MCP1501T-30E/RW [MICROCHIP]

High-Precision Buffered Voltage Reference;
MCP1501T-30E/RW
型号: MCP1501T-30E/RW
厂家: MICROCHIP    MICROCHIP
描述:

High-Precision Buffered Voltage Reference

文件: 总36页 (文件大小:1094K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP1501  
High-Precision Buffered Voltage Reference  
Features  
Introduction  
• Maximum Temperature Coefficient: 50 ppm/°C  
from -40°C to +125°C  
The MCP1501 is a buffered voltage reference capable  
of sinking and sourcing 20 mA of current. The voltage  
reference is a low-drift bandgap-based reference. The  
bandgap uses chopper-based amplifiers, effectively  
reducing the drift to zero.  
• Initial Accuracy: 0.1%  
• Operating Temperature Range: -40 to +125°C  
• Low Typical Operating Current: 140 μA  
The MCP1501 is available in the following packages:  
• Line Regulation: 50 ppm/V maximum  
• 6-Lead SOT-23  
• Load Regulation: 40 ppm/mA maximum  
• 8-Lead SOIC  
• 8 Voltage variants available:  
• 8-Lead 2 mm x 2 mm WDFN  
- 1.024V  
- 1.250V  
Package Types  
- 1.800V  
- 2.048V  
MCP1501  
6-Lead SOT-23  
- 2.500V  
- 3.000V  
V
OUT  
GND  
GND  
1
6
5
4
DD  
- 3.300V  
- 4.096V  
GND  
2
3
• Output Noise (10 Hz to 10 kHz): < 0.1 µVP-P  
SHDN  
Applications  
• Precision Data Acquisition Systems  
• High-Resolution Data Converters  
• Medical Equipment Applications  
• Industrial Controls  
MCP1501  
8-Lead SOIC  
V
FEEDBACK  
DD  
1
8
7
OUT  
• Battery-Powered Devices  
NC 2  
3
4
6 GND  
SHDN  
GND  
GND  
5
MCP1501  
2x2 WDFN*  
V
FEEDBACK  
OUT  
1
8
7
DD  
GND  
2
EP  
9
SHDN  
GND  
GND  
GND  
3
6
5
4
*Includes Exposed Thermal Pad (EP). See Table 3-1  
2015-2016 Microchip Technology Inc.  
DS20005474C-page 1  
MCP1501  
BLOCK DIAGRAM  
VDD  
OUT  
Σ
FEEDBACK  
SHDN  
Shutdown  
Circuitry  
GND  
DS20005474C-page 2  
2015-2016 Microchip Technology Inc.  
MCP1501  
1.0  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings(†)  
VDD.............................................................................................................................................................................5.5V  
Maximum current into VDD pin ............................................................................................................................... 30 mA  
Clamp current, IK (VPIN < 0 or VPIN > VDD)...........................................................................................................±20 mA  
Maximum output current sunk by OUTPUT pin ......................................................................................................30 mA  
Maximum output current sourced by OUTPUT pin .................................................................................................30 mA  
(HBM:CDM:MM)................................................................................................................................ (2 kV:±1.5 kV:200V)  
† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for  
extended periods may affect device reliability.  
TABLE 1-1:  
DC CHARACTERISTICS  
Electrical Characteristics: Unless otherwise specified, VDD(MIN) VDD 5.5V at -40C TA +125C.  
Characteristic  
Supply Voltage  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
MCP1501-10  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VPOR  
1.65  
1.7  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
V
V
V
V
V
V
V
V
V
MCP1501-12  
MCP1501-18  
MCP1501-20  
MCP1501-25  
MCP1501-30  
MCP1501-33  
MCP1501-40  
2.0  
2.25  
2.70  
3.2  
3.5  
4.3  
Power-on-Reset  
Release Voltage  
1.45  
Power-on-Reset  
Rearm Voltage  
0.8  
V
Output Voltage MCP1501-10  
MCP1501-12  
VOUT  
1.0232 1.024  
1.2490 1.250  
1.7985 1.800  
2.0460 2.048  
2.4980 2.500  
2.9975 3.000  
3.2975 3.300  
4.0925 4.096  
1.0248  
1.2510  
1.8015  
2.0500  
2.5020  
3.0025  
3.3025  
4.0995  
50  
V
V
MCP1501-18  
V
MCP1501-20  
V
MCP1501-25  
V
MCP1501-30  
V
MCP1501-33  
V
V
MCP1501-40  
Temperature  
Coefficient  
MCP1501-XX  
TC  
10  
ppm/C  
Line  
Regulation  
VOUT  
VIN  
VOUT  
IOUT  
/
/
50  
ppm/V  
Load  
Regulation  
40 ppm ppm/mA -5 mA < ILOAD < +5 mA  
sink  
70 ppm–  
source  
Dropout  
Voltage  
VDO  
200  
mV  
-5 mA < ILOAD < +2 mA  
Power Supply  
Rejection  
Ratio  
PSRR  
94 dB  
1.024V option, VIN = 5.5V,  
1 kHz at 100 mVP-P  
2015-2016 Microchip Technology Inc.  
DS20005474C-page 3  
MCP1501  
TABLE 1-1:  
DC CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise specified, VDD(MIN) VDD 5.5V at -40C TA +125C.  
Characteristic  
Shutdown  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
VIN = 5.5V  
VIL  
VIH  
1.35  
3.80  
OutputVoltage  
Hysteresis  
VOUT_HYST  
300 µV  
Refer to Section 1.1.10  
“Output Voltage Hysteresis”  
for additional details on  
testing conditions.  
Output Noise MCP1501-10  
MCP1501-20  
eN  
eN  
eN  
0.1  
5
µVP-P  
µVP-P  
µVP-P  
0.1 Hz to 10 Hz, TA = +25C  
10 Hz to 10 kHz, TA = +25C  
0.1 Hz to 10 Hz, TA = +25C  
10 Hz to 10 kHz, TA = +25C  
0.1 Hz to 10 Hz, TA = +25C  
10 Hz to 10 kHz, TA = +25C  
0.1  
10  
MCP1501-40  
0.1  
20  
Maximum  
Load Current  
ILOAD  
IDD  
±20  
mA  
µA  
TA = +25°C  
2.048V option  
Supply  
Current  
140  
550  
350  
No Load  
No Load, TA = +25°C  
TA = +25°C  
