LP2951-03YM [MICROCHIP]

FIXED/ADJUSTABLE POSITIVE LDO REGULATOR, 0.6V DROPOUT, PDSO8;
LP2951-03YM
型号: LP2951-03YM
厂家: MICROCHIP    MICROCHIP
描述:

FIXED/ADJUSTABLE POSITIVE LDO REGULATOR, 0.6V DROPOUT, PDSO8

光电二极管 输出元件 调节器
文件: 总30页 (文件大小:2627K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LP2951  
100 mA Low-Dropout Voltage Regulator  
Features  
General Description  
• High Accuracy 5V, Guaranteed 100 mA Output  
• Extremely Low Quiescent Current  
• Low-Dropout Voltage  
The LP2951 is micropower voltage regulators with very  
low dropout voltage (typically 40 mV at light loads and  
380 mV at 100 mA), and very low quiescent current  
(75 μA typical). The quiescent current of the LP2951  
increases only slightly in dropout, thus prolonging  
battery life. This feature, among others, makes the  
LP2951 ideally suited for use in battery-powered  
systems.  
• Extremely Tight Load and Line Regulation  
• Very Low Temperature Coefficient  
• Use as Regulator or Reference  
• Needs Only 1 μF for Stability  
• Current and Thermal Limiting  
Available system functions, such as programmable  
output voltage and logic-controlled shutdown, are  
available as well.  
• Error Flag Warns of Output Dropout  
• Logic-Controlled Electronic Shutdown  
• Output Programmable from 1.24V to 29V  
Additional features available with the LP2951 also  
include an error flag output that warns of a low output  
voltage, which is often due to failing batteries on the  
input. This may also be used as a power-on reset. A  
logic-compatible shutdown input is also available which  
enables the regulator to be switched on and off. This  
part may also be pin-strapped for a 5V output, or  
programmed from 1.24V to 29V with the use of two  
external resistors.  
Applications  
• Automotive Electronics  
• Voltage Reference  
• Avionics  
The LP2951 is available as either a -02 or -03 version.  
The -02 and -03 versions are guaranteed for junction  
temperatures from -40°C to +125°C; the -02 version  
has a tighter output and reference voltage specification  
range over temperature.  
The LP2951 have a tight initial tolerance (0.5% typical),  
a very low output voltage temperature coefficient which  
allows use as a low-power voltage reference, and  
extremely good load and line regulation (0.05%  
typical). This greatly reduces the error in the overall  
circuit, and is the result of careful design techniques  
and process control.  
Package Types  
LP2951  
DIP & SOIC  
Top View  
1
8
INPUT  
OUTPUT  
SENSE  
2
3
4
7
6
5
FEEDBACK  
SHUTDOWN  
GROUND  
5V TAP  
ERROR  
* See MIC2950 for a part with: 1) higher output  
(150 mA), 2) transient protection (60V), and 3) reverse  
input protection to –20V.  
2017 Microchip Technology Inc.  
DS20005736A-page 1  
LP2951  
Functional Block Diagram  
UNREGULATED DC  
5V  
150 mA  
MAX.  
7
8
1
+
FEEDBACK  
INPUT  
OUTPUT  
2
SENSE  
6
+
182  
kΩ  
3
ERROR  
330  
kΩ  
FROM  
CMOS  
OR TTL  
5V TAP  
5
AMPLIFIER  
SHUT-  
DOWN  
+
1.5 μF  
60 mV  
+
60  
+
kΩ  
TO CMOS  
ERROR  
4
ERROR  
OR TTL  
+
DETECTION  
1.23 V  
COMPARATOR  
REF.  
GROUND  
Typical Application Diagrams  
+V  
+V  
IN  
+VIN  
C-MOS  
GATE  
*SLEEP  
8
+VIN  
INPUT  
470 kΩ  
47kΩ  
ERROR  
5
OUTPUT  
*VOUT ≈ VIN  
1
8
VOUT  
ERROR  
LP2951  
IN  
+V  
OUT  
1
ERROR  
OUTPUT  
5
V
OUT  
ERROR  
LP2951  
SHUTDOWN 3  
INPUT  
200kΩ  
SO  
1%  
3
+
2N3906  
100pF  
SHUTDOWN  
INPUT  
SD  
3.3μF  
100kΩ  
GND  
FB  
OFF  
FB  
GND  
ON  
7
4
7
4
1%  
100kΩ  
*MINIMUM INPUT-OUTPUT VOLTAGE RANGES FROM 40 mV TO 400 mV,  
DEPENDING ON LOAD CURRENT. CURRENT LIMIT IS TYPICALLY 160 mA.  
*HIGH INPUT LOWERS VOUT TO 2.5V  
5V REGULATOR WITH 2.5V  
SLEEP FUNCTION  
WIDE INPUT VOLTAGE RANGE  
CURRENT LIMITER  
+V = 2 30V  
1.23  
I
L
LOAD  
I =  
L
R
8
V
IN  
1
V
OUT  
LP2951  
SHUTDOWN  
INPUT  
3
0.1μF  
SD  
GND  
FB  
4
7
R
1%  
1μF  
LOW DRIFT CURRENT SOURCE  
DS20005736A-page 2  
2017 Microchip Technology Inc.  
LP2951  
Typical Application Diagrams  
+V  
D
IN  
1
+V  
IN  
8
8
2
SENSE  
+V  
IN  
MEMORY  
V+  
D
2
1
V
OUT  
470k  
470k  
20  
+V  
LP2951  
#1  
IN  
1μF  
5
3.6V  
V
2
1
7
OUT  
+
ERROR  
5
NICAD  
V
OUT  
FB  
ERROR  
GND  
4
R
1
LP2951  
27kΩ  
3
EARLY WARNING  
RESET  
D
D
3
1μF  
2.7MΩ  
4
SD  
RESET  
R
GND  
4
Q1  
3
8
2
330kΩ  
μP  
SENSE  
+V  
IN  
MAIN  
OUTPUT  
1
V
V
DO  
OUT  
LP2951  
#2  
+
LATCH-OFF WHEN ERROR FLAG OCCURS  
5
SD  
ERROR  
1μf  
GND  
4
• EARLY WARNING FLAG ON LOW INPUT VOLTAGE  
• MAIN OUTPUT LATCHES OFF AT LOWER INPUT VOLTAGES  
• BATTERY BACKUP ON AUXILIARY OUTPUT  
OPERATION: REG. #1’S VOUT IS PROGRAMMED ONE DIODE DROP ABOVE 5V.  
ITS ERROR FLAG BECOMES ACTIVE WHEN VIN ≤ 5.7V. WHEN V IN DROPS  
BELOW 5.3V, THE ERROR FLAG OF REG. #2 BECOMES ACTIVE AND VIA Q1  
LATCHES THE MAIN OUTPUT OFF. WHEN VIN AGAIN EXCEEDS 5.7V REG. #1  
IS BACK IN REGULATION AND THE EARLY WARNING SIGNAL RISES,  
UNLATCHING REG. #2 VIA D3.  
REGULATOR WITH EARLY WARNING  
AND AUXILIARY OUTPUT  
+5V  
8
2
20mA  
4.7mA  
4
+V  
SENSE  
39kΩ  
IN  
8
+V  
+
= 5V  
OUTPUT*  
5
1
7
OUT  
5
V
1
OUT  
ERROR  
LP2951  
V
IN  
RESET  
1μF  
1
7
V
OUT  
FB  
1N  
C+4  
3
4001  
FB  
SD  
LP2951  
4
0.1μF  
GND  
4
TAP  
6
2
39kΩ  
* HIGH FOR  
GND  
4
I
< 3.5mA  
L
360  
1N457  
+
100  
kΩ  
6V  
100kΩ  
1%  
1%  
1%  
MIN. VOLTAGE 4V  
LEAD-  
ACID  
C1  
+
<5.8V**  
<6.0V**  
<6.2V**  
OPEN CIRCUIT DETECTOR FOR 4 mA  
TO 20 mA CURRENT LOOP  
BATTERY  
1
100kΩ  
100kΩ  
kΩ  
C2  
