MCP6541RT [MICROCHIP]

Push-Pull Output Sub-Microamp Comparators; 推挽输出亚微安比较
MCP6541RT
型号: MCP6541RT
厂家: MICROCHIP    MICROCHIP
描述:

Push-Pull Output Sub-Microamp Comparators
推挽输出亚微安比较

文件: 总29页 (文件大小:575K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6541/2/3/4  
M
Push-Pull Output Sub-Microamp Comparators  
Features  
Description  
• Low Quiescent Current: 600 nA/comparator (typ.)  
• Rail-to-Rail Input: VSS - 0.3V to VDD + 0.3V  
• CMOS/TTL-Compatible Output  
The Microchip Technology Inc. MCP6541/2/3/4 family  
of comparators is offered in single (MCP6541), single  
with chip select (MCP6543), dual (MCP6542) and quad  
(MCP6544) configurations. The outputs are push-pull  
(CMOS/TTL-compatible) and are capable of driving  
heavy DC or capacitive loads.  
These comparators are optimized for low power, single-  
supply operation with greater than rail-to-rail input  
operation. The push-pull output of the MCP6541/2/3/4  
family supports rail-to-rail output swing and interfaces  
with TTL/CMOS logic. The internal input hysteresis  
eliminates output switching due to internal input noise  
voltage, reducing current draw. The output limits supply  
current surges and dynamic power consumption while  
switching. This product family operates with a single-  
supply voltage as low as 1.6V and draws less than 1 µA/  
comparator of quiescent current.  
• Propagation Delay 4 µs (typ.)  
• Wide Supply Voltage Range: 1.6V to 5.5V  
• Available in Single, Dual and Quad  
• Single available in SOT-23-5, SC-70-5 packages  
• Chip Select (CS) with MCP6543  
• Low Switching Current  
• Internal Hysteresis: 3.3 mV (typ.)  
• Industrial Temperature: -40°C to +85°C  
Typical Applications  
• Laptop Computers  
• Mobile Phones  
• Metering Systems  
• Hand-held Electronics  
• RC Timers  
• Alarm and Monitoring Circuits  
• Windowed Comparators  
• Multi-vibrators  
The related MCP6546/7/8/9 family of comparators from  
Microchip has an open-drain output. Used with a pull-up  
resistor, these devices can be used as level-shifters for  
any desired voltage up to 10V and in wired-OR logic.  
Related Devices  
• Open-Drain Output: MCP6546/7/8/9  
Package Types  
MCP6541  
MCP6541-R  
SOT-23-5  
MCP6542  
MCP6544  
PDIP, SOIC, MSOP  
PDIP, SOIC, TSSOP  
PDIP, SOIC, MSOP  
V
OUTA  
14 OUTD  
13 VIND  
12 VIND  
OUTA  
1
2
3
4
V
1
2
3
4
8
7
6
5
NC  
1
2
3
4
8 NC  
V
7
6
OUT  
DD  
VIN+  
DD  
1
2
3
5
SS  
VINA  
VINA  
VDD  
+
- +  
+
+
VINA  
VINA  
V
+
SS  
OUTB  
VINB  
VINB  
-
-
+
V –  
-
+
V
-
VIN+  
DD  
OUT  
+
+
-
VIN–  
IN  
4
VSS  
11  
V
5 NC  
SS  
VINB  
VINB  
+
10 VINC  
9 VINC  
+
5
6
7
MCP6541  
SOT-23-5, SC-70-5  
MCP6543  
PDIP, SOIC, MSOP  
- +  
-
+
OUTB  
8 OUTC  
NC  
VIN–  
VIN+  
CS  
DD  
OUT  
NC  
V
1
2
3
4
8
7
6
5
OUT  
SS  
VIN+  
1
2
3
5
DD  
V
-
+
V
-
VIN–  
4
V
SS  
2003 Microchip Technology Inc.  
DS21696C-page 1  
MCP6541/2/3/4  
† Notice: Stresses above those listed under “Maximum Rat-  
ings” may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
1.1  
Absolute Maximum Ratings †  
VDD - VSS .........................................................................7.0V  
All inputs and outputs ...................... VSS –0.3V to VDD +0.3V  
PIN FUNCTION TABLE  
Difference Input voltage ....................................... |VDD - VSS  
|
Output Short-Circuit Current .................................continuous  
Current at Input Pins ....................................................±2 mA  
Current at Output and Supply Pins ............................±30 mA  
Storage temperature .....................................-65°C to +150°C  
Maximum Junction Temperature (TJ)..........................+150°C  
ESD protection on all pins (HBM;MM) ...................4 kV; 400V  
NAME  
FUNCTION  
VIN+, VINA+, VINB+, VINC+,  
Non-Inverting Inputs  
VIND  
+
VIN–, VINA–, VINB–, VINC–, VIND– Inverting Inputs  
VDD  
VSS  
Positive Power Supply  
Negative Power Supply  
Outputs  
OUT, OUTA, OUTB, OUTC,  
OUTD  
CS  
NC  
Chip Select  
Not Connected  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = +25°C,VIN+ = VDD/2,  
VIN= VSS, and RL = 100 kto VDD/2 (Refer to Figure 1-3).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Power Supply  
Supply Voltage  
Quiescent Current per comparator  
Input  
VDD  
IQ  
1.6  
0.3  
0.6  
5.5  
1.0  
V
µA  
IOUT = 0  
Input Voltage Range  
VCMR  
CMRR  
CMRR  
CMRR  
PSRR  
VOS  
VOS/TA  
VHYST  
V
SS0.3  
55  
50  
55  
63  
-7.0  
1.5  
70  
65  
70  
80  
±1.5  
±3  
3.3  
10  
5
VDD+0.3  
V
Common Mode Rejection Ratio  
Common Mode Rejection Ratio  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
Input Offset Voltage  
Drift with Temperature  
Input Hysteresis Voltage  
Drift with Temperature  
Drift with Temperature  
Input Bias Current  
dB  
dB  
dB  
dB  
mV  
VDD = 5V, VCM = -0.3V to 5.3V  
VDD = 5V, VCM = 2.5V to 5.3V  
VDD = 5V, VCM = -0.3V to 2.5V  
VCM = VSS  
+7.0  
6.5  
100  
VCM = VSS (Note 1)  
µV/°C TA = -40°C to +85°C, VCM = VSS  
mV VCM = VSS (Note 1)  
µV/°C TA = -40°C to +25°C, VCM = VSS  
µV/°C TA = +25°C to +85°C, VCM = VSS  
pA  
pA  
VHYST/TA  
VHYST/TA  
IB  
1
VCM = VSS  
TA = -40°C to +85°C, VCM = VSS  
(Note 3)  
Over-Temperature  
IB  
Input Offset Current  
IOS  
ZCM  
ZDIFF  
±1  
pA  
||pF  
||pF  
VCM = VSS  
Common Mode Input Impedance  
Differential Input Impedance  
Push-Pull Output  
1013||4  
1013||2  
High-Level Output Voltage  
Low-Level Output Voltage  
Short-Circuit Current  
VOH  
VOL  
ISC  
V
DD0.2  
±50  
VSS+0.2  
V
V
mA  
IOUT = -2 mA, VDD = 5V  
IOUT = 2 mA, VDD = 5V  
(Note 2)  
Note 1: The input offset voltage is the center (average) of the input-referred trip points. The input hysteresis is the difference  
between the input-referred trip points.  
2: Limit the output current to Absolute Maximum Rating of 30 mA.  
3: Input bias current over temperature is not tested for SC-70-5 package.  
DS21696C-page 2  
2003 Microchip Technology Inc.  
 
