MCP1701T-25021/CB

更新时间:2024-09-18 01:49:41
品牌:MICROCHIP
描述:2uA Low Dropoout Positive Voltage Refulator

MCP1701T-25021/CB 概述

2uA Low Dropoout Positive Voltage Refulator 为2uA低Dropoout正电压Refulator

MCP1701T-25021/CB 数据手册

通过下载MCP1701T-25021/CB数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
MCP1701  
M
2 µA Low Dropout Positive Voltage Regulator  
Features  
General Description  
• 2.0 µA Typical Quiescent Current  
• Input Operating Voltage Range up to 10.0V  
• Low Dropout Voltage:  
The MCP1701 is a family of CMOS low dropout (LDO),  
positive voltage regulators that can deliver up to  
250 mA of current while consuming only 2.0 µA of  
quiescent current (typical). The input operating range is  
specified up to 10V, making it ideal for lithium-ion (one  
or two cells), 9V alkaline and other two and three  
primary cell battery-powered applications.  
- 250 mV (typ.) @ 100 mA  
- 500 mV (typ.) @ 200 mA  
• High Output Current: 250 mA (V  
= 5.0V)  
OUT  
• High-Accuracy Output Voltage: ±2% (max)  
• Low Temperature Drift: ±100 ppm/°C (typ.)  
• Excellent Line Regulation: 0.2%/V (typ.)  
The MCP1701 is capable of delivering 250 mA with an  
input-to-output voltage differential (dropout voltage) of  
650 mV. The low dropout voltage extends the battery  
operating lifetime. It also permits high currents in small  
• Package Options: 3-Pin SOT-23A, 3-Pin SOT-89  
packages when operated with minimum V – V  
IN  
OUT  
and 3-Pin TO-92  
differentials.  
• Short-Circuit Protection  
The MCP1701 has a tight tolerance output voltage  
regulation of ±0.5% (typical) and very good line regula-  
tion at ±0.2%. The LDO output is stable when using  
only 1 µF of output capacitance of either tantalum or  
aluminum-electrolytic style capacitors. The MCP1701  
LDO also incorporates short-circuit protection to  
ensure maximum reliability.  
• Standard Output Voltage Options:  
- 1.8V, 2.5V, 3.0V, 3.3V, 5.0V  
Applications  
• Battery-Powered Devices  
• Battery-Powered Alarm Circuits  
• Smoke Detectors  
Package options include the 3-Pin SOT-23A, 3-Pin  
SOT-89 and 3-Pin TO-92.  
2
• CO Detectors  
• Smart Battery Packs  
• PDAs  
Package Types  
• Low Quiescent Current Voltage Reference  
• Cameras and Portable Video Equipment  
• Pagers and Cellular Phones  
• Solar-Powered Instruments  
• Consumer Products  
3-Pin SOT-23A  
3-Pin SOT-89  
V
V
IN  
3
IN  
MCP1701  
MCP1701  
• Microcontroller Power  
1
2
1
2
3
GND  
V
GND V  
V
OUT  
IN OUT  
Related Literature  
• AN765, “Using Microchip’s Micropower LDOs”,  
DS00765, Microchip Technology Inc., 2002  
• AN766, “Pin-Compatible CMOS Upgrades to  
Bipolar LDOs”, DS00766,  
Microchip Technology Inc., 2002  
3-Pin TO-92  
1 2 3  
Bottom  
View  
GND V  
V
IN OUT  
Note:  
The 3-Pin SOT-23A is equivalent to  
the EIAJ SC-59.  
2004 Microchip Technology Inc.  
DS21874A-page 1  
MCP1701  
Functional Block Diagram  
MCP1701  
V
V
OUT  
IN  
Short-Circuit  
Protection  
+
Voltage  
Reference  
GND  
Typical Application Circuits  
MCP1701  
V
IN  
GND  
9V Alkaline Battery  
V
V
OUT  
IN  
3.3V  
C
V
IN  
OUT  
1 µF Tantalum  
I
OUT  
C
OUT  
50 mA  
1 µF Tantalum  
DS21874A-page 2  
2004 Microchip Technology Inc.  
MCP1701  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device. These  
are stress ratings only and functional operation of the device  
at these or any other conditions above those indicated in the  
operation sections of the specifications is not implied.  
Exposure to Absolute Maximum Rating conditions for  
extended periods may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings†  
Input Voltage ........................................................+12V  
Output Current (Continuous)..........P /(V – V )mA  
Output Current (peak) ..................................... 500 mA  
D
IN  
OUT  
PIN FUNCTION TABLE  
Output Voltage ............... (GND – 0.3V) to (V + 0.3V)  
IN  
Symbol  
Description  
Ground Terminal  
Continuous Power Dissipation:  
GND  
3-Pin SOT-23A ............................................ 150 mW  
3-Pin SOT-89 .............................................. 500 mW  
3-Pin TO-92................................................. 300 mW  
V
V
Regulated Voltage Output  
Unregulated Supply Input  
OUT  
IN  
ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, all limits are established for an ambient temperature of TA = +25°C.  
