..  
To Normal  
Connections  
8.14  
ID Locations  
External  
Connector  
Signals  
PIC16CXX  
Four memory locations (2000h - 2003h) are designated  
as ID locations to store checksum or other code  
identification numbers. These locations are not  
accessible during normal execution but are readable  
and writable only during program/verify. Only the  
4 least significant bits of ID location are usable.  
+5V  
0V  
VDD  
VSS  
VPP  
MCLR/VPP  
RB6  
RB7  
CLK  
For ROM devices, these values are submitted along  
with the ROM code.  
Data I/O  
VDD  
To Normal  
Connections  
1997 Microchip Technology Inc.  
DS30445C-page 49  
PIC16C84  
NOTES:  
DS30445C-page 50  
1997 Microchip Technology Inc.  
PIC16C84  
The instruction set is highly orthogonal and is grouped  
into three basic categories:  
9.0  
INSTRUCTION SET SUMMARY  
Each PIC16CXX instruction is a 14-bit word divided  
into an OPCODE which specifies the instruction type  
and one or more operands which further specify the  
operation of the instruction. The PIC16CXX instruction  
set summary in Table 9-2 lists byte-oriented, bit-ori-  
ented, and literal and control operations. Table 9-1  
shows the opcode field descriptions.  
Byte-oriented operations  
Bit-oriented operations  
Literal and control operations  
All instructions are executed within one single instruc-  
tion cycle, unless a conditional test is true or the pro-  
gram counter is changed as a result of an instruction.  
In this case, the execution takes two instruction cycles  
with the second cycle executed as a NOP. One instruc-  
tion cycle consists of four oscillator periods. Thus, for  
an oscillator frequency of 4 MHz, the normal instruction  
execution time is 1 µs. If a conditional test is true or the  
program counter is changed as a result of an instruc-  
tion, the instruction execution time is 2 µs.  
For byte-oriented instructions, 'f' represents a file reg-  
ister designator and 'd' represents a destination desig-  
nator. The file register designator specifies which file  
register is to be used by the instruction.  
The destination designator specifies where the result of  
the operation is to be placed. If 'd' is zero, the result is  
placed in the W register. If 'd' is one, the result is placed  
in the file register specified in the instruction.  
Table 9-2 lists the instructions recognized by the  
MPASM assembler.  
For bit-oriented instructions, 'b' represents a bit field  
designator which selects the number of the bit affected  
by the operation, while 'f' represents the number of the  
file in which the bit is located.  
Figure 9-1 shows the general formats that the instruc-  
tions can have.  
Note: To maintain upward compatibility with  
future PIC16CXX products, do not use the  
OPTIONand TRISinstructions.  
For literal and control operations, 'k' represents an  
eight or eleven bit constant or literal value.  
TABLE 9-1  
OPCODE FIELD  
DESCRIPTIONS  
All examples use the following format to represent a  
hexadecimal number:  
0xhh  
Field  
Description  
where h signifies a hexadecimal digit.  
f
W
b
k
x
Register file address (0x00 to 0x7F)  
Working register (accumulator)  
Bit address within an 8-bit file register  
Literal field, constant data or label  
Don't care location (= 0 or 1)  
FIGURE 9-1: GENERAL FORMAT FOR  
INSTRUCTIONS  
Byte-oriented file register operations  
13  
8
7
6
0
0
The assembler will generate code with x = 0. It is the  
recommended form of use for compatibility with all  
Microchip software tools.  
OPCODE  
d
f (FILE #)  
d = 0 for destination W  
d = 1 for destination f  
f = 7-bit file register address  
d
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1  
label  
TOS  
Label name  
Top of Stack  
Bit-oriented file register operations  
13 10 9  
b (BIT #)  
7
6
PC  
Program Counter  
OPCODE  
f (FILE #)  
PCLATH  
Program Counter High Latch  
Global Interrupt Enable bit  
Watchdog Timer/Counter  
Time-out bit  
b = 3-bit bit address  
f = 7-bit file register address  
GIE  
WDT  
TO  
Literal and control operations  
PD  
Power-down bit  
dest  
Destination either the W register or the specified  
register file location  
General  
13  
8
7
0
0
[ ]  
( )  
Options  
Contents  
OPCODE  
k (literal)  
k = 8-bit immediate value  
Assigned to  
Register bit field  
In the set of  
< >  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
k = 11-bit immediate value  
User defined term (font is courier)  
italics  
k (literal)  
1998 Microchip Technology Inc.  
DS30445C-page 51  
 
