MCP6V16UT-EOT [MICROCHIP]

7.5 μA, 80 kHz Zero-Drift Op Amps;
MCP6V16UT-EOT
型号: MCP6V16UT-EOT
厂家: MICROCHIP    MICROCHIP
描述:

7.5 μA, 80 kHz Zero-Drift Op Amps

文件: 总52页 (文件大小:3439K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6V16/6U/7/9  
7.5 µA, 80 kHz Zero-Drift Op Amps  
Features  
Description  
• High DC Precision:  
The Microchip Technology Inc. MCP6V16/6U/7/9  
family of operational amplifiers provides input offset  
voltage correction for very low offset and offset drift.  
These are low-power devices, with a gain bandwidth  
product of 80 kHz (typical). They are unity gain stable,  
have virtually no 1/f noise, and have good Power  
Supply Rejection Ratio (PSRR) and Common-Mode  
Rejection Ratio (CMRR). These products operate with  
a single supply voltage as low as 1.6V, while drawing  
7.5 µA/amplifier (typical) of quiescent current.  
- VOS Drift: ±150 nV/°C (maximum)  
- VOS: ±25 µV (maximum)  
- AOL: 102 dB (minimum, VDD = 5.5V)  
- PSRR: 108 dB (minimum, VDD = 5.5V)  
- CMRR: 109 dB (minimum, VDD = 5.5V)  
- Eni: 2.1 µVP-P (typical), f = 0.1 Hz to 10 Hz  
- Eni: 0.67 µVP-P (typical), f = 0.01 Hz to 1 Hz  
• Low Power and Supply Voltages:  
- IQ: 7.5 µA/amplifier (typical)  
The Microchip Technology Inc. MCP6V16/6U/7/9 op  
amps are offered in single (MCP6V16 and  
MCP6V16U), dual (MCP6V17) and quad (MCP6V19)  
packages. They were designed using an advanced  
CMOS process.  
- Wide Supply Voltage Range: 1.6V to 5.5V  
• Small Packages:  
- Singles in SC70, SOT-23  
- Duals in MSOP-8, 2×3 TDFN  
- Quads in TSSOP-14  
Package Types  
• Easy to Use:  
MCP6V16  
SOT-23  
MCP6V17  
MSOP  
- Rail-to-Rail Input/Output  
- Gain Bandwidth Product: 80 kHz (typical)  
- Unity Gain Stable  
VDD  
8
1
2
3
4
VOUT  
VSS  
VDD VOUTA  
1
5
4
VOUTB  
7
6
5
VINA  
VINA  
+
2
3
• Extended Temperature Range: -40°C to +125°C  
VINB  
+
VIN+  
VIN–  
VINB  
VSS  
Typical Applications  
MCP6V16U  
SC70, SOT-23  
• Portable Instrumentation  
• Sensor Conditioning  
MCP6V17  
2×3 TDFN*  
Temperature Measurement  
• DC Offset Correction  
VOUTA  
VDD  
1
8
VIN+  
VSS  
VDD  
1
2
3
5
VINA  
+
VOUTB  
2
3
4
7
6
5
EP  
9
• Medical Instrumentation  
VINA  
VINB  
VINB  
+
VIN–  
VOUT  
4
VSS  
Design Aids  
• SPICE Macro Models  
MCP6V19  
TSSOP  
• Microchip Advanced Part Selector (MAPS)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
V
1
14  
13  
12  
11  
10  
9
VOUTA  
OUTD  
V
V
V
+
2
3
4
5
6
7
VINA  
VINA  
+
IND  
IND  
SS  
Related Parts  
VDD  
V
+
VINB  
VINB  
+
INC  
• MCP6V01/2/3: Auto-Zeroed, Spread Clock  
• MCP6V06/7/8: Auto-Zeroed  
VINC  
VOUTC  
VOUTB  
8
• MCP6V11/1U/2/4: Zero-Drift, Low Power  
• MCP6V26/7/8: Auto-Zeroed, Low Noise  
• MCP6V31/1U/2/4: Zero-Drift, Low Power  
* Includes Exposed Thermal Pad (EP); see  
Table 3-1.  
2019 Microchip Technology Inc.  
DS20006204A-page 1  
MCP6V16/6U/7/9  
Typical Application Circuit  
R1  
R3  
VIN  
VOUT  
R2  
R4  
R5  
C2  
U1  
MCP6XXX  
VDD/2  
R2  
VDD/2  
U2  
MCP6V16  
Offset Voltage Correction for Power Driver  
DS20006204A-page 2  
2019 Microchip Technology Inc.  
MCP6V16/6U/7/9  
1.0  
1.1  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
VDD – VSS .................................................................................................................................................................6.5V  
Current at Input Pins ..............................................................................................................................................±2 mA  
Analog Inputs (VIN+ and VIN–) (Note 1) .....................................................................................VSS – 1.0V to VDD+1.0V  
All other Inputs and Outputs .......................................................................................................VSS – 0.3V to VDD+0.3V  
Difference Input voltage .................................................................................................................................|VDD – VSS  
|
Output Short Circuit Current ...........................................................................................................................Continuous  
Current at Output and Supply Pins ......................................................................................................................±30 mA  
Storage Temperature .............................................................................................................................-65°C to +150°C  
Maximum Junction Temperature .......................................................................................................................... +150°C  
ESD protection on all pins (HBM, CDM, MM)   2 kV, 1.5 kV, 400V  
Note 1: See Section 4.2.1, Rail-to-Rail Inputs.  
† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
1.2  
Specifications  
DC ELECTRICAL SPECIFICATIONS  
TABLE 1-1:  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.6V to +5.5V, VSS = GND,  
VCM = VDD/3,VOUT = VDD/2, VL = VDD/2, RL = 100 kto VL and CL = 20 pF (refer to Figure 1-4 and Figure 1-5).  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Input Offset  
Input Offset Voltage  
VOS  
TC1  
-25  
+25  
µV  
TA = +25°C  
Input Offset Voltage Drift with  
Temperature (Linear Temp. Co.)  
-150  
+150  
nV/°C TA = -40 to +125°C  
(Note 1)  
Input Offset Voltage Quadratic  
Temp. Co.  
TC2  
±0.08  
135  
nV/°C2 TA = -40 to +125°C  
Power Supply Rejection Ratio  
Input Bias Current and Impedance  
Input Bias Current  
PSRR  
108  
dB  
IB  
IB  
0
+5  
+17  
+5  
+1  
pA  
Input Bias Current across Temperature  
pA  
nA  
TA = +85°C  
IB  
+2.9  
±50  
TA = +125°C  
Input Offset Current  
IOS  
IOS  
IOS  
ZCM  
ZDIFF  
-1  
pA  
Input Offset Current across Temperature  
±80  
pA  
TA = +85°C  
±0.4  
nA  
TA = +125°C  
Common-Mode Input Impedance  
Differential Input Impedance  
1013||6  
1013||6  
||pF  
||pF  
Note 1: For Design Guidance only; not tested.  
2: Figure 2-15 shows how VCML and VCMH changed across temperature for the first production lot.  
2019 Microchip Technology Inc.  
DS20006204A-page 3  
MCP6V16/6U/7/9  
TABLE 1-1:  
DC ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.6V to +5.5V, VSS = GND,  
VCM = VDD/3,VOUT = VDD/2, VL = VDD/2, RL = 100 kto VL and CL = 20 pF (refer to Figure 1-4 and Figure 1-5).  
Parameters  
Common-Mode  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Common-Mode  
Input Voltage Range Low  
VCML  
VSS 0.15  
V
V
(Note 2)  
Common-Mode  
Input Voltage Range High  
VCMH VDD + 0.2  
(Note 2)  
Common-Mode Rejection Ratio  
CMRR  
CMRR  
98  
125  
dB  
VDD = 1.6V,  
VCM = -0.15V to 1.8V  
(Note 2)  
109  
135  
dB  
VDD = 5.5V,  
VCM = -0.15V to 5.7V  
(Note 2)  
Open-Loop Gain  
DC Open-Loop Gain (large signal)  
AOL  
AOL  
90  
120  
135  
dB  
dB  
VDD = 1.6V,  
VOUT = 0.3V to 1.4V  
102  
VDD = 5.5V,  
VOUT = 0.3V to 5.3V  
Output  
Minimum Output Voltage Swing  
VOL  
VOL  
VOH  
VOH  
VSS  
VSS + 14 VSS + 45  
mV RL = 10 k, G = +2,  
0.5V input overdrive  
VSS + 1.4  
VDD  
mV RL = 100 k, G = +2,  
0.5V input overdrive  
Maximum Output Voltage Swing  
Output Short Circuit Current  
VDD – 45 VDD – 14  
mV RL = 10 k, G = +2,  
0.5V input overdrive  
VDD – 1.4  
mV RL = 100 k, G = +2,  
0.5V input overdrive  
ISC  
ISC  
±5  
mA VDD = 1.6V  
mA VDD = 5.5V  
±17  
Power Supply  
Supply Voltage  
VDD  
IQ  
1.6  
4
7.5  
6.5  
5.5  
11  
V
Quiescent Current per Amplifier  
µA  
IO = 0, MCP6V16/6U  
IO = 0, MCP6V17/19  
3
11  
POR Trip Voltage  
VPOR  
0.9  
1.5  
V
Note 1: For Design Guidance only; not tested.  