Shutdown  
Current  
MCP1501-10  
MCP1501-20  
MCP1501-40  
ISHDN  
205  
185  
185  
nA  
TABLE 1-2:  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: Unless otherwise indicated, all parameters apply at AVDD, DVDD = 2.7 to 3.6V.  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistance  
Thermal Resistance for SOT-23-6  
Thermal Resistance for SOIC-8  
Thermal Resistance for DFN-8  
TA  
TA  
-40  
-65  
+125  
+150  
°C  
°C  
JA  
JA  
JA  
+190.5  
+149.5  
+141.3  
°C/W  
°C/W  
°C/W  
DS20005474C-page 4  
2015-2016 Microchip Technology Inc.  
MCP1501  
EQUATION 1-3:  
1.1  
Terminology  
V  
OUT  
1.1.1  
OUTPUT VOLTAGE  
--------------------  
100% = % Line Regulation  
V  
IN  
Output voltage is the reference voltage that is available  
on the OUT pin.  
Line regulation may also be expressed as %/V or in  
ppm/V, as shown in Equation 1-4 and Equation 1-5,  
respectively.  
1.1.2  
INPUT VOLTAGE  
The input voltage (VIN) is the range of voltage that can  
be applied to the VDD pin and still have the device  
produce the designated output voltage on the OUT pin.  
EQUATION 1-4:  
V  
OUT  
1.1.3  
TEMPERATURE COEFFICIENT  
(TC  
---------------------------------------  
V  
OUTNOM  
)
%
----  
OUT  
---------------------------------------------  
100% =  
Line Regulation  
V  
V
The output temperature coefficient or voltage drift is a  
measure of how much the output voltage will vary from  
its initial value with changes in ambient temperature.  
The value specified in the electrical specifications is  
measured as shown in Equation 1-1.  
IN  
EQUATION 1-5:  
V  
OUT  
---------------------------------------  
V  
EQUATION 1-1:  
TC  
CALCULATION  
OUTPUT  
OUTNOM  
6
ppm  
----------  
---------------------------------------------  
10 =  
Line Regulation  
V  
V
IN  
OUT  
OUT  
6
MAX  
MIN  
--------------------------------------------------------  
10 ppm/C  
TC  
=
OUT  
As an example, if the MCP1501-20 is implemented in a  
design and a 2 µV change in output voltage is mea-  
sured from a 250 mV change on the input, then the  
error in percent, ppm, percent/volt, and ppm/volt, as  
shown in Equation 1-6 Equation 1-9.  
T OUT  
NOM  
Where:  
OUTMAX  
=
Maximum output voltage over the  
temperature range  
EQUATION 1-6:  
OUTMIN  
OUTNOM  
T  
=
=
=
Minimum output voltage over the  
temperature range  
V  
OUT  
2 V  
250 mV  
--------------------  
------------------  
100%   
100% = .0008%  
Average output voltage over the  
temperature range  
V  
IN  
Temperature range over which the  
data was collected  
EQUATION 1-7:  
V  
6
6
OUT  
2 V  
250 mV  
1.1.4  
DROPOUT VOLTAGE  
--------------------  
------------------  
10  
10 = 8 ppm  
V  
IN  
The dropout voltage is defined as the voltage difference  
between VDD and VOUT under load. Equation 1-2 is  
used to calculate the dropout voltage.  
EQUATION 1-8:  
2 V  
EQUATION 1-2:  
-----------------  
2.048V  
V  
OUT  
%
--------------------  
----------------------  
----  
100% = 0.000390625  
100% =  
V
= V V  
IN  
| I  
OUT OUT  
= Constant  
V  
250 mV  
V
DO  
IN  
1.1.5  
LINE REGULATION  
EQUATION 1-9:  
An ideal voltage reference will maintain a constant out-  
put voltage regardless of any changes to the input volt-  
age. However, when real devices are considered, a  
small error may be measured on the output when an  
input voltage change occurs.  
2 V  
-----------------  
V  
2.048V  
6
6
ppm  
-----------  
OUT  
--------------------  
----------------------  
10  
=
10 = 3.90625  
V  
250 mV  
V
IN  
Line regulation is defined as the change in output volt-  
age (VOUT) as a function of a change in input voltage  
(VIN), and expressed as a percentage, as shown in  
Equation 1-3.  
2015-2016 Microchip Technology Inc.  
DS20005474C-page 5  
MCP1501  
1.1.6  
LOAD REGULATION  
An ideal voltage reference will maintain the specified  
output voltage regardless of the load's current demand.  
However, real devices experience a small error voltage  
that deviates from the specified output voltage when a  
load is present.  
Load regulation is defined as the voltage difference  
when under no load (VOUT @ IOUT|0) and under maxi-  
mum load (VOUT @ IOUT|MAX), and is expressed as a  
percentage, as shown in Equation 1-10.  
EQUATION 1-10:  
V
@ I  
V  
@ I  
OUT  
OUT|0  
@ I  
OUT  
OUT|MAX  
--------------------------------------------------------------------------------------------------------------  
100% = % Load Regulation  
V
OUT  
OUT|MAX  
Similar to line regulation, load regulation may also be  
expressed as %/mA or in ppm/mA as shown in  
Equation 1-11 and Equation 1-12, respectively.  
EQUATION 1-16:  
V  
OUT  
10 V  
----------------------------------  
-----------------  
V
2.048V  
OUTMAX  
6
6
ppm  
----------  
10 = 0.2441  
----------------------------------------  
----------------------  
10  
=
I  
2 mA  
mA  
EQUATION 1-11:  
OUT  
V  
OUT  
---------------------------------------  
V  
OUTNOM  
%
mA  
---------------------------------------------  
-------  
100% =  
Line Regulation  
I  
OUT  
EQUATION 1-12:  
V  
OUT  
---------------------------------------  
V  
OUTNOM  
6
ppm  
----------  
