LE87536NQCT [MICROCHIP]

Line Driver, 4 Func, 4 Driver;
LE87536NQCT
型号: LE87536NQCT
厂家: MICROCHIP    MICROCHIP
描述:

Line Driver, 4 Func, 4 Driver

驱动 接口集成电路 驱动器
文件: 总14页 (文件大小:179K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Le87536  
Worldwide ADSL2+ Dual Channel  
Line Driver BD870 Series  
Advance Data Sheet  
Version 2  
Aug 2010  
134329  
Features  
Document Number  
Fixed Voltage Gain Of 13  
450 mA Peak Output Drive Capability  
Ordering Information  
Le87536NQC  
Le87536NQCT  
16 pin QFN Green Pkg.  
16 pin QFN Green Pkg.  
Tray  
Tape & Reel  
±5 V to ±12 V Dual Supplies Or 10 V to 24 V  
Single Supply  
The green package meets RoHS Directive 2002/95/EC of the  
European Council to minimize the environmental impact of electrical  
equipment.  
44 V Differential Output Into a 100 Load  
p-p  
40.5 V  
Differential Output Into a 60 Load  
p-p  
Low-power Disable Mode For Each Driver  
4 mA Per Amplifier Quiescent Supply Current  
-75dBc THD With 1MHz Signal Into a 60 load  
16-pin (4 mm x 4 mm) QFN Package  
RoHS Compliant  
Logic  
Control  
VS+  
ENAB  
VS-  
Logic  
Control  
ENCD  
VINA  
GND  
+
VOUTA  
VS+  
Applications  
A
7.5kΩ  
7.5kΩ  
.
.
RF  
Dual Port Full Rate ADSL2+ Line Drivers  
HDSL Line Drivers  
50kΩ  
50kΩ  
.
VCMAB  
RG  
RF  
Description  
.
The Le87536 is a dual channel differential amplifier  
designed to drive full rate ADSL2+ signals with very  
low power dissipation. The Le87536 contains two pairs  
of wide band amplifiers designed with Zarlink’s HV30  
Bipolar SOI process for low power consumption in  
DSL systems. The amplifiers have an internal fixed  
gain, which helps to eliminate external feedback and  
gain setting resistors.  
VS-  
VOUTB  
VOUTC  
B
+
VINB  
VINC  
+
VS+  
C
7.5kΩ  
7.5kΩ  
.
.
RF  
50kΩ  
50kΩ  
.
VCMCD  
RG  
The drivers achieve better than -75 dB THD while  
driving a 1MHz, 16Vp_p signal into a 60load. The  
amplifiers are enabled by forcing the ENAB/ENCD  
pins to ground. Leaving the ENAB/ENCD pins floating  
or forcing them high will disable the two amplifiers. The  
ENAB and ENCD pins are pulled up to an internal 2.5V  
through on-chip 50kresistors.  
RF  
.
VS-  
VOUTD  
D
+
VIND  
Figure 1 - Block Diagram  
Le87536 device is one of the most cost-effective and  
high performance line drivers for ADSL2+ applications.  
1
Zarlink Semiconductor Inc.  
Zarlink, ZL, the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc  
Copyright 2009, Zarlink Semiconductor Inc. All Rights Reserved.  
Le87536  
Advance Data Sheet  
1.0 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.1 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
2.0 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.1 Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.1.1 Input Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.1.2 Output Driving Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.1.3 Power Supplies and Component Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.1.4 Stability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.2 Cable Termination Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.3 Line Driver Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.0 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.1 Thermal Resistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.2 Package Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.0 Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
5.0 Device Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
6.0 Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
6.1 16-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
7.0 Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
7.1 Rev 1.0 to Rev 2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Zarlink documents marked "Preliminary Data Sheet” or “Advance Data Sheet” relate to Zarlink products which are not yet released to production.  
2
Zarlink Semiconductor Inc.  
Le87536  
Advance Data Sheet  
1.0 Pin Diagram  
Top View  
VINA  
VINB  
GND  
VINC  
1
2
3
4
12  
11  
10  
9
VOUTB  
GND  
16-pin QFN  
VOUTC  
VOUTD  
EXPOSED PAD  
Notes:  
1. Pin 1 is marked for orientation.  
2. The Le87536 device incorporates an exposed die pad on the underside of its package. The pad acts as a heat sink and must be  
