MCP6002-E/MCVAO [MICROCHIP]

Operational Amplifier, 2 Func, 4500uV Offset-Max, CMOS, PDSO8;
MCP6002-E/MCVAO
型号: MCP6002-E/MCVAO
厂家: MICROCHIP    MICROCHIP
描述:

Operational Amplifier, 2 Func, 4500uV Offset-Max, CMOS, PDSO8

光电二极管
文件: 总42页 (文件大小:775K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6001/1R/1U/2/4  
1 MHz, Low-Power Op Amp  
Description  
Features  
• Available in SC-70-5 and SOT-23-5 packages  
• Gain Bandwidth Product: 1 MHz (typical)  
• Rail-to-Rail Input/Output  
The Microchip Technology Inc. MCP6001/2/4 family of  
operational amplifiers (op amps) is specifically  
designed for general-purpose applications. This family  
has a 1 MHz Gain Bandwidth Product (GBWP) and 90°  
phase margin (typical). It also maintains 45° phase  
margin (typical) with a 500 pF capacitive load. This  
family operates from a single supply voltage as low as  
1.8V, while drawing 100 µA (typical) quiescent current.  
Additionally, the MCP6001/2/4 supports rail-to-rail input  
and output swing, with a common mode input voltage  
range of VDD + 300 mV to VSS – 300 mV. This family of  
op amps is designed with Microchip’s advanced CMOS  
process.  
• Supply Voltage: 1.8V to 6.0V  
• Supply Current: IQ = 100 µA (typical)  
• Phase Margin: 90° (typical)  
Temperature Range:  
- Industrial: -40°C to +85°C  
- Extended: -40°C to +125°C  
• Available in Single, Dual and Quad Packages  
Applications  
The MCP6001/2/4 family is available in the industrial  
and extended temperature ranges, with a power supply  
range of 1.8V to 6.0V.  
• Automotive  
• Portable Equipment  
• Photodiode Amplifier  
• Analog Filters  
Package Types  
MCP6001R  
MCP6001  
• Notebooks and PDAs  
• Battery-Powered Systems  
SOT-23-5  
SC70-5, SOT-23-5  
V
V
V
1
5
4
V
SS  
OUT  
1
2
3
5
DD  
OUT  
Design Aids  
V
V
2
3
DD  
SS  
+
-
-
V
+
V
IN  
V
V –  
IN  
IN  
• SPICE Macro Models  
• FilterLab® Software  
4
IN  
MCP6002  
PDIP, SOIC, MSOP  
MCP6001U  
• Mindi™ Circuit Designer & Simulator  
• Microchip Advanced Part Selector (MAPS)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
SOT-23-5  
V
V
V
+
V
5
8
7
6
5
V
V
1
2
3
4
1
DD  
IN  
OUTA  
DD  
+
V
V
+
2
3
-
SS  
INA  
+
OUTB  
-
V
OUT  
V
4
+
-
V
V
IN  
INA  
V
INB  
Typical Application  
+
SS  
INB  
VDD  
MCP6002  
MCP6004  
VIN  
PDIP, SOIC, TSSOP  
2x3 DFN *  
+
V
V
VOUT  
MCP6001  
14  
13  
12  
11  
1
2
3
4
OUTA  
OUTD  
V
1
8
7
V
OUTA  
DD  
V
+
V
V
V
+ -  
INA  
- +  
IND  
V
V
2
OUTB  
EP  
9
INA  
V
+
INA  
V
IND  
VSS  
V
+
V
V
3
4
6
5
INA  
INB  
DD  
+
SS  
V
+
SS  
INB  
V
V
V
V
V
+
10  
9
5
6
7
INB  
INC  
R1  
-
-
+
+
R2  
INB  
INC  
R1  
Gain = 1 + -----  
R2  
V
8
OUTB  
OUTC  
VREF  
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
Non-Inverting Amplifier  
© 2009 Microchip Technology Inc.  
DS21733J-page 1  
MCP6001/1R/1U/2/4  
NOTES:  
DS21733J-page 2  
© 2009 Microchip Technology Inc.  
MCP6001/1R/1U/2/4  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VDD – VSS ........................................................................7.0V  
Current at Analog Input Pins (VIN+, VIN).....................±2 mA  
Analog Inputs (VIN+, VIN–) †........ VSS – 1.0V to VDD + 1.0V  
All Other Inputs and Outputs ......... VSS – 0.3V to VDD + 0.3V  
†† See Section 4.1.2 “Input Voltage and Current Limits”.  
Difference Input Voltage ...................................... |VDD – VSS  
|
Output Short Circuit Current ................................Continuous  
Current at Output and Supply Pins ............................±30 mA  
Storage Temperature ...................................65°C to +150°C  
Maximum Junction Temperature (TJ)..........................+150°C  
ESD Protection On All Pins (HBM; MM) .............. ≥ 4 kV; 200V  
DC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VL = VDD/2,  
RL = 10 kΩ to VL, and VOUT VDD/2 (refer to Figure 1-1).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Offset  
Input Offset Voltage  
VOS  
-4.5  
+4.5  
mV  
VCM = VSS (Note 1)  
Input Offset Drift with Temperature  
ΔVOS/ΔTA  
±2.0  
µV/°C TA= -40°C to +125°C,  
CM = VSS  
V
Power Supply Rejection Ratio  
Input Bias Current and Impedance  
Input Bias Current:  
PSRR  
86  
dB  
VCM = VSS  
IB  
IB  
±1.0  
19  
pA  
pA  
Industrial Temperature  
TA = +85°C  
Extended Temperature  
IB  
1100  
±1.0  
1013||6  
1013||3  
pA  
TA = +125°C  
Input Offset Current  
IOS  
ZCM  
ZDIFF  
pA  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode  
Ω||pF  
Ω||pF  
Common Mode Input Range  
Common Mode Rejection Ratio  
VCMR  
VSS 0.3  
VDD + 0.3  
V
CMRR  
60  
76  
dB  
VCM = -0.3V to 5.3V,  
V
DD = 5V  
Open-Loop Gain  
DC Open-Loop Gain (Large Signal)  
AOL  
88  
112  
dB  
VOUT = 0.3V to VDD – 0.3V,  
CM = VSS  
V
Output  
Maximum Output Voltage Swing  
VOL, VOH  
ISC  
VSS + 25  
VDD – 25  
mV  
VDD = 5.5V,  
0.5V Input Overdrive  
Output Short Circuit Current  
±6  
mA  
mA  
VDD = 1.8V  
VDD = 5.5V  
±23  
Power Supply  
Supply Voltage  
VDD  
IQ  
1.8  
50  
6.0  
V
Note 2  
Quiescent Current per Amplifier  
100  
170  
µA  
IO = 0, VDD = 5.5V, VCM = 5V  
Note 1: MCP6001/1R/1U/2/4 parts with date codes prior to December 2004 (week code 49) were tested to ±7 mV minimum/  
maximum limits.  
2: All parts with date codes November 2007 and later have been screened to ensure operation at  
VDD = 6.0V. However, the other minimum and maximum specifications are measured at 1.8V and 5.5V.  
© 2009 Microchip Technology Inc.  
DS21733J-page 3  
MCP6001/1R/1U/2/4  
AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8 to 5.5V, VSS = GND, VCM = VDD/2,  
VL = VDD/2, VOUT VDD/2, RL = 10 kΩ to VL, and CL = 60 pF (refer to Figure 1-1).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
AC Response  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
1.0  
90  
MHz  
°
G = +1 V/V  
Slew Rate  
SR  
0.6  
V/µs  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
Eni  
eni  
ini  
6.1  
28  
µVp-p f = 0.1 Hz to 10 Hz  
nV/Hz f = 1 kHz  
0.6  
fA/Hz f = 1 kHz  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, VDD = +1.8V to +5.5V and VSS = GND.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Industrial Temperature Range  