+
C1-C4  
LP339  
1
kΩ  
C3  
+
10kΩ  
R
3
1% 20kΩ  
C1 TO C4 ARE COMPARATORS (LP339 OR EQUIVALENT)  
*OPTIONAL LATCH OFF WHEN DROP OUT OCCURS. ADJUST R3 FOR C2  
SWITCHING WHEN V IS 6.0V  
IN  
**OUTPUTS GO LOW WHEN V DROPS BELOW DESIGNATED THRESHOLDS.  
IN  
REGULATOR WITH  
STATE-OF-CHARGE INDICATOR  
2017 Microchip Technology Inc.  
DS20005736A-page 3  
LP2951  
+
6V  
120kΩ  
FB  
1.5 kΩ**  
1N457  
SEALED  
LEAD-  
ACID  
8
+V  
IN  
BATTERY  
SOURCE  
LM385  
1
2
MAIN V+  
V
OUT  
LP2951  
SENSE  
≈ 400 kΩ*  
FOR 5.5V  
MEMORY V+  
20Ω  
3
SD  
100 kΩ  
+
GND  
4
1 μF  
+
NI-CAD  
* Sets disconnect voltage  
** Sets disconnect hysteresis  
BACKUP  
BATTERY  
For values shown, Regulator shuts down when VIN < 5.5V and turns on again at 6.0V. Current drain in disconnected mode is 150 μA.  
LOW BATTERY DISCONNECT  
+V  
IN  
8
10 kΩ  
+V  
IN  
5° PRE-SHUTDOWN FLAG  
5
1
AUX. SHUTDOWN  
INPUT  
3
ERROR  
LP2951  
SD  
OFF  
VOUT  
ON  
EXTERNAL CIRCUIT  
PROTECTED FROM  
OVER TEMPERATURE  
(V+ GOES OFF WHEN  
TEMP.> 125°)  
GND  
4
FB  
7
OR  
+
TEMP. LM34 OR  
RELAY  
SENSOR  
LM35  
8.2 kΩ  
LM34 for 125°F Shutdown  
LM35 for 125°C Shutdown  
SYSTEM OVER TEMPERATURE  
PROTECTION CIRCUIT  
DS20005736A-page 4  
2017 Microchip Technology Inc.  
LP2951  
1.0  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings † ††  
Power Dissipation ..................................................................................................................................Internally Limited  
Lead Temperature (soldering, 5 sec.) .....................................................................................................................260°C  
Storage Temperature .............................................................................................................................65°C to +150°C  
Operating Junction Temperature Range(Note 1)  
LP2951...................................................................................................................................................40°C to +125°C  
Input Supply Voltage .................................................................................................................................... –0.3 to +30V  
Feedback Input Voltage(Note 2, 3) ............................................................................................................. –1.5 to +30V  
Shutdown Input Voltage(Note 2) .................................................................................................................. –0.3 to +30V  
Error Comparator Output Voltage(Note 2) ................................................................................................... –0.3 to +30V  
† Notice: Boldface limits apply at temperature extremes.  
†† Notice: If Military/Aerospace specified devices are required, contact your local representative/distributor for  
availability and specifications.  
Note 1: The thermal resistance of the 8-pin DIP package is 105°C/W junction-to-ambient when soldered directly to  
a PC board. Junction-to-ambient thermal resistance for the SOIC (M) package is 160°C/W.  
2: May exceed input supply voltage.  
3: When used in dual-supply systems where the output terminal sees loads returned to a negative supply, the  
output voltage should be diode-clamped to ground.  
ELECTRICAL CHARACTERISTICS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
4.975  
4.950  
4.802  
5.000  
5.000  
4.850  
5.025  
5.050  
4.899  
V
V
V
LP2951-02 (±0.5%)  
LP2951-03 (±1%)  
LP2951-4.8 (±1%)  
Output Voltage  
TJ = 25°C  
Note 1: Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by  
the total temperature range.  
2: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle.  
Changes in output voltage due to heating effects are covered in the specification for thermal regulation.  
3: Line regulation for the LP2951 is tested at 150°C for IL = 1 mA. For IL = 100 A and TJ = 125°C, line regu-  
lation is guaranteed by design to 0.2%. See Typical Performance Characteristics for line regulation versus  
temperature and load current.  
4: Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV  
below its nominal value measured at 1V differential. At very low values of programmed output voltage, the  
minimum input supply voltage of 2V (2.3V over temperature) must be taken into account.  
5: Thermal regulation is defined as the change in output voltage at a time T after a change in power dissipa-  
tion is applied, excluding load or line regulation effects. Specifications are for a 50 mA load pulse at VIN  
30V (1.25W pulse) for t = 10 ms.  
=
6: Comparator thresholds are expressed in terms of a voltage differential at the Feedback terminal below the  
nominal reference voltage measured at 6V input. To express these thresholds in terms of output voltage  
change, multiply by the error amplifier gain = VOUT/VREF =(R1 + R2)/R2. For example, at a programmed  
output voltage of 5V, the Error output is guaranteed to go low when the output drops by 95 mV x  
5V/1.235V = 384 mV. Thresholds remain constant as a percent of VOUT as VOUT is varied, with the drop-  
out warning occurring at typically 5% below nominal, 7.5% guaranteed.  
7: VREF VOUT (VIN – 1 V), 2.3V VIN 30V, 100 A < IL 100 mA, TJ TJMAX  
.
8: Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by  
the total temperature range.  
9: VSHUTDOWN 2V, VIN 30V, VOUT = 0, with Feedback pin tied to 5V Tap.  
2017 Microchip Technology Inc.  
DS20005736A-page 5  
 