connected to a copper plane through thermal vias, for proper heat dissipation. The exposed pad is electrically floating. It may be  
tied to ground or any other quiet signal reference node.  
1.1 Pin Description  
Pin Name  
Type  
Description  
Note  
ENAB  
ENCD  
VINA  
Input  
Input  
DSL channel #1 enable/disable control pin  
DSL channel #2 enable/disable control pin  
Amplifier A non-inverting input  
Amplifier B non-inverting input  
Amplifier C non-inverting input  
Amplifier D non-inverting input  
Bias voltage for amplifier A and B  
Bias voltage for amplifier C and D  
Positive power supply  
Reference Circuit 1  
Reference Circuit 1  
Reference Circuit 2  
Reference Circuit 2  
Reference Circuit 2  
Reference Circuit 2  
Input  
VINB  
Input  
VINC  
Input  
VIND  
Input  
VCMAB  
VCMCD  
VS+  
Input  
Input  
Power  
Power  
Ground  
Output  
Output  
Output  
Output  
VS-  
Negative power supply  
GND  
Ground connection  
VOUTA  
VOUTB  
VOUTC  
VOUTD  
Amplifier A output  
Reference Circuit 2  
Reference Circuit 2  
Reference Circuit 2  
Reference Circuit 2  
Amplifier B output  
Amplifier C output  
Amplifier D output  
Note 1: Amplifiers A and B comprise DSL channel #1. ENAB allows enable/disable control for DSL channel #1.  
Note 2: Amplifiers C and D comprise DSL channel #2. ENCD allows enable/disable control for DSL channel #2.  
Note 3: Reference circuits 1 and 2 are shown in Figure 2.  
3
Zarlink Semiconductor Inc.  
Le87536  
Advance Data Sheet  
2.5V  
VS+  
50K  
150K  
ENAB/CD  
Reference circuit 1  
GND  
VS+  
VINx  
VOUTx  
x = A, B, C, D  
Internal  
Circuit  
Reference circuit 2  
VS-  
Figure 2 - Reference Circuit  
4
Zarlink Semiconductor Inc.  
Le87536  
Advance Data Sheet  
2.0 Applications  
The Le87536 integrates two sets of high-power line driver amplifiers that can be connected for full duplex  
differential line transmission. The amplifiers are designed to be used with signals up to 10 MHz with low signal  
distortion. The driver can put out 20.5 dBm power level onto the telephone line and can drive 450 mA current, which  
exceeds the level required when using a transformer with 1:2 ratio.  
2.1 Typical Application Circuit  
A typical application interface circuit (one channel) is shown in Figure 3.  
ROUT  
CTX  
VINA  
+
TX+  
VOUTA  
RF  
2RG  
100  
RF  
ROUT  
CTX  
VOUTB  
RX1  
+
VINB  
TX-  
RF  
RX+  
RX-  
+
RX2  
RX1  
+
Data Receive  
RF  
RX2  
Figure 3 - Typical Application Interface Circuit  
As shown in Figure 3 the amplifiers have identical positive gain connections with common-mode rejection. Any DC  
input errors are duplicated and create common-mode rather than differential line errors. The component values for  
Typical Application is listed in Table 1.  
Item  
Quantity  
Type  
Value  
Tolerance  
Rating  
R
C
2
2
SMT  
X7R  
49.9 Ω  
1%  
1/16 W  
50V  
OUT  
TX  
0.22 µF  
10%  
Table 1 - Parts List for Typical Application Circuit  
2.1.1 Input Considerations  
The driving source impedance should be less than 100nH to avoid any ringing or oscillation. This inductance is  
equivalent to about 4" of unshielded wiring, or 6" of unterminated transmission line. Normal high-frequency  
construction obviates any such problem.  
5
Zarlink Semiconductor Inc.  
Le87536  
Advance Data Sheet  
2.1.2 Output Driving Considerations  
While the drive amplifiers can output in excess of 450 mA peak, the internal metallization is not designed to carry  
more than 100 mA of steady DC current and there is no current limit mechanism. The device can safely drive  
sinusoidal currents of 2 x 100 mArms, or 200 mArms. This current is more than that required to drive line  
impedance to large output levels, but output short circuits can not be tolerated. The series output resistor will  
usually limit currents to safe values in the event of line shorts. Driving lines with no series resistor is not  
recommended.  
The amplifiers are sensitive to capacitive loading. More than 100pF may cause peaking of the frequency response.  
The same is true of badly terminated lines connected without a series matching resistor.  
