MCP1804T-2502I/DM [MICROCHIP]

150 mA, 28V LDO Regulator With Shutdown; 150毫安, 28V LDO稳压器关闭
MCP1804T-2502I/DM
型号: MCP1804T-2502I/DM
厂家: MICROCHIP    MICROCHIP
描述:

150 mA, 28V LDO Regulator With Shutdown
150毫安, 28V LDO稳压器关闭

稳压器
文件: 总38页 (文件大小:622K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1804  
150 mA, 28V LDO Regulator With Shutdown  
Features  
Description  
• 150 mA Output Current  
The MCP1804 is a family of CMOS low dropout (LDO)  
voltage regulators that can deliver up to 150 mA of  
current while consuming only 50 µA of quiescent  
current (typical, 1.8V VOUT 5.0V). The input  
operating range is specified from 2.0V to 28.0V.  
• Low Drop Out Voltage, 260 mV typical @ 20 mA,  
VR = 3.3V  
• 50 µA Typical Quiescent Current  
• 0.01 µA Typical Shutdown Current  
• Input Operating Voltage Range: 2.0V to 28.0V  
The MCP1804 is capable of delivering 100 mA with  
only 1300 mV (typical) of input to output voltage  
differential (VOUT = 3.3V). The output voltage tolerance  
of the MCP1804 at +25°C is a maximum of ±2%. Line  
regulation is ±0.15% typical at +25°C.  
• Standard Output Voltage Options  
(1.8V, 2.5V, 3.0V, 3.3V, 5.0V, 10.0V, 12.0V)  
• Output Voltage Accuracy: ±2%  
• Output voltages from 1.8V to 18.0V in 0.1V  
increments are available upon request  
The LDO input and output is stable with 0.1 µF of input  
and output capacitance. Ceramic, tantalum or  
aluminum electrolytic capacitors can all be used for  
input and output. Overcurrent limit with current foldback  
to 40 mA (typical) provides short-circuit protection.  
A shutdown (SHDN) function allows the output to be  
enabled or disabled. When disabled, the MCP1804  
draws only 0.01 µA of current (typical).  
• Stable with Ceramic output capacitors  
• Current Limit Protection With Current Foldback  
• Shutdown pin  
• High PSRR: 50 dB typical @ 1 kHz  
Applications  
Package options include the SOT-23-5 (SOT-25), SOT-  
89-3, SOT-89-5, and SOT-223-3.  
• Cordless Phones, Wireless Communications  
• PDAs, Notebook and Netbook Computers  
• Digital Cameras  
Package Types  
• Microcontroller Power  
SOT-23-5  
SOT-89-5  
• Car Audio and Navigation Systems  
• Home Appliances  
VIN  
5
VOUT  
SHDN  
4
NC  
4
5
Related Literature  
• AN765, “Using Microchip’s Micropower LDOs”,  
DS00765, Microchip Technology Inc., ©2002  
(Top View)  
2
• AN766, “Pin-Compatible CMOS Upgrades to  
BiPolar LDOs”, DS00766, Microchip Technology  
Inc., ©2002  
1
2
3
1
3
VIN GND NC  
VOUT  
GND SHDN  
• AN792, “A Method to Determine How Much  
Power a SOT23 Can Dissipate in an Application”,  
DS00792, Microchip Technology Inc., ©2001  
SOT-223  
SOT-89-3  
(Top View)  
(Top View)  
1
2
3
1
2
3
VIN  
VIN  
VOUT  
VOUT  
GND  
VSS  
© 2009 Microchip Technology Inc.  
DS22200A-page 1  
MCP1804  
Functional Block Diagram  
VOUT  
VIN  
*
Thermal  
Protection  
SHDN  
Shutdown  
Control  
Voltage  
Reference  
-
+
Current Limiter  
Error Amplifier  
GND  
*5-Pin Versions Only  
Typical Application Circuit  
MCP1804  
VIN  
VOUT  
5.0V @ 30 mA  
VIN VOUT  
5
4
1
SOT-25  
GND  
COUT  
1 µF Ceramic  
2
3
+
12V  
Battery  
NC  
SHDN  
CIN  
1 µF  
Ceramic  
DS22200A-page 2  
© 2009 Microchip Technology Inc.  
MCP1804  
† Notice: Stresses above those listed under “Maximum Rat-  
ings” may cause permanent damage to the device. This is a  
stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational listings of this specification is not implied. Expo-  
sure to maximum rating conditions for extended periods may  
affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
Input Voltage ...................................................... +30V  
Output Current (Continuous)........... PD/(VIN-VOUT)mA  
Output Current (Peak)......................................300 mA  
Output Voltage ..................... (VSS-0.3V) to (VIN+0.3V)  
SHDN Voltage................................(VSS-0.3V) to +30V  
Continuous Power Dissipation:  
SOT-25......................................................... 250 mW  
SOT-89......................................................... 500 mW  
SOT-223....................................................... 300 mW  
ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, all limits are established for VIN = VR + 2.0V, Note 1,  
COUT = 1 µF (X7R), CIN = 1 µF (X7R), VSHDN = VIN, TA = +25°C  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input / Output Characteristics  
Input Operating  
Voltage  
VIN  
2.0  
28.0  
V
Note 1  
Input Quiescent  
Current  
Iq  
IL = 0 mA  
50  
60  
105  
115  
µA  
µA  
µA  
µA  
1.8V VOUT 5.0V  
5.1V VOUT 12.0V  
12.1V VOUT 18.0V  
SHDN = 0V  
65  
125  
0.10  
Shutdown Current  
ISHDN  
0.01  
Maximum Output  
Current  
IOUT_mA  
VIN = VR + 3.0V  
100  
150  
mA  
mA  
mA  
mA  
VOUT < 3.0V  
VOUT 3.0V  
Current Limiter  
ILIMIT  
200  
40  
Output Short Circuit  
Current  
IOUT_SC  
Output Voltage  
Regulation  
VOUT  
VR-2.0%  
VR  
VR+2.0%  
V
IOUT = 10 mA, Note 2  
VOUT Temperature  
TCVOUT  
±100  
ppm/°C IOUT = 20 mA,  
-40°C TA ≤ +85°C, Note 3  
Coefficient  
Line Regulation  
ΔVOUT  
/
(VR + 2V) VIN 28V, Note 1  
(VOUTXΔVIN)  
0.05  
0.15  
0.10  
0.30  
%/V  
%/V  
IOUT = 5 mA  
I
OUT = 13 mA  
Note 1: The minimum VIN must meet one condition: VIN (VR + 2.0V).  
2: VR is the nominal regulator output voltage with an input voltage of VIN = VR + 2.0V.  
For example: VR = 1.8V, 2.5V, 3.0V, 3.3V, etc.  
3: TCVOUT = (VOUT-HIGH - VOUT-LOW) *106 / (VR * ΔTemperature), VOUT-HIGH = highest voltage measured  
over the temperature range. VOUT-LOW = lowest voltage measured over the temperature range.  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing.  
Changes in output voltage due to heating effects are determined using thermal regulation specification  
TCVOUT  
.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its  
measured value with an applied input voltage of VR + 2.0V.  
© 2009 Microchip Technology Inc.  
DS22200A-page 3  
MCP1804  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all limits are established for VIN = VR + 2.0V, Note 1,  