Parameters  
Output Voltage Regulation  
Maximum Output Current  
Sym  
VOUT  
IOUTMAX  
Min  
Typ  
Max  
Units  
V
mA  
Conditions  
IOUT = 40 mA, (Note 1)  
VOUT = 5.0V (VIN = VR + 1.0V)  
VOUT = 4.0V  
VOUT = 3.3V  
VOUT = 3.0V  
VR – 2%  
250  
200  
150  
150  
125  
110  
-1.60  
-2.25  
-2.72  
-3.00  
-3.60  
-1.60  
VR±0.5% VR + 2%  
VOUT = 2.5V  
VOUT = 1.8V  
Load Regulation (Note 3)  
VOUT/ VOUT  
±0.8  
±1.1  
±1.3  
±1.5  
±1.8  
±0.8  
400  
400  
400  
400  
400  
180  
2.0  
+1.60  
+2.25  
+2.72  
+3.00  
+3.60  
+1.60  
630  
630  
700  
700  
700  
300  
3.0  
%
VOUT = 5.0V, 1 mA IOUT 100 mA  
VOUT = 4.0V, 1 mA IOUT 100 mA  
VOUT = 3.3V, 1 mA IOUT 80 mA  
VOUT = 3.0V, 1 mA IOUT 80 mA  
VOUT = 2.5V, 1 mA IOUT 60 mA  
VOUT = 1.8V, 1 mA IOUT 30 mA  
IOUT = 200 mA, VR = 5.0V  
IOUT = 200 mA, VR = 4.0V  
IOUT = 160 mA, VR = 3.3V  
IOUT = 160 mA, VR = 3.0V  
IOUT = 120 mA, VR = 2.5V  
IOUT = 20 mA, VR = 1.8V  
VIN = VR + 1.0V  
Dropout Voltage  
VIN - VOUT  
mV  
µA  
Input Quiescent Current  
Line Regulation  
IQ  
VOUT•100  
VIN•VOUT  
VIN  
0.2  
0.3  
%/V IOUT = 40 mA, (VR +1) VIN 10.0V  
Input Voltage  
Temperature Coefficient of  
Output Voltage  
±100  
10  
V
TCVOUT  
ppm/ IOUT = 40 mA, -40°C TA ≤ +85°C,  
°C  
(Note 2)  
Output Rise Time  
TR  
200  
µsec 10% VR to 90% VR, VIN = 0V to VR +1V,  
RL = 25resistive.  
1: VR is the nominal regulator output voltage. For example: VR = 1.8V, 2.5V, 3.3V, 4.0V, 5.0V.  
The input voltage VIN = VR + 1.0V, IOUT = 40 mA.  
2: TCVOUT = (VOUT-HIGH – VOUT-LOW) *106/(VR * Temperature), VOUT-HIGH is equal to the highest voltage measured  
over the temperature range, while VOUT-LOW is equal to the lowest voltage measured over the temperature range.  
3: Load regulation is measured at a constant junction temperature using low duty cycle pulse testing.  
2004 Microchip Technology Inc.  
DS21874A-page 3  
MCP1701  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, T = +25°C.  
A
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range (I)  
Storage Temperature Range  
Package Thermal Resistances  
Thermal Resistance, 3L-SOT-23A  
T
-40  
-40  
+85  
+125  
°C  
°C  
A
T
A
θ
335  
230  
52  
°C/W Minimum trace width single  
layer application.  
°C/W Typical FR4, 4-layer  
JA  
application.  
Thermal Resistance, 3L-SOT-89  
Thermal Resistance, 3L-TO-92  
θ
θ
°C/W Typical when mounted on  
1 square inch of copper.  
°C/W EIA/JEDEC JESD51-751-7  
JA  
JA  
131.9  
4-layer board.  
DS21874A-page 4  
2004 Microchip Technology Inc.  
MCP1701  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Notes: Unless otherwise specified, V  
= 1.8V, 3.0V, 5.0V, T = +25°C, C = 1 µF Tantalum, C  
= 1 µF Tantalum.  
OUT  
A
IN  
OUT  
2.65  
2.60  
2.55  
2.50  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
VR = 1.8V  
+25°C  
+85°C  
2.45  
2.40  
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
+25°C  
0°C  
0°C  
-40°C  
-40°C  
5
VIN = 4.0V  
VR = 3.0V  
2
3
4
6
7
8
9
10  
0
20  
40  
60  
80  
100  
120  
140  
160  
Load Current (mA)  
Input Voltage (V)  
FIGURE 2-1:  
Supply Current vs. Input  
FIGURE 2-4:  
Supply Current vs. Load  
Voltage (V = 1.8V).  
Current (V = 3.0V).  