When in power down mode, several volts of differential voltage may appear across the line driver outputs. If a DC  
current path exists between the two outputs, a large DC current can flow from the positive supply rail to the negative  
supply rail through the outputs. To avoid DC current flow, the most effective solution is to place DC blocking  
capacitors in series at the output, as shown in the typical application circuit.  
2.1.3 Power Supplies and Component Placement  
The power supplies should be well bypassed close to the Le87536 device. A 2.2 µF tantalum capacitor and a 0.1 µF  
ceramic capacitor for each supply is recommended. The ground terminal of the positive and negative bypass  
capacitors should be connected to each other directly and then returned to circuit ground to prevent ground current  
loops.  
The Le87536 can also be powered from a single positive voltage supply. When operating in this mode, the VS+ pin  
is connected to the positive supply. The VS- pin is connected to GND.  
2.1.4 Stability  
The Le87536 features improved frequency compensation for all applications, allowing stable operation at very low  
power levels and eliminating any need for external “snubber” circuit. Differential circuits, such as ADSL line driver  
applications, can be especially prone to common-mode oscillation. The Le87536 is specifically compensated to  
eliminate this type of instability and allows for reliable operation even at very low power levels.  
2.2 Cable Termination Technique  
There are various techniques available. Figure 4 shows a passive termination technique. Figure 5 shows an active  
termination technique. A quick comparison of the reduction in voltage and power requirements for the driver with  
passive or active termination is shown in Table 2.  
The output impedance and the voltage gain of the circuit in Figure 5 are shown in the following equations.  
ZOUT = K RBM  
VO  
VIN  
RD(P2)  
---------  
----------------------------------------------------  
=
2(RD(G) – RD(P1))  
where  
ZOUT is the output impedance. VO/VIN represents the voltage gain.  
1
-----------------------------  
1 –  
K =  
RD(P1)  
-------------------  
RD(G)  
RP1  
---------------------------  
RP2  
RP1 + RP2  
RG  
RG + RF  
---------------------------  
----------------------  
RD(P1) =  
,
RD(P2) =  
,
RD(G) =  
RP1 + RP2  
6
Zarlink Semiconductor Inc.  
Le87536  
Advance Data Sheet  
RG  
RF  
RBM  
+
ZL  
VO  
VIN  
RL  
Figure 4 - Passive Termination Technique  
RG  
RF  
RBM  
+
ZL  
VO  
RP1  
RP2  
RL  
VIN  
Figure 5 - Active Termination Technique  
Passive Termination  
Active Termination  
16.5 V  
into a 100 line  
16.5 V  
into a 100 line  
P-P  
P-P  
V
= V  
+ V  
V
= V  
+ V  
RBM RLOAD  
OUT DRIVER  
RBM  
RLOAD  
OUT DRIVER  
RBM = R  
RBM = R  
/5  
LOAD  
LOAD  
V
V
V
= V  
V
V
V
= V  
/5  
RLOAD  
RBM  
RLOAD  
RBM  
OUT DRIVER  
= 33.52 V  
= 20.11 V  
OUT DRIVER  
= 37.52 V  
= 24.11 V  
SUPPLY  
SUPPLY  
I
= 31.6 mA  
I
= 31.6 mA  
OUT  
OUT  
P
= V  
* I  
= 0.714 W  
P
= V  
* I  
= 1.185 W  
OUT DRIVER  
SUPPLY  
OUT  
OUT DRIVER  
SUPPLY OUT  
(plus quiescent power)  
(plus quiescent power)  
Table 2 - Passive and Active Termination Comparison  
7
Zarlink Semiconductor Inc.  
Le87536  
Advance Data Sheet  
2.3 Line Driver Protection  
High voltage transients such as lightning can appear on the telephone lines. Transient protection devices are used to absorb the  
energy and clamp the voltages. However, large transient voltages can still couple to the primary side of the transformer.  
As shown in Figure 6 and 7, the series output termination resistors limit the current going into the line driver. These termination  
resistors should be specified at 0.5W. The resistance can be 2.2or greater required by the sensing and termination impedance.  
A protection scheme is shown in Figure 6, assuming that the isolation of the data transformer is sufficient and the diodes on the  
secondary side of the data transformer are not causing degradation of data performance.  
To avoid the possible concerns in Figure 6 on board secondary protection may be added, as shown in Figure 7. The external  
diodes may be moved to the outputs of the line driver. The grounded protector, U1, is on the line side to limit the peak surge  
