GRM31CR61C106KC31L [MICROCHIP]

64/80/100-Pin, General Purpose, 16-Bit Flash Microcontrollers; 八十〇分之六十四/ 100-引脚,通用16位闪存微控制器
GRM31CR61C106KC31L
型号: GRM31CR61C106KC31L
厂家: MICROCHIP    MICROCHIP
描述:

64/80/100-Pin, General Purpose, 16-Bit Flash Microcontrollers
八十〇分之六十四/ 100-引脚,通用16位闪存微控制器

闪存 微控制器 电容器 PC
文件: 总258页 (文件大小:2294K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC24FJ128GA010 FAMILY  
64/80/100-Pin, General Purpose, 16-Bit Flash Microcontrollers  
High-Performance CPU:  
Analog Features:  
• 10-Bit, Up to 16-Channel Analog-to-Digital Converter  
- 500 ksps conversion rate  
- Conversion available during Sleep and Idle  
• Dual Analog Comparators with Programmable  
Input/Output Configuration  
• Modified Harvard Architecture  
• Up to 16 MIPS Operation @ 32 MHz  
• 8 MHz Internal Oscillator with 4x PLL Option and  
Multiple Divide Options  
• 17-Bit x 17-Bit Single-Cycle Hardware  
Multiplier  
Peripheral Features:  
• 32-Bit by 16-Bit Hardware Divider  
• 16 x 16-Bit Working Register Array  
• C Compiler Optimized Instruction Set Architecture:  
- 76 base instructions  
- Flexible addressing modes  
• Two Address Generation Units for Separate Read  
and Write Addressing of Data Memory  
• Two 3-Wire/4-Wire SPI modules, Supporting  
4 Frame modes with 8-Level FIFO Buffer  
2
• Two I C™ modules Support Multi-Master/Slave  
mode and 7-Bit/10-Bit Addressing  
• Two UART modules:  
- Supports RS-232, RS-485 and LIN/J2602  
- On-chip hardware encoder/decoder for IrDA  
- Auto-wake-up on Start bit  
®
Special Microcontroller Features:  
- Auto-Baud Detect  
- 4-level FIFO buffer  
• Operating Voltage Range of 2.0V to 3.6V  
• Flash Program Memory:  
• Parallel Master Slave Port (PMP/PSP):  
- Supports 8-bit or 16-bit data  
- 1000 erase/write cycles  
- 20-year data retention minimum  
- Supports 16 address lines  
• Self-Reprogrammable under Software Control  
• Selectable Power Management modes:  
- Sleep, Idle and Alternate Clock modes  
• Fail-Safe Clock Monitor Operation:  
- Detects clock failure and switches to on-chip,  
low-power RC oscillator  
• Hardware Real-Time Clock/Calendar (RTCC):  
- Provides clock, calendar and alarm functions  
• Programmable Cyclic Redundancy Check (CRC)  
-
-
User-programmable polynomial  
8/16-level FIFO buffer  
• Five 16-Bit Timers/Counters with Programmable  
Prescaler  
• Five 16-Bit Capture Inputs  
• Five 16-Bit Compare/PWM Outputs  
• High-Current Sink/Source (18 mA/18 mA) on All  
I/O Pins  
• Configurable, Open-Drain Output on Digital I/O Pins  
• Up to 5 External Interrupt Sources  
• 5.5V Tolerant Input (digital pins only)  
• On-Chip 2.5V Regulator  
• JTAG Boundary Scan and Programming Support  
• Power-on Reset (POR), Power-up Timer (PWRT)  
and Oscillator Start-up Timer (OST)  
• Flexible Watchdog Timer (WDT) with On-Chip,  
Low-Power RC Oscillator for Reliable Operation  
• In-Circuit Serial Programming™ (ICSP™) and  
In-Circuit Emulation (ICE) via 2 Pins  
Program  
Pins Memory  
(Bytes)  
SRAM  
(Bytes)  
Timers  
16-Bit  
10-Bit  
A/D (ch)  
2
Device  
SPI  
I C™  
PIC24FJ64GA006  
PIC24FJ96GA006  
PIC24FJ128GA006  
PIC24FJ64GA008  
PIC24FJ96GA008  
PIC24FJ128GA008  
PIC24FJ64GA010  
PIC24FJ96GA010  
PIC24FJ128GA010  
64  
64  
64K  
96K  
8K  
8K  
8K  
8K  
8K  
8K  
8K  
8K  
8K  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
16  
16  
16  
16  
16  
16  
16  
16  
16  
2
2
2
2
2
2
2
2
2
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
64  
128K  
64K  
80  
80  
96K  
80  
128K  
64K  
100  
100  
100  
96K  
128K  
2005-2012 Microchip Technology Inc.  
DS39747F-page 1  
PIC24FJ128GA010 FAMILY  
Pin Diagrams  
64-Pin TQFP/QFN(1)  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
SOSCO/T1CK/CN0/RC14  
SOSCI/CN1/RC13  
OC1/RD0  
1
PMD5/RE5  
PMD6/RE6  
2
PMD7/RE7  
3
IC4/PMCS1/INT4/RD11  
IC3/PMCS2/INT3/RD10  
IC2/U1CTS/INT2/RD9  
IC1/RTCC/INT1/RD8  
Vss  
PMA5/SCK2/CN8/RG6  
PMA4/SDI2/CN9/RG7  
PMA3/SDO2/CN10/RG8  
4
5
6
MCLR  
PMA2/SS2/CN11/RG9  
VSS  
7
PIC24FJXXGA006  
PIC24FJXXXGA006  
8
OSC2/CLKO/RC15  
OSC1/CLKI/RC12  
VDD  
9
VDD  
10  
11  
12  
13  
14  
15  
16  
C1IN+/AN5/CN7/RB5  
C1IN-/AN4/CN6/RB4  
SCL1/RG2  
C2IN+/AN3/CN5/RB3  
SDA1/RG3  
U1RTS/BCLK1/SCK1/INT0/RF6  
U1RX/SDI1/RF2  
U1TX/SDO1/RF3  
C2IN-/AN2/SS1/CN4/RB2  
PGC1/EMUC1/VREF-/AN1/CN3/RB1  
PGD1/EMUD1/PMA6/VREF+/AN0/CN2/RB0  
Legend:  
Shaded pins indicate pins that are tolerant to up to +5.5 VDC.  
Note 1: Bottom pad of QFN package must be connected to VSS.  
DS39747F-page 2  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
Pin Diagrams (Continued)  
80-Pin TQFP  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
SOSCO/T1CK/CN0/RC14  
1
PMD5/RE5  
PMD6/RE6  
SOSCI/CN1/RC13  
OC1/RD0  
2
PMD7/RE7  
3
IC4/PMCS1/RD11  
IC3/PMCS2/RD10  
IC2/RD9  
T2CK/RC1  
4
T4CK/RC3  
5
PMA5/SCK2/CN8/RG6  
PMA4/SDI2/CN9/RG7  
PMA3/SDO2/CN10/RG8  
MCLR  
6
IC1/RTCC/RD8  
SDA2/INT4/RA15  
SCL2/INT3/RA14  
VSS  
7
8
9
PMA2/SS2/CN11/RG9  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
PIC24FJXXGA008  
PIC24FJXXXGA008  
OSC2/CLKO/RC15  
OSC1/CLKI/RC12  
VDD  
VDD  
TMS/INT1/RE8  
TDO/INT2/RE9  
SCL1/RG2  
C1IN+/AN5/CN7/RB5  
C1IN-/AN4/CN6/RB4  
SDA1/RG3  
SCK1/INT0/RF6  
SDI1/RF7  
C2IN+/AN3/CN5/RB3  
C2IN-/AN2/SS1/CN4/RB2  
PGC1/EMUC1/AN1/CN3/RB1  
PGD1/EMUD1/AN0/CN2/RB0  
SDO1/RF8  
U1RX/RF2  
U1TX/RF3  
Legend: Shaded pins indicate pins that are tolerant to up to +5.5 VDC.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 3  
PIC24FJ128GA010 FAMILY  
Pin Diagrams (Continued))  
100-Pin TQFP  
VSS  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
1
RG15  
VDD  
PMD5/RE5  
SOSCO/T1CK/CN0/RC14  
SOSCI/CN1/RC13  
OC1/RD0  
IC4/PMCS1/RD11  
IC3/PMCS2/RD10  
IC2/RD9  
IC1/RTCC/RD8  
INT4/RA15  
INT3/RA14  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
PMD6/RE6  
PMD7/RE7  
T2CK/RC1  
T3CK/RC2  
T4CK/RC3  
T5CK/RC4  
PMA5/SCK2/CN8/RG6  
PMA4/SDI2/CN9/RG7  
PMA3/SDO2/CN10/RG8  
MCLR  
PMA2/SS2/CN11/RG9  
VSS  
VSS  
OSC2/CLKO/RC15  
OSC1/CLKI/RC12  
VDD  
PIC24FJXXGA010  
PIC24FJXXXGA010  
TDO/RA5  
VDD  
TMS/RA0  
INT1/RE8  
INT2/RE9  
TDI/RA4  
SDA2/RA3  
SCL2/RA2  
SCL1/RG2  
SDA1/RG3  
SCK1/INT0/RF6  
SDI1/RF7  
SDO1/RF8  
U1RX/RF2  
U1TX/RF3  
C1IN+/AN5/CN7/RB5  
C1IN-/AN4/CN6/RB4  
C2IN+/AN3/CN5/RB3  
C2IN-/AN2/SS1/CN4/RB2  
PGC1/EMUC1/AN1/CN3/RB1  
PGD1/EMUD1/AN0/CN2/RB0  
Legend: Shaded pins indicate pins that are tolerant to up to +5.5 VDC.  
DS39747F-page 4  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 7  
2.0 Guidelines for Getting Started with 16-bit Microcontrollers ........................................................................................................ 19  
3.0 CPU............................................................................................................................................................................................ 25  
4.0 Memory Organization................................................................................................................................................................. 31  
5.0 Flash Program Memory.............................................................................................................................................................. 51  
6.0 Resets ........................................................................................................................................................................................ 57  
7.0 Interrupt Controller ..................................................................................................................................................................... 63  
8.0 Oscillator Configuration.............................................................................................................................................................. 97  
9.0 Power-Saving Features............................................................................................................................................................ 105  
10.0 I/O Ports ................................................................................................................................................................................... 107  
11.0 Timer1 ...................................................................................................................................................................................... 111  
12.0 Timer2/3 and Timer4/5 ............................................................................................................................................................ 113  
13.0 Input Capture............................................................................................................................................................................ 119  
14.0 Output Compare....................................................................................................................................................................... 121  
15.0 Serial Peripheral Interface (SPI)............................................................................................................................................... 127  
2
16.0 Inter-Integrated Circuit (I C™) ................................................................................................................................................. 137  
17.0 Universal Asynchronous Receiver Transmitter (UART)........................................................................................................... 145  
18.0 Parallel Master Port (PMP)....................................................................................................................................................... 153  
19.0 Real-Time Clock and Calendar (RTCC)................................................................................................................................... 163  
20.0 Programmable Cyclic Redundancy Check (CRC) Generator .................................................................................................. 175  
21.0 10-bit High-Speed A/D Converter............................................................................................................................................. 179  
22.0 Comparator Module.................................................................................................................................................................. 189  
23.0 Comparator Voltage Reference................................................................................................................................................ 193  
24.0 Special Features ...................................................................................................................................................................... 195  
25.0 Instruction Set Summary.......................................................................................................................................................... 205  
26.0 Development Support............................................................................................................................................................... 213  
27.0 Electrical Characteristics.......................................................................................................................................................... 217  
28.0 Packaging Information.............................................................................................................................................................. 231  
Appendix A: Revision History............................................................................................................................................................. 245  
Index ................................................................................................................................................................................................. 247  
The Microchip Web Site..................................................................................................................................................................... 251  
Customer Change Notification Service .............................................................................................................................................. 251  
Customer Support.............................................................................................................................................................................. 251  
Reader Response.............................................................................................................................................................................. 252  
Product Identification System ............................................................................................................................................................ 253  
2005-2012 Microchip Technology Inc.  
DS39747F-page 5  
PIC24FJ128GA010 FAMILY  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We  
welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
DS39747F-page 6  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
1.1.2  
POWER-SAVING TECHNOLOGY  
1.0  
DEVICE OVERVIEW  
All of the devices in the PIC24FJ128GA010 family  
incorporate a range of features that can significantly  
reduce power consumption during operation. Key  
items include:  
This document contains device-specific information for  
the following devices:  
• PIC24FJ64GA006  
• PIC24FJ64GA008  
• PIC24FJ64GA010  
• PIC24FJ96GA006  
• PIC24FJ96GA008  
• PIC24FJ96GA010  
• PIC24FJ128GA006  
• PIC24FJ128GA008  
• PIC24FJ128GA010  
On-the-Fly Clock Switching: The device clock  
can be changed under software control to the  
Timer1 source or the internal low-power RC  
oscillator during operation, allowing the user to  
incorporate power-saving ideas into their software  
designs.  
Doze Mode Operation: When timing-sensitive  
applications, such as serial communications,  
require the uninterrupted operation of peripherals,  
the CPU clock speed can be selectively reduced,  
allowing incremental power savings without  
missing a beat.  
This family introduces a new line of Microchip devices:  
a 16-bit microcontroller family with a broad peripheral  
feature set and enhanced computational performance.  
The PIC24FJ128GA010 family offers a new migration  
option for those high-performance applications which  
may be outgrowing their 8-bit platforms, but don’t  
require the numerical processing power of a digital  
signal processor.  
Instruction-Based Power-Saving Modes: The  
microcontroller can suspend all operations, or  
selectively shut down its core while leaving its  
peripherals active, with a single instruction in  
software.  
1.1.3  
OSCILLATOR OPTIONS AND  
FEATURES  
1.1  
Core Features  
1.1.1  
16-BIT ARCHITECTURE  
All of the devices in the PIC24FJ128GA010 family offer  
five different oscillator options, allowing users a range  
of choices in developing application hardware. These  
include:  
Central to all PIC24F devices is the 16-bit modified  
Harvard architecture, first introduced with Microchip’s  
dsPIC® digital signal controllers. The PIC24F CPU core  
offers a wide range of enhancements, such as:  
• Two Crystal modes using crystals or ceramic  
resonators.  
• 16-bit data and 24-bit address paths, with the  
ability to move information between data and  
memory spaces  
• Two External Clock modes offering the option of a  
divide-by-2 clock output.  
• Linear addressing of up to 8 Mbytes (program  
space) and 64 Kbytes (data)  
• A Fast Internal Oscillator (FRC) with a nominal  
8 MHz output, which can also be divided under  
software control to provide clock speeds as low as  
31 kHz.  
• A 16-element working register array with built-in  
software stack support  
• A 17 x 17 hardware multiplier with support for  
integer math  
• A Phase Lock Loop (PLL) frequency multiplier,  
available to the external oscillator modes and the  
FRC oscillator, which allows clock speeds of up to  
32 MHz.  
• Hardware support for 32 by 16-bit division  
• An instruction set that supports multiple  
addressing modes and is optimized for high-level  
languages such as ‘C’  
• A separate internal RC oscillator (LPRC) with a  
fixed, 31 kHz output, which provides a low-power  
option for timing-insensitive applications.  
• Operational performance up to 16 MIPS  
The internal oscillator block also provides a stable ref-  
erence source for the Fail-Safe Clock Monitor. This  
option constantly monitors the main clock source  
against a reference signal provided by the internal  
oscillator and enables the controller to switch to the  
internal oscillator, allowing for continued low-speed  
operation or a safe application shutdown.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 7  
PIC24FJ128GA010 FAMILY  
1.1.4  
EASY MIGRATION  
1.3  
Details on Individual Family  
Members  
Regardless of the memory size, all devices share the  
same rich set of peripherals, allowing for a smooth  
migration path as applications grow and evolve.  
Devices in the PIC24FJ128GA010 family are available  
in 64-pin, 80-pin and 100-pin packages. The general  
block diagram for all devices is shown in Figure 1-1.  
The consistent pinout scheme used throughout the  
entire family also aids in migrating to the next larger  
device. This is true when moving between devices with  
the same pin count, or even jumping from 64-pin to  
80-pin to 100-pin devices.  
The devices are differentiated from each other in two  
ways:  
1. Flash program memory (64 Kbytes for  
PIC24FJ64GA devices, 96 Kbytes for  
PIC24FJ96GA devices and 128 Kbytes for  
PIC24FJ128GA devices).  
The PIC24F family is pin-compatible with devices in the  
dsPIC33 family, and shares some compatibility with the  
pinout schema for PIC18 and dsPIC30. This extends  
the ability of applications to grow from the relatively  
simple, to the powerful and complex, yet still selecting  
a Microchip device.  
2. Available I/O pins and ports (53 pins on 6 ports for  
64-pin devices, 69 pins on 7 ports for 80-pin  
devices and 84 pins on 7 ports for 100-pin  
devices). Note also that, since interrupt-on-change  
inputs are available on every I/O pin for this family  
of devices, the number of CN inputs also differs  
between package sizes.  
1.2  
Other Special Features  
Communications: The PIC24FJ128GA010  
family incorporates a range of serial communica-  
tion peripherals to handle a range of application  
requirements. All devices are equipped with two  
independent UARTs with built-in IrDA  
All other features for devices in this family are identical.  
These are summarized in Table 1-1.  
A
list of the pin features available on the  
PIC24FJ128GA010 family devices, sorted by function,  
is shown in Table 1-2. Note that this table shows the pin  
location of individual peripheral features and not how  
they are multiplexed on the same pin. This information  
is provided in the pinout diagrams in the beginning of  
the data sheet. Multiplexed features are sorted by the  
priority given to a feature, with the highest priority  
peripheral being listed first.  
encoder/decoders. There are also two indepen-  
dent SPI modules, and two independent I2C  
modules that support both Master and Slave  
modes of operation.  
Parallel Master/Enhanced Parallel Slave Port:  
One of the general purpose I/O ports can be  
reconfigured for enhanced parallel data communi-  
cations. In this mode, the port can be configured  
for both master and slave operations, and  
supports 8-bit and 16-bit data transfers with up to  
16 external address lines in Master modes.  
Real-Time Clock/Calendar: This module  
implements a full-featured clock and calendar with  
alarm functions in hardware, freeing up timer  
resources and program memory space for use of  
the core application.  
10-Bit A/D Converter: This module incorporates  
programmable acquisition time, allowing for a  
channel to be selected and a conversion to be  
initiated without waiting for a sampling period, as  
well as faster sampling speeds.  
DS39747F-page 8  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
TABLE 1-1:  
DEVICE FEATURES FOR THE PIC24FJ128GA010 FAMILY  
Features  
Operating Frequency  
DC – 32 MHz  
96K  
Program Memory (Bytes)  
64K  
96K  
128K  
64K  
128K  
64K  
96K  
128K  
Program Memory (Instructions) 22,016 32,768 44,032 22,016 32,768 44,032 22,016 32,768 44,032  
Data Memory (Bytes)  
8192  
Interrupt Sources  
43  
(Soft Vectors/NMI Traps)  
(39/4)  
I/O Ports  
Ports B, C, D, E, F, G  
53  
Ports A, B, C, D, E, F, G  
69  
Ports A, B, C, D, E, F, G  
84  
Total I/O Pins  
Timers:  
Total Number (16-bit)  
32-Bit (from paired 16-bit timers)  
Input Capture Channels  
5
2
5
5
Output Compare/PWM  
Channels  
Input Change Notification  
Interrupt  
19  
22  
Serial Communications:  
UART  
2
2
SPI (3-wire/4-wire)  
I2C™  
2
Parallel Communications  
(PMP/PSP)  
Yes  
JTAG Boundary Scan  
Yes  
16  
10-Bit Analog-to-Digital Module  
(input channels)  
Analog Comparators  
Resets (and Delays)  
2
POR, BOR, RESETInstruction, MCLR, WDT, Illegal Opcode, Configuration Word  
Mismatch, REPEATInstruction, Hardware Traps (PWRT, OST, PLL Lock)  
Instruction Set  
Packages  
76 Base Instructions, Multiple Addressing Mode Variations  
64-Pin TQFP/QFN  
80-Pin TQFP  
100-Pin TQFP  
2005-2012 Microchip Technology Inc.  
DS39747F-page 9  
PIC24FJ128GA010 FAMILY  
FIGURE 1-1:  
PIC24FJ128GA010 FAMILY GENERAL BLOCK DIAGRAM  
Data Bus  
Interrupt  
PORTA(1)  
Controller  
RA0:RA7,  
RA9:RA10,  
RA14:15  
16  
16  
16  
8
Data Latch  
Data RAM  
PSV & Table  
Data Access  
Control Block  
PCH  
PCL  
PORTB(1)  
RB0:RB15  
23  
Program Counter  
Address  
Latch  
Repeat  
Control  
Logic  
Stack  
Control  
Logic  
16  
23  
16  
16  
Read AGU  
Write AGU  
Address Latch  
Program Memory  
Data Latch  
PORTC  
RC1:RC4,  
RC12:RC15  
EA MUX  
PORTD(1)  
Address Bus  
24  
16  
16  
RD0:RD15  
Inst Latch  
Inst Register  
PORTE(1)  
RE0:RE9  
Instruction  
Decode &  
Control  
Divide  
Support  
Control Signals  
16 x 16  
W Reg Array  
17x17  
Multiplier  
PORTF(1)  
Power-up  
Timer  
Timing  
OSC2/CLKO  
OSC1/CLKI  
Generation  
RF0:RF8,  
RF12:RF13  
Oscillator  
Start-up Timer  
FRC/LPRC  
Oscillators  
16-Bit ALU  
16  
Power-on  
Reset  
Precision  
Band Gap  
Reference  
PORTG(1)  
Watchdog  
Timer  
ENVREG  
Brown-out  
Reset(2)  
RG0:RG9,  
RG12:RG15  
Voltage  
Regulator  
VDDCORE/VCAP  
Timer1  
VDD,VSS  
MCLR  
10-Bit  
A/D  
Timer2/3  
Comparators  
Timer4/5  
RTCC  
SPI1/2  
PMP/PSP  
PWM/  
OC1-5  
CN1-22(1)  
IC1-5  
I2C1/2  
UART1/2  
Note 1: Not all pins or features are implemented on all device pinout configurations. See Table 1-2 for I/O port pin descriptions.  
2: BOR functionality is provided when the on-board voltage regulator is enabled.  
DS39747F-page 10  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
TABLE 1-2:  
PIC24FJ128GA010 FAMILY PINOUT DESCRIPTIONS  
Pin Number  
Input  
Buffer  
Function  
I/O  
Description  
64-Pin  
80-Pin  
100-Pin  
AN0  
AN1  
16  
15  
14  
13  
12  
11  
17  
18  
21  
22  
23  
24  
27  
28  
29  
30  
19  
20  
35  
29  
12  
11  
21  
14  
13  
22  
39  
40  
48  
47  
16  
15  
14  
13  
12  
11  
4
20  
19  
18  
17  
16  
15  
21  
22  
27  
28  
29  
30  
33  
34  
35  
36  
25  
26  
38  
35  
16  
15  
27  
18  
17  
28  
49  
50  
60  
59  
20  
19  
18  
17  
16  
15  
6
25  
24  
23  
22  
21  
20  
26  
27  
32  
33  
34  
35  
41  
42  
43  
44  
30  
31  
48  
39  
21  
20  
32  
23  
22  
33  
63  
64  
74  
73  
25  
24  
23  
22  
21  
20  
10  
11  
12  
14  
44  
81  
82  
83  
84  
49  
I
I
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
ANA  
A/D Analog Inputs.  
AN2  
I
AN3  
I
AN4  
I
AN5  
I
AN6  
I
AN7  
I
AN8  
I
AN9  
I
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AVDD  
AVSS  
BCLK1  
BCLK2  
C1IN-  
C1IN+  
C1OUT  
C2IN-  
C2IN+  
C2OUT  
CLKI  
CLKO  
CN0  
I
I
I
I
I
I
P
P
O
O
I
Positive Supply for Analog Modules.  
Ground Reference for Analog Modules.  
®
UART1 IrDA Baud Clock.  
®
UART2 IrDA Baud Clock.  
ANA  
ANA  
Comparator 1 Negative Input.  
Comparator 1 Positive Input.  
Comparator 1 Output.  
I
O
I
ANA  
ANA  
Comparator 2 Negative Input.  
Comparator 2 Positive Input.  
Comparator 2 Output.  
I
O
I
ANA  
Main Clock Input Connection.  
System Clock Output.  
O
I
ST  
Interrupt-on-Change Inputs.  
CN1  
I
ST  
CN2  
I
ST  
CN3  
I
ST  
CN4  
I
ST  
CN5  
I
ST  
CN6  
I
ST  
CN7  
I
ST  
CN8  
I
ST  
CN9  
5
7
I
ST  
CN10  
CN11  
CN12  
CN13  
CN14  
CN15  
CN16  
CN17  
6
8
I
ST  
8
10  
36  
66  
67  
68  
69  
39  
I
ST  
30  
52  
53  
54  
55  
31  
I
ST  
I
ST  
I
ST  
I
ST  
I
ST  
I
ST  
2
2
Legend:  
TTL = TTL input buffer, ST = Schmitt Trigger input buffer, ANA = Analog level input/output, I C™ = I C/SMBus input buffer  
2005-2012 Microchip Technology Inc.  
DS39747F-page 11  
PIC24FJ128GA010 FAMILY  
TABLE 1-2:  
PIC24FJ128GA010 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
Function  
I/O  
Description  
Interrupt-on-Change Inputs.  
64-Pin  
80-Pin  
100-Pin  
CN18  
CN19  
CN20  
CN21  
CVREF  
EMUC1  
EMUD1  
EMUC2  
EMUD2  
ENVREG  
IC1  
32  
23  
15  
16  
17  
18  
57  
42  
43  
44  
45  
52  
35  
42  
43  
44  
45  
7
40  
65  
37  
38  
29  
19  
20  
21  
22  
71  
54  
55  
56  
57  
64  
45  
13  
14  
52  
53  
9
50  
80  
47  
48  
34  
24  
25  
26  
27  
86  
68  
69  
70  
71  
79  
55  
18  
19  
66  
67  
13  
I
ST  
ST  
ST  
ST  
ANA  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
I
I
I
O
Comparator Voltage Reference Output.  
In-Circuit Emulator Clock Input/Output.  
In-Circuit Emulator Data Input/Output.  
In-Circuit Emulator Clock Input/Output.  
In-Circuit Emulator Data Input/Output.  
Enable for On-Chip Voltage Regulator.  
Input Capture Inputs.  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
I
I
I
I
I
I
I
I
IC2  
IC3  
IC4  
IC5  
INT0  
External Interrupt Inputs.  
INT1  
INT2  
INT3  
INT4  
MCLR  
Master Clear (Device Reset) Input. This line is brought  
low to cause a Reset.  
OC1  
OC2  
46  
49  
50  
51  
52  
17  
30  
39  
40  
15  
16  
17  
18  
58  
61  
62  
63  
66  
21  
36  
49  
50  
19  
20  
21  
22  
72  
76  
77  
78  
81  
26  
44  
63  
64  
24  
25  
26  
27  
O
O
Output Compare/PWM Outputs.  
OC3  
O
OC4  
O
OC5  
O
OCFA  
OCFB  
OSC1  
OSC2  
PGC1  
PGD1  
PGC2  
PGD2  
I
ST  
ST  
ANA  
ANA  
ST  
ST  
ST  
ST  
Output Compare Fault A Input.  
I
Output Compare Fault B Input.  
I
Main Oscillator Input Connection.  
O
Main Oscillator Output Connection.  
I/O  
I/O  
I/O  
I/O  
In-Circuit Debugger and ICSP™ Programming Clock.  
In-Circuit Debugger and ICSP Programming Data.  
In-Circuit Debugger and ICSP™ Programming Clock.  
In-Circuit Debugger and ICSP Programming Data.  
2
2
Legend:  
TTL = TTL input buffer, ST = Schmitt Trigger input buffer, ANA = Analog level input/output, I C™ = I C/SMBus input buffer  
DS39747F-page 12  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
TABLE 1-2:  
PIC24FJ128GA010 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
80-Pin  
36  
Input  
Buffer  
Function  
I/O  
Description  
64-Pin  
100-Pin  
PMA0  
PMA1  
30  
44  
I/O  
I/O  
ST/TTL Parallel Master Port Address Bit 0 Input (Buffered Slave  
modes) and Output (Master modes).  
29  
35  
43  
ST/TTL Parallel Master Port Address Bit 1 Input (Buffered Slave  
modes) and Output (Master modes).  
PMA2  
PMA3  
PMA4  
PMA5  
PMA6  
PMA7  
PMA8  
PMA9  
PMA10  
PMA11  
PMA12  
PMA13  
PMBE  
PMCS1  
PMCS2  
PMD0  
PMD1  
PMD2  
PMD3  
PMD4  
PMD5  
PMD6  
PMD7  
PMRD  
PMWR  
8
10  
8
14  
12  
11  
10  
29  
28  
50  
49  
42  
41  
35  
34  
78  
71  
70  
93  
94  
98  
99  
100  
3
O
O
Parallel Master Port Address (Demultiplexed Master  
modes).  
6
5
7
O
4
6
O
16  
22  
32  
31  
28  
27  
24  
23  
51  
45  
44  
60  
61  
62  
63  
64  
1
24  
23  
40  
39  
34  
33  
30  
29  
63  
57  
56  
76  
77  
78  
79  
80  
1
O
O
O
O
O
O
O
O
O
Parallel Master Port Byte Enable Strobe.  
I/O  
O
ST/TTL Parallel Master Port Chip Select 1 Strobe/Address bit 14.  
Parallel Master Port Chip Select 2 Strobe/Address bit 15.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST/TTL Parallel Master Port Data (Demultiplexed Master mode)  
or Address/Data (Multiplexed Master modes).  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
ST/TTL  
2
2
4
ST/TTL  
3
3
5
ST/TTL  
53  
52  
67  
66  
82  
81  
ST/TTL Parallel Master Port Read Strobe.  
ST/TTL Parallel Master Port Write Strobe.  
2
2
Legend:  
TTL = TTL input buffer, ST = Schmitt Trigger input buffer, ANA = Analog level input/output, I C™ = I C/SMBus input buffer  
2005-2012 Microchip Technology Inc.  
DS39747F-page 13  
PIC24FJ128GA010 FAMILY  
TABLE 1-2:  
PIC24FJ128GA010 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
Function  
I/O  
Description  
64-Pin  
80-Pin  
100-Pin  
RA0  
RA1  
16  
15  
14  
13  
12  
11  
17  
18  
21  
22  
23  
24  
27  
28  
29  
30  
39  
47  
48  
40  
23  
24  
52  
53  
20  
19  
18  
17  
16  
15  
21  
22  
27  
28  
29  
30  
33  
34  
35  
36  
4
17  
38  
58  
59  
60  
61  
91  
92  
28  
29  
66  
67  
25  
24  
23  
22  
21  
20  
26  
27  
32  
33  
34  
35  
41  
42  
43  
44  
6
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
PORTA Digital I/O.  
RA2  
RA3  
RA4  
RA5  
RA6  
RA7  
RA9  
RA10  
RA14  
RA15  
RB0  
PORTB Digital I/O.  
RB1  
RB2  
RB3  
RB4  
RB5  
RB6  
RB7  
RB8  
RB9  
RB10  
RB11  
RB12  
RB13  
RB14  
RB15  
RC1  
RC2  
RC3  
RC4  
RC12  
RC13  
RC14  
RC15  
PORTC Digital I/O.  
5
7
8
49  
59  
60  
50  
9
63  
73  
74  
64  
2
2
Legend:  
TTL = TTL input buffer, ST = Schmitt Trigger input buffer, ANA = Analog level input/output, I C™ = I C/SMBus input buffer  
DS39747F-page 14  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
TABLE 1-2:  
PIC24FJ128GA010 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
Function  
I/O  
Description  
64-Pin  
80-Pin  
100-Pin  
RD0  
RD1  
RD2  
RD3  
RD4  
RD5  
RD6  
RD7  
RD8  
RD9  
RD10  
RD11  
RD12  
RD13  
RD14  
RD15  
RE0  
RE1  
RE2  
RE3  
RE4  
RE5  
RE6  
RE7  
RE8  
RE9  
RF0  
46  
49  
50  
51  
52  
53  
54  
55  
42  
43  
44  
45  
60  
61  
62  
63  
64  
1
58  
61  
62  
63  
66  
67  
68  
69  
54  
55  
56  
57  
64  
65  
37  
38  
76  
77  
78  
79  
80  
1
72  
76  
77  
78  
81  
82  
83  
84  
68  
69  
70  
71  
79  
80  
47  
48  
93  
94  
98  
99  
100  
3
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
PORTD Digital I/O.  
PORTE Digital I/O.  
2
2
4
3
3
5
58  
59  
34  
33  
31  
32  
35  
13  
14  
72  
73  
42  
41  
39  
40  
45  
44  
43  
18  
19  
87  
88  
52  
51  
49  
50  
55  
54  
53  
40  
39  
PORTF Digital I/O.  
RF1  
RF2  
RF3  
RF4  
RF5  
RF6  
RF7  
RF8  
RF12  
RF13  
2
2
Legend:  
TTL = TTL input buffer, ST = Schmitt Trigger input buffer, ANA = Analog level input/output, I C™ = I C/SMBus input buffer  
2005-2012 Microchip Technology Inc.  
DS39747F-page 15  
PIC24FJ128GA010 FAMILY  
TABLE 1-2:  
PIC24FJ128GA010 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
Function  
I/O  
Description  
64-Pin  
80-Pin  
100-Pin  
RG0  
RG1  
37  
36  
4
75  
74  
47  
46  
6
90  
89  
57  
56  
10  
11  
12  
14  
96  
97  
95  
1
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
PORTG Digital I/O.  
RG2  
RG3  
RG6  
RG7  
5
7
RG8  
6
8
RG9  
8
10  
54  
45  
6
RG12  
RG13  
RG14  
RG15  
RTCC  
SCK1  
SCK2  
SCL1  
SCL2  
SDA1  
SDA2  
SDI1  
SDI2  
SDO1  
SDO2  
SOSCI  
SOSCO  
SS1  
42  
35  
4
68  
55  
10  
57  
58  
56  
59  
54  
11  
53  
12  
73  
74  
23  
14  
74  
6
Real-Time Clock Alarm Output.  
SPI1 Serial Clock Output.  
O
I/O  
I/O  
I/O  
I/O  
I/O  
I
ST  
SPI2 Serial Clock Output.  
2
37  
32  
36  
31  
34  
5
47  
52  
46  
53  
44  
7
I C  
I2C1 Synchronous Serial Clock Input/Output.  
I2C2 Synchronous Serial Clock Input/Output.  
I2C1 Data Input/Output.  
2
I C  
2
I C  
2
I C  
I2C2 Data Input/Output.  
ST  
ST  
SPI1 Serial Data Input.  
I
SPI2 Serial Data Input.  
33  
6
43  
8
O
SPI1 Serial Data Output.  
O
SPI2 Serial Data Output.  
47  
48  
14  
8
59  
60  
18  
10  
60  
4
I
ANA  
ANA  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
ST  
Secondary Oscillator/Timer1 Clock Input.  
Secondary Oscillator/Timer1 Clock Output.  
Slave Select Input/Frame Select Output (SPI1).  
Slave Select Input/Frame Select Output (SPI2).  
Timer1 Clock.  
O
I/O  
I/O  
I
SS2  
T1CK  
T2CK  
T3CK  
T4CK  
T5CK  
TCK  
48  
27  
28  
24  
23  
I
Timer2 External Clock Input.  
5
7
I
Timer3 External Clock Input.  
8
I
Timer4 External Clock Input.  
33  
34  
14  
13  
9
I
Timer5 External Clock Input.  
38  
60  
61  
17  
I
JTAG Test Clock/Programming Clock Input.  
JTAG Test Data/Programming Data Input.  
JTAG Test Data Output.  
TDI  
I
TDO  
O
TMS  
I
ST  
JTAG Test Mode Select Input.  
2
2
Legend:  
TTL = TTL input buffer, ST = Schmitt Trigger input buffer, ANA = Analog level input/output, I C™ = I C/SMBus input buffer  
DS39747F-page 16  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
TABLE 1-2:  
PIC24FJ128GA010 FAMILY PINOUT DESCRIPTIONS (CONTINUED)  
Pin Number  
Input  
Buffer  
Function  
I/O  
Description  
64-Pin  
80-Pin  
100-Pin  
U1CTS  
U1RTS  
U1RX  
U1TX  
43  
35  
34  
33  
21  
29  
31  
32  
37  
38  
42  
41  
27  
35  
39  
40  
47  
48  
52  
51  
40  
39  
49  
50  
I
O
I
ST  
UART1 Clear-to-Send Input.  
UART1 Request-to-Send Output.  
UART1 Receive.  
ST  
DIG  
ST  
O
I
UART1 Transmit Output.  
U2CTS  
U2RTS  
U2RX  
U2TX  
UART2 Clear-to-Send Input.  
UART2 Request-to-Send Output.  
UART 2 Receive Input.  
O
I
ST  
O
P
UART2 Transmit Output.  
VDD  
10, 26, 38 12, 32, 48 2, 16, 37,  
46, 62  
Positive Supply for Peripheral Digital Logic and I/O Pins.  
VDDCAP  
56  
70  
85  
P
P
External Filter Capacitor Connection (regulator is  
enabled).  
VDDCORE  
56  
70  
85  
Positive Supply for Microcontroller Core Logic (regulator  
is disabled).  
VREF-  
VREF+  
VSS  
15  
16  
23  
24  
28  
29  
I
I
ANA  
ANA  
A/D and Comparator Reference Voltage (Low) Input.  
A/D and Comparator Reference Voltage (High) Input.  
Ground Reference for Logic and I/O Pins.  
9, 25, 41  
11, 31, 51 15, 36, 45,  
65, 75  
P
2
2
Legend:  
TTL = TTL input buffer, ST = Schmitt Trigger input buffer, ANA = Analog level input/output, I C™ = I C/SMBus input buffer  
2005-2012 Microchip Technology Inc.  
DS39747F-page 17  
PIC24FJ128GA010 FAMILY  
NOTES:  
DS39747F-page 18  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
FIGURE 2-1:  
RECOMMENDED  
MINIMUM CONNECTIONS  
2.0  
2.1  
GUIDELINES FOR GETTING  
STARTED WITH 16-BIT  
MICROCONTROLLERS  
(2)  
C2  
VDD  
Basic Connection Requirements  
Getting started with the PIC24FJ128GA010 family  
family of 16-bit microcontrollers requires attention to a  
minimal set of device pin connections before  
proceeding with development.  
(1)  
(1)  
R1  
R2  
(EN/DIS)VREG  
VCAP/VDDCORE  
MCLR  
C1  
The following pins must always be connected:  
C7  
PIC24FJXXXX  
• All VDD and VSS pins  
(see Section 2.2 “Power Supply Pins”)  
VDD  
VSS  
VSS  
VDD  
(2)  
(2)  
C3  
C6  
• All AVDD and AVSS pins, regardless of whether or  
not the analog device features are used  
(see Section 2.2 “Power Supply Pins”)  
• MCLR pin  
(see Section 2.3 “Master Clear (MCLR) Pin”)  
(2)  
(2)  
C4  
C5  
• ENVREG/DISVREG and VCAP/VDDCORE pins  
(PIC24F J devices only)  
(see Section 2.4 “Voltage Regulator Pins  
(ENVREG/DISVREG and VCAP/VDDCORE)”)  
Key (all values are recommendations):  
C1 through C6: 0.1 F, 20V ceramic  
These pins must also be connected if they are being  
used in the end application:  
C7: 10 F, 6.3V or greater, tantalum or ceramic  
R1: 10 k  
• PGECx/PGEDx pins used for In-Circuit Serial  
Programming™ (ICSP™) and debugging purposes  
(see Section 2.5 “ICSP Pins”)  
R2: 100to 470Ω  
Note 1: See Section 2.4 “Voltage Regulator Pins  
(ENVREG/DISVREG and VCAP/VDDCORE)”  
for explanation of ENVREG/DISVREG pin  
connections.  
• OSCI and OSCO pins when an external oscillator  
source is used  
(see Section 2.6 “External Oscillator Pins”)  
2: The example shown is for a PIC24F device  
with five VDD/VSS and AVDD/AVSS pairs.  
Other devices may have more or less pairs;  
adjust the number of decoupling capacitors  
appropriately.  
Additionally, the following pins may be required:  
• VREF+/VREF- pins used when external voltage  
reference for analog modules is implemented  
Note:  
The AVDD and AVSS pins must always be  
connected, regardless of whether any of  
the analog modules are being used.  
The minimum mandatory connections are shown in  
Figure 2-1.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 19  
PIC24FJ128GA010 FAMILY  
2.2  
Power Supply Pins  
2.3  
Master Clear (MCLR) Pin  
The MCLR pin provides two specific device  
functions: device Reset, and device programming  
and debugging. If programming and debugging are  
2.2.1  
DECOUPLING CAPACITORS  
The use of decoupling capacitors on every pair of  
power supply pins, such as VDD, VSS, AVDD and  
AVSS is required.  
not required in the end application,  
a
direct  
connection to VDD may be all that is required. The  
addition of other components, to help increase the  
application’s resistance to spurious Resets from  
Consider the following criteria when using decoupling  
capacitors:  
voltage sags, may be beneficial.  
A
typical  
Value and type of capacitor: A 0.1 F (100 nF),  
10-20V capacitor is recommended. The capacitor  
should be a low-ESR device with a resonance  
frequency in the range of 200 MHz and higher.  
Ceramic capacitors are recommended.  
configuration is shown in Figure 2-1. Other circuit  
designs may be implemented, depending on the  
application’s requirements.  
During programming and debugging, the resistance  
and capacitance that can be added to the pin must  
be considered. Device programmers and debuggers  
drive the MCLR pin. Consequently, specific voltage  
levels (VIH and VIL) and fast signal transitions must  
not be adversely affected. Therefore, specific values  
of R1 and C1 will need to be adjusted based on the  
application and PCB requirements. For example, it is  
recommended that the capacitor, C1, be isolated  
from the MCLR pin during programming and  
debugging operations by using a jumper (Figure 2-2).  
The jumper is replaced for normal run-time  
operations.  
Placement on the printed circuit board: The  
decoupling capacitors should be placed as close  
to the pins as possible. It is recommended to  
place the capacitors on the same side of the  
board as the device. If space is constricted, the  
capacitor can be placed on another layer on the  
PCB using a via; however, ensure that the trace  
length from the pin to the capacitor is no greater  
than 0.25 inch (6 mm).  
Handling high-frequency noise: If the board is  
experiencing high-frequency noise (upward of  
tens of MHz), add a second ceramic type capaci-  
tor in parallel to the above described decoupling  
capacitor. The value of the second capacitor can  
be in the range of 0.01 F to 0.001 F. Place this  
second capacitor next to each primary decoupling  
capacitor. In high-speed circuit designs, consider  
implementing a decade pair of capacitances as  
close to the power and ground pins as possible  
(e.g., 0.1 F in parallel with 0.001 F).  
Any components associated with the MCLR pin  
should be placed within 0.25 inch (6 mm) of the pin.  
FIGURE 2-2:  
EXAMPLE OF MCLR PIN  
CONNECTIONS  
VDD  
Maximizing performance: On the board layout  
from the power supply circuit, run the power and  
return traces to the decoupling capacitors first,  
and then to the device pins. This ensures that the  
decoupling capacitors are first in the power chain.  
Equally important is to keep the trace length  
between the capacitor and the power pins to a  
minimum, thereby reducing PCB trace  
R1  
R2  
MCLR  
PIC24FXXXX  
JP  
C1  
inductance.  
Note 1: R1 10 kis recommended. A suggested  
starting value is 10 k. Ensure that the  
MCLR pin VIH and VIL specifications are met.  
2.2.2  
TANK CAPACITORS  
On boards with power traces running longer than six  
inches in length, it is suggested to use a tank capacitor  
for integrated circuits including microcontrollers to  
supply a local power source. The value of the tank  
capacitor should be determined based on the trace  
resistance that connects the power supply source to  
the device, and the maximum current drawn by the  
device in the application. In other words, select the tank  
capacitor so that it meets the acceptable voltage sag at  
the device. Typical values range from 4.7 F to 47 F.  
2: R2 470will limit any current flowing into  
MCLR from the external capacitor, C, in the  
event of MCLR pin breakdown, due to  
Electrostatic Discharge (ESD) or Electrical  
Overstress (EOS). Ensure that the MCLR pin  
VIH and VIL specifications are met.  
DS39747F-page 20  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
Designers may use Figure 2-3 to evaluate ESR  
equivalence of candidate devices.  
2.4  
Voltage Regulator Pins  
(ENVREG/DISVREG and  
VCAP/VDDCORE)  
The placement of this capacitor should be close to  
VCAP/VDDCORE. It is recommended that the trace  
Note:  
This section applies only to PIC24F J  
devices with an on-chip voltage regulator.  
length not exceed 0.25 inch (6 mm). Refer to  
Section 27.0 “Electrical Characteristics” for  
additional information.  
The on-chip voltage regulator enable/disable pin  
(ENVREG or DISVREG, depending on the device  
family) must always be connected directly to either a  
supply voltage or to ground. The particular connection  
is determined by whether or not the regulator is to be  
used:  
When the regulator is disabled, the VCAP/VDDCORE pin  
must be tied to a voltage supply at the VDDCORE level.  
Refer to Section 27.0 “Electrical Characteristics” for  
information on VDD and VDDCORE.  
FIGURE 2-3:  
FREQUENCY vs. ESR  
PERFORMANCE FOR  
SUGGESTED VCAP  
• For ENVREG, tie to VDD to enable the regulator,  
or to ground to disable the regulator  
• For DISVREG, tie to ground to enable the  
regulator or to VDD to disable the regulator  
10  
1
Refer to Section 24.2 “On-Chip Voltage Regulator”  
for details on connecting and using the on-chip  
regulator.  
When the regulator is enabled, a low-ESR (< 5)  
capacitor is required on the VCAP/VDDCORE pin to  
stabilize the voltage regulator output voltage. The  
VCAP/VDDCORE pin must not be connected to VDD and  
must use a capacitor of 10 µF connected to ground. The  
type can be ceramic or tantalum. Suitable examples of  
capacitors are shown in Table 2-1. Capacitors with  
equivalent specification can be used.  
0.1  
0.01  
0.001  
0.01  
0.1  
1
10  
100  
1000 10,000  
Frequency (MHz)  
Note:  
Typical data measurement at 25°C, 0V DC bias.  
.
TABLE 2-1:  
Make  
SUITABLE CAPACITOR EQUIVALENTS  
Nominal  
Part #  
Base Tolerance Rated Voltage Temp. Range  
Capacitance  
TDK  
TDK  
C3216X7R1C106K  
C3216X5R1C106K  
10 µF  
10 µF  
10 µF  
10 µF  
10 µF  
10 µF  
±10%  
±10%  
±10%  
±10%  
±10%  
±10%  
16V  
16V  
16V  
16V  
16V  
16V  
-55 to 125ºC  
-55 to 85ºC  
-55 to 125ºC  
-55 to 85ºC  
-55 to 125ºC  
-55 to 85ºC  
Panasonic  
Panasonic  
Murata  
ECJ-3YX1C106K  
ECJ-4YB1C106K  
GRM32DR71C106KA01L  
GRM31CR61C106KC31L  
Murata  
2005-2012 Microchip Technology Inc.  
DS39747F-page 21  
PIC24FJ128GA010 FAMILY  
2.4.1  
CONSIDERATIONS FOR CERAMIC  
CAPACITORS  
FIGURE 2-4:  
DC BIAS VOLTAGE vs.  
CAPACITANCE  
CHARACTERISTICS  
In recent years, large value, low-voltage, surface-mount  
ceramic capacitors have become very cost effective in  
sizes up to a few tens of microfarad. The low-ESR, small  
physical size and other properties make ceramic  
capacitors very attractive in many types of applications.  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
16V Capacitor  
10V Capacitor  
Ceramic capacitors are suitable for use with the inter-  
nal voltage regulator of this microcontroller. However,  
some care is needed in selecting the capacitor to  
ensure that it maintains sufficient capacitance over the  
intended operating range of the application.  
6.3V Capacitor  
-80  
0
1
2
3
4
5
6
7
8
9
10 11 12  
13 14 15  
16 17  
DC Bias Voltage (VDC)  
Typical low-cost, 10 F ceramic capacitors are available  
in X5R, X7R and Y5V dielectric ratings (other types are  
also available, but are less common). The initial toler-  
ance specifications for these types of capacitors are  
often specified as ±10% to ±20% (X5R and X7R), or  
-20%/+80% (Y5V). However, the effective capacitance  
that these capacitors provide in an application circuit will  
also vary based on additional factors, such as the  
applied DC bias voltage and the temperature. The total  
in-circuit tolerance is, therefore, much wider than the  
initial tolerance specification.  
When selecting a ceramic capacitor to be used with the  
internal voltage regulator, it is suggested to select a  
high-voltage rating, so that the operating voltage is a  
small percentage of the maximum rated capacitor volt-  
age. For example, choose a ceramic capacitor rated at  
16V for the 2.5V or 1.8V core voltage. Suggested  
capacitors are shown in Table 2-1.  
2.5  
ICSP Pins  
The X5R and X7R capacitors typically exhibit satisfac-  
tory temperature stability (ex: ±15% over a wide  
temperature range, but consult the manufacturer's data  
sheets for exact specifications). However, Y5V capaci-  
tors typically have extreme temperature tolerance  
specifications of +22%/-82%. Due to the extreme tem-  
perature tolerance, a 10 F nominal rated Y5V type  
capacitor may not deliver enough total capacitance to  
meet minimum internal voltage regulator stability and  
transient response requirements. Therefore, Y5V  
capacitors are not recommended for use with the  
internal regulator if the application must operate over a  
wide temperature range.  
The PGECx and PGEDx pins are used for In-Circuit  
Serial Programming (ICSP) and debugging purposes.  
It is recommended to keep the trace length between  
the ICSP connector and the ICSP pins on the device as  
short as possible. If the ICSP connector is expected to  
experience an ESD event, a series resistor is recom-  
mended, with the value in the range of a few tens of  
ohms, not to exceed 100.  
Pull-up resistors, series diodes and capacitors on the  
PGECx and PGEDx pins are not recommended as they  
will interfere with the programmer/debugger communi-  
cations to the device. If such discrete components are  
an application requirement, they should be removed  
from the circuit during programming and debugging.  
Alternatively, refer to the AC/DC characteristics and  
timing requirements information in the respective  
device Flash programming specification for information  
on capacitive loading limits and pin input voltage high  
(VIH) and input low (VIL) requirements.  
In addition to temperature tolerance, the effective  
capacitance of large value ceramic capacitors can vary  
substantially, based on the amount of DC voltage  
applied to the capacitor. This effect can be very signifi-  
cant, but is often overlooked or is not always  
documented.  
Typical DC bias voltage vs. capacitance graph for X7R  
type capacitors is shown in Figure 2-4.  
For device emulation, ensure that the “Communication  
Channel Select” (i.e., PGECx/PGEDx pins),  
programmed into the device, matches the physical  
connections for the ICSP to the Microchip  
debugger/emulator tool.  
For more information on available Microchip  
development tools connection requirements, refer to  
Section 26.0 “Development Support”.  
DS39747F-page 22  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
FIGURE 2-5:  
SUGGESTED  
2.6  
External Oscillator Pins  
PLACEMENT OF THE  
OSCILLATOR CIRCUIT  
Many microcontrollers have options for at least two  
oscillators: a high-frequency primary oscillator and a  
low-frequency  
secondary  
oscillator  
(refer to  
Single-Sided and In-line Layouts:  
Section 8.0 “Oscillator Configuration” for details).  
Copper Pour  
(tied to ground)  
Primary Oscillator  
Crystal  
The oscillator circuit should be placed on the same  
side of the board as the device. Place the oscillator  
circuit close to the respective oscillator pins with no  
more than 0.5 inch (12 mm) between the circuit  
components and the pins. The load capacitors should  
be placed next to the oscillator itself, on the same side  
of the board.  
DEVICE PINS  
Primary  
OSCI  
OSCO  
GND  
Oscillator  
C1  
C2  
`
`
Use a grounded copper pour around the oscillator cir-  
cuit to isolate it from surrounding circuits. The  
grounded copper pour should be routed directly to the  
MCU ground. Do not run any signal traces or power  
traces inside the ground pour. Also, if using a two-sided  
board, avoid any traces on the other side of the board  
where the crystal is placed.  
SOSCO  
SOSC I  
Secondary  
Oscillator  
Crystal  
`
Layout suggestions are shown in Figure 2-5. In-line  
packages may be handled with a single-sided layout  
that completely encompasses the oscillator pins. With  
fine-pitch packages, it is not always possible to com-  
pletely surround the pins and components. A suitable  
solution is to tie the broken guard sections to a mirrored  
ground layer. In all cases, the guard trace(s) must be  
returned to ground.  
Sec Oscillator: C2  
Sec Oscillator: C1  
Fine-Pitch (Dual-Sided) Layouts:  
Top Layer Copper Pour  
(tied to ground)  
In planning the application’s routing and I/O assign-  
ments, ensure that adjacent port pins, and other  
signals in close proximity to the oscillator, are benign  
(i.e., free of high frequencies, short rise and fall times  
and other similar noise).  
Bottom Layer  
Copper Pour  
(tied to ground)  
OSCO  
For additional information and design guidance on  
oscillator circuits, please refer to these Microchip  
Application Notes, available at the corporate web site  
(www.microchip.com):  
C2  
Oscillator  
Crystal  
GND  
• AN826, “Crystal Oscillator Basics and Crystal  
Selection for rfPIC™ and PICmicro® Devices”  
C1  
• AN849, “Basic PICmicro® Oscillator Design”  
OSCI  
• AN943, “Practical PICmicro® Oscillator Analysis  
and Design”  
AN949, “Making Your Oscillator Work”  
DEVICE PINS  
2005-2012 Microchip Technology Inc.  
DS39747F-page 23  
PIC24FJ128GA010 FAMILY  
If your application needs to use certain A/D pins as  
analog input pins during the debug session, the user  
application must modify the appropriate bits during  
initialization of the A/D module, as follows:  
2.7  
Configuration of Analog and  
Digital Pins During ICSP  
Operations  
If an ICSP compliant emulator is selected as a debug-  
ger, it automatically initializes all of the A/D input pins  
(ANx) as “digital” pins. Depending on the particular  
device, this is done by setting all bits in the ADnPCFG  
register(s), or clearing all bit in the ANSx registers.  
• For devices with an ADnPCFG register, clear the  
bits corresponding to the pin(s) to be configured  
as analog. Do not change any other bits, particu-  
larly those corresponding to the PGECx/PGEDx  
pair, at any time.  
All PIC24F devices will have either one or more  
ADnPCFG registers or several ANSx registers (one for  
each port); no device will have both. Refer to  
Section 21.0 “10-bit High-Speed A/D Converter” for  
more specific information.  
• For devices with ANSx registers, set the bits  
corresponding to the pin(s) to be configured as  
analog. Do not change any other bits, particularly  
those corresponding to the PGECx/PGEDx pair,  
at any time.  
The bits in these registers that correspond to the A/D  
pins that initialized the emulator must not be changed  
by the user application firmware; otherwise,  
communication errors will result between the debugger  
and the device.  
When a Microchip debugger/emulator is used as a  
programmer, the user application firmware must  
correctly configure the ADnPCFG or ANSx registers.  
Automatic initialization of this register is only done  
during debugger operation. Failure to correctly  
configure the register(s) will result in all A/D pins being  
recognized as analog input pins, resulting in the port  
value being read as a logic '0', which may affect user  
application functionality.  
2.8  
Unused I/Os  
Unused I/O pins should be configured as outputs and  
driven to a logic low state. Alternatively, connect a 1 kΩ  
to 10 kresistor to VSS on unused pins and drive the  
output to logic low.  
DS39747F-page 24  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
For most instructions, the core is capable of executing  
a data (or program data) memory read, a working reg-  
3.0  
CPU  
Note: This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. Refer to Section 2. “CPU”  
(DS39703) in the “PIC24F Family Reference  
Manual” for more information.  
ister (data) read, a data memory write and a program  
(instruction) memory read per instruction cycle. As a  
result, three parameter instructions can be supported,  
allowing trinary operations (that is, A + B = C) to be  
executed in a single cycle.  
A high-speed, 17-bit by 17-bit multiplier has been  
included to significantly enhance the core arithmetic  
capability and throughput. The multiplier supports  
signed, unsigned and Mixed mode 16-bit by 16-bit or  
8-bit by 8-bit integer multiplication. All multiply  
instructions execute in a single cycle.  
The PIC24F CPU has a 16-bit (data) modified Harvard  
architecture with an enhanced instruction set, and a  
24-bit instruction word with a variable length opcode  
field. The Program Counter (PC) is 23 bits wide and  
addresses up to 4M instructions of user program  
memory space. A single-cycle instruction prefetch  
mechanism is used to help maintain throughput and  
provides predictable execution. All instructions execute  
in a single cycle, with the exception of instructions that  
change the program flow, the double-word move  
(MOV.D) instruction and the table instructions.  
Overhead-free program loop constructs are supported  
using the REPEATinstructions, which are interruptible  
at any point.  
The 16-bit ALU has been enhanced with integer divide  
assist hardware that supports an iterative, non-restoring  
divide algorithm. It operates in conjunction with the  
REPEATinstruction looping mechanism, and a selection  
of iterative divide instructions, to support 32-bit (or  
16-bit) divided by 16-bit integer signed and unsigned  
division. All divide operations require 19 cycles to  
complete but are interruptible at any cycle boundary.  
The PIC24F has a vectored exception scheme with up  
to 8 sources of non-maskable traps and up to  
118 interrupt sources. Each interrupt source can be  
assigned to one of seven priority levels.  
PIC24F devices have sixteen 16-bit working registers  
in the programmer’s model. Each of the working  
registers can act as a data, address or address offset  
register. The 16th working register (W15) operates as  
a Software Stack Pointer for interrupts and calls.  
A block diagram of the CPU is shown in Figure 3-1.  
The upper 32 Kbytes of the data space memory map  
can optionally be mapped into program space at any  
16K word boundary defined by the 8-bit Program  
Space Visibility Page (PSVPAG) register. The program  
to data space mapping feature lets any instruction  
access program space as if it were data space.  
3.1  
Programmer’s Model  
The programmer’s model for the PIC24F is shown in  
Figure 3-2. All registers in the programmer’s model are  