R
R
2.4  
2.3  
2.75  
2.70  
2.65  
2.60  
2.55  
2.50  
2.45  
VR = 3.0V  
+25°C  
+85°C  
2.2  
+25°C  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
+85°C  
0°C  
2.40  
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
-40°C  
-40°C  
VIN = 6.0V  
VR = 5.0V  
3
4
5
6
7
8
9
10  
0
20  
40  
60  
80 100 120 140 160 180 200  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-2:  
Supply Current vs. Input  
FIGURE 2-5:  
Supply Current vs. Load  
Voltage (V = 3.0V).  
Current (V = 5.0V).  
R
R
3.00  
2.85  
2.70  
2.55  
2.40  
2.25  
2.10  
1.95  
1.80  
1.65  
1.50  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
VR = 5.0V  
VR = 5.0V  
VR = 1.8V  
+25°C  
+85°C  
-40°C  
VR = 3.0V  
VIN = VR + 1V  
I
OUT = 0 µA  
5
6
7
8
9
10  
-40  
-20  
0
20  
40  
60  
80 100  
Input Voltage (V)  
Temperature (°C)  
FIGURE 2-3:  
Supply Current vs. Input  
FIGURE 2-6:  
Supply Current vs.  
Voltage (V = 5.0V).  
Temperature.  
R
2004 Microchip Technology Inc.  
DS21874A-page 5  
MCP1701  
Note: Unless otherwise indicated, V  
= 1.8V, 3.0V, 5.0V, T = +25°C, C = 1 µF Tantalum, C  
= 1 µF Tantalum.  
OUT  
A
IN  
OUT  
1.85  
1.84  
IOUT = 0.1 mA  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
VIN = 2.8V  
+25°C  
+85°C  
+25°C  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
+85°C  
0°C  
0°C  
-40°C  
-40°C  
2
3
4
5
6
7
8
9
10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-7:  
Output Voltage vs. Input  
FIGURE 2-10:  
Output Voltage vs. Load  
Voltage (V = 1.8V).  
Current (V = 1.8V).  
R
R
3.05  
3.04  
3.06  
3.04  
IOUT = 0.1 mA  
VIN = 4.0V  
3.03  
3.02  
3.01  
3.00  
2.99  
2.98  
2.97  
+25°C  
0°C  
3.02  
3.00  
2.98  
2.96  
2.94  
+25°C  
+85°C  
+85°C  
0°C  
-40°C  
-40°C  
30  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
0
15  
45  
60  
75  
90 105 120 135 150  
Input Voltage (V)  
Load Current (mA)  
FIGURE 2-8:  
Output Voltage vs. Input  
FIGURE 2-11:  
Output Voltage vs. Load  
Voltage (V = 3.0V).  
Current (V = 3.0V).  
R
R
5.10  
5.09  
5.08  
5.07  
5.05  
5.03  
VIN = 6.0V  
IOUT = 0.1 mA  
+25°C  
+25°C  
0°C  
5.07  
5.06  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
+85°C  
+85°C  
5.01  
0°C  
4.99  
4.97  
4.95  
4.93  
-40°C  
50  
-40°C  
5.5  
6.0  
6.5  
7.0  
7.5  
8.0  
8.5  
9.0  
9.5 10.0  
0
25  
75 100 125 150 175 200 225 250  
Load Current (mA)  
Input Voltage (V)  
FIGURE 2-9:  
Output Voltage vs. Input  
FIGURE 2-12:  
Current (V = 5.0V).  
Output Voltage vs. Load  
Voltage (V = 5.0V).  
R
R
DS21874A-page 6  
2004 Microchip Technology Inc.  
MCP1701  
Note: Unless otherwise indicated, V  
= 1.8V, 3.0V, 5.0V, T = +25°C, C = 1 µF Tantalum, C  
= 1 µF Tantalum.  
OUT  
OUT  
A
IN  
0.7  
VR = 1.8V  
0.6  
0.5  
VIN = 0V to  
2.8V  
0.4  
0.3  
0.2  
0.1  
0.0  
+85°C  
0°C  
-40°C  
RLOAD = 25 ohms  
COUT = 1 µF Tantalum  
VR = 1.8V  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Load Current (mA)  
FIGURE 2-13:  
Dropout Voltage vs. Load  
FIGURE 2-16:  
R
Start-up From V  
IN  
Current (V = 1.8V).  
(V = 1.8V).  
R
0
0.6  
VR = 3.0V  
0.5  
0.4  
0.3  
0.2  
0.1  
0
VIN = 0V to  
4.0V  
+85°C  
0°C  
-40°C  
RLOAD = 25 ohms  
COUT = 1 µF Tantalum  
VR = 3.0V  
0
15  
30  
45  
60  
75  
90 105 120 135 150  
Load Current (mA)  
FIGURE 2-14:  
Dropout Voltage vs. Load  
FIGURE 2-17:  
R
Start-up From V  
IN  
Current (V = 3.0V).  