Extended Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
TA  
TA  
TA  
TA  
-40  
-40  
-40  
-65  
+85  
°C  
°C  
°C  
°C  
+125  
+125  
+150  
Note  
Thermal Package Resistances  
Thermal Resistance, 5L-SC70  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 8L-PDIP  
Thermal Resistance, 8L-SOIC (150 mil)  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 8L-DFN (2x3)  
Thermal Resistance, 14L-PDIP  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
331  
256  
85  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
163  
206  
68  
70  
120  
100  
Note:  
The industrial temperature devices operate over this extended temperature range, but with reduced  
performance. In any case, the internal Junction Temperature (TJ) must not exceed the Absolute Maximum  
specification of +150°C.  
DS21733J-page 4  
© 2009 Microchip Technology Inc.  
MCP6001/1R/1U/2/4  
1.1  
Test Circuits  
CF  
6.8 pF  
The circuit used for most DC and AC tests is shown in  
Figure 1-1. This circuit can independently set VCM and  
VOUT; see Equation 1-1. Note that VCM is not the  
circuit’s common mode voltage ((VP + VM)/2), and that  
VOST includes VOS plus the effects (on the input offset  
RG  
100 kΩ  
RF  
100 kΩ  
VDD/2  
VP  
error, VOST) of temperature, CMRR, PSRR and AOL  
.
VDD  
VIN+  
EQUATION 1-1:  
CB1  
100 nF  
CB2  
1 µF  
GDM = RF RG  
MCP600X  
VCM = (VP + VDD 2) 2  
VOST = VIN– VIN+  
VIN–  
VOUT = (VDD 2) + (VP VM) + VOST(1 + GDM  
)
VOUT  
VM  
RL  
10 kΩ  
CL  
60 pF  
RG  
100 kΩ  
RF  
100 kΩ  
Where:  
GDM = Differential Mode Gain  
(V/V)  
(V)  
VCM = Op Amp’s Common Mode  
CF  
6.8 pF  
VL  
Input Voltage  
VOST = Op Amp’s Total Input Offset  
(mV)  
FIGURE 1-1:  
AC and DC Test Circuit for  
Voltage  
Most Specifications.  
© 2009 Microchip Technology Inc.  
DS21733J-page 5  
MCP6001/1R/1U/2/4  
NOTES:  
DS21733J-page 6  
© 2009 Microchip Technology Inc.  
MCP6001/1R/1U/2/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 10 kΩ to VL, and CL = 60 pF.  
20%  
18%  
16%  
14%  
12%  
10%  
8%  
0
-100  
-200  
-300  
-400  
-500  
-600  
-700  
64,695 Samples  
VCM = VSS  
VDD = 1.8V  
TA = -40°C  
TA = +25°C  
6%  
TA = +85°C  
4%  
TA = +125°C  
2%  
0%  
5
-4 -3 -2 -1  
0
1
2
3
4
5
Input Offset Voltage (mV)  
Common Mode Input Voltage (V)  
FIGURE 2-1:  
Input Offset Voltage.  
FIGURE 2-4:  
Input Offset Voltage vs.  
Common Mode Input Voltage at V = 1.8V.  
DD  
18%  
0
2453 Samples  
A = -40°C to +125°C  
VCM = VSS  
VDD = 5.5V  
16%  
14%  
12%  
10%  
8%  
T
-100  
-200  
-300  
-400  
6%  
TA = -40°C  
T
A = +25°C  
4%  
-500  
-600  
-700  
TA = +85°C  
2%  
TA = +125°C  
0%  
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10 12  
Input Offset Voltage Drift;  
TC1 (µV/°C)  
Common Mode Input Voltage (V)  
FIGURE 2-2:  
Input Offset Voltage Drift.  
FIGURE 2-5:  
Input Offset Voltage vs.  
Common Mode Input Voltage at V = 5.5V.  
DD  
45%  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
200  
150  
100  
2453 Samples  
TA = -40°C to +125°C  
V
CM = VSS  
50  
0
VDD = 5.5V  
VDD = 1.8V  
-50  
-100  
-150  
-200  
0%  
VCM = VSS  
Input Offset Quadratic Temp. Co.;  
TC2 (µV/°C2)  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Output Voltage (V)  
FIGURE 2-3:  
Temp. Co.  
Input Offset Quadratic  
FIGURE 2-6:  
Output Voltage.  
Input Offset Voltage vs.  
© 2009 Microchip Technology Inc.  
DS21733J-page 7  
MCP6001/1R/1U/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 10 kΩ to VL, and CL = 60 pF.  
14%  
12%  
10%  
8%  
100  
90  
80  
70  
60  
50  
40  
30  
20  
VCM = VSS  
1230 Samples  
VDD = 5.5V  
VCM = VDD  
TA = +85°C  
PSRR–  
PSRR+  
6%  
CMRR  
4%  
2%  
0%  
0
3
6
9
12 15 18 21 24 27 30  
10  
100  
1k  
1.03  
Frequency (Hz)  
10k  
1.4  
100k  
15  
1.E1  
1.2  
Input Bias Current (pA)  
FIGURE 2-7:  
Input Bias Current at +85°C.  
FIGURE 2-10:  
PSRR, CMRR vs.  
Frequency.  
55%  
120  
100  
80  
0
605 Samples  
50%  
45%  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
VDD = 5.5V  
-30  
VCM = VDD  
TA = +125°C  
-60  
Phase  
60  
-90  
40  
-120  
-150  
-180  
-210  
Gain  
20  
0
VCM = VSS  
0%  
-20  
0.1  
1
10 100 1k 10k 100k 1M 10M  
1.E- 1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+  
Frequency (Hz)  
Input Bias Current (pA)  
01 00 01 02 03 04 05 06 07  
FIGURE 2-8:  
Input Bias Current at  
FIGURE 2-11:  
Open-Loop Gain, Phase vs.  
+125°C.  
Frequency.  
100  
1,000  
VDD = 5.0V  
95  
90  
85  
80  
75  
70  
PSRR (VCM = VSS  
)
100  
CMRR (VCM = -0.3V to +5.3V)  
10  
0.1  
1
10  
100  
1k  
10k  
100k  
-50  
-25  
0
25  
50  
75  
100  
125  
1.E-01 1.E+0 1.E+0 1.E+0 1.E+0 1.E+0 1.E+0  
Ambient Temperature (°C)  
0
1Freque2ncy (Hz3)  
4
5
FIGURE 2-9:  
CMRR, PSRR vs. Ambient  
FIGURE 2-12:  
Input Noise Voltage Density  
Temperature.  
vs. Frequency.  
DS21733J-page 8  
© 2009 Microchip Technology Inc.  
MCP6001/1R/1U/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 10 kΩ to VL, and CL = 60 pF.  
0.08  
30  
G = +1 V/V  
0.06  
25  
TA = -40°C  
0.04  
T
T
A = +25°C  
A = +85°C  
20  
15  
10  
5
0.02  
TA = +125°C  
0.00  
-0.02  
-0.04  
-0.06  
-0.08  
0
0.E+00  
1.E-06  
2.E-06  
3.E-06  
4.E-06  
5.E-06  
6.E-06  
7.E-06  
8.E-06  
9.E-06  
1.E-05  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
Time (1 µs/div)  
FIGURE 2-13:  
Output Short Circuit Current  
FIGURE 2-16:  
Small-Signal, Non-Inverting  
vs. Power Supply Voltage.  
Pulse Response.  
1,000  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
G = +1 V/V  
VDD = 5.0V  
VDD – VOH  
100  
10  
1
VOL – VSS  
10µ  
100µ  
1
1m  
10m  
12  
0.E+00  
1.E-05  
2.E-05  
3.E-05  
4.E-05  
5.E-05  
6.E-05  
7.E-05  
8.E-05  
9.E-05  
1.E-04  
0.0  
15  
13  
Time (10 µs/div)  
Output Current Magnitude (A)  
FIGURE 2-14:  
Output Voltage Headroom  
FIGURE 2-17:  
Large-Signal, Non-Inverting  
vs. Output Current Magnitude.  
Pulse Response.  
180  
1.0  
0.9  
0.8  
VCM = VDD - 0.5V  
160  
140  
120  
100  
80  
VDD = 5.5V  
Falling Edge  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
TA = +125°C  
VDD = 1.8V  
60  
T
A = +85°C  
TA = +25°C  
A = -40°C  
Rising Edge  
40  
20  
0
T
-50  
-25  
0
25  
50  
75  
100  
