MIC2025-1YM-TR [MICROCHIP]

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8;
MIC2025-1YM-TR
型号: MIC2025-1YM-TR
厂家: MICROCHIP    MICROCHIP
描述:

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8

光电二极管
文件: 总14页 (文件大小:926K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC2025/2075  
Single-Channel Power Distribution Switch MM8®  
General Description  
Features  
TheMIC2025andMIC2075arehigh-sideMOSFETswitches  
optimized for general-purpose power distribution requiring  
circuit protection.  
• 140mΩ maximum on-resistance  
• 2.7V to 5.5V operating range  
• 500mA minimum continuous output current  
• Short-circuit protection with thermal shutdown  
• Fault status flag with 3ms filter eliminates false asser-  
tions  
The MIC2025/75 are internally current limited and have  
thermal shutdown that protects the device and load. The  
MIC2075 offers “smart” thermal shutdown that reduces cur-  
rent consumption in fault modes. When a thermal shutdown  
fault occurs, the output is latched off until the faulty load is  
removed. Removing the load or toggling the enable input will  
reset the device output.  
• Undervoltage lockout  
• Reverse current flow blocking (no “body diode”)  
• Circuit breaker mode (MIC2075) reduces power  
consumption  
• Logic-compatible input  
• Soft-start circuit  
• Low quiescent current  
• Pin-compatible with MIC2525  
• UL File # E179633  
Both devices employ soft-start circuitry that minimizes inrush  
current in applications where highly capacitive loads are em-  
ployed. A fault status output flag is provided that is asserted  
during overcurrent and thermal shutdown conditions.  
The MIC2025/75 is available in the MM8® 8-lead MSOP  
and 8-lead SOP.  
Applications  
• USB peripherals  
• General purpose power switching  
• ACPI power distribution  
• Notebook PCs  
• PDAs  
• PC card hot swap  
Typical Application  
VCC  
2.7V to 5.5V  
10k  
Logic Controller  
MIC2025/75  
VIN  
ON/OFF  
EN  
OUT  
IN  
Load  
OVERCURRENT  
GND  
FLG  
GND  
NC  
1µF  
OUT  
NC  
0.1µF  
UL Recognized Component  
MM8 is a registered trademark of Micrel, Inc.  
Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
June 2010  
1
MIC2025/2075  
MIC2025/2075  
Micrel, Inc.  
Ordering Information  
Part Number  
Enable  
Temperature Range  
Package  
Standard  
Pb-Free  
MIC2025-1BM  
MIC2025-2BM  
MIC2025-1YM  
MIC2025-2YM  
Active High  
Active Low  
Active High  
Active Low  
Active High  
Active Low  
Active High  
Active Low  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
8-Lead SOIC  
8-Lead SOIC  
8-Pin MSOP  
8-Pin MSOP  
8-Lead SOIC  
8-Lead SOIC  
8-Pin MSOP  
8-Pin MSOP  
MIC2025-1BMM MIC2025-1YMM  
MIC2025-2BMM MIC2025-2YMM  
MIC2075-1BM  
MIC2075-2BM  
MIC2075-1YM  
MIC2075-2YM  
MIC2075-1BMM MIC2075-1YMM  
MIC2075-2BMM MIC2075-2YMM  
Pin Configuration  
MIC2025/75  
EN  
FLG  
GND  
NC  
OUT  
IN  
1
2
3
4
8
7
6
5
OUT  
NC  
8-Lead SOIC (BM)  
8-Lead MSOP (BMM)  
Pin Description  
Pin Number  
Pin Name  
EN  
Pin Function  
Switch Enable (Input): Active-high (-1) or active-low (-2).  
1
2
FLG  
Fault Flag (Output): Active-low, open-drain output. Indicates overcurrent or  
thermal shutdown conditions. Overcurrent condition must exceed tD in order  
to assert FLG.  
3
4
GND  
NC  
Ground  
not internally connected  
not internally connected  
Supply (Output): Pins must be connected together.  
Supply Voltage (Input).  
5
NC  
6, 8  
7
OUT  
IN  
MIC2025/2075  
2
June 2010  
MIC2025/2075  
Micrel, Inc.  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 2)  