(V = 3.0V).  
R
0.8  
VR = 5.0V  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
VIN = 0V to  
6.0V  
+85°C  
0°C  
-40°C  
RLOAD = 25 ohms  
COUT = 1 µF Tantalum  
VR = 5.0V  
0
25  
50  
75 100 125 150 175 200 225 250  
Load Current (mA)  
FIGURE 2-15:  
Dropout Voltage vs. Load  
FIGURE 2-18:  
Start-up From V  
IN  
Current (V = 5.0V).  
(V = 5.0V).  
R
R
2004 Microchip Technology Inc.  
DS21874A-page 7  
MCP1701  
Note: Unless otherwise indicated, V  
= 1.8V, 3.0V, 5.0V, T = +25°C, C = 1 µF Tantalum, C = 1 µF Tantalum.  
OUT  
OUT  
A
IN  
0.00  
-0.05  
-0.10  
-0.15  
0.15  
0.14  
0.13  
0.12  
0.11  
0.10  
VR = 1.8V  
OUT = 1 to 30mA  
VR = 1.8V  
I
VIN = 2.8V to 10V  
IOUT = 90 mA  
-0.20  
-0.25  
-0.30  
-0.35  
-0.40  
VIN = 6.0V  
VIN = 4.0V  
IOUT = 40 mA  
IOUT = 1 mA  
VIN = 2.8V  
IOUT = 10 mA  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
FIGURE 2-19:  
Load Regulation vs.  
FIGURE 2-22:  
Line Regulation vs.  
Temperature (V = 1.8V).  
Temperature (V = 1.8V).  
R
R
-0.30  
-0.35  
-0.40  
-0.45  
0.13  
0.12  
VR = 3.0V  
IOUT = 1 to 80 mA  
IOUT = 1 mA  
0.11  
0.10  
0.09  
0.08  
0.07  
0.06  
VIN = 6.0V  
-0.50  
-0.55  
-0.60  
-0.65  
-0.70  
IOUT = 10 mA  
VIN = 4.0V  
IOUT = 150 mA  
VIN = 10.0V  
VR = 3.0V  
VIN = 4.0V to 10V  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-20:  
Load Regulation vs.  
FIGURE 2-23:  
Line Regulation vs.  
Temperature (V = 3.0V).  
Temperature (V = 3.0V).  
R
R
0.0  
-0.1  
-0.2  
-0.3  
0.17  
0.16  
0.15  
VR = 5.0V  
VR = 5.0V  
VIN = 6.0V to 10V  
IOUT = 1 to 100 mA  
IOUT = 10 mA  
IOUT = 1 mA  
0.14  
0.13  
0.12  
0.11  
0.10  
0.09  
0.08  
VIN = 7.0V  
VIN = 6.0V  
-0.4  
-0.5  
-0.6  
IOUT = 100 mA  
VIN = 10.0V  
IOUT = 250 mA  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
FIGURE 2-21:  
Load Regulation vs.  
FIGURE 2-24:  
Line Regulation vs.  
Temperature (V = 5.0V).  
Temperature (V = 5.0V).  
R
R
DS21874A-page 8  
2004 Microchip Technology Inc.  
MCP1701  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
Pin No.  
Pin No.  
Pin No.  
Name  
Function  
SOT-23A  
SOT-89  
TO-92  
1
2
3
1
3
2
1
3
2
GND  
Ground terminal  
Regulated voltage output  
Unregulated supply input  
V
OUT  
V
IN  
3.1  
Ground Terminal (GND)  
3.3  
Unregulated Supply Input (V )  
IN  
Regulator ground. Tie GND to the negative side of both  
the output and the input capacitor. Only the LDO bias  
current (2 µA, typical) flows out of this pin, as there is  
no high current. The LDO output regulation is refer-  
enced to this pin. Minimize voltage drops between this  
pin and the negative side of the load.  
Connect the input supply voltage and the positive side  
of the input capacitor to V . Like all low dropout linear  
IN  
regulators, low source impedance is necessary for the  
stable operation of the LDO. The amount of capacitance  
required to ensure low source impedance will depend  
on the proximity of the input source capacitors or battery  
type. The input capacitor should be located as close as  
possible to the V pin. For most applications, 1 µF of  
3.2  
Regulated Voltage Output (V  
)
IN  
OUT  
capacitance will ensure stable operation of the LDO  
circuit. For applications that have load currents below  
100 mA, the input capacitance requirement can be  
lowered. The type of capacitor used can be ceramic,  
tantalum or aluminum-electrolytic. The low ESR charac-  
teristics of the ceramic will yield better noise and PSRR  
performance at high frequencies. The current flow into  
this pin is equal to the DC load current, plus the LDO  
bias current (2 µA, typical).  
