MCP1603LT-330I/MC [MICROCHIP]

2.0 MHz, 500 mA Synchronous Buck Regulator; 2.0兆赫500 mA同步降压稳压器
MCP1603LT-330I/MC
型号: MCP1603LT-330I/MC
厂家: MICROCHIP    MICROCHIP
描述:

2.0 MHz, 500 mA Synchronous Buck Regulator
2.0兆赫500 mA同步降压稳压器

稳压器
文件: 总26页 (文件大小:758K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1603  
2.0 MHz, 500 mA Synchronous Buck Regulator  
Features  
General Description  
• Over 90% Typical Efficiency  
• Output Current Up To 500 mA  
• Low Quiescent Current = 45 µA, typical  
• Low Shutdown Current = 0.1 µA, typical  
• Adjustable Output Voltage:  
- 0.8V to 4.5V  
The MCP1603 is a high efficient, fully integrated  
500 mA synchronous buck regulator whose 2.7V to  
5.5V input voltage range makes it ideally suited for  
applications powered from 1-cell Li-Ion or 2-cell/3-cell  
NiMH/NiCd batteries.  
At heavy loads, the MCP1603 operates in the 2.0 MHz  
fixed frequency PWM mode which provides a low  
noise, low output ripple, small-size solution. When the  
load is reduced to light levels, the MCP1603  
automatically changes operation to a PFM mode to  
minimize quiescent current draw from the battery. No  
intervention is necessary for a smooth transition from  
one mode to another. These two modes of operation  
allow the MCP1603 to achieve the highest efficiency  
over the entire operating current range.  
• Fixed Output Voltage:  
- 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V  
• 2.0 MHz Fixed-Frequency PWM (Heavy Load)  
• Automatic PWM to PFM Mode Transition  
• 100% Duty Cycle Operation  
• Internally Compensated  
• Undervoltage Lockout (UVLO)  
• Overtemperature Protection  
• Space Saving Packages:  
The MCP1603 is available with either an adjustable or  
fixed output voltage. The available fixed output voltage  
options are 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V. When a  
fixed option is used, only three additional small external  
components are needed to form a complete solution.  
Couple this with the low profile, small-foot print  
packages and the entire system solution is achieved  
with minimal size.  
- 5-Lead TSOT  
- 8-Lead 2X3 DFN  
Applications  
• Cellular Telephones  
• Portable Computers  
• Organizers / PDAs  
Additional protection features include: UVLO,  
overtemperature, and overcurrent protection.  
• USB Powered Devices  
• Digital Cameras  
• Portable Equipment  
• +5V or +3.3V Distributed Systems  
Package Types  
5-Lead TSOT  
8-Lead 2x3 DFN  
LX  
1
2
3
4
8
7
6
5
GND  
VIN  
VFB/VOUT  
VIN  
LX  
SHDN  
GND  
LX  
1
2
3
5
4
1
2
3
5
4
NC  
SHDN  
GND  
NC  
NC  
VIN  
SHDN  
VFB/VOUT  
VFB/VOUT  
MCP1603  
MCP1603L  
© 2007 Microchip Technology Inc.  
DS22042A-page 1  
MCP1603  
Typical Application Circuit  
L
V
V
1
OUT  
IN  
4.7 µH  
1.8V @ 500 mA  
2.7V To 4.5V  
V
L
X
IN  
C
4.7 µF  
C
4.7 µF  
IN  
OUT  
V
SHDN  
FB  
GND  
100  
VOUT = 1.8V  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
VIN = 2.7V  
VIN = 3.6V  
VIN = 4.5V  
0.1  
1
10  
Output Current (mA)  
100  
1000  
DS22042A-page 2  
© 2007 Microchip Technology Inc.  
MCP1603  
Functional Block Diagram  
VIN  
VREF  
Band  
Gap  
Soft Start  
UVLO  
Thermal  
Shutdown  
SHDN  
UVLO  
ILIMPWM  
ILIMPFM  
TSD  
IPK Limit  
IPEAKPWM  
IPEAKPFM  
Slope  
Comp  
OSC  
-ILPK  
NOFF  
S
R
Q
POFF  
LX  
Switch Drive  
Logic and timing  
Q
PWM/PFM  
PFM Error Amp  
PWM/PFM  
Logic  
GND  
IPEAKPFM  
IPEAKPWM  
VREF  
PWM Error Amp  
EA  
-ILPK  
-IPK Limit  
VREF  
OV Threshold  
UV Threshold  
UVLO  
TSD  
Disable  
Switcher  
VFB / VOUT  
© 2007 Microchip Technology Inc.  
DS22042A-page 3  
MCP1603  
Notice: Stresses above those listed under "Maximum  
Ratings" may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operational sections of this specification is not intended.  
Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
1.0  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
VIN - GND.......................................................................+6.0V  
All Other I/O ...............................(GND - 0.3V) to (VIN + 0.3V)  
LX to GND .............................................. -0.3V to (VIN + 0.3V)  
Output Short Circuit Current..................................Continuous  
Power Dissipation (Note 5)..........................Internally Limited  
Storage Temperature.....................................-65°C to +150°C  
Ambient Temp. with Power Applied.................-40°C to +85°C  
Operating Junction Temperature...................-40°C to +125°C  
ESD Protection On All Pins:  
HBM..............................................................................4 kV  
MM...............................................................................300V  
DC CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, VIN = SHDN = 3.6V, COUT = CIN = 4.7 µF, L = 4.7 µH, VOUT(ADJ) = 1.8V,  
OUT = 100 mA, TA = +25°C. Boldface specifications apply over the TA range of -40°C to +85°C.  
I
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Characteristics  
Input Voltage  
VIN  
IOUT  
IIN_SHDN  
IQ  
2.7  
500  
5.5  
1
V
Note 1  
Maximum Output Current  
Shutdown Current  
Quiescent Current  
mA Note 1  
0.1  
45  
µA SHDN = GND  
60  
µA SHDN = VIN, IOUT = 0 mA  
Shutdown/UVLO/Thermal Shutdown Characteristics  
