MCP6G02T-E/OT [MICROCHIP]

110 レA Selectable Gain Amplifier; 110 μA可选增益放大器
MCP6G02T-E/OT
型号: MCP6G02T-E/OT
厂家: MICROCHIP    MICROCHIP
描述:

110 レA Selectable Gain Amplifier
110 μA可选增益放大器

仪表放大器 放大器电路 光电二极管
文件: 总38页 (文件大小:1284K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6G01/1R/1U/2/3/4  
110 µA Selectable Gain Amplifier  
Description  
Features  
• 3 Gain Selections:  
The Microchip Technology Inc. MCP6G01/1R/1U/2/3/4  
are analog Selectable Gain Amplifiers (SGA). They can  
- +1, +10, +50 V/V  
• One Gain Select Input per Amplifier  
• Rail-to-Rail Input and Output  
be configured for gains of +1 V/V, +10 V/V, and  
+50 V/V through the Gain Select input pin(s). The Chip  
Select pin on the MCP6G03 can put it into shutdown to  
conserve power. These SGAs are optimized for single  
supply applications requiring reasonable quiescent  
current and speed.  
• Low Gain Error: ±1% (max.)  
• High Bandwidth: 250 kHz to 900 kHz (typ.)  
• Low Supply Current: 110 µA (typ.)  
• Single Supply: 1.8V to 5.5V  
The single amplifiers MCP6G01, MCP6G01R,  
MCP6G01U, and MCP6G03, are available in 5-pin  
SOT-23 package and the dual amplifier MCP6G02, are  
available in 8-pin SOIC and MSOP packages. The  
quad amplifier MCP6G04 is available in 14-pin SOIC  
and TSSOP packages. All parts are fully specified from  
-40°C to +125°C.  
• Extended Temperature Range: -40°C to +125°C  
Typical Applications  
• A/D Converter Driver  
• Industrial Instrumentation  
• Bar Code Readers  
• Metering  
Package Types  
• Digital Cameras  
MCP6G01  
SOIC, MSOP  
MCP6G03  
SOIC, MSOP  
Block Diagram  
NC  
NC  
1
1
NC  
CS  
8
7
8
7
VDD  
VDD  
VDD  
GSEL 2  
GSEL 2  
VIN  
VIN  
3
4
3
4
6 VOUT  
5 NC  
6 VOUT  
5 NC  
VIN  
VSS  
VSS  
VOUT  
Gain  
Switches  
MCP6G01  
SOT-23-5  
MCP6G02  
SOIC, MSOP  
RF  
3
VOUTA  
1
2
3
4
VDD  
8
7
VOUT  
VSS  
VIN  
1
5 VDD  
VOUTB  
GSELA  
VINA  
RG  
Gain Select  
Logic  
2
3
GSEL  
CS  
6 GSELB  
GSEL  
4
VSS  
5 MΩ  
5
VINB  
MCP6G01R  
SOT-23-5  
MCP6G04  
SOIC, TSSOP  
(MCP6G03  
only)  
VOUT  
VDD  
VIN  
1
2
3
5 VSS  
VOUTA  
1
14 VOUTD  
13 GSELD  
12 VIND  
VSS  
GSELA 2  
4 GSEL  
VINA  
VDD  
VINB  
3
4
5
Gain  
(V/V)  
GSEL Voltage (Typ.)  
(V)  
11 VSS  
MCP6G01U  
SOT-23-5  
10 VINC  
1
V
DD/2 (or open)  
VIN  
1
2
5 VDD GSELB 6  
VOUTB  
9 GSELC  
8 VOUTC  
10  
50  
0
7
VSS  
VDD  
GSEL 3  
4 VOUT  
Note:  
VSS is assumed to be 0V  
© 2006 Microchip Technology Inc.  
DS22004B-page 1  
MCP6G01/1R/1U/2/3/4  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VDD – VSS ........................................................................7.0V  
Current at Analog Input Pin (VIN)......................................±2 mA  
Analog Input (VIN) †† ..................... VSS – 1.0V to VDD + 1.0V  
All other Inputs and Outputs........... VSS – 0.3V to VDD + 0.3V  
Output Short Circuit Current...................................continuous  
Current at Output and Supply Pins................................ ±30 mA  
Storage Temperature.....................................-65°C to +150°C  
Junction Temperature..................................................+150°C  
ESD protection on all pins (HBM; MM) ................ ≥ 4 kV; 200V  
†† See Section 4.1.4 “Input Voltage and Current Limits”.  
DC ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, G = +1 V/V,  
IN = (0.3V)/G, RL = 100 kΩ to VDD/2, GSEL = VDD/2, and CS is tied low.  
V
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Amplifier Inputs (VIN  
)
Input Offset Voltage  
VOS  
–4.5  
±1.0  
±1.0  
±2  
+4.5  
mV  
mV  
G = +1  
G = +10, +50  
Input Offset Voltage Drift  
Power Supply Rejection Ratio  
Input Bias Current  
Input Bias Current at  
Temperature  
ΔVOS/ΔTA  
µV/°C  
dB  
G = +1, TA = -40°C to +125°C  
G = +1 (Note 1)  
PSRR  
IB  
65  
80  
1
pA  
IB  
30  
pA  
TA = +85°C  
IB  
1000  
1013||6  
5000  
pA  
TA = +125°C  
Input Impedance  
ZIN  
Ω||pF  
Amplifier Gain  
Nominal Gains  
G
gE  
–0.3  
–1.0  
1 to 50  
+0.3  
+1.0  
V/V  
%
+1, +10 or +50  
DC Gain Error G = +1  
G +10  
VOUT 0.3V to VDD 0.3V  
VOUT 0.3V to VDD 0.3V  
gE  
%
DC Gain Drift G = +1  
G +10  
ΔG/ΔTA  
ΔG/ΔTA  
±1  
ppm/°C TA = -40°C to +125°C  
ppm/°C TA = -40°C to +125°C  
±4  
Ladder Resistance (Note 1)  
Ladder Resistance  
RLAD  
200  
350  
500  
kΩ  
Ladder Resistance  
across Temperature  
ΔRLAD/ΔTA  
–1800  
ppm/°C TA = -40°C to +125°C  
Amplifier Output  
DC Output Non-linearity G = +1  
VONL  
VONL  
VONL  
–0.2  
–0.1  
+0.2  
+0.1  
% of FSR VOUT = 0.3V to VDD – 0.3V,  
V
DD = 1.8V  
% of FSR VOUT = 0.3V to VDD – 0.3V,  
DD = 5.5V  
+0.05 % of FSR VOUT = 0.3V to VDD – 0.3V  
V
DC Output Non-linearity, G = +10, +50  
Maximum Output Voltage Swing  
–0.05  
VOH, VOL VSS+10  
VOH, VOL VSS+10  
VDD–10  
VDD–10  
mV  
mV  
mA  
mA  
G = +1; 0.3V output overdrive  
G +10; 0.5V output overdrive  
VDD = 1.8V  
Short Circuit Current  
ISC  
ISC  
±7  
±20  
VDD = 5.5V  
Note 1: RLAD (RF+RG in Figure 4-1) connects VSS, VOUT, and the inverting input of the internal amplifier. Thus, VSS is coupled  
to the internal amplifier and the PSRR spec describes PSRR+ only. It is recommended that the VSS pin be tied directly  
to ground to avoid noise problems.  
2:  
IQ includes current in RLAD (typically 0.6 µA at VOUT = 0.3V), and excludes digital switching currents.  
DS22004B-page 2  
© 2006 Microchip Technology Inc.  
MCP6G01/1R/1U/2/3/4  
DC ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, G = +1 V/V,  
IN = (0.3V)/G, RL = 100 kΩ to VDD/2, GSEL = VDD/2, and CS is tied low.  
V
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Power Supply  
Supply Voltage  
VDD  
IQ  
1.8  
60  
5.5  
V
Quiescent Current per Amplifier  
110  
170  
µA  
IO = 0 (Note 2)  
Note 1: RLAD (RF+RG in Figure 4-1) connects VSS, VOUT, and the inverting input of the internal amplifier. Thus, VSS is coupled  
to the internal amplifier and the PSRR spec describes PSRR+ only. It is recommended that the VSS pin be tied directly  
to ground to avoid noise problems.  
2:  
IQ includes current in RLAD (typically 0.6 µA at VOUT = 0.3V), and excludes digital switching currents.  
AC ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, G = +1 V/V,  
V
IN = (0.3V)/G, RL = 100 kΩ to VDD/2, CL = 60 pF, GSEL = VDD/2, and CS is tied low.  