COUT = 1 µF (X7R), CIN = 1 µF (X7R), VSHDN = VIN, TA = +25°C  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Load Regulation  
ΔVOUT/VOUT  
IL = 1.0 mA to 50 mA, Note 4  
1.8V VOUT 5.0V  
5.1V VOUT 12.0V  
12.1V VOUT 18.0V  
IL = 20 mA  
50  
90  
mV  
mV  
mV  
110  
180  
175  
275  
Dropout Voltage  
VDROPOUT  
Note 1, Note 5  
550  
450  
390  
310  
260  
220  
190  
170  
130  
120  
710  
600  
520  
450  
360  
320  
280  
230  
190  
170  
V
V
V
V
V
V
V
V
V
V
1.8V VR 1.9V  
2.0V VR 2.1V  
2.2V VR 2.4V  
2.5V VR 2.9V  
3.0V VR 3.9V  
4.0V VR 4.9V  
5.0V VR 6.4V  
6.5V VR 8.0V  
8.1V VR 10.0V  
10.1V VR 18.0V  
IL = 100 mA  
1.1  
0
2200  
1900  
1700  
1500  
1300  
1100  
1000  
800  
700  
650  
2700  
2600  
2200  
1900  
1700  
1500  
1300  
1150  
950  
V
V
V
V
V
V
V
V
V
V
V
V
µA  
1.8V VR 1.9V  
2.0V VR 2.1V  
2.2V VR 2.4V  
2.5V VR 2.9V  
3.0V VR 3.9V  
4.0V VR 4.9V  
5.0V VR 6.4V  
6.5V VR 8.0V  
8.1V VR 10.0V  
10.1V VR 18.0V  
VIN = 28V  
850  
SHDN “H” Voltage  
SHDN “H” Voltage  
SHDN Current  
VSHDN_H  
VSHDN_L  
ISHDN  
VIN  
0.35  
0.1  
VIN = 28V  
-0.1  
VIN = 28V, VSHDN = GND or VIN  
Note 1: The minimum VIN must meet one condition: VIN (VR + 2.0V).  
2: VR is the nominal regulator output voltage with an input voltage of VIN = VR + 2.0V.  
For example: VR = 1.8V, 2.5V, 3.0V, 3.3V, etc.  
3: TCVOUT = (VOUT-HIGH - VOUT-LOW) *106 / (VR * ΔTemperature), VOUT-HIGH = highest voltage measured  
over the temperature range. VOUT-LOW = lowest voltage measured over the temperature range.  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing.  
Changes in output voltage due to heating effects are determined using thermal regulation specification  
TCVOUT  
.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its  
measured value with an applied input voltage of VR + 2.0V.  
DS22200A-page 4  
© 2009 Microchip Technology Inc.  
MCP1804  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, all limits are established for VIN = VR + 2.0V, Note 1,  
OUT = 1 µF (X7R), CIN = 1 µF (X7R), VSHDN = VIN, TA = +25°C  
C
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Power Supply Ripple  
Rejection Ratio  
PSRR  
50  
dB  
f = 1 kHz, IL = 20 mA,  
VINAC = 0.5V pk-pk, CIN = 0 µF  
Thermal Shutdown  
Protection  
TSD  
150  
25  
°C  
°C  
TJ  
Thermal Shutdown  
Hysteresis  
ΔTSD  
Note 1: The minimum VIN must meet one condition: VIN (VR + 2.0V).  
2: VR is the nominal regulator output voltage with an input voltage of VIN = VR + 2.0V.  
For example: VR = 1.8V, 2.5V, 3.0V, 3.3V, etc.  
3: TCVOUT = (VOUT-HIGH - VOUT-LOW) *106 / (VR * ΔTemperature), VOUT-HIGH = highest voltage measured  
over the temperature range. VOUT-LOW = lowest voltage measured over the temperature range.  
4: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing.  
Changes in output voltage due to heating effects are determined using thermal regulation specification  
TCVOUT  
.
5: Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its  
measured value with an applied input voltage of VR + 2.0V.  
TEMPERATURE SPECIFICATIONS  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistance  
Thermal Resistance, SOT-25  
TA  
-40  
-55  
+85  
°C  
°C  
Tstg  
+125  
θJA  
θJC  
256  
81  
EIA/JEDEC JESD51-7  
FR-4 0.063 4-Layer Board  
°C/W  
°C/W  
°C/W  
Thermal Resistance, SOT-89  
Thermal Resistance, SOT-223  
θJA  
θJC  
180  
100  
EIA/JEDEC JESD51-7  
FR-4 0.063 4-Layer Board  
θJA  
θJC  
62  
15  
EIA/JEDEC JESD51-7  
FR-4 0.063 4-Layer Board  
© 2009 Microchip Technology Inc.  
DS22200A-page 5  
MCP1804  
NOTES:  
DS22200A-page 6  
© 2009 Microchip Technology Inc.  
MCP1804  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VIN=SHDN=4.8V  
VR=1.8V  
VR=2.8V  
VIN=2.8V  
Ta=-40  
VIN=3.8V  
VIN=4.8V  
Ta=25  
Ta=85  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
Output Current (mA)  
Output Current (mA)  
FIGURE 2-1:  
Output Voltage vs. Output  
FIGURE 2-4:  
Output Voltage vs. Output  
Current.  
Current.  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
VIN=SHDN=8.0V  
VR=5V  
VR=5.0V  
VIN=6V  
VIN=7V  
VIN=8V  
Ta=-40  
Ta=25  
Ta=85  
0.0  
0
0.0  
0
50  
100  
150  
200  
250  
300  
50  
100  
150  
200  
250  
300  
Output Current (mA)  
Output Current (mA)  
FIGURE 2-2:  
Output Voltage vs. Output  
FIGURE 2-5:  
Output Voltage vs. Output  
Current.  
Current.  
14.0  
12.0  
10.0  
8.0  
14.0  
12.0  
10.0  
8.0  
VIN=SHDN=15V  
VR=12V  
VR=12V  
VIN=13V  
VIN=14V  
VIN=15V  
6.0  
6.0  
4.0  
4.0  
Ta=-40  
Ta=25  
Ta=85  
2.0  
2.0  
0.0  
0
0.0  
0
50  
100  
150  
200  
250  
300  
50  
100  
150  
200  
250  
300  
Output Current (mA)  
Output Current (mA)  
FIGURE 2-3:  
Output Voltage vs. Output  
FIGURE 2-6:  
Output Voltage vs. Output  
Current.  
Current.  
© 2009 Microchip Technology Inc.  
DS22200A-page 7  
MCP1804  
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
VR=1.8V  
VR=1.8V  
IOUT=1mA  
IOUT=10mA  
IOUT=30mA  
IOUT=1mA  
IOUT=10mA  
IOUT=30mA  
0.8  
1.3  
1.8  
2.3  
2.8  
3.3  
3.8  
4
8
12  
16  
20  
24  
28  
Input Voltage (V)  
Input Voltage (V)  
FIGURE 2-7:  
Output Voltage vs. Input  
FIGURE 2-10:  
Output Voltage vs. Input  
Voltage.  
Voltage.  
6.0  
5.8  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
4.0  
6.0  
5.8  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
8
VR=5V  
VR=5V  
IOUT=1mA  
IOUT=10mA  
IOUT=30mA  
IOUT=1mA  
IOUT=10mA  
IOUT=30mA  
12  
16  
20  
24  
28  
4.5  
5.0  
Input Voltage (V)  
5.5  
6.0  
Input Voltage (V)  
FIGURE 2-8:  
Output Voltage vs. Input  
FIGURE 2-11:  
Output Voltage vs. Input  
Voltage.  
Voltage.  
15.0  
14.0  
13.0  
12.0  
11.0  
10.0  
15.0  
14.0  
13.0  
12.0  
11.0  
10.0  
VR=12V  
VR=12V  
IOUT=1mA  
IOUT=10mA  
IOUT=30mA  
IOUT=1mA  
IOUT=10mA  
IOUT=30mA  
9.0  
14  
9.0  
10  
16  
18  
20  
22  
24  
26  
28  
11  
12  
13  
14  
Input Voltage (V)  
Input Voltage (V)  
FIGURE 2-9:  
Output Voltage vs. Input  
FIGURE 2-12:  
Output Voltage vs. Input  
Voltage.  
Voltage.  
DS22200A-page 8  
© 2009 Microchip Technology Inc.  