125  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Power Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-15:  
Quiescent Current vs.  
FIGURE 2-18:  
Slew Rate vs. Ambient  
Power Supply Voltage.  
Temperature.  
© 2009 Microchip Technology Inc.  
DS21733J-page 9  
MCP6001/1R/1U/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +5.5V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 10 kΩ to VL, and CL = 60 pF.  
6
10  
VIN  
VDD = 5.0V  
G = +2 V/V  
5
4
VDD = 5.5V  
VDD = 1.8V  
VOUT  
3
1
2
1
0
0.1  
1k  
10k  
100k  
1E+5  
1M  
1.+06  
0.E+00  
1.E-05  
2.E-05  
3.E-05  
4.E-05  
5.E-05  
6.E-05  
7.E-05  
8.E-05  
9.E-05  
1.E-04  
-1  
1.E+03  
1.E04  
Frequency (Hz)  
Time (10 µs/div)  
FIGURE 2-19:  
Frequency.  
Output Voltage Swing vs.  
FIGURE 2-21:  
Phase Reversal.  
The MCP6001/2/4 Show No  
1.E1-00m2  
1.E-10m3  
100µ  
1.E- 4  
10µ  
1.E- 5  
1µ  
1.E-06  
100n  
1.E-07  
10n  
1.E-08  
1n  
1.E-09  
100p  
1.E-10  
+125°C  
+85°C  
+25°C  
-40°C  
10p  
1.E-11  
1p  
1.E-12  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
Input Voltage (V)  
FIGURE 2-20:  
Measured Input Current vs.  
Input Voltage (below V ).  
SS  
DS21733J-page 10  
© 2009 Microchip Technology Inc.  
MCP6001/1R/1U/2/4  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1: PIN FUNCTION TABLE  
MCP6001 MCP6001R MCP6001U  
MCP6002  
MCP6004  
MSOP,  
PDIP,  
SOIC  
PDIP,  
SOIC,  
TSSOP  
Symbol  
Description  
SC70-5,  
SOT-23-5  
DFN  
2x3  
SOT-23-5  
SOT-23-5  
1
4
1
4
4
3
1
2
3
8
5
6
1
2
3
8
5
6
1
2
3
4
5
6
VOUT, VOUTA Analog Output (op amp A)  
VIN–, VINA  
VIN+, VINA  
VDD  
+
Inverting Input (op amp A)  
Non-inverting Input (op amp A)  
Positive Power Supply  
3
3
1
5
2
5
VINB  
+
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
VINB  
2
5
2
7
7
7
VOUTB  
VOUTC  
Analog Output (op amp B)  
Analog Output (op amp C)  
Inverting Input (op amp C)  
Non-inverting Input (op amp C)  
Negative Power Supply  
4
4
8
9
VINC  
+
10  
11  
12  
13  
14  
VINC  
VSS  
9
VIND  
+
Non-inverting Input (op amp D)  
Inverting Input (op amp D)  
Analog Output (op amp D)  
VIND  
VOUTD  
EP  
Exposed Thermal Pad (EP);  
must be connected to VSS.  
3.1  
Analog Outputs  
3.4  
Exposed Thermal Pad (EP)  
The output pins are low-impedance voltage sources.  
There is an internal electrical connection between the  
Exposed Thermal Pad (EP) and the VSS pin; they must  
be connected to the same potential on the Printed  
Circuit Board (PCB).  
3.2  
Analog Inputs  
The non-inverting and inverting inputs are  
high-impedance CMOS inputs with low bias currents.  
3.3  
Power Supply Pins  
The positive power supply (VDD) is 1.8V to 6.0V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are at voltages between VSS  
and VDD  
.
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need bypass capacitors.  
© 2009 Microchip Technology Inc.  
DS21733J-page 11  
MCP6001/1R/1U/2/4  
NOTES:  
DS21733J-page 12  
© 2009 Microchip Technology Inc.  
MCP6001/1R/1U/2/4  
V
DD, and dump any currents onto VDD. When  
4.0  
APPLICATION INFORMATION  
implemented as shown, resistors R1 and R2 also limit  
the current through D1 and D2.  
The MCP6001/2/4 family of op amps is manufactured  
using Microchip’s state-of-the-art CMOS process and  
is specifically designed for low-cost, low-power and  
general-purpose applications. The low supply voltage,  
low quiescent current and wide bandwidth makes the  
MCP6001/2/4 ideal for battery-powered applications.  
This device has high phase margin, which makes it  
stable for larger capacitive load applications.  
VDD  
D1 D2  
V1  
R1  
MCP600X  
4.1  
Rail-to-Rail Inputs  
V2  
R2  
4.1.1  
PHASE REVERSAL  
The MCP6001/1R/1U/2/4 op amp is designed to  
prevent phase reversal when the input pins exceed the  
supply voltages. Figure 2-21 shows the input voltage  
exceeding the supply voltage without any phase  
reversal.  
R3  
VSS – (minimum expected V1)  
R1 >  
2 mA  
VSS – (minimum expected V2)  
R2 >  
2 mA  
4.1.2  
INPUT VOLTAGE AND CURRENT  
LIMITS  
FIGURE 4-2:  
Protecting the Analog  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-1. This structure was chosen to  
protect the input transistors, and to minimize input bias  
current (IB). The input ESD diodes clamp the inputs  
when they try to go more than one diode drop below  
VSS. They also clamp any voltages that go too far  
above VDD; their breakdown voltage is high enough to  
allow normal operation, and low enough to bypass  
quick ESD events within the specified limits.  
Inputs.  
It is also possible to connect the diodes to the left of  
resistors R1 and R2. In this case, current through the  
diodes D1 and D2 needs to be limited by some other  
mechanism. The resistors then serve as in-rush current  
limiters; the DC current into the input pins (VIN+ and  
VIN–) should be very small.  
A significant amount of current can flow out of the  
inputs when the common mode voltage (VCM) is below  
ground (VSS); see Figure 2-20. Applications that are  
high impedance may need to limit the usable voltage  
range.  
Bond  
VDD  
Pad  
4.1.3  
NORMAL OPERATION  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
The input stage of the MCP6001/1R/1U/2/4 op amps  
use two differential CMOS input stages in parallel. One  
operates at low common mode input voltage (VCM),  
while the other operates at high VCM. WIth this  
topology, the device operates with VCM up to 0.3V  
VIN+  
VIN–  
Bond  
Pad  
VSS  
above VDD and 0.3V below VSS  
.
The transition between the two input stages occurs  
when VCM = VDD – 1.1V. For the best distortion and  
gain linearity, with non-inverting gains, avoid this region  
of operation.  
FIGURE 4-1:  
Structures.  
Simplified Analog Input ESD  
In order to prevent damage and/or improper operation  
of these op amps, the circuit they are in must limit the  
currents and voltages at the VIN+ and VIN– pins (see  
Absolute Maximum Ratings † at the beginning of  
Section 1.0 “Electrical Characteristics”). Figure 4-2  
shows the recommended approach to protecting these  
inputs. The internal ESD diodes prevent the input pins  
(VIN+ and VIN–) from going too far below ground, and  