---------------------------------------------  
10 =  
Load Regulation  
I  
mA  
OUT  
As an example, if the MCP1501-20 is implemented in a  
design and a 10 µV change in output voltage is mea-  
sured from a 2 mA change on the input, then the error  
in percent, ppm, percent/volt, ppm/volt, as shown in  
Equation 1-13 Equation 1-16.  
EQUATION 1-13:  
2.048V 2.04799V  
----------------------------------------------  
100% = .0004882%  
2.04799V  
EQUATION 1-14:  
6
6
2.048V 2.04799V  
2.048V 2.04799V  
----------------------------------------------  
----------------------------------------------  
10 =  
10 = 4.882 ppm  
2.04799V  
2.04799V  
EQUATION 1-15:  
V  
OUT  
10 V  
-----------------------------------  
-----------------  
V
2.048V  
OUTNOM  
%
mA  
-----------------------------------------  
----------------------  
-------  
100% =  
100% = 0.2441  
I  
2 mA  
OUT  
DS20005474C-page 6  
2015-2016 Microchip Technology Inc.  
MCP1501  
1.1.7  
INPUT CURRENT  
The input current (operating current) is the current that  
sinks from VIN to GND without a load current on the  
output pin. This current is affected by temperature,  
input voltage, output voltage, and the load current.  
1.1.8  
POWER SUPPLY REJECTION  
RATIO  
Power supply rejection ratio (PSRR) is a measure of  
the change in output voltage (VOUT) relative to the  
change in input voltage (VIN) over frequency.  
1.1.9  
LONG-TERM DRIFT  
The long-term output stability is measured by exposing  
the devices to an ambient temperature of +125°C, as  
shown in Figure 2-18 while configured in the circuit  
shown in Figure 1-1. In this test, all electrical specifica-  
tions of the devices are measured periodically at  
+25°C.  
Power  
VIN  
FB  
GND  
GND  
GND  
VOUT  
GND  
GND  
Signal In  
FIGURE 1-1:  
Long-Term Drift Test Circuit.  
1.1.10 OUTPUT VOLTAGE HYSTERESIS  
The output voltage hysteresis is a measure of the out-  
put voltage error after the powered devices are cycled  
over the entire operating temperature range. The  
amount of hysteresis can be quantified by measuring  
the change in the +25°C output voltage after tempera-  
ture excursions from +25°C to +125°C to +25°C, and  
also from +25°C to -40°C to +25°C.  
2015-2016 Microchip Technology Inc.  
DS20005474C-page 7  
MCP1501  
NOTES:  
DS20005474C-page 8  
2015-2016 Microchip Technology Inc.  
MCP1501  
2.0  
TYPICAL OPERATING CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise specified, maximum values  
are: VDD(MIN) VDD 5.5V at -40C TA +125C.  
40  
35  
30  
25  
20  
15  
10  
5
1.024V  
1.8V  
1.25V  
2.048V  
3V  
2.5V  
3.3V  
4.096V  
4.098  
4.097  
4.096  
4.095  
4.094  
4.093  
4.092  
0
-40  
25  
125  
Temperature (°C)  
-40  
5
25  
85  
125  
Temperature (°C)  
FIGURE 2-4:  
Temperature, I  
Load Regulation vs.  
5mA Sink.  
LOAD  
FIGURE 2-1:  
V
vs. Temperature, No  
OUT  
Load, 4.096V Option.  
40  
35  
30  
25  
20  
15  
10  
5
1.024V  
2.5V  
1.25V  
3V  
1.8V  
3.3V  
2.048V  
4.096V  
2.0485  
2.048  
2.0475  
2.047  
0
2.0465  
2.046  
-40  
25  
Temperature (°C)  
125  
-40  
5
25  
Temperature (°C)  
85  
125  
FIGURE 2-5:  
Temperature, I  
Load Regulation vs.  
5mA Source.  
LOAD  
FIGURE 2-2:  
V
vs. Temperature, No  
OUT  
Load, 2.048V Option.  
300  
275  
250  
225  
200  
175  
V287 = 4.096Vꢀ  
V287= 2.048Vꢀ  
V287= 1.024V  
1.0244  
1.0242  
1.024  
1.0238  
1.0236  
1.0234  
1.0232  
1.023  
150  
-40  
5
25  
85  
125  
Temperature (°C)  
-40  
5
25  
85  
125  
Temperature (°C)  
FIGURE 2-6:  
I
vs. Temperature, All  
DD  
Options.  
FIGURE 2-3:  
V
vs. Temperature, No  
OUT  
Load, 1.024V Option.  
2015-2016 Microchip Technology Inc.  
DS20005474C-page 9  
MCP1501  
450  
400  
350  
300  
250  
200  
150  
100  
50  
260  
240  
220  
200  
180  
160  
140  
120  
100  
Average  
-3 Sigma  
+3 Sigma  
Average  
+3 Sigma  
-3 Sigma  
0
-40  
5
25  
85  
125  
Temperature (°C)  
VDD (V)  
FIGURE 2-7:  
I
vs. Temperature for  
FIGURE 2-10:  
I
vs. V , V  
= 1.024V,  
DD  
DD  
DD OUT  
V
, 50 Units, No Load, 4.096V Option.  
50 Units, No Load.  
OUT  
5
4.5  
4
3.5  
3
2.5  
2
1.5  
1
300  
V287  
V287  
V287ꢀ  
=
=
=
1.024V  
2.048V  
3.3V  
V287  
V287  
V287  
=
=
=
1.25Vꢀ  
2.5Vꢀ  
V287  
V287  
=
=
1.8V  
3.0V  
4.096V  
250  
200  
150  
100  
50  
Average  
+3 Sigma  
-3 Sigma  
0.5  
0
0
-40  
5
25  
85  
125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-8:  
I
vs. Temperature for  
FIGURE 2-11:  
Line Regulation vs.  
DD  
V
, 50 Units, No Load, 1.024V Option.  
Temperature.  
OUT  
10000  
1000  
100  
10  
350  
300  
250  
200  
150  
100  
50  
V287 = 1.024V, V'' = 1.65Vꢀ  
V287 = 1.024V, V'' = 5.5V  
V287 = 4.096V, V'' = 4.3Vꢀ  
V287 = 4.096V, ꢀꢀꢀV'' = 5.5V  
1
Average  
+3 Sigma  
-3 Sigma  
0.1  
0.01  
1
100  
10000  
1000000  
0
4.3 4.45 4.6 4.75 4.9 5.05 5.2  
VDD (V)  
5.5  
Frequency  
FIGURE 2-9:  
I
vs. V , V  
= 4.096V,  
FIGURE 2-12:  
Noise vs. Frequency, No  
DD  
DD OUT  
50 Units, No Load.  
Load, T = +25°C.  
A
DS20005474C-page 10  
2015-2016 Microchip Technology Inc.  
MCP1501  
120  
100  
80  
60  
40  
20  
0
0.18  
0.16  
0.14  
0.12  
0.1  
0.08  
0.06  
0.04  
0.02  
0
V287 = 1.024, V,1 = 1.65Vꢀ  
V287 = 1.024V, V,1 = 5.5Vꢀ  