 
 
MCP6541/2/3/4  
AC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2,  
Step = 200 mV, Overdrive = 100 mV, and CL = 36 pF (Refer to Figure 1-2 and Figure 1-3).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Rise Time  
Fall Time  
Propagation Delay (High-to-Low)  
Propagation Delay (Low-to-High)  
Propagation Delay Skew  
tR  
tF  
0.85  
0.85  
4
8
µs  
µs  
µs  
µs  
µs  
tPHL  
tPLH  
tPDS  
fMAX  
fMAX  
EN  
4
8
±0.2  
160  
120  
200  
(Note 1)  
Maximum Toggle Frequency  
kHz VDD = 1.6V  
kHz VDD = 5.5V  
µVP-P 10 Hz to 100 kHz  
Input Noise Voltage  
Note 1: Propagation Delay Skew is defined as: tPDS = tPLH - tPHL  
.
SPECIFICATIONS FOR MCP6543 CHIP-SELECT  
Electrical Specifications: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN= VSS  
,
and CL= 36 pF (Refer to Figures 1-1 and 1-3).  
Parameters  
Sym  
Min  
Typ  
Max Units  
Conditions  
CS Low Specifications  
CS Logic Threshold, Low  
VIL  
VSS  
0.2VDD  
V
CS Input Current, Low  
ICSL  
5.0  
pA  
CS = VSS  
CS High Specifications  
CS Logic Threshold, High  
VIH  
ICSH  
IDD  
0.8VDD  
1
VDD  
V
CS Input Current, High  
pA  
pA  
pA  
pA  
CS = VDD  
CS = VDD  
CS = VDD  
VOUT = VDD  
CS Input High, VDD Current  
CS Input High, GND Current  
Comparator Output Leakage  
CS Dynamic Specifications  
18  
-20  
1
ISS  
IO(LEAK)  
CS Low to Comparator Output Low  
Turn-on Time  
tON  
tOFF  
2
50  
ms  
µs  
V
CS = 0.2 VDD to VOUT = VDD/2,  
IN– = VDD  
V
CS High to Comparator Output  
High Z Turn-off Time  
10  
0.6  
CS = 0.8 VDD to VOUT = VDD/2,  
IN– = VDD  
V
CS Hysteresis  
VCS_HYST  
VDD = 5V  
CS  
VIL  
VIH  
VIN–  
VIN+ = VDD/2  
100 mV  
tON  
Hi-Z  
tOFF  
tPHL  
100 mV  
VOH  
VOUT  
Hi-Z  
tPLH  
-0.6 µA, typ.  
-20 pA, typ.  
1 pA, typ.  
-20 pA, typ.  
1 pA, typ.  
ISS  
ICS  
VOUT  
VOL  
VOL  
FIGURE 1-1:  
Timing Diagram for the CS  
FIGURE 1-2:  
Diagram.  
Propagation Delay Timing  
Pin on the MCP6543.  
2003 Microchip Technology Inc.  
DS21696C-page 3  
 
 
 
MCP6541/2/3/4  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, VDD = +1.6V to +5.5V and VSS = GND.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SC-70  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 14L-PDIP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
TA  
TA  
TA  
-40  
-40  
-65  
+85  
+125  
+150  
°C  
°C Note  
°C  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
331  
256  
85  
163  
206  
70  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
120  
100  
Note:  
The MCP6541/2/3/4 operates over this extended temperature range, but with reduced performance. In any  
case, the Junction Temperature (TJ) must not exceed the Absolute Maximum specification of +150°C.  
1.2  
Test Circuit Configuration  
This test circuit configuration is used to determine the  
AC and DC specifications.  
VDD  
200 kΩ  
MCP654X  
200 kΩ  
VOUT  
36 pF  
200 kΩ  
VIN = VSS  
200 kΩ  
VSS = 0V  
FIGURE 1-3:  
AC and DC Test Circuit for  
the Push-Pull Output Comparators.  
DS21696C-page 4  
2003 Microchip Technology Inc.  
 