 
 
 
 
 
 
 
 
 
 
 
LP2951  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
4.950  
4.925  
4.777  
4.940  
4.900  
4.753  
5.050  
5.075  
4.872  
5.060  
5.100  
4.947  
V
V
V
V
V
V
LP2951-02 (±0.5%)  
LP2951-03 (±1%)  
LP2951-4.8 (±1%)  
LP2951-02 (±0.5%)  
LP2951-03 (±1%)  
LP2951-4.8 (±1%)  
Output Voltage  
–25°C TJ +85°C  
Output Voltage  
Over Full Temperature  
Range  
–40°C to +125°C  
LP2951-02 (±0.5%), 100 A  
IL 100 mA, TJ TJ(max)  
4.930  
4.880  
4.733  
20  
50  
50  
5.070  
5.120  
4.967  
100  
V
V
V
Output Voltage  
Over Load Variation  
LP2951-03 (±1%), 100 A ≤  
IL 100 mA, TJ TJ(max)  
LP2951-4.8 (±1%), 100 A ≤  
IL 100 mA, TJ TJ(max)  
ppm/  
°C  
LP2951-02 (±0.5%), Note 1  
LP2951-03 (±1%), Note 1  
LP2951-4.8 (±1%), Note 1  
Output Voltage  
Temperature Coefficient  
ppm/  
°C  
150  
ppm/  
°C  
150  
Note 1: Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by  
the total temperature range.  
2: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle.  
Changes in output voltage due to heating effects are covered in the specification for thermal regulation.  
3: Line regulation for the LP2951 is tested at 150°C for IL = 1 mA. For IL = 100 A and TJ = 125°C, line regu-  
lation is guaranteed by design to 0.2%. See Typical Performance Characteristics for line regulation versus  
temperature and load current.  
4: Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV  
below its nominal value measured at 1V differential. At very low values of programmed output voltage, the  
minimum input supply voltage of 2V (2.3V over temperature) must be taken into account.  
5: Thermal regulation is defined as the change in output voltage at a time T after a change in power dissipa-  
tion is applied, excluding load or line regulation effects. Specifications are for a 50 mA load pulse at VIN  
30V (1.25W pulse) for t = 10 ms.  
=
6: Comparator thresholds are expressed in terms of a voltage differential at the Feedback terminal below the  
nominal reference voltage measured at 6V input. To express these thresholds in terms of output voltage  
change, multiply by the error amplifier gain = VOUT/VREF =(R1 + R2)/R2. For example, at a programmed  
output voltage of 5V, the Error output is guaranteed to go low when the output drops by 95 mV x  
5V/1.235V = 384 mV. Thresholds remain constant as a percent of VOUT as VOUT is varied, with the drop-  
out warning occurring at typically 5% below nominal, 7.5% guaranteed.  
7:  
VREF VOUT (VIN – 1 V), 2.3V VIN 30V, 100 A < IL 100 mA, TJ TJMAX.  
8: Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by  
the total temperature range.  
9:  
VSHUTDOWN 2V, VIN 30V, VOUT = 0, with Feedback pin tied to 5V Tap.  
DS20005736A-page 6  
2017 Microchip Technology Inc.  
LP2951  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
0.03  
0.10  
0.20  
0.20  
0.40  
0.20  
0.40  
0.10  
0.20  
0.20  
0.30  
0.20  
0.30  
80  
%
%
LP2951-02 (±0.5%), Note 2,  
3
0.04  
%
Line Regulation  
LP2951-03 (±1%), Note 2, 3  
LP2951-4.8 (±1%), Note 2, 3  
%
0.04  
%
%
0.04  
%
LP2951-02 (±0.5%), Note 2,  
100 A IL 100 mA  
%
0.10  
%
LP2951-03 (±1%), Note 2,  
100 A IL 100 mA  
Load Regulation  
%
0.10  
%
LP2951-4.8 (±1%), Note 2,  
100 A IL 100 mA  
%
50  
mV  
mV  
mV  
mV  
A  
A  
mA  
mA  
Note 4, IL = 100 A  
Note 4, IL = 100 mA  
IL = 100 A  
150  
450  
600  
150  
200  
12  
Dropout Voltage  
Ground Current  
380  
100  
8
IL = 100 mA  
14  
Note 1: Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by  
the total temperature range.  
2: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle.  
Changes in output voltage due to heating effects are covered in the specification for thermal regulation.  
3: Line regulation for the LP2951 is tested at 150°C for IL = 1 mA. For IL = 100 A and TJ = 125°C, line regu-  
lation is guaranteed by design to 0.2%. See Typical Performance Characteristics for line regulation versus  
temperature and load current.  
4: Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV  
below its nominal value measured at 1V differential. At very low values of programmed output voltage, the  
minimum input supply voltage of 2V (2.3V over temperature) must be taken into account.  
5: Thermal regulation is defined as the change in output voltage at a time T after a change in power dissipa-  
tion is applied, excluding load or line regulation effects. Specifications are for a 50 mA load pulse at VIN  
30V (1.25W pulse) for t = 10 ms.  
=
6: Comparator thresholds are expressed in terms of a voltage differential at the Feedback terminal below the  
nominal reference voltage measured at 6V input. To express these thresholds in terms of output voltage  
change, multiply by the error amplifier gain = VOUT/VREF =(R1 + R2)/R2. For example, at a programmed  
output voltage of 5V, the Error output is guaranteed to go low when the output drops by 95 mV x  
5V/1.235V = 384 mV. Thresholds remain constant as a percent of VOUT as VOUT is varied, with the drop-  
out warning occurring at typically 5% below nominal, 7.5% guaranteed.  
7:  
VREF VOUT (VIN – 1 V), 2.3V VIN 30V, 100 A < IL 100 mA, TJ TJMAX.  
8: Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by  
the total temperature range.  
9:  
VSHUTDOWN 2V, VIN 30V, VOUT = 0, with Feedback pin tied to 5V Tap.  
2017 Microchip Technology Inc.  
DS20005736A-page 7  
LP2951  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C  
Parameters  
Dropout Current  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
250  
310  
A  
A  
180  
VIN = 4.5V, IL = 100 A  
220  
220  
mA  
mA  
Current Limit  
160  
VOUT = 0V  
Thermal Regulation  
0.05  
430  
0.20  
%/W Note 5  
VRMS 10 Hz to 100 kHz, CL = 1 F  
10 Hz to 100 kHz,  
VRMS  
160  
CL = 200 F  
Output Noise  
10 Hz to 100 kHz,  
CL = 3.3 F,  
0.01 F bypass Feedback to  
100  
VRMS  
Output  
1.220  
1.200  
1.210  
1.200  
1.210  
1.200  
1.190  
1.185  
1.185  
1.235  
1.25  
V
LP2951-02 (±0.5%)  
V
1.260  
1.260  
1.270  
1.260  
1.270  
1.270  
1.285  
1.285  
1.235  
V
Reference Voltage  
Reference Voltage  
LP2951-03 (±1%)  
V
1.235  
V
LP2951-4.8 (±1%)  
V
V
V
V
LP2951-02 (±0.5%), Note 7  
LP2951-03 (±1%), Note 7  
LP2951-4.8 (±1%), Note 7  
Note 1: Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by  
the total temperature range.  
2: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle.  
Changes in output voltage due to heating effects are covered in the specification for thermal regulation.  
3: Line regulation for the LP2951 is tested at 150°C for IL = 1 mA. For IL = 100 A and TJ = 125°C, line regu-  
lation is guaranteed by design to 0.2%. See Typical Performance Characteristics for line regulation versus  
temperature and load current.  
4: Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV  
below its nominal value measured at 1V differential. At very low values of programmed output voltage, the  
minimum input supply voltage of 2V (2.3V over temperature) must be taken into account.  
5: Thermal regulation is defined as the change in output voltage at a time T after a change in power dissipa-  
tion is applied, excluding load or line regulation effects. Specifications are for a 50 mA load pulse at VIN  
30V (1.25W pulse) for t = 10 ms.  
=
6: Comparator thresholds are expressed in terms of a voltage differential at the Feedback terminal below the  
nominal reference voltage measured at 6V input. To express these thresholds in terms of output voltage  
change, multiply by the error amplifier gain = VOUT/VREF =(R1 + R2)/R2. For example, at a programmed  
output voltage of 5V, the Error output is guaranteed to go low when the output drops by 95 mV x  
5V/1.235V = 384 mV. Thresholds remain constant as a percent of VOUT as VOUT is varied, with the drop-  
out warning occurring at typically 5% below nominal, 7.5% guaranteed.  
7:  
VREF VOUT (VIN – 1 V), 2.3V VIN 30V, 100 A < IL 100 mA, TJ TJMAX.  
8: Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by  