Supply Voltage (V )..........................................–0.3V to 6V  
Supply Voltage (V ) ................................... +2.7V to +5.5V  
IN  
IN  
Fault Flag Voltage (V  
Fault Flag Current (I  
)..............................................+6V  
Ambient Temperature (T ).......................... –40°C to +85°C  
FLG  
A
)............................................. 25mA  
)...................................................+6V  
Junction Temperature (T )........................ Internally Limited  
FLG  
J
Output Voltage (V  
Output Current (I  
Thermal Resistance  
OUT  
SOP (θ ) ..........................................................160°C/W  
) ............................... Internally Limited  
JA  
OUT  
MSOP(θ ) ........................................................206°C/W  
JA  
Enable Input (I )..................................... –0.3V to V +3V  
EN  
IN  
Storage Temperature (T ) ........................ –65°C to +150°C  
S
ESD Rating, Note 3  
Electrical Characteristics  
VIN = +5V; TA = 25°C, bold values indicate –40°C ≤ TA ≤ +85°C; unless noted  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
IDD  
Supply Current  
MIC20x5-1, VEN ≤ 0.8V, (switch off),  
OUT = open  
0.75  
5
µA  
MIC20x5-2, VEN ≥ 2.4V, (switch off),  
OUT = open  
0.75  
5
µA  
µA  
µA  
MIC20x5-1, VEN ≥ 2.4V, (switch on),  
OUT = open  
160  
160  
2.4  
MIC20x5-2, VEN ≤ 0.8V, (switch on),  
OUT = open  
VEN  
Enable Input Voltage  
low-to-high transition  
high-to-low transition  
2.1  
1.9  
200  
0.01  
1
V
0.8  
V
Enable Input Hysteresis  
Enable Input Current  
Control Input Capacitance  
Switch Resistance  
mV  
µA  
pF  
mΩ  
mΩ  
µA  
µA  
IEN  
VEN = 0V to 5.5V  
–1  
1
RDS(on)  
VIN = 5V, IOUT = 500mA  
VIN = 3.3V, IOUT = 500mA  
MIC2025/2075 (output off)  
90  
140  
160  
10  
100  
Output Leakage Current  
OFF Current in Latched  
Thermal Shutdown  
MIC2075  
50  
(during thermal shutdown state)  
tON  
tR  
tOFF  
tF  
Output Turn-On Delay  
RL = 10Ω, CL = 1µF, see “Timing Diagrams”  
RL = 10Ω, CL = 1µF, see “Timing Diagrams”  
RL = 10Ω, CL = 1µF, see “Timing Diagrams”  
RL = 10Ω, CL = 1µF, see “Timing Diagrams”  
VOUT = 0V, enabled into short-circuit.  
1
2.5  
2.3  
50  
6
ms  
ms  
µs  
µs  
A
Output Turn-On Rise Time  
Output Turnoff Delay  
0.5  
5.9  
100  
100  
1.25  
1.25  
Output Turnoff Fall Time  
Short-Circuit Output Current  
Current-Limit Threshold  
Short-Circuit Response Time  
50  
ILIMIT  
0.5  
0.7  
0.85  
24  
ramped load applied to output, Note 4  
0.60  
A
VOUT = 0V to IOUT = ILIMIT  
µs  
(Short applied to output)  
tD  
Overcurrent Flag Response  
Delay  
VIN = 5V, apply VOUT = 0V until FLG low  
VIN = 3.3V, apply VOUT = 0V until FLG low  
VIN rising  
1.5  
1.5  
2.2  
2.0  
3
7
ms  
ms  
V
3
8
Undervoltage Lockout  
Threshold  
2.5  
2.3  
2.7  
2.5  
VIN falling  
V
June 2010  
3
MIC2025/2075  
MIC2025/2075  
Micrel, Inc.  
Symbol  
Parameter  
Condition  
Min  
Typ  
8
Max  
Units  
Ω
Error Flag Output  
Resistance  
IL = 10mA, VIN = 5V  
IL = 10mA, VIN = 3.3V  
VFLAG = 5V  
25  
40  
10  
11  
Ω
Error Flag Off Current  
µA  
°C  
Overtemperature Threshold  
TJ increasing  
140  
120  
TJ decreasing  
°C  
Note 1. Exceeding the absolute maximum rating may damage the device.  
Note 2. The device is not guaranteed to function outside its operating rating.  
Note 3. Devices are ESD sensitive. Handling precautions recommended.  
Note 4. See “Functional Characteristics: Current-Limit Response” graph.  
Test Circuit  
VOUT  
