MCP6022T-E/SNVAO [MICROCHIP]

Operational Amplifier, 2 Func, 2500uV Offset-Max, CMOS, PDSO8;
MCP6022T-E/SNVAO
型号: MCP6022T-E/SNVAO
厂家: MICROCHIP    MICROCHIP
描述:

Operational Amplifier, 2 Func, 2500uV Offset-Max, CMOS, PDSO8

运算放大器
文件: 总28页 (文件大小:603K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6021/2/3/4  
M
Rail-to-Rail Input/Output, 10 MHz Op Amps  
Features  
Description  
• Rail-to-Rail Input/Output  
The MCP6021, MCP6022, MCP6023 and MCP6024  
from Microchip Technology Inc. are rail-to-rail input and  
output op amps with high performance. Key  
specifications include: wide bandwidth (10 MHz), low  
noise (8.7 nV/Hz), low input offset voltage and low  
distortion (0.00053% THD+N). These features make  
these op amps well suited for applications requiring  
high performance and bandwidth. The MCP6023 also  
offers a chip select pin (CS) that gives power savings  
when the part is not in use.  
The single MCP6021, single MCP6023 and dual  
MCP6022 are available in standard 8-lead PDIP, SOIC  
and TSSOP. The quad MCP6024 is offered in 14-lead  
PDIP, SOIC and TSSOP packages.  
• Wide Bandwidth: 10 MHz (typ.)  
• Low Noise: 8.7 nV/Hz, at 10 kHz (typ.)  
• Low Offset Voltage:  
- Industrial Temperature: ±500 µV (max.)  
- Extended Temperature: ±250 µV (max.)  
• Mid-Supply V  
: MCP6021 and MCP6023  
REF  
• Low Supply Current: 1 mA (typ.)  
Total Harmonic Distortion: 0.00053% (typ., G = 1)  
• Unity Gain Stable  
• Power Supply Range: 2.5V to 5.5V  
Temperature Range:  
- Industrial: -40°C to +85°C  
- Extended: -40°C to +125°C  
The MCP6021/2/3/4 family is available in the Industrial  
and Extended temperature ranges. It has a power  
supply range of 2.5V to 5.5V.  
Typical Applications  
• Automotive  
• Driving A/D Converters  
• Multi-Pole Active Filters  
• Barcode Scanners  
• Audio Processing  
• Communications  
• DAC Buffer  
Test Equipment  
• Medical Instrumentation  
Available Tools  
• SPICE Macro Model (at www.microchip.com)  
®
• FilterLab software (at www.microchip.com)  
PACKAGE TYPES  
MCP6023  
MCP6024  
MCP6021  
MCP6022  
PDIP SOIC, TSSOP  
PDIP SOIC, TSSOP  
PDIP SOIC, TSSOP  
PDIP SOIC, TSSOP  
NC  
V
V
V
V
V
V
V
V
V
V
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
CS  
V
1
2
3
4
8
7
6
5
OUTA  
OUTD  
V
V
V
NC  
V
V
NC  
1
2
3
4
1
2
3
4
8
7
6
5
8
7
6
5
OUTA  
DD  
V –  
+
IN  
INA  
IND  
+
V
V
V
DD  
V –  
INA  
DD  
OUTB  
IN  
V +  
+
V
V
IN  
INA  
IND  
V
V
+
V +  
OUT  
REF  
INA  
OUT  
REF  
INB  
IN  
V
V
SS  
DD  
SS  
V
V
SS  
INB  
SS  
V
V
+
+
INB  
INC  
INB  
INC  
V
8
OUTB  
OUTC  
2003 Microchip Technology Inc.  
DS21685B-page 1  
MCP6021/2/3/4  
Pin Function Table  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Name  
Function  
VIN+, VINA+, VINB+, VINC+, VIND  
+
Non-inverting Inputs  
Inverting Inputs  
Absolute Maximum Ratings †  
VIN–, VINA–, VINB–, VINC–, VIND  
VDD - VSS .........................................................................7.0V  
All Inputs and Outputs..................... VSS - 0.3V to VDD + 0.3V  
VDD  
VSS  
CS  
Positive Power Supply  
Negative Power Supply  
Chip Select  
Difference Input Voltage ....................................... |VDD - VSS  
|
Output Short Circuit Current ..................................continuous  
Current at Input Pins ....................................................±2 mA  
Current at Output and Supply Pins ............................±30 mA  
Storage Temperature ....................................-65°C to +150°C  
Junction Temperature..................................................+150°C  
ESD Protection on all pins (HBM/MM) ................ ≥ 2 kV / 200V  
VREF  
Reference Voltage  
Outputs  
VOUT, VOUTA, VOUTB, VOUTC  
VOUTD  
,
NC  
No Internal Connection  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied. Expo-  
sure to maximum rating conditions for extended periods may  
affect device reliability.  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND,  
A
DD  
SS  
V
= V /2, V  
V /2 and R = 10 kto V /2.  
DD L DD  
CM  
DD  
OUT  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Offset  
Input Offset Voltage:  
Industrial Temperature Parts  
Extended Temperature Parts  
Extended Temperature Parts  
VOS  
VOS  
VOS  
-500  
-250  
-2.5  
+500  
+250  
+2.5  
µV  
µV  
mV  
VCM = 0V  
VCM = 0V, VDD = 5.0V  
VCM = 0V, VDD = 5.0V  
TA = -40°C to +125°C  
Input Offset Voltage Temperature Drift VOS/TA  
74  
±3.5  
90  
µV/°C TA = -40°C to +125°C  
Power Supply Rejection Ratio  
Input Current and Impedance  
Input Bias Current  
Industrial Temperature Parts  
Extended Temperature Parts  
Input Offset Current  
PSRR  
dB  
VCM = 0V  
IB  
IB  
IB  
IOS  
ZCM  
ZDIFF  
1
30  
640  
150  
5,000  
pA  
pA  
TA = +85°C  
pA  
TA = +125°C  
±1  
pA  
||pF  
||pF  
Common-Mode Input Impedance  
Differential Input Impedance  
Common-Mode  
1013||6  
1013||3  
Common-Mode Input Range  
Common-Mode Rejection Ratio  
VCMR  
CMRR  
CMRR  
CMRR  
VSS-0.3  
74  
70  
90  
85  
90  
VDD+0.3  
V
dB  
dB  
dB  
VDD = 5V, VCM = -0.3V to 5.3V  
VDD = 5V, VCM = 3.0V to 5.3V  
VDD = 5V, VCM = -0.3V to 3.0V  
74  
Voltage Reference (MCP6021 and MCP6023 only)  
VREF Accuracy (VREF - VDD/2)  
VREF Temperature Drift  
VREF  
VREF/T  
A
-50  
±100  
+50  
mV  
µV/°C TA = -40°C to +125°C  
Open Loop Gain  
DC Open Loop Gain (Large Signal)  
AOL  
90  
110  
dB  
VCM = 0V,  
V
OUT = VSS+0.3V to VDD-0.3V  
DS21685B-page 2  
2003 Microchip Technology Inc.  
MCP6021/2/3/4  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND,  
A
DD  
SS  
V
= V /2, V  
V /2 and R = 10 kto V /2.  
DD L DD  
CM  
DD  
OUT  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
0.5V output overdrive  
Output  
