MCP1603_12 [MICROCHIP]

2.0 MHz, 500 mA Synchronous Buck Regulator; 2.0兆赫500 mA同步降压稳压器
MCP1603_12
型号: MCP1603_12
厂家: MICROCHIP    MICROCHIP
描述:

2.0 MHz, 500 mA Synchronous Buck Regulator
2.0兆赫500 mA同步降压稳压器

稳压器
文件: 总34页 (文件大小:796K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1603/B/L  
2.0 MHz, 500 mA Synchronous Buck Regulator  
General Description  
Features  
• Over 90% Typical Efficiency  
• Output Current Up To 500 mA  
The MCP1603/B/L is a high-efficiency, fully-integrated  
500 mA synchronous buck regulator whose 2.7V to  
5.5V input voltage range makes it ideally suited for  
applications powered from 1-cell Li-Ion or 2-cell/3-cell  
NiMH/NiCd batteries.  
• Low PFM Quiescent Current = 45 µA, typical  
(MCP1603/L)  
• Low Shutdown Current = 0.1 µA, typical  
• Adjustable Output Voltage:  
At heavy loads, the MCP1603/B/L operates in the  
2.0 MHz fixed frequency pulse-width modulation  
(PWM) mode, which provides a low noise, low-output  
ripple, small-size solution. When the load is reduced to  
light levels, the MCP1603/L automatically changes  
operation to a Pulse Frequency Modulation (PFM)  
mode to minimize quiescent current draw from the  
battery. No intervention is necessary for a smooth  
transition from one mode to another. These two modes  
of operation allow the MCP1603/L to achieve the  
highest efficiency over the entire operating current  
range.  
- 0.8V to 4.5V  
• Fixed Output Voltage:  
- 1.2V, 1.5V, 1.8V, 2.5V, 3.3V (MCP1603/L)  
- 1.8V, 3.3V (MCP1603B)  
• 2.0 MHz Fixed-Frequency PWM (Heavy Load)  
• Automatic PWM-to-PFM Mode Transition  
(MCP1603/L)  
• PWM Mode Only Option (MCP1603B)  
• 100% Duty Cycle Operation  
• Internally Compensated  
The MCP1603B device disables the PFM mode  
switching, and operates only in normal PWM mode  
over the entire load range (without skipping).  
MCP1603B is for applications that cannot tolerate the  
low-frequency output ripple associated with PFM  
switching.  
• Undervoltage Lockout (UVLO)  
• Overtemperature Protection  
• Space Saving Packages:  
- 5-LeadTSOT, TwoPinoutTypes(MCP1603/L)  
- 8-Lead 2 x 3 DFN  
The MCP1603/B/L family is available with either an  
adjustable or fixed-output voltage. The available fixed  
output voltage options for MCP1603/L are 1.2V, 1.5V,  
1.8V, 2.5V and 3.3V, and for MCP1603B are 1.8 and  
3.3V. When a fixed option is used, only three additional  
small external components are needed to form a  
complete solution. Couple this with the low profile,  
small-foot print packages and the entire system  
solution is achieved with minimal size.  
Applications  
• Cellular Telephones  
• Portable Computers  
• Organizers / PDAs  
• USB Powered Devices  
• Digital Cameras  
• Portable Equipment  
• +5V or +3.3V Distributed Systems  
• Headsets  
Additional protection features include: UVLO,  
overtemperature and overcurrent protection.  
2007-2012 Microchip Technology Inc.  
DS22042B-page 1  
MCP1603/B/L  
Package Types  
MCP1603L  
MCP1603  
MCP1603/MCP1603B  
TSOT  
2 x 3 DFN*  
TSOT  
LX  
GND  
8
1
2
VFB/VOUT  
VIN  
LX  
SHDN  
GND  
LX  
1
2
3
5
4
1
2
3
5
4
NC  
SHDN  
VIN  
NC  
NC  
7
EP  
9
GND  
3
4
6
5
V
FB/VOUT  
VIN  
SHDN  
VFB/VOUT  
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
Typical Application Circuit  
L
V
V
1
OUT  
IN  
4.7 µH  
1.8V @ 500 mA  
2.7V to 4.5V  
V
L
X
IN  
C
4.7 µF  
C
4.7 µF  
IN  
OUT  
V
SHDN  
FB  
GND  
100  
VIN = 2.7V  
VOUT = 1.8V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VIN = 3.6V  
VIN = 4.5V  
__ PFM/PWM (MCP1603/L)  
--- PWM (MCP1603B)  
0.1  
1
10  
100  
1000  
Output Current (mA)  
DS22042B-page 2  
2007-2012 Microchip Technology Inc.  
MCP1603/B/L  
Functional Block Diagram  
VIN  
Band  
Gap  
VREF  
Soft Start  
UVLO  
UVLO  
Thermal  
Shutdown  
SHDN  
ILIMPWM  
ILIMPFM  
TSD  
IPK Limit  
IPEAKPWM  
IPEAKPFM  
Slope  
Comp.  
OSC  
+
-ILPK  
NOFF  
+
S
R
Q
Q
POFF  
LX  
Switch Drive  
Logic and Timing  
PWM/PFM - PWM ONLY  
PWM-ONLY  
PFM Error Amp  
PWM/PFM  
Logic  
GND  
IPEAKPFM  
IPEAKPWM  
VREF  
PWM Error Amp  
EA  
-ILPK  
-IPK Limit  
VREF  
OV Threshold  
UV Threshold  
UVLO  
TSD  
Disable  
Switcher  
VFB / VOUT  
2007-2012 Microchip Technology Inc.  
DS22042B-page 3  
MCP1603/B/L  
NOTES:  
DS22042B-page 4  
2007-2012 Microchip Technology Inc.  
MCP1603/B/L  
Notice: Stresses above those listed under "Maximum  
Ratings" may cause permanent damage to the device.  
This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational sections of this specifica-  
tion is not intended. Exposure to maximum rating con-  
ditions for extended periods may affect device  
reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
V
- GND.......................................................................+6.0V  
IN  
All Other I/O ...............................(GND - 0.3V) to (V + 0.3V)  
IN  
L
to GND .............................................. -0.3V to (V + 0.3V)  
IN  
X
Output Short Circuit Current .................................Continuous  
Power Dissipation (Note 5)..........................Internally Limited  
Storage Temperature ....................................-65°C to +150°C  
Ambient Temp. with Power Applied ................-40°C to +85°C  
Operating Junction Temperature...................-40°C to +125°C  
ESD Protection On All Pins:  
HBM .............................................................................4 kV  
MM ..............................................................................300V  
DC CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, MCP1603/L, VIN = SHDN = 3.6V, COUT = CIN = 4.7 µF,  
L = 4.7 µH, VOUT(ADJ) = 1.8V, IOUT = 100 mA, TA = +25°C. Boldface specifications apply over the TA range of -40°C  
to +85°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Characteristics  
Input Voltage  
VIN  
2.7  
5.5  
V
Note 1  
Maximum Output Current  
IOUT  
500  
mA Note 1  
Shutdown Current  
IIN_SHDN  
IQ  
0.1  
45  
1
µA SHDN = GND  
Quiescent Current - PFM  
60  
µA SHDN = VIN, IOUT = 0 mA,  
device switching  
Quiescent Current - PWM  
IQ  
1.0  
2.7  
4
mA SHDN = VIN, IOUT = 0 mA,  
device switching (MCP1603B)  
Shutdown/UVLO/Thermal Shutdown Characteristics  