MCP6541/2/3/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN= GND,  
RL = 100 kto VDD/2, and CL = 36 pF.  
14%  
12%  
10%  
8%  
18%  
16%  
14%  
12%  
10%  
8%  
6%  
4%  
2%  
1200 Samples  
CM = VSS  
1200 Samples  
CM = VSS  
V
V
6%  
4%  
2%  
0%  
0%  
1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0  
Input Hysteresis Voltage (mV)  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
7
Input Offset Voltage (mV)  
FIGURE 2-1:  
Input Offset Voltage  
= V  
FIGURE 2-4:  
Input Hysteresis Voltage  
= V  
Histogram at V  
.
Histogram at V  
.
SS  
CM  
SS  
CM  
26%  
16%  
1200 Samples  
CM = VSS  
24%  
22%  
20%  
18%  
16%  
14%  
12%  
10%  
8%  
1200 Samples  
CM = VSS  
V
14%  
12%  
10%  
8%  
6%  
4%  
V
TA = +25°C to +85°C  
TA = -40°C to +25°C  
6%  
4%  
2%  
0%  
2%  
0%  
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16  
-14 -12 -10 -8 -6 -4 -2  
0
2
4
6
8 10 12 14  
Input Hysteresis Voltage Drift (µV/°C)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-2:  
Input Offset Voltage Drift  
FIGURE 2-5:  
Input Hysteresis Voltage  
Histogram at V  
= V  
.
SS  
Drift Histogram.  
CM  
500  
6.0  
VCM = VSS  
VCM = VSS  
5.5  
400  
300  
200  
100  
0
VDD = 1.6V  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
V= 1.6V  
DD  
-100  
-200  
-300  
-400  
-500  
VDD = 5.5V  
VDD = 5.5V  
20  
-40  
-20  
0
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-3:  
Input Offset Voltage vs.  
= V  
FIGURE 2-6:  
Input Hysteresis Voltage vs.  
= V  
Ambient Temperature at V  
.
Ambient Temperature at V  
.
SS  
CM  
SS  
CM  
2003 Microchip Technology Inc.  
DS21696C-page 5  
MCP6541/2/3/4  
Note: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN= GND,  
RL = 100 kto VDD/2, and CL = 36 pF.  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
VDD = 1.6V  
VDD = 1.6V  
TA = +85°C  
TA = +85°C  
A = +25°C  
T
TA = +25°C  
TA = -40°C  
TA = -40°C  
Common Mode Input Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-7:  
Input Offset Voltage vs.  
FIGURE 2-10:  
Input Hysteresis Voltage vs.  
Common Mode Input Voltage at V = 1.6V.  
Common Mode Input Voltage at V = 1.6V.  
DD  
DD  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
6.0  
VDD = 5.5V  
VDD = 5.5V  
5.5  
5.0  
4.5  
TA = +85°C  
TA = +25°C  
TA = +85°C  
4.0  
3.5  
TA = +25°C  
TA = -40°C  
3.0  
2.5  
2.0  
1.5  
TA = -40°C  
Common Mode Input Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-8:  
Input Offset Voltage vs.  
FIGURE 2-11:  
Input Hysteresis Voltage vs.  
Common Mode Input Voltage at V = 5.5V.  
Common Mode Input Voltage at V = 5.5V.  
DD  
DD  
90  
85  
24  
TA = +85°C  
DD = 5.5V  
22  
20  
18  
16  
14  
12  
10  
8
V
PSRR, VIN+ = VSS, VDD = 1.6V to 5.5V  
80  
Input Bias Current  
Input Offset Current  
CMRR, VIN+ = -0.3V to 2.5V, VDD = 5.0V  
75  
CMRR, VIN+ = -0.3V to 5.3V, VDD = 5.0V  
70  
CMRR, VIN+ = 2.5V to 5.3V, VDD = 5.0V  
65  
6
4
60  
55  
2
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
-40  
-20  
0
20  
40  
60  
80  
Ambient Temperature (°C)  
FIGURE 2-9:  
CMRR, PSRR vs. Ambient  
= V  
FIGURE 2-12:  
Input Bias Current, Input  
Temperature at V  
.
SS  
Offset Current vs. Common Mode Voltage at  
+85°C.  
CM  
DS21696C-page 6  
2003 Microchip Technology Inc.  
MCP6541/2/3/4  
Note: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN= GND,  
RL = 100 kto VDD/2, and CL = 36 pF.  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
22  
20  
18  
16  
14  
12  
10  
8
TA = +85°C  
VDD = 5.5V  
VCM = VDD  
TA = +25°C  
TA = -40°C  
Input Bias Current  
6
Input Offset  
4
2
Current  
0
-2  
25  
35  
45  
55  
65  
75  
85  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-13:  
Input Bias Current, Input  
FIGURE 2-16:  
Quiescent Current vs.  
Offset Current vs. Ambient Temperature.  
Power Supply Voltage.  
0.7  
0.7  
VDD = 5.5V  
VDD = 5.5 V  
0.6  
0.5  
0.4  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VDD = 1.6 V  
0.3  
0.2  
0.1  
0.0  
Sweep VIN+, VIN– = VDD/2  
Sweep VIN–, VIN+ = VDD/2  
-40  
-20  
0
20  
40  
60  
80  
Ambient Temperature (°C)  
Common Mode Input Voltage (V)  
FIGURE 2-14:  
Quiescent Current vs.  
FIGURE 2-17:  
Quiescent Current vs.  
Ambient Temperature.  
Common Mode Input Voltage at V = 5V.  
DD  
50  
45  
40  
35  
30  
0.7  
VDD = 1.6V  
0.6  
0.5  
0.4  
-IOSC, TA = -40°C  
-IOSC, TA  
= +25°C  
25  
20  
15  
10  
5
-IOSC, TA +85°C  
=
0.3  
0.2  
0.1  
0.0  
Sweep VIN+, VIN- = VDD/2  
Sweep VIN-, VIN+ = VDD/2  
|+IOSC|, TA = -40°C  
|+IOSC|, TA +25°C  
=
|+IOSC|, TA  
=
+85°C  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Common Mode Input Voltage (V)  
Power Supply Voltage (V)  
FIGURE 2-15:  
Quiescent Current vs.  
FIGURE 2-18:  
Output Short-Circuit Current  
Common Mode Input Voltage at V = 1.6V.  
vs. Power Supply Voltage.  
DD  
2003 Microchip Technology Inc.  
DS21696C-page 7  
 
 
MCP6541/2/3/4  
Note: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN= GND,  
RL = 100 kto VDD/2, and CL = 36 pF.  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VDD = 1.6V  
VDD = 5.5V  
VOL-VSS, TA = -40°C  
V
OL-VSS, TA = +25°C  
OL-VSS, TA = +85°C  
VOL-VSS, TA = -40°C  
V
V
V
OL-VSS, TA = +25°C  
OL-VSS, TA = +85°C  
VDD-VOH, TA = +85°C  
VDD-VOH, TA = +85°C  
DD-VOH, TA = +25°C  
V
DD-VOH, TA = +25°C  
DD-VOH, TA = -40°C  
V
V
V
DD-VOH, TA = -40°C  
0
5
10  
15  
20  
25  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Output Current (mA)  
Output Current (mA)  
FIGURE 2-19:  
Output Voltage Headroom  
FIGURE 2-22:  
Output Voltage Headroom  
vs. Output Current at V = 1.6V.  
vs. Output Current at V = 5.5V.  
DD  
DD  
45%  
40%  
45%  
600 Samples  
600 Samples  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
100 mV Overdrive  
VCM = VDD/2  
100 mV Overdrive  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
VCM = VDD/2  
VDD = 1.6V  
VDD = 5.5V  
VDD = 1.6V  
VDD = 5.5V  
0%  
0%  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
High-to-Low Propagation Delay (µs)  
Low-to-High Propagation Delay (µs)  
FIGURE 2-20:  
High-to-Low Propagation  
FIGURE 2-23:  
Low-to-High Propagation  
Delay Histogram.  
Delay Histogram.  
45%  
8
100 mV Overdrive  
VCM = VDD/2  
600 Samples  
100 mV Overdrive  
CM = VDD/2  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
7
6
5
4
3
2
1
0
V
tPLH @ VDD = 5.5V  
tPHL @ VDD = 5.5V  
VDD = 5.5V  
VDD = 1.6V  
tPLH @ VDD = 1.6V  
tPHL @ VDD = 1.6V  
0%  
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0  
Propagation Delay Skew (µs)  
-40  
-20  
0
20  
40  
60  
80  
Ambient Temperature (°C)  
FIGURE 2-21:  
Propagation Delay Skew  
FIGURE 2-24:  
Propagation Delay vs.  
Histogram.  
Ambient Temperature.  
DS21696C-page 8  
2003 Microchip Technology Inc.  
 