Maximum Output Voltage Swing  
Output Short Circuit Current  
Power Supply  
VOL, VOH  
ISC  
VSS+15  
VDD-20  
mV  
mA  
±30  
Supply Voltage  
Quiescent Current per Amplifier  
VS  
IQ  
2.5  
0.5  
1.0  
5.5  
1.35  
V
mA  
IO = 0  
AC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, TA = 25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kto VDD/2 and CL = 60 pF.  
Parameters  
AC Response  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Gain Bandwidth Product  
Phase Margin at Unity-Gain  
Settling Time, 0.2%  
Slew Rate  
GBWP  
PM  
tSETTLE  
SR  
10  
65  
250  
7.0  
MHz  
°
ns  
G = 1  
G = 1, VOUT = 100 mVp-p  
V/µs  
Total Harmonic Distortion Plus Noise  
f = 1 kHz, G = 1  
f = 1 kHz, G = 1, RL = 600@1 KHz THD+N  
f = 1 kHz, G = +1 V/V  
f = 1 kHz, G = +10 V/V  
f = 1 kHz, G = +100 V/V  
Noise  
THD+N  
0.00053  
0.00064  
0.0014  
0.0009  
0.005  
%
%
%
%
%
VOUT = 0.25V + 3.25V, BW = 22 kHz  
VOUT = 0.25V + 3.25V, BW = 22 kHz  
VOUT = 4VP-P, VDD = 5.0V, BW = 22 kHz  
VOUT = 4VP-P, VDD = 5.0V, BW = 22 kHz  
VOUT = 4VP-P, VDD = 5.0V, BW = 22 kHz  
THD+N  
THD+N  
THD+N  
Input Voltage Noise  
Input Voltage Noise Density  
Input Current Noise Density  
Eni  
eni  
ini  
2.9  
8.7  
3
µVp-p f = 0.1 Hz to 10 Hz  
nV/Hz f = 10 kHz  
fA/Hz f = 1 kHz  
MCP6023 CHIP SELECT (CS) CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, TA = 25°C, VDD = +2.5V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
RL = 10 kto VDD/2 and CL = 60 pF.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
DC Characteristics  
CS Logic Threshold, Low  
CS Input Current, Low  
CS Logic Threshold, High  
CS Input Current, High  
CS Input High, GND Current  
Amplifier Output Leakage  
Timing  
CS Low to Amplifier Output  
Turn-on Time  
CS High to Amplifier Output  
High-Z Turn-off Time  
Hysteresis  
VIL  
ICSL  
VIH  
ICSH  
ISS  
0
-1.0  
0.8VDD  
0.2VDD  
V
0.01  
µA  
V
CS = VSS  
VDD  
2.0  
0.01  
0.05  
0.01  
µA  
µA  
µA  
CS = VDD  
CS = VDD  
CS = VDD  
2.0  
tON  
tOFF  
2
10  
µs  
µs  
V
G = 1, VIN = VSS  
CS = 0.2VDD to VOUT = 0.45VDD time  
,
0.01  
0.6  
G = 1, VIN = VSS,  
CS = 0.8VDD to VOUT = 0.05VDD time  
Internal Switch  
VHYST  
2003 Microchip Technology Inc.  
DS21685B-page 3  
MCP6021/2/3/4  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +2.5V to +5.5V and VSS = GND.  
Parameters  
Temperature Ranges  
Symbol  
Min  
Typ  
Max  
Units  
Conditions  
Industrial Temperature Range  
Extended Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-TSSOP  
Thermal Resistance, 14L-PDIP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
TA  
TA  
TA  
TA  
-40  
-40  
-40  
-65  
+85  
°C  
°C  
°C  
°C  
+125  
+125  
+150  
Note 1  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
85  
163  
124  
70  
120  
100  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Note 1: The industrial temperature devices operate over this extended temperature range, but with reduced  
performance. In any case, the internal junction temperature (T ) must not exceed the absolute maximum  
J
specification of 150°C.  
CS  
t
t
ON  
OFF  
Amplifier On  
Hi-Z  
Hi-Z  
V
OUT  
50 nA (typ.)  
50 nA (typ.)  
10 nA (typ.)  
1 mA (typ.)  
10 nA (typ.)  
I
SS  
I
CS  
10 nA (typ.)  
FIGURE 1-1:  
Timing diagram for the CS  
pin on the MCP6023.  
DS21685B-page 4  
2003 Microchip Technology Inc.  
MCP6021/2/3/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V /2, R = 10 kto V /2,  
DD L DD  
A
DD  
SS  
CM  
V
V /2 and C = 60 pF.  
DD L  
OUT  
12%  
16%  
14%  
12%  
10%  
8%  
6%  
4%  
2%  
0%  
1192 Samples  
TA = -40°C to +85°C  
I-Temp  
Parts  
1192 Samples  
TA = +25°C  
11%  
10%  
9%  
8%  
7%  
6%  
5%  
4%  
3%  
2%  
1%  
0%  
I-Temp  
Parts  
Input Offset Voltage (µV)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-1:  
Input Offset Voltage,  
FIGURE 2-4:  
Input Offset Voltage Drift,  
(Industrial Temperature Parts).  
(Industrial Temperature Parts).  
26%  
24%  
438 Samples  
VCM = 0V  
A = -40°C to +125°C  
E-Temp  
Parts  
24%  
22%  
20%  
18%  
16%  
14%  
12%  
10%  
8%  
438 Samples  
VDD = 5.0V  
22%  
20%  
18%  
16%  
14%  
12%  
10%  
8%  
E-Temp  
Parts  
T
V
CM = 0V  
T
A = +25°C  
6%  
6%  
4%  
4%  
2%  
2%  
0%  
0%  
Input Offset Voltage (µV)  
Input Offset Voltage Drift (µV/°C)  
FIGURE 2-2:  
Input Offset Voltage,  
FIGURE 2-5:  
Input Offset Voltage Drift,  
(Extended Temperature Parts).  
(Extended Temperature Parts).  
500  
500  
VDD = 5.5V  
-40°C  
+25°C  
+85°C  
+125°C  
VDD = 2.5V  
400  
400  
-40°C  
+25°C  
+85°C  
+125°C  
300  
200  
100  
0
300  
200  
100  
0
-100  
-200  
-300  
-400  
-500  
-100  
-200  
-300  
-400  
-500  
-0.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Common Mode Input Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-3:  
Input Offset Voltage vs.  
FIGURE 2-6:  
Input Offset Voltage vs.  
Common Mode Input Voltage with V = 2.5V.  
Common Mode Input Voltage with V = 5.5V.  
DD  
DD  
2003 Microchip Technology Inc.  
DS21685B-page 5  
MCP6021/2/3/4  
Note: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V /2, R = 10 kto V /2,  
DD L DD  
A
DD  
SS  
CM  
V
V /2 and C = 60 pF.  
DD L  
OUT  
200  
150  
100  
50  
100  
VCM = VDD/2  
50  
0
VDD = 5.5V  
VDD = 2.5V  
-50  
0
-100  
-150  
-200  
-250  
-300  
-50  
-100  
-150  
-200  
VDD = 5.0V  
VCM = 0V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature (°C)  
FIGURE 2-7:  
Input Offset Voltage vs.  
FIGURE 2-10:  
Input Offset Voltage vs.  
Temperature.  
Output Voltage.  
16  
1,000  
100  
10  
f = 1 kHz  
VDD = 5.0V  
14  
12  
10  
8
6
4
2
0
1.E-01  
1.E+00  
1.E+01  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
1
0.1  
1
10  
100  
1k  
10k 100k 1M  