SHDN, Logic Input Voltage Low  
SHDN, Logic Input Voltage High  
VIL  
15  
%VIN VIN = 2.7V to 5.5V  
%VIN VIN = 2.7V to 5.5V  
µA VIN = 2.7V to 5.5V  
VIH  
45  
SHDN, Input Leakage Current  
Undervoltage Lockout  
IL_SHDN  
UVLO  
-1.0  
2.12  
±0.1  
2.28  
140  
150  
10  
1.0  
2.43  
V
VIN Falling  
Undervoltage Lockout Hysteresis UVLOHYS  
mV  
°C  
°C  
Thermal Shutdown  
TSHD  
Note 4, Note 5  
Note 4, Note 5  
Thermal Shutdown Hysteresis  
TSHD-HYS  
Note 1: The input voltage should be greater then the output voltage plus headroom voltage; higher load currents  
increase the input voltage required for regulation. MCP1603B device requires a minimum load for  
regulation. See Section 2.0, Typical Performance Curves for typical operating voltage ranges.  
2: Reference Feedback Voltage Tolerance applies to adjustable output voltage setting.  
3: VR is the output voltage setting.  
4: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable  
temperature and the thermal resistance from junction to air (i.e. TA, TJ, JA). Exceeding the maximum  
allowable power dissipation causes the device to initiate thermal shutdown.  
5: The internal MOSFET switches have an integral diode from the LX pin to the VIN pin, and from the LX pin  
to the GND pin. In cases where these diodes are forward-biased, the package power dissipation limits  
must be adhered to. Thermal protection is not able to limit the junction temperature for these cases.  
6: The current limit threshold is a cycle-by-cycle peak current limit.  
2007-2012 Microchip Technology Inc.  
DS22042B-page 5  
MCP1603/B/L  
DC CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, MCP1603/L, VIN = SHDN = 3.6V, COUT = CIN = 4.7 µF,  
L = 4.7 µH, VOUT(ADJ) = 1.8V, IOUT = 100 mA, TA = +25°C. Boldface specifications apply over the TA range of -40°C  
to +85°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Output Characteristics  
Adjustable Output Voltage Range  
Reference Feedback Voltage  
VOUT  
VFB  
0.8  
0.8  
4.5  
V
V
Note 2  
-3.0  
-2.5  
+3.0  
+2.5  
%
%
nA  
%
%
TA = -40°C to +25°C  
TA = +25°C to +85°C  
Reference Feedback Voltage  
Tolerance  
Feedback Input Bias Current  
Output Voltage Tolerance Fixed  
IVFB  
VOUT  
0.1  
VR  
VR  
0.3  
-3.0%  
-2.5  
+3.0%  
+2.5  
TA = -40°C to +25°C, Note 3  
TA = +25°C to +85°C, Note 3  
VOUT  
Line Regulation  
Load Regulation  
VLINE-REG  
%/V VIN = VR + 1V to 5.5V,  
IOUT = 100 mA  
VLOAD-REG  
0.35  
%
VIN = VR +1.5V,  
ILOAD = 100 mA to 500 mA  
Internal Oscillator Frequency  
Start Up Time  
FOSC  
TSS  
1.5  
2.0  
0.6  
2.8  
MHz  
ms TR = 10% to 90%  
mIP = 100 mA  
mIN = 100 mA  
RDSon P-Channel  
RDSon-P  
RDSon-N  
ILX  
500  
500  
±0.1  
RDSon N-Channel  
LX Pin Leakage Current  
-1.0  
1.0  
µA SHDN = 0V, VIN = 5.5V,  
LX = 0V, LX = 5.5V  
Positive Current Limit Threshold  
+ILX(MAX)  
860  
mA Note 6  
Note 1: The input voltage should be greater then the output voltage plus headroom voltage; higher load currents  
increase the input voltage required for regulation. MCP1603B device requires a minimum load for  
regulation. See Section 2.0, Typical Performance Curves for typical operating voltage ranges.  
2: Reference Feedback Voltage Tolerance applies to adjustable output voltage setting.  
3: VR is the output voltage setting.  
4: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable  
temperature and the thermal resistance from junction to air (i.e. TA, TJ, JA). Exceeding the maximum  
allowable power dissipation causes the device to initiate thermal shutdown.  
5: The internal MOSFET switches have an integral diode from the LX pin to the VIN pin, and from the LX pin  
to the GND pin. In cases where these diodes are forward-biased, the package power dissipation limits  
must be adhered to. Thermal protection is not able to limit the junction temperature for these cases.  
6: The current limit threshold is a cycle-by-cycle peak current limit.  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, all limits are specified for: VIN + 2.7V to 5.5V  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Operating Junction Temperature Range  
Storage Temperature Range  
TJ  
TA  
TJ  
-40  
-65  
+125  
+150  
+150  
°C  
°C  
°C  
Steady State  
Maximum Junction Temperature  
Package Thermal Resistances  
Thermal Resistance, 5L-TSOT  
Transient  
JA  
JA  
207.4  
68  
°C/W Typical 4-layer Board with  
Internal Ground Plane  
Thermal Resistance, 8L-2x3 DFN  
°C/W Typical 4-layer Board with  
Internal Ground Plane and  
2-Vias in Thermal Pad  
DS22042B-page 6  
2007-2012 Microchip Technology Inc.  
MCP1603/B/L  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, MCP1603/L, VIN = SHDN = 3.6V, COUT = CIN = 4.7 µF,  
L
= 4.7 µH,  
VOUT(ADJ) = 1.8V, ILOAD = 100 mA, TA = +25°C. Adjustable or fixed output voltage options can be used to generate the  
Typical Performance Characteristics.  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
52  
50  
48  
46  
44  
42  
40  
VOUT = 1.8V  
TA = +90oC  
VIN = 3.6V  
VIN = 4.2V  
TA = +25oC  
VIN = 3.0V  
TA = -40oC  
2.7 3.05 3.4 3.75 4.1 4.45 4.8 5.15 5.5  
Input Voltage (V)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (oC)  
FIGURE 2-1:  
PFM IQ vs. Ambient  
FIGURE 2-4:  
PFM IQ vs. Input Voltage  
Temperature (MCP1603/L).  
(MCP1603/L).  
3.3  
3.4  
VOUT = 1.8V  
VOUT = 1.8V  
TA = +90oC  
TA = +25oC  
3.2  
VIN = 3.0V  
3.2  
3
3.1  
3
VIN = 4.2V  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.8  
2.6  
2.4  
2.2  
2
VIN = 3.6V  
TA = -40oC  
2.7 3.05 3.4 3.75 4.1 4.45 4.8 5.15 5.5  
Input Voltage (V)  
-40 -25 -10  
5
20 35 50 65 80  
Ambient Temperature (oC)  
FIGURE 2-2:  
PWM IQ vs. Ambient  
FIGURE 2-5:  
PWM IQ vs. Input Voltage  
Temperature (MCP1603B).  
(MCP1603B).  
100  
90  
80  
100  
95  
VOUT = 1.2V  
VIN = 3.6V  
VIN = 2.7V  
IOUT = 100 mA  
90  
70  
60  
50  
40  
30  
20  
10  
0
85  
80  
IOUT = 300 mA  
75  
70  
65  
60  
IOUT = 500 mA  
VOUT = 1.2V  
VIN = 4.2V  
10  
PFM/PWM  
PWM Only  
2.7 3.05 3.4 3.75 4.1 4.45 4.8 5.15 5.5  
Input Voltage (V)  
0.1  
1
100  
1000  
Output Current (mA)  
FIGURE 2-3:  
(VOUT = 1.2V).  
Efficiency vs. Input Voltage  
FIGURE 2-6:  