2: Figure 2-15 shows how VCML and VCMH changed across temperature for the first production lot.  
DS20006204A-page 4  
2019 Microchip Technology Inc.  
MCP6V16/6U/7/9  
TABLE 1-2:  
AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.6V to +5.5V, VSS = GND,  
VCM = VDD/3, VOUT = VDD/2, VL = VDD/2, RL = 100 kto VL and CL = 20 pF (refer to Figure 1-4 and Figure 1-5).  
Parameters  
Sym. Min. Typ. Max. Units  
Conditions  
Amplifier AC Response  
Gain Bandwidth Product  
Slew Rate  
GBWP  
SR  
80  
0.03  
70  
kHz  
V/µs  
°
Phase Margin  
PM  
G = +1  
Amplifier Noise Response  
Input Noise Voltage  
Eni  
Eni  
eni  
ini  
0.67  
2.1  
102  
4
µVP-P f = 0.01 Hz to 1 Hz  
µVP-P f = 0.1 Hz to 10 Hz  
nV/Hz f < 500 Hz  
fA/Hz  
Input Noise Voltage Density  
Input Noise Current Density  
Amplifier Distortion (Note 1)  
Intermodulation Distortion (AC)  
Amplifier Step Response  
Start Up Time  
IMD  
50  
µVPK VCM tone = 50 mVPK at 100 Hz, GN = 1  
tSTR  
tSTL  
2
ms  
µs  
G = +1, 0.1% VOUT settling (Note 2)  
Offset Correction Settling Time  
300  
G = +1, VIN step of 2V,  
VOS within 100 µV of its final value  
Output Overdrive Recovery Time tODR  
450  
µs  
G = -10, ±0.5V input overdrive to VDD/2,  
VIN 50% point to VOUT 90% point (Note 3)  
Note 1: These parameters were characterized using the circuit in Figure 1-6. In Figure 2-33 and Figure 2-34,  
there is an IMD tone at DC, a residual tone at1 kHz and other IMD tones and clock tones.  
2: High gains behave differently; see Section 4.3.3, Offset at Power Up.  
3:  
t
ODR includes some uncertainty due to clock edge timing.  
TABLE 1-3:  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for: VDD = +1.6V to +5.5V,  
VSS = GND.  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
(Note 1)  
Thermal Package Resistances  
Thermal Resistance, 5L-SC-70  
JA  
JA  
θJA  
θJA  
θJA  
209  
201  
53  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 8L-2×3 TDFN  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 14L-TSSOP  
211  
100  
Note 1: Operation must not cause TJ to exceed Maximum Junction Temperature specification (+150°C).  
2019 Microchip Technology Inc.  
DS20006204A-page 5  
MCP6V16/6U/7/9  
1.3  
Timing Diagrams  
1.4  
Test Circuits  
The circuits used for most DC and AC tests are shown  
in Figure 1-4 and Figure 1-5. Lay the bypass capacitors  
out as discussed in Section 4.3.10, Supply Bypassing  
and Filtering. RN is equal to the parallel combination of  
RF and RG to minimize bias current effects.  
1.6V to 5.5V  
1.6V  
0V  
VDD  
tSTR  
1.001(VDD/3)  
0.999(VDD/3)  
VOUT  
VDD  
1 µF  
RN  
MCP6V1X  
VDD/3  
VIN  
FIGURE 1-1:  
Amplifier Start Up.  
RISO  
CL  
VOUT  
VIN  
RL  
100 nF  
RF  
tSTL  
VOS + 100 µV  
OS – 100 µV  
VL  
RG  
VOS  
V
FIGURE 1-4:  
AC and DC Test Circuit for  
Most Noninverting Gain Conditions.  
FIGURE 1-2:  
Offset Correction Settling  
Time.  
VDD  
1 µF  
RN  
VDD/3  
VIN  
RISO  
CL  
VOUT  
MCP6V1X  
tODR  
RL  
100 nF  
RF  
VIN  
VDD  
VL  
RG  
tODR  
VOUT  
VDD/2  
FIGURE 1-5:  
AC and DC Test Circuit for  
Most Inverting Gain Conditions.  
VSS  
The circuit in Figure 1-6 tests the input’s dynamic  
FIGURE 1-3:  
Output Overdrive Recovery.  
behavior (i.e., IMD, tSTR, tSTL and tODR). The  
potentiometer balances the resistor network (VOUT  
should equal VREF at DC). The op amp’s Common-  
mode input voltage is VCM = VIN/2. The error at the  
input (VERR) appears at VOUT with a noise gain of  
10 V/V.  
11.0 k100 k500Ω  
0.1%  
0.1% 25 turn  
VREF = VDD/3  
VDD  
RISO  
0Ω  
1 µF  
VOUT  
VIN  
100 nF  
CL  
20 pF  
RL  
open  
MCP6V1X  
VL  
11.0 kΩ  
100 k249Ω  
1%  
0.1%  
0.1%  
FIGURE 1-6:  
Test Circuit for Dynamic  
Input Behavior.  
DS20006204A-page 6  
2019 Microchip Technology Inc.  
MCP6V16/6U/7/9  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.6V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 100 kto VL and CL = 20 pF.  
2.1  
DC Input Precision  
8
6
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
VCM = VCML  
52 Samples  
Representative Part  
TA = +25°C  
VDD = 1.6V and 5.5V  
4
2
-40°C  
+25°C  
+85°C  
+125°C  
0
-2  
-4  
-6  
-8  
0%  
-8  
-6  
-4  
-2  
0
2
4
6
8
Input Offset Voltage (µV)  
Power Supply Voltage (V)  
FIGURE 2-1:  
Input Offset Voltage.  
FIGURE 2-4:  
Input Offset Voltage vs.  
Power Supply Voltage with VCM = VCML  
.
8
55%  
VCM = VCMH  
Representative Part  
+125°C  
+85°C  
+25°C  
-40°C  
52 Samples  
VDD = 1.6V and 5.5V  
6
4
50%  
45%  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
2
0
-2  
-4  
-6  
-8  
0%  
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
Input Offset Voltage Drift; TC1 (nV/°C)  
Power Supply Voltage (V)  
FIGURE 2-2:  
Input Offset Voltage Drift.  
FIGURE 2-5:  
Input Offset Voltage vs.  
Power Supply Voltage with VCM = VCMH  
.
8
50%  
Representative Part  
52 Samples  
VDD = 1.6V and 5.5V  
6
4
45%  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
2
VDD = 5.5V  
0
VDD = 1.6V  
-2  
-4  
-6  
-8  
0%  
-160 -120 -80  
-40  
0
40  
80  
120 160  
Input Offset Voltage's Quadratic Temp Co;  
TC2(pV/°C2)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
FIGURE 2-3:  
Input Offset Voltage  
FIGURE 2-6:  
Input Offset Voltage vs.  
Quadratic Temp. Co.  
Output Voltage.  
2019 Microchip Technology Inc.  
DS20006204A-page 7  
MCP6V16/6U/7/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.6V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 100 kto VL and CL = 20 pF.  
160  
155  
150  
145  
140  
135  
130  
125  
120  
115  
110  
8
6
VDD = 1.6V  
Representative Part  
4
VDD = 5.5V  
VDD = 1.6V  
2
0
-2  
-4  
-6  
-8  
-40°C  
+25°C  
+85°C  
+125°C  
-0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
-50  
-25  
0
25  
50  
75  
100  
125  
Input Common Mode Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-7:  
Input Offset Voltage vs.  
FIGURE 2-10:  
DC Open-Loop Gain vs.  
Common-Mode Voltage with VDD = 1.6V.  
Ambient Temperature.  
8
200  
TA = +85°C  
VDD = 5.5V  
VDD = 5.5V  
150  
Representative Part  
6
4
2
0
100  
50  
IB  
0
-2  
-50  
-100  
-150  
-200  
-40°C  
+25°C  
-4  
+85°C  
+125°C  
IOS  
-6  
-8  
Input Common Mode Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-8:  
Input Offset Voltage vs.  
FIGURE 2-11:  
Input Bias and Offset  
Common-Mode Voltage with VDD = 5.5V.  
Currents vs. Common-Mode Input Voltage with  
TA = +85°C.  
160  
155  
5000  
TA = +125°C  
V
DD
= 5.5V  
4000  
150  
PSRR  
3000  
2000  
145  
140  
135  
130  
125  
120  
IB  
1000  
0
IOS  
CMRR  
-1000  
-2000  
VDD = 5.5V  
VDD = 1.6V  
115  
110  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Common Mode Input Voltage (V)  
FIGURE 2-9:  
CMRR and PSRR vs.  
