MCP73831T-5ADI/MC [MICROCHIP]

Miniature Single-Cell, Fully Integrated Li-Ion, Li-Polymer Charge Management Controllers; 微型单细胞,完全集成的锂离子电池,锂聚合物充电管理控制器
MCP73831T-5ADI/MC
型号: MCP73831T-5ADI/MC
厂家: MICROCHIP    MICROCHIP
描述:

Miniature Single-Cell, Fully Integrated Li-Ion, Li-Polymer Charge Management Controllers
微型单细胞,完全集成的锂离子电池,锂聚合物充电管理控制器

电源电路 电池 电源管理电路 光电二极管 控制器
文件: 总24页 (文件大小:679K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP73831/2  
Miniature Single-Cell, Fully Integrated Li-Ion,  
Li-Polymer Charge Management Controllers  
Features:  
Description:  
• Linear Charge Management Controller:  
- Integrated Pass Transistor  
- Integrated Current Sense  
The MCP73831/2 devices are highly advanced linear  
charge management controllers for use in space-lim-  
ited, cost-sensitive applications. The MCP73831/2 are  
available in an 8-Lead, 2 mm x 3 mm DFN package or  
a 5-Lead, SOT23 package. Along with their small  
physical size, the low number of external components  
required make the MCP73831/2 ideally suited for por-  
table applications. For applications charging from a  
USB port, the MCP73831/2 adhere to all the  
specifications governing the USB power bus.  
- Reverse Discharge Protection  
• High Accuracy Preset Voltage Regulation: + 0.75%  
• Four Voltage Regulation Options:  
- 4.20V, 4.35V, 4.40V, 4.50V  
• Programmable Charge Current  
• Selectable Preconditioning  
• Selectable End-of-Charge Control  
• Charge Status Output  
The MCP73831/2 employ a constant-current/constant-  
voltage charge algorithm with selectable precondition-  
ing and charge termination. The constant voltage  
regulation is fixed with four available options: 4.20V,  
4.35V, 4.40V or 4.50V, to accommodate new, emerg-  
ing battery charging requirements. The constant cur-  
rent value is set with one external resistor. The  
MCP73831/2 devices limit the charge current based  
on die temperature during high power or high ambient  
conditions. This thermal regulation optimizes the  
charge cycle time while maintaining device reliability.  
- Tri-State Output - MCP73831  
- Open-Drain Output - MCP73832  
• Automatic Power-Down  
• Thermal Regulation  
Temperature Range: -40°C to +85°C  
• Packaging:  
- 8-Lead, 2 mm x 3 mm DFN  
- 5-Lead, SOT23  
Several options are available for the preconditioning  
threshold, preconditioning current value, charge termi-  
nation value and automatic recharge threshold. The  
preconditioning value and charge termination value  
are set as a ratio, or percentage, of the programmed  
constant current value. Preconditioning can be dis-  
abled. Refer to Section 1.0 “Electrical Characteris-  
tics” for available options and the “Product  
Identification System” for standard options.  
Applications:  
• Lithium-Ion/Lithium-Polymer Battery Chargers  
• Personal Data Assistants  
• Cellular Telephones  
• Digital Cameras  
• MP3 Players  
• Bluetooth Headsets  
The MCP73831/2 devices are fully specified over the  
ambient temperature range of -40°C to +85°C.  
• USB Chargers  
Package Types  
Typical Application  
500 mA Li-Ion Battery Charger  
8-Lead DFN  
V
IN  
(2 mm x 3 mm)  
SOT23-5  
4
3
V
V
BAT  
DD  
+
-
Single  
Li-Ion  
Cell  
4.7 μF  
V
4.7 μF  
PROG  
8
7
6
5
1
2
3
4
DD  
DD  
STAT 1  
5 PROG  
V
NC  
V
2
5
V
SS  
PROG  
3
4
V
V
V
V
BAT  
DD  
BAT  
BAT  
SS  
470Ω  
2 kΩ  
STAT  
1
2
V
STAT  
SS  
MCP73831  
© 2006 Microchip Technology Inc.  
DS21984B-page 1  
MCP73831/2  
Functional Block Diagram  
VDD  
6 mA  
DIRECTION  
CONTROL  
VBAT  
G=0.001  
6 mA  
0.5 mA  
PROG  
CA  
+
-
MCP73831  
ONLY  
REFERENCE  
GENERATOR  
43.6 kΩ  
V
VREF(1.22V)  
361 kΩ  
89 kΩ  
3.9 kΩ  
DD  
+
-
PRECONDITION  
182.3 kΩ  
15 kΩ  
111 kΩ  
+
-
STAT  
TERMINATION  
+
-
7 kΩ  
CHARGE  
VA  
+
-
190 kΩ  
111 kΩ  
+
-
SHDN  
0.5 mA  
DIRECTION  
CONTROL  
+
-
VBAT  
477 kΩ  
255 kΩ  
+
-
UVLO  
100 kΩ  
VSS  
DS21984B-page 2  
© 2006 Microchip Technology Inc.  
MCP73831/2  
Notice: Stresses above those listed under  
1.0  
ELECTRICAL  
CHARACTERISTICS  
“Maximum Ratings” may cause permanent damage to  
the device. This is a stress rating only and functional  
operation of the device at those or any other  
conditions above those indicated in the operational  
listings of this specification is not implied. Exposure to  
maximum rating conditions for extended periods may  
affect device reliability.  
Absolute Maximum Ratings†  
V
...................................................................................7.0V  
DD  
All Inputs and Outputs w.r.t. V ............... -0.3 to (V +0.3)V  
SS  
DD  
Maximum Junction Temperature, T ............Internally Limited  
J
Storage temperature .....................................-65°C to +150°C  
ESD protection on all pins:  
Human Body Model (1.5 kΩ in Series with 100 pF).......4 kV  
Machine Model (200 pF, No Series Resistance).............400V  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, all limits apply for V = [V  
(typ.) + 0.3V] to 6V, T = -40°C to +85°C.  
A
DD  
REG  
Typical values are at +25°C, V = [V  
(typ.) + 1.0V]  
DD  
REG  
Parameters  
Supply Input  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Supply Voltage  
Supply Current  
V
I
3.75  
510  
53  
6
V
DD  
1500  
200  
μA  
μA  
Charging  
SS  
Charge Complete,  
No Battery  
25  
1
50  
5
μA  
μA  
μA  
V
PROG Floating  
V
V
V
V
< (V  
- 50 mV)  
BAT  
DD  
DD  
DD  
DD  
0.1  
3.45  
3.38  
70  
2
< V  
STOP  
UVLO Start Threshold  
UVLO Stop Threshold  
UVLO Hysteresis  
V
3.3  
3.2  
3.6  
3.5  
Low-to-High  
High-to-Low  
START  
V
V
STOP  
V
mV  
HYS  
Voltage Regulation (Constant-Voltage Mode)  
