MCP633-E/MF [MICROCHIP]

24 MHz, 2.5 mA Op Amps; 24兆赫, 2.5毫安运算放大器
MCP633-E/MF
型号: MCP633-E/MF
厂家: MICROCHIP    MICROCHIP
描述:

24 MHz, 2.5 mA Op Amps
24兆赫, 2.5毫安运算放大器

运算放大器
文件: 总42页 (文件大小:789K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP631/2/3/5  
24 MHz, 2.5 mA Op Amps  
Features  
Description  
• Gain Bandwidth Product: 24 MHz (typical)  
• Short Circuit Current: 70 mA (typical)  
• Noise: 10 nV/Hz (typical, at 1 MHz)  
• Rail-to-Rail Output  
The Microchip Technology, Inc. MCP631/2/3/5 family of  
operational amplifiers features high gain bandwidth  
product (24 MHz, typical) and high output short circuit  
current (70 mA, typical). Some also provide a Chip  
Select pin (CS) that supports a low power mode of  
operation. These amplifiers are optimized for high  
speed, low noise and distortion, single-supply  
operation with rail-to-rail output and an input that  
includes the negative rail.  
• Slew Rate: 10 V/µs (typical)  
• Supply Current: 2.5 mA (typical)  
• Power Supply: 2.5V to 5.5V  
• Extended Temperature Range: -40°C to +125°C  
This family is offered in single (MCP631), single with  
CS pin (MCP633), dual (MCP632) and dual with  
two CS pins (MCP635). All devices are fully specified  
from -40°C to +125°C.  
Typical Applications  
• Driving A/D Converters  
• Power Amplifier Control Loops  
• Barcode Scanners  
Typical Application Circuit  
• Optical Detector Amplifier  
R1  
R2  
VDD/2  
VOUT  
RL  
Design Aids  
R3  
• SPICE Macro Models  
• FilterLab® Software  
VIN  
MCP63X  
• Mindi™ Circuit Designer & Simulator  
• Microchip Advanced Part Selector (MAPS)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
Power Driver with High Gain  
Package Types  
MCP633  
MCP631  
MCP632  
MCP635  
SOIC  
SOIC  
SOIC  
MSOP  
VDD  
V
DD  
VOUTA  
1
8
7
6
5
1
8
7
6
5
1
8
7
6
5
VOUTA  
1
2
3
10  
9
NC  
CS  
NC  
NC  
VOUTB  
VINA  
+
VOUTB  
2
3
4
2
3
4
2
3
4
VINA  
+
VIN  
+
VDD  
VOUT  
NC  
VIN  
+
VDD  
VOUT  
NC  
VINA  
VINB  
VINB  
+
VINA  
VINB  
VINB  
+
8
VIN  
VIN  
VSS 4  
VSS  
7
VSS  
VSS  
CSA  
5
CSB  
6
MCP632  
3x3 DFN *  
MCP635  
3x3 DFN *  
1
2
3
4
5
10  
VDD  
VOUTA  
VDD  
VOUTA  
1
8
7
6
5
VINA  
VINA  
+
VOUTB  
9
8
7
6
VINA  
VINA  
VSS  
VOUTB  
2
3
4
VINB  
VINB  
+
+
VINB  
VINB  
+
VSS  
CSA  
CSB  
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
© 2009 Microchip Technology Inc.  
DS22197A-page 1  
MCP631/2/3/5  
NOTES:  
DS22197A-page 2  
© 2009 Microchip Technology Inc.  
MCP631/2/3/5  
Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
1.0  
1.1  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VDD – VSS .......................................................................6.5V  
Current at Input Pins ....................................................±2 mA  
Analog Inputs (VIN+ and VIN–) †† . VSS – 1.0V to VDD + 1.0V  
All other Inputs and Outputs .......... VSS – 0.3V to VDD + 0.3V  
Output Short Circuit Current ................................Continuous  
Current at Output and Supply Pins ..........................±150 mA  
Storage Temperature ...................................-65°C to +150°C  
Max. Junction Temperature ........................................+150°C  
ESD protection on all pins (HBM, MM) ................≥ 1 kV, 200V  
†† See Section 4.1.2 “Input Voltage and Current Limits”.  
1.2  
Specifications  
TABLE 1-1:  
DC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/3,  
VOUT VDD/2, VL = VDD/2, RL = 2 kΩ to VL and CS = VSS (refer to Figure 1-2).  
Conditions  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Input Offset  
Input Offset Voltage  
VOS  
-8  
61  
±1.8  
±2.0  
76  
+8  
mV  
Input Offset Voltage Drift  
Power Supply Rejection Ratio  
Input Current and Impedance  
Input Bias Current  
ΔVOS/ΔTA  
PSRR  
µV/°C TA= -40°C to +125°C  
dB  
IB  
IB  
4
pA  
Across Temperature  
100  
pA  
pA  
TA= +85°C  
Across Temperature  
IB  
1500  
5,000  
TA= +125°C  
Input Offset Current  
IOS  
ZCM  
ZDIFF  
±2  
pA  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode  
1013||9  
1013||2  
Ω||pF  
Ω||pF  
Common-Mode Input Voltage Range  
Common-Mode Rejection Ratio  
VCMR  
CMRR  
CMRR  
VSS 0.3  
78  
81  
VDD 1.3  
V
(Note 1)  
63  
66  
dB  
dB  
VDD = 2.5V, VCM = -0.3 to 1.2V  
VDD = 5.5V, VCM = -0.3 to 4.2V  
Open Loop Gain  
DC Open Loop Gain (large signal)  
AOL  
AOL  
88  
94  
115  
124  
dB  
dB  
VDD = 2.5V, VOUT = 0.3V to 2.2V  
VDD = 5.5V, VOUT = 0.3V to 5.2V  
Output  
Maximum Output Voltage Swing  
VOL, VOH VSS + 20  
OL, VOH VSS + 40  
VDD 20  
VDD 40  
mV  
mV  
VDD = 2.5V, G = +2,  
0.5V Input Overdrive  
V
VDD = 5.5V, G = +2,  
0.5V Input Overdrive  
Output Short Circuit Current  
ISC  
ISC  
±40  
±35  
±85  
±70  
±130  
±110  
mA  
mA  
VDD = 2.5V (Note 2)  
VDD = 5.5V (Note 2)  
Power Supply  
Supply Voltage  
VDD  
IQ  
2.5  
1.2  
5.5  
3.6  
V
Quiescent Current per Amplifier  
2.5  
mA  
No Load Current  
Note 1: See Figure 2-5 for temperature effects.  
2: The ISC specifications are for design guidance only; they are not tested.  
© 2009 Microchip Technology Inc.  
DS22197A-page 3  
MCP631/2/3/5  
TABLE 1-2:  
AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2,  
VOUT VDD/2, VL = VDD/2, RL = 2 kΩ to VL, CL = 50 pF and CS = VSS (refer to Figure 1-2).  
Parameters  
Sym  
Min  
Typ  
Max Units  
Conditions  
AC Response  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
24  
65  
20  
MHz  
°
G = +1  
Open Loop Output Impedance  
AC Distortion  
ROUT  
Ω
Total Harmonic Distortion plus Noise  
THD+N  
0.0015  
%
G = +1, VOUT = 2VP-P, f = 1 kHz,  
DD = 5.5V, BW = 80 kHz  
V
Step Response  
Rise Time, 10% to 90%  
Slew Rate  
tr  
20  
10  
ns  
G = +1, VOUT = 100 mVP-P  
SR  
V/µs G = +1  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
Eni  
eni  
ini  
16  
10  
4
µVP-P f = 0.1 Hz to 10 Hz  
nV/Hz f = 1 MHz  
fA/Hz f = 1 kHz  
TABLE 1-3:  
DIGITAL ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2,  
VOUT VDD/2, VL = VDD/2, RL = 2 kΩ to VL, CL = 50 pF and CS = VSS (refer to Figure 1-1 and Figure 1-2).  
Parameters  
Sym  
Min  
Typ  
Max Units  
Conditions  
CS Low Specifications  
CS Logic Threshold, Low  
CS Input Current, Low  
CS High Specifications  
CS Logic Threshold, High  
CS Input Current, High  
GND Current  
VIL  
VSS  
0.2VDD  
V
ICSL  
0.1  
nA  
CS = 0V  
VIH  
ICSH  
0.8VDD  
VDD  
V
-2  
0.7  
-1  
µA  
µA  
MΩ  
nA  
CS = VDD  
ISS  
CS Internal Pull Down Resistor  
Amplifier Output Leakage  
CS Dynamic Specifications  
CS Input Hysteresis  
RPD  
5
IO(LEAK)  
50  
CS = VDD, TA = +125°C  