FIGURE 2-12:  
Input Bias and Offset  
Ambient Temperature.  
Currents vs. Common-Mode Input Voltage with  
TA = +125°C.  
DS20006204A-page 8  
2019 Microchip Technology Inc.  
MCP6V16/6U/7/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.6V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 100 kto VL and CL = 20 pF.  
100
10n  
VDD = 5.5V  
100
1n  
100  
100p  
IOS  
10p  
IB  
1p  
25 35 45 55 65 75 85 95 105 115 125  
Ambient Temperature (°C)  
FIGURE 2-13:  
Currents vs. Ambient Temperature with  
DD = +5.5V.  
Input Bias and Offset  
V
1.E-02  
10m  
1.E-03  
1m  
1.E-04  
100µ  
1.E-05  
10µ  
1.E-06  
1µ  
1.E- 7  
100n  
+125°C  
+85°C  
+25°C  
-40°C  
1.E-08  
10n  
1.E-09  
1n  
1.E-10  
100p  
1.E-11  
10p  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
Input Voltage (V)  
FIGURE 2-14:  
Input Bias Current vs. Input  
Voltage (below VSS).  
2019 Microchip Technology Inc.  
DS20006204A-page 9  
MCP6V16/6U/7/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.6V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 100 kto VL and CL = 20 pF.  
2.2  
Other DC Voltages and Currents  
40  
30  
0.4  
1 Wafer Lot  
-40°C  
+25°C  
+85°C  
+125°C  
0.3  
0.2  
Upper ( VCMH – VDD  
)
20  
10  
0.1  
0
0.0  
-10  
-20  
-30  
-40  
-0.1  
-0.2  
-0.3  
-0.4  
Lower (VCML – VSS  
)
+125°C  
+85°C  
+25°C  
-40°C  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature (°C)  
Power Supply Voltage (V)  
FIGURE 2-15:  
Input Common-Mode  
FIGURE 2-18:  
Output Short Circuit Current  
Voltage Headroom (Range) vs. Ambient  
Temperature.  
vs. Power Supply Voltage.  
1000  
11  
10  
9
Representative Part  
8
7
6
VDD – VOH  
VOL – VSS  
100  
VDD = 5.5V  
VDD = 1.6V  
5
4
3
2
1
0
10  
1
+125°C  
+85°C  
+25°C  
-40°C  
0.1  
1
10  
Output Current Magnitude (mA)  
Power Supply Voltage (V)  
FIGURE 2-16:  
Output Voltage Headroom  
FIGURE 2-19:  
Supply Current vs. Power  
vs. Output Current.  
Supply Voltage.  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
12  
11  
10  
9
8
RL = 25 kȍ  
7
VDD = 5.5V  
6
5
4
3
VDD – VOH  
2
VOL – VSS  
VDD = 1.6V  
1
0
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-17:  
Output Voltage Headroom  
FIGURE 2-20:  
Power-on Reset Voltage vs.  
vs. Ambient Temperature.  
Ambient Temperature.  
DS20006204A-page 10  
2019 Microchip Technology Inc.  
MCP6V16/6U/7/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.6V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 100 kto VL and CL = 20 pF.  
2.3  
Frequency Response  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
140  
120  
100  
80  
100  
90  
80  
70  
60  
50  
40  
30  
PM  
VDD = 5.5V  
CMRR  
60  
40  
VDD = 1.6V  
GBWP  
PSRR  
20  
0
10  
1.E+01  
1k  
10k  
1.E+04  
100k  
1.E+05  
-50  
-25  
0
25  
50  
75  
100 125  
100  
1.E+02  
1.E+03  
Ambient Temperature (°C)  
Frequency (Hz)  
FIGURE 2-21:  
CMRR and PSRR vs.  
FIGURE 2-24:  
Gain Bandwidth Product  
Frequency.  
and Phase Margin vs. Ambient Temperature.  
70  
60  
50  
40  
30  
20  
10  
0
0
140  
120  
100  
80  
100  
90  
80  
70  
60  
50  
40  
30  
VDD = 1.6V  
RF = 1 MŸ  
PM  
GBWP  
C
L = 20 pF  
-30  
-60  
-90  
-120  
-150  
-180  
-210  
-240  
-270  
‘AOL  
60  
VDD = 5.5V  
40  
| AOL  
|
VDD = 1.6V  
20  
-10  
0
-20  
1.E+02  
100  
1k  
10k  
1.E+04  
100k  
1.E+05  
1M  
1.E+06  
1.E+03  
Frequency (Hz)  
Common Mode Input Voltage (V)  
FIGURE 2-22:  
Open-Loop Gain vs.  
FIGURE 2-25:  
Gain Bandwidth Product  
Frequency with VDD = 1.6V.  
and Phase Margin vs. Common-Mode Input  
Voltage.  
70  
60  
50  
40  
30  
20  
10  
0
0
140  
120  
100  
80  
100  
90  
80  
70  
60  
50  
40  
30  
VDD = 5.5V  
CL = 20 pF  
VDD = 5.5V  
-30  
GBWP  
-60  
-90  
-120  
-150  
-180  
-210  
-240  
-270  
PM  
‘AOL  
60  
40  
| AOL  
|
VDD = 1.6V  
20  
-10  
-20  
0
100  
1.E+02  
1k  
1.E+03  
10k  
1.E+04  
100k  
1.E+05  
1M  
1.E+06  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
Frequency (Hz)  
FIGURE 2-23:  
Open-Loop Gain vs.  
FIGURE 2-26:  
Gain Bandwidth Product  
Frequency with VDD = 5.5V.  
and Phase Margin vs. Output Voltage.  
2019 Microchip Technology Inc.  
DS20006204A-page 11  
MCP6V16/6U/7/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.6V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 100 kto VL and CL = 20 pF.  
1.E+05  
100k  
140  
120  
100  
80  
VDD = 1.6V  
1.E+04  
10k  
1.E+03  
1k  
MCP6V17  
MCP6V19  
60  
1.E+02  
100  
40  
1.E+01  
10  
G = 1 V/V  
G = 11 V/V  
G = 101 V/V  
20  
1.E+00  
1
0
100  
1k  
1.E+03  
10k  
100k  
1.E+05  
1M  
1.E+06  
1k  
10k  
14  
100k  
1
1M  
1.
1.03  
1.E+02  
1.E+04  
Frequency (Hz)  
Frequency (Hz)  
FIGURE 2-27:  
Closed-Loop Output  
FIGURE 2-29:  
Channel-to-Channel  
Impedance vs. Frequency with VDD = 1.6V.  
Separation vs. Frequency.  
10  
1.E+05  
100k  
VDD = 5.5V  
VDD = 5.5V  
1.E+04  
10k  
1.E+03  
1k  
VDD = 1.6V  
1
1.E+02  
1.E+03  
1.E+04  
10k  
1.E+05  
100k  
1.E+02  
100  
1.E+01  
10  
G = 1 V/V  
G = 11 V/V  
G = 101 V/V  
1.E+00  
0.1  
1
100  
1k  
1.E+03  
10k  
100k  
1.E+05  
1M  
1.E+06  
100  
1k  
1.E+02  
1.E+04  
Frequency (Hz)  
Frequency (Hz)  
FIGURE 2-28:  
Closed-Loop Output  
FIGURE 2-30:  
Maximum Output Voltage  
Impedance vs. Frequency with VDD = 5.5V.  
Swing vs. Frequency.  
DS20006204A-page 12  
2019 Microchip Technology Inc.  
MCP6V16/6U/7/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.6V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 100 kto VL and CL = 20 pF.  
2.4  
Input Noise and Distortion  
1000  
100  
10  
1000  
1000  
100  
10  
GDM = 1 V/V  
VDD tone = 50 mVPK, f = 100 Hz  
eni  
100  
10  
1
IMD tone at DC  
100 Hz tone  
VDD = 5.5V  
VDD = 1.6V  
VDD = 5.5V  
DD = 1.6V  
V
Eni(0 Hz to f)  
1
100k  
1
10  
100  
1k  
10k  
1
10  
100  
1k  
10k  
1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05  
Frequency (Hz)  
1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05  
Frequency (Hz)  
FIGURE 2-31:  
Input Noise Voltage Density  
FIGURE 2-34:  
Intermodulation Distortion  
and Integrated Input Noise Voltage vs.  
Frequency.  
vs. Frequency with VDD Disturbance  
(see Figure 1-6).  
160  
140  
VDD = 1.6V  
f < 500 Hz  
VDD = 1.6V  
120  
100  
VDD = 5.5V  
80  
60  
40  
20  
0
NPBW = 10 Hz  
NPBW = 1 Hz  
0
10 20 30 40 50 60 70 80 90 100  
Time (s)  
Common Mode Input Voltage (V)  
FIGURE 2-32:  
Input Noise Voltage Density  
FIGURE 2-35:  
Input Noise vs. Time with  
vs. Input Common-Mode Voltage.  