V287 = 4.096V, V,1 = 4.3Vꢀ  
V287 = 4.096V, V,1 = 5.5V  
1
10  
100  
1000  
10000  
100000  
1
3
5
7
9
11 13 15 17 19 21 23 25 27 29  
Frequency (Hz)  
Temperature Coefficient (ppm/&)  
FIGURE 2-13:  
PSRR vs. Frequency, No  
FIGURE 2-16:  
Tempco Distribution, No  
Load, T = +25°C.  
Load, T = +25°C, V = 2.7V, 50 Units.  
A
A
DD  
120  
100  
80  
0.16  
0.14  
0.12  
0.1  
0.08  
0.06  
0.04  
0.02  
0
60  
40  
V287 = 1.024V, V,1 = 1.65V  
V287 = 1.024V, V,1 = 5.5Vꢀ  
V287 = 4.096V, V,1 = 4.3Vꢀ  
V287 = 4.096V, V,1 = 5.5V  
20  
0
1
3
5
7
9
11 13 15 17 19 21 23 25 27 29  
1
10  
100  
1000  
10000  
100000  
Frequency (Hz)  
Temperature Coefficient (ppm/&)  
FIGURE 2-14:  
PSRR vs. Frequency, 1 k  
FIGURE 2-17:  
Tempco Distribution, No  
Load, T = +25°C.  
Load, T = +25°C, V = 5.5V, 50 Units.  
A
A
DD  
160  
140  
120  
100  
80  
1.2  
1
Average  
+3 Sigma  
-3 Sigma  
0.8  
0.6  
0.4  
0.2  
0
60  
-0.2  
-0.4  
-0.6  
40  
20  
0
0
48  
Time (Hrs)  
1008  
-5  
-2  
0
2
5
Load (mA)  
FIGURE 2-15:  
Dropout Voltage vs. Load,  
FIGURE 2-18:  
V
Drift vs. Time,  
OUT  
T = +25°C, 2.048V Option.  
T = +25°C, No Load, 800 Units.  
A
A
2015-2016 Microchip Technology Inc.  
DS20005474C-page 11  
MCP1501  
2.0485  
2.0484  
2.0483  
2.0482  
2.0481  
2.048  
2.0479  
2.0478  
2.0477  
2.0476  
2.0475  
-30  
-20  
-10  
0
10  
20  
30  
Load (mA)  
FIGURE 2-19:  
V
vs. Load, T = +25°C,  
FIGURE 2-22:  
Noise vs. Time, VDD = 5.5V,  
OUT  
A
2.048V Option.  
T = +25°C, 2.048V Option, No Load, 2 µV/div,  
A
100 ms/div.  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
QC +25°C  
QC -40°C  
QC +125°C  
VOUT  
2V/div  
500 µs/div  
VIN  
2V/div  
500 µs/div  
C
VOUT  
FIGURE 2-20:  
V
at V  
,
FIGURE 2-23:  
Turn On Transient,  
OUT  
DDMIN  
V
= 2.7V, 800 Units, 2.5V Option, No Load.  
V
= 5/5V, V = 2.048V Option, No Load.  
DD  
DD  
IN  
0.45  
QC +25°C  
QC -40°C  
QC +125°C  
VIN  
0.40  
1V/div  
5 ms/div  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
VOUT  
/div  
10 mV  
5 ms/div  
C
VOUT  
FIGURE 2-21:  
V
Distribution at  
OUT  
FIGURE 2-24:  
Line Transient, V = 5.5V,  
DD  
V
, V = 5.5V, 800 Units, 2.5V Option, No  
V
= 500 mV @ 5V , 2.048V Option, No  
DDMAX  
DD  
IN  
PP DC  
Load.  
Load.  
DS20005474C-page 12  
2015-2016 Microchip Technology Inc.  
MCP1501  
IOUT  
10 mA/div  
VOUT  
500 mV/div  
200 µs/div  
FIGURE 2-25:  
Load Transient, V = 5.5,  
DD  
V
= 2.5, 2.048V Option.  
IN  
1.E-3  
100.E-6  
10.E-6  
1.E-6  
100.E-9  
10.E-9  
1.E-9  
R,62 = 1Ω  
100.E-12  
10.E-12  
1.E-12  
R,62 = 10Ω  
R,62 = 100Ω  
R,62 = 1kΩ  
0
45  
Phase Margin (°)  
90  
135  
FIGURE 2-26:  
R
vs. C  
, 4.096V  
LOAD  
ISO  
Option Unloaded.  
1.E-3  
100.E-6  
10.E-6  
1.E-6  
100.E-9  
10.E-9  
1.E-9  
100.E-12  
10.E-12  
1.E-12  
R
ISO = 1  
R
= 10  
ISO  
ISO  
ISO  
R
R
= 100Ω  
= 1kΩ  
0
45  
90  
135  
Phase Margin (°)  
FIGURE 2-27:  
Option Loaded.  
R
vs. C  
, 4.096V  
LOAD  
ISO  
2015-2016 Microchip Technology Inc.  
DS20005474C-page 13  
MCP1501  
NOTES:  
DS20005474C-page 14  
2015-2016 Microchip Technology Inc.  
MCP1501  
3.0  
PIN FUNCTION TABLE  
The pin functions are described in Table 3-1.  
TABLE 3-1:  
SOT-23  
PIN FUNCTION TABLE  
SOIC  
2 x 2 WDFN  
Symbol  
OUT  
Function  
1
8
8
Buffered VREF Output  
7
7
FEEDBACK  
GND  
Buffered VREF Feedback  
System Ground  
2,3,5  
4
2,4,5,6  
2,4,5,6  
3
1
3
1
9
SHDN  
VDD  
Shutdown Pin Active Low  
Power Supply Input  
6
EP  
Exposed Thermal Pad  
3.1  
Buffered VREF Output (OUT)  
This is the Buffered Reference Output. On the WDFN  
and SOIC package, this should be connected to the  
FEEDBACK pin at the device. The output driver is  
tristated when in shutdown.  
3.2  
Buffered VREF Feedback  
(FEEDBACK)  
This is the buffer amplifier feedback pin. On the WDFN  
and SOIC package, this should be connected to the  
OUT pin at the device. This connection is internal on  
the SOT-23 package. Note that if there is routing  
impedance or IR-drop between the OUT and  
FEEDBACK pins, it is the FEEDBACK pin which accu-  
rately holds the output voltage. This can be used in an  
application to remove IR-drop effects on output voltage  
caused by the Printed Circuit Board (PCB) or  
interconnect resistance with a high-current load.  
3.3  
System Ground (GND)  
This is the power supply return and should be  
connected to system ground.  
3.4  
Shutdown Pin (SHDN)  
This is a digital input that will place the device in  
Shutdown. This pin is active low.  
3.5  
Power Supply Input (VDD)  
This power pin also serves as the input voltage for the  
voltage reference. Refer to the Electrical Tables to  
determine minimum voltage, based on the device.  
3.6  
Exposed Thermal Pad (EP)  
Not internally connected, but recommend grounding.  
2015-2016 Microchip Technology Inc.  
DS20005474C-page 15  
MCP1501  
NOTES:  
DS20005474C-page 16  
2015-2016 Microchip Technology Inc.  
MCP1501  
4.0  
THEORY OF OPERATION  
The MCP1501 is a buffered voltage reference that is  
capable of operating over a wide input supply range  
while providing a stable output across the input supply  
range. The fundamental building block (see Block Dia-  
gram) of the MCP1501 is an internal bandgap refer-  