IOUT  
Device  
Under  
Test  
OUT  
RL  
CL  
Timing Diagrams  
tR  
tF  
90%  
10%  
90%  
VOUT  
10%  
Output Rise and Fall Times  
50%  
VEN  
tOFF  
tON  
90%  
VOUT  
10%  
Active-Low Switch Delay Times (MIC20x5-2)  
50%  
VEN  
tOFF  
tON  
90%  
VOUT  
10%  
Active-High Switch Delay Times (MIC20x5-1)  
MIC2025/2075  
4
June 2010  
MIC2025/2075  
Micrel, Inc.  
S upply On-C urrent  
vs . Temperature  
On-R es is tance  
vs . Temperature  
Turn-On R is e Time  
vs . Temperature  
5
4
3
2
1
180  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
VIN = 3.3V  
3.3V  
5V  
5V  
VIN = 5V  
60  
3.3V  
60  
40  
IOUT = 500mA  
40  
R L=10  
C L=1µF  
20  
20  
0
0
0
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
S upply On-C urrent  
vs . Input Voltage  
On-R es is tance  
vs . Input Voltage  
Turn-On R is e Time  
vs . Input Voltage  
200  
150  
100  
50  
200  
150  
100  
50  
5.0  
4.0  
3.0  
+85°C  
+25°C  
-40°C  
+85°C  
+25°C  
-40°C  
2.0  
1.0  
0
+25°C  
+85°C  
-40°C  
R L=10Ω  
C L=1µF  
IOUT = 500mA  
0
0
2.5 3.0 3.5 4.0 4.5 5.0 5.5  
INPUT VOLTAGE (V)  
2.5 3.0 3.5 4.0 4.5 5.0 5.5  
INPUT VOLTAGE (V)  
2.5 3.0 3.5 4.0 4.5 5.0 5.5  
INPUT VOLTAGE (V)  
S hort-C ircuit C urrent-L imit  
vs . Temperature  
C urrent-L imit Thres hold  
vs . Temperature  
E nable Thres hold  
vs . Temperature  
1200  
1000  
2.5  
1000  
800  
600  
400  
200  
0
VIN = 3.3V  
VIN = 5V  
VIN = 3.3V  
VIN = 5V  
800  
600  
400  
200  
0
2.0  
1.5  
1.0  
0.5  
0
VE N R IS ING  
VE N F ALLING  
VIN = 5V  
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
-40 -20  
0
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
S hort-C ircuit C urrent-L imit  
vs . Input Voltage  
C urrent-L imit Thres hold  
vs . Input Voltage  
E nable Thres hold  
vs . Input Voltage  
800  
700  
600  
500  
400  
300  
200  
100  
0
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
+25°C  
VE N R IS ING  
+85°C  
-40°C  
+85°C  
+25°C  
-40°C  
VE N F ALLING  
TA = 25°C  
2.5 3.0 3.5 4.0 4.5 5.0 5.5  
INPUT VOLTAGE (V)  
2.5 3.0 3.5 4.0 4.5 5.0 5.5  
INPUT VOLTAGE (V)  
2.5 3.0 3.5 4.0 4.5 5.0 5.5  
INPUT VOLTAGE (V)  
June 2010  
5
MIC2025/2075  
MIC2025/2075  
Micrel, Inc.  
F lag Delay  
vs . Temperature  
F lag Delay  
vs . Input Voltage  
UVL O Thres hold  
vs . Temperature  
5
4
3
2
1
0
5
4
3
2
1
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
VIN R IS ING  
VIN = 3.3V  
+85°C  
+25°C  
VIN = 5V  
VIN F ALLING  
-40°C  
0
-40 -20  
0
20 40 60 80 100  
2.5 3.0 3.5 4.0 4.5 5.0 5.5  
INPUT VOLTAGE (V)  
-40 -20  
0
20 40 60 80 100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MIC2025/2075  
6
June 2010  
MIC2025/2075  
Micrel, Inc.  
Functional Characteristics  
June 2010  
7
MIC2025/2075  
MIC2025/2075  
Micrel, Inc.  
MIC2025/2075  
8
June 2010  
MIC2025/2075  
Micrel, Inc.  
Block Diagram  
EN  
THERMAL  
SHUTDOWN  
1.2V  
REFERENCE  
IN  
OSC.  
UVLO  
CHARGE  
PUMP  
CURRENT  
LIMIT  
GATE  
CONTROL  
FLAG  
RESPONSE  
DELAY  
OUT  
FLG  
GND  
Power Dissipation  
Functional Description  
The device’s junction temperature depends on several fac-  
tors such as the load, PCB layout, ambient temperature  
and package type. Equations that can be used to calculate  
power dissipation of each channel and junction temperature  
are found below.  
Input and Output  
IN is the power supply connection to the logic circuitry and  
the drain of the output MOSFET. OUT is the source of the  
output MOSFET. In a typical circuit, current flows from IN to  
OUT toward the load. If V  