SHDN, Logic Input Voltage Low  
SHDN, Logic Input Voltage High  
SHDN, Input Leakage Current  
Undervoltage Lockout  
VIL  
VIH  
45  
15  
%VIN VIN = 2.7V to 5.5V  
%VIN VIN = 2.7V to 5.5V  
µA VIN = 2.7V to 5.5V  
IL_SHDN  
UVLO  
-1.0  
2.12  
±0.1  
2.28  
140  
150  
10  
1.0  
2.43  
V
VIN Falling  
Undervoltage Lockout Hysteresis UVLOHYS  
mV  
°C  
°C  
Thermal Shutdown  
TSHD  
Note 4, Note 5  
Note 4, Note 5  
Thermal Shutdown Hysteresis  
TSHD-HYS  
Note 1: The minimum VIN has to meet two conditions: VIN 2.7V and VIN VOUT + 0.5V.  
2: Reference Feedback Voltage Tolerance applies to adjustable output voltage setting.  
3: VR is the output voltage setting.  
4: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable  
temperature and the thermal resistance from junction to air (i.e. TA, TJ, θJA). Exceeding the maximum  
allowable power dissipation causes the device to initiate thermal shutdown.  
5: The internal MOSFET switches have an integral diode from the LX pin to the VIN pin, and from the LX pin  
to the GND pin. In cases where these diodes are forward-biased, the package power dissipation limits  
must be adhered to. Thermal protection is not able to limit the junction temperature for these cases.  
6: The current limit threshold is a cycle-by-cycle peak current limit.  
DS22042A-page 4  
© 2007 Microchip Technology Inc.  
MCP1603  
DC CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, VIN = SHDN = 3.6V, COUT = CIN = 4.7 µF, L = 4.7 µH, VOUT(ADJ) = 1.8V,  
OUT = 100 mA, TA = +25°C. Boldface specifications apply over the TA range of -40°C to +85°C.  
I
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Output Characteristics  
Adjustable Output Voltage Range  
Reference Feedback Voltage  
VOUT  
VFB  
0.8  
0.8  
4.5  
V
V
Note 2  
-3.0  
-2.5  
+3.0  
+2.5  
%
%
nA  
%
%
TA = -40°C to +25°C  
TA = +25°C to +85°C  
Reference Feedback Voltage  
Tolerance  
Feedback Input Bias Current  
Output Voltage Tolerance Fixed  
IVFB  
VOUT  
VOUT  
VLINE-  
0.1  
VR  
VR  
0.3  
-3.0%  
-2.5  
+3.0%  
+2.5  
TA = -40°C to +25°C, Note 3  
TA = +25°C to +85°C, Note 3  
Line Regulation  
Load Regulation  
%/V VIN = VR + 1V to 5.5V,  
IOUT = 100 mA  
REG  
VLOAD-  
0.35  
%
VIN = VR +1.5V,  
ILOAD = 100 mA to 500 mA  
REG  
Internal Oscillator Frequency  
Start Up Time  
FOSC  
1.5  
2.0  
0.6  
2.8  
MHz  
TSS  
RDSon-P  
RDSon-N  
ILX  
ms TR = 10% to 90%  
mΩ IP = 100 mA  
mΩ IN = 100 mA  
RDSon P-Channel  
500  
500  
±0.1  
RDSon N-Channel  
LX Pin Leakage Current  
-1.0  
1.0  
µA SHDN = 0V, VIN = 5.5V,  
LX = 0V, LX = 5.5V  
Positive Current Limit Threshold +ILX(MAX)  
860  
mA Note 6  
Note 1: The minimum VIN has to meet two conditions: VIN 2.7V and VIN VOUT + 0.5V.  
2: Reference Feedback Voltage Tolerance applies to adjustable output voltage setting.  
3: VR is the output voltage setting.  
4: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable  
temperature and the thermal resistance from junction to air (i.e. TA, TJ, θJA). Exceeding the maximum  
allowable power dissipation causes the device to initiate thermal shutdown.  
5: The internal MOSFET switches have an integral diode from the LX pin to the VIN pin, and from the LX pin  
to the GND pin. In cases where these diodes are forward-biased, the package power dissipation limits  
must be adhered to. Thermal protection is not able to limit the junction temperature for these cases.  
6: The current limit threshold is a cycle-by-cycle peak current limit.  
© 2007 Microchip Technology Inc.  
DS22042A-page 5  
MCP1603  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, all limits are specified for: VIN + 2.7V to 5.5V  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Operating Junction Temperature  
Range  
TJ  
-40  
+125  
°C  
Steady State  
Storage Temperature Range  
Maximum Junction Temperature  
Package Thermal Resistances  
Thermal Resistance, 5L-TSOT  
TA  
TJ  
-65  
+150  
+150  
°C  
°C  
Transient  
θJA  
θJA  
256  
°C/W Typical 4-layer Board with  
Internal Ground Plane  
Thermal Resistance, 8L-2x3 DFN  
84.5  
°C/W Typical 4-layer Board with  
Internal Ground Plane and  
2-Vias in Thermal Pad  
DS22042A-page 6  
© 2007 Microchip Technology Inc.  
MCP1603  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein are  
not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, VIN = SHDN = 3.6V, COUT = CIN = 4.7 µF, L = 4.7 µH, VOUT(ADJ) = 1.8V, ILOAD = 100 mA,  
TA = +25°C. Adjustable or fixed output voltage options can be used to generate the Typical Performance Characteristics.  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
52  
50  
48  
46  
44  
42  
40  
VOUT = 1.8V  
TA = +90oC  
VIN = 3.6V  
VIN = 4.2V  
TA = +25oC  
VIN = 3.0V  
TA = - 40oC  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2.7 3.05 3.4 3.75 4.1 4.45 4.8 5.15 5.5  
Input Voltage (V)  
Ambient Temperature (oC)  
FIGURE 2-1:  
I vs. Ambient Temperature.  
FIGURE 2-4:  
I vs. Input Voltage.  
Q
Q
100  
90  
100  
95  
VOUT = 1.2V  
VOUT = 1.2V  
VIN = 2.7V  
VIN = 3.6V  
IOUT = 100 mA  
80  
70  
60  
50  
40  
30  
20  
90  
85  
80  
75  
70  
65  
60  
IOUT = 300 mA  
IOUT = 500 mA  
VIN = 4.2V  
2.7 3.05 3.4 3.75 4.1 4.45 4.8 5.15 5.5  