ence circuit. As with all bandgap circuits, the internal  
reference sums together two voltages having an oppo-  
site temperature coefficient which allows a voltage ref-  
erence that is practically independent from  
temperature.  
The bandgap of the MCP1501 is based on a second  
order temperature coefficient (TC) compensated band-  
gap circuit that allows the MCP1501 to achieve high ini-  
tial accuracy and low temperature coefficient operation  
across supply and ambient temperature. The bandgap  
curvature compensation is determined during device  
characterization and is trimmed for optimal accuracy.  
The MCP1501 also includes a chopper-based amplifier  
architecture that ensures excellent low-noise opera-  
tion, further reduces temperature dependent offsets  
that would otherwise increase the temperature coeffi-  
cient of the MCP1501, and significantly improves  
long-term drift performance. Additional circuitry is  
included to eliminate the chopping frequency from the  
output of the device.  
After the bandgap voltage is compensated, it is ampli-  
fied, buffered, and provided to the output drive circuit  
which has excellent performance when sinking or  
sourcing load currents (±5 mA).  
2015-2016 Microchip Technology Inc.  
DS20005474C-page 17  
MCP1501  
NOTES:  
DS20005474C-page 18  
2015-2016 Microchip Technology Inc.  
MCP1501  
5.0  
APPLICATION CIRCUITS  
5.1  
Application Tips  
5.1.1  
BASIC APPLICATION CIRCUIT  
Figure 5-1 illustrates a basic circuit configuration of the  
MCP1501.  
1.65 5.5V  
OUT  
)(('%$&.  
1
2
3
4
VDD  
8
7
6
5
1 kΩ  
OUT  
GND  
SHDN  
GND  
0.1 2.2 µF  
GND  
GND  
SOIC-8/DFN-8  
FIGURE 5-1:  
Basic Circuit Configuration.  
An output capacitor is not required for stability of the  
voltage reference, but may be optionally added to pro-  
vide noise filtering or act as a charge-reservoir for  
switching loads, e.g., successive approximation regis-  
ter (SAR) analog-to-digital converter (ADC). As shown,  
the input voltage is connected to the device at the VIN  
input, with an optional 2.2 μf ceramic capacitor. This  
capacitor would be required if the input voltage has  
excessive noise. A 2.2 μf capacitor would reject input  
voltage noise at approximately 1 to 2 MHz. Noise  
below this frequency will be amply rejected by the input  
voltage rejection of the voltage reference. Noise at fre-  
quencies above 2 MHz will be beyond the bandwidth of  
the voltage reference and, consequently, not transmit-  
ted from the input pin through the device to the output.  
R
FIL  
Output  
of V  
REF  
C
FIL  
FIGURE 5-2:  
Filter.  
Output Noise-Reducing  
If the noise at the output of these voltage references is  
too high for the particular application, it can be easily fil-  
tered with an external RC filter and op-amp buffer (see  
Figure 5-2).  
2015-2016 Microchip Technology Inc.  
DS20005474C-page 19  
MCP1501  
The RC filter values are selected for a desired cutoff  
frequency, as shown in Equation 5-1.  
EQUATION 5-1:  
1
f
= ---------------------------------------  
C
2R  
C
FIL FIL  
The values that are shown in Figure 5-2 (10 kand  
1 μF) will create a first-order, low-pass filter at the out-  
put of the amplifier. The cutoff frequency of this filter is  
15.9 Hz, and the attenuation slope is 20 dB/decade.  
The MCP6021 amplifier isolates the loading of this low-  
pass filter from the remainder of the application circuit.  
This amplifier also provides additional drive, with a  
faster response time than the voltage reference.  
5.1.2  
LOAD CAPACITOR  
The output capacitor from OUT to GND acts as a  
low-pass noise filter for the references and should not  
be omitted. The maximum capacitive load is 300 pF,  
however, larger capacitors may be implemented if a  
resistor is used in series with a larger load capacitor.  
Figure 5-1 illustrates a 1 kresistor in series with a  
2.2 µF capacitor.  
5.1.3  
PRINTED CIRCUIT BOARD LAYOUT  
CONSIDERATIONS  
Mechanical stress due to Printed Circuit Board (PCB)  
mounting can cause the output voltage to shift from its  
initial value. Devices in the SOT-23-6 package are gen-  
erally more prone to assembly stress than devices in  
the WDFN package. To reduce stress-related output  
voltage shifts, mount the reference on low-stress areas  
of the PCB (i.e., away from PCB edges, screw holes  
and large components).  
DS20005474C-page 20  
2015-2016 Microchip Technology Inc.  
MCP1501  
Since the non-inverting input of the amplifier is biased  
to ground, the inverting input will also be close to  
ground potential. The second 10 kresistor is placed  
around the feedback loop of the amplifier. Since the  
inverting input of the amplifier is high-impedance, the  
current generated through R1 will also flow through R2.  
As a consequence, the output voltage of the amplifier  
is equal to -2.5V for the MCP1501-25 and -4.096V for  
the MCP1501-40.  
5.2  
Typical Applications Circuits  
5.2.1  
NEGATIVE VOLTAGE REFERENCE  
A negative voltage reference can be generated using  
any of the devices in the MCP1501 family. A typical  
application is shown in Figure 5-3. In this circuit, the  
voltage inversion is implemented using the MCP6061  