Connect V  
to the positive side of the load and the  
OUT  
positive terminal of the output capacitor. The positive  
side of the output capacitor should be located as close  
as possible to the LDO V  
out of this pin is equal to the DC load current.  
pin. The current flowing  
OUT  
2004 Microchip Technology Inc.  
DS21874A-page 9  
MCP1701  
4.2  
Input Capacitor  
4.0  
DETAILED DESCRIPTION  
A 1 µF input capacitor is recommended for most  
applications when the input impedance is on the order  
of 10. Larger input capacitance may be required for  
stability when operating from a battery input, or if there  
is a large distance from the input source to the LDO.  
When large values of output capacitance are used, the  
input capacitance should be increased to prevent high  
source impedance oscillations.  
The MCP1701 is a low quiescent current, precision,  
fixed-output voltage LDO. Unlike bipolar regulators,  
the MCP1701 supply current does not increase  
proportionally with load current.  
4.1  
Output Capacitor  
A minimum of 1 µF output capacitor is required. The  
output capacitor should have an effective series  
resistance (esr) greater than 0.1and less than 5,  
plus a resonant frequency above 1 MHz. Larger output  
capacitors can be used to improve supply noise  
rejection and transient response. Care should be taken  
4.3  
Overcurrent  
The MCP1701 internal circuitry monitors the amount of  
current flowing through the P-channel pass transistor.  
In the event of a short-circuit or excessive output  
current, the MCP1701 will act to limit the output current.  
when increasing C  
to ensure that the input  
OUT  
impedance is not high enough to cause high input  
impedance oscillation.  
V
V
OUT  
IN  
Short-Circuit  
Protection  
+
Voltage  
Reference  
GND  
FIGURE 4-1:  
MCP1701 Block Diagram.  
DS21874A-page 10  
2004 Microchip Technology Inc.  
MCP1701  
To determine the junction temperature of the device, the  
thermal resistance from junction-to-ambient must be  
known. The 3-pin SOT-23 thermal resistance from  
5.0  
5.1  
THERMAL CONSIDERATIONS  
Power Dissipation  
junction-to-air (R ) is estimated to be approximately  
θJA  
The amount of power dissipated internal to the LDO  
linear regulator is the sum of the power dissipation  
within the linear pass device (P-channel MOSFET) and  
the quiescent current required to bias the internal refer-  
ence and error amplifier. The internal linear pass  
device power dissipation is calculated as shown in  
Equation 5-1.  
335°C/W. The SOT-89  
approximately 52°C/W when mounted on 1 square inch  
of copper. For the TO-92, R is estimated to be  
R
is estimated to be  
θJA  
θJA  
131.9°C/W. The R  
will vary with physical layout,  
θJA  
airflow and other application-specific conditions.  
The device junction temperature is determined by  
calculating the junction temperature rise above  
ambient, then adding the rise to the ambient  
temperature.  
EQUATION 5-1:  
P (Pass Device) = (V – V  
) x I  
OUT  
D
IN  
OUT  
EQUATION 5-5:  
JUNCTION  
The internal power dissipation, which is due to the bias  
current for the LDO internal reference and error ampli-  
fier, is calculated as shown in Equation 5-2.  
TEMPERATURE - SOT-23  
EXAMPLE:  
TJ = PDMAX × RθJA + TA  
TJ = 116.0 milliwatts × 335°C/W + 55°C  
TJ = 93.9°C  
EQUATION 5-2:  
P (Bias) = V x I  
D
IN  
GND  
The total internal power dissipation is the sum of P  
D
EQUATION 5-6:  
JUNCTION  
(Pass Device) and P (Bias).  
D
TEMPERATURE - SOT-89  
EXAMPLE:  
EQUATION 5-3:  
TJ = 116.0 milliwatts × 52°C/W + 55°C  
TJ = 61°C  
P
= P (Pass Device) + P (Bias)  
TOTAL  
D D  
For the MCP1701, the internal quiescent bias current is  
so low (2 µA, typical) that the P (Bias) term of the  
D
EQUATION 5-7:  
JUNCTION  
power dissipation equation can be ignored. The  
maximum power dissipation can be estimated by using  
the maximum input voltage and the minimum output  
voltage to obtain a maximum voltage differential  
between input and output. The next step would be to  
multiply the maximum voltage differential by the  
maximum output current.  