PIC16C84  
TABLE 9-2  
PIC16CXX INSTRUCTION SET  
Mnemonic,  
Operands  
Description  
Cycles  
14-Bit Opcode  
Status  
Affected  
Notes  
MSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
LSb  
ADDWF  
ANDWF  
CLRF  
CLRW  
COMF  
DECF  
f, d  
f, d  
f
Add W and f  
AND W with f  
Clear f  
Clear W  
Complement f  
Decrement f  
1
1
1
1
1
1
1(2)  
1
1(2)  
1
1
1
1
1
1
1
1
1
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
0111 dfff ffff C,DC,Z  
1,2  
1,2  
2
0101 dfff ffff  
0001 lfff ffff  
0001 0xxx xxxx  
1001 dfff ffff  
0011 dfff ffff  
1011 dfff ffff  
1010 dfff ffff  
1111 dfff ffff  
0100 dfff ffff  
1000 dfff ffff  
0000 lfff ffff  
0000 0xx0 0000  
1101 dfff ffff  
1100 dfff ffff  
Z
Z
Z
Z
Z
-
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f, d  
f
1,2  
1,2  
1,2,3  
1,2  
1,2,3  
1,2  
1,2  
DECFSZ  
INCF  
Decrement f, Skip if 0  
Increment f  
Increment f, Skip if 0  
Inclusive OR W with f  
Move f  
Z
INCFSZ  
IORWF  
MOVF  
MOVWF  
NOP  
RLF  
RRF  
SUBWF  
SWAPF  
XORWF  
Z
Z
Move W to f  
No Operation  
-
f, d  
f, d  
f, d  
f, d  
f, d  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
1,2  
1,2  
1,2  
1,2  
1,2  
0010 dfff ffff C,DC,Z  
1110 dfff ffff  
0110 dfff ffff  
Z
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
BTFSC  
BTFSS  
f, b  
f, b  
f, b  
f, b  
Bit Clear f  
Bit Set f  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1
1
1 (2)  
1 (2)  
01 00bb bfff ffff  
01 01bb bfff ffff  
01 10bb bfff ffff  
01 11bb bfff ffff  
1,2  
1,2  
3
3
LITERAL AND CONTROL OPERATIONS  
ADDLW  
ANDLW  
CALL  
CLRWDT  
GOTO  
IORLW  
MOVLW  
RETFIE  
RETLW  
RETURN  
SLEEP  
SUBLW  
XORLW  
k
k
k
-
k
k
k
-
k
-
-
k
k
Add literal and W  
AND literal with W  
Call subroutine  
1
1
2
1
2
1
1
2
2
2
1
1
1
11 111x kkkk kkkk C,DC,Z  
11 1001 kkkk kkkk  
10 0kkk kkkk kkkk  
Z
Clear Watchdog Timer  
Go to address  
Inclusive OR literal with W  
Move literal to W  
Return from interrupt  
Return with literal in W  
Return from Subroutine  
Go into standby mode  
Subtract W from literal  
Exclusive OR literal with W  
00 0000 0110 0100 TO,PD  
10 1kkk kkkk kkkk  
11 1000 kkkk kkkk  
11 00xx kkkk kkkk  
00 0000 0000 1001  
11 01xx kkkk kkkk  
00 0000 0000 1000  
Z
00 0000 0110 0011 TO,PD  
11 110x kkkk kkkk C,DC,Z  
11 1010 kkkk kkkk  
Z
Note 1: When an I/O register is modified as a function of itself ( e.g., MOVF PORTB, 1), the value used will be that value present  
on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external  
device, the data will be written back with a '0'.  
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned  
to the Timer0 Module.  
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is  
executed as a NOP.  
DS30445C-page 52  
1998 Microchip Technology Inc.  
PIC16C84  
9.1  
Instruction Descriptions  
Add Literal and W  
ANDLW  
AND Literal with W  
ADDLW  
Syntax:  
[label] ANDLW  
k
Syntax:  
[label] ADDLW  
0 k 255  
k
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 k 255  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
(W) .AND. (k) (W)  
(W) + k (W)  
C, DC, Z  
Z
11  
1001  
kkkk  
kkkk  
11  
111x  
kkkk  
kkkk  
The contents of W register are  
AND’ed with the eight bit literal 'k'.The  
result is placed in the W register.  
The contents of the W register are  
added to the eight bit literal 'k' and the  
result is placed in the W register.  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal "k"  
Process  
data  
Write to  
W
Decode  
Read  
literal 'k'  
Process  
data  
Write to  
W
ANDLW  
0x5F  
ADDLW  
0x15  
Example  
Example:  
Before Instruction  
Before Instruction  
W
=
0xA3  
0x03  
W
=
0x10  
0x25  
After Instruction  
After Instruction  
W
=
W
=
ADDWF  
Syntax:  
Add W and f  
ANDWF  
Syntax:  
AND W with f  
[label] ADDWF f,d  
[label] ANDWF f,d  
Operands:  
0 f 127  
Operands:  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
(W) + (f) (destination)  
Operation:  
(W) .AND. (f) (destination)  
Status Affected:  
Encoding:  
C, DC, Z  
Status Affected:  
Encoding:  
Z
00  
0111  
dfff  
ffff  
00  
0101  
dfff  
ffff  
Add the contents of the W register with  
register 'f'. If 'd' is 0 the result is stored  
in the W register. If 'd' is 1 the result is  
stored back in register 'f'.  
AND the W register with register 'f'. If 'd'  
is 0 the result is stored in the W regis-  
ter. If 'd' is 1 the result is stored back in  
register 'f'.  
Description:  
Description:  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
ADDWF  
FSR,  
0
ANDWF  
FSR, 1  
Example  
Example  
Before Instruction  
Before Instruction  
W
FSR =  
=
0x17  
0xC2  
W
FSR =  
=
0x17  
0xC2  
After Instruction  
After Instruction  
W
FSR =  
=
0xD9  
0xC2  
W
FSR =  
=
0x17  
0x02  
1998 Microchip Technology Inc.  
DS30445C-page 53  
PIC16C84  
BCF  
Bit Clear f  
BTFSC  
Bit Test, Skip if Clear  
Syntax:  
Operands:  
[label] BCF f,b  
Syntax:  
[label] BTFSC f,b  
0 f 127  
0 b 7  
Operands:  
0 f 127  
0 b 7  
Operation:  
Status Affected:  
Encoding:  
0 (f<b>)  
Operation:  
skip if (f<b>) = 0  
None  
None  
Status Affected:  
Encoding:  
01  
00bb  
bfff  
ffff  
01  
10bb  
bfff  
ffff  
If bit 'b' in register 'f' is '1' then the next  
instruction is executed.  
If bit 'b', in register 'f', is '0' then the next  
instruction is discarded, and a NOP is  
executed instead, making this a 2TCY  
instruction.  
Description:  
Words:  
Bit 'b' in register 'f' is cleared.  
Description:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write  
register 'f'  
Words:  
1
Cycles:  
1(2)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
BCF  
FLAG_REG, 7  
Example  
Decode  
Read  
register 'f'  
Process No-Operat  
data  
Before Instruction  
ion  
FLAG_REG = 0xC7  
If Skip:  
(2nd Cycle)  
Q1  
After Instruction  
FLAG_REG = 0x47  
Q2  
Q3  
Q4  
No-Operati No-Opera No-Operat  
on tion ion  
No-Operat  
ion  
HERE  
FALSE  
TRUE  
BTFSC FLAG,1  
Example  
GOTO  
PROCESS_CODE  
Before Instruction  
PC  
=
address HERE  
After Instruction  
if FLAG<1> = 0,  
BSF  
Bit Set f  
PC =  
address TRUE  
Syntax:  
Operands:  
[label] BSF f,b  
if FLAG<1>=1,  
PC =  
address FALSE  
0 f 127  
0 b 7  
Operation:  
Status Affected:  
Encoding:  
1 (f<b>)  
None  
01  
01bb  
bfff  
ffff  
Bit 'b' in register 'f' is set.  
Description:  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write  
register 'f'  
BSF  
FLAG_REG,  
7
Example  
Before Instruction  
FLAG_REG = 0x0A  
After Instruction  
FLAG_REG = 0x8A  
DS30445C-page 54  
1998 Microchip Technology Inc.  
PIC16C84  
BTFSS  
Bit Test f, Skip if Set  
CALL  
Call Subroutine  
Syntax:  
[label] BTFSS f,b  
Syntax:  
[ label ] CALL k  
Operands:  
0 f 127  
0 b < 7  
Operands:  
Operation:  
0 k 2047  
(PC)+ 1TOS,  
Operation:  
skip if (f<b>) = 1  
None  
k PC<10:0>,  
(PCLATH<4:3>) PC<12:11>  
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
None  
01  
11bb  
bfff  
ffff  
10  
0kkk  
kkkk  
kkkk  
If bit 'b' in register 'f' is '0' then the next  
instruction is executed.  
If bit 'b' is '1', then the next instruction is  
discarded and a NOP is executed  
instead, making this a 2TCY instruction.  
Description:  
Call Subroutine. First, return address  
(PC+1) is pushed onto the stack. The  
eleven bit immediate address is loaded  
into PC bits <10:0>. The upper bits of  
the PC are loaded from PCLATH. CALL  
is a two cycle instruction.  
Description:  
Words:  
1
Cycles:  
1(2)  
Words:  
1
2
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Cycles:  
Decode  
Read  
register 'f'  
Process No-Operat  
data  
Q Cycle Activity:  
1st Cycle  
Q1  
Q2  
Q3  
Q4  
ion  
Decode  
Read  
Process  
data  
Write to  
PC  
If Skip:  
(2nd Cycle)  
Q1  
literal 'k',  
Push PC  
to Stack  
Q2  
Q3  
Q4  
No-Operati No-Opera No-Operat  
on tion ion  
No-Opera No-Opera No-Operat  
2nd Cycle  
Example  
No-Operat  
ion  
No-Opera  
tion  
tion  
tion  
ion  
HERE  
FALSE  
TRUE  
BTFSC FLAG,1  
Example  
HERE  
CALL  
THERE  
GOTO  
PROCESS_CODE  
Before Instruction  
PC  
= Address HERE  
After Instruction  
PC  
= Address THERE  
Before Instruction  
TOS = Address HERE+1  
PC  
=
address HERE  
After Instruction  
if FLAG<1> = 0,  
PC =  
address FALSE  
if FLAG<1> = 1,  
PC =  
address TRUE  
1998 Microchip Technology Inc.  
DS30445C-page 55  
PIC16C84  
CLRF  
Clear f  
CLRW  
Clear W  
Syntax:  
[label] CLRF  
0 f 127  
f
Syntax:  
[ label ] CLRW  
None  
Operands:  
Operation:  
Operands:  
Operation:  
00h (f)  
1 Z  
00h (W)  
1 Z  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
Z
00  
0001  
1fff  
ffff  
00  
0001  
0xxx  
xxxx  
The contents of register 'f' are cleared  
and the Z bit is set.  
Description:  
W register is cleared. Zero bit (Z) is  
set.  
Description:  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write  
register 'f'  
Decode No-Opera Process  
tion data  
Write to  
W
CLRW  
Example  
CLRF  
FLAG_REG  
Example  
Before Instruction  
Before Instruction  
FLAG_REG  
After Instruction  
W
=
0x5A  
=
0x5A  
After Instruction  
W
=
0x00  
1
FLAG_REG  
Z
=
=
0x00  
1
Z
=
CLRWDT  
Syntax:  
Clear Watchdog Timer  
[ label ] CLRWDT  
None  
Operands:  
Operation:  
00h WDT  
0 WDT prescaler,  
1 TO  
1 PD  
Status Affected:  
Encoding:  
TO, PD  
00  
0000  
0110  
0100  
CLRWDTinstruction resets the Watch-  
dog Timer. It also resets the prescaler  
of the WDT. Status bits TO and PD are  
set.  
Description:  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode No-Opera Process  
Clear  
WDT  
tion  
data  
Counter  
CLRWDT  
Example  
Before Instruction  
WDT counter  
After Instruction  
=
=
?
WDT counter  
0x00  
WDT prescaler=  
0
1
1
TO  
PD  
=
=
DS30445C-page 56  
1998 Microchip Technology Inc.  
PIC16C84  
COMF  
Complement f  
[ label ] COMF f,d  
0 f 127  
DECFSZ  
Syntax:  
Decrement f, Skip if 0  
Syntax:  
Operands:  
[ label ] DECFSZ f,d  
Operands:  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
(f) (destination)  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
None  
00  
1001  
dfff  
ffff  
00  
1011  
dfff  
ffff  
The contents of register 'f' are comple-  
mented. If 'd' is 0 the result is stored in  
W. If 'd' is 1 the result is stored back in  
register 'f'.  
Description:  
The contents of register 'f' are decre-  
mented. If 'd' is 0 the result is placed in the  
W register. If 'd' is 1 the result is placed  
back in register 'f'.  
If the result is 1, the next instruction, is  
executed. If the result is 0, then a NOP is  
executed instead making it a 2TCY instruc-  
tion.  
Description:  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
Words:  
1
Cycles:  
1(2)  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
COMF  
REG1,0  
Example  
Decode  
Read  
register 'f'  
Process  
data  
Write to  
destination  
Before Instruction  
REG1  
After Instruction  
REG1  
=
0x13  
If Skip:  
(2nd Cycle)  
Q1  
Q2  
Q3  
Q4  
=
=
0x13  
0xEC  
No-Opera No-Operat No-Operati  
W
No-Operat  
ion  
tion  
ion  
on  
DECF  
Decrement f  
[label] DECF f,d  
0 f 127  
Syntax:  
Operands:  
HERE  
DECFSZ  
GOTO  
CNT, 1  
LOOP  
Example  
CONTINUE •  
d
[0,1]  
Operation:  
(f) - 1 (destination)  
Before Instruction  
Status Affected:  
Encoding:  
Z
PC  
=
address HERE  
00  
0011  
dfff  
ffff  
After Instruction  
CNT  
if CNT =  
PC  
if CNT ≠  
PC  
=
CNT - 1  
0,  
address CONTINUE  
0,  
address HERE+1  
Decrement register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd' is  
1 the result is stored back in register 'f'.  
Description:  
=
Words:  
1
1
=
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
DECF  
CNT, 1  
Example  
Before Instruction  
CNT  
=
0x01  
Z
=
0
After Instruction  
CNT  
Z
=
=
0x00  
1
1998 Microchip Technology Inc.  
DS30445C-page 57  
PIC16C84  
INCF  
Increment f  
GOTO  
Unconditional Branch  
Syntax:  
Operands:  
[ label ] INCF f,d  
Syntax:  
[ label ] GOTO k  
0 f 127  
Operands:  
Operation:  
0 k 2047  
d
[0,1]  
k PC<10:0>  
PCLATH<4:3> PC<12:11>  
Operation:  
(f) + 1 (destination)  
Status Affected:  
Encoding:  
Z
Status Affected:  
Encoding:  
None  
00  
1010  
dfff  
ffff  
10  
1kkk  
kkkk  
kkkk  
The contents of register 'f' are incre-  
mented. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
Description:  
GOTOis an unconditional branch. The  
eleven bit immediate value is loaded  
into PC bits <10:0>. The upper bits of  
PC are loaded from PCLATH<4:3>.  
GOTOis a two cycle instruction.  
Description:  
Words:  
1
1
Words:  
1
2
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
1st Cycle  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
Decode  
Read  
literal 'k'  
Process  
data  
Write to  
PC  
No-Operat No-Opera No-Operat  
ion tion ion  
2nd Cycle  
No-Operat  
ion  
INCF  
CNT, 1  
Example  
Before Instruction  
GOTO THERE  
Example  
CNT  
=
0xFF  
Z
=
0
After Instruction  
After Instruction  
PC  
=
Address THERE  
CNT  
Z
=
=
0x00  
1
DS30445C-page 58  
1998 Microchip Technology Inc.  
PIC16C84  
INCFSZ  
Syntax:  
Increment f, Skip if 0  
[ label ] INCFSZ f,d  
0 f 127  
IORLW  
Inclusive OR Literal with W  
[ label ] IORLW k  
0 k 255  
Syntax:  
Operands:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
d
[0,1]  
(W) .OR. k (W)  
Z
Operation:  
(f) + 1 (destination),  
skip if result = 0  
11  
1000  
kkkk  
kkkk  
Status Affected:  
Encoding:  
None  
The contents of the W register is  
OR’ed with the eight bit literal 'k'. The  
result is placed in the W register.  
00  
1111  
dfff  
ffff  
The contents of register 'f' are incre-  
mented. If 'd' is 0 the result is placed in  
the W register. If 'd' is 1 the result is  
placed back in register 'f'.  
If the result is 1, the next instruction is  
executed. If the result is 0, a NOP is exe-  
cuted instead making it a 2TCY instruc-  
tion.  
Description:  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal 'k'  
Process  
data  
Write to  
W
Words:  
1
Cycles:  
1(2)  
IORLW  
0x35  
Example  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Before Instruction  
Decode  
Read  
register 'f'  
Process  
data  
Write to  
destination  
W
=
0x9A  
After Instruction  
W
Z
=
=
0xBF  
1
If Skip:  
(2nd Cycle)  
Q1  
Q2  
Q3  
Q4  
No-Opera No-Opera No-Operati  
No-Operat  
ion  
tion  
tion  
on  
HERE  
INCFSZ  
GOTO  
CNT, 1  
LOOP  
Example  
CONTINUE •  
Before Instruction  
PC  
=
address HERE  
After Instruction  
CNT  
=
CNT + 1  
if CNT=  
0,  
PC  
if CNT≠  
=
address CONTINUE  
0,  
PC  
=
address HERE +1  
1998 Microchip Technology Inc.  
DS30445C-page 59  
PIC16C84  
IORWF  
Inclusive OR W with f  
MOVLW  
Move Literal to W  
[ label ] MOVLW k  
0 k 255  
Syntax:  
[ label ] IORWF f,d  
Syntax:  
Operands:  
0 f 127  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
d
[0,1]  
k (W)  
Operation:  
(W) .OR. (f) (destination)  
None  
Status Affected:  
Encoding:  
Z
11  
00xx  
kkkk  
kkkk  
00  
0100  
dfff  
ffff  
The eight bit literal 'k' is loaded into W  
register.The don’t cares will assemble  
as 0’s.  
Inclusive OR the W register with regis-  
ter 'f'. If 'd' is 0 the result is placed in the  
W register. If 'd' is 1 the result is placed  
back in register 'f'.  
Description:  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
literal 'k'  
Process  
data  
Write to  
W
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
MOVLW  
0x5A  
Example  
After Instruction  
IORWF  
RESULT, 0  
Example  
W
=
0x5A  
Before Instruction  
RESULT =  
0x13  
0x91  
W
=
After Instruction  
RESULT =  
0x13  
0x93  
1
W
Z
=
=
MOVWF  
Move W to f  
MOVF  
Move f  
Syntax:  
[ label ] MOVWF  
0 f 127  
(W) (f)  
f
Syntax:  
Operands:  
[ label ] MOVF f,d  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
0 f 127  
d
[0,1]  
None  
Operation:  
(f) (destination)  
00  
0000  
1fff  
ffff  
Status Affected:  
Encoding:  
Z
Move data from W register to register  
'f'.  
00  
1000  
dfff  
ffff  
The contents of register f is moved to a  
destination dependant upon the status  
of d. If d = 0, destination is W register. If  
d = 1, the destination is file register f  
itself. d = 1 is useful to test a file regis-  
ter since status flag Z is affected.  
Description:  
Words:  
1
1
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write  
register 'f'  
Words:  
1
1
Cycles:  
MOVWF  
OPTION_REG  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Example  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
Before Instruction  
OPTION =  
0xFF  
0x4F  
W
=
After Instruction  
MOVF  
FSR, 0  
Example  
OPTION =  
0x4F  
0x4F  
W
=
After Instruction  
W = value in FSR register  
Z
= 1  
DS30445C-page 60  
1998 Microchip Technology Inc.  
PIC16C84  
NOP  
No Operation  
[ label ] NOP  
None  
RETFIE  
Return from Interrupt  
Syntax:  
Syntax:  
[ label ] RETFIE  
None  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
Words:  
Operands:  
Operation:  
No operation  
None  
TOS PC,  
1 GIE  
Status Affected:  
Encoding:  
None  
00  
0000  
0xx0  
0000  
00  
0000  
0000  
1001  
No operation.  
Return from Interrupt. Stack is POPed  
and Top of Stack (TOS) is loaded in the  
PC. Interrupts are enabled by setting  
Global Interrupt Enable bit, GIE  
(INTCON<7>). This is a two cycle  
instruction.  
Description:  
1
Cycles:  
1
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode No-Opera No-Opera No-Operat  
tion  
tion  
ion  
Words:  
1
2
Cycles:  
NOP  
Example  
Q Cycle Activity:  
1st Cycle  
Q1  
Q2  
Q3  
Q4  
Decode No-Opera Set the  
tion GIE bit  
Pop from  
the Stack  
No-Opera No-Opera No-Operat  
tion tion ion  
2nd Cycle  
No-Operat  
ion  
RETFIE  
Example  
After Interrupt  
PC  
=
TOS  
GIE =  
1
OPTION  
Syntax:  
Load Option Register  
[ label ] OPTION  
None  
Operands:  
Operation:  
(W) OPTION  
Status Affected: None  
00  
0000  
0110  
0010  
Encoding:  
The contents of the W register are  
loaded in the OPTION register. This  
instruction is supported for code com-  
patibility with PIC16C5X products.  
Since OPTION is a readable/writable  
register, the user can directly address  
it.  
Description:  
Words:  
Cycles:  
Example  
1
1
To maintain upward compatibility  
with future PIC16CXX products,  
do not use this instruction.  
1998 Microchip Technology Inc.  
DS30445C-page 61  
PIC16C84  
RETLW  
Return with Literal in W  
RETURN  
Return from Subroutine  
[ label ] RETURN  
None  
Syntax:  
[ label ] RETLW k  
Syntax:  
Operands:  
Operation:  
0 k 255  
Operands:  
Operation:  
Status Affected:  
Encoding:  
Description:  
k (W);  
TOS PC  
TOS PC  
None  
Status Affected:  
Encoding:  
None  
00  
0000  
0000  
1000  
11  
01xx  
kkkk  
kkkk  
Return from subroutine. The stack is  
POPed and the top of the stack (TOS)  
is loaded into the program counter.This  
is a two cycle instruction.  
The W register is loaded with the eight  
bit literal 'k'. The program counter is  
loaded from the top of the stack (the  
return address). This is a two cycle  
instruction.  
Description:  
Words:  
1
2
Cycles:  
Words:  
1
2
Q Cycle Activity:  
1st Cycle  
Q1  
Q2  
Q3  
Q4  
Cycles:  
Decode No-Opera No-Opera Pop from  
tion tion the Stack  
Q Cycle Activity:  
1st Cycle  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
No-Opera WritetoW,  
No-Opera No-Opera No-Opera  
tion tion tion  
2nd Cycle  
literal 'k'  
tion  
Pop from  
the Stack  
No-Operat  
ion  
No-Opera No-Opera No-Operat  
tion tion ion  
2nd Cycle  
No-Operat  
ion  
RETURN  
Example  
After Interrupt  
PC  
=
TOS  
CALL TABLE ;W contains table  
;offset value  
Example  
;W now has table value  
TABLE  
ADDWF PC  
RETLW k1  
RETLW k2  
;W = offset  
;Begin table  
;
RETLW kn  
; End of table  
Before Instruction  
W
=
0x07  
After Instruction  
W
=
value of k8  
DS30445C-page 62  
1998 Microchip Technology Inc.  
PIC16C84  
RLF  
Rotate Left f through Carry  
RRF  
Rotate Right f through Carry  
[ label ] RRF f,d  
0 f 127  
Syntax:  
Operands:  
[ label ]  
RLF f,d  
Syntax:  
Operands:  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
See description below  
C
Operation:  
See description below  
C
Status Affected:  
Encoding:  
Status Affected:  
Encoding:  
00  
1101  
dfff  
ffff  
00  
1100  
dfff  
ffff  
The contents of register 'f' are rotated  
one bit to the left through the Carry  
Flag. If 'd' is 0 the result is placed in the  
W register. If 'd' is 1 the result is stored  
back in register 'f'.  
The contents of register 'f' are rotated  
one bit to the right through the Carry  
Flag. If 'd' is 0 the result is placed in the  
W register. If 'd' is 1 the result is placed  
back in register 'f'.  
Description:  
Description:  
C
Register f  
C
Register f  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
RLF  
REG1,0  
Example  
RRF  
REG1,0  
Example  
Before Instruction  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
REG1  
C
=
=
1110 0110  
0
After Instruction  
After Instruction  
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
REG1  
W
C
=
=
=
1110 0110  
0111 0011  
0
1998 Microchip Technology Inc.  
DS30445C-page 63  
PIC16C84  
SLEEP  
SUBLW  
Subtract W from Literal  
Syntax:  
[ label ]  
SUBLW k  
Syntax:  
[ label ] SLEEP  
Operands:  
Operation:  
0 k 255  
Operands:  
Operation:  
None  
k - (W) → (W)  
00h WDT,  
0 WDT prescaler,  
1 TO,  
Status Affected: C, DC, Z  
Encoding:  
11  
110x  
kkkk  