the resistors R1 and R2 limit the possible current drawn  
out of the input pins. Diodes D1 and D2 prevent the  
input pins (VIN+ and VIN–) from going too far above  
4.2  
Rail-to-Rail Output  
The output voltage range of the MCP6001/2/4 op amps  
is VDD – 25 mV (minimum) and VSS + 25 mV  
(maximum) when RL = 10 kΩ is connected to VDD/2  
and VDD = 5.5V. Refer to Figure 2-14 for more  
information.  
© 2009 Microchip Technology Inc.  
DS21733J-page 13  
MCP6001/1R/1U/2/4  
4.3  
Capacitive Loads  
4.4  
Supply Bypass  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. While a unity-gain buffer (G = +1) is the most  
sensitive to capacitive loads, all gains show the same  
general behavior.  
With this family of operational amplifiers, the power  
supply pin (VDD for single-supply) should have a local  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
for good high-frequency performance. It also needs a  
bulk capacitor (i.e., 1 µF or larger) within 100 mm to  
provide large, slow currents. This bulk capacitor can be  
shared with nearby analog parts.  
4.5  
Unused Op Amps  
When driving large capacitive loads with these op  
amps (e.g., > 100 pF when G = +1), a small series  
resistor at the output (RISO in Figure 4-3) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The  
bandwidth will be generally lower than the bandwidth  
with no capacitance load.  
An unused op amp in a quad package (MCP6004)  
should be configured as shown in Figure 4-5. These  
circuits prevent the output from toggling and causing  
crosstalk. Circuits A sets the op amp at its minimum  
noise gain. The resistor divider produces any desired  
reference voltage within the output voltage range of the  
op amp; the op amp buffers that reference voltage.  
Circuit B uses the minimum number of components  
and operates as a comparator, but it may draw more  
current.  
RISO  
VOUT  
MCP600X  
+
¼ MCP6004 (A)  
VDD  
¼ MCP6004 (B)  
VIN  
CL  
VDD  
VDD  
R1  
R2  
FIGURE 4-3:  
Output resistor, R  
ISO  
stabilizes large capacitive loads.  
VREF  
Figure 4-4 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit's noise gain. For non-inverting gains, GN and the  
Signal Gain are equal. For inverting gains, GN is  
1+|Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).  
R2  
------------------  
VREF = VDD  
R1 + R2  
FIGURE 4-5:  
Unused Op Amps.  
1000  
VDD = 5.0V  
4.6  
PCB Surface Leakage  
RL = 100 k  
In applications where low input bias current is critical,  
Printed Circuit Board (PCB) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012Ω. A 5V difference would  
cause 5 pA of current to flow; which is greater than the  
MCP6001/1R/1U/2/4 family’s bias current at 25°C (typ-  
ically 1 pA).  
100  
GN = 1  
GN  
2
10  
10p  
100p  
1.E-10  
Normalized Load Capacitance; CL/GN (F)  
1n  
10n  
1.E-11  
1.E-09  
1.E-08  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in  
Figure 4-6.  
FIGURE 4-4:  
for Capacitive Loads.  
Recommended R  
values  
ISO  
After selecting RISO for your circuit, double-check the  
resulting frequency response peaking and step  
response overshoot. Modify RISO’s value until the  
response is reasonable. Bench evaluation and  
simulations with the MCP6001/1R/1U/2/4 SPICE  
macro model are very helpful.  
DS21733J-page 14  
© 2009 Microchip Technology Inc.  
MCP6001/1R/1U/2/4  
VIN-  
VIN+  
VSS  
R1  
R2  
1/2  
MCP6002  
VIN1  
+
VOUT  
MCP6001  
+
R2  
1/2  
MCP6002  
Guard Ring  
Example Guard Ring Layout  
VIN2  
+
R1 = 20 kΩ  
R2 = 10 kΩ  
R1  
FIGURE 4-6:  
for Inverting Gain.  
VREF  
1. Non-inverting Gain and Unity-Gain Buffer:  
R1  
-----  
VOUT = (VIN2 VIN1) •  
+ VREF  
a. Connect the non-inverting pin (VIN+) to the  
input with a wire that does not touch the  
PCB surface.  
R2  
FIGURE 4-7:  
with Unity-Gain Buffer Inputs.  
Instrumentation Amplifier  
b. Connect the guard ring to the inverting input  
pin (VIN–). This biases the guard ring to the  
common mode input voltage.  
4.7.2  
ACTIVE LOW-PASS FILTER  
2. Inverting Gain and Transimpedance Gain  
Amplifiers (convert current to voltage, such as  
photo detectors):  
The MCP6001/2/4 op amp’s low input bias current  
makes it possible for the designer to use larger  
resistors and smaller capacitors for active low-pass  
filter applications. However, as the resistance  
increases, the noise generated also increases.  
Parasitic capacitances and the large value resistors  
could also modify the frequency response. These  
trade-offs need to be considered when selecting circuit  
elements.  
a. Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the op  
amp (e.g., VDD/2 or ground).  
b. Connect the inverting pin (VIN–) to the input  
with a wire that does not touch the PCB  
surface.  
Usually, the op amp bandwidth is 100x the filter cutoff  
frequency (or higher) for good performance. It is  
possible to have the op amp bandwidth 10X higher  
than the cutoff frequency, thus having a design that is  
more sensitive to component tolerances.  
4.7  
Application Circuits  
4.7.1  
UNITY-GAIN BUFFER  
The rail-to-rail input and output capability of the  
MCP6001/2/4 op amp is ideal for unity-gain buffer  
applications. The low quiescent current and wide  
bandwidth makes the device suitable for a buffer  
configuration in an instrumentation amplifier circuit, as  
shown in Figure 4-7.  
Figure 4-8 shows a second-order Butterworth filter with  
100 kHz cutoff frequency and a gain of +1 V/V; the op  
amp bandwidth is only 10x higher than the cutoff  
frequency. The component values were selected using  
Microchip’s FilterLab® software.  
100 pF  
14.3 kΩ 53.6 kΩ  
VIN  
+
MCP6002  
VOUT  
33 pF  
FIGURE 4-8:  
Active Second-Order  
Low-Pass Filter.  
© 2009 Microchip Technology Inc.  
DS21733J-page 15  
MCP6001/1R/1U/2/4  
4.7.3  
PEAK DETECTOR  
EQUATION 4-1:  
dVC1  
------------  
dt  
The MCP6001/2/4 op amp has a high input impedance,  
rail-to-rail input/output and low input bias current, which  
makes this device suitable for peak detector  
applications. Figure 4-9 shows a peak detector circuit  
with clear and sample switches. The peak-detection  
cycle uses a clock (CLK), as shown in Figure 4-9.  
ISC = C1  
dVC1 ISC  