Parameters  
Sym  
Min  
Typ  
Max Units  
Conditions  
Frequency Response  
-3dB Bandwidth  
BW  
BW  
900  
350  
250  
0.3  
0
kHz  
kHz  
kHz  
dB  
G = +1, VOUT < 100 mVP-P (Note 1)  
G = +10, VOUT < 100 mVP-P (Note 1)  
G = +50, VOUT < 100 mVP-P (Note 1)  
G = +1; VOUT < 100 mVP-P  
BW  
Gain Peaking  
GPK  
GPK  
GPK  
dB  
G = +10, VOUT < 100 mVP-P  
0.7  
dB  
G = +50; VOUT < 100 mVP-P  
Total Harmonic Distortion plus Noise  
f = 1 kHz, G = +1 V/V  
THD+N  
THD+N  
THD+N  
0.0029  
0.18  
1.3  
%
%
%
VOUT = 1.75V ± 1.4VPK, VDD = 5.0V,  
BW = 80 kHz  
f = 1 kHz, G = +10 V/V  
f = 1 kHz, G = +50 V/V  
VOUT = 2.5V ± 1.4VPK, VDD = 5.0V,  
BW = 80 kHz  
VOUT = 2.5V ± 1.4VPK, VDD = 5.0V,  
BW = 80 kHz  
Step Response  
Slew Rate  
SR  
SR  
SR  
0.50  
2.3  
V/µs G = 1  
V/µs G = 10  
V/µs G = 50  
4.5  
Noise  
Input Noise Voltage  
Eni  
Eni  
eni  
eni  
eni  
ini  
9
µVP-P f = 0.1 Hz to 10 Hz (Note 2)  
µVP-P f = 0.1 Hz to 30 kHz (Note 2)  
nV/Hz G = +1 V/V, f = 10 kHz (Note 2)  
nV/Hz G = +10 V/V, f = 10 kHz (Note 2)  
nV/Hz G = +50 V/V, f = 10 kHz (Note 2)  
fA/Hz f = 10 kHz  
50  
38  
46  
41  
4
Input Noise Voltage Density  
Input Noise Current Density  
Note 1: See Table 4-1 for a list of typical numbers and Figure 2-31 for the frequency response versus gain.  
2: ni and eni include ladder resistance thermal noise.  
E
© 2006 Microchip Technology Inc.  
DS22004B-page 3  
MCP6G01/1R/1U/2/3/4  
DIGITAL ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, TA = 25°C, VDD = +1.8V to +5.5V, VSS = GND, G = +1 V/V, VIN = (0.3V)/G,  
RL = 100 kΩ to VDD/2, CL = 60 pF, GSEL = VDD/2, and CS is tied low.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
CS Low Specifications  
CS Logic Threshold, Low  
CS Input Current, Low  
VCSL  
ICSL  
0
0.2VDD  
V
CS = 0V  
CS = 0V  
30  
pA  
CS High Specifications  
CS Logic Threshold, High  
CS Input Current, High  
VCSH  
ICSH  
0.8VDD  
0.8  
120  
VDD  
V
CS = VDD  
µA  
pA  
CS = VDD = 5.5V  
Quiescent Current per Amplifier,  
IDD_SHDN  
CS = VDD, MCP6G03  
Shutdown Mode (IDD  
)
Quiescent Current per Amplifier,  
Shutdown Mode (ISS) (Note 3)  
ISS_SHDN  
ISS_SHDN  
–2.4  
–7.2  
µA  
µA  
CS = VDD = 1.8V, MCP6G03  
CS = VDD = 5.5V, MCP6G03  
CS Dynamic Specifications  
Input Capacitance  
CCS  
10  
2
pF  
Input Rise/Fall Times  
tCSRF  
tCSON  
µs  
µs  
(Note 2)  
CS Low to Amplifier Output High  
Turn-on Time  
40  
G = +1 V/V, VDD = 1.8V, VIN = 0.9VDD  
CS = 0.2VDD to VOUT = 0.8VDD  
tCSON  
7
µs  
µs  
G = +1 V/V, VDD = 5.5V, VIN = 0.9VDD  
CS = 0.2VDD to VOUT = 0.8VDD  
CS High to Amplifier Output High-Z  
Turn-off Time  
30  
G = +1 V/V, VIN = VDD/2,  
CS = 0.8VDD to VOUT = 0.1VDD/2  
tCSOFF  
Hysteresis  
VCSHY  
VCSHY  
0.40  
0.55  
V
V
VDD = 1.8V  
VDD = 5.5V  
GSEL Specifications (Note 1)  
GSEL Logic Threshold, Low  
VGSL  
VGSH  
0.15VDD  
0.65VDD  
0.35VDD  
0.85VDD  
V
V
Gain changes between 1 and 10,  
I
GSEL = 0  
Gain changes between 1 and 50,  
GSEL = 0  
GSEL Logic Threshold, High  
I
GSEL Input Current, Low  
GSEL Input Current, High  
IGSL  
IGSH  
–10  
–1.5  
+10  
µA  
µA  
GSEL voltage = 0.3VDD  
GSEL voltage = 0.7VDD  
+1.5  
GSEL Dynamic Specifications (Note 1)  
Input Capacitance  
CGSEL  
8
pF  
10  
Input Rise/Fall Times  
Hysteresis  
tGSRF  
VGSHY  
VGSHY  
tGSL1  
45  
95  
10  
µs  
(Note 2)  
mV  
mV  
VDD = 1.8V  
VDD = 5.5V  
GSEL Low to Valid Output Time,  
G = +1 to +10 Select  
VIN = 150 mV,  
GSEL = 0.25VDD to VOUT = 1.37V  
µs  
µs  
µs  
µs  
GSEL Middle to Valid Output Time,  
G = +10 to +1 Select  
tGSM10  
tGSH1  
12  
9
VIN = 150 mV,  
GSEL = 0.25VDD to VOUT = 0.28V  
GSEL High to Valid Output Time,  
G = +1 to +50 Select  
VIN = 30 mV,  
GSEL = 0.75VDD to VOUT = 1.35V  
GSEL Middle to Valid Output Time,  
G = +50 to +1 Select  
tGSM50  
8
VIN = 30 mV,  
GSEL = 0.75VDD to VOUT = 0.18V  
Note 1: GSEL is a tri-level input pin. The gain is 10 when its voltage is low, 1 when it is at mid-suppy, and 50 when it is high.  
2: Not tested in production. Set by design and characterization.  
3: ISS_SHDN includes the current through the CS pin, RL and RLAD, and excludes digital switching currents. The block dia-  
gram on the from page shows these current paths (through VSS).  
DS22004B-page 4  
© 2006 Microchip Technology Inc.  
MCP6G01/1R/1U/2/3/4  
DIGITAL ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise indicated, TA = 25°C, VDD = +1.8V to +5.5V, VSS = GND, G = +1 V/V, VIN = (0.3V)/G,  
RL = 100 kΩ to VDD/2, CL = 60 pF, GSEL = VDD/2, and CS is tied low.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
GSEL High to Valid Output Time,  
G = +10 to +50 Select  
tGSH10  
12  
VIN = 30 mV,  
GSEL = 0.75VDD to VOUT = 1.38V  
µs  
GSEL Low to Valid Output Time,  
G = +50 to +10 Select  
tGSL50  
9
VIN = 30 mV,  
GSEL = 0.25VDD to VOUT = 0.42V  
µs  
Note 1: GSEL is a tri-level input pin. The gain is 10 when its voltage is low, 1 when it is at mid-suppy, and 50 when it is high.  
2: Not tested in production. Set by design and characterization.  
3: ISS_SHDN includes the current through the CS pin, RL and RLAD, and excludes digital switching currents. The block dia-  
gram on the from page shows these current paths (through VSS).  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +1.8V to +5.5V, and VSS = GND.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
TA  
TA  
TA  
–40  
–40  
–65  
+125  
+125  
+150  
°C  
°C  
°C  
(Note 1)  
θJA  
θJA  
θJA  
θJA  
θJA  
256  
163  
206  
120  
100  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Note 1: The MCP6G01/1R/1U/2/3/4 family of SGAs operates over this temperature range, but operation must not cause TJ to  
exceed Maximum Junction Temperature (+150°C).  
VIN  
0.150V  
0.030V  
GSEL  
tGSL1  
tGSM10  
tGSH1  
tGSM50  
tGSH10  
tGSL50  
1.50V  
1.50V  
1.50V  
VOUT  
0.30V  
0.30V  
0.15V  
0.15V  
0.03V  
0.03V  
FIGURE 1-1:  
Gain Select Timing Diagram.  
© 2006 Microchip Technology Inc.  
DS22004B-page 5  
MCP6G01/1R/1U/2/3/4  
CS  
tCSON  
tCSOFF  
0.9VDD  
High-Z  
VOUT  
High-Z  
110 µA (typ.)  
IDD  
120 pA (typ.)  
–VDD / 7 MΩ (typ.)  
ISS  
–110 µA (typ.)  
30 pA (typ.)  
VDD / 7 MΩ (typ.)  
ICS  
FIGURE 1-2:  
SGA Chip Select Timing Diagram.  
DS22004B-page 6  
© 2006 Microchip Technology Inc.  
MCP6G01/1R/1U/2/3/4  
The DC Gain Drift (ΔG/ΔTA) can be calculated from the  
change in gE across temperature. This is shown in the  
following equation:  
1.1  
DC Output Voltage Specs / Model  
1.1.1  
IDEAL MODEL  
The ideal SGA output voltage (VOUT) is (see Figure 1-3):  
EQUATION 1-4:  
EQUATION 1-1:  
ΔgE  
in units of V/V/°C  
in units of %/°C  
,
---------  
ΔG ⁄ ΔTA = G ⋅  
,
ΔTA  
VO_ID = GVIN  
ΔgE  
---------  
ΔTA  
Where:  
ΔG ⁄ ΔTA = 100% ⋅  
G is the nominal gain  
VREF = VSS = 0V  
VOUT (V)  
This equation holds when there are no gain or offset  
errors.  
