MCP131-450E/SNG [MICROCHIP]

1uA Supervisor Open Drain Active Low, -40C to +125C, 8-SOIC 150mil, TUBE;
MCP131-450E/SNG
型号: MCP131-450E/SNG
厂家: MICROCHIP    MICROCHIP
描述:

1uA Supervisor Open Drain Active Low, -40C to +125C, 8-SOIC 150mil, TUBE

文件: 总28页 (文件大小:659K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP102/103/121/131  
Micropower Voltage Supervisors  
Features:  
General Description:  
The MCP102/103/121/131 devices are voltage  
supervisor devices designed to keep a microcontroller  
in reset until the system voltage has reached and  
stabilized at the proper level for reliable system  
operation. Table 1 shows the available features for  
these devices.  
• Ultra-Low Supply Current: 1.75 µA  
(steady-state maximum)  
Precision Monitoring Options of:  
- 1.90V, 2.32V, 2.63V, 2.93V, 3.08V, 4.38V and  
4.63V  
• Resets Microcontroller in a Power-Loss Event  
• RST Pin (active-low):  
Package Types  
- MCP121: Active-low, Open-drain  
SOT-23/SC70  
TO-92  
- MCP131: Active-low, Open-drain with Inter-  
nal Pull-up Resistor  
- MCP102 and MCP103: Active-low, Push-pull  
• Reset Delay Timer (120 ms delay, typical)  
• Available in SOT-23, TO-92 and SC70 Packages  
1
RST  
VDD  
VSS  
3
RST  
VSS  
VDD  
Temperature Range:  
- Extended: -40°C to +125°C  
2
(except MCP1XX-195)  
- Industrial: -40°C to +85°C (MCP1XX-195 only)  
SOT-23/SC70  
• Pb-free Devices  
VSS  
Applications:  
1
2
• Critical Microcontroller and Microprocessor  
Power-monitoring Applications  
VDD  
3
• Computers  
• Intelligent Instruments  
• Portable Battery-powered Equipment  
RST  
Block Diagram  
VDD  
R (1)  
Comparator  
+
Reset  
Delay  
Circuit  
Output  
Driver  
RST  
Band Gap  
Reference  
Note:  
MCP131 only  
VSS  
2004-2014 Microchip Technology Inc.  
DS20001906D-page 1  
MCP102/103/121/131  
TABLE 1:  
Device  
DEVICE FEATURES  
Output  
Reset  
Delay  
(typ)  
Package Pinout  
(Pin # 1, 2, 3)  
Comment  
Type  
Pull-up Resistor  
MCP102 Push-pull  
MCP103 Push-pull  
No  
No  
120 ms  
120 ms  
120 ms  
RST, VDD, VSS  
VSS, RST, VDD  
RST, VDD, VSS  
RST, VDD, VSS  
VOUT, VSS, VDD  
MCP121 Open-drain External  
MCP131 Open-drain Internal (~95 k) 120 ms  
MCP111  
Open-drain External  
No  
See MCP111/112 Data Sheet  
(DS21889)  
MCP112  
Push-Pull No  
No  
VOUT, VSS, VDD  
See MCP111/112 Data Sheet  
(DS21889)  
DS20001906D-page 2  
2004-2014 Microchip Technology Inc.  
MCP102/103/121/131  
1.0  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings†  
VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.0V  
Input current (VDD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 mA  
Output current (RST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 mA  
Rated Rise Time of VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100V/µs  
All inputs and outputs (except RST) w.r.t. VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.6V to (VDD + 1.0V)  
RST output w.r.t. VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.6V to 13.5V  
Storage temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -65°C to + 150°C  
Ambient temperature with power applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40°C to + 125°C  
Maximum Junction temperature with power applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
ESD protection on all pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ³ 2 kV  
† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at those or any other conditions above those indicated in the  
operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
DC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, all limits are specified for: V = 1V to 5.5V, R = 100 k(MCP121 only),  
DD  
PU  
T = -40°C to +125°C.  
A
Parameters  
Operating Voltage Range  
Specified V Value to RST low  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
V
V
I
1.0  
1.0  
5.5  
V
V
DD  
DD  
I
= 10 µA, V  
< 0.2V  
DD  
RST  
RST  
Operating Current  
< 1  
1.75  
20.0  
µA  
µA  
Reset Power-up Timer (t  
Reset Power-up Timer (t  
) Inactive  
) Active  
MCP102,  
MCP103,  
MCP121  
DD  
RPU  
RPU  
MCP131  
I
< 1  
1.75  
75  
µA  
µA  
µA  
V
> V  
and Reset Power-up  
TRIP  
DD  
DD  
Timer (t  
) Inactive  
RPU  
V
< V  
and Reset Power-up  
TRIP  
DD  
Timer (t  
) Inactive (Note 3)  
RPU  
90  
Reset Power-up Timer (t  
) Active  
RPU  
(Note 4)  
Note 1: Trip point is ±1.5% from typical value.  
2: Trip point is ±2.5% from typical value.  
3: RST output is forced low. There is a current through the internal pull-up resistor.  
4: This includes the current through the internal pull-up resistor and the reset power-up timer.  
®
5: This specification allows this device to be used in PIC microcontroller applications that require In-Circuit Serial  
Programming™ (ICSP™) (see device-specific programming specifications for voltage requirements). This specification  