Regulated Output Voltage  
V
4.168  
4.317  
4.367  
4.466  
4.20  
4.35  
4.40  
4.50  
4.232  
4.383  
4.433  
4.534  
V
V
V
V
MCP7383X-2  
MCP7383X-3  
MCP7383X-4  
MCP7383X-5  
REG  
V
= [V  
(Typ)+1V]  
REG  
DD  
I
= 10 mA  
OUT  
T
= -5°C to +55°C  
A
Line Regulation  
|(ΔV  
)/ΔV  
/V  
0.09  
0.05  
0.30  
0.30  
%/V  
%
V
I
= [V  
= 10 mA  
(Typ)+1V] to 6V  
REG  
BAT BAT  
DD  
|
DD  
OUT  
Load Regulation  
V  
/V  
|
I
= 10 mA to 50 mA  
BAT BAT  
OUT  
V
= [V  
(Typ)+1V]  
DD  
OUT  
OUT  
OUT  
REG  
Supply Ripple Attenuation  
PSRR  
52  
47  
22  
—-  
dB  
dB  
dB  
I
I
I
=10 mA, 10Hz to 1 kHz  
=10 mA, 10Hz to 10 kHz  
=10 mA, 10Hz to 1 MHz  
Current Regulation (Fast Charge Constant-Current Mode)  
Fast Charge Current  
Regulation  
I
90  
100  
505  
110  
550  
mA PROG = 10 kΩ  
REG  
450  
mA PROG = 2.0 kΩ, Note 1  
T
= -5°C to +55°C  
A
Note 1: Not production tested. Ensured by design.  
© 2006 Microchip Technology Inc.  
DS21984B-page 3  
MCP73831/2  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise indicated, all limits apply for V = [V  
(typ.) + 0.3V] to 6V, T = -40°C to +85°C.  
A
DD  
REG  
Typical values are at +25°C, V = [V  
(typ.) + 1.0V]  
DD  
REG  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Preconditioning Current Regulation (Trickle Charge Constant-Current Mode)  
Precondition Current  
Ratio  
I
/ I  
7.5  
15  
30  
10  
20  
12.5  
25  
%
%
%
%
PROG = 2.0 kΩ to 10 kΩ  
PROG = 2.0 kΩ to 10 kΩ  
PROG = 2.0 kΩ to 10 kΩ  
No Preconditioning  
PREG REG  
40  
50  
100  
T
= -5°C to +55°C  
A
Precondition Voltage  
Threshold Ratio  
V
I
/ V  
64  
69  
66.5  
71.5  
110  
69  
74  
%
%
V
V
V
Low-to-High  
Low-to-High  
High-to-Low  
PTH  
REG  
BAT  
BAT  
BAT  
Precondition Hysteresis  
V
mV  
PHYS  
Charge Termination  
Charge Termination  
Current Ratio  
/ I  
3.75  
5.6  
7.5  
15  
5
6.25  
9.4  
%
%
%
%
PROG = 2.0 kΩ to 10 kΩ  
PROG = 2.0 kΩ to 10 kΩ  
PROG = 2.0 kΩ to 10 kΩ  
PROG = 2.0 kΩ to 10 kΩ  
TERM REG  
7.5  
10  
20  
12.5  
25  
T
= -5°C to +55°C  
A
Automatic Recharge  
Recharge Voltage  
Threshold Ratio  
V
/ V  
91.5  
94  
94.0  
96.5  
96.5  
99  
%
%
V
V
High-to-Low  
High-to-Low  
RTH  
REG  
BAT  
BAT  
Pass Transistor ON-Resistance  
ON-Resistance  
R
350  
mΩ  
V
= 3.75V, T = 105°C  
DSON  
DD  
J
Battery Discharge Current  
Output Reverse Leakage  
Current  
I
0.15  
0.25  
0.15  
-5.5  
2
2
μA  
μA  
μA  
μA  
PROG Floating  
DISCHARGE  
V
V
Floating  
DD  
DD  
2
< V  
STOP  
-15  
Charge Complete  
Status Indicator – STAT  
Sink Current  
I
0.4  
25  
1
mA  
V
SINK  
Low Output Voltage  
Source Current  
V
I
I
= 4 mA  
SINK  
OL  
SOURCE  
I
35  
mA  
V
High Output Voltage  
Input Leakage Current  
PROG Input  
V
I
V
-0.4  
V
- 1  
= 4 mA (MCP73831)  
SOURCE  
OH  
DD  
DD  
0.03  
1
μA  
High-Impedance  
LK  
Charge Impedance  
Range  
R
R
2
20  
kΩ  
kΩ  
PROG  
PROG  
Minimum Shutdown  
Impedance  
70  
200  
Automatic Power Down  
Automatic Power Down  
Entry Threshold  
V
V
<(V  
+20mV)  
V
V
<(V  
+50mV)  
3.5V V  
V  
V  
PDENTER  
DD  
BAT  
DD  
BAT  
BAT  
REG  
V
Falling  
DD  
Automatic Power Down  
Exit Threshold  
V
<(V  
V
<(V  
+200mV)  
3.5V V  
BAT  
PDEXIT  
DD  
BAT  
DD  
BAT  
REG  
+150mV)  
V
Rising  
DD  
Thermal Shutdown  
Die Temperature  
T
150  
10  
°C  
°C  
SD  
Die Temperature  
Hysteresis  
T
SDHYS  
Note 1: Not production tested. Ensured by design.  
DS21984B-page 4  
© 2006 Microchip Technology Inc.  
MCP73831/2  
AC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD = [VREG (typ.) + 0.3V] to 12V,  
TA = -40°C to +85°C. Typical values are at +25°C, VDD = [VREG (typ.) + 1.0V]  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
VDD Low-to-High  
UVLO Start Delay  
tSTART  
5
ms  
Constant-Current Regulation  
Transition Time Out of  
Preconditioning  
tDELAY  
tRISE  
1
ms  
ms  
ms  
ms  
VBAT < VPTH to VBAT > VPTH  
IOUT Rising to 90% of IREG  
Average IOUT Falling  
Average VBAT  
Current Rise Time Out of  
Preconditioning  
1
Termination Comparator  
Filter  
tTERM  
0.4  
0.4  
1.3  
1.3  
3.2  
3.2  
Charge Comparator Filter  
Status Indicator  
tCHARGE  
Status Output turn-off  
Status Output turn-on  
tOFF  
tON  
200  
200  
μs  
μs  
ISINK = 1 mA to 0 mA  
ISINK = 0 mA to 1 mA  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, all limits apply for VDD = [VREG (typ.) + 0.3V] to 12V.  
Typical values are at +25°C, VDD = [VREG (typ.) + 1.0V]  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
5-Lead, SOT23  
TA  
TJ  
TA  
-40  
-40  
-65  
+85  
+125  
+150  
°C  
°C  
°C  
θJA  
θJA  
230  
76  
°C/W 4-Layer JC51-7 Standard  
Board, Natural Convection  
8-Lead, 2 mm x 3 mm, DFN  
°C/W 4-Layer JC51-7 Standard  
Board, Natural Convection  
© 2006 Microchip Technology Inc.  
DS21984B-page 5  
MCP73831/2  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
NOTE: Unless otherwise indicated, VDD = [VREG(typ.) + 1V], IOUT = 10 mA and TA= +25°C, Constant-Voltage mode.  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
4.210  
4.205  
4.200  
4.195  
4.190  
4.185  
4.180  
4.175  
4.170  
MCP73831-2  
IOUT = 10 mA  
IOUT = 100 mA  
IOUT = 450 mA  
0
2
4
6
8
10 12 14 16 18 20  
4.50  
4.75 5.00 5.25  
5.50  
5.75 6.00  
Programming Resistor (k)  
Supply Voltage (V)  
FIGURE 2-1:  
Battery Regulation Voltage  
FIGURE 2-4:  
Charge Current (IOUT) vs.  
(VBAT) vs. Supply Voltage (VDD).  
Programming Resistor (RPROG).  
4.210  
104  
103  
102  
101  
100  
99  
RPROG = 10 k  
MCP73831-2  
4.205  
IOUT = 10 mA  
4.200  
4.195  
4.190  
4.185  
4.180  
4.175  
4.170  
IOUT = 100 mA  
IOUT = 450 mA  
98  
97  
96  
4.50  
4.75  
5.00  
5.25  