1 Hz and 10 Hz Filters and VDD =1.6V.  
1000  
3.0  
GDM = 1 V/V  
VCM tone = 50 mVPK, f = 100 Hz  
VDD = 5.5V  
2.5  
2.0  
1.5  
1.0  
0.5  
100  
10  
1
residual 100 Hz tone  
IMD tone at DC  
VDD = 1.6V  
VDD = 5.5V  
0.0  
NPBW = 10 Hz  
-0.5  
-1.0  
-1.5  
NPBW = 1 Hz  
-2.0  
1
10  
100  
1k  
10k  
100k  
0
10 20 30 40 50 60 70 80 90 100  
Time (s)  
1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05  
Frequency (Hz)  
FIGURE 2-33:  
Intermodulation Distortion  
vs. Frequency with VCM Disturbance (see  
Figure 1-6).  
FIGURE 2-36:  
1 Hz and 10 Hz Filters and VDD =5.5V.  
Input Noise vs. Time with  
2019 Microchip Technology Inc.  
DS20006204A-page 13  
MCP6V16/6U/7/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.6V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 100 kto VL and CL = 20 pF.  
2.5  
Time Response  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
8
7
6
VDD = 5.5V  
G = 1  
G = 1  
5
VDD  
6
4
5
3
POR Trip Point  
4
2
3
1
2
0
1
-1  
-2  
-3  
-4  
0
VOS  
-1  
-2  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
Time (ms)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Time (ms)  
FIGURE 2-40:  
Step Response.  
Noninverting Large Signal  
FIGURE 2-37:  
Time at Power Up.  
Input Offset Voltage vs.  
80  
70  
60  
50  
40  
30  
20  
10  
0
7
6
VDD = 5.5V  
G = 1  
VDD = 5.5V  
G = -1  
VIN  
5
VOUT  
4
3
2
1
0
-1  
0
20 40 60 80 100 120 140 160 180 200  
Time (µs)  
0
2
4
6
8
10 12 14 16 18 20  
Time (ms)  
FIGURE 2-38:  
The MCP6V16/6U/7/9  
FIGURE 2-41:  
Inverting Small Signal Step  
Family Shows No Input Phase Reversal with  
Overdrive.  
Response.  
80  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 5.5V  
VDD = 5.5V  
G = -1  
G = 1  
70  
60  
50  
40  
30  
20  
10  
0
0
20 40 60 80 100 120 140 160 180 200  
Time (µs)  
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
Time (ms)  
FIGURE 2-39:  
Step Response.  
Noninverting Small Signal  
FIGURE 2-42:  
Response.  
Inverting Large Signal Step  
DS20006204A-page 14  
2019 Microchip Technology Inc.  
MCP6V16/6U/7/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.6V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 100 kto VL and CL = 20 pF.  
0.08  
VDD = 5.5V  
0.07  
Falling Edge  
0.06  
0.05  
0.04  
0.03  
0.02  
VDD = 1.6V  
0.01  
Rising Edge  
0.00  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
FIGURE 2-43:  
Slew Rate vs. Ambient  
Temperature.  
7
6
5
7
6
5
4
3
2
1
0
-1  
VOUT  
G VIN  
4
3
2
VDD = 5.5V  
G = -10 V/V  
0.5V Overdrive  
1
G VIN  
VOUT  
0
-1  
0
1
1
2
2
3
3
4
4
5
5
6
Time (500 µs/div)  
FIGURE 2-44:  
Output Overdrive Recovery  
vs. Time with G = -10 V/V.  
1.E
10m  
0.5V Input Overdrive  
VDD = 1.6V  
tODR, low  
1.E-
1m  
V
DD
= 5.5V  
tODR, high  
1.E
100µ  
1
10  
100  
1000  
Inverting Gain Magnitude (V/V)  
FIGURE 2-45:  
Output Overdrive Recovery  
Time vs. Inverting Gain.  
2019 Microchip Technology Inc.  
DS20006204A-page 15  
MCP6V16/6U/7/9  
NOTES:  
DS20006204A-page 16  
2019 Microchip Technology Inc.  
MCP6V16/6U/7/9  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1: PIN FUNCTION TABLE  
MCP6V16 MCP6V16U  
MCP6V17  
MCP6V19  
Symbol  
Description  
SOT-23,  
SOT-23  
2×3 TDFN MSOP  
TSSOP  
SC-70  
1
4
1
2
1
2
1
2
VOUT, VOUTA Output (Op Amp A)  
4
3
VIN–, VINA  
+
Inverting Input (Op Amp A)  
Noninverting Input (Op Amp A)  
Positive Power Supply  
3
1
3
3
3
VIN+, VINA  
VDD  
5
5
8
8
4
2
2
5
5
5
VINB  
+
Noninverting Input (Op Amp B)  
Inverting Input (Op Amp B)  
Output (Op Amp B)  
6
6
6
VINB  
7
7
7
VOUTB  
VOUTC  
4
4
8
Output (Op Amp C)  
9
VINC  
+
Inverting Input (Op Amp C)  
Noninverting Input (Op Amp C)  
Negative Power Supply  
Noninverting Input (Op Amp D)  
Inverting Input (Op Amp D)  
Output (Op Amp D)  
10  
11  
12  
13  
14  
VINC  
VSS  
9
VIND  
+
VIND  
VOUTD  
EP  
Exposed Thermal Pad (EP); must be  
connected to VSS  
3.1  
Analog Outputs  
3.4  
Exposed Thermal Pad (EP)  
The analog output pins (VOUT) are low-impedance  
voltage sources.  
There is an internal connection between the exposed  
thermal pad (EP) and the VSS pin; they must be  
connected to the same potential on the printed circuit  
board (PCB).  
3.2  
Analog Inputs  
This pad can be connected to a PCB ground plane to  
provide a larger heat sink. This improves the package  
thermal resistance (θJA).  
The noninverting and inverting inputs (VIN+, VIN–, …)  
are high-impedance CMOS inputs with low bias  
currents.  
3.3  
Power Supply Pins  
The positive power supply (VDD) is 1.6V to 5.5V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are between VSS and VDD  
.
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need bypass capacitors.  
2019 Microchip Technology Inc.  
DS20006204A-page 17  
MCP6V16/6U/7/9  
NOTES:  
DS20006204A-page 18  
2019 Microchip Technology Inc.  
MCP6V16/6U/7/9  
The Low-Pass Filter reduces high-frequency content,  
including harmonics of the Chopping Clock.  
4.0  
APPLICATIONS  
The MCP6V16/6U/7/9 family of zero-drift op amps is  
manufactured using Microchip’s state of the art CMOS  
process. It is designed for applications with  
requirements for small packages and low power. Its low  
supply voltage and low quiescent current make the  
MCP6V16/6U/7/9 devices ideal for battery-powered  
applications.  
The Output Buffer drives external loads at the VOUT pin  
(VREF is an internal reference voltage).  
The Oscillator runs at fOSC1 = 50 kHz. Its output is  
divided by two, to produce the Chopping Clock rate of  
fCHOP = 25 kHz.  
The internal POR part starts the part in a known good  
state, protecting against power supply brown-outs.  
4.1  
Overview of Zero-Drift Operation  
The Digital Control block controls switching and POR  
events.  
Figure 4-1 shows  
a
simplified diagram of the  
MCP6V16/6U/7/9 zero-drift op amps. This diagram will  
be used to explain how slow voltage errors are reduced  
in this architecture (much better VOS, VOS/TA (TC1),  
CMRR, PSRR, AOL and 1/f noise).  
4.1.2  
CHOPPING ACTION  
Figure 4-2 shows the amplifier connections for the first  
phase of the Chopping Clock and Figure 4-3 shows  
them for the second phase. Its slow voltage errors  
alternate in polarity, making the average error small.  
VREF  
Output  
VOUT  
VIN+  
Buffer  
VIN+  
Main  
VIN–  
Amp.  
NC  
Main  
VIN–  
Amp.  
NC  
Low-Pass  
Filter  
Low-Pass  
Filter  
Aux.  
Amp.  
Chopper  
Input  
Switches  
Chopper  
Output  
Switches  
Aux.  
Amp.  
FIGURE 4-2:  
First Chopping Clock Phase;  
Equivalent Amplifier Diagram.  
VIN+  
Oscillator  
Digital Control  
POR  
Main  
VIN–  
FIGURE 4-1:  
Amp Functional Diagram.  
Simplified Zero-Drift Op  
Amp.  
NC  
4.1.1  
BUILDING BLOCKS  
Low-Pass  
Filter  
The Main Amplifier is designed for high gain and  
bandwidth, with a differential topology. Its main input  
pair (+ and - pins at the top left) is used for the higher  
frequency portion of the input signal. Its auxiliary input  
pair (+ and - pins at the bottom left) is used for the low-  
frequency portion of the input signal and corrects the  
op amp’s input offset voltage. Both inputs are added  
together internally.  