DOES NOT allow a continuous high voltage to be present on the open-drain output pin (V  
). The total time that the  
OUT  
V
pin can be above the maximum device operational voltage (5.5V) is 100s. Current into the V  
pin should be  
OUT  
OUT  
limited to 2 mA and it is recommended that the device operational temperature be maintained between 0°C to 70°C  
(+25°C preferred). For additional information, please refer to Figure 2-33.  
6: This parameter is established by characterization and not 100% tested.  
2004-2014 Microchip Technology Inc.  
DS20001906D-page 3  
MCP102/103/121/131  
DC CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise indicated, all limits are specified for: V = 1V to 5.5V, R = 100 k(MCP121 only),  
DD  
PU  
T = -40°C to +125°C.  
A
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
V
Trip Point  
MCP1XX-195  
V
1.872  
1.853  
2.285  
2.262  
2.591  
2.564  
2.886  
2.857  
3.034  
3.003  
4.314  
4.271  
4.561  
4.514  
1.900  
1.900  
2.320  
2.320  
2.630  
2.630  
2.930  
2.930  
3.080  
3.080  
4.380  
4.380  
4.630  
4.630  
±100  
1.929  
1.948  
2.355  
2.378  
2.670  
2.696  
2.974  
3.003  
3.126  
3.157  
4.446  
4.490  
4.700  
4.746  
V
T = +25°C (Note 1)  
A
DD  
TRIP  
V
T
= -40°C to +85°C (Note 2)  
T = +25°C (Note 1)  
A
A
MCP1XX-240  
MCP1XX-270  
MCP1XX-300  
MCP1XX-315  
MCP1XX-450  
MCP1XX-475  
V
V
Note 2  
T = +25°C (Note 1)  
A
V
V
Note 2  
T = +25°C (Note 1)  
A
V
V
Note 2  
T = +25°C (Note 1)  
A
V
V
Note 2  
T = +25°C (Note 1)  
A
V
V
Note 2  
T = +25°C (Note 1)  
A
V
V
Note 2  
V
Trip Point Tempco  
T
ppm/°C  
DD  
TPCO  
Threshold  
Hysteresis  
min. = 1%,  
max = 6%)  
MCP1XX-195  
MCP1XX-240  
MCP1XX-270  
MCP1XX-300  
MCP1XX-315  
MCP1XX-450  
MCP1XX-475  
V
0.019  
0.023  
0.026  
0.029  
0.031  
0.044  
0.046  
0.114  
0.139  
0.158  
0.176  
0.185  
0.263  
0.278  
0.4  
V
V
V
V
V
V
V
V
V
T = +25°C  
A
HYS  
RST Low-level Output Voltage  
V
I
I
= 500 µA, V = V  
OL DD TRIP(MIN)  
OL  
RST High-level Output Voltage  
V
V
– 0.6  
= 1 mA; for MCP102/MCP103 only  
OH  
OH  
DD  
(MCP102 and MCP103 only)  
(push-pull output)  
Internal Pull-up Resistor  
(MCP131 only)  
R
95  
k  
V
= 5.5V  
PU  
DD  
(5)  
Open-drain High Voltage on Output  
(MCP121 only)  
V
13.5  
V
V
= 3.0V, Time voltage > 5.5V  
ODH  
DD  
applied 100s,  
current into pin limited to 2 mA, 25°C  
operation recommended  
(Note 5, Note 6)  
Open-drain Output Leakage Current  
I
0.1  
µA  
OD  
(MCP121 only)  
Note 1: Trip point is ±1.5% from typical value.  
2: Trip point is ±2.5% from typical value.  
3: RST output is forced low. There is a current through the internal pull-up resistor.  
4: This includes the current through the internal pull-up resistor and the reset power-up timer.  
®
5: This specification allows this device to be used in PIC microcontroller applications that require In-Circuit Serial  
Programming™ (ICSP™) (see device-specific programming specifications for voltage requirements). This specification  
DOES NOT allow a continuous high voltage to be present on the open-drain output pin (V  
). The total time that the  
OUT  
V
pin can be above the maximum device operational voltage (5.5V) is 100s. Current into the V  
pin should be  
OUT  
OUT  
limited to 2 mA and it is recommended that the device operational temperature be maintained between 0°C to 70°C  
(+25°C preferred). For additional information, please refer to Figure 2-33.  
6: This parameter is established by characterization and not 100% tested.  
DS20001906D-page 4  
2004-2014 Microchip Technology Inc.  
MCP102/103/121/131  
VTRIP  
1V  
VDD  
tRPU  
tRPD  
VOH  
1V  
VOL  
RST  
tRT  
FIGURE 1-1:  
Timing Diagram.  
AC CHARACTERISTICS  
Electrical Specifications: Unless otherwise indicated, all limits are specified for: VDD = 1V to 5.5V, RPU = 100 k  
(MCP121 only), TA = -40°C to +125°C.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
VDD Detect to RST Inactive  
tRPU  
tRPD  
80  
120  
130  
180  
ms  
µs  
Figure 1-1 and CL = 50 pF  
VDD Detect to RST Active  
VDD ramped from  
VTRIP(MAX) + 250 mV down to  
VTRIP(MIN) – 250 mV, per  
Figure 1-1,  
CL = 50 pF (Note 1)  
RST Rise Time After RST Active  
(MCP102 and MCP103 only)  
tRT  
5
µs  
For RST 10% to 90% of final  
value per Figure 1-1,  
CL = 50 pF  
(Note 1)  
Note 1: These parameters are for design guidance only and are not 100% tested.  
TEMPERATURE CHARACTERISTICS  
Electrical Specifications: Unless otherwise noted, all limits are specified for: VDD = 1V to 5.5V, RPU = 100 k  
(MCP121 only), TA = -40°C to +125°C.  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Temperature Ranges  
Specified Temperature Range  
Specified Temperature Range  
Maximum Junction Temperature  
Storage Temperature Range  
Package Thermal Resistances  
Thermal Resistance, 3L-SOT-23  