TEMPERATURE - TO-92  
EXAMPLE:  
TJ = 116.0 milliwatts × 131.9°C/W + 55°C  
TJ = 70.3°C  
EQUATION 5-4:  
P
= (V  
– V  
) x I  
D
INMAX  
OUTMIN OUTMAX  
Given:  
V
= 3.3V to 4.1V  
= 3.0V ± 2%  
= 1 mA to 100 mA  
= 55°C  
IN  
V
I
T
OUT  
OUT  
AMAX  
P
P
= (4.1V – (3.0V x 0.98)) x 100 mA  
= 116.0 milliwatts  
MAX  
MAX  
2004 Microchip Technology Inc.  
DS21874A-page 11  
MCP1701  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
3-Pin TO-92  
3-Pin SOT-23A  
3-Pin SOT-89  
4
3
2
1
1 2 3 4  
5 6 7 8  
9 10 11 12  
1
2
3
4
1
represents first voltage digit  
1V, 2V, 3V, 4V, 5V, 6V  
4
3 &  
1 , 2 ,  
= M701 (fixed)  
3
5
Ex: 3.xV =  
represents first voltage digit (1-6)  
2 represents first decimal place voltage (x.0 - x.9)  
6 represents first voltage decimal (0-9)  
7 represents extra feature code: fixed: 0  
E
3
Ex: 3.4V =  
Symbol  
Voltage  
Symbol  
Voltage  
A
B
C
D
E
x.0  
x.1  
x.2  
x.3  
x.4  
F
H
K
L
x.5  
x.6  
x.7  
x.8  
x.9  
8 represents regulation accuracy  
2 = ±2.0% (standard)  
9 , 10, 11 & 12  
represents assembly lot number  
M
3
4
represents polarity  
0 = Positive (fixed)  
represents assembly lot number  
DS21874A-page 12  
2004 Microchip Technology Inc.  
MCP1701  
3-Lead Plastic Small Outline Transistor (CB) (SOT23)  
E
E1  
2
B
p1  
D
n
p
1
α
c
A
A2  
A1  
φ
β
L
Units  
INCHES*  
NOM  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
p1  
A
A2  
A1  
E
E1  
D
L
f
Number of Pins  
Pitch  
3
3
.038  
.076  
.046  
.043  
.002  
.110  
.063  
.114  
.018  
5
0.96  
1.92  
1.16  
1.10  
0.06  
2.80  
1.60  
2.90  
0.45  
5
Outside lead pitch (basic)  
Overall Height  
Molded Package Thickness  
.040  
.051  
1.30  
1.01  
.039  
.000  
.102  
.059  
.106  
.014  
0
.047  
.004  
.118  
.071  
.122  
.022  
10  
1.00  
0.01  
2.60  
1.50  
2.70  
0.35  
0
1.20  
0.10  
3.00  
1.80  
3.10  
0.55  
10  
Standoff  
§
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
Foot Angle  
Lead Thickness  
Lead Width  
c
.004  
.014  
0
.006  
.016  
5
.010  
.020  
10  
0.10  
0.35  
0
0.15  
0.40  
5
0.25  
0.50  
10  
B
a
b
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
EIAJ SC-59 Equivalent  
Drawing No. C04-104  
2004 Microchip Technology Inc.  
DS21874A-page 13  
MCP1701  
3-Lead Plastic Small Outline Transistor (MB) (SOT89)  
H
E
B1  
3
B
D1  
D
p1  
2
1
p
B1  
L
E1  
A
C
Units  
INCHES  
MILLIMETERS*  
MIN MAX  
1.50 BSC  
Dimension Limits  
p
MIN  
MAX  
Pitch  
.059 BSC  
.118 BSC  
.055  
p1  
A
Outside lead pitch (basic)  
Overall Height  
3.00 BSC  
1.40  
.063  
.167  
.102  
.090  
.181  
.072  
.047  
.017  
.022  
.019  
1.60  
4.25  
2.60  
2.29  
4.60  
1.83  
1.20  
0.44  
0.56  
0.48  
Overall Width  
H
.155  
3.94  
Molded Package Width at Base  
Molded Package Width at Top  
Overall Length  
E
E1  
D
.090  
2.29  
.084  
2.13  
.173  
4.40  
Tab Length  
D1  
L
.064  
1.62  
Foot Length  
.035  
0.89  
c
Lead Thickness  
.014  
0.35  
Lead 2 Width  
B
.017  
0.44  
Leads 1 & 3 Width  
B1  
.014  
0.36  
*Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not  
exceed .005" (0.127mm) per side.  
JEDEC Equivalent: TO-243  
Drawing No. C04-29  
DS21874A-page 14  
2004 Microchip Technology Inc.  
MCP1701  
3-Lead Plastic Transistor Outline (TO) (TO-92)  
E1  
D
n
1
L
1
2
3
α
B
p
c
A
R
β
Units  
INCHES*  
NOM  
MILLIMETERS  
NOM  
Dimension Limits  
MIN  
MAX  
MIN  
MAX  
n
p
Number of Pins  
Pitch  
Bottom to Package Flat  
Overall Width  
Overall Length  
Molded Package Radius  
Tip to Seating Plane  
Lead Thickness  
Lead Width  
3
3
.050  
.143  
.186  
.183  
.090  
.555  
.017  
.019  
5
1.27  
3.62  
4.71  
4.64  
2.29  
14.10  
0.43  
0.48  
5
A
E1  
D
R
L
.130  
.155  
.195  
.195  
.095  
.610  
.020  
.022  
6
3.30  
3.94  
.175  
.170  
.085  
.500  
.014  
.016  
4
4.45  
4.32  
2.16  
12.70  
0.36  
0.41  
4
4.95  
4.95  
2.41  
15.49  
0.51  
0.56  
6
c
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
2
3
4
2
3
4
*Controlling Parameter  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: TO-92  