MCP1804  
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
70  
60  
50  
40  
30  
20  
10  
0
VR=1.8V  
VR=1.8V  
Ta=85  
Ta=25  
Ta=-40  
Ta=85  
Ta=25  
Ta=-40  
0
25  
50  
75  
100  
125  
150  
0
4
8
12  
16  
20  
24  
28  
Output Current (mA)  
Input Voltage (V)  
FIGURE 2-13:  
Dropout Voltage vs. Load  
FIGURE 2-16:  
Supply Current vs. Input  
Current.  
Voltage.  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
70  
60  
50  
40  
30  
20  
10  
0
VR=5V  
VR=5V  
Ta=85  
Ta=25  
Ta=-40  
Ta=85  
Ta=25  
Ta=-40  
0.0  
0
25  
50  
75  
100  
125  
150  
0
4
8
12  
16  
20  
24  
28  
Output Current (mA)  
Input Voltage (V)  
FIGURE 2-14:  
Dropout Voltage vs. Load  
FIGURE 2-17:  
Supply Current vs. Input  
Current.  
Voltage.  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
70  
60  
50  
40  
30  
20  
10  
0
VR=12V  
VR=12V  
Ta=85  
Ta=25  
Ta=-40  
Ta=85  
Ta=25  
Ta=-40  
0.0  
0
25  
50  
75  
100  
125  
150  
0
4
8
12  
16  
20  
24  
28  
Output Current (mA)  
Input Voltage (V)  
FIGURE 2-15:  
Dropout Voltage vs. Load  
FIGURE 2-18:  
Supply Current vs. Input  
Current.  
Voltage.  
© 2009 Microchip Technology Inc.  
DS22200A-page 9  
MCP1804  
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.  
70  
60  
50  
40  
30  
20  
10  
0
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
VR=1.8V  
VR=1.8V  
IOUT=1mA  
IOUT=10mA  
IOUT=20mA  
-50  
-25  
0
25  
50  
75  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Ambient Temperature (°C)  
Ambient Temperature (°C  
FIGURE 2-19:  
Supply Current vs. Input  
FIGURE 2-22:  
Output Voltage vs. Ambient  
Voltage.  
Temperature.  
70  
60  
50  
40  
30  
20  
10  
0
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
VR=5V  
VR=5V  
IOUT=1mA  
IOUT=10mA  
IOUT=20mA  
4.80  
-50  
-40  
-20  
0
20  
40  
60  
80  
100  
-25  
0
25  
50  
75  
100  
Ambient Temperature (°C  
Ambient Temperature (°C)  
FIGURE 2-20:  
Supply Current vs. Input  
FIGURE 2-23:  
Output Voltage vs. Ambient  
Voltage.  
Temperature.  
70  
60  
50  
40  
30  
20  
10  
0
12.5  
12.4  
12.3  
12.2  
12.1  
12.0  
11.9  
11.8  
11.7  
11.6  
11.5  
-50  
VR=12V  
VR=12V  
IOUT=1mA  
IOUT=10mA  
IOUT=20mA  
-40  
-20  
0
20  
40  
60  
80  
100  
-25  
0
25  
50  
75  
100  
Ambient Temperature (°C)  
Ambient Temperature (°C  
FIGURE 2-21:  
Supply Current vs. Input  
FIGURE 2-24:  
Output Voltage vs. Ambient  
Voltage.  
Temperature.  
DS22200A-page 10  
© 2009 Microchip Technology Inc.  
MCP1804  
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.  
7.3  
6.3  
5.3  
4.3  
3.3  
2.3  
1.3  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
7.3  
6.3  
5.3  
4.3  
3.3  
2.3  
1.3  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
VR=3.3V  
OUT=30 mA  
VIN  
VR=3.3V  
IOUT=1 mA  
I
VIN  
VOUT  
VOUT  
Time (1ms/div)  
Time (1ms/div)  
FIGURE 2-25:  
Dynamic Line Response.  
FIGURE 2-28:  
Dynamic Line Response.  
9
8
7
6
5
4
3
5.08  
9
8
7
6
5
4
3
5.08  
VR=5V  
VR=5V  
IOUT 1 mA  
VIN  
IOUT=30 mA  
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
5.06  
VIN  
5.04  
5.02  
VOUT  
VOUT  
5.00  
4.98  
4.96  
Time (1ms/div)  
Time (1ms/div)  
FIGURE 2-26:  
Dynamic Line Response.  
FIGURE 2-29:  
Dynamic Line Response.  
16  
15  
14  
13  
12  
11  
10  
12.08  
16  
15  
14  
13  
12  
11  
10  
12.08  
VR=12V  
IOUT=1 mA  
VR=12V  
OUT=30 mA  
VIN  
I
VIN  
12.06  
12.04  
12.02  
12.00  
11.98  
11.96  
12.06  
12.04  
12.02  
12.00  
11.98  
11.96  
VOUT  
VOUT  
Time (1ms/div)  
Time (1ms/div)  
FIGURE 2-27:  
Dynamic Line Response.  
FIGURE 2-30:  
Dynamic Line Response.  
© 2009 Microchip Technology Inc.  
DS22200A-page 11  
MCP1804  
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
150  
120  
90  
60  
30  
0
8
6
8
7
6
5
4
3
2
1
0
VR=3.3V  
VIN  
VOUT  
4
2
0
VOUT  
-2  
-4  
-6  
-8  
Output Current  
VR=3.3V  
OUT=1 mA  
I
Time (1ms/div)  
Time (1ms/div)  
FIGURE 2-31:  
Dynamic Load Response.  
FIGURE 2-34:  
Startup Response.  
5.4  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
150  
8
6
8
7
6
5
4
3
2
1
0
VR = 5V  
VIN  
120  
4
VOUT  
2
90  
0
VOUT  
60  
-2  
-4  
-6  
-8  
Output Current  
30  
VR=3.3V  
IOUT=30 mA  
0
Time (1ms/div)  
Time (1ms/div)  
FIGURE 2-32:  
Dynamic Load Response.  
FIGURE 2-35:  
Startup Response.  
12.6  
12.4  
12.2  
12.0  
11.8  
11.6  
11.4  
11.2  
11.0  
10.8  
10.6  
150  
8
6
8
7
6
5
4
3
2
1
0
VR = 12V  
VIN  
120  
4
VOUT  
2
90  
60  
VOUT  
0
-2  
-4  
-6  
-8  
IOUT  
30  
VR=5.0V  
I
OUT=1 mA  
0
Time (1ms/div)  
Time (1ms/div)  
FIGURE 2-33:  
Dynamic Load Response.  
FIGURE 2-36:  
Startup Response.  
DS22200A-page 12  
© 2009 Microchip Technology Inc.  
MCP1804  
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.  
8
6
8
7
6
5
4
3
2
1
0
8
6
8
7
6
5
4
3
2
1
0
SHDN  
VIN  
4
4
2
2
VOUT  
VOUT  
0
0
-2  
-4  
-6  
-8  
-2  
-4  
-6  
-8  
VR=5.0V  
IOUT=30 mA  
VR=3.3V  
IOUT=1 mA  
Time (1ms/div)  
Time (1ms/div)  
FIGURE 2-37:  
Startup Response.  
FIGURE 2-40:  
SHDN Response.  
15  
10  
5
18  
15  
12  
9
8
6
8
7
6
5
4
3
2
1
0
VIN  
SHDN  
4
2
VOUT  
VOUT  
0
0
-2  
-4  
-6  
-8  
-5  
6
VR=12V  
IOUT=1 mA  
VR=5V  
-10  
-15  
3
IOUT=1 mA  
0
Time (1ms/div)  
Time (1ms/div)  
FIGURE 2-38:  
Startup Response.  
FIGURE 2-41:  
SHDN Response.  
15  
10  
5
18  
15  
12  
9
15  
10  
5
18  
15  
12  
9
VIN  
SHDN  
VOUT  
VOUT  
0
0
-5  
6
-5  
6
-10  
-15  
3
VR=12V  
IOUT=30 mA  
-10  
-15  
3
VR=12V  
I
OUT=1 mA  
0
0
Time (1ms/div)  
Time (1ms/div)  
FIGURE 2-39:  
Startup Response.  
FIGURE 2-42:  
SHDN Response.  
© 2009 Microchip Technology Inc.  
DS22200A-page 13  
MCP1804  
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.  
8
6
8
7
6
5
4
3
2
1
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT=3.3V  
CIN=0  
SHDN  
I
OUT=1 mA  
4
VIN_AC=0.5Vp-p  
2
VOUT  
0
-2  
-4  
-6  
-8  
VR=3.3V  
IOUT=30 mA  
0.01  
0.1  
1
10  
100  
100  
100  
Time (1ms/div)  
Ripple Frequency: f (kHz)  
FIGURE 2-43:  
SHDN Response.  
FIGURE 2-46:  
PSRR 3.3V @ 1 mA.  
8
6
8
90  
80  
70  