memory mapped and can be manipulated directly by  
instructions. A description of each register is provided  
in Table 3-1. All registers associated with the  
programmer’s model are memory mapped.  
The Instruction Set Architecture (ISA) has been signifi-  
cantly enhanced beyond that of the PIC18, but  
maintains an acceptable level of backward compatibility.  
All PIC18 instructions and addressing modes are  
supported either directly or through simple macros.  
Many of the ISA enhancements have been driven by  
compiler efficiency needs.  
The core supports Inherent (no operand), Relative,  
Literal, Memory Direct and three groups of addressing  
modes. All modes support Register Direct and various  
Register Indirect modes. Each group offers up to  
7 addressing modes. Instructions are associated with  
predefined addressing modes depending upon their  
functional requirements.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 25  
PIC24FJ128GA010 FAMILY  
FIGURE 3-1:  
PIC24F CPU CORE BLOCK DIAGRAM  
PSV & Table  
Data Access  
Control Block  
Data Bus  
Interrupt  
Controller  
16  
16  
16  
8
Data Latch  
Data RAM  
23  
16  
PCL  
Program Counter  
PCH  
23  
Address  
Latch  
Stack  
Control  
Logic  
Loop  
Control  
Logic  
23  
16  
RAGU  
WAGU  
Address Latch  
Program Memory  
Data Latch  
EA MUX  
16  
Address Bus  
ROM Latch  
24  
16  
Instruction  
Decode &  
Control  
Instruction Reg  
Control Signals  
to Various Blocks  
Hardware  
Multiplier  
16 x 16  
W Register Array  
Divide  
16  
Support  
16-Bit ALU  
16  
To Peripheral Modules  
DS39747F-page 26  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
TABLE 3-1:  
CPU CORE REGISTERS  
Register(s) Name  
Description  
W0 through W15  
PC  
Working Register Array  
23-Bit Program Counter  
SR  
ALU STATUS Register  
SPLIM  
Stack Pointer Limit Value Register  
Table Memory Page Address Register  
Program Space Visibility Page Address Register  
Repeat Loop Counter Register  
CPU Control Register  
TBLPAG  
PSVPAG  
RCOUNT  
CORCON  
FIGURE 3-2:  
PROGRAMMER’S MODEL  
15  
0
W0 (WREG)  
Divider Working Registers  
Multiplier Registers  
W1  
W2  
W3  
W4  
W5  
W6  
W7  
Working/Address  
Registers  
W8  
W9  
W10  
W11  
W12  
W13  
W14  
W15  
Frame Pointer  
Stack Pointer  
0
Stack Pointer Limit  
Program Counter  
0
SPLIM  
22  
0
0
PC  
7
0
0
0
TBLPAG  
Data Table Page Address  
7
Program Space Visibility  
Page Address  
PSVPAG  
15  
15  
RCOUNT  
IPL  
Repeat Loop Counter  
SRL  
0
SRH  
STATUS Register (SR)  
— — — — — — —  
DC  
RA N OV Z  
C
2 1 0  
15  
0
— — — — — — — — — — — — IPL3 PSV — —  
Core Control Register (CORCON)  
Registers or bits are shadowed for PUSH.Sand POP.Sinstructions.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 27  
PIC24FJ128GA010 FAMILY  
3.2  
CPU Control Registers  
REGISTER 3-1:  
SR: CPU STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
DC  
bit 15  
bit 8  
R/W-0(1)  
IPL2(2)  
bit 7  
R/W-0(1)  
IPL1(2)  
R/W-0(1)  
IPL0(2)  
R-0  
RA  
R/W-0  
N
R/W-0  
OV  
R/W-0  
Z
R/W-0  
C
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-9  
bit 8  
Unimplemented: Read as ‘0’  
DC: ALU Half Carry/Borrow bit  
1= A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data)  
of the result occurred  
0= No carry-out from the 4th or 8th low-order bit of the result has occurred  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(2)  
111= CPU Interrupt Priority Level is 7 (15); user interrupts are disabled  
110= CPU Interrupt Priority Level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU Interrupt Priority Level is 4 (12)  
011= CPU Interrupt Priority Level is 3 (11)  
010= CPU Interrupt Priority Level is 2 (10)  
001= CPU Interrupt Priority Level is 1 (9)  
000= CPU Interrupt Priority Level is 0 (8)  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
RA: REPEATLoop Active bit  
1= REPEATloop in progress  
0= REPEATloop not in progress  
N: ALU Negative bit  
1= Result was negative  
0= Result was non-negative (zero or positive)  
OV: ALU Overflow bit  
1= Overflow occurred for signed (2’s complement) arithmetic in this arithmetic operation  
0= No overflow has occurred  
Z: ALU Zero bit  
1= An operation, which effects the Z bit, has set it at some time in the past  
0= The most recent operation, which effects the Z bit, has cleared it (i.e., a non-zero result)  
C: ALU Carry/Borrow bit  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.  
2: The IPL bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level.  
The value in parentheses indicates the IPL when IPL3 = 1.  
DS39747F-page 28  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 3-2:  
CORCON: CORE CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
R/C-0  
IPL3(1)  
R/W-0  
PSV  
U-0  
U-0  
bit 7  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-4  
bit 3  
Unimplemented: Read as ‘0’  
IPL3: CPU Interrupt Priority Level Status bit(1)  
1= CPU Interrupt Priority Level is greater than 7  
0= CPU Interrupt Priority Level is 7 or less  
bit 2  
PSV: Program Space Visibility in Data Space Enable bit  
1= Program space is visible in data space  
0= Program space is not visible in data space  
bit 1-0  
Unimplemented: Read as ‘0’  
Note 1: User interrupts are disabled when IPL3 = 1.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 29  
PIC24FJ128GA010 FAMILY  
3.3.2  
DIVIDER  
3.3  
Arithmetic Logic Unit (ALU)  
The divide block supports 32-bit/16-bit and 16-bit/16-bit  
signed and unsigned integer divide operation with the  
following data sizes:  
The PIC24F ALU is 16 bits wide and is capable of addi-  
tion, subtraction, bit shifts and logic operations. Unless  
otherwise mentioned, arithmetic operations are 2’s  
complement in nature. Depending on the operation, the  
ALU may affect the values of the Carry (C), Zero (Z),  
Negative (N), Overflow (OV) and Digit Carry (DC)  
Status bits in the SR register. The C and DC Status bits  
operate as Borrow and Digit Borrow bits, respectively,  
for subtraction operations.  
1. 32-bit signed/16-bit signed divide  
2. 32-bit unsigned/16-bit unsigned divide  
3. 16-bit signed/16-bit signed divide  
4. 16-bit unsigned/16-bit unsigned divide  
The quotient for all divide instructions ends up in W0  
and the remainder in W1. 16-bit signed and unsigned  
DIVinstructions can specify any W register for both the  
16-bit divisor (Wn) and any W register (aligned) pair  
(W(m+1):Wm) for the 32-bit dividend. The divide algo-  
rithm takes one cycle per bit of divisor, so both  
32-bit/16-bit and 16-bit/16-bit instructions take the  
same number of cycles to execute.  
The ALU can perform 8-bit or 16-bit operations,  
depending on the mode of the instruction that is used.  
Data for the ALU operation can come from the W  
register array, or data memory, depending on the  
addressing mode of the instruction. Likewise, output  
data from the ALU can be written to the W register array  
or a data memory location.  
The PIC24F CPU incorporates hardware support for  
both multiplication and division. This includes a dedi-  
cated hardware multiplier and support hardware for  
16-bit divisor division.  
3.3.3  
MULTI-BIT SHIFT SUPPORT  
The PIC24F ALU supports both single bit and  
single-cycle, multi-bit arithmetic and logic shifts.  
Multi-bit shifts are implemented using a shifter block,  
capable of performing up to a 15-bit arithmetic right  
shift, or up to a 15-bit left shift, in a single cycle. All  
multi-bit shift instructions only support Register Direct  
Addressing for both the operand source and result  
destination.  
3.3.1  
MULTIPLIER  
The ALU contains a high-speed, 17-bit x 17-bit  
multiplier. It supports unsigned, signed or mixed sign  
operation in several multiplication modes:  
1. 16-bit x 16-bit signed  
A full summary of instructions that use the shift  
operation is provided below in Table 3-2.  
2. 16-bit x 16-bit unsigned  
3. 16-bit signed x 5-bit (literal) unsigned  
4. 16-bit unsigned x 16-bit unsigned  
5. 16-bit unsigned x 5-bit (literal) unsigned  
6. 16-bit unsigned x 16-bit signed  
7. 8-bit unsigned x 8-bit unsigned  
TABLE 3-2:  
Instruction  
INSTRUCTIONS THAT USE THE SINGLE AND MULTI-BIT SHIFT OPERATION  
Description  
ASR  
SL  
Arithmetic shift right source register by one or more bits.  
Shift left source register by one or more bits.  
LSR  
Logical shift right source register by one or more bits.  
DS39747F-page 30  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
either the 23-bit Program Counter (PC) during program  
execution, or from table operation or data space  
remapping, as described in Section 4.3 “Interfacing  
Program and Data Memory Spaces”.  
4.0  
MEMORY ORGANIZATION  
As Harvard architecture devices, PIC24F micro-  
controllers feature separate program and data memory  
spaces and busses. This architecture also allows the  
direct access of program memory from the data space  
during code execution.  
User access to the program memory space is restricted  
to the lower half of the address range (000000h to  
7FFFFFh). The exception is the use of TBLRD/TBLWT  
operations, which use TBLPAG<7> to permit access to  
the Configuration bits and Device ID sections of the  
configuration memory space.  
4.1  
Program Address Space  
The  
program  
address  
memory  
space  
of  
PIC24FJ128GA010 family devices is 4M instructions.  
The space is addressable by a 24-bit value derived from  
Memory maps for the PIC24FJ128GA010 family of  
devices are shown in Figure 4-1.  
FIGURE 4-1:  
PROGRAM SPACE MEMORY MAP FOR PIC24FJ128GA010 FAMILY DEVICES  
PIC24FJ64GA  
PIC24FJ96GA  
PIC24FJ128GA  
000000h  
000002h  
000004h  
GOTOInstruction  
Reset Address  
GOTOInstruction  
Reset Address  
GOTOInstruction  
Reset Address  
Interrupt Vector Table  
Reserved  
Interrupt Vector Table  
Reserved  
Interrupt Vector Table  
Reserved  
0000FEh  
000100h  
000104h  
0001FEh  
000200h  
Alternate Vector Table  
Alternate Vector Table  
Alternate Vector Table  
User Flash  
Program Memory  
(22K instructions)  
User Flash  
Program Memory  
(32K instructions)  
User Flash  
Program Memory  
(44K instructions)  
Flash Config Words  
00ABFEh  
00AC00h  
00FFFEh  
010000h  
Flash Config Words  
Flash Config Words  
0157FEh  
015800h  
Unimplemented  
Unimplemented  
(Read ‘0’s)  
(Read ‘0’s)  
Unimplemented  
(Read ‘0’s)  
7FFFFEh  
800000h  
Reserved  
Reserved  
Reserved  
F7FFFEh  
F80000h  
Device Configuration  
Registers  
Device Configuration  
Registers  
Device Configuration  
Registers  
F8000Eh  
F80010h  
Reserved  
Reserved  
Reserved  
DEVID (2)  
FEFFFEh  
FF0000h  
FFFFFEh  
DEVID (2)  
DEVID (2)  
Note:  
Memory areas are not shown to scale.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 31  
PIC24FJ128GA010 FAMILY  
4.1.1  
PROGRAM MEMORY  
ORGANIZATION  
4.1.3  
FLASH CONFIGURATION WORDS  
In PIC24FJ128GA010 family devices, the top two words  
of on-chip program memory are reserved for configura-  
tion information. On device Reset, the configuration  
information is copied into the appropriate Configuration  
registers. The addresses of the Flash Configuration  
Word for devices in the PIC24FJ128GA010 family are  
shown in Table 4-1. Their location in the memory map is  
shown with the other memory vectors in Figure 4-1.  
The program memory space is organized in  
word-addressable blocks. Although it is treated as  
24 bits wide, it is more appropriate to think of each  
address of the program memory as a lower and upper  
word, with the upper byte of the upper word being  
unimplemented. The lower word always has an even  
address, while the upper word has an odd address  
(Figure 4-2).  
The Configuration Words in program memory are a  
compact format. The actual Configuration bits are  
mapped in several different registers in the configuration  
memory space. Their order in the Flash Configuration  
Words do not reflect a corresponding arrangement in the  
configuration space. Additional details on the device  
Configuration Words are provided in Section 24.1  
“Configuration Bits”.  
Program memory addresses are always word-aligned  
on the lower word, and addresses are incremented or  
decremented by two during code execution. This  
arrangement also provides compatibility with data  
memory space addressing and makes it possible to  
access data in the program memory space.  
4.1.2  
HARD MEMORY VECTORS  
TABLE 4-1:  
FLASH CONFIGURATION  
WORDS FOR  
PIC24FJ128GA010 FAMILY  
DEVICES  
All PIC24F devices reserve the addresses between  
00000h and 000200h for hard coded program execu-  
tion vectors. A hardware Reset vector is provided to  
redirect code execution from the default value of the  
PC on device Reset to the actual start of code. A GOTO  
instruction is programmed by the user at 000000h, with  
the actual address for the start of code at 000002h.  
Program  
Memory  
(Words)  
Configuration  
Word  
Addresses  
Device  
PIC24F devices also have two Interrupt Vector Tables  
(IVT), located from 000004h to 0000FFh, and 000100h  
to 0001FFh. These vector tables allow each of the  
many device interrupt sources to be handled by sepa-  
rate ISRs. A more detailed discussion of the Interrupt  
Vector Tables is provided in Section 7.1 “Interrupt  
Vector Table”.  
PIC24FJ64GA  
PIC24FJ96GA  
PIC24FJ128GA  
22,016  
32,768  
44,032  
00ABFCh:  
00ABFEh  
00FFFCh:  
00FFFEh  
0157FCh:  
0157FEh  
FIGURE 4-2:  
PROGRAM MEMORY ORGANIZATION  
least significant word  
8
msw  
Address  
PC Address  
(lsw Address)  
most significant word  
23  
16  
0
000000h  
000002h  
000004h  
000006h  
00000000  
000001h  
000003h  
000005h  
000007h  
00000000  
00000000  
00000000  
Program Memory  
‘Phantom’ Byte’  
(read as ‘0’)  
Instruction Width  
DS39747F-page 32  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
memory space (that is, when EA<15> = 0) is used for  
implemented memory addresses, while the upper half  
4.2  
Data Address Space  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. Refer to Section 3. “Data Mem-  
ory” (DS39717) in the “PIC24F Family  
Reference Manual” for more information.  
(EA<15> = 1) is reserved for the Program Space Visi-  
bility area (see Section 4.3.3 “Reading Data from  
Program Memory Using Program Space Visibility”).  
PIC24FJ128GA010 family devices implement a total of  
8 Kbytes of data memory. Should an EA point to a  
location outside of this area, an all zero word or byte will  
be returned.  
The PIC24F core has a separate, 16-bit wide data mem-  
ory space, addressable as a single linear range. The  
data space is accessed using two Address Generation  
Units (AGUs), one each for read and write operations.  
The data space memory map is shown in Figure 4-3.  
4.2.1  
DATA SPACE WIDTH  
The data memory space is organized in  
byte-addressable, 16-bit wide blocks. Data is aligned in  
data memory and registers as 16-bit words, but all data  
space EAs resolve to bytes. The Least Significant Bytes  
(LSBs) of each word have even addresses, while the  
Most Significant Bytes (MSBs) have odd addresses.  
All Effective Addresses (EAs) in the data memory  
space are 16 bits wide and point to bytes within the  
data space. This gives a data space address range of  
64 Kbytes or 32K words. The lower half of the data  
FIGURE 4-3:  
DATA SPACE MEMORY MAP FOR PIC24FJ128GA010 FAMILY DEVICES  
MSB  
Address  
LSB  
Address  
MSB  
LSB  
0000h  
0001h  
SFR  
Space  
SFR Space  
Data RAM  
07FFh  
0801h  
07FEh  
0800h  
Near  
Data Space  
Implemented  
Data RAM  
1FFFh  
2001h  
27FFh  
2801h  
1FFEh  
2000h  
27FEh  
2800h  
Unimplemented  
Read as ‘0’  
7FFFh  
8001h  
7FFFh  
8000h  
Program Space  
Visibility Area  
FFFFh  
FFFEh  
Note:  
Data memory areas are not shown to scale.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 33  
PIC24FJ128GA010 FAMILY  
A Sign-Extend (SE) instruction is provided to allow  
users to translate 8-bit signed data to 16-bit signed  
values. Alternatively, for 16-bit unsigned data, users  
can clear the MSB of any W register by executing a  
Zero-Extend (ZE) instruction on the appropriate  
address.  
4.2.2  
DATA MEMORY ORGANIZATION  
AND ALIGNMENT  
To maintain backward compatibility with PIC® devices  
and improve data space memory usage efficiency, the  
PIC24F instruction set supports both word and byte  
operations. As a consequence of byte accessibility, all  
Effective Address calculations are internally scaled to  
step through word-aligned memory. For example, the  
core recognizes that Post-Modified Register Indirect  
Addressing mode [Ws++] will result in a value of  
Ws + 1 for byte operations and Ws + 2 for word  
operations.  
Although most instructions are capable of operating on  
word or byte data sizes, it should be noted that some  
instructions operate only on words.  
4.2.3  
NEAR DATA SPACE  
The 8-Kbyte area, between 0000h and 1FFFh, is  
referred to as the Near Data Space (NDS). Locations in  
this space are directly addressable via a 13-bit abso-  
lute address field within all memory direct instructions.  
The remainder of the data space is indirectly address-  
able. Additionally, the whole data space is addressable  
using MOV instructions, which support Memory Direct  
Addressing with a 16-bit address field.  
Data byte reads will read the complete word which con-  
tains the byte, using the LSb of any EA to determine  
which byte to select. The selected byte is placed onto  
the LSB of the data path. That is, data memory and reg-  
isters are organized as two parallel, byte-wide entities  
with shared (word) address decode, but separate write  
lines. Data byte writes only write to the corresponding  
side of the array or register which matches the byte  
address.  
4.2.4  
SFR SPACE  
The first 2 Kbytes of the Near Data Space, from 0000h  
to 07FFh, are primarily occupied with Special Function  
Registers (SFRs). These are used by the PIC24F core  
and peripheral modules for controlling the operation of  
the device.  
All word accesses must be aligned to an even address.  
Misaligned word data fetches are not supported, so  
care must be taken when mixing byte and word opera-  
tions, or translating from 8-bit MCU code. If a  
misaligned read or write is attempted, an address error  
trap will be generated. If the error occurred on a read,  
the instruction underway is completed; if it occurred on  
a write, the instruction will be executed but the write will  
not occur. In either case, a trap is then executed, allow-  
ing the system and/or user to examine the machine  
state prior to execution of the address Fault.  
SFRs are distributed among the modules that they con-  
trol, and are generally grouped together by module.  
Much of the SFR space contains unused addresses;  
these are read as ‘0’. A diagram of the SFR space,  
showing where SFRs are actually implemented, is  
shown in Table 4-2. Each implemented area indicates  
a 32-byte region where at least one address is imple-  
mented as an SFR. A complete listing of implemented  
SFRs, including their addresses, is shown in Tables 4-3  
through 4-30.  
All byte loads into any W register are loaded into the  
Least Significant Byte. The Most Significant Byte is not  
modified.  
TABLE 4-2:  
IMPLEMENTED REGIONS OF SFR DATA SPACE  
SFR Space Address  
xx00  
xx20  
xx40  
xx60  
xx80  
xxA0  
xxC0  
xxE0  
000h  
100h  
200h  
300h  
400h  
500h  
600h  
700h  
Core  
ICN  
Interrupts  
Timers  
A/D  
Capture  
Compare  
I2C™  
UART  
SPI  
I/O  
I/O  
PMP  
RTC/Comp  
CRC  
System  
NVM/PMD  
Legend: — = No implemented SFRs in this block  
DS39747F-page 34  
2005-2012 Microchip Technology Inc.  
TABLE 4-3:  
CPU CORE REGISTERS MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WREG0  
WREG1  
WREG2  
WREG3  
WREG4  
WREG5  
WREG6  
WREG7  
WREG8  
WREG9  
WREG10  
WREG11  
WREG12  
WREG13  
WREG14  
WREG15  
SPLIM  
0000  
0002  
0004  
0006  
0008  
000A  
000C  
000E  
0010  
0012  
0014  
0016  
0018  
001A  
001C  
001E  
0020  
002E  
0030  
0032  
0034  
0036  
0042  
0044  
0052  
Working Register 0  
Working Register 1  
Working Register 2  
Working Register 3  
Working Register 4  
Working Register 5  
Working Register 6  
Working Register 7  
Working Register 8  
Working Register 9  
Working Register 10  
Working Register 11  
Working Register 12  
Working Register 13  
Working Register 14  
Working Register 15  
Stack Pointer Limit  
Program Counter Low Word  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0800  
xxxx  
0000  
0000  
0000  
0000  
xxxx  
0000  
0000  
xxxx  
PCL  
PCH  
Program Counter High Byte  
Table Page Address Pointer  
TBLPAG  
PSVPAG  
RCOUNT  
SR  
Program Memory Visibility Page Address Pointer  
Repeat Loop Counter  
DC  
IPL2  
IPL1  
IPL0  
RA  
N
OV  
Z
C
CORCON  
DISICNT  
IPL3  
PSV  
Disable Interrupts Counter  
Legend: x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-4:  
INTERRUPT CONTROLLER REGISTER MAP  
File  
Addr  
Name  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON1 0080 NSTDIS  
DISI  
MATHERR ADDRERR STKERR OSCFAIL  
INT0EP  
INT0IF  
SI2C1IF  
SPF2IF  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
4444  
4440  
4444  
0044  
4444  
0004  
4440  
4444  
0044  
4440  
0040  
0040  
0440  
0440  
0400  
4440  
INTCON2 0082  
0084  
ALTIVT  
INT4EP  
INT3EP  
T1IF  
CNIF  
INT2EP  
OC1IF  
CMIF  
INT1EP  
IC1IF  
IFS0  
IFS1  
IFS2  
IFS3  
IFS4  
IEC0  
IEC1  
IEC2  
IEC3  
IEC4  
IPC0  
IPC1  
IPC2  
IPC3  
IPC4  
IPC5  
IPC6  
IPC7  
IPC8  
IPC9  
IPC10  
IPC11  
IPC12  
IPC13  
IPC15  
IPC16  
AD1IF  
INT2IF  
PMPIF  
U1TXIF U1RXIF  
SPI1IF  
OC4IF  
SPF1IF  
OC3IF  
OC5IF  
T3IF  
T2IF  
OC2IF  
IC2IF  
0086 U2TXIF U2RXIF  
T5IF  
T4IF  
INT1IF  
MI2C1IF  
SPI2IF  
SI2C2IF  
U1ERIF  
IC1IE  
0088  
008A  
008C  
0094  
RTCIF  
IC5IF  
IC4IF  
INT4IF  
IC3IF  
INT3IF  
MI2C2IF  
U2ERIF  
OC1IE  
CMIE  
CRCIF  
T1IE  
CNIE  
AD1IE  
INT2IE  
PMPIE  
U1TXIE U1RXIE  
SPI1IE  
OC4IE  
SPF1IE  
OC3IE  
OC5IE  
T3IE  
T2IE  
OC2IE  
IC2IE  
INT0IE  
SI2C1IE  
SPF2IE  
0096 U2TXIE U2RXIE  
T5IE  
T4IE  
INT1IE  
MI2C1IE  
SPI2IE  
SI2C2IE  
U1ERIE  
INT0IP1  
0098  
009A  
009C  
00A4  
00A6  
00A8  
00AA  
00AC  
00AE  
00B0  
00B2  
00B4  
00B6  
00B8  
00BA  
00BC  
00BE  
00C2  
00C4  
IC5IE  
IC4IE  
INT4IE  
IC3IE  
INT3IE  
RTCIE  
MI2C2IE  
U2ERIE  
INT0IP2  
CRCIE  
T1IP2  
T2IP2  
T1IP1  
T2IP1  
T1IP0  
T2IP0  
OC1IP2  
OC2IP2  
OC1IP1  
OC2IP1  
OC1IP0  
OC2IP0  
IC1IP2  
IC2IP2  
IC1IP1  
IC2IP1  
IC1IP0  
IC2IP0  
SPF1IP0  
AD1IP0  
INT0IP0  
U1RXIP2 U1RXIP1 U1RXIP0  
SPI1IP2 SPI1IP1 SPI1IP0  
SPF1IP2 SPF1IP1  
AD1IP2 AD1IP1  
T3IP2  
U1TXIP2  
T3IP1  
T3IP0  
U1TXIP0  
CNIP2  
CNIP1  
CNIP0  
CMIP2  
CMIP1  
CMIP0  
U1TXIP1  
MI2C1IP2 MI2C1IP1 MI2C1IP0  
SI2C1IP2 SI2C1IP1 SI2C1IP0  
INT1IP2  
INT1IP1  
INT1IP0  
T4IP2  
T4IP1  
T4IP0  
OC4IP2  
OC4IP1  
OC4IP0  
OC3IP2  
INT2IP2  
SPI2IP2  
IC3IP2  
OC3IP1  
INT2IP1  
SPI2IP1  
IC3IP1  
OC3IP0  
INT2IP0  
SPI2IP0  
IC3IP0  
OC5IP0  
PMPIP0  
T5IP2  
SPF2IP2  
T5IP1  
SPF2IP1  
T5IP0  
SPF2IP0  
U2TXIP2 U2TXIP1 U2TXIP0  
U2RXIP2 U2RXIP1 U2RXIP0  
IC5IP2  
IC5IP1  
IC5IP0  
IC4IP2  
IC4IP1  
IC4IP0  
OC5IP2  
PMPIP2  
OC5IP1  
PMPIP1  
MI2C2IP2 MI2C2IP1 MI2C2IP0  
INT4IP2 INT4IP1 INT4IP0  
SI2C2IP2 SI2C2IP1 SI2C2IP0  
INT3IP2  
INT3IP1  
INT3IP0  
RTCIP2  
U2ERIP2 U2ERIP1 U2ERIP0  
ILR2 ILR1 ILR0  
RTCIP1  
RTCIP0  
CRCIP2 CRCIP1 CRCIP0  
VHOLD  
U1ERIP2 U1ERIP1 U1ERIP0  
INTTREG 00E0 CPUIRQ  
ILR3  
VECNUM6 VECNUM5 VECNUM4 VECNUM3 VECNUM2 VECNUM1 VECNUM0 0000  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-5:  
ICN REGISTER MAP  
File  
Addr  
Name  
All  
Resets  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CNEN1 0060 CN15IE  
CNEN2 0062  
CN14IE  
CN13IE  
CN12IE  
CN11IE  
CN10IE  
CN9IE  
CN8IE  
CN7IE  
CN6IE  
CN5IE  
CN21IE(1)  
CN4IE  
CN20IE(1)  
CN3IE  
CN19IE(1)  
CN2IE  
CN1IE  
CN0IE  
0000  
0000  
CN18IE  
CN17IE  
CN16IE  
CNPU1 0068 CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE CN10PUE CN9PUE CN8PUE CN7PUE CN6PUE  
CNPU2 006A  
CN5PUE  
CN4PUE  
CN3PUE  
CN2PUE CN1PUE CN0PUE 0000  
CN21PUE(1) CN20PUE(1) CN19PUE(1) CN18PUE CN17PUE CN16PUE 0000  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal  
Note 1: Implemented in 80-pin and 100-pin devices only.  
TABLE 4-6:  
TIMER REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TMR1  
PR1  
0100  
0102  
0104  
0106  
0108  
010A  
010C  
010E  
0110  
0112  
0114  
0116  
0118  
011A  
011C  
011E  
0120  
Timer1 Register  
Period Register 1  
xxxx  
FFFF  
0000  
xxxx  
xxxx  
xxxx  
FFFF  
FFFF  
0000  
0000  
xxxx  
xxxx  
xxxx  
FFFF  
FFFF  
0000  
0000  
T1CON  
TMR2  
TMR3HLD  
TMR3  
PR2  
TON  
TSIDL  
TGATE  
TCKPS1  
TCKPS0  
TSYNC  
TCS  
Timer2 Register  
Timer3 Holding Register (For 32-bit timer operations only)  
Timer3 Register  
Period Register 2  
PR3  
Period Register 3  
T2CON  
T3CON  
TMR4  
TMR5HLD  
TMR5  
PR4  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS1  
TCKPS1  
TCKPS0  
TCKPS0  
T32  
TCS  
TCS  
Timer4 Register  
Timer5 Holding Register (For 32-bit operations only)  
Timer5 Register  
Period Register 4  
PR5  
Period Register 5  
T4CON  
T5CON  
TON  
TON  
TSIDL  
TSIDL  
TGATE  
TGATE  
TCKPS1  
TCKPS1  
TCKPS0  
TCKPS0  
T32  
TCS  
TCS  
Legend: x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-7:  
INPUT CAPTURE REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IC1BUF  
IC1CON  
IC2BUF  
IC2CON  
IC3BUF  
IC3CON  
IC4BUF  
IC4CON  
IC5BUF  
IC5CON  
0140  
0142  
0144  
0146  
0148  
014A  
014C  
014E  
0150  
0152  
Input 1 Capture Register  
ICTMR  
Input 2 Capture Register  
ICTMR  
Input 3 Capture Register  
ICTMR  
Input 4 Capture Register  
ICTMR  
Input 5 Capture Register  
ICTMR  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
xxxx  
0000  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICSIDL  
ICI1  
ICI1  
ICI1  
ICI1  
ICI1  
ICI0  
ICI0  
ICI0  
ICI0  
ICI0  
ICOV  
ICOV  
ICOV  
ICOV  
ICOV  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICBNE  
ICM2  
ICM2  
ICM2  
ICM2  
ICM2  
ICM1  
ICM1  
ICM1  
ICM1  
ICM1  
ICM0  
ICM0  
ICM0  
ICM0  
ICM0  
Legend: x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-8:  
OUTPUT COMPARE REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OC1RS  
OC1R  
0180  
0182  
0184  
0186  
0188  
018A  
018C  
018E  
0190  
0192  
0194  
0196  
0198  
019A  
019C  
Output Compare 1 Secondary Register  
Output Compare 1 Register  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
xxxx  
xxxx  
0000  
OC1CON  
OC2RS  
OC2R  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCSIDL  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCFLT  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
OCTSEL  
OCM2  
OCM2  
OCM2  
OCM2  
OCM2  
OCM1  
OCM1  
OCM1  
OCM1  
OCM1  
OCM0  
OCM0  
OCM0  
OCM0  
OCM0  
Output Compare 2 Secondary Register  
Output Compare 2 Register  
OC2CON  
OC3RS  
OC3R  
Output Compare 3 Secondary Register  
Output Compare 3 Register  
OC3CON  
OC4RS  
OC4R  
Output Compare 4 Secondary Register  
Output Compare 4 Register  
OC4CON  
OC5RS  
OC5R  
Output Compare 5 Secondary Register  
Output Compare 5 Register  
OC5CON  
Legend: x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-9:  
I2C1 REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I2C1RCV  
I2C1TRN  
I2C1BRG  
I2C1CON  
I2C1STAT  
I2C1ADD  
I2C1MSK  
0200  
0202  
0204  
0206  
0208  
020A  
020C  
Receive Register  
Transmit Register  
0000  
00FF  
0000  
1000  
0000  
0000  
0000  
Baud Rate Generator  
I2CEN  
I2CSIDL SCLREL IPMIEN  
A10M  
BCL  
DISSLW  
SMEN  
GCEN  
STREN  
I2COV  
ACKDT  
D/A  
ACKEN  
P
RCEN  
PEN  
R/W  
RSEN  
RBF  
SEN  
TBF  
ACKSTAT TRSTAT  
GCSTAT ADD10  
IWCOL  
S
Address Register  
Address Mask  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-10: I2C2 REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
I2C2RCV  
I2C2TRN  
I2C2BRG  
I2C2CON  
I2C2STAT  
I2C2ADD  
I2C2MSK  
0210  
0212  
0214  
0216  
Receive Register  
Transmit Register  
0000  
00FF  
0000  
1000  
0000  
0000  
0000  
Baud Rate Generator  
I2CEN  
I2CSIDL SCLREL IPMIEN  
A10M  
BCL  
DISSLW  
SMEN  
GCEN  
STREN  
I2CPOV  
ACKDT  
D/A  
ACKEN  
P
RCEN  
PEN  
R/W  
RSEN  
RBF  
SEN  
TBF  
0218 ACKSTAT TRSTAT  
GCSTAT ADD10  
IWCOL  
S
021A  
021C  
Address Register  
Address Mask  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-11: UART1 REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
U1MODE  
U1STA  
0220  
UARTEN  
USIDL  
UTXISEL0  
IREN  
RTSMD  
UEN1  
UTXBF  
UEN0  
TRMT  
WAKE  
LPBACK  
ABAUD  
RXINV  
RIDLE  
BRGH  
PERR  
PDSEL1 PDSEL0 STSEL  
0000  
0110  
xxxx  
0000  
0000  
0222 UTXISEL1 TXINV  
UTXBRK UTXEN  
URXISEL1 URXISEL0 ADDEN  
FERR  
OERR  
URXDA  
U1TXREG  
U1RXREG  
U1BRG  
0224  
0226  
0228  
Transmit Register  
Receive Register  
Baud Rate Generator Prescaler  
Legend: x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-12: UART2 REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
ABAUD  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
U2MODE  
U2STA  
0230  
UARTEN  
USIDL  
UTXISEL0  
IREN  
RTSMD  
UEN1  
UEN0  
TRMT  
WAKE  
LPBACK  
RXINV  
RIDLE  
BRGH  
PERR  
PDSEL1 PDSEL0 STSEL  
0000  
0110  
xxxx  
0000  
0000  
0232 UTXISEL1 TXINV  
UTXBRK UTXEN UTXBF  
URXISEL1 URXISEL0 ADDEN  
FERR  
OERR  
URXDA  
U2TXREG  
U2RXREG  
U2BRG  
0234  
0236  
0238  
Transmit Register  
Receive Register  
Baud Rate Generator Prescaler  
Legend: x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-13: SPI1 REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI1STAT  
SPI1CON1  
SPI1CON2  
SPI1BUF  
0240  
0242  
0244  
0248  
SPIEN  
SPISIDL  
SPIBEC2 SPIBEC1 SPIBEC0 SRMPT SPIROV SRXMPT SISEL2  
SISEL1  
SPRE1  
SISEL0  
SPRE0  
SPITBF  
PPRE1  
SPIFE  
SPIRBF  
PPRE0  
SPIBEN  
0000  
0000  
0000  
0000  
DISSCK DISSDO MODE16  
SMP  
CKE  
SSEN  
CKP  
MSTEN  
SPRE2  
FRMEN SPIFSD SPIFPOL  
SPI1 Transmit and Receive Buffer  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-14: SPI2 REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
SPI2STAT  
SPI2CON1  
SPI2CON2  
SPI2BUF  
0260  
0262  
0264  
0268  
SPIEN  
SPISIDL  
SPIBEC2 SPIBEC1 SPIBEC0 SRMPT SPIROV SRXMPT SISEL2  
SISEL1  
SPRE1  
SISEL0  
SPRE0  
SPITBF  
PPRE1  
SPIFE  
SPIRBF  
PPRE0  
SPIBEN  
0000  
0000  
0000  
0000  
DISSCK DISSDO MODE16  
SMP  
CKE  
SSEN  
CKP  
MSTEN  
SPRE2  
FRMEN SPIFSD SPIFPOL  
SPI2 Transmit and Receive Buffer  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-15: A/D REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADC1BUF0 0300  
ADC1BUF1 0302  
ADC1BUF2 0304  
ADC1BUF3 0306  
ADC1BUF4 0308  
ADC1BUF5 030A  
ADC1BUF6 030C  
ADC1BUF7 030E  
ADC1BUF8 0310  
ADC1BUF9 0312  
ADC1BUFA 0314  
ADC1BUFB 0316  
ADC1BUFC 0318  
ADC1BUFD 031A  
ADC1BUFE 031C  
ADC1BUFF 031E  
A/D Data Buffer 0  
A/D Data Buffer 1  
A/D Data Buffer 2  
A/D Data Buffer 3  
A/D Data Buffer 4  
A/D Data Buffer 5  
A/D Data Buffer 6  
A/D Data Buffer 7  
A/D Data Buffer 8  
A/D Data Buffer 9  
A/D Data Buffer 10  
A/D Data Buffer 11  
A/D Data Buffer 12  
A/D Data Buffer 13  
A/D Data Buffer 14  
A/D Data Buffer 15  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
xxxx  
0000  
0000  
0000  
0000  
0000  
0000  
AD1CON1  
AD1CON2  
AD1CON3  
AD1CHS  
0320  
0322  
0324  
0328  
ADON  
VCFG2  
ADRC  
VCFG1  
ADSIDL  
VCFG0  
FORM1  
FORM0  
SSRC2  
BUFS  
SSRC1  
SSRC0  
SMPI3  
ADCS5  
ASAM  
SMPI0  
ADCS2  
SAMP  
BUFM  
ADCS1  
DONE  
ALTS  
r
CSCNA  
SAMC2  
SMPI2  
ADCS4  
SMPI1  
ADCS3  
SAMC4  
SAMC3  
SAMC1  
SAMC0  
ADCS7  
ADCS6  
ADCS0  
CH0NB  
CH0SB3 CH0SB2 CH0SB1 CH0SB0 CH0NA  
CH0SA3 CH0SA2 CH0SA1 CH0SA0  
AD1PCFG  
AD1CSSL  
032C PCFG15 PCFG14 PCFG13 PCFG12 PCFG11 PCFG10  
0330 CSSL15 CSSL14 CSSL13 CSSL12 CSSL11 CSSL10  
PCFG9  
CSSL9  
PCFG8  
CSSL8  
PCFG7  
CSSL7  
PCFG6  
CSSL6  
PCFG5  
CSSL5  
PCFG4  
CSSL4  
PCFG3  
CSSL3  
PCFG2  
CSSL2  
PCFG1  
CSSL1  
PCFG0  
CSSL0  
Legend: x= unknown value on Reset; — = unimplemented, read as ‘0’; r = reserved, maintain as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-16: PORTA REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISA  
PORTA  
LATA  
02C0 TRISA15(1) TRISA14(1)  
02C2  
RA15(1) RA14(1)  
02C4 LATA15(1) LATA14(1)  
06C0 ODA15(1) ODA14(1)  
TRISA10(1) TRISA9(1)  
RA10(1) RA9(1)  
LATA10(1) LATA9(1)  
ODA10(1) ODA9(1)  
TRISA7(2) TRISA6(2) TRISA5(2) TRISA4(2) TRISA3(2) TRISA2(2) TRISA1(2) TRISA0(2) C6FF  
RA7  
RA6  
RA5(2)  
LATA5(2)  
ODA5(2)  
RA4(2)  
LATA4(2) LATA3(2) LATA2(2) LATA1(2) LATA0(2)  
ODA4(2) ODA3(2) ODA2(2) ODA1(2) ODA0(2)  
RA3(2)  
RA2(2)  
RA1(2)  
RA0(2)  
xxxx  
xxxx  
0000  
LATA7  
ODA7  
LATA6  
ODA6  
ODCA  
Legend: x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices.  
Note 1: Implemented in 80-pin and 100-pin devices only.  
2: Implemented in 100-pin devices only.  
TABLE 4-17: PORTB REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISB  
PORTB  
LATB  
02C6  
02C8  
02CA  
06C6  
TRISB15 TRISB14 TRISB13(1) TRISB12(1) TRISB11(1) TRISB10(1) TRISB9 TRISB8 TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0  
FFFF  
xxxx  
xxxx  
0000  
RB15  
LATB15  
ODB15  
RB14  
LATB14  
ODB14  
RB13(1)  
LATB13(1) LATB12(1) LATB11(1) LATB10(1)  
ODB13(1) ODB12(1) ODB11(1) ODB10(1)  
RB12(1)  
RB11(1)  
RB10(1)  
RB9  
RB8  
RB7  
RB6  
RB5  
RB4  
RB3  
RB2  
RB1  
RB0  
LATB9  
ODB9  
LATB8  
ODB8  
LATB7  
ODB7  
LATB6  
ODB6  
LATB5  
ODB5  
LATB4  
ODB4  
LATB3  
ODB3  
LATB2  
ODB2  
LATB1  
ODB1  
LATB0  
ODB0  
ODCB  
Legend: x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices  
Note 1: Unimplemented when JTAG is enabled.  
TABLE 4-18: PORTC REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISC  
PORTC  
LATC  
02CC TRISC15 TRISC14 TRISC13 TRISC12  
TRISC4(2) TRISC3(1) TRISC2(2) TRISC1(1)  
RC4(2) RC3(1) RC2(2) RC1(1)  
LATC4(2) LATC3(1) LATC2(2) LATC1(1)  
ODC4(2) ODC3(1) ODC2(2) ODC1(1)  
F01E  
xxxx  
xxxx  
0000  
02CE  
02D0  
06CC  
RC15  
LATC15 LATC14 LATC13 LATC12  
ODC15 ODC14 ODC13 ODC12  
RC14  
RC13  
RC12  
ODCC  
Legend: x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices.  
Note 1: Implemented in 80-pin and 100-pin devices only.  
2: Implemented in 100-pin devices only  
TABLE 4-19: PORTD REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISD  
PORTD  
LATD  
02D2 TRISD15(1) TRISD14(1) TRISD13(1) TRISD12(1) TRISD11 TRISD10 TRISD9 TRISD8 TRISD7 TRISD6 TRISD5 TRISD4 TRISD3 TRISD2 TRISD1 TRISD0  
FFFF  
xxxx  
xxxx  
0000  
02D4  
RD15(1)  
RD14(1)  
RD13(1)  
RD12(1)  
RD11  
LATD11  
ODD11  
RD10  
LATD10  
ODD10  
RD9  
RD8  
RD7  
RD6  
RD5  
LATD5  
ODD5  
RD4  
LATD4  
ODD4  
RD3  
LATD3  
ODD3  
RD2  
LATD2  
ODD2  
RD1  
LATD1  
ODD1  
RD0  
LATD0  
ODD0  
02D6 LATD15(1) LATD14(1) LATD13(1) LATD12(1)  
06D2 ODD15(1) ODD14(1) ODD13(1) ODD12(1)  
LATD9  
ODD9  
LATD8  
ODD8  
LATD7  
ODD7  
LATD6  
ODD6  
ODCD  
Legend: x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices.  
Note 1: Implemented in 80-pin and 100-pin devices only.  
TABLE 4-20: PORTE REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISE  
PORTE  
LATE  
02D8  
02DA  
02DC  
06D8  
TRISE9(1) TRISE8(1) TRISE7  
TRISE6  
RE6  
TRISE5  
RE5  
TRISE4  
RE4  
TRISE3  
RE3  
TRISE2  
RE2  
TRISE1  
RE1  
TRISE0  
RE0  
03FF  
xxxx  
xxxx  
0000  
RE9(1)  
RE8(1)  
RE7  
LATE9(1) LATE8(1)  
ODE9(1) ODE8(1)  
LATE7  
ODE7  
LATE6  
ODE6  
LATE5  
ODE5  
LATE4  
ODE4  
LATE3  
ODE3  
LATE2  
ODE2  
LATE1  
ODE1  
LATE0  
ODE0  
ODCE  
Legend: x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices.  
Note 1: Implemented in 80-pin and 100-pin devices only.  
TABLE 4-21: PORTF REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISF  
PORTF  
LATF  
02DE  
02E0  
02E2  
06DE  
TRISF13(1) TRISF12(1)  
TRISF8(2) TRISF7(2) TRISF6  
TRISF5  
RF5  
TRISF4  
RF4  
TRISF3  
RF3  
TRISF2  
RF2  
TRISF1  
RF1  
TRISF0  
RF0  
31FF  
xxxx  
xxxx  
0000  
RF13(1)  
LATF13(1)  
ODF13(1)  
RF12(1)  
LATF12(1)  
ODF12(1)  
RF8(2)  
LATF8(2) LATF7(2)  
ODF8(2) ODF7(2)  
RF7(2)  
RF6  
LATF6  
ODF6  
LATF5  
ODF5  
LATF4  
ODF4  
LATF3  
ODF3  
LATF2  
ODF2  
LATF1  
ODF1  
LATF0  
ODF0  
ODCF  
Legend: x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices.  
Note 1: Implemented in 100-pin devices only.  
2: Implemented in 80-pin and 100-pin devices only.  
TABLE 4-22: PORTG REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TRISG  
PORTG  
LATG  
02E4 TRISG15 TRISG14(1) TRISG13(1) TRISG12(1)  
TRISG9 TRISG8 TRISG7 TRISG6  
TRISG3 TRISG2 TRISG1(2) TRISG0(2)  
F3CF  
xxxx  
xxxx  
0000  
02E6  
02E8  
06E4  
RG15  
LATG15  
ODG15  
RG14(1)  
LATG14(1) LATG13(1) LATG12(1)  
ODG14(1) ODG13(1) ODG12(1)  
RG13(1)  
RG12(1)  
RG9  
RG8  
LATG8 LATG7  
ODG8 ODG7  
RG7  
RG6  
RG3  
RG2  
LATG2  
ODG2  
RG1(2)  
RG0(2)  
LATG9  
ODG9  
LATG6  
ODG6  
LATG3  
ODG3  
LATG1(2) LATG0(2)  
ODCG  
ODG1(2)  
ODG0(2)  
Legend: x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices.  
Note 1: Implemented in 100-pin devices only.  
2: Implemented in 80-pin and 100-pin devices only.  
TABLE 4-23: PAD CONFIGURATION MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PADCFG1 02FC  
RTSECSEL PMPTTL  
0000  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal for 100-pin devices.  
TABLE 4-24: PARALLEL MASTER/SLAVE PORT REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMCON  
0600  
0602  
PMPEN  
BUSY  
CS2  
PSIDL ADRMUX1 ADRMUX0 PTBEEN PTWREN PTRDEN  
CSF1  
CSF0  
ALP  
CS2P  
CS1P  
BEP  
WRSP  
RDSP  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
008F  
PMMODE  
PMADDR(1)  
PMDOUT1(1)  
PMDOUT2  
PMDIN1  
IRQM1  
CS1  
IRQM0  
INCM1  
INCM0  
MODE16 MODE1 MODE0 WAITB1 WAITB0 WAITM3 WAITM2 WAITM1 WAITM0 WAITE1 WAITE0  
Parallel Port Destination Address<13:0> (Master modes)  
0604  
Parallel Port Data Out Register 1 (Buffers 0 and 1)  
0606  
0608  
060A  
Parallel Port Data Out Register 2 (Buffers 2 and 3)  
Parallel Port Data In Register 1 (Buffers 0 and 1)  
PMDIN2  
Parallel Port Data In Register 2 (Buffers 2 and 3)  
PMAEN  
060C PTEN15 PTEN14 PTEN13 PTEN12  
060E IBF IBOV  
PTEN11 PTEN10 PTEN9  
IB3F IB2F IB1F  
PTEN8  
IB0F  
PTEN7  
OBE  
PTEN6  
OBUF  
PTEN5  
PTEN4  
PTEN3  
OB3E  
PTEN2  
OB2E  
PTEN1  
OB1E  
PTEN0  
OB0E  
PMSTAT  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1: PMADDR and PMDOUT1 share the same physical register. The register functions as PMDOUT1 only in Slave modes and as PMADDR only in Master modes.  
TABLE 4-25: REAL-TIME CLOCK AND CALENDAR REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ALRMVAL  
ALCFGRPT  
RTCVAL  
0620  
Alarm Value Register Window Based on ALRMPTR<1:0>  
xxxx  
0622 ALRMEN CHIME  
0624  
AMASK3  
AMASK2  
AMASK1 AMASK0 ALRMPTR1 ALRMPTR0 ARPT7  
ARPT6 ARPT5 ARPT4 ARPT3 ARPT2 ARPT1 ARPT0 0000  
RTCC Value Register Window Based on RTCPTR<1:0>  
RTCWREN RTCSYNC HALFSEC RTCOE RTCPTR1 RTCPTR0 CAL7 CAL6  
xxxx  
0000  
RCFGCAL(1)  
0626  
RTCEN  
CAL5  
CAL4  
CAL3  
CAL2  
CAL1  
CAL0  
Legend: x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1: RCFGCAL register Reset value is dependent on the type of Reset.  
TABLE 4-26: DUAL COMPARATOR REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CMCON  
0630  
0632  
CMIDL  
C2EVT  
C1EVT  
C2EN  
C1EN  
C2OUTEN C1OUTEN C2OUT  
C1OUT  
C2INV  
CVRR  
C1INV  
C2NEG  
CVR3  
C2POS  
CVR2  
C1NEG  
CVR1  
C1POS  
CVR0  
0000  
0000  
CVRCON  
CVREN CVROE  
CVRSS  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-27: CRC REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CRCCON  
CRCXOR  
CRCDAT  
CRCWDAT  
0640  
0642  
0644  
0646  
CSIDL VWORD4 VWORD3 VWORD2 VWORD1 VWORD0 CRCFUL CRCMPT  
CRCGO  
PLEN3  
PLEN2  
PLEN1  
PLEN0  
0000  
0000  
0000  
0000  
CRC XOR Polynomial Register  
CRC Data Input Register  
CRC Result Register  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
TABLE 4-28: SYSTEM REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
RCON  
0740  
0742  
0744  
0748  
TRAPR IOPUWR  
CM  
VREGS  
EXTR  
SWR  
SWDTEN WDTO  
SLEEP  
CF  
IDLE  
BOR  
POR  
xxxx(1)  
OSCCON  
CLKDIV  
OSCTUN  
ROI  
COSC2  
DOZE2  
COSC1  
DOZE1  
COSC0  
DOZE0  
NOSC2  
NOSC1  
NOSC0 CLKLOCK  
LOCK  
SOSCEN OSWEN xxxx(2)  
DOZEN RCDIV2 RCDIV1 RCDIV0  
0100  
0000  
TUN<5:0>  
Legend: x= unknown value on Reset; — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1: RCON register Reset values are dependent on the type of Reset.  
2: OSCCON register Reset values are dependent on the FOSC Configuration bits and by type of Reset.  
TABLE 4-29: NVM REGISTER MAP  
All  
Resets  
File Name  
Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
NVMCON  
NVMKEY  
0760  
0766  
WR  
WREN  
WRERR  
ERASE  
NVMOP3 NVMOP2 NVMOP1 NVMOP0 0000(1)  
NVMKEY<7:0>  
0000  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.  
TABLE 4-30: PMD REGISTER MAP  
All  
Resets  
File Name Addr  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PMD1  
PMD2  
PMD3  
0770  
0772  
0774  
T5MD  
T4MD  
T3MD  
T2MD  
IC5MD  
T1MD  
IC4MD  
I2C1MD  
U2MD  
U1MD  
SPI2MD SPI1MD  
ADC1MD 0000  
IC3MD  
IC2MD  
IC1MD  
OC5MD OC4MD OC3MD  
OC2MD  
I2C2MD  
OC1MD  
0000  
0000  
CMPMD RTCCMD PMPMD CRCPMD  
Legend: — = unimplemented, read as ‘0’. Reset values are shown in hexadecimal.  
PIC24FJ128GA010 FAMILY  
4.2.5  
SOFTWARE STACK  
4.3  
Interfacing Program and Data  
Memory Spaces  
In addition to its use as a working register, the W15 reg-  
ister in PIC24F devices is also used as a Software  
Stack Pointer. The pointer always points to the first  
available free word and grows from lower to higher  
addresses. It predecrements for stack pops and post-  
increments for stack pushes, as shown in Figure 4-4.  
Note that for a PC push during any CALL instruction,  
the MSB of the PC is zero-extended before the push,  
ensuring that the MSB is always clear.  
The PIC24F architecture uses a 24-bit wide program  
space and 16-bit wide data space. The architecture is  
also a modified Harvard scheme, meaning that data  
can also be present in the program space. To use this  
data successfully, it must be accessed in a way that  
preserves the alignment of information in both spaces.  
Aside from normal execution, the PIC24F architecture  
provides two methods by which program space can be  
accessed during operation:  
Note:  
A PC push during exception processing  
will concatenate the SRL register to the  
MSB of the PC prior to the push.  
• Using table instructions to access individual bytes  
or words anywhere in the program space  
The Stack Pointer Limit register (SPLIM) associated  
with the Stack Pointer sets an upper address boundary  
for the stack. SPLIM is uninitialized at Reset. As is the  
case for the Stack Pointer, SPLIM<0> is forced to ‘0’  
because all stack operations must be word-aligned.  
Whenever an EA is generated using W15 as a source  
or destination pointer, the resulting address is com-  
pared with the value in SPLIM. If the contents of the  
Stack Pointer (W15) and the SPLIM register are equal  
and a push operation is performed, a stack error trap  
will not occur. The stack error trap will occur on a  
subsequent push operation. Thus, for example, if it is  
desirable to cause a stack error trap when the stack  
grows beyond address, 2000h, in RAM, initialize the  
SPLIM with the value, 1FFEh.  
• Remapping a portion of the program space into  
the data space (Program Space Visibility)  
Table instructions allow an application to read or write  
to small areas of the program memory. This makes the  
method ideal for accessing data tables that need to be  
updated from time to time. It also allows access to all  
bytes of the program word. The remapping method  
allows an application to access a large block of data on  
a read-only basis, which is ideal for look ups from a  
large table of static data. It can only access the least  
significant word of the program word.  
4.3.1  
ADDRESSING PROGRAM SPACE  
Since the address ranges for the data and program  
spaces are 16 and 24 bits, respectively, a method is  
needed to create a 23-bit or 24-bit program address  
from 16-bit data registers. The solution depends on the  
interface method to be used.  
Similarly, a Stack Pointer underflow (stack error) trap is  
generated when the Stack Pointer address is found to  
be less than 0800h. This prevents the stack from  
interfering with the Special Function Register (SFR)  
space.  
For table operations, the 8-bit Table Page register  
(TBLPAG) is used to define a 32K word region within  
the program space. This is concatenated with a 16-bit  
EA to arrive at a full 24-bit program space address. In  
this format, the Most Significant bit of TBLPAG is used  
to determine if the operation occurs in the user memory  
(TBLPAG<7> = 0) or the configuration memory  
(TBLPAG<7> = 1).  
A write to the SPLIM register should not be immediately  
followed by an indirect read operation using W15.  
FIGURE 4-4:  
CALL STACK FRAME  
0000h  
15  
0
For remapping operations, the 8-bit Program Space  
Visibility register (PSVPAG) is used to define a  
16K word page in the program space. When the Most  
Significant bit of the EA is ‘1’, PSVPAG is concatenated  
with the lower 15 bits of the EA to form a 23-bit program  
space address. Unlike table operations, this limits  
remapping operations strictly to the user memory area.  
PC<15:0>  
000000000  
W15 (before CALL)  
PC<22:16>  
<Free Word>  
W15 (after CALL)  
Table 4-31 and Figure 4-5 show how the program EA is  
created for table operations and remapping accesses  
from the data EA. Here, P<23:0> refers to a program  
space word, whereas D<15:0> refers to a data space  
word.  
POP : [--W15]  
PUSH: [W15++]  
DS39747F-page 46  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
TABLE 4-31: PROGRAM SPACE ADDRESS CONSTRUCTION  
Program Space Address  
Access  
Space  
Access Type  
<23>  
<22:16>  
<15>  
PC<22:1>  
<14:1>  
<0>  
Instruction Access  
(Code Execution)  
User  
User  
0
0
0xx xxxx xxxx xxxx xxxx xxx0  
TBLRD/TBLWT  
(Byte/Word Read/Write)  
TBLPAG<7:0>  
0xxx xxxx  
Data EA<15:0>  
xxxx xxxx xxxx xxxx  
Data EA<15:0>  
Configuration  
TBLPAG<7:0>  
1xxx xxxx  
xxxx xxxx xxxx xxxx  
Data EA<14:0>(1)  
Program Space Visibility User  
(Block Remap/Read)  
0
0
PSVPAG<7:0>  
xxxx xxxx  
xxx xxxx xxxx xxxx  
Note 1: Data EA<15> is always ‘1’ in this case, but is not used in calculating the program space address. Bit 15 of  
the address is PSVPAG<0>.  
FIGURE 4-5:  
DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION  
Program Counter(1)  
Program Counter  
23 Bits  
0
0
1/0  
EA  
Table Operations(2)  
1/0  
TBLPAG  
8 Bits  
16 Bits  
24 Bits  
Select  
1
0
EA  
Program Space Visibility(1)  
(Remapping)  
0
PSVPAG  
8 Bits  
15 Bits  
23 Bits  
Byte Select  
User/Configuration  
Space Select  
Note 1: The LSb of program space addresses is always fixed as ‘0’ in order to maintain word alignment of  
data in the program and data spaces.  
2: Table operations are not required to be word-aligned. Table read operations are permitted in the  
configuration memory space.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 47  
PIC24FJ128GA010 FAMILY  
2. TBLRDH (Table Read High): In Word mode, it  
4.3.2  
DATA ACCESS FROM PROGRAM  
MEMORY USING TABLE  
INSTRUCTIONS  
maps the entire upper word of a program address  
(P<23:16>) to  
a data address. Note that  
D<15:8>, the “phantom byte”, will always be ‘0’.  
The TBLRDL and TBLWTL instructions offer a direct  
method of reading or writing the lower word of any  
address within the program space, without going  
through data space. The TBLRDHand TBLWTHinstruc-  
tions are the only method to read or write the upper 8 bits  
of a program space word as data.  
In Byte mode, it maps the upper or lower byte of  
the program word to D<7:0> of the data  
address, as above. Note that the data will  
always be ‘0’ when the upper “phantom” byte is  
selected (byte select = 1).  
In a similar fashion, two table instructions, TBLWTH  
and TBLWTL, are used to write individual bytes or  
words to a program space address. The details of  
their operation are explained in Section 5.0 “Flash  
Program Memory”.  
The PC is incremented by two for each successive  
24-bit program word. This allows program memory  
addresses to directly map to data space addresses.  
Program memory can thus be regarded as two 16-bit,  
word-wide address spaces, residing side by side, each  
with the same address range. TBLRDL and TBLWTL  
access the space which contains the least significant  
data word, and TBLRDHand TBLWTHaccess the space  
which contains the upper data byte.  
For all table operations, the area of program memory  
space to be accessed is determined by the Table Page  
register (TBLPAG). TBLPAG covers the entire program  
memory space of the device, including user and config-  
uration spaces. When TBLPAG<7> = 0, the Table Page  
is located in the user memory space. When  
TBLPAG<7> = 1, the page is located in configuration  
space.  
Two table instructions are provided to move byte or  
word-sized (16-bit) data to and from program space.  
Both function as either byte or word operations.  
1. TBLRDL (Table Read Low): In Word mode, it  
maps the lower word of the program space  
location (P<15:0>) to a data address (D<15:0>).  
Note:  
Only table read operations will execute in  
the configuration memory space, and only  
then, in implemented areas such as the  
Device ID. Table write operations are not  
allowed.  
In Byte mode, either the upper or lower byte of  
the lower program word is mapped to the lower  
byte of a data address. The upper byte is  
selected when byte select is ‘1’; the lower byte  
is selected when it is ‘0’.  
FIGURE 4-6:  
ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS  
Program Space  
TBLPAG  
02  
Data EA<15:0>  
23  
15  
0
000000h  
23  
16  
8
0
00000000  
00000000  
00000000  
00000000  
020000h  
030000h  
‘Phantom’ Byte  
TBLRDH.B(Wn<0> = 0)  
TBLRDL.B(Wn<0> = 1)  
TBLRDL.B(Wn<0> = 0)  
TBLRDL.W  
The address for the table operation is determined by the data EA  
within the page defined by the TBLPAG register.  
Only read operations are shown; write operations are also valid in  
the user memory area.  
800000h  
DS39747F-page 48  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
24-bit program word are used to contain the data. The  
upper 8 bits of any program space locations used as  
data should be programmed with ‘1111 1111’ or  
0000 0000’ to force a NOP. This prevents possible  
issues should the area of code ever be accidentally  
executed.  
4.3.3  
READING DATA FROM PROGRAM  
MEMORY USING PROGRAM SPACE  
VISIBILITY  
The upper 32 Kbytes of data space may optionally be  
mapped into any 16K word page of the program space.  
This provides transparent access of stored constant  
data from the data space without the need to use  
special instructions (i.e., TBLRDL/H).  
Note:  
PSV access is temporarily disabled during  
table reads/writes.  
Program space access through the data space occurs  
if the Most Significant bit of the data space EA is ‘1’ and  
Program Space Visibility is enabled by setting the PSV  
bit in the Core Control register (CORCON<2>). The  
location of the program memory space to be mapped  
into the data space is determined by the Program  
Space Visibility Page register (PSVPAG). This 8-bit  
register defines any one of 256 possible pages of  
16K words in program space. In effect, PSVPAG func-  
tions as the upper 8 bits of the program memory  
address, with the 15 bits of the EA functioning as the  
lower bits. Note that by incrementing the PC by 2 for  
each program memory word, the lower 15 bits of data  
space addresses directly map to the lower 15 bits in the  
corresponding program space addresses.  
For operations that use PSV and are executed outside  
a REPEAT loop, the MOV and MOV.D instructions will  
require one instruction cycle in addition to the specified  
execution time. All other instructions will require two  
instruction cycles in addition to the specified execution  
time.  
For operations that use PSV which are executed inside  
a REPEAT loop, there will be some instances that  
require two instruction cycles in addition to the  
specified execution time of the instruction:  
• Execution in the first iteration  
• Execution in the last iteration  
• Execution prior to exiting the loop due to an  
interrupt  
Data reads to this area add an additional cycle to the  
instruction being executed, since two program memory  
fetches are required.  
• Execution upon re-entering the loop after an  
interrupt is serviced  
Any other iteration of the REPEAT loop will allow the  
instruction accessing data, using PSV, to execute in a  
single cycle.  
Although each data space address, 8000h and higher,  
maps directly into a corresponding program memory  
address (see Figure 4-7), only the lower 16 bits of the  
FIGURE 4-7:  
PROGRAM SPACE VISIBILITY OPERATION  
When CORCON<2> = 1and EA<15> = 1:  
Program Space  
Data Space  
PSVPAG  
02  
23  
15  
0
000000h  
0000h  
Data EA<14:0>  
010000h  
018000h  
The data in the page  
designated by PSV-  
PAG is mapped into  
the upper half of the  
data memory  
8000h  
space....  
PSV Area  
...while the lower 15  
bits of the EA specify  
an exact address  
within the PSV area.  
This corresponds  
exactly to the same  
lower 15 bits of the  
actual program space  
address.  
FFFFh  
800000h  
2005-2012 Microchip Technology Inc.  
DS39747F-page 49  
PIC24FJ128GA010 FAMILY  
NOTES:  
DS39747F-page 50  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
controller just before shipping the product. This also  
allows the most recent firmware or a custom firmware  
to be programmed.  
5.0  
FLASH PROGRAM MEMORY  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. Refer to Section 4. “Program  
Memory” (DS39715) in the “PIC24F  
Family Reference Manual” for more  
information.  
RTSP is accomplished using TBLRD (table read) and  
TBLWT (table write) instructions. With RTSP, the user  
may write program memory data in blocks of 64 instruc-  
tions (192 bytes) at a time, and erase program memory  
in blocks of 512 instructions (1536 bytes) at a time.  
5.1  
Table Instructions and Flash  
Programming  
The PIC24FJ128GA010 family of devices contains  
internal Flash program memory for storing and execut-  
ing application code. The memory is readable, writable  
and erasable during normal operation over the  
specified VDD range.  
Regardless of the method used, all programming of  
Flash memory is done with the table read and table  
write instructions. These allow direct read and write  
access to the program memory space from the data  
memory while the device is in normal operating mode.  
The 24-bit target address in the program memory is  
formed using the TBLPAG<7:0> bits and the Effective  
Address (EA) from a W register specified in the table  
instruction, as shown in Figure 5-1.  
Flash memory can be programmed in four ways:  
1. In-Circuit Serial Programming™ (ICSP™)  
2. Run-Time Self-Programming (RTSP)  
3. JTAG  
4. Enhanced In-Circuit Serial Programming  
(Enhanced ICSP)  
The TBLRDLand the TBLWTLinstructions are used to  
read or write to bits<15:0> of program memory.  
TBLRDLand TBLWTLcan access program memory in  
both Word and Byte modes.  
ICSP allows a PIC24FJ128GA010 family device to be  
serially programmed while in the end application circuit.  
This is simply done with two lines for Programming  
Clock and Programming Data (which are named PGCx  
and PGDx, respectively), and three other lines for  
power (VDD), ground (VSS) and Master Clear (MCLR).  
This allows customers to manufacture boards with  
unprogrammed devices and then program the micro-  