Frequency (Hz)  
Common Mode Input Voltage (V)  
FIGURE 2-8:  
Input Noise Voltage Density  
FIGURE 2-11:  
Input Noise Voltage Density  
vs. Frequency.  
vs. Common Mode Input Voltage.  
100  
90  
80  
70  
60  
50  
40  
30  
110  
105  
PSRR+  
PSRR-  
CMRR  
100  
95  
90  
PSRR (VCM = 0V)  
85  
CMRR  
80  
75  
70  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
20  
100  
1k  
10k  
100k  
1M  
-50  
-25  
0
25  
50  
75  
100  
125  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-9:  
Common Mode, Power  
FIGURE 2-12:  
Common Mode, Power  
Supply Rejection Ratios vs. Frequency.  
Supply Rejection Ratios vs. Temperature.  
DS21685B-page 6  
2003 Microchip Technology Inc.  
MCP6021/2/3/4  
Note: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V /2, R = 10 kto V /2,  
DD L DD  
A
DD  
SS  
CM  
V
V /2 and C = 60 pF.  
OUT  
DD  
10,000  
1,000  
100  
L
10,000  
1,000  
100  
10  
IB, TA = +125°C  
VDD = 5.5V  
VCM = VDD  
VDD = 5.5V  
IOS, TA = +125°C  
IB, TA = +85°C  
IB  
IOS  
10  
IOS, TA = +85°C  
1
1
25 35 45 55 65 75 85 95 105 115 125  
Ambient Temperature (°C)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Common Mode Input Voltage (V)  
FIGURE 2-13:  
Input Bias, Offset Currents  
FIGURE 2-16:  
Input Bias, Offset Currents  
vs. Common Mode Input Voltage.  
vs. Temperature.  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.2  
1.1  
VDD = 5.5V  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VDD = 2.5V  
+125°C  
+85°C  
+25°C  
-40°C  
VCM = VDD - 0.5V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature (°C)  
FIGURE 2-14:  
Quiescent Current vs.  
FIGURE 2-17:  
Quiescent Current vs.  
Supply Voltage.  
Temperature.  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
35  
30  
25  
20  
15  
10  
5
-15  
-30  
-45  
-60  
-75  
-90  
-105  
-120  
-135  
-150  
-165  
-180  
-195  
-210  
Phase  
+125°C  
+85°C  
+25°C  
-40°C  
Gain  
-10  
-20  
0
1.E+00  
1.E+01  
1.E+02  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
1.E+07  
1.E+08  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Supply Voltage (V)  
1
10 100 1k 10k 100k 1M 10M100M  
Frequency (Hz)  
FIGURE 2-15:  
vs. Supply Voltage.  
Output Short-Circuit Current  
FIGURE 2-18:  
Open-Loop Gain, Phase vs.  
Frequency.  
2003 Microchip Technology Inc.  
DS21685B-page 7  
MCP6021/2/3/4  
Note: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V /2, R = 10 kto V /2,  
DD L DD  
A
DD  
SS  
CM  
V
V /2 and C = 60 pF.  
DD L  
OUT  
130  
120  
110  
100  
90  
120  
VDD = 5.5V  
115  
110  
105  
100  
95  
VDD = 5.5V  
VDD = 2.5V  
VDD = 2.5V  
90  
1.E+02  
1E+03  
1.E+04  
1E+05  
80  
-50  
-25  
0
25  
50  
75  
100  
125  
100  
1k  
10k  
100k  
Load Resistance (:)  
Ambient Temperature (°C)  
FIGURE 2-19:  
DC Open-Loop Gain vs.  
FIGURE 2-22:  
DC Open-Loop Gain vs.  
Load Resistance.  
Temperature.  
14  
105  
90  
120  
VCM = VDD/2  
Gain Bandwidth Product  
12  
10  
8
110  
100  
90  
VDD = 5.5V  
75  
60  
Phase Margin, G = +1  
45  
6
VDD = 2.5V  
4
30  
15  
0
80  
2
VDD = 5.0V  
70  
0
0.00  
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Common Mode Input Voltage (V)  
Output Voltage Headroom (V);  
VDD - VOH or VOL - VSS  
FIGURE 2-20:  
Small Signal DC Open-Loop  
FIGURE 2-23:  
Gain Bandwidth Product,  
Gain vs. Output Voltage Headroom.  
Phase Margin vs. Common Mode Input Voltage.  
10  
9
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
14  
12  
10  
8
105  
90  
75  
60  
45  
30  
15  
0
Gain Bandwidth Product  
8
7
6
Phase Margin, G = +1  
5
4
3
2
1
0
GBWP, VDD = 5.5V  
GBWP, VDD = 2.5V  
6
PM,  
PM,  
V
DD = 2.5V  
4
VDD = 5.5V  
VDD = 5.0V  
VCM = VDD/2  
2
0
-50 -25  
0
25  
50  
75 100 125  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Output Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-21:  
Gain Bandwidth Product,  
FIGURE 2-24:  
Gain Bandwidth Product,  
Phase Margin vs. Temperature.  
Phase Margin vs. Output Voltage.  
DS21685B-page 8  
2003 Microchip Technology Inc.  
MCP6021/2/3/4  
Note: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V /2, R = 10 kto V /2,  
DD L DD  
A
DD  
SS  
CM  
V
V /2 and C = 60 pF.  
DD L  
OUT  
11  
10  
9
10  
Falling, VDD = 5.5V  
Rising, VDD = 5.5V  
VDD = 5.5V  
VDD = 2.5V  
8
7
6
1
5
Falling, VDD = 2.5V  
Rising, VDD = 2.5V  
4
3
2
1
0
1.E+04  
1.E+05  
1.E+06  
1.E+07  
0.1  
-50  
-25  
0
25  
50  
75  
100  
125  
10k  
100k  
1M  
10M  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-25:  
Slew Rate vs. Temperature.  
FIGURE 2-28:  
Maximum Output Voltage  
Swing vs. Frequency.  
0.1000%  
0.1000%  
f = 1 kHz  
BWMeas = 22 kHz  
VDD = 5.0V  
G = +100 V/V  
G = +10 V/V  
G = +1 V/V  
0.0100%  
0.0010%  
0.0001%  
0.0100% G = +100 V/V  
G = +10 V/V  
0.0010%  
0.0001%  
f = 20 kHz  
BWMeas = 80 kHz  
VDD = 5.0V  
G = +1 V/V  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Output Voltage (VP-P  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
Output Voltage (VP-P  
)
)
FIGURE 2-26:  
Total Harmonic Distortion  
FIGURE 2-29:  
Total Harmonic Distortion  
plus Noise vs. Output Voltage with f = 1 kHz.  
plus Noise vs. Output Voltage with f = 20 kHz.  
135  
130  
125  
120  
115  
6
VIN  
VDD = 5V  
5
4
G = +1 V/V  
VOUT  
3
2
1
110  
0
G = +1 V/V  
1.E+03  
1.E+04  
1.E+05  
1.E+06  
105  
0.0E+00  
1.0E-05  
2.0E-05  
3.0E-05  
4.0E-05  
5.0E-05  
6.0E-05  
7.0E-05  
8.0E-05  
9.0E-05  
1.0E-04  
1k  
10k  
100k  
1M  
-1  
Time (10 µs/div)  
Frequency (Hz)  
FIGURE 2-27:  
The MCP6021/2/3/4 family  
FIGURE 2-30:  
Channel-to-Channel  
shows no phase reversal under overdrive.  
Separation vs. Frequency (MCP6022 and  
MCP6024 only).  
2003 Microchip Technology Inc.  