Thermal Resistance, 3L-SC70  
Thermal Resistance, 3L-TO-92  
TA  
TA  
TJ  
TA  
-40  
-40  
+85  
ºC  
ºC  
ºC  
ºC  
MCP1XX-195  
Except MCP1XX-195  
+125  
+150  
+150  
-65  
JA  
JA  
JA  
308  
335  
146  
ºC/W  
ºC/W  
ºC/W  
2004-2014 Microchip Technology Inc.  
DS20001906D-page 5  
MCP102/103/121/131  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, all limits are specified for: VDD = 1V to 5.5V, RPU = 100 k(MCP121 only;  
see Figure 4-1), TA = -40°C to +125°C.  
1.8  
1.6  
1.4  
1.2  
1
16  
14  
12  
10  
8
5.5V  
MCP102-195  
MCP102-195  
5.5V  
5.0V  
5.0V  
4.0V  
2.8V  
4.0V  
0.8  
0.6  
0.4  
0.2  
0
6
2.1V  
2.8V  
4
1.7V  
1.0V  
2
2.1V  
0
Temperature (°C)  
Temperature (°C)  
FIGURE 2-1:  
IDD vs. Temperature  
FIGURE 2-4:  
IDD vs. Temperature  
(Reset Power-up Timer Inactive) (MCP102-195).  
(Reset Power-up Timer Active) (MCP102-195).  
35  
80  
5.5V  
2.9V  
MCP131-315  
30  
70  
60  
50  
40  
30  
20  
10  
0
5.0V  
4.5V  
MCP131-315  
25  
20  
15  
10  
5
1.0V  
4.0V  
3.3V  
3.3V 4.0V  
5.5V  
4.5V 5.0V  
0
Temperature (°C)  
Temperature (°C)  
FIGURE 2-2:  
IDD vs. Temperature  
FIGURE 2-5:  
IDD vs. Temperature  
(Reset Power-up Timer Inactive) (MCP131-315).  
(Reset Power-up Timer Active) (MCP131-315).  
0.9  
16  
MCP121-450  
5.5V  
MCP121-450  
0.8  
14  
12  
10  
8
5.5V  
0.7  
5.0V  
0.6  
0.5  
4.8V  
0.4  
5.0V  
4.8V  
4.6V  
6
4
2
0
4.6V  
0.3  
4.1V  
0.2  
0.1  
0
3.0V  
1.0V  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-3:  
IDD vs. Temperature  
FIGURE 2-6:  
IDD vs. Temperature  
(Reset Power-up Timer Inactive) (MCP121-450).  
(Reset Power-up Timer Active) (MCP121-450).  
DS20001906D-page 6  
2004-2014 Microchip Technology Inc.  
MCP102/103/121/131  
Note: Unless otherwise indicated, all limits are specified for: VDD = 1V to 5.5V, RPU = 100 k(MCP121 only;  
see Figure 4-1), TA = -40°C to +125°C.  
1.8  
1.6  
1.4  
1.2  
1
16  
14  
12  
10  
8
0°C  
-40°C  
+25°C  
+70°C  
MCP102-195  
MCP102-195  
+25°C  
+70°C  
+85°C  
+85°C  
+125°C  
Device in Reset  
tRPU inactive  
+125°C  
0.8  
0.6  
0.4  
0.2  
0
6
0°C  
-40°C  
4
2
0
1.0  
2.0  
3.0  
4.0  
VDD (V)  
5.0  
6.0  
1.0  
2.0  
3.0  
4.0  
VDD (V)  
5.0  
6.0  
FIGURE 2-7:  
IDD vs. VDD  
FIGURE 2-10:  
IDD vs.VDD  
(Reset Power-up Timer Inactive) (MCP102-195).  
(Reset Power-up Timer Active) (MCP102-195).  
80  
35  
-40°C  
-40°C  
MCP131-315  
MCP131-315  
0°C  
+25°C  
0°C  
70  
30  
25  
+25°C  
60  
Device in Reset  
tRPU inactive  
50  
40  
30  
20  
10  
0
+125°C  
+85°C  
20  
15  
10  
5
+70°C  
+70°C  
+85°C  
+125°C  
0
-5  
1.0  
2.0  
3.0  
4.0  
VDD (V)  
5.0  
6.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
VDD (V)  
FIGURE 2-8:  
IDD vs. VDD  
FIGURE 2-11:  
IDD vs.VDD  
(Reset Power-up Timer Inactive) (MCP131-315).  
(Reset Power-up Timer Active) (MCP131-315).  
0.9  
16  
MCP121-450  
-40°C  
0°C  
+25°C  
+70°C  
MCP121-450  
0.8  
14  
12  
10  
8
+125°C  
0.7  
0.6  
+85°C  
Device in Reset  
tRPU inactive  
+85°C  
+70°C  
0.5  
+125°C  
0.4  
6
0.3  
0.2  
0.1  
0
4
+25°C  
5.0  
2
0°C  
0
-40°C  
-2  
1.0  
2.0  
3.0  
4.0  
VDD (V)  
6.0  
1.0  
2.0  
3.0  
4.0  
VDD (V)  
5.0  
6.0  
FIGURE 2-9:  
IDD vs. VDD  
FIGURE 2-12:  
IDD vs.VDD  
(Reset Power-up Timer Inactive) (MCP121-450).  
(Reset Power-up Timer Active) (MCP121-450).  
2004-2014 Microchip Technology Inc.  
DS20001906D-page 7  
MCP102/103/121/131  
Note: Unless otherwise indicated, all limits are specified for: VDD = 1V to 5.5V, RPU = 100 k(MCP121;  
see Figure 4-1), TA = -40°C to +125°C.  
1.945  
1.940  
1.935  
1.930  
1.925  
1.920  
1.915  
1.910  
1.905  
1.900  
1.895  
0.050  
0.045  
0.040  
0.035  
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0.000  
0.120  
0.100  
0.080  
0.060  
0.040  
0.020  
0.000  
-0.020  
VTRIP, increasing VDD  
MCP102-195  
VDD = 1.7V  
+70°C  
0°C  
VHYS, Hysteresis  
+85°C  
+125°C  
+25°C  
VTRIP, decreasing VDD  
-40°C  
MCP102-195  
-60  
-10  
40  
90  
140  
0.00  
0.25  
0.50  
IOL (mA)  
0.75  
1.00  
1.00  
1.00  
Temperature (°C)  
FIGURE 2-13:  
Hysteresis (MCP102-195).  
VTRIP vs. Temperature vs.  
FIGURE 2-16:  
(MCP102-195 @ VDD = 1.7V).  
VOL vs. IOL  
3.200  
0.108  
0.106  
0.104  
0.102  
0.100  
0.098  
0.096  
0.094  
0.092  
0.090  
0.070  
VTRIP, increasing VDD  
MCP131-315  
VDD = 2.9V  
0.060  
3.180  
3.160  
+70°C  
0.050  
+85°C  
VHYS, Hysteresis  
3.140  
3.120  
3.100  
3.080  
3.060  
0.040  
+125°C  
0.030  
0.020  
-40°C  
VTRIP, decreasing VDD  
MCP131-315  
0°C  
0.010  
0.000  
+25°C  
-60  
-10  
40  
90  
140  
0.00  
0.25  
0.50  
IOL (mA)  
0.75  
Temperature (°C)  
FIGURE 2-14:  
Hysteresis (MCP131-315).  
V
TRIP vs. Temperature vs.  
FIGURE 2-17:  
(MCP131-315 @ VDD = 2.9V).  
VOL vs. IOL  
0.060  
4.550  
0.190  
0.180  
0.170  
0.160  
0.150  
0.140  
0.130  
0.120  
0.110  