(VOUT = 1.2V).  
Efficiency vs. Output Load  
2007-2012 Microchip Technology Inc.  
DS22042B-page 7  
MCP1603/B/L  
Note: Unless otherwise indicated, MCP1603/L, VIN = SHDN = 3.6V, COUT = CIN = 4.7 µF,  
L
= 4.7 µH,  
VOUT(ADJ) = 1.8V, ILOAD = 100 mA, TA = +25°C. Adjustable or fixed output voltage options can be used to generate the  
Typical Performance Characteristics.  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
100  
95  
90  
85  
80  
75  
70  
VOUT = 1.8V  
VOUT = 1.8V  
IOUT = 100 mA  
IOUT = 300 mA  
IOUT = 300 mA  
IOUT = 500 mA  
IOUT = 100 mA  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2.7 3.05 3.4 3.75 4.1 4.45 4.8 5.15 5.5  
Input Voltage (V)  
Ambient Temperature (oC)  
FIGURE 2-7:  
Efficiency vs. Input Voltage  
FIGURE 2-10:  
Line Regulation vs. Ambient  
(VOUT = 1.8V).  
Temperature (VOUT = 1.8V).  
100  
90  
80  
1.82  
VIN = 2.7V  
TA = +125oC  
1.81  
TA = +90oC  
TA = +25oC  
VIN = 3.6V  
1.80  
1.79  
70  
60  
50  
40  
30  
20  
10  
0
1.78  
1.77  
1.76  
1.75  
1.74  
TA = -40oC  
VIN = 4.2V  
VOUT = 1.8V  
PFM/PWM  
PWM Only  
100 150 200 250 300 350 400 450 500  
Output Current (mA)  
0.1  
1
10  
100  
1000  
Output Current (mA)  
FIGURE 2-8:  
Efficiency vs. Output Load  
FIGURE 2-11:  
Output Voltage vs. Load  
(VOUT = 1.8V).  
Current (VOUT = 1.8V).  
100  
100  
VIN = 2.7V  
VOUT = 2.4V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3.6V  
IOUT = 100 mA  
95  
90  
85  
80  
75  
IOUT = 300 mA  
IOUT = 500 mA  
VIN = 4.2V  
VOUT = 2.4V  
PFM/PWM  
PWM Only  
3
3.5  
4
4.5  
5
5.5  
0.1  
1
10  
100  
1000  
Input Voltage (V)  
Output Current (mA)  
FIGURE 2-9:  
Efficiency vs. Input Voltage  
FIGURE 2-12:  
PFM/PWM Efficiency vs.  
(VOUT = 2.4V).  
Output Load (VOUT = 2.4V).  
DS22042B-page 8  
2007-2012 Microchip Technology Inc.  
MCP1603/B/L  
Note: Unless otherwise indicated, MCP1603/L, VIN = SHDN = 3.6V, COUT = CIN = 4.7 µF,  
L
= 4.7 µH,  
VOUT(ADJ) = 1.8V, ILOAD = 100 mA, TA = +25°C. Adjustable or fixed output voltage options can be used to generate the  
Typical Performance Characteristics.  
100.0  
97.5  
95.0  
92.5  
90.0  
87.5  
85.0  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
VOUT = 3.3V  
IOUT = 100 mA  
IOUT = 300 mA  
IOUT = 500 mA  
3.5 3.75  
4
4.25 4.5 4.75  
Input Voltage (V)  
5
5.25 5.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (oC)  
FIGURE 2-13:  
Efficiency vs. Input Voltage  
FIGURE 2-16:  
Switching Frequency vs.  
(VOUT = 3.3V).  
Ambient Temperature.  
100  
90  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
VIN = 3.6V  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 4.2V  
VOUT = 3.3V  
PFM/PWM  
PWM Only  
2.7 3.05 3.4 3.75 4.1 4.45 4.8 5.15 5.5  
0.1  
1
10  
100  
1000  
Input Voltage (V)  
Output Current (mA)  
FIGURE 2-14:  
Efficiency vs. Output Load  
FIGURE 2-17:  
Switching Frequency vs.  
(VOUT = 3.3V).  
Input Voltage.  
10  
9
8
7
6
0.65  
0.60  
0.55  
0.50  
Regulation  
TA= +25oC  
5
N-Channel  
P-Channel  
4
3
2
1
0
TA= -40oC  
0.45  
0.40  
0.35  
T
A
= +85
o
C  
No Regulation  
2.7 3.05 3.4 3.75 4.1 4.45 4.8 5.15 5.5  
Input Voltage (V)  
1.8  
2
2.2 2.4 2.6 2.8  
VIN - VOUT (V)  
3
3.2 3.4 3.6  
FIGURE 2-15:  
PWM-Only Device Minimum  
FIGURE 2-18:  
Switch Resistance vs. Input  
Load for Regulation (MCP1603B).  
Voltage.  
2007-2012 Microchip Technology Inc.  
DS22042B-page 9  
MCP1603/B/L  
Note: Unless otherwise indicated, MCP1603/L, VIN = SHDN = 3.6V, COUT = CIN = 4.7 µF,  
L
= 4.7 µH,  
VOUT(ADJ) = 1.8V, ILOAD = 100 mA, TA = +25°C. Adjustable or fixed output voltage options can be used to generate the  
Typical Performance Characteristics.  
0.9  
0.8  
N-Channel  
0.7  
0.6  
0.5  
0.4  
P-Channel  
0.3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (oC)  
FIGURE 2-19:  
Switch Resistance vs.  
FIGURE 2-22:  
PFM Light Load Switching  
Ambient Temperature.  
Waveforms (MCP1603/L).  
FIGURE 2-20:  
Output Voltage Startup  
FIGURE 2-23:  
Output Voltage Load Step  
Waveform.  
Response vs. Time.  
FIGURE 2-21:  
Heavy Load Switching  
FIGURE 2-24:  
Output Voltage Line Step  
Waveform.  
Response vs. Time.  
DS22042B-page 10  
2007-2012 Microchip Technology Inc.  
MCP1603/B/L  
Note: Unless otherwise indicated, MCP1603/L, VIN = SHDN = 3.6V, COUT = CIN = 4.7 µF,  
L
= 4.7 µH,  
VOUT(ADJ) = 1.8V, ILOAD = 100 mA, TA = +25°C. Adjustable or fixed output voltage options can be used to generate the  
Typical Performance Characteristics.  
V
= 2 V/div  
Lx  
V
= 50 mV/div, AC  
OUT  
I
= 20 mA/div  
I
= 5 mA  
L
OUT  
0.4 µs/div  
FIGURE 2-25:  
PWM Light Load Switching  
Waveforms (MCP1603B).  
2007-2012 Microchip Technology Inc.  
DS22042B-page 11  
MCP1603/B/L  
NOTES:  
DS22042B-page 12  
2007-2012 Microchip Technology Inc.  
MCP1603/B/L  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
MCP1603/B MCP1603L MCP1603  
Symbol  
Description  
TSOT-23  
TSOT-23  
2 x 3 DFN  
1
2
4
2
7
8
VIN  
Power Supply Input Voltage Pin  
GND  
Ground Pin  
3
4
1
5
3
SHDN  
Shutdown Control Input Pin  
4
1
VFB/VOUT Feedback / Output Voltage Pin  
5
3
LX  
NC  
EP  
Switch Node, Buck Inductor Connection Pin  
2, 5, 6  
No Connect  
Exposed  
Pad  
For the DFN package, the center exposed pad is a thermal  
path to remove heat from the device. Electrically, this pad is  
at ground potential and should be connected to GND.  
3.1  
Power Supply Input Voltage Pin  
(V )  
3.4  
Feedback / Output Voltage Pin  
(V /V  
)
FB OUT  
IN  
Connect the input voltage source to VIN. The input  
source must be decoupled to GND with a 4.7 µF  
capacitor.  
For adjustable output options, connect the center of the  
output voltage divider to the VFB/VOUT pin. For fixed-  
output voltage options, connect the output directly to  
the VFB/VOUT pin.  
3.2  
Ground Pin (GND)  
3.5  
Switch Node, Buck Inductor  
Ground pin for the device. The loop area of the ground  
traces should be kept as minimal as possible.  
Connection Pin (L )  
X
Connect the LX pin directly to the buck inductor. This  
pin carries large signal-level current; all connections  
should be made as short as possible.  
3.3  
Shutdown Control Input Pin  
(SHDN)  
The SHDN pin is a logic-level input used to enable or  