VHYST  
tOFF  
0.25  
200  
V
CS High to Amplifier Off Time  
(output goes High-Z)  
ns  
G = +1 V/V, VL = VSS  
CS = 0.8VDD to VOUT = 0.1(VDD/2)  
G = +1 V/V, VL = VSS  
CS = 0.2VDD to VOUT = 0.9(VDD/2)  
,
CS Low to Amplifier On Time  
tON  
2
10  
µs  
DS22197A-page 4  
© 2009 Microchip Technology Inc.  
MCP631/2/3/5  
TABLE 1-4:  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, all limits are specified for: VDD = +2.5V to +5.5V, VSS = GND.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max Units  
Conditions  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
(Note 1)  
Thermal Package Resistances  
Thermal Resistance, 8L-3x3 DFN  
Thermal Resistance, 8L-SOIC  
θJA  
θJA  
θJA  
θJA  
60  
149.5  
57  
°C/W (Note 2)  
°C/W  
Thermal Resistance, 10L-3x3 DFN  
Thermal Resistance, 10L-MSOP  
°C/W (Note 2)  
°C/W  
202  
Note 1: Operation must not cause TJ to exceed Maximum Junction Temperature specification (+150°C).  
2: Measured on a standard JC51-7, four layer printed circuit board with ground plane and vias.  
EQUATION 1-1:  
1.3  
Timing Diagram  
GDM = RF RG  
GN = 1 + GDM  
0.1 nA  
(typical)  
0.7 µA  
(typical)  
0.7 µA  
(typical)  
ICS  
CS  
VCM = VP(1 – 1 GN) + VREF(1 GN)  
VOST = VIN– VIN+  
VIH  
VIL  
VOUT = VREF + (VP VM)GDM + VOSTGN  
Where:  
tON  
tOFF  
GDM = Differential Mode Gain  
GN = Noise Gain  
(V/V)  
(V/V)  
(V)  
VOUT  
High-Z  
High-Z  
On  
VCM = Op Amp’s Common Mode  
-2.5 mA  
(typical)  
Input Voltage  
-1 µA  
(typical)  
-1 µA  
(typical)  
ISS  
VOST = Op Amp’s Total Input Offset  
(mV)  
Voltage  
FIGURE 1-1:  
Timing Diagram.  
1.4  
Test Circuits  
CF  
6.8 pF  
The circuit used for most DC and AC tests is shown in  
Figure 1-2. It independently sets VCM and VOUT; see  
Equation 1-1. The circuit’s common mode voltage is  
(VP + VM)/2, not VCM. VOST includes VOS plus the  
RG  
RF  
10 kΩ  
10 kΩ  
VREF = VDD/2  
VDD  
effects of temperature, CMRR, PSRR and AOL  
.
VP  
VIN+  
CB1  
CB2  
100 nF  
2.2 µF  
MCP63X  
VIN–  
VOUT  
VM  
RL  
CL  
RG  
RF  
2 kΩ  
50 pF  
10 kΩ  
10 kΩ  
CF  
6.8 pF  
VL  
FIGURE 1-2:  
AC and DC Test Circuit for  
Most Specifications.  
© 2009 Microchip Technology Inc.  
DS22197A-page 5  
MCP631/2/3/5  
NOTES:  
DS22197A-page 6  
© 2009 Microchip Technology Inc.  
MCP631/2/3/5  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kΩ to VL, CL = 50 pF and CS = VSS  
.
2.1  
DC Signal Inputs  
14%  
12%  
10%  
8%  
-1.0  
-1.2  
-1.4  
-1.6  
-1.8  
-2.0  
-2.2  
-2.4  
-2.6  
-2.8  
-3.0  
396 Samples  
TA = +25°C  
VDD = 2.5V and 5.5V  
Representative Part  
VDD = 2.5V  
VDD = 5.5V  
6%  
4%  
2%  
0%  
-6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
6
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
Input Offset Voltage (mV)  
FIGURE 2-1:  
Input Offset Voltage.  
FIGURE 2-4:  
Input Offset Voltage vs.  
Output Voltage.  
16%  
0.0  
398 Samples  
1 Lot  
VDD = 2.5V and 5.5V  
TA = -40°C to +125°C  
14%  
12%  
10%  
8%  
Low (VCMR_L – VSS  
)
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
6%  
VDD = 2.5V and 5.5V  
4%  
2%  
0%  
-8 -7 -6 -5 -4 -3 -2 -1  
0 1 2 3 4 5 6 7 8  
-50  
-25  
0
25  
50  
75  
100 125  
Input Offset Voltage Drift (µV/°C)  
Ambient Temperature (°C)  
FIGURE 2-2:  
Input Offset Voltage Drift.  
FIGURE 2-5:  
Low Input Common Mode  
Voltage Headroom vs. Ambient Temperature.  
-2.0  
-2.2  
-2.4  
-2.6  
-2.8  
-3.0  
-3.2  
-3.4  
-3.6  
-3.8  
-4.0  
1.3  
Representative Part  
VCM = VSS  
1 Lot  
High (VDD – VCMR_H  
)
1.2  
1.1  
1.0  
0.9  
VDD = 2.5V  
+125°C  
+85°C  
+25°C  
-40°C  
VDD = 5.5V  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
Power Supply Voltage (V)  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
FIGURE 2-3:  
Power Supply Voltage with V  
Input Offset Voltage vs.  
= 0V.  
FIGURE 2-6:  
Voltage Headroom vs. Ambient Temperature.  
High Input Common Mode  
CM  
© 2009 Microchip Technology Inc.  
DS22197A-page 7  
MCP631/2/3/5  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kΩ to VL, CL = 50 pF and CS = VSS  
.
2.0  
130  
125  
120  
115  
110  
105  
100  
VDD = 2.5V  
1.5 Representative Part  
+125°C  
+85°C  
+25°C  
-40°C  
1.0  
VDD = 5.5V  
VDD = 2.5V  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Input Common Mode Voltage (V)  
FIGURE 2-7:  
Input Offset Voltage vs.  
FIGURE 2-10:  
DC Open-Loop Gain vs.  
Common Mode Voltage with V = 2.5V.  
Ambient Temperature.  
DD  
2.0  
130  
VDD = 5.5V  
VDD = 5.5V  
Representative Part  
1.5  
125  
120  
115  
110  
105  
100  
95  
1.0  
+125°C  
+85°C  
+25°C  
-40°C  
0.5  
0.0  
VDD = 2.5V  
-0.5  
-1.0  
-1.5  
-2.0  
100  
1k  
1.E+03  
10k  
1.E+04  
100k  
1.E+05  
1.E+02  
Load Resistance ()  
Input Common Mode Voltage (V)  
FIGURE 2-8:  
Input Offset Voltage vs.  
FIGURE 2-11:  
DC Open-Loop Gain vs.  
Common Mode Voltage with V = 5.5V.  
Load Resistance.  
DD  
110  
105  
100  
1.E1-008n  
VDD = 5.5V  
VCM = VCMR_H  
1n  
1.E-09  
95  
CMRR, VDD = 2.5V  
90  
85  
80  
75  
70  
65  
60  
CMRR, VDD = 5.5V  
IB  
100p  
1.E-10  
10p  
1.E-11  
PSRR  
| IOS  
|
1p  
1.E-12  
-50  
-25  
0
25  
50  
75  
100  
125  
25  
45  
65  
85  
105  
125  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-9:  
CMRR and PSRR vs.  
FIGURE 2-12:  
Input Bias and Offset  
Ambient Temperature.  
Currents vs. Ambient Temperature with  
= +5.5V.  
V
DD  
DS22197A-page 8  
© 2009 Microchip Technology Inc.  
MCP631/2/3/5  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kΩ to VL, CL = 50 pF and CS = VSS  
.
2000  
1500  
1000  
500  
1.E-10m3  
1.E10-004µ  
IB  
10µ  
1.E-05  
1µ  
1.E-06  
100n  
1.E-07  
IOS  
10n  
1.E- 8  
0
1n  
1.E-09  
+125°C  
+85°C  
+25°C  
-40°C  
-500  
-1000  
-1500  
Representative Part  
A = +125°C  
VDD = 5.5V  
100p  
1.E-10  
T
10p  
1.E-11  
1p  
1.E-12  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
Input Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-13:  
Input Bias Current vs. Input  
FIGURE 2-15:  
Input Bias and Offset  
Voltage (below V ).  
Currents vs. Common Mode Input Voltage with  
T = +125°C.  
SS  
A
200  
150  
100  
50  
IB  
0
IOS  
-50  
-100  
-150  
-200  
Representative Part  
A = +85°C  
VDD = 5.5V  
T
Common Mode Input Voltage (V)  
FIGURE 2-14:  
Input Bias and Offset  
Currents vs. Common Mode Input Voltage with  
T = +85°C.  
A
© 2009 Microchip Technology Inc.  
DS22197A-page 9  
MCP631/2/3/5  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kΩ to VL, CL = 50 pF and CS = VSS  
.
2.2  
Other DC Voltages and Currents  