Aux.  
Amp.  
The Auxiliary Amplifier, Chopper Input Switches and  
Chopper Output Switches provide a high DC gain to the  
input signal. DC errors are modulated to higher  
frequencies, while white noise is modulated to low  
frequency.  
FIGURE 4-3:  
Phase; Equivalent Amplifier Diagram.  
Second Chopping Clock  
2019 Microchip Technology Inc.  
DS20006204A-page 19  
MCP6V16/6U/7/9  
4.1.3  
INTERMODULATION DISTORTION  
(IMD)  
Bond  
Pad  
VDD  
VIN+  
VSS  
These op amps will show intermodulation distortion  
(IMD) products when an AC signal is present.  
The signal and clock can be decomposed into sine  
wave tones (Fourier series components). These tones  
interact with the zero-drift circuitry’s nonlinear response  
to produce IMD tones at sum and difference frequen-  
cies. Each of the square wave clock’s harmonics has a  
series of IMD tones centered on it. See Figure 2-33 and  
Figure 2-34.  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
VIN–  
Bond  
Pad  
4.2  
Other Functional Blocks  
FIGURE 4-4:  
Simplified Analog Input ESD  
Structures.  
4.2.1  
RAIL-TO-RAIL INPUTS  
The input ESD diodes clamp the inputs when they try  
to go more than one diode drop below VSS. They also  
clamp any voltages well above VDD; their breakdown  
voltage is high enough to allow normal operation, but  
not low enough to protect against slow overvoltage  
(beyond VDD) events. Very fast ESD events (that meet  
the spec) are limited so that damage does not occur.  
The input stage of the MCP6V16/6U/7/9 op amps uses  
two differential CMOS input stages in parallel. One  
operates at low Common-mode input voltage (VCM  
,
which is approximately equal to VIN+ and VIN– in  
normal operation) and the other at high VCM. With this  
topology, the input operates with VCM up to VDD + 0.2V,  
and down to VSS – 0.15V, at +25°C (see Figure 2-15).  
The input offset voltage (VOS) is measured at  
VCM = VSS – 0.15V and VDD + 0.2V to ensure proper  
operation.  
In some applications, it may be necessary to prevent  
excessive voltages from reaching the op amp inputs;  
Figure 4-5 shows one approach to protecting these  
inputs. D1 and D2 may be small signal silicon diodes,  
Schottky diodes for lower clamping voltages or diode  
connected FETs for low leakage.  
The transition between the input stages occurs when  
VCM VDD – 0.9V (see Figure 2-7 and Figure 2-8). For  
the best distortion and gain linearity, with noninverting  
gains, avoid this region of operation.  
VDD  
4.2.1.1  
Phase Reversal  
The input devices are designed to not exhibit phase  
inversion when the input pins exceed the supply  
voltages. Figure 2-38 shows an input voltage  
exceeding both supplies with no phase inversion.  
U1  
D1  
MCP6V1X  
V1  
D2  
VOUT  
V2  
4.2.1.2  
Input Voltage Limits  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the voltages at  
the input pins (see Section 1.1 “Absolute Maximum  
Ratings †”). This requirement is independent of the  
current limits discussed later on.  
FIGURE 4-5:  
Against High Voltages.  
Protecting the Analog Inputs  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-4. This structure was chosen to  
protect the input transistors against many (but not all)  
overvoltage conditions, and to minimize input bias  
current (IB).  
DS20006204A-page 20  
2019 Microchip Technology Inc.  
MCP6V16/6U/7/9  
4.2.1.3  
Input Current Limits  
4.3  
Application Tips  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the currents  
into the input pins (see Section 1.1 “Absolute  
Maximum Ratings †”). This requirement is  
independent of the voltage limits discussed previously.  
4.3.1  
INPUT OFFSET VOLTAGE OVER  
TEMPERATURE  
Table 1-1 gives both the linear and quadratic  
temperature coefficients (TC1 and TC2) of input offset  
voltage. The input offset voltage, at any temperature in  
the specified range, can be calculated as follows:  
Figure 4-6 shows one approach to protecting these  
inputs. The resistors R1 and R2 limit the possible  
current in or out of the input pins (and into D1 and D2).  
EQUATION 4-1:  
The diode currents will dump onto VDD  
.
VOSTA= VOS + TC1T + TC2T2  
VDD  
Where:  
T  
VOS(TA)  
VOS  
=
=
=
=
=
TA – 25°C  
U1  
D1  
R1  
R2  
input offset voltage at TA  
input offset voltage at +25°C  
linear temperature coefficient  
quadratic temperature coefficient  
MCP6V1X  
V1  
V2  
D2  
VOUT  
TC1  
TC2  
4.3.2  
Figures 2-9 to 2-11 are histograms of the reciprocals  
(in units of µV/V) of CMRR, PSRR and AOL  
respectively. They represent the change in input offset  
voltage (VOS) with a change in Common-mode input  
voltage (VCM), power supply voltage (VDD) and output  
voltage (VOUT).  
DC GAIN PLOTS  
VSS – min(V1, V2)  
2 mA  
max(V1, V2) – VDD  
2 mA  
min(R1, R2) >  
min(R1, R2) >  
,
FIGURE 4-6:  
Against High Currents.  
Protecting the Analog Inputs  
The 1/AOL histogram is centered near 0 µV/V because  
the measurements are dominated by the op amp’s  
input noise. The negative values shown represent  
noise and tester limitations, not unstable behavior.  
Production tests make multiple VOS measurements,  
which validates an op amp's stability; an unstable part  
would show greater VOS variability, or the output would  
stick at one of the supply rails.  
It is also possible to connect the diodes to the left of  
resistors R1 and R2. In this case, the currents through  
the diodes D1 and D2 need to be limited by some other  
mechanism. The resistors then serve as in-rush current  
limiters; the DC current into the input pins (VIN+ and  
VIN–) should be very small.  
A significant amount of current can flow out of the  
inputs (through the ESD diodes) when the Common-  
mode voltage (VCM) is below ground (VSS); see  
Figure 2-14.  
4.3.3  
OFFSET AT POWER UP  
When these parts power up, the input offset (VOS  
)
starts at its uncorrected value (usually less than  
±5 mV). Circuits with high DC gain can cause the  
output to reach one of the two rails. In this case, the  
time to a valid output is delayed by an output overdrive  
time (like tODR), in addition to the start-up time (like  
tSTR).  
4.2.2  
RAIL-TO-RAIL OUTPUT  
The output voltage range of the MCP6V16/6U/7/9  
zero-drift op amps is VDD – 20 mV (minimum) and  
VSS + 20 mV (maximum) when RL = 10 kis  
connected to VDD/2 and VDD = 5.5V. Refer to  
Figure 2-16 and Figure 2-17 for more information.  
It can be simple to avoid this extra start-up time.  
Reducing the gain is one method. Adding a capacitor  
across the feedback resistor (RF) is another method.  
This op amp is designed to drive light loads; use  
another amplifier to buffer the output from heavy loads.  
2019 Microchip Technology Inc.  
DS20006204A-page 21  
MCP6V16/6U/7/9  
GN is the circuit’s noise gain. For noninverting gains,  
GN and the Signal Gain are equal. For inverting gains,  
GN is 1+|Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).  
4.3.4  
SOURCE RESISTANCES  
The input bias currents have two significant  
components; switching glitches that dominate at room  
temperature and below, and input ESD diode leakage  
currents that dominate at +85°C and above.  
1.
100k  
RL||(RF + RG) • 100 kŸ  
Make the resistances seen by the inputs small and  
equal. This minimizes the output offset caused by the  
input bias currents.  
1.E
10k  
The inputs should see a resistance on the order of 10 Ω  
to 1 kat high frequencies (i.e., above 1 MHz). This  
helps minimize the impact of switching glitches, which  
are very fast, on overall performance. In some cases, it  
may be necessary to add resistors in series with the  
inputs to achieve this improvement in performance.  
1.E+03  
1k  
GN = 1  
GN = 10  
GN = 100  
1.E
100  
10p  
100p  
1n  
10n  
100n  
1µ  
1.1 10 1.09 18 17 1.E06  
Capacitive Load (F)  
Small input resistances may be needed for high gains.  
Without them, parasitic capacitances might cause  
positive feedback and instability.  
FIGURE 4-8:  
for Capacitive Loads.  
Recommended RISO Values  
4.3.5  
SOURCE CAPACITANCE  
After selecting RISO for your circuit, double check the  
resulting frequency response peaking and step  
response overshoot. Modify RISO's value until the  
response is reasonable. Bench evaluation is helpful.  
The capacitances seen by the two inputs should be  
small. Large input capacitances and source  
resistances, together with high gain, can lead to  
positive feedback and instability.  