0.100  
MCP121-450  
+125°C  
VDD = 4.1V  
0.050  
4.500  
+85°C  
VTRIP, increasing VDD  
0.040  
VHYS, Hysteresis  
+70°C  
4.450  
4.400  
4.350  
4.300  
0.030  
0.020  
VTRIP, decreasing VDD  
+25°C  
0°C  
0.010  
-40°C  
MCP121-450  
0.000  
0.00  
0.25  
0.50  
0.75  
-60  
-20  
20  
60  
100  
140  
IOL (mA)  
Temperature (°C)  
FIGURE 2-15:  
VTRIP vs. Temperature vs.  
FIGURE 2-18:  
VOL vs. IOL  
Hysteresis (MCP121-450).  
(MCP121-450 @ VDD = 4.1V).  
DS20001906D-page 8  
2004-2014 Microchip Technology Inc.  
MCP102/103/121/131  
Note: Unless otherwise indicated, all limits are specified for: VDD = 1V to 5.5V, RPU = 100 k(MCP121 only;  
see Figure 4-1), TA = -40°C to +125°C.  
0.140  
0.120  
0.100  
0.080  
0.060  
0.040  
0.020  
0.000  
2.110  
2.090  
2.070  
2.050  
2.030  
2.010  
1.990  
1.970  
1.950  
MCP102-195  
VDD = 1.7 V  
MCP102-195  
VDD = 2.1V  
IOL = 1.00 mA  
IOL = 0.75 mA  
0°C  
-40°C  
+25°C  
IOL = 0.50 mA  
+125°C  
+85°C  
IOL = 0.25 mA  
IOL = 0.00 mA  
80  
+70°C  
0.75  
-40  
0
40  
120  
0.00  
0.25  
0.50  
1.00  
Temperature (°C)  
IOL (mA)  
FIGURE 2-19:  
VOL vs. Temperature  
FIGURE 2-22:  
VOH vs. IOL  
(MCP102-195 @ VDD = 1.7V).  
(MCP102-195 @ VDD = 2.1V).  
300  
0.070  
VDD decreasing  
MCP102-195  
MCP131-315  
IOL = 1.00 mA  
from: 5V – 1.7V  
250  
VDD = 2.9V  
0.060  
VDD decreasing from:  
VTRIP(max) + 0.25V to  
VTRIP(min) – 0.25V  
IOL = 0.75 mA  
0.050  
0.040  
0.030  
0.020  
0.010  
0.000  
200  
150  
100  
50  
IOL = 0.50 mA  
IOL = 0.25 mA  
VDD decreasing  
from: 5V – 0V  
IOL = 0.00 mA  
80 120  
0
-40  
-15  
10  
35  
60  
85  
110  
-40  
0
40  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-20:  
VOL vs. Temperature  
FIGURE 2-23:  
tRPD vs. Temperature  
(MCP131-315 @ VDD = 2.9V).  
(MCP102-195).  
0.060  
250  
MCP121-450  
VDD decreasing from:  
MCP131-315  
VDD = 4.1V  
0.050  
VTRIP(max) + 0.25V to VTRIP(min) – 0.25V  
IOL = 1.00 mA  
IOL = 0.75 mA  
200  
150  
100  
50  
VDD decreasing from:  
5V – 2.7V  
0.040  
0.030  
0.020  
0.010  
0.000  
IOL = 0.50 mA  
IOL = 0.25 mA  
IOL = 0.00 mA  
VDD decreasing from:  
5V – 0V  
0
-40  
0
40  
80  
120  
-40  
-15  
10  
35  
60  
85  
110  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-21:  
VOL vs. Temperature  
FIGURE 2-24:  
tRPD vs. Temperature  
(MCP121-450 @ VDD = 4.1V).  
(MCP131-315).  
2004-2014 Microchip Technology Inc.  
DS20001906D-page 9  
MCP102/103/121/131  
Note: Unless otherwise indicated, all limits are specified for: VDD = 1V to 5.5V, RPU = 100 k(MCP121 only;  
see Figure 4-1), TA = -40°C to +125°C.  
145  
140  
135  
130  
125  
120  
115  
110  
250  
200  
150  
100  
50  
VDD decreasing from:  
MCP121-450  
MCP121-450  
VTRIP(max) + 0.25V to VTRIP(min) – 0.25V  
VDD increasing from:  
0V – 4.8V  
VDD decreasing from:  
5V – 0V  
VDD increasing from:  
0V – 5.0V  
VDD decreasing from:  
5V – 3.0V  
VDD increasing from:  
0V – 5.5V  
0
-40  
-15  
10  
35  
60  
85  
110  
-40  
-15  
10  
35  
60  
85  
110  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-25:  
tRPD vs. Temperature  
FIGURE 2-28:  
tRPU vs. Temperature  
(MCP121-450).  
(MCP121-450).  
0.45  
0.4  
160  
150  
VDD increasing from:  
0V – 2.1V  
MCP102-195  
MCP102-195  
0.35  
0.3  
VDD increasing from:  
0V – 2.8V  
VDD increasing from:  
0V – 2.1V  
140  
130  
120  
110  
100  
VDD increasing from:  
0V – 2.8V  
0.25  
0.2  
0.15  
0.1  
VDD increasing  
from: 0V – 4.0V  
VDD increasing from:  
0V – 4.0V  
VDD increasing from:  
0V – 5.5V  
VDD increasing  
from: 0V – 5.5V  
0.05  
VDD increasing from:  
0V – 5.0V  
0
-40  
-15  
10  
35  
60  
85  
110  
-40  
-15  
10  
35  
60  
85  
110  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-26:  
tRPU vs. Temperature  
FIGURE 2-29:  
tRT vs. Temperature  
(MCP102-195).  
(MCP102-195).  
160  
150  
140  
130  
120  
110  
100  
45  
43  
41  
VDD increasing from:  
0V – 5.5V  
VDD increasing from:  
0V – 3.3V  
VDD increasing from:  
0V – 4.0V  
MCP131-315  
VDD increasing from:  
0V – 5.0V  
39  
37  
35  
33  
31  
29  
27  
25  
VDD increasing from:  
0V – 4.5V  
VDD increasing from:  
0V – 4.5V  
VDD increasing from:  
VDD increasing from:  
0V – 3.3V  
VDD increasing from:  
0V – 5.5V  
0V – 4.0V  
MCP131-315  
-40  
-15  
10  
35  
60  
85  
110  
-40  
-15  
10  
35  
60  
85  
110  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-27:  
tRPU vs. Temperature  
FIGURE 2-30:  
tRT vs. Temperature  
(MCP131-315).  
(MCP131-315).  
DS20001906D-page 10  
2004-2014 Microchip Technology Inc.  
MCP102/103/121/131  
Note: Unless otherwise indicated, all limits are specified for: VDD = 1V to 5.5V, RPU = 100 k(MCP121 only;  
see Figure 4-1), TA = -40°C to +125°C.  
38  
MCP121-450  
VDD increasing from:  
0V – 4.6V  
37.5  
VDD increasing from:  
0V – 4.8V  
37  
36.5  
36  