DS21685B-page 9  
MCP6021/2/3/4  
Note: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V /2, R = 10 kto V /2,  
DD L DD  
A
DD  
SS  
CM  
V
V /2 and C = 60 pF.  
OUT  
DD  
L
1,000  
10  
VOL - VSS  
9
8
7
6
5
4
3
2
1
0
100  
10  
1
VDD - VOH  
VOL - VSS  
VDD - VOH  
0.01  
0.1  
1
10  
-50  
-25  
0
25  
50  
75  
100 125  
Output Current Magnitude (mA)  
Ambient Temperature (°C)  
FIGURE 2-31:  
Output Voltage Headroom  
FIGURE 2-34:  
Output Voltage Headroom  
vs. Output Current.  
vs. Temperature.  
6.E-02  
5.E-02  
4.E-02  
3.E-02  
2.E-02  
1.E-02  
0.E+00  
-1.E-02  
-2.E-02  
-3.E-02  
-4.E-02  
-5.E-02  
-6.E-02  
6.E-02  
5.E-02  
4.E-02  
3.E-02  
2.E-02  
1.E-02  
0.E+00  
-1.E-02  
-2.E-02  
-3.E-02  
-4.E-02  
-5.E-02  
-6.E-02  
G = +1 V/V  
G = -1 V/V  
RF = 1 k:  
0.E+00  
2.E-07  
4.E-07  
6.E-07  
8.E-07  
1.E-06  
1.E-06  
1.E-06  
2.E-06  
2.E-06  
2.E-06  
0.E+00  
2.E-07  
4.E-07  
6.E-07  
8.E-07  
1.E-06  
1.E-06  
1.E-06  
2.E-06  
2.E-06  
2.E-06  
Time (200 ns/div)  
Time (200 ns/div)  
FIGURE 2-32:  
Small-Signal Non-inverting  
FIGURE 2-35:  
Small-Signal Inverting Pulse  
Pulse Response.  
Response.  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
G = -1 V/V  
G = +1 V/V  
RF = 1 k:  
0.E+00  
5.E-07  
1.E-06  
2.E-06  
2.E-06  
3.E-06  
3.E-06  
4.E-06  
4.E-06  
5.E-06  
5.E-06  
0.E+00  
5.E-07  
1.E-06  
2.E-06  
2.E-06  
3.E-06  
3.E-06  
4.E-06  
4.E-06  
5.E-06  
5.E-06  
0.0  
0.0  
Time (500 ns/div)  
Time (500 ns/div)  
FIGURE 2-33:  
Large-Signal Non-inverting  
FIGURE 2-36:  
Large-Signal Inverting Pulse  
Pulse Response.  
Response.  
DS21685B-page 10  
2003 Microchip Technology Inc.  
MCP6021/2/3/4  
Note: Unless otherwise indicated, T = +25°C, V = +2.5V to +5.5V, V = GND, V  
= V /2, R = 10 kto V /2,  
DD L DD  
A
DD  
SS  
CM  
V
V /2 and C = 60 pF.  
OUT  
DD  
L
50  
40  
50  
Representative Part  
40  
30  
30  
20  
20  
VDD = 5.5V  
VDD = 2.5V  
10  
10  
0
0
-10  
-20  
-30  
-40  
-50  
-10  
-20  
-30  
-40  
-50  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature (°C)  
FIGURE 2-37:  
V
Accuracy vs. Supply  
FIGURE 2-40:  
V
Accuracy vs.  
REF  
REF  
Voltage (MCP6021 and MCP6023 only).  
Temperature (MCP6021 and MCP6023 only).  
1.6  
1.6  
Op Amp  
turns on here  
Op Amp  
shuts off here  
Op Amp  
turns on here  
Op Amp  
shuts off here  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
Hysteresis  
CS swept  
high to low  
CS swept  
high to low  
Hysteresis  
CS swept  
low to high  
VDD = 5.5V  
G = +1 V/V  
VDD = 2.5V  
G = +1 V/V  
CS swept  
low to high  
0.2 VIN = 2.75V  
0.2 VIN = 1.25V  
0.0  
0.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Chip Select Voltage (V)  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
Chip Select Voltage (V)  
FIGURE 2-38:  
Chip Select (CS) Hysteresis  
FIGURE 2-41:  
Chip Select (CS) Hysteresis  
(MCP6023 only) with V = 2.5V.  
(MCP6023 only) with V = 5.5V.  
DD  
DD  
5.5  
5.0  
VDD = 5.0V  
G = +1 V/V  
VIN = VSS  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
-0.5  
CS Voltage  
VOUT  
Output  
on  
Output  
on  
Output High-Z  
0.0E+00  
5.0E-06  
1.0E-05  
1.5E-05  
2.0E-05  
2.5E-05  
3.0E-05  
3.5E-05  
Time (5 µs/div)  
FIGURE 2-39:  
Chip Select (CS) to  
Amplifier Output Response Time (MCP6023  
only).  
2003 Microchip Technology Inc.  
DS21685B-page 11  
MCP6021/2/3/4  
3.3  
MCP6023 Chip Select (CS)  
3.0  
APPLICATIONS INFORMATION  
The MCP6023 is a single amplifier with chip select  
The MCP6021/2/3/4 family of operational amplifiers  
are fabricated on Microchip’s state-of-the-art CMOS  
process. They are unity-gain stable and suitable for a  
wide range of general-purpose applications.  
(CS). When CS is high, the supply current is less than  
10 nA (typ) and travels from the CS pin to V , with the  
SS  
amplifier output being put into a high-impedance state.  
When CS is low, the amplifier is enabled. If CS is left  
floating, the amplifier will not operate properly.  
Figure 1-1 and Figure 2-39 show the output voltage  
and supply current response to a CS pulse.  
3.1  
Rail-to-Rail Input  
The MCP6021/2/3/4 amplifier family is designed to not  
exhibit phase inversion when the input pins exceed the  
supply voltages. Figure 2-27 shows an input voltage  
exceeding both supplies with no resulting phase  
inversion.  
3.4  
MCP6021 and MCP6023 Reference  
Voltage  
The single op amps (MCP6021 and MCP6023) have  
The input stage of the MCP6021/2/3/4 family of devices  
uses two differential input stages in parallel; one  
an internal mid-supply reference voltage connected to  
the V  
pin (see Figure 3-2). The MCP6021 has CS  
REF  
operates at low common-mode input voltage (V ),  
CM  
internally tied to V , which always keeps the op amp  
SS  
while the other operates at high V . With this topology,  
CM  
on and always provides a mid-supply reference. With  
the MCP6023, taking the CS pin high conserves power  
the device operates with V  
up to 0.3V past either  
+ 0.3V) at 25°C. The  
DD  
CM  
supply rail (V - 0.3V to V  
SS  
by shutting down both the op amp and the V  
REF  
amplifier input behaves linearly as long as V  
is kept  
CM  
circuitry. Taking the CS pin low turns on the op amp and  
circuitry.  
within the specified V  
limits. The input offset voltage  
CMR  
CM  
V
REF  
is measured at both V  
= V - 0.3V and V + 0.3V  
SS DD  
to ensure proper operation.  
Input voltages that exceed the input voltage range  
V
DD  
(V  
) can cause excessive current to flow in or out of  
CMR  
the input pins. Current beyond ±2 mA introduces  
possible reliability problems. Thus, applications that  
exceed this rating must externally limit the input current  