Drawing No. C04-101  
2004 Microchip Technology Inc.  
DS21874A-page 15  
MCP1701  
NOTES:  
DS21874A-page 16  
2004 Microchip Technology Inc.  
MCP1701  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X-  
XX  
X
X
X/  
XX  
a)  
MCP1701T-1802I/CB: 1.8V LDO Positive  
Tape  
Output Feature Tolerance Temp. Package  
Voltage Regulator,  
SOT-23A-3  
package.  
and Reel Voltage  
Code  
b)  
c)  
MCP1701T-1802I/MB: 1.8V LDO Positive  
Device:  
MCP1701: 2 µA Low Dropout Positive Voltage Regulator  
Voltage Regulator,  
SOT89-3 package.  
Tape and Reel:  
Output Voltage:  
T
=
Tape and Reel (SOT-23 and SOT-89 only)  
MCP1701T-2502I/CB: 2.5V LDO Positive  
Voltage Regulator,  
SOT-23A-3  
18  
25  
30  
33  
50  
=
=
=
=
=
1.8V “Standard”  
2.5V “Standard”  
3.0V “Standard”  
3.3V “Standard”  
5.0V “Standard”  
package.  
d)  
MCP1701T-3002I/CB: 3.0V LDO Positive  
Voltage Regulator,  
SOT-23A-3  
*Contact factory for other output voltage options.  
package.  
e)  
f)  
MCP1701T-3002I/MB: 3.0V LDO Positive  
Extra Feature Code:  
Tolerance:  
0
2
I
=
=
=
Fixed  
Voltage Regulator,  
SOT89-3 package.  
2.0% (Standard)  
-40°C to +85°C  
MCP1701T-3302I/CB: 3.3V LDO Positive  
Voltage Regulator,  
SOT-23A-3  
Temperature:  
package.  
g)  
h)  
MCP1701T-3302I/MB: 3.3V LDO Positive  
Package Type:  
CB  
MB  
TO  
=
=
=
3-Pin SOT-23A (equivalent to EIAJ SC-59)  
3-Pin SOT-89  
Voltage Regulator,  
SOT89-3 package.  
3-Pin TO-92  
MCP1701T-5002I/CB: 5.0V LDO Positive  
Voltage Regulator,  
SOT-23A-3  
package.  
i)  
MCP1701T-5002I/MB: 5.0V LDO Positive  
Voltage Regulator,  
SOT89-3 package.  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2004 Microchip Technology Inc.  
DS21874A-page 17  
MCP1701  
NOTES:  
DS21874A-page 18  
2004 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical  
components in life support systems is not authorized except  
with express written approval by Microchip. No licenses are  
conveyed, implicitly or otherwise, under any intellectual  
property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, MPLAB, PIC, PICmicro, PICSTART,  
PRO MATE, PowerSmart and rfPIC are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
AmpLab, FilterLab, microID, MXDEV, MXLAB, PICMASTER,  
SEEVAL, SmartShunt and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Application Maestro, dsPICDEM, dsPICDEM.net,  
dsPICworks, ECAN, ECONOMONITOR, FanSense,  
FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP,  
ICEPIC, Migratable Memory, MPASM, MPLIB, MPLINK,  
MPSIM, PICkit, PICDEM, PICDEM.net, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, rfLAB, Select Mode,  
SmartSensor, SmartTel and Total Endurance are trademarks  
of Microchip Technology Incorporated in the U.S.A. and other  
countries.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2004, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 quality system certification for  
its worldwide headquarters, design and wafer fabrication facilities in  
Chandler and Tempe, Arizona and Mountain View, California in October  
2003. The Company’s quality system processes and procedures are for  
®
its PICmicro 8-bit MCUs, KEELOQ® code hopping devices, Serial  
EEPROMs, microperipherals, nonvolatile memory and analog  
products. In addition, Microchip’s quality system for the design and  
manufacture of development systems is ISO 9001:2000 certified.  
2004 Microchip Technology Inc.  
DS21874A-page 19  
M
WORLDWIDE SALES AND SERVICE  
China - Beijing  
Korea  
AMERICAS  
Unit 706B  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
Corporate Office  
Wan Tai Bei Hai Bldg.  
No. 6 Chaoyangmen Bei Str.  