60  
50  
40  
30  
20  
10  
VOUT=5V  
CIN=0  
IOUT=1 mA  
VIN_AC=0.5Vp-p  
7
6
5
4
3
2
1
0
SHDN  
VOUT  
4
2
0
-2  
-4  
-6  
-8  
VR=5V  
IOUT=30 mA  
0
0.01  
0.1  
1
10  
Time (1ms/div)  
Ripple Frequency: f (kHz)  
FIGURE 2-44:  
SHDN Response.  
FIGURE 2-47:  
PSRR 5.0V @ 1 mA.  
15  
10  
5
18  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT=12V  
CIN=0  
IOUT=1 mA  
SHDN  
15  
12  
9
V
IN_AC=0.5Vp-p  
VOUT  
0
-5  
6
-10  
-15  
3
VR=12V  
OUT=30 mA  
I
0
0.01  
0.1  
1
10  
Time (1ms/div)  
Ripple Frequency: f (kHz)  
FIGURE 2-45:  
SHDN Response.  
FIGURE 2-48:  
PSRR 12.0V @ 1 mA.  
DS22200A-page 14  
© 2009 Microchip Technology Inc.  
MCP1804  
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT=3.3V  
CIN=0  
IOUT=30 mA  
VOUT=12V  
CIN=0  
I
OUT=30 mA  
V
IN_AC=0.5Vp-p  
VIN_AC=0.5Vp-p  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
Ripple Frequency: f (kHz)  
Ripple Frequency: f (kHz)  
FIGURE 2-49:  
PSRR 3.3V @ 30 mA.  
FIGURE 2-51:  
PSRR 12.0V @ 30 mA.  
90  
80  
70  
60  
50  
40  
30  
20  
VOUT=5V  
CIN=0  
I
OUT=30 mA  
VIN_AC=0.5Vp-p  
10  
0
0.01  
0.1  
1
10  
100  
Ripple Frequency: f (kHz)  
FIGURE 2-50:  
PSRR 5.0V @ 30 mA.  
© 2009 Microchip Technology Inc.  
DS22200A-page 15  
MCP1804  
NOTES:  
DS22200A-page 16  
© 2009 Microchip Technology Inc.  
MCP1804  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
MCP1804 PIN FUNCTION TABLE  
MCP1804  
Symbol  
Description  
SOT-223-3,  
SOT-89-5  
SOT-25  
SOT89-3  
1
2
3
4
5
5
3
2, TAB  
VIN  
GND  
NC  
Unregulated Supply Voltage  
2,TAB  
Ground Terminal  
No connection  
4
3
1
SHDN  
VOUT  
Shutdown  
1
Regulated Voltage Output  
3.1  
Unregulated Input Voltage (VIN)  
3.3  
Shutdown Input (SHDN)  
Connect VIN to the input unregulated source voltage.  
Like all low dropout linear regulators, low source  
impedance is necessary for the stable operation of the  
LDO. The amount of capacitance required to ensure  
low source impedance will depend on the proximity of  
the input source capacitors or battery type. For most  
applications, 0.1 µF to 1.0 µF of capacitance will  
ensure stable operation of the LDO circuit. The type of  
capacitor used can be ceramic, tantalum or aluminum  
electrolytic. The low ESR characteristics of the ceramic  
will yield better noise and PSRR performance at  
high-frequency.  
The SHDN input is used to turn the LDO output voltage  
on and off. When the SHDN input is at a logic-high  
level, the LDO output voltage is enabled. When the  
SHDN input is pulled to a logic-low level, the LDO  
output voltage is disabled and the LDO enters a low  
quiescent current shutdown state where the typical  
quiescent current is 0.01 µA. The SHDN pin does not  
have an internal pullup or pulldown resistor. The SHDN  
pin must be connected to either VIN or GND to prevent  
the device from becoming unstable.  
3.4  
Regulated Output Voltage (VOUT)  
Connect VOUT to the positive side of the load and the  
positive terminal of the output capacitor. The positive  
side of the output capacitor should be physically  
located as close to the LDO VOUT pin as is practical.  
The current flowing out of this pin is equal to the DC  
load current. For most applications, 0.1 µF to 1.0 µF of  
capacitance will ensure stable operation of the LDO  
circuit. Larger values may be used to improve dynamic  
load response. The type of capacitor used can be  
ceramic, tantalum or aluminum electrolytic. The low  
ESR characteristics of the ceramic will yield better  
noise and PSRR performance at high-frequency.  
3.2  
Ground Terminal (GND)  
Regulator ground. Tie GND to the negative side of the  
output and the negative side of the input capacitor.  
Only the LDO bias current (50 to 60 µA typical) flows  
out of this pin; there is no high current. The LDO output  
regulation is referenced to this pin. Minimize voltage  
drops between this pin and the negative side of the  
load.  
© 2009 Microchip Technology Inc.  
DS22200A-page 17  
MCP1804  
NOTES:  
DS22200A-page 18  
© 2009 Microchip Technology Inc.  
MCP1804  
4.4  
Output Capacitor  
4.0  
4.1  
DETAILED DESCRIPTION  
Output Regulation  
The MCP1804 requires a minimum output capacitance  
of 0.1 µF to 1.0 µF for output voltage stability. Ceramic  
capacitors are recommended because of their size,  
cost and environmental robustness qualities.  
A portion of the LDO output voltage is fed back to the  
internal error amplifier and compared with the precision  
internal bandgap reference. The error amplifier output  
will adjust the amount of current that flows through the  
P-Channel pass transistor, thus regulating the output  
voltage to the desired value. Any changes in input  
voltage or output current will cause the error amplifier  
to respond and adjust the output voltage to the target  
voltage (refer to Figure 4-1).  
Aluminum-electrolytic and tantalum capacitors can be  
used on the LDO output as well. The output capacitor  
should be located as close to the LDO output as is  
practical. Ceramic materials X7R and X5R have low  
temperature coefficients.  
Larger LDO output capacitors can be used with the  
MCP1804 to improve dynamic performance and power  
supply ripple rejection performance. Aluminum-  
electrolytic capacitors are not recommended for low  
temperature applications of < -25°C.  
4.2  
Overcurrent  
The MCP1804 internal circuitry monitors the amount of  
current flowing through the P-Channel pass transistor.  
In the event that the load current reaches the current  
limiter level of 200 mA (typical), the current limiter  
circuit will operate and the output voltage will drop. As  
the output voltage drops, the internal current foldback  
circuit will further reduce the output voltage causing the  
output current to decrease. When the output is shorted,  
a typical output current of 50 mA flows.  
4.5  
Input Capacitor  
Low input source impedance is necessary for the LDO  
output to operate properly. When operating from  
batteries, or in applications with long lead length  