 
MCP6541/2/3/4  
Note: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN= GND,  
RL = 100 kto VDD/2, and CL = 36 pF.  
100  
10  
1
14  
13  
12  
11  
10  
9
VCM = VDD/2  
VCM = VDD/2  
tPHL @ VDD = 5.5V  
tPLH @ VDD = 1.6V  
tPLH @ 10 mV Overdrive  
tPHL @ VDD = 1.6V  
8
tPHL @ 10 mV Overdrive  
tPLH @ 100 mV Overdrive  
7
6
tPLH @ VDD = 5.5V  
5
4
3
2
tPHL @ 100 mV Overdrive  
1
0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
1
10  
100  
1000  
Input Overdrive (mV)  
FIGURE 2-25:  
Propagation Delay vs.  
FIGURE 2-28:  
Propagation Delay vs. Input  
Power Supply Voltage.  
Overdrive.  
8
8
7
VDD = 1.6V  
100 mV Overdrive  
VDD = 5.5V  
100 mV Overdrive  
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
tPHL  
tPLH  
tPLH  
tPHL  
Common Mode Input Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-26:  
Propagation Delay vs.  
FIGURE 2-29:  
Propagation Delay vs.  
Common Mode Input Voltage at V = 1.6V.  
Common Mode Input Voltage at V = 5.5V.  
DD  
DD  
50  
10  
100 mV Overdrive  
100 mV Overdrive  
45  
40  
35  
30  
25  
20  
15  
10  
5
VCM = VDD/2  
VCM = VDD/2  
RL = Infinity  
tPHL @ VDD = 1.6V  
VDD = 5.5 V  
1
VDD = 1.6 V  
tPLH @ VDD = 1.6V  
tPHL @ VDD = 5.5V  
tPLH @ VDD = 5.5V  
0.1  
0
0.1  
1
10  
100  
0
10 20 30 40 50 60 70 80 90  
Load Capacitance (nF)  
Toggle Frequency (kHz)  
FIGURE 2-27:  
Propagation Delay vs. Load  
FIGURE 2-30:  
Supply Current vs. Toggle  
Capacitance.  
Frequency.  
2003 Microchip Technology Inc.  
DS21696C-page 9  
 
 
MCP6541/2/3/4  
Note: Unless otherwise indicated, VDD = +1.6V to +5.5V, VSS = GND, TA = +25°C, VIN+ = VDD/2, VIN= GND,  
RL = 100 kto VDD/2, and CL = 36 pF.  
7
6
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
VDD = 5.5V  
VDD = 5.5V  
5
VOUT  
4
VOUT  
3
2
VIN  
1
CS  
5
0
-1  
0
1
2
3
4
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
Time (ms)  
Time (1 ms/div)  
FIGURE 2-31:  
The MCP6541/2/3/4  
FIGURE 2-34:  
Chip-Select (CS) Step  
comparators show no phase reversal.  
Response (MCP6543 only).  
1.E-04  
1.E-04  
100µ  
100µ  
Comparator  
Comparator  
Shuts Off Here  
Turns On Here  
CS Low-to-High  
Comparator  
Comparator  
1.E-05  
1.E-05  
10µ  
10µ  
Turns On Here  
Shuts Off Here  
1.E-06  
1.E-06  
1µ  
1µ  
CS High-to-Low  
CS Hysteresis  
1.E-07  
CS Hysteresis  
1.E-07  
100n  
100n  
1.E-08  
1.E-08  
CS Low-to-High  
10n  
10n  
CS High-to-Low  
1.E-09  
1.E-09  
1n  
1n  
1.E-10  
1.E-10  
100p  
100p  
VDD = 1.6V  
VDD = 5.5V  
1.E-11  
1.E-11  
10p  
0.0  
10p  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
1.6  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Chip Select (CS) Voltage (V)  
Chip Select (CS) Voltage (V)  
FIGURE 2-32:  
Supply Current (shoot  
FIGURE 2-35:  
Supply Current (shoot  
through current) vs. Chip-Select (CS) Voltage at  
through current) vs. Chip-Select (CS) Voltage at  
V
= 1.6V (MCP6543 only).  
V
= 5.5V (MCP6543 only).  
DD  
DD  
20  
140  
120  
6
3
0
1.6  
VOUT  
VOUT  
0.0  
CS  
CS  
VDD = 5.5V  
20  
VDD = 1.6V  
15  
100  
Start-up IDD  
Start-up IDD  
80  
60  
40  
20  
0
Charging output  
capacitance  
10  
Charging output  
capacitance  
5
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5  
Time (0.5 ms/div)  
0
Time (1 ms/div)  
FIGURE 2-33:  
current) vs. Chip-Select (CS) pulse at  
= 1.6V (MCP6543 only).  
Supply Current (charging  
FIGURE 2-36:  
Supply Current (charging  
current) vs. Chip-Select (CS) pulse at  
V
V
= 5.5V (MCP6543 only).  
DD  
DD  
DS21696C-page 10  
2003 Microchip Technology Inc.  
 
 
 