kkkk  
0 PD  
The W register is subtracted (2’s comple-  
ment method) from the eight bit literal 'k'.  
The result is placed in the W register.  
Description:  
Status Affected:  
Encoding:  
TO, PD  
00  
0000  
0110  
0011  
Words:  
1
1
The power-down status bit, PD is  
cleared. Time-out status bit, TO is  
set.Watchdog Timer and its prescaler  
are cleared.  
Description:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
The processor is put into SLEEP  
mode with the oscillator stopped. See  
Section 14.8 for more details.  
Decode  
Read  
literal 'k'  
Process Write to W  
data  
Words:  
1
1
Example 1:  
SUBLW  
0x02  
Cycles:  
Before Instruction  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
W
C
Z
=
=
=
1
?
?
Decode No-Opera No-Opera  
tion tion  
Go to  
Sleep  
After Instruction  
Example:  
SLEEP  
W
C
Z
=
=
=
1
1; result is positive  
0
Example 2:  
Before Instruction  
W
C
Z
=
=
=
2
?
?
After Instruction  
W
C
Z
=
=
=
0
1; result is zero  
1
Example 3:  
Before Instruction  
W
C
Z
=
=
=
3
?
?
After Instruction  
W
C
=
=
0xFF  
0; result is nega-  
tive  
Z
=
0
DS30445C-page 64  
1998 Microchip Technology Inc.  
PIC16C84  
SUBWF  
Syntax:  
Subtract W from f  
SWAPF  
Syntax:  
Swap Nibbles in f  
[ label ] SWAPF f,d  
[ label ]  
SUBWF f,d  
Operands:  
0 f 127  
Operands:  
0 f 127  
d
[0,1]  
d
[0,1]  
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
Operation:  
(f) - (W) → (destination)  
Status Affected: C, DC, Z  
Status Affected:  
Encoding:  
None  
Encoding:  
00  
0010  
dfff  
ffff  
00  
1110  
dfff  
ffff  
Subtract (2’s complement method) W reg-  
ister from register 'f'. If 'd' is 0 the result is  
stored in the W register. If 'd' is 1 the  
result is stored back in register 'f'.  
Description:  
The upper and lower nibbles of register  
'f' are exchanged. If 'd' is 0 the result is  
placed in W register. If 'd' is 1 the result  
is placed in register 'f'.  
Description:  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
register 'f'  
Process  
data  
Write to  
destination  
Decode  
Read  
register 'f'  
Process  
data  
Write to  
destination  
Example 1:  
SUBWF  
REG1,1  
SWAPF REG,  
0
Example  
Before Instruction  
Before Instruction  
REG1  
REG1  
=
=
=
=
3
W
C
Z
2
?
?
=
0xA5  
After Instruction  
REG1  
W
=
=
0xA5  
0x5A  
After Instruction  
REG1  
=
1
2
W
C
Z
=
=
=
1; result is positive  
0
Example 2:  
Before Instruction  
TRIS  
Load TRIS Register  
REG1  
=
=
=
=
2
2
?
?
Syntax:  
[label] TRIS  
f
W
C
Z
Operands:  
Operation:  
5 f 7  
(W) TRIS register f;  
Status Affected: None  
After Instruction  
00  
Encoding:  
0000 0110  
0fff  
REG1  
=
0
W
C
Z
=
=
=
2
The instruction is supported for code  
compatibility with the PIC16C5X prod-  
ucts. Since TRIS registers are read-  
able and writable, the user can directly  
address them.  
Description:  
1; result is zero  
1
Example 3:  
Before Instruction  
REG1  
=
=
=
=
1
2
?
?
Words:  
Cycles:  
Example  
1
1
W
C
Z
After Instruction  
To maintain upward compatibility  
with future PIC16CXX products,  
do not use this instruction.  
REG1  
=
0xFF  
2
0; result is negative  
0
W
C
Z
=
=
=
1998 Microchip Technology Inc.  
DS30445C-page 65  
PIC16C84  
XORLW  
Exclusive OR Literal with W  
[label] XORLW k  
XORWF  
Syntax:  
Exclusive OR W with f  
[label] XORWF f,d  
0 f 127  
Syntax:  
Operands:  
Operands:  
Operation:  
Status Affected:  
Encoding:  
0 k 255  
d
[0,1]  
(W) .XOR. k → (W)  
Operation:  
(W) .XOR. (f) → (destination)  
Z
Status Affected:  
Encoding:  
Z
11  
1010 kkkk kkkk  
00  
0110  
dfff  
ffff  
The contents of the W register are  
XOR’ed with the eight bit literal 'k'.  
The result is placed in the W regis-  
ter.  
Description:  
Exclusive OR the contents of the W  
register with register 'f'. If 'd' is 0 the  
result is stored in the W register. If 'd' is  
1 the result is stored back in register 'f'.  
Description:  
Words:  
1
1
Words:  
1
1
Cycles:  
Cycles:  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Q Cycle Activity:  
Q1  
Q2  
Q3  
Q4  
Decode  
Read  
Process Write to  
literal 'k'  
data  
W
Decode  
Read  
register  
'f'  
Process  
data  
Write to  
destination  
Example:  
XORLW  
0xAF  
Before Instruction  
REG  
1
Example  
XORWF  
W
=
0xB5  
0x1A  
Before Instruction  
After Instruction  
REG  
W
=
=
0xAF  
0xB5  
W
=
After Instruction  
REG  
W
=
=
0x1A  
0xB5  
DS30445C-page 66  
1998 Microchip Technology Inc.  
PIC16C84  
10.3  
ICEPIC: Low-Cost PICmicro™  
In-Circuit Emulator  
10.0 DEVELOPMENT SUPPORT  
10.1  
Development Tools  
ICEPIC is a low-cost in-circuit emulator solution for the  
Microchip PIC12CXXX, PIC16C5X and PIC16CXXX  
families of 8-bit OTP microcontrollers.  
The PICmicrο microcontrollers are supported with a  
full range of hardware and software development tools:  
• PICMASTER /PICMASTER CE Real-Time  
In-Circuit Emulator  
ICEPIC is designed to operate on PC-compatible  
machines ranging from 286-AT through Pentium  
based machines under Windows 3.x environment.  
ICEPIC features real time, non-intrusive emulation.  
• ICEPIC Low-Cost PIC16C5X and PIC16CXXX  
In-Circuit Emulator  
• PRO MATE II Universal Programmer  
10.4  
PRO MATE II: Universal Programmer  
• PICSTART Plus Entry-Level Prototype  
Programmer  
The PRO MATE II Universal Programmer is a full-fea-  
tured programmer capable of operating in stand-alone  
mode as well as PC-hosted mode.  
• PICDEM-1 Low-Cost Demonstration Board  
• PICDEM-2 Low-Cost Demonstration Board  
• PICDEM-3 Low-Cost Demonstration Board  
• MPASM Assembler  
The PRO MATE II has programmable VDD and VPP  
supplies which allows it to verify programmed memory  
at VDD min and VDD max for maximum reliability. It has  
an LCD display for displaying error messages, keys to  
enter commands and a modular detachable socket  
assembly to support various package types. In stand-  
alone mode the PRO MATE II can read, verify or pro-  
• MPLAB SIM Software Simulator  
• MPLAB-C (C Compiler)  
• Fuzzy Logic Development System  
(fuzzyTECH MP)  
gram  
PIC12CXXX,  
PIC14C000,  
PIC16C5X,  
10.2  
PICMASTER: High Performance  
Universal In-Circuit Emulator with  
MPLAB IDE  
PIC16CXXX and PIC17CXX devices. It can also set  
configuration and code-protect bits in this mode.  
10.5  
PICSTART Plus Entry Level  
Development System  
The PICMASTER Universal In-Circuit Emulator is  
intended to provide the product development engineer  
with a complete microcontroller design tool set for all  
microcontrollers in the SX, PIC14C000, PIC16C5X,  
PIC16CXXX and PIC17CXX families. PICMASTER is  
supplied with the MPLAB Integrated Development  
Environment (IDE), which allows editing, “make” and  
download, and source debugging from a single envi-  
ronment.  
The PICSTART programmer is an easy-to-use, low-  
cost prototype programmer. It connects to the PC via  
one of the COM (RS-232) ports. MPLAB Integrated  
Development Environment software makes using the  
programmer simple and efficient. PICSTART Plus is  
not recommended for production programming.  
PICSTART Plus supports all PIC12CXXX, PIC14C000,  
PIC16C5X, PIC16CXXX and PIC17CXX devices with  
up to 40 pins. Larger pin count devices such as the  
PIC16C923 and PIC16C924 may be supported with an  
adapter socket.  
Interchangeable target probes allow the system to be  
easily reconfigured for emulation of different proces-  
sors. The universal architecture of the PICMASTER  
allows expansion to support all new Microchip micro-  
controllers.  
The PICMASTER Emulator System has been  
designed as a real-time emulation system with  
advanced features that are generally found on more  
expensive development tools. The PC compatible 386  
(and higher) machine platform and Microsoft Windows  
3.x environment were chosen to best make these fea-  
tures available to you, the end user.  
A CE compliant version of PICMASTER is available for  
European Union (EU) countries.  
1997 Microchip Technology Inc.  
DS30445A - page 67  
PIC16C84  
an RS-232 interface, push-button switches, a potenti-  
ometer for simulated analog input, a thermistor and  
separate headers for connection to an external LCD  
module and a keypad. Also provided on the PICDEM-3  
board is an LCD panel, with 4 commons and 12 seg-  
ments, that is capable of displaying time, temperature  
and day of the week. The PICDEM-3 provides an addi-  
tional RS-232 interface and Windows 3.1 software for  
showing the demultiplexed LCD signals on a PC. A sim-  
ple serial interface allows the user to construct a hard-  
ware demultiplexer for the LCD signals.  
10.6  
PICDEM-1 Low-Cost PICmicro  
Demonstration Board  
The PICDEM-1 is a simple board which demonstrates  
the capabilities of several of Microchip’s microcontrol-  
lers. The microcontrollers supported are: PIC16C5X  
(PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X,  
PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and  
PIC17C44. All necessary hardware and software is  
included to run basic demo programs. The users can  
program the sample microcontrollers provided with  
the PICDEM-1 board, on a PRO MATE II or  
PICSTART-Plus programmer, and easily test firm-  
ware. The user can also connect the PICDEM-1  
board to the PICMASTER emulator and download  
the firmware to the emulator for testing. Additional pro-  
totype area is available for the user to build some addi-  
tional hardware and connect it to the microcontroller  
socket(s). Some of the features include an RS-232  
interface, a potentiometer for simulated analog input,  
push-button switches and eight LEDs connected to  
PORTB.  
10.9  
MPLAB™ Integrated Development  
Environment Software  
The MPLAB IDE Software brings an ease of software  
development previously unseen in the 8-bit microcon-  
troller market. MPLAB is a windows based application  
which contains:  
• A full featured editor  
• Three operating modes  
- editor  
- emulator  
- simulator  
• A project manager  
• Customizable tool bar and key mapping  
• A status bar with project information  
• Extensive on-line help  
10.7  
PICDEM-2 Low-Cost PIC16CXX  
Demonstration Board  
The PICDEM-2 is a simple demonstration board that  
supports the PIC16C62, PIC16C64, PIC16C65,  
PIC16C73 and PIC16C74 microcontrollers. All the  
necessary hardware and software is included to  
run the basic demonstration programs. The user  
can program the sample microcontrollers provided  
with the PICDEM-2 board, on a PRO MATE II pro-  
grammer or PICSTART-Plus, and easily test firmware.  
The PICMASTER emulator may also be used with the  
PICDEM-2 board to test firmware. Additional prototype  
area has been provided to the user for adding addi-  
tional hardware and connecting it to the microcontroller  
socket(s). Some of the features include a RS-232 inter-  
face, push-button switches, a potentiometer for simu-  
lated analog input, a Serial EEPROM to demonstrate  
MPLAB allows you to:  
• Edit your source files (either assembly or ‘C’)  
• One touch assemble (or compile) and download  
to PICmicro tools (automatically updates all  
project information)  
• Debug using:  
- source files  
- absolute listing file  
Transfer data dynamically via DDE (soon to be  
replaced by OLE)  
• Run up to four emulators on the same PC  
The ability to use MPLAB with Microchip’s simulator  
allows a consistent platform and the ability to easily  
switch from the low cost simulator to the full featured  
emulator with minimal retraining due to development  
tools.  
2
usage of the I C bus and separate headers for connec-  
tion to an LCD module and a keypad.  
10.8  
PICDEM-3 Low-Cost PIC16CXXX  
Demonstration Board  
10.10 Assembler (MPASM)  
The PICDEM-3 is a simple demonstration board that  
supports the PIC16C923 and PIC16C924 in the PLCC  
package. It will also support future 44-pin PLCC  
microcontrollers with a LCD Module. All the neces-  
sary hardware and software is included to run the  
basic demonstration programs. The user can pro-  
gram the sample microcontrollers provided with  
the PICDEM-3 board, on a PRO MATE II program-  
mer or PICSTART Plus with an adapter socket, and  
easily test firmware. The PICMASTER emulator may  
also be used with the PICDEM-3 board to test firm-  
ware. Additional prototype area has been provided to  
the user for adding hardware and connecting it to the  
microcontroller socket(s). Some of the features include  
The MPASM Universal Macro Assembler is a PC-  
hosted symbolic assembler. It supports all microcon-  
troller series including the PIC12C5XX, PIC14000,  
PIC16C5X, PIC16CXXX, and PIC17CXX families.  
MPASM offers full featured Macro capabilities, condi-  
tional assembly, and several source and listing formats.  
It generates various object code formats to support  
Microchip's development tools as well as third party  
programmers.  
MPASM allows full symbolic debugging from  
PICMASTER, Microchip’s Universal Emulator System.  
DS30445A - page 68  
1997 Microchip Technology Inc.  
PIC16C84  
MPASM has the following features to assist in develop-  
ing software for specific use applications.  
10.14 MP-DriveWay – Application Code  
Generator  
• Provides translation of Assembler source code to  
object code for all Microchip microcontrollers.  
MP-DriveWay is an easy-to-use Windows-based Appli-  
cation Code Generator. With MP-DriveWay you can  
visually configure all the peripherals in a PICmicro  
device and, with a click of the mouse, generate all the  
initialization and many functional code modules in C  
language. The output is fully compatible with Micro-  
chip’s MPLAB-C C compiler. The code produced is  
highly modular and allows easy integration of your own  
code. MP-DriveWay is intelligent enough to maintain  
your code through subsequent code generation.  
• Macro assembly capability.  
• Produces all the files (Object, Listing, Symbol,  
and special) required for symbolic debug with  
Microchip’s emulator systems.  
• Supports Hex (default), Decimal and Octal source  
and listing formats.  
MPASM provides a rich directive language to support  
programming of the PICmicro. Directives are helpful in  
making the development of your assemble source code  
shorter and more maintainable.  
10.15 SEEVAL Evaluation and  
Programming System  
10.11 Software Simulator (MPLAB-SIM)  
The SEEVAL SEEPROM Designer’s Kit supports all  
Microchip 2-wire and 3-wire Serial EEPROMs. The kit  
includes everything necessary to read, write, erase or  
program special features of any Microchip SEEPROM  
product including Smart Serials and secure serials.  
The Total Endurance Disk is included to aid in trade-  
off analysis and reliability calculations. The total kit can  
significantly reduce time-to-market and result in an  
optimized system.  
The MPLAB-SIM Software Simulator allows code  
development in a PC host environment. It allows the  
user to simulate the PICmicro series microcontrollers  
on an instruction level. On any given instruction, the  
user may examine or modify any of the data areas or  
provide external stimulus to any of the pins. The input/  
output radix can be set by the user and the execution  
can be performed in; single step, execute until break, or  
in a trace mode.  
10.16 KEELOQ Evaluation and  
Programming Tools  
MPLAB-SIM fully supports symbolic debugging using  
MPLAB-C and MPASM. The Software Simulator offers  
the low cost flexibility to develop and debug code out-  
side of the laboratory environment making it an excel-  
lent multi-project software development tool.  
KEELOQ evaluation and programming tools support  
Microchips HCS Secure Data Products.The HCS eval-  
uation kit includes an LCD display to show changing  
codes, a decoder to decode transmissions, and a pro-  
gramming interface to program test transmitters.  
10.12 C Compiler (MPLAB-C)  
The MPLAB-C Code Development System is a  
complete ‘C’ compiler and integrated development  
environment for Microchip’s PICmicro™ family of  
microcontrollers. The compiler provides powerful inte-  
gration capabilities and ease of use not found with  
other compilers.  
For easier source level debugging, the compiler pro-  
vides symbol information that is compatible with the  
MPLAB IDE memory display.  
10.13 Fuzzy Logic Development System  
(fuzzyTECH-MP)  
fuzzyTECH-MP fuzzy logic development tool is avail-  
able in two versions - a low cost introductory version,  
MP Explorer, for designers to gain a comprehensive  
working knowledge of fuzzy logic system design; and a  
full-featured version, fuzzyTECH-MP, edition for imple-  
menting more complex systems.  
Both versions include Microchip’s fuzzyLAB demon-  
stration board for hands-on experience with fuzzy logic  
systems implementation.  
1997 Microchip Technology Inc.  
DS30445A - page 69  
PIC16C84  
TABLE 10-1: DEVELOPMENT TOOLS FROM MICROCHIP  
ufzy  
D e m o B o a r d s  
E m u l a t o r P r o d u c t s  
S o f t w a r e T o o l s  
P r o g r a m m e r s  
DS30445A - page 70  
1997 Microchip Technology Inc.  
PIC16C84  
11.0 ELECTRICAL CHARACTERISTICS FOR PIC16C84  
Absolute Maximum Ratings †  
Ambient temperature under bias.............................................................................................................-55°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on VDD with respect to VSS ............................................................................................................ -0.3 to +7.5V  
(2)  
Voltage on MCLR with respect to VSS ...................................................................................................... -0.3 to +14V  
Voltage on all other pins with respect to VSS ..................................................................................-0.6V to (VDD + 0.6V)  
(1)  
Total power dissipation .....................................................................................................................................800 mW  
Maximum current out of VSS pin ...........................................................................................................................150 mA  
Maximum current into VDD pin ..............................................................................................................................100 mA  
Input clamp current, IIK (VI < 0 or VI > VDD).....................................................................................................................± 20 mA  
Output clamp current, IOK (VO < 0 or VO >VDD)..............................................................................................................± 20 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................20 mA  
Maximum current sunk by PORTA ..........................................................................................................................80 mA  
Maximum current sourced by PORTA.....................................................................................................................50 mA  
Maximum current sunk by PORTB........................................................................................................................150 mA  
Maximum current sourced by PORTB...................................................................................................................100 mA  
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - IOH} + {(VDD-VOH) x IOH} + (VOl x IOL)  
Note 2: Voltage spikes below VSS at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus,  
a series resistor of 50-100should be used when applying a “low” level to the MCLR pin rather than pulling  
this pin directly to VSS.  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above  
those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
1997 Microchip Technology Inc.  
DS30445C-page 71  
PIC16C84  
TABLE 11-1  
CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS  
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)  
OSC  
PIC16C84-04  
PIC16C84-10  
VDD: 4.5V to 5.5V  
IDD: 1.8 mA typ. at 5.5V  
PIC16LC84-04  
VDD: 2.0V to 6.0V  
IDD: 4.5 mA max. at 5.5V  
IPD: 100 µA max. at 4V WDT dis  
Freq: 2.0 MHz max.  
RC  
XT  
HS  
VDD: 4.0V to 6.0V  
IDD: 4.5 mA max. at 5.5V  
IPD: 100 µA max. at 4.0V WDT dis IPD: 40.0 µA typ. at 4.5V WDT dis  
Freq: 4.0 MHz max.  
Freq: 4.0 MHz max.  
VDD: 4.0V to 6.0V  
IDD: 4.5 mA max. at 5.5V  
IPD: 100 µA max. at 4.0V WDT dis IPD: 40.0 µA typ. at 4.5V WDT dis  
Freq: 4.0 MHz max.  
VDD: 4.5V to 5.5V  
IDD: 1.8 mA typ. at 5.5V  
VDD: 2.0V to 6.0V  
IDD: 4.5 mA max. at 5.5V  
IPD: 100 µA max. at 4V WDT dis  
Freq: 2.0 MHz max.  
Freq: 4.0 MHz max.  
VDD: 4.5V to 5.5V  
VDD: 4.5V to 5.5V  
Do not use in HS mode  
IDD: 4.5 mA typ. at 5.5V  
IPD: 40.0 µA typ. at 4.5V WDT dis  
Freq: 4.0 MHz max.  
IDD: 10 mA max. at 5.5V typ.  
IPD: 40.0 µA typ. at 4.5V WDT dis  
Freq: 10 MHz max.  
LP  
VDD: 4.0V to 6.0V  
Do not use in LP mode  
VDD: 2.0V to 6.0V  
IDD: 60 µA typ. at 32 kHz, 2.0V  
IPD: 26 µA typ. at 2.0V WDT dis  
Freq: 200 kHz max.  
IDD: 400 µA max. at 32 kHz, 2.0V  
IPD: 100 µA max. at 4.0V WDT dis  
Freq: 200 kHz max.  
The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is  
recommended that the user select the device type that ensures the specifications required.  
DS30445C-page 72  
1997 Microchip Technology Inc.  
 