1000  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 5.5V  
100  
10  
1
+125°C  
+85°C  
+25°C  
-40°C  
VDD = 2.5V  
VOL – VSS  
VDD – VOH  
0.1  
1
10  
100  
Output Current Magnitude (mA)  
Power Supply Voltage (V)  
FIGURE 2-16:  
Output Voltage Headroom  
FIGURE 2-19:  
Supply Current vs. Power  
vs. Output Current.  
Supply Voltage.  
20  
3.5  
3.0  
2.5  
2.0  
RL = 2 k  
18  
VDD = 5.5V  
16  
14  
12  
VOL – VSS  
VDD = 2.5V  
VDD = 5.5V  
10  
1.5  
1.0  
0.5  
0.0  
8
6
4
2
0
VDD = 2.5V  
VDD – VOH  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Common Mode Input Voltage (V)  
FIGURE 2-17:  
Output Voltage Headroom  
FIGURE 2-20:  
Supply Current vs. Common  
vs. Ambient Temperature.  
Mode Input Voltage.  
100  
80  
60  
+125°C  
+85°C  
+25°C  
-40°C  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
Power Supply Voltage (V)  
FIGURE 2-18:  
Output Short Circuit Current  
vs. Power Supply Voltage.  
DS22197A-page 10  
© 2009 Microchip Technology Inc.  
MCP631/2/3/5  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kΩ to VL, CL = 50 pF and CS = VSS  
.
2.3  
Frequency Response  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
36  
34  
32  
30  
28  
26  
24  
22  
20  
80  
75  
70  
65  
60  
55  
50  
45  
40  
PM  
VDD = 5.5V  
VDD = 2.5V  
CMRR  
PSRR+  
PSRR-  
GBWP  
100  
11.Ek+3  
10k  
100k  
1M  
10M  
1.E+7  
1.E+2  
1.E+4  
1.E+5  
1.E+6  
Frequency (Hz)  
Common Mode Input Voltage (V)  
FIGURE 2-21:  
CMRR and PSRR vs.  
FIGURE 2-24:  
Gain Bandwidth Product  
Frequency.  
and Phase Margin vs. Common Mode Input  
Voltage.  
140  
120  
100  
80  
0
36  
34  
32  
30  
28  
26  
24  
22  
20  
80  
-30  
75  
70  
65  
60  
55  
50  
45  
40  
PM  
-60  
-90  
AOL  
VDD = 5.5V  
VDD = 2.5V  
60  
-120  
-150  
-180  
-210  
-240  
40  
| AOL  
|
20  
0
GBWP  
-20  
1
10 100 1k 10k 100k 11.EM+6 10M 100M  
1.E+7 1.E+8  
1.E+0 1.E+1 1.E+2 1.E+3 1.E+4 1.E+5  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
Frequency (Hz)  
FIGURE 2-22:  
Open-Loop Gain vs.  
FIGURE 2-25:  
Gain Bandwidth Product  
Frequency.  
and Phase Margin vs. Output Voltage.  
36  
34  
32  
30  
80  
75  
70  
65  
60  
55  
50  
45  
40  
100  
PM  
G = 101 V/V  
G = 11 V/V  
G = 1 V/V  
10  
VDD = 5.5V  
VDD = 2.5V  
28  
26  
24  
22  
20  
1
GBWP  
0.1  
10k  
100k  
1.0E+05  
1M  
10M  
1.0E+07  
100M  
-50 -25  
0
25  
50  
75 100 125  
1.0E+04  
1.0E+06  
1.0E+08  
Ambient Temperature (°C)  
Frequency (Hz)  
FIGURE 2-23:  
Gain Bandwidth Product  
FIGURE 2-26:  
Closed-Loop Output  
and Phase Margin vs. Ambient Temperature.  
Impedance vs. Frequency.  
© 2009 Microchip Technology Inc.  
DS22197A-page 11  
MCP631/2/3/5  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kΩ to VL, CL = 50 pF and CS = VSS  
.
10  
9
150  
140  
130  
120  
110  
100  
90  
RS = 0Ω  
R
R
S = 100Ω  
S = 1 kΩ  
8
GN = 1 V/V  
GN = 2 V/V  
7
GN 4 V/V  
6
5
4
3
2
1
0
VCM = VDD/2  
G = +1 V/V  
80  
70  
RS = 10 kΩ  
S = 100 kΩ  
60  
R
50  
1k  
10k  
1.E+04  
100k  
1.E+05  
1M  
1.E+06  
10M  
1.E+07  
10p  
1.0E-11  
100p  
1.0E-10  
1n  
1.0E-09  
1.E+03  
Normalized Capacitive Load; CL/GN (F)  
Frequency (Hz)  
FIGURE 2-27:  
Gain Peaking vs.  
FIGURE 2-28:  
Channel-to-Channel  
Normalized Capacitive Load.  
Separation vs. Frequency.  
DS22197A-page 12  
© 2009 Microchip Technology Inc.  
MCP631/2/3/5  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kΩ to VL, CL = 50 pF and CS = VSS  
.
2.4  
Noise and Distortion  
1.E+4  
10µ  
20  
15  
10  
5
Representative Part  
1.E+3  
1µ  
0
110.E0+n2  
11.E0+n1  
-5  
-10  
-15  
-20  
Analog NPBW = 0.1 Hz  
Sample Rate = 2 SPS  
VOS = -3150 µV  
1n  
1.E+0  
0
5 10 15 20 25 30 35 40 45 50 55 60 65  
0.1  
1
10 100 1k 10k 100k 11.EM+6 10M  
1.E-1 1.E+0 1.E+1 1.E+2 1.E+3 1.E+4 1.E+5 1.E+7  
Frequency (Hz)  
Time (min)  
FIGURE 2-29:  
Input Noise Voltage Density  
FIGURE 2-32:  
Input Noise vs. Time with  
vs. Frequency.  
0.1 Hz Filter.  
200  
180  
1
VDD = 2.5V  
160  
140  
120  
100  
80  
0.1  
G = 1 V/V  
G = 11 V/V  
BW = 22 Hz to > 500 kHz  
VDD = 5.5V  
0.01  
0.001  
60  
40  
BW = 22 Hz to 80 kHz  
VDD = 5.0V  
20  
f = 100 Hz  
VOUT = 2 VP-P  
0
0.0001  
100  
1.E+2  
1k  
1.E+3  
10k  
1.E+4  
100k  
1.E+5  
Frequency (Hz)  
Common Mode Input Voltage (V)  
FIGURE 2-30:  
Input Noise Voltage Density  
FIGURE 2-33:  
THD+N vs. Frequency.  
vs. Input Common Mode Voltage with f = 100 Hz.  
20  
18  
16  
VDD = 2.5V  
14  
12  
VDD = 5.5V  
10  
8
6
4
2
f = 1 MHz  
0
Common Mode Input Voltage (V)  
FIGURE 2-31:  
Input Noise Voltage Density  
vs. Input Common Mode Voltage with f = 1 MHz.  
© 2009 Microchip Technology Inc.  
DS22197A-page 13  
MCP631/2/3/5  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kΩ to VL, CL = 50 pF and CS = VSS  
.
2.5  
Time Response  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 5.5V  
G = 1  
VDD = 5.5V  
G = -1  
R
F = 1 kΩ  
VIN  
VIN  
VOUT  
VOUT  
0.0  
0.1  
0.2  
0.3  
0.4  
Time (µs)  
0.5  
0.6  
0.7  
0.8  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
Time (µs)  
FIGURE 2-34:  
Non-inverting Small Signal  
FIGURE 2-37:  
Inverting Large Signal Step  
Step Response.  
Response.  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
7
6
VDD = 5.5V  
G = 2  
VDD = 5.5V  
G = 1  
VOUT  
5
VIN  
4
3
2.5  
VIN  
VOUT  
2
2.0  
1.5  
1.0  
0.5  
0.0  
1
0
-1  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
Time (µs)  
0
1
2
3
4
5
6
7
8
9
10  
Time (ms)  
FIGURE 2-35:  
Step Response.  
Non-inverting Large Signal  
FIGURE 2-38:  
shows no input phase reversal with overdrive.  
The MCP631/2/3/5 family  
24  
22  
Falling Edge  
VIN  
20  
18  
VDD = 5.5V  
16  
14  
12  
10  
8
VDD = 5.5V  
G = -1  
RF = 1 k  
VDD = 2.5V  
6
4
2
0
Rising Edge  
VOUT  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
-50  
-25  
0
25  
50  
75  
100  
125  
Time (µs)  
Ambient Temperature (°C)  
FIGURE 2-36:  
Inverting Small Signal Step  
FIGURE 2-39:  
Slew Rate vs. Ambient  
Response.  
Temperature.  
DS22197A-page 14  
© 2009 Microchip Technology Inc.  
MCP631/2/3/5  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kΩ to VL, CL = 50 pF and CS = VSS  
.
10  
VDD = 5.5V  
VDD = 2.5V  
1
0.1  
100k  
1M  
1.E+06  
10M  
1.E+07  
100M  
1.E+08  
1.E+05  
Frequency (Hz)  
FIGURE 2-40:  
Maximum Output Voltage  
Swing vs. Frequency.  
© 2009 Microchip Technology Inc.  
DS22197A-page 15  
MCP631/2/3/5  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kΩ to VL, CL = 50 pF and CS = VSS  
.
2.6  
Chip Select Response  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