and two equal resistors. The voltage at the output of the  
MCP1501 voltage reference drives R1, which is con-  
nected to the inverting input of the MCP6061 amplifier.  
MCP1501-25  
10 kΩ  
0.1%  
10 kΩ  
0.1%  
2.7 5.5V  
-2.500V  
)(('%$&.  
1
2
3
4
VDD  
8
7
6
5
1 kΩ  
OUT  
GND  
SHDN  
2.2 µF  
-
+
GND  
GND  
2.2 µF  
GND  
-5V  
MCP6061  
FIGURE 5-3:  
Negative Voltage Reference.  
5.2.2 A/D CONVERTER REFERENCE  
The MCP1501 product family was carefully designed to  
provide a precision, low noise voltage reference for the  
Microchip families of ADCs. The circuit shown in  
Figure 5-4 shows a MCP1501-25 configured to provide  
the reference to the MCP3201, a 12-bit ADC.  
MCP1501-25  
5.0V  
)(('%$&.  
1
2
3
4
VDD  
8
7
6
5
OUT  
GND  
SHDN  
2.2 µF  
GND  
GND  
2.2 µF  
GND  
5.0V  
VREF  
IN+  
IN-  
VIN  
MCP3201  
10 µF  
0.1 µF  
FIGURE 5-4:  
ADC Example Circuit.  
2015-2016 Microchip Technology Inc.  
DS20005474C-page 21  
MCP1501  
6.0  
6.1  
PACKAGE INFORMATION  
Package Markings  
Example  
6-Lead SOT-23  
Device  
Code  
MCP1501T-10E/CHY  
MCP1501T-12E/CHY  
MCP1501T-18E/CHY  
MCP1501T-20E/CHY  
MCP1501T-25E/CHY  
MCP1501T-30E/CHY  
MCP1501T-33E/CHY  
MCP1501T-40E/CHY  
AABTY  
AABUY  
AABVY  
AABWY  
AABXY  
AABYY  
AABZY  
AACAY  
AABTY  
50256  
XXXXY  
WWNNN  
XXNN  
8-Lead SOIC  
Example  
Device  
Code  
MCP1501T-10E/SN  
MCP1501T-12E/SN  
MCP1501-18E/SN  
MCP1501-20E/SN  
MCP1501T-25E/SN  
MCP1501T-30E/SN  
MCP1501T-33E/SN  
MCP1501T-40E/SN  
150110  
150112  
150118  
150120  
150125  
150130  
150133  
150140  
150110  
SN1550  
e
3
256  
NNN  
8-Lead WDFN (2 x2 mm)  
Example  
Device  
Code  
MCP1501T-10E/RW  
MCP1501T-12E/RW  
MCP1501-18E/RW  
MCP1501-20E/RW  
MCP1501T-25E/RW  
MCP1501T-30E/RW  
MCP1501T-33E/RW  
MCP1501T-40E/RW  
AAQ  
AAR  
AAS  
AAT  
AAU  
AAV  
AAW  
AAX  
AAQ  
256  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS20005474C-page 22  
2015-2016 Microchip Technology Inc.  
MCP1501  
6-Lead Plastic Small Outline Transistor (CHY) [SOT-23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
b
4
N
E
E1  
PIN 1 ID BY  
LASER MARK  
1
2
3
e
e1  
D
c
A
φ
A2  
L
A1  
L1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
6
0.95 BSC  
Outside Lead Pitch  
Overall Height  
Molded Package Thickness  
Standoff  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
Footprint  
Foot Angle  
Lead Thickness  
Lead Width  
e1  
A
A2  
A1  
E
E1  
D
L
1.90 BSC  
0.90  
0.89  
0.00  
2.20  
1.30  
2.70  
0.10  
0.35  
0°  
1.45  
1.30  
0.15  
3.20  
1.80  
3.10  
0.60  
0.80  
30°  
L1  
I
c
b
0.08  
0.20  
0.26  
0.51  
Notes:  
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.  
2. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-028B  
2015-2016 Microchip Technology Inc.  
DS20005474C-page 23  
MCP1501  
6-Lead Plastic Small Outline Transistor (CHY) [SOT-23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20005474C-page 24  
2015-2016 Microchip Technology Inc.  
MCP1501  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2015-2016 Microchip Technology Inc.  
DS20005474C-page 25  
MCP1501  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20005474C-page 26  
2015-2016 Microchip Technology Inc.  
MCP1501  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢍꢓꢔꢆꢕꢆꢓꢄꢖꢖꢗꢘꢙꢆꢚꢛꢜꢝꢆꢎꢎꢆ!ꢗꢅ"ꢆ#ꢍꢏ$%&  
ꢓꢗꢊꢃ' !ꢀꢁꢂ"ꢃꢄꢂ#ꢀ$"ꢂꢅ%ꢁꢁꢄꢆ"ꢂꢇꢈꢅ&ꢈꢉꢄꢂ'ꢁꢈ(ꢊꢆꢉ$)ꢂꢇꢋꢄꢈ$ꢄꢂ$ꢄꢄꢂ"ꢃꢄꢂꢌꢊꢅꢁꢀꢅꢃꢊꢇꢂ*ꢈꢅ&ꢈꢉꢊꢆꢉꢂꢍꢇꢄꢅꢊ+ꢊꢅꢈ"ꢊꢀꢆꢂꢋꢀꢅꢈ"ꢄ'ꢂꢈ"ꢂ  
ꢃ""ꢇ;<<(((ꢎ#ꢊꢅꢁꢀꢅꢃꢊꢇꢎꢅꢀ#<ꢇꢈꢅ&ꢈꢉꢊꢆꢉ  
2015-2016 Microchip Technology Inc.  
DS20005474C-page 27  
MCP1501  
8-Lead Very, Very Thin Plastic Dual Flat, No Lead Package (RW) - 2x2 mm Body [WDFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
A
B
E
N
(DATUM A)  
(DATUM B)  
NOTE 1  
2X  
0.05 C  
2X  
1
2
TOP VIEW  
0.05 C  
0.05 C  
(A3)  
A
C
SEATING  
PLANE  
0.05 C  
SIDE VIEW  
A1  
D2  
2X CH  
2
1
NOTE 1  
0.05  
C A B  
E2  
(K)  
L
N
8X b  
0.10  
0.05  
C A B  
C
e
BOTTOM VIEW  
Microchip Technology Drawing C04-261A Sheet 1 of 2  
DS20005474C-page 28  
2015-2016 Microchip Technology Inc.  
MCP1501  
8-Lead Very, Very Thin Plastic Dual Flat, No Lead Package (RW) - 2x2 mm Body [WDFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Number of Terminals  
Pitch  
Overall Height  
Standoff  
Terminal Thickness  
Overall Width  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Exposed Pad Chamfer  
Terminal Width  
N
e
A
A1  
8
0.50 BSC  
0.75  
0.02  
0.10 REF  
2.00 BSC  
0.80  
2.00 BSC  
1.20  
0.25  
0.25  
0.30  
-
0.70  
0.00  
0.80  
0.05  
(A3)  
E
E2  
D
D2  
CH  
b
0.70  
0.90  
1.10  
-
0.20  
0.25  
0.30  
1.30  
-
0.30  
0.35  
-
Terminal Length  
Terminal-to-Exposed-Pad  
L
(K)  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated  
3. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-261A Sheet 2 of 2  
2015-2016 Microchip Technology Inc.  
DS20005474C-page 29  
MCP1501  
8-Lead Very, Very Thin Plastic Dual Flat, No Lead Package (RW) - 2x2 mm Body [WDFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
C
2X CH  
ØV  
8
1
2
E
X2  
X1  
G
SILK SCREEN  
(G2)  
Y2  
Y1  
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
E
MILLIMETERS  
NOM  
0.50 BSC  
MIN  
MAX  
Contact Pitch  
Optional Center Pad Width  