5.50  
5.75  
6.00  
Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-2:  
Battery Regulation Voltage  
FIGURE 2-5:  
Charge Current (IOUT) vs.  
(VBAT) vs. Ambient Temperature (TA).  
Supply Voltage (VDD).  
516  
514  
512  
510  
508  
506  
504  
502  
500  
0.40  
RPROG = 2 k  
0.35  
+85°C  
0.30  
-40°C  
0.25  
0.20  
+25°C  
0.15  
0.10  
0.05  
0.00  
4.50  
4.75  
5.00  
5.25  
5.50  
5.75  
6.00  
3.00  
3.20  
3.40  
3.60  
3.80  
4.00  
4.20  
Battery Regulation Voltage (V)  
Supply Voltage (V)  
FIGURE 2-3:  
Output Leakage Current  
FIGURE 2-6:  
Charge Current (IOUT) vs.  
(IDISCHARGE) vs. Battery Regulation Voltage  
Supply Voltage (VDD).  
(VBAT).  
DS21984B-page 6  
© 2006 Microchip Technology Inc.  
MCP73831/2  
TYPICAL PERFORMANCE CURVES (CONTINUED)  
NOTE: Unless otherwise indicated, VDD = [VREG(typ.) + 1V], IOUT = 10 mA and TA= +25°C, Constant-Voltage mode.  
104  
103  
102  
101  
100  
99  
525  
450  
375  
300  
225  
150  
75  
RPROG = 10 kΩ  
RPROG = 2 kΩ  
98  
97  
0
96  
Ambient Temperature (°C)  
Junction Temperature (°C)  
FIGURE 2-7:  
Charge Current (IOUT) vs.  
FIGURE 2-10:  
Charge Current (IOUT) vs.  
Ambient Temperature (TA).  
Junction Temperature (TJ).  
516  
514  
512  
510  
508  
506  
504  
502  
500  
0
VAC = 100 mVp-p  
IOUT = 10 mA  
RPROG = 2 kΩ  
-10  
COUT = 4.7 µF, X7R Ceramic  
-20  
-30  
-40  
-50  
-60  
0.01  
0.1  
1
10  
100  
1000  
Ambient Temperature (°C)  
Frequency (kHz)  
FIGURE 2-8:  
Charge Current (IOUT) vs.  
FIGURE 2-11:  
Power Supply Ripple  
Ambient Temperature (TA).  
Rejection (PSRR).  
120  
105  
90  
75  
60  
45  
30  
15  
0
0
VAC = 100 mVp-p  
IOUT = 100 mA  
COUT = 4.7 µF, X7R Ceramic  
RPROG = 10 kΩ  
-10  
-20  
-30  
-40  
-50  
-60  
0.01  
0.1  
1
10  
100  
1000  
Junction Temperature (°C)  
Frequency (kHz)  
FIGURE 2-9:  
Junction Temperature (TJ).  
Charge Current (IOUT) vs.  
FIGURE 2-12:  
Rejection (PSRR).  
Power Supply Ripple  
© 2006 Microchip Technology Inc.  
DS21984B-page 7  
MCP73831/2  
TYPICAL PERFORMANCE CURVES (CONTINUED)  
NOTE: Unless otherwise indicated, VDD = [VREG(typ.) + 1V], IOUT = 10 mA and TA= +25°C, Constant-Voltage mode.  
14  
12  
10  
8
0.10  
1.40  
1.20  
1.00  
0.80  
0.60  
0.40  
0.20  
0.00  
-0.20  
0.10  
0.05  
0.05  
0.00  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
6
4
2
IOUT = 10 mA  
COUT = 4.7 µF, X7R Ceramic  
0
COUT = 4.7 µF, X7R Ceramic  
Time (µs)  
-2  
Time (µs)  
FIGURE 2-13:  
Line Transient Response.  
FIGURE 2-16:  
Load Transient Response.  
14  
12  
10  
8
0.10  
6.0  
5.0  
4.0  
3.0  
2.0  
120  
100  
80  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
6
60  
4
40  
MCP73831-2AC/IOT  
DD = 5.2V  
RPROG = 10 kΩ  
2
IOUT = 100 mA  
COUT = 4.7 µF, X7R Ceramic  
V
1.0  
0.0  
20  
0
-0.25  
-0.30  
0
-2  
Time (minutes)  
Time (µs)  
FIGURE 2-14:  
Line Transient Response.  
FIGURE 2-17:  
Complete Charge Cycle  
(180 mAh Li-Ion Battery).  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
-0.05  
0.04  
6.0  
5.0  
4.0  
3.0  
600  
500  
400  
300  
200  
100  
0
0.02  
0.00  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
2.0  
MCP73831-2AC/IOT  
VDD = 5.2V  
1.0  
0.0  
COUT = 4.7 µF, X7R Ceramic  
RPROG = 2 kΩ  
-0.12  
Time (µs)  
Time (minutes)  
FIGURE 2-15:  
Load Transient Response.  
FIGURE 2-18:  
Complete Charge Cycle  
(1000 mAh Li-Ion Battery).  
DS21984B-page 8  
© 2006 Microchip Technology Inc.  
MCP73831/2  
3.0  
PIN DESCRIPTION  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLES  
Pin No.  
Symbol  
Function  
DFN  
SOT23-5  
1
2
3
4
5
6
7
8
4
3
V
V
Battery Management Input Supply  
Battery Management Input Supply  
Battery Charge Control Output  
Battery Charge Control Output  
Charge Status Output  
DD  
DD  
V
V
BAT  
BAT  
1
STAT  
2
V
Battery Management 0V Reference  
No Connection  
SS  
5
NC  
PROG  
Current Regulation Set and Charge Control Enable  
3.1  
Battery Management Input Supply  
(V  
3.4  
Battery Management 0V Reference  
(V  
)
)
SS  
DD  
A supply voltage of [VREG (typ.) + 0.3V] to 6V is  
recommended. Bypass to VSS with a minimum of  
4.7 μF.  
Connect to negative terminal of battery and input  
supply.  
3.5  
Current Regulation Set (PROG)  
3.2  
Battery Charge Control Output  
(V  
Preconditioning, fast charge and termination currents  
are scaled by placing a resistor from PROG to VSS  
)
BAT  
.
Connect to positive terminal of battery. Drain terminal  
of internal P-channel MOSFET pass transistor. Bypass  
to VSS with a minimum of 4.7 μF to ensure loop  
stability when the battery is disconnected.  
The charge management controller can be disabled by  
allowing the PROG input to float.  
3.3  
Charge Status Output (STAT)  
STAT is an output for connection to an LED for charge  
status indication. Alternatively, a pull-up resistor can  
be applied for interfacing to a host microcontroller.  
STAT is a tri-state logic output on the MCP73831 and  
an open-drain output on the MCP73832.  
© 2006 Microchip Technology Inc.  
DS21984B-page 9  
MCP73831/2  
4.0  
DEVICE OVERVIEW  
The MCP73831/2 are highly advanced linear charge  
management controllers. Figure 4-1 depicts the  
operational flow algorithm from charge initiation to  
completion and automatic recharge.  
The UVLO circuit places the device in Shutdown mode  
if the input supply falls to within +50 mV of the battery  
voltage. Again, the input supply must rise to a level  
150 mV above the battery voltage before the  
MCP73831/2 become operational.  
The UVLO circuit is always active. At any time the  
input supply is below the UVLO threshold or within  