35.5  
35  
VDD increasing from:  
0V – 5.5V  
VDD increasing from:  
0V – 5.0V  
-40  
-15  
10  
35  
60  
85  
110  
Temperature (°C)  
FIGURE 2-31:  
tRT vs. Temperature  
(MCP121-450).  
1400  
MCP121-450  
1200  
1000  
800  
600  
400  
200  
0
MCP102-195  
MCP131-315  
0.001  
0.01  
0.1  
1
10  
VTRIP(min) – VDD  
FIGURE 2-32:  
TRIP(min) – VDD  
Transient Duration vs.  
V
.
1.00E-02  
10m  
1.00E-03  
1m  
1.00E-04  
100µ  
1.00E-05  
10µ  
1.00E-06  
1µ  
+125°C  
1.00E-07  
100n  
1.00E-08  
10n  
1.00E-09  
1n  
1.00E-10  
+25°C  
100p  
1.00E-11  
10p  
1.00E-12  
- 40°C  
1p  
1.00E-13  
100f  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
Pull-Up Voltage (V)  
FIGURE 2-33:  
Open-Drain Leakage  
Current vs. Voltage Applied to VOUT Pin  
(MCP121-195).  
2004-2014 Microchip Technology Inc.  
DS20001906D-page 11  
MCP102/103/121/131  
3.0  
PIN DESCRIPTION  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
Pin No.  
PIN FUNCTION TABLE  
MCP102  
MCP121  
MCP131  
Symbol  
MCP103  
Function  
1
2
RST  
Output State  
VDD Falling:  
H = VDD > VTRIP  
L = VDD < VTRIP  
VDD Rising:  
H = VDD > VTRIP + VHYS  
L = VDD < VTRIP + VHYS  
2
3
3
1
VDD  
VSS  
Positive power supply  
Ground reference  
DS20001906D-page 12  
2004-2014 Microchip Technology Inc.  
MCP102/103/121/131  
4.1  
RST Operation  
4.0  
APPLICATION INFORMATION  
The RST output pin operation determines how the  
device can be used and indicates when the system  
should be forced into reset. To accomplish this, an  
internal voltage reference is used to set the voltage trip  
point (VTRIP). Additionally, there is a hysteresis on this  
trip point.  
For many of today’s microcontroller applications, care  
must be taken to prevent low-power conditions that can  
cause many different system problems. The most  
common causes are brown-out conditions, where the  
system supply drops below the operating level  
momentarily. The second most common cause is when  
a
slowly decaying power supply causes the  
When the falling edge of VDD crosses this voltage  
threshold, the reset power-down timer (tRPD) starts.  
When this delay timer times out, the RST pin is forced  
low.  
microcontroller to begin executing instructions without  
sufficient voltage to sustain volatile memory (RAM),  
thus producing indeterminate results. Figure 4-1 shows  
a typical application circuit.  
When the rising edge of VDD crosses this voltage  
threshold, the reset power-up timer (tRPU) starts. When  
this delay timer times out, the RST pin is forced high,  
tRPU is active and there is additional system current.  
MCP102/103/121/131 are voltage supervisor devices  
designed to keep a microcontroller in reset until the  
system voltage has reached and stabilized at the  
proper level for reliable system operation. These  
devices also operate as protection from brown-out  
conditions.  
The actual voltage trip point (VTRIPAC) will be between  
the minimum trip point (VTRIPMIN) and the maximum  
trip point (VTRIPMAX). The hysteresis on this trip point  
and the delay timer (tRPU) are to remove any “jitter” that  
would occur on the RST pin when the device VDD is at  
the trip point.  
VDD  
VDD  
VDD  
PIC®  
Microcontroller  
Figure 4-2 shows the waveform of the RST pin as  
determined by the VDD voltage, while Table 4-1 shows  
the state of the RST pin. The VTRIP specification is for  
falling VDD voltages. When the VDD voltage is rising, the  
0.1  
µF  
RPU  
MCP1XX  
MCLR  
(Reset input)  
(Active-low)  
RST  
VSS  
RST will not be driven high until VDD is at VTRIP + VHYS  
.
Once VDD has crossed the voltage trip point, there is  
also a minimal delay time (tRPD) before the RST pin is  
driven low.  
VSS  
Note 1: Resistor RPU may be required with the  
MCP121 due to the open-drain output.  
Resistor RPU may not be required with  
the MCP131 due to the internal pull-up  
resistor. The MCP102 and MCP103 do  
not require the external pull-up resistor.  
TABLE 4-1:  
RST PIN STATES  
State of RST Pin when:  
Output  
Driver  
Device  
VDD  
TRIP  
>
VDD < VTRIP  
V
+ VHYS  
MCP102  
MCP103  
MCP121  
MCP131  
L
L
L
L
H
H
H (1)  
H (2)  
Push-pull  
FIGURE 4-1:  
Typical Application Circuit.  
Push-pull  
Open-drain (1)  
Open-drain (2)  
Note 1: Requires external pull-up resistor  
2: Has internal pull-up resistor  
VDD  
VTRIPAC + VHYSAC  
VTRIPMAX  
VTRIPMIN  
VTRIPAC  
VTRIPAC  
1V  
RST  
tRPU  
tRPD  
tRPU  
< 1V is outside the  
device specifications  
tRPD  
FIGURE 4-2:  
RST Operation as Determined by the VTRIP and VHYS.  
2004-2014 Microchip Technology Inc.  
DS20001906D-page 13  
MCP102/103/121/131  
4.2  
Negative Going VDD Transients  
4.3  
Reset Power-up Timer (t  
)
RPU  
The minimum pulse width (time) required to cause a  
reset may be an important criterion in the  
implementation of a Power-on Reset (POR) circuit.  