50 kΩ  
50 kΩ  
V
REF  
with an input resistor (R ), as shown in Figure 3-1.  
IN  
CS  
MCP602X  
V
OUT  
R
IN  
V
SS  
V
IN  
(CS tied internally to V for MCP6021)  
SS  
FIGURE 3-2:  
Simplified internal V  
REF  
(Maximum expected V ) - V  
IN  
DD  
R
R
circuit (MCP6021 and MCP6023 only).  
IN  
IN  
2 mA  
See Figure 3-3 for a non-inverting gain circuit using the  
internal mid-supply reference. The DC-blocking  
V
- (Minimum expected V )  
SS  
IN  
2 mA  
limits the current flow  
capacitor (C ) also reduces noise by coupling the op  
B
amp input to the source.  
FIGURE 3-1:  
into an input pin.  
R
IN  
R
R
F
G
3.2 Rail-to-Rail Output  
The Maximum Output Voltage Swing is the maximum  
V
swing possible under  
a particular output load.  
OUT  
C
According to the specification table, the output can  
reach within 20 mV of either supply rail when  
V
B
REF  
V
IN  
R = 10 k. See Figure 2-31 and Figure 2-34 for more  
L
information concerning typical performance.  
FIGURE 3-3:  
using V  
Non-inverting gain circuit  
(MCP6021 and MCP6023 only).  
REF  
DS21685B-page 12  
2003 Microchip Technology Inc.  
MCP6021/2/3/4  
To use the internal mid-supply reference for an  
inverting gain circuit, connect the V pin to the non-  
1,000  
100  
10  
REF  
GN t +1  
inverting input, as shown in Figure 3-4. The capacitor  
C helps reduce power supply noise on the output.  
B
R
R
G
F
V
V
OUT  
IN  
V
REF  
10  
100  
1,000  
10,000  
Normalized Capacitance; CL/GN (pF)  
C
B
FIGURE 3-6:  
Recommended R  
values  
ISO  
for capacitive loads.  
After selecting R  
for your circuit, double-check the  
FIGURE 3-4:  
Inverting gain circuit using  
ISO  
resulting frequency response peaking and step  
response overshoot. Evaluation on the bench and  
simulations with the MCP6021/2/3/4 Spice macro  
V
(MCP6021 and MCP6023 only).  
REF  
If you don’t need the mid-supply reference, leave the  
pin open.  
V
REF  
model are very helpful. Modify R ’s value until the  
response is reasonable.  
ISO  
3.5  
Capacitive Loads  
3.6  
Supply Bypass  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases, and the closed loop bandwidth is  
reduced. This produces gain-peaking in the frequency  
response, with overshoot and ringing in the step  
response.  
When driving large capacitive loads with these op  
amps (e.g., > 60 pF when G = +1), a small series  
resistor at the output (R  
With this family of operational amplifiers, the power  
supply pin (V for single supply) should have a local  
DD  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
for good, high-frequency performance. It also needs a  
bulk capacitor (i.e., 1 µF or larger) within 100 mm to  
provide large, slow currents. This bulk capacitor can be  
shared with other parts.  
in Figure 3-5) improves the  
ISO  
3.7  
PCB Surface Leakage  
feedback loop’s phase margin (stability) by making the  
load resistive at higher frequencies. The bandwidth will  
be generally lower than the bandwidth with no  
capacitive load.  
In applications where low input bias current is critical,  
PCB (printed circuit board) surface-leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
12  
V
between nearby traces is 10 . A 5V difference would  
IN  
R
ISO  
cause 5 pA of current to flow, which is greater than the  
MCP6021/2/3/4 family’s bias current at 25°C (1 pA,  
typ).  
V
MCP602X  
OUT  
C
L
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in Figure 3-7.  
FIGURE 3-5:  
Output resistor R  
ISO  
stabilizes large capacitive loads.  
Figure 3-6 gives recommended  
R
values for  
Guard Ring  
V – V +  
IN IN  
ISO  
different capacitive laods and gains. The x-axis is the  
normalized load capacitance (C /G ), where G is the  
L
N
N
circuit’s noise gain. For non-inverting gains, G and the  
N
gain are equal. For inverting gains, G is 1+|Gain| (e.g.,  
N
-1 V/V gives G = +2 V/V).  
N
FIGURE 3-7:  
Example guard ring layout.  
2003 Microchip Technology Inc.  
DS21685B-page 13  
MCP6021/2/3/4  
1. Inverting (Figure 3-7) and Transimpedance  
Gain Amplifiers (convert current to voltage, such  
as photo detectors).  
3.9  
Typical Applications  
3.9.1  
A/D CONVERTER DRIVER AND  
ANTI-ALIASING FILTER  
a. Connect the guard ring to the non-inverting  
input pin (V +). This biases the guard ring  
Figure 3-8 shows a third-order Butterworth filter that  
can be used as an A/D converter driver. It has a band-  
width of 20 kHz and a reasonable step response. It will  
work well for conversion rates of 80 ksps and greater (it  
has 29 dB attenuation at 60 kHz).  
IN  
to the same reference voltage as the op  
amp’s input (e.g., V /2 or ground).  
DD  
b. Connect the inverting pin (V –) to the input  
IN  
with a wire that does not touch the PCB  
surface.  
2. Non-inverting Gain and Unity-Gain Buffer  
1.0 nF  
a. Connect the guard ring to the inverting input  
MCP602X  
14.7 k33.2 kΩ  
8.45 kΩ  
pin (V –); this biases the guard ring to the  
IN  
common mode input voltage.  
100 pF  
1.2 nF  
b. Connect the non-inverting pin (V +) to the  
IN  
input with a wire that does not touch the  
PCB surface.  
FIGURE 3-8:  
A/D converter driver and  
anti-aliasing filter with a 20 kHz cutoff frequency.  
3.8  
High-Speed PCB Layout  
This filter can easily be adjusted to another bandwidth  
by multiplying all capacitors by the same factor.  
Alternatively, the resistors can all be scaled by another  
common factor to adjust the bandwidth.  
Due to their speed capabilities, a little extra care in the  
PCB (Printed Circuit Board) layout can make a  
significant difference in the performance of these op  
amps. Good PC board layout techniques will help you  
achieve the performance shown in the Electrical  