the total temperature range.  
9:  
VSHUTDOWN 2V, VIN 30V, VOUT = 0, with Feedback pin tied to 5V Tap.  
DS20005736A-page 8  
2017 Microchip Technology Inc.  
LP2951  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
20  
20  
50  
50  
40  
60  
Feedback Bias Current  
nA  
ppm/°C LP2951-02 (±0.5%), Note 8  
ppm/°C LP2951-03 (±1%), Note 8  
ppm/°C LP2951-4.8 (±1%), Note 8  
Reference Voltage  
Feedback Bias Current  
Temperature Coefficient  
0.1  
nA/°C  
40  
25  
0.01  
1.00  
2.00  
250  
400  
A  
Output Leakage Current  
Output Low Voltage (Flag)  
Upper Threshold Voltage  
VOH = 30V  
A  
150  
mV  
VIN = 4.5V, IOL = 200A  
mV  
60  
mV  
Note 6  
mV  
75  
15  
95  
mV  
Lower Threshold Voltage  
Hysteresis  
Note 6  
mV  
140  
mV  
Note 6  
Note 1: Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by  
the total temperature range.  
2: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle.  
Changes in output voltage due to heating effects are covered in the specification for thermal regulation.  
3: Line regulation for the LP2951 is tested at 150°C for IL = 1 mA. For IL = 100 A and TJ = 125°C, line regu-  
lation is guaranteed by design to 0.2%. See Typical Performance Characteristics for line regulation versus  
temperature and load current.  
4: Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV  
below its nominal value measured at 1V differential. At very low values of programmed output voltage, the  
minimum input supply voltage of 2V (2.3V over temperature) must be taken into account.  
5: Thermal regulation is defined as the change in output voltage at a time T after a change in power dissipa-  
tion is applied, excluding load or line regulation effects. Specifications are for a 50 mA load pulse at VIN  
30V (1.25W pulse) for t = 10 ms.  
=
6: Comparator thresholds are expressed in terms of a voltage differential at the Feedback terminal below the  
nominal reference voltage measured at 6V input. To express these thresholds in terms of output voltage  
change, multiply by the error amplifier gain = VOUT/VREF =(R1 + R2)/R2. For example, at a programmed  
output voltage of 5V, the Error output is guaranteed to go low when the output drops by 95 mV x  
5V/1.235V = 384 mV. Thresholds remain constant as a percent of VOUT as VOUT is varied, with the drop-  
out warning occurring at typically 5% below nominal, 7.5% guaranteed.  
7:  
VREF VOUT (VIN – 1 V), 2.3V VIN 30V, 100 A < IL 100 mA, TJ TJMAX.  
8: Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by  
the total temperature range.  
9:  
VSHUTDOWN 2V, VIN 30V, VOUT = 0, with Feedback pin tied to 5V Tap.  
2017 Microchip Technology Inc.  
DS20005736A-page 9  
LP2951  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
1.3  
0.7  
V
V
V
V
V
V
V
V
V
LP2951-02 (±0.5%)  
Low  
2.0  
High  
1.3  
LP2951-03 (±1%)  
Input Logic Voltage  
0.7  
Low  
2.0  
High  
1.3  
LP2951-4.8 (±1%)  
0.7  
Low  
2.0  
High  
Note 1: Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by  
the total temperature range.  
2: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle.  
Changes in output voltage due to heating effects are covered in the specification for thermal regulation.  
3: Line regulation for the LP2951 is tested at 150°C for IL = 1 mA. For IL = 100 A and TJ = 125°C, line regu-  
lation is guaranteed by design to 0.2%. See Typical Performance Characteristics for line regulation versus  
temperature and load current.  
4: Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV  
below its nominal value measured at 1V differential. At very low values of programmed output voltage, the  
minimum input supply voltage of 2V (2.3V over temperature) must be taken into account.  
5: Thermal regulation is defined as the change in output voltage at a time T after a change in power dissipa-  
tion is applied, excluding load or line regulation effects. Specifications are for a 50 mA load pulse at VIN  
30V (1.25W pulse) for t = 10 ms.  
=
6: Comparator thresholds are expressed in terms of a voltage differential at the Feedback terminal below the  
nominal reference voltage measured at 6V input. To express these thresholds in terms of output voltage  
change, multiply by the error amplifier gain = VOUT/VREF =(R1 + R2)/R2. For example, at a programmed  
output voltage of 5V, the Error output is guaranteed to go low when the output drops by 95 mV x  
5V/1.235V = 384 mV. Thresholds remain constant as a percent of VOUT as VOUT is varied, with the drop-  
out warning occurring at typically 5% below nominal, 7.5% guaranteed.  
7:  
VREF VOUT (VIN – 1 V), 2.3V VIN 30V, 100 A < IL 100 mA, TJ TJMAX.  
8: Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by  
the total temperature range.  
9:  
VSHUTDOWN 2V, VIN 30V, VOUT = 0, with Feedback pin tied to 5V Tap.  
DS20005736A-page 10  
2017 Microchip Technology Inc.  
LP2951  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
30  
50  
100  
600  
700  
10  
A  
A  
A  
A  
A  
A  
VSHUTDOWN = 2.4V  
Shutdown Input Current  
450  
VSHUTDOWN = 30V  
3
Regulator Output Current  
in Shutdown  
Note 9  
20  
Note 1: Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by  
the total temperature range.  
2: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle.  
Changes in output voltage due to heating effects are covered in the specification for thermal regulation.  
3: Line regulation for the LP2951 is tested at 150°C for IL = 1 mA. For IL = 100 A and TJ = 125°C, line regu-  
lation is guaranteed by design to 0.2%. See Typical Performance Characteristics for line regulation versus  
temperature and load current.  
4: Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV  
below its nominal value measured at 1V differential. At very low values of programmed output voltage, the  
minimum input supply voltage of 2V (2.3V over temperature) must be taken into account.  
5: Thermal regulation is defined as the change in output voltage at a time T after a change in power dissipa-  
tion is applied, excluding load or line regulation effects. Specifications are for a 50 mA load pulse at VIN  
30V (1.25W pulse) for t = 10 ms.  
=
6: Comparator thresholds are expressed in terms of a voltage differential at the Feedback terminal below the  
nominal reference voltage measured at 6V input. To express these thresholds in terms of output voltage  
change, multiply by the error amplifier gain = VOUT/VREF =(R1 + R2)/R2. For example, at a programmed  
output voltage of 5V, the Error output is guaranteed to go low when the output drops by 95 mV x  
5V/1.235V = 384 mV. Thresholds remain constant as a percent of VOUT as VOUT is varied, with the drop-  
out warning occurring at typically 5% below nominal, 7.5% guaranteed.  
7:  
VREF VOUT (VIN – 1 V), 2.3V VIN 30V, 100 A < IL 100 mA, TJ TJMAX.  
8: Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by  
the total temperature range.  
9:  
VSHUTDOWN 2V, VIN 30V, VOUT = 0, with Feedback pin tied to 5V Tap.  
2017 Microchip Technology Inc.  
DS20005736A-page 11  
LP2951  
TEMPERATURE SPECIFICATIONS (Note 1)  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Lead Temperature Range  
TJ  
TA  
260  
°C  
°C  
°C  
Junction Operating Temperature  
Storage Temperature Range  
Package Thermal Resistances  
Thermal Resistance, DIP Package  
–40  
–65  
+125  
+125  
JA  
JC  
JA  
JC  
105  
40  
°C/W Soldered directly to a PC  
board  
°C/W  
Thermal Resistance, SOIC Package  
Typically mounting on a  
°C/W 1'' square copper-clad  
FR4 circuit board  
160  
25  
°C/W  
Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable  
junction temperature and the thermal resistance from junction to air (i.e., TA, TJ, JA). Exceeding the  
maximum allowable power dissipation will cause the device operating junction temperature to exceed the  
maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.  
DS20005736A-page 12  
2017 Microchip Technology Inc.  
 