This time is referred to as transient duration, defined as  
the amount of time needed for these supervisory  
devices to respond to a drop in VDD. The transient  
Figure 4-4 illustrates the device’s current states. While  
the system is powering down, the device has a low  
current. This current is dependent on the device VDD  
and trip point. When the device VDD rises through the  
voltage trip point (VTRIP), an internal timer starts. This  
timer consumes additional current until the RST pin is  
driven (or released) high. This time is known as the  
Reset Power-up Time (tRPU). Figure 4-4 shows when  
tRPU is active (device consuming additional current).  
duration time is dependent on the magnitude of VTRIP  
VDD. Generally speaking, the transient duration  
decreases with increases in VTRIP – VDD  
.
Figure 4-3 shows a typical transient duration versus  
reset comparator overdrive, for which the  
MCP102/103/121/131 will not generate a reset pulse. It  
shows that the farther below the trip point of the  
transient pulse goes, the shorter the duration of the  
pulse required to cause a reset gets. Figure 2-32  
shows the transient response characteristics for the  
MCP102/103/121/131.  
VDD  
VTRIP  
RST  
A 0.1 µF bypass capacitor, mounted as close as  
possible to the VDD pin, provides additional transient  
immunity (refer to Figure 4-1).  
tRPU  
5V  
V
V
TRIP(MAX)  
TRIP(MIN)  
Reset  
Power-up  
Timer  
Inactive  
V
- V  
DD  
TRIP(MIN)  
Reset Power-up  
Timer Inactive  
t
TRANS  
0V  
Time (µs)  
See Figures 2-1,  
2-2 and 2-3  
See Figures 2-1,  
2-2 and 2-3  
FIGURE 4-3:  
Example of Typical  
Transient Duration Waveform.  
See Figures 2-4,  
2-5 and 2-6  
FIGURE 4-4:  
Reset Power-up Timer  
Waveform.  
4.3.1  
EFFECT OF TEMPERATURE ON  
RESET POWER-UP TIMER (TRPU  
)
The Reset Power-up timer time-out period (tRPU  
)
determines how long the device remains in the reset  
condition. This is affected by both VDD and temperature.  
Typical responses for different VDD values and  
temperatures are shown in Figures 2-26, 2-27 and 2-28.  
DS20001906D-page 14  
2004-2014 Microchip Technology Inc.  
MCP102/103/121/131  
®
4.4  
Usage in PIC Microcontroller,  
ICSP™ Applications (MCP121  
only)  
Figure 4-5 shows the typical application circuit for using  
the MCP121 for voltage supervision function when the  
PIC microcontroller will be programmed via the ICSP  
feature. Additional information is available in TB087,  
“Using Voltage Supervisors with PIC® Microcontroller  
Systems  
which  
Implement  
In-Circuit  
Serial  
Programming™”, DS91087.  
Note:  
It is recommended that the current into the  
RST pin be current limited by a 1 k  
resistor.  
VDD/VPP  
0.1 µF  
VDD  
RPU  
VDD  
PIC®  
MCU  
MCP121  
MCLR  
(Reset Input)  
(Active-low)  
RST  
VSS  
1 k  
VSS  
FIGURE 4-5:  
Typical Application Circuit  
for PIC® Microcontroller with the ICSP™  
Feature.  
2004-2014 Microchip Technology Inc.  
DS20001906D-page 15  
MCP102/103/121/131  
5.0  
5.1  
PACKAGING INFORMATION  
Package Marking Information  
3-Lead TO-92  
Example  
MCP102  
195I  
XXXXXX  
XXXXXX  
XXXXXX  
YWWNNN  
e
3
TO^
345256  
Example  
MCP1xx =  
3-Lead SOT-23  
Part Number  
MCP102 MCP103 MCP121 MCP131  
MCP1xxT-195I/TT  
MCP1xxT-240ETT  
MCP1xxT-270E/TT  
MCP1xxT-300E/TT  
MCP1xxT-315E/TT  
MCP1xxT-450E/TT  
MCP1xxT-475E/TT  
JGNN  
JHNN  
JJNN  
JKNN  
JLNN  
JMNN  
JPNN  
TGNN  
THNN  
TJNN  
TKNN  
TLNN  
TMNN  
TPNN  
LGNN  
LHNN  
LJNN  
LKNN  
LLNN  
LMNN  
LPNN  
KGNN  
KHNN  
KJNN  
KKNN  
KLNN  
KMNN  
KPNN  
3-Lead SC70  
Example  
MCP1xx =  
MCP102 MCP103 MCP121 MCP131  
Part Number  
MCP1xxT-195I/LB  
BGNN  
FGNN  
FHNN  
FJNN  
FKNN  
FLNN  
FMNN  
FPNN  
DGNN  
DHNN  
DJNN  
DKNN  
DLNN  
DMNN  
DPNN  
CGNN  
CHNN  
CJNN  
CKNN  
CLNN  
CMNN  
CPNN  
MCP1xxT-240E/LB BHNN  
MCP1xxT-270E/LB  
MCP1xxT-300E/LB  
MCP1xxT-315E/LB  
BJNN  
BKNN  
BLNN  
MCP1xxT-450E/LB BMNN  
MCP1xxT-475E/LB  
BPNN  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS20001906D-page 16  
2004-2014 Microchip Technology Inc.  
MCP102/103/121/131  
"ꢀGrhqꢁQyh†‡vpꢁT€hyyꢁPˆ‡yvrꢁUꢂh†v†‡‚ꢂꢁꢃG7ꢄꢁbT8&ꢅd  
I‚‡r) /ꢆꢌꢇ$ꢋꢄꢇ ꢆ!$ꢇꢉ%ꢌꢌꢄꢅ$ꢇꢍꢈꢉ0ꢈꢒꢄꢇ"ꢌꢈ.ꢃꢅꢒ!1ꢇꢍꢊꢄꢈ!ꢄꢇ!ꢄꢄꢇ$ꢋꢄꢇꢎꢃꢉꢌꢆꢉꢋꢃꢍꢇ2ꢈꢉ0ꢈꢒꢃꢅꢒꢇꢔꢍꢄꢉꢃ&ꢃꢉꢈ$ꢃꢆꢅꢇꢊꢆꢉꢈ$ꢄ"ꢇꢈ$ꢇ  
ꢋ$$ꢍ,33...ꢁ ꢃꢉꢌꢆꢉꢋꢃꢍꢁꢉꢆ 3ꢍꢈꢉ0ꢈꢒꢃꢅꢒ  
D
e
e
2
1
E1  
E
N
b
A
c
A2  
A1  
L
4ꢅꢃ$!  
ꢎꢘ55ꢘꢎ#ꢖ#ꢙꢔ  
ꢂꢃ ꢄꢅ!ꢃꢆꢅꢇ5ꢃ ꢃ$!  
ꢎꢘ6  
67ꢎ  
ꢎꢓ8  
6% 9ꢄꢌꢇꢆ&ꢇ2ꢃꢅ!  
2ꢃ$ꢉꢋ  
6
ꢏꢁ:)ꢇ*ꢔ+  
7-ꢄꢌꢈꢊꢊꢇ;ꢄꢃꢒꢋ$  
ꢎꢆꢊ"ꢄ"ꢇ2ꢈꢉ0ꢈꢒꢄꢇꢖꢋꢃꢉ0ꢅꢄ!!  
ꢔ$ꢈꢅ"ꢆ&&  
ꢏꢁꢛꢏ  
ꢏꢁꢛꢏ  
ꢏꢁꢏꢏ  
ꢀꢁꢛꢏ  
ꢀꢁꢀ)  
ꢀꢁꢛꢏ  
ꢏꢁꢀꢏ  
ꢏꢁꢏꢛ  
ꢏꢁꢀ)  
M
M
M
ꢐꢁꢀꢏ  
ꢀꢁꢐ)  
ꢐꢁꢏꢏ  
ꢏꢁꢐꢏ  
M
ꢀꢁꢀꢏ  
ꢀꢁꢏꢏ  
ꢏꢁꢀꢏ  
ꢐꢁꢕꢏ  
ꢀꢁꢚ)  
ꢐꢁꢐ)  
ꢏꢁꢕ:  
ꢏꢁꢐ:  
ꢏꢁꢕꢏ  
ꢓꢐ  
ꢓꢀ  
#
#ꢀ  
5
9
7-ꢄꢌꢈꢊꢊꢇ=ꢃ"$ꢋ  
ꢎꢆꢊ"ꢄ"ꢇ2ꢈꢉ0ꢈꢒꢄꢇ=ꢃ"$ꢋ  
7-ꢄꢌꢈꢊꢊꢇ5ꢄꢅꢒ$ꢋ  
/ꢆꢆ$ꢇ5ꢄꢅꢒ$ꢋ  
5ꢄꢈ"ꢇꢖꢋꢃꢉ0ꢅꢄ!!  
5ꢄꢈ"ꢇ=ꢃ"$ꢋ  
M
I‚‡r†)  