disable the device. A logic high (>45% of VIN) will  
enable the regulator output. A logic low (<15% of VIN)  
will ensure that the regulator is disabled.  
3.6  
Exposed Metal Pad (EP)  
For the DFN package, connect the Exposed Pad to  
GND, with vias into the GND plane. This connection to  
the GND plane will aid in heat removal from the  
package.  
2007-2012 Microchip Technology Inc.  
DS22042B-page 13  
MCP1603/B/L  
NOTES:  
DS22042B-page 14  
2007-2012 Microchip Technology Inc.  
MCP1603/B/L  
During normal PWM operation, the beginning of a  
switching cycle occurs when the internal P-Channel  
MOSFET is turned on. The ramping inductor current is  
sensed and tied to one input of the internal high-speed  
comparator. The other input to the high-speed  
comparator is the error amplifier output. This is the  
difference between the internal 0.8V reference and the  
divided-down output voltage. When the sensed current  
becomes equal to the amplified error signal, the high-  
speed comparator switches states and the P-Channel  
MOSFET is turned off. The N-Channel MOSFET is  
turned on until the internal oscillator sets an internal RS  
latch, initiating the beginning of another switching  
cycle.  
4.0  
4.1  
DETAILED DESCRIPTION  
Device Overview  
The MCP1603/L is a synchronous buck regulator that  
operates in a Pulse Frequency Modulation (PFM)  
mode or a Pulse Width Modulation (PWM) mode to  
maximize system efficiency over the entire operating  
current range. Capable of operating from a 2.7V to  
5.5V input voltage source, the MCP1603 can deliver  
500 mA of continuous output current.  
The MCP1603B device disables the PFM mode  
switching, and operates only in normal PWM mode.  
When using the MCP1603/B/L, the PCB area required  
for a complete step-down converter is minimized, since  
both the main P-Channel MOSFET and the synchro-  
nous N-Channel MOSFET are integrated. Also while in  
PWM mode, the device switches at a constant  
frequency of 2.0 MHz (typical), which allows for small  
filtering components. Both fixed and adjustable output  
voltage options are available. The fixed voltage options  
(1.2V, 1.5V 1.8V, 2.5V, 3.3V) do not require an external  
voltage divider, which further reduces the required  
circuit board footprint. The adjustable output voltage  
options allow for more flexibility in the design, but  
require an external voltage divider.  
PFM-to-PWM mode transition is initiated for any of the  
following conditions:  
• Continuous device switching  
• Output voltage has dropped out of regulation  
4.2.1.1  
Light Load, PFM Mode  
During light-load conditions, the MCP1603/L operates  
in a PFM mode. When the MCP1603/L enters this  
mode, it begins to skip pulses to minimize unnecessary  
quiescent-current draw by reducing the number of  
switching cycles per second. The typical quiescent cur-  
rent draw for this device is 45 µA.  
Additionally, the device features an undervoltage lock-  
out (UVLO), overtemperature shutdown, overcurrent  
protection and enable/disable control.  
PWM-to-PFM mode transition is initiated for any of the  
following conditions:  
• Discontinuous inductor current is sensed for a set  
duration  
4.2  
Synchronous Buck Regulator  
• Inductor peak current falls below the transition  
threshold limit  
The MCP1603/L has two distinct modes of operation  
that allow the device to maintain a high level of  
efficiency throughout the entire operating current and  
voltage range. The device automatically switches  
between PWM mode and PFM mode, depending on  
the output load requirements. MCP1603B switches in  
PWM mode only.  
4.2.2  
PWM MODE DEVICE OPTION  
(MCP1603B)  
There are applications that cannot tolerate the low  
frequency pulse skipping mode or the output ripple  
voltage associated with it, which is distinctive for PFM  
switching.  
4.2.1  
PFM/PWM MODE DEVICE OPTION  
The MCP1603B device has disabled the PFM mode  
switching. It operates only in normal PWM mode over  
the entire load range (without skipping pulses). During  
periods of light load operation, the MCP1603B  
continues to operate at a constant 2 MHz switching  
frequency, keeping the output ripple voltage lower than  
PFM mode. Because there are no skipping pulses, a  
minimum load current is necessary to keep output in  
regulation (see Figure 2-15, without a minimum load,  
the output voltage will be greater than the set point).  
The minimum load value depends on the input-to-  
output ratio.  
(MCP1603/L)  
During heavy load conditions, the MCP1603/L  
operates at a high, fixed switching frequency of  
2.0 MHz (typical) using current mode control. This  
minimizes output ripple (10 – 15 mV, typically) and  
noise, while maintaining high efficiency (88% typical  
with VIN = 3.6V, VOUT = 1.8V, IOUT = 300 mA).  
2007-2012 Microchip Technology Inc.  
DS22042B-page 15  
MCP1603/B/L  
4.3  
Soft Start  
4.6  
Enable/Disable Control  
The output of the MCP1603 is controlled during start-  
up. This control allows for a very minimal amount of  
VOUT overshoot during start-up from VIN rising above  
the UVLO voltage or SHDN being enabled.  
The SHDN pin is used to enable or disable the  
MCP1603/B/L. When the SHDN pin is pulled low, the  
device is disabled. When pulled high, the device is  
enabled and begins operation, unless the input voltage  
is below the UVLO threshold or a fault condition exists.  
4.4  
Overtemperature Protection  
4.7  
Undervoltage Lockout (UVLO)  
Overtemperature protection circuitry is integrated in the  
MCP1603/B/L device family. This circuitry monitors the  
device junction temperature and shuts the device off, if  
the junction temperature exceeds the typical +150°C  
threshold. If this threshold is exceeded, the device will  
automatically restart once the junction temperature  
drops by approximately 10°C. The soft start is reset  
during an overtemperture condition.  
The UVLO feature uses a comparator to sense the  
input voltage (VIN) level. If the input voltage is lower  
than the voltage necessary to properly operate the  
MCP1603, the UVLO feature will hold the converter off.  
When VIN rises above the necessary input voltage, the  