PIC16C84  
11.1  
DC CHARACTERISTICS: PIC16C84-04 (Commercial, Industrial)  
PIC16C84-10 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0°C TA +70°C (commercial)  
-40°C TA +85°C (industrial)  
DC Characteristics  
Power Supply Pins  
Parame-  
ter No.  
Sym  
Characteristic  
Min Typ† Max Units  
Conditions  
D001  
D001A  
VDD Supply Voltage  
4.0  
4.5  
6.0  
5.5  
V
V
XT, RC and LP osc configuration  
HS osc configuration  
D002  
D003  
VDR RAM Data Retention  
1.5*  
V
Device in SLEEP mode  
(1)  
Voltage  
VPOR VDD start voltage to  
ensure internal  
VSS  
V
See section on Power-on Reset for details  
Power-on Reset signal  
D004  
SVDD VDD rise rate to ensure 0.05*  
internal Power-on  
V/ms See section on Power-on Reset for details  
Reset signal  
(2)  
(4)  
IDD  
IPD  
Supply Current  
RC and XT osc configuration  
D010  
D010A  
1.8 4.5 mA  
FOSC = 4 MHz, VDD = 5.5V  
FOSC = 4 MHz, VDD = 5.5V  
(During EEPROM programming)  
HS osc configuration (PIC16C84-10)  
FOSC = 10 MHz, VDD = 5.5V  
7.3  
10  
mA  
D013  
5.0  
10  
mA  
(3)  
D020  
D021  
D021A  
Power-down Current  
40 100 µA VDD = 4.0V, WDT enabled, industrial  
38 100 µA VDD = 4.0V, WDT disabled, commercial  
38 100 µA VDD = 4.0V, WDT disabled, industrial  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD, T0CKI = VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be  
estimated by the formula IR = VDD/2Rext (mA) with Rext in kOhm.  
1997 Microchip Technology Inc.  
DS30445C-page 73  
PIC16C84  
11.2  
DC CHARACTERISTICS PIC16LC84-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
DC Characteristics  
Power Supply Pins  
Operating temperature  
0°C TA +70°C (commercial)  
-40°C TA +85°C (industrial)  
Parameter Sym  
No.  
Characteristic  
Min Typ† Max Units  
Conditions  
D001  
D002  
VDD Supply Voltage  
2.0  
6.0  
V
V
XT, RC, and LP osc configuration  
Device in SLEEP mode  
VDR RAM Data Retention  
1.5 *  
(1)  
Voltage  
D003  
D004  
VPOR VDD start voltage to  
ensure internal  
VSS  
V
See section on Power-on Reset for details  
Power-on Reset signal  
SVDD VDD rise rate to ensure 0.05*  
internal Power-on  
V/ms See section on Power-on Reset for details  
Reset signal  
(2)  
(4)  
IDD  
Supply Current  
RC and XT osc configuration  
D010  
D010A  
1
7.3  
4
10  
mA  
mA  
FOSC = 2 MHz, VDD = 5.5V  
FOSC = 2 MHz, VDD = 5.5V  
(During EEPROM programming)  
LP osc configuration  
D014  
60 400  
µA  
FOSC = 32 kHz, VDD = 2.0V,  
WDT disabled  
(3)  
D020  
D021  
D021A  
IPD  
Power-down Current  
26 100  
26 100  
26 100  
µA VDD = 2.0V, WDT enabled, industrial  
µA VDD = 2.0V, WDT disabled, commercial  
µA VDD = 2.0V, WDT disabled, industrial  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin  
loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an  
impact on the current consumption.  
The test conditions for all IDD measurements in active operation mode are:  
OSC1=external square wave, from rail to rail; all I/O pins tristated, pulled to VDD, T0CKI = VDD,  
MCLR = VDD; WDT enabled/disabled as specified.  
3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is  
measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.  
4: For RC osc configuration, current through Rext is not included. The current through the resistor can be  
estimated by the formula IR = VDD/2Rext (mA) with Rext in kOhm.  
DS30445C-page 74  
1997 Microchip Technology Inc.  
 