(> 10 inches) between the input source and the LDO,  
some input capacitance is recommended. A minimum  
of 0.1 µF to 1.0 µF is recommended for most  
applications.  
4.3  
Shutdown  
For applications that have output step load  
requirements, the input capacitance of the LDO is very  
important. The input capacitance provides the LDO  
with a good local low-impedance source to pull the  
transient currents from in order to respond quickly to  
the output load step. For good step response  
performance, the input capacitor should be of  
equivalent or higher value than the output capacitor.  
The capacitor should be placed as close to the input of  
the LDO as is practical. Larger input capacitors will also  
help reduce any high-frequency noise on the input and  
output of the LDO and reduce the effects of any  
inductance that exists between the input source  
voltage and the input capacitance of the LDO.  
The SHDN input is used to turn the LDO output voltage  
on and off. When the SHDN input is at a logic-high  
level, the LDO output voltage is enabled. When the  
SHDN input is pulled to a logic-low level, the LDO  
output voltage is disabled and the LDO enters a low  
quiescent current shutdown state where the typical  
quiescent current is 0.01 µA. The SHDN pin does not  
have an internal pullup or pulldown resistor. Therefore  
the SHDN pin must be pulled either high or low to  
prevent the device from becoming unstable. The  
internal device current will increase when the device is  
operational and current flows through the pullup or  
pull-down resistor to the SHDN pin internal logic. The  
SHDN pin internal logic is equivalent to an inverter  
input.  
4.6  
Thermal Shutdown  
The MCP1804 thermal shutdown circuitry protects the  
device when the internal junction temperature reaches  
the typical thermal limit value of +150°C. The thermal  
limit shuts off the output drive transistor. Device output  
will resume when the internal junction temperature falls  
below the thermal limit value by an amount equal to the  
thermal limit hysteresis value of +25°C.  
© 2009 Microchip Technology Inc.  
DS22200A-page 19  
MCP1804  
VOUT  
VIN  
*
Thermal  
Protection  
SHDN  
Shutdown  
Control  
Voltage  
Reference  
-
+
Current Limiter  
Error Amplifier  
GND  
*
5-Pin Versions Only  
FIGURE 4-1:  
Block Diagram.  
DS22200A-page 20  
© 2009 Microchip Technology Inc.  
MCP1804  
5.2  
Output  
5.0  
FUNCTIONAL DESCRIPTION  
The maximum rated continuous output current for the  
MCP1804 is 150 mA.  
The MCP1804 CMOS linear regulator is intended for  
applications that need the low current consumption  
while maintaining output voltage regulation. The  
operating continuous load range of the MCP1804 is  
from 0 mA to 150 mA. The input operating voltage  
range is from 2.0V to 28.0V, making it capable of  
operating from a single 12V battery or single and  
multiple Li-Ion cell batteries.  
A minimum output capacitance of 0.1 µF to 1.0 µF is  
required for small signal stability in applications that  
have up to 150 mA output current capability. The  
capacitor type can be ceramic, tantalum or aluminum  
electrolytic.  
5.1  
Input  
The input of the MCP1804 is connected to the source  
of the P-Channel PMOS pass transistor. As with all  
LDO circuits, a relatively low source impedance  
(< 10Ω) is needed to prevent the input impedance from  
causing the LDO to become unstable. The size and  
type of the capacitor needed depends heavily on the  
input source type (battery, power supply) and the  
output current range of the application. For most  
applications  
a 0.1 µF ceramic capacitor will be  
sufficient to ensure circuit stability. Larger values can  
be used to improve circuit AC performance.  
© 2009 Microchip Technology Inc.  
DS22200A-page 21  
MCP1804  
NOTES:  
DS22200A-page 22  
© 2009 Microchip Technology Inc.  
MCP1804  
The maximum continuous operating temperature  
specified for the MCP1804 is +85°C. To estimate the  
internal junction temperature of the MCP1804, the total  
internal power dissipation is multiplied by the thermal  
resistance from junction to ambient (RθJA). The thermal  
resistance from junction to ambient for the SOT-25 pin  
package is estimated at 256°C/W.  
6.0  
6.1  
APPLICATION CIRCUITS AND  
ISSUES  
Typical Application  
The MCP1804 is most commonly used as a voltage  
regulator. It’s low quiescent current and wide input volt-  
age make it ideal for Li-Ion and 12V battery-powered  
applications.  
EQUATION 6-2:  
TJ(MAX) = PTOTAL × RθJA + TAMAX  
Where:  
NC  
SHDN  
TJ(MAX)  
=
Maximum continuous junction  
temperature.  
GND  
VIN  
VOUT  
1.8V  
PTOTAL  
RqJA  
=
=
Total device power dissipation.  
VIN  
4.2V  
VOUT  
Thermal resistance from junction to  
ambient.  
IOUT  
50 mA  
CIN  
1 µF  
Ceramic  
COUT  
1 µF Ceramic  
TAMAX  
=
Maximum ambient temperature.  
The maximum power dissipation capability for a  
package can be calculated given the junction-  
to-ambient thermal resistance and the maximum  
ambient temperature for the application. The following  
equation can be used to determine the package  
maximum internal power dissipation.  
FIGURE 6-1:  
Typical Application Circuit.  
6.1.1  
Package Type  
Input Voltage Range = 3.8V to 4.2V  
APPLICATION INPUT CONDITIONS  
= SOT25  
EQUATION 6-3:  
V
V
IN maximum  
OUT typical  
= 4.6V  
(TJ(MAX) TA(MAX)  
PD(MAX) = ---------------------------------------------------  
RθJA  
)
= 1.8V  
IOUT  
= 50 mA maximum  
Where:  
6.2  
Power Calculations  
PD(MAX)  
=
=
Maximum device power dissipation.  
TJ(MAX)  
Maximum continuous junction  
temperature.  
6.2.1  
POWER DISSIPATION  
The internal power dissipation of the MCP1804 is a  
function of input voltage, output voltage and output  
current. The power dissipation, as a result of the  
quiescent current draw, is so low, it is insignificant  
(50.0 µA x VIN). The following equation can be used to  
calculate the internal power dissipation of the LDO.  
TA(MAX)  
RqJA  
=
=
Maximum ambient temperature.  