VDD  
DD-0.3  
V2  
1.1.2  
LINEAR MODEL  
V
The SGA’s linear region of operation is modeled by the  
line VO_LIN shown in Figure 1-3. VO_LIN includes offset  
and gain errors, but does not include non-linear effects.  
V1  
VIN (V)  
EQUATION 1-2:  
0.3  
0
0.3V  
VO_LIN = G(1 + gE) VIN ----------- + VOS + 0.3V  
G
0.3  
G
VDD-0.3 VDD  
0
Where:  
G
G
G is the nominal gain  
gE is the gain error  
FIGURE 1-3:  
Output Voltage Model.  
1.1.3 OUTPUT NON-LINEARITY  
VOS is the input offset voltage  
Figure 1-4 shows the Integral Non-Linearity (INL) of the  
output voltage. INL is the output non-linearity error not  
VREF = VSS = 0V  
explained by VO_LIN  
:
This line’s endpoints are 0.3V from the supply rails  
(VO_ID = 0.3V and VDD – 0.3V). The gain error and  
input offset voltage specifications (in the electrical  
specifications) relate to Figure 1-3 as follows:  
EQUATION 1-5:  
INL = VOUT VO_LIN  
The output non-linearity specification (in the Electrical  
Specifications, with units of % of FSR) is related to  
Figure 1-4 by:  
EQUATION 1-3:  
V2 V1  
----------------------------  
gE = 100% ⋅  
V
DD – 0.6V  
EQUATION 1-6:  
V1  
------------------------  
VOS  
Where:  
=
,
G = +1  
max(V3, V4)  
G(1 + gE)  
------------------------------  
VONL = 100% ⋅  
V
DD – 0.6V  
Where:  
V1 = VOUT VO_ID  
V2 = VOUT VO_ID  
,
,
VO_ID = 0.3V  
VO_ID = VDD – 0.3V  
V3 = max(INL)  
V4 = max(INL)  
The input offset specification describes VOS at  
G = +1 V/V.  
Note that the Full Scale Range (FSR) is VDD – 0.6V  
(0.3V to VDD – 0.3V).  
© 2006 Microchip Technology Inc.  
DS22004B-page 7  
MCP6G01/1R/1U/2/3/4  
INL (V)  
V4  
0
V3  
VIN (V)  
0.3  
G
VDD-0.3 VDD  
0
G
G
FIGURE 1-4:  
Output Voltage INL.  
DS22004B-page 8  
© 2006 Microchip Technology Inc.  
MCP6G01/1R/1U/2/3/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, G = +1 V/V, VIN = (0.3V)/G,  
RL = 100 kΩ to VDD/2, CL = 60 pF, GSEL = VDD/2, and CS is tied low.  
18%  
16%  
14%  
12%  
10%  
8%  
30%  
25%  
20%  
15%  
10%  
5%  
2459 Samples  
G = +1  
2460 Samples  
G = +1  
T
A = -40 to +125°C  
6%  
4%  
2%  
0%  
0%  
DC Gain Error (%)  
DC Gain Drift (ppm/°C)  
FIGURE 2-1:  
DC Gain Error, G = +1.  
FIGURE 2-4:  
DC Gain Drift, G = +1.  
14%  
14%  
12%  
10%  
8%  
4916 Samples  
G +10  
4912 Samples  
G +10  
TA = -40 to +125°C  
12%  
10%  
8%  
6%  
6%  
4%  
4%  
2%  
2%  
0%  
0%  
DC Gain Error (%)  
DC Gain Drift (ppm/°C)  
FIGURE 2-2:  
DC Gain Error, G +10.  
FIGURE 2-5:  
DC Gain Drift, G +10.  
20%  
22%  
1612 Samples  
G = +1, +10, +50  
TA = -40 to +125°C  
2460 Samples  
20%  
18%  
16%  
14%  
12%  
10%  
8%  
6%  
4%  
2%  
0%  
18%  
16%  
14%  
12%  
10%  
8%  
6%  
4%  
2%  
0%  
G = +50  
G = +10  
G = +1  
Input Offset Voltage (mV)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-3:  
Input Offset Voltage.  
FIGURE 2-6:  
Input Offset Voltage Drift.  
© 2006 Microchip Technology Inc.  
DS22004B-page 9  
MCP6G01/1R/1U/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, G = +1 V/V, VIN = (0.3V)/G,  
RL = 100 kΩ to VDD/2, CL = 60 pF, GSEL = VDD/2, and CS is tied low.  
0
-10  
-20  
-30  
-40  
6
VDD = 5.0V  
G = 50 V/V  
VIN  
RS = 1 M  
S = 100 kΩ  
VDD = 5.0V  
G = +1 V/V  
5
4
R
VOUT  
R
S = 10 kΩ  
-50  
-60  
3
-70  
-80  
2
-90  
1
RS = 0 Ω  
-100  
-110  
-120  
0
-1  
1k  
10k  
100k  
1.E+05  
0.0E+00  
1.0E-03  
2.0E-03  
3.0E-03  
4.0E-03  
5.0E-03  
6.0E-03  
7.0E-03  
8.0E-03  
9.0E-03  
1.0E-02  
1.E+03  
1.E+04  
Time (1 ms/div)  
Frequency (Hz)  
FIGURE 2-7:  
The MCP6G01/1R/1U/2/3/4  
FIGURE 2-10:  
Crosstalk vs. Frequency,  
family shows no phase reversal under overdrive.  
with G = 50 (circuit in Figure 4-7).  
90  
120  
110  
100  
90  
Input Referred  
VDD = 5.5V  
G = 50  
80  
70  
60  
50  
G = 10  
40  
30  
20  
80  
VDD = 1.8V  
G = 1  
70  
100  
100  
1k  
1000  
10k  
10000  
100k  
100000  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Frequency (Hz)  
FIGURE 2-8:  
PSRR vs. Temperature.  
FIGURE 2-11:  
PSRR vs. Frequency.  
10000  
160  
TA = +125°C  
TA +85°C  
140  
120  
100  
80  
=
G = +1  
= +10  
= +50  
1000  
100  
10  
60  
TA  
TA  
=
=
+25°C  
–40°C  
40  
20  
0
0.1  
1
10  
100  
1k  
Frequency (Hz)  
10k 100k  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
0.1  
1
10  
100 1000 10000 10000  
0
FIGURE 2-9:  
Input Noise Voltage Density  
FIGURE 2-12:  
Quiescent Current vs.  
vs. Frequency.  
Supply Voltage.  
DS22004B-page 10  
© 2006 Microchip Technology Inc.  
MCP6G01/1R/1U/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, G = +1 V/V, VIN = (0.3V)/G,  
RL = 100 kΩ to VDD/2, CL = 60 pF, GSEL = VDD/2, and CS is tied low.  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
In Shutdown Mode  
In Shutdown Mode  
VIN = VDD/2  
VIN = VDD/2  
CS = VDD  
VDD = 1.8V  
VDD = 5.5V  
ISS_SHDN  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
FIGURE 2-13:  
Quiescent Current (I ) in  
FIGURE 2-16:  
Quiescent Current (I ) in  
SS  
SS  
Shutdown Mode vs. Supply Voltage.  
Shutdown Mode vs. Temperature.  
1,000  
1.E- 2  
10m  
1.E-03  
1m  
1.E-04  
100µ  
VDD = 5.5V  
VIN = VDD  
1.E-1005µ  
1.E-016µ  
100n  
1.E-07  
10n  
1.E-08  
1n  
1.E-09  
100p  
1.E-10  
10p  
1.E-11  
1p  
1.E-12  
100  
10  
1
+125°C  
+85°C  
+25°C  
-40°C  
55  
65  
75  
85  
95  
105 115 125  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-14:  
Input Bias Current vs.  
FIGURE 2-17:  
Input Bias Current vs. Input  
Temperature.  
Voltage.  
10,000  
30  
25  
20  
15  
10  
5
VDD = 5.5V  
TA  
TA  
TA  
=
=
=
–40°C  
+25°C  
+85°C  
1,000  
100  
10  
TA = +125°C  
TA = +85°C  
TA = +125°C  
0
1
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Input Voltage (V)  
FIGURE 2-15:  
Voltage.  
Input Bias Current vs. Input  
FIGURE 2-18:  
vs. Supply Voltage.  
Output Short Circuit Current  
© 2006 Microchip Technology Inc.  
DS22004B-page 11  
MCP6G01/1R/1U/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, G = +1 V/V, VIN = (0.3V)/G,  
RL = 100 kΩ to VDD/2, CL = 60 pF, GSEL = VDD/2, and CS is tied low.  
3
2
3
2
VDD = +5.5V  
Representative Part  
VDD = +1.8V  
Representative Part  
1
1
G = +1  
0
0
G = +1  
G = +10  
G = +50  
-1  
-2  
-3  
-1  
-2  
-3  
G = +10  
G = +50  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
Ideal Output Voltage; GVIN (V)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Ideal Output Voltage; GVIN (V)  
FIGURE 2-19:  
Output Voltage Error vs.  