Optional Center Pad Length  
Contact Pad Spacing  
Y2  
X2  
C
CH  
X1  
Y1  
G1  
G1  
V
0.90  
1.30  
2.10  
0.28  
Center Pad Chamfer  
Contact Pad Width (X8)  
Contact Pad Length (X8)  
Contact Pad to Contact Pad (X6)  
Contact Pad to Center Pad (X8)  
Thermal Via Diameter  
0.30  
0.70  
0.20  
0.25 REF  
0.30  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerances, for reference only.  
Microchip Technology Drawing C04-2261A  
DS20005474C-page 30  
2015-2016 Microchip Technology Inc.  
MCP1501  
APPENDIX A: REVISION HISTORY  
Revision C (May 2016)  
The following is the list of modifications:  
1. Updated Section 1.0, Electrical Characteristics,  
Section 4.0, Theory of Operation, Section 5.0,  
Application Circuits.  
2. Updated Features section, Introduction section,  
Section 3.1, Buffered VREF Output (OUT).  
3. Updated“Product Identification System” section.  
4. Updated Figure 2-12, Figure 2-20,  
Figure 2-21, Figure 5-1 and Figure 5-4.  
5. Updated Equation 1-10 and Equation 1-16.  
6. Various typographical edits.  
Revision B (January 2016)  
The following is the list of modifications:  
1. Updated Section 6.0, Package Information.  
2. Updated “Product Identification System”  
section.  
3. Minor typographical errors.  
Revision A (December 2015)  
Original Release of this Document.  
2015-2016 Microchip Technology Inc.  
DS20005474C-page 31  
MCP1501  
NOTES:  
DS20005474C-page 32  
2015-2016 Microchip Technology Inc.  
MCP1501  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
[X](1)  
PART NO.-  
Device  
X
/XX  
Examples:  
Output Voltage Package  
Option  
Tape and  
Reel  
a)  
MCP1501T-10E/CHY: 1.024V, 6-lead SOT-23  
package, Tape and Reel  
b)  
c)  
MCP1501-12E/SN:  
MCP1501T-18E/SN:  
1.2V, 8-lead SOIC package  
1.8V, 8-lead SOIC package,  
Tape and Reel  
Device:  
MCP1501 – 50 ppm typical thermal drift buffered reference  
d)  
MCP1501T-20E/RW: 2.048V, 8-lead WDFN  
package, Tape and Reel  
Tape and Reel  
Option:  
Blank  
T
=
=
Standard packaging (tube or tray)  
(1)  
Tape and Reel  
Output Voltage  
Option:  
10  
12  
18  
20  
25  
30  
33  
40  
=
1.024V  
1.200V  
1.800V  
2.048V  
2.500V  
3.000V  
3.300V  
4.096V  
=
=
=
=
=
=
=
Note 1: Tape and Reel identifier only appears in  
the catalog part number description.  
This identifier is used for ordering pur-  
poses and is not printed on the device  
package. Check with your Microchip  
sales office for package availability for  
the Tape and Reel option.  
Package:  
CHY*  
SN  
=
=
6-Lead Plastic Small Outline Transistor (SOT-23)  
8-Lead Plastic Small Outline – Narrow, 3.90 mm  
Body (SOIC)  
RW  
*Y  
=
=
8-Lead Very, Very Thin Plastic Dual Flat, No Lead  
Package – 2 x 2 mm Body (WDFN)  
Nickel palladium gold manufacturing designator.  
Only available on the SOT-23 package.  
2015-2016 Microchip Technology Inc.  
DS20005474C-page 33  
MCP1501  
NOTES:  
DS20005474C-page 34  
2015-2016 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate,  
dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq,  
KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST,  
MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo,  
RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O  
are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
ETHERSYNCH, Hyper Speed Control, HyperLight Load,  
IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut,  
BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN,  
EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip  
Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi,  
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,  
MPLINK, MultiTRAK, NetDetach, Omniscient Code  
Generation, PICDEM, PICDEM.net, PICkit, PICtail,  
PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker,  
Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total  
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,  
WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
GestIC is a registered trademarks of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
QUALITYMANAGEMENTꢀꢀSYSTEMꢀ  
CERTIFIEDBYDNVꢀ  
© 2016, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
ISBN: 978-1-5224-0559-7  
== ISO/TS16949==ꢀ  
2016 Microchip Technology Inc.  
DS20005474C-page 35  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Germany - Dusseldorf  
Tel: 49-2129-3766400  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Karlsruhe  
Tel: 49-721-625370  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Dongguan  
Tel: 86-769-8702-9880  
Italy - Venice  
Tel: 39-049-7625286  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
Cleveland  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Poland - Warsaw  
Tel: 48-22-3325737  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Novi, MI  
UK - Wokingham  
Tel: 44-118-921-5800  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Tel: 248-848-4000  
Fax: 44-118-921-5820  
Houston, TX  
Tel: 281-894-5983  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
San Jose, CA  
Tel: 408-735-9110  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Canada - Toronto  
Tel: 905-673-0699  
Fax: 905-673-6509  
07/14/15  
DS20005474C-page 36  
2015-2016 Microchip Technology Inc.  