PIC16C84  
11.3  
DC CHARACTERISTICS: PIC16C84-04 (Commercial, Industrial)  
PIC16C84-10 (Commercial, Industrial)  
PIC16LC84-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0°C TA +70°C (commercial)  
-40°C TA +85°C (industrial)  
DC Characteristics  
All Pins Except  
Power Supply Pins  
Operating voltage VDD range as described in DC spec  
Section 11-1 and Section 11.2.  
Parameter  
Sym  
Characteristic  
Input Low Voltage  
I/O ports  
with TTL buffer  
Min Typ† Max Units  
Conditions  
No.  
VIL  
D030  
VSS  
VSS  
VSS  
Vss  
0.8  
V
V
V
V
4.5 VDD 5.5V  
(4)  
D030A  
D031  
D032  
— 0.16VDD  
entire range  
entire range  
with Schmitt Trigger buffer  
MCLR, RA4/T0CKI, OSC1  
(RC mode)  
OSC1 (XT, HS and LP modes)  
Input High Voltage  
I/O ports  
0.2VDD  
0.2VDD  
(1)  
D033  
Vss  
0.3VDD  
V
VIH  
D040  
D040A  
D041  
D042  
with TTL buffer  
0.36VDD  
0.48VDD  
0.45VDD  
0.85VDD  
VDD  
V
4.5 VDD 5.5V  
entire range  
entire range  
(4)  
with Schmitt Trigger buffer  
MCLR, RA4/T0CKI, OSC1  
(RC mode)  
VDD  
VDD  
V
V
(1)  
D043  
D070  
OSC1 (XT, HS and LP modes)  
0.7VDD  
50*  
VDD  
IPURB PORTB weak pull-up current  
250* 400*  
µA VDD = 5V, VPIN = VSS  
(2,3)  
Input Leakage Current  
D060  
IIL  
I/O ports  
±1  
µA Vss VPIN VDD,  
Pin at hi-impedance  
D061  
D063  
MCLR, RA4/T0CKI  
OSC1/CLKIN  
±5  
±5  
µA Vss VPIN VDD  
µA Vss VPIN VDD, XT, HS and LP  
osc configuration  
Output Low Voltage  
I/O ports  
OSC2/CLKOUT  
(RC osc configuration)  
D080  
D083  
VOL  
0.6  
0.6  
V
V
IOL = 8.5 mA, VDD = 4.5V  
IOL = 1.6 mA, VDD = 4.5V  
Output High Voltage  
(3)  
D090  
D093  
VOH I/O ports  
VDD - 0.7 —  
VDD - 0.7 —  
V
V
IOH = -3.0 mA, VDD = 4.5V  
IOH = -1.3 mA, VDD = 4.5V  
OSC2/CLKOUT  
(RC osc configuration)  
These parameters are characterized but not tested.  
*
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the  
PIC16C84 be driven with external clock in RC mode.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels  
represent normal operating conditions. Higher leakage current may be measured at different input voltages.  
3: Negative current is defined as coming out of the pin.  
4: The user may use better of the two specs.  
1997 Microchip Technology Inc.  
DS30445C-page 75  
PIC16C84  
11.4  
DC CHARACTERISTICS: PIC16C84-04 (Commercial, Industrial)  
PIC16C84-10 (Commercial, Industrial)  
PIC16LC84-04 (Commercial, Industrial)  
Standard Operating Conditions (unless otherwise stated)  
Operating temperature 0°C TA +70°C (commercial)  
-40°C TA +85°C (industrial)  
DC Characteristics  
All Pins Except  
Power Supply Pins  
Operating voltage VDD range as described in DC spec Section 11-1  
and Section 11.2.  
Parameter Sym  
No.  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
Capacitive Loading Specs  
on Output Pins  
D100  
D101  
COSC2 OSC2/CLKOUT pin  
15  
50  
pF In XT, HS and LP modes when  
external clock is used to drive  
OSC1.  
CIO  
All I/O pins and OSC2  
(RC mode)  
pF  
Data EEPROM Memory  
D120  
D121  
ED  
Endurance  
1M  
VMIN  
10M  
E/W 25°C at 5V  
VDRW VDD for read/write  
6.0  
V
VMIN = Minimum operating  
voltage  
(1)  
D122  
TDEW Erase/Write cycle time  
10  
20*  
ms  
Program EEPROM Memory  
Endurance  
VDD for read  
D130  
D131  
EP  
VPR  
100  
VMIN  
1000  
6.0  
E/W  
V
VMIN = Minimum operating  
voltage  
D132  
D133  
VPEW VDD for erase/write  
TPEW Erase/Write cycle time  
4.5  
10  
5.5  
V
ms  
(1)  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only  
and are not tested.  
Note 1: The user should use interrupts or poll the EEIF or WR bits to ensure the write cycle has completed.  
DS30445C-page 76  
1997 Microchip Technology Inc.  
PIC16C84  
TABLE 11-2  
TIMING PARAMETER SYMBOLOGY  
The timing parameter symbols have been created following one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase symbols (pp) and their meanings:  
pp  
T
Time  
2
to  
os,osc  
ost  
OSC1  
ck  
CLKOUT  
cycle time  
I/O port  
INT pin  
MCLR  
oscillator start-up timer  
power-up timer  
RBx pins  
cy  
io  
pwrt  
rbt  
inp  
mc  
t0  
T0CKI  
wdt  
watchdog timer  
Uppercase symbols and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (Hi-impedance)  
Low  
Valid  
L
Hi-impedance  
FIGURE 11-1: PARAMETER MEASUREMENT INFORMATION  
0.7 VDD XTAL  
0.8 VDD RC  
(High)  
2.0 VDD (High)  
0.2 VDD (Low)  
0.3 VDD XTAL  
0.15 VDD RC  
(Low)  
OSC1 Measurement Points  
I/O Port Measurement Points  
All timings are measured between high and low measurement points as indicated in the figure.  
FIGURE 11-2: LOAD CONDITIONS  
Load Condition 1  
VDD/2  
Load Condition 2  
CL  
RL  
CL  
Pin  
VSS  
Pin  
VSS  
RL =  
CL =  
464Ω  
50 pF  
15 pF  
for all pins except OSC2.  
for OSC2 output.  
1997 Microchip Technology Inc.  
DS30445C-page 77  
 