+50 mV of the voltage at the VBAT pin, the  
MCP73831/2 are placed in a Shutdown mode.  
SHUTDOWN MODE  
V
< V  
DD  
UVLO  
V
< V  
or  
DD  
BAT  
PROG > 200 kΩ  
STAT = Hi-Z  
During any UVLO condition, the battery reverse  
discharge current shall be less than 2 μA.  
V
< V  
PTH  
BAT  
4.2  
Charge Qualification  
PRECONDITIONING  
MODE  
For a charge cycle to begin, all UVLO conditions must  
be met and a battery or output load must be present. A  
charge current programming resistor must be  
connected from PROG to VSS. If the PROG pin is  
open or floating, the MCP73831/2 are disabled and  
the battery reverse discharge current is less than 2 μA.  
In this manner, the PROG pin acts as a charge enable  
and can be used as a manual shutdown.  
Charge Current = I  
PREG  
STAT = LOW  
V
> V  
PTH  
BAT  
V
> V  
< V  
BAT  
PTH  
RTH  
FAST CHARGE  
MODE  
V
Charge Current = I  
BAT  
REG  
STAT = LOW  
4.3  
Preconditioning  
If the voltage at the VBAT pin is less than the precondi-  
tioning threshold, the MCP73831/2 enter a precondi-  
tioning or Trickle Charge mode. The preconditioning  
threshold is factory set. Refer to Section 1.0 “Electri-  
cal Characteristics” for preconditioning threshold  
options and the Product Identification System for  
standard options.  
V
= V  
REG  
BAT  
CONSTANT VOLTAGE  
MODE  
Charge Voltage = V  
REG  
STAT = LOW  
I
< I  
TERM  
In this mode, the MCP73831/2 supply a percentage of  
the charge current (established with the value of the  
resistor connected to the PROG pin) to the battery.  
The percentage or ratio of the current is factory set.  
Refer to Section 1.0 “Electrical Characteristics” for  
preconditioning current options and the Product  
Identification System for standard options.  
BAT  
CHARGE COMPLETE  
MODE  
No Charge Current  
STAT = HIGH (MCP73831)  
STAT = Hi-Z (MCP73832)  
When the voltage at the VBAT pin rises above the  
preconditioning threshold, the MCP73831/2 enter the  
Constant-Current or Fast Charge mode.  
FIGURE 4-1:  
Flowchart.  
4.1 Under Voltage Lockout (UVLO)  
4.4  
Fast Charge Constant-Current  
Mode  
An internal UVLO circuit monitors the input voltage  
and keeps the charger in Shutdown mode until the  
input supply rises above the UVLO threshold. The  
UVLO circuitry has a built in hysteresis of 100 mV.  
During the Constant-Current mode, the programmed  
charge current is supplied to the battery or load. The  
charge current is established using a single resistor  
from PROG to VSS  
maintained until the voltage at the VBAT pin reaches  
the regulation voltage, VREG  
In the event a battery is present when the input power  
is applied, the input supply must rise 150 mV above  
the battery voltage before the MCP73831/2 becomes  
operational.  
. Constant-Current mode is  
.
DS21984B-page 10  
© 2006 Microchip Technology Inc.  
MCP73831/2  
4.5  
Constant-Voltage Mode  
4.8  
Thermal Regulation  
When the voltage at the VBAT pin reaches the regula-  
tion voltage, VREG, constant voltage regulation begins.  
The regulation voltage is factory set to 4.2V, 4.35V,  
4.40V, or 4.50V with a tolerance of 0.75%.  
The MCP73831/2 limit the charge current based on  
the die temperature. The thermal regulation optimizes  
the charge cycle time while maintaining device  
reliability. Figure 4-2 depicts the thermal regulation for  
the MCP73831/2.  
4.6  
Charge Termination  
525  
The charge cycle is terminated when, during Constant-  
Voltage mode, the average charge current diminishes  
below a percentage of the programmed charge current  
(established with the value of the resistor connected to  
the PROG pin). A 1 ms filter time on the termination  
comparator ensures that transient load conditions do  
not result in premature charge cycle termination. The  
percentage or ratio of the current is factory set. Refer  
to Section 1.0 “Electrical Characteristics” for  
charge termination current options and the “Product  
Identification System” for standard options.  
Ω
RPROG = 2 k  
450  
375  
300  
225  
150  
75  
0
Junction Temperature (°C)  
The charge current is latched off and the MCP73831/2  
enter a Charge Complete mode.  
FIGURE 4-2:  
Thermal Regulation.  
4.7  
Automatic Recharge  
4.9  
Thermal Shutdown  
The MCP73831/2 continuously monitor the voltage at  
the VBAT pin in the Charge Complete mode. If the volt-  
age drops below the recharge threshold, another  
charge cycle begins and current is once again  
supplied to the battery or load. The recharge threshold  
is factory set. Refer to Section 1.0 “Electrical Char-  
acteristics” for recharge threshold options and the  
Product Identification System for standard options.  
The MCP73831/2 suspend charge if the die tempera-  
ture exceeds 150°C. Charging will resume when the  
die temperature has cooled by approximately 10°C.  
© 2006 Microchip Technology Inc.  
DS21984B-page 11  
MCP73831/2  
5.2  
Digital Circuitry  
5.0  
DETAILED DESCRIPTION  
5.2.1  
STATUS INDICATOR (STAT)  
5.1  
Analog Circuitry  
The charge status output of the MCP73831 has three  
different states: High (H), Low (L), and High-Imped-  
ance (Hi-Z). The charge status output of the  
MCP73832 is open-drain, and, as such, has two differ-  
ent states: Low (L), and High-Impedance (Hi-Z). The  
charge charge status output can be used to illuminate  
1, 2, or tri-color LEDs. Optionally, the charge status  
output can be used as an interface to a host  
microcontroller.  
5.1.1  
BATTERY MANAGEMENT INPUT  
SUPPLY (VDD  
)
The VDD input is the input supply to the MCP73831/2.  
The MCP73831/2 automatically enter a Power-Down  
mode if the voltage on the VDD input falls below the  