LP2951  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
160  
140  
120  
100  
80  
10  
RL = 50  
Ω
1
60  
0.1  
40  
20  
0.01  
0
0.1  
1
10  
150  
0
1
2
3
4
5
6
7
8 9 10  
LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
FIGURE 2-1:  
Quiescent Current.  
FIGURE 2-4:  
Input Current.  
6
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
4.94  
5
4
RL = 50kΩ  
3
2
RL = 50  
Ω
0.2%  
1
0
-75 -50 -25 0 25 50 75 100125 150  
TEMPERATURE (°C)  
0
1
2
3
4
5
6
INPUT VOLTAGE (V)  
FIGURE 2-2:  
Dropout Characteristics.  
FIGURE 2-5:  
Output Voltage vs.  
Temperature of 3 Representative Units.  
320  
280  
240  
250  
225  
200  
175  
150  
125  
100  
75  
RL = 50kΩ  
IL = 1 mA  
IL = 0  
200  
160  
RL  
=
120  
80  
40  
0
50  
25  
0
0
1
2
3
4
5
6
7
8
9 10  
0
1
2
3
4
5
6
7
8
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
FIGURE 2-3:  
Input Current.  
FIGURE 2-6:  
Ground Current.  
2017 Microchip Technology Inc.  
DS20005736A-page 13  
 