Input Voltage (V)  
0.1  
1
10  
100  
1000  
Output Current (mA)  
FIGURE 2-2:  
(V = 1.2V).  
Efficiency vs. Input Voltage  
FIGURE 2-5:  
(V = 1.2V).  
Efficiency vs. Output Load  
OUT  
OUT  
100  
100  
VOUT = 1.8V  
VIN = 2.7V  
VIN = 3.6V  
90  
80  
70  
60  
50  
40  
30  
20  
95  
90  
85  
80  
75  
70  
IOUT = 100 mA  
IOUT = 300 mA  
IOUT = 500 mA  
VIN = 4.2V  
VOUT = 1.8V  
2.7 3.05 3.4 3.75 4.1 4.45 4.8 5.15 5.5  
Input Voltage (V)  
0.1  
1
10  
100  
1000  
Output Current (mA)  
FIGURE 2-3:  
(V = 1.8V).  
Efficiency vs. Input Voltage  
FIGURE 2-6:  
(V = 1.8V).  
Efficiency vs. Output Load  
OUT  
OUT  
© 2007 Microchip Technology Inc.  
DS22042A-page 7  
MCP1603  
Typical Performance Curves (Continued)  
Note: Unless otherwise indicated, VIN = SHDN = 3.6V, COUT = CIN = 4.7 µF, L = 4.7 µH, VOUT(ADJ) = 1.8V, ILOAD = 100 mA,  
TA = +25°C. Adjustable or fixed output voltage options can be used to generate the Typical Performance Characteristics.  
100  
95  
90  
85  
80  
75  
100  
90  
80  
70  
60  
50  
40  
30  
VOUT = 2.4V  
VIN = 2.7V  
VIN = 3.6V  
IOUT = 100 mA  
IOUT = 300 mA  
IOUT = 500 mA  
VIN = 4.2V  
VOUT = 2.4V  
3
3.5  
4
4.5  
5
5.5  
0.1  
1
10  
100  
1000  
Input Voltage (V)  
Output Current (mA)  
FIGURE 2-7:  
(V = 2.4V).  
Efficiency vs. Input Voltage  
FIGURE 2-10:  
(V = 2.4V).  
Efficiency vs. Output Load  
OUT  
OUT  
100.0  
97.5  
95.0  
92.5  
90.0  
87.5  
85.0  
100  
VOUT = 3.3V  
90  
80  
70  
60  
50  
40  
30  
IOUT = 100 mA  
IOUT = 300 mA  
VIN = 3.6V  
IOUT = 500 mA  
VIN = 4.2V  
VOUT = 3.3V  
3.5 3.75  
4
4.25 4.5 4.75  
Input Voltage (V)  
5
5.25 5.5  
0.1  
1
10  
100  
1000  
Output Current (mA)  
FIGURE 2-8:  
(V = 3.3V).  
Efficiency vs. Input Voltage  
FIGURE 2-11:  
(V = 3.3V).  
Efficiency vs. Output Load  
OUT  
OUT  
0.6  
1.82  
TA = +125 o  
C
TA = +90 o  
C
VOUT = 1.8V  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
1.75  
1.74  
0.5  
0.4  
0.3  
0.2  
0.1  
IOUT = 300 mA  
TA = +25 o  
C
TA = - 40 o  
C
IOUT = 100 mA  
100 150 200 250 300 350 400 450 500  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Ambient Temperature (oC)  
Output Current (mA)  
FIGURE 2-9:  
Temperature (V  
Line Regulation vs. Ambient  
= 1.8V).  
FIGURE 2-12:  
Current (V  
Output Voltage vs. Load  
= 1.8V).  
OUT  
OUT  
DS22042A-page 8  
© 2007 Microchip Technology Inc.  
MCP1603  
Typical Performance Curves (Continued)  
Note: Unless otherwise indicated, VIN = SHDN = 3.6V, COUT = CIN = 4.7 µF, L = 4.7 µH, VOUT(ADJ) = 1.8V, ILOAD = 100 mA,  
TA = +25°C. Adjustable or fixed output voltage options can be used to generate the Typical Performance Characteristics.  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2.7 3.05 3.4 3.75 4.1 4.45 4.8 5.15 5.5  
Input Voltage (V)  
Ambient Temperature (oC)  
FIGURE 2-13:  
Switching Frequency vs.  
FIGURE 2-16:  
Switching Frequency vs.  
Ambient Temperature.  
Input Voltage.  
0.65  
0.60  
0.55  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
N-Channel  
0.50  
N-Channel  
P-Channel  
0.45  
0.40  
0.35  
P-Channel  
0.3  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
2.7 3.05 3.4 3.75 4.1 4.45 4.8 5.15 5.5  
Input Voltage (V)  
Ambient Temperature (oC)  
FIGURE 2-14:  
Switch Resistance vs. Input  
FIGURE 2-17:  
Switch Resistance vs.  
Voltage.  
Ambient Temperature.  
FIGURE 2-15:  
Output Voltage Startup  
FIGURE 2-18:  
Heavy Load Switching  
Waveform.  
Waveform.  
© 2007 Microchip Technology Inc.  
DS22042A-page 9  
MCP1603  
Typical Performance Curves (Continued)  
Note: Unless otherwise indicated, VIN = SHDN = 3.6V, COUT = CIN = 4.7 µF, L = 4.7 µH, VOUT(ADJ) = 1.8V, ILOAD = 100 mA,  
TA = +25°C. Adjustable or fixed output voltage options can be used to generate the Typical Performance Characteristics.  
FIGURE 2-19:  
Light Load Switching  
FIGURE 2-21:  
Output Voltage Line Step  
Waveform.  
Response vs. Time.  
FIGURE 2-20:  
Output Voltage Load Step  
Response vs. Time.  
DS22042A-page 10  
© 2007 Microchip Technology Inc.  
MCP1603  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
Pin No.  
Description  
Symbol  
MCP1603 MCP1603L  
2x3 DFN  
TSOT23  
TSOT23  
1
2
4
2
7
VIN  
Power Supply Input Voltage Pin  
8
GND  
SHDN  
Ground Pin  
3
1
3
Shutdown Control Input Pin  
4
5
4
1
VFB/VOUT Feedback / Output Voltage Pin  
5
3
LX  
NC  
EP  
Switch Node, Buck Inductor Connection Pin  
No Connect  
2, 5, 6  
Exposed  
Pad  
For the DFN package, the center exposed pad is a thermal  
path to remove heat from the device. Electrically this pad is at  
ground potential and should be connected to GND  
3.1  
Power Supply Input Voltage Pin  
(VIN)  
3.4  
Feedback / Output Voltage Pin  
(VFB/VOUT  
)
Connect the input voltage source to VIN. The input  
source must be decoupled to GND with a 4.7 µF  
capacitor.  
For adjustable output options, connect the center of the  
output voltage divider to the VFB/VOUT pin. For fixed-  
output voltage options, connect the output directly to  
the VFB/VOUT pin.  
3.2  
Ground Pin (GND)  
3.5  
Switch Node, Buck Inductor  
Connection Pin (LX)  
Ground pin for the device. The loop area of the ground  
traces should be kept as minimal as possible.  
Connect the LX pin directly to the buck inductor. This  