ꢀꢁ ꢂꢃ ꢄꢅ!ꢃꢆꢅ!ꢇꢂꢇꢈꢅ"ꢇ#ꢀꢇ"ꢆꢇꢅꢆ$ꢇꢃꢅꢉꢊ%"ꢄꢇ ꢆꢊ"ꢇ&ꢊꢈ!ꢋꢇꢆꢌꢇꢍꢌꢆ$ꢌ%!ꢃꢆꢅ!ꢁꢇꢎꢆꢊ"ꢇ&ꢊꢈ!ꢋꢇꢆꢌꢇꢍꢌꢆ$ꢌ%!ꢃꢆꢅ!ꢇ!ꢋꢈꢊꢊꢇꢅꢆ$ꢇꢄ'ꢉꢄꢄ"ꢇꢏꢁꢀꢐꢑꢇ  ꢇꢍꢄꢌꢇ!ꢃ"ꢄꢁ  
ꢐꢁ ꢂꢃ ꢄꢅ!ꢃꢆꢅꢃꢅꢒꢇꢈꢅ"ꢇ$ꢆꢊꢄꢌꢈꢅꢉꢃꢅꢒꢇꢍꢄꢌꢇꢓꢔꢎ#ꢇ(ꢀꢕꢁ)ꢎꢁ  
*ꢔ+, *ꢈ!ꢃꢉꢇꢂꢃ ꢄꢅ!ꢃꢆꢅꢁꢇꢖꢋꢄꢆꢌꢄ$ꢃꢉꢈꢊꢊꢗꢇꢄ'ꢈꢉ$ꢇ-ꢈꢊ%ꢄꢇ!ꢋꢆ.ꢅꢇ.ꢃ$ꢋꢆ%$ꢇ$ꢆꢊꢄꢌꢈꢅꢉꢄ!ꢁ  
ꢎꢃꢉꢌꢆꢉꢋꢃꢍ ꢉꢋꢅꢆꢊꢆꢒꢗ ꢂꢌꢈ.ꢃꢅꢒ +ꢏꢕꢜꢏ:ꢏ*  
2004-2014 Microchip Technology Inc.  
DS20001906D-page 17  
MCP102/103/121/131  
I‚‡r) /ꢆꢌꢇ$ꢋꢄꢇ ꢆ!$ꢇꢉ%ꢌꢌꢄꢅ$ꢇꢍꢈꢉ0ꢈꢒꢄꢇ"ꢌꢈ.ꢃꢅꢒ!1ꢇꢍꢊꢄꢈ!ꢄꢇ!ꢄꢄꢇ$ꢋꢄꢇꢎꢃꢉꢌꢆꢉꢋꢃꢍꢇ2ꢈꢉ0ꢈꢒꢃꢅꢒꢇꢔꢍꢄꢉꢃ&ꢃꢉꢈ$ꢃꢆꢅꢇꢊꢆꢉꢈ$ꢄ"ꢇꢈ$ꢇ  
ꢋ$$ꢍ,33...ꢁ ꢃꢉꢌꢆꢉꢋꢃꢍꢁꢉꢆ 3ꢍꢈꢉ0ꢈꢒꢃꢅꢒ  
DS20001906D-page 18  
2004-2014 Microchip Technology Inc.  
MCP102/103/121/131  
"ꢀGrhqꢁQyh†‡vpꢁT€hyyꢁPˆ‡yvrꢁUꢂh†v†‡‚ꢂꢁꢃUUꢄꢁbTPUꢀ!"d  
I‚‡r) /ꢆꢌꢇ$ꢋꢄꢇ ꢆ!$ꢇꢉ%ꢌꢌꢄꢅ$ꢇꢍꢈꢉ0ꢈꢒꢄꢇ"ꢌꢈ.ꢃꢅꢒ!1ꢇꢍꢊꢄꢈ!ꢄꢇ!ꢄꢄꢇ$ꢋꢄꢇꢎꢃꢉꢌꢆꢉꢋꢃꢍꢇ2ꢈꢉ0ꢈꢒꢃꢅꢒꢇꢔꢍꢄꢉꢃ&ꢃꢉꢈ$ꢃꢆꢅꢇꢊꢆꢉꢈ$ꢄ"ꢇꢈ$ꢇ  
ꢋ$$ꢍ,33...ꢁ ꢃꢉꢌꢆꢉꢋꢃꢍꢁꢉꢆ 3ꢍꢈꢉ0ꢈꢒꢃꢅꢒ  
b
N
E
E1  
2
1
e
e1  
D
c
A
A2  
φ
A1  
L
4ꢅꢃ$!  
ꢎꢘ55ꢘꢎ#ꢖ#ꢙꢔ  
ꢂꢃ ꢄꢅ!ꢃꢆꢅꢇ5ꢃ ꢃ$!  
ꢎꢘ6  
67ꢎ  
ꢎꢓ8  
6% 9ꢄꢌꢇꢆ&ꢇ2ꢃꢅ!  
5ꢄꢈ"ꢇ2ꢃ$ꢉꢋ  
6
ꢏꢁꢝ)ꢇ*ꢔ+  
7%$!ꢃ"ꢄꢇ5ꢄꢈ"ꢇ2ꢃ$ꢉꢋ  
7-ꢄꢌꢈꢊꢊꢇ;ꢄꢃꢒꢋ$  
ꢎꢆꢊ"ꢄ"ꢇ2ꢈꢉ0ꢈꢒꢄꢇꢖꢋꢃꢉ0ꢅꢄ!!  
ꢔ$ꢈꢅ"ꢆ&&  
ꢄꢀ  
ꢓꢐ  
ꢓꢀ  
#
#ꢀ  
5
ꢀꢁꢝꢏꢇ*ꢔ+  
ꢏꢁꢛꢝ  
ꢏꢁꢑꢝ  
ꢏꢁꢏꢀ  
ꢐꢁꢀꢏ  
ꢀꢁꢀ:  
ꢐꢁ:ꢑ  
ꢏꢁꢀꢚ  
ꢏꢞ  
M
ꢏꢁꢝ)  
M
ꢀꢁꢀꢐ  
ꢀꢁꢏꢐ  
ꢏꢁꢀꢏ  
ꢐꢁ:ꢕ  
ꢀꢁꢕꢏ  
ꢚꢁꢏ)  
ꢏꢁ:ꢏ  
ꢀꢏꢞ  
7-ꢄꢌꢈꢊꢊꢇ=ꢃ"$ꢋ  
M
ꢎꢆꢊ"ꢄ"ꢇ2ꢈꢉ0ꢈꢒꢄꢇ=ꢃ"$ꢋ  
7-ꢄꢌꢈꢊꢊꢇ5ꢄꢅꢒ$ꢋ  
/ꢆꢆ$ꢇ5ꢄꢅꢒ$ꢋ  
ꢀꢁꢚꢏ  
ꢐꢁꢝꢏ  
ꢏꢁ)ꢏ  
M
/ꢆꢆ$ꢇꢓꢅꢒꢊꢄ  
5ꢄꢈ"ꢇꢖꢋꢃꢉ0ꢅꢄ!!  
5ꢄꢈ"ꢇ=ꢃ"$ꢋ  
9
ꢏꢁꢏꢛ  
ꢏꢁꢚꢏ  
M
M
ꢏꢁꢐꢏ  
ꢏꢁ)ꢕ  
I‚‡r†)  
ꢀꢁ ꢂꢃ ꢄꢅ!ꢃꢆꢅ!ꢇꢂꢇꢈꢅ"ꢇ#ꢀꢇ"ꢆꢇꢅꢆ$ꢇꢃꢅꢉꢊ%"ꢄꢇ ꢆꢊ"ꢇ&ꢊꢈ!ꢋꢇꢆꢌꢇꢍꢌꢆ$ꢌ%!ꢃꢆꢅ!ꢁꢇꢎꢆꢊ"ꢇ&ꢊꢈ!ꢋꢇꢆꢌꢇꢍꢌꢆ$ꢌ%!ꢃꢆꢅ!ꢇ!ꢋꢈꢊꢊꢇꢅꢆ$ꢇꢄ'ꢉꢄꢄ"ꢇꢏꢁꢐ)ꢇ  ꢇꢍꢄꢌꢇ!ꢃ"ꢄꢁ  
ꢐꢁ ꢂꢃ ꢄꢅ!ꢃꢆꢅꢃꢅꢒꢇꢈꢅ"ꢇ$ꢆꢊꢄꢌꢈꢅꢉꢃꢅꢒꢇꢍꢄꢌꢇꢓꢔꢎ#ꢇ(ꢀꢕꢁ)ꢎꢁ  
*ꢔ+, *ꢈ!ꢃꢉꢇꢂꢃ ꢄꢅ!ꢃꢆꢅꢁꢇꢖꢋꢄꢆꢌꢄ$ꢃꢉꢈꢊꢊꢗꢇꢄ'ꢈꢉ$ꢇ-ꢈꢊ%ꢄꢇ!ꢋꢆ.ꢅꢇ.ꢃ$ꢋꢆ%$ꢇ$ꢆꢊꢄꢌꢈꢅꢉꢄ!ꢁ  
ꢎꢃꢉꢌꢆꢉꢋꢃꢍ ꢉꢋꢅꢆꢊꢆꢒꢗ ꢂꢌꢈ.ꢃꢅꢒ +ꢏꢕꢜꢀꢏꢕ*  
2004-2014 Microchip Technology Inc.  
DS20001906D-page 19  
MCP102/103/121/131  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS20001906D-page 20  
2004-2014 Microchip Technology Inc.  
MCP102/103/121/131  
"ꢀGrhqꢁQyh†‡vpꢁUꢂh†v†‡‚ꢂꢁPˆ‡yvrꢁꢃUPꢄꢁbUPꢀ(!d  
I‚‡r) /ꢆꢌꢇ$ꢋꢄꢇ ꢆ!$ꢇꢉ%ꢌꢌꢄꢅ$ꢇꢍꢈꢉ0ꢈꢒꢄꢇ"ꢌꢈ.ꢃꢅꢒ!1ꢇꢍꢊꢄꢈ!ꢄꢇ!ꢄꢄꢇ$ꢋꢄꢇꢎꢃꢉꢌꢆꢉꢋꢃꢍꢇ2ꢈꢉ0ꢈꢒꢃꢅꢒꢇꢔꢍꢄꢉꢃ&ꢃꢉꢈ$ꢃꢆꢅꢇꢊꢆꢉꢈ$ꢄ"ꢇꢈ$ꢇ  
ꢋ$$ꢍ,33...ꢁ ꢃꢉꢌꢆꢉꢋꢃꢍꢁꢉꢆ 3ꢍꢈꢉ0ꢈꢒꢃꢅꢒ  
E
A
N
1
L
1
2
3
b
e
c
D
R
4ꢅꢃ$!  
ꢘ6+;#ꢔ  
ꢂꢃ ꢄꢅ!ꢃꢆꢅꢇ5ꢃ ꢃ$!  
ꢎꢘ6  
ꢎꢓ8  
6% 9ꢄꢌꢇꢆ&ꢇ2ꢃꢅ!  
2ꢃ$ꢉꢋ  
6
ꢁꢏ)ꢏꢇ*ꢔ+  
*ꢆ$$ꢆ ꢇ$ꢆꢇ2ꢈꢉ0ꢈꢒꢄꢇ/ꢊꢈ$  
7-ꢄꢌꢈꢊꢊꢇ=ꢃ"$ꢋ  
7-ꢄꢌꢈꢊꢊꢇ5ꢄꢅꢒ$ꢋ  
ꢎꢆꢊ"ꢄ"ꢇ2ꢈꢉ0ꢈꢒꢄꢇꢙꢈ"ꢃ%!  
ꢖꢃꢍꢇ$ꢆꢇꢔꢄꢈ$ꢃꢅꢒꢇ2ꢊꢈꢅꢄ  
5ꢄꢈ"ꢇꢖꢋꢃꢉ0ꢅꢄ!!  
#
5
ꢁꢀꢐ)  
ꢁꢀꢑ)  
ꢁꢀꢑꢏ  
ꢁꢏꢛꢏ  
ꢁ)ꢏꢏ  
ꢁꢏꢀꢕ  
ꢁꢏꢀꢕ  
ꢁꢀ:)  
ꢁꢐꢏ)  
ꢁꢐꢀꢏ  
ꢁꢀꢏ)  
M
9
ꢁꢏꢐꢀ  
ꢁꢏꢐꢐ  
5ꢄꢈ"ꢇ=ꢃ"$ꢋ  
I‚‡r†)  
ꢀꢁ ꢂꢃ ꢄꢅ!ꢃꢆꢅ!ꢇꢓꢇꢈꢅ"ꢇ#ꢇ"ꢆꢇꢅꢆ$ꢇꢃꢅꢉꢊ%"ꢄꢇ ꢆꢊ"ꢇ&ꢊꢈ!ꢋꢇꢆꢌꢇꢍꢌꢆ$ꢌ%!ꢃꢆꢅ!ꢁꢇꢎꢆꢊ"ꢇ&ꢊꢈ!ꢋꢇꢆꢌꢇꢍꢌꢆ$ꢌ%!ꢃꢆꢅ!ꢇ!ꢋꢈꢊꢊꢇꢅꢆ$ꢇꢄ'ꢉꢄꢄ"ꢇꢁꢏꢏ)?ꢇꢍꢄꢌꢇ!ꢃ"ꢄꢁ  
ꢐꢁ ꢂꢃ ꢄꢅ!ꢃꢆꢅꢃꢅꢒꢇꢈꢅ"ꢇ$ꢆꢊꢄꢌꢈꢅꢉꢃꢅꢒꢇꢍꢄꢌꢇꢓꢔꢎ#ꢇ(ꢀꢕꢁ)ꢎꢁ  
*ꢔ+, *ꢈ!ꢃꢉꢇꢂꢃ ꢄꢅ!ꢃꢆꢅꢁꢇꢖꢋꢄꢆꢌꢄ$ꢃꢉꢈꢊꢊꢗꢇꢄ'ꢈꢉ$ꢇ-ꢈꢊ%ꢄꢇ!ꢋꢆ.ꢅꢇ.ꢃ$ꢋꢆ%$ꢇ$ꢆꢊꢄꢌꢈꢅꢉꢄ!ꢁ  
ꢎꢃꢉꢌꢆꢉꢋꢃꢍ ꢉꢋꢅꢆꢊꢆꢒꢗ ꢂꢌꢈ.ꢃꢅꢒ +ꢏꢕꢜꢀꢏꢀ*  
2004-2014 Microchip Technology Inc.  
DS20001906D-page 21  
MCP102/103/121/131  
5.2  
Product Tape and Reel Specifications  
FIGURE 5-1:  
EMBOSSED CARRIER DIMENSIONS (8, 12, 16 AND 24 MM TAPE ONLY)  
Top  
Cover  
Tape  
A0  
W
B0  
P
K0  
TABLE 5-1:  
CARRIER TAPE/CAVITY DIMENSIONS  
Carrier  
Cavity  
Dimensions  
Output  
Quantity  
Units  
Reel  
Diameter in  
mm  
Dimensions  
Case  
Package  
Outline  
Type  
W
P
A0  
B0  
mm  
K0  
mm  
mm  
mm  
mm  
TT  
LB  
SOT-23  
SC70  
3L  
3L  
8
8
4
4
3.15  
2.4  
2.77  
2.4  
1.22  
1.19  
3000  
3000  
180  
180  
FIGURE 5-2:  
3-LEAD SOT-23/SC70 DEVICE TAPE AND REEL SPECIFICATIONS  
User Direction of Feed  
Device  
Marking  
W
PIN 1  
P
Standard Reel Component Orientation  
FIGURE 5-3:  
TO-92 DEVICE TAPE AND REEL SPECIFICATIONS  
User Direction of Feed  
P
Device  
Marking  
MARK  
FACE  
MARK  
FACE  
MARK  
FACE  
Seal  
Tape  
Back  
Tape  
W
Note:  
Bent leads are for Tape and Reel only.  
DS20001906D-page 22  
2004-2014 Microchip Technology Inc.  
MCP102/103/121/131  
APPENDIX A: REVISION HISTORY  
Revision D (February 2014)  
The following is the list of modifications:  
1. Updated Table 3-1.  
2. Updated Figure 2-25.  
3. Updated SC70, SOT-23 and TO-92 package  
drawings and markings in Section 5.0  
“Packaging Information”.  
Revision C (January 2013)  
• Added a note to each package outline drawing.  
Revision B (March 2005)  
The following is the list of modifications:  
1. Added  
Section 4.4  
“Usage  
in  
PIC®  
Microcontroller,  
ICSP™  
Applications  
(MCP121 only)” on using the MCP121 in PIC  
microcontroller ICSP applications.  
2. Added VODH specifications in Section 1.0  
“Electrical  
Characteristics” (for  
ICSP  
applications).  
3. Added Figure 2-23.  
4. Updated SC70 package markings and added  
Pb-free marking information to Section 5.0  
“Packaging Information”.  
5. Added Appendix A: “Revision History”.  
Revision A (August 2004)  
• Original Release of this Document.  
2004-2014 Microchip Technology Inc.  
DS20001906D-page 23  
MCP102/103/121/131  
NOTES:  
DS20001906D-page 24  
2004-2014 Microchip Technology Inc.  
MCP102/103/121/131  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
XXX  