UVLO voltage (VSTOP). This feature prevents draining  
the battery pack when the VDD supply is not present.  
5.1.2  
CURRENT REGULATION SET  
(PROG)  
Table 5-1 summarize the state of the status output  
during a charge cycle..  
Fast charge current regulation can be scaled by plac-  
ing a programming resistor (RPROG) from the PROG  
input to VSS. The program resistor and the charge  
current are calculated using the following equation:  
TABLE 5-1:  
STATUS OUTPUT  
STAT1  
MCP73831 MCP73832  
Charge Cycle State  
Shutdown  
Hi-Z  
Hi-Z  
L
Hi-Z  
Hi-Z  
L
1000V  
RPROG  
----------------  
=
IREG  
No Battery Present  
Preconditioning  
Where:  
Constant-Current Fast  
Charge  
L
L
RPROG  
IREG  
=
=
kOhms  
milliampere  
Constant Voltage  
L
L
Charge Complete –  
Standby  
H
Hi-Z  
The preconditioning trickle charge current and the  
charge termination current are ratiometric to the fast  
charge current based on the selected device options.  
5.2.2  
DEVICE DISABLE (PROG)  
The current regulation set input pin (PROG) can be  
used to terminate a charge at any time during the  
charge cycle, as well as to initiate a charge cycle or  
initiate a recharge cycle.  
5.1.3  
BATTERY CHARGE CONTROL  
OUTPUT (VBAT  
)
The battery charge control output is the drain terminal  
of an internal P-channel MOSFET. The MCP73831/2  
provide constant current and voltage regulation to the  
battery pack by controlling this MOSFET in the linear  
region. The battery charge control output should be  
connected to the positive terminal of the battery pack.  
Placing a programming resistor from the PROG input  
to VSS enables the device. Allowing the PROG input to  
float or by applying a logic-high input signal, disables  
the device and terminates a charge cycle. When  
disabled, the device’s supply current is reduced to  
25 μA, typically.  
DS21984B-page 12  
© 2006 Microchip Technology Inc.  
MCP73831/2  
cells constant current followed by constant voltage.  
Figure 6-1 depicts a typical stand-alone application  
circuit, while Figures 6-2 and 6-3 depict the  
accompanying charge profile.  
6.0  
APPLICATIONS  
The MCP73831/2 are designed to operate in conjunc-  
tion with a host microcontroller or in a stand-alone  
application. The MCP73831/2 provide the preferred  
charge algorithm for Lithium-Ion and Lithium-Polymer  
Li-Ion Battery Charger  
4
3
5
2
VDD  
VBAT  
+
-
Single  
Li-Ion  
Cell  
CIN  
RLED  
LED  
COUT  
STAT PROG  
REGULATED  
WALL CUBE  
RPROG  
1
VSS  
MCP73831  
FIGURE 6-1:  
Typical Application Circuit.  
6.0  
5.0  
4.0  
3.0  
2.0  
120  
100  
80  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
600  
500  
400  
300  
200  
100  
0
60  
40  
MCP73831-2AC/IOT  
VDD = 5.2V  
RPROG = 10 kΩ  
MCP73831-2AC/IOT  
VDD = 5.2V  
RPROG = 2 kΩ  
1.0  
0.0  
20  
0
Time (minutes)  
Time (minutes)  
FIGURE 6-2:  
Typical Charge Profile  
FIGURE 6-3:  
Typical Charge Profile in  
(180 mAh Battery).  
Thermal Regulation (1000 mAh Battery).  
6.1  
Application Circuit Design  
Due to the low efficiency of linear charging, the most  
important factors are thermal design and cost, which  
are a direct function of the input voltage, output current  
and thermal impedance between the battery charger  
and the ambient cooling air. The worst-case situation  
is when the device has transitioned from the  
Preconditioning mode to the Constant-Current mode.  
In this situation, the battery charger has to dissipate  
the maximum power. A trade-off must be made  
between the charge current, cost and thermal  
requirements of the charger.  
6.1.1.1  
Current Programming Resistor  
(RPROG  
)
The preferred fast charge current for Lithium-Ion cells  
is at the 1C rate, with an absolute maximum current at  
the 2C rate. For example, a 500 mAh battery pack has  
a preferred fast charge current of 500 mA. Charging at  
this rate provides the shortest charge cycle times  
without degradation to the battery pack performance  
or life.  
6.1.1  
COMPONENT SELECTION  
Selection of the external components in Figure 6-1 is  
crucial to the integrity and reliability of the charging  
system. The following discussion is intended as a  
guide for the component selection process.  
© 2006 Microchip Technology Inc.  
DS21984B-page 13  
MCP73831/2  
6.1.1.2  
Thermal Considerations  
6.1.1.5  
Charge Inhibit  
The worst-case power dissipation in the battery  
charger occurs when the input voltage is at the  
maximum and the device has transitioned from the  
Preconditioning mode to the Constant-Current mode.  
In this case, the power dissipation is:  
The current regulation set input pin (PROG) can be  
used to terminate a charge at any time during the  
charge cycle, as well as to initiate a charge cycle or  
initiate a recharge cycle.  
Placing a programming resistor from the PROG input  
to VSS enables the device. Allowing the PROG input to  
float or by applying a logic-high input signal, disables  
the device and terminates a charge cycle. When  
disabled, the device’s supply current is reduced to  
25 μA, typically.  
PowerDissipation = (V  
V  
) × I  
PTHMIN REGMAX  
DDMAX  
Where:  
VDDMAX  
IREGMAX  
VPTHMIN  
=
=
=
the maximum input voltage  
the maximum fast charge current  
6.1.1.6  
Charge Status Interface  
the minimum transition threshold  
voltage  
A status output provides information on the state of  
charge. The output can be used to illuminate external  
LEDs or interface to a host microcontroller. Refer to  
Table 5-1 for a summary of the state of the status  
output during a charge cycle.  
Power dissipation with a 5V, 10% input voltage  