相关型号:

MCP1501T-30E/SN

High-Precision Buffered Voltage Reference
MICROCHIP

MCP1501T-33E/CHY

High-Precision Buffered Voltage Reference
MICROCHIP

MCP1501T-33E/RW

High-Precision Buffered Voltage Reference
MICROCHIP

MCP1501T-33E/SN

High-Precision Buffered Voltage Reference
MICROCHIP

MCP1501T-40E/CHY

High-Precision Buffered Voltage Reference
MICROCHIP

MCP1501T-40E/RW

High-Precision Buffered Voltage Reference
MICROCHIP

MCP1501T-40E/SN

High-Precision Buffered Voltage Reference
MICROCHIP

MCP1525

2.5V AND 4.096V VOLTAGE REFERENCES
MICROCHIP

MCP1525-I/TO

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5 V, PBCY3, PLASTIC, TO-92, 3 PIN
MICROCHIP

MCP1525-I/TT

1-OUTPUT THREE TERM VOLTAGE REFERENCE, 2.5 V, PDSO3, PLASTIC, TO-236, SOT-23, 3 PIN
MICROCHIP

MCP1525-ITO

2.5V and 4.096V Voltage References
MICROCHIP

MCP1525I/TO

2.5V and 4.096V Voltage References
MICROCHIP