The TBLRDHand TBLWTHinstructions are used to read  
or write to bits<23:16> of program memory. TBLRDH  
and TBLWTHcan also access program memory in Word  
or Byte mode.  
FIGURE 5-1:  
ADDRESSING FOR TABLE REGISTERS  
24 Bits  
Program Counter  
Using  
Program  
Counter  
0
0
Working Reg EA  
Using  
Table  
Instruction  
TBLPAG Reg  
8 Bits  
1/0  
16 Bits  
User/Configuration  
Space Select  
Byte  
Select  
24-Bit EA  
2005-2012 Microchip Technology Inc.  
DS39747F-page 51  
PIC24FJ128GA010 FAMILY  
5.2  
RTSP Operation  
5.4  
Enhanced In-Circuit Serial  
Programming  
The PIC24F Flash program memory array is organized  
into rows of 64 instructions or 192 bytes. RTSP allows  
the user to erase blocks of eight rows (512 instructions)  
at a time and to program one row at a time. It is also  
possible to program single words.  
Enhanced In-Circuit Serial Programming uses an on-  
board bootloader, known as the program executive, to  
manage the programming process. Using an SPI data  
frame format, the program executive can erase,  
program and verify program memory. See the device  
programming specification for more information on  
Enhanced ICSP  
The 8-row erase blocks and single row write blocks are  
edge-aligned, from the beginning of program memory,  
on boundaries of 1536 bytes and 192 bytes,  
respectively.  
5.5  
Control Registers  
When data is written to program memory using TBLWT  
instructions, the data is not written directly to memory.  
Instead, data written using table writes is stored in  
holding latches until the programming sequence is  
executed.  
There are two SFRs used to read and write the  
program Flash memory: NVMCON and NVMKEY.  
The NVMCON register (Register 5-1) controls which  
blocks are to be erased, which memory type is to be  
programmed and the start of the programming cycle.  
Any number of TBLWT instructions can be executed  
and a write will be successfully performed. However,  
64 TBLWTinstructions are required to write the full row  
of memory.  
NVMKEY is a write-only register that is used for write  
protection. To start a programming or erase sequence,  
the user must consecutively write 55h and AAh to the  
NVMKEY register. Refer to Section 5.6 “Programming  
Operations” for further details.  
To ensure that no data is corrupted during a write, any  
unused addresses should be programmed with  
FFFFFFh. This is because the holding latches reset to  
an unknown state, so if the addresses are left in the  
Reset state, they may overwrite the locations on rows  
which were not rewritten.  
5.6  
Programming Operations  
A complete programming sequence is necessary for  
programming or erasing the internal Flash in RTSP  
mode. During a programming or an erase operation,  
the processor stalls (Waits) until the operation is  
finished. Setting the WR bit (NVMCON<15>) starts the  
operation and the WR bit is automatically cleared when  
the operation is finished.  
The basic sequence for RTSP programming is to set up  
a Table Pointer, then do a series of TBLWTinstructions  
to load the buffers. Programming is performed by  
setting the control bits in the NVMCON register.  
Data can be loaded in any order and the holding regis-  
ters can be written to multiple times before performing  
a write operation. Subsequent writes, however, will  
wipe out any previous writes.  
Configuration Word values are stored in the last two  
locations of program memory. Performing a page erase  
operation on the last page of program memory clears  
these values and enables code protection. As a result,  
avoid performing page erase operations on the last  
page of program memory.  
Note:  
Writing to a location multiple times without  
erasing is not recommended.  
All of the table write operations are single-word writes  
(2 instruction cycles), because only the buffers are  
written.  
A
programming cycle is required for  
programming each row.  
5.3  
JTAG Operation  
The PIC24F family supports JTAG programming and  
boundary scan. Boundary scan can improve the manu-  
facturing process by verifying pin to PCB connectivity.  
Programming can be performed with industry standard  
JTAG programmers supporting Serial Vector Format  
(SVF).  
DS39747F-page 52  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 5-1:  
NVMCON: FLASH MEMORY CONTROL REGISTER  
R/SO-0(1)  
WR  
R/W-0(1)  
WREN  
R/W-0(1)  
WRERR  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-0(1)  
ERASE  
U-0  
U-0  
R/W-0(1)  
NVMOP3(2) NVMOP2(2)  
R/W-0(1)  
R/W-0(1)  
NVMOP1(2) NVMOP0(2)  
R/W-0(1)  
bit 7  
bit 0  
Legend:  
SO = Settable Only bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
WR: Write Control bit  
1= Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is  
cleared by hardware once operation is complete.  
0= Program or erase operation is complete and inactive  
bit 14  
bit 13  
WREN: Write Enable bit  
1= Enables Flash program/erase operations  
0= Inhibits Flash program/erase operations  
WRERR: Write Sequence Error Flag bit  
1= An improper program or erase sequence attempt or termination has occurred (bit is set automatically  
on any set attempt of the WR bit)  
0= The program or erase operation completed normally  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
ERASE: Erase/Program Enable bit  
1= Performs the erase operation specified by NVMOP<3:0> on the next WR command  
0= Performs the program operation specified by NVMOP<3:0> on the next WR command  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
NVMOP<3:0>: NVM Operation Select bits(2)  
1111= Memory bulk erase operation (ERASE = 1) or no operation (ERASE = 0)(3)  
0011= Memory word program operation (ERASE = 0) or no operation (ERASE = 1)  
0010= Memory page erase operation (ERASE = 1) or no operation (ERASE = 0)  
0001= Memory row program operation (ERASE = 0) or no operation (ERASE = 1)  
Note 1: These bits can only be reset on a POR.  
2: All other combinations of NVMOP<3:0> are unimplemented.  
3: Available in ICSP™ mode only. Refer to the device programming specifications.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 53  
PIC24FJ128GA010 FAMILY  
4. Write the first 64 instructions from data RAM into  
the program memory buffers (see Example 5-2).  
5.6.1  
PROGRAMMING ALGORITHM FOR  
FLASH PROGRAM MEMORY  
5. Write the program block to Flash memory:  
The user can program one row of program Flash memory  
at a time. To do this, it is necessary to erase the 8-row  
erase block containing the desired row. The general  
process is:  
a) Set the NVMOP bits to ‘0001’ to configure  
for row programming. Clear the ERASE bit  
and set the WREN bit.  
b) Write 55h to NVMKEY.  
c) Write AAh to NVMKEY.  
1. Read eight rows of program memory  
(512 instructions) and store in data RAM.  
d) Set the WR bit. The programming cycle  
begins and the CPU stalls for the duration of  
the write cycle. When the write to Flash  
memory is done, the WR bit is cleared  
automatically.  
2. Update the program data in RAM with the  
desired new data.  
3. Erase the block (see Example 5-1):  
a) Set the NVMOP bits (NVMCON<3:0>) to  
0010’ to configure for block erase. Set the  
ERASE (NVMCON<6>) and WREN  
(NVMCON<14>) bits.  
6. Repeat Steps 4 and 5, using the next available  
64 instructions from the block in data RAM by  
incrementing the value in TBLPAG, until all  
512 instructions are written back to Flash  
memory.  
b) Write the starting address of the block to be  
erased into the TBLPAG and W registers.  
c) Write 55h to NVMKEY.  
d) Write AAh to NVMKEY.  
For protection against accidental operations, the write  
initiate sequence for NVMKEY must be used to allow  
any erase or program operation to proceed. After the  
programming command has been executed, the user  
must wait for the programming time until programming  
is complete. The two instructions following the start of  
the programming sequence should be NOPs, as shown  
in Example 5-3.  
e) Set the WR bit (NVMCON<15>). The erase  
cycle begins and the CPU stalls for the dura-  
tion of the erase cycle. When the erase is  
done, the WR bit is cleared automatically.  
EXAMPLE 5-1:  
ERASING A PROGRAM MEMORY BLOCK  
; Set up NVMCON for block erase operation  
MOV  
MOV  
#0x4042, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Init pointer to row to be ERASED  
MOV  
MOV  
MOV  
#tblpage(PROG_ADDR), W0  
W0, TBLPAG  
#tbloffset(PROG_ADDR), W0  
;
; Initialize PM Page Boundary SFR  
; Initialize in-page EA[15:0] pointer  
; Set base address of erase block  
; Block all interrupts with priority <7  
; for next 5 instructions  
TBLWTL W0, [W0]  
DISI  
#5  
MOV  
MOV  
MOV  
MOV  
BSET  
NOP  
NOP  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
; Write the 55 key  
;
; Write the AA key  
; Start the erase sequence  
; Insert two NOPs after the erase  
; command is asserted  
DS39747F-page 54  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
EXAMPLE 5-2:  
LOADING THE WRITE BUFFERS  
; Set up NVMCON for row programming operations  
MOV  
MOV  
#0x4001, W0  
W0, NVMCON  
;
; Initialize NVMCON  
; Set up a pointer to the first program memory location to be written  
; program memory selected, and writes enabled  
MOV  
MOV  
MOV  
#0x0000, W0  
W0, TBLPAG  
#0x6000, W0  
;
; Initialize PM Page Boundary SFR  
; An example program memory address  
; Perform the TBLWT instructions to write the latches  
; 0th_program_word  
MOV  
MOV  
#LOW_WORD_0, W2  
#HIGH_BYTE_0, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 1st_program_word  
MOV  
MOV  
#LOW_WORD_1, W2  
#HIGH_BYTE_1, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
;
2nd_program_word  
MOV  
MOV  
#LOW_WORD_2, W2  
#HIGH_BYTE_2, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; 63rd_program_word  
MOV  
MOV  
#LOW_WORD_31, W2  
#HIGH_BYTE_31, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
EXAMPLE 5-3:  
INITIATING A PROGRAMMING SEQUENCE  
DISI  
#5  
; Block all interrupts with priority <7  
; for next 5 instructions  
MOV  
MOV  
MOV  
MOV  
BSET  
BTSC  
BRA  
#0x55, W0  
W0, NVMKEY  
#0xAA, W1  
W1, NVMKEY  
NVMCON, #WR  
NVMCON, #15  
$-2  
; Write the 55 key  
;
; Write the AA key  
; Start the program/erase sequence  
; and wait for it to be  
; completed  
2005-2012 Microchip Technology Inc.  
DS39747F-page 55  
PIC24FJ128GA010 FAMILY  
instructions write the desired data into the write latches  
and specify the lower 16 bits of the program memory  
address to write to. To configure the NVMCON register  
for a word write, set the NVMOP bits (NVMCON<3:0>)  
to ‘0011’. The write is performed by executing the  
unlock sequence and setting the WR bit.  
5.6.2  
PROGRAMMING A SINGLE WORD  
OF FLASH PROGRAM MEMORY  
If a Flash location has been erased, it can be pro-  
grammed using table write instructions to write an  
instruction word (24-bit) into the write latch. The  
TBLPAG register is loaded with the 8 Most Significant  
Bytes of the Flash address. The TBLWTLand TBLWTH  
EXAMPLE 5-4:  
PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY  
; Setup a pointer to data Program Memory  
MOV  
MOV  
MOV  
#tblpage(PROG_ADDR), W0  
W0, TBLPAG  
#tbloffset(PROG_ADDR), W0  
;
;Initialize PM Page Boundary SFR  
;Initialize a register with program memory address  
MOV  
MOV  
#LOW_WORD_N, W2  
#HIGH_BYTE_N, W3  
;
;
TBLWTL W2, [W0]  
TBLWTH W3, [W0++]  
; Write PM low word into program latch  
; Write PM high byte into program latch  
; Setup NVMCON for programming one word to data Program Memory  
MOV  
MOV  
#0x4003, W0  
W0, NVMCON  
;
; Set NVMOP bits to 0011  
DISI  
#5  
; Disable interrupts while the KEY sequence is  
written  
MOV  
MOV  
MOV  
MOV  
BSET  
#0x55, W0  
W0, NVMKEY  
#0xAA, W0  
W0, NVMKEY  
NVMCON, #WR  
; Write the key sequence  
; Start the write cycle  
DS39747F-page 56  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
6.0  
RESETS  
Note:  
Refer to the specific peripheral or CPU  
section of this manual for register Reset  
states.  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive refer-  
ence source. Refer to Section 7. “Reset”  
(DS39712) in the “PIC24F Family  
Reference Manual” for more information.  
All types of device Reset will set a corresponding status  
bit in the RCON register to indicate the type of Reset  
(see Register 6-1). A POR will clear all bits except for  
the BOR and POR bits (RCON<1:0>), which are set.  
The user may set or clear any bit at any time during  
code execution. The RCON bits only serve as status  
bits. Setting a particular Reset status bit in software will  
not cause a device Reset to occur.  
The Reset module combines all Reset sources and  
controls the device Master Reset Signal, SYSRST. The  
following is a list of device Reset sources:  
• POR: Power-on Reset  
The RCON register also has other bits associated with  
the Watchdog Timer and device power-saving states.  
The function of these bits is discussed in other sections  
of this manual.  
• MCLR: Pin Reset  
• SWR: RESETInstruction  
• WDT: Watchdog Timer Reset  
• BOR: Brown-out Reset  
Note:  
The status bits in the RCON register  
should be cleared after they are read so  
that the next RCON register value after a  
device Reset will be meaningful.  
• CM: Configuration Word Mismatch Reset  
• TRAPR: Trap Conflict Reset  
• IOPUWR: Illegal Opcode Reset  
• UWR: Uninitialized W Register Reset  
A simplified block diagram of the Reset module is  
shown in Figure 6-1.  
Any active source of Reset will make the SYSRST sig-  
nal active. Many registers associated with the CPU and  
peripherals are forced to a known Reset state. Most  
registers are unaffected by a Reset; their status is  
unknown on POR and unchanged by all other Resets.  
FIGURE 6-1:  
RESET SYSTEM BLOCK DIAGRAM  
RESET  
Instruction  
Glitch Filter  
MCLR  
WDT  
Module  
Sleep or Idle  
POR  
VDD Rise  
Detect  
SYSRST  
VDD  
Brown-out  
Reset  
BOR  
Enable Voltage Regulator  
Trap Conflict  
Illegal Opcode  
Uninitialized W Register  
Configuration Word Mismatch Reset  
2005-2012 Microchip Technology Inc.  
DS39747F-page 57  
PIC24FJ128GA010 FAMILY  
REGISTER 6-1:  
RCON: RESET CONTROL REGISTER(1)  
R/W-0  
TRAPR  
bit 15  
R/W-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CM  
R/W-0  
IOPUWR  
VREGS  
bit 8  
R/W-0  
EXTR  
R/W-0  
SWR  
R/W-0  
SWDTEN(2)  
R/W-0  
WDTO  
R/W-0  
R/W-0  
IDLE  
R/W-1  
BOR  
R/W-1  
POR  
SLEEP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
bit 14  
TRAPR: Trap Reset Flag bit  
1= A Trap Conflict Reset has occurred  
0= A Trap Conflict Reset has not occurred  
IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit  
1= An illegal opcode detection, an illegal address mode or uninitialized W register used as an  
Address Pointer caused a Reset  
0= An illegal opcode or uninitialized W Reset has not occurred  
bit 13-10  
bit 9  
Unimplemented: Read as ‘0’  
CM: Configuration Word Mismatch Reset Flag bit  
1= A Configuration Word Mismatch Reset has occurred  
0= A Configuration Word Mismatch Reset has not occurred  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
VREGS: Voltage Regulator Standby Enable bit  
1= Regulator remains active during Sleep  
0= Regulator goes to standby during Sleep  
EXTR: External Reset (MCLR) Pin bit  
1= A Master Clear (pin) Reset has occurred  
0= A Master Clear (pin) Reset has not occurred  
SWR: Software Reset (Instruction) Flag bit  
1= A RESETinstruction has been executed  
0= A RESETinstruction has not been executed  
SWDTEN: Software Enable/Disable of WDT bit(2)  
1= WDT is enabled  
0= WDT is disabled  
WDTO: Watchdog Timer Time-out Flag bit  
1= WDT time-out has occurred  
0= WDT time-out has not occurred  
SLEEP: Wake From Sleep Flag bit  
1= Device has been in Sleep mode  
0= Device has not been in Sleep mode  
IDLE: Wake-up From Idle Flag bit  
1= Device was in Idle mode  
0= Device was not in Idle mode  
Note 1: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
DS39747F-page 58  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 6-1:  
RCON: RESET CONTROL REGISTER(1) (CONTINUED)  
bit 1  
BOR: Brown-out Reset Flag bit  
1= A Brown-out Reset has occurred (note that BOR is also set after a Power-on Reset)  
0= A Brown-out Reset has not occurred  
bit 0  
POR: Power-on Reset Flag bit  
1= A Power-on Reset has occurred  
0= A Power-on Reset has not occurred  
Note 1: All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not  
cause a device Reset.  
2: If the FWDTEN Configuration bit is ‘1’ (unprogrammed), the WDT is always enabled, regardless of the  
SWDTEN bit setting.  
TABLE 6-1:  
RESET FLAG BIT OPERATION  
Setting Event  
Flag Bit  
Clearing Event  
TRAPR (RCON<15>)  
IOPUWR (RCON<14>)  
EXTR (RCON<7>)  
SWR (RCON<6>)  
WDTO (RCON<4>)  
SLEEP (RCON<3>)  
IDLE (RCON<2>)  
BOR (RCON<1>)  
POR (RCON<0>)  
Trap conflict event  
POR  
POR  
POR  
POR  
Illegal opcode or uninitialized W register access  
MCLR Reset  
RESETinstruction  
WDT time-out  
PWRSAVinstruction, POR  
PWRSAV #SLEEPinstruction  
PWRSAV #IDLEinstruction  
POR, BOR  
POR  
POR  
POR  
Note: All Reset flag bits may be set or cleared by the user software.  
6.1  
Clock Source Selection at Reset  
6.2  
Device Reset Times  
If clock switching is enabled, the system clock source at  
device Reset is chosen as shown in Table 6-2. If clock  
switching is disabled, the system clock source is always  
selected according to the oscillator Configuration bits.  
Refer to Section 8.0 “Oscillator Configuration” for  
further details.  
The Reset times for various types of device Reset are  
summarized in Table 6-3. Note that the system Reset  
signal, SYSRST, is released after the POR and PWRT  
delay times expire.  
The time that the device actually begins to execute  
code will also depend on the system oscillator delays,  
which include the Oscillator Start-up Timer (OST) and  
the PLL lock time. The OST and PLL lock times occur  
in parallel with the applicable SYSRST delay times.  
TABLE 6-2:  
OSCILLATOR SELECTION vs.  
TYPE OF RESET (CLOCK  
SWITCHING ENABLED)  
The FSCM delay determines the time at which the  
FSCM begins to monitor the system clock source after  
the SYSRST signal is released.  
Reset Type  
Clock Source Determinant  
POR  
Oscillator Configuration bits  
(FNOSC<2:0>)  
BOR  
MCLR  
WDTR  
SWR  
COSC Control bits  
(OSCCON<14:12>)  
2005-2012 Microchip Technology Inc.  
DS39747F-page 59  
PIC24FJ128GA010 FAMILY  
TABLE 6-3:  
Reset Type  
POR  
RESET DELAY TIMES FOR VARIOUS DEVICE RESETS  
System Clock  
Delay  
FSCM  
Delay  
Clock Source  
SYSRST Delay  
Notes  
1, 2, 3  
EC, FRC, FRCDIV, LPRC TPOR + TSTARTUP + TRST  
TFSCM  
TFSCM  
TFSCM  
ECPLL, FRCPLL  
XT, HS, SOSC  
XTPLL, HSPLL  
EC, FRC, FRCDIV, LPRC  
ECPLL, FRCPLL  
XT, HS, SOSC  
XTPLL, HSPLL  
Any Clock  
TPOR + TSTARTUP + TRST  
TPOR + TSTARTUP + TRST  
TLOCK  
TOST  
1, 2, 3, 5, 6  
1, 2, 3, 4, 6  
TPOR + TSTARTUP + TRST TOST + TLOCK  
1, 2, 3, 4, 5, 6  
BOR  
TSTARTUP + TRST  
TSTARTUP + TRST  
TSTARTUP + TRST  
TSTARTUP + TRST  
TRST  
2, 3  
TLOCK  
TFSCM  
TFSCM  
TFSCM  
2, 3, 5, 6  
TOST  
2, 3, 4, 6  
TOST + TLOCK  
2, 3, 4, 5, 6  
MCLR  
WDT  
3
3
3
3
3
3
Any Clock  
TRST  
Software  
Any Clock  
TRST  
Illegal Opcode Any Clock  
Uninitialized W Any Clock  
TRST  
TRST  
Trap Conflict  
Any Clock  
TRST  
Note 1: TPOR = Power-on Reset delay (10 s nominal).  
2: TSTARTUP = TVREG (10 s nominal) if the on-chip regulator is enabled or TPWRT (64 ms nominal) if an  
on-chip regulator is disabled.  
3: TRST = Internal state Reset time (20 s nominal).  
4: TOST = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the  
oscillator clock to the system.  
5: TLOCK = PLL lock time.  
6: TFSCM = Fail-Safe Clock Monitor delay (100 s nominal).  
DS39747F-page 60  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
6.2.1  
POR AND LONG OSCILLATOR  
START-UP TIMES  
6.2.2.1  
FSCM Delay for Crystal and PLL  
Clock Sources  
The oscillator start-up circuitry and its associated delay  
timers are not linked to the device Reset delays that  
occur at power-up. Some crystal circuits (especially  
low-frequency crystals) will have a relatively long  
start-up time. Therefore, one or more of the following  
conditions is possible after SYSRST is released:  
When the system clock source is provided by a crystal  
oscillator and/or the PLL, a small delay, TFSCM, will  
automatically be inserted after the POR and PWRT  
delay times. The FSCM will not begin to monitor the  
system clock source until this delay expires. The FSCM  
delay time is nominally 100 s and provides additional  
time for the oscillator and/or PLL to stabilize. In most  
cases, the FSCM delay will prevent an oscillator failure  
trap at a device Reset when the PWRT is disabled.  
• The oscillator circuit has not begun to oscillate.  
• The Oscillator Start-up Timer has NOT expired (if  
a crystal oscillator is used).  
• The PLL has not achieved a lock (if PLL is used).  
6.3  
Special Function Register Reset  
States  
The device will not begin to execute code until a valid  
clock source has been released to the system. There-  
fore, the oscillator and PLL start-up delays must be  
considered when the Reset delay time must be known.  
Most of the Special Function Registers (SFRs) associ-  
ated with the PIC24F CPU and peripherals are reset to a  
particular value at a device Reset. The SFRs are  
grouped by their peripheral or CPU function and their  
Reset values are specified in each section of this manual.  
6.2.2  
FAIL-SAFE CLOCK MONITOR  
(FSCM) AND DEVICE RESETS  
The Reset value for each SFR does not depend on the  
type of Reset, with the exception of four registers. The  
Reset value for the Reset Control register, RCON, will  
depend on the type of device Reset. The Reset value for  
the Oscillator Control register, OSCCON, will depend on  
the type of Reset and the programmed values of the  
oscillator Configuration bits in the FOSC Device Config-  
uration register (see Table 6-2). The RCFGCAL and  
NVMCON registers are only affected by a POR.  
If the FSCM is enabled, it will begin to monitor the sys-  
tem clock source when SYSRST is released. If a valid  
clock source is not available at this time, the device will  
automatically switch to the FRC oscillator and the user  
can switch to the desired crystal oscillator in the Trap  
Service Routine.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 61  
PIC24FJ128GA010 FAMILY  
NOTES:  
DS39747F-page 62  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
7.1.1  
ALTERNATE INTERRUPT VECTOR  
TABLE  
7.0  
INTERRUPT CONTROLLER  
Note: This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. Refer to Section 8. “Interrupts”  
(DS39707) in the “PIC24F Family  
Reference Manual” for more information.  
The Alternate Interrupt Vector Table (AIVT) is located  
after the IVT, as shown in Figure 7-1. Access to the  
AIVT is provided by the ALTIVT control bit  
(INTCON2<15>). If the ALTIVT bit is set, all interrupt  
and exception processes will use the alternate vectors  
instead of the default vectors. The alternate vectors are  
organized in the same manner as the default vectors.  
The PIC24F interrupt controller reduces the numerous  
peripheral interrupt request signals to a single interrupt  
request signal to the PIC24F CPU. It has the following  
features:  
The AIVT supports emulation and debugging efforts by  
providing a means to switch between an application  
and a support environment without requiring the inter-  
rupt vectors to be reprogrammed. This feature also  
enables switching between applications for evaluation  
of different software algorithms at run time. If the AIVT  
is not needed, the AIVT should be programmed with  
the same addresses used in the IVT.  
• Up to 8 processor exceptions and software traps  
• 7 user-selectable priority levels  
• Interrupt Vector Table (IVT) with up to 118 vectors  
• A unique vector for each interrupt or exception  
source  
• Fixed priority within a specified user priority level  
7.2  
Reset Sequence  
• Alternate Interrupt Vector Table (AIVT) for debug  
support  
A device Reset is not a true exception because the  
interrupt controller is not involved in the Reset process.  
The PIC24F device clears its registers in response to a  
Reset which forces the PC to zero. The microcontroller  
then begins program execution at location, 000000h.  
The user programs a GOTO instruction at the Reset  
address, which redirects program execution to the  
appropriate start-up routine.  
• Fixed interrupt entry and return latencies  
7.1  
Interrupt Vector Table  
The Interrupt Vector Table (IVT) is shown in Figure 7-1.  
The IVT resides in program memory, starting at location,  
000004h. The IVT contains 126 vectors, consisting of  
8 non-maskable trap vectors, plus up to 118 sources of  
interrupt. In general, each interrupt source has its own  
vector. Each interrupt vector contains a 24-bit wide  
address. The value programmed into each interrupt vec-  
tor location is the starting address of the associated  
Interrupt Service Routine (ISR).  
Note: Any unimplemented or unused vector  
locations in the IVT and AIVT should be  
programmed with the address of a default  
interrupt handler routine that contains a  
RESETinstruction.  
Interrupt vectors are prioritized in terms of their natural  
priority; this is linked to their position in the vector table.  
All other things being equal, lower addresses have a  
higher natural priority. For example, the interrupt asso-  
ciated with Vector 0 will take priority over interrupts at  
any other vector address.  
PIC24FJ128GA010 family devices implement non-  
maskable traps and unique interrupts. These are  
summarized in Table 7-1 and Table 7-2.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 63  
PIC24FJ128GA010 FAMILY  
FIGURE 7-1:  
PIC24F INTERRUPT VECTOR TABLE  
Reset – GOTOInstruction  
Reset – GOTOAddress  
Reserved  
000000h  
000002h  
000004h  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
000014h  
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
00007Ch  
00007Eh  
000080h  
(1)  
Interrupt Vector Table (IVT)  
Interrupt Vector 116  
Interrupt Vector 117  
Reserved  
0000FCh  
0000FEh  
000100h  
000102h  
Reserved  
Reserved  
Oscillator Fail Trap Vector  
Address Error Trap Vector  
Stack Error Trap Vector  
Math Error Trap Vector  
Reserved  
Reserved  
Reserved  
Interrupt Vector 0  
Interrupt Vector 1  
000114h  
(1)  
Alternate Interrupt Vector Table (AIVT)  
Interrupt Vector 52  
Interrupt Vector 53  
Interrupt Vector 54  
00017Ch  
00017Eh  
000180h  
Interrupt Vector 116  
Interrupt Vector 117  
Start of Code  
0001FEh  
000200h  
Note 1: See Table 7-2 for the interrupt vector list.  
TABLE 7-1:  
TRAP VECTOR DETAILS  
IVT Address  
Vector Number  
AIVT Address  
Trap Source  
0
1
2
3
4
5
6
7
000004h  
000006h  
000008h  
00000Ah  
00000Ch  
00000Eh  
000010h  
000012h  
000104h  
000106h  
000108h  
00010Ah  
00010Ch  
00010Eh  
000110h  
000112h  
Reserved  
Oscillator Failure  
Address Error  
Stack Error  
Math Error  
Reserved  
Reserved  
Reserved  
DS39747F-page 64  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
TABLE 7-2:  
IMPLEMENTED INTERRUPT VECTORS  
Interrupt Bit Locations  
Enable  
Vector  
Number  
AIVT  
Address  
Interrupt Source  
IVT Address  
Flag  
Priority  
ADC1 Conversion Done  
Comparator Event  
CRC Generator  
External Interrupt 0  
External Interrupt 1  
External Interrupt 2  
External Interrupt 3  
External Interrupt 4  
I2C1 Master Event  
I2C1 Slave Event  
I2C2 Master Event  
I2C2 Slave Event  
Input Capture 1  
Input Capture 2  
Input Capture 3  
Input Capture 4  
Input Capture 5  
Input Change Notification  
Output Compare 1  
Output Compare 2  
Output Compare 3  
Output Compare 4  
Output Compare 5  
Parallel Master Port  
Real-Time Clock/Calendar  
SPI1 Error  
13  
18  
67  
0
00002Eh  
000038h  
00009Ah  
000014h  
00003Ch  
00004Eh  
00007Eh  
000080h  
000036h  
000034h  
000078h  
000076h  
000016h  
00001Eh  
00005Eh  
000060h  
000062h  
00003Ah  
000018h  
000020h  
000046h  
000048h  
000066h  
00006Eh  
000090h  
000026h  
000028h  
000054h  
000056h  
00001Ah  
000022h  
000024h  
00004Ah  
00004Ch  
000096h  
00002Ah  
00002Ch  
000098h  
000050h  
000052h  
00012Eh  
000138h  
00019Ah  
000114h  
00013Ch  
00014Eh  
00017Eh  
000180h  
000136h  
000134h  
000178h  
000176h  
000116h  
00011Eh  
00015Eh  
000160h  
000162h  
00013Ah  
000118h  
000120h  
000146h  
000148h  
000166h  
00016Eh  
000190h  
000126h  
000128h  
000154h  
000156h  
00011Ah  
000122h  
000124h  
00014Ah  
00014Ch  
000196h  
00012Ah  
00012Ch  
000198h  
000150h  
000152h  
IFS0<13>  
IFS1<2>  
IFS4<3>  
IFS0<0>  
IFS1<4>  
IFS1<13>  
IFS3<5>  
IFS3<6>  
IFS1<1>  
IFS1<0>  
IFS3<2>  
IFS3<1>  
IFS0<1>  
IFS0<5>  
IFS2<5>  
IFS2<6>  
IFS2<7>  
IFS1<3>  
IFS0<2>  
IFS0<6>  
IFS1<9>  
IFS1<10>  
IFS2<9>  
IFS2<13>  
IFS3<14>  
IFS0<9>  
IFS0<10>  
IFS2<0>  
IFS2<1>  
IFS0<3>  
IFS0<7>  
IFS0<8>  
IFS1<11>  
IFS1<12>  
IFS4<1>  
IFS0<11>  
IFS0<12>  
IFS4<2>  
IFS1<14>  
IFS1<15>  
IEC0<13>  
IEC1<2>  
IEC4<3>  
IEC0<0>  
IEC1<4>  
IEC1<13>  
IEC3<5>  
IEC3<6>  
IEC1<1>  
IEC1<0>  
IEC3<2>  
IEC3<1>  
IEC0<1>  
IEC0<5>  
IEC2<5>  
IEC2<6>  
IEC2<7>  
IEC1<3>  
IEC0<2>  
IEC0<6>  
IEC1<9>  
IEC1<10>  
IEC2<9>  
IEC2<13>  
IEC3<14>  
IEC0<9>  
IEC0<10>  
IEC0<0>  
IEC2<1>  
IEC0<3>  
IEC0<7>  
IEC0<8>  
IEC1<11>  
IEC1<12>  
IEC4<1>  
IEC0<11>  
IEC0<12>  
IEC4<2>  
IEC1<14>  
IEC1<15>  
IPC3<6:4>  
IPC4<10:8>  
IPC16<14:12>  
IPC0<2:0>  
20  
29  
53  
54  
17  
16  
50  
49  
1
IPC5<2:0>  
IPC7<6:4>  
IPC13<6:4>  
IPC13<10:8>  
IPC4<6:4>  
IPC4<2:0>  
IPC12<10:8>  
IPC12<6:4>  
IPC0<6:4>  
5
IPC1<6:4>  
37  
38  
39  
19  
2
IPC9<6:4>  
IPC9<10:8>  
IPC9<14:12>  
IPC4<14:12>  
IPC0<10:8>  
IPC1<10:8>  
IPC6<6:4>  
6
25  
26  
41  
45  
62  
9
IPC6<10:8>  
IPC10<6:4>  
IPC11<6:4>  
IPC15<10:8>  
IPC2<6:4>  
SPI1 Event  
10  
32  
33  
3
IPC2<10:8>  
IPC8<2:0>  
SPI2 Error  
SPI2 Event  
IPC8<6:4>  
Timer1  
IPC0<14:12>  
IPC1<14:12>  
IPC2<2:0>  
Timer2  
7
Timer3  
8
Timer4  
27  
28  
65  
11  
12  
66  
30  
31  
IPC6<14:12>  
IPC7<2:0>  
Timer5  
UART1 Error  
IPC16<6:4>  
IPC2<14:12>  
IPC3<2:0>  
UART1 Receiver  
UART1 Transmitter  
UART2 Error  
IPC16<10:8>  
IPC7<10:8>  
IPC7<14:12>  
UART2 Receiver  
UART2 Transmitter  
2005-2012 Microchip Technology Inc.  
DS39747F-page 65  
PIC24FJ128GA010 FAMILY  
The interrupt sources are assigned to the IFSx, IECx  
and IPCx registers in the same sequence that they are  
listed in Table 7-2. For example, the INT0 (External  
Interrupt 0) is shown as having a vector number and a  
natural order priority of 0. Thus, the INT0IF status bit is  
found in IFS0<0>, the enable bit in IEC0<0> and the  
priority bits in the first position of IPC0 (IPC0<2:0>).  
7.3  
Interrupt Control and Status  
Registers  
The PIC24FJ128GA010 family devices implement a  
total of 29 registers for the interrupt controller:  
• INTCON1  
• INTCON2  
Although they are not specifically part of the interrupt  
control hardware, two of the CPU control registers con-  
tain bits that control interrupt functionality. The CPU  
STATUS register (SR) contains the IPL<2:0> bits  
(SR<7:5>). These indicate the current CPU Interrupt  
Priority Level. The user may change the current CPU  
priority level by writing to the IPL bits.  
• IFS0 through IFS4  
• IEC0 through IEC4  
• IPC0 through IPC14, and IPC16  
• INTTREG  
Global interrupt control functions are controlled from  
INTCON1 and INTCON2. INTCON1 contains the Inter-  
rupt Nesting Disable (NSTDIS) bit, as well as the  
control and status flags for the processor trap sources.  
The INTCON2 register controls the external interrupt  
request signal behavior and the use of the Alternate  
Interrupt Vector Table.  
The CORCON register contains the IPL3 bit, which  
together with IPL<2:0>, also indicates the current CPU  
priority level. IPL3 is a read-only bit so that trap events  
cannot be masked by the user software.  
The interrupt controller has the Interrupt Controller Test  
Register (INTTREG) that displays the status of the  
interrupt controller. When an interrupt request occurs,  
its associated vector number and the new interrupt pri-  
ority level are latched into INTTREG. This information  
can be used to determine a specific interrupt source if  
a generic ISR is used for multiple vectors, such as  
when ISR remapping is used in bootloader applica-  
tions. It also could be used to check if another interrupt  
is pending while in an ISR.  
The IFS registers maintain all of the interrupt request  
flags. Each source of interrupt has a status bit which is  
set by the respective peripherals, or external signal,  
and is cleared via software.  
The IEC registers maintain all of the interrupt enable  
bits. These control bits are used to individually enable  
interrupts from the peripherals or external signals.  
The IPC registers are used to set the Interrupt Priority  
Level for each source of interrupt. Each user interrupt  
source can be assigned to one of eight priority levels.  
All Interrupt registers are described in Register 7-1  
through Register 7-30, in the following pages.  
DS39747F-page 66  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 7-1:  
SR: CPU STATUS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
DC(1)  
bit 15  
bit 8  
R/W-0(1)  
IPL2(2,3)  
bit 7  
R/W-0(1)  
IPL1(2,3)  
R/W-0(1)  
IPL0(2,3)  
R-0  
RA(1)  
R/W-0  
N(1)  
R/W-0  
OV(1)  
R/W-0  
Z(1)  
R/W-0  
C(1)  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 7-5  
IPL<2:0>: CPU Interrupt Priority Level Status bits(2,3)  
111= CPU Interrupt Priority Level is 7 (15); user interrupts are disabled  
110= CPU Interrupt Priority Level is 6 (14)  
101= CPU Interrupt Priority Level is 5 (13)  
100= CPU Interrupt Priority Level is 4 (12)  
011= CPU Interrupt Priority Level is 3 (11)  
010= CPU Interrupt Priority Level is 2 (10)  
001= CPU Interrupt Priority Level is 1 (9)  
000= CPU Interrupt Priority Level is 0 (8)  
Note 1: See Register 3-1 for the description of the remaining bit(s) that are not dedicated to interrupt control functions.  
2: The IPL bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level. The  
value in parentheses indicates the Interrupt Priority Level if IPL3 = 1.  
3: The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.  
REGISTER 7-2:  
CORCON: CORE CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
R/C-0  
IPL3(2)  
R/W-0  
PSV(1)  
U-0  
U-0  
bit 7  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 3  
IPL3: CPU Interrupt Priority Level Status bit(2)  
1= CPU Interrupt Priority Level is greater than 7  
0= CPU Interrupt Priority Level is 7 or less  
Note 1: See Register 3-2 for the description of the remaining bit(s) that are not dedicated to interrupt control functions.  
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 67  
PIC24FJ128GA010 FAMILY  
REGISTER 7-3:  
INTCON1: INTERRUPT CONTROL REGISTER 1  
R/W-0  
NSTDIS  
bit 15  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 8  
bit 0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
MATHERR ADDRERR  
STKERR  
OSCFAIL  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
NSTDIS: Interrupt Nesting Disable bit  
1= Interrupt nesting is disabled  
0= Interrupt nesting is enabled  
bit 14-5  
bit 4  
Unimplemented: Read as ‘0’  
MATHERR: Arithmetic Error Trap Status bit  
1= Overflow trap has occurred  
0= Overflow trap has not occurred  
bit 3  
bit 2  
bit 1  
bit 0  
ADDRERR: Address Error Trap Status bit  
1= Address error trap has occurred  
0= Address error trap has not occurred  
STKERR: Stack Error Trap Status bit  
1= Stack error trap has occurred  
0= Stack error trap has not occurred  
OSCFAIL: Oscillator Failure Trap Status bit  
1= Oscillator failure trap has occurred  
0= Oscillator failure trap has not occurred  
Unimplemented: Read as ‘0’  
DS39747F-page 68  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 7-4:  
INTCON2: INTERRUPT CONTROL REGISTER 2  
R/W-0  
ALTIVT  
bit 15  
R-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
DISI  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
INT4EP  
INT3EP  
INT2EP  
INT1EP  
INT0EP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
ALTIVT: Enable Alternate Interrupt Vector Table bit  
1= Use alternate vector table  
0= Use standard (default) vector table  
DISI: DISIInstruction Status bit  
1= DISIinstruction is active  
0= DISIis not active  
bit 13-5  
bit 4  
Unimplemented: Read as ‘0’  
INT4EP: External Interrupt 4 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
bit 3  
bit 2  
bit 1  
bit 0  
INT3EP: External Interrupt 3 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT2EP: External Interrupt 2 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT1EP: External Interrupt 1 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
INT0EP: External Interrupt 0 Edge Detect Polarity Select bit  
1= Interrupt on negative edge  
0= Interrupt on positive edge  
2005-2012 Microchip Technology Inc.  
DS39747F-page 69  
PIC24FJ128GA010 FAMILY  
REGISTER 7-5:  
IFS0: INTERRUPT FLAG STATUS REGISTER 0  
U-0  
U-0  
R/W-0  
AD1IF  
R/W-0  
R/W-0  
R/W-0  
SPI1IF  
R/W-0  
R/W-0  
T3IF  
U1TXIF  
U1RXIF  
SPF1IF  
bit 15  
bit 8  
R/W-0  
T2IF  
R/W-0  
OC2IF  
R/W-0  
IC2IF  
U-0  
R/W-0  
T1IF  
R/W-0  
OC1IF  
R/W-0  
IC1IF  
R/W-0  
INT0IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
AD1IF: A/D Conversion Complete Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12  
bit 11  
bit 10  
bit 9  
U1TXIF: UART1 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1RXIF: UART1 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPI1IF: SPI1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SPF1IF: SPI1 Fault Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
T3IF: Timer3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 7  
T2IF: Timer2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
OC2IF: Output Compare Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
IC2IF: Input Capture Channel 2 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
T1IF: Timer1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 2  
bit 1  
bit 0  
OC1IF: Output Compare Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC1IF: Input Capture Channel 1 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT0IF: External Interrupt 0 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS39747F-page 70  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 7-6:  
IFS1: INTERRUPT FLAG STATUS REGISTER 1  
R/W-0  
U2TXIF  
bit 15  
R/W-0  
R/W-0  
INT2IF  
R/W-0  
T5IF  
R/W-0  
T4IF  
R/W-0  
OC4IF  
R/W-0  
OC3IF  
U-0  
U2RXIF  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
INT1IF  
R/W-0  
CNIF  
R/W-0  
CMIF  
R/W-0  
R/W-0  
MI2C1IF  
SI2C1IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
U2TXIF: UART2 Transmitter Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U2RXIF: UART2 Receiver Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
INT2IF: External Interrupt 2 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T5IF: Timer5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
T4IF: Timer4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC4IF: Output Compare Channel 4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
OC3IF: Output Compare Channel 3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8-5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IF: External Interrupt 1 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 3  
bit 2  
bit 1  
bit 0  
CNIF: Input Change Notification Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
CMIF: Comparator Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
MI2C1IF: Master I2C1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
SI2C1IF: Slave I2C1 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
2005-2012 Microchip Technology Inc.  
DS39747F-page 71  
PIC24FJ128GA010 FAMILY  
REGISTER 7-7:  
IFS2: INTERRUPT FLAG STATUS REGISTER 2  
U-0  
U-0  
R/W-0  
PMPIF  
U-0  
U-0  
U-0  
R/W-0  
OC5IF  
U-0  
bit 15  
bit 8  
R/W-0  
IC5IF  
R/W-0  
IC4IF  
R/W-0  
IC3IF  
U-0  
U-0  
U-0  
R/W-0  
SPI2IF  
R/W-0  
SPF2IF  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
PMPIF: Parallel Master Port Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 12-10  
bit 9  
Unimplemented: Read as ‘0’  
OC5IF: Output Compare Channel 5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 8  
bit 7  
Unimplemented: Read as ‘0’  
IC5IF: Input Capture Channel 5 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 6  
bit 5  
IC4IF: Input Capture Channel 4 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
IC3IF: Input Capture Channel 3 Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4-2  
bit 1  
Unimplemented: Read as ‘0’  
SPI2IF: SPI2 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 0  
SPF2IF: SPI2 Fault Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
DS39747F-page 72  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 7-8:  
IFS3: INTERRUPT FLAG STATUS REGISTER 3  
U-0  
R/W-0  
PMPIF  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
INT4IF  
R/W-0  
INT3IF  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
MI2C2IF  
SI2C2IF  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
RTCIF: Real-Time Clock/Calendar Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 13-7  
bit 6  
Unimplemented: Read as ‘0’  
INT4IF: External Interrupt 4 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 5  
INT3IF: External Interrupt 3 Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 4-3  
bit 2  
Unimplemented: Read as ‘0’  
MI2C2IF: Master I2C2 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 1  
bit 0  
SI2C2IF: Slave I2C2 Event Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Unimplemented: Read as ‘0’  
2005-2012 Microchip Technology Inc.  
DS39747F-page 73  
PIC24FJ128GA010 FAMILY  
REGISTER 7-9:  
IFS4: INTERRUPT FLAG STATUS REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
CRCIF  
R/W-0  
R/W-0  
U-0  
U2ERIF  
U1ERIF  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-4  
bit 3  
Unimplemented: Read as ‘0’  
CRCIF: CRC Generator Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
bit 2  
bit 1  
bit 0  
U2ERIF: UART2 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
U1ERIF: UART1 Error Interrupt Flag Status bit  
1= Interrupt request has occurred  
0= Interrupt request has not occurred  
Unimplemented: Read as ‘0’  
DS39747F-page 74  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0  
U-0  
U-0  
R/W-0  
AD1IE  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T3IE  
U1TXIE  
U1RXIE  
SPI1IE  
SPF1IE  
bit 15  
bit 8  
R/W-0  
T2IE  
R/W-0  
OC2IE  
R/W-0  
IC2IE  
U-0  
R/W-0  
T1IE  
R/W-0  
OC1IE  
R/W-0  
IC1IE  
R/W-0  
INT0IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
AD1IE: A/D Conversion Complete Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 12  
bit 11  
bit 10  
bit 9  
U1TXIE: UART1 Transmitter Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
U1RXIE: UART1 Receiver Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
SPI1IE: SPI1 Transfer Complete Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
SPF1IE: SPI1 Fault Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 8  
T3IE: Timer3 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 7  
T2IE: Timer2 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 6  
OC2IE: Output Compare Channel 2 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 5  
IC2IE: Input Capture Channel 2 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
T1IE: Timer1 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 2  
bit 1  
bit 0  
OC1IE: Output Compare Channel 1 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
IC1IE: Input Capture Channel 1 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
INT0IE: External Interrupt 0 Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
2005-2012 Microchip Technology Inc.  
DS39747F-page 75  
PIC24FJ128GA010 FAMILY  
REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T5IE  
R/W-0  
T4IE  
R/W-0  
OC4IE  
R/W-0  
OC3IE  
U-0  
U2TXIE  
U2RXIE  
INT2IE  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
CNIE  
R/W-0  
CMIE  
R/W-0  
R/W-0  
INT1IE  
MI2C1IE  
SI2C1IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
U2TXIE: UART2 Transmitter Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
U2RXIE: UART2 Receiver Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
INT2IE: External Interrupt 2 Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
T5IE: Timer5 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
T4IE: Timer4 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
OC4IE: Output Compare Channel 4 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
OC3IE: Output Compare Channel 3 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 8-5  
bit 4  
Unimplemented: Read as ‘0’  
INT1IE: External Interrupt 1 Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 3  
bit 2  
bit 1  
bit 0  
CNIE: Input Change Notification Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
CMIE: Comparator Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
MI2C1IE: Master I2C1 Event Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
SI2C1IE: Slave I2C1 Event Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
DS39747F-page 76  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
OC5IE  
U-0  
PMPIE  
bit 15  
bit 8  
R/W-0  
IC5IE  
R/W-0  
IC4IE  
R/W-0  
IC3IE  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
SPI2IE  
SPF2IE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
PMPIE: Parallel Master Port Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 12-10  
bit 9  
Unimplemented: Read as ‘0’  
OC5IE: Output Compare Channel 5 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 8  
bit 7  
Unimplemented: Read as ‘0’  
IC5IE: Input Capture Channel 5 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 6  
bit 5  
IC4IE: Input Capture Channel 4 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
IC3IE: Input Capture Channel 3 Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 4-2  
bit 1  
Unimplemented: Read as ‘0’  
SPI2IE: SPI2 Event Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 0  
SPF2IE: SPI2 Fault Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
2005-2012 Microchip Technology Inc.  
DS39747F-page 77  
PIC24FJ128GA010 FAMILY  
REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3  
U-0  
R/W-0  
RTCIE  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
R/W-0  
U-0  
INT4IE  
INT3IE  
MI2C2IE  
SI2C2IE  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
Unimplemented: Read as ‘0’  
RTCIE: Real-Time Clock/Calendar Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 13-7  
bit 6  
Unimplemented: Read as ‘0’  
INT4IE: External Interrupt 4 Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 5  
INT3IE: External Interrupt 3 Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 4-3  
bit 2  
Unimplemented: Read as ‘0’  
MI2C2IE: Master I2C2 Event Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 1  
bit 0  
SI2C2IE: Slave I2C2 Event Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
Unimplemented: Read as ‘0’  
DS39747F-page 78  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
CRCIE  
U2ERIE  
U1ERIE  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-4  
bit 3  
Unimplemented: Read as ‘0’  
CRCIE: CRC Generator Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 2  
U2ERIE: UART2 Error Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
bit 1  
bit 0  
U1ERIE: UART1 Error Interrupt Enable bit  
1= Interrupt request is enabled  
0= Interrupt request is not enabled  
Unimplemented: Read as ‘0’  
2005-2012 Microchip Technology Inc.  
DS39747F-page 79  
PIC24FJ128GA010 FAMILY  
REGISTER 7-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0  
U-0  
R/W-1  
T1IP2  
R/W-0  
T1IP1  
R/W-0  
T1IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC1IP2  
OC1IP1  
OC1IP0  
bit 15  
bit 8  
U-0  
R/W-1  
IC1IP2  
R/W-0  
IC1IP1  
R/W-0  
IC1IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
INT0IP2  
INT0IP1  
INT0IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T1IP<2:0>: Timer1 Interrupt Priority bits  
bit 14-12  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
INT0IP<2:0:> External Interrupt 0 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is priority 1  
000= Interrupt source is disabled  
DS39747F-page 80  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1  
U-0  
R/W-1  
T2IP2  
R/W-0  
T2IP1  
R/W-0  
T2IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC2IP2  
OC2IP1  
OC2IP0  
bit 15  
bit 8  
U-0  
R/W-1  
IC2IP2  
R/W-0  
IC2IP1  
R/W-0  
IC2IP0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T2IP<2:0>: Timer2 Interrupt Priority bits  
bit 14-12  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC2IP<2:0>: Input Capture Channel 2 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
2005-2012 Microchip Technology Inc.  
DS39747F-page 81  
PIC24FJ128GA010 FAMILY  
REGISTER 7-17: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U1RXIP2  
U1RXIP1  
U1RXIP0  
SPI1IP2  
SPI1IP1  
SPI1IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
T3IP2  
R/W-0  
T3IP1  
R/W-0  
T3IP0  
SPF1IP2  
SPF1IP1  
SPF1IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
SPI1IP<2:0>: SPI1 Event Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SPF1IP<2:0>: SPI1 Fault Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T3IP<2:0>: Timer3 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
DS39747F-page 82  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
AD1IP2  
AD1IP1  
AD1IP0  
U1TXIP2  
U1TXIP1  
U1TXIP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
AD1IP<2:0>: A/D Conversion Complete Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
2005-2012 Microchip Technology Inc.  
DS39747F-page 83  
PIC24FJ128GA010 FAMILY  
REGISTER 7-19: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4  
U-0  
R/W-1  
CNIP2  
R/W-0  
CNIP1  
R/W-0  
CNIP0  
U-0  
R/W-1  
CMIP2  
R/W-0  
CMIP1  
R/W-0  
CMIP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
MI2C1IP2  
MI2C1IP1  
MI2C1IP0  
SI2C1IP2  
SI2C1IP1  
SI2C1IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
CNIP<2:0>: Input Change Notification Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
CMIP<2:0>: Comparator Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
MI2C1IP<2:0>: Master I2C1 Event Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SI2C1IP<2:0>: Slave I2C1 Event Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
DS39747F-page 84  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 7-20: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
INT1IP2  
INT1IP1  
INT1IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-3  
bit 2-0  
Unimplemented: Read as ‘0’  
INT1IP<2:0>: External Interrupt 1 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
2005-2012 Microchip Technology Inc.  
DS39747F-page 85  
PIC24FJ128GA010 FAMILY  
REGISTER 7-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6  
U-0  
R/W-1  
T4IP2  
R/W-0  
T4IP1  
R/W-0  
T4IP0  
U-0  
R/W-1  
R/W-0  
R/W-0  
OC4IP2  
OC4IP1  
OC4IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
OC3IP2  
OC3IP1  
OC3IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
T4IP<2:0>: Timer4 Interrupt Priority bits  
bit 14-12  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
OC3IP<2:0>: Output Compare Channel 3 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS39747F-page 86  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 7-22: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U2TXIP2  
U2TXIP1  
U2TXIP0  
U2RXIP2  
U2RXIP1  
U2RXIP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
T5IP2  
R/W-0  
T5IP1  
R/W-0  
T5IP0  
INT2IP2  
INT2IP1  
INT2IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
U2TXIP<2:0>: UART2 Transmitter Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
U2RXIP<2:0>: UART2 Receiver Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
INT2IP<2:0>: External Interrupt 2 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
T5IP<2:0>: Timer5 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
2005-2012 Microchip Technology Inc.  
DS39747F-page 87  
PIC24FJ128GA010 FAMILY  
REGISTER 7-23: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
SPI2IP2  
SPI2IP1  
SPI2IP0  
SPF2IP2  
SPF2IP1  
SPF2IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
SPI2IP<2:0>: SPI2 Event Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SPF2IP<2:0>: SPI2 Fault Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
DS39747F-page 88  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 7-24: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9  
U-0  
R/W-1  
IC5IP2  
R/W-0  
IC5IP1  
R/W-0  
IC5IP0  
U-0  
R/W-1  
IC4IP2  
R/W-0  
IC4IP1  
R/W-0  
IC4IP0  
bit 15  
bit 8  
U-0  
R/W-1  
IC3IP2  
R/W-0  
IC3IP1  
R/W-0  
IC3IP0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
IC5IP<2:0>: Input Capture Channel 5 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
IC4IP<2:0>: Input Capture Channel 4 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
IC3IP<2:0>: Input Capture Channel 3 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
2005-2012 Microchip Technology Inc.  
DS39747F-page 89  
PIC24FJ128GA010 FAMILY  
REGISTER 7-25: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
OC5IP2  
OC5IP1  
OC5IP0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
OC5IP<2:0>: Output Compare Channel 5 Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
REGISTER 7-26: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
PMPIP2  
PMPIP1  
PMPIP0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-7  
bit 6-4  
Unimplemented: Read as ‘0’  
PMPIP<2:0>: Parallel Master Port Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS39747F-page 90  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 7-27: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
MI2C2IP2  
MI2C2IP1  
MI2C2IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
SI2C2IP2  
SI2C2IP1  
SI2C2IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
MI2C2IP<2:0>: Master I2C2 Event Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
SI2C2IP<2:0>: Slave I2C2 Event Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
2005-2012 Microchip Technology Inc.  
DS39747F-page 91  
PIC24FJ128GA010 FAMILY  
REGISTER 7-28: IPC13: INTERRUPT PRIORITY CONTROL REGISTER 13  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
IN4IP1  
R/W-0  
INT4IP2  
INT4IP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
INT3IP2  
INT3IP1  
INT3IP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
INT4IP<2:0>: External Interrupt 4 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
INT3IP<2:0>: External Interrupt 3 Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS39747F-page 92  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 7-29: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
RTCIP2  
RTCIP1  
RTCIP0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-11  
bit 10-8  
Unimplemented: Read as ‘0’  
RTCIP<2:0>: Real-Time Clock/Calendar Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7-0  
Unimplemented: Read as ‘0’  
2005-2012 Microchip Technology Inc.  
DS39747F-page 93  
PIC24FJ128GA010 FAMILY  
REGISTER 7-30: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
R/W-1  
R/W-0  
R/W-0  
CRCIP2  
CRCIP1  
CRCIP0  
U2ERIP2  
U2ERIP1  
U2ERIP0  
bit 15  
bit 8  
U-0  
R/W-1  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U1ERIP2  
U1ERIP1  
U1ERIP0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
CRCIP2:0>: CRC Generator Error Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
U2ERIP<2:0>: UART2 Error Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
U1ERIP<2:0>: UART1 Error Interrupt Priority bits  
111= Interrupt is Priority 7 (highest priority interrupt)  
001= Interrupt is Priority 1  
000= Interrupt source is disabled  
bit 3-0  
Unimplemented: Read as ‘0’  
DS39747F-page 94  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 7-31: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER  
R-0  
U-0  
R/W-0  
U-0  
R-0  
R-0  
R-0  
R-0  
CPUIRQ  
VHOLD  
ILR3  
ILR2  
ILR1  
ILR0  
bit 15  
bit 8  
U-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
R-0  
VECNUM6  
VECNUM5  
VECNUM4  
VECNUM3  
VECNUM2  
VECNUM1  
VECNUM0  
bit 0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CPUIRQ: Interrupt Request from Interrupt Controller CPU bit  
1= An interrupt request has occurred but has not yet been Acknowledged by the CPU; this happens  
when the CPU priority is higher than the interrupt priority  
0= No interrupt request is unacknowledged  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
VHOLD: Vector Number Capture Configuration bit  
1= The VECNUM bits contain the value of the highest priority pending interrupt  
0= The VECNUM bits contain the value of the last Acknowledged interrupt (i.e., the last interrupt that  
has occurred with higher priority than the CPU, even if other interrupts are pending)  
bit 12  
Unimplemented: Read as ‘0’  
bit 11-8  
ILR<3:0>: New CPU Interrupt Priority Level bits  
1111= CPU Interrupt Priority Level is 15  
0001= CPU Interrupt Priority Level is 1  
0000= CPU Interrupt Priority Level is 0  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-0  
VECNUM<6:0>: Pending Interrupt Vector ID bits (pending vector number is VECNUM + 8)  
0111111= Interrupt Vector pending is number 135  
0000001= Interrupt Vector pending is number 9  
0000000= Interrupt Vector pending is number 8  
2005-2012 Microchip Technology Inc.  
DS39747F-page 95  
PIC24FJ128GA010 FAMILY  
7.4.3  
TRAP SERVICE ROUTINE  
7.4  
Interrupt Setup Procedures  
A Trap Service Routine (TSR) is coded like an ISR,  
except that the appropriate trap status flag in the  
INTCON1 register must be cleared to avoid re-entry  
into the TSR.  
7.4.1  
INITIALIZATION  
To configure an interrupt source:  
1. Set the NSTDIS Control bit (INTCON1<15>) if  
nested interrupts are not desired.  
7.4.4  
INTERRUPT DISABLE  
2. Select the user-assigned priority level for the  
interrupt source by writing the control bits in the  
appropriate IPCx Control register. The priority  
level will depend on the specific application and  
type of interrupt source. If multiple priority levels  
are not desired, the IPCx register control bits for  
all enabled interrupt sources may be  
programmed to the same non-zero value.  
All user interrupts can be disabled using the following  
procedure:  
1. Push the current SR value onto the software  
stack using the PUSHinstruction.  
2. Force the CPU to Priority Level 7 by inclusive  
ORing the value OEh with SRL.  
To enable user interrupts, the POPinstruction may be  
used to restore the previous SR value.  
Note: At a device Reset, the IPC registers are  
initialized, such that all user interrupt  
sources are assigned to Priority Level 4.  
Note that only user interrupts with a priority level of 7 or  
less can be disabled. Trap sources (Level 8-15) cannot  
be disabled.  
3. Clear the interrupt flag status bit associated with  
the peripheral in the associated IFSx Status  
register.  
The DISIinstruction provides a convenient way to dis-  
able interrupts of Priority Levels 1-6 for a fixed period of  
time. Level 7 interrupt sources are not disabled by the  
DISI instruction.  
4. Enable the interrupt source by setting the inter-  
rupt enable control bit associated with the  
source in the appropriate IECx Control register.  
7.4.2  
INTERRUPT SERVICE ROUTINE  
The method that is used to declare an ISR and initialize  
the IVT with the correct vector address will depend on  
the programming language (i.e., ‘C’ or assembler) and  
the language development toolsuite that is used to  
develop the application. In general, the user must clear  
the interrupt flag in the appropriate IFSx register for the  
source of interrupt that the ISR handles. Otherwise, the  
ISR will be re-entered immediately after exiting the  
routine. If the ISR is coded in assembly language, it  
must be terminated using a RETFIE instruction to  
unstack the saved PC value, SRL value and old CPU  
priority level.  
DS39747F-page 96  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
• On-chip 4x PLL to boost internal operating frequency  
on select internal and external oscillator sources  
8.0  
OSCILLATOR  
CONFIGURATION  
• Software-controllable switching between various  
clock sources  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. Refer to Section 6. “Oscillator”  
(DS39700) in the “PIC24F Family  
Reference Manual” for more information.  
• Software-controllable postscaler for selective  
clocking of CPU for system power savings  
• A Fail-Safe Clock Monitor (FSCM) that detects  
clock failure and permits safe application recovery  
or shutdown  
A simplified diagram of the oscillator system is shown  
in Figure 8-1.  
The oscillator system for PIC24FJ128GA010 family  
devices has the following features:  
• A total of four external and internal oscillator options  
as clock sources, providing 11 different clock modes  
FIGURE 8-1:  
PIC24FJ128GA010 FAMILY CLOCK DIAGRAM  
PIC24FJ128GA010 Family  
Primary Oscillator  
CLKO  
XT, HS, EC  
CLKDIV<14:12>  
OSC1  
OSC2  
XTPLL, HSPLL,  
ECPLL, FRCPLL  
CPU  
8 MHz/  
4 MHz  
4 x PLL  
FRC  
Oscillator  
FRCDIV  
Peripherals  
8 MHz  
(Nominal)  
CLKDIV<10:8>  
FRC  
LPRC  
LPRC  
Oscillator  
31 kHz (Nominal)  
Secondary Oscillator  
SOSC  
SOSCO  
SOSCI  
SOSCEN  
Enable  
Oscillator  
Clock Control Logic  
Fail-Safe  
Clock  
Monitor  
WDT, PWRT  
Clock Source Option  
for Other Modules  
2005-2012 Microchip Technology Inc.  
DS39747F-page 97  
PIC24FJ128GA010 FAMILY  
8.1  
CPU Clocking Scheme  
8.2  
Oscillator Configuration  
The system clock source can be provided by one of  
four sources:  
The oscillator source (and operating mode) that is  
used at a device Power-on Reset event is selected  
using Configuration bit settings. The oscillator Config-  
uration bit settings are located in the Configuration  
registers in the program memory (refer to  
Section 24.1 “Configuration Bits” for further  
details). The Primary Oscillator Configuration bits,  
POSCMD<1:0> (Configuration Word 2<1:0>), and  
the Initial Oscillator Select Configuration bits,  
FNOSC<2:0> (Configuration Word 2<10:8>), select  
the oscillator source that is used at a Power-on Reset.  
The FRC primary oscillator with postscaler (FRCDIV)  
is the default (unprogrammed) selection. The second-  
ary oscillator, or one of the internal oscillators, may be  
chosen by programming these bit locations.  
• Primary Oscillator (POSC) on the OSC1 and  
OSC2 pins  
• Secondary Oscillator (SOSC) on the SOSCI and  
SOSCO pins  
• Fast Internal RC (FRC) Oscillator  
• Low-Power Internal RC (LPRC) Oscillator  
The primary oscillator and FRC sources have the  
option of using the internal 4x PLL. The frequency of  
the FRC clock source can optionally be reduced by the  
programmable clock divider. The selected clock source  
generates the processor and peripheral clock sources.  
The processor clock source is divided by two to pro-  
duce the internal instruction cycle clock, FCY. In this  
document, the instruction cycle clock is also denoted  
by FOSC/2. The internal instruction cycle clock, FOSC/2,  
can be provided on the OSC2 I/O pin for some  
operating modes of the primary oscillator.  
The Configuration bits allow users to choose between  
the various clock modes, shown in Table 8-1.  
8.2.1  
CLOCK SWITCHING MODE  
CONFIGURATION BITS  
The FCKSM Configuration bits (Configuration Word 2<7:6>)  
are used to jointly configure device clock switching and  
the Fail-Safe Clock Monitor (FSCM). Clock switching is  
enabled only when FCKSM1 is programmed (‘0’). The  
FSCM is enabled only when FCKSM<1:0> are both  
programmed (‘00’).  
TABLE 8-1:  
CONFIGURATION BIT VALUES FOR CLOCK SELECTION  
Oscillator Mode  
Oscillator Source  
POSCMD<1:0>  
FNOSC<2:0>  
Note  
1, 2  
Fast RC Oscillator with Postscaler  
(FRCDIV)  
Internal  
11  
111  
(Reserved)  
Internal  
Internal  
xx  
11  
11  
110  
101  
100  
1
1
1
Low-Power RC Oscillator (LPRC)  
Secondary (Timer1) Oscillator  
(SOSC)  
Secondary  
Primary Oscillator (HS) with PLL  
Module (HSPLL)  
Primary  
Primary  
Primary  
10  
01  
00  
011  
011  
011  
Primary Oscillator (XT) with PLL  
Module (XTPLL)  
Primary Oscillator (EC) with PLL  
Module (ECPLL)  
Primary Oscillator (HS)  
Primary Oscillator (XT)  
Primary Oscillator (EC)  
Primary  
Primary  
Primary  
Internal  
10  
01  
00  
11  
010  
010  
010  
001  
Fast RC Oscillator with PLL Module  
(FRCPLL)  
1
1
Fast RC Oscillator (FRC)  
Internal  
11  
000  
Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.  
2: This is the default oscillator mode for an unprogrammed (erased) device.  
DS39747F-page 98  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
The Clock Divider register (Register 8-2) controls the  
features associated with Doze mode, as well as the  
postscaler for the FRC oscillator.  
8.3  
Control Registers  
The operation of the oscillator is controlled by three  
Special Function Registers:  
The FRC Oscillator Tune register (Register 8-3) allows  
the user to fine-tune the FRC oscillator over a range of  
approximately ±12%. Each increment may adjust the  
FRC frequency by varying amounts and may not be  
monotonic. The next closest frequency may be multiple  
steps apart.  
• OSCCON  
• CLKDIV  
• OSCTUN  
The OSCCON register (Register 8-1) is the main con-  
trol register for the oscillator. It controls clock source  
switching, and allows the monitoring of clock sources.  
REGISTER 8-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
U-0  
R-0  
R-0  
R-0  
U-0  
R/W-x(1)  
NOSC2  
R/W-x(1)  
NOSC1  
R/W-x(1)  
NOSC0  
COSC2  
COSC1  
COSC0  
bit 15  
bit 8  
R/SO-0  
CLKLOCK  
bit 7  
U-0  
R-0(2)  
LOCK  
U-0  
R/CO-0  
CF  
U-0  
R/W-0  
R/W-0  
SOSCEN  
OSWEN  
bit 0  
Legend:  
CO = Clearable Only bit  
W = Writable bit  
SO = Settable Only bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
‘1’ = Bit is set  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
COSC<2:0>: Current Oscillator Selection bits  
111= Fast RC Oscillator with Postscaler (FRCDIV)  
110= Reserved  
101= Low-Power RC Oscillator (LPRC)  
100= Secondary Oscillator (SOSC)  
011= Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)  
010= Primary Oscillator (XT, HS, EC)  
001= Fast RC Oscillator with postscaler and PLL module (FRCPLL)  
000= Fast RC Oscillator (FRC)  
bit 11  
Unimplemented: Read as ‘0’  
bit 10-8  
NOSC<2:0>: New Oscillator Selection bits(1)  
111= Fast RC Oscillator with Postscaler (FRCDIV)  
110= Reserved  
101= Low-Power RC Oscillator (LPRC)  
100= Secondary Oscillator (SOSC)  
011= Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)  
010= Primary Oscillator (XT, HS, EC)  
001= Fast RC Oscillator with postscaler and PLL module (FRCPLL)  
000= Fast RC Oscillator (FRC)  
bit 7  
bit 6  
CLKLOCK: Clock Selection Lock Enable bit  
If FSCM is enabled (FCKSM1 = 1):  
1= Clock and PLL selections are locked  
0= Clock and PLL selections are not locked and may be modified by setting the OSWEN bit  
If FSCM is disabled (FCKSM1 = 0):  
Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.  
Unimplemented: Read as ‘0’  
Note 1: Reset values for these bits are determined by the FNOSC Configuration bits.  
2: Also resets to ‘0’ during any valid clock switch or whenever a non-PLL Clock mode is selected.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 99  
PIC24FJ128GA010 FAMILY  
REGISTER 8-1:  
OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)  
bit 5  
LOCK: PLL Lock Status bit(2)  
1= PLL module is in lock or PLL module start-up timer is satisfied  
0= PLL module is out of lock, PLL start-up timer is running or PLL is disabled  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
CF: Clock Fail Detect bit  
1= FSCM has detected a clock failure  
0= No clock failure has been detected  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
SOSCEN: 32 kHz Secondary Oscillator (SOSC) Enable bit  
1= Enable secondary oscillator  
0= Disable secondary oscillator  
bit 0  
OSWEN: Oscillator Switch Enable bit  
1= Initiate an oscillator switch to clock source specified by NOSC<2:0> bits  
0= Oscillator switch is complete  
Note 1: Reset values for these bits are determined by the FNOSC Configuration bits.  
2: Also resets to ‘0’ during any valid clock switch or whenever a non-PLL Clock mode is selected.  
DS39747F-page 100  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 8-2:  
CLKDIV: CLOCK DIVIDER REGISTER  
R/W-0  
ROI  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
DOZEN(1)  
R/W-0  
R/W-0  
R/W-1  
DOZE2  
DOZE1  
DOZE0  
RCDIV2  
RCDIV1  
RCDIV0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ROI: Recover on Interrupt bit  
1= Interrupts clear the DOZEN bit and reset the CPU peripheral clock ratio to 1:1  
0= Interrupts have no effect on the DOZEN bit  
bit 14-12  
DOZE<2:0>: CPU Peripheral Clock Ratio Select bits  
111= 1:128  
110= 1:64  
101= 1:32  
100= 1:16  
011= 1:8  
010= 1:4  
001= 1:2  
000= 1:1  
bit 11  
DOZEN: DOZE Enable bit(1)  
1= DOZE<2:0> bits specify the CPU peripheral clock ratio  
0= CPU peripheral clock ratio set to 1:1  
bit 10-8  
RCDIV<2:0>: FRC Postscaler Select bits  
111= 31.25 kHz (divide-by-256)  
110= 125 kHz (divide-by-64)  
101= 250 kHz (divide-by-32)  
100= 500 kHz (divide-by-16)  
011= 1 MHz (divide-by-8)  
010= 2 MHz (divide-by-4)  
001= 4 MHz (divide-by-2)  
000= 8 MHz (divide-by-1)  
bit 7-0  
Unimplemented: Read as ‘0’  
Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 101  
PIC24FJ128GA010 FAMILY  
REGISTER 8-3:  
OSCTUN: FRC OSCILLATOR TUNE REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
R/W-0  
TUN5  
R/W-0  
TUN4  
R/W-0  
TUN3  
R/W-0  
TUN2  
R/W-0  
TUN1  
R/W-0  
TUN0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN<5:0>: FRC Oscillator Tuning bits  
011111= Maximum frequency deviation  
011110=  
000001=  
000000= Center frequency, oscillator is running at factory calibrated frequency  
111111=  
100001=  
100000= Minimum frequency deviation  
DS39747F-page 102  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
Once the basic sequence is completed, the system  
clock hardware responds automatically as follows:  
8.4  
Clock Switching Operation  
With few limitations, applications are free to switch  
between any of the four clock sources (POSC, SOSC,  
FRC and LPRC) under software control and at any  
time. To limit the possible side effects that could result  
from this flexibility, PIC24F devices have a safeguard  
lock built into the switching process.  
1. The clock switching hardware compares the  
COSC status bits with the new value of the  
NOSC control bits. If they are the same, then the  
clock switch is a redundant operation. In this  
case, the OSWEN bit is cleared automatically  
and the clock switch is aborted.  
Note:  
Primary oscillator mode has three  
different submodes (XT, HS and EC)  
which are determined by the POSCMD  
Configuration bits. While an application  
can switch to and from primary oscillator  
mode in software, it cannot switch  
between the different primary submodes  
without reprogramming the device.  
2. If a valid clock switch has been initiated, the  
LOCK (OSCCON<5>) and CF (OSCCON<3>)  
status bits are cleared.  
3. The new oscillator is turned on by the hardware  
if it is not currently running. If a crystal oscillator  
must be turned on, the hardware will wait until  
the OST expires. If the new source is using the  
PLL, then the hardware waits until a PLL lock is  
detected (LOCK = 1).  
8.4.1  
ENABLING CLOCK SWITCHING  
4. The hardware waits for ten clock cycles from the  
new clock source and then performs the clock  
switch.  
To enable clock switching, the FCKSM1 Configuration bit  
in the Flash Configuration Word 2 register must be pro-  
grammed to ‘0’. (Refer to Section 24.1 “Configuration  
Bits” for further details.) If the FCKSM1 Configuration bit  
is unprogrammed (‘1’), the clock switching function and  
Fail-Safe Clock Monitor function are disabled. This is the  
default setting.  
5. The hardware clears the OSWEN bit to indicate a  
successful clock transition. In addition, the NOSC  
bit values are transferred to the COSC status bits.  
6. The old clock source is turned off at this time  
with the exception of LPRC (if WDT or FSCM is  
enabled) or SOSC (if SOSCEN remains set).  
The NOSC control bits (OSCCON<10:8>) do not  
control the clock selection when clock switching is dis-  
abled. However, the COSC bits (OSCCON<14:12>)  
will reflect the clock source selected by the FNOSC  
Configuration bits.  
Note 1: The processor will continue to execute  
code throughout the clock switching  
sequence. Timing-sensitive code should  
not be executed during this time.  
The OSWEN control bit (OSCCON<0>) has no effect  
when clock switching is disabled; it is held at ‘0’ at all  
times.  
2: Direct clock switches between any  
primary oscillator mode with PLL and  
FRCPLL mode are not permitted. This  
applies to clock switches in either direc-  
tion. In these instances, the application  
must switch to FRC mode as a transition  
clock source between the two PLL  
modes.  
8.4.2  
OSCILLATOR SWITCHING  
SEQUENCE  
At a minimum, performing a clock switch requires this  
basic sequence:  
1. If  
desired,  
read  
the  
COSC  
bits  
(OSCCON<14:12>) to determine the current  
oscillator source.  
2. Perform the unlock sequence to allow a write to  
the OSCCON register high byte.  
3. Write the appropriate value to the NOSC control  
bits (OSCCON<10:8>) for the new oscillator  
source.  
4. Perform the unlock sequence to allow a write to  
the OSCCON register low byte.  
5. Set the OSWEN bit to initiate the oscillator  
switch.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 103  
PIC24FJ128GA010 FAMILY  
A recommended code sequence for a clock switch  
includes the following:  
EXAMPLE 8-1:  
BASIC CODE SEQUENCE  
FOR CLOCK SWITCHING  
1. Disable interrupts during the OSCCON register  
unlock and write sequence.  
.global __reset  
.include "p24fxxxx.inc"  
.text  
__reset:  
2. Execute the unlock sequence for the OSCCON  
high byte by writing 78h and 9Ah to  
OSCCON<15:8>  
instructions.  
in  
two  
back-to-back  
;Place the new oscillator selection in W0  
;OSCCONH (high byte) Unlock Sequence  
DISI #18  
3. Write new oscillator source to the NOSC control  
bits in the instruction immediately following the  
unlock sequence.  
PUSH  
PUSH  
PUSH  
MOV  
w1  
w2  
w3  
4. Execute the unlock sequence for the OSCCON  
low byte by writing 46h and 57h to  
OSCCON<7:0> in two back-to-back instructions.  
#OSCCONH, w1  
#0x78, w2  
#0x9A, w3  
w2, [w1]  
w3, [w1]  
MOV  
MOV  
5. Set the OSWEN bit in the instruction immediately  
following the unlock sequence.  
MOV.b  
MOV.b  
;Set new oscillator selection  
MOV.b WREG, OSCCONH  
;OSCCONL (low byte) unlock sequence  
6. Continue to execute code that is not  
clock-sensitive (optional).  
7. Invoke an appropriate amount of software delay  
(cycle counting) to allow the selected oscillator  
and/or PLL to start and stabilize.  
MOV  
MOV  
MOV  
MOV.b  
MOV.b  
#OSCCONL, w1  
#0x46, w2  
#0x57, w3  
w2, [w1]  
8. Check to see if OSWEN is ‘0’. If it is, the switch  
was successful. If OSWEN is still set, then  
check the LOCK bit to determine the cause of  
the failure.  
w3, [w1]  
;Start oscillator switch operation  
BSET OSCCON, #0  
POP  
POP  
POP  
.end  
w3  
w2  
w1  
The core sequence for unlocking the OSCCON register  
and initiating a clock switch is shown in Example 8-1.  
DS39747F-page 104  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
and code execution, but allows peripheral modules to  
continue operation. The assembly syntax of the  
9.0  
POWER-SAVING FEATURES  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. Refer to Section 10. Power-  
Saving Features” (DS39698) in the  
“PIC24F Family Reference Manual” for  
more information.  
PWRSAVinstruction is shown in Example 9-1.  
Sleep and Idle modes can be exited as a result of an  
enabled interrupt, WDT time-out or a device Reset.  
When the device exits these modes, it is said to  
“wake-up”.  
Note: SLEEP_MODE and IDLE_MODE are con-  
stants defined in the assembler include  
file for the selected device.  
The PIC24FJ128GA010 family of devices provides the  
ability to manage power consumption by selectively  
managing clocking to the CPU and the peripherals. In  
general, a lower clock frequency and a reduction in the  
number of circuits being clocked constitutes lower  
consumed power. All PIC24F devices manage power  
consumption in four different ways:  
9.2.1  
SLEEP MODE  
Sleep mode has these features:  
• The system clock source is shut down. If an  
on-chip oscillator is used, it is turned off.  
• The device current consumption will be reduced  
to a minimum provided that no I/O pin is sourcing  
current.  
• Clock Frequency  
• Instruction-Based Sleep and Idle modes  
• Software-Controlled Doze mode  
• Selective Peripheral Control in Software  
• The Fail-Safe Clock Monitor does not operate  
during Sleep mode since the system clock source  
is disabled.  
Combinations of these methods can be used to selec-  
tively tailor an application’s power consumption, while  
still maintaining critical application features, such as  
timing-sensitive communications.  
• The LPRC clock will continue to run in Sleep  
mode if the WDT is enabled.  
• The WDT, if enabled, is automatically cleared  
prior to entering Sleep mode.  
9.1  
Clock Frequency and Clock  
Switching  
• Some device features or peripherals may  
continue to operate in Sleep mode. This includes  
items, such as the input change notification on the  
I/O ports, or peripherals that use an external clock  
input. Any peripheral that requires the system  
clock source for its operation will be disabled in  
Sleep mode.  
PIC24F devices allow for a wide range of clock  
frequencies to be selected under application control. If  
the system clock configuration is not locked, users can  
choose low-power or high-precision oscillators by simply  
changing the NOSC bits. The process of changing a sys-  
tem clock during operation, as well as limitations to the  
process, are discussed in more detail in Section 8.0  
“Oscillator Configuration”.  
The device will wake-up from Sleep mode on any of  
these events:  
• On any interrupt source that is individually  
enabled  
9.2  
Instruction-Based Power-Saving  
Modes  
• On any form of device Reset  
• On a WDT time-out  
PIC24F devices have two special power-saving modes  
that are entered through the execution of a special  
PWRSAVinstruction. Sleep mode stops clock operation  
and halts all code execution; Idle mode halts the CPU  
On wake-up from Sleep, the processor will restart with  
the same clock source that was active when Sleep  
mode was entered.  
EXAMPLE 9-1:  
PWRSAV INSTRUCTION SYNTAX  
PWRSAV#SLEEP_MODE ; Put the device into SLEEP mode  
PWRSAV#IDLE_MODE ; Put the device into IDLE mode  
2005-2012 Microchip Technology Inc.  
DS39747F-page 105  
PIC24FJ128GA010 FAMILY  
It is also possible to use Doze mode to selectively  
reduce power consumption in event driven applica-  
tions. This allows clock-sensitive functions, such as  
synchronous communications, to continue without  
interruption while the CPU idles, waiting for something  
to invoke an interrupt routine. Enabling the automatic  
return to full-speed CPU operation on interrupts is  
enabled by setting the ROI bit (CLKDIV<15>). By  
default, interrupt events have no effect on Doze mode  
operation.  
9.2.2  
IDLE MODE  
Idle mode has these features:  
• The CPU will stop executing instructions.  
• The WDT is automatically cleared.  
• The system clock source remains active. By  
default, all peripheral modules continue to operate  
normally from the system clock source, but can  
also be selectively disabled (see Section 9.4  
“Selective Peripheral Module Control”).  
• If the WDT or FSCM is enabled, the LPRC will  
also remain active.  
9.4  
Selective Peripheral Module  
Control  
The device will wake from Idle mode on any of these  
events:  
Idle and Doze modes allow users to substantially  
reduce power consumption by slowing or stopping the  
CPU clock. Even so, peripheral modules still remain  
clocked, and thus, consume power. There may be  
cases where the application needs what these modes  
do not provide: the allocation of power resources to  
CPU processing with minimal power consumption from  
the peripherals.  
• Any interrupt that is individually enabled.  
• Any device Reset.  
• A WDT time-out.  
On wake-up from Idle, the clock is re-applied to the  
CPU and instruction execution begins immediately,  
starting with the instruction following the PWRSAV  
instruction or the first instruction in the ISR.  
PIC24F devices address this requirement by allowing  
peripheral modules to be selectively disabled, reducing  
or eliminating their power consumption. This can be  
done with two control bits:  
9.2.3  
INTERRUPTS COINCIDENT WITH  
POWER SAVE INSTRUCTIONS  
Any interrupt that coincides with the execution of a  
PWRSAVinstruction will be held off until entry into Sleep  
or Idle mode has completed. The device will then  
wake-up from Sleep or Idle mode.  
• The Peripheral Enable bit, generically named  
“XXXEN”, located in the module’s main control  
SFR.  
• The Peripheral Module Disable (PMD) bit, generi-  
cally named “XXXMD”, located in one of the PMD  
Control registers.  
9.3  
Doze Mode  
Generally, changing clock speed and invoking one of  
the power-saving modes are the preferred strategies  
for reducing power consumption. There may be cir-  
cumstances, however, where this is not practical. For  
example, it may be necessary for an application to  
maintain uninterrupted synchronous communication,  
even while it is doing nothing else. Reducing system  
clock speed may introduce communication errors,  
Both bits have similar functions in enabling or disabling its  
associated module. Setting the PMD bit for a module dis-  
ables all clock sources to that module, reducing its power  
consumption to an absolute minimum. In this state, the  
control and status registers associated with the periph-  
eral will also be disabled, so writes to those registers will  
have no effect and read values will be invalid. Many  
peripheral modules have a corresponding PMD bit.  
while using  
a
power-saving mode may stop  
In contrast, disabling a module by clearing its XXXEN  
bit disables its functionality, but leaves its registers  
available to be read and written to. Power consumption  
is reduced, but not by as much as the PMD bit does.  
Most peripheral modules have an enable bit;  
exceptions include Capture, Compare and RTCC.  
communications completely.  
Doze mode is a simple and effective alternative method  
to reduce power consumption while the device is still  
executing code. In this mode, the system clock contin-  
ues to operate from the same source and at the same  
speed. Peripheral modules continue to be clocked at the  
same speed, while the CPU clock speed is reduced.  
Synchronization between the two clock domains is  
maintained, allowing the peripherals to access the SFRs  
while the CPU executes code at a slower rate.  
To achieve more selective power savings, peripheral  
modules can also be selectively disabled when the  
device enters Idle mode. This is done through the  
control bit of the generic name format, “XXXIDL”. By  
default, all modules that can operate during Idle mode  
will do so. Using the disable on Idle feature allows  
further reduction of power consumption during Idle  
mode, enhancing power savings for extremely critical  
power applications.  
Doze mode is enabled by setting the DOZEN bit  
(CLKDIV<11>). The ratio between peripheral and core  
clock speed is determined by the DOZE<2:0> bits  
(CLKDIV<14:12>). There are eight possible  
configurations, from 1:1 to 1:128, with 1:1 being the  
default.  
DS39747F-page 106  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
When a peripheral is enabled and the peripheral is  
actively driving an associated pin, the use of the pin as  
10.0 I/O PORTS  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
a general purpose output pin is disabled. The I/O pin  
may be read, but the output driver for the parallel port  
bit will be disabled. If a peripheral is enabled, but the  
peripheral is not actively driving a pin, that pin may be  
driven by a port.  
intended to be a comprehensive refer-  
ence source. Refer to Section 12. “I/O  
Ports with Peripheral Pin Select (PPS)”  
(DS39711) in the “PIC24F Family  
Reference Manual” for more information.  
All port pins have three registers directly associated  
with their operation as digital I/O. The Data Direction  
register (TRISx) determines whether the pin is an input  
or an output. If the data direction bit is a ‘1’, then the pin  
is an input. All port pins are defined as inputs after a  
Reset. Reads from the latch (LATx), read the latch.  
Writes to the latch, write the latch. Reads from the port  
(PORTx), read the port pins, while writes to the port  
pins, write the latch.  
All of the device pins (except VDD, VSS, MCLR and  
OSC1/CLKI) are shared between the peripherals and  
the parallel I/O ports. All I/O input ports feature Schmitt  
Trigger inputs for improved noise immunity.  
10.1 Parallel I/O (PIO) Ports  
A parallel I/O port that shares a pin with a peripheral is,  
in general, subservient to the peripheral. The periph-  
eral’s output buffer data and control signals are  
provided to a pair of multiplexers. The multiplexers  
select whether the peripheral or the associated port  
has ownership of the output data and control signals of  
the I/O pin. The logic also prevents “loop through”, in  
which a port’s digital output can drive the input of a  
peripheral that shares the same pin. Figure 10-1 shows  
how ports are shared with other peripherals and the  
associated I/O pin to which they are connected.  
Any bit and its associated data and control registers  
that are not valid for a particular device will be  
disabled. That means the corresponding LATx and  
TRISx registers, and the port pin will read as zeros.  
When a pin is shared with another peripheral or func-  
tion that is defined as an input only, it is nevertheless,  
regarded as a dedicated port because there is no  
other competing source of outputs. An example is the  
INT4 pin.  
FIGURE 10-1:  
BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE  
Peripheral Module  
Output Multiplexers  
Peripheral Input Data  
Peripheral Module Enable  
I/O  
Peripheral Output Enable  
Peripheral Output Data  
1
0
Output Enable  
Output Data  
1
0
PIO Module  
Read TRIS  
Data Bus  
WR TRIS  
D
Q
I/O Pin  
CK  
TRIS Latch  
D
Q
WR LAT +  
WR PORT  
CK  
Data Latch  
Read LAT  
Input Data  
Read PORT  
2005-2012 Microchip Technology Inc.  
DS39747F-page 107  
PIC24FJ128GA010 FAMILY  
10.1.1  
OPEN-DRAIN CONFIGURATION  
10.2.2  
ANALOG INPUT PINS AND  
VOLTAGE CONSIDERATIONS  
In addition to the PORT, LAT and TRIS registers for  
data control, each port pin can also be individually con-  
figured for either digital or open-drain output. This is  
controlled by the Open-Drain Control register, ODCx,  
associated with each port. Setting any of the bits con-  
figures the corresponding pin to act as an open-drain  
output.  
The voltage tolerance of pins used as device inputs is  
dependent on the pin’s input function. Pins that are  
used as digital only inputs are able to handle DC volt-  
ages up to 5.5V, a level typical for digital logic circuits.  
In contrast, pins that also have analog input functions  
of any kind can only tolerate voltages up to VDD. On  
these pins, voltage excursions beyond VDD are always  
to be avoided. Table 10-1 summarizes the input capa-  
bilities. Refer to Section 27.1 “DC Characteristics”  
for more details.  
The open-drain feature allows the generation of  
outputs higher than VDD (e.g., 5V) on any desired  
digital only pins by using external pull-up resistors. The  
maximum open-drain voltage allowed is the same as  
the maximum VIH specification.  
Note:  
For easy identification, the pin diagrams at  
the beginning of this data sheet also indi-  
cate 5.5V tolerant pins with dark grey  
shading.  
10.2 Configuring Analog Port Pins  
The use of the AD1PCFG and TRIS registers control  
the operation of the A/D port pins. The port pins that are  
desired as analog inputs must have their correspond-  
ing TRIS bit set (input). If the TRIS bit is cleared  
(output), the digital output level (VOH or VOL) will be  
converted.  
TABLE 10-1: INPUT VOLTAGE LEVELS(1)  
Tolerated  
Port or Pin  
Description  
Input  
PORTA<10:9>  
PORTB<15:0>  
PORTC<15:12>  
PORTA<15:14>  
PORTA<7:0>  
PORTC<4:1>  
PORTD<15:0>  
PORTE<9:0>  
PORTF<13:12>  
PORTF<8:0>  
PORTG<15:12>  
PORTG<9:6>  
PORTG<3:0>  
VDD  
Only VDD input  
levels are tolerated.  
When reading the PORT register, all pins configured as  
analog input channels will read as cleared (a low level).  
Pins configured as digital inputs will not convert an  
analog input. Analog levels on any pin that is defined as  
a digital input (including the ANx pins) may cause the  
input buffer to consume current that exceeds the  
device specifications.  
5.5V  
Tolerates input  
levels above VDD,  
useful for most  
standard logic.  
10.2.1  
I/O PORT WRITE/READ TIMING  
One instruction cycle is required between a port  
direction change or port write operation and a read  
operation of the same port. Typically this instruction  
would be a NOP.  
Note 1: Not all port pins shown here are imple-  
mented on 64-pin and 80-pin devices.  
Refer to Section 1.0 “Device Overview”  
to confirm which ports are available in  
specific devices.  
EXAMPLE 10-1:  
PORT WRITE/READ EXAMPLE  
MOV  
MOV  
NOP  
0xFF00, W0  
W0, TRISBB  
; Configure PORTB<15:8> as inputs  
; and PORTB<7:0> as outputs  
; Delay 1 cycle  
btss PORTB, #13  
; Next Instruction  
DS39747F-page 108  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
Each CN pin also has a weak pull-up connected to it.  
The pull-ups act as a current source that is connected  
10.3 Input Change Notification  
The input change notification function of the I/O ports  
allows the PIC24FJ128GA010 family of devices to gen-  
erate interrupt requests to the processor in response to  
a Change-of-State (COS) on selected input pins. This  
feature is capable of detecting input Change-of-States,  
even in Sleep mode, when the clocks are disabled.  
Depending on the device pin count, there are up to  
22 external signals (CN0 through CN21) that may be  
selected (enabled) for generating an interrupt request  
on a Change-of-State.  
to the pin and eliminate the need for external resistors  
when push button or keypad devices are connected.  
The pull-ups are enabled separately using the CNPU1  
and CNPU2 registers, which contain the control bits for  
each of the CN pins. Setting any of the control bits  
enables the weak pull-ups for the corresponding pins.  
When the internal pull-up is selected, the pin pulls up to  
VDD – 0.7V (typical). Make sure that there is no external  
pull-up source when the internal pull-ups are enabled, as  
the voltage difference can cause a current path.  
There are four control registers associated with the CN  
module. The CNEN1 and CNEN2 registers contain the  
interrupt enable control bits for each of the CN input  
pins. Setting any of these bits enables a CN interrupt  
for the corresponding pins.  
Note:  
Pull-ups on Change Notification (CN) pins  
should always be disabled whenever the  
port pin is configured as a digital output.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 109  
PIC24FJ128GA010 FAMILY  
NOTES:  
DS39747F-page 110  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
Figure 11-1 presents a block diagram of the 16-bit timer  
module.  
11.0 TIMER1  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. Refer to Section 14. “Timers”  
(DS39704) in the “PIC24F Family  
Reference Manual” for more information.  
To configure Timer1 for operation:  
1. Set the TON bit (= 1).  
2. Select the timer prescaler ratio using the  
TCKPS<1:0> bits.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits.  
The Timer1 module is a 16-bit timer which can serve as  
the time counter for the Real-Time Clock (RTC) or  
operate as a free-running, interval timer/counter.  
Timer1 can operate in three modes:  
4. Set or clear the TSYNC bit to configure  
synchronous or asynchronous operation.  
5. Load the timer period value into the PR1  
register.  
• 16-Bit Timer  
6. If interrupts are required, set the Timer1 Inter-  
rupt Enable bit, T1IE. Use the priority bits,  
T1IP<2:0>, to set the interrupt priority.  
• 16-Bit Synchronous Counter  
• 16-Bit Asynchronous Counter  
Timer1 also supports these features:  
• Timer gate operation  
• Selectable prescaler settings  
• Timer operation during CPU Idle and Sleep  
modes  
• Interrupt on 16-bit Period register match or falling  
edge of the external gate signal  
FIGURE 11-1:  
16-BIT TIMER1 MODULE BLOCK DIAGRAM  
TCKPS<1:0>  
TON  
2
SOSCO/  
1x  
01  
00  
T1CK  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
SOSCEN  
SOSCI  
TCY  
TGATE  
TCS  
TGATE  
1
0
Q
Q
D
Set T1IF  
CK  
0
Reset  
Equal  
TMR1  
Sync  
1
TSYNC  
Comparator  
PR1  
2005-2012 Microchip Technology Inc.  
DS39747F-page 111  
PIC24FJ128GA010 FAMILY  
REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
U-0  
R/W-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS1  
TCKPS0  
TSYNC  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timer1 On bit  
1= Starts 16-bit Timer1  
0= Stops 16-bit Timer1  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timer1 Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation is enabled  
0= Gated time accumulation is disabled  
bit 5-4  
TCKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
TSYNC: Timer1 External Clock Input Synchronization Select bit  
When TCS = 1:  
1= Synchronizes external clock input  
0= Does not synchronize external clock input  
When TCS = 0:  
This bit is ignored.  
bit 1  
bit 0  
TCS: Timer1 Clock Source Select bit  
1= External clock from pin, T1CK (on the rising edge)  
0= Internal clock (FOSC/2)  
Unimplemented: Read as ‘0’  
DS39747F-page 112  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
To configure Timer2/3 or Timer4/5 for 32-bit operation:  
12.0 TIMER2/3 AND TIMER4/5  
1. Set the T32 bit (T2CON<3> or T4CON<3> = 1).  
Note:  
This data sheet summarizes the features of  
2. Select the prescaler ratio for Timer2 or Timer4  
using the TCKPS<1:0> bits.  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. Refer to Section 14. “Timers”  
(DS39704) in the “PIC24F Family  
Reference Manual” for more information.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits.  
4. Load the timer period value. PR3 (or PR5) will  
contain the most significant word of the value,  
while PR2 (or PR4) contains the least significant  
word.  
The Timer2/3 and Timer4/5 modules are 32-bit timers,  
which can also be configured as four independent, 16-bit  
timers with selectable operating modes.  
5. If interrupts are required, set the interrupt enable  
bit, T3IE or T5IE. Use the interrupt priority bits,  
T3IP<2:0> or T5IP<2:0>, to set the interrupt pri-  
ority. Note that while Timer2 or Timer4 controls  
the timer, the interrupt appears as a Timer3 or  
Timer5 interrupt.  
As a 32-bit timer, Timer2/3 and Timer4/5 operate in  
three modes:  
• Two Independent 16-Bit Timers (Timer2 and  
Timer3) with All 16-Bit Operating modes  
• Single 32-Bit Timer  
6. Set the TON bit (= 1).  
• Single 32-Bit Synchronous Counter  
The timer value, at any point, is stored in the register  
pair: TMR3:TMR2 (or TMR5:TMR4). TMR3 (TMR5)  
always contains the most significant word of the count,  
while TMR2 (TMR4) contains the least significant word.  
They also support these features:  
• Timer Gate Operation  
• Selectable Prescaler Settings  
• Timer Operation During Idle and Sleep modes  
• Interrupt on a 32-Bit Period Register Match  
• A/D Event Trigger (Timer2/3 only)  
To configure any of the timers for individual 16-bit  
operation:  
1. Clear the T32 bit corresponding to that timer  
(T2CON<3> for Timer2 and Timer3 or  
T4CON<3> for Timer4 and Timer5).  
Individually, all four of the 16-bit timers can function as  
synchronous timers or counters. They also offer the  
features listed above, except for the A/D Event Trigger;  
this is implemented only with Timer3. The operating  
modes and enabled features are determined by setting  
the appropriate bit(s) in the T2CON, T3CON, T4CON  
and T5CON registers. T2CON and T4CON are shown  
in generic form in Register 12-1; T3CON and T5CON  
are shown in Register 12-2.  
2. Select the timer prescaler ratio using the  
TCKPS<1:0> bits.  
3. Set the Clock and Gating modes using the TCS  
and TGATE bits.  
4. Load the timer period value into the PRx register.  
5. If interrupts are required, set the interrupt enable  
bit, TxIE; use the priority bits, TxIP<2:0>, to set  
the interrupt priority.  
For 32-bit timer/counter operation, Timer2 and Timer4  
are the least significant word; Timer3 and Timer4 are  
the most significant word of the 32-bit timers.  
6. Set the TON bit (TxCON<15> = 1).  
Note:  
For 32-bit operation, T3CON and T5CON  
control bits are ignored. Only T2CON and  
T4CON control bits are used for setup and  
control. Timer2 and Timer4 clock and gate  
inputs are utilized for the 32-bit timer  
modules, but an interrupt is generated  
with the Timer3 or Timer5 interrupt flags.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 113  
PIC24FJ128GA010 FAMILY  
FIGURE 12-1:  
TIMER2/3 AND TIMER4/5 (32-BIT) BLOCK DIAGRAM  
TCKPS<1:0>  
2
TON  
T2CK  
(T4CK)  
1x  
01  
00  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
TCY  
TGATE  
TGATE  
TCS  
1
0
Q
D
Set T3IF (T5IF)  
Q
CK  
PR3  
PR2  
(PR5)  
(PR4)  
A/D Event Trigger*  
Equal  
MSB  
Comparator  
LSB  
TMR2  
(TMR4)  
TMR3  
(TMR5)  
Sync  
Reset  
16  
Read TMR2 (TMR4)  
Write TMR2 (TMR4)  
16  
16  
TMR3HLD  
(TMR5HLD)  
Data Bus<15:0>  
Note: The 32-bit Timer Configuration bit, T32, must be set for 32-bit timer/counter operation. All control bits are  
respective to the T2CON and T4CON registers.  
*
The A/D Event Trigger is only available on Timer2/3.  
DS39747F-page 114  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
FIGURE 12-2:  
TIMER2 AND TIMER4 (16-BIT SYNCHRONOUS) BLOCK DIAGRAM  
TCKPS<1:0>  
TON  
2
T2CK  
(T4CK)  
1x  
01  
00  
Prescaler  
1, 8, 64, 256  
Gate  
Sync  
TGATE  
TCS  
TCY  
TGATE  
Q
D
1
0
Set T2IF (T4IF)  
Q
CK  
Reset  
Equal  
TMR2 (TMR4)  
Sync  
Comparator  
PR2 (PR4)  
FIGURE 12-3:  
TIMER3 AND TIMER5 (16-BIT SYNCHRONOUS) BLOCK DIAGRAM  
TCKPS<1:0>  
2
TON  
T3CK  
(T5CK)  
1x  
01  
00  
Sync  
Prescaler  
1, 8, 64, 256  
TGATE  
TCS  
TCY  
TGATE  
Q
Q
D
1
0
Set T3IF (T5IF)  
CK  
Reset  
Equal  
TMR3 (TMR5)  
A/D Event Trigger*  
Comparator  
PR3 (PR5)  
*
The A/D Event Trigger is available only on Timer2/3.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 115  
PIC24FJ128GA010 FAMILY  
REGISTER 12-1: TxCON: TIMER2 AND TIMER4 CONTROL REGISTER  
R/W-0  
TON  
U-0  
R/W-0  
TSIDL  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
T32(1)  
U-0  
R/W-0  
TCS  
U-0  
TGATE  
TCKPS1  
TCKPS0  
bit 7  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
TON: Timerx On bit  
When TxCON<3> = 1:  
1= Starts 32-bit Timerx/y  
0= Stops 32-bit Timerx/y  
When TxCON<3> = 0:  
1= Starts 16-bit Timerx  
0= Stops 16-bit Timerx  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit  
1= Discontinues module operation when the device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timerx Gated Time Accumulation Enable bit  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation is enabled  
0= Gated time accumulation is disabled  
bit 5-4  
bit 3  
TCKPS<1:0>: Timer2 Input Clock Prescale Select bits  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
T32: 32-Bit Timer Mode Select bit(1)  
1= Timerx and Timery form a single 32-bit timer  
0= Timerx and Timery act as two 16-bit timers  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timerx Clock Source Select bit  
1= External clock from pin, TxCK (on the rising edge)  
0= Internal clock (FOSC/2)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: In 32-bit mode, the T3CON or T5CON control bits do not affect 32-bit timer operation.  
DS39747F-page 116  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 12-2: TyCON: TIMER3 AND TIMER5 CONTROL REGISTER  
R/W-0  
TON(1)  
U-0  
R/W-0  
TSIDL(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
bit 0  
U-0  
R/W-0  
TGATE(1)  
R/W-0  
TCKPS1(1) TCKPS0(1)  
R/W-0  
U-0  
U-0  
R/W-0  
TCS(1)  
U-0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
TON: Timery On bit(1)  
1= Starts 16-bit Timery  
0= Stops 16-bit Timery  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
TSIDL: Stop in Idle Mode bit(1)  
1= Discontinues module operation when the device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12-7  
bit 6  
Unimplemented: Read as ‘0’  
TGATE: Timery Gated Time Accumulation Enable bit(1)  
When TCS = 1:  
This bit is ignored.  
When TCS = 0:  
1= Gated time accumulation is enabled  
0= Gated time accumulation is disabled  
bit 5-4  
TCKPS<1:0>: Timery Input Clock Prescale Select bits(1)  
11= 1:256  
10= 1:64  
01= 1:8  
00= 1:1  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
TCS: Timery Clock Source Select bit(1)  
1= External clock from pin, TyCK (on the rising edge)  
0= Internal clock (FOSC/2)  
bit 0  
Unimplemented: Read as ‘0’  
Note 1: When 32-bit operation is enabled (T2CON<3> = 1), these bits have no effect on Timery operation; all timer  
functions are set through T2CON.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 117  
PIC24FJ128GA010 FAMILY  
NOTES:  
DS39747F-page 118  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
• Capture timer value on every fourth rising edge of  
input, applied at the ICx pin  
13.0 INPUT CAPTURE  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
• Capture timer value on every 16th rising edge of  
input, applied at the ICx pin  
intended to be a comprehensive reference  
source. Refer to Section 15. “Input Cap-  
ture” (DS39701) in the “PIC24F Family  
Reference Manual” for more information.  
• Capture timer value on every rising and every  
falling edge of input, applied at the ICx pin  
• Device wake-up from capture pin during CPU  
Sleep and Idle modes  
The input capture module has multiple operating  
modes, which are selected via the ICxCON register.  
The operating modes include:  
The input capture module has a four-level FIFO buffer.  
The number of capture events required to generate a  
CPU interrupt can be selected by the user.  
• Capture timer value on every falling edge of input,  
applied at the ICx pin  
• Capture timer value on every rising edge of input,  
applied at the ICx pin  
FIGURE 13-1:  
INPUT CAPTURE BLOCK DIAGRAM  
From 16-Bit Timers  
TMRy  
TMRx  
16  
16  
ICTMR  
(ICxCON<7>)  
1
0
Prescaler  
Counter  
(1, 4, 16)  
FIFO  
R/W  
Logic  
Edge Detection Logic  
and  
Clock Synchronizer  
ICx Pin  
ICM<2:0> (ICxCON<2:0>)  
Mode Select  
3
ICOV, ICBNE (ICxCON<4:3>)  
ICI<1:0>  
ICxBUF  
Interrupt  
Logic  
ICxCON  
System Bus  
Set Flag ICxIF  
(in IFSx Register)  
Note: An ‘x’ in a signal, register or bit name denotes the number of the capture channel.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 119  
PIC24FJ128GA010 FAMILY  
13.1 Input Capture Registers  
REGISTER 13-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
ICSIDL  
bit 15  
bit 8  
R/W-0  
ICTMR(1)  
R/W-0  
ICI1  
R/W-0  
ICI0  
R-0, HC  
ICOV  
R/W-0, HC  
ICBNE  
R/W-0  
ICM2  
R/W-0  
ICM1  
R/W-0  
ICM0  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
ICSIDL: Input Capture x Module Stop in Idle Control bit  
1= Input capture module will Halt in CPU Idle mode  
0= Input capture module will continue to operate in CPU Idle mode  
bit 12-8  
bit 7  
Unimplemented: Read as ‘0’  
ICTMR: Input Capture x Timer Select bit(1)  
1= TMR2 contents are captured on capture event  
0= TMR3 contents are captured on capture event  
bit 6-5  
ICI<1:0>: Select Number of Captures per Interrupt bits  
11= Interrupt on every fourth capture event  
10= Interrupt on every third capture event  
01= Interrupt on every second capture event  
00= Interrupt on every capture event  
bit 4  
ICOV: Input Capture x Overflow Status Flag bit (read-only)  
1= Input capture overflow occurred  
0= No input capture overflow occurred  
bit 3  
ICBNE: Input Capture x Buffer Empty Status bit (read-only)  
1= Input capture buffer is not empty, at least one more capture value can be read  
0= Input capture buffer is empty  
bit 2-0  
ICM<2:0>: Input Capture x Mode Select bits  
111= Input capture functions as an interrupt pin only when the device is in Sleep or Idle mode (rising  
edge detect only, all other control bits are not applicable)  
110= Unused (module is disabled)  
101= Capture mode, every 16th rising edge  
100= Capture mode, every 4th rising edge  
011= Capture mode, every rising edge  
010= Capture mode, every falling edge  
001= Capture mode, every edge (rising and falling); ICI<1:0> does not control interrupt generation  
for this mode  
000= Input capture module is turned off  
Note 1: Timer selections may vary. Refer to the specific device data sheet for details.  
DS39747F-page 120  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
• Dual Compare Match mode generating:  
- Single Output Pulse mode  
14.0 OUTPUT COMPARE  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
- Continuous Output Pulse mode  
• Simple Pulse-Width Modulation mode:  
- with Fault protection input  
intended to be a comprehensive reference  
source. Refer to Section 16. “Output  
Compare” (DS39706) in the “PIC24F  
Family Reference Manual” for more  
information.  
- without Fault protection input  
14.2 Setup for Single Output Pulse  
Generation  
14.1 MODES OF OPERATION  
When the OCM control bits (OCxCON<2:0>) are set to  
100’, the selected output compare channel initializes  
the OCx pin to the low state and generates a single  
output pulse.  
Each output compare module has the following modes  
of operation:  
• Single Compare Match mode  
FIGURE 14-1:  
OUTPUT COMPARE MODULE BLOCK DIAGRAM  
Set Flag bit  
(1)  
OCxIF  
(1)  
OCxRS  
Output  
Logic  
(1)  
(1)  
S
R
Q
OCxR  
OCx  
Output Enable  
3
OCM<2:0>  
Mode Select  
(2)  
Comparator  
OCFA or OCFB  
0
OCTSEL  
1
0
1
16  
16  
Period Match Signals  
from Time Bases  
(see Note 3)  
TMR Register Inputs  
from Time Bases  
(see Note 3)  
Note 1: Where ‘x’ is shown, reference is made to the registers associated with the respective output compare channels, 1  
through 5.  
2: OCFA pin controls OC1-OC4 channels; OCFB pin controls OC5.  
3: Each output compare channel can use either Timer2 or Timer3.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 121  
PIC24FJ128GA010 FAMILY  
To generate a single output pulse, the following steps  
14.3 Setup for Continuous Output  
are required (these steps assume the timer source is  
initially turned off, but this is not a requirement for the  
module operation):  
Pulse Generation  
When the OCM control bits (OCxCON<2:0>) are set to  
101’, the selected output compare channel initializes  
the OCx pin to the low state, and generates output  
pulses on each and every compare match event.  
1. Determine the instruction clock cycle time. Take  
into account the frequency of the external clock  
to the timer source (if one is used) and the timer  
prescaler settings.  
For the user to configure the module for the generation  
of a continuous stream of output pulses, the following  
steps are required (these steps assume the timer  
source is initially turned off, but this is not a requirement  
for the module operation):  
2. Calculate time to the rising edge of the output  
pulse relative to the TMRy start value (0000h).  
3. Calculate the time to the falling edge of the pulse  
based on the desired pulse width and the time to  
the rising edge of the pulse.  
1. Determine the instruction clock cycle time. Take  
into account the frequency of the external clock  
to the timer source (if one is used) and the timer  
prescaler settings.  
4. Write the values computed in Steps 2 and 3  
above into the Compare register, OCxR, and the  
Secondary  
Compare  
register,  
OCxRS,  
respectively.  
2. Calculate the time to the rising edge of the output  
pulse relative to the TMRy start value (0000h).  
5. Set the Timer Period register, PRy, to a value  
equal to or greater than the value in OCxRS, the  
Secondary Compare register.  
3. Calculate the time to the falling edge of the pulse,  
based on the desired pulse width and the time to  
the rising edge of the pulse.  
6. Set the OCM bits to ‘100’ and the OCTSEL  
(OCxCON<3>) bit to the desired timer source.  
The OCx pin state will now be driven low.  
4. Write the values computed in Step 2 and 3  
above, into the Compare register, OCxR, and  
the Secondary Compare register, OCxRS,  
respectively.  
7. Set the TON (TyCON<15>) bit to ‘1’, which  
enables the compare time base to count.  
8. Upon the first match between TMRy and OCxR,  
the OCx pin will be driven high.  
5. Set the Timer Period register, PRy, to a value,  
equal to or greater than, the value in OCxRS, the  
Secondary Compare register.  
9. When the incrementing timer, TMRy, matches the  
Secondary Compare register, OCxRS, the  
second and trailing edge (high-to-low) of the pulse  
is driven onto the OCx pin. No additional pulses  
are driven onto the OCx pin and it remains at low.  
As a result of the second compare match event,  
the OCxIF interrupt flag bit is set which will result  
in an interrupt, if it is enabled, by setting the  
OCxIE bit. For further information on periph-  
eral interrupts, refer to Section 7.0 “Interrupt  
Controller”.  
6. Set the OCM bits to ‘101’ and the OCTSEL bit to  
the desired timer source. The OCx pin state will  
now be driven low.  
7. Enable the compare time base by setting the TON  
(TyCON<15>) bit to ‘1’.  
8. Upon the first match between TMRy and OCxR,  
the OCx pin will be driven high.  
9. When the compare time base, TMRy, matches  
the Secondary Compare register, OCxRS, the  
second and trailing edge (high-to-low) of the pulse  
is driven onto the OCx pin.  
10. To initiate another single pulse output, change the  
Timer and Compare register settings, if needed,  
and then issue a write to set the OCM bits to ‘100’.  
Disabling and re-enabling of the timer, and clear-  
ing the TMRy register are not required, but may  
be advantageous for defining a pulse from a  
known event time boundary.  
10. As a result of the second compare match event,  
the OCxIF interrupt flag bit is set.  
11. When the compare time base and the value in its  
respective Period register match, the TMRy  
register resets to 0x0000and resumes counting.  
The output compare module does not have to be dis-  
abled after the falling edge of the output pulse. Another  
pulse can be initiated by rewriting the value of the  
OCxCON register.  
12. Steps 8 through 11 are repeated and a continuous  
stream of pulses is generated indefinitely. The  
OCxIF flag is set on each OCxRS-TMRy compare  
match event.  
DS39747F-page 122  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
EQUATION 14-1: CALCULATING THE PWM  
PERIOD(1)  
14.4 Pulse-Width Modulation Mode  
The following steps should be taken when configuring  
the output compare module for PWM operation:  
PWM Period = [(PRy) + 1] • TCY • (Timer Prescale Value)  
where:  
1. Set the PWM period by writing to the selected  
Timer Period register (PRy).  
PWM Frequency = 1/[PWM Period]  
2. Set the PWM duty cycle by writing to the OCxRS  
register.  
Note 1: Based on TCY = TOSC * 2; Doze mode and  
PLL are disabled.  
3. Write the OCxR register with the initial duty  
cycle.  
Note: A PRy value of N will produce a PWM  
period of N + 1 time base count cycles.  
For example, a value of 7 written into the  
PRy register will yield a period consisting  
of 8 time base cycles.  
4. Enable interrupts, if required, for the timer and  
output compare modules. The output compare  
interrupt is required for PWM Fault pin  
utilization.  
5. Configure the output compare module for one of  
two PWM operation modes by writing to the  
Output Compare mode bits, OCM<2:0>  
(OCxCON<2:0>).  
14.4.2  
PWM DUTY CYCLE  
The PWM duty cycle is specified by writing to the  
OCxRS register. The OCxRS register can be written to  
at any time, but the duty cycle value is not latched into  
OCxR until a match between PRy and TMRy occurs  
(i.e., the period is complete). This provides a double  
buffer for the PWM duty cycle and is essential for glitch-  
less PWM operation. In the PWM mode, OCxR is a  
read-only register.  
6. Set the TMRy prescale value and enable the  
time base by setting TON (TxCON<15>) = 1.  
Note: The OCxR register should be initialized  
before the output compare module is first  
enabled. The OCxR register becomes a  
Read-Only Duty Cycle register when the  
module is operated in the PWM modes.  
The value held in OCxR will become the  
PWM duty cycle for the first PWM period.  
The contents of the Duty Cycle Buffer  
register, OCxRS, will not be transferred  
into OCxR until a time base period match  
occurs.  
Some important boundary parameters of the PWM duty  
cycle include:  
• If the Duty Cycle register, OCxR, is loaded with  
0000h, the OCx pin will remain low (0% duty cycle).  
• If OCxR is greater than PRy (Timer Period register),  
the pin will remain high (100% duty cycle).  
• If OCxR is equal to PRy, the OCx pin will be low  
for one time base count value and high for all  
other count values.  
14.4.1  
PWM PERIOD  
The PWM period is specified by writing to PRy, the  
Timer Period register. The PWM period can be  
calculated using Equation 14-1.  
See Example 14-1 for PWM mode timing details.  
Table 14-1 shows example PWM frequencies and  
resolutions for a device operating at 10 MIPS.  
EQUATION 14-2: CALCULATION FOR MAXIMUM PWM RESOLUTION(1)  
FCY  
log10  
(
)
FPWM • (Timer Prescale Value)  
bits  
Maximum PWM Resolution (bits) =  
log10(2)  
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 123  
PIC24FJ128GA010 FAMILY  
EXAMPLE 14-1:  
PWM PERIOD AND DUTY CYCLE CALCULATIONS(1)  
1. Find the Period register value for a desired PWM frequency of 52.08 kHz, where FOSC = 8 MHz with PLL (32 MHz device clock  
rate) and a Timer2 prescaler setting of 1:1.  
TCY = 2/FOSC = 62.5 ns  
PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 s  
PWM Period = (PR2 + 1) • TCY • (Timer2 Prescale Value)  
19.2 s  
PR2  
= (PR2 + 1) • 62.5 ns • 1  
= 306  
2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:  
PWM Resolution = log10(FCY/FPWM)/log102) bits  
= (log10(16 MHz/52.08 kHz)/log102) bits  
= 8.3 bits  
Note 1: Based on TCY = TOSC * 2; Doze mode and PLL are disabled.  
TABLE 14-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (FCY = 4 MHz)(1)  
PWM Frequency  
7.6 Hz  
61 Hz  
122 Hz  
977 Hz  
3.9 kHz  
31.3 kHz  
125 kHz  
Timer Prescaler Ratio  
Period Register Value  
Resolution (bits)  
8
1
FFFFh  
16  
1
1
1
1
007Fh  
7
1
001Fh  
5
FFFFh  
16  
7FFFh  
15  
0FFFh  
12  
03FFh  
10  
Note 1: Based on TCY = TOSC * 2; Doze mode and PLL are disabled.  
TABLE 14-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (FCY = 16 MHz)(1)  
PWM Frequency  
30.5 Hz  
244 Hz  
488 Hz  
3.9 kHz  
15.6 kHz  
125 kHz  
500 kHz  
Timer Prescaler Ratio  
Period Register Value  
Resolution (bits)  
8
1
FFFFh  
16  
1
1
1
1
007Fh  
7
1
001Fh  
5
FFFFh  
16  
7FFFh  
15  
0FFFh  
12  
03FFh  
10  
Note 1: Based on TCY = TOSC * 2; Doze mode and PLL are disabled.  
DS39747F-page 124  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 14-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER  
U-0  
U-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
OCSIDL  
bit 15  
bit 8  
U-0  
U-0  
U-0  
R-0, HC  
OCFLT(1)  
R/W-0  
OCTSEL(1)  
R/W-0  
OCM2  
R/W-0  
OCM1  
R/W-0  
OCM0  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
OCSIDL: Stop Output Compare x Module Stop in Idle Control bit  
1= Output capture x will halt in CPU Idle mode  
0= Output capture x will continue to operate in CPU Idle mode  
bit 12-5  
bit 4  
Unimplemented: Read as ‘0’  
OCFLT: PWM Fault Condition Status bit(1)  
1= PWM Fault condition has occurred (cleared in HW only)  
0= No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)  
bit 3  
OCTSEL: Output Compare x Timer Select bit(1)  
1= Timer3 is the clock source for output Compare x  
0= Timer2 is the clock source for output Compare x  
bit 2-0  
OCM<2:0>: Output Compare x Mode Select bits  
111= PWM mode on OCx, Fault pin is enabled(2)  
110= PWM mode on OCx, Fault pin is disabled(2)  
101= Initialize the OCx pin low, generate continuous output pulses on the OCx pin  
100= Initialize the OCx pin low, generate single output pulse on the OCx pin  
011= Compare event toggles OCx pin  
010= Initialize the OCx pin high, a compare event forces the OCx pin low  
001= Initialize the OCx pin low, a compare event forces the OCx pin high  
000= Output compare channel is disabled  
Note 1: Refer to the device data sheet for specific time bases available to the output compare module.  
2: The OCFA pin controls the OC1-OC4 channels; OCFB pin controls the OC5 channel.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 125  
PIC24FJ128GA010 FAMILY  
NOTES:  
DS39747F-page 126  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
To set up the SPI module for the Standard Master mode  
of operation:  
15.0 SERIAL PERIPHERAL  
INTERFACE (SPI)  
1. If using interrupts:  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
a) Clear the SPIxIF bit in the respective IFSx  
register.  
intended to be a comprehensive refer-  
ence source. Refer to Section 23. “Serial  
Peripheral Interface (SPI)” (DS39699) in  
the “PIC24F Family Reference Manual”  
for more information.  
b) Set the SPIxIE bit in the respective IECx  
register.  
c) Write the SPIxIP bits in the respective IPCx  
register to set the interrupt priority.  
2. Write the desired settings to the SPIxCON  
The Serial Peripheral Interface (SPI) module is a  
synchronous serial interface useful for communicating  
with other peripheral or microcontroller devices. These  
peripheral devices may be serial EEPROMs, shift reg-  
isters, display drivers, A/D Converters, etc. The SPI  
module is compatible with SPI and SIOP interfaces  
from Motorola®.  
register with MSTEN (SPIxCON1<5>) = 1.  
3. Clear the SPIROV bit (SPIxSTAT<6>).  
4. Enable SPI operation by setting the SPIEN bit  
(SPIxSTAT<15>).  
5. Write the data to be transmitted to the SPIxBUF  
register. Transmission (and reception) will start  
as soon as data is written to the SPIxBUF  
register.  
The module supports operation in two buffer modes. In  
Standard mode, data is shifted through a single serial  
buffer. In Enhanced Buffer mode, data is shifted  
through an 8-level FIFO buffer.  
To set up the SPI module for the Standard Slave mode  
of operation:  
1. Clear the SPIxBUF register.  
2. If using interrupts:  
Note:  
Do not perform read-modify-write opera-  
tions (such as bit-oriented instructions) on  
the SPIxBUF register, in either Standard  
or Enhanced Buffer mode.  
a) Clear the SPIxIF bit in the respective IFSx  
register.  
b) Set the SPIxIE bit in the respective IECx  
register.  
The module also supports a basic framed SPI protocol  
while operating in either Master or Slave modes. A total  
of four framed SPI configurations are supported.  
c) Write the SPIxIP bits in the respective IPCx  
register to set the interrupt priority.  
The SPI serial interface consists of four pins:  
3. Write the desired settings to the SPIxCON1 and  
• SDIx: Serial Data Input  
SPIxCON2  
registers  
with  
MSTEN  
(SPIxCON1<5>) = 0.  
• SDOx: Serial Data Output  
• SCKx: Shift Clock Input or Output  
4. Clear the SMP bit.  
5. If the CKE bit is set, then the SSEN bit  
(SPIxCON1<7>) must be set to enable the  
SSx pin.  
• SSx: Active-Low Slave Select or Frame  
Synchronization I/O Pulse  
The SPI module can be configured to operate using  
2, 3 or 4 pins. In the 3-pin mode, SSx is not used. In the  
2-pin mode, both SDOx and SSx are not used.  
6. Clear the SPIROV bit (SPIxSTAT<6>).  
7. Enable SPI operation by setting the SPIEN bit  
(SPIxSTAT<15>).  
A block diagram of the module is shown in Figure 15-1  
and Figure 15-2.  
Note: In this section, the SPI modules are  
referred to together as SPIx, or separately  
as SPI1 and SPI2. Special Function Reg-  
isters will follow a similar notation. For  
example, SPIxCON refers to the control  
register for the SPI1 or SPI2 module.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 127  
PIC24FJ128GA010 FAMILY  
To set up the SPI module for the Enhanced Buffer  
Master mode of operation:  
To set up the SPI module for the Enhanced Buffer  
Slave mode of operation:  
1. If using interrupts:  
1. Clear the SPIxBUF register.  
2. If using interrupts:  
a) Clear the SPIxIF bit in the respective IFSx  
register.  
• Clear the SPIxIF bit in the respective IFSx  
register.  
b) Set the SPIxIE bit in the respective IECx  
register.  
• Set the SPIxIE bit in the respective IECx  
register.  
c) Write the SPIxIP bits in the respective IPCx  
register.  
• Write the SPIxIP bits in the respective IPCx  
register to set the interrupt priority.  
2. Write the desired settings to the SPIxCON1  
and SPIxCON2 registers with MSTEN  
(SPIxCON1<5>) = 1.  
3. Write the desired settings to the SPIxCON1  
and SPIxCON2 registers with MSTEN  
(SPIxCON1<5>) = 0.  
3. Clear the SPIROV bit (SPIxSTAT<6>).  
4. Select Enhanced Buffer mode by setting the  
SPIBEN bit (SPIxCON2<0>).  
4. Clear the SMP bit.  
5. If the CKE bit is set, then the SSEN bit must be  
set, thus enabling the SSx pin.  
5. Enable SPI operation by setting the SPIEN bit  
(SPIxSTAT<15>).  
6. Clear the SPIROV bit (SPIxSTAT<6>).  
6. Write the data to be transmitted to the SPIxBUF  
register. Transmission (and reception) will start  
as soon as data is written to the SPIxBUF  
register.  
7. Select Enhanced Buffer mode by setting the  
SPIBEN bit (SPIxCON2<0>).  
8. Enable SPI operation by setting the SPIEN bit  
(SPIxSTAT<15>).  
FIGURE 15-1:  
SPIx MODULE BLOCK DIAGRAM (STANDARD MODE)  
SCKx  
1:1 to 1:8  
Secondary  
Prescaler  
1:1/4/16/64  
Primary  
Prescaler  
FCY  
SSx/FSYNCx  
Sync  
Control  
Select  
Edge  
Control  
Clock  
SPIxCON1<1:0>  
SPIxCON1<4:2>  
Control  
Shift  
SDOx  
SDIx  
Enable  
Master Clock  
bit 0  
SPIxSR  
Transfer  
Transfer  
SPIxBUF  
Read SPIxBUF  
Write SPIxBUF  
16  
Internal Data Bus  
DS39747F-page 128  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
FIGURE 15-2:  
SPIx MODULE BLOCK DIAGRAM (ENHANCED MODE)  
SCKx  
1:1/4/16/64  
Primary  
Prescaler  
1:1 to 1:8  
Secondary  
Prescaler  
FCY  
SSx/FSYNCx  
Sync  
Control  
Select  
Edge  
Control  
Clock  
SPIxCON1<1:0>  
SPIxCON1<4:2>  
Control  
Shift  
SDOx  
SDIx  
Enable  
Master Clock  
bit 0  
SPIxSR  
Transfer  
Transfer  
8-Level FIFO  
Receive Buffer  
8-Level FIFO  
Transmit Buffer  
SPIxBUF  
Read SPIxBUF  
Write SPIxBUF  
16  
Internal Data Bus  
2005-2012 Microchip Technology Inc.  
DS39747F-page 129  
PIC24FJ128GA010 FAMILY  
REGISTER 15-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER  
R/W-0  
SPIEN  
U-0  
R/W-0  
U-0  
U-0  
R-0  
R-0  
R-0  
SPISIDL  
SPIBEC2  
SPIBEC1  
SPIBEC0  
bit 15  
bit 8  
R/W-0  
R/C-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R-0  
R-0  
SRMPT  
SPIROV  
SRXMPT  
SISEL2  
SISEL1  
SISEL0  
SPITBF  
SPIRBF  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
SPIEN: SPIx Enable bit  
1= Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins  
0= Disables module  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
SPISIDL: Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12-11  
bit 10-8  
Unimplemented: Read as ‘0’  
SPIBEC<2:0>: SPIx Buffer Element Count bits  
Master mode:  
Number of SPI transfers pending.  
Slave mode:  
Number of SPI transfers unread.  
bit 7  
bit 6  
SRMPT: Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode)  
1= SPIx Shift register is empty and ready to send or receive  
0= SPIx Shift register is not empty; read as ‘0’  
SPIROV: Receive Overflow Flag bit  
1= A new byte/word is completely received and discarded; the user software has not read the previous  
data in the SPIxBUF register  
0= No overflow has occurred  
bit 5  
SRXMPT: Receive FIFO Empty bit (valid in Enhanced Buffer mode)  
1= Receive FIFO is empty  
0= Receive FIFO is not empty’  
bit 4-2  
SISEL<2:0>: SPIx Buffer Interrupt Mode bits (valid in Enhanced Buffer mode)  
111= Interrupt when the SPIx transmit buffer is full (SPITBF bit is set)  
110= Interrupt when the last bit is shifted into SPIxSR, as a result, the TX FIFO is empty  
101= Interrupt when the last bit is shifted out of SPIxSR, now the transmit is complete  
100= Interrupt when one data is shifted into the SPIxSR, as a result, the TX FIFO has one open spot  
011= Interrupt when the SPIx receive buffer is full (SPIRBF bit is set)  
010= Interrupt when the SPIx receive buffer is 3/4 or more full  
001= Interrupt when data is available in the receive buffer (SRMPT bit is set)  
000= Interrupt when the last data in the receive buffer is read, and as a result, the buffer is empty  
(SRXMPT bit set)  
DS39747F-page 130  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 15-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)  
bit 1  
SPITBF: SPIx Transmit Buffer Full Status bit  
1= Transmit not yet started, SPIxTXB is full  
0= Transmit started, SPIxTXB is empty  
In Standard Buffer mode:  
Automatically set in hardware when the CPU writes to the SPIxBUF location, loading SPIxTXB.  
Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR.  
In Enhanced Buffer mode:  
Automatically set in hardware when the CPU writes to the SPIxBUF location, loading the last available  
buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write.  
bit 0  
SPIRBF: SPIx Receive Buffer Full Status bit  
1= Receive complete, SPIxRXB is full  
0= Receive is not complete, SPIxRXB is empty  
In Standard Buffer mode:  
Automatically set in hardware when the SPIx transfers data from SPIxSR to SPIxRXB. Automatically  
cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.  
In Enhanced Buffer mode:  
Automatically set in hardware when the SPIx transfers data from SPIxSR to the buffer, filling the last  
unread buffer location. Automatically cleared in hardware when a buffer location is available for a  
transfer from SPIxSR.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 131  
PIC24FJ128GA010 FAMILY  
REGISTER 15-2: SPIXCON1: SPIx CONTROL REGISTER 1  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SMP  
R/W-0  
CKE(1)  
DISSCK  
DISSDO  
MODE16  
bit 15  
bit 8  
R/W-0  
SSEN  
R/W-0  
CKP  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
MSTEN  
SPRE2  
SPRE1  
SPRE0  
PPRE1  
PPRE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
DISSCK: Disable SCKx pin bit (SPI Master modes only)  
1= Internal SPI clock is disabled, the pin functions as an I/O  
0= Internal SPI clock is enabled  
bit 11  
bit 10  
bit 9  
DISSDO: Disable SDOx pin bit  
1= SDOx pin is not used by the module; the pin functions as an I/O  
0= SDOx pin is controlled by the module  
MODE16: Word/Byte Communication Select bit  
1= Communication is word-wide (16 bits)  
0= Communication is byte-wide (8 bits)  
SMP: SPIx Data Input Sample Phase bit  
Master mode:  
1= Input data is sampled at the end of data output time  
0= Input data is sampled at the middle of data output time  
Slave mode:  
SMP must be cleared when SPIx is used in Slave mode.  
bit 8  
bit 7  
bit 6  
bit 5  
bit 4-2  
CKE: SPIx Clock Edge Select bit(1)  
1= Serial output data changes on transition from active clock state to Idle clock state (see bit 6)  
0= Serial output data changes on transition from Idle clock state to active clock state (see bit 6)  
SSEN: Slave Select Enable bit (Slave mode)  
1= SSx pin is used for Slave mode  
0= SSx pin is not used by module; pin is controlled by port function  
CKP: Clock Polarity Select bit  
1= Idle state for clock is a high level; active state is a low level  
0= Idle state for clock is a low level; active state is a high level  
MSTEN: Master Mode Enable bit  
1= Master mode  
0= Slave mode  
SPRE<2:0>: Secondary Prescale bits (Master mode)  
111= Secondary prescale 1:1  
110= Secondary prescale 2:1  
...  
000= Secondary prescale 8:1  
bit 1-0  
PPRE<1:0>: Primary Prescale bits (Master mode)  
11= Primary prescale 1:1  
10= Primary prescale 4:1  
01= Primary prescale 16:1  
00= Primary prescale 64:1  
Note 1: The CKE bit is not used in the Framed SPI modes. The user should program this bit to ‘0’ for the Framed  
SPI modes (FRMEN = 1).  
DS39747F-page 132  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 15-3: SPIxCON2: SPIx CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
U-0  
U-0  
U-0  
U-0  
U-0  
FRMEN  
SPIFSD  
SPIFPOL  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
SPIFE  
R/W-0  
SPIBEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
bit 14  
bit 13  
FRMEN: Framed SPIx Support bit  
1= Framed SPIx support is enabled  
0= Framed SPIx support is disabled  
SPIFSD: Frame Sync Pulse Direction Control on SSx Pin bit  
1= Frame sync pulse input (slave)  
0= Frame sync pulse output (master)  
SPIFPOL: Frame Sync Pulse Polarity bit (Frame mode only)  
1= Frame sync pulse is active-high  
0= Frame sync pulse is active-low  
bit 12-2  
bit 1  
Unimplemented: Read as ‘0’  
SPIFE: Frame Sync Pulse Edge Select bit  
1= Frame sync pulse coincides with the first bit clock  
0= Frame sync pulse precedes the first bit clock  
bit 0  
SPIBEN: Enhanced Buffer Enable bit  
1= Enhanced Buffer is enabled  
0= Enhanced Buffer is disabled (Legacy mode)  
2005-2012 Microchip Technology Inc.  
DS39747F-page 133  
PIC24FJ128GA010 FAMILY  
FIGURE 15-3:  
SPI MASTER/SLAVE CONNECTION (STANDARD MODE)  
PROCESSOR 1 (SPI Master)  
PROCESSOR 2 (SPI Slave)  
SDOx  
SDIx  
Serial Receive Buffer  
(SPIxRXB)  
Serial Receive Buffer  
(SPIxRXB)  
SDIx  
SDOx  
Shift Register  
(SPIxSR)  
Shift Register  
(SPIxSR)  
LSb  
MSb  
MSb  
LSb  
Serial Transmit Buffer  
Serial Transmit Buffer  
(SPIxTXB)  
(SPIxTXB)  
Serial Clock  
SCKx  
SSx  
SCKx  
SPIx Buffer  
(SPIxBUF)  
SPIx Buffer  
(SPIxBUF)  
(SSEN (SPIxCON1<7>) = 1and MSTEN (SPIxCON1<5>) = 0)  
(MSTEN (SPIxCON1<5> = 1))  
Note 1: Using the SSx pin in the Slave mode of operation is optional.  
2: User must write transmit data to read received data from SPIxBUF. The SPIxTXB and SPIxRXB registers are memory  
mapped to SPIxBUF.  
FIGURE 15-4:  
SPI MASTER/SLAVE CONNECTION (ENHANCED BUFFER MODES)  
PROCESSOR 1 (SPI Enhanced Buffer Master)  
PROCESSOR 2 (SPI Enhanced Buffer Slave)  
SDOx  
SDIx  
SDIx  
SDOx  
Shift Register  
(SPIxSR)  
Shift Register  
(SPIxSR)  
LSb  
MSb  
MSb  
LSb  
8-Level FIFO Buffer  
8-Level FIFO Buffer  
Serial Clock  
SPIx Buffer  
(SPIxBUF)  
SPIx Buffer  
(SPIxBUF)  
SCKx  
SSx  
SCKx  
SSx  
MSTEN (SPIxCON1<5> = 1and  
SPIBEN (SPIxCON2<0>) = 1  
SSEN (SPIxCON1<7>) = 1and  
MSTEN (SPIxCON1<5>) = 0and  
SPIBEN (SPIxCON2<0>) = 1  
Note 1: Using the SSx pin in Slave mode of operation is optional.  
2: User must write transmit data to read received data from SPIxBUF. The SPIxTXB and SPIxRXB registers are memory  
mapped to SPIxBUF.  
DS39747F-page 134  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
FIGURE 15-5:  
FIGURE 15-6:  
FIGURE 15-7:  
FIGURE 15-8:  
SPI MASTER, FRAME MASTER CONNECTION DIAGRAM  
PIC24F  
PROCESSOR 2  
(SPI Slave, Frame Slave)  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
SPI MASTER, FRAME SLAVE CONNECTION DIAGRAM  
PIC24F  
PROCESSOR 2  
SPI Master, Frame Slave)  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
SPI SLAVE, FRAME MASTER CONNECTION DIAGRAM  
PIC24F  
PROCESSOR 2  
(SPI Slave, Frame Slave)  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync.  
Pulse  
SPI SLAVE, FRAME SLAVE CONNECTION DIAGRAM  
PIC24F  
PROCESSOR 2  
(SPI Master, Frame Slave)  
SDOx  
SDIx  
SDIx  
SDOx  
Serial Clock  
SCKx  
SSx  
SCKx  
SSx  
Frame Sync  
Pulse  
2005-2012 Microchip Technology Inc.  
DS39747F-page 135  
PIC24FJ128GA010 FAMILY  
EQUATION 15-1: RELATIONSHIP BETWEEN DEVICE AND SPI CLOCK SPEED(1)  
FCY  
FSCK =  
Primary Prescaler * Secondary Prescaler  
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
TABLE 15-1: SAMPLE SCK FREQUENCIES(1,2)  
Secondary Prescaler Settings  
FCY = 16 MHz  
1:1  
2:1  
4:1  
6:1  
8:1  
Primary Prescaler Settings  
1:1  
4:1  
Invalid  
4000  
1000  
250  
8000  
2000  
500  
4000  
1000  
250  
63  
2667  
667  
167  
42  
2000  
500  
125  
31  
16:1  
64:1  
125  
FCY = 5 MHz  
Primary Prescaler Settings  
1:1  
4:1  
5000  
1250  
313  
78  
2500  
625  
156  
39  
1250  
313  
78  
833  
208  
52  
625  
156  
39  
16:1  
64:1  
20  
13  
10  
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
2: The SCKx frequencies are shown in kHz.  
DS39747F-page 136  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
16.1 Communicating as a Master in a  
Single Master Environment  
16.0 INTER-INTEGRATED CIRCUIT  
2
(I C™)  
The details of sending a message in Master mode  
depends on the communications protocol for the device  
being communicated with. Typically, the sequence of  
events is as follows:  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. Refer to Section 24. “Inter-  
Integrated Circuit™ (I2C™)” (DS39702)  
in the “PIC24F Family Reference Manual”  
for more information.  
1. Assert a Start condition on SDAx and SCLx.  
2. Send the I2C device address byte to the slave  
with a write indication.  
3. Wait for and verify an Acknowledge from the  
slave.  
The Inter-Integrated Circuit (I2C) module is a serial  
interface useful for communicating with other periph-  
eral or microcontroller devices. These peripheral  
devices may be serial EEPROMs, display drivers, A/D  
Converters, etc.  
4. Send the first data byte (sometimes known as  
the command) to the slave.  
5. Wait for and verify an Acknowledge from the  
slave.  
The I2C module supports these features:  
6. Send the serial memory address low byte to the  
slave.  
• Independent master and slave logic  
• 7-bit and 10-bit device addresses  
• General call address, as defined in the I2C protocol  
7. Repeat Steps 4 and 5 until all data bytes are  
sent.  
• Clock stretching to provide delays for the  
processor to respond to a slave data request  
8. Assert a Repeated Start condition on SDAx and  
SCLx.  
• Both 100 kHz and 400 kHz bus specifications.  
• Configurable address masking  
9. Send the device address byte to the slave with  
a read indication.  
• Multi-Master modes to prevent loss of messages  
in arbitration  
10. Wait for and verify an Acknowledge from the  
slave.  
• Bus Repeater mode, allowing the acceptance of  
all messages as a slave, regardless of the  
address  
11. Enable master reception to receive serial  
memory data.  
12. Generate an ACK or NACK condition at the end  
of a received byte of data.  
• Automatic SCL  
13. Generate a Stop condition on SDAx and SCLx.  
A block diagram of the module is shown in Figure 16-1.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 137  
PIC24FJ128GA010 FAMILY  
FIGURE 16-1:  
I2C™ BLOCK DIAGRAM  
Internal  
Data Bus  
I2CxRCV  
Read  
Shift  
Clock  
SCLx  
SDAx  
I2CxRSR  
LSB  
Address Match  
Write  
Read  
Match Detect  
I2CxMSK  
Write  
Read  
I2CxADD  
Start and Stop  
Bit Detect  
Write  
Start and Stop  
Bit Generation  
I2CxSTAT  
I2CxCON  
Read  
Write  
Collision  
Detect  
Acknowledge  
Generation  
Read  
Clock  
Stretching  
Write  
Read  
I2CxTRN  
LSB  
Shift Clock  
Reload  
Control  
Write  
Read  
BRG Down Counter  
TCY/2  
I2CxBRG  
DS39747F-page 138  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
16.2 Setting Baud Rate When  
Operating as a Bus Master  
16.3 Slave Address Masking  
The I2CxMSK register (Register 16-3) designates  
address bit positions as “don’t care” for both 7-Bit and  
10-Bit Addressing modes. Setting a particular bit loca-  
tion (= 1) in the I2CxMSK register causes the slave  
module to respond, whether the corresponding  
address bit value is a ‘0’ or ‘1’. For example, when  
I2CxMSK is set to ‘00100000’, the slave module will  
detect both addresses, ‘0000000’ and ‘00100000’.  
To compute the Baud Rate Generator reload value, use  
the following equation:  
EQUATION 16-1:(1)  
I2CxBRG = (FCY/FSCL – FCY/10,000,000) – 1  
Note 1: Based on FCY = FOSC/2; Doze mode and  
To enable address masking, the IPMI (Intelligent  
Peripheral Management Interface) must be disabled by  
clearing the IPMIEN bit (I2CxCON<11>).  
PLL are disabled.  
TABLE 16-1: I2C™ CLOCK RATES(1,3,4)  
Required  
I2CxBRG Value  
Actual  
System  
FSCL  
FCY  
FSCL  
(Decimal)  
(Hexadecimal)  
100 kHz  
100 kHz  
100 kHz  
400 kHz  
400 kHz  
400 kHz  
400 kHz  
1 MHz  
16 MHz  
8 MHz  
4 MHz  
16 MHz  
8 MHz  
4 MHz  
2 MHz  
16 MHz  
8 MHz  
4 MHz  
157  
78  
39  
37  
18  
9
9D  
4E  
27  
25  
12  
9
100 kHz  
100 kHz  
99 kHz  
404 kHz  
404 kHz  
385 kHz(2)  
385 kHz(2)  
1,026 KHz  
1,026 KHz  
909 KHz  
4
4
13  
6
D
1 MHz  
6
1 MHz  
3
3
Note 1: Based on TCY = TOSC * 2; Doze mode and PLL are disabled.  
2: This is the closest value to 400 kHz for this value of FCY.  
3: FCY = 2 MHz is the minimum input clock frequency to have FSCL = 1 MHz.  
4: I2CxBRG cannot have a value of less than 2.  
As a result of changes in the I2C protocol, several I2C  
addresses are reserved and will not be Acknowledged  
in Slave mode.  
Address masking does not affect behavior. Refer to  
Table 16-2 for a summary of these reserved addresses.  
.
TABLE 16-2: RESERVED I2C™ ADDRESSES(1)  
Slave Address  
R/W Bit  
Description  
0000 000  
0000 000  
0000 001  
0000 010  
0000 011  
0000 1xx  
1111 1xx  
1111 0xx  
0
1
x
x
x
x
x
x
General Call Address(2)  
Start Byte  
CBUS Address  
Reserved  
Reserved  
HS Mode Master Code  
Reserved  
10-Bit Slave Upper Byte(3)  
Note 1: The above address bits will not cause an address match, independent of address mask settings.  
2: The address will be Acknowledged only if GCEN = 1.  
3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 139  
PIC24FJ128GA010 FAMILY  
REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER  
R/W-0  
I2CEN  
U-0  
R/W-0  
R/W-1, HC  
SCLREL  
R/W-0  
R/W-0  
A10M  
R/W-0  
R/W-0  
SMEN  
I2CSIDL  
IPMIEN  
DISSLW  
bit 15  
bit 8  
R/W-0  
GCEN  
R/W-0  
R/W-0  
R/W-0, HC R/W-0, HC  
ACKEN RCEN  
R/W-0, HC  
PEN  
R/W-0, HC  
RSEN  
R/W-0, HC  
SEN  
STREN  
ACKDT  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
I2CEN: I2Cx Enable bit  
1= Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins  
0= Disables I2Cx module; all I2C™ pins are controlled by port functions  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
I2CSIDL: Stop in Idle Mode bit  
1= Discontinues module operation when the device enters an Idle mode  
0= Continues module operation in Idle mode  
bit 12  
SCLREL: SCLx Release Control bit (when operating as an I2C™ slave)  
1= Releases SCLx clock  
0= Holds SCLx clock low (clock stretch)  
If STREN = 1:  
Bit is R/W (i.e., software may write ‘0’ to initiate stretch and write ‘1’ to release clock). Hardware is clear  
at the beginning of slave transmission. Hardware is clear at the end of slave reception.  
If STREN = 0:  
Bit is R/S (i.e., software may only write ‘1’ to release clock). Hardware is clear at the beginning of slave  
transmission.  
bit 11  
bit 10  
bit 9  
IPMIEN: Intelligent Peripheral Management Interface (IPMI) Enable bit  
1= IPMI Support mode is enabled; all addresses are Acknowledged  
0= IPMI mode is disabled  
A10M: 10-Bit Slave Address bit  
1= I2CxADD is a 10-bit slave address  
0= I2CxADD is a 7-bit slave address  
DISSLW: Disable Slew Rate Control bit  
1= Slew rate control is disabled  
0= Slew rate control is enabled  
bit 8  
SMEN: SMBus Input Levels bit  
1= Enables I/O pin thresholds compliant with the SMBus specification  
0= Disables SMBus input thresholds  
bit 7  
GCEN: General Call Enable bit (when operating as an I2C slave)  
1= Enables interrupt when a general call address is received in the I2CxRSR (module is enabled for  
reception)  
0= General call address is disabled  
bit 6  
STREN: SCLx Clock Stretch Enable bit (when operating as an I2C slave)  
Used in conjunction with the SCLREL bit.  
1= Enables software or receives clock stretching  
0= Disables software or receives clock stretching  
DS39747F-page 140  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)  
bit 5  
ACKDT: Acknowledge Data bit (When operating as an I2C master; applicable during master receive.)  
Value that will be transmitted when the software initiates an Acknowledge sequence.  
1= Sends NACK during Acknowledge  
0= Sends ACK during Acknowledge  
bit 4  
ACKEN: Acknowledge Sequence Enable bit  
(When operating as an I2C master; applicable during master receive.)  
1= Initiates Acknowledge sequence on SDAx and SCLx pins and transmits the ACKDT data bit.  
Hardware is clear at the end of the master Acknowledge sequence.  
0= Acknowledge sequence is not in progress  
bit 3  
bit 2  
bit 1  
bit 0  
RCEN: Receive Enable bit (when operating as an I2C master)  
1= Enables Receive mode for I2C. Hardware is clear at the end of the eighth bit of the master receive  
data byte.  
0= Receive sequence is not in progress  
PEN: Stop Condition Enable bit (when operating as an I2C master)  
1= Initiates Stop condition on SDAx and SCLx pins. Hardware is clear at the end of the master Stop  
sequence.  
0= Stop condition is not in progress  
RSEN: Repeated Start Condition Enable bit (when operating as an I2C master)  
1= Initiates Repeated Start condition on SDAx and SCLx pins. Hardware is clear at the end of the  
master Repeated Start sequence.  
0= Repeated Start condition is not in progress  
SEN: Start Condition Enable bit (when operating as an I2C master)  
1= Initiates Start condition on SDAx and SCLx pins. Hardware is clear at the end of the master Start  
sequence.  
0= Start condition is not in progress  
2005-2012 Microchip Technology Inc.  
DS39747F-page 141  
PIC24FJ128GA010 FAMILY  
REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER  
R-0, HSC  
ACKSTAT  
R-0, HSC  
TRSTAT  
U-0  
U-0  
U-0  
R/C-0, HSC R-0, HSC  
R-0, HSC  
ADD10  
BCL  
GCSTAT  
bit 15  
bit 8  
R/C-0, HSC R/C-0, HSC  
IWCOL I2COV  
bit 7  
R-0, HSC  
D/A  
R/C-0, HSC R/C-0, HSC R-0, HSC  
R/W  
R-0, HSC  
RBF  
R-0, HSC  
TBF  
P
S
bit 0  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
C = Clearable bit  
R = Readable bit  
HSC = Hardware Settable/Clearable bit  
-n = Value at POR  
‘1’ = Bit is set  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
bit 14  
ACKSTAT: Acknowledge Status bit  
1= NACK is received from slave  
0= ACK is received from slave  
Hardware is set or clear at the end of slave Acknowledge.  
TRSTAT: Transmit Status bit (When operating as I2C master; applicable to master transmit operation.)  
1= Master transmit is in progress (8 bits + ACK)  
0= Master transmit is not in progress  
Hardware is set at the beginning of master transmission. Hardware is clear at the end of slave Acknowledge.  
bit 13-11  
bit 10  
Unimplemented: Read as ‘0’  
BCL: Master Bus Collision Detect bit  
1= A bus collision has been detected during master operation  
0= No collision  
Hardware is set at the detection of a bus collision.  
bit 9  
bit 8  
bit 7  
bit 6  
bit 5  
GCSTAT: General Call Status bit  
1= General call address was received  
0= General call address was not received  
Hardware is set when an address matches a general call address. Hardware is clear at Stop detection.  
ADD10: 10-Bit Address Status bit  
1= 10-bit address was matched  
0= 10-bit address was not matched  
Hardware is set at a match of the 2nd byte of a matched 10-bit address. Hardware is clear at Stop detection.  
IWCOL: Write Collision Detect bit  
1= An attempt to write the I2CxTRN register failed because the I2C module is busy  
0= No collision  
Hardware is set at an occurrence of a write to I2CxTRN while busy (cleared by software).  
I2COV: Receive Overflow Flag bit  
1= A byte was received while the I2CxRCV register is still holding the previous byte  
0= No overflow  
Hardware is set at an attempt to transfer I2CxRSR to I2CxRCV (cleared by software).  
D/A: Data/Address bit (when operating as I2C slave)  
1= Indicates that the last byte received was data  
0= Indicates that the last byte received was device address  
Hardware is clear at a device address match. Hardware is set after a transmission finishes or by  
reception of a slave byte.  
bit 4  
P: Stop bit  
1= Indicates that a Stop bit has been detected last  
0= Stop bit was not detected last  
Hardware is set or clear when a Start, Repeated Start or Stop is detected.  
DS39747F-page 142  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)  
bit 3  
bit 2  
bit 1  
S: Start bit  
1= Indicates that a Start (or Repeated Start) bit has been detected last  
0= Start bit was not detected last  
Hardware is set or clear when Start, Repeated Start or Stop is detected.  
R/W: Read/Write bit Information (when operating as I2C slave)  
1= Read – indicates data transfer is output from slave  
0= Write – indicates data transfer is input to slave  
Hardware is set or clear after reception of an I2C device address byte.  
RBF: Receive Buffer Full Status bit  
1= Receive is complete, I2CxRCV is full  
0= Receive is not complete, I2CxRCV is empty  
Hardware is set when I2CxRCV is written with the received byte. Hardware is clear when the software reads  
I2CxRCV.  
bit 0  
TBF: Transmit Buffer Full Status bit  
1= Transmit is in progress, I2CxTRN is full  
0= Transmit is complete, I2CxTRN is empty  
Hardware is set when the software writes to I2CxTRN. Hardware is clear at the completion of  
data transmission.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 143  
PIC24FJ128GA010 FAMILY  
REGISTER 16-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
AMSK9  
AMSK8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
AMSK7  
AMSK6  
AMSK5  
AMSK4  
AMSK3  
AMSK2  
AMSK1  
AMSK0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-10  
bit 9-0  
Unimplemented: Read as ‘0’  
AMSK<9:0>: Mask for Address Bit x Select bits  
1= Enables masking for bit x of incoming message address; bit match is not required in this position  
0= Disables masking for bit x; bit match is required in this position  
DS39747F-page 144  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
• Fully Integrated Baud Rate Generator with 16-Bit  
Prescaler  
17.0 UNIVERSAL ASYNCHRONOUS  
RECEIVER TRANSMITTER  
(UART)  
• Baud Rates Ranging from 1 Mbps to 15 bps at  
16 MIPS  
• 4-Deep First-In-First-Out (FIFO) Transmit Data  
Buffer  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. Refer to Section 21. “UART”  
(DS39708) in the “PIC24F Family  
Reference Manual” for more information.  
• 4-Deep FIFO Receive Data Buffer  
• Parity, Framing and Buffer Overrun Error Detection  
• Support for 9-bit mode with Address Detect  
(9th bit = 1)  
• Transmit and Receive Interrupts  
The Universal Asynchronous Receiver Transmitter  
(UART) module is one of the serial I/O modules available  
in the PIC24F device family. The UARTx is a full-duplex,  
asynchronous system that can communicate with  
peripheral devices, such as personal computers,  
LIN/J2602, RS-232 and RS-485 interfaces. The  
module also supports a hardware flow control option  
with the UxCTS and UxRTS pins, and also includes an  
IrDA® encoder and decoder.  
• Loopback mode for Diagnostic Support  
• Support for Sync and Break Characters  
• Supports Automatic Baud Rate Detection  
• IrDA Encoder and Decoder Logic  
• 16x Baud Clock Output for IrDA Support  
A simplified block diagram of the UARTx is shown in  
Figure 17-1. The UARTx module consists of these key  
important hardware elements:  
The primary features of the UARTx module are:  
• Baud Rate Generator  
• Full-Duplex, 8 or 9-Bit Data Transmission  
Through the UxTX and UxRX Pins  
• Asynchronous Transmitter  
• Asynchronous Receiver  
• Even, Odd or No Parity Options (for 8-bit data)  
• One or Two Stop bits  
• Hardware Flow Control Option with UxCTS and  
UxRTS Pins  
FIGURE 17-1:  
UARTx SIMPLIFIED BLOCK DIAGRAM  
Baud Rate Generator  
IrDA®  
BCLKx  
Hardware Flow Control  
UARTx Receiver  
UxRTS  
UxCTS  
UxRX  
UxTX  
UARTx Transmitter  
2005-2012 Microchip Technology Inc.  
DS39747F-page 145  
PIC24FJ128GA010 FAMILY  
The maximum baud rate (BRGH = 0) possible is  
FCY/16 (for UBRGx = 0) and the minimum baud rate  
possible is FCY/(16 * 65536).  
17.1 UARTx Baud Rate Generator  
(BRG)  
The UARTx module includes a dedicated, 16-bit Baud  
Rate Generator. The UBRGx register controls the  
period of a free-running, 16-bit timer. Equation 17-1  
shows the formula for computation of the baud rate  
with BRGH = 0.  
Equation 17-2 shows the formula for computation of  
the baud rate with BRGH = 1.  
EQUATION 17-2: UARTx BAUD RATE WITH  
BRGH = 1(1)  
EQUATION 17-1: UARTx BAUD RATE WITH  
FCY  
Baud Rate =  
BRGH = 0(1)  
4 • (UBRGx + 1)  
FCY  
FCY  
4 • Baud Rate  
Baud Rate =  
1  
UBRGx =  
16 • (UBRGx + 1)  
FCY  
16 • Baud Rate  
Note 1: Based on FCY = FOSC/2; Doze mode  
– 1  
UBRGx =  
and PLL are disabled.  
Note 1: Based on FCY = FOSC/2; Doze mode  
The maximum baud rate (BRGH = 1) possible is FCY/4  
(for UBRGx = 0) and the minimum baud rate possible  
is FCY/(4 * 65536).  
and PLL are disabled.  
Example 17-1 shows the calculation of the baud rate  
error for the following conditions:  
Writing a new value to the UBRGx register causes the  
BRG timer to be reset (cleared). This ensures the BRG  
does not wait for a timer overflow before generating the  
new baud rate.  
• FCY = 4 MHz  
• Desired Baud Rate = 9600  
EXAMPLE 17-1:  
BAUD RATE ERROR CALCULATION (BRGH = 0)(1)  
Desired Baud Rate  
=
FCY/(16 (UBRGx + 1))  
Solving for UBRGx value:  
BRGx  
BRGx  
BRGx  
=
=
=
((FCY/Desired Baud Rate)/16) – 1  
((4000000/9600)/16) – 1  
25  
Calculated Baud Rate  
=
=
4000000/(16 (25 + 1))  
9615  
Error  
=
(Calculated Baud Rate – Desired Baud Rate)  
Desired Baud Rate  
=
=
(9615 – 9600)/9600  
0.16%  
Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.  
DS39747F-page 146  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
17.2 Transmitting in 8-Bit Data Mode  
17.5 Receiving in 8-Bit or 9-Bit Data  
Mode  
1. Set up the UARTx:  
a) Write appropriate values for data, parity and  
Stop bits.  
1. Set up the UARTx (as described in Section 17.2  
“Transmitting in 8-Bit Data Mode”).  
b) Write appropriate baud rate value to the  
UBRGx register.  
2. Enable the UARTx.  
3. A receive interrupt will be generated when one  
or more data characters have been received, as  
per interrupt control bit, URXISELx.  
c) Set up transmit and receive interrupt enable  
and priority bits.  
2. Enable the UARTx.  
4. Read the OERR bit to determine if an overrun  
error has occurred. The OERR bit must be reset  
in software.  
3. Set the UTXEN bit (causes a transmit interrupt).  
4. Write data byte to lower byte of UTXxREG word.  
The value will be immediately transferred to the  
Transmit Shift Register (TSR) and the serial bit  
stream will start shifting out with the next rising  
edge of the baud clock.  
5. Read UxRXREG.  
The act of reading the UxRXREG character will move  
the next character to the top of the receive FIFO,  
including a new set of PERR and FERR values.  
5. Alternately, the data byte may be transferred  
while UTXEN = 0 and then the user may set  
UTXEN. This will cause the serial bit stream to  
begin immediately because the baud clock will  
start from a cleared state.  
17.6 Operation of UxCTS and UxRTS  
Control Pins  
UARTx Clear-to-Send (UxCTS) and Request-to-Send  
(UxRTS) are the two hardware controlled pins that are  
associated with the UARTx modules. These two pins  
allow the UARTx to operate in Simplex and Flow Con-  
trol mode. They are implemented to control the  
transmission and reception between the Data Terminal  
Equipment (DTE). The UEN<1:0> bits in the UxMODE  
register configure these pins.  
6. A transmit interrupt will be generated as per  
interrupt control bit, UTXISELx.  
17.3 Transmitting in 9-Bit Data Mode  
1. Set up the UARTx (as described in Section 17.2  
“Transmitting in 8-Bit Data Mode”).  
2. Enable the UARTx.  
17.7 Infrared Support  
3. Set the UTXEN bit (causes a transmit interrupt).  
4. Write UxTXREG as a 16-bit value only.  
The UARTx module provides two types of infrared  
UARTx support: one is the IrDA clock output to support  
the external IrDA encoder and decoder device (legacy  
module support), and the other is the full implementation  
of the IrDA encoder and decoder.  
5. A word write to UxTXREG triggers the transfer  
of the 9-bit data to the TSR. Serial bit stream will  
start shifting out with the first rising edge of the  
baud clock.  
6. A transmit interrupt will be generated as per the  
setting of control bit, UTXISELx.  
17.8 External IrDA Support – IrDA  
Clock Output  
17.4 Break and Sync Transmit  
Sequence  
To support the external IrDA encoder and decoder  
devices, the BCLKx pin (same as the UxRTS pin) can  
be configured to generate the 16x baud clock. With  
UEN<1:0> = 11, the BCLKx pin will output the  
16x baud clock if the UARTx module is enabled. It can  
be used to support the IrDA codec chip.  
The following sequence will send a message frame  
header, made up of a Break, followed by an auto-baud  
Sync byte.  
1. Configure the UARTx for the desired mode.  
2. Set UTXEN and UTXBRK – sets up the Break  
character,  
17.9 Built-in IrDA Encoder and Decoder  
3. Load the UxTXREG with a dummy character to  
initiate transmission (value is ignored).  
The UARTx has full implementation of the IrDA  
encoder and decoder as part of the UARTx module.  
The built-in IrDA encoder and decoder functionality is  
enabled using the IREN bit UxMODE<12>. When  
enabled (IREN = 1), the receive pin (UxRX) acts as the  
input from the infrared receiver. The transmit pin  
(UxTX) acts as the output to the infrared transmitter.  
4. Write ‘55h’ to UxTXREG – loads the Sync  
character into the transmit FIFO.  
5. After the Break has been sent, the UTXBRK bit  
is reset by hardware. The Sync character now  
transmits.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 147  
PIC24FJ128GA010 FAMILY  
REGISTER 17-1: UxMODE: UARTx MODE REGISTER  
R/W-0  
UARTEN  
bit 15  
U-0  
R/W-0  
USIDL  
R/W-0  
IREN(1)  
R/W-0  
U-0  
R/W-0  
UEN1  
R/W-0  
UEN0  
RTSMD  
bit 8  
R/W-0, HC  
WAKE  
R/W-0  
R/W-0, HC  
ABAUD  
R/W-0  
RXINV  
R/W-0  
BRGH  
R/W-0  
R/W-0  
R/W-0  
LPBACK  
PDSEL1  
PDSEL0  
STSEL  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
UARTEN: UARTx Enable bit  
1= UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0>  
0= UARTx is disabled; all UARTx pins are controlled by PORT latches; UARTx power consumption is minimal  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
USIDL: Stop in Idle Mode bit  
1= Discontinues module operation when the device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12  
bit 11  
IREN: IrDA® Encoder and Decoder Enable bit(1)  
1= IrDA encoder and decoder are enabled  
0= IrDA encoder and decoder are disabled  
RTSMD: Mode Selection for UxRTS Pin bit  
1= UxRTS pin is in Simplex mode  
0= UxRTS pin is in Flow Control mode  
bit 10  
Unimplemented: Read as ‘0’  
UEN<1:0>: UARTx Enable bits  
bit 9-8  
11= UxTX, UxRX and BCLKx pins are enabled and used; the UxCTS pin is controlled by PORT latches  
10= UxTX, UxRX, UxCTS and UxRTS pins are enabled and used  
01= UxTX, UxRX and UxRTS pins are enabled and used; the UxCTS pin is controlled by PORT latches  
00= UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLKx pins are controlled by PORT  
latches  
bit 7  
WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit  
1= UARTx will continue to sample the UxRX pin; interrupt is generated on the falling edge, bit cleared in  
hardware on the following rising edge  
0= No wake-up is enabled  
bit 6  
bit 5  
LPBACK: UARTx Loopback Mode Select bit  
1= Enables Loopback mode  
0= Loopback mode is disabled  
ABAUD: Auto-Baud Enable bit  
1= Enables baud rate measurement on the next character – requires reception of a Sync field (55h);  
cleared in hardware upon completion  
0= Baud rate measurement is disabled or completed  
bit 4  
RXINV: Receive Polarity Inversion bit  
1= UxRX Idle state is ‘0’  
0= UxRX Idle state is ‘1’  
Note 1: This feature is only available for the 16x BRG mode (BRGH = 0).  
DS39747F-page 148  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 17-1: UxMODE: UARTx MODE REGISTER (CONTINUED)  
bit 3  
BRGH: High Baud Rate Enable bit  
1= BRG generates 4 clocks per bit period (4x Baud Clock, High-Speed mode)  
0= BRG generates 16 clocks per bit period (16x Baud Clock, Standard mode)  
bit 2-1  
PDSEL<1:0>: Parity and Data Selection bits  
11= 9-bit data, no parity  
10= 8-bit data, odd parity  
01= 8-bit data, even parity  
00= 8-bit data, no parity  
bit 0  
STSEL: Stop Bit Selection bit  
1= Two Stop bits  
0= One Stop bit  
Note 1: This feature is only available for the 16x BRG mode (BRGH = 0).  
2005-2012 Microchip Technology Inc.  
DS39747F-page 149  
PIC24FJ128GA010 FAMILY  
REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER  
R/W-0  
UTXISEL1  
bit 15  
R/W-0  
TXINV  
R/W-0  
U-0  
R/W-0, HC  
UTXBRK  
R/W-0  
R-0  
R-1  
UTXISEL0  
UTXEN  
UTXBF  
TRMT  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R-1  
R-0  
R-0  
R/C-0  
R-0  
URXISEL1 URXISEL0  
bit 7  
ADDEN  
RIDLE  
PERR  
FERR  
OERR  
URXDA  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
HC = Hardware Clearable bit  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
R = Readable bit  
-n = Value at POR  
bit 15,13  
UTXISEL<1:0>: Transmission Interrupt Mode Selection bits  
11= Reserved; do not use  
10= Interrupt when a character is transferred to the Transmit Shift Register and as a result, the transmit  
buffer becomes empty  
01= Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations  
are completed  
00= Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least  
one character open in the transmit buffer)  
bit 14  
TXINV: Transmit Polarity Inversion bit  
IREN = 0:  
1= TX Idle state is ‘0’  
0= TX Idle state is ‘1’  
IREN = 1:  
1= IrDA® encoded TX Idle state is ‘1’  
0= IrDA encoded TX Idle state is ‘0’  
bit 12  
bit 11  
Unimplemented: Read as ‘0’  
UTXBRK: Transmit Break bit  
1= Sends Sync Break on next transmission – Start bit, followed by twelve ‘0’ bits, followed by Stop bit;  
cleared by hardware upon completion  
0= Sync Break transmission is disabled or completed  
bit 10  
UTXEN: Transmit Enable bit  
1= Transmit is enabled, UxTX pin controlled by UARTx  
0= Transmit is disabled, any pending transmission is aborted and the buffer is reset. UxTX pin is controlled  
by the PORT.  
bit 9  
UTXBF: Transmit Buffer Full Status bit (read-only)  
1= Transmit buffer is full  
0= Transmit buffer is not full, at least one more character can be written  
bit 8  
TRMT: Transmit Shift Register Empty bit (read-only)  
1= Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)  
0= Transmit Shift Register is not empty, a transmission is in progress or queued  
bit 7-6  
URXISEL<1:0>: Receive Interrupt Mode Selection bits  
11= Interrupt is set on RSR transfer, making the receive buffer full (i.e., has 4 data characters)  
10= Interrupt is set on RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)  
0x= Interrupt is set when any character is received and transferred from the RSR to the receive buffer;  
receive buffer has one or more characters  
bit 5  
ADDEN: Address Character Detect bit (bit 8 of received data = 1)  
1= Address Detect mode is enabled. If 9-bit mode is not selected, this does not take effect.  
0= Address Detect mode is disabled  
DS39747F-page 150  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)  
bit 4  
bit 3  
bit 2  
bit 1  
RIDLE: Receiver Idle bit (read-only)  
1= Receiver is Idle  
0= Receiver is active  
PERR: Parity Error Status bit (read-only)  
1= Parity error has been detected for the current character (character at the top of the receive FIFO)  
0= Parity error has not been detected  
FERR: Framing Error Status bit (read-only)  
1= Framing error has been detected for the current character (character at the top of the receive FIFO)  
0= Framing error has not been detected  
OERR: Receive Buffer Overrun Error Status bit (clear/read-only)  
1= Receive buffer has overflowed  
0= Receive buffer has not overflowed (clearing a previously set OERR bit (10transition) will reset  
the receiver buffer and the RSR to the empty state)  
bit 0  
URXDA: Receive Buffer Data Available bit (read-only)  
1= Receive buffer has data, at least one more character can be read  
0= Receive buffer is empty  
2005-2012 Microchip Technology Inc.  
DS39747F-page 151  
PIC24FJ128GA010 FAMILY  
NOTES:  
DS39747F-page 152  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
Key features of the PMP module include:  
18.0 PARALLEL MASTER PORT  
(PMP)  
• Up to 16 Programmable Address Lines  
• Up to Two Chip Select Lines  
Note:  
This data sheet summarizes the features of  
• Programmable Strobe Options  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. Refer to Section 13. “Parallel  
Master Port (PMP)” (DS39713) in the  
“PIC24F Family Reference Manual” for  
more information.  
- Individual Read and Write Strobes or;  
- Read/Write Strobe with Enable Strobe  
• Address Auto-Increment/Auto-Decrement  
• Programmable Address/Data Multiplexing  
• Programmable Polarity on Control Signals  
• Legacy Parallel Slave Port Support  
• Enhanced Parallel Slave Support  
- Address Support  
The Parallel Master Port (PMP) module is a parallel,  
8-bit I/O module, specifically designed to communicate  
with a wide variety of parallel devices, such as commu-  
nication peripherals, LCDs, external memory devices  
and microcontrollers. Because the interface to parallel  
peripherals varies significantly, the PMP is highly  
configurable.  
- 4-Byte Deep Auto-Incrementing Buffer  
• Programmable Wait States  
• Selectable Input Voltage Levels  
FIGURE 18-1:  
PMP MODULE OVERVIEW  
Address Bus  
Data Bus  
Control Lines  
PMA<0>  
PMALL  
PIC24F  
Parallel Master Port  
PMA<1>  
PMALH  
Up to 16-Bit Address  
EEPROM  
PMA<13:2>  
PMA<14>  
PMCS1  
PMA<15>  
PMCS2  
PMBE  
FIFO  
Buffer  
Microcontroller  
LCD  
PMRD  
PMRD/PMWR  
PMWR  
PMENB  
PMD<7:0>  
PMA<7:0>  
PMA<15:8>  
8-Bit Data  
2005-2012 Microchip Technology Inc.  
DS39747F-page 153  
PIC24FJ128GA010 FAMILY  
REGISTER 18-1: PMCON: PARALLEL PORT CONTROL REGISTER  
R/W-0  
U-0  
R/W-0  
PSIDL  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PMPEN  
ADRMUX1 ADRMUX0  
PTBEEN  
PTWREN  
PTRDEN  
bit 15  
bit 8  
R/W-0  
CSF1  
R/W-0  
CSF0  
R/W-0(1)  
ALP  
R/W-0(1)  
CS2P  
R/W-0(1)  
CS1P  
R/W-0  
BEP  
R/W-0  
WRSP  
R/W-0  
RDSP  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
PMPEN: Parallel Master Port Enable bit  
1= PMP is enabled  
0= PMP is disabled, no off-chip access is performed  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
PSIDL: Stop in Idle Mode bit  
1= Discontinues module operation when device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12-11  
ADRMUX<1:0>: Address/Data Multiplexing Selection bits  
11= Reserved  
10= All 16 bits of address are multiplexed on PMD<7:0> pins  
01= Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper 8 bits are on PMA<15:8>  
00= Address and data appear on separate pins  
bit 10  
bit 9  
PTBEEN: Byte Enable Port Enable bit (16-Bit Master mode)  
1= PMBE port is enabled  
0= PMBE port is disabled  
PTWREN: Write Enable Strobe Port Enable bit  
1= PMWR/PMENB port is enabled  
0= PMWR/PMENB port is disabled  
bit 8  
PTRDEN: Read/Write Strobe Port Enable bit  
1= PMRD/PMWR port is enabled  
0= PMRD/PMWR port is disabled  
bit 7-6  
CSF<1:0>: Chip Select Function bits  
11= Reserved  
10= PMCS1 and PMCS2 function as chip select  
01= PMCS2 functions as chip select, PMCS1 functions as Address Bit 14  
00= PMCS1 and PMCS2 function as Address Bits 15 and 14  
bit 5  
bit 4  
bit 3  
ALP: Address Latch Polarity bit(1)  
1= Active-high (PMALL and PMALH)  
0= Active-low (PMALL and PMALH)  
CS2P: Chip Select 2 Polarity bit(1)  
1= Active-high (PMCS2)  
0= Active-low (PMCS2)  
CS1P: Chip Select 1 Polarity bit(1)  
1= Active-high (PMCS1/PMCS)  
0= Active-low (PMCS1/PMCS)  
Note 1: These bits have no effect when their corresponding pins are used as address lines.  
DS39747F-page 154  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 18-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)  
bit 2  
BEP: Byte Enable Polarity bit  
1= Byte enable is active-high (PMBE)  
0= Byte enable is active-low (PMBE)  
bit 1  
WRSP: Write Strobe Polarity bit  
For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10):  
1= Write strobe is active-high (PMWR)  
0= Write strobe is active-low (PMWR)  
For Master mode 1 (PMMODE<9:8> = 11):  
1= Enable strobe is active-high (PMENB)  
0= Enable strobe is active-low (PMENB)  
bit 0  
RDSP: Read Strobe Polarity bit  
For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10):  
1= Read strobe is active-high (PMRD)  
0= Read strobe is active-low (PMRD)  
For Master mode 1 (PMMODE<9:8> = 11):  
1= Read/write strobe is active-high (PMRD/PMWR)  
0= Read/write strobe is active-low (PMRD/PMWR)  
Note 1: These bits have no effect when their corresponding pins are used as address lines.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 155  
PIC24FJ128GA010 FAMILY  
REGISTER 18-2: PMMODE: PARALLEL PORT MODE REGISTER  
R-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
BUSY  
IRQM1  
IRQM0  
INCM1  
INCM0  
MODE16  
MODE1  
MODE0  
bit 15  
bit 8  
R/W-0  
WAITB1(1)  
bit 7  
R/W-0  
WAITB0(1)  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
WAITE1(1)  
R/W-0  
WAITE0(1)  
WAITM3  
WAITM2  
WAITM1  
WAITM0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
BUSY: Busy bit (Master mode only)  
1= Port is busy (not useful when the processor stall is active)  
0= Port is not busy  
bit 14-13  
IRQM<1:0>: Interrupt Request Mode bits  
11= Interrupt generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode), or  
on a read or write operation when PMA<1:0> = 11(Addressable PSP mode only)  
10= No interrupt is generated, processor stall activated  
01= Interrupt is generated at the end of the read/write cycle  
00= No interrupt is generated  
bit 12-11  
INCM<1:0>: Increment Mode bits  
11= PSP read and write buffers auto-increment (Legacy PSP mode only)  
10= Decrements ADDR<15,13:0> by 1 every read/write cycle  
01= Increments ADDR<15,13:0> by 1 every read/write cycle  
00= No increment or decrement of the address  
bit 10  
MODE16: 8/16-Bit Mode bit  
1= 16-bit mode: Data register is 16 bits, a read or write to the Data register invokes two 8-bit transfers  
0= 8-bit mode: Data register is 8 bits, a read or write to the Data register invokes one 8-bit transfer  
bit 9-8  
MODE<1:0>: Parallel Port Mode Select bits  
11= Master mode 1 (PMCSx, PMRD/PMWR, PMENB, PMBE, PMA<x:0> and PMD<7:0>)  
10= Master mode 2 (PMCSx, PMRD, PMWR, PMBE, PMA<x:0> and PMD<7:0>)  
01= Enhanced PSP, control signals (PMRD, PMWR, PMCS, PMD<7:0> and PMA<1:0>)  
00= Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCS and PMD<7:0>)  
bit 7-6  
bit 5-2  
bit 1-0  
WAITB<1:0>: Data Setup to Read/Write Wait State Configuration bits(1)  
11= Data Wait of 4 TCY; multiplexed address phase of 4 TCY  
10= Data Wait of 3 TCY; multiplexed address phase of 3 TCY  
01= Data Wait of 2 TCY; multiplexed address phase of 2 TCY  
00= Data Wait of 1 TCY; multiplexed address phase of 1 TCY  
WAITM<3:0>: Read to Byte Enable Strobe Wait State Configuration bits  
1111= Wait of additional 15 TCY  
...  
0001= Wait of additional 1 TCY  
0000= No additional Wait cycles (operation forced into one TCY)  
WAITE<1:0>: Data Hold After Strobe Wait State Configuration bits(1)  
11= Wait of 4 TCY  
10= Wait of 3 TCY  
01= Wait of 2 TCY  
00= Wait of 1 TCY  
Note 1: WAITB and WAITE bits are ignored whenever WAITM<3:0> = 0000.  
DS39747F-page 156  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 18-3: PMADDR: PARALLEL PORT ADDRESS REGISTER(1)  
R/W-0  
CS2  
R/W-0  
CS1  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADDR13  
ADDR12  
ADDR11  
ADDR10  
ADDR9  
ADDR8  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADDR7  
ADDR6  
ADDR5  
ADDR4  
ADDR3  
ADDR2  
ADDR1  
ADDR0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CS2: Chip Select 2 bit  
1= Chip Select 2 is active  
0= Chip Select 2 is inactive (pin functions as PMA<15>)  
bit 14  
CS1: Chip Select 1 bit  
1= Chip Select 1 is active  
0= Chip Select 1 is inactive (pin functions as PMA<14>)  
bit 13-0  
ADDR<13:0>: Parallel Port Destination Address bits  
Note 1: PMADDR and PMDOUT1 share the same physical register. The register functions as PMDOUT1 only in  
Slave modes and as PMADDR only in Master modes.  
REGISTER 18-4: PMAEN: PARALLEL PORT ENABLE REGISTER  
R/W-0  
PTEN15  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTEN14  
PTEN13  
PTEN12  
PTEN11  
PTEN10  
PTEN9  
PTEN8  
bit 8  
R/W-0  
PTEN7  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PTEN6  
PTEN5  
PTEN4  
PTEN3  
PTEN2  
PTEN1  
PTEN0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13-2  
bit 1-0  
PTEN<15:14>: PMCSx Strobe Enable bits  
1= PMA15 and PMA14 function as either PMA<15:14> or PMCS2 and PMCS1  
0= PMA15 and PMA14 function as port I/O  
PTEN<13:2>: PMP Address Port Enable bits  
1= PMA<13:2> function as PMP address lines  
0= PMA<13:2> function as port I/O  
PTEN<1:0>: PMALH/PMALL Strobe Enable bits  
1= PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL  
0= PMA1 and PMA0 pads function as port I/O  
2005-2012 Microchip Technology Inc.  
DS39747F-page 157  
PIC24FJ128GA010 FAMILY  
REGISTER 18-5: PMSTAT: PARALLEL PORT STATUS REGISTER  
R-0  
IBF  
R/W-0, HS  
IBOV  
U-0  
U-0  
R-0  
R-0  
R-0  
R-0  
IB3F  
IB2F  
IB1F  
IB0F  
bit 15  
bit 8  
R-1  
R/W-0, HS  
OBUF  
U-0  
U-0  
R-1  
R-1  
R-1  
R-1  
OBE  
OB3E  
OB2E  
OB1E  
OB0E  
bit 0  
bit 7  
Legend:  
HS = Hardware Settable bit  
W = Writable bit  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
‘1’ = Bit is set  
bit 15  
bit 14  
IBF: Input Buffer Full Status bit  
1= All writable Input Buffer registers are full  
0= Some or all of the writable Input Buffer registers are empty  
IBOV: Input Buffer Overflow Status bit  
1= A write attempt to a full Input Byte register occurred (must be cleared in software)  
0= No overflow occurred  
bit 13-12  
bit 11-8  
Unimplemented: Read as ‘0’  
IB3F:IB0F: Input Buffer n Status Full bit  
1= Input buffer contains data that has not been read (reading the buffer will clear this bit)  
0= Input buffer does not contain any unread data  
bit 7  
bit 6  
OBE: Output Buffer Empty Status bit  
1= All readable Output Buffer registers are empty  
0= Some or all of the readable Output Buffer registers are full  
OBUF: Output Buffer Underflow Status bit  
1= A read occurred from an empty Output Byte register (must be cleared in software)  
0= No underflow occurred  
bit 5-4  
bit 3-0  
Unimplemented: Read as ‘0’  
OB3E:OB0E: Output Buffer n Status Empty bit  
1= Output buffer is empty (writing data to the buffer will clear this bit)  
0= Output buffer contains data that has not been transmitted  
DS39747F-page 158  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 18-6: PADCFG1: PAD CONFIGURATION CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
RTSECSEL(1) PMPTTL(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-2  
bit 1  
Unimplemented: Read as ‘0’  
RTSECSEL: RTCC Seconds Clock Output Select bit(1)  
1= RTCC Seconds Clock is selected for the RTCC pin  
0= RTCC Alarm Pulse is selected for the RTCC pin  
bit 0  
PMPTTL: PMP Module TTL Input Buffer Select bit(2)  
1= PMP module uses TTL input buffers  
0= PMP module uses Schmitt input buffers  
Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL<10>) bit needs to be set.  
2: Refer to Table 1-2 for affected PMP inputs.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 159  
PIC24FJ128GA010 FAMILY  
FIGURE 18-2:  
LEGACY PARALLEL SLAVE PORT EXAMPLE  
Address Bus  
Data Bus  
Master  
PMD<7:0>  
PIC24F Slave  
PMD<7:0>  
Control Lines  
PMCS  
PMCS  
PMRD  
PMWR  
PMRD  
PMWR  
FIGURE 18-3:  
ADDRESSABLE PARALLEL SLAVE PORT EXAMPLE  
PIC24F Slave  
Master  
PMA<1:0>  
PMA<1:0>  
Write  
Address  
Decode  
Read  
Address  
Decode  
PMD<7:0>  
PMD<7:0>  
PMDOUT1L (0)  
PMCS  
PMDIN1L (0)  
PMDIN1H (1)  
PMDIN2L (2)  
PMDIN2H (3)  
PMCS  
PMRD  
PMWR  
PMDOUT1H (1)  
PMDOUT2L (2)  
PMDOUT2H (3)  
PMRD  
PMWR  
Address Bus  
Data Bus  
Control Lines  
TABLE 18-1: SLAVE MODE ADDRESS RESOLUTION  
PMA<1:0>  
Output Register (Buffer)  
Input Register (Buffer)  
00  
01  
10  
11  
PMDOUT1<7:0> (0)  
PMDOUT1<15:8> (1)  
PMDOUT2<7:0> (2)  
PMDOUT2<15:8> (3)  
PMDIN1<7:0> (0)  
PMDIN1<15:8> (1)  
PMDIN2<7:0> (2)  
PMDIN2<15:8> (3)  
FIGURE 18-4:  
MASTER MODE, DEMULTIPLEXED ADDRESSING (SEPARATE READ AND  
WRITE STROBES, TWO CHIP SELECTS)  
PIC24F  
PMA<13:0>  
PMD<7:0>  
PMCS1  
PMCS2  
Address Bus  
PMRD  
Data Bus  
Control Lines  
PMWR  
DS39747F-page 160  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
FIGURE 18-5:  
MASTER MODE, PARTIALLY MULTIPLEXED ADDRESSING (SEPARATE READ  
AND WRITE STROBES, TWO CHIP SELECTS)  
PMA<13:8>  
PIC24F  
PMD<7:0>  
PMA<7:0>  
PMCS1  
PMCS2  
PMALL  
PMRD  
Address Bus  
Multiplexed  
Data and  
Address Bus  
Control Lines  
PMWR  
FIGURE 18-6:  
MASTER MODE, FULLY MULTIPLEXED ADDRESSING (SEPARATE READ AND  
WRITE STROBES, TWO CHIP SELECTS)  
PMD<7:0>  
PMA<13:8>  
PIC24F  
PMCS1  
PMCS2  
PMALL  
PMALH  
PMRD  
PMWR  
Multiplexed  
Data and  
Address Bus  
Control Lines  
FIGURE 18-7:  
EXAMPLE OF A MULTIPLEXED ADDRESSING APPLICATION  
PIC24F  
A<7:0>  
373  
PMD<7:0>  
A<15:0>  
PMALL  
D<7:0>  
D<7:0>  
CE  
A<15:8>  
373  
OE  
WR  
PMALH  
PMCS1  
PMRD  
PMWR  
Address Bus  
Data Bus  
Control Lines  
FIGURE 18-8:  
EXAMPLE OF A PARTIALLY MULTIPLEXED ADDRESSING APPLICATION  
PIC24F  
A<7:0>  
373  
PMD<7:0>  
A<14:0>  
PMALL  
D<7:0>  
D<7:0>  
A<14:8>  
CE  
OE  
PMA<14:7>  
WR  
Address Bus  
Data Bus  
PMCS1  
PMRD  
PMWR  
Control Lines  
2005-2012 Microchip Technology Inc.  
DS39747F-page 161  
PIC24FJ128GA010 FAMILY  
FIGURE 18-9:  
EXAMPLE OF AN 8-BIT MULTIPLEXED ADDRESS AND DATA APPLICATION  
PIC24F  
PMD<7:0>  
Parallel Peripheral  
AD<7:0>  
PMALL  
PMCS1  
PMRD  
ALE  
CS  
Address Bus  
Data Bus  
RD  
PMWR  
WR  
Control Lines  
FIGURE 18-10:  
PARALLEL EEPROM EXAMPLE (UP TO 15-BIT ADDRESS, 8-BIT DATA)  
PIC24F  
Parallel EEPROM  
PMA<n:0>  
A<n:0>  
PMD<7:0>  
D<7:0>  
PMCS1  
PMRD  
PMWR  
CE  
OE  
WR  
Address Bus  
Data Bus  
Control Lines  
FIGURE 18-11:  
PARALLEL EEPROM EXAMPLE (UP TO 15-BIT ADDRESS, 16-BIT DATA)  
PIC24F  
Parallel EEPROM  
A<n:1>  
D<7:0>  
PMA<n:0>  
PMD<7:0>  
PMBE  
PMCS1  
PMRD  
A0  
CE  
OE  
WR  
Address Bus  
Data Bus  
PMWR  
Control Lines  
FIGURE 18-12:  
LCD CONTROL EXAMPLE (BYTE MODE OPERATION)  
PIC24F  
LCD Controller  
PM<7:0>  
PMA0  
D<7:0>  
RS  
PMRD/PMWR  
PMCS1  
R/W  
E
Address Bus  
Data Bus  
Control Lines  
DS39747F-page 162  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
• Calendar: Weekday, Date, Month and Year  
• Alarm Configurable  
19.0 REAL-TIME CLOCK AND  
CALENDAR (RTCC)  
Year Range: 2000 to 2099  
Note:  
This data sheet summarizes the features of  
• Leap Year Correction  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. Refer to Section 29. “Real-Time  
Clock and Calendar (RTCC)” (DS39696)  
in the “PIC24F Family Reference Manual”  
for more information.  
• BCD Format for Compact Firmware  
• Optimized for Low-Power Operation  
• User Calibration with Auto-Adjust  
• Calibration Range: ±2.64 Seconds Error per  
Month  
• Requirements: External 32.768 kHz Clock Crystal  
• Alarm Pulse or Seconds Clock Output on RTCC Pin  
The Real-Time Clock and Calendar hardware module  
has the following features:  
• Time: Hours, Minutes and Seconds  
• 24-Hour Format (Military Time)  
FIGURE 19-1:  
RTCC BLOCK DIAGRAM  
CPU Clock Domain  
RTCC Clock Domain  
32.768 kHz Input  
from SOSC Oscillator  
RCFGCAL  
RTCC Prescalers  
0.5s  
ALCFGRPT  
YEAR  
MTHDAY  
RTCVAL  
RTCC Timer  
Alarm  
WKDYHR  
MINSEC  
Event  
Comparator  
ALMTHDY  
Compare Registers  
with Masks  
ALRMVAL  
ALWDHR  
ALMINSEC  
Repeat Counter  
RTCC Interrupt  
RTCC Interrupt Logic  
Alarm Pulse  
RTCC Pin  
RTCOE  
2005-2012 Microchip Technology Inc.  
DS39747F-page 163  
PIC24FJ128GA010 FAMILY  
By writing the ALRMVALH byte, the Alarm Pointer  
19.1 RTCC Module Registers  
value, ALRMPTR<1:0>, decrements by one until it  
reaches ‘00’. Once it reaches ‘00’, the ALRMMIN and  
ALRMSEC value will be accessible through  
ALRMVALH and ALRMVALL until the pointer value is  
manually changed.  
The RTCC module registers are organized into three  
categories:  
• RTCC Control Registers  
• RTCC Value Registers  
• Alarm Value Registers  
TABLE 19-2: ALRMVAL REGISTER  
MAPPING  
19.1.1  
REGISTER MAPPING  
To limit the register interface, the RTCC Timer and  
Alarm Time registers are accessed through corre-  
sponding register pointers. The RTCC Value register  
window (RTCVALH and RTCVALL) uses the RTCPTR  
bits (RCFGCAL<9:8>) to select the desired Timer  
register pair (see Table 19-1). By writing the RTCVALH  
byte, the RTCC Pointer value, RTCPTR<1:0>, decre-  
ments by one until it reaches ‘00’. Once it reaches ‘00’,  
the MINUTES and SECONDS value will be accessible  
through RTCVALH and RTCVALL until the pointer  
value is manually changed.  
Alarm Value Register Window  
ALRMPTR  
<1:0>  
ALRMVAL<15:8> ALRMVAL<7:0>  
00  
01  
10  
11  
ALRMMIN  
ALRMWD  
ALRMMNTH  
ALRMSEC  
ALRMHR  
ALRMDAY  
Considering that the 16-bit core does not distinguish  
between 8-bit and 16-bit read operations, the user must  
be aware that when reading either the ALRMVALH or  
ALRMVALL bytes it will decrement the ALRMPTR<1:0>  
value. The same applies to the RTCVALH or RTCVALL  
bytes with the RTCPTR<1:0> being decremented.  
TABLE 19-1: RTCVAL REGISTER MAPPING  
RTCC Value Register Window  
RTCPTR  
<1:0>  
Note:  
This only applies to read operations and  
not write operations.  
RTCVAL<15:8> RTCVAL<7:0>  
00  
01  
10  
11  
MINUTES  
WEEKDAY  
MONTH  
SECONDS  
HOURS  
DAY  
19.1.2  
WRITE LOCK  
In order to perform a write to any of the RTCC Timer  
registers, the RTCWREN bit (RCFGCAL<13>) must be  
set (refer to Example 19-1).  
YEAR  
The Alarm Value register window (ALRMVALH and  
ALRMVALL) uses the ALRMPTR bits  
(ALCFGRPT<9:8>) to select the desired Alarm register  
pair (see Table 19-2).  
EXAMPLE 19-1:  
SETTING THE RTCWREN BIT IN MPLAB® C30  
asm volatile("disi #13");  
asm volatile("push W1");  
asm volatile("push W2");  
asm volatile("push W3");  
asm volatile("MOV #NVMKEY, W1");  
asm volatile("MOV #0x55, W2");  
asm volatile("MOV #0xAA, W3");  
asm volatile("MOV W2, [W1]");  
//move the address of NVMKEY into W1  
//start 55/AA sequence  
NOP();  
//There must be an instruction between the two writes ( either a NOP or a MOV to W)  
asm volatile("MOV W3, [W1]");  
asm volatile("BSET RCFGCAL, #13");  
asm volatile("pop W3");  
//set the RTCWREN bit  
asm volatile("pop W2");  
asm volatile("pop W1");  
Note:  
To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept  
clear at any other time. For the RTCWREN bit to be set, there is only 1 instruction cycle time window allowed  
between the 55h/AA sequence and the setting of RTCWREN; therefore, it is recommended that the code in  
Example 19-1 be followed.  
DS39747F-page 164  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
19.1.3  
RTCC CONTROL REGISTERS  
REGISTER 19-1:  
RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER(1)  
R/W-0  
RTCEN(2)  
bit 15  
U-0  
R/W-0  
R-0  
R-0  
R/W-0  
R/W-0  
R/W-0  
RTCWREN  
RTCSYNC HALFSEC(3)  
RTCOE  
RTCPTR1  
RTCPTR0  
bit 8  
R/W-0  
CAL7  
R/W-0  
CAL6  
R/W-0  
CAL5  
R/W-0  
CAL4  
R/W-0  
CAL3  
R/W-0  
CAL2  
R/W-0  
CAL1  
R/W-0  
CAL0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
RTCEN: RTCC Enable bit(2)  
1= RTCC module is enabled  
0= RTCC module is disabled  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
RTCWREN: RTCC Value Registers Write Enable bit  
1= RTCVALH and RTCVALL registers can be written to by the user  
0= RTCVALH and RTCVALL registers are locked out from being written to by the user  
bit 12  
RTCSYNC: RTCC Value Registers Read Synchronization bit  
1= RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover ripple  
resulting in an invalid data read. If the register is read twice and results in the same data, the data can  
be assumed to be valid.  
0= RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover ripple  
bit 11  
bit 10  
bit 9-8  
HALFSEC: Half-Second Status bit(3)  
1= Second half period of a second  
0= First half period of a second  
RTCOE: RTCC Output Enable bit  
1= RTCC output is enabled  
0= RTCC output is disabled  
RTCPTR<1:0>: RTCC Value Register Window Pointer bits  
Points to the corresponding RTCC Value registers when reading the RTCVALH and RTCVALL registers;  
the RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches ‘00’.  
RTCVAL<15:8>:  
00= MINUTES  
01= WEEKDAY  
10= MONTH  
11= Reserved  
RTCVAL<7:0>:  
00= SECONDS  
01= HOURS  
10= DAY  
11= YEAR  
Note 1: The RCFGCAL Reset value is dependent on the type of Reset.  
2: A write to the RTCEN bit is only allowed when RTCWREN = 1.  
3: This bit is read-only; it is cleared to ‘0’ on a write to the lower half of the MINSEC register.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 165  
PIC24FJ128GA010 FAMILY  
REGISTER 19-1:  
RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER(1)  
bit 7-0 CAL<7:0>: RTC Drift Calibration bits  
01111111= Maximum positive adjustment; adds 508 RTC clock pulses every one minute  
...  
01111111= Minimum positive adjustment; adds 4 RTC clock pulses every one minute  
00000000= No adjustment  
11111111= Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute  
...  
10000000= Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute  
Note 1: The RCFGCAL Reset value is dependent on the type of Reset.  
2: A write to the RTCEN bit is only allowed when RTCWREN = 1.  
3: This bit is read-only; it is cleared to ‘0’ on a write to the lower half of the MINSEC register.  
REGISTER 19-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
RTSECSEL(1) PMPTTL(2)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-2  
bit 1  
Unimplemented: Read as ‘0’  
RTSECSEL: RTCC Seconds Clock Output Select bit(1)  
1= RTCC seconds clock is selected for the RTCC pin  
0= RTCC alarm pulse is selected for the RTCC pin  
bit 0  
PMPTTL: PMP Module TTL Input Buffer Select bit(2)  
1= PMP module uses TTL input buffers  
0= PMP module uses Schmitt input buffers  
Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL<10>) bit needs to be set.  
2: Refer to Table 1-2 for affected PMP inputs.  
DS39747F-page 166  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 19-3: ALCFGRPT: ALARM CONFIGURATION REGISTER  
R/W-0  
ALRMEN  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CHIME  
AMASK3  
AMASK2  
AMASK1  
AMASK0  
ALRMPTR1 ALRMPTR0  
bit 8  
R/W-0  
ARPT7  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ARPT6  
ARPT5  
ARPT4  
ARPT3  
ARPT2  
ARPT1  
ARPT0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ALRMEN: Alarm Enable bit  
1= Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 00 and  
CHIME = 0)  
0= Alarm is disabled  
bit 14  
CHIME: Chime Enable bit  
1= Chime is enabled; ARPT<7:0> bits are allowed to roll over from 00h to FFh  
0= Chime is disabled; ARPT<7:0> bits stop once they reach 00h  
bit 13-10  
AMASK<3:0>: Alarm Mask Configuration bits  
0000= Every half second  
0001= Every second  
0010= Every 10 seconds  
0011= Every minute  
0100= Every 10 minutes  
0101= Every hour  
0110= Once a day  
0111= Once a week  
1000= Once a month  
1001= Once a year (except when configured for February 29th, once every 4 years)  
101x= Reserved – do not use  
11xx= Reserved – do not use  
bit 9-8  
ALRMPTR<1:0>: Alarm Value Register Window Pointer bits  
Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL registers;  
the ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches ‘00’.  
ALRMVAL<15:8>:  
00= ALRMMIN  
01= ALRMWD  
10= ALRMMNTH  
11= Unimplemented  
ALRMVAL<7:0>:  
00= ALRMSEC  
01= ALRMHR  
10= ALRMDAY  
11= Unimplemented  
bit 7-0  
ARPT<7:0>: Alarm Repeat Counter Value bits  
11111111= Alarm will repeat 255 more times  
...  
00000000= Alarm will not repeat  
The counter decrements on any alarm event. The counter is prevented from rolling over from 00h to FFh  
unless CHIME = 1.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 167  
PIC24FJ128GA010 FAMILY  
19.1.4  
RTCVAL REGISTER MAPPINGS  
REGISTER 19-4: YEAR: YEAR VALUE REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
YRTEN3  
YRTEN2  
YRTEN1  
YRTEN0  
YRONE3  
YRONE2  
YRONE1  
YRONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7-4  
bit 3-0  
Unimplemented: Read as ‘0’  
YRTEN<3:0:> Binary Coded Decimal Value of Year’s Tens Digit; Contains a value from 0 to 9  
YRONE<3:0>: Binary Coded Decimal Value of Year’s Ones Digit; Contains a value from 0 to 9  
Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.  
REGISTER 19-5: MTHDY: MONTH AND DAY VALUE REGISTER(1)  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MTHONE0  
bit 8  
MTHTEN0  
MTHONE3  
MTHONE2  
MTHONE1  
bit 15  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
DAYTEN1  
DAYTEN0  
DAYONE3  
DAYONE2  
DAYONE1  
DAYONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
MTHTEN0: Binary Coded Decimal Value of Month’s Tens Digit; Contains a value of 0 or 1  
bit 11-8  
bit 7-6  
bit 5-4  
bit 3-0  
MTHONE<3:0>: Binary Coded Decimal Value of Month’s Ones Digit; Contains a value from 0 to 9  
Unimplemented: Read as ‘0’  
DAYTEN<1:0>: Binary Coded Decimal Value of Day’s Tens Digit; Contains a value from 0 to 3  
DAYONE<3:0>: Binary Coded Decimal Value of Day’s Ones Digit; Contains a value from 0 to 9  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
DS39747F-page 168  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 19-6: WKDYHR: WEEKDAY AND HOURS VALUE REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
WDAY2  
WDAY1  
WDAY0  
bit 15  
bit 8  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
HRTEN1  
HRTEN0  
HRONE3  
HRONE2  
HRONE1  
HRONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-11  
bit 10-8  
bit 7-6  
Unimplemented: Read as ‘0’  
WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; Contains a value from 0 to 6  
Unimplemented: Read as ‘0’  
bit 5-4  
HRTEN<1:0>: Binary Coded Decimal Value of Hour’s Tens Digit; Contains a value from 0 to 2  
HRONE<3:0>: Binary Coded Decimal Value of Hour’s Ones Digit; Contains a value from 0 to 9  
bit 3-0  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
REGISTER 19-7: MINSEC: MINUTES AND SECONDS VALUE REGISTER  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MINONE0  
bit 8  
MINTEN2  
MINTEN1  
MINTEN0  
MINONE3  
MINONE2  
MINONE1  
bit 15  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SECTEN2  
SECTEN1  
SECTEN0  
SECONE3  
SECONE2  
SECONE1  
SECONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
bit 11-8  
bit 7  
MINTEN<2:0>: Binary Coded Decimal Value of Minute’s Tens Digit; Contains a value from 0 to 5  
MINONE<3:0>: Binary Coded Decimal Value of Minute’s Ones Digit; Contains a value from 0 to 9  
Unimplemented: Read as ‘0’  
bit 6-4  
bit 3-0  
SECTEN<2:0>: Binary Coded Decimal Value of Second’s Tens Digit; Contains a value from 0 to 5  
SECONE<3:0>: Binary Coded Decimal Value of Second’s Ones Digit; Contains a value from 0 to 9  
2005-2012 Microchip Technology Inc.  
DS39747F-page 169  
PIC24FJ128GA010 FAMILY  
19.1.5  
ALRMVAL REGISTER MAPPINGS  
REGISTER 19-8: ALMTHDY: ALARM MONTH AND DAY VALUE REGISTER(1)  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MTHTEN0  
MTHONE3  
MTHONE2  
MTHONE1  
MTHONE0  
bit 15  
bit 8  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
DAYTEN1  
DAYTEN0  
DAYONE3  
DAYONE2  
DAYONE1  
DAYONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-13  
bit 12  
Unimplemented: Read as ‘0’  
MTHTEN0: Binary Coded Decimal Value of Month’s Tens Digit; Contains a value of 0 or 1  
bit 11-8  
bit 7-6  
bit 5-4  
bit 3-0  
MTHONE<3:0>: Binary Coded Decimal Value of Month’s Ones Digit; Contains a value from 0 to 9  
Unimplemented: Read as ‘0’  
DAYTEN<1:0>: Binary Coded Decimal Value of Day’s Tens Digit; Contains a value from 0 to 3  
DAYONE<3:0>: Binary Coded Decimal Value of Day’s Ones Digit; Contains a value from 0 to 9  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
REGISTER 19-9: ALWDHR: ALARM WEEKDAY AND HOURS VALUE REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
WDAY0  
bit 8  
WDAY2  
WDAY1  
bit 15  
U-0  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
HRTEN1  
HRTEN0  
HRONE3  
HRONE2  
HRONE1  
HRONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15-11  
bit 10-8  
bit 7-6  
Unimplemented: Read as ‘0’  
WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; Contains a value from 0 to 6  
Unimplemented: Read as ‘0’  
bit 5-4  
HRTEN<1:0>: Binary Coded Decimal Value of Hour’s Tens Digit; Contains a value from 0 to 2  
HRONE<3:0>: Binary Coded Decimal Value of Hour’s Ones Digit; Contains a value from 0 to 9  
bit 3-0  
Note 1: A write to this register is only allowed when RTCWREN = 1.  
DS39747F-page 170  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 19-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
MINTEN2  
MINTEN1  
MINTEN0  
MINONE3  
MINONE2  
MINONE1  
MINONE0  
bit 15  
bit 8  
U-0  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
R/W-x  
SECTEN2  
SECTEN1  
SECTEN0  
SECONE3  
SECONE2  
SECONE1  
SECONE0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
Unimplemented: Read as ‘0’  
bit 14-12  
bit 11-8  
bit 7  
MINTEN<2:0>: Binary Coded Decimal Value of Minute’s Tens Digit; Contains a value from 0 to 5  
MINONE<3:0>: Binary Coded Decimal Value of Minute’s Ones Digit; Contains a value from 0 to 9  
Unimplemented: Read as ‘0’  
bit 6-4  
bit 3-0  
SECTEN<2:0>: Binary Coded Decimal Value of Second’s Tens Digit; Contains a value from 0 to 5  
SECONE<3:0>: Binary Coded Decimal Value of Second’s Ones Digit; Contains a value from 0 to 9  
2005-2012 Microchip Technology Inc.  
DS39747F-page 171  
PIC24FJ128GA010 FAMILY  
19.2 Calibration  
19.3 Alarm  
The real-time crystal input can be calibrated using the  
periodic auto-adjust feature. When properly calibrated,  
the RTCC can provide an error of less than 3 seconds  
per month. This is accomplished by finding the number  
of error clock pulses and storing the value into the  
lower half of the RCFGCAL register. The 8-bit signed  
value loaded into the lower half of RCFGCAL is multi-  
plied by four and will either be added or subtracted from  
the RTCC timer, once every minute. Refer to the steps  
below for RTCC calibration:  
• Configurable from half second to one year  
• Enabled using the ALRMEN bit  
(ALCFGRPT<15>, Register 19-3)  
• One-time alarm and repeat alarm options are  
available  
19.3.1  
CONFIGURING THE ALARM  
The alarm feature is enabled using the ALRMEN bit.  
This bit is cleared when an alarm is issued. Writes to  
ALRMVALH:ALRMVALL should only take place when  
ALRMEN = 0.  
1. Using another timer resource on the device, the  
user must find the error of the 32.768 kHz  
crystal.  
As shown in Figure 19-2, the interval selection of the  
alarm is configured through the AMASK bits  
(ALCFGRPT<13:10>). These bits determine which and  
how many digits of the alarm must match the clock value  
for the alarm to occur. The alarm can also be configured  
to repeat, based on a preconfigured interval. The  
amount of times this occurs, once the alarm is enabled,  
is stored in the lower half of the ALCFGRPT register.  
2. Once the error is known, it must be converted to  
the number of error clock pulses per minute.  
EQUATION 19-1:  
(Ideal Frequency – Measured Frequency) * 60 = Clocks per Minute  
† Ideal Frequency = 32,768 Hz  
When ALCFGRPT  
=
00 and the CHIME  
(ALCFGRPT<14>) bit = 0, the repeat function is  
disabled and only a single alarm will occur. The alarm  
can be repeated up to 255 times by loading the lower  
half of the ALCFGRPT register with FFh.  
3. a) If the oscillator is faster then ideal (negative  
result form Step 2), the RCFGCAL register value  
needs to be negative. This causes the specified  
number of clock pulses to be subtracted from  
the timer counter, once every minute.  
After each alarm is issued, the ALCFGRPT register is  
decremented by one. Once the register has reached  
00’, the alarm will be issued one last time, after which,  
the ALRMEN bit will be cleared automatically and the  
alarm will turn off. Indefinite repetition of the alarm can  
occur if the CHIME bit = 1. Instead of the alarm being  
disabled when the ALCFGRPT register reaches ‘00’, it  
will roll over to FF and continue counting indefinitely  
when CHIME = 1.  
b) If the oscillator is slower then ideal (positive  
result from Step 2), the RCFGCAL register value  
needs to be positive. This causes the specified  
number of clock pulses to be subtracted from  
the timer counter, once every minute.  
4. Divide the number of error clocks per minute by  
4 to get the correct CAL value and load the  
RCFGCAL register with the correct value. (Each  
1-bit increment in CAL adds or subtracts  
4 pulses). Load the RCFGCAL register with the  
correct value.  
19.3.2  
ALARM INTERRUPT  
At every alarm event an interrupt is generated. In addi-  
tion, an alarm pulse output is provided that operates at  
half the frequency of the alarm. This output is  
completely synchronous to the RTCC clock and can be  
used as a trigger clock to other peripherals.  
Writes to the lower half of the RCFGCAL register  
should only occur when the timer is turned off or  
immediately after the rising edge of the seconds pulse.  
Note:  
Changing any of the registers, other then  
the RCFGCAL and ALCFGRPT registers,  
and the CHIME bit while the alarm is  
enabled (ALRMEN = 1), can result in a  
false alarm event leading to a false alarm  
interrupt. To avoid a false alarm event, the  
timer and alarm values should only be  
changed while the alarm is disabled  
(ALRMEN = 0). It is recommended that  
the ALCFGRPT register and CHIME bit be  
changed when RTCSYNC = 0.  
Note:  
It is up to the user to include in the error  
value, the initial error of the crystal drift  
due to temperature and drift due to crystal  
aging.  
DS39747F-page 172  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
FIGURE 19-2:  
ALARM MASK SETTINGS  
Day of  
the  
Week  
Alarm Mask Setting  
(AMASK<3:0>)  
Month  
Day  
Hours  
Minutes  
Seconds  
0000– Every half second  
0001– Every second  
0010– Every 10 seconds  
0011– Every minute  
0100– Every 10 minutes  
0101– Every hour  
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
m
m
m
m
m
m
m
m
m
m
m
0110– Every day  
h
h
h
h
h
h
h
h
0111– Every week  
1000– Every month  
d
d
d
d
(1)  
1001– Every year  
m
m
d
Note 1: Annually, except when configured for February 29.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 173  
PIC24FJ128GA010 FAMILY  
NOTES:  
DS39747F-page 174  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
20.2 Overview  
20.0 PROGRAMMABLE CYCLIC  
REDUNDANCY CHECK (CRC)  
GENERATOR  
The module implements a software configurable CRC  
generator. The terms of the polynomial and its length  
can be programmed using the CRCXOR (X<15:1>) bits  
and the CRCCON (PLEN<3:0>) bits, respectively.  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. Refer to Section 30. “Program-  
mable Cyclic Redundancy Check  
(CRC)” (DS39714) in the “PIC24F Family  
Reference Manual” for more information.  
Consider the following equation:  
EQUATION 20-1: CRC POLYNOMIAL  
x16 + x12 + x5 + 1  
To program this polynomial into the CRC generator,  
the CRC register bits should be set, as shown in  
Table 20-1.  
The programmable CRC generator offers the following  
features:  
• User-programmable polynomial CRC equation  
• Interrupt output  
TABLE 20-1: EXAMPLE CRC SETUP  
• Data FIFO  
Bit Name  
Bit Value  
PLEN<3:0>  
X<15:1>  
1111  
20.1 Registers  
000100000010000  
There are four registers used to control programmable  
CRC operation:  
Note that for the value of X<15:1>, the 12th bit and the  
5th bit are set to ‘1’, as required by the equation. The  
0 bit, required by the equation, is always XORed. For a  
16-bit polynomial, the 16th bit is also always assumed to  
be XORed; therefore, the X<15:1> bits do not have the  
0 bit or the 16th bit.  
• CRCCON  
• CRCXOR  
• CRCDAT  
• CRCWDAT  
The topology of a standard CRC generator is shown in  
Figure 20-2.  
FIGURE 20-1:  
CRC SHIFTER DETAILS  
PLEN<3:0>  
0
1
2
15  
CRC Shift Register  
Hold  
Hold  
X2  
Hold  
Hold  
X1  
X3  
X15  
0
0
0
0
XOR  
OUT  
OUT  
OUT  
OUT  
IN  
BIT 0  
IN  
BIT 1  
IN  
BIT 2  
IN  
BIT 15  
DOUT  
1
1
1
1
p_clk  
p_clk  
p_clk  
p_clk  
CRC Read Bus  
CRC Write Bus  
2005-2012 Microchip Technology Inc.  
DS39747F-page 175  
PIC24FJ128GA010 FAMILY  
FIGURE 20-2:  
CRC GENERATOR RECONFIGURED FOR x16 + x12 + x5 + 1  
XOR  
D
Q
D
Q
D
Q
D
Q
D
Q
SDOx  
BIT 0  
BIT 4  
BIT 5  
BIT 12  
BIT 15  
p_clk  
p_clk  
p_clk  
p_clk  
p_clk  
CRC Read Bus  
CRC Write Bus  
To continually feed data into the CRC engine, the rec-  
ommended mode of operation is to initially “prime” the  
FIFO with a sufficient number of words, so no interrupt  
is generated before the next word can be written. Once  
that is done, start the CRC by setting the CRCGO bit to  
1’. From that point onward, the VWORD bits should be  
polled. If they read less than 8 or 16, another word can  
be written into the FIFO.  
20.3 User Interface  
20.3.1  
DATA INTERFACE  
To start serial shifting, a ‘1’ must be written to the  
CRCGO bit.  
The module incorporates a FIFO that is 8-deep when  
PLEN<3:0> (CRCCON<3:0>) > 7 and 16-deep other-  
wise. The data for which the CRC is to be calculated  
must first be written into the FIFO. The smallest data  
element that can be written into the FIFO is one byte.  
For example, if PLEN = 5, then the size of the data is  
PLEN + 1 = 6. The data must be written as follows:  
To empty words already written into a FIFO, the  
CRCGO bit must be set to ‘1’ and the CRC shifter  
allowed to run until the CRCMPT bit is set.  
Also, to get the correct CRC reading, it will be  
necessary to wait for the CRCMPT bit to go high before  
reading the CRCWDAT register.  
data[5:0] = crc_input[5:0]  
data[7:6] = ‘bxx  
If a word is written when the CRCFUL bit is set, the  
VWORD Pointer will roll over to 0. The hardware will  
then behave as if the FIFO is empty. However, the con-  
dition to generate an interrupt will not be met; therefore,  
no interrupt will be generated (see Section 20.3.2  
“Interrupt Operation”).  
Once data is written into the CRCWDAT MSb (as  
defined by PLEN), the value of the VWORD<4:0> bits  
(CRCCON<12:8>) increment by one. The serial shifter  
starts shifting data into the CRC engine when  
CRCGO = 1 and VWORD > 0. When the MSb is  
shifted out, VWORD decrements by one. The serial  
shifter continues shifting until the VWORD reaches 0.  
Therefore, for a given value of PLEN, it will take  
(PLEN<3:0> + 1)/2 x VWORD number of clock cycles  
to complete the CRC calculations.  
At least one instruction cycle must pass after a write to  
CRCWDAT before a read of the VWORD bits is done.  
20.3.2  
INTERRUPT OPERATION  
When VWORD<4:0> make a transition from a value of  
1’ to ‘0’, an interrupt will be generated.  
When VWORD reaches 8 (or 16), the CRCFUL bit will  
be set. When VWORD reaches 0, the CRCMPT bit will  
be set.  
DS39747F-page 176  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 20-1: CRCCON: CRC CONTROL REGISTER  
U-0  
U-0  
R/W-0  
CSIDL  
R-0  
R-0  
R-0  
R-0  
R-0  
VWORD4  
VWORD3  
VWORD2  
VWORD1  
VWORD0  
bit 15  
bit 8  
R-0  
CRCFUL  
bit 7  
R-1  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CRCMPT  
CRCGO  
PLEN3  
PLEN2  
PLEN1  
PLEN0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-14  
bit 13  
Unimplemented: Read as ‘0’  
CSIDL: CRC Stop in Idle Mode bit  
1= Discontinues module operation when the device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12-8  
bit 7  
VWORD<4:0>: Pointer Value bits  
Indicates the number of valid words in the FIFO. It has a maximum value of 8 when PLEN<3:0> > 7  
or 16 when PLEN<3:0> 7.  
CRCFUL: FIFO Full bit  
1= FIFO is full  
0= FIFO is not full  
bit 6  
CRCMPT: FIFO Empty bit  
1= FIFO is empty  
0= FIFO is not empty  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
CRCGO: Start CRC bit  
1= Starts CRC serial shifter  
0= CRC serial shifter is turned off  
bit 3-0  
PLEN<3:0>: Polynomial Length bits  
Denotes the length of the polynomial to be generated minus 1.  
20.4.2  
IDLE MODE  
20.4 Operation in Power Save Modes  
To continue full module operation in Idle mode, the  
CSIDL bit must be cleared prior to entry into the mode.  
20.4.1  
SLEEP MODE  
If Sleep mode is entered while the module is operating,  
the module will be suspended in its current state until  
clock execution resumes.  
If CSIDL = 1, the module will behave the same way as  
it does in Sleep mode. Pending interrupt events will be  
passed on, even though the module clocks are not  
available.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 177  
PIC24FJ128GA010 FAMILY  
NOTES:  
DS39747F-page 178  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
A block diagram of the A/D Converter is shown in  
Figure 21-1.  
21.0 10-BIT HIGH-SPEED A/D  
CONVERTER  
To perform an A/D conversion:  
Note:  
This data sheet summarizes the features of  
1. Configure the A/D module:  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. Refer to Section 17. “10-Bit A/D  
Converter” (DS39705) in the “PIC24F  
Family Reference Manual” for more  
information.  
a) Select the port pins as analog inputs  
(AD1PCFG<15:0>).  
b) Select a voltage reference source to match  
the expected range on the analog inputs  
(AD1CON2<15:13>).  
c) Select the analog conversion clock to match  
the desired data rate with the processor clock  
(AD1CON3<7:0>).  
The 10-bit A/D Converter has the following key  
features:  
• Successive Approximation (SAR) conversion  
• Conversion speeds of up to 500 ksps  
• Up to 16 analog input pins  
d) Select the appropriate sample/conver-  
sion sequence (AD1CON1<7:0> and  
AD1CON3<12:8>).  
e) Select how conversion results are  
presented in the buffer (AD1CON1<9:8>).  
• External voltage reference input pins  
• Automatic Channel Scan mode  
f) Select the interrupt rate (AD1CON2<5:2>).  
g) Turn on the A/D module (AD1CON1<15>).  
2. Configure the A/D interrupt (if required):  
a) Clear the AD1IF bit.  
• Selectable conversion trigger source  
• 16-word conversion result buffer  
• Selectable Buffer Fill modes  
• Four result alignment options  
b) Select the A/D interrupt priority.  
• Operation during CPU Sleep and Idle modes  
Note:  
A/D results should be read with the ADON  
bit = 1. If the A/D is disabled before  
reading the buffer, it is possible to lose  
data.  
Depending on the particular device pinout, the 10-bit  
A/D Converter can have up to 16 analog input pins,  
designated AN0 through AN15. In addition, there are  
two analog input pins for external voltage reference  
connections. These voltage reference inputs may be  
shared with other analog input pins. The actual number  
of analog input pins and external voltage reference  
input configuration will depend on the device. Refer to  
the specific device data sheet for further details.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 179  
PIC24FJ128GA010 FAMILY  
Figure 21-1: 10-BIT HIGH-SPEED A/D CONVERTER BLOCK DIAGRAM  
Internal Data Bus  
16  
AVDD  
VR+  
AVSS  
VREF+  
VR-  
Comparator  
VREF-  
VINH  
VR- VR+  
S/H  
DAC  
VINL  
AN0  
AN1  
AN2  
VINH  
10-Bit SAR  
Conversion Logic  
AN3  
Data Formatting  
AN4  
AN5  
VINL  
AN6  
AN7  
ADC1BUF0:  
ADC1BUFF  
AN8  
AD1CON1  
AD1CON2  
AD1CON3  
AD1CHS  
AN9  
VINH  
VINL  
AN10  
AN11  
AN12  
AN13  
AN14  
AN15  
AD1PCFG  
AD1CSSL  
Sample Control  
Control Logic  
Conversion Control  
Input MUX Control  
Pin Config. Control  
DS39747F-page 180  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 21-1: AD1CON1: A/D CONTROL REGISTER 1  
R/W-0  
ADON(1)  
bit 15  
U-0  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
ADSIDL  
FORM1  
FORM0  
bit 8  
R/W-0  
SSRC2  
bit 7  
R/W-0  
R/W-0  
U-0  
U-0  
R/W-0  
ASAM  
R/W-0, HCS R/C-0, HCS  
SAMP DONE  
bit 0  
SSRC1  
SSRC0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
HCS = Hardware Clearable/Settable bit  
U = Unimplemented bit, read as ‘0’  
R = Readable bit  
-n = Value at POR  
‘0’ = Bit is cleared  
x = Bit is unknown  
bit 15  
ADON: A/D Operating Mode bit(1)  
1= A/D Converter module is operating  
0= A/D Converter is off  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
ADSIDL: Stop in Idle Mode bit  
1= Discontinues module operation when the device enters Idle mode  
0= Continues module operation in Idle mode  
bit 12-10  
bit 9-8  
Unimplemented: Read as ‘0’  
FORM<1:0>: Data Output Format bits  
11= Signed fractional (sddd dddd dd00 0000)  
10= Fractional (dddd dddd dd00 0000)  
01= Signed integer (ssss sssd dddd dddd)  
00= Integer (0000 00dd dddd dddd)  
bit 7-5  
SSRC<2:0>: Conversion Trigger Source Select bits  
111= Internal counter ends sampling and starts conversion (auto-convert)  
110= Reserved  
10x= Reserved  
011= Reserved  
010= Timer3 compare ends sampling and starts conversion  
001= Active transition on the INT0 pin ends sampling and starts conversion  
000= Clearing the SAMP bit ends sampling and starts conversion  
bit 4-3  
bit 2  
Unimplemented: Read as ‘0’  
ASAM: A/D Sample Auto-Start bit  
1= Sampling begins immediately after the last conversion completes; SAMP bit is auto-set  
0= Sampling begins when the SAMP bit is set  
bit 1  
bit 0  
SAMP: A/D Sample Enable bit  
1= A/D Sample-and-Hold amplifier is sampling input  
0= A/D Sample-and-Hold amplifier is holding  
DONE: A/D Conversion Status bit  
1= A/D conversion is done  
0= A/D conversion is NOT done  
Note 1: The values of the ADC1BUFx registers will not retain their values once the ADON bit is cleared. Read out  
the conversion values from the buffer before disabling the module.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 181  
PIC24FJ128GA010 FAMILY  
REGISTER 21-2: AD1CON2: A/D CONTROL REGISTER 2  
R/W-0  
R/W-0  
R/W-0  
U-0  
r
U-0  
R/W-0  
U-0  
U-0  
VCFG2  
VCFG1  
VCFG0  
CSCNA  
bit 15  
bit 8  
R-0  
U-0  
R/W-0  
SMPI3  
R/W-0  
SMPI2  
R/W-0  
SMPI1  
R/W-0  
SMPI0  
R/W-0  
BUFM  
R/W-0  
ALTS  
BUFS  
bit 7  
bit 0  
Legend:  
r = Reserved bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-13  
VCFG<2:0>: Voltage Reference Configuration bits:  
VCFG<2:0>  
VR+  
VR-  
000  
001  
010  
011  
1xx  
AVDD  
External VREF+ pin  
AVDD  
AVSS  
AVSS  
External VREF- pin  
External VREF- pin  
AVSS  
External VREF+ pin  
AVDD  
bit 12  
bit 11  
bit 10  
Reserved  
Unimplemented: Read as ‘0’  
CSCNA: Scan Input Selections for CH0+ S/H Input for MUX A Input Multiplexor Setting bit  
1= Scan inputs  
0= Do not scan inputs  
bit 9-8  
bit 7  
Unimplemented: Read as ‘0’  
BUFS: Buffer Fill Status bit (valid only when BUFM = 1)  
1= A/D is currently filling Buffer 08-0F, user should access data in 00-07  
0= A/D is currently filling Buffer 00-07, user should access data in 08-0F  
bit 6  
Unimplemented: Read as ‘0’  
bit 5-2  
SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits  
1111 = Interrupts at the completion of conversion for each 16th sample/convert sequence  
1110 = Interrupts at the completion of conversion for each 15th sample/convert sequence  
.....  
0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence  
0000 = Interrupts at the completion of conversion for each sample/convert sequence  
bit 1  
bit 0  
BUFM: Buffer Mode Select bit  
1 = Buffer configured as two 8-word buffers (ADC1BUFx<15:8> and ADC1BUFx<7:0>)  
0 = Buffer configured as one 16-word buffer (ADC1BUFx<15:0>)  
ALTS: Alternate Input Sample Mode Select bit  
1= Uses MUX A input multiplexor settings for the first sample, then alternates between the MUX B and  
MUX A input multiplexor settings for all subsequent samples  
0= Always uses MUX A input multiplexor settings  
DS39747F-page 182  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 21-3: AD1CON3: A/D CONTROL REGISTER 3  
R/W-0  
ADRC  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
SAMC4  
SAMC3  
SAMC2  
SAMC1  
SAMC0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
ADCS7  
ADCS6  
ADCS5  
ADCS4  
ADCS3  
ADCS2  
ADCS1  
ADCS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
ADRC: A/D Conversion Clock Source bit  
1= A/D internal RC clock  
0= Clock is derived from the system clock  
bit 14-13  
bit 12-8  
Unimplemented: Read as ‘0’  
SAMC<4:0>: Auto-Sample Time bits  
11111= 31 TAD  
·····  
00001= 1 TAD  
00000= 0 TAD (not recommended)  
bit 7-0  
ADCS<7:0:> A/D Conversion Clock Select bits  
11111111  
····· = Reserved  
01000000  
00111111 = 64 * TCY  
·····  
00000001 = 2 * TCY  
00000000 = TCY  
2005-2012 Microchip Technology Inc.  
DS39747F-page 183  
PIC24FJ128GA010 FAMILY  
REGISTER 21-4: AD1CHS: A/D INPUT SELECT REGISTER  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH0NB  
CH0SB3  
CH0SB2  
CH0SB1  
CH0SB0  
bit 15  
bit 8  
R/W-0  
U-0  
U-0  
U-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CH0NA  
CH0SA3  
CH0SA2  
CH0SA1  
CH0SA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
-n = Value at POR  
bit 15  
CH0NB: Channel 0 Negative Input Select for MUX B Multiplexor Setting bit  
1= Channel 0 negative input is AN1  
0= Channel 0 negative input is VR-  
bit 14-12  
bit 11-8  
Unimplemented: Read as ‘0’  
CH0SB<3:0>: Channel 0 Positive Input Select for MUX B Multiplexor Setting bits  
1111= Channel 0 positive input is AN15  
1110= Channel 0 positive input is AN14  
·····  
0001= Channel 0 positive input is AN1  
0000= Channel 0 positive input is AN0  
bit 7  
CH0NA: Channel 0 Negative Input Select for MUX A Multiplexor Setting bit  
1= Channel 0 negative input is AN1  
0= Channel 0 negative input is VR-  
bit 6-4  
bit 3-0  
Unimplemented: Read as ‘0’  
CH0SA<3:0>: Channel 0 Positive Input Select for MUX A Multiplexor Setting bits  
1111= Channel 0 positive input is AN15  
1110= Channel 0 positive input is AN14  
·····  
0001= Channel 0 positive input is AN1  
0000= Channel 0 positive input is AN0  
DS39747F-page 184  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 21-5: AD1PCFG: A/D PORT CONFIGURATION REGISTER  
R/W-0  
PCFG15  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG14  
PCFG13  
PCFG12  
PCFG11  
PCFG10  
PCFG9  
PCFG8  
bit 8  
R/W-0  
PCFG7  
bit 7  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
PCFG6  
PCFG5  
PCFG4  
PCFG3  
PCFG2  
PCFG1  
PCFG0  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
PCFG<15:0>: Analog Input Pin Configuration Control bits  
1= Pin for corresponding analog channel is configured in Digital mode; I/O port read is enabled  
0= Pin configured in Analog mode; I/O port read is disabled, A/D samples pin voltage  
REGISTER 21-6: AD1CSSL: A/D INPUT SCAN SELECT REGISTER  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CSSL8  
bit 8  
CSSL15  
CSSL14  
CSSL13  
CSSL12  
CSSL11  
CSSL10  
CSSL9  
bit 15  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
CSSL7  
CSSL6  
CSSL5  
CSSL4  
CSSL3  
CSSL2  
CSSL1  
CSSL0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-0  
CSSL<15:0>: A/D Input Pin Scan Selection bits  
1= Corresponding analog channel is selected for input scan  
0= Analog channel is omitted from input scan  
2005-2012 Microchip Technology Inc.  
DS39747F-page 185  
PIC24FJ128GA010 FAMILY  
EQUATION 21-1: A/D CONVERSION CLOCK PERIOD(1)  
TAD = TCY(ADCS + 1)  
TAD  
– 1  
ADCS =  
TCY  
Note 1: Based on TCY = TOSC * 2; Doze mode and PLL are disabled.  
FIGURE 21-2:  
10-BIT A/D CONVERTER ANALOG INPUT MODEL  
VDD  
RIC 250  
Sampling  
RSS 5 k(Typical)  
Switch  
VT = 0.6V  
ANx  
RSS  
Rs  
CHOLD  
= DAC Capacitance  
= 4.4 pF (Typical)  
VA  
CPIN  
6-11 pF  
ILEAKAGE  
500 nA  
VT = 0.6V  
(Typical)  
VSS  
Legend: CPIN  
VT  
= Input Capacitance  
= Threshold Voltage  
ILEAKAGE = Leakage Current at the pin due to  
various junctions  
RIC  
= Interconnect Resistance  
RSS  
= Sampling Switch Resistance  
= Sample/Hold Capacitance (from DAC)  
CHOLD  
Note: CPIN value depends on the device package and is not tested. The effect of CPIN is negligible if Rs 5 k.  
DS39747F-page 186  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
FIGURE 21-3:  
A/D TRANSFER FUNCTION  
Output Code  
(Binary (Decimal))  
11 1111 1111(1023)  
11 1111 1110(1022)  
10 0000 0011(515)  
10 0000 0010(514)  
10 0000 0001(513)  
10 0000 0000(512)  
01 1111 1111(511)  
01 1111 1110(510)  
01 1111 1101(509)  
00 0000 0001(1)  
00 0000 0000(0)  
Voltage Level  
2005-2012 Microchip Technology Inc.  
DS39747F-page 187  
PIC24FJ128GA010 FAMILY  
NOTES:  
DS39747F-page 188  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
The analog comparator module contains two  
comparators that can be configured in a variety of  
22.0 COMPARATOR MODULE  
Note:  
This data sheet summarizes the features of  
ways. The inputs can be selected from the analog  
inputs, multiplexed with I/O pins, as well as the on-chip  
voltage reference. Block diagrams of the various  
comparator configurations are shown in Figure 22-1.  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. Refer to Section 19. “Comparator  
Module” (DS39710) in the “PIC24F Family  
Reference Manual” for more information.  
FIGURE 22-1:  
COMPARATOR I/O OPERATING MODES  
C1NEG  
CMCON<6>  
C1EN  
C1  
C1INV  
C1IN+  
C1IN-  
VIN-  
VIN+  
C1OUT  
C1POS  
C1IN+  
CVREF  
C1OUTEN  
C2NEG  
C2POS  
CMCON<7>  
C2EN  
C2  
C2INV  
C2IN+  
C2IN-  
VIN-  
VIN+  
C2OUT  
C2IN+  
CVREF  
C2OUTEN  
2005-2012 Microchip Technology Inc.  
DS39747F-page 189  
PIC24FJ128GA010 FAMILY  
REGISTER 22-1: CMCON: COMPARATOR CONTROL REGISTER  
R/W-0  
U-0  
R/C-0  
R/C-0  
R/W-0  
C2EN  
R/W-0  
C1EN  
R/W-0  
R/W-0  
CMIDL  
C2EVT  
C1EVT  
C2OUTEN  
C1OUTEN  
bit 15  
bit 8  
R-0  
R-0  
R/W-0  
C2INV  
R/W-0  
C1INV  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
C2OUT  
C1OUT  
C2NEG  
C2POS  
C1NEG  
C1POS  
bit 7  
bit 0  
Legend:  
C = Clearable bit  
W = Writable bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15  
CMIDL: Stop in Idle Mode bit  
1= When the device enters Idle mode, the module does not generate interrupts; module is still enabled  
0= Continues normal module operation in Idle mode  
bit 14  
bit 13  
Unimplemented: Read as ‘0’  
C2EVT: Comparator 2 Event bit  
1= Comparator output changed states  
0= Comparator output did not change states  
bit 12  
bit 11  
bit 10  
bit 9  
C1EVT: Comparator 1 Event bit  
1= Comparator output changed states  
0= Comparator output did not change states  
C2EN: Comparator 2 Enable bit  
1= Comparator is enabled  
0= Comparator is disabled  
C1EN: Comparator 1 Enable bit  
1= Comparator is enabled  
0= Comparator is disabled  
C2OUTEN: Comparator 2 Output Enable bit  
1= Comparator output is driven on the output pad  
0= Comparator output is not driven on the output pad  
bit 8  
C1OUTEN: Comparator 1 Output Enable bit  
1= Comparator output is driven on the output pad  
0= Comparator output is not driven on the output pad  
bit 7  
C2OUT: Comparator 2 Output bit  
When C2INV = 0:  
1= C2 VIN+ > C2 VIN-  
0= C2 VIN+ < C2 VIN-  
When C2INV = 1:  
0= C2 VIN+ > C2 VIN-  
1= C2 VIN+ < C2 VIN-  
bit 6  
C1OUT: Comparator 1 Output bit  
When C1INV = 0:  
1= C1 VIN+ > C1 VIN-  
0= C1 VIN+ < C1 VIN-  
When C1INV = 1:  
0= C1 VIN+ > C1 VIN-  
1= C1 VIN+ < C1 VIN-  
DS39747F-page 190  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 22-1: CMCON: COMPARATOR CONTROL REGISTER (CONTINUED)  
bit 5  
bit 4  
bit 3  
C2INV: Comparator 2 Output Inversion bit  
1= C2 output is inverted  
0= C2 output is not inverted  
C1INV: Comparator 1 Output Inversion bit  
1= C1 output is inverted  
0= C1 output is not inverted  
C2NEG: Comparator 2 Negative Input Configure bit  
1= C2IN+ is connected to VIN-  
0= C2IN- is connected to VIN-  
See Figure 22-1 for the Comparator modes.  
bit 2  
bit 1  
bit 0  
C2POS: Comparator 2 Positive Input Configure bit  
1= C2IN+ is connected to VIN+  
0= CVREF is connected to VIN+  
See Figure 22-1 for the Comparator modes.  
C1NEG: Comparator 1 Negative Input Configure bit  
1= C1IN+ is connected to VIN-  
0= C1IN- is connected to VIN-  
See Figure 22-1 for the Comparator modes.  
C1POS: Comparator 1 Positive Input Configure bit  
1= C1IN is connected to VIN+  
0= CVREF is connected to VIN+  
See Figure 22-1 for the Comparator modes.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 191  
PIC24FJ128GA010 FAMILY  
NOTES:  
DS39747F-page 192  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
voltage, each with 16 distinct levels. The range to be  
used is selected by the CVRR bit (CVRCON<5>). The  
primary difference between the ranges is the size of the  
steps selected by the CVREF Selection bits  
23.0 COMPARATOR VOLTAGE  
REFERENCE  
Note:  
This data sheet summarizes features of  
(CVR<3:0>), with one range offering finer resolution.  
PIC24F group of devices and is not  
intended to be a comprehensive reference  
source. Refer to Section 20. “Comparator  
Voltage Reference Module” (DS39709)  
in the “PIC24F Family Reference Manual”  
for more information.  
The comparator reference supply voltage can come  
from either VDD and VSS, or the external VREF+ and  
VREF-. The voltage source is selected by the CVRSS  
bit (CVRCON<4>).  
The settling time of the comparator voltage reference  
must be considered when changing the CVREF  
output.  
23.1 Configuring the Comparator  
Voltage Reference  
CVRR: Comparator VREF Range Selection bit 1 = 0  
to 0.625 CVRSRC, with CVRSRC/24 step size.  
The voltage reference module is controlled through the  
CVRCON register (Register 23-1). The comparator  
voltage reference provides two ranges of output  
0 = 0.25 CVRSRC to 0.72 CVRSRC, with CVRSRC/32  
step size  
FIGURE 23-1:  
COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM  
CVRSS = 1  
VREF+  
AVDD  
8R  
CVRSS = 0  
CVR<3:0>  
R
CVREN  
R
R
R
16 Steps  
CVREF  
R
R
R
CVRR  
VREF-  
8R  
CVRSS = 1  
CVRSS = 0  
AVSS  
2005-2012 Microchip Technology Inc.  
DS39747F-page 193  
PIC24FJ128GA010 FAMILY  
REGISTER 23-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 15  
bit 8  
R/W-0  
R/W-0  
R/W-0  
CVRR  
R/W-0  
R/W-0  
CVR3  
R/W-0  
CVR2  
R/W-0  
CVR1  
R/W-0  
CVR0  
CVREN  
CVROE  
CVRSS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
-n = Value at POR  
W = Writable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 15-8  
bit 7  
Unimplemented: Read as ‘0’  
CVREN: Comparator Voltage Reference Enable bit  
1= CVREF circuit is powered on  
0= CVREF circuit is powered down  
bit 6  
CVROE: Comparator VREF Output Enable bit  
1= CVREF voltage level is output on the CVREF pin  
0= CVREF voltage level is disconnected from the CVREF pin  
bit 5  
CVRR: Comparator VREF Range Selection bit  
1= 0 to 0.625 CVRSRC, with CVRSRC/24 step size  
0= 0.25 CVRSRC to 0.72 CVRSRC, with CVRSRC/32 step size  
bit 4  
CVRSS: Comparator VREF Source Selection bit  
1= Comparator reference source: CVRSRC = VREF+ – VREF-  
0= Comparator reference source: CVRSRC = AVDD – AVSS  
bit 3-0  
CVR<3:0>: Comparator VREF Value Selection 0 CVR<3:0> 15 bits  
When CVRR = 1:  
CVREF = (CVR<3:0>/ 24) (CVRSRC)  
When CVRR = 0:  
CVREF = 1/4 (CVRSRC) + (CVR<3:0>/32) (CVRSRC)  
DS39747F-page 194  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
24.1.1  
CONSIDERATIONS FOR  
CONFIGURING PIC24FJ128GA010  
FAMILY DEVICES  
24.0 SPECIAL FEATURES  
Note:  
This data sheet summarizes the features  
of this group of PIC24F devices. It is not  
intended to be a comprehensive refer-  
ence source. Refer to Section 32.  
In PIC24FJ128GA010 family devices, the configuration  
bytes are implemented as volatile memory. This means  
that configuration data must be programmed each time  
the device is powered up. Configuration data is stored  
in the two words at the top of the on-chip program  
memory space, known as the Flash Configuration  
Words. Their specific locations are shown in  
Table 24-1. These are packed representations of the  
actual device Configuration bits, whose actual  
locations are distributed among five locations in config-  
uration space. The configuration data is automatically  
loaded from the Flash Configuration Words to the  
proper Configuration registers during device Resets.  
“High-Level  
Device  
Integration”  
(DS39719) in the “PIC24F Family  
Reference Manual” for more information.  
PIC24FJ128GA010 devices include several features  
intended to maximize application flexibility and reliabil-  
ity, and minimize cost through elimination of external  
components. These are:  
• Flexible Configuration  
• Watchdog Timer (WDT)  
• Code Protection  
Note:  
Configuration data is reloaded on all types  
of device Resets.  
• JTAG Boundary Scan Interface  
• In-Circuit Serial Programming™ (ICSP™)  
• In-Circuit Emulation  
TABLE 24-1: FLASH CONFIGURATION  
WORD LOCATIONS  
24.1 Configuration Bits  
Configuration Word  
The Configuration bits can be programmed (read as  
0’) or left unprogrammed (read as ‘1’) to select various  
device configurations. These bits are mapped, starting  
at program memory location, F80000h. A complete list  
is shown in Table 24-1. A detailed explanation of the  
various bit functions is provided in Register 24-1  
through Register 24-4.  
Addresses  
Device  
1
2
PIC24FJ64GA  
PIC24FJ96GA  
PIC24FJ128GA  
00ABFEh  
00FFFEh  
0157FEh  
00ABFCh  
00FFFCh  
0157FCh  
Note that address, F80000h, is beyond the user program  
memory space. In fact, it belongs to the configuration  
memory space (800000h-FFFFFFh), which can only be  
accessed using table reads and table writes.  
When creating applications for these devices, users  
should always specifically allocate the location of the  
Flash Configuration Word for configuration data. This is  
to make certain that program code is not stored in this  
address when the code is compiled.  
The Configuration bits are reloaded from the Flash  
Configuration Word on any device Reset.  
The upper byte of both Flash Configuration Words in  
program memory should always be ‘1111 1111’. This  
makes them appear to be NOP instructions in the  
remote event that their locations are ever executed by  
accident. Since Configuration bits are not implemented  
in the corresponding locations, writing ‘1’s to these  
locations has no effect on device operation.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 195  
PIC24FJ128GA010 FAMILY  
REGISTER 24-1: FLASH CONFIGURATION WORD 1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
bit 23  
bit 16  
r-x  
r
R/PO-1  
JTAGEN(1)  
R/PO-1  
GCP  
R/PO-1  
GWRP  
R/PO-1  
DEBUG  
r-1  
r
U-1  
R/PO-1  
ICS  
bit 15  
bit 8  
R/PO-1  
FWDTEN  
bit 7  
R/PO-1  
WINDIS  
U-1  
R/PO-1  
FWPSA  
R/PO-1  
R/PO-1  
R/PO-1  
R/PO-1  
WDTPS3  
WDTPS2  
WDTPS1  
WDTPS0  
bit 0  
Legend:  
x = Bit is unknown  
r = Reserved  
R = Readable bit  
PO = Program Once bit  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared  
-n = Value when device is unprogrammed  
bit 23-16  
bit 15  
Unimplemented: Read as ‘1’  
Reserved: Program as ‘0’. Read value is unknown.  
JTAGEN: JTAG Port Enable bit(1)  
bit 14  
1= JTAG port is enabled  
0= JTAG port is disabled  
bit 13  
bit 12  
bit 11  
GCP: General Segment Program Memory Code Protection bit  
1= Code protection is disabled  
0= Code protection is enabled for the entire program memory space  
GWRP: General Segment Code Flash Write Protection bit  
1= Writes to program memory are allowed  
0= Writes to program memory are disabled  
DEBUG: Background Debugger Enable bit  
1= Device resets into Operational mode  
0= Device resets into Debug mode  
bit 10  
bit 9  
bit 8  
Reserved: Program as ‘1’  
Unimplemented: Read as ‘1’  
ICS: Emulator Pin Placement Select bit  
1= Emulator/debugger uses EMUC2/EMUD2  
0= Emulator/debugger uses EMUC1/EMUD1  
bit 7  
bit 6  
FWDTEN: Watchdog Timer Enable bit  
1= Watchdog Timer is enabled  
0= Watchdog Timer is disabled  
WINDIS: Windowed Watchdog Timer Disable bit  
1= Standard Watchdog Timer is enabled  
0= Windowed Watchdog Timer is enabled; FWDTEN must be ‘1’  
bit 5  
bit 4  
Unimplemented: Read as ‘1’  
FWPSA: WDT Prescaler Ratio Select bit  
1= Prescaler ratio of 1:128  
0= Prescaler ratio of 1:32  
Note 1: JTAGEN bit can not be modified using JTAG programming. It can only change using In-Circuit Serial  
Programming™ (ICSP™).  
DS39747F-page 196  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 24-1: FLASH CONFIGURATION WORD 1 (CONTINUED)  
bit 3-0 WDTPS<3:0>: Watchdog Timer Postscaler Select bits  
1111= 1:32,768  
1110= 1:16,384  
1101= 1:8,192  
1100= 1:4,096  
1011= 1:2,048  
1010= 1:1,024  
1001= 1:512  
1000= 1:256  
0111= 1:128  
0110= 1:64  
0101= 1:32  
0100= 1:16  
0011= 1:8  
0010= 1:4  
0001= 1:2  
0000= 1:1  
Note 1: JTAGEN bit can not be modified using JTAG programming. It can only change using In-Circuit Serial  
Programming™ (ICSP™).  
2005-2012 Microchip Technology Inc.  
DS39747F-page 197  
PIC24FJ128GA010 FAMILY  
REGISTER 24-2: FLASH CONFIGURATION WORD 2  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
bit 23  
bit 16  
R/PO-1  
IESO  
U-1  
U-1  
U-1  
U-1  
R/PO-1  
R/PO-1  
R/PO-1  
FNOSC2  
FNOSC1  
FNOSC0  
bit 15  
bit 8  
R/PO-1  
FCKSM1  
bit 7  
R/PO-1  
R/PO-1  
U-1  
U-1  
U-1  
R/PO-1  
R/PO-1  
POSCMD0  
bit 0  
FCKSM0  
OSCIOFCN  
POSCMD1  
Legend:  
x = Bit is unknown  
R = Readable bit  
PO = Program Once bit  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set ‘0’ = Bit is cleared  
-n = Value when device is unprogrammed  
bit 23-16 Unimplemented: Read as ‘1’  
bit 15  
IESO: Internal External Switchover bit  
1= IESO mode (Two-Speed Start-up) is enabled  
0= IESO mode (Two-Speed Start-up) is disabled  
bit 14-11 Unimplemented: Read as ‘1’  
bit 10-8  
FNOSC<2:0>: Initial Oscillator Select bits  
111= Fast RC Oscillator with Postscaler (FRCDIV)  
110= Reserved  
101= Low-Power RC Oscillator (LPRC)  
100= Secondary Oscillator (SOSC)  
011= Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)  
010= Primary Oscillator (XT, HS, EC)  
001= Fast RC Oscillator with postscaler and PLL module (FRCPLL)  
000= Fast RC Oscillator (FRC)  
bit 7-6  
bit 5  
FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Configuration bits  
1x= Clock switching and Fail-Safe Clock Monitor are disabled  
01= Clock switching is enabled, Fail-Safe Clock Monitor is disabled  
00= Clock switching is enabled, Fail-Safe Clock Monitor is enabled  
OSCIOFCN: OSC2 Pin Configuration bit  
If POSCMD<1:0> = 11 or 00:  
1= OSC2/CLKO/RC15 functions as CLKO (FOSC/2)  
0= OSC2/CLKO/RC15 functions as port I/O (RC15)  
If POSCMD<1:0> = 10 or 01:  
OSCIOFCN has no effect on OSC2/CLKO/RC15.  
bit 4-2  
bit 1-0  
Unimplemented: Read as ‘1’  
POSCMD<1:0>: Primary Oscillator Configuration bits  
11= Primary oscillator is disabled  
10= HS Oscillator mode is selected  
01= XT Oscillator mode is selected  
00= EC Oscillator mode is selected  
DS39747F-page 198  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
REGISTER 24-3: DEVID: DEVICE ID REGISTER  
U
U
U
U
U
U
U
U
bit 23  
bit 16  
U
U
R
R
R
R
R
R
FAMID7  
FAMID6  
FAMID5  
FAMID4  
FAMID3  
FAMID2  
bit 8  
bit 15  
R
R
R
R
R
R
R
R
FAMID1  
FAMID0  
DEV5  
DEV4  
DEV3  
DEV2  
DEV1  
DEV0  
bit 7  
bit 0  
Legend:  
x = Bit is unknown  
PO = Program Once bit  
‘1’ = Bit is set  
R = Readable bit  
-n = Value at POR  
U = Unimplemented bit, read as ‘1’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 23-14  
bit 13-6  
Unimplemented: Read as ‘0’  
FAMID<7:0>: Device Family Identifier bits  
00010000= PIC24FJ128GA010 family  
DEV<5:0>: Individual Device Identifier bits  
bit 5-0  
000101= PIC24FJ64GA006  
000110= PIC24FJ96GA006  
000111= PIC24FJ128GA006  
001000= PIC24FJ64GA008  
001001= PIC24FJ96GA008  
001010= PIC24FJ128GA008  
001011= PIC24FJ64GA010  
001100= PIC24FJ96GA010  
001101= PIC24FJ128GA010  
2005-2012 Microchip Technology Inc.  
DS39747F-page 199  
PIC24FJ128GA010 FAMILY  
REGISTER 24-4: DEVREV: DEVICE REVISION REGISTER  
U
U
U
U
U
U
U
U
bit 23  
bit 16  
R-0  
r
R-0  
r
R-1  
r
R-1  
r
U
U
U
R
MAJRV2  
bit 8  
bit 15  
R
R
U
U
U
R
R
R
MAJRV1  
MAJRV0  
DOT2  
DOT1  
DOT0  
bit 7  
bit 0  
Legend:  
x = Bit is unknown  
r = Reserved  
R = Readable bit  
-n = Value at POR  
PO = Program Once bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘1’  
‘0’ = Bit is cleared x = Bit is unknown  
bit 23-16  
bit 15-12  
bit 11-9  
bit 8-6  
Unimplemented: Read as ‘0’  
Reserved: Read as ‘0011’  
Unimplemented: Read as ‘0’  
MAJRV<2:0>: Major Revision Identifier bits  
Unimplemented: Read as ‘0’  
bit 5-3  
bit 2-0  
DOT<2:0>: Minor Revision Identifier bits  
DS39747F-page 200  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
FIGURE 24-1:  
CONNECTIONS FOR THE  
ON-CHIP REGULATOR  
24.2 On-Chip Voltage Regulator  
All of the PIC24FJ128GA010 family devices power  
their core digital logic at a nominal 2.5V. This may  
create an issue for designs that are required to operate  
at a higher typical voltage, such as 3.3V. To simplify  
system design, all devices in the PIC24FJ128GA010  
family incorporate an on-chip regulator that allows the  
device to run its core logic from VDD.  
Regulator Enabled (ENVREG tied to VDD):  
3.3V  
PIC24FJ128GA010  
VDD  
ENVREG  
The regulator is controlled by the ENVREG pin. Tying  
VDD to the pin enables the regulator, which in turn,  
provides power to the core from the other VDD pins.  
When the regulator is enabled, a low-ESR capacitor  
(such as tantalum) must be connected to the  
VDDCORE/VCAP pin (Figure 24-1). This helps to main-  
tain the stability of the regulator. The recommended  
value for the filter capacitor, CEFC, is provided in  
Section 27.1 “DC Characteristics”.  
VDDCORE/VCAP  
VSS  
CEFC  
(10 F typ)  
Regulator Disabled (ENVREG tied to ground):  
(1)  
(1)  
2.5V  
3.3V  
If ENVREG is tied to VSS, the regulator is disabled. In  
this case, separate power for the core logic, at a nomi-  
nal 2.5V, must be supplied to the device on the  
VDDCORE/VCAP pin to run the I/O pins at higher voltage  
levels, typically 3.3V. Alternatively, the VDDCORE/VCAP  
and VDD pins can be tied together to operate at a lower  
nominal voltage. Refer to Figure 24-1 for possible  
configurations.  
PIC24FJ128GA010  
VDD  
ENVREG  
VDDCORE/VCAP  
VSS  
24.2.1  
ON-CHIP REGULATOR AND POR  
When the voltage regulator is enabled, it takes approxi-  
mately 20 s for it to generate output. During this time,  
designated as TSTARTUP, code execution is disabled.  
TSTARTUP is applied every time the device resumes  
operation after any power-down, including Sleep mode.  
Regulator Disabled (VDD tied to VDDCORE):  
(1)  
2.5V  
PIC24FJ128GA010  
VDD  
If the regulator is disabled, a separate Power-up Timer  
(PWRT) is automatically enabled. The PWRT adds a  
fixed delay of 64 ms nominal delay at device start-up.  
ENVREG  
VDDCORE/VCAP  
VSS  
24.2.2  
When  
ON-CHIP REGULATOR AND BOR  
the on-chip regulator is enabled,  
simple  
PIC24FJ128GA010 devices also have  
a
brown-out capability. If the voltage supplied to the reg-  
ulator is inadequate to maintain a regulated level, the  
regulator Reset circuitry will generate a Brown-out  
Reset. This event is captured by the BOR flag bit  
(RCON<0>). The brown-out voltage specifications can  
be found in the “PIC24F Family Reference Manual” in  
Section 7. “Reset” (DS39712).  
Note 1: These are typical operating voltages. Refer  
to Section 27.1 “DC Characteristics” for  
the full operating ranges of VDD and  
VDDCORE.  
24.2.3  
POWER-UP REQUIREMENTS  
The on-chip regulator is designed to meet the power-up  
requirements for the device. If the application does not  
use the regulator, then strict power-up conditions must  
be adhered to. While powering up, VDDCORE must  
never exceed VDD by 0.3 volts.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 201  
PIC24FJ128GA010 FAMILY  
• When the device exits Sleep or Idle mode to  
resume normal operation  
24.3 Watchdog Timer (WDT)  
Note:  
This data sheet summarizes the features of  
• By a CLRWDTinstruction during normal execution  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. Refer to Section 9. “Watchdog  
Timer (WDT)” (DS39697) in the “PIC24F  
Family Reference Manual” for more  
information.  
If the WDT is enabled, it will continue to run during  
Sleep or Idle modes. When the WDT time-out occurs,  
the device will wake-up and code execution will con-  
tinue from where the PWRSAVinstruction was executed.  
The corresponding SLEEP or IDLE bits (RCON<3:2>)  
will need to be cleared in software after the device  
wakes up.  
For PIC24FJ128GA010 family devices, the WDT is  
driven by the LPRC oscillator. When the WDT is  
enabled, the clock source is also enabled.  
The WDT Flag bit, WDTO (RCON<4>), is not auto-  
matically cleared following a WDT time-out. To detect  
subsequent WDT events, the flag must be cleared in  
software.  
The nominal WDT clock source from LPRC is 32 kHz.  
This feeds a prescaler that can be configured for either  
5-bit (divide-by-32) or 7-bit (divide-by-128) operation.  
The prescaler is set by the FWPSA Configuration bit.  
With a 32 kHz input, the prescaler yields a nominal  
WDT time-out period (TWDT) of 1 ms in 5-bit mode or  
4 ms in 7-bit mode.  
Note:  
The CLRWDT and PWRSAV instructions  
clear the prescaler and postscaler counts  
when executed.  
24.3.1  
CONTROL REGISTER  
A variable postscaler divides down the WDT prescaler  
output and allows for a wide range of time-out periods.  
The postscaler is controlled by the WDTPS<3:0> Con-  
figuration bits (Flash Configuration Word 1<3:0>),  
which allow the selection of a total of 16 settings, from  
1:1 to 1:32,768. Using the prescaler and postscaler,  
time-out periods, ranging from 1 ms to 131 seconds,  
can be achieved.  
The WDT is enabled or disabled by the FWDTEN  
Configuration bit. When the FWDTEN Configuration bit  
is set, the WDT is always enabled.  
The WDT can be optionally controlled in software when  
the FWDTEN Configuration bit has been programmed  
to ‘0’. The WDT is enabled in software by setting the  
SWDTEN control bit (RCON<5>). The SWDTEN con-  
trol bit is cleared on any device Reset. The software  
WDT option allows the user to enable the WDT for crit-  
ical code segments and disables the WDT during  
non-critical segments for maximum power savings.  
The WDT, prescaler and postscaler are reset:  
• On any device Reset  
• On the completion of a clock switch, whether  
invoked by software (i.e., setting the OSWEN bit  
after changing the NOSC bits) or by hardware  
(i.e., Fail-Safe Clock Monitor)  
• When a PWRSAVinstruction is executed (i.e.,  
Sleep or Idle mode is entered)  
FIGURE 24-2:  
WATCHDOG TIMER (WDT) BLOCK DIAGRAM  
SWDTEN  
FWDTEN  
LPRC Control  
Wake from Sleep  
FWPSA  
WDTPS<3:0>  
Prescaler  
(5-bit/7-bit)  
WDT  
Counter  
Postscaler  
WDT Overflow  
1:1 to 1:32.768  
LPRC Input  
Reset  
32 kHz  
1 ms/4 ms  
All Device Resets  
Transition to  
New Clock Source  
Exit Sleep or  
Idle Mode  
CLRWDTInstr.  
PWRSAVInstr.  
Sleep or Idle Mode  
DS39747F-page 202  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
24.4 JTAG Interface  
24.6  
In-Circuit Serial Programming  
Note:  
This data sheet summarizes the features of  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. Refer to Section 33. “Program-  
ming and Diagnostics” (DS39716) in the  
“PIC24F Family Reference Manual” for  
more information.  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. Refer to Section 33. “Program-  
ming and Diagnostics” (DS39716) in the  
“PIC24F Family Reference Manual” for  
more information.  
PIC24FJ128GA010 family devices implement a JTAG  
interface, which supports boundary scan device testing  
as well as In-Circuit Serial Programming™ (ICSP™).  
PIC24FJ128GA010 family microcontrollers can be  
serially programmed while in the end application circuit.  
This is simply done with two lines for clock (PGCx) and  
data (PGDx), and three other lines for power, ground  
and the programming voltage. This allows customers to  
manufacture boards with unprogrammed devices and  
then program the microcontroller just before shipping  
the product. This also allows the most recent firmware  
or a custom firmware to be programmed.  
Refer to the Microchip web site (www.microchip.com)  
for JTAG support files and additional information.  
24.5 Program Verification and  
Code Protection  
Note:  
This data sheet summarizes the features of  
this group of PIC24F devices. It is not  
intended to be a comprehensive reference  
source. Refer to Section 33. “Program-  
ming and Diagnostics” (DS39716) in the  
“PIC24F Family Reference Manual” for  
more information.  
24.7 In-Circuit Debugger  
When MPLAB® ICD 2 is selected as a debugger, the  
In-Circuit Debugging functionality is enabled. This  
function allows simple debugging functions when used  
with MPLAB IDE. Debugging functionality is controlled  
through the EMUCx (Emulation/Debug Clock) and  
EMUDx (Emulation/Debug Data) pins.  
For all devices in the PIC24FJ128GA010 family, the  
on-chip program memory space is treated as a single  
block. Code protection for this block is controlled by  
one Configuration bit, GCP (Flash Configuration  
Word 1<13>. This bit inhibits external reads and writes  
to the program memory space. It has no direct effect in  
normal execution mode.  
To use the In-Circuit Debugger function of the device, the  
design must implement ICSP connections to MCLR,  
VDD, VSS, PGCx, PGDx and the EMUDx/EMUCx pin  
pair. In addition, when the feature is enabled, some of the  
resources are not available for general use. These  
resources include the first 80 bytes of data RAM and two  
I/O pins.  
Write protection is controlled by the GWRP bit (Flash  
Configuration Word 1<12>. When GWRP is pro-  
grammed to ‘0’, internal write and erase operations to  
the program memory are blocked.  
24.5.1  
CONFIGURATION REGISTER  
PROTECTION  
The Configuration registers are protected against  
inadvertent or unwanted changes, or reads in two  
ways. The primary protection method is the same as  
that of the shadow registers, which contain a compli-  
mentary value that is constantly compared with the  
actual value. To safeguard against unpredictable  
events, Configuration bit changes resulting from indi-  
vidual cell level disruptions (such as ESD events) will  
cause a parity error and trigger a device Configuration  
Word Mismatch Reset.  
The data for the Configuration registers is derived from  
the Flash Configuration Words in program memory. As  
a consequence, when the GCP bit is set, the source  
data for the device configuration is also protected.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 203  
PIC24FJ128GA010 FAMILY  
NOTES:  
DS39747F-page 204  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
The literal instructions that involve data movement may  
use some of the following operands:  
25.0 INSTRUCTION SET SUMMARY  
The PIC24F instruction set adds many enhancements  
to the previous PIC® MCU instruction sets, while main-  
taining an easy migration from previous PIC MCU  
instruction sets. Most instructions are a single program  
memory word. Only three instructions require two  
program memory locations.  
• A literal value to be loaded into a W register or file  
register (specified by the value of ‘k’)  
• The W register or file register where the literal  
value is to be loaded (specified by ‘Wb’ or ‘f’)  
However, literal instructions that involve arithmetic or  
logical operations use some of the following operands:  
Each single-word instruction is a 24-bit word divided  
into an 8-bit opcode, which specifies the instruction  
type and one or more operands, which further specify  
the operation of the instruction. The instruction set is  
highly orthogonal and is grouped into four basic  
categories:  
• The first source operand which is a register, ‘Wb’,  
without any address modifier  
• The second source operand which is a literal  
value  
• The destination of the result (only if not the same  
as the first source operand) which is typically a  
register, ‘Wd’, with or without an address modifier  
• Word or byte-oriented operations  
• Bit-oriented operations  
• Literal operations  
The control instructions may use some of the following  
operands:  
• Control operations  
• A program memory address  
Table 25-1 shows the general symbols used in  
describing the instructions. The PIC24F instruction set  
summary in Table 25-2 lists all the instructions, along  
with the status flags affected by each instruction.  
• The mode of the table read and table write  
instructions  
All instructions are a single word, except for certain  
double-word instructions, which were made double-  
word instructions so that all of the required information  
is available in these 48 bits. In the second word, the  
8 MSbs are ‘0’s. If this second word is executed as an  
instruction (by itself), it will execute as a NOP.  
Most word or byte-oriented W register instructions  
(including barrel shift instructions) have three  
operands:  
• The first source operand which is typically a  
register ‘Wb’ without any address modifier  
Most single-word instructions are executed in a single  
instruction cycle, unless a conditional test is true or the  
Program Counter (PC) is changed as a result of the  
instruction. In these cases, the execution takes two  
instruction cycles, with the additional instruction  
cycle(s) executed as a NOP. Notable exceptions are the  
BRA (unconditional/computed branch), indirect CALL/  
GOTO, all table reads and writes, and RETURN/RETFIE  
instructions, which are single-word instructions but take  
two or three cycles.  
• The second source operand which is typically a  
register ‘Ws’ with or without an address modifier  
• The destination of the result which is typically a  
register ‘Wd’ with or without an address modifier  
However, word or byte-oriented file register instructions  
have two operands:  
• The file register specified by the value, ‘f’  
• The destination, which could either be the file  
register ‘f’ or the W0 register, which is denoted as  
‘WREG’  
Certain instructions that involve skipping over the sub-  
sequent instruction require either two or three cycles if  
the skip is performed, depending on whether the  
instruction being skipped is a single-word or two-word  
instruction. Moreover, double-word moves require two  
cycles. The double-word instructions execute in two  
instruction cycles.  
Most bit-oriented instructions (including simple rotate/  
shift instructions) have two operands:  
• The W register (with or without an address  
modifier) or file register (specified by the value of  
‘Ws’ or ‘f’)  
• The bit in the W register or file register  
(specified by a literal value or indirectly by the  
contents of register, ‘Wb’)  
2005-2012 Microchip Technology Inc.  
DS39747F-page 205  
PIC24FJ128GA010 FAMILY  
TABLE 25-1: SYMBOLS USED IN OPCODE DESCRIPTIONS  
Field  
Description  
#text  
(text)  
[text]  
{ }  
Means literal defined by “text”  
Means “content of text”  
Means “the location addressed by text”  
Optional field or operation  
<n:m>  
.b  
Register bit field  
Byte mode selection  
.d  
Double-Word mode selection  
.S  
Shadow register select  
.w  
Word mode selection (default)  
bit4  
4-bit bit selection field (used in word addressed instructions) {0...15}  
MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero  
Absolute address, label or expression (resolved by the linker)  
File register address {0000h...1FFFh}  
1-bit unsigned literal {0,1}  
C, DC, N, OV, Z  
Expr  
f
lit1  
lit4  
4-bit unsigned literal {0...15}  
lit5  
5-bit unsigned literal {0...31}  
lit8  
8-bit unsigned literal {0...255}  
lit10  
lit14  
lit16  
lit23  
None  
PC  
10-bit unsigned literal {0...255} for Byte mode, {0:1023} for Word mode  
14-bit unsigned literal {0...16384}  
16-bit unsigned literal {0...65535}  
23-bit unsigned literal {0...8388608}; LSB must be ‘0’  
Field does not require an entry, may be blank  
Program Counter  
Slit10  
Slit16  
Slit6  
Wb  
10-bit signed literal {-512...511}  
16-bit signed literal {-32768...32767}  
6-bit signed literal {-16...16}  
Base W register {W0..W15}  
Wd  
Destination W register { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }  
Wdo  
Destination W register   
{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }  
Wm,Wn  
Wn  
Dividend, Divisor working register pair (Direct Addressing)  
One of 16 working registers {W0..W15}  
Wnd  
Wns  
One of 16 destination working registers {W0..W15}  
One of 16 source working registers {W0..W15}  
W0 (working register used in file register instructions)  
Source W register { Ws, [Ws], [Ws++], [Ws--], [++Ws], [--Ws] }  
WREG  
Ws  
Wso  
Source W register   
{ Wns, [Wns], [Wns++], [Wns--], [++Wns], [--Wns], [Wns+Wb] }  
DS39747F-page 206  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
TABLE 25-2: INSTRUCTION SET OVERVIEW  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
ADD  
ADDC  
AND  
ASR  
ADD  
ADD  
ADD  
ADD  
ADD  
ADDC  
ADDC  
ADDC  
ADDC  
ADDC  
AND  
AND  
AND  
AND  
AND  
ASR  
ASR  
ASR  
ASR  
ASR  
BCLR  
BCLR  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BRA  
BSET  
BSET  
BSW.C  
BSW.Z  
BTG  
BTG  
BTSC  
f
f = f + WREG  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
N, Z  
f,WREG  
WREG = f + WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
Wd = lit10 + Wd  
1
Wd = Wb + Ws  
1
Wd = Wb + lit5  
1
f = f + WREG + (C)  
1
f,WREG  
WREG = f + WREG + (C)  
Wd = lit10 + Wd + (C)  
Wd = Wb + Ws + (C)  
Wd = Wb + lit5 + (C)  
f = f .AND. WREG  
1
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
1
1
1
f,WREG  
WREG = f .AND. WREG  
Wd = lit10 .AND. Wd  
Wd = Wb .AND. Ws  
1
N, Z  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
1
N, Z  
1
N, Z  
Wd = Wb .AND. lit5  
1
N, Z  
f = Arithmetic Right Shift f  
WREG = Arithmetic Right Shift f  
Wd = Arithmetic Right Shift Ws  
Wnd = Arithmetic Right Shift Wb by Wns  
Wnd = Arithmetic Right Shift Wb by lit5  
Bit Clear f  
1
C, N, OV, Z  
C, N, OV, Z  
C, N, OV, Z  
N, Z  
f,WREG  
1
Ws,Wd  
1
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,#bit4  
Ws,#bit4  
C,Expr  
1
1
N, Z  
BCLR  
BRA  
1
None  
Bit Clear Ws  
1
None  
Branch if Carry  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
1 (2)  
2
None  
GE,Expr  
GEU,Expr  
GT,Expr  
GTU,Expr  
LE,Expr  
LEU,Expr  
LT,Expr  
LTU,Expr  
N,Expr  
Branch if Greater than or Equal  
Branch if Unsigned Greater than or Equal  
Branch if Greater than  
Branch if Unsigned Greater than  
Branch if Less than or Equal  
Branch if Unsigned Less than or Equal  
Branch if Less than  
None  
None  
None  
None  
None  
None  
None  
Branch if Unsigned Less than  
Branch if Negative  
None  
None  
NC,Expr  
NN,Expr  
NOV,Expr  
NZ,Expr  
OV,Expr  
Expr  
Branch if Not Carry  
None  
Branch if Not Negative  
Branch if Not Overflow  
Branch if Not Zero  
None  
None  
None  
Branch if Overflow  
None  
Branch Unconditionally  
Branch if Zero  
None  
Z,Expr  
1 (2)  
2
None  
Wn  
Computed Branch  
None  
BSET  
BSW  
f,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Set f  
1
None  
Bit Set Ws  
1
None  
Write C bit to Ws<Wb>  
Write Z bit to Ws<Wb>  
Bit Toggle f  
1
None  
Ws,Wb  
1
None  
BTG  
f,#bit4  
Ws,#bit4  
f,#bit4  
1
None  
Bit Toggle Ws  
1
None  
BTSC  
Bit Test f, Skip if Clear  
1
None  
(2 or 3)  
BTSC  
Ws,#bit4  
Bit Test Ws, Skip if Clear  
1
1
None  
(2 or 3)  
2005-2012 Microchip Technology Inc.  
DS39747F-page 207  
PIC24FJ128GA010 FAMILY  
TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
f,#bit4  
Description  
Bit Test f, Skip if Set  
Words Cycles  
BTSS  
BTSS  
BTSS  
1
1
1
None  
(2 or 3)  
Ws,#bit4  
Bit Test Ws, Skip if Set  
1
None  
(2 or 3)  
BTST  
BTST  
f,#bit4  
Ws,#bit4  
Ws,#bit4  
Ws,Wb  
Bit Test f  
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
Z
BTST.C  
BTST.Z  
BTST.C  
BTST.Z  
BTSTS  
Bit Test Ws to C  
C
Bit Test Ws to Z  
Z
Bit Test Ws<Wb> to C  
Bit Test Ws<Wb> to Z  
Bit Test then Set f  
Bit Test Ws to C, then Set  
Bit Test Ws to Z, then Set  
Call Subroutine  
C
Ws,Wb  
Z
BTSTS  
f,#bit4  
Z
BTSTS.C Ws,#bit4  
BTSTS.Z Ws,#bit4  
C
Z
CALL  
CLR  
CALL  
CALL  
CLR  
lit23  
Wn  
None  
Call Indirect Subroutine  
f = 0x0000  
None  
f
None  
CLR  
WREG  
Ws  
WREG = 0x0000  
Ws = 0x0000  
None  
CLR  
None  
CLRWDT  
COM  
CLRWDT  
Clear Watchdog Timer  
WDTO, Sleep  
COM  
COM  
COM  
CP  
f
f = f  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
N, Z  
f,WREG  
Ws,Wd  
f
WREG = f  
N, Z  
Wd = Ws  
N, Z  
CP  
Compare f with WREG  
Compare Wb with lit5  
Compare Wb with Ws (Wb – Ws)  
Compare f with 0x0000  
Compare Ws with 0x0000  
Compare f with WREG, with Borrow  
Compare Wb with lit5, with Borrow  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
CP  
Wb,#lit5  
Wb,Ws  
f
CP  
CP0  
CPB  
CP0  
CP0  
CPB  
CPB  
CPB  
Ws  
f
Wb,#lit5  
Wb,Ws  
Compare Wb with Ws, with Borrow  
(Wb – Ws – C)  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
CPSEQ  
CPSGT  
CPSLT  
CPSNE  
Wb,Wn  
Wb,Wn  
Wb,Wn  
Wb,Wn  
Compare Wb with Wn, Skip if =  
Compare Wb with Wn, Skip if >  
Compare Wb with Wn, Skip if <  
Compare Wb with Wn, Skip if   
1
1
1
1
1
None  
None  
None  
None  
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
1
(2 or 3)  
DAW  
DEC  
DAW.B  
DEC  
Wn  
Wn = Decimal Adjust Wn  
f = f –1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C
f
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
None  
DEC  
f,WREG  
Ws,Wd  
f
WREG = f –1  
1
DEC  
Wd = Ws – 1  
1
DEC2  
DEC2  
f = f – 2  
1
DEC2  
f,WREG  
Ws,Wd  
#lit14  
Wm,Wn  
Wm,Wn  
Wm,Wn  
Wm,Wn  
Wns,Wnd  
Ws,Wnd  
Ws,Wnd  
WREG = f – 2  
1
DEC2  
Wd = Ws – 2  
1
DISI  
DIV  
DISI  
Disable Interrupts for k Instruction Cycles  
Signed 16/16-Bit Integer Divide  
Signed 32/16-Bit Integer Divide  
Unsigned 16/16-Bit Integer Divide  
Unsigned 32/16-Bit Integer Divide  
Swap Wns with Wnd  
1
DIV.SW  
DIV.SD  
DIV.UW  
DIV.UD  
EXCH  
18  
18  
18  
18  
1
N, Z, C, OV  
N, Z, C, OV  
N, Z, C, OV  
N, Z, C, OV  
None  
EXCH  
FF1L  
FF1R  
FF1L  
Find First One from Left (MSb) Side  
Find First One from Right (LSb) Side  
1
C
FF1R  
1
C
DS39747F-page 208  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
GOTO  
GOTO  
GOTO  
INC  
Expr  
Go to Address  
Go to Indirect  
f = f + 1  
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
None  
Wn  
None  
INC  
f
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
N, Z  
INC  
f,WREG  
WREG = f + 1  
Wd = Ws + 1  
f = f + 2  
INC  
Ws,Wd  
INC2  
IOR  
INC2  
INC2  
INC2  
IOR  
f
f,WREG  
WREG = f + 2  
Wd = Ws + 2  
f = f .IOR. WREG  
Ws,Wd  
f
IOR  
f,WREG  
WREG = f .IOR. WREG  
N, Z  
IOR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
#lit14  
Wd = lit10 .IOR. Wd  
N, Z  
IOR  
Wd = Wb .IOR. Ws  
N, Z  
IOR  
Wd = Wb .IOR. lit5  
N, Z  
LNK  
LSR  
LNK  
Link Frame Pointer  
None  
LSR  
f
f = Logical Right Shift f  
C, N, OV, Z  
C, N, OV, Z  
C, N, OV, Z  
N, Z  
LSR  
f,WREG  
WREG = Logical Right Shift f  
Wd = Logical Right Shift Ws  
Wnd = Logical Right Shift Wb by Wns  
Wnd = Logical Right Shift Wb by lit5  
Move f to Wn  
LSR  
Ws,Wd  
LSR  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f,Wn  
LSR  
N, Z  
MOV  
MOV  
None  
MOV  
[Wns+Slit10],Wnd  
f
Move [Wns+Slit10] to Wnd  
Move f to f  
None  
MOV  
N, Z  
MOV  
f,WREG  
Move f to WREG  
N, Z  
MOV  
#lit16,Wn  
#lit8,Wn  
Wn,f  
Move 16-Bit Literal to Wn  
None  
MOV.b  
MOV  
Move 8-Bit Literal to Wn  
None  
Move Wn to f  
None  
MOV  
Wns,[Wns+Slit10]  
Wso,Wdo  
WREG,f  
Move Wns to [Wns+Slit10]  
Move Ws to Wd  
MOV  
None  
N, Z  
MOV  
Move WREG to f  
MOV.D  
MOV.D  
MUL.SS  
MUL.SU  
MUL.US  
MUL.UU  
MUL.SU  
MUL.UU  
MUL  
Wns,Wd  
Move Double from W(ns):W(ns+1) to Wd  
Move Double from Ws to W(nd+1):W(nd)  
{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)  
{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)  
{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)  
{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)  
{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)  
{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)  
W3:W2 = f * WREG  
None  
None  
None  
None  
None  
None  
None  
None  
None  
Ws,Wnd  
MUL  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,Ws,Wnd  
Wb,#lit5,Wnd  
Wb,#lit5,Wnd  
f
NEG  
NEG  
f
f = f + 1  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
2
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
None  
NEG  
f,WREG  
Ws,Wd  
WREG = f + 1  
NEG  
Wd = Ws + 1  
NOP  
POP  
NOP  
No Operation  
NOPR  
POP  
No Operation  
None  
f
Pop f from Top-of-Stack (TOS)  
Pop from Top-of-Stack (TOS) to Wdo  
Pop from Top-of-Stack (TOS) to W(nd):W(nd+1)  
Pop Shadow Registers  
Push f to Top-of-Stack (TOS)  
Push Wso to Top-of-Stack (TOS)  
Push W(ns):W(ns+1) to Top-of-Stack (TOS)  
Push Shadow Registers  
None  
POP  
Wdo  
Wnd  
None  
POP.D  
POP.S  
PUSH  
PUSH  
PUSH.D  
PUSH.S  
None  
All  
PUSH  
f
None  
Wso  
Wns  
None  
None  
None  
2005-2012 Microchip Technology Inc.  
DS39747F-page 209  
PIC24FJ128GA010 FAMILY  
TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
PWRSAV  
RCALL  
PWRSAV  
RCALL  
RCALL  
REPEAT  
REPEAT  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
#lit1  
Expr  
Wn  
Go into Sleep or Idle mode  
Relative Call  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
WDTO, Sleep  
None  
Computed Call  
2
None  
REPEAT  
#lit14  
Wn  
Repeat Next Instruction lit14 + 1 times  
Repeat Next Instruction (Wn) + 1 times  
Software Device Reset  
Return from Interrupt  
1
None  
1
None  
RESET  
RETFIE  
RETLW  
RETURN  
RLC  
1
None  
3 (2)  
3 (2)  
3 (2)  
1
None  
#lit10,Wn  
Return with Literal in Wn  
Return from Subroutine  
f = Rotate Left through Carry f  
WREG = Rotate Left through Carry f  
Wd = Rotate Left through Carry Ws  
f = Rotate Left (No Carry) f  
WREG = Rotate Left (No Carry) f  
Wd = Rotate Left (No Carry) Ws  
f = Rotate Right through Carry f  
WREG = Rotate Right through Carry f  
Wd = Rotate Right through Carry Ws  
f = Rotate Right (No Carry) f  
WREG = Rotate Right (No Carry) f  
Wd = Rotate Right (No Carry) Ws  
Wnd = Sign-Extended Ws  
f = FFFFh  
None  
None  
f
C, N, Z  
RLC  
f,WREG  
Ws,Wd  
f
1
C, N, Z  
RLC  
1
C, N, Z  
RLNC  
RRC  
RLNC  
RLNC  
RLNC  
RRC  
1
N, Z  
f,WREG  
Ws,Wd  
f
1
N, Z  
1
N, Z  
1
C, N, Z  
RRC  
f,WREG  
Ws,Wd  
f
1
C, N, Z  
RRC  
1
C, N, Z  
RRNC  
RRNC  
RRNC  
RRNC  
SE  
1
N, Z  
f,WREG  
Ws,Wd  
Ws,Wnd  
f
1
N, Z  
1
N, Z  
SE  
1
C, N, Z  
SETM  
SETM  
SETM  
SETM  
SL  
1
None  
WREG  
WREG = FFFFh  
1
None  
Ws  
Ws = FFFFh  
1
None  
SL  
f
f = Left Shift f  
1
C, N, OV, Z  
C, N, OV, Z  
C, N, OV, Z  
N, Z  
SL  
f,WREG  
Ws,Wd  
Wb,Wns,Wnd  
Wb,#lit5,Wnd  
f
WREG = Left Shift f  
1
SL  
Wd = Left Shift Ws  
1
SL  
Wnd = Left Shift Wb by Wns  
Wnd = Left Shift Wb by lit5  
f = f – WREG  
1
SL  
1
N, Z  
SUB  
SUB  
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
SUB  
f,WREG  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
WREG = f – WREG  
1
SUB  
Wn = Wn – lit10  
1
SUB  
Wd = Wb – Ws  
1
SUB  
Wd = Wb – lit5  
1
SUBB  
SUBB  
SUBB  
f = f – WREG – (C)  
1
f,WREG  
WREG = f – WREG – (C)  
1
SUBB  
SUBB  
SUBB  
SUBR  
SUBR  
SUBR  
SUBR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
f
Wn = Wn – lit10 – (C)  
Wd = Wb – Ws – (C)  
Wd = Wb – lit5 – (C)  
f = WREG – f  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
C, DC, N, OV, Z  
SUBR  
f,WREG  
WREG = WREG – f  
Wd = Ws – Wb  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wd = lit5 – Wb  
SUBBR  
SUBBR  
SUBBR  
f
f = WREG – f – (C)  
1
1
1
1
C, DC, N, OV, Z  
C, DC, N, OV, Z  
f,WREG  
WREG = WREG – f – (C)  
SUBBR  
SUBBR  
SWAP.b  
SWAP  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Wn  
Wd = Ws – Wb – (C)  
1
1
1
1
1
1
1
1
1
2
C, DC, N, OV, Z  
C, DC, N, OV, Z  
None  
Wd = lit5 – Wb – (C)  
SWAP  
Wn = Nibble Swap Wn  
Wn = Byte Swap Wn  
Wn  
None  
TBLRDH  
TBLRDH  
Ws,Wd  
Read Prog<23:16> to Wd<7:0>  
None  
DS39747F-page 210  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
TABLE 25-2: INSTRUCTION SET OVERVIEW (CONTINUED)  
Assembly  
Mnemonic  
# of  
# of  
Status Flags  
Affected  
Assembly Syntax  
Description  
Words Cycles  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
TBLRDL  
TBLWTH  
TBLWTL  
ULNK  
XOR  
Ws,Wd  
Ws,Wd  
Ws,Wd  
Read Prog<15:0> to Wd  
1
1
1
1
1
1
1
1
1
1
2
2
2
1
1
1
1
1
1
1
None  
Write Ws<7:0> to Prog<23:16>  
Write Ws to Prog<15:0>  
Unlink Frame Pointer  
f = f .XOR. WREG  
None  
None  
None  
N, Z  
XOR  
f
XOR  
f,WREG  
WREG = f .XOR. WREG  
Wd = lit10 .XOR. Wd  
Wd = Wb .XOR. Ws  
N, Z  
XOR  
#lit10,Wn  
Wb,Ws,Wd  
Wb,#lit5,Wd  
Ws,Wnd  
N, Z  
XOR  
N, Z  
XOR  
Wd = Wb .XOR. lit5  
N, Z  
ZE  
ZE  
Wnd = Zero-Extend Ws  
C, Z, N  
2005-2012 Microchip Technology Inc.  
DS39747F-page 211  
PIC24FJ128GA010 FAMILY  
NOTES:  
DS39747F-page 212  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
26.1 MPLAB Integrated Development  
Environment Software  
26.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers and dsPIC® digital signal  
controllers are supported with a full range of software  
and hardware development tools:  
The MPLAB IDE software brings an ease of software  
development previously unseen in the 8/16/32-bit  
microcontroller market. The MPLAB IDE is a Windows®  
operating system-based application that contains:  
• Integrated Development Environment  
- MPLAB® IDE Software  
• A single graphical interface to all debugging tools  
- Simulator  
• Compilers/Assemblers/Linkers  
- MPLAB C Compiler for Various Device  
Families  
- Programmer (sold separately)  
- HI-TECH C® for Various Device Families  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- In-Circuit Emulator (sold separately)  
- In-Circuit Debugger (sold separately)  
• A full-featured editor with color-coded context  
• A multiple project manager  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
• Customizable data windows with direct edit of  
contents  
• Simulators  
• High-level source code debugging  
• Mouse over variable inspection  
- MPLAB SIM Software Simulator  
• Emulators  
• Drag and drop variables from source to watch  
windows  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers  
• Extensive on-line help  
• Integration of select third party tools, such as  
IAR C Compilers  
- MPLAB ICD 3  
- PICkit™ 3 Debug Express  
• Device Programmers  
- PICkit™ 2 Programmer  
- MPLAB PM3 Device Programmer  
The MPLAB IDE allows you to:  
• Edit your source files (either C or assembly)  
• One-touch compile or assemble, and download to  
emulator and simulator tools (automatically  
updates all project information)  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits, and Starter Kits  
• Debug using:  
- Source files (C or assembly)  
- Mixed C and assembly  
- Machine code  
MPLAB IDE supports multiple debugging tools in a  
single development paradigm, from the cost-effective  
simulators, through low-cost in-circuit debuggers, to  
full-featured emulators. This eliminates the learning  
curve when upgrading to tools with increased flexibility  
and power.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 213  
PIC24FJ128GA010 FAMILY  
26.2 MPLAB C Compilers for Various  
Device Families  
26.5 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC18,  
PIC24 and PIC32 families of microcontrollers and the  
dsPIC30 and dsPIC33 families of digital signal control-  
lers. These compilers provide powerful integration  
capabilities, superior code optimization and ease of  
use.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler and the  
MPLAB C18 C Compiler. It can link relocatable objects  
from precompiled libraries, using directives from a  
linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
26.3 HI-TECH C for Various Device  
Families  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
The HI-TECH C Compiler code development systems  
are complete ANSI C compilers for Microchip’s PIC  
family of microcontrollers and the dsPIC family of digital  
signal controllers. These compilers provide powerful  
integration capabilities, omniscient code generation  
and ease of use.  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
26.6 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
For easy source level debugging, the compilers provide  
symbol information that is optimized to the MPLAB IDE  
debugger.  
The compilers include a macro assembler, linker, pre-  
processor, and one-step driver, and can run on multiple  
platforms.  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC devices. MPLAB C Compiler uses  
the assembler to produce its object file. The assembler  
generates relocatable object files that can then be  
archived or linked with other relocatable object files and  
archives to create an executable file. Notable features  
of the assembler include:  
26.4 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code and COFF files for  
debugging.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command line interface  
• Rich directive set  
• Flexible macro language  
The MPASM Assembler features include:  
• Integration into MPLAB IDE projects  
• MPLAB IDE compatibility  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multi-purpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS39747F-page 214  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
26.7 MPLAB SIM Software Simulator  
26.9 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC® DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
MPLAB ICD 3 In-Circuit Debugger System is Micro-  
chip's most cost effective high-speed hardware  
debugger/programmer for Microchip Flash Digital Sig-  
nal Controller (DSC) and microcontroller (MCU)  
devices. It debugs and programs PIC® Flash microcon-  
trollers and dsPIC® DSCs with the powerful, yet easy-  
to-use graphical user interface of MPLAB Integrated  
Development Environment (IDE).  
The MPLAB ICD 3 In-Circuit Debugger probe is con-  
nected to the design engineer’s PC using a high-speed  
USB 2.0 interface and is connected to the target with a  
connector compatible with the MPLAB ICD 2 or MPLAB  
REAL ICE systems (RJ-11). MPLAB ICD 3 supports all  
MPLAB ICD 2 headers.  
The MPLAB SIM Software Simulator fully supports  
symbolic debugging using the MPLAB C Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
26.10 PICkit 3 In-Circuit Debugger/  
Programmer and  
26.8 MPLAB REAL ICE In-Circuit  
Emulator System  
PICkit 3 Debug Express  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC® and dsPIC® Flash microcontrollers at a  
most affordable price point using the powerful graphical  
user interface of the MPLAB Integrated Development  
Environment (IDE). The MPLAB PICkit 3 is connected  
to the design engineer's PC using a full speed USB  
interface and can be connected to the target via an  
Microchip debug (RJ-11) connector (compatible with  
MPLAB ICD 3 and MPLAB REAL ICE). The connector  
uses two device I/O pins and the reset line to imple-  
ment in-circuit debugging and In-Circuit Serial  
Programming™.  
MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs PIC® Flash MCUs and dsPIC® Flash DSCs  
with the easy-to-use, powerful graphical user interface of  
the MPLAB Integrated Development Environment (IDE),  
included with each kit.  
The emulator is connected to the design engineer’s PC  
using a high-speed USB 2.0 interface and is connected  
to the target with either a connector compatible with in-  
circuit debugger systems (RJ11) or with the new high-  
speed, noise tolerant, Low-Voltage Differential Signal  
(LVDS) interconnection (CAT5).  
The PICkit 3 Debug Express include the PICkit 3, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
The emulator is field upgradable through future firmware  
downloads in MPLAB IDE. In upcoming releases of  
MPLAB IDE, new devices will be supported, and new  
features will be added. MPLAB REAL ICE offers  
significant advantages over competitive emulators  
including low-cost, full-speed emulation, run-time  
variable watches, trace analysis, complex breakpoints, a  
ruggedized probe interface and long (up to three meters)  
interconnection cables.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 215  
PIC24FJ128GA010 FAMILY  
26.11 PICkit 2 Development  
Programmer/Debugger and  
PICkit 2 Debug Express  
26.13 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
The PICkit™ 2 Development Programmer/Debugger is  
a low-cost development tool with an easy to use inter-  
face for programming and debugging Microchip’s Flash  
families of microcontrollers. The full featured  
Windows® programming interface supports baseline  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully func-  
tional systems. Most boards include prototyping areas for  
adding custom circuitry and provide application firmware  
and source code for examination and modification.  
(PIC10F,  
PIC12F5xx,  
PIC16F5xx),  
midrange  
(PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30,  
dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit  
microcontrollers, and many Microchip Serial EEPROM  
products. With Microchip’s powerful MPLAB Integrated  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
Development Environment (IDE) the PICkit™  
2
enables in-circuit debugging on most PIC® microcon-  
trollers. In-Circuit-Debugging runs, halts and single  
steps the program while the PIC microcontroller is  
embedded in the application. When halted at a break-  
point, the file registers can be examined and modified.  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™ demon-  
stration/development board series of circuits, Microchip  
has a line of evaluation kits and demonstration software  
The PICkit 2 Debug Express include the PICkit 2, demo  
board and microcontroller, hookup cables and CDROM  
with user’s guide, lessons, tutorial, compiler and  
MPLAB IDE software.  
®
for analog filter design, KEELOQ security ICs, CAN,  
IrDA®, PowerSmart battery management, SEEVAL®  
evaluation system, Sigma-Delta A/D, flow rate sensing,  
plus many more.  
26.12 MPLAB PM3 Device Programmer  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages and a modu-  
lar, detachable socket assembly to support various  
package types. The ICSP™ cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices and incorporates an MMC card for file  
storage and data applications.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS39747F-page 216  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
27.0 ELECTRICAL CHARACTERISTICS  
This section provides an overview of the PIC24FJ128GA010 electrical characteristics. Additional information will be  
provided in future revisions of this document as it becomes available.  
Absolute maximum ratings for the PIC24FJ128GA010 are listed below. Exposure to these maximum rating conditions  
for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions  
above the parameters indicated in the operation listings of this specification, is not implied.  
(†)  
Absolute Maximum Ratings  
Ambient temperature under bias...............................................................................................................-40°C to +85°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on VDD with respect to VSS ......................................................................................................... -0.3V to +4.0V  
Voltage on any combined analog and digital pin and MCLR, with respect to VSS ......................... -0.3V to (VDD + 0.3V)  
Voltage on any digital only pin with respect to VSS .................................................................................. -0.3V to +6.0V  
Voltage on VDDCORE with respect to VSS ................................................................................................. -0.3V to +2.8V  
Maximum current out of VSS pin ...........................................................................................................................300 mA  
Maximum current into VDD pin (Note 1)................................................................................................................250 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sunk by any I/O pin..........................................................................................................25 mA  
Maximum output current sourced by any I/O pin ....................................................................................................25 mA  
Maximum current sunk by all ports .......................................................................................................................200 mA  
Maximum current sourced by all ports (Note 1)....................................................................................................200 mA  
Note 1: Maximum allowable current is a function of device maximum power dissipation (see Table 27-2).  
†NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those, or any other conditions above those  
indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
FIGURE 27-1:  
FREQUENCY/VOLTAGE GRAPH  
3.00V  
2.75V  
2.50V  
2.75V  
2.25V  
2.00V  
16 MHz  
32 MHz  
Frequency  
Note 1: When the voltage regulator is disabled, VDD and VDDCORE must be maintained so that VDDCORE VDD 3.6V.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 217  
PIC24FJ128GA010 FAMILY  
27.1 DC Characteristics  
TABLE 27-1: OPERATING MIPS vs. VOLTAGE  
Max MIPS  
PIC24FJ128GA010 Family  
16  
VDD Range  
(in Volts)  
Temp Range  
(in °C)  
2.0-3.6V  
-40°C to +85°C  
TABLE 27-2: THERMAL OPERATING CONDITIONS  
Rating  
Symbol  
Min  
Typ  
Max  
Unit  
PIC24FJ128GA010 Family:  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
TJ  
TA  
-40  
-40  
+125  
+85  
°C  
°C  
Power Dissipation:  
Internal Chip Power Dissipation:  
PINT = VDD x (IDD IOH)  
PD  
PINT + PI/O  
W
W
I/O Pin Power Dissipation:  
PI/O = ({VDD VOH} x IOH) + (VOL x IOL)  
Maximum Allowed Power Dissipation  
PDMAX  
(TJ TA)/JA  
TABLE 27-3: THERMAL PACKAGING CHARACTERISTICS  
Characteristic  
Symbol  
Typ  
Max  
Unit  
Notes  
JA  
JA  
JA  
Package Thermal Resistance, 14x14x1 mm TQFP  
Package Thermal Resistance, 12x12x1 mm TQFP  
Package Thermal Resistance, 10x10x1 mm TQFP  
50  
°C/W (Note 1)  
°C/W (Note 1)  
°C/W (Note 1)  
69.4  
76.6  
Note 1: Junction to ambient thermal resistance, Theta-JA (JA) numbers are achieved by package simulations.  
TABLE 27-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
DC CHARACTERISTICS  
Operating temperature  
-40°C TA +85°C for Industrial  
Param  
No.  
Sym  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
Operating Voltage  
DC10 Supply Voltage  
VDD  
VBOR  
VDDCORE  
2.0  
3.6  
3.6  
2.75  
V
V
V
V
Regulator is enabled  
Regulator is disabled  
Regulator is disabled  
VDD  
VDDCORE  
DC12 VDR  
RAM Data Retention  
Voltage(2)  
1.5  
DC16 VPOR  
VDD Start Voltage  
to Ensure Internal  
Power-on Reset Signal  
0.05  
1.9  
VSS  
V
DC17 SVDD  
DC18 VBOR  
VDD Rise Rate  
to Ensure Internal  
Power-on Reset Signal  
V/ms 0-3.3V in 0.1s  
0-2.5V in 60 ms  
Brown-out Reset  
Voltage(3)  
2.2  
2.5  
V
Regulator must be enabled  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: This is the limit to which VDD can be lowered without losing RAM data.  
3: Device will operate normally until Brown-out reset occurs even though VDD may be below VDDMIN.  
DS39747F-page 218  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
TABLE 27-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Parameter  
Typical(1)  
No.  
Max  
Units  
Conditions  
Operating Current (IDD)(2)  
DC20  
1.6  
1.6  
1.6  
1.6  
1.6  
1.6  
6.0  
6.0  
6.0  
6.0  
6.0  
6.0  
20  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
12  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
A  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
DC20a  
DC20b  
DC20d  
DC20e  
DC20f  
DC23  
2.5V(3)  
3.6V(4)  
2.5V(3)  
3.6V(4)  
2.5V(3)  
3.6V(4)  
2.5V(3)  
3.6V(4)  
1 MIPS  
DC23a  
DC23b  
DC23d  
DC23e  
DC23f  
DC24  
12  
12  
4 MIPS  
12  
12  
12  
32  
DC24a  
DC24b  
DC24d  
DC24e  
DC24f  
DC31  
20  
32  
20  
32  
16 MIPS  
20  
32  
20  
32  
20  
32  
70  
150  
200  
400  
150  
200  
400  
DC31a  
DC31b  
DC31d  
DC31e  
DC31f  
100  
200  
70  
A  
A  
LPRC (31 kHz)  
A  
100  
200  
A  
A  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have  
an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1  
driven with external square wave from rail-to-rail. All I/O pins are configured as inputs and pulled to VDD.  
MCLR = VDD; WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are  
operational. No peripheral modules are operating and PMD bits are set.  
3: On-chip voltage regulator is disabled (ENVREG tied to VSS).  
4: On-chip voltage regulator is enabled (ENVREG tied to VDD).  
2005-2012 Microchip Technology Inc.  
DS39747F-page 219  
PIC24FJ128GA010 FAMILY  
TABLE 27-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Parameter  
Typical(1)  
No.  
Max  
Units  
Conditions  
Idle Current (IIDLE): Core Off, Clock On Base Current(2)  
DC40  
0.7  
0.7  
0.7  
0.7  
0.7  
0.7  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
6.8  
6.8  
6.8  
6.8  
6.8  
6.8  
70  
2
2
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
A  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
DC40a  
DC40b  
DC40d  
DC40e  
DC40f  
DC43  
2.5V(3)  
3.6V(4)  
2.5V(3)  
3.6V(4)  
2.5V(3)  
3.6V(4)  
2.5V(3)  
3.6V(4)  
2
1 MIPS  
2
2
2
4
DC43a  
DC43b  
DC43d  
DC43e  
DC43f  
DC47  
4
4
4 MIPS  
4
4
4
8
DC47a  
DC47b  
DC47c  
DC47d  
DC47e  
DC51  
8
8
16 MIPS  
8
8
8
150  
200  
400  
150  
200  
400  
DC51a  
DC51b  
DC51d  
DC51e  
DC51f  
100  
150  
70  
A  
A  
LPRC (31 kHz)  
A  
100  
150  
A  
A  
Note 1: Data in “Typical” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
2: Base IIDLE current is measured with core off, clock on, PMD bits set and all modules turned off.  
3: On-chip voltage regulator is disabled (ENVREG tied to VSS).  
4: On-chip voltage regulator is enabled (ENVREG tied to VDD).  
DS39747F-page 220  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
TABLE 27-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Parameter  
Typical(1)  
No.  
Max  
Units  
Conditions  
Power-Down Current (IPD)(2)  
DC60  
3
3
25  
45  
A  
A  
A  
A  
A  
A  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
DC60a  
DC60b  
DC60f  
DC60g  
DC60h  
2.0V(3)  
3.6V(4)  
100  
20  
27  
120  
600  
40  
Base Power-Down Current(5)  
60  
600  
Module Differential Current  
DC61  
10  
10  
10  
10  
10  
10  
8
25  
25  
25  
25  
25  
25  
15  
15  
15  
15  
15  
15  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
-40°C  
+25°C  
+85°C  
DC61a  
DC61b  
DC61f  
DC61g  
DC61h  
DC62  
2.0V(3)  
3.6V(4)  
2.0V(3)  
3.6V(4)  
(5)  
Watchdog Timer Current: IWDT  
DC62a  
DC62b  
DC62f  
DC62g  
DC62h  
8
8
RTCC + Timer1 w/32 kHz Crystal:  
(5)  
IRTCC  
8
8
8
Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance  
only and are not tested.  
2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and  
pulled high. WDT, etc., are all switched off. Unused PMD bits are set. VREGS bit is clear.  
3: On-chip voltage regulator is disabled (ENVREG tied to VSS).  
4: On-chip voltage regulator is enabled (ENVREG tied to VDD).  
5: The current is the additional current consumed when the module is enabled. This current should be  
added to the base IPD current.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 221  
PIC24FJ128GA010 FAMILY  
TABLE 27-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
VIL  
Input Low Voltage(4)  
I/O Pins with ST Buffer  
I/O Pins with TTL Buffer  
MCLR  
DI10  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
0.2 VDD  
0.15 VDD  
0.2 VDD  
0.2 VDD  
0.2 VDD  
0.3 VDD  
0.8  
V
V
V
V
V
V
V
DI11  
DI15  
DI16  
DI17  
DI18  
DI19  
OSC1 (XT mode)  
OSC1 (HS mode)  
I/O Pins with I2C™ Buffer  
I/O Pins with SMBus Buffer  
Input High Voltage(4)  
SMBus enabled  
VIH  
DI20  
DI21  
I/O Pins with ST Buffer:  
with Analog Functions  
Digital Only  
0.8 VDD  
0.8 VDD  
VDD  
5.5  
V
V
I/O Pins with TTL Buffer:  
with Analog Functions,  
Digital Only  
0.25 VDD + 0.8  
0.25 VDD + 0.8  
VDD  
5.5  
V
V
DI25  
DI26  
DI27  
DI28  
MCLR  
0.8 VDD  
0.7 VDD  
0.7 VDD  
VDD  
VDD  
VDD  
V
V
V
OSC1 (XT mode)  
OSC1 (HS mode)  
I/O Pins with I2C Buffer:  
with Analog Functions  
Digital Only  
0.7 VDD  
0.7 VDD  
VDD  
5.5  
V
V
DI29  
I/O Pins with SMBus Buffer:  
with Analog Functions  
Digital Only  
2.1  
2.1  
VDD  
5.5  
V
V
2.5V VPIN VDD  