CS = VDD  
VDD = 5.5V  
VDD = 2.5V  
-50  
-25  
0
25  
50  
75  
100  
125  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-41:  
CS Current vs. Power  
FIGURE 2-44:  
CS Hysteresis vs. Ambient  
Supply Voltage.  
Temperature.  
3.0  
5
4
3
2
1
0
VDD = 2.5V  
G = 1  
VL = 0V  
2.5  
CS  
2.0  
1.5  
1.0  
0.5  
VDD = 2.5V  
VOUT  
On  
VDD = 5.5V  
0.0  
Off  
Off  
-0.5  
-50  
-25  
0
25  
50  
75  
100  
125  
0
2
4
6
8
10 12 14 16 18 20  
Time (µs)  
Ambient Temperature (°C)  
FIGURE 2-42:  
CS and Output Voltages vs.  
FIGURE 2-45:  
CS Turn On Time vs.  
Time with V = 2.5V.  
Ambient Temperature.  
DD  
6
8
VDD = 5.5V  
G = 1  
VL = 0V  
Representative Part  
CS  
7
6
5
4
3
2
1
0
5
4
3
VOUT  
2
On  
1
0
Off  
Off  
-1  
-50  
-25  
0
25  
50  
75  
100  
125  
0
2
4
6
8
10 12 14 16 18 20  
Time (µs)  
Ambient Temperature (°C)  
FIGURE 2-43:  
CS and Output Voltages vs.  
FIGURE 2-46:  
CS’s Pull-down Resistor  
Time with V = 5.5V.  
(R ) vs. Ambient Temperature.  
DD  
PD  
DS22197A-page 16  
© 2009 Microchip Technology Inc.  
MCP631/2/3/5  
Note: Unless otherwise indicated, TA = +25°C, VDD = +2.5V to 5.5V, VSS = GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 2 kΩ to VL, CL = 50 pF and CS = VSS  
.
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
1.E-016µ  
1.E10-007n  
CS = VDD  
CS = VDD = 5.5V  
+125°C  
+85°C  
10n  
1.E-08  
-1.2  
-1.4  
-40°C  
+25°C  
1n  
1.E-09  
-1.6  
-1.8  
-2.0  
-2.2  
+85°C  
+125°C  
100p  
1.E-10  
+25°C  
10p  
1.E-11  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Output Voltage (V)  
Power Supply Voltage (V)  
FIGURE 2-47:  
Quiescent Current in  
FIGURE 2-48:  
Output Leakage Current vs.  
Shutdown vs. Power Supply Voltage.  
Output Voltage.  
© 2009 Microchip Technology Inc.  
DS22197A-page 17  
MCP631/2/3/5  
NOTES:  
DS22197A-page 18  
© 2009 Microchip Technology Inc.  
MCP631/2/3/5  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
MCP631  
PIN FUNCTION TABLE  
MCP632  
SOIC DFN  
MCP633  
MCP635  
MSOP DFN  
Symbol  
Description  
SOIC  
SOIC  
6
2
3
4
1
2
3
4
1
2
3
4
6
2
3
4
1
2
3
4
1
2
3
4
VOUT, VOUTA Output (op amp A)  
VIN–, VINA  
VIN+, VINA  
VSS  
Inverting Input (op amp A)  
Non-inverting Input (op amp A)  
Negative Power Supply  
+
8
5
5
CS, CSA  
CSB  
Chip Select Digital Input (op amp A)  
5
5
7
6
7
6
7
Chip Select Digital Input (op amp B)  
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
Output (op amp B)  
VINB  
+
6
6
8
8
VINB  
7
7
9
9
VOUTB  
VDD  
NC  
7
8
8
10  
10  
11  
Positive Power Supply  
1,5,8  
9
1,5  
No Internal Connection  
EP  
Exposed Thermal Pad (EP);  
must be connected to VSS  
3.1  
Analog Outputs  
3.4  
Chip Select Digital Input (CS)  
The analog output pins (VOUT) are low-impedance  
voltage sources.  
This input (CS) is a CMOS, Schmitt-triggered input that  
places the part into a low power mode of operation.  
3.2  
Analog Inputs  
3.5  
Exposed Thermal Pad (EP)  
The non-inverting and inverting inputs (VIN+, VIN–, …)  
are high-impedance CMOS inputs with low bias  
currents.  
There is an internal connection between the Exposed  
Thermal Pad (EP) and the VSS pin; they must be  
connected to the same potential on the Printed Circuit  
Board (PCB).  
3.3  
Power Supply Pins  
This pad can be connected to a PCB ground plane to  
provide a larger heat sink. This improves the package  
thermal resistance (θJA).  
The positive power supply (VDD) is 2.5V to 5.5V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are between VSS and VDD  
.
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need bypass capacitors.  
© 2009 Microchip Technology Inc.  
DS22197A-page 19  
MCP631/2/3/5  
NOTES:  
DS22197A-page 20  
© 2009 Microchip Technology Inc.  
MCP631/2/3/5  
4.0  
APPLICATIONS  
VDD  
The MCP631/2/3/5 family op amps is manufactured  
using Microchip’s state of the art CMOS process. It is  
designed for low cost, low power and high speed  
applications. Its low supply voltage, low quiescent  
current and wide bandwidth make the MCP631/2/3/5  
ideal for battery-powered applications.  
D1  
R1  
D2  
MCP63X  
V1  
V2  
VOUT  
R2  
4.1  
Input  
VSS – (minimum expected V1)  
R1 >  
R2 >  
4.1.1  
PHASE REVERSAL  
2 mA  
VSS – (minimum expected V2)  
2 mA  
The input devices are designed to not exhibit phase  
inversion when the input pins exceed the supply  
voltages. Figure 2-38 shows an input voltage  
exceeding both supplies with no phase inversion.  
FIGURE 4-2:  
Protecting the Analog  
Inputs.  
4.1.2  
INPUT VOLTAGE AND CURRENT  
LIMITS  
It is also possible to connect the diodes to the left of the  
resistor R1 and R2. In this case, the currents through  
the diodes D1 and D2 need to be limited by some other  
mechanism. The resistors then serve as in-rush  
current limiters; the DC current into the input pins  
(VIN+ and VIN–) should be very small.  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-1. This structure was chosen to  
protect the input transistors, and to minimize input bias  
current (IB). The input ESD diodes clamp the inputs  
when they try to go more than one diode drop below  
VSS. They also clamp any voltages that go too far  
above VDD; their breakdown voltage is high enough to  
allow normal operation, and low enough to bypass  
quick ESD events within the specified limits.  
A significant amount of current can flow out of the  
inputs (through the ESD diodes) when the common  
mode voltage (VCM) is below ground (VSS); see  
Figure 2-13. Applications that are high impedance may  
need to limit the usable voltage range.  
4.1.3  
NORMAL OPERATION  
Bond  
VDD  
The input stage of the MCP631/2/3/5 op amps uses a  
differential PMOS input stage. It operates at  
low common mode input voltages (VCM), with VCM  
between VSS – 0.3V and VDD – 1.3V. To ensure proper  
operation, the input offset voltage (VOS) is measured  
Pad  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
VIN+  
VIN–  
at both  
VCM = VSS – 0.3V  
and  
VDD – 1.3V.  
See Figure 2-5 and Figure 2-6 for temperature effects.  
When operating at very low non-inverting gains, the  
output voltage is limited at the top by the VCM range  
(< VDD – 1.3V); see Figure 4-3.  
Bond  
Pad  
VSS  
FIGURE 4-1:  
Structures.  
Simplified Analog Input ESD  
VDD  
MCP63X  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the currents  
(and voltages) at the input pins (see Section 1.1  
“Absolute Maximum Ratings †”). Figure 4-2 shows  
the recommended approach to protecting these inputs.  
The internal ESD diodes prevent the input pins  