Thermal resistance from junction to  
ambient.  
EQUATION 6-4:  
TJ(RISE) = PD(MAX) × RθJA  
EQUATION 6-1:  
Where:  
PLDO = (VIN(MAX)) VOUT(MIN)) × IOUT(MAX))  
TJ(RISE)  
=
Rise in device junction temperature over  
the ambient temperature.  
Where:  
PTOTAL  
RqJA  
=
=
Maximum device power dissipation.  
PLDO  
=
LDO Pass device internal power  
dissipation  
Thermal resistance from junction to  
ambient.  
VIN(MAX)  
=
=
Maximum input voltage  
EQUATION 6-5:  
TJ = TJ(RISE) + TA  
VOUT(MIN)  
LDO minimum output voltage  
Where:  
TJ  
TJ(RISE)  
=
=
Junction Temperature.  
Rise in device junction temperature over  
the ambient temperature.  
TA  
=
Ambient temperature.  
© 2009 Microchip Technology Inc.  
DS22200A-page 23  
MCP1804  
6.3.1.2  
Junction Temperature Estimate  
6.3  
Voltage Regulator  
To estimate the internal junction temperature, the  
calculated temperature rise is added to the ambient or  
offset temperature. For this example, the worst-case  
junction temperature is estimated below.  
Internal power dissipation, junction temperature rise,  
junction temperature and maximum power dissipation  
are calculated in the following example. The power  
dissipation, as a result of ground current, is small  
enough to be neglected.  
TJ = TJRISE + TA(MAX)  
TJ = 76.3°C  
6.3.1  
POWER DISSIPATION EXAMPLE  
Package:  
Maximum Package Power Dissipation at +25°C  
Ambient Temperature (minimum PCB footprint)  
Package Type = SOT-25  
Input Voltage:  
SOT-25 (256°C/Watt = RθJA):  
VIN = 3.8V to 4.6V  
P
D(MAX) = (85°C - 25°C) / 256°C/W  
D(MAX) = 234 milli-Watts  
LDO Output Voltages and Currents:  
P
VOUT = 1.8V  
SOT-89 (180°C/Watt = RθJA):  
I
OUT = 50 mA  
P
D(MAX) = (85°C - 25°C) / 180°C/W  
D(MAX) = 333 milli-Watts  
Maximum Ambient Temperature:  
A(MAX) = +40°C  
P
T
Internal Power Dissipation:  
6.4  
Voltage Reference  
Internal Power dissipation is the product of the LDO  
output current times the voltage across the LDO  
(VIN to VOUT).  
The MCP1804 can be used not only as a regulator, but  
also as a low quiescent current voltage reference. In  
many microcontroller applications, the initial accuracy  
of the reference can be calibrated using production test  
equipment or by using a ratio measurement. When the  
initial accuracy is calibrated, the thermal stability and  
line regulation tolerance are the only errors introduced  
by the MCP1804 LDO. The low cost, low quiescent  
current and small ceramic output capacitor are all  
advantages when using the MCP1804 as a voltage  
reference.  
PLDO(MAX) = (VIN(MAX) - VOUT(MIN)) x  
IOUT(MAX)  
PLDO = (4.6V - (0.98 x 1.8V)) x 50 mA  
PLDO = 141.8 milli-Watts  
6.3.1.1  
Device Junction Temperature Rise  
The internal junction temperature rise is a function of  
internal power dissipation and the thermal resistance  
from junction to ambient for the application. The thermal  
resistance from junction to ambient (RθJA) is derived  
from an EIA/JEDEC standard for measuring thermal  
resistance for small surface mount packages. The EIA/  
JEDEC specification is JESD51-7, “High Effective  
Thermal Conductivity Test Board for Leaded Surface  
Mount Packages”. The standard describes the test  
method and board specifications for measuring the  
thermal resistance from junction to ambient. The actual  
thermal resistance for a particular application can vary  
depending on many factors, such as copper area and  
thickness. Refer to AN792, “A Method to Determine  
How Much Power a SOT23 Can Dissipate in an  
Application” (DS00792), for more information regarding  
this subject.  
Ratio Metric Reference  
PICmicro®  
MCP1804  
Microcontroller  
50 µA Bias  
VIN  
VOUT  
GND  
CIN  
1 µF  
VREF  
COUT  
1 µF  
ADO  
AD1  
Bridge Sensor  
FIGURE 6-2:  
voltage reference.  
Using the MCP1804 as a  
TJ(RISE) = PTOTAL x RqJA  
TJRISE = 141.8 milli-Watts x 256.0°C/Watt  
T
JRISE = 36.3°C  
DS22200A-page 24  
© 2009 Microchip Technology Inc.  
MCP1804  
6.5  
Pulsed Load Applications  
For some applications, there are pulsed load current  
events that may exceed the specified 150 mA  
maximum specification of the MCP1804. The internal  
current limit of the MCP1804 will prevent high peak  
load demands from causing non-recoverable damage.  
The 150 mA rating is a maximum average continuous  
rating. As long as the average current does not exceed  
150 mA nor the max power dissipation of the packaged  
device, pulsed higher load currents can be applied to  
the MCP1804. The typical current limit for the  
MCP1804 is 200 mA (TA = +25°C).  
© 2009 Microchip Technology Inc.  
DS22200A-page 25  
MCP1804  
NOTES:  
DS22200A-page 26  
© 2009 Microchip Technology Inc.  
MCP1804  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
5-Lead SOT-23  
Part Number  
Code  
MCP1804T-1802I/OT  
MCP1804T-2502I/OT  
MCP1804T-3002I/OT  
MCP1804T-3302I/OT  
MCP1804T-5002I/OT  
MCP1804T-A002I/OT  
MCP1804T-C002I/OT  
80KNN  
80TNN  
80ZNN  
812NN  
81MNN  
839NN  
83ZNN  
XXNN  
80K25  
3-Lead SOT-89  
Example:  
Part Number  
Code  
MCP1804T-1802I/MB  
MCP1804T-2502I/MB  
MCP1804T-3002I/MB  
MCP1804T-3302I/MB  
MCP1804T-5002I/MB  
MCP1804T-A002I/MB  
MCP1804T-C002I/MB  
84KNN  
84TNN  
84ZNN  
852NN  
85MNN  
879NN  
87ZNN  
XXXYYWW  
NNN  
84K25  
5-Lead SOT-89  
Example:  
Part Number  
Code  
MCP1804T-1802I/MT  
MCP1804T-2502I/MT  
MCP1804T-3002I/MT  
MCP1804T-3302I/MT  
MCP1804T-5002I/MT  
MCP1804T-A002I/MT  
MCP1804T-C002I/MT  
80KNN  
80TNN  
80ZNN  
812NN  
81MNN  
839NN  
83ZNN  
XXXYYWW  
NNN  
80K25  
Example:  
3-Lead SOT-223  
Part Number  
Code  
MCP1804T-1802I/DB  
MCP1804T-2502I/DB  
MCP1804T-3002I/DB  
MCP1804T-3302I/DB  
MCP1804T-5002I/DB  
MCP1804T-A002I/DB  
MCP1804T-C002I/DB  
84KNN  
84TNN  
84ZNN  
852NN  
85MNN  
879NN  
87ZNN  
XXXXXXX  
XXXYYWW  
84K25  
NNN  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
WW  
NNN  
e
3
e
3
*
)
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2009 Microchip Technology Inc.  
DS22200A-page 27  