FIGURE 2-22:  
Output Voltage Error vs.  
Ideal Output Voltage, with V = 1.8V.  
Ideal Output Voltage, with V = 5.5V.  
DD  
DD  
4.0  
1000  
VDD = 5.5V: VDD–VOH  
3.5  
VOL–VSS  
3.0  
VDD = +1.8V  
100  
2.5  
2.0  
1.5  
VDD – VOH  
VDD = +5.5V  
VOL – VSS  
10  
1.0  
VDD = 1.8V: VOL–VSS  
0.5  
0.0  
VDD–VOH  
1
-50  
-25  
0
25  
50  
75  
100 125  
0.01  
0.1  
1
10  
Output Current Magnitude (mA)  
Ambient Temperature (°C)  
FIGURE 2-20:  
Output Voltage Headroom  
FIGURE 2-23:  
Output Voltage Headroom  
vs. Output plus Ladder Current (circuit in  
Figure 4-4).  
vs. Temperature.  
100k  
1.E+05  
14%  
12%  
10%  
8%  
G = 50  
= 10  
1228 Samples  
T
A = -40 to +125°C  
=
1
10k  
1.E+04  
6%  
4%  
1k  
1.E+03  
2%  
0%  
100  
1.E+02  
10k  
1.E+04  
100k  
1.E+05  
1M  
1.E+06  
10M  
1.E+07  
Ladder Resistance Drift (ppm/°C)  
Frequency (Hz)  
FIGURE 2-21:  
Output Impedance vs.  
FIGURE 2-24:  
Ladder Resistance Drift.  
Frequency.  
DS22004B-page 12  
© 2006 Microchip Technology Inc.  
MCP6G01/1R/1U/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, G = +1 V/V, VIN = (0.3V)/G,  
RL = 100 kΩ to VDD/2, CL = 60 pF, GSEL = VDD/2, and CS is tied low.  
0.7  
0.6  
10  
G = +1 V/V  
VDD = 5.5V  
VDD = 5.5V  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
Falling Edge  
Rising Edge  
VDD = 1.8V  
1
VDD = 1.8V  
G = +1  
G = +10  
G = +50  
0.1  
1.E+03  
1k  
1.E+04  
10k  
1.E+05  
100k  
1.E+06  
1M  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Frequency (Hz)  
FIGURE 2-25:  
Slew Rate vs. Temperature,  
FIGURE 2-28:  
Output Voltage Swing vs.  
with G = +1.  
Frequency.  
3.0  
4.0  
G = +10 V/V  
G = +50 V/V  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 5.5V  
VDD = 5.5V  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Falling Edge  
Falling Edge  
Rising Edge  
Rising Edge  
-50  
-25  
0
25  
50  
75  
100  
125  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-26:  
Slew Rate vs. Temperature,  
FIGURE 2-29:  
Slew Rate vs. Temperature,  
with G = +10.  
with G = +50.  
1M  
1.E+06  
1.E+016M  
G = +1  
G = +1  
G = +10  
G = +50  
G = +10  
G = +50  
100k  
1.E+05  
100k  
1.E+05  
10k  
1.E+04  
100  
1k  
1.E+03  
10k  
1.E+04  
100k  
1.E+05  
10  
100  
1000  
1.E+02  
Resistive Load (ȍ)  
Capacitive Load (pF)  
FIGURE 2-27:  
Bandwidth vs. Resistive  
FIGURE 2-30:  
Bandwidth vs. Capacitive  
Load.  
Load.  
© 2006 Microchip Technology Inc.  
DS22004B-page 13  
MCP6G01/1R/1U/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, G = +1 V/V, VIN = (0.3V)/G,  
RL = 100 kΩ to VDD/2, CL = 60 pF, GSEL = VDD/2, and CS is tied low.  
40  
30  
7
6
5
4
3
2
1
0
G = +50  
G = +10  
G = +1  
G = +10  
G = +50  
20  
10  
0
G = +1  
-10  
-20  
-30  
-40  
10k  
100k  
1.E+05  
1M  
1.E+06  
Frequency (Hz)  
10M  
10  
100  
Capacitive Load (pF)  
1000  
1.E+04  
1.E+07  
FIGURE 2-31:  
Gain vs. Frequency.  
FIGURE 2-34:  
Gain Peaking vs. Capacitive  
Load.  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
VDD = +5.0V  
VDD = +5.0V  
GVI  
VOUT  
G = +50  
G = +10  
G = +1  
VOUT  
G = +1  
G = +10  
G = +50  
GVIN  
0
0.00  
5.00  
10.00  
15.00  
20.00  
25.00  
35.00  
40.00  
45.00  
50.00  
Time (5 µs/3d0.0i0v)  
Time (5 µs/3d0.0i0v)  
0.00  
5.00  
10.00  
15.00  
20.00  
25.00  
35.00  
40.00  
45.00  
50.00  
FIGURE 2-32:  
Small Signal Pulse  
FIGURE 2-35:  
Large Signal Pulse  
Response.  
Response.  
10  
10  
G = +50  
G = +10  
G = +50  
G = +10  
1
0.1  
1
0.1  
G = +1  
VOUT = 2.8VP-P  
VDD = 5.0V  
Measurement BW = 80 kHz  
VOUT = 4 VP-P  
VDD = 5.0V  
0.01  
0.001  
0.01  
0.001  
G = +1  
Measurement BW = 80 kHz  
100  
1k  
1.E+03  
10k  
1.E+04  
100k  
1.E+05  
100  
1k  
1.E+03  
10k  
1.E+04  
100k  
1.E+02  
1.E+02  
1.E+05  
Frequency (Hz)  
Frequency (Hz)  
FIGURE 2-33:  
THD plus Noise vs.  
= 2.8 V  
FIGURE 2-36:  
THD plus Noise vs.  
= 4.0 V  
Frequency, V  
.
Frequency, V  
.
P-P  
OUT  
P-P  
OUT  
DS22004B-page 14  
© 2006 Microchip Technology Inc.  
MCP6G01/1R/1U/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, G = +1 V/V, VIN = (0.3V)/G,  
RL = 100 kΩ to VDD/2, CL = 60 pF, GSEL = VDD/2, and CS is tied low.  
10  
1
10  
1
G = +50  
G = +10  
G = +50  
G = +10  
0.1  
0.1  
G = +1  
G = +1  
VOUT = 0.8VDD  
f = 1 kHz  
f = 1 kHz  
VDD = 5.0V  
0.01  
0.001  
0.01  
Measurement BW = 80 kHz  
Measurement BW = 80 kHz  
0.001  
1k  
1.E+03  
10k  
1.E+04  
Load Resistance ()  
100k  
1.E+05  
1M  
1.E+06  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
FIGURE 2-37:  
THD plus Noise vs. Supply  
FIGURE 2-40:  
THD plus Noise vs. Load  
Voltage.  
Resistance.  
10  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
10  
1
5
5
G = +50  
G = +10  
0
GSEL  
0
VDD = 5.0V  
-5  
VIN = 0.030V  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
0.1  
0.01  
G = +1  
VOUT  
VDD = 5.0V  
f = 1 kHz  
(G = +50)  
Measurement BW = 80 kHz  
0.001  
1
0.5  
0.0  
(G = +1)  
(G = +1)  
10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Output Swing (VP-P  
)
Time (10 µs/div)  
FIGURE 2-38:  
THD plus Noise vs. Output  
FIGURE 2-41:  
Gain Select Timing, with  
Swing.  
Gain = 1 and 50.  
10  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
10  
5
5
5
GSEL  
5
0
0
0
0
GSEL  
-5  
-5  
VDD = 5.0V  
VDD = 5.0V  
IN = 0.15V  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
VIN = 0.030V  
V
VOUT  
(G = +10)  
(G = +10)  
VOUT  
1.5  
1.0  
0.5  
0.0  
(G = +50)  
(G = +10)  
(G = +1)  
0.5  
(G = +10)  
0.0  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Time (10 µs/div)  
Time (10 µs/div)  
FIGURE 2-39:  
Gain = 1 and 10.  
Gain Select Timing, with  
FIGURE 2-42:  
Gain = 1 and 10.  
Gain Select Timing, with  
© 2006 Microchip Technology Inc.  
DS22004B-page 15  
MCP6G01/1R/1U/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, G = +1 V/V, VIN = (0.3V)/G,  
RL = 100 kΩ to VDD/2, CL = 60 pF, GSEL = VDD/2, and CS is tied low.  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
-0.2  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
VOUT is "ON"  
VDD = 1.8V  
IN = 0.9VDD  
VOUT is "ON"  
VDD = 5.0V  
V
VIN = 0.9VDD  
Shutdown  
Shutdown  
G = 1  
G = 10  
G = 50  
G = 1  
G = 10  
G = 50  
1.8  
0
5
0
CS  
CS  
Time (20 µs/div)  
Time (20 µs/div)  
FIGURE 2-43:  
Output Voltage vs. Chip  
FIGURE 2-46:  
Output Voltage vs. Chip  
Select, with V = 1.8V.  
Select, with V = 5.0V.  