PIC16C84  
11.5  
Timing Diagrams and Specifications  
FIGURE 11-3: EXTERNAL CLOCK TIMING  
Q4  
Q3  
Q4  
Q1  
Q1  
Q2  
OSC1  
1
3
3
4
4
2
CLKOUT  
TABLE 11-3  
EXTERNAL CLOCK TIMING REQUIREMENTS  
Parameter  
No.  
Sym Characteristic  
Min  
Typ†  
Max  
Units Conditions  
(1)  
FOSC External CLKIN Frequency  
DC  
DC  
DC  
DC  
2
4
MHz XT, RC osc PIC16LC84-04  
MHz XT, RC osc PIC16C84-04  
10  
200  
MHz HS osc  
kHz LP osc  
PIC16C84-10  
PIC16LC84-04  
(1)  
Oscillator Frequency  
DC  
DC  
0.1  
0.1  
1
2
4
MHz RC osc  
MHz RC osc  
MHz XT osc  
MHz XT osc  
MHz HS osc  
kHz LP osc  
PIC16LC84-04  
PIC16C84-04  
PIC16LC84-04  
PIC16C84-04  
PIC16C84-10  
PIC16LC84-04  
2
4
10  
200  
DC  
(1)  
1
Tosc External CLKIN Period  
500  
250  
100  
5
ns  
ns  
ns  
µs  
XT, RC osc PIC16LC84-04  
XT, RC osc PIC16C84-04  
HS osc  
LP osc  
PIC16C84-10  
PIC16LC84-04  
(1)  
Oscillator Period  
500  
250  
ns  
ns  
RC osc  
RC osc  
PIC16LC84-04  
PIC16C84-04  
500  
250  
100  
5
10,000  
10,000  
1,000  
ns  
ns  
ns  
µs  
XT osc  
XT osc  
HS osc  
LP osc  
PIC16LC84-04  
PIC16C84-04  
PIC16C84-10  
PIC16LC84-04  
(1)  
2
3
TCY  
Instruction Cycle Time  
0.4  
60 *  
50 *  
2 *  
4/Fosc  
DC  
µs  
ns  
ns  
µs  
ns  
ns  
ns  
ns  
TosL, Clock in (OSC1) High or Low  
TosH Time  
XT osc  
XT osc  
LP osc  
HS osc  
XT osc  
LP osc  
HS osc  
PIC16LC84-04  
PIC16C84-04  
PIC16LC84-04  
PIC16C84-10  
PIC16C84-04  
PIC16LC84-04  
PIC16C84-10  
35 *  
4
TosR, Clock in (OSC1) Rise or Fall Time 25 *  
TosF  
50 *  
15 *  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5.0V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing code.  
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current  
consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1 pin.  
When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.  
DS30445C-page 78  
1997 Microchip Technology Inc.  
PIC16C84  
FIGURE 11-4: CLKOUT AND I/O TIMING  
Q1  
Q2  
Q3  
Q4  
OSC1  
11  
10  
22  
23  
CLKOUT  
12  
16  
13  
18  
14  
19  
I/O Pin  
(input)  
15  
17  
I/O Pin  
(output)  
new value  
old value  
20, 21  
Note: All tests must be done with specified capacitive loads (Figure 11-2) 50 pF on I/O pins and CLKOUT.  
TABLE 11-4  
CLKOUT AND I/O TIMING REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max  
Units Conditions  
10  
TosH2ckL  
OSC1to CLKOUT↓  
PIC16C84  
15  
30 *  
ns  
Note 1  
10A  
11  
PIC16LC84  
PIC16C84  
PIC16LC84  
PIC16C84  
PIC16LC84  
PIC16C84  
PIC16LC84  
15  
15  
15  
15  
15  
15  
15  
120 *  
30 *  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
TosH2ckH OSC1to CLKOUT↑  
11A  
12  
120 *  
30 *  
TckR  
TckF  
CLKOUT rise time  
CLKOUT fall time  
12A  
13  
100 *  
30 *  
13A  
14  
100 *  
0.5TCY +20 *  
TckL2ioV  
TioV2ckH  
CLKOUT to Port out valid  
15  
Port in valid before  
PIC16C84  
PIC16LC84  
0.30TCY + 30 *  
CLKOUT ↑  
0.30TCY + 80 *  
16  
17  
TckH2ioI  
TosH2ioV  
Port in hold after CLKOUT ↑  
0 *  
OSC1(Q1 cycle) to  
PIC16C84  
PIC16LC84  
125 *  
250 *  
Port out valid  
18  
19  
TosH2ioI  
TioV2osH  
TioR  
OSC1(Q2 cycle) to Port input invalid  
TBD  
(I/O in hold time)  
Port input valid to OSC1↑  
TBD  
ns  
(I/O in setup time)  
20  
20A  
21  
Port output rise time  
Port output fall time  
PIC16C84  
PIC16LC84  
PIC16C84  
PIC16LC84  
PIC16C84  
PIC16LC84  
10  
10  
10  
10  
25 *  
60 *  
25 *  
60 *  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TioF  
Tinp  
Trbp  
21A  
22  
INT pin high  
or low time  
20 *  
55 *  
20 *  
55 *  
22A  
23  
RB7:RB4 change INT PIC16C84  
high or low time PIC16LC84  
23A  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5.0V, 25˚C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x TOSC.  
1997 Microchip Technology Inc.  
DS30445C-page 79  
PIC16C84  
FIGURE 11-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Time-out  
Internal  
RESET  
Watchdog  
Timer  
RESET  
31  
34  
34  
I/O Pins  
TABLE 11-5  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER REQUIREMENTS  
Parameter  
No.  
Sym  
Characteristic  
Min  
Typ†  
Max Units  
Conditions  
30  
31  
TmcL MCLR Pulse Width (low)  
350 *  
150 *  
ns 2.0V VDD 3.0V  
ns 3.0V VDD 6.0V  
Twdt  
Tost  
Watchdog Timer Time-out Period  
(No Prescaler)  
7 *  
18  
33 *  
ms VDD = 5V  
32  
33  
Oscillation Start-up Timer Period  
1024TOSC  
72  
ms TOSC = OSC1 period  
ms VDD = 5.0V  
Tpwrt Power-up Timer Period  
I/O Hi-impedance from MCLR Low  
or reset  
These parameters are characterized but not tested.  
28 *  
132 *  
34  
TIOZ  
100 *  
ns  
*
Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
DS30445C-page 80  
1997 Microchip Technology Inc.  
PIC16C84  
FIGURE 11-6: TIMER0 CLOCK TIMINGS  
RA4/T0CKI  
40  
41  
42  
TABLE 11-6  
TIMER0 CLOCK REQUIREMENTS  
Parameter Sym Characteristic  
No.  
Min  
Typ† Max Units Conditions  
40  
Tt0H T0CKI High Pulse Width  
Tt0L T0CKI Low Pulse Width  
Tt0P T0CKI Period  
No Prescaler  
0.5TCY + 20 *  
ns  
With Prescaler  
50 *  
30 *  
ns 2.0V VDD 3.0V  
ns 3.0V VDD 6.0V  
41  
42  
No Prescaler  
0.5TCY + 20 *  
ns  
With Prescaler  
50 *  
20 *  
ns 2.0V VDD 3.0V  
ns 3.0V VDD 6.0V  
TCY + 40 *  
N
ns N = prescale value  
(2, 4, ..., 256)  
*
These parameters are characterized but not tested.  
Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not  
tested.  
1997 Microchip Technology Inc.  
DS30445C-page 81  
PIC16C84  
NOTES:  
DS30445C-page 82  
1997 Microchip Technology Inc.  
PIC16C84  
12.0 DC & AC CHARACTERISTICS GRAPHS/TABLES FOR PIC16C84  
The graphs and tables provided in this section are for design guidance and are not tested or guaranteed.  
In some graphs or tables, the data presented are outside specified operating range (i.e., outside specified VDD  
range). This is for information only and devices are guaranteed to operate properly only within the specified range.  
The data presented in this section is a statistical summary of data collected on units from different lots over a period  
of time and matrix samples. 'Typical' represents the mean of the distribution at 25°C, while 'max' or 'min' represents  
(mean + 3σ) and (mean - 3σ) respectively, where σ is standard deviation.  
FIGURE 12-1: TYPICAL RC OSCILLATOR FREQUENCY vs.TEMPERATURE  
FOSC  
Frequency Normalized To +25°C  
FOSC (25°C)  
1.10  
Rext 10 kΩ  
Cext = 100 pF  
1.08  
1.06  
1.04  
1.02  
1.00  
VDD = 5.5V  
0.98  
0.96  
0.94  
VDD = 3.5V  
0.92  
0.90  
0.88  
0
10  
20  
25  
30  
40  
50  
60  
70  
T(°C)  
TABLE 12-1  
RC OSCILLATOR FREQUENCIES *  
Rext  
Average  
Fosc @ 5V, 25°C  
Cext  
20 pF  
3.3k  
5.1k  
10k  
4.68 MHz  
3.94 MHz  
2.34 MHz  
250.16 kHz  
1.49 MHz  
1.12 MHz  
620.31 kHz  
90.25 kHz  
524.24 kHz  
415.52 kHz  
270.33 kHz  
25.37 kHz  
± 27%  
± 25%  
± 29%  
± 33%  
± 25%  
± 25%  
± 30%  
± 26%  
± 28%  
± 30%  
± 26%  
± 25%  
100k  
3.3k  
5.1k  
10k  
100 pF  
300 pF  
100k  
3.3k  
5.1k  
10k  
100k  
*Measured in PDIP Packages.The percentage variation indicated here is part to part variation due to normal process  
distribution. The variation indicated is ±3 standard deviation from average value.  
1997 Microchip Technology Inc.  
DS30445C-page 83  
PIC16C84  
FIGURE 12-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD (Cext = 20 pF)  
5.5  
5.0  
Rext = 3.3k  
4.5  
4.0  
Rext = 5k  
3.5  
3.0  
T = 25°C  
2.5  
2.0  
Rext = 10k  
1.5  
1.0  
Rext = 100k  
0.5  
0.0  
2.0  
2.5  
3.0  
3.5 4.0  
4.5  
5.0  
5.5 6.0  
VDD (Volts)  
DS30445C-page 84  
1997 Microchip Technology Inc.  
PIC16C84  
FIGURE 12-3: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD (Cext = 100 pF)  
2.2  
2.0  
1.8  
1.6  
Rext = 3.3k  
Rext = 5k  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
Rext = 10k  
T = 25°C  
Rext = 100k  
0.2  
0.0  
2.0  
2.5  
3.0  
3.5 4.0  
VDD (Volts)  
4.5  
5.0  
5.5 6.0  
FIGURE 12-4: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD (Cext = 300 pF)  
1.1  
1.0  
0.9  
0.8  
T = 25°C  
0.7  
Rext = 3.3k  
0.6  
0.5  
Rext = 5k  
0.4  
0.3  
Rext = 10k  
0.2  
0.1  
Rext = 100k  
0.0  
2.0  
2.5  
3.0  
3.5 4.0  
4.5  
5.0  
5.5 6.0  
VDD (Volts)  
1997 Microchip Technology Inc.  
DS30445C-page 85  
PIC16C84  
FIGURE 12-5: TYPICAL IPD vs. VDD WATCHDOG DISABLED (25˚C)  
60  
50  
40  
30  
20  
10  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
FIGURE 12-6: TYPICAL IPD vs. VDD WATCHDOG ENABLED (25˚C)  
60  
50  
40  
30  
20  
10  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
DS30445C-page 86  
1997 Microchip Technology Inc.  
PIC16C84  
FIGURE 12-7: MAXIMUM IPD vs. VDD WATCHDOG DISABLED  
120  
100  
80  
60  
40  
20  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
FIGURE 12-8: MAXIMUM IPD vs. VDD WATCHDOG ENABLED*  
120  
100  
80  
60  
40  
20  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
* IPD, with Watchdog Timer enabled, has two components:The leakage current which increases with higher temperature  
and the operating current of the Watchdog Timer logic which increases with lower temperature. At -40°C, the latter  
dominates explaining the apparently anomalous behavior.  
1997 Microchip Technology Inc.  
DS30445C-page 87  
PIC16C84  
FIGURE 12-9: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS vs. VDD  
2.0  
1.8  
Max (-40°C to +85°C)  
1.6  
Typ @ 25°C  
1.4  
1.2  
1.0  
Min (-40°C to +85°C)  
0.8  
0.6  
2.5  
3.0  
3.5  
4.0  
VDD (Volts)  
4.5  
5.0  
5.5  
6.0  
FIGURE 12-10: VTH (INPUT THRESHOLD VOLTAGE) OF OSC1 INPUT (IN XT, HS, AND LP MODES)  
vs. VDD  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
DS30445C-page 88  
1997 Microchip Technology Inc.  
PIC16C84  
FIGURE 12-11: VIH, VIL OF MCLR,T0CKI and OSC1 (IN RC MODE) vs. VDD  
5.0  
VIH, max (-40°C to +85°C)  
4.5  
VIH, typ (25°C)  
4.0  
VIH, min (-40°C to +85°C)  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIL, max (-40°C to +85°C)  
VIL, typ (25°C)  
VIL, min (-40°C to +85°C)  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
1997 Microchip Technology Inc.  
DS30445C-page 89  
PIC16C84  
FIGURE 12-12: TYPICAL IDD vs. FREQ (EXT CLOCK, 25˚C)  
10,000  
1,000  
100 6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
3.5V  
3.0V  
2.5V  
2.0V  
10  
10k  
100k  
1M  
10M  
100M  
External Clock Frequency (Hz)  
FIGURE 12-13: MAXIMUM IDD vs. FREQ (EXT CLOCK, -40˚ TO +85˚C)  
10,000  
1,000  
6.0V  
5.5V  
5.0V  
4.5V  
4.0V  
100  
3.5V  
3.0V  
2.5V  
2.0V  
10  
10k  
100k  
1M  
10M  
100M  
External Clock Frequency (Hz)  
DS30445C-page 90  
1997 Microchip Technology Inc.  
PIC16C84  
FIGURE 12-14: WDT TIME-OUT PERIOD vs. VDD  
70  
60  
Max. 85°C  
50  
Max. 70°C  
40  
Typ. 25°C  
30  
Min. 0°C  
20  
10  
0
Min. -40°C  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (Volts)  
FIGURE 12-15: TRANSCONDUCTANCE (gm) OF HS OSCILLATOR vs. VDD  
10000  
9000  
8000  
7000  
6000  
5000  
Max @ -40°C  
4000  
3000  
Typ @ 25°C  
Min @ 85°C  
2000  
1000  
0
2.0  
3.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (Volts)  
1997 Microchip Technology Inc.  
DS30445C-page 91  
PIC16C84  
FIGURE 12-16: TRANSCONDUCTANCE (gm) OF LP OSCILLATOR vs. VDD  
250  
225  
200  
175  
Typ @ 25°C  
Max @ -40°C  
150  
125  
100  
75  
Min @ 85°C  
50  
25  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (Volts)  
FIGURE 12-17: TRANSCONDUCTANCE (gm) OF XT OSCILLATOR vs. VDD  
2000  
1800  
1600  
Max @ -40°C  
1400  
1200  
1000  
800  
Typ @ 25°C  
Min @ 85°C  
600  
400  
200  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
VDD (Volts)  
DS30445C-page 92  
1997 Microchip Technology Inc.  
PIC16C84  
FIGURE 12-18: IOH vs. VOH, VDD = 3V  
0
-2  
-4  
-6  
Min @ 85°C  
-8  
-10  
-12  
Typ @ 25°C  
-14  
-16  
Max @ -40°C  
-18  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VOH (Volts)  
FIGURE 12-19: IOH vs. VOH, VDD = 5V  
0
-5  
-10  
-15  
-20  
Min @ 85°C  
Max @ -40°C  
-25  
Typ @ 25°C  
-30  
-35  
-40  
-45  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
VOH (Volts)  
1997 Microchip Technology Inc.  
DS30445C-page 93  
PIC16C84  
FIGURE 12-20: IOL vs. VOL, VDD = 3V  
35  
Max. -40°C  
30  
25  
20  
Typ. 25°C  
Min. +85°C  
15  
10  
5
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VOL (Volts)  
FIGURE 12-21: IOL vs. VOL, VDD = 5V  
90  
80  
70  
60  
50  
40  
30  
Max @ -40°C  
Typ @ 25°C  
Min @ +85°C  
20  
10  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VOL (Volts)  
DS30445C-page 94  
1997 Microchip Technology Inc.  
PIC16C84  
FIGURE 12-22: MAXIMUM DATA MEMORY ERASE/WRITE CYCLE TIME VS. VDD  
20  
18  
16  
14  
12  
10  
8
6
4
2
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
VDD (Volts)  
Shaded areas are beyond recommended range.  
TABLE 12-2  
INPUT CAPACITANCE*  
Typical Capacitance (pF)  
Pin Name  
18L PDIP  
18L SOIC  
PORTA  
PORTB  
5.0  
5.0  
4.3  
4.3  
MCLR  
17.0  
4.0  
4.3  
3.2  
17.0  
3.5  
3.5  
2.8  
OSC1/CLKIN  
OSC2/CLKOUT  
T0CKI  
* All capacitance values are typical at 25°C. A part to part variation of ±25% (three standard deviations) should  
be taken into account.  
1997 Microchip Technology Inc.  
DS30445C-page 95  
PIC16C84  
NOTES:  
DS30445C-page 96  
1997 Microchip Technology Inc.  
PIC16C84  
13.0 PACKAGING INFORMATION  
13.1  
K04-007 18-Lead Plastic Dual In-line (P) – 300 mil  
E
D
2
α
n
1
E1  
A1  
L
A
R
c
A2  
B1  
β
p
B
eB  
Units  
INCHES*  
NOM  
0.300  
18  
MILLIMETERS  
Dimension Limits  
PCB Row Spacing  
Number of Pins  
Pitch  
Lower Lead Width  
Upper Lead Width  
Shoulder Radius  
Lead Thickness  
MIN  
MAX  
MIN  
NOM  
7.62  
18  
MAX  
n
p
B
B1  
R
c
0.100  
0.018  
0.060  
0.005  
0.010  
0.155  
0.095  
0.020  
0.130  
0.895  
0.255  
0.250  
0.349  
10  
2.54  
0.013  
0.023  
0.33  
1.40  
0.46  
1.52  
0.13  
0.25  
3.94  
2.41  
0.51  
3.30  
22.73  
6.48  
6.35  
8.85  
10  
0.58  
0.055  
0.000  
0.005  
0.110  
0.075  
0.000  
0.125  
0.890  
0.245  
0.230  
0.310  
5
0.065  
0.010  
0.015  
0.155  
0.115  
0.020  
0.135  
0.900  
0.265  
0.270  
0.387  
15  
1.65  
0.25  
0.38  
3.94  
2.92  
0.51  
3.43  
22.86  
6.73  
6.86  
9.83  
15  
0.00  
0.13  
2.79  
1.91  
0.00  
3.18  
22.61  
6.22  
5.84  
7.87  
5
Top to Seating Plane  
Top of Lead to Seating Plane A1  
A
Base to Seating Plane  
Tip to Seating Plane  
Package Length  
Molded Package Width  
Radius to Radius Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
A2  
L
D
E
E1  
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter.  
Dimension “B1” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed  
0.003” (0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B1.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall  
not exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
1997 Microchip Technology Inc.  
DS30445C-page 97  
PIC16C84  
13.2  
K04-051 18-Lead Plastic Small Outline (SO) – Wide, 300 mil  
E1  
E
p
D
2
1
B
n
X
α
45°  
L
R2  
c
A
A1  
R1  
φ
β
L1  
A2  
Units  
Dimension Limits  
Pitch  
INCHES*  
NOM  
0.050  
18  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
1.27  
18  
MAX  
p
n
A
A1  
A2  
Number of Pins  
Overall Pack. Height  
Shoulder Height  
Standoff  
Molded Package Length  
Molded Package Width  
Outside Dimension  
Chamfer Distance  
Shoulder Radius  
Gull Wing Radius  
Foot Length  
0.093  
0.099  
0.058  
0.008  
0.456  
0.296  
0.407  
0.020  
0.005  
0.005  
0.016  
4
0.104  
2.36  
1.22  
2.50  
1.47  
0.19  
11.58  
7.51  
10.33  
0.50  
0.13  
0.13  
0.41  
4
2.64  
1.73  
0.28  
11.73  
7.59  
10.64  
0.74  
0.25  
0.25  
0.53  
8
0.048  
0.004  
0.450  
0.292  
0.394  
0.010  
0.005  
0.005  
0.011  
0
0.068  
0.011  
0.462  
0.299  
0.419  
0.029  
0.010  
0.010  
0.021  
8
0.10  
11.43  
7.42  
10.01  
0.25  
0.13  
0.13  
0.28  
0
D
E
E1  
X
R1  
R2  
L
Foot Angle  
φ
Radius Centerline  
Lead Thickness  
Lower Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*
L1  
c
B
α
β
0.010  
0.009  
0.014  
0
0.015  
0.011  
0.017  
12  
0.020  
0.012  
0.019  
15  
0.25  
0.23  
0.36  
0
0.38  
0.27  
0.42  
12  
0.51  
0.30  
0.48  
15  
0
12  
15  
0
12  
15  
Controlling Parameter.  
Dimension “B” does not include dam-bar protrusions. Dam-bar protrusions shall not exceed 0.003”  
(0.076 mm) per side or 0.006” (0.152 mm) more than dimension “B.”  
Dimensions “D” and “E” do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed 0.010” (0.254 mm) per side or 0.020” (0.508 mm) more than dimensions “D” or “E.”  
DS30445C-page 98  
1997 Microchip Technology Inc.  
PIC16C84  
APPENDIX A: FEATURE  
IMPROVEMENTS -  
FROM PIC16C5X TO  
PIC16C84  
The following is the list of feature improvements over  
the PIC16C5X microcontroller family:  
APPENDIX B: CODE COMPATIBILITY  
- FROM PIC16C5X TO  
PIC16C84  
To convert code written for PIC16C5X to PIC16C84,  
the user should take the following steps:  
1. Remove any program memory page select  
operations (PA2, PA1, PA0 bits) for CALL, GOTO.  
1. Instruction word length is increased to 14 bits.  
This allows larger page sizes both in program  
memory (2K now as opposed to 512 before) and  
the register file (128 bytes now versus 32 bytes  
before).  
2. Revisit any computed jump operations (write to  
PC or add to PC, etc.) to make sure page bits  
are set properly under the new scheme.  
3. Eliminate any data memory page switching.  
Redefine data variables for reallocation.  
2. A PC latch register (PCLATH) is added to handle  
program memory paging. PA2, PA1 and PA0 bits  
are removed from the status register and placed  
in the option register.  
4. Verify all writes to STATUS, OPTION, and FSR  
registers since these have changed.  
5. Change reset vector to 0000h.  
3. Data memory paging is redefined slightly. The  
STATUS register is modified.  
4. Four new instructions have been added:  
RETURN, RETFIE, ADDLW, and SUBLW. Two  
instructions, TRIS and OPTION, are being  
phased out although they are kept for  
compatibility with PIC16C5X.  
5. OPTION and TRIS registers are made  
addressable.  
6. Interrupt capability is added. Interrupt vector is  
at 0004h.  
7. Stack size is increased to 8 deep.  
8. Reset vector is changed to 0000h.  
9. Reset of all registers is revisited. Five different  
reset (and wake-up) types are recognized.  
Registers are reset differently.  
10. Wake up from SLEEP through interrupt is  
added.  
11. Two separate timers, the Oscillator Start-up  
Timer (OST) and Power-up Timer (PWRT), are  
included for more reliable power-up. These  
timers are invoked selectively to avoid  
unnecessary delays on power-up and wake-up.  
12. PORTB has weak pull-ups and interrupt on  
change features.  
13. T0CKI pin is also a port pin (RA4/T0CKI).  
14. FSR is a full 8-bit register.  
15. "In system programming" is made possible. The  
user can program PIC16CXX devices using only  
five pins: VDD, VSS, VPP, RB6 (clock) and RB7  
(data in/out).  
1997 Microchip Technology Inc.  
DS30445C-page 99  
PIC16C84  
APPENDIX C: WHAT’S NEW IN THIS  
DATA SHEET  
APPENDIX D: WHAT’S CHANGED IN  
THIS DATA SHEET  
No new information has been added to this data sheet.  
Here’s what’s changed in this data sheet:  
For information on upgrade devices from the  
PIC16C84, please refer to the PIC16F8X data sheet.  
1. Some sections have been rearranged for clarity  
and consistency.  
2. Errata information has been included.  
DS30445C-page 100  
1997 Microchip Technology Inc.  
PIC16C84  
APPENDIX E: CONVERSION CONSIDERATIONS - PIC16C84 TO PIC16F83/F84 AND  
PIC16CR83/CR84  
Considerations for converting from the PIC16C84 to  
the PIC16F84 are listed in the table below. These con-  
siderations apply to converting from the PIC16C84 to  
the PIC16F83 (same as PIC16F84 except for program  
and data RAM memory sizes) and the PIC16CR84 and  
PIC16CR83 (ROM versions of Flash devices). Devel-  
opment Systems support is available for all of the  
PIC16X8X devices.  
Difference  
PIC16C84  
PIC16F84  
The polarity of the PWRTE bit has  
been reversed. Ensure that the pro-  
grammer has this bit correctly set  
before programming.  
PWRTE  
PWRTE  
The PIC16F84 (and PIC16CR84)  
have larger RAM sizes. Ensure that  
this does not cause an issue with  
your program.  
RAM = 36 bytes  
RAM = 68 bytes  
The MCLR pin now has an on-chip  
filter. The input signal on the MCLR  
pin will require a longer low pulse to  
generate an interrupt.  
MCLR pulse width (low)  
= 350ns; 2.0V VDD 3.0V  
= 150ns; 3.0V VDD 6.0V  
MCLR pulse width (low)  
= 1000ns; 2.0V VDD 6.0V  
Some electrical specifications have  
been improved (see IPD example).  
Compare the electrical specifica-  
tions of the two devices to ensure  
that this will not cause a compatibil-  
ity issue.  
IPD (typ @ 2V) = 26µA  
IPD (typ @ 2V) < 1µA  
IPD (max @ 4V, WDT disabled)  
=100µA (PIC16C84)  
=100µA (PIC16LC84)  
IPD (max @ 4V, WDT disabled)  
=14µA (PIC16F84)  
=7µA (PIC16LF84)  
PORTA and crystal oscillator values  
less than 500kHz  
For crystal oscillator configurations  
operating below 500kHz, the device  
may generate a spurious internal Q-  
clock when PORTA<0> switches  
state.  
N/A  
RB0/INT pin  
TTL  
TTL/ST*  
(* This buffer is a Schmitt Trigger  
input when configured as the exter-  
nal interrupt.)  
EEADR<7:6> and IDD  
It is recommended that the  
N/A  
EEADR<7:6> bits be cleared.  
When either of these bits is set, the  
maximum IDD for the device is  
higher than when both are cleared.  
Code Protect  
1 CP bit  
9 CP bits  
Recommended value of REXT for  
RC oscillator circuits  
REXT = 3k- 100kΩ  
REXT = 5k- 100kΩ  
GIE bit unintentional enable  
If an interrupt occurs while the Glo-  
bal Interrupt Enable (GIE) bit is  
being cleared, the GIE bit may unin-  
tentionally be re-enabled by the  
user’s Interrupt Service Routine (the  
RETFIEinstruction).  
N/A  
1997 Microchip Technology Inc.  
DS30445C-page 101  
PIC16C84  
NOTES:  
DS30445C-page 102  
1997 Microchip Technology Inc.  
PIC16C84  
CLRWDT ................................................................... 56  
COMF ........................................................................ 57  
DECF ......................................................................... 57  
DECFSZ .................................................................... 57  
GOTO ........................................................................ 58  
INCF .......................................................................... 58  
INCFSZ ...................................................................... 59  
IORLW ....................................................................... 59  
IORWF ....................................................................... 60  
MOVF ........................................................................ 60  
MOVLW ..................................................................... 60  
MOVWF ..................................................................... 60  
NOP ........................................................................... 61  
OPTION ..................................................................... 61  
RETFIE ...................................................................... 61  
RETLW ...................................................................... 62  
RETURN .................................................................... 62  
RLF ............................................................................ 63  
RRF ........................................................................... 63  