MCP6541/2/3/4  
3.3  
MCP6543 Chip Select (CS)  
3.0  
APPLICATIONS INFORMATION  
The MCP6543 is a single comparator with chip select  
(CS). When CS is pulled high, the total current  
consumption drops to 20 pA (typ); 1 pA (typ) flows  
through the CS pin, 1 pA (typ) flows through the output  
pin and 18 pA (typ) flows through the VDD pin, as  
shown in Figure 1-1. When this happens, the  
comparator output is put into a high-impedance state.  
By pulling CS low, the comparator is enabled. If the CS  
pin is left floating, the comparator will not operate  
properly. Figure 1-1 shows the output voltage and  
supply current response to a CS pulse.  
The MCP6541/2/3/4 family of push-pull output compar-  
ators are fabricated on Microchip’s state-of-the-art  
CMOS process. They are suitable for a wide range of  
applications requiring very low power consumption.  
3.1  
Comparator Inputs  
The MCP6541/2/3/4 comparator family uses CMOS  
transistors at the input. They are designed to prevent  
phase inversion when the input pins exceed the supply  
voltages. Figure 2-31 shows an input voltage  
exceeding both supplies with no resulting phase  
inversion.  
The input stage of this family of devices uses two  
differential input stages in parallel: one operates at low  
input voltages and the other at high input voltages. With  
this topology, the input voltage is 0.3V above VDD and  
0.3V below VSS. Therefore, the input offset voltage is  
measured at both VSS - 0.3V and VDD + 0.3V to ensure  
proper operation.  
The internal CS circuitry is designed to minimize  
glitches when cycling the CS pin. This helps conserve  
power, which is especially important in battery-  
powered applications.  
3.4  
Externally-Set Hysteresis  
Greater flexibility in selecting hysteresis (or input trip  
points) is achieved by using external resistors.  
The maximum operating input voltages that can be  
applied are VSS - 0.3V and VDD + 0.3V. Voltages on the  
inputs that exceed this absolute maximum rating can  
cause excessive current to flow and permanently  
damage the device. In applications where the input pin  
exceeds the specified range, external resistors can be  
used to limit the current below ±2 mA, as shown in  
Figure 3-1.  
Input offset voltage (VOS) is the center (average) of the  
(input-referred) low-high and high-low trip points. Input  
hysteresis voltage (VHYST) is the difference between  
the same trip points. Hysteresis reduces output  
chattering when one input is slowly moving past the  
other and thus reduces dynamic supply current. It also  
helps in systems where it is best not to cycle between  
states too frequently (e.g., air conditioner thermostatic  
control). The MCP6541/2/3/4 family has internally-set  
hysteresis that is small enough to maintain input offset  
accuracy (<7 mV) and large enough to eliminate output  
chattering caused by the comparator’s own input noise  
voltage (200 µVp-p).  
VOUT  
RIN  
MCP654X  
VIN  
30  
VDD = 5.0V  
25  
(Maximum expected V ) V  
VIN+ = +2.75V  
20  
IN  
DD  
---------------------------------------------------------------------------------  
R
15  
IN  
2 mA  
VOUT  
10  
5
V
(Minimum expected V  
)
SS  
IN  
5
4
3
------------------------------------------------------------------------------  
2 mA  
R
0
IN  
Hysteresis  
-5  
2
-10  
-15  
-20  
-25  
-30  
1
FIGURE 3-1:  
An input resistor (R )  
IN  
0
should be used to limit excessive input current if  
either of the inputs exceeds the Absolute  
Maximum specification.  
VIN  
0
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
Time (100 ms/div)  
3.2  
Push-Pull Output  
FIGURE 3-2:  
The MCP6541/2/3/4  
comparators’ internal hysteresis eliminates  
The push-pull output is designed to be compatible with  
CMOS and TTL logic, while the output transistors are  
configured to give rail-to-rail output performance. They  
are driven with circuitry that minimizes any switching  
current (shoot-through current from supply-to-supply)  
when the output is transitioned from high-to-low, or from  
low-to-high (see Figures 2-15, 2-17, 2-32 through 2-36  
for more information).  
output chatter caused by input noise voltage.  
2003 Microchip Technology Inc.  
DS21696C-page 11  
 
MCP6541/2/3/4  
3.4.1  
NON-INVERTING CIRCUIT  
3.4.2  
INVERTING CIRCUIT  
Figure 3-3 shows a non-inverting circuit for single-  
supply applications using just two resistors. The  
resulting hysteresis diagram is shown in Figure 3-4.  
Figure 3-5 shows an inverting circuit for single-supply  
using three resistors. The resulting hysteresis diagram  
is shown in Figure 3-6.  
VDD  
VDD  
VIN  
VREF  
-
VDD  
VOUT  
MCP654X  
VOUT  
MCP654X  
+
R2  
VIN  
RF  
R1  
RF  
Non-inverting circuit with  
R3  
FIGURE 3-3:  
hysteresis for single-supply.  
FIGURE 3-5:  
Inverting Circuit With  
Hysteresis.  
VOUT  
VDD  
VOH  
VOUT  
VDD  
VOH  
High-to-Low  
Low-to-High  
VDD  
Low-to-High  
High-to-Low  
VIN  
VOL  
VSS  
VIN  
VOL  
VSS  
VSS  
VTHL VTLH  
VSS  
VTLH VTHL  
VDD  
FIGURE 3-4:  
Hysteresis Diagram for the  
Non-Inverting Circuit.  
FIGURE 3-6:  
Hysteresis Diagram for the  
Inverting Circuit.  
The trip points for Figures 3-3 and 3-4 are:  
In order to determine the trip voltages (VTHL and VTLH  
)
for the circuit shown in Figure 3-5, R2 and R3 can be  
simplified to the Thevenin equivalent circuit with  
respect to VDD, as shown in Figure 3-7.  
EQUATION  
R
R
1
1
------  
V
V
= V  
= V  
1 +------ V  
TLH  
REF  
OL  
R
R
R
F
F
1
R
VDD  
1
------  
1 +------ V  
THL  
REF  
OH  
R
R
F
F
-
MCP654X  
VTLH = trip voltage from low to high  
VTHL = trip voltage from high to low  
VOUT  
+
VSS  
V23  
R23  
RF  
FIGURE 3-7:  
Thevenin Equivalent Circuit.  
DS21696C-page 12  
2003 Microchip Technology Inc.  
 
 
 
 
 
MCP6541/2/3/4  
Where:  
3.8  
PCB Surface Leakage  
R2R3  
R23 = ------------------  
R2 + R3  
In applications where low input bias current is critical,  
PCB (Printed Circuit Board) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012. A 5V difference would  
cause 5 pA, if current-to-flow. This is greater than the  
MCP6541/2/3/4 family’s bias current at 25°C (1 pA,  
typ).  
R3  
R2 + R3  
------------------  
V23  
=
× VDD  
Using this simplified circuit, the trip voltage can be  
calculated using the following equation:  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in  
Figure 3-8.  
EQUATION  
R23  
23 + R  
RF  
OH  
----------------------  
---------------------  
R23 + RF  
VTHL = V  
+ V  
+ V  
23  
R
F
R23  
RF  
OL  
----------------------  
---------------------  
R23 + RF  
VTLH = V  
23  
R
23 + R  
VIN-  
VIN+  
F
VSS  
VTLH = trip voltage from low to high  
VTHL = trip voltage from high to low  
Figure 2-19 and Figure 2-22 can be used to determine  
typical values for VOH and VOL  
.
Guard Ring  
Example Guard Ring Layout  
3.5  
Bypass Capacitors  
FIGURE 3-8:  
With this family of comparators, the power supply pin  
(VDD for single supply) should have a local bypass  
capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm for good  
edge rate performance.  
for Inverting Circuit.  
1. Inverting Configuration (Figures 3-5 and 3-8):  
a. Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the  
comparator (e.g., VDD/2 or ground).  
3.6  
Capacitive Loads  
Reasonable capacitive loads (e.g., logic gates) have  
little impact on propagation delay (see Figure 2-27).  
The supply current increases with increasing toggle  
frequency (Figure 2-30), especially with higher  
capacitive loads.  
b. Connect the inverting pin (VIN–) to the input  
pad without touching the guard ring.  
2. Non-inverting Configuration (Figure 3-3):  
a. Connect the non-inverting pin (VIN+) to the  
input pad without touching the guard ring.  
3.7  
Battery Life  
b. Connect the guard ring to the inverting input  
pin (VIN–).  
In order to maximize battery life in portable  
applications, use large resistors and small capacitive  
loads. Also, avoid toggling the output more than  
necessary and do not use chip select (CS) to conserve  
power for short periods of time. Capacitive loads will  
draw additional power at start-up.  
2003 Microchip Technology Inc.  
DS21696C-page 13  
 