DD  
DD  
10  
10  
VDD = 1.8V  
VDD = 5.5V  
8
8
6
4
6
4
TA  
=
=
+25°C  
+85°C  
TA  
=
=
+25°C  
+85°C  
2
0
2
0
TA = +125°C  
TA = +125°C  
=
=
+85°C  
+25°C  
= +125°C  
=
=
+85°C  
+25°C  
= +125°C  
-2  
-2  
-4  
-4  
-6  
-6  
-8  
-8  
-10  
-10  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8  
GSEL Voltage (V)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
GSEL Voltage (V)  
FIGURE 2-44:  
GSEL Pin Current vs. GSEL  
FIGURE 2-47:  
GSEL Pin Current vs. GSEL  
Voltage, with V = 1.8V.  
Voltage, with V = 5.5V.  
DD  
DD  
22%  
20%  
1228 Samples  
18%  
1228 Samples  
GSEL = 0.3VDD  
20%  
18%  
16%  
14%  
12%  
10%  
8%  
6%  
4%  
2%  
0%  
GSEL = 0.7VDD  
16%  
14%  
12%  
VDD = 5.5V  
VDD = 1.8V  
VDD = 1.8V  
VDD = 5.5V  
10%  
8%  
6%  
4%  
2%  
0%  
GSEL Current (µA)  
GSEL Current (µA)  
FIGURE 2-45:  
GSEL Current, with GSEL  
FIGURE 2-48:  
GSEL Current, with GSEL  
Voltage of 0.3V  
.
Voltage of 0.7V  
.
DD  
DD  
DS22004B-page 16  
© 2006 Microchip Technology Inc.  
MCP6G01/1R/1U/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, G = +1 V/V, VIN = (0.3V)/G,  
RL = 100 kΩ to VDD/2, CL = 60 pF, GSEL = VDD/2, and CS is tied low.  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
30%  
20%  
10%  
0%  
1228 Samples  
G = +1 to +50  
1227 Samples  
G = +1 to +10  
VDD = 5.5V  
VDD = 1.8V  
VDD = 1.8V  
VDD = 5.5V  
Normalized GSEL Trip Point; VGSEL/VDD  
Normalized GSEL Trip Point; VGSEL/VDD  
FIGURE 2-49:  
GSEL Trip Point between  
FIGURE 2-50:  
GSEL Trip Point between  
G = +1 and G = +10.  
G = +1 and G = +50.  
© 2006 Microchip Technology Inc.  
DS22004B-page 17  
MCP6G01/1R/1U/2/3/4  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1 (single op amps) and Table 3-2 (dual and quad op amps).  
TABLE 3-1:  
PIN FUNCTION TABLE FOR SINGLE OP AMPS  
MCP6G01  
(SOIC,  
MSOP)  
MCP6G01  
(SOT-23-5)  
MCP6G01R MCP6G01U  
MCP6G03  
Symbol  
Description  
(SOT-23-5)  
(SOT-23-5)  
6
2
1
4
1
4
4
3
6
2
VOUT  
GSEL  
VIN  
Analog Output  
Gain Select Input  
Analog Input  
3
3
3
1
3
7
5
2
5
7
VDD  
VSS  
CS  
Positive Power Supply  
Negative Power Supply  
Chip Select  
4
2
5
2
4
1,5,8  
8
1,5  
NC  
No Internal Connection  
TABLE 3-2:  
PIN FUNCTION TABLE FOR DUAL AND QUAD OP AMPS  
MCP6G02  
MCP6G04  
Symbol  
Description  
1
2
1
2
VOUTA  
GSELA  
VINA  
Analog Output A  
Gain Select Input (SGA A)  
Analog Input A  
3
3
8
4
VDD  
Positive Power Supply  
Analog Input B  
5
5
VINB  
6
6
GSELB  
VOUTB  
VOUTC  
GSELC  
VINC  
Gain Select Input (SGA B)  
Analog Output B  
7
7
4
8
Analog Output C  
9
Gain Select Input (SGA C)  
Analog Input C  
10  
11  
12  
13  
14  
VSS  
Negative Power Supply  
Analog Input D  
VIND  
GSELD  
VOUTD  
Gain Select Input (SGA D)  
Analog Output D  
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground, and VDD is connected to the supply. VDD will  
need a local bypass capacitor (typically 0.01 µF to  
0.1 µF) within 2 mm of the VDD pin. These parts need  
to use a bulk capacitor (typically 1.0 µF to 10 µF) within  
100 mm of the VDD pin; it can be shared with nearby  
analog parts.  
3.1  
Analog Output  
The output pin (VOUT) is a low impedance voltage  
source. The selected gain (G) and input voltage (VIN)  
determine its value.  
3.2  
Analog Input  
The analog inputs (VIN) are high impedance CMOS  
inputs with low bias currents. Only three fixed, non-  
inverting gains are available through these inputs.  
3.4  
Digital Inputs  
The Chip Select (CS) input is a Schmitt-triggered,  
CMOS logic input.  
3.3  
Power Supply (VSS and VDD)  
The Gain Select (GSEL) inputs are tri-level digital  
inputs. They function similar to normal logic inputs at  
low (G = +10) and high voltages (G = +50). The pin can  
also be set to mid-supply (G = +1) by a low impedance  
source, or by leaving this pin open.  
The Positive Power Supply Pin (VDD) is 1.8V to 5.5V  
higher than the Negative Power Supply Pin (VSS). For  
normal operation, the other pins are at voltages  
between VSS and VDD  
.
DS22004B-page 18  
© 2006 Microchip Technology Inc.  
MCP6G01/1R/1U/2/3/4  
TABLE 4-1:  
GAIN VS. INTERNAL  
COMPENSATION  
CAPACITOR  
4.0  
APPLICATIONS INFORMATION  
The MCP6G01/1R/1U/2/3/4 family of Selectable Gain  
Amplifiers (SGA) is based on simple analog building  
blocks (see Figure 4-1). Each of these blocks will be  
explained in more detail in the following subsections.  
x
Internal  
G
BW  
SR  
FPBW  
BW  
Gain  
(V/V)  
Comp.  
Cap.  
(MHz) (V/µs) (kHz) (kHz)  
Typ.  
Typ.  
Typ.  
Typ.  
1
Large  
Medium  
Small  
0.90  
3.5  
0.50  
2.3  
29  
900  
350  
250  
VDD  
10  
50  
133  
260  
VIN  
12.5  
4.5  
VOUT  
Note 1: Changing the compensation capacitor does not  
Gain  
Switches  
change the DC performance (e.g., VOS).  
RF  
x
2:  
G
BW is approximately the Gain Bandwidth  
3
Product of the internal op amp.  
3: FPBW is the Full Power Bandwidth at  
VDD = 5.5V, which is based on slew rate (SR).  
4: BW is the closed-loop, small signal –3 dB  
bandwidth.  
RG  
Gain Select  
Logic  
GSEL  
CS  
5 MΩ  
(MCP6G03  
only)  
4.1.2  
RAIL-TO-RAIL INPUTS  
The input stage of the internal op amp uses two  
differential input stages in parallel; one operates at low  
VIN (input voltage), while the other operates at high VIN.  
With this topology, the internal inputs can operate to  
0.3V past either supply rail, although the output will clip  
the signal before that happens.  
VSS  
Gain  
(V/V)  
GSEL Voltage (Typ.)  
(V)  
1
VDD/2 (or open)  
The inputs need to be kept within a smaller range to  
prevent output clipping. The input offset voltage also  
reduces the range; most designs will need the following  
for normal operation:  
10  
50  
0
VDD  
Note:  
VSS is assumed to be 0V  
EQUATION 4-1:  
FIGURE 4-1:  
SGA Block Diagram.  
VOL  
VOH  
--------- + VOS < VIN < ---------- – VOS  
4.1  
Internal Op Amp  
G
G
The internal op amp gives the right combination of  
bandwidth, accuracy, and flexibility.  
The transition between the two input stage occurs  
when VIN VDD – 1.1V (see Figure 2-19 and Figure 2-  
22). For the best distortion and gain linearity, avoid this  
region of operation.  
4.1.1  
COMPENSATION CAPACITORS  
The internal op amp has three compensation  
capacitors (comp. caps.) connected to a switching  
network. They are selected to give good small signal  
bandwidth at high gains, and good slew rate (full power  
bandwidth) at low gains. The change in bandwidth as  
gain changes is between 250 and 900 kHz. Refer to  
Table 4-1 for more information.  
4.1.3  
PHASE REVERSAL  
The MCP6G01/1R/1U/2/3/4 amplifier family is  
designed with CMOS input devices. It is designed to  
not exhibit phase inversion when the input pins exceed  
the supply voltages. Figure 2-7 shows an input voltage  
exceeding both supplies with no resulting phase  
inversion.  
© 2006 Microchip Technology Inc.  
DS22004B-page 19  
MCP6G01/1R/1U/2/3/4  
current into the input pin (VIN) should be very small.  