is greater than V , current will  
OUT  
IN  
2
P = R  
× I  
OUT  
flow from OUT to IN since the switch is bidirectional when  
enabled. The output MOSFET and driver circuitry are also  
designedtoallowtheMOSFETsourcetobeexternallyforced  
D
DS(on)  
Total power dissipation of the device will be the summation of  
P for both channels. To relate this to junction temperature,  
D
to a higher voltage than the drain (V  
> V ) when the  
the following equation can be used:  
OUT  
IN  
switch is disabled. In this situation, the MIC2025/75 avoids  
undesirable current flow from OUT to IN.  
T = P × θ + T  
A
J
D
JA  
where:  
Thermal Shutdown  
T = junction temperature  
J
Thermal shutdown is employed to protect the device from  
damage should the die temperature exceed safe margins  
due mainly to short circuit faults. Each channel employs its  
own thermal sensor. Thermal shutdown shuts off the output  
MOSFET and asserts the FLG output if the die temperature  
reaches140°C.TheMIC2025willautomaticallyresetitsoutput  
shouldthedietemperaturecooldownto120°C.TheMIC2025  
output and FLG signal will continue to cycle on and off until  
thedeviceisdisabledorthefaultisremoved. Figure2depicts  
typical timing. If the MIC2075 goes into thermal shutdown, its  
output will latch off and a pull-up current source is activated.  
This allows the output latch to automatically reset when the  
load (such as a USB device) is removed. The output can also  
be reset by toggling EN. Refer to Figure 1 for details.  
T = ambient temperature  
A
θ
= is the thermal resistance of the package  
JA  
Current Sensing and Limiting  
The current-limit threshold is preset internally. The preset  
level prevents damage to the device and external load but  
still allows a minimum current of 500mA to be delivered to  
the load.  
Thecurrent-limitcircuitsensesaportionoftheoutputMOSFET  
switch current. The current-sense resistor shown in the block  
diagram is virtual and has no voltage drop. The reaction to  
an overcurrent condition varies with three scenarios:  
Switch Enabled into Short-Circuit  
If a switch is enabled into a heavy load or short-circuit, the  
switch immediately enters into a constant-current mode,  
reducing the output voltage. The FLG signal is asserted  
indicating an overcurrent condition. See the Short-Circuit  
Response graph under Functional Characteristics.  
Depending on PCB layout, package, ambient temperature,  
etc., it may take several hundred milliseconds from the in-  
cidence of the fault to the output MOSFET being shut off.  
The worst-case scenario of thermal shutdown is that of a  
short-circuit fault and is shown in the in the “Function Char-  
acteristics: Thermal Shutdown Response” graph.  
June 2010  
9
MIC2025/2075  
MIC2025/2075  
Micrel, Inc.  
Short-Circuit Applied to Enabled Output  
Fault Flag  
Whenaheavyloadorshort-circuitisapplied,alargetransient  
currentmayowuntilthecurrent-limitcircuitryresponds.Once  
this occurs the device limits current to less than the short-cir-  
cuitcurrentlimitspecification.SeetheShort-CircuitTransient  
Response graph under Functional Characteristics.  
The FLG signal is an N-channel open-drain MOSFEToutput.  
FLG is asserted (active-low) when either an overcurrent  
or thermal shutdown condition occurs. In the case where  
an overcurrent condition occurs, FLG will be asserted only  
after the flag response delay time, t , has elapsed. This  
D
ensures that FLG is asserted only upon valid overcurrent  
conditions and that erroneous error reporting is eliminated.  