LP2951  
.
170  
160  
150  
140  
240  
220  
V
IN = 6V  
IL = 100 μA  
130  
120  
110  
100  
200  
180  
-75 -50 -25 0 25 50 75 100 125 150  
TEMPERATURE (°C)  
-75 -50 -25 0 25 50 75 100 125 150  
TEMPERATURE (°C)  
FIGURE 2-7:  
Quiescent Current.  
FIGURE 2-10:  
Short Circuit Current.  
600  
500  
16  
12  
8
IL = 100 mA  
400  
300  
100  
50  
V
IN = 6V  
IL = 100 mA  
IL = 100 μA  
0
4
-75 -50 -25 0 25 50 75 100125 150  
TEMPERATURE (°C)  
-75 -50 -25 0 25 50 75 100125 150  
TEMPERATURE (°C)  
FIGURE 2-11:  
Dropout Voltage.  
FIGURE 2-8:  
Ground Current.  
16  
500  
400  
300  
200  
100  
14  
12  
10  
8
IL = 100 mA  
6
T = 25 °C  
J
4
2
0
0
0
1
2
3
4
5
6
7
8
100 μA 1 mA  
10 mA  
100 mA  
INPUT VOLTAGE (V)  
OUTPUT CURRENT  
FIGURE 2-12:  
Dropout Voltage.  
FIGURE 2-9:  
Ground Current.  
DS20005736A-page 14  
2017 Microchip Technology Inc.  
LP2951  
8
6
4
2
2.2  
2.1  
2.0  
1.9  
1.8  
VOUT = 5V  
HYSTERESIS  
0
1.7  
1.6  
PULLUP RESISTOR TO  
SEPARATE 5V SUPPLY  
-2  
0
1
2
3
4
5
-75 -50 -25 0 25 50 75 100125 150  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
FIGURE 2-13:  
Minimum Operating Voltage.  
FIGURE 2-16:  
Error Comparator Output.  
20  
10  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
T = 125°C  
A
T = 25°C  
A
-10  
-20  
-30  
T = -55°C  
A
0.1  
0.3  
0.5 0.7  
0.9  
-75 -50 -25 0 25 50 75 100125 150  
TEMPERATURE (°C)  
OUTPUT LOW VOLTAGE (V)  
FIGURE 2-14:  
Feedback Bias Current.  
FIGURE 2-17:  
Comparator Sink Current.  
50  
0
100  
PIN 7 DRIVEN BY EXTERNAL  
mV  
SOURCE (REGULATOR RUN  
OPEN LOOP)  
50  
mV  
-50  
0
T = 125°C  
A
-50  
mV  
CL= 1 μF  
IL = 1 mA  
VOUT = 5V  
-100  
8V  
-150  
-200  
-250  
T = 25°C  
A
6V  
4V  
T = –55°C  
A
0
200 400  
μs)  
600 800  
-2.0 -1.5 -1.0 -0.5  
0
0.5 1.0  
TIME (  
FEEDBACK VOLTAGE (V)  
FIGURE 2-15:  
Feedback Pin Current.  
FIGURE 2-18:  
Line Transient Response.  
2017 Microchip Technology Inc.  
DS20005736A-page 15  
LP2951  
250  
200  
150  
100  
50  
10  
5
I0 = 100 μA  
I0 = 1 mA  
2
1
I0 = 100 mA  
0
0.5  
-50  
-100  
0.2  
0.1  
0.05  
VOUT = 5V  
CL= 1 μF  
CL= 1 μF  
VOUT = 5V  
100  
mA  
100  
μA  
0.02  
0.01  
10 100  
1K 10K 100K 1M  
FREQUENCY (Hz)  
0
1
2
3
4
5
TIME (ms)  
FIGURE 2-19:  
Load Transient Response.  
FIGURE 2-22:  
Output Impedance.  
90  
80  
70  
60  
50  
80  
60  
40  
20  
0
-20  
-40  
-60  
IL = 0  
CL= 10 μF  
VOUT = 5V  
40 CL = 1 μF  
IL = 100 μA  
V
IN = 6V  
100  
mA  
100  
μA  
30  
20  
V
OUT = 5V  
101  
102 103 104 10  
106  
0
4
8
12 16 20  
TIME (ms)  
FREQUENCY (Hz)  
FIGURE 2-23:  
Ripple Rejection.  
FIGURE 2-20:  
Load Transient Response.  
7
6
5
90  
80  
LL= 1 μF  
CL = 1 μF  
V
IN = 6V  
70  
60  
4
3
2
1
0
2
0
IL = 1 mA  
V
OUT = 5V  
IL = 10 mA  
VIN = 8V  
50  
40  
30  
20  
CL = 10 μF VOUT = 5V  
IL = 10 mA  
102 103 104 105 106  
FREQUENCY (Hz)  
-2  
101  
-100  
100  
300  
500  
700  
TIME (μs)  
FIGURE 2-21:  
Enable Transient.  
FIGURE 2-24:  
Ripple Rejection.  
DS20005736A-page 16  
2017 Microchip Technology Inc.  
LP2951  
80  
70  
60  
50  
40  
30  
20  
10  
IL = 50 μA  
IL = 100 mA  
CL = 1 μF  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
VIN = 6V  
VOUT = 5V  
101 102 103 104 105 106  
FREQUENCY (Hz)  
-75 -50-25  
0 25 50 75 100125 150  
TEMPERATURE (°C)  
FIGURE 2-25:  
Ripple Rejection.  
FIGURE 2-28:  
Shutdown Threshold  
Voltage.  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
30  
IL = 100 mA  
CL = 1 μF  
25  
20  
15  
10  
5
IL = 100 μA  
TJ = 150°C  
IL = 1 mA  
CL = 220 μF  
0
CL  
=
3.3 μF  
10  
5
0
-5  
IL = 100 μA  
TJ = 125°C  
0.01 μF  
0.5 BYPASS  
PIN 1 TO  
PIN 7  
-10  
5
10  
15  
20  
25  
30  
0.0  
102  
103  
104  
105  
INPUT VOLTAGE (V)  
FREQUENCY (Hz)  
FIGURE 2-26:  
Output Noise.  
FIGURE 2-29:  
Line Regulation.  
400  
300  
200  
100  
0
5
4
2
0
-2  
1
1.25W  
0
-1  
-75 -50-25  
0 25 50 75 100125 150  
30  
TIME (μs)  
40  
0
10  
20  
50  
TEMPERATURE (°C)  
FIGURE 2-27:  
Divider Resistance.  
FIGURE 2-30:  
Thermal Response.  
2017 Microchip Technology Inc.  
DS20005736A-page 17  
LP2951  
3.0  
PIN DESCRIPTIONS  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
LP2951  
DIP AND SOIC PIN FUNCTION TABLE  
Symbol  
Description  
1
2
3
4
5
6
7
8
VOUT  
Regulated voltage output.  
SENSE Output Voltage Sense.  
SHDN  
GND  
Shutdown Input.  
Ground Terminal.  
ERROR Error Output.  
5V TAP Internal Resistor Divider for 5V Output.  
FB  
Voltage Feedback Input.  
VIN  
Unregulated Supply Voltage.  
DS20005736A-page 18  
2017 Microchip Technology Inc.  
 