(VIN+ and VIN–) from going too far below ground, and  
the resistors R1 and R2 limit the possible current drawn  
out of the input pins. Diodes D1 and D2 prevent the  
input pins (VIN+ and VIN–) from going too far above  
VDD, and dump any currents onto VDD. When  
implemented as shown, resistors R1 and R2 also limit  
the current through D1 and D2.  
VIN  
VOUT  
VSS < VIN, VOUT VDD 1.3V  
FIGURE 4-3:  
Unity Gain Voltage  
Limitations for Linear Operation.  
© 2009 Microchip Technology Inc.  
DS22197A-page 21  
MCP631/2/3/5  
4.2  
Rail-to-Rail Output  
VDD  
VOUT  
4.2.1  
MAXIMUM OUTPUT VOLTAGE  
IDD  
The Maximum Output Voltage (see Figure 2-16 and  
Figure 2-17) describes the output range for a given  
load. For instance, the output voltage swings to within  
50 mV of the negative rail with a 1 kΩ load tied to  
VDD/2.  
IOUT  
RSER  
VL  
MCP63X  
IL  
RL  
ISS  
VLG  
4.2.2  
OUTPUT CURRENT  
VSS  
Figure 4-4 shows the possible combinations of output  
voltage (VOUT) and output current (IOUT), when  
VDD = 5.5V. IOUT is positive when it flows out of the op  
amp into the external circuit.  
FIGURE 4-5:  
Calculations.  
Diagram for Power  
The instantaneous op amp power (POA(t)), RSER power  
(PRSER(t)) and load power (PL(t)) are:  
6.0  
VOH Limited  
5.5  
(VDD = 5.5V)  
EQUATION 4-2:  
5.0  
4.5  
RL = 1 kΩ  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
RL = 100Ω  
RL = 10Ω  
POA(t) = IDD (VDD – VOUT) + ISS (VSS – VOUT  
)
2
P
RSER(t) = IOUT RSER  
PL(t) = IL2RL  
The maximum op amp power, for resistive loads,  
occurs when VOUT is halfway between VDD and VLG or  
VOL Limited  
halfway between VSS and VLG  
:
IOUT (mA)  
EQUATION 4-3:  
FIGURE 4-4:  
Output Current.  
2
max (V – V , V – V )  
DD  
LG  
LG  
SS  
4.2.3 POWER DISSIPATION  
P
OAmax  
4(R  
+ R )  
L
SER  
Since the output short circuit current (ISC) is specified  
at ±70 mA (typical), these op amps are capable of both  
delivering and dissipating significant power.  
The maximum ambient to junction temperature rise  
(ΔTJA) and junction temperature (TJ) can be calculated  
using POAmax, ambient temperature (TA), the package  
thermal resistance (θJA) found in Table 1-4, and the  
number of op amps in the package (assuming equal  
power dissipations):  
Figure 4-5 show the quantities used in the following  
power calculations for a single op amp. RSER is 0 Ω in  
most applications; it can be used to limit IOUT. VOUT is  
the op amp’s output voltage, VL is the voltage at the  
load, and VLG is the load’s ground point. VSS is usually  
ground (0V). The input currents are assumed to be  
negligible. The currents shown are approximately:  
EQUATION 4-4:  
ΔT = P (t) θ ≤ n P  
θ
JA  
OA  
JA  
OAmax JA  
EQUATION 4-1:  
T = T + ΔT  
J
A
JA  
Where:  
n
VOUT – VLG  
IOUT = IL =  
R
SER + RL  
=
number of op amps in package (1, 2)  
IDD IQ + max(0, IOUT  
)
ISS –IQ + min(0, IOUT  
)
Where:  
IQ  
=
quiescent supply current  
DS22197A-page 22  
© 2009 Microchip Technology Inc.  
MCP631/2/3/5  
The power de-rating across temperature for an op amp  
in a particular package can be easily calculated  
(assuming equal power dissipations):  
Figure 4-7 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit’s noise gain. For non-inverting gains, GN and the  
Signal Gain are equal. For inverting gains, GN is  
1+|Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).  
EQUATION 4-5:  
T
– T  
A
Jmax  
n θ  
P
OAmax  
JA  
1,000  
Where:  
TJmax  
=
absolute maximum junction temperature  
Several techniques are available to reduce ΔTJA for a  
100  
given POAmax  
:
• Lower θJA  
GN = +1  
- Use another package  
- PCB layout (ground plane, etc.)  
- Heat sinks and air flow  
• Reduce POAmax  
GN +2  
10  
10p  
100p  
1n  
1.E-09  
10n  
1.E-12  
1.E-11  
1.E-10  
1.E-08  
Normalized Capacitance; CL/GN (F)  
FIGURE 4-7:  
Recommended R  
Values  
- Increase RL  
ISO  
for Capacitive Loads.  
- Limit IOUT (using RSER  
- Decrease VDD  
)
After selecting RISO for your circuit, double check the  
resulting frequency response peaking and step  
response overshoot. Modify RISO’s value until the  
response is reasonable. Bench evaluation and  
simulations with the MCP631/2/3/5 SPICE macro  
model are helpful.  
4.3  
Improving Stability  
4.3.1  
CAPACITIVE LOADS  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. A unity gain buffer (G = +1) is the most  
sensitive to capacitive loads, though all gains show the  
same general behavior.  
4.3.2  
GAIN PEAKING  
Figure 4-8 shows an op amp circuit that represents  
non-inverting amplifiers (VM is a DC voltage and VP is  
the input) or inverting amplifiers (VP is a DC voltage  
and VM is the input). The capacitances CN and CG  
represent the total capacitance at the input pins; they  
include the op amp’s common mode input capacitance  
(CCM), board parasitic capacitance and any capacitor  
placed in parallel.  
When driving large capacitive loads with these op  
amps (e.g., > 20 pF when G = +1), a small series  
resistor at the output (RISO in Figure 4-6) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The  
bandwidth will be generally lower than the bandwidth  
with no capacitive load.  
CN  
RN  
MCP63X  
VP  
VOUT  
VM  
RISO  
CL  
RG  
RF  
RG  
RF  
CG  
VOUT  
FIGURE 4-8:  
Capacitance.  
Amplifier with Parasitic  
MCP63X  
RN  
CG acts in parallel with RG (except for a gain of +1 V/V),  
which causes an increase in gain at high frequencies.  
CG also reduces the phase margin of the feedback  
loop, which becomes less stable. This effect can be  
reduced by either reducing CG or RF.  
FIGURE 4-6:  
stabilizes large capacitive loads.  
Output Resistor, R  
ISO  
© 2009 Microchip Technology Inc.  
DS22197A-page 23  
MCP631/2/3/5  
CN and RN form a low-pass filter that affects the signal  
at VP. This filter has a single real pole at 1/(2πRNCN).  
4.4  
MCP633 and MCP635 Chip Select  
The MCP633 is a single amplifier with Chip Select  
(CS). When CS is pulled high, the supply current drops  
to 1 µA (typical) and flows through the CS pin to VSS  
When this happens, the amplifier output is put into a  
high-impedance state. By pulling CS low, the amplifier  
is enabled. The CS pin has an internal 5 MΩ (typical)  
pulldown resistor connected to VSS, so it will go low if  
the CS pin is left floating. Figure 1-1, Figure 2-42 and  
Figure 2-43 show the output voltage and supply current  
response to a CS pulse.  
The largest value of RF that should be used depends  
on noise gain (see GN in Section 4.3.1 “Capacitive  