Characteristics and Typical Performance Curves, while  
also helping you minimize EMC (Electro-Magnetic  
Compatibility) issues.  
Use a solid ground plane and connect the bypass local  
capacitor(s) to this plane with minimal length traces.  
This cuts down inductive and capacitive crosstalk.  
Separate digital from analog, low-speed from high-  
speed and low power from high power. This will reduce  
interference.  
Keep sensitive traces short and straight. Separating  
them from interfering components and traces. This is  
especially important for high-frequency (low rise-time)  
signals.  
Sometimes it helps to place guard traces next to victim  
traces. They should be on both sides of the victim  
trace, and as close as possible. Connect the guard  
trace to ground plane at both ends, and in the middle  
for long traces.  
3.9.2  
OPTICAL DETECTOR AMPLIFIER  
Figure 3-9 shows the MCP6021 op amp used as a  
transimpedance amplifier in a photo detector circuit.  
The photo detector looks like a capacitive current  
source, so the 100 kresistor gains the input signal to  
a reasonable level. The 5.6 pF capacitor stabilizes this  
circuit and produces a flat frequency response with a  
bandwidth of 370 kHz.  
5.6 pF  
Photo  
Detector  
100 kΩ  
100 pF  
MCP6021  
V
/2  
DD  
Use coax cables (or low inductance wiring) to route  
signal and power to and from the PCB.  
FIGURE 3-9:  
Transimpedance amplifier  
for an optical detector.  
DS21685B-page 14  
2003 Microchip Technology Inc.  
MCP6021/2/3/4  
4.0  
DESIGN TOOLS  
Microchip provides the basic design tools needed for  
the MCP6021/2/3/4 family of op amps.  
4.1  
SPICE Macro Model  
The latest SPICE macro model for the MCP6021/2/3/4  
op amps is available on our web site  
(www.microchip.com). This model is intended as an  
initial design tool that works well in the op amp’s linear  
region of operation at room temperature. See the  
model file for information on its capabilities.  
Bench testing is a very important part of any design and  
cannot be replaced with simulations. Also, simulation  
results using this macro model need to be validated by  
comparing them to the data sheet specs and plots.  
®
4.2  
FilterLab Software  
®
The FilterLab software is an innovative tool that  
simplifies analog active filter (using op amps) design.  
Available at no cost from our web site (at www.micro-  
chip.com), the FilterLab software active filter design  
tool provides full schematic diagrams of the filter circuit  
with component values. It also outputs the filter circuit  
in SPICE format, which can be used with the Macro  
Model to simulate actual filter performance.  
2003 Microchip Technology Inc.  
DS21685B-page 15  
MCP6021/2/3/4  
5.0  
PACKAGING INFORMATION  
Package Marking Information  
8-Lead PDIP (300 mil)  
5.1  
Example:  
MCP6021  
XXXXXXXX  
XXXXXNNN  
I/P256  
0331  
YYWW  
8-Lead SOIC (150 mil)  
Example:  
XXXXXXXX  
XXXXYYWW  
MCP6021  
I/SN0331  
NNN  
256  
Example:  
8-Lead TSSOP  
6021  
E331  
256  
XXXX  
YWW  
NNN  
Legend: XX...X Customer specific information*  
Y
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
YY  
WW  
NNN  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard device marking consists of Microchip part number, year code, week code, and traceability  
code.  
DS21685B-page 16  
2003 Microchip Technology Inc.  
MCP6021/2/3/4  
Package Marking Information (Continued)  
14-Lead PDIP (300 mil) (MCP6024)  
Example:  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
MCP6024-I/P  
XXXXXXXXXXXXXX  
YYWWNNN  
0331256  
14-Lead SOIC (150 mil) (MCP6024)  
Example:  
MCP6024ISL  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
0331256  
Example:  
14-Lead TSSOP (MCP6024)  
XXXXXX  
YYWW  
6024E  
0331  
NNN  
256  
2003 Microchip Technology Inc.  
DS21685B-page 17  
MCP6021/2/3/4  
8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
β
B1  
B
p
eB  
Units  
Dimension Limits  
INCHES*  
NOM  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
A
A2  
A1  
E
E1  
D
L
c
B1  
B
Number of Pins  
Pitch  
Top to Seating Plane  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
8
.100  
.155  
.130  
2.54  
3.94  
3.30  
.140  
.170  
.145  
3.56  
2.92  
4.32  
3.68  
.115  
.015  
.300  
.240  
.360  
.125  
.008  
.045  
.014  
.310  
5
0.38  
7.62  
6.10  
9.14  
3.18  
0.20  
1.14  
0.36  
7.87  
5
.313  
.250  
.373  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.385  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
9.46  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
9.78  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-018  
DS21685B-page 18  
2003 Microchip Technology Inc.  
MCP6021/2/3/4  
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
NOM  
MILLIMETERS  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
A
A2  
A1  
E
E1  
D
Number of Pins  
Pitch  
Overall Height  
8
8
.050  
.061  
.056  
.007  
.237  
.154  
.193  
.015  
.025  
4
1.27  
1.55  
1.42  
0.18  
6.02  
3.91  
4.90  
0.38  
0.62  
4
.053  
.069  
1.35  
1.75  
Molded Package Thickness  
Standoff  
.052  
.004  
.228  
.146  
.189  
.010  
.019  
0
.061  
.010  
.244  
.157  
.197  
.020  
.030  
8
1.32  
0.10  
5.79  
3.71  
4.80  
0.25  
0.48  
0
1.55  
0.25  
6.20  
3.99  
5.00  
0.51  
0.76  
8
§
Overall Width  
Molded Package Width  
Overall Length  
Chamfer Distance  
Foot Length  
Foot Angle  
h
L
φ
c
Lead Thickness  
Lead Width  
.008  
.013  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.33  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-057  
2003 Microchip Technology Inc.  
DS21685B-page 19  
MCP6021/2/3/4  
8-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)  
E