LP2951  
output. The out of regulation condition may be due  
either to low input voltage, current limiting, or thermal  
limiting.  
4.0  
4.1  
APPLICATION INFORMATION  
External Capacitors  
Figure 4-1 is a timing diagram depicting the ERROR  
signal and the regulated output voltage as the LP2951  
input is ramped up and down. The ERROR signal  
becomes valid (low) at about 1.3V input. It goes high at  
A 1.0 F (or greater) capacitor is required between the  
LP2951 output and ground to prevent oscillations due  
to instability. Most types of tantalum or aluminum  
electrolytics will be adequate; film types will work, but  
are costly and therefore not recommended. Many  
aluminum electrolytics have electrolytes that freeze at  
about –30°C, so solid tantalum capacitors are  
recommended for operation below –25°C. The  
important parameters of the capacitor are an effective  
series resistance of about 5Ω or less and a resonant  
frequency above 500 kHz. The value of this capacitor  
may be increased without limit.  
about 5V input (the input voltage at which VOUT  
=
4.75V). Since the LP2951’s dropout voltage is  
load-dependent (see curve in Typical Performance  
Curves), the input voltage trip point (about 5V) will vary  
with the load current. The output voltage trip point  
(approximately 4.75V) does not vary with load.  
The error comparator has an open-collector output  
which requires an external pull-up resistor. Depending  
on system requirements, this resistor may be returned  
to the 5V output or some other supply voltage. In  
determining a value for this resistor, note that while the  
output is rated to sink 400 A, this sink current adds to  
battery drain in a low battery condition. Suggested  
values range from 100 kΩ to 1 MΩ. The resistor is not  
required if this output is unused.  
At lower values of output current, less output  
capacitance is required for output stability. The  
capacitor can be reduced to 0.33 F for current below  
10 mA or 0.1 F for currents below 1 mA. Using the  
8-pin versions at voltages below 5V runs the error  
amplifier at lower gains so that more output  
capacitance is needed. For the worst-case situation of  
a 100 mA load at 1.23V output (Output shorted to  
Feedback) a 3.3 F (or greater) capacitor should be  
used.  
4.3  
Programming the Output Voltage  
The LP2951 may be pin-strapped for 5V output voltage  
using its internal voltage divider, by tying Pin 1 (VOUT  
)
When the 5V Tap pin and Feedback pin are connected  
together for 5V output voltage, the LP2951 will remain  
stable and in regulation with no load in addition to the  
internal voltage divider, unlike many other voltage  
regulators. This is especially important in CMOS RAM  
keep-alive applications. When setting the output  
voltage of the LP2951 with external resistors, a  
minimum load of 1 A is recommended.  
and Pin 2 (SENSE) together, as well as tying Pin 7  
(Feedback) and Pin 6 (5V TAP) together. Alternatively,  
it may be programmed for any output voltage between  
its 1.235V reference and its 30V maximum rating. An  
external pair of resistors is required, as shown in  
Figure 4-2.  
The complete equation for the output voltage is:  
A 0.1 F capacitor should be placed from the LP2951  
input to ground if there is more than 10 inches of wire  
between the input and the AC filter capacitor or if a  
battery is used as the input.  
EQUATION 4-1:  
Stray capacitance to the LP2951 Feedback terminal  
(pin 7) can cause instability. This may especially be a  
problem when using high value external resistors to set  
the output voltage. Adding a 100 pF capacitor between  
Output and Feedback and increasing the output  
capacitor to at least 3.3 F will remedy this.  
R
1   
V OUT = V REF  
1 + ----- + IFBR2  
R2   
Where:  
VREF  
IFB  
=
=
the nominal 1.235 reference voltage  
the feedback pin bias current,  
nominally 20 nA  
4.2  
Error Detection Comparator  
Output  
The minimum recommended load current of 1 A  
forces an upper limit of 1.2 MΩ on the value of R2, if the  
regulator must work with no load (a condition often  
found in CMOS in standby), IFB will produce a 2%  
typical error in VOUT which may be eliminated at room  
temperature by trimming R1. For better accuracy,  
choosing R2 = 100 kΩ reduces this error to 0.17%  
while increasing the resistor program current to 12 A.  
Since the LP2951 typically draws 60 A at no load with  
Pin 2 open-circuited, this is a small price to pay.  
A logic low output will be produced by the comparator  
whenever the LP2951 output falls out of regulation by  
more than approximately 5%. This figure is the  
comparator’s built-in offset of about 60mV divided by  
the 1.235V reference voltage. (Refer to the block  
diagram on Page 1). This trip level remains “5% below  
normal” regardless of the programmed output voltage  
of the LP2951. For example, the error flag trip level is  
typically 4.75V for a 5V output or 11.4V for a 12V  
2017 Microchip Technology Inc.  
DS20005736A-page 19  
LP2951  
4.4  
Reducing Output Noise  
In reference applications it may be advantageous to  
reduce theAC noise present at the output. One method  
is to reduce the regulator bandwidth by increasing the  
size of the output capacitor. This method is relatively  
inefficient, as increasing the capacitor from 1F to  
220 F only decreases the noise from 430 V to  
160 Vrms for a 100 kHz bandwidth at 5V output.  
Noise can be reduced fourfold by a bypass capacitor  
across R1, since it reduces the high frequency gain  
from 4 to unity. Pick the resulting frequency from  
Equation 4-2:  
EQUATION 4-2:  
1
CBYPASS = ----------------------------------  
2R1 200Hz  
or about 0.01 F. When doing this, the output capacitor  
must be increased to 3.3 F to maintain stability. These  
changes reduce the output noise from 430 V to  
100 Vrms for a100 kHz bandwidth at 5V output. With  
the bypass capacitor added, noise no longer scales  
with output voltage so that improvements are more  
dramatic at higher output voltages.  
4.75V  
OUTPUT  
VOLTAGE  
*
*
NOT  
NOT  
VALID  
ERROR  
VALID  
INPUT  
5V  
VOLTAGE  
1.3V  
* SEE APPLICATIONS INFORMATION  
FIGURE 4-1:  
ERROR Output Timing.  
*SEE APPLICATIONS  
INFORMATION  
+V  
IN  
V
= V  
R
R
OUT  
REF  
1
x (1 +  
OUT  
1.2 30V  
)
100kΩ  
8
V
2
V
IN  
5
1
ERROR  
OUTPUT  
ERROR  
V
OUT  
LP2951  
3
SHUTDOWN  
INPUT  
SD  
3.3μF  
R
1
100  
pF  
OFF  
GND  
FB  
ON  
4
7
1.23V  
NOTE: PINS 2 AND 6 ARE LEFT OPEN  
R
V
2
REF  
FIGURE 4-2:  
Adjustable Regulator.  
DS20005736A-page 20  
2017 Microchip Technology Inc.  
 