4.3.7  
STABILIZING OUTPUT LOADS  
4.3.6  
CAPACITIVE LOADS  
This family of zero-drift op amps has an output  
impedance (Figure 2-27 and Figure 2-28) that has a  
double zero when the gain is low. This can cause a  
large phase shift in feedback networks that have low-  
impedance near the part’s bandwidth. This large phase  
shift can cause stability problems.  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. These zero-drift op amps have a different  
output impedance than most op amps, due to their  
unique topology.  
Figure 4-9 shows that the load on the output is  
(RL + RISO)||(RF + RG), where RISO is before the load  
(like Figure 4-7). This load needs to be large enough to  
maintain stability; it should be at least 10 k.  
When driving a capacitive load with these op amps, a  
series resistor at the output (RISO in Figure 4-7)  
improves the feedback loop’s phase margin (stability)  
by making the output load resistive at higher  
frequencies. The bandwidth will be generally lower  
than the bandwidth with no capacitive load.  
RG  
RF  
VOUT  
RL  
CL  
U1  
MCP6V1X  
RISO  
VOUT  
FIGURE 4-9:  
Output Load.  
CL  
U1  
MCP6V1X  
FIGURE 4-7:  
Output Resistor, RISO,  
Stabilizes Capacitive Loads.  
Figure 4-8 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
load capacitance (CL). The y-axis is the resistance  
(RISO).  
DS20006204A-page 22  
2019 Microchip Technology Inc.  
MCP6V16/6U/7/9  
4.3.8  
GAIN PEAKING  
4.3.9  
REDUCING UNDESIRED NOISE  
AND SIGNALS  
Figure 4-10 shows an op amp circuit that represents  
noninverting amplifiers (VM is a DC voltage and VP is  
the input) or inverting amplifiers (VP is a DC voltage  
and VM is the input). The capacitances CN and CG  
represent the total capacitance at the input pins; they  
include the op amp’s Common-mode input capacitance  
(CCM), board parasitic capacitance and any capacitor  
placed in parallel. The capacitance CFP represents the  
parasitic capacitance coupling the output and  
noninverting input pins.  
Reduce undesired noise and signals with:  
• Low bandwidth signal filters:  
- Minimizes random analog noise  
- Reduces interfering signals  
• Good PCB layout techniques:  
- Minimizes crosstalk  
- Minimizes parasitic capacitances and  
inductances that interact with fast switching  
edges  
• Good power supply design:  
- Isolation from other parts  
CN  
CFP  
RN  
- Filtering of interference on supply line(s)  
VP  
4.3.10  
SUPPLY BYPASSING AND  
FILTERING  
U1  
MCP6V1X  
With this family of operational amplifiers, the power  
supply pin (VDD for single supply) should have a local  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
of the pin for good high-frequency performance.  
VM  
VOUT  
RG  
RF  
CG  
These parts also need a bulk capacitor (i.e., 1 µF or  
larger) within 100 mm to provide large, slow currents.  
This bulk capacitor can be shared with other low noise,  
analog parts.  
FIGURE 4-10:  
Capacitance.  
Amplifier with Parasitic  
CG acts in parallel with RG (except for a gain of +1 V/V),  
which causes an increase in gain at high frequencies.  
CG also reduces the phase margin of the feedback  
loop, which becomes less stable. This effect can be  
reduced by either reducing CG or RF||RG.  
In some cases, high-frequency power supply noise  
(e.g., switched mode power supplies) may cause  
undue intermodulation distortion, with a DC offset shift;  
this noise needs to be filtered. Adding a resistor into the  
supply connection can be helpful.  
CN and RN form a low-pass filter that affects the signal  
4.3.11  
PCB DESIGN FOR DC PRECISION  
at VP. This filter has a single real pole at 1/(2πRNCN).  
The largest value of RF that should be used depends  
on noise gain (see GN in Section 4.3.6, Capacitive  
Loads), CG and the open-loop gain’s phase shift. An  
approximate limit for RF is:  
In order to achieve DC precision on the order of ±1 µV,  
many physical errors need to be minimized. The design  
of the Printed Circuit Board (PCB), the wiring, and the  
thermal environment have a strong impact on the  
precision achieved. A poor PCB design can easily be  
more than 100 times worse than the MCP6V16/6U/7/9  
op amps’ minimum and maximum specifications.  
EQUATION 4-2:  
RF 40 k------------- G2N  
12 pF  
CG  
4.3.11.1  
PCB Layout  
Any time two dissimilar metals are joined together, a  
temperature dependent voltage appears across the  
junction (the Seebeck or thermojunction effect). This  
effect is used in thermocouples to measure  
temperature. The following are examples of  
thermojunctions on a PCB:  
Some applications may modify these values to reduce  
either output loading or gain peaking (step response  
overshoot).  
At high gains, RN needs to be small, in order to prevent  
positive feedback and oscillations. Large CN values  
can also help.  
• Components (resistors, op amps, …) soldered to  
a copper pad  
• Wires mechanically attached to the PCB  
• Jumpers  
• Solder joints  
• PCB vias  
2019 Microchip Technology Inc.  
DS20006204A-page 23  
MCP6V16/6U/7/9  
Typical thermojunctions have temperature to voltage  
conversion coefficients of 1 to 100 µV/°C (sometimes  
higher).  
4.4  
Typical Applications  
4.4.1  
WHEATSTONE BRIDGE  
Microchip’s AN1258 (“Op Amp Precision Design: PCB  
Layout Techniques”) contains in-depth information on  
PCB layout techniques that minimize thermojunction  
effects. It also discusses other effects, such as  
crosstalk, impedances, mechanical stresses and  
humidity.  
Many sensors are configured as Wheatstone bridges.  
Strain gauges and pressure sensors are two common  
examples. These signals can be small and the  
Common-mode noise large. Amplifier designs with  
high differential gain are desirable.  
Figure 4-11 shows how to interface to a Wheatstone  
bridge with a minimum of components. Because the  
circuit is not symmetric, the ADC input is single ended,  
and there is a minimum of filtering; the CMRR is good  
enough for moderate Common-mode noise.  
4.3.11.2  
Crosstalk  
DC crosstalk causes offsets that appear as a larger  
input offset voltage. Common causes include:  
• Common-mode noise (remote sensors)  
• Ground loops (current return paths)  
• Power supply coupling  
0.01C  
100R  
VDD  
1 kΩ  
VDD  
R
R
ADC  
Interference from the mains (usually 50 Hz or 60 Hz),  
and other AC sources, can also affect the DC  
performance. Nonlinear distortion can convert these  
signals to multiple tones, including a DC shift in voltage.  
When the signal is sampled by an ADC, these AC  
signals can also be aliased to DC, causing an apparent  
shift in offset.  
0.2R  
0.2R  
U1  
MCP6V16  
R
R
FIGURE 4-11:  
Simple Design.  
To reduce interference:  
4.4.2 RTD SENSOR  
- Keep traces and wires as short as possible  
- Use shielding  
The ratiometric circuit in Figure 4-12 conditions a two-  
wire RTD (Resistance Temperature Detector), for  
applications with a limited temperature range. U1 acts  
as a difference amplifier, with a low frequency pole. The  
sensor’s wiring resistance (RW) is corrected in  
firmware. Failure (open) of the RTD is detected by an  
out-of-range voltage.  
- Use ground plane (at least a star ground)  
- Place the input signal source near to the DUT  
- Use good PCB layout techniques  
- Use a separate power supply filter (bypass  
capacitors) for these zero-drift op amps  
4.3.11.3  
Miscellaneous Effects  
VDD  
Keep the resistances seen by the input pins as small  
and as near to equal as possible, to minimize bias-  
current-related offsets.  
RT  
34.8 kΩ  
RN  
10.0 kΩ  
10 nF  
Make the (trace) capacitances seen by the input pins  
small and equal. This is helpful in minimizing switching  
glitch-induced offset voltages.  
RF  
2.00 MΩ  
RW  
U1  
RRTD  
100Ω  
Bending a coax cable with a radius that is too small  
causes a small voltage drop to appear on the center  
conductor (the triboelectric effect). Make sure the  
bending radius is large enough to keep the conductors  
and insulation in full contact.  
MCP6V16  
1.00 kΩ  
RG  
RF  
RW  
10.0 k2.00 MΩ  
100 nF  
VDD  
RB  
4.99 kΩ  
10 nF  
Mechanical stresses can make some capacitor types  
(such as some ceramics) output small voltages. Use  
more appropriate capacitor types in the signal path and  
minimize mechanical stresses and vibration.  
1.0 µF  
ADC  
Humidity can cause electrochemical potential voltages  
to appear in a circuit. Proper PCB cleaning helps, as  
does the use of encapsulants.  
FIGURE 4-12:  
RTD Sensor.  