SLEEP ....................................................................... 64  
SUBLW ...................................................................... 64  
SUBWF ...................................................................... 65  
SWAPF ...................................................................... 65  
TRIS .......................................................................... 65  
XORLW ..................................................................... 66  
XORWF ..................................................................... 66  
Section ....................................................................... 51  
Summary Table ......................................................... 52  
INT Interrupt ...................................................................... 46  
INTCON ........................................................... 16, 39, 44, 46  
INTEDG ............................................................................. 46  
Interrupts  
INDEX  
A
Absolute Maximum Ratings ............................................... 71  
ALU ...................................................................................... 7  
Architectural Overview ......................................................... 7  
Assembler  
MPASM Assembler .................................................... 68  
B
Block Diagram  
Interrupt Logic ............................................................ 45  
On-Chip Reset Circuit ................................................ 38  
RA3:RA0 and RA5 Port Pins ..................................... 19  
RA4 Pin ...................................................................... 19  
RB3:RB0 Port Pins .................................................... 21  
RB7:RB4 Port Pins .................................................... 21  
TMR0/WDT Prescaler ................................................ 28  
Watchdog Timer ......................................................... 47  
Brown-out Protection Circuit .............................................. 43  
C
Carry .................................................................................... 7  
CLKIN .................................................................................. 9  
CLKOUT .............................................................................. 9  
Code Protection ........................................................... 35, 49  
Compatibility, upward ........................................................... 3  
Computed GOTO ............................................................... 17  
Configuration Bits ............................................................... 35  
D
DC Characteristics ........................................... 73, 74, 75, 76  
Development Support ........................................................ 67  
Development Tools ............................................................ 67  
Digit Carry ............................................................................ 7  
Flag ............................................................................ 44  
Interrupt on Change Feature ..................................... 21  
Interrupts ............................................................. 35, 44  
E
K
External Power-on Reset Circuit ........................................ 40  
KeeLoq Evaluation and Programming Tools .................. 69  
F
L
Family of Devices  
Loading of PC .................................................................... 17  
PIC16C8X .................................................................... 4  
FSR .............................................................................. 18, 39  
Fuzzy Logic Dev. System (fuzzyTECH -MP) ................... 69  
M
MCLR ...................................................................... 9, 38, 39  
Memory Organization  
G
Data Memory ............................................................. 12  
Memory Organization ................................................ 11  
Program Memory ....................................................... 11  
MP-DriveWay™ - Application Code Generator ................. 69  
MPLAB C ........................................................................... 69  
MPLAB Integrated Development Environment Software ... 68  
GIE ..................................................................................... 44  
I
I/O Ports ............................................................................. 19  
I/O Programming Considerations ....................................... 23  
ICEPIC Low-Cost PIC16CXXX In-Circuit Emulator ........... 67  
In-Circuit Serial Programming ...................................... 35, 49  
INDF ................................................................................... 39  
Instruction Format .............................................................. 51  
Instruction Set  
O
OPCODE ........................................................................... 51  
OPTION_REG ....................................................... 15, 39, 46  
OSC selection .................................................................... 35  
OSC1 ....................................................................................9  
OSC2 ....................................................................................9  
Oscillator  
HS ........................................................................ 36, 43  
LP ........................................................................ 36, 43  
RC ....................................................................... 36, 37  
XT ........................................................................ 36, 43  
Oscillator Configurations ................................................... 36  
ADDLW ...................................................................... 53  
ADDWF ...................................................................... 53  
ANDLW ...................................................................... 53  
ANDWF ...................................................................... 53  
BCF ............................................................................ 54  
BSF ............................................................................ 54  
BTFSC ....................................................................... 54  
BTFSS ....................................................................... 55  
CALL .......................................................................... 55  
CLRF .......................................................................... 56  
CLRW ........................................................................ 56  
P
Paging, Program Memory .................................................. 17  
1997 Microchip Technology Inc.  
DS30445C-page 103  
PIC16C84  
PCL ..............................................................................17, 39  
PCLATH .......................................................................17, 39  
PD ..........................................................................14, 38, 43  
PICDEM-1 Low-Cost PICmicro Demo Board .....................68  
PICDEM-2 Low-Cost PIC16CXX Demo Board ..................68  
PICDEM-3 Low-Cost PIC16CXXX Demo Board ................68  
PICMASTER In-Circuit Emulator .....................................67  
PICSTART Plus Entry Level Development System ........67  
Pinout Descriptions ..............................................................9  
POR ...................................................................................40  
Oscillator Start-up Timer (OST) ...........................35, 40  
Power-on Reset (POR) ..................................35, 39, 40  
Power-up Timer (PWRT) .....................................35, 40  
Time-out Sequence ....................................................43  
Time-out Sequence on Power-up ..............................41  
TO ..................................................................14, 38, 43  
Port RB Interrupt ................................................................46  
PORTA .....................................................................9, 19, 39  
PORTB .....................................................................9, 21, 39  
Power-down Mode (SLEEP) ..............................................48  
Prescaler ............................................................................27  
PRO MATE II Universal Programmer ..............................67  
Product Identification System ...........................................107  
Z
Zero bit ................................................................................. 7  
R
RBIF bit ........................................................................21, 46  
RC Oscillator ......................................................................43  
Read-Modify-Write .............................................................23  
Register File .......................................................................12  
Reset ............................................................................35, 38  
Reset on Brown-Out ...........................................................43  
S
Saving W Register and STATUS in RAM ..........................46  
SEEVAL Evaluation and Programming System ..............69  
SLEEP ....................................................................35, 38, 48  
Software Simulator (MPLAB-SIM) ......................................69  
Special Features of the CPU ..............................................35  
Special Function Registers ................................................12  
Stack ..................................................................................17  
Overflows ...................................................................17  
Underflows .................................................................17  
STATUS ...................................................................7, 14, 39  
T
time-out ..............................................................................39  
Timer0  
Switching Prescaler Assignment ................................29  
T0IF ............................................................................46  
Timer0 Module ...........................................................25  
TMR0 Interrupt ...........................................................46  
TMR0 with External Clock ..........................................27  
Timing Diagrams  
Time-out Sequence ....................................................41  
Timing Diagrams and Specifications ..................................78  
TRISA .................................................................................19  
TRISB ...........................................................................21, 39  
W
W ........................................................................................39  
Wake-up from SLEEP ..................................................39, 48  
Watchdog Timer (WDT) ...................................35, 38, 39, 47  
WDT ...................................................................................39  
Period .........................................................................47  
Programming Considerations ....................................47  
Time-out .....................................................................39  
DS30445C-page 104  
1997 Microchip Technology Inc.  
PIC16C84  
The procedure to connect will vary slightly from country  
to country. Please check with your local CompuServe  
agent for details if you have a problem. CompuServe  
service allow multiple users various baud rates  
depending on the local point of access.  
ON-LINE SUPPORT  
Microchip provides two methods of on-line support.  
These are the Microchip BBS and the Microchip World  
Wide Web (WWW) site.  
Use Microchip's Bulletin Board Service (BBS) to get  
current information and help about Microchip products.  
Microchip provides the BBS communication channel  
for you to use in extending your technical staff with  
microcontroller and memory experts.  
The following connect procedure applies in most loca-  
tions.  
1. Set your modem to 8-bit, No parity, and One stop  
(8N1). This is not the normal CompuServe setting  
which is 7E1.  
To provide you with the most responsive service possible,  
the Microchip systems team monitors the BBS, posts  
the latest component data and software tool updates,  
provides technical help and embedded systems  
insights, and discusses how Microchip products pro-  
vide project solutions.  
2. Dial your local CompuServe access number.  
3. Depress the <Enter> key and a garbage string will  
appear because CompuServe is expecting a 7E1  
setting.  
4. Type +, depress the <Enter> key and “Host Name:”  
will appear.  
The web site, like the BBS, is used by Microchip as a  
means to make files and information easily available to  
customers.To view the site, the user must have access  
to the Internet and a web browser, such as Netscape or  
Microsoft Explorer. Files are also available for FTP  
download from our FTP site.  
5. Type MCHIPBBS, depress the <Enter> key and you  
will be connected to the Microchip BBS.  
In the United States, to find the CompuServe phone  
number closest to you, set your modem to 7E1 and dial  
(800) 848-4480 for 300-2400 baud or (800) 331-7166  
for 9600-14400 baud connection. After the system  
responds with “Host Name:”, type NETWORK, depress  
the <Enter> key and follow CompuServe's directions.  
ConnectingtotheMicrochipInternetWebSite  
The Microchip web site is available by using your  
favorite Internet browser to attach to:  
www.microchip.com  
For voice information (or calling from overseas), you  
may call (614) 723-1550 for your local CompuServe  
number.  
The file transfer site is available by using an FTP ser-  
vice to connect to:  
Microchip regularly uses the Microchip BBS to distribute  
technical information, application notes, source code,  
errata sheets, bug reports, and interim patches for  
Microchip systems software products. For each SIG, a  
moderator monitors, scans, and approves or disap-  
proves files submitted to the SIG. No executable files  
are accepted from the user community in general to  
limit the spread of computer viruses.  
ftp.mchip.com/biz/mchip  
The web site and file transfer site provide a variety of  
services. Users may download files for the latest  
Development Tools, Data Sheets, Application Notes,  
User's Guides, Articles and Sample Programs. A vari-  
ety of Microchip specific business information is also  
available, including listings of Microchip sales offices,  
distributors and factory representatives. Other data  
available for consideration is:  
Systems Information and Upgrade Hot Line  
The Systems Information and Upgrade Line provides  
system users a listing of the latest versions of all of  
Microchip's development systems software products.  
Plus, this line provides information on how customers  
can receive any currently available upgrade kits.The  
Hot Line Numbers are:  
• Latest Microchip Press Releases  
Technical Support Section with Frequently Asked  
Questions  
• Design Tips  
• Device Errata  
• Job Postings  
• Microchip Consultant Program Member Listing  
• Links to other useful web sites related to  
Microchip Products  
1-800-755-2345 for U.S. and most of Canada, and  
1-602-786-7302 for the rest of the world.  
Connecting to the Microchip BBS  
Trademarks: The Microchip name, logo, PIC, PICSTART,  
PICMASTER, PRO MATE and are registered trademarks  
of Microchip Technology Incorporated in the U.S.A. and  
other countries. PICmicro, FlexROM, MPLAB, and fuzzy-  
LAB, are trademarks and SQTP is a service mark of  
Microchip in the U.S.A.  
Connect worldwide to the Microchip BBS using either  
the Internet or the CompuServe communications net-  
work.  
Internet:  
You can telnet or ftp to the Microchip BBS at the  
address:  
fuzzyTECH is a registered trademark of Inform Software  
Corporation. IBM, IBM PC-AT are registered trademarks of  
International Business Machines Corp. Pentium is a trade-  
mark of Intel Corporation. Windows is a trademark and  
MS-DOS, Microsoft Windows are registered trademarks  
of Microsoft Corporation. CompuServe is a registered  
trademark of CompuServe Incorporated.  
mchipbbs.microchip.com  
CompuServe Communications Network:  
When using the BBS via the Compuserve Network,  
in most cases, a local call is your only expense. The  
Microchip BBS connection does not use CompuServe  
membership services, therefore you do not need  
CompuServe membership to join Microchip's BBS.  
There is no charge for connecting to the Microchip BBS.  
All other trademarks mentioned herein are the property of  
their respective companies.  
1997 Microchip Technology Inc.  
Preliminary  
DS30445C-page 105  
PIC16C84  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product.  
If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can  
better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.  
Please list the following information, and use this outline to provide us with your comments about this Data Sheet.  
To:  
Technical Publications Manager  
Reader Response  
Total Pages Sent  
RE:  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Application (optional):  
Would you like a reply?  
Y
N
Device:  
PIC16C84  
Literature Number:  
DS30445C  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this data sheet easy to follow? If not, why?  
4. What additions to the data sheet do you think would enhance the structure and subject?  
5. What deletions from the data sheet could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
8. How would you improve our software, systems, and silicon products?  
DS30445C-page 106  
Preliminary  
1997 Microchip Technology Inc.  
PIC16C84  
PIC16C84 PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
X
/XX  
XXX  
PART NO.  
Device  
-XX  
Examples:  
Frequency Temperature Package  
Range Range  
Pattern  
a) PIC16C84 -04/P 301 = Commercial  
temp., PDIP package, 4MHz, normalVDD  
limitis, QTP pattern #301.  
(2)  
(3)  
Device  
PIC16C84 , PIC16C84T  
PIC16LC84 , PIC16LC84T  
b) PIC16LC84 - 04I/SO = Industrial temp.,  
SOIC package, 200kHz, Extended VDD  
limits.  
(2)  
(3)  
Frequency  
Range  
04  
10  
= 4 MHz  
= 10 MHz  
(1)  
Temperature  
Range  
b
I
=
0°C to +70°C (Commercial)  
= -40°C to +85°C (Industrial)  
Note 1: b = blank  
2:  
C
= Standard VDD range  
Package  
P
SO  
= PDIP  
LC = Extended VDD range  
= SOIC (Gull Wing, 300 mil body)  
3: T = in tape and reel - SOIC, SSOP  
packages only.  
Pattern  
3-digit Pattern Code for QTP, ROM (blank otherwise)  
SALES AND SUPPORT  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office (see last page)  
2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277  
3. The Microchip’s Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
Development Tools  
For the latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.  
The latest version of Development Tools software can be downloaded from either our Bulletin Board or Worldwide Web Site. (Infor-  
mation on how to connect to our BBS or WWW site can be found in the On-Line Support section of this data sheet.)  
1997 Microchip Technology Inc.  
DS30445C-page 107  
PIC16C84  
DS30445C-page 108  
1997 Microchip Technology Inc.  
®
Note the following details of the code protection feature on PICmicro MCUs.  
The PICmicro family meets the specifications contained in the Microchip Data Sheet.  
Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,  
when used in the intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-  
edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.  
The person doing so may be engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as unbreakable.  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of  
our product.  
If you have any further questions about this matter, please contact the local sales office nearest to you.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical com-  
ponents in life support systems is not authorized except with  
express written approval by Microchip. No licenses are con-  
veyed, implicitly or otherwise, under any intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, FilterLab,  
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,  
PICSTART, PRO MATE, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip Tech-  
nology Incorporated in the U.S.A. and other countries.  
dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,  
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,  
MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode  
and Total Endurance are trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2002, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999. The  
Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs and microperipheral  
products. In addition, Microchips quality  
system for the design and manufacture of  
development systems is ISO 9001 certified.  
2002 Microchip Technology Inc.  
M
WORLDWIDE SALES AND SERVICE  
Japan  
AMERICAS  
ASIA/PACIFIC  
Microchip Technology Japan K.K.  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Korea  
Rocky Mountain  
China - Beijing  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-7456  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
Bei Hai Wan Tai Bldg.  
Atlanta  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
Singapore  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
#07-02 Prime Centre  
Singapore, 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Taiwan  
Microchip Technology Taiwan  
11F-3, No. 207  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 770-640-0034 Fax: 770-640-0307  
China - Chengdu  
Boston  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Chengdu 610016, China  
Tel: 86-28-6766200 Fax: 86-28-6766599  
China - Fuzhou  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Fuzhou 350001, China  
Tel: 86-591-7503506 Fax: 86-591-7503521  
China - Shanghai  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
China - Shenzhen  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
Rm. 1315, 13/F, Shenzhen Kerry Centre,  
Renminnan Lu  
Shenzhen 518001, China  
Tel: 86-755-2350361 Fax: 86-755-2366086  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Chicago  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423 Fax: 972-818-2924  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
EUROPE  
Denmark  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Detroit  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
Los Angeles  
Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
Germany  
New York  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Microchip Technology GmbH  
Gustav-Heinemann Ring 125  
D-81739 Munich, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Tel: 631-273-5305 Fax: 631-273-5335  
San Jose  
Hong Kong  
Italy  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200 Fax: 852-2401-3431  
Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Tel: 408-436-7950 Fax: 408-436-7955  
Toronto  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
India  
Microchip Technology Inc.  
India Liaison Office  
United Kingdom  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
01/18/02  
2002 Microchip Technology Inc.  