4.1.4  
INPUT VOLTAGE AND CURRENT  
LIMITS  
A significant amount of current can flow out of the  
inputs when the common mode voltage (VCM) is below  
ground (VSS); see Figure 2-17. Applications that are  
high impedance may need to limit the useable voltage  
range.  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-2. This structure was chosen to  
protect the input transistors, and to minimize input bias  
current (IB). The input ESD diodes clamp the inputs  
when they try to go more than one diode drop below  
VSS. They also clamp any voltages that go too far  
above VDD; their breakdown voltage is high enough to  
allow normal operation, and low enough to bypass ESD  
events within the specified limits.  
4.1.5  
RAIL-TO-RAIL OUTPUT  
The maximum output voltage swing is the maximum  
swing possible under a particular amplifier load current.  
The amplifier load current is the sum of the external  
load current (IOUT) and the current through the ladder  
resistance (ILAD); see Figure 4-4.  
Bond  
VDD  
Pad  
EQUATION 4-2:  
Amplifier Load Current = IOUT + ILAD  
Bond  
Pad  
Input  
Stage  
to the rest of  
the amplifier  
VIN  
Where:  
(VOUT VSS  
)
ILAD = ---------------------------------  
RLAD  
Bond  
Pad  
VSS  
FIGURE 4-2:  
Simplified Analog Input ESD  
IOUT  
Structures.  
VIN  
VOUT  
MCP6G0X  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuits they are in must limit the  
currents (and voltages) at the VIN pins (see Section  
“Absolute Maximum Ratings †” at the beginning of  
Section 1.0 “Electrical Characteristics”). Figure 4-3  
shows the recommended approach to protecting these  
inputs. The internal ESD diodes prevent the input pins  
(VIN) from going too far below ground, and the resistor  
R1 limits the possible current drawn out of the input pin.  
Diode D1 prevents the input pin (VIN) from going too far  
above VDD. When implemented as shown, resistor R1  
also limits the current through D1.  
ILAD  
RLAD  
VSS  
Amplifier Load Current.  
FIGURE 4-4:  
See Figure 2-20 for the typical output headroom  
(VDD – VOH or VOL – VSS) as a function of amplifier  
load current.The specification table states the output  
can reach within 10 mV of either supply rail when  
RL = 100 kΩ.  
VDD  
4.2  
Resistor Ladder  
The  
resistor  
ladder  
shown  
in  
Figure 4-1  
D1  
(RLAD = RF + RG) sets the gain. Placing the gain  
switches in series with the inverting input reduces the  
parasitic capacitance, distortion, and gain mismatch.  
V1  
VOUT  
MCP6G0X  
VIN  
R1  
RLAD is an additional load on the output of the SGA and  
causes additional current draw from the supplies.  
VSS – (minimum expected V1)  
2 mA  
R1 ≥  
When CS is high, the SGA is shut down (low power).  
RLAD is still attached to the VOUT and VSS pins. Thus,  
these pins and the internal amplifier’s inverting input  
are all connected through RLAD and the output is not  
high-Z (unlike the internal op amp).  
FIGURE 4-3:  
Inputs.  
Protecting the Analog  
It is also possible to connect the diode to the left of the  
resistor R1. In this case, the current through the diode  
D1 needs to be limited by some other mechanism. The  
resistor then serves as in-rush current limiter; the DC  
RLAD contributes to the output noise; see Figure 2-9.  
DS22004B-page 20  
© 2006 Microchip Technology Inc.  
MCP6G01/1R/1U/2/3/4  
RLAD is intended to be driven at the VSS pin by a low  
impedance voltage source. The power supply driving  
the VSS pin should have an output impedance less than  
0.1Ω to maintain reasonable gain accuracy.  
TABLE 4-3:  
HARD WIRED GAIN  
SELECTION  
Selected Gain  
Possible GSEL Drivers  
+1 V/V  
Open Circuit (Note 1)  
Low impedance source at VDD/2  
Tied to GND (0V)  
4.3  
MCP6G03 Chip Select (CS)  
+10 V/V  
+50 V/V  
The MCP6G03 is a single amplifier with chip select  
(CS). When CS is high, the internal op amp is shut  
down and its output placed in a high-Z state. The  
resistive ladder is always connected between VSS and  
VOUT; even in shutdown. This means that the output  
resistance will be 350 kΩ (typ.), with a path for output  
signals to appear at the input. The supply current at  
VSS includes the current through the load resistor and  
ladder resistors; it also includes current from the CS pin  
to VSS. When CS is low, the amplifier is enabled. If CS  
is left floating, the amplifier may not operate properly.  
Tied to VDD  
Note 1: The GSEL pin floats to mid-supply  
(VDD/2); a bypass capacitor may be  
needed.  
4.5  
Capacitive Load and Stability  
Large capacitive loads can cause stability problems  
and reduced bandwidth for the MCP6G01/1R/1U/2/3/4  
family of SGAs (Figure 2-30 and Figure 2-34). As the  
load capacitance increases, there is a corresponding  
increase in frequency response peaking and step  
response overshoot and ringing. This happens  
because a large load capacitance decreases the  
internal amplifier’s phase margin and bandwidth.  
Figure 1-2 and Figure 2-43 show how the output  
voltage and supply current response to a CS pulse.  
4.4  
Gain Select (GSEL)  
The amplifier can be set to the gains +1 V/V, +10 V/V,  
and +50 V/V using one input pin (GSEL). At the same  
time, different compensation capacitors are selected to  
optimize the bandwidth vs. slew rate trade-off (see  
Table 4-1). Table 4-2 shows how to change the gain  
using a GPIO pin on a microcontroller and Table 4-3  
shows how to hard wire the gain (i.e., using PCB  
wiring).  
When driving large capacitive loads with these SGAs  
(i.e., > 60 pF), a small series resistor at the output  
(RISO in Figure 4-5) improves the internal amplifier’s  
stability by making the load resistive at higher  
frequencies. The bandwidth will be generally lower  
than the bandwidth with no capacitive load.  
RISO  
TABLE 4-2:  
MCU DRIVEN GAIN  
SELECTION  
VOUT  
CL  
VIN  
MCP6G0X  
Gain  
MCU Pin’s State  
+1 V/V  
Output PIC’s VREF at VDD/2  
Digital Output High-Z (Notes 1)  
Output VDD/2 PWM signal (Notes 2)  
FIGURE 4-5:  
Capacitive Loads.  
SGA Circuit for Large  
+10 V/V Digital Output driven Low  
+50 V/V Digital Output driven High  
Figure 4-6 gives recommended RISO values for  
different capacitive loads. After selecting RISO for your  
circuit, double check the resulting frequency response  
peaking and step response overshoot on the bench.  
Modify RISO’s value until the response is reasonable at  
all gains.  
Note 1: See Section 4.8.1 “Driving the Gain  
Select Pin with a Microcontroller GPIO  
Pin”.  
2: See Section 4.8.2 “Driving the Gain  
Select Pin with a PWM Signal”  
© 2006 Microchip Technology Inc.  
DS22004B-page 21  
MCP6G01/1R/1U/2/3/4  
4.6.3  
INPUT SOURCE IMPEDANCE  
1,000  
The sources driving the inputs of the SGAs need to  
have reasonably low source impedance at higher  
frequencies. Figure 4-7 shows how the external source  
resistance (RS), SGA package pin capacitance (CP1),  
and SGA package pin-to-pin capacitance (CP2) form a  
positive feedback voltage divider network. Feedback  
may cause frequency response peaking and step  
response overshoot and ringing.  
100  
For all gains  
10  
10p  
CP2  
100p  
100  
1n  
1,000  
Load Capacitance (F)  
10n  
10,000  
100n  
100,000  
10  
FIGURE 4-6:  
Recommended R  
.
ISO  
RS  
VS  
VOUT  
MCP6G0X  
4.6  
Layout Considerations  
CP1  
Good PC board layout techniques will help achieve the  
performance shown in Section 1.0 “Electrical  
Characteristics”  
and  
Section 2.0  
“Typical  
Performance Curves”. It will also help minimize  
Electromagnetic Compatibility (EMC) issues.  
FIGURE 4-7:  
Positive Feedback Path.  
Figure 2-10 shows the crosstalk (referred to input) that  
results when a hostile signal is connected to the other  
inputs (e.g., VINB through VIND), and the input of  
interest (e.g., VINA) has RS connected to GND. A gain  
of +50 was chosen for this plot because it  
demonstrates the worst-case behavior. Increasing RS  
increases the crosstalk as expected. At a source  
impedance of 10 MΩ, there is noticeable change in  
behavior.  
Because the MCP6G01/1R/1U/2/3/4 SGAs’ frequency  
response reaches unity gain at 10 MHz when G = 50, it  
is important to use good PCB layout techniques. Any  
parasitic coupling at high frequency might cause  
undesired peaking. Filtering high frequency signals  
(i.e., fast edge rates) can help.  
4.6.1  
COMPONENT PLACEMENT  
Separate different circuit functions: digital from analog,  
low speed from high speed, and low power from high  
power. This will reduce crosstalk.  
Most designs should use a source resistance (RS) no  
larger than 10 MΩ. Careful attention to layout parasitics  
and proper component selection will help minimize this  
effect. When a source impedance larger than 10 MΩ  
must be used, place a capacitor in parallel to CP1 to  
reduce the positive feedback. This capacitor needs to  
be large enough to overcome gain (or crosstalk)  
peaking, yet small enough to allow a reasonable signal  
bandwidth.  