Beijing, 100027, China  
Tel: 86-10-85282100  
Fax: 86-10-85282104  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or  
82-2-558-5934  
Fax: 480-792-7277  
Singapore  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
China - Chengdu  
200 Middle Road  
#07-02 Prime Centre  
Singapore, 188980  
Rm. 2401-2402, 24th Floor,  
Ming Xing Financial Tower  
No. 88 TIDU Street  
Atlanta  
3780 Mansell Road, Suite 130  
Alpharetta, GA 30022  
Tel: 770-640-0034  
Fax: 770-640-0307  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Chengdu 610016, China  
Tel: 86-28-86766200  
Taiwan  
Kaohsiung Branch  
30F - 1 No. 8  
Fax: 86-28-86766599  
Boston  
Min Chuan 2nd Road  
Kaohsiung 806, Taiwan  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
China - Fuzhou  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848  
Fax: 978-692-3821  
Unit 28F, World Trade Plaza  
No. 71 Wusi Road  
Fuzhou 350001, China  
Tel: 86-591-7503506  
Fax: 86-591-7503521  
Taiwan  
Taiwan Branch  
Chicago  
11F-3, No. 207  
China - Hong Kong SAR  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tung Hua North Road  
Taipei, 105, Taiwan  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Tel: 630-285-0071  
Fax: 630-285-0075  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2401-1200  
Dallas  
EUROPE  
Austria  
Fax: 852-2401-3431  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Shanghai  
Durisolstrasse 2  
Room 701, Bldg. B  
A-4600 Wels  
Far East International Plaza  
No. 317 Xian Xia Road  
Shanghai, 200051  
Austria  
Detroit  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
Denmark  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250  
Tel: 86-21-6275-5700  
Fax: 86-21-6275-5060  
Regus Business Centre  
Lautrup hoj 1-3  
China - Shenzhen  
Rm. 1812, 18/F, Building A, United Plaza  
No. 5022 Binhe Road, Futian District  
Shenzhen 518033, China  
Tel: 86-755-82901380  
Fax: 248-538-2260  
Ballerup DK-2750 Denmark  
Tel: 45-4420-9895 Fax: 45-4420-9910  
Kokomo  
France  
2767 S. Albright Road  
Kokomo, IN 46902  
Tel: 765-864-8360  
Fax: 765-864-8387  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Fax: 86-755-8295-1393  
China - Shunde  
Room 401, Hongjian Building, No. 2  
Los Angeles  
Fengxiangnan Road, Ronggui Town, Shunde  
District, Foshan City, Guangdong 528303, China  
Tel: 86-757-28395507 Fax: 86-757-28395571  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Germany  
Tel: 949-263-1888  
China - Qingdao  
Steinheilstrasse 10  
D-85737 Ismaning, Germany  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Fax: 949-263-1338  
Rm. B505A, Fullhope Plaza,  
No. 12 Hong Kong Central Rd.  
Qingdao 266071, China  
San Jose  
1300 Terra Bella Avenue  
Mountain View, CA 94043  
Tel: 650-215-1444  
Tel: 86-532-5027355 Fax: 86-532-5027205  
Italy  
India  
Via Quasimodo, 12  
20025 Legnano (MI)  
Milan, Italy  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-22290061 Fax: 91-80-22290062  
Japan  
Fax: 650-961-0286  
Toronto  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Netherlands  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
P. A. De Biesbosch 14  
NL-5152 SC Drunen, Netherlands  
Tel: 31-416-690399  
Benex S-1 6F  
3-18-20, Shinyokohama  
ASIA/PACIFIC  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Fax: 31-416-690340  
Australia  
United Kingdom  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
Australia  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Berkshire, England RG41 5TU  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
02/17/04  
DS21874A-page 20  
2004 Microchip Technology Inc.  

MCP1701T-25021/CB 相关器件

型号 制造商 描述 价格 文档
MCP1701T-25021/MB MICROCHIP 2uA Low Dropoout Positive Voltage Refulator 获取价格
MCP1701T-25021/TO MICROCHIP 2uA Low Dropoout Positive Voltage Refulator 获取价格
MCP1701T-2502I/CB MICROCHIP 2 レA Low Dropout Positive Voltage Regulator 获取价格
MCP1701T-2502I/MB MICROCHIP 2 レA Low Dropout Positive Voltage Regulator 获取价格
MCP1701T-30021/CB MICROCHIP 2uA Low Dropoout Positive Voltage Refulator 获取价格
MCP1701T-30021/MB MICROCHIP 2uA Low Dropoout Positive Voltage Refulator 获取价格
MCP1701T-30021/TO MICROCHIP 2uA Low Dropoout Positive Voltage Refulator 获取价格
MCP1701T-3002I/CB MICROCHIP 2 レA Low Dropout Positive Voltage Regulator 获取价格
MCP1701T-3002I/MB MICROCHIP 2 レA Low Dropout Positive Voltage Regulator 获取价格
MCP1701T-33021/CB MICROCHIP 2uA Low Dropoout Positive Voltage Refulator 获取价格

MCP1701T-25021/CB 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6