Loads”), CG and the open-loop gain’s phase shift.  
Figure 4-9 shows the maximum recommended RF for  
several CG values. Some applications may modify  
these values to reduce either output loading or gain  
peaking (step response overshoot).  
.
1.E+05  
100k  
CG = 10 pF  
CG = 32 pF  
CG = 100 pF  
CG = 320 pF  
CG = 1 nF  
The MCP635 is a dual amplifier with two CS pins; CSA  
controls op amp A and CSB controls op amp B. These  
op amps are controlled independently, with an enabled  
quiescent current (IQ) of 2.5 mA/amplifier (typical) and  
a disabled IQ of 1 µA/amplifier (typical). The IQ seen at  
the supply pins is the sum of the two op amps’ IQ; the  
typical value for the MCP635’s IQ will be 2 µA, 2.5 mA  
or 5 mA when there are 0, 1 or 2 amplifiers enabled,  
respectively.  
1.E+1004k  
1k  
1.E+03  
GN > +1 V/V  
100  
1.E+02  
1
10  
100  
Noise Gain; GN (V/V)  
4.5  
Power Supply  
FIGURE 4-9:  
R vs. Gain.  
Maximum Recommended  
With this family of operational amplifiers, the power  
supply pin (VDD for single supply) should have a local  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
for good high frequency performance. Surface mount,  
multilayer ceramic capacitors, or their equivalent,  
should be used.  
F
Figure 2-34 and Figure 2-35 show the small signal and  
large signal step responses at G = +1 V/V. The unity  
gain buffer usually has RF = 0Ω and RG open.  
Figure 2-36 and Figure 2-37 show the small signal and  
large signal step responses at G = -1 V/V. Since the  
noise gain is 2 V/V and CG 10 pF, the resistors were  
chosen to be RF = RG = 1 kΩ and RN = 500Ω.  
These op amps require a bulk capacitor (i.e., 2.2 µF or  
larger) within 50 mm to provide large, slow currents.  
Tantalum capacitors, or their equivalent, may be a good  
choice. This bulk capacitor can be shared with other  
nearby analog parts as long as crosstalk through the  
supplies does not prove to be a problem.  
It is also possible to add a capacitor (CF) in parallel with  
RF to compensate for the de-stabilizing effect of CG.  
This makes it possible to use larger values of RF. The  
conditions for stability are summarized in Equation 4-6.  
4.6  
High Speed PCB Layout  
EQUATION 4-6:  
These op amps are fast enough that a little extra care  
in the PCB (Printed Circuit Board) layout can make a  
significant difference in performance. Good PC board  
layout techniques will help you achieve the  
performance shown in the specifications and Typical  
Performance Curves; it will also help you minimize  
EMC (Electro-Magnetic Compatibility) issues.  
Given:  
GN1 = 1 + RF RG  
GN2 = 1 + CG CF  
fF = 1 (2πRFCF)  
fZ = fF(GN1 GN2  
We need:  
)
Use a solid ground plane. Connect the bypass local  
capacitor(s) to this plane with minimal length traces.  
This cuts down inductive and capacitive crosstalk.  
fF fGBWP (2GN2), GN1 < GN2  
fF fGBWP (4GN1), GN1 > GN2  
Separate digital from analog, low speed from high  
speed, and low power from high power. This will reduce  
interference.  
Keep sensitive traces short and straight. Separate  
them from interfering components and traces. This is  
especially important for high frequency (low rise time)  
signals.  
DS22197A-page 24  
© 2009 Microchip Technology Inc.  
MCP631/2/3/5  
Sometimes, it helps to place guard traces next to victim  
traces. They should be on both sides of the victim  
trace, and as close as possible. Connect guard traces  
to ground plane at both ends, and in the middle for long  
traces.  
4.7.3  
H-BRIDGE DRIVER  
Figure 4-12 shows the MCP632 dual op amp used as  
a H-bridge driver. The load could be a speaker or a DC  
motor.  
Use coax cables, or low inductance wiring, to route  
signal and power to and from the PCB. Mutual and self  
inductance of power wires is often a cause of crosstalk  
and unusual behavior.  
½ MCP632  
VIN  
VOT  
RF  
RF  
RF  
4.7  
Typical Applications  
RL  
4.7.1  
POWER DRIVER WITH HIGH GAIN  
RGT  
RGB  
Figure 4-10 shows a power driver with high gain  
(1 + R2/R1). The MCP631/2/3/5 op amp’s short circuit  
current makes it possible to drive significant loads. The  
calibrated input offset voltage supports accurate  
response at high gains. R3 should be small, and equal  
to R1||R2, in order to minimize the bias current induced  
offset.  
VOB  
VDD/2  
½ MCP632  
H-Bridge Driver.  
FIGURE 4-12:  
This circuit automatically makes the noise gains (GN)  
equal, when the gains are set properly, so that the  
frequency responses match well (in magnitude and in  
phase). Equation 4-7 shows how to calculate RGT and  
RGB so that both op amps have the same DC gains;  
GDM needs to be selected first.  
R1  
R3  
R2  
VDD/2  
VOUT  
RL  
MCP63X  
VIN  
FIGURE 4-10:  
Power Driver.  
EQUATION 4-7:  
VOT VOB  
4.7.2 OPTICAL DETECTOR AMPLIFIER  
--------------------------------  
1 V/V  
GDM  
V
IN VDD 2  
Figure 4-11 shows a transimpedance amplifier, using  
the MCP63X op amp, in a photo detector circuit. The  
RF  
RGT = --------------------------------  
photo detector is  
a capacitive current source.  
(GDM 2) 1  
RF provides enough gain to produce 10 mV at VOUT  
.
RF  
RGB = ------------------  
GDM 2  
CF stabilizes the gain and limits the transimpedance  
bandwidth to about 1.1 MHz. RF’s parasitic  
capacitance (e.g., 0.2 pF for a 0805 SMD) acts in  
parallel with CF.  
Equation 4-8 gives the resulting common mode and  
differential mode output voltages.  
CF  
1.5 pF  
EQUATION 4-8:  
VOT + VOB  
--------------------------- = ----------  
VDD  
Photo  
Detector  
RF  
2
2
100 kΩ  
VDD  
VOUT  
VOT VOB = GDM VIN ----------  
2
ID  
CD  
100 nA  
30pF  
MCP63X  
VDD/2  
FIGURE 4-11:  
Transimpedance Amplifier  
for an Optical Detector.  
© 2009 Microchip Technology Inc.  
DS22197A-page 25  
MCP631/2/3/5  
NOTES:  
DS22197A-page 26  
© 2009 Microchip Technology Inc.  
MCP631/2/3/5  
5.5  
Analog Demonstration and  
Evaluation Boards  
5.0  
DESIGN AIDS  
Microchip provides the basic design aids needed for  
the MCP631/2/3/5 family of op amps.  
Microchip offers  
a
broad spectrum of Analog  
Demonstration and Evaluation Boards that are  
designed to help customers achieve faster time  
to market. For a complete listing of these boards  
and their corresponding user’s guides and technical  
information, visit the Microchip web site at  
www.microchip.com/analog tools.  
5.1  
SPICE Macro Model  
The latest SPICE macro model for the MCP631/2/3/5  
op amps is available on the Microchip web site at  
www.microchip.com. This model is intended to be an  