Keep sensitive traces short and straight. Separate  
them from interfering components and traces. This is  
especially important for high frequency (low rise time)  
signals.  
4.6.2  
SUPPLY BYPASS  
Use a local bypass capacitor (0.01 µF to 0.1 µF) within  
2 mm of the VDD pin for good, high frequency  
performance. It must connect directly to ground.  
4.6.4  
SIGNAL COUPLING  
The input pins of the MCP6G01/1R/1U/2/3/4 family of  
SGAs are high impedance. This makes them especially  
susceptible to capacitively coupled noise. Using a  
ground plane helps reduce this problem.  
Use a bulk bypass capacitor (i.e., 1.0 µF to 10 µF)  
within 100 mm of the VDD pin. It needs to connect to  
ground, and provides large, slow currents. This  
capacitor may be shared with other nearby analog  
parts.  
When noise is capacitively coupled, the ground plane  
provides additional shunt capacitance to ground. When  
noise is magnetically coupled, the ground plane  
reduces the mutual inductance between traces.  
Increasing the separation between traces makes a  
significant difference.  
Ground plane is important, and power plane(s) can  
also be of great help. High frequency (e.g., multi-layer  
ceramic capacitors), surface mount components  
improve the supply’s performance.  
Changing the direction of one of the traces can also  
reduce magnetic coupling. It may help to locate guard  
traces next to the victim trace. They should be on both  
sides of, and as close as possible to, the victim trace.  
Connect the guard traces to the ground plane at both  
ends. Also connect long guard traces to the ground  
plane in the middle.  
DS22004B-page 22  
© 2006 Microchip Technology Inc.  
MCP6G01/1R/1U/2/3/4  
4.8.2  
DRIVING THE GAIN SELECT PIN  
WITH A PWM SIGNAL  
4.7  
Unused Amplifiers  
An unused amplifier in a quad package (MCP6G04)  
should be configured as shown in Figure 4-8. This  
circuit prevents the output from toggling and causing  
crosstalk. Because the VIN pin looks like an open  
circuit, the GSEL voltage is automatically set at VDD/2,  
and the gain is 1 V/V. The output pin provides a  
buffered VDD/2 voltage and minimizes the supply  
current draw of the unused amplifier.  
The circuit in Figure 4-10 uses a PWM output on a PIC  
microcontroller (100 kHz clock rate) to drive the Gain  
Select input (GSEL). Setting the PWM duty cycle to  
0%, 50% or 100% gives a GSEL voltage of 0V, VDD/2  
or VDD, respectively (G = 10, 1 or 50).  
VDD  
¼ MCP6G04  
VIN  
MCP6G0X  
VOUT  
VDD  
GSEL  
VDD  
VIN  
MCP6G0X  
VOUT  
PIC MCU  
GSEL  
10 kΩ  
10 kΩ  
4.7 nF  
PWM  
Output  
4.7 nF  
FIGURE 4-8:  
Unused Amplifiers.  
4.8  
Typical Applications  
FIGURE 4-10:  
Driving the GSEL Pin.  
The PWM clock rate needs to be fast so it is easily  
filtered and does not interfere with the desired signal,  
and it needs to be slow enough for good accuracy and  
low crosstalk. This filter reduces the ripple at the GSEL  
pin to about 7 mVP-P at VDD = 5.0V. The 10% settling  
time is about 200 µs; the filter limits how quickly the  
gain can be changed. Scale the resistors and/or  
capacitors for other clock rates, or for different ripple.  
4.8.1  
DRIVING THE GAIN SELECT PIN  
WITH A MICROCONTROLLER GPIO  
PIN  
The circuit in Figure 4-9 uses a microcontroller GPIO  
pin to drive the Gain Select input (GSEL). Setting the  
GPIO pin to logic low, high-Z or logic high gives a GSEL  
voltage of 0V, VDD/2 or VDD, respectively (G = 10, 1 or  
50).  
4.8.3  
GAIN RANGING  
VDD  
Figure 4-11 shows a circuit that measures the current  
IX. The circuit’s performance benefits from changing  
the gain on the SGA. Just as a hand-held multimeter  
uses different measurement ranges to obtain the best  
results, this circuit makes it easy to set a high gain for  
small signals and a low gain for large signals. As a  
result, the required dynamic range at the SGA’s output  
is less than at its input (by up to 34 dB).  
VDD  
VIN  
MCP6G0X  
VOUT  
GSEL  
MCU  
GPIO  
Pin  
VOUT  
MCP6G0X  
FIGURE 4-9:  
Driving the GSEL Pin.  
IX  
The microcontroller’s GPIO pin cannot produce a  
leakage current of more than ±1 µA for this circuit to  
function properly. In noisy environments, a capacitor  
may need to be added to the GPIO pin.  
RS  
FIGURE 4-11:  
Wide Dynamic Range  
Current Measurement Circuit.  
© 2006 Microchip Technology Inc.  
DS22004B-page 23  
MCP6G01/1R/1U/2/3/4  
4.8.4  
SHIFTED GAIN RANGE SGA  
4.8.5  
ADC DRIVER  
Figure 4-12 shows a circuit using a MCP6271 at a gain  
of +10 in front of a MCP6G01. This shifts the overall  
gain range to +10 V/V to +500 V/V (from +1 V/V to  
+50 V/V).  
This family of SGAs is well suited for driving Analog-to-  
Digital Converters (ADC). The gains (1, 10, and 50)  
effectively increase the ADC’s input resolution by a  
factor of as large as 50 (i.e., by 5.6 bits). This works  
well for applications needing relative accuracy more  
than absolute accuracy (e.g., power monitoring); see  
Figure 4-14.  
VIN  
VOUT  
MCP6271  
MCP6G01  
Low-pass  
Filter  
MCP3001  
3
VIN  
MCP6G01  
10-bit  
ADC  
OUT  
10.0 kΩ  
1.11 kΩ  
FIGURE 4-14:  
SGA as an ADC Driver.  
The low-pass filter in the block diagram reduces the  
integrated noise at the MCP6G01’s output and serves  
as an anti-aliasing filter. This filter may be designed  
using Microchip’s FilterLab® software, available at  
www.microchip.com.  
FIGURE 4-12:  
Range.  
SGA with Higher Gain  
It is also easy to shift the gain range to lower gains (see  
Figure 4-13). The MCP6001 acts as a unity gain buffer,  
and the resistive voltage divider shifts the gain range  
down to +0.1 V/V to +5.0 V/V (from +1 V/V to +50 V/V).  
VIN  
MCP6001  
10.0 kΩ  
VOUT  
MCP6G01  
1.11 kΩ  
FIGURE 4-13:  
SGA with Lower Gain  
Range.  
DS22004B-page 24  
© 2006 Microchip Technology Inc.  
MCP6G01/1R/1U/2/3/4  
5.0  
5.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SOT-23 (MCP6G01, MCP6G01R, MCP6G01U)  
Device  
Code  
MCP6G01  
CKNN  
CLNN  
CMNN  
XXNN  
CK25  
MCP6G01R  
MCP6G01U  
Note: Applies to 5-Lead SOT-23  
8-Lead SOIC (150 mil) (MCP6G01, MCP6G02, MCP6G03)  
Example:  
XXXXXXXX  
XXXXYYWW  
MCP6G01E  
SN^  
e
3
0634  
NNN  
256  
Example:  
8-Lead MSOP (MCP6G01, MCP6G02, MCP6G03)  
6G01E  
XXXXXX  
YWWNNN  
634256  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2006 Microchip Technology Inc.  
DS22004B-page 25  
MCP6G01/1R/1U/2/3/4  
Package Marking Information (Continued)  
14-Lead SOIC (150 mil) (MCP6S24)  
Example:  
MCP6G04  
E/SL^
XXXXXXXXXXX  
XXXXXXXXXXX  
e
3
YYWWNNN  
0609256  
14-Lead TSSOP (4.4mm) (MCP6S24)  
Example:  
XXXXXXXX  
YYWW  
6G04E/ST  
0609  
256  
NNN  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS22004B-page 26  
© 2006 Microchip Technology Inc.  
MCP6G01/1R/1U/2/3/4  
5-Lead Plastic Small Outline Transistor (OT) (SOT-23)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
p
B
p1  
D
n
1
α
c
A
A2  
φ
L
A1  
β
Units  
INCHES  
NOM  
*
MILLIMETERS  
NOM  
5
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
5
.038  
0.95  
p1  
A
Outside lead pitch (basic)  
Overall Height  
.075  
.046  
.043  
.003  
.110  
.064  
.116  
.018  
1.90  
.035  
.057  
0.90  
1.18  
1.45  
1.30  
0.15  
3.00  
1.75  
3.10  
0.55  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.035  
.000  
.102  
.059  
.110  
.014  
.051  
.006  
.118  
.069  
.122  
.022  
10  
0.90  
0.00  
2.60  
1.50  
2.80  
0.35  
1.10  
0.08  
Overall Width  
2.80  
Molded Package Width  
Overall Length  
E1  
D
1.63  
2.95  
Foot Length  
L
f
0.45  
Foot Angle  
0
5
0
5
10  
c
Lead Thickness  
Lead Width  
.004  
.014  
.006  
.017  
.008  
.020  
10  
0.09  
0.35  
0.15  
0.43  
0.20  
0.50  
B
a
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
0
5
5
0
5
5
10  
10  
b
10  
0
*
Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.  