MCP6541/2/3/4  
3.9.3  
BISTABLE MULTI-VIBRATOR  
3.9  
Typical Applications  
A simple bistable multi-vibrator design is shown in  
Figure 3-11. VREF needs to be between the power  
supplies (VSS = GND and VDD) to achieve oscillation.  
3.9.1  
PRECISE COMPARATOR  
Some applications require higher DC precision. An  
easy way to solve this problem is to use an amplifier  
(such as the MCP6041) to gain-up the input signal  
before it reaches the comparator. Figure 3-9 shows an  
example of this approach.  
The output duty cycle changes with VREF  
R1 R2  
VDD  
.
VREF  
VDD  
VREF  
VOUT  
MCP6541  
MCP6041  
VDD  
MCP654X  
VIN  
C1  
R3  
R1  
R2  
VREF  
VOUT  
FIGURE 3-11:  
Bistable Multi-vibrator.  
FIGURE 3-9:  
Precise Inverting  
Comparator.  
3.9.2  
WINDOWED COMPARATOR  
Figure 3-10 shows one approach to designing a win-  
dowed comparator. The AND gate produces a logic ‘1’  
when the input voltage is between VRB and VRT (where  
VRT > VRB).  
VRT  
1/2  
MCP6542  
VIN  
1/2  
VRB  
MCP6542  
FIGURE 3-10:  
Windowed Comparator.  
DS21696C-page 14  
2003 Microchip Technology Inc.  
 
 
 