pin carries large signal-level current; all connections  
should be made as short as possible.  
3.3  
Shutdown Control Input Pin  
(SHDN)  
The SHDN pin is a logic-level input used to enable or  
disable the device. A logic high (> 45% of VIN) will  
enable the regulator output. A logic-low (< 15% of VIN)  
will ensure that the regulator is disabled.  
3.6  
Exposed Metal Pad (EP)  
For the DFN package, connect the Exposed Pad to  
GND, with vias into the GND plane. This connection to  
the GND plane will aid in heat removal from the  
package.  
© 2007 Microchip Technology Inc.  
DS22042A-page 11  
MCP1603  
4.0  
4.1  
DETAILED DESCRIPTION  
Device Overview  
4.2  
Synchronous Buck Regulator  
The MCP1603 is a synchronous buck regulator that  
operates in a Pulse Frequency Modulation (PFM)  
mode or a Pulse Width Modulation (PWM) mode to  
maximize system efficiency over the entire operating  
current range. Capable of operating from a 2.7V to  
5.5V input voltage source, the MCP1603 can deliver  
500 mA of continuous output current.  
The MCP1603 has two distinct modes of operation that  
allow the device to maintain a high level of efficiency  
throughout the entire operating current and voltage  
range. The device automatically switched between  
PWM mode and PFM mode depending upon the output  
load requirements.  
4.2.1  
FIXED FREQUENCY, PWM MODE  
When using the MCP1603, the PCB area required for  
a complete step-down converter is minimized since  
both the main P-Channel MOSFET and the synchro-  
nous N-Channel MOSFET are integrated. Also while in  
PWM mode, the device switches at a constant  
frequency of 2.0 MHz (typ) which allow for small filter-  
ing components. Both fixed and adjustable output  
voltage options are available. The fixed voltage options  
(1.2V, 1.5V 1.8V, 2.5V, 3.3V) do not require an external  
voltage divider which further reduces the required  
circuit board footprint. The adjustable output voltage  
options allow for more flexibility in the design, but  
require an external voltage divider.  
During heavy load conditions, the MCP1603 operates  
at a high, fixed switching frequency of 2.0 MHz (typical)  
using current mode control. This minimizes output rip-  
ple (10 - 15 mV typically) and noise while maintaining  
high efficiency (88% typical with VIN  
VOUT = 1.8V, IOUT = 300 mA).  
= 3.6V,  
During normal PWM operation, the beginning of a  
switching cycle occurs when the internal P-Channel  
MOSFET is turned on. The ramping inductor current is  
sensed and tied to one input of the internal high-speed  
comparator. The other input to the high-speed compar-  
ator is the error amplifier output. This is the difference  
between the internal 0.8V reference and the divided-  
down output voltage. When the sensed current  
becomes equal to the amplified error signal, the high-  
speed comparator switches states and the P-Channel  
MOSFET is turned off. The N-Channel MOSFET is  
turned on until the internal oscillator sets an internal RS  
latch initiating the beginning of another switching cycle.  
Additionally the device features undervoltage lockout  
(UVLO), overtemperature shutdown, overcurrent  
protection, and enable/disable control.  
PFM-to-PWM mode transition is initiated for any of the  
following conditions:  
• Continuous device switching  
• Output voltage has dropped out of regulation  
4.2.2  
LIGHT LOAD, PFM MODE  
During light load conditions, the MCP1603 operates in  
a PFM mode. When the MCP1603 enters this mode, it  
begins to skip pulses to minimize unnecessary quies-  
cent current draw by reducing the number of switching  
cycles per second. The typical quiescent current draw  
for this device is 45 µA.  
PWM-to-PFM mode transition is initiated for any of the  
following conditions:  
• Discontinuous inductor current is sensed for a set  
duration  
• Inductor peak current falls below the transition  
threshold limit  
DS22042A-page 12  
© 2007 Microchip Technology Inc.  
MCP1603  
4.3  
Soft Start  
4.6  
Enable/Disable Control  
The output of the MCP1603 is controlled during start-  
up. This control allows for a very minimal amount of  
VOUT overshoot during start-up from VIN rising above  
the UVLO voltage or SHDN being enabled.  
The SHDN pin is used to enable or disable the  
MCP1603. When the SHDN pin is pulled low, the  
device is disabled. When pulled high the device is  
enabled and begins operation provided the input  
voltage is not below the UVLO threshold or a fault  
condition exists.  
4.4  
Overtemperature Protection  
Overtemperature protection circuitry is integrated in the  
MCP1603. This circuitry monitors the device junction  
temperature and shuts the device off, if the junction  
temperature exceeds the typical 150°C threshold. If  
this threshold is exceeded, the device will automatically  
restart once the junction temperature drops by  
approximately 10°C. The soft start is reset during an  
overtemperture condition.  
4.7  
Undervoltage Lockout (UVLO)  
The UVLO feature uses a comparator to sense the  
input voltage (VIN) level. If the input voltage is lower  
than the voltage necessary to properly operate the  