initial design tool that works well in the op amp’s linear  
region of operation over the temperature range.  
See the model file for information on its capabilities.  
Some boards that are especially useful are:  
• MCP6XXX Amplifier Evaluation Board 1  
• MCP6XXX Amplifier Evaluation Board 2  
• MCP6XXX Amplifier Evaluation Board 3  
• MCP6XXX Amplifier Evaluation Board 4  
• Active Filter Demo Board Kit  
Bench testing is a very important part of any design and  
cannot be replaced with simulations. Also, simulation  
results using this macro model need to be validated by  
comparing them to the data sheet specifications and  
characteristic curves.  
• 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board,  
P/N SOIC8EV  
5.2  
FilterLab® Software  
Microchip’s FilterLab® software is an innovative  
software tool that simplifies analog active filter  
(using op amps) design. Available at no cost from the  
Microchip web site at www.microchip.com/filterlab, the  
Filter-Lab design tool provides full schematic diagrams  
of the filter circuit with component values. It also  
outputs the filter circuit in SPICE format, which can be  
used with the macro model to simulate actual filter  
performance.  
5.6  
Application Notes  
The following Microchip Application Notes are  
available on the Microchip web site at www.microchip.  
com/appnotes and are recommended as supplemental  
reference resources.  
ADN003: “Select the Right Operational Amplifier  
for your Filtering Circuits”, DS21821  
AN722: “Operational Amplifier Topologies and DC  
Specifications”, DS00722  
5.3  
Mindi™ Circuit Designer &  
Simulator  
AN723: “Operational Amplifier AC Specifications  
and Applications”, DS00723  
AN884: “Driving Capacitive Loads With Op  
Amps”, DS00884  
Microchip’s Mindi™ Circuit Designer & Simulator aids  
in the design of various circuits useful for active filter,  
amplifier and power management applications. It is a  
free online circuit designer & simulator available from  
the Microchip web site at www.microchip.com/mindi.  
This interactive circuit designer & simulator enables  
designers to quickly generate circuit diagrams,  
and simulate circuits. Circuits developed using the  
Mindi Circuit Designer & Simulator can be downloaded  
to a personal computer or workstation.  
AN990: “Analog Sensor Conditioning Circuits –  
An Overview”, DS00990  
AN1228: “Op Amp Precision Design: Random  
Noise”, DS01228  
Some of these application notes, and others, are listed  
in the design guide:  
“Signal Chain Design Guide”, DS21825  
5.4  
Microchip Advanced Part Selector  
(MAPS)  
MAPS is a software tool that helps efficiently identify  
Microchip devices that fit particular design  
a
requirement. Available at no cost from the Microchip  
website at www.microchip.com/maps, the MAPS is an  
overall selection tool for Microchip’s product portfolio  
that includes Analog, Memory, MCUs and DSCs. Using  
this tool, a customer can define a filter to sort features  
for a parametric search of devices and export  
side-by-side technical comparison reports. Helpful links  
are also provided for Data sheets, Purchase and  
Sampling of Microchip parts.  
© 2009 Microchip Technology Inc.  
DS22197A-page 27  
MCP631/2/3/5  
NOTES:  
DS22197A-page 28  
© 2009 Microchip Technology Inc.  
MCP631/2/3/5  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
8-Lead DFN (3×3) (MCP632)  
Example  
Device  
Code  
XXXX  
YYWW  
NNN  
DABM  
0931  
256  
MCP632  
DABM  
Note:  
Applies to 8-Lead 3x3 DFN  
8-Lead SOIC (150 mil) (MCP631, MCP632, MCP633)  
Example:  
XXXXXXXX  
MCP631E  
e
3
XXXXYYWW  
SN 0931  
NNN  
256  
10-Lead DFN (3×3) (MCP635)  
Example  
XXXX  
BAFB  
0931  
256  
Device  
Code  
YYWW  
NNN  
MCP635  
BAFB  
Note:  
Applies to 10-Lead 3x3 DFN  
10-Lead MSOP (MCP635)  
Example:  
XXXXXX  
YWWNNN  
635EUN  
931256  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e
3
e
3
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2009 Microchip Technology Inc.  
DS22197A-page 29  
MCP631/2/3/5  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢏꢗꢆMꢆꢘꢙꢘꢙꢚꢛꢜꢆ  ꢆ!ꢒꢅ"ꢆ#ꢍꢏꢑ$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
e
D
b
N
N
L
EXPOSED PAD  
E
E2  
K
NOTE 1  
NOTE 1  
1
2
2
1
D2  
BOTTOM VIEW  
TOP VIEW  
A
NOTE 2  
A3  
A1  
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
9
ꢚꢁ:.ꢅ/ꢕ0  
ꢚꢁꢛꢚ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢉꢃꢐꢎ%  
ꢕ%ꢇꢄ"ꢌ$$ꢅ  
0ꢌꢄ%ꢇꢍ%ꢅꢗꢎꢃꢍ*ꢄꢉ    
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
,#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ<ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ<ꢃ"%ꢎ  
6
ꢔꢀ  
ꢔ+  
,ꢏ  
,
ꢚꢁ9ꢚ  
ꢚꢁꢚꢚ  
ꢀꢁꢚꢚ  
ꢚꢁꢚ.  
ꢚꢁꢚꢏ  
ꢚꢁꢏꢚꢅꢘ,2  
+ꢁꢚꢚꢅ/ꢕ0  
M
+ꢁꢚꢚꢅ/ꢕ0  
M
ꢚꢁ+ꢚ  
ꢚꢁ+ꢚ  
M
ꢚꢁꢚꢚ  
ꢀꢁ:ꢚ  
,#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ5ꢉꢄꢐ%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ<ꢃ"%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ5ꢉꢄꢐ%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢜ%ꢌꢜ,#ꢑꢌ ꢉ"ꢅꢂꢇ"  
ꢓꢏ  
(
5
ꢚꢁꢚꢚ  
ꢚꢁꢏ.  
ꢚꢁꢏꢚ  
ꢚꢁꢏꢚ  
ꢏꢁꢒꢚ  
ꢚꢁ+.  
ꢚꢁ..  
M
>
ꢑꢒꢊꢃꢉ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢂꢇꢍ*ꢇꢐꢉꢅ&ꢇꢋꢅꢎꢇꢆꢉꢅꢌꢄꢉꢅꢌꢊꢅ&ꢌꢊꢉꢅꢉ#ꢑꢌ ꢉ"ꢅ%ꢃꢉꢅ(ꢇꢊ ꢅꢇ%ꢅꢉꢄ" ꢁ  
+ꢁ ꢂꢇꢍ*ꢇꢐꢉꢅꢃ ꢅ ꢇ)ꢅ ꢃꢄꢐ!ꢈꢇ%ꢉ"ꢁ  
ꢒꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢜꢚ:ꢏ/  
DS22197A-page 30  
© 2009 Microchip Technology Inc.  
MCP631/2/3/5  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢏꢗꢆMꢆꢘꢙꢘꢙꢚꢛꢜꢆ  ꢆ!ꢒꢅ"ꢆ#ꢍꢏꢑ$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
© 2009 Microchip Technology Inc.  
DS22197A-page 31  
MCP631/2/3/5  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ& ꢄꢈꢈꢆ'ꢎꢊꢈꢋ(ꢃꢆꢕ&ꢑꢗꢆMꢆꢑꢄ))ꢒ*ꢐꢆꢘꢛꢜꢚꢆ  ꢆ!ꢒꢅ"ꢆ#&'+,$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
D
e
N
E
E1  
NOTE 1  
1
2
3
α
h
b
h
c
φ
A2  
A
L
A1  
L1  
β
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
9
ꢀꢁꢏꢞꢅ/ꢕ0  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢉꢃꢐꢎ%  
M
ꢀꢁꢏ.  
ꢚꢁꢀꢚ  
M
M
M
ꢀꢁꢞ.  
M
ꢚꢁꢏ.  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅꢗꢎꢃꢍ*ꢄꢉ    
ꢕ%ꢇꢄ"ꢌ$$ꢅꢅ  
ꢔꢏ  
ꢔꢀ  
,
7ꢆꢉꢊꢇꢈꢈꢅ<ꢃ"%ꢎ  
:ꢁꢚꢚꢅ/ꢕ0  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅ<ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
0ꢎꢇ&$ꢉꢊꢅ@ꢌꢑ%ꢃꢌꢄꢇꢈA  
2ꢌꢌ%ꢅ5ꢉꢄꢐ%ꢎ  
,ꢀ  
+ꢁꢛꢚꢅ/ꢕ0  
ꢒꢁꢛꢚꢅ/ꢕ0  
ꢚꢁꢏ.  
ꢚꢁꢒꢚ  
M
M
ꢚꢁ.ꢚ  
ꢀꢁꢏꢞ  
5
2ꢌꢌ%ꢑꢊꢃꢄ%  
2ꢌꢌ%ꢅꢔꢄꢐꢈꢉ  
5ꢉꢇ"ꢅꢗꢎꢃꢍ*ꢄꢉ    
5ꢉꢇ"ꢅ<ꢃ"%ꢎ  
ꢖꢌꢈ"ꢅꢓꢊꢇ$%ꢅꢔꢄꢐꢈꢉꢅ  
ꢖꢌꢈ"ꢅꢓꢊꢇ$%ꢅꢔꢄꢐꢈꢉꢅ/ꢌ%%ꢌ&  
5ꢀ  
ꢀꢁꢚꢒꢅꢘ,2  
ꢚꢟ  
ꢚꢁꢀꢞ  
ꢚꢁ+ꢀ  
.ꢟ  
M
M
M
M
M
9ꢟ  
(
ꢚꢁꢏ.  
ꢚꢁ.ꢀ  
ꢀ.ꢟ  
.ꢟ  
ꢀ.ꢟ  
ꢑꢒꢊꢃꢉ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢝꢅꢕꢃꢐꢄꢃ$ꢃꢍꢇꢄ%ꢅ0ꢎꢇꢊꢇꢍ%ꢉꢊꢃ %ꢃꢍꢁ  
+ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢓꢅꢇꢄ"ꢅ,ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢖꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢚꢁꢀ.ꢅ&&ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
ꢒꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢜꢚ.ꢞ/  
DS22197A-page 32  
© 2009 Microchip Technology Inc.  
MCP631/2/3/5  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ& ꢄꢈꢈꢆ'ꢎꢊꢈꢋ(ꢃꢆꢕ&ꢑꢗꢆMꢆꢑꢄ))ꢒ*ꢐꢆꢘꢛꢜꢚꢆ  ꢆ!ꢒꢅ"ꢆ#&'+,$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
© 2009 Microchip Technology Inc.  
DS22197A-page 33  
MCP631/2/3/5  
-ꢚꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢏꢗꢆMꢆꢘꢙꢘꢙꢚꢛꢜꢆ  ꢆ!ꢒꢅ"ꢆ#ꢍꢏꢑ$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
D
e
b
N
N
L
K
E
E2  
EXPOSED  
PAD  
NOTE 1  
NOTE 1  
2
1
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
A1  
A3  
NOTE 2  
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
ꢀꢚ  
ꢚꢁ.ꢚꢅ/ꢕ0  
ꢚꢁꢛꢚ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢉꢃꢐꢎ%  
ꢕ%ꢇꢄ"ꢌ$$ꢅ  
0ꢌꢄ%ꢇꢍ%ꢅꢗꢎꢃꢍ*ꢄꢉ    
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
,#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ5ꢉꢄꢐ%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ<ꢃ"%ꢎ  
6
ꢔꢀ  
ꢔ+  
ꢓꢏ  
,
ꢚꢁ9ꢚ  
ꢚꢁꢚꢚ  
ꢀꢁꢚꢚ  
ꢚꢁꢚ.  
ꢚꢁꢚꢏ  
ꢚꢁꢏꢚꢅꢘ,2  
+ꢁꢚꢚꢅ/ꢕ0  
ꢏꢁ+.  
+ꢁꢚꢚꢅ/ꢕ0  
ꢀꢁ.9  
ꢚꢁꢏ.  
ꢚꢁꢒꢚ  
M
ꢏꢁꢏꢚ  
ꢏꢁꢒ9  
,#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ<ꢃ"%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ<ꢃ"%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢅ5ꢉꢄꢐ%ꢎ  
0ꢌꢄ%ꢇꢍ%ꢜ%ꢌꢜ,#ꢑꢌ ꢉ"ꢅꢂꢇ"  
,ꢏ  
(
5
ꢀꢁꢒꢚ  
ꢚꢁꢀ9  
ꢚꢁ+ꢚ  
ꢚꢁꢏꢚ  
ꢀꢁꢞ.  
ꢚꢁ+ꢚ  
ꢚꢁ.ꢚ  
M
>
ꢑꢒꢊꢃꢉ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢂꢇꢍ*ꢇꢐꢉꢅ&ꢇꢋꢅꢎꢇꢆꢉꢅꢌꢄꢉꢅꢌꢊꢅ&ꢌꢊꢉꢅꢉ#ꢑꢌ ꢉ"ꢅ%ꢃꢉꢅ(ꢇꢊ ꢅꢇ%ꢅꢉꢄ" ꢁ  
+ꢁ ꢂꢇꢍ*ꢇꢐꢉꢅꢃ ꢅ ꢇ)ꢅ ꢃꢄꢐ!ꢈꢇ%ꢉ"ꢁ  
ꢒꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢜꢚ:+/  
DS22197A-page 34  
© 2009 Microchip Technology Inc.  
MCP631/2/3/5  
-ꢚꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢆꢏꢈꢄꢊꢐꢆꢑꢒꢆꢂꢃꢄꢅꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕꢖꢏꢗꢆMꢆꢘꢙꢘꢙꢚꢛꢜꢆ  ꢆ!ꢒꢅ"ꢆ#ꢍꢏꢑ$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
© 2009 Microchip Technology Inc.  
DS22197A-page 35  
MCP631/2/3/5  
-ꢚꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢖꢋꢌ)ꢒꢆ& ꢄꢈꢈꢆ'ꢎꢊꢈꢋ(ꢃꢆꢇꢄꢌꢓꢄꢔꢃꢆꢕ.ꢑꢗꢆ#ꢖ&'ꢇ$  
ꢑꢒꢊꢃ% 2ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ*ꢇꢐꢉꢅ"ꢊꢇ)ꢃꢄꢐ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢖꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ*ꢇꢐꢃꢄꢐꢅꢕꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ133)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ*ꢇꢐꢃꢄꢐ  
D
N
E
E1  
NOTE 1  
1
2
b
e
c
A
A2  
φ
L
A1  
L1  
4ꢄꢃ%  
ꢖꢙ55ꢙꢖ,ꢗ,ꢘꢕ  
ꢓꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢖꢙ6  
67ꢖ  
ꢖꢔ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
6
ꢀꢚ  
ꢚꢁ.ꢚꢅ/ꢕ0  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢉꢃꢐꢎ%  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅꢗꢎꢃꢍ*ꢄꢉ    
ꢕ%ꢇꢄ"ꢌ$$ꢅ  
7ꢆꢉꢊꢇꢈꢈꢅ<ꢃ"%ꢎ  
ꢖꢌꢈ"ꢉ"ꢅꢂꢇꢍ*ꢇꢐꢉꢅ<ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢐ%ꢎ  
2ꢌꢌ%ꢅ5ꢉꢄꢐ%ꢎ  
M
ꢚꢁꢞ.  
ꢚꢁꢚꢚ  
M
ꢚꢁ9.  
ꢀꢁꢀꢚ  
ꢚꢁꢛ.  
ꢚꢁꢀ.  
ꢔꢏ  
ꢔꢀ  
,
,ꢀ  
M
ꢒꢁꢛꢚꢅ/ꢕ0  
+ꢁꢚꢚꢅ/ꢕ0  
+ꢁꢚꢚꢅ/ꢕ0  
ꢚꢁ:ꢚ  
5
ꢚꢁꢒꢚ  
ꢚꢁ9ꢚ  
2ꢌꢌ%ꢑꢊꢃꢄ%  
2ꢌꢌ%ꢅꢔꢄꢐꢈꢉ  
5ꢀ  
ꢚꢁꢛ.ꢅꢘ,2  
M
ꢚꢟ  
9ꢟ  
5ꢉꢇ"ꢅꢗꢎꢃꢍ*ꢄꢉ    
5ꢉꢇ"ꢅ<ꢃ"%ꢎ  
(
ꢚꢁꢚ9  
ꢚꢁꢀ.  
M
M
ꢚꢁꢏ+  
ꢚꢁ++  
ꢑꢒꢊꢃꢉ%  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢓꢅꢇꢄ"ꢅ,ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢖꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢚꢁꢀ.ꢅ&&ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
+ꢁ ꢓꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢐꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢐꢅꢑꢉꢊꢅꢔꢕꢖ,ꢅ-ꢀꢒꢁ.ꢖꢁ  
/ꢕ01 /ꢇ ꢃꢍꢅꢓꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢗꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢘ,21 ꢘꢉ$ꢉꢊꢉꢄꢍꢉꢅꢓꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢖꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢐꢋ ꢓꢊꢇ)ꢃꢄꢐ 0ꢚꢒꢜꢚꢏꢀ/  
DS22197A-page 36  
© 2009 Microchip Technology Inc.  
MCP631/2/3/5  
APPENDIX A: REVISION HISTORY  
Revision A (August 2009)  
• Original Release of this Document.  
© 2009 Microchip Technology Inc.  
DS22197A-page 37  
MCP631/2/3/5  
NOTES:  
DS22197A-page 38  
© 2009 Microchip Technology Inc.  
MCP631/2/3/5  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
-X  
/XX  
Examples:  
a)  
MCP631T-E/SN: Tape and Reel  
Temperature  
Range  
Package  
Extended temperature,  
8LD SOIC package  
a)  
b)  
MCP632T-E/MF: Tape and Reel  
Device:  
MCP631  
MCP631T  
Single Op Amp  
Single Op Amp (Tape and Reel)  
(SOIC)  
Dual Op Amp  
Dual Op Amp (Tape and Reel)  
(DFN and SOIC)  
Extended temperature,  
8LD DFN package  
MCP632T-E/SN: Tape and Reel  
MCP632  
MCP632T  
Extended temperature,  
8LD SOIC package  
MCP633  
MCP633T  
Single Op Amp with CS  
Single Op Amp with CS (Tape and Reel)  
(SOIC)  
Dual Op Amp with CS  
Dual Op Amp with CS (Tape and Reel)  
(DFN and MSOP)  
a)  
MCP633T-E/SN: Tape and Reel  
Extended temperature,  
8LD SOIC package  
MCP635  
MCP635T  
a)  
b)  
MCP635T-E/MF: Tape and Reel  
Extended temperature,  
10LD DFN package  
MCP635T-E/UN: Tape and Reel  
Temperature Range:  
Package:  
E
=
=
-40°C to +125°C  
Extended temperature,  
10LD MSOP package  
MF  
Plastic Dual Flat, No Lead (3×3 DFN),  
8-lead, 10-lead  
SN  
UN  
=
=
Plastic Small Outline (3.90 mm), 8-lead  
Plastic Micro Small Outline (MSOP), 10-lead  
© 2009 Microchip Technology Inc.  
DS22197A-page 39  
MCP631/2/3/5  
NOTES:  
DS22197A-page 40  
© 2009 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
rfPIC and UNI/O are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total  
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA  
are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2009 Microchip Technology Inc.  
DS22197A-page 41  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
03/26/09  
DS22197A-page 42  
© 2009 Microchip Technology Inc.  

相关型号:

MCP633-E/SN

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP633-E/UN

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP633T

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP633T-E/MF

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP633T-E/SN

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP633T-E/UN

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP634

Unity-Gain Stable
MICROCHIP

MCP635

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP635-E/MF

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP635-E/SN

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP635-E/UN

24 MHz, 2.5 mA Op Amps
MICROCHIP

MCP635T

24 MHz, 2.5 mA Op Amps
MICROCHIP