source is:  
PowerDissipation = (5.5V – 2.7V) × 550mA = 1.54W  
6.2  
PCB Layout Issues  
This power dissipation with the battery charger in the  
SOT23-5 package will cause thermal regulation to be  
entered as depicted in Figure 6-3. Alternatively, the  
2mm x 3mm DFN package could be utilized to reduce  
charge cycle times.  
For optimum voltage regulation, place the battery pack  
as close as possible to the device’s VBAT and VSS  
pins. This is recommended to minimize voltage drops  
along the high current-carrying PCB traces.  
If the PCB layout is used as a heatsink, adding many  
vias in the heatsink pad can help conduct more heat to  
the backplane of the PCB, thus reducing the maximum  
junction temperature. Figures 6-4 and 6-5 depict a  
typical layout with PCB heatsinking.  
6.1.1.3  
External Capacitors  
The MCP73831/2 are stable with or without a battery  
load. In order to maintain good AC stability in the Con-  
stant-Voltage mode, a minimum capacitance of 4.7 μF  
is recommended to bypass the VBAT pin to VSS. This  
capacitance provides compensation when there is no  
battery load. In addition, the battery and interconnec-  
tions appear inductive at high frequencies. These  
elements are in the control feedback loop during  
Constant-Voltage mode. Therefore, the bypass capac-  
itance may be necessary to compensate for the  
inductive nature of the battery pack.  
R
LED  
LED  
R
PROG  
V
V
SS  
C
MCP73831 C  
V
DD  
OUT  
BAT  
IN  
Virtually any good quality output filter capacitor can be  
used, independent of the capacitor’s minimum  
Effective Series Resistance (ESR) value. The actual  
value of the capacitor (and its associated ESR)  
depends on the output load current. A 4.7 μF ceramic,  
tantalum or aluminum electrolytic capacitor at the  
output is usually sufficient to ensure stability for output  
currents up to a 500 mA.  
FIGURE 6-4:  
Typical Layout (Top).  
V
SS  
V
V
6.1.1.4  
Reverse-Blocking Protection  
BAT  
DD  
The MCP73831/2 provide protection from a faulted or  
shorted input. Without the protection, a faulted or  
shorted input would discharge the battery pack  
through the body diode of the internal pass transistor.  
FIGURE 6-5:  
Typical Layout (Bottom).  
DS21984B-page 14  
© 2006 Microchip Technology Inc.  
MCP73831/2  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
8-Lead DFN (2 mm x 3 mm)  
Example:  
Device  
Code  
XXX  
YWW  
NN  
AAE  
610  
25  
MCP73831T-2ACI/MC  
MCP73831T-2ATI/MC  
MCP73831T-2DCI/MC  
MCP73831T-3ACI/MC  
MCP73831T-4ADI/MC  
MCP73831T-5ACI/MC  
MCP73832T-2ACI/MC  
MCP73832T-2ATI/MC  
MCP73832T-2DCI/MC  
MCP73832T-3ACI/MC  
MCP73832T-4ADI/MC  
MCP73832T-5ACI/MC  
AAE  
AAF  
AAG  
AAH  
AAJ  
AAK  
AAL  
AAM  
AAP  
AAQ  
AAR  
AAS  
Note: Applies to 8-Lead DFN  
Example:  
5-Lead SOT-23  
Device  
Code  
MCP73831T-2ACI/OT  
MCP73831T-2ATI/OT  
MCP73831T-2DCI/OT  
MCP73831T-3ACI/OT  
MCP73831T-4ADI/OT  
MCP73831T-5ACI/OT  
MCP73832T-2ACI/OT  
MCP73832T-2ATI/OT  
MCP73832T-2DCI/OT  
MCP73832T-3ACI/OT  
MCP73832T-4ADI/OT  
MCP73832T-5ACI/OT  
KDNN  
KENN  
KFNN  
KGNN  
KHNN  
KJNN  
KKNN  
KLNN  
KMNN  
KPNN  
KQNN  
KRNN  
XXNN  
KD25  
Note: Applies to 5-Lead SOT-23  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
WW  
NNN  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2006 Microchip Technology Inc.  
DS21984B-page 15  
MCP73831/2  
8-Lead Plastic Dual-Flat, No-Lead Package (MC) 2x3x0.9 mm Body (DFN) – Saw Singulated  
D
b
p
n
L
K
E
E2  
EXPOSED  
METAL  
PAD  
(NOTE 2)  
2
1
PIN 1  
ID INDEX  
AREA  
DETAIL  
D2  
ALTERNATE  
CONTACT  
(
NOTE 1)  
BOTTOM VIEW  
CONFIGURATION  
TOP VIEW  
EXPOSED  
TIE BAR  
A
A1  
(
NOTE 3)  
A3  
Units  
Dimension Limits  
INCHES  
NOM  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
MAX  
n
e
Number of Pins  
Pitch  
8
8
.020 BSC  
.035  
0.50 BSC  
Overall Height  
Standoff  
A
A1  
A3  
D
.031  
.000  
.039  
0.80  
0.90  
0.02  
0.20 REF.  
1.00  
.001  
.008 REF.  
.002  
0.00  
0.05  
Contact Thickness  
Overall Length  
Overall Width  
.079 BSC  
.118 BSC  
2.00 BSC  
3.00 BSC  
E
Exposed Pad Length  
Exposed Pad Width  
Contact Length §  
D2  
E2  
L
.051  
.059  
.012  
.008  
.008  
.069  
.075  
.020  
1.30**  
1.50**  
0.30  
1.75  
1.90  
0.50  
.016  
0.40  
Contact-to-Exposed Pad  
Contact Width  
§
K
0.20  
b
.010  
.012  
0.20  
0.25  
0.30  
*
Controlling Parameter  
** Not within JEDEC parameters  
Significant Characteristic  
Notes:  
§
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Exposed pad may vary according to die attach paddle size.  
3. Package may have one or more exposed tie bars at ends.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
See ASME Y14.5M  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
See ASME Y14.5M  
JEDEC Equivalent MO-229 VCED-2  
Revised 09-12-05  
DWG No. C04-123  
DS21984B-page 16  
© 2006 Microchip Technology Inc.  
MCP73831/2  
5-Lead Plastic Small Outline Transistor (OT) (SOT-23)  
E
E1  
p
B
p1  
D
n
1
α
c
A
A2  
φ
L
A1  
β
Units  
INCHES  
*
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
5
5
.038  
0.95  
p1  
A
Outside lead pitch (basic)  
Overall Height  
.075  
.046  
.043  
.003  
.110  
.064  
.116  
.018  
1.90  
1.18  
1.10  
0.08  
2.80  
1.63  
2.95  
0.45  
.035  
.057  
0.90  
1.45  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.035  
.000  
.102  
.059  
.110  
.014  
.051  
.006  
.118  
.069  
.122  
.022  
10  
0.90  
0.00  
2.60  
1.50  
2.80  
0.35  
1.30  
0.15  
3.00  
1.75  
3.10  
0.55  
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
f
Foot Angle  
0
5
0
5
10  
c
Lead Thickness  
Lead Width  
.004  
.014  