MCP1603, the UVLO feature will hold the converter off.  
When VIN rises above the necessary input voltage, the  
UVLO is released and soft start begins. Hysteresis is  
built into the UVLO circuit to compensate for input  
impedance. For example, if there is any resistance  
between the input voltage source and the device when  
it is operating, there will be a voltage drop at the input  
to the device equal to IIN x RIN. The typical hysteresis  
is 140 mV.  
4.5  
Overcurrent Protection  
Cycle-by-cycle current limiting is used to protect the  
MCP1603 from being damaged when an external short  
circuit is applied. The typical peak current limit is  
860 mA. If the sensed current reaches the 860 mA  
limit, the P-Channel MOSFET is turned off, even if the  
output voltage is not in regulation. The device will  
attempt to start a new switching cycle when the internal  
oscillator sets the internal RS latch.  
© 2007 Microchip Technology Inc.  
DS22042A-page 13  
MCP1603  
For adjustable output applications, an additional R-C  
compensation network is necessary for control loop  
stability. Recommended values for any output voltage  
are:  
5.0  
5.1  
APPLICATION INFORMATION  
Typical Applications  
The MCP1603 500 mA synchronous buck regulator  
operates over a wide input voltage range (2.7V to 5.5V)  
and is ideal for single-cell Li-Ion battery powered  
applications, USB powered applications, three cell  
NiMH or NiCd applications and 3V or 5V regulated  
input applications. The 5-lead TSOT and 8-lead 2x3  
DFN packages provide a small footprint with minimal  
external components.  
RCOMP  
CCOMP  
=
=
4.99 kΩ  
33 pF  
Refer to Figure 6-2 for proper placement of RCOMP and  
CCOMP  
.
5.4  
Input Capacitor Selection  
The input current to a buck converter, when operating  
in continuous conduction mode, is a squarewave with  
a duty cycle defined by the output voltage (VOUT) to  
input voltage (VIN) relationship of VOUT/VIN. To prevent  
undesirable input voltage transients, the input capacitor  
should be a low ESR type with an RMS current rating  
given by Equation 5.5. Because of their small size and  
low ESR, ceramic capacitors are often used. Ceramic  
material X5R or X7R are well suited since they have a  
low temperature coefficient and acceptable ESR.  
5.2  
Fixed Output Voltage Applications  
Typical Application Circuit shows a fixed MCP1603  
in an application used to convert three NiMH batteries  
into a well regulated 1.8V @ 500 mA output. A 4.7 µF  
input capacitor, 4.7 µF output capacitor, and a 4.7 µH  
inductor make up the entire external component solu-  
tion for this application. No external voltage divider or  
compensation is necessary. In addition to the fixed  
1.8V option, the MCP1603 is also available in 1.2V,  
1.5V, 2.5V, or 3.3V fixed voltage options.  
EQUATION 5-2:  
VOUT × (VIN VOUT)⎞  
5.3  
Adjustable Output Voltage  
Applications  
ICIN,RMS = IOUT,MAX  
×
-----------------------------------------------------  
VIN  
When the desired output for a particular application is  
not covered by the fixed voltage options, an adjustable  
MCP1603 can be used. The circuit listed in Figure 6-2  
shows an adjustable MCP1603 being used to convert a  
5V rail to 1.0V @ 500 mA. The output voltage is adjust-  
able by using two external resistors as a voltage  
divider. For adjustable-output voltages, it is  
recommended that the top resistor divider value be  
200 kΩ. The bottom resistor value can be calculated  
using the following equation:  
Table 5-1 contains the recommend range for the input  
capacitor value.  
5.5  
Output Capacitor Selection  
The output capacitor helps provide a stable output  
voltage during sudden load transients, smooths the  
current that flows from the inductor to the load, and  
reduces the output voltage ripple. Therefore, low ESR  
capacitors are a desirable choice for the output capac-  
itor. As with the input capacitor, X5R and X7R ceramic  
capacitors are well suited for this application.  
EQUATION 5-1:  
The output ripple voltage is often a design specifica-  
tion. A buck converters’ output ripple voltage is a  
function of the charging and discharging of the output  
capacitor and the ESR of the capacitor. This ripple  
voltage can be calculated by Equation 5-3.  
VFB  
----------------------------  
RBOT = RTOP  
×
VOUT VFB  
Example:  
RTOP  
VOUT  
VFB  
=
=
=
200 kΩ  
EQUATION 5-3:  
1.0V  
0.8V  
ΔIL  
ΔVOUT = ΔIL × ESR + --------------------  
8 × f × C  
RBOT  
RBOT  
=
=
200 kΩ x (0.8V/(1.0V - 0.8V))  
800 kΩ  
(Standard Value = 787 kΩ)  
DS22042A-page 14  
© 2007 Microchip Technology Inc.  
MCP1603  
Table 5-1 contains the recommend range for the output  
capacitor value.  
TABLE 5-2:  
MCP1603 RECOMMENDED  
INDUCTORS  
TABLE 5-1:  
CAPACITOR VALUE RANGE  
DCR  
Ω
(max)  
Part  
Number  
Value  
(µH)  
ISAT  
Size  
CIN  
COUT  
(A) WxLxH (mm)  
Minimum  
Maximum  
4.7 µF  
4.7 µF  
22 µF  
Coiltronics®  
SD3110  
3.3  
4.7  
6.8  
3.3  
4.7  
6.8  
0.195 0.81  
0.285 0.68  
0.346 0.58  
0.159 1.40  
0.256 1.13  
0.299 0.95  
3.1x3.1x1.0  
3.1x3.1x1.0  
3.1x3.1x1.0  
3.8x3.8x1.2  
3.8x3.8x1.2  
3.8x3.8x1.2  
SD3110  
5.6  
Inductor Selection  
SD3110  
When using the MCP1603, the inductance value can  