E1  
p
D
2
1
n
B
α
A
c
A1  
A2  
φ
β
L
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
Number of Pins  
Pitch  
Overall Height  
8
.026  
0.65  
A
.043  
1.10  
0.95  
0.15  
6.50  
4.50  
3.10  
0.70  
8
Molded Package Thickness  
Standoff  
A2  
A1  
E
E1  
D
.033  
.035  
.004  
.251  
.173  
.118  
.024  
4
.006  
.010  
5
.037  
.006  
.256  
.177  
.122  
.028  
8
.008  
.012  
10  
0.85  
0.05  
6.25  
4.30  
2.90  
0.50  
0
0.09  
0.19  
0
0.90  
0.10  
6.38  
4.40  
3.00  
0.60  
4
0.15  
0.25  
5
§
.002  
.246  
.169  
.114  
.020  
0
Overall Width  
Molded Package Width  
Molded Package Length  
Foot Length  
Foot Angle  
Lead Thickness  
Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
L
φ
c
.004  
.007  
0
0.20  
0.30  
10  
B
α
β
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.005” (0.127mm) per side.  
JEDEC Equivalent: MO-153  
Drawing No. C04-086  
DS21685B-page 20  
2003 Microchip Technology Inc.  
MCP6021/2/3/4  
14-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
B1  
β
eB  
p
B
Units  
Dimension Limits  
INCHES*  
NOM  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
A
A2  
A1  
E
E1  
D
L
c
B1  
B
Number of Pins  
Pitch  
Top to Seating Plane  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
14  
14  
.100  
.155  
.130  
2.54  
3.94  
3.30  
.140  
.170  
.145  
3.56  
4.32  
3.68  
.115  
.015  
.300  
.240  
.740  
.125  
.008  
.045  
.014  
.310  
5
2.92  
0.38  
7.62  
6.10  
18.80  
3.18  
0.20  
1.14  
0.36  
7.87  
5
.313  
.250  
.750  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.760  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
19.05  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
19.30  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-005  
2003 Microchip Technology Inc.  
DS21685B-page 21  
MCP6021/2/3/4  
14-Lead Plastic Small Outline (SL) – Narrow, 150 mil (SOIC)  
E
E1  
p
D
2
B
n
1
α
h
45°  
c
A2  
A
φ
A1  
L
β
Units  
Dimension Limits  
INCHES*  
NOM  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
A
A2  
A1  
E
E1  
D
Number of Pins  
Pitch  
Overall Height  
14  
.050  
.061  
.056  
.007  
.236  
.154  
.342  
.015  
.033  
4
1.27  
.053  
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
5.99  
3.90  
8.69  
0.38  
0.84  
4
1.75  
Molded Package Thickness  
.052  
.004  
.228  
.150  
.337  
.010  
.016  
0
.061  
.010  
.244  
.157  
.347  
.020  
.050  
8
1.55  
0.25  
6.20  
3.99  
8.81  
0.51  
1.27  
8
Standoff  
§
0.10  
5.79  
3.81  
8.56  
0.25  
0.41  
0
Overall Width  
Molded Package Width  
Overall Length  
Chamfer Distance  
Foot Length  
Foot Angle  
Lead Thickness  
Lead Width  
h
L
φ
c
.008  
.014  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.36  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
* Controlling Parameter  
§ Significant Characteristic  
0
12  
15  
0
12  
15  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-065  
DS21685B-page 22  
2003 Microchip Technology Inc.  
MCP6021/2/3/4  
14-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)  
E
E1  
p
D
2
1
n
B
α
A
c
φ
A1  
A2  
β
L
Units  
INCHES  
NOM  
MILLIMETERS*  
Dimension Limits  
MIN  
MAX  
MIN  
NOM  
14  
MAX  
n
p
Number of Pins  
Pitch  
Overall Height  
14  
.026  
0.65  
A
.043  
1.10  
0.95  
0.15  
6.50  
4.50  
5.10  
0.70  
8
Molded Package Thickness  
A2  
A1  
E
E1  
D
.033  
.002  
.246  
.169  
.193  
.020  
0
.004  
.007  
0
.035  
.004  
.251  
.173  
.197  
.024  
4
.006  
.010  
5
.037  
.006  
.256  
.177  
.201  
.028  
8
.008  
.012  
10  
0.85  
0.05  
6.25  
4.30  
4.90  
0.50  
0
0.09  
0.19  
0
0.90  
0.10  
6.38  
4.40  
5.00  
0.60  
4
0.15  
0.25  
5
Standoff  
§
Overall Width  
Molded Package Width  
Molded Package Length  
Foot Length  
Foot Angle  
Lead Thickness  
Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
L
φ
c
B
α
0.20  
0.30  
10  
β
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.005” (0.127mm) per side.  
JEDEC Equivalent: MO-153  
Drawing No. C04-087  
2003 Microchip Technology Inc.  
DS21685B-page 23  
MCP6021/2/3/4  
NOTES:  
DS21685B-page 24  
2003 Microchip Technology Inc.  
MCP6021/2/3/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
X
/XX  
a)  
b)  
c)  
MCP6021-I/P:  
Industrial temperature,  
PDIP package.  
Device  
Temperature  
Range  
Package  
MCP6021-E/P:  
Extended temperature,  
PDIP package.  
MCP6021-E/SN: Extended temperature,  
SOIC package.  
Device:  
MCP6021  
CMOS Single Op Amp  
MCP6021T CMOS Single Op Amp  
a)  
b)  
c)  
MCP6022-I/P:  
MCP6022-E/P:  
Industrial temperature,  
PDIP package.  
Extended temperature,  
PDIP package.  
(Tape and Reel for SOIC, TSSOP)  
CMOS Dual Op Amp  
MCP6022T CMOS Dual Op Amp  
(Tape and Reel for SOIC and TSSOP)  
MCP6022  
MCP6022T-E/ST: Tape and Reel,  
MCP6023  
CMOS Single Op Amp w/ CS Function  
Extended temperature,  
MCP6023T CMOS Single Op Amp w/ CS Function  
(Tape and Reel for SOIC and TSSOP)  
TSSOP package.  
MCP6024  
CMOS Quad Op Amp  
a)  
b)  
c)  
MCP6023-I/P:  
MCP6023-E/P:  
Industrial temperature,  
PDIP package.  
Extended temperature,  
PDIP package.  
MCP6024T CMOS Quad Op Amp  
(Tape and Reel for SOIC and TSSOP)  
MCP6023-E/SN: Extended temperature,  
SOIC package.  
Temperature Range:  
I
=
=
-40°C to +85°C  
E
-40×C to +125×C  
a)  
b)  
c)  
MCP6024-I/SL: Industrial temperature,  
SOIC package.  
Package:  
P
=
=
=
=
Plastic DIP (300 mil Body), 8-lead, 14-lead  
Plastic SOIC (150mil Body), 8-lead  
Plastic SOIC (150 mil Body), 14-lead  
Plastic TSSOP, 8-lead, 14-lead  
MCP6024-E/SL: Extended temperature,  
SOIC package.  
SN  
SL  
ST  
MCP6024T-E/ST: Tape and Reel,  
Extended temperature,  
TSSOP package.  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2003 Microchip Technology Inc.  