UVLO is released and soft start begins. Hysteresis is  
built into the UVLO circuit to compensate for input  
impedance. For example, if there is any resistance  
between the input voltage source and the device when  
it is operating, there will be a voltage drop at the input  
to the device equal to IIN x RIN. The typical hysteresis  
is 140 mV.  
4.5  
Overcurrent Protection  
Cycle-by-cycle current limiting is used to protect the  
MCP1603/B/L device family from being damaged when  
an external short circuit is applied. The typical peak  
current limit is 860 mA. If the sensed current reaches  
the 860 mA limit, the P-Channel MOSFET is turned off,  
even if the output voltage is not in regulation. The  
device will attempt to start a new switching cycle when  
the internal oscillator sets the internal RS latch.  
DS22042B-page 16  
2007-2012 Microchip Technology Inc.  
MCP1603/B/L  
For adjustable output applications, an additional R-C  
compensation network is necessary for control loop  
stability. Recommended values for any output voltage  
are:  
5.0  
5.1  
APPLICATION INFORMATION  
Typical Applications  
The MCP1603/B/L 500 mA synchronous buck  
regulator operates over a wide input voltage range  
(2.7V to 5.5V) and is ideal for single-cell Li-Ion battery-  
powered applications, USB-powered applications,  
three cell NiMH or NiCd applications and 3V or 5V  
regulated input applications. The 5-lead TSOT and 8-  
lead 2 x 3 DFN packages provide a small footprint with  
minimal external components.  
RCOMP = 4.99 k  
CCOMP = 33 pF  
Refer to Figure 6-2 for proper placement of RCOMP and  
CCOMP  
.
5.4  
Input Capacitor Selection  
The input current to a buck converter, when operating  
in Continuous Conduction mode, is a squarewave with  
a duty cycle defined by the output voltage (VOUT) to  
input voltage (VIN) relationship of VOUT/VIN. To prevent  
undesirable input voltage transients, the input capacitor  
should be a low-ESR type with an RMS current rating  
given by Equation 5.5. Because of their small size and  
low ESR, ceramic capacitors are often used. Ceramic  
material X5R or X7R are well suited, since they have a  
low-temperature coefficient and acceptable ESR.  
5.2  
Fixed Output Voltage Applications  
The Typical Application Circuit shows a fixed  
MCP1603/B/L in an application used to convert three  
NiMH batteries into a well-regulated 1.8V @ 500 mA  
output.  
A 4.7 µF input capacitor, 4.7 µF output  
capacitor, and a 4.7 µH inductor make up the entire  
external component solution for this application. No  
external voltage divider or compensation is necessary.  
In addition to the fixed 1.8V option, the MCP1603 is  
also available in 1.2V, 1.5V, 2.5V, or 3.3V fixed voltage  
options.  
EQUATION 5-2:  
VOUT  VIN VOUT  
ICIN,RMS = IOUT,MAX  
-----------------------------------------------------  
VIN  
5.3  
Adjustable Output Voltage  
Applications  
Table 5-1 contains the recommend range for the input  
capacitor value.  
When the desired output for a particular application is  
not covered by the fixed-voltage options, an adjustable  
MCP1603/B/L can be used. The circuit listed in  
Figure 6-2 shows an adjustable device being used to  
convert a 5V rail to 1.0V @ 500 mA. The output voltage  
is adjustable by using two external resistors as a volt-  
age divider. For adjustable-output voltages, it is  
recommended that the top resistor divider value be  
200 k. The bottom resistor value can be calculated  
using the following equation:  
5.5  
Output Capacitor Selection  
The output capacitor helps provide a stable output  
voltage during sudden load transients, smooths the  
current that flows from the inductor to the load, and  
reduces the output voltage ripple. Therefore, low-ESR  
capacitors are a desirable choice for the output capac-  
itor. As with the input capacitor, X5R and X7R ceramic  
capacitors are well suited for this application.  
EQUATION 5-1:  
The output ripple voltage is often a design specifica-  
tion. A buck converters’ output ripple voltage is a  
function of the charging and discharging of the output  
capacitor and the ESR of the capacitor. This ripple  
voltage can be calculated by Equation 5-3.  
VFB  
RBOT = RTOP ----------------------------  
VOUT VFB  
Example:  
EQUATION 5-3:  
RTOP  
VOUT  
VFB  
=
=
=
200 k  
1.0V  
I  
L
V  
= I ESR + --------------------  
OUT  
L
8 f C  
0.8V  
Table 5-1 contains the recommend range for the output  
capacitor value.  
RBOT  
RBOT  
=
=
200 kx (0.8V/(1.0V – 0.8V))  
800 k(Standard Value = 787 k)  
TABLE 5-1:  
CAPACITOR VALUE RANGE  
CIN  
COUT  
Minimum  
Maximum  
4.7 µF  
4.7 µF  
22 µF  
2007-2012 Microchip Technology Inc.  
DS22042B-page 17  
MCP1603/B/L  
TABLE 5-2:  
MCP1603 RECOMMENDED  
INDUCTORS (CONTINUED)  
5.6  
Inductor Selection  
When using the MCP1603, the inductance value can  
range from 3.3 µH to 10 µH. An inductance value of  
4.7 µH is recommended to achieve a good balance  
between converter load transient response and  
minimized noise.  
DCR  
(max)  
Part  
Number  
Value  
(µH)  
ISAT  
Size  
(A) WxLxH (mm)  
Sumida®  
CMD4D06  
CMD4D06  
CMD4D06  
Coilcraft®  
The value of inductance is selected to achieve a  
desired amount of ripple current. It is reasonable to  
assume a ripple current that is 20% of the maximum  
load current. The larger the amount of ripple current  
allowed, the larger the output capacitor value becomes  
to meet ripple voltage specifications. The inductor  
ripple current can be calculated according to the  
following equation.  
3.3  
4.7  
6.8  
0.174 0.77  
0.216 0.75  
0.296 0.62  
3.5x4.3x0.8  
3.5x4.3x0.8  
3.5x4.3x0.8  
XFL3012-  
332ME_  
3.3  
4.7  
10  
0.106  
0.143  
0.200  
1.2  
1.0  
1.2  
3x3x1.2  
3x3x1.2  
4x4x1.8  
XFL3012-  
472ME_  
EQUATION 5-4:  
LPS4018-  
103ML_  
TDK-EPC®  
VOUT  
VOUT  
IL = ------------------- 1 ------------  
FSW L  
VIN  
B82462_  
G4472M  
4.7  
4.7  
0.04  
1.8  
1.1  
6x6x3  
Where:  
FSW = Switching Frequency  
VLS3015E  
T-4R7M  
0.113  
3x3x1.5  
When considering inductor ratings, the maximum DC  
current rating of the inductor should be at least equal to  