voltage seen by the data transformer. The series components, U21 and U22, can be Positive Temperature Coefficient (PTC)  
devices or fuses.  
The protection scheme can vary depending on the type of data transformer used, the data rate, the intended protection criteria to  
meet and trade offs between performance and cost. Consult your Zarlink representatives for more specific details on protection.  
VS+  
+
RBM  
VIN+  
VO+  
VS -  
VS+  
RF  
RF  
2RG  
VO-  
+
RBM  
VIN-  
VS -  
Figure 6 - Line Driver Protection Diagram (1)  
VS+  
+
RBM  
VIN+  
U21  
VO+  
VS -  
VS+  
RF  
RF  
2RG  
U1  
VO-  
U22  
+
RBM  
VIN-  
VS -  
Figure 7 - Line Driver Protection Diagram (2)  
8
Zarlink Semiconductor Inc.  
Le87536  
Advance Data Sheet  
3.0 Absolute Maximum Ratings  
Stresses above the values listed under Absolute Maximum Ratings can cause permanent device failure.  
Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods  
can affect device reliability.  
Storage Temperature  
65 T +150°C  
A
Operating Ambient Temperature  
40 T +85°C  
A
Operating Junction Temperature  
(See Notes 1 and 2)  
40 T +150°C  
A
VS+ to VS- Supply Voltage  
0.3 V to 30 V  
0.3 V to 30 V  
30 V to +0.3 V  
VS- to VS+  
VS+ with respect to GND  
VS- with respect to GND  
Driver inputs VINA/B/C/D  
Control inputs ENAB/ENCD with respect to GND  
Maximum current on any input  
0.3 V to 6 V  
10 mA  
Maximum current at amplifier output (DC continuous)  
ESD Immunity (Human Body Model)  
ESD Immunity (Charge Device Model)  
100 mA  
JESD22 Class 2 compliant  
JESD22 Class IV compliant  
Note: Continuous operation above 145°C junction temperature may degrade device reliability.  
3.1 Thermal Resistance  
The thermal performance of a thermally enhanced package is assured through optimized printed circuit  
board layout. Specified performance requires that the exposed thermal pad be soldered to an equally sized  
exposed copper surface, which, in turn, conducts heat through multiple vias to larger internal copper  
planes.Please refer to the QFN Package application note, available from http://www.zarlink.com, for layout and  
heat sinking guidelines.  
When the QFN package is mounted on 4 layers JEDEC PCB in still air the following thermal characteristics are  
expected:  
Θ
35.3°C/W, Θ 22.0°C/W, Θ 15.6°C/W and Ψ 0.4°C/W.  
JC JB JT  
JA  
The maximum junction temperature is 150°C.  
3.2 Package Assembly  
The green package devices are assembled with enhanced, environmental compatible lead-free, halogen-free, and  
antimony-free materials. The leads possess a matte-tin plating which is compatible with conventional board  
assembly processes or newer lead-free board assembly processes.  
Refer to IPC/JEDEC J-Std-020 Table 4-2 for recommended peak soldering temperature and Table 5-2 for the  
recommended solder reflow temperature profile.  
9
Zarlink Semiconductor Inc.  
Le87536  
Advance Data Sheet  
4.0 Operating Ranges  
Zarlink guarantees the performance of this device over commercial (0°C to 70°C) and industrial (40°C to 85°C)  
temperature ranges by conducting electrical characterization over each range and by conducting a single insertion  
production test coupled with periodic sampling. These characterization and test procedures comply with section  
4.6.2 of Bellcore GR-357-CORE Component Reliability Assurance Requirements for Telecommunications  
Equipment.  
Ambient temperature  
-40°C to +85°C  
+12 V ± 5%  
-12 V ± 5%  
VS+ with respect to GND  
VS- with respect to GND  
Single battery operation, VS+ with respect to GND (VS- to GND) +24V ± 5%  
5.0 Device Specifications  
Typical Conditions: VS = ±12V, RL = 65, unless otherwise specified, TA = 25°C.  
Min/Max Parameters: TA = 40 to +85°C  
Amplifiers are tested separately.  
Parameter  
Description  
Condition  
Min.  
Typ.  
Max.  
Unit  
Supply Current Characteristics  
IS+ (Full IS)  
IS- (Full IS)  
Positive Supply Current  
per Amplifier  
All outputs at 0V, ENAB = ENCD = 0V  
All outputs at 0V, ENAB = ENCD = 0V  
All outputs at 0V, ENAB = ENCD = 5V  
All outputs at 0V, ENAB = ENCD = 5V  
All outputs at 0V  
3.2  
4.0  
-3.8  
0.2  
5.3  
-3.0  
0.4  
mA  
mA  
mA  
mA  
mA  