------------ = -------  
dt C1  
25mA  
= --------------  
0.1μF  
At the rising edge of CLK, Sample Switch closes to  
begin sampling. The peak voltage stored on C1 is  
sampled to C2 for a sample time defined by tSAMP. At  
the end of the sample time (falling edge of Sample  
Signal), Clear Signal goes high and closes the Clear  
Switch. When the Clear Switch closes, C1 discharges  
through R1 for a time defined by tCLEAR. At the end of  
the clear time (falling edge of Clear Signal), op amp A  
begins to store the peak value of VIN on C1 for a time  
dVC1  
------------ = 250mV ⁄ μs  
dt  
This voltage rate of change is less than the MCP6001/2/4  
slew rate of 0.6 V/µs. When the input voltage swings  
below the voltage across C1, D1 becomes reverse-  
biased. This opens the feedback loop and rails the  
amplifier. When the input voltage increases, the amplifier  
recovers at its slew rate. Based on the rate of voltage  
change shown in the above equation, it takes an  
extended period of time to charge a 0.1 µF capacitor. The  
capacitors need to be selected so that the circuit is not  
limited by the amplifier slew rate. Therefore, the  
capacitors should be less than 40 µF and a stabilizing  
resistor (RISO) needs to be properly selected. (Refer to  
Section 4.3 “Capacitive Loads”).  
defined by tDETECT  
.
In order to define tSAMP and tCLEAR, it is necessary to  
determine the capacitor charging and discharging  
period. The capacitor charging time is limited by the  
amplifier source current, while the discharging time (τ)  
is defined using R1 (τ = R1C1). tDETECT is the time that  
the input signal is sampled on C1 and is dependent on  
the input voltage change frequency.  
The op amp output current limit, and the size of the  
storage capacitors (both C1 and C2), could create  
slewing limitations as the input voltage (VIN) increases.  
Current through a capacitor is dependent on the size of  
the capacitor and the rate of voltage change. From this  
relationship, the rate of voltage change or the slew rate  
can be determined. For example, with an op amp short  
circuit current of ISC = 25 mA and a load capacitor of  
C1 = 0.1 µF, then:  
VIN  
D1  
+
RISO  
VC1  
1/2  
RISO  
VC2  
+
MCP6002  
1/2  
VOUT  
+
MCP6002  
C1  
R1  
Op Amp A  
MCP6001  
C2  
Op Amp B  
Op Amp C  
Sample  
Switch  
Clear  
Switch  
tSAMP  
Sample Signal  
tCLEAR  
Clear Signal  
CLK  
tDETECT  
FIGURE 4-9:  
Peak Detector with Clear and Sample CMOS Analog Switches.  
DS21733J-page 16  
© 2009 Microchip Technology Inc.  
MCP6001/1R/1U/2/4  
5.4  
Microchip Advanced Part Selector  
(MAPS)  
5.0  
DESIGN AIDS  
Microchip provides the basic design tools needed for  
the MCP6001/1R/1U/2/4 family of op amps.  
MAPS is a software tool that helps semiconductor  
professionals efficiently identify Microchip devices that  
fit a particular design requirement. Available at no cost  
from the Microchip web site at www.microchip.com/  
maps, the MAPS is an overall selection tool for  
Microchip’s product portfolio that includes Analog,  
Memory, MCUs and DSCs. Using this tool you can  
define a filter to sort features for a parametric search of  
devices and export side-by-side technical comparison  
reports. Helpful links are also provided for Data sheets,  
Purchase, and Sampling of Microchip parts.  
5.1  
SPICE Macro Model  
The latest SPICE macro model for the MCP6001/1R/  
1U/2/4 op amps is available on the Microchip web site  
at www.microchip.com. The model was written and  
tested in official Orcad (Cadence) owned PSPICE. For  
the other simulators, it may require translation.  
The model covers a wide aspect of the op amp's  
electrical specifications. Not only does the model cover  
voltage, current, and resistance of the op amp, but it  
also covers the temperature and noise effects on the  
behavior of the op amp. The model has not been  
verified outside of the specification range listed in the  
op amp data sheet. The model behaviors under these  
conditions can not be guaranteed that it will match the  
actual op amp performance.  
5.5  
Analog Demonstration and  
Evaluation Boards  
Microchip offers  
Demonstration and Evaluation Boards that are  
designed to help you achieve faster time to market. For  
a
broad spectrum of Analog  
a
complete listing of these boards and their  
Moreover, the model is intended to be an initial design  
tool. Bench testing is a very important part of any  
design and cannot be replaced with simulations. Also,  
simulation results using this macro model need to be  
validated by comparing them to the data sheet  
specifications and characteristic curves.  
corresponding user’s guides and technical information,  
visit the Microchip web site at www.microchip.com/  
analogtools.  
Some boards that are especially useful are:  
• MCP6XXX Amplifier Evaluation Board 1  
• MCP6XXX Amplifier Evaluation Board 2  
• MCP6XXX Amplifier Evaluation Board 3  
• MCP6XXX Amplifier Evaluation Board 4  
• Active Filter Demo Board Kit  
5.2  
FilterLab® Software  
Microchip’s FilterLab® software is an innovative  
software tool that simplifies analog active filter (using  
op amps) design. Available at no cost from the  
Microchip web site at www.microchip.com/filterlab, the  
FilterLab design tool provides full schematic diagrams  
of the filter circuit with component values. It also  
outputs the filter circuit in SPICE format, which can be  
used with the macro model to simulate actual filter  
performance.  
• 5/6-Pin SOT-23 Evaluation Board, P/N VSUPEV2  
• 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board,  
P/N SOIC8EV  
• 14-Pin SOIC/TSSOP/DIP Evaluation Board,  
P/N SOIC14EV  
5.3  
Mindi™ Circuit Designer &  
Simulator  
Microchip’s Mindi™ Circuit Designer & Simulator aids  
in the design of various circuits useful for active filter,  
amplifier and power-management applications. It is a  
free online circuit designer & simulator available from  
the Microchip web site at www.microchip.com/mindi.  
This interactive circuit designer & simulator enables  
designers to quickly generate circuit diagrams,  
simulate circuits. Circuits developed using the Mindi  