range from 3.3 µH to 10 µH. An inductance value of  
4.7 µH is recommended to achieve a good balance  
between converter load transient response and mini-  
mized noise.  
SD3812  
SD3812  
SD3812  
Würth Elektronik®  
The value of inductance is selected to achieve a  
desired amount of ripple current. It is reasonable to  
assume a ripple current that is 20% of the maximum  
load current. The larger the amount of ripple current  
allowed, the larger the output capacitor value becomes  
to meet ripple voltage specifications. The inductor  
ripple current can be calculated according to the follow-  
ing equation.  
WE-TPC  
Type XS  
3.3  
4.7  
4.7  
6.8  
0.225 0.72 3.3x3.5x0.95  
0.290 0.50 3.3x3.5x0.95  
0.105 0.90 3.8x3.8x1.65  
0.156 0.75 3.8x3.8x1.65  
WE-TPC  
Type XS  
WE-TPC  
Type S  
WE-TPC  
Type S  
EQUATION 5-4:  
Sumida®  
CMD4D06  
CMD4D06  
CMD4D06  
3.3  
4.7  
6.8  
0.174 0.77  
0.216 0.75  
0.296 0.62  
3.5x4.3x0.8  
3.5x4.3x0.8  
3.5x4.3x0.8  
VOUT  
VOUT  
-------------------  
FSW × L  
ΔIL =  
× 1 – ------------  
VIN  
Where:  
FSW = Switching Frequency  
5.7  
Thermal Calculations  
The MCP1603 is available in two different packages  
(TSOT-23 and 2x3 DFN). By calculating the power  
dissipation and applying the package thermal  
resistance, (θJA), the junction temperature is  
estimated. The maximum continuous junction  
temperature rating for the MCP1603 is +125°C.  
When considering inductor ratings, the maximum DC  
current rating of the inductor should be at least equal to  
the maximum load current, plus one half the peak-to-  
peak inductor ripple current (1/2 * ΔIL). The inductor DC  
resistance adds to the total converter power loss. An  
inductor with a low DC resistance allows for higher  
converter efficiency.  
To quickly estimate the internal power dissipation for  
the switching buck regulator, an empirical calculation  
using measured efficiency can be used. Given the  
measured efficiency, the internal power dissipation is  
estimated by:  
EQUATION 5-5:  
VOUT × IOUT  
Efficiency  
------------------------------  
(VOUT × IOUT) = PDiss  
The difference between the first term, input power  
dissipation, and the second term, power delivered, is  
the internal power dissipation. This is an estimate  
assuming that most of the power lost is internal to the  
MCP1603. There is some percentage of power lost in  
the buck inductor, with very little loss in the input and  
output capacitors.  
© 2007 Microchip Technology Inc.  
DS22042A-page 15  
MCP1603  
Therefore, it is important that the components along the  
high current path should be placed as close as possible  
to the MCP1603 to minimize the loop area.  
5.8  
PCB Layout Information  
Good printed circuit board layout techniques are  
important to any switching circuitry and switching  
power supplies are no different. When wiring the high  
current paths, short and wide traces should be used.  
This high current path is shown with red connections in  
Figure 5-1. The current in this path is switching.  
The feedback resistors and feedback signal should be  
routed away from the switching node and this switching  
current loop. When possible ground planes and traces  
should be used to help shield the feedback signal and  
minimize noise and magnetic interference.  
L1  
VOUT  
VIN  
4.7 µH  
1.8V @ 500 mA  
2.7V To 4.5V  
VIN  
LX  
CIN  
4.7 µF  
COUT  
4.7 µF  
VFB  
SHDN  
GND  
FIGURE 5-1:  
PCB High Current Path.  
DS22042A-page 16  
© 2007 Microchip Technology Inc.  
MCP1603  
6.0  
TYPICAL APPLICATION CIRCUITS  
l
L1  
4.7 µH  
VOUT  
1.5V @ 500 mA  
VIN  
VIN  
LX  
3.0V To 4.2V  
CIN  
4.7 µF  
COUT  
4.7 µF  
VFB  
SHDN  
GND  
FIGURE 6-1:  
Single Li-Ion to 1.5V @ 500 mA Application.  
L1  
4.7 µH  
VOUT  
1.0V @ 500 mA  
VIN  
5.0V  
VIN  
LX  
RCOMP  
RTOP  
4.99 kΩ  
CCOMP  
33 pF  
CIN  
4.7 µF  
COUT  
4.7 µF  
200 kΩ  
SHDN  
VFB  
RBOT  
787 kΩ  
GND  
FIGURE 6-2:  
5V to 1.0V @ 500 mA Application.  
L1  
4.7 µH  
VOUT  
1.2V @ 500 mA  
VIN  
VIN  
LX  
2.7V To 4.5V  
CIN  
4.7 µF  
COUT  
4.7 µF  
VFB  
SHDN  
GND  
FIGURE 6-3:  
3 NiMH Batteries to 1.2V @ 500 mA Application.9  
© 2007 Microchip Technology Inc.  
DS22042A-page 17  
MCP1603  
7.0  
7.1  
PACKAGING INFORMATION  
Package Marking Information (Not to Scale)  
8-Lead 2x3 DFN  
Example:  
Marking  
Code  
Part Number  
MCP1603-120I/MC  
MCP1603-150I/MC  
MCP1603-180I/MC  
MCP1603-250I/MC  
MCP1603-330I/MC  
MCP1603-ADJI/MC  
AFM  
AFK  
AFJ  
XXX  
YWW  
NNN  
AFM  
711  
25  
AFG  
AFA  
AFQ  
5-Lead TSOT  
Example  
Marking  
Code  
Part Number  
MCP1603T-120I/OS  
MCP1603T-150I/OS  
MCP1603T-180I/OS  
MCP1603T-250I/OS  
MCP1603T-330I/OS  
MCP1603T-ADJI/OS  
ETNN  
EUNN  
EVNN  
EWNN  
EXNN  
EYNN  
ET25  
XXNN  
Marking  
Code  
Part Number  
MCP1603LT-120I/OS  
MCP1603LT-150I/OS  
MCP1603LT-180I/OS  
MCP1603LT-250I/OS  
MCP1603LT-330I/OS  
MCP1603LT-ADJI/OS  
FMNN  
FKNN  
EJNN  
FGNN  
FANN  
FQNN  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS22042A-page 18  
© 2007 Microchip Technology Inc.  
MCP1603  
8-Lead Plastic Dual Flat, No Lead Package (MC) – 2x3x0.9 mm Body [DFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
e
D
b
N
N
L
K
E2  
E