X
XX  
/
a) MCP102T-195I/TT: Tape and Reel,  
1.95V MicroPower  
Temperature Package  
Range  
Tape/Reel  
Option  
Monitoring  
Options  
Voltage Supervisor,  
push-pull,  
-40°C to +85°C,  
SOT-23 package  
Device:  
MCP102: MicroPower Voltage Supervisor, push-pull  
MCP102T: MicroPower Voltage Supervisor, push-pull  
(Tape and Reel)  
MCP103: MicroPower Voltage Supervisor, push-pull  
MCP103T: MicroPower Voltage Supervisor, push-pull  
(Tape and Reel)  
b) MCP102-300E/TO: 3.00V MicroPower  
Voltage Supervisor,  
push-pull,  
-40°C to +125°C,  
MCP121 MicroPower Voltage Supervisor, open-drain  
MCP121T: MicroPower Voltage Supervisor, open-drain  
(Tape and Reel)  
MCP131 MicroPower Voltage Supervisor, open-drain  
MCP131T: MicroPower Voltage Supervisor, open-drain  
(Tape and Reel)  
TO-92 package  
a) MCP103T-270E/TT: Tape and Reel,  
2.70V MicroPower  
Voltage Supervisor,  
push-pull,  
-40°C to +125°C,  
SOT-23 package  
Monitoring  
Options:  
195 = 1.90V  
240 = 2.32V  
270 = 2.63V  
300 = 2.93V  
315 = 3.08V  
450 = 4.38V  
475 = 4.63V  
b) MCP103T-475E/LB: Tape and Reel,  
4.75V MicroPower  
Voltage Supervisor,  
push-pull,  
-40°C to +125°C,  
SC70 package  
a) MCP121T-315E/LB: Tape and Reel,  
3.15V MicroPower  
Temperature  
Range:  
I
E
= -40°C to +85°C (MCP1xx(T)-195 only)  
= -40°C to +125°C (Except for MCP1xx(T)-195)  
Voltage Supervisor,  
open-drain,  
-40°C to +125°C,  
Package:  
TT = SOT-23, 3-lead  
LB = SC70, 3-lead  
TO = TO-92, 3-lead  
SC70 package  
b) MCP121-300E/TO: 3.00V MicroPower  
Voltage Supervisor,  
open-drain,  
-40°C to +125°C,  
TO-92 package  
a) MCP131T-195I/TT: Tape and Reel,  
1.95V MicroPower  
Voltage Supervisor,  
open-drain,  
-40°C to +85°C,  
SOT-23 package  
b) MCP131-300E/TO: 3.00V MicroPower  
Voltage Supervisor,  
open-drain,  
-40°C to +125°C,  
TO-92 package  
2004-2014 Microchip Technology Inc.  
DS20001906D-page 25  
MCP102/103/121/131  
NOTES:  
DS20001906D-page 26  
2004-2014 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,  
PICSTART, PIC logo, rfPIC, SST, SST Logo, SuperFlash  
and UNI/O are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
32  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MTP, SEEVAL and The Embedded Control Solutions  
Company are registered trademarks of Microchip Technology  
Incorporated in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
Analog-for-the-Digital Age, Application Maestro, BodyCom,  
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,  
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB  
Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O,  
Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA  
and Z-Scale are trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
GestIC and ULPP are registered trademarks of Microchip  
Technology Germany II GmbH & Co. KG, a subsidiary of  
Microchip Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2004-2014, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-62077-945-3  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2004-2014 Microchip Technology Inc.  
DS20001906D-page 27  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-3019-1500  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Germany - Dusseldorf  
Tel: 49-2129-3766400  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Austin, TX  
Tel: 512-257-3370  
Germany - Pforzheim  
Tel: 49-7231-424750  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Korea - Seoul  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Italy - Venice  
Tel: 39-049-7625286  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
Poland - Warsaw  
Tel: 48-22-3325737  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Houston, TX  
Tel: 281-894-5983  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
Los Angeles  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
New York, NY  
Tel: 631-435-6000  
San Jose, CA  
Tel: 408-735-9110  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Canada - Toronto  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
10/28/13  
DS20001906D-page 28  
2004-2013 Microchip Technology Inc.  

相关型号:

MCP131-450E/TO

Micropower Voltage Supervisors
MICROCHIP

MCP131-450E/TT

Micropower Voltage Supervisors
MICROCHIP

MCP131-450I/LB

Micropower Voltage Supervisors
MICROCHIP

MCP131-450I/TO

Micropower Voltage Supervisors
MICROCHIP

MCP131-450I/TT

Micropower Voltage Supervisors
MICROCHIP

MCP131-475

Micropower Voltage Detector
MICROCHIP

MCP131-475E/LB

Micropower Voltage Supervisors
MICROCHIP

MCP131-475E/SNG

1uA Supervisor Open Drain Active Low, -40C to +125C, 8-SOIC 150mil, TUBE
MICROCHIP

MCP131-475E/TO

Micropower Voltage Supervisors
MICROCHIP

MCP131-475E/TT

Micropower Voltage Supervisors
MICROCHIP

MCP131-475I/LB

Micropower Voltage Supervisors
MICROCHIP

MCP131-475I/TO

Micropower Voltage Supervisors
MICROCHIP