相关型号:

PIC16C84-04I/SO

8-BIT, EEPROM, 4 MHz, RISC MICROCONTROLLER, PDSO18, 0.300 INCH, PLASTIC, SOIC-18
MICROCHIP

PIC16C84-10/P

8-BIT, EEPROM, 10 MHz, RISC MICROCONTROLLER, PDIP18, 0.300 INCH, PLASTIC, DIP-18
MICROCHIP

PIC16C84-10/SO

8-BIT, EEPROM, 10 MHz, RISC MICROCONTROLLER, PDSO18, 0.300 INCH, PLASTIC, SOIC-18
MICROCHIP

PIC16C84-10E/P

8-BIT, EEPROM, 2.5 MHz, MICROCONTROLLER, PDIP18, 0.300 INCH, PLASTIC, DIP-18
MICROCHIP

PIC16C84-10E/SO

8-BIT, EEPROM, 2.5 MHz, MICROCONTROLLER, PDSO18, 0.300 INCH, PLASTIC, SOIC-18
MICROCHIP

PIC16C84-10I/P

8-BIT, EEPROM, 10 MHz, RISC MICROCONTROLLER, PDIP18, 0.300 INCH, PLASTIC, DIP-18
MICROCHIP

PIC16C84-10I/PXXX

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,DIP,18PIN,PLASTIC
MICROCHIP

PIC16C84-10I/SO

8-Bit Microcontroller
ETC

PIC16C84-10I/SOXXX

IC,MICROCONTROLLER,8-BIT,PIC CPU,CMOS,SOP,18PIN,PLASTIC
MICROCHIP

PIC16C84-10S/SO

8-BIT, EEPROM, 2.5 MHz, MICROCONTROLLER, PDSO18, 0.300 INCH, PLASTIC, SOIC-18
MICROCHIP

PIC16C84-10T/SO

8-BIT, EEPROM, 2.5 MHz, MICROCONTROLLER, PDSO18, 0.300 INCH, PLASTIC, SOIC-18
MICROCHIP

PIC16C84A

8 BIT CMOS EEPROM MICROCONTROLLERS
MICROCHIP