EXPOSED PAD  
NOTE 1  
NOTE 1  
2
1
1
2
D2  
BOTTOM VIEW  
TOP VIEW  
A
NOTE 2  
A3  
A1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
8
MAX  
Number of Pins  
Pitch  
N
e
0.50 BSC  
0.90  
Overall Height  
Standoff  
A
0.80  
0.00  
1.00  
0.05  
A1  
A3  
D
0.02  
Contact Thickness  
Overall Length  
Overall Width  
0.20 REF  
2.00 BSC  
3.00 BSC  
E
Exposed Pad Length  
Exposed Pad Width  
Contact Width  
Contact Length  
Contact-to-Exposed Pad  
D2  
E2  
b
1.30  
1.50  
0.18  
0.30  
0.20  
1.75  
1.90  
0.30  
0.50  
0.25  
L
0.40  
K
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package may have one or more exposed tie bars at ends.  
3. Package is saw singulated.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-123B  
© 2007 Microchip Technology Inc.  
DS22042A-page 19  
MCP1603  
5-Lead Plastic Thin Small Outline Transistor (OS) [TSOT]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
b
N
E
E1  
NOTE 1  
1
3
2
e
e1  
D
α
A2  
c
A
φ
L
A1  
β
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Leads  
Lead Pitch  
N
e
5
0.95 BSC  
Outside Lead Pitch  
Overall Height  
e1  
A
1.90 BSC  
1.10  
1.00  
0.10  
Molded Package Thickness  
Standoff  
A2  
A1  
E
0.70  
0.00  
0.90  
2.80 BSC  
1.60 BSC  
2.90 BSC  
0.45  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
E1  
D
L
0.30  
0.60  
Footprint  
L1  
φ
0.60 REF  
4°  
Foot Angle  
0°  
0.08  
0.30  
4°  
8°  
Lead Thickness  
Lead Width  
c
0.20  
0.50  
12°  
b
Mold Draft Angle Top  
Mold Draft Angle Bottom  
α
β
10°  
4°  
10°  
12°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.  
3. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-128B  
DS22042A-page 20  
© 2007 Microchip Technology Inc.  
MCP1603  
APPENDIX A: REVISION HISTORY  
Revision A (May 2007)  
• Original Release of this Document.  
© 2007 Microchip Technology Inc.  
DS22042A-page 21  
MCP1603  
NOTES:  
DS22042A-page 22  
© 2007 Microchip Technology Inc.  
MCP1603  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
X
XXX  
X
/
XX  
8-Lead DFN:  
TSOT  
Tape Voltage Temp. Package  
a)  
b)  
c)  
d)  
e)  
MCP1603-120I/MC: 1.20V Buck Reg.,  
Config. and Reel  
Option  
8LD-DFN pkg.  
MCP1603-150I/MC: 1.50V Buck Reg.,  
8LD-DFN pkg.  
MCP1603-180I/MC: 1.80V Buck Reg.,  
8LD-DFN pkg.  
Device:  
MCP1603: 2.0 MHz, 500 mA Buck Regulator  
Blank = Standard pinout  
TSOT Pin  
MCP1603-250I/MC: 2.50V Buck Reg.,  
8LD-DFN pkg.  
Config. Designator *  
L
= Alternate pinout  
* Refer to Package Types for an explanation regarding the  
function of the device pins.  
MCP1603-330I/MC: 3.30V Buck Reg.,  
8LD-DFN pkg.  
Tape and Reel:  
Voltage Option:  
T
=
=
Tape and Reel  
Tube  
5-Lead TSOT:  
Blank  
a)  
b)  
c)  
d)  
e)  
f)  
MCP1603T-120I/OS: 1.20V Buck Reg.,  
5LD-TSOT pkg.  
MCP1603T-180I/OS: 1.80V Buck Reg.,  
5LD-TSOT pkg.  
ADJ = Adjustable  
120 = 1.20V “Standard”  
150 = 1.50V “Standard”  
180 = 1.80V “Standard”  
250 = 2.50V “Standard”  
330 = 3.30V “Standard”  
MCP1603T-250I/OS: 2.50V Buck Reg.,  
5LD-TSOT pkg.  
MCP1603T-330I/OS: 3.30V Buck Reg.,  
5LD-TSOT pkg.  
MCP1603T-ADJI/OS:Adj. Buck Reg.,  
5LD-TSOT pkg.  
Temperature:  
I
=
-40°C to +85°C  
MCP1603LT-250I/OS:2.50V Buck Reg.,  
5LD-TSOT pkg.  
Package Type:  
MC  
OS  
=
=
Plastic Dual-Flat No-Lead Package (MC), 8-Lead  
Plastic Thin Small Outline Transistor (OS), 5-Lead  
g)  
MCP1603LT-ADJI/OS:Adj. Buck Reg.,  
5LD-TSOT pkg.  
© 2007 Microchip Technology Inc.  
DS22042A-page 23  
MCP1603  
NOTES:  
DS22042A-page 24  
© 2007 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, Accuron,  
dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC,  
PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
AmpLab, FilterLab, Linear Active Thermistor, Migratable  
Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The  
Embedded Control Solutions Company are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,  
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,  
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,  
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,  
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,  
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select  
Mode, Smart Serial, SmartTel, Total Endurance, UNI/O,  
WiperLock and ZENA are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2007, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2007 Microchip Technology Inc.  
DS22042A-page 25  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Habour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-4182-8400  
Fax: 91-80-4182-8422  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Gumi  
Tel: 82-54-473-4301  
Fax: 82-54-473-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Fuzhou  
Tel: 86-591-8750-3506  
Fax: 86-591-8750-3521  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-646-8870  
Fax: 60-4-646-5086  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-572-9526  
Fax: 886-3-572-6459  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Shunde  
Tel: 86-757-2839-5507  
Fax: 86-757-2839-5571  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Xian  
Tel: 86-29-8833-7250  
Fax: 86-29-8833-7256  
12/08/06  
DS22042A-page 26  
© 2007 Microchip Technology Inc.  