LP2951  
FEEDBACK  
IN  
R18  
20 kΩ  
Q15A  
Q15B  
Q24  
Q26  
Q25  
OUT  
Q9  
Q3  
Q1  
Q4  
Q7  
SENSE  
R11  
18  
R27  
Q8  
Q5  
kΩ  
R17  
12 kΩ  
182 kΩ  
C1  
20  
pF  
Q14  
R11  
20.6  
kΩ  
Q17  
Q6  
Q16  
5V TAP  
R28  
60 kΩ  
Q2  
10  
Q20  
R1  
20 kΩ  
Q22  
R10  
150  
kΩ  
R8  
31.4  
kΩ  
Q42  
Q21  
Q23  
C2  
R2  
50 kΩ  
40 pF  
R15  
100 kΩ  
R9  
27.8  
kΩ  
R5  
180  
kΩ  
R6  
140  
kΩ  
R12  
110  
kΩ  
R14  
350  
kΩ  
R13  
100  
kΩ  
R16  
30 kΩ  
Q40  
Q13  
Q12  
R17  
10 Ω  
Q41  
Q11  
Q29  
R30  
Q18  
Q19  
30  
kΩ  
Q28  
R3  
50 kΩ  
R4  
13 kΩ  
R21 8Ω  
Q30 Q31  
SHDN  
50 kΩ  
R23 60 kΩ  
R22  
150  
kΩ  
Q37  
Q36  
R24  
50 kΩ  
Ω
10 kΩ  
ERROR  
Q38  
Q34  
R26  
50 kΩ  
R25  
2.8 kΩ  
GND  
Q39  
FIGURE 4-3:  
Schematic Diagram.  
2017 Microchip Technology Inc.  
DS20005736A-page 21  
LP2951  
5.0  
5.1  
PACKAGING INFORMATION  
Package Marking Information  
8-Pin SOIC*  
Example  
YYWW  
XXXXXX  
XXXX  
1613  
LP2951  
02YM  
8-Pin Plastic DIP*  
Example  
1016  
LP2951  
03YN  
YYWW  
XXXXXX  
XXXX  
Legend: XX...X Product code or customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC® designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
e
3
)
, , Pin one index is identified by a dot, delta up, or delta down (triangle  
mark).  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information. Package may or may not include  
the corporate logo.  
Underbar (_) and/or Overbar () symbol may not be to scale.  
DS20005736A-page 22  
2017 Microchip Technology Inc.  
LP2951  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
2017 Microchip Technology Inc.  
DS20005736A-page 23  
LP2951  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging.  
DS20005736A-page 24  
2017 Microchip Technology Inc.  
LP2951  
APPENDIX A: REVISION HISTORY  
Revision A (May 2017)  
• Converted Micrel document LP2951 to Microchip  
data sheet template DS20005736A.  
• Minor grammatical text changes throughout.  
2017 Microchip Technology Inc.  
DS20005736A-page 25  
LP2951  
NOTES:  
DS20005736A-page 26  
2017 Microchip Technology Inc.  
LP2951  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.  
Examples:  
-X  
PART NO.  
Device  
X
X
a)  
b)  
c)  
LP2951-02YM:  
LP2951-03YM:  
LP2951-02YN:  
100 mA Low-Dropout  
Voltage Regulator,  
0.5% Accuracy,  
–40°C to +85°C (RoHS  
Compliant)  
Accuracy  
Temperature  
Range  
Package  
Device:  
LP2951:  
100 mA Low-Dropout Voltage Regulator  
8LD SOIC  
100 mA Low-Dropout  
Voltage Regulator,  
1.0% Accuracy,  
–40°C to +85°C (RoHS  
Compliant)  
Accuracy:  
02  
03  
=
=
0.5%  
1.0%  
Temperature  
Range:  
Y
=
–40C to +85C (RoHS Compliant)  
8LD SOIC  
100 mA Low-Dropout  
Voltage Regulator,  
0.5% Accuracy,  
–40°C to +85°C (RoHS  
Compliant)  
Packages:  
M
N
=
=
8-pin SOIC  
8-pin DIP  
8LD DIP  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This  
identifier is used for ordering purposes and  
is not printed on the device package. Check  
with your Microchip Sales Office for package  
availability with the Tape and Reel option.  
2017 Microchip Technology Inc.  
DS20005736A-page 27  
LP2951  
NOTES:  
DS20005736A-page 28  
2017 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate, AVR,  
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,  
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,  
KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus,  
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,  
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip  
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST  
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,  
mTouch, Precision Edge, and Quiet-Wire are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, CryptoAuthentication, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,  
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,  
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple  
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,  
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,  
USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA,  
and ZENA are trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
Silicon Storage Technology is a registered trademark of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2017, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 978-1-5224-1711-8  
2017 Microchip Technology Inc.  
DS20005736A-page 29  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Finland - Espoo  
Tel: 358-9-4520-820  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
France - Saint Cloud  
Tel: 33-1-30-60-70-00  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Germany - Garching  
Tel: 49-8931-9700  
Germany - Haan  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Boston  
Tel: 49-2129-3766400  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
Germany - Heilbronn  
Tel: 49-7131-67-3636  
China - Dongguan  
Tel: 86-769-8702-9880  
Germany - Karlsruhe  
Tel: 49-721-625370  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Guangzhou  
Tel: 86-20-8755-8029  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Korea - Seoul  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Israel - Ra’anana  
Tel: 972-9-744-7705  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Detroit  
Novi, MI  
Tel: 248-848-4000  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Houston, TX  
Tel: 281-894-5983  
Italy - Padova  
Tel: 39-049-7625286  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Shanghai  
Tel: 86-21-3326-8000  
Fax: 86-21-3326-8021  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Norway - Trondheim  
Tel: 47-7289-7561  
Los Angeles  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Poland - Warsaw  
Tel: 48-22-3325737  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Romania - Bucharest  
Tel: 40-21-407-87-50  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Raleigh, NC  
Tel: 919-844-7510  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
DS20005736A-page 30  
2017 Microchip Technology Inc.  
11/07/16  

相关型号:

LP2951-03YMTR

FIXED/ADJUSTABLE POSITIVE LDO REGULATOR, 0.6V DROPOUT, PDSO8, LEAD FREE, SOIC-8
MICROCHIP

LP2951-03YMTR

FIXED/ADJUSTABLE POSITIVE LDO REGULATOR, 0.6V DROPOUT, PDSO8, LEAD FREE, SOIC-8
MICREL

LP2951-03YN

LDO Voltage Regulators Low Drop Out Regulator (Lead Free)
MICROCHIP

LP2951-2.85

100mA Low Drop Out Voltage Regulators Portable consumer equipment
FCI

LP2951-3.0

100mA Low Drop Out Voltage Regulators Portable consumer equipment
FCI

LP2951-3.3

100mA Low Drop Out Voltage Regulators Portable consumer equipment
FCI

LP2951-3.3

Fixed/Adjustable Positive LDO Regulator, 3.267V Min, 3.333V Max, 0.6V Dropout, PDSO8, SO-8
SEMTECH

LP2951-3.3TR

Fixed/Adjustable Positive LDO Regulator, 3.267V Min, 3.333V Max, 0.6V Dropout, PDSO8, SO-8
SEMTECH

LP2951-30D

ADJUSTABLE MICROPOWER VOLTAGE REGULATORS WITH SHUTDOWN
TI

LP2951-30DG4

ADJUSTABLE MICROPOWER VOLTAGE REGULATORS WITH SHUTDOWN
TI

LP2951-30DGKR

暂无描述
TI

LP2951-30DGKT

3V FIXED POSITIVE LDO REGULATOR, 0.6V DROPOUT, PDSO8, PLASTIC, VSSOP-8
TI