EIAJ Equivalent: SC-74A  
Revised 09-12-05  
Drawing No. C04-091  
© 2006 Microchip Technology Inc.  
DS22004B-page 27  
MCP6G01/1R/1U/2/3/4  
8-Lead Plastic Micro Small Outline Package (MS) (MSOP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
2
b
1
e
c
ϕ
A2  
A
L1  
L
A1  
Units  
MILLIMETERS  
Dimension Limits  
NOM  
8
MAX  
MIN  
Number of Pins  
Pitch  
N
e
0.65 BSC  
Overall Height  
A
1.10  
0.95  
0.15  
0.75  
0.00  
0.85  
Molded Package Thickness  
Standoff  
A2  
A1  
E
4.90 BSC  
3.00 BSC  
3.00 BSC  
0.60  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
0.40  
L
0.80  
0.95 REF  
Footprint  
L1  
0°  
Foot Angle  
ϕ
8°  
0.08  
0.22  
Lead Thickness  
Lead Width  
c
0.23  
0.40  
b
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions  
shall not exceed 0.15 mm per side.  
3. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing No. C04–111, Sept. 8, 2006  
DS22004B-page 28  
© 2006 Microchip Technology Inc.  
MCP6G01/1R/1U/2/3/4  
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
Number of Pins  
Pitch  
8
.050  
.061  
.056  
.007  
.237  
.154  
.193  
.015  
.025  
4
1.27  
Overall Height  
A
.053  
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
6.02  
3.91  
4.90  
0.38  
0.62  
4
1.75  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.052  
.004  
.228  
.146  
.189  
.010  
.019  
0
.061  
.010  
.244  
.157  
.197  
.020  
.030  
8
1.55  
0.25  
6.20  
3.99  
5.00  
0.51  
0.76  
8
§
0.10  
5.79  
3.71  
4.80  
0.25  
0.48  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.013  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.33  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-057  
© 2006 Microchip Technology Inc.  
DS22004B-page 29  
MCP6G01/1R/1U/2/3/4  
14-Lead Plastic Small Outline (SL) – Narrow, 150 mil (SOIC)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
p
D
2
B
n
1
α
h
45°  
c
A2  
A
φ
A1  
L
β
Units  
INCHES*  
NOM  
14  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
Number of Pins  
Pitch  
.050  
.061  
.056  
.007  
.236  
.154  
.342  
.015  
.033  
4
1.27  
Overall Height  
A
.053  
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
5.99  
3.90  
8.69  
0.38  
0.84  
4
1.75  
Molded Package Thickness  
A2  
A1  
E
.052  
.004  
.228  
.150  
.337  
.010  
.016  
0
.061  
.010  
.244  
.157  
.347  
.020  
.050  
8
1.55  
0.25  
6.20  
3.99  
8.81  
0.51  
1.27  
8
Standoff  
§
0.10  
5.79  
3.81  
8.56  
0.25  
0.41  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.014  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.36  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
0
12  
15  
0
12  
15  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-065  
Revised 7-20-06  
DS22004B-page 30  
© 2006 Microchip Technology Inc.  
MCP6G01/1R/1U/2/3/4  
14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
p
D
2
1
n
B
α
A
c
φ
β
L
A1  
A2  
Units  
INCHES  
NOM  
MILLIMETERS  
NOM  
14  
*
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
14  
.026 BSC  
.041  
0.65 BSC  
1.05  
Overall Height  
A
A2  
A1  
E
.039  
.033  
.002  
.246  
.169  
.193  
.020  
.043  
1.00  
1.10  
Molded Package Thickness  
Standoff  
.035  
.004  
.251  
.173  
.197  
.024  
.037  
.006  
.256  
.177  
.201  
.028  
0.85  
0.05  
6.25  
4.30  
4.90  
0.50  
0.90  
0.95  
0.15  
6.50  
4.50  
5.10  
0.70  
0.10  
Overall Width  
6.38  
Molded Package Width  
Molded Package Length  
Foot Length  
E1  
D
4.40  
5.00  
L
0.60  
φ
Foot Angle  
0°  
4°  
8°  
0°  
4°  
0.15  
0.25  
12° REF  
12° REF  
8°  
c
Lead Thickness  
.004  
.007  
.006  
.010  
.008  
.012  
0.09  
0.19  
0.20  
0.30  
Lead Width  
B
α
Mold Draft Angle Top  
Mold Draft Angle Bottom  
12° REF  
12° REF  
β
*
Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold fla sh or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
See ASME Y14.5M  
REF: Reference Dimension, usually without tole rance, for information purposes only.  
See ASME Y14.5M  
JEDEC Equivalent: MO-153 AB-1  
Drawing No. C04-087  
Revised: 08-17-05  
© 2006 Microchip Technology Inc.  
DS22004B-page 31  
MCP6G01/1R/1U/2/3/4  
NOTES:  
DS22004B-page 32  
© 2006 Microchip Technology Inc.  
MCP6G01/1R/1U/2/3/4  
APPENDIX A: REVISION HISTORY  
Revision B (December 2006)  
The following is the list of modifications:  
• Added SOT-23-5 package option for the single  
gain blocks MCP6G01, MCP6G01R, and  
MCP6G01U.  
• Added a discussion on VIN range vs. G.  
Revision A (September 2006)  
• Original Release of this Document.  
© 2006 Microchip Technology Inc.  
DS22004B-page 33  
MCP6G01/1R/1U/2/3/4  
NOTES:  
DS22004B-page 34  
© 2006 Microchip Technology Inc.  
MCP6G01/1R/1U/2/3/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
–X  
/XX  
a)  
MCP6G01-E/MS: Extended Temperature,  
Temperature Package  
Range  
8LD MSOP.  
b)  
MCP6G01T-E/SN: Tape and Reel,  
Extended Temperature,  
8LD SOIC.  
Device:  
MCP6G01:  
MCP6G01T:  
Single SGA  
Single SGA  
(Tape and Reel for MSOP and SOIC)  
c)  
d)  
e)  
MCP6G01T-E/OT: Tape and Reel,  
Extended Temperature,  
5LD SOT-23-5.  
MCP6G01RT: Single SGA  
(Tape and Reel for SOT-23-5)  
MCP6G01UT: Single SGA  
(Tape and Reel for SOT-23-5)  
Dual SGA  
MCP6G01RT-E/OT: Tape and Reel,  
Extended Temperature,  
5LD SOT-23-5.  
MCP6G02:  
MCP6G02T:  
Dual SGA  
(Tape and Reel for MSOP and SOIC)  
Single SGA  
MCP6G01UT-E/OT: Tape and Reel,  
Extended Temperature,  
5LD SOT-23-5.  
MCP6G03:  
MCP6G03T:  
Single SGA  
(Tape and Reel for MSOP and SOIC)  
Quad SGA  
Quad SGA  
a)  
b)  
MCP6G02-E/MS: Extended Temperature,  
8LD MSOP.  
MCP6G04:  
MCP6G04T:  
(Tape and Reel for SOIC and TSSOP)  
MCP6G02T-E/SN: Tape and Reel,  
Extended Temperature,  
8LD SOIC.  
Temperature Range:  
Package:  
E
=
-40°C to +125°C  
a)  
b)  
MCP6G03-E/MS: Extended Temperature,  
8LD MSOP.  
MS  
OT  
SN  
SL  
=
=
=
=
=
Plastic MSOP, 8-lead  
Plastic Small Outline Transistor (SOT-23-5), 5-lead  
Plastic SOIC (150 mil Body), 8-lead  
Plastic SOIC (150 mil Body), 14-lead (MCP6G04)  
Plastic TSSOP (4.4mm Body), 14-lead (MCP6G04)  
MCP6G03T-E/SN: Tape and Reel,  
Extended Temperature,  
8LD SOIC.  
ST  
c)  
a)  
MCP6G03-E/SN: Extended Temperature,  
8LD SOIC.  
MCP6G04T-E/SL: Tape and Reel,  
Extended Temperature,  
14LD SOIC.  
b)  
c)  
MCP6G04T-E/ST: Tape and Reel,  
Extended Temperature,  
14LD TSSOP.  
MCP6G04-E/ST:  
Extended Temperature,  
14LD TSSOP.  
© 2006 Microchip Technology Inc.  
DS22004B-page 35  
MCP6G01/1R/1U/2/3/4  
NOTES:  
DS22004B-page 36  
© 2006 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart, rfPIC, and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active  
Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2006, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its PIC®  
8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs,  
microperipherals, nonvolatile memory and analog products. In addition,  
Microchip’s quality system for the design and manufacture of  
development systems is ISO 9001:2000 certified.  
© 2006 Microchip Technology Inc.  
DS22004B-page 37  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Alpharetta, GA  
Tel: 770-640-0034  
Fax: 770-640-0307  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
10/19/06  
DS22004B-page 38  
© 2006 Microchip Technology Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY