MCP4012T-502E/MC [MICROCHIP]

Low-Cost 64-Step Volatile Digital POT; 低成本的64步Volatile数字POT
MCP4012T-502E/MC
型号: MCP4012T-502E/MC
厂家: MICROCHIP    MICROCHIP
描述:

Low-Cost 64-Step Volatile Digital POT
低成本的64步Volatile数字POT

转换器 数字电位计 光电二极管
文件: 总60页 (文件大小:3353K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP4011/2/3/4  
Low-Cost 64-Step Volatile Digital POT  
Package Types  
Features  
MCP4011  
MCP4012  
• Volatile Digital Potentiometer in SOT-23, SOIC,  
MSOP and DFN packages  
SOIC, MSOP, DFN  
Potentiometer  
SOT-23-6  
Rheostat  
• 64 Taps: 63 Resistors with Taps to terminal A and  
terminal B  
V
V
A
8
7
6
5
U/D  
1
2
3
4
1
2
3
6
5
4
DD  
DD  
A
W
• Simple Up/Down (U/D) Protocol  
V
V
W
CS  
NC  
B
SS  
A
SS  
• Power-on Recall of Default Wiper Setting  
A
B
U/D  
B
- Custom POR wiper settings available  
(contact factory)  
W
W
CS  
MCP4014  
• Resistance Values: 2.1 kΩ, 5 kΩ, 10 kΩ or 50 kΩ  
• Low Tempco:  
MCP4013  
SOT-23-5  
Rheostat  
SOT-23-6  
Potentiometer  
- Absolute (Rheostat): 50 ppm (0°C to 70°C typ.)  
- Ratiometric (Potentiometer): 10 ppm (typ.)  
• Low Wiper Resistance: 75Ω (typ.)  
• High-Voltage Tolerant Digital Inputs: Up to 12.5V  
• Low-Power Operation: 1 µA Max Static Current  
• Wide Operating Voltage Range:  
W
5
V
DD  
A
V
A
1
2
3
1
2
3
6
5
4
DD  
W
V
V
W
CS  
SS  
SS  
B
A
W
B
U/D  
CS  
U/D  
4
Block Diagram  
- 1.8V to 5.5V - Device Operation  
A
- 2.7V to 5.5V - Resistor Characteristics  
Specified  
V
DD  
Power-Up  
and  
Brown-Out  
Control  
• Extended Temperature Range: -40°C to +125°C  
• Wide Bandwidth (-3 dB) Operation:  
- 4 MHz (typ.) for 2.1 kΩ device  
V
SS  
2-Wire  
Interface  
and  
Control  
Logic  
W
CS  
Description  
U/D  
The MCP4011/2/3/4 devices are volatile, 6-bit Digital  
Potentiometers that can be configured as either a  
potentiometer or rheostat. The wiper setting is  
controlled through a simple Up/Down (U/D) serial  
interface.  
B
Device Features  
Resistance (typical)  
Wiper  
VDD  
Wiper  
Configuration  
Memory PORWiper  
# of  
Steps  
Device  
Operating  
Type  
Setting  
Range (2)  
Options (kΩ)  
(Ω)  
MCP4011 Potentiometer(1)  
MCP4012 Rheostat  
MCP4013 Potentiometer  
MCP4014 Rheostat  
RAM  
RAM  
RAM  
RAM  
Mid-Scale 2.1, 5.0, 10.0, 50.0  
Mid-Scale 2.1, 5.0, 10.0, 50.0  
Mid-Scale 2.1, 5.0, 10.0, 50.0  
Mid-Scale 2.1, 5.0, 10.0, 50.0  
75  
75  
75  
75  
64 1.8V to 5.5V U/D  
64 1.8V to 5.5V U/D  
64 1.8V to 5.5V U/D  
64 1.8V to 5.5V U/D  
No  
No  
No  
No  
Note 1: Floating either terminal (A or B) allows the device to be used in Rheostat mode.  
2: Analog characteristics (resistor) tested from 2.7V to 5.5V.  
.
© 2006 Microchip Technology Inc.  
DS21978C-page 1  
MCP4011/2/3/4  
† Notice: Stresses above those listed under “Maximum  
Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VDD............................................................................................................. 6.5V  
CS and U/D inputs w.r.t VSS.................................... -0.3V to 12.5V  
A,B and W terminals w.r.t VSS..................... -0.3V to VDD + 0.3V  
Current at Input Pins ..................................................±10 mA  
Current at Supply Pins ...............................................±10 mA  
Current at Potentiometer Pins ...................................±2.5 mA  
Storage temperature .....................................-65°C to +150°C  
Ambient temp. with power applied ................-55°C to +125°C  
ESD protection on all pins ...........4 kV (HBM), 400V (MM)  
Maximum Junction Temperature (TJ)..........................+150°C  
AC/DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, all parameters apply across the specified operating ranges.  
TA = -40°C to +125°C, 2.1 kΩ, 5 kΩ, 10 kΩ and 50 kΩ devices. Typical specifications represent values for VDD = 2.7V to 5.5V,  
V
SS = 0V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Operating Voltage Range  
VDD  
VDD  
2.7  
5.5  
V
V
1.8  
VDD = 1.8V, CS:VIHH = 8.5V,  
V
IH = 1.8V, VIL = 0V,  
U/D:VIH = 1.8V, VIL = 0V  
CS Input Voltage  
Supply Current  
VCS  
VSS  
12.5  
V
The CS pin will be at one of three  
input levels (VIL, VIH or VIHH).  
(Note 6)  
IDD  
45  
15  
1
µA  
µA  
µA  
5.5V, CS = VSS, fU/D = 1 MHz  
2.7V, CS = VSS, fU/D = 1 MHz  
Serial Interface Inactive  
0.3  
(CS = VIH, U/D = VIH  
)
Resistance  
(± 20%)  
RAB  
1.68  
4.0  
2.1  
5
2.52  
6.0  
kΩ  
kΩ  
kΩ  
kΩ  
-202 devices (Note 1)  
-502 devices (Note 1)  
-103 devices (Note 1)  
-503 devices (Note 1)  
8.0  
10  
50  
12.0  
60.0  
40.0  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS. (-202 devices VA = 4V).  
3: MCP4011/13 only, test conditions are: IW = 1.9 mA, code = 00h.  
4: MCP4012/14 only, test conditions are:  
Current at Voltage  
Device  
Comments  
Resistance  
5.5V  
2.7V  
2.1 kΩ  
5 kΩ  
2.25 mA  
1.4 mA  
450 µA  
90 µA  
1.1 mA  
450 µA  
210 µA  
40 µA  
MCP4012 includes VWZSE  
MCP4014 includes VWFSE  
10 kΩ  
50 kΩ  
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly over voltage and temperature. See  
Section 6.0 “Resistor” for additional information.  
8: For voltages below 2.7V, refer to Section 2.0 “Typical Performance Curves”.  
9: The MCP4011 is externally connected to match the configurations of the MCP4012 and MCP4014 and then tested.  
DS21978C-page 2  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
AC/DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise indicated, all parameters apply across the specified operating ranges.  
TA = -40°C to +125°C, 2.1 kΩ, 5 kΩ, 10 kΩ and 50 kΩ devices. Typical specifications represent values for VDD = 2.7V to 5.5V,  
V
SS = 0V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
64  
Max  
Units  
Conditions  
No Missing Codes  
Resolution  
N
Taps  
Ω
RAB / 63  
70  
Step Resistance  
RS  
RW  
125  
325  
Note 6  
5.5V  
Wiper Resistance (Note 3, Note 4)  
Ω
70  
Ω
2.7V  
Nominal Resistance Tempco  
ΔR/ΔT  
50  
ppm/°C TA = -20°C to +70°C  
ppm/°C TA = -40°C to +85°C  
ppm/°C TA = -40°C to +125°C  
100  
150  
10  
Ratiometeric Tempco  
ΔVWA/Δ  
ppm/°C MCP4011 and MCP4013 only,  
T
code = 1Fh  
Full-Scale Error (MCP4011/13 only)  
Zero-Scale Error (MCP4011/13 only)  
Monotonicity  
VWFSE  
VWZSE  
N
-0.5  
-0.5  
-0.1  
+0.1  
Yes  
+0.5  
+0.5  
LSb  
LSb  
Bits  
V
Code 3Fh, 2.7V VDD 5.5V  
Code 00h, 2.7V VDD 5.5V  
Resistor Terminal Input Voltage Range  
(Terminals A, B and W)  
VA,VW,  
VB  
Vss  
VDD  
Note 5, Note 6  
Current through A, W or B  
IW  
100  
100  
100  
75  
2.5  
mA  
nA  
Note 6  
Leakage current into A, W or B  
IWL  
MCP4011 A = W = B = VSS  
MCP4012/13 A = W = VSS  
MCP4014 W = VSS  
f =1 MHz, code = 1Fh  
f =1 MHz, code = 1Fh  
f =1 MHz, code = 1Fh  
nA  
nA  
Capacitance (PA)  
Capacitance (Pw)  
Capacitance (PB)  
Bandwidth -3 dB  
CAW  
CW  
pF  
120  
75  
pF  
CBW  
BW  
pF  
4
MHz  
-202  
Code = 1F,  
devices  
output load = 30 pF  
2
1
MHz  
MHz  
kHz  
-502  
devices  
-103  
devices  
200  
-503  
devices  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS. (-202 devices VA = 4V).  
3: MCP4011/13 only, test conditions are: IW = 1.9 mA, code = 00h.  
4: MCP4012/14 only, test conditions are:  
Current at Voltage  
Device  
Comments  
Resistance  
5.5V  
2.7V  
2.1 kΩ  
5 kΩ  
2.25 mA  
1.4 mA  
450 µA  
90 µA  
1.1 mA  
450 µA  
210 µA  
40 µA  
MCP4012 includes VWZSE  
MCP4014 includes VWFSE  
10 kΩ  
50 kΩ  
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly over voltage and temperature. See  
Section 6.0 “Resistor” for additional information.  
8: For voltages below 2.7V, refer to Section 2.0 “Typical Performance Curves”.  
9: The MCP4011 is externally connected to match the configurations of the MCP4012 and MCP4014 and then tested.  
© 2006 Microchip Technology Inc.  
DS21978C-page 3  
MCP4011/2/3/4  
AC/DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise indicated, all parameters apply across the specified operating ranges.  
TA = -40°C to +125°C, 2.1 kΩ, 5 kΩ, 10 kΩ and 50 kΩ devices. Typical specifications represent values for VDD = 2.7V to 5.5V,  
V
SS = 0V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Potentiometer Integral Non-linearity  
Potentiometer Differential Non-linearity  
INL  
DNL  
-0.5  
-0.5  
-0.5  
-8.5  
±0.25  
±0.25  
+0.5  
+0.5  
+0.5  
+8.5  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
LSb  
MCP4011/13 only (Note 2)  
MCP4011/13 only (Note 2)  
Rheostat Integral Non-linearity  
MCP4011 (Note 4, Note 9)  
MCP4012 and MCP4014 (Note 4)  
R-INL  
±0.25  
-202  
5.5V  
devices  
(2.1 kΩ)  
+4.5  
2.7V (Note 7)  
1.8V (Note 7, Note 8)  
5.5V  
See Section 2.0  
±0.25  
-0.5  
-5.5  
+0.5  
+5.5  
-502  
devices  
(5 kΩ)  
+2.5  
2.7V (Note 7)  
1.8V (Note 7, Note 8)  
5.5V  
See Section 2.0  
±0.25  
-0.5  
-3  
+0.5  
+3  
-103  
devices  
(10 kΩ)  
+1  
2.7V (Note 7)  
1.8V (Note 7, Note 8)  
5.5V  
See Section 2.0  
±0.25  
-0.5  
-1  
+0.5  
+1  
-503  
devices  
(50 kΩ)  
+0.25  
2.7V (Note 7)  
1.8V (Note 7, Note 8)  
5.5V  
See Section 2.0  
±0.25  
Rheostat Differential Non-linearity  
MCP4011 (Note 4, Note 9)  
MCP4012 and MCP4014 (Note 4)  
R-DNL  
-0.5  
-1  
+0.5  
+2  
-202  
devices  
(2.1 kΩ)  
+0.5  
2.7V (Note 7)  
1.8V (Note 7, Note 8)  
5.5V  
See Section 2.0  
±0.25  
-0.5  
-1  
+0.5  
-502  
devices  
(5 kΩ)  
+0.25  
+1.25  
2.7V (Note 7)  
1.8V (Note 7, Note 8)  
5.5V  
See Section 2.0  
-0.5  
-1  
±0.25  
+0.5  
+1  
-103  
devices  
(10 kΩ)  
0
2.7V (Note 7)  
1.8V (Note 7, Note 8)  
5.5V  
See Section 2.0  
±0.25  
-0.5  
-0.5  
+0.5  
+0.5  
-503  
devices  
(50 kΩ)  
0
2.7V (Note 7)  
1.8V (Note 7, Note 8)  
See Section 2.0  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS. (-202 devices VA = 4V).  
3: MCP4011/13 only, test conditions are: IW = 1.9 mA, code = 00h.  
4: MCP4012/14 only, test conditions are:  
Current at Voltage  
Device  
Comments  
Resistance  
5.5V  
2.7V  
2.1 kΩ  
5 kΩ  
2.25 mA  
1.4 mA  
450 µA  
90 µA  
1.1 mA  
450 µA  
210 µA  
40 µA  
MCP4012 includes VWZSE  
MCP4014 includes VWFSE  
10 kΩ  
50 kΩ  
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly over voltage and temperature. See  
Section 6.0 “Resistor” for additional information.  
8: For voltages below 2.7V, refer to Section 2.0 “Typical Performance Curves”.  
9: The MCP4011 is externally connected to match the configurations of the MCP4012 and MCP4014 and then tested.  
DS21978C-page 4  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
AC/DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise indicated, all parameters apply across the specified operating ranges.  
TA = -40°C to +125°C, 2.1 kΩ, 5 kΩ, 10 kΩ and 50 kΩ devices. Typical specifications represent values for VDD = 2.7V to 5.5V,  
V
SS = 0V, TA = +25°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Digital Inputs/Outputs (CS, U/D)  
Input High Voltage  
VIH  
VIL  
0.7 VDD  
V
V
V
Input Low Voltage  
0.3 VDD  
12.5 (6)  
High-Voltage Input Entry Voltage  
VIHH  
8.5  
Threshold for WiperLock™  
Technology  
High-Voltage Input Exit Voltage  
CS Pull-up/Pull-down Resistance  
CS Weak Pull-up/Pull-down Current  
Input Leakage Current  
VIHH  
RCS  
IPU  
-1  
16  
VDD+0.8(6)  
V
1
kΩ  
µA  
µA  
pF  
VDD = 5.5V, VCS = 3V  
VDD = 5.5V, VCS = 3V  
VIN = VDD  
170  
IIL  
CS and U/D Pin Capacitance  
CIN  
,
10  
fC = 1 MHz, VDD 2.7V  
COUT  
RAM (Wiper) Value  
Value Range  
N
N
0h  
3Fh  
hex  
hex  
Default POR Setting  
Power Requirements  
1Fh  
Power Supply Sensitivity  
(MCP4011 and MCP4013 only)  
PSS  
0.0015  
0.0015  
0.0035  
0.0035  
%/%  
%/%  
VDD = 4.5V to 5.5V, VA = 4.5V,  
Code = 1Fh  
V
DD = 2.7V to 4.5V, VA = 2.7V,  
Code = 1Fh  
Note 1: Resistance is defined as the resistance between terminal A to terminal B.  
2: INL and DNL are measured at VW with VA = VDD and VB = VSS. (-202 devices VA = 4V).  
3: MCP4011/13 only, test conditions are: IW = 1.9 mA, code = 00h.  
4: MCP4012/14 only, test conditions are:  
Current at Voltage  
Device  
Comments  
Resistance  
5.5V  
2.7V  
2.1 kΩ  
5 kΩ  
2.25 mA  
1.4 mA  
450 µA  
90 µA  
1.1 mA  
450 µA  
210 µA  
40 µA  
MCP4012 includes VWZSE  
MCP4014 includes VWFSE  
10 kΩ  
50 kΩ  
5: Resistor terminals A, W and B’s polarity with respect to each other is not restricted.  
6: This specification by design.  
7: Non-linearity is affected by wiper resistance (RW), which changes significantly over voltage and temperature. See  
Section 6.0 “Resistor” for additional information.  
8: For voltages below 2.7V, refer to Section 2.0 “Typical Performance Curves”.  
9: The MCP4011 is externally connected to match the configurations of the MCP4012 and MCP4014 and then tested.  
© 2006 Microchip Technology Inc.  
DS21978C-page 5  
MCP4011/2/3/4  
tCSHI  
tCSLO  
CS  
1/fUD  
tLUC  
tLCUF  
tLUC  
tLO  
tLCUF  
U/D  
tHI  
tLCUR  
tS  
tS  
W
FIGURE 1-1:  
Increment Timing Waveform.  
SERIAL TIMING CHARACTERISTICS  
Electrical Specifications: Unless otherwise noted, all parameters apply across the specified operating ranges.  
Extended (E): VDD = +1.8V to 5.5V, TA = -40°C to +125°C.  
Parameters  
CS Low Time  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
tCSLO  
tCSHI  
5
500  
5
1
µs  
ns  
CS High Time  
2.7V VDD 5.5V  
ns  
1.8V VDD < 2.7V  
2.7V VDD 5.5V  
1.8V VDD < 2.7V  
U/D to CS Hold Time  
tLUC  
500  
750  
500  
3
ns  
ns  
CS to U/D Low Setup Time  
CS to U/D High Setup Time  
U/D High Time  
tLCUF  
tLCUR  
tHI  
ns  
µs  
ns  
500  
500  
U/D Low Time  
tLO  
ns  
Up/Down Toggle Frequency  
Wiper Settling Time  
fUD  
MHz  
µs  
µs  
µs  
µs  
ns  
tS  
0.5  
1
2.1 kΩ, CL = 100 pF  
5 kΩ, CL = 100 pF  
10 kΩ, CL = 100 pF  
50 kΩ, CL = 100 pF  
2
10  
Wiper Response on Power-up  
tPU  
200  
DS21978C-page 6  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
tCSHI  
tCSLO  
CS  
1/fUD  
tLUC  
tLCUF  
tLUC  
tHI  
U/D  
tLO  
tLCUR  
tS  
tS  
W
FIGURE 1-2:  
Decrement Timing Waveform.  
SERIAL TIMING CHARACTERISTICS  
Electrical Specifications: Unless otherwise noted, all parameters apply across the specified operating ranges.  
Extended (E): VDD = +1.8V to 5.5V, TA = -40°C to +125°C.  
Parameters  
CS Low Time  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
tCSLO  
tCSHI  
5
500  
5
1
µs  
ns  
CS High Time  
2.7V VDD 5.5V  
ns  
1.8V VDD < 2.7V  
2.7V VDD 5.5V  
1.8V VDD < 2.7V  
U/D to CS Hold Time  
tLUC  
500  
750  
500  
3
ns  
ns  
CS to U/D Low Setup Time  
CS to U/D High Setup Time  
U/D High Time  
tLCUF  
tLCUR  
tHI  
ns  
µs  
ns  
500  
500  
U/D Low Time  
tLO  
ns  
Up/Down Toggle Frequency  
Wiper Settling Time  
fUD  
MHz  
µs  
µs  
µs  
µs  
ns  
tS  
0.5  
1
2.1 kΩ, CL = 100 pF  
5 kΩ, CL = 100 pF  
10 kΩ, CL = 100 pF  
50 kΩ, CL = 100 pF  
2
10  
Wiper Response on Power-up  
tPU  
200  
© 2006 Microchip Technology Inc.  
DS21978C-page 7  
MCP4011/2/3/4  
tCSHI  
tCSLO  
12V  
CS  
5V  
1/fUD  
tHUC tHCUF  
tHUC  
tLO  
tHCUF  
U/D  
tHCUR  
W
tHI  
tS  
tS  
FIGURE 1-3:  
High-Voltage Increment Timing Waveform.  
SERIAL TIMING CHARACTERISTICS  
Electrical Specifications: Unless otherwise noted, all parameters apply across the specified operating ranges.  
Extended (E): VDD = +1.8V to 5.5V, TA = -40°C to +125°C.  
Parameters  
CS Low Time  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
tCSLO  
tCSHI  
5
500  
5
1
µs  
ns  
CS High Time  
2.7V VDD 5.5V  
ns  
1.8V VDD < 2.7V  
U/D High Time  
tHI  
tLO  
500  
500  
ns  
U/D Low Time  
ns  
Up/Down Toggle Frequency  
HV U/D to CS Hold Time  
HV CS to U/D Low Setup Time  
HV CS to U/D High Setup Time  
Wiper Settling Time  
fUD  
MHz  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
tHUC  
tHCUF  
tHCUR  
tS  
1.5  
8
4.5  
0.5  
1
2.1 kΩ, CL = 100 pF  
5 kΩ, CL = 100 pF  
10 kΩ, CL = 100 pF  
50 kΩ, CL = 100 pF  
2
10  
Wiper Response on Power-up  
tPU  
200  
DS21978C-page 8  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
tCSHI  
tCSLO  
12V  
5V  
CS  
1/fUD  
tHUC  
tHCUF  
tHUC  
tHI  
U/D  
tLO  
tHCUR  
tS  
tS  
W
FIGURE 1-4:  
High-Voltage Decrement Timing Waveform.  
SERIAL TIMING CHARACTERISTICS  
Electrical Specifications: Unless otherwise noted, all parameters apply across the specified operating ranges.  
Extended (E): VDD = +1.8V to 5.5V, TA = -40°C to +125°C.  
Parameters  
CS Low Time  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
tCSLO  
tCSHI  
5
500  
5
1
µs  
ns  
CS High Time  
2.7V VDD 5.5V  
ns  
1.8V VDD < 2.7V  
U/D High Time  
tHI  
tLO  
500  
500  
ns  
U/D Low Time  
ns  
Up/Down Toggle Frequency  
HV U/D to CS Hold Time  
HV CS to U/D Low Setup Time  
HV CS to U/D High Setup Time  
Wiper Settling Time  
fUD  
MHz  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
tHUC  
tHCUF  
tHCUR  
tS  
1.5  
8
4.5  
0.5  
1
2.1 kΩ, CL = 100 pF  
5 kΩ, CL = 100 pF  
10 kΩ, CL = 100 pF  
50 kΩ, CL = 100 pF  
2
10  
Wiper Response on Power-up  
tPU  
200  
© 2006 Microchip Technology Inc.  
DS21978C-page 9  
MCP4011/2/3/4  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, VDD = +2.7V to +5.5V, VSS = GND.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 6L-SOT-23  
Thermal Resistance, 8L-DFN (2x3)  
Thermal Resistance, 8L-MSOP  
Thermal Resistance, 8L-SOIC  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+125  
+150  
°C  
°C  
°C  
θJA  
θJA  
θJA  
θJA  
θJA  
70  
120  
85  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
206  
163  
DS21978C-page 10  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
80  
250  
200  
150  
100  
50  
1000  
800  
600  
400  
200  
0
2.7V -40°C  
70  
60  
50  
40  
30  
20  
10  
0
2.7V 25°C  
2.7V 85°C  
2.7V 125°C  
5.5V -40°C  
5.5V 25°C  
5.5V 85°C  
5.5V 125°C  
ICS  
-200  
-400  
-600  
-800  
-1000  
RCS  
0
0.20  
0.40  
0.60  
0.80  
1.00  
9
8
7
6
5
VCS (V)  
4
3
2
1
f
U/D (MHz)  
FIGURE 2-1:  
Device Current (I ) vs. U/D  
FIGURE 2-3:  
CS Pull-up/Pull-down  
DD  
Frequency (f ) and Ambient Temperature  
Resistance (R ) and Current (I ) vs. CS Input  
U/D  
CS  
CS  
(V = 2.7V and 5.5V).  
Voltage (V ) (V = 5.5V).  
DD  
CS DD  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
12  
10  
8
1.8V Entry  
2.7V Entry  
5.5V Entry  
1.8V Exit  
2.7V Exit  
5.5V Exit  
VDD = 5.5V  
6
4
2
VDD = 2.7V  
0
-40  
25  
85  
125  
-40 -20  
0
20  
40  
60  
80 100 120  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-2:  
Device Current (I  
) and  
FIGURE 2-4:  
CS High Input Entry/Exit  
SHDN  
V
. (CS = V ) vs. Ambient Temperature.  
Threshold vs. Ambient Temperature and V  
.
DD  
DD  
DD  
© 2006 Microchip Technology Inc.  
DS21978C-page 11  
MCP4011/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
140  
120  
100  
80  
0.075  
0.05  
120  
100  
80  
60  
40  
20  
0
0.8  
0.6  
0.4  
0.2  
0
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
INL  
0.025  
0
INL  
DNL  
60  
-0.025  
-0.05  
-0.075  
-0.1  
40  
DNL  
RW  
-0.2  
-0.4  
RW  
20  
0
0
8
16 24 32 40 48 56  
Wiper Setting (decimal)  
0
8
16 24 32 40 48 56  
Wiper Setting (decimal)  
FIGURE 2-5:  
2.1 kΩ Pot Mode – R (Ω),  
FIGURE 2-8:  
2.1 kΩ Rheo Mode – R  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
(Ω), INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 5.5V).  
Ambient Temperature (V = 5.5V).  
DD  
DD  
500  
10  
8
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
400  
0.1  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
400  
300  
200  
100  
0
300  
200  
100  
0
0.05  
0
INL  
6
INL  
4
DNL  
RW  
2
-0.05  
-0.1  
0
DNL  
40  
RW  
24  
-2  
0
8
16 24 32 40 48 56  
Wiper Setting (decimal)  
0
8
16  
32  
48  
56  
Wiper Setting (decimal)  
FIGURE 2-6:  
2.1 kΩ Pot Mode – R (Ω),  
FIGURE 2-9:  
2.1 kΩ Rheo Mode – R  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
(Ω), INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 2.7V).  
Ambient Temperature (V = 2.7V).  
DD  
DD  
1100  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
1100  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
2.25  
1.75  
1.25  
0.75  
0.25  
-0.25  
-0.75  
-1.25  
-1.75  
-2.25  
-2.75  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
INL  
INL  
DNL  
RW  
6
4
2
0
RW  
DNL  
-2  
0
8
16 24 32 40 48 56  
Wiper Setting (decimal)  
0
8
16 24 32 40 48 56  
Wiper Setting (decimal)  
FIGURE 2-7:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 1.8V).  
2.1 kΩ Pot Mode – R (Ω),  
FIGURE 2-10:  
(Ω), INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 1.8V).  
2.1 kΩ Rheo Mode – R  
W
W
DD  
DD  
DS21978C-page 12  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
2080  
2500  
2000  
1500  
1000  
500  
2060  
VDD = 5.5V  
2040  
-40°C  
25°C  
85°C  
125°C  
2020  
VDD = 2.7V  
0
2000  
0
8
16  
24  
32  
40  
48  
56  
64  
-40  
0
40  
80  
120  
Wiper Setting (decimal)  
Ambient Temperature (°C)  
FIGURE 2-11:  
2.1 kΩ – Nominal  
FIGURE 2-12:  
2.1 kΩ – R  
(Ω) vs. Wiper  
WB  
Resistance (Ω) vs. Ambient Temperature and  
Setting and Ambient Temperature.  
V
.
DD  
© 2006 Microchip Technology Inc.  
DS21978C-page 13  
MCP4011/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
WIPER  
WIPER  
U/D  
U/D  
FIGURE 2-13:  
2.1 kΩ – Low-Voltage  
FIGURE 2-16:  
2.1 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 2.7V).  
Increment Wiper Settling Time (V = 2.7V).  
DD  
DD  
WIPER  
U/D  
WIPER  
U/D  
FIGURE 2-14:  
2.1 kΩ – Low-Voltage  
FIGURE 2-17:  
2.1 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 5.5V).  
Increment Wiper Settling Time (V = 5.5V).  
DD  
DD  
WIPER  
VDD  
FIGURE 2-15:  
2.1 kΩ – Power-Up Wiper  
Response Time.  
DS21978C-page 14  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
140  
120  
100  
80  
0.075  
0.05  
120  
100  
80  
60  
40  
20  
0
0.6  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
0.4  
0.2  
0
0.025  
0
INL  
INL  
DNL  
DNL  
60  
-0.025  
-0.05  
-0.075  
-0.1  
-0.2  
-0.4  
-0.6  
40  
RW  
RW  
20  
0
0
8
16 24 32 40 48 56  
Wiper Setting (decimal)  
0
8
16 24 32 40 48 56  
Wiper Setting (decimal)  
FIGURE 2-18:  
5 kΩ Pot Mode – R (Ω),  
FIGURE 2-21:  
5 kΩ Rheo Mode – R (Ω),  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 5.5V).  
Ambient Temperature (V = 5.5V).  
DD  
DD  
450  
0.1  
600  
5
4
3
2
1
0
-1  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
400  
350  
300  
250  
200  
150  
100  
50  
0.075  
0.05  
0.025  
0
500  
400  
300  
200  
100  
0
INL  
INL  
DNL  
-0.025  
-0.05  
-0.075  
-0.1  
RW  
RW  
DNL  
0
-0.125  
0
8
16 24 32 40 48 56  
Wiper Setting (decimal)  
0
8
16 24 32 40 48 56  
Wiper Setting (decimal)  
FIGURE 2-19:  
5 kΩ Pot Mode – R (Ω),  
FIGURE 2-22:  
5 kΩ Rheo Mode – R (Ω),  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 2.7V).  
Ambient Temperature (V = 2.7V).  
DD  
DD  
2500  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
2500  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
2.25  
1.75  
1.25  
0.75  
0.25  
-0.25  
-0.75  
-1.25  
-1.75  
-2.25  
-2.75  
2000  
1500  
1000  
500  
0
2000  
1500  
1000  
500  
0
INL  
INL  
DNL  
RW  
6
4
2
0
RW  
DNL  
-2  
0
8
16 24 32 40 48 56  
Wiper Setting (decimal)  
0
8
16 24 32 40 48 56  
Wiper Setting (decimal)  
FIGURE 2-20:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 1.8V).  
5 kΩ Pot Mode – R (Ω),  
FIGURE 2-23:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 1.8V).  
5 kΩ Rheo Mode – R (Ω),  
W
W
DD  
DD  
© 2006 Microchip Technology Inc.  
DS21978C-page 15  
MCP4011/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
4950  
4925  
4900  
6000  
5000  
4000  
3000  
2000  
1000  
0
4875  
VDD = 5.5V  
4850  
-40°C  
25°C  
85°C  
125°C  
4825  
VDD = 2.7V  
4800  
-40 -20  
0
20 40 60 80 100 120  
0
8
16  
24  
32  
40  
48  
56  
64  
Ambient Temperature (°C)  
Wiper Setting (decimal)  
FIGURE 2-24:  
5 kΩ – Nominal Resistance  
FIGURE 2-25:  
5 kΩ – R  
(Ω) vs. Wiper  
WB  
(Ω) vs. Ambient Temperature and V  
.
Setting and Ambient Temperature.  
DD  
DS21978C-page 16  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
WIPER  
WIPER  
U/D  
U/D  
FIGURE 2-26:  
5 kΩ – Low-Voltage  
FIGURE 2-28:  
5 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 2.7V).  
Increment Wiper Settling Time (V = 2.7V).  
DD  
DD  
WIPER  
U/D  
WIPER  
U/D  
FIGURE 2-27:  
5 kΩ – Low-Voltage  
FIGURE 2-29:  
5 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 5.5V).  
Increment Wiper Settling Time (V = 5.5V).  
DD  
DD  
© 2006 Microchip Technology Inc.  
DS21978C-page 17  
MCP4011/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
120  
100  
80  
60  
40  
20  
0
0.05  
0.025  
0
120  
100  
80  
60  
40  
20  
0
0.15  
0.1  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
DNL  
INL  
0.05  
0
DNL  
INL  
-0.025  
-0.05  
-0.075  
-0.1  
-0.05  
-0.1  
-0.15  
RW  
RW  
0
8
16 24 32 40 48 56  
Wiper Setting (decimal)  
0
8
16 24 32 40 48 56  
Wiper Setting (decimal)  
FIGURE 2-30:  
10 kΩ Pot Mode – R (Ω),  
FIGURE 2-33:  
10 kΩ Rheo Mode – R (Ω),  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 5.5V).  
Ambient Temperature (V = 5.5V).  
DD  
DD  
450  
0.05  
500  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
2.5  
400  
350  
300  
250  
200  
150  
100  
50  
0.025  
0
400  
300  
200  
100  
0
DNL  
INL  
1.5  
INL  
-0.025  
-0.05  
-0.075  
-0.1  
0.5  
DNL  
-0.5  
-1.5  
-2.5  
RW  
RW  
0
-0.125  
0
8
16 24 32 40 48 56  
Wiper Setting (decimal)  
0
8
16 24 32 40 48 56  
Wiper Setting (decimal)  
FIGURE 2-31:  
10 kΩ Pot Mode – R (Ω),  
FIGURE 2-34:  
10 kΩ Rheo Mode – R (Ω),  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 2.7V).  
Ambient Temperature (V = 2.7V).  
DD  
DD  
3500  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
3500  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
2.25  
1.75  
1.25  
0.75  
0.25  
-0.25  
-0.75  
-1.25  
-1.75  
-2.25  
-2.75  
3000  
2500  
2000  
1500  
1000  
500  
3000  
2500  
2000  
1500  
1000  
500  
RW  
DNL  
INL  
INL  
6
4
2
0
RW  
DNL  
0
0
-2  
0
8
16 24 32 40 48 56  
Wiper Setting (decimal)  
0
8
16 24 32 40 48 56  
Wiper Setting (decimal)  
FIGURE 2-32:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 1.8V).  
10 kΩ Pot Mode – R (Ω),  
FIGURE 2-35:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 1.8V).  
10 kΩ Rheo Mode – R (Ω),  
W
W
DD  
DD  
DS21978C-page 18  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
10250  
10230  
10210  
10190  
10170  
10150  
10130  
12000  
10000  
8000  
6000  
4000  
2000  
0
VDD = 5.5V  
10110  
-40°C  
25°C  
85°C  
125°C  
10090  
VDD = 2.7V  
10070  
10050  
-40 -20  
0
20 40 60 80 100 120  
0
8
16  
24  
32  
40  
Wiper Setting (decimal)  
48  
56  
64  
Ambient Temperature (°C)  
FIGURE 2-36:  
10 kΩ – Nominal Resistance  
FIGURE 2-37:  
10 kΩ – R  
(Ω) vs. Wiper  
WB  
(Ω) vs. Ambient Temperature and V  
Setting and Ambient Temperature.  
DD.  
© 2006 Microchip Technology Inc.  
DS21978C-page 19  
MCP4011/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
WIPER  
WIPER  
U/D  
U/D  
FIGURE 2-38:  
10 kΩ – Low-Voltage  
FIGURE 2-40:  
10 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 2.7V).  
Increment Wiper Settling Time (V = 2.7V).  
DD  
DD  
WIPER  
U/D  
WIPER  
U/D  
FIGURE 2-39:  
10 kΩ – Low-Voltage  
FIGURE 2-41:  
10 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 5.5V).  
Increment Wiper Settling Time (V = 5.5V).  
DD  
DD  
DS21978C-page 20  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
200  
160  
120  
80  
0.1  
200  
150  
100  
50  
0.15  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
0.05  
0
0.1  
INL  
DNL  
0.05  
0
INL  
-0.05  
-0.1  
-0.15  
RW  
RW  
40  
-0.05  
-0.1  
DNL  
0
0
0
8
16 24 32 40 48 56  
Wiper Setting (decimal)  
0
8
16 24 32 40 48 56  
Wiper Setting (decimal)  
FIGURE 2-42:  
50 kΩ Pot Mode – R (Ω),  
FIGURE 2-45:  
50 kΩ Rheo Mode – R (Ω),  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 5.5V).  
Ambient Temperature (V = 5.5V).  
DD  
DD  
600  
0.05  
0.025  
0
600  
1.5  
1
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
RW  
DNL  
0.5  
0
INL  
DNL  
-0.025  
-0.05  
-0.075  
-0.1  
INL  
-0.5  
-1  
RW  
-1.5  
0
8
16 24 32 40 48 56  
Wiper Setting (decimal)  
0
8
16 24 32 40 48 56  
Wiper Setting (decimal)  
FIGURE 2-43:  
50 kΩ Pot Mode – R (Ω),  
FIGURE 2-46:  
50 kΩ Rheo Mode – R (Ω),  
W
W
INL (LSb), DNL (LSb) vs. Wiper Setting and  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 2.7V).  
Ambient Temperature (V = 2.7V).  
DD  
DD  
12000  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
12000  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
-40C Rw  
-40C INL  
-40C DNL  
25C Rw  
25C INL  
25C DNL  
85C Rw  
85C INL  
85C DNL  
125C Rw  
125C INL  
125C DNL  
11000  
10000  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
11000  
10000  
9000  
8000  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
0
RW  
RW  
INL  
INL  
6
4
2
0
6
4
2
0
DNL  
DNL  
-2  
-2  
0
8
16 24 32 40 48 56  
Wiper Setting (decimal)  
0
8
16 24 32 40 48 56  
Wiper Setting (decimal)  
FIGURE 2-44:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 1.8V).  
50 kΩ Pot Mode – R (Ω),  
FIGURE 2-47:  
INL (LSb), DNL (LSb) vs. Wiper Setting and  
Ambient Temperature (V = 1.8V).  
50 kΩ Rheo Mode – R (Ω),  
W
W
DD  
DD  
© 2006 Microchip Technology Inc.  
DS21978C-page 21  
MCP4011/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
60000  
50000  
40000  
30000  
20000  
10000  
0
49800  
49600  
49400  
VDD = 5.5V  
49200  
49000  
48800  
48600  
48400  
48200  
48000  
VDD = 2.7V  
-40C  
25C  
85C  
125C  
-40 -20  
0
20 40 60 80 100 120  
0
8
16  
24  
32  
40  
Wiper Setting (decimal)  
48  
56  
64  
Ambient Temperature (°C)  
FIGURE 2-48:  
50 kΩ – Nominal Resistance  
FIGURE 2-49:  
50 kΩ – R  
(Ω) vs. Wiper  
WB  
(Ω) vs. Ambient Temperature and V  
Setting and Ambient Temperature.  
DD.  
DS21978C-page 22  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
U/D  
U/D  
WIPER  
WIPER  
FIGURE 2-50:  
50 kΩ – Low-Voltage  
FIGURE 2-53:  
50 kΩ – Low-Voltage  
Decrement Wiper Settling Time (V = 2.7V).  
Increment Wiper Settling Time (V = 2.7V).  
DD  
DD  
U/D  
U/D  
WIPER  
WIPER  
FIGURE 2-51:  
50 kΩ – Low-Voltage  
FIGURE 2-54:  
50 kΩ - Low-Voltage  
Decrement Wiper Settling Time (V = 5.5V).  
Increment Wiper Settling Time (V = 5.5V).  
DD  
DD  
WIPER  
VDD  
FIGURE 2-52:  
50 kΩ – Power-Up Wiper  
Response Time.  
© 2006 Microchip Technology Inc.  
DS21978C-page 23  
MCP4011/2/3/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = 5V, VSS = 0V.  
4.5  
A
B
2.1 k:  
4
3.5  
3
+5V  
W
VIN  
VOUT  
+
~
2.5  
2
5 k:  
-
Offset  
Gnd  
DUT  
1.5  
1
10 k:  
50 k:  
0.5  
0
2.5V DC  
-40  
25  
125  
Temperature (°C)  
FIGURE 2-55:  
-3 dB Bandwidth vs.  
FIGURE 2-56:  
-3 dB Bandwidth Test  
Temperature.  
Circuit.  
DS21978C-page 24  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
Pin Number  
Pin  
Type  
Buffer  
Type  
MCP4012  
MCP4013  
(SOT-23-6)  
Symbol  
Function  
MCP4011  
(SOIC-8)  
MCP4014  
(SOT-23-5)  
1
2
3
4
5
6
7
8
1
2
1
2
VDD  
VSS  
A
P
P
Positive Power Supply Input  
Ground  
6
5
I/O  
I/O  
I
A
Potentiometer Terminal A  
Potentiometer Wiper Terminal  
Chip Select Input  
5
W
A
4
4
CS  
B
TTL  
A
3
3
I/O  
I
Potentiometer Terminal B  
No Connection  
NC  
U/D  
TTL  
Increment/Decrement Input  
Legend: TTL = TTL compatible input  
A = Analog input  
O = Output  
I = Input  
P = Power  
3.1  
Positive Power Supply Input (VDD  
)
3.4  
Potentiometer Wiper (W) Terminal  
The VDD pin is the device’s positive power supply input.  
The input power supply is relative to VSS and can range  
from 1.8V to 5.5V. A decoupling capacitor on VDD (to  
The terminal W pin is connected to the internal potenti-  
ometer’s terminal W (the wiper). The wiper terminal is  
the adjustable terminal of the digital potentiometer. The  
terminal W pin does not have a polarity relative to  
terminals A or B pins. The terminal W pin can support  
both positive and negative current. The voltage on  
VSS  
)
is recommended to achieve maximum  
performance.  
terminal W must be between VSS and VDD  
.
3.2  
Ground (VSS)  
The VSS pin is the device ground reference.  
3.5  
Potentiometer Terminal B  
The terminal B pin is connected to the internal potenti-  
ometer’s terminal B (available on some devices). The  
potentiometer’s terminal B is the fixed connection to the  
0x00 terminal of the digital potentiometer.  
3.3  
Potentiometer Terminal A  
The terminal A pin is connected to the internal potenti-  
ometer’s terminal A (available on some devices). The  
potentiometer’s terminal A is the fixed connection to the  
0x3F terminal of the digital potentiometer.  
The terminal B pin is available on the MCP4011 device.  
The terminal B pin does not have a polarity relative to  
the terminal W or A pins. The terminal B pin can  
support both positive and negative current. The voltage  
The terminal A pin is available on the MCP4011,  
MCP4012 and MCP4013 devices. The terminal A pin  
does not have a polarity relative to the terminal W or B  
pins. The terminal A pin can support both positive and  
negative current. The voltage on terminal A must be  
on terminal B must be between VSS and VDD  
.
The terminal B pin is not available on the MCP4012,  
MCP4013 and MCP4014 devices.  
between VSS and VDD  
.
For the MCP4013 and MCP4014, the internal potenti-  
The terminal A pin is not available on the MCP4014.  
The potentiometer’s terminal A is internally floating.  
ometer’s terminal B is internally connected to VSS  
.
Terminal B does not have a polarity relative to  
terminals W or A. Terminal B can support both positive  
and negative current.  
For the MCP4012, terminal B is internally floating.  
© 2006 Microchip Technology Inc.  
DS21978C-page 25  
MCP4011/2/3/4  
3.6  
Chip Select (CS)  
3.7  
Increment/Decrement (U/D)  
The CS pin is the chip select input. Forcing the CS pin  
to VIL enables the serial commands. These commands  
can increment and decrement the wiper. Forcing the  
CS pin to VIHH enables the high-voltage serial  
commands. These commands can increment and  
decrement the wiper and are compatibe with the  
MCP402X devices. The wiper is saved to volatile  
memory (RAM).  
The U/D pin input is used to increment or decrement  
the wiper on the digital potentiometer. An increment  
moves the wiper one step toward terminal A, while a  
decrement moves the wiper one step toward  
terminal B.  
The CS pin has an internal pull-up resistor. The resistor  
will become “disabled” when the voltage on the CS pin  
is below the VIH level. This means that when the CS pin  
is “floating”, the CS pin will be pulled to the VIH level  
(serial communication (the U/D pin) is ignored). And  
when the CS pin is driven low (VIL), the resistance  
becomes very large to reduce the device current  
consumption when serial commands are occurring.  
See Figure 2-3 for additional information.  
DS21978C-page 26  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
EQUATION 4-1:  
R CALCULATION  
4.0  
GENERAL OVERVIEW  
S
RAB  
The MCP4011/2/3/4 devices are general purpose  
digital potentiometers intended to be used in  
applications where a programmable resistance with  
moderate bandwidth is desired.  
RS = ---------  
63  
EQUATION 4-2:  
R
CALCULATION  
WB  
Applications generally suited for the MCP4011/2/3/4  
devices include:  
RAB  
RWB = ------------- + RW  
63  
N
• Set point or offset trimming  
N = 0 to 63 (decimal)  
• Sensor calibration  
• Selectable gain and offset amplifier designs  
• Cost-sensitive mechanical trim pot replacement  
1 LSb is the ideal resistance difference between two  
successive codes. If we use N = 1 and RW = 0 in  
Equation 4-2, we can calculate the step size for each  
increment or decrement command.  
The digital potentiometer is available in four nominal  
resistances (RAB), where the nominal resistance is  
defined as the resistance between terminal A and  
terminal B. The four nominal resistances are 2.1 kΩ,  
5 kΩ, 10 kΩ and 50 kΩ.  
The MCP4011 device offers  
a voltage divider  
(potentiometer) with all terminals available on pins.  
The MCP4012 is a true rheostat, with terminal A and  
the wiper (W) of the variable resistor available on pins.  
There are 63 resistors in a string between terminal A  
and terminal B. The wiper can be set to tap onto any of  
these 63 resistors thus providing 64 possible settings  
(including terminal A and terminal B).  
The MCP4013 device offers a voltage divider (potenti-  
ometer) with terminal B connected to ground.  
The MCP4014 device is a Rheostat device with  
terminal A of the resistor floating, terminal B connected  
to ground, and the wiper (W) available on pin.  
Figure 4-1 shows a block diagram for the resistive  
network of the device. Equation 4-1 shows the  
calculation for the step resistance, while Equation 4-2  
illustrates the calculation used to determine the  
resistance between the wiper and terminal B.  
The MCP4011 can be externally configured to  
implement any of the MCP4012, MCP4013 or  
MCP4014 configurations.  
A
4.1  
Serial Interface  
3Fh  
N = 63  
A 2-wire synchronous serial protocol is used to  
increment or decrement the digital potentiometer’s  
wiper terminal. The Increment/Decrement (U/D)  
protocol utilizes the CS and U/D input pins. Both inputs  
are tolerant of signals up to 12.5V without damaging  
the device. The CS pin can differenciate between two  
high-voltage levels, VIH and VIHH. This enables  
additional commands without requiring additional input  
pins. The high-voltage commands (VIHH on the CS pin)  
are similar to the standard commands and are  
supported for compatability to the MCP401X family of  
devices.  
(1)  
RW  
RS  
RS  
RS  
N = 62  
N = 61  
3Eh  
3Dh  
(1)  
(1)  
RW  
RW  
W
N = 1  
N = 0  
01h  
00h  
The simple U/D protocol uses the state of the U/D pin  
at the falling edge of the CS pin to determine if  
Increment or Decrement mode is desired. Subsequent  
rising edges of the U/D pin move the wiper.  
(1)  
(1)  
RW  
RW  
RS  
The wiper value will not underflow or overflow.  
B
Analog  
Mux  
Note 1: The wiper resistance is tap dependent.  
That is, each tap selection resistance  
has a small variation. This variation  
effects the smaller resistance devices  
(2.1 kΩ) more.  
FIGURE 4-1:  
Resistor Block Diagram.  
© 2006 Microchip Technology Inc.  
DS21978C-page 27  
MCP4011/2/3/4  
4.2  
Power-up  
4.3  
Brown Out  
When the device powers up (rising VDD crosses the  
Trip Point Voltage (VTP)), the “default” wiper setting is  
restored. Table 4-1 shows the default value loaded into  
the wiper on POR/BOR.  
If the device VDD is below the specified minimum  
voltage, care must be taken to ensure that the CS and  
U/D pins do not “create” any of the serial commands.  
When the device VDD drops below VMIN (1.8V), the  
electrical performance may not meet the data sheet  
specifications (see Figure 4-2). The wiper state may be  
unknown. Also, the device may be capable of  
incrementing or decrementing, if a valid command is  
detected on the CS and U/D pins.  
TABLE 4-1:  
DEFAULT POR WIPER  
SETTING SELECTION  
Default  
Package  
Code  
POR  
Wiper  
Setting  
Wiper  
Code  
Typical  
RAB Value  
When the device voltage rises from below the power-  
up trip point (VTP) into the valid operation voltage  
range, the wiper state will be forced to the default POR  
wiper setting (see Table 4-1).  
-202  
-502  
-103  
-503  
Mid-scale  
Mid-scale  
Mid-scale  
Mid-scale  
1Fh  
1Fh  
1Fh  
1Fh  
2.1 kΩ  
5.0 kΩ  
10.0 kΩ  
50.0 kΩ  
4.4  
Serial Interface Inactive  
The serial interface is inactive any time the CS pin is at  
VIH and all write cycles are completed.  
While VDD < Vmin (1.8V), the electrical performance  
may not meet the data sheet specifications (see  
Figure 4-2). The wiper state may be unknown. Also, the  
device may be capable of incrementing or decrement-  
ing, if a valid command is detected on the CS and U/D  
pins.  
VDD  
1.8V  
VTP  
VSS  
POR Trip Point (on Rising VDD  
Outside Device Operation  
)
Wiper Forced to Default POR Setting  
FIGURE 4-2:  
Power-up and Brown-out.  
DS21978C-page 28  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
5.2  
Serial Commands  
5.0  
5.1  
SERIAL INTERFACE  
Overview  
The MCP401X devices support eight serial commands.  
Six of these commands are for support and to ease  
migration with the MCP402X family of devices. The  
commands can be grouped into the following types:  
The MCP4011/2/3/4 utilizes a simple 2-wire interface to  
increment or decrement the digital potentiometer’s  
wiper terminal (W). This interface uses the CS and U/D  
pins. The CS pin is the Chip Select input, while the U/D  
pin is the Up/Down input.  
• Serial Commands  
• High-voltage Serial Commands  
All the commands are shown in Table 5-1.  
The Increment/Decrement protocol enables the device  
to move one step at a time through the range of  
possible resistance values. The wiper value is  
initialized with the “default” value upon power-up.  
The command type is determined by the voltage level  
the CS pin is driven to. The initial state that the CS pin  
must be driven is VIH. From VIH, the two levels that the  
CS pin can be driven are:  
A wiper value of 00h connects the wiper to terminal B.  
A wiper value of 3Fh connects the wiper to terminal A.  
Increment commands move the wiper toward terminal  
A, but will not increment to a value greater than 3Fh.  
Decrement commands move the wiper toward terminal  
B, but will not decrement below 00h.  
• VIL  
• VIHH  
If the CS pin is driven from VIH to VIL, a serial  
command is selected. If the CS pin is driven from VIH to  
VIHH, a high-voltage serial command is selected.  
Refer to Section 1.0 “Electrical Characteristics”,  
AC/DC Electrical Characteristics table for detailed input  
threshold and timing specifications.  
Support of the high-voltage serial commands is for  
compatiblity with the MCP402X devices.  
Communication is unidirectional. Therefore, the value  
of the current wiper setting cannot be read out of the  
MCP401X device.  
TABLE 5-1:  
COMMANDS  
High Voltage  
on CS pin?  
Command Name  
Increment  
Increment (for MCP402X Compatibility)  
Decrement  
Decrement (for MCP402X Compatibility)  
High-Voltage Increment 1 (for MCP402X Compatibility)  
High-Voltage Increment 2 (for MCP402X Compatibility)  
High-Voltage Decrement 1 (for MCP402X Compatibility)  
High-Voltage Decrement 2 (for MCP402X Compatibility)  
Yes  
Yes  
Yes  
Yes  
© 2006 Microchip Technology Inc.  
DS21978C-page 29  
MCP4011/2/3/4  
When the device voltage falls below the RAM retention  
voltage of the device, the wiper state may be corrupted.  
When the device returns to the operating range, the  
wiper will be loaded with the default POR wiper setting.  
5.2.1  
INCREMENT  
This mode is achieved by initializing the U/D pin to a  
high state (VIH) prior to achieving a low state (VIL) on the  
CS pin. Subsequent rising edges of the U/D pin  
increment the wiper setting toward terminal A. This is  
shown in Figure 5-1.  
After the CS pin is driven to VIH (from VIL), any other  
serial command may immediately be entered.  
After the wiper is incremented to the desired position,  
the CS pin should be forced to VIH to ensure that  
“unexpected” transitions on the U/D pin do not cause  
the wiper setting to increment. Driving the CS pin to VIH  
should occur as soon as possible (within device  
specifications) after the last desired increment occurs.  
Note:  
The wiper value will not overflow. That is,  
once the wiper value equals 0x3F,  
subsequent increment commands are  
ignored.  
VIH  
VIL  
CS  
VIH  
6
1
2
3
4
5
U/D  
VIL  
X+1 X+2  
X+3 X+4  
X
Wiper  
FIGURE 5-1:  
Increment.  
DS21978C-page 30  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
When the device voltage falls below the RAM retention  
voltage of the device, the wiper state may be corrupted.  
When the device returns to the operating range, the  
wiper will be loaded with the Default POR wiper setting.  
5.2.2  
Note:  
INCREMENT (FOR MCP402X  
COMPATIBILITY)  
This command allows compatibility with  
the MCP402X family, which supports  
updating of the non-volatile wiper setting.  
After the CS pin is driven to VIH (from VIL), any other  
serial command may immediately be entered.  
This mode is achieved by initializing the U/D pin to a  
high state (VIH) prior to achieving a low state (VIL) on the  
CS pin. Subsequent rising edges of the U/D pin  
increments the wiper setting toward terminal A. This is  
shown in Figure 5-2.  
Note:  
The wiper value will not overflow. That is,  
once the wiper value equals 0x3F,  
subsequent increment commands are  
ignored.  
After the wiper is incremented to the desired position,  
the U/D pin should be driven low (VIL), and the CS pin  
should be forced to VIH to ensure that “unexpected”  
transitions on the U/D pin do not cause the wiper  
setting to increment. Driving the CS pin to VIH should  
occur as soon as possible (within device specifications)  
after the last desired increment occurs.  
VIH  
VIH  
VIL  
CS  
VIH  
6
1
2
3
4
5
VIL  
U/D  
X
X+1 X+2  
X+3 X+4  
Wiper  
FIGURE 5-2:  
Increment (For MCP402X Compatibility).  
© 2006 Microchip Technology Inc.  
DS21978C-page 31  
MCP4011/2/3/4  
When the device voltage falls below the RAM retention  
voltage of the device, the wiper state may be corrupted.  
When the device returns to the operating range, the  
wiper will be loaded with the default POR wiper setting.  
5.2.3  
DECREMENT  
This mode is achieved by initializing the U/D pin to a low  
state (VIL) prior to achieving a low state (VIL) on the CS  
pin. Subsequent rising edges of the U/D pin will  
decrement the wiper setting toward terminal B. This is  
shown in Figure 5-3.  
After the CS pin is driven to VIH (from VIL), any other  
serial command may immediately be entered.  
After the wiper is decremented to the desired position,  
the U/D pin should be forced low (VIL) and the CS pin  
should be forced to VIH. This will ensure that  
“unexpected” transitions on the U/D pin do not cause  
the wiper setting to decrement. Driving the CS pin to  
VIH should occur as soon as possible (within device  
specifications) after the last desired increment occurs.  
Note:  
The wiper value will not underflow. That is,  
once the wiper value equals 0x00,  
subsequent decrement commands are  
ignored.  
VIH  
VIL  
CS  
6
VIH  
4
5
1
2
3
VIL  
VIL  
U/D  
X
X-1  
X-2  
X-3  
X-4  
Wiper  
FIGURE 5-3:  
Decrement.  
DS21978C-page 32  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
When the device voltage falls below the RAM retention  
voltage of the device, the wiper state may be corrupted.  
When the device returns to the operating range, the  
wiper will be loaded with the default POR wiper setting.  
5.2.4  
Note:  
DECREMENT (FOR MCP402X  
COMPATIBILITY)  
This command allows compatibility with  
the MCP402X family, which supports  
updating of the non-volatile wiper setting.  
After the CS pin is driven to VIH (from VIL), any other  
serial command may immediately be entered.  
This mode is achieved by initializing the U/D pin to a  
low state (VIL) prior to achieving a low state (VIL) on the  
CS pin. Subsequent rising edges of the U/D pin  
decrement the wiper setting toward terminal B. This is  
shown in Figure 5-4.  
Note:  
The wiper value will not underflow. That is,  
once the wiper value equals 0x00,  
subsequent decrement commands are  
ignored.  
After the wiper is decremented to the desired position,  
the U/D pin should remain high (VIH), and the CS pin  
should be forced to VIH to ensure that “unexpected”  
transitions on the U/D pin do not cause the wiper  
setting to increment. Driving the CS pin to VIH should  
occur as soon as possible (within device specifications)  
after the last desired increment occurs.  
VIH  
VIL  
CS  
VIH  
1
2
3
4
5
6
VIL  
U/D  
X-1  
X-2  
X-3  
X-4  
X
Wiper  
FIGURE 5-4:  
Decrement (For MCP402X Compatibility).  
© 2006 Microchip Technology Inc.  
DS21978C-page 33  
MCP4011/2/3/4  
After the CS pin is driven to VIH (from VIL), any other  
serial command may immediately be entered.  
5.2.5  
HIGH-VOLTAGE INCREMENT 1  
(FOR MCP402X COMPATIBILITY)  
Note:  
The wiper value will not overflow. That is,  
once the wiper value equals 0x3F,  
subsequent increment commands are  
ignored.  
Note:  
This command allows compatibility with  
the MCP402X family, which supports  
updating of the non-volatile wiper setting  
with the WiperLock Technology feature.  
This mode is achieved by initializing the U/D pin to a  
high state (VIH) prior to the CS pin being driven to VIHH  
.
Subsequent rising edges of the U/D pin increment the  
wiper setting toward terminal A. Set the U/D pin to the  
high state (VIH) prior to forcing the CS pin to VIH. This  
is shown in Figure 5-5.  
VIHH  
VIH  
VIH  
CS  
VIH  
VIH  
6
1
2
3
4
5
U/D  
VIL  
X+1 X+2  
X+3 X+4  
X
Wiper  
FIGURE 5-5:  
High-Voltage Increment 1 (For MCP402X Compatibility).  
DS21978C-page 34  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
After the CS pin is driven to VIH (from VIL), any other  
serial command may immediately be entered.  
5.2.6  
Note:  
HIGH-VOLTAGE INCREMENT 2  
(FOR MCP402X COMPATIBILITY)  
Note:  
The wiper value will not overflow. That is,  
once the wiper value equals 0x3F,  
subsequent increment commands are  
ignored.  
This command allows compatibility with  
the MCP402X family, which supports  
updating of the non-volatile wiper setting  
with the WiperLock Technology feature.  
This mode is achieved by initializing the U/D pin to a  
high state (VIH) prior to the CS pin being driven to VIHH  
.
Subsequent rising edges of the U/D pin increment the  
wiper setting toward terminal A. Set the U/D pin to the  
low state (VIL) prior to forcing the CS pin to VIH. This is  
shown in Figure 5-6.  
VIHH  
VIH  
VIH  
CS  
VIH  
6
1
2
3
4
5
VIL  
U/D  
VIL  
X+1 X+2  
X+3 X+4  
X
Wiper  
FIGURE 5-6:  
High-Voltage Increment 2 (For MCP402X Compatibility).  
© 2006 Microchip Technology Inc.  
DS21978C-page 35  
MCP4011/2/3/4  
After the CS pin is driven to VIH (from VIL), any other  
serial command may immediately be entered.  
5.2.7  
HIGH-VOLTAGE DECREMENT 1  
(FOR MCP402X COMPATIBILITY)  
Note:  
The wiper value will not underflow. That is,  
once the wiper value equals 0x00,  
subsequent decrement commands are  
ignored.  
Note:  
This command allows compatibility with  
the MCP402X family, which supports  
updating of the non-volatile wiper setting  
with the WiperLock Technology feature.  
This mode is achieved by initializing the U/D pin to a  
low state (VIL) prior to the CS pin being driven to VIHH  
.
Subsequent rising edges of the U/D pin decrement the  
wiper setting toward terminal B. Set the U/D pin to the  
low state (VIL) prior to forcing the CS pin to VIH. This is  
shown in Figure 5-7.  
VIHH  
VIH  
VIH  
CS  
1
2
3
4
6 VIH  
5
VIL  
VIL  
U/D  
X
X-1  
X-2  
X-3  
X-4  
Wiper  
FIGURE 5-7:  
High-Voltage Decrement 1 (For MCP402X Compatibility).  
DS21978C-page 36  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
After the CS pin is driven to VIH (from VIL), any other  
serial command may immediately be entered.  
5.2.8  
Note:  
HIGH-VOLTAGE DECREMENT 2  
(FOR MCP402X COMPATIBILITY)  
Note:  
The wiper value will not underflow. That is,  
once the wiper value equals 0x00,  
subsequent decrement commands are  
ignored.  
This command allows compatibility with  
the MCP402X family, which supports  
updating of the non-volatile wiper setting  
with the WiperLock Technology feature.  
This mode is achieved by initializing the U/D pin to the  
low state (VIL) prior to driving the CS pin to VIHH  
.
Subsequent rising edges of the U/D pin decrement the  
wiper setting toward terminal B. Set the U/D pin to a  
high state (VIH) prior to forcing the CS pin to VIH. This  
is shown in Figure 5-8.  
VIHH  
VIH  
VIH  
CS  
VDD  
VIH  
6
5
1
2
3
4
U/D  
VIL  
X-1  
X-2  
X-3  
X-4  
X
Wiper  
FIGURE 5-8:  
High-Voltage Decrement 2 (For MCP402X Compatibility).  
© 2006 Microchip Technology Inc.  
DS21978C-page 37  
MCP4011/2/3/4  
Step resistance (RS) is the resistance from one tap  
setting to the next. This value will be dependent on the  
5.3  
CS High Voltage  
The CS pin is High-Voltage (VIHH) tolerant, like the  
MCP402X. This allows the MCP401X to be used in  
MCP402X applications without needing to change  
other portions of the application circuit.  
RAB value that has been selected. Table 6-1 shows the  
typical step resistances for each device.  
The total resistance of the device has minimal variation  
due to operating voltage (see Figure 2-11, Figure 2-24,  
Figure 2-36 or Figure 2-48).  
6.0  
RESISTOR  
TABLE 6-1: TYPICAL STEP RESISTANCES  
Digital potentiometer applications can be divided into  
two categories:  
Typical Resistance (Ω)  
Part Number  
• Rheostat configuration  
Total (RAB  
)
Step (RS)  
• Potentiometer (or voltage divider) configuration  
MCP401X-203E  
MCP401X-503E  
MCP401X-104E  
MCP401X-504E  
2100  
5000  
33.33  
79.37  
Figure 6-1 shows a block diagram for the MCP401X  
resistors.  
10000  
50000  
158.73  
793.65  
A
3Fh  
N = 63  
(1)  
Terminal A and B, as well as the wiper W, do not have  
a polarity. These terminals can support both positive  
and negative current.  
RW  
RS  
RS  
RS  
N = 62  
N = 61  
3Eh  
3Dh  
(1)  
(1)  
RW  
RW  
W
N = 1  
N = 0  
01h  
00h  
(1)  
(1)  
RW  
RW  
RS  
B
Analog  
Mux  
Note 1: The wiper resistance is tap dependent.  
That is, each tap selection resistance  
has a small variation. This variation  
effects the smaller resistance devices  
(2.1 kΩ) more.  
FIGURE 6-1:  
Resistor Block Diagram.  
DS21978C-page 38  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
6.1.2  
POTENTIOMETER  
CONFIGURATION  
6.1  
Resistor Configurations  
6.1.1  
RHEOSTAT CONFIGURATION  
When used as a potentiometer, all three terminals are  
tied to different nodes in the circuit. This allows the  
potentiometer to output a voltage proportional to the  
input voltage. This configuration is sometimes called  
voltage divider mode. The potentiometer is used to  
provide a variable voltage by adjusting the wiper  
position between the two endpoints as shown in  
Figure 6-3. Reversing the polarity of the A and B  
terminals will not affect operation.  
When used as a rheostat, two of the three digital poten-  
tiometer’s terminals are used as a resistive element in  
the circuit. With terminal W (wiper) and either terminal  
A or terminal B, a variable resistor is created. The  
resistance will depend on the tap setting of the wiper  
and the wiper’s resistance. The resistance is controlled  
by changing the wiper setting.  
The unused terminal (B or A) should be left floating.  
Figure 6-2 shows the two possible resistors that can be  
used. Reversing the polarity of the A and B terminals  
will not affect operation.  
V1  
A
V3  
W
A
B
RAW  
or  
RBW  
W
V2  
B
FIGURE 6-3:  
Potentiometer Configuration.  
The temperature coefficient of the RAB resistors is  
minimal by design. In this configuration, the resistors all  
change uniformly, so minimal variation should be seen.  
Resistor  
Rheostat Configuration.  
FIGURE 6-2:  
The wiper resistor temperature coefficient is different  
from the RAB temperature coefficient. The voltage at  
node V3 (Figure 6-3) is not dependent on this wiper  
resistance, just the ratio of the RAB resistors, so this  
temperature coefficient in most cases can be  
ignored.  
This allows the control of the total resistance between  
the two nodes. The total resistance depends on the  
“starting” terminal to the wiper terminal. At the code  
00h, the RBW resistance is minimal (RW), but the RAW  
resistance in maximized (RAB + RW). Conversely, at the  
code 3Fh, the RAW resistance is minimal (RW), but the  
RBW resistance in maximized (RAB + RW).  
Note:  
To avoid damage to the internal wiper  
circuitry in this configuration, care should  
be taken to insure the current flow never  
exceeds 2.5 mA.  
The resistance step size (RS) equates to one LSb of the  
resistor.  
Note:  
To avoid damage to the internal wiper  
circuitry in this configuration, care should  
be taken to insure the current flow never  
exceeds 2.5 mA.  
The change in wiper-to-end terminal resistance over  
temperature is shown in Figure 2-11, Figure 2-24,  
Figure 2-36 and Figure 2-48. The most variation over  
temperature will occur in the first few codes due to the  
wiper resistance coefficient affecting the total  
resistance. The remaining codes are dominated by the  
total resistance tempco RAB  
.
© 2006 Microchip Technology Inc.  
DS21978C-page 39  
MCP4011/2/3/4  
The slope of the resistance has a linear area (at the  
higher voltages) and a non-linear area (at the lower  
voltages), where resistance increases faster than the  
voltage drop (at low voltages).  
6.2  
Wiper Resistance  
Wiper resistance is the series resistance of the wiper.  
This resistance is typically measured when the wiper is  
positioned at either zero-scale (00h) or full-scale (3Fh).  
The wiper resistance in potentiometer-generated  
voltage divider applications is not a significant source  
of error.  
The wiper resistance in rheostat applications can  
create significant non-linearity as the wiper is moved  
toward zero-scale (00h). The lower the nominal  
resistance, the greater the possible error.  
RW  
Wiper resistance is significant depending on the  
devices operating voltage. As the device voltage  
decreases, the wiper resistance increases (see  
Figure 6-4 and Table 6-2).  
VDD  
Note:  
The slope of the resistance has a linear  
area (at the higher voltages) and a non-  
linear area (at the lower voltages).  
In a rheostat configuration, this change in voltage  
needs to be taken into account, particularly for the  
lower resistance devices. For the 2.1 kΩ device, the  
maximum wiper resistance at 5.5V is approximately 6%  
of the total resistance, while at 2.7V, it is approximately  
15.5% of the total resistance.  
FIGURE 6-4:  
Relationship of Wiper  
Resistance (R ) to Voltage.  
W
Since there is minimal variation of the total device  
resistance over voltage, at a constant temperature (see  
Figure 2-11, Figure 2-24, Figure 2-36 or Figure 2-48),  
the change in wiper resistance over voltage can have a  
significant impact on the INL and DNL error.  
In a potentiometer configuration, the wiper resistance  
variation does not effect the output voltage seen on the  
terminal W pin.  
TABLE 6-2:  
Typical  
TYPICAL STEP RESISTANCES AND RELATIONSHIP TO WIPER RESISTANCE  
Resistance (Ω)  
Wiper (RW)  
Step Max @ Max @  
RW / RS (%) (1, 2)  
RW / RAB (%) (1, 3)  
RW  
=
RW = Max RW = Max  
RW = RW = Max RW = Max  
Total  
Typical  
@ 5.5V  
@ 2.7V  
Typical  
@ 5.5V  
@ 2.7V  
Typical  
(RAB  
)
(RS)  
5.5V  
2.7V  
2100  
5000  
33.33  
79.37  
75  
75  
75  
75  
125  
125  
125  
125  
325  
325  
325  
325  
225.0%  
94.5%  
47.25%  
9.45%  
375.0%  
157.5%  
78.75%  
15.75%  
975.0%  
409.5%  
204.75%  
40.95%  
3.57%  
1.5%  
5.95%  
2.50%  
1.25%  
0.25%  
15.48%  
6.50%  
3.25%  
0.65%  
10000 158.73  
50000 793.65  
0.75%  
0.15%  
Note 1: The wiper resistance (RW) is not a significant source of error in potentiometer-generated voltage divider  
applications. In rheostat applications, the variation of the RW value can create significant non-linearity.  
2: RS is the typical value. The variation of this resistance is minimal over voltage.  
3: RAB is the typical value. The variation of this resistance is minimal over voltage.  
DS21978C-page 40  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
6.3.1.2  
Differential Non-Linearity (DNL)  
6.3  
Operational Characteristics  
DNL error is the measure of variations in code widths  
from the ideal code width. A DNL error of zero would  
imply that every code is exactly 1 LSb wide.  
Understanding the operational characteristics of the  
device’s resistor components is important to the system  
design.  
6.3.1  
ACCURACY  
6.3.1.1  
Integral Non-Linearity (INL)  
111  
INL error for these devices is the maximum deviation  
between an actual code transition point and its  
corresponding ideal transition point after offset and  
gain errors have been removed. These endpoints are  
from 0x00 to 0x3F. Refer to Figure 6-5.  
110  
Actual  
Transfer  
Function  
101  
Digital  
Input  
Code  
100  
011  
010  
001  
000  
Ideal Transfer  
Function  
Positive INL means higher resistance than ideal.  
Negative INL means lower resistance than ideal.  
Wide Code, > 1 LSb  
INL < 0  
111  
Narrow Code < 1 LSb  
Actual  
Rransfer  
Function  
110  
101  
100  
Digital Pot Output  
FIGURE 6-6:  
DNL Accuracy.  
Digital  
Input  
6.3.1.3 Ratiometric Temperature Coefficient  
Code  
011  
010  
001  
000  
The ratiometric temperature coefficient quantifies the  
error in the ratio RAW/RWB due to temperature drift.  
This is typically the critical error when using a  
potentiometer device (MCP4011 and MCP4013) in a  
voltage divider configuration.  
Ideal Transfer  
Function  
6.3.1.4  
Absolute Temperature Coefficient  
INL < 0  
The absolute temperature coefficient quantifies the  
error in the end-to-end resistance (nominal resistance  
RAB) due to temperature drift. This is typically the  
critical error when using a rheostat device (MCP4012  
and MCP4014) in an adjustable resistor configuration.  
Digital Pot Output  
FIGURE 6-5:  
INL Accuracy.  
© 2006 Microchip Technology Inc.  
DS21978C-page 41  
MCP4011/2/3/4  
6.3.2  
MONOTONIC OPERATION  
Monotonic operation means that the device’s  
resistance increases with every step change (from  
terminal A to terminal B or terminal B to terminal A).  
The wiper resistance is different at each tap location.  
When changing from one tap position to the next (either  
increasing or decreasing), the ΔRW is less than the  
ΔRS. When this change occurs, the device voltage and  
temperature are “the same” for the two tap positions.  
RS63  
0x3F  
0x3E  
RS62  
0x3D  
RS3  
0x03  
RS1  
0x02  
RS0  
0x01  
0x00  
RW  
n = ?  
(@ tap)  
RBW  
=
RSn + RW(@ Tap n)  
n = 0  
Resistance (RBW  
)
FIGURE 6-7:  
Resistance R  
.
BW  
DS21978C-page 42  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
7.2  
Layout Considerations  
7.0  
DESIGN CONSIDERATIONS  
Inductively-coupled AC transients and digital switching  
noise can degrade the input and output signal integrity,  
potentially masking the MCP4011/2/3/4’s performance.  
Careful board layout will minimize these effects and  
increase the Signal-to-Noise Ratio (SNR). Bench  
testing has shown that a multi-layer board utilizing a  
low-inductance ground plane, isolated inputs, isolated  
outputs and proper decoupling are critical to achieving  
the performance that the silicon is capable of providing.  
Particularly harsh environments may require shielding  
of critical signals.  
In the design of a system with the MCP401X devices,  
the following considerations should be taken into  
account:  
• The Power Supply  
• The Layout  
7.1  
Power Supply Considerations  
The typical application will require a bypass capacitor  
in order to filter high-frequency noise, which can be  
induced onto the power supply's traces. The bypass  
capacitor helps to minimize the effect of these noise  
sources on signal integrity. Figure 7-1 illustrates an  
appropriate bypass strategy.  
If low noise is desired, breadboards and wire-wrapped  
boards are not recommended.  
In this example, the recommended bypass capacitor  
value is 0.1 µF. This capacitor should be placed as  
close (within 4 mm) to the device power pin (VDD) as  
possible.  
The power source supplying these devices should be  
as clean as possible. If the application circuit has  
separate digital and analog power supplies, VDD and  
VSS should reside on the analog plane.  
VDD  
0.1 µF  
VDD  
0.1 µF  
A
W
U/D  
CS  
B
VSS  
VSS  
FIGURE 7-1:  
Typical Microcontroller  
Connections.  
© 2006 Microchip Technology Inc.  
DS21978C-page 43  
MCP4011/2/3/4  
8.0  
APPLICATIONS EXAMPLES  
VDD  
R1  
Non-volatile digital potentiometers have a multitude of  
practical uses in modern electronic circuits. The most  
popular uses include precision calibration of set point  
thresholds, sensor trimming, LCD bias trimming, audio  
attenuation, adjustable power supplies, motor control  
overcurrent trip setting, adjustable gain amplifiers and  
offset trimming. The MCP4011/2/3/4 devices can be  
used to replace the common mechanical trim pot in  
applications where the operating and terminal voltages  
are within CMOS process limitations (VDD = 2.7V to  
5.5V).  
MCP4011  
A
CS  
W
VOUT  
U/D  
B
R2  
8.1  
Set Point Threshold Trimming  
FIGURE 8-1:  
Potentiometer to Set a Precise Output Voltage.  
Using the Digital  
Applications that need accurate detection of an input  
threshold event often need several sources of error  
eliminated. Use of comparators and operational  
amplifiers (op amps) with low offset and gain error can  
help achieve the desired accuracy, but in many  
applications, the input source variation is beyond the  
designer’s control. If the entire system can be  
calibrated after assembly in a controlled environment  
(like factory test), these sources of error are minimized,  
if not entirely eliminated.  
8.1.1  
TRIMMING A THRESHOLD FOR AN  
OPTICAL SENSOR  
If the application has to calibrate the threshold of a  
diode, transistor or resistor, a variation range of 0.1V is  
common. Often, the desired resolution of 2 mV or  
better is adequate to accurately detect the presence of  
a precise signal. A “windowed” voltage divider, utilizing  
the MCP4011 or MCP4013, would be a potential  
solution as shown in Figure 8-2.  
Figure 8-1 illustrates a common digital potentiometer  
configuration. This configuration is often referred to as  
a “windowed voltage divider”. Note that R1 and R2 are  
not necessary to create the voltage divider, but their  
presence is useful when the desired threshold has  
limited range. It is “windowed” because R1 and R2 can  
narrow the adjustable range of VTRIP to a value much  
less than VDD – VSS. If the output range is reduced, the  
magnitude of each output step is reduced. This  
effectively increases the trimming resolution for a fixed  
digital potentiometer resolution. This technique may  
allow a lower-cost digital potentiometer to be utilized  
(64 steps instead of 256 steps).  
VDD  
VDD  
VCC+  
Rsense  
R1  
Comparator  
MCP4011  
CS  
A
B
The MCP4011’s and MCP4013’s low DNL performance  
is critical to meeting calibration accuracy in production  
without having to use a higher precision digital  
potentiometer.  
VTRIP  
W
MCP6021  
VCC–  
U/D  
0.1 µF  
R2  
EQUATION 8-1:  
CALCULATING THE  
WIPER SETTING FROM  
THE DESIRED V  
TRIP  
FIGURE 8-2:  
Calibration.  
Set Point or Threshold  
R2 + RWB  
----------------------------------  
VTRIP = VDD  
R1 + RAB + R2  
RAB = RNominal  
D
63  
-----  
RWB = RAB  
VTRIP  
⎛⎛  
⎝⎝  
--------------  
D =  
• ((R1 + RAB + R2) R2) • 63  
VDD  
Where:  
D = Digital Potentiometer Wiper Setting (0-63)  
DS21978C-page 44  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
8.2  
Operational Amplifier  
Applications  
VDD  
MCP6291  
VIN  
+
Figure 8-3, Figure 8-4 and Figure 8-5 illustrate typical  
amplifier circuits that could replace fixed resistors with  
the MCP4011/2/3/4 to achieve digitally-adjustable  
analog solutions.  
Op Amp  
VDD  
VW  
VOUT  
R1  
Figure 8-4 shows a circuit that allows a non-inverting  
amplifier to have its’ offset and gain to be independently  
trimmed. The MCP4011 is used along with resistors R1  
and R2 to set the offset voltage. The sum of R1 + R2  
resistance should be significantly greater (> 100 times)  
the resistance value of the MCP4011. This allows each  
increment or decrement in the MCP4011 to be a fine  
adjustment of the offset voltage. The input voltage of  
the op amp (VIN) should be centered at the op amps Vw  
voltage. The gain is adjusted by the MCP4012. If the  
resistance value of the MCP4012 is small compared to  
the resistance value of R3, then this is a fine adjustment  
of the gain. If the resistance value of the MCP4012 is  
equal (or large) compared to the resistance value of R3,  
then this is a course adjustment of the gain. In general,  
trim the course adjustments first and then trim the fine  
adjustments.  
R3  
A
B
A
W
W
MCP4012  
R2  
FIGURE 8-4:  
a Non-Inverting Amplifier.  
Trimming Offset and Gain in  
MCP4011  
R3  
R4  
B
A
W
Pot2  
VDD  
Op Amp  
+
R1  
MCP4011  
VOUT  
VIN  
R3  
R4  
MCP6021  
B
A
A
B
VIN  
W
W
1
fc = -----------------------------  
Pot1  
MCP4011  
2π ⋅ R C  
Eq  
VDD  
R2  
Op Amp  
+
R1  
VOUT  
MCP6001  
Thevenin  
Equivalent  
A
B
||  
REq = (R1 + RAB RWB  
)
(R2 + RWB) + Rw  
W
FIGURE 8-5:  
Programmable Filter.  
R2  
FIGURE 8-3:  
Trimming Offset and Gain in  
an Inverting Amplifier.  
© 2006 Microchip Technology Inc.  
DS21978C-page 45  
MCP4011/2/3/4  
8.3  
Temperature Sensor Applications  
VDD  
Thermistors are resistors with very predictable  
variation with temperature. Thermistors are a popular  
sensor choice when a low-cost, temperature-sensing  
solution is desired. Unfortunately, thermistors have  
non-linear characteristics that are undesirable, typically  
requiring trimming in an application to achieve greater  
accuracy. There are several common solutions to trim  
and linearize thermistors. Figure 8-6 and Figure 8-7  
are simple methods for linearizing a 3-terminal NTC  
thermistor. Both are simple voltage dividers using a  
Positive Temperature Coefficient (PTC) resistor (R1)  
with a transfer function capable of compensating for the  
linearity error in the Negative Temperature Coefficient  
(NTC) thermistor.  
R1  
NTC  
Thermistor  
MCP4011  
VOUT  
R2  
The circuit, illustrated by Figure 8-6, utilizes a digital  
rheostat for trimming the offset error caused by the  
thermistor’s part-to-part variation. This solution puts the  
digital potentiometer’s RW into the voltage divider  
calculation. The MCP4011/2/3/4’s RAB temperature  
coefficient is 50 ppm (-20°C to +70°C). RW’s error is  
substantially greater than RAB’s error because RW  
varies with VDD, wiper setting and temperature. For the  
50 kΩ devices, the error introduced by RW is, in most  
cases, insignificant as long as the wiper setting is > 6.  
For the 2 kΩ devices, the error introduced by RW is  
FIGURE 8-7:  
a Digital Potentiometer in a Potentiometer  
Configuration.  
Thermistor Calibration using  
8.4  
Wheatstone Bridge Trimming  
Another common configuration to “excite” a sensor  
(such as a strain gauge, pressure sensor or thermistor)  
is the wheatstone bridge configuration. The wheat-  
stone bridge provides a differential output instead of a  
significant because it is a higher percentage of RWB  
.
single-ended output. Figure 8-8 illustrates  
a
For these reasons, the circuit illustrated in Figure 8-6 is  
not the most optimum method for “exciting” and  
linearizing a thermistor.  
wheatstone bridge utilizing one to three digital  
potentiometers. The digital potentiometers in this  
example are used to trim the offset and gain of the  
wheatstone bridge.  
VDD  
VDD  
R1  
NTC  
Thermistor  
VOUT  
R2  
2.1 kΩ  
MCP4012  
A
MCP4012  
VOUT  
W
MCP4012  
50 kΩ  
MCP4012  
50 kΩ  
FIGURE 8-6:  
a Digital Potentiometer in a Rheostat  
Configuration.  
Thermistor Calibration using  
The circuit illustrated by Figure 8-7 utilizes a digital  
potentiometer for trimming the offset error. This  
solution removes RW from the trimming equation along  
with the error associated with RW. R2 is not required,  
but can be utilized to reduce the trimming “window” and  
reduce variation due to the digital potentiometer’s RAB  
part-to-part variability.  
FIGURE 8-8:  
Trimming.  
Wheatstone Bridge  
DS21978C-page 46  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
9.0  
9.1  
DEVELOPMENT SUPPORT  
Evaluation/Demonstration Boards  
Currently there are three boards that are available that  
can be used to evaluate the MCP401X family of  
devices.  
1. The MCP402X Digital Potentiometer Evaluation  
Board kit (MCP402XEV) contains a simple dem-  
onstration board utilizing a PIC10F206, the  
MCP401X and a blank PCB, which can be pop-  
ulated with any desired MCP4011/2/3/4 device  
in a SOT-23-5, SOT-23-6 or 150 mil SOIC 8-pin  
package.  
This board has two push buttons to control when  
the PIC® microcontroller generates MCP402X  
serial commands. The example firmware  
demonstrates the following commands:  
• Increment  
• Decrement  
• High-Voltage Increment and Enable  
WiperLock Technology  
• High-Voltage Decrement and Enable  
WiperLock Technology  
• High-Voltage Increment and Disable  
WiperLock Technology  
• High-Voltage Decrement and Disable  
WiperLock Technology  
The populated board (with the MCP4011) can  
be used to evaluate the other MCP401X devices  
by appropriately jumpering the PCB pads.  
2. The SOT-23-5/6 Evaluation Board (VSUPEV2)  
can be used to evaluate the characteristics of  
the MCP4012, MCP4013 and MCP4014  
devices.  
3. The 8-pin SOIC/MSOP/TSSOP/DIP Evaluation  
Board (SOIC8EV) can be used to evaluate the  
characteristics of the MCP4011 device in either  
the SOIC or MSOP package.  
4. The MCP4XXX Digital Potentiometer Daughter  
Board allows the system designer to quickly  
evaluate the operation of Microchip Technol-  
ogy's MCP42XXX and MCP402X Digital Poten-  
tiometers. The board supports two MCP42XXX  
devices and an MCP402X device, which can be  
replaced with an MCP401X device.  
The board also has a voltage doubler device  
(TC1240A), which can be used to show the  
WiperLock™ Technology feature of the  
MCP4021.  
These boards may be purchased directly from the  
Microchip web site at www.microchip.com.  
© 2006 Microchip Technology Inc.  
DS21978C-page 47  
MCP4011/2/3/4  
10.0 PACKAGING INFORMATION  
10.1 Package Marking Information  
Example:  
5-Lead SOT-23 (MCP4014)  
XXNN  
JU25  
Part Number  
Code  
MCP4014T-202E/OT  
MCP4014T-502E/OT  
MCP4014T-103E/OT  
MCP4014T-503E/OT  
JUNN  
JVNN  
JWNN  
JXNN  
Note: Applies to 5-Lead SOT-23  
Example:  
6-Lead SOT-23 (MCP4012 / MCP4013)  
XXNN  
BJ25  
Code  
MCP4012 MCP4013  
Part Number  
MCP401xT-202E/CH  
MCP401xT-502E/CH  
MCP401xT-103E/CH  
MCP401xT-503E/CH  
BJNN  
BKNN  
BLNN  
BMNN  
BPNN  
BQNN  
BRNN  
BSNN  
Note: Applies to 6-Lead SOT-23  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS21978C-page 48  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
Package Marking Information  
8-Lead DFN (2x3) (MCP4011)  
Example:  
XXX  
YWW  
NNN  
ABE  
534  
256  
Part Number  
Code  
MCP4011T-202E/MC  
MCP4011T-502E/MC  
MCP4011T-103E/MC  
MCP4011T-503E/MC  
ABE  
ABF  
ABG  
ABH  
Note: Applies to 8-Lead DFN  
Example:  
8-Lead MSOP (MCP4011)  
XXXXXX  
401122  
YWWNNN  
534256  
8-Lead SOIC (150 mil) (MCP4011)  
Example:  
XXXXXXXX  
401152E  
e
3
XXXXYYWW  
SN^0534  
NNN  
256  
Part Numbers  
Code  
8L-MSOP  
8L-SOIC  
22  
52  
13  
53  
MCP4011-202E/MS MCP4011-202E/SN  
MCP4011-502E/MS MCP4011-502E/SN  
MCP4011-103E/MS MCP4011-103E/SN  
MCP4011-503E/MS MCP4011-503E/SN  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2006 Microchip Technology Inc.  
DS21978C-page 49  
MCP4011/2/3/4  
5-Lead Plastic Small Outline Transistor (OT) (SOT-23)  
Note:  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
p
B
p1  
D
n
1
α
c
A
A2  
φ
L
A1  
β
Units  
INCHES  
NOM  
*
MILLIMETERS  
NOM  
5
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
5
.038  
0.95  
p1  
A
Outside lead pitch (basic)  
Overall Height  
.075  
.046  
.043  
.003  
.110  
.064  
.116  
.018  
1.90  
.035  
.057  
0.90  
1.18  
1.45  
1.30  
0.15  
3.00  
1.75  
3.10  
0.55  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.035  
.000  
.102  
.059  
.110  
.014  
.051  
.006  
.118  
.069  
.122  
.022  
10  
0.90  
0.00  
2.60  
1.50  
2.80  
0.35  
1.10  
0.08  
Overall Width  
2.80  
Molded Package Width  
Overall Length  
E1  
D
1.63  
2.95  
Foot Length  
L
f
0.45  
Foot Angle  
0
5
0
5
10  
c
Lead Thickness  
Lead Width  
.004  
.014  
.006  
.017  
.008  
.020  
10  
0.09  
0.35  
0.15  
0.43  
0.20  
0.50  
B
a
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
0
5
5
0
5
5
10  
10  
b
10  
0
*
Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.  
EIAJ Equivalent: SC-74A  
Revised 09-12-05  
Drawing No. C04-091  
DS21978C-page 50  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
6-Lead Plastic Small Outline Transistor (CH) (SOT-23)  
Note:  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
B
p1  
D
n
1
α
c
A
φ
A2  
A1  
β
L
Units  
INCHES  
*
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
MIN  
NOM  
6
MAX  
n
p
Number of Pins  
Pitch  
6
.038 BSC  
.075 BSC  
0.95 BSC  
1.90 BSC  
1.18  
1.10  
0.08  
2.80  
1.63  
2.95  
0.45  
5
p1  
Outside lead pitch  
Overall Height  
A
A2  
A1  
E
.035  
.035  
.000  
.102  
.059  
.110  
.014  
.046  
.043  
.003  
.110  
.064  
.116  
.018  
.057  
0.90  
1.45  
Molded Package Thickness  
Standoff  
.051  
.006  
.118  
.069  
.122  
.022  
10  
0.90  
0.00  
2.60  
1.50  
2.80  
0.35  
1.30  
0.15  
3.00  
1.75  
3.10  
0.55  
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Foot Length  
L
φ
Foot Angle  
0
5
0
10  
c
Lead Thickness  
Lead Width  
.004  
.014  
.006  
.017  
.008  
.020  
10  
0.09  
0.35  
0.15  
0.43  
5
0.20  
0.50  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
0
5
5
0
0
10  
10  
10  
5
*
Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
See ASME Y14.5M  
JEITA (formerly EIAJ) equivalent: SC-74A  
Drawing No. C04-120  
Revised 09-12-05  
© 2006 Microchip Technology Inc.  
DS21978C-page 51  
MCP4011/2/3/4  
8-Lead Plastic Dual-Flat No-Lead Package (MC) 2x3x0.9 mm Body (DFN) – Saw Singulated  
Note:  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
e
D
b
N
N
L
K
E
E2  
EXPOSED PAD  
NOTE 1  
NOTE 1  
2
2
1
1
D2  
TOP VIEW  
BOTTOM VIEW  
A
NOTE 2  
Units  
A1  
A3  
MILLIMETERS  
Dimension Limits  
NOM  
8
MAX  
MIN  
Number of Pins  
Pitch  
N
e
0.50 BSC  
0.90  
0.80  
0.00  
Overall Height  
Standoff  
A
1.00  
0.05  
0.02  
A1  
A3  
D
0.20 REF  
2.00 BSC  
3.00 BSC  
Contact Thickness  
Overall Length  
Overall Width  
E
1.30  
1.50  
0.18  
0.30  
0.20  
Exposed Pad Length  
Exposed Pad Width  
Contact Width  
D2  
E2  
b
1.75  
1.90  
0.30  
0.50  
0.25  
0.40  
Contact Length §  
L
Contact-to-Exposed Pad §  
K
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package may have one or more exposed tie bars at ends.  
3. § Significant Characteristic  
4. Package is saw singulated  
5. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing No. C04–123, Sept. 8, 2006  
DS21978C-page 52  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
8-Lead Plastic Micro Small Outline Package (MS) (MSOP)  
Note:  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
N
E
E1  
NOTE 1  
2
b
1
e
c
ϕ
A2  
A
L1  
L
A1  
Units  
MILLIMETERS  
Dimension Limits  
NOM  
8
MAX  
MIN  
Number of Pins  
Pitch  
N
e
0.65 BSC  
Overall Height  
A
1.10  
0.95  
0.15  
0.75  
0.00  
0.85  
Molded Package Thickness  
Standoff  
A2  
A1  
E
4.90 BSC  
3.00 BSC  
3.00 BSC  
0.60  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
0.40  
L
0.80  
0.95 REF  
Footprint  
L1  
0°  
Foot Angle  
ϕ
8°  
0.08  
0.22  
Lead Thickness  
Lead Width  
c
0.23  
0.40  
b
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions  
shall not exceed 0.15 mm per side.  
3. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing No. C04–111, Sept. 8, 2006  
© 2006 Microchip Technology Inc.  
DS21978C-page 53  
MCP4011/2/3/4  
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)  
Note:  
For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
INCHES*  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
8
MAX  
MIN  
NOM  
8
MAX  
n
p
Number of Pins  
Pitch  
.050  
1.27  
Overall Height  
A
.053  
.061  
.056  
.007  
.237  
.154  
.193  
.015  
.025  
4
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
6.02  
3.91  
4.90  
0.38  
0.62  
4
1.75  
Molded Package Thickness  
Standoff  
A2  
A1  
E
.052  
.004  
.228  
.146  
.189  
.010  
.019  
0
.061  
.010  
.244  
.157  
.197  
.020  
.030  
8
1.55  
0.25  
6.20  
3.99  
5.00  
0.51  
0.76  
8
§
0.10  
5.79  
3.71  
4.80  
0.25  
0.48  
0
Overall Width  
Molded Package Width  
Overall Length  
E1  
D
Chamfer Distance  
Foot Length  
h
L
φ
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.013  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.33  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-057  
DS21978C-page 54  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
APPENDIX A: REVISION HISTORY  
Revision C (December 2006)  
• Added device designators in conditions column to  
associate units (MHz) in Bandwidth -3 dB  
parameter in AC/DC Characteristics table.  
• Added device designations in conditions column  
for R-INL and R-DNL specifications.  
Revision B (October 2006)  
• For the 10 kΩ device, the rheostat differential  
non-linearity specification at 2.7V was changed  
from ±0.5 LSb to ±1 LSb.  
• Figure 2-9 in Section 2.0 “Typical Performance  
Curves” was updated with the correct data.  
• Added Figure 2-55 for -3 db Bandwidth  
information.  
• Added Figure 2-56 for -3 db Bandwidth test  
circuit.  
• Updated available Development Tools  
• Added disclaimer to package outline drawings  
and updated changed drawings as needed.  
Revision A (November 2005)  
• Original Release of this Document.  
© 2006 Microchip Technology Inc.  
DS21978C-page 55  
MCP4011/2/3/4  
NOTES:  
DS21978C-page 56  
© 2006 Microchip Technology Inc.  
MCP4011/2/3/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
XXX  
X
/XX  
a)  
b)  
c)  
d)  
e)  
f)  
g)  
h)  
i)  
MCP4011-103E/MS: 10 kΩ, 8-LD MSOP  
Resistance Temperature Package  
Version Range  
MCP4011-103E/SN: 10 kΩ, 8-LD SOIC  
MCP4011T-103E/MC: T/R, 10 kΩ, 8-LD DFN  
MCP4011T-103E/MS: T/R, 10 kΩ, 8-LD MSOP  
MCP4011T-103E/SN: T/R, 10 kΩ, 8-LD SOIC  
MCP4011-202E/MS: 2.1 kΩ, 8-LD MSOP  
MCP4011-202E/SN: 2.1 kΩ, 8-LD SOIC  
MCP4011T-202E/MC: T/R, 2.1 kΩ, 8-LD DFN  
MCP4011T-202E/MS: T/R, 2.1 kΩ, 8-LD MSOP  
MCP4011T-202E/SN: T/R, 2.1 kΩ, 8-LD SOIC  
MCP4011-502E/MS: 5 kΩ, 8-LD MSOP  
MCP4011-502E/SN: 5 kΩ, 8-LD SOIC  
Device:  
MCP4011:  
MCP4011T:  
Single Potentiometer with U/D Interface  
Single Potentiometer with U/D Interface  
(Tape and Reel) (SOIC, MSOP)  
Single Rheostat with U/D interface  
Single Rheostat with U/D interface  
(Tape and Reel) (SOT-23-6)  
Single Potentiometer to GND with U/D  
Interface  
Single Potentiometer to GND with U/D  
Interface (Tape and Reel) (SOT-23-6)  
Single Rheostat to GND with U/D  
Interface  
MCP4012:  
MCP4012T:  
j)  
k)  
l)  
MCP4013:  
MCP4013T:  
MCP4014:  
MCP4014T:  
m) MCP4011T-502E/MC: T/R, 5 kΩ, 8-LD DFN  
n)  
o)  
p)  
q)  
r)  
MCP4011T-502E/MS: T/R, 5 kΩ, 8-LD MSOP  
MCP4011T-502E/SN: T/R, 5 kΩ, 8-LD SOIC  
MCP4011-503E/MS: 50 kΩ, 8-LD MSOP  
MCP4011-503E/SN: 50 kΩ, 8-LD SOIC  
MCP4011T-503E/MC: T/R, 50 kΩ, 8-LD DFN  
MCP4011T-503E/MS: T/R, 50 kΩ, 8-LD MSOP  
MCP4011T-503E/SN: T/R, 50 kΩ, 8-LD SOIC  
Single Rheostat to GND with U/D  
Interface (Tape and Reel)(SOT-23-5)  
s)  
t)  
a)  
b)  
c)  
d)  
MCP4012T-202E/CH 2.1 kΩ, 6-LD SOT-23  
MCP4012T-502E/CH 5 kΩ, 6-LD SOT-23  
MCP4012T-103E/CH 10 kΩ, 6-LD SOT-23  
MCP4012T-503E/CH 50 kΩ, 6-LD SOT-23  
Resistance Version:  
202 = 2.1 kΩ  
502 = 5 kΩ  
103 = 10 kΩ  
503 = 50 kΩ  
a)  
b)  
c)  
d)  
MCP4013T-202E/CH 2.1 kΩ, 6-LD SOT-23  
MCP4013T-502E/CH 5 kΩ, 6-LD SOT-23  
MCP4013T-103E/CH 10 kΩ, 6-LD SOT-23  
MCP4013T-503E/CH 50 kΩ, 6-LD SOT-23  
Temperature Range:  
Package:  
E
=
-40°C to +125°C  
CH  
MC  
MS  
SN  
OT  
=
=
=
=
=
Plastic Small Outline Transistor, 6-lead  
Plastic Dual Flat No Lead (2x3x0.9 mm), 8-lead  
Plastic MSOP, 8-lead  
Plastic SOIC, (150 mil Body), 8-lead  
Plastic Small Outline Transistor, 5-lead  
a)  
b)  
c)  
d)  
MCP4014T-202E/OT 2.1 kΩ, 5-LD SOT-23  
MCP4014T-502E/OT 5 kΩ, 5-LD SOT-23  
MCP4014T-103E/OT 10 kΩ, 5-LD SOT-23  
MCP4014T-503E/OT 50 kΩ, 5-LD SOT-23  
© 2006 Microchip Technology Inc.  
DS21978C-page 57  
MCP4011/2/3/4  
NOTES:  
DS21978C-page 58  
© 2006 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro,  
PICSTART, PRO MATE, PowerSmart, rfPIC, and  
SmartShunt are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,  
SEEVAL, SmartSensor and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active  
Thermistor, Mindi, MiWi, MPASM, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,  
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total  
Endurance, UNI/O, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2006, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The  
Company’s quality system processes and procedures are for its PIC®  
8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs,  
microperipherals, nonvolatile memory and analog products. In  
addition, Microchip’s quality system for the design and manufacture of  
development systems is ISO 9001:2000 certified.  
© 2006 Microchip Technology Inc.  
DS21978C-page 59  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
12/08/06  
DS21978C-page 60  
© 2006 Microchip Technology Inc.  

相关型号:

MCP4012T-502E/MS

Low-Cost 64-Step Volatile Digital POT
MICROCHIP

MCP4012T-502E/OT

Low-Cost 64-Step Volatile Digital POT
MICROCHIP

MCP4012T-502E/SN

Low-Cost 64-Step Volatile Digital POT
MICROCHIP

MCP4012T-503E/CH

Low-Cost 64-Step Volatile Digital POT
MICROCHIP

MCP4012T-503E/MC

Low-Cost 64-Step Volatile Digital POT
MICROCHIP

MCP4012T-503E/MS

Low-Cost 64-Step Volatile Digital POT
MICROCHIP

MCP4012T-503E/OT

Low-Cost 64-Step Volatile Digital POT
MICROCHIP

MCP4012T-503E/SN

Low-Cost 64-Step Volatile Digital POT
MICROCHIP

MCP4013

Low-Cost 64-Step Volatile Digital POT
MICROCHIP

MCP4013-103E/CH

Low-Cost 64-Step Volatile Digital POT
MICROCHIP

MCP4013-103E/MC

Low-Cost 64-Step Volatile Digital POT
MICROCHIP

MCP4013-103E/MS

Low-Cost 64-Step Volatile Digital POT
MICROCHIP