MCP1804  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢏꢒꢖꢆꢗꢍꢏꢒꢁꢘꢙꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
5
(
ꢐꢁꢛ(ꢈ)ꢕ*  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
ꢅꢀ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
ꢀꢁꢛꢐꢈ)ꢕ*  
ꢐꢁꢛꢐ  
ꢐꢁ;ꢛ  
ꢐꢁꢐꢐ  
ꢑꢁꢑꢐ  
ꢀꢁꢜꢐ  
ꢑꢁꢒꢐ  
ꢐꢁꢀꢐ  
ꢐꢁꢜ(  
ꢐꢝ  
M
M
M
M
M
M
M
M
M
M
M
ꢀꢁꢖ(  
ꢀꢁꢜꢐ  
ꢐꢁꢀ(  
ꢜꢁꢑꢐ  
ꢀꢁ;ꢐ  
ꢜꢁꢀꢐ  
ꢐꢁ=ꢐ  
ꢐꢁ;ꢐ  
ꢜꢐꢝ  
4ꢀ  
8
ꢐꢁꢐ;  
ꢐꢁꢑꢐ  
ꢐꢁꢑ=  
ꢐꢁ(ꢀ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐꢛꢀ)  
DS22200A-page 28  
© 2009 Microchip Technology Inc.  
MCP1804  
ꢙꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢝꢃꢄꢅꢃꢓꢆꢕ !ꢖꢆꢗꢍꢏꢒꢁ"#ꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
D1  
E
H
L
N
1
2
b
b1  
b1  
e
E1  
e1  
A
C
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ4ꢅꢉ!  
1ꢃ#ꢊꢌ  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌꢈꢉ#ꢈ)ꢉ ꢅ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌꢈꢉ#ꢈ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
8ꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈꢑꢈ<ꢃ!#ꢌ  
5
ꢅꢀ  
9
"
"ꢀ  
ꢂꢀ  
4
8
ꢀꢁ(ꢐꢈ)ꢕ*  
ꢜꢁꢐꢐꢈ)ꢕ*  
ꢀꢁꢖꢐ  
ꢜꢁꢛꢖ  
ꢑꢁꢑꢛ  
ꢑꢁꢀꢜ  
ꢖꢁꢜꢛ  
ꢀꢁꢖꢐ  
ꢐꢁꢒꢛ  
ꢐꢁꢜ(  
ꢐꢁꢖꢀ  
ꢐꢁꢜ=  
ꢀꢁ=ꢐ  
ꢖꢁꢑ(  
ꢑꢁ=ꢐ  
ꢑꢁꢑꢛ  
ꢖꢁ=ꢐ  
ꢀꢁ;ꢜ  
ꢀꢁꢑꢐ  
ꢐꢁꢖꢖ  
ꢐꢁ(=  
ꢐꢁꢖ;  
4ꢅꢉ! ꢈꢀꢈ?ꢈꢜꢈ<ꢃ!#ꢌ  
8ꢀ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐꢑꢛ)  
© 2009 Microchip Technology Inc.  
DS22200A-page 29  
MCP1804  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢝꢃꢄꢅꢃꢓꢆꢕ ꢒꢖꢆꢗꢍꢏꢒꢁ"#ꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D1  
b2  
b1  
b1  
N
L
L
1
2
b
b1  
b1  
e
e1  
H
E
D
A
C
3ꢆꢃ#  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢏꢙ5 ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ4ꢅꢉ!  
4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
8ꢈ<ꢃ!#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈꢑꢈ<ꢃ!#ꢌ  
4ꢅꢉ! ꢈꢀ0ꢈꢜ0ꢈꢖꢈ?ꢈ(ꢈ<ꢃ!#ꢌ  
8ꢈ4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
5
ꢅꢀ  
9
"
ꢂꢀ  
4
8
(
ꢀꢁ(ꢐꢈ)ꢕ*  
ꢜꢁꢐꢐꢈ)ꢕ*  
ꢀꢁꢖꢐ  
ꢜꢁꢛꢖ  
ꢑꢁꢑꢛ  
ꢖꢁꢖꢐ  
ꢀꢁꢖꢐ  
ꢐꢁ;ꢐ  
ꢐꢁꢜ(  
ꢐꢁꢖꢀ  
ꢐꢁꢜ=  
ꢐꢁꢜꢑ  
ꢀꢁ=ꢐ  
ꢖꢁ(ꢐ  
ꢑꢁ=ꢐ  
ꢖꢁ=ꢐ  
ꢀꢁ;ꢜ  
ꢀꢁꢑꢐ  
ꢐꢁꢖꢖ  
ꢐꢁ(=  
ꢐꢁꢖ;  
ꢐꢁꢖ;  
8ꢀ  
8ꢑ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐꢜꢐ)  
DS22200A-page 30  
© 2009 Microchip Technology Inc.  
MCP1804  
ꢙꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕ$!ꢖꢆꢗꢍꢏꢒꢁꢘꢘꢙꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
b2  
E1  
E
3
2
1
e
e1  
A2  
c
A
φ
b
L
A1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ4ꢅꢉ!  
4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ9ꢅꢃꢓꢌ#  
ꢕ#ꢉꢆ!ꢇ%%  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ9ꢅꢃꢓꢌ#  
6,ꢅꢍꢉꢋꢋꢈ<ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ<ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
5
ꢅꢀ  
ꢔꢀ  
ꢔꢑ  
"
"ꢀ  
8
8ꢑ  
4
ꢑꢁꢜꢐꢈ)ꢕ*  
ꢖꢁ=ꢐꢈ)ꢕ*  
M
M
ꢀꢁ;ꢐ  
ꢐꢁꢀꢐ  
ꢀꢁꢒꢐ  
ꢒꢁꢜꢐ  
ꢜꢁꢒꢐ  
=ꢁꢒꢐ  
ꢐꢁꢜ(  
ꢐꢁ;ꢖ  
ꢜꢁꢀꢐ  
M
ꢐꢁꢐꢑ  
ꢀꢁ(ꢐ  
=ꢁꢒꢐ  
ꢜꢁꢜꢐ  
=ꢁꢜꢐ  
ꢐꢁꢑꢜ  
ꢐꢁ=ꢐ  
ꢑꢁꢛꢐ  
ꢐꢁꢒ(  
ꢐꢝ  
M
ꢀꢁ=ꢐ  
ꢒꢁꢐꢐ  
ꢜꢁ(ꢐ  
=ꢁ(ꢐ  
ꢐꢁꢜꢐ  
ꢐꢁꢒ=  
ꢜꢁꢐꢐ  
M
8ꢈ4ꢅꢉ!ꢈ<ꢃ!#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
4ꢅꢉ!ꢈꢔꢆꢓꢋꢅ  
M
ꢀꢐꢝ  
ꢛꢔꢊꢃꢉꢜ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢞꢐꢜꢑ)  
© 2009 Microchip Technology Inc.  
DS22200A-page 31  
MCP1804  
ꢙꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕ$!ꢖꢆꢗꢍꢏꢒꢁꢘꢘꢙꢚ  
ꢛꢔꢊꢃꢜ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
DS22200A-page 32  
© 2009 Microchip Technology Inc.  
MCP1804  
APPENDIX A: REVISION HISTORY  
Revision A (September 2009)  
• Original Release of this Document.  
© 2009 Microchip Technology Inc.  
DS22200A-page 31  
MCP1804  
NOTES:  
DS22200A-page 32  
© 2009 Microchip Technology Inc.  
MCP1804  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
XX  
T
-XX  
Examples:  
a)  
MCP1804T-1802I/OT:  
MCP1804T-2502I/OT:  
1.8V, 5-LD SOT-23  
2.5V, 5-LD SOT-23  
3.0V, 5-LD SOT-23  
3.3V, 5-LD SOT-23  
5.0V, 5-LD SOT-23  
10V, 5-LD SOT-23  
12V, 5-LD SOT-23  
Temperature  
Range  
Package  
Output  
Voltage  
Tolerance  
Tape  
and  
Reel  
Voltage  
b)  
c)  
d)  
e)  
f)  
MCP1804T-3002I/OT:  
MCP1804T-3302I/OT:  
MCP1804T-5002I/OT:  
MCP1804T-A002I/OT:  
MCP1804T-C002I/OT:  
Device  
MCP1804T:  
LDO Voltage Regulator (Tape and Reel)  
g)  
Voltage Options  
18  
25  
30  
33  
50  
A0  
C0  
=
=
=
=
=
=
=
1.8V  
2.5V  
3.0V  
3.3V  
5.0V  
10V  
a)  
b)  
c)  
d)  
e)  
f)  
MCP1804T-1802I/MB:  
MCP1804T-2502I/MB:  
MCP1804T-3002I/MB:  
MCP1804T-3302I/MB:  
MCP1804T-5002I/MB:  
MCP1804T-A002I/MB:  
MCP1804T-C002I/MB:  
1.8V, 5-LD SOT-89  
2.5V, 5-LD SOT-89  
3.0V, 5-LD SOT-89  
3.3V, 5-LD SOT-89  
5.0V, 5-LD SOT-89  
10V, 5-LD SOT-89  
12V, 5-LD SOT-89  
12V  
g)  
Output Voltage  
Tolerance  
02  
I
=
±2%  
a)  
b)  
c)  
d)  
e)  
f)  
MCP1804T-1802I/MT:  
MCP1804T-2502I/MT:  
MCP1804T-3002I/MT:  
MCP1804T-3302I/MT:  
MCP1804T-5002I/MT:  
MCP1804T-A002I/MT:  
MCP1804T-C002I/MT:  
1.8V, 5-LD SOT-89  
2.5V, 5-LD SOT-89  
3.0V, 5-LD SOT-89  
3.3V, 5-LD SOT-89  
5.0V, 5-LD SOT-89  
10V, 5-LD SOT-89  
12V, 5-LD SOT-89  
Temperature Range  
Package  
= -40°C to +85°C (Industrial)  
DB  
MB  
MT  
OT  
=
=
=
=
3-lead Plastic Small OutlineTransistor (SOT-223)  
3-lead Plastic Small OutlineTransistor (SOT-89)  
5-lead Plastic Small OutlineTransistor (SOT-89)  
5-lead Plastic Small OutlineTransistor (SOT-23)  
g)  
a)  
b)  
c)  
d)  
e)  
f)  
MCP1804T-1802I/DB:  
MCP1804T-2502I/DB:  
MCP1804T-3002I/DB:  
MCP1804T-3302I/DB:  
MCP1804T-5002I/DB:  
MCP1804T-A002I/DB:  
1.8V, 3-LD SOT-223  
2.5V, 3-LD SOT-223  
3.0V, 3-LD SOT-223  
3.3V, 3-LD SOT-223  
5.0V, 3-LD SOT-223  
10V, 3-LD SOT-223  
g)  
MCP1804T-C002I/DB: 12V, 3-LD SOT-223  
© 2009 Microchip Technology Inc.  
DS22200A-page 33  
MCP1804  
NOTES:  
DS22200A-page 34  
© 2009 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
rfPIC and UNI/O are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total  
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA  
are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2009 Microchip Technology Inc.  
DS22200A-page 35  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4080  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
03/26/09  
DS22200A-page 36  
© 2009 Microchip Technology Inc.  