MCP6541/2/3/4  
4.0  
4.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SC-70 (MCP6541)  
Example:  
XNN  
YWW  
A25  
307  
Example:  
5-Lead SOT-23 (MCP6541)  
XXNN  
AB37  
8-Lead PDIP (300 mil)  
Example:  
MCP6541  
XXXXXXXX  
XXXXXNNN  
I/P256  
YYWW  
0307  
8-Lead SOIC (150 mil)  
Example:  
XXXXXXXX  
XXXXYYWW  
MCP6542  
I/SN0307  
NNN  
256  
Example:  
8-Lead MSOP  
XXXXXX  
YWWNNN  
6543I  
307256  
Legend: XX...X Customer specific information*  
YY  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
WW  
NNN  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard marking consists of Microchip part number, year code, week code, traceability code (facility  
code, mask rev#, and assembly code). For marking beyond this, certain price adders apply. Please  
check with your Microchip Sales Office.  
2003 Microchip Technology Inc.  
DS21696C-page 15  
MCP6541/2/3/4  
Package Marking Information (Continued)  
14-Lead PDIP (300 mil) (MCP6544)  
Example:  
MCP6544-I/P  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
YYWWNNN  
0307256  
14-Lead SOIC (150 mil) (MCP6544)  
Example:  
MCP6544ISL  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
0307256  
Example:  
14-Lead TSSOP (MCP6544)  
MCP6544I  
XXXXXXXX  
YYWW  
0307  
256  
NNN  
DS21696C-page 16  
2003 Microchip Technology Inc.  
MCP6541/2/3/4  
5-Lead Plastic Package (LT) (SC-70)  
E
E1  
D
p
B
n
1
Q1  
A2  
A
c
A1  
L
Units  
INCHES  
NOM  
5
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
5
MAX  
n
p
Number of Pins  
Pitch  
.026 (BSC)  
0.65 (BSC)  
Overall Height  
A
A2  
A1  
E
.031  
.031  
.000  
.071  
.045  
.071  
.004  
.004  
.004  
.006  
.043  
0.80  
1.10  
Molded Package Thickness  
Standoff  
.039  
.004  
.094  
.053  
.087  
.012  
.016  
.007  
.012  
0.80  
0.00  
1.80  
1.15  
1.80  
0.10  
0.10  
0.10  
0.15  
1.00  
0.10  
2.40  
1.35  
2.20  
0.30  
0.40  
0.18  
0.30  
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
Q1  
c
Top of Molded Pkg to Lead Shoulder  
Lead Thickness  
Lead Width  
B
*Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .005" (0.127mm) per side.  
JEITA (EIAJ) Standard: SC-70  
Drawing No. C04-061  
2003 Microchip Technology Inc.  
DS21696C-page 17  
MCP6541/2/3/4  
5-Lead Plastic Small Outline Transistor (OT) (SOT23)  
E
E1  
p
B
p1  
D
n
1
α
c
A
A2  
φ
A1  
L
β
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
5
MAX  
n
p
p1  
A
A2  
A1  
E
E1  
D
L
φ
c
B
α
β
Number of Pins  
5
Pitch  
.038  
.075  
.046  
.043  
.003  
.110  
.064  
.116  
.018  
5
0.95  
1.90  
Outside lead pitch (basic)  
Overall Height  
Molded Package Thickness  
.035  
.035  
.000  
.102  
.059  
.110  
.014  
0
.057  
0.90  
0.90  
1.18  
1.10  
0.08  
2.80  
1.63  
2.95  
0.45  
5
1.45  
.051  
.006  
.118  
.069  
.122  
.022  
10  
1.30  
0.15  
3.00  
1.75  
3.10  
0.55  
10  
Standoff  
§
0.00  
2.60  
1.50  
2.80  
0.35  
0
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
Foot Angle  
Lead Thickness  
Lead Width  
.004  
.014  
0
.006  
.017  
5
.008  
.020  
10  
0.09  
0.35  
0
0.15  
0.43  
5
0.20  
0.50  
10  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-178  
Drawing No. C04-091  
DS21696C-page 18  
2003 Microchip Technology Inc.  
MCP6541/2/3/4  
8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
β
B1  
B
p
eB  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
A
A2  
A1  
E
E1  
D
L
c
B1  
B
eB  
α
β
Number of Pins  
Pitch  
Top to Seating Plane  
8
8
.100  
.155  
.130  
2.54  
3.94  
3.30  
.140  
.170  
.145  
3.56  
4.32  
3.68  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
.115  
.015  
.300  
.240  
.360  
.125  
.008  
.045  
.014  
.310  
5
2.92  
0.38  
7.62  
6.10  
9.14  
3.18  
0.20  
1.14  
0.36  
7.87  
5
.313  
.250  
.373  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.385  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
9.46  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
9.78  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-018  
2003 Microchip Technology Inc.  
DS21696C-page 19  
MCP6541/2/3/4  
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
Dimension Limits  
INCHES*  
NOM  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
A
A2  
A1  
E
E1  
D
h
L
φ
Number of Pins  
Pitch  
8
.050  
.061  
.056  
.007  
.237  
.154  
.193  
.015  
.025  
4
1.27  
Overall Height  
.053  
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
6.02  
3.91  
4.90  
0.38  
0.62  
4
1.75  
Molded Package Thickness  
.052  
.004  
.228  
.146  
.189  
.010  
.019  
0
.061  
.010  
.244  
.157  
.197  
.020  
.030  
8
1.55  
0.25  
6.20  
3.99  
5.00  
0.51  
0.76  
8
Standoff  
§
0.10  
5.79  
3.71  
4.80  
0.25  
0.48  
0
Overall Width  
Molded Package Width  
Overall Length  
Chamfer Distance  
Foot Length  
Foot Angle  
Lead Thickness  
Lead Width  
c
.008  
.013  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.33  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-057  
DS21696C-page 20  
2003 Microchip Technology Inc.  
MCP6541/2/3/4  
8-Lead Plastic Micro Small Outline Package (MS) (MSOP)  
E
E1  
p
D
2
B
n
1
α
A2  
A
c
φ
A1  
(F)  
L
β
Units  
Dimension Limits  
INCHES  
NOM  
MILLIMETERS*  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
Number of Pins  
Pitch  
8
8
.026 BSC  
0.65 BSC  
Overall Height  
A
A2  
A1  
E
-
-
.043  
-
-
1.10  
Molded Package Thickness  
Standoff  
.030  
.000  
.033  
-
.037  
.006  
0.75  
0.00  
0.85  
-
0.95  
0.15  
Overall Width  
.193 TYP.  
4.90 BSC  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
.118 BSC  
.118 BSC  
3.00 BSC  
3.00 BSC  
L
.016  
.024  
.037 REF  
.031  
0.40  
0.60  
0.95 REF  
0.80  
Footprint (Reference)  
Foot Angle  
F
φ
c
0°  
.003  
.009  
5°  
-
8°  
.009  
.016  
15°  
0°  
0.08  
0.22  
5°  
-
-
-
-
-
8°  
0.23  
0.40  
15°  
Lead Thickness  
Lead Width  
.006  
B
α
β
.012  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
*Controlling Parameter  
Notes:  
-
-
5°  
15°  
5°  
15°  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .010" (0.254mm) per side.  
JEDEC Equivalent: MO-187  
Drawing No. C04-111  
2003 Microchip Technology Inc.  
DS21696C-page 21  
MCP6541/2/3/4  
14-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
B1  
β
eB  
p
B
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
A
A2  
A1  
E
E1  
D
L
c
B1  
B
eB  
α
β
Number of Pins  
Pitch  
14  
.100  
.155  
.130  
2.54  
3.94  
3.30  
Top to Seating Plane  
.140  
.170  
.145  
3.56  
2.92  
0.38  
7.62  
6.10  
18.80  
3.18  
0.20  
1.14  
0.36  
7.87  
5
4.32  
3.68  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
.115  
.015  
.300  
.240  
.740  
.125  
.008  
.045  
.014  
.310  
5
.313  
.250  
.750  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.760  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
19.05  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
19.30  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-005  
DS21696C-page 22  
2003 Microchip Technology Inc.  
MCP6541/2/3/4  
14-Lead Plastic Small Outline (SL) – Narrow, 150 mil (SOIC)  
E
E1  
p
D
2
B
n
1
α
h
45°  
c
A2  
A
φ
A1  
L
β
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
A
A2  
A1  
E
Number of Pins  
Pitch  
14  
14  
.050  
.061  
.056  
.007  
.236  
.154  
.342  
.015  
.033  
4
1.27  
1.55  
1.42  
0.18  
5.99  
3.90  
8.69  
0.38  
0.84  
4
Overall Height  
.053  
.069  
1.35  
1.75  
Molded Package Thickness  
.052  
.004  
.228  
.150  
.337  
.010  
.016  
0
.061  
.010  
.244  
.157  
.347  
.020  
.050  
8
1.32  
0.10  
5.79  
3.81  
8.56  
0.25  
0.41  
0
1.55  
0.25  
6.20  
3.99  
8.81  
0.51  
1.27  
8
Standoff  
§
Overall Width  
Molded Package Width  
Overall Length  
Chamfer Distance  
Foot Length  
Foot Angle  
Lead Thickness  
Lead Width  
E1  
D
h
L
φ
c
.008  
.014  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.36  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-065  
2003 Microchip Technology Inc.  
DS21696C-page 23  
MCP6541/2/3/4  
14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)  
E
E1  
p
D
2
1
n
B
α
A
c
φ
A1  
A2  
β
L
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
A
Number of Pins  
Pitch  
14  
.026  
0.65  
Overall Height  
.043  
1.10  
0.95  
0.15  
6.50  
4.50  
5.10  
0.70  
8
Molded Package Thickness  
A2  
A1  
E
E1  
D
L
φ
c
.033  
.002  
.246  
.169  
.193  
.020  
0
.004  
.007  
0
.035  
.004  
.251  
.173  
.197  
.024  
4
.006  
.010  
5
.037  
.006  
.256  
.177  
.201  
.028  
8
.008  
.012  
10  
0.85  
0.05  
6.25  
4.30  
4.90  
0.50  
0
0.09  
0.19  
0
0.90  
0.10  
6.38  
4.40  
5.00  
0.60  
4
0.15  
0.25  
5
Standoff  
§
Overall Width  
Molded Package Width  
Molded Package Length  
Foot Length  
Foot Angle  
Lead Thickness  
0.20  
0.30  
10  
Lead Width  
B1  
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.005” (0.127mm) per side.  
JEDEC Equivalent: MO-153  
Drawing No. C04-087  
DS21696C-page 24  
2003 Microchip Technology Inc.  
MCP6541/2/3/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
-X  
/XX  
a)  
MCP6541T-I/LT: Tape and Reel,  
Temperature Package  
Range  
Industrial Temperature,  
5LD SC-70.  
b)  
MCP6541T-I/OT: Tape and Reel,  
Industrial Temperature,  
5LD SOT-23.  
Industrial Temperature,  
8LD PDIP.  
Device:  
MCP6541: Single Comparator  
MCP6541T: Single Comparator (Tape and Reel)  
(SC-70, SOT-23, SOIC, MSOP)  
c)  
d)  
MCP6541-I/P:  
MCP6541RT: Single Comparator (Rotated - Tape and  
Reel) (SOT-23 only)  
MCP6541RT-I/OT: Tape and Reel,  
MCP6542: Dual Comparator  
Industrial Temperature,  
5LD SOT23.  
MCP6542T: Dual Comparator  
(Tape and Reel for SOIC and MSOP)  
MCP6543: Single Comparator with CS  
MCP6543T: Single Comparator with CS  
(Tape and Reel for SOIC and MSOP)  
MCP6544: Quad Comparator  
a)  
b)  
MCP6542-I/MS: Industrial Temperature,  
8LD MSOP.  
MCP6544T: Quad Comparator  
MCP6542T-I/MS: Tape and Reel,  
Industrial Temperature,  
8LD MSOP.  
(Tape and Reel for SOIC and TSSOP)  
c)  
MCP6542-I/P:  
Industrial Temperature,  
8LD PDIP.  
Temperature Range:  
Package:  
I
=
-40°C to +85°C  
LT  
=
=
=
=
=
=
=
Plastic Package (SC-70), 5-lead  
OT  
MS  
P
Plastic Small Outline Transistor (SOT-23), 5-lead  
Plastic MSOP, 8-lead  
a)  
b)  
MCP6543-I/SN: Industrial Temperature,  
8LD SOIC.  
Plastic DIP (300 mil Body), 8-lead, 14-lead  
Plastic SOIC (150 mil Body), 8-lead  
SN  
SL  
ST  
MCP6543T-I/SN: Tape and Reel,  
Industrial Temperature,  
8LD SOIC.  
Plastic SOIC (150 mil Body), 14-lead (MCP6544)  
Plastic TSSOP (4.4mm Body), 14-lead (MCP6544)  
c)  
a)  
MCP6543-I/P:  
Industrial Temperature,  
8LD PDIP.  
MCP6544T-I/SL: Tape and Reel,  
Industrial Temperature,  
14LD SOIC.  
b)  
c)  
MCP6544T-I/SL: Tape and Reel,  
Industrial Temperature,  
14LD SOIC.  
MCP6544-I/P:  
Industrial Temperature,  
14LD PDIP.  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2003 Microchip Technology Inc.  
DS21696C-page 25  
MCP6541/2/3/4  
NOTES:  
DS21696C-page 26  
2003 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical  
components in life support systems is not authorized except  
with express written approval by Microchip. No licenses are  
conveyed, implicitly or otherwise, under any intellectual  
property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and  
PowerSmart are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL  
and The Embedded Control Solutions Company are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Accuron, Application Maestro, dsPICDEM, dsPICDEM.net,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-  
Circuit Serial Programming, ICSP, ICEPIC, microPort,  
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,  
PICC, PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo,  
PowerMate, PowerTool, rfLAB, rfPIC, Select Mode,  
SmartSensor, SmartShunt, SmartTel and Total Endurance are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2003, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
®
PICmicro 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchip’s quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
DS21696C-page 27  
2003 Microchip Technology Inc.  
M
WORLDWIDE SALES AND SERVICE  
Korea  
AMERICAS  
ASIA/PACIFIC  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Australia  
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or  
82-2-558-5934  
Fax: 480-792-7277  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Singapore  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
200 Middle Road  
China - Beijing  
#07-02 Prime Centre  
Singapore, 188980  
Unit 915  
Atlanta  
Bei Hai Wan Tai Bldg.  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100  
Fax: 86-10-85282104  
3780 Mansell Road, Suite 130  
Alpharetta, GA 30022  
Tel: 770-640-0034  
Fax: 770-640-0307  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Taiwan  
Kaohsiung Branch  
30F - 1 No. 8  
Boston  
Min Chuan 2nd Road  
Kaohsiung 806, Taiwan  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
China - Chengdu  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848  
Fax: 978-692-3821  
Rm. 2401-2402, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Taiwan  
Chengdu 610016, China  
Tel: 86-28-86766200  
Taiwan Branch  
Chicago  
11F-3, No. 207  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 630-285-0071  
Fax: 630-285-0075  
Fax: 86-28-86766599  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
China - Fuzhou  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Dallas  
Fuzhou 350001, China  
Tel: 86-591-7503506  
Fax: 86-591-7503521  
EUROPE  
Austria  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423  
Fax: 972-818-2924  
Durisolstrasse 2  
China - Hong Kong SAR  
A-4600 Wels  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Austria  
Detroit  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
Denmark  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250  
Fax: 852-2401-3431  
Regus Business Centre  
Lautrup hoj 1-3  
China - Shanghai  
Fax: 248-538-2260  
Room 701, Bldg. B  
Ballerup DK-2750 Denmark  
Tel: 45-4420-9895 Fax: 45-4420-9910  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, IN 46902  
Tel: 765-864-8360  
Fax: 765-864-8387  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Tel: 86-21-6275-5700  
Fax: 86-21-6275-5060  
China - Shenzhen  
Los Angeles  
Rm. 1812, 18/F, Building A, United Plaza  
No. 5022 Binhe Road, Futian District  
Shenzhen 518033, China  
Tel: 86-755-82901380  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Germany  
Tel: 949-263-1888  
Steinheilstrasse 10  
D-85737 Ismaning, Germany  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Fax: 949-263-1338  
Fax: 86-755-8295-1393  
Phoenix  
China - Shunde  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966  
Fax: 480-792-4338  
Room 401, Hongjian Building  
No. 2 Fengxiangnan Road, Ronggui Town  
Shunde City, Guangdong 528303, China  
Tel: 86-765-8395507 Fax: 86-765-8395571  
Italy  
Via Quasimodo, 12  
20025 Legnano (MI)  
Milan, Italy  
China - Qingdao  
San Jose  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Netherlands  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950  
Rm. B505A, Fullhope Plaza,  
No. 12 Hong Kong Central Rd.  
Qingdao 266071, China  
Fax: 408-436-7955  
Tel: 86-532-5027355 Fax: 86-532-5027205  
P. A. De Biesbosch 14  
NL-5152 SC Drunen, Netherlands  
Tel: 31-416-690399  
India  
Toronto  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Japan  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699  
Fax: 31-416-690340  
United Kingdom  
505 Eskdale Road  
Fax: 905-673-6509  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
07/28/03  
DS21696C-page 28  
2003 Microchip Technology Inc.  
This datasheet has been download from:  
www.datasheetcatalog.com  
Datasheets for electronics components.  

相关型号:

MCP6541RT-E/LT

Push-Pull Output Sub-Microamp Comparators
MICROCHIP

MCP6541RT-E/MS

Push-Pull Output Sub-Microamp Comparators
MICROCHIP

MCP6541RT-E/OT

Push-Pull Output Sub-Microamp Comparators
MICROCHIP

MCP6541RT-E/P

Push-Pull Output Sub-Microamp Comparators
MICROCHIP

MCP6541RT-E/SL

Push-Pull Output Sub-Microamp Comparators
MICROCHIP

MCP6541RT-E/SN

Push-Pull Output Sub-Microamp Comparators
MICROCHIP

MCP6541RT-E/ST

Push-Pull Output Sub-Microamp Comparators
MICROCHIP

MCP6541RT-I/LT

Push-Pull Output Sub-Microamp Comparators
MICROCHIP

MCP6541RT-I/MS

Push-Pull Output Sub-Microamp Comparators
MICROCHIP

MCP6541RT-I/OT

Push-Pull Output Sub-Microamp Comparators
MICROCHIP

MCP6541RT-I/P

Push-Pull Output Sub-Microamp Comparators
MICROCHIP

MCP6541RT-I/SL

Push-Pull Output Sub-Microamp Comparators
MICROCHIP