Negative Supply Current  
per Amplifier  
-5.1  
IS+ (power down)  
IS- (power down)  
IGND  
Positive Supply Current  
per Amplifier  
Negative Supply Current  
per Amplifier  
-0.3  
1.6  
0.1  
GND Supply Current per  
Amplifier  
0.25  
Control Input (C0 and C1) Characteristics  
VIH  
VIL  
IIH  
IIL  
Input High Voltage  
Input Low Voltage  
Input High Current  
Input Low Current  
ENAB and ENCD inputs  
ENAB and ENCD inputs  
ENAB = ENCD = 5V  
ENAB = ENCD = 0V  
V
V
0.8  
40  
5
20  
µA  
µA  
-85  
-50  
-30  
Amplifier Input (VINx+ and VINx-) Characteristics  
VOS  
VOS  
IB  
Input Offset Voltage  
VOS mismatch  
Input Bias Current  
IB Mismatch  
-10  
-5  
0
0
10  
5
mV  
mV  
µA  
-15  
-25  
14  
25  
IB  
0
µA  
VCM  
Driver common mode  
voltage  
|VS+| +  
|VS-|  
pins VCMAB/CD floating, reference to VS-  
0.475  
0.5  
0.525  
Transimpedance1  
ROL  
eN  
5
MΩ  
Input Noise Voltage1  
3.5  
nV/ Hz  
pA/ Hz  
iN  
Input Noise Current1  
13  
Table 3 - Electrical Specifications  
10  
Zarlink Semiconductor Inc.  
Le87536  
Advance Data Sheet  
Parameter  
Description  
Condition  
Min.  
Typ.  
Max.  
Unit  
Amplifier Output (VOUT) Characteristics  
VOUT  
RL = 100Ω  
±10.3 ±11.1  
V
V
Loaded Output Swing  
RL = 30Ω (+)  
RL = 30Ω (−)  
10.1  
10.7  
-10.5  
600  
(RL Single-ended to  
GND)  
-10.1  
V
1
IOUT  
VOUT = 0.6V, RL = 1Ω  
mA  
Output Current  
Amplifier Dynamic Characteristics  
THD  
Total Harmonic Distortion  
f = 1MHz, RL = 50, VOUT = 16Vpp  
-75  
-70  
dBc  
dBc  
26kHz to 1.1MHz, RL = 100,  
PLINE =20.4dBm  
MTPR  
Multi-Tone Power Ratio  
1
SR  
AV  
VOUT from -8V to +8V measured at ±4V  
200  
400  
V/µs  
V/V  
Slew rate (single-ended)  
Voltage Gain  
VOUT = 16Vpp, RL = 100Ω  
12.9  
13.0  
13.1  
Note 1: This parameter is not tested in production. It is guaranteed by design and device characterization.  
Table 3 - Electrical Specifications  
11  
Zarlink Semiconductor Inc.  
Le87536  
Advance Data Sheet  
6.0 Physical Dimensions  
6.1 16-Pin QFN  
12  
Zarlink Semiconductor Inc.  
Le87536  
Advance Data Sheet  
7.0 Revision History  
7.1 Rev 1.0 to Rev 2.0  
Added package thermal data on page 9.  
13  
Zarlink Semiconductor Inc.  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. trading as Zarlink Semiconductor or its subsidiaries (collectively  
“Zarlink”) is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the  
application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may  
result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under  
patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified  
that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property  
rights owned by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the  
capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute  
any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to fully determine the performance and  
suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does  
not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in  
significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink’s conditions of sale which are available on request.  
Purchase of Zarlink’s I2C components conveys a licence under the Philips I2C Patent rights to use these components in and I2C System, provided that the system  
conforms to the I2C Standard Specification as defined by Philips.  
Zarlink, ZL, the Zarlink Semiconductor logo and the Legerity logo and combinations thereof, VoiceEdge, VoicePort, SLAC, ISLIC, ISLAC and VoicePath are  
trademarks of Zarlink Semiconductor Inc  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

LE87557NQCT

SLIC, Bipolar
MICROCHIP
MICROCHIP
MICROCHIP

LE88010BQC

ATM/SONET/SDH Network Interface, 1-Func
MICROCHIP

LE88221DLC

Dual Channel Automatic Battery Switching (ABS) VoicePort-TM Device
ETC

LE88221DLCT#N/A

Interface Circuit
MICROCHIP

LE88226DLC

Analog Transmission Interface,
ZARLINK

LE88226DLC

Analog Transmission Interface,
MICROSEMI

LE88241DLC

Dual Channel Automatic Battery Switching (ABS) VoicePort-TM Device
ETC

LE88246DLC

Analog Transmission Interface,
ZARLINK

LE88246DLC

Analog Transmission Interface,
MICROSEMI

LE88266DLC

Analog Transmission Interface,
ZARLINK