相关型号:

MCP1603LT-330I/OS

2.0 MHz, 500 mA Synchronous Buck Regulator
MICROCHIP

MCP1603LT-ADJI/MC

2.0 MHz, 500 mA Synchronous Buck Regulator
MICROCHIP

MCP1603LT-ADJI/OS

2.0 MHz, 500 mA Synchronous Buck Regulator
MICROCHIP

MCP1603T-120I/MC

2.0 MHz, 500 mA Synchronous Buck Regulator
MICROCHIP

MCP1603T-120I/OS

2.0 MHz, 500 mA Synchronous Buck Regulator
MICROCHIP

MCP1603T-150I/MC

2.0 MHz, 500 mA Synchronous Buck Regulator
MICROCHIP

MCP1603T-150I/OS

2.0 MHz, 500 mA Synchronous Buck Regulator
MICROCHIP

MCP1603T-180I/MC

2.0 MHz, 500 mA Synchronous Buck Regulator
MICROCHIP

MCP1603T-180I/OS

2.0 MHz, 500 mA Synchronous Buck Regulator
MICROCHIP

MCP1603T-250I/MC

2.0 MHz, 500 mA Synchronous Buck Regulator
MICROCHIP

MCP1603T-250I/OS

2.0 MHz, 500 mA Synchronous Buck Regulator
MICROCHIP

MCP1603T-330I/MC

2.0 MHz, 500 mA Synchronous Buck Regulator
MICROCHIP