Circuit Designer & Simulator can be downloaded to a  
personal computer or workstation.  
© 2009 Microchip Technology Inc.  
DS21733J-page 17  
MCP6001/1R/1U/2/4  
5.6  
Application Notes  
The following Microchip Analog Design Note and  
Application Notes are available on the Microchip web  
site at www.microchip. com/appnotes and are  
recommended as supplemental reference resources.  
ADN003: “Select the Right Operational Amplifier  
for your Filtering Circuits”, DS21821  
AN722: “Operational Amplifier Topologies and DC  
Specifications”, DS00722  
AN723: “Operational Amplifier AC Specifications  
and Applications”, DS00723  
AN884: “Driving Capacitive Loads With Op  
Amps”, DS00884  
AN990: “Analog Sensor Conditioning Circuits –  
An Overview”, DS00990  
AN1177: “Op Amp Precision Design: DC Errors”,  
DS01177  
AN1228: “Op Amp Precision Design: Random  
Noise”, DS01228  
AN1297: "Microchip 's Op Amp SPICE Macro  
Models"  
These application notes and others are listed in the  
design guide:  
“Signal Chain Design Guide”, DS21825  
DS21733J-page 18  
© 2009 Microchip Technology Inc.  
MCP6001/1R/1U/2/4  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SC-70 (MCP6001)  
Example: (I-Temp)  
I-Temp  
Code  
E-Temp  
Code  
XXN (Front)  
YWW (Back)  
AA7 (Front)  
432 (Back)  
Device  
MCP6001  
AAN  
CDN  
Note: Applies to 5-Lead SC-70.  
OR  
OR  
I-Temp  
Code  
E-Temp  
Code  
Device  
AA74  
XXNN  
MCP6001  
AANN  
CDNN  
Note: Applies to 5-Lead SC-70.  
Example: (E-Temp)  
5-Lead SOT-23 (MCP6001/1R/1U)  
5
4
5
4
I-Temp  
Code  
E-Temp  
Code  
Device  
MCP6001  
AANN  
ADNN  
AFNN  
CDNN  
CENN  
CFNN  
CD25  
XXNN  
MCP6001R  
MCP6001U  
1
2
3
1
2
3
Note: Applies to 5-Lead SOT-23.  
8-Lead PDIP (300 mil)  
Example:  
XXXXXXXX  
XXXXXNNN  
MCP6002  
I/P256  
0432  
MCP6002  
e3  
I/P^^256  
0746  
OR  
YYWW  
Example:  
8-Lead DFN (2 x 3)  
XXX  
YWW  
NN  
ABY  
944  
25  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e
3
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2009 Microchip Technology Inc.  
DS21733J-page 19  
MCP6001/1R/1U/2/4  
Package Marking Information (Continued)  
8-Lead SOIC (150 mil)  
Example:  
XXXXXXXX  
XXXXYYWW  
MCP6002I  
SN0432  
MCP6002I  
OR  
e
3
SN^^0746  
NNN  
256  
256  
Example:  
8-Lead MSOP  
XXXXXX  
YWWNNN  
6002I  
432256  
14-Lead PDIP (300 mil) (MCP6004)  
Example:  
XXXXXXXXXXXXXX  
XXXXXXXXXXXXXX  
MCP6004  
e
3
I/P^
0432256  
YYWWNNN  
OR  
MCP6004  
e
3
E/P^
0746256  
14-Lead SOIC (150 mil) (MCP6004)  
Example:  
MCP6004  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
MCP6004ISL  
e
3
E/SL
OR  
0746256  
0432256  
Example:  
14-Lead TSSOP (MCP6004)  
XXXXXX  
YYWW  
6004ST  
6004STE  
0432  
0432  
OR  
NNN  
256  
256  
DS21733J-page 20  
© 2009 Microchip Technology Inc.  
MCP6001/1R/1U/2/4  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢂꢒꢖꢆꢗꢍꢘꢙꢚꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
b
1
3
2
E1  
E
4
5
e
e
A
A2  
c
A1  
L
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
(
ꢐꢁ9(ꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%  
ꢐꢁ;ꢐ  
ꢐꢁ;ꢐ  
ꢐꢁꢐꢐ  
ꢀꢁ;ꢐ  
ꢀꢁꢀ(  
ꢀꢁ;ꢐ  
ꢐꢁꢀꢐ  
ꢐꢁꢐ;  
ꢐꢁꢀ(  
M
M
M
ꢑꢁꢀꢐ  
ꢀꢁꢑ(  
ꢑꢁꢐꢐ  
ꢐꢁꢑꢐ  
M
ꢀꢁꢀꢐ  
ꢀꢁꢐꢐ  
ꢐꢁꢀꢐ  
ꢑꢁꢖꢐ  
ꢀꢁꢛ(  
ꢑꢁꢑ(  
ꢐꢁꢖ9  
ꢐꢁꢑ9  
ꢐꢁꢖꢐ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
8
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
M
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐ9ꢀ)  
© 2009 Microchip Technology Inc.  
DS21733J-page 21  
MCP6001/1R/1U/2/4  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
DS21733J-page 22  
© 2009 Microchip Technology Inc.  
MCP6001/1R/1U/2/4  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢏꢒꢖꢆꢗꢍꢏꢒꢁ !ꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
5
(
ꢐꢁꢝ(ꢈ)ꢕ*  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%  
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
ꢅꢀ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
ꢀꢁꢝꢐꢈ)ꢕ*  
ꢐꢁꢝꢐ  
ꢐꢁ;ꢝ  
ꢐꢁꢐꢐ  
ꢑꢁꢑꢐ  
ꢀꢁꢛꢐ  
ꢑꢁꢒꢐ  
ꢐꢁꢀꢐ  
ꢐꢁꢛ(  
ꢐꢞ  
M
M
M
M
M
M
M
M
M
M
M
ꢀꢁꢖ(  
ꢀꢁꢛꢐ  
ꢐꢁꢀ(  
ꢛꢁꢑꢐ  
ꢀꢁ;ꢐ  
ꢛꢁꢀꢐ  
ꢐꢁ9ꢐ  
ꢐꢁ;ꢐ  
ꢛꢐꢞ  
4ꢀ  
8
ꢐꢁꢐ;  
ꢐꢁꢑꢐ  
ꢐꢁꢑ9  
ꢐꢁ(ꢀ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐꢝꢀ)  
© 2009 Microchip Technology Inc.  
DS21733J-page 23  
MCP6001/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ#ꢐꢄꢈꢆ$ꢈꢄꢊ%ꢆꢜꢔꢆꢂꢃꢄꢅꢆꢇꢄꢌ&ꢄ'ꢃꢆꢕ(ꢘꢖꢆMꢆ *!*ꢚ+,ꢆꢎꢎꢆ-ꢔꢅ.ꢆꢗ#$ꢜꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
e
D
b
N
N
L
K
E2  
E
EXPOSED PAD  
NOTE 1  
NOTE 1  
2
1
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
NOTE 2  
A3  
A1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
;
ꢐꢁ(ꢐꢈ)ꢕ*  
ꢐꢁꢝꢐ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢕ#ꢉꢆ!ꢇ%%ꢈ  
*ꢇꢆ#ꢉꢊ#ꢈꢗꢌꢃꢊ/ꢆꢅ    
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
5
ꢔꢀ  
ꢔꢛ  
ꢐꢁ;ꢐ  
ꢐꢁꢐꢐ  
ꢀꢁꢐꢐ  
ꢐꢁꢐ(  
ꢐꢁꢐꢑ  
ꢐꢁꢑꢐꢈꢚ".  
ꢑꢁꢐꢐꢈ)ꢕ*  
ꢛꢁꢐꢐꢈ)ꢕ*  
M
M
ꢐꢁꢑ(  
"
"&ꢎꢇ ꢅ!ꢈ1ꢉ!ꢈ4ꢅꢆꢓ#ꢌ  
"&ꢎꢇ ꢅ!ꢈ1ꢉ!ꢈ=ꢃ!#ꢌ  
*ꢇꢆ#ꢉꢊ#ꢈ=ꢃ!#ꢌ  
*ꢇꢆ#ꢉꢊ#ꢈ4ꢅꢆꢓ#ꢌ  
*ꢇꢆ#ꢉꢊ#ꢜ#ꢇꢜ"&ꢎꢇ ꢅ!ꢈ1ꢉ!  
ꢂꢑ  
"ꢑ  
8
4
?
ꢀꢁꢛꢐ  
ꢀꢁ(ꢐ  
ꢐꢁꢑꢐ  
ꢐꢁꢛꢐ  
ꢐꢁꢑꢐ  
ꢀꢁ((  
ꢀꢁꢒ(  
ꢐꢁꢛꢐ  
ꢐꢁ(ꢐ  
M
ꢐꢁꢖꢐ  
M
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ 1ꢉꢊ/ꢉꢓꢅꢈꢄꢉꢘꢈꢌꢉ,ꢅꢈꢇꢆꢅꢈꢇꢍꢈꢄꢇꢍꢅꢈꢅ&ꢎꢇ ꢅ!ꢈ#ꢃꢅꢈ8ꢉꢍ ꢈꢉ#ꢈꢅꢆ! ꢁ  
ꢛꢁ 1ꢉꢊ/ꢉꢓꢅꢈꢃ ꢈ ꢉ-ꢈ ꢃꢆꢓ$ꢋꢉ#ꢅ!ꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢀꢑꢛ*  
DS21733J-page 24  
© 2009 Microchip Technology Inc.  
MCP6001/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ#ꢐꢄꢈꢆ$ꢈꢄꢊ%ꢆꢜꢔꢆꢂꢃꢄꢅꢆꢇꢄꢌ&ꢄ'ꢃꢆꢕ(ꢘꢖꢆMꢆ *!*ꢚ+,ꢆꢎꢎꢆ-ꢔꢅ.ꢆꢗ#$ꢜꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
© 2009 Microchip Technology Inc.  
DS21733J-page 25  
MCP6001/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ#ꢐꢄꢈꢆ/ꢑꢁꢂꢋꢑꢃꢆꢕꢇꢖꢆMꢆ!ꢚꢚꢆꢎꢋꢈꢆ-ꢔꢅ.ꢆꢗꢇ#/ꢇꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
A1  
c
e
eB  
b1  
b
3ꢆꢃ#  
ꢙ5*:"ꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
;
ꢁꢀꢐꢐꢈ)ꢕ*  
M
ꢁꢀꢛꢐ  
M
ꢁꢛꢀꢐ  
ꢁꢑ(ꢐ  
ꢁꢛ9(  
ꢁꢀꢛꢐ  
ꢁꢐꢀꢐ  
ꢁꢐ9ꢐ  
ꢁꢐꢀ;  
M
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
ꢎꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
)ꢉ ꢅꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
ꢕꢌꢇ$ꢋ!ꢅꢍꢈ#ꢇꢈꢕꢌꢇ$ꢋ!ꢅꢍꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
5
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
8ꢀ  
8
ꢅ)  
M
ꢁꢑꢀꢐ  
ꢁꢀꢝ(  
M
ꢁꢀꢀ(  
ꢁꢐꢀ(  
ꢁꢑꢝꢐ  
ꢁꢑꢖꢐ  
ꢁꢛꢖ;  
ꢁꢀꢀ(  
ꢁꢐꢐ;  
ꢁꢐꢖꢐ  
ꢁꢐꢀꢖ  
M
ꢁꢛꢑ(  
ꢁꢑ;ꢐ  
ꢁꢖꢐꢐ  
ꢁꢀ(ꢐ  
ꢁꢐꢀ(  
ꢁꢐꢒꢐ  
ꢁꢐꢑꢑ  
ꢁꢖꢛꢐ  
ꢗꢃꢎꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
3ꢎꢎꢅꢍꢈ4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
4ꢇ-ꢅꢍꢈ4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈꢚꢇ-ꢈꢕꢎꢉꢊꢃꢆꢓꢈꢈꢟ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢛꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢁꢐꢀꢐAꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ꢈ)ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐꢀ;)  
DS21733J-page 26  
© 2009 Microchip Technology Inc.  
MCP6001/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢜꢖꢆMꢆꢜꢄꢓꢓꢔ0%ꢆ!+,ꢚꢆꢎꢎꢆ-ꢔꢅ.ꢆꢗꢍꢏ/ꢘꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
e
N
E
E1  
NOTE 1  
1
2
3
α
h
b
h
c
φ
A2  
A
L
A1  
L1  
β
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
;
ꢀꢁꢑꢒꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
M
ꢀꢁꢑ(  
ꢐꢁꢀꢐ  
M
M
M
ꢀꢁꢒ(  
M
ꢐꢁꢑ(  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈꢈ  
ꢔꢑ  
ꢔꢀ  
"
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
9ꢁꢐꢐꢈ)ꢕ*  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
*ꢌꢉꢄ%ꢅꢍꢈBꢇꢎ#ꢃꢇꢆꢉꢋC  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
"ꢀ  
ꢛꢁꢝꢐꢈ)ꢕ*  
ꢖꢁꢝꢐꢈ)ꢕ*  
ꢐꢁꢑ(  
ꢐꢁꢖꢐ  
M
M
ꢐꢁ(ꢐ  
ꢀꢁꢑꢒ  
4
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ)ꢇ##ꢇꢄ  
4ꢀ  
ꢀꢁꢐꢖꢈꢚ".  
ꢐꢞ  
ꢐꢁꢀꢒ  
ꢐꢁꢛꢀ  
(ꢞ  
M
M
M
M
M
;ꢞ  
8
ꢐꢁꢑ(  
ꢐꢁ(ꢀ  
ꢀ(ꢞ  
(ꢞ  
ꢀ(ꢞ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢛꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐ(ꢒ)  
© 2009 Microchip Technology Inc.  
DS21733J-page 27  
MCP6001/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢜꢖꢆMꢆꢜꢄꢓꢓꢔ0%ꢆ!+,ꢚꢆꢎꢎꢆ-ꢔꢅ.ꢆꢗꢍꢏ/ꢘꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
DS21733J-page 28  
© 2009 Microchip Technology Inc.  
MCP6001/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ(ꢋꢌꢓꢔꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢇꢄꢌ&ꢄ'ꢃꢆꢕ(ꢍꢖꢆꢗ(ꢍꢏꢇꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
N
E
E1  
NOTE 1  
2
b
1
e
c
φ
A2  
A
L
L1  
A1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
;
ꢐꢁ9(ꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈ  
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
M
ꢐꢁꢒ(  
ꢐꢁꢐꢐ  
M
ꢐꢁ;(  
ꢀꢁꢀꢐ  
ꢐꢁꢝ(  
ꢐꢁꢀ(  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
M
ꢖꢁꢝꢐꢈ)ꢕ*  
ꢛꢁꢐꢐꢈ)ꢕ*  
ꢛꢁꢐꢐꢈ)ꢕ*  
ꢐꢁ9ꢐ  
4
ꢐꢁꢖꢐ  
ꢐꢁ;ꢐ  
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢀ  
ꢐꢁꢝ(ꢈꢚ".  
M
ꢐꢞ  
;ꢞ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
8
ꢐꢁꢐ;  
ꢐꢁꢑꢑ  
M
M
ꢐꢁꢑꢛ  
ꢐꢁꢖꢐ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢛꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢀꢀꢀ)  
© 2009 Microchip Technology Inc.  
DS21733J-page 29  
MCP6001/1R/1U/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS21733J-page 30  
© 2009 Microchip Technology Inc.  
MCP6001/1R/1U/2/4  
12ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ#ꢐꢄꢈꢆ/ꢑꢁꢂꢋꢑꢃꢆꢕꢇꢖꢆMꢆ!ꢚꢚꢆꢎꢋꢈꢆ-ꢔꢅ.ꢆꢗꢇ#/ꢇꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
N
NOTE 1  
E1  
3
1
2
D
E
A2  
A
L
c
A1  
b1  
b
e
eB  
3ꢆꢃ#  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢙ5*:"ꢕ  
56ꢏ  
ꢀꢖ  
ꢁꢀꢐꢐꢈ)ꢕ*  
M
ꢏꢙ5  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
ꢎꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
M
ꢁꢑꢀꢐ  
ꢁꢀꢝ(  
M
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
)ꢉ ꢅꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
ꢕꢌꢇ$ꢋ!ꢅꢍꢈ#ꢇꢈꢕꢌꢇ$ꢋ!ꢅꢍꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
ꢗꢃꢎꢈ#ꢇꢈꢕꢅꢉ#ꢃꢆꢓꢈ1ꢋꢉꢆꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
3ꢎꢎꢅꢍꢈ4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
8ꢀ  
8
ꢅ)  
ꢁꢀꢀ(  
ꢁꢐꢀ(  
ꢁꢑꢝꢐ  
ꢁꢑꢖꢐ  
ꢁꢒꢛ(  
ꢁꢀꢀ(  
ꢁꢐꢐ;  
ꢁꢐꢖ(  
ꢁꢐꢀꢖ  
M
ꢁꢀꢛꢐ  
M
ꢁꢛꢀꢐ  
ꢁꢑ(ꢐ  
ꢁꢒ(ꢐ  
ꢁꢀꢛꢐ  
ꢁꢐꢀꢐ  
ꢁꢐ9ꢐ  
ꢁꢐꢀ;  
M
ꢁꢛꢑ(  
ꢁꢑ;ꢐ  
ꢁꢒꢒ(  
ꢁꢀ(ꢐ  
ꢁꢐꢀ(  
ꢁꢐꢒꢐ  
ꢁꢐꢑꢑ  
ꢁꢖꢛꢐ  
4ꢇ-ꢅꢍꢈ4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈꢚꢇ-ꢈꢕꢎꢉꢊꢃꢆꢓꢈꢈꢟ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢛꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢁꢐꢀꢐAꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ꢈ)ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐꢐ()  
© 2009 Microchip Technology Inc.  
DS21733J-page 31  
MCP6001/1R/1U/2/4  
12ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢂꢖꢆMꢆꢜꢄꢓꢓꢔ0%ꢆ!+,ꢚꢆꢎꢎꢆ-ꢔꢅ.ꢆꢗꢍꢏ/ꢘꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
N
E
E1  
NOTE 1  
1
2
3
e
h
b
α
h
c
φ
A2  
A
L
A1  
β
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
ꢀꢖ  
ꢀꢁꢑꢒꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈꢈꢟ  
M
ꢀꢁꢑ(  
ꢐꢁꢀꢐ  
M
M
M
ꢀꢁꢒ(  
M
ꢐꢁꢑ(  
ꢔꢑ  
ꢔꢀ  
"
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
9ꢁꢐꢐꢈ)ꢕ*  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
*ꢌꢉꢄ%ꢅꢍꢈBꢇꢎ#ꢃꢇꢆꢉꢋC  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
"ꢀ  
ꢛꢁꢝꢐꢈ)ꢕ*  
;ꢁ9(ꢈ)ꢕ*  
ꢐꢁꢑ(  
ꢐꢁꢖꢐ  
M
M
ꢐꢁ(ꢐ  
ꢀꢁꢑꢒ  
4
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ)ꢇ##ꢇꢄ  
4ꢀ  
ꢀꢁꢐꢖꢈꢚ".  
ꢐꢞ  
ꢐꢁꢀꢒ  
ꢐꢁꢛꢀ  
(ꢞ  
M
M
M
M
M
;ꢞ  
8
ꢐꢁꢑ(  
ꢐꢁ(ꢀ  
ꢀ(ꢞ  
(ꢞ  
ꢀ(ꢞ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢛꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐ9()  
DS21733J-page 32  
© 2009 Microchip Technology Inc.  
MCP6001/1R/1U/2/4  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
© 2009 Microchip Technology Inc.  
DS21733J-page 33  
MCP6001/1R/1U/2/4  
12ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢒ3ꢋꢑꢆꢍ3ꢓꢋꢑ&ꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢒꢖꢆMꢆ2+2ꢆꢎꢎꢆ-ꢔꢅ.ꢆꢗꢒꢍꢍꢏꢇꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
φ
A2  
A
A1  
L
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
ꢀꢖ  
ꢐꢁ9(ꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈ  
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
M
ꢐꢁ;ꢐ  
ꢐꢁꢐ(  
M
ꢀꢁꢐꢐ  
M
9ꢁꢖꢐꢈ)ꢕ*  
ꢖꢁꢖꢐ  
(ꢁꢐꢐ  
ꢐꢁ9ꢐ  
ꢀꢁꢑꢐ  
ꢀꢁꢐ(  
ꢐꢁꢀ(  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
ꢖꢁꢛꢐ  
ꢖꢁꢝꢐ  
ꢐꢁꢖ(  
ꢖꢁ(ꢐ  
(ꢁꢀꢐ  
ꢐꢁꢒ(  
4
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
4ꢀ  
ꢀꢁꢐꢐꢈꢚ".  
ꢐꢞ  
ꢐꢁꢐꢝ  
ꢐꢁꢀꢝ  
M
M
M
;ꢞ  
8
ꢐꢁꢑꢐ  
ꢐꢁꢛꢐ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢛꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐ;ꢒ)  
DS21733J-page 34  
© 2009 Microchip Technology Inc.  
MCP6001/1R/1U/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2009 Microchip Technology Inc.  
DS21733J-page 35  
MCP6001/1R/1U/2/4  
NOTES:  
DS21733J-page 36  
© 2009 Microchip Technology Inc.  
MCP6001/1R/1U/2/4  
Revision G (November 2007)  
APPENDIX A: REVISION HISTORY  
The following is the list of modifications:  
Revision J (November 2009)  
1. Updated notes to Section 1.0 “Electrical  
Characteristics”.  
The following is the list of modifications:  
2. Increased Absolute Maximum Voltage range at  
input pins.  
1. Added new 2x3 DFN 8-Lead package on  
page 1.  
3. Increased maximum operating supply voltage  
(VDD).  
2. Updated the Temperature Specifications table  
with 2x3 DFN thermal resistance information.  
4. Added test circuits.  
3. Updated Section 1.1 “Test Circuits”.  
4. Updated Figure 2-15.  
5. Added Figure 2-3 and Figure 2-20.  
6. Added Section 4.1.1 “Phase Reversal”,  
Section 4.1.2 “Input Voltage and Current  
Limits”, Section 4.1.3 “Normal Operation”  
and Section 4.5 “Unused Op Amps”.  
5. Added the 2x3 DFN column to Table 3-1.  
6. Added new Section 3.4 “Exposed Thermal  
Pad (EP)”.  
7. Updated Section 5.1 “SPICE Macro Model”.  
7. Updated Section 5.0 “Design AIDS”,  
8. Updated Section 5.5 “Analog Demonstration  
and Evaluation Boards”.  
8. Updated  
Information”  
Section 6.0  
“Packaging  
9. Updated Section 5.6 “Application Notes”.  
9. Updated Package Outline Drawings.  
10. Updated Section 6.1 “Package Marking  
Information” with the new 2x3 DFN package  
marking information.  
Revision F (March 2005)  
11. Updated the package drawings.  
The following is the list of modifications:  
12. Updated the Product Identification System  
section with new 2x3 DFN package information.  
1. Updated  
Section 6.0  
“Packaging  
Information” to include old and new packaging  
examples.  
Revision H (May 2008)  
Revision E (December 2004)  
The following is the list of modifications:  
The following is the list of modifications:  
1. Design Aids: Name change for Mindi  
Simulation Tool.  
1. VOS specification reduced to ±4.5 mV from  
±7.0 mV for parts starting with date code  
YYWW = 0449  
2. Package Types: Correct device labeling error.  
3. Section 1.0 “Electrical Characteristics”, DC  
Electrical Specifications: Changed “Maximum  
Output Voltage Swing” condition from 0.9V Input  
Overdrive to 0.5V Input Overdrive.  
2. Corrected package markings in Section 6.0  
“Packaging Information”.  
3. Added Appendix A: Revision History.  
4. Section 1.0 “Electrical Characteristics”, AC  
Electrical Specifications: Changed Phase  
Margin condition from G = +1 to G= +1 V/V.  
Revision D (May 2003)  
• Undocumented changes.  
5. Section 5.0 “Design AIDS”: Name change for  
Mindi Simulation Tool.  
Revision C (December 2002)  
• Undocumented changes.  
Revision B (October 2002)  
• Undocumented changes.  
Revision A (June 2002)  
• Original data sheet release.  
© 2009 Microchip Technology Inc.  
DS21733J-page 35  
MCP6001/1R/1U/2/4  
NOTES:  
DS21733J-page 36  
© 2009 Microchip Technology Inc.  
MCP6001/1R/1U/2/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
/XX  
a) MCP6001T-I/LT:  
b) MCP6001T-I/OT:  
Tape and Reel,  
Temperature  
Range  
Package  
Industrial Temperature,  
5LD SC-70 package  
Tape and Reel,  
Industrial Temperature,  
5LD SOT-23 package.  
c) MCP6001RT-I/OT: Tape and Reel,  
Industrial Temperature,  
5LD SOT-23 package.  
d) MCP6001UT-E/OT: Tape and Reel,  
Device:  
MCP6001T:  
MCP6001RT:  
Single Op Amp (Tape and Reel)  
(SC-70, SOT-23)  
Single Op Amp (Tape and Reel) (SOT-23)  
MCP6001UT: Single Op Amp (Tape and Reel) (SOT-23)  
MCP6002:  
MCP6002T:  
Dual Op Amp  
Dual Op Amp (Tape and Reel)  
(SOIC, MSOP)  
Quad Op Amp  
Quad Op Amp (Tape and Reel)  
(SOIC, MSOP)  
Extended Temperature,  
5LD SOT-23 package.  
MCP6004:  
MCP6004T:  
a) MCP6002-I/MS:  
b) MCP6002-I/P:  
c) MCP6002-E/P:  
d) MCP6002-E/MC:  
e) MCP6002-I/SN:  
f) MCP6002T-I/MS:  
Industrial Temperature,  
8LD MSOP package.  
Industrial Temperature,  
8LD PDIP package.  
Extended Temperature,  
8LD PDIP package.  
Extended Temperature,  
8LD DFN package.  
Temperature Range:  
Package:  
I
E
=
=
-40°C to +85°C  
-40°C to +125°C  
LT  
OT  
=
=
Plastic Package (SC-70), 5-lead (MCP6001 only)  
Plastic Small Outline Transistor (SOT-23), 5-lead  
(MCP6001, MCP6001R, MCP6001U)  
Plastic MSOP, 8-lead  
MS  
MC  
P
SN  
SL  
ST  
=
=
=
=
=
=
Industrial Temperature,  
8LD SOIC package.  
Tape and Reel,  
Industrial Temperature,  
8LD MSOP package.  
Plastic DFN, 8-lead  
Plastic DIP (300 mil body), 8-lead, 14-lead  
Plastic SOIC, (3.99 mm body), 8-lead  
Plastic SOIC (3.99 body), 14-lead  
Plastic TSSOP (4.4mm body), 14-lead  
g) MCP6002T-E/MC: Tape and Reel,  
Extended Temperature,  
8LD DFN package.  
a) MCP6004-I/P:  
b) MCP6004-I/SL:  
c) MCP6004-E/SL:  
d) MCP6004-I/ST:  
e) MCP6004T-I/SL:  
Industrial Temperature,  
14LD PDIP package.  
Industrial Temperature,  
14LD SOIC package.  
Extended Temperature,  
14LD SOIC package.  
Industrial Temperature,  
14LD TSSOP package.  
Tape and Reel,  
Industrial Temperature,  
14LD SOIC package.  
Tape and Reel,  
f) MCP6004T-I/ST:  
Industrial Temperature,  
14LD TSSOP package.  
© 2009 Microchip Technology Inc.  
DS21733J-page 37  
MCP6001/1R/1U/2/4  
NOTES:  
DS21733J-page 38  
© 2009 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
rfPIC and UNI/O are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total  
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA  
are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2009 Microchip Technology Inc.  
DS21733J-page 39  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
03/26/09  
DS21733J-page 40  
© 2009 Microchip Technology Inc.  

相关型号:

MCP6002-E/MS

1 MHz, Low-Power Op Amp
MICROCHIP

MCP6002-E/OT

1 MHz, Low-Power Op Amp
MICROCHIP

MCP6002-E/P

1 MHz, Low-Power Op Amp
MICROCHIP

MCP6002-E/SL

1 MHz, Low-Power Op Amp
MICROCHIP

MCP6002-E/SN

1 MHz, Low-Power Op Amp
MICROCHIP

MCP6002-E/SNVAO

Operational Amplifier, 2 Func, 4500uV Offset-Max, CMOS, PDSO8
MICROCHIP

MCP6002-E/ST

1 MHz, Low-Power Op Amp
MICROCHIP

MCP6002-I/LT

1 MHz, Low-Power Op Amp
MICROCHIP

MCP6002-I/MS

1 MHz, Low-Power Op Amp
MICROCHIP

MCP6002-I/OT

1 MHz, Low-Power Op Amp
MICROCHIP

MCP6002-I/P

1 MHz, Low-Power Op Amp
MICROCHIP

MCP6002-I/SL

1 MHz, Low-Power Op Amp
MICROCHIP