相关型号:

MCP1804T-2502I/MB

150 mA, 28V LDO Regulator With Shutdown
MICROCHIP

MCP1804T-2502I/MT

150 mA, 28V LDO Regulator With Shutdown
MICROCHIP

MCP1804T-2502I/OT

150 mA, 28V LDO Regulator With Shutdown
MICROCHIP

MCP1804T-2502IDB

150 mA, 28V LDO Regulator With Shutdown
MICROCHIP

MCP1804T-2502IMB

150 mA, 28V LDO Regulator With Shutdown
MICROCHIP

MCP1804T-2502IMT

150 mA, 28V LDO Regulator With Shutdown
MICROCHIP

MCP1804T-2502IOT

150 mA, 28V LDO Regulator With Shutdown
MICROCHIP

MCP1804T-3002I/DB

3 V FIXED POSITIVE LDO REGULATOR, 1.7 V DROPOUT, PDSO3, PLASTIC, SOT-223, 4 PIN
MICROCHIP

MCP1804T-3002I/DM

150 mA, 28V LDO Regulator With Shutdown
MICROCHIP

MCP1804T-3002I/MB

150 mA, 28V LDO Regulator With Shutdown
MICROCHIP

MCP1804T-3002I/MT

150 mA, 28V LDO Regulator With Shutdown
MICROCHIP

MCP1804T-3002I/OT

150 mA, 28V LDO Regulator With Shutdown
MICROCHIP