DS21685B-page 25  
MCP6021/2/3/4  
NOTES:  
DS21685B-page 26  
2003 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical com-  
ponents in life support systems is not authorized except with  
express written approval by Microchip. No licenses are con-  
veyed, implicitly or otherwise, under any intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE and PowerSmart are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
AmpLab, FilterLab, microID, MXDEV, MXLAB, PICMASTER,  
SEEVAL and The Embedded Control Solutions Company are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Application Maestro, dsPICDEM, dsPICDEM.net, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,  
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,  
PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo,  
PowerMate, PowerTool, rfLAB, rfPIC, Select Mode,  
SmartSensor, SmartShunt, SmartTel and Total Endurance are  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2003, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
®
PICmicro 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchip’s quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
2003 Microchip Technology Inc.  
DS21685B-page 27  
M
WORLDWIDE SALES AND SERVICE  
Korea  
AMERICAS  
ASIA/PACIFIC  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Australia  
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or  
82-2-558-5934  
Fax: 480-792-7277  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Singapore  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
200 Middle Road  
China - Beijing  
#07-02 Prime Centre  
Singapore, 188980  
Unit 915  
Atlanta  
Bei Hai Wan Tai Bldg.  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100  
Fax: 86-10-85282104  
3780 Mansell Road, Suite 130  
Alpharetta, GA 30022  
Tel: 770-640-0034  
Fax: 770-640-0307  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Taiwan  
Kaohsiung Branch  
30F - 1 No. 8  
Boston  
Min Chuan 2nd Road  
Kaohsiung 806, Taiwan  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
China - Chengdu  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848  
Fax: 978-692-3821  
Rm. 2401-2402, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Taiwan  
Chengdu 610016, China  
Tel: 86-28-86766200  
Taiwan Branch  
Chicago  
11F-3, No. 207  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Fax: 86-28-86766599  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
China - Fuzhou  
Tel: 630-285-0071  
Fax: 630-285-0075  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Dallas  
Fuzhou 350001, China  
Tel: 86-591-7503506  
Fax: 86-591-7503521  
EUROPE  
Austria  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423  
Fax: 972-818-2924  
Durisolstrasse 2  
China - Hong Kong SAR  
A-4600 Wels  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Austria  
Detroit  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
Denmark  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250  
Fax: 852-2401-3431  
Regus Business Centre  
Lautrup hoj 1-3  
China - Shanghai  
Fax: 248-538-2260  
Room 701, Bldg. B  
Ballerup DK-2750 Denmark  
Tel: 45-4420-9895 Fax: 45-4420-9910  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, IN 46902  
Tel: 765-864-8360  
Fax: 765-864-8387  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Tel: 86-21-6275-5700  
Fax: 86-21-6275-5060  
China - Shenzhen  
Los Angeles  
Rm. 1812, 18/F, Building A, United Plaza  
No. 5022 Binhe Road, Futian District  
Shenzhen 518033, China  
Tel: 86-755-82901380  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Germany  
Tel: 949-263-1888  
Steinheilstrasse 10  
D-85737 Ismaning, Germany  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Fax: 949-263-1338  
Fax: 86-755-8295-1393  
Phoenix  
China - Shunde  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966  
Fax: 480-792-4338  
Room 401, Hongjian Building  
No. 2 Fengxiangnan Road, Ronggui Town  
Shunde City, Guangdong 528303, China  
Tel: 86-765-8395507 Fax: 86-765-8395571  
Italy  
Via Quasimodo, 12  
20025 Legnano (MI)  
Milan, Italy  
China - Qingdao  
San Jose  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Netherlands  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950  
Rm. B505A, Fullhope Plaza,  
No. 12 Hong Kong Central Rd.  
Qingdao 266071, China  
Fax: 408-436-7955  
Tel: 86-532-5027355 Fax: 86-532-5027205  
P. A. De Biesbosch 14  
NL-5152 SC Drunen, Netherlands  
Tel: 31-416-690399  
India  
Toronto  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Japan  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699  
Fax: 31-416-690340  
United Kingdom  
505 Eskdale Road  
Fax: 905-673-6509  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Benex S-1 6F  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
07/28/03  
DS21685B-page 28  
2003 Microchip Technology Inc.  

相关型号:

MCP6022T-E/ST

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6022T-E/STVAO

Operational Amplifier, 2 Func, 2500uV Offset-Max, CMOS, PDSO8
MICROCHIP

MCP6022T-I/MS

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6022T-I/OT

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6022T-I/P

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6022T-I/SL

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6022T-I/SN

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6022T-I/SNVAO

Operational Amplifier, 2 Func, 2500uV Offset-Max, CMOS, PDSO8
MICROCHIP

MCP6022T-I/ST

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6023

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6023-E/MS

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP

MCP6023-E/OT

Rail-to-Rail Input/Output, 10 MHz Op Amps
MICROCHIP