.006  
.017  
.008  
.020  
10  
0.09  
0.35  
0.15  
0.43  
0.20  
0.50  
B
a
b
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
0
5
5
0
5
5
10  
10  
10  
0
*
Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.  
EIAJ Equivalent: SC-74A  
Revised 09-12-05  
Drawing No. C04-091  
© 2006 Microchip Technology Inc.  
DS21984B-page 17  
MCP73831/2  
NOTES:  
DS21984B-page 18  
© 2006 Microchip Technology Inc.  
MCP73831/2  
APPENDIX A: REVISION HISTORY  
Revision B (March 2006)  
• Added MCP73832 through document.  
Revision A (November 2005)  
• Original Release of this Document.  
© 2006 Microchip Technology Inc.  
DS21984B-page 19  
MCP73831/2  
NOTES:  
DS21984B-page 20  
© 2006 Microchip Technology Inc.  
MCP73831/2  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples: *  
PART NO.  
X
/XX  
XX  
X
a)  
b)  
c)  
d)  
MCP73831-2ACI/OT: 4.20V VREG,  
Options AC, 5LD SOT23 Pkg  
MCP73831T-2ACI/OT: Tape and Reel,  
4.20V VREG, Options AC, 5LD SOT23 Pkg  
MCP73832-2ACI/MC: 4.20V VREG  
Options AC, 8LD DFN Package  
MCP73832T-2ACI/MC: Tape and Reel,  
4.20V VREG, Options AC, 8LD DFN Package  
Device  
VREG  
Package  
Options Temperature  
Range  
,
Device:  
MCP73831:  
Single-Cell Charge Controller  
MCP73831T: Single-Cell Charge Controller  
(Tape and Reel)  
MCP73832  
MCP73832T: Single-Cell Charge Controller  
(Tape and Reel)  
Single-Cell Charge Controller  
a)  
b)  
c)  
d)  
MCP73831-2ATI/OT: 4.20V VREG,  
Options AT, 5LD SOT23 Pkg  
MCP73831T-2ATI/OT: Tape and Reel,  
4.20V VREG, Options AT, 5LD SOT23 Pkg  
MCP73832-2ATI/MC: 4.20V VREG  
,
Regulation  
Voltage:  
Code  
VREG  
Options AT, 8LD DFN Package  
MCP73832T-2ATI/MC: Tape and Reel,  
4.20V VREG, Options AT, 8LD DFN Package  
2
3
4
5
=
=
=
=
4.20V  
4.35V  
4.40V  
4.50V  
a)  
b)  
c)  
d)  
MCP73831-2DCI/OT: 4.20V VREG,  
Options DC, 5LD SOT23 Pkg  
MCP73831T-2DCI/OT: Tape and Reel,  
4.20V VREG, Options DC, 5LD SOT23 Pkg  
Options: *  
Code  
IPREG/IREG VPTH/VREG ITERM/IREG VRTH/VREG  
MCP73832-2DCI/MC: 4.20V VREG  
,
Options DC, 8LD DFN Package  
AC  
AD  
AT  
10  
10  
66.5  
66.5  
71.5  
x
7.5  
7.5  
20  
96.5  
94  
94  
MCP73832T-2DCI/MC: Tape and Reel,  
4.20V VREG, Options DC, 8LD DFN Package  
10  
100  
DC  
7.5  
96.5  
a)  
b)  
c)  
d)  
MCP73831-3ACI/OT: 4.35V VREG,  
Options AC, 5LD SOT23 Pkg  
MCP73831T-3ACI/OT: Tape and Reel,  
4.35V VREG, Options AC, 5LD SOT23 Pkg  
* Consult Factory for Alternative Device Options  
Temperature  
Range:  
I
=
-40°C to +85°C (Industrial)  
MCP73832-3ACI/MC: 4.35V VREG  
,
Options AC, 8LD DFN Package  
MCP73832T-3ACI/MC: Tape and Reel,  
4.35V VREG, Options AC, 8LD DFN Package  
Package:  
MC  
OT  
=
=
Dual-Flat, No-Lead (2x3 mm body), 8-Lead  
Small Outline Transistor (SOT23), 5-Lead  
a)  
b)  
c)  
d)  
MCP73831-4ADI/OT: 4.40V VREG,  
Options AD, 5LD SOT23 Pkg  
MCP73831T-4ADI/OT: Tape and Reel,  
4.40V VREG, Options AD, 5LD SOT23 Pkg  
MCP73832-4ADI/MC: 4.40V VREG  
,
Options AD, 8LD DFN Package  
MCP73832T-4ADI/MC: Tape and Reel,  
4.40V VREG, Options AD, 8LD DFN Package  
a)  
b)  
c)  
d)  
MCP73831-5ACI/OT: 4.50V VREG,  
Options AC, 5LD SOT23 Pkg  
MCP73831T-5ACI/OT: Tape and Reel,  
4.50V VREG, Options AC, 5LD SOT23 Pkg  
MCP73832-5ACI/MC: 4.50V VREG  
,
Options AC, 8LD DFN Package  
MCP73832T-5ACI/MC: Tape and Reel,  
4.50V VREG, Options AC, 8LD DFN Package  
* Consult Factory for Alternate Device Options  
© 2006 Microchip Technology Inc.  
DS21984B-page 21  
MCP73831/2  
NOTES:  
DS21984B-page 22  
© 2006 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION, INCLUDING BUT NOT  
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,  
MERCHANTABILITY OR FITNESS FOR PURPOSE.  
Microchip disclaims all liability arising from this information and  
its use. Use of Microchip devices in life support and/or safety  
applications is entirely at the buyer’s risk, and the buyer agrees  
to defend, indemnify and hold harmless Microchip from any and  
all damages, claims, suits, or expenses resulting from such  
use. No licenses are conveyed, implicitly or otherwise, under  
any Microchip intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC, and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,  
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial  
Programming, ICSP, ICEPIC, Linear Active Thermistor,  
MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM,  
PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo,  
PowerMate, PowerTool, REAL ICE, rfLAB, rfPICDEM, Select  
Mode, Smart Serial, SmartTel, Total Endurance, UNI/O,  
WiperLock and Zena are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2006, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in  
October 2003. The Company’s quality system processes and  
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2006 Microchip Technology Inc.  
DS21984B-page 23  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
ASIA/PACIFIC  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
ASIA/PACIFIC  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
EUROPE  
Austria - Wels  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
India - New Delhi  
Tel: 91-11-5160-8631  
Fax: 91-11-5160-8632  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8676-6200  
Fax: 86-28-8676-6599  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Atlanta  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Korea - Seoul  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
San Jose  
Mountain View, CA  
Tel: 650-215-1444  
Fax: 650-961-0286  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
02/16/06  
DS21984B-page 24  
© 2006 Microchip Technology Inc.  