VDD = 3.3V, VPIN = VSS  
VDD = 2.0V  
DI30  
DI31  
ICNPU CNxx Pull-up Current  
50  
250  
400  
30  
A  
A  
A  
IPU  
Maximum Load Current  
for Digital High Detection  
w/Internal Pull-up  
100  
VDD = 3.3V  
IIL  
Input Leakage Current(2,3)  
DI50  
DI51  
I/O Ports:  
with Analog Functions  
Digital Only  
Pin at high-impedance  
VSS VPIN VDD  
VSS VPIN 5.5V  
50  
50  
1000  
1000  
nA  
nA  
Analog Input Pins  
50  
1000  
nA  
VSS VPIN VDD,  
Pin at high-impedance  
DI55  
DI56  
MCLR  
OSC1  
50  
50  
1000  
1000  
nA  
nA  
VSS VPIN VDD  
VSS VPIN VDD,  
XT and HS modes  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified  
levels represent normal operating conditions. Higher leakage current may be measured at different input  
voltages.  
3: Negative current is defined as current sourced by the pin.  
4: Refer to Table 1-2 for I/O pins buffer types.  
DS39747F-page 222  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
TABLE 27-9: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ(1) Max  
Units  
Conditions  
VOL  
Output Low Voltage  
DO10  
DO16  
I/O Ports  
0.4  
0.4  
0.4  
0.4  
V
V
V
V
IOL = 8.5 mA, VDD = 3.6V  
IOL = 6.0 mA, VDD = 2.0V  
IOL = 8.5 mA, VDD = 3.6V  
IOL = 6.0 mA, VDD = 2.0V  
OSC2/CLKO  
VOH  
Output High Voltage  
DO20  
I/O Ports  
3.0  
2.4  
1.65  
1.4  
2.4  
1.4  
V
V
V
V
V
V
IOH = -3.0 mA, VDD = 3.6V  
IOH = -6.0 mA, VDD = 3.6V  
IOH = -1.0 mA, VDD = 2.0V  
IOH = -3.0 mA, VDD = 2.0V  
IOH = -6.0 mA, VDD = 3.6V  
IOH = -3.0 mA, VDD = 2.0V  
DO26  
OSC2/CLKO  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 223  
PIC24FJ128GA010 FAMILY  
TABLE 27-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS  
Standard Operating Conditions: 3.0V to 3.6V  
(unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Param. Symbol  
Characteristic  
Min.  
Typ(1)  
Max.  
Units  
Conditions  
IICL  
IICH  
Input Low Injection Current  
Input High Injection Current  
DI60a  
DI60b  
All pins except VDD, VSS,  
AVDD, AVSS, MCLR, VCAP,  
RB11, SOSCI, SOSCO, D+,  
D-, VUSB and VBUS  
0
-5(2,5)  
mA  
All pins except VDD, VSS,  
AVDD, AVSS, MCLR, VCAP,  
0
+5(3,4,5) mA RB11, SOSCI, SOSCO, D+,  
D-, VUSB and VBUS, and all  
5V tolerant pins(4)  
IICT  
Total Input Injection Current  
DI60c  
(sum of all I/O and control  
pins)  
-20(6)  
+20(6)  
mA Absolute instantaneous sum  
of all ± input injection cur-  
rents from all I/O pins  
( | IICL + | IICH | ) IICT  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
2: Characterized but not tested.  
3: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not  
tested.  
4: Digital 5V tolerant pins cannot tolerate any “positive” input injection current from input sources > 5.5V.  
5: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.  
6: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted  
provided the mathematical “absolute instantaneous” sum of the input injection currents from all pins do not  
exceed the specified limit. Characterized but not tested.  
DS39747F-page 224  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
TABLE 27-11: DC CHARACTERISTICS: PROGRAM MEMORY  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
DC CHARACTERISTICS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
Program Flash Memory  
Cell Endurance  
D130  
D131  
EP  
VPR  
100  
1K  
E/W -40C to +85C  
VDD for Read  
VMIN  
3.6  
V
VMIN = Minimum operating  
voltage  
D132B VPEW VDD for Self-Timed  
Erase/Write  
2.25  
3.6  
V
D133A TIW  
Self-Timed Write Cycle Time  
3
ms  
D134  
TRETD Characteristic Retention  
20  
Year Provided no other specifications  
are violated  
D135  
IDDP  
Supply Current During  
Programming  
10  
mA  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
TABLE 27-12: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS  
Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)  
Param  
No.  
Sym  
Characteristics  
Min Typ Max Units  
Comments  
VRGOUT Regulator Output Voltage  
External Filter Capacitor Value  
2.5  
10  
V
CEFC  
4.7  
F Series resistance < 3 Ohm recommended;  
< 5 Ohm required.  
TVREG Voltage Regulator Start-up Time  
TPWRT Power-up Timer Period  
500  
64  
1
s ENVREG = VDD  
ms ENVREG = VSS  
ms  
TBG  
Band Gap Reference Start-up Time  
2005-2012 Microchip Technology Inc.  
DS39747F-page 225  
PIC24FJ128GA010 FAMILY  
TABLE 27-13: COMPARATOR SPECIFICATIONS  
Operating Conditions: 2.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Comments  
D300  
D301  
D302  
VIOFF  
VICM  
Input Offset Voltage*  
0
10  
30  
VDD  
mV  
V
Input Common Mode Voltage*  
CMRR  
Common Mode Rejection  
Ratio*  
55  
dB  
300  
301  
TRESP  
Response Time*(1)  
150  
400  
10  
ns  
TMC2OV Comparator Mode Change to  
Output Valid*  
s  
*
Parameters are characterized but not tested.  
Note 1: Response time is measured with one comparator input at (VDD – 1.5)/2, while the other input transitions  
from VSS to VDD.  
TABLE 27-14: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS  
Operating Conditions: 2.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)  
Param  
No.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Comments  
VRD310 CVRES  
VRD311 CVRAA  
VRD312 CVRUR  
Resolution  
VDD/24  
2k  
VDD/32  
AVDD – 1.5  
LSb  
LSb  
Absolute Accuracy  
Unit Resistor Value (R)  
Settling Time(1)  
VR310  
TSET  
10  
s  
Note 1: Settling time measured while CVRR = 1and CVR<3:0> bits transition from ‘0000’ to ‘1111’.  
DS39747F-page 226  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
27.2 AC Characteristics and Timing Parameters  
The information contained in this section defines the PIC24FJ128GA010 AC characteristics and timing parameters.  
TABLE 27-15: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
AC CHARACTERISTICS  
Operating temperature -40°C TA +85°C for Industrial  
Operating voltage VDD range as described in Section 27.1 “DC Characteristics”.  
FIGURE 27-2:  
LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS  
Load Condition 1 – for all pins except OSC2  
VDD/2  
Load Condition 2 – for OSC2  
CL  
Pin  
RL  
VSS  
CL  
Pin  
RL = 464  
CL = 50 pF for all pins except OSC2  
15 pF for OSC2 output  
VSS  
TABLE 27-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS  
Param  
Symbol  
Characteristic  
Min  
Typ(1) Max Units  
Conditions  
No.  
DO50 COSC2  
OSC2/CLKO Pin  
15  
pF In XT and HS modes when  
external clock is used to drive  
OSC1  
DO56 CIO  
DO58 CB  
All I/O Pins and OSC2  
SCLx, SDAx  
50  
pF EC mode  
pF In I2C™ mode  
400  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 227  
PIC24FJ128GA010 FAMILY  
FIGURE 27-3:  
EXTERNAL CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
Q3  
Q2  
OSC1  
CLKO  
OS20  
OS25  
OS30 OS30  
OS31 OS31  
OS40  
OS41  
TABLE 27-17: EXTERNAL CLOCK TIMING REQUIREMENTS  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
OS10  
FOSC External CLKI Frequency  
(external clocks allowed  
only in EC mode)  
DC  
3
32  
8
MHz EC mode  
MHz ECPLL mode  
Oscillator Frequency  
3.5  
3.5  
10  
10  
8
32  
33  
MHz XT mode  
MHz XTPLL mode  
MHz HS mode  
31  
kHz  
SOSC  
OS20 TOSC TOSC = 1/FOSC  
See Parameter OS10  
for FOSC value  
OS25 TCY  
Instruction Cycle Time(2)  
62.5  
DC  
ns  
ns  
OS30 TosL, External Clock in (OSC1)  
TosH High or Low Time  
0.45 x TOSC  
EC mode  
EC mode  
OS31 TosR, External Clock in (OSC1)  
TosF Rise or Fall Time  
20  
ns  
OS40 TckR CLKO Rise Time(3)  
OS41 TckF CLKO Fall Time(3)  
6
6
10  
10  
ns  
ns  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are  
based on characterization data for that particular oscillator type under standard operating conditions with  
the device executing code. Exceeding these specified limits may result in an unstable oscillator operation  
and/or higher than expected current consumption. All devices are tested to operate at “Min.” values with an  
external clock applied to the OSC1/CLKI pin. When an external clock input is used, the “Max.” cycle time  
limit is “DC” (no clock) for all devices.  
3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin. CLKO is low for the  
Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY).  
DS39747F-page 228  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
TABLE 27-18: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.0V TO 3.6V)  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
Param  
No.  
Sym  
Characteristic(1)  
Min  
Typ(2)  
Max  
Units  
Conditions  
OS50 FPLLI PLL Input Frequency  
Range  
3
8
32  
2
MHz ECPLL, HSPLL, XTPLL  
modes  
OS51 FSYS PLL Output Frequency  
Range  
12  
-2  
1
MHz  
ms  
%
OS52 TLOCK PLL Start-up Time  
(Lock Time)  
OS53 DCLK CLKO Stability (Jitter)  
+2  
Note 1: These parameters are characterized but not tested in manufacturing.  
2: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only  
and are not tested.  
TABLE 27-19: INTERNAL RC OSCILLATOR SPECIFICATIONS  
AC CHARACTERISTICS  
Industrial  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
Param  
No.  
Sym  
Characteristic(1)  
Min  
Typ  
Max  
Units  
Conditions  
15  
µs  
µs  
TFRC FRC Start-up Time  
TLPRC LPRC Start-up Time  
500  
Note 1: These parameters are characterized but not tested in manufacturing.  
TABLE 27-20: INTERNAL RC OSCILLATOR ACCURACY  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
Param  
No.  
Characteristic  
Min  
Typ  
Max  
Units  
Conditions  
Internal FRC Accuracy @ 8 MHz(1)  
F20  
FRC  
-2  
-5  
+2  
+5  
%
%
%
+25°C  
VDD = 3.0 - 3.6V  
VDD = 3.0 - 3.6V  
VDD = 3.0 - 3.6V  
-40°C TA +85°C  
-40°C TA +85°C  
F21  
LPRC @ 31 kHz(1)  
-15  
+15  
Note 1: Change of LPRC frequency as VDD changes.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 229  
PIC24FJ128GA010 FAMILY  
FIGURE 27-4:  
CLKO AND I/O TIMING CHARACTERISTICS  
I/O Pin  
(Input)  
DI35  
DI40  
I/O Pin  
(Output)  
New Value  
Old Value  
DO31  
DO32  
Note: Refer to Figure 27-2 for load conditions.  
TABLE 27-21: CLKO AND I/O TIMING REQUIREMENTS  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C for Industrial  
AC CHARACTERISTICS  
Param  
No.  
Sym  
Characteristic  
Min  
Typ(1)  
Max  
Units  
Conditions  
DO31 TIOR Port Output Rise Time  
DO32 TIOF Port Output Fall Time  
20  
10  
10  
25  
25  
ns  
ns  
ns  
DI35  
TINP  
INTx Pin High or Low  
Time (output)  
DI40  
TRBP CNx High or Low Time  
(input)  
2
TCY  
Note 1: Data in “Typ” column is at 3.3V, 25°C unless otherwise stated.  
DS39747F-page 230  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
TABLE 27-22: A/D MODULE SPECIFICATIONS  
AC CHARACTERISTICS  
Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)  
Operating temperature -40°C TA +85°C  
Param Symbol  
No.  
Characteristic  
Min. Typ  
Max.  
Units  
Conditions  
Device Supply  
AD01 AVDD  
AD02 AVSS  
Module VDD Supply  
Module VSS Supply  
Greater of  
VDD – 0.3  
or 2.0  
Lesser of  
VDD + 0.3  
or 3.6  
V
V
VSS – 0.3  
VSS + 0.3  
Reference Inputs  
AD05 VREFH  
AD06 VREFL  
AD07 VREF  
Reference Voltage High  
Reference Voltage Low  
AVSS + 1.7  
AVSS  
AVDD  
V
V
V
AVDD – 1.7  
AVDD + 0.3  
Absolute Reference  
Voltage  
AVSS – 0.3  
AD08 IVREF  
AD09 ZVREF  
Reference Voltage Input  
Current  
1.25  
mA  
Reference Input  
Impedance  
10K  
Analog Input  
(2)  
AD10 VINH-VINL Full-Scale Input Span  
VREFL  
AVSS – 0.3  
VREFH  
AVDD + 0.3  
±0.610  
V
V
AD11 VIN  
AD12  
Absolute Input Voltage  
Leakage Current  
±0.001  
A  
VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 5V,  
Source Impedance = 2.5 k  
AD14 VINL  
AD17 RIN  
Absolute VINL Input Voltage AVSS – 0.3  
AVDD/2  
2.5K  
V
Recommended  
Impedance of Analog Voltage  
A/D Accuracy  
10 data bits  
+1  
AD20a Nr  
Resolution  
bits  
(2)  
AD21a INL  
Integral Nonlinearity  
<±2  
<±1  
±3  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
(2)  
AD22a DNL  
AD23a GERR  
AD24a EOFF  
Differential Nonlinearity  
+0.5  
+1  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
(2)  
Gain Error  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
(2)  
Offset Error  
+1  
±2  
LSb VINL = AVSS = VREFL = 0V,  
AVDD = VREFH = 3V  
(1)  
AD25a  
Monotonicity  
Guaranteed  
Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.  
2: Measurements are taken with external VREF+ and VREF- used as the A/D voltage reference.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 231  
PIC24FJ128GA010 FAMILY  
TABLE 27-23: A/D CONVERSION TIMING REQUIREMENTS(1)  
Standard Operating Conditions: 2.0V to 3.6V (unless  
otherwise stated)  
Operating temperature  
AC CHARACTERISTICS  
-40°C TA +85°C for Industrial  
Param  
No.  
Sym  
Characteristic  
Min  
75  
Typ  
Max  
Units  
Conditions  
AD50  
TAD  
A/D Clock Period  
ns  
TCY = 75 ns, ADxCON3  
is in default state  
AD51  
tRC  
A/D Internal RC Oscillator  
Period  
250  
ns  
Conversion Rate  
AD55 tCONV Conversion Time  
AD56 FCNV Throughput Rate  
AD57 tSAMP Sample Time  
12  
1
500  
TAD  
ksps  
TAD  
AVDD > 2.7V  
Clock Parameters  
AD61  
tPSS  
Sample Start Delay from  
Setting Sample bit (SAMP)  
2
3
TAD  
Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity  
performance, especially at elevated temperatures.  
DS39747F-page 232  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
28.0 PACKAGING INFORMATION  
28.1 Package Marking Information  
64-Lead TQFP (10x10x1 mm)  
Example  
XXXXXXXXXX  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
PIC24FJ128  
GA006-I/  
PT  
e
3
1110017  
80-Lead TQFP (12x12x1 mm)  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
PIC24FJ128GA  
008-I/PT  
1110017  
e
3
100-Lead TQFP (12x12x1 mm)  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
PIC24FJ128GA  
010-I/PT  
e
3
1110017  
100-Lead TQFP (14x14x1 mm)  
Example  
XXXXXXXXXXXX  
XXXXXXXXXXXX  
YYWWNNN  
PIC24FJ128GA  
010-I/PF  
1110017  
e
3
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 233  
PIC24FJ128GA010 FAMILY  
64-Lead QFN (9x9x0.9 mm)  
Example  
XXXXXXXXXXX  
XXXXXXXXXXX  
XXXXXXXXXXX  
YYWWNNN  
PIC24FJ128  
GA010-I/MR  
e
3
1150017  
DS39747F-page 234  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
28.2 Package Details  
The following sections give the technical details of the packages.  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢎꢗꢇMꢇꢘꢙꢚꢘꢙꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
D
D1  
E
e
E1  
N
b
1 2 3  
NOTE 1  
c
NOTE 2  
α
A
φ
A2  
A1  
β
L
L1  
6ꢄꢃ&!  
ꢒꢚ77ꢚꢒ.ꢘ.ꢙꢗ  
ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢅ7ꢃ'ꢃ&!  
ꢒꢚ8  
89ꢒ  
;ꢔ  
ꢓꢁ/ꢓꢅ1ꢗ+  
M
ꢀꢁꢓꢓ  
M
ꢒꢖ:  
8"')ꢈꢉꢅꢋ%ꢅ7ꢈꢆ#!  
7ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
9 ꢈꢉꢆꢇꢇꢅ<ꢈꢃꢕꢍ&  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅꢘꢍꢃꢌ4ꢄꢈ!!  
ꢗ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ7ꢈꢄꢕ&ꢍ  
8
ꢖꢎ  
ꢖꢀ  
7
M
ꢀꢁꢎꢓ  
ꢀꢁꢓ/  
ꢓꢁꢀ/  
ꢓꢁꢜ/  
ꢓꢁꢛ/  
ꢓꢁꢓ/  
ꢓꢁꢔ/  
ꢓꢁ;ꢓ  
3ꢋꢋ&ꢏꢉꢃꢄ&  
3ꢋꢋ&ꢅꢖꢄꢕꢇꢈ  
7ꢀ  
ꢀꢁꢓꢓꢅꢙ.3  
ꢐꢁ/ꢝ  
ꢓꢝ  
ꢜꢝ  
9 ꢈꢉꢆꢇꢇꢅ?ꢃ#&ꢍ  
9 ꢈꢉꢆꢇꢇꢅ7ꢈꢄꢕ&ꢍ  
.
.ꢀ  
ꢑꢀ  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢎꢁꢓꢓꢅ1ꢗ+  
ꢀꢓꢁꢓꢓꢅ1ꢗ+  
ꢀꢓꢁꢓꢓꢅ1ꢗ+  
M
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ7ꢈꢄꢕ&ꢍ  
7ꢈꢆ#ꢅꢘꢍꢃꢌ4ꢄꢈ!!  
7ꢈꢆ#ꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ1ꢋ&&ꢋ'  
ꢓꢁꢓꢛ  
ꢓꢁꢀꢜ  
ꢀꢀꢝ  
ꢓꢁꢎꢓ  
ꢓꢁꢎꢜ  
ꢀꢐꢝ  
)
ꢓꢁꢎꢎ  
ꢀꢎꢝ  
ꢀꢎꢝ  
ꢀꢀꢝ  
ꢀꢐꢝ  
' ꢋꢄꢊ(  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ +ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢏ&ꢃꢋꢄꢆꢇ,ꢅ!ꢃ-ꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
ꢐꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢑꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢒꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢓꢁꢎ/ꢅ''ꢅꢏꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢔꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢕꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢕꢅꢏꢈꢉꢅꢖꢗꢒ.ꢅ0ꢀꢔꢁ/ꢒꢁ  
1ꢗ+2 1ꢆ!ꢃꢌꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢙ.32 ꢙꢈ%ꢈꢉꢈꢄꢌꢈꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢏ"ꢉꢏꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢒꢃꢌꢉꢋꢌꢍꢃꢏ ꢌꢍꢄꢋꢇꢋꢕꢊ ꢑꢉꢆ*ꢃꢄꢕ +ꢓꢔꢞꢓ@/1  
2005-2012 Microchip Technology Inc.  
DS39747F-page 235  
PIC24FJ128GA010 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS39747F-page 236  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D1  
E
e
E1  
N
b
NOTE 1  
12 3  
α
NOTE 2  
A
c
φ
A2  
β
A1  
L1  
L
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
80  
0.50 BSC  
1.00  
MAX  
Number of Leads  
Lead Pitch  
Overall Height  
Molded Package Thickness  
Standoff  
Foot Length  
N
e
A
A2  
A1  
L
1.20  
1.05  
0.15  
0.75  
0.95  
0.05  
0.45  
0.60  
Footprint  
Foot Angle  
L1  
φ
1.00 REF  
3.5°  
0°  
7°  
Overall Width  
Overall Length  
E
D
E1  
D1  
c
14.00 BSC  
14.00 BSC  
12.00 BSC  
12.00 BSC  
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0.09  
0.17  
11°  
0.20  
0.27  
13°  
b
α
0.22  
12°  
12°  
β
11°  
13°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Chamfers at corners are optional; size may vary.  
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-092B  
2005-2012 Microchip Technology Inc.  
DS39747F-page 237  
PIC24FJ128GA010 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS39747F-page 238  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
D1  
e
E
E1  
N
b
123  
NOTE 2  
NOTE 1  
c
α
A
φ
L
A1  
β
A2  
L1  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Number of Leads  
Lead Pitch  
Overall Height  
N
e
A
100  
0.40 BSC  
1.20  
1.05  
0.15  
0.75  
Molded Package Thickness  
Standoff  
Foot Length  
A2  
A1  
L
0.95  
0.05  
0.45  
1.00  
0.60  
Footprint  
Foot Angle  
L1  
φ
1.00 REF  
3.5°  
0°  
7°  
Overall Width  
E
D
E1  
D1  
c
14.00 BSC  
14.00 BSC  
12.00 BSC  
12.00 BSC  
Overall Length  
Molded Package Width  
Molded Package Length  
Lead Thickness  
Lead Width  
0.09  
0.13  
11°  
0.20  
0.23  
13°  
b
α
0.18  
12°  
12°  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
β
11°  
13°  
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Chamfers at corners are optional; size may vary.  
3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.  
4. Dimensioning and tolerancing per ASME Y14.5M.  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-100B  
2005-2012 Microchip Technology Inc.  
DS39747F-page 239  
PIC24FJ128GA010 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS39747F-page 240  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
ꢘꢙꢙꢂꢃꢄꢅꢆꢇꢈꢉꢅꢊꢋꢌꢍꢇꢎꢏꢌꢐꢇꢑꢒꢅꢆꢇꢓꢉꢅꢋꢔꢅꢍꢕꢇꢖꢈꢓꢗꢇMꢇꢘꢁꢚꢘꢁꢚꢘꢇꢛꢛꢇꢜ ꢆ!"ꢇ#$ꢙꢙꢇꢛꢛꢇ%ꢎꢑꢓꢈ&  
' ꢋꢄ( 3ꢋꢉꢅ&ꢍꢈꢅ'ꢋ!&ꢅꢌ"ꢉꢉꢈꢄ&ꢅꢏꢆꢌ4ꢆꢕꢈꢅ#ꢉꢆ*ꢃꢄꢕ!(ꢅꢏꢇꢈꢆ!ꢈꢅ!ꢈꢈꢅ&ꢍꢈꢅꢒꢃꢌꢉꢋꢌꢍꢃꢏꢅꢂꢆꢌ4ꢆꢕꢃꢄꢕꢅꢗꢏꢈꢌꢃ%ꢃꢌꢆ&ꢃꢋꢄꢅꢇꢋꢌꢆ&ꢈ#ꢅꢆ&ꢅ  
ꢍ&&ꢏ255***ꢁ'ꢃꢌꢉꢋꢌꢍꢃꢏꢁꢌꢋ'5ꢏꢆꢌ4ꢆꢕꢃꢄꢕ  
D
D1  
e
E1  
E
b
N
α
NOTE 1  
1 23  
NOTE 2  
A
φ
c
A2  
A1  
β
L1  
L
6ꢄꢃ&!  
ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢅ7ꢃ'ꢃ&!  
ꢒꢚ77ꢚꢒ.ꢘ.ꢙꢗ  
89ꢒ  
ꢒꢚ8  
ꢒꢖ:  
8"')ꢈꢉꢅꢋ%ꢅ7ꢈꢆ#!  
7ꢈꢆ#ꢅꢂꢃ&ꢌꢍ  
9 ꢈꢉꢆꢇꢇꢅ<ꢈꢃꢕꢍ&  
8
ꢀꢓꢓ  
ꢓꢁ/ꢓꢅ1ꢗ+  
M
M
ꢀꢁꢎꢓ  
ꢀꢁꢓ/  
ꢓꢁꢀ/  
ꢓꢁꢜ/  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅꢘꢍꢃꢌ4ꢄꢈ!!  
ꢗ&ꢆꢄ#ꢋ%%ꢅꢅ  
3ꢋꢋ&ꢅ7ꢈꢄꢕ&ꢍ  
ꢖꢎ  
ꢖꢀ  
7
ꢓꢁꢛ/  
ꢓꢁꢓ/  
ꢓꢁꢔ/  
ꢀꢁꢓꢓ  
M
ꢓꢁ;ꢓ  
3ꢋꢋ&ꢏꢉꢃꢄ&  
3ꢋꢋ&ꢅꢖꢄꢕꢇꢈ  
7ꢀ  
ꢀꢁꢓꢓꢅꢙ.3  
ꢐꢁ/ꢝ  
ꢓꢝ  
ꢜꢝ  
9 ꢈꢉꢆꢇꢇꢅ?ꢃ#&ꢍ  
9 ꢈꢉꢆꢇꢇꢅ7ꢈꢄꢕ&ꢍ  
.
.ꢀ  
ꢑꢀ  
ꢀ;ꢁꢓꢓꢅ1ꢗ+  
ꢀ;ꢁꢓꢓꢅ1ꢗ+  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
ꢀꢔꢁꢓꢓꢅ1ꢗ+  
M
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢈ#ꢅꢂꢆꢌ4ꢆꢕꢈꢅ7ꢈꢄꢕ&ꢍ  
7ꢈꢆ#ꢅꢘꢍꢃꢌ4ꢄꢈ!!  
7ꢈꢆ#ꢅ?ꢃ#&ꢍ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ  
ꢒꢋꢇ#ꢅꢑꢉꢆ%&ꢅꢖꢄꢕꢇꢈꢅ1ꢋ&&ꢋ'  
ꢓꢁꢓꢛ  
ꢓꢁꢀꢜ  
ꢀꢀꢝ  
ꢓꢁꢎꢓ  
ꢓꢁꢎꢜ  
ꢀꢐꢝ  
)
ꢓꢁꢎꢎ  
ꢀꢎꢝ  
ꢀꢎꢝ  
ꢀꢀꢝ  
ꢀꢐꢝ  
' ꢋꢄꢊ(  
ꢀꢁ ꢂꢃꢄꢅꢀꢅ ꢃ!"ꢆꢇꢅꢃꢄ#ꢈ$ꢅ%ꢈꢆ&"ꢉꢈꢅ'ꢆꢊꢅ ꢆꢉꢊ(ꢅ)"&ꢅ'"!&ꢅ)ꢈꢅꢇꢋꢌꢆ&ꢈ#ꢅ*ꢃ&ꢍꢃꢄꢅ&ꢍꢈꢅꢍꢆ&ꢌꢍꢈ#ꢅꢆꢉꢈꢆꢁ  
ꢎꢁ +ꢍꢆ'%ꢈꢉ!ꢅꢆ&ꢅꢌꢋꢉꢄꢈꢉ!ꢅꢆꢉꢈꢅꢋꢏ&ꢃꢋꢄꢆꢇ,ꢅ!ꢃ-ꢈꢅ'ꢆꢊꢅ ꢆꢉꢊꢁ  
ꢐꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄ!ꢅꢑꢀꢅꢆꢄ#ꢅ.ꢀꢅ#ꢋꢅꢄꢋ&ꢅꢃꢄꢌꢇ"#ꢈꢅ'ꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢁꢅꢒꢋꢇ#ꢅ%ꢇꢆ!ꢍꢅꢋꢉꢅꢏꢉꢋ&ꢉ"!ꢃꢋꢄ!ꢅ!ꢍꢆꢇꢇꢅꢄꢋ&ꢅꢈ$ꢌꢈꢈ#ꢅꢓꢁꢎ/ꢅ''ꢅꢏꢈꢉꢅ!ꢃ#ꢈꢁ  
ꢔꢁ ꢑꢃ'ꢈꢄ!ꢃꢋꢄꢃꢄꢕꢅꢆꢄ#ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢃꢄꢕꢅꢏꢈꢉꢅꢖꢗꢒ.ꢅ0ꢀꢔꢁ/ꢒꢁ  
1ꢗ+2 1ꢆ!ꢃꢌꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄꢁꢅꢘꢍꢈꢋꢉꢈ&ꢃꢌꢆꢇꢇꢊꢅꢈ$ꢆꢌ&ꢅ ꢆꢇ"ꢈꢅ!ꢍꢋ*ꢄꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ!ꢁ  
ꢙ.32 ꢙꢈ%ꢈꢉꢈꢄꢌꢈꢅꢑꢃ'ꢈꢄ!ꢃꢋꢄ(ꢅ"!"ꢆꢇꢇꢊꢅ*ꢃ&ꢍꢋ"&ꢅ&ꢋꢇꢈꢉꢆꢄꢌꢈ(ꢅ%ꢋꢉꢅꢃꢄ%ꢋꢉ'ꢆ&ꢃꢋꢄꢅꢏ"ꢉꢏꢋ!ꢈ!ꢅꢋꢄꢇꢊꢁ  
ꢒꢃꢌꢉꢋꢌꢍꢃꢏ ꢌꢍꢄꢋꢇꢋꢕꢊ ꢑꢉꢆ*ꢃꢄꢕ +ꢓꢔꢞꢀꢀꢓ1  
2005-2012 Microchip Technology Inc.  
DS39747F-page 241  
PIC24FJ128GA010 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS39747F-page 242  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2005-2012 Microchip Technology Inc.  
DS39747F-page 243  
PIC24FJ128GA010 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS39747F-page 244  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2005-2012 Microchip Technology Inc.  
DS39747F-page 245  
PIC24FJ128GA010 FAMILY  
NOTES:  
DS39747F-page 246  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
APPENDIX A: REVISION HISTORY  
Revision A (September 2005)  
Original data sheet for PIC24FJ128GA010 family  
devices.  
Revision B (March 2006)  
Update of electrical specifications.  
Revision C (June 2006)  
Update of electrical specifications.  
Revision D (September 2007)  
Minor changes in the overall data sheet  
Revision E (October 2009)  
Updated to remove Preliminary status.  
Revision F (January 2012)  
Added Section 2.0 “Guidelines for Getting Started  
with 16-bit Microcontrollers”. In Section 28.0  
“Packaging Information”, Land Patterns of all the  
packaging have been added. Minor edits to text  
throughout the document.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 247  
PIC24FJ128GA010 FAMILY  
NOTES:  
DS39747F-page 248  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
INDEX  
A
C
A/D  
C Compilers  
Conversion Timing Requirements............................. 232  
Module Specifications............................................... 231  
MPLAB C18.............................................................. 214  
Clock Switching  
AC  
Enabling.................................................................... 103  
Operation.................................................................. 103  
Oscillator Sequence ................................................. 103  
Characteristics .......................................................... 227  
Load Conditions........................................................ 227  
Temperature and Voltage Specifications.................. 227  
Code Examples  
Alternate Interrupt Vector Table (AIVT) .............................. 63  
Arithmetic Logic Unit (ALU)................................................. 30  
Assembler  
Basic Code Sequence for Clock Switching .............. 104  
Erasing a Program Memory Block.............................. 54  
Initiating a Programming Sequence ........................... 55  
Loading Write Buffers................................................. 55  
Port Write/Read........................................................ 108  
Programming a Single Word of Flash  
MPASM Assembler................................................... 214  
B
Block Diagrams  
Program Memory................................................ 56  
PWRSAV Instruction Syntax .................................... 105  
Comparator Module.......................................................... 189  
Comparator Voltage Reference........................................ 193  
Configuring ............................................................... 193  
Configuration Bits ............................................................. 195  
Configuration Register Protection..................................... 203  
Core Features....................................................................... 7  
16-Bit Architecture........................................................ 7  
Easy Migration.............................................................. 8  
Oscillator Options, Features......................................... 7  
PIC24FJ128GA010 Family Devices............................. 9  
Power-Saving Technology............................................ 7  
CPU .................................................................................... 25  
Control Registers........................................................ 28  
Programmer’s Model .................................................. 27  
CPU Clocking Scheme ....................................................... 98  
CRC  
Example Setup ......................................................... 175  
Operation in Power Save Modes.............................. 177  
Overview................................................................... 175  
Registers .................................................................. 175  
User Interface........................................................... 176  
Customer Change Notification Service............................. 253  
Customer Notification Service .......................................... 253  
Customer Support............................................................. 253  
CVRR  
10-Bit High-Speed A/D Converter............................. 180  
16-Bit Timer1 Module................................................ 111  
8-Bit Multiplexed Address and Data Application....... 162  
Accessing Program Memory with  
Table Instructions ............................................... 48  
Addressable Parallel Slave Port ............................... 160  
Comparator I/O Operating Modes............................. 189  
Comparator Voltage Reference ................................ 193  
Connections for On-Chip Voltage Regulator............. 201  
Device Clock............................................................... 97  
2
I C............................................................................. 138  
Input Capture ............................................................ 119  
LCD Control, Byte Mode........................................... 162  
Legacy Parallel Slave Port........................................ 160  
Master Mode, Demultiplexed Addressing ................. 160  
Master Mode, Fully Multiplexed Addressing ............. 161  
Master Mode, Partially Multiplexed Addressing........ 161  
Multiplexed Addressing Application .......................... 161  
Output Compare Module........................................... 121  
Parallel EEPROM (Up to 15-Bit Address, 16-Bit Data)...  
162  
Parallel EEPROM (Up to 15-Bit Address, 8-Bit Data).....  
162  
Partially Multiplexed Addressing Application ............ 161  
PIC24F CPU Core ...................................................... 26  
PIC24FJ128GA010 Family (General)......................... 10  
PMP Module ............................................................. 153  
Program Space Visibility Operation ............................ 49  
Reset System.............................................................. 57  
RTCC........................................................................ 163  
Shared Port Structure ............................................... 107  
SPI Master, Frame Master Connection..................... 135  
SPI Master, Frame Slave Connection....................... 135  
SPI Master/Slave Connection (Enhanced  
Buffer Modes) ................................................... 134  
SPI Master/Slave Connection (Standard Mode)....... 134  
SPI Slave, Frame Master Connection....................... 135  
SPI Slave, Frame Slave Connection......................... 135  
SPIx Module (Enhanced Mode)................................ 129  
SPIx Module (Standard Mode).................................. 128  
Timer2 and Timer4 (16-Bit Synchronous)................. 115  
Timer2/3 and Timer4/5 (32-Bit)................................. 114  
Timer3 and Timer5 (16-Bit Synchronous)................. 115  
UARTx ...................................................................... 145  
Watchdog Timer (WDT)............................................ 202  
CVrsrc....................................................................... 193  
D
Data Memory  
Address Space ........................................................... 33  
Width .................................................................. 33  
Memory Map for PIC24F128GA010  
Family Devices ................................................... 33  
Near Data Space........................................................ 34  
Organization and Alignment ....................................... 34  
SFR Space ................................................................. 34  
Software Stack ........................................................... 46  
2005-2012 Microchip Technology Inc.  
DS39747F-page 249  
PIC24FJ128GA010 FAMILY  
DC Characteristics ............................................................218  
Comparator Voltage Reference  
In-Circuit Debugger........................................................... 203  
In-Circuit Serial Programming (ICSP)............................... 203  
Input Capture.................................................................... 119  
Registers .................................................................. 120  
Instruction Set  
Specifications....................................................226  
I/O Pin Input Specifications............................... 222, 224  
I/O Pin Output Specifications....................................223  
Idle Current (IIDLE) ....................................................220  
Operating Current (IDD).............................................219  
Operating MIPS vs. Voltage......................................218  
Power-Down Current (IPD) ........................................221  
Program Memory ......................................................225  
Temperature and Voltage Specifications..................218  
Thermal Operating Conditions..................................218  
Thermal Packaging ...................................................218  
Development Support .......................................................213  
Overview................................................................... 207  
Summary .................................................................. 205  
2
Inter-Integrated Circuit (I C) ............................................. 137  
Internal RC Oscillator  
Use with WDT........................................................... 202  
Internet Address ............................................................... 253  
Interrupt  
Setup Procedures  
Initialization......................................................... 96  
Interrupt Control and Status Registers ............................... 66  
IECx............................................................................ 66  
IFSx ............................................................................ 66  
INTCON1, INTCON2 .................................................. 66  
IPCx............................................................................ 66  
Interrupt Controller.............................................................. 63  
Interrupt Vector Table (IVT)................................................ 63  
Interrupts  
E
Electrical Characteristics...................................................217  
Absolute Maximum Ratings ......................................217  
ENVREG Pin.....................................................................201  
Equations  
A/D Conversion Clock Period ...................................186  
Calculating the PWM Period .....................................123  
Calculation for Maximum PWM Resolution...............123  
CRC Polynomial........................................................175  
Relationship Between Device and SPI  
Setup Procedure,  
Interrupt Disable ................................................. 96  
Setup Procedures....................................................... 96  
Interrupt Service Routine (ISR) .......................... 96  
Trap Service Routine (TSR) ............................... 96  
Clock Speed......................................................136  
UARTx Baud Rate with BRGH = 0............................146  
UARTx Baud Rate with BRGH = 1............................146  
Errata ....................................................................................6  
Examples  
M
Memory Organization ......................................................... 31  
Microchip Internet Web Site.............................................. 253  
MPLAB ASM30 Assembler, Linker, Librarian................... 214  
MPLAB Integrated Development  
Baud Rate Error Calculation (BRGH = 0) .................146  
PWM Period and Duty Cycle Calculations................124  
Setting RTCWREN Bit in MPLAB C30......................164  
Environment Software .............................................. 213  
MPLAB PM3 Device Programmer .................................... 216  
MPLAB REAL ICE In-Circuit Emulator System ................ 215  
MPLINK Object Linker/MPLIB Object Librarian................ 214  
F
Flash Configuration Words.......................................... 32, 195  
Flash Program Memory.......................................................51  
Control Registers ........................................................52  
Enhanced ICSP ..........................................................52  
JTAG Operation ..........................................................52  
Operations ..................................................................52  
Programming a Single Word.......................................56  
Programming Algorithm ..............................................54  
RTSP Operation..........................................................52  
Table Instructions........................................................51  
FSCM  
O
On-Chip Voltage Regulator............................................... 201  
Brown-out Reset (BOR)............................................ 201  
Power-on Reset (POR)............................................. 201  
Power-up Requirements........................................... 201  
Oscillator Configuration ...................................................... 97  
Clock Switching Mode Configuration Bits................... 98  
Control Registers........................................................ 99  
CLKDIV............................................................... 99  
OSCCON............................................................ 99  
OSCTUN ............................................................ 99  
Output Compare ............................................................... 121  
Continuous Output Pulse Generation Setup............. 122  
Modes of Operation .................................................. 121  
Pulse-Width Modulation.................................... 123  
Pulse-Width Modulation  
and Device Resets......................................................61  
Delay for Crystal and PLL Clock Sources...................61  
I
I/O Ports............................................................................107  
Configuring Analog Pins ...........................................108  
Voltage Considerations.....................................108  
Input Change Notification..........................................109  
Open-Drain Configuration .........................................108  
Parallel I/O (PIO).......................................................107  
Write/Read Timing ....................................................108  
Duty Cycle ........................................................ 123  
PWM Period ..................................................... 123  
Single Output Pulse Generation Setup..................... 121  
2
I C  
Clock Rates...............................................................139  
Communicating as Master in a Single  
Master Environment..........................................137  
Setting Baud Rate When Operating as  
Bus Master........................................................139  
Slave Address Masking ............................................139  
Implemented Interrupt Vectors (table).................................65  
DS39747F-page 250  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
SPI2............................................................................ 40  
System........................................................................ 45  
Timer .......................................................................... 37  
UART1........................................................................ 40  
UART2........................................................................ 40  
P
Packaging ......................................................................... 233  
Details....................................................................... 235  
Marking ..................................................................... 233  
Parallel Master Port (PMP) ............................................... 153  
PIC24FJ128GA010 Family  
Registers  
AD1CHS (A/D Input Select)...................................... 184  
AD1CON1 (A/D Control 1)........................................ 181  
AD1CON2 (A/D Control 2)........................................ 182  
AD1CON3 (A/D Control 3)........................................ 183  
AD1CSSL (A/D Input Scan Select)........................... 185  
AD1PCFG (A/D Port Configuration) ......................... 185  
ALCFGRPT (Alarm Configuration) ........................... 167  
ALMINSEC (Alarm Minutes and  
Seconds Value)................................................ 171  
ALMTHDY (Alarm Month and Day Value)................ 170  
ALWDHR (Alarm Weekday and Hours Value) ......... 170  
CLKDIV (Clock Divider)............................................ 101  
CMCON (Comparator Control)................................. 190  
CORCON (Core Control)...................................... 29, 67  
CRCCON (CRC Control).......................................... 177  
CVRCON (Comparator Voltage  
Pinout Descriptions..................................................... 11  
Pin Diagrams ........................................................................ 2  
POR and Long Oscillator Start-up Times............................ 61  
Power-Saving Features .................................................... 105  
Clock Switching, Clock Frequency............................ 105  
Doze Modes.............................................................. 106  
Instruction-Based Modes .......................................... 105  
Idle .................................................................... 106  
Sleep................................................................. 105  
Interrupts, Coincident with Power-Save  
Instructions ....................................................... 106  
Selective Peripheral Control ..................................... 106  
Program Address Space..................................................... 31  
Memory Map for PIC24FJ128GA010  
Family Devices ................................................... 31  
Program and Data Memory Spaces  
Reference Control)........................................... 194  
DEVID (Device ID).................................................... 199  
DEVREV (Device Revision)...................................... 200  
Flash Configuration Word 1...................................... 196  
Flash Configuration Word 2...................................... 198  
I2CxCON (I2Cx Control)........................................... 140  
I2CxMSK (I2Cx Slave Mode Address Mask)............ 144  
I2CxSTAT (I2Cx Status)........................................... 142  
ICxCON (Input Capture x Control)............................ 120  
IEC0 (Interrupt Enable Control 0)............................... 75  
IEC1 (Interrupt Enable Control 1)............................... 76  
IEC2 (Interrupt Enable Control 2)............................... 77  
IEC3 (Interrupt Enable Control 3)............................... 78  
IEC4 (Interrupt Enable Control 4)............................... 79  
IFS0 (Interrupt Flag Status 0)..................................... 70  
IFS1 (Interrupt Flag Status 1)..................................... 71  
IFS2 (Interrupt Flag Status 2)..................................... 72  
IFS3 (Interrupt Flag Status 3)..................................... 73  
IFS4 (Interrupt Flag Status 4)..................................... 74  
INTCON1 (Interrupt Control 1) ................................... 68  
INTCON2 (Interrupt Control 2) ................................... 69  
INTTREG (Interrupt Control and Status) .................... 95  
IPC0 (Interrupt Priority Control 0)............................... 80  
IPC1 (Interrupt Priority Control 1)............................... 81  
IPC10 (Interrupt Priority Control 10)........................... 90  
IPC11 (Interrupt Priority Control 11)........................... 90  
IPC12 (Interrupt Priority Control 12)........................... 91  
IPC13 (Interrupt Priority Control 13)........................... 92  
IPC15 (Interrupt Priority Control 15)........................... 93  
IPC16 (Interrupt Priority Control 16)........................... 94  
IPC2 (Interrupt Priority Control 2)............................... 82  
IPC3 (Interrupt Priority Control 3)............................... 83  
IPC4 (Interrupt Priority Control 4)............................... 84  
IPC5 (Interrupt Priority Control 5)............................... 85  
IPC6 (Interrupt Priority Control 6)............................... 86  
IPC7 (Interrupt Priority Control 7)............................... 87  
IPC8 (Interrupt Priority Control 8)............................... 88  
IPC9 (Interrupt Priority Control 9)............................... 89  
MINSEC (Minutes and Seconds Value) ................... 169  
MTHDY (Month and Day Value)............................... 168  
NVMCON (Flash Memory Control)............................. 53  
OCxCON Output Compare x Control) ...................... 125  
OSCCON (Oscillator Control)..................................... 99  
Interfacing ................................................................... 46  
Program Memory  
Data Access Using Table Instructions ........................ 48  
Hard Memory Vectors................................................. 32  
Interrupt Vector ........................................................... 32  
Organization................................................................ 32  
Reading Data Using Program Space Visibility............ 49  
Reset Vector ............................................................... 32  
Table Instructions  
TBLRDH ............................................................. 48  
TBLRDL .............................................................. 48  
Program Space  
Address Construction.................................................. 47  
Addressing.................................................................. 46  
Data Access from, Address Generation...................... 47  
Program Verification and Code Protection........................ 203  
Programmer’s Model........................................................... 25  
R
Reader Response............................................................. 254  
Register Maps  
A/D.............................................................................. 41  
CRC ............................................................................ 45  
Dual Comparator......................................................... 44  
I2C1 ............................................................................ 39  
I2C2 ............................................................................ 39  
ICN.............................................................................. 37  
Input Capture .............................................................. 38  
Interrupt Controller...................................................... 36  
NVM............................................................................ 45  
Output Compare ......................................................... 38  
Pad Configuration ....................................................... 43  
Parallel Master/Slave Port .......................................... 44  
PMD............................................................................ 45  
PORTA........................................................................ 41  
PORTB........................................................................ 42  
PORTC ....................................................................... 42  
PORTD ....................................................................... 42  
PORTE........................................................................ 43  
PORTF........................................................................ 43  
PORTG ....................................................................... 43  
Real-Time Clock and Calendar (RTCC) ..................... 44  
SPI1 ............................................................................ 40  
2005-2012 Microchip Technology Inc.  
DS39747F-page 251  
PIC24FJ128GA010 FAMILY  
OSCTUN (FRC Oscillator Tune)...............................102  
PADCFG1 (Pad Configuration Control) ....................166  
T
Table of Contents ................................................................. 5  
PMADDR (Parallel Port Address) .............................157  
PMAEN (Parallel Port Enable) ..................................157  
PMCON (Parallel Port Control) .................................154  
PMMODE (Parallel Port Mode).................................156  
PMSTAT (Parallel Port Status) .................................158  
RCFGCAL (RTCC Calibration  
and Configuration) ............................................165  
RCON (Reset Control)................................................58  
SPIxCON1 (SPIx Control 1)......................................132  
SPIxCON2 (SPIx Control 2)......................................133  
SPIxSTAT (SPIx Status and Control) .......................130  
SR (CPU STATUS)...............................................28, 67  
T1CON (Timer1 Control)...........................................112  
TxCON (Timer2/4 Control)........................................116  
TyCON (Timer3/5 Control)........................................117  
UxMODE (UARTx Mode)..........................................148  
UxSTA (UARTx Status and Control).........................150  
WKDYHR (Weekday and Hours Value)....................169  
YEAR (Year Value)...................................................168  
Timer1 Module.................................................................. 111  
Timer2/3 Module............................................................... 113  
Timer4/5 Module............................................................... 113  
Timing Diagrams  
CLKO and I/O ........................................................... 230  
External Clock........................................................... 228  
Timing Requirements  
Capacitive Loading on Output Pin ............................ 227  
CLKO and I/O ........................................................... 230  
External Clock........................................................... 228  
Timing Specifications  
Internal RC Oscillator................................................ 229  
Internal RC Oscillator Accuracy................................ 229  
PLL Clock ................................................................. 229  
U
UARTx  
Baud Rate Generator (BRG) .................................... 146  
Break and Sync Transmit Sequence ........................ 147  
Infrared Support........................................................ 147  
IrDA  
Built-in Encoder and Decoder........................... 147  
External Support, Clock Output........................ 147  
Operation of UxCTS and UxRTS Control Pins ......... 147  
Receiving in  
Registers Map  
CPU Core....................................................................35  
Reset Sequence..................................................................63  
Resets.................................................................................57  
Clock Source Selection...............................................59  
Device Times ..............................................................59  
Revision History ................................................................247  
RTCC  
8-Bit or 9-Bit Data Mode................................... 147  
Transmitting  
Alarm.........................................................................172  
Configuring........................................................172  
Interrupt.............................................................172  
ALRMVAL Register Mappings ..................................170  
Calibration.................................................................172  
Control Registers ......................................................165  
Module Registers......................................................164  
Mapping ............................................................164  
RTCVAL Register Mapping.......................................168  
8-Bit Data Mode................................................ 147  
Transmitting in  
9-Bit Data Mode................................................ 147  
Universal Asynchronous Receiver Transmitter (UART) ... 145  
V
VDDCORE/VCAP Pin ........................................................... 201  
W
Watchdog Timer (WDT).................................................... 202  
Control Register........................................................ 202  
Programming Considerations ................................... 202  
WWW Address ................................................................. 253  
WWW, On-Line Support ....................................................... 6  
S
Serial Peripheral Interface (SPI) .......................................127  
Software Simulator (MPLAB SIM).....................................215  
Software Stack Pointer, Frame Pointer  
CALL Stack Frame......................................................46  
Special Features ...............................................................195  
Code Protection ........................................................195  
Flexible Configuration ...............................................195  
In-Circuit Emulation...................................................195  
In-Circuit Serial Programming (ICSP).......................195  
JTAG Boundary Scan Interface ................................195  
Watchdog Timer (WDT)............................................195  
Special Function Register Reset States..............................61  
Symbols Used in Opcode Descriptions.............................206  
DS39747F-page 252  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
• Development Systems Information Line  
Customers  
should  
contact  
their  
distributor,  
representative or field application engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://microchip.com/support  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com. Under “Support”, click on  
“Customer Change Notification” and follow the  
registration instructions.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 253  
PIC24FJ128GA010 FAMILY  
READER RESPONSE  
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip  
product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our  
documentation can better serve you, please FAX your comments to the Technical Publications Manager at  
(480) 792-4150.  
Please list the following information, and use this outline to provide us with your comments about this document.  
TO:  
RE:  
Technical Publications Manager  
Reader Response  
Total Pages Sent ________  
From:  
Name  
Company  
Address  
City / State / ZIP / Country  
Telephone: (_______) _________ - _________  
FAX: (______) _________ - _________  
Literature Number: DS39747F  
Application (optional):  
Would you like a reply?  
Y
N
Device: PIC24FJ128GA010 family  
Questions:  
1. What are the best features of this document?  
2. How does this document meet your hardware and software development needs?  
3. Do you find the organization of this document easy to follow? If not, why?  
4. What additions to the document do you think would enhance the structure and subject?  
5. What deletions from the document could be made without affecting the overall usefulness?  
6. Is there any incorrect or misleading information (what and where)?  
7. How would you improve this document?  
DS39747F-page 254  
2005-2012 Microchip Technology Inc.  
PIC24FJ128GA010 FAMILY  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PIC 24 FJ 128 GA0 10 T - I / PT - XXX  
a)  
b)  
PIC24FJ128GA008-I/PT 301:  
General purpose PIC24F, 96 Kbyte program  
memory, 80-pin, Industrial temp.,  
Microchip Trademark  
Architecture  
TQFP package, QTP pattern #301.  
PIC24FJ128GA010-I/PT:  
Flash Memory Family  
General purpose PIC24F, 128 Kbyte program  
memory, 100-pin, Industrial temp.,  
TQFP package.  
Program Memory Size (KB)  
Product Group  
Pin Count  
Tape and Reel Flag (if applicable)  
Temperature Range  
Package  
Pattern  
Architecture  
24 = 16-bit modified Harvard without DSP  
Flash Memory Family FJ = Flash program memory  
Product Group  
Pin Count  
GA0 = General purpose microcontrollers  
06 = 64-pin  
08 = 80-pin  
10 = 100-pin  
Temperature Range  
Package  
I
= -40C to +85C (Industrial)  
PT = 64-Lead, 80-Lead, 100-Lead (12x12x1 mm)  
TQFP (Thin Quad Flatpack)  
PF = 100-Lead (14x14x1 mm) TQFP (Thin Quad Flatpack)  
MR = 64-lead (9x9x0.9 mm) QFN (Quad Flatpack, No Lead)  
Pattern  
Three-digit QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
ES = Engineering Sample  
2005-2012 Microchip Technology Inc.  
DS39747F-page 255  
PIC24FJ128GA010 FAMILY  
NOTES:  
DS39747F-page 256  
2005-2012 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, chipKIT,  
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,  
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,  
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,  
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,  
MPLINK, mTouch, Omniscient Code Generation, PICC,  
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,  
rfLAB, Select Mode, Total Endurance, TSHARC,  
UniWinDriver, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2005-2012, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN:978-1-61341-955-7  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
2005-2012 Microchip Technology Inc.  
DS39747F-page 257  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Osaka  
Tel: 81-66-152-7160  
Fax: 81-66-152-9310  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Korea - Seoul  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-330-9305  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
11/29/11  
DS39747F-page 258  
2005-2012 Microchip Technology Inc.  

相关型号:

GRM31CR61C106MA88#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM31CR61C226K

Chip Monolithic Ceramic Capacitor 1206 X5R 22μF 16V
MURATA

GRM31CR61C226KE15

Ultra Low Quiescent Current, Hysteretic DC-DC Step-Up Converter
AMSCO

GRM31CR61C226KE15#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM31CR61C226KE15L

CHIP MONOLITHIC CERAMIC CAPACITOR
MURATA

GRM31CR61C226ME15

Chip Monolithic Ceramic Capacitors
MURATA

GRM31CR61C226ME15

15A Voltage Mode Synchronous Buck PWM
ENPIRION

GRM31CR61C226ME15#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA

GRM31CR61C335K88

Chip Multilayer Ceramic Capacitors for General Purpose
MURATA

GRM31CR61C335K88K

Chip Multilayer Ceramic Capacitors for General Purpose
MURATA

GRM31CR61C335K88L

Chip Multilayer Ceramic Capacitors for General Purpose
MURATA

GRM31CR61C335KA88#

民用设备,工业设备,移动设备,植入式以外的医疗器械设备 [GHTF A/B/C],汽车[信息娱乐 / 舒适设备]
MURATA