the maximum load current, plus one half the peak-to-  
peak inductor ripple current (1/2 x IL). The inductor  
DC resistance adds to the total converter power loss.  
An inductor with a low DC resistance allows for higher  
converter efficiency.  
5.7  
Thermal Calculations  
The MCP1603 is available in two different packages  
(TSOT-23 and 2x3 DFN). The junction temperature is  
estimated by calculating the power dissipation and  
applying the package thermal resistance (JA). The  
maximum continuous junction temperature rating for  
the MCP1603 is +125°C.  
TABLE 5-2:  
MCP1603 RECOMMENDED  
INDUCTORS  
To quickly estimate the internal power dissipation for  
the switching buck regulator, an empirical calculation  
using measured efficiency can be used. Given the  
measured efficiency, the internal power dissipation is  
estimated by the following equation:  
DCR  
(max)  
Part  
Number  
Value  
(µH)  
ISAT  
Size  
(A) WxLxH (mm)  
Coiltronics®  
SD3110  
SD3110  
SD3110  
SD3812  
SD3812  
SD3812  
3.3  
4.7  
6.8  
3.3  
4.7  
6.8  
0.195 0.81  
0.285 0.68  
0.346 0.58  
0.159 1.40  
0.256 1.13  
0.299 0.95  
3.1x3.1x1.0  
3.1x3.1x1.0  
3.1x3.1x1.0  
3.8x3.8x1.2  
3.8x3.8x1.2  
3.8x3.8x1.2  
EQUATION 5-5:  
V
I  
OUT OUT  
------------------------------------- – V  
I  
OUT OUT  
= P  
Diss  
Efficiency  
The difference between the first term, input power  
dissipation, and the second term, power delivered, is  
the internal power dissipation. This is an estimate  
assuming that most of the power lost is internal to the  
MCP1603. There is some percentage of power lost in  
the buck inductor, with very little loss in the input and  
output capacitors.  
Würth Elektronik®  
WE-TPC  
Type XS  
3.3  
4.7  
4.7  
6.8  
4.7  
0.225 0.72 3.3x3.5x0.95  
0.290 0.50 3.3x3.5x0.95  
0.105 0.90 3.8x3.8x1.65  
0.156 0.75 3.8x3.8x1.65  
WE-TPC  
Type XS  
WE-TPC  
Type S  
WE-TPC  
Type S  
WE-TPC  
Type Tiny  
0.100  
1.7  
2.8x2.8x2.8  
DS22042B-page 18  
2007-2012 Microchip Technology Inc.  
MCP1603/B/L  
5.8  
PCB Layout Information  
Good printed circuit board layout techniques are  
important to any switching circuitry, and switching  
power supplies are no different. When wiring the high-  
current paths, short and wide traces should be used.  
This high-current path is shown with red connections in  
Figure 5-1. The current in this path is switching.  
Therefore, it is important that the components along the  
high-current path should be placed as close as possi-  
ble to the MCP1603 to minimize the loop area.  
The feedback resistors and feedback signal should be  
routed away from the switching node and this switching  
current loop. When possible, ground planes and traces  
should be used to help shield the feedback signal and  
minimize noise and magnetic interference.  
L
V
V
1
OUT  
IN  
4.7 µH  
1.8V @ 500 mA  
2.7V to 4.5V  
V
L
X
IN  
C
C
IN  
OUT  
4.7 µF  
V
4.7 µF  
SHDN  
FB  
GND  
FIGURE 5-1:  
PCB High Current Path.  
2007-2012 Microchip Technology Inc.  
DS22042B-page 19  
MCP1603/B/L  
NOTES:  
DS22042B-page 20  
2007-2012 Microchip Technology Inc.  
MCP1603/B/L  
6.0  
TYPICAL APPLICATION CIRCUITS  
l
L1  
4.7 µH  
VOUT  
1.5V @ 500 mA  
VIN  
3.0V to 4.2V  
VIN  
LX  
CIN  
4.7 µF  
COUT  
4.7 µF  
VFB  
SHDN  
GND  
FIGURE 6-1:  
Single Li-Ion to 1.5V @ 500 mA Application.  
L1  
4.7 µH  
VOUT  
1.0V @ 500 mA  
VIN  
5.0V  
VIN  
LX  
RCOMP  
RTOP  
4.99 k  
CCOMP  
33 pF  
CIN  
4.7 µF  
COUT  
4.7 µF  
200 k  
SHDN  
VFB  
RBOT  
GND  
787 k  
FIGURE 6-2:  
5V to 1.0V @ 500 mA Application.  
L1  
4.7 µH  
VOUT  
VIN  
2.7V to 4.5V  
VIN  
LX  
1.2V @ 500 mA  
CIN  
4.7 µF  
COUT  
4.7 µF  
VFB  
SHDN  
GND  
FIGURE 6-3:  
Three NiMH Batteries to 1.2V @ 500 mA Application.  
2007-2012 Microchip Technology Inc.  
DS22042B-page 21  
MCP1603/B/L  
NOTES:  
DS22042B-page 22  
2007-2012 Microchip Technology Inc.  
MCP1603/B/L  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead TSOT-23  
Example:  
ET25  
Part Number  
Code  
MCP1603T-120I/OS  
MCP1603T-150I/OS  
MCP1603T-180I/OS  
MCP1603T-250I/OS  
MCP1603T-330I/OS  
MCP1603T-ADJI/OS  
MCP1603BT-180I/OS  
MCP1603BT-330I/OS  
MCP1603BT-ADJI/OS  
MCP1603LT-120I/OS  
MCP1603LT-150I/OS  
MCP1603LT-180I/OS  
MCP1603LT-250I/OS  
MCP1603LT-330I/OS  
MCP1603LT-ADJI/OS  
ETNN  
EUNN  
EVNN  
EWNN  
EXNN  
EYNN  
GBNN  
GENN  
GANN  
FMNN  
FKNN  
EJNN  
FGNN  
FANN  
FQNN  
8-Lead 2x3 DFN  
Example:  
Part Number  
Code  
MCP1603-120I/MC  
MCP1603T-120I/MC  
MCP1603-150I/MC  
MCP1603T-150I/MC  
MCP1603-180I/MC  
MCP1603T-180I/MC  
MCP1603-250I/MC  
MCP1603T-250I/MC  
MCP1603-330I/MC  
MCP1603T-330I/MC  
MCP1603-ADJI/MC  
MCP1603T-ADJI/MC  
AFM  
AFM  
AFK  
AFK  
AFJ  
AFM  
235  
25  
AFJ  
AFG  
AFG  
AFA  
AFA  
AFQ  
AFQ  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2007-2012 Microchip Technology Inc.  
DS22042B-page 23  
MCP1603/B/L  
ꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢉꢉꢇꢓꢔꢋꢉꢌꢐꢄꢇꢎꢕꢅꢐꢊꢌꢊꢋꢖꢕꢇꢗꢓꢑꢘꢇꢙꢎꢑꢓꢎꢚ  
ꢛꢖꢋꢄꢜ 1ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ2ꢇꢔꢉꢅ"ꢊꢇ)ꢃꢄꢔ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢒꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ2ꢇꢔꢃꢄꢔꢅꢖꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ033)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ2ꢇꢔꢃꢄꢔ  
b
N
E
E1  
NOTE 1  
1
3
2
e
e1  
D
α
A2  
c
A
φ
L
A1  
β
L1  
4ꢄꢃ%  
ꢒꢚ55ꢚꢒ*ꢘ*ꢙꢖ  
ꢐꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢒꢚ6  
67ꢒ  
ꢒꢕ8  
6!&(ꢉꢊꢅꢌ$ꢅ5ꢉꢇ"  
5ꢉꢇ"ꢅꢂꢃ%ꢍꢎ  
6
+
ꢓꢁꢛ+ꢅ.ꢖ/  
7!% ꢃ"ꢉꢅ5ꢉꢇ"ꢅꢂꢃ%ꢍꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ9ꢉꢃꢔꢎ%  
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅꢘꢎꢃꢍ2ꢄꢉ    
ꢖ%ꢇꢄ"ꢌ$$  
ꢉꢀ  
ꢕꢏ  
ꢕꢀ  
*
*ꢀ  
5
ꢀꢁꢛꢓꢅ.ꢖ/  
M
ꢓꢁꢛꢓ  
M
ꢏꢁ<ꢓꢅ.ꢖ/  
ꢀꢁ=ꢓꢅ.ꢖ/  
ꢏꢁꢛꢓꢅ.ꢖ/  
ꢓꢁꢗ+  
M
ꢓꢁꢜꢓ  
ꢓꢁꢓꢓ  
ꢀꢁꢀꢓ  
ꢀꢁꢓꢓ  
ꢓꢁꢀꢓ  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢃ"%ꢎ  
ꢒꢌꢈ"ꢉ"ꢅꢂꢇꢍ2ꢇꢔꢉꢅ;ꢃ"%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢔ%ꢎ  
1ꢌꢌ%ꢅ5ꢉꢄꢔ%ꢎ  
ꢓꢁ,ꢓ  
ꢓꢁ=ꢓ  
1ꢌꢌ%ꢑꢊꢃꢄ%  
1ꢌꢌ%ꢅꢕꢄꢔꢈꢉ  
5ꢉꢇ"ꢅꢘꢎꢃꢍ2ꢄꢉ    
5ꢉꢇ"ꢅ;ꢃ"%ꢎ  
ꢒꢌꢈ"ꢅꢐꢊꢇ$%ꢅꢕꢄꢔꢈꢉꢅ  
ꢒꢌꢈ"ꢅꢐꢊꢇ$%ꢅꢕꢄꢔꢈꢉꢅ.ꢌ%%ꢌ&  
5ꢀ  
ꢓꢁ=ꢓꢅꢙ*1  
ꢗꢝ  
ꢓꢝ  
ꢓꢁꢓ<  
ꢓꢁ,ꢓ  
ꢗꢝ  
<ꢝ  
(
M
M
ꢀꢓꢝ  
ꢀꢓꢝ  
ꢓꢁꢏꢓ  
ꢓꢁ+ꢓ  
ꢀꢏꢝ  
ꢗꢝ  
ꢀꢏꢝ  
ꢛꢖꢋꢄꢊꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢐꢃ&ꢉꢄ ꢃꢌꢄ ꢅꢐꢅꢇꢄ"ꢅ*ꢀꢅ"ꢌꢅꢄꢌ%ꢅꢃꢄꢍꢈ!"ꢉꢅ&ꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢁꢅꢒꢌꢈ"ꢅ$ꢈꢇ ꢎꢅꢌꢊꢅꢑꢊꢌ%ꢊ! ꢃꢌꢄ ꢅ ꢎꢇꢈꢈꢅꢄꢌ%ꢅꢉ#ꢍꢉꢉ"ꢅꢓꢁꢀ+ꢅ&&ꢅꢑꢉꢊꢅ ꢃ"ꢉꢁ  
,ꢁ ꢐꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢔꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢔꢅꢑꢉꢊꢅꢕꢖꢒ*ꢅ-ꢀꢗꢁ+ꢒꢁ  
.ꢖ/0 .ꢇ ꢃꢍꢅꢐꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢘꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢙ*10 ꢙꢉ$ꢉꢊꢉꢄꢍꢉꢅꢐꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢒꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢔꢋ ꢐꢊꢇ)ꢃꢄꢔ /ꢓꢗꢞꢀꢏ<.  
DS22042B-page 24  
2007-2012 Microchip Technology Inc.  
MCP1603/B/L  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2007-2012 Microchip Technology Inc.  
DS22042B-page 25  
MCP1603/B/L  
ꢝꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇ!ꢔꢅꢉꢇ"ꢉꢅꢋ#ꢇꢛꢖꢇꢃꢄꢅꢆꢇꢈꢅꢍ$ꢅ%ꢄꢇꢗ&'ꢘꢇMꢇ+,/,:;<ꢇꢒꢒꢇ=ꢖꢆ>ꢇꢙ!"ꢛꢚ  
ꢛꢖꢋꢄꢜ 1ꢌꢊꢅ%ꢎꢉꢅ&ꢌ %ꢅꢍ!ꢊꢊꢉꢄ%ꢅꢑꢇꢍ2ꢇꢔꢉꢅ"ꢊꢇ)ꢃꢄꢔ 'ꢅꢑꢈꢉꢇ ꢉꢅ ꢉꢉꢅ%ꢎꢉꢅꢒꢃꢍꢊꢌꢍꢎꢃꢑꢅꢂꢇꢍ2ꢇꢔꢃꢄꢔꢅꢖꢑꢉꢍꢃ$ꢃꢍꢇ%ꢃꢌꢄꢅꢈꢌꢍꢇ%ꢉ"ꢅꢇ%ꢅ  
ꢎ%%ꢑ033)))ꢁ&ꢃꢍꢊꢌꢍꢎꢃꢑꢁꢍꢌ&3ꢑꢇꢍ2ꢇꢔꢃꢄꢔ  
e
D
b
N
N
L
K
E2  
E
EXPOSED PAD  
NOTE 1  
NOTE 1  
2
1
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
NOTE 2  
A3  
A1  
4ꢄꢃ%  
ꢒꢚ55ꢚꢒ*ꢘ*ꢙꢖ  
ꢐꢃ&ꢉꢄ ꢃꢌꢄꢅ5ꢃ&ꢃ%  
ꢒꢚ6  
67ꢒ  
<
ꢓꢁ+ꢓꢅ.ꢖ/  
ꢓꢁꢛꢓ  
ꢒꢕ8  
6!&(ꢉꢊꢅꢌ$ꢅꢂꢃꢄ  
ꢂꢃ%ꢍꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ9ꢉꢃꢔꢎ%  
ꢖ%ꢇꢄ"ꢌ$$ꢅ  
/ꢌꢄ%ꢇꢍ%ꢅꢘꢎꢃꢍ2ꢄꢉ    
7ꢆꢉꢊꢇꢈꢈꢅ5ꢉꢄꢔ%ꢎ  
7ꢆꢉꢊꢇꢈꢈꢅ;ꢃ"%ꢎ  
6
ꢕꢀ  
ꢕ,  
ꢓꢁ<ꢓ  
ꢓꢁꢓꢓ  
ꢀꢁꢓꢓ  
ꢓꢁꢓ+  
ꢓꢁꢓꢏ  
ꢓꢁꢏꢓꢅꢙ*1  
ꢏꢁꢓꢓꢅ.ꢖ/  
,ꢁꢓꢓꢅ.ꢖ/  
M
M
ꢓꢁꢏ+  
*
*#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ5ꢉꢄꢔ%ꢎ  
*#ꢑꢌ ꢉ"ꢅꢂꢇ"ꢅ;ꢃ"%ꢎ  
/ꢌꢄ%ꢇꢍ%ꢅ;ꢃ"%ꢎ  
/ꢌꢄ%ꢇꢍ%ꢅ5ꢉꢄꢔ%ꢎ  
/ꢌꢄ%ꢇꢍ%ꢞ%ꢌꢞ*#ꢑꢌ ꢉ"ꢅꢂꢇ"  
ꢐꢏ  
*ꢏ  
(
5
?
ꢀꢁ,ꢓ  
ꢀꢁ+ꢓ  
ꢓꢁꢏꢓ  
ꢓꢁ,ꢓ  
ꢓꢁꢏꢓ  
ꢀꢁ++  
ꢀꢁꢜ+  
ꢓꢁ,ꢓ  
ꢓꢁ+ꢓ  
M
ꢓꢁꢗꢓ  
M
ꢛꢖꢋꢄꢊꢜ  
ꢀꢁ ꢂꢃꢄꢅꢀꢅꢆꢃ !ꢇꢈꢅꢃꢄ"ꢉ#ꢅ$ꢉꢇ%!ꢊꢉꢅ&ꢇꢋꢅꢆꢇꢊꢋ'ꢅ(!%ꢅ&! %ꢅ(ꢉꢅꢈꢌꢍꢇ%ꢉ"ꢅ)ꢃ%ꢎꢃꢄꢅ%ꢎꢉꢅꢎꢇ%ꢍꢎꢉ"ꢅꢇꢊꢉꢇꢁ  
ꢏꢁ ꢂꢇꢍ2ꢇꢔꢉꢅ&ꢇꢋꢅꢎꢇꢆꢉꢅꢌꢄꢉꢅꢌꢊꢅ&ꢌꢊꢉꢅꢉ#ꢑꢌ ꢉ"ꢅ%ꢃꢉꢅ(ꢇꢊ ꢅꢇ%ꢅꢉꢄ" ꢁ  
,ꢁ ꢂꢇꢍ2ꢇꢔꢉꢅꢃ ꢅ ꢇ)ꢅ ꢃꢄꢔ!ꢈꢇ%ꢉ"ꢁ  
ꢗꢁ ꢐꢃ&ꢉꢄ ꢃꢌꢄꢃꢄꢔꢅꢇꢄ"ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢃꢄꢔꢅꢑꢉꢊꢅꢕꢖꢒ*ꢅ-ꢀꢗꢁ+ꢒꢁ  
.ꢖ/0 .ꢇ ꢃꢍꢅꢐꢃ&ꢉꢄ ꢃꢌꢄꢁꢅꢘꢎꢉꢌꢊꢉ%ꢃꢍꢇꢈꢈꢋꢅꢉ#ꢇꢍ%ꢅꢆꢇꢈ!ꢉꢅ ꢎꢌ)ꢄꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ ꢁ  
ꢙ*10 ꢙꢉ$ꢉꢊꢉꢄꢍꢉꢅꢐꢃ&ꢉꢄ ꢃꢌꢄ'ꢅ! !ꢇꢈꢈꢋꢅ)ꢃ%ꢎꢌ!%ꢅ%ꢌꢈꢉꢊꢇꢄꢍꢉ'ꢅ$ꢌꢊꢅꢃꢄ$ꢌꢊ&ꢇ%ꢃꢌꢄꢅꢑ!ꢊꢑꢌ ꢉ ꢅꢌꢄꢈꢋꢁ  
ꢒꢃꢍꢊꢌꢍꢎꢃꢑ ꢍꢎꢄꢌꢈꢌꢔꢋ ꢐꢊꢇ)ꢃꢄꢔ /ꢓꢗꢞꢀꢏ,/  
DS22042B-page 26  
2007-2012 Microchip Technology Inc.  
MCP1603/B/L  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2007-2012 Microchip Technology Inc.  
DS22042B-page 27  
MCP1603/B/L  
NOTES:  
DS22042B-page 28  
2007-2012 Microchip Technology Inc.  
MCP1603/B/L  
APPENDIX A: REVISION HISTORY  
Revision B (October 2012)  
The following is the list of modifications:  
1. Added new device option (MCP1603B) with  
PWM mode only. Added details on this device  
throughout the document.  
2. Updated Typical Application Circuit graphic to  
show both available options for the  
MCP1603/B/L family.  
3. Added new graphics to Section 2.0, Typical  
Performance Curves: Figures 2-2, 2-5, 2-15  
and 2-25.  
and 2-14.  
Updated  
Figures 2-6, 2-8, 2-12  
4. Restructured Section 4.2, Synchronous Buck  
Regulator to show both PFM/PWM and PWM-  
only modes.  
5. Updated Table 5-2.  
6. Updated  
Section 7.1,  
Package  
Marking  
Information with available marking codes and  
package specification drawings.  
7. Updated the Product Identification System  
section.  
Revision A (May 2007)  
• Original Release of this Document.  
2007-2012 Microchip Technology Inc.  
DS22042B-page 29  
MCP1603/B/L  
NOTES:  
DS22042B-page 30  
2007-2012 Microchip Technology Inc.  
MCP1603/B/L  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO. -XXX  
X
/XX  
a)  
b)  
MCP1603-180I/MC:  
MCP1603T-180I/MC:  
1.80V Buck Regulator,  
Industrial Temperature,  
8LD-DFN package  
Device  
Voltage TemperaturePackage  
Option  
Tape and Reel,  
1.80V Buck Regulator,  
Industrial Temperature,  
8LD-DFN package  
Device:  
MCP1603: 2.0 MHz, 500 mA Buck Regulator with PFM/PWM  
Mode  
MCP1603B: 2.0 MHz, 500 mA Buck Regulator with PWM-only  
MCP1603L: 2.0 MHz, 500 mA Buck Regulator with PFM/PWM  
Mode and Alternate Pinout  
c)  
a)  
MCP1603T-180I/OS:  
Tape and Reel  
1.80V Buck Regulator,  
Industrial Temperature,  
5LD-TSOT package  
MCP1603BT-180I/OS: Tape and Reel,  
1.80V Buck Regulator  
Voltage  
Option:  
MCP1603  
MCP1603B  
MCP1603L  
with PWM Only,  
Industrial Temperature,  
5LD-TSOT package  
ADJ = Adjustable  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
120 = 1.20V Standard  
150 = 1.50V Standard  
180 = 1.80V Standard  
250 = 2.50V Standard  
330 = 3.30V Standard  
a)  
MCP1603LT-180I/OS: Tape and Reel,  
1.80V Buck Regulator with  
Alternate TSOT Pinout,  
Industrial Temperature,  
5LD-TSOT package.  
X
Temperature:  
I
=
-40°C to +85°C  
Package  
Type:  
MC  
OS  
=
=
Plastic Dual-Flat No-Lead Package (MC), 8-Lead  
Plastic Thin Small Outline Transistor (OS), 5-Lead  
2007-2012 Microchip Technology Inc.  
DS22042B-page 31  
MCP1603/B/L  
NOTES:  
DS22042B-page 32  
2007-2012 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, PIC logo, rfPIC, SST, SST Logo, SuperFlash  
and UNI/O are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
32  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MTP, SEEVAL and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
Analog-for-the-Digital Age, Application Maestro, BodyCom,  
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,  
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA  
and Z-Scale are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
GestIC and ULPP are registered trademarks of Microchip  
Technology Germany II GmbH & Co. & KG, a subsidiary of  
Microchip Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2007-2012, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-62076-632-3  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2007-2012 Microchip Technology Inc.  
DS22042B-page 33  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Osaka  
Tel: 81-66-152-7160  
Fax: 81-66-152-9310  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Korea - Seoul  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-330-9305  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
11/29/11  
DS22042B-page 34  
2007-2012 Microchip Technology Inc.  