相关型号:

MCP73831T-5ADI/OT

Miniature Single-Cell, Fully Integrated Li-Ion, Li-Polymer Charge Management Controllers
MICROCHIP

MCP73831T-5ATI/MC

Miniature Single-Cell, Fully Integrated Li-Ion, Li-Polymer Charge Management Controllers
MICROCHIP

MCP73831T-5ATI/OT

Miniature Single-Cell, Fully Integrated Li-Ion, Li-Polymer Charge Management Controllers
MICROCHIP

MCP73831T-5DCI/MC

Miniature Single-Cell, Fully Integrated Li-Ion, Li-Polymer Charge Management Controllers
MICROCHIP

MCP73831T-5DCI/OT

Miniature Single-Cell, Fully Integrated Li-Ion, Li-Polymer Charge Management Controllers
MICROCHIP

MCP73831_08

Miniature Single-Cell, Fully Integrated Li-Ion, Li-Polymer Charge Management Controllers
MICROCHIP

MCP73831_13

Miniature Single-Cell, Fully Integrated Li-Ion, Li-Polymer Charge Management Controllers
MICROCHIP

MCP73832

Miniature Single-Cell, Fully Integrated Li-Ion, Li-Polymer Charge Management Controllers
MICROCHIP

MCP73832-2ACI/MC

Miniature Single-Cell, Fully Integrated Li-Ion, Li-Polymer Charge Management Controllers
MICROCHIP

MCP73832-2ACI/OT

Miniature Single-Cell, Fully Integrated Li-Ion, Li-Polymer Charge Management Controllers
MICROCHIP

MCP73832-2ADI/MC

Miniature Single-Cell, Fully Integrated Li-Ion, Li-Polymer Charge Management Controllers
MICROCHIP

MCP73832-2ADI/OT

Miniature Single-Cell, Fully Integrated Li-Ion, Li-Polymer Charge Management Controllers
MICROCHIP