For example, false overcurrent conditions can occur during  
hot-plug events when a highly capacitive load is connected  
and causes a high transient inrush current that exceeds the  
Current-Limit Response—Ramped Load  
TheMIC2025/75current-limitprofileexhibitsasmallfoldback  
effect of about 200mA. Once this current-limit threshold is  
exceeded the device switches into a constant current mode.  
It is important to note that the device will supply current until  
thecurrent-limitthresholdisexceeded. SeetheCurrent-Limit  
Response graph under Functional Characteristics.  
current-limit threshold. The FLG response delay time t is  
D
typically 3ms.  
Undervoltage Lockout  
Undervoltage lockout (UVLO) prevents the output MOS-  
FET from turning on until V exceeds approximately 2.5V.  
IN  
Undervoltage detection functions only when the switch is  
enabled.  
Load Removed  
(Output Reset)  
Short-Circuit Fautl  
V
EN  
V
OUT  
I
LIMIT  
I
DC  
Thermal Shutdown  
Reached  
I
OUT  
V
FLG  
t
D
Figure 1. MIC2075-2 Timing: Output Reset by Removing Load  
Short-Circuit Fautl  
V
EN  
Load/Fault  
Removed  
V
OUT  
I
LIMIT  
I
DC  
Thermal Shutdown  
Reached  
I
OUT  
V
FLG  
t
D
Figure 2. MIC2025-2 Timing  
MIC2025/2075  
10  
June 2010  
MIC2025/2075  
Micrel, Inc.  
Universal Serial Bus (USB) Power Distribution  
Applications Information  
The MIC2025/75 is ideally suited for USB (Universal Serial  
Bus) power distribution applications. The USB specification  
defines power distribution for USB host systems such as  
PCs and USB hubs. Hubs can either be self-powered or  
bus-powered (that is, powered from the bus). Figure 5 below  
shows a typical USB Host application that may be suited for  
mobile PC applications employing USB. The requirements  
for USB host systems is that the port must supply a minimum  
of 500mA at an output voltage of 5V ±5%. In addition, the  
output power delivered must be limited to below 25VA. Upon  
an overcurrent condition, the host must also be notified. To  
support hot-plug events, the hub must have a minimum of  
120µF of bulk capacitance, preferably low-ESR electrolytic  
or tantulum. Refer to Application Note 17 for more details on  
designing compliant USB hub and host systems.  
Supply Filtering  
A 0.1µF to 1µF bypass capacitor positioned close to V and  
IN  
GND of the device is strongly recommended to control sup-  
ply transients. Without a bypass capacitor, an output short  
may cause sufficient ringing on the input (from supply lead  
inductance) to damage internal control circuitry.  
Printed Circuit Board Hot-Plug  
The MIC2025/75 are ideal inrush current-limiters suitable for  
hot-plug applications. Due to the integrated charge pump,  
the MIC2025/75 presents a high impedance when off and  
slowly becomes a low impedance as it turns on. This “soft-  
start” feature effectively isolates power supplies from highly  
capacitive loads by reducing inrush current during hot-plug  
events. Figure 3 shows how the MIC2075 may be used in a  
hot-plug application.  
For bus-powered hubs, USB requires that each downstream  
port be switched on or off under control by the host. Up to four  
downstream ports each capable of supplying 100mAat 4.4V  
minimum are allowed. In addition, to reduce voltage droop on  
In cases of extremely large capacitive loads (>400µF), the  
length of the transient due to inrush current may exceed the  
delay provided by the integrated filter. Since this inrush cur-  
rent exceeds the current-limit delay specification, FLG will  
be asserted during this time. To prevent the logic controller  
from responding to FLG being asserted, an external RC filter,  
as shown in Figure 4, can be used to filter out transient FLG  
assertion. The value of the RC time constant will be selected  
to match the length of the transient.  
the upstream V  
, soft-start is necessary. Although the hub  
BUS  
can consume up to 500mA from the upstream bus the hub  
must consume only 100mA max at start-up, until it enumer-  
ates with the host prior to requesting more power. The same  
requirementsapplyforbus-poweredperipheralsthathaveno  
downstream ports. Figure 6 shows a bus-powered hub.  
MIC2025-2  
1
2
3
4
8
VCC  
EN  
OUT  
IN  
7
6
5
FLG  
GND  
NC  
0.1  
Backend  
Function  
µF  
to "Hot"  
OUT  
NC  
Receptacle  
CBULK  
GND  
Adaptor Card  
Figure 3. Hot Plug Application  
V+  
MIC2025  
10k  
R
Logic Controller  
1
2
3
4
8
7
6
5
EN  
OUT  
IN  
OVERCURRENT  
FLG  
GND  
NC  
C
OUT  
NC  
Figure 4. Transient Filter  
June 2010  
11  
MIC2025/2075  
MIC2025/2075  
Micrel, Inc.  
VCC  
5.0V  
10k  
4.50V to 5.25V  
UpstreamVBUS  
100mA max.  
3.3V  
Ferrite  
Beads  
MIC5203-3.3  
IN OUT  
3.3V USB Controller  
MIC2025/75  
EN OUT  
VBUS  
VBUS  
D+  
VIN  
ON/OFF  
D+  
OVERCURRENT  
GND  
FLG  
GND  
NC  
IN  
OUT  
NC  
1µF  
USB  
Port  
1µF  
0.01µF  
D–  
D–  
GND  
120µF  
GND  
GND  
0.1µF  
Data  
Data  
Figure 5 USB Host Application  
1.5k  
3.3V  
Ferrite  
Beads  
USB Upstream  
Connector  
MIC5203-3.3  
(LDO)  
MIC2025/75  
EN OUT  
USB Logic Controller  
VBUS  
D+  
VBUS  
VIN  
IN  
OUT  
GND  
ON/OFF  
D+  
USB Downstream  
Connector  
FLG  
GND  
NC  
IN  
OUT  
NC  
OVERCURRENT  
GND  
120µF  
0.01µF  
D–  
D–  
(Up to four  
GND  
GND  
0.1µF  
0.1µF  
ganaged ports)  
1.5K  
0.1µF  
Data  
Data  
Figure 6. USB Bus-Powered Hub  
MIC2025/2075  
12  
June 2010  
MIC2025/2075  
Micrel, Inc.  
Package Information  
8-Lead SOIC (M)  
MM8™ 8-Pin MSOP (MM)  
June 2010  
13  
MIC2025/2075  
MIC2025/2075  
Micrel, Inc.  
MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
tel + 1 (408) 944-0800 fax + 1 (408) 474-1000 web http://www.micrel.com  
This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use.  
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can  
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into  
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's  
use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify  
Micrel for any damages resulting from such use or sale.  
© 2004 Micrel Incorporated  
MIC2025/2075  
14  
June 2010  

相关型号:

MIC2025-1YMM-TR

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8
MICROCHIP

MIC2025-1YMMTR

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, LEAD FREE, MSOP-8
MICROCHIP

MIC2025-1YMTR

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, LEAD FREE, SOIC-8
MICROCHIP

MIC2025-2BM

Single-Channel Power Distribution Switch Preliminary Information
MICREL

MIC2025-2BM

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, SOIC-8
ROCHESTER

MIC2025-2BMM

Single-Channel Power Distribution Switch Preliminary Information
MICREL

MIC2025-2BMMTR

Power Supply Support Circuit, Fixed, 1 Channel, PDSO8, MSOP-8
MICREL

MIC2025-2BMTR

Power Supply Support Circuit, Fixed, 1 Channel, PDSO8, SOIC-8
MICROCHIP

MIC2025-2YM

Single-Channel Power Distribution Switch MM8?
MICREL

MIC2025-2YMM

Single-Channel Power Distribution Switch MM8?
MICREL

MIC2025-2YMM-TR

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8
MICROCHIP