相关型号:

MCP1612

Single 1A, 1.4 MHz Synchronous Buck Regulator
MICROCHIP

MCP1612-ADJI/MS

2.3 A SWITCHING REGULATOR, 1600 kHz SWITCHING FREQ-MAX, PDSO8, PLASTIC, MO-187, MSOP-8
MICROCHIP

MCP1612-ADJIMF

Single 1A, 1.4 MHz Synchronous Buck Regulator
MICROCHIP

MCP1612-ADJIMS

Single 1A, 1.4 MHz Synchronous Buck Regulator
MICROCHIP

MCP1612-I/MF

Single 1A, 1.4 MHz Synchronous Buck Regulator
MICROCHIP

MCP1612-I/MS

Single 1A, 1.4 MHz Synchronous Buck Regulator
MICROCHIP

MCP1612T

Single 1A, 1.4 MHz Synchronous Buck Regulator
MICROCHIP

MCP1612T-ADJI

Single 1A, 1.4 MHz Synchronous Buck Regulator
MICROCHIP

MCP1612T-ADJI/MF

2.3 A SWITCHING REGULATOR, 1600 kHz SWITCHING FREQ-MAX, DSO8, 3 X 3 MM, 0.90 MM HEIGHT, MO-229, DFN-8
MICROCHIP

MCP1612T-ADJIMF

Single 1A, 1.4 MHz Synchronous Buck Regulator
MICROCHIP

MCP1612T-ADJIMS

Single 1A, 1.4 MHz Synchronous Buck Regulator
MICROCHIP

MCP1612T-I/MF

Single 1A, 1.4 MHz Synchronous Buck Regulator
MICROCHIP