DS20006204A-page 24  
2019 Microchip Technology Inc.  
MCP6V16/6U/7/9  
4.4.3  
OFFSET VOLTAGE CORRECTION  
Figure 4-13 shows MCP6V16 (U2) correcting the input  
offset voltage of another op amp (U1). R2 and C2  
integrate the offset error seen at U1’s input; the  
integration needs to be slow enough to be stable (with  
the feedback provided by R1 and R3). R4 and R5  
attenuate the integrator’s output; this shifts the  
integrator pole down in frequency.  
R1  
R2  
R3  
VIN  
VOUT  
R4  
R5  
C2  
U1  
MCP6XXX  
VDD/2  
R2  
VDD/2  
U2  
MCP6V16  
FIGURE 4-13:  
Offset Correction.  
4.4.4 PRECISION COMPARATOR  
Use high gain before a comparator to improve the  
latter’s performance. Do not use MCP6V16/6U/7/9 as  
a comparator by itself; the VOS correction circuitry does  
not operate properly without a feedback loop.  
U1  
VIN  
MCP6V16  
R1  
R2  
R3  
R4  
R5  
VOUT  
VDD/2  
U2  
MCP6541  
FIGURE 4-14:  
Precision Comparator.  
2019 Microchip Technology Inc.  
DS20006204A-page 25  
MCP6V16/6U/7/9  
NOTES:  
DS20006204A-page 26  
2019 Microchip Technology Inc.  
MCP6V16/6U/7/9  
5.4  
Application Notes  
5.0  
DESIGN AIDS  
The following Microchip Application Notes are  
available on the Microchip web site at www.microchip.  
com/sitesearch/Search/all and are recommended as  
supplemental reference resources.  
Microchip provides the basic design aids needed for  
the MCP6V16/6U/7/9 family of op amps.  
5.1  
SPICE Macro Model  
ADN003: “Select the Right Operational Amplifier for  
your Filtering Circuits”, DS21821  
The latest SPICE macro model for the  
MCP6V16/6U/7/9 op amps is available on the  
Microchip web site at www.microchip.com. This model  
is intended to be an initial design tool that works well in  
the op amp’s linear region of operation over the  
temperature range. See the model file for information  
on its capabilities.  
AN722: “Operational Amplifier Topologies and DC  
Specifications”, DS00722  
AN723: “Operational Amplifier AC Specifications and  
Applications”, DS00723  
AN884: “Driving Capacitive Loads With Op Amps”,  
Bench testing is a very important part of any design and  
cannot be replaced with simulations. Also, simulation  
results using this macro model need to be validated by  
comparing them to the data sheet specifications and  
characteristic curves.  
DS00884  
AN990: “Analog Sensor Conditioning Circuits – An  
Overview”, DS00990  
AN1177: “Op Amp Precision Design: DC Errors”,  
DS01177  
5.2  
Microchip Advanced Part Selector  
(MAPS)  
AN1228: “Op Amp Precision Design: Random Noise”,  
DS01228  
AN1258: “Op Amp Precision Design: PCB Layout  
Techniques”, DS01258  
MAPS is a software tool that helps efficiently identify  
Microchip devices that fit a particular design require-  
ment. Available at no cost from the Microchip web site  
at www.microchip.com/maps, MAPS is an overall  
selection tool for Microchip’s product portfolio that  
includes Analog, Memory, MCUs and DSCs. Using this  
tool, a customer can define a filter to sort features for a  
parametric search of devices and export side-by-side  
technical comparison reports. Helpful links are also  
provided for Data Sheets, Purchase and Sampling of  
Microchip parts.  
These Application Notes and others are listed in the  
design guide:  
Signal Chain Design Guide”, DS21825  
5.3  
Analog Demonstration and  
Evaluation Boards  
Microchip offers  
a
broad spectrum of Analog  
Demonstration and Evaluation Boards that are  
designed to help customers achieve faster time to  
market. For a complete listing of these boards and their  
corresponding user’s guides and technical information,  
visit the Microchip web site at  
www.microchip.com/treelinktool.  
Some boards that are especially useful are:  
• MCP6V01 Thermocouple Auto-Zeroed Reference  
Design (P/N MCP6V01RD-TCPL)  
• MCP6XXX Amplifier Evaluation Board 2 (P/N  
DS51668)  
• MCP6XXX Amplifier Evaluation Board 3 (P/N  
DS51673)  
• 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board  
(P/N SOIC8EV)  
• 14-Pin SOIC/TSSOP/DIP Evaluation Board (P/N  
SOIC14EV)  
2019 Microchip Technology Inc.  
DS20006204A-page 27  
MCP6V16/6U/7/9  
NOTES:  
DS20006204A-page 28  
2019 Microchip Technology Inc.  
MCP6V16/6U/7/9  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SC70 (MCP6V16U)  
Example:  
FR25  
Device  
MCP6V16UT-E/LTY  
Code  
FRNN  
Note:  
Applies to 5-Lead SC-70.  
5-Lead SOT-23 (MCP6V16/6U)  
Example:  
RBDD  
Device  
Code  
MCP6V16T-E/OT  
RBDD  
WWNNN  
19256  
MCP6V16UT-E/OT  
RBDE  
WWNNN  
Note:  
Applies to 5-Lead SOT-23.  
8-Lead MSOP (3x3 mm) (MCP6V17)  
Example  
6V17E  
919256  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2019 Microchip Technology Inc.  
DS20006204A-page 29  
MCP6V16/6U/7/9  
8-Lead TDFN (2x3x0.8 mm)(MCP6V17)  
Example  
Device  
Code  
MCP6V17-E/MNY  
MCP6V17T-E/MNY  
DM1  
DM1  
DM1  
919  
25  
Note:  
Applies to 8-Lead 2x3 TDFN.  
14-Lead TSSOP (4.4 mm)(MCP6V19)  
Example  
XXXXXXXX  
YYWW  
6V19E/ST  
1919  
256  
NNN  
DS20006204A-page 30  
2019 Microchip Technology Inc.  
MCP6V16/6U/7/9  
5-Lead Plastic Small Outline Transistor (LT) [SC70]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
A
e
e
B
E
3
1
E1  
2X  
0.15 C  
4
N
5X TIPS  
0.30 C  
NOTE 1  
2X  
0.15 C  
5X b  
0.10  
C A B  
TOP VIEW  
c
A2  
A
C
SEATING  
PLANE  
A1  
L
SIDE VIEW  
END VIEW  
Microchip Technology Drawing C04-061D Sheet 1 of 2  
2019 Microchip Technology Inc.  
DS20006204A-page 31  
MCP6V16/6U/7/9  
5-Lead Plastic Small Outline Transistor (LT) [SC70]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
5
0.65 BSC  
Overall Height  
Standoff  
Molded Package Thickness  
Overall Length  
Exposed Pad Length  
Overall Width  
Exposed Pad Width  
Terminal Width  
A
A1  
A2  
D
D2  
E
E1  
b
L
c
0.80  
0.00  
0.80  
-
-
1.10  
0.10  
1.00  
-
2.00 BSC  
2.60  
2.10 BSC  
1.25 BSC  
-
2.50  
2.70  
0.15  
0.10  
0.08  
0.40  
0.46  
0.26  
Terminal Length  
Lead Thickness  
0.20  
-
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed 0.15mm per side.  
3. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-061D Sheet 2 of 2  
DS20006204A-page 32  
2019 Microchip Technology Inc.  
MCP6V16/6U/7/9  
5-Lead Plastic Small Outline Transistor (LT) [SC70]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
Gx  
SILK SCREEN  
3
4
2
1
5
C
G
Y
X
RECOMMENDED LAND PATTERN  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
0.65 BSC  
2.20  
MAX  
Contact Pitch  
E
C
Contact Pad Spacing  
Contact Pad Width  
Contact Pad Length  
Distance Between Pads  
Distance Between Pads  
X
Y
G
Gx  
0.45  
0.95  
1.25  
0.20  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing No. C04-2061B  
2019 Microchip Technology Inc.  
DS20006204A-page 33  
MCP6V16/6U/7/9  
5-Lead Plastic Small Outline Transistor (OT) [SOT23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
0.20 C 2X  
D
e1  
A
D
N
E/2  
E1/2  
E1  
E
(DATUM D)  
(DATUM A-B)  
0.15 C D  
2X  
NOTE 1  
1
2
e
B
NX b  
0.20  
C A-B D  
TOP VIEW  
A
A2  
A1  
A
0.20 C  
SEATING PLANE  
A
SEE SHEET 2  
C
SIDE VIEW  
Microchip Technology Drawing C04-091-OT Rev E Sheet 1 of 2  
DS20006204A-page 34  
2019 Microchip Technology Inc.  
MCP6V16/6U/7/9  
5-Lead Plastic Small Outline Transistor (OT) [SOT23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
c
T
L
L1  
VIEW A-A  
SHEET 1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
5
0.95 BSC  
Outside lead pitch  
Overall Height  
Molded Package Thickness  
Standoff  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
e1  
A
A2  
A1  
E
E1  
D
L
1.90 BSC  
0.90  
0.89  
-
-
-
-
1.45  
1.30  
0.15  
2.80 BSC  
1.60 BSC  
2.90 BSC  
0.30  
-
0.60  
Footprint  
Foot Angle  
Lead Thickness  
Lead Width  
L1  
0.60 REF  
I
0°  
0.08  
0.20  
-
-
-
10°  
0.26  
0.51  
c
b
Notes:  
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed 0.25mm per side.  
2. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-091-OT Rev E Sheet 2 of 2  
2019 Microchip Technology Inc.  
DS20006204A-page 35  
MCP6V16/6U/7/9  
5-Lead Plastic Small Outline Transistor (OT) [SOT23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
X
SILK SCREEN  
5
Y
Z
C
G
1
2
E
GX  
RECOMMENDED LAND PATTERN  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
0.95 BSC  
2.80  
MAX  
Contact Pitch  
E
C
Contact Pad Spacing  
Contact Pad Width (X5)  
Contact Pad Length (X5)  
Distance Between Pads  
Distance Between Pads  
Overall Width  
X
Y
G
GX  
Z
0.60  
1.10  
1.70  
0.35  
3.90  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing No. C04-2091B [OT]  
DS20006204A-page 36  
2019 Microchip Technology Inc.  
MCP6V16/6U/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2019 Microchip Technology Inc.  
DS20006204A-page 37  
MCP6V16/6U/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20006204A-page 38  
2019 Microchip Technology Inc.  
MCP6V16/6U/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2019 Microchip Technology Inc.  
DS20006204A-page 39  
MCP6V16/6U/7/9  
8-Lead Plastic Dual Flat, No Lead Package (MNY) – 2x3x0.8 mm Body [TDFN]  
With 1.4x1.3 mm Exposed Pad (JEDEC Package type WDFN)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
A
B
E
N
(DATUM A)  
(DATUM B)  
NOTE 1  
2X  
0.15 C  
2X  
1
2
0.15 C  
TOP VIEW  
0.10 C  
(A3)  
C
A
SEATING  
PLANE  
8X  
A1  
L
0.08 C  
C A B  
SIDE VIEW  
0.10  
D2  
1
2
0.10  
C A B  
NOTE 1  
E2  
K
N
8X b  
0.10  
0.05  
C A B  
C
e
BOTTOM VIEW  
Microchip Technology Drawing No. C04-129-MNY Rev E Sheet 1 of 2  
DS20006204A-page 40  
2019 Microchip Technology Inc.  
MCP6V16/6U/7/9  
8-Lead Plastic Dual Flat, No Lead Package (MNY) – 2x3x0.8 mm Body [TDFN]  
With 1.4x1.3 mm Exposed Pad (JEDEC Package type WDFN)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Number of Pins  
Pitch  
Overall Height  
Standoff  
Contact Thickness  
Overall Length  
Overall Width  
Exposed Pad Length  
Exposed Pad Width  
Contact Width  
Contact Length  
N
8
e
0.50 BSC  
0.75  
A
A1  
A3  
D
0.70  
0.00  
0.80  
0.05  
0.02  
0.20 REF  
2.00 BSC  
3.00 BSC  
1.40  
E
D2  
E2  
b
L
K
1.35  
1.25  
0.20  
0.25  
0.20  
1.45  
1.35  
0.30  
0.45  
-
1.30  
0.25  
0.30  
-
Contact-to-Exposed Pad  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package may have one or more exposed tie bars at ends.  
3. Package is saw singulated  
4. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing No. C04-129-MNY Rev E Sheet 2 of 2  
2019 Microchip Technology Inc.  
DS20006204A-page 41  
MCP6V16/6U/7/9  
8-Lead Plastic Dual Flat, No Lead Package (MNY) – 2x3x0.8 mm Body [TDFN]  
With 1.4x1.3 mm Exposed Pad (JEDEC Package type WDFN)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
X2  
EV  
8
ØV  
C
Y2  
EV  
Y1  
1
2
SILK SCREEN  
X1  
E
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
E
MILLIMETERS  
NOM  
0.50 BSC  
MIN  
MAX  
Contact Pitch  
Optional Center Pad Width  
Optional Center Pad Length  
Contact Pad Spacing  
X2  
Y2  
C
1.60  
1.50  
2.90  
Contact Pad Width (X8)  
Contact Pad Length (X8)  
Thermal Via Diameter  
Thermal Via Pitch  
X1  
Y1  
V
0.25  
0.85  
0.30  
1.00  
EV  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during  
reflow process  
Microchip Technology Drawing No. C04-129-MNY Rev. B  
DS20006204A-page 42  
2019 Microchip Technology Inc.  
MCP6V16/6U/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2019 Microchip Technology Inc.  
DS20006204A-page 43  
MCP6V16/6U/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20006204A-page 44  
2019 Microchip Technology Inc.  
MCP6V16/6U/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2019 Microchip Technology Inc.  
DS20006204A-page 45  
MCP6V16/6U/7/9  
NOTES:  
DS20006204A-page 46  
2019 Microchip Technology Inc.  
MCP6V16/6U/7/9  
APPENDIX A: REVISION HISTORY  
Revision A (July 2019)  
• Initial release of this document.  
2019 Microchip Technology Inc.  
DS20006204A-page 47  
MCP6V16/6U/7/9  
NOTES:  
DS20006204A-page 48  
2019 Microchip Technology Inc.  
MCP6V16/6U/7/9  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
(1)  
Examples:  
[X]  
PART NO.  
–X  
/XX  
a)  
MCP6V16T-E/OT:  
Tape and Reel,  
Extended temperature,  
5LD SOT-23 package  
Device Tape and Reel  
Temperature  
Range  
Package  
a)  
b)  
MCP6V16UT-E/LTY: Tape and Reel,  
Extended temperature,  
5LD SC70 package  
Device:  
MCP6V16T: Single Op Amp (Tape and Reel) (SOT-23)  
MCP6V16UT: Single Op Amp (Tape and Reel)  
(SC-70, SOT-23)  
MCP6V16UT-E/OT: Tape and Reel,  
Extended temperature,  
5LD SOT-23 package  
MCP6V17:  
Dual Op Amp (MSOP, 2x3 TDFN)  
MCP6V17T: Dual Op Amp (Tape and Reel) (MSOP,  
2x3 TDFN)  
MCP6V19:  
a)  
b)  
MCP6V17-E/MS:  
MCP6V17T-E/MS:  
Extended temperature,  
8LD MSOP package  
Quad Op Amp (TSSOP)  
MCP6V19T: Quad Op Amp (Tape and Reel) (TSSOP)  
Tape and Reel,  
Extended temperature,  
8LD MSOP package  
Temperature Range:  
Package:  
E
= -40°C to +125°C (Extended)  
c)  
MCP6V17T-E/MNY: Tape and Reel,  
Extended temperature,  
LTY*  
OT  
=
Plastic Small Outline Transistor, 5-lead  
8LD 2x3 TDFN package  
= Plastic Small Outline Transistor, 5-lead  
a)  
b)  
MCP6V19-E/ST:  
MCP6V19T-E/ST:  
Extended temperature,  
14LD TSSOP package  
MNY* = Plastic Dual Flat, No-Lead - 2×3×0.8 mm Body,  
8-lead  
MS  
ST  
= Plastic Micro Small Outline, 8-lead  
= Plastic Thin Shrink Small Outline - 4.4 mm  
Body, 14-lead  
Tape and Reel,  
Extended temperature,  
14LD TSSOP package  
* Y = Nickel palladium gold manufacturing designator. Only  
available on the TDFN and SC70 packages.  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This  
identifier is used for ordering purposes and  
is not printed on the device package. Check  
with your Microchip Sales Office for package  
availability with the Tape and Reel option.  
2019 Microchip Technology Inc.  
DS20006204A-page 49  
MCP6V16/6U/7/9  
NOTES:  
DS20006204A-page 50  
2019 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, Adaptec,  
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT,  
chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex,  
flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,  
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi,  
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,  
PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire,  
Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,  
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,  
TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA  
are registered trademarks of Microchip Technology Incorporated in  
the U.S.A. and other countries.  
APT, ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load,  
IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision  
Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire,  
SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,  
TimePictra, TimeProvider, Vite, WinPath, and ZL are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard,  
CryptoAuthentication, CryptoAutomotive, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker,  
KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF,  
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple  
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,  
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,  
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and  
ZENA are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
The Adaptec logo, Frequency on Demand, Silicon Storage  
Technology, and Symmcom are registered trademarks of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology Germany  
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in  
other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2019, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 978-1-5224-4575-3  
For information regarding Microchip’s Quality Management Systems,  
please visit www.microchip.com/quality.  
2019 Microchip Technology Inc.  
DS20006204A-page 51  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-72400  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
DS20006204A-page 52  
2019 Microchip